[106r]

Ockham Park
Ripley
Surrey
$4^{\text {th }}$ July

Dear M^{r} De Morgan. You are perhaps surprised that I have not sooner troubled you again. And you may think it a very bad reason to give, that I have done nothing. We returned here on Tuesday, \& now I am working away famously, \& hope I have before me 7 or 8 months of ditto. You left me at page 106. I remember your enquiry if I were sure that I understood $\int_{b}^{b+k} f x \times \frac{d x}{d t}$ as developped [sic] in pages 102, 103. I answered confidently, that I did. I now enclose you my own development of this Integration, that we may be quite certain of my comprehension of [something crossed out] it. On the other page of my sheet, is the application of it to $\int u d v=u v-\int v d u$ (page 105); \& to $\int_{a}^{x} \frac{1}{v} \frac{d v}{d x} d x$ (page 107).

I have now two questions to propose.
I differ from you in my development of $\int \frac{1}{1-x} d x$ (see page 107)
[106v] I cannot see why the Constant C is omitted in this more than in $\int \frac{1}{1+x} d x$.
I subjoin my development: Let $v=1-x$ $\int \frac{1}{1-x} d x=\int \frac{1}{1-x} \times-(-1) d x$ (which is only another way of writing $\int \frac{1}{1-x} \cdot 1 \cdot d x$)
And as $\frac{d v}{d x}$ or $\frac{d(1-x)}{d x}=-1$, we may in the
above substitute $\int \frac{1}{1-x} d x=\int \frac{1}{1-x} \times-\left(\frac{d(1-x)}{d x}\right) d x$

$$
\text { Or } \begin{aligned}
\int \frac{1}{v} d x & =\int \frac{1}{v} \times-\frac{d v}{d x} d x \\
& =\int \frac{1}{v} \frac{d v}{d x} \cdot(-1) d x \text { which by }
\end{aligned}
$$

$\int b u d x=b \int u d x$ (see page 105) is $=(-1) \int \frac{1}{v} \frac{d v}{d x} d x$
or $=-\int \frac{1}{v} \frac{d v}{d x} d x$
Now since by line $4, \int \frac{1}{v} \frac{d v}{d x} d x=\int \frac{1}{v} d v=$ $=\log v+C$, it follows that
(- this same expression) must $=-(\log v+C)$

$$
\begin{gathered}
=-(\log (1-x)+C)=-\log (1-x)-C \\
=\log \frac{1}{1-x}-C
\end{gathered}
$$

[107r] Now how do you get rid of $(-C)$?

My second question is unconnected with any of your books. _ But I think I may venture to trouble you with it. _ In the two equations,

$$
\begin{equation*}
V=g T \tag{1}
\end{equation*}
$$

$S=\frac{1}{2} g \cdot T^{2}$
which you will at once recognise, I want to know how (2) is derived from (1).
Will you refer to Mechanics (in the Useful Knowledge Library), page 10, Note, which is as follows, "Let S be the space described by the "falling body. $V=\frac{d S}{d T}=g T$. Hence $d S=g T d T$,
"which being integrated gives $S=\frac{1}{2} g \cdot T^{2}$."
Now can I ['as yet' inserted] understand this application of Differentiation \& Integration? \qquad
I conclude that $\frac{d S}{d T}$ here means
Diff. co of S with respect to T, S being (by
Definition \& Hypothesis) a function of $T, \&$ of V
I know that $V=g T$
And that $V=\frac{S}{T}$ But I neither see how
$V=\frac{d S}{d T}$, nor how the subsequent Integration applies.
[107v] The object, I need not say, is the solution of
S.
I mean to work very hard at my Chapter on Integration \&c, now. \qquad And I hope this
summer \& autumn will see me progressing at no small rate.
How is the Baby? __ And does M^{rs} De
Morgan enjoy Highgate? I ['am' inserted] enjoying the country not a little, I assure you.

Yours most truly
A. A. Lovelace

