Dear M^{r} De Morgan. Since dispatching my letter yesterday, I remember that I have not even quite fully \& correctly stated the whole points of difference ['between' inserted] $\int \sqrt{a^{2}-x^{2}} x^{n-2} d x$ and $\int \sqrt{v} d 2 u$. I
think I stated that $\int \sqrt{a^{2}-x^{2}} x^{n-2} d x=\int \sqrt{v} d 2 u \cdot \frac{-1}{x}$,
that in other words the $1^{\text {st }}$ side differs from
$\int \sqrt{v} d 2 u$ in containing a factor $\left(-\frac{1}{x}\right)$. But it differs also in containing $d x$ as well,
which in writing yesterday I omitted I believe
to notice. So that $\int \sqrt{a^{2}-x^{2}} x^{n-2} d x=\int \sqrt{v} d 2 u \cdot \frac{(-1)}{x} . d x$
or the $1^{\text {st }}$ side differs from $\int \sqrt{v} d 2 u$ in
containing $-\frac{1}{x}$. $d x$. Is not this what I ought
to have stated? Or is there still any confusion?
I also wish to observe upon
what I wrote on Friday as to the application
of the Differential \& Integral Calculus to $\frac{g t^{2}}{2},[110 \mathrm{v}]$ that I am aware this formula $\left[{ }^{6} e=\frac{g t^{2}}{2}\right.$, inserted] can be
derived from $V=g t$, by the simple Theory of
algebraical proportion; but that I was anxious
to know how it is derived in the other way.
I will with your leave ['(which I do not wait for)' inserted], send you
my paper making it out on the doctrine of
Proportions.
You must tell me if I presume too much
on your kindness to me. I am so
engaged at present with my mathematical
\& scientific plans \& pursuits that I can
think of little else ; \& perhaps may be a
plague \& bore to my friends about [something crossed out] these
subjects ; for after my interruption from
Paris \& London pursuits \& occupations, my
whole heart is with my renewed studies ; \&
every minutia even is a matter of the greatest
interest.
Believe me
Yours most truly
A. A. Lovelace
[111r] [something crossed out] You ['will receive' inserted] two papers on $e=\frac{g t^{2}}{2}$ tomorrow evening, or Wed ${ }^{\text {dy }}$. _ One of them is to show the
absurdity of the supposition that the spaces might
$\overline{\underline{\text { be as the velocities }} ; \text { [' } \& ~ t h a t ' ~ i n s e r t e d] ~ o n ~ m e r e l y ~} a b s t r a c t ~ g r o u n d s$ it could not be.

