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© Clausius entropy: the thermodynamics entropy for macroscopic
systems. Clausius entropy S¢ has an operational definition
(through thermodynamic processes and the first and second
laws of thermodynamics).

© Boltzmann equilibrium entropy:

SB,N(E7 V) = kB IOgQN(E7 V)a
© Gibbs equilibrium entropies:

Se.N= —kB/ d"qd"ppy log o
An(V)

One can prove that

Se.N(En(B)) <S¢ n(B)-

Which of the equilibrium Boltzmann entropy or the canonical Gibbs
entropy S¢ () should be identified with Clausius entropy Sc?



Equilibrium Entropies in The Thermodynamic Limit

@ We consider the thermodynamic limit

T : o1
s(e) = lim “Clogp(Ne) = lim Sy (Ne).
and
1 log Zn(B)

FB) = \im — B

@ Then (using Laplace principle, or large deviation theory), we
prove that the free energy is the Legendre—Fenchel transform
of the entropy:

f(B)= ir;f{e— Ts(e)}.

@ Equilibrium Boltzmann and Gibbs entropies do coincide at the
thermodynamic limit.

@ Entropies and free energies, are up to constants, large
deviation rate functions.



Clausius Entropy is not Equal to Equilibrium Ensemble

Entropies

@ For the Hamiltonian dynamics, starting from a non-equilibrium
state, Gibbs entropy remains constant:

d
" (/ d"qd"ppn logpN> = 0.
t \JAn(V)

@ This is in contrast with the second law of thermodynamics
that states that entropy should increase.

e Clausius entropy, can be identified in the thermodynamic limit,

with Boltzmann macrostate entropy.

One can explain, for instance using large deviation theory, that:

@ Boltzmann macrostate entropy does increase for most initial
condition and can be identified with Clausius entropy.

© It coincides with the equilibrium ensemble entropies at
equilibrium and at the thermodynamic limit.



Boltzmann’s macrostate
entropy

e Microstates: X = {(I‘n, Pn)1gngN}

e Macrostates: M describes in a coarse-grained way the
macroscopic state of a system. As an example, we divide the 6

dimensional u—space {r, p} into K cells, where K is large but
still K << N and specify the number of particles in each cell.

e Boltzmann’s macrostate entropy:

Sp(X) = Sg (M(X)) with

Sp(M) = kglog|T'y| .

(Time's arrow and Boltzmann's entropy, Joel L. Lebowitz, 2008, Scholarpedia)



Boltzmann’s macrostate
entropy and times arrow

Sp(M) = kglog|I'y|.

Boltzmann argued that due to the large differences in the sizes of I';,, Sp(X,) will

typically increase in a way which explains and describes qualitatively the evolution
towards equilibrium of macroscopic systems.

Maxwell: «the second law is drawn from our experience of bodies consisting of an
immense number of molecules. ... it is continually being violated, ..., in any sufficiently
small group of molecules ... . As the number ... is increased ... the probability of a
measurable variation ... may be regarded as practically an impossibility. »

Gibbs (quoted by Boltzmann): « In other words, the impossibility of an
uncompensated decrease of entropy seems to be reduced to an improbability. »

In the limit of a large number of degrees of freedom, Clausius’ entropy for a
macroscopic description of a physical system can be identified with Boltzmann’s

macrostate entropy.

(Time's arrow and Boltzmann's entropy, Joel L. Lebowitz, 2008, Scholarpedia)



What about entropy and dynamics
beyond typical relaxation?
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@ What is the probability of a dynamical rare fluctuation? The
answer is not known within the classical statistical equilibrium
framework.



What about entropy and dynamics
beyond typical relaxation?

e Boltzmann’s macrostate entropy is directly related to the probability in phase
space, independently of dynamics.

* Entropy has also a dynamical meaning. For instance in stochastic
thermodynamics, entropy variation appears as the ratio of the probability of
forward paths to the probability of backward paths.

* For systems in detailed balance, or generalized detailed balance:

P <{X(f)}{ti§t§tf}> _ exp (AS)
P <{XR(Z)}{t,-§t§tf}>

* For kinetic theories can we get path probabilities and the dynamical meaning go
entropy?



Path Large Deviation Theory

1 N
fy(r,v,t) = N 216(v—vn(t))6(r—rn(t)).

@ For many kinetic theories one expects:

(suppfOTdt {ffpdrdv— H[f,p]})

P [{fN(t)}OSKT = {f(t)}ogt<T] STO exp

E

@ What is €7 Can we compute H?

@ This is a statistical field theory for the effective large scale
dynamics.

@ H summarizes all the relevant statistical information. This is
the Holy Grail of any modern statistical mechanician.

@ This gives the most probable evolution, the Gaussian
fluctuations (stochastic differential or partial differential
equations) and the rare events beyond Gaussian fluctuations.

Example: macroscopic fluctuation theory, sometimes derived from microscopic Markov

dynamics.
Can we derive path large deviations for classical kinetic theories ?



Boltzmann Equation for dilute gases

of of
5 —I-V.E — /dvzdv'ldv’z W(v’l,v’z;v,vz) [f (v’l,r) f (v’2,r) —f(v,r) f(vz,r)] :
@ A cornerstone of physics.

o The irreversibility paradox and the 19" century controversy
(Loschmidt, Zermelo, Poincaré).

@ Classical explanation of the paradox by Boltzmann, theoretical
physicists of the 20th century, Lanford work (1973).

@ |t is a very active contemporary subject both in physics and
mathematics.



The Boltzmann Equation is a Law of Large Numbers

@ We consider the empirical distribution

1 N
fy (rov, t) = N ;16(r—r,,(t),v—v,,(t))

® We consider an ensemble of initial conditions {r,, v}, ,<n
where each fy(t =0) is close to fy.
@ The Boltzmann equation is a law of large numbers:

I\IIiLnoo fN(t) — f(t)a

where f solves the Boltzmann equation with f(t =0) = f,.

@ For large enough N, “for almost all initial conditions” and for a
finite time, fy(t) remains close to f(t) where f solves the
Boltzmann equation with f(t =0) = f.

@ We should study the probabilities of fy, beyond the law of
large numbers. May be Gaussian fluctuations, but even more
interesting large deviations.



Path Large Deviations for the Boltzmann Equation

@ Dynamical large deviations for the empirical distribution:

( suppfont {ffpdrdv— Hp [ﬂP]})

P [{fN(t)}0§t<T = {f(t)}0§t<T] = €xp

el0 E

€ is the inverse of the number of particles in a volume of size
the mean free path.
@ The large deviation Hamiltonian is Hg = Hc + Ht, with Ht

the free transport part, and with the collision part H. given by
Hc [f,p] = %/drdvl,2’1/,2/ w(vy,vo;v1,v2)f(r,vy)f (r,v2) {e[P(""1)+p(r,V2)—P('a"'1)—P(’N'z)] —1
- C. Leonard, 1995. F. Rezakhanlou, 1998: stochastic model with Boltzmann
like behavior.

- F. Bouchet, 2020, for dilute gases.
- T. Bodineau, |. Gallagher, L. Saint-Raymond and S. Simonella, 2020, for a

mathematical proof for short times.
- D. Heydecker, 2022, and G. Basile, D. Benedetto, L. Bertini and E. Caglioti,

2022: energy non-conserving solutions with probability & (e=N).



Path large deviations for kinetic theories

1 N
fy(r,v, t) = N Zlﬁ(v—v,,(t))b'(r—rn(t)).

(_suppfOTdt {ffpdrde[f,p]})

P [{fN(t)}0§t<T = {f(t)}O§t<T] ~ €Xp

el0 £

@ What is €? Can we compute H?

@ Dilute gases (Boltzmann equation): F. Bouchet, JSP, 2020.

@ Plasma beyond debye length: O. Feliachi and F. B., JSP, 2021.

@ Systems with long range interactions: O. Feliachi and F.
Bouchet, JSP, 2022.

e Weak turbulence theory (wave turbulence), homgeneous case:
J. Guioth, G. Eyink, and F. Bouchet, 2022, JSP. Inhomogeneous

case with random potential: Y. Onuki, J. Guioth, and F. Bouchet,
2023, Annales Henry Poincareé.



Relations between various entropy concepts and the
quasi-potentials of classical kinetic theories

Outline

I) Introduction: entropy concepts, from Clausius up to
the dynamical meaning of entropy for kinetic theories

Il) Path large deviations and macroscopic reversibility:
revisiting the irreversibility paradox

lll) Path large deviations for kinetic theories: the
example of particles with long range interactions

16



© Macroscopic reversibility for the empirical measure through path
large deviations: Reuvisiting the irreversibility paradox
® Properties and symmetries for path large deviations



Which Properties Must we Expect for Large Deviations for

Kinetic Theories?

@ We expect a large deviation principle for the empirical
distribution dynamics

el0 E

sup,, o dt 3 [fpdrdv— H|[f,p]
P[{fe(t)}OSt<T:{f(t)}O§t<T:| = exp (— P2 { }) :

@ What are the expected properties of H? From thermodynamics and
statistical physics?

@ First the kinetic equation has to be the most probable
evolution. This is a law of large numbers.

Jf OH L
ﬁ — a—p[f7p—0] = KlnetIC[f]



Conserved Quantities

@ If C is equal to either the mass
M = / drdv f,

or the momentum
P = /drdvvf,

or the kinetic energy
1 2
E = E/drdvv f,

H should have the symmetries related to the conservation law:

oH oC

sp(v) P ore) =

for any f and p, /drdv



The Quasipotential has to be the Entropy Constrained by

the Conserved Quantities

@ Quasipotential definition:

Peelf] =E[8(f: ~ )] = exp ( Ug[f]> |

@ We expect from equilibrium statistical that

U[f] = { :i[ﬂhi;\l,\v/gg] =1, P[f]=0, and E[f] = E

@ This is true up to additive and/or multiplicative constants.



Large Deviation Structure, Lyapunov Functionals and

Entropy

As a consequence of the large deviation structure, we can
immediately conclude that

© the entropy increases along the relaxation paths (solution of
the kinetic equation),

@ the entropy decreases along the fluctuation paths.



© Macroscopic reversibility for the empirical measure through path
large deviations: Reuvisiting the irreversibility paradox

@ Time reversal symmetry of path large deviations

Aller a la page 25



Definition of Detailed Balance for Stochastic Processes

@ We consider a time homogeneous stationary stochastic process
{X(t)}o<t<oo (for instance a continuous time Markov process).

@ Ps is the stationary probability distribution function, and P is
the two point transition probability distribution function

Ps(x) =E[6(x — X(t))] and P(y, T;x,0) =Ex[6 (y —X(T))].
@ The definition of time reversibility for this process is
for any (x,y, T), P(y, T:x,0)Ps(x) = P(x, T;y,0)Ps(y).

This is called the detailed balance condition.

o If the N-particle dynamics is time-reversible (for instance
Hamiltonian), we expect the stochastic process of the
empirical distribution to be time reversible. How does this
translate at the level of the path large deviations?



Detailed Balance Condition for Large Deviations

@ Detailed balance condition for path large deviations:
for any x and x, L(x,x)— L(x,—x)=x.VU,
or equivalently

for any x and p, H(x,—p) = H(x,p+VU).

@ [ is the time-reversal symmetry involution. We assume that / is
self adjoint for the scalar product /(x).p = I(p).x. Generalized
detailed balance condition: if U(x)= U(/[x]) and

L(x,x)—L(x,—1[x])=1[x].VU
or equivalently

H(Ix],—I[p]) = H(x,p+VU).

@ All the large deviation Hamiltonians for kinetic theories verify
this large deviation detailed balance condition.



© Macroscopic reversibility for the empirical measure through path
large deviations: Reuvisiting the irreversibility paradox

@ The irreversibility paradox



Dynamical Large Deviations and the Irreversibility Paradox

of Kinetic Theories

@ We expect a large deviation action which is time-reversal
symmetric with respect to the entropy.

@ The time reversal symmetry is not broken neither by the
mesoscopic description nor by the Stosszahlansatz!

@ However the most-probable evolution (or the average, due to
the law of large number) is irreversible. It increase entropy.

@ Fluctuation paths are time reversed relaxation paths
(non-linear Onsager relations).

@ The picture is clear and simple. There is no more any paradox.
Any path is possible. The probability of any path is quantified.
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© Path large deviations for particles with long-range interactions
(Landau and Balescu—Lenard—Guernsey equation)
@ Particles with long range interactions, the Vlasov, the Landau
and the Balescu—Lenard—Guernsey equations



Particles with Mean—Field Interactions

@ The empirical distribution gy (r,v,t) = & XN | 8 (r—rp(t);v—vn(t))
formally solves the Klimontovich equation
dgn ,  dgn dVign] den . o ,
5 TV i v =0 with V[gN](r)—/dr dv W (r—r') gn (r,v).
o Coulomb interaction: W(r) = —1/r? and N is the number of

particles in a volume of the size of the Debye length. N is
related to the plasma parameter I.




The Vlasov Equation

@ We suppose an ensemble of initial conditions {gn} where each
gy is close to gp.

@ Law of large numbers: “for almost all initial conditions”
limpy_. gy = & Where g solves the Vlasov equation

dg ,  Jg dVig] dg
ot  or dr Jdv

— 0 with V[g](r, ) = / drdv W (r—v) g (r,v,t)

@ This is actually a stability result for the Vlasov (Klimontovich)
equation (Braun and Hepp, 1977 for smooth interactions).

@ This equation is Hamiltonian, conserves the energy and an
infinite number of Casimir conserved quantities.

@ |t could still converge to the Boltzmann distribution in a weak
sense, but it does not.



Stationary Solutions of the Vlasov Equation

@ The Vlasov equation has an infinite number of stable stationary
solutions, for instance homogenous solutions g (r,v) = fy(v)
such that for any k and w € R, € (k,®) > 0 with

k.22 (v)
k.v—®—107"

e[f] (k, ©) = 1 — W(k) / dv

o ¢ is called the dielectric susceptibility and plays the role of a
dispersion relation for the linearized dynamics.

o W is the Fourier transform of W.

@ Those stable homogeneous distributions fy (v) play the role of
attractors for the Vlasov equation.



Stationary Solutions of the Vlasov Equation

@ The Vlasov equation has an infinite number of stable
stationary solutions: homogeneous distributions fy(v).

@ Those stable homogeneous distributions fy(v) play the role of
attractors for the Vlasov equation.

@ What will happen for the N particle dynamics if we start from
an ensemble of initial conditions {fy} which is close to a
homogeneous stable f(v)?

@ The distribution are stable on the Vlasov time scale (of order
1), however an evolution will occur on a time scale of order
T = N. This evolution is governed by the
Balescu—Guernsey—Lenard equation.



The Balescu—Guernsey—Lenard Equation

e We suppose an ensemble of initial conditions {gn} where each
gy is close to a stable homogeneous fy(v).
@ Law of large numbers: after time rescaling t = N7, “for almost

all initial conditions’, limy_.. gy = f, where f solves the
Balescu—Lenard- Guernsey equation

% = LB[f] with LB[f]= %. / dva B [f](v,v2) ( ;v’; F(v) +f(v2) 5o )
with

— @ [t kk W (k)2
B [f] (v1,va) = F/_w da)Xk:S(w—k.vl)S(a)—k.vz) (.0

o First derived by R.L. Guernsey (1960). (or Bogolyubov?)
@ For smooth enough W, there is an exact derivation of the
Balescu-Guernsey-Lenard equation in the sense of theoretical

physicists (see Lifshitz—Pitaevskii's book on kinetic theory, or
Nicholson's book on plasma).



The Landau Equation

@ The Landau equation is an approximation the

Balescu—Guernsey—Lenard equation neglecting collective
effects, or equivalently assuming €(k, @) = 1.
@ Landau equation:

o = g [ B ) (— 5+ F(w2) 5 )

where (§> does not depend on f:

kk W (k)2
G /dqW(vmz q)q®aq,

see Lifshitz—Pitaevskii's book on kinetic theory, or Nicholson's book
on plasma.

“+oo
%’(vl,vz):%/ do}8(0—kv1)d(0—kvz),
. 90L



Derivation of the Balescu—Lenard—Guernsey eq. 1:

Projection on homogeneous distributions

@ We decompose

N
g (1. 6)= 1 1 8(r—ra(O)v=vn(t) = (v, )+ 7 Bam (r0,0)

with the projection over homogeneous distributions:

N
f (v, £) = %/drg,v(r,v, ) = % z_:la(v—v,,(t)).

@ The dynamics (Klimontovich equation) then reads

8fN_ 1 8V[6gN] aﬁg/\/
W—W/d'( or oy )2

dogn dégy , dV[égn] dfy , 1 [JdV[bgn] dégn 1 dV[égn] ddgn
= + + ~ 3 /dr .

at —  dr or dv /N or = ov or = ov



Derivation of the BGL eq. 2: Quasilinear approximation

8fN dV [dgn] dogn
= N[3 /dr ( . and

Jt ar v
dogn a5gN_|_3V[5gN] afN_l_ 1 [dV[dgn] dogn —i/dr dV[ogn] ddgn
ot or or dv /N or  Jv L3 or  Jv '

@ Neglecting the non-linear terms in the second equation and
rescaling time 7 = t/N, gives the quasilinear approximation

ofn / dr aV[5g/v] dogy
a7 K] odv )’
dégny dogy aV[5gN] dfy
oz N (_‘" o T or v

@ Solving this set of equations with the Bogoliubov hypothesis
(averaging a slow/fast set of equation) gives the
Balescu—Guernsey—Lenard equation.



Beyond the Law of Large Numbers: The Large Deviation

Action.

@ We expect a large deviation principle for the empirical
distribution dynamics

T :
P[fy = f] Niooexp (—NLSSLIl)p/O dt {/fpdv—H[f,p]}).

@ Why is N the large deviation parameter?

@ Expected properties of H? First the Lenard—Balescu equation should
be the most probable evolution

of OH
a—T—LB[f]—a—p[f,P—O]-



Our plan to compute explicitly H

© Justify a slow fast dynamics and describe path large deviations
for slow/fast dynamics.

© Compute path large deviations for quadratic observables of
Gaussian processes using Szego—Widom theorems.

© Compute explicitly functional determinants and determinants
over infinite dimensional space.

Q@ Write the formula for H and verify all its symmetry properties
(time reversal symmetries, conservation laws, entropy and
quasipotential).

© Justify the quasi-linear approximation (or check the
self-consistency of this hypothesis).



© Path large deviations for particles with long-range interactions
(Landau and Balescu—Lenard—Guernsey equation)

@ Path large deviations for quadratic forms of Gaussian
processes using the Szegé—Widom theorem



Quasilinear Dynamics and Large Deviation Principle

e With time rescaling 7= t/N, we have the slow/fast dynamics

8fN (3V[5gN] 86gN)
=13 /dr : :

a1 ov
dégn dogy  dV[ogn] dfn
3t _N{_"' o T o v

@ Then we have the large deviation principle

T .
P(fy =) S, EXP [—NL3Supp/O (/drdv fp— H[f,p])] , with

H[f,p]= |Im°°%|0gEf [exp(l_3/ dT/drde(v)/dr 6’Va[(:/gN].86gN)].

ov

@ This is the large deviation for time averages of quadratic
functionals of a Gaussian process.



Gaussian integration of quadratic functionals

@ Let Y; be a stationary Gaussian process with values on C”.
We denote C(t) =E(Y; ® Yo) and assume E(Y;® Yp) =0.
@ Then

)
log E / dtYTMY, ) = —log det (Id—MC+).
o6 exp( o t> %8 5% ) | 7)

where MC 7 is the integral operator over .% ([0, T],C") defined
by

If X € Z ([0, T],C") then MC(t)[X] = /OT MC (t—s) X (s)ds.



The Szego—Widom theorem

@ Let Kt be an integral operator on Z ([0, T],C") defined by
_ T
KTX(t):/O K (t—s) X (s)ds,

where K € # ([0, T],C") is called the kernel of the operator K.
@ Then

” T 10t
Iogﬂ([éi,?_’ﬁ’(c”) (Id+ K1) o~ 27r/da) Iog%;cn (In—l—/Re K(t)dt).

(see F. Bouchet, R. Tribe, and O. Zaboronski - Physical Review E, 2023)



Large deviations for quadratic functionals of stationary

Gaussian processes

@ Let Y; be a stationary Gaussian process with values on C”.

We denote C(t) =E(Y{ ® Yp) and assume

@ Let M is an Hermitian matrix of size n x n.
@ Then

“:(Yt® Yo) =0.

T T .
*T o B
log E exp (/O dtY; MYt) 2n/d(o og det (h-ME(@)), (2)

T —o0

where C(®) = [re/®*C(t)dt is the Fourier transform of C.

(see F. Bouchet, R. Tribe, and O. Zaboronski - Physical Review E, 2023)



© Path large deviations for particles with long-range interactions
(Landau and Balescu—Lenard—Guernsey equation)

@ Hamiltonian for the Balescu—Lenard—Guernsey equation



Large Deviation Principle

@ We have the large deviation principle

P(fy =) Nseo e~ NL3Sup, Jg { [ drdvfp- H[f’p]} with

H[f,p] = I|mw%Iog]Ef [exp( / dc/drd\,p(\,)3V[5gN].8g€N)]

@ This is the large deviation for time averages of quadratic
functionals of a Gaussian process.

HIf, p] = ——/d(o Iogdet(l - ME(0)).



Computing determinants on the space of complex functions

of the velocity space

@ We need to compute the determinant of an operators U that
acts on complex-function ¢ over the velocity space:

Ul (v2) = 9 (v)+ W (k- [ dvaca Coc (k,0,v2,v2) { 32 (v2) — 52 (un) b (va).

@ A critical remark: U is the identity plus a rank two linear
operator

U:pr— ¢+ (w,Q0)v+(v,Q0)w,
then

det U=1+2R[(v, Qw)]+ (v, Qw) (v, Qw)" — (w, Qw) (v, Qv).

@ The determinant of U only depends on the two-point
correlation function of the quasi-linear problem.



The Large Deviation Hamiltonian for the Lenard—Balescu

equation

@ The large deviation Hamiltonian reads
1
HIfpl == L [ dolog{1= 7 [F.pl(k @)},

with

(k @ V1,V2) {ﬁf(vl) f(VQ) of }

Z1f,pl(k, @) = 4n / dvldv2 PR

Vi

dp Jdp 8p op |
-|-47r/dv1va {3v1 dvi vy 8V2} A k@) fvi)f(v2), - G)

where
kk W (k)2
& (o, k)

W(k,a),vl,m) =T

5((0— k.Vl) o ((D — k.V2).



Conclusion: The Landau and Balescu—Lenard—Guernsey

Large Deviation Hamiltonians

@ With O. Feliachi, we have derived the Hamiltonian for the
path large deviations for the empirical density of systems with
long range interactions (related to the BLG equation).

@ We have justified the Hamiltonian for the path large deviations
for the Landau equation, both from the Boltzmann and from
the BLG Hamiltonians.

Hy 5 [f,p]:/clvlf{b[f].;v”1 + 8‘9 (‘H[f];T”l) + B 2P ‘9_P}_/dvldv2f(v1)f(vz)‘§[f] (vy,vp) 2P 9P

V1 dvy dvi vy dva

>4

- "

Hpg [f,p] Hiif p]

@ The large deviations are non-Gaussian for BLG and Gaussian
for Landau. We can identify a gradient structure for both.

@ The Hamiltonians are time reversal symmetric, conserve mass,
momentum and energy. Entropy is the quasipotential.



Path large deviations for kinetic theories

1 N
fy(r,v, t) = N Zlﬁ(v—v,,(t))b'(r—rn(t)).

(_suppfOTdt {ffpdrde[f,p]})

P [{fN(t)}0§t<T = {f(t)}O§t<T] ~ €Xp

el0 £

@ What is €? Can we compute H?

@ Dilute gases (Boltzmann equation): F. Bouchet, JSP, 2020.

@ Plasma beyond debye length: O. Feliachi and F. B., JSP, 2021.

@ Systems with long range interactions: O. Feliachi and F.
Bouchet, JSP, 2022.

e Weak turbulence theory (wave turbulence), homgeneous case:
J. Guioth, G. Eyink, and F. Bouchet, 2022, JSP. Inhomogeneous

case with random potential: Y. Onuki, J. Guioth, and F. Bouchet,
2023, Annales Henry Poincareé.



