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Preface

In 1904, the eminent French mathematician Henri Poincaré formulated the
conjecture that bears his name and that motivated much of the research in ge-
ometry and topology for the next one hundred years. Among these developments
were the theory of knots, homotopy theory, surgery theory, and the formulation
by William Thurston of the geometrization conjecture, a sweeping statement that
subsumed Poincaré’s conjecture and which gave structure and order to the set of
all 3-dimensional manifolds.

In 2000, at a meeting in Paris, the Clay Mathematics Institute (CMI), founded
by Mr. Landon T. Clay, announced the establishment of the seven Millennium
Prize Problems. For the solution of each one, a prize of $1,000,000 was offered.
The Poincaré conjecture was one of those seven problems.

In November 2002 came a major development: Grigoriy Perelman posted the
first of three papers announcing a proof of the conjecture on arXiv.org. His an-
nouncement set off a flurry of excitement in the mathematical world. Perelman
gave talks at MIT, SUNY-Stony Brook, Princeton, and the University of Penn-
sylvania. Seminars were organized to understand what Perelman had done, and
several groups of researchers set about the task of carefully verifying and validat-
ing his work. CMI supported several of these efforts (Kleiner and Lott, Morgan
and Tian), and it organized a working seminar in Princeton in 2004 devoted to
Perelman’s second paper. On March 10 of 2010, CMI announced award of the
Millennium Prize for the Poincaré conjecture to Grigoriy Perelman. The citation
read:

The Clay Mathematics Institute hereby awards the Millennium
Prize for resolution of the Poincaré conjecture to Grigoriy Perel-
man. The Poincaré conjecture is one of the seven Millennium
Prize Problems established by CMI in 2000. The Prizes were
conceived to record some of the most difficult problems with
which mathematicians were grappling at the turn of the sec-
ond millennium; to elevate in the consciousness of the general
public the fact that in mathematics, the frontier is still open
and abounds in important unsolved problems; to emphasize the
importance of working towards a solution of the deepest, most
difficult problems; and to recognize achievement in mathematics
of historical magnitude.

The decision to award the prize was made on the basis of deliberations by a Special
Advisory Committee appointed to consider the correctness and attribution of the
solution, the CMI Scientific Advisory Board, and the CMI Board of Directors. The
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committee members were Simon Donaldson, David Gabai, Mikhail Gromov, Ter-
ence Tao, and Andrew Wiles (Special Advisory Committee), James Carlson, Simon
Donaldson, Gregory Margulis, Richard Melrose, Yum-Tong Siu, and Andrew Wiles
(Scientific Advisory Board), and Landon T. Clay, Lavinia D. Clay, and Thomas M.
Clay (Board of Directors).

On June 8 and 9 of 2010, a conference on the conjecture was held at the
Institut Henri Poincaré in Paris. Most of the lectures given there are featured in
this volume. They provide an overview of the conjecture—its history, its influence
on the development of mathematics, and, finally, its proof. Sadly, there is no article
by William Thurston, who passed away in 2012.

Grigoriy Perelman did not accept the Millennium Prize, just as he did not ac-
cept the Fields Medal in 2006. What is important, however, is what Perelman gave
to mathematics: the solution to a long-standing problem of historical significance,
and a set of new ideas and new tools with which better to understand the geometry
of manifolds. One chapter of mathematics ends and another begins.

James Carlson



Press Release of March 10, 2010

The Clay Mathematics Institute (CMI) announces today that Dr. Grigoriy
Perelman of St. Petersburg, Russia, is the recipient of the Millennium Prize for
resolution of the Poincaré conjecture. The citation for the award reads:

The Clay Mathematics Institute hereby awards the Millennium
Prize for resolution of the Poincaré conjecture to Grigoriy Perel-
man.

The Poincaré conjecture is one of the seven Millennium Prize Problems established
by CMI in 2000. The Prizes were conceived to record some of the most difficult
problems with which mathematicians were grappling at the turn of the second
millennium; to elevate in the consciousness of the general public the fact that in
mathematics, the frontier is still open and abounds in important unsolved prob-
lems; to emphasize the importance of working towards a solution of the deepest,
most difficult problems; and to recognize achievement in mathematics of historical
magnitude.

The award of the Millennium Prize to Dr Perelman was made in accord with
their governing rules: recommendation first by a Special Advisory Committee (Si-
mon Donaldson, David Gabai, Mikhail Gromov, Terence Tao, and Andrew Wiles),
then by the CMI Scientific Advisory Board (James Carlson, Simon Donaldson,
Gregory Margulis, Richard Melrose, Yum-Tong Siu, and Andrew Wiles), with final
decision by the Board of Directors (Landon T. Clay, Lavinia D. Clay, and Thomas
M. Clay).

James Carlson, President of CMI, said today that “resolution of the Poincaré
conjecture by Grigoriy Perelman brings to a close the century-long quest for the
solution. It is a major advance in the history of mathematics that will long be
remembered”. Carlson went on to announce that CMI and the Institut Henri
Poincaré (IHP) will hold a conference to celebrate the Poincaré conjecture and its
resolution June 8 and 9 in Paris. The program will be posted on www.claymath.org.
In addition, on June 7, there will be a press briefing and public lecture by Etienne
Ghys at the Institut Oceanographique, near the IHP.

Reached at his office at Imperial College, London for his reaction, Fields Medal-
ist Dr. Simon Donaldson said, “I feel that Poincaré would have been very satisfied
to know both about the profound influence his conjecture has had on the develop-
ment of topology over the last century and the surprising way in which the problem
was solved, making essential use of partial differential equations and differential ge-
ometry.

vii
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Poincaré’s conjecture and Perelman’s proof

Formulated in 1904 by the French mathematician Henri Poincaré, the con-
jecture is fundamental to achieving an understanding of three-dimensional shapes
(compact manifolds). The simplest of these shapes is the three-dimensional sphere.
It is contained in four-dimensional space, and is defined as the set of points at a
fixed distance from a given point, just as the two-dimensional sphere (skin of an
orange or surface of the earth) is defined as the set of points in three-dimensional
space at a fixed distance from a given point (the center).

Since we cannot directly visualize objects in n-dimensional space, Poincaré
asked whether there is a test for recognizing when a shape is the three-sphere by
performing measurements and other operations inside the shape. The goal was to
recognize all three-spheres even though they may be highly distorted. Poincaré
found the right test (simple connectivity, see below). However, no one before Perel-
man was able to show that the test guaranteed that the given shape was in fact a
three-sphere.

In the last century, there were many attempts to prove, and also to disprove,
the Poincaré conjecture using the methods of topology. Around 1982, however,
a new line of attack was opened. This was the Ricci flow method pioneered and
developed by Richard Hamilton. It was based on a differential equation related
to the one introduced by Joseph Fourier 160 years earlier to study the conduction
of heat. With the Ricci flow equation, Hamilton obtained a series of spectacular
results in geometry. However, progress in applying it to the conjecture eventually
came to a standstill, largely because formation of singularities, akin to formation
of black holes in the evolution of the cosmos, defied mathematical understanding.

Perelman’s breakthrough proof of the Poincaré conjecture was made possible
by a number of new elements. He achieved a complete understanding of singularity
formation in Ricci flow, as well as the way parts of the shape collapse onto lower-
dimensional spaces. He introduced a new quantity, the entropy, which instead
of measuring disorder at the atomic level, as in the classical theory of heat ex-
change, measures disorder in the global geometry of the space. This new entropy,
like the thermodynamic quantity, increases as time passes. Perelman also intro-
duced a related local quantity, the L-functional, and he used the theories originated
by Cheeger and Aleksandrov to understand limits of spaces changing under Ricci
flow. He showed that the time between formation of singularities could not become
smaller and smaller, with singularities becoming spaced so closely—infinitesimally
close—that the Ricci flow method would no longer apply. Perelman deployed his
new ideas and methods with great technical mastery and described the results he
obtained with elegant brevity. Mathematics has been deeply enriched.

Some other reactions

Fields medalist Stephen Smale, who solved the analogue of the Poincaré con-
jecture for spheres of dimension five or more, commented that: “Fifty years ago I
was working on Poincaré’s conjecture and thus hold a long-standing appreciation
for this beautiful and difficult problem. The final solution by Grigoriy Perelman is
a great event in the history of mathematics.”

Donal O’Shea, Professor of Mathematics at Mt. Holyoke College and author of
The Poincaré Conjecture, noted: “Poincaré altered twentieth-century mathematics
by teaching us how to think about the idealized shapes that model our cosmos. It
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is very satisfying and deeply inspiring that Perelman’s unexpected solution to the
Poincaré conjecture, arguably the most basic question about such shapes, offers to
do the same for the coming century.

History and Background

In the latter part of the nineteenth century, the French mathematician Henri
Poincaré was studying the problem of whether the solar system is stable. Do the
planets and asteroids in the solar system continue in regular orbits for all time, or
will some of them be ejected into the far reaches of the galaxy or, alternatively,
crash into the sun? In this work he was led to topology, a still new kind of mathe-
matics related to geometry, and to the study of shapes (compact manifolds) of all
dimensions.

The simplest such shape was the circle, or distorted versions of it such as the
ellipse or something much wilder: lay a piece of string on the table, tie one end to
the other to make a loop, and then move it around at random, making sure that
the string does not touch itself. The next simplest shape is the two-sphere, which
we find in nature as the idealized skin of an orange, the surface of a baseball, or
the surface of the earth, and which we find in Greek geometry and philosophy as
the “perfect shape”. Again, there are distorted versions of the shape, such as the
surface of an egg, as well as still wilder objects. Both the circle and the two-sphere
can be described in words or in equations as the set of points at a fixed distance
from a given point (the center). Thus it makes sense to talk about the three-sphere,
the four-sphere, etc. These shapes are hard to visualize, since they naturally are
contained in four-dimensional space, five-dimensional space, and so on, whereas we
live in three-dimensional space. Nonetheless, with mathematical training, shapes
in higher-dimensional spaces can be studied just as well as shapes in dimensions
two and three.

In topology, two shapes are considered the same if the points of one correspond
to the points of another in a continuous way. Thus the circle, the ellipse, and the
wild piece of string are considered the same. This is much like what happens in
the geometry of Euclid. Suppose that one shape can be moved, without changing
lengths or angles, onto another shape. Then the two shapes are considered the
same (think of congruent triangles). A round, perfect two-sphere, like the surface
of a ping-pong ball, is topologically the same as the surface of an egg.

In 1904 Poincaré asked whether a three-dimensional shape that satisfies the
“simple connectivity test” is the same, topologically, as the ordinary round three-
sphere. The round three-sphere is the set of points equidistant from a given point
in four-dimensional space. His test is something that can be performed by an
imaginary being who lives inside the three-dimensional shape and cannot see it
from“outside.” The test is that every loop in the shape can be drawn back to the
point of departure without leaving the shape. This can be done for the two-sphere
and the three-sphere. But it cannot be done for the surface of a doughnut, where
a loop may get stuck around the hole in the doughnut.

The question raised became known as the Poincaré conjecture. Over the years,
many outstanding mathematicians tried to solve it—Poincaré himself, Whitehead,
Bing, Papakirioukopolos, Stallings, and others. While their efforts frequently led
to the creation of significant new mathematics, each time a flaw was found in the
proof. In 1961 came astonishing news. Stephen Smale, then of the University of
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California at Berkeley (now at the City University of Hong Kong) proved that the
analogue of the Poincaré conjecture was true for spheres of five or more dimensions.
The higher-dimensional version of the conjecture required a more stringent version
of Poincaré’s test; it asks whether a so-called homotopy sphere is a true sphere.
Smale’s theorem was an achievement of extraordinary proportions. It did not,
however, answer Poincaré’s original question. The search for an answer became all
the more alluring.

Smale’s theorem suggested that the theory of spheres of dimensions three and
four was unlike the theory of spheres in higher dimension. This notion was con-
firmed a decade later, when Michael Freedman, then at the University of California,
San Diego, now of Microsoft Research Station Q, announced a proof of the Poincaré
conjecture in dimension four. His work used techniques quite different from those
of Smale. Freedman also gave a classification, or kind of species list, of all simply
connected four-dimensional manifolds.

Both Smale (in 1966) and Freedman (in 1986) received Fields medals for their
work. There remained the original conjecture of Poincaré in dimension three. It
seemed to be the most difficult of all, as the continuing series of failed efforts, both
to prove and to disprove it, showed. In the meantime, however, there came three
developments that would play crucial roles in Perelman’s solution of the conjecture.

Geometrization

The first of these developments was William Thurston’s geometrization con-
jecture. It laid out a program for understanding all three-dimensional shapes in a
coherent way, much as had been done for two-dimensional shapes in the latter half
of the nineteenth century. According to Thurston, three-dimensional shapes could
be broken down into pieces governed by one of eight geometries, somewhat as a
molecule can be broken into its constituent, much simpler atoms. This is the origin
of the name, “geometrization conjecture.”

A remarkable feature of the geometrization conjecture was that it implied the
Poincaré conjecture as a special case. Such a bold assertion was accordingly thought
to be far, far out of reach—perhaps a subject of research for the twenty-second
century. Nonetheless, in an imaginative tour de force that drew on many fields of
mathematics, Thurston was able to prove the geometrization conjecture for a wide
class of shapes (Haken manifolds) that have a sufficient degree of complexity. While
these methods did not apply to the three-sphere, Thurston’s work shed new light on
the central role of Poincaré’s conjecture and placed it in a far broader mathematical
context.

Limits of Spaces

The second current of ideas did not appear to have a connection with the
Poincaré conjecture until much later. While technical in nature, the work, in which
the names of Cheeger and Perelman figure prominently, has to do with how one
can take limits of geometric shapes, just as we learned to take limits in beginning
calculus class. Think of Zeno and his paradox: you walk half the distance from
where you are standing to the wall of your living room. Then you walk half the
remaining distance. And so on. With each step you get closer to the wall. The
wall is your “limiting position,” but you never reach it in a finite number of steps.
Now imagine a shape changing with time. With each ”step” it changes shape, but
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can nonetheless be a “nice” shape at each step—smooth, as the mathematicians
say. For the limiting shape the situation is different. It may be nice and smooth,
or it may have special points that are different from all the others, that is, singular
points, or “singularities.” Imagine a Y-shaped piece of tubing that is collapsing: as
time increases, the diameter of the tube gets smaller and smaller. Imagine further
that one second after the tube begins its collapse, the diameter has gone to zero.
Now the shape is different: it is a Y shape of infinitely thin wire. The point where
the arms of the Y meet is different from all the others. It is the singular point of
this shape. The kinds of shapes that can occur as limits are called Aleksandrov
spaces, named after the Russian mathematician A. D. Aleksandrov who initiated
and developed their theory.

Differential Equations

The third development concerns differential equations. These equations involve
rates of change in the unknown quantities of the equation, e.g., the rate of change of
the position of an apple as it falls from a tree towards the earth’s center. Differential
equations are expressed in the language of calculus, which Isaac Newton invented
in the 1680s in order to explain how material bodies (apples, the moon, and so on)
move under the influence of an external force. Nowadays physicists use differential
equations to study a great range of phenomena: the motion of galaxies and the
stars within them, the flow of air and water, the propagation of sound and light,
the conduction of heat, and even the creation, interaction, and annihilation of
elementary particles such as electrons, protons, and quarks.

In our story, conduction of heat and change of temperature play a special role.
This kind of physics was first treated mathematically by Joseph Fourier in his 1822
book, Théorie Analytique de la Chaleur. The differential equation that governs
change of temperature is called the heat equation. It has the remarkable property
that as time increases, irregularities in the distribution of temperature decrease.

Differential equations apply to geometric and topological problems as well as
to physical ones. But one studies not the rate at which temperature changes, but
rather the rate of change in some geometric quantity as it relates to other quantities
such as curvature. A piece of paper lying on the table has curvature zero. A sphere
has positive curvature. The curvature is a large number for a small sphere, but
is a small number for a large sphere such as the surface of the earth. Indeed, the
curvature of the earth is so small that its surface has sometimes mistakenly been
thought to be flat. For an example of negative curvature, think of a point on the
bell of a trumpet. In some directions the metal bends away from your eye; in others
it bends towards it.

An early landmark in the application of differential equations to geometric
problems was the 1963 paper of J. Eells and J. Sampson. The authors introduced
the “harmonic map equation,” a kind of nonlinear version of Fourier’s heat equa-
tion. It proved to be a powerful tool for the solution of geometric and topological
problems. There are now many important nonlinear heat equations—the equations
for mean curvature flow, scalar curvature flow, and Ricci flow.

Also notable is the Yang-Mills equation, which came into mathematics from the
physics of quantum fields. In 1983 this equation was used to establish very strong
restrictions on the topology of four-dimensional shapes on which it was possible
to do calculus [2]. These results helped renew hopes of obtaining other strong
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geometric results from analytic arguments—that is, from calculus and differential
equations. Optimism for such applications had been tempered to some extent by
the examples of René Thom (on cycles not representable by smooth submanifolds)
and Milnor (on diffeomorphisms of the six-sphere).

Ricci Flow

The differential equation that was to play a key role in solving the Poincaré
conjecture is the Ricci flow equation. It was discovered two times, independently.
In physics, the equation originated with the thesis of Friedan [3], although it was
perhaps implicit in the work of Honerkamp [7]. In mathematics it originated with
the 1982 paper of Richard Hamilton [4]. The physicists were working on the renor-
malization group of quantum field theory, while Hamilton was interested in geo-
metric applications of the Ricci flow equation itself. Hamilton, now at Columbia
University, was then at Cornell University.

On the left-hand side of the Ricci flow equation is a quantity that expresses
how the geometry changes with time—the derivative of the metric tensor, as the
mathematicians like to say. On the right-hand side is the Ricci tensor, a measure
of the extent to which the shape is curved. The Ricci tensor, based on Riemann’s
theory of geometry (1854), also appears in Einstein’s equations for general relativity
(1915). Those equations govern the interaction of matter, energy, curvature of
space, and the motion of material bodies.

The Ricci flow equation is the analogue, in the geometric context, of Fourier’s
heat equation. The idea, grosso modo, for its application to geometry is that, just
as Fourier’s heat equation disperses temperature, the Ricci flow equation disperses
curvature. Thus, even if a shape was irregular and distorted, Ricci flow would grad-
ually remove these anomalies, resulting in a very regular shape whose topological
nature was evident. Indeed, in 1982 Hamilton showed that for positively curved,
simply connected shapes of dimension three (compact three-manifolds) the Ricci
flow transforms the shape into one that is ever more like the round three-sphere.
In the long run, it becomes almost indistinguishable from this perfect, ideal shape.
When the curvature is not strictly positive, however, solutions of the Ricci flow
equation behave in a much more complicated way. This is because the equation is
nonlinear. While parts of the shape may evolve towards a smoother, more regular
state, other parts might develop singularities. This richer behavior posed serious
difficulties. But it also held promise: it was conceivable that the formation of
singularities could reveal Thurston’s decomposition of a shape into its constituent
geometric atoms.

Richard Hamilton

Hamilton was the driving force in developing the theory of Ricci flow in math-
ematics, both conceptually and technically. Among his many notable results is his
1999 paper [5], which showed that in a Ricci flow, the curvature is pushed towards
the positive near a singularity. In that paper Hamilton also made use of the col-
lapsing theory [1] mentioned earlier. Another result [6], which played a crucial role
in Perelman’s proof, was the Hamilton Harnack inequality, which generalized to
positive Ricci flows a result of Peter Li and Shing-Tung Yau for positive solutions
of Fourier’s heat equation.
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Hamilton had established the Ricci flow equation as a tool with the potential
to resolve both conjectures as well as other geometric problems. Nevertheless,
serious obstacles barred the way to a proof of the Poincaré conjecture. Notable
among these obstacles was lack of an adequate understanding of the formation of
singularities in Ricci flow, akin to the formation of black holes in the evolution of
the cosmos. Indeed, it was not at all clear how or if formation of singularities could
be understood. Despite the new front opened by Hamilton, and despite continued
work by others using traditional topological tools for either a proof or a disproof,
progress on the conjectures came to a standstill.

Such was the state of affairs in 2000, when John Milnor wrote an article describ-
ing the Poincaré conjecture and the many attempts to solve it. At that writing,
it was not clear whether the conjecture was true or false, and it was not clear
which method might decide the issue. Analytic methods (differential equations)
were mentioned in a later version (2004). See [8] and [9].

Perelman announces a solution of the Poincaré conjecture

It was thus a huge surprise when Grigoriy Perelman announced, in a series of
preprints posted on ArXiv.org in 2002 and 2003, a solution not only of the Poincaré
conjecture, but also of Thurston’s geometrization conjecture [10], [11], [12].

The core of Perelman’s method of proof is the theory of Ricci flow. To its
applications in topology he brought not only great technical virtuosity, but also
new ideas. One was to combine collapsing theory in Riemannian geometry with
Ricci flow to give an understanding of the parts of the shape that were collapsing
onto a lower-dimensional space. Another was the introduction of a new quantity, the
entropy, which instead of measuring disorder at the atomic level, as in the classical
theory of heat exchange, measures disorder in the global geometry of the space.
Perelman’s entropy, like the thermodynamic entropy, is increasing in time: there is
no turning back. Using his entropy function and a related local version (the L-length
functional), Perelman was able to understand the nature of the singularities that
formed under Ricci flow. There were just a few kinds, and one could write down
simple models of their formation. This was a breakthrough of first importance.

Once the simple models of singularities were understood, it was clear how to
cut out the parts of the shape near them as to continue the Ricci flow past the
times at which they would otherwise form. With these results in hand, Perelman
showed that the formation times of the singularities could not run into Zeno’s wall:
imagine a singularity that occurs after one second, then after half a second more,
then after a quarter of a second more, and so on. If this were to occur, the “wall,”
which one would reach two seconds after departure, would correspond to a time
at which the mathematics of Ricci flow would cease to hold. The proof would be
unattainable. But with this new mathematics in hand, attainable it was.

The posting of Perelman’s preprints and his subsequent talks at MIT, SUNY-
Stony Brook, Princeton, and the University of Pennsylvania set off a worldwide
effort to understand and verify his groundbreaking work. In the US, Bruce Kleiner
and John Lott wrote a set of detailed notes on Perelman’s work. These were posted
online as the verification effort proceeded. A final version was posted to ArXiv.org
in May 2006, and the refereed article appeared in Geometry and Topology in 2008.
This was the first time that work on a problem of such importance was facilitated
via a public website. John Morgan and Gang Tian wrote a book-long exposition
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of Perelman’s proof, posted on ArXiv.org in July of 2006, and published by the
American Mathematical Society in CMI’s monograph series (August 2007). These
expositions, those by other teams, and, importantly, the multi-year scrutiny of the
mathematical community, provided the needed verification. Perelman had solved
the Poincaré conjecture. After a century’s wait, it was settled!

Among other articles that appeared following Perelman’s work is a paper in
the Asian Journal of Mathematics, posted on ArXiv.org in June of 2006 by the
American-Chinese team, Huai-Dong Cao (Lehigh University) and Xi-Ping Zhu
(Zhongshan University). Another is a paper by the European group of Bessieres,
Besson, Boileau, Maillot, and Porti, posted on ArXiv.org in June of 2007. It was
accepted for publication by Inventiones Mathematicae in October of 2009. It gives
an alternative approach to the last step in Perelman’s proof of the geometrization
conjecture. Perelman’s proof of the Poincaré and geometrization conjectures is
a major mathematical advance. His ideas and methods have already found new
applications in analysis and geometry; surely the future will bring many more.

JC, March 18, 2010
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Geometry in 2, 3 and 4 Dimensions

Michael Atiyah

1. Introduction

Ten years ago, when the Millennium challenge of the Clay Mathematical Insti-
tute was launched here in Paris, I was one of the two speakers tasked with presenting
the problems. The other was John Tate and 7 problems were divided between us,
broadly based on a geometry/algebra division.

So it is appropriate that I introduce today’s session devoted to the first of
the seven problems to be solved. The whole world now knows that the century
old conjecture made by Henri Poincaré, the leading French mathematician of his
time, has been conclusively settled by the young Russian mathematician Grigoriy
Perelman. It is without question a great event to be celebrated and the ten years
we have had to wait is a short period for a problem of this importance. Time
will tell how many decades will pass before the remaining six millennium problems
succumb to the skill and efforts of the young mathematicians of the 21st century. I
myself am optimistic that we will not have to wait too long for the next occasion,
though I expect another presenter will be required.

In the subsequent lectures there will be more specialized presentations of the
mathematical aspects of Perelman’s proof, both about its achievement and about
directions that it opens up for the future. My aim is to put things into a his-
torical context by reviewing in broad terms the history of geometry over the past
two centuries. As we know the Poincaré conjecture is about characterizing the 3-
dimensional sphere in topological terms and its resolution by Perelman, combined
with the earlier brilliant work of William Thurston, provides an essentially com-
plete understanding of compact 3-dimensional manifolds. As such it sits on the
cusp between the classical geometry of surfaces and the still emerging geometry of
4 dimensions, which may occupy mathematicians (and physicists) for many years
to come.

After my historical review I will move on to discuss relations between geometry
and physics which have enjoyed a remarkable renaissance in recent years. I will
conclude with a speculative peep into the future, indicating some of the problems
that lie ahead.

2. Historical context: dimensions 2 and 3

The single most important idea in differential geometry is that of curvature,
pioneered by Gauss and then by Riemann. It is remarkable how far-reaching this

c©2014 Michael Atiyah

1



2 MICHAEL ATIYAH

Figure 1. Henri Poincaré (1854–1912) and Grigoriy Perelman
(1966–)

has proved to be, and we can trace its evolution through the increase in dimensions.
Roughly we can divide the history of geometry into three eras.

19th century: dealing with 2 dimensions and the scalar cuvature R
20th century: dealing with 3 dimensions and the Ricci curvature Rij

21st century: dealing with 4 dimensions and the Riemann curvature Rijkl

Of course this is a great oversimplification and the boundaries between centuries are
fluid. Moreover the Riemann curvature remains a basic object in higher-dimensional
differential geometry. Nevertheless the work of Simon Donaldson has clearly shown
the unique properties of 4-dimensions, and this poses the current challenge. The
theory of (compact oriented) surfaces bridged the gaps between topology, differen-
tial geometry and algebraic geometry, with the seminal ideas being those of Niels
Henrik Abel. The outcome was the classification of surfaces into 3 types depending
on the genus g.

g = 0 sphere positive curvature
g = 1 torus zero curvature
g ≥ 2 general case negative curvature

It was Poincaré who laid the foundation of topology with the notion of homology
as the “counting of holes” of different dimensions and the introduction of the fun-
damental group. The Poincaré conjecture originated when Poincaré realized that
there was a 3-manifold with no homology other than the 3-sphere. This was the
famous “fake” 3-sphere, arising from the icosahedron, whose symmetries appear in
the fundamental group. This led Poincaré to formulate his famous conjecture:

A compact simply connected 3-manifold is topologically a sphere.

In the 20th century topology became a central topic and in 3 dimensions William
Thurston outlined a comprehensive programme in which all 3-manifolds were in-
cluded. Again, as in 2 dimensions, the classification involved the curvature. The
3- sphere typified positive curvature and hyperbolic 3-manifolds typified negative
curvature, with a total of 8 different types in all as building bricks for general
3-manifolds. Perelman’s proof, for the 3-sphere, extends naturally to the whole
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Figure 2. Gauss (1777–1855), Abel (1802–1829) and Riemann
(1826–1866)

Figure 3. William Thurston (1946–2012)

Thurston programme and this brings to a close a century’s work on the geometry
of 3 dimensions. It is definitely the end of an era.

3. Complex algebraic geometry

While the move from dimension 2 to dimension 3 appears to be the obvious
step there is a sense in which one should move from 2 to 4. This comes from the
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consideration of complex algebraic geometry. For complex dimension 1 this theory
was started by Abel and continued by Riemann. For algebraic varieties of complex
dimension n the real dimension is 2n, so the case n = 2 leads to 4-dimensional real
manifolds.

The key figures in the topology of higher-dimensional algebraic varieties were
Lefschetz, Hodge, Cartan and Serre.

Figure 4. Solomon Lefschetz (1884–1972); William Hodge (1903–
1975); Henri Cartan (1904–2008) and Jean-Pierre Serre (1926–)

While general algebraic geometry was one of the major developments of the
second half of the 20th century, the topology of real 4-manifolds had a great surprise
in store when Simon Donaldson made spectacular discoveries opening up an entirely
new area.
This work of Donaldson emerged as a by-product of new ideas in physics, another
example of which were the new knot invariants discovered by Vaughan Jones. This
led to extensive developments linking geometry (particularly in low dimensions)
to quantum physics. Much of this was due to Edward Witten and his colleagues.

So the 21st century has begun with the end of a chapter on 3-dimensions and with
new problems emerging in 3 and 4 dimensions for the future.
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Figure 5. Simon Donaldson (1957–)

Figure 6. Edward Witten (1951–) and Vaughan Jones (1952–)

Future Problems
Relate Jones quantum invariants to Perelman-Thurston.
Understand the structure of simply-connected 4-manifolds and
the relation to physics.

4. Speculation

Let me end with some personal speculations on the relation between geometry
and physics. As we know Einstein extended the 3 dimensions of space to a 4-
dimensional space-time where curvature embodies gravitational force. An idea due
essentially to Hermann Weyl shows how an extra 5th dimension incorporates the
Maxwell electro-magnetic field. While the 5-dimensional space has an indefinite
metric of signature (4, 1) we can ignore time and get a 4-dimensional Riemannian
manifold. Here Donaldson’s theory comes naturally into its own and I am attracted
by the idea that the phenomena he unearthed should play a key role in physics. I
am exploring the possible role of such Riemannian 4-manifolds as models of nuclear
matter, in which topology will relate directly to physics. These ideas are related
to, but different from, the way Donaldson’s theory is currently related to physical
theory. Speculation is risky but essential for progress. But ideas evolve, in a
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Darwinian process, with successful ones taking off and unsuccessful ones quietly
withering. My speculation may or may not survive the competition. The future
will tell.

Trinity College, Cambridge and Edinburgh University
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100 Years of Topology: Work Stimulated
by Poincaré’s Approach to Classifying Manifolds

John W. Morgan

1. Introduction

Since its formulation in 1904, the Poincaré Conjecture has stood as a signal
problem in topology. As such, it has attracted the attention of the leading topolo-
gists of each generation. As I will explain in this lecture, while the purely topological
methods used to attack this question did not succeed, they have proved extremely
fruitful in resolving closely related questions about manifolds. The Poincaré Con-
jecture continued to stand unresolved but the progress it generated made topology
one of the most exciting and vibrant subjects during the twentieth century. The
final irony of this story is that the method of solution comes not from the purely
topological approach that Poincaré originally suggested but rather from more geo-
metric and analytic approaches that have their foundations in other aspects of
Poincaré’s work. While it is impossible to know for sure what Poincaré would have
thought of the history of his conjecture and the nature of the solution, it is natural
and pleasing to speculate that he would have completely approved of the method.

This presentation is different from the others in this conference, which will
be concerned either with details of the proof of the Poincaré Conjecture or the
closely related Geometrization Conjecture or an exposition of related subjects. By
and large those presentations will cover more geometric and analytic topics. My
presentation mostly covers purely topological material. My aim is to show the
background of Poincaré’s work leading up to his conjecture as he grappled with how
to understand the topology of manifolds. Then I will explain his direct approach
to his conjecture about the 3-sphere and why the direct approach has been so
tantalizing to generation after generation of topologists. I will then discuss how the
study on manifolds evolved since Poincaré’s time, and what successes successive
generations of topologists did have with techniques that can be traced back to
Poincaré. Lastly, I will sketch the modern developments where ideas from physics,
geometry, and analysis have been brought to bear on the difficult questions about
3- and 4-dimensional manifolds.

It is clear from reading l’Analysis Situs and its complements that Poincaré’s goal
was to understand higher dimensional manifolds (higher in the sense of greater than
2, surfaces being much studied and well understood by then). He introduces various
ways to present, or define, these spaces; he is concerned with explicit examples
and with contexts in which the techniques of l’Analysis Situs can shed light on

c©2014 John W. Morgan
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more geometric and dynamic questions, for example the study of algebraic surfaces.
A recurring theme is the role of the Betti numbers and their generalization to
include what Poincaré calls torsion coefficients and the fundamental group, which
are closely related algebraic invariants. Throughout this series of papers, Poincaré
is wondering and conjecturing, often incorrectly, whether these algebraic invariants
are enough to determine the manifold up to isomorphism. He begins to understand
the depth and difficulty of this question as he focuses in on 3-manifolds in the fifth
and last complement to l’Analysis Situs. It is then that he formulates his famous
conjecture: This conjecture concerns the lowest mysterious dimension, 3, and the
simplest manifold in that dimension, S3, and proposes a characterization of that
manifold in terms of these algebraic invariants, namely a characterization in terms
of the fundamental group.

Let me present a brief survey of what was to follow. The theory of characteristic
classes flowing from the work of Chern, Weil, and Whitney, cobordism theory as in-
troduced by Thom, Smale’s proof of the h-cobordism theorem and the resolution of
the high dimensional Poincaré Conjecture, exotic smooth structures on the spheres
introduced by Milnor in 1956 and studied by Kervaire-Milnor in the early 1960s,
leading to Browder-Novikov surgery theory in the late 1960s and Kirby-Siebenmann
triangulation theory around 1970 gave answers for dimensions ≥ 5 to Poincaré’s
general search for a set of algebraic invariants to classify manifolds and what prop-
erties their algebraic invariants must have. This was the easy part and followed, in
spirit at least, the path that Poincaré indicated. It was a purely topological discus-
sion using differentiable techniques, combinatorial techniques (triangulations) and
robust algebraic topology to arrive at the answers. The outcome is as good a classi-
fication scheme as possible—we cannot answer all the questions that Poincaré would
have hoped for, but we know exactly what we can know. One thing that came out
of this analysis that was completely unsuspected by Poincaré is that differentiable
classification on the one hand and topological or combinatorial classification on the
other hand are different. Thus, any smooth manifold of dimension at least 5 with
trivial fundamental group and the homology of a sphere is homeomorphic to the
sphere (this is Smale’s theorem), but Milnor produced smooth manifolds with these
properties starting in dimension 7 that are not diffeomorphic to the sphere. This
divergence of smooth and topological manifolds is a high dimensional phenomenon;
in dimension 3 the classifications agree.

The remaining dimensions, 3 and 4, have proven more difficult and have not
been susceptible (to date) to purely topological reasoning. Geometry, analysis, and
physics have played a large role in unravelling the mysteries of these dimensions.
But before we get to that there is one part of the story in these exceptional dimen-
sions where purely topological techniques have been shown to be powerful enough.
This is when the 3-manifold has boundary of genus ≥ 1 or when the 3-manifold
admits an embedded surface of genus ≥ 1 whose fundamental group injects into the
fundamental group of the manifold. In these cases the work of Papakyriakopoulos
in the 1950s on Dehn’s lemma and the loop theorem led to work of Haken and Wald-
hausen in the 1960s to completely resolve the analogue of the Poincaré Conjecture
for these manifolds.

This completes a review of the purely topological advances. Let us turn now to
the more geometric and analytic work. The complete understanding of 3-manifolds
requires the analytic method of Ricci flow introduced by Hamilton in the 1980s,
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developed by Hamilton thorugh the 1980s and 1990s, and extended masterfully by
Perelman in 2002–2003. These developments will be explained in detail by others.

Manifolds of dimension 4 are even more of a mystery. In 1980 Freedman man-
aged to push down the high dimensional techniques to prove the 4-dimensional
analogue of the Poincaré Conjecture for topological 4-manifolds. At about the
same time, Donaldson using the Anti-Self-Dual equations from physics introduced
non-classical (i.e., not homotopy-theoretic) invariants for 4-manifolds. These have
been used to show that differentiable 4-manifolds up to diffeomorphism are very
complicated and their classification is unlike the topological classification and is also
very different from the classifications one finds in other dimensions. This part of the
story is still a mystery: we know that it is far more complicated than we currently
understand but we have no idea how to understand completely these manifolds.

I hope this brief survey makes clear that, overall, Poincaré was prescient. The
general approach he took, the types of questions he was asking, and the methods
he was using form the basis of all of the developments of topology of manifolds
and the applications of this field to geometric problems that followed. But history
has shown that in focusing as he did on S3, Poincaré was misguided on two fronts.
First, even though 3 is the lowest mysterious dimension, it and 4 turn out to be the
two hardest dimensions to deal with. Second, even though S3 is in some sense the
simplest 3-manifold it is the most difficult to deal with—‘larger’ 3-manifolds are
easier to understand. In the end he formulated one of the most difficult questions as
the next one to study. This was fortunate. It meant that no matter what startling
progress was made, it was clear to all workers that that progress was not enough,
Poincaré’s original question remained there unanswered as a beacon to spur further
work and as a test of new ideas in the study of the topology of manifolds.

I wish to thank Peter Shalen and Cameron Gordon for their help in prepar-
ing this account. Also, I recommend to the interested reader Cameron’s excellent
history [14] of 3-manifold topology up to 1960 which I drew on in preparing this
account.

2. l’Analysis Situs, and its five complements

In 1892 Poincaré [33] published a short note entitled Sur l‘Analysis Situs. This
was followed in 1895 by the much longer l’Analysis Situs [34] and its complements,
one through five, [35, 36, 37, 38, 39], published in 1899, 1900, 1902, 1902, and
1905. In 1901, he wrote an analysis of his scientific works (published in 1921) where
he said “ A method which lets us understand the qualitative relations in spaces of
dimensions more than 3 could, to a certain extent, render service analogous to that
rendered by figures ... In spite of everything, until now this branch of science has
not been developed much....As far as I am concerned, every one of the diverse paths
that I have followed, one after the other, have led me to analysis situs.”

I think it is fair to say that this series of articles represents the founding of
Topology, which is the modern name of what Poincaré called Analysis Situs, as
an independent branch of mathematics. Many, if not most, of the themes that
dominated the development of topology from 1900 until at least the 1960s are
either explicitly introduced or at least foreshadowed in this series of articles. I will
briefly describe the high points of these seven articles.

2.1. Sur l’Analysis Situs (1892) [33]. The paper is a short one. In it
Poincaré gives an example of two manifolds with the same Betti numbers but with
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different fundamental group, thus answering a question in the negative that he had
pondered: namely whether two closed manifolds with the same Betti numbers were
topologically equivalent. Poincaré presents the examples as quotients of the unit
cube

{(x, y, z)‖0 ≤ x, y, z ≤ 1}
by identifications of opposite faces: The pair of faces {x = 0} and {x = 1} are
identified by the map x �→ x + 1; similarly the faces {y = 0} and {y = 1} are
identified by y �→ y+ 1. These identifications produce a 3-manifold with boundary
which is the product of a two-torus with the unit interval. The torus boundary
components are then identified by

(x, y, z) �→ (αx+ βy, γx+ δy, z + 1),

where

A =

(
α β
γ δ

)

is an element of SL(2,Z). This last identification produces a torus bundle over the
circle with gluing (i.e., monodromy) A. Poincaré observes that two such manifolds
constructed with monodromies A and A′ have the same fundamental group if and
only A and A′ are conjugate in SL(2,Z), and on the other hand the first (and hence
second) Betti number for a general element of SL(2,Z) is one.

2.2. l’Analysis Situs (1895) [34]. This is a long (121 pages), foundational
paper. Poincaré begins by defending the study he is about to undertake by saying
“Geometry in n-dimensions has a real goal; no one doubts this today. Objects in
hyperspace are susceptible to precise definition like those in ordinary space, and
even if we can’t represent them to ourselves we can conceive of them and study
them.” There then follows a discursive introduction to the study of the topology
of manifolds. Many of the approaches and techniques that came to dominate 20th

century topology are introduced in this paper. It truly is the beginning of Topology
as an independent branch of mathematics. To give you a sense of the scope of this
paper, I will briefly review its highlights.

Poincaré begins by defining a manifold (of dimension n − p) as a subspace of
n-dimensional space given by p equalities:

F1(x1, . . . , xn) = 0, ..., Fp(x1, . . . , xn) = 0

and some inequalities:

ϕ1(x1, . . . , xn) > 0, . . . , ϕq(x1, . . . , xn) > 0,

subject to the condition that the Fj and ϕk are C1 and the rank of the Jacobian
differential of the system of F1, . . . , Fp is p at every solution. He also considers
manifolds defined by locally closed, one-one immersions from open subsets of Eu-
clidean n − p-space. He goes on to consider manifolds covered by overlapping
subsets of either type (though he is considering the real analytic situation where
the extensions are given by analytic continuation). Having defined manifolds, he
considers orientability, orientations, and homology. For him cycles are embedded
closed submanifolds and the relation of homology is given by embedded compact
submanifolds with boundaries. He defines the Betti numbers as the number of
linearly independent cycles of each dimension1.

1Actually, Poincaré’s definition is one more than the number of linearly independent cycles.



100 YEARS OF TOPOLOGY 11

Poincaré then turns to integration of what today are called differential forms
over compact submanifolds. Namely, he writes down the condition that a form be
closed and then he states (in modern language) that any closed form integrated
over a cycle that is homologous to zero gives the result of zero. What Poincaré
formulates is a special case of a general theorem, which goes under the name of (the
higher dimensional) Stokes’ Theorem. The first results along these lines date to the
early 19th-century and are due to Cauchy, Green, Stokes and Gauss for ordinary
curves and surfaces in 3-space. The modern formulation required (one could argue
forced) the notion of differential forms and exterior differentiation, both of which
were slowly emerging at Poincaré’s time and which were first written down in more
or less modern form by Cartan, [5]. For a history of Stokes’ Theorem see [19].

Next, Poincaré takes up the intersection number of closed, oriented manifolds
of complementary dimension and shows that if one of the manifolds is homologous
to zero then the intersection number is zero. He examines in more detail the case
when one of the manifolds is of dimension 1 and the other is of codimension 1. He
shows that if the manifold of codimension 1 is not homologous to zero then there
is a closed 1-manifold (i.e., a circle) that has a non-trivial intersection number
with it. Indeed, by separation arguments he finds a circle that has intersection
number 1 with the given codimension-1 submanifold. He then generalizes this idea
to higher dimensions arriving at a form of Poincaré duality for closed, orientable
manifolds and concludes for example that the middle Betti number of a closed,
oriented manifold of dimension 4k + 2 is always even.

Next, Poincaré passes to a form of combinatorial topology, giving another way
to construct manifolds. He considers spaces made by identifying the codimension-1
faces in pairs of one or more polyhedra. He shows that in dimension 3 in order
to get a manifold it is necessary and sufficient that the link of each vertex in the
resulting space have Euler characteristic 2. A related construction of manifolds is
to take a free, properly discontinuous group action on, say, Euclidean space. The
relation with the previous example comes from taking a fundamental domain for
the action and using the group to subdivide the boundary into faces which are then
identified in pairs.

Poincaré then introduces the fundamental group. He does so by considering
multi-valued functions and the action of the group of homotopy classes of based
loops on these functions (hence, giving an explicit representation of the fundamen-
tal group). He describes a presentation of the fundamental group of a manifold
obtained by gluing together in pairs the codimension-1 faces of a polyhedron: a
generator for each pair of codimension-1 faces, a relation around each codimension-
2 face. He also describes how to compute the first Betti number of such a manifold:
namely, abelianize the relations associated with each codimension-2 face. Using this
analysis Poincaré gives the examples from Sur l’analysis situs of 2-torus bundles
over the circle with the same Betti numbers but with different fundamental groups,
showing that the Betti numbers are not enough to determine the manifold up to
homeomorphism. He then asks three questions:

(1) Given a presentation of a group is there a manifold with this as its fun-
damental group?

(2) How does one construct this manifold?
(3) If two manifolds have the same dimensions and the same fundamental

group, are they homeomorphic?
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Poincaré then turns to other ways to construct new manifolds from old. He
considers (free) group actions on a manifold and constructs the quotient. His first
example is the projective plane as a quotient of the usual sphere in 3-space by the
antipodal action of Z/2Z. He also considers products of spheres Sn × Sn with the
Z/2Z-action that interchanges the factors and makes the wrong claim that for all
n > 1 the quotient of this action is a closed manifold. (What he actually establishes
is that for n > 1 the quotient has no codimension-1 singularities.)

Lastly, Poincaré introduces the Euler number for a manifold that is presented
as divided into pieces (cells), the interior of each being diffeomorphic to a ball of
some dimension, e.g., a triangulation. He introduces the idea of subdivision for
these presentations and, by taking a common subdivision, shows that the Euler
number is independent of subdivision. He then computes the Euler number of a
closed manifold and shows that it is zero if the dimension is odd and that it depends
on the Betti numbers when the dimension is even.

So in this foundational paper we have the definition of manifolds and various
ways of producing them: as solutions to equations and inequalities, as covered
by images of open subsets of ordinary space, as quotients of polyhedra by gluing
together faces, as quotients of free, properly discontinuous group actions. On these
manifolds we have differential forms with exterior differentiation and integration.
We have Betti numbers, Poincaré duality relating complementary dimensional Betti
numbers, and we have the Euler characteristic. This is an excellent start for the new
subject of Topology, but Poincaré was not finished with this subject. He went on to
write 5 complements to this article where he develops these themes and considers
applications of Topology to Algebraic Geometry.

2.3. The first complement (1899) [35]. This complement is concerned with
the Poincaré duality result given in l’Analysis Situs. Poincaré states that Heegaard
objected to his result that the Betti numbers in complementary degrees are equal
and gave as an example of a 3-manifold with first Betti number 1 and second
Betti number 0. (Here, the Betti number is taken to be the minimal number of
cycles needed to generate the homology.) Poincaré points out that the discrepancy
between Heegaard’s definition and his own is that Heegaard is working over the
integers and Poincaré is working over the rational numbers. Thus, in modern
language Heegaard’s example has torsion first homology and no second homology.

Poincaré goes on to say that Heegaard’s objection is well-founded in one way;
namely, Poincaré’s proof of duality works in both cases, and therefore must not be
correct. Poincaré’s purpose in this complement is to rectify the proof of duality.

This time he approaches the proof from the combinatorial point of view. He
revisits the notion from l’Analysis Situs of a polyhedral decomposition of a manifold
into cells, each cell being a closed submanifold whose boundary is a union of cells
of one lower dimension. Furthermore, the relative interiors of the cells are disjoint.
Unless otherwise specified, Poincaré (and we also) restrict to decompositions where
the interior of each cell is differeomorphic to an open ball of some dimension. He
introduces the simplicial homology associated with such a decomposition: This is
defined starting with a chain complex with free abelian chain groups, one Z in the
kth chain group for each k-dimensional cell in the decomposition. A generator of
this free abelian factor is given by chosing an orientation for the cell in question; the
opposite orientation is the opposite generator. The boundary map ∂ of the chain
complex comes from the decomposition of the boundary of a cell as a union of cells
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of one lower dimension. Poincaré shows that ∂ ◦∂ = 0. By definition the homology
of this chain complex is the homology associated with the given decomposition.

Next Poincaré introduces the notion of a polyhedral subdivision, where each
of the cells is divided into smaller cells (again keeping the condition that the inte-
rior of each cell is diffeomorphic to an open ball). Poincaré then argues that the
associated homology is unchanged if one passes from such a polyhedral decompo-
sition to a polyhedral subdivision. Then he argues that any two such polyhedral
decompositions (which should be deformed slightly to be in general position) have
a common polyhedral subdivision and hence the homology associated with a de-
composition is in fact an invariant of the manifold independent of the polyhedral
decomposition. He makes a brief argument (that he returns to in more detail in
the next complement) to show that this homology is the same as the one computed
from closed submanifolds modulo boundaries in the ambient manifold. (Of course,
with hindsight we know that Poincaré was missing the crucial distinction between
cycles, which in general have to be singular, and submanifolds. This point was not
understood until Thom’s work [47].) The basic idea in Poincaré’s discussion is that
since any closed submanifold is the union of cells of some polyhedral decomposition
that cycle is accounted for in the homology computed using that decomposition,
which after all is independent of the decomposition. Thus, every closed manifold is
accounted for in the homology computed via a polyhedral decomposition. (Poincaré
has more to say about this later.)

At this point he is prepared for his proof of the duality theorem, which as
he states it says that the Betti numbers (computed using rational coefficients) of
a closed, orientable manifold in complementary degrees are equal. He argues as
follows: Begin with a polyhedral decomposition and take (what is now called) a
barycentric subdivision. One does this by adding a vertex va in the relative interior
of each cell a, and for any string a0 < a1 < · · · ak of cells each strictly included
in the boundary of the next, one constructs a k-dimensional ball inside ak with
the va0

, . . . , vak
as vertices. These various balls are required to fit together in

the naturally consistent way so that they make a polyhedral decomposition which
subdivides the original decomposition. Once this barycentric subdivision is created,
one constructs the dual polyhedral decomposition to the original one. For each cell
a of the original decomposition one takes the union of all the cells of the barycentric
subdivision that meet a exactly in its vertex va. The relative interior of this union
is diffeomorphic to a Euclidean space of dimension n − k if a is k-dimensional
and the ambient manifold is n-dimensional. These submanifolds construct the dual
polyhedral cell decomposition. From this picture it is easy to conclude the duality of
the Betti numbers: The (n−k)th Betti number of the dual polyhedral decomposition
is identified with the kth-Betti number of the original decomposition. But by the
invariance result, the (n− k)th Betti number of the dual polyhedral decomposition
is identified with the (n− k)th Betti number of the original decomposition.

Lastly, Poincaré remarks that this argument depends on being able to find a
polyhedral decomposition of any manifold into cells with interiors diffeomorphic to
open balls. He then gives a brief argument to establish this fact. In fact, he argues
that every smooth manifold has a decomposition into simplices (i.e., has a smooth
triangulation).

2.4. Second Complement (1900) [36]. Poincaré returns once again to the
homology associated with a polyhedral decomposition of a manifold (as always into
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cells with interiors diffeomorphic to open balls); in particular he is concerned with
the relationship of the decomposition and the dual decomposition, which recall is
constructed by taking the barycentric subdivision of the original decomposition and
then associating to each cell a of the original decomposition the union of the cells
meeting a exactly in its barycenter.

Poincaré then presents the matrices giving the boundary operator of the chain
complex associated with the polyhedral decomposition. Using standard row and
column operations he diagonalizes this operator. From the matrices for the bound-
ary operator from q+1 chains to q chains and that of the boundary operator from
q chains to q − 1 chains he computes the qth Betti number as the difference of the
rank of the kernel of the latter and the rank of the image of the former. From the
matrix for the boundary operator from q-chains to (q− 1)-chains he introduces the
torsion coefficients associated to the (q−1)-homology group. These are the diagonal
entries > 1 of the diagonalized matrix for the boundary operator. He then remarks
that the difference between Heegaard’s definition of the Betti numbers (using the
integral coefficients) and his definition (using rational coefficients) is explained by
these torsion coefficients. In particular, the two definitions agree when there are no
torsion coefficients.

After giving some examples and analysing (only partially correctly) what ac-
counts for torsion in homology, Poincaré states the false result that an n-dimensional
closed, orientable manifold with all Betti numbers (except the 0th and the top one)
equal to zero and all torsion coefficients equal to zero is diffeomorphic to the n-
sphere. He announces the result and says that the proof requires further develop-
ments. It is not clear if he means that he knows how to do it and simply needs to
write down the details or whether it is still a proof in-progress. In any event he will
show in the fifth complement that this statement is false.

2.5. Third Complement (1902) [37]. This complement and the fourth con-
cern applications of the techniques and ideas of Analysis Situs to algebraic surfaces.
This complement takes up the study of the fundamental group of a complex alge-
braic surface S given by an equation of the form

z2 = F (x, y),

where F (x, y) is a polynomial. Poincaré shows that if F (x, y) describes a smooth
curve then the resulting surface is simply connected. He does this by considering the
surface S as fibered over the y-plane with hyperelliptic curves as fibers with a certain
number of singular fibers. Removing the preimage of small disks in the y-plane
centered at each singular point, Poincaré arrives at a 4-manifold with boundary, S0

which is fibered by hyperelliptic curves. The boundary components of this manifold
are 3-manifolds fibered over circles of the type he studied in an earlier complement.
He expresses the fundamental group of S0 as an extension of a free fuchsian group
(the group of the punctured sphere given by y) by the fundamental group of the
fuchsian group corresponding to the hyperelliptic curve which is the fiber over the
base point. He then shows that putting back in the preimages of the disks around
the singular points in the y-plane produces a quotient of this group that is trivial.

2.6. Fourth Complement (1902) [38]. In the fourth complement Poincaré
continues his study of the topology of algebraic surfaces, concentrating in particular
on their homology. He considers the surfaces as displayed over the projective line
with the fibers being algebraic curves. Generically, these are smooth algebraic
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curves but the curves above a finite set of points, A1, . . . , An, in the projective line
are singular. There is then the monodromy action (introduced earlier by Picard) of
the fundamental group of CP 1 \ {A1, . . . , An} on H1 of the generic fiber. Poincaré
reduces the study of cycles of dimensions 1, 2, and 3 to a study of this action.
In this he foreshadows the analysis that Lefschetz carried out in the 1920s on the
topology of smooth algebraic varieties.

2.7. Fifth Complement (1905) [39]. The fifth complement is the one di-
rectly relevant to this conference. It is at the end of this long article that Poincaré
formulates the question that soon became known as the Poincaré Conjecture. But
before getting to that let me lay the groundwork by discussing what else one finds in
this article dedicated to the study of the topology of 3-manifolds. The main result
of the article is to give a counter-example to the statement he formulated in the
second complement; namely that a n-manifold with the homology of the n-sphere
is diffeomorphic to the n-sphere. The counter-example is a 3-manifold with the
homology of the 3-sphere but whose fundamental group is non-trivial, so it is not
diffeomorphic to S3. Immediately after giving this example, Poincaré says: “There
remains one question to treat: Is it possible that the fundamental group of [the
3-manifold] V is trivial yet V is not diffeomorphic to the sphere?” He goes on to
say, “But this question would take us too far afield.”

Poincaré studies the 3-manifold V by placing it in a Euclidean space and cutting
it by a family of equations of the form ϕ(x1, . . . , xn) = t, creating a family (de-
pending on t) of codimension-1 submanifolds with certain singular values. Poincaré
shows that generically the singular values are what today are called regular singular
points, and he introduces the index of each such singular point—introducing what
later become known as Morse theory. He studies the effect on homology of passing
a critical point of index 1 or 2 and shows exactly how the first homology of the
surface changes: If the index is two and if the vanishing cycle E (the circle in the
level surface just below the critical level that contracts to a point at the critical
level) is not homologous to zero then the cycles that persist are those that have zero
intersection number with E and there is one additional homology, namely E ∼= 0,
so that as we pass this critical value the rank of the first homology of the level
surface decreases by 2.

In preparation for his study of 3-manifolds using a Morse decomposition,
Poincaré first turns to an analysis of curves on a Riemann surface. He shows
that given two systems {C1, . . . , C2p} and {C ′

1, . . . , C
′
2p} of simple closed curves on

a surface of genus p, each family generating the first homology, there is an equiva-
lence (self-diffeomorphism) of the surface carrying each Ci to a curve homologous
to C ′

i for every 1 ≤ i ≤ 2p if and only if the intersection matrices satisfy(
Ci · Cj

)2p
i,j=1

=
(
C ′

i · C ′
j

)2p
i,j=1

.

Given this it is easy to see when a cycle, written as a linear combination of a basis∑2p
i=1 aiCi is homologous to a simple closed curve. It is if and only if the cycle is

not divisible (i.e., if and only if the gcd of the coefficients ai is 1).
Poincaré then turns to the question of when a based cycle C is homotopic

(without preserving the basepoint) to a simple closed curve. This question he
studies using 2-dimensional hyperbolic geometry, the Poincaré disk. The cycle C
determines an element in the fundamental group of the surface and , after endowing
the surface with a hyperbolic structure, this element is represented by a hyperbolic
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transformation of the Poincaré disk. This hyperbolic motion has two fixed points α
and β on the circle at infinity. The condition that C be homotopic to an embedded
curve is that for no element T of the fundamental group are the points Tα and Tβ on
the circle at infinity separated by α and β. Poincaré derives an analogous condition
for two simple closed curves on the surface to be homotopic to disjoint simple closed
curves. Again the answer is in terms of the fixed points of the hyperbolic motions
associated with the two curves. Notice that Poincaré’s approach to this purely
topological question about surfaces uses hyperbolic geometry rather than purely
topological arguments.

Poincaré then turns to the study of the solid handlebody V ′ of genus p: this is
a compact 3-manifold with boundary, say Σ, having a Morse function with a single
critical point of index 0 and p critical points of index 1 and no higher index critical
points. He shows that the critical points contribute p simple closed curves on Σ
that bound p disjoint, properly embedded disks in V ′. Cutting V ′ open along these
p disks results in a 3-ball and the boundary is the 2-sphere made up of the union
of Σ cut open along p simple closed curves and p disks. He then asks how many
different ways can we present the given handlebody V ′. Let the p boundary circles
in the original presentation be K1, . . . ,Kp and let the boundary circles in the second
presentation be K ′

1, . . . ,K
′
p. The conditions that the K

′
i must satisfy is (i) they are

simple closed curves, (ii) they are disjoint, (iii) they are homotopically trivial in V ′,
and (iv) the cycles K ′

i generate the kernel of the map H1(Σ) → H1(V
′).

Now Poincaré turns to the study of a closed 3-manifold V . Using an appropriate
Morse function, he writes V as the union of two solid handlebodies V ′ and V ′′

of genus, say, p. From the Morse function he produces two families of p curves
K ′

1, . . . ,K
′
p and K ′′

1 , . . . ,K
′′
p on the separating surface Σ which is the boundary of

V ′ and V ′′. Each of the K ′
i bounds a disk in V ′ and analogously for the K ′′

i in V ′′.
This means that there is a homeomorphism of Σ to the boundary of a handlebody
carrying the K ′

i to a standard family of simple closed curves and similarly for
the family K ′′

i . The first thing he does with this presentation is to express the
fundamental group of V in terms of the fundamental group of the splitting surface
Σ. He first shows that any element of the fundamental group of V is represented
by a loop on Σ. Then he concludes that the fundamental group of V is the quotient
of the fundamental group of Σ by the relations [K ′

1] = · · · = [K ′
p] = [K ′′

1 ] =
· · · = [K ′′

p ] = identity. (Here, [K] means the conjugacy class in the fundamental
group represented by the simple closed curve K.) Of course, from this one can
immediately deduce the homology of the manifold: it is the group obtained by
abelianizing the quotient, or equivalently, beginning with the free abelian group
which is the first homology of Σ and adding the 2p relations above to this group.
Poincaré then reformulates the computation of the homology as the cokernel of
the intersection matrix between the K ′

i and the K ′′
j . Varying the bases we can

arrange that this matrix is diagonal. The first Betti number is then the co-rank
of the matrix (p-rank) and the torsion coefficients of the first homology are read
off from the diagonal entries that are greater than one. In particular, the manifold
has trivial first homology if and only if the determinant of this intersection matrix
is ±1 and the first Betti number is non-zero if and only if the determinant of the
matrix is 0.

Poincaré is now ready to compute in an explicit example V . The genus of the
splitting surface Σ for V is 2 so that we are concerned with two families of two
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curves {K ′
1,K

′
2} and {K ′′

1 ,K
′′
2 } on a surface Σ of genus 2. These generate the two

handlebodies whose union is V . We can suppose that {K ′
1,K

′
2} is the standard

family so that cutting Σ open along these simple closed curves gives a region which
can be identified with a thrice punctured disk D0 in the plane. Then each of the
the curves K ′′

1 and K ′′
2 is given by drawing families of disjoint arcs on D0 whose

boundary points match in pairs. Furthermore, the two families of arcs are disjoint
from each other. (There is the extra condition that when we cut Σ open along K ′′

1

and K ′′
2 we also get a surface diffeomorphic to the thrice punctured disk.) Figure 1

below is the picture that Poincaré drew in his text. Figure 2 (see next page) shows
the resulting curves K ′′

1 ,K
′′
2 on the surface of genus 2.

Figure 1. Poincaré’s figure

The intersection matrix between the two sets of curves is:

(
3 2
−2 −1

)
.

Since the determinant of this matrix is 1, it follows that the first homology is trivial;
i.e., the first Betti number is zero and there are no torsion coefficients.

How about the fundamental group? Poincaré computes this by a similar argu-
ment in non-abelian group theory. In modern language, we begin with the free group
on two generators α and β (dual respectively to K ′

1 and K ′
2). The curves K ′′

1 and
K ′′

2 then give two elements in this free group and the quotient when these elements
are set equal to the trivial element is the fundamental group of V . The word that
K ′′

i gives is read off by taking the intersections in order (and with signs as powers) of
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Figure 2. Curves drawn on the surface

K ′′
i with K ′

1 and K ′
2. Thus, the curve K ′′

1 gives the word ααααβα−1β = α4βα−1β
and K ′′

2 gives the word α−1βα−1β−1β−1 = α−1βα−1β−2. (These words are deter-
mined only up to cyclic order depending on where on K ′′

i we choose to start. But
since we are setting the elements equal to the trivial element all choices lead to the
same quotient group.) We then have a presentation of the fundamental group of V
as

〈α, β|α4βα−1β = α−1βα−1β−2 = 1〉.
Adding the relation (α−1β)2 = 1 we deduce that in the quotient group we have

〈α, β|(α−1β)2 = (β−1)3 = α5 = 1〉.
Setting a = α−1β, b = β−1 and c = α we get the standard presentation of the
(2, 3, 5) triangle group

〈a, b, c|a2 = b3 = c5 = abc = 1〉
inside SO(3). This group is the icosahedral group of order 60, denoted Γ60. Hence,
the fundamental group of the manifold V has a quotient which is this non-trivial
group and thus the fundamental group of V is non-trivial and consequently V is not
diffeomorphic to the 3-sphere even though it has the same homology as the 3-sphere.
(It is in fact easy to see that the fundamental group of V is the binary icosahedral
group, which is the pre-image of Γ60 in the double covering SU(2) → SO(3).) This
example is called the Poincaré homology sphere.

Having constructed this example, Poincaré asks the natural follow-up question,
What if the fundamental group is trivial? Is that enough to force the manifold to
be diffeomorphic to the 3-sphere?

Actually, Poincaré asks this question and then goes on to say, “In other words,
if V is simply connected can we change the families of curves generating the two
handlebodies until they meet in the standard way (so that for each i, K ′′

i meets only
K ′

i and meets it only once)?” Arranging this will certainly prove that the manifold
V is diffeomorphic to S3, but the converse is not obvious and was not established
until the 1960s by Waldhausen [50].
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To prepare the way for the higher dimensional analogues of the Poincaré Con-
jecture, let us reformulate it. Suppose that V has trivial fundamental group. Since
the first homology of V is the abelianization of the fundamental group, V has trivial
first Betti number and no torsion coefficients for the first homology. By Poincaré
duality this implies that the second Betti number is trivial. Consequently, V au-
tomatically has the homology of S3. In fact, as we know now, a much stronger
statement is true: the manifold is homotopy equivalent to the sphere in the sense
that there are maps from the manifold to S3 and from S3 to the manifold so that
each composition is homotopic to the identity of the appropriate manifold. Such
manifolds are called homotopy 3-spheres.

2.8. Why the Poincaré Conjecture has been so tantalizing. Poincaré’s
approach makes clear one reason that his conjecture is so tantalizing. It can be
reformulated purely in terms of curves on a surface. One begins with two families
F and F ′ of p disjoint simple curves on a surface of genus p, each family standard
in its own right up to self-diffeomorphism of the surface. One is allowed to replace
say F ′ by another family normally generating the same subgroup as F ′. Can one
find such a replacement with the property that the resulting two families are dual
in the sense that the ith curve from F ′ meets only the ith curve from F and meets
that curve in a single point, if and only if the quotient of the fundamental group
of the surface by the normal subgroup generated by the collection of curves in
F ∪F ′ is the trivial group? One feels that this is a problem one can attack without
any sophisticated theory; surely one can understand curves on a surface and their
intersection patterns well enough to decide the question.

There is a purely group theoretic reformulation of the question: Suppose we
have a surface Σ of genus p ≥ 2 and a homomorphism ϕ from the fundamental
group of Σ onto Fp×Fp where Fp is the free group on p generators. Then ϕ factors
through a surjection onto a non-trivial free product A ∗ B. This purely group-
theoretic question also seems tantalizingly approachable, but no one has succeeded
in giving a direct, group theoretic, proof.

3. Work during the period 1904–1950

3.1. Dehn’s work. The next major attack on the topology of 3-manifolds
came from Max Dehn. In 1910 he published a paper [8] where he showed that taking
two non-trivial knot complements (the complements of a solid-torus neighborhoods
of two non-trivial knots in the 3-sphere) and sewing them together so that the
meridian of one matches the longitude of the other and vice-versa produces a 3-
manifold with the homology of S3. Dehn also claimed that these manifolds were
not diffeomorphic to S3 since they contain a torus that does not bound a solid
torus. But it was not until 1924 that Alexander ([2]) established that every torus
in the 3-sphere bounds a solid torus. On the other hand, it is not too difficult
to see (using Van Kampen’s theorem which was formulated later but more or less
understood even in Poincaré’s day) that the fundamental groups of the manifolds
that Dehn constructed in this way are non-trivial, so that these manifolds are indeed
distinct from S3. This produces a plethora of homology 3-spheres (manifolds with
the homology of the 3-sphere). Dehn also introduced a notion that has proven
to be of central importance in the theory of 3-manifolds; namely, the notion of
Dehn surgery. Given a 3-manifold M and a knot K ⊂ M , one removes a solid
torus neighborhood of K from M and sews this solid torus back into the resulting
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complement using some self-diffeomorphism of the boundary 2-torus. These self-
diffeomorphsims up to isotopy are identified with SL(2,Z) via the action of the
diffeomorphism on the first homology of the two-torus. Dehn then constructed
manifolds by this method, starting with a (2, q)-torus knot in S3—these are knots
lying on the surface of a standard torus and wrapping that torus linearly twice in
one direction and q times in the other (q must be odd). Dehn identified which of the
non-identity Dehn surgeries on (2, q)-torus knots produce manifolds with with the
homology of the 3-sphere and showed that they all have non-trivial fundamental
groups (usually infinite). When the knot is the (2, 3)-torus knot there is a surgery
that produces a manifold with the same group as Poincaré’s example (later proved
to be diffeomorphic to Poincaré’s example).

The examples of Dehn surgery on (2, q)-torus knots were much better under-
stood after the work of Seifert [42] and Seifert and Threlfall [43]. They considered
3-manifolds that admit locally free circle actions (now called Seifert fibrations).
They showed that all of the examples coming from Dehn surgery on (2, q)-torus
knots were such manifolds and they showed how to compute the fundamental group
of these manifolds. In particular, Dehn’s exceptional example was shown to have
the same fundamental group as Poincaré’s original example—it is the pre-image in
SU(2) of the symmetries of the regular icosahedron (Dehn had earlier considered
this fundamental group but slightly miscomputed it.)

3.2. Work of Kneser. In [24] Kneser had also constructed a 3-manifold with
the same fundamental group as Poincaré’s example (and Dehn’s exceptional exam-
ple). He described the manifold as the space of regular icosahedra of volume 1
centered at the origin in R

3; or said another way the quotient SO(3)/Γ60, where
recall that Γ60 is the group of symmetries of a regular icosahedron centered at
the origin in 3-space. This description implies that this manifold has a spherical
geometry: it is the quotient of the 3-sphere with its standard metric by a finite
group of isometries acting freely. Thus, the quotient has a Riemannian metric
of constant sectional curvature +1. Later it was shown that all these manifolds—
Poincaré’s original example, Dehn’s example and the geometric quotient introduced
by Kneser are diffeomorphic. It is now known, thanks to the work of Perelman,
that this is the only homology 3-sphere (besides S3) with finite fundamental group.

Kneser made another, even more important contribution to the study of the
topology of 3-manifolds. He studied essential families of disjointly embedded 2-
spheres in compact 3-manifolds. Essential means that each member is non-trivial
in the sense that it does not bound a 3-ball and no two members of the family
are parallel in the sense that they form the boundary of a region diffeomorphic to
S2 × I in the 3-manifold. He showed that for every compact 3-manifold V there
is a finite upper bound to the number of two spheres in any essential family. This
leads us to three definitions:

Definition 3.1.

(1) A 3-manifold is prime if it is not diffeomorphic to S3 and if every sepa-
rating 2-sphere in the manifold bounds a 3-ball.

(2) A 3-manifold is irreducible if every 2-sphere in the 3-manifold bounds a
3-ball.

(3) A 3-manifold V is a connected sum of X and Y , with X and Y being the
summands, if there is a separating 2-sphere in V such that the two sides
of this sphere are diffeomorphic to X \ B3 and Y \ B3. The connected
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sum is non-trivial unless one of the two summands is diffeomorphic to S3.
In that case V is diffeomorphic to the other summand.

It is easy to see that the only (orientable) prime 3-manifold that is not irre-
ducible is S2 × S1. It is also easy to see that a 3-manifold is a non-trivial con-
nected sum unless it is prime or diffeomorphic to S3. The import in these terms
of Kneser’s result is that every compact 3-manifold is a connected sum of (finitely
many) prime 3-manifolds. Such a decomposition is called a prime decomposition
of the 3-manifold, and the prime manifolds that appear are the prime factors of
the decomposition. Later, Milnor ([27]) showed that the prime factors that ap-
pear in any prime decomposition of a given 3-manifold are the same (up to order)
no matter what prime decomposition is chosen. Thus, from a structural point of
view 3-manifolds up to diffeomorphism are just like the natural numbers: there is
a commutative product—connected sum—with a unit—S3—and an infinite collec-
tion of primes. Every 3-manifold is a product (i.e., a connected sum) of a finite
number of prime factors and the prime factors are unique up to order. This result
reduces all questions about 3-manifolds to questions about prime 3-manifolds. For
example, because the fundamental group of a connected sum of 3-manifolds is the
free product of the fundamental groups of the factors, there is a counter-example
to Poincaré’s Conjecture if and only if there is a prime counter-example. Indeed,
the set of homotopy 3-spheres (up to diffeomorphism) is the free monoid on the
prime homotopy 3-spheres. Of course, we now know, thanks to Perelman, that this
monoid has only one element, namely S3. The unique connected sum decomposition
result does not hold in dimensions greater than 3.

4. Work from 1950–1970

4.1. Work of Papakyriakopoulos. The next advances in the topology of
3-manifolds occurred in the 1950s and were due to Christos Papakyriakopoulos
(universally known as Papa). He showed ([32]) two remarkable and very important
results about surfaces in 3-manifolds. The first goes under the name of Dehn’s
Lemma and the Loop Theorem. It says that if M is a compact 3-manifold with
boundary and if Σ is a boundary component of M with the property that the map
on the fundamental groups induced by inclusion of Σ intoM has a non-trivial kernel
then (i) there is a simple closed curve in Σ that is not homotopically trivial in Σ but
is homotopically trivial in M , and (ii) given any simple closed curve homotopically
non-trivial in Σ but homotopically trivial in M , this curve is the boundary of a disk
embedded into M . The second of Papa’s results is called the Sphere Theorem. It
says that if M has non-trivial second homotopy then there is either an embedded
2-sphere in M or an embedded projective plane in M so that the map induced by
the inclusion of this surface into M is non-trivial on the second homotopy group.

Let us point out some consequences of Dehn’s Lemma and the Loop Theorem.
The first verifies a claim of Dehn’s from 1910:

Corollary 4.1. Any embedded 2-torus in S3 bounds a solid torus.

Proof. Let T ⊂ S3 be an embedded 2-torus. The first remark is that by the
uniqueness of the prime decomposition, any 2-sphere in S3 bounds a 3-ball on each
side. The surface T separates the 3-sphere. According to van Kampen’s theorem
the fundamental group of T cannot inject into the fundamental group of both sides
since the fundamental group of the 3-sphere is trivial. Thus, by Dehn’s Lemma and
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the Loop Theorem there is an embedded disk in the 3-sphere meeting T exactly in
its boundary and this simple closed curve is homotopically non-trivial on T . The
union N of a thickening of T and a neighborhood of the disk has two boundary
components: a 2-torus parallel to T and a 2-sphere. The 2-sphere bounds a 3-ball
whose interior is disjoint from N , and the union of N and this 3-ball is a solid torus
whose boundary is a 2-torus parallel to T . Hence, T also bounds a solid torus. �

Another consequence is an analogue of the Poincaré Conjecture for knots.

Corollary 4.2. A knot K ⊂ S3 is the trivial knot (i.e., deforms as a knot
in S3 to a planar circle) if and only if the fundamental group of the complement
S3 \K is isomorphic to Z.

Proof. First notice that the trivial knot has complement that is an open
solid torus so the fundamental group of its complement is indeed isomorphic to Z.
Conversely, suppose that the fundamental group of the complement is isomorphic
to Z. Let ν be a solid torus neighborhood of K and let T be its boundary. Then the
fundamental group of (S3 \ int ν) is also isomorphic to Z. Hence, by Dehn’s lemma
and the Loop Theorem there is an embedded disk in S3 \ int ν whose boundary is
a homotopically non-trivial simple closed curve on T . As before, this means that
S3 \ int ν is a solid torus. From this it is easy to see that K bounds a, smoothly
embedded disk in S3, meaning that K continuously deforms as a knot to a planar
circle. �

I believe that the feeling was that when Papa proved these results the Poincaré
Conjecture and the complete classification of 3-manifolds would not be far behind.
While Papa’s results spurred tremendous progress in the subject, this was not to be
the case in spite of a plethora of claimed proofs of the Poincaré Conjecture around
this time.

4.2. Haken and Waldhausen. The work of Papa led in the 1960s to a
much deeper understanding of 3-dimensional manifolds. Haken ([16]) generalized
Kneser’s argument for 2-spheres in a 3-manifold to surfaces of higher genus whose
fundamental groups inject. He showed that in any given compact irreducible 3-
manifold the number of non-parallel such surfaces is bounded. He also introduced
hierarchies for compact, irreducible 3-manifolds admitting at least one embedded
surface of genus ≥ 1 whose fundamental group injects into the manifold. In [51]
Waldhausen used these ideas to study such manifolds, which he called sufficiently
large. He was able to show the analogue of the Poincaré Conjecture: Two suffi-
ciently large 3-manifolds with isomorphic fundamental groups are diffeomorphic. (It
had been known since the work of Alexander, [1], in 1919 that there are lens spaces,
which are quotients of S3 by cyclic groups, with isomorphic fundamental groups
that are not homeomorphic.) Thus, the theory of sufficiently large 3-manifolds was
well understood by 1968. Of course, the sphere and any homotopy sphere are not
sufficiently large, so the theory of sufficiently large 3-manifolds is orthogonal to the
Poincaré Conjecture. What was then coming into focus is that the ‘small’ three
manifolds, e.g., those with finite fundamental group are much harder to study than
the sufficiently large ones.
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5. Passage to Higher Dimensions

While the work on 3-manifolds was continuing, a broadening of perspective
was taking place in topology. During the last half of the 1950s and then with
a vengeance after Smale’s work in 1961, attention of the topologist largely shifted
from dimension 3 to higher dimensions, i.e., dimensions ≥ 5. Milnor ([26]) produced
exotic smooth structures on the spheres starting in dimension 7. This was a surprise.
It brought into focus something that had never been explicitly considered before:
There were different categories of manifolds and classification results depend on
the category. The three categories one considers are smooth (i.e., differentiable),
piecewise linear (triangulated so that the link of every simplex is combinatorially
equivalent to a standard triangulation of a sphere of the appropriate dimension and
denoted pl) and topological. The issues had not arisen for Poincaré since, as we
now know, every topological manifold of dimension ≤ 3 has a pl structure and a
smooth structure, these refined structures being unique up to pl isomorphism and
diffeomorphism, respectively. More precisely, the three categories of manifolds are
equivalent in dimensions ≤ 3. It also follows from elementary arguments that every
piecewise linear 4-manifold has a smooth structure unique up to diffeomorphism,
i.e., that the pl category and the smooth category are equivalent in dimension 4.

In the differentiable category one might imagine, C1, C2, ...C∞ and real ana-
lytic manifolds but these categories are all equivalent, so one usually works with C∞

manifolds. As Poincaré had already discovered in the first complement to Analysis
Situs any smooth manifold has a smooth triangulation and hence carries a piecewise
linear structure. Of course, any smooth manifold, where the overlaps between the
coordinate charts are required to be smooth, is a fortiori a topological manifold,
where the overlaps between the coordinate charts are required simply to be continu-
ous. In a similar way any piecewise linear manifold is a topological manifold. What
Milnor’s examples showed is that the topological (and even piecewise linear) struc-
ture on the 7-sphere supports at least 7 different (i.e., non-diffeomorphic) smooth
structures. In particular, this shows that the smooth version of the Poincaré Con-
jecture is not true in dimension 7. Not too long after that Kervaire ([20]) showed
that there is a piecewise linear manifold of dimension 10 that admits no smooth
structure. Later, manifolds with Lipschitz structures were introduced (see [46])
and it was shown that, except in dimension 4, every topological manifold has a
unique Lipschitz structure up to bi-Lipschitz homeomorphism. In this category
of manifolds some forms of analysis are possible that are not feasible with only a
topological structure.

These results left open the question for the topological and piecewise linear
versions of the analogue of the Poincaré Conjecture in dimensions ≥ 5. In 1961
Smale ([44]) showed, by using Morse theory in a way that can be viewed as a
generalization of Poincaré’s approach to the question in dimension 3, that a smooth
manifold of dimension at least 5 that has trivial fundamental group and has the
homology of the sphere is homeomorphic to the sphere. Shortly thereafter, John
Stallings ([45]) showed that a piecewise linear manifold of dimension at least 7 that
has trivial fundamental group and has the homology of the sphere has the property
that after removing a point it becomes piecewise linearly equivalent to Euclidean
space. Later, ([7], [29]) it was shown that topological manifolds of these dimensions
with trivial fundamental group and the homology of the sphere are homeomorphic
to the sphere.
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Smale’s method of proof established a much more general result, called the
h-cobordism theorem. It says that any compact manifold with two boundary com-
ponents (W,∂−W,∂+W ) that is homotopy equivalent as a triple to (N × I,N ×
{0}, N × {1}) where N is a simply connected manifold of dimension at least 5 is
in fact diffeomorphic to N × I. This theorem, together with cobordism theory in-
troduced by René Thom ([48]) in the 1950s and 1960s and the related theory of
characteristic classes, led to the Browder-Novikov surgery theory ([4]) which gives
a highly successful way of describing simply connected manifolds of dimension ≥ 5.

At about the same time the relationship between the various categories of man-
ifolds, at least in dimensions ≥ 5, was clarified. Kervaire and Milnor ([21]) gave
a classification up to diffeomorphism of differentiable structures on the topolog-
ical sphere or piecewise linear sphere. These form a finite abelian group under
connected sum whose structure is reduced to number theoretic questions. These
groups explain the difference between the piecewise linear theory and the smooth
theory. As to topological manifolds, in 1969 Kirby and Siebenmann ([23]), showed
that except for one minor twist related ironically enough to Poincaré’s homology
sphere, the classification of topological and piecewise linear manifolds of dimensions
≥ 5 coincide.

Thus, by 1970 the theory of manifolds of dimensions ≥ 5 was well under-
stood but the questions about the ‘low dimensions’—3 and 4—including the origi-
nal Poincaré Conjecture remained a mystery. I think it is fair to say that all these
results used the sort of purely topological, including differential topological and
combinatorial topological, arguments along the lines that Poincaré foreshadowed
and developed in l’Analysis Situs and its complements. But as the attention re-
turned to the lower dimensions there was only one more result to come from the
purely topological techniques. This was Michael Freedman’s proof [12]) of the topo-
logical version of the h-cobordism theorem and Poincaré Conjecture in dimension
4. His technique was to find a way to extend Smale’s argument to 4-dimensional
manifolds. Although I have just characterized this as a purely topological argu-
ment, as it is, it falls outside the type of things that Poincaré considered. Poincaré
used smooth and piecewise smooth techniques whereas Freedman’s technique is
purely topological, the surfaces he constructs in the course of his argument are
topologically quite intricate and they cannot be made smooth or piecewise smooth.

Indeed at the same time Freedman was establishing the topological version of
the h-cobordism theorem for 4 manifolds, Donaldson, in [9] using more geomet-
ric and analytic techniques inspired by physics (see below) was showing that the
h-cobordism theorem does not extend to smooth 4-manifolds. This led quickly
to examples of topological 4-manifolds, indeed smooth complex algebraic surfaces,
with infinitely many non-diffeomorphic smooth structures—something that hap-
pens only in dimension 4. For every n �= 4 Euclidean space R

n has a unique
smooth structure up to diffeomorphism; there are uncountably many differentiable
distinct smooth structures on R

4.

5.1. Connections, characteristic classes, and cobordism theory. The
advances in the understanding of high dimensional manifolds relied on other devel-
opments in topology and geometry. These involved looking not directly at manifolds
but rather at auxiliary objects over manifolds. The most important auxiliary ob-
jects are principal bundles and associated fiber bundles and vector bundles. Of
course, the frame bundle of the tangent bundle of the manifold is an example of a
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principal bundle and the tangent bundle itself is an associated vector bundle. These
are important examples but not the only ones. Other bundles not directly derived
from the manifold were also considered. These bundles can be equipped with an
important geometric object, a connection. Connections have curvature and through
the resulting Chern-Weil theory ([6]) curvature gives rise to characteristic classes,
which can also be defined purely topologically, for example from the cohomology
of appropriate classifying spaces. The relationship between geometry and topology
in this theory is made clear by the Atiyah-Singer index theorem, [3] which relates
the index of elliptic operators between sections of vector bundles in terms of the
symbol of the operator and characteristic classes on the manifold.

These ideas are intricately woven into the study of high dimensional manifolds
in many ways. Milnor’s original examples of exotic smooth structures on S7 were
described as fiber bundles with fiber S3 over S4 associated to a principal SO(4)-
bundle, and his argument used the classification of these bundles. The classification
of the group of exotic structures on high dimensional spheres by Kervaire-Milnor
relied in an essential way on Thom’s cobordism theory ([48]) and the Hirzebruch
index theorem ([17]) (a special case of the Aityah-Singer index theorem that was
proved earlier) relating a topological invariant of a smooth manifold (its signature,
or index which is computed from the intersection pairing on the middle dimensional
homology) to a characteristic number computed using the Pontrjagin characteris-
tic classes of the manifold. These ideas play an even more important role in the
Browder-Novikov surgery theory ([4]) for understanding all high dimensional man-
ifolds.

6. Geometry and physics and low dimensional topology

In the late 1970s and through the 1980s the focus of topology shifted back to
the low dimensional manifolds—those of dimensions 3 and 4. The techniques were
no longer purely topological—ideas and results from geometry and physics began
to play a role.

6.1. Physics and 4-manifolds. In one of the great convergences of ideas from
different fields, it turns out that Yang and Mills, [55], were trying to understand a
physical theory analogous to electro-magnetism (EM) where the fields transformed
under SU(2) (instead of U(1) for EM). They were led to write down a Lagrangian
in terms of a connection on the principal SU(2)-bundle and matter fields in the
associated two-dimensional complex vector bundle. The term involving only the
connection that appears in the Lagrangian is the usual term computed from the
partial derivatives of the connection, the same term that one finds in EM, together
with a quadratic expression from the connection. What they had arrived at with the
sum of these two terms is exactly the mathematical definition of the curvature of a
connection. The term that appears in the Lagrangian related only to the connection
is exactly the norm square of the curvature of the connection. (There are other
terms involving the connection and the matter fields.) The classical equations
of motion are the first order Euler-Lagrange equations for a critical point of the
resulting action functional, called the Yang-Mills action. Thus, physically-inspired
reasoning had led Yang and Mills to develop a crucially important physical theory
that used the mathematics from some 40 years earlier. The resulting physical
theories are called gauge theories and they have turned out to be central in all
modern developments of high energy theoretical physics. For example, the standard
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model of high energy theoretical physics is written in terms of gauge theories for
various gauge groups (U(1) for EM, SU(2) for the weak force, and SU(3) for the
strong force for QCD, the theory governing quarks and gluons). The greatest
triumph of the gauge theories is in their accurate description of the interactions
of the elementary particles and in particular the peculiar energy dependence of
non-abelian gauge theories by Gross and Wilzcek ([15]) and Politzer ([40]) which
implies asymptotic freedom for QCD.

In the study of 4-dimensional manifolds the impact of ideas from physics were
being felt. Donaldson showed how to use the moduli space of solutions of the anti-
self-dual equations for connections on an auxiliary principal SU(2)-bundle over
a 4-manifold, equipped with a Riemannian metric, to produce non-classical (i.e.,
non-homotopy theoretic) invariants of 4-manifolds. By definition an anti-self-dual
connection on a principal bundle over a 4-manifold is a connection whose curvature
form is anti-self-dual. These connections are the minima for the pure Yang-Mills
action functional, pure in the sense that there are no matter fields. Hence, anti-
self-dual connections are special cases of Yang-Mills connections, which, recall, are
critical points of the action functional. Later, Seiberg and Witten [41] constructed
other invariants from a different physical theory, a gauge theory with structure
group U(1) and matter fields. By physics arguments Witten ([53]) established
the relationship of these invariants to the invariants constructed by Donaldson.
While this relationship has not been proven mathematically, the evidence for it is
overwhelming and surely it is just a matter of time until this result is mathematically
established. Since the Seiberg-Witten invariants are technically much easier to work
with than Donaldson’s original invariants, they have replaced them as the primary
means of constructing 4-manifold invariants. These invariants were used to show
that many naturally occurring 4-manifolds were not diffeomorphic, [9, 13, 28].
While they are not complete invariants, they do show that the classification of
simply connected 4-manifolds is quite complicated. For example, it seems likely
that there is an injective map from isotopy classes of knots in S3 to diffeomorphism
classes of 4-manifolds homeomorphic to a smooth hypersurface in CP 3 of degree 4 (a
K3 surface), see [10]. Unlike the situation with 3-manifolds where there was a clear
guess as to the nature of the theory, the theory of smooth 4-manifolds is completely
unknown and we have no good guesses as to the structure of this theory. This is the
remaining mystery in the program that Poincaré outlined over one hundred years
ago of understanding manifolds in terms of their algebraic invariants.

6.2. Geometrization of 3-manifolds. Thurston ([49]) introduced the idea
of equipping (many) 3-manifolds with hyperbolic structures—these structures come
from the Kleinian groups which Poincaré introduced and are the 3-dimensional
analogue of surfaces that are the quotient of the Poincaré disk by fuchsian groups.
Thurston was able to construct hyperbolic structures on prime 3-manifolds whose
fundamental groups satisfy the obvious necessary conditions, provided that the 3-
manifolds are sufficiently large. He also produced other examples of hyperbolic
structures on non-sufficiently large 3-manifolds. The latter he produced by doing
Dehn surgeries on other hyperbolic manifolds. This led him to conjecture that
the obvious necessary fundamental group conditions are sufficient for a prime 3-
manifold to admit a hyperbolic structure. Pursuing this line further, he asked
himself what might be true for the other prime 3-manifolds. Pondering this led
him to formulate the Geometrization Conjecture, which says roughly that every
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prime 3-manifold can be cut open along incompressible tori into pieces that ad-
mit complete homogeneous geometries of finite volume. A direct and immediate
consequence of this conjecture is the Poincaré Conjecture. There are eight possi-
bilities for the type of geometry with the most plentiful and the most interesting
being hyperbolic geometry. This conjecture, which is what Perelman established,
is explained in more detail by both McMullen and Thurston in their presentations
at this conference. This reduces the problem of classifying closed 3-manifolds to
the problem of classifying discrete, torsion-free subgroups of SL(2,C) of finite co-
volume up to conjugacy. It gives a completely satisfying conceptual picture of the
nature of all 3-manifolds, and it shows how closely related these topological objects
are to homogeneous geometric ones. All closed 3-manifolds are made from homo-
geneous geometric ones by two simple operations—gluing along incompressible tori
and connected sum. As a sidelight, this resolves in the affirmative the Poincaré
Conjecture.

6.3. Invariants of 3-manifolds. There has been much other work in 3-
manifold topology independent of the Geometrization Conjecture. This began with
the Jones polynomial invariant for knots in S3 ([18]), which was generalized by
Witten ([52]) using a physical theory to invariants of all 3-manifolds. There are
combinatorial definitions of the Jones polynomial, basically skein relations that say
how the invariant is related before and after changing a crossing on the knot and
doing surgery at the crossing. These types of relations led to other combinato-
rial notions of knot invariants and sometimes to 3-manifold invariants. One of the
most powerful seems to be the Khovanov homology of knots in S3 ([22]). These
homology groups should be viewed as a categorification of, i.e., enrichment of, the
Jones polynomial. Like the original Jones polynomial, these invariants are defined
starting with a braid presentation of the knot. There is now a proposal due to
Witten ([54]), coming from physics, for how to extend Khovanov theory for knots
to give 3-manifold invariants but no mathematical treatment yet exists.

From a more geometric prospective, one can define 3-dimensional invariants
using the anti-self-dual equations and the Seiberg-Witten equations. The idea,
which essentially goes back to Floer ([11]), is to consider finite energy solutions
to these equations on the 4-manifold obtained by crossing the given 3-manifold
with R. This leads to invariants of 3-manifolds called Donaldson-Floer invariants
and Seiberg-Witten Floer invariants. There is a related set of invariants coming
from Floer’s original definition of Floer homology in the symplectic context. These
are due to Ozsvat́h-Szabó, [30]. They defined an invariant called Heegaard-Floer
homology. It is believed to be equivalent to the Seiberg-Witten Floer homology (see
[25]) and hence closely related to the Donaldson-Floer homology, and on the other
hand it has a purely combinatorial definition, [31]. It brings us full circle because
it is defined from the intersection pattern of the two families of simple closed curves
on the splitting surface of a Heegaard decomposition of the 3-manifold.

How all of these invariants of a 3-manifold, inspired by combinatorics and
physics, are related to the geometric decomposition of the 3-manifold is another
tantalizing mystery. An understanding of that could conceivably lead to a purely
topological proof of the Poincaré Conjecture since one would understand the rela-
tionship of invariants made from the intersection pattern of curves on a Heegaard
surface to the geometric decomposition of the manifold. This would complete the
3-dimensional program in the manner that Poincaré laid it out.
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Journal de Mathématiques, 8:169 – 214, 1902.
39. H. Poincaré. Cinquième complément a l’analysis situs. Rendiconti del Circolo matematico di

Palermo, 18:45 –110, 1905.
40. H. Politzer. Reliable perturbative results for strong interactions? Phys.Rev.Lett., 30:1346–

1349, 1973.
41. N. Seiberg and E. Witten. Electric-magnetic duality, monopole condensation, and confine-

ment in N = 2 supersymmetric Yang-Mills theory. Nuclear Phys. B, 426(1):19–52, 1994.
MR1293681 (95m:81202a)

42. H. Seifert. Topologie dreidimensionaler gefaserter Räume. Acta math., 60:147 – 238, 1932.
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The Evolution of Geometric Structures on 3-Manifolds

Curtis T. McMullen

Abstract. This paper gives an overview of the geometrization conjecture and
approaches to its proof.

1. Introduction

In 1300, Dante described a universe in which the concentric terraces of hell—
nesting down to the center of the earth—are mirrored by concentric celestial spheres,
rising and converging to a single luminous point. Topologically, this finite yet
unbounded space would today be described as a three-dimensional sphere.

In 1904, Poincaré asked if the 3-sphere is the only closed 3-manifold in which
every loop can be shrunk to a point; a positive answer became known as the Poincaré
conjecture. Although the theory of manifolds developed rapidly in the following
generations, this conjecture remained open.

In the 1980’s, Thurston showed that a large class of 3-manifolds are hyperbolic—
they admit rigid metrics of constant negative curvature. At the same time he
proposed a geometric description of all 3-dimensional manifolds, subsuming the
Poincaré conjecture as a special case.

Both the Poincaré conjecture and Thurston’s geometrization conjecture have
now been established through the work of Perelman. The confirmation of this
achievement was recognized by a conference at the Institut Henri Poincaré in 2010.
This article—based on a lecture at that conference—aims to give a brief and impres-
sionistic introduction to the geometrization conjecture: its historical precedents, the
approaches to its resolution, and some of the remaining open questions. Additional
notes, and references to some of the many works treating these topics in detail, are
collected at the end.

2. Surfaces and tilings

We begin by recalling the geometrization theorem in dimension two.

Theorem 2.1. Any closed, orientable topological surface S can be presented as
a quotient of S2, E2 or H2 by a discrete group of isometries.

Concretely, this means S can be tiled by spherical, Euclidean or hyperbolic
polygons.
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Figure 1. Illustration of Dante’s cosmology by Gustave Doré (1867).

Proof. By the classification of surfaces, we may assume S is a sphere, a torus,
or a surface of genus g ≥ 2. The theorem is immediate in the first two cases. In
terms of tilings, one can assemble S2 out of 8 spherical triangles with all angles
90◦; and a torus can be tiled by 8 Euclidean squares, which unfold to give the
checkerboard tiling of E2.

Next we observe that a surface of genus g = 2 can be assembled from 8 regular
pentagons (see Figure 2). The right-angled pentagons needed for this tiling do not
exist in spherical or Euclidean geometry, but they do exist in the hyperbolic plane.

Passing to the universal cover S̃, we obtain a periodic tiling of H2 and an isometric
action of the deck group Γ ∼= π1(S) on H2 yielding S as its quotient. Any surface
of genus g ≥ 3 covers a surface of genus 2, so it too can be tiled by pentagons—one
just needs more of them. �

Figure 2. Tilings of surfaces of genus 1 and 2.
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Uniformization. The geometrization theorem for surfaces was essentially
known to Klein and his contemporaries in the 1870’s, although the classification of
abstract surfaces according to genus, by Dehn and Heegaard, was not proved until
1907. It is definitely more elementary than the uniformization theorem, proved in
the same era, which asserts that every algebraic curve can be analytically parame-

terized by Ĉ, C or H2.
The converse is also true, as was shown by Poincaré; in particular:

Theorem 2.2. Every compact Riemann surface of the form X = H2/Γ is
isomorphic to an algebraic curve.

For the proof, we need to construct meromorphic functions on X. A natural
approach is to start with any rational function f(z) on the unit disk Δ ∼= H2, and
then make it invariant by forming the Poincaré series

Θ(f) =
∑
γ∈Γ

γ∗(f) =
∑
γ∈Γ

f(γ(z)).

The result can then be regarded as a meromorphic function on X.
Unfortunately this series has no chance of converging: the orbit γ(z) accumu-

lates on points in ∂Δ where f(z) �= 0, so the terms in the sum do not even tend to
zero.

However, the sum does converge if we replace the function f(z) with the qua-
dratic differential q = f(z) dz2, since then |q| behaves like an area form, and the
total area near the boundary of the disk is finite. This makes Θ(q) into a mero-
morphic form on X; and ratios of these forms, Θ(q1)/Θ(q2), then give enough
meromorphic functions to map X to an algebraic curve.

Thus algebra, geometry and topology are mutually compatible in dimension
two.

Poincaré’s Θ-operator also plays an unexpected role in the theory of 3-manifolds;
see §5.

3. The geometrization conjecture for 3-manifolds

We now turn to the 3-dimensional case.
In contrast to the case of surfaces, which are ordered by genus, the world of

3-manifolds resembles an evolutionary tree, with phyla and species whose intricate
variations admit, at best, a partial ordering by various measures of complexity.

An organizing principle for 3-manifolds seemed elusive until, in the 1980’s,
Thurston proposed:

Conjecture 3.1 (The geometrization conjecture). All compact 3-manifolds
can be built using just 8 types of geometry.

The 8 geometries featured in this conjecture come from the following simply-
connected homogeneous spaces:

(1) The spaces of constant curvature, S3, E3 and H3;
(2) The product spaces R× S2 and R×H2; and

(3) The 3-dimensional Lie groups Nil, Sol and S̃L2(R).

A 3-manifold M is geometric if it can be presented as the quotient M = H/Γ
of one of these homogeneous spaces by a discrete group of isometries. By gluing
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together geometric 3-manifolds along suitable spheres or tori, one obtains composite
manifolds.

The geometrization conjecture states that any compact 3-manifold is either geo-
metric or composite. In other words, any 3-manifold can be factored into ‘geometric
primes’.

Hyperbolic manifolds. Most of the 8 geometries are only required to de-
scribe fairly simple 3-manifolds: products or twisted products of circles and surfaces
(spaces of ‘dimension 21

2 ’). The manifolds covered by S3 and E3 are also special –
they are just finite quotients of the sphere or the 3-torus.

The only remaining case is that of hyperbolic manifolds—those of the form
M = H3/Γ. Thus a principal corollary of the geometrization conjecture is that
most 3-manifolds are hyperbolic.1

On the other hand, since S3 is the only closed, simply-connected geometric
3-manifold, the geometrization conjecture also implies the Poincaré conjecture.

Spherical and hyperbolic dodecahedra. As in the case of dimension two,
geometric 3-manifolds correspond to periodic tilings. Two such are shown in Figure
3.

The first tiling comes from the Poincaré homology sphere M = S3/Γ, where

Γ ∼= Ã5 is a Z/2 extension of the alternating group on 5 symbols. A fundamental
domain for the action of Γ on S3 is given by a spherical dodecahedron D. The faces
of D are regular pentagons meeting in angles of 120◦; this allows 3 copies of D to
fit together neatly along an edge. (In Euclidean space, the angle would be about
116◦.)

Poincaré originally speculated that the condition H1(M,Z) = 0 would be suf-
ficient to characterize the 3-sphere. The space M = S3/Γ just constructed (also

discovered by Poincaré) provides a counterexample, since π1(M) ∼= Ã5 abelianizes
to the trivial group.

The second image in Figure 3 shows a tiling of H3 by infinitely many negatively-
curved dodecahedra. Now the dodecahedra meet four to an edge; their faces are
the same right-angled pentagons that appeared in Figure 2. This pattern provides
a hyperbolic metric on a closed 3-manifold M that can be obtained as a 4-fold cover
of S3 branched over the Borromean rings.

Arithmetic groups. Additional examples of hyperbolic 3-manifolds are pro-
vided by arithmetic subgroups of SL2(C). The simplest of these are the Bianchi
groups SL2(O), where O = Z[

√
−d] or Z[(1 +

√
−d)/2] is the ring of integers in a

complex quadratic field.

The action of a Bianchi group by Möbius transformations on Ĉ extends to an
isometric action on H3. Passing to a subgroup of finite index, we can ensure that
Γ ⊂ SL2(O) is torsion-free, and hence M = H3/Γ is a manifold. General principles
insure that M has finite volume, but it is never closed; instead, it is homeomorphic
to the complement of a knot or link in some closed 3-manifold M .

An important example is provided by the Eisenstein integers, O = Z[ω] where
ω3 = 1. In this case Γ ⊂ SL2(Z[ω]) can be chosen so that M = H3/Γ ∼= S3 −K is
the complement of the figure-eight knot in the sphere. Similarly, using O = Z[i], one

1A spatial universe of constant negative curvature (as would be consistent with a uniform
distribution of matter and energy) can therefore have almost any global topological form.
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Figure 3. Tilings of S3 and H3
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Figure 4. Arithmetic knots and links

obtains an arithmetics hyperbolic structure on the complement of the Whitehead
link (Figure 4).

These examples are related to tilings of H3 by regular ideal tetrahedra and
octahedra respectively.

Rigidity. The architectural integrity of the frameworks shown in Figure 3,
and the arithmeticity of the preceding examples, reflect an important feature of the
passage from 2 to 3 dimensions: while topology becomes more flexible in higher
dimensions, geometry becomes more rigid. A precise statement is furnished by:

Theorem 3.2 (Mostow Rigidity). The geometry of a finite-volume hyperbolic
3-manifold is uniquely determined by its fundamental group.

Because of this uniqueness, geometric quantities such as the hyperbolic volume
of M3 or the length of its shortest geodesic are actually topological invariants. For
example, the figure-eight knot satisfies

vol(S3 −K) = 6l(π/3) = 6

∫ π/3

0

log
1

2 sin θ
dθ = 2.0298832 . . .

The geometrization conjecture becomes even more striking when seen in light of
this rigidity.

A comparison to number theory. The influence of the Poincaré conjecture
on low-dimensional topology can be compared to the influence of Fermat’s last the-
orem on number theory. Both conjectures have been driving forces in mathematics,
but both their formulations are essentially negative.

The geometrization conjecture placed the Poincaré conjecture in the context
of a comprehensive picture of 3-dimensional topology that could be tested and
developed in many new directions. Similarly, work of Frey, Ribet and Serre in
the 1980’s showed that Fermat’s last theorem would follow from the modularity
conjecture, which states:

Every elliptic curve E defined over Q is dominated by a modular
curve of the form X0(N) = H2/Γ0(N).

Like the geometrization conjecture, the modularity conjecture is constructive
and testable. For example, in 1993 Cremona calculated all the modular elliptic
curves with conductor N ≤ 999, lending support to the conjecture and furnishing
important arithmetic invariants of these elliptic curves.

Some of the experimental work carried out for 3-manifolds will be discussed in
the sections that follow.
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Figure 5. Tait and Little’s knot tables (excerpt), 1899; the Perko
pair, 1974.

4. Knots

What has become of all the simpler vortex atoms?
—P. G. Tait, 1876.

Knots and links provide a glimpse of the full complexity of 3-dimensional topol-
ogy. In this section we discuss Thurston’s results on hyperbolic 3-manifolds, and
their impact on knot theory.

Hyperbolic knots. A knot is a smoothly embedded circle in S3. The union
of finitely many disjoint knots is a link. By removing a thickened link in S3 (a
union of solid tori) and gluing it back in with a twist, one obtains a new 3-manifold
M . Lickorish showed that all orientable 3-manifolds can be obtained by surgery on
links in S3 [Li].

In the early 1980’s Thurston established several major cases of the geometriza-
tion conjecture, including the following unexpected results:

(1) Almost all knots are hyperbolic;
(2) Almost all surgeries of S3 along hyperbolic knots and links yield hyper-

bolic manifolds; and
(3) The result M of gluing together two hyperbolic 3-manifolds is hyperbolic,

unless π1(M) contains a copy of Z2.

Here a knot or link L is hyperbolic if S3 − L is homeomorphic to a finite volume
hyperbolic manifold H3/Γ. In the first statement, just torus knots and satellite
knots must be avoided; in the second, finitely many surgeries must be excluded on
each component of the link. The third statement is the key to proving the first
two; it will be taken up in §5. All three results make precise, in various ways, the
statement that most 3-manifolds are hyperbolic.

Tabulating knots. To put these results in context, we recount some history.
A knot can be conveniently described by a crossing diagram, showing its pro-

jection to a plane. Motivated by Lord Kelvin’s theory of atoms as vortex rings,
whose different shapes would account for the different chemical elements, in the
period 1876–1899 Tait and Little (aided by Kirkman) assembled a census of all 249
(prime) knots with 10 or fewer crossings (see e.g. Figure 5 ). It is a demanding but
straightforward task to enumerate all such knot diagrams; the challenge is to tell
when two different diagrams actually represent the same knot.
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In the 1960’s J. H. Conway invented a more efficient combinatorial notation for
knots, based on tangles. This notation allowed him to replicate the work by Tait
and Little in a matter of days, and to extend the existing tables to include all 552
knots with 11 crossings.

Both tables, however, contained a duplication: in 1974, the lawyer K. Perko
discovered that the two diagrams shown at the right in Figure 5 actually represent
the same knot.

Algorithms and geometry. With such pitfalls in mind, the prospect of pro-
ceeding further seemed daunting. Nevertheless, in 1998, Hoste, Thistlethwaite and
Weeks succeeded in tabulating all knots up to 16 crossings—all 1,701,936 of them
[HTW].

How was such a tabulation possible? Its cornerstone was a computer program,
developed by Weeks, to find the hyperbolic structure on M = S3 −K. Although
based on a heuristic algorithm, in practice this program almost always succeeds.
The hyperbolic structure, in turn, yields a host of numerical invariants for K, such
as the volume of M = S3 − K; and it also provides a canonical triangulation
of M (dual to a fundamental domain ‘centered’ on K). This triangulation is a
complete invariant of K, so it suffices to eliminate all duplicate hyperbolic knots.
(In particular, the algorithm immediately recognizes the Perko pair as two diagrams
for the same knot.)

We remark that the practical computation of hyperbolic structures for knots,
while motivated by Thurston’s results, does not logically rely upon them; nor do
the existing proofs of the existence of hyperbolic structures yet explain why such
computations are so robust.

5. Evolving geometric structures

We now turn to the proof of the geometrization conjecture. We will discuss
two important processes for deforming a topological 3-manifold towards its optimal
geometric shape: conformal iteration and the Ricci flow.

1. Haken manifolds. We begin with some terminology. Let M be a compact
orientable 3-manifold, possibly with boundary. A connected orientable surface S ⊂
M3 is incompressible if S �= S2 and π1(S) maps injectively into π1(M).

A 3-manifold is Haken if it can be built up, starting from 3-balls, by succes-
sively gluing along incompressible submanifolds of the boundary. Any knot or link
complement is Haken, as is any irreducible 3-manifold with boundary. Thus most
of the results stated in §4 for knots are consequences of:

Theorem 5.1 (Thurston). The geometrization conjecture holds for Haken 3-
manifolds.

Iteration on Teichmüller space. Since the seven simpler geometries are
understood for Haken manifolds, the main point in the proof of Theorem 5.1 is to
treat the hyperbolic case. At the critical inductive step, one has an open hyperbolic
3-manifoldM with incompressible boundary, and a gluing involution τ : ∂M → ∂M
(see Figure 6). The task is to produce a hyperbolic metric on the closed manifold
M/τ .
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Figure 6. Gluing succeeds unless it is obstructed by a torus

A generalization of Mostow rigidity shows that hyperbolic structures on the
interior of M correspond to conformal structures on ∂M . They are therefore pa-
rameterized by Teichmüller space, a finite-dimensional complex manifold homeo-
morphic to a ball. Thurston showed a solution to the gluing problem corresponds
to a fixed point for a topologically-defined holomorphic map

σ ◦ τ : Teich(∂M) → Teich(∂M).

By iterating this map, we obtain an evolving sequence of hyperbolic structures on
M . If the sequence converges, then M/τ is hyperbolic.

One obstruction to convergence comes from π1(M/τ ): the fundamental group
of a closed, negatively curved manifold never contains a copy of Z2. In fact, as
Thurston showed, this is the only obstruction.

Theorem 5.2. M/τ is hyperbolic ⇐⇒ π1(M/τ ) does not contain Z2.

Sketch of the proof. We describe an approach based on complex analysis
developed in [Mc1]. At a given point X ∈ Teich(∂M), the Poincaré series operator
introduced in §2 provides a map ΘX : Q(Δ) → Q(X) from L1 holomorphic qua-
dratic differentials on the disk to those on X. It turns out the norm of the operator
depends only on the location of X in moduli space, and satisfies ‖ΘX‖ < 1. Using
the fact that Q(X) forms the cotangent space to Teichmüller space at X, one can
also show that σ ◦ τ is a contraction in the Teichmüller metric with the bound

|(σ ◦ τ )′(X)| ≤ ‖ΘX‖ < 1.

Now start with an arbitrary Riemann surface X0 ∈ Teich(∂M) and form the
sequence

Xn = (σ ◦ τ )n(X0).

Then the bound above shows we have uniform contraction—and hence convergence
to a fixed point—unless [Xn] tends to infinity in moduli space. But in this case
Xn

∼= ∂M develops short geodesics, which bound cylinders in M that are joined
together by τ to yield a torus in M/τ as shown in Figure 6. Thus π1(M/τ ) contains
the obstruction Z2. �

This gluing construction is the pivotal step in Thurston’s proof of Theorem
5.1. It also resonates with similar approaches to the topology of rational maps, the
classification of surface diffeomorphisms and Mordell’s conjecture in the function
field case; see e.g. [DH], [Mc2], [Mc5].
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Figure 7. Curvature flow

For simplicity we have assumedM is not a virtual product, S×[0, 1]. The gluing
theorem remains true in this case, but a somewhat different proof is required.

2. Evolution by curvature. We now turn to the second approach, used by
Perelman to complete the proof of the geometrization conjecture.

Darwin recognized that his weak and negative force... could only
play [a] creative role if variation met three crucial requirements:
copious in extent, small in range of departure from the mean,
and isotropic.

— S. J. Gould.

In 1982, Hamilton introduced the Ricci flow

dgij
dt

= −2Rij

for an evolving Riemannian metric gij on a manifold M . This is a (nonlinear)
heat-equation type flow driven by the Ricci tensor, a contraction of the Riemann
curvature form that also plays a central role in general relativity.

The idea of the Ricci flow is shown in Figure 7: here, an initial space of variable
curvature evolves continuously until it becomes recognizable as a round circle. The
manifold bends in response to its own shape, continuously adapting so that as
t → ∞ a metric of constant curvature may emerge.

Hamilton made several pioneering contributions to geometrization using the
Ricci flow, including a proof of the Poincaré conjecture for manifolds with positive
Ricci curvature [Ham1]. In this case the manifold shrinks to a point in finite time,
but under rescaling it converges to a round unit sphere.

We remark that the Ricci flow, like natural selection itself, satisfies the 3 prin-
ciples enunciated by Gould: as a differential equation on the whole manifold, it is
copious in extent but small in departure from the mean; and it is isotropic, since
the Ricci curvature is an intrinsic invariant of the metric.

Perelman’s work. There are two main obstacles to long-term evolution under
the Ricci flow: singularities may develop, which rapidly pinch off and break the
manifold into pieces; and the manifold may collapse: it may become filled with
short loops, even though its curvature remains bounded.
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Perelman’s work addresses both of these obstacles, and indeed turns them into
the cornerstones of a successful proof of the geometrization conjecture. In brief, he
shows that in dimension three:

(1) Singularities of the Ricci flow always occur along shrinking 2-spheres,
which split M into a connected sum of smaller pieces. These singular-
ities can be sidestepped by an explicit surgery operation.

(2) Curvature evolution with surgery defines a flow which continues for all
time.

(3) In the limit as t → ∞, a geometric structure on the pieces of M becomes
visible, either through convergence to a metric of constant curvature or
through collapsing.

As a consequence we have:

Theorem 5.3 (Perelman). Both the Poincaré conjecture and the geometriza-
tion conjecture are true.

Comparison. Many detailed accounts of Perelman’s work are now available in
the literature. Here we will only add a few comparisons between these two different
evolutionary processes.

(1) The discrete dynamics of conformal iteration takes place on the finite-
dimensional space of hyperbolic manifolds. It proceeds through a se-
quence of classical, finite-sided hyperbolic polyhedra with varying shapes,
converging to a form suitable for gluing.

The continuous Ricci flow, on the other hand, takes place in the
infinite-dimensional space of smooth metrics. Constant curvature and
homogeneous geometry emerge only in the limit.

(2) Iteration on Teichmüller space is a contraction, and hence guaranteed to
converge if a fixed point exists. In this way it leverages Mostow rigidity
(which implies the fixed point is unique).

The analysis of the Ricci flow, on the other hand, pivots on mono-
tonicity. Various entropy-like quantities increase under the flow, allowing
one to obtain compactness results and to rule out breathers (oscillating
solutions to the flow which cannot possibly converge).

Rigidity or uniqueness of the limiting geometry is not apparent from
this perspective.

(3) The approach for Haken manifolds is bottom-up: the geometry of M is
assembled inductively from smaller geometric pieces, by cutting along a
hierarchy of surfaces.

The Ricci flow approach is top-down; the metric evolves on the man-
ifold as a whole, splitting it into pieces as singularities develop. Thus it
can be applied to 3-manifolds which are too tightly wound (or too homo-
topically simple) to contain an incompressible surface.

Because of these features, the evolutionary approach based on the Ricci flow is
able to treat the geometrization conjecture in full.

Remark: The cone-manifold approach. By Thurston’s Theorem 5.1, any
3-manifold contains a knot such that M3 − K is hyperbolic. One can then try
to increase the cone angle along the knot from 0 to 360◦, to obtain a geometric
structure on M . This cone-manifold approach to geometrization works well for
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constructing orbifolds (see e.g. [CHK]), but it runs into difficulties, still unresolved,
when the strands of the knot collide.

The Ricci flow, on the other hand, smooths out such conical singularities, dif-
fusing the knot so it can freely pass through itself.

6. Open problems

To conclude, we mention two of the many remaining open problems in the
theory of 3-manifolds.

1. Surfaces in 3-manifolds. As we have seen, a useful approach to simplify-
ing a 3-manifold involves cutting it open along an incompressible surface. A central
problem, still open, is to understand how often such surfaces exist; in particular,
to establish:

Conjecture 6.1 (Waldhausen, 1968). Every closed, irreducible 3-manifold M
with infinite fundamental group has a finite cover which contains an incompressible
surface.

Part of the impact of the proof of the geometrization conjecture is that it
allows topological problems to be studied by geometric means. For example, in the
conjecture above, one may now assume M is hyperbolic.

In 2003, Dunfield and Thurston verified Conjecture 6.1 for the more than ten
thousand different hyperbolic 3-manifolds appearing in the Hodgson–Weeks census
[DT] . Further progress includes the following result from 2010:

Theorem 6.2 (Kahn–Markovic). If M is a closed hyperbolic 3-manifold, then
π1(M) contains a surface group.

The proof uses ergodic theory on the frame bundle of M to analyze statistical
properties of the pairs of pants it contains, which are then pieced together (in
enormous numbers) to form a closed, immersed surface [KM].

It remains a challenge to find a finite cover where this surface becomes embed-
ded.2

2. Quantum topology. The curved space of general relativity becomes a sea
of virtual particles when viewed through the lens of quantum mechanics. Similarly,
quantum topology gives a new perspective on 3-manifolds.

An example is provided by the knot polynomial V (K, t) discovered by Jones
in 1984. The Jones polynomial can be computed from a knot diagram by a simple
inductive procedure, but it proves difficult to say what V (K, t) measures in terms
of classical topology.

On the other hand, Witten found a useful description in terms of physics: in
1988 he proposed that for each integer k ≥ 0, the value of V (K, t) at the root of
unity q = exp(2πi/(2 + k)) should satisfy the relation:

〈K〉 =
∫

Tr
(∫

K
A
)
e2πikCS(A)DA = (q1/2 + q−1/2)V (K, q−1).

Here A is an SU(2)-connection on the trivial C2 bundle over S3. The factor
e2πikCS(A) DA represents a formal probability measure on the space of all con-
nections, coming from quantum field theory and the Chern-Simons action. Finally

2The proof of Conjecture 6.1 has recently been completed by Agol and Wise.
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〈K〉 is the expected value of the random variable Tr(
∫
K
A), which measures the

twisting of the connection along the knot.
Many additional invariants of low-dimensional manifolds have emerged from

the perspective of quantum field theory in recent decades, and been made rigorous
using combinatorial methods and gauge theory.

How might these developments relate to the geometrization conjecture? A
possible connection is provided by:

Conjecture 6.3 (Kashaev, Murakami–Murakami). The hyperbolic volume of
S3 −K can be calculated using the Jones polynomials of the cables of K; in fact,
we have

vol(S3 −K) = lim
n→∞

2π log |Vn(K, e2πi/n)|
n

·

Here Vn(K, t) =
∑n/2

j=0

(
n−j
j

)
V (Kn−2j , t), where Ki is the cabled link formed

by i parallel copies of K.
The idea behind this conjecture is that the SU(2) connections on S3−K should

be sensitive to the flat SL2(C) connection defining its hyperbolic structure.
At present, the volume conjecture above has been verified for only a handful

of knots, including the figure-eight knot. It hints, however, at a deeper connection
between geometric and quantum topology, mediated perhaps by the multitude of
fluctuating combinatorial descriptions that a single geometric manifold can admit.

7. Notes and references

§1. For a historical perspective on the Poincaré conjecture, see [Mil].

§2. Poincaré’s works on Fuchsian groups and Θ-series are collected in [Po].

§3. The geometrization conjecture is formulated in [Th1]. For more on the
eight 3-dimensional geometries, see e.g. [Sc] and [Th5].

A variant of the hyperbolic tiling shown in Figure 3, in which five dodecahedra
meet along an edge, was discovered by Seifert and Weber in 1933 [SW]. Seifert
and Weber also related their example to the Poincaré sphere and to a covering of
S3 branched over the Whitehead link. The graphics in Figure 3 were produced by
Fritz Obermeyer and by the Geometry Center.

It is known that the figure-eight knot is the only arithmetic knot [Re]. Addi-
tional arithmetic links are described in [Hat].

The original proof of Mostow rigidity (generalized to manifolds of finite volume
by Prasad) was based on ergodic theory and quasiconformal mappings [Mos]. For
a more geometric proof, due to Gromov, see e.g. [Rat, §11].

A discussion of the modularity conjecture and Fermat’s last theorem can be
found in Mazur’s article [Maz]. The proof of the modularity conjecture was com-
pleted in 2001, through work of Breuil, Conrad, Diamond, Taylor and Wiles.

§4. Thurston’s results are presented in [Th1]. In the 1990’s, Casson–Jungreis
and Gabai made important progress on the seven non-hyperbolic geometries by
characterizing Seifert fiber spaces [CJ], [Ga].

The work of Tait appears in [Ta] and its sequels. Figure 5 is taken from Little’s
paper [Lit]. These authors had no rigorous methods even to distinguish the trefoil
knot from the unknot. The success of their tabulations, especially for alternating
knots, is due in part to the validity of the Tait conjectures, which were finally proved
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using the Jones polynomial (see e.g. [MeT]). One of these conjectures asserts that
the writhe of a reduced alternating diagram is an invariant of the knot; the Perko
pair shows this is false for non-alternating knots.

Conway’s work on knots up to 11 crossings appears in [Con].

§5. Thurston’s proof of the geometrization conjecture for Haken manifolds is
outlined in [Mor1]. Large portions appear in [Th2], [Th3] and [Th4]. An orbifold
construction allows one to reduce to the case where gluing is along the full boundary
of M ; some additional work is required to keep track of the parabolic locus. A
complete proof is presented by Kapovich in [Kap]. The case of 3-manifolds that
fiber over the circle, which requires a different gluing argument, is treated in detail
in [Th3] and [Ot]; see also [Mc4]. The analytic proof of the gluing step presented
here appears in [Mc1]; see also [Mc3].

Gould’s statement on natural selection is taken from [Go, p.60]. Figure 7 ac-
tually depicts two examples of the mean curvature flow for hypersurfaces, a variant
of the Ricci flow studied in dimension two by Gage and Hamilton [GH]; see also
[Gr]. For Hamilton’s work on the Ricci flow for 3-manifolds, see [Ham1], [Ham2]
and [Ham3].

Perelman’s proof, which appeared in [Per1], [Per2] and [Per3], is surveyed
in [And], [Mor2] and [Be], and presented in detail in [KL], [MT1], [MT2], and
[CZ]; see also the forthcoming book [BMP].

§6. For more on the Jones polynomial and quantum topology, see e.g. [J1],
[J2], [Wit] and Atiyah’s book [At]. The volume conjecture is formulated in [Ka]
and [MM]; see also the survey [Mur].
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Astérisque, vol. 307, 2006. MR2296423 (2008b:53088)

[CZ] H.-D. Cao and X.-P. Zhu. A complete proof of the Poincaré and geometrization
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Invariants of Manifolds and the Classification Problem

S. K. Donaldson

1. Introduction

This article follows the structure of the author’s lecture at the meeting in Paris
closely, but the opportunity has been taken to add more detail, particularly in the
last section.

It is a truism that the problem of classifying manifolds, like any other mathe-
matical objects, has two aspects.

• If M1,M2 are manifolds which are not, in fact, equivalent, prove that
M1 �= M2. This is the problem of finding suitable invariants.

• If M1,M2 are manifolds which are, in fact, equivalent, prove that M1 =
M2. This is the problem of constructing equivalences.

Of course there are different flavours of this problem depending on the notion of
“equivalence” in question. We usually consider the C∞ classification problem, so
our manifolds have smooth structures and the equivalences we seek are diffeomor-
phisms. Another obvious but salient point is that one can distinguish between
general classification theorems, dealing with all manifolds in some large class, and
specific problems, where we have some pair of manifolds M1,M2 in our hands and
we want to decide if they are diffeomorphic.

The solutions of the Poincaré conjecture, and the Geometrisation conjecture,
are of course giant advances in this general classification problem in manifold topol-
ogy. The purpose of this lecture is to discuss various other developments and ques-
tions, partly in the light of the solution of the Poincaré conjecture. One main theme
is that there has been huge progress in the past 25 years in the first aspect above,
the construction of new invariants, but rather little in the second aspect. Another
theme is the interaction between these questions of manifold topology and ideas
from geometry and analysis.

2. The role of geometry: contrast with high dimensions

A paradigm for the application of geometry and analysis to topology is the
Riemann Mapping Theorem. This tells us that if U is a proper open subset of C
which is connected and simply connected then there is a holomorphic diffeomor-
phism f mapping the unit disc D onto U . In particular we derive the “topological”
corollary that U is diffeomorphic to the disc. While this is intuitively plausible, and
can be proved by purely “topological” methods, the statement is far from trivial,
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particularly when we think of the exotic possibilities for U—for example U might
be the interior of a closed fractal curve. One way of thinking about the contribution
of geometry here is that in the topological formulation the sought-for map is not
at all unique; we can compose any one choice with a diffeomorphism of the disc to
get another. It is often easier to prove the existence of an object which is unique
than to prove the existence of some object in a large class. (The Riemann map is
of course unique if we prescribe f(0) and the argument of f ′(0).)

We can formulate essentially the same argument in the language of differential
geometry rather than complex analysis. In the situation above, the set U admits
a complete Riemannian metric of constant curvature −1. This follows because we
can transport the standard Poincaré metric on the disc using the map f . On the
other hand it is quite conceivable that we might be able to prove this differential
geometric statement directly. In general, suppose that a manifold M of dimension
n admits a complete Riemannian metric of constant sectional curvature κ. Then we
know that M is diffeomorphic to a quotient X/Γ where X is the simply connected
model and Γ is a discrete subgroup of the isometry group of X, isomorphic to
π1(M) and acting freely on X. So in particular if M is simply connected (as in the
case of U above), we know that M is diffeomorphic to X (the Cartan-Hadamard
theorem). Explicitly, the diffeomorphism is constructed using geodesics on M and
the exponential map.

These general remarks lead to some insight into to the special place of ge-
ometrization in 3-dimensions. For this we need to recall some facts of Riemann-
ian geometry. Any Riemannian n-manifold has a Riemann curvature tensor Rijkl

(working in an orthonormal basis for the tangent space at a point). This is skew
symmetric in the indices (ij) and (kl) and satisfies the Bianchi identity

Rijkl +Riklj +Riljk = 0.

In more invariant terms the curvature tensor lies in the kernel of an O(n)-invariant
linear map from Λ2 ⊗ Λ2 to Λ1 ⊗ Λ3. This map is surjective so its kernel has
dimension

d(n) =

(
n(n− 1)

2

)2

− n2(n− 1)(n− 2)

6
=

n2(n2 − 1)

12
.

A metric has constant sectional curvature κ if Rijkl = κ(gikgjl − gjkgil). So the
condition of (prescribed) constant sectional curvature can be regarded locally as
d(n) equations for the n(n+ 1)/2 variables making up the entries gij of the metric
tensor. Now it is obvious that the quartic polynomial d(n) becomes much larger
than n(n+ 1)/2 for large n. In fact we have

n n(n+ 1)/2 d(n)
2 1 1
3 6 6
4 10 20
5 15 50

So just in dimensions n = 2, 3 is d(n) equal to n(n + 1)/2 which is to say
that just in those dimensions is the constant sectional curvature condition a “de-
termined” PDE, with the same as number of equations as variables. These simple
considerations go a long way to explain the special role of “geometrisation”—in the
sense of spaces of constant sectional curvature (and other homogeneous geometrical
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structures which can be thought of as degenerations of these)—in dimensions 2 and
3. In higher dimensions it is quite unreasonable to expect that a “typical” manifold
will admit such a structure.

Another point of view on this is given by the Ricci tensor. In any dimension
this is a symmetric 2-tensor given by the contraction

Rjl =
∑
i

Rijil.

The coincidence d(n) = n(n + 1)/2 when n = 2, 3 reflects the fact that in these
dimensions the full curvature tensor can be recovered from the Ricci tensor. In
higher dimensions there is another irreducible component of the curvature: the
Weyl tensor. Thus the constant sectional curvature condition, in dimensions 2,3,
is equivalent to the Einstein equation

Rjl = (n− 1)κgjl.

In any dimension, this Einstein equation is a determined equation, indeed the
Ricci tensor has the same type as the metric tensor. Thus it is reasonable to hope
that, in contrast to constant sectional curvature, can find such Einstein metrics
in a fairly general context. In fact the Einstein equation is a determined elliptic
equation for the metric, when proper account is taken of the invariance under the
diffeomorphism group and the second Bianchi identity. One way in which one
may hope to find solutions is from the asymptotics of the corresponding parabolic
equation—Hamilton’s Ricci flow:

∂gjl
∂t

= −2Rjl.

Of course, in dimension 3 this is exactly what Perelman achieved. The simple point
we want to make here is that even if one were able to develop the analysis sufficiently,
one would only expect the Ricci flow in higher dimensions to prove the existence of
Einstein metrics in some degree of generality and this would not have any immediate
bearing on topology because we do not have a complete description of Einstein
metrics similar to the description X/Γ in the constant sectional curvature case.

What we do have in higher dimensions n ≥ 5 is Smale’s h-cobordism theorem.
This gives a very general criterion for constructing diffeomorphism given “homotopy
information”. More precisely, we say that n-manifolds M1,M2 are h-cobordant if
there is an (n+ 1) manifold W with boundary

∂W = M1 �M2,

such that the inclusions Mi → W are homotopy equivalences. The h-cobordism
theorem asserts that if n ≥ 5 and if M1,M2 are simply connected, h-cobordant,
n-manifolds then they are diffeomorphic. The diffeomorphism can be constructed
by integrating a suitable ODE. That is, the proof goes by constructing a nowhere-
vanishing vector field v on W such that the flow lines of v go from M1 to M2. For
each point x ∈ M1 we let f(x) be the terminus in M2 of the flow line starting from
x and then f : M1 → M2 is the desired diffeomorphism. (There is a more sophis-
ticated version, the s-cobordism theorem, which takes account of the fundamental
group.)

The h-cobordism theorem (in the smooth category) definitely fails in dimen-
sion 4 [10], so four dimensional differential topology lies outside both the truly
“low-dimensional” range n = 2, 3 in which topology is closely related to locally
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homogeneous geometric structures and outside the truly “high dimensional” range
n ≥ 5 where the h-cobordism theorem applies, and where we rather suspect that
there may be an abundance of Einstein metrics, but without any particular topo-
logical significance. In the context of Ricci flow with surgery, Hamilton gave in [22],
Section 3, a fascinating insight into this kind of low-dimension/high-dimension di-
vision.

3. Some geometric structures in four dimensions

It is natural to hope that there may be some kinds of “geometric structures”
on four-dimensional manifolds which will play a role in the topological classification
problem, although as we have explained above one certainly has to allow something
more flexible than locally homogenous geometries in the sense of Thurston. (That
said, the study of the locally homogeneous theory in 4-dimensions is still an inter-
esting topic [45].) Of course this may not turn out to be a fruitful direction at
all, but in any case there is a wide variety of geometric structures which have been
studied in four dimensions and which are interesting in their own right, regardless
of any possible application to topology. In this section we will give a very brief
sketch of the some of these ideas.

One organising principle is the trinity of structures

g, ω, J

in multilinear algebra. Here we have in mind a real vector space V of dimension
4 on which we can consider a Euclidean structure g ∈ s2V ∗, a symplectic form
ω ∈ Λ2V ∗ or a complex structure I : V → V, I2 = −1. Given any two of these we
can write down a hermitian structure, whereby V becomes a complex vector space
with a hermitian inner product. We may also consider a quaternionic structure, in
which we have I, J,K : V → V satisfying the quaternion relations I2 = J2 = K2 =
−1, IJ = K. Of course in our situation these algebraic structures will be considered
on the tangent spaces V = TMp of a 4-dimensional manifold M . Now we have,
at least, the following differential-geometric structures which can be considered on
four-dimensional manifolds.

• Einstein, Ricci-soliton
• Anti-self dual.
• symplectic, almost-complex
• Kähler, complex algebraic
• complex
• hypercomplex
• hyperkähler
• complex symplectic

(This is presented as a list but it would really be better to think of some kind
of graph, indicating the diverse connections between the concepts.) First we have
the Riemannian theories. Alongside Einstein metrics one considers Ricci solitons,
which are fixed points of the Ricci flow up to diffeomorphism. There is another class
one can consider within Riemannian geometry which is special to the 4-dimensional
situation. On an oriented Riemannian 4-manifold the Weyl tensor decomposes into
two pieces W+,W− (self-dual and anti-self dual), and the metric is called anti-self-
dual if W+ = 0. This equation is conformally invariant and is an elliptic equation
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for the conformal structure, modulo diffeomorphism. It is related to complex geom-
etry via the “twistor construction” [4]. Next we have the symplectic and complex
theories and Kähler structures which are a natural intersection of Riemannian,
symplectic and complex geometry and which, on compact manifolds of complex
dimension two, can always be deformed to complex projective surfaces. A different
kind of mix of complex and symplectic geometry is furnished by complex-symplectic
structures, where one has a non-degenerate holomorphic 2-form. It is equivalent to
say that one has a pair ω1, ω2 of closed real 2-forms satisfying the conditions

ω2
1 = ω2

2 > 0 ω1 ∧ ω2 = 0.

The hyperkähler case is in a sense the intersection of all these theories. A
hyperkähler manifold is a manifold with a Riemannian metric and three complex
structures, obeying the quaternion relations and such that the metric is Kähler
with respect to each structure. (Hypercomplex structures are similar, but without
the requirement of a metric). In four dimensions this is the same at least up to a
covering, as saying that both the Ricci tensor and the self-dual Weyl tensor vanish.
They are also complex symplectic manifolds: in fact a hyperkähler structure is
equivalent to a triple of closed forms ω1, ω2, ω3 satisfying the relations

ω2
1 = ω2

2 = ω2
3 > 0 ωi ∧ ωj = 0 i �= j.

There is a complete classification of compact hyperkähler 4-manifolds: the only
non-flat examples are “K3 surfaces”. These are all diffeomorphic, one model is given
by a smooth surface of degree 4 in CP3. From some points of view one finds that
K3 surfaces are the “simplest” compact 4-manifolds— they have the metrics whose
curvature tensor is just the small pieceW− and they have the simplest possible non-
trivial Seiberg–Witten invariants. (Of course they are also the prototypes of Calabi-
Yau manifolds in general complex geometry). They furnish a special case example
where we do have some hold on the Einstein condition. A compact oriented 4-
manifold M has two characteristic numbers, the Euler characteristic χ(M) and the
signature σ(M) (the latter is the signature of the intersection form on H2(M,R)).
The Hitchin–Thorpe inequality states that if M has an Einstein metric g then

|σ(M)| ≤ 2

3
χ(M).

If equality holds (in the simply-conected case, say) then M is a K3 surface and
the metric g is a hyperkähler. The proof goes by Chern-Weil theory which gives an
identity, for an Einstein metric,

8π2(
2

3
χ(M)± σ(M)) =

∫
M

S2 + |W±|2,

where S is the scalar curvature and W+,W− are the components of the Weyl
tensor, as above. So if σ(M) + 2

3χ(M) = 0 we deduce that the scalar curvature
and W+ both vanish which implies that the metric is hyperkähler (and the case
σ(M)− 2

3χ(M) = 0 follows by switching orientation). Thus if we consider a smooth

compact simply-connected, oriented 4-manifold M with σ(M) + 2
3χ(M) = 0 and

if we have some way (for example by Ricci flow) of proving the existence of an
Einstein metric on M , then we could make the topological deduction that M is
diffeomorphic to a K3 surface. Conversely, as we will discuss further in Section 5
below, there are examples of manifolds M which are homotopy equivalent, but not
diffeomorphic, to K3 surfaces. We see then that these manifolds cannot support
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Einstein metrics and the differences in the smooth structures must be reflected in
some way in the behaviour of the Ricci flow. Related matters are discussed in detail
in Tian’s talk in this meeting. Let us just mention here that there are intriguing
questions about the Ricci flow in 4-dimensions even in simple model problems.
One recent example is provided by the work of Chen, LeBrun and Weber [9] who

prove the existence of an Einstein metric on the connected sum CP2�CP2�CP2.
Although the metric is not Kähler it is conformal to a Kähler metric and in fact
to an “extremal metric”. The striking thing here is that there is also a (Kähler)
Ricci soliton metric on this same manifold, so we have a case where there are two
distinct fixed points of the Ricci flow, modulo diffeomorphism. In fact the same is

true, by older work of Calabi and Page, in the even simpler case of CP2�CP2 and
the metrics here both have U(2) symmetry.

Of course as we have said before, there is no certainty that any of these struc-
tures will lead to great insights into the topological classification problem. Equally
one can consider still further permutations of these ideas. For example one can
relax the hyperkähler condition to consider a triple of symplectic forms ω1, ω2, ω3

such that the matrix ωi ∧ ωj is positive definite at each point [11].

4. Invariants in low-dimensional topology

Since the early 1980’s many “new” invariants of three and four dimensional
manifolds have been discovered. What we mean by “new” here is that they go
beyond, and have a different character to, those arising from classical algebraic
topology. These developments intertwine a variety of different fields

• 3 and 4 dimensional topology, knot theory
• Symplectic and contact topolology, foliations of 3-manifolds.

Further, they are intimately connected with developments in Theoretical Physics.
There is now a constellation of differ ent but related theories, to the extent that
there are probably few people, and certainly not this author, who are familiar with
all the latest developments. As some headings we can mention

• Casson invariants
• Yang–Mills instanton invariants
• Seiberg–Witten invariants
• Floer homology
• Gromov–Witten invariants
• Contact homology
• Symplectic Field Theory
• Heegard Floer Theory
• Fukaya categories
• Jones–Witten invariants of knots and 3-manifolds
• Khovanov homology

We will not try to say anything systematic about all these developments but
just note some fundamental ideas which appear in many of them, under three
slogans.

• Integration. By which we mean functional integrals of the kind developed
in Quantum Field theory which are, generally speaking, not mathemat-
ically rigorous. These are the basis of Witten’s approach to the Jones
invariants (and, more recently, to Khovanov homology [48]). They are
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also give the background, at least historically, for the definition of the
Seiberg–Witten invariants of 4-manifolds.

• Counting. By which we mean invariants defined by “counting” the solu-
tions of suitable elliptic partial differential equations. These can be used
to extend ideas from ordinary differential topology to infinite dimensional
situations, for example in the manner in which one defined the degree
of a smooth map f : Sp → Sp by counting the points in the generic fi-
bre f−1(y). “Counting” is a slogan here, since in reality one has to take
account of signs, transversality and other technical issues. Examples in-
clude the Casson invariant which counts flat connections over a 3-manifold
(or equivalently conjugacy classes of representations of the fundamental
group), and Gromov–Witten invariants which count holomorphic curves
and are related to classical enumerative questions in algebraic geometry.

• ∂2 = 0. By which we mean the idea of Floer producing a chain com-
plex from geometric data whose homology yields “topological invariants”.
These constructions can often be interpreted formally as computing the
“middle dimensional” homology of an infinite dimensional space. Exam-
ples include Floer’s original theories for 3-manifolds and Lagrangian inter-
sections in symplectic manifolds, and many later developments growing
from his idea.

Note that the geometry and topology of infinite dimensional spaces is a theme
running through all these three items, and makes the pervasive interaction with
Quantum Field Theory very natural. The infinite dimensional spaces in question
are generally either spaces of G-connections over a manifold, for a Lie group G, or
spaces of maps from one manifold—often a circle or Riemann surface—to another.
One unifying concept is that of a “topological field theory” [3] by which one expects
a theory that yields numerical invariants of manifolds in some dimension n may
generate structures which assign vector spaces (such as Floer groups) to manifolds
in dimension (n − 1), categories to manifolds of dimension (n − 2) and yet more
esoteric structures in still lower dimensions [33].

Bringing order into this profusion, and understanding the precise connections
between all these developments is an outstanding problem in mathematics today.
Some connections are well-established and almost obvious; for example the Casson
invariant of a 3-manifold can be viewed as the Euler characteristic of the Floer
homology. Other connections are well-established but much deeper: for example
Taubes’ relation SW ⇔ Gr [42] between the Seiberg–Witten invariants of a sym-
plectic 4-manifold and the Gromov–Witten invariants defined by counting holomor-
phic curves using a choice of compatible almost-complex structure. (Note that the
Seiberg–Witten equation depends on a Riemannian metric g while the holomor-
phic curve equations use an almost complex structure I: the passage between them
makes essential use of a symplectic form ω, although this form does not appear
explicitly in either equation.) In other cases there are well-established conjectures
which are not completely proved, for example in the case of the Seiberg–Witten and
Yang–Mills instanton invariants. In other cases there are clear hints of some rela-
tionship although the picture is still mysterious: for example in the case of Seidel
and Smith’s work [41] relating Khovanov homology to the the symplectic version
of Floer theory. In other cases still it seems very unclear what the final picture will



54 S. K. DONALDSON

be—for example in relating the Floer theories of 3-manifolds based on Yang–Mills
instantons and on the Seiberg–Witten equations.

5. A selection of notable results, questions and developments

Lacking the space for a systematic overview, we will present in this section a
number of topics, many—but not all— involving very recent work, hoping to give
some picture of the field. The author is particularly grateful to Ivan Smith for
tutorials on these more recent developments.

5.1. Successes of invariants in 4 dimensions. Since 1984 the new invari-
ants have been used to distinguish many smooth 4-manifolds which appear identical
from the point of view of classical algebraic topology. We will restrict attention to
simply connected, oriented 4-manifolds. In this case there are just three “classi-
cal” invariants: the integers b+2 , b

−
2 giving the dimensions of positive and negative

subspaces for the intersection form and the “parity” w which is 0 or 1 according
as the intersection form is an even form or an odd form. (Thus the sum b+2 + b−2
is equal to the second number b2 = dimH2 and the parity is 0 if and only if the
Stiefel-Whitney class w2 vanishes.) The examples we refer to above are of pairs
M1,M2 with these same values of b+2 , b

−
2 and parity which can be shown not to be

diffeomorphic. Such a wealth of examples is now known that there is little point
in collecting more without some special feature. One subject of investigation has
been the “geography problem” of which values of (b+2 , b

−
2 , w) are realised by dis-

tinct 4-manifolds. In particular there is interest in searching for “small” examples,
where “small” means with a small second Betti number. For 15 years the record
was held by Kotschick [26], who gave examples with b+2 = 1, b−2 = 8. In fact
Kotschick’s examples are complex algebraic surfaces and the distinction between
them, as smooth 4-manifolds, is related to the fact that they have different Kodaira
dimension, as complex surfaces. In 2005, J. Park [40] constructed examples with
b+2 = 1, b−2 = 7. Although it is not known whether these manifolds are complex
surfaces, techniques from complex geometry play a major role in his construction.
He started with a complex surface containing a special configuration of rational
curves (i.e., 2-spheres) and then applied a “rational blow-down” construction, due
to Fintushel and Stern [13], to remove the homology classes represented by these
curves. In some situations the rational blow-down has a complex geometry inter-
pretation in terms of smoothings of a singular surface, but the construction makes
sense at the topological level even when this smoothing is obstructed. Since Park’s
breakthrough there has been rapid progress in the construction of steadily smaller
examples. Some of these give new examples of complex algebraic surfaces [31], and
have independent interest for algebraic geometers. Akmedov and Park [2] and inde-
pendently Fintushel and Stern [15] have constructed examples with b2+ = 1, b2− = 2.
Further progress seems likely, but the verification that the manifolds constructed
are simply connected is often a very delicate issue.

5.1.1. Questions which appear out of reach. Despite the abundance of cases
indicated above in which we can distinguish smooth 4-manifolds, there are also
many pairs of manifolds M1,M2 which we suspect to be distinct but which escape
the current methods. One well-known case is that of Horikawa surfaces. Here
we start with the complex quadric surface which is the product S2 × S2. For
each l there is a Hirzebruch surface Σ2l which is a ruled surface fibering over S2

with fibre S2, diffeomorphic but not biholomorphic to S2 × S2. There is a section
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Δ of Σ2l → S2 which is an embedded sphere of self-intersection −2l. We take
M1 to be a double cover of S2 × S2 branched over a curve of bi-degree (6, 12)
and take M2 to be the double cover of Σ6 branched over the union of Δ and
another, disjoint, curve C in Σ6. If the homology class of C is chosen correctly,
then M1 and M2 are homeomorphic but it is known from algebraic geometry that
they are not “deformation equivalent”–i.e., they cannot be placed in the same
connected moduli space of complex structures. The question is whether M1,M2

are diffeomorphic. In this situation general facts from Seiberg–Witten theory show
that those invariants cannot distinguish the manifolds and at present there are
no other tools to apply. We simply do not know the answer. It is quite possible
that these manifolds are diffeomorphic, and perhaps this will be established by
the application of sufficient insight and ingenuity. A related situation arises in
the work of Catanese and Wajnryb [7] who show that certain (simply connected)
iterated branched covers of S2 × S2 which are not deformation equivalent are, in
fact, diffeomorphic. Their proof uses an analysis of deformations of a singular
surface. There is a variant of the question in which one asks whether M1,M2 are
symplectomorphic (with their natural symplectic structures), and, while there are
some techniques that can in principle be applied here, the problem seems far out
of reach [5]. Again there is a parallel question for iterated covers which has been
studied in detail by Catanese, Lönne and Wajnryb [8] but the complete answer is
not yet clear.

Other well-known instances where we are unable to distinguish 4-manifolds
are provided by work of Fintushel and Stern [14]. They start from a knot K in
the 3-sphere and a K3 surface M containing a 2-torus T with a trivial tubular
neighbourhood. Then they construct another manifold MK by cutting out the
torus neighbourhood and gluing in the product S1 × (S3 \K). They show that the
Seiberg–Witten invariants of MK capture precisely the Alexander polynomial of
K, while MK is always homeomorphic to M . Thus, since we can easily write down
knots with different Alexander polynomials, we get hordes of mutually distinct
smooth 4-manifolds homeomorphic to the K3 surface. One the other hand we can
write down non-trivial knots whose Alexander polynomials vanish. Then we get
manifolds with the same Seiberg–Witten invariants as the K3 surface but we rather
suspect that they are not diffeomorphic. But again we have no tools to establish
this, and perhaps little reason to believe the answer should go one way or the other.

The best-known open problem in 4-manifold theory is probably the four-dimen-
sional smooth Poincaré conjecture: which, after Freedman, is the question whether
there is a manifold M homeomorphic but not diffeomorphic to S4. For some time
this seemed inaccessible since the “new” 4-manifold invariants rely on non-trivial
second homology. But there is interesting recent work of Freedman, Gompf, Mor-
rison and Walker who show that a certain invariant defined by Rasmussen, arising
from Khovanov homology, could potentially detect counterexamples (i.e., exotic
spheres). Freedman et al. report on extensive computer calculations, but some
promising candidates for counterexamples were shown to be standard by Akbulut.
Rather than speculate about the truth of the smooth Poincare conjecture let us
just note two facts that seem vaguely relevant.

• The work of Bauer and Furuta [6] shows that more subtle information
can sometimes be squeezed, with great profit, from the Seiberg–Witten
equations.
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• At one time there appeared to be the possibility of disproving the 3-
dimensional Poincaré conjecture using the Rohlin invariant which, from
its definition, did not obviously vanish on homotopy spheres. Showing
that, in fact, this scheme would not work was the original motivation
for Casson’s introduction of his invariant. Casson proved that his invari-
ant reduces modulo 2 to the Rohlin invariant but it clearly vanishes on
homotopy spheres.

5.2. A small corner where there is a complete classification. The,
possibly gloomy, conclusion in the previous subsection is that any kind of systematic
understanding of smooth 4-manifolds seems a long way off. Thus it is very satisfying
to have complete results even under limiting hypotheses. The only such result
known to the author occurs in the discussion of compact symplectic 4-manifolds.
Given a symplectic form ω on M we have two basic topological invariants

• The de Rham cohomology class [ω] ∈ H2(M,R).
• The first Chern class c1 ∈ H2(M ;Z) which can be defined by choosing
any compatible almost-complex structure on M .

Thus if M is a compact 4-manifold we get a numerical invariant from the cup prod-
uct c1.ω = 〈c1 ∪ [ω], [M ]〉 and in particular we have a “sign” +, 0,− depending on
whether this number is positive, zero or negative. This number is loosely connected
with the sign of curvature in Riemannian geometry: in the Kähler case it is 2π times
the integral of the scalar curvature. Now we have

Theorem 5.1. If (M,ω) is a compact symplectic 4-manifold and c1.[ω] > 0 then
M is diffeomorphic to a blow-up of M0, where M0 is either the complex projective
plane CP2 of an S2 bundle over a surface.

This result is due to Li and Liu [32], building on earlier work of Gromov,
Taubes, McDuff and others. A more precise version of the theorem gives a com-
plete description of the possible symplectic forms, up to symplectomorphism. For
simplicity let us consider the case when we know that M is homotopy equivalent
to CP2, which was considered by Gromov in his renowned paper [20]. We have
a generator h of H2(M,Z) which we choose so that h.ω > 0. Standard algebraic
topology shows that in this situation c1.h = ±3 and the positivity hypothesis means
that c1.h = 3. Now Gromov chooses an almost-complex structure compatible with
ω. Suppose we know that h is represented by an embedded holomorphic curve Σ.
Then standard algebraic topology (the adjunction formula) shows that Σ is a 2-
sphere. Fix a point p on Σ and consider the deformations of Σ among holomorphic
curves passing through p. The fact that the self-intersection number of Σ is 1 shows
that there is a 2 (real) parameter family of such curves, and further that there is
a unique curve with prescribed complex tangent line at p. The latter deduction
uses Gromov’s compactness theorem for holomorphic curves: since Σ represents a
generator of homology there is no way that curves in the family can break up into
unions of curves, or develop singularities. In a similar way, it follows that for each
point q �= p there is a unique holomorphic curve Σq in the family passing through q.

So we get a map π : CP2 \ {p} → S2 which takes a point q to the tangent line at p
of Σq. Of course in the model case where we have the standard complex structure

on CP2 the curves are just the projective lines through the fixed point p. Now
given the map π, which has a standard model in a punctured neighbourhod of p, it
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is easy to deduce that M is diffeomorphic to CP2, and in fact that the symplectic
form is equivalent to a multiple of the standard one.

The general case is handled in a similar fashion, assuming that one can find
a holomorphic sphere in M with non-negative self-intersection. Thus the essential
problem is how to find such holomorphic spheres. This is where Taubes’ relation
[43] between the Seiberg–Witten equations and holomorphic curves enters in a
crucial way. One of Taubes’ main results is that for a compact symplectic 4-manifold
(N,ω) with b+(N) > 1 the Poincaré dual of −c1(N) is represented by a holomorphic
curve. This is obtained by deforming the Seiberg–Witten equations in a 1-parameter
family, from an equation which has a trivial solution to an equation whose solution
is localised in a certain sense around a holomorphic curve. This result does not
immediately apply to the case at hand—for example a homotopy CP2 has b+ = 1—
so a more sophisticated version is needed, involving “wall-crossing” formulae. But
the upshot is that Taubes’ theory provides the holomorphic spheres required to
“sweep out” the 4-manifold. (There is a slightly different approach, using less
analysis, to some of Taubes’ results in [12])

The general scheme of the proof of Theorem 5.1 can be summarised by:

Symplectic
hypothesis

⇒ Seiberg–Witten
information

⇒ holomorphic
curves

⇒ Classification
(ruling)

One can perhaps think (loosely) of the construction of the diffeomorphisms—
sweeping out the manifold by a family of 2-spheres through a point—as a mixture
of the two constructions discussed in Section 2: the Riemannian geometry con-
struction, sweeping out a manifold by geodesics through a point, and the Riemann
mapping construction (since the holomorphic curve condition is a version of the
Cauchy-Riemann equations).

In the case of Kähler surfaces the the division into three cases c1.ω = +, 0,− is
closely related to the division by Kodaira dimension, with c1.ω > 0 corresponding
roughly to Kodaira dimension −∞: i.e., rational and ruled surfaces. Many of
the arguments above can be viewed as an extension to the symplectic case of the
algebro-geometric classification theory for surfaces of Kodaira dimension −∞. Of
course one would like to go further. An interesting question is to ask what are the
simply-connected compact symplectic 4-manifolds M with c1(M) = 0. The natural
conjecture is that they should all be equivalent to K3 surfaces (with standard
symplectic forms). Morgan and Szabo showed that M must be homeomorphic to
a K3 surface [35], and it is known that it must have the same Seiberg–Witten
invariants but it seems hard to go further.

An issue to ponder is: what are the good questions in 4-manifold theory? It
is well-known that it is not reasonable to ask for a complete classification of com-
pact 4-manifold, because that would involve a complete classification of finitely
presented groups (appearing as the fundamental groups). The abundance of exam-
ples suggests that it may not be reasonable to try to classify all simply connected
smooth 4-manifolds. The classification of symplectic 4-manifolds with c1.ω > 0 is
an example of a “good question”, with a complete solution. The classification of
symplectic 4-manifolds with c1 = 0 may perhaps be a “good question” in this sense,
even though the problem seems out of reach at the moment.
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5.3. Three and Four dimensions. There has been some decisive progress
in the last 5 years on the borderline between 3 and 4 dimensional topology. A
central result is

Theorem 5.2. Let N be a closed oriented 3-manifold. The product N × S1

admits a symplectic structure if and only if N fibres over the circle.

In one direction—the construction of a symplectic form given a fibration—
the argument is elementary and goes back to a note of Thurston [44]. The hard
part is the converse and different, but related, proofs have been found by different
groups of workers. The first proof was given by Friedl and Vidussi [18] and uses
a considerable amount of 3-manifold topology. Let f : N → S1 be a smooth map
and Σ = f−1(θ) ⊂ N for some generic θ, so Σ is a smooth surface. Let N0 be
the complement of a tubular neighbourhood of Σ: this is a 3-manifold with two
boundary components i+(Σ), i−(Σ). A 1961 theorem of Stallings gives a criterion
in terms of fundamental groups under which f can be deformed to a fibration:
under suitable hypotheses on Σ we need i± to induce isomorphisms from π1(Σ) to
π1(N0). Roughly speaking, the argument of Friedl and Vidussi is to obtain this
kind of homotopy information from homology data which in turn is supplied, in
the case when N × S1 has a symplectic structure, from Seiberg–Witten theory.
For each homotopy class of maps from N to S1 there is a classical invariant, the
Alexander polynomial Δ. Friedl and Vidussi consider a generalisation Δα of this
depending on a homomorphism α from π1(N) to a finite group. The central result
in their argument is that the homotopy class is represented by a fibration if and
only if for every α the degree of Δα is given by a certain explicit formula. When
N×S1 is symplectic this degree formula follows from a Seiberg–Witten argument of
Kronheimer, depending on Taubes’ work. The other half of the proof, showing that
this degree formula is a sufficient condition for the existence of a fibration is pure
3-manifold theory. The strategy is to reduce to the case when π1(N) is “residually
finite soluble”; a strategy related to a result of Thurston that the fundamental group
of any 3-manifold is residually finite. At a crucial point the argument uses deep
and recent results of Agol [1] in 3-manifold theory. An important part is played by
the “Thurston norm” on the homology of a 3-manifold, which is well-known to be
related to the Alexander polynomial.

Another proof was given soon after by a combination of work of Kutluhan and
Taubes, Kronheimer and Mrowka and Ni. This goes back to fundamental advances
of Ghiggini[19], Ni [37] and Juhasz [23] who gave necessary and sufficient conditions
for the complement of a knot in S3 to be fibred in terms of Ozsvath and Szabo’s
“knot Floer homology”. In [28], Kronheimer and Mrowka prove an analogous
result for general fibred 3-manifolds in terms of a version of the Seiberg–Witten
Floer theory attached to the manifold. A crucial ingredient in these arguments is
Gabai’s theory of sutured manifolds and taught foliations. Comparing with the
first proof; the Alexander polynomial is related to the simplest Seiberg–Witten
invariant of a 3-manifolds which is, roughly speaking, the Euler characterstic of the
more refined Seiberg–Witten Floer theory. Thus the second proof builds in more
refined Seiberg–Witten information, but the problem is to show that if N × S1

admits a symplectic structure then the Seiberg–Witten Floer homology of N does
have the appropriate structure. This was accomplished by Kutluhan and Taubes
in [30]. The techniques are related to those developed by Taubes in his proof of
the Weinstein conjecture for 3-manifolds.
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The general line of these arguments can be indicated by

Symplectic
hypothesis

⇒ Seiberg–Witten
information

⇒
Alexander polynomial
Thurston norm
sutured/foliated structures

⇒ Construction of
fibration

An open problem in a similar vein is whether the Fintushel-Stern homotopy K3
surface MK , obtained from a knot K, is symplectic if and only if the knot K is
fibred.

5.4. Khovanov homology and instanton Floer theory. In recent work
Kronheimer and Mrowka [29] prove that “Khovanov homology detects the unknot”–
that is a knot K ⊂ S3 is trivial if and only if it has the same Khovanov homology as
the trivial knot. We recall the bare outline of the definition of Khovanov homology.
This starts from a generic plane projection of a knot K with l crossings. At each
crossing we can consider two local modifications, patterned on the hyperbolae xy =
±ε for small ε. Such a modification will in general define a link. So we get 2l links,
indexed by the subsets of {1, . . . , l} (after fixing some choices). If π is such a subset
the corresponding link Kπ is a trivial link with some number N(π) of components.
Now Khovanov defines a vector space Vπ (over some fixed field) with one basis
element for each component and sets

C∗ =
⊕
π

Λ∗Vπ.

There is an elementary, combinatorial, way to define a differential ∂ : C∗ → C∗
making (C∗, ∂) a chain complex and the Khovanov homology is defined to be its
homology. In fact C∗ has a bi-grading, so the Khovanov homology groups are bi-
graded. Of course the striking thing is that this homology is actually independent
of the plane projection but, given a choice of projection, the definition is in principle
completely straightforward–for example to implement on a computer (although in
practice the calculations soon become very large, as in [17]). So a consequence of
these results is a linear algebra algorithms for detecting, from a knot projection,
whether a knot is trivial. Another, earlier, route to the same end is provided by
knot Floer homology and the result of Oszvath and Szabo [38] showing that knot
Floer homology detects the unknot, together with work of Manoescu, Oszvath and
Szabo [34] establishing that knot Floer homology can be computed algorithmically.

Parts of the Kronheimer and Mrowka argument follow similar arguments of
Ozsvath and Szabo [39] for the Heegard Floer homology of a branched cover. In
these arguments the Khovanov homology appears as a kind of universal construction
for theories which obey a “skein relation”. Suppose we have some theory which
assigns to each link L in the 3-sphere a graded vector space I∗(L). Represent the
link by a plane projection and make two other links L0, L1 by changing a crossing
as above. Then by a skein relation we mean an exact triangle

· · · → I∗(L0) → I∗(L) → I∗(L1) → I∗(L0) → . . . ,

(where we ignore grading shift) with suitable naturality properties. To give an
indication of the main idea, imagine (very imprecisely) that the knowledge of two
terms in an exact triangle determines the third. Then for any knot K we could
successively undo all the crossing and conclude that I∗(K) is determined by the
I∗(Kπ) for the 2l choices of π. Suppose further that the theory obeys a “Künneth
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formula”; that if L,L′ are widely-separated links then

I∗(L ∪ L′) = I∗(L)⊗ I∗(L
′).

Each Kπ is a trivial link, determined solely by the number N(π) of its components
and repeated application of the Künneth formula shows that I∗(Kπ) is the tensor
product of N(π) copies of I∗(U) where U is the trivial knot. Suppose finally that
I∗(U) is 2-dimensional with a preferred basis (1, e). Then I∗(Kπ) can be iden-
tified with Vπ: that is to say it has a basis made up of expressions ei1ei2 . . . eip
where i1, . . . ip label components of Kπ. We conclude that under these hypotheses⊕

π I∗(Kπ) can be identified with the Kohovanov chain group C∗. Of course in
reality two terms of an exact triangle do not determine the third: the homomomor-
phisms of the triangle contain extra information and keeping track of all this data
one expects that the true statement is that there is a spectral sequence with E2 term
the Khovanov homology of K and converging to I∗(K). A more familiar analogy
is the Atiyah-Hirzebruch spectral sequence for generalised cohomology theories. If
K∗ is such a theory and Xν are the skeleta of a CW-complex X then we have exact
triangles

· · · → K∗(Xν) → K∗(Xν−1) → K∗(Xν , Xν−1) . . . .

Our first, very imprecise, approximation would say that K∗(Xν) is determined by
K∗(Xν−1) and the relative cohomology K∗(Xν , Xν−1). By excision and suspension
the latter is the cellular cochain group for ordinary cohomology with co-efficients
K∗(S0) and of course the precise statement is that there is a spectral sequence with
E2 term H∗(X,K∗(S0)) converging to K∗(X). Set in this analogy, the Khovanov
homology for link invariants plays the role of ordinary cohomology of spaces.

The theory I∗(L) to which Kronheimer and Mrowka apply these ideas is a
variant of the instanton Floer homology for 3-manifolds utilising connections with
singularities along the link. This is closely related to a theory considered by Floer
in work—never properly written up—from around about 1990, which one can now
see was far ahead of its time [16]. Many of these ideas: the skein relation, the
Künneth formula and the “resolution” of a knot by undoing all crossings can be
found in Floer’s work. The ideas are also related to the work of Kronhimer and
Mrowka in proving that all knots have “Property P”[27]. In the case at hand, their
strategy is to show that there is a spectral sequence from the Khovanov homology
to their instanton theory I∗(K) and then to use independent arguments to show
that for a non-trivial knot K, I∗(K) is in a certain sense non-trivial.

5.5. The Volume conjecture and complexification. In 2001 H. and J.
Murakami [36] (building on work of Kashaev [24]) proposed a “volume conjecture”
which connects the theory of the Jones polynomial with hyperbolic structures and
Thurston’s Geometrisation programme. In its simplest form the conjecture consid-
ers a knot K ⊂ S3 whose complement admits a complete, finite-volume, hyperbolic
structure and predicts that as N → ∞∣∣∣∣ JN (K, e2πi/N )

JN (K0, e2πi/N )

∣∣∣∣ ∼ exp

(
N

2π
Vol(S3 \K)

)
.

Here JN are versions of the Jones polynomial and K0 is the trivial knot. In fact
the numerator and denominator on the left hand side both vanish so the expression
is understood by taking a limit of JN ( , q) as q tends to e2πi/N . This equation has
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been verified in many cases. In Witten’s Quantum Field Theory interpretation of
the Jones theory

JN (K, e2πi/k) =

∫
eikCS(A)TrV Hol(K,A) DA.

This is a functional integral over the space of connections A on an SU(2) bundle
over S3. The quantity CS(A) is the Chern-Simons invariant of a connection A;
Hol(K,A) denotes the holonomy of a connection around K and TrV denotes the
trace in the N -dimensional irreducible representation V of SU(2). Inserting the
holonomy term has the effect that we are really considering connections with a
singularity along K, just as in the work of Kronheimer and Mrowka in the previous
subsection. Of course the Jones polynomial has alternative rigorous mathematical
definitions, so the volume conjecture is a precise mathematical statement. However,
as explained by Gukov [21] the Quantum Field Theory interpretation gives a lot
of insight into why such a formula should hold. In Witten’s original paper [46] he
explained why certain asymptotics as k → ∞ of these invariants could be derived
in terms of flat SU(2) connections, applying the principle of stationary phase to
the oscillatory integral. The case at hand is different but the hyperbolic structure
can be regarded as a flat SL(2,C) connection over the knot complement and the
hyperbolic volume naturally appears as 2π times the imaginary part of the Chern-
Simons invariant of this connection. Thus, when the theory is complexified to
consider the space of all SL(2,C) connections, the conjecture appears as a relation
between the asymptotics of integrals over the real locus and in a neighbourhood of
a particular complex critical point. Witten has recently given a very comprehensive
discussion of the issues which arise [47].

The complexification appearing here, replacing the compact gauge group SU(2)
by its complexification SL(2,C) and studying Chern-Simons Theory on a fixed 3-
manifold, is related to another kind of complexification in which the 3-manifold
is replaced by a Calabi-Yau 3-fold. An example of the latter arises in Thomas’
theory of “holomorphic Casson invariants”, which “count” holomorphic bundles
over Calabi-Yau 3-folds [43]. This has been a very active topic in string theory,
and it is quite possible that relations with these ideas around the volume conjecture
will emerge in the future.
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Volumes of Hyperbolic 3-Manifolds

David Gabai, Robert Meyerhoff, and Peter Milley

Abstract. We discuss the recent proof that the Weeks manifold is the unique
lowest volume closed hyperbolic 3-manifold; in particular the role of Perelman’s
work (after Agol, Dunfield, Storm & Thurston) in the argument.

Introduction

This paper is based on the first author’s lecture at the 2010 Clay Research
Conference held in Paris. That conference celebrated the proof by Grisha Perelman
of both the Poincaré conjecture and Thurston’s Geometrization conjecture. Not
coincidentally, Poincaré, Thurston and Perelman play major roles in the story this
paper tells. Poincaré made major contributions to the foundations of hyperbolic
geometry, topology and 3-manifold theory; e.g., he introduced the fundamental
group and showed that PSL(2,C) = Isom(H3). A byproduct of Thurston’s work on
geometrization was his seminal work on volumes that made possible the problem
addressed in this paper of finding the lowest volume closed hyperbolic 3-manifold.
Perelman’s work on Ricci flow (which forms the core of his proof of geometrization)
plays a crucial role in the work of Agol–Dunfield that in turn is needed in the
resolution of the low-volume problem.

Background on cusped hyperbolic surfaces and 3-manifolds is given in sections
1–2. Section 3 recalls Mostow’s rigidity theorem and Thurston’s fundamental result
on volumes. Section 4 states several of the natural problems arising from Thurston’s
theorem, most of which are still open, and the hyperbolic complexity conjecture
of Thurston, Hodgson–Weeks, Matveev–Fomenko. Section 5 states our main result
and some of its history. Section 6 states the log(3)/2 theorem of [GMT] that plays
a crucial role in the proof. Section 7 explains Perelman’s role, after Agol, Dunfield,
Storm and Thurston [ADST]. Sections 8–9 give some of the intuition behind the
main result and some of the formalism needed to make it a proof.

The resolution of the main result was the culmination of a long line of research
spanning 30 years by many authors, much of which is not discussed in this paper.
For a much more detailed outline of the proof, the reader should consult the exposi-
tory paper Mom technology and hyperbolic 3-manifolds [GMM3]. That paper also
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Figure 1. What surface is this?

provides more information about partial results on the problems stated in section
4, a long list of other problems, and directions for future research.

Unless otherwise stated all manifolds in this paper are orientable and connected.

1. Hyperbolic surfaces

The well-known classification of surfaces asserts that any closed surface is home-
omorphic to a surface of genus ≥ 0. If S is a closed surface of genus g, then
χ(S) = 2 − 2g, thus the topology of a closed surface is determined by its Euler
characteristic. For compact surfaces we have the following classification theorem.

Theorem 1.1. Let S be a compact connected surface, then S is homeomorphic
to Sg,p, the surface of genus g with p open discs [with disjoint closures] removed.
Furthermore two compact connected surfaces S and T are homeomorphic if and
only if

1) χ(S) = χ(T ) and
2) |∂S| = |∂T |, where |X| denotes the number of components of X.

Thus the topology of a compact surface is determined by two easily computed
invariants. Part of the beauty of topology lies in the fact that homeomorphic spaces
are not always obviously homeomorphic. See Figure 1.

The interior of a compact surface S supports a complete finite-volume hyper-
bolic metric, i.e. a metric of constant -1 curvature, if and only if χ(S) < 0. The
remarkable Gauss–Bonnet theorem asserts that for complete finite-volume hyper-
bolic surfaces: Euler characteristic, a combinatorial invariant, is a linear function
of area, a geometric invariant.

Theorem 1.2 (Gauss–Bonnet). If S is a complete finite-volume hyperbolic sur-
face, then area(S) = −2πχ(S).

This immediately follows from the general Gauss–Bonnet theorem∫
S

KdA = 2πχ(S)

after taking K = −1.
Thus area is an excellent, though not complete, measure of topological com-

plexity of a hyperbolic surface. At most finitely many such surfaces have the same
area.

Figure 2 shows how to explicitly construct a finite-volume hyperbolic metric
on the punctured torus S. Start with the regular ideal 4-gon in the hyperbolic
plane and then glue opposite edges by an isometry. For each pair of edges there is
an R-parameter of choices that produces an orientable surface. Choose the unique
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Figure 2. Symmetrically identify opposite edges to obtain the
cusped punctured torus S

gluing that takes the pair of nearest points to each other. The resulting complete
finite-volume hyperbolic surface will have a cusp, that is, a subset homeomorphic
to S1 × [1,∞) and isometric to R × [1,∞)/f , where R × [1,∞) ⊂ H2, H2 denotes
the upper-half-space model of hyperbolic 2-space, and f(x, y) = (x+ d, y) for some
d > 0.

We can choose the cusp to be maximal, i.e., so that its interior is embedded
and its boundary is tangent to itself. The preimage of a cusp in H2 is a union
of horoballs. Figure 3 shows some of the preimage horoballs of the maximal cusp
of S, viewed in the upper-half-space model. It also shows 4 fundamental domains
and all the horoballs that intersect them. A calculation shows that a fundamental
domain for the maximal cusp is [0, 4

√
2] × [1,∞) and that area(maximal cusp) =

4
√
2. Also Gauss–Bonnet implies that area(S) = 2π. It follows that the ratio

area(maximal cusp)/area(S) = 0.90..., which is at first glance a strikingly large
ratio. By Boroczky [B], an optimal 2-dimensional horosphere packing has density
3/π.

Figure 3. A horoball diagram for T showing horoballs at hyper-
bolic distance log(2) from the horoball at infinity. Also shown are
four fundamental domains for T and one fundamental domain for
the cusp.
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Figure 4. Schematic view of a 2-cusped hyperbolic 3-manifold

Figure 5. m011 horoball diagram showing horoballs at hyperbolic
distance 0.50 from the horoball at infinity and an internal Mom-2
structure. Vol(m011) = 2.718... Vol(maximal cusp) = 2.134...

2. Hyperbolic 3-manifolds

A schematic picture of a 2-cusped hyperbolic 3-manifold appears in figure 4.
It emphasizes that each cusp of a complete finite-volume hyperbolic 3-manifold is
topologically a torus×[1,∞). Analogous to the situation in dimension two, the
preimage of a cusp is a 3-dimensional horoball. If a manifold has a unique cusp,
then it can be expanded to a maximal one. Figure 5 shows a horoball diagram
for the maximal cusp of the 1-cusped hyperbolic 3-manifold m011(in Weeks’ Snap-
Pea notation [We]) in the upper-half-space model of H3. The diagram shows the
projection of various horoballs to the (x, y)−plane. The horoball at infinity is not
shown in this figure. It consists of the horoball R×R× [1,∞). The largest horoballs
have Euclidean diameter 1 and are tangent to the horoball at infinity. Note that
π1(cusp) = Z⊕Z and acts on the upper-half-space by Euclidean translations. The
parallelogram is a fundamental domain for this action restricted to the (x,y)-plane.
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Note that the cusp takes up over 75% of the volume of the manifold. The various
edges, thick edges and numbers have important significance and will be explained
in future sections.

3. Foundational results on volumes

The following theorem was first proved by Mostow [Mo] in 1968 for closed
manifolds and extended independently by Marden [Ma] (n = 3) and Prasad [Pra]
(n ≥ 3) for complete finite-volume manifolds in 1972.

Theorem 3.1 (Mostow Rigidity). If ρ0, ρ1 are complete finite-volume hyper-
bolic metrics on the n-manifold N , n ≥ 3, then there exists an isometry f : Nρ0

→
Nρ1

such that f is homotopic to the identity. Here Nρ denotes N with the ρ metric.

The following is an immediate consequence of the Mostow Rigidity and Gauss–
Bonnet theorems.

Corollary 3.2. Volume is a topological invariant of complete finite-volume
hyperbolic manifolds.

Remarks 3.3. Mostow Rigidity does not assert that f is isotopic to the identity.
That f is isotopic to the identity is classical for n = 2, proved by Gabai–Meyerhoff–
N. Thurston for n = 3 [GMT] and false for n > 10 and N closed [FJ]. (Using
Igusa’s stability theorem, rather than a truncated version, that result can be im-
proved, using the same proof, to n > 8 [F].) An assertion related to and stronger
than the Mostow Rigidity for n = 3, the space of hyperbolic metrics is contractible
[G].

The following seminal result of Thurston [Th1], generalizing work of Jorgensen
and Gromov opened the door to many interesting volume problems.

Theorem 3.4 (Thurston 1977). Volumes of complete hyperbolic 3-manifolds
are a well-ordered closed subset of R of order-type ωω. Only finitely many manifolds
can have the same volume.

Order type ωω means that there is a smallest volume, a next smallest volume,
· · · , then a first limit volume, then a next volume, then a next volume, · · · , then a
second limit volume, · · · . Eventually, there is a first limit of limit volumes, then a
next volume etc. This is schematically depicted in Figure 6.

Figure 6

In contrast to dimension-3, by Gauss–Bonnet (n = 2) and Wang (1972) [Wa]
(n ≥ 4), the volumes of hyperbolic n-manifolds form a discrete subset of R.

4. Problems on volumes

The following is an immediate corollary of Theorem 3.4.

Theorem 4.1 (Thurston). Any set of hyperbolic 3-manifolds has a minimal
volume element.
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This result immediately gave rise to a host of interesting problems, most of
which are still open. See [GMM3] for more information about these and other
such problems.

Problem 4.2. What is/are the hyperbolic 3-manifold(s) of least volume?

Answer 4.3. The Weeks manifold is the unique closed hyperbolic 3-manifold
of least volume [GMM2].

Problem 4.4. What is/are the least volume n-cusped 3-manifold(s)?

Answer 4.5. When n = 1, Chris Cao and Rob Meyerhoff [CM] showed in
2001 that the figure-8 knot complement and its sister are the two least volume
manifolds.

When n = 2, Ian Agol [Ag2] showed in 2010 that the Whitehead link and its
sister are the two least volume manifolds.

The problem is open for n ≥ 3.

Problem 4.6. What is/are the least volume fibered hyperbolic 3-manifold(s)?

Problem 4.7. What is/are the least volume Haken hyperbolic 3-manifolds(s)?

Problem 4.8. What is/are the least volume non-orientable 3-manifold(s)?

The following related problem is a special case of a question of Siegel that
predates Thurston.

Problem 4.9. What is the least volume 3-orbifold?

Answer 4.10. This was solved by Gehring–Martin [GM] and Marshall–Martin
[MM] in two papers culminating a long line of research.

During the period 1978-1987, starting with Thurston, various mathematicians
coming from different points of view made conjectures relating volume and topo-
logical complexity. We packaged them together [GMM1] to offer the following
open-ended conjecture.

Conjecture 4.11. (Hyperbolic Complexity Conjecture) (Thurston, Hodgson–
Weeks, Matveev–Fomenko) Low volume hyperbolic 3-manifolds are obtained by
filling low topological complexity cusped hyperbolic 3-manifolds.

Remark 4.12. Part of the challenge is to find a good measure of topological
complexity and find reasonable notions of low. We believe that the Mom number
[GMM1] recalled here in Definition 8.1 offers a measure of topological complexity
amenable to this conjecture.

5. The Quest for the lowest volume manifold

The Weeks manifold (see Figure 7), also known as the Matveev–Fomenko
manifold, is the closed manifold obtained by (5/1, 5/2) surgery on the White-
head link. It is known that the Weeks manifold is arithmetic [MR] and that
vol(Weeks)=0.9427... . It was independently conjectured to be the smallest vol-
ume closed manifold around 1984 by Josef Przytcki and Jeffrey Weeks. The former
through his study of punctured torus bundles and the latter through computer
experimentation that evolved into his SnapPea program.
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Figure 7. The Weeks Manifold. Volume(Weeks) = 0.9427....

Theorem 5.1 (Gabai–Meyerhoff–Milley [GMM2]). The Weeks manifold is
the unique lowest volume closed hyperbolic 3-manifold.

The quest for the lowest volume closed 3-manifold has a long history. Part of
that history is captured in Table 1, which lists successive improvements in lower
bounds for vol(smallest). Interestingly the proof of Theorem 5.1 used most of the
techniques needed to establish the partial results of Table 1.

1979 Meyerhoff 0.0006
1986 Meyerhoff 0.0008
1991 Gehring–Martin 0.0010
1996 Gabai–Meyerhoff–N. Thurston 0.16668
1999 Przeworski 0.2766
7/2000 Przeworski 0.2814
10/2000 Marshall–Martin 0.2855
10/2000 Marshall–Martin + Przeworski 0.2903
2001 Agol 0.32
2002 Przeworski 0.33
2005 Agol–Dunfield 0.67
2007 Gabai–Meyerhoff–Milley 0.9427. . .

Table 1. Historic Lower Bounds for Vol(Smallest)

6. The log(3)/2 theorem

A crucial ingredient in the proof of Theorem 5.1 is the following.

Theorem 6.1 (Gabai–R. Meyerhoff–N. Thurston[GMT]). If γ is a shortest
geodesic in the closed orientable hyperbolic 3-manifold N , then either

1) TubeRadius(γ) ≥ log(3)/2 or
2) vol(N) ≥ 1.10....

Remarks 6.2. The proof was done with rigorous computer assistance. It suf-
ficed to analyze a compact 3-complex-dimensional rectangle in C3. ( The proof of
compactness used a lemma of Meyerhoff’s [Mey] that enabled him to obtain the
first explicit lower bound of 0.0006 for vol(smallest).) The rectangle was chopped
up into about 500,000,000 subboxes. All but 7 of the boxes were eliminated by one
of about 32,000 reasons. The seven boxes contained parameters for covering spaces
of all the thin-tubed manifolds.
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The argument relies on the fact that Isom(H3) = PSL(2,C) (Poincaré 1883
[Po]) and that the representation of π1(N) → PSL(2,C) lifts to SL(2,C) (Thurston).
For this reason, the geometry of hyperbolic 3-manifolds is amenable to computer
calculation.

A few years later Champanerkar, Lewis, Lipyanskiy and Meltzer [CLLMR]
showed that each box contains a unique manifold and two of them are isometric.
Thus any thin-tubed manifold is covered by one of six manifolds that are denoted
N0, · · · , N5.

Jones and Reid [JR] showed that N0 (also known as vol3) nontrivially covers
no manifold and Reid [CLLMR] extended this to N1 and N5. Very recently Maria
Trnkova and the first author [GT] have shown that N2 and N4 each nontrivially
2-fold cover a manifold and the shortest geodesics of these quotient manifolds have
log(3)/2 tubes. Furthermore, N2, N3 and N4 nontrivially cover no other mani-
folds and vol3 is the unique closed hyperbolic 3-manifold that does not have some
geodesic with a log(3)/2 tube.

7. The role of Perelman: After Agol, Dunfield, Storm & Thurston

Using Perelman’s work on Ricci flow, Ian Agol and Nathan Dunfield proved
the following result.

Theorem 7.1 (Agol–Dunfield). [ADST] Let N be a closed hyperbolic 3-manifold,
and γ a simple closed geodesic in N of length L and tube radius R. Let V denote a
tube of radius R about γ. Let Nγ denote N \ γ with a complete hyperbolic metric.
Then

vol(Nγ) ≤ (coth(2R))3
(
vol(N) + (π/2)(L tanh(R) tanh(2R))

)
= coth(2R)3

(
vol(N) + vol(V )sech(2R)

)
Corollary 7.2. [ADST], [ACS] If N is a minimal volume closed hyperbolic

3-manifold, thenN is obtained by filling a 1-cusped hyperbolic 3-manifold of volume
at most 2.848.

Proof. Let γ be a shortest geodesic in N . Let R denote its tube radius. As
in [ADST] apply Theorem 6.1 to assume that R ≥ log(3)/2 and apply Andrew
Przeworski’s tube-packing estimate [Prez] to assume that vol(V ) ≤ .91 vol(N).
Since vol(Weeks) ≤ 0.9428 it follows that

0.9428 > vol(N) ≥ vol(Nγ)/
(
coth(log(3))3(1 + .91sech(log(3))

)
and hence vol(Nγ) < 2.848. �

Idea of proof of Theorem 7.1. We outline the argument of [ADST]. Figure 8
shows how to construct a C0 metric g on Nγ such that the scalar curvature of g is
≥ −6. The 3-manifold Nγ with the g metric has volume equal to the right-hand
side of the first inequality of Theorem 7.1. The metric g can be approximated by a
smooth metric also with scalar curvature ≥ −6, along the lines of Bray and Miao
[Br], [Mi]. Apply Perelman’s Ricci flow with surgery to this metric to obtain the
hyperbolic metric on Nγ . Perelman’s monotonicity formula implies that volume is
monotonically decreasing under the flow, thus Theorem 7.1 follows.

Actually, Perelman’s results require thatNγ be compact. However, by Thurston’s
filling theorem, Nγ is the Gromov–Hausdorff limit of the manifolds {Nγ(pi, qi)}
where Nγ(pi, qi) is obtained by filling Nγ . One can put a metric gi on Nγ(pi, qi)
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Figure 8

analogous to the metric g, thereby obtaining estimates for vol(Nγ(pi, qi)) as in
Theorem 7.1. Since limi→∞ vol(Nγ(pi, qi)) = vol(Nγ) the result follows. �

Historical Note The above result is a generalization of an earlier work of Agol [Ag1],
that obtained the lower bound of 0.32 for vol(smallest) in 2001. Instead of using
Perelman, Agol invoked the main result of Boland–Connell–Souto [BCS] that in
turn is the finite-volume version of a fundamental result of Besson–Courtois–Gallot
[BCG]. Besson–Courtois–Gallot showed that the volume of a closed hyperbolic
3-manifold is minimized by the hyperbolic metric among all metrics satisfying a
certain condition on Ricci curvature.

8. Mom technology I

The next two sections discuss our work towards finding the lowest-volume closed
hyperbolic 3-manifold, see [GMM1], [GMM2], and [Mill].

The motivating idea to address Conjecture 4.11 and begin to address Problem
4.2 is as follows. Given a hyperbolic manifold N (cusped or not) of low volume,
we expect to find an embedded compact submanifold M ⊂ N of low topological
complexity such that ∂M is a union of at least two tori and N is obtained by filling
in some of the tori with solid tori and attaching cusps to the others. Such a manifold
is called a Mom manifold to N and may arise as follows. (The reader might want
to stare at Figure 5 before proceeding further.) Suppose that N has exactly one
cusp. Let T denote the boundary of the maximal cusp. Push T slightly into the
cusp so that it is embedded. Expand T to the inside of N . By Morse theory, for
generic times t the expanded T will be a manifold Mt diffeomorphic to T × I with
handles attached to the T×1 side. (As described by Morgan in his lecture, Poincaré
understood, pre-Morse, the rudiments of this Morse theory. We were motivated by
Smale’s [Sm] spectacular use of this type of idea to prove the Poincaré conjecture
in dimensions ≥ 5.) In our setting, since vol(N) is small, the pushed T must rapidly
and repeatedly bump into itself so Mt should have several 1- and 2-handles for t
small. Experiments with SnapPea suggest that by judiciously choosing a subset
of the 1- and 2-handles we can find a submanifold M with an equal number of 1-
and 2-handles. This suggests that ∂M is a union of tori that in turn cuts off cusps
and solid tori to the outside. Such an M is our desired Mom manifold. Section 9
explains how to find the desired Mom submanifold in the manifold m011.

A major step in the proof of Theorem 5.1 is in carrying out a more sophisticated
version of this procedure for 1-cusped hyperbolic manifolds of volume ≤ 2.848. We
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conjecture that a variant of this program can be carried out for closed hyperbolic
3-manifolds to give a much deeper understanding of low volume closed hyperbolic
3-manifolds as well as a Ricci flow free proof of Theorem 5.1. In the closed case
we expect that T can be taken to be the boundary of a (nearly) maximal tube W
about a shortest geodesic and we expect the Mom manifold to live in N \ int(W ).

Note that in the horoball diagram of m011 (Figure 5) the parallelogram is fairly
small and the big horoballs (i.e., those at hyperbolic distance ≤ 0.5 from the one at
infinity) are packed fairly tightly. Our intuition is that these two phenomena hold
in general for 1-cusped hyperbolic 3-manifolds with vol(N) small, though with a
somewhat smaller value than 0.5. Indeed, failure of the first property implies that
the volume of the cusp cut off by T is too large and failure of the second implies
that too much volume lies outside (and sometimes inside) the cusp. This relies
on the basic fact that the volume of a cusp V is equal to area(∂V )/2. We also
expect that since vol(N) is small, most of the volume of N will lie in the maximal
cusp. These three properties are key to finding the Mom manifold within N . Note
that three closely packed horoballs will give rise, using the above construction, to
a valence-3 2-handle. Valence-3 means that each 2-handle runs over the 1-handles
exactly 3 times, counted with multiplicity.

We now formally define our measure of topological complexity. In §9 more
formalism is introduced and we use it to explain how to find a Mom-2 manifold
within m011.

Definition 8.1. Let M be a compact 3-manifold whose boundary is a union
of at least two tori. The Mom-complexity of M is the least n such that M can
be constructed by starting with T × I, where T is a torus, then attaching n 1-
handles and then n valence-3 2-handles to the T × 1 side. A compact 3-manifold
with boundary a union of at least two tori is a Mom-n manifold if it has Mom-
complexity ≤ n. A Mom-n manifold is said to be hyperbolic if its interior supports
a complete hyperbolic structure.

The following is the main technical result of [GMM2]. It makes precise an
earlier informal statement.

Theorem 8.2 (Gabai–Meyerhoff–Milley). If N is a complete 1-cusped hyper-
bolic manifold and vol(N) ≤ 2.848, then N is obtained by filling a hyperbolic Mom-3
manifold and adding one cusp.

The following result, proven in [GMM1], classifies the hyperbolic Mom-3 man-
ifolds.

Theorem 8.3 (Gabai–Meyerhoff–Milley). There are exactly 3 hyperbolic Mom-
2 manifolds. They are m125, m129 and m203. There are exactly 18 hyperbolic
Mom-3 manifolds that are not Mom-2’s. They are m202, m292, m295, m328,
m329, m359, m366, m367, m391, m412, s596, s647, s774, s776, s780, s785, s898,
and s959.

In [GMM1] we conjectured that there are exactly 117 hyperbolic Mom-4 man-
ifolds that are not Mom-n, n ≤ 3 and we explicitly listed these manifolds.

Around 1978, in his seminal work on hyperbolic structures, Thurston showed
how to explicitly analyze the hyperbolic fillings of the figure-8 knot complement.
Using the more recent filling analysis of Futer–Kalfagianni–Purcell [FKP], the com-
puter programs SnapPea [We] and Snap [G] and rigorization results of Harriet
Moser [Mos], Peter Milley proved the following result.
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Theorem 8.4 (Milley [Mill]). If N is a 1-cusped hyperbolic 3-manifold, vol(N)
≤ 2.848 and N is obtained by filling and adding a cusp to a Mom-3 manifold, then
N is one of m003, m004, m006, m007, m009, m010, m011, m015, m016, m017. If
N is a closed hyperbolic 3-manifold, vol(N) ≤ 0.943, and N is obtained by filling a
Mom-3 manifold, then N is the Weeks manifold.

Putting these results together we obtain.

Theorem 5.1 (Gabai–Meyerhoff–Milley [GMM2]) The Weeks manifold is the
unique closed hyperbolic 3-manifold of least volume.

Theorem 8.5 (Gabai–Meyerhoff–Milley [GMM2]). The ten 1-cusped mani-
folds of volume at most 2.848 are exactly m003, m004, m006, m007, m009, m010,
m011, m015, m016, m017.

The two smallest 1-cusped manifolds, m003 and m004, were earlier determined
by Cao and Meyerhoff [CM]. They introduced the lessvol method for finding a
lower bound on volume outside the maximal cusp. Lessvol plays a crucial role in
the proof of Theorem 8.2.

9. Mom technology II

This section gives a very brief introduction to some of the ideas that go into
the proof of Theorem 8.2. A much more detailed outline of the proofs of that result
and Theorem 5.1 can be found in [GMM3].

Definition 9.1. Consider a maximal cusp V in the 1-cusped hyperbolic 3-
manifold N . Its preimage in H3 is a collection of horoballs H ⊂ H3. The action
of π1(N) on H3 permutes the horoballs H. This action induces an equivalence
relation on the sets of unordered pairs and unordered triples of horoballs. Call an
equivalence class of pairs an orthoclass. Order the orthoclasses θ(1), θ(2), · · · so
that i ≤ j implies that o(i) ≤ o(j), where o(k) denotes the distance between the
two balls in any representative of θ(k). A minimal length geodesic arc connecting
two horoballs is called an orthocurve.

An unordered triple (Hi, Hj , Hk) of horoballs give rise to an unordered triple
(θ(p), θ(q), θ(r)) of orthoclasses by restricting to pairs of horoballs. We call such a
triple of horoballs a (p, q, r)-triple.

Remark 9.2. Two distinct classes of triples of horoballs may give rise to the
same (p, q, r)-triple of orthoclasses and not all (p, q, r)-triples occur as triples of
horoballs in a given 1-cusped manifold.

Example 9.3. Examine carefully Figure 5. The number next to each vertex
or edge corresponds to the orthoclass of a pair of horoballs. The number next to
a vertex is the orthoclass of the pair of horoballs consisting of the ball lying below
the vertex and the horoball at infinity. The number next to an edge corresponds to
the pair of balls lying below the endpoints of the edge. Each edge is labeled with
an arrow and each vertex is labeled with a sign. These arrows and signs orient the
corresponding orthocurve. A minus (resp. plus) sign indicates that the orthocurve
is oriented from the horoball below the vertex (resp. horoball at infinity) to the
horoball at infinity (resp. the horoball below the vertex). The action of π1(N)
preserves the oriented orthocurves.
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A triangle corresponds to a triple of horoballs. The numbers p, q, and r along
the edges of a triangle give rise to the corresponding (p, q, r)-triple. Note that there
are (1,1,2) and (1,2,2) triples for m011. An edge also gives rise to a triple, where the
third ball is the horoball at infinity. In that case the edge label together with the
vertex labels give the (p, q, r)-triple. Construction 9.6 below shows how the triples
of horoballs of type (1,1,2) and (1,2,2) give rise to an embedded Mom-2 manifold
inside of N .

Definition 9.4. A 1-cusped hyperbolic 3-manifold has a geometric Mom-n
structure if there exist n distinct classes of triples of horoballs whose pairs of
horoballs involve only n different orthoclasses, i.e., only n different values appear
in the corresponding (p, q, r)-triples.

Example 9.5. For example, if there are three classes of triples of horoballs for
N of type (1,1,2), (1,2,3), (1,2,3), then N has a geometric Mom-3 structure.

Much of [GMM2] is involved with showing that a 1-cusped manifold of volume
≤ 2.848 has a geometric Mom-n structure n ≤ 3, involving only the first four
orthoclasses and satisfying other geometric conditions. An outline of the argument
can be found in [GMM3].

The following construction describes how a geometric Mom-n structure on N
potentially can give rise to a genuine Mom-n embedded in N .

Construction 9.6. An orthocurve θj projects to a geodesic arc αj in N with
endpoints in the maximal torus T and triples of orthocurves give rise to totally
geodesic hexagons with edges alternating on horoballs and orthocurves, hence lie
on horocycles or geodesics. See Figure 9. Thus a geometric Mom-n structure
potentially gives rise to a Mom-n submanifold of N as follows. Shrink the maximal
cusp V slightly to be embedded and let T be the resulting embedded boundary
torus. Thicken slightly to an embedded T × I. Suppose the geometric Mom-n
structure involves orthoclasses θ(i1), · · · , θ(in). The 1-handles correspond to the
slightly thickened arcs α1, · · · , αn. The 2-handles correspond to the projections of
the hexagons into N , slightly thickened.

Figure 9

The problem with this construction is that the 2-handles may not be embedded
or may pop into the cusp side of T . Said another way, viewed in H3, the 2-handles
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Figure 10

may have undesirable pairwise intersections, one possibility being as in Figure 10, or
a hexagon corresponding to a triple may penetrate into a fourth horoball. Another
issue is that even if everything is embedded, the resulting submanifold M ⊂ N
might not have ∂M being a union of tori and even if they are tori, they might not
bound solid tori. It turns out that ∂M is a union of tori when the geometric Mom-n
structure has n ≤ 3 and satisfies a technical condition called torus friendly.

We show in [GMM2] that if vol(N) ≤ 2.848, then N has a torus friendly
geometric Mom-n structure n ≤ 3 satisfying certain geometric conditions. Fur-
thermore, if there exist non-desirable intersections, then N has a torus-friendly
geometric Mom-≤ 3 structure of smaller complexity satisfying the same geometric
conditions. An induction argument shows that eventually we obtain a geometric
Mom-k structure that defines an embedded Mom-k manifold M ⊂ N with k ≤ 3.
By construction, the image of π1(M) in π1(N) is non-abelian, so in the terminology
of [GMM2] M is nonelementarily embedded in N .

There is the final technical issue that M is possibly not hyperbolic and/or all
its boundary components do not cut off solid tori and cusps to the outside. But it is
shown in [GMM1] that if N has a nonelementarily embedded Mom-n submanifold
n ≤ 4, then it has one M1 that is hyperbolic of non-greater Mom complexity and
each component of ∂M1 cuts off either a solid torus or a cusp to the outside.

Example 9.3 continued. Each dark edge of Figure 5 corresponds to a triple of
horoballs. While there are six dark edges, they involve only two classes of triples
of horoballs, and these are of type (1,1,2) and (1,2,2). Thus this pair of triples of
horoballs is a geometric Mom-2 structure. Construction 9.6 produces the desired
embedded Mom-2 manifold inside of manifold m011.
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Manifolds: Where Do We Come From? What Are We?
Where Are We Going?

Mikhail Gromov

Abstract. Descendants of algebraic kingdoms of high dimensions, enchanted
by the magic of Thurston and Donaldson, lost in the whirlpools of the Ricci
flow, topologists dream of an ideal land of manifolds—perfect crystals of math-
ematical structure which would capture our vague mental images of geometric
spaces. We browse through the ideas inherited from the past hoping to pene-
trate through the fog which conceals the future.

1. Ideas and Definitions

We are fascinated by knots and links. Where does this feeling of beauty and
mystery come from? To get a glimpse at the answer let us move by 25 million years
in time, which is, roughly, what separates us from orangutans: 12 million years to
our common ancestor on the phylogenetic tree and then 12 million years back by
another branch of the tree to the present day orangutans.

But are there topologists among orangutans? Yes, there definitely are: many
orangutans are good at “proving” the triviality of elaborate knots, e.g. they fast
master the art of untying boats from their mooring when they fancy taking rides
downstream in a river, much to the annoyance of people making these knots with
a different purpose in mind.

A more amazing observation was made by a zoo-psychologist Anne Russon in
mid 90’s at Wanariset Orangutan Reintroduction Project (see p. 114 in [67]).

“. . . Kinoi [a juvenile male orangutan], when he was in a pos-
session of a hose, invested every second in making giant hoops,
carefully inserting one end of his hose into the other and jam-
ming it in tight. Once he’d made his hoop, he passed various
parts of himself back and forth through it—an arm, his head,
his feet, his whole torso—as if completely fascinated with idea
of going through the hole.”

Playing with hoops and knots, where there is no visible goal or any practical gain—
be it an ape or a 3D-topologist—appears fully “non-intelligent” to a practically
minded observer. But we, geometers, feel thrilled at seeing an animal whose space
perception is so similar to ours.

I want to thank Andrew Ranicki for his help in editing the final draft of this paper.
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It is unlikely, however, that Kinoi would formulate his ideas the way we do and
that, unlike our students, he could be easily intimidated into accepting “equivalence
classes of atlases” and “ringed spaces” as appropriate definitions of his topological
playground. (Despite such display of disobedience, we would enjoy the company of
young orangutans; they are charmingly playful creatures, unlike the aggressive and
reckless chimpanzees—our nearest evolutionary neighbors.) Apart from topology,
orangutans do not rush to accept another human definition, namely that of “tools”,
as of

“external detached objects (to exclude a branch used for climbing
a tree) employed for reaching specific goals”.

(The use of tools is often taken by zoo-psychologists for a measure of “intelligence”
of an animal.)

Being imaginative arboreal creatures, orangutans prefer a broader definition:
For example (see [67]):

● they bunch up leaves to make wipers to clean their bodies without de-
taching the leaves from a tree;

● they often break branches but deliberately leave them attached to trees
when it suits their purposes—these could not have been achieved if
orangutans were bound by the “detached” definition.

Moral. Our best definitions, e.g. that of a manifold, tower as prominent land-
marks over our former insights. Yet, we should not be hypnotized by definitions.
After all, they are remnants of the past and tend to misguide us when we try to
probe the future.

Remark. There is a non-trivial similarity between the neurological structures
underlying the behaviour of playful animals and that of working mathematicians
(see [31]).

2. Homotopies and Obstructions

For more than half a century, starting from Poincaré, topologists have been
laboriously stripping their beloved science of its geometric garments.

“Naked topology”, reinforced by homological algebra, reached its to-day breath-
takingly high plateau with the following

Theorem (Serre [Sn+N → SN ]-Finiteness Theorem (1951)). There are at most
finitely many homotopy classes of maps between spheres Sn+N → SN but for the two
exceptions:
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● equivi-dimensional case where n = 0 πN(SN) = Z; the homotopy class of a
map SN → SN in this case is determined by an integer that is the degree
of a map. (Brouwer 1912, Hopf 1926. We define degree in Section 4.)
This is expressed in the standard notation by writing

πN(SN) = Z.

● Hopf case, where N is even and n = 2N − 1. In this case π2N−1(SN)
contains a subgroup of finite index isomorphic to Z.

It follows that

the homotopy groups πn+N(SN) are finite for N >> n,

where, by the Freudenthal suspension theorem of 1928 (this is easy),

the groups πn+N(SN) for N ≥ n do not depend on N .

These are called the stable homotopy groups of spheres and are denoted πst
n .

H. Hopf proved in 1931 that the map f ∶ S3 → S2 = S3/T, for the group T ⊂ C of
the complex numbers with norm one which act on S3 ⊂ C2 by (z1, z2) ↦ (tz1, tz2),
is non-contractible.

In general, the unit tangent bundle X = UT (S2k) → S2k has finite homology
Hi(X) for 0 < i < 4k − 1. By Serre’s theorem, there exists a map S4k−1 → X of
positive degree and the composed map S4k−1 →X → S2k generates an infinite cyclic
group of finite index in π4k−1(S2k).

The proof by Serre—a geometer’s nightmare—consists in tracking a multitude
of linear-algebraic relations between the homology and homotopy groups of infinite
dimensional spaces of maps between spheres and it tells you next to nothing about
the geometry of these maps. (See [57] for a “semi-geometric” proof of the finiteness
of the stable homotopy groups of spheres and Section 5 of this article for a related
discussion. Also, the construction in [23] may be relevant.)

Recall that the set of the homotopy classes of maps of a sphere SM to a con-
nected space X makes a group denoted πM(X), (π is for Poincaré who defined
the fundamental group π1) where the definition of the group structure depends on
distinguished points x0 ∈X and s0 ∈ SM . The groups πM defined with different x0

are mutually isomorphic, and if X is simply connected, i.e. π1(X) = 1, then they
are canonically isomorphic.

This point in SM may be chosen with the representation of SM as the one
point compactification of the Euclidean space RM , denoted RM

● , where this infinity
point ● is taken for s0. It is convenient, instead of maps Sm = Rm

● → (X,x0), to
deal with maps f ∶ RM → X “with compact supports”, where the support of an f
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is the closure of the (open) subset supp(f) = suppx0
(f) ⊂ Rm which consists of the

points s ∈ Rm such that f(s) ≠ x0.
A pair of maps f1, f2 ∶ RM → X with disjoint compact supports obviously

defines “the joint map” f ∶ RM → X, where the homotopy class of f (obviously)
depends only on those of f1, f2, provided supp(f1) lies in the left half space {s1 <
0} ⊂ Rm and supp(f2) ⊂ {s1 > 0} ⊂ RM , where s1 is a non-zero linear function
(coordinate) on RM .

The composition of the homotopy classes of two maps, denoted [f1] ⋅ [f2], is
defined as the homotopy class of the joint of f1 moved far to the left with f2 moved
far to the right.

Geometry is sacrificed here for the sake of algebraic convenience: first, we break
the symmetry of the sphere SM by choosing a base point, and then we destroy the
symmetry of RM by the choice of s1. If M = 1, then there are essentially two
choices: s1 and −s1, which correspond to interchanging f1 with f2—nothing wrong
with this as the composition is, in general, non-commutative.

In general M ≥ 2, these s1 ≠ 0 are, homotopically speaking, parametrized by
the unit sphere SM−1 ⊂ RM . Since SM−1 is connected for M ≥ 2, the composition is
commutative and, accordingly, the composition in πi for i ≥ 2 is denoted [f1]+[f2].
Good for algebra, but the O(M +1)-ambiguity seems too great a price for this. (An
algebraist would respond to this by pointing out that the ambiguity is resolved in
the language of operads or something else of this kind.)

But this is, probably, unavoidable. For example, the best you can do for maps
SM → SM in a given non-trivial homotopy class is to make them symmetric (i.e.
equivariant) under the action of the maximal torus Tk in the orthogonal group
O(M + 1), where k =M/2 for even M and k = (M + 1)/2 for M odd.

And if n ≥ 1, then, with a few exceptions, there are no apparent symmetric
representatives in the homotopy classes of maps Sn+N → SN ; yet Serre’s theorem
does carry a geometric message.

If n ≠ 0,N − 1, then every continuous map f0 ∶ Sn+N → SN is
homotopic to a map f1 ∶ Sn+N → SN of dilation bounded by a
constant,

dil(f1) =def sup
s1≠s2∈Sn+N

dist(f(s1), f(s2))
dist(s1, s2)

≤ const(n,N).

Dilation Questions. (1) What is the asymptotic behaviour of const(n,N)
for n,N →∞?

For all we know the Serre dilation constant constS(n,N) may be bounded for
n → ∞ and, say, for 1 ≤ N ≤ n − 2, but a bound one can see offhand is that by an

exponential tower (1 + c)(1+c)(1+c)
...

, of height N , since each geometric implemen-
tation of the homotopy lifting property in a Serre fibrations may bring along an
exponential dilation. Probably, the (questionably) geometric approach to the Serre
theorem via “singular bordisms” (see [74], [23],[1] and Section 5) delivers a better
estimate.

(2) Let f ∶ Sn+N → SN be a contractible map of dilation d, e.g. f equals the
m-multiple of another map where m is divisible by the order of πn+N(SN).

What is, roughly, the minimum Dmin = D(d, n,N) of dilations of maps F of
the unit ball Bn+N+1 → SN which are equal to f on ∂(Bn+N+1) = Sn+N?
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Of course, this dilation is the most naive invariant measuring the “geometric
size of a map”. Possibly, an interesting answer to these questions needs a more
imaginative definition of “geometric size/shape” of a map, e.g. in the spirit of the
minimal degrees of polynomials representing such a map.

Serre’s theorem and its descendants underlie most of the topology of the high
dimensional manifolds. Below are frequently used corollaries which relate homotopy
problems concerning general spaces X to the homology groups Hi(X) (see Section
4 for definitions) which are much easier to handle.

Theorem ([Sn+N →X]-Theorems). Let X be a compact connected triangulated
or cellular space, (defined below) or, more generally, a connected space with finitely
generated homology groups Hi(X), i = 1, 2, . . . . If the space X is simply connected,
i.e. π1(X) = 1, then its homotopy groups have the following properties.

(1) Finite Generation. The groups πm(X) are (Abelian!) finitely generated
for all m = 2, 3, . . ..

(2) Sphericity. If πi(X) = 0 for i = 1, 2,N − 1, then the (obvious) Hurewicz
homomorphism

πN(X) →HN(X),
which assigns, to a map SN →X, the N-cycle represented by this N-sphere
in X, is an isomorphism. (This is elementary, Hurewicz 1935.)

(3) Q-Sphericity. If the groups πi(X) are finite for i = 2,N − 1 (recall that
we assume π1(X) = 1), then the Hurewicz homomorphism tensored with
rational numbers,

πN+n(X) ⊗Q→HN+n(X) ⊗Q,

is an isomorphism for n = 1, . . . ,N − 2.

Because of the finite generation property, The Q-sphericity is equivalent to the
following.

Theorem (Serre m-Sphericity Theorem). (3′) Let the groups πi(X) be finite
(e.g. trivial) for i = 1, 2, . . . ,N − 1 and n ≤ N − 2. Then an m-multiple of every
(N +n)-cycle in X for some m ≠ 0 is homologous to an (N +n)-sphere continuously
mapped to X; every two homologous spheres SN+n → X become homotopic when
composed with a non-contractible i.e. of degree m ≠ 0, self-mapping Sn+N → Sn+N .
In more algebraic terms, the elements s1, s2 ∈ πn+N(X) represented by these spheres
satisfy ms1 −ms2 = 0.

The following is the dual of the m-Sphericity.

Theorem (Serre [→ SN ]Q- Theorem). Let X be a compact triangulated space
of dimension n+N , where either N is odd or n < N − 1. Then a non-zero multiple
of every homomorphism HN(X) → HN(SN) can be realized by a continuous map
X → SN .

If two continuous maps are f, g ∶X → SN are homologous, i.e. if the homology
homomorphisms f∗, g∗ ∶ HN(X) → HN(SN) = Z are equal, then there exists a
continuous self-mapping σ ∶ SN → SN of non-zero degree such that the composed
maps σ ○ f and σ ○ f ∶ X → SN are homotopic.

These Q-theorems follow from the Serre finiteness theorem for maps between
spheres by an elementary argument of induction by skeletons and rudimentary ob-
struction theory which run, roughly, as follows.
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Cellular and Triangulated Spaces. Recall that a cellular space is a topo-
logical space X with an ascending (finite or infinite) sequence of closed subspaces
X0 ⊂ X1 ⊂ ⋯ ⊂ Xi ⊂ ⋯ called he i-skeleta of X, such that ⋃i(Xi) = X and such
that X0 is a discrete finite or countable subset. Every Xi, i > 0, is obtained by
attaching a countably (or finitely) many i-balls Bi to Xi−1 by continuous maps of
the boundaries Si−1 = ∂(Bi) of these balls to Xi−1.

For example, if X is a triangulated space then it comes with homeomorphic
embeddings of the i-simplices Δi → Xi extending their boundary maps, ∂(Δi) →
Xi−1 ⊂ Xi where one additionally requires (here the word “simplex”, which is,
topologically speaking, is indistinguishable from Bi, becomes relevant) that the
intersection of two such simplices Δi and Δj imbedded into X is a simplex Δk

which is a face simplex in Δi ⊃Δk and in Δj ⊃Δk.
If X is a non-simplicial cellular space, we also have continuous maps Bi → Xi

but they are, in general, embeddings only on the interiors Bi ∖ ∂(Bi), since the
attaching maps ∂(Bi) →Xi−1 are not necessarily injective. Nevertheless, the images
of Bi in X are called closed cells, and denoted Bi ⊂Xi, where the union of all these
i-cells equals Xi.

Observe that the homotopy equivalence class of Xi is determined by that of
Xi−1 and by the homotopy classes of maps from the spheres Si−1 = ∂(Bi) to Xi−1.
We are free to take any maps Si−1 → Xi−1 we wish in assembling a cellular X
which make cells more efficient building blocks of general spaces than simplices.
For example, the sphere Sn can be made of a 0-cell and a single n-cell.

If Xi−1 = Sl for some l ≤ i− 1 (one has l < i− 1 if there is no cells of dimensions
between l and i−1) then the homotopy equivalence classes of Xi with a single i-cell
one-to-one correspond to the homotopy group πi−1(Sl).

On the other hand, every cellular space can be approximated by a homotopy
equivalent simplicial one, which is done by induction on skeletons Xi with an ap-
proximation of continuous attaching maps by simplicial maps from (i − 1)-spheres
to Xi−1.

Recall that a homotopy equivalence between X1 and X2 is given by a pair of
maps f12 ∶ X1 → X2 and f21 ∶ X2 → X1, such that both composed maps f12 ○ f21 ∶
X1 →X1 and f21 ○ f12 ∶ X2 →X2 are homotopic to the identity.

Obstructions and Cohomology. Let Y be a connected space such that
πi(Y ) = 0 for i = 1, . . . , n − 1 ≥ 1, let f ∶ X → Y be a continuous map and let
us construct, by induction on i = 0, 1, . . . , n − 1, a map fnew ∶ X → Y which is
homotopic to f and which sends Xn−1 to a point y0 ∈ Y as follows.

Assume f(Xi−1) = y0. Then the resulting map Bi f→ Y , for each i-cell Bi from
Xi, makes an i-sphere in Y , because the boundary ∂Bi ⊂ Xi−1 goes to a single
point—our to y0 in Y .

Since πi(Y ) = 0, this Bi in Y can be contracted to y0 without disturbing its
boundary. We do it all i-cells from Xi and, thus, contract Xi to y0. One cannot,
in general, extend a continuous map from a closed subset X ′ ⊂ X to X, but one
always can extend a continuous homotopy f ′t ∶ X ′ → Y , t ∈ [0, 1], of a given map
f0 ∶ X → Y , f0∣X ′ = f ′0, to a homotopy ft ∶ X → Y for all closed subsets X ′ ⊂ X,
similarly to how one extends R-valued functions from X ′ ⊂X to X.

The contraction of X to a point in Y can be obstructed on the n-th step, where
πn(Y ) ≠ 0, and where each oriented n-cell Bn ⊂ X mapped to Y with ∂(Bn) → y0
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represents an element c ∈ πn(Y ) which may be non-zero. (When we switch an
orientation in Bn, then c↦ −c.)

We assume at this point, that our space X is a triangulated one, switch from
Bn to Δn and observe that the function c(Δn) is (obviously) an n-cocycle in X
with values in the group πn(Y ), which means (this is what is longer to explain for
general cell spaces) that the sum of c(Δn) over the n+2 face-simplices Δn ⊂ ∂Δn+1

equals zero, for all Δn+1 in the triangulation (if we canonically/correctly choose
orientations in all Δn).

The cohomology class [c] ∈Hn(X;πn(X)) of this cocycle does not depend (by
an easy argument) on how the (n − 1)-skeleton was contracted. Moreover, every
cocycle c′ in the class of [c] can be obtained by a homotopy of the map on Xn which
is kept constant on Xn−2. (Two A-valued n-cocycles c and c′, for an abelian group
A, are in the same cohomology class if there exists an A-valued function d(Δn−1) on
the oriented simplices Δn−1 ⊂Xn−1, such that ∑Δn−1⊂Δn d(Δn−1) = c(Δn) − c′(Δn)
for all Δn. The set of the cohomology classes of n-cocycles with a natural additive
structure is called the cohomology groupHn(X;A). It can be shown that Hn(X;A)
depends only on X but not an a particular choice of a triangulation of X. See
Section 4 for a lighter geometric definitions of homology and cohomology.)

In particular, if dim(X) = n we, thus, equate the set [X → Y ] of the homotopy
classes of maps X → Y with the cohomology group Hn(X;πn(X)). Furthermore,
this argument applied to X = Sn shows that πn(X) =Hn(X) and, in general, that
the following is true.

The set of the homotopy classes of maps X → Y equals the set
of homomorphisms Hn(X) → Hn(Y ), provided πi(Y ) = 0 for
0 < i < dim(X).

Finally, when we use this construction for proving the above Q-theorems where one
of the spaces is a sphere, we keep composing our maps with self-mappings of this
sphere of suitable degree m ≠ 0 that kills the obstructions by the Serre finiteness
theorem.

For example, if X is a finite cellular space without 1-cells, one can define the
homotopy multiple l∗X, for every integer l, by replacing the attaching maps of all
(i + 1)-cells, Si → Xi, by lki -multiples of these maps in πi(Xi) for k2 << k3 << . . .,
where this l∗X comes along with a map l∗X → X which induces isomorphisms on
all homotopy groups tensored with Q.

The obstruction theory, developed by Eilenberg in 1940 following Pontryagin’s
1938 paper, well displays the logic of algebraic topology: the geometric symmetry of
X (if there was any) is broken by an arbitrary triangulation or a cell decomposition
and then another kind of symmetry, an Abelian algebraic one, emerges on the
(co)homology level.

Serre’s idea is that the homotopy types of finite simply connected cell com-
plexes as well as of finite diagrams of continuous maps between these are finitary
arithmetic objects which can be encoded by finitely many polynomial equations
and non-equalities with integer coefficients, and where the structural organization
of the homotopy theory depends on non-finitary objects which are inductive limits
of finitary ones, such as the homotopy types of spaces of continuous maps between
finite cell spaces.
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3. Generic Pullbacks

A common zero set of N smooth (i.e. infinitely differentiable) functions fi ∶
Rn+N → R, i = 1, . . . ,N , may be very nasty even for N = 1—every closed subset in
Rn+1 can be represented as a zero of a smooth function. However, if the functions fi
are taken in general position, then the common zero set is a smooth n-submanifold
in Rn+N .

Here and below, “f in general position” or “generic f”, where f is an element
of a topological space F , e.g. of the space of C∞-maps with the C∞-topology,
means that what we say about f applies to all f in an open and dense subset in F .
Sometimes, one allows not only open dense sets in the definition of genericity but
also their countable intersections.

Generic smooth (unlike continuous) objects are as nice as we expect them to be;
the proofs of this “niceness” are local-analytic and elementary (at least in the cases
we need); everything trivially follows from Sard’s theorem + the implicit function
theorem.

The representation of manifolds with functions generalizes as follows.

Generic Pullback Construction. (Pontryagin 1938, Thom 1954). Start
with a smooth N -manifold V , e.g. V = RN or V = SN , and let X0 ⊂ V be a smooth
submanifold, e.g. 0 ∈ RN or a point x0 ∈ SN . Let W be a smooth manifold of
dimension M , e.g. M = n +N .

Theorem. If f ∶ W → V is a generic smooth map, then the pullback X =
f−1(X0) ⊂ W is a smooth submanifold in W with codimW (X) = codimV (X0), i.e.
M −dim(X) = N −dim(X0). Moreover, if the manifolds W , V and X0 are oriented,
then X comes with a natural orientation. Furthermore, if W has a boundary then
X is a smooth submanifold in W with a boundary ∂(X) ⊂ ∂(W ).

Example (a). Let f ∶ W ⊂ V ⊃ X0 be a smooth, possibly non-generic, em-
bedding of W into V . Then a small generic perturbation f ′ ∶ W → V of f re-
mains an embedding, such that image W ′ = f ′(W ) ⊂ V in V becomes transver-
sal (i.e. nowhere tangent) to X0. One sees with the full geometric clarity (with
a picture of two planes in the 3-space which intersect at a line) that the inter-
section X = W ′ ∩ X0(= (f ′)−1(X0)) is a submanifold in V with codimV (X) =
codimV (W ) + codimV (X0).

Example (b). Let f ∶ S3 → S2 be a smooth map and S1, S2 ∈ S3 be the
pullbacks of two generic points s1, s2 ∈ S2. These Si are smooth closed curves; they
are naturally oriented, granted orientations in S2 and in S3.

Let Di ⊂ B4 = ∂(S3), i = 1, 2, be generic smooth oriented surfaces in the ball
B4 ⊃ S3 = ∂(B4) with their oriented boundaries equal Si and let h(f) denote the
intersection index (defined in the next section) between Di.

Suppose, the map f is homotopic to zero, extend it to a smooth generic map
ϕ ∶ B4 → S2 and take the ϕ-pullbacks Dϕ

i = ϕ−1(si) ⊂ B4 of si.
Let S4 be the 4-sphere obtained from the two copies of B4 by identifying the

boundaries of the balls and let Ci =Di ∪Dϕ
i ⊂ S4.

Since ∂(Di) = ∂(Dϕ
i ) = Si, these Ci are closed surfaces; hence, the intersection

index between them equals zero (because they are homologous to zero in S4, see the
next section), and since Dϕ

i do not intersect, the intersection index h(f) between
Di is also zero.
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It follows that non-vanishing of the Hopf invariant h(f) implies that f is non-
homotopic to zero.

For instance, the Hopf map S3 → S2 is non-contractible, since every two
transversal flat dicks Di ⊂ B4 ⊂ C2 bounding equatorial circles Si ⊂ S3 intersect at
a single point.

The essential point of the seemingly trivial pull-back construction, is that start-
ing from “simple manifolds” X0 ⊂ V and W , we produce complicated and more
interesting ones by means of “complicated maps” W → V . (It is next to impossible
to make an interesting manifold with the “equivalence class of atlases” definition.)

For example, if V = R, and our maps are functions on W , we can generate lots
of them by using algebraic and analytic manipulations with functions and then we
obtain maps to RN by taking N -tuples of functions.

And less obvious (smooth generic) maps, for all kind of V and W , come as
smooth generic approximations of continuous maps W → V delivered by the alge-
braic topology.

Following Thom (1954) one applies the above to maps into one point compact-
ifications V● of open manifolds V where one still can speak of generic pullbacks of
smooth submanifolds X0 in V ⊂ V● under maps W → V●

Thom spaces. The Thom space of anN-vector bundle V →X0 over a compact
space X0 (where the pullbacks of all points x ∈X0 are Euclidean spaces RN

x = RN )
is the one point compactifications V● of V , where X0 is canonically embedded into
V ⊂ V● as the zero section of the bundle (i.e. x↦ 0 ∈ RN

x ).
If X = Xn ⊂ W = Wn+N is a smooth submanifold, then the total space of its

normal bundle denoted U⊥ → X is (almost canonically) diffeomorphic to a small
(normal) ε-neighbourhood U(ε) ⊂ W of X, where every ε-ball BN(ε) = BN

x (ε)
normal to X at x ∈X is radially mapped to the fiber RN = RN

x of U⊥ →X at x.
Thus the Thom space U⊥● is identified with U(ε)● and the tautological map

W● → U(ε)●, that equals the identity on U(ε) ⊂W and sends the complement W ∖
U(ε) to ● ∈ U(ε)●, defines the Atiyah–Thom map for all closed smooth submanifold
X ⊂W ,

A⊥● ∶W● → U⊥● .

Recall that every RN -bundle over an n-dimensional space with n < N , can
be induced from the tautological bundle V over the Grassmann manifold X0 =
GrN(Rn+N) of N -planes (i.e. linear N -subspaces in Rn+N ) by a continuous map,
say G ∶ X →X0 = GrN(Rn+N).

For example, if X ⊂ Rn+N , one can take the normal Gauss map for G that sends
x ∈X to the N -plane G(x) ∈ GrN(Rn+N) =X0 which is parallel to the normal space
of X at x.

Since the Thom space construction is, obviously, functorial, every U⊥-bundle
inducing map X → X0 = GrN(Rn+N) for X = Xn ⊂ W = Wn+N , defines a map
U⊥● → V● and this, composed with A⊥● , gives us the Thom map

T● ∶W● → V● for the tautological N -bundle V →X0 = GrN(Rn+N).

Since all n-manifolds can be (obviously) embedded (by generic smooth maps)
into Euclidean spaces Rn+N , N >> n, every closed, i.e. compact without boundary,
n-manifold X comes from the generic pullback construction applied to maps f from
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Sn+N = Rn+N
● to the Thom space V● of the canonical N -vector bundle V → X0 =

GrN(Rn+N),
X = f−1(X0) for generic f ∶ Sn+N → V● ⊃X0 = GrN(Rn+N).

In a way, Thom has discovered the source of all manifolds in the world and
responded to the question “Where are manifolds coming from?” with the following.

1954 Answer. All closed smooth n-manifolds X come as pullbacks of the
Grassmannians X0 = GrN(Rn+N) in the ambient Thom spaces V● ⊃ X0 under
generic smooth maps Sn+N → V●.

The manifolds X obtained with the generic pull-back construction come with
a grain of salt: generic maps are abundant but it is hard to put your finger on any
one of them—we cannot say much about topology and geometry of an individual
X. (It seems, one cannot put all manifolds in one basket without some “random
string” attached to it.)

But, empowered with Serre’s theorem, this construction unravels an amazing
structure in the “space of all manifolds” (Before Serre, Pontryagin and following
him Rokhlin proceeded in the reverse direction by applying smooth manifolds to
the homotopy theory via the Pontryagin construction.)

Selecting an object X, e.g. a submanifold, from a given collection X of similar
objects, where there is no distinguished member X⋆ among them, is a notoriously
difficult problem which had been known since antiquity and can be traced to De
Cael of Aristotle. It reappeared in 14th century as Buridan’s ass problem and as
Zermelo’s choice problem at the beginning of 20th century.

A geometer/analyst tries to select an X by first finding/constructing a “value
function” on X and then by taking the “optimal” X. For example, one may go for
n-submanifolds X of minimal volumes in an (n +N)-manifold W endowed with a
Riemannian metric. However, minimal manifolds X are usually singular except for
hypersurfaces Xn ⊂Wn+1 where n ≤ 6 (Simons, 1968).

Picking up a “generic” or a “random” X from X is a geometer’s last resort
when all “deterministic” options have failed. This is aggravated in topology, since

● there is no known construction delivering all manifolds X in a reasonably
controlled manner besides generic pullbacks and their close relatives;

● on the other hand, geometrically interesting manifolds X are not any-
body’s pullbacks. Often, they are “complicated quotients of simple man-
ifolds”, e.g. X = S/Γ, where S is a symmetric space, e.g. the hyperbolic
n-space, and Γ is a discrete isometry group acting on S, possibly, with
fixed points.

(It is obvious that every surface X is homeomorphic to such a quotient, and this is
also so for compact 3-manifolds by a theorem of Thurston. But if n ≥ 4, one does
not know if every closed smooth manifold X is homeomorphic to such an S/Γ. It
is hard to imagine that there are infinitely many non-diffeomorphic but mutually
homeomorphic S/Γ for the hyperbolic 4-space S, but this may be a problem with
our imagination.)

Starting from another end, one has ramified covers X → X0 of “simple” mani-
folds X0, where one wants the ramification locus Σ0 ⊂ X0 to be a subvariety with
“mild singularities” and with an “interesting” fundamental group of the comple-
ment X0 ∖ Σ0, but finding such Σ0 is difficult (see the discussion following (3) in
Section 7).
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And even for simple Σ0 ⊂ X0, the description of ramified coverings X → X0

where X are manifolds may be hard. For example, this is non-trivial for ramified
coverings over the flat n-torus X0 = Tn where Σ0 is the union of several flat (n−2)-
subtori in general position where these subtori may intersect one another.

4. Duality and the Signature

Cycles and Homology. If X is a smooth n-manifold X one is inclined to
define “geometric i-cycles” C in X, which represent homology classes [C] ∈Hi(X),
as “compact oriented i-submanifolds C ⊂X with singularities of codimension two”.

This, however, is too restrictive, as it rules out, for example, closed self-
intersecting curves in surfaces, and/or the double covering map S1 → S1.

Thus, we allow C ⊂ X which may have singularities of codimension one, and,
besides orientation, a locally constant integer valued function on the non-singular
locus of C.

First, we define dimension on all closed subsets in smooth manifolds with the
usual properties of monotonicity, locality and max-additivity, i.e. dim(A ∪ B) =
max(dim(A),dim(B)).

Besides we want our dimension to be monotone under generic smooth maps of
compact subsets A, i.e. dim(f(A)) ≤ dim(A) and if f ∶ Xm+n → Y n is a generic
map, then f−1(A) ≤ dim(A) +m.

Then we define the “generic dimension” as the minimal function with these
properties which coincides with the ordinary dimension on smooth compact sub-
manifolds. This depends, of course, on specifying “generic” at each step, but this
never causes any problem in-so-far as we do not start taking limits of maps.

An i-cycle C ⊂ X is a closed subset in X of dimension i with a Z-multiplicity
function on C defined below, and with the following set decomposition of C.

C = Creg ∪C× ∪Csing,

such that

● Csing is a closed subset of dimension≤ i − 2.
● Creg is an open and dense subset in C and it is a smooth i-submanifold
in X.

C× ∪ Csing is a closed subset of dimension ≤ i − 1. Locally, at every point, x ∈ C×
the union Creg ∪ C× is diffeomorphic to a collection of smooth copies of Ri

+ in X,
called branches, meeting along their Ri−1-boundaries where the basic example is
the union of hypersurfaces in general position.

● The Z-multiplicity structure, is given by an orientation of Creg and a locally
constant multiplicity/weight Z-function on Creg, (where for i = 0 there is
only this function and no orientation) such that the sum of these oriented
multiplicities over the branches of C at each point x ∈ C× equals zero.

Every C can be modified to C ′ with empty C ′× and if codim(C) ≥ 1, i.e. dim(X) >
dim(C), also with weights = ±1.

For example, if 2l oriented branches of Creg with multiplicities 1 meet at C×,
divide them into l pairs with the partners having opposite orientations, keep these
partners attached as they meet along C× and separate them from the other pairs.
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No matter how simple, this separation of branches is, say with the total weight
2l, it can be performed in l! different ways. Poor C ′ burdened with this ambiguity
becomes rather non-efficient.

If X is a closed oriented n-manifold, then it itself makes an n-cycle which
represents what is called the fundamental class [X] ∈ Hn(X). Other n-cycles are
integer combinations of the oriented connected components of X.

It is convenient to have singular counterparts to manifolds with boundaries.
Since “chains” were appropriated by algebraic topologists, we use the word “plaque”,
where an (i+1)-plaque D with a boundary ∂(D) ⊂D is the same as a cycle, except
that there is a subset ∂(D)× ⊂D×, where the sums of oriented weights do not cancel,
where the closure of ∂(D)× equals ∂(D) ⊂D and where dim(∂(D)∖∂(D)×) ≤ i−2.

Geometrically, we impose the local conditions on D ∖ ∂(D) as on (i+ 1)-cycles
and add the local i-cycle conditions on (the closed set) ∂(D), where this ∂(D)
comes with the canonical weighted orientation induced from D.

(There are two opposite canonical induced orientations on the boundary C =
∂D, e.g. on the circular boundary of the 2-disc, with no apparent rational for
preferring one of the two. We choose the orientation in ∂(D) defined by the frames
of the tangent vectors τ1, ..., τi such that the orientation given to D by the (i + 1)-
frames ν, τ1, ..., τi agrees with the original orientation, where ν is the inward looking
normal vector.)

Every plaque can be “subdivided” by enlarging the set D× (and/or, less essen-
tially, Dsing). We do not care distinguishing such plaques and, more generally, the
equality D1 =D2 means that the two plaques have a common subdivision.

We go further and write D = 0 if the weight function on Dreg equals zero.
We denote by −D the plaque with the either minus weight function or with the

opposite orientation.
We define D1 +D2 if there is a plaque D containing both D1 and D2 as its

sub-plaques with the obvious addition rule of the weight functions.
Accordingly, we agree that D1 =D2 if D1 −D2 = 0.

On genericity. We have not used any genericity so far except for the definition
of dimension. But from now on we assume all our object to be generic. This is
needed, for example, to define D1 +D2, since the sum of arbitrary plaques is not a
plaque, but the sum of generic plaques, obviously, is.

Also if you are used to genericity, it is obvious to you that

if D ⊂X is an i-plaque (i-cycle) then the image f(D) ⊂ Y under
a generic map f ∶ X → Y is an i-plaque (i-cycle).

Notice that for dim(Y ) = i+1 the self-intersection locus of the image f(D) becomes
a part of f(D)× and if dim(Y ) = i + 1, then the new part the ×-singularity comes
from f(∂(D)).

It is even more obvious that

the pullback f−1(D) of an i-plaque D ⊂ Y n under a generic map
f ∶ Xm+n → Y n is an (i +m)-plaque in Xm+n; if D is a cycle
and Xm+n is a closed manifold (or the map f is proper), then
f−1(D) is cycle.

As the last technicality, we extend the above definitions to arbitrary triangu-
lated spaces X, with “smooth generic” substituted by “piecewise smooth generic”
or by piecewise linear maps.
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Homology. Two i-cycles C1 and C2 in X are called homologous, written C1 ∼
C2, if there is an (i + 1)-plaque D in X × [0, 1], such that ∂(D) = C1 × 0 −C2 × 1.

For example every contractible cycle C ⊂ X is homologous to zero, since the
cone over C in Y = X × [0, 1] corresponding to a smooth generic homotopy makes
a plaque with its boundary equal to C.

Since small subsets in X are contractible, a cycle C ⊂X is homologous to zero
if and only if it admits a decomposition into a sum of “arbitrarily small cycles”, i.e.
if, for every locally finite covering X = ⋃iUi, there exist cycles Ci ⊂ Ui, such that
C = ∑iCi.

The homology group Hi(X) is defined as the Abelian group with generators
[C] for all i-cycles C in X and with the relations [C1]−[C2] = 0 whenever C1 ∼ C2.

Similarly one defines Hi(X;Q), for the field Q of rational numbers, by allowing
C and D with fractional weights.

Example. Every closed orientable n-manifold X with k connected components
has Hn(X) = Zk, where Hn(X) is generated by the fundamental classes of its
components.

This is obvious with our definitions since the only plaques D in X × [0, 1] with
∂(D) ⊂ ∂(X × [0, 1]) =X × 0∪X × 1 are combination of the connected components
of X × [0, 1] and so Hn(X) equals the group of n-cycles in X. Consequently,

every closed orientable manifold X is non-contractible.

The above argument may look suspiciously easy, since it is even hard to prove
non-contractibility of Sn and issuing from this the Brouwer fixed point theorem
within the world of continuous maps without using generic smooth or combinatorial
ones, except for n = 1 with the covering map R → S1 and for S2 with the Hopf
fibration S3 → S2.

The catch is that the difficulty is hidden in the fact that a generic image of an
(n + 1)-plaque (e.g. a cone over X) in X × [0, 1] is again an (n + 1)-plaque. What
is obvious, however, without any appeal to genericity is that H0(X) = Zk for every
manifold or a triangulated space with k components.

The spheres Sn have Hi(Sn) = 0 for 0 < i < n, since the complement to a point
s0 ∈ Sn is homeomorphic to Rn and a generic cycles of dimension < n misses s0,
while Rn, being contractible, has zero homologies in positive dimensions.

It is clear that continuous maps f ∶ X → Y , when generically perturbed, define
homomorphisms f∗i ∶Hi(X) →Hi(Y ) for C ↦ f(C) and that

homotopic maps f1, f2 ∶ X → Y induce equal homomorphisms
Hi(X) →Hi(Y ).

Indeed, the cylinders C × [0, 1] generically mapped to Y × [0, 1] by homotopies ft,
t ∈ [0, 1], are plaque D in our sense with ∂(D) = f1(C) − f2(C). It follows, that

homology is invariant under homotopy equivalences X ↔ Y for
manifolds X,Y as well as for triangulated spaces.

Similarly, if f ∶ Xm+n → Y n is a proper (pullbacks of compact sets are compact)
smooth generic map between manifolds where Y has no boundary, then the pull-
backs of cycles define homomorphism, denoted, f ! ∶ Hi(Y ) → Hi+m(X), which is
invariant under proper homotopies of maps.

The homology groups are much easier do deal with than the homotopy groups,
since the definition of an i-cycle in X is purely local, while “spheres in X” cannot
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be recognized by looking at them point by point. (Holistic philosophers must feel
triumphant upon learning this.)

Homologically speaking, a space is the sum of its parts: the locality allows an
effective computation of homology of spaces X assembled of simpler pieces, such as
cells, for example.

The locality+additivity is satisfied by the generalized homology functors that
are defined, following Sullivan, by limiting possible singularities of cycles and plaques
[6]. Some of these, e.g. bordisms we meet in the next section.

Definition. Degree of a map. Let f ∶ X → Y be a smooth (or piece-wise
smooth) generic map between closed connected oriented equidimensional manifolds
Then the degree deg(f) can be (obviously) equivalently defined either as the image
f∗[X] ∈ Z =Hn(Y ) or as the f !-image of the generator [●] ∈H0(Y ) ∈ Z =H0(X).

For, example, l-sheeted covering maps X → Y have degrees l. Similarly, one
sees that

finite covering maps between arbitrary spaces are surjective on
the rational homology groups.

To understand the local geometry behind the definition of degree, look closer at our
f where X (still assumed compact) is allowed a non-empty boundary and observe

that the f -pullback Ũy ⊂X of some (small) open neighbourhood Uy ⊂ Y of a generic

point y ∈ Y consists of finitely many connected components Ũi ⊂ Ũ , such that the
map f ∶ Ũi → Uy is a diffeomorphism for all Ũi.

Thus, every Ũi carries two orientations: one induced from X and the second
from Y via f . The sum of +1 assigned to Ũi where the two orientation agree and
of −1 when they disagree is called the local degree degy(f).

If two generic points y1, y2 ∈ Y can be joined by a path in Y which does not cross
the f -image f(∂(X)) ⊂ Y of the boundary of X, then degy1

(f) = degy2
(f) since the

f -pullback of this path, (which can be assumed generic) consists, besides possible

closed curves, of several segments in Y , joining ±1-degree points in f−1(y1) ⊂ Ũy1
⊂

X with ∓1-points in f−1(y2) ⊂ Ũy2
.

Consequently, the local degree does not depend on y if X has no boundary.
Then, clearly, it coincides with the homologically defined degree.

Similarly, one sees in this picture (without any reference to homology) that the
local degree is invariant under generic homotopies F ∶ X × [0, 1] → Y , where the
smooth (typically disconnected) pull-back curve F −1(y) ⊂X ×[0, 1] joins ±1-points
in F (x, 0)−1(y) ⊂X =X × 0 with ∓1-points in F (x, 1)−1(y) ⊂X =X × 1.

Geometric versus algebraic cycles. Let us explain how the geometric def-
inition matches the algebraic one for triangulated spaces X.

Recall that the homology of a triangulated space is algebraically defined with
Z-cycles which are Z-chains, i.e. formal linear combinations Calg = ∑s ksΔ

i
s of

oriented i-simplices Δi
s with integer coefficients ks, where, by the definition of

“algebraic cycle” , these sums have zero algebraic boundaries, which is equivalent
to c(Calg) = 0 for every Z-cocycle c cohomologous to zero (see Section 2).

But this is exactly the same as our generic cycles Cgeo in the i-skeleton Xi of

X and, tautologically, Calg
taut↦ Cgeo gives us a homomorphism from the algebraic

homology to our geometric one.
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On the other hand, an (i+j)-simplex minus its center can be radially homotoped
to its boundary. Then the obvious reverse induction on skeleta of the triangulation
shows that the spaceX minus a subset Σ ⊂X of codimension i+1 can be homotoped
to the i-skeleton Xi ⊂X.

Since every generic i-cycle C misses Σ it can be homotoped to Xi where the
resulting map, say f ∶ C →Xi, sends C to an algebraic cycle.

At this point, the equivalence of the two definitions becomes apparent, where,
observe, the argument applies to all cellular spaces X with piece-wise linear attach-
ing maps.

The usual definition of homology of such an X amounts to working with all
i-cycles contained in Xi and with (i+ 1)-plaques in Xi+1. In this case the group of
i-cycles becomes a subspace of the group spanned by the i-cells, which shows, for
example, that the rank of Hi(X) does not exceed the number of i-cells in Xi.

We return to generic geometric cycles and observe that if X is a non-compact
manifold, one may drop “compact” in the definition of these cycles. The resulting
group is denoted H1(X,∂∞). If X is compact with boundary, then this group of
the interior of X is called the relative homology group Hi(X,∂(X)). (The ordinary
homology groups of this interior are canonically isomorphic to those of X.)

Intersection Ring. The intersection of cycles in general position in a smooth
manifold X defines a multiplicative structure on the homology of an n-manifold X,
denoted

[C1] ⋅ [C2] = [C1] ∩ [C2] = [C1 ∩C2] ∈Hn−(i+j)(X)
for [C1] ∈Hn−i(X) and [C2] ∈Hn−j(X),

where [C]∩[C] is defined by intersecting C ⊂X with its small generic perturbation
C ′ ⊂X.

(Here genericity is most useful: intersection is painful for simplicial cycles con-
fined to their respective skeleta of a triangulation. On the other hand, if X is a
not a manifold one may adjust the definition of cycles to the local topology of the
singular part of X and arrive at what is called the intersection homology.)

It is obvious that the intersection is respected by f ! for proper maps f , but
not for f∗. The former implies. in particular, that this product is invariant under
oriented (i.e. of degrees +1) homotopy equivalences between closed equidimensional
manifolds. (But X ×R, which is homotopy equivalent to X has trivial intersection
ring, whichever is the ring of X.)

Also notice that the intersection of cycles of odd codimen-
sions is anti-commutative and if one of the two has even codimension it is com-
mutative.

The intersection of two cycles of complementary dimensions is a 0-cycle, the
total Z-weight of which makes sense if X is oriented; it is called the intersection
index of the cycles.

Also observe that the intersection between C1 and C2 equals the intersection
of C1 ×C2 with the diagonal Xdiag ⊂X ×X.

Example (a). The intersection ring of the complex projective space CP k is
multiplicatively generated by the homology class of the hyperplane, [CP k−1] ∈
H2k−2(CP k), with the only relation [CP k−1]k+1 = 0 and where, obviously, [CP k−i] ⋅
[CP k−j] = [CP k−(i+j)].
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The only point which needs checking here is that the homology class [CP i]
(additively) generates Hi(CP k), which is seen by observing that CP i+1 ∖CP i, i =
0, 1, ..., k−1, is an open (2i+2)-cell, i.e. the open topological ball B2i+2

op (where the

cell attaching map ∂(B2i+2) = S2i+1 → CP i is the quotient map S2i+1 → S2i+1/T =
CP i+1 for the obvious action of the multiplicative group T of the complex numbers
with norm 1 on S2i+1 ⊂ C2i+1).

Example (b). The intersection ring of the n-torus is isomorphic to the ex-
terior algebra on n-generators, i.e. the only relations between the multiplicative
generators hi ∈ Hn−1(Tn) are hihj = −hjhi, where hi are the homology classes of
the n coordinate subtori Tn−1

i ⊂ Tn.

This follows from the K’́unneth formula below, but can be also proved directly
with the obvious cell decomposition of Tn into 2n cells.

The intersection ring structure immensely enriches homology. Additively, H∗ =
⊕iHi is just a graded Abelian group – the most primitive algebraic object (if finitely
generated) – fully characterized by simple numerical invariants: the rank and the
orders of their cyclic factors.

But the ring structure, say on Hn−2 of an n-manifold X, for n = 2d defines
a symmetric d-form, on Hn−2 = Hn−2(X) which is, a polynomial of degree d in r
variables with integer coefficients for r = rank(Hn−2). All number theory in the
world cannot classify these for d ≥ 3 (to be certain, for d ≥ 4).

One can also intersect non-compact cycles, where an intersection of a compact
C1 with a non-compact C2 is compact; this defines the intersection pairing

Hn−i(X) ⊗Hn−j(X,∂∞)
∩→Hn−(i+j)(X).

Finally notice that generic 0 cycles C in X are finite sets of points x ∈ X with
the “orientation” signs ±1 attached to each x in C, where the sum of these ±1 is
called the index of C. If X is connected, then ind(C) = 0 if and only if [C] = 0.

Thom Isomorphism. Let p ∶ V →X be a fiber-wise oriented smooth (which is
unnecessary) RN -bundle over X, where X ⊂ V is embedded as the zero section and
let V● be Thom space of V . Then there are two natural homology homomorphisms.

Intersection. ∩ ∶ Hi+N(V●) → Hi(X). This is defined by inter-
secting generic (i +N)-cycles in V● with X.
Thom Suspension. S● ∶ Hi(X) → Hi(V●), where every cycle
C ⊂ X goes to the Thom space of the restriction of V to C, i.e.
C ↦ (p−1(C))● ⊂ V●.

These ∩ and S● are mutually reciprocal. Indeed (∩ ○ S●)(C) = C for all C ⊂X and
also (S● ○ ∩)(C ′) ∼ C ′ for all cycles C ′ in V● where the homology is established by
the fiberwise radial homotopy of C ′ in V● ⊃ V , which fixes ● and move each v ∈ V
by v ↦ tv. Clearly, tC ′ → (S● ○ ∩)(C ′) as t→∞ for all generic cycles C ′ in V●.

Thus we arrive at the Thom isomorphism

Hi(X) ↔Hi+N(V●).

Similarly we see that

The Thom space of every RN -bundle V →X is (N−1)-connected,
i.e. πj(V●) = 0 for j = 1, 2, ...N − 1.
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Indeed, a generic j-sphere Sj → V● with j < N does not intersect X ⊂ V , where
X is embedded into V by the zero section. Therefore, this sphere radially (in the
fibers of V ) contracts to ● ∈ V●.

Euler Class. Let f ∶ X → B be a fibration with R2k-fibers over a smooth
closed oriented manifold B. Then the intersection indices of 2k-cycles in B with
B ⊂ X, embedded as the zero section, defines an integer cohomology class, i.e. a
homomorphism (additive map) e ∶ H2k(B) → Z ⊂ Q, called the Euler class of the
fibration. (In fact, one does not need B to be a manifold for this definition.)

Observe that the Euler number vanishes if and only if the homology projection
homomorphism 0f∗2k ∶ H2k(V ∖B;Q) → H2k(B;Q) is surjective, where B ⊂ X is
embedded by the zero section b ↦ 0b ∈ Rk

b and 0f ∶ V ∖B → B is the restriction of
the map (projection) f to V ∖B.

Moreover, it is easy to see that the ideal in H∗(B) generated by the Euler
class (for the ⌣-ring structure on cohomology defined later in this section) equals
the kernel of the cohomology homomorphism 0f

∗ ∶H∗(B) →H∗(V ∖B).
If B is a closed connected oriented manifold, then e[B] is called the Euler

number of X → B also denoted e.
In other words, the number e equals the self-intersection index of B ⊂X. Since

the intersection pairing is symmetric on H2k the sign of the Euler number does not
depend on the orientation of B, but it does depend on the orientation of X.

Also notice that if X is embedded into a larger 4k-manifold X ′ ⊃ X then the
self-intersection index of B in X ′ equals that in X.

If X equals the tangent bundle T (B) then X is canonically oriented (even if B
is non-orientable) and the Euler number is non-ambiguously defined and it equals
the self-intersection number of the diagonal Xdiag ⊂X ×X.

Theorem (Poincaré-Hopf Formula). The Euler number e of the tangent bundle
T (B) of every closed oriented 2k-manifold B satisfies

e = χ(B) = ∑
i=0,1,...2k

rank(Hi(B;Q)).

(If n = dim(B) is odd, then ∑i=0,1,...n rank(Hi(B;Q)) = 0 by the Poincaré duality.)

It is hard the believe this may be true! A single cycle (let it be the fundamental
one) knows something about all of the homology of B.

The most transparent proof of this formula is, probably, via the Morse theory
(known to Poincaré) and it hardly can be called “trivial”.

A more algebraic proof follows from the K’́unneth formula (see below) and
an expression of the class [Xdiag] ∈ H2k(X ×X) in terms of the intersection ring
structure in H∗(X).

The Euler number can be also defined for connected non-orientable B as follows.
Take the canonical oriented double covering B̃ → B, where each point b̃ ∈ B̃ over
b ∈ B is represented as b + an orientation of B near b. Let the bundle X̃ → B̃ be
induced from X by the covering map B̃ → B, i.e. this X̃ is the obvious double
covering of X corresponding to B̃ → B. Finally, set e(X) = e(X̃)/2.

The Poincaré-Hopf formula for non-orientable 2k-manifolds B follows from the
orientable case by the multiplicativity of the Euler characteristic χ which is valid
for all compact triangulated spaces B,

an l-sheeted covering B̃ → B has χ(B̃) = l ⋅ χ(B).
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If the homology is defined via a triangulation of B, then χ(B) equals the alternating
sum ∑i(−1)iN(Δi) of the numbers of i-simplices by straightforward linear algebra
and the multiplicativity follows. But this is not so easy with our geometric cycles.
(If B is a closed manifold, this also follows from the Poincaré-Hopf formula and the
obvious multiplicativity of the Euler number for covering maps.)

Theorem (K’́unneth Theorem). The rational homology of the Cartesian prod-
uct of two spaces equals the graded tensor product of the homologies of the factors.
In fact, the natural homomorphism

⊕
i+j=k

Hi(X1;Q) ⊗Hj(X2;Q) →Hk(X1 ×X2;Q), k = 0, 1, 2, ...

is an isomorphism. Moreover, if X1 and X2 are closed oriented manifolds, this
homomorphism is compatible (if you say it right) with the intersection product.

This is obvious if X1 and X2 have cell decompositions such that the numbers of
i-cells in each of them equals the ranks of their respective Hi. In the general case,
the proof is cumbersome unless you pass to the language of chain complexes where
the difficulty dissolves in linear algebra. (Yet, keeping track of geometric cycles may
be sometimes necessary, e.g. in the algebraic geometry, in the geometry of foliated
cycles and in evaluating the so called filling profiles of products of Riemannian
manifolds.)

Theorem (Poincaré Q-Duality). Let X be a connected oriented n-manifold.
The intersection index establishes a linear duality between homologies of comple-
mentary dimensions:

Hi(X;Q) equals the Q-linear dual of Hn−i(X,∂∞;Q).

In other words, the intersection pairing

Hi(X) ⊗Hn−i(X,∂∞)
∩→H0(X) = Z

is Q-faithful: a multiple of a compact i-cycle C is homologous to zero if and only
if its intersection index with every non-compact (n − i)-cycle in general position
equals zero.

Furthermore, if X equals the interior of a compact manifolds with a boundary,
then a multiple of a non-compact cycle is homologous to zero if and only if its
intersection index with every compact generic cycle of the complementary dimension
equals zero.

Proof of (Hi ↔Hn−i) for Closed Manifolds X. We, regretfully, break
the symmetry by choosing some smooth triangulation T of X which means this T
is locally as good as a triangulation of Rn by affine simplices (see below).

Granted T , assign to each generic i-cycle C ⊂ X the intersection index of C
with every oriented Δn−i of T and observe that the resulting function c⊥ ∶ Δn−i ↦
ind(Δn−i ∩ C) is a Z-valued cocycle (see section 2), since the intersection index
of C with every (n − i)-sphere ∂(Δn−i+1) equals zero, because these spheres are
homologous to zero in X.

Conversely, given a Z-cocycle c(Δn−i) construct an i-cycle C⊥ ⊂ X as follows.
Start with (n − i+ 1)-simplices Δn−i+1 and take in each of them a smooth oriented
curve S with the boundary points located at the centers of the (n − i)-faces of
Δn−i+1, where S is normal to a face Δn−i whenever it meets one and such that
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the intersection index of the (slightly extended across Δn−i) curve S with Δn−i

equals c(Δn−i). Such a curve, (obviously) exists because the function c is a cocycle.
Observe, that the union of these S over all (n−i+1)-simplices in the boundary sphere
Sn−i+1 = ∂Δn−i+2 of every (n − i + 2)-simplex in T is a closed (disconnected) curve
in Sn−i+1, the intersection index of which with every (n − i)-simplex Δn−i ⊂ Sn−i+1

equals c(Δn−i) (where this intersection index is evaluated in Sn−i+1 but not in X).

Then construct by induction on j the (future) intersection Cj
⊥ of C⊥ with the

(n− i+ j)-skeleton Tn−i+j of our triangulation by taking the cone from the center of

each simplex Δn−i+j ⊂ Tn−i+j over the intersection of Cj
⊥ with the boundary sphere

∂(Δn−i+j).
It is easy to see that the resulting C⊥ is an i-cycle and that the composed maps

C → c⊥ → C⊥ and c → C⊥ → c⊥ define identity homomorphisms Hi(X) → Hi(X)
and Hn−i(X;Z) → Hn−i(X;Z) correspondingly and we arrive at the Poincaré Z-
isomorphism,

Hi(X) ↔Hn−i(X;Z).
To complete the proof of the Q-duality one needs to show that Hj(X;Z) ⊗Q

equals the Q-linear dual of Hj(X;Q). To do this we represent Hi(X) by algebraic
Z-cycles ∑j kjΔ

i and now, in the realm of algebra, appeal to the linear duality
between homologies of the chain and cochain complexes of T :

the natural pairing between classes h ∈Hi(X) and c ∈Hi(X;Z),
which we denote (h, c) ↦ c(h) ∈ Z, establishes, when tensored
with Q, an isomorphism between Hi(X;Q) and the Q-linear
dual of Hi(X;Q)

Hi(X;Q) ↔ Hom[Hi(X;Q)] → Q]
for all compact triangulated spaces X.

�

Corollaries. (a) The non-obvious part of the Poincaré duality is the claim
that, for ever Q-homologically non-trivial cycle C, there is a cycle C ′ of the com-
plementary dimension, such that the intersection index between C and C ′ does not
vanish.

But the easy part of the duality is also useful, as it allows one to give a lower
bound on the homology by producing sufficiently many non-trivially intersecting
cycles of complementary dimensions.

For example it shows that closed manifolds are non-contractible (where it re-
duces to the degree argument). Also it implies that the Künneth pairingH∗(X;Q)⊗
H∗(Y ;Q) →H∗(X × Y ;Q) is injective for closed orientable manifolds X.

(b) Let f ∶ Xm+n → Y n be a smooth map between closed orientable manifolds
such the homology class of the pullback of a generic point is not homologous to
zero, i.e. 0 ≠ [f−1(y0)] ∈ Hm(X). Then the homomorphisms f !i ∶ Hi(Y ;Q) →
Hi+m(X;Q) are injective for all i.

Indeed, every h ∈ Hi(Y ;Q) different from zero comes with an h′ ∈ Hn−i(Y )
such that the intersection index d between the two is ≠ 0. Since the intersection of
f !(h) and f !(h′) equals d[f−1(y0)] none of f !(h) and f !(h′) equals zero. Conse-
quently/similarly all f∗j ∶Hj(X) →Hj(Y ) are surjective. For example,

(b1) Equidimensional maps f of positive degrees between closed oriented man-
ifolds are surjective on rational homology.



100 MIKHAIL GROMOV

(b2) Let f ∶ X → Y be a smooth fibration where the fiber is a closed oriented
manifold with non-zero Euler characteristic, e.g. homeomorphic to S2k. Then
the fiber is non-homologous to zero, since the Euler class e of the fiberwise tan-
gent bundle, which defined on all of X, does not vanish on f−1(y0); hence, f∗ is
surjective.

Recall that the unit tangent bundle fibration X = UT (S2k) → S2k = Y with
S2k−1-fibers has Hi(X;Q) = 0 for 1 ≤ i ≤ 4k−1, since the Euler class of T (S2k) does
not vanish; hence; f∗ vanishes on all Hi(X;Q), i > 0.

Geometric Cocycles. We gave only a combinatorial definition of cohomology,
but this can be defined more invariantly with geometric i-cocycles c being “gener-
ically locally constant” functions on oriented plaques D such that c(D) = −c(−D)
for reversing the orientation in D, where c(D1 +D2) = c(D1) + c(D2) and where
the final cocycle condition reads c(C) = 0 for all i-cycles C which are homologous
to zero. Since every C ∼ 0 decomposes into a sum of small cycles, the condition
c(C) = 0 needs to be verified only for (arbitrarily) “small cycles” C.

Cocycles are as good as Poincaré’s dual cycles for detecting non-triviality of
geometric cycles C: if c(C) ≠ 0, then, C is non-homologous to zero and also c is
not cohomologous to zero.

If we work with H∗(X;R), these cocycles c(D) can be averaged over measures
on the space of smooth self-mapping X →X homotopic to the identity. (The aver-
aged cocycles are kind of duals of generic cycles.) Eventually, they can be reduced to
differential forms invariant under a given compact connected automorphism group
of X, that let cohomology return to geometry by the back door.

On Integrality of Cohomology. In view of the above, the rational cohomol-
ogy classes c ∈ Hi(X;Q) can be defined as homomorphisms c ∶ Hi(X) → Q. Such
a c is called integer if its image is contained in Z ⊂ Q. (Non-integrality of cer-
tain classes underlies the existence of nonstandard smooth structures on topological
spheres discovered by Milnor, see Section 6.)

The Q-duality does not tell you the whole story. For example, the following
simple property of closed n-manifolds X depends on the full homological duality:

Connectedness/Contractibility. If X is a closed k-connected n-manifold,
i.e. πi(X) = 0 for i = 1, ..., k, then the complement to a point, X∖{x0}, is (n−k−1)-
contractible, i.e. there is a homotopy ft of the identity map X ∖ {x0} → X ∖ {x0}
with P = f1(X ∖ {x0}) being a smooth triangulated subspace P ⊂ X ∖ {x0} with
codim(P ) ≥ k + 1.

For example, if πi(X) = 0 for 1 ≤ i ≤ n/2, then X is homotopy equivalent to Sn.

Smooth triangulations. Recall, that “smoothness” of a triangulated subset
in a smooth n-manifold, say P ∈ X, means that, for every closed i-simplex Δ ⊂ P ,
there exist

● an open subset U ⊂X which contains Δ,
● an affine triangulation P ′ of Rn, n = dim(X),
● a diffeomorphism U → U ′ ⊂ Rn which sends Δ onto an i-simplex Δ′ in P ′.

Accordingly, one defines the notion of a smooth triangulation T of a smooth man-
ifold X, where one also says that the smooth structure in X is compatible with T .
Every smooth manifold X can be given a smooth triangulation, e.g. as follows.
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Let S be an affine (i.e. by affine simplices) triangulation of RM which is invari-
ant under the action of a lattice Γ = ZM ⊂ RM (i.e. S is induced from a triangulation
of the M -torus RM/Γ) and let X ⊂f RM be a smoothly embedded (or immersed)
closed n-submanifold. Then there (obviously) exist

● an arbitrarily small positive constant δ0 = δ0(S) > 0,
● an arbitrarily large constant λ ≥ λ0(X,f, δ0) > 0,
● δ-small moves of the vertices of S for δ ≤ δ0, where these moves themselves
depend on the embedding f ofX into RM and on λ, such that the simplices
of the correspondingly moved triangulation, say S′ = S′δ = S′(X,f) are δ′-
transversal to the λ-scaled X, i.e. to λX =X ⊂λf RM .

The δ′-transversality of an affine simplex Δ′ ⊂ RM to λX ⊂ RM means that the
affine simplices Δ′′ obtained from Δ′ by arbitrary δ′-moves of the vertices of Δ′ for
some δ′ = δ′(S, δ) > 0 are transversal to λX. In particular, the intersection “angles”
between λX and the i-simplices, i = 0, 1, ...,M − 1, in S′ are all ≥ δ′.

If λ is sufficiently large (and hence, λX ⊂ RM is nearly flat), then the δ′-
transversality (obviously) implies that the intersection of λX with each simplex
and its neighbours in S′ in the vicinity of each point x ∈ λX ⊂ RM has the same
combinatorial pattern as the intersection of the tangent space Tx(λX) ⊂ RM with
these simplices. Hence, the (cell) partition Π = Πf ′ of λX induced from S′ can be
subdivided into a triangulation of X = λX.

Almost all of what we have presented in this section so far was essentially
understood by Poincaré, who switched at some point from geometric cycles to
triangulations, apparently, in order to prove his duality. (See [41] for pursuing
further the first Poincaré approach to homology.)

The language of geometic/generic cycles suggested by Poincaré is well suited for
observing and proving the multitude of obvious little things one comes across every
moment in topology. (I suspect, geometric, even worse, some algebraic topologists
think of cycles while they draw commutative diagrams. Rephrasing J.B.S. Hal-
dane’s words: “Geometry is like a mistress to a topologist: he cannot live without
her but he’s unwilling to be seen with her in public”.)

But if you are far away from manifolds in the homotopy theory it is easier
to work with cohomology and use the cohomology product rather than intersection
product.

The cohomology product is a bilinear pairing, often denoted Hi ⊗Hj ⌣→ Hi+j ,

which is the Poincaré dual of the intersection product Hn−i ⊗Hn−j
∩→ Hn−i−j in

closed oriented n-manifolds X.
The ⌣-product can be defined for all, say triangulated, X as the dual of

the intersection product on the relative homology, HM−i(U ;∞) ⊗HM−j(U ;∞) →
HM−i−j(U ;∞), for a small regular neighbourhood U ⊃X of X embedded into some
RM . The ⌣ product, so defined, is invariant under continuous maps f ∶X → Y :

f∗(h1 ⌣ h2) = f∗(h1) ⌣ f∗(h2) for all h1, h2 ∈H∗(Y ).

It easy to see that the ⌣-pairing equals the composition of the K’́unneth ho-
momorphism H∗(X) ⊗H∗(X) → H∗(X ×X) with the restriction to the diagonal
H∗(X ×X) →H∗(Xdiag).

You can hardly expect to arrive at anything like Serre’s finiteness theorem
without a linearized (co)homology theory; yet, geometric constructions are of a
great help on the way.



102 MIKHAIL GROMOV

Topological and Q-manifolds. The combinatorial proof of the Poincaré du-
ality is the most transparent for open subsets X ⊂ Rn where the standard decompo-
sition S of Rn into cubes is the combinatorial dual of its own translate by a generic
vector.

Poincaré duality remains valid for all oriented topological manifolds X and
also for all rational homology or Q-manifolds, that are compact triangulated n-
spaces where the link Ln−i−1 ⊂X of every i-simplex Δi in X has the same rational
homology as the sphere Sn−i−1, where it follows from the (special case of) Alexander
duality.

The rational homology of the complement to a topologically em-
bedded k-sphere as well as of a rational homology sphere, into Sn

(or into a Q-manifold with the rational homology of Sn) equals
that of the (n − k − 1)-sphere.

(The link Ln−i−1(Δi) is the union of the simplices Δn−i−1 ⊂X which do not intersect
Δi and for which there exists an simplex in X which contains Δi and Δn−i−1.)

Alternatively, an n-dimensional space X can be embedded into some RM where
the duality for X reduces to that for “suitably regular” neighbourhoods U ⊂ RM of
X which admit Thom isomorphisms Hi(X) ↔Hi+M−n(U●).

If X is a topological manifold, then “locally generic” cycles of complementary
dimension intersect at a discrete set which allows one to define their geometric
intersection index. Also one can define the intersection of several cycles Cj , j =
1, ...k, with ∑j dim(Ci) = dim(X) as the intersection index of ×jCj ⊂ Xk with

Xdiag ⊂Xk, but anything more then that can not be done so easily.
Possibly, there is a comprehensive formulation with an obvious invariant proof

of the “functorial Poincaré duality” which would make transparent, for example, the
multiplicativity of the signature (see below) and the topological nature of rational
Pontryagin classes (see section 10) and which would apply to “cycles” of dimensions
βN where N = ∞ and 0 ≤ β ≤ 1 in spaces like these we shall meet in section 11.

Signature. The intersection of (compact) k-cycles in an oriented, possibly
non-compact and/or disconnected, 2k-manifold X defines a bilinear form on the
homology Hk(X). If k is odd, this form is antisymmetric and if k is even it is
symmetric.

The signature of the latter, i.e. the number of positive minus the number of
negative squares in the diagonalized form, is called sig(X). This is well defined if
Hk(X) has finite rank, e.g. if X is compact, possibly with a boundary.

Geometrically, a diagonalization of the intersection form is achieved with a
maximal set of mutually disjoint k-cycles in X where each of them has a non-
zero (positive or negative) self-intersection index. (If the cycles are represented by
smooth closed oriented k-submanifolds, then these indices equal the Euler numbers
of the normal bundles of these submanifolds. In fact, such a maximal system of
submanifolds always exists as it was derived by Thom from the Serre finiteness
theorem.)

Example (a). S2k×S2k has zero signature, since the 2k-homology is generated
by the classes of the two coordinate spheres [s1 × S2k] and [S2k × s2], which both
have zero self-intersections.
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Example (b). The complex projective space CP 2m has signature one, since
its middle homology is generated by the class of the complex projective subspace
CPm ⊂ CP 2m with the self-intersection = 1.

Example (c). The tangent bundle T (S2k) has signature 1, sinceHk(T (S2k)) is
generated by [S2k] with the self-intersection equal the Euler characteristic χ(S2k) =
2.

It is obvious that sig(mX) =m ⋅ sig(X), where mX denotes the disjoint union
of m copies of X, and that sig(−X) = −sig(X), where “−” signifies reversion of
orientation. Furthermore

Theorem (Rokhlin 1952). The oriented boundary X of every compact oriented
(4k + 1)-manifold Y has zero signature.

(Oriented boundaries of non-orientable manifolds may have non-zero signa-

tures. For example the double covering X̃ → X with sig(X̃) = 2sig(X) non-
orientably bounds the corresponding 1-ball bundle Y over X.)

Proof. If k-cycles Ci, i = 1, 2, bound relative (k + 1)-cycles Di in Y , then the
(zero-dimensional) intersection C1 with C2 bounds a relative 1-cycle in Y which
makes the index of the intersection zero. Hence,

the intersection form vanishes on the kernel kerk ⊂Hk(X) of the
inclusion homomorphism Hk(X) →Hk(Y ).

On the other hand, the obvious identity

[C ∩D]Y = [C ∩ ∂D]X
and the Poincaré duality in Y show that the orthogonal complement ker⊥k ⊂Hk(X)
with respect to the intersection form in X is contained in kerk. �

Observe that this argument depends entirely on the Poincaré duality and it
equally applies to the topological and Q-manifolds with boundaries.

Also notice that the K’́unneth formula and the Poincaré duality (trivially) imply
the Cartesian multiplicativity of the signature for closed manifolds,

sig(X1 ×X2) = sig(X1) ⋅ sig(X2).
For example, the products of the complex projective spaces ×iCP

2ki have signatures

one. (The K’́unneth formula is obvious here with the cell decompositions of ×iCP
2ki

into ×i(2ki + 1) cells.)
Amazingly, the multiplicativity of the signature of closed manifolds under cov-

ering maps can not be seen with comparable clarity.

Theorem (Multiplicativity Formula). If X̃ →X is an l-sheeted covering map,
then

sign(X̃) = l ⋅ sign(X).

This can be sometimes proved by elementary, means, e.g. if the fundamental
group of X is free. In this case, there obviously exist closed hypersurfaces Y ⊂ X
and Ỹ ⊂ X̃ such that X̃ ∖ Ỹ is diffeomorphic to the disjoint union of l copies of
X ∖ Y . This implies multiplicativity, since signature is additive:

removing a closed hypersurface from a manifold does not change
the signature.
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Therefore,

sig(X̃) = sig(X̃ ∖ Ỹ ) = l ⋅ sig(X ∖ Y ) = l ⋅ sig(X).
(This “additivity of the signature” easily follows from the Poincaré duality as ob-
served by S. Novikov.)

In general, given a finite covering X̃ →X, there exists an immersed hypersurface
Y ⊂X (with possible self-intersections) such that the covering trivializes over X∖Y ;

hence, X̃ can be assembled from the pieces of X ∖ Y where each piece is taken l
times. One still has an addition formula for some “stratified signature” but it is
rather involved in the general case.

On the other hand, the multiplicativity of the signature can be derived in a
couple of lines from the Serre finiteness theorem (see below).

5. The Signature and Bordisms

Let us prove the multiplicativity of the signature by constructing a compact
oriented manifold Y with a boundary, such that the oriented boundary ∂(Y ) equals
mX̃ −mlX for some integer m ≠ 0.

Embed X into Rn+N , N >> n = 2k = dim(X) let X̃ ⊂ Rn+N be an embedding

obtained by a small generic perturbation of the covering map X̃ → X ⊂ Rn+N and
X̃ ′ ⊂ Rn+N be the union of l generically perturbed copies of X.

Let Ã● and Ã′● be the Atiyah-Thom maps from Sn+N = Rn+N
● to the Thom

spaces Ũ● and U ′● of the normal bundles Ũ → X̃ and Ũ ′ → X̃ ′.

Let P̃ ∶ X̃ →X and P̃ ′ ∶ X̃ ′ →X be the normal projections. These projections,
obviously, induce the normal bundles Ũ and Ũ ′ of X̃ and X̃ ′ from the normal bundle
U⊥ →X. Let

P̃● ∶ Ũ● → U⊥● and P̃ ′● ∶ Ũ ′● → U⊥●

be the corresponding maps between the Thom spaces and let us look at the two
maps f and f ′ from the sphere Sn+N = RN+n

● to the Thom space U⊥● ,

f = P̃● ○ Ã● ∶ Sn+N → U⊥● , and f ′ = P̃ ′● ○ Ã′● ∶ Sn+N → U⊥● .

Clearly

[●̃●̃′] f−1(X) = X̃ and (f ′)−1(X) = X̃ ′.

On the other hand, the homology homomorphisms of the maps f and f ′ are
related to those of P̃ and P̃ ′ via the Thom suspension homomorphism S● ∶Hn(X) →
Hn+N(U⊥● ) as follows

f∗[Sn+N ] = S● ○ P̃∗[X̃] and f ′∗[Sn+N ] = S● ○ P̃ ′∗[X̃ ′].

Since deg(P̃ ) = deg(P̃ ′) = l,

P̃∗[X̃] = P̃ ′∗[X̃ ′] = l ⋅ [X] and f ′[Sn+N ] = f[Sn+N ] = l ⋅ S●[X] ∈Hn+N(U⊥● );

hence,

some non-zero m-multiples of the maps f, f ′ ∶ Sn+N → U⊥● can be
joined by a (smooth generic) homotopy F ∶ Sn+N × [0, 1] → U⊥●
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by Serre’s theorem, since πi(U⊥● ) = 0, i = 1, ...N − 1.
Then, because of [●̃●̃′], the pullback F −1(X) ⊂ Sn+N × [0, 1] establishes a bor-

dism between mX̃ ⊂ Sn+N × 0 and mX̃ ′ = mlX ⊂ Sn+N × 1. This implies that
m ⋅ sig(X̃) =ml ⋅ sig(X) and since m ≠ 0 we get sig(X̃) = l ⋅ sig(X). QED.

Bordisms and the Rokhlin-Thom-Hirzebruch Formula. Let us modify
our definition of homology of a manifold X by allowing only non-singular i-cycles
in X, i.e. smooth closed oriented i-submanifolds in X and denote the resulting
Abelian group by Bo

i (X).
If 2i ≥ n = dim(X) one has a (minor) problem with taking sums of non-singular

cycles, since generic i-submanifolds may intersect and their union is unavoidably
singular. We assume below that i < n/2; otherwise, we replace X by X × RN for
N >> n, where, observe, Bo

i (X ×RN) does not depend on N for N >> i.
Unlike homology, the bordism groups Bo

i (X) may be non-trivial even for a
contractible space X, e.g. for X = Rn+N . (Every cycle in Rn equals the boundary
of any cone over it but this does not work with manifolds due to the singularity at
the apex of the cone which is not allowed by the definition of a bordism.) In fact,
we have the following.

Theorem (Thom, 1954). if N >> n, then the bordism group Bo
n = Bo

n(Rn+N)
is canonically isomorphic to the homotopy group πn+N(V●), where V● is the Thom
space of the tautological oriented RN -bundle V over the Grassmann manifold V =
GrorN (Rn+N+1)

Proof. LetX0 = GrorN(Rn+N) be the Grassmann manifold of orientedN -planes
and V →X0 the tautological oriented RN bundle over this X0.

(The space GrorN(Rn+N) equals the double cover of the space GrN(Rn+N) of non-
oriented N -planes. For example, Gror1 (Rn+1) equals the sphere Sn, while Gr1(Rn+1)
is the projective space, that is Sn divided by the ±-involution.)

Let U → X be the oriented normal bundle of X with the orientation induced
by those of X and of RN ⊃X and let G ∶ X →X0 be the oriented Gauss map which
assigns to each x ∈ X the oriented N -plane G(x) ∈ X0 parallel to the oriented
normal space to X at x.

Since G induces U⊥ from V , it defines the Thom map Sn+N = Rn+N
● → V● and

every bordism Y ⊂ Sn+N × [0, 1] delivers a homotopy Sn+N × [0, 1] → V● between
the Thom maps at the two ends Y ∩ Sn+N × 0 and Y ∩ Sn+N × 1.

This define a homomorphism

τbπ ∶ Bo
n → πn+N(V●)

since the additive structure in Bo
n(Ri+N) agrees with that in πi+N(V o

● ). (Instead
of checking this, which is trivial, one may appeal to the general principle: “two
natural Abelian group structures on the same set must coincide.”)

Also note that one needs the extra 1 in Rn+N+1, since bordisms Y between
manifolds in Rn+N lie in Rn+N+1, or, equivalently, in Sn+N+1 × [0, 1].

On the other hand, the generic pullback construction

f ↦ f−1(X0) ⊂ Rn+N ⊃ Rn+N
● = Sn+N

defines a homomorphism τπb ∶ [f] → [f−1(X0)] from πn+N(V●) to Bo
n, where, clearly

τπb ○ τbπ and τbπ ○ τπb are the identity homomorphisms. �

Now Serre’s Q-sphericity theorem implies the following.
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Theorem (Thom Theorem). The (Abelian) group Bo
i is finitely generated; Bo

n⊗
Q is isomorphic to the rational homology group Hi(X0;Q) = Hi(X0) ⊗Q for X0 =
GrorN(Ri+N+1).

Indeed, πi(V ●) = 0 for N >> n, hence, by Serre,

πn+N(V●) ⊗Q =Hn+N(V●;Q),
while

Hn+N(V●;Q) =Hn(X0;Q)
by the Thom isomorphism.

In order to apply this, one has to compute the homologyHn(GrorN(RN+n+j));Q),
which, as it is clear from the above, is independent of N ≥ 2n+2 and of j > 1; thus,
we pass to

Gror =def ⋃
j,N→∞

GrorN(RN+j).

Let us state the answer in the language of cohomology, with the advantage of
the multiplicative structure (see section 4) where, recall, the cohomology product

Hi(X) ⊗ Hj(X) ⌣→ Hi+j(X) for closed oriented n-manifold can be defined via
the Poincaré duality H∗(X) ↔ Hn−∗(X) by the intersection product Hn−i(X) ⊗
Hn−j(X) ∩→Hn−(i+j)(X).

The cohomology ring H∗(Gror;Q) is the polynomial ring in some
distinguished integer classes, called Pontryagin classes pk ∈H4k(Gror;Z),
k = 1, 2, 3, ... [50].

(It would be awkward to express this in the homology language whenN = dim(X) →
∞, although the cohomology ring H∗(X) is canonically isomorphic to HN−∗(X)
by Poincaré duality.)

If X is a smooth oriented n-manifold, its Pontryagin classes pk(X) ∈H4k(X;Z)
are defined as the classes induced from pk by the normal Gauss map

G→ GrorN(RN+n) ⊂ Gror

for an embedding X → Rn+N , N >> n.

Example (a). (see [50]). The the complex projective spaces have

pk(CPn) = (n + 1

k
)h2k

for the generator h ∈ H2(CPn) which is the Poincaré dual to the hyperplane
CPn−1 ⊂ CPn−1.

Example (b). The rational Pontryagin classes of the Cartesian products X1 ×
X2 satisfy

pk(X1 ×X2) = ∑
i+j=k

pi(X1) ⊗ pj(X2).

If Q is a unitary (i.e. a product of powers) monomial in pi of graded degree
n = 4k, then the value Q(pi)[X] is called the (Pontryagin) Q-number. Equivalently,
this is the value of Q(pi) ∈H4i(Gror;Z) on the image of (the fundamental class) of
X in Gror under the Gauss map.

The Thom theorem now can be reformulated as follows. Two closed oriented n-
manifolds are Q-bordant if and only if they have equal Q-numbers for all monomials
Q. Thus, Bo

n ⊗Q = 0, unless n is divisible by 4 and the rank of Bo
n ⊗Q for n = 4k
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equals the number of Q-monomials of graded degree n, that are ∏i p
ki

i with ∑i ki = k.
(We shall prove this later in this section, also see [50].)

For example, if n = 4, then there is a single such monomial, p1; if n=8, there
two of them: p2 and p21; if n = 12 there three monomials: p3, p1p2 and p31; if n = 16
there are five of them.

In general, the number of such monomials, say π(k) = rank(H4k(Gror;Q)) =
rankQ(Bo

4k) (obviously) equals the number of the conjugacy classes in the permu-
tation group Π(k) (which can be seen as a certain subgroup in the Weyl group
in SO(4k)), where, by the Euler formula, the generating function E(t) = 1 +
∑k=1,2,... π(k)tk satisfies

1/E(t) = ∏
k=1,2,...

(1 − tk) = ∑
−∞<k<∞

(−1)kt(3k
2−k)/2,

Here the first equality is obvious, the second is tricky (Euler himself was not able
to prove it) and where one knows now-a-days that

π(k) ∼
exp(π

√
2k/3)

4k
√
3

for k →∞.

Since the top Pontryagin classes pk of the complex projective spaces do not
vanish, pk(CP 2k) ≠ 0, the products of these spaces constitute a basis in Bo

n ⊗Q.
Finally, notice that the bordism groups together make a commutative ring

under the Cartesian product of manifolds, denoted Bo
∗, and the Thom theorem says

that

Bo
∗ ⊗ Q is the polynomial ring over Q in the variables [CP 2k],

k = 0, 2, 4, ....

Instead of CP 2k, one might take the compact quotients of the complex hy-
perbolic spaces CH2k for the generators of Bo

∗ ⊗Q. The quotient spaces CH2k/Γ
have two closely related attractive features: their tangent bundles admit natural
flat connections and their rational Pontryagin numbers are homotopy invariant,
see section 10. It would be interesting to find “natural bordisms” between (linear
combinations of) Cartesian products of CH2k/Γ and of CP 2k, e.g. associated to
complex analytic ramified coverings CH2k/Γ→ CP 2k.

Since the signature is additive and also multiplicative under this product, it
defines a homomorphism [sig] ∶ Bo

∗ → Z which can be expressed in each degree 4k
by means of a universal polynomial in the Pontryagin classes, denoted Lk(pi), by

sig(X) = Lk(pi)[X] for all closed oriented 4k-manifolds X.

For example,

L1 =
1

3
p1, L2 =

1

45
(7p2 − p21), L3 =

1

945
(62p3 − 13p1p2 + 2p31).

Accordingly,

sig(X4) = 1

3
p1[X4], (Rokhlin 1952)

sig(X8) = 1

45
(7p2(X8) − p21(X8))[X8], (Thom 1954)

and where a concise general formula (see blow) was derived by Hirzebruch who
evaluated the coefficients of Lk using the above values of pi for the products
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X = ×jCP
2kj of the complex projective spaces, which all have sig(X) = 1, and

by substituting these products ×jCP
2kj with ∑j 4kj = n = 4k, for X = Xn into

the formula sig(X) = Lk[X]. The outcome of this seemingly trivial computation is
unexpectedly beautiful.

Hirzebruch Signature Theorem. Let

R(z) =
√
z

tanh(
√
z) = 1 + z/3 − z2/45 + ... = 1 + 2∑

l>0
(−1)l+1 ζ(2l)z

l

π2l
= 1 +∑

l>0

22lB2lz
l

(2l)! ,

where ζ(2l) = 1 + 1
22l

+ 1
32l

+ 1
42l

+ ... and let

B2l = (−1)l2lζ(1 − 2l) = (−1)l+1(2l)!ζ(2l)/22l−1π2l

be the Bernoulli numbers [47],

B2 = 1/6,B4 = −1/30, ...,B12 = −691/2730,B14 = 7/6, ...,
B30 = 8615841276005/14322, ... .

Write

R(z1) ⋅ ... ⋅R(zk) = 1 + P1(zj) + ... +Pk(zj) + ...

where Pj are homogeneous symmetric polynomials of degree j in z1, ..., zk and
rewrite

Pk(zj) = Lk(pi)
where pi = pi(z1, ..., zk) are the elementary symmetric functions in zj of degree i.
The Hirzebruch theorem says the following.

The above Lk is exactly the polynomial which makes the equality
Lk(pi)[X] = sig(X).

A significant aspect of this formula is that the Pontryagin numbers and the signature
are integers while the Hirzebruch polynomials Lk have non-trivial denominators.
This yields certain universal divisibility properties of the Pontryagin numbers (and
sometimes of the signatures) for smooth closed orientable 4k-manifolds.

But despite a heavy integer load carried by the signature formula, its derivation
depends only on the rational bordism groups Bo

n⊗Q. This point of elementary linear
algebra was overlooked by Thom (isn’t it incredible?) who derived the signature
formula for 8-manifolds from his special and more difficult computation of the true
bordism group Bo

8. However, the shape given by Hirzebruch to this formula is
something more than just linear algebra.

Question. Is there an implementation of the analysis/arithmetic
encoded in the Hirzebruch formula by some infinite dimensional
manifolds?

Computation of the Cohomology of the Stable Grassmann Manifold.
First, we show that the cohomology H∗(Gror;Q) is multiplicatively generated by
some classes ei ∈H∗(Gror;Q) and then we prove that the Li-classes are multiplica-
tively independent. (See [50] for computation of the integer cohomology of the
Grassmann manifolds.)

Think of the unit tangent bundle UT (Sn) as the space of orthonormal 2-frames
in Rn+1, and recall that UT (S2k) is a rational homology (4k − 1)-sphere.
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Let Wk = Gror2k+1(R∞) be the Grassmann manifold of oriented (2k + 1)-planes
in RN , N →∞, and let W ′′

k consist of the pairs (w,u) where w ∈Wk is an (2k + 1)-
plane R2k+1

w ⊂ R∞, and u is an orthonormal frame (pair of orthonormal vectors) in
R2k+1

w .
The map p ∶ W ′′

k → Wk−1 = Gror2k−1(R∞) which assigns, to every (w,u), the
(2k − 1)-plane u⊥w ⊂ R2k+1

w ⊂ R∞ normal to u is a fibration with contractible fibers

that are spaces of orthonormal 2-frames in R∞ ⊖ u⊥w = R∞−(2k−1); hence, p is a
homotopy equivalence.

A more interesting fibration is q ∶ Wk → W ′′
k for (w,u) ↦ w with the fibers

UT (S2k). Since UT (S2k) is a rational (4k−1)-sphere, the kernel of the cohomology
homomorphism q∗ ∶ H∗(W ′′

k ;Q) → H∗(Wk;Q) is generated, as a ⌣-ideal, by the

rational Euler class ek ∈H4k(W ′′
k ;Q).

It follows by induction on k that the rational cohomology algebra of Wk =
Gror2k+1(R∞) is generated by certain ei ∈H4i(Wk;Q), i = 0, 1, ..., k, and since

Gror = lim
←�k→∞

Gror2k+1 ,

these ei also generate the cohomology of Gror.

Direct Computation of the L-Classes for the Complex Projective
Spaces. Let V →X be an oriented vector bundle and, following Rokhlin-Schwartz
and Thom, define L-classes of V , without any reference to Pontryagin classes, as
follows. Assume that X is a manifold with a trivial tangent bundle; otherwise,
embed X into some RM with large M and take its small regular neighbourhood.
By Serre’s theorem, there exists, for every homology class h ∈ H4k(X) = H4k(V ),
an m = m(h) ≠ 0 such that the m-multiple of h is representable by a closed 4k-
submanifold Z = Zh ⊂ V that equals the pullback of a generic point in the sphere
SM−4k under a generic map V → SM−4k = RM−4k

● with “compact support”, i.e.
where all but a compact subset in V goes to ● ∈ SM−4k. Observe that such a Z has
trivial normal bundle in V .

Define L(V ) = 1 + L1(V ) + L2(V ) + ... ∈ H4∗(V ;Q) = ⊕kH
4k(V ;Q) by the

equality L(V )(h) = sig(Zh)/m(h) for all h ∈H4k(V ) =H4k(X).
If the bundle V is induced from W → Y by an f ∶ X → Y then L(V ) =

f∗(L(W )), since, for dim(W ) > 2k (which we may assume), the generic image of
our Z in W has trivial normal bundle.

It is also clear that the bundle V1×V2 →X1×X2 has L(V1×V2) = L(V1)⊗L(V2)
by the Cartesian multiplicativity of the signature.

Consequently the L-class of the Whitney sum V1 ⊕ V2 → X of V1 and V2 over
X, which is defined as the restriction of V1 ×V2 →X ×X to Xdiag ⊂X ×X, satisfies

L(V1 ⊕ V2) = L(V1) ⌣ L(V2).

Recall that the complex projective space CP k – the space of C-lines in Ck+1

comes with the canonical C-line bundle represented by these lines and denoted
U → CP k, while the same bundle with the reversed orientation is denoted U−. (We
always refer to the canonical orientations of C-objects.)

Observe that U− = HomC(U → θ) for the trivial C-bundle

θ = CP k ×C→ CP k = HomC(U → U)
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and that the Euler class e(U−) = −e(U) equals the generator in H2(CP k) that
is the Poincaré dual of the hyperplane CP k−1 ⊂ CP k, and so el is the dual of
CP k−l ⊂ CP k.

The Whitney (k + 1)-multiple bundle of U−, denoted (k + 1)U−, equals the
tangent bundle Tk = T (CP k) plus θ. Indeed, let U⊥ → CP k be the Ck bundle of the
normals to the lines representing the points in CP k. It is clear that U⊥⊕U = (k+1)θ,
i.e. U⊥ ⊕U is the trivial Ck+1-bundle, and that, tautologically,

Tk = HomC(U → U⊥).

It follows that

Tk ⊕ θ = HomC(U → U⊥ ⊕U) = HomC(U → (k + 1)θ) = (k + 1)U−.

Recall that

sig(CP 2k) = 1; hence, Lk((k + 1)U−) = Lk(Tk) = e2k.

Now we compute L(U−) = 1 + ∑k Lk = 1 + ∑k l2ke
2k, by equating e2k and the

2k-degree term in the (k + 1)th power of this sum.

(1 +∑
k

l2ke
2k)k+1 = 1 + ... + e2k + ...

Thus,

(1 + l1e
2)3 = 1 + 3l1 + ... = 1 + e2 + ...,

which makes l1 = 1/3 and L1(U−) = e2/3.
Then

(1 + l1e
2 + l2e

4)5 = 1 + ... + (10l1 + 5l2)e4 + ... = 1 + ... + e4 + ...

which implies that l2 = 1/5 − 2l1 = 1/5 − 2/3 and L2(U−) = (−7/15)e4, etc.
Finally, we compute all L-classes Lj(T2k) = (L(U−))k+1 for T2k = T (CP 2k) and

thus, all L(×jCP
2kj).

For example,

(L1(CP 8))2[CP 8] = 10/3 while (L1(CP 4 ×CP 4))2[CP 4 ×CP 4] = 2/3

which implies that CP 4×CP 4 and CP 8, which have equal signatures, are not ratio-
nally bordant, and similarly one sees that the products ×jCP

2kj are multiplicatively
independent in the bordism ring Bo

∗ ⊗Q as we stated earlier.

Combinatorial Pontryagin Classes. Rokhlin-Schwartz and independently
Thom applied their definition of Lk, and hence of the rational Pontryagin classes, to
triangulated (not necessarily smooth) topological manifolds X by observing that the
pullbacks of generic points s ∈ Sn−4k under piece-wise linear map are Q-manifolds
and by pointing out that the signatures of 4k-manifolds are invariant under bor-
disms by such (4k + 1)-dimensional Q-manifolds with boundaries (by the Poincaré
duality issuing from the Alexander duality, see Section 4). Thus, they have shown,
in particular, that the following holds.

Rational Pontryagin classes of smooth manifolds are invariant
under piece-wise smooth homeomorphisms between smooth man-
ifolds.
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The combinatorial pull-back argument breaks down in the topological category
since there is no good notion of a generic continuous map. Yet, S. Novikov (1966)
proved that the L-classes and, hence, the rational Pontryagin classes are invariant
under arbitrary homeomorphisms (see Section 10).

The Thom-Rokhlin-Schwartz argument delivers a definition of rational Pontrya-
gin classes for all Q-manifolds which are by far more general objects than smooth
(or combinatorial) manifolds due to possibly enormous (and beautiful) fundamental
groups π1(Ln−i−1) of their links.

Yet, the naturally defined bordism ring QBo
n of oriented Q-manifolds is only

marginally different from Bo
∗ in the degrees n ≠ 4 where the natural homomorphisms

Bo
n ⊗Q → QBo

n ⊗Q are isomorphisms. This can be easily derived by surgery (see
section 9) from Serre’s theorems. For example, if a Q-manifold X has a single
singularity – a cone over Q-sphere Σ then a connected sum of several copies of
Σ bounds a smooth Q-ball which implies that a multiple of X is Q-bordant to a
smooth manifold.

On the contrary, the group QBo
4 ⊗ Q, is much bigger than Bo

4 ⊗ Q = Q as
rankQ(QBo

4) = ∞ (see [44], [22], [23] and references therein).
(It would be interesting to have a notion of “refined bordisms” between Q-

manifold that would partially keep track of π1(Ln−i−1) for n > 4 as well.)

The simplest examples of Q-manifolds are one point compactifications V 4k
● of

the tangent bundles of even dimensional spheres, V 4k = T (S2k) → S2k, since the
boundaries of the corresponding 2k-ball bundles are Q-homological (2k−1)-spheres
– the unit tangent bundles UT (S2k) → S2k.

Observe that the tangent bundles of spheres are stably trivial – they become
trivial after adding trivial bundles to them, namely the tangent bundle of S2k ⊂
R2k+1 stabilizes to the trivial bundle upon adding the (trivial) normal bundle of
S2k ⊂ R2k+1 to it. Consequently, the manifolds V 4k = T (S2k) have all characteristic
classes zero, and V 4k

● have all Q-classes zero except for dimension 4k.
On the other hand, Lk(V 4k

● ) = sig(V 4k
● ) = 1, since the tangent bundle V 4k =

T (S2k) → S2k has non-zero Euler number. Hence,

the Q-manifolds V 4k
● multiplicatively generate all of QBo

∗ ⊗ Q

except for QBo
4.

Local Formulae for Combinatorial Pontryagin Numbers. Let X be a
closed oriented triangulated (smooth or combinatorial) 4k-manifold and let

{S4k−1
x }x∈X0

be the disjoint union of the oriented links S4k−1
x of the vertices x in X. Then there

exists, for each monomial Q of the total degree 4k in the Pontryagin classes, an
assignment of rational numbers Q[Sx] to all S4k−1

x , where Q[S4k−1
x ] depend only

on the combinatorial types of the triangulations of Sx induced from X, such that
the Pontryagin Q-number of X satisfies (Levitt-Rourke 1978),

Q(pi)[X] = ∑
S4k−1
x ∈[[X]]

Q[S4k−1
x ].

Moreover, there is a canonical assignment of real numbers to S4k−1
x with this prop-

erty which also applies to all Q-manifolds (Cheeger 1983). There is no comparable
effective combinatorial formulae with a priori rational numbers Q[Sx] despite many
efforts in this direction, see [24] and references therein. (Levitt-Rourke theorem is
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purely existential and Cheeger’s definition depends on the L2-analysis of differential
forms on the non-singular locus of X away from the codimension 2 skeleton of X.)

Questions. Let {[S4k−1]△} be a finite collection of combinatorial isomorphism

classes of oriented triangulated (4k−1)-spheres let Q{[S4k−1]△} be the Q-vector space
of functions q ∶ {[S4k−1]△} → Q and let X be a closed oriented triangulated 4k-
manifold homeomorphic to the 4k-torus (or any parallelizable manifold for this
matter) with all its links in {[S4k−1]△}.

Denote by q(X) ∈ Q{[S
4k−1]△} the function, such that q(X)([S4k−1]△) equals

the number of copies of [S4k−1]△ in {S4k−1
x }x∈X0

and let L{[S]△} ⊂ Q{[S
4k−1]△} be

the linear span of q(X) for all such X.
The above shows that the vectors q(X) of “q-numbers” satisfy, besides 2k + 1

Euler-Poincaré and Dehn-Somerville equations, about
exp(π

√
2k/3)

4k
√
3

linear “Pontrya-

gin relations”.
Observe that the Euler-Poincaré and Dehn-Somerville equations do not de-

pend on the ±-orientations of the links but the “Pontryagin relations” are anti-
symmetric since Q[−S4k−1]△ = −Q[S4k−1]△. Both kind of relations are valid for all
Q-manifolds.

What are the codimensions codim(L{[S4k−1]△} ⊂ Q{[S
4k−1]△}, i.e. the num-

bers of independent relations between the “q-numbers”, for “specific” collections
{[S4k−1]△}?

It is pointed out in [23] that

● The spaces QS
i

± of antisymmetric Q-linear combinations of all combina-

torial spheres make a chain complex for the differential qi± ∶ QS
i

± → QS
i−1

±
defined by the linear extension of the operation of taking the oriented
links of all vertices on the triangulated i-spheres Si

△ ∈ Si.

● The operation qi± with values in QS
i−1

± , which is obviously defined on all
closed oriented combinatorial i-manifolds X as well as on combinatorial
i-spheres, satisfies

qi−1± (qi±(X)) = 0 ,

i.e. i-manifolds represent i-cycles in this complex.

Furthermore, it is shown in [23] (as was pointed out to me by Jeff Cheeger) that
all such anti-symmetric relations are generated/exhausted by the relations issuing
from qn−1± ○ qn± = 0, where this identity can be regarded as an “oriented (Pontryagin
in place of Euler-Poincaré) counterpart” to the Dehn-Somerville equations.

The exhaustiveness of qn−1± ○qn± = 0 and its (easy, [25]) Dehn-Somerville counter-
part, probably, imply that in most (all?) cases the Euler-Poincaré, Dehn-Somerville,
Pontryagin and qn−1± ○ qn± = 0 make the full set of affine (i.e. homogeneous and
non-homogeneous linear) relations between the vectors q(X), but it seems hard
to effectively (even approximately) evaluate the number of independent relations
issuing from for qn−1± ○ qn± = 0 for particular collections {[Sn−1]△} of allowable links
of Xn.

Examples. Let D0 = D0(Γ) be a Dirichlet-Voronoi (fundamental polyhedral)
domain of a generic lattice Γ ⊂ RM and let {[Sn−1]△} consist of the (isomorphism
classes of naturally triangulated) boundaries of the intersections of D0 with generic
affine n-planes in RM .
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What is codim(L{[Sn−1]△} ⊂ Q{[Sn−1]△}) in this case?
What are the (affine) relations between the “geometric q-numbers” i.e. the

numbers of combinatorial types of intersections σ of λ-scaled submanifolds X ⊂f
RM , λ→∞, (as in the triangulation construction in the previous section) with the
Γ-translates of D0?

Notice, that some of these σ are not convex-like, but these are negligible for
λ → ∞. On the other hand, if λ is sufficiently large all σ can be made convex-like
by a small perturbation f ′ of f by an argument which is similar to but slightly
more technical than the one used for the triangulation of manifolds in the previous
section.

Is there anything special about the “geometric q-numbers” for “distinguished”
X, e.g. for round n-spheres in RN?

Observe that the ratios of the “geometric q-numbers” are asymptotically defined
for many non-compact complete submanifolds X ⊂ RM .

For example, if X is an affine subspace A = An ⊂ RM , these ratios are (obvi-
ously) expressible in terms of the volumes of the connected regions Ω in D ⊂ RM

obtained by cutting D along hypersurfaces made of the affine n-subspaces A′ ⊂ RM

which are parallel to A and which meet the (M − n − 1)-skeleton of D.
What is the number of our kind of relations between these volumes?
There are similar relations/questions for intersection patterns of particular X

with other fundamental domains of lattices Γ in Euclidean and some non-Euclidean
spaces (where the finer asymptotic distributions of these patterns have a slight
arithmetic flavour).

If f ∶ Xn → RM is a generic map with singularities (which may happen if
M ≤ 2n) and D ⊂ RM is a small convex polyhedron in RM with its faces being
δ-transversal to f (e.g. D = λ−1D0, λ →∞ as in the triangulations of the previous
section), then the pullback f−1(D) ⊂ X is not necessarily a topological cell. How-
ever, some local/additive formulae for certain characteristic numbers may still be
available in the corresponding “non-cell decompositions” of X.

For instance, one (obviously) has such a formula for the Euler characteristic for
all kind of decompositions of X. Also, one has such a “local formula” for sig(X)
and f ∶X → R (i.e for M = 1) by Novikov’s signature additivity property mentioned
at the end of the previous section.

It seems not hard to show that all Pontryagin numbers can be thus locally/
additively expressed for M ≥ n, but it is unclear what are precisely the Q-numbers
which are combinatorially/locally/additively expressible for given n = 4k and M <
n.

(For example, if M = 1, then the Euler characteristic and the signature are,
probably, the only “locally/additively expressible” invariants of X.)

Bordisms of Immersions. If the allowed singularities of oriented n-cycles
in Rn+k are those of collections of n-planes in general position, then the result-
ing homologies are the bordism groups of oriented immersed manifolds Xn ⊂ Rn+k

(R.Wells, 1966). For example if k = 1, this group is isomorphic to the stable
homotopy group πst

n = πn+N(SN), N > n + 1, by the Pontryagin pullback construc-
tion, since a small generic perturbation of an oriented Xn in Rn+N ⊃ Rn+1 ⊃ Xn

is embedded into Rn+N with a trivial normal bundle, and where every embedding
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Xn → Rn+N with the trivial normal bundle can be isotoped to such a perturba-
tion of an immersion Xn → Rn+1 ⊂ Rn+N by the Smale-Hirsch immersion theorem.
(This is obvious for n = 0 and n = 1).

Since immersed oriented Xn ⊂ Rn+1 have trivial stable normal bundles, they
have, for n = 4k, zero signatures by the Serre finiteness theorem. Conversely, the
finiteness of the stable groups πst

n = πn+N(SN) can be (essentially) reduced by a
(framed) surgery of Xn (see section 9) to the vanishing of these signatures.

The complexity of πn+N(SN) shifts in this picture one dimension down to
bordism invariants of the “decorated self-intersections” of immersed Xn ⊂ Rn+1,
which are partially reflected in the structure of the l-sheeted coverings of the loci
of l-multiple points of Xn.

The Galois group of such a covering may be equal the full permutation group
Π(l) and the “decorated invariants” live in certain “decorated” bordism groups of
the classifying spaces of Π(l), where the “dimension shift” suggests an inductive
computation of these groups that would imply, in particular, Serre’s finiteness the-
orem of the stable homotopy groups of spheres. In fact, this can be implemented in
terms of configuration spaces associated to the iterated loop spaces as was pointed
out to me by Andras Szùcs, also see [1], [74].

The simplest bordism invariant of codimension one immersions is the parity
of the number of (n + 1)-multiple points of generically immersed Xn ⊂ Rn+1. For
example, the figure ∞ ⊂ R2 with a single double point represents a non-zero element
in πst

n=1 = π1+N(SN). The number of (n+1)-multiple points also can be odd for n = 3
(and, trivially, for n = 0) but it is always even for codimension one immersions of
orientable n-manifolds with n ≠ 0, 1, 3, while the non-orientable case is more involved
[16], [17].

One knows, (see next section) that every element of the stable homotopy group
πst
n = πn+N(SN), N >> n, can be represented for n ≠ 2, 6, 14, 30, 62, 126 by an

immersion Xn → Rn+1, where Xn is a homotopy sphere; if n = 2, 6, 14, 30, 62, 126,
one can make this with an Xn where rank(H∗(Xn)) = 4.

What is the smallest possible size of the topology, e.g. homology, of the image
f(Xn) ⊂ Rn+1 and/or of the homologies of the (natural coverings of the) subsets of
the l-multiple points of f(Xn)?

Geometric Questions about Bordisms. Let X be a closed oriented Rie-
mannian n-manifold with locally bounded geometry, which means that every R-ball
in X admits a λ-bi-Lipschitz homeomorphism onto the Euclidean R-ball.

Suppose X is bordant to zero and consider all compact Riemannian (n + 1)-
manifolds Y extending X = ∂(Y ) with its Riemannian tensor and such that the
local geometries of Y are bounded by some constants R′ << R and l′ >> λ with the
obvious precaution near the boundary.

One can show that the infimum of the volumes of these Y is bounded by

inf
Y

Vol(Y ) ≤ F (Vol(X)),

with the power exponent bound on the function F = F (V ). (F also depends on
R,λ,R′, λ′, but this seems non-essential for R′ << R,λ′ >> λ.)

What is the true asymptotic behaviour of F (V ) for V →∞?
It may be linear for all we know and the above “dimension shift” picture and/or

the construction from [23] may be useful here.
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Is there a better setting of this question with some curvature integrals and/or
spectral invariants rather than volumes?

The real cohomology of the Grassmann manifolds can be analytically repre-
sented by invariant differential forms. Is there a compatible analytic/geometric
representation of Bo

n⊗R? (One may think of a class of measurable n-foliations, see
section 10, or, maybe, something more sophisticated than that.)

6. Exotic Spheres

In 1956, to everybody’s amazement, Milnor found smooth manifolds Σ7 which
were not diffeomorphic to SN ; yet, each of them was decomposable into the union of
two 7-balls B7

1 ,B
7
2 ⊂ Σ7 intersecting over their boundaries ∂(B7

1) = ∂(B7
2) = S6 ⊂ Σ7

like in the ordinary sphere S7.
In fact, this decomposition does imply that Σ7 is “ordinary” in the topological

category: such a Σ7 is (obviously) homeomorphic to S7.
The subtlety resides in the “equality” ∂(B7

1) = ∂(B7
2); this identification of the

boundaries is far from being the identity map from the point of view of either of
the two balls—it does not come from any diffeomorphisms B7

1 ↔ B7
2 .

The equality ∂(B7
1) = ∂(B7

2) can be regarded as a self-diffeomorphism f of the
round sphere S6 – the boundary of standard ball B7, but this f does not extend to
a diffeomorphism of B7 in Milnor’s example; otherwise, Σ7 would be diffeomorphic
to S7. (Yet, f radially extends to a piecewise smooth homeomorphism of B7 which
yields a piecewise smooth homeomorphism between Σ7 and S7.)

It follows, that such an f can not be included into a family of diffeomorphisms
bringing it to an isometric transformations of S6. Thus, any geometric “energy
minimizing” flow on the diffeomorphism group diff(S6) either gets stuck or develops
singularities. (It seems little, if anything at all, is known about such flows and their
singularities.)

Milnor’s spheres Σ7 are rather innocuous spaces – the boundaries of (the total
spaces of) 4-ball bundles Θ8 → S4 in some in some R4-bundles V → S4, i.e. Θ8 ⊂ V
and, thus, our Σ7 are certain S3-bundles over S4.

All 4-ball bundles, or equivalently R4-bundles, over S4 are easy to describe:
each is determined by two numbers: the Euler number e, that is the self-intersection
index of S4 ⊂ Θ8, which assumes all integer values, and the Pontryagin number p1
(i.e. the value of the Pontryagin class p1 ∈ H4(S4) on [S4] ∈ H4(S4)) which may
be an arbitrary even integer.

(Milnor explicitly construct his fibrations with maps of the 3-sphere into the
group SO(4) of orientation preserving linear isometries of R4 as follows. Decompose
S4 into two round 4-balls, say S4 = B4

+ ∪ B4
− with the common boundary S3

∂ =
B4
+ ∩B4

− and let f ∶ s∂ ↦ O∂ ∈ SO(4) be a smooth map. Then glue the boundaries
of B4

+ × R4 and B4
− × R4 by the diffeomorphism (s∂ , s) ↦ (s∂ ,O∂(s)) and obtain

V 8 = B4
+ ×R4 ∪f B4

− ×R4 which makes an R4-fibration over S4.
To construct a specific f , identify R4 with the quaternion line H and S3 with

the multiplicative group of quaternions of norm 1. Let f(s) = fij(s) ∈ SO(4) act by
x ↦ sixsj for x ∈ H and the left and right quaternion multiplication. Then Milnor
computes: e = i + j and p1 = ±2(i − j).)

Obviously, all Σ7 are 2-connected, but H3(Σ7) may be non-zero (e.g. for the
trivial bundle). It is not hard to show that Σ7 has the same homology as S7,
hence, homotopy equivalent to S7, if and only if e = ±1 which means that the
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selfintersection index of the zero section sphere S4 ⊂ Θ8 equals ±1; we stick to e = 1
for our candidates for Σ7.

The basic example of Σ7 with e = ±1 (the sign depends on the choice of the
orientation in Θ8) is the ordinary 7-sphere which comes with the Hopf fibration
S7 → S4, where this S7 is positioned as the unit sphere in the quaternion plane
H2 = R8, where it is freely acted upon by the group G = S3 of the unit quaternions
and where S7/G equals the sphere S4 representing the quaternion projective line.

If Σ7 is diffeomorphic to S7 one can attach the 8-ball to Θ8 along this S7-
boundary and obtain a smooth closed 8-manifold, say Θ8

+ .
Milnor observes that the signature of Θ8

+ equals ±1, since the homology of Θ8
+ is

represented by a single cycle – the sphere S4 ⊂ Θ8 ⊂ Θ8
+ the selfintersection number

of which equals the Euler number.
Then Milnor invokes the Thom signature theorem

45 sig(X) + p21[X] = 7p2[X]

and concludes that the number 45+p21 must be divisible by 7; therefore, the bound-
aries Σ7 of those Θ8 which fail this condition, say for p1 = 4, must be exotic. (You
do not have to know the definition of the Pontryagin classes, just remember they
are integer cohomology classes.)

Finally, using quaternions, Milnor explicitly constructs a Morse function Σ7 →
R with only two critical points – maximum and minimum on each Σ7 with e = 1;
this yields the two ball decomposition. (We shall explain this in section 8.)

(Milnor’s topological arguments, which he presents with a meticulous care,
became a common knowledge and can be now found in any textbook; his lemmas
look apparent to a to-day topology student. The hardest for the modern reader
is the final Milnor’s lemma claiming that his function Σ7 → R is Morse with two
critical points. Milnor is laconic at this point: “It is easy to verify” is all what he
says.)

The 8-manifolds Θ8
+ associated with Milnor’s exotic Σ7 can be triangulated

with a single non-smooth point in such a triangulation. Yet, they admit no smooth
structures compatible with these triangulations since their combinatorial Pontrya-
gin numbers (defined by Rochlin-Schwartz and Thom) fail the divisibility condition
issuing from the Thom formula sig(X8) = L2[X8]; in fact, they are not combina-
torially bordant to smooth manifolds.

Moreover, these Θ8
+ are not even topologically bordant, and therefore, they are

non-homeomorphic to smooth manifolds by (slightly refined) Novikov’s topological
Pontryagin classes theorem.

The number of homotopy spheres, i.e. of mutually non-diffeomorphic manifolds
Σn which are homotopy equivalent to Sn is not that large. In fact, it is finite for
all n ≠ 4 by the work of Kervaire and Milnor [39], who, eventually, derive this from
the Serre finiteness theorem. (One knows now-a-days that every smooth homotopy
sphere Σn is homeomorphic to Sn according to the solution of the Poincaré conjec-
ture by Smale for n ≥ 5, by Freedman for n = 4 and by Perelman for n = 3, where
“homeomorphic”⇒ “diffeomorphic” for n = 3 by Moise’s theorem.)

Kervaire and Milnor start by showing that for every homotopy sphere Σn, there
exists a smooth map f ∶ Sn+N → SN , N >> n, such that the pullback f−1(s) ⊂ Sn+N

of a generic point s ∈ SN is diffeomorphic to Σn. (The existence of such an f with
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f−1(s) = Σn is equivalent to the existence of an immersion Σn → Rn+1 by the Hirsch
theorem.)

Then, by applying surgery (see section 9) to the f0-pullback of a point for a
given generic map f0 ∶ Sn+N → SN , they prove that almost all homotopy classes of
maps Sn+N → SN come from homotopy n-spheres. Namely:

● If n ≠ 4k + 2, then every homotopy class of maps Sn+N → SN , N >> n,
can be represented by a “Σn-map” f , i.e. where the pullback of a generic
point is a homotopy sphere.

If n = 4k + 2, then the homotopy classes of “Σn-maps” constitute a subgroup in
the corresponding stable homotopy group, say Kn ⊂ πst

n = πn+N(SN), N >> n,
that has index 1 or 2 and which is expressible in terms of the Kervaire-(Arf)
invariant classifying (similarly to the signature for n = 4k) properly defined “self-
intersections” of (k + 1)-cycles mod 2 in (4k + 2)-manifolds.

One knows today by the work of Pontryagin, Kervaire-Milnor and Barratt-
Jones-Mahowald see [9] that

● If n = 2, 6, 14, 30, 62, then the Kervaire invariant can be non-zero, i.e.
πst
n /Kn = Z2.

Furthermore,

● The Kervaire invariant vanishes, i.e. Kn = πst
n , for n ≠ 2, 6, 14, 30, 62, 126

(where it remains unknown if πst
126/K126 equals {0} or Z2).

In other words,

every continuous map Sn+N → SN , N >> n ≠ 2, 6, ..., 126, is
homotopic to a smooth map f ∶ Sn+N → SN , such that the f -
pullback of a generic point is a homotopy n-sphere.

The case n ≠ 2l − 2 goes back to Browder (1969) and the case n = 2l − 2, l ≥ 8 is
a recent achievement by Hill, Hopkins and Ravenel [37]. (Their proof relies on a
generalized homology theory Hgen

n where Hgen
n+256 =Hgen

n .)
If the pullback of a generic point of a smooth map f ∶ Sn+N → SN , is dif-

feomorphic to Sn, the map f may be non-contractible. In fact, the set of the
homotopy classes of such f makes a cyclic subgroup in the stable homotopy group
of spheres, denoted Jn ⊂ πst

n = πn+N(SN), N >> n (and called the image of the
J-homomorphism πn(SO(∞)) → πst

n ). The order of Jn is 1 or 2 for n ≠ 4k − 1; if
n = 4k − 1, then the order of Jn equals the denominator of ∣B2k/4k∣, where B2k is
the Bernoulli number. The first non-trivial J are

J1 = Z2, J3 = Z24, J7 = Z240, J8 = Z2, J9 = Z2 and J11 = Z504.

In general, the homotopy classes of maps f such that the f -pullback of a generic
point is diffeomorphic to a given homotopy sphere Σn, make a Jn-coset in the stable
homotopy group πst

n . Thus the correspondence Σn ↝ f defines a map from the set
{Σn} of the diffeomorphism classes of homotopy spheres to the factor group πst

n /Jn,
say μ ∶ {Σn} → πst

n /Jn.
The map μ (which, by the above, is surjective for n ≠ 2, 6, 14, 30, 62, 126) is

finite-to-one for n ≠ 4, where the proof of this finiteness for n ≥ 5 depends on Smale’s
h-cobordism theorem, (see section 8). In fact, the homotopy n-spheres make an
Abelian group (n ≠ 4) under the connected sum operation Σ1#Σ2 (see next section)
and, by applying surgery to manifolds Θn+1 with boundaries Σn, where these Θn+1
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(unlike the above Milnor’s Θ8) come as pullbacks of generic points under smooth
maps from (n +N + 1)-balls Bn+N+1 to SN , Kervaire and Milnor show that

(☀) μ ∶ {Σn} → πst
n /Jn is a homomorphism with a finite (n ≠ 4) kernel denoted

Bn+1 ⊂ {Σn} which is a cyclic group.

(The homotopy spheres Σn ∈ Bn+1 bound (n + 1)-manifolds with trivial tangent
bundles.)

Moreover,

(⋆) The kernel Bn+1 of μ is zero for n = 2m ≠ 4.

If n+1 = 4k+2, then Bn+1 is either zero or Z2, depending on the Kervaire invariant:

(⋆) If n equals 1, 5, 13, 29, 61 and, possibly, 125, then Bn+1 is zero, and
Bn+1 = Z2 for the rest of n = 4k + 1.

(⋆) If n = 4k − 1, then the cardinality (order) of Bn+1 equals 22k−2(22k−1 − 1)
times the numerator of ∣4B2k/k∣, where B2k is the Bernoulli number.

The above and the known results on the stable homotopy groups πst
n imply, for

example, that there are no exotic spheres for n = 5, 6, there are 28 mutually non-
diffeomorphic homotopy 7-spheres, there are 16 homotopy 18-spheres and 523264
mutually non-diffeomorphic homotopy 19-spheres.

By Perelman, there is a single smooth structure on the homotopy 3 sphere and
the case n = 4 remains open. (Yet, every homotopy 4-sphere is homeomorphic to
S4 by Freedman’s solution of the 4D-Poincaré conjecture.)

7. Isotopies and Intersections

Besides constructing, listing and classifying manifolds X one wants to under-
stand the topology of spaces of maps X → Y .

The space [X→Y ]smth of all C∞ maps carries little geometric load by itself
since this space is homotopy equivalent to [X→Y ]cont(inuous).

An analyst may be concerned with completions of [X→Y ]smth, e.g. with Sobolev’s
topologies while a geometer is keen to study geometric structures, e.g. Riemannian
metrics on this space.

But from a differential topologist’s point of view the most interesting is the
space of smooth embeddings F ∶ X → Y which diffeomorphically send X onto a
smooth submanifold X ′ = f(X) ⊂ Y .

If dim(Y ) > 2dim(X) then generic f are embeddings, but, in general, you can
not produce them at will so easily. However, given such an embedding f0 ∶ X → Y ,
there are plenty of smooth homotopies, called (smooth) isotopies ft, t ∈ [0, 1], of it
which remain embeddings for every t and which can be obtained with the following

Theorem (Thom, 1954). Let Z ⊂X be a compact smooth submanifold (bound-
ary is allowed) and f0 ∶ X → Y is an embedding, where the essential case is where
X ⊂ Y and f0 is the identity map.

Then every isotopy of Z
f0→ Y can be extended to an isotopy of all of X. More

generally, the restriction map R∣Z ∶ [X→Y ]emb → [Z→Y ]emb is a fibration; in par-
ticular, the isotopy extension property holds for an arbitrary family of embeddings
X → Y parametrized by a compact space.

This is similar to the homotopy extension property (mentioned in section 1) for
spaces of continuous maps X → Y—the “geometric” cornerstone of the algebraic
topology.)
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The proof easily reduces with the implicit function theorem to the case, where
X = Y and dim(Z) = dim(W ).

Since diffeomorphisms are open in the space of all smooth maps, one can extend
“small” isotopies, those which only slightly move Z, and since diffeomorphisms
of Y make a group, the required isotopy is obtained as a composition of small
diffeomorphisms of Y . (The details are easy.)

Both “open” and “group” are crucial: for example, homotopies by locally dif-
feomorphic maps, say of a disk B2 ⊂ S2 to S2 do not extend to S2 whenever a map
B2 → S2 starts overlapping itself. Also it is much harder (yet possible, [12], [40])
to extend topological isotopies, since homeomorphisms are, by no means, open in
the space of all continuous maps.

For example if dim(Y ) ≥ 2dim(Z) + 2. then a generic smooth homotopy of
Z is an isotopy: Z does not, generically, cross itself as it moves in Y (unlike, for
example, a circle moving in the 3-space where self-crossings are stable under small
perturbations of homotopies). Hence, every generic homotopy of Z extends to a
smooth isotopy of Y .

Mazur Swindle and Hauptvermutung. Let U1, U2 be compact n-manifolds
with boundaries and f12 ∶ U1 → U2 and f21 ∶ U2 → U1 be embeddings which land in
the interiors of their respective target manifolds.

Let W1 and W2 be the unions (inductive limits) of the infinite increasing se-
quences of spaces

W1 = U1 ⊂f12 U2 ⊂f21 U1 ⊂f12 U2 ⊂f12 ...
and

W2 = U2 ⊂f21 U1 ⊂f12 U2 ⊂f12 U1 ⊂f12 ...
Observe that W1 and W2 are open manifolds without boundaries and that they

are diffeomorphic since dropping the first term in a sequence U1 ⊂ U2 ⊂ U3 ⊂ ... does
not change the union.

Similarly, both manifolds are diffeomorphic to the unions of the sequences

W11 = U1 ⊂f11 U1 ⊂f11 ... and W22 = U2 ⊂f22 U2 ⊂f22...
for

f11 = f12 ○ f21 ∶ U1 → U1 and f22 = f21 ○ f12 ∶ U2 → U2.

If the self-embedding f11 is isotopic to the identity map, then W11 is diffeomor-
phic to the interior of U1 by the isotopy theorem and the same applies to f22 (or
any self-embedding for this matter).

Thus we conclude with the above, that, for example, the following holds.

Open normal neighbourhoods Uop
1 and Uop

2 of two homotopy
equivalent n-manifolds (and triangulated spaces in general) Z1

and Z2 in Rn+N , N ≥ n + 2, are diffeomorphic (Mazur 1961).

Anybody might have guessed that the “open” condition is a pure technicality and
everybody believed so until Milnor’s 1961 counterexample to the Hauptvermutung—
the main conjecture of the combinatorial topology.

Milnor has shown that there are two free isometric actions A1 and A2 of the
cyclic group Zp on the sphere S3, for every prime p ≥ 7, such that the quotient
(lens) spaces Z1 = S3/A1 and Z2 = S3/A2 are homotopy equivalent, but their closed
normal neighbourhoods U1 and U2 in any R3+N are not diffeomorphic. (This could
not have happened to simply connected manifolds Zi by the h-cobordism theorem.)
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Moreover, the polyhedra P1 and P2 obtained by attaching the cones to the bound-
aries of these manifolds admit no isomorphic simplicial subdivisions. Yet, the inte-
riors Uop

i of these Ui , i = 1, 2, are diffeomorphic for N ≥ 5. In this case, P1 and P2

are homeomorphic as the one point compactifications of two homeomorphic spaces
Uop
1 and Uop

2 .
It was previously known that these Z1 and Z2 are homotopy equivalent (J. H.

C. Whitehead, 1941); yet, they are combinatorially non-equivalent (Reidemeister,
1936) and, hence, by Moise’s 1951 positive solution of the Hauptvermutung for
3-manifolds, non-homeomorphic.

There are few direct truly geometric constructions of diffeomorphisms, but
those available, are extensively used, e.g. fiberwise linear diffeomorphisms of vector
bundles. Even the sheer existence of the humble homothety of Rn, x↦ tx, combined
with the isotopy theorem, effortlessly yields, for example, the following

Lemma ([B→Y ]-Lemma). The space of embeddings f of the n-ball (or Rn)
into an arbitrary Y = Y n+k is homotopy equivalent to the space of tangent n-frames
in Y ; in fact the differential f ↦ Df ∣0 establishes a homotopy equivalence between
the respective spaces.

For example, there is the following.

The assignment f ↦ J(f)∣0 of the Jacobi matrix at 0 ∈ Bn is a
homotopy equivalence of the space of embeddings f ∶ B → Rn to
the linear group GL(n).

Corollary (Ball Gluing Lemma). Let X1 and X2 be (n + 1)-dimensional
manifolds with boundaries Y1 and Y2, let B1 ⊂ Y1 be a smooth submanifold diffeo-
morphic to the n-ball and let f ∶ B1 → B2 ⊂ Y2 = ∂(A2) be a diffeomorphism. If the
boundaries Yi of Xi are connected, the diffeomorphism class of the (n+1)-manifold
X3 = X1+fX2 obtained by attaching X1 to X2 by f and (obviously canonically)
smoothed at the “corner” (or rather the “crease”) along the boundary of B1, does
not depend on B1 and f .

This X3 is denoted X1#∂X2. For example, this “sum” of balls, Bn+1#∂B
n+1,

is again a smooth (n + 1)-ball.

Connected Sum. The boundary Y3 = ∂(X3) can be defined without any
reference to Xi ⊃ Yi, as follows. Glue the manifolds Y1 an Y2 by f ∶ B1 → B2 ⊂ Y2

and then remove the interiors of the balls B1 and of its f -image B2.
If the manifolds Yi (not necessarily anybody’s boundaries or even being closed)

are connected, then the resulting connected sum manifold is denoted Y1#Y2.
Isn’t it a waste of glue? You may be wondering why bother glueing the interiors

of the balls if you are going to remove them anyway. Wouldn’t it be easier first to
remove these interiors from both manifolds and then glue what remains along the
spheres Sn−1

i = ∂(Bi)?
This is easier but also it is also a wrong thing to do: the result may depend

on the diffeomorphism Sn−1
1 ↔ Sn−1

2 , as it happens for Y1 = Y2 = S7 in Milnor’s
example; but the connected sum defined with balls is unique by the [B→Y ]-lemma.

The ball gluing operation may be used many times in succession; thus, for
example, one builds “big (n + 1)-balls” from smaller ones, where this lemma in
lower dimension may be used for ensuring the ball property of the gluing sites.
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Gluing and Bordisms. Take two closed oriented n-manifold X1 and X2 and let

X1 ⊃ U1 ↔
f
U2 ⊂X2

be an orientation reversing diffeomorphisms between compact n-dimensional sub-
manifolds Ui ⊂Xi, i = 1, 2 with boundaries. If we glue X1 and X2 by f and remove
the (glued together) interiors of Ui the resulting manifold, say X3 = X1+−UX2 is
naturally oriented and, clearly, it is orientably bordant to the disjoint union of X1

and X2. (This is similar to the geometric/algebraic cancellation of cycles mentioned
in section 4.)

Conversely, one can give an alternative definition of the oriented bordism group
Bo
n as of the Abelian group generated by oriented n-manifolds with the relations

X3 = X1 +X2 for all X3 = X1+−UX2. This gives the same Bo
n even if the only U

allowed are those diffeomorphic to Si ×Bn−i as it follows from the handle decom-
positions induced by Morse functions.

The isotopy theorem is not dimension specific, but the following construction
due to Haefliger (1961) generalizing the Whitney Lemma of 1944 demonstrates
something special about isotopies in high dimensions.

Let Y be a smooth n-manifold and X ′,X ′′ ⊂ Y be smooth closed submanifolds
in general position. Denote Σ0 = X ′ ∩X ′′ ⊂ Y and let X be the (abstract) disjoint
union of X ′ and X ′′. (If X ′ and X ′′ are connected equividimensional manifolds,
one could say that X is a smooth manifold with its two “connected components”
X ′ and X ′′ being embedded into Y .)

Clearly,

dim(Σ0) = n − k′ − k′′

for n = dim(Y ), n − k′ = dim(X ′) and n − k′′ = dim(X ′′).
Let ft ∶ X → Y , t ∈ [0, 1], be a smooth generic homotopy which disengages X ′

from X ′′, i.e. f1(X ′) does not intersect f1(X ′′), and let

Σ̃ = {(x′, x′′, t)}ft(x′)=ft(x′′) ⊂X ′ ×X ′′ × [0, 1],

i.e. Σ̃ consists of the triples (x′, x′′, t) for which ft(x′) = ft(x′′).
Let Σ ⊂ X ′ ∪X ′′ be the union S′ ∪ S′′, where S′ ⊂ X ′ equals the projection of

Σ̃ to the X ′-factor of X ′ ×X ′′ × [0, 1] and S′′ ⊂X ′′ is the projection of Σ̃ to X ′′.
Thus, there is a correspondence x′ ↔ x′′ between the points in Σ = S′ ∪ S′′,

where the two points correspond one to another if x′ ∈ S′ meets x′′ ∈ S′′ at some
moment t∗ in the course of the homotopy, i.e.

ft∗(x′) = ft∗(x′′) for some t∗ ∈ [0, 1].
Finally, let W ⊂ Y be the union of the ft-paths, denoted [x′∗tx′′] ⊂ Y , travelled

by the points x′ ∈ S′ ⊂ Σ and x′′ ∈ S′′ ⊂ Σ until they meet at some moment t∗. In
other words, [x′ ∗t x′′] ⊂ Y consists of the union of the points ft(x′) and ft(x′′)
over t ∈ [0, t∗ = t∗(x′) = t∗(x′′)] and

W = ⋃
x′∈S′

[x′ ∗t x′′] = ⋃
x′′∈S′′

[x′ ∗t x′′].

Clearly,

dim(Σ) = dim(Σ0) + 1 = n − k′ − k′′ + 1 and

dim(W ) = dim(Σ) + 1 = n − k′ − k′′ + 2 .
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To grasp the picture look at X consisting of a round 2-sphere X ′ (where k′ = 1)
and a round circle X ′′ (where k′′ = 2) in the Euclidean 3-space Y , where X and X ′

intersect at two points x1, x2 – our Σ0 = {x1, x2} in this case.
When X ′ an X ′′ move away one from the other by parallel translations in the

opposite directions, their intersection points sweep W which equals the intersection
of the 3-ball bounded by X ′ and the flat 2-disc spanned by X ′′. The boundary Σ
of this W consists of two arcs S′ ⊂ X ′ and S′′ ⊂ X ′′, where S′ joins x1 with x2 in
X ′ and S′′ join x1 with x2 in X ′′.

Back to the general case, we want W to be, generically, a smooth submanifold
without double points as well as without any other singularities, except for the
unavoidable corner in its boundary Σ, where S′ meet S′′ along Σ0. We need for
this

2 dim(W ) = 2(n − k′ − k′′ + 2) < n = dim(Y ) i.e. 2k′ + 2k′′ > n + 4.

Also, we want to avoid an intersection of W with X ′ and with X ′′ away from
Σ = ∂(W ). If we agree that k′′ ≥ k′, this, generically, needs

dim(W ) + dim(X) = (n − k′ − k′′ + 2) + (n − k′) < n i.e. 2k′ + k′′ > n + 2.

These inequalities imply that k′ ≥ k ≥ 3, and the lowest dimension where they
are meaningful is the first Whitney case: dim(Y ) = n = 6 and k′ = k′′ = 3.

Accordingly, W is calledWhitney’s disk, although it may be non-homeomorphic
to B2 with the present definition of W (due to Haefliger).

Lemma (Haefliger Lemma: Whitney for k+k′ = n). Let the dimensions n−k′ =
dim(X ′) and n − k′′ = dim(X ′′), where k′′ ≥ k′, of two submanifolds X ′ and X ′′

in the ambient n-manifold Y satisfy 2k′ + k′′ > n + 2. Then every homotopy ft
of (the disjoint union of) X ′ and X ′′ in Y which disengages X ′ from X ′′, can be
replaced by a disengaging homotopy fnew

t which is an isotopy, on both manifolds,
i.e. fnew

t (X ′) and fnew(X ′′) reman smooth without self intersection points in Y
for all t ∈ [0, 1] and fnew

1 (X ′) does not intersect fnew
1 (X ′′).

Proof. Assume ft is smooth generic and take a small neighbourhood U3ε ⊂ Y
of W . By genericity, this ft is an isotopy of X ′ as well as of X ′′ within U3ε ⊂ Y :
the intersections of ft(X ′) and ft(X ′′) with U3ε, call them X ′3ε(t) and X ′′3ε(t) are
smooth submanifolds in U3ε for all t, which, moreover, do not intersect away from
W ⊂ U3ε.

Hence, by the Thom isotopy theorem, there exists an isotopy Ft of Y ∖Uε which
equals ft on U2ε ∖Uε and which is constant in t on Y ∖U3ε.

Since ft and Ft within U3ε are equal on the overlap U2ε ∖Uε of their definition
domains, they make together a homotopy of X ′ and X ′′ which, obviously, satisfies
our requirements. �

There are several immediate generalizations/applications of this theorem.

(1) One may allow self-intersections Σ0 within connected components of X,
where the necessary homotopy condition for removing Σ0 (which was
expressed with the disengaging ft in the present case) is formulated in

terms of maps f̃ ∶ X × X → Y × Y commuting with the involutions
(x1, x2) ↔ (x2, x1) in X ×X and (y1, y2) ↔ (y2, y1) in Y × Y and having

the pullbacks f̃−1(Ydiag) of the diagonal Ydiag ⊂ Y ×Y equal Xdiag ⊂X×X,
[33].
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(2) One can apply all of the above to p parametric families of maps X → Y ,
by paying the price of the extra p in the excess of dim(Y ) over dim(X),
[33].

If p = 1, this yield an isotopy classification of embeddings X → Y for
3k > n + 3 by homotopies of the above symmetric maps X ×X → Y × Y ,
which shows, for example, that there are no knots for these dimensions
(Haefliger, 1961). If 3k > n + 3, then every smooth embedding Sn−k → Rn

is smoothly isotopic to the standard Sn−k ⊂ Rn.
But if 3k = n + 3 and k = 2l + 1 is odd then there are infinitely many

isotopy of classes of embeddings S4l−1 → R6l (Haefliger 1962).

Non-triviality of such a knot S4l−1 → R6l is detected by showing that a map
f0 ∶ B4l → R6l ×R+ extending S4l−1 = ∂(B4l) cannot be turned into an embedding,
keeping it transversal to R6l = R6l ×0 and with its boundary equal our knot S4l−1 ⊂
R6l.

The Whitney-Haefliger W for f0 has dimension 6l+1−2(2l+1)+2 = 2l+1 and,
generically, it transversally intersects B4l at several points.

The resulting (properly defined) intersection index of W with B is non-zero
(otherwise one could eliminate these points by Whitney) and it does not depend on
f0. In fact, it equals the linking invariant of Haefliger. (This is reminiscent of the
“higher linking products” described by Sullivan’s minimal models, see Section 9.)

(3) In view of he above, one must be careful if one wants to relax the dimension
constraint by an inductive application of the Whitney-Haefliger disengag-
ing procedure, since obstructions/invariants for removal “higher” intersec-
tions which come on the way may be not so apparent. (The structure of
“higher self-intersections” of this kind for Euclidean hypersurfaces carries
a significant information on the stable homotopy groups of spheres.)

But this is possible, at least on the Q-level, where one has a compre-
hensive algebraic control of self-intersections of all multiplicities for maps
of codimension k ≥ 3. Also, even without tensoring with Q, the higher
intersection obstructions tend to vanish in the combinatorial category.

For example, there are no combinatorial knots of codimension k ≥ 3
(Zeeman, 1963).

The essential mechanism of knotting X = Xn ⊂ Y = Y n+2 depends on the
fundamental group Γ of the complement U = Y ⊂ X. The group Γ may look a
nuisance when you want to untangle a knot, especially a surface X2 in a 4-manifold,
but these Γ = Γ(X) for various X ⊂ Y form beautifully intricate patterns which are
poorly understood.

For example, the groups Γ = π1(U) capture the étale cohomology of algebraic
manifolds and the Novikov-Pontryagin classes of topological manifolds (see section
10). Possibly, the groups Γ(X2) for surfaces X2 ⊂ Y 4 have much to tell us about
the smooth topology of 4-manifolds.

There are few systematic ways of constructing “simple” X ⊂ Y , e.g. immersed
submanifolds, with “interesting” (e.g. far from being free) fundamental groups of
their complements.

Offhand suggestions are pullbacks of (special singular) divisors X0 in complex
algebraic manifolds Y0 under generic maps Y → Y0 and immersed subvarieties Xn

in cubically subdivided Y n+2, where Xn are made of n-sub-cubes ◻n inside the
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cubes ◻n+2 ⊂ Y n+2 and where these interior ◻n ⊂ ◻n+2 are parallel to the n-faces of
◻n+2.

It remains equally unclear what is the possible topology of self-intersections of
immersions Xn → Y n+2, say for S3 → S5, where the self-intersection makes a link
in S3, and for S4 → S6 where this is an immersed surface in S4.

(4) One can control the position of the image of fnew(X) ⊂ Y , e.g. by mak-
ing it to land in a given open subset W0 ⊂ W , if there is no homotopy
obstruction to this.

The above generalizes and simplifies in the combinatorial or “piecewise smooth”
category, e.g. for “unknotting spheres”, where the basic construction is as follows

Theorem (Engulfing). Let X be a piecewise smooth polyhedron in a smooth
manifold Y . If n − k = dim(X) ≤ dim(Y ) − 3 and if πi(Y ) = 0 for i = 1, ...dim(Y ),
then there exists a smooth isotopy Ft of Y which eventually (for t = 1) moves X to
a given (small) neighbourhood B○ of a point in Y

Sketch of the Proof. Start with a generic ft. This ft does the job away
from a certain W which has dim(W ) ≤ n−2k+2. This is < dim(X) under the above
assumption and the proof proceeds by induction on dim(X). �

This is called “engulfing” since B○, when moved by the time reversed isotopy,
engulfs X; engulfing was invented by Stallings in his approach to the Poincaré
Conjecture in the combinatorial category, which goes, roughly, as follows.

Let Y be a smooth n-manifold. Then, with a simple use of two mutually
dual smooth triangulations of Y , one can decompose Y , for each i, into the union
of regular neighbourhoods U1 and U2 of smooth subpolyhedra X1 and X2 in Y of
dimensions i and n−i−1 (similarly to the handle body decomposition of a 3-manifold
into the union of two thickened graphs in it), where, recall, a neighbourhood U of
an X ⊂ Y is regular if there exists an isotopy ft ∶ U → U which brings all of U
arbitrarily close to X.

Now let Y be a homotopy sphere of dimension n ≥ 7, say n = 7, and let i = 3
Then X1 and X2, and hence U1 and U2, can be engulfed by (diffeomorphic images
of) balls, say by B1 ⊃ U1 and B2 ⊃ U2 with their centers denoted 01 ∈ B1 and
02 ∈ B2.

By moving the 6-sphere ∂(B1) ⊂ B2 by the radial isotopy in B2 toward 02, one
represents Y ∖ 02 by the union of an increasing sequence of isotopic copies of the
ball B1. This implies (with the isotopy theorem) that Y ∖ 02 is diffeomorphic to
R7, hence, Y is homeomorphic to S7.

(A refined generalization of this argument delivers the Poincaré conjecture in
the combinatorial and topological categories for n ≥ 5. See [66] for an account
of techniques for proving various “Poincaré conjectures” and for references to the
source papers.)

8. Handles and h-Cobordisms

The original approach of Smale to the Poincaré conjecture depends on handle
decompositions of manifolds—counterparts to cell decompositions in the homotopy
theory.

Such decompositions are more flexible, and by far more abundant than trian-
gulations and they are better suited for a match with algebraic objects such as
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homology. For example, one can sometimes realize a basis in homology by suit-
ably chosen cells or handles which is not even possible to formulate properly for
triangulations.

Recall that an i-handle of dimension n is the ball Bn decomposed into the
product Bn = Bi ×Bn−i(ε) where one think of such a handle as an ε-thickening of
the unit i-ball and where

A(ε) = Si ×Bn−1(ε) ⊂ Sn−1 = ∂Bn

is seen as an ε-neighbourhood of its axial (i − 1)-sphere Si−1 × 0 – an equatorial
i-sphere in Sn−1.

If X is an n-manifold with boundary Y and f ∶ A(ε) → Y a smooth embedding,
one can attach Bn to X by f and the resulting manifold (with the “corner” along
∂A(ε) made smooth) is denoted X +f B

n or X +Si−1 Bn, where the latter subscript
refers to the f -image of the axial sphere in Y .

The effect of this on the boundary, i.e. modification

∂(X) = Y ↝f Y ′ = ∂(X +Si−1 Bn)
does not depend on X but only on Y and f . It is called an i-surgery of Y at the
sphere f(Si−1 × 0) ⊂ Y .

The manifold X = Y × [0, 1] +Si−1 Bn, where Bn is attached to Y × 1, makes
a bordism between Y = Y × 0 and Y ′ which equals the surgically modified Y × 1-
component of the boundary of X. If the manifold Y is oriented, so is X, unless i = 1
and the two ends of the 1-handle B1 ×Bn−1(ε) are attached to the same connected
component of Y with opposite orientations.

When we attach an i-handle to an X along a zero-homologous sphere Si−1 ⊂ Y ,
we create a new i-cycle in X +Si−1 Bn; when we attach an (i + 1)-handle along an
i-sphere in X which is non-homologous to zero, we “kill” an i-cycle.

These creations/annihilations of homology may cancel each other and a handle
decomposition of an X may have by far more handles (balls) than the number of
independent homology classes in H∗(X).

Smale’s argument proceeds in two steps.

(1) The overall algebraic cancellation is decomposed into “elementary steps”
by “reshuffling” handles (in the spirit of J.H.C. Whitehead’s theory of the
simple homotopy type);

(2) each elementary step is implemented geometrically as in the example be-
low (which does not elucidate the case n = 6).

Cancelling a 3-handle by a 4-handle. Let X = S3×B4(ε0) and let us attach
the 4-handle B7 = B4×B3(ε), ε << ε0, to the (normal) ε-neighbourhood A∼ of some
sphere

S3
∼ ⊂ Y = ∂(X) = S3 × S3(ε0) for S3(ε0) = ∂B4(ε0).

by some diffeomorphism of A(ε) ⊂ ∂(B7) onto A∼.
If S3

∼ = S3 × b0, b0 ∈ S3(ε0), is the standard sphere, then the resulting X∼ =
X +S3

∼
B7 is obviously diffeomorphic to B7: adding S3 ×B4(ε0) to B7 amounts to

“bulging” the ball B7 over the ε-neighbourhood A(ε) of the axial 3-sphere on its
boundary.

Another way to see it is by observing that this addition of S3 ×B4(ε0) to B7

can be decomposed into gluing two balls in succession to B7 as follows.
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Take a ball B3(δ) ⊂ S3 around some point s0 ∈ S3 and decompose X = S3 ×
B4(ε0) into the union of two balls that are

B7
δ = B3(δ) ×B4(ε0)

and

B7
1−δ = B3(1 − δ) ×B4(ε0) for B3(1 − δ) =def S3 ∖B3(δ).

Clearly, the attachment loci of B7
1−δ to X and of B7

δ to X +B7
1−δ are diffeomor-

phic (after smoothing the corners) to the 6-ball.
Let us modify the sphere S3×b0 ⊂ S3×B4(ε0) = ∂(X) by replacing the original

standard embedding of the 3-ball

B3(1 − δ) → B7
1−δ = B3(1 − δ) × S3(ε0) ⊂ ∂(X)

by another one, say,

f∼ ∶ B3(1 − δ) → B7
1−δ = B3(1 − δ) × S3(ε0) = ∂(X),

such that f∼ equals the original embedding near the boundary of ∂(B3(1 − δ)) =
∂(B3(δ)) = S2(δ).

Then the same “ball after ball” argument applies, since the first gluing site
where B7

1−δ is being attached to X, albeit “wiggled”, remains diffeomorphic to B6

by the isotopy theorem, while the second one does not change at all. So we conclude
the following.

Whenever S3
∼ ⊂ S3 × S3(ε0) transversally intersect s0 × S3(ε0),

s0 ∈ S3, at a single point, the manifold X∼ = X +S3
∼
B7 is diffeo-

morphic to B7.

Finally, by Whitney’s lemma, every embedding S3 → S3 × S3(ε0) ⊂ S3 × B4(ε0)
which is homologous in S3 ×B4(ε0) to the standard S3 × b0 ⊂ S3 ×B4(ε0), can be
isotoped to another one which meets s0 × S3(ε0) transversally at a single point.
Hence the following.

The handles do cancel one another: if a sphere

S3
∼ ⊂ S3 × S3(ε0) = ∂(X) ⊂X = S3 ×B4(ε0),

is homologous in X to

S3 × b0 ⊂X = S3 ×B4(ε0), b0 ∈ B4(ε),
then the manifold X +S3

∼
B7 is diffeomorphic to the 7-ball.

Let us show in this picture that Milnor’s sphere Σ7 minus a small ball is diffeomor-
phic to B7. Recall that Σ7 is fibered over S4, say by p ∶ Σ7 → S4, with S3-fibers
and with the Euler number e = ±1.

Decompose S4 into two round balls with the common S3-boundary, S4 = B4
+ ∪

B4
−. Then Σ7 decomposes into X+ = p−1(B4

+) = B4
+×S3 and X− = p−1(B4

−) = B4
−×S3,

where the gluing diffeomorphism between the boundaries ∂(X+) = S3
+ × S3 and

∂(X−) = S3
− × S3 for S3

± = ∂B4
±, is homologically the same as for the Hopf fibration

S7 → S4 for e = ±1.
Therefore, if we decompose the S3-factor of B4

− × S3 into two round balls, say
S3 = B3

1 ∪B3
2 , then either B4

− ×B3
1 or B4

− ×B3
2 makes a 4-handle attached to X+ to

which the handle cancellation applies and shows that X+ ∪ (B4
− ×B3

1) is a smooth
7-ball. (All what is needed of the Whitney’s lemma is obvious here: the zero section
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X ⊂ V in an oriented R2k-bundle V → X = X2k with e(V ) = ±1 can be perturbed
to X ′ ⊂ V which transversally intersect X at a single point.)

The handles shaffling/cancellation techniques do not solve the existence prob-
lem for diffeomorphisms Y ↔ Y ′ but rather reduce it to the existence of h-cobordisms
between manifolds, where a compact manifold X with two boundary components
Y and Y ′ is called an h-cobordism (between Y and Y ′) if the inclusion Y ⊂X is a
homotopy equivalence.

Theorem (Smale h-Cobordism Theorem). If an h-cobordism has dim(X) ≥ 6
and π1(X) = 1 then X is diffeomorphic to Y × [0, 1], by a diffeomorphism keeping
Y = Y × 0 ⊂ X fixed. In particular, h-cobordant simply connected manifolds of
dimensions ≥ 5 are diffeomorphic.

Notice that the Poincaré conjecture for the homotopy spheres Σn, n ≥ 6, follows
by applying this to Σn minus two small open balls, while the case m = 1 is solved
by Smale with a construction of an h-cobordism between Σ5 and S5.

Also Smale’s handle techniques deliver the following geometric version of the
Poincaré connectedness/contractibilty correspondence (see Section 4).

Let X be a closed n-manifold, n ≥ 5, with πi(X) = 0, i = 1, ..., k.
ThenX contains a (n−k−1)-dimensional smooth sub-polyhedron
P ⊂ X, such that the complement of the open (regular) neigh-
bourhood Uε(P ) ⊂X of P is diffeomorphic to the n-ball, (where
the boundary ∂(Uε) is the (n − 1)-sphere “ε-collapsed” onto
P = Pn−k−1).

If n = 5 and if the normal bundle of X embedded into some R5+N is trivial, i.e.
if the normal Gauss map of X to the Grassmannian Gr(R5+N) is contractible, then
Smale proves, assuming π1(X) = 1, that one can choose P = P 3 ⊂ X = X5 that
equals the union of a smooth topological segment s = [0, 1] ⊂X and several spheres
S2
i and S3

i , where each S3
i meets s at one point, and also transversally intersects

S2
i at a single point and where there are no other intersections between s, S2

i and
S3
i . In other words,

(Smale 1965) X is diffeomorphic to the connected sum of several
copies of S2 × S3.

The triviality of the bundle in this theorem is needed to ensure that all embedded
2-spheres in X have trivial normal bundles, i.e. their normal neighbourhoods split
into S2 ×R3 which comes handy when you play with handles.

If one drops this triviality condition, one has

Theorem (Classification of Simply Connected 5-Manifolds. Barden 1966).
There is a finite list of explicitly constructed 5-manifolds Xi, such that every closed
simply connected manifold X is diffeomorphic to the connected sum of Xi.

This is possible, in view of the above Smale theorem, since all simply con-
nected 5-manifolds X have “almost trivial” normal bundles e.g. their only possible
Pontryagin class p1 ∈ H4(X) is zero. Indeed π1(X) = 1 implies that H1(X) =
π1(X)/[π1(X), π1(X)] = 0 and then H4(X) =H1(X) = 0 by the Poincaré duality.

When you encounter bordisms, the generecity sling launches you to the strato-
sphere of algebraic topology so fast that you barely discern the geometric string
attached to it.
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Smale’s cells and handles, on the contrary, feel like slippery amebas which
merge and disengage as they reptate in the swamp of unruly geometry, where n-
dimensional cells continuously collapse to lower dimensional ones and keep squeez-
ing through paper-thin crevices. Yet, their motion is governed, for all we know, by
the rules dictated by some algebraic K-theory (theories?)

This motion hardly can be controlled by any traditional geometric flow. First
of all, the “simply connected” condition cannot be encoded in geometry ([52], [28]
[53] and also breaking the symmetry by dividing a manifold into handles along with
“genericity” poorly fare in geometry.

Yet, some generalized “Ricci flow with partial collapse and surgeries” in the
“space of (generic, random?) amebas” might split away whatever it fails to untangle
and bring fresh geometry into the picture.

For example, take a compact locally symmetric space X0 = S/Γ, where S is a
non-compat irreducible symmetric space of rank ≥ and make a 2-surgery along some
non-contractible circle S1 ⊂ X0. The resulting manifold X has finite fundamental
group by Margulis’ theorem and so a finite covering X̃ → X is simply connected.
What can a geometric flow do to these X0 and X̃? Would it bring X back to X0?

9. Manifolds under Surgery

The Atiyah–Thom construction and Serre’s theory allows one to produce “ar-
bitrarily large” manifolds X for the m-domination X1 ≻m X2, m > 0, meaning that
there is a map f ∶X1 →X2 of degree m.

Every such f between closed connected oriented manifolds induces a surjec-
tive homomorphisms f∗i ∶ Hi(X1;Q) → Hi(X1;Q) for all i = 0, 1, ..., n, (as we
know from section 4), or equivalently, an injective cohomology homomorphism
f∗i ∶Hi(X2;Q) →Hi(X2;Q).

Indeed, by the Poincaré Q-duality, the cup-product (this the common name for
the product on cohomology) pairing Hi(X2;Q) ⊗Hn−i(X2;Q) → Q = Hn(X2;Q)
is faithful; therefore, if f∗i vanishes, then so does f∗n. But the latter amounts to
multiplication by m = deg(f),

Hn(X2;Q) = Q→⋅d Q =Hn(X1;Q).
(The main advantage of the cohomology product over the intersection product on
homology is that the former is preserved by all continuous maps,

f∗i+j(c1 ⋅ c2) = f∗i(c1) ⋅ f∗j(c2)

for all f ∶ X → Y and all c1 ∈Hi(Y ), c2 ∈Hj(Y ).)
If m = 1, then (by the full cohomological Poincaré duality) the above remains

true for all coefficient fields F; moreover, the induced homomorphism πi(X1) →
πi(X2) is surjective as it is seen by looking at the lift of f ∶ X1 →X2 to the induced

map from the covering X̃1 →X1 induced by the universal covering X̃2 →X2 to X̃2.
(A map of degree m > 1 sends π1(X1) to a subgroup in π1(X2) of a finite index
dividing m.)

Let us construct manifolds starting from pseudo-manifolds, where a compact
oriented n-dimensional pseudo-manifold is a triangulated n-space X0, such that the
following holds.

● Every simplex of dimension < n inX0 lies in the boundary of an n-simplex,
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● The complement to the union of the (n−2)-simplices in X0 is an oriented
manifold.

Pseudo-manifolds are infinitely easier to construct and to recognize than manifolds:
essentially, these are simplicial complexes with exactly two n-simplices adjacent to
every (n − 1)-simplex.

There is no comparably simple characterization of triangulated n-manifolds X
where the links Ln−i−1 = LΔi ⊂X of the i-simplices must be topological (n− i− 1)-
spheres. But even deciding if π1(Ln−i−1) = 1 is an unsolvable problem except for a
couple of low dimensions.

Accordingly, it is very hard to produce manifolds by combinatorial construc-
tions; yet, one can “dominate” any pseudo-manifold by a manifold, where, observe,
the notion of degree perfectly applies to oriented pseudo-manifolds.

Theorem. Let X0 be a connected oriented n-pseudomanifold. Then there exists
a smooth closed connected oriented manifold X and a continuous map f ∶ X → X0

of degree m > 0.
Moreover, given an oriented RN -bundle V0 → X0, N ≥ 1, one can find an m-

dominating X, which also admits a smooth embedding X ⊂ Rn+N , such that our
f ∶X →X0 of degree m > 0 induces the normal bundle of X from V0.

Proof. Since that the first N −1 homotopy groups of the Thom space of V● of
V0 vanish (see section 5), Serre’s m-sphericity theorem delivers a map f● ∶ Sn+N →
V● a non-zero degree m, provided N > n. Then the “generic pullback” X of X0 ⊂ V0

(see section 3) does the job as it was done in Section 5 for Thom’s bordisms. �

In general, if 1 ≤ N ≤ n, the m-sphericity of the fundamental class [V●] ∈
Hn+N(V●) is proven with the Sullivan’s minimal models, see Theorem 24.5 in [19]

The minimal model, of a space X is a free (skew)commutative differential al-
gebra which, in a way, extends the cohomology algebra of X and which faithfully
encodes all homotopy Q-invariants of X. If X is a smooth N -manifold it can be
seen in terms of “higher linking” in X.

For example, if two cycles C1, C2 ⊂X of codimensions i1, i2, satisfy C1 ∼ 0 and
C1 ∩C2 = 0, then the (first order) linking class between them is an element in the
quotient group HN−i1−i2−1(X)/(HN−i1−1(X)∩[C2]) which is defined with a plaque
D1 ∈ ∂−1(C1), i.e. such that ∂(D1) = C1, as the image of [D1 ∩ C2] under the
quotient map

HN−i1−i2−1(X) ∋ [D1 ∩C2] ↦HN−i1−i2−1(X)/(HN−i1−1(X) ∩ [C2]).

Surgery and the Browder-Novikov Theorem. (1962 [8],[54]). Let X0 be
a smooth closed simply connected oriented n-manifold, n ≥ 5, and V0 → X0 be a
stable vector bundle where “stable” means that N = rank(V ) >> n. We want to
modify the smooth structure of X0 keeping its homotopy type unchanged but with
its original normal bundle in Rn+N replaced by V0.

There is an obvious algebraic-topological obstruction to this highlighted by
Atiyah in [2] which we call [V●]-sphericity and which means that there exists a
degree one, map f● of S

n+N to the Thom space V● of V0, i.e. f● sends the gener-
ator [Sn+N ] ∈ Hn+N(Sn+N) = Z (for some orientation of the sphere Sn+N ) to the
fundamental class of the Thom space, [V● ∈ Hn+N(V●) = Z, which is distinguished
by the orientation in X. (One has to be pedantic with orientations to keep track
of possible/impossible algebraic cancellations.)
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However, this obstruction is “Q-nonessential”, [2] : the set of the vector bundles
admitting such an f● constitutes a coset of a subgroup of finite index in Atiyah’s
(reduced) K-group by Serre’s finiteness theorem.

Recall that K(X) is the Abelian group formally generated by the isomorphism
classes of vector bundles V over X, where [V1] + [V2] =def 0 whenever the Whitney
sum V1 ⊕ V2 is isomorphic to a trivial bundle.

The Whitney sum of an Rn1-bundle V1 →X with an Rn2-bundle V2 →X, is the
Rn1+n2 -bundle over X. which equals the fiber-wise Cartesian product of the two
bundles.

For example the Whitney sum of the tangent bundle of a smooth submanifold
Xn ⊂ Wn+N and of its normal bundle in W equals the tangent bundle of W re-
stricted to X. Thus, it is trivial for W = Rn+N , i.e. it isomorphic to Rn+N ×X →X,
since the tangent bundle of Rn+N is, obviously, trivial.

Granted an f● ∶ Sn+N → V● of degree 1, we take the “generic pullback” X of
X0,

X ⊂ Rn+N ⊂ Rn+N
● = Sn+N ,

and denote by f ∶ X → X0 the restriction of f● to X, where, recall, f induces the
normal bundle of X from V0. .

The map f ∶ X1 → X0, which is clearly onto, is far from being injective – it
may have uncontrollably complicated folds. In fact, it is not even a homotopy
equivalence – the homology homomorphism induced by f

f∗i ∶Hi(X1) →Hi(X0),

is, as we know, surjective and it may (and usually does) have non-trivial kernels
keri ⊂ Hi(X1). However, these kernels can be “killed” by a “surgical implemen-
tation” of the obstruction theory (generalizing the case where X0 = Sn due to
Kervaire-Milnor) as follows.

Assume keri = 0 for i = 0, 1, ..., k − 1, invoke Hurewicz’ theorem and realize the
cycles in kerk by k-spheres mapped to X1, where, observe, the f -images of these
spheres are contractible in X0 by a relative version of the (elementary) Hurewicz
theorem.

Furthermore, if k < n/2, then these spheres Sk ⊂ X1 are generically embedded
(no self-intersections) and have trivial normal bundles inX1, since, essentially, they
come from V → X1 via contractible maps. Thus, small neighbourhoods (ε-annuli)
A = Aε of these spheres in X1 split: A = Sk ×Bn−k

ε ⊂X1.
It follows, that the corresponding spherical cycles can be killed by (k+1)-surgery

(where X1 now plays the role of Y in the definition of the surgery); moreover, it is
not hard to arrange a map of the resulting manifold to X0 with the same properties
as f .

If n = dim(X0) is odd, this works up to k = (n − 1)/2 and makes all keri,
including i > k, equal zero by the Poincaré duality.

Since

a continuous map between simply connected spaces which induces
an isomorphism on homology is a homotopy equivalence by the
(elementary) Whitehead theorem,

the resulting manifold X is a homotopy equivalent to X0 via our surgically modified
map f , call it fsrg ∶ X →X0.
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Besides, by the construction of fsrg, this map induces the normal bundle of X
from V →X0. Thus we conclude,

the Atiyah [V●]-sphericity is the only condition for realizing a
stable vector bundle V0 →X0 by the normal bundle of a smooth
manifold X in the homotopy class of a given odd dimensional
simply connected manifold X0.

If n is even, we need to kill k-spheres for k = n/2, where an extra obstruction arises.
For example, if k is even, the surgery does not change the signature; therefore,
the Pontryagin classes of the bundle V must satisfy the Rokhlin-Thom-Hirzebruch
formula to start with.

(There is an additional constraint for the tangent bundle T (X) – the equality
between the Euler characteristic χ(X) = ∑i=0,...,n(−1)irankQ(Hi(X)) and the Euler
number e(T (X)) that is the self-intersection index of X ⊂ T (X).)

On the other hand the equality L(V )[X0] = sig(X0) (obviously) implies that
sig(X) = sig(X0). It follows that

the intersection form on kerk ⊂Hk(X) has zero signature,

since all h ∈ kerk have zero intersection indices with the pullbacks of k-cycles from
X0.

Then, assuming keri = 0 for i < k and n ≠ 4, one can use Whitney’s lemma and
realize a basis in kerk ⊂Hk(X1) by 2m embedded spheres Sk

2j−1, S
k
2j ⊂X1, i = 1, ...m,

which have zero self-intersection indices, one point crossings between Sk
2j−1 and Sk

2j

and no other intersections between these spheres.
Since the spheres Sk ⊂ X with [Sk] ∈ kerk have trivial stable normal bundles

U⊥ (i.e. their Whitney sums with trivial 1-bundles, U⊥⊕R, are trivial), the normal
bundle U⊥ = U⊥(Sk) of such a sphere Sk is trivial if and only if the Euler number
e(U⊥) vanishes.

Indeed any oriented k-bundle V → B, such that V ×R = B ×Rk+1, is induced
from the tautological bundle V0 over the oriented Grassmannian Grork (Rk+1), where
Grork (Rk+1) = Sk and V0 is the tangent bundle T (Sk). Thus, the Euler class of V is
induced from that of T (Sk) by the classifying map, G ∶ B → Sk. If B = Sk then the
Euler number of e(V ) equals 2 deg(G) and if e(V ) = 0 the map G is contractible
which makes V = Sk ×Rk.

Now, observe, e(U⊥(Sk)) is conveniently equal to the self-intersection index of
Sk in X. (e(U⊥(Sk)) equals, by definition, the self-intersection of Sk ⊂ U⊥(Sk)
which is the same as the self-intersection of this sphere in X.)

Then it easy to see that the (k + 1)-surgeries applied to the spheres Sk
2j , j =

1, ...,m, kill all of kerk and make X →X0 a homotopy equivalence.
There are several points to check (and to correct) in the above argument, but

everything fits amazingly well in the lap of the linear algebra (The case of odd k is
more subtle due to the Kervaire-Arf invariant.)

Notice, that our starting X0 does not need to be a manifold, but rather a
Poincaré (Browder) n-space, i.e. a finite cell complex satisfying the Poincaré du-
ality: Hi(X0,F) = Hn−i(X0,F) for all coefficient fields (and rings) F, where these
“equalities” must be coherent in an obvious sense for different F.

Also, besides the existence of smooth n-manifolds X, the above surgery ar-
gument applied to a bordism Y between homotopy equivalent manifolds X1 and
X2. Under suitable conditions on the normal bundle of Y , such a bordism can be
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surgically modified to an h-cobordism. Together with the h-cobordism theorem,
this leads to an algebraic classification of smooth structures on simply connected
manifolds of dimension n ≥ 5. (see [54]).

Then the Serre finiteness theorem implies that

there are at most finitely many smooth closed simply connected
n-manifolds X in a given a homotopy class and with given Pon-
tryagin classes pk ∈H4k(X).

Summing up, the question “What are manifolds?” has the following

1962 Answer. Smooth closed simply connected n-manifolds for n ≥ 5, up to
a “finite correction term”, are “just” simply connected Poincaré n-spaces X with
distinguished cohomology classes pi ∈ H4i(X), such that Lk(pi)[X] = sig(X) if
n = 4k.

This is a fantastic answer to the “manifold problem” undreamed of 10 years
earlier. Yet,

● Poincaré spaces are not classifiable. Even the candidates for the cohomol-
ogy rings are not classifiable over Q.

Are there special “interesting” classes of manifolds and/or coarser than diff clas-
sifications? (Something mediating between bordisms and h-cobordisms maybe?)

● The π1 = 1 is very restrictive. The surgery theory extends to manifolds
with an arbitrary fundamental group Γ and, modulo the Novikov conjec-
ture – a non-simply connected counterpart to the relation Lk(pi)[X] =
sig(X) (see next section) – delivers a comparably exhaustive answer in
terms of the “Poincaré complexes over (the group ring of) Γ” (see [78]).

But this does not tells you much about “topologically interesting” Γ, e.g. funda-
mental groups of n-manifold X with the universal covering Rn (see [13] [14] about
it).

10. Elliptic Wings and Parabolic Flows

The geometric texture in the topology we have seen so far was all on the side of
the “entropy”; topologists were finding gentle routes in the rugged landscape of all
possibilities, you do not have to sweat climbing up steep energy gradients on these
routs. And there was no essential new analysis in this texture for about 50 years
since Poincaré.

Analysis came back with a bang in 1963 when Atiyah and Singer discovered
the index theorem.

The underlying idea is simple: the “difference” between dimensions of two
spaces, say Φ and Ψ, can be defined and be finite even if the spaces themselves are
infinite dimensional, provided the spaces come with a linear (sometimes non-linear)
Fredholm operator D ∶ Φ → Ψ . This means, there exists an operator E ∶ Ψ → Φ
such that (1 −D ○E) ∶ Ψ → Ψ and (1 −E ○D) ∶ Φ → Φ are compact operators. (In
the non-linear case, the definition(s) is local and more elaborate.)

If D is Fredholm, then the spaces ker(D) and coker(D) = Ψ/D(Φ) are finite
dimensional and the index ind(D) = dim(ker(D)) − dim(coker(D)) is (by a simple
argument) is a homotopy invariant of D in the space of Fredholm operators.

If, and this is a “big IF”, you can associate such a D to a geometric or topo-
logical object X, this index will serve as an invariant of X.
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It was known since long that elliptic differential operators, e.g. the ordinary
Laplace operator, are Fredholm under suitable (boundary) conditions but most of
these “natural” operators are self-adjoint and always have zero indices: they are of
no use in topology.

“Interesting” elliptic differential operatorsD are scarce: the ellipticity condition
is a tricky inequality (or, rather, non-equality) between the coefficients of D. In
fact, all such (linear) operators currently in use descend from a single one: the
Atiyah-Singer-Dirac operator on spinors.

Atiyah and Singer have computed the indices of their geometric operators in
terms of traditional topological invariants, and thus discovered new properties of
the latter.

For example, they expressed the signature of a closed smooth Riemannian man-
ifold X as an index of such an operator Dsig acting on differential forms on X. Since
the parametrix operator E for an elliptic operator D can be obtained by piecing
together local parametrices, the very existence of Dsig implies the multiplicativity
of the signature.

The elliptic theory of Atiyah and Singer and their many followers, unlike the
classical theory of PDE, is functorial in nature as it deals with many interconnected
operators at the same time in coherent manner.

Thus smooth structures on potential manifolds (Poincaré complexes) define a
functor from the homotopy category to the category of “Fredholm diagrams” (e.g.
operators—one arrow diagrams); one is tempted to forget manifolds and study such
functors per se. For example, a closed smooth manifold represents a homology class
in Atiyah’s K-theory – the index of Dsig, twisted with vector bundles over X with
connections in them.

Interestingly enough, one of the first topological applications of the index the-
ory, which equally applies to all dimensions be they big or small, was the solution
(Massey, 1969) of the Whitney 4D-conjecture of 1941 which, in a simplified form,
says the following.

The number N(Y ) of possible normal bundles of a closed con-
nected non-orientable surface Y embedded into the Euclidean
space R4 equals ∣χ(Y ) − 1∣ + 1, where χ denotes the Euler char-
acteristic.Equivalently, there are ∣χ(Y ) − 1∣ = 1 possible homeo-
morphisms types of small normal neighbourhoods of Y in R4.

If Y is an orientable surface then N(Y ) = 1, since a small neighbourhood of such a
Y ⊂ R4 is homeomorphic to Y ×R2 by an elementary argument.

If Y is non-orientable, Whitney has shown that N(Y ) ≥ ∣χ(Y ) − 1∣ + 1 by
constructing N = ∣χ(Y ) − 1∣ + 1 embeddings of each Y to R4 with different normal
bundles and then conjectured that one could not do better.

Outline of Massey’s Proof. Take the (unique in this case) ramified double
covering X of S4 ⊃ R4 ⊃ Y branched at Y with the natural involution I ∶ X →
X. Express the signature of I, that is the quadratic form on H2(X) defined by
the intersection of cycles C and I(C) in X, in terms of the Euler number e⊥ of
the normal bundle of Y ⊂ R4 as sig = e⊥/2 (with suitable orientation and sign
conventions) by applying the Atiyah-Singer equivariant signature theorem. Show
that rank(H2(X)) = 2 − χ(Y ) and thus establish the bound ∣e⊥/2∣ ≤ 2 − χ(Y ) in
agreement with Whitney’s conjecture.
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(The experience of the high dimensional topology would suggest that N(Y ) =
∞. Now-a-days, multiple constrains on topology of embeddings of surfaces into
4-manifolds are derived with Donaldson’s theory.)

Non-simply Connected Analytic Geometry. The Browder-Novikov the-
ory implies that, besides the Euler-Poincaré formula, there is a single “Q-essential
(i.e. non-torsion) homotopy constraint” on tangent bundles of closed simply con-
nected 4k-manifolds– the Rokhlin-Thom-Hirzebruch signature relation.

But in 1966, Sergey Novikov, in the course of his proof of the topological invari-
ance of the of the rational Pontryagin classes, i.e. of the homology homomorphism
H∗(Xn;Q) → H∗(GrN(Rn+N);Q) induced by the normal Gauss map, found the
following new relation for non-simply connected manifolds X.

Let f ∶Xn → Y n−4k be a smooth map. Then the signature of the 4k-dimensional
pullback manifold Z = f−1(y) of a generic point, sig[f] = sig(Z), does not depend
on the point and/or on f within a given homotopy class [f] by the generic pull-back
theorem and the cobordism invariance of the signature, but it may change under a
homotopy equivalence h ∶ X1 →X2.

By an elaborate (and, at first sight, circular) surgery + algebraic K-theory
argument, Novikov proves that

if Y is a k-torus, then sig[f ○ h] = sig[f],

where the simplest case of the projection X × Tn−4k → Tn−4k is (almost all) what
is needed for the topological invariance of the Pontryagin classes. (See [27] for
a simplified version of Novikov’s proof and [61] for a different approach to the
topological Pontryagin classes.)

Novikov conjectured (among other things) that a similar result holds for an
arbitrary closed manifold Y with contractible universal covering. (This would imply,
in particular, that if an oriented manifold Y ′ is orientably homotopy equivalent to
such a Y , then it is bordant to Y .) Mishchenko (1974) proved this for manifolds
Y admitting metrics of non-positive curvature with a use of an index theorem for
operators on infinite dimensional bundles, thus linking the Novikov conjecture to
geometry.

(Hyperbolic groups also enter Sullivan’s existence/uniqueness theorem of Lip-
schitz structures on topological manifolds of dimensions ≥ 5.

A bi-Lipschitz homeomorphism may look very nasty. Take, for instance, infin-
itely many disjoint round balls B1,B2, ... in Rn of radii → 0, take a diffeomorphism
f of B1 fixing the boundary ∂(B1) an take the scaled copy of f in each Bi. The
resulting homeomorphism, fixed away from these balls, becomes quite complicated
whenever the balls accumulate at some closed subset, e.g. a hypersurface in Rn. Yet,
one can extend the signature index theorem and some of the Donaldson theory to
this unfriendly bi-Lipschitz, and even to quasi-conformal, environment.)

The Novikov conjecture remains unsolved. It can be reformulated in purely
group theoretic terms, but the most significant progress which has been achieved
so far depends on geometry and on the index theory.

In a somewhat similar vein, Atiyah (1974) introduced square integrable (also

called L2) cohomology on non-compact manifolds X̃ with cocompact discrete group
actions and proved the L2-index theorem. For example, he has shown that
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if a compact Riemannian 4k-manifolds has non-zero signature,
then the universal covering X̃ admits a non-zero square summa-
ble harmonic 2k-form.

This L2-index theorem was extended to measurable foliated spaces (where “measur-
able” means the presence of transversal measures) by Alain Connes, where the two
basic manifolds’ attributes– the smooth structure and the measure—are separated:
the smooth structures in the leaves allow differential operators while the transversal
measures underly integration and where the two cooperate in the “non-commutative
world” of Alain Connes.

If X is a compact measurably and smoothly n-foliated (i.e. almost all leaves
are smooth n-manifolds) leaf-wise oriented space then one naturally defines Pon-
tryagin’s numbers which are real numbers in this case.

(Every closed manifold X can be regarded as a measurable foliation with the
“transversal Dirac δ-measure” supported on X. Also complete Riemannian man-
ifolds of finite volume can be regarded as such foliations, provided the universal
coverings of these have locally bounded geometries [11].)

There is a natural notion of bordisms between measurable foliated spaces, where
the Pontryagin numbers are obviously, bordism invariant.

Also, the L2-signature, (which is also defined for leaves being Q-manifolds) is
bordism invariant by Poincaré duality.

The corresponding Lk-number, k = n/4, satisfies here the Hirzebruch formula
with the L2-signature (sorry for the mix-up in notation: L2 ≠ Lk=2): Lk(X) =
sig(X) by the Atiyah-Connes L2-index theorem [11].

It seems not hard to generalize this to measurable foliated spaces where leaves
are topological (or even topological Q) manifolds.

Questions. Let X be a measurable leaf-wise oriented n-foliated space with
zero Pontryagin numbers, e.g. n ≠ 4k. Is X orientably bordant to zero, provided
every leaf in X has measure zero.

What is the counterpart to the Browder-Novikov theory for measurable folia-
tions?

Measurable foliations can be seen as transversal measures on some universal
topological foliation, such as the Hausdorff moduli space X of the isometry classes of
pointed complete Riemannian manifolds L with uniformly locally bounded geome-
tries (or locally bounded covering geometries [11]), which is tautologically foliated
by these L. Alternatively, one may take the space of pointed triangulated manifolds
with a uniform bound on the numbers of simplices adjacent to the points in L.

The simplest transversal measures on such an X are weak limits of convex
combinations of Dirac’s δ-measures supported on closed leaves, but most (all?)
known interesting examples descent from group actions, e.g. as follows.

Let L be a Riemannian symmetric space (e.g. the complex hyperbolic space
CHn as in section 5), let the isometry group G of L be embedded into a locally
compact group H and let O ⊂H be a compact subgroup such that the intersection
O∩G equals the (isotropy) subgroup O0 ⊂ G which fixes a point l0 ∈ L. For example,
H may be the special linear group SLN(R) with O = SO(N) or H may be an adelic
group.

Then the quotient space X̃ = H/O is naturally foliated by the H-translate
copies of L = G/O0.
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This foliation becomes truly interesting if we pass from X̃ to X = X̃/Γ for a
discrete subgroup Γ ⊂ H, where H/Γ has finite volume. (If we want to make sure
that all leaves of the resulting foliation in X are manifolds, we take Γ without
torsion, but singular orbifold foliations are equally interesting and amenable to the
general index theory.)

The full vector of the Pontryagin numbers of such anX depends, up to rescaling,
only on L but it is unclear if there are “natural (or any) bordisms” between different
X with the same L.

Linear operators are difficult to delinearize keeping them topologically inter-
esting. The two exceptions are the Cauchy–Riemann operator and the signature
operator in dimension 4. The former is used by Thurston (starting from late 70s)
in his 3D-geometrization theory and the latter, in the form of the Yang–Mills equa-
tions, begot Donaldson’s 4D-theory (1983) and the Seiberg–Witten theory (1994).

The logic of Donaldson’s approach resembles that of the index theorem. Yet, his
operator D ∶ Φ→ Ψ is non-linear Fredholm and instead of the index he studies the
bordism-like invariants of (finite dimensional!) pullbacks D−1(ψ) ⊂ Φ of suitably
generic ψ.

These invariants for the Yang-Mills and Seiberg-Witten equations unravel an
incredible richness of the smooth 4D-topological structures which remain invisible
from the perspectives of pure topology” and/or of linear analysis.

The non-linear Ricci flow equation of Richard Hamilton, the parabolic relative
of Einstein, does not have any built-in topological intricacy; it is similar to the
plain heat equation associated to the ordinary Laplace operator. Its potential role
is not in exhibiting new structures but, on the contrary, in showing that these do
not exist by ironing out bumps and ripples of Riemannian metrics. This potential
was realized in dimension 3 by Perelman in 2003:

The Ricci flow on Riemannian 3-manifolds, when manually redi-
rected at its singularities, eventually brings every closed Rie-
mannian 3-manifold to a canonical geometric form predicted by
Thurston.

(Possibly, there is a non-linear analysis on foliated spaces, where solutions of, e.g.
parabolic Hamilton-Ricci for 3D and of elliptic Yang-Mills/Seiberg-Witten for 4D,
equations fast, e.g. L2, decay on each leaf and where “decay” for non-linear objects
may refer to a decay of distances between pairs of objects.)

There is hardly anything in common between the proofs of Smale and Perel-
man of the Poincaré conjecture. Why the statements look so similar? Is it the
same “Poincaré conjecture” they have proved? Probably, the answer is “no” which
raises another question: what is the high dimensional counterpart of the Hamilton-
Perelman 3D-structure?

To get a perspective let us look at another, seemingly remote, fragment of
mathematics – the theory of algebraic equations, where the numbers 2, 3 and 4 also
play an exceptional role.

If topology followed a contorted path 2→5...→4→3, algebra was going straight
1→2→3→4→5... and it certainly did not stop at this point.

Thus, by comparison, the Smale–Browder–Novikov theorems correspond to
non-solvability of equations of degree ≥ 5 while the present day 3D- and 4D-theories
are brethren of the magnificent formulas solving the equations of degree 3 and 4.
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What does, in topology, correspond to the Galois theory, class field theory, the
modularity theorem... ?

Is there, in truth, anything in common between this algebra/arthmetic and
geometry?

It seems so, at least on the surface of things, since the reason for the particu-
larity of the numbers 2, 3, 4 in both cases arises from the same formula:

4=3 2 + 2 ∶

a 4 element set has exactly 3 partitions into two 2-element subsets and where,
observe 3 < 4. No number n ≥ 5 admits a similar class of decompositions.

In algebra, the formula 4=3 2+2 implies that the alternating group A(4) admits
an epimorphism onto A(3), while the higher groups A(n) are simple non-Abelian.

In geometry, this transforms into the splitting of the Lie algebra so(4) into
so(3) ⊕ so(3). This leads to the splitting of the space of the 2-forms into self-
dual and anti-self-dual ones which underlies the Yang–Mills and Seiberg–Witten
equations in dimension 4.

In dimension 2, the group SO(2) “unfolds” into the geometry of Riemann
surfaces and then, when extended to homeo(S1), brings to light the conformal field
theory.

In dimension 3, Perelman’s proof is grounded in the infinitesimal O(3)-symmetry
of Riemannian metrics on 3-manifolds (which is broken in Thurston’s theory and
even more so in the high dimensional topology based on surgery) and depends on
the irreducibility of the space of traceless curvature tensors.

It seems, the geometric topology has a long way to go in conquering high
dimensions with all their symmetries.

11. Crystals, Liposomes and Drosophila

Many geometric ideas were nurtured in the cradle of manifolds; we want to
follow these ideas in a larger and yet unexplored world of more general “spaces”.

Several exciting new routes were recently opened to us by the high energy and
statistical physics, e.g. coming from around the string theory and non-commutative
geometry—somebody else may comment on these, not myself. But there are a few
other directions where geometric spaces may be going.

Infinite Cartesian Products and Related Spaces. A crystal is a collection
of identical molecules molγ = mol0 positioned at certain sites γ which are the
elements of a discrete (crystallographic) group Γ.

If the space of states of each molecule is depicted by some “manifold” M , and
the molecules do not interact, then the space X of states of our “crystal” equals
the Cartesian power MΓ = ×γ∈ΓMγ .

If there are inter-molecular constrains, X will be a subspace of MΓ; further-
more, X may be a quotient space of such a subspace under some equivalence rela-
tion, where, e.g. two states are regarded equivalent if they are indistinguishable by
a certain class of “measurements”.

We look for mathematical counterparts to the following physical problem.
Which properties of an individual molecule can be determined by a given class
of measurement of the whole crystal?
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Abstractly speaking, we start with some categoryM of “spaces” M with Carte-
sian (direct) products, e.g. a category of finite sets, of smooth manifolds or of al-
gebraic manifolds over some field. Given a countable group Γ, we enlarge this
category as follows.

Γ-Power Category ΓM. The objects X ∈ ΓM are projective limits of finite
Cartesian powers MΔ for M ∈ M and finite subsets Δ ⊂ Γ. Every such X is
naturally acted upon by Γ and the admissible morphisms in our Γ-category are
Γ-equivariant projective limits of morphisms in M.

Thus each morphism, F ∶ X = MΓ → Y = NΓ is defined by a single morphism
in M, say by f ∶ MΔ → N = N where Δ ⊂ Γ is a finite (sub)set. Namely, if we
think of x ∈ X and y ∈ Y as M - and N -valued functions x(γ) and y(γ) on Γ then
the value y(γ) = F (x)(γ) ∈ N is evaluated as follows:

translate Δ ⊂ Γ to γΔ ⊂ Γ by γ, restrict x(γ) to γΔ and apply
f to this restriction x∣γΔ ∈MγΔ =MΔ.

In particular, every morphism f ∶ M → N in M tautologically defines a morphism
in MΓ, denoted fΓ ∶MΓ → NΓ, but MΓ has many other morphisms in it.

Which concepts, constructions, properties of morphisms and objects, etc. from
M “survive” in ΓM for a given group Γ? In particular, what happens to topological
invariants which are multiplicative under Cartesian products, such as the Euler
characteristic and the signature?

For instance, let M and N be manifolds. Suppose M admits no topological
embedding into N (e.g. M = S1, N = [0, 1] or M = RP 2, N = S3). When does MΓ

admit an injective morphism to NΓ in the category MΓ?
(One may meaningfully reiterate these questions for continuous Γ-equivariant

maps between Γ-Cartesian products, since not all continuous Γ-equivariant maps
lie in MΓ.)

Conversely, letM → N be a map of non-zero degree. When is the corresponding
map fΓ ∶MΓ → NΓ equivariantly homotopic to a non-surjective map?

Γ-Subvarieties. Add new objects to MΓ defined by equivariant systems of
equations in X =MΓ, e.g. as follows.

Let M be an algebraic variety over some field F and Σ ⊂ M ×M a subvariety,
say, a generic algebraic hypersurface of bi-degree (p, q) in CPn ×CPn.

Then every directed graph G = (V,E) on the vertex set V defines a subvariety,
in MV , say Σ(G) ⊂ MV which consists of those M -valued functions x(v), v ∈ V ,
where (x(v1), x(v2)) ∈ Σ whenever the vertices v1 and v2 are joined by a directed
edge e ∈ E in G. (If Σ ⊂ M ×M is symmetric for (m1,m2) ↔ (m2,m1), one does
not need directions in the edges.)

Notice that even if Σ is non-singular, Σ(G) may be singular. (I doubt, this
ever happens for generic hypersurfaces in CPn × CPn.) On the other hand, if
we have a “sufficiently ample” family of subvarieties Σ in M ×M (e.g. of (p, q)-
hypersurfaces in CPn ×CPn) and, for each e ∈ E, we take a generic representative
Σgen = Σgen(e) ⊂ M ×M from this family, then the resulting generic subvariety in
M ×M , call it Σgen(G) is non-singular and, if F = C, its topology does not depend
on the choices of Σgen(e).

We are manly interested in Σ(G) and Σgen(G) for infinite graphs G with a
cofinite action of a group Γ, i.e. where the quotient graph G/Γ is finite. In partic-
ular, we want to understand “infinite dimensional (co)homology” of these spaces,



MANIFOLDS 139

say for F = C and the “cardinalities” of their points for finite fields F (see [5] for
some results and references). Here are test questions.

Let Σ be a hypersurface of bi-degree (p, q) in CPn×CPn and Γ = Z. Let Pk(s)
denote the Poincaré polynomial of Σgen(G/kZ), k = 1, 2, .... and let

P (s, t) =
∞
∑
k=1

tkP (s) = ∑
k,i

tksirank(Hi(Σgen(G/kZ)).

Observe that the function P (s, t) depends only on n, and (p, q).
Is P (s, t) meromorphic in the two complex variables s and t? Does it satisfy

some “nice” functional equation?
Similarly, if F = Fp, we ask the same question for the generating function in

two variables counting the Fpl -points of Σ(G/kZ).

Γ-Quotients. These are defined with equivalence relations R ⊂ X ×X where
R are subobjects in our category.

The transitivity of (an equivalence relation) R, and it is being a finitary defined
sub-object are hard to satisfy simultaneously. Yet, hyperbolic dynamical systems
provide encouraging examples at least for the category M of finite sets.

If M is the category of finite sets then subobjects in MΓ, defined with subsets
Σ ⊂M ×M are called Markov Γ-shifts. These are studied, mainly for Γ = Z, in the
context of symbolic dynamics [43], [7].

Γ-Markov quotients Z of Markov shifts are defined with equivalence relations
R = R(Σ′) ⊂ Y ×Y which are Markov subshifts. (These are called hyperbolic and/or
finitely presented dynamical systems [20], [26].)

If Γ = Z, then the counterpart of the above P (s, t), now a function only in t, is,
essentially, what is called the ζ-function of the dynamical system which counts the
number of periodic orbits. It is shown in [20] with a use of (Sinai-Bowen) Markov
partitions that this function is rational in t for all Z-Markov quotient systems.

The local topology of Markov quotient (unlike that of shift spaces which are
Cantor sets) may be quite intricate, but some are topological manifolds.

For instance, classical Anosov systems on infra-nilmanifolds V and/or expand-
ing endomorphisms of V are representable as a Z- Markov quotient via Markov
partitions [35].

Another example is where Γ is the fundamental group of a closed n-manifold V
of negative curvature. The ideal boundary Z = ∂∞(Γ) is a topological (n−1)-sphere
with a Γ-action which admits a Γ-Markov quotient presentation [26].

Since the topological Sn−1-bundle S → V associated to the universal covering,
regarded as the principle Γ bundle, is, obviously, isomorphic to the unit tangent
bundle UT (V ) → V , the Markov presentation of Z = Sn−1 defines the topological
Pontryagin classes pi of V in terms of Γ.

Using this, one can reduce the homotopy invariance of the Pontryagin classes
pi of V to the ε-topological invariance.

Recall that an ε-homeomorphism is given by a pair of maps f12 ∶ V1 → V2 and
f21 ∶ V2 → V1, such that the composed maps f11 ∶ V1 → V1 and f22 ∶ V2 → V2 are
ε-close to the respective identity maps for some metrics in V1, V2 and a small ε > 0
depending on these metrics.

Most known proofs, starting from Novikov’s, of invariance of pi under homeo-
morphisms equally apply to ε-homeomorphisms.
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This, in turn, implies the homotopy invariance of pi if the homotopy can be
“rescaled” to an ε-homotopy.

For example, if V is a nil-manifold Ṽ /Γ, (where Ṽ is a nilpotent Lie group
homeomorphic to Rn) with an expanding endomorphism E ∶ V → V (such a V is a

Z-Markov quotient of a shift), then a large negative power Ẽ−N ∶ Ṽ → Ṽ of the lift

Ẽ ∶ Ṽ → Ṽ brings any homotopy close to identity. Then the ε-topological invariance
of pi implies the homotopy invariance for these V . (The case of V = Rn/Zn and

Ẽ ∶ ṽ → 2ṽ is used by Kirby in his topological torus trick.)
A similar reasoning yields the homotopy invariance of pi for many (manifolds

with fundamental) groups Γ, e.g. for hyperbolic groups.

Questions. Can one effectively describe the local and global topology of Γ-
Markov quotients Z in combinatorial terms? Can one, for a given (e.g. hyperbolic)
group Γ, “classify” those Γ-Markov quotients Z which are topological manifolds or,
more generally, locally contractible spaces?

For example, can one describe the classical Anosov systems Z in terms of the
combinatorics of their Z-Markov quotient representations? How restrictive is the
assumption that Z is a topological manifold? How much the topology of the local
dynamics at the periodic points in Z restrict the topology of Z (e.g. we want to
incorporate pseudo-Anosov automorphisms of surfaces into the general picture.)

It seems, as in the case of the hyperbolic groups, (irreducible) Z-Markov quo-
tients becomes more scarce/rigid/symmetric as the topological dimension and/or
the local topological connectivity increases.

Are there interesting Γ-Markov quotients over categories M besides finite sets?
For example, can one have such an object over the category of algebraic varieties
over Z with non-trivial (e.g. positive dimensional) topology in the spaces of its
Fpi -points?

Liposomes and Micelles are surfaces of membranes surrounded by water which
are assembled of rod-like (phospholipid) molecules oriented normally to the surface
of the membrane with hydrophilic “heads” facing the exterior and the interior of a
cell while the hydrophobic “tails” are buried inside the membrane.

These surfaces satisfy certain partial differential equations of rather general
nature (see [30]). If we heat the water, membranes dissolve: their constituent
molecules become (almost) randomly distributed in the water; yet, if we cool the
solution, the surfaces and the equations they satisfy re-emerge.

Question. Is there a (quasi)-canonical way of associating statistical ensembles
S to geometric system S of PDE, such that the equations emerge at low temperatures
T and also can be read from the properties of high temperature states of S by some
“analytic continuation” in T?

The architectures of liposomes and micelles in an ambient space, say W , which
are composed of “somethings” normal to their surfaces X ⊂ W , are reminiscent of
Thom-Atiyah representation of submanifolds with their normal bundles by generic
maps f● ∶ W → V●, where V● is the Thom space of a vector bundle V0 over some
space X0 and where manifolds X = f−1● (X0) ⊂ W come with their normal bundles
induced from the bundle V0.

The space of these “generic maps” f● looks as an intermediate between an
individual “deterministic” liposome X and its high temperature randomization.
Can one make this precise?
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Poincaré-Sturtevant Functors. All that the brain knows about the geom-
etry of the space is a flow Sin of electric impulses delivered to it by our sensory
organs. All what an alien browsing through our mathematical manuscripts would
directly perceive, is a flow of symbols on the paper, say Gout.

Is there a natural functorial-like transformation P from sensory inputs to
mathematical outputs, a map between “spaces of flows” P ∶ S → G such that
P(Sin)“=”Gout?

It is not even easy to properly state this problem as we neither know what our
“spaces of flows” are, nor what the meaning of the equality “=” is.

Yet, it is an essentially mathematical problem a solution of which (in a weaker
form) is indicated by Poincaré in [58]. Besides, we all witness the solution of this
problem by our brains.

An easier problem of this kind presents itself in the classical genetics.

What can be concluded about the geometry of a genome of an
organism by observing the phenotypes of various representatives
of the same species (with no molecular biology available)?

This problem was solved in 1913, long before the advent of the molecular biology
and discovery of DNA, by 19-year old Alfred Sturtevant (then a student in T.
H. Morgan’s lab) who reconstructed the linear structure on the set of genes on a
chromosome of Drosophila melanogaster from samples of a probability measure on
the space of gene linkages.

Here mathematics is more apparent: the geometry of a space X is represented
by something like a measure on the set of subsets in X; yet, I do not know how to
formulate clear-cut mathematical questions in either case (compare [29], [31]).

Who knows where manifolds are going?
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58. H. Poincaré, Science and hypothesis, London and Newcastle-on-Tyne: The Walter Scott Pub-
lishing Co., (1905).

59. L. Pontryagin, Classification of continuous transformations of a complex into a sphere, Dokl.
Akad. Nauk SSSR , 19, pp. 361-363, (In Russian) (1938).

60. L. Pontryagin, Homotopy classification of the mappings of an (n+2)-dimensional sphere on an

n-dimensional one, Dokl. Akad. Nauk SSSR (N.S.) 70, 957-959, (Russian) (1950). MR0042121
(13:57b)

61. A. Ranicki, M. Weiss, On the construction and topological invariance of the Pontryagin classes
arXiv:0901.0819, (2009). MR2721630 (2011j:57040)

62. V. Rokhlin, Summary of results in homotopy theory of continuous transformations of a sphere
into a sphere, Uspekhi Mat. Nauk, 5:6(40), 88-101, (1950). MR0039250 (12:519h)

63. V. Rokhlin, New results in the theory of 4-dimensional manifolds, Dokl. Akad. Nauk. SSSR
84, 221-224, (Russian) (1952). MR0052101 (14:573b)

64. V. Rokhlin, On Pontrjagin characteristic classes, Dokl. Akad. Nauk SSSR 113, 276-279, (1957).
MR0094806 (20:1318)

65. V. Rokhlin, A. Schwarz, The combinatorial invariance of Pontryagin classes, Dokl. Akad Nauk
SSSR, 114, 490-493, (1957). MR0102070 (21:865)

66. C. Rourke, Essay on the Poincaré conjecture,
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Geometric Analysis on 4-Manifolds

Gang Tian

Abstract. In this expository paper, we will discuss some geometric analytic

approaches to studying the topology and geometry of 4-manifolds. We will
start with a brief summary on 2-manifolds and then recall some aspects of
Perelman’s resolution of the Geometrization conjecture for 3-manifolds by us-
ing Hamilton’s Ricci flow. Then we discuss geometric approaches and progress
on studying 4-manifolds. For simplicity, we assume that all manifolds in this
paper are closed and oriented.

1. Geometrization of 2-manifolds

Let M be a 2-dimensional manifold. Any Riemannian metric g on M gives
rise to a conformal structure and makes M into a Riemann surface. It then follows
from complex analysis that the universal covering of M is conformal to either S2

or R2 or the hyperbolic disc D. In particular, the topology of M is determined by
its fundamental group. Moreover, since each of the standard spaces above has a
canonical metric with constant curvature, we can conclude that there is a metric
g̃ with constant curvature and conformal to g. In fact, such a g̃ is unique if the
volume is normalized.

Another approach to studying 2-manifolds is to construct metrics with constant
curvature by solving partial differential equations. This is more analytic and opens
the possibility of generalization to higher dimensions. Given a Riemannian metric
g on M , consider a new metric g̃ = eϕg for some smooth function. A simple
computation shows that g̃ has constant curvature μ if and only if

(1.1) −Δϕ+K(g) = μeϕ,

where K(g) denotes the curvature of g and Δ is the Laplacian operator of g. This
equation has been studied a lot: see Chapter 6 of [Au] for a detailed discussion.
Here we give a summary for the readers’ convenience. If μ = 0, it is a linear
equation and has a solution by the standard theory. If μ < 0, by the Maximum
Principle, there is a uniform L∞-bound on ϕ. Standard elliptic theory can then be
used to derive a prior bounds on all the derivatives on any solutions of the above
equation; consequently, one can establish existence. When μ > 0, the problem
is more tricky and is often referred as the Nirenberg problem. Many prominent
mathematicians, including Nirenberg, Kazdan–Warner, Aubin et al. studied this
problem. It has been shown that (1.1) always has a solution (see Section 4 of
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Chapter 6 in [Au]). Therefore, given any g, there is a metric g̃ conformal to g and
with constant curvature. A classical uniformization theorem in differential geometry
(cf. Chapter 8, [DoC]) then implies that modulo scaling, the universal covering
of M with the induced metric from g̃ is isometric to S2 or R2 or the hyperbolic
disc D with the standard metric. The advantage of this approach is that one gets
a full understanding of geometry and topology of 2-manifolds by solving a partial
differential equation.

A more recent method of finding metrics with constant curvature is to use the
Ricci flow introduced by R. Hamilton [Ha82]:

(1.2)
∂g

∂t
= −2Ric(g), g(0) = g0.

In [Ha88], [Ch90], it was proven that given any initial g0, (1.2) has a global solution
g(t) after normalization and g(t) converges to a metric g∞ on M . One can show
that g∞ is of constant curvature. The proof is trivial if the Euler number of M is
non-positive and is contained in [CLT06] if M has positive Euler number. Thus
the Ricci flow gives rise to another approach to geometrizing 2-manifolds.

2. Geometrization of 3-manifolds

Can one extend what we said about surfaces to higher dimensions? First we
need to introduce the notion of Einstein metrics.

Definition 2.1. g is Einstein if Ric(g) = λg, where λ = −(n− 1), 0, n− 1.

Note that Ric(g) = (Rij) denotes the Ricci curvature of g. It measures the
deviation of volume form from the Euclidean one. In dimension 2, an Einstein
metric is simply a metric with constant Gauss curvature.

Now assume that M is a compact 3-manifold. In this case, an Einstein met-
ric has constant sectional curvature, and the classical uniformization theorem in
differential geometry (cf. Chapter 8, [DoC]) then states that if M admits an Ein-
stein metric, then its universal covering is of the form S3/Γ, R3/Γ or H3/Γ, where
Γ � π1(M) and H3 denotes the hyperbolic space of dimension 3. Thus, if we can
always construct an Einstein metric, then we have a similar picture for 3-manifolds
as we have for surfaces. However, not every 3-manifold admits an Einstein metric.
One can easily construct such examples, such as Σ× S1 for any surface Σ of genus
greater than 1. This is because its fundamental group is the product of a surface
group with Z which is neither an abelian group nor the fundamental group of any
hyperbolic compact 3-manifold (cf. [Th97]).

It was known [Kn29] that any closed 3-manifold can be decomposed along
embedded 2-spheres into irreducible 3-manifolds; moreover, such a decomposition
is essentially unique. Thurston’s Geometrization Conjecture claims (cf. [Th97],
[CHK00]) that any irreducible 3-manifold can be decomposed along incompressible
tori into finitely many complete Einstein 3-manifolds plus some Graph manifolds.
The famous Poincare conjecture is a special case of this Geometrization Conjecture.

This conjecture has been solved by Perelman (cf. [Per02], [Per03]) using the
Ricci flow introduced by R. Hamilton in early 80’s:

(2.1)
∂gij
∂t

= −2Rij , g(0) = a given metric.
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R. Hamilton and later DeTurck proved that for any initial metric, there is a unique
solution g(t) on M×[0, T ) for some T > 0. R. Hamilton also established an analytic
theory for Ricci flow.

If the Ricci flow has a solution g(t), then we can choose a scaling λ(t) > 0 and a
reparametrization t = t(s) with λ(0)− 1 and t(0) = 0 such that g̃(x) = λ(s)g(t(s))
has fixed volume and satisfies the normalized Ricci flow:

(2.2)
∂gij
∂t

= −2
(
Rij −R(t)gij

)
.

If the normalized Ricci flow (2.2) has a global solution g̃(s) for all s ≥ 0 and g̃(s)
converges to a smooth metric g∞ as s goes to ∞, then its limiting metric g∞ is an
Einstein metric, so the universal covering of M is standard. The Geometrization
Conjecture follows.

The first successful case was done by R. Hamilton in 1982: If M has a metric of
positive Ricci curvature, then the normalized Ricci flow has a global solution which
converges smoothly to a metric of constant positive curvature, consequently, M is
a quotient of S3 by a finite group.

However, in general, the Ricci flow develops a singularity at finite time. The
singularity can be either forced by the topology or caused by complexity in metric
behavior even if the manifold has simple topology. The latter singularity can occur
along proper subsets of the manifolds, but not the entire manifold. Therefore, one
is led to studying a more general evolution process called Ricci flow with surgery,
which was first introduced by Hamilton for 4-manifolds with positive isotropic cur-
vature. This evolution process is still parametrized by an interval in time, so that
for each t in the interval of definition there is a compact Riemannian 3-manifold
Mt. But there is a discrete set of times at which the manifolds and metrics undergo
topological and metric discontinuities (surgeries). In each of the complementary
intervals to the singular times, the evolution is the usual Ricci flow, though the
topological type of Mt changes as t moves from one complementary interval to the
next.

It is crucial for the topological applications that we do surgery only along two
spheres rather than surfaces of higher genus. Surgery along two spheres produces
the connected sum decomposition, which is well-understood topologically, while
surgeries along tori can completely destroy the topology, changing any 3-manifold
into any other. Perelman’s first technical advance is that one needs to do surgeries
only along two spheres. He understood completely the change in topology. More
precisely, he established the following:

Theorem 2.2. Let (M, g0) be a closed orientable Riemannian 3-manifold. Then
there is a Ricci flow with surgery (Mt, g(t)) defined for all t ∈ [0,∞) with initial
conditions (M, g0). The set of discontinuity times for this Ricci flow with surgery
is a discrete subset of [0,∞). The topological change in the 3-manifold as one
crosses a surgery time is a connected sum decomposition together with removal of
connected components, each of which is diffeomorphic to one of S2×S1, RP 3�RP 3,
or a manifold admitting a metric of constant positive curvature.

If M is simply-connected or its fundamental group is not too big, Perelman
showed us in [Perel] why Mt has to become empty for t sufficiently large, i.e., the
Ricci flow with surgery becomes extinct in finite time. In particular, the Poincaré
conjecture follows. One can find detailed proof of this finite extinction in [MT06]
and [CM07].
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To solve Thurston’s Geometrization Conjecture, one needs to study the as-
ymptotic behavior of the above Ricci flow with surgery1 and to prove a result on
collapsing 3-manifolds with curvature locally bounded from below and with geodesi-
cally convex boundary. A detailed proof of this result on collapsing can be found
in [MT08], [CG09] and [KL10]. Also we should point out that this result on
collapsing of closed 3-manifolds was a weaker version of the main conclusion of
Shioya-Yamaguchi in a series of papers ranging from 2000 to 2005 (see [SY06],
[SY06]). But its proof relies crucially on a hard stability theorem first shown
by Perelman in an unpublished preprint in 1992. In 2007, V. Kapovitch gave an
alternative proof of this stability result. His proof was published in [Ka07].

Let me mention a few crucial ingredients in establishing Theorem 2.2 before
Perelman’s work. First the analytic theory established by R. Hamilton plays a
fundamental role in the proof, particularly, the compactness theorem for Ricci flow.
The second is the Hamilton-Ivey curvature pinching estimate [Ha99]: There is a
function φ with φ(s) = 0 for s ≤ 0 and lims→∞ φ(s) = 0 such that

Rm ≥ −φ(R)R− C0,

where R denotes the scalar curvature and C0 is a constant depending only on the
initial metric. This is only true in dimension 3! The third is the work of Cheeger-
Gromoll et al. in late 60’s on manifolds with non-negative curvature. Also, in
the proof of Theorem 2.2, one needs to use the Harnack-type inequality for Ricci
flow proved by Hamilton which is a non-linear extension of the Harnack-Li-Yau
inequality for the heat equation (see [LY86], [Ha93]).

Perelman’s first technical advance is a new length function L for Ricci flow.
He called it reduced length. He developed a theory for L analogous to the theory
for the usual length function on Riemannian manifolds. Using the reduced length,
Perelman defined the reduced volume and proved that the reduced volume is non-
decreasing under the associated backward Ricci flow (backwards in time). This is
the fundamental tool used by Perelman for proving a crucial non-collapsing result.
More precisely, he proved: If g(t) is a solution of Ricci flow on [0, T ) for some T < ∞,
there is a κ > 0 depending only on T and g(0) such that whenever |Rm(g(t))| ≤ r−2

on B(x, t, r)× (t− r2, t], Vol(B(x, t, r)) ≥ κ r3, where B(x, t, r) is the geodesic ball
of g(t) centered at x ∈ M and with radius r.

Together with the curvature pinching estimate and the work on manifolds of
non-negative curvature, this non-collapsing result is used to classify topologically
all the κ-solutions in dimension 3 which characterize finite-time singularity, in par-
ticular, one needs to do surgery only along 2-spheres.

With slight modifications to the domain of integration, one can extend the
definitions and the analysis of the reduced length and the reduced volume as well
as its monotonicity in the context of the Ricci flow with surgery.

Perelman’s second major technical breakthrough is to prove that the region
of big curvature is approximated by a κ-solution. This is fundamental in his ap-
proach towards geometrization or the Poincaré conjecture. It implies: there is a
r0 > 0, which depends on initial metric and is bounded away from zero in any
given time interval, such that all points of scalar curvature ≥ r−2

0 have canonical
neighborhoods, that is, neighborhoods which can be described in a topologically
and analytically controlled way.

1In 2012, R. Bamler found and fixed a gap in Section 6.4 of [Perel] which had been missed.
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Theorem 2.2 can be proved by applying these techniques in a wise way.

3. Canonical structure in dimension 4

The situation in dimension 4 and upwards is very different from dimension 2 or
3. The Ricci curvature no longer determines the full curvature tensor, so even if M
admits an Einstein metric, it may not be a quotient of S4, R4 or H4. The simplest
example is CP 2 which admits a homogeneous Einstein metric, the Fubini-Study
metric, but it is not a quotient space of this form.

What is special in dimension 4? The special feature in dimension 4 is the
occurence of self-duality. It arises because the Lie algebra so(4) can be written as
a direct sum of two so(3), where so(k) denotes the Lie algebra of skew-symmetric
k × k matrices. More explicitly, this splitting can be described in terms of the
Hodge operator 	 : Λ2R4 �→ Λ2R4: If e1, · · · , e4 form an orthonormal basis of R4

with respect to the Euclidean inner product, then 	2 = Id and

	(e1 ∧ e2) = e3 ∧ e4, 	(e1 ∧ e3) = e4 ∧ e2, 	(e1 ∧ e4) = e2 ∧ e3

Then we have ∧2R4 = Λ+R
4 ⊕ Λ−R

4, where Λ+R
4 is the self-dual part and Λ−R

4

is the anti-self-dual part according to eigenspaces of 	 with eigenvalues ±1. Note
that Λ2Rk can be naturally identified with so(k).

The self-dual structure plays a fundamental role in Donaldson’s theory of
smooth 4-manifolds (see [Do86]). The basic building blocks in Donaldson’s theory
are the anti-self-dual solutions, also called instantons, to the Yang-Mills equation.
Many beautiful results were proved by using the moduli of anti-self-dual solutions,
for example, the theorem that a definite intersection form of a smooth simply-
connected 4-manifold is diagnosable over Z and the construction of Donaldson in-
variants for smooth 4-manifolds. Later, in the middle of 90’s, the Seiberg-Witten
invariants were introduced [Wi94]. The associated Seiberg-Witten equation also
uses the self-dual structure in dimension 4.

In line with my interest, I will concentrate on the metric geometry of 4-
manifolds and its connections to the topology. Given a 4-dimensional Riemannian
manifold (M, g), we have a family of spaces TpM with the inner product gp(·, ·)
(p ∈ M). We then have a Hodge operator 	 : Λ2M �→ Λ2M , which can be charac-
terized by

ϕ ∧ 	ψ = g(ϕ, ψ) dVg,

where ϕ, ψ ∈ Λ2M and dVg denotes the volume form of g. Accordingly, we have
a decomposition of ∧2M into the self-dual part Λ+M and the anti-self-dual part
Λ−M , and consequently, we have the following decomposition of the curvature
operator:

Rm =

⎛
⎜⎝ W+ +

S

12
Z

Z W− +
S

12

⎞
⎟⎠

where W = W+ +W− is the Weyl tensor whose vanishing implies that g is locally
conformally flat, Z is the traceless Ricci curvature, that is,

Z = Ric(g)− S

4
g,

and S is the scalar curvature.
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If g is an Einstein metric, then Z = 0, i.e., Rm(g) is self-dual. Another class
of canonical metrics are anti-self-dual.

Definition 3.1. A metric g is anti-self-dual and of constant scalar curvature
if W+ = 0 and S = constant.

More generally, one can perturb the anti-self-dual equation: we call a metric g
a generalized anti-self-dual metric if there is a section f of S2Λ+M over M , where
Λ+M denotes the self-dual part of Λ2M with respect to g, such that f is harmonic
and g satisfies

(3.1) W+ = S · f, S = const.

For simplicity, we often call g an f -asd metric.
IfM is a complex surface with complex structure J , there is a natural decompo-

sition Λ2M = Λ−JM ⊕ ΛJM according to anti-J-invariance and J-invariance, i.e.,
Λ−JM consists of all ϕ with ϕ · J = −ϕ and ΛJM consists of all ϕ with ϕ · J = ϕ.
Then we have a section f of the form

f |ΛJM =
1

6
Id and f |Λ−JM = − 1

12
Id.

Kähler metrics of constant scalar curvature are f -asd for this f since f is parallel
and any Kähler metric has W+ = S · f .

The above canonical metrics also impose topological constraints on underly-
ing 4-manifolds. Recall that the cup product induces a non-degenerate inter-
section form I on H2(M,Z). There is a natural decomposition H2(M,R) =
H2

+(M) ⊕ H2
−(M) induced by the Hodge operator ∗. This decomposition is or-

thogonal with respect to the real form IR of I on H2(M,R). A famous theorem
of M. Freedman [Fr82] says that if two simply-connected smooth 4-manifolds have
the same intersection form, then they are homeomorphic to each other.

By the Index Theorem, the signature τ (M) = dimR H2
+(M)− dimR H2

−(M) is
given by

(3.2) τ (M) =
1

8π2

∫
M

(|W+|2 − |W−|2) dV

On the other hand, the Gauss-Bonnet-Chern formula gives

(3.3) χ(M) =
1

12π2

∫
M

(|W |2 − |Z|2 + S2

24
) dV,

where χ(M) denotes the Euler number.
It follows from these: ifM admits an Einstein metric, then we have the Hitchin–

Thorpe inequality

|τ (M)| ≤ 2

3
χ(M).

Furthermore, in [Hi74], Hitchin proved that the equality holds if and only if M is
diffeomorphic to K3 surfaces, which include quartic surfaces in CP 3.

As a corollary of the Hitchin–Thorpe inequality, we can easily show that
CP 2�kCP 2 does not have Einstein metrics for k ≥ 9, while it does admit an Einstein
metric for k ≤ 8, see [TY87], [CLW08].

If M is also a complex surface, then there is a stronger Miyaoka–Yau inequality
[Ya77]: τ (M) ≤ 1

3χ(M). In [Le95], Lebrun extended this inequality and proved
the same inequality for any smooth 4-manifold M which admits an Einstein metric
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and has non-vanishing Seiberg–Witten invariant. This provides an obstruction to
the existence of Einstein metrics. Recently, a new obstruction was given by Ishida
[Is12].

We can state another corollary of the Hitchin–Thorpe inequality: If a simply-
connected spin 4-manifold M is a connected sum of smooth 4-manifolds which are
homeomorphic to Einstein 4-manifolds, then 8 b2(M) ≥ −11 τ (M).

Anti-self-dual metrics also impose constraints on M . First the signature τ (M)
has to be non-positive if M admits an anti-self-dual metric. The following theorem
can be easily proved.

Theorem 3.2. If τ (M) = 0 and M admits an anti-self-dual metric, then M
is locally conformal flat. If M is further simply-connected, then M has to be a
standard 4-sphere.

Basic question on canonical metrics include existence, uniqueness, compactness
and regularity theory for related equations.

4. Ricci flow on 4-manifolds

The Ricci flow (2.1) provides a way of constructing Einstein metrics on 4-
manifolds. However, unlike the 2- or 3-dimensional cases, it is much more difficult
to study the flow. For instance, we do not have an analogue of the Hamilton-Ivey
pinching estimate for curvature. Even the static solutions of the flow, i.e., the Ein-
stein metrics, may develop singularities, which never happens in lower dimensions.

If the initial metric g0 has positive curvature operator, Hamilton proved in
[Ha86] that after normalizing the volume, the flow has a global solution which
converges to a metric of constant sectional curvature. If g0 has positive isotropic
curvature, so does g(t) along the Ricci flow. The structure of such 4-manifolds can
be analyzed by using the Ricci flow (cf. [Ha97],[CZ06]). In general, not much is
known about the flow in dimension 4 except for Kähler surfaces.

The Ricci flow has the following property: if the initial metric g0 is Kähler, so
is g(t) along the Ricci flow. In this case, we understand completely the singularity
formation. Let us give a brief tour of what we know about Ricci flow on Kähler
surfaces.

Assume that (M, g0) is a compact Kähler surface with Kähler form ω0. It is
proved in [TZ06] that (2.1) has a maximal solution g(t) for t ∈ [0, T ), where

T = sup{t | [ω0]− tc1(M) > 0}.

Moreover, each g(t) is Kähler with the Kähler class [ω0]− tc1(M).
If M contains a holomorphic sphere C with c1(M)([C]) > 0, then this implies

that [ω0]− tc1(M) ceases to be a Kähler class for some

T ≤ [ω0]([C])/c1(M)([C]) < ∞,

so (2.1) develops singularity at T . If C is irreducible, c1(M)([C]) > 0 is the same
as saying that the self-intersection of C is greater than −2. It turns out that those
holomorphic curves are the only reason for the finite-time singularity of (2.1) on
Kähler surfaces; this is because [ω0] − tc1(M) > 0 for any t ≥ 0 if no such curves
exist. As t tends to T , (M, g(t)) collapses to a point or a Riemann surface or
contracts certain holomorphic spheres of self-intersection number −1. In the first
case, [ω0] = T c1(M) and consequently M is a del Pezzo surface.
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In the second case, M has to be a ruled surface over a Riemann surface Σ
and g(t) converges to a (1,1)-current gT on Σ in the weak sense, possibly in the
Gromov–Hausdorff topology. Then it can be proved that there is a Ricci flow g(t)
(t > T ) on Σ with limt→T g(t) = gT in the sense of currents and g(t) converges to
a metric of constant curvature on Σ after suitable normalization.

In the third case, there will be a curve C (may have several connected compo-
nents) such that

([ω0]− Tc1(M))([C]) = 0,

so c1(M)([C]) > 0 and C must be made of disjoint holomorphic 2-spheres of self-
intersection −1. Hence, we can blow down C to get a new complex manifold
M1, furthermore, there is a holomorphic map π : M �→ M1 such that π|M\C is a
biholomorphism onto its image and π(C) consists of finitely many isolated points. It
was known that g(t) converges to gT in the sense of currents, moreover, it is proved
by Tian–Zhang [TZ06] that gT is a smooth Kähler metric and g(t) converges to
gT in the smooth topology on M\C. It is easy to see that gT = π∗ḡT for some
ḡT on M1. In fact, Song–Weinkove [SW] proved that g(t) converges to ḡT in the
Gromov–Hausdorff topology. This can be also proved by using La Nave–Tian’s
V -soliton equation [LT].

It is proved in [ST09] that the Ricci flow (2.1) can continue on M1 with initial
metric ḡT . Then we can repeat the above process, and it is clear that after finitely
many blow-downs, we will either run into a collapsed space or arrive at a complex
surface M� without holomorphic spheres of self-intersection number > −2, so the
Ricci flow has a global solution on M�. In particular, if M is not birational to
CP 2 or a ruled surface, we have a global solution g(t) with surgery for (2.1) such
that each Mt is a Kähler surface obtained by blowing down rational curves of self-
intersection −1 successively from previous Mt′ , topologically, M is a connected sum
of Mt and finitely many copies of CP 2 with reversed orientation.

There are three possibilities for asymptotic behaviors of g(t) as t tends to ∞
according to the Kodaira dimension κ(M) of M :

1. If κ(M) = 0, then c1(M)R = 0 or a finite cover of M� is either a K3 surface or
an Abelian surface. In this case, the solution ω̃t on M� converges to a Ricci flat
Kähler metric.

In the other two cases, it is better to use the normalized Kähler-Ricci flow on
M :

∂ω̃(s)

∂s
= −Ric(ω̃(s))− ω̃(s), ω̃(0) = ω0,

where t = es − 1 and ω̃(s) = e−sω̃t.

2. If κ(M) = 1, then M� is a minimal elliptic surface: π : M� �→ Σ. It was
proved in [ST07] that as s → ∞, ω̃(s) converges to a positive current of the form
π∗(ω̃∞) and the convergence is in the C1,1-topology on any compact subset outside
singular fibers Fp1

, · · · , Fpk
, where p1, · · · , pk ∈ Σ. Furthermore, ω̃∞ satisfies the

generalized Kähler-Einstein equation:

Ric(ω̃∞) = −ω̃∞ + f∗ωWP , on Σ\{p1, · · · .pk},

where f is the induced holomorphic map from Σ\{p1, · · · .pk} into the moduli of
elliptic curves.
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3. If κ(M) = 2, then M� is a surface of general type and its canonical model
Mcan is a Kähler orbifold with possibly finitely many rational double points and
ample canonical bundle. By the version of the Aubin–Yau Theorem for orbifolds,
there is an unique Kähler–Einstein metric ω̃∞ on Xcan with scalar curvature −2.
It was proved in [TZ06] that as s → ∞, ω̃(s) converges to ω̃∞ and converges in
the C∞-topology outside those rational curves over the rational double points.

Let us end this section with an interesting example: Suppose that π : M �→ S2

is a simply-connected minimal elliptic surface. Write Fx = π−1(x) and let p1, · · · , p�
be all the points in S2 over which the fiber is singular. Let π′ : M ′ �→ Σ be the
elliptic surface obtained by performing logarithmic transformations along two non-
singular fibers Fp and Fq of coprime multiplicities k and l. Then M ′ is a minimal
elliptic surface homeomorphic but not diffeomorphic to M . If we run the Kähler-
Ricci flow on both M and M ′, we get two generalized Kähler-Einstein metrics g
on S2\{p1, · · · , p�} and g′ on S2\{p1, · · · , p�, p, q}. The asymptotic behaviors of
g and g′ are the same at each pi, while g is smooth at p or q and g′ has a conic
angle of 2π(k − 1)/k at p or 2π(l − 1)/l q. Even though M and M ′ are far from
each other, e.g., they are not diffeomorphic to each other, g and g′ resemble each
other and may be deformed to each other by smoothing out the angles at p and q.
Do we have a similar picture for general homeomorphic 4-manifolds which are not
diffeomorphic to each other?

5. Symplectic curvature flow

Symplectic 4-manifolds form a very important class of 4-manifolds and include
Kähler surfaces as special cases. It will be desirable to extend what we have about
Ricci flow on Kähler surfaces to symplectic 4-manifolds. But the Ricci flow does
not preserve the symplectic structure, so we need a new flow for studying symplecic
manifolds. Fortunately, J. Streets and I found a new curvature flow for symplectic
manifolds, see [StT10].

Let (M,ω) be a symplectic manifold. An almost-Kähler metric g on M is a
Riemannian metric such that

g(u, v) = ω(u, Jv), ω(Ju, Jv) = ω(u, v),

where J is an almost complex structure. Such a triple (M,ω, J) is called an almost
Kähler.

Besides the Levi-Civita connection ∇, there is another canonical connection,
called Chern connection, given by

DXY =∇XY − 1
2J(∇XJ)(Y ).

The Chern connection D preserves the metric g and almost complex structure J ,
but it may have torsion.

The Chern connection D induces a Hermitian connection on the anticanonical
bundle, and we denote the curvature form of this connection by P . Alternatively,
if Ω = {Ωijkl} denotes the curvature of D, one has

(5.1) Pij = ωklΩijkl,

where {ωij} is the inverse of ω. By the general Chern-Weil theory, P is a closed
form and represents πc1(M,J).

Define an endomorphism

(5.2) Rj
i = Jk

i Ric
j
k − Ricki J

j
k
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where the index on the Ricci tensor has been raised with respect to the associ-
ated metric. This R is actually the (2,0)+(0,2) part of the Ricci curvature of the
associated metric.

The symplectic curvature flow in [StT10] is given by

(5.3)
dω

dt
= −2P and

dJ

dt
= −2g−1

[
P (2,0)+(0,2)

]
+R.

A direct computation shows:

(5.4) g−1
[
P (2,0)+(0,2)

]
=

1

2
[∇∗∇J −N ] ,

where

(5.5) N a
b = gijJa

c ∇iJ
p
b∇jJ

c
p .

It follows that (5.3) can be written as

(5.6)
dω

dt
= −2P and

dJ

dt
= −∇∗∇J + N + R.

Clearly, (5.3) is invariant under diffeomorphisms of M , hence, like the Ricci
flow, this symplectic curvature flow is parabolic only modulo the group of diffeo-
morphism. More precisely, we have

Theorem 5.1. Let (M,ω0, J0) be an almost Kähler manifold. There exists a
unique solution to ( 5.3) with initial condition (ω0, J0) on [0, T ) for some T > 0.

Our new flow resembles the Ricci flow. In terms of associated metrics g(t), the
flow becomes

(5.7)
∂g

∂t
= −2Ric(g) + B1 + B2,

where

B1
ij = gklgpq∇iJ

p
k∇jJ

q
l and B2

ij = gklgpq∇kJ
p
i ∇lJ

q
j .

Like the Ricci flow, one can derive induced evolution equations on the curvature
Rm(g) of g and its derivatives as well as derivatives of J and apply the Maximum
Principle to proving that if for some fixed α depending only on ω0,

sup
M×[0,α/K]

{|Rm(g), |∇J |2, |∇2J |} ≤ K,

then we have

sup
M×[0,α/K]

{|∇mRm(g)|, |∇m+2J |} ≤ CmKt−
m
2 .

However, in dimension 4, we have a much better estimate:

Theorem 5.2. If dimM = 4 and (ω(t), J(t)) is a solution to (5.3) on [0, T ]
satisfying

sup
M×[0,T ]

|Rm| = K,

then there exists a constant C(K,ω(0), J(0), T ) such that

sup
M×[0,T ]

(|∇J |2 + |∇2J |) ≤ C.
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It follows that whenever the curvature of g(t) is bounded, so are all the deriva-
tives of the curvature and J(t), in other words, the deviation of J from being
parallel or integrable is controlled by the curvature. We expect that all finite-time
singularities of (5.3) are modeled on Kähler spaces, more precisely, we expect

Conjecture 5.3. The maximum existence time for (5.3) is given by

(5.8) T = sup{t | [ω0]− tπc1(M) is represented by a sympletic form }.
Moreover, if T < ∞, then there will be a holomorphic 2-sphere C ⊂ M of self-
intersection number greater than −2 along which [ω0]− tπc1(M) vanishes.

This conjecture implies that all finite-time singularities are caused by holomor-
phic 2-spheres of self-intersection number greater than −2. Clearly, (5.3) cannot
have a solution at or beyond T , the problem is whether or not there is a solution up
to T . As one expects, if J0 is integrable, so is J(t) and (5.3) becomes the Kähler-
Ricci flow. In this case, the conjecture is indeed true as shown by Tian–Zhang in
[TZ06]. We also know exactly how the flow behaves at time ∞ for Kähler metrics
as shown at the end of last section.

We expect that the flow (5.3) exhibits a picture for symplectic 4-manifolds
similar to the one for Kähler surfaces. First we point out that the static solutions
of (5.3) are classified. By a static solution, we mean an almost Kähler metric (ω, J)
satisfying:

P = λω, 2P (2,0)+(0,2) = g · R,

where λ is a constant. These are equivalent to P = λω and R = 0. It follows from
a result of Apostolov et al (see [StT10], Section 9) that the latter system has only
Kähler-Einstein metrics as solutions on a closed 4-manifold. Therefore, all static
solutions are Kähler-Einstein metrics.

In view of this and what we know about Kähler-Ricci flow, we may hope that
(5.3) has only finitely many finite-time singularities which are caused by holomor-
phic 2-spheres of self-intersection number > −2 and thereafter becomes either ex-
tinct, or has a global solution; if (5.3) become extinct at finite time, then the un-
derlying 4-manifold is essentially a rational surface; if (5.3) has a global solution,
then after appropriate normalization, the solution converges to a sum of Kähler–
Einstein surfaces and symplectic 4-manifolds which admit a fiberation over a lower
dimensional space with k-dimensional tori as generic fibers, where 1 ≤ k ≤ 4, glued
along 3-dimensional tori with appropriate properties.

This is analogous to Thurston’s Geometrization Conjecture for 3-manifolds.

6. Pluri-closed flow

The Ricci flow has another generalization: the pluri-closed flow on Hermitian
manifolds. This flow provides solutions of the B-field renormalization group flow in
theoretical physics, but it is not exactly a case of the B-field renormalization group
flow since the latter does not say anything about how complex structures evolve.

Let (M,J) be a complex manifold of complex dimension n and ω be a Hermitian
metric on M . We denote a Hermitian metric by its Kähler form ω. We say a
Hermitian metric ω pluri-closed if

(6.1) ∂∂̄ω = 0 .

This condition is weaker than the Kähler condition. By a result of Gauduchon,
every complex surface admits pluri-closed metrics.
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The pluri-closed flow is given by

(6.2)
∂ω

∂t
= ∂∂∗ω + ∂̄∂̄∗ω +

√
−1

2
∂∂̄ log det g .

This was introduced by Streets and myself in 2008, see [StT09]. It was proved
there that for any pluri-closed metric ω0 on M , there is a unique solution ω(t) for
(6.2) on [0, T ) for some T > 0 such that ω(0) = ω0; moreover, all ω(t) staisfy pluri-
closed condition. If ω0 is Kähler, so is ω(t), so this flow reduces to the Kähler-Ricci
flow.

A newer and better formulation of (6.2) is to use the Bismut connection. Recall
the Bismut connection ∇ is defined as follows:

(6.3) g(∇XY, Z) = g(DXY, Z) +
1

2
dω(JX, JY, JZ),

where D denotes the Levi-Civita connection. The Bismut connection can be char-
acterized as the unique connection compatible with both g and J such that the
torsion is a three-form. In terms of the Bismut connection, this torsion 3-form is
closed if and only if ω is pluriclosed. Note that when ω is not closed, the Bismut
connection is different from the Chern connection. Let Ω denote the curvature of
the Bismut connection ∇, and let P denote the curvature of the induced connection
on the canonical bundle, i.e., Pab = ωijΩabij . Then (6.2) becomes

(6.4)
∂ω

∂t
= −P 1,1,

where P 1,1 denotes the (1,1)-component of P . Using this formulation, it is proved
in [StT11] that for any initial ω, (6.4) has a solution ω(t) on [0, T ) such that either
T = ∞ or |P 1,1(ω(t))| blows up as t tends to T . This is analogous to Sesum’s result
for Ricci flow [Se05].

Another consequence of this new formulation is to enable us to relate (6.2), or
equivalently (6.4), to the B-field renormalization group flow of string theory. Recall
the B-field flow studied in [OSW06]:

(6.5)
∂gij
∂t

= −2Rcij +
1

2
T pq
i Tjpq and

∂T

∂t
= ΔLBT ,

where T is a 3-form and ΔLB denotes the Laplace-Beltrami operator of the time-
dependent metric. It is shown in [OSW06] that the system (6.5) is the gradient
flow of the following Perelman-type functional

(6.6) λ(g, T ) = inf

{∫
M

[
R− 1

12
T 2 + f2

]
e−fdV

∣∣ ∫
M

e−fdV = 1

}
.

Now let ω(t) be a solution to (6.2) by pluri-closed metrics on a complex manifold
M with complex structure J . Denote by T (t) the torsion of the Bismut connections
associated to ω(t). It is proved in [StT10] that if X is the time-dependent field
dual to − 1

2Jd
∗ω and φ(t) is the integral curve of X, then (φ∗ω, φ∗T ) is a solution

of (6.5).2 This enables us to obtain two monotonic quantities, one is the functional
λ, the other is an expanding entropy (see [StT11]).

It is a difficult yet significant problem to study the long-time existence of (6.2).
In view of progress on Kähler-Ricci flow, especially, the sharp existence theorem

2Note that complex structures φ(t)∗J vary in t, so it is highly unclear how a solution of (6.5)
goes back to that of the pluri-closed flow since (6.5) does not tell how complex structures vary.
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of Zhang–Tian [TZ06], we expect the following: first we note that a pluri-closed
metric defines a class in the finite dimensional Aeppli cohomology group

(6.7) H1,1

∂+∂̄
=

{Ker∂∂̄ : Λ1,1
R

→ Λ2,2
R

}
{∂γ + ∂̄γ | γ ∈ Λ0,1}

.

Define the space P∂+∂̄ to be the cone of the classes in H∂+∂̄ which contain pluri-
closed metrics.

Conjecture 6.1. Let (M,ω0, J) be a compact complex manifold with a pluri-
closed metric ω0. Define

(6.8) τ∗ := sup
t≥0

{t | [ω0 − tc1] ∈ P∂+∂̄}.

Then the solution to ((6.2)) with initial condition ω0 exists on [0, τ∗), and τ∗ is the
maximal time of existence.

A positive resolution of Conjecture 6.1 would have geometric consequences for
non-Kähler surfaces. This is because one can characterize the cone P∂+∂̄ in a rather
easy way (see [StT11]). Combining this with the fact that every complex surface is
pluri-closed, we can use (6.2) to study geometry and topology of complex surfaces,
particularly, the still largely mysterious Class VII+ surfaces. Class VII+ surfaces
are those minimal compact complex surfaces with Betti number b1 = 1 and b2 > 0.
In fact, we can show that the resolution of Conjecture 6.1 implies the classification
of Class VII+ surfaces with b2 = 1, a result recently obtained by Teleman by using
gauge theory [Te10]. We believe that through a finer analysis of limiting solutions
of (6.2), we can expect to deduce a full classification of all Class VII+ surfaces from
the above conjecture.

Recently, through the correspondence between our pluri-closed and the B-field
flow, J. Streets and I show that the B-field flow preserves the generalized Kähler
structures which were introduced by N. Hitchin [Hi11]. Therefore, our pluri-closed
flow can be also used to studying generalized Kähler manifolds.

7. Einstein 4-manifolds

In this section, we discuss some estimates for Einstein metrics on 4-manifolds.
This is a step in my program with Cheeger on completely understanding how Ein-
stein metrics develop a singularity [CT06]. This section as well as the next two
follow corresponding sections in [Ti06].

Consider the normalized Einstein equation

(7.1) Ric(g) = λg,

where the Einstein constant λ is −3, 0 or 3, and, if λ = 0, we add the additional
normalization that the volume is equal to 1.

The first main result in our program is the following;

Theorem 7.1. [CT06] (ε-regularity.) There exist uniform constants ε > 0,
c > 0, such that the following holds: If g is a solution to ( 7.1) and Br(p) is a
geodesic ball of radius r ≤ 1 satisfying:

(7.2)

∫
Br(p)

|Rm(g)|2 ≤ ε,
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then

(7.3) sup
B 1

2
r
(p)

|Rm(g)| ≤ c · r−2,

where Rm(g) denotes the sectional curvature of g.

Remark 7.2. If λ = 0, we can drop the assumption r ≤ 1. In particular, it
implies that a complete Ricci-flat 4-manifold with finite L2-norm of curvature has
quadratic curvature decay.

The usual ε-regularity theorems for Yang-Mills and harmonic maps can be
proved by the Moser iteration using the Sobolev inequality. Since the domain
involved is effectively a standard ball, the Sobolev inequality holds. In [An89],
[Na88], [Ti89], this Moser iteration argument was applied to Einstein 4-manifolds
and a version of Theorem 7.1 was proved under the assumption that the L2-norm
of the curvature is sufficiently small against the Sobolov constant.

The proof of Theorem 7.1 is considerably more difficult than those of the ear-
lier ε-regularity theorems and employs entirely different techniques. Also, as a
consequence of our ε-regularity, we know essentially the topology of the geodesic
ball Br/2(p), that is, it is essentially a quotient of an euclidean ball by Euclidean
isometries. This also tells a difference between our theorem and previous ones
for Yang–Mills etc.: we determine the topology as well as analytic property of the
geodesic ball considered at the same time.

The second main result in our program gives an estimate on the injectivity
radius.

Theorem 7.3. [CT06](Lower Bound on Injectivity Radius.) For any δ > and
v > 0, there exists w = w(v, δ, χ) > 0, such that if (M, g) is a complete Einstein
4-manifold with L2-norm of curvature equal to 12π2χ 3, vol(M, g) ≥ v and λ = ±3,
then the set Sw of p ∈ M where the injectivity radius at p is less than w has measure
less than δ.

The proof for both theorems above is based on an effective version of Chern’s
transgression for the Gauss–Bonnet–Chern formula for the Euler number. Let Pχ

be the Gauss–Bonnet–Chern form. On subsets of Riemannian manifolds which
are sufficiently collapsed with locally bounded curvature, there is an essentially
canonical transgression form T Pχ, satisfying

d T Pχ = Pχ, and |T Pχ| ≤ c(4) · (r|Rm|(p))
−3,

where r|Rm|(p) is the supremum of those r such that the curvature Rm is bounded

by 1/r2 on Br(p). In fact, this can be done for any dimensions. However, if (M, g)
is an Einstein 4-manifold, we have

(7.4) Pχ =
1

8π2
· |R|2 · dV.

It follows that near those points where (M, g) is sufficiently collapsed with locally
bounded curvature, local L2-norm of curvature for g can be controlled by the curva-
ture on the boundary in a weaker norm. Then the above theorems can be deduced
by applying this estimate. We refer the readers to [CT06] for details.

3If M is compact, χ is just the Euler number of M .
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If g(t) is a global solution of the normalized Ricci flow:

(7.5)
∂g

∂t
= −2(Ric(g)− r

4
g),

where r denotes the integral of scalar curvature. Then the volume of g(t) stays as a
constant. We expect that the curvature and injectivity radius estimates in [CT06]
hold for g(t) as t goes to ∞.

The above theorems can be used to construct a compactifcation of moduli of
Einstein 4-manifolds (see [CT06] for more details).

Denote by M(λ, χ, v) the moduli of all solutions to (7.1) with volume equal to
v and such that the underlying manifold is closed and has the Euler number χ. This
moduli is usually non-compact. We would like to give a natural compactification
analogous to the Deligne-Mumford compactification of Riemann surfaces of genus
greater than 1.

Let (Mi, gi) be a sequence of Einstein 4-manifolds with fixed Euler number,
Einstein constant and volume. Let yi ∈ Mi be a sequence of base points. After
passing to a subsequence if necessary, there is a limit (M∞, y∞) of the sequence
(Mi, gi, yi) in a suitable weak geometric sense, the pointed Gromov-Hausdorff sense.
This limit space can be thought of as a weakly Einstein spaces with singularities,
although a priori they are length spaces and might not have any smooth points
whatsoever. Our program provides understanding of the smooth structure of this
limit space in general cases.

If λ = 3, then the diameter of (M, g) in M(λ, χ, v) is uniformly bounded. It is
a non-collapsing case. It has been known since the late 80’s that the limit M∞ is an
Einstein orbifold with isolated singularities and that (Mi, gi) converges to M∞ in
the Cheeger-Gromov topology4, see [An89], [Na88], and [Ti89] in the Kähler case.
As a consequence, the moduli can be compactified by adding Einstein 4-dimensional
orbifolds with isolated singularities.

If λ = −3, the diameter for a sequence of Einstein metrics can diverge to ∞.
It is crucial to bound the injectivity radius uniformly from below at almost every
point in order to have a fine structure for the limit M∞. Using Theorem 7.1 and
7.3, in [CT06], Cheeger and I proved the following

Theorem 7.4. Let (Mi, gi) be a sequence of Einstein 4-manifolds in
M(−3, χ, v). Then by taking a subsequence if necessary, there is a sequence of
N-tuples (yi,1, · · · , yi,N ) satisfying:

1. N is bounded by a constant depending only on χ;
2. yi,α ∈ Mi and for any distinct α, β, limi→∞ dgi(yi,α, yi,β) = ∞;
3. For each 1 ≤ α ≤ N , in the Cheeger-Gromov topology, (Mi, gi, yi,α)

converges to a complete Einstein orbifold (M∞,α, g∞,α, y∞,α) with only
finitely many isolated quotient singularities and limi→∞ yi,α = y∞,α;

4. limi→∞ vol(Mi, gi) = vol(M∞, g∞), where

M∞ =
⋃
α

M∞,α and g∞
∣∣
M∞,α

= g∞,α.

If λ = 0, the sequence (Mi, gi) can collapse, i.e., the injectivity radius can go
uniformly to 0. We can scale the metrics gi such that (Mi, μigi) has diameter 1.

4This means that for any ε > 0, there is a compact subset K of the smooth part of M∞ and
diffeomorphisms φi from a neighborhood of K into Mi such that Mi\φi(K) has measure less than
ε and φ∗

i gi converges to the Einstein orbifold metric of M∞ in the smooth topology.
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Then by taking a subsequence, this has a limit M∞ in the Gromov–Hausdorff
topology. Moreover, by Theorem 7.1, the curvature of gi is uniformly bounded
outside finitely many points, so one has some understanding of the topology of Mi

compared to that of M∞.
It remains to understand collapsing limits of Einstein 4-manifolds. More pre-

cisely, if (Mi, gi, xi) converges to a collapsed limit (Y, d) in the Gromov–Hausdorff
topology, where d is a metric inducing the length structure on Y . This includes
two cases:

1. When λ = 0, the diameter is uniformly bounded;
2. When λ = −1, xi diverges to infinity from any points where the local

volume is bounded from below.

We have known that outside finitely many points, Y is a limit of spaces with
bounded curvature, so it has smooth points. In fact, it is shown in [NT08] that Y
is a quotient by a smooth manifold by a group action outside finitely many points.

We can say more when M is a Kähler surface. Then M(λ, χ, v) contains a
component M(Ω, c2) of Kähler–Einstein metrics with Kähler class Ω, where c1 and
c2 denotes the first and second Chern classes of M .

If c1 > 0 and M(c1/3, c2) is of positive dimension, then M is a Del-Pezzo
surface obtained by blowing up CP 2 at m points in general position, where 5 ≤
m ≤ 8. In [Ti89], it was proved that M(c1/3, c2) can be compactified by adding
Kähler–Einstein orbifolds, and furthermore, there are strong constraints on quotient
singularities. It was conjectured in [Ti89] that M(c1/3, c2) can be compactified by
adding Kähler–Einstein orbifolds whose singularities are only rational double points
possibly with very few exceptional cases. Indeed, it is true when M is a blow-up of
CP 2 at 5 point, see [MM93].

If c1 = 0, then M is either a complex 2-torus or a K3 surface. This is a
collapsing case and is related to problems on large complex limits in the Mirror
symmetry.

If c1 < 0, let (M, gi) be a sequence in M(−c1/3, c2), let (M∞, g∞) be one of its
limits as in Theorem 7.4, and let M∞,1, · · · ,M∞,N be its irreducible components.
We know that each (M∞,α, g∞) is a complete Kähler–Einstein orbifold. It should
be possible to identify these irreducible components more explicitly. For simplicity,
assume that M∞,α is smooth, then we expect:

M∞,α is of the form M̄\D, where M̄ is a projective surface
and D is a divisor with normal crossings, such that KM̄ + D
is positive outside D and each component of D has either pos-
itive genus, or at least two intersection points with components
of D.

Note that the main theorem in [TY86] implies: given M̄ and D as above, there
is a Kähler–Einstein metric on M̄\D.

8. Complete Calabi-Yau 4-manifolds

To understand Y near those finitely many non-smooth points, we are led to
classifying all complete Ricci-flat 4-manifolds (M, g) with finite L2-norm of curva-
ture. Almost all known examples of such complete Ricci-flat manifolds are Calabi–
Yau ones, so we will focus on complete Calabi–Yau metrics. Non-flat Calabi–Yau
metrics were first constructed on a minimal resolution of the quotient of C2 by a
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finite group in SU(2) by physicists, by Hitchin and Calabi explicitly or by using
the Twistor theory. Further complete Calabi–Yau 4-manifolds were constructed in
[Kr89], [TY90], [CK99], [CH05] and [He10] et al.. A natural question is to see
if they are all the complete Calabi–Yau 4-manifolds with L2-bounded curvature.
The work of Cheeger and myself may shed a light on answering this question.

Theorem 8.1. [CT06] If (M, g) is a complete Ricci-flat manifold with L2-
bounded curvature, then its curvature decays quadratically.

A related question is the uniqueness of Calabi-Yau metrics on C
2 raised by

Calabi a long time ago. There are indeed complete non-flat Calabi-Yau metrics,
like the Taub–Nut metric. However, many years ago, I proved the following result
in an published note.

Theorem 8.2. Any complete Calabi–Yau metric on C2 with maximal volume
growth must be flat.

Its outlined proof appeared in [Ti06] and we refer the readers to there for more
discussions.

Remark 8.3. In fact, by the same arguments, one can actually show that any
complete Calabi–Yau 4-manifolds with maximal volume growth must be a minimal
resolution of the quotient of C2 by a finite subgroup in SU(2).

I also conjectured many years ago that the same holds for higher dimensional
cases, that is, any complete Calabi-Yau metrics on Cn with maximal volume growth
is flat.

9. Metrics of anti-self-dual type

Anti-self-dual metrics impose strong constraints on underlying 4-manifolds.
There have been many works on constructing anti-self-dual metrics by the gluing
method or the twistor method5 (see [Fl91], [DoFr], [Kr89], [Le93]). In particu-
lar, Taubes proved that given any 4-manifold M , after making connected sum of
it with sufficiently many copies of CP 2, the resulting 4-manifold admits one anti-
self-dual metric ([Ta92]). A fundamental question remains open: how to deform a
metric on any given 4-manifold towards an anti-self-dual metric as we did for the
geometrization of 3-manifolds when the Ricci flow is used. For this purpose, we
need to develop some analytic estimates for the anti-self-dual equation.

Consider the anti-self-dual equation:

(9.1) W+ = 0, S = const.

(9.1) is an elliptic equation modulo diffeomorphisms. Let us show why it is: re-
garding the curvature Rm as a symmetric tensor on Λ2M , the symbol σ(Rm) :
TxM × S2T ∗

xM �→ S2Λ2
xM of the linearized operator of Rm at (x, g) is given by

σ(Rm)(ξ, h)(e, e′) = − 2h(e(ξ), e′(ξ)),

where ξ ∈ TxM , h ∈ S2T ∗
xM and e, e′ ∈ Λ2

xM . Here we have identified e, e′ ∈ Λ2
xM

as endomorphisms of TxM through the metric g. It follows that the symbol σ(S)

5There were also works on the moduli of anti-self-dual metrics, e.g., [AHS], [KK92]. In this
section, our emphasis on the moduli is different and more towards compactifying the moduli.
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of the scalar curvature is

σ(S)(ξ, h) = − 4
∑
α

h(eα(ξ), eα(ξ)),

where {eα} is an orthonormal basis of ΛTxM . Notice that

W+ +
S

12
= Rm|Λ+TxM .

So one can deduce the symbol

σ(W+)(ξ, h)(e, e
′) = − 2h(e(ξ), e′(ξ)) − 2

3

∑
i

h(ei(ξ), ei(ξ)) gx(e, e
′),

where {ei} is an orthonormal basis of Λ+TxM . The ellipticity of (9.1) modulo
diffeomorphisms means that for any given unit ξ, h = 0 whenever if iξh = 0 and
σ(W+)(ξ, h) = 0 and σ(S)(ξ, h) = 0. It follows directly from the above computa-
tions of symbols.

As for Einstein metrics, we need to study the following problem: given a se-
quence of an anti-self-dual metrics gi, or more general f -asd metrics, on M , what
are possible limits of gi as i tends to ∞?

By using the Index Formula for the signature, we have∫
M

||W (gi)||2dVgi = 12π2τ (M).

By the Gauss–Bonnet–Chern formula, we can deduce from this∫
M

||Rm(gi)||2dVgi = 24π2τ (M) − 8π2χ(M) +
1

12

∫
M

S(gi)
2dVgi .

If the scalar curvature S(gi) has uniformly bounded L2-norm, then we have a priori
L2-bound on curvature tensor Rm(gi).

Since the Weyl tensor is a conformal invariant, we can make conformal changes
to gi. Recall the Yamabe constant:

Q(M, gi) = inf
u>0

∫
M

(
|∇giu|2 + S(gi)u

2
)
dVgi(∫

M
u4dVgi

) 1
2

.

Using the Aubin–Schoen solution of the Yamabe conjecture, there is a u attaining
Q(M, gi), so we simply take gi with volume 1 and such that the scalar curvature
S(gi) is Q(M, gi). Then we have∫

M

S(gi)
2dVgi = Q(M, gi)

2.

Therefore, if gi form a sequence of anti-self-dual metrics with bounded Yamabe
constant, then we may assume that their curvatures are uniformly L2-bounded and
that they have fixed volume. One can ask two questions:

1. Given a compact 4-manifold, is there a uniform bound on the Yamabe
constant for anti-self-dual metrics?

2. What are possible limits of anti-self-dual metrics gi with uniformly bounded
Yamabe constant?

As a corollary of Theorem 1.3 in [TV05], one has the following partial answer to
the second question:
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Theorem 9.1. Let gi be a sequence of anti-self-dual metrics on M with bounded
Yamabe constant. We further assume that there is a uniform constant c such that
for any function f , (∫

M

f4dVgi

) 1
2

≤ c

∫
M

(|df |2gi + f2)dVgi .

Then by taking a subsequence if necessary, we have that gi converges to a multi-fold
(M∞, g∞) in the Cheeger–Gromov topology6.

Remark 9.2. A compactness result can be proved for Kähler metrics with
constant scalar curvature by the same arguments.

It is possible to have an ε-regularity theorem similar to Theorem 7.1. The
following can be proved by extending the effective transgression method in [CT06]
and bounding Sobolev constants for collapsing 4-manifolds with bounded curvature.

Theorem 9.3.7 There exist uniform constants ε > 0, c > 0, such that the
following holds: If g is an anti-self-dual metric or a Kähler metric with constant
scalar curvature ±12 or 0 and Br(p) is a geodesic ball of radius r ≤ 1 satisfying:

(9.2)

∫
Br(p)

|Rm(g)|2 ≤ ε,

then

(9.3) sup
B 1

2
r
(p)

|Rm(g)| ≤ c · r−2.

It is hoped that the moduli space of anti-self-dual metrics can be used for
constructing new differentiable invariants for 4-manifolds. If such an invariant
exists, one can compute it and use it to establish existence of anti-self-dual metrics
on a 4-manifold. However, there are two major difficulties to be overcome in order
to define the invariant: compactness and transversality. We have discussed the
compactness. For transversality, the readers can find some discussions in [Ti06].
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