Dear Mr De Morgan. I have more to say to you than ever ; (beginning with many thanks for your bountiful replies to my last packet).
I will begin with the Article on Negative \& Impossible Quantities, on which I have a good deal to remark. I have finished it ; \& I think with on the whole great success. I need scarcely say that I like it parenthetically. _ I enclose you the demonstration of the $\overline{\text { formula }(a+b k})^{m+n k}=\varepsilon^{A} \cdot \cos B+k \cdot \varepsilon^{A} \cdot \sin B$, which I found exceedingly easy, after your observations. \qquad
I should tell you that the allusions to the Irreducible Case of Cubic Equations in this Article, has so excited my curiosity on the subject, that I have attacked the chapter on Cubic Equations in ['page 47 ' inserted] of R. Murphy's treatise on the Theory of Equations (Library Useful Knowledge), hoping there to gain some light on the subject. For I know not to what exactly this alluded, (my Algebra wits, as you say, not having been quite proportionally stretched with some of my other wits). I have got thro' the first two pages ; and [127v] shall have to write you some remarks upon these, either in this letter, or in one as soon as possible. But as yet I meet with nothing about

$$
\sqrt[3]{ }(a+b \sqrt{-1})+\sqrt[3]{ }(a-b \sqrt{-1})
$$

I hope I shall be able to understand the rest of the Chapter.
At the bottom of my demonstration of $(a+b k)^{m+n k}$, you
will find a memorandum (simple as to the working out) of the formula cos. $(a+b k)$, see page 137 of the Cyclopedia. You there say that such a formula may be interpreted by it's [sic] identical expression on the
Second Side. That is to say I imagine that the meaning of $\cos (a+b \sqrt{-1})$, which (as before pointed out in the case of the line h) is a misapplication of symbols, may be got at thro' an examination of the results arrived at by ['the application of' inserted] symbolical rules to this unmeaning or mis-meaning expression. That if in a calculation, such an answer as $\cos (a+b \sqrt{-1})$ were worked out, the answer means in fact
[something crossed out]
the remaining side of a parallelogram in which
$\cos \alpha \frac{\varepsilon^{b}+\varepsilon^{-b}}{2}$ is a diagonal, and $\sin \alpha \cdot \frac{\varepsilon^{b}-\varepsilon^{-b}}{2} \cdot k$ the
other side : the diagonal itself being a $4^{\text {th }}$ Proportional
to $1, \cos \alpha, \frac{\varepsilon^{b}+\varepsilon^{-b}}{2}$, inclined to 1 ['(that is to the Unit-Line) ${ }^{\prime}$ inserted] as the $\cos \alpha$ is ; \& the remaining side being a $4^{\text {th }}$ Proportional to $1, \sin \alpha$,
$\frac{\varepsilon^{b}-\varepsilon^{-b}}{2}$ inclined to 1 at an angle equal to the sum of a
[128r] Right-Angle and the angle made by sin . α with the Unit-Line.
I enclose you an explanation I
have written out (according to the Definition of this
Geometrical Algebra), of the two formulae for the Sine
and Cosine. I am at work now on the Trigonometrical
Chapters of the Differential Calculus.
I do not agree to what is said in page 119 ['(of the Calculus)' inserted] that
results would be the same whether we worked [something crossed out] algebraically
with forms expressive of quantities or not. It is true
that ['in' inserted] the form $a+\sqrt{m}-\sqrt{n}$, if (-1 be substituted for
m and n, the results come out the same as if we
work with a only. but were the form $a+\sqrt{m}$,
$a-\sqrt{m}, a \times \sqrt{m}$, or fifty others one can thin of,
surely the substitution of (-1) for m will not bring
out results the same as if we worked with a only;
and in fact can only do so when the impossible
expression is so introduced as to neutralize itself, if I may so speak. I think I have explained myself clearly.
It cannot help striking me that this extension of
Algebra ought to lead to a further extension similar in nature, to Geometry in Three-Dimensions ; \& that again perhaps to a further extension into some unknown region, \& so on ad-infinitum possibly.
And that it is especially the consideration of an angle $=\sqrt{-1}$, which should lead to this ; a symbol, which when it appears, sees to me in no way more [128v] satisfactorily accounted for \& explained than was formerly the appearances ['which' inserted] Bombelli in some degree cleared up by showing that at any rate they (tho' in themselves unintelligible) led to intelligible \& true results. You do hint in parts of page 136
at the possibility of something of this sort.

I enclose you also a paper I have
written explaining a difficulty of mine in the
Definitions of this Geometrical Algebra.
It appears to me that there is
no getting on at all without this Algebra. In
the 3^{d} Chapter of your Trigonometry (which I have just
been going thro'), though there are no impossible
quantities introduced ; yet how unintelligible are
such formulae as $2 a c . \cos B, a \cdot \sin B$, or any
in short where lines are multiplied into lines, if one only takes the common notion of a line into a line being a Rectangle.

I cannot send more today ; but I have many
other matters to write on ; especially the
Logarithmic Theory at the end of the Article.
$\overline{\text { I am considering it very carefully ; \& studying }}$
at the same time the Article on Logarithms in the Cyclopedia. And I believe I shall have much to say on it all.
The passage I wanted to ask you about in Lamé's [129r] $1^{\text {st }}$ Vol, is pages 54, 55, 56, on the Resultant of the pressures of a liquid on a vase. I want to know if I ought to understand these three pages, or if they entail some knowledge of mathematical (especially of trigonometrical) application to Mechanics, which I do not yet possess.

I hope you receive game regularly.
Yours most truly
A. A. Lovelace
P.S. Did you ever hear of a Science called

Descriptive Geometry? I think Monge is the originator of it.

