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Primes: Why care?

Primes are the ‘atoms’ of the integers from the point of view of
multiplication.

Theorem (Fundamental Theorem of Arithmetic)

Every integer n > 1 can be written as a product of primes
n = p1 × p2 × · · · × pk . Moreover, this is unique apart from
rearranging the product.

Example
6 = 2 × 3 = 3 × 2.
1024 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2.

Mathematicians are lazy. This means we can simplify a problem
about integers to one about primes.
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Fermat’s last theorem

Theorem (Example: Fermat’s last theorem)

There are no integer solutions to xn + yn = zn with n > 2 apart
from the obvious ones when xyz = 0.

Claim
It is enough to prove FLT with n prime

Proof.
1 Imagine n = ab is composite, and there is a solution to

xn + yn = zn for n.
2 Then (xb)a + (yb)a = (zb)a , so (xb , yb , zb) is a solution for a.
3 So there is a solution for every prime factor of n.
4 Contradiction to FLT for primes! Unless n = 2k .
5 Fermat: There are no solutions for n = 4. �
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Counting primes

Question
How many primes are there?

Theorem
There are infinitely many primes.

Gauss: ”Around x the primes should occur with density 1/ ln x”.

Theorem (Prime Number Theorem)

π(x) = #{primes ≤ x} ≈
∫ x

2

dt
ln t

.

π(1010) = 455, 052, 511,
∫ 1010

2

dt
ln t

= 455, 055, 613.8...

Difference 3102.8... (< 0.0007%).
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My favourite formula

Instead of counting primes with weight 1, it is easier to
compensate for the density by counting with weight ln p.

Theorem (Riemann’s explicit formula)

If x is not an integer, then∑
n,p

pn<x

ln p = x −
∑
ρ

ζ(ρ)=0

xρ

ρ
− ln(2π).

Here ζ(s) is the ‘Riemann zeta function’, and the sum is over zeros
of the zeta function.
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Riemann’s formula

Therefore the zeros tell us exactly where the primes are!

Our step function is a sum of ‘waves’:

5 10 15 20

-0.3

-0.2

-0.1

0.1

0.2

‘The music of the primes’
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No Zeros

10 15 20

5

10

15
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10 Zeros
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15
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100 Zeros
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1000 Zeros

10 15 20
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10

15
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Riemann’s Hypothesis

The size of xρ is x<(ρ).

Conjecture (Riemann’s Hypothesis, $1, 000, 000)

All the non-trivial zeros of ζ(s) have real part 1/2.

This means all the terms xρ have size
√

x, which is much smaller
than x.

Corollary

Assume RH. Then for all x > 2∣∣∣∣π(x) − ∫ x

2

dt
ln t

∣∣∣∣ < 4
√

x ln x

This would completely explain why
∫ x

2 dt/ ln t is such a good
approximation! This explains the large-scale structure!
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It isn’t just me who’s excited

(Hilbert)

”If I were to awaken after having slept for a thousand years, my first
question would be: Has the Riemann hypothesis been proven?”

(Montgomery)

”So if you could be the Devil and offer a mathematician to sell his
soul for the proof of one theorem - what theorem would most
mathematicians ask for? I think it would be the Riemann
Hypothesis.”
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Small-scale distribution

What about primes on a small scale - the gaps between them?

Theorem (Prime Number Theorem)

#{primes ≤ x} ≈
∫ x

2

dt
ln t
≈

x
ln x

.

Corollary

The average size gap pn+1 − pn amongst primes pn ≤ x is ≈ ln x

Proof.

Average gap =

∑
pn<x(pn+1 − pn)

#{pn ≤ x}

=
pN − 2
π(x)

≈
x

x/ ln x

≈ ln x. �
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Small gaps between primes

Question
Are prime gaps always this big?

(2, 3) is the only pair of primes which differ by 1.

(One of n and n + 1 is a multiple of 2 for every integer n).

There are lots of pairs of primes which differ by 2:
(3, 5), (5, 7), (11, 13), . . . , (1031, 1033), . . . ,
(1000037, 1000039), . . . , (1000000007, 1000000009), . . .

Conjecture (Twin prime conjecture)

There are infinitely many pairs of primes (p, p′) which differ by 2.

This is one of the oldest problems in mathematics, and is very
much open!
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How many Twin primes are there?

If we randomly picked a number n of size x, then the
probability n is prime is about 1/ ln x.

If we randomly picked a number n of size x, then the
probability n + 2 is prime is about 1/ ln x.

If these were independent events, then the probability n and
n + 2 are both prime would be 1/(ln x)2.

Guess

#{twin primes ≤ x} ≈
∫ x

2

dt
(ln t)2

But this can’t be right, as n and n + 1 can’t both be prime!

#{twin primes ≤ 108} = 440312,
∫ 108

2

dt
(ln t)2 = 333530.2...

Difference 106781.8... (about 24.2%)
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Second Attempt

Lets use the fact primes > 2 are odd.

If we randomly picked an odd number n of size x, then the
probability n is prime is about 2/ ln x.

If we randomly picked an odd number n of size x, then the
probability n + 2 is prime is about 2/ ln x.

If these were independent events, then the probability n and
n + 2 are both prime would be 4/(ln x)2.

Guess (Second attempt)

#{twin primes ≤ x} ≈ 2
∫ x

2

dt
(ln t)2

Worse!
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Third Attempt

If n and n + 2 are prime, n must be 2 more than a multiple of 3,
and so 1 less than a multiple of 6.

If we randomly picked a number n of the form 6k − 1 of size x,
then the probability n is prime is about 3/ ln x.

The probability n + 2 is prime is also about 3/ ln x.

If these were independent events, then the probability n and
n + 2 are both prime would be 9/(ln x)2.

Guess (Third attempt)

#{twin primes ≤ x} ≈
3
2

∫ x

2

dt
(ln t)2

Error ≈ 13%. Better!
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Lets try to correct for all primes p > 2.

There are p − 2 possible remainders for n after dividing by p if
n and n + 2 are prime.

So the probability than neither n nor n + 2 are a multiple of p
is (p − 2)/p.

If n and n + 2 were ‘independent’, then the probability neither
were a multiple of p is (p − 1)/p × (p − 1)/p.

So we were off by a factor p(p−2)
(p−1)2 .

Guess (Fourth attempt)

#{twin primes ≤ x} ≈ 2C2

∫ x

2

dt
(ln t)2

with C2 =
∏

p>2 p(p − 2)/(p − 1)2.

#{twin primes ≤ 108} = 440312, 2C2
∫ 108

2
dt

(ln t)2 = 440367.8...

Difference 55.8... (this is < 0.2%). Success!
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were a multiple of p is (p − 1)/p × (p − 1)/p.

So we were off by a factor p(p−2)
(p−1)2 .

Guess (Fourth attempt)

#{twin primes ≤ x} ≈ 2C2

∫ x

2

dt
(ln t)2

with C2 =
∏

p>2 p(p − 2)/(p − 1)2.

#{twin primes ≤ 108} = 440312, 2C2
∫ 108

2
dt

(ln t)2 = 440367.8...

Difference 55.8... (this is < 0.2%). Success!
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Other patterns

We can look at more than just gaps of size 2.

Conjecture (De Polignac)

For every positive integer h, there are infinitely many pairs of
primes which differ by 2h.

Again, we guess the number less than x is roughly Chx/(ln x)2 for
some constant Ch .

Theorem
This is true for at least one h in {1, . . . , 123}.

In particular:

Theorem

There are infinitely many pairs (p1, p2) of primes such that
|p1 − p2| ≤ 246.
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Other patterns II

We can also look for triples of primes n, n + h1, n + h2 for some
fixed shifts h1, h2

1 If h1 = 2, h2 = 4 then (3, 5, 7) is the only triple.
(one of n, n + 2, n + 4 must be a multiple of 3)

2 If h1 = 2, h2 = 6 then there are many such triples.

Conjecture

There are infinitely many n such that n, n + h1, . . . , n + hk are
prime if there isn’t an obvious reason why they can’t be.

‘Obvious reason’ means one is always a multiple of some prime for
all n.

Theorem
There exists h1, . . . , hk such that n, n + h1, . . . , n + hk are all
primes for infinitely many n.

James Maynard Patterns in the primes



Optimistic extensions

If we assume a well-believed technical conjecture about primes in
arithmetic progressions, then we can get close to the twin prime
conjecture!

Theorem

Assume ‘GEH’. Then there are infinitely many pairs (p1, p2) of
primes with |p1 − p2| ≤ 6.
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Goldbach’s conjecture

This conjecture also allows us to say something about another old
conjecture

Conjecture (Goldbach’s conjecture)

Every even number can be written as the sum of at most two
primes.

Theorem
Assume ‘GEH’. Then at least one of the following is true:

1 There are infinitely many twin primes
2 For every large even integer N, one of N, N + 2 or N − 2 is the

sum of two primes.

Of course we expect both to be true!
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Real-World Example

1 Alice wants to send Bob a Facebook message containing
sensitive gossip.

2 This can be done securely if her laptop can find N = pq which
is hard to factor into primes.

3 If p − 1 has only small prime factors, then there is a way to
factor N easily (Bad).

4 On Wikipedia it had been suggested that one could choose
p, q such that (p − 1)/2 and (q − 1)/2 are prime.

5 If there are only 10 (say) 1024-digit primes p such that
(p − 1)/2 is prime, then this is a VERY bad idea! Bob would
die before Alice finds one!

A slight generalization of our model predicts there are many such
primes.
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Long path to go

It is an exciting time for prime number theory!

Any questions?
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