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1. Introduction

The topology of two-dimensional manifolds or surfaces was well understood in
the 19th century. In fact there is a simple list of all possible smooth compact
orientable surfaces. Any such surface has a well-defined genus g ≥ 0, which can
be described intuitively as the number of holes; and two such surfaces can be put
into a smooth one-to-one correspondence with each other if and only if they have
the same genus.1 The corresponding question in higher dimensions is much more

Figure 1. Sketches of smooth surfaces of genus 0, 1, and 2.

difficult. Henri Poincaré was perhaps the first to try to make a similar study
of three-dimensional manifolds. The most basic example of such a manifold is
the three-dimensional unit sphere, that is, the locus of all points (x, y, z, w) in
four-dimensional Euclidean space which have distance exactly 1 from the origin:
x2 +y2 +z2 +w2 = 1. He noted that a distinguishing feature of the two-dimensional
sphere is that every simple closed curve in the sphere can be deformed continuously
to a point without leaving the sphere. In 1904, he asked a corresponding question
in dimension 3. In more modern language, it can be phrased as follows:2

Question. If a compact three-dimensional manifold M3 has the property that every
simple closed curve within the manifold can be deformed continuously to a point,
does it follow that M3 is homeomorphic to the sphere S3?

He commented, with considerable foresight, “Mais cette question nous entrâıne-
rait trop loin”. Since then, the hypothesis that every simply connected closed
3-manifold is homeomorphic to the 3-sphere has been known as the Poincaré Con-
jecture. It has inspired topologists ever since, and attempts to prove it have led to
many advances in our understanding of the topology of manifolds.

1For definitions and other background material, see, for example, [21] or [29], as well as [48].
2See [36, pages 498 and 370]. To Poincaré, manifolds were always smooth or polyhedral, so

that his term “homeomorphism” referred to a smooth or piecewise linear homeomorphism.
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2. Early Missteps

From the first, the apparently simple nature of this statement has led mathe-
maticians to overreach. Four years earlier, in 1900, Poincaré himself had been the
first to err, stating a false theorem that can be phrased as follows.

False Theorem. Every compact polyhedral manifold with the homology of an n-
dimensional sphere is actually homeomorphic to the n-dimensional sphere.

But his 1904 paper provided a beautiful counterexample to this claim, based
on the concept of fundamental group, which he had introduced earlier (see [36,
pp. 189–192 and 193–288]). This example can be described geometrically as fol-
lows. Consider all possible regular icosahedra inscribed in the two-dimensional
unit sphere. In order to specify one particular icosahedron in this family, we must
provide three parameters. For example, two parameters are needed to specify a
single vertex on the sphere, and then another parameter to specify the direction
to a neighboring vertex. Thus each such icosahedron can be considered as a single
“point” in the three-dimensional manifold M3 consisting of all such icosahedra.3

This manifold meets Poincaré’s preliminary criterion: By the methods of homology
theory, it cannot be distinguished from the three-dimensional sphere. However, he
could prove that it is not a sphere by constructing a simple closed curve that cannot
be deformed to a point within M3. The construction is not difficult: Choose some
representative icosahedron and consider its images under rotation about one vertex
through angles 0 ≤ θ ≤ 2π/5. This defines a simple closed curve in M3 that cannot
be deformed to a point.

Figure 2. The Whitehead link

The next important false theorem was by Henry Whitehead in 1934 [52]. As
part of a purported proof of the Poincaré Conjecture, he claimed the sharper state-
ment that every open three-dimensional manifold that is contractible (that can be
continuously deformed to a point) is homeomorphic to Euclidean space. Following
in Poincaré’s footsteps, he then substantially increased our understanding of the
topology of manifolds by discovering a counterexample to his own theorem. His
counterexample can be briefly described as follows. Start with two disjoint solid
tori T0 and T̂1 in the 3-sphere that are embedded as shown in Figure 2, so that
each one individually is unknotted, but so that the two are linked together with
linking number zero. Since T̂1 is unknotted, its complement T1 = S3 r interior(T̂1)

3In more technical language, this M3 can be defined as the coset space SO(3)/I60 where SO(3)

is the group of all rotations of Euclidean 3-space and where I60 is the subgroup consisting of the 60
rotations that carry a standard icosahedron to itself. The fundamental group π1(M3), consisting

of all homotopy classes of loops from a point to itself within M3, is a perfect group of order 120.
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is another unknotted solid torus that contains T0. Choose a homeomorphism h of
the 3-sphere that maps T0 onto this larger solid torus T1. Then we can inductively
construct solid tori

T0 ⊂ T1 ⊂ T2 ⊂ · · ·
in S3 by setting Tj+1 = h(Tj). The union M3 =

⋃
Tj of this increasing sequence is

the required Whitehead counterexample, a contractible manifold that is not home-
omorphic to Euclidean space. To see that π1(M3) = 0, note that every closed loop
in T0 can be shrunk to a point (after perhaps crossing through itself) within the
larger solid torus T1. But every closed loop in M3 must be contained in some Tj ,
and hence can be shrunk to a point within Tj+1 ⊂ M3. On the other hand, M3 is
not homeomorphic to Euclidean 3-space since, if K ⊂ M3 is any compact subset
large enough to contain T0, one can prove that the difference set M3 r K is not
simply connected.

Since this time, many false proofs of the Poincaré Conjecture have been proposed,
some of them relying on errors that are rather subtle and difficult to detect. For a
delightful presentation of some of the pitfalls of three-dimensional topology, see [4].

3. Higher Dimensions

The late 1950s and early 1960s saw an avalanche of progress with the discovery
that higher-dimensional manifolds are actually easier to work with than three-
dimensional ones. One reason for this is the following: The fundamental group
plays an important role in all dimensions even when it is trivial, and relations
between generators of the fundamental group correspond to two-dimensional disks,
mapped into the manifold. In dimension 5 or greater, such disks can be put into
general position so that they are disjoint from each other, with no self-intersections,
but in dimension 3 or 4 it may not be possible to avoid intersections, leading to
serious difficulties.

Stephen Smale announced a proof of the Poincaré Conjecture in high dimensions
in 1960 [41]. He was quickly followed by John Stallings, who used a completely
different method [43], and by Andrew Wallace, who had been working along lines
quite similar to those of Smale [51].

Let me first describe the Stallings result, which has a weaker hypothesis and
easier proof, but also a weaker conclusion. He assumed that the dimension is seven
or more, but Christopher Zeeman later extended his argument to dimensions 5 and
6 [54].

Stallings–Zeeman Theorem. If Mn is a finite simplicial complex of dimension
n ≥ 5 that has the homotopy type4 of the sphere Sn and is locally piecewise linearly
homeomorphic to the Euclidean space Rn, then Mn is homeomorphic to Sn under
a homeomorphism that is piecewise linear except at a single point. In other words,
the complement Mn r (point) is piecewise linearly homeomorphic to Rn.

The method of proof consists of pushing all of the difficulties off toward a single
point; hence there can be no control near that point.

4In order to check that a manifold Mn has the same homotopy type as the sphere Sn, we must

check not only that it is simply connected, π1(Mn) = 0, but also that it has the same homology
as the sphere. The example of the product S2 × S2 shows that it is not enough to assume that

π1(Mn) = 0 when n > 3.
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The Smale proof, and the closely related proof given shortly afterward by Wal-
lace, depended rather on differentiable methods, building a manifold up inductively,
starting with an n-dimensional ball, by successively adding handles. Here a k-handle
can be added to a manifold Mn with boundary by first attaching a k-dimensional
cell, using an attaching homeomorphism from the (k − 1)-dimensional boundary
sphere into the boundary of Mn, and then thickening and smoothing corners so as
to obtain a larger manifold with boundary. The proof is carried out by rearranging
and canceling such handles. (Compare the presentation in [24].)

Figure 3. A three-dimensional ball with a 1-handle attached

Smale Theorem. If Mn is a differentiable homotopy sphere of dimension n ≥ 5,
then Mn is homeomorphic to Sn. In fact, Mn is diffeomorphic to a manifold
obtained by gluing together the boundaries of two closed n-balls under a suitable
diffeomorphism.

This was also proved by Wallace, at least for n ≥ 6. (It should be noted that
the five-dimensional case is particularly difficult.)

The much more difficult four-dimensional case had to wait twenty years, for the
work of Michael Freedman [8]. Here the differentiable methods used by Smale and
Wallace and the piecewise linear methods used by Stallings and Zeeman do not
work at all. Freedman used wildly non-differentiable methods, not only to prove
the four-dimensional Poincaré Conjecture for topological manifolds, but also to give
a complete classification of all closed simply connected topological 4-manifolds. The
integral cohomology group H2 of such a manifold is free abelian. Freedman needed
just two invariants: The cup product β : H2 ⊗ H2 → H4 ∼= Z is a symmetric
bilinear form with determinant ±1, while the Kirby–Siebenmann invariant κ is an
integer mod 2 that vanishes if and only if the product manifold M4 × R can be
given a differentiable structure.

Freedman Theorem. Two closed simply connected 4-manifolds are homeomor-
phic if and only if they have the same bilinear form β and the same Kirby–Sieben-
mann invariant κ. Any β can be realized by such a manifold. If β(x ⊗ x) is odd
for some x ∈ H2, then either value of κ can be realized also. However, if β(x⊗ x)
is always even, then κ is determined by β, being congruent to one eighth of the
signature of β.
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In particular, if M4 is a homotopy sphere, then H2 = 0 and κ = 0, so M4

is homeomorphic to S4. It should be noted that the piecewise linear or differen-
tiable theories in dimension 4 are much more difficult. It is not known whether
every smooth homotopy 4-sphere is diffeomorphic to S4; it is not known which 4-
manifolds with κ = 0 actually possess differentiable structures; and it is not known
when this structure is essentially unique. The major results on these questions are
due to Simon Donaldson [7]. As one indication of the complications, Freedman
showed, using Donaldson’s work, that R4 admits uncountably many inequivalent
differentiable structures. (Compare [12].)

In dimension 3, the discrepancies between topological, piecewise linear, and dif-
ferentiable theories disappear (see [18], [28], and [26]). However, difficulties with
the fundamental group become severe.

4. The Thurston Geometrization Conjecture

In the two-dimensional case, each smooth compact surface can be given a beauti-
ful geometrical structure, as a round sphere in the genus zero case, as a flat torus in
the genus 1 case, and as a surface of constant negative curvature when the genus is 2
or more. A far-reaching conjecture by William Thurston in 1983 claims that some-
thing similar is true in dimension 3 [46]. This conjecture asserts that every compact
orientable three-dimensional manifold can be cut up along 2-spheres and tori so as
to decompose into essentially unique pieces, each of which has a simple geometri-
cal structure. There are eight possible three-dimensional geometries in Thurston’s
program. Six of these are now well understood,5 and there has been a great deal of
progress with the geometry of constant negative curvature.6 The eighth geometry,
however, corresponding to constant positive curvature, remains largely untouched.
For this geometry, we have the following extension of the Poincaré Conjecture.

Thurston Elliptization Conjecture. Every closed 3-manifold with finite funda-
mental group has a metric of constant positive curvature and hence is homeomorphic
to a quotient S3/Γ, where Γ ⊂ SO(4) is a finite group of rotations that acts freely
on S3.

The Poincaré Conjecture corresponds to the special case where the group Γ ∼=
π1(M3) is trivial. The possible subgroups Γ ⊂ SO(4) were classified long ago by
[19] (compare [23]), but this conjecture remains wide open.

5. Approaches through Differential Geometry
and Differential Equations7

In recent years there have been several attacks on the geometrization problem
(and hence on the Poincaré Conjecture) based on a study of the geometry of the
infinite dimensional space consisting of all Riemannian metrics on a given smooth
three-dimensional manifold.

5See, for example, [13], [3], [38, 39, 40], [49], [9], and [6].
6See [44], [27], [47], [22], and [30]. The pioneering papers by [14] and [50] provided the basis

for much of this work.
7Added in 2004
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By definition, the length of a path γ on a Riemannian manifold is computed, in
terms of the metric tensor gij , as the integral∫

γ

ds =
∫

γ

√∑
gijdxidxj .

From the first and second derivatives of this metric tensor, one can compute the
Ricci curvature tensor Rij , and the scalar curvature R. (As an example, for the flat
Euclidean space one gets Rij = R = 0, while for a round three-dimensional sphere
of radius r, one gets Ricci curvature Rij = 2gij/r2 and scalar curvature R = 6/r2.)

One approach by Michael Anderson, based on ideas of Hidehiko Yamabe [53],
studies the total scalar curvature

∫∫∫
M3 R dV as a functional on the space of all

smooth unit volume Riemannian metrics. The critical points of this functional are
the metrics of constant curvature (see [1]).

A different approach, initiated by Richard Hamilton studies the Ricci flow [15,
16, 17], that is, the solutions to the differential equation

dgij

dt
= −2Rij .

In other words, the metric is required to change with time so that distances de-
crease in directions of positive curvature. This is essentially a parabolic differential
equationa and behaves much like the heat equation studied by physicists: If we heat
one end of a cold rod, then the heat will gradually flow throughout the rod until
it attains an even temperature. Similarly, a naive hope for 3-manifolds with finite
fundamental group might have been that, under the Ricci flow, positive curvature
would tend to spread out until, in the limit (after rescaling to constant size), the
manifold would attain constant curvature. If we start with a 3-manifold of posi-
tive Ricci curvature, Hamilton was able to carry out this program and construct a
metric of constant curvature, thus solving a very special case of the Elliptization
Conjecture. However, in the general case, there are very serious difficulties, since
this flow may tend toward singularities.8

I want to thank many mathematicians who helped me with this report.
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THE POINCARÉ CONJECTURE 7

[6] A. Casson and D. Jungreis, Convergence groups and Seifert fibered 3-manifolds, Invent. Math.

118 (1994), 441–456.

[7] S.K. Donaldson, Self-dual connections and the topology of smooth 4-manifolds, Bull. Amer.
Math. Soc. 8 (1983), 81–83.

[8] M.H. Freedman, The topology of four-dimensional manifolds, J. Diff. Geom. 17 (1982), 357–

453.
[9] D. Gabai, Convergence groups are Fuchsian groups, Ann. Math. 136 (1992), 447–510.

[10] D. Gabai, Valentin Poenaru’s program for the Poincaré conjecture, in Geometry, topology,
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[25] J. Milnor, Towards the Poincaré conjecture and the classification of 3-manifolds, Notices
AMS 50 (2003), 1226–1233.

[26] E.E. Moise, Geometric Topology in Dimensions 2 and 3, Springer, New York, 1977.
[27] J. Morgan, On Thurston’s uniformization theorem for three-dimensional manifolds, in The

Smith Conjecture (H. Bass and J. Morgan, eds.), Pure and Appl. Math. 112, Academic Press,

New York, 1984, 37–125.
[28] J. Munkres, Obstructions to the smoothing of piecewise-differentiable homeomorphisms, Ann.

Math. 72 (1960), 521–554.

[29] J. Munkres, Topology: A First Course, Prentice–Hall, Englewood Cliffs, NJ, 1975.
[30] J.-P. Otal, The hyperbolization theorem for fibered 3-manifolds, translated from the 1996

French original by Leslie D. Kay, SMF/AMS Texts and Monographs 7, American Mathemat-
ical Society, Providence, RI; Société Mathatique de France, Paris, 2001.
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