[144r]

Ashley-Combe Porlock Somerset Sunday Mor^g. 28th Augst ['1842' added by later reader]

Dear M^r De Morgan. I am going on well; __ ['quite' inserted] as I could wish. I have done much since I saw you; & you will have all the results of the last few days in good time. I enclose you now two papers ; one on $f = \frac{dv}{dt}$, the other on $\int_a^{a'} f dt$. You will have next those on $v \frac{dv}{dt} = f$, and $v^2 = 2 \int f ds + C$. This latter I think I have succeeded in analysing to my mind. I have ['now' inserted] two observations to make : [something crossed out] 1^{stly}: I think I have detected a slight error in one of my former papers, that on $t = \int \frac{ds}{v}$. I return it for reference. In order in the [something crossed out] Summation [something crossed out] $\left\{\frac{1}{\varphi s} + \frac{1}{\varphi(s+ds)} + \cdots + \frac{1}{\varphi(2s)}\right\} ds, \text{ to } \underline{\text{end}} \text{ with } \frac{1}{\varphi(2s)},$ I should have begun with $\frac{1}{\varphi(s+ds)}$ not with $\frac{1}{\varphi s}$. If the time elapsed during the first fraction of Space [144v] (starting from s) were ['made' inserted] = $\frac{1}{\omega s}$, then the time for the <u>last</u> of the Fractions necessary to complete up to 2s, would be $\frac{1}{\varphi(2s-ds)}$, and not $\frac{1}{\varphi(2s)}$ which it <u>ought to be</u>. I don't know that this affects the correctness of the ultimate limit of the Summation. But here, where the Summation itself is made to represent a hypothetical movement, it is clearly wrong. The error is avoided in the former paper I had written on $s = \int v dt$, which I likewise return to refer to this Point. _ 2^{ndly} : In considering a priori the Integral $\int f ds$, I am inclined still to adhere to my original opinion (expressed in the pencil Memorandum I showed you & ['which I' inserted] now return). I should premise that I now mention this merely as a curious subject of investigation, not because it is concerned in the [something crossed out] papers I am making out upon $v^2 = 2 \int f ds + C$, in which I have avoided the direct consideration of $\int_{a}^{a'} f ds$.

I am disposed to contend that tho' dsdoes here represent Space, that still the ds fraction of any one of the terms of the Summation, say $\varphi(a + n.ds)ds$ means the same fraction of $\varphi(a + n.ds)$ which <u>ds is of</u> [145r] a Unit of Space ; & therefore that since $\varphi(a + n.ds)$ represents Force, (or ['uniform' inserted] Acceleration of Velocity for 1 Second in operation during the performance of the length ds), the ds fraction of this expression must represent the ['<u>ds part of this Force</u> or the' inserted] <u>actual</u> Acceleration for $\frac{1}{ds}$ of a Second. I treat ds as an abstract quantity. And so I conceive [something crossed out] dt must be treated in $s = \int v.dt$, ['ds' inserted] in $t = \int \frac{ds}{v}$, dt in $\int f.dt$, &c, &c. I should tell you that I am much pleased with the observation you added to my inverse demonstration $\int fx \cdot \frac{dx}{dt} dt = \int fx \cdot dx$, and that I quite of understand ["why' inserted] my proof can only be admissible on the Infinitesimal Leibnitzian Theory. But this theory is to my mind the only intelligible or satisfactory one. In fact, (notwithstanding it's [sic] error), I should call it the only true one. By and bye, you will have some observations of mine upon Differential Co-efficients & Integrals, abstractly considered. I have been thinking much upon them. I am going on with Chapter VIII. By the bye, I believe you will receive somehow tomorrow [145v] a book (the 1st Vol of Lamé's Cours de Physique) in which there is a passage which I will write to you about as soon as I find time. I forgot to mention it to you on Thursday ; & so have ordered the Book to be sent to you, that I might write about it sometime. Believe me Yours very truly A. A. Lovelace