Ockham
Sunday. $6^{\text {th }}$ July
Dear M^{r} De Morgan. It is perhaps unfair of me to write again with a batch of observations \& enquiries, before you have had time to reply to the previous one. But I am so anxious to get the present matters off my mind, that I cannot resist dispatching them by this post.

I have two series of observations to send, one relating to the passage from page 107, (line 8 from the bottom), to the last line of page 108; the other to certain former passages in pages 99 , $100 \& 103$, concerning which some questions have suddenly occurred to me quite recently.
I shall begin with pages $107 \& 108$: I enclose you my development \& explanation of $\int \frac{x^{n} d x}{\sqrt{a^{2}-x^{2}}}$ up
to $\int \frac{x^{n} d x}{\sqrt{a^{2}-x^{2}}}=-x^{n-1} \sqrt{a^{2}-x^{2}}+(n-1) a^{2} \int \frac{x^{n-2} d x}{\sqrt{a^{2}-x^{2}}}-(n-1) \int \frac{x^{n} d x}{\sqrt{a^{2}-x^{2}}}$
from which you will judge if I understand it so far. I should tell you that I have not yet
begun page 109.
I will now ask two or three questions : $1^{\text {stly }}$: page 107 , [108v] (line 3 from the bottom): "the diff. co of $a^{2}-x^{2}$ being $(-2 x d x)$ \&c". This surely is incorrect ; \& you will see that in my development I have written it as I fancy
it should be "being $=(-2 x), \& \mathrm{c}$ "
$2^{\text {ndly }}$: page 108, (lines $8,9,10$ form the top) : "By $\int U d V$
"we mean p. 102, where
"the values of ΔV in the several terms are
"different, but comminuent." I do not see that
this is a case of page 102 rather than of page 100 ;
in other words, that the increments in this
Integration are "unequal but comminuent". -
$3^{\text {dly }}$: the subtraction in line 15 from the top, of
$(n-1) x^{n-2} \times d x$ for $d .\left(-x^{n-1}\right)$ appears to me quite
inconsistent with the inseparable indivisible
nature of a diff. co.
$4^{\text {thly }}$: Lines 9,10 from the bottom, "We have therefore
"\&c.......... that of $\sqrt{a^{2}-x^{2}} x^{n-2} d x$ ".
Admitted, most fully. But $\int \sqrt{a^{2}-x^{2}} x^{n-2} d x$ does
not answer exactly to $\int v d x$ or $\int \sqrt{v} d 2 u$, and
therefore it appears to me that this Integration is not strictly an example of lines $5,6,7$ (from the bottom) of page 107. You will remember that $-x^{n-1}$ was $=2 V$, therefore the x^{n-2} of $\left(\sqrt{a^{2}-x^{2}} x^{n-2}\right)$ is equal to $(-1) \times \frac{2 V}{x}$ or $\frac{-1}{x} .2 \mathrm{~V}$. So that another factor $\frac{-1}{x}$ enters into the [109r] expression which was, as I understand it, to answer strictly to $\int v d u$ or $\int \sqrt{v} d 2 u$
$5^{\text {thly }}$ (line 5 from the bottom) page 108: I think there
is an Erratum. Surely $\int\left(\frac{a^{2} x^{n-2}}{\sqrt{a^{2}-x^{2}}}-\frac{x^{n} d x}{\sqrt{a^{2}-x^{2}}}\right)$
ought to be $\int\left(\frac{a^{2} x^{n-2} d x}{\sqrt{a^{2}-x^{2}}}-\frac{x^{n} d x}{\sqrt{a^{2}-x^{2}}}\right)$
I don't know if my pencil Sheet enclosed
will be very intelligible, for it is as I wrote
it down at the time quite roughly, \& without
any very great amplitude or method.
I now proceed to my series of observations relating to former pages, beginning with page 102, (line 10 from the bottom)

$$
"+\text { less than } n C \frac{\Omega^{2}}{2} \text {, or } C h \frac{\Omega}{2} " ;
$$

now in order to ['effect' inserted] the substitution of $C h \frac{\Omega}{2}$ for $n C \frac{\Omega^{2}}{2}$
the latter is resolved into C. $n \Omega \cdot \frac{\Omega}{2}$, \& ['for' inserted] $n \Omega$ is
substituted h. But by the hypothesis \& conditions,
h must be less than $n \Omega$. Therefore it does not
necessarily follow that that which is proved less than
$n C \frac{\Omega^{2}}{2}$, is also less than $C h \frac{\Omega}{2}$. _ You see
my objection.
$2^{\text {ndly }}$. See Note to page 102 : If the "completion of the ['first' inserted] Series"
[109v] in this page is unnecessary, surely it is equally
unnecessarily in the first Series of page 100 ; for the
same observation applies to the latter as to the
former, viz : that the additional term is
comminuent with w.
$3^{\text {dly }}$. See page 99 (line 8 from the bottom) :

$$
" \int_{a}^{x} \varphi x . d x=(x-a) a+\frac{(x-a)^{2}}{2}=\frac{x^{2}-a^{2}}{2} "
$$

This is another form of $\int_{a}^{a+h} x d x=h a+\frac{h^{2}}{2} 8$ lines above, \& of the limit of the summation for $\varphi x=x$ in the previous page. And therefore it appears to me that it ought to be

$$
\int_{a}^{x} x . d x=(x-a) a+\frac{(x-a)^{2}}{2}=\frac{x^{2}-a^{2}}{2}
$$

I do not see what business φx has. \qquad

Now at last, I have done troubling you.
I am very anxious on all these points.
With many apologies, believe me
Yours very truly
A. A. Lovelace

