Ashley-Combe Sunday. 21st Nov^r ['1841' inserted by later reader]

Mr Dear M^r De Morgan. [something crossed out] I said Wed^{dy}. At least I meant to do so. On Tuesday I have already an engagement in the morning. Perhaps you have written Tuesday by mistake. But of you cannot come on Wed^{dy}, then I must put off my Tuesday's engagement, that I may see you then. If it is the same to you however, I should much prefer Wed^{dy}. Can you kindly give me one line tomorrow to say which it is to be. I shall get ['it' inserted] in the evening in S^t James' Sq^{re}. Now I proceed to business : 1^{stly}: You have mistaken my intentions I think about the formulae of pages 155, 156. My enclosures 1 & 2 will explain. 2^{ndly}. Enclosure 3 contains the demonstration of "Exercise" page 159 3^{dly}. Enclosure 4 "Exercise" page 158 4^{thly} : About the Constant in page 141 : I still am [142v] unsatisfied. I perfectly understand that "any value" consists with everything in page 141. The principle is I conceive exactly the same as that by which in page 149, y is made = $a + \sin x$ instead of $y = \sin x$. I only mean that this result seems inconsistent with page 116 when it is shown that the Constant must $\overline{=\frac{w}{2}}$. 5^{thly} : page 161, (line 14 from the top): $\varphi''(x+\theta h, y+k) - \varphi''(x+\theta h, y) = \varphi_1^{('')}(x+\theta h, y+vk).k$ v < 1Why is \underline{v} introduced at all? I have as follows: $\frac{\varphi''(x+\theta h,y+k)-\varphi''(x+\theta h,y)}{k} = \varphi_1^{('')}(x+\theta h,y)$ <u>if</u> <u>k</u> diminishes without limit; (k being = Δy) or $\varphi''(x+\theta h, y+k) - \varphi''(x+\theta h, y) = \varphi_1^{('')}(x+\theta h, y)k$ But I do not see how \underline{v} comes in.

 6^{thly} : I have several remarks to make altogether on the Article Operation. I will only now subjoin two. I believe on the whole that I understand the

[142r]

Article very well.

See page 443, at the top, (2^{nd} Column) : $\varphi^2 + 2\varphi\psi + \psi^2$, or $(x^2)^2 + 2(x^3)^2 + (x^3)^3$ should be <u>it appears to me</u> $\varphi^2 + 2\varphi\psi + \psi^2$, or $(x^2)^2 + 2x^3 \cdot x^3 + (x^3)^2$ or $(x^2)^2 + 2(x^3)^2 + (x^3)^2$ $= (x^2)^2 + 3(x^3)^2$

[143r] I only allude to $(x^3)^3$, instead of $(x^3)^2$ as <u>I</u> make it. See page 444, at the bottom, (2^{nd} column) : "Where B_0 , B_1 , &c are the values of fy and its "successive diff-co's [sic] when y = 0, &c, &c" Surely it should be when y = 1. The same as when immediately afterwards, (see page 445, 1st column, at the top), in developping [sic] $(2 + \Delta)^{-1}\varphi x$; B_0, B_1 &c are the values of fy & its Co-efficients when y = 2, &c, &c. I have referred to Numbers of Bernoulli & to Differences of Nothing ; in consequence of reading this Article Operation. And find that I must read that on Series also. I left off at page 165 of the Calculus ; & suppose that I may now resume it; (when I return here that is). I will not trouble you further in this letter. But I have a formidable list of small matters

down, against I see you.

Yours most sincerely

A. A. Lovelace