Ockham.
Friday. [something crossed out] $21^{\text {st }}$ Aug $^{\text {st }}$

Dear M^{r} De Morgan. You have received safely I hope my packet of yesterday, \& my packet sent on Tuesday.
I now re-enclose you the paper marked 1. There is another Integral added at the bottom. Also I have altered one or two little minutiae in the development of $\int \frac{d x}{\sqrt{2 a x+x^{2}}}$ above, which you had omitted to correct.

I quite understand your observations upon it, \& see the mistake I had made ; \& which related to the
Differential $d y$, and $d(\varphi x . x)$
If $y=\varphi x . x$, then $d y=d(\varphi x . x)=\frac{d(\varphi x . x)}{d x} d x=$

$$
\begin{aligned}
= & \left\{x \cdot \frac{d(\varphi x)}{d x}+\varphi x \cdot \frac{d x}{d x}\right\} d x=x \cdot\left(\frac{d(\varphi x)}{d x} d x\right)+\varphi x \cdot d x= \\
& =x \cdot d \varphi x+\varphi x \cdot d x
\end{aligned}
$$

Or if $y^{2}=\varphi x . x$, then $d y^{2}=x . d . \varphi x+\varphi x . d x$

$$
\begin{aligned}
& \quad \text { or } \frac{d\left(y^{2}\right)}{d y} d y=x \cdot d \cdot \varphi x+\varphi x \cdot d x \\
& \text { or } 2 y d y=x \cdot d \cdot \varphi x+\varphi x \cdot d x \text {, and } y d y=\frac{1}{2} x \cdot d \cdot \varphi x+\frac{1}{2} \varphi x \cdot d x
\end{aligned}
$$

[121v] This is all now right in my head.
In $\int \frac{d x}{\sqrt{2 a x+x^{2}}}$ we arrive then in my corrected paper,
at $\int \frac{d x}{\sqrt{2 a x+x^{2}}}=\log \left(x+a+\sqrt{2 a x+x^{2}}\right)$

$$
=\log \left(\frac{x}{2}+\frac{a}{2}+\frac{\sqrt{2 a x+x^{2}}}{2}\right)+\log 2
$$

which, as you observe "again with the book all but "the $\log .2$, which being a Constant, matters nothing".
Very true; but why did you then insist the $\log 2$ in page 116? it seems as if put in on purpose to be effaced in the parenthesis (Omit the Constant).
And it might just as well have been $\log 3$,
$\log 4, \log$ (anything in the world).
As to my two papers marked 2 (\& which I again return, merely for the convenience of reference),
$\overline{\mathrm{I}}$ see that in order to make them valid, as applying each to two separate \& different velocities, they should be re-written (which is not worth while), \& the terms of the enunications altered as follows:
"If two quantities V, V^{\prime} be respectively equal to the "Ratios $\frac{S}{T}, \frac{S^{\prime}}{T^{\prime}}$, and if $V: V^{\prime}=T: T^{\prime}$, then the values " S, S^{\prime} must be to each other as the squares of T, T^{\prime}
"are to one another" \&c, \&c
$[122 \mathrm{r}]$ At last I believe I have it quite correctly.
As for $\frac{d y}{d x}=\frac{y}{x}$, I see my fallacy about $\frac{y}{x}$ being
a fixed quantity.
About page 113, "The first form becomes impossible
"when x is greater than \sqrt{c}, for \&c", I fancy I
[something crossed out] had a little misunderstood the mathematical meaning of the words impossible quantity. I have loosely interpreted it as being equivalent to "an absurdity", or at least to "an absurdity, unless an extension be made in the
"ordinary meaning of words". _ And in this
instance I perceived that if the Logarithm be
an odd number, there would be no absurdity
even without extension in the meaning of terms ;
because that it would then merely imply a
negative Base ; which negative Base, would I think
be admitted theoretically (tho' inconveniently practically)
on the common beginner's instruction on the Theory of
Logarithms. _ Am I right?
By the bye this subject reminds me that I think
I find a mistake in page 117, line 13 (from the top)
"(n an integer) $\int_{-a}^{+a} x^{n} d x=0$ when \underline{n} is odd, $=\frac{2 a^{n+1}}{n+1}$ when n is even"
[122v] It seems to me just the reverse, thus :
$=0$ when \underline{n} is even, $=\frac{2 a^{n+1}}{n+1}$ when \underline{n} is odd
I have it as follows :

$$
\begin{gathered}
\int_{-a}^{+a} x^{n} d x=\frac{a^{n+1}}{n+1}-\frac{(-a)^{n+1}}{n+1}=\frac{a^{n+1}-(-a)^{n+1}}{n+1}= \\
\quad=\frac{a^{n+1}-a^{n+1}}{n+1} \text { or } 0 \text { if } n+1 \text { be even }
\end{gathered}
$$

(I now see it while working ; for if
$n+1$ be even, \underline{n} must be odd.)
and vice versa.
So I need not trouble you upon this ; as I have solved my difficulty whilst stating it. I had only
looked at this Integral in ['a' inserted] great hurry, this morning.
I hope on Sunday to send you two
remaining papers I have to make out, on the
Accelerating Force subject ;
upon $f=\frac{d v}{d t}$, and $v=\int f d t$
I think I have been encouraged by your great kindness, so as to give you really no Sinecure just at this moment.

Yours most truly
A. A. Lovelace

