[132r]

Ashley-Combe
Porlock

Somerset
Thurs ${ }^{\text {dy }} 4^{\text {th }}$ Nov $^{\text {r }}$ ['1841' inserted by later reader]
Dear M^{r} De Morgan. As I find my journey to
Town is extremely uncertain, \& may possibly even not take place at all, I will trouble you without further delay on the more important of my present points of difficulty.
I will begin with those relating to Chapter $9^{\text {th }}$ of the Calculus, which I am now studying. I have arrived at page 156 .
page 132 : (at the bottom). I make $u=\cos ^{-1}\left(\frac{1-\varepsilon^{2}(C-x)}{\varepsilon^{2(C-x)}+1}\right)$

$$
\text { instead of } u=\cos ^{-1}\left(\frac{\varepsilon^{2(C-x)}-1}{\varepsilon^{2}(C-x)+1}\right)
$$

I enclose a paper with my version of it.
page 153 : "For instance, we should not recommend
"the student to write the preceding thus, $d^{2} . d u+d^{2} x \cdot d u=0$,
"tho' is it certainly true that upon the implicit
"suppositions with regard to the successive Increments,
" $\Delta^{2} u . \Delta x+\Delta^{2} x . \Delta u$ diminishes without limit as compared
"with $(\Delta x)^{3}$." Why this comparison with $(\Delta x)^{3}$?
[132v] Had the expression been $\frac{\Delta^{2} u \cdot \Delta x+\Delta^{2} x \cdot \Delta u}{(\Delta x)^{3}}$ instead of $\Delta^{2} u \cdot \Delta x+\Delta^{2} x . \Delta u$, it would then be clear that if the Numerator diminished without limit with respect to the Denominator, the fraction itself would approach without limit to 0 . But as it is, I see no purpose answered by a comparison with $(\Delta x)^{3}$.
Also, I not only do not see the object of this comparison, but I do not perceive the fact itself either.
Where is the proof that $\Delta^{\overline{{ }^{2} u \cdot \Delta x+}} \Delta^{2} x \cdot \Delta u$ does diminish without limit with respect to $(\Delta x)^{3}$?
Page 135 : (at the top) : There is a slight misprint
$C=K^{2}+K^{12}$ instead of $C=K^{2}+K^{\prime 2}$
Page 156: (line 9 from the top) : $u=C \cdot \sin \theta+C^{\prime} \cdot \cos \theta+\frac{1}{2} \theta \cdot \sin \theta$
(Explain this step?)
Now I cannot "explain this step".
In the previous line, we have :
(1)... $\quad u=C \sin \theta+C^{\prime} \cos \theta+\frac{1}{2} \theta \cdot \sin \theta+\frac{1}{4} \cos \theta$ (quite clear)
(2)... And $u=\cos \theta-\frac{d^{2} u}{d \theta^{2}}$ (by hypothesis)

$$
=\frac{1}{4} \cos \theta+\left(\frac{3}{4} \cos \theta-\frac{d^{2} u}{d \theta^{2}}\right)
$$

whence one may conclude that

$$
C \cdot \sin \theta+C^{\prime} \cos \theta+\frac{1}{2} \theta \cdot \sin \theta=\frac{3}{4} \cos \theta-\frac{d^{u}}{d \theta^{2}}
$$

But how $u=C \sin \theta+C^{\prime} \cos \theta+\sin \theta \cdot \frac{1}{2} \theta$ is to be deduced [133r] I do not discover : By subtracting $\frac{1}{4} \cos \theta$ from both sides of (1), we get

$$
u-\frac{1}{4} \cos \theta=C \sin \theta+C^{\prime} \cdot \cos \theta+\frac{1}{2} \theta \cdot \sin \theta
$$

But unless $\frac{1}{4} \cos \theta=0$, (which would only be the case
I conceive if $\theta=\frac{w}{2}$), I do not see how to derive the equation in line 9 of the book.
Page 156 : Show that $\frac{d^{2} u}{d x^{2}}-u=X$ (a function of x)

$$
\text { gives } u=C \varepsilon^{x}+C^{\prime} \varepsilon^{-x}+\frac{1}{2} \varepsilon^{x} \int \varepsilon^{-x} X . d u-\frac{1}{2} \varepsilon^{-x} \int \varepsilon^{x} X . d x
$$

I have, $\quad \frac{d^{2} u}{d x^{2}}-u=X \quad u=K \varepsilon^{x}+K^{\prime} \varepsilon^{-x}$

$$
\frac{d u}{d x}=K \varepsilon^{x}+K^{\prime} \varepsilon^{-x}+\frac{d K}{d x} \varepsilon^{x}+\frac{d K^{\prime}}{d x} \varepsilon^{-x}
$$

Assume $\frac{d K}{d x} \varepsilon^{x}+\frac{d K^{\prime}}{d x} \varepsilon^{-x}=0$
Then $\frac{d u}{d x}=K \varepsilon^{x}+K^{\prime} \varepsilon^{-x}$, and $\frac{d^{2} u}{d u^{2}}=K \varepsilon^{x}+K^{\prime} \varepsilon^{-x}+$

$$
+\frac{d K}{d x} \varepsilon^{x}+\frac{d K^{\prime}}{d x} \varepsilon^{-x}
$$

$\left.0=\frac{d x}{d x} \varepsilon^{x}+\frac{d K^{\prime}}{d x} \varepsilon^{-x} \quad\right\}$ to the values of $\frac{d K}{d x}, \frac{d K^{\prime}}{d x}$ of $K, \&$ of K^{\prime}

If we had $\left.\begin{array}{c}X=\frac{d K}{d x} \varepsilon^{x}-\frac{d K^{\prime}}{d x} \varepsilon^{-x} \\ 0=\frac{d K}{d x} \varepsilon^{x}+\frac{d K^{\prime}}{d} \varepsilon^{-x}\end{array}\right\}$ the expression in the
$\left.0=\frac{d K}{d x} \varepsilon^{x}+\frac{d K^{\prime}}{d x} \varepsilon^{-x} \quad\right\}$ book will be then at once deduced.
[133v] But I do not see how to get these two latter equations co-existent.
I enclose an attempt of mine, making the assumed to be $\frac{d K}{d x} \varepsilon^{x}+\frac{d K^{\prime}}{d x} \varepsilon^{-x}=x^{2}$ instead of $=0$;
and also ['one' inserted] making this relation to be $K+K^{\prime}=x^{3}$, but which latter I found led to such very complicated results that I proceeded but a little way, thinking it a probable loss of time to go on.
With the relationship $\frac{d K}{d x} \varepsilon^{x}+\frac{d K^{\prime}}{d x} \varepsilon^{-x}=x^{2}, \mathrm{I}$ am as unsuccessful as with $=0$.
I defer to another letter some other difficulties of mine not relating to this Chapter, but partly to some remaining points in the $8^{\text {th }}$ Chapter, \& partly to miscellaneous matters. \qquad

I hope $\mathrm{M}^{\text {rs }}$ De Morgan \& the "large boy" continue to flourish. So M ${ }^{\text {rs }}$ De M has beat the Queen in the race, out \& out!

Yours most truly
A. A. L.

