[144r]

> Ashley-Combe
> Porlock
> \quad Somerset
> Sunday Mor ${ }^{\text {g }} \cdot 28^{\text {th }}$ Aug $^{\text {st }}$
> $\quad\left[{ }^{\prime} 1842\right.$ ' added by later reader $]$

Dear M^{r} De Morgan. I am going on well ; __ ['quite' inserted] as I could wish. I have done much since I saw you ; \& you will have all the results of the last few days in good time. I enclose you now two papers ; one on $f=\frac{d v}{d t}$, the other on $\int_{a}^{a^{\prime}} f . d t$. You will have next those on $v \frac{d v}{d t}=f$, and $v^{2}=2 \int f . d s+C$. This latter I think I have succeeded in analysing to my mind.
I have ['now' inserted] two observations to make : [something crossed out]
$1^{\text {stly }}$: I think I have detected a slight error in one of my former papers, that on $t=\int \frac{d s}{v}$. I return
it for reference. In order in the [something crossed out] Summation [something crossed out]
$\left\{\frac{1}{\varphi s}+\frac{1}{\varphi(s+d s)}+\cdots \frac{1}{\varphi(2 s)}\right\} d s$, to end with $\frac{1}{\varphi(2 s)}$,
I should have begun with $\frac{1}{\varphi(s+d s)}$ not with $\frac{1}{\varphi s}$.
If the time elapsed during the first fraction of Space
[144v] (starting from s) were ['made' inserted] $=\frac{1}{\varphi s}$, then the time for the last of the Fractions necessary to complete up to $2 s$, would
be $\frac{1}{\varphi(2 s-d s}$, and not $\frac{1}{\varphi(2 s)}$ which it ought to be.
I don't know that this affects the correctness of the ultimate limit of the Summation. But here, where the Summation itself is made to represent a hypothetical movement, it is clearly wrong.
The error is avoided in the former paper I had written on $s=\int v . d t$, which I likewise return to refer to this Point.
$2^{\text {ndly }}$: In considering a priori the Integral $\int f . d s$, I am inclined still to adhere to my original opinion (expressed in the pencil Memorandum I showed you \& ['which I' inserted] now return). I should premise that I now mention this merely as a curious subject of investigation,
not because it is concerned in the [something crossed out] papers I am making out upon $v^{2}=2 \int f . d s+C$, in which I
have avoided the direct consideration of $\int_{a}^{a^{\prime}} f . d s$. \qquad

I am disposed to contend that tho' $d s$
does here represent Space, that still the $d s$ fraction
of any one of the terms of the Summation, say $\varphi(a+n . d s) d s$
means the same fraction of $\varphi(a+n . d s)$ which $\underline{d s \text { is of }}$ [145r] a Unit of Space ; \& therefore that since $\varphi(a+n . d s)$ represents Force, (or ['uniform' inserted] Acceleration of Velocity for 1 Second in operation during the performance of the length $d s$), the $d s$ fraction of this expression must represent the
['ds part of this Force or the' inserted] actual Acceleration for $\frac{1}{d s}$ of a Second. I treat $d s$ as
an abstract quantity. And so I conceive [something crossed out] dt must
be treated in $s=\int v . d t$, [' $d s^{\prime}$ inserted] in $t=\int \frac{d s}{v}$, $d t$ in $\int f . d t$,
\&c, \&c. \qquad
I should tell you that I am much pleased with the observation you added to my inverse demonstration
of $\quad \int f x \cdot \frac{d x}{d t} d t=\int f x \cdot d x \quad$, and that I quite
understand ['why' inserted] my proof can only be admissible on
the Infinitesimal Leibnitzian Theory. But this
theory is to my mind the only intelligible or
satisfactory one. In fact, (notwithstanding it's [sic] error),
I should call it the only true one.
By and bye, you will have some observations of mine upon Differential Co-efficients \& Integrals, abstractly considered. I have been thinking much upon them.
I am going on with Chapter VIII.
By the bye, I believe you will receive somehow tomorrow [145v] a book (the $1^{\text {st }}$ Vol of Lamé's Cours de Physique) in which there is a passage which I will write to you about as soon as I find time.
I forgot to mention it to you on Thursday ; \&
so have ordered the Book to be sent to you, that
I might write about it sometime. \qquad
Believe me
Yours very truly
A. A. Lovelace

