Mr Dear M ${ }^{\mathrm{r}}$ De Morgan. [something crossed out]
I said Wed ${ }^{\text {dy }}$. At least I
meant to do so. On Tuesday I have already an engagement in the morning. Perhaps you have written Tuesday by mistake. But of you cannot come on Wed ${ }^{\text {dy }}$, then I must put off my Tuesday's engagement, that I may see you then. If it is the same to you however, I should much prefer Wed ${ }^{\text {dy }}$.

Can you kindly give me one line tomorrow to say which it is to be. I shall get ['it' inserted] in the evening in S^{t} James' Sq $^{\text {re }}$. _ Now I proceed to business :
$1^{\text {stly }}$: You have mistaken my intentions I think about
the formulae of pages 155,156 . My enclosures $1 \& 2$
will explain.
$2^{\text {ndly }}$. Enclosure 3 contains the demonstration of "Exercise"
page 159
$3^{\text {dly }}$. Enclosure 4 "Exercise"
page 158
$4^{\text {thly }}$: About the Constant in page 141 : I still am [142v] unsatisfied. I perfectly understand that "any value" consists with everything in page 141. The principle is I conceive exactly the same as that by which in page 149, y is made $=a+\sin . x$ instead of $y=\sin x$.

I only mean that this result seems inconsistent
with page 116 when it is shown that the Constant
must $=\frac{w}{2}$.
$5^{\text {thly }}$: page 161 , (line 14 from the top):

$$
\varphi^{\prime \prime}(x+\theta h, y+k)-\varphi^{\prime \prime}(x+\theta h, y)=\varphi_{1}^{\left({ }^{\prime \prime}\right)}(x+\theta h, y+v k) \cdot k
$$

$$
v<1
$$

Why is $\underline{\underline{v}}$ introduced at all?
I have as follows :
$\frac{\varphi^{\prime \prime}(x+\theta h, y+k)-\varphi^{\prime \prime}(x+\theta h, y)}{k}=\varphi_{1}^{(\prime \prime)}(x+\theta h, y)$
if k diminishes without limit ; $(k$ being $=\Delta y)$
or $\varphi^{\prime \prime}(x+\theta h, y+k)-\varphi^{\prime \prime}(x+\theta h, y)=\varphi_{1}^{(\prime \prime)}(x+\theta h, y) k$
But I do not see how \underline{v} comes in.
$6^{\text {thly }}$: I have several remarks to make altogether
on the Article Operation. I will only now subjoin
two. I believe on the whole that I understand the

Article very well.
See page 443, at the top, ($2^{\text {nd }}$ Column) :

$$
\varphi^{2}+2 \varphi \psi+\psi^{2}, \text { or }\left(x^{2}\right)^{2}+2\left(x^{3}\right)^{2}+\left(x^{3}\right)^{3}
$$

should be it appears to me $\varphi^{2}+2 \varphi \psi+\psi^{2}$, or $\left(x^{2}\right)^{2}+2 x^{3} \cdot x^{3}+\left(x^{3}\right)^{2}$

$$
\text { or } \begin{aligned}
\left(x^{2}\right)^{2}+ & 2\left(x^{3}\right)^{2}+\left(x^{3}\right)^{2} \\
& =\left(x^{2}\right)^{2}+3\left(x^{3}\right)^{2}
\end{aligned}
$$

[143r] I only allude to $\left(x^{3}\right)^{3}$, instead of $\left(x^{3}\right)^{2}$ as I make it.
See page 444 , at the bottom, ($2^{\text {nd }}$ column) :
"Where $B_{0}, B_{1}, \& c$ are the values of $f y$ and its
"successive diff-co's $[s i c]$ when $y=0, \& c, \& c$ "
Surely it should be when $y=1$.
The same as when immediately afterwards, (see page
$445,1^{\text {st }}$ column, at the top), in developping $[s i c](2+\Delta)^{-1} \varphi x$;
$B_{0}, B_{1} \& c$ are the values of $f y \&$ its Co-efficients when $y=2, \& c, \& c$.

I have referred to Numbers of Bernoulli \& to Differences of Nothing ; in consequence of reading this Article Operation. And find that
I must read that on Series also.
I left off at page 165 of the Calculus ; \&
suppose that I may now resume it ; (when I return
here that is).
I will not trouble you further in this letter.
But I have a formidable list of small matters
down, against I see you.
Yours most sincerely
A. A. Lovelace

