[12r] My dear Lady Lovelace
You have got through the matter about which you write better than I should have expected.

I have finished what you sent as you will see

With regard to the curve, I drew it as containing every possible sort of singular point. Its equation would be enormously complex There must be an infinite number of different equations which belong to a curve of a similar form, but the question 'given the more general [12v] form of a curve, required the equations which may belong to such form' is a very difficult
one.
I will merely give you a glimpse
Required an equation to a
curve such that it passes through the following points $P Q R$
[diagram in original] at P let $x=a, y=A$

$$
Q \quad x=b \quad y=B
$$

$$
R \quad x=c \quad y=C
$$

[the next formula and the following line of text stretch across 12 v and 13r]

$$
y=A \frac{(x-b)(x-c)}{(a-b)(a-c)}+B \frac{(x-c)(x-a)}{(b-c)(b-a)}+C \frac{(x-a)(x-b)}{(c-a)(c-b)}+\left\{\begin{array}{c}
\text { any function of } x \text { which } \\
\text { does not become infinite } \\
\text { when } x=a, \text { or } b, \text { or } c
\end{array}\right\} \times(x-a)(x-b)(x-c)
$$

Here is an infinite number of equations which you will find to satisfy the conditions
I have to thank you for very good partridges received from Ockham With kind remembrances to Lord Lovelace

I am Yours very truly
ADeMorgan
I have heard of Lady Byron by
M^{r} Phitton [?] who left her safe
at Fountainebleu

