Ockham Park
Sunday. $11^{\text {th }}$ July [' 1841 ' added by later reader]

Dear M^{r} De Morgan. I enclose you a paper (marked No 1) from which I think you will see that I now quite understand the real relationship between $\int \frac{x^{n} d x}{\sqrt{a^{2}-x^{2}}}$ and $\int \sqrt{a^{2}-x^{2}} x^{n-2} d x$; \& that I [something crossed out] am now aware I wanted to apply to the latter what is not intended to be directly applied to it at all ;
\& that ['my' inserted] getting both $d u$ and $d x$ in, was a
complete puzzle \& blunder. For where a few lines
previously $(-\overline{n-1}) \int \sqrt{a^{2}-x^{2}} x^{n-2} d x$ is substituted
for $\int \sqrt{a^{2}-x^{2}} \times(-\overline{n-1}) x^{n-2} d x, d u$ ceases of course to enter under the Integrated quantity, [something crossed out] since it has been decomposed $\&$ otherwise distributed.
I am still occupied on pages 108, 109, 110,
\& hope to complete to page 112 during this week. I
find this part requires studying with great care.
I think you anticipated this.
I must now thank you very much for your two
letters ; \& will proceed to notice one or two points [112v] in your replies to my enquiries.
I see that in objecting to what I called the division of $\frac{d V}{d x}$, when $d V$ is substituted for $\frac{d V}{d x} d x$, I took a completely wrong view of the matter. It does so happen that the expression (derived from a separate \& distinct Theorem) which we may substitute for $\frac{d V}{d x} d x$ coincides in form with what we may call the numerator $d V$ of the diff_co. But the $d V$ that is substituted is not therefore derived from $\frac{d V}{d x}$, at least ['not directly or' inserted] from the decomposition of that which is indecomposible [sic].
I return again my former paper (marked No 2.)
with a clearer explanation of what I intended to convey by the term equivalent ; a term which it seems I had no business to use in the application which I ['there' inserted] meant to make of it.

I enclose (marked No 3) my answer to your "Try "to prove the following. It is only when $y=a x$
"(a being constant) that $\frac{d y}{d x}=\frac{y}{x}$ " I do not feel
quite sure that my proof is a proof. But I think
it is too.
Now about $v=g t$ and $s=\frac{1}{2} g t^{2}$; a subject which troubles me not a little.
Is the following a correct development of the note in Useful Knowledge Mechanics? I re-copy the notes first ;
[113r] " $V=\frac{d S}{d T}=g T$. Hence $d S=g T . d T$, which being
"integrated gives $S=\frac{1}{2} g \cdot T^{2}$ "
[something crossed out on two lines]
The Integral of $\frac{d S}{d T} d T$ or of $g T . d T$ will
obviously give us $S ; \&$ we know that $\int g T . d T=$
$=\frac{1}{2} g T^{2}+C$, (by formula of page 104 of the Calculus).
But it appears to me that the statement
above "Hence $d S=g T . d T$ " is an unnecessary
intermediate step :
It is true that $\int \frac{d S}{d T} d T=\int d S$,
that is providing we extend the theorem

$$
\int f x \frac{d x}{d t} d t=\int f x . d x
$$

to the case when $f x=1$, which I conclude it is allowable to do, since 1 may be considered a function of anything, I imagine ; thro' the formula $\frac{f x}{f x}=1$. But tho' true, yet the above ['clause' inserted] appears to me ['an' inserted] unnecessary introduction.
I am not sure that I have explained myself well.
With respect to this formula
$\frac{1}{2} g t^{2}$, \& it's [sic] derivation \& application ; I have
referred as you desired to pages $27,28, \&$ have
[113v] fully refreshed my memory upon them. But I
do not feel this helps me much. In this first
place the process is the converse of that I enquired
upon. S is there give, $\& \underline{V}$ is to be derived
from \underline{S}. My position was ; _ V given, $\& S$ to
be derived from V.
I understand the process of pages 27,28 , considered as a distinct \& separate thing. But I do not identify it with Differentiation or Integration.

I, (knowing by abstract rules \& theorems) that
$2 x$ is the diff_co of x^{2}, see that the limit $2 t$
which comes out, might be perfectly well expressed by $\frac{d\left(t^{2}\right)}{d t}$. And that we may put the result of the Differentiation of t^{2}, and the result of all the reasoning of pages 27,28 , indifferently one for the other. But I only see it as I see that
in the processes $12 \div 4=3 \quad 1+2=3$ we might indifferently put the results ($\underline{3}$, in both cases) one for the other. There may, for anything I yet see or understand, be as little connection between the abstract process of Differentiation and the Stone-falling process, as between the above processes of Division \& Addition, which latter tho' their results agree, cannot be identified, or one made to represent [114r] the other.
I apprehend [something crossed out] you will perhaps answer me here, that I must wait patiently for Chapter 8, in which (page 143) I see something very like an explanation of all I want. \qquad At the same time I think it better to express fully my difficulties.
I am very anxious to see your Comments on
my two papers ['sent the other day' inserted] upon $\frac{1}{2} g t^{2}$. For I do not see where the flaw in them can be $; \&$ yet I suppose there is one. It is some comfort in the confusions \& puzzles one makes, that they are always
exceedingly amusing to me, after they are cleared away. And this is at least some compensation for the plague of them before. . With many thanks,

Yours most truly
A. A. Lovelace

