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Introduction

In the context of dynamical systems :

Entropy measures the rate of increase in dynamical complexity
as the system evolves with time.

Entropy is an invariant under isomorphism of measure-preserving

dynamical systems.

This talk is aimed at nonexperts.



Plan

Dynamical systems and ergodic theory in a nutshell

Kolmogorov-Sinai entropy

Shannon-McMillan-Breiman theorem

Brin-Katok formula

Ornstein’s theorem(s)

Slides that I will not have time to show, but that you would have liked to see :

Entropy via recurrence times (Ornstein-Weiss)

Topological entropy

Equilibrium states

Margulis-Ruelle inequality and Pesin’s formula

Brudno’s theorem (Kolmogorov complexity of orbits)

Krieger’s generator theorem

Entropy is the only finitely observable invariant

Weak Pinsker conjecture (solved in 2018)



dynamical systems

and

ergodic theory

in a nutshell



Dynamical systems (in this talk)

A dynamical system is :

A (finite-dimensional) state space X ;

A map T : X → X (evolution rule).

T can be invertible or non-invertible.

Discrete-time, deterministic evolutions, e.g., in physics and biology.

Models to understand ‘chaotic’ systems.

(‘Chaotic’ means sensitivity to initial condition and strong recurrence.)



Ergodic Theory

Measure-preserving dynamical system :

(X ,F, µ) is a (standard) probability space ;

T : X → X a (measurable) map such that µ(T−1
E) = µ(E), ∀E ∈ F.

. A general existence result : when X is a compact topological space and

T is continuous, there exists at least one T -invariant measure (Krylov-

Bogolioubov).

. Some invariant measures for free :

If X contains a p-periodic point x (∃p ≥ 1 s.t. T
p(x) = x), then

1

p

p−1∑
i=0

δ
T

i(x) is T -invariant (‘periodic-orbit measure’).

(Nota bene : in this talk : measure = probability measure.)



The pillar of ergodic theory : Birkhoff’s theorem

Suppose µ is ergodic, that is, if T
−1(A)

(modµ)
= A, then either µ(A) = 0 or µ(A) = 1

(or, equivalently, if f ◦ T
(modµ)
= f, then f

(modµ)
= const, for any measurable f : X → R).

(Ergodic measures are the ‘building blocks’ of T -invariant measures.)

Theorem.

Let (X ,F, µ) be ergodic.

Let g : X → R be in L1(µ).
Then, for µ-almost every x (and also in L1(µ)),

1

N

N−1∑
n= 0

g(T n(x)) −−−−−→
N→+∞

∫
X

g dµ.

In particular, the mean sojourn time of µ-almost every x to E ⊂ X exists :

lim
N→+∞

1

N

]
{

0 ≤ i < 1 : T
i(x) ∈ E

}
= µ(E).

(A stronger property is mixing : µ
(
E∩T

−N
E
′) −−−−−→

N→+∞
µ(E)µ(E ′), ∀E, E ′ ∈ F.)



A few fundamental examples

Lebesgue measure is inva-

riant and mixing.

Decimal expansion as a dynamical system :

X = [0, 1]
T (x) = 10x− b10xc
If x = 0.a0a1a2a3 . . . with ai ∈ {0, 1, 2, . . . , 9}
then

T
n(x) = 0.((((

(
a0 . . . an−1 anan+1an+2 . . .

(Prototype of a uniformly expanding map.)



µ(E) = 1

log 2

∫
E

1

1+x
dx

for any measurable E ⊂ [0, 1].

Gauss map and continued fractions :

X = [0, 1]
T (x) = 1

x −
⌊

1

x

⌋
if x ∈ (0, 1], T (0) = 0.

For irrational x ∈ (0, 1),

x = a0 +
1

a1 +
1

a2 +
1

· · ·+ 1

an + T
n(x)

where ai = b1/T
i−1(x)c ≥ 1 for i ≤ n.

This dynamical system is mixing.



Circle rotations :

X = S
1 = R /Z

Given θ ∈ R, let Tθ(x) = x+ θ (mod 1).

If θ = p /q (rational), then T
q

θ = Id, so every orbit is periodic.

If θ is irrational, then every orbit is dense in S
1
.

Lebesgue measure is Tθ-invariant.

If θ is rational then this system is not ergodic.

If θ is irrational then it is ergodic (but not mixing).

(Generalization : rotations on tori.)



Shi� spaces, Bernoulli shi�s, and Markov shi�s :

Fix k > 1.

Let X = {1, . . . , k}N (one-sided sequences)

or X = {1, . . . , k}Z (two-sided sequences).

Given a one-sided or a two-sided sequence x = (xi)i , the shi� map is

(T (x))i = xi+1.

The ‘shi�’ map T is invertible when X = {1, . . . , k}Z.

These shi� spaces are compact topological spaces in the product topology and the (Borel) sigma-

algebra is generated by cylinder sets

[sm, sm+1, . . . , sn]
def
= {x : xi = si ,m ≤ i ≤ n}, si ∈ {1, . . . , k},m < n in N orZ.

(Full shi�s are the simplest example of ‘symbolic dynamical systems’.)



Bernoulli shi�s :

Take X = {1, . . . , k}N and put a measure (p1, . . . , pk) on {1, . . . , k}. Then

let µ
def
= (p1, . . . , pk)

N
(product measure) ; it is obviously shi�-invariant.

Every Bernoulli shi� is mixing.

Markov shi�s (a.k.a. finite-state space Markov chains) :

Consider an irreducible stochastic matrix Q : {1, . . . , k}2 → {0, 1}.
There is a unique q = (q1, . . . , qk) such that qQ = q and the measure

µ([s0, . . . , sn−1])
def
= qs0

Q s0,s1
· · ·Q sn−2,sn−1

is shi�-invariant and ergodic. It is mixing if Q is irreducible and aperiodic.

Remarks.

There are plenty of other shi�-invariant measures (e.g., periodic-orbit measures) on these

spaces !

Generalization : Gibbs measures/equilibrium states on (sub-)shi�s of finite type modelling

‘uniformly hyperbolic systems’ (Axiom A di�eomorphisms).



The image of the torus under A.

Linear automorphisms of the torus :

X = T2 = R2
/Z2

(unit square [0, 1]× [0, 1] with opposite sides identified)

T (x1, x2) = (2x1 + x2, x1 + x2) mod 1.

It corresponds to the linear map of R2

given by the matrix (
2 1

1 1

)
.

Eigenvalues : λ =
(
3 +
√

5

)
/2 > 1 and 1/λ < 1,

so the map expands by a factor of λ in the direction of

the eigenvector vλ =
(
1 +
√

5

)
/2, 1), and contracts by 1/λ

in the direction of v
1/λ =

(
1−
√

5

)
/2, 1).

The determinant is 1.

This (invertible) dynamical system preserves the Lebesgue measure on T2
and is

ergodic (and mixing).

Remark. This is a prototype of a uniformly hyperbolic system.

(Uniform expansion and contraction in complementary directions at every point.)



Hénon’s a�ractor for a = 1.4, b = 0.3
(‘fractal’ structure).

Hénon’s map (a�ractor) :

X = R2
, T (x, y) = (1− ax2 + y, bx)

where a, b are real parameters.

If b 6= 0 the map is invertible, and it changes area

by a factor of |b|.
For, e.g., a = 1.4, b = 0.3, there is a trapping region

homeomorphic to a disk.

Benedicks and Carleson proved (hard proof !)

that if b� 1, ∃P
b
⊂ ]2− ε, 2[ s.t. Leb(P

b
) > 0,

s.t. ∀a ∈ P
b
, there is a T -invariant measure

which is a Sinai-Ruelle-Bowen measure

(which is mixing).

(This is an example of a non-uniformly hyperbolic system.)



Planar billiards (maps and flows) :

Sinai’s billiard Bunimovich stadium billiard

(mixes exponentially fast) (mixes very slowly)

(These are non-uniformly hyperbolic systems.)



Now, entropy !



Shannon entropy for stationary processes

Claude Shannon

Let Z be a random variable taking values

in {1, . . . , k} (k finite and fixed).

Let (p1, . . . , pk) its law ( pi ≥ 0,

∑k
i=1

pi = 1).

For instance, it can model an ‘yes-or-no’ random experiment

with p1 = p and p2 = 1− p (Bernouilli).

Then

H(p1, . . . , pk)
def
= −

k∑
i=1

pi log pi.

Two extreme cases :

if pi = 1 for some i, then H(p1, . . . , pk) = 0 ;

H(p1, . . . , pk) ≤ log k with equality if and only if pi =
1

k
for

i = 1, . . . , k.



Consider a stationary stochastic process Y = (Yi)i∈N (orZ)
where the ran-

dom variables Yi take values in {1, . . . , k}.

Stationarity means :

P(Y0 = y0,Y1 = y1, . . . ,Yn−1 = yn−1) = P(Y` = y0+`,Y1+`, . . . ,Yn−1 = yn−1+`)

for all n, ` and (y0, y1, . . . , yn−1) ∈ {1, . . . , k}n
.

Shannon entropy of the joint law of Y0, . . . ,Yn−1 :

−
∑

(y
0
,...,y

n−1
)∈{1,...,k}n

P(Y0 = y0, . . . ,Yn−1 = yn−1) logP(Y0 = y0, . . . ,Yn−1 = yn−1).

The Shannon entropy of the process is

h(Y)
def
= lim

n→∞

what precedes

n

.

Remark. Y = (Yi)i∈N orZ is a measure-preserving dynamical system with

X = {1, . . . , k}N (orZ)
, T = shi� map, a certain shi�-invariant measure µ.



1st page of Shannon’s 1948 paper

Famous anecdote (urban legend?) of Shannon, re-

told so many times :

My greatest concern was what to call

it. I thought of calling it ‘information’,

but the word was overly used, so I de-

cided to call it ‘uncertainty’. When I

discussed it with John von Neumann,

he had a be�er idea. Von Neumann

told me, “You should call it entropy,

for two reasons. In the first place your

uncertainty function has been used in

statistical mechanics under that name,

so it already has a name. In the se-

cond place, and more important, no

one really knows what entropy really

is, so in a debate you will always have

the advantage.”



Kolmogorov reads Shannon

Kolmogorov in the 1940’s

Basic observation :

A finite partition of a measure-preserving

dynamical system generates

a stationary stochastic process with values

in the set {1, . . . , k} of labels of the partition.

Here k = 6.



Kolmogorov-Sinai entropy

1. Partitions and their iterations

Let (X ,F, µ, T ) be a (non-invertible) measure-preserving dynamical system.

Let α = {α1, . . . , αk} be a finite (measurable) partition of X (k ≥ 2 fixed)

(that is, αi ∈ F, X

(modµ)
= α1 ∪ · · · ∪ αk , µ(αi ∩ αj) = 0 for i 6= j).

Given two partitions α and α̃, let

α ∨ α̃ def
=
{
α ∩ α̃ : α ∈α, α̃ ∈ α̃

}
.

(k = 3)

So, if we let T
−1α def

=
{

T
−1α1, . . . , T

−1αk

}
,

we can form the partition α ∨ T
−1α.



More generally, for each n, define the partition

αn

def
=

n−1∨
j=0

T
−jα

which are sets (atoms) of the form{
x ∈ X : x ∈ αi0

, T (x) ∈ αi1
, . . . , T n−1(x) ∈ αin−1

}
for some (i0, i1, . . . , in−1), where im ∈ {1, . . . , k}.



2. Entropy of a measure-preserving dynamical system

Now let

Hµ(α)
def
= H

(
µ(α1), . . . , µ(αk)

)
.

Definition.

Let (X ,F, µ, T ) be a measure-preserving dynamical system.

Let α be a finite partition.

The entropy of the system w.r.t. to α is

hµ(T ,α)
def
= lim

n→+∞

1

n

Hµ

n−1∨
j=0

T
−jα

 .

The entropy of the system then is

hµ(T )
def
= sup

{
hµ(T ,α) :α is a finite partition of X

}
.

Remarks.

The above limit always exists by Fekete’s lemma, and hµ(T ,α) ≥ 0 for all α.

If T is invertible, then hµ(T n) = |n| hµ(T) for all n ∈ Z.



3. Kolmogorov-Sinai theorem (1959)

Computing the sup over all partitions seems to be a formidable task, but...

Y. Sinai in the 1970’s

Theorem.

Let (X ,F, µ, T ) be a measure-preserving dynamical system.

Let α be a partition that is ‘generating’, that is :

∞∨
j=0

T
−jα (modµ)

= F.

Then hµ(T ) = hµ(T ,α).

Let αn(x) be the element of

∨
n−1

i=0
T
−iα which contains x.

Corollary.

Let X be a metric space and µ a Borel probability measure.

Let α be a partition such that diamαn(x) −−−−→
n→+∞

0 for µ-almost every x.

Then hµ(T ) = hµ(T ,α).



Examples

(Note that, in general, there is no hope to compute explicitly the value of the entropy of a given

measure-preserving dynamical system.)

1. The entropy of any periodic-orbit measure is zero.

2. X = [0, 1], T (x) = 10x mod 1, µ is Lebesgue measure :

α partition of [0, 1] into

(
j−1

10
, j

10

]
, j = 1, . . . , 10.

αn partition of [0, 1] into

(
i−1

10
n
, i

10
n

]
, i = 1, . . . , 10

n
.

Hµ(αn) = −
10

n∑
i =1

10
−n log 10

−n = n log 10,

hence hµ(T ) = log 10.

3. X = (0, 1], T (x) = 1

x mod 1 (Gauss map), dµ(x) =
1

log 2

dx
1 + x

.

Partition of (0, 1) into the subintervals (1/(m + 1), 1/m), m ≥ 1

(countably infinite partition).

hµ(T ) =
∫

1

0
log |DT | dµ =

π2

6 log 2

.



4. Circle rotations have entropy 0.

(X = S
1
, Tθ(x) = x+ θ mod 1, µ is Lebesgue measure.)

Proof (sketch) :

If θ = p/q ∈ Q, then T
q

θ = Id, so

hµ(Tθ) = (1/q)hµ(T
q

θ ) = (1/q)hµ(Id) = 0.

If θ ∈ R\Q, then let α(N)
be a partition into N intervals of equal length.

Then ]αn = nN , so Hµ(α(N)) ≤ log(nN), and thus

hµ(Tθ,α(N)) = limn(log(nN))/n = 0.

Therefore hµ(Tθ) = 0, since the collection of partitions α(N)
,

N ≥ 1, is generating.



5. Shi� spaces on k symbols : one recovers Shannon entropy for stationary

stochastic processes.

The partition into the 1-cylinders [s], s ∈ {1, . . . , k}, generates the sigma-algebra.

In particular :

Entropy of a Bernoulli shi� : −
∑k

i=1
pi log pi .

(≤ log k which is the entropy of (p1, . . . , pk) = ( 1

k
, . . . , 1

k
).)

Entropy of a Markov shi� (Q, q) : −
∑k

i=1
qi

∑k
j=1

Q i,j logQ i,j .

6. Linear automorphism TA of T2
from the matrix A =

(
2 1

1 1

)
,

µ is Lebesgue measure :

There is a nice partition (Markov partition) which is generating and

hµ(TA) = log((3 +
√

5)/2).



two interpretations

of

Kolmogorov-Sinai entropy :

Shannon-McMillan-Breiman theorem and Brin-Katok formula.



Shannon-McMillan-Breiman theorem

First, a basic example :

Bernoulli shi� T on 2 symbols (k = 2) with Bernoulli measure (1− p, p).

For any x ∈ {1, 2}N and n ∈ N

µ([x0 · · ·xn−1]) = (1− p)]{xi=1:i≤n−1}
p
]{xi=2:i≤n−1},

thus

− 1

n

logµ([x0 · · ·xn−1]) =

− log(1− p)× ]{xi = 1 : i ≤ n− 1}
n

− log p× ]{xi = 2 : i ≤ n− 1}
n

.

By the strong law of large numbers (Birkho�’s theorem), for µ-almost

every x,

−1

n

logµ([x0 · · ·xn−1]) −−−→
n→∞

− log(1−p)×
=1−p︷ ︸︸ ︷
µ([1])− log p×

=p︷ ︸︸ ︷
µ([2]) = hµ(T ).



This is in fact a very general behavior.

Let (X ,F, µ, T ) be ergodic.

Let α be a finite partition.

Given x ∈ X , let αn(x) be the element of

∨
n−1

i=0
T
−iα which contains x.

Theorem (Shannon-McMillan-Breiman).

For µ-almost every x ∈ X , one has

hµ(T ,α) = lim
n→+∞

−1

n

logµ
(
αn(x)

)
.

The convergence is also in L1(µ).

(If α is generating, then we can replace hµ(T ,α) by hµ(T ).)



Interpretation : aymptotic eqipartition property

Fix ε (small enough).

Abbreviate hµ(T ,α) (supposed to be > 0) as h.

Then there exists Nε such that ∀n ≥ Nε, there exists Gn ⊂ X such that :

µ(Gn) > 1− ε
Gn is the union of e(h±ε)n elements of

∨
n−1

i=0
T
−iα, each having

µ-measure e−(h±ε)n.

‘Through µ-glasses’, X is (almost) partitioned into equally sized ‘atoms’,

each with mass ≈ ehn
, if we let the dynamics run long enough (n� 1).



Brin-Katok formula

Here X is a compact metric space with distance d (and F is the Borel

sigma-algebra).

Let x ∈ X , ε > 0 (‘resolution’), and n ≥ 1. Define the ‘dynamical ball’

B(x, ε, n)
def
=
{
y ∈ X : d(T i(x), T i(y)) ≤ ε, ∀i = 0, 1, . . . , n− 1

}
.

This is the set of points that are indistinguishable from x at resolution ε
in n iterates.

Theorem.

For µ almost every x ∈ X , one has

hµ(T ) = lim
ε→0

lim
n→∞

−1

n

logµ
(
B(x, ε, n)

)
.



entropy as invariant

of

ergodic equivalence



Classification in ergodic theory

Let (X , T , µ), (X ′, T ′, µ′) be two measure-preserving dynamical systems.

(For simplicity, I drop the sigma-algebras F, F′.)

Definition (Ergodic equivalence).

They are ergodically equivalent if

∃N ⊂ X such that µ(N) = 0, ∃N ′ ⊂ X
′

such that µ′(N ′) = 0 ;

There exists a measurable bijection φ : X \ N → X
′ \ N

′
with

measurable inverse ;

µ ◦ φ−1 = µ′ and φ ◦ T = T
′ ◦ φ.

Properties like ergodicity or mixing are invariants of ergodic equivalence.

There are other notions of equivalence, like spectral equivalence (Koop-

man operator in L2
), that I won’t discuss here.



Example

Consider : T
′ : [0, 1]→ [0, 1], T

′(x) = 10xmod 1, µ′ is Lebesgue measure.

Writing x = 0.a0a1a2 . . ., with ai ∈ {0, 1, . . . , 9}, we saw that

T
′(x) = 0.��a0a1a2 . . .

so let

φ : {0, 1, 2, . . .}N → [0, 1], φ((an)n)
def
=
∞∑

n=0

an

10
n+1
·

One can check that :

Up to numbers having finite decimal expansion (i.e., such that all but

finitely many digits are 0), which form a countable set (hence of Lebesgue

measure 0), φ is a bijection ;

µ ◦ φ−1 = Lebesgue, where µ product of Bernoulli measures ( 1

10
, . . . , 1

10
)

on {0, 1, 2, . . . , 9} ;

φ ◦ T ((an)n) = T
′ ◦ φ((an)n), where T is the shi� map.



Back to Kolmogorov

Von Neumann had asked if the 2-sided Bernoulli shi�s

T : {1, 2}Z → {1, 2}Z, µ =
(

1

2

,
1

2

)Z
and

T
′ : {1, 2, 3}Z → {1, 2, 3}Z, µ′ =

(
1

3

,
1

3

,
1

3

)Z
were ergodically equivalent.

Remarks. They cannot be topologically conjugate (T has two fixed points and

T
′

has three fixed points). All 2-sided Bernoulli shi�s are spectrally equivalent.

Kolmogorov rightly introduced entropy to solve this question. Indeed :

Entropy is an invariant of ergodic equivalence.

Sketch of proof. Let (X , T , µ), (X ′, T ′, µ′) be two ergodically equivalent measure-preserving dyna-

mical systems. If α′ is a partition of X
′
, then φ−1(α′) is a partition of X , and µ ◦ φ−1 = µ′.

Hence Hµ′ (α
′) = Hµ(φ−1(α)). �



Since entropy is an invariant of ergodic equivalence :

Two Bernoulli shifts can be ergodically equivalent

only if they have the same entropy.

In particular :

The above 2-sided Bernoulli shi�s cannot be ergodically equivalent.

What about the converse? that is :

does equality of entropy enforces ergodic equivalence?

Can’t be true in general : for instance, all circle rotations have entropy 0

but an irrational rotation (which is ergodic) cannot be ergodically equiva-

lent to a rational rotation (not ergodic).



An example

Meshalkin proved in 1959 that the 2-sided Bernoulli shi�s

generated by the Bernoulli measures(
1

4

,
1

4

,
1

4

,
1

4

)
and

(
1

2

,
1

8

,
1

8

,
1

8

,
1

8

)
,

which both have entropy log 4, are ergodically equivalent (he

wrote down explicitly φ, the ‘coding map’).



Ornstein’s theorem(s)

D. Ornstein in 1970

Ornstein achieved the following breakthrough.

KKKKKTheorem.

Two 2-sided Bernoulli shi�s generated by, say,

(p1, . . . , pk) and (q1, . . . , qk′) are ergodically equivalent

if and only if they have the same entropy, that is,

if and only if

−
k∑

j=1

pj log pj = −
k′∑

i=1

qi log qi.



Ornstein went much further :

He also gave necessary and su�icient conditions for a measure-preseving

dynamical system to be ergodically equivalent to a Bernoulli shi� (gene-

rating partition which is ‘very weak Bernoulli’, or being ‘finitely determi-

ned’). (Not discussed here.)

Examples :

• Any irreducible and aperiodic Markov chain on a finite set is ergodically

equivalent to a Bernoulli shi�.

• Automorphisms of Td
, A is a n× n matrix with integer coe�icients and

|det(A)| = 1 ; we saw above the case d = 2 and A =

(
2 1

1 1

)
.

If none of the eigenvalues {λi}d

i=1
of A are roots of unity, then TA ergodi-

cally equivalent to a Bernoulli shi� with entropy

∑
d

i=1
max(0, log λi).



Closing remarks

Generalizations :

The above theory of entropy works for countable partitions.

One can define Bernoulli shi�s for arbitrary standard probability

spaces instead of finite sets with Bernoulli measures.

Trichotomy in ergodic theory according to entropy :

Zero-entropy (or ‘fully deterministic’) systems (like rotations on the

circle. There are many other examples).

Such systems have subexponential growth of orbit complexity with

time ;

Finite positive entropy (exponential growth of orbit complexity), as

in most examples of this talk ;

Infinite entropy. Includes many important classes of stationary random

processes, such as Wiener or Gaussian, with absolutely continuous

spectral measure, and various infinite-dimensional dynamical systems.



Slides that I had no time to show

but that you would like to see

i
What follows is very sketchy and only intended to point out

other topics involving entropy.



Ornstein-Weiss theorem :

entropy via recurrence times

Let (X ,F, µ, T ) be an ergodic dynamical system.

Let α be a finite partition.

Let B ⊂ X such that µ(B) > 0 and τB(x) = inf
{

j ≥ 1 : T
j(x) ∈ B

}
.

Theorem. For µ almost every x one has

lim
n→+∞

1

n

log ταn(x)(x) = hµ(T ,α).

Remark. By Kač’s formula, for every x ∈ X∫
τ αn(x)(y) dµαn(x)(y) =

1

µ(αn(x))
·

Then, for µ almost every x, Shannon-McMillan-Breiman theorem implies

−
1

n

log

∫
τ αn(x)(y) dµαn(x)(y)→ hµ(T ,α).



Topological entropy

Here (X , d) is a compact metric space and T : X → X continuous (a

homeomorphism in the invertible case).

Denote by Sd(ε) the minimal number of balls of radius ε which covers X .

Then

htop(T )
def
= lim

ε→0

lim sup
n→+∞

log S
d

T

n

(ε)

n

where

d
T

n
(x, y)

def
= max

{
d(x, y), d(T (x), T (y)), . . . , d(T n−1(x), T n−1(y))

}
.

(If d
′

is another distance defining the same topology as d , then we get the same number.)

Roughly speaking, topological entropy measures the maximal complexity and

Kolmogorov-Sinai entropy measures the statistical complexity statistics based

on a given measure).

Topological entropy is nvariant by topological conjugacy.



Theorem (Variational principle).

If T : X → X is a continuous on the compact metric space (X , d), then

htop(T ) = sup{hµ(T ) : µ T -invariant}.

If the supremum is a�ained, one speaks of measure of maximal entropy. What

about uniqueness ? Hard questions in general.

Expansive maps of compact metric spaces have a measure of maximal

entropy.

All transitive topological Markov chains (≡ “skeletons” of irreducible

Markov chains), or hyperbolic toral automorphisms have a unique

measure of maximal entropy.

Link with periodic points : for shi�s of finite type, one has

lim
n→+∞

1

n

log ]Fix(T n) = htop(T ).

For the full shi� on k symbols : ]Fix(T n) = kn
, hence htop(T ) = log k. The

corresponding measure is

(
1

k
, . . . , 1

k

)N (orZ)
.



Eqilibrium states in ergodic theory

Se�ing :

(X ,F, T ) where X is a compact metric space and T is continuous ;

ϕ : X → R continuous (‘potential’).

One can define (not done here) the ‘pressure’ PT (ϕ) of a ϕ wrt T .

(All this jargon comes from statistical physics.)

Theorem (Variational principle).

PT (ϕ) = sup
{
hν(T ) +

∫
ϕ dν : ν T−invariant

}
.

By definition, T -invariant measures achieving the supremum (if any) are

called equilibrium states of ϕ.

When ϕ = 0, PT (0) = htop(T ). (So the previous theorem generalizes the theorem above.)

If T is expansive, then every ϕ admits some equilibrium state.



A few remarks :

For ‘nice’ dynamical systems (e.g., uniformly expanding maps of the

interval, shi�s of finite type, Axiom A di�eomorphisms, etc), and ϕ
regular enough (at least Hölder), unique equilibrium states exist and

are unique, and are also ‘Gibbs measures’.

Invertible systems in the previous class are ergodically equivalent to

a Bernoulli shi�.



Margulis-Ruelle inequality and Pesin’s formula

The context is di�erentiable dynamics :

T : X → X is a C
2
-di�eomorphism of a compact Riemannian manifold X and µ

is T -invariant ergodic Borel probability measure.

Let λ1 > λ2 > · · · > λr denote the distinct Lyapunov exponents of (T , µ)
and let Ei be the linear subspaces corresponding to λi , so that dim(Ei) is the

multiplicity of λi . (There’s a big theorem behind this, namely the multiplicative

ergodic theorem of Oseledets.)

Lyapunov exponents measure the rates at which nearby orbits diverge.

Theorem (Margulis-Ruelle).

hµ(T ) ≤
r∑

i=1

max(0, λi) dim(Ei).

Theorem (Pesin).

If µ is equivalent to the Riemannian measure on X , then

hµ(T ) =
r∑

i=1

max(0, λi) dim(Ei).



Krieger’s generator theorem

Theorem.

Let (X ,F, µ, T ) be an ergodic invertible dynamical system. Assume that µ
is not a periodic-orbit measure and hµ(T ) < +∞.

Then, there exists a generating partition α with

ehµ(T) ≤ ]α ≤ ehµ(T)+1.

Refined version : A necessary and su�icient condition for the existence of a

measure-preserving embedding of (X , T , µ) into ({1, . . . , k}Z, T
shi�
) is

hµ(T ) < log k or (X , T , µ) is a Bernoulli shi� with hµ(T ) = log k.

(Measure-preserving embedding : there is a Borel injective map b : X
′ → {1, . . . , k}Z with µ(X ′) =

1 and b ◦ T = Tshi� ◦ b.)



Brudno’s theorem

(Kolmogorov complexity of orbits and

entropy)

Let (X ,F, µ, T ) be an ergodic dynamical system and α a finite partition of X .

Let ωn−1

0
(x) = (ω0(x), . . . , ωn−1(x)) where ωj(x) = i if T

j(x) ∈ αi .

Given a Turing machine M, the Kolmogorov complexity KM(ω
n−1

0
(x)) of the

‘word’ ωn−1

0
(x) is the length of the shortest algorithm which outputs ωn−1

0
(x).

Kolmogorov proved that there exists a universal Turing machine U (i.e., it can

simulate any other Turing machine) such that

KU(ω
n−1

0
(x)) ≤ KM(ω

n−1

0
(x))+C (where C is a constant depending only on U and M ).

Theorem.

For µ-almost every x

lim
n→+∞

KU(ω
n−1

0
(x))

n

= hµ(T ,α).



Entropy is the only finitely observable

invariant

This is new (and very surprising) characterization of entropy.

Consider stationary, ergodic, stochastic processes X = (Xn)n where the Xn’s

take values in a finite alphabet.

Roughly speaking, J(X) is finitely observable if there is some sequence of func-

tions

(
Sn(x0, . . . , xn−1)

)
n

that converges to J(X) for almost every realization

x0, x1, . . . of the process X, for all ergodic processes.

Basic example : J(X) = E(X0) and Sn(x0, . . . , xn−1) = (x0 + · · · + xn−1)/n ;

convergence by Birkho�’s theorem.

Theorem (Ornstein-Weiss, 2006).

If J is a finitely observable function, defined on all ergodic finite-valued processes,

which is an invariant of ergodic equivalence, then J is a continous function of the

entropy.

Remark. There are several di�erent estimators converging to the entropy (e.g. ,

using return times, see above).



Weak Pinsker conjecture

Long-standing conjecture solved in 2018.

Theorem (T. Austin, 2018).

Every ergodic invertible dynamical system (X ,F, T , µ) has the

‘weak Pinsker property’ :

For every ε > 0, it splits into a direct product of a Bernoulli shi�

and a system of entropy less than ε.

Remark. For ε = 0 (‘Pinsker conjecture’), the statement is false

(counter-examples by Ornstein).
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