Dear Mr De Morgan. You are perhaps surprised that I have not sooner troubled you again. And you may think it a very bad reason to give, that I have done nothing. We returned here on Tuesday, & now I am working away famously, & hope I have before me 7 or 8 months of ditto. You left me at page 106. I remember your enquiry if I were sure that I understood $\int b^k f x \times \frac{dx}{dt}$ as developed [sic] in pages 102, 103. I answered confidently, that I did. I now enclose you my own development of this Integration, that we may be quite certain of my comprehension of [something crossed out] it. On the other page of my sheet, is the application of it to $\int udv = uv - \int vdu$ (page 105); & to $\int_a^b \frac{1}{v} \frac{dv}{dx} dx$ (page 107).

I have now two questions to propose. I differ from you in my development of $\int 1 \frac{1}{1-x} dx$ (see page 107)

I cannot see why the Constant C is omitted in this more than in $\int 1 \frac{1}{1-x} dx$. I subjoin my development: Let $v = 1 - x$

$\int 1 \frac{1}{1-x} dx = \int 1 \frac{1}{1-x} \times -(-1) dx$ (which is only another way of writing $\int 1 \frac{1}{1-x} 1 dx$)

And as $\frac{dv}{dx}$ or $\frac{d(1-x)}{dx} = -1$, we may in the above substitute $\int 1 \frac{1}{1-x} dx = \int 1 \frac{1}{1-x} \times -\left(\frac{d(1-x)}{dx}\right) dx$

Or $\int 1 \frac{1}{v} dx = \int 1 \frac{1}{1-x} \times \frac{dv}{dx} dx$

$= \int 1 \frac{dv}{dx} (-1) dx$ which by $\int budx = b \int udx$ (see page 105) is $= (-1) \int 1 \frac{dv}{dx} dx$

Now by line 4, $\int 1 \frac{dv}{dx} dx = \int 1 \frac{dv}{v} = log v + C$, it follows that

$= -(log(1-x) + C) = -log(1-x) - C$

$= log \frac{1}{1-x} - C$

[107r] Now how do you get rid of $(-C)$?
My second question is unconnected with any of your books. But I think I may venture to trouble you with it. In the two equations,

\[V = gT \quad (1) \]

\[S = \frac{1}{2} gT^2 \quad (2) \]

which you will at once recognise, I want to know how (2) is derived from (1). Will you refer to Mechanics (in the Useful Knowledge Library), page 10, Note, which is as follows, “Let \(S \) be the space described by the ‘falling body. \(V = \frac{dS}{dT} = gT \). Hence \(dS = gT \, dT \), “which being integrated gives \(S = \frac{1}{2} gT^2 \).” Now can I ‘as yet’ inserted understand this application of Differentiation & Integration? I conclude that \(\frac{dS}{dT} \) here means Diff. co of \(S \) with respect to \(T \), \(S \) being (by Definition & Hypothesis) a function of \(T \), & of \(V \) I know that \(V = gT \)

And that \(V = \frac{S}{T} \). But I neither see how \(V = \frac{dS}{dT} \), nor how the subsequent Integration applies.

[107v] The object, I need not say, is the solution of \(S \). I mean to work very hard at my Chapter on Integration &c, now. And I hope this summer & autumn will see me progressing at no small rate.

How is the Baby? And does M’ns De Morgan enjoy Highgate? I ‘am’ inserted] enjoying the country not a little, I assure you.

Yours most truly

A. A. Lovelace