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1. Statement

We recall that a pseudo complex structure on a C∞-manifold X of dimension
2N is a C-module structure on the tangent bundle TX . Such a module structure
induces an action of the group C∗ on TX , with λ ∈ C∗ acting by multiplication
by λ. By transport of structures, the group C∗ acts also on each exterior power
∧nTX , as well as on the complexified dual Ωn := Hom(∧nTX , C). For p + q = n, a
(p, q)-form is a section of Ωn on which λ ∈ C∗ acts by multiplication by λ−pλ̄−q.

From now on, we assume X complex analytic. A (p, q)-form is then a form which,
in local holomorphic coordinates, can be written as∑

ai1,...,ip,j1...jq
dzi1∧ · · · ∧dzip

∧dz̄j1∧ · · · ∧dz̄jq
,

and the decomposition Ωn = ⊕Ωp,q induces a decomposition d = d′ + d′′ of the
exterior differential, with d′ (resp. d′′) of degree (1, 0) (resp. (0, 1)).

If X is compact and admits a Kähler metric, for instance if X is a projective
non-singular algebraic variety, this action of C∗ on forms induces an action on
cohomology. More precisely, Hn(X, C) is the space of closed n-forms modulo exact
forms, and if we define Hp,q to be the space of closed (p, q)-forms modulo the d′d′′

of (p− 1, q − 1)-forms, the natural map

(1) ⊕
p+q=n

Hp,q → Hn(X, C)

is an isomorphism. If we choose a Kähler structure on X, one can give the following
interpretation to the decomposition (1) of Hn(X, C): the action of C∗ on forms
commutes with the Laplace operator, hence induces an action of C∗ on the space
Hn of harmonic n-forms. We have Hn ∼−→ Hn(X, C) and Hp,q identifies with the
space of harmonic (p, q)-forms.

When X moves in a holomorphic family, the Hodge filtration F p := ⊕
a≥p

Ha,n−a

of Hn(X, C) is better behaved than the Hodge decomposition. Locally on the pa-
rameter space T , Hn(Xt, C) is independent of t ∈ T and the Hodge filtration can
be viewed as a variable filtration F (t) on a fixed vector space. It varies holomorphi-
cally with t, and obeys Griffiths transversality: at first order around t0 ∈ T , F p(t)
remains in F p−1(t0).

So far, we have computed cohomology using C∞ forms. We could as well have
used forms with generalized functions coefficients, that is, currents. The resulting
groups Hn(X, C) and Hp,q are the same. If Z is a closed analytic subspace of X,
of complex codimension p, Z is an integral cycle and, by Poincaré duality, defines
a class cl(Z) in H2p(X, Z). The integration current on Z is a closed (p, p)-form
with generalized function coefficients, representing the image of cl(Z) in H2p(X, C).
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The class cl(Z) in H2p(X, Z) is hence of type (p, p), in the sense that its image in
H2p(X, C) is. Rational (p, p)-classes are called Hodge classes. They form the group

H2p(X, Q) ∩Hp,p(X) = H2p(X, Q) ∩ F p ⊂ H2p(X, C).

In [6], Hodge posed the

Hodge Conjecture. On a projective non-singular algebraic variety over C, any
Hodge class is a rational linear combination of classes cl(Z) of algebraic cycles.

2. Remarks

(i) By Chow’s theorem, on a complex projective variety, algebraic cycles are the
same as closed analytic subspaces.

(ii) On a projective non-singular variety X over C, the group of integral linear
combinations of classes cl(Z) of algebraic cycles coincides with the group of inte-
gral linear combinations of products of Chern classes of algebraic (equivalently by
GAGA: analytic) vector bundles. To express cl(Z) in terms of Chern classes, one
resolves the structural sheaf OZ by a finite complex of vector bundles. That Chern
classes are algebraic cycles holds, basically, because vector bundles have plenty of
meromorphic sections.

(iii) A particular case of (ii) is that the integral linear combinations of classes of
divisors (= codimension 1 cycles) are simply the first Chern classes of line bundles.
If Z+ −Z− is the divisor of a meromorphic section of L, c1(L) = cl(Z+)− cl(Z−).
This is the starting point of the proof given by Kodaira and Spencer [7] of the
Hodge conjecture for H2: a class c ∈ H2(X, Z) of type (1, 1) has image 0 in the
quotient H0,2 = H2(X, O) of H2(X, C), and the long exact sequence of cohomology
defined by the exponential exact sequence

0 −−−−→ Z −−−−→ O
exp(2πi )−−−−−−−→ O∗ −−−−→ 0

shows that c is the first Chern class of a line bundle.

(iv) The relation between algebraic cycles and algebraic vector bundles is also the
basis of the Atiyah and Hirzebruch theorem [2] that the Hodge conjecture cannot
hold integrally. In the Atiyah–Hirzebruch spectral sequence from cohomology to
topological K-theory,

Epq
2 = Hp(X, Kq(P t)) =⇒ Kp+q(X);

the resulting filtration of Kn(X) is by the

F pKn(X) = Ker(Kn(X) → Kn((p− 1)-skeleton, in any triangulation)).

Equivalently, a class c is in F p if for some topological subspace Y of codimension p, c
is the image of a class c̃ with support in Y . If Z is an algebraic cycle of codimension
p, a resolution of OZ defines a K-theory class with support in Z: cZ ∈ K0(X, X−Z).
Its image in F pK0(X) agrees with the class of Z in H2p(X, Z). The latter hence is
in the kernel of the successive differentials dr of the spectral sequence.

No counterexample is known to the statement that integral (p, p) classes killed
by all dr are integral linear combinations of classes cl(Z). One has no idea of which
classes should be effective, that is, of the form cl(Z), rather than a difference of
such.

On a Stein manifold X, any topological complex vector bundle can be given a
holomorphic structure and, at least for X of the homotopy type of a finite CW
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complex, it follows that any class in H2p(X, Z) in the kernel of all dr is a Z-linear
combination of classes of analytic cycles.

(v) The assumption in the Hodge conjecture that X be algebraic cannot be weak-
ened to X being merely Kähler. See Zucker’s appendix to [11] for counterexamples
where X is a complex torus.

(vi) When Hodge formulated his conjecture, he had not realized it could hold only
rationally (i.e. after tensoring with Q). He also proposed a further conjecture,
characterizing the subspace of Hn(X, Z) spanned by the images of cohomology
classes with support in a suitable closed analytic subspace of complex codimension
k. Grothendieck observed that this further conjecture is trivially false, and gave a
corrected version of it in [5].

3. The Intermediate Jacobian

The cohomology class of an algebraic cycle Z of codimension p has a natural lift
to a group Jp(X), extension of the group of classes of type (p, p) in H2p(X, Z) by
the intermediate jacobian

Jp(X)0 := H2p−1(X, Z) \H2p−1(X, C)/F p.

This expresses that the class can be given an integral description (in singular co-
homology), as well as an analytic one, as a closed (p, p) current, giving a hyperco-
homology class in H2p of the subcomplex F pΩ∗hol := (0 → · · · → 0 → Ωp

hol → · · · )
of the holomorphic de Rham complex, with an understanding at the cocycle level
of why the two agree in H2p(X, C). ‘Understanding’ means a cochain in a complex
computing H∗(X, C), whose coboundary is the difference between cocycles coming
from the integral, resp. analytic, constructions. Indeed, Jp(X) is the hypercoho-
mology H2p of the homotopy kernel of the difference map Z⊕ F pΩ∗hol → Ω∗.

In general, using that all algebraic cycles on X fit in a denumerable number
of algebraic families, one checks that the subgroup Ap(X) of Jp(X) generated by
algebraic cycles is the extension of a denumerable group by its connected component
A0

p(X), and that for some sub-Hodge structure Halg of type {(p−1, p), (p, p−1)} of
H2p−1(X), A0

p(X) is HalgZ \HalgC/F p. ‘Sub-Hodge structure’ means the subgroup
of the integral lattice whose complexification is the sum of its intersections with the
Ha,b. The Hodge conjecture (applied to the product of X and a suitable abelian
variety) predicts that Halg is the largest sub-Hodge structure of H2p−1(X) of type
{(p− 1, p)(p, p− 1)}.

No conjecture is available to predict what subgroup of Jp(X) the group Ap(X) is.
Cases are known where Ap(X)/A0

p(X) is of infinite rank. See, for instance, the paper
[9] and the references it contains. This has made generally inapplicable the methods
introduced by Griffiths (see, for instance, Zucker [11]) to prove the Hodge conjecture
by induction on the dimension of X, using a Lefschetz pencil of hyperplane sections
of X. Indeed, the method requires not just the Hodge conjecture for the hyperplane
sections H, but that all of Jp(H) comes from algebraic cycles.

4. Detecting Hodge Classes

Let (Xs)s∈S be an algebraic family of projective non-singular algebraic varieties:
the fibers of a projective and smooth map f : X → S. We assume it is defined over
the algebraic closure Q̄ of Q in C. No algorithm is known to decide whether a given
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integral cohomology class of a typical fiber X0 is somewhere on S of type (p, p). The
Hodge conjecture implies that the locus where this happens is a denumerable union
of algebraic subvarieties of S (known: see [4]), and is defined over Q̄ (unknown).

The Hodge conjecture is not known even in the following nice examples.

Example 1. For X of complex dimension N , the diagonal ∆ of X × X is an
algebraic cycle of codimension N . The Hodge decomposition being compatible with
Künneth, the Künneth components cl(∆)a,b ∈ Ha(X) ⊗ Hb(X) ⊂ H2N (X × X)
(a + b = 2N) of cl(∆) are Hodge classes.

Example 2. If η ∈ H2(X, Z) is the cohomology class of a hyperplane section of
X, the iterated cup product ηp : HN−p(X, C) → HN+p(X, C) is an isomorphism
(hard Lefschetz theorem, proved by Hodge. See [10, IV.6]). Let z ∈ HN−p(X, C)⊗
HN−p(X, C) ⊂ H2N−2p(X × X) be the class such that the inverse isomorphism
(ηp)−1 is c 7→ pr1!(z ∪ pr∗2 c). The class z is Hodge.

5. Motives

Algebraic varieties admit a panoply of cohomology theories, related over C by
comparison isomorphisms. Resulting structures on H∗(X, Z) should be viewed as
analogous to the Hodge structure. Examples: If X is defined over a subfield K of C,
with algebraic closure K̄ in C, Gal(K̄/K) acts on H∗(X, Z)⊗ Z` and H∗(X, C) =
H∗(X, Z) ⊗ C has a natural K-structure HDR(X over K), compatible with the
Hodge filtration. Those cohomology theories give rise to conjectures parallel to
the Hodge conjecture, determining the linear span of classes of algebraic cycles.
Example: the Tate conjecture [8]. Those conjectures are open even for H2.

Grothendieck’s theory of motives aims at understanding the parallelism between
those cohomology theories. Progress is blocked by a lack of methods to construct
interesting algebraic cycles. If the cycles of Examples 1 and 2 of §4 were algebraic,
Grothendieck’s motives over C would form a semi-simple abelian category with a
tensor product, and be the category of representations of some pro-reductive group-
scheme. If the algebraicity of those cycles is assumed, the full Hodge conjecture
is equivalent to a natural functor from the category of motives to the category of
Hodge structures being fully faithful.

6. Substitutes and Weakened Forms

In despair, efforts have been made to find substitutes for the Hodge conjecture.
On abelian varieties, Hodge classes at least share many properties of cohomology
classes of algebraic cycles: they are “absolutely Hodge” [3], even “motivated” [1].
This suffices for some applications — for instance, the proof of algebraic relations
among periods and quasi periods of abelian varieties predicted by the Hodge con-
jecture [3], but does not allow for reduction modulo p. The following corollaries
of the Hodge conjecture would be particularly interesting. Let A be an abelian
variety over the algebraic closure F of a finite field Fq. Lift A in two different ways
to characteristic 0, to complex abelian varieties A1 and A2 defined over Q̄. Pick
Hodge classes z1 and z2 on A1 and A2, of complementary dimension. Interpreting
z1 and z2 as `-adic cohomology classes, one can define the intersection number κ
of the reduction of z1 and z2 over F. Is κ a rational number? If z1 and z2 were
cl(Z1) and cl(Z2), Z1 and Z2 could be chosen to be defined over Q̄ and κ would
be the intersection number of the reductions of Z1 and Z2. Same question for the
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intersection number of the reduction of z1 over F with the class of an algebraic cycle
on A.
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variétés abéliennes, Mémoires SMF 2 (1980), 23–33.

[4] P. Deligne, E. Cattani, and A. Kaplan, On the locus of Hodge classes, JAMS 8 (1995),

483–505.
[5] A. Grothendieck, Hodge’s general conjecture is false for trivial reasons, Topology 8 (1969),

299–303.

[6] W.V.D. Hodge, The topological invariants of algebraic varieties, in Proceedings ICM 1950,
AMS, Providence, RI, 1952, 181–192.

[7] K. Kodaira and D.C. Spencer, Divisor classes on algebraic varieties, Proc. Nat. Acad. Sci.

39 (1953), 872–877.
[8] J. Tate, Algebraic cycles and poles of zeta functions, in Arithmetic Algebraic Geometry,

Harper and Row, New York, 1965, 93–110.

[9] C. Voisin, The Griffiths group of a general Calabi–Yau threefold is not finitely generated,
Duke Math. J. 102, 151–186.
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