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1. Introduction

This note is a sketch of the theory of minimal models of algebraic
varieties and the recent advances of Hacon, McKernan and their col-
laborators [HM06, BCHM09, HM09].

The classification theory of algebraic varieties—nonsingular, say, or
mildly singular—aims, in the first instance, to establish the following
basic dichotomy, which I state before defining some key words. The goal
is to divide, up to surgery (called ‘birational equivalence’ in algebraic
geometry), all proper algebraic varieties into two basic classes:

(1) Varieties X with nef canonical line bundle.
(2) Fibre spaces X → Z such that the anti -canonical line bundle

K∗
X is ample on all general fibres Xz.

Recall that a line bundle L on an algebraic variety X is nef if:

c1(L)[C] =

∫

C

c1(L) ≥ 0
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for all proper (i.e., compact) algebraic curves C ⊂ X. The first Chern
class c1(L) of a line bundle is represented by the curvature form

ω =
i

2π
∂∂ log h

of a Hermitian metric h on L: thus, nef is a cohomological version of
‘non-negatively curved.’ On a proper algebraic manifold X, the most
basic line bundle is the canonical line bundle

KX =
top
∧

T ∗
X ,

and to say that KX is nef is another way to say that X is, in some
weak sense, nonpositively curved. The sign change can be confusing
but it makes sense: KX is the top exterior power of the dual of the
tangent sheaf: KX nef means that the Ricci curvature integrated over
all proper algebraic curves is ≤ 0.

To understand the second basic class, recall that a line bundle L on a
proper algebrac variety X is ample if for some integer N > 0 the global
sections of L⊗N define an embedding of X in projective space. It follows
from this that L has a Hermitian metric with strictly positive curvature
form. Thus, the fibres Xz of the fibration f : X → Z in class (2) are the
opposite of class (1): here the dual of the canonical line bundle is ample,
and the Ricci curvature integrated over all proper algebraic curves is
> 0. Because of the presence of these Xz ⊂ X, X can never hope to
end up in class (1). I should also make the point that, in algebraic
geometry, we say that a morphism f : X → Z is a fibration, or that
X is a fibre space, simply to mean that dim Z < dim X. This implies
that fibres Xz and Xz′ over general points z, z′ ∈ Z are diffeomorphic.
However, in general, there can be rather singular fibres, all fibres need
not have the same dimension, and even over the set of regular values
f need not be an algebraic fibre bundle.

The minimal model program is similar to the geometrisation program
in 3-dimensional topology. Starting with a nonsingular projective va-
riety Y , the intent is to perform controlled birational surgeries on Y
until we reach a variety X in one of the two basic classes. As I dis-
cuss below, these surgeries modify an extremal ray R with K · R < 0,
not directly a geometric locus on which the curvature is > 0. There
are two types of surgeries: divisorial contractions and flips. Divisorial
contractions contract a codimension 1 locus and have been known to
exist for quite some time. By contrast, flips modify the variety along
a locus of codimension ≥ 2: their existence has been a conjecture for
about 25 years and is now a theorem of Hacon and McKernan [HM09].
At the moment, it is still a conjecture that the program terminates: we
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don’t know that a sequence of flips must stop: hence, we can not yet
establish the basic dichotomy.

Hacon, McKernan et al. [BCHM09] have proved termination under
special assumptions that allow to run the program in some useful cases
and construct a model in one of the two basic classes (I state the precise
conditions below).

The theory of minimal models of surfaces was understood by Castel-
nuovo and Enriques circa 1900, and their fine classification was com-
plete by 1915 [CE15]. It was subsequently extended to the complex
analytic setting by Kodaira in the 1960s. Today, many mathemati-
cians know and use the classification of surfaces. This paper is an
introduction to the higher dimensional theory.

I attempt to address a general mathematical audience, and I try only
to assume the most basic familiarity with the notion of an algebraic
variety over the complex numbers, roughly at the level of Miles Reid’s
Undergraduate algebraic geometry [Rei88]. My account is considerably
lighter than [Kol87], which I recommend as a serious introduction to al-
gebraic geometry and minimal model theory, and [Wil87] and [Mor87].
My main purpose is to lead you as quickly as possible, with just enough
theory and examples, to a position where you can appreciate the recent
advances. Surveys of a similar weight, discussing other aspects of this
story, are Reid’s Tendencious survey [Rei87a], the preface of [CR00],
Reid’s Old person’s view [Rei00] and his Update on 3-folds [Rei02], my
own What is a flip? [Cor04], and Kollár’s What is a minimal model?
[Kol07].

The best proper introduction to the theory is the book of Kollár and
Mori [KM98]; and, if you really want to study the recent advances, you
will find some further background in the book [Cor07].

I do not even try to do justice to those who contributed to the
subject (you know who you are, please accept my apologies!) or its
history, recent and distant. Indeed, my ‘historical’ remarks are—as
is common for a practising mathematician—mostly the works of my
fantasy and part of my way to imagine a story1.

It was a great honour, and pleasure, to be invited—together with
S. Mori—to give a talk at the Clay Institute on the occasion of the
research award to Hacon and McKernan. This note is based on Mori’s
talk, as well as my notes for my own talk2.

1The book of Beauville [Bea78] has many well-researched notes on the history
of the classification of surfaces.

2I thank F. Catanese, T. Coates, P. Hacking, J. Kollár, J. McKernan, S. Mori,
and M. Reid for comments on earlier versions. I am also grateful to the referee for
several useful comments.
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Convention 1.1. I work over the field C of complex numbers. Most
algebraic varieties in this note are projective and nonsingular. ‘Non-
singular’ here is synonymous with ‘manifold.’ If you prefer, you can
substitute ‘complex projective algebraic variety’ with ‘complex pro-
jective analytic variety:’ these notions are indeed equivalent. For a
complex algebraic variety, ‘proper’ is synonymous with ‘compact.’

2. Birational Geometry

A key feature of algebraic geometry in dimension ≥ 2, and a source
of enduring interest, is birational geometry. For instance, consider the
origin P = (0, 0) ∈ C2 = X with coordinates x, y. The blow up of
P ∈ X is the surface:

Y = {xm1 − ym0 = 0} ⊂ C2 × P1,

where m0 : m1 are homogeneous coordinates on P1, together with the
natural projection f : Y → X. It is immediate from the equation that
f−1(P ) = E ∼= P1, and f identifies Y \ E with X \ {P}. The function
m = m1/m0 is well defined on the chart {m0 )= 0}, which is identified
with {y = mx} ⊂ C3. Thus, the exceptional set E is the set of tangent
directions at P ∈ X, with the point at infinity corresponding to the
vertical line {x = 0}. We can use the above construction as a local
(complex analytic) model for the blowing up f : E ⊂ Y → P ∈ X of
a nonsingular point on an arbitrary nonsingular surface. The normal
bundle of E in X is O(−1).

Convention 2.1. A rational map is a map given by rational functions;
I denote rational maps by broken arrows, e.g. ϕ : Y !!" X, to signify
that they are not everywhere defined.

A morphism is a map defined everywhere; I denote it by a solid
arrow, e.g. f : Y → X.

Definition 2.2. A rational map ϕ : Y !!" X is birational if has an in-
verse which is a rational function. Equivalently, there are algebraic
subvarieties E ⊂ Y and F ⊂ X—the exceptional sets—such that
ϕ : Y \ E → X \ F is an isomorphism of algebraic varieties.

Two algebraic varieties are birationally equivalent if there is a bira-
tional map between them.

3. Minimal Models of Surfaces

We want to classify nonsingular projective algebraic surfaces3 up to
birational equivalence. The contraction theorem of Castelnuovo and

3Below we also say something about the classification of compact complex ana-
lytic surfaces
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Enriques states that, if Y is a nonsingular surface, and E ⊂ Y a non-
singular curve isomorphic to P1 and with normal bundle O(−1)—called
a −1-curve—then there is a birational morphism f : E ⊂ Y → P ∈ X
contracting E to a nonsingular point P ∈ X; in fact, this process is
nothing but the inverse of blowing up P ∈ X, and the curve E is then
the inverse image of P .

The following is the traditional statement of the minimal model the-
orem for surfaces, as can be found, for instance, in [Bea78]:

Theorem 3.1. Let Y be a nonsingular projective surface, and let

Y = Y0 → Y1 → · · · → Yi → Yi+1 → · · · → Yr = X

be the composite of any sequence of contractions of −1-curves until
none can be found (since b2 = rankH2(Yi; Z) drops with each contrac-
tion, any such sequence must stop). Then, one of the following two
alternatives holds:

X is a minimal model: If Z is any nonsingular projective sur-
face birationally equivalent to Y , then the induced birational
map Z !!" X is a morphism.

X is a ruled surface or P2: where ruled means there is a mor-
phism f : X → B to a curve and every fibre is P1.

By Noether’s theorem, a ruled surface S → B is always birational
to P1 × B.

Put differently, the traditional statement establishes the following
dichotomy. Let B(Y ) be the ordered set with elements pairs (Z, ϕ) of
a nonsingular projective surface Z and a birational map ϕ : Z !!" Y ,
where Z1 > Z2 if the composite map ϕ−1

2 ◦ϕ1 : Z1 !!" Z2 is a morphism.
Then: Either B(Y ) has a smallest element, the minimal model X of
Y ; or Y is birational to P1 × B or P2.

Example 3.2. A nonsingular quadric surface, say for instance the
surface (xz + y2 = 1) ⊂ C3, is birationally equivalent to the xy-plane
by the birational transformation

z =
1 − y2

x
.

A nonsingular quadric surfaces in P3 is isomorphic to P1 × P1: thus,
we have just constructed a birational map ϕ : P1 × P1

!!" P2, and it
is easy to check that neither ϕ nor its inverse is a morphism. On the
other hand, neither P1 × P1 nor P2 contain −1-curves. With a little
more work, this shows that B(P2) does not have a smallest element.

The statement is due to Castelnuovo around 1900. The result does
not generalise to higher dimensions in this form: birational geometry
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in dimension > 2 is inherently more complicated, and we must learn
to forget about minimal models that are literally ‘smallest’—see for
instance the discussion in [Mor87, § 9], but also [Kol07]. It took almost
100 years before the work of Mori [Mor82] opened the way to a higher
dimensional theory. An accessible introduction to minimal models of
surfaces from the perspective of Mori theory can be found in [Rei97,
Chapter D]; it is interesting to compare Reid’s treatment to that of
Beauville [Bea78] (which goes back to Kodaira).

4. Line Bundles and the Kleiman Criterion

Line bundles are essential to the study of algebraic varieties. Given a
line bundle L on X, an r+1-dimensional vector subspace V ⊂ Γ(X, L)
determines a rational map:

ϕV : X !!" P(V ∗) = Pr

defined outside the set Z of common zeros of the elements of V :

ϕV (x) = Hx = {σ ∈ V | σ(x) = 0}

(if x )∈ Z, then Hx ⊂ V is a hyperplane). In more concrete terms,
choose a basis σ0, . . . , σr of V , and set ϕV (x) =

(

σ0(x) : · · · : σr(x)
)

;
although σ0, . . . , σr are not functions on X, their ratios σi/σj are ra-
tional functions, hence we get a well-defined point of Pr. When Z = ∅,
that is, when for all P ∈ X there is a section σ ∈ V that is non-zero
at P , we say that V is base point free; in this case ϕV is a morphism.

We can pair line bundles against algebraic curves C ⊂ X:

L · C = deg L|C = c1(L)[C] =

∫

C

c1(L|C).

Definition 4.1. A line bundle L on an algebraic variety X is nef if
L · C ≥ 0 for all proper algebraic curves C ⊂ X.

Recall that the first Chern class c1(L) is represented by the curvature
form:

ω =
i

2π
∂∂ log h ≥ 0

of a Hermitian metric h on L. Thus, if L has a Hermitian metric with
semipositive curvature, then L is nef: nef is a weak version of positivity
for line bundles.

The line bundle L is eventually free if V = Γ(X, L⊗N) is base-point
free for some integer N > 0; if that is the case, then L is nef: for
every curve C ⊂ X there exists a section σ ∈ Γ(X, L⊗N) that does not
vanish identically on C, so L · C = (1/N) deg(σ|C) ≥ 0.



THE WORK OF HACON AND M
C
KERNAN 7

We say that L is ample if V = Γ(X, L⊗N ) defines an embedding

ϕ : X ↪→ P(V ∗)

for some integer N > 0. Although there is no simple-minded ‘nu-
merical’ characterisation of eventual freedom, there is a remarkable
numerical criterion for ampleness. In order to state it, I need more
terminology.

Two line bundles L1, L2 on X are numerically equivalent if

L1 · C = L2 · C

for all proper algebraic curves C ⊂ X, and we denote by N1(X, R) the
real vector space spanned by line bundles, modulo numerical equiva-
lence (in N1(X, R), the notation r1L1 + r2L2 means L⊗r1

1 ⊗L⊗r2

2 ). The
dual vector space N1(X, R) contains the convex cone NE X generated
by (numerical equivalence classes of) algebraic curves C ⊂ X.

Definition 4.2. The Kleiman–Mori cone of X is the closure NE X, of
the cone NE X ⊂ N1(X, R).

Theorem 4.3 (Kleiman criterion for ampleness). Let X be a proper
algebraic manifold. A line bundle L on X is ample if and only if L > 0
on NE X \ {0}.

Remark 4.4. If X is a proper algebraic manifold, denote by Amp X
the ample cone of X, that is, the open convex subcone of N1(X; R)
generated by the classes of ample line bundles; and by Nef X the nef
cone of X, that is, the closed convex subcone of N1(X; R) generated by
the classes of nef line bundles. In terms of the dual cones, the Kleiman
criterion is equivalent to:

Amp X = Nef X,

that is, the nef cone is the closure of the ample cone; equivalently, the
ample cone is the interior of the nef cone.

5. The Canonical Line Bundle

In general, a nonsingular variety X is only entitled to own one non-
trivial line bundle (and its tensor powers): the canonical line bundle

KX =
dim X
∧

T ∗
X .

One sees that the space of N -canonical differentials Γ(X, K⊗N
X ) is a

birational invariant for proper algebraic manifolds, and so is the N -th
plurigenus

pN(X) = dim Γ(X, K⊗N
X ).
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It follows that the images of the N -canonical maps:

ϕΓ(X,K⊗N

X
) : X !!" PpN (X)−1,

as well as the graded ring, called the canonical ring of X:

R(X, KX) =
⊕

N≥0

Γ(X, K⊗N
X )

have intrinsic meaning in terms of the birational equivalence class to
which X belongs. As I explain below, an important consequence of
[BCHM09] is that this ring is finitely generated.

By 1915, Castelnuovo and Enriques had taken the classification of
surfaces far beyond the statement of existence of minimal models. In
particular, they started the view that we should classify proper al-
gebraic manifolds according to the plurigenera pN(X) and their as-
ymptotic behaviour for large N . Today, we say that κ is the Kodaira
dimension of X if there are constants a, b > 0 and a positive integer
m ∈ N such that

aNκ < pN(X) < bNκ for all N large and divisible by m.

If all pN = 0, we say by convention that κ = −∞.
Castelnuovo and Enriques proved, for example, that a nonsingular

proper complex algebraic surface X has κ ≥ 1 if and only if p12(X) ≥ 2.
(If X is nonsingular compact complex analytic, then κ ≥ 1 if and only
if p42(X) ≥ 2.)

From this perspective, two natural classes of varieties are singled out,
showing the two extreme behaviours of the canonical line bundle:

Definition 5.1. • A proper algebraic manifold X is of general
type if κ(X) = dim X, that is, ϕΓ(X,K⊗N

X
) is birational on its

image for some N > 0.
• A proper algebraic manifold X is Fano if the anti-canonical line

bundle K∗
X is ample.

Note the striking difference between the two definitions: the first in
terms of birational invariants of X, the second biregular. The space
of anticanonical differentials is not a birational invariant: this is why
I am forced to define Fano varieties in biregular terms. (In § 9 below,
we study the closely related class of proper algebraic manifolds X such
that KX )∈ Eff X, see definition 9.2, theorem 9.3, and remark 9.4.)



THE WORK OF HACON AND M
C
KERNAN 9

6. The Cone Theorem

Mori’s cone theorem is a very general, striking, and, at first, com-
pletely unforeseen statement on the structure of the Kleiman–Mori
cone.

Definition 6.1. If C ⊂ Rn is a convex cone, and C contains no lines,
a ray R = R+[v] ⊂ C is extremal if

v1, v2 ∈ C and v1 + v2 ∈ R implies v1, v2 ∈ R.

 < 0           K     > 0KX   X

Figure 1. The Kleiman–Mori cone

Theorem 6.2 (Mori, Kawamata, Kollár, Reid, Shokurov,...). Let X
be a projective algebraic manifold. Then

• The Kleiman–Mori cone NE X is locally finitely rationally gen-
erated in the half-space {z | KX · z < 0}.

• If R ⊂ NE X is an extremal ray with KX · R < 0, then there is
a morphism f : P1 → X such that R = R+[f(P1)].

Figure 1 is a picture of the cone theorem; here I refrain from com-
menting on its meaning, which is discussed in many places.

7. The Contraction Theorem

Theorem 7.1 (Mori, Kawamata, Reid,...). Let Y be a projective alge-
braic manifold, and R ⊂ NE Y an extremal ray with KY ·R < 0. There
is a morphism fR : Y → Z, the contraction of R, characterised by the
following two properties:

(1) fR ‘contracts’ R: If C ⊂ Y is an algebraic curve and [C] ∈ R,
then f(C) is a point in Z;

(2) If g : Y → W also contracts R, then g factors through fR.



10 ALESSIO CORTI

This statement is a higher dimensional analog of Castelnuovo and
Enriques’ contraction theorem for −1-curves on nonsingular surfaces.
Note the key difference: the input of Castelnuovo–Enriques is a specific
locus on Y , a −1-curve, while the input of the contraction theorem is
an abstract notion—an extremal ray—about which we have no explicit
information.

Theorem 7.2. Let fR : Y → Z be the contraction of an extremal ray
R ⊂ NE Y as in theorem 7.1 above. Then, fR is of one of the following
types:

divisorial contraction: fR is birational, and contracts an irre-
ducible subvariety E ⊂ Y of codimension 1 (a divisor);

small contraction: fR is birational, and the exceptional set has
codimension ≥ 2;

Mori fibration: fR is not birational, that is, dim Z < dim Y
and −KY is ample on the fibres f−1

R (z), z ∈ Z; in particular,
all nonsingular fibres are Fano manifolds.

The notion of extremal ray and attendant contraction is a generalisa-
tion both of the contraction of a −1-curve on a nonsingular surface—a
divisorial contraction—and of a Fano variety with rankN1(X, R) = 1—
the case Z = {point} of a Mori fibration.

There are no small contractions from a nonsingular 3-fold (but there
are plenty from a Q-factorial 3-fold with terminal singularities, see the
discussion below), but it is easy to find an example in dimension 4:

Example 7.3. Consider a nonsingular projective 4-fold Y containing
a surface S ⊂ Y isomorphic to P2 and with normal bundle O(−1) ⊕
O(−1). The surface S can always be contracted in the category of
complex analytic varieties. When S can be contracted in the category
of complex projective algebraic varieties, one has often also to contract
‘far away’ copies of S disjoint from S: in that case, the contraction of
S is a small contraction.

Back to Surfaces. If X is a nonsingular projective surface, then:

• A divisorial contraction is the same thing as the contraction of
a −1-curve;

• there are no small contractions;
• fR : X → Y is a Mori fibration if and only if: either every fibre

is isomorphic to P1, or X = P2 and Y is a point.

Thus, from the perspective of the cone and contraction theorem, we
can restate the minimal model theorem for surfaces as follows:
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Theorem 7.4. Let Y be a nonsingular projective surface. Then, every
sequence

Y = Y0 → Y1 → · · · → Yi → Yi+1 → · · ·

of divisorial contractions ends at a surface Yr = X for which one of
the following two alternatives holds:

X is a ‘minimal’ model: there are no extremal rays left, that
is, by the cone theorem, KX is nef.

There is a Mori fibration fR : X → Y : i.e., X has an extremal
ray and the attendant contraction is a Mori fibration.

It would be possible to prove this statement with 1900s methods, and
I suspect that Castelnuovo and Enriques would have found it obvious;
but even Beauville [Bea78] did not find it useful to state it in this way.

As I will explain, this statement, with one or two important quali-
fications but otherwise basically unchanged, does generalise to higher
dimensions, provided that we define:

Definition 7.5. A projective variety X is a minimal model if X has
terminal singularities (these are discussed in § 8 below; for instance, X
could be nonsingular) and KX is nef.

Minimal models are so called not because they are ‘smallest’ in a
literal sense (though they are ‘as small as they can be,’ see [Kol07] for
an accessible discussion of precisely this point), but because they gen-
eralise the traditional minimal models of surfaces to higher dimensions.
To be fair, it is not because they were obsessed with minimal models
that are literally ‘smallest’ that algebraic geometers failed, for almost a
century, to make progress in higher dimensions. It required real inspi-
ration to discover the cone theorem, and technical virtuosity to prove
it. But it is interesting to note that, with the benefit of hindsight, it is
the classical ‘Italian’ perspective that, today, looks hopelessly techni-
cal, whereas the modern view in terms of the sign of the canonical line
bundle makes immediate contact with the archetypal classification of
geometries into those with positive, zero and negative curvature.

8. Minimal Models in Higher Dimensions

Example 8.1. Consider a nonsingular projective 3-fold Y containing
a surface E ⊂ Y , isomorphic to P2, and with normal bundle NY E ∼=
OP2(−2). Then E ⊂ Y can be contracted to a singular point P ∈ Y1,
such that a small analytic neighbourhood of P ∈ Y1 is isomorphic to
a neighbourhood of the origin in the quotient of C3 by the action of
Z/2Z sending x, y, z to −x,−y,−z. This contraction is a divisorial
contraction.
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If Y is nonsingular and fR : Y → Y1 a divisorial contraction, then we
have just seen that Y1 can be singular. To generalise the theory of min-
imal models of surfaces to higher dimensions, we must therefore allow
some singularities. The smallest class large enough to accommodate all
the operations of the minimal model program is Q-factorial varieties
with terminal singularities.

Q-factorial. An integral Weil divisor on a normal algebraic variety
X is a formal finite linear combination

D =
∑

niDi

where ni ∈ Z and Di ⊂ X is a subvariety of codimension 1. Because X
is normal, if Γ ⊂ X is irreducible of codimension 1, then the local ring
OX,Γ of X along Γ is a discrete valuation ring ; this makes it possible
to define the divisor of a rational function f ∈ Q(X):

divX f =
∑

Γ

(multΓ f) Γ

(where the sum is over all the irreducible subvarieties of codimension 1;
it turns out that the sum is finite). We say that D1 is linearly equivalent
to D2, written D1 ∼ D2, if D1−D2 is the divisor of a rational function.

When X is nonsingular, every Weil divisor is locally in the Zariski
topology the divisor of a rational function.

Definition 8.2. A Weil divisor D is Cartier if D is locally in the
Zariski topology the divisor of a rational function; D is Q-Cartier if
an integer multiple rD of D is Cartier.
A variety X is Q-factorial if every Weil divisor is Q-Cartier.

I warn you that Q-factorial is a local property in the Zariski but not
in the analytic topology.

If X is a variety, a Weil divisor D always gives rise to a cycle class
[D] ∈ H2 dimX−2(X, Z) (you can imagine physically triangulating the
support of D). If X is Q-factorial, then this class lies in the image
of the Poincaré map P : H2(X; Q) → H2 dim X−2(X; Q)4: indeed, the
Cartier divisor rD has a cycle class cl(rD) ∈ H2(X; Z), and

[D] = P
(1

r
cl(rD)

)

.

(The converse is also true if X has terminal singularities, see [Kol91,
Proposition 2.1.7].) Thus, when X is Q-factorial, it makes sense to

4The Poincaré map is cap product with the fundamental class [X ] ∈
H2 dim X(X ; Z).
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take the intersection product D ·C ∈ Q of a Weil divisor and a proper
algebraic curve C ⊂ X.

Divisors and Line Bundles. I recall the relation between divisors
and line bundles. When X is normal, we associate a divisorial sheaf
O(D) to every Weil divisor D, depending only on the linear equivalence
class of D, as follows:

Γ(O(D), U) =
{

f ∈ Q(X) | divU f + D|U ≥ 0
}

where U ⊂ X is a Zariski open subset.
Zariski teaches us how to take the divisor KX = divX ω of a mero-

morphic differential. This depends on the choice of ω, but the linear
equivalence class does not. Although there is no canonical line bundle,
O(KX) is a well-defined divisorial sheaf.

If D is Cartier, then O(D) is an invertible sheaf, that is, a line bundle,
and cl(D) = c1(OX(D)) ∈ H2(X; Z). (OK I admit it: like all algebraic
geometers, I do not distinguish between a line bundle and its sheaf of
sections.) Thus, when X is nonsingular, divisor and line bundle are
interchangeable notions.

When X is Q-factorial, we can think of a divisorial sheaf O(D) as
a ‘Q-line bundle,’ in the sense that O(rD) is a line bundle, for some
integer r > 0. For many purposes, this is just as good as a line bundle.

Terminal Singularities. I do not write down the definition of termi-
nal singularities here, since it is not very enlightening. Instead, I refer
you to [Rei87b] for more information. If X has terminal singularities,
then the following two key properties hold:

• The canonical divisor is Q-Cartier. Equivalently, the sheaf
OX(KX) is a Q-line bundle; in particular, c1(KX) makes sense
as an element of H2(X; Q).

• The space Γ
(

X,O(NKX)
)

of pluricanonical differentials is a
birational invariant for all integers N > 0.

In fact, if KX is Q-Cartier and ample, then the second of these two
properties implies that X has terminal singularities. (This is how Reid
arrived at the definition of terminal singularities.) Having terminal
singularities is a local property in the analytic topology.

The Minimal Model Program.

Fact 8.3. The cone theorem 6.2, the contraction theorem 7.1, and
the classification 7.2 of extremal contractions hold word-for-word for
projective Q-factorial varieties with terminal singularities.

If Y is projective Q-factorial terminal, and fR : Y → Y1 is a diviso-
rial contraction, then Y1 is also projective Q-factorial terminal.
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So far, so good: Starting with Y projective and Q-factorial terminal,
we ask the question: is KY nef? If not, then NE Y has an extremal ray
R with KY · R < 0, and a contraction fR : Y → Z. If fR is divisorial,
then we just do the contraction, and go on asking the same question
of Z instead of Y .

Thus, the problem now is: What to do with small contractions? This
is a very serious issue: indeed, I now argue that, if Y is Q-factorial
terminal and fR : Y → Z is a small contraction, then c1(KZ) can not
possibly make sense as an element of H2(Z; R). Indeed, if it did, then
it would follow that

c1(KY ) = f ∗c1(KZ)

and then, for any curve C ∈ R, by the projection formula:

KY · C = c1(KY ) ∩ [C] = c1(KZ) · f∗(C) = 0

a contradiction, since KY ·C is supposed to be strictly negative! Hence,
if we meet a small contraction fR : Y → Z, we can not just do the
contraction and go on with Z: the singularities of Z are such that it
makes no sense even to ask the question: is KZ nef? There is no way
that the cone theorem can make sense on Z.

Definition 8.4. If fR : Y → Z is a small contraction of an extremal
ray R ⊂ NE Y , the flip of fR is a new small birational morphism
gR : Y ′ → Z such that KY ′ is Q-Cartier and is ample along the fibres
of gR.

Though not immediate from the definition, the flip is unique if it
exists, and, if Y is projective Q-factorial terminal, then Y ′ is again
projective Q-factorial terminal. At this point I can state the first main
result of Hacon and McKernan [HM09].

Theorem 8.5 (Existence of flips). Flips of small contractions exist.

A sketch of the proof, and a discussion of major contributions by
Shokurov and Siu, can be found in the introduction to [Cor07]. ([Mor88]
proved existence of flips in dimension 3.)

If Y → Y1 is a divisorial contraction, then H2(Y1; R) has rank one less
than H2(Y ; R). It follows that any sequence of divisorial contractions
must stop. Termination of flips, on the other hand, is an important
open problem:

Conjecture 8.6 (Termination of flips). There is no infinite sequence
of flips.

This conjecture holds in dimension ≤ 4 [KMM87, Theorem 5-1-15]
but, in general, it seems to be hard. From what I just said, conjec-
ture 8.6 would imply:
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Conjecture 8.7. Let Y be a projective Q-factorial terminal variety.
Then any sequence

Y = Y0 !!" Y1 !!" · · · !!" Yi !!" Yi+1 !!"

of divisorial contractions and flips ends at a variety Yr = X for which
one of the following two alternatives holds:

X is a minimal model: that is, KX is nef.
There is a Mori fibration: fR : X → Z.

9. The Minimal Model Program with Scaling

Running the minimal model program starting with a projective Q-
factorial terminal variety Y , we may come to a point where we have
several extremal rays to choose from. The minimal model program
with scaling is a variant that narrows the choice down in a coherent
way and results in a program with a better chance of terminating.

The starting point is a pair (Y, A) of a Q-factorial terminal variety
Y and a divisor A on Y such that KY + tA is nef for t >> 0. (This
holds, for instance, if A is ample.)

In the case of surfaces, the minimal model program with scaling is
simply the minimal model program for Y where we contract first the
−1-curves that have smallest intersection number with A.

Definition 9.1. The nef threshold t = t(Y, A) is the smallest real
number ≥ 0 such that KY + tA is nef.

More precisely, the minimal model program with scaling is any se-
quence of divisorial contraction and flips

Y = Y0 !!" · · · !!" Yi !!" Yi+1 !!"

specified inductively as follows: Ai is the transform of Ai−1 on Yi
5,

ti = t(Yi, Ai), and Yi !!" Yi+1 is a divisorial contraction or flip of an
extremal ray Ri ⊂ NE Yi with

(KYi
+ tiAi) · Ri = 0 and KYi

· Ri < 0.

It is important to understand that a minimal model program with
scaling is just a minimal model program with self-imposed restriction
of choice of extremal contractions.

In order to state the main result of [BCHM09], I need one more
concept.

5If Yi−1 !!" Yi is a divisorial contraction, Ai is the push forward of Ai−1; if it is
a flip, then Yi−1 and Yi have the same divisors.
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Definition 9.2. A Weil divisor D =
∑

diDi on an algebraic variety X
is effective if all di ≥ 0. We denote by Eff X ⊂ N1(X, R) the convex
cone generated by effective divisors. The pseudo-effective cone is the
closure Eff X of Eff X; a Weil divisor D is pseudo-effective if D ∈ Eff X.

If we believe the minimal model conjecture, then it follows that if
KY is pseudo-effective, then Y is birational to a minimal model; if, on
the other hand, KY is not pseudo-effective, then Y is birational to the
total space of a Mori fibration.

This is one of the main results of [BCHM09]:

Theorem 9.3 (Partial minimal model theorem). Suppose Y is projec-
tive Q-factorial terminal.

(1) If Y is of general type, then any minimal model program with
scaling, starting from Y , ends at a minimal model X.

(2) If KY is not pseudo-effective, then any minimal model program
with scaling, starting from Y , ends at a Mori fibration f : X →
Z.

Remark 9.4. If X is projective Q-factorial terminal, then KX )∈ Eff X
if and only if adjunction terminates on X, that is, for all divisors D
on X, there exists λ0 = λ0(D) > 0 such that D + λKX )∈ Eff X for
all λ ≥ λ0. Termination of adjunction was a key tool in the ‘Italian’
treatment of surfaces.

This theorem does not establish the basic dichotomy in the classifi-
cation of algebraic varieties; but it does show that, under general and
useful assumptions, the expected models exist.

10. Finite Generation of Adjoint Rings

One of the most remarkable consequences of the work of [BCHM09]
is the finite generation of adjoint rings. These include, as a special
case, canonical rings.

Definition 10.1. Let X be a projective algebraic manifold of dimen-
sion n. A Weil divisor D =

∑

Di ⊂ X is normal crossing if for every
point x ∈ D there exist analytic co-ordinate functions z1, . . . , zn cen-
tred at x ∈ X such that, locally at x, D is given by the equation
z1 · · · zk = 0, for some 1 ≤ k ≤ n.

Normal crossing divisors are important in algebraic geometry, for the
following reason. Consider a nonsingular quasi-projective variety U .
Then, by Hironaka’s resolution theorem, there exists a compactification



THE WORK OF HACON AND M
C
KERNAN 17

U ⊂ X such that the complement D = X \ U is a normal crossing
divisor. It is a fact then that the space:

H0(X, KX + D)

of differentials on X with poles along D depends only on U , not on X.
The same is true of the adjoint ring

R(X, KX + D) =
⊕

n≥0

H0
(

X, n(K + D)
)

(and the same is true for Hp
(

X, Ωq(log D)
)

: this is the starting point
of Deligne’s construction of the functorial mixed Hodge structure on
the cohomology of U ; but that is another story...).

It is useful to generalise this construction in two directions. First,
there is no need for D to be an integral divisor. Indeed, we can consider
any divisor B of the form:

B =
∑

biBi where bi ∈ Q and 0 < bi ≤ 1

—such a divisor is called a boundary—whose support
∑

Bi is nor-
mal crossing. (To make sense of the adjoint ring, we can e.g. sum
H0(X, n(KX + B)) only over n divisible enough that nB is integral.
Note, however, that this is not necessary: the definition of OX(D) in
§ 8 makes perfect sense even when D is a Q-divisor.) Working with
pairs (X, B) of a variety and a boundary Q-divisor allows to interpo-
late between the absolute case B = 0 and the quasi-projective case
U = X \ D. Every self-respecting mathematical theory needs the cer-
tification that comes with appropriate categorical foundations, and so
a theory of pairs is a must.

Second, we can generalise to rings graded by any finitely generated
semigroup.

Definition 10.2. We say that a divisor D on X is big if the map
ϕΓ(X,nD) : X !!" PΓ(X, nD) is birational onto its image for n >> 0.

Theorem 10.3. [BCHM09] For X a projective algebraic manifold, let
B1, . . . , Br ⊂ X be boundaries, and assume that each Bi individually
has normal crossing support. Assume in addition:

(1) Bi =
∑

bijBij with all bij < 1;
(2) the Bi are big.

Then, the adjoint ring:

R(X; K + B1, . . . , K + Br) =
⊕

(n1,...,nr)∈Nr

H0
(

X,
∑

ni(K + Bi)
)

is finitely generated.
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Remark 10.4. It is conjectured that both additional assumptions in
the statement can be removed. When r = 1, that is, there is only one
boundary divisor, both assumptions can be removed in dimension ≤ 4
[Fuj08], and the second assumption can be removed in all dimensions
[BCHM09].

In [BCHM09], the theorem follows from the partial minimal model
theorem 9.3. The ‘tendencious’ perspective of [Rei87a], which, in fact,
has since been the main-stream perspective, is that one should first
construct minimal models, and only after that is done one should at-
tempt to show finite generation of the canonical ring. It seems to me
that it might now be possible once again to turn this perspective on its
head. The recent work of Lazić [Laz09] proves theorem 10.3 by means
of a transparent (in principle) argument based on lifting lemmas and
induction on the dimension, not relying on any of the details of the
minimal minimal program.

11. What Remains to Do: Dichotomy and Trichotomy

In the first instance, it would be desirable to establish the minimal
model program—perhaps with scaling—and the basic dichotomy, in
full generality.

The classification theory of algebraic varieties aims, in the second
instance, to establish the following basic trichotomy.

Conjecture 11.1 (Abundance Conjecture). If X is a minimal model,
then KX is eventually free.

In particular the statement implies that, if X is a minimal model,
then KX ∈ Eff X; combining with the minimal model conjecture, this
allows us to restate the basic dichotomy for any Y : either Y is birational
to a minimal model, and then KY ∈ Eff Y ; or Y is birational to a Mori
fibration, and then KY )∈ Eff Y .

If the conjecture is true, then when X is a minimal model we have
a canonical morphism:

ϕΓ(X,NKX) : X → S

where dim S = κ(X) and the fibres have rK = 0 for some integer
r > 0. The base S of the canonical morphism is the canonical model
of X; we recover it as:

S = Proj R(X, KX).

The canonical morphism allows to divide all varieties into the three
classes with KX > 0, KX ≡ 0 and KX < 0, and fibre spaces of these.
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Essentially, the basic trichotomy is the philosophical core of the Iitaka
program, which is surveyed in [Mor87].

The abundance conjecture is known in dimension 2 and 3; the surface
case is surveyed in [Rei97] and the 3-fold case in [FA92]. Even the
surface case is hard, relying on the detailed classification of elliptic
surfaces due to Kodaira (and Bombieri, Mumford, Katsura–Ueno in
characteristic p).

The finer effective classification of special classes of surfaces in terms
of plurigenera by Castelnuovo and Enriques is extremely useful in ap-
plications to diverse areas of mathematics. A similar explicit treatment
of 3-fold is the focus of much current research, but is presumably in-
tractable in higher dimensions.
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