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Preface

The subject of algebraic cycles has its roots in the study of divisors, extending
as far back as the nineteenth century; however, the field truly began to blossom
in the mid-twentieth century after Grothendieck’s formulation of a series of conjec-
tures which now bear his name. Since then, algebraic cycles have made a significant
impact on many fields of mathematics, among them number theory, algebraic ge-
ometry, and mathematical physics, to name only a few. Spencer Bloch introduced
the higher Chow groups in the early 1980s extending the classical Chow-groups and
roughly having the same relationship to algebraic K-theory as singular cohomology
has to topological K-theory. The subject has risen to prominence in recent years
in light of the work of Suslin, Voevodsky, and Friedlander on motivic cohomology,
which also identified Bloch’s higher Chow groups with the latter. In particular
Voevodsky’s solution of the Milnor conjecture, and work on its extension to other
primes (the so-called Bloch-Kato conjecture) has stimulated plenty of interest and
work in this area.

Algebraic Cycles II was conceived a sequel to the Conference on Algebraic Cy-
cles, held at the Ohio State University in December 2000. The goal of both these
conferences was to stimulate further activity in this area by gathering together ex-
perts alongside younger mathematicians beginning work in the field. The scientific
program of Algebraic Cycles II focused on the study of cycles in the contexts of
arithmetic geometry, motivic cohomology, and mathematical physics. The confer-
ence was also held at The Ohio State University, from March 25 to March 29, 2008,
and was organized by Reza Akhtar (Miami University), Patrick Brosnan (Univer-
sity of British Columbia), Roy Joshua (Ohio State) along with David Ellwood (The
Clay Mathematics Institute). The conference featured eighteen 40- or 50- minute
talks and was attended by about 80 participants from all over the world.

It was felt that a volume devoted to the conference proceedings would better
serve the mathematical community. We are very thankful to the Clay Mathematics
Institute for agreeing to publish this volume as part of the Clay Mathematical
Proceedings (jointly published by the Clay Mathematics Institute and the American
Mathematical Society). Several of the articles in this volume contain research
presented at this conference, while others represent separate contributions. The
editors are happy to acknowledge the enthusiastic support they received from many
mathematicians working in this general area, either by contributing a paper to the
volume, by serving as referees or by providing other technical assistance. It is our
hope that this volume will be of value both to established researchers working in
the field and to graduate students who have interest in it.

vii



viii PREFACE

The editors wish to extend their gratitude to the National Security Agency, the
National Science Foundation, the Clay Mathematics Institute, and The Ohio State
University for their financial support of this conference. We recognize in particular
David Ellwood of the Clay Mathematics Institute for his enthusiasm and support
in agreeing to publish these proceedings. We also wish to thank the excellent tech-
nical support we received from Vida Salahi (Clay Mathematics Institute), Marilyn
Radcliff (Ohio State University), Roshini Joshua (for the Web-page and Poster)
and finally everyone else, who helped make this conference a success.

Reza Akhtar, Patrick Brosnan and Roy Joshua

November, 2009
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The Hodge theoretic fundamental group and its cohomology

Donu Arapura

From the work of Morgan [M], we know that the fundamental group of a
complex algebraic variety carries a mixed Hodge structure, which really means
that a certain linearization of it does. This linearization, called the Malčev or pro-
unipotent completion destroys the group completely in some cases; for example if
it were perfect. So a natural question is whether can one give a Hodge structure on
a larger chunk of the fundamental group. There have been a couple of approaches
to this. Work of Simpson [Si] continued by Kartzarkov, Pantev, Toen [KPT1] has
shown that one has a weak Hodge-like structure (essentially an action by C∗ viewed
as a discrete group) on the entire pro-algebraic completion of the fundamental group
when the variety is smooth projective. Hain [H2] refining his earlier work [H1], has
shown that a Hodge structure of a more conventional sort exists on the so called
relative Malčev completions (under appropriate hypotheses). In this paper, I want
to propose a third alternative. I define a quotient of the pro-algebraic completion

called the Hodge theoretic fundamental group πhodge
1 (X, x) as the Tannaka dual

to the category local systems underlying admissible variations of mixed Hodge
structures on X, or in more prosaic terms the inverse limit of Zariski closures
of their associated monodromy representations. This carries a nonabelian mixed

Hodge structure in a sense that will be explained below. The group πhodge
1 (X, x)

dominates the Malčev completion and the Hodge structures are compatible, and I
expect a similar statement for the relative completions.

The basic model here comes from arithmetic. Suppose that X is a variety
over a field k with separable closure k̄. Let X̄ = X ×Spec k Spec k̄. Suppose that
x ∈ X(k) is a rational point, and that x̄ ∈ X(k̄) a geometric point lying over it.
Then there is an exact sequence of étale fundamental groups

1 → πet
1 (X̄, x̄) → πet

1 (X, x̄) → Gal(k̄/k) → 1

The point x gives a splitting, and so an action of Gal(k̄/k) on πet
1 (X̄, x̄). This

action will pass to the Galois cohomology of πet
1 (X̄, x̄). In the translation into

Hodge theory, πet
1 (X̄, x̄) is replaced by πhodge

1 (X, x) and the Galois group by a

certain universal Mumford-Tate group MT . The action of MT on πhodge
1 (X, x) is

precisely what I mean by a nonabelian mixed Hodge structure. The cohomology

H∗(πhodge
1 (X, x), V ) will carry induced mixed Hodge structures for admissible vari-

ations V . In fact there is a canonical morphismH∗(πhodge
1 (X, x), V ) → H∗(X,V ). I

Partially supported by NSF.

c© 2010 Donu Arapura
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4 DONU ARAPURA

call X a Hodge theoretic K(π, 1) if this is an isomorphism for all V . Basic examples
of such spaces are abelian varieties, and smooth affine curves (modulo [HMPT]).
I want to add that part of my motivation for this paper is to test out some ideas
which could be applied to motivic sheaves. So consequently certain constructions
are phrased in more generality than is strictly necessary for the present purposes.

My thanks to Roy Joshua for the invitation to the conference. I would also like
to thank Dick Hain, Tony Pantev, Jon Pridham, and the referee for their comments,
and also Hain for informing me of his recent work with Matsumoto, Pearlstein and
Terasoma.

1. Review of Tannakian categories

In this section, I will summarize standard material from [DM, D2, D3]. Let
k be a field of characteristic zero. Given an affine group scheme G over k, we
can express its coordinate ring as a directed union of finitely generated sub Hopf
algebras O(G) = lim−→Ai. Thus we can, and will, identify G with the pro-algebraic

group lim←−SpecAi and conversely (see [DM, cor. 2.7] for justification).
By a tensor category T over k, I will mean a k-linear abelian category with

bilinear tensor product making it into a symmetric monoidal (also called an ACU)
category; we also require that the unit object 1 satisfy End(1) = k. T is rigid if
it has duals. The category V ectk of finite dimensional k-vector spaces is the key
example of a rigid tensor category. A neutral Tannakian category T over k is a
k-linear rigid tensor category, which possesses a faithful functor F : T → V ectk,
called a fibre functor, preserving all the structure. The Tannaka dual Π(T , F ) of
such a category (with specified fibre functor F ) is the group of tensor preserving
automorphisms of F . In more concrete language, an element g ∈ Π(T , F ) con-
sists of a collection gV ∈ GL(F (V )), for each V ∈ ObT , satisfying the following
compatibilities:

(C1) gV⊗U = gV ⊗ gU ,
(C2) gV⊕U = gV ⊕ gU ,
(C3) the diagram

F (V )
gV ��

��

F (V )

��
F (U)

gU �� F (U)

commutes for every morphism V → U .

Π = Π(T , F ) is (the group of k-points of) an affine group scheme. Suppose
that T is generated, as a tensor category, by an object V i.e. every object of T is
finite sum of subquotients of tensor powers

Tm,n(V ) = V ⊗m ⊗ V ∗⊗n.

Observe that for all m,n ≥ 0

Homk(F (1), F (Tm,n(V ))) = Tm,n(F (V ))

Lemma 1.1. Suppose that T is generated as a tensor category by V , then

(1) Π can be identified with the largest subgroup of GL(F (V )) that fixes all
tensors in the subspaces

HomT (1, T
m,n(V )) ⊂ Tm,n(F (V ))
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(2) Π leaves invariant each subspace of Tm,n(F (V )) that corresponds to a
subobject of Tm,n(V ).

In particular, Π is an algebraic group.

Proof. This is standard cf. [DM]. �

In general,

Π(T , F ) = lim←−
T ′⊂T finitely generated

Aut(F |T ′)

exhibits it as a pro-algebraic group and hence a group scheme.
The following key example will explain our choice of notation.

Example 1.2. Let Loc(X) be the category of local systems (i.e. locally constant
sheaves) of finite dimensional Q-vector spaces over a connected topological space X.
This is a neutral Tannakian category over Q. For each x ∈ X, Fx(L) = Lx gives
a fibre functor. The Tannaka dual Π(Loc(X), Fx) is isomorphic to the rational
pro-algebraic completion

π1(X, x)alg = lim←−
ρ:π1(X)→GLn(Q)

ρ(π1(X, x))

of π1(X, x).

Given an affine group scheme G, let Rep∞(G) (respectively Rep(G)) be the
category of (respectively finite dimensional) k-vector spaces on which G acts al-
gebraically. When T is a neutral Tannakian category with a fibre functor F , the
basic theorem of Tannaka-Grothendieck is that T is equivalent to Rep(Π(T , F )).
The role of a fibre functor is similar to the role of base points for the fundamental
group of a connected space. We can compare the groups at two base points by
choosing a path between them. In the case of pair of fiber functors F and F ′, a
“path” is given by the tensor isomorphism p ∈ Isom(F, F ′) between these functors.
An element p ∈ Isom(F, F ′) determines an isomorphism Π(T , F ) ∼= Π(T , F ′) by
g 
→ pgp−1. More canonically, one can define Π(T ) as an “affine group scheme in
T ” independent of any choice of F [D2, §6]. For our purposes, we can view Π(T )
as the Hopf algebra object which maps to the coordinate ring O(Π(T , F )) for each
F .

Note that Π is contravariant. That is, given a faithful exact tensor functor
E : T ′ → T between Tannakian categories, we have an induced homomorphism
Π(T , F ) → Π(T ′, F ◦ E).

2. Enriched local systems

Before giving the definition of the Hodge theoretic fundamental group, it is
convenient to start with some generalities. A theory of enriched local systems E on
the category smooth complex varieties consist of

(E1) an assignment of a neutral Q-linear Tannakian category E(X) to every
smooth variety X,

(E2) a contravariant exact tensor pseudo-functor on the category of smooth
varieties, i.e., a functor f∗ : E(Y ) → E(X) for each morphism f : X → Y
together with natural isomorphisms for compositions,

(E3) faithful exact tensor functors φ : E(X) → Loc(X) compatible with base
change, i.e., a natural transformation of pseudo-functors E → Loc,
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(E4) a δ-functor h• : E(X) → E(pt) with natural isomorphisms φ(hi(L)) ∼=
Hi(X,φ(L)). We also require there to be a canonical map p∗h0(L) → L
corresponding the adjunction map on local systems, where p : X → pt is
the projection.

By a weak theory of enriched local systems, we mean something satisfying
(E1)-(E3). We have the following key examples.

Example 2.1. Choosing E = Loc and hi = Hi gives the tautological example
of a theory enriched of local systems.

Example 2.2. Let E(X) = MHS(X) be the category of admissible varia-
tions of mixed Hodge structure [K, SZ] on X. This carries a forgetful functor
MHS(X) → Loc(X). Let hi(L) = Hi(X,L) equipped with the mixed Hodge
structure constructed by Saito [Sa1, Sa2]. Here p∗h0(L) is the invariant part
Lπ1(X) ⊂ L. This can be seen to give a sub variation of MHS by restricting to
embedded curves and applying [SZ, 4.19]. Thus MHS(X) is a theory of enriched
local systems.

Many more examples of theories of enriched local systems can be obtained by
taking subcategories of the ones above.

Example 2.3. The category E(X) = HS(X) ⊂ MHS(X) of direct sums of
pure variations of Hodge structure of possibly different weights.

Example 2.4. The category E(X) = UMHS(X) ⊂ MHS(X) of unipotent
variations of mixed Hodge structure.

Example 2.5. Finally the category of tame motivic local systems constructed
in [A, sect 5] is, for the present, only a weak theory of enriched local systems.
However, the category defined by systems of realizations [loc. cit.] can be seen to
be an enriched theory in the full sense.

Given a theory of enriched local systems (E, φ, h•), let φ(E(X)) denote the
Tannakian subcategory of Loc(X) generated by the image of E(X). So φ(E(X)) is
the full subcategory whose objects are sums of subquotients of objects in the image
of φ. Set πE

1 (X, x) = Π(φ(E(X)), Fx), where Fx is the fibre functor associated to
a base point x. More explicitly, this is the inverse limit of the Zariski closures of
monodromy representations of objects of E(X). It follows that the isomorphism
class of πE

1 (X, x) as a group scheme is independent of x. However, certain additional
structure will depend on it.

Let κ : E(pt) → E(X) and ψ : E(X) → E(pt) be given by p∗ and i∗ respec-
tively, where p : X → pt and i : pt → X are the projection and inclusion of x. We
also have φ : E(X) → φ(E(X)). These functors yield a diagram

πE
1 (X, x) → Π(E(X), x) � Π(E(pt))

where Π(E(X), x) = Π(E(X), Fx) and Π(E(pt)) = Π(E(pt), pt). The diagram
is clearly canonical in the sense that a morphism f : (X, x) → (Y, y) of pointed
varieties gives rise to a larger commutative diagram

πE
1 (X, x) ��

��

Π(E(X), x)
��

��

Π(E(pt))��

=

��
πE
1 (Y, y)

�� Π(E(Y ), y)
��
Π(E(pt))��
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Theorem 2.6. The sequence

1 → πE
1 (X, x) → Π(E(X), x) � Π(E(pt)) → 1

is split exact. Therefore there is a canonical isomorphism

Π(E(X), x) ∼= Π(E(pt))� πE
1 (X, x).

Proof. Since ψ ◦ κ = id, the induced homomorphisms

Π(E(pt)) → Π(E(X), x) → Π(E(pt))

compose to the identity. The injectivity of πE
1 (X, x) → Π(E(X), x) follows from

[DM, 2.21].
Therefore it remains to check exactness in the middle. An element of

im[πE
1 (X, x) → Π(E(X), x)]

is given by a collection of elements gV ∈ GL(φ(V )x), with V ∈ ObE(X), satisfying
(C1)-(C3) such that

(1) gU = αx ◦ gV ◦ α−1
x

holds for any isomorphism α : φ(V ) ∼= φ(U). While an element of ker[Π(E(X), x) →
Π(E(pt))] is given by a collection {gV } such that gV = I for any object in the image
of κ. If V is in the image of κ, the underlying local system is trivial. This implies
that gV = αx ◦ α−1

x = I, if (1) holds. Thus, we have

im[πE
1 (X, x) → Π(E(X), x)] ⊆ ker[Π(E(X), x) → Π(E(pt)]

Conversely, suppose that {gV } is an element of the kernel on the right. Given
an isomorphism α : φ(V ) → φ(U), we have to verify (1). Let H = κ(h0(V ∗ ⊗ U)),
then gH = 1 by assumption. H gives a subobject of V ∗ ⊗ U which maps to the
invariant part φ(V ∗ ⊗ U)π1(X) of the local system φ(V ∗ ⊗ U). This follows from
our axiom (E4). Therefore, α gives a section of φ(H). The evaluation morphism
ev : (V ∗ ⊗ U) ⊗ V → U restricts to give a morphism H ⊗ V → U . We claim that
the diagram

φ(V )x
α⊗I

��

gV

��

α

��
φ(H)x ⊗ φ(V )x ev

��

I⊗gV

��

φ(U)x

gU

��
φ(V )x

α⊗I ��

α

��φ(H)x ⊗ φ(V )x
ev �� φ(U)x

commutes. The commutativity of the square on the left is clear. For the
commutativity on right, apply (C1) and (C3) and the fact that gH = I. Equation
(1) is now proven. �

Since any representation of an affine group scheme is locally finite, it follows
that Rep∞(E(pt)) can be identified with the category of ind-objects Ind-E(pt).
We will often refer to an object of this category as an E-structure. To simplify
notation, we generally will not distinguish between V and φ(V ). By a nonabelian
E-structure, we will mean an affine group scheme G over Q with an algebraic action
of Π(E(pt)). Equivalently, O(G) possesses an E-structure compatible with the Hopf
algebra operations. A morphism of nonabelian E-structures is a homomorphism
of group schemes commuting with the Π(E(pt))-actions. The previous theorem
yields a nonabelian E-structure on πE

1 (X, x) which is functorial in the category of
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pointed varieties. When X is connected, for any two base points x1, x2, π
E
1 (X, x1)

and πE
1 (X, x2) are isomorphic as group schemes although the E-structures need not

be the same.

Lemma 2.7. An algebraic group G carries a nonabelian E-structure if and only
if there exists a finite dimensional E-structure V and an embedding G ⊆ GL(V ),
such that G is normalized by the action of Π(E(pt)). A nonabelian E-structure is
an inverse limit of algebraic groups with E-structures.

Proof. Suppose that G is an algebraic group with an E-structure. Then
Π = Π(E(pt)) acts on G; denote this left action by mg. We also have a left action
of Π on O(G), written in the usual way, such that

(2) m(gf) = (mg)(mf)

for m ∈ Π, g ∈ G and f ∈ O(G). This gives an action of Π � G on O(G).
Let V ′ ⊂ O(G) be a subspace spanned by a finite set of algebra generators. Let
V ⊂ O(G) be the smallest Π�G-submodule containing V ′. By standard arguments,
V is finite dimensional and faithful as aG-module. So we getG ⊆ GL(V ). Equation
(2) implies that G is normalized by Π. This proves one direction. The converse is
clear.

For the second statement write O(G) as direct limit O(G) = lim−→Vi of finite

dimensional E-structures. Let Ai ⊂ O(G) be the smallest Hopf subalgebra contain-
ing Vi. This is an E-substructure. So we have G = lim←−Ai which gives the desired
conclusion. �

An E-representation of a nonabelian E-structure G is a representation on an
E-structure V such that (2) holds. The adjoint representation gives a canonical
example of an E-representation. The above lemma says that every finite dimen-
sional nonabelian E-structure has a faithful E-representation. The following is
straightforward and was used implicitly already.

Lemma 2.8. There is an equivalence between the tensor category of E-represen-
tations of a nonabelian E-structure G and the category of representations of the
semidirect product Π(E(pt))�G.

Corollary 2.9. In the notation of theorem 2.6, E(X) is equivalent to the
category of finite dimensional E-representations of πE

1 (X, x).

3. Nonabelian Hodge structures

The category MHS = MHS(pt) (respectively HS = HS(pt)) is just the cate-
gory of rational graded polarizable rational mixed (respectively pure) Hodge struc-
tures [D1]; its Tannaka dual will be called the universal (pure) Mumford-Tate
group and will be denoted by MT (PMT ). The Tannaka dual of the category of
real Hodge structures R-HS is just Deligne’s torus S = ResC/RC

∗. So the obvious
functor R-HS → HS⊗R yields an embedding S(R) ↪→ PMT (R). In more concrete
terms, (z1, z2) ∈ S(C) = C∗ × C∗ acts by multiplication by zp1 z̄

q
2 on the (p, q) part

of a pure Hodge structure. Since HS is semisimple, PMT is pro-reductive. The
inclusion HS ⊂ MHS gives a homomorphism MT → PMT . We have a section
PMT → MT induced by the functor V 
→ GrW (V ) = ⊕GrWi (V ). Thus MT is a
semidirect product of PMT with ker[MT → PMT ]. The kernel is pro-unipotent
since it acts trivially on W•V for any V ∈ MHS.
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Rep∞(MT ) is the category Ind-MHS of direct limits of mixed Hodge struc-
tures. Given an object V = lim−→Vi in this category, we can extend the Hodge and
weight filtrations by F pV = lim−→F pVi and WkV = lim−→WkVi.

Set πhodge
1 = πE

1 for E = MHS. So this is the inverse limit of Zariski closures
of monodromy representations of variations of mixed Hodge structures. The key
definition is:

(NH1) A nonabelian mixed (respectively pure) Hodge structure, or simply an
NMHS (or an NHS), is an affine group scheme G over Q with an alge-
braic action of MT (respectively PMT ).

A morphism of these objects is a homomorphism of group schemes commuting
with theMT -actions. A Hodge representation is anMT -equivariant representation;
it is the same thing as an E-representation for E = MHS. The coordinate ring of
an NMHS is a Hopf algebra in Ind-MHS. Let us recapitulate the results of the
previous section in the present setting.

• πhodge
1 (X, x) has an NMHS which is functorial in the category of smooth

pointed varieties (and this structure will usually depend on the choice of
x).

• An algebraic group G admits an NMHS if and only if it has a faithful
representation to the general linear group of a mixed Hodge structure for
which MT normalizes G.

• Admissible variations of MHS correspond to Hodge representations of

πhodge
1 (X, x).

The notion of a nonabelian mixed Hodge structure is fairly weak, although
sufficient for some of the main results of this paper. At this point it is not clear
what the optimal set of axioms should be. We would like to spell out some further

conditions which will hold in our basic example πhodge
1 .

(NH2) An NMHS G satisfies (NH2) or has nonpositive weights if W−1O(G) = 0.

Remark 3.1. To see why this is“nonpositive”, observe that if V is an MHS
with W1V = 0, then W−1O(V ) = W−1Sym

∗(V ∗) = 0. (My thanks to the referee
for pointing out that the weights gets flipped.)

The significance of this condition is explained by the following:

Lemma 3.2. An NMHS G has nonpositive weights if and only if the left and
right actions of G on O(G) preserves the weight filtration.

Proof. Note that the left and right G-actions preserves the weight filtration
if and only if

(3) μ∗(WiO(G)) ⊆ O(G)⊗WiO(G)

(4) μ∗(WiO(G)) ⊆ WiO(G)⊗O(G)

Comultiplication μ∗ : O(G) → O(G)⊗O(G) is a morphism of Ind-MHS. If G
has nonpositive weights, then

μ∗(WiO(G)) ⊆
∑
j≥0

WjO(G)⊗Wi−jO(G) ⊆ O(G)⊗WiO(G)

(4) follows by symmetry.
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Suppose W−1O(G) = 0 and that (3), and (4) hold. Let f ∈ W−1O(G) be a
nonzero element, and let n > 0 be the largest integer such that f ∈ W−n. Suppose
that μ∗(f) =

∑
gi ⊗ hi. By (4),∑

gi ⊗ hi ≡ 0 mod O(G)/W−n ⊗O(G)

Therefore all gi ∈ W−n. By a similar argument hi ∈ W−n. Therefore μ∗(f) ∈
W−2n(O(G)⊗O(G)). Since morphisms of MHS (and therefore Ind-MHS) strictly
preserve weight filtrations [D1], μ∗(f) = μ∗(f ′) for some f ′ ∈ W−2n. But μ∗ is
injective because μ is dominant. Therefore f = f ′ ∈ W−2n which is a contradiction.

�
Lemma 3.3. If G satisfies (NH2), then there is a unique maximal pure quotient

Gpure.

Proof. Since G satisfies (NH2) it acts on the pure Ind-MHS GrW O(G) on
the left. As a group we take Gpure to be the image of G in Aut(GrW O(G)). To
get the finer structure, we apply lemma 2.7, to write G = lim←−Gi with Gi ⊂ GL(Vi)

where Vi ⊂ O(G) are mixed Hodge structures such that Gi is normalized by MT .
G preserves W•Vi by assumption. Then

Gpure = lim←− im[Gi → GL(GrW Vi)]

This group carries a nonabelian pure Hodge structure since each group of the limit
does. By construction, there is a surjective morphism G → Gpure.

Suppose that G → H is another pure quotient. Then G will act on O(H)
through this map. The image of G in Aut(O(H)) is precisely H. We have a G-
equivariant morphism of Ind-MHSO(H) ⊂ O(G). By purityO(H) = GrW (O(H)) ⊂
GrW (O(G)), which shows that theG-action onO(H) factors throughGpure. There-
fore the homomorphism G → H also factors through this. �

Before explaining the next condition, we recall that some standard definitions.
Fix a real algebraic group G. We have a conjugation g 
→ ḡ on the group of
complex points G(C), whose fixed points are exactly G(R). A Cartan involution C
of G is an algebraic involution of G(C) defined over R, such that the group of fixed

points of g 
→ C(ḡ) = C(g) is compact for the classical topology and has a point in
every component. An involution of a pro-algebraic group is Cartan if it descends
to a Cartan involution in the usual sense on a cofinal system of finite dimensional
quotients. Recall that Deligne’s torus S = ResC/RC

∗ embeds into PMT in such a
way that (z1, z2) ∈ S(C) = C∗×C∗ acts by multiplication by zp1 z̄

q
2 on the (p, q) part

of a pure Hodge structure. It will be convenient to say that a group is reductive
(or pro-reductive) when its connected component of the identity is.

(NH3) A NMHS G satisfies (NH3) or is S-polarizable if it has nonpositive weights,
and the action C of (i, i) ∈ S(C) on Gpure gives a Cartan involution.

The “S” stands for Simpson, since this condition is related to (and very much
inspired by) the notion of a pure nonabelian Hodge structure introduced by him [Si,
p. 61]. Simpson has shown that the pro-reductive completion of the fundamental
group of a smooth projective variety carries a pure nonabelian Hodge structure in
his sense. These ideas have been developed further in [KPT1, KPT2]. Although
there is no direct relation between these notions of nonabelian Hodge structure,
there are a number of close parallels (e.g. lemma 3.7 below holds for both). The
meaning of (NH3) is explained by the following:
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Lemma 3.4. Let G be an algebraic group with an NMHS. Then G is S-polariz-
able if and only if there exists a pure Hodge structure V and an embedding Gpure ⊆
GL(V ), such that Gpure is normalized by the action of PMT and such that Gpure

preserves a polarization on V . Under these conditions, Gpure is reductive.

Proof. After replacing G by Gpure, we may assume G = Gpure is already pure.
Given an embedding G ⊆ GL(V ) as above, choose a G-invariant polarization ( , ) on
V . The image W of (i, i) ∈ S(C) in GL(V ) is nothing but the Weil operator for the
Hodge structure on V . Therefore 〈u, v〉 = (u,W v̄) is positive definite Hermitian.
The group of fixed points under σ(g) = W−1ḡW is easily seen to preserve 〈 , 〉, so
it is compact. In other words, Cg = W−1gW is a Cartan involution. Conversely,
if C is a Cartan involution then a G-invariant polarization can be constructed by
averaging an existing polarization over the Zariski dense compact group of σ-fixed
points. When these conditions are satisfied the reductivity of G follows from the
existence of a Zariski dense compact subgroup. �

Corollary 3.5. The underlying group of a pure S-polarizable nonabelian Hodge
structure is pro-reductive.

Corollary 3.6. If G is S-polarizable, then Gpure = Gred is the maximal pro-
reductive quotient of G. In particular, if G is pro-reductive then G = Gpure is
pure.

Proof. We have an exact sequence of pro-algebraic groups

1 → U → G → Gpure → 1

where U is simply taken to be the kernel. This can also be described as above by

U = lim←− ker[Gi → GL(GrW Vi)]

We can see from this that U is pro-unipotent. By the previous corollary, Gpure

is pro-reductive. Thus U is the pro-unipotent radical and Gpure = Gred is the
maximal pro-reductive quotient. This forces G = Gpure if G is pro-reductive. �

Recall that Simpson [Si, p 46] defined a real algebraic group G to be of Hodge
type if C∗ acts on G(C) such that U(1) preserves the real form and −1 ∈ U(1) acts
as a Cartan involution. Such groups are reductive, and also subject to a number
of other restrictions [loc. cit.]. For example, SLn(R) is not of Hodge type when
n ≥ 3.

Lemma 3.7. If an algebraic group admits a pure S-polarizable nonabelian Hodge
structure then it is of Hodge type.

Proof. Choose an embedding G ⊂ GL(V ) as in lemma 3.4. The Hodge
structure on V determines a representation S(C) → GL(VC). The group G(C) is
stable under conjugation by elements of PMT (C) ⊃ S(C). Embed C∗ ⊂ S(C)
by the diagonal. Then −1 ∈ C∗ acts trivially on G(C). Therefore the C∗ action
factors through C∗/{±1} ∼= C∗. To see that U(1)/{±1} preserves G(R) ⊂ GL(VR),
it suffices to note that the image of eiθ ∈ U(1) in GL(VC), which acts on V pq

by multiplication by e(p−q)iθ, is a real operator. Under the isomorphism U(1) ∼=
U(1)/{±1}, −1 on the left corresponds to the image of i on the right. Thus −1
acts by a Cartan involution on G(C).

�
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Theorem 3.8. Given a smooth variety X, πhodge
1 (X, x) carries an S-polar-

izable nonabelian Hodge mixed structure. The category of Hodge representations of

πhodge
1 (X, x)red is equivalent to the category of pure variations of Hodge structure

on X.

Proof. For V ∈ MHS(X), let πhodge
1 (〈V 〉, x) denote the Zariski closure of the

monodromy representation of π1(X, x) → GL(Vx). Let MT (V ) ⊂ GL(Vx) denote
the Tannaka dual of the sub tensor category of MHS generated by Vx. A slight

modification of theorem 2.6 together with lemma 2.7 shows that πhodge
1 (〈V 〉, x) is

normalized by MT (V ). We can also see this directly. The group πhodge
1 (〈V 〉, x)

is characterized as the group of automorphisms that fix all monodromy invariant
tensors Tm,n(Vx)

π1(X,x). While MT (V ) leaves all sub MHS of Tm,n(Vx) invariant

by lemma 1.1. Let g ∈ MT (V ) and let γ ∈ πhodge
1 (〈V 〉, x), then it is enough to

see that g−1γg fixes every tensor in Tm,n(Vx)
π1(X,x). This space is a sub MHS of

Tm,n(Vx) by [SZ, 4.19]. Therefore Tm,n(Vx)
π1(X,x) is invariant under g (although

it need not fix elements pointwise). This shows that g−1γg fixes the elements of

this space as claimed. Therefore πhodge
1 (〈V 〉, x) carries a NMHS.

Since the weight filtration of V is a filtration by local systems, πhodge
1 (〈V 〉, x)

preserves W•Vx. So it satisfies (NH2) by lemma 3.2. Let π̃hodge
1 (V ) be the image

of πhodge
1 (〈V 〉, x) in GL(GrW Vx). This can be identified with the Zariski closure

of the monodromy representation of the pure variation of Hodge structure GrWV .
This pure variation is polarizable by definition of admissibility [SZ, K]. Therefore

GrW Vx possesses a π̃hodge
1 (V ) invariant polarization. Consequently πhodge

1 (〈V 〉, x)
satisfies (NH3) by lemma 3.4. Moreover π̃hodge

1 (V ) = πhodge
1 (〈V 〉, x)red is the Tan-

naka dual to the subcategory of Loc(X) generated by the local system GrW V .
Putting this all together, we see that

πhodge
1 (X, x) = lim←−

V

πhodge
1 (〈V 〉, x)

satisfies (NH3), and that the Tannaka dual to HS(X) is PMT � πhodge
1 (X, x)red.

Lemma 2.8 implies that HS(X) is equivalent to the category of Hodge representa-

tions of πhodge
1 (X, x)red. �

4. Nonabelian variations

The goal of this section is to give a characterization of πhodge
1 (X, x). To this

end, we introduce the category of nonabelian variation of mixed Hodge structures
over X, by which we mean the opposite of the category of Hopf algebras in Ind-
MHS(X). Given such a Hopf algebra A, we denote the corresponding nonabelian
variation by the symbol SpecA. For any x ∈ X, SpecAx can be understood in the
usual sense, and this is an NMHS. Basic examples are given as follows.

Example 4.1. Any object V ∈ MHS(X) can be identified with the nonabelian
variation Spec (Sym∗(V ∗)).

By applying the forgetful functor MHS(X) → Loc(X), we can see that any
nonabelian variation SpecA carries a monodromy action of π1(X, x) → Aut(Gx),
where Gx = SpecAx. A nonabelian variation of mixed Hodge structures will be
called inner if the monodromy action lifts to a homomorphism π1(X, x) → Gx. The
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examples of 4.1 are rarely inner. However, an ample supply of such examples is
given by the following.

Example 4.2. For V ∈ MHS(X), we have a nonabelian variation πhodge
1 (〈V 〉)

whose fibres are πhodge
1 (〈V 〉, x) by [D2, §6]. To construct this directly, note that we

can realize the coordinate ring of πhodge
1 (〈V 〉, x) as a quotient of O(GL(Vx)) by a

Hopf ideal
∑

fkO(GL(Vx)). The generators fk can be regarded as sections of

R =
⊕
i,j≥0

Symi(V ∗)⊗ det(V ∗)−j

Thus we can define πhodge
1 (〈V 〉) as Spec of the Ind-MHS(X) Hopf algebra

R/(
∑

k fkR). This is inner since the monodromy is given by homomorphism

π1(X, x) → πhodge
1 (〈V 〉, x).

Let πhodge
1 (X) be the inverse limit of πhodge

1 (〈V 〉) over V ∈ MHS(X). The

fibres are πhodge
1 (X, x). This is the universal inner nonabelian variation in the

following sense:

Proposition 4.3. If G is an inner nonabelian variation of mixed Hodge struc-
ture over X, with monodromy given by a homomorphism ρ : π1(X, x) → Gx. Then

ρ extends to a morphism πhodge
1 (X) → G of nonabelian variations.

Proof. Let G = SpecA. Since A ∈ Ind-MHS(X), πhodge
1 (X, x) will act on it.

By an argument similar to the proof of lemma 2.7, we can write A as a direct limit

of finitely generated Hopf algebras with πhodge
1 (X, x)-action. So that Gx becomes

an inverse limit of algebraic groups carrying inner nonabelian variations. Thus we
can assume that Gx is an algebraic group. By standard techniques we can find
a finite dimensional faithful (left) G-submodule V ⊂ O(G). After replacing this

with the span of the πhodge
1 (X, x)-orbit, we can assume that V is stable under

πhodge
1 (X, x). Therefore V corresponds to a variation of mixed Hodge structure.

By assumption, the image of π1(X, x) in GL(Vx) lies in G. This implies that G

contains πhodge
1 (〈V 〉, x) and that ρ factors through it. �

5. Unipotent and Relative Completion

Morgan [M] and Hain [H1] have shown that the pro-unipotent completion of
the fundamental group of a smooth variety carries a mixed Hodge structure. We
want to compare this with our nonabelian Hodge structure. We start by recalling
some standard facts from group theory (c.f. [HZ], [Q, appendix A]). Fix a finitely
generated group π. Then

(a) Q[π], and its quotients by powers of the augmentation ideal J , carry Hopf
algebra structures with comultiplication Δ(g) = g ⊗ g mod Jr.

(b) A finite dimensional Q[π]-module is unipotent if and only if it factors
through some power of J . (The smallest power will be called the index of
unipotency).

(c) The set of group-like elements

Gr(π) = {f ∈ Q[π]/Jr+1 | Δ(f) = f ⊗ f, f ≡ 1 mod J}
forms a group under multiplication. This is a unipotent algebraic group.
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(d) The Lie algebra of Gr(π) can be identified with the Lie algebra of primitive
elements

Gr(π) = {f ∈ Q[π]/Jr+1 | Δ(f) = f ⊗ 1 + 1⊗ f}
with bracket given by commutator.

(e) The exponential map gives a bijection of sets Gr(π) ∼= Gr(π). The Lie al-
gebra and group structures determine each other via the Baker-Campbell-
Hausdorff formula.

(f) Q[π]/Jr+1 is isomorphic to a quotient of the universal enveloping algebra
of Gr(π) by a power of its augmentation ideal.

Let ULoc(X) (UrLoc(X)) denote the category of local systems with unipo-
tent monodromy (with index of unipotency at most r). The category UrLoc(X)
can be identified with the category of Q[π1(X, x)]/Jr+1-modules. We note that
this category has a tensor product: Q[π1(X, x)]/Jr+1 acts on the usual tensor
product of representations U ⊗Q V through Δ. With this structure, the category
of Q[π1(X, x)]/Jr+1-modules is Tannakian. Its Tannaka dual π1(X, x)unr is iso-
morphic to the group Gr(π1(X, x)) above, and the Tannaka dual π1(X, x)un of
ULoc(X), is the inverse limit of these groups.

We need to impose Hodge structures on these objects.

Lemma 5.1. There is a bijection between

(1) The set of nonabelian mixed Hodge structures on Gr(π).
(2) The set of mixed Hodge structures on Gr(π) compatible with Lie bracket.
(3) The set of mixed Hodge structures on Q[π]/Jr+1 compatible with the Hopf

algebra structure.

Proof. To go from (1) to (2), observe that a nonabelian mixed Hodge struc-
ture always induces a mixed Hodge structure on its Lie algebra compatible with
bracket. A Lie compatible mixed Hodge structure on Gr(π) induces an Ind-MHS on
its universal enveloping algebra, compatible with the Hopf algebra structure. This
descends to Q[π]/Jr+1 by (f) above. A Hopf compatible mixed Hodge structure on
Q[π]/Jr+1 induces one on Gr(π) by restriction. �

Hain [H1] constructed a mixed Hodge structure on the Hopf algebra

Q[π1(X, x)]/Jr+1

which is equivalent (in the sense of the lemma) to the one constructed by Morgan
on Gr(π1(X, x)). These fit together to form an inverse system as r increases. In
brief outline, Chen had shown that C⊗ lim←−Q[π1(X, x)]/Jr+1 can be realized as the

zeroth cohomology H0(B(x, E•(X), x)) of a complex built from the C∞ de Rham
complex via the bar construction:

B•(x, E∗(X), x) = (E∗(X))⊗−•

±dB(α1 ⊗ . . .⊗ αn) = ix(α1)α2 ⊗ . . .⊗ αn

+
∑

(−1)iα1 ⊗ . . .⊗ αi ∧ αi+1 ⊗ . . . αn

+(−1)nix(αn)α1 ⊗ . . .⊗ αn−1

±dα1 ⊗ α2 ⊗ . . .⊗ αn

+ . . .
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where ix : E∗(X) → C is the augmentation given by evaluation at x. Hain showed
how to extend B(x, E•(X), x) to a cohomological mixed Hodge complex (or more
precisely a direct limit of such), and was thus able to deduce the corresponding
structure on cohomology. One thing that is more readily apparent in Hain’s ap-
proach is the dependence on base points. As x varies, Q[π1(X, x)]/Jr+1 forms part
of an admissible variation of mixed Hodge structure over X called the tautological
variation. This is nontrivial since the monodromy representation is the natural
conjugation homomorphism π1(X, x) → Aut(Q[π1(X, x)]/Jr+1).

Wojtkowiak [W] gave a more algebro-geometric interpretation of Hain’s con-
struction, which will be briefly described. Bousfield and Kan defined the total space
functor Tot [BK, chap X §3], which is a kind of geometric realization, from the
category of cosimplicial spaces to the category of spaces. The image of the map of
cosimplicial schemes

XΔ[1]
=

π

��

X ×X
��
��

��

X ×X ×X��

��

. . .

X∂Δ[1]
=

X ×X
��
�� X ×X�� . . .

under this functor is the path space fibration X [0,1] → X{0,1} = X × X. The
horizontal maps on the top are diagonals (from left to right) or projections (from
right to left); on the bottom they are all identities. The total space of the fibre
π−1(x, x) is the space of loops of X based at x, which is an H-space. There-
fore H0(Tot(π−1(x, x)),Q) is naturally a Hopf algebra. This Hopf algebra, which
is described more precisely in [W], can be identified with the coordinate ring of
lim←−Gr(π1(X, x)), or Gr(π1(X, x)) if we truncate the cosimplicial space at the rth

stage. This follows from the fact H0(Tot(π−1(x, x)),C) can be computed using the
total complex of the de Rham complex of the cosimplicial fibre, which is none other
than B(x, E•(X), x). Under this identification the filtration by truncations induced
on H0 coincides with the filtration by length of tensors on B. The mixed Hodge
structure on H0(Tot(π−1(x, x)),Q) can now be constructed using standard machin-
ery: take compatible multiplicative mixed Hodge complexes on each component of
the cosimplicial space and then form the total complex [W, §5]. Furthermore the
tautological variations are given by the 0th total direct images of Q under π|X
under the diagonal embedding X ⊂ X ×X. A useful consequence of this point of
view is that the MHS on Q[π1(X, x)]/Jr+1 can be seen to come from a motive in
Nori’s sense [C].

Let UMHS(X) (UrMHS(X)) denote the subcategory of unipotent admissible
variations of mixed Hodge structure (with index of unipotency at most r). The
tautological variation associated to Q[π1(X, x)]/Jr+1 lies in UrMHS(X). Given
an object V in UrMHS(X), the monodromy representation extends to an algebra
homomorphism

Q[π1(X, x)]/Jr+1 → End(Vx)

which is compatible with mixed Hodge structures.

Theorem 5.2 (Hain-Zucker [HZ]). The above map gives an equivalence be-
tween UrMHS(X) and the category of Hodge representations of Q[π1(X, x)]/Jr+1.

The above equivalence respects the tensor structure.
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We note that every object of UrLoc(X) is a sum of subquotients of the local sys-
tem associated to the tautological representation π1(X, x) → Aut(Q[π1(X, x)]/Jr+1).
Therefore φ(UrMHS(X)) = UrLoc(X), where φ : UrMHS(X) → Loc(X) is the
forgetful functor. Consequently, we get a split exact sequence

1 �� π1(X, x)unr �� Π(UrMHS(X)) �� MT�� �� 1

by theorem 2.6. In particular, π1(X, x)unr carries an NMHS which is a quotient of

the one on πhodge
1 (X, x).

Proposition 5.3. The above NMHS on π1(X, x)unr is equivalent to the Morgan-
Hain structure on Q[π1(X, x)]/Jr+1.

Proof. By lemma 5.1, the Morgan-Hain structure on Q[π1(X, x)]/Jr+1 in-
duces an NMHS on π1(X, x)unr . Let MH denote the semidirect product of MT
with this Hodge structure on π1(X, x)unr . By theorem 5.2, we have a commutative
diagram

UrLoc(X)

=

��

UrMHS(X)
φ�� ψ ��

∼=
��

MHS
κ

��

=

��
Rep(π1(X)unr) Rep(MH)�� �� Rep(MT )��

where the functors ψ and κ are given by the fibre and the pullback along the
constant map. Therefore MH is isomorphic to Π(UrMHS(X)) as a semidirect
product.

�
Corollary 5.4. The Morgan-Hain NMHS on π1(X, x)un is a quotient of

πhodge
1 (X, x).

Hain has extended the above construction in [H2]. Given a representation
ρ : π1(X, x) → S to a reductive algebraic group, the relative Malčev completion is
the universal extension

1 → U → G → S → 1

of S by a prounipotent group with a homomorphism π1(X, x) → G such that

π1(X, x) ��

ρ

����������� G

��
S

commutes. When ρ : π1(X, x) → S = Aut(Vx, 〈, 〉) is the monodromy represen-
tation of a variation of Hodge structure with Zariski dense image, Hain [H2] has
shown that the relative Malčev completion carries a NMHS.

Conjecture 5.5. The relative completion should carry an NMHS in general
with S equal to the Zariski closure of π1(X, x) → Aut(Vx, 〈, 〉). This should be a

quotient of πhodge
1 (X, x).

I am quite confident about this. The essential point would construct an inner
nonabelian variation of mixed Hodge structure on the family of G as the base point

varies. Then proposition 4.3 would give a homomorphism πhodge
1 (X, x) → G. The

main step would be to establish an appropriate refinement of [H2, cor 13.11], and I
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understand that Hain, Matsumoto, Pearlstein, and Terasoma [HMPT] have done
this. J. Pridham has pointed to me that his preprint [P] may also have some bearing
on this conjecture.

Remark 5.6. For the applications given later in section 7, only this weaker

statement on the existence of a morphism πhodge
1 (X, x) → G extending ρ is needed.

There is one notable case in which this can be deduced immediately. If π1(X, x)
is abelian, then G is necessarily abelian, so it splits into a product U × S. Mor-

phisms πhodge
1 (X, x) → U and πhodge

1 (X, x) → S can be constructed directly from
propositions 5.3 and 4.3.

6. Cohomology

Fix a theory of enriched local systems E. Let G be a nonabelian E-structure.
The category of representations of Π(E(pt)) � G is equivalent to the category of
E-representations of G. Given such a representation V , let H0(G, V ) = V G and
H0(Π(E(pt))�G, V ) = V Π(E(pt))�G be the subspaces of invariants. The action of
Π(E(pt)) on V descends to an action on H0(G, V ). These are left exact functors
on the category of representations of Rep∞(Π(E(pt))�G). Since this category has
enough injectives (c.f. [J, I 3.9]), we can define higher derived functorsHi(G, V ) and
Hi(Π(E(pt)�G, V ). Note that Hi(G, V ) is an E-structure since it is derived from
a functor from Rep∞(Π(E(pt) � G) → Rep∞(Π(E(pt)). Alternatively, Hi(G, V )
can be computed as the cohomology of a bar or Hochschild complex C•(G, V )
[J, I 4.14], which is a complex in Rep∞(Π(E(pt)). We can define cohomology of
Π(E(pt)) by taking G trivial. We observe that these functors are covariant in V
and contravariant in G.

There are products

Hi(G, V )⊗Hj(G, V ′) → Hi+j(G, V ⊗ V ′)

compatible with E-structures. These can be constructed by either using standard
formulas for products on the complexes C•(G,−), or by identifying Hi(G, V ) =
Exti(Q, V ) and using the Yoneda pairing

Exti(Q, V )⊗ Extj(Q, V ′) → Exti(Q, V )⊗ Extj(V, V ⊗ V ′) → Exti+j(Q, V ⊗ V ′)

Lemma 6.1. Given an E-representation V of G, Hi(G, V ) = lim−→Hi(G/Hj , V
Hj )

where Hj runs over all normal subgroups stable under Π(E(pt)) such that G/Hj is
finite dimensional.

Proof. By lemma 3.4 G = lim←−G/Hj is an inverse limit of algebraic groups

with nonabelian E-structures. Clearly V = lim−→V Hj and so

H0(G, V ) = lim−→H0(G/Hj , V
Hj )

The lemma follows from exactness of direct limits. �

Lemma 6.2. Fix a Hodge representation V of an NMHS G, and an Ind-MHS
U . Then

(1) Hi(MT,U) = 0 for i > 1.
(2) We have an exact sequence

0 → H1(MT,Hi−1(G, V )) → Hi(MT �G, V ) → H0(MT,Hi(G, V )) → 0
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Proof. Write U as a direct limit of finite dimensional Hodge structures Uj ,
then

Hi(MT,U) = lim−→Hi(MT,Uj) = lim−→ExtiMHS(Q, Uj)

Beilinson [B] shows that the higher Ext’s vanish, which implies the first statement.
For the second statement, note that we can construct a Hochschild-Serre spec-

tral sequence

Epq
2 = Hp(MT,Hq(G, V )) ⇒ Hp+q(MT �G, V )

in the usual way. This reduces to the given exact sequence thanks to (1). �

Lemma 6.3. Let G be a nonabelian E-structure and V an E-representation. If
G is pro-reductive then Hi(G, V ) = 0 for i > 0. In general

Hi(G, V ) = H0(Gred, Hi(U, V ))

where U is the pro-unipotent radical and Gred = G/U .

Proof. When G is pro-reductive, its category of representations is semisimple.
Therefore H0(G,−) is exact. So higher cohomology must vanish.

In general, the Hochschild-Serre spectral sequence

Epq
2 = Hp(Gred, Hq(U, V )) ⇒ Hp+q(G, V )

will collapse to yield the above isomorphism. �

Proposition 6.4. Let X be a smooth variety. Then for each object V ∈ E(X):

(1) Hi(πE
1 (X, x), V ) carries a canonical E-structure.

(2) There is natural morphism Hi(πE
1 (X, x), V ) → Hi(X,V ) of E-structures.

(3) There are Q-linear maps

Hi(πE
1 (X, x), V ) → Hi(π1(X, x), V ) → Hi(X,V )

whose composition is the map given in (2).

Proof. Hi(πE
1 (X, x), V ) carries an E-structure by the discussion preceding

lemma 6.1. Note that H0(πE
1 (X, x), V ) = V

πE
1 (X)

x is nothing but the monodromy
invariant part of Vx, and Hi(πE

1 (X, x), V ) is the universal δ-functor extending it,
in the sense of [G]. By axiom (E4), Hi(X,V ) with its E-structure also forms a
δ-functor, and there is an isomorphism

H0(πE
1 (X, x), V ) ∼= H0(X,V )

of E-structures. Therefore (2) is a consequence of universality.
After disregarding E-structure, we can view Hi(πE

1 (X, x), V ) as a universal
δ-functor from E(X) → V ectQ. Therefore, from the isomorphisms

H0(πE
1 (X, x), V ) ∼= H0(π1(X, x), V ) ∼= H0(X,V ),

we deduce Q-linear maps

Hi(X,V ) ← Hi(πE
1 (X, x), V ) → Hi(π1(X, x), V )

The leftmost map was the one constructed in the previous paragraph. Since group
cohomology is also a universal δ-functor from the category of Q[π1(X, x)]-modules
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to V ectQ, we can complete this to a commutative triangle

Hi(πE
1 , V ) ��

��

Hi(π, V )

��� �
�

�
�

Hi(X,V )

�

7. Hodge theoretic K(π, 1)’s

The map

(*) Hi(πE
1 (X, x), V ) → Hi(X,V )

constructed in the previous section is trivially an isomorphism for i = 0, but usually
not in general. For instance if i = 2, V = Q and X = P1, the cohomology groups
are 0 on the left and Q on the right.

Let us say thatX is aK(πE, 1) (or a Hodge theoreticK(π, 1) when E = MHS)
if (*) is an isomorphism for every V ∈ E(X). When X is a K(π, 1) in the usual
sense, then it is a K(πE , 1) if and only if

(**) Hi(πE
1 (X, x), V ) → Hi(π1(X, x), V )

is an isomorphism for all V ∈ E(X). The following is a straight forward modifica-
tion of [Se, p 13, ex 1].

Lemma 7.1. The following are equivalent

(1) (*) is an isomorphism for all i ≤ n and injective for i = n + 1 for all
V ∈Ind-E(X).

(2) (*) is an isomorphism for all i ≤ n and injective for i = n + 1 for all
V ∈ E(X).

(3) (*) is surjective for all i ≤ n and all V ∈ E(X).
(4) (*) is surjective for all i ≤ n and all V ∈ Ind-E(X).
(5) For all V ∈ Ind-E(X), 1 ≤ i ≤ n, and α ∈ H i(X,V ), there exists V ′ ∈

Ind-E(X) containing V such that the image of α in Hi(X,V ′) vanishes.

In particular, X is a K(πE , 1) if (*) is surjective for all i and V ∈ E(X).

Proof. The implications (1)⇒(2) and (2) ⇒(3) are clear. For (3)⇒(4), we can
use the fact that cohomology commutes with filtered direct limits. The implication
(4)⇒(5) follows because Ind-E(X) contains enough injectives [J]. Any injective
object V ′ ⊃ V will satisfy the conditions of (5) assuming (4).

Finally, we prove (5)⇒(1). This is the only nontrivial step. An exact sequence

0 → V → V ′ → V ′/V → 0

yields a diagram

Hi−1(πE
1 , V

′) ��

f

��

Hi−1(πE
1 , V

′/V ) ��

g

��

Hi(πE
1 , V ) ��

��

Hi(πE
1 , V

′)

��
Hi−1(X,V ′) �� Hi−1(X,V ′/V ) �� Hi(X,V ) �� Hi(X,V ′)

We first prove surjectivity of (*) for i ≤ n by induction. This is trivially true
when i = 0, so we may assume i > 0. Given α ∈ Hi(X,V ), we may choose V ′ so
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that α has trivial image in Hi(X,V ′). Then α lifts to Hi−1(X,V ′/V ) and hence to
some β ∈ Hi−1(πE

1 , V
′/V ). The image of β in Hi(πE

1 , V ) will map to α as required.
Now we prove injectivity of (*) for i ≤ n + 1 by induction. We may assume

that i > 0. Let V ′ be injective in Ind-E(X). Suppose that

α ∈ ker[Hi(πE
1 (X, x), V ) → Hi(X,V )]

Then α can be lifted to β ∈ Hi−1(πE
1 , V

′/V ). Since the maps labelled f and
g are isomorphisms, a simple diagram chase shows that β lies in the image of
Hi−1(πE

1 , V
′). Therefore α = 0. �

Proposition 7.2. When E = MHS, for all V ∈ MHS(X) the map (*) is an
isomorphism for i ≤ 1 and injective for i = 2 assuming conjecture 5.5 holds. This
is true unconditionally if π1(X) is abelian.

Proof. As is well known, for any V the map

Hi(π1(X, x), V ) → Hi(X,V )

is an isomorphism for i = 1 and injective for i = 2. Thus, by this remark and the
previous lemma, it is enough to prove that the map (**) to group cohomology is
surjective for i = 1. By the 5-lemma and induction on the length of the weight
filtration, it is sufficient to the prove this when V is pure.

Let V be a variation of pure Hodge structure, and let 1 → U → G → S → 1 be
the associated relative Malčev completion. By lemma 6.3,

H1(G, V ) ∼= H0(S,H1(U, V )) ∼= HomS(U/[U,U ], V )

By [H2, prop 10.3]

H1(π1(X, x), V ) ∼= HomS(U/[U,U ], V )

Therefore the natural map H1(G, V ) → H1(π1, V ) is an isomorphism. As this
factors through (**) (by conjecture 5.5 or remark 5.6), (**) must be a surjection in
degree 1. �

Theorem 7.3. A (not necessarily affine) connected commutative algebraic group
is a Hodge theoretic K(π, 1). Assuming conjecture 5.5, a smooth affine curve is a
Hodge theoretic K(π, 1).

Proof. Suppose that X is a commutative algebraic group. Then it is homo-
topy equivalent to a torus. In particular, it is a K(π, 1). So it suffices to check
surjectivity of (**). The group π1(X) is abelian and finitely generated, which im-
plies that the pro-algebraic completion of π1(X) is a commutative algebraic group.

Therefore the same is true for πhodge
1 (X). After extending scalars, it follows that

the group πhodge
1 (X)⊗Q̄ is a product of Ga’s, Gm’s and a finite abelian group. Con-

sequently, any irreducible representation V of πhodge
1 (X) ⊗ Q̄ is one dimensional.

For such a module, the Künneth formula implies that

Hi(π1(X), V ) =

{
∧iH1(π1(X), V ) if V is trivial

0 otherwise

Therefore (**) is surjective in this case. By applying (an appropriate modification

of) lemma 7.1 to the category of semisimple πhodge
1 (X)⊗ Q̄ representations, we can

see that (**) is an isomorphism. We note that

Hi(πhodge
1 (X, x), V ⊗ Q̄) ∼= Hi(πhodge

1 (X, x), V )⊗ Q̄
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Hi(π1(X, x), V ⊗ Q̄) ∼= Hi(π1(X, x), V )⊗ Q̄

and likewise for the map between them. Thus we may extend scalars in order to
test bijectivity in (**). After doing so, we see that (**) is an isomorphism by an
induction on the length of a Jordan-Holder series.

Let X be a smooth affine curve. This is a K(π, 1) with a free fundamental
group. Since a free group has cohomological dimension one, (**) is surjective in all
degrees assuming 5.5, by the previous proposition.

�

I expect that Artin neighbourhoods are also Hodge theoretic K(π, 1)’s. This
would give a large supply of such spaces. Katzarkov, Pantev and Toen have estab-
lished an analogous result in their setting [KPT2, rmk 4.17]. Although, their proofs
do not translate directly into the present framework, I suspect that an appropriate
modification may.
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The Real Regulator for a Self-product of a General Surface

Xi Chen and James D. Lewis

Abstract. In [C-L3] it is shown that the real regulator for a general self-
product of a K3 surface is nontrivial. In this note, we prove a theorem which
says that the real regulator for a general self-product of a surface of higher
order (in a suitable sense), is essentially trivial.

1. Statement of the theorem

Let Γ be a smooth projective curve, {Zt}t∈Γ a family of surfaces, all defined
over a subfield k ⊂ C, and put:

ZΓ :=
∐
t∈Γ

Zt.

Let us assume for simplicity that ZΓ is smooth and that any singular Zt is nodal.
In local analytic coordinates, ZΓ ×Γ ZΓ about each singular point looks like

x2
1 + x2

2 + x2
3 − (y21 + y22 + y23) = 0,

which is an isolated nodal singularity. Then the projectivized tangent cone is a

4-dimensional smooth quadric Q0. Let ˜[ZΓ ×Γ ZΓ]0 be the blow-up of ZΓ ×Γ ZΓ

at this isolated singular point 0. We are going to assume that CH2(Q0,Q) :=

CH2(Q0) ⊗ Q ↪→ CH3( ˜[ZΓ ×Γ ZΓ]0,Q) is injective for any such singular point.

Further, we assume that CH1(Zt;Q) � Q for all t ∈ Γ. Note that this (latter)
condition alone will fail for a general 1-parameter family of quartic surfaces in P3

(take for example the locus of quartics containing a line). Let us further assume
that for all t ∈ Γ:

CH2(Zt × Zt;Q) = CH0(Zt;Q)⊗ CH2(Zt;Q)

+ CH1(Zt;Q)⊗ CH1(Zt;Q)

+ CH2(Zt;Q)⊗ CH0(Zt;Q) +Q{ΔZt
},

(1.1)

where ΔZt
is the diagonal image Zt → Zt × Zt. This is not an unreasonable

assumption, given the fact that a similar kind of decomposition (specifically without
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the Q{ΔZt
} term), holds for a general product of K3 (and higher order) surfaces,

under the assumption of a rather deep conjecture (due to Bloch and Beilinson) -
see[L] and [C-L2].

Let B ⊂ Γ be a finite set for which ZU×UZU → U is smooth and proper, where
U = Γ\B. Finally, for a very general choice of t ∈ Γ, assume that with respect to
the monodromy representation

π1(U) → Aut
(
H4

tr(Zt × Zt,Q)
)
,

there are no classes in the transcendental cohomology H4
tr(Zt×Zt,C) whose Hodge

(p, q) components displace horizontally with respect to the Gauss-Manin connection
(the reader may wish to consult [C-L2] for a precise definition of this).

Theorem 1.2. Given the above setting, assume that c2(Zt) �= 3 for t ∈ U . Let
t ∈ Γ(C) correspond to an embedding k(Γ) ↪→ C. Then the reduced regulator map

r3,1 : CH3(Zk(Γ) × Zk(Γ), 1) → H4
tr(Zt × Zt,R)

⋂
H2,2(Zt × Zt),

is zero.

Note that for a general self-product of a K3 surface, the reduced regulator is
nontrivial ([C-L3]). What the theorem says is that for a self-product of a general
surface of higher order, the reduced regulator is trivial. If we consider for example
surfaces in P3, then in light of the fact that a smooth surface in P3 is K3 ⇔ its
degree d = 4, a higher order surface in this context should be a general surface
in P3 of degree ≥ 5. Theorem 1.2 however, does not directly apply to surfaces in
P3 of degree d ≥ 5. The subtle point here is that a Lefschetz pencil of surfaces,
after an arbitrary base change, is no longer smooth, while ZΓ is assumed to be
smooth in Theorem 1.2. However the real issue is that the injectivity statement

CH2(Q0,Q) ↪→ CH3( ˜[ZΓ ×Γ ZΓ]0,Q) needs to be addressed. But this can be fixed
at least for surfaces in P3. Namely, we have the following.

Theorem 1.3. For a very general surface Zt ⊂ P3 of degree d ≥ 5, the reduced
regulator map

r3,1 : CH3(Zt × Zt, 1) → H4
tr(Zt × Zt,R)

⋂
H2,2(Zt × Zt),

is zero if we assume that (1.1) holds for all t ∈ PN\Σ, where PN is the parameter
space of surfaces of degree d in P3 and Σ ⊂ PN is a countable union of subvarieties
of PN with codimension ≥ 2.

Implicit in the statement of this theorem is the expectation that a very gen-
eral surface Zt ⊂ P3 of degree d ≥ 5 automatically satisfies the assumption that
codimPNΣ ≥ 2. There are good reasons to expect this. Firstly, if one assumes a con-
jecture of Bloch and Beilinson on the injectivity of the Abel-Jacobi map for smooth
quasiprojective varieties defined over number fields, then according to [C-L2] and
[L], such a decomposition in (1.1) will hold for Zt replaced by a very general X.
Further, apart from a number of technical issues, the key issue is requiring (1.1) to
hold for all t ∈ Γ. Such an X will be a very general member of a general (Lefschetz)
pencil {Zt}t∈P1 of surfaces of degree d in P3. As explained in [C-L1], the work of
M. Green ([G]) on the Noether-Lefschetz locus implies that CH1(Zt;Q) ∼= Q, for all
t ∈ P1, provided that d ≥ 5. Although the proof in [G] relies on infinitesimal Hodge
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theoretic methods, an ad hoc explanation goes as follows. The horizontal displace-
ment of a rational topological 2-cycle in the Noether-Lefschetz locus must pair to
zero under integration with holomorphic 2-forms. That d ≥ 5 ⇒ dimH2,0(X) > 1
suggests that this locus is of codimension ≥ 2 in the universal family of surfaces of
degree d ≥ 5 in P3 (which is indeed a fact). This very same reasoning suggests the
decomposition in (1.1), which holds for very general t under our above assumptions,
actually holds for all t ∈ P1. Finally, one can show that deg(c2(X)) = d(d2+6−4d).

The ideas presented here are similar to those given in [C-L2]. Rather than
repeat them, we highlight the main points and introduce the new ingredients.

We are grateful to the referee for suggesting improvements in presentation. The
second author would like to express his warm appreciation to the organizers (Reza
Akhtar, Patrick Brosnan, Roy Joshua) for inviting him to this splendid conference.

2. Proof of Theorem 1.2

This will be carried out in three steps.

Step I: The spread cycle ξ. Put

ZB =
∐
t∈B

Zt × Zt ⊂ ZΓ ×Γ ZΓ.

Let ξk(Γ) ∈ CH3(Zk(Γ)×Zk(Γ), 1). After possibly enlarging B, we may assume that:

(i) ξk(Γ) spreads to a cycle ξ ∈ CH3
(
ZΓ ×Γ ZΓ\ZB , 1

)
,

Further, up to a base change Γ′ � Γ, we can assume that:

(ii) There is a section σ : Γ → ZΓ avoiding the double points of the singular fibers,
with Γ � σ(Γ). (Note: Our goal is to complete ξ to a cycle on ZΓ′ ×Γ′ ZΓ′ . Once
we do that, then we can proper push-forward it to ZΓ ×Γ ZΓ. Therefore we may
assume for simplicity that Γ = Γ′.) For t ∈ U , let ξt ∈ CH3(Zt × Zt, 1) be the
corresponding class.

We will refer to the diagram

ZΓ

Δ

�����������

ZΓ ×Γ ZΓ
Pr1 ��

Pr2

��

ZΓ

��
ZΓ

�� Γ

Step II: Modifying ξ in such a way that it extends to a cycle ξ ∈ CH3(ZΓ×ΓZΓ, 1),
and such that r3,1(ξt) = r3,1(ξt) for general t ∈ Γ. The closure of ξ defines a

precycle ξ on ZΓ ×Γ ZΓ whose boundary ∂ξ is supported on ZB . Thus according
to the decomposition in (1.1), we have

{∂ξ} = R + S + T +W = 0 ∈ CH3(ZΓ ×Γ ZΓ;Q),
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where

R =
∑
t∈B

Zt ⊗ ξ
(R)
t , S =

∑
t∈B

ntHt ⊗H ′
t

T =
∑
t∈B

ξ
(T )
t ⊗ Zt, W =

∑
t∈B

mtΔZt

Here Ht and H ′
t are general hyperplane sections of Zt, ξ

(R)
t , ξ

(T )
t are 0-cycles, and

nt, mt ∈ Q. Now put

D1 =
∐
t∈Γ

σ(t)× Zt � ZΓ

D2 =
∐
t∈Γ

Zt × σ(t) � ZΓ

H =
∐
t∈Γ

H ′
t ⊗Ht

Δ = Δ(ZΓ)

Let d = degZt =
(
H2

t

)
Zt
, and put ξ̂ = R+ S + T +W . Also put N =

(
Δ2

Zt

)
Zt×Zt

for any t ∈ U . Of course, this number is really independent of t ∈ Γ, by defining
it as a limit t �→ t0 over t ∈ U , for any t0 ∈ Γ; and observe that for t ∈ U ,
N = deg(c2(Zt)).

We compute:

ξ̂ ∩D1 =
∑
t∈B

σ(t)× ξ
(R)
t +

∑
t∈B

mt(σ(t), σ(t)) ∼rat 0 on D1

ξ̂ ∩D2 =
∑
t∈B

ξ
(T )
t × σ(t) +

∑
t∈B

mt(σ(t), σ(t)) ∼rat 0 on D2

These equations yield:

∑
t∈B

([
deg(ξ

(R)
t )

]
· t+mt · t

)
∼rat 0 on Γ

∑
t∈B

([
deg(ξ

(T )
t )

]
· t+mt · t

)
∼rat 0 on Γ

Further,

ξ̂ ∩H ∼rat 0 ⇒ d2
(∑
t∈B

nt · t
)
+ d

∑
t∈B

mt · t ∼rat 0 on Γ

⇒ d
(∑
t∈B

nt · t
)
+

∑
t∈B

mt · t ∼rat 0 on Γ

ξ̂ ∩Δ ∼rat 0 ⇒ d
(∑
t∈B

nt · t
)
+N

∑
t∈B

mt · t

+
∑
t∈B

[
deg(ξ

(R)
t )

]
· t+

∑
t∈B

[
deg(ξ

(T )
t )

]
· t ∼rat 0 on Γ
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Now put

x1 =
∑
t∈B

[deg(ξ
(R)
t )

]
· t

x2 =
∑
t∈B

[deg(ξ
(T )
t )

]
· t

x3 =
∑
t∈B

mt · t

x4 =
∑
t∈B

nt · t

Then in terms of rational equivalence to zero on Γ, we have⎡
⎢⎢⎣
1 0 1 0
0 1 1 0
0 0 1 d
1 1 N d

⎤
⎥⎥⎦
⎡
⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦

A simple computation yields

det

⎡
⎢⎢⎣
1 0 1 0
0 1 1 0
0 0 1 d
1 1 N d

⎤
⎥⎥⎦ = d(3−N),

which is nonzero by our assumptions. In particular xj ∼rat 0 on Γ. As in [C-L2],
by multiplying H and Δ by the relevant rational functions pulled back from Γ, one
can then easily modify ξ so that S = W = 0. On D1,∑

t∈B

σ(t)× ξ
(R)
t ∼rat 0,

and on D2, ∑
t∈B

ξ
(T )
t × σ(t) ∼rat 0.

Each of these involves rational functions on curves C ⊂ Di where either C domi-
nates Γ or C ⊂ Zt for some t ∈ Γ. Via the projections Prj : ZΓ ×Γ ZΓ → ZΓ � Dj ,
this all lifts to R ∼rat 0 and T ∼rat 0 on ZΓ ×Γ ZΓ. Again, by a further mod-
ification of ξ we arrive at a sought for class ξ ∈ CH3(ZΓ ×Γ ZΓ, 1), such that
r3,1(ξt) = r3,1(ξt) for general t ∈ Γ, where we reiterate that r3,1(ξt) is a projection

of the real regulator image which kills the image of the decomposable cycles, (and
for which we modified by cycles which are fiberwise decomposable).

Step III: A rigidity argument. The variety ZΓ ×Γ ZΓ is singular (unless ZΓ � Γ is
smooth) , and so we observe that there is a cycle map on the level of homology:

CH3(ZΓ ×Γ ZΓ, 1;Q) → HD
5 (ZΓ ×Γ ZΓ,R(2)),

where HD
5 (ZΓ ×Γ ZΓ,R(2)) is real Deligne homology, and R(m) is the Tate twist.

There is an exact sequence

H6(ZΓ×ΓZΓ,R(3)) → HD
5 (ZΓ×ΓZΓ,R(2)) � homR−MHS(R(0), H5(ZΓ×ΓZΓ,R(2))).
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We will show (below) that the cycle ξ ∈ CH3(ZΓ ×Γ ZΓ, 1;Q) has zero image in

homR−MHS

(
R(0), H5(ZΓ ×Γ ZΓ,R(2))

)
. Hence we can assume that ξ ∈ HD

5 (ZΓ ×Γ

ZΓ,R(2)) lifts to a class in H6(ZΓ ×Γ ZΓ,R(3)). Now consider the composite

H6(ZΓ×ΓZΓ,R(3)) → H4(Zt×Zt,R(2))
∼→H4(Zt×Zt,R(2)) � H2,2(Zt×Zt,R(2)).

Then as in [C-L1], we can apply Betti rigidity, together with our monodromy
assumptions to deduce that r3,1(ξt) (a fortiori r3,1(ξt)) is zero for sufficiently general
t ∈ Γ. We now attend to the details of modifying ξ. In local analytic coordinates
the singular set of ZΓ ×Γ ZΓ looks like

x2
1 + x2

2 + x2
3 = tM = y21 + y22 + y23 ,

for some positive integer M . Since we assume ZΓ to be smooth, we necessarily have
M = 1. Then locally we are in the situation of

x2
1 + x2

2 + x2
3 − (y21 + y22 + y23) = 0,

which is an isolated nodal singularity. Then the projectivized tangent cone is a
4-dimensional smooth quadric Q0 whose generators contribute to the vector space

homR−MHS

(
R(0), Gr0WH5(ZΓ ×Γ ZΓ,R(2))

)
. Let ˜[ZΓ ×Γ ZΓ]0 be the blow-up of

ZΓ ×Γ ZΓ at this isolated singular point 0. Now recall by assumption that we have

an injection CH2(Q0;Q) ↪→ CH3( ˜[ZΓ ×Γ ZΓ]0;Q). From the localization sequence

· · · → CH3( ˜[ZΓ ×Γ ZΓ]0, 1;Q) → CH3(ZΓ ×Γ ZΓ\{0}, 1;Q)

→ CH2(Q0;Q) ↪→ CH3( ˜[ZΓ ×Γ ZΓ]0;Q) → · · · ,

it is clear that ξ lifts to a class in CH3( ˜[ZΓ ×Γ ZΓ]0, 1;Q). Repeating this procedure
for each nodal singularity, we arrive at ξ lying in the image of

CH3( ˜ZΓ ×Γ ZΓ, 1;Q) → CH3(ZΓ ×Γ ZΓ, 1;Q),

where ˜ZΓ ×Γ ZΓ is a desingularization of ZΓ×ΓZΓ. Now use the fact that the space

homR−MHS

(
R(0), H5( ˜ZΓ ×Γ ZΓ,R(2))

)
= 0. �

Remark 2.1. Let us put

Z̃t =

{
Zt if Zt smooth

desing(Zt) if Zt singular

where desing(Zt) is the minimal desingularization of Zt. Suppose that

H2,2(Z̃t × Z̃t)
⋂

H2
tr(Z̃t,Q)⊗H2

tr(Z̃t,Q) � Q,

and that

CH1(Zt;Q) � Q,

for all t ∈ Γ. (This last condition implies that H1(Z̃t,Q) = 0 = H3(Z̃t,Q).) Then
assuming the existence of the conjectured Bloch-Beilinson filtration, one can show
as in [C-L2] that the decomposition in (1.1) holds.
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3. Proof of Theorem 1.3

Let ZP1 ⊂ P1 × P3 be a Lefschetz pencil of surfaces of degree d in P3 with
P1 ⊂ PN . For a very general choice of P1 ⊂ PN , we can make it avoid Σ and the
locus where Pic(Zt) �= Z. Suppose that we have a class ξt ∈ CH3(Zt × Zt, 1;Q)
for t ∈ P1 general. Then after a base change Γ → P1, we can extend ξt to ξU
over an open set U ⊂ Γ. By the same argument in the previous section, we can
further extend ξ to all of ZΓ ×Γ ZΓ, where ZΓ = ZP1 ×P1 Γ. As mentioned at very
beginning, ZΓ might be singular. Hence, in order to show the vanishing of r3,1(ξ)
by the monodromy argument, we need to lift ξ to a desingularization of ZΓ ×Γ ZΓ.

We first desingularize ZΓ. Let Y be the minimal desingularization of ZΓ. Ob-
serve that the singularities of ZΓ consist of the points p ∈ Zt, where p is an ordinary
double point of the surface Zt and the finite map Γ → P1 is ramified at t ∈ Γ. Lo-
cally at p, ZΓ is given by

(3.1) x2
1 + x2

2 + x2
3 = tM

where M is ramification index Γ → P1 at t. For simplicity, we may assume that M
is even; otherwise, we just replace Γ by Γ′ with a further base change Γ′ → Γ. The
singularity p as in (3.1) can be resolved by a sequence of blowups and we end up
with

Yt = Z̃t ∪Q1 ∪Q2 ∪ ... ∪Qm

locally over p, where Q0 = Z̃t is the proper transform of Zt and Q1, Q2, ..., Qm are
a chain of m = M/2 rational ruled surfaces satisfying that

• Qi
∼= F2 for 1 ≤ i ≤ m− 1 and Qm

∼= F0 = P1 × P1;
• Qi ∩Qj �= ∅ iff |i− j| ≤ 1;
• Qi−1 and Qi meet transversely along a curve Ci

∼= P1 for i = 1, 2, ...,m.

Let us consider Y ×Γ Y . This is only a partial resolution of ZΓ ×Γ ZΓ; Y ×Γ Y
is singular along Ci × Cj with local equation x1x2 = y1y2 = t. On the other

hand, Y ×Γ Y admits a small resolution ˜Y ×Γ Y and we can lift every class in

CH3(Y ×Γ Y, 1;Q) to CH3( ˜Y ×Γ Y , 1;Q). This small resolution is obtained by
subsequently blowing up Qi × Qj ; locally we are blowing up along x1 = y1 = 0.

Note that ˜Y ×Γ Y is projective as it is obtained by blowing up along algebraic
subvarieties. The exceptional loci of this resolution consist of threefolds Eij which
are P1 bundles over Ci × Cj for 1 ≤ i, j ≤ m. So the obstruction to the lifting
comes from the map

(3.2)
⊕
i,j

CH1(Eij ;Q) → CH3( ˜Y ×Γ Y ;Q)

by the corresponding localization sequence; a class in CH3(Y ×Γ Y, 1;Q) can be

lifted to CH3( ˜Y ×Γ Y , 1;Q) if the map (3.2) is injective.

Let Q̃i ×Qj ⊂ ˜Y ×Γ Y be the proper transform Qi ×Qj . The 3-fold Eij is the
intersection of two out of the four 4-folds among

{ ˜Qi−α ×Qj−β : α, β = 0 or 1}

and meets the other two transversely along two disjoint sections of Eij → Ci ×Cj ,
say Gij and G′

ij ⊂ Eij ; exactly which two depends on the order in which we blow



30 XI CHEN AND JAMES D. LEWIS

up Qi ×Qj . Obviously,

(3.3) CH1(Eij) ∼= CH1(Ci × Cj)⊕ ZGij .

On Y , we obviously have the injection

(3.4)
⊕
i

CHk(Ci) ↪→ CHk+2(Y )

for k = 0, 1. This gives us the injection

(3.5)
⊕
i,j

CH1(Ci × Cj) ↪→ CH3( ˜Y ×Γ Y ).

On the other hand, it is easy to show the injection

(3.6)
⊕
i,j

(ZGij ⊕ ZG′
ij) ↪→ CH3( ˜Y ×Γ Y )

and the injectivity of (3.2) follows.
So it remains to lift classes in CH3(Z ×Γ Z, 1;Q) to CH3(Y ×Γ Y, 1;Q). The

obstruction is the map

(3.7)
⊕
i,j

CH2(Qi ×Qj ;Q) → CH3(Y ×Γ Y ;Q)

and it suffices to show that (3.7) is injective.
Obviously,

(3.8) CH2(Qi ×Qj) =

2⊕
k=0

CHk(Qi)⊗CH2−k(Qj)

and the injections

(3.9) CHk(Qi) ↪→ CHk+1(Y )

are trivial for k = 0, 2. The hard part is to prove (3.9) for k = 1, i.e.,

(3.10)
⊕
i

CH1(Qi) ↪→ CH2(Y ).

This has been done in the appendix of [C-L2], where it was proved that (3.10) is
an injection if ZP1 is chosen to be a very general pencil.
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Lipschitz Cocycles and Poincaré Duality

Eric M. Friedlander∗ and Christian Haesemeyer∗∗

Abstract. Geometric measure theory enables one to view cohomology as
equivalence classes of graphs of multi-valued Lipschitz maps to spheres. This
geometric point of view gives a new formulation of cohomology, relative co-
homology, and cohomology with supports as homotopy groups of spaces of
Lipschitz cocycles. Using the graphing construction of the first author and

H. Blaine Lawson, this leads to a formulation and proof of weak equivalences
whose associated map on homotopy groups is a form of Alexander duality for
the complement of a compact subpolyhedron in a compact, oriented smooth
manifold.

0. Introduction

Let A be a compact oriented n-dimensional pseudo-manifold which is smooth-
able outside a subcomplex of codimension 2 and let α ∈ Hj(A,Z) be an integral
cohomology class of A. In [6], the first author and H. Blaine Lawson established that
α∩ [A] ∈ Hn−j(A) can be represented by the geometric measure-theoretic slice of
the graph of a multi-valued Lipschitz map from A to Sj . The purpose of this paper
is to extend the constructions of [6] to a compactifiable pseudo-manifold A − A∞
and then use this extension to prove a form of Alexander duality whenever A−A∞ is
smooth. Indeed, we prove a stronger result which is the geometric measure-theoretic
analogue of the Friedlander-Lawson [5] and Friedlander-Voevodsky [7] duality the-
orems for smooth complex algebraic varieties. Namely, as seen in Corollary 5.5, the
graphing construction for Lipschitz maps determines a weak equivalence relating
the topological abelian groups of Lipschitz cocycles on A−A∞ and an appropriate
group of rectifiable currents on A with boundary in a closed tubular neighborhood
of A∞.

Our arguments involve a mixture of elementary simplicial topology and geo-
metric measure theory. The fundamental construction Γtop involves the graphing
of a multi-valued Lipschitz map to a sphere with domain a compact oriented n-
dimensional pseudo-manifold A equipped with a triangulation. Such a space is a
Lipschitz neighborhood retract, admitting a good formulation of currents. More-
over, the triangulation enables us to work cell-by-cell, enabling local arguments and
consideration of subcomplexes and their complements.
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To summarize in more detail, Section 1 introduces the open and closed sub-
sets of polyhedra which we shall employ, and discusses various spaces of Lipschitz
maps with target a symmetric product of a sphere. In Section 2, we define the
Lipschitz cocyle space Zm(A) of codimension m cocycles on a finite polyhedron A,
the relative cocyle space Zm(A,C) for a closed subset C ⊂ A, the cocycle space
Zm(A − A∞) of codimension m Lipschitz cocycles on the complement of a closed
subpolyhedron A∞ ⊂ A, and the space Zm

A∞
(A) of codimension m Lipschitz cocy-

cles on A with support in A∞. Essentially, a Lipschitz cocycle on A is an element of
the group completion of spaces of Lipschitz maps from A into symmetric powers of
a sphere. As seen in Section 3, the homotopy groups of these cocycle spaces satisfy
the expected properties of singular cohomology.

The first author and H. Blaine Lawson constructed in [6] a continuous graph
mapping Γtop : Zm(A) → Zn(A×Sm) for A a compact, oriented pseudo-manifold of
dimension n. This graphing construction was shown to yield cap product with the
fundamental class of A, so that Poincaré Duality could be interpreted in these terms.
In Theorem 4.5, we extend this continuous graphing construction to Zm(A−A∞).
With the formalism established for A − A∞, we not only can formulate various
duality theorems for non-compact spaces but also give proofs which use only the
techniques developed in this paper. For example, Corollary 5.5 is a formulation in
terms of spaces of cocycles/cycles of Poincaré-Alexander duality.

In the final section, we show how the Thom class and the Thom isomorphism
admit a natural formulation in terms of Lipschitz cocycles.

We thank Blaine Lawson for sharing with us his geometric insight into Poincaré
duality.

1. Polyhedra, rectifiable currents, and Lipschitz Maps

We consider a compact polyhedron A, a cell complex which is the geometric
realization of a finite simplicial complex. We shall typically consider a (piece-wise
linear) triangulation Δ on A associated to some choice of structure of a finite sim-
plicial complex, and then consider refinements of such a triangulation. By abuse of
notation, we shall refer to a compact polyhedron together with a given (finite, piece-
wise linear) triangulation as a simplicial complex as well. We denote by Δ(k) the
(finite) set of open k-simplices of Δ, each homeomorphic to an open k-disk. Observe
that the d-fold symmetric product SP d(A) of A is again a compact polyhedron.

If A is a compact polyhedron, then a simplicial structure on A determines an
embedding of A in a Euclidean space RN , where N denotes the number of vertices
of the simplicial structure. A tubular neighborhood of A ⊂ RN provides A with the
structure of a Lipschitz neighborhood retract of RN . Such an embedding provides
A with a piecewise smooth Riemannian metric (compatible with the triangulation
on A given by the simplicial structure). The class of Lipschitz functions associated
to such a metric on A is in fact independent of the choice of such a metric.

Definition 1.1. Let A be a compact polyhedron, a Lipschitz neighborhood
retract with Lipschitz retraction U → A of some tubular neighborhood U of A in
a Euclidean space. A polyhedral k-chain on a Euclidean space is a formal integral
sum of “k-prisms” defined as the convex hulls of (k + 1)-tuples of distinct points,
and a Lipschitz polyhedral k-chain on A is the image of such a polyhedral chain
under a Lipschitz map from a Euclidean space to A. A rectifiable k-current on A is
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an element in the closure (with respect to the mass norm) of the space of Lipschitz
polyhedral k-chains on A.

We denote by Ik(A) the space of rectifiable k-currents on A with rectifiable
boundary (i.e., integral k-currents) equipped with the flat norm topology. We
denote by Zk(A) ⊂ Ik(A) the subspace of rectifiable k-currents with 0-boundary
(i.e. integral k-cycles).

We recall the following theorem of F. Almgren [1] (and restated in [6, 1.2]).

Theorem 1.2. Let C ⊂ A be a closed subspace, with both A,C compact, lo-
cal Lipschitz neighborhood retracts in Euclidean spaces. Then there is a natural
isomorphism

A : πj{Zr(A,C)/Ir(C)} ∼−→ Hr+j(A,C).

Here, Ir(C) denotes the integral r-currents on C with the flat norm topology and
Zr(A,C) denotes the integral r-currents on A whose boundary has support in C,
also provided with the flat norm topology.

Moreover, Zr(A)/Zr(C) is a closed subspace of Zr(A,C)/Ir(C) with discrete
quotient, thereby determining the short exact sequence

0 → Zr(A)/Zr(C) → Zr(A,C)/Ir(C) → ker{Hr−1(C) → Hr−1(A)} → 0.

We shall work with non-compact spaces of the form A − A∞, where A is a
compact polyhedron and A∞ ⊂ A is a (closed) subcomplex with respect to some
finite triangulation of A. We shall refer to such a space A−A∞ as a compactifiable
polyhedron.

Definition 1.3. Let A be a finite polyhedron. Equip A with a (finite, piece-
wise linear) triangulation Δ and let A∞ ⊂ A be a closed subpolyhedron that is a
subcomplex for the triangulation Δ. Embed A in Euclidean space Rs, where s is the
number of vertices of A, so that each vertex is a distance 1 along the corresponding
axis of Rs.

We define

DΔ(A∞) ≡ {a ∈ A : dA(a,A∞) ≤ 1

4
}

OΔ(A∞) ≡ {a ∈ A : dA(a,A∞) <
1

4
}

SΔ(A∞) ≡ {a ∈ A : dA(a,A∞) =
1

4
}

Note that DΔ(A∞), SΔ(A∞) and A−OΔ(A∞) are all closed subcomplexes of
A for some suitable subdivision of the triangulation Δ. It is useful to observe that
if Δ′ refines Δ then OΔ′(A∞) ⊂ OΔ(A∞).

The following proposition constructs a flow from A − A∞ to the closed sub-
polyhedron A−OΔ(A∞).

Proposition 1.4. Let U = A−A∞ be a compactifiable polyhedron.

(1) There is a homotopy H : U × I → U relating the identity of U to a
retraction U → A−OΔ(A∞) and restricting to H| : (A−OΔ(A∞))× I →
A−OΔ(A∞).

(2) There is a deformation retraction F : DΔ(A∞) × I → DΔ(A∞) which is
a deformation retraction to the subpolyhedron A∞.
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Proof. Observe that the closure σ of an open simplex of A meets DΔ(A∞) if
and only if σ meets A∞. Let Y ⊂ A denote the union of those closed simplices of A
meeting A∞, and triangulate Y using the first barycentric subdivision of the given
triangulation of A. We define the “link” L ⊂ A of A∞ ⊂ A to be the sub-simplicial
complex of Y with vertices the barycenters of simplices of A whose closures do not
intersect A∞. Let L̃ ⊂ Y consist of those points y ∈ Y ; d(y, L) ≤ 1

4 . Then we
employ a continuous map

F : Y × I → Y

satisfying

• F (y, 0) = y, y ∈ Y
• F (x, t) = x, x ∈ A∞ and t ∈ I

• F (y, t) = y, y ∈ L̃ and t ∈ I
• F (−, t) is a homeomorphism for t �= 1
• F (DΔ(A∞)× {1})) ⊂ A∞
• F (DΔ(A∞)× I) ⊂ DΔ(A∞).

Any such map F restricted to DΔ(A∞) is a deformation retraction to A∞.
Moreover, , we obtain a deformation retraction F ′ : (Y − A∞) × I → Y − A∞ of
Y − A∞ to Y − DΔ(A∞) by setting F ′

t equal to the inverse of the restriction to
Y −A∞ of F1−t. We define H : U × I → I to be this retraction on (Y − A∞)× I
and the identity flow on (A− Y )× I. �

We shall use the following elementary lemma from homotopy theory.

Lemma 1.5. Let Y ⊂ X be an inclusion of a subspace of a topological space X.
Suppose there is a homotopy H : X × I → X such that

• H(−, 0) = idX
• H(X × {1}) ⊂ Y
• H(Y × {t}) ⊂ Y for all t.

Then the inclusion Y → X is a homotopy equivalence with homotopy inverse
H(−, 1).

Applying Lemma 1.5 to the homotopy of Proposition 1.4 (1), we immediately
obtain the following corollary.

Corollary 1.6. Let U = A − A∞ be a compactifiable polyhedron and let Δ
be some finite piece-wise linear triangulation of A such that A∞ is a subcomplex.
Then the embedding

A′ = (A−OΔ(A∞)) ⊂ U

is a weak equivalence and A′ is a compact polyhedron.

We recall that a continuous map f : A → B of metric spaces is said to be
Lipschitz with Lipschitz constant K if for all pairs of points a, a′ in A the following
inequality is satisfied:

dB(f(a), f(a
′)) ≤ K · dA(a, a′).

Definition 1.7. If A, B are metric spaces, then we define

MapLip(A,B)

to be the set of Lipschitz maps from A to B with topology of convergence with
bounded Lipschitz constant. In other words, the sequence {fn} converges to f :
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A → B in this topology if it is uniformly convergent and there is a K > 0 that
serves as Lipschitz constant for all the fn.

Remark 1.8. If A and B are compact polyhedra equipped with a piecewise
smooth metric via embeddings as Lipschitz neighborhood retracts, then the subset

MapLip(A,B) ↪→ Mapcont(A,B)

together with its topology is independent of the choice of embedding. On the
strength of this observation we will refer to its elements as Lipschitz maps from A
to B without reference to the specific piecewise smooth metric chosen.

Observe that if B is a compact polyhedron, then so is its d-fold symmetric
power SP d(B) for any d > 0.

In [6, 1.5], the embedding MapLip(A,SP d(Sm)) ↪→ Mapcont(A,SP d(Sm)) is
shown to be a weak homotopy equivalence. We extend this result by allowing A to
be a compactifiable polyhedron.

Proposition 1.9. Let A, B be compact polyhedra, and d > 0. Retain the
hypotheses and notation of Definition 1.3. Then each of the maps of the following
chain is a weak homotopy equivalence

Mapcont(A−A∞, SP d(B)) → Mapcont(A−OΔ(A∞), SP d(B)) ←
MapLip(A−OΔ(A∞), SP d(B)).

Proof. The homotopy H : U × I → U of Proposition 1.4 implies that the first
map is a homotopy equivalence by Lemma 1.5; [6, 1.5] verifies that the second map
is a weak equivalence. �

Lemma 1.10. If Δ′ is a refinement of the triangulation Δ of A, then for any
d > 0 the natural restriction map

MapLip(A−OΔ′(A∞), SP d(B)) → MapLip(A−OΔ(A∞), SP d(B))

is a Serre fibration and a weak equivalence.

Proof. Let Λj [n] ⊂ Δ[n] denote the inclusion of the union of all faces of the n-
simplex Δ[n] except the j-th face into Δ[n]. For each n ≥ 0 and each j, 0 ≤ j ≤ n,
we use the structure of A−OΔ(A∞) ⊂ A−OΔ′(A∞) (as a simplicial embedding of
finite complexes) to exhibit a strong deformation retraction of (A−OΔ′(A∞))×Δ[n]
to

((A−OΔ′(A∞))× Λj [n]) ∪((A−OΔ(A∞))×Λj [n]) ((A− OΔ(A∞))×Δ[n])

which is a Lipschitz map with Lipschitz constant 1. This implies the Serre lifting
property forMapLip(A−OΔ′(A∞), SP d(Sm)) → MapLip(A−OΔ(A∞), SP d(Sm)).
The fact that this map is a weak equivalence follows from Proposition 1.9 and the
fact that both A−OΔ(A∞), A−OΔ′(A∞) are homotopy equivalent to A−A∞. �

Definition 1.11. Let T (A) denote the category of finite, piece-wise linear
triangulations of the polyhedron A, with one triangulation Δ′ mapping to another
Δ provided that Δ′ is a refinement of Δ. For any closed subpolyehdron A∞ ⊂ A
which is a subcomplex with respect to a triangulation Δ, any finite polyhedron B
and any d > 0, we define

(1) MapbLip(A−A∞, SP d(B)) ≡ lim←−
Δ′∈T (A)/Δ

MapLip(A−OΔ′(A∞), SP d(B)).
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Remark 1.12. Let A, A′, B be finite polyhedra and let A∞ ⊂ A, A′
∞ ⊂ A′

be subpolyhedra. Then a Lipschitz map f : A → A′ with the property that
f−1(A′

∞) ⊂ A∞ induces a continuous map

(2) f∗ : MapbLip(A
′ −A′

∞, SP d(B)) −→ MapbLip(A−A∞, SP d(B)).

In particular, there is a natural restriction map

MapbLip(A−A′
∞, SP d(B)) → MapbLip(A−A∞, SP d(B))

whenever A′
∞ ⊂ A∞ is an inclusion of closed subcomplexes for some finite triangu-

lation. This implies that the assignment

U �→ MapbLip(U, SP
d(B))

is a contravariant functor on the category of open subsets of A whose complement
is a closed subcomplex for some sufficiently fine finite triangulation of A.

Corollary 1.13. The natural projection and inclusion maps

MapLip(A−OΔ(A∞), SP d(B)) � MapbLip(A−A∞, SP d(B))

and

MapbLip(A− A∞, SP d(B)) ↪→ Mapcont(A−A∞, SP d(B))

are weak equivalences for any finite, piece-wise linear triangulation Δ of A such
that A∞ inherits the structure of a subcomplex.

Proof. The fact that the projection is a weak equivalence follows from Lemma
1.10 and the standard fact that the inverse limit of a tower of maps each of which
is a Serre fibration and a weak equivalence projects via a Serre fibration and a
weak equivalence to each term in the tower. The fact that the inclusion is a weak
equivalence follows from Proposition 1.9. �

2. Lipschitz cocycle spaces

Recall that the group completion (
∐

d SP
d(Sm))+ is a model for the generalized

Eilenberg-MacLane space K(Z,m)×K(Z, 0), so that

πi(Mapcont(A, (
∐
d

SP d(Sm))+) =

⎧⎨
⎩

Hm(A)⊕H0(A) if i = 0

Hm−i(A) if i > 0.

where Hi(A) = Hi(A,Z) denotes singular cohomology with Z coefficients. Since A
is compact,

(
∐
d

Mapcont(A,SP d(Sm))+ ∼= Mapcont(A, (
∐
d

SP d(Sm))+).

Thus,

πi ker{(
∐
d

Mapcont(A,SP d(Sm))+ → H0(A)} ∼= Hi(A), i ≥ 0.

This motivates the following definition of Lipschitz cocycle spaces. We set

(3) MapLip(A,SP∞(Sm)+) = ker{(
∐
d≥0

MapLip(A,SP d(Sm)))+ → H0(A)}.
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Definition 2.1. Let A be a compact polyhedron and C ⊂ A a closed subset
that is a subcomplex with respect to some finite triangulation of A. Following [6]
we define the topological abelian group Zm(A) of Lipschitz m-cocycles on A
(topological Abelian group Zm(A,C) of relative Lipschitz cocycles, respectively)
as

Zm(A) = MapLip(A,SP∞(Sm)+)

and

Zm(A,C) = ker{Zm(A) → Zm(C)}
Note that by Remark 1.8, these groups are well-defined independent of the choice
of a realizations of A and C as Lipschitz neighborhood retracts.

Proposition 2.2. Let A be a compact polyhedron and C ⊂ A a closed subcom-
plex with respect to some finite triangulation. Then there are isomorphisms

πiZm(A) ∼= Hm−i(A)

πiZm(A,C) ∼= Hm−i(A,C)

where H∗(A) denotes the singular cohomology of A with Z coefficients.
These isomorphisms are natural for Lipschitz maps of (pairs of) compact poly-

hedra. Since every continuous map of compact polyhedra is homotopic to a Lipschitz
map, these isomorphisms are, in fact, natural on the homotopy category of compact
polyhedra.

Proof. The proposition follows from the special case of A∞ = ∅ of Proposition
1.9 (i.e., from [6, 1.5]) and the above representation of cohomology of A in terms
of Mapcont(A,SP d(Sm)). �

A key theorem which enables us to consider Lipschitz cocycles on compactifiable
finite polyhedra (rather than relative groups as we do for geometric cycle spaces)
is the following important theorem of Kirszbraun.

Theorem 2.3. (Kirszbraun’s theorem; cf. [2, 2.10.43]) Let S ⊂ Rm be an
arbitrary subset of Rm and consider f : S → Rn, a Lipschitz map with Lipschitz
constant K. Then there exists an extension f̃ : Rm → Rn which is also a Lipschitz
map with Lipschitz constant K.

In particular, MapLip(A,SP∞(Sm)+) → MapLip(A − OΔ(A∞), SP∞(Sm)+)
is surjective by Kirszbraun’s Theorem.

We now introduce the topological abelian group of Lipschitz cocycles of codi-
mension m on A − A∞, a space which will play a central role in the remainder of
this paper.

Definition 2.4. Let A be a compact polyhedron equipped with a finite trian-
gulation Δ and let A∞ ⊂ A be a (closed) subcomplex with respect to some finite,
piece-wise linear triangulation of A. We set

Zm(A−A∞) ≡ MapbLip(A−A∞, SP∞(Sm)+),

where the right-hand side of the above defining equality is defined to be

ker{(
∐
d≥0

lim←−
Δ′/Δ

MapLip(A−OΔ′(A∞), SP d(Sm)))+ → H0(A−A∞)}.

Corollary 1.13 has the following reassuring corollary.
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Corollary 2.5. Let U be provided with open embeddings U ⊂ A, U ⊂ A′.
Assume that A,A′ admit finite triangulations such that A − U ⊂ A, A′ − U ⊂ A′

are subpolyhedra. Then Zm(U) determined by the compactification U ⊂ A is weakly
equivalent to the corresponding topological group determined by the compactification
U ⊂ A′.

Moreover, for any finite triangulation Δ of A such that A∞ ⊂ A is a subcom-
plex, there is a natural homomorphism

Zm(U) −→ Zm(A−OΔ(A∞))

which is a weak equivalence. In particular,

πiZm(A−A∞) ∼= Hm−i(A−A∞).

Remark 2.6. Although Zm(A) → Zm(A−OΔ(A∞)) is surjective for a given
triangulation Δ of A, it would appear that Zm(A) → Zm(A−A∞) is not surjective.

Definition 2.7. Let A be a compact polyhedron equipped with a finite tri-
angulation Δ and let A∞, C ⊂ A be (closed) subcomplexes. Set C∞ = C ∩ A∞.
Then we define the space of Lipschitz cocycles on A with support in C to be the
topological abelian group

Zm
C (A) ≡ lim←−

Δ′/Δ

ker{Zm(A) → Zm(A−OΔ′(C))}

where the inverse limit is taken over all triangulations Δ′ refining Δ as above.
More generally, we define

(4) Zm
C−C∞(A−A∞) ≡ lim←−

Δ′/Δ

ker{Zm(A−A∞) → Zm(A−OΔ(A∞ ∪ C))}.

Because all the transition maps in the inverse system defining Zm
C−C∞

(A−A∞)
are Serre fibrations and weak equivalences, this inverse limit is weakly equivalent
to ker{Zm(A − A∞) → Zm(A − OΔ(A∞ ∪ C))} for any finite, piece-wise linear
triangulation Δ of A for which A∞, C ⊂ A are subcomplexes. Thus,

πiZm
C−C∞(A−A∞) ∼= Hm−i

C−C∞
(A− A∞),

the cohomology of A−A∞ with supports in C − C∞.

3. Properties of Cocycle Spaces

In this section, we verify a few of the expected properties of cocycle spaces:
multiplicative structure in Proposition 3.1, localization in Proposition 3.2, Mayer-
Vietoris in Proposition 3.3, excision in Proposition 3.6, and transfer in Proposition
3.7.

Proposition 3.1. (Multiplicative structure): Smash product of spheres, Sm ×
Sm′ −→ Sm+m′

induces a natural multiplicative structure on the (graded) integral
cocycle spaces Z∗(A−A∞), Z∗

C(A−A∞) leading to graded commutative, associative
product structures on their homotopy groups:

Zm(A−A∞) ∧ Zm′
(A−A∞)

∪→ Zm+m′
(A−A∞),

Zm(A−A∞) ∧ Zm′

C (A−A∞)
∪→ Zm+m′

C (A−A∞).
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Proof. First, observe that the smash product Sm × Sm′ −→ Sm+m′
induces

Lipschitz maps

(5) SP d(Sm)× SP e(Sm′
) −→ SP de(Sm+m′

).

Thus, given Lipschitz maps f : A → SP d(Sm), g : A → SP e(Sm′
), we obtain the

Lipschitz map f ∧ g : A → SP de(Sm+m′
). This determines a pairing of monoids∐

d≥0

MapLip(A,SP d(Sm))×
∐
e≥0

MapLip(A,SP e(Sm′
)) −→

−→
∐
f≥0

MapLip(A,SP f(Sm+m′)).

The pairings (5) induce the usual product structure K(Z,m) × K(Z,m′) →
K(Z,m+m′) which in turn induces the cup product in cohomology. Thus, Propo-
sition 2.2 implies that the pairings on homotopy groups of Lipschitz cocycles spaces
are graded commutative and associative. �

Proposition 3.2. (Localization) Let A be a compact polyhedron equipped with
a finite triangulation Δ and let A∞ ⊂ A be a (closed) subcomplex. Then the natural
triple of topological abelian groups

(6) Zm
A∞(A) → Zm(A) → Zm(A−A∞)

is a fibration sequence.

Proof. For each Δ for which A∞ is a subcomplex of A, the short exact se-
quence

ker(Zm(A) → Zm(A− OΔ(A))) → Zm(A) → Zm(A−OΔ(A))

is a fibration sequence by [8]. As argued in the proof of Corollary 1.13, this fibration
sequence is weakly homotopy equivalent to (6). �

Proposition 3.3. (Mayer-Vietoris) Let A be a compact polyhedron equipped
with a finite triangulation Δ and let A∞ ⊂ A be a closed subcomplex. Let D ⊂ A be
a compact subpolyhedron containing OΔ(A∞). Then there is a natural short exact
sequence of topological abelian groups

Zm(A) → Zm(A−OΔ(A∞))×Zm(D) → Zm(D −OΔ(A∞))

which determines the following homotopy Cartesian square

(7)

Zm(A)

��

�� Zm(D)

��
Zm(A−A∞) �� Zm(D −A∞)

.

Proof. Observe that for each Δ for which A∞, D are subcomplexes of A, the
short exact sequence

Zm(A) → Zm(A−OΔ(A∞))×Zm(D) → Zm(D −OΔ(A∞))

is a fibration sequence by [8]. Arguing once again as in the proof of Corollary 1.13
in order to pass to the limit over open tubular neighborhoods of A∞, we conclude
that

Zm(A) → Zm(A−A∞)×Zm(D) → Zm(D −A∞)

is a fibration sequence. This implies that (7) is homotopy Cartesian. �
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Corollary 3.4. Let A be a compact polyhedron and let A∞ ⊂ A and B∞ ⊂ A
be closed subcomplexes with respect to some finite triangulation Δ of A. Assume
there is a finite subdivision Δ′ of Δ such that OΔ′(A∞) ∩ OΔ′(B∞) = ∅. Then
there is a natural fibration sequence of topological abelian groups

Zm(A) → Zm(A−A∞)×Zm(A−B∞) → Zm(A− (A∞ ∪B∞))

which determines the following homotopy Cartesian square

Zm(A)

��

�� Zm(A−B∞)

��
Zm(A−A∞) �� Zm(A− (A∞ ∪B∞))

.

Here the cocycle spaces are taken with respect to the common compactification A,
as indicated by the notation.

Proof. This is an immediate consequence of Theorem 3.3 and Corollary 2.5,
once we know the various restriction maps are well-defined. This necessary functo-
riality property is supplied by the discussion in Remark 1.12. �

Corollary 3.5. Let A be a compact polyhedron and let A∞ ⊂ A and B∞ ⊂ A
be closed subcomplexes with respect to some finite triangulation Δ of A. Then there
is a fibration sequence of topological abelian groups

Zm
A∞∩B∞(A) → Zm

A∞(A)× Zm
B∞(A) → Zm

A∞∪B∞(A).

Proof. For any refinement Δ′ of Δ, the sequence

(8) ker{Zm(A) → Zm(A−OΔ′(A∞ ∩B∞))}

��
ker{Zm(A)×Zm(A) → Zm(A−OΔ′(A∞))×Zm(A−OΔ′(B∞))}

��
ker{Zm(A) → Zm(A−OΔ′(A∞ ∪B∞))}

is a fibration sequence by the 3 × 3 lemma and Mayer-Vietoris 3.3 for the closed
cover A−OΔ′(A∞ ∩B∞) = (A−OΔ′(A∞)) ∪ (A−OΔ′(B∞)). �

Proposition 3.6. (Excision) Let Δ be a finite triangulation of A and let
A∞, D be closed subpolyhedra such that OΔ(A∞) ⊂ D. Then the restriction map

(9) Zm
A∞(A) −→ Zm

A∞(D)

is a weak equivalence.

Proof. This follows immediately from Proposition 3.2 applied to the vertical
maps of the homotopy Cartesian square (7). �

Proposition 3.7. (Transfer) Let A, B be finite polyhedra related by a Lipschitz
continuous map g : A → SP e(B) with associated ramified covering map p : B → A.
Assume that A∞ ⊂ A is a nowhere dense closed subpolyhedron with the property
that p : B −B∞ → A−A∞ is a covering space map, where B∞ = p−1(A∞). Then
p induces a transfer map p! : Zm(B) → Zm(A).
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Moreover, the restriction of p! to Zm(B−B∞) has image in Zm(A−A∞) and
satisfies

p∗ ◦ p! = e(−) : Zm(A−A∞) → Zm(B −B∞) → Zm(A−A∞),

where e(−) is the e-th power map of the topological abelian group Zm(A−A∞).

Proof. The map g induces maps g(d) : SP d(A) → SP de(B) in the obvious
manner, and each of these is Lipschitz. These maps determine a map of abelian
monoids ∐

f

MapLip(B,SP f(Sm)) →
∐
f

MapLip(A,SP d(Sm)

whose group completion is the asserted map p! : Zm(B) → Zm(A).

Choose a triangulation Δ̃ of B with the property that p(Δ̃) = Δ is a triangu-

lation of A such that with respect to Δ̃ (respectively, Δ) B∞ ⊂ B (resp, A∞ ⊂ A)
is a subpolyhedron. Then the restriction of p to B − OΔ̃(B∞) is a covering space
map to A−OΔ(A∞). We see by inspection that the composition∐

f

MapLip(B −OΔ̃(B∞), SP f(Sm)) →
∐
f

MapLip(A−OΔ(A∞), SP d(Sm)

is multiplication by e. Thus, the second assertion of the proposition follows from
Corollary 1.13. �

4. The Graphing Construction Γtop

The purpose of this section is to establish a continuous graphing map

Γtop : Zm(A−A∞) −→ ˜Zn(A+ ∧ Sm)/ lim−→
Δ

Zn(DΔ(A∞)+ ∧ Sm),

where the finite polyhedron A is a compact pseudo-manifold of dimension n. (For
notational convenience, we employ the abbreviation

(10) Z̃r(A)/Zr(B) ≡ Zr(A,B)/Ir(B),

the extension of ker{Hr−1(B) → Hr−1(A)} by Zr(A)/Zr(B) given in Theorem
1.2.) Our construction extends that of [6] in the case A∞ = ∅, and refines the
construction there by avoiding the use of the not-everywhere-defined Federer slice
construction.

The condition imposed on a compact polyhedron A to be a compact oriented
pseudo-manifold of dimension n implies that A has an orientation given by a fun-
damental class 0 �= [A] ∈ Hn(A).

We repeat the definition of pseudo-manifold given in [6]. Since our definition
requires a “resolution of the singularities, all of which are in codimension ≥ 2”, this
is somewhat stronger than that found elsewhere in the literature.

Definition 4.1. Let A be a compact connected polyhedron. A is said to be a
compact oriented pseudo-manifold of dimension n if A admits a triangulation
Δ satisfying:

• Every simplex of Δ is contained in the closure of some n-simplex τ ∈ Δ(n).
• For some smooth closed oriented n-manifold M equipped with a smooth
triangulation, there exists a polyhedral map p : M → A restricting to a
homeomorphism M −M ′ → A−skn−2A, where M ′ ⊂ M is a subcomplex
of dimension ≤ n− 2.
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If A∞ is a nowhere dense subpolyhedron of the compact oriented pseudo-
manifold A of dimension n, then its complement A − A∞ is said to be a com-
pactifiable oriented pseudo-manifold of dimension n.

Example 4.2. The underlying analytic space A = Xan of any connected com-
plex quasi-projective variety X of complex dimension k is a compactifiable oriented
pseudo-manifold of dimension 2k.

If X is a projective variety of dimension n over R whose underlying analytic
space Xan is oriented and connected, then Xan is an compact oriented pseudo
-manifold provided that X is smooth in codimension 1.

We proceed to construct the graph of a Lipschitz cocycle f : A − OΔ(A∞) →
SP d(Sm). As constructed in [6, 2.4], the geometric graph of f is the rectifiable
current

(11) Γ(f) ≡
∑
σ∈Δ′

Γσ ∈ Rn((A−OΔ(A∞))× Sm),

where the sum is indexed by (open) simplices of A−OΔ(A∞) in a triangulation Δ′

refining Δ with the property that A−OΔ(A∞) is a subcomplex, and Γσ is the push-
forward of the simplex σ (viewed as a rectifiable current on A − OΔ(A∞)) to the
graph. Observe that this construction requires A to be provided with an orientation
which is then inherited in a compatible way by each open simplex σ ∈ Δ′.

There are two awkward aspects of this definition: even for A compact, Γ(f)
might not be a cycle; even if Γ(f) is a cycle, the function f �→ Γ(f) might not
be continuous from Lipschitz cocycles to Lipschitz cycles. These difficulties are
overcome in [6] by restricting attention to the dense subset of “good” Lipschitz
cocycles as we now recall.

Definition 4.3. [6, 3.2] Let B be a finite polyhedron. Choose a compact
neighborhood U of SP d(Sm) ⊂ RN and a Lipschitz retraction π : U → SP d(Sm)
such that π−1(Σ) is a subcomplex of codimension ≥ 1, where Σ ⊂ SP d(Sm) is the
singular set. A Lipschitz map f : B → SP d(Sm) is said to be good if f is of the

form f = π ◦ f̃ where f̃ when restricted to each open simplex of B is smooth and
transverse to every open simplex of π−1(Σ) ⊂ U .

The following lemma is an immediate consequence of [6, 3.4] and Kirszbraun’s
Theorem (Theorem 2.3).

Lemma 4.4. Let A be a compact oriented pseudo-manifold of dimension n, Δ
a triangulation of A, and A∞ ⊂ A a subpolyhedron, and Δ′ a refinement of Δ such
that A− OΔ(A∞) is a subcomplex with respect to Δ′. Then the subspace

MapLip(A−OΔ(A∞), SP d(Sm))good ⊂ MapLip(A−OΔ(A∞), SP d(Sm))

of maps f : A − OΔ(A∞) → SP d(Sm) which admit an extension to a good (with

respect to Δ′) Lipschitz map f̃ : A → SP d(Sm) is dense.

Arguing as in [6, 3.6], we obtain the following graphing construction. We
remind the reader that the smash product T+ ∧Sm of a (non-pointed) space T and
the pointed m-sphere (with base point chosen to be ∞ when we view Sm as the
1-point compactification of Rm for m > 0 is given by

T+ ∧ Sm ≡ (T × Sm)/(T × {∞}).
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Theorem 4.5. Let A be a compact, oriented pseudo-manifold of dimension n,
Δ a (piece-wise linear) triangulation of A, and A∞ ⊂ A a subpolyhedron. There
is a uniquely defined continuous extension

(12) Γtop : Zm(A−OΔ(A∞)) −→ ˜Zn(A+ ∧ Sm)/Zn(DΔ(A∞)+ ∧ Sm),

of the geometric graph construction (11) sending

f ∈ MapLip(A−OΔ(A∞), SP d(Sm))good

to the projection of Γ(f) ∈ Rn((A−OΔ(A∞))× Sm).
As Δ varies over finer triangulations of A, these maps determine the continuous

graphing map

(13) Γtop : Zm(A−A∞) −→ ˜Zn(A+ ∧ Sm)/ lim−→
Δ

Zn(DΔ(A∞)+ ∧ Sm).

Proof. As constructed in (11), Γ(f) is a rectifiable current on (A−OΔ(A∞))×
Sm for any f ∈ MapLip(A−OΔ(A∞), SP d(Sm))good. The continuity of this graph-
ing construction

Γ : MapLip(A−OΔ(A∞), SP d(Sm))good −→ Rn((A−OΔ(A∞))× Sm)

is given by [6, 3.5].

Let f̃ : A → SP d(Sm) be a good Lipschitz map extending f . As verified in

[6, 3.6], Γ(f̃) is an integral n-cycle on A × Sm. Since the restrictions of Γ(f) and

Γ(f̃) agree on any open inside A − OΔ(A∞), we see that the boundary of Γ(f) is
supported on DΔ(A∞)× Sm.

The push-forward of (rectifiable) currents via the proper Lipschitz map (A −
OΔ(A∞))× Sm → (A−OΔ(A∞))+ ∧ Sm is that given by Federer in [2, 4.1.7].
Thus, for each d ≥ 0, we obtain continuous graphing maps

MapLip(A−OΔ(A∞), SP d(Sm))good → ˜Zn(A+ ∧ Sm)/Zn(DΔ(A∞)+ ∧ Sm)

sending f to the equivalence class of the push-forward of Γ(f̃).
Using Lemma 4.4, we extend this graphing construction to Γtop on MapLip(A−

OΔ(A∞), SP d(Sm)) exactly as in the proof of [6, 3.6], and then use the universal
property of group completion to obtain the asserted map (12).

Finally, the graphing map Γtop on Zm(A − A∞) of (13) is the (inverse) limit
indexed by triangulations Δ of these maps. �

Remark 4.6. Observe that the map in homotopy induced by (13) has the form

Hm−j(A−A∞) −→ HBM
n−m+j(A−A∞),

where HBM
∗ (−) denotes Borel-Moore (singular) homology.

As we see in the following proposition, Γtop is compatible with localization.
Recall the definition of Lipschitz cocycles Zm

C−C∞
(A−A∞) given in Definition 4.

Proposition 4.7. (compatibility with localization) Choose a finite triangula-
tion Δ of A such that the compact subpolyhedra A∞, C ⊂ A are subcomplexes such
that DΔ(A∞)∩C = ∅. Then Γtop of (12) restricts to a continuous homomorphism
on relative Lipschitz cocycles

(14) Γtop : Zm
C (A−OΔ(A∞)) −→ Zn(DΔ(C)+ ∧ Sm)
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which fits in a map of fibration sequences

(15) Zm
C−C∞

(A−OΔ(A∞)) Γtop
��

��

Zn(DΔ(C)+ ∧ Sm)

��
Zm(A−OΔ(A∞))

Γtop
��

��

˜Zn(A+ ∧ Sm)/Zn(DΔ(A∞)+ ∧ Sm)

��
Zm(A−OΔ(A∞

∐
C))

Γtop
�� ˜Zn(A+ ∧ Sm)/Zn(DA(A∞

∐
C)+ ∧ Sm).

Proof. The fact that Γtop restricts to (14) on relative Lipschitz cocycles fol-

lows from the observation that if f̃ , f̃ ′ ∈ MapgoodLip (A,SP d(Sm)) have equal restric-

tions to A − OΔ(A∞
∐

C), then Γ(f) − Γ(g) has support on DΔ(A∞
∐

C) × Sm.
Thus, the upper square commutes by construction. The naturality of (13) implies
the commutativity of the lower square of (15). Both columns are fibration sequences
because they are short exact sequences of topological groups (cf. [8]). �

Similarly, we see that Γtop is compatible with Mayer-Vietoris.

Proposition 4.8. (compatibility with Mayer-Vietoris) Let Δ be a finite trian-
gulation of A, and consider closed subpolyhedra A1, A2 ⊂ A with A1 ∩A2 = A1,2

and A1+2 = A1 ∪ A2. Then Γtop determines a map of Mayer-Vietoris fibration
sequences

Zm(A−OΔ(A1,2))

��

Γtop
�� ˜Zn(A+ × Sm)/Zn(DΔ(A1,2)+ ∧ Sm)

��
×i=1,2Zm(A−OΔ(Ai))

Γtop
��

��

×i=1,2
˜Zn(A+ ∧ Sm)/Zn(DΔ(Ai)+ ∧ Sm)

��
Zm(A−OΔ(A1+2))

Γtop
�� ˜Zn(A+ ∧ Sm)/Zn(DΔ(A1+2)+ ∧ Sm)

Proof. The vertical columns are short exact sequences of topological groups.
The squares commute by construction. �

Corollary 4.9. Let A be a compact pseudomanifold with finite triangulation
Δ, and consider closed subpolyhedra A1, A2 ⊂ A with A1∩A2 = A1,2 and A1+2 =
A1 ∪A2. Then Γtop determines a map of Mayer-Vietoris fibration sequences

Zm
A12

(A)

��

Γtop
�� Zn(DΔ(A12)+ ∧ Sm)

��
×i=1,2Zm

Ai
(A) Γtop

��

��

×i=1,2Zn(DΔ(Ai)+ ∧ Sm)

��
Zm

A1+2
(A) Γtop

�� Zn(DΔ(A1+2)+ ∧ Sm)
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Proof. The left column is a fibration sequence by Corollary 3.5. The right
column is a short exact sequence of topological groups. The diagram commutes by
construction. �

5. Poincaré duality

We will prove a version of Alexander (or, Poincaré-Lefschetz) duality, showing
that the graphing construction of Section 4 provides a weak equivalence

Γtop : Zm
C (A) → Zn(DΔ(C)+ ∧ Sm)

where A is a (compact, or compactifiable) oriented manifold of dimension n and
C ⊂ A is a closed subpolyhedron that is a subcomplex with respect to some finite
triangulation of A. As in other proofs of duality, the basic case that needs to be
checked by hand occurs when C is a point, or more generally, a (sufficiently small)
simplex.

Example 5.1. Let A be a smooth compact oriented manifold of dimension n
with a triangulation Δ with the property that for every closed simplex B of Δ,
DΔ(B) is contained in a Euclidean neighborhood, and let C ⊂ A be a (closed)
simplex. Let m ≥ 0. Then the graphing map

Γtop : Zm
C (A) → Zn(DΔ(C)+ ∧ Sm)

is a weak equivalence.
Indeed, using Proposition 2.2 to identify πi(Zm

C (A)) with Hm−i(A,A−C) and
Theorem 1.2 to identify πi(Zn(DΔ(C)+ ∧Sm)) with Hn+i(DΔ(C)×Sm, DΔ(C)×
∞)), we conclude that both groups are zero unless m = n and i = 0, when the

homomorphism Γtop
# induced by Γtop is of the form Z → Z. The generator of the

source here is the collapsing map

A → A/(A−OΔ(C)) ≡ Sn

defining the orientation, minus the constant map to ∞. This is a difference of
good Lipschitz maps, and the resulting class in homology is the class given by the
difference of the collapsing map and the constant map on the boundary, i.e., it is a
generator. This shows that Γtop

# is onto, and hence an isomorphism, as asserted.

Now a bootstrap argument allows to realize Poincaré - Lefschetz duality as the
map in homotopy of a map of topological abelian groups.

Theorem 5.2. Let A be a smooth compact oriented manifold and let C ⊂ A
be a compact subspace that is also a subcomplex for some finite triangulation of A.
Then for a sufficiently fine triangulation Δ of A such that C is a subcomplex the
graphing map

Γtop : Zm
C (A) → Zn(DΔ(C)+ ∧ Sm)

is a weak equivalence.

Proof. We proceed by induction of the dimension d of C and the number r
of simplices of C with respect to Δ. If d < 0, then there is nothing to prove. If
r = 1, then C is a simplex, and we are done by Example 5.1. Now suppose d ≥ 0,
r > 1, and we have proved the assertion for all closed subcomplexes C ′ with at
most r− 1 simplices or of dimension less than d. Let K be a subcomplex of C with
r − 1 simplices, and let B be the closed simplex such that C = K ∪ B. There are
two cases.
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First Case: B is disjoint from K. Then the inductive step follows from the obvious
fact that Zm

C (A) ≡ Zm
K (A)×Zm

B (A).
Second Case: B is not disjoint from K. Then B ∩K = ∂B. Since the dimension
of ∂B is less than d, the inductive hypothesis implies that our assertion holds for
the subcomplexes B, K and ∂B. Now the Mayer-Vietoris sequence of Corollary
3.5 and the compatibility of graphing and Mayer-Vietoris given in Corollary 4.9
complete the inductive step. �

Remark 5.3. While it may look as if neither orientability nor smoothness is
ever used in the proof of Theorem 5.2, note that the assumptions are needed for
the graphing construction to work, as discussed in Section 4.

As corollaries, we obtain Poincaré Duality and Alexander duality.

Corollary 5.4. Let A be a smooth compact oriented manifold of dimension
n. Then the graphing map

Γtop : Zm(A) → Zn(A+ ∧ Sm)

is a weak equivalence.

Proof. Choose a sufficiently fine triangulation, and let C = A in Theorem
5.2. �

Corollary 5.5. Let A be a smooth oriented compact manifold of dimension
n, and let C ⊂ A be a compact subspace that is a subcomplex with respect to some
finite triangulation. Then the graphing map

Γtop : Zm(A− C) −→ ˜Zn(A+ ∧ Sm)/ lim−→
Δ

Zn(DΔ(C)+ ∧ Sm)

is a weak equivalence.

Proof. This follows easily from the preceding results and the compatibility of
graphing with localization proved in Proposition 4.7 (taking A∞ = ∅ in (15) ). �

Definition 5.6. Assume A is a compact, oriented n-manifold and i : A∞ ⊂ A
is a closed, compact, oriented submanifold of codimension e. For any m ≥ e, we
refer to the homotopy class of maps

(16) i! = (Γtop)−1 ◦ (i∗ ∧ Σe) ◦ Γtop : Zm−e(A∞) → Zm(A)

as the Gysin map.

Remark 5.7. The map on homotopy groups induced by the Gysin map,

i! : Hm−j−e(A∞) = πj(Zm−e(A∞)) → πj(Zm(A)) = Hm−j(A)

(isomorphic to Hn+j−m(A∞) → Hn+j−m(A)), is the Poincaré dual of i∗ : H•(A) →
H•(A∞).

6. Thom Classes and Thom Isomorphism

In this last section we formulate the Thom isomorphism in our context.
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Proposition 6.1. Let A be a compact, oriented pseudo-manifold of dimension
n and let C ⊂ A be a closed submanifold of codimension e, smoothly embedded in
the smooth locus of A. Let Δ be a triangulation of A such that C is a subpolyhedron.
Then the retraction p : DΔ(C) → C is an oriented disk bundle, called the oriented
normal disk bundle of C ⊂ A. In other words, C admits an open covering {Ui}
such that each restriction p|Ui

: p−1(Ui) → Ui is homeomorphic to the product
projection De × Ui → Ui and such that p|Ui

, p|Uj
are related by a continuous maps

from Ui ∩ Uj to the group of continuous, orientation-preserving, origin-preserving
homeomorphisms of the disk De.

Let B be a compact polyhedron and suppose D → B is an oriented disk bundle
of rank e over B, given a structure of a compact polyhedron such thatB is embedded
as a subpolyhedron via the zero section and such that the associated sphere bundle
S → B is also a subpolyhedron.

Definition 6.2. A (geometric) Thom class of D → B of an oriented disk
bundle over a compact polyhedron B is an element t ∈ Ze(D,S) such that the
restriction tx of t to any fiber (Dx,Sx) over a point x ∈ B defines the given
orientation of the diskDx, that is, tx is in the same connected component of Ze({x})
as the difference of the collapsing map (Dx,Sx) → (Se,∞) and the constant map
to ∞. We write T (D) for the subspace in Ze(D,S) of all geometric Thom classes.

Remark 6.3. Let B be a contractible polyhedron and (D,S) = B×(De, Se−1)
be the trivial disk and sphere bundles over B, with a choice of orientation. Then
there is an obvious geometric Thom class defined as the difference of the projection
to (De, Se−1) followed by the collapsing map to Se and the constant map to ∞ ∈
Se. Since Ze(B ×De, B × Se−1) is homotopy equivalent to Z, the space T (D) is
contractible.

Theorem 6.4. For any compact polyhedron B and oriented disk bundle (D,S)
as above, the space of geometric Thom classes T (D) is contractible, and in partic-
ular, non-empty.

Proof. By induction of the dimension of B. It follows immediately from
Remark 6.3 that the assertion is true if the dimension of B is zero.

Suppose now that dim(B) = n, and the assertion has been proved for all
polyhedra of dimension less than n. Let B(n−1) be the (n − 1)-skeleton of B, Bn

the disjoint union of the closed n-simplices of B, and let ∂Bn be the union of the
boundaries. Moreover, let D(n−1), Dn and ∂Dn be the respective restrictions of
the oriented disk bundle D, and similarly for the sphere bundle S. We may choose
embeddings of D, and of the union

∐
n Dn as neighborhood retracts such that all

the attaching maps and characteristic maps are Lipschitz continuous. In this way,
we obtain a commutative square

(17) T (D)

��

�� T (D(n−1))

��
T (Dn) �� T (∂Dn)

and the assertion follows from:
Claim: The square (17) is homotopy cartesian.
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Indeed, it is clear that this is a cartesian square; therefore it suffices to show
that one of the maps, say, T (Dn) → T (∂Dn), is a (Serre) fibration. Since T
obviously transforms finite disjoint unions into finite products, we may assume
that there is only one n-simplex. Further, we can choose a Lipschitz continuous
trivialization of the disk bundle Dn → Bn. Hence, we only need to prove that the
map T (Δn ×De) → T (∂Δn ×De) induced by restriction is a Serre fibration. Take
a commutative diagram

(18) Dk

��

f �� T (Δn ×De)

��
Dk × I

g �� T (∂Δn ×De)

Recall that an element φ ∈ T (Δn ×De) is simply a difference of two Lipschitz
continuous maps φ+ and φ− from Δn ×De to some symmetric powers of Se that
become equal on the sphere bundle Δn × Se−1. The maps f and g in the square
(18) have compact source and can therefore be taken to correspond to continuous
families of Lipschitz maps G+ − G− and F+ − F− where the +-maps have target
in some symmetric power SP r(Se) and the −-maps have target in some symmetric
power SP s(Se), and such that the restrictions of G+ and F+ (respectively, G− and
F−) to Dk × ∂Δn ×De coincide.

Now we can glue G+ and F+ (respectively, G− and F−) along Dk × ∂Δn ×De

to obtain a continuous family of Lipschitz maps

Φ+ = G+ ∪ F+ : Dk × I × ∂Δn ×De ∪Dk×∂Δn×De Dk ×Δn ×De → SP r(Se)

and similarly a continuous family of Lipschitz maps

Φ− = G− ∪ F− : Dk × I × ∂Δn ×De ∪Dk×∂Δn×De Dk ×Δn ×De → SP s(Se)

with the property that Φ+ −Φ− is everywhere locally on Dk × I × ∂Δn ∪Dk ×Δn

the orientation of the trivial e-disk bundle.
The inclusion (which is the identity on the fibers of the e-disk bundle)

Dk × I × ∂Δn ×De ∪Dk×∂Δn×De Dk ×Δn ×De ↪→ Dk × I ×Δn ×De

is Lipschitz homeomorphic to an inclusion Dn+k × De ↪→ Dn+k × I × De that is
the identity on the fibers of the (trivial) e-disk bundle. Along the latter inclusion,
we can extend Φ+ and Φ− constantly along the I-direction to families of Lipschitz

maps Φ̃+ and Φ̃−. Clearly, on each fiber of the e-disk bundle, Φ̃+ − Φ̃− defines

the orientation of the disk De. That is, we have constructed a lift Φ̃ : Dk × I →
T (Δn ×De) of the diagram (18), as needed. �

Now that we have defined the Thom classes, we can easily prove the Thom
isomorphism theorem.

Theorem 6.5. Let B be a compact polyhedron, D → B an oriented disk bundle
and t ∈ T (D) a geometric Thom class. Then multiplication by t defines a weak
equivalence, independent up to homotopy of the choice of t.

t : Zi(B) → Ze+i(D,S)

Proof. In the case that the disk bundle is trivial, multiplication by t is the
suspension isomorphism. The general case follows using Mayer-Vietoris and the
5-Lemma. �
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The following Thom Isomorphism theorem follows easily from Theorem 6.5.

Theorem 6.6. (Thom isomorphism) Let A be a compact polyhedron and C ⊂ A
a closed subpolyhedron of constant codimension e > 0 admitting an oriented normal
disk bundle in A (as in Proposition 6.1, for example). Then any geometric Thom
class t(C ⊂ A,Δ) determines a class τC ∈ Ze

C(A). Moreover, multiplication by
such a class

τC : Zi(C) → Ze+i
C (A)

is a weak equivalence, independent up to homotopy of the choice of τC .

Proof. The class tC = t(C ⊂ A,Δ) lies in the kernel of Ze(DΔ(C)) →
Ze(SΔ(C)). Hence, we may extend tC by 0 on A − OΔ(C), obtaining the class
τC in Ze(A) which vanishes off OΔ(C); in other words,

τC ∈ ker{Ze(A) → Ze(A−OΔ(C)} = ZC(A).

We now apply the excision property of Proposition 3.6 to identify the Thom
isomorphism of Theorem 6.5 with multiplication by τC . �
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On the motive of a K3 surface

Claudio Pedrini

1. Introduction

The existence of a suitable filtration for the Chow ring of every smooth projec-
tive variety over a field k, as conjectured by Bloch and Beilinson has many important
consequences both in arithmetic and in geometry. Apart from the trivial case of
curves and some other particular cases, this conjecture is still wide open. Jannsen
in [J1] has shown that the existence of a Bloch-Beilinson filtration F • for every
smooth projective variety is in turn equivalent to the existence of a Chow-Künneth
decomposition as conjectured by Murre (see section 2).

In the case of surfaces a consequence of this Conjecture is Bloch’s Conjecture for
surfaces which asserts for a complex surface X that the action of a correspondence
Γ in X ×X on the graded group of 0-cycles of X only depends on the cohomology
class of Γ. If X has geometric genus 0 this conjecture implies the converse to
Mumford’s famous necessary condition for the finite-dimensionality of the Chow
group of 0-cycles (see [J1]). It is known for surfaces not of general type, for certain
generalized Godeaux surfaces and in a few scattered cases. These conjectures are
of motivic nature: in particular for a surface X with pg = 0, Bloch’s Conjecture is
equivalent to the finite dimensionality of the motive of X (see [G-P]).
The existence of a suitable Chow-Künneth decomposition for the motive of a sur-
face X shows that the information necessary to study the above Conjectures is
concentrated in the transcendental part of the motive t2(X) (see [KMP]).

According to Murre’s Conjecture (or equivalently to Bloch-Beilinson’s Conjec-
ture) and to Kimura’s Conjecture on the finite dimensionality of motives (see [Ki])
the following results should hold for a surface X:

(a) The motive t2(X) is evenly finite dimensional;
(b) t2(X) satisfies the Nilpotency Conjecture (see 1.4);
(c) Every homologically trival correspondence in CH2(X ×X)Q acts trivially

on the Albanese kernel T (X) (see 1.2);
(d) The endomorphism group of t2(X) (tensored with Q) has finite rank (over

a field of characteristic 0).
The motive t2(X) being a birational invariant vanishes for a rational surface.

Also (a) is known to hold for a Kummer surface X because t2(X) is isomorphic to
t2(A), where A is an abelian surface (see [KMP 6.13]). Therefore, by the results in
[Ki], also (b) holds for a Kummer surface.

c© 2010 Claudio Pedrini
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A case where the above properties are still unknown is that of a K3 surface
which is not birational to a Kummer surface, in particular over C.

In this paper we analyze the relations between the statements in (a), (b) and
(c) and prove some results for K3 surfaces. In particular in Theorem 5.10 we
show that, for a complex K3 surface X with a large Picard number ρ, the finite
dimensionality of t2(X) implies the isomorphism of t2(X) with t2(Y ), where Y
is a Kummer surface. On the other hand, if X and Y are complex distinct K3
surfaces, which are general members of smooth projective families {Xt} and {Ys}
over the disk Δ (hence ρ(X) = ρ(Y ) = 1), then Murre’s Conjecture implies that
Hom(t2(X), t2(Y ) = 0 in the category of Chow Motives (Theorem 5.12).
We also relate the Nilpotency Conjecture with Bloch’s Conjecture for complex
surfaces and extend a result by M. Saito in [MS] on the degree of nilpotency of a
homologically trivial correspondence (Theorem 3.6).

In section 2 we recall some known results on the category of Chow Motives and on
the different conjectures.
Section 3 contains some properties about the Chow-Künneth decomposition for the
motive of a surface and the result on the degree of nilpotency.
In section 4 we show how the transcendental motive of a surface varies in a smooth
projective family over a quasiprojective base. This is relevant in the case of K3
surfaces because every complex projective K3 surface can be put in a smooth 1-
dimensional family of K3 surfaces.
Section 5 contains the results for complex K3 surfaces.
In section 6 we consider the isomorphisms between the graded Chow ring of a
complex variety with the Deligne-Beilinson cohomology ring and collect some results
on the regulator map for complex K3 surfaces. We thank B. Kahn, L. Barbieri-

Viale, J. Murre, and C. Weibel for useful comments on a earlier draft of this paper.
We also thank the Referee who suggested many improvements for the presentation
of the paper.

2. Chow Motives, Bloch-Beilinson filtration and Murre’s Conjecture

Let X be a smooth projective variety over a field k. We will denote by Ai(X) =
CHi(X)⊗Q the group of codimension i cycles on X modulo rational equivalence
with Q coefficients. Let Vk be the category of smooth projective varieties over k;
by Mrat we will denote the (covariant) category of Chow motives over k. Objects
in Mrat are triples (X, p,m) where X = Xd is a d-dimensional smooth projective
variety, p ∈ Ad(X ×X) is a projector, i.e.p2 = p, and m ∈ Z. Morphisms in Mrat

are defined as follows:

HomMrat
((X, p,m), (Y, q, n)) = qCorrm−n(X,Y )p

where Corri(X,Y ) = Corr−i(Y,X) and

Corri(X,Y ) =
⊕
α

Adα+i(Xα × Y )

if X =
∐

α Xα with Xα equidimensional of dimension dα. The covariant motive
functor h : Vk → Mrat is defined as follows: h(X) = (X, 1X , 0) and h(f) = [Γf ] if
f : X → Y . We give ourselves a Weil cohomology theory H∗ as defined in [Kl]: we
shall denote its field of coefficients by K (by convention it is of characteristic 0). For
an element α ∈ Ai(X) we denote by clα its image under the cycle map Ai(X) →
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H2i(X); Ai(X)hom denotes the kernel of cl, i.e. the subgroup of codimension i
cycles which are homologically trivial.
A similar definition of the category of motives can be given by replacing rational
equivalence with any other adequate equivalence relation between algebraic cy-
cles. In particular we will consider the (covariant) categories Mhom and Mnum

of motives modulo homological equivalence and modulo numerical equivalence. By
hhom we will denote the functor which associates to every X ∈ Vk its motive in
Mhom. Then one defines a functor Hi : Mhom → VectK for every i ∈ Z by
Hi((X, p,m)) = p∗Hi−2m(X).
A Weil cohomology theory H∗ on the category of smooth projective varieties over
k is called classical (see [A 3.4]) in the following cases:

(i) char k = 0 and H∗ is algebraic De Rham cohomology or l-adic cohomology
for some prime number l or Betti cohomology relative to a complex embedding;

(ii) char k = p > 0 and H∗ is crystalline cohomology or l-adic cohomology for
some prime number l �= p.

If char k = 0 then homological equivalence on algebraic cycles does not depend
on the choice of the classical Weil cohomology. Moreover, in any characteristic, the
dimension of Hi(X), for X ∈ Vk is independent of the choice of the classical Weil
cohomology H∗: it is denoted by bi(X).

In the following we will always consider a classical Weil cohomology theory H∗.
Let X ∈ Vk, X = Xd. We say that X has a Chow-Künneth decomposition (C-K
for short) over k if there exist orthogonal projectors πi = πi(X) ∈ Ad(X × X),
for 0 ≤ i ≤ 2d, such that clπi is the (i, 2d − i)-component of the diagonal ΔX in
H2d(X ×X) and [ΔX ] =

∑
0≤i≤2d πi.

This implies that in Mrat the motive h(X) decomposes as follows:

h(X) =
⊕

0≤i≤2d

hi(X)

where hi(X) = (X, πi, 0).
Next we recall (in our covariant set-up) Murre’s Conjecture for a purely d-dimensional,
smooth projective variety X = Xd ∈ Vk.
We will assume that X satisfies the the standard Conjecture C(X) i.e. that the
Künneth components of the diagonal ΔX in H2d(X ×X) are algebraic.

2.1. Murre’s Conjecture. [Mu]

(A) X has a Chow -Künneth decomposition h(X) =
⊕

0≤i≤2d hi(X).

(B) The correspondences πi(X) act as 0 on Aj(X) for i < j and for i > 2j.
(C) Assuming A) and B) we may define a decreasing filtration F • on Aj(X)

as follows:
F 1Aj(X) = Ker π2j , F

2Aj(X) = Ker π2j ∩Ker π2j−1, · · · , F νAj(X) =
= Kerπ2j ∩Kerπ2j−1,∩ · · · ∩Kerπ2j−ν+1.
Then the filtration F • is independent of the choice of the πi(X)

(D) F 1Aj(X) = Aj(X)hom, for all j.

Note that, with the above definitions: F j+1Aj(X) = 0.

It easily follows from the definition of F • (see [Mu 1.4.4]) that:

F 1Aj(X) ⊂ Aj(X)hom.



56 CLAUDIO PEDRINI

(A) is known to be true for curves, surfaces, abelian varieties, uniruled 3-folds and
Calabi-Yau 3-folds.
If X and Y have a C-K decomposition, with projectors πi = πi(X) and π′

j = πj(Y )
0 ≤ i ≤ 2d, d = dim X, 0 ≤ j ≤ 2e, e = dim Y ), then Z = X × Y has also a C-K
decomposition with projectors Πm = πm(Z) given by Πm =

∑
r+s=m πr × π′

s with
0 ≤ m ≤ 2(d+ e).
If the motive h(X) is finite-dimensional, in the sense of Kimura [Ki], and the
Künneth components of the diagonal are algebraic, then it has a C-K decomposi-
tion h(X) =

⊕
0≤i≤2d hi(X) and the motives hi(X) are unique, up to isomorphism.

Moreover the πi’s may be chosen so that πt
i = π2d−i, see [KMP 6.9].

Up to now it is only known that the Chow motive of a smooth projective variety
is finite dimensional if it lies in the tensor subcategory A ⊂ Mrat generated by the
motives of abelian varieties. A recent result by S. Gorchinskiy and V. Guletskii
[G-G] shows that the motive of a non-singular projective 3-fold X over a field k
admitting resolution of singularities can be decomposed into sums of tensor powers
of Lefschetz motives and the twisted Picard motive of a certain abelian variety
iff the subgroup of A0(X) generated by cycles algebraically equivalent to 0, is
representable (in the sense of Mumford). In this case h(X) is finite dimensional
and h(X) ∈ A. This result notably applies to Fano 3-folds. Jannsen [J1 2.1] has
shown that the conjectures (A), · · · , (D) hold for every smooth projective variety
X over k iff for every such X there exists a filtration F • on Aj(X) satisfying the
following Bloch-Beilinson’s Conjecture:

(a) F 0Aj(X) = Aj(X); F 1Aj(X) = (Aj(X))hom;
(b) F • is compatible with the intersection product of cycles;
(c) F • is compatible with f∗ and f∗ if f : X → Y is a morphism;
(d) The associated graded group Gr∗FA

j(X), where

GrνFA
j(X) = F νAj(X)/F ν+1Aj(X),

depends only on the motive h2j−ν(X) of X in Mhom;
(e) F j+1Aj(X) = 0 for all j.
If such a filtration exists then it is unique.
If we assume that the Künneth components of the diagonal are algebraic, then
condition (d) is equivalent to the following (see [J2 4.3]):
(d′) Let Y be a smooth projective variety and let Γ ∈ Ad+j−i(X × Y ), where
d = dimX. If the induced map (Γ)∗ between H2i−ν(X) and H2j−ν(Y ) is zero then
so is the map:

GrνFΓ : GrνFA
i(X) → GrνFA

j(Y )

In the case of surfaces there is a three-step filtration on A2(X), with

F 0A2(X) = A2(X) F 1A2(X) = A2(X)0 = Ker[A2(X)
deg−→Q] F 2A2(X) = T (X)

where T (X) is the Albanese Kernel, i.e.T (X) = Ker[αX : A2(X)0 → AlbX(k)] and
αX is the Abel-Jacobi map.
Then Bloch made the following (see [B 1.8]):

2.2. Bloch’s Conjecture for surfaces. Let X be a smooth projective sur-
face over C and let Γ ∈ A2(X × X). Then the action of Γ on the graded group
A2(X) depends only on the cohomology class [Γ] ∈ H4(X ×X,Q).
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Now let X and Y be smooth projective varieties: the following result in [J1
Prop. 5.8], relates Murre’s Conjecture for Z = X × Y , with the mophism groups
HomMrat

(hi(X), hj(Y )).

Proposition 2.1. Let X and Y be smooth projective varieties of dimensions
respectively d and e, having a C-K decomposition and let Z = X × Y be provided
with the product C-K decomposition.

(1) If Z satisfies (B), then:

HomMrat
(hi(X), hj(Y )) = 0 if j < i; 0 ≤ i ≤ 2d; 0 ≤ j ≤ 2e;

(2) If Z satisfies (D) then:

HomMrat
(hi(X), hi(Y )) 	 HomMhom

(hi,hom(X), hi,hom(Y )),

where hhom(X) =
∑

0≤i≤2d hi,hom(X) and hhom(Y ) =
∑

0≤j≤2e hj,hom(Y ) in Mhom.

In particular if X × X satisfies (D) and the field of coefficients of H∗ is K = Q

then (2) implies that the Q-vector space EndMrat
(hi(X)), for 0 ≤ i ≤ 2d, has finite

dimension, being isomorphic to a sub-vector space of H∗(X ×X,Q).

Note that, because of our covariant definition of the functor h : Vk → Mrat, in (1)
we have j < i, while in the contravariant setting (as in [J1 5.8]) one has i < j.

Remark 2.2. In the case dim X =dim Y =2 in [KMP 3.10] it has been proved
that (1) in Proposition 2.1 holds unconditionally for all i < j and 0 ≤ i ≤ 4, while
(2) holds for all i �= 2. It follows that in Bloch’s Conjecture 1.2, the action of
a homologically trivial correspondence Γ on the components Q and AlbX of the
Chow group A0(X) vanishes. Hence the conjecture essentially reduces to the case
of the action of Γ on the Albanese kernel T (X).

Another conjecture, related to the previous ones is the following Nilpotency conjec-
ture N(X).

2.3. Conjecture N(X). Let X = Xd be a smooth projetive variety over k
of dimension d and let N (X) be the ideal in Ad(X ×X) of correspondences which
are numerically equivalent to 0. Then N (X) is a nilpotent ideal. In particular if
f ∈ EndMrat

(h(X) is homologically trivial then f is nilpotent.

If the motive h(X) is finite dimensional then N(Xm) holds for all m ≥ 1 (see [Ki]).
Also Murre’s Conjecture for X, X × X and X × X × X implies N(X) by [J1 p.
294]. It follows that Murre’s Conjecture for all sufficiently high powers Xm implies
the finite dimensionality of h(X) (having assumed C(X)).
Kimura and O’Sullivan have conjectured (see [Ki]) that all smooth projective vari-
eties have finite dimensional motives.
The conjecture is known for curves and for some surfaces: rational surfaces, Godeaux
surfaces, Kummer surfaces, surfaces with pg = 0 which are not of general type, sur-
faces isomorphic to a quotient (C ×D)/G, where C and D are curves and G is a
finite group. It is also known for Fano 3-folds. In all these known cases the motive
h(X) lies in the tensor subcategory of Mrat generated by abelian varieties.
By a result of V. Voevodsky [Voe1] (see also [Vois2]) if Γ ∈ Ad(X × X) is al-
gebraically equivalent to 0 then it is smash nilpotent as an endomorphism in
EndMrat

(h(X)). Therefore Γ is nilpotent (see [Ki 2.16]).



58 CLAUDIO PEDRINI

3. The refined Chow-Künneth decomposition for a surface

If X is a smooth projective surface then there exists a refined Chow-Künneth
decomposition of the motive h(X) with hi(X) = (X, πi, 0) in Mrat, as defined in
[KMP 2.3], such that hi(X) are finite dimensional for i �= 2 and

EndMrat
(hi(X)) 	 EndMhom

(hhom
i (X))

for i �= 2. Moreover π2 = πalg
2 + πtr

2 and h2(X) = halg
2 (X) + t2(X), where t2(X) =

(X, πtr
2 , 0) and halg

2 (X) 	 h(NSX)(1). Here h(NSX)is the Artin Motive associated

to NSX = NS(X ⊗k ks)Q for a separable closure ks of k. Then: A∗(halg
2 (X)) =

A1(h2(X) = NS(X)Q and H2(X) = H2
alg(X) ⊕ H2

tr(X) = (NS(X) ⊗ K) ⊕
H2(t2(X), where K is the field of coefficients of H∗ and H2

tr(X) is the transcen-
dental part of the cohomology. We also have the following equalities:

Hi(t2(X)) = 0 for i �= 2; H2(t2(X)) = πtr
2 H2(X,Q) = H2

tr(X,Q),

Ai(t2(X)) = πtr
2 Ai(X) = 0 for i �= 2; A0(t2(X)) = T (X),

where T (X) is the Albanese Kernel of X.
From [KMP 4.3] we get, for X and Y surfaces

HomMrat
(t2(X), t2(Y )) 	 A2(X × Y )

J (X,Y )

where J (X,Y ) is the subgroup of A2(X × Y ) generated by the classes of corre-
spondences which are not dominant over X and Y by either the first or the second
projection.

The following theorem in [KMP 6.12] explains the relations between the tran-
scendental part t2(X) of the motive of a surface and the different conjectures for
h(X).

Theorem 3.1. Let X be a smooth projective surface and let

h(X) =
⊕

0≤i≤4

hi(X) =
⊕

0≤i≤4

(X, πi, 0)

be a refined Chow-Künneth decomposition. Let us consider the following conditions:
(1) the motive h(X) is finite-dimensional;
(2) the motive t2(S) is evenly finite-dimensional;
(3) every endomorphism f ∈ EndMrat

(h(S)) which is homologically trival is
nilpotent, i.e. the conjecture N(X) holds;

(4) for every correspondence Γ ∈ A2(X × X)hom, αi,i = πi ◦ Γ ◦ πi = 0, for
0 ≤ i ≤ 4;

(5) for all i, the map EndMrat
(hi(X)) → EndMhom

(hi,hom(X)) is an isomor-
phism (hence EndMrat

(hi(X)) has finite rank in characteristic 0);
(6) the map EndMrat

(t2(X)) → EndMhom
(thom2 (X)) is an isomorphism;

(7) A2(X ×X)hom ⊂ J (X).
Then (1) ⇔ (2) ⇒ (3) ⇐ (4) ⇔ (5) ⇔ (6) ⇔ (7).

Note that, on the base of some conjectures on mixed motives, Beilinson has
predicted that for any smooth n-dimensional projective variety X, the Q-algebra
An(X×X)/J (X,X) is semisimple finite dimensional andAn(X×X)hom ⊂ J (X,X)
(see [A 22.3.3]).
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In the case of a complex surface X we also have the following result (see [KMP
6.11]).

Theorem 3.2. Let X be a smooth projective surface over C. Then the following
conditions are equivalent:

(i) pg(X) = 0 and h(X) is finite dimensional;
(ii) The Albanese Kernel T (X) vanishes;
(iii) t2(X) = 0.

The following conjecture appears in [Vois1]. We will see how it is related with
N(X).

3.1. Conjecture V(X). (see [Vois1 Conj. 6]). Let X be a surface: for every
Γ ∈ A2(X ×X)

Im F 2Γ∗ = Im F 2(Γ ◦ Γt)∗ ⊂ T (X)

where T (X) is the Albanese Kernel, and F 2Γ∗ denotes the action induced by Γ on
T (X)

Remark 3.3. Let X,Y be complex varieties of dimension d and let Γ ∈ Ad(X×
Y ). Then, by [Vois1 Lemma 5] there exists a morphism of Hodge structures

ψ : Hd
tr(X,Q) → Hd

tr(Y,Q)

such that the action of Γ on Hd
tr(X) is given by

[Γ]∗ = [Γ]∗ ◦ [Γt]∗ ◦ ψ
Moreover, if the Hodge conjecture is true, then ψ = Z∗, for some Z ∈ Ad(X × Y ).
In particular, if dim X = dim Y = 2 then

Im [Γ ◦ Γt]∗ = Im[Γ]∗ ⊂ H2
tr(Y )

and Ker[Γt]∗ = Ker[Γ ◦ Γt]∗.

Proposition 3.4. Let X be a complex surface. Assume Conjectures N(X) and
V (X). Then X satisfies Bloch’s Conjecture 1.2.

Proof. Let Γ ∈ EndMrat
(t2(X)) be homologous to 0. By V (X), in order

to compute the action of Γ on T (X) we may replace Γ by Γ ◦ Γt, hence we may
assume Γ is self-adjoint in A2(X ×X). By N(X) there exists n such that Γn = 0
in A2(X × X), hence (F 2Γ∗)

n is 0 on T (X). Since Γ is self-adjoint, from V (X)
it follows [Vois1 Remark 2] that Ker F 2Γ∗ = KerF 2(Γ ◦ Γ)∗ on T (X). Therefore
F 2Γ∗ is 0 on T (X). �

Example 3.5. [Vois1] Let X be a smooth projective surface which is fibered
over a 1-dimensional smooth basis S. Then every Γ ∈ A2(X ×S X) satisfies Con-
jecture V (X).

By a result of M. Saito in [MS] the vanishing of T (X) for a complex surface X
implies that the cube of the ideal:

A2(X ×X)hom = Ker(A2(X ×X) → H4(X ×X))
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is 0. Note that, due to a result by Bloch and Srinivas in [B-Sr] if the Albanese
kernel T (X) vanishes then there exist a divisor D on X and a subvariety V ⊂ X
of dimension ≤ 1 such that

ΔX = Γ1 + Γ2

where Γ1 is supported on D × X and Γ2 is supported on X × V . Therefore, if
T (X) = 0 every correspondence Z in A2(X × X) splits in Z1 + Z2, where Z1 is
supported on D ×X and Z2 is supported on X × V .

Next Theorem generalizes M. Saito’s result.

Theorem 3.6. Let X be a smooth (irreducible) projective surface over a field
k and let Ω be a universal domain containing k. Let Z be a homologically trivial
correspondence in A2(X×X) such that F 2Z acts trivially on T (XΩ). Then Z3 = 0.

Proof. We have F 2Z = πtr
2 ◦Z ◦πtr

2 . Let k(X) = k(ξ) be the field of fractions
of X, where ξ is the generic point of X. Choose an embedding k(X) ⊂ Ω. Then
F 2Z acts trivially on A0(Xk(X)) so that (πtr

2 ◦ Z ◦ πtr
2 )(ξ) = 0. By [KMP 4.3] it

follows that Z = Z1 + Z2 where Z1, Z2 ∈ A2(X ×X), Z1 is supported on D ×X
and Z2 is supported on X × C with dim D ≤ 1 and dim C ≤ 1. By eventually
considering the normalizations D̃ and C̃ we may also assume that both D and C
are smooth.

Let h(X) =
∑

0≤i≤4 hi(X) be a refined Chow-Künneth decomposition as in

[KMP 2.3], where hi(X) = (X, πi, 0) are such that π0 = [X × P ], π4 = [P × X],
and πi = πt

4−i. Here P is a rational point on X such that P /∈ D, P /∈ C. In
the case X has no such rational point then one takes h0(X) = (X, π0, 0), where
π0 = 1

n [X × P ], P a closed point on X with separable residue field k′ of degree n

over k (and similarly for π4). Moreover π2 = πalg
2 + πtr

2 , h2(X) = halg
2 (X) + t2(X)

where halg
2 (X) = (X, πalg

2 , 0) 	 h(NSX(1)), t2(X) = (X, πtr
2 , 0) and h(NSX) is the

Artin motive associated to the Neron-Severi group NSX . Then A0(h
alg
2 (X)) = 0

and A0(t2(X)) = T (X).
We have Z = ΔX ◦ Z ◦ΔX =

∑
i,j=0,...,4 πi ◦ Z ◦ πj . Since πi ◦ πj = 0 when i �= j

and πi ◦ πi = πi we get

Z3 =
∑

h,i,j,k=0,...,4

πh ◦ Z ◦ πi ◦ Z ◦ πj ◦ Z ◦ πk

Since Z ∈ J(X) ∩A2(X ×X)hom from [KMP 3.10] and [KMP 4.5] we get

πj ◦ Z ◦ πi = 0

for j ≤ i and all i, j = 0, · · · , 4. Hence the sum above reduces to the strictly
decreasing sequences

Z3 = π4 ◦ Z ◦ π3 ◦ Z ◦ π2 ◦ Z ◦ π1 + π3 ◦ Z ◦ π2 ◦ Z ◦ π1 ◦ Z ◦ π0

To prove the claim it is sufficient to show that Z ◦ π0 = π4 ◦ Z = 0. By the
choice of π0 we have Z1 ◦π0 = 0, hence Z ◦π0 = Z2 ◦π0. Similarly π4 ◦Z = π4 ◦Z1

and so, passing to the transpose it suffices to show that Z2 ◦ π0 = 0. But

Z2 ∈ A1(X × C) = Hom(h(X), h(C)) = Hom(h(X)⊗ h(C),L)

Hence
Z2 ◦ π0 ∈ Hom(1, h(C)) = Hom(h(C),L) = A1(C)
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The cycle Z ◦ π0 = Z2 ◦ π0 is homologically trivial in A1(C), therefore it must be
0. Hence Z3 = 0. �

Remarks 3.7. : 1) According to Bloch’s Conjecture for surfaces the action
of every homologically trivial correspondence on T (XΩ) should be trivial, if Ω is
a universal domain containing the field k. This conjecture implies the converse of
Mumford’s Theorem i.e. if H2(X̄,Ql(1)) is algebraic for some prime l �= chark
then the Abel-Jacobi map

αΩ : A2(XΩ)0 → AlbX(Ω)

is an isomorphism (see [J1 1.12]).
2) From the proof of theorem 2.7 it follows that, if T (X) �= 0 and H1(X,Q) �= 0,
then the correspondence (π2 ◦ Z) ◦ (π1 ◦ Z) may be non zero. Hence Z2 �= 0. A
similar result appears in [MS 2.4], where an example is given of a complex surface
X, with H1(X) �= 0, such that the square of the ideal A2(X ×X)hom is nonzero.

4. The Chow specialization map

Fix a ground field k and let S be a smooth irreducible quasi-projective variety
over k. For simplicity, we will assume that k is algebraically closed of characteristic
0 and dim S = 1. Let η be the generic point of S, and let 0 be a distinguished
closed point on S. By considering the localizations of S at η and at 0 we may
restrict to the case where S = Spec R, R a regular local ring with residue field k
and function field K = k(S).

For a scheme X smooth and proper over S there is a specialization map (see
[Fu p. 399])

σ : A∗(Xη) → A∗(X0)

which is a ring homomorphism, i.e. it preserves the intersection product. Here
Xη and X0 are the fibers of X respectively over the generic point and the closed
point of S, and A∗ is the graded Chow ring of algebraic cycles modulo rational
equivalence with Q coefficients.

If X → S is a smooth projective morphism, then the specialization map σ on
Chow groups is compatible with the specialization isomorphism in cohomology and
with the cycle map cl, thus yielding a commutative diagram (see [C-H p. 465])

Ai(Xη)
σ−→ Ai(X0)⏐⏐�cl ⏐⏐�cl

H2i(Xη)
�−→ H2i(X0)

We also recall the ’spreading out’ argument for a cycle Zη ∈ Ai(Xη × Xη) (see
[C-H p. 489]): if Zη is a cycle on Xη ×Xη, where η is the generic point of S, then
one takes a neighborhood U ⊂ S of η and a cycle ZU on XU ×U XU such that
ZU/η = Zη and let Z on X ×S X be its Zariski closure. There is a commutative

diagram: Ai−1(X0 ×X0)
i∗ ��

Ai(X ×S X)
j∗ ��

i!

��

Ai(Xη ×Xη)
��
0

Ai(X0 ×X0)
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where the top row is exact, i and j are the inclusion maps of X0×X0 and Xη ×Xη

in X ×S X and i! is the Gysin homomorphism as defined in [Fu 6.2]. For every
cycle Zη ∈ Ai(Xη ×Xη) the specialization map

σ : Ai(Xη ×Xη) → Ai(X0 ×X0)

can be defined as follows: σ(Zη) = i!(Z) where j∗(Z) = Zη and the result does
not depend on the choice of the spread Z. The ambiguity in spreading a cycle in
Ai(Xη ×Xη) is given by cycles in in Ai−1(X0 ×X0).

Proposition 4.1. If X → S is a smooth projective morphism of relative dimen-
sion d and {πi}, with 0 ≤ i ≤ 2d, is a set of orthogonal idempotents in Ad(Xη×Xη)
lifting the Künneth components of the diagonal ΔXη

, then {σ(πi)} have the same

property in Ad(X0 ×X0).

Proof. From the commutativity of j∗ and i! with proper pushforwards, flat
pullbacks and intersection products ([Fu 20.3]) it follows that the specialization
map σ in (3) is compatible with the composition of correspondences. Using the
fact that σ induces isomorphism in cohomology we get our result. �

Theorem 4.2. Let f : X → S be a smooth, projective family of surfaces over
an algebraically closed field k of characteristic 0, with S smooth and dim S =1.
Let X = Xη be the fiber of f over the generic point η of S and X0 the fiber
over a closed point 0 of S. Let h(X) =

∑
0≤i≤4 hi(X) be a refined Chow-Künneth

decomposition with hi(X) = (X, πi(X), 0) and let h(X0) =
∑

0≤i≤4 hi(X0) be the

corresponding decomposition in Mrat(k), with hi(X0) = (X0, σ(πi(X)), 0), induced

by the specialization map σ. Let π2(X) = πalg
2 (X) + πtr

2 (X): then

σ(πtr
2 (X)) = πtr

2 (X0)⊕ τ (X0) πalg(X0) = σ(πalg
2 (X))⊕ τ (X0)

Here τ (X0) ∈ A2(X0 × X0) is a projector such that (X0, τ (X0), 0) 	 A and A is
the direct sum of r = ρ(X0) − ρ(X) copies of the Lefschetz motive L, with ρ(X0)
and ρ(X) the ranks of the Neron- Severi groups respectively of X0 and X.

Proof. Let h2(X) = halg
2 (X)⊕ t2(X) where halg

2 (X) = (X, πalg
2 (X), 0) and

halg
2 (X) 	 L⊕ρ(X).

Let [Di] be an orthogonal basis for NS(X)Q and let (D1)0, . . . , (Dn)0 be the Chow
specialization of the divisors Di in A1(X0). Since the Chow-specialization is an
isomorphism on Weil cohomology, and since the intersection matrix is determined
on the cohomological level, we can complete the system {(D1)0, . . . , (Dn)0} to a
basis in the Neron-Severi group of X0

(D1)0, . . . , (Dn)0 Hn+1, . . . , Hm

such that m = ρ(X0) ≥ n and

halg
2 (X0) = A⊕B,

where the motive B is defined by the projector

πalg
2 (X0) =

∑
i

1

< [(D0))i], [(D0)i] >
[(D0)i]⊗ [(D0)i] ∈ A2(X0 ×X0)



ON THE MOTIVE OF A K3 SURFACE 63

and the motive A is defined by the projector

τ (X0) =
∑
j

[Hj ×Hj ]

< [Hj ], [Hj ] >

for n+ 1 ≤ j ≤ m. Then, σ(π2(X)) = π2(X0), by Prop. 3. 1, σ(halg
2 (X)) = B and

A 	 L⊕r with r = m− n. Therefore

πalg
2 (X0) = σ(πalg

2 (X)) + τ (X0); σ(πtr
2 (X)) = τ (X0) + πtr

2 (X0)

�

Proposition 4.3. Let f : X → S be a smooth, projective family of surfaces
over a field k of characteristic 0, where S is a geometric DVR of equicharacteristic
0 with generic point η and closed point s. If t2(Xη) is finite dimensional then also
t2(Xs) is finite dimensional.

Proof. Let K be any field and let DMQ(K) be the triangulated category of
motives as defined by V. Voevodsky in [Voev 2]. There is a fully faithful embedding

j : Mrat(K) → DMQ(K).

Let Ψ be the ”vanishing cycle functor” defined by J. Ayoub in [Ay 1.5]

Ψ : DM ct
Q (k(η)) → DM ct

Q (k(s))

where, for a field K, DM ct
Q (K) denotes the subcategory generated (up to twists

and taking direct factors) by the images, under the functor j, of the motives
h(X) ∈ Mrat(K). The functor Ψ is triangulated and tensor, hence Ψ(∧nh(X)) =
∧nΨ(h(X), for all h(X) ∈ Mrat(k(η)). If t2(Xη) is finite dimensional, then it
is evenly finite dimensional (see Theorem 3.1) so that ∧nt2(Xη) = 0 for some n.
Therefore ∧nt2(Xs) = Ψ(∧nt2(Xη)) = 0. �

5. Complex K3 surfaces

In this paragraph we prove some results on the motive t2(X) for a complex
K3 surface X. X is a regular surface (i.e. q(X) = 0), therefore it has refined
Chow-Künneth decomposition of the form h(X) =

∑
0≤i≤4 hi(X) with h1(X) =

h3(X) = 0. Moreover h2(X) = halg
2 (X) + t2(X), where t2(X) = (X, πtr

2 , 0) and

halg
2 (X) 	 L⊕ρ. Here ρ is the rank of the NS(X)Q = (PicX)Q so that 1 ≤ ρ ≤ 20.

Moreover

Hi(t2(X)) = 0 for i �= 2; H2(t2(X)) = πtr
2 H2(X,Q) = H2

tr(X,Q),

Ai(t2(X)) = πtr
2 Ai(X) = 0 for i �= 2; A0(t2(X)) = T (X),

where T (X) is the Albanese Kernel. Since q(X) = 0, we also have T (X) = A0(X)0
(0-cycles of degree 0) and

dimH2(X) = b2(X) = 22 dimH2
tr(X) = b2(X)− ρ

The family of K3 surfaces with Picard number ≥ ρ form a dense countable union
of subvarieties of dimension 20 − ρ in the family of all K3 surfaces. On a gen-
eral K3 surface all divisors are linearly equivalent to some rational multiple of the
hyperplane class, hence ρ = 1.
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AK3 surface is called exceptional (or singular) if its Picard number ρ = dim Pic(X)Q
= dim NS(X)Q = 20.
For a Kummer surface, obtained by resolving the singularities of the quotient A/G,
with A an abelian surface and G = {1,−1}, we have ρ ≥ 17.

Definition 5.1. A polarized complex K3 surface X is a K3 surface equipped
with an element α ∈ Pic X which is the class of an ample invertible sheaf. A
smooth family of K3 surfaces parametrized by a scheme S (over C) is a proper
smooth morphism f : X → S whose fibers are K3 surfaces. A polarization of f is
a section θ ∈ PicS X such that for any s ∈ S it is a polarization of Xs = f−1(s).
Then R2f∗Z is a variation of Hodge structures on C; θ is at every point of type
(1, 1) and its orthogonal P 2f∗Z is again a variation of Hodge structures (see [D
6.3]).
By a result of Deligne [D 6.4] for every complex polarized K3 surface X there exists
a smooth family of polarized K3 surfaces {Xt}t∈Δ, where Δ is the unitary disk,
such that the central fiber X0 is isomorphic to X.
A complex K3 surface X will be said to be general if there exists a family {Xt}t∈Δ

such that X = Xt, where t belongs to the complement of a countable union of
analytic subvarieties of Δ.

Remark 5.2. In [Ay 1.5.1] it has been conjectured that the functor Ψ, which
appears in Prop. 3. 3, is conservative, i.e. Ψ(A) = 0 implies A = 0. If this is the
case then every general K3 surface X will have finite dimensional motive. In fact
there exists a smooth projective family of X → S such that X = Xt and the special
fiber Y = X0 is a Kummer surface. Therefore t2(Y ) is evenly finite dimensional i.e.
∧nt2(Y ) = 0, for some n. Then Ψ(∧n(t2(X)) = ∧nt2(Y ) = 0, hence ∧nt2(X) = 0.

We will now show, using results in [P-S] and [K], that for a general K3 surface
the image thom2 (X) of the transcendental motive t2(X) in the category Mhom(C) of
homological motive is absolutely simple. It will follow that, for two distinct general
K3 surfaces X and Y

HomMhom
(thom2 (X), thom2 (Y )) = 0

In Theorem 5.11 we will show that Murre’s Conjecture (D) implies

HomMrat
(t2(X), t2(Y )) = 0.

Let’s consider the categoriesMrat(C) and Mhom(C) and letHSQ be the Tannakian
category of Q-Hodge structures. ByHSGrQ we will denote the rigid tensor category
of Z-graded objects of HSQ (see [A 7.1.2.1]). There is a Hodge realization functor

HHodge : Mrat(C) → HSGrQ

which factorizes trough Mhom(C). Let M̃hom(C) be the subcategory generated by
the motives of all smooth projective varieties X satisfying the standard conjecture
C(X), which amounts to the algebraicity of the Künneth components of the di-

agonal in H∗(X × X). M̃hom(C) contains all the motives of curves, surfaces and
abelian varieties. Hhodge induces a functor

HHodge : M̃hom(C) → HSQ

which is faithful.
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Let X be a smooth complex projective surface, and let

h(X) =
∑

0≤i≤4

hi(X)

be a refined Chow-Künneth decomposition in Mrat(C), with h2(X) = halg
2 (X) ⊕

t2(X). Let

hhom(X) =
∑

0≤i≤4

hi,hom(X)

be the corresponding decomposition in Mhom(C). The maps

EndMrat
(hi(X)) → EndMhom

(hi,hom(X)) ⊂ EndV ec(Q)(H
i(X))

are isomorphisms for i �= 2. Also halg
2 (X) 	 L⊕ρ, where ρ is the rank of the

Neron-Severi group, and EndMrat
(L⊕ρ) 	 EndMhom

(L⊕ρ). Therefore one has an
isomorphism

h2,hom(X) = thom2 (X)⊕
⊕
α

Sα

where Sα 	 L and 1 ≤ α ≤ ρ(X).
Let f : X → S be a proper and smooth morphism of complex algebraic varieties.
The Betti cohomology groups Hi(Xs) of the fibers Xs fit together into a local
system which underlines a variation of Hodge structure V on S such that the Hodge
structure at s is just the Hodge structure on Hi(Xs). Therefore for every point
s ∈ S(C) there is a canonical action, i.e. the monodromy of π1(S(C), s) on H∗(Xs).
Then we have the following

Proposition 5.3. Let S be a smooth complex variety. For a general s ∈ S(C)
a finite index subgroup of the monodromy group is contained in the Mumford-Tate
group of the Hodge structure on Vs.

Proof. See [P-S Prop. 14]. �

From the result above we get (see [K 6.3]):

Theorem 5.4. Let X be a general complex K3 surface. Then the motive
thom2 (X) is absolutely simple.

Proof. From [P-S Ex. 5 and Cor. 18] it follows that the Hodge realization of
the motive thom2 (X) is absolutely simple. The functor HHodge being faithful we get
that thom2 (X) is also absolutely simple.

We recall from [AK 7] that, for an object M in a Q-linear, monoidal, rigid,
symmetric, tensor category C such that End(1) = Q the trace tr(f) ∈ Q of a
morphism f ∈ EndC(M) is defined by the composition

1
η−→M∗ ⊗M

1⊗f−→M∗ ⊗M
R−→M ⊗M∗ ε−→1

where ε is the evaluation map, η its dual and R is the switch.
If f = idM then tr(idM ) = χ(M) is called the the Euler characteristic (or the
dimension) of M .

The following example shows that for a Kummer surface the motive thom2 (X)
may be not absolutely simple.

�
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Example 5.5. Let A be a simple abelian surface over C ”having many endo-
morphisms ” (or ”having complex multplication”, see [Mi]) i.e. such that

δ(M)d(M) = 4

where M = EndA⊗Q and δ, d are defined as follows:

δ(M) = [Z(M) : Q], d(M) = [M : Z(M)]1/2

with Z(M) the center of M (see [K 1.1]). Let X be the Kummer surface obtained
from A/G, where G =< 1,−1 >, by resolving singularities. Then t2(X) 	 t2(A)
(KMP 7. 6. 13]), so that also thom2 (X) 	 thom2 (A). According to [K 5.2] one has
thom2 (X)⊗ Q̄ = ⊕αSα with Sα simple, so that χ(Sα) = 1 and

∑
α

χ(Sα) = b2 − ρ(X)

with b2 = 22 and ρ(X) ≤ 20. Hence the number of Sα is greater than 1. Let nτ be
the copies of Sτ appearing in the sum. Then

End(thom2 (X))⊗ Q̄ 	 End(
⊕
τ

nτSτ ) =
∏
τ

Mnτ
(Q̄)

where Mnτ
is the ring of nτ by nτ matrices.

Definition 5.6. Let X and Y be two complex K3 surfaces. A Hodge cycle
Z ∈ H4(X × Y,Q) is the sum of Zν ∈ (NS(X)⊗ NS(Y ))Q and Zτ ∈ (TX ⊗ TY ),
where TX is the transcendental lattice H2

tr(X,Q) of X, and similarly for Y . A
Hodge cycle is algebraic iff so is Zτ . A Hodge cycle Z ∈ H4(X × Y,Q) is called a
Hodge isometry if it induces an isometry

Z∗ : H2
tr(X,Q) → H2

tr(Y,Q)

which preserves the Hodge structures of H2
tr(X)⊗ C and H2

tr(Y )⊗ C.

Proposition 5.7. Let X and Y be complex K3 surfaces and φ : H2
tr(X) →

H2
tr(Y ) a Hodge isometry. Then there exists an algebraic cycle Γ ∈ H4(X × Y,Q))

such that φ = Γ∗, where Γ∗ denotes the action of Γ on H∗(X). Moreover, if
ρ(X) > 11 then there exists an isomorphism f : Y → X such that f∗ = φ on
Htr

2 (X).

Proof. See [Muk Prop. 6.2] �

The following result can be viewed as an extension of Prop. 4. 7 to the case of
motives.

Proposition 5.8. Let X and Y be complex K3 surfaces such that there exists
an algebraic correspondence Γ ∈ A2(X × Y ) which induces an isomorphism Γ∗ :
H2

tr(X) → H2
tr(Y ). Assume that t2(Y ) is finite dimensional. Then t2(Y ) is a direct

summand of t2(X).

Proof. By Remark 2. 4 Im [Γ◦Γt]∗ = Im [Γ]∗ andKer [Γt]∗ = Ker [Γ◦Γt]∗ =
0. Hence

[Γ ◦ Γt]∗ : H2
tr(Y ) → H2

tr(Y )
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is an isomorphism because H2
tr(X) and H2

tr(Y ) are Q-vector spaces of the same
dimension. The correspondence Z = Γ◦Γt yields a map between the transcendental
motives

Z̄ : t2(Y ) → t2(Y )

such that Z̄hom : thom2 (Y ) → thom2 (Y ) is an isomorphism in Mhom(C). Let A be the
full subcategory of Mrat(C) generated by evenly finite dimensional motives. Then
t2(Y ) ∈ A and by [A-K 8.2.4] the functor Φ : A → A/N is conservative, i.e. it
preserves isomorphisms. Here N is the largest monoidal ideal in A distinct from A.
The ideal N corresponds to numerical equivalence, hence Φ(Z̄) is an isomorphism
in A/N . Therefore Z̄ is an isomorphism in A. Let Z ′ be such that Z ′ ◦ Z̄ = idt2(Y ).
Then (Z ′ ◦ Γ) ◦ Γt = idt2(Y ) so that the map

Γt : t2(Y ) → t2(X)

is injective. Therefore t2(Y ) is a direct summand of t2(X). �

Definition 5.9. A Nikulin involution i on a K3 surface X is an involution
such that i∗(ω) = ω for all ω ∈ H2,0(X).

Theorem 5.10. Let X be a complex K3 surface and suppose that either ρ(X) =
19, 20 or that ρ(X) = 17, 18 and there exists an embedding

TX ⊗Q ⊂ (U3 ⊗Q)

where U is a free Z-module of rank 2, whose bilinear form has matrix(
0 1
1 0

)
Then there exists a Kummer surface Y such that t2(Y ) is direct summand of t2(X).
If t2(X) is finite dimensional then t2(X) 	 t2(Y ).

Proof. By a result in [Mor pag. 121], which extends, using [Muk], a pre-
vious one by [S-I] for ρ = 20, there exist an abelian surface A and an algebraic
correspondence between X and A which induces a Hodge isometry between the
transcendental lattices TX and TA of X and A. Let Y be the Kummer surface as-
sociated to A. Then there exists is a Nikulin involution i on X such that X/ < i >
is birational to the Kummer surface Y . As in [Mor §3], by blowing up the 8 fixed
points on X of the involution i, we have a diagram

X̃ −→ X⏐⏐�g ⏐⏐�
Ỹ −→ X/ < i >

where Ỹ 	 X̃/G, G is the group generated by i and h(Ỹ ) is finite dimensional,

because Ỹ is birational to the Kummer surface Y . Moreover t2(X̃) = t2(X) because
t2(−) is a birational invariant for surfaces. Also

H2
tr(X) 	 H2

tr(X̃) 	 H2
tr(A) 	 H2

tr(Ỹ ).

Let p = 1/2(Γt
g ◦ Γg) ∈ A2(X̃ × X̃): then p is a projector and

h(X̃) = h((X̃, p))⊕ h((X̃,ΔX̃ − p)) 	 h(Ỹ )⊕N

where N = h((X̃,ΔX̃ − p). Hence t2(Ỹ ) is a direct summand of t2(X̃).
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If t2(X) is finite dimensional so it is h(X̃) and we are left to show that N = 0. The

map g induces an isomorphism on the cohomology groupsH∗(h(X̃)) and H∗(h(Ỹ )),

because b2(X̃) = b2(Ỹ ) = 22 and ρ(X̃) = ρ(Ỹ ). Therefore the correspondence
ΔX̃ − p is homologically trivial. From [Ki] it follows that the projector ΔX̃ − p is
nilpotent, hence it is 0. Therefore we get N = 0. �

Remark 5.11. The following result by Nikulin in [N] has extended that of
Mukai in Prop. 4. 7. The lattice of algebraic cycles SX of a K3 surface X is said
to represent 0 if there exists an element x ∈ SX such that x �= 0 and x2 = 0. If
φ : TX ⊗Q 	 TY ⊗Q is an isomorphism of the lattices of transcendental cycles of
two K3 surfaces X and Y preserving the Hodge structure, then the cycle

Γφ ∈ (TX ⊗ TY )⊗Q ⊂ H4(X × Y,Q)

is algebraic iff SX represents 0, i.e. the surface X has a pencil of elliptic curves (in
particular this is so if rk SX ≥ 5).

Theorem 5.12. Let X and Y be distinct complex K3 surfaces which are general
members of smooth projective families X = {Xs}s∈S and Y = {Yt}t∈T , where S
and T are smooth quasiprojective varieties. Assume Murre’s Conjecture (D) for
X × Y . Then

HomMrat
(t2(X), t2(Y )) = 0

Consequently there exists no Hodge isometry between TX and TY .

Proof. By Proposition 2.1 the functor h : Mrat(C) → Mhom(C) induces an
isomorphism

HomMrat
(t2(X), t2(Y )) 	 HomMhom

(thom2 (X), thom2 (Y ))

The variations of Hodge structures R2f∗Q and R2g∗Q corresponding to the families
f : X → S and g : Y → T are distinct and simple. Since the Hodge realizations
HHodge is faithful it follows that

HomMrat
(t2(X), t2(Y )) = 0.

Assume that there exists an isometry φ between the transcendental lattices TX

and TY . Then, by Prop 4. 7, φ is induced by an algebraic correspondence Γ ∈
A2(X × Y ). The associated map

F 2Γ = πtr
2 (Y ) ◦ Γ ◦ πtr

2 (X) ∈ HomMrat
(t2(X), t2(Y ))

is 0. The map
φ = Γ∗ : TX = H2

tr(X) → TY = H2
tr(Y )

also vanishes because π2
tr(X) and π2

tr(Y ) act as the identity on H2
tr. Therefore we

get a contradiction. �

Remark 5.13. In [C-L 2 3.2] it is proved that the existence of a Bloch-Beilinson
filtration for X × Y , where X,Y are general K3 surfaces, implies

A2(X × Y ) =
∑

0≤i≤2

Ai(X)⊗A2−i(Y )

ThereforeA2(X×Y ) = J (X,Y ), and this, by (1), impliesHomMrat
(t2(X), t2(Y )) =

0.
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6. Deligne-Beilinson’s Cohomology and the regulator map

Let A ⊂ C be a subring, which for us will be Z,Q or R: for every smooth
algebraic manifold Y over C, of dimension n, we will denote by Hi

D(Y,A(r)) the
Deligne-Beilinson cohomology groups as defined in [E-V], where A(r) = (2πi)rA ⊂
C. For A = Q and i = 2k−1 and Y smooth and projective there is an isomorphism

H2k−1
D (Y,Q(k)) 	 H2k−2(Y,C)

F kH2k−2(Y,C) +H2k−2(Y,Q(k))
.

If A = R and we set

πk−1 : C = R(k)⊕ R(k − 1) → R(k − 1)

then

H2k−1
D (Y,R(k)) 	 H2k−2(Y,C)

F kH2k−2(Y,C) +H2k−2(Y,R(k))
�−→

πk−1

Hk−1,k−1(Y,R)⊗ R(1) = Hk−1,k−1(Y,R(1))

where Hk−1,k−1(Y,R(1)) 	 Hn−k+1,n−k+1(Y,R(n− k + 1))∨(see [C-L1]).
Let Hp

D(A(r)) be the Zariski sheaves associated to Deligne-Beilinson cohomology,
i.e. the sheaves on YZar associated to the presheaves

U → Hp
D(U,A(r)).

Similarly we will denote by Hp(A(r)) the Zariski sheaves associated to the sin-
gular cohomology groups with A coefficients. The sheaf Hp

D(A(r)) has a Gersten
resolution

0 → Hp
D(A(r)) →

∐
y∈Y 0

(iy)∗H
p
D(C(y), A(r)) →

∐
y∈Y 1

(iy)∗H
p−1
D (C(y), A(r−1)) → · · ·

where Y i is the set of points of codimension i in Y and

Hi
D(C(y), A(r)) = lim

U⊂{y}
Hi

D(U,A(r)).

There is a coniveau spectral sequence

Ep,q
2 = Hp(Y,Hq

D(A(r))) =⇒ Hp+q
D (Y,A(r))

which gives an exact sequence of cohomology groups

0 → H1(Y,H2
D(A(2)))

i→H3
D(Y,A(2)))

ρ→H0(Y,H3
D(A(2)))

δ→H2(Y,H2
D(A(2))) → H4

D(Y,A(4))

For every U there is a natural map

ρU : O(U)∗alg → H1
D(U,A(1))

which for A = Z is an isomorphism by [E-V 2.12]. From the Gersten reso-
lution of the sheaf Hp

D(Q(r)) one gets a Bloch-Quillen isomorphism Ap(Y ) 	
Hp(Y,Hp

D(Q(p))) (see [Gi]). This isomorphism yields an isomorphism of graded
rings

η : ⊕Ap(Y ) 	 ⊕Hp(Y,Hp
D(Q(p)))

where the intersection product of algebraic cycles corresponds to the cup product
in Deligne-Beilinson cohomology.
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There are Chern class maps:

ci : Kp ⊗Q → H2i−p
D (Q(i))

from the Zariski sheaf associated to K-theory to the Deligne-Beilinson cohomology
sheaf. The kernel and cokernel of the Chern class c2 are constant sheaves (see [Ped]),
hence c2 induces a surjective map H1(c2) : H1(Y,K2) ⊗ Q → H1(Y,H2

D(Q(2)).
From the exact sequence in (4) we get for A = Q an exact sequence (see [BV 2])

0 → H1(Y,H2
D(Q(2)))

i→H3
D(Y,Q(2))

ρ→H0(Y,H3
D(Q(2)))

δ→H2(Y,H2
D(2)))

By composing the map H1(c2) with the inclusion H1(Y,H2
D(Q(2))) ⊂ H3

D(Y,Q(2))
one gets a map H1(Y,K2)⊗Q → H3

D(Y,Q(2))). The regulator map

c2,1 : CH2(Y, 1)Q → H3
D(Y,Q(2))

is then defined using the isomorphism: H1(Y,K2) 	 CH2(Y, 1) where CHk(Y,m)
are Bloch’s Higher Chow groups. The map c2,1 can be explicitly described as
follows. A class ξ in H1(Y,K2) 	 CH2(Y, 1) is represented by an element of the
form ξ =

∑
i(fi, Zi) where fi ∈ C(Zi)

∗, codim Zi = 1 and
∑

i div fi = 0. Choose a

branch of the log function on C− [0,∞) and put γi = f−1
i ([0,∞)), γ =

∑
γi. Then

γ = δζ is a boundary. For ω ∈ F 1H2(Y,C) ⊂ H2(Y,C) one defines

c2,1(ξ)(ω) =
1

(2πi)n−1
(
∑
i

∫
Zi−γi

ωlogfi + 2πi

∫
ζ

ω)

The definition above gives a unique element in the quotient group

H3
D(Y,Q(2)) 	 H2(Y,C)

F 2H2(Y,C) +H2(Y,Q(2))

For any form ω ∈ Hn−1,n−1(Y,R(n− 1))∨ the real part of c2,1(ξ)(ω) is given by

1

(2πi)n−1
(
∑
i

∫
Zi

ωlog|fi|)

(see [C-L 1 p. 220]). The real regulator map

r2,1 : CH2(Y, 1) → H3
D(Y,R(2)) 	 H1,1(Y,R(1)) 	 Hn−1,n−1(Y,R(n− 1))∨

is defined by

ξ =
∑
i

(fi, Zi) → r2,1(ξ)(ω) =
1

(2πi)n−1
(
∑
i

∫
Zi

ωlog|fi|)

The following result has been proved by X. Chen and J. Lewis. Recall that, for
a variety Y , a real analytic Zariski open set U in Y is the complement of a real
analytic subvariety of Y . If {Xt}t∈Y is a family of projective algebraic manifolds
then X = Xt is said to be general if t ∈ U for some real analytic Zariski open set
U .

Proposition 6.1. Let X be a smooth projective K3 surface over C which is
general. Then the real regulator r2,1 ⊗ R is surjective.

Proof. See [C-L1 1.1]. �
Corollary 6.2. Let X be a K3 surface as in Proposition 6.1. Then the exact

sequence in (4) gives an isomorphism

H0(X,H3
D(R(2))) = Ker [H2(X,H2

D(R(2))
cl−→H4

D(X,R(2))]



ON THE MOTIVE OF A K3 SURFACE 71

Proof. By Proposition 6.1 the real regulator r2,1 is surjective, hence the group

H3
D(X,R(2)) 	 H1,1(X,R(1)) 	 (H1,1(X,R(1)))∨

is generated by elements of the form

1

(2πi)n−1
(
∑
i

∫
Zi

ωlog|fi|)

with codimension Zi =1. Therefore, for every α ∈ H3
D(X,R(2)), there is Zariski

open subset U ⊂ X such that α vanishes on U . The sheaf H3
D(R(2)) has the

following resolution

0 → H3
D(R(2)) → i∗(H

3
D(C(X),R(2)) →

∐
x∈X1

H2
D(C(x),R(1)) → · · ·

where

H2
D(C(x),R(1)) = lim

U⊂x
H2

D(U,R(1)) = limU⊂x
H1(U,C)

F 1H1 +H1(U,R(1))
= 0

for x ∈ X1. The second equality comes from the vanishing of H2(U,R(1)) for U an
affine curve. The vanishing

limU⊂x
H1(U,C)

F 1H1 +H1(U,Q(1))
= 0

has been proved in[BV-S]. Therefore the resolution of the sheaf H3
D(R(2)) gives an

isomorphism

H0(X,H3
D(R(2))) 	 H3

D(C(X),R(2)) = limU⊂XH3
D(U,R(2)) 	

	 limU⊂X
H2(U,C)

F 2H2(U,C) +H2(U,R(2))

As we have seen for every α ∈ H3
D(X,R(2)) there exists an open U ⊂ X such that

α vanishes in H3
D(U,R(2)). It follows that the map ρ in the exact sequence coming

from (4)

H3
D(X,R(2))

ρ→H0(X,H3
D(R(2)))

δ→H2(X,H2
D(R(2)))

cl→H4
D(X,R(2))

is 0, so that

H0(X,H3
D(R(2))) = Ker [H2(X,H2

D(R(2)))
cl→H4

D(X,R(2))].

�

The following result, which appears in [Ros 6.1], shows that for a smooth pro-
jective surface X over C the map

H0(X,H3
D(X,Q(2)) → T (X) → 0

is an isomorphism iff pg(X) = 0. Here

T (X) = Ker [H2(X,H2
D(Q(2)))

cl−→H4
D(X,Q(2))]

is the Albanese Kernel. Therefore for a K3 surface the regulator

c2,1 : CH2(X, 1)Q → H3
D(X,Q(2))
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is not surjective because the map ρ in (6) is not 0.

Theorem 6.3. Let X be a smooth projective surface over C. Then there is an
exact sequence

0 → H2(X,OX)

H2
tr(X,Q) +G

→ H0(X,H3
D(X,Q(2)) → T (X) → 0

The group G is at most countable.

Proof. By [Ros 6.1] there is an exact sequence

0 → H0(X,H2/F2,2
Q ) → H0(X,H2(C)/F2H2)

H0(k22)−→ H0(X,H3
D(Q(2))) → T (X) → 0

where F2,2
Q = Image [H2

D(Q(2)) → H2(Q(2))] is the discrete part of the Deligne-

Beilinson cohomology sheaf. k22 is the map in the following exact sequence of
sheaves

0 → H2(Q)/F2,2
Q → H2(C)/F2H2 k22

−→H3
D(Q(2)) → 0

and F iHj are the Zariski sheaves associated to the presheaves U → F iHj(U,C).
We also have

H0(X,H2/F2,2
Q ) 	 H1(X,F2,2

Q )⊕H0(X,H2(Q))

where H0(X,H2(Q)) 	 H2
tr(X,Q) and the group G = H1(X,F2,2

Q ) is at most

countable (see [Ped 1.7]). Finally, from [BV 2 §1], there is an isomorphism

H0(X,H2/F2H2) 	 H2(X,OX).

�

Remarks 6.4. 1) For every smooth projective variety X over C there are exact
sequences as in [Ped Th. 1.7]

0 → NS(X)⊗ C∗ → R(X) → H1(X,F2,2
Z ) → 0

0 → H0(X,H2(Q/Z)) → H1(X,F2,2
Z ) → H1(X,F2,2

Z )⊗Q → 0

where R(X) is the image of the regulator map c2,1 : H1(X,K2) → H3
D(X,Z(2)),

F2,2
Z is the image of H2

DZ(2)) in H2(Z(2)). The group (H1(X,F2,2
Z ))tors is iso-

morphic to H0(X,H2(Q/Z)) (see [Ros 5.1]) and H1(X,F2,2
Z ) ⊗ Q/Z = 0. Also

H1(X,F2,2)⊗Q is at most countable. The group H1(X,K2)⊗Q, which is isomor-
phic to CH2(X, 1)Q, decomposes as follows ([Ped 1.10]):

H1(X,K2)⊗Q 	 H1(X,F2,2
Q )⊕ (NS(X)⊗ C∗)Q ⊕Ker(R(X))Q

For a surface X with pg(X) = 0 the regulator map c2,1 is surjective, because
the map ρ in (6) is 0 by [BV 2 3.1]). Hence R(X)Q = H3

D(X,Q(2)) and T (X) =
H0(X,H3

D(Q(2)). MoreoverH1(X,F2,2)⊗Q = 0, so thatH3
D(X,Q(2)) = (NS(X)⊗

C∗)Q = NS(X)⊗ C/Q.
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2) If X ⊂ P3 is a general hypersurface of degree d ≥ 5 then the regulator
map is not surjective because R(X)Q is contained in the image of H3

D(P
3,Q(2)) →

H3
D(X,Q(2)). More precisely: R(X)Q = NS(X)⊗C/Q 	 C/Q and (H1(X,F2,2

Z )Q =
0.

3) Let X be a surface of general type with pg(X) = 0. Then also q(X) =
0 and Bloch’s Conjecture in 1.2 is equivalent to the vanishing of the Albanese
Kernel T (X). In fact the idempotent πtr

2 (X) which defines the summand t2(X) of
the motive h(X) is in this case homologically trivial because H2

tr(X) = 0. From
Theorem 6.2 and the vanishing of H2(X,OX) we get the isomorphism

H0(X,H3
D(Q(2))) 	 T (X)

(see also [BV-Sr]). We also have H2(X × X,OX×X) = 0, hence by the results in
[BV 2]

A2(X ×X)hom 	 H0(X ×X,H3
D(Q(2)).

Therefore Bloch’s Conjecture is equivalent to show that every element in H0(X ×
X,H3

D(Q(2))) acts trivially on H0(X,H3
D(Q(2)).
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Two observations about normal functions

Christian Schnell

Abstract. Two simple observations are made: (1) If the normal function
associated to a Hodge class has a zero locus of positive dimension, then it has
a singularity. (2) The intersection cohomology of the dual variety contains the
cohomology of the original variety, if the degree of the embedding is large.

This brief note contains two elementary observations about normal functions
and their singularities that arose from a conversation with G. Pearlstein. Through-
out, X will be a smooth projective variety of dimension 2n, and ζ a primitive Hodge
class of weight 2n on X, say with integer coefficients. We shall assume that X is
embedded into projective space by a very ample divisor H, and let π : X → P be
the family of hyperplane sections for the embedding. The discriminant locus, which
parametrizes the singular hyperplane sections, will be denoted by X∨ ⊆ P ; on its
complement, the map π is smooth.

1. The zero locus of a normal function

Here we show that if the zero locus of the normal function associated to a Hodge
class ζ contains an algebraic curve, then the normal function must be singular at
one of the points of intersection between X∨ and the closure of the curve.

Proposition 1. Let νζ be the normal function on P \ X∨, associated to a
non-torsion primitive Hodge class ζ ∈ H2n(X,Z)∩Hn,n(X). Assume that the zero
locus of νζ contains an algebraic curve, and that H = dA for A very ample and
d ≥ 3. Then νζ is singular at one of the points where the closure of the curve meets
X∨.

Before giving the proof, we briefly recall some definitions. In general, a normal
function for a variation of Hodge structure of odd weight on a complex manifold
Y0 has an associated cohomology class. If HZ is the local system underlying the
variation, then a normal function ν determines an extension of local systems

(1) 0 −−→ HZ −−→ H ′
Z −−→ Z −−→ 0.

The cohomology class [ν] ∈ H1
(
Y0, HZ

)
of the normal function is the image of

1 ∈ H0
(
Y0,Z

)
under the connecting homomorphism for the extension.

2000 Mathematics Subject Classification. 14D05.
Key words and phrases. Normal function, Singularity of normal function, Hodge conjecture,

Intersection cohomology, Dual variety.
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In particular, the normal function νζ associated to a Hodge class ζ determines
a cohomology class [νζ ] ∈ H1

(
P \X∨, R2n−1π∗Z

)
. With rational coefficients, that

class can also be obtained directly from ζ through the Leray spectral sequence

Ep,q
2 = Hp

(
P \X∨, Rqπ∗Q

)
=⇒ Hp+q

(
P ×X \ π−1(X∨),Q).

That is to say, the pullback of ζ to P ×X \ π−1(X∨) goes to zero in E0,2n
2 because

ζ is primitive, and thus gives an element of E1,2n−1
2 ; this element is precisely [νζ ].

(Details can be found, for instance, in [6, Section 4].)

Lemma 2. Let C0 → P \ X∨ be a smooth affine curve mapping into the zero
locus of νζ , and let ψ : W0 → C0 be the pullback of the family π : X → P . Then the
image of the Hodge class ζ in H2n(W0,Q) is zero.

Proof. By topological base change, the pullback of R2n−1π∗Q to C0 is nat-
urally isomorphic to R2n−1ψ∗Q; moreover, when νζ is restricted to C0, its class is
simply the image of [νζ ] in the group H1

(
C0, R

2n−1ψ∗Q
)
. That image has to be

zero, because C0 maps into the zero locus of νζ .
Now let ζ0 ∈ H2n

(
W0,Q

)
be the image of the Hodge class ζ. The Leray spectral

sequence for the map ψ gives a short exact sequence

0 −−→ H1
(
C0, R

2n−1ψ∗Q
)
−−→ H2n

(
W0,Q

)
−−→ H0

(
C0, R

2nψ∗Q
)
−−→ 0,

and as before, ζ0 actually lies inH1
(
C0, R

2n−1ψ∗Q
)
. Because the spectral sequences

for ψ and π are compatible, ζ0 is equal to the image of [νζ ]; but we have already
seen that this is zero. �

Returning to our review of general definitions, let ν be a normal function on a
complex manifold Y0. When Y0 ⊆ Y is an open subset of a bigger complex manifold,
one can look at the behavior of ν near points of Y \ Y0. The singularity of ν at a
point y ∈ Y \ Y0 is by definition the image of [ν] in the group

lim
U�y

H1
(
U ∩ Y0, HZ

)
,

the limit being over all analytic open neighborhoods of the point. If the singularity
is non-torsion, ν is said to be singular at the point y; this definition from [1] is a
generalization of the one by M. Green and P. Griffiths [5].

When νζ is the normal function associated to a non-torsion primitive Hodge
class ζ ∈ H2n(X,Z), P. Brosnan, H. Fang, Z. Nie, and G. Pearlstein [1, Theo-
rem 1.3], and independently M. de Cataldo and L. Migliorini [2, Proposition 3.7],
have proved the following result: Provided the vanishing cohomology of the smooth
fibers of π is nontrivial, νζ is singular at a point p ∈ X∨ if, and only if, the im-
age of ζ in H2n

(
π−1(p),Q

)
is nonzero. By recent work of A. Dimca and M. Saito

[3, Theorem 6], it suffices to take H = dA, with A very ample and d ≥ 3.

Proof of Proposition 1. Let C be the normalization of the closure of the
curve in the zero locus. Pulling back the universal family π : X → P to C and
resolving singularities, we obtain a smooth projective 2n-fold W , together with the
two maps shown in the following diagram:

W
λ−−−−→ X

ψ

⏐⏐�
C
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This may be done in such a way that the general fiber of ψ is a smooth hyperplane
section of X; let C0 ⊆ C be the open subset where this holds, and W0 = ψ−1(C0)
its preimage. Assume in addition that, for each t ∈ C \ C0, the fiber Et = ψ−1(t)
is a divisor with simple normal crossing support. The map λ is generically finite,
and we let d be its degree.

Let ζW = λ∗(ζ) be the pullback of the Hodge class to W . By Lemma 2, the
restriction of ζW to W0 is zero. Consider now the exact sequence

H2n(W,W0,Q)
i−−→ H2n(W,Q) −−→ H2n(W0,Q).

By what we have just observed, ζW belongs to the image of the map i, say ζW =
i(α). Under the nondegenerate pairing (given by Poincaré duality)

H2n(W,W0,Q)⊗
⊕

t∈C\C0

H2n(Et,Q) → Q,

and the intersection pairing on W , the map i is dual to the restriction map

H2n(W,Q) →
⊕

t∈C\C0

H2n(EtQ),

and so we get that

d ·
∫
X

ζ ∪ ζ =

∫
W

ζW ∪ ζW =
〈
i(α), ζW

〉
=

∑
t∈C\C0

〈
α, i∗t (ζW )

〉
where it : Et → W is the inclusion. But the first integral is nonzero, because the
intersection pairing on X is definite on the subspace of primitive (n, n)-classes. We
conclude that the pullback of ζ to at least one of the Et has to be nonzero.

By construction, Et maps into one of the singular fibers of π, say to π−1(p),
where p belongs to the intersection of X∨ with the closure of the curve. Thus ζ has
nonzero image in H2n

(
π−1(p),Q

)
; by the result of [1, 2] mentioned above, νζ has

to be singular at p, concluding the proof. �
I do not know whether a “converse” to Proposition 1 is true; that is to say,

whether the normal function associated to an algebraic cycle on X has to have a
zero locus of positive dimension for sufficiently ample H. If it was, this would give
one more equivalent formulation of the Hodge conjecture.

2. Cohomology of the discriminant locus

G. Pearlstein pointed out that the singularities of the discriminant locus should
be complicated enough to capture all the primitive cohomology of the original
variety, once H = dA is a sufficiently big multiple of a very ample class. In this
section, we give an elementary proof of this fact for d ≥ 3.

To do this, we need a simple lemma, used to estimate the codimension of loci
in X∨ where the fibers of π have a singular set of positive dimension. Let

Vd = H0
(
X,OX(dA)

)
be the space of sections of dA, for A very ample.

Lemma 3. Let Z ⊆ X be a closed subvariety of positive dimension k > 0.
Write Vd(Z) for the subspace of sections that vanish along Z. Then

codim
(
Vd(Z), Vd

)
≥

(
d+ k

k

)
.
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Proof. Since A is very ample, we may find (k + 1) points P0, P1, . . . , Pk on
Z, together with (k + 1) sections s0, s1, . . . , sk ∈ V1, such that each si vanishes at
all points Pj with j 
= i, but does not vanish at Pi. Then all the sections

s⊗i0
0 ⊗ s⊗i1

1 ⊗ · · · ⊗ s⊗ik
k ∈ Vd,

for i0+ i1+ · · ·+ ik = d, are easily seen to be linearly independent on Z. The lower
bound on the codimension follows immediately. �

We now use this estimate to make the above idea about the cohomology of X∨

precise. As one further bit of notation, let Xsing ⊆ X stand for the union of all the
singular points in the fibers of π. It is well-known that Xsing is a projective space
bundle over X, and in particular smooth.

Proposition 4. Let H = dA for a very ample class A. If d ≥ 3, then the map
φ : Xsing → X∨ is a small resolution of singularities, and therefore

IH ∗(X∨,Q) � H∗(Xsing ,Q).

In particular, H∗(X,Q) is a direct summand of IH ∗(X∨,Q) once d ≥ 3.

Proof. By [3, p. Theorem 6], the discriminant locus is a divisor in P once
d ≥ 3. This means that there are hyperplane sections of X with exactly one
ordinary double point [8, p. 317]. The map φ is then birational, and therefore a
resolution of singularities of X∨. To prove that it is a small resolution, take a
stratification of X∨ with smooth strata, and such the fibers of the map φ have
constant dimension over each stratum; this is easily done, using the constructibility
of the higher direct image sheaves Rkφ∗Q.

Let S ⊆ X∨ be an arbitrary stratum along which the singular set of the fiber
has dimension k > 0. At a general point t ∈ S, there then has to be an irreducible
component Z in the singular locus of pi−1(t) that remains singular to first order
along S. Now a tangent vector to S may be represented by a section s of OX(dA),
and a simple calculation in local coordinates shows that, in order for Z to remain
singular to first order, the section s has to vanish along Z. By Lemma 3, the space
of such sections has codimension at least

(
d+k
k

)
, and a moment’s thought shows

that, therefore,

codim(S,X∨) ≥
(
d+ k

k

)
− 1.

This quantity is evidently a lower bound for the codimension of the locus where
the fibers of φ have dimension k. In order for φ to be a small resolution, it is thus
sufficient that (

d+ k

k

)
− 1 > 2k

for all k > 0. Now one easily sees that this condition is satisfied provided that
d ≥ 3. This proves the first assertion; the second one is a general fact about
intersection cohomology [4, pp. 120–1]. Finally, H∗(X,Q) is a direct summand
of H∗(Xsing ,Q) because Xsing is a projective space bundle over X, and the third
assertion follows. �

The proof shows that, as in the theorem by A. Dimca and M. Saito, d ≥ 2
is sufficient in most cases. A result related to Proposition 4, and also showing
the effect of taking H sufficiently ample, was pointed out to me by H. Clemens;
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he noticed that, as a consequence of M. Nori’s connectivity theorem, one has an
isomorphism

H2n(X,Q)prim � H1
(
P \X∨, (R2n−1π∗Q)van

)
,

once H is sufficiently ample [7, Corollary 4.4 on p. 364].
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Autour de la conjecture de Tate à coefficients Z� pour les
variétés sur les corps finis

Jean-Louis Colliot-Thélène et Tamás Szamuely

1. Introduction

Soient k un corps fini, k̄ une clôture algébrique de k, G le groupe de Galois
Gal (k̄|k) et � un nombre premier inversible dans k. Considérons une variété pro-
jective, lisse, géométriquement intègre X, de dimension d. D’après la conjecture de
Tate, l’application cycle à valeurs dans la cohomologie étale �-adique induit une
surjection

(1) CHi(X)⊗Z Q� � H2i(X,Q�(i))
G.

Une forme équivalente de la conjecture est la surjectivité du morphisme

(2) CHi(X)⊗Z Q� →
⋃
U

H2i(X,Q�(i))
U

où X := X ×k k̄ et U parcourt le système des sous-groupes ouverts de G. La forme
plus forte ci-dessus en résulte par un argument de restriction-corestriction.

On peut également considérer des formes entières de ces énoncés, et se demander
si les morphismes

(3) CHi(X)⊗Z Z� → H2i(X,Z�(i))
G

ou

(4) CHi(X)⊗Z Z� →
⋃
U

H2i(X,Z�(i))
U

induits par l’application cycle sont surjectifs. Ici le deuxième énoncé de surjectivité
est a priori plus faible.

Comme nous allons le rappeler dans la section 2, on ne s’attend pas à ce que les
formes entières de la conjecture ci-dessus soient vraies. Néanmoins, il est raisonnable
d’espérer la surjectivité de (3) et (4) pour i = d− 1, i.e. pour les 1-cycles.

Dans ce cas, la surjectivité de (4) a été conditionnellement démontrée par Chad
Schoen :

c© 2010 Jean-Louis Colliot-Thélène et Tamás Szamuely
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Théorème 1.1. (Schoen [15]) Soient k, G et X comme ci-dessus. Supposons
la conjecture de Tate connue pour les diviseurs sur une surface projective et lisse
sur un corps fini. Alors le morphisme

CH1(X)⊗ Z� →
⋃
U

H2d−2(X,Z�(d− 1))U

est surjectif, où U parcourt le système des sous-groupes ouverts de G.

Notons que la conjecture de Tate pour les diviseurs sur une surface au-dessus
d’un corps fini peut être perçue comme un analogue de la finitude hypothétique du
groupe de Tate-Shafarevich de la jacobienne d’une courbe sur un corps de nombres.

Nous expliquons la démonstration de Schoen (avec quelques modifications) dans
les sections 3, 4 et 5.

Au paragraphe 6, on voit que le théorème de Schoen a des conséquences sur
l’existence de zéro-cycles sur certaines variétés définies sur un corps de fonctions
d’une variable sur la clôture algébrique d’un corps fini. Voici un cas particulier
concret :

Corollaire 1.2. Soient k̄ et X comme ci-dessus. Supposons qu’il existe un
k̄-morphisme propre surjectif f : X → C, avec C une k̄-courbe propre lisse. Sup-
posons en outre que la fibre générique de f est une intersection complète lisse de
dimension ≥ 3 et de degré premier à car(k) dans un espace projectif, et que chacune
des fibres de f possède une composante de multiplicité 1. Si la conjecture de Tate
pour les diviseurs sur les surfaces projectives lisses sur un corps fini est vraie, alors
le pgcd des degrés des multisections de X → C est égal à 1.

2. Généralités sur la conjecture de Tate à coefficients entiers

On entend souvent dire : la conjecture de Hodge à coefficients entiers est fausse,
il n’est pas raisonnable d’énoncer la conjecture de Tate avec des coefficients entiers.
Quelle est la situation ?

Chacune de ces conjectures porte sur l’image d’une application cycle émanant
du groupe de Chow CHr(X) des cycles de codimension r sur une variété projective
et lisse X de dimension d, à valeurs dans un groupe de cohomologie. Il s’agit de
H2r(X,Z) pour Hodge et de H2r

ét (X×kk,Z�(r)) pour Tate (dans cette section on va
distinguer les groupes de cohomologie étale des groupes de cohomologie singulière
par des indices pour ne pas induire une confusion). On trouvera dans le survol [23]
de Voisin un état des lieux pour la conjecture de Hodge.

Si l’on croit à ces conjectures à coefficients rationnels, la variante entière peut
être mise en défaut de deux façons :

(a) on trouve une classe de cohomologie de torsion qui n’est pas la classe d’un cycle ;

(b) on trouve une classe de cohomologie d’ordre infini qui n’est pas dans l’image de
l’application cycle, mais qui donne un élément de torsion dans son conoyau.

Pour la conjecture de Hodge entière, il y a des contre-exemples de type (a) dus
à Atiyah et Hirzebruch [1], reconsidérés plus récemment par Totaro ([20], [21]),
pour les groupes H2r(X,Z) avec r ≥ 2. L’exemple de dimension minimale chez eux
est une variété de dimension 7, avec une classe de torsion dans H4(X,Z). Dans
la littérature (par exemple dans Milne [10], Aside 1.4) il est affirmé que l’on peut
adapter ces exemples pour donner des contre-exemples à la conjecture de Tate
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entière sous la forme (4), mais à notre connaissance aucune démonstration n’a été
écrite. Voici donc une esquisse de démonstration qui met en relief les modifications à
faire par rapport au cas analytique discuté dans [1]. Il s’agit de prouver le théorème
suivant :

Théorème 2.1.

(1) Soit V une variété projective et lisse sur un corps algébriquement clos.
Pour tout � ≥ i inversible sur V les opérations de Steenrod de degré
impair s’annulent sur la classe de tout cycle algébrique dans le groupe
H2i

ét (V,Z/�Z(i)).

(2) Au-dessus de tout corps algébriquement clos, pour tout premier � différent
de la caractéristique, il existe une intersection complète lisse Y ⊂ PN ,
un groupe fini G agissant librement sur Y , une classe c de �-torsion dans
H4

ét(Y/G,Z�(2)) et une opération de Steenrod de degré impair qui n’annule
pas l’image de c dans H4

ét(Y/G,Z/�Z(2)).

Ici pour � > 2 premier � opération de Steenrod de degré impair � veut dire
un composé d’opérations de Steenrod Pj et d’une opération de Bockstein. Les

opérations Pj : Hi
ét(V,Z/�Z) → H

i+2j(�−1)
ét (V,Z/�Z) en cohomologie étale ont

été définies par Mme Raynaud dans [14]. Pour � = 2 on utilise des opérations

Sqj : Hi
ét(V,Z/2Z) → Hi+j

ét (V,Z/2Z), également définies dans [14].

Si le corps de base est une clôture algébrique F d’un sous-corps F , toute classe
de torsion dansH2i

ét (V,Z�(i)) est invariante par un sous-groupe ouvert de Gal (F |F ),
donc pour F fini le théorème nous fournit un contre-exemple du type (a) à la
surjectivité des applications (3) et (4).

Esquissons une démonstration du théorème qui nous a été généreusement com-
muniquée par Burt Totaro. Pour démontrer (1), la première observation est que
par le théorème de Riemann-Roch sans dénominateurs de Jouanolou ([5], Example
15.3.6) pour � premier à (i − 1)! toute classe de cycle dans H2i

ét (V,Z/�Z(i)) est
combinaison linéaire de classes de Chern ci(E) de fibrés vectoriels E sur X. Il suffit
donc de démontrer l’énoncé d’annulation pour les ci(E). Un calcul d’opérations de
Steenrod montre que l’annulation vaut pour E si et seulement si elle vaut pour
E ⊗ L avec L très ample de rang un. Ainsi, on peut supposer que E est engendré
par ses sections globales, et a fortiori qu’il est la tirette du fibré tautologique d’une
grassmannienne. L’énoncé résulte alors de la fonctorialité contravariante des Pj

et de la trivialité de la cohomologie d’une grassmannienne en degrés impairs ([8],
exposé VII, proposition 5.2).

Un point clef de l’argument d’Atiyah–Hirzebruch [1] était l’identification de
la cohomologie en bas degrés d’une variété de Godeaux–Serre Y/G comme dans
(2) à celle du produit d’espaces classifiants BG × BGm. On peut algébriser leur
méthode en utilisant l’approximation algébrique de BG introduite par Totaro. En
effet, d’après ([21], Remark 1.4) pour tout s ≥ 0 il existe une représentation k-
linéaire W de G telle que l’action de G soit libre en dehors d’un fermé S de codi-
mension s dans W . La cohomologie de BG := (W \ S)/G est égale à celle de G
jusqu’en degré s ; en particulier, elle ne dépend ni du choix de W ni du choix de
S. Le quotient P(W )//G := (P(W ) × (W \ S))/G est un fibré projectif sur BG,
donc son anneau de cohomologie est un anneau de polynômes sur celui de BG. En
particulier, la cohomologie de BG est facteur direct dans celle de P(W )//G.
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Si maintenant Y ⊂ P(W ) est une intersection complète lisse sur laquelle l’action
de G est libre, la cohomologie de Y/G est isomorphe à celle de P(W )//G en bas
degrés. En effet, la cohomologie de Y est isomorphe à celle de P(W ) jusqu’en
degré dim (Y ) − 1 par le théorème de Lefschetz faible. On en déduit un isomor-
phisme entre les cohomologies de (Y × (W \ S))/G et de P(W )//G jusqu’en degré
dim (Y ) en appliquant la suite spectrale de Hochschild–Serre aux G-revêtements
Y × (W \ S) → (Y × (W \ S))/G et (P(W )× (W \ S)) → P(W )//G. Or la coho-
mologie de (Y × (W \ S))/G s’identifie à celle de (Y ×W )/G jusqu’en degré s, et
finalement à celle de Y/G dans le même intervalle, puisque W est un espace affine.

En somme, en bas degrés la cohomologie de BG (donc celle de G) s’identifie à
un facteur direct de celle de Y/G ci-dessus. La fin de la démonstration de (2) est
alors similaire à celle de ([1], Proposition 6.7). Prenons G = (Z/�Z)3. Comme G est
d’exposant �, la suite exacte longue associée à 0 → Z� → Z� → Z/�Z → 0 montre
que Hi(G,Z�) s’identifie au noyau du morphisme de Bockstein β : Hi(G,Z/�Z) →
Hi+1(G,Z/�Z). Le cup-produit des éléments d’une base du (Z/�Z)-espace vectoriel
H1(G,Z/�Z) ∼= (Z/�Z)3 donne une classe dans H3(G,Z/�Z). Essentiellement le
même calcul que dans [1] montre que pour � > 2 l’image de cette classe dans
H4(G,Z/�Z) par le Bockstein β n’est pas annulée par l’opération βP1, dont le
degré est 2�− 1. Pour � = 2 la même conclusion vaut pour Sq3.

Terminons cette section par une brève discussion des contre-exemples de type (b).
Un célèbre contre-exemple de ce type à la conjecture de Hodge a été fabriqué par
J. Kollár [9] ; voir aussi [17]. Il s’agit d’une hypersurface � très générale � dans P4

C

de degré m un multiple de �3 avec � entier premier à 6, et de l’application cycle
CH2(X) → H4(X,Z). Comme il s’agit d’une hypersurface de degré m, ici on a
H4(X,Z) ∼= Z, et l’image de l’application cycle contient mZ. Mais Kollár montre
par un argument de déformation astucieux que toute courbe sur X a un degré
divisible par �. En d’autres mots, l’image de CH2(X) → H4(X,Z) est contenue
dans �H4(X,Z) et ne peut être surjective. Comme le note C. Voisin ([17], [23]),
on peut à partir de cet exemple fabriquer des contre-exemples à la conjecture de
Hodge entière en d’autres degrés aussi, par éclatement ou par produit direct avec
une autre variété.

L’énoncé de Kollár en induit un au niveau de la cohomologie �-adique étale.
En effet, si on travaille sur un corps algébriquement clos non dénombrable et on
choisit � premier à la caractéristique et à 6, sa méthode fournit toujours une hyper-
surface X ⊂ P4 sur laquelle toute courbe a un degré divisible par �. (Le corps non
dénombrable sert ici pour pouvoir choisir le point correspondant à X d’un schéma
de Hilbert convenable en dehors de la réunion d’une famille dénombrable de fermés
propres.) Ensuite, comme pour toute variété digne de ce nom, on trouve un corps
K de type fini sur le corps premier sur lequel X est définie. Notant K une clôture
algébrique de K, l’image de l’application cycle

CH2(X ×K K) → H4
ét(X ×K K,Z�(2)) ∼= Z�

est alors contenue dans �Z� ; noter qu’ici l’action de Galois sur la cohomologie induit
l’action triviale sur Z�.

Remarques 2.2.

1. La méthode ci-dessus ne permet pas de trouver un tel exemple avec K un corps
de nombres.



Autour de la conjecture de Tate à coefficients Z� 87

2. Par le théorème 1.1, si on croit à la conjecture de Tate rationnelle pour les
diviseurs sur les surfaces, en caractéristique positive le corps K ci-dessus ne peut
être un corps fini.

3. Nous ne savons pas s’il existe des contre-exemples du type (b) à la surjectivité
de (3) sur un corps fini. En d’autres mots, nous ne savons pas si pour X projective,
lisse, géométriquement connexe sur un corps fini k, l’application

CHi(X)⊗Z Z� → H2i
ét (X,Z�(i))

G/torsion

induite par l’application cycle est toujours surjective.
Cette question est équivalente à la question suivante, fort intéressante du point

de vue de [2] : pour tout i ≥ 0, l’application

CHi(X)⊗Z Z� → H2i
ét (X,Z�(i))/torsion

induite par l’application cycle

(5) CHi(X)⊗Z Z� → H2i
ét (X,Z�(i))

est-elle surjective ? Le lien entre les deux questions est fourni par les suites exactes

0 → H1(k,H2i−1
ét (Xk̄,Z�(i)))) → H2i

ét (X,Z�(i)) → H2i
ét (Xk̄,Z�(i))

G → 0,

où les groupesH1(k,H2i−1
ét (Xk̄,Z�(i)))) sont des groupes finis (ceci est une conséquence

du théorème de Deligne établissant les conjectures de Weil).
Notons ici pour usage ultérieur que par un argument bien connu utilisant la

suite de Kummer et le groupe de Brauer, pour i = 1 la surjectivité de (5) est
équivalente à la conjecture de Tate à coefficients Q�, et même à la bijectivité du
morphisme (1) (voir [19], Proposition 4.3). En vertu de la suite exacte ci-dessus,
dans le cas des diviseurs la conjecture de Tate à coefficients Q� implique donc la
version entière sous toutes ses formes possibles.

3. Le théorème de Schoen, I : un argument de type Lefschetz

Nous commençons maintenant l’exposition de la démonstration du théorème
1.1, suivant [15].

Au cours de la preuve nous ferons à plusieurs reprises des extensions du corps
de base de degré premier à �. Un argument de restriction-corestriction fournit alors
le résultat au-dessus du corps de base initial.

Lemme 3.1. Il suffit d’établir le théorème 1.1 pour d = 3.

Démonstration. D’après le théorème de Bertini sur un corps fini [6, 13], on
peut trouver un plongement projectif de X et une hypersurface H tels que le k-
schéma Y = X∩H soit de codimension 1 dansX, lisse et géométriquement connexe.
Comme X \Y est affine, pour d > 3, les théorèmes sur la dimension cohomologique
des schémas affines ([12], §VI.7) donnent

H2d−3(X \ Yk̄,Z�(d− 1)) = 0, H2d−2(X \ Yk̄,Z�(d− 1)) = 0.

Donc le morphisme composé

H2d−4(Yk̄,Z�(d− 2))
∼→ H2d−2

Yk̄
(X,Z�(d− 1)) → H2d−2(X,Z�(d− 1))

de l’isomorphisme de pureté et de la flèche provenant de la suite de localisation est
un isomorphisme (théorème de Lefschetz faible, ibidem). Comme l’application cycle
est compatible aux morphismes de Gysin ([12], Proposition VI.9.3), par récurrence
sur d on se ramène donc au cas d = 3.
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Jusqu’à la fin du paragraphe 4, on suppose donc d = dim(X) = 3.

Remarquons ensuite qu’il suffit d’établir le théorème après avoir éclaté un point
de X, puisque la cohomologie de X s’identifie à un facteur direct de celle de l’éclaté
([4], exposé XVIII, 2.2.2) et l’application cycle est compatible aux morphismes
propres de variétés propres et lisses ([11], théorème 6.1 et remarque 6.4). Ainsi,
après avoir fait un éclatement convenable, on peut tranquillement supposer que le
deuxième nombre de Betti �-adique b2(X) de X est impair. En effet, si par malheur
ce nombre est pair, on éclate un point fermé de degré f impair (d’après un argument
de type Lang–Weil, un tel point existe puisque la variété X est géométriquement
intègre), ce qui donne pour l’éclaté X∗ la formule b2(X

∗) = b2(X) + f d’après [4],
exposé XVIII, (2.3.1). La raison pour cette hypothèse supplémentaire se dévoilera
lors de la preuve de la proposition 3.3 ci-dessous.

Un calcul simple de classes de Chern (voir [16], 9.2.1) montre que, quitte à
composer le plongement projectif donné de X avec un plongement de Veronese de
degré pair, on peut supposer que le deuxième nombre de Betti �-adique de toute
section hyperplane lisse de X est pair. Cette information de parité sera également
importante pour la suite.

Ayant fait une extension de degré premier à � si nécessaire, on trouve un éclaté
V → X muni d’un pinceau de Lefschetz V → D ∼= P1 de sections hyperplanes ([4],

exposé XVII, théorème 2.5). Notons Ḋ ⊂ D le lieu au-dessus duquel le morphisme
V → D est lisse, et choisissons un point générique géométrique ε de D. D’après ce
qui précède, le deuxième nombre de Betti de Vε est pair.

Introduisons les notations π (resp. π̄) pour le groupe fondamental arithmétique

(resp. géométrique) de Ḋ ayant ε pour point base.

Proposition 3.2. Quitte à faire une extension de k de degré premier à �, on
peut choisir le pinceau V de sorte que l’image de π̄ dans AutZ�

(H2(Vε,Z�(1))) via
la représentation de monodromie soit infinie.

Démonstration. C’est la Proposition 1.1 de [15]. On ne donne que l’idée de
l’argument. Soit P l’espace projectif paramétrisant les intersections de X avec les
hypersurfaces de degré fixe suffisamment grand dans un plongement projectif fixé.
Soient V ⊂ P×X l’hypersurface universelle, et Ṗ ⊂ P l’ouvert de lissité de la fibra-
tion V → P. Le choix d’un pinceau de Lefschetz correspond au choix d’une droite
D ⊂ P, et on a V = V ×P D. Par un argument de type Bertini (voir par exemple
[18], Lemma 5.7.2) après une extension finie de k de degré premier à � on trouve D

assez générale pour laquelle l’homomorphisme π1(Ḋk̄, ε) → π1(Ṗk̄, ε) est surjectif. Il
suffit donc de montrer que l’image du deuxième groupe dans AutZ�

(H2(Vε,Z�(1)))
est infinie. Schoen montre par une construction de géométrie algébrique classique
qu’il existe un autre espace projectif P et un morphisme P → P tels que le mor-
phisme V×PP → P se factorise en V×PP → W → P , où W est une hypersurface
projective lisse, et la dimension relative de W → P est 2. Comme W est une hy-
persurface, elle se relève en caractéristique 0, et un théorème de Deligne ([22],
Théorème B) montre que la monodromie de tout pinceau de Lefschetz balayant W
est infinie (sous l’hypothèse car (k) �= 0 ; en caractéristique 2 un petit argument
supplémentaire est donné dans [15]). Ceci implique que la monodromie doit être
infinie pour la fibration V×P P → P , et finalement pour V → P.
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Expliquons maintenant l’idée de la preuve du théorème 1.1. Tout d’abord,
il suffit de montrer que toute classe dans H4(X,Z�(2))

G est la classe d’un cycle
algébrique sur X (ensuite, pour un sous-groupe ouvert U ⊂ G on peut appliquer
ce résultat après changement de base de X au sous-corps fixé par U). Etant donc
donné w ∈ H4(X,Z�(2)) fixé par G, on montre qu’il est la poussette d’un élément

de H2(Vx̄,Z�(1))
Gal (k̄|k(x)), où x̄ est un point géométrique au-dessus d’un point

fermé x ∈ Ḋ. La conjecture de Tate pour les diviseurs sur la surface Vx (qui est
valable à coefficients Z� si elle est valable à coefficients Q� d’après ce qu’on a dit
dans la remarque 2.2 (3) ci-dessus) montre alors que cet élément est la classe d’un
cycle algébrique.

Notons qu’à coefficients Q� l’énoncé voulu est une conséquence directe du
théorème de Lefschetz difficile (cf. la preuve du lemme 5.1 infra) ; toute la finesse
de l’argument consiste à en tirer un énoncé à coefficients entiers.

Voici une reformulation. Écrivons Xε pour le changement de base X ×Spec k ε.
Par définition, il est muni de l’action triviale de π̄ (celui-ci agissant sur les fibres de
la fibration triviale X ×D → D), et par conséquent

Hi(X,Z�(2))
Gal (k̄|k) ∼= Hi(Xε,Z�(2))

π

pour tout i > 0. Notant Dx̄ le groupe de décomposition d’un point x̄ du revêtement
universel profini de Ḋ au-dessus de x, on obtient

Hi(Vx̄,Z�(2))
Gal (k̄|k(x)) ∼= Hi(Vε,Z�(2))

Dx̄

pour tout i > 0 par le théorème de changement de base propre et l’isomorphisme
Dx̄

∼= Gal (k̄|k(x)).
Notons i l’inclusion de la surface Vε dans la variété Xε (qui est de dimension

3). Elle induit un morphisme de restriction

i∗ : H2(Xε,Z�(1)) → H2(Vε,Z�(1))

ainsi qu’une poussette

i∗ : H2(Vε,Z�(1)) → H4(Xε,Z�(2)).

D’après la discussion ci-dessus, il suffit donc de montrer :

Proposition 3.3. Chaque élément de H4(Xε,Z�(2))
π est de la forme i∗(β),

avec un β ∈ H2(Vε,Z�(1)) invariant sous l’action d’un sous-groupe de décomposition
Dx̄ dans π, pour un point x̄ convenable.

Interrompons-nous pour quelques considérations d’algèbre Z�-linéaire.

4. Le théorème de Schoen, II : Lemmes d’algèbre linéaire

Etant donnés un Z�-module B et un sous-ensemble A ⊂ B, on définit le saturé
As de A dans B comme l’ensemble des b ∈ B avec �nb ∈ A pour un n ≥ 0
convenable. On dit que A est saturé dans B si As = A.

Lemme 4.1. Pour un module B de type fini sur Z� il existe un sous-groupe
ouvert Γ ⊂ AutZl

(B) tel que Bg soit saturé dans B pour tout g ∈ Γ.
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Démonstration. Ecrire B = F ⊕ T avec F libre et T de torsion, et prendre
Γ = AutZ�

(F )× {idT }.

Proposition 4.2. Soient F un Z�-module libre de rang fini impair, S ⊂ F
un sous-ensemble ouvert pour la topologie �-adique, et Φ : F × F → Z� une forme
bilinéaire symétrique non dégénérée sur Q�. Il existe alors un sous-ensemble ouvert
S ⊂ O(F,Φ) tel que :

(a) chaque élément de S admet un vecteur fixe non nul dans S ;
(b) l’ouvert S contient des éléments arbitrairement proches de 1 pour la topo-

logie �-adique.

Ici O(F,Φ) désigne le groupe des automorphismes Z�-linéaires de F préservant
Φ. Pour la preuve nous avons besoin d’un résultat ancillaire.

Lemme 4.3. Soient K un corps de caractéristique différente de 2, V un K-espace
vectoriel de dimension finie impaire, et Φ une forme quadratique non dégénérée sur
V . Tout élément de SO(Φ) admet 1 comme valeur propre.

Démonstration. Notons A la matrice de Φ dans une base fixée de V . Pour
un élément de O(Φ) dont la matrice est M et la matrice transposée M t, on a
M t.A.M = A. D’où

M t.A.(M − I) = A−M t.A = (I −M t).A.

En prenant le déterminant on obtient :

det(M). det(A). det(M − I) = det(I −M). det(A).

Ici det(A) �= 0 et det(M) = 1 (comme M ∈ SO(Φ)), donc det(M−I) = det(I−M).
Comme V est de dimension impaire, ceci n’est possible que si det(M − I) = 0.

Démonstration de la proposition 4.2. Soit U ⊂ SO(FQ�
,Φ) l’ouvert de Zariski formé

des éléments ayant des valeurs propres distinctes. C’est aussi un ouvert de Zariski
de O(FQ�

,Φ). Comme F est de rang impair, tout élément de SO(FQ�
,Φ) admet 1

comme valeur propre par le lemme 4.3. Donc tout u ∈ U stabilise un sous-espace Lu

de dimension 1 correspondant à la valeur propre 1. Envoyant u sur Lu on obtient
une application continue λ : U → P(FQ�

). L’image de S \ 0 dans P(FQ�
) par la

projection naturelle FQ�
\ 0 → P(FQ�

) est ouverte, tout comme son image inverse
S dans U ⊂ SO(FQ�

,Φ).
Reste à voir que l’ensemble S est non vide, et qu’il contient des éléments ar-

bitrairement proches de 1. Soit v ∈ S un vecteur non isotrope. Ecrivant FQ�
=

〈v〉 ⊥ M avec un Q�-vectoriel M , on commence par montrer qu’il existe un élément
de SO(M,Φ|M) à valeurs propres distinctes, et toutes différentes de 1. Pour cela, on
décompose l’espace quadratique M en une somme orthogonale d’espaces quadra-
tiques Vi de dimension 2. Chaque SO(Vi) est un tore Ti = R1

ki/k
Gm de dimension 1,

où ki/k est une algèbre étale de degré 2 sur Q�. Si ki � Q� ×Q�, alors Ti � Gm,k,

et Gm,k agit sur Vi = Q� ⊕Q� par λ.(u, v) = (λ.u, λ−1.v). Si ki est une extension
quadratique de Q�, alors SO(Vi)(Q�) est le groupe des éléments de norme 1 dans
ki, et l’action de ce groupe sur Vi � ki est donnée par la multiplication dans ki.
Les deux valeurs propres d’un élément α ∈ SO(Vi)(Q�) ⊂ SO(Φ) ⊂ GL(V ) sont
les conjugués de α (qui sont inverses l’un à l’autre). On trouve donc une famille
d’éléments αi ∈ SO(Vi) dont la somme définit un élément de SO(M,Φ|M) qui a des
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valeurs propres distinctes et différentes de 1. De plus, on peut choisir les matrices
des αi de sorte qu’elles aient des coefficients dans Z� et qu’elles soient arbitraire-
ment proches de la matrice 1 pour la topologie �-adique. Si elles sont suffisamment
proches de 1, leur somme directe doit préserver la trace du réseau F sur M .

5. Le théorème de Schoen, III : fin de la démonstration

Il nous reste à démontrer la proposition 3.3.

Lemme 5.1. Il existe une inclusion

H4(Xε,Z�(2))
π ⊂ i∗((ker i∗ +Hπ)s),

où

H := Im (i∗) ⊂ H2(Vε,Z�(1)).

Démonstration. Le morphisme composé

H2(Xε,Z�(1))
i∗→ H2(Vε,Z�(1))

i∗→ H4(Xε,Z�(2))

est un isomorphisme après tensorisation par Q� selon le théorème de Lefschetz
difficile, car c’est le cup-produit par la classe de la section hyperplane Vε. Il est
équivariant pour l’action de π, car Vε provient par changement de corps de base
d’une k(P1)-variété.

Donc par définition de H

i∗(H
π)⊗Q�

∼= H4(Xε,Z�(2))
π ⊗Q�,

d’où

(6) H4(Xε,Z�(2))
π ⊂ (i∗(H

π))s.

Remarquons maintenant que le morphisme

i∗ : H2(Vε,Z�(1)) → H4(Xε,Z�(2))

est surjectif. Ceci résulte du théorème de Lefschetz faible : dans la suite de locali-
sation

H4
Vε
(Xε,Z�(2)) → H4(Xε,Z�(2)) → H4(Xε \ Vε,Z�(2))

le dernier terme est 0, car la variété Xε \Vε est affine de dimension 3, et le premier
terme est isomorphe à H2(Vε,Z�(1)) par pureté.

En particulier, étant donné w ∈ H4(Xε,Z�(2))
π, on trouve β ∈ H2(Vε,Z�(1))

avec

w = i∗(β).

D’autre part, (6) implique

�nw = i∗(γ)

pour un γ ∈ Hπ convenable et n ≥ 0. Mais comme �nw = i∗�
nβ, on obtient

i∗(γ − �nβ) = 0, i.e. �nβ ∈ ker i∗ +Hπ, d’où le lemme.

Corollaire 5.2. Pour w ∈ H4(Xε,Z�(2))
π fixé, le sous-ensemble

Hw := {v ∈ ker i∗ : w ∈ i∗((v +Hπ)s)}
de ker i∗ ⊂ H2(Vε,Z�(1)) est un ouvert non vide de ker i∗, stable par multiplication
par �.
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Démonstration. Le lemme donneHw �= ∅ ; plus précisément, la preuve du lemme
montre que v0 := �nβ − γ ∈ Hw. Ce choix de n donne (v0 + �n ker i∗) ⊂ Hw, car
pour δ ∈ ker i∗ et v = v0 + �nδ on a i∗(β + δ) = w et �n(β + δ) = v0 + �nδ + γ =
v + γ ∈ (v + Hπ). Enfin, la stabilité de Hw par multiplication par � résulte de la
définition.

Considérons maintenant la forme Z�-bilinéaire sur H2(Vε,Z�(1)) induite par le
cup-produit (i.e. la forme d’intersection) sur la cohomologie de la surface Vε, et no-

tons H⊥ l’orthogonal de H. On a alors ker i∗ ⊂ H⊥ ⊂ H2(Vε,Z�(1)), et l’inclusion
ker i∗ ⊂ H⊥ devient égalité après tensorisation par Q�. En effet, les accouplements
de cup-produit satisfont à la compatibilité

α ∪ i∗(β) = i∗(α) ∪ β

pour α ∈ H2(Xε,Z�(2)) et β ∈ H2(Vε,Z�(1)), et ils sont non dégénérés à coefficients
Q�.

Soit F ⊂ H⊥ un Z�-module libre, complément direct au sous-module de torsion
T . Alors F ∩ ker i∗ est un sous-module ouvert dans F , et d’indice fini dans ker i∗.
Ainsi le corollaire précédent implique :

Corollaire 5.3. Pour w ∈ H4(Xε,Z�(2))
π fixé le sous-ensemble

Sw := {v ∈ ker i∗ ∩ F : w ∈ i∗((v +Hπ)s)}
est un ouvert non vide de F .

Remarque 5.4. Quand X est une hypersurface dans P4, tous les Z�-modules
considérés sont sans torsion, et l’on a ker i∗ = H⊥ = F , d’où Hw = Sw.

Le lemme suivant distille la stratégie de la démonstration de la proposition 3.3.

Lemme 5.5. Fixons w ∈ H4(Xε,Z�(2))
π. Supposons qu’il existe g ∈ π satisfai-

sant aux trois hypothèses suivantes :

(1) H2(Vε,Z�(1))
g est saturé dans H2(Vε,Z�(1)) ;

(2) g engendre topologiquement le sous-groupe de décomposition Dx̄ dans π ;

(3) g fixe un élément v ∈ Sw.

Alors il existe β ∈ H2(Vε,Z�(1))
Dx̄ avec w = i∗(β).

Démonstration. Pour un v comme dans (3) on a (v + Hπ) ⊂ H2(Vε,Z�(1))
g.

Comme H2(Vε,Z�(1))
g est saturé dans H2(Vε,Z�(1)), on a de plus (v + Hπ)s ⊂

H2(Vε,Z�(1))
g = H2(Vε,Z�(1))

Dx̄ . Mais par le corollaire précédent on a w = i∗(β)
pour un β ∈ (v +Hπ)s.

Démonstration de la proposition 3.3. On cherche un g ∈ π satisfaisant aux condi-
tions du lemme.

Par le théorème de Lefschetz difficile, la restriction de la forme d’intersection
surH2(Vε,Z�(1)) àH ⊗Q� est non dégénérée (voir [3], Lemme 4.1.2). Sa restriction

à H⊥ ⊗ Q� est donc non dégénérée. Ecrivant H⊥ = F ⊕ T comme ci-dessus, on
peut identifier O(F ) avec le stabilisateur (point par point) de T , qui est un sous-

groupe ouvert d’indice fini de O(H⊥). Comme l’image de π̄ par la représentation de
monodromie ρ est infinie par construction (Proposition 3.2), un théorème de Deligne
([3], Théorème 4.4.1) assure que c’est un sous-groupe ouvert de O(H⊥ ⊗ Q�). A
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fortiori ρ(π)∩O(F ) est ouvert dans O(F ). Par le lemme 4.1 il existe un sous-groupe
ouvert G0 ⊂ ρ(π)∩O(F ) tel que H2(Vε,Z�(1))

g est saturé dans H2(Vε,Z�(1)) pour
tout g ∈ G0.

On applique maintenant la proposition 4.2 à F . Pour ce faire, on doit d’abord
vérifier que le rang de F est impair, i.e. que la dimension de H⊥ ⊗Q� est impair.
Ceci résulte de nos hypothèses initiales que la dimension de H2(Vε,Q�(1)) est paire
et celle de H2(Xε,Q�(1)) impaire ; on conclut par l’injectivité de i∗ ⊗ Q� (voir le
début de la preuve du lemme 5.1). La proposition 4.2 (a) fournit donc un ouvert S
de O(F ) dont tout élément a un vecteur fixe dans l’ouvert non vide Sw donné par
le corollaire 5.3. De plus, la proposition 4.2 (b) assure que S contient des éléments
arbitrairement proches de 1, donc son intersection avec le sous-groupe ouvert G0

est un ouvert non vide.
L’image inverse de S ∩G0 dans π est un ouvert dont les éléments satisfont aux

propriétés (1) et (3) du lemme ci-dessus. En outre, par définition de la topologie de
π elle contient une cosette hV d’un sous-groupe normal ouvert V ⊂ π. Appliquant le
théorème de densité de Tchebotarev au revêtement galoisien Z → Ḋ correspondant
à V on obtient un point fermé z ∈ Z dont le Frobenius associé dans π/V est h̄,

la classe de hV . Prenons alors un point x̄ du revêtement universel profini de Ḋ
au-dessus de z. Le sous-groupe de décomposition Dx̄ est engendré par un élément g
d’image h̄ dans π/V . Ceci veut dire que g est un élément de hV , et en tant que tel
satisfait aux hypothèses (1) et (3) du lemme. Par construction, il satisfait également
à (2).

Remarque 5.6. Si l’on pouvait choisir V de telle sorte que le conoyau du
morphisme π̄/(V ∩π̄) → π/V soit d’ordre premier à �, alors une variante plus précise
de l’argument de Tchebotarev ci-dessus donnerait un point fermé x de degré premier
à �. L’existence d’un tel V impliquerait donc la conjecture de Tate à coefficients Z�

pour les 1-cycles sur X (en supposant la conjecture connue pour les surfaces).

6. Conséquences du théorème de Schoen

Nous donnons ici des applications du théorème 1.1 à l’existence de zéro-cycles
de degré premier à la caractéristique sur certaines variétés définies sur le corps des
fonctions d’une courbe au-dessus de la clôture algébrique d’un corps fini. Il s’agit
de deux énoncés apparentés mais non équivalents dont chacun implique le corollaire
1.2.

Théorème 6.1. Soit k̄ la clôture algébrique d’un corps fini k de caractéristique
p, et soit C une k̄-courbe propre lisse connexe, de corps des fonctions F = k̄(C).
Fixons une clôture séparable F de F .

Soit X une k̄-variété projective, lisse, connexe, admettant un k̄-morphisme pro-
jectif et dominant f : X → C dont la fibre générique XF est lisse et géométriquement
intègre.

Supposons :
(i) Le groupe de Picard PicXF est sans torsion.
(ii) Pour tout premier � différent de p, la partie �-primaire du groupe de Brauer

BrX ⊂ BrXF est finie.
(iii) La F -variété XF a des points dans tous les complétés de F aux points

de C.
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(iv) Pour tout premier � différent de p, la conjecture de Tate �-adique vaut pour
les diviseurs sur les surfaces projectives et lisses sur un corps fini de caractéristique
p.

Alors XF possède un zéro-cycle de degré une puissance de p.

Démonstration. Soit d + 1 la dimension de X, et donc d la dimension de la
F -variété XF . Fixons une clôture séparable F de F . Considérons la suite d’appli-
cations

CHd(X)⊗ Z� → H2d(X,Z�(d)) → H2d(XF ,Z�(d)) → H2d(XF ,Z�(d)) ∼= Z�

La flèche H2d(X,Z�(d)) → H2d(XF ,Z�(d)) est obtenue par passage à la limite sur
les applications de restriction

H2d(X,Z�(d)) → H2d(X ×C U,Z�(d))

pour U parcourant les ouverts non vides de la courbe C. La compatibilité de l’ap-
plication cycle à la restriction à un ouvert ([12], §VI, Prop. 9.2) montre que l’appli-
cation composée ci-dessus se factorise à travers le groupe CHd(XF )⊗ Z�. Il suffit
donc d’établir la surjectivité de l’application composée en question, pour tout �
premier à p. On le fait en plusieurs étapes.

Surjectivité de CHd(X) ⊗ Z� → H2d(X,Z�(d)). Il existe un corps fini k ⊂ k̄ et
une k-variété X telle que X = X ×k k̄. La surjectivité requise résulte du théorème
1.1, pourvu qu’on démontre que tout élément de H2d(X,Z�(d)) est fixé par un
sous-groupe ouvert de Gal (k̄|k).

Or pour tout n > 0 la dualité de Poincaré

H2d(X,μ⊗d
�n ))×H2(X,μ�n) → Z/�nZ

est un accouplement parfait équivariant pour l’action de Galois. D’autre part, on a
la suite exacte de Kummer

0 → PicX/�nPicX → H2(X,μ�n) → �nBrX → 0.

Le groupe PicX est extension du groupe de Néron-Severi NS(X) par le groupe
�-divisible Pic 0 X. Le groupe NS(X) est de type fini, donc NS(X)/�n ∼= PicX/�n

est fixé par un sous-groupe ouvert de Gal (k̄|k) indépendant de n. Par l’hypothèse
(ii) le groupe �nBrX a également cette propriété. Il en est donc de même pour le

groupe fini H2d(X,μ⊗d
�n ), et a fortiori pour H2d(X,Z�(d)).

Surjectivité de H2d(X,Z�(d)) → H2d(XF ,Z�(d)). On va démontrer la surjectivité

de H2d(X,μ⊗d
�n ) → H2d(XF , μ

⊗d
�n ) pour tout n > 0. Ceci donnera un morphisme

surjectif de systèmes projectifs de groupes abéliens finis, d’où une surjection après
passage à la limite projective suivant n.

On a la suite exacte de localisation

H2d(X,μ⊗d
ln ) → H2d(XF , μ

⊗d
ln ) →

⊕
P∈C0

H2d+1

XP
(X,μ⊗d

ln ),

où P parcourt les points fermés de C. Montrons que chaque flèche H2d(XF , μ
⊗d
ln ) →

H2d+1

XP
(X,μ⊗d

ln ) est nulle. Pour ce faire, par excision on peut se restreindre au-dessus

du hensélisé R = Oh
C,P

de C en P , dont on note L le corps des fractions. On dispose

de la suite exacte de localisation

H2d(XR, μ
⊗d
ln ) → H2d(XL, μ

⊗d
ln ) → H2d+1

XP
(XR, μ

⊗d
ln ).
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Il suffit donc d’établir la surjectivité du morphismeH2d(XR, μ
⊗d
�n ) → H2d(XL, μ

⊗d
�n ).

Le corps L est de dimension cohomologique 1 (c’est un corps C1). La suite
spectrale de Hochschild–Serre donne donc naissance à la suite exacte courte

0 → H1(L,H2d−1(XL, μ
⊗d
�n )) → H2d(XL, μ

⊗d
�n ) → H2d(XL, μ

⊗d
�n )Gal (L|L) → 0.

D’autre part, le groupe H2d−1(XL, μ
⊗d
�n ) est dual de H1(XL, μ�n) ∼= �nPicXL par

dualité de Poincaré. La torsion dans le groupe de Picard ne change pas par extension
de corps algébriquement clos, donc ce dernier groupe est nul par l’hypothèse (i).
Ceci donne des isomorphismes de modules galoisiens

H2d(XL, μ
⊗d
�n )) ∼= H2d(XL, μ

⊗d
�n ) ∼= Z/�nZ.

L’hypothèse queXF possède des points dans tous les complétés de F est équivalente
à la même hypothèse avec les hensélisés, d’où en particulier une section du mor-
phisme XR → SpecR par propreté de X. Elle donne naissance à un 1-cycle sur
XR dont la classe de cohomologie dans H2d(XR, μ

⊗d
�n ) s’envoie sur le générateur de

H2d(XL, μ
⊗d
�n ).

Surjectivité de H2d(XF ,Z�(d)) → H2d(XF ,Z�(d)). Ici encore, il suffit d’établir
la surjectivité à niveau fini, car il résulte de l’étape précédente que les groupes
H2d(XF , μ

⊗d
�n ) sont finis. Le corps F est de dimension cohomologique 1, donc le

morphisme

H2d(XF , μ
⊗d
�n ) → H2d(XF , μ

⊗d
�n )Gal (F |F )

dans la suite spectrale de Hochschild–Serre est une surjection. On aH2d(XF , μ
⊗d
�n ) ∼=

Z/�nZ avec action triviale de Galois, d’où la surjectivité requise.

Une conséquence facile du théorème est le corollaire 1.2 de l’introduction.

Démonstration du corollaire 1.2. Comme le degré de la fibre générique du mor-
phisme X → C est supposé premier à p, il suffit de montrer que les hypothèses (i)
et (ii) du théorème 6.1 sont satisfaites. En d’autre termes, on doit vérifier que pour
XF une intersection complète lisse de dimension ≥ 3 dans Pn

F
le groupe de Picard

est sans torsion �-primaire et la partie �-primaire du groupe de Brauer est finie.
Le premier énoncé résulte du théorème de Noether–Lefschetz ([7], exposé XII,

corollaire 3.7) : la flèche de restriction Z = PicPn
F
→ PicXF est un isomorphisme.

D’autre part, la suite exacte de Kummer en cohomologie étale donne une suite
exacte

0 → PicXF /�PicXF → H2(XF ,Z/�Z) → �BrXF → 0.

On vient de voir que le premier terme est isomorphe à Z/�Z. Mais ceci vaut
également pour le deuxième, car il est isomorphe à H2(Pn

F
,Z/�Z) par le théorème

de Lefschetz faible en cohomologie étale. On constate donc avec satisfaction que le
dernier terme disparait, ce qui montre que la partie �-primaire de BrXF est en fait
triviale.

Le corollaire 1.2 peut également se déduire du théorème 6.2 ci-après. Il s’agit
d’une variante du théorème 6.1, avec la différence sensible qu’ici on fait une hy-
pothèse au-dessus du corps de fonctions d’une courbe définie sur un corps fini, et
non pas sur Fp.

Soient donc C une courbe propre, lisse, géométriquement connexe définie sur
un corps fini k, et Y une variété lisse sur le corps des fonctions k(C) de C. Pour
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un point fermé P de C notons KP le complété de k(C) pour la valuation discrète
associée à P . Une famille {zP } de zéro-cycles de degré 1 sur Y ×k(C) KP pour tout
P définit un homomorphisme BrY → Q/Z donné par A �→ ΣP invP (A[zP ]). Ici
BrY est le groupe de Brauer de Y , le morphisme invP est l’invariant de Hasse du
corps local KP , et A[zP ] est l’évaluation de l’élément A ∈ BrY en zP définie via la
fonctorialité contravariante du groupe de Brauer.

On dit qu’il n’y a pas d’obstruction de Brauer–Manin à l’existence d’un zéro-
cycle de degré 1 sur Y s’il existe une famille {zP } pour laquelle l’homomorphisme
ci-dessus est nul. Notons que cette condition est automatique si la flèche naturelle
Br k(C) → BrY est surjective.

Théorème 6.2. Soient k un corps fini de caractéristique p, et X → C un
morphisme projectif et dominant de k-variétés projectives lisses géométriquement
connexes, où C est une courbe et la fibre générique Xk(C) est lisse et géométrique-
ment intègre.

Supposons :
(i) Il n’y a pas d’obstruction de Brauer–Manin à l’existence d’un zéro-cycle de

degré 1 sur la k(C)-variété Xk(C).
(ii) La conjecture de Tate sur les diviseurs vaut sur les surfaces projectives et

lisses sur un corps fini.
Alors la k(C)-variété X×k(C)k(C) possède un zéro-cycle de degré une puissance

de p.

Démonstration. Soit d + 1 la dimension de X, et donc d la dimension de la
k(C)-variété Xk(C). Soit � �= p un nombre premier, et soit {zP } une famille de zéro-
cycles de degré 1 sur les X ×k(C) KP pour laquelle l’application BrXk(C) → Q/Z
définie ci-dessus est nulle. La proposition 3.1 de [2] fournit alors un élément z de

H2d(X,Z�(d)) dont la restriction dans le groupe H2d(X ×k(C) k(C),Z�(d)) � Z�

est égale à 1 ∈ Z�. D’après le théorème 1.1, l’image de z dans H2d(X ×k k̄,Z�(d))
provient d’un élément Z de CH1(X×k k̄)⊗Z�. Prenant la trace de Z dans le groupe
CH0(X ×k(C) k(C))⊗ Z� on voit que le morphisme CH0(X ×k(C) k(C)) → Z/�Z
induit par le degré est surjectif.

Remarque 6.3. La démonstration de la proposition 3.1 de [2] invoquée ci-
dessus utilise des arguments voisins de ceux rencontrés dans la preuve du théorème
6.1. Une différence notable est que, dans la notation de ladite preuve, l’existence de
classes de cohomologie de degré 1 sur les schémas XR implique directement l’exis-
tence d’une classe globale de degré 1 sur X grâce à l’hypothèse � arithmétique �de
type Brauer–Manin, sans imposer une hypothèse géométrique comme l’hypothèse
(i) du théorème 6.1.
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Regulators via iterated integrals (numerical computations)

Herbert Gangl

1. Motivation

Polylogarithms are known to give regulator values of elements in algebraic K-
groups of number fields. In the case of the dilogarithm, Bloch found a criterion
for elements in the free abelian group Z[F ] for a number field F to produce such
elements (cf. [3]), and for higher order polylogarithms an analogous criterion was
proposed by Zagier which gave rise to his polylogarithm conjecture [15]. Beilinson
and Deligne (cf. e.g. [1]) reinterpreted that criterion in terms of extension classes
of mixed Tate motives over F , and realizations of the latter, given in terms of
polylogarithms, provide real mixed Hodge–Tate structures; in a preprint [2] that
unfortunately never made it into print they gave a proof of that reinterpretation,
and a corresponding K-theoretic statement was independently shown by de Jeu
(cf. [10]). As a consequence, given a natural number n, there are criteria for a
formal linear combination

∑
i λi[zi] in Z[F ] which guarantee that an appropriate

single-valued version of the n-logarithm function (e.g. the function Pn in [15]) maps
the image of

∑
i λi[σzi] under a given embedding σ : F ↪→ C to the regulator value

of a suitable extension class.
Since polylogarithms can be expressed as iterated integrals, using a single

1-form of the kind dt
t−1 as well as further 1-forms of the type dt

t only, one can
ask whether more general iterated integrals also produce—possibly new—extension
classes. Promising candidates are iterated integrals where we allow at least two
1-forms of the kind dt

t−1 .

In his work on mixed Hodge structures and iterated integrals [13], Wojtkowiak
generalizes the setup of the paper by Beilinson and Deligne [1] on the motivic
interpretation of Zagier’s conjecture to arbitrary iterated integrals involving only
1-forms with a linear form in the denominator. In this more general framework
there arise new conditions on linear combinations in Z[F ] (for a number field F ) to
represent an extension class in the category MTM/F of mixed Tate motives over
a field F (for the setting, see e.g. [7]), which then give rise to extensions of mixed
Hodge-Tate structures after applying the associated iterated integral.

The aim of this note is to give examples representing such classes and having
non-vanishing regulator values. For this we provide elements which satisfy the con-
ditions mentioned above and evaluate them via some single-valued version for the
associated iterated integrals. Finally we compare the result with the corresponding

c© 2010 Herbert Gangl
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value of the Dedekind zeta function of F (the latter is motivated by Borel’s theorem
on regulators for the algebraicK-groups of F , combined with Zagier’s polylogarithm
conjecture). The output confirms numerically what the theory predicts, namely for
the functions we consider (iterated integrals of type

∫
dt
t−1 ◦ dt

t ◦ ... ◦ dt
t ◦ dt

t−1 of

weight ≤ 5) we encounter the same regulator values (rationally) as for the classical
polylogarithms, although for the most interesting case which we have investigated
(the one of depth 5) the corresponding function is not expressible (cf. [13], §10.3)
in terms of classical polylogarithms.

We want to emphasize that the tremendously useful software package GP-PARI
[9] played an integral part for the experiments in this note.

2. Conditions to produce regulator values

2.1. Conditions from Zagier’s polylogarithm conjecture. Let F be a
number field, with r1 real and 2r2 complex embeddings. Due to a famous result of
A. Borel [4], we know that, using a suitable regulator map, its higher K-groups of
odd order K2n−1F (n ≥ 2) can be mapped isomorphically, up to torsion, to a lattice
of rank r2 or r1 + r2, depending on whether n is even or odd; we will refer to such
a lattice as a “higher regulator lattice”. Bloch (unconditionally in the case of the
dilogarithm, [3]) and Zagier (conjecturally for the higher cases, [15]) gave conditions
for an element ξ =

∑
i λi[zi] in Z[F ] to provide explicit entries in such a “higher

regulator lattice” for F , at least up to a rational multiple. If those conditions are
satisfied then any such entry takes the form Ln,σ(ξ) :=

∑
i λiLn(σ zi) for some

embedding σ : F ↪→ C, where Ln(z) denotes a single-valued cousin (e.g. one can

take the functions denoted by D̃n(z) or Pn(z) in [15]) of the classical n-logarithm
Lin(z) =

∑
r≥1 z

r/rn, analytically continued to C \ {0, 1} via an iterated integral

of the form −
∫ z

0

dt

t− 1
◦ dt

t
◦ · · · ◦ dt

t︸ ︷︷ ︸
n−1 factors

.

For the dilogarithm the corresponding condition can be described using the
second exterior power

∧2 F× of the multiplicative group F× of F : the condition

for ξ alluded to above is simply to lie in ker(β2) where the map β2 : Z[F ] →
∧2

F×

is given on generators as [z] �→ z ∧ (1− z) (and [0], [1] are mapped to 0).

For the higher polylogarithms Zagier gave a similar “main condition”, i.e. a
good combination has to lie in ker(βn), with βn : Z[F ] →

⊗n−2 F×⊗
∧2 F× which

is defined on generators as [z] �→ z⊗(n−2)⊗z∧(1−z) for n ≥ 2 (due to the symmetry

of the situation we can replace
⊗n−2

by Symn−2).
In addition to that main condition, though, he had to impose further “side

conditions”, coming from homomorphisms αi : F× → Z (i ∈ I for some index

set I) and more generally from
⊗j

F× to
⊗j−1

F× (1 ≤ j ≤ n − 2) by apply-

ing these αi to any one of the tensor factors on the left (we interpret
⊗0 F×

on the right as Z). By composing several of the αi, one can map
⊗n−2

F× to⊗k−2
F× for any k = 2, . . . , n− 1, and it turns out that the resulting (composed)

induced homomorphisms αi1 ◦ · · · ◦αin−k
: Z[F ] −→ Z[F ] sending a generator [z] to

αi1(z) · · ·αin−k
(z) [z], map elements from ker(βn) to ker(βk) for the corresponding

k. Now the side conditions alluded to above amount to imposing that the image
of ξ under any of those homomorphisms for any k = 2, . . . , n − 1 is not only in
ker(βk), but moreover lies in a certain subgroup of “universal” elements coming
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from functional equations for Lk (some single-valued version of the k-logarithm as
above). For many examples illustrating the above process we refer to [15] and [6].

The condition for an element ξ ∈ ker(βn) to be a consequence of functional
equations for the n-logarithm is very difficult to analyze (already for the simplest
case of the dilogarithm there is no algorithm known for that). For this reason, Zagier
has given a slightly different—and conjecturally equivalent—formulation where the
above “lies in a certain subgroup of universal elements” is replaced by “vanishes
under Lk,σ for all embeddings σ”. This provides an effective check for conjectural
triviality of Bloch elements.

Then one builds an inductive procedure: first we take linear combinations in
ker(βn) whose images in ker(β2) under any composition of n−2 homomorphisms αi

as above vanish (numerically) when evaluated by the dilogarithm, then restrict to
those linear combinations among them all of whose homomorphic images in ker(β3)
vanish (numerically) under the trilogarithm, and work our way up successively to
k = n − 1. Zagier’s conjecture then implies that a combination ξ satisfying all
those inductive conditions should map, up to multiplying by a rational number, to
a vector (Ln,σ)σ inside the corresponding higher regulator lattice of F (cf. [15]).

In the framework of the paper by Beilinson and Deligne, the above conditions
on ξ (in the non-numerical formulation) imply that it represents an extension class
of mixed Tate motives in Ext1MTM/F (Q(0),Q(n)).

2.2. The conditions in the case Λ10001(z). In [13], Wojtkowiak has sug-
gested a way to generalize the picture by invoking iterated integrals different from
the ones for polylogarithms as candidates for regulator functions. We treat in this
note (a single-valued version of) iterated integrals of the form

Λε1,...,εn(z) =

∫ z

0

dt

t− ε1
◦ dt

t− ε2
◦ · · · ◦ dt

t− εn
,

where εj ∈ {0, 1} (j = 1, . . . , n), and in particular the case where n = 5 and
(ε1, . . . , ε5) = (1, 0, 0, 0, 1). The case ε0 needs to be treated separately, cf. §3.2
below.

In this case, the “side conditions” on the corresponding linear combinations
(in analogy to the above set-up) are somewhat more complicated, as there are now

more different types of homomorphism for an element in the kernel ker(β̃n) where

β̃n : Z[F ] −→
⊗

n−2F× ⊗
∧

2 F×

is given on generators (z 
= 0, 1) as

[z] �→ (1− z)⊗ z⊗(n−3) ⊗
(
z ∧ (1− z)

)
.

As usual, [0] and [1] are mapped to 0.
An example of a new type of homomorphism that we encounter here is obtained

if we factor through (from tensors to antisymmetric tensors in the first two factors)∧
2 F× ⊗

⊗
n−4F× ⊗

∧
2 F× ,

where ξ ∈ ker(β̃n) is mapped to an element in ker(β2) ⊗ (F×)⊗(n−4) ⊗ ker(β2),
which in turn is mapped homomorphically to R, using the following function L2 ⊗
log | · |⊗(n−4) ⊗ L2 (more precisely, we first need to apply individual embeddings
F ↪→ C for each tensor factor).
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For the case in question the conditions for a ξ =
∑

λi[zi] ∈ Z[F ] to provide
a regulator value of an extension class in Ext1MTM/F (Q(0),Q(5)) via the single-

valued version D10001(z) (defined in §3 below) attached to Λ10001(z) are given by
Wojtkowiak ([13], in §10.3). We try to formulate his result in down-to-earth terms:

Proposition 2.1. Let F be a number field and let
∑

λi[zi] ∈ Z[F ] satisfy the
following conditions (M), (X1-3), (Y1-2):

(M) The main condition is∑
i λi (1− zi) ∧ zi ⊗ zi ⊗ zi ⊗ (1− zi) = 0 in

∧
2F× ⊗

(
F×)⊗3

,

(X) Conditions of the first kind. For any embedding σ : F ↪→ C we have

1)
∑

i λi L2(σzi)⊗ zi ⊗ zi ⊗ (1− zi) = 0 in C⊗
(
F×)⊗3

,

2)
∑

i λi L3(σzi)⊗ zi ⊗ (1− zi) = 0 in C⊗
(
F×)⊗2

,
3)

∑
i λi L4(σzi)⊗ (1− zi) = 0 in C⊗ F× .

(Y) Conditions of the second kind. For any embeddings σ, σ′ : F ↪→ C we have

1)
∑

i λi

(
zi ⊗ L2(σzi)L2(σ

′zi)
)
= 0 in F× ⊗ R .

2)
∑

i λi L3(σzi)L2(σ
′zi) = 0 .

Then the combination
∑

λi[zi] gives an extension of Q by (2πi)5Q in the category
of mixed Tate motives over F .

We can view Proposition 2.1 as a generalization of Zagier’s criteria (for elements
in Z[F ] representing elements in the algebraic K-theory of F which are mapped to
a lattice under an appropriate single-valued polylogarithm function). In the spirit
of Zagier’s conjecture we now expect that the vectors (

∑
i D10001(σ zi))σ generate a

full lattice in Rr1+r2 when applied to elements satisfying the six criteria from that
proposition.

Moreover, combining the above with Borel’s Theorems (cf. [4]) we expect that
the covolume of the (conjecturally) ensuing lattice is rationally, up to well-known
factors, given by ζF (5).

Conjecture 2.2. Let F be a number field of discriminant dF . Then there
are elements in Z[F ], satisfying conditions (M), (X1–3) and (Y1–2) whose images
under D10001 generate a lattice of full rank in Rr1+r2 , of covolume a rational number
times |dF |9/2π−5r2ζF (5).

The conditions above, with the exception of (Y2), can be rephrased in terms of
homomorphisms, e.g. for (X1):

∑
i λi L2(σzi)α(zi)α

′(zi)α
′′(1 − zi) = 0 for all

homomorphisms α, α′, α′′ : F× → Z. Note that for simplicity we ignore torsion in
F× here (our computer program does in fact treat it, but in most of our example it
is 2-torsion only, anyway). We will use the statement in this form for the descrip-
tion of the verification in §4 and in our examples in §5 below.

3. One-valued functions attached to Λ10...01(z)

3.1. The symbolic part of the calculation. In the notation of [13], the
single-valued functions D10r1(z) associated to Λ10r1(z) are obtained using the Drin-
fel’d associator Λ→

01
(z) :=

∑
w cw(z)w where w runs through all the words on the
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alphabet {X,Y }, and cw(z) is the corresponding iterated integral
∫ z

0
over the com-

position of 1-forms of type dt
t in place of X and dt

t−1 in place of Y . More precisely,

D10r1(z) is obtained as the coefficient of Y XrY in a power series associated to a
particular automorphism of a certain Lie algebra

(
this Lie algebra, denoted L(V )

in [13], §8.0, with V = P1
Q \ {0, 1,∞}, is obtained as a quotient of (a comple-

tion of) the free Lie algebra on two generators, and the automorphism mentioned
arises from left multiplication by the above Λ→

01
(z), denoted LΛ→

01
(z) in loc.cit., as

1
2 log(LΛ→

01
(z) ◦

=

L
−1

Λ→
01

(z))
)
; for details and notation, we refer to [13].

Specifically, D10001(z) is also denoted Df5(z,
→
01) in [13] §10.3. For symbolic

manipulations (which were performed in Mathematica) we can restrict ourselves to
consider only the terms where at most two Y ’s and three X’s appear.
Eventually, by taking appropriate real part � or imaginary part  and interpreting
Λ0(z) as log(z), one finds the following one-valued function for Λ101(z):

D101(z) = �Λ101(z) + Λ1(z)Λ01(z) − �Λ10(z)�Λ1(z)
− Λ1(z)Λ0(z)�Λ1(z) + 1

3�Λ1(z)�Λ0(z)�Λ1(z) .

Similarly, the one for Λ1001(z) is given by:

D1001(z) = Λ1001(z) − Λ1(z)�Λ001(z) − �Λ10(z)Λ01(z)−Λ100(z)�Λ1(z)

−Λ1(z)Λ0(z)Λ01(z) +
1

3
�Λ1(z)�Λ0(z)Λ01(z)

+
1

3
Λ10(z)�Λ0(z)�Λ1(z) + �Λ10(z)Λ0(z)�Λ1(z)

− 1

3
�Λ1(z)Λ0(z)�Λ0(z)�Λ1(z) +

1

6
Λ1(z)�Λ0(z)�Λ0(z)�Λ1(z)

+
1

2
Λ1(z)Λ0(z)Λ0(z)�Λ1(z) .

In fact, this function turns out to be identically zero (as had been predicted by
Wojtkowiak).

In the above notation we have already tried to indicate some combinatorial
structure of the terms involved. For any r = 1, . . . , n we partition the string
1 0n−2 1 := 1 0 · · · 0︸ ︷︷ ︸

n−2

1 into r substrings B1, . . . , Br, which will be referred to as

blocks, and we attach to each block Bj either the imaginary part or the real part
of the associated functions ΛBj

(z). The blocks are separated by vertical bars, so
e.g. the partition 1 0|0|1 has three blocks 1 0, 0 and 1. We introduce the following
shorthand: we write B and B for i ·ΛB(z) and �ΛB(z), respectively, and separate
blocks by a |.

Then e.g. the function D101(z) above is represented as

[101] − [1
∣∣01] − [10

∣∣1] + [1
∣∣0∣∣1] + 1

3
[1
∣∣0∣∣1] .

So a priori we find 2r terms for each partition, many of which come with a zero
coefficient, though. We find in particular:

• the coefficient of any partition containing blocks of the form 0k with k > 1
vanishes;

• if the number of “imaginary” blocks of a given partition and n have the
same parity then the term has zero coefficient;
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• if the final block in a partition does not have the form 02k+11 or 02k1
for some k ≥ 0 (in the shorthand defined above), then the corresponding
term has coefficient zero.

Proposition 3.1. In the above shorthand, the function D10001(z) is written as

[10001] − [1
∣∣0001] − [10

∣∣001] − [100
∣∣01] − [1000

∣∣1]
+[1

∣∣0∣∣001] + 1
3 [1

∣∣0∣∣001] + 1
3 [10

∣∣0∣∣01] + [10
∣∣0∣∣01] + [100

∣∣0∣∣1] + 1
3 [100

∣∣0∣∣1]
− 1

3 [1
∣∣0∣∣0∣∣01] + 1

6 [1
∣∣0∣∣0∣∣01] − 1

2 [1
∣∣0∣∣0∣∣01]

− 1
3 [10

∣∣0∣∣0∣∣1] − 1
2 [10

∣∣0∣∣0∣∣1] + 1
6 [10

∣∣0∣∣0∣∣1]
+ 1

6 [1
∣∣0∣∣0∣∣0∣∣1] − 1

6 [1
∣∣0∣∣0∣∣0∣∣1] + 1

6 [1
∣∣0∣∣0∣∣0∣∣1] − 7

90 [1
∣∣0∣∣0∣∣0∣∣1] .

More generally, we expect the following single-valued functions as the respective
coefficient of Y Xn−2Y in the above power series (we have checked this symbolically
up to n = 12):

iε D10n−21(z) = �nΛ10n−21(z)−
−

∑
r,s≥0

∑
1≤b≤n−1

(−1)r
αs

r!

[
�r+b+1−n(1 0

n−r−s−b−1)| 0| . . . |0︸ ︷︷ ︸
r

| 0| . . . |0︸ ︷︷ ︸
s

|�b

(
0b−11

)]

with αs denoting the coefficient of xs in the power series x
sinh(x) +

(
x

sinh(x)

)′
=

1− 1
3x−

1
6x

2+ 7
90x

3+ 7
360x

4− 31
2520x

5± . . . , and where �j = � or = i, depending
on whether j is odd or even, and ε = 0 or 1 depending on whether n is odd or even
(and the first block requires n > r + s+ b, of course).

Remark 3.2. Somewhat different candidates for single-valued versions of the
above functions (and many more) have in the meantime been given by F. Brown in
[5].

3.2. The computational aspect of Λ10001. Note that Λε1...εr(z) (εi ∈ {0, 1},
for z 
= 0) does not converge if ε1 = 0. Therefore, in order to arrive at some com-

putable (i.e. programmable) object, we treat Λ0...0(z) as 1
k! log

k(z) and produce
the functions Λ0...01 from (the convergent) Λ10...0 via shuffle relations (“shuffle reg-
ularization”), and the latter ones are (up to sign) standard polylogarithms. At
least inside the unit circle one has a rapidly convergent power series for computing
Λ10...01, while outside the unit circle it can be given using an inversion relation. For
the latter functions, such inversion relations have been provided by Wojtkowiak (cf.
[13], §9 and [14], §10 (3)).
The main problems of evaluating the function arise close to the unit circle itself.
A procedure given by Cohen, Lewin and Zagier [6] in the case of classical polylog-
arithms can be adapted to our situation, though: develop Λ10...01(e

x) in a power
series in x, of which most of the coefficients are expressed in terms of ζ-values (pos-
sibly evaluated at negative integers). The resulting expansion turns out to converge
reasonably fast for an annulus 1/ρ < |x| < ρ for ρ = 3, say.

4. Description of the successive steps in the program

Let F be a number field of discriminant dF and choose a set S of primes in Q.
We take a system F of fundamental S-units in F , i.e. a basis F0 for the S-units in
F×/tors, together with a root ζ of 1 generating the torsion in F×, as provided by
GP/PARI [9]. Note that for simplicity we ignore this torsion in the following (the
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actual program actually does respect the torsion, typically resulting in multiplying
any linear combination by a factor of the order of ζ), hence we can disregard ζ
for the following. Any S-unit has a unique representation in terms of F . For
each element fν ∈ F0 we get a natural homomorphism αν : 〈F〉 → Z picking the
exponent of fν .

Moreover, we number the embeddings by first listing the pairs of complex
conjugate embeddings σ1, σ1, . . . , σr2 , σr2 and then appending successively the r1
real embeddings. For the conditions involving L2 or L4 we only need to consider
σ1, . . . , σr2 , while for conditions involving L3 we invoke both real and complex em-
beddings σ1, . . . , σr1+r2 (i.e. for each pair of complex embeddings we choose one).

4.1. Strategy for invoking the conditions. Initialize the procedure by
searching for “many” exceptional S-units zν (ν ∈ V , an index set of size N := |V|),
i.e. S-units zν ∈ F× such that 1− zν is also an S-unit.

(M) For any ν ∈ V , represent zν and 1 − zν in terms of F , and associate to
it the vector of integer entries arising from the different choices for the
homomorphisms α∗ : 〈F〉 → Z as above:

(1) αi(zν)αj(zν)αk(1− zν)
[
αl(zν)αm(1− zν)− αl(1− zν)αm(zν)

]
,

1 ≤ i ≤ j ≤ s, 1 ≤ k ≤ s, 1 ≤ l < m ≤ s. This provides a row mν of some
integer matrix M0 and the main obstruction (M) for giving an element∑

ν λν [zν ] as in Proposition 2.1 is that the corresponding vector (λν)ν has
to lie in the kernel of M0. Find the (integer) kernel I0 of M0, these form
the first conditions on the linear combination of the rows (corresponding
to the conditions on the zν).

(X1): Invoke further conditions using dilogarithmic conditions by computing the
matrix M2 of size N ×

(
s+1
2

)(
s
2

)
s

(2) (M2)ν,ι =
(
αi(zν)αj(zν)αk(1− zν)L2(σ�zν)

)
ν,ι

,

1 ≤ i ≤ j ≤ s, 1 ≤ k ≤ s,  = 1, . . . , r2, where σ� : F ↪→ C. Numerically,
the columns of the matrix I0 · M t

2 span a lattice, of covolume a rational
number times |dF |3/2π−2(r1+r2)ζF (2), and we compute its integer kernel
K0. Then I1 := K0 · I0 will annihilate both M0 and M2.

(Y1): Then take the “products of dilogs”

(3) (M2,2)ν,k =
(
αi(zν)L2(σ�zν)L2(σmzν)

)
ν,k

,

1 ≤ i ≤ s, 1 ≤  ≤ m ≤ r2, into a matrix M2,2 (the index k runs

through the
(
r1+r2

2

)
pairs (,m)). Similarly, I1 ·M2,2 gives rise (numeri-

cally) to a lattice, more specifically of covolume a rational number times(
|dF |3/2π−2(r1+r2)ζF (2)

)2
, and we can find its (integer) kernel K1. We

define I2 := K1 · I1, which annihilates M0, M2 and M2,2.

(X2): The next step consists in taking the trilogarithmic conditions

(4) (M3)ν,� =
(
αi(zν)αj(1− zν)L3(σ�zν)

)
ν,�

,

1 ≤ i, j ≤ s, this time  = 1, . . . , r1 + r2, generating a matrix M3, and we
find the kernel K2 of the matrix I2 ·M3

(
whose rows give rise to a lattice
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of covolume a rational number times |dF |5/2π−3r2ζF (3)
)
and then form

I3 := K2 · I2, which annihilates M0, M2, M2,2 and M3.

(Y2): Compute further the expressions

(5) (M3,2)ν,k =
(
L2(σ�zν)L3(σmzν)

)
ν,k

,

1 ≤  ≤ r2, 1 ≤ m ≤ r1 + r2 (the index k runs through the r1r2 pairs
(,m)). The resulting matrix M3,2 should give an integer kernel K3 for
the lattice generated by the columns of I3 ·M3,2. The matrix I4 := K3 · I3
annihilates M0, M2, M2,2, M3 and M3,2.

(X3): As a final preliminary step, consider the expressions in

(6) (M4)ν,� =
(
αi(zν)L4(σlzν)

)
ν,�

,

1 ≤ i ≤ s, 1 ≤ l ≤ r2, into a matrix M4 and compute the integral kernel
K4 of I4 ·M4 and put I5 := K4 · I4 which annihilates all of the above as
well as M4.

(D1031) Now everything is in place to apply the function D10001, namely we con-
sider

(M5)ν,� =
(
D10001(σ�zν)

)
ν,�

1 ≤  ≤ r1 + r2, the entries of which form the matrix M5.

ζF (5) We finally find that the columns of R5 := I5 ·M5 generate (numerically)
a lattice; moreover, we can determine its covolume and check whether it
is a rational number (of small height) times

|dF |9/2
π5r2

· ζF (5) .

In our examples, the corresponding ratio indeed looks rational, at least
within the (40-digit) precision typically used.

5. A detailed example for a cubic field

Let F = Q(θ) with θ3− θ−1 = 0 (dF = −23, signature (r1, r2) = (1, 1)). Then
θ is a generator for the group of units modulo torsion; the latter is generated by
−1 and will be ignored in the following. We put F = F0 = {θ} .

Notation: In the following we indicate by
.
= an “approximate equality”, i.e. an

equality which holds up to a given precision. Typically the computer performed
the calculations up to 100 digits precision, except for the calculations for D10001

where we typically used 40 digits.

0. Finding sufficiently many S-units. The exceptional S-units zν that the
computer found are the following twelve ones:

(zν)ν=1,...,12 =
(
− θ2 + 2, −θ + 1, θ2 − θ, −θ2 + θ + 1, θ2 − 1,

−θ2 + 1, θ, −θ, θ2, θ + 1, −θ2 − θ, θ2 + θ + 1
)
.

We encounter the very special case (cf. Lewin’s ladders as explained in
[15], §9C) that there is essentially only one homomorphism 〈F〉 → Z
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involved, namely the one with respect to the fundamental unit θ. The
respective exponents are given as(

α(zν)
)
ν

= (−5,−4,−3,−2,−1,−1, 1, 1, 2, 3, 4, 5) and(
α(1− zν)

)
ν

= (−1, 1,−2,−3,−5, 2,−4, 3,−1, 1, 5, 4).

(M) This condition (the only one which is purely algebraic, as it does not
involve any polylogarithms) is trivially satisfied, since 〈F〉 has rank 1,
hence I0 is the 12× 12 identity matrix.

(X2) Dilogarithm conditions. The dilogarithm values are (only the non-real
embedding σ2 for each zν has to be considered since r2 = 1, so we suppress
it from the notation)

M2 :=
(
α(1− zν)α(zν)α(zν)L2(zν)

)
ν

.
=

.
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−11.78384203
−7.541658902
16.96873253
−11.31248835
2.356768406
1.885414725
−1.885414725
−2.828122088
3.770829451
8.484366265
37.70829451
−47.13536814

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
=1.885414725

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−6.250000000
−4.000000000
9.000000000
−6.000000000
1.250000000
1.000000000
−1.000000000
−1.500000000
2.000000000
4.500000000
20.00000000
−25.00000000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the covolume c2
.
=1.885414725/4

.
=0.4713536814 of the associated lat-

tice is found to be1

c2
.
=

3

8

|dF |3/2
π2(r1+r2)

ζF (2) .

We can find the integer kernel K0 of M2 and put I1 = K0 · I0 = K0.
The latter is given in terms of the transpose of the following matrix It1
the entries of which are very close (within the given precision) to integers,
therefore we round them off and are left with

1Note that we tend to display several zeros after the decimal point, which is more of a psy-
chological feature (it reflects somewhat the satisfaction of the programmer verifying that numbers
match in a computer calculation).
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It1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1 0 0 0 0 0 −1 0
0 0 1 0 −1 1 1 0 0 0 1
0 0 0 0 0 1 0 1 0 0 −1
0 0 −1 1 0 1 0 1 −1 1 1
0 0 0 −1 0 0 0 0 0 1 0
1 −1 0 1 0 1 0 −1 0 0 −1
1 1 0 0 −1 0 −1 0 0 0 0
0 0 0 0 0 0 1 0 1 1 0
0 1 −1 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 1 0 −1 0 0
0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then I1 ·M2
.
=0.

(Y1) Products of dilogarithms. After those preparations, we can expect con-
dition (Y1) to give us a lattice from the matrix with entries products of
dilogarithms

M2,2 :=
(
α(zν)L2(zν)L2(zν)

)
ν

.
=

.
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1.110871464
−0.8886971718
−2.666091515
−1.777394343
−0.2221742929
−0.8886971718
0.2221742929
0.8886971718
1.777394343
2.666091515
0.8886971718
1.110871464

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
= − 0.2221742929

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5.000000000
4.000000000
12.00000000
8.000000000
1.000000000
4.000000000
−1.000000000
−4.000000000
−8.000000000
−12.00000000
−4.000000000
−5.000000000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with the covolume c2,2
.
=0.2221742929 being equal to c22.

Note that I1 ·M2,2 
= 0, which shows that both conditions (X2) and
(Y1) are needed. Instead, I1 ·M2,2 gives an 11× 1-matrix with commen-
surable entries (obvious since M2,2 already does), and one can give an
integer kernel K1 of it and multiply the result by I1. Call the resulting
matrix I2 = K1 · I1; it annihilates both M2 and M2,2. Its transpose is
given by
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It2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −3 0 0 0 0 0 −3 0
0 3 0 −3 3 3 0 0 0 3
0 0 0 0 3 0 3 0 0 −3
0 −3 3 0 3 0 3 −3 3 3
0 0 −3 0 0 0 0 0 3 0
10 −4 −3 12 −25 11 −27 0 0 5
16 −4 −6 9 −28 8 −24 0 0 8
0 0 0 0 0 3 0 3 3 0
3 −3 0 0 0 0 −3 0 0 0
0 0 0 0 0 3 0 −3 0 0
0 0 0 3 0 0 0 0 0 3
0 0 0 3 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(X2) Trilogarithmic conditions. The next step is to satisfy condition (X2). To
this end, we compute the vector of trilogarithms multiplied by the corre-
sponding homomorphisms (this time there are r1 + r2 = 2 embeddings σi

of F into C to consider, which is reflected in the notation):

M3 =
(
α(1− zν)α(zν)L3(σ� zν)

)
ν,�

.
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.034886241 4.677163445
3.081869446 −3.987905178
6.013387652 2.498989698
6.553788692 0.2649913900
5.827735082 −3.651760402
1.784944975 −1.482786776
−4.662188065 2.921408322
−2.677417462 2.224180165
−2.184596230 −0.08833046334
3.006693826 1.249494849
−15.40934723 19.93952589
16.13954496 18.70865378

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We find numerically that the rows of I2 ·M3 generate a lattice:



110 HERBERT GANGL

I2 ·M3
.
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−21.09978266 10.54989133
2.549001106 −6.082728165
4.230598524 −5.120441520
−9.198456008 45.46916271
44.28825961 −16.13384529
−2.476557456 1.839307179
35.98477232 −7.173874034
−12.23789998 0.7096939263
5.669220069 −5.839752292
−21.24466996 19.03673330

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The lattice property becomes more apparent if we multiply by the in-
verse matrix of the first 2× 2-submatrix of the above and multiply by the
common denominator 88, the result being:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

88.00000000 0.00000000
0.00000000 88.00000000

−11.00000000 55.00000000
−52.00000000 −748.0000000
−198.0000000 −110.0000000
9.000000000 −11.00000000
−174.0000000 −198.0000000
63.00000000 99.00000000
−17.00000000 55.00000000
70.00000000 −154.0000000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The determinant c3 of the above 2×2-submatrix is
.
=101.452557625925282

and it is expressed in terms of Dedekind zeta values via

c3
.
=

11

9
· |dF |

5/2

π3r2
ζF (3) .

Again, we can find some matrix K2 which represents the integer kernel
of the above, and I3 = K2 · I2 annihilates M2, M2,2 and M3, where its
transpose has the form
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It3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 1 3 0 −1 0 −3
−1 5 −1 −2 3 0 0 −3
0 −1 2 0 −2 2 1 0
−3 −1 −2 −4 5 2 0 3
−2 0 3 1 0 −3 0 −1
−7 3 −2 7 −10 3 −2 −7
−8 0 4 4 −7 4 −4 −4
−2 2 2 0 0 0 4 0
−1 −3 1 −1 −1 4 2 −2
−2 2 −1 1 0 1 −2 −1
0 1 −1 −1 2 −1 0 0
0 0 0 0 −1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(Y2) Products of dilogarithm and trilogarithm. I3 does not annihilate the ex-
pressions arising from condition (Y2) which are displayed in the next
equation

M3,2 =
(
L2(σ1 zν)L3(σ� zν)

)
ν,�

.
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.3803716968 0.4409196416
0.3631626273 −0.4699284467
−0.9448108025 −0.3926359979
1.029717475 0.04163488907

−0.5493848770 0.3442541418
−0.8413403851 0.6989170060
0.5493848770 −0.3442541418
0.8413403851 −0.6989170060
−1.029717475 −0.04163488907
0.9448108025 0.3926359979
−0.3631626273 0.4699284467
−0.3803716968 −0.4409196416

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(note that for L2 we only use the first embedding) but it gives a lattice
generated by the rows of

I3 ·M3,2
.
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2.641083126 −0.9458342228
5.505177483 0.08038099116
−1.628466720 −4.001815185
−5.607617226 5.920075319
13.37917049 −3.573318541
−1.699781839 −1.699781839
−2.043364556 −4.077663240
6.214401668 −3.957091754

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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the span of which can be recognized with the naked eye using the same
procedure as above (this time we multiply by 26):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

26.00000000 0.00000000
0.00000000 26.00000000
114.0000000 47.00000000
−172.0000000 −109.0000000
108.0000000 115.0000000
48.00000000 15.00000000
116.0000000 46.00000000
116.0000000 85.00000000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We take the integer kernel K4 of I3 ·M3,2 and keep I4 = K3 · I3 which
annihilates all the above (M0, M2, M2,2, M3) as well as M3,2. We give its
transpose as

It4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−202 422 −216 −122 −232 −310
−147 321 −389 −27 −114 −387
99 −109 63 67 72 85
337 −729 569 211 394 511
306 −318 216 18 232 206
605 −695 151 369 622 375
1016 −1272 682 488 824 824
186 −126 −14 66 244 62
281 −525 427 197 306 319
108 −100 −14 92 88 36
−73 83 −63 −41 −46 −85
0 0 −26 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This time the covolume c2,3
.
=0.1921035533 of I3 ·M3,2 is a rational mul-

tiple of c22 · c3. (From the conjectural framework, we expect this covolume
to be a rational number times cr1+r2

2 cr23 .)

(X3) Tetralogarithmic conditions. Continuing in this way, we determine the
tetralogarithmic expressions
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M4 =
(
α(zν)L4(zν)

)
ν

.
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.3814538586
−0.3456381997
1.759643788
−2.947003507
2.965401097
1.431744064
−2.372320878
−2.147616097
0.9823345025
0.8798218942
1.728190998
−1.525815434

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Multiplying I4 by M4, we obtain a single column

I4 ·M4
.
=

⎛
⎜⎜⎜⎜⎜⎜⎝

−57.01118640
99.01942902
−67.01314893
−37.00726135
−58.01138266
−71.01393394

⎞
⎟⎟⎟⎟⎟⎟⎠

.
=1.0001962525

⎛
⎜⎜⎜⎜⎜⎜⎝

−57.00000000
99.00000000
−67.00000000
−37.00000000
−58.00000000
−71.00000000

⎞
⎟⎟⎟⎟⎟⎟⎠
.

The covolume c4
.
=1.0001962525 is found to be

c4
.
=

135

832
· |dF |7/2
π4(r1+r2)

· ζF (4) .

The corresponding kernel I5 (simultaneously satisfying all the conditions
(X1-3) and (Y1-2)) can be written as the transpose of

It5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −8 5 0 −3
7 5 14 0 −28
2 −1 0 0 −4
−7 −2 1 1 12
−3 0 −9 −16 −9
20 16 6 −16 −50
7 2 −7 −16 −39
10 8 2 −16 −22
−5 −7 8 1 0
5 2 3 0 −13
−1 1 2 0 0
1 2 −1 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(D1031) In the last step we compute the values under the “exotic Bloch-Wigner
function” D10001 as given above, and arrive at
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M5 :=
(
D10001(σ� zν)

)
ν,�

.
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.3798787865 4.822987148
0.3906525699 4.688219297
0.8300465454 3.469259751
1.231915999 2.696057038
1.859803935 1.458356504
0.8801812017 3.243252430
4.330778718 1.182477899
1.346885380 2.427729773
4.871430134 1.713967038
5.141619571 1.645178851
2.153722031 1.301307423
5.247265750 1.073768725

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The product of I5 and M5 yields the matrix

I5 ·M5
.
=

⎛
⎜⎜⎜⎜⎝

55.64437827 108.5338106
17.97137546 44.41609166
22.97809554 115.5346022
−128.5790416 −128.5790416
−331.9825665 −424.5390732

⎞
⎟⎟⎟⎟⎠

which can be decomposed as

.
=

⎛
⎜⎜⎜⎜⎝

38.00000000 0.00000000
0.00000000 38.00000000

−77.00000000 287.0000000
−248.0000000 496.0000000
−519.0000000 905.0000000

⎞
⎟⎟⎟⎟⎠
(
1.464325743 2.856152912
0.4729309331 1.168844517

)
.

ζF (5): The special value. We can compute the covolume R10001(F ) of I5 ·M5

as

R10001(F )
.
= 13.71063010

(which is 38 times 0.3608060553, the latter number being the determinant
of the 2×2-matrix on the right). Guided by Borel’s theorems, we compare
this number R10001(F ) with the special value

ζF (5)
.
= 1.00041799247384495

and we observe (denoting dF the discriminant of F and r2 the number of
complex embeddings which are in our case −23 and 1, respectively):

Experimental Evidence: For the field F of degree 3 over Q and of
discriminant dF = −23, the five columns (aj,ν)ν , 1 ≤ j ≤ 5, of It5 give rise

to non-trivial extension classes
∑12

ν=1 aj,ν [zν ] in Ext1MTM/F (Q(0),Q(5)),

and moreover their images under (D10001,σ)σ generate a lattice of (full)
rank 2 and of covolume R10001(F ) with

|dF |9/2
π5r2

· ζF (5) .
= 320 ·R10001(F ) .
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5.1. Remarks.

(1) The example above is one of the simplest cases that worked, i.e. that
gave a non-zero regulator. Usually the number of zν which are needed to
achieve such a non-zero regulator is considerably larger, and more often
than not the program does not find sufficiently many of them.

(2) The procedure of taking the kernel rationally is numerically highly unsta-
ble, and since we want to be able to recognize a lattice, it is crucial that we
find generators of the kernels which form a Z-basis for the lattice (or which
are at least not far away from this property, i.e. the denominator should
be bounded). The problem is that, for the matrix entries we encounter, it
may take very long to find such a Z-basis already for, say, a lattice given
by a matrix of size 300×600. The number of conditions grows very fast
with the order of S and it is typically impractical to include more than 3
or 4 primes into S.

(3) One can view the above weight 5 function as a multiple polylogarithm
as introduced by Goncharov (see e.g. [8]), but specialized to one variable
only (then also called “generalized polylogarithm” in the literature), and
those multiple polylogarithms in turn have appeared early as “hyperloga-
rithms”, in particular in work of Lappo-Danilevsky [11]. In this setting the
function above is denoted Li4,1(1, z), and it might be tempting to think of
the resulting special value not as a Dedekind zeta value ζF (5) but as a kind
of “multiple Dedekind zeta value” ζF (4, 1) (for some candidates see Wojt-
kowiak’s original article [13]) which then would seem, modulo the prod-
uct ζF (2)ζF (3), to be a rational multiple of the former, similar to what is
known to be true for F = Q where one has ζ(4, 1) = 5ζ(5)−ζ(2)ζ(3). Alas,
we were unable to give a sensible evaluation of such a multiple Dedekind
zeta value which might have corroborated such a statement.

6. Further results

6.1. Totally real fields. The simplest cases to consider seem to be the ones
which are totally real, as the conditions involving dilogarithms and tetralogarithms
all are trivially satisfied, since the function L2n(z) vanishes on the real line. Nev-
ertheless, they turn out to be hard, due to complexity reasons (the integer kernels
involved tend to have large coefficients).

6.1.1. The case F = Q. In the case of the rational numbers we also find a
non-trivial result; using the set S = 〈2, 3, 5〉 , we find 98 exceptional S-units, and
a similar calculation as above, but where we only need to satisfy conditions (M),
followed by (X2) which produces a (numerical) lattice of covolume ζ(3)/96, gives us
a lattice generated by the image under D10001 of 50 linear combinations in Z[F ], of
covolume 1

480ζ(5) (and we get the same lattice if we add the prime 7 to S, yielding
178 exceptional S–units and 87 generators of the lattice).

6.2. Other number fields. We have obtained similar results for number
fields of degree ≤ 6, typically we were lucky to find a full regulator lattice for
some small discriminants. We list signatures and corresponding discriminants for
which we have obtained a (conjectural) lattice of full rank r1 + r2:
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signature discriminants
(2, 0) 5, 8, 13
(0, 1) −3, −7, −8, −15, −20
(1, 1) −31, −44, −59, −76, −83, −104, −108, −116, −139, −152
(3, 0) 49, 148, 229
(2, 1) −275, −283, −331, −400, −448
(4, 0) 725, 1125
(0, 3) −9747 .

Moreover, if we divide the covolume of the (conjectural) lattice of D10001–values

by |dF |9/2π−5r2ζF (5), the result in each case is numerically close to a rational
number of small height.

For many other number fields, the height (or complexity) of the rational num-
bers in the inductive steps explodes quickly and gets out of control.
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Zero-cycles on algebraic tori

Alexander S. Merkurjev

1. The map ϕT

Let T be an algebraic torus over a field F and X a smooth compactification
of T , i.e., a geometrically irreducible smooth complete variety containing T as an
open set. The Chow group CH0(X) of classes of zero dimensional cycles on X does
not depend (up to canonical isomorphism) on the choice of X (cf. [7, 16.1.11], [4,
Prop. 6.3], [8]).

Recall that two F -points t, t′ ∈ T (F ) are called R-equivalent if there is rational
morphism f : A1 ��� T defined at 0 and 1 satisfying f(0) = t and f(1) = t′ (cf. [2,
§4]). We write T (F )/R for the group of R-equivalence classes in T (F ).

For an F -point t ∈ T (F ) let [t] denote its class in CH0(X). Consider the map
from T (F ) to CH0(X) taking a point t to the class [t] − [1]. This map does not
depend on the choice of X (up to canonical isomorphism) and it factors through
R-equivalence. Indeed, a map f as above extends to a morphism g : P1 → X and
[t] = g∗([0]) = g∗([1]) = [t′], where g∗ : CH0(P

1) → CH0(X) is the push-forward
homomorphism (cf. [7, 1.4]).

We denote the resulting map by

ϕT : T (F )/R → CH0(X).

Note that there is a homomorphism ψT : A0(X) → T (F )/R such that ψT ◦ϕT

is the identity (cf. [2, Prop. 12]). It follows that the map ϕT is injective.
One can ask whether ϕT is a homomorphism. It is known that ϕT is a homo-

morphism for all tori T of dimension at most 3 (cf. [10]). In this note we shall give
an example of a torus T such that ϕT is not a homomorphism although it has left
inverse map ψT that is a homomorphism. It follows that ϕT is not surjective.

The map ϕT is a homomorphism if and only if for any two points t1 and t2 in
T (F ) one has

(1) [t1t2]− [t1]− [t2] + [1] = 0

in CH0(X).
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Let T ′ be another torus with a compactification X ′. Then X × X ′ is a com-
pactification of T × T ′. Let t ∈ T (F ) and t′ ∈ T ′(F ). The condition (1) for the
elements t1 = (t, 1) and t2 = (1, t′) of (T × T ′)(F ) amounts to

(2) ([t]− [1])× ([t′]− [1]) = 0

in CH0(X ×X ′), where × denotes the external product for Chow groups (cf. [7,
1.10]). In the next section we shall give examples of tori T and T ′ such that
the condition (2) fails for some t and t′. It would follows that ϕT×T ′ is not a
homomorphism.

2. The tori R1
L/F (Gm)

Let F be a field with charF �= 2. For an element a ∈ F×, let Fa denote the
quadratic (étale) F -algebra F [t]/(t2 − a).

Let a, b ∈ F×. Consider the biquadratic F -algebra L = Fa ⊗ Fb and let G be
the Galois group Gal(L/F ). Write σ ∈ G for the generator of Gal(L/Fa) and τ ∈ G
for the generator of Gal(L/Fb).

Let T be the torus R1
L/F (Gm) of norm 1 elements of the extension L/F . For

a field extension K/F , a point t of T (K) is an element t ∈ (K ⊗ L)× satisfying
N(K⊗L)/K(t) := t · σ(t) · τ (t) · στ (t) = 1, where N(K⊗L)/K : (K ⊗L)× → K× is the
norm homomorphism. The element N(K⊗L)/(K⊗Fa) = t · σ(t) in K ⊗ Fa has norm
1 in K. By Hilbert Theorem 90, applied to the quadratic extension (K ⊗ Fa)/K,
there is an element z ∈ (K⊗Fa)

× with t ·σ(t) = z ·τ (z)−1. Note that z is unique up
to a multiple from K×. Hence the norm N(K⊗Fa)/K(z) = z · τ (z) is unique up to a

multiple from K×2. It follows that the class qK(t) quaternion algebra
(
z · τ (z), b

)
K

in the Brauer group Br(K) is well defined. Thus, we get a group homomorphism

qK : T (K) → Br(K), t �→ qK(t).

The collection of the homomorphisms qK over all field extensions K of F form a
morphism q of functors T and Br from the category of all field extensions of F to
the category of groups. In other words, q is an invariant of the algebraic torus T
with values in the Brauer group (cf. [9]).

Remark 2.1. It is shown in [11, p. 427] that qF induces an isomorphism between
T (F )/R and the subgroup of Br(F ) consisting of classes of algebras that are split
over all three quadratic subalgebras of L.

Example 2.2. Assume that F contains a square root i of −1. Then we can view i
as an element of T (F ). We have i ·σ(i) = −1 = z ·τ (z)−1 with z =

√
a in Fa. Hence

qF (i) is the class of the quaternion algebra
(
z · τ (z), b

)
F
	

(
−a, b

)
F
	

(
a, b

)
F
.

Let F (T ) be the function field of T over F and let v be a discrete valuation on
F (T ) over F . The residue field F (v) is a field extension of F . By [5, §5], there is
the residue homomorphism

∂v : Br
(
L(T )/F (T )

)
→ G∗,

where G∗ is the character group of G. An element α in Br
(
L(T )/F (T )

)
is called

unramified with respect to v if ∂v(α) = 0 and (totally) unramified if α is unramified
with respect to every discrete valuation of F (T ) over F .

Proposition 2.3. For any t ∈ T
(
F (T )

)
, the element qF (T )(t) in Br

(
L(T )/F (T )

)
is unramified.
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Proof. Write K for F (T ), so L(T ) = K ⊗ L = KL. As the character group
G∗ is of exponent 2, it suffices to show that qK(t) is divisible by 2 in Br(KL/K). By
Hilbert Theorem 90, there are elements z ∈ K×

a and w ∈ K×
b such that t · σ(t) =

z · τ (z)−1 and t · τ (t) = w−1 · σ(w). Consider the cross product central simple
K-algebra (cf. [6, §12]):

A = KL1⊕KLuσ ⊕KLuτ ⊕KLuτuσ

with multiplication table:

u2
σ = z, u2

τ = w, uσuτ = tuτuσ.

As KL is a maximal subalgebra of A, the Brauer class of A belongs to Br(KL/K).
The centralizer C of the quadratic subalgebra Ka ⊂ KL ⊂ A in A is generated

by KL and uσ and hence is isomorphic to the quaternion algebra (z, b)Ka
. It follows

from [6, §7] that
[A⊗K Ka] = [

(
z, b

)
Ka

] inBr(KL/Ka),

hence

qK(t) = [
(
z · σ(z), b

)
K
] = corKa/K [

(
z, b

)
Ka

] = corKa/K [A⊗K Ka] = 2[A]. �

We write αT for the element qF (T )(t) in Br
(
L(T )/F (T )

)
, where t is the generic

point in T
(
F (T )

)
. As 2αT = 0, we can view αT as an element of the group

H2
(
F (T ),Z/2Z

)
= Br2

(
F (T )

)
. By Proposition 2.3, αT is an unramified element

of H2
(
F (T ),Z/2Z

)
in the sense of [1] (cf. [10, 2.2]).

Remark 2.4. If L/F is a field extension, by [3, Prop. 9.5], the factor group of the
group of unramified elements in Br

(
F (T )

)
modulo Br(F ) is canonically isomorphic

to H2(G, T̂ ) 	 H3(G,Z) 	 Z/2Z, where T̂ is the Galois module of characters of T .

The class αT corresponds to the only nontrivial element of the group H2(G, T̂ ).

Choose a smooth compactifications X of T , so we can view α as an unramified
element of H2

(
F (X),Z/2Z

)
. Let x ∈ X(F ) be any point over F . We write α(x) ∈

H2
(
F,Z/2Z

)
for the value of α at x (cf. [10, 2.1]). If x ∈ T (F ), then α(x) = qF (x).

In particular, we have α(1) = 0 and α(i) = (a) ∪ (b) by Example 2.2 if F contains
a square root i of −1.

Let L′ = Fa′ ⊗ Fb′ be another biquadratic F -algebra and T ′ := R1
L′/F (Gm)

and let αT ′ ∈ H2
(
F (T ′),Z/2Z

)
be the element as above. Choose also a smooth

compactification X ′ of T ′. Restricting α and α′ to F (X × X ′) and taking the
cup-product, we get the unramified element

β = α× α′ ∈ H4
(
F (X ×X ′),Z/2Z

)
.

Let Z0(X ×X ′) be the group of zero-dimensional cycles on X ×X ′. The map
Z0(X × X ′) → H4(F,Z/2Z) taking the class of a closed point z ∈ X × X ′ to
NF (z)/F

(
β(z)

)
factors through a homomorphism

ρ : CH0(X ×X ′) → H4(F,Z/2Z)

(cf. [10, 2.4]). Note that for every t ∈ T (F ) and t′ ∈ T ′(F ) we have

ρ([t]× [t′]) = β(t, t′) = α(t) ∪ α′(t′) ∈ H4(F,Z/2Z).

It follows that

ρ(([t]− [1])× ([t′]− [1])) =
(
α(t)− α(1)

)
∪
(
α′(t′)− α′(1)

)
= α(t) ∪ α′(t′)
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in H4(F,Z/2Z).
Assume that F contains a square root i of −1, so i ∈ T (F ). We then have

ρ
(
([i]− [1])× ([i]− [1])

)
= (a) ∪ (b) ∪ (a′) ∪ (b′) ∈ H4(F,Z/2Z).

One can easily find a field F and elements a, b, a′, b′ with (a) ∪ (b) ∪ (a′) ∪ (b′) �= 0
in H4(F,Z/2Z). For example, one can take F = k(a, b, a′, b′), where a, b, a′, b′ are
variables over a field k. This contradicts (2). Hence ϕT×T ′ is not a homomorphism.
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Chow-Künneth projectors and �-adic cohomology

Andrea Miller

1. Introduction

This article deals with motivic decompositions of Chow motives of universal families
over certain Shimura varieties of PEL-type. “PEL-type” means that the universal
family is given by a family of abelian varieties with polarization, endomorphism and
level structure. Absolute Chow-Künneth decompositions of such families (meaning
Chow-Künneth decompositions of the total space of such a family) were proven to
exist by the author in [25] in the case of families over compact unitary Shimura
varieties of a certain type. These results were the content of the author’s talk at
the conference. They are the motivation and starting point for the present article
and we will give a very short account on them in Section 3. For more details see
[25] and [26] directly.

The main objective of the present article is to relate our Chow-Künneth projec-
tors obtained in [25] to certain projectors in the ring of endomorphisms of �-adic
cohomology. As base variety we take the compact unitary Shimura varieties used
in [16] and studied in [20] and [9]. We then relate the �-adic realizations of Chow
motives, cut out by suitable projectors in the Chow ring, with homological motives
which are cut out by projectors in the �-adic cohomology of these Shimura varieties.
The homological projectors we use are the Künneth projectors used in [16]. The
Chow-Künneth projectors we relate them to are the ones constructed by the author
in [25]. For the fibres of the universal abelian scheme over the Shimura variety this
is done in Section 5.

As simple as the definition of a Chow motive is, we know very little about them.
Thus working out problems usually means working with a specific realization of a
Chow motive. Yet this is often not fully satisfying for obtaining a purely algebraic
geometric understanding of how motives decompose. For example in the cohomol-
ogy of Shimura varieties Hecke correspondences are the essential tool to decompose
these Grothendieck motives. Yet, if and how these “Hecke decompositions” lift to
decompositions of corresponding Chow motives is widely unknown.

c© 2010 Andrea Miller
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The contents of this article are as follows. In section 2 we recall the terminology of
Chow motives and explain Murre’s conjecture. In section 3 we give a short intro-
duction to our work [25]. In section 4 we first recall the definition of Fourier-Mukai
transform. Fourier-Mukai transforms were the essential tool in constructing mo-
tivic decompositions of abelian schemes (see [10]) and we then explain the results
we need. In an upcoming paper we treat Fourier-Mukai transforms for compactifi-
cations of 1-motives. This, we hope, will be useful to treat Murre’s Conjecture in
a more general context of Shimura varieties which are neither compact nor related
to Gl2 (as are modular curves or Hilbert modular varieties, which were treated in
[15], [12]).
Finally in Section 5 we relate our Chow-Künneth projectors to projectors of �-
adic cohomology for universal families over the above mentioned compact unitary
Shimura varieties.

It is a pleasure to thank the organizers of the conference for organizing such an
interesting conference. I especially want to thank Roy Joshua for his patience.
I thank the referee for useful comments. This work was partly supported by a
research grant of the “Deutsche Forschungsgemeinschaft”.

2. Standard Conjecture “C” and Murre’s Conjecture

2.1. In this paragraph, we recall the basic theory of Chow motives, especially
as related to Murre’s Conjecture. Further details may be found in [27].
For a smooth projective variety Y over a field k let CHj(Y ) denote the Chow group
of algebraic cycles of codimension j on Y modulo rational equivalence, and let
CHj(Y )Q := CHj(Y )⊗Q. For a cycle Z on Y we write [Z] for its class in CHj(Y ).
We will be working with relative Chow motives as well, so let us fix a smooth
connected, quasi-projective base scheme S → Spec k. If S = Spec k, we typically
write X ×k Y for X ×Spec k Y . Let Y, Y ′ be smooth projective varieties over S, i.e.,
all fibers are smooth. For our purposes we may assume that Y is irreducible and
of relative dimension g over S. The group of relative correspondences from Y to Y ′

of degree r is defined as

Corrr(Y ×S Y ′) := CHr+g(Y ×S Y ′)Q.

Every S-morphism Y ′ → Y defines an element in Corr0(Y ×S Y ′) via the class of
the transpose of its graph. In particular one has the class [ΔY/S ] ∈ Corr0(Y ×S Y )
of the relative diagonal. The self correspondences of degree 0 form a ring, see [27,
p. 127]. Furthermore there is a ring homomorphism

(∗) CH∗(Y × Y ) −→ End(CH∗(Y ))

([11], Corollary 16.1.2). This yields an action of correspondences on Chow groups.
Using the relative correspondences one proceeds as usual to define the category
CHM(S) of (pure) Chow motives over S. The objects of this pseudoabelian Q-
linear tensor category are triples (Y, p, n) where Y is as above, p is a projector, i.e.
an idempotent element in Corr0(Y ×S Y ), and n ∈ Z. The morphisms are

HomMS
((Y, p, n), (Y ′, p′, n′)) := p′ ◦ Corrn

′−n(Y ×S Y ′) ◦ p.

When n = 0 we write (Y, p) instead of (Y, p, 0), and h(Y ) := (Y, [ΔY ]).
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2.2. Murre’s conjectures. Let k be a field. Fix a Weil cohomology theory
H∗ and a smooth projective variety Y over k with dimY = d. Then by the Künneth
formula we have

H2d(Y × Y )(d) = ⊕2d
n=0H

n(Y )⊗H2d−n(Y )(d).

Since Y is projective, by Poincaré duality, we have

H2d−n(Y )(d) = Hn(Y )∨.

We then get

H2d(Y × Y )(d) = ⊕2d
n=0H

n(Y )⊗Hn(Y )∨

= ⊕2d
n=0 Hom(Hn(Y ), Hn(Y )).

We can thus identify H2d(Y ×Y )(d) with the vector space of graded k-linear maps
f : H∗(Y ) −→ H∗(Y ). In particular we can write

idH∗(Y ) =

2d∑
n=0

πn
Y where πn

Y ∈ Hn(Y )⊗Hn(Y )∨.

The projector
πn
Y : H∗(Y ) −→ H∗(Y )

is called the n-th Künneth projector.
Denote the cycle class map by

cl : CH∗(Y ) −→ H2∗(Y )

for a chosen Weil cohomology H∗(·). Recall that a class in H∗(Y ) is called algebraic
if it lies in the image of the cycle class map cl.

Conjecture 2.1 (Grothendieck). The Künneth projectors

πn
Y : H∗(Y ) −→ H∗(Y ), n = 0 . . . 2d

are algebraic.

As the diagonal [ΔY/k] ∈ CHd(Y × Y ) is mapped to idH∗(Y ) by the cycle class
map we can ask further if the πn

Y , (n = 0, . . . 2d) lift to orthogonal projectors

π0, . . . , π2d ∈ CHd(Y × Y ).

Definition 2.2. For a smooth projective variety Y/k of dimension d a Chow-
Künneth-decomposition of Y consists of a collection of pairwise orthogonal projec-
tors π0, . . . , π2d in Corr0(Y × Y ) satisfying

(1) π0 + . . .+ π2d = [ΔY ] and
(2) for some Weil cohomology theory H∗ one has πi(H

∗(Y )) = Hi(Y ).

If one has a Chow-Künneth decomposition for Y one writes hi(Y ) = (Y, πi). A
similar notion of a relative Chow-Künneth-decomposition over S can be defined in
a straightforward manner, see [27].

The existence of such a decomposition for every smooth projective variety is part
of the following conjecture of Murre:



126 ANDREA MILLER

Conjecture 2.3 (Murre). Let Y be a smooth projective variety of dimension d
over some field k.

(1) There exists a Chow-Künneth decomposition for Y .
(2) For all i < j and i > 2j the action of πi on CHj(Y )Q ( see (∗) in section

2.1 ) is trivial, i.e. πi · CHj(Y )Q = 0.
(3) The induced j step filtration on

F νCHj(Y )Q := Kerπ2j ∩ · · · ∩Kerπ2j−ν+1

is independent of the choice of the Chow–Künneth projectors.
(4) The first step of this filtration should give exactly the subgroup of homo-

logical trivial cycles in CHj(Y )Q.

Remark 2.4. Jannsen showed in [19] that this conjecture is equivalent to the
Bloch-Beilinson conjecture.

Convention 2.5. We will follow the general convention of calling part (1) of the
above conjecture of Murre ” Murre’s Conjecture ”. It can be seen as a strengthening
of Grothendieck’s conjecture ”C” and this is the part of the above conjecture we
will be concerned with in this article.

There are not many cases for which Murre’s conjecture (e.g. as by the above
convention the existence of a Chow-Künneth decomposition) has been proved. It is
known to be true for curves and surfaces [27]. See also the above mentioned work of
Jannsen [19] over finite fields (where a lot more is proved). Furthermore for abelian
schemes over a smooth projective base, Deninger and Murre have constructed a
relative Chow-Künneth decomposition in [10], generalizing work of Shermenev [29]
and Beauville ([3], [4]). Apart from the work already mentioned and the work
on families over Shimura varieties, which will be the content of the next section,
special cases have been treated among others by Akhtar-Joshua [1], del Angel-
Müller-Stach [2], Brosnan [5], Iyer ([17],[18]). We will now proceed to the results
which are known for universal families over Shimura varieties.

3. Murre’s Conjecture and mixed Shimura varieties

As for mixed Shimura varieties, the basic method of approach was established in
the cases of families over modular curves and Hilbert modular varieties by Gor-
don, Hanamura and Murre, see [12], [13], [14], [15]. Certain families over Picard
modular surfaces were incompletely treated in [24]. A complete Chow-Künneth
decomposition for some mixed Kottwitz Shimura varieties was constructed by the
author in [25]. In [25] the approach of Gordon, Hanamura and Murre was modified
to cover more general Shimura varieties. There we also proved that necessary con-
ditions assumed in this approach were fulfilled in all the cases mentioned above. So,
at the present moment, the known cases involving Shimura varieties are restricted
first to some Shimura varieties arising from Gl2 (Gordon, Hanamura, Murre) and
secondly to the author’s work on compact Shimura surfaces arising from certain
unitary groups associated to division algebras [25] . We will now indicate how the
results of [25] were obtained. Proofs for all the results we present here can be found
in [25].

Consider the following situation. For simplicity let our ground field be C. Let X
be a compact Shimura variety of Kottwitz type (i.e. smooth projective over SpecC
of a certain unitary type, see [25]) and let A/X in
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A

π

��

p

��
X

��
SpecC

be an abelian scheme over X. Let At denote the fibre of A over a point t ∈
X. Then the first Betti homology group of At carries a Hodge structure of type
(−1, 0), (0,−1) and we denote its Hodge group by Hod(At).
In [25] we prove the following theorem. A weaker version of this theorem goes back
to work of Gordon, Hanamura and Murre in [15]. See (ii) of the Remarks 3.2 below.

Theorem 3.1. Let p : A → X as above be surjective, smooth and projective satis-
fying the following conditions:

(1) The scheme A/X has a relative Chow-Künneth decomposition.
(2) X has a Chow-Künneth decomposition over C.
(3) If t is a point of X the natural map.

CHr(A) → H2r
B (At(C),Q)Hod(At)

is surjective for 0 ≤ r ≤ d = dimA− dimX.
(4) For i odd, Hi

B(At(C),Q)Hod(At) = 0 (redundant condition).
(5) Let ρ be an irreducible, non-constant representation of Hod(At) and V the

corresponding local system on X.
Then the cohomology Hq(X,V) vanishes if q 
= dimX.

Under these assumptions A has a Chow-Künneth decomposition over C.

�
The proof of this theorem is rather technical and we will not comment on it. The
interested reader should consult our paper [25] directly. In [25] we then proceed
to verify assumptions (1) - (5) of Theorem 3.1 in the case of a compact unitary
Shimura surface S of Kottwitz type. By the conclusion of Theorem 3.1, this then
yields Chow-Künneth decompositions for the corresponding total space.

Remarks 3.2. (i) The fundamental strategy of the proof goes back to [15].
The main new insight for the proof in our case is the fact, that we need to
weaken the assumptions on monodromy of [15] since these assumptions
are false in more general cases. Generally the hypotheses of Theorem 1.3.
of [15] are too strong even in the compact case, so there is very little hope
of being able to use it for non-compact Shimura varieties beyond the ones
studied in [15]. See [24] for a non-trivial low-dimensional case where the
prerequisites of Theorem 1.3. of [15] fail.

(ii) To remedy the problems described in (ii), the main observation is to
systematically work with Mumford-Tate groups instead of fundamental
groups as was done in all of the previous work on other cases given by
Shimura varieties ([12], [15]).



128 ANDREA MILLER

4. Fourier-Mukai transforms for Abelian schemes

Let us shortly recall the definition of Fourier-Mukai transform. For a general refer-
ence on Fourier-Mukai transforms we refer to [6].

Let X −→ S, Y −→ S be smooth projective schemes X,Y over a smooth quasi-
projective scheme S. Denote by p (resp. q) the projectors from X ×S Y to X/S
(resp. Y/S).
Let cohomology be singular cohomology with coefficients inQ. Recall thatH∗(X,Q)
comes equipped with a ring structure. For f : X −→ Y denote by f∗ and f∗ the
induced morphisms on H∗. Fourier-Mukai transformation is defined as follows:

Definition 4.1. LetX,Y, p, q be as above. Then for any a ∈ H∗(X×Y ) (“kernel”),
define the cohomological Fourier-Mukai transform associated to a to be

ΦH
a : H∗(X,Q) −→ H∗(Y,Q)

b �→ q∗(a · p∗(b)).
A similar definition holds for Fourier-Mukai transforms between Chow groups, the
kernel then being an element a ∈ CH∗(X × Y ).

We will now specialize the situation to our purpose, namely to abelian schemes
A/S. Fourier-Mukai transforms between abelian varieties and their duals were at
the origins of Mukai’s work on Fourier-Mukai transforms. He used them to show
that the bounded derived category of an abelian variety is equivalent to the bounded
derived category of its dual.
They were further used by Beauville ([3],[4]), generalizing work of Shermenev
[29], to give a motivic decomposition of abelian varieties. This was generalized
by Deninger and Murre [10] to give a motivic decomposition of abelian schemes
over smooth quasi-projective bases.
We will now briefly recall the results from Deninger and Murre (see [10]), which
we will need later.
Denote by A/S an abelian scheme, by Â/S its dual, by n : A −→ A multiplication

by n ∈ Z on A and by n = idA × n : A×S Â −→ A×S Â.
Fourier-Mukai transform from CH∗(A) to CH∗(Â) are constructed by using a

Poincaré line bundle P on A× Â as kernel. Pick such a P and rigidify it along the
zero section. It is then known [10] that

n∗(x) = nx in CH1(A×S Â).

Following Beauville ([3], [4]), Deninger and Murre [10] defined the following eigenspaces
of CHi(A,Q) with respect to n∗:

CHi
s(A,Q) := {y ∈ CHi(A,Q) | n∗y = n2i−sy for all n ∈ Z}.
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Generalizing the above mentioned results of Beauville, Deninger and Murre [10]
prove (their Theorem 2.19)

Theorem 4.2. Let A/S an abelian scheme of fibre dimension g and let d = dimS.
Then for all i we have

CHi(A,Q) =

l⊕
s=k

CHi
s(A,Q)

with k = Max(i− g, 2i− 2g) and l = Min(2i, i+ d).

�

For the abelian scheme A ×S A over A/S (via projection on the first factor) one
derives

Corollary 4.3. Let A/S an abelian scheme of fibre dimension g. Then for all i
we have

CHi(A×S A,Q) =

l⊕
s=k

CHi
s(A×S A,Q)

with k = Max(i− g, 2i− 2g) and l = Min(2i, i+ g).

Proof. Apply theorem 4.2 to the abelian scheme A ×S A over A/S. The
relative dimension of A×S A over A/S is again g. �

If we now apply this corollary to the degree i = g component of the Chow group
we get the following “eigenspace” decomposition of CHg(A×S A):

CHg(A×S A) =

2g⊕
s=0

CHg
s (A×S A,Q).

As explained in section 2, we are particularly interested in one very specific cycle
in CHg(A×S A,Q), namely the diagonal ΔA/S , which will lead to Chow-Künneth
decompositions.

4.1. Projectors for Abelian Varieties. Let S be a fixed base scheme. We
recall the Chow-Künneth decomposition of an abelian scheme A of fibre dimension
g over S (see [10]). For n ∈ N let [n] denote the cycle class induced from multipli-
cation by n on A/S. (Yet, we will stick with [ΔA/S ] as notation for the Chow class
of ΔA/S .)
Firstly we have a functorial decomposition of the relative diagonal ΔA/S .

Theorem 4.4. There is a unique decomposition

[ΔA/S ] =

2g∑
s=0

πi in CHg(A×S A)Q

such that (idA × [n])∗πi = niπi for all n ∈ Z. Moreover the πi are mutually or-
thogonal idempotents, and [tΓ[n]] ◦ πi = niπi = πi ◦ [tΓ[n]], where [n] denotes the
multiplication by n on A.

Proof. This is Theorem 3.1 of [10].
�

As a corollary they obtain
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Corollary 4.5. Let R(A/S) be the relative Chow motive of the relative abelian
scheme A/S and denote by Ri(A/S) := (R(A/S), πi) the relative Chow motive
determined by πi. Then we have

R(A/S) =

2g⊕
i=0

Ri(A/S)

and n∗ acts on Ri(A/S) by multiplication with ni.

Remark 4.6. One of the many interesting properties of Fourier-Mukai transforms
for abelian schemes is their relation to Poincaré-duality: Poincaré duality can be
obtained as the composition of two Fourier-Mukai transforms.
Set hi(A/S) = (A/S, πi) with πi as in theorem 4.4.

Theorem 4.7. (Poincaré-duality)

h2g−i(A/S)∨ � hi(A/S)(g)

Proof. This was proved by Künnemann in [22, 3.1.2]. �

5. Comparing projectors

We start with the following question.

Question 5.1. How do the projectors of Theorem 4.4, which are used to cut out
eigenspaces of Chow groups (Chow-Künneth projectors) of an abelian scheme relate
to the (Künneth-) projectors which cut out the different degrees of �-adic étale
cohomology of an abelian scheme (Künneth decomposition for a Weil cohomology)
as used in [16] ?

In the following, m denotes the power in the m-th Kuga-Sato variety Am/S =
A×S · · · ×S A −→ S of A −→ S.

5.1. m=1. Chow-Künneth projectors πi, if they exist, are by definition lifts
(under the cycle class map cl) of Künneth projectors πi. (From now on we change
notation from πi

A to πi for Künneth projectors for an abelian scheme A).
We will now give a finer description of the Künneth projectors πi and relate the
motivic decomposition of abelian schemes to certain �-adic Galois representations.
Denote by Pol≤2g,Q the space of rational polynomials of degree ≤ 2g. We need the
following lemma. It is an easy and well known fact from linear algebra, but we will
give a proof which introduces a specific base of polynomials of Pol≤2g,Q as we will
use them later.

Lemma 5.2. The map

φ : Pol≤2g,Q
�−→ Q2g+1, f �→ φ(f) = (f(1), f(2), . . . f(22g)).

is an isomorphism of vector spaces.

Proof. As we are dealing with finite dimensional vector spaces of the same
dimension, it is enough to show the surjectivity of φ. Consider the following poly-
nomials

(1) fi(t) =

2g∏
j=0

j �=i

t− 2j

2i − 2j
∈ Pol≤2g,Q
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Then it is straightforward to check that

fi(2
j) = 1 if i = j and fi(2

j) = 0 if i 
= j.

Hence

φ(fi) = (0, . . . , 0, 1, 0 . . . , 0),

for i = 0, . . . , 2g and the 1 at the i-th position.
This proves surjectivity, hence φ is an isomorphism. �

Recall that we denoted by A/S an abelian scheme of relative dimension g.
We obtain the following diagram [6]

(2) CH∗(A)⊗Q

��

��

�

CH∗(A)⊗Q

��
H∗(A,Q) �� H∗(A,Q).

Here the horizontal arrows are Chow-theoretic, respectively homological, Fourier-
Mukai transforms. The vertical arrows are given in terms of Chern classes and
Todd classes (see [6]). This diagram commutes [6]. We will now give a further
description of the above diagram in the situation described in Section 4.1. I.e. we
consider Fourier-Mukai transforms on Chow groups of abelian schemes.

For n ∈ Z, let [n] denote the element in End(H∗(A,Q)) generated by the multiplication-
by-n morphism n : A −→ A. For m ∈ Z denote by m the endomorphism given
by x → mx for a cohomology class x ∈ H∗(A,Q). Thus “m” is a short way of
writing “m · [1]”. To formally distinguish this from scalar multiplication by inte-
gers, we will put the latter in parenthesis “( )”. We denote the composition of two
endomorphisms by ◦.

Theorem 5.3. Let g denote the relative dimension of the abelian scheme A/S.
The expressions

(3) πi =

2g∏
j=0

j �=i

[2]− 2j

(2i − 2j)
.

are Künneth projectors. Furthermore the i-th Chow-Künneth projector πi for A/S,
as constructed in Theorem 4.4, maps to πi under the cycle class map cl : CH∗(A×S

A,Q) −→ H2∗(A×S A,Q).

Proof. We first show that the πi are Künneth projectors.
Recall that for n ∈ N, n 
= 0, 1, the Hi(A,Q) is the ni-eigenspace of n∗ = [n] ∈
End(H∗(A,Q)). This is a standard argument using the fact that Hi(A,Q) =∧i H1(A,Q) ([8], Theorem 2A8) and that n∗(x) = n · x for x ∈ H1(A,Q) ([8],
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Lemma 2A3). For an element x ∈ Hk(A,Q) we have

πi · x =

2g∏
j=0

j �=i

[2]− 2j

(2i − 2j)
· x

=

2g∏
j=0

j �=i

2k − 2j

(2i − 2j)
· x(4)

=

{
0, if k 
= i;
x, if k = i.

(5)

Clearly

πi ◦ πk =

{
0, if k 
= i;
πi, if k = i.

and thus the πi are Künneth projectors.

Let W denote the (2g + 1)-dimensional subspace of End(H∗(A,Q)), generated by
the Künneth projectors πi, i = 0 . . . 2g and recall the map φ from Lemma 5.2

Pol≤2g,Q −→ Q2g+1, f(t) �→ (f(1), f(2), f(22), . . . , f(22g)).

Then Pol≤2g,Q is isomorphic to W via

fi(t) �→ πi =

2g∏
j=0

j �=i

[2]− 2j

(2i − 2j)
, i = 0 . . . 2g.

Here the fi are the base elements of Pol≤2g,Q chosen in the proof of Lemma 5.2.
We then get the following diagram

(6) CHg(A×S A)

cl

��

Pol≤2g,Q

�
��

��

End(H∗(A,Q)) W
inj��

Here the upper map in the diagram is a map of modules given by mapping the
multiplicative generator t of Pol≤2g,Q to 2∗ ∈ Corr(A/S,A/S) = CHg(A ×S A)
(notation of [10]).
As n∗ ∈ End(CH∗(A/S)) maps to [n] ∈ End(H∗(A,Q)), the Künneth projectors

πi =

2g∏
j=0

j �=i

[2]− 2j

(2i − 2j)
, i = 0 . . . g,

lift to Chow-Künneth projectors πi under the vertical maps of diagram (2). �

Corollary 5.4. The �-adic Grothendieck motives constructed on page 98 of [16]
for m = 1 can be lifted to Chow motives.

Proof. This is now clear for an �-adic realization of the Ri(A/S) as introduced
above. �
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5.2. m > 1. The Künneth projectors

πi =

2g∏
j=0

j �=i

[2]− 2j

(2i − 2j)
, i = 0 . . . g,

used above, are actually special cases of projectors (when m = 1) constructed in
[16] for Kuga-Sato varieties
(A/S)m −→ X. The generalized projectors of [16] are given by

πi,x =
m∏

x=1

2g∏
j=0

j �=i

[2]x − 2j

(2i − 2j)
.

Here [2]x denotes multiplication by 2 on the x-th factor of Am = A×S · · ·×SA −→ X
and g is as before. These projectors are used in [16] to construct �-adic Galois
representations associated to certain automorphic representations π of G(A∞) .
Here G denotes Kottwitz’ unitary groups introduced in [16] and A∞ denote the
adèles away from the archimedian primes.
It is straight forward to generalize the arguments of [10] and of the present paper
from A/S to Am/S.
One of the key ingredients in the proof of a Chow-Künneth decomposition for
abelian schemes in [10] (for m = 1) is an argument of Kleiman (see 2A11 of [8])
which constructs a linear system by taking k∗j (ΔA) for enough kj ∈ N. The exact
same argument goes through for Am = A ×S · · · ×S A −→ X by singling out
multiplication by kj for one factor of Am/S = A×S · · · ×S A −→ S at a time.
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position for universal families over Picard modular surfaces, Algebraic Cycles and Motives,
vol.2, Ed: J.Nagel, C.Peters, Cambridge University Press (2007).

[25] A. Miller: Chow motives of universal families over some Shimura surfaces, Preprint,
arXiv:math/0710.4209

[26] A. Miller: Chow motives of mixed Shimura varieties, to appear in the Conference Proceed-
ings “Cycles, Motives and Shimura Varieties”, TIFR Mumbai, (2008).

[27] J. P. Murre: Lectures on Motives, in Proceedings Transcendental Aspects of Algebraic
Cycles, Grenoble 2001, LMS Lectures Note Series 313, Cambridge Univ. Press (2004), 123–
170.

[28] J. P. Murre: On the motive of an algebraic surface, J. Reine Angew. Math. 409 (1990),

pp. 190–204.
[29] A. Shermenev: The motive of an abelian variety, Funct. Anal. 8 (1974), 55-61.

Department of Mathematics, Harvard University, One Oxford Street, Cambridge, MA

02138

E-mail address: millerae@math.harvard.edu



Connections with Mathematical
Physics





Clay Mathematics Proceedings
Volume 9, 2010

Motives Associated to Sums of Graphs

Spencer Bloch

1. Introduction

In quantum field theory, the path integral is interpreted perturbatively as a sum
indexed by graphs. The coefficient (Feynman amplitude) associated to a graph Γ is
a period associated to the motive given by the complement of a certain hypersurface
XΓ in projective space. Based on considerable numerical evidence, Broadhurst and
Kreimer suggested [4] that the Feynman amplitudes should be sums of multi-zeta
numbers. On the other hand, Belkale and Brosnan [2] showed that the motives of
the XΓ were not in general mixed Tate.

A recent paper of Aluffi and Marcolli [1] studied the images [XΓ] of graph
hypersurfaces in the Grothendieck ring K0(V ark) of varieties over a field k. Let
Z[A1

k] ⊂ K0(V ark) be the subring generated by 1 = [Spec k] and [A1
k]. It follows

from [2] that [XΓ] �∈ Z[A1
k] for many graphs Γ.

Let n ≥ 3 be an integer. In this note we consider a sum Sn ∈ K0(V ark) of
[XΓ] over all connected graphs Γ with n vertices, no multiple edges, and no tadpoles
(edges with just one vertex). (There are some subtleties here. Each graph Γ appears
with multiplicity n!/|Aut(Γ)|. For a precise definition of Sn see (5.1) below.) Our
main result is

Theorem 1.1. Sn ∈ Z[A1
k].

For applications to physics, one would like a formula for sums over all graphs
with a given loop order. I do not know if such a formula could be proven by these
methods. Even if it could, the referee points out it is not obvious how the Feynman
amplitude could be interpreted as a “motivic measure”, i.e. as a functional on a
Grothendieck group like K0(V ark).

Dirk Kreimer explained to me the physical interest in considering sums of
graph motives, and I learned aboutK0(V ark) from correspondence with H. Esnault.
Finally, the recently paper of Aluffi and Marcolli [1] provides a nice exposition of
the general program.

2. Basic Definitions

Let E be a finite set, and let

(2.1) 0 → H → QE → W → 0; 0 → W∨ → QE → H∨ → 0

c© 2010 Spencer Bloch
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be dual exact sequences of vector spaces. For e ∈ E, let e∨ : QE → Q be the dual
functional, and let (e∨)2 be the square, viewed as a quadratic function. By restric-
tion, we can view this as a quadratic function either on H or on W∨. Choosing
bases, we get symmetric matrices Me and Ne. Let Ae, e ∈ E be variables, and
consider the homogeneous polynomials

(2.2) Ψ(A) = det(
∑

AeMe); Ψ∨(A) = det(
∑

AeNe).

Lemma 2.1. Ψ(. . . Ae, . . .) = c
∏

e∈E AeΨ
∨(. . . A−1

e , . . .), where c ∈ k×.

Proof. This is proposition 1.6 in [3]. �

Let Γ be a graph. Write E, V for the edges and vertices of Γ. We have an exact
sequence

(2.3) 0 → H1(Γ,Q) → QE ∂−→ QV → H0(Γ,Q) → 0.

We take H = H1(Γ) and W = Image(∂) in (2.1). The resulting polynomials
Ψ = ΨΓ, Ψ∨ = Ψ∨

Γ as in (2.2) are given by [3]

(2.4) ΨΓ =
∑
t∈T

∏
e�∈t

Ae; Ψ∨
Γ =

∑
t∈T

∏
e∈t

Ae.

Here T is the set of spanning trees in Γ.

Lemma 2.2. Let e ∈ Γ be an edge. Let Γ/e be the graph obtained from Γ by
shrinking e to a point and identifying the two vertices. We do not consider Γ/e in
the degenerate case when e is a loop, i.e. if the two vertices coincide. Let Γ− e be
the graph obtained from Γ by cutting e. We do not consider Γ− e in the degenerate
case when cutting e disconnects Γ or leaves an isolated vertex. Then

ΨΓ/e = ΨΓ|Ae=0; ΨΓ−e =
∂

∂Ae
ΨΓ.(2.5)

Ψ∨
Γ/e =

∂

∂Ae
Ψ∨

Γ ; Ψ∨
Γ−e = Ψ∨

Γ |Ae=0.(2.6)

(In the degenerate cases, the polynomials on the right in (2.5) and (2.6) are zero.)

Proof. The formulas in (2.5) are standard [3]. The formulas (2.6) follow easily
using lemma 2.1. (In the case of graphs, the constant c in the lemma is 1.) �

More generally, we can consider strings of edges e1, . . . , ep ∈ Γ. If at every
stage we have a nondegenerate situation we can conclude inductively

(2.7) Ψ∨
Γ−e1−···−ep = Ψ∨

Γ |Ae1
=···=Aep=0

In the degenerate situation, the polynomial on the right will vanish, i.e. XΓ will
contain the linear space Ae1 = · · · = Aep = 0.

For example, let Γ = e1∪e2∪e3 be a triangle, with one loop and three vertices.
We get the following polynomials

ΨΓ = Ae1 +Ae2 +Ae3 ; Ψ∨
Γ = Ae1Ae2 +Ae2Ae3 +Ae1Ae3(2.8)

ΨΓ−ei = 1; Ψ∨
Γ−ei = AejAek = Ψ∨

Γ |Aei
=0(2.9)

The sets {ei, ej} are degenerate because cutting two edges will leave an isolated
vertex.
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3. The Grothendieck Group and Duality

Recall K0(V ark) is the free abelian group on generators isomorphism classes
[X] of quasi-projective k-varieties and relations

(3.1) [X] = [U ] + [Y ]; U
open
↪→ X, Y = X − U.

In fact, K0(V ark) is a commutative ring with multiplication given by cartesian
product of k-varieties. Let Z[A1

k] ⊂ K0(V ark) be the subring generated by 1 =
[Spec k] and [A1

k]. Let PΓ be the projective space with homogeneous coordinates
Ae, e ∈ E. We writeXΓ : ΨΓ = 0, X∨

Γ : Ψ∨
Γ = 0 for the corresponding hypersurfaces

in PΓ. We are interested in the classes [XΓ], [X
∨
Γ ] ∈ K0(V ark).

Let Δ :
∏

e∈E Ae = 0 in PΓ, and let T = TΓ = PΓ −Δ be the torus. Define

(3.2) X0
Γ = XΓ ∩ TΓ; X∨,0

Γ = X∨
Γ ∩ TΓ.

Lemma 2.1 translates into an isomorphism (Cremona transformation)

(3.3) X0
Γ
∼= X∨,0

Γ .

(In fact, this is valid more generally for the setup of (2.1) and (2.2).) We can
stratify X∨

Γ by intersecting with the toric stratification of PΓ and write

(3.4) [X∨
Γ ] =

∑
{e1,...,ep}⊂E

[(X∨
Γ ∩ {Ae1 = · · · = Aep = 0})0] ∈ K0(V ark)

where the sum is over all subsets of E, and superscript 0 means the open torus
orbit where Ae �= 0, e �∈ {e1, . . . , ep}. We call a subset {e1, . . . , ep} ⊂ E degenerate
if {Ae1 = · · · = Aep = 0} ⊂ X∨

Γ . Since [Gm] = [A1] − [pt] ∈ K0(V ark) we can
rewrite (3.4)

(3.5) [X∨
Γ ] =

∑
{e1,...,ep}⊂E
nondegenerate

[(X∨
Γ ∩ {Ae1 = · · · = Aep = 0})0] + t

where t ∈ Z[A1] ⊂ K0(V ark). Now using (2.7) and (3.3) we conclude

(3.6) [X∨
Γ ] =

∑
{e1,...,ep}⊂E
nondegenerate

[X0
Γ−{e1,...,ep}] + t.

4. Complete Graphs

Let Γn be the complete graph with n ≥ 3 vertices. Vertices of Γn are written
(j), 1 ≤ j ≤ n, and edges eij with 1 ≤ i < j ≤ n. We have ∂eij = (j)− (i).

A more precise version of the following lemma is proven in [5], theorem (4.1).

Proposition 4.1. We have [X∨
Γn

] ∈ Z[A1
k].

Proof. Let Qn,0 ⊂ Qn be row vectors with entries which sum to 0. We have

(4.1) 0 → H1(Γn) → QE ∂−→ Qn,0 → 0.

In a natural way, (Qn,0)∨ = Qn/Q. Take as basis of Qn/Q the elements (1), . . . , (n−
1). As usual, we interpret the (e∨ij)

2 as quadratic functions on Qn/Q. We write Ne

for the corresponding symmetric matrix.

Lemma 4.2. The Neij form a basis for the space of all (n−1)×(n−1) symmetric
matrices.
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Proof of lemma. The dual map Qn/Q → QE carries

(4.2) (k) �→
∑
μ>k

−ekμ +
∑
ν<k

eνk; k ≤ n− 1.

We have

(4.3) (e∨ij)
2(

n−1∑
k=1

ak · (k)) =
{
a2i − 2aiaj + a2j i < j < n

a2i j = n.

It follows that if j < n, Neij has −1 in positions (ij) and (ji) and +1 in positions
(ii), (jj) (resp. Nin has 1 in position (ii) and zeroes elsewhere). These form a basis
for the symmetric (n− 1)× (n− 1) matrices. �

It follows from the lemma that X∨
Γn

is identified with the projectivized space
of (n− 1)× (n− 1) matrices of rank ≤ n− 2. In order to compute the class in the
Grothendieck group we detour momentarily into classical algebraic geometry. For
a finite dimensional k-vector space U , let P(U) be the variety whose k-points are
the lines in U . For a k-algebra R, the R-points SpecR → P(U) are given by pairs
(L, φ) where L on Spec R is a line bundle and φ : L ↪→ U ⊗k R is a locally split
embedding.

Suppoose now U = Hom(V,W ). We can stratify P(Hom(V,W )) =∐
p>0 P(Hom(V,W ))p according to the rank of the homomorphism. Looking at

determinants of minors makes it clear that P(Hom(V,W ))≤p is closed. Let R be
a local ring which is a localization of a k-algebra of finite type, and let a be an
R-point of P(Hom(V,W ))p. Choosing a lifting b of the projective point a, we have

(4.4) 0 → ker(b) → V ⊗R
b−→ W ⊗R → coker(b) → 0,

and coker(b) is a finitely generated R-module of constant rank dimW − p which is
therefore necessarily free.

LetGr(dimV−p, V ) andGr(p,W ) denote the Grassmann varieties of subspaces
of the indicated dimension in V (resp. W ). OnGr(dimV −p, V )×Gr(p,W ) we have
rank p bundles E,F given respectively by the pullbacks of the universal quotient
on Gr(dimV − p, V ) and the universal subbundle on Gr(p,W ). It follows from the
above discussion that

(4.5) P(Hom(V,W ))p = P(Isom(E,F )) ⊂ P(Hom(E,F )).

Suppose now that W = V ∨. Write 〈 , 〉 : V ⊗V ∨ → k for the canonical bilinear
form. We can identify Hom(V, V ∨) with bilinear forms on V

(4.6) ρ : V → V ∨ ↔ (v1, v2) �→ 〈v1, ρ(v2)〉.
Let SHom(V, V ∨) ⊂ Hom(V, V ∨) be the subspace of ρ such that the correspond-
ing bilinear form on V is symmetric. Equivalently, Hom(V, V ∨) = V ∨,⊗2 and
SHom(V, V ∨) = Sym2(V ∨) ⊂ V ∨,⊗2.

For ρ symmetric as above, one seees easily that ρ(V ) = ker(V )⊥ so there is a
factorization

(4.7) V → V/ ker(ρ)
∼=−→ (V/ ker(ρ))∨ = ker(ρ)⊥ ↪→ V ∨.

The isomorphism in (4.7) is also symmetric.
Fix an identification V = kn and hence V = V ∨. A symmetric map is then

given by a symmetric n × n matrix. On Gr(n − p, n) we have the universal rank
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p quotient Q = kn ⊗ OGr/K, and also the rank p perpendicular space K⊥ to the
universal subbundle K. Note K⊥ ∼= Q∨. It follows that

(4.8) P(SHom(kn, kn))p ∼= P(SHom(Q,Q∨))p ⊂ P(SHom(Q,Q∨)).

This is a fibre bundle overGr(n−p, n) with fibre P(Hom(kp, kp))p, the projectivized
space of symmetric p× p invertible matrices.

We can now compute [X∨
Γn

] as follows. Write c(n, p) = [P(SHom(kn, kn))p].
We have the following relations:

c(n, 1) = [Pn−1];

n∑
p=1

c(n, p) = [P(
n+1
2 )−1];(4.9)

c(n, p) = [Gr(n− p, n)] · c(p, p)(4.10)

[X∨
Γn

] =
n−2∑
p=1

c(n− 1, p)(4.11)

Here (4.10) follows from (4.8). It is easy to see that these formulas lead to an
expression for [X∨

Γn
] as a polynomial in the [PN ] and [Gr(n− p− 1, n− 1)] (though

the precise form of the polynomial seems complicated). To finish the proof of the
proposition, we have to show that [Gr(a, b)] ∈ Z[A1

k]. Fix a splitting kb = kb−a⊕ka.
Stratify Gr(a, b) =

∐a
p=0 Gr(a, b)p where

(4.12) Gr(a, b)p =

{V ⊂ kb−a ⊕ ka | dim(V ) = a, Image(V → ka) has rank p} =

{(X,Y, f) | X ⊂ kb−a, Y ⊂ ka, f : Y → X}

where dimX = a− p, dim(Y ) = p. This is a fibration over Gr(b− a− p, b− a)×
Gr(p, a) with fibre Ap(b−a−p). By induction, we may assume [Gr(b− a− p, b− a)×
Gr(p, a)] ∈ Z[A1

k]. Since the class in the Grothendieck group of a Zariski locally
trivial fibration is the class of the base times the class of the fibre, we conclude
[Gr(a, b)p] ∈ Z[A1

k], completing the proof. �

In fact, we will need somewhat more.

Lemma 4.3. Let Γ be a graph.
(i) Let e0 ∈ Γ be an edge. Define Γ′ = Γ ∪ ε, the graph obtained from Γ by adding
an edge ε with ∂ε = ∂e0. Then X∨

Γ′ is a cone over X∨
Γ .

(ii) Define Γ′ = Γ ∪ ε where ε is a tadpole, i.e. ∂ε = 0. Then X∨
Γ′ is a cone over

X∨
Γ .

Proof. We prove (i). The proof of (ii) is similar and is left for the reader.
Let E, V be the edges and vertices of Γ. We have a diagram

(4.13)

QE ∂−−−−→ QV⏐⏐� ∥∥∥
QE ⊕Q · ε ∂−−−−→ QV

Dualizing and playing our usual game of interpreting edges as functionals on
Image(∂)∨ ∼= QV /Q, we see that ε∨ = e∨0 . Fix a basis for QV /Q so the (e∨)2
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correspond to symmetric matrices Me. We have

(4.14) X∨
Γ : det(

∑
E

AeMe) = 0; X∨
Γ′ : det(AεMe0 +

∑
E

AeMe) = 0.

The second polynomial is obtained from the first by the substitution Ae0 �→ Ae0 +
Aε. Geometrically, this is a cone as claimed. �

Let ΓN be the complete graph on N ≥ 3 vertices. Let Γ ⊃ ΓN be obtained by
adding r new edges (but no new vertices) to ΓN .

Proposition 4.4. [X∨
Γ ] ∈ Z[A1] ⊂ K0(V ark).

Proof. Note that every pair of distinct vertices in ΓN are connected by an
edge, so the r new edges e either duplicate existing edges or are tadpoles (∂e = 0). It
follows from lemma 4.3 that X∨

Γ is an iterated cone over X∨
ΓN

. In the Grothendieck
ring, the class of a cone is the sum of the vertex point with a product of the base
times an affine space, so we conclude from proposition 4.1. �

5. The Main Theorem

Fix n ≥ 3. Let Γn be the complete graph on n vertices. It has
(
n
2

)
edges. Recall

(lemma 2.2) a set {e1, . . . , ep} ⊂ edge(Γn) is nondegenerate if cutting these edges
(but leaving all vertices) does not disconnect Γn. (For the case n = 3 see (2.8) and
(2.9).) Define

(5.1) Sn :=
∑

{e1,...,ep}
nondegenerate

[XΓn−{e1,...,ep}] ∈ K0(V ark).

Let Γ be a connected graph with n vertices and no multiple edges or tadpoles. Let
G ⊂ Sym(vert(Γ)) be the subgroup of the symmetric group on the vertices which
acts on the set of edges. Then [XΓ] appears in Sn with multiplicity n!/|G|.

Theorem 5.1. Sn ∈ Z[A1
k] ⊂ K0(V ark).

Proof. It follows from (3.6) and proposition 4.1 that

(5.2)
∑

{e1,...,ep}
nondegenerate

[X0
Γn−{e1,...,ep}] ∈ Z[A1

k].

Write �e = {e1, . . . , ep} and let �f = {f1, . . . , fq} be another subset of edges. We

will say the pair {�e, �f} is nondegenerate if �e is nondegenerate in the above sense,

and if further �e ∩ �f = ∅ and the edges of �f do not support a loop. For {�e, �f}
nondegenerate, write (Γn − �e)/�f for the graph obtained from Γn by removing the

edges in �e and then contracting the edges in �f . If we fix a nondegenerate �e, we have
(by an argument dual to that in section 3)

(5.3)
∑
�f

{�e,�f} nondeg.

[X0
(Γn−�e)/�f

] + t = [XΓn−�e].

Here t ∈ Z[A1] accounts for the �f which support a loop. These give rise to de-
generate edges in XΓn−�e which are linear spaces and hence have classes in Z[A1].
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Summing now over both �e and �f , we conclude

(5.4) Sn ≡
∑
{�e,�f}

nondegen.

[X0
(Γn−�e)/�f

] mod Z[A1].

Note that if �e, �f are disjoint and �f does not support a loop, then �e is nondegen-

erate in Γn if and only if it is nondegenerate in Γn/�f . This means we can rewrite
(5.4)

(5.5) Sn ≡
∑
�f

∑
�e⊂Γn/�f
nondegen.

[X0
(Γn/�f)−�e

].

Let �f = {f1, . . . , fq} and assume it does not support a loop. Then Γn/�f has
n− q vertices, and every pair of distinct vertices is connected by at least one edge.

This means we may embed Γn−q ⊂ Γn/�f and think of Γn/�f as obtained from Γn−q

by adding duplicate edges and tadpoles. We then apply proposition 4.4 to conclude
that [X∨

Γn/�f
] ∈ Z[A1

k]. Now arguing as in (3.6) we conclude

(5.6)
∑

�e⊂Γn/�f
nondegen.

[X0
(Γn/�f)−�e

] ∈ Z[A1
k]

Finally, plugging into (5.5) we get Sn ∈ Z[A1] as claimed. �

References

[1] Aluffi, P., and Marcolli, M., Feynman Motives of Banana Graphs, arXiv:0807.1690v2 [hep-th]
[2] Belkale, P., and Brosnan, P., Matroids, motives and a conjecture on Kontsevich, Duke Math.

Journal, Vol. 116 (2003) 147-188.
[3] Bloch, S, Esnault, H., and Kreimer, D., On Motives Associated to Graph Polynomials, Comm.

Math. Phys. 267 (2006), 181-225.

[4] Broadhurst, D.J., and Kreimer, D., Association of multiple zeta values with positive knots
via Feynman diagrams up to 9 loops, Phys. Lett.B 393 (1997) 403.

[5] Stanley, R., Spanning Trees and a Conjecture of Kontsevich, Annals of Combinatorics
2(1999), 351-363.

Dept. of Mathematics, University of Chicago, Chicago, IL 60637, USA

E-mail address: bloch@math.uchicago.edu





Clay Mathematics Proceedings

Double shuffle relations and renormalization of multiple zeta
values

Li Guo, Sylvie Paycha, Bingyong Xie, and Bin Zhang

Abstract. In this paper we present some of the recent progresses in multiple
zeta values (MZVs). We review the double shuffle relations for convergent
MZVs and summarize generalizations of the sum formula and the decompo-
sition formula of Euler for MZVs. We then discuss how to apply methods
borrowed from renormalization in quantum field theory and from pseudodif-
ferential calculus to partially extend the double shuffle relations to divergent
MZVs.

1. Introduction

The purpose of this paper is to give a survey of recent developments in multiple
zeta values (MZVs). We emphasize on the double shuffle relations which under-
lie the algebraic relations among the convergent MZVs, and on renormalization
methods that aim to extend the double shuffle relations to MZVs outside of the
convergent range of the nested sums defining MZVs. We also provide background
on double shuffle relations and renormalization, as well as the closely related Rota-
Baxter algebras and some analytic tools in pseudodifferential calculus in view of
renormalization.

1.1. Double shuffle relations and Euler’s formulas. A multiple zeta
value (MZV) is the special value of the complex valued function

ζ(s1, · · · , sk) =
∑

n1>···>nk�1

1

ns1
1 · · ·nsk

k

at positive integers s1, · · · , sk with s1 � 2 to insure the convergence of the nested
sum. MZVs are natural generalizations of the Riemann zeta values ζ(s) to multiple
variables. The two variable case (double zeta values) was already studied by Euler.

MZVs in the general case were introduced in the 1990s with motivations from
number theory [70], combinatorics [40] and quantum field theory [11]. Since then
the subject has turned into an active area of research that involves many areas of
mathematics and mathematical physics [13]. Its number theoretic significance can
be seen from the fact that all MZVs are periods of mixed Tate motives over Z and
the conjecture that all periods of mixed Tate motives are rational combinations of
MZVs [25, 27, 69].

c© 2010 Li Guo, Sylvie Paycha, Bingyong Xie and Bin Zhang
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It has been discovered that the analytically defined MZVs satisfy many alge-
braic relations. Further it is conjectured that these algebraic relations all follow
from the combination of two algebra structures: the shuffle relation and the stuffle
(harmonic shuffle or quasi-shuffle) relation [46]. This remarkable conjecture not
only links the analytic study of MZVs to the algebraic study of double shuffle
relations, but also implies the more well-known conjecture on the algebraic inde-
pendence of ζ(2), ζ(2k + 1), k � 1, over Q.

Many results on algebraic relations among MZVs can be regarded as general-
izations of Euler’s sum formula and decomposition formula on double zeta values
which preceded the general developments of multiple zeta values by over two hun-
dred years. We summarize these results in Section 3. With the non-experts in
mind, we first give in Section 2 preliminary concepts and results on double shuffle
relations for MZVs and the related Rota-Baxter algebras.

1.2. Renormalization. Values of the Riemann zeta function at negative in-
tegers are defined by analytic continuation and possess significant number the-
ory properties, such as Bernoulli numbers, Kummer congruences and p-adic L-
functions. Thus it would be interesting to similarly study MZVs outside the con-
vergent domain of the corresponding nested sums. However, most of the MZVs
remain undefined even after the analytic continuation. To bring new ideas into the
study, we introduce the method of renormalization from quantum field theory.

Renormalization is a process motivated by physical insight to extract finite
values from divergent Feynman integrals in quantum field theory, after adding in a
so-called counter-term. Despite its great success in physics, this process was well-
known for its lack of a solid mathematical foundation until the seminal work of
Connes and Kreimer [14, 15, 16, 50]. They obtained a Hopf algebra structure
on Feynman graphs and showed that the separation of Feynman integrals into
the renormalized values and the counter-terms comes from their algebraic Birkhoff
decomposition similar to the Birkhoff decomposition of a loop map.

The work of Connes and Kreimer establishes a bridge that allows an exchange
of ideas between physics and mathematics. In one direction, their work provides
the renormalization of quantum field theory with a mathematical foundation which
was previously missing, opening the door to further mathematical understanding
of renormalization. For example, the related Riemann-Hilbert correspondence and
motivic Galois groups were studied by Connes and Marcolli [17], and motivic
properties of Feynman graphs and integrals were studied by Bloch, Esnault and
Kreimer [5]. See [2, 11, 56] for more recent studies on the motivic aspect of
Feynman rules and renormalization.

In the other direction, the mathematical formulation of renormalization pro-
vided by the algebraic Birkhoff decomposition allows the method of renormalization
dealing with divergent Feynman integrals in physics to be applied to divergent prob-
lems in mathematics that could not be dealt with in the past, such as the divergence
in MZVs [36, 37, 55, 73] and Chen symbol integrals [54, 55]. We survey these
studies on renormalization in mathematics in Sections 5 and 6 after reviewing in
Section 4 the general framework of algebraic Birkhoff decomposition in the context
of Rota-Baxter algebras. We further present an alternative renormalization method
using Speer’s generalized evaluators [67] and show it leads to the same renormalized
double zeta values as the algebraic Birkhoff decomposition method.
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We hope our paper will expose this active area to a wide range of audience and
promote its further study, to gain a more thorough understanding of the double
shuffle relations for convergent MZVs and to establish a systematical renormaliza-
tion theory for the divergent MZVs. One topic that we find of interest is to compare
the various renormalization methods presented in this paper from an abstract point
of view in terms of a renormalization group yet to be described in this context, again
motivated by the study in quantum field theory. With implications back to physics
in mind, we note that MZVs offer a relatively handy and tractable field of experi-
ment for such issues when compared with the very complicated Feynman integral
computations.

Acknowledgements: L. Guo acknowledges the support from NSF grant DMS-
0505643 and thanks JAMI at Johns Hopkins University for its hospitality. S. Paycha
is grateful to D. Manchon for his comments on a preliminary version of part of this
paper. B. Xie is supported by postdoctoral grant 533149-087 provided by Peking
University. B. Zhang acknowledges the support from NSFC grant 10631050. The
authors also thank the referee for detailed comments.

2. Double shuffle relations for convergent multiple zeta values

All rings and algebras in this paper are assumed to be unitary unless otherwise
specified. Let k be a commutative ring whose identity is denoted by 1.

2.1. Rota-Baxter algebras. Let λ ∈ k be fixed. A unitary (resp. nonuni-
tary) Rota–Baxter k-algebra (RBA) of weight λ is a pair (R,P ) in which R
is a unitary (resp. nonunitary) k-algebra and P : R → R is a k-linear map such
that

(1) P (x)P (y) = P (xP (y)) + P (P (x)y) + λP (xy), ∀x, y ∈ R.

In some references such as [55], the notation θ = −λ is used.
We will mainly consider the following Rota-Baxter operators in this paper.

See [19, 30, 64] for other examples.

Example 2.1. (The integration operator) Define the integration operator

(2) I(f)(x) =

∫ x

0

f(t)dt

on the algebra C[0,∞) of continuous functions f(x) on [0,∞). Then it follows from
the integration by parts formula that I is a Rota-Baxter operator of weight 0 [4].

Example 2.2. (The summation operator) Consider the summation oper-
ator [75]

P (f)(x) :=
∑
n�1

f(x+ n).

Under certain convergency conditions, such as f(x) = O(x−2) and g(x) = O(x−2),
P (f)(x) and P (g)(x) define absolutely convergent series and we have

P (f)(x)P (g)(x) =
∑
m�1

f(x+m)
∑
n�1

g(x+ n)

=
∑

n>m�1

f(x+m)g(x+ n) +
∑

m>n�1

f(x+m)g(x+ n)(3)
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+
∑
m�1

f(x+m)g(x+m)

= P (fP (g))(x) + P (gP (f))(x) + P (fg)(x).

Thus P is a Rota-Baxter operator of weight 1.

Example 2.3. (The partial sum operator) The operator P defined on
sequences σ : N → C by:

(4) P (σ)(n) =

n∑
k=0

σ(k)

satisfies the Rota-Baxter relation with weight −1. Similarly, the operator Q =
P − Id which acts on sequences σ : N → C by:

(5) Q(σ)(n) =

n−1∑
k=0

σ(k)

satisfies the Rota-Baxter relation with weight 1.

Example 2.4. (Laurent series) Let A = k[ε−1, ε]] be the algebra of Laurent
series. Define Π : A → A by

Π
(∑

n

anε
n
)
=
∑
n<0

anε
n.

Then Π is a Rota-Baxter operator of weight −1.

2.2. Shuffles, quasi-shuffles and mixable shuffles. We briefly recall the
construction of shuffle, stuffle and quasi-shuffle products in the framework of mix-
able shuffle algebras [32, 33].

Let k be a commutative ring. Let A be a commutative k-algebra that is not
necessarily unitary. For a given λ ∈ k, the mixable shuffle algebra of weight λ
generated by A (with coefficients in k) is MS(A) = MSk,λ(A) whose underlying
k-module is that of the tensor algebra

(6) T (A) =
⊕
k≥0

A⊗k = k⊕A⊕A⊗2 ⊕ · · ·

equipped with the mixable shuffle product �λ of weight λ defined as follows.
For pure tensors a = a1 ⊗ . . . ⊗ ak ∈ A⊗k and b = b1 ⊗ . . . ⊗ b� ∈ A⊗�, a

shuffle of a and b is a tensor list of ai and bj without change the natural orders
of the ais and the bjs. More precisely, for σ ∈ Σk,� := {τ ∈ Sk+� | τ−1(1) < · · · <
τ−1(k), τ−1(k + 1) < · · · < τ−1(k + �)}, the shuffle of a and b by σ is

aXσb := cσ(1) ⊗ · · · ⊗ cσ(k+�), where ci =

{
ai, 1 � i � k,
bi−k, k + 1 � i � k + �

The shuffle product of a and b is

aXb :=
∑

σ∈Σk,�

aXσb.

More generally, for a fixed λ ∈ k, a mixable shuffle (of weight λ) of a and b

is a shuffle of a and b in which some (or none) of the pairs ai ⊗ bj are merged into
λ aibj . Then the mixable shuffle product of weight λ is defined by

(7) a�λb =
∑

mixable shuffles of a and b
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where the subscript λ is often suppressed when there is no danger of confusion. For
example,

a1�λ(b1 ⊗ b2) : = a1 ⊗ b1 ⊗ b2 + b1 ⊗ a1 ⊗ b2 + b1 ⊗ b2 ⊗ a1︸ ︷︷ ︸
shuffles

+λ(a1b1)⊗ b2 + λb1 ⊗ (a1b2)︸ ︷︷ ︸
merged shuffles

.

With 1 ∈ k as the unit, this product makes T (A) into a commutative k-algebra
that we denote by MSk,λ(A). See [32] for further details on the mixable shuffle
product. When λ = 0, we simply have the shuffle product which is also defined
when A is only a k-module, treated as an algebra with the zero multiplication.

We have the following relation between mixable shuffle product and free com-
mutative Rota-Baxter algebras. A Rota-Baxter algebra homomorphism f be-
tween Rota-Baxter k-algebras (R,P ) and (R′, P ′) is a k-algebra homomorphism
f : R → R′ such that f ◦ P = P ′ ◦ f .

Theorem 2.5. ([32]) The tensor product algebra X(A) := Xk,λ(A) = A ⊗
MSk,λ(A), with the linear operator PA : X(A) → X(A) sending a → 1 ⊗ a, is
the free commutative Rota-Baxter algebra generated by A in the following sense.
Let jA : A → X(A) be the canonical inclusion map. Then for any Rota-Baxter
k-algebra (R,P ) and any k-algebra homomorphism ϕ : A → R, there exists a
unique Rota-Baxter k-algebra homomorphism ϕ̃ : (X(A), PA) → (R,P ) such that
ϕ = ϕ̃ ◦ jA as k-algebra homomorphisms.

The product �λ can also be defined by the following recursion [18, 37, 55]
which provides the connection between mixable shuffle algebras and quasi-shuffle
algebras of Hoffman [42]. First we define the multiplication by A⊗0 = k to be
the scalar product. In particular, 1 is the identity. For any k, � � 1 and a :=
a1 ⊗ · · · ⊗ ak ∈ A⊗k, b := b1 ⊗ · · · ⊗ b� ∈ A⊗�, define a�λb by induction on the sum
k + � � 2. When k + � = 2, we have a = a1 and b = b1. We define

a�λb = a1 ⊗ b1 + b1 ⊗ a1 + λa1b1.

Assume that a�λb has been defined for k + � � n � 2 and consider a and b with
k + � = n+ 1. Then k + � � 3 and so at least one of k and � is greater than 1. We
define

a�λb =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 ⊗ b1 ⊗ · · · ⊗ b� + b1 ⊗
(
a1�λ(b2 ⊗ · · · ⊗ b�)

)
+λ(a1b1)⊗ b2 ⊗ · · · ⊗ b�, when k = 1, � � 2,

a1 ⊗
(
(a2 ⊗ · · · ⊗ ak)�λb1

)
+ b1 ⊗ a1 ⊗ · · · ⊗ ak

+λ(a1b1)⊗ a2 ⊗ · · · ⊗ ak, when k � 2, � = 1,
a1 ⊗

(
(a2 ⊗ · · · ⊗ ak)�λ(b1 ⊗ · · · ⊗ b�)

)
+b1 ⊗

(
(a1 ⊗ · · · ⊗ ak)�λ(b2 ⊗ · · · ⊗ b�)

)
+λ(a1b1)

(
(a2 ⊗ · · · ⊗ ak)�λ(b2 ⊗ · · · ⊗ b�)

)
, when k, � � 2.

Here the products by �λ on the right hand side of the equation are well-defined by
the induction hypothesis.

Let S be a semigroup and let kS =
∑

s∈S k s be the semigroup nonunitary k-

algebra. A canonical k-basis of (kS)⊗k, k � 0, is the set S⊗k := {s1⊗· · ·⊗sk | si ∈
S, 1 � i � k}. Let S be a graded semigroup S =

∐
i�0 Si, SiSj ⊆ Si+j such that

|Si| < ∞, i � 0. Then the mixable shuffle product �1 of weight 1 is identified with
the quasi-shuffle product ∗ defined by Hoffman [42, 18, 37].
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Notation 2.6. To simplify the notation and to be consistent with the usual
notations in the literature on multiple zeta values, we will identify s1⊗· · ·⊗sk with
the concatenation s1 · · · sk unless there is a danger of confusion. We also denote
the weight 1 mixable shuffle product �1 by ∗ and denote the corresponding mixable
algebra MSk,1(A) by H∗

A. Similarly, when A is taken to be a k-module, we denote

the weight zero mixable shuffle algebra MSk,0(A) by H
X

A .

Yet another interpretation of the mixable shuffle or quasi-shuffle product can be
given in terms of order preserving maps that are called stuffle in the study of MZVs
but could be traced back to Cartier’s work [12] on free commutative Rota-Baxter
algebras.

For positive integers k and �, denote [k] = {1, · · · , k} and [k + 1, k + �] =
{k + 1, · · · , k + �}. Define

(8) Ik,� =

{
(ϕ, ψ)

∣∣∣ ϕ : [k] → [k + �], ψ : [�] → [k + �] are order preserving
injective maps and im(ϕ) � im(ψ) = [k + �]

}

Let a ∈ A⊗k, b ∈ A⊗� and (ϕ, ψ) ∈ Ik,�. We define aX(ϕ,ψ)b to be the tensor whose
i-th factor is

(9) (aX(ϕ,ψ)b)i =

{
aj if i = ϕ(j)
bj if i = ψ(j)

= aϕ−1(i)bψ−1(i), 1 � i � k + �,

with the convention that a∅ = b∅ = 1. Then we have

(10) aXb =
∑

(ϕ,ψ)∈Ik,�

aX(ϕ,ψ)b.

More generally, for 0 � r � min(k, �), define

Ik,�,r=

{
(ϕ, ψ)

∣∣∣ϕ : [k] → [k + �− r], ψ : [�] → [k + �− r] are order preserving
injective maps and im(ϕ) ∪ im(ψ) = [k + �− r]

}

Clearly, Ik,�,0 = Ik,�. Let a ∈ A⊗k, b ∈ A⊗� and (ϕ, ψ) ∈ Ik,�,r. We define aX(ϕ,ψ)b

to be the tensor whose i-th factor is

(aX(ϕ,ψ)b)i =

⎧⎨
⎩

aj if i = ϕ(j), i /∈ imψ
bj if i = ψ(j), i /∈ imϕ
ajbj′ if i = ϕ(j), i = ψ(j′)

⎫⎬
⎭ = aϕ−1(i)bψ−1(i), 1 � i � k + �− r,

with the convention that a∅ = b∅ = 1. Then we have [32, 36]

(11) a �λ b =

min(k,�)∑
r=0

λr
( ∑

(ϕ,ψ)∈Ik,�,r

aX(ϕ,ψ)b

)
.

In particular,

a ∗ b =

min(k,�)∑
r=0

( ∑
(ϕ,ψ)∈Ik,�,r

aX(ϕ,ψ)b

)
=

∑
(ϕ,ψ)∈Īk,�

aX(ϕ,ψ)b

where Īk,� = ∪min(k,�)
r=0 Ik,�,r.

Equivalently, let stfl(k, �, r) denote the set of surjective maps from [k + �] to
[k + �− r] that preserve the natural orders of [k] and {k + 1, · · · , k + �}. Let

stfl(k, �) =

min(k,�)⋃
r=0

stfl(k, �, r).
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Then

(12) (a1 ⊗ · · · ⊗ ak) ∗ (ak+1 ⊗ · · · ⊗ ak+�) =
∑

π∈stfl(k,�)

cπ1 ⊗ · · · ⊗ cπk+�−r,

where cπi =
∏

j∈π−1(i) aj . A connected filtered Hopf algebra is a Hopf algebra

(H,Δ) with k-submodules H(n), n � 0 of H such that

H(n) ⊆ H(n+1), ∪n�0H
(n) = H, H(p)H(q) ⊆ H(p+q),

Δ(H(n)) ⊆
∑

p+q=n H(p) ⊗H(q), H(0) = k (connectedness).

On the algebra MSk,λ(A) further define

Δ(a1 ⊗ · · · ⊗ an) = 1
⊗

(a1 ⊗ · · · ⊗ an) + a1
⊗

(a2 ⊗ · · · ⊗ an)

+ · · ·+ (a1 ⊗ · · · an−1)
⊗

an + (a1 ⊗ · · · ⊗ an)⊗ 1.(13)

Then Δ extends by linearity to a linear map MSk,λ(A) → MSk,λ(A)
⊗

MSk,λ(A).

Theorem 2.7. ([37, 42, 55]) The triple (MSk,λ(A), �λ,Δ), together with the
unit u : k ↪→ MSk,λ(A) and the counit ε : MSk,λ(A) → k projecting onto the direct
summand k ⊆ MSk,λ(A), equips MSk,λ(A) with the structure of a connected filtered

Hopf algebra with the filtration MS(A)(n) :=
∑

i�n A
⊗i.

We also have the following easy extension of Hoffman’s isomorphism between
the shuffle Hopf algebra and the quasi-shuffle Hopf algebra (see also [18]). Recall

the notation H∗
A = MSk,1(A) and H

X

A = MSk,0(A).

Theorem 2.8. ([42, 55]) Let k be a Q-algebra. There is an isomorphism of
Hopf algebras :

(14) exp : H
X

A
∼−→H∗

A.

Hoffman’s isomorphism (14) is built explicitly as follows. Let P(n) be the set
of compositions of the integer n, i.e. the set of sequences I = (i1, . . . , ik) of positive
integers such that i1 + · · · + ik = n. For any u = v1 ⊗ · · · ⊗ vn ∈ T (A) and any
composition I = (i1, . . . , ik) of n we set:

I[u] := (v1 · · · · · vi1)⊗ (vi1+1 · · · · · vi1+i2)⊗ · · · ⊗ (vi1+···+ik−1+1 · · · · · vn).

Then the isomorphism exp is defined by

expu =
∑

I=(i1,··· ,ik)∈P(n)

1

i1! · · · ik!
I[u].

Moreover ([42], Lemma 2.4), the inverse log of exp is given by :

log u =
∑

I=(i1,··· ,ik)∈P(n)

(−1)n−k

i1 · · · ik
I[u].

2.3. Double shuffle of MZVs and related conjectures. A multiple zeta
value (MZV) is defined to be

(15) ζ(s1, · · · , sk) :=
∑

n1>···>nk�1

1

ns1
1 · · ·nsk

k
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where si � 1 and s1 > 1 are integers. As is well-known, an MZV has an integral
representation due to Kontsevich [51]

(16) ζ(s1, · · · , sk) =
∫ 1

0

∫ t1

0

· · ·
∫ t|�s|−1

0

dt1
f1(t1)

· · ·
dt|�s|

f|�s|(t|�s|)

Here |�s| = s1 + · · ·+ sk and

fj(t) =

{
1− tj , j = s1, s1 + s2, · · · , s1 + · · ·+ sk,
tj , otherwise.

The MZVs spanned the following Q-subspace of R

MZV := Q{ζ(s1, · · · , sk) | si � 1, s1 � 2} ⊆ R.

Since the summation operator in Eq. (15) and the integral operator in Eq. (2)
are both Rota-Baxter operators (of weight 1 and 0 respectively) by Example 2.2
and Example 2.1, it can be expected that the multiplication of two MZVs follows
the multiplication rule in a free Rota-Baxter algebra and thus in a mixable shuffle
algebra. This viewpoint naturally leads to the following double shuffle relations of
MZVs.

For the sum representation of MZVs in Eq. (15), consider the semigroup

Z := {zs | s ∈ Z�1, zs · zt = zs+t, s, t � 1.}
With the convention in Notation 2.6, we denote the quasi-shuffle algebra H∗ :=
H∗

QZ which contains the subalgebra

H∗
0 := Q⊕

(⊕
s1>1

Qzs1 · · · zsk
)
.

Then the multiplication rule of MZVs according to their summation representation
follows from the fact that the linear map

(17) ζ∗ : H∗
0 → MZV, zs1,··· ,sk �→ ζ(s1, · · · , sk)

is an algebra homomorphism [41, 46].
For the integral representation of MZVs in Eq. (16), consider the set X =

{x0, x1}. With the convention in Notation 2.6, we denote the shuffle algebra HX :=
HX

QX which contains subalgebras

HX
0 := Q⊕ x0H

Xx1 ⊆ HX
1 := Q⊕HXx1 ⊆ HX.

Then the multiplication rule of MZVs according to their integral representations
follows from the statement that the linear map

ζX : HX
0 → MZV, xs1−1

0 x1 · · ·xsk−1
0 x1 �→ ζ(s1, · · · , sk)

is an algebra homomorphism [41, 46].
There is a natural bijection of Q-vector spaces (but not algebras)

η : HX
1 → H∗, 1 ↔ 1, xs1−1

0 x1 · · ·xsk−1
0 x1 ↔ zs1,··· ,sk .

that restricts to a bijection of vector spaces η : HX
0 → H∗

0. Then the fact that MZVs
can be multiplied in two ways is reflected by the commutative diagram

HX
0

η ��

ζX ���������� H∗
0

ζ∗
����������

MZV
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Through η, the shuffle product X on HX
1 and HX

0 transports to a product X∗
on H∗ and H∗

0. That is, for w1, w2 ∈ H∗
0, define

(18) w1X∗ w2 := η(η−1(w1)Xη
−1(w2)).

Then the double shuffle relation is simply the set

{w1X∗ w2 − w1 ∗ w2 | w1, w2 ∈ H∗
0}

and the extended double shuffle relation [46, 63, 75] is the set

(19) {w1X∗ w2 − w1 ∗ w2, z1X∗ w2 − z1 ∗ w2 | w1, w2 ∈ H∗
0}.

Theorem 2.9. ([41, 46, 63]) Let IEDS be the ideal of H∗
0 generated by the

extended double shuffle relation in Eq. ( 19). Then IEDS is in the kernel of ζ∗.

It is conjectured that IEDS is in fact the kernel of ζ∗. A consequence of this
conjecture is the irrationality of ζ(2n+ 1), n � 1.

3. Generalizations of Euler’s formulas

We begin with stating Euler’s sum and decomposition formulas in Section 3.1.
Generalizations of Euler’s sum formula are presented in Section 3.2 and generaliza-
tions of Euler’s decomposition formula are presented in Section 3.3.

3.1. Euler’s sum and decomposition formulas. Over two hundred years
before the general study of multiple zeta values was started in the 1990s, Goldbach
and Euler had already considered the two variable case, the double zeta values [23,
66]

ζ(s1, s2) :=
∑

n1>n2�1

1

ns1
1 ns2

2

.

Among Euler’s major discoveries on double zeta values are his sum formula

n−1∑
i=2

ζ(i, n− i) = ζ(n)

expressing one Riemann zeta values as a sum of double zeta values and the de-
composition formula

(20) ζ(r)ζ(s) =

s−1∑
k=0

(
r+k−1

k

)
ζ(r+k, s−k)+

r−1∑
k=0

(
s+k−1

k

)
ζ(s+k, r−k), r, s � 2,

expressing the product of two Riemann zeta values as a sum of double zeta values.
A major aspect of the study of MZVs is to find algebraic and linear relations

among MZVs, such as Euler’s formulas. Indeed a large part of this study can be
viewed as generalizations of Euler’s formulas.

3.2. Generalizations of Euler’s sum formula. Soon after MZVs were in-
troduced, Euler’s sum formula was generalized to MZVs [40, 28, 71] as the well-
known sum formula, followed by quite a few other generalizations that we will next
summarize.
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3.2.1. Sum formula. The first generalization of Euler’s sum formula is the sum
formula conjectured in [40]. Let

(21) I(n, k) = {(s1, · · · , sk) | s1 + · · ·+ sk = n, si � 1, s1 � 2}.
For �s = (s1, · · · , sk) ∈ I(n, k), define themultiple zeta star value (or non-strict
MZV)

(22) ζ�(s1, · · · , sk) =
∑

n1�···�nk�1

1

ns1
1 · · ·nsk

k

.

Note the subtle difference between the notations ζ∗ in Eq. (17) and ζ� in Eq. (22).

Theorem 3.1. (Sum formula) For positive integers k < n we have

(23)
∑

�s∈I(n,k)

ζ(�s) = ζ(n),
∑

k∈I(n,k)

ζ�(�s) =

(
n−1

k−1

)
ζ(n).

The case of k = 3 was proved by M. Hoffman and C. Moen [43] and the general
case was proved by Zagier [71] with another proof given by Granville [28]. Later
S. Kanemitsu, Y. Tanigawa, M. Yoshimoto [48] gave a proof for the case of k = 2
using Mellin transformation.

J.-I. Okuda and K. Ueno [62] gave the following version of the sum formula
n∑

k=r

(
k−1

r−1

)( ∑
�s∈I(n,k)

ζ(�s)
)
=

(
n−1

r

)
ζ(n)

for n > r � 1 from which they deduced the sum formula Eq. (23).
3.2.2. Ohno’s generalized duality theorem. Another formula conjectured in [40]

is the duality formula. To state the duality formula, we need an involution τ on
the set of finite sequences of positive integers whose first element is greater than 1.
If

�s = (1 + b1, 1, · · · , 1︸ ︷︷ ︸
a1−1

, · · · , 1 + bk, 1, · · · , 1︸ ︷︷ ︸
ak−1

),

then
τ (�s) = (1 + ak, 1, · · · , 1︸ ︷︷ ︸

bk−1

, · · · , 1 + a1, 1, · · · , 1︸ ︷︷ ︸
b1−1

).

Theorem 3.2. (Duality formula)

ζ(�s) = ζ(τ (�s)).

This formula is an immediate consequence of the integral representation in
Eq. (16).

Y. Ohno [57] provided a generalization of both the sum formula and the duality
formula.

Theorem 3.3. (Generalized Duality Formula [57]) For any index set �s =
(s1, · · · , sk) with s1 � 2, s2 � 1, · · · , sk � 1, and a nonnegative integer �, set

Z(s1, · · · , sk; �) =
∑

c1 + · · ·+ ck = �
ci � 0

ζ(s1 + c1, · · · , sk + ck).
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Then

Z(�s; �) = Z(τ (�s); �).

When � = 0, this is just the duality formula. When �s = (k+1) and � = n−k−1,
this becomes the sum formula.

3.2.3. Sum formulas with further conditions on the variables. M. Hoffman and
Y. Ohno [44] gave a cyclic generalization of the sum formula.

Theorem 3.4. (Cyclic sum formula) For any positive integers s1, · · · , sk
with some si � 2,

k∑
i=1

ζ(si + 1, si+1, · · · , sk, s1, · · · , si−1)

=
∑

{i | si�2}

si−2∑
j=0

ζ(si − j, si+1, · · · , sk, s1, · · · , si−1, j + 1).

Y. Ohno and N. Wakabayashi [59] gave a cyclic sum formula for non-strict
MZVs and used it to prove the sum formula Eq. (23).

Theorem 3.5. (Cyclic sum formula in the non-strict case) For positive
integers k < n and (s1, · · · , sk) ∈ I(n, k) we have

(24)
k∑

i=1

si−2∑
j=0

ζ�(si − j, si+1, · · · , sk, s1, · · · , si−1, j + 1) = nζ(n+ 1),

where the empty sums are zero.

M. Eie, W.-C. Liaw and Y. L. Ong [22] gave a generalization of the sum formula
by allowing a more general form in the arguments in the MZVs.

Theorem 3.6. For all positive integers n, k with n > k, and a nonnegative
integer p, ∑

s1 + · · ·+ sk = n
s1 � 2

ζ(s1, · · · , sk, {1}p) =
∑

c1 + · · ·+ cp+1 = n+ p
c1 � n− k + 1

ζ(c1, · · · , cp+1).

When p = 0, this becomes the sum formula.

Y. Ohno and D. Zagier [60] studied another kind of sum with certain restrictive
conditions. Let

I(n, k, r) = {(s1, · · · , sk) | si ∈ Z�1, s1 + · · ·+ sk = n,#{si | si � 2} = r}

and put

G(n, k, r) =
∑

�s∈I(n,k,r)

ζ(�s).

They studied the associated generating function

Φ(x, y, z) =
∑

r�1,k�r,n�k+r

G(n, k, r)xn−k−ryk−rzr−1 ∈ R[x, y, z]

and proved the following
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Theorem 3.7. We have

Φ(x, y, z) =
1

xy − z

(
1− exp

( ∞∑
n=2

ζ(n)

n
Sn(x, y, z)

))
,

where Sn(x, y, z) are given by the identity

log

(
1− xy − z

(1− x)(1− y)

)
=

∞∑
n=2

Sn(x, y, z)

n

and the requirement that Sn(x, y, z
2) is a homogeneous polynomial of degree n.

In particular, all of the coefficients G(n, k, r) can be expressed as polynomials in
ζ(2), ζ(3), ... with rational coefficients.

3.2.4. Sum formulas for q-MZVs. The concept of q-multiple zeta values (q-
MZVs, or multiple q-zeta values) was introduced as a “quantumization” of MZVs
that recovers MZVs when q �→ 1 [9, 72].

For positive integers s1, · · · , sk with s1 � 2, define the q-MZV

ζq(s1, · · · , sk) =
∑

n1>···>nk�1

qn1(s1−1)+···+nk(sk−1)

[n1]s1 · · · [nk]sk

and the non-strict q-MZV

ζ�q (s1, · · · , sk) =
∑

n1�···�nk�1

qn1(s1−1)+···+nk(sk−1)

[n1]s1 · · · [nk]sk
,

where [n] = 1−qn

1−q .

D. M. Bradley [9] proved the q-analogue of the sum formula for ζq.

Theorem 3.8. (q-analogue of the sum formula) For positive integers 0 <
k < n we have

(25)
∑

si�1,s1�2
s1+···+sk=n

ζq(s1, · · · , sk) = ζq(n).

Y. Ohno and J.-I. Okuda [58] gave the following q-analogue of the cyclic sum
formula (24) and then used it to prove a q-analogue of the sum formula for ζ�q .

Theorem 3.9. (q-analogue of the cyclic sum formula) For positive integers
0 < k < n and (s1, · · · , sk) ∈ I(n, k) we have

k∑
i=1

si−2∑
j=0

ζ�q (si−j, si+1, · · · , sk, s1, · · · , si−1, j+1)=

k∑
�=0

(n−�)

(
k

�

)
(1−q)�ζq(n−�+1),

where the empty sums are zero.

Theorem 3.10. (q-analogue of the sum formula in the non-strict case)
For positive integers 0 < k < n we have

(26)
∑

si�1,s1�2
s1+···+sk=n

ζ�q (s1, · · · , sk) =
1

n− 1

(
n−1

k−1

) k−1∑
�=0

(n− 1− �)(1− q)�ζq(n− �).
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3.2.5. Weighted sum formulas. Among other directions to generalize Euler’s
sum formula, there is the weighted version of Euler’s sum formula recently obtained
by Ohno and Zudilin [61].

Theorem 3.11. (Weighted Euler’s sum formula [61]) For any integer n �
2, we have

(27)

n−1∑
i=2

2iζ(i, n− i) = (n+ 1)ζ(n).

They applied it to study multiple zeta star values. By the sum formula, Eq. (27)
is equivalent to the following equation

(28)

n−1∑
i=2

(2i − 1)ζ(i, n− i) = nζ(n).

As a generalization of Eq. (28), two of the authors proved the following

Theorem 3.12. (Weighted sum formula [35]) For integers k � 2 and n �
k + 1, we have

nζ(n)

=
∑

si�1,s1�2
s1+···+sk=n

[
2s1−1 + (2s1−1 − 1)

(( k−1∑
i=2

2Si−s1−(i−1)
)
+ 2Sk−1−s1−(k−2)

)]
ζ(s1, · · · , sk),

where Si = s1 + · · ·+ si for i = 1, · · · , k − 1.

3.3. Generalizations of Euler’s decomposition formula. Unlike the nu-
merous generalizations of Euler’s sum formula, no generalization of Euler’s de-
composition formula to MZVs, neither proved nor conjectured, had been given
until [34] even though Euler’s decomposition formula was recently revisited in con-
nection with modular forms [24] and weighted sum formula [61] on weighted sum
formula of double zeta values, and was generalized to the product of two q-zeta
values [10, 72].

3.3.1. Euler’s decomposition formula and double shuffle. The first step in gen-
eralizing Euler’s decomposition formula is to place it as a special case in a suitable
broader context. In [34], Euler’s decomposition formula was shown to be a special
case of the double shuffle relation. We give a proof of Euler’s formula in this context
before presenting its generalization in the next subsection.

We recall that the extended double shuffle relation is the set

{w1X∗ w2 − w1 ∗ w2, z1X∗ w2 − z1 ∗ w2 | w1, w2 ∈ H∗
0}.

Thus the determination of the double shuffle relation amounts to computing the
two products ∗ and X∗ .

It is straightforward to compute the product ∗, either from its recursive def-
inition in Eq. (8) or its explicit interpretation as mixable shuffles in Eq. (7) and
stuffles in Eq. (11) or (12). For example, to determine the double shuffle relation
from multiplying two Riemann zeta values ζ(r) and ζ(s), r, s � 2, one uses their
sum representations and easily gets the quasi-shuffle relation

ζ(r)ζ(s) = ζ(r, s) + ζ(s, r) + ζ(r + s).
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On the other hand, computing the product X∗ is more involved as can already
be seen from its definition in Eq. (18). One first needs to use their integral rep-
resentations to express ζ(r) and ζ(s) as iterated integrals of dimensions r and s,
respectively. One then uses the shuffle relation to express the product of these two

iterated integrals as a sum of

(
r+s

r

)
iterated integrals of dimension r + s. Finally,

these last iterated integrals are translated back to MZVs and give the shuffle relation
of ζ(r)ζ(s). As an illustrating example, consider ζ(100)ζ(200). The quasi-shuffle
relation is simply ζ(100)ζ(200) = ζ(100, 200)+ ζ(200, 100)+ ζ(300), but the shuffle

relation is a large sum of

(
300

100

)
shuffles of length (dimension) 300. As we will show

below, an explicit formula for this is precisely Euler’s decomposition formula (20).

Theorem 3.13. For r, s � 2, we have

zrX∗ zs =
s−1∑
k=0

(
r+k−1

k

)
zr+kzs−k +

r−1∑
k=0

(
s+k−1

k

)
zs+kzr−k.

Via the algebra homomorphism ζ∗ in Eq. (17) this theorem immediately gives
Euler’s decomposition formula. Applying to the above example, we have

ζ(100)ζ(200) =

199∑
k=0

(
100+k−1

k

)
ζ(100 + k, 200− k) +

99∑
k=0

(
200+k−1

k

)
ζ(200 + k, 100− k).

Proof. Following the definition of X∗ in Eq. (18), we have

zrX∗ zs = η(xr−1
0 x1Xxs−1

0 x1).

So we just need to prove

xr−1
0 x1Xxs−1

0 x1 =

s−1∑
k=0

(
r+k−1

k

)
xr+k−1
0 x1x

s−k−1
0 x1 +

r−1∑
k=0

(
s+k−1

k

)
xs+k−1
0 x1x

r−k−1
0 x1

since X∗ (x
r+k−1
0 x1x

s−k−1
0 x1) = zr+kzs−k and X∗ (x

s+k−1
0 x1x

r−k−1
0 x1) = zs+kzr−k.

This has a direct shuffle proof [8]. But we use the description of order preserving
maps of shuffles in order to motivate the general case.

By Eq. (10), we have

xr−1
0 x1Xxs−1

0 x1 =
∑

(ϕ,ψ)∈I(r,s)

xr−1
0 x1X(ϕ,ψ)x

s−1
0 x0.

Since ϕ and ψ are order preserving, we have the disjoint union I(r, s) = I(r, s)′ �
I(r, s)′′ where

I(r, s)′ = {(ϕ, ψ) ∈ I(r, s) | ψ(s) = r + s}
and

I(r, s)′′ = {(ϕ, ψ) ∈ I(r, s) | ϕ(r) = r + s}.
Again by the order preserving property, for (ϕ, ψ) ∈ I(r, s)′, we must have ϕ(r) =
r + k where k � 0. Thus for such (ϕ, ψ), we have

xr−1
0 x1X(ϕ,ψ)x

s−1
0 x1 = xr−1+k

0 x1x
s−1−k
0 x1

since imϕ � imψ = [r + s]. For fixed k � 0, ϕ(r) = r + k means that there are k
elements i1, · · · , ik from [s−1] such that ψ(ij) ∈ [r+k−1] since ψ(s) = r+s. Thus
k � s−1 and, since ψ is order preserving, we have {i1, · · · , ik} = [k]. Further there
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are

(
r+k−1

k

)
such ψ’s since ψ([k]) can take any k places in [r + k − 1] in increasing

order and then φ([r]) takes the rest places in increase order. Thus

∑
(ϕ,ψ)∈I(r,s)′

xr−1
0 x1X(ϕ,ψ)x

s−1
0 x1 =

s−1∑
k=0

(
r+k−1

k

)
xr+k−1
0 x1x

s−k−1
0 x1.

By a similar argument, we have

∑
(ϕ,ψ)∈I(r,s)′′

xr−1
0 x1X(ϕ,ψ)x

s−1
0 x1 =

r−1∑
k=0

(
s+k−1

k

)
xs+k−1
0 x1x

r−k−1
0 x1.

This completes the proof. �

3.3.2. Generalizations of Euler’s decomposition formula. In a recent work [34],
two of the authors generalized Euler’s decomposition formula in two directions,
from the product of one variable functions to that of multiple variables and from
multiple zeta values to multiple polylogarithms.

A multiple polylogarithm value [7, 25, 26] is defined by

Lis1,··· ,sk(z1, · · · , zk) :=
∑

n1>···>nk�1

zn1
1 · · · znk

k

ns1
1 · · ·nsk

k

where |zi| � 1, si ∈ Z�1, 1 � i � k, and (s1, z1) �= (1, 1). When zi = 1, 1 � i � k,
we obtain the multiple zeta values ζ(s1, · · · , sk). With the notation of [7], we have

Lis1,··· ,sk(z1, · · · , zk) = λ
( s1, · · · , sk
b1, · · · , bk

)
:=

∑
n1>n2···>nk�1

(
1
b1

)n1
(
b1
b2

)n2 · · ·
( bk−1

bk

)nk

ns1
1 ns2

2 · · ·nsk
k

,

where (b1, · · · , bk) = (z−1
1 , (z1z2)

−1, · · · , (z1 · · · zk)−1).
To state the result, let k and � be positive integers and let Ik,� be as defined in

Eq. (8). Let �r = (r1, · · · , rk) ∈ Zk
�1, �s = (s1, · · · , s�) ∈ Z�

�1 and �t = (t1, · · · , tk+�) ∈
Zk+�
�1 with |�r|+ |�s| = |�t|. Here |�r| = r1+ · · ·+rk and similarly for |�s| and |�t|. Denote

Ri = r1 + · · ·+ ri for i ∈ [k], Si = s1 + · · ·+ si for i ∈ [�] and Ti = t1 + · · ·+ ti for
i ∈ [k + �]. For (ϕ, ψ) ∈ Ik,� and i ∈ [k + �], define

h(ϕ,ψ),i = h(ϕ,ψ),(�r,�s),i =

{
rj if i = ϕ(j)
sj if i = ψ(j)

= rϕ−1(i)sψ−1(i),

with the convention that r∅ = s∅ = 1.
With these notations, we define

(29) c
�t,(ϕ,ψ)
�r,�s (i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ti−1

h(ϕ,ψ),i−1

)
if i = 1, if i− 1, i ∈ im(ϕ)
or if i− 1, i ∈ im(ψ),(

ti−1

Ti−R|ϕ−1([i])|−S|ψ−1([i])|

)

=

(
ti−1

i∑
j=1

tj−
i∑

j=1

h(ϕ,ψ),j

)
otherwise.

For �a ∈ (S1)k and �b ∈ (S1)�, as in Eq. (9), define

(30) �aX(ϕ,ψ)
�b = (aϕ−1(1)bψ−1(1), · · · , aϕ−1(k+�)bψ−1(k+�)).
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Theorem 3.14. ([34]) Let k, � be positive integers. Let �r ∈ Zk
�1 and �s ∈ Z�

�1.

Let �a = (a1, · · · , ak) ∈ (S1)k and �b = (b1, · · · , b�) ∈ (S1)� such that
[ r1
a1

]
�=
[ 1
1

]
and

[ s1
b1

]
�=
[ 1
1

]
. Then

λ
(�r
�a

)
λ
(�s
�b

)
=

∑
�t∈Z

k+�
�1 ,|�t|=|�r|+|�s|

∑
(ϕ,ψ)∈Ik,�

( k+�∏
i=1

c
�t,(ϕ,ψ)
�r,�s (i)

)
λ
( �t

�aX(ϕ,ψ)
�b

)
.

where c
�t,(ϕ,ψ)
�r,�s (i) is given in Eq. ( 29) and �aX(ϕ,ψ)

�b is given in Eq. ( 30).

Corollary 3.15. Let �r ∈ Zk
�1 and �s ∈ Z�

�1 with r1, s1 � 2. Then

ζ(�r) ζ(�s) =
∑

�t∈Z
k+�
�1 ,|�t|=|�r|+|�s|

( ∑
(ϕ,ψ)∈Ik,�

k+�∏
i=1

c
�t,(ϕ,ψ)
�r,�s (i)

)
ζ(�t)

where c
�t,(ϕ,ψ)
�r,�s (i) is given in Eq. ( 29).

4. The algebraic framework of Connes and Kreimer on renormalization

The Algebraic Birkhoff Decomposition of Connes and Kreimer is a fundamental
result in their ground breaking work [15] on Hopf algebra approach to renormaliza-
tion of perturbative quantum field theory (pQFT). This decomposition also links
the physics theory of renormalization to Rota-Baxter algebra that has evolved in
parallel to the development of QFT renormalization for several decades.

The introduction of Rota-Baxter algebra by G. Baxter [4] in 1960 was motivated
by Spitzer’s identity [68] that appeared in 1956 and was regarded as a remarkable
formula in the fluctuation theory of probability. Soon Atkinson [3] proved a simple
yet useful factorization theorem in Rota-Baxter algebras. The identity of Spitzer
took its algebraic form through the work of Cartier, Rota and Smith [12, 65] in
1972.

It was during the same period when the renormalization theory of pQFT was
developed, through the the work of Bogoliubov and Parasiuk [6] in 1957, Hepp [39]
in 1966 and Zimmermann [74] in 1969, later known as the BPHZ prescription.

Recently QFT renormalization and Rota-Baxter algebra were tied together
through the algebraic formulation of Connes and Kreimer for the former and a
generalization of classical results on Rota-Baxter algebras in the latter [20, 21].
More precisely, generalizations of Spitzer’s identity and Atkinson factorization give
the twisted antipode formula and the algebraic Birkhoff decomposition in the work
of Connes and Kreimer.

We recall the algebraic Birkhoff decomposition in Section 4.1, prove the Atkin-
son factorization in Section 4.2 and derive the algebraic Birkhoff decomposition
from the Atkinson factorization in Section 4.3.

4.1. Algebraic Birkhoff decomposition. Let A be a k-algebra A and let C
be a k-coalgebra. We define the convolution of two linear maps f, g in Hom(C,A)
to be the map f � g ∈ Hom(C,A) given by the composition

C
Δ−→ C ⊗ C

f⊗g−−−→ A⊗A
m−→ A.
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Theorem 4.1. (Algebraic Birkhoff Decomposition) Let H be a connected
filtered Hopf algebra over C. Let (A,Π) be a commutative Rota-Baxter algebra of
weight −1 with Π2 = Π.

(a) For any algebra homomorphism φ : H → A, there are unique linear maps
φ− : H → k+Π(A) and φ+ : H → k+ (id−Π)(A) such that

(31) φ = φ
�(−1)
− � φ+.

(b) The elements φ− and φ+ take the following forms on ker ε.

φ−(x) = −Π(φ(x) +
∑
(x)

φ−(x
′)φ(x′′)),(32)

φ+(x) = Π̃(φ(x) +
∑
(x)

φ−(x
′)φ(x′′)),(33)

where we have used the notation Δ(x) = 1⊗x+x⊗1+
∑

(x) x
′⊗x′′ with

x′, x′′ ∈ ker ε.
(c) The linear maps φ− and φ+ are also algebra homomorphisms.

We call φ+ the renormalization of φ and call φ− the counter-term. Here
is roughly how the renormalization method can be applied through the Algebraic
Birkhoff Decomposition. See the tutorial article [31] for further details, examples
and references.

Theorem 4.1 can be applied to renormalization as follows. Suppose there is
a set of divergent formal expressions, such as MZVs with not necessarily positive
arguments, that carries a certain algebraic combinatorial structure and from which
we would like to extract finite values. On the one hand, we first apply a suitable
regularization (deformation) to each of these formal expressions so that the formal
expression can be viewed as a singular value of the deformation function. Expanding
around the singular point gives a Laurent series in k[ε−1, ε]]. On the other hand,
the algebraic combinatorial structure of the formal expressions, inherited by the
deformation functions, can be abstracted to a free object in a suitable category.
This free object parameterizes the deformation functions and often gives a Hopf
algebra H. Thus the parametrization gives a morphism φ : H → k[ε−1, ε]] in the
suitable category. Upon applying the Algebraic Birkhoff Decomposition, we obtain
φ+ : H → k[[ε]] which, composed with ε �→ 0, gives us well-defined values in k.

4.2. Atkinson factorization. The following is the classical result of Atkin-
son.

Theorem 4.2. (Atkinson Factorization) Let (R,P ) be a Rota–Baxter alge-
bra of weight λ �= 0. Let a ∈ R. Assume that b� and br are solutions of the fixed
point equations

(34) b� = 1 + P (b�a), br = 1 + (idR − P )(abr).

Then
b�(1 + λa)br = 1.

Thus

(35) 1 + λa = b−1
� b−1

r

if b� and br are invertible.
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We note that the factorization (35) depends on the existence of invertible so-
lutions of Eq. (34) that we will address next.

Definition 4.3. A filtered k-algebra is a k-algebra R together with a de-
creasing filtration Rn, n � 0, of nonunitary subalgebras such that⋃

n�0

Rn = R, RnRm ⊆ Rn+m.

It immediately follows that R0 = R and each Rn is an ideal of R. A filtered
algebra is called complete if R is a complete metric space with respect to the
metric defined by the subsets {Rn}. Equivalently, a filtered k-algebra R with {Rn}
is complete if ∩nRn = 0 and if the resulting embedding

R → R̄ := lim←−R/Rn

of R into the inverse limit is an isomorphism.
A Rota-Baxter algebra (R,P ) is called complete if there are submodules Rn ⊆

R, n � 0, such that (R,Rn) is a complete algebra and P (Rn) ⊆ Rn.

Theorem 4.4. (Existence and uniqueness of Atkinson factorization)
Let (R,P,Rn) be a complete Rota-Baxter algebra. Let a be in R1.

(a) The equations in ( 34) have unique solutions b� and br. Further b� and br
are invertible. Hence Atkinson Factorization ( 35) exists.

(b) If λ has no non-zero divisors in R1 and P 2 = −λP (in particular if P 2 =
−λP on R), then there are unique c� ∈ 1+P (R) and cr ∈ 1+(idR−P )(R)
such that

1 + λa = c�cr.

4.3. From Atkinson factorization to algebraic Birkhoff decomposi-
tion. We now derive the Algebraic Birkhoff Decomposition of Connes and Kreimer
in Theorem 4.1 from Atkinson Factorization in Theorem 4.4. Adapting the nota-
tions in Theorem 4.1, let H be a connected filtered Hopf algebra and let (A,Q) be
a commutative Rota-Baxter algebra of weight λ = −1 with Q2 = Q, such as the
pair (A,Q) in Theorem 4.1 (see also Example 2.4). The increasing filtration on H
induces a decreasing filtration Rn = {f ∈ Hom(H,A) | f(Hn−1) = 0}, n � 0 on
R := Hom(H,A), making it a complete algebra. Further define

P : R → R, P (f)(x) = Q(f(x)), f ∈ Hom(H,A), x ∈ H.

Then it is easily checked that P is a Rota-Baxter operator of weight −1 and P 2 = P .
Thus (R,Rn, P ) is a complete Rota-Baxter algebra.

Now let φ : H → A be a character (that is, an algebra homomorphism).
Consider e− φ : H → A. Then

(e− φ)(1H) = e(1H)− φ(1H) = 1H − 1H = 0.

Thus e− φ is in R1. Take e− φ to be our a in Theorem 4.4, we see that there are
unique c� ∈ P (R1) and cr ∈ P (R1) such that

φ = c�cr.
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Further, by Theorem 4.2, for b� = c−1
� , b� = e+P (b� � (e−φ)). Thus for x ∈ ker ε =

ker e, we have

b�(x) = P (b� � (e− φ))(x)

=
∑
(x)

Q(b�(a(1))(e− φ)(a(2)))

= Q
(
b�(1H)(e− φ)(x) +

∑
(a)

b�(x
′)(e− φ)(x′′) + b�(x)(e− φ)(1H)

= −Q
(
φ(x) +

∑
(x)

b�(x
′)φ(x′′)

)
.

In the last equation we have used e(a) = 0, e(a′′) = 0 by definition. Since b�(1H) =
1H , we see that b� = φ− in Eq. (32).

Further, we have

cr=c−1
� φ=b�φ=−b�(e−φ)+b�=−b�(e−φ)+e+P (b�(e−φ))=e−(id−P )(b�(e−φ)).

With the same computation as for b� above, we see that cr = φ+ in Eq. (33).

5. Heat-kernel type regularization approach to the renormalization of
MZVs

To extend the double shuffle relations to MZVs with non-positive arguments,
we have to make sense of the divergent sums defining these MZVs. For this purpose,
we adapt the renormalization method from quantum field theory in the algebraic
framework of Connes-Kreimer recalled in the last section. We will give three ap-
proaches including the approach in this section using a heat-kernel type regulariza-
tion, named after a similar process in physics. Since examples and motivations of
this approach can already be found elsewhere [30, 36, 37], we will be quite sketchy
in this section. More details will be given to the two other approaches in Section 6.

5.1. Renormalization of MZVs. Consider the abelian semigroup

(36) M = {
[s
r

] ∣∣ (s, r) ∈ Z× R>0}

with the multiplication [s
r

]
·
[s′
r′
]
=
[s+ s′

r + r′
]
.

With the notation in Section 2.2, we define the Hopf algebra

HM := MSC,1(CM)

with the quasi-shuffle product ∗ and the deconcatenation coproduct Δ in Sec-

tion 2.2. For wi =
[si
ri

]
∈ M, i = 1, · · · , k, we use the notations

�w = (w1, . . . , wk) =
[s1, . . . , sn
r1, . . . , rk

]
=
[�s
�r

]
, where �s = (s1, . . . , sk), �r = (r1, . . . , rk).
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For �w =
[�s
�r

]
∈ Mk and ε ∈ C with Re(ε) < 0, define the directional regular-

ized MZV:

(37) Z(
[�s
�r

]
; ε) =

∑
n1>···>nk>0

en1 r1ε · · · enk rkε

ns1
1 · · ·nsk

k

It converges for any
[�s
�r

]
and is regarded as the regularization of the formal MZV

(38) ζ(�s) =
∑

n1>···>nk>0

1

ns1
1 · · ·nsk

k

which converges only when si > 0 and s1 > 1. It is related to the multiple polylog-
arithm

Lis1,...,sk(z1, . . . , zk) =
∑

n1>···>nk>0

zn1
1 · · · znk

k

ns1
1 · · ·nsk

k

by a change of variables zi = eriε, 1 � i � k.
This regularization defines an algebra homomorphism [36]:

(39) Z̃ : HM → C[T ][[ε, ε−1],

In the same way, for

(40) M− =
{[s
r

] ∣∣ (s, r) ∈ Z≤0 × R>0

}
,

Z̃ restricts to an algebra homomorphism

(41) Z̃ : HM− → R := C[[ε, ε−1].

Since both (C[T ][ε−1, ε]],Π) and (C[ε−1, ε]],Π), with Π defined in Example 2.4,
are commutative Rota-Baxter algebras with Π2 = Π, we have the decomposition

Z̃ = Z̃−1
− � Z̃+

by the algebraic Birkhoff decomposition in Theorem 4.1 and obtain

Theorem 5.1. ([36, 37]) The map Z̃+ : HM → C[T ][[ε]] is an algebra ho-

momorphism which restricts to an algebra homomorphism Z̃+ : HM− → C[[ε]].

Because of Theorem 5.1, the following definition is valid.

Definition 5.2. For �s = (s1, . . . , sk) ∈ Zk and �r = (r1, . . . , rk) ∈ Rk
>0, define

the renormalized directional MZV by

(42) ζ
([�s
�r

])
= lim

ε→0
Z̃+

([�s
�r

]
; ε
)
.

Here �r is called the direction vector.

As a consequence of Theorem 5.1, we have

Corollary 5.3. The renormalized directional MZVs satisfy the quasi-shuffle
relation

(43) ζ
([�s
�r

])
ζ
([�s ′

�r ′
])

= ζ
([�s
�r

]
∗
[�s ′

�r ′
])
.

Here the right hand side is defined in the same way as in Eq. ( 8).
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Definition 5.4. For �s ∈ Zk
>0 ∪ Zk

�0, define

(44) ζ
(
�s
)
= lim

δ→0+
ζ
([ �s
|�s|+ δ

])
,

where, for �s = (s1, · · · , sk) and δ ∈ R>0, we denote |�s| = (|s1|, · · · , |sk|) and
|�s|+ δ = (|s1|+ δ, · · · , |sk|+ δ). These ζ(�s) are called the renormalized MZVs of
the multiple zeta function ζ(u1, · · · , uk) at �s.

Theorem 5.5. ([36])

(a) The limit in Eq. ( 44) exists for any �s = (s1, · · · , sk) ∈ Zk
>0 ∪ Zk

�0.

(b) When si are all positive with s1 > 1, we have ζ
([�s
�r

])
= ζ(�s) independent

of �r ∈ Zk
>0. In particular, we have ζ̄(�s) = ζ(�s).

(c) When si are all positive, we have ζ̄(�s) = ζ
([�s
�s

])
. Further, ζ̄(�s) agrees with

the regularized MZV Z∗
�s (T ) defined by Ihara-Kaneko-Zagier [46].

(d) When si are all negative, we have ζ̄(�s) = ζ
([ �s
−�s
])

= lim
�r→−�s

ζ
([�s
�r

])
. Further,

these values are rational numbers.
(e) The value ζ̄(�s) agrees with ζ(�s) whenever the latter is defined by analytic

continuation.
Furthermore,

(f) the set {ζ̄(�s)
∣∣�s ∈ Zk

>0} satisfies the quasi-shuffle relation;

(g) the set {ζ̄(�s)
∣∣�s ∈ Zk

�0} satisfies the quasi-shuffle relation.

Table 1 lists ζ̄(−a1,−a2) for 0 � a1, a2 � 6.

5.2. The differential structure. The shuffle relation for convergent MZVs
from their integral representations does not directly generalize to renormalized
MZVs due to the lack of a suitable integral representation. However a differential
variation of the shuffle relation might exist for renormalized MZVs. One evidence
is the following differential version of the algebraic Birkhoff decomposition [37]
for renormalized MZVs and further progress will be discussed in a paper under
preparation. We first recall some concepts.

(a) A differential algebra is a pair (A, d) where A is an algebra and d is a
differential operator, that is, such that d(xy) = d(x)y + xd(y) for all
x, y ∈ A. A differential algebra homomorphism f : (A1, d1) → (A2, d2)
between two differential algebras (A1, d1) and (A2, d2) is an algebra ho-
momorphism f : A1 → A2 such that f ◦ d1 = d2 ◦ f .

(b) A differential Hopf algebra is a pair (H, d) where H is a Hopf algebra
and d : H → H is a differential operator such that

(45) Δ(d(x)) =
∑
(x)

(
d(x(1))

⊗
x(2) + x(1)

⊗
d(x(2))

)
.

(c) A differential Rota-Baxter algebra is a triple (A,Π, d) where (A,Π) is
a Rota-Baxter algebra and d : R → R is a differential operator such that
P ◦ d = d ◦ P .
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Table 1. Values of renormalized MZVs, Part I

ζ̄(−a1,−a2) a1 = 0 a1 = 1 a1 = 2 a1 = 3 a1 = 4 a1 = 5 a1 = 6

a2 = 0 3
8

1
12

1
120

− 1
120

− 1
252

1
252

1
240

a2 = 1 1
24

1
288

− 1
240

83
64512

1
504

− 3925
2239488

− 1
480

a2 = 2 − 1
120

− 1
240

0 1
504

− 319
437400

− 1
480

2494519
1362493440

a2 = 3 − 1
240

− 71
35840

1
504

1
28800

− 1
480

114139507
139519328256

1
264

a2 = 4 1
252

1
504

319
437400

− 1
480

0 1
264

− 41796929201
26873437500000

a2 = 5 1
504

32659
15676416

− 1
480

− 21991341
25836912640

1
264

1
127008

− 691
65520

a2 = 6 − 1
240

− 1
480

− 2494519
1362493440

1
264

41796929201
26873437500000

− 691
65520

0

Theorem 5.6. (Differential Algebraic Birkhoff Decomposition) [37]
Under the same assumption as in Theorem 4.1, if in addition (H, d) is a differ-
ential Hopf algebra, (A,Π, ∂) is a commutative differential Rota-Baxter algebra,
and φ : H → A is a differential algebra homomorphism, then the maps φ− and φ+

in Theorem 4.1 are also differential algebra homomorphisms.

Theorem 5.7. ([37])

(a) For
[s
r

]
∈ M, define d(

[s
r

]
= r
[s− 1

r

]
. Extend d to HM = ⊕k�0(kM)⊗k by

defining, for a := a1 ⊗ · · · ⊗ ak ∈ (kM)⊗k,

(46) d(a) =
k∑

i=1

ai,1 ⊗ · · · ⊗ ai,k, ai,j =

{
aj , j �= i,
d(aj), j = i.

Then (HA, d) is a differential Hopf algebra.
(b) The triple (C[ε−1, ε]],Π, d

dε ) is a commutative differential Rota-Baxter al-
gebra.

(c) The map Z̃ : HM → C[[ε, ε−1] defined in Eq. ( 41) is a differential algebra
homomorphism.

(d) The algebra homomorphism Z̃+ : HM− → C[[ε]] in Theorem 5.1 is a
differential algebra homomorphism.

6. Renormalization of multiple zeta values seen as nested sums of
symbols

We present two more approaches to renormalize multiple zeta functions at non-
positive integers, both of which lead to MZVs which obey stuffle relations. Like the
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renormalization method described in the previous section, they both give rise to ra-
tional multiple zeta values at non-positive integers and we check that the two meth-
ods yield the same double multiple zeta values at non-positive integer arguments.
This presentation is based on joint work of one of the authors with D. Manchon
[55] in which multiple zeta functions are viewed as particular instances of nested
sums of symbols and where the algebraic Birkhoff decomposition approach is used
to renormalize multiple zeta functions at poles. Here, we furthermore present an
alternative renormalization method based on generalized evaluators used in physics
[67].

6.1. A class of symbols. For a complex number b, a smooth function f :
R − {0} → C is called positively homogeneous of degree b if f(t ξ) = tbf(ξ)
for all t > 0 and ξ ∈ R.

The symbols which were originally defined on Rn are now defined on R which
is sufficient for our needs in this paper. We call a smooth function σ : R → C a
symbol if there is a real number a such that for any non-negative integer γ, there
is a positive constant Cγ with

|∂γσ(ξ)| ≤ Cγ(1 + |ξ|)a−γ , ∀ξ ∈ R.

For a complex number a and a non-negative integer j, let σa−j : R − {0} → C

be a smooth and positively homogeneous function of degree a − j. We write σ ∼∑∞
j=0 σa−j if, for any non-negative integer N and non-negative integer γ, there is

a positive constant Cγ,N such that∣∣∣∣∣∣∂γ

⎛
⎝σ(ξ)−

N∑
j=0

σa−j(ξ)

⎞
⎠
∣∣∣∣∣∣ ≤ Cγ,N (1 + |ξ|)Re (a)−N−1−γ , ∀ξ ∈ R− {0},

where Re(a) stands for the real part of a.
For any complex number a and any non-negative integer k, a symbol σ : R → C

is called a log-polyhomogeneous of log-type k and order a if

(47) σ(ξ) =

k∑
l=0

σl(ξ) log
l |ξ|, σl(ξ) ∼

∞∑
j=0

σa−j,l(ξ)

with σa−j,l(ξ) positively homogeneous of degree a− j.
Let Sa,k denote the linear space over C of log-polyhomogeneous symbols on R

of log-type k and order a. Then we have Sa,k ⊆ Sa,k+1. Let S∗,k denote the linear
span over C of all Sa,k for a ∈ C. Then S∗,0 corresponds to the algebra of classical
symbols on R. We also define

S∗,∗ :=

∞⋃
k=0

S∗,k

which is an algebra for the ordinary product of functions filtered by the log-type
[52] since the product of two symbols of log-types k and k′ respectively is of log-
type k + k′. The union

⋃
a∈Z

⋃∞
k=0 S

a,k is a subalgebra of S∗,∗, and
⋃

a∈Z S
a,0 is a

subalgebra of S∗,0.
Let Pα,k be the algebra of positively supported symbols, i.e. symbols in

Sα,k with support in (0,+∞) so that they are non-zero only at positive arguments.
We keep mutatis mutandis the above notations; in particular P∗,0 is a subalgebra
of the filtered algebra P∗,∗.
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For σ ∈ Pα,k we call fp
ξ→∞

σ(ξ) := σ0,0(ξ) the finite part at zero (so named since

it it reminiscent of Hadamard’s finite parts) of such a symbol σ which corresponds
to the constant term in the expansion.

The following rather elementary statement is our main motivation here for
introducing log-polyhomogeneous symbols.

Proposition 6.1. [54] The operator I defined in ( 2) on the algebra C[0,∞)
by

f �→
(
ξ �→ I(f)(ξ) =

∫ ξ

0

f(t)dt

)

maps P∗,k−1 to P∗,k for any positive integer k.

By Proposition 6.1, for any σ in P∗,k, the primitive I(σ)(ξ) has an asymptotic
behavior as ξ → ∞ of the type (47) with k replaced by k + 1. The constant term
defines the cut-off regularized integral (see e.g. [52]):

−
∫ ∞

0

σ(t) dt := fp
ξ→∞

∫ ξ

0

σ(t) dt.

6.2. Nested sums of symbols and their pole structures.
6.2.1. Nested sums. Recall that the operator I on P∗,∗ defined by Eq. (2) sat-

isfies the weight zero Rota-Baxter relation (1). On the other hand the operator
P defined by Eq. (4) satisfies the Rota-Baxter relation with weight λ = −1 and
the operator Q = P − Id in Eq. (5) satisfies the Rota-Baxter relation with weight
λ = 1.

The two Rota-Baxter operators P and I are related by means of the Euler-
MacLaurin formula which compares discrete sums with integrals. For σ ∈ P∗,∗ the
Euler-MacLaurin formula (see e.g. [38]) reads:

P (σ)(N)− I(σ)(N) =
1

2
σ(N) +

2K∑
k=2

Bk

k!
σ(k−1)(N)

+
1

(2K + 1)!

∫ N

0

B2K+1(x)σ
(2K+1)(x) dx.(48)

with Bk(x) = Bk (x− [x]). Here Bk(x) =
∑k

i=0

(
k

i

)
Bk−i x

i are the Bernoulli poly-

nomials of degree k, the Bi being the Bernoulli numbers, defined by the generating
series:

t

et − 1
=
∑
i

Bi

i!
ti.

Since Bk(1) = Bk for any k � 2, setting x = 1 we have

(49) Bk =

k∑
i=0

(
k

i

)
Bk−i =

k∑
i=0

(
k

i

)
Bi, ∀k � 2.

The Euler-MacLaurin formula therefore provides an interpolation of P (σ) by a
symbol.
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Proposition 6.2. [55] For any σ ∈ Pa,k, the discrete sum P (σ) can be in-
terpolated by a symbol P (σ) in Pa+1,k+1 + P0,k+1 (i.e. P (σ)(n) = P (σ)(n) =∑n

k=0 σ(k), ∀n ∈ N) such that

P (σ)− I(σ) ∈ Pa,k.

The operator Q := P − Id : Pa,k → Pa+1,k+1 + P0,k+1 interpolates Q.

By Proposition 6.2, given a symbol σ in Pa,k, the interpolating symbol P (σ) lies
in Pa+1,k+1 + P0,k+1. It follows that the discrete sum P (σ)(N) = P (σ)(N) has an
asymptotic behavior for large N given by finite linear combinations of expressions
of the type (47) with k replaced by k + 1 and a by a + 1 or 0. Picking the finite
part, for any σ ∈ P∗,∗ we define the following cut-off sum:

(50)

∞
−
∑
0

σ := fp
N→∞

P (σ)(N) = fp
N→∞

N∑
k=0

σ(k),

which extends the ordinary discrete sum
∑∞

0 on L1-symbols. If σ has non-integer

order, we have
∞
−
∑
0
σ = fp

N→∞

∑N+K
k=0 σ(k) for any integer K, so that in particular

∞
−
∑
0
σ = fp

N→∞
Q(σ)(N) since the operators P and Q only differ by an integer in the

upper bound of the sum.
With the help of the interpolation map described in Proposition 6.2, we can

assign to a tensor product σ := σ1 ⊗ · · · ⊗ σk of (positively supported) classical
symbols, two log-polyhomogeneous symbols defined inductively in the degree k of
the tensor product, which interpolate the nested iterated sum∑

0�nk�nk−1�···�n2�n1

σ1(n1) · · ·σk(nk) = σ1 P
(
· · ·σk−2 P

(
σk−1 P (σk)

)
...
)
,

∑
0�nk<nk−1<···<n2<n1

σ1(n1) · · ·σk(nk) = σ1 Q
(
· · ·σk−2Q

(
σk−1 P (σk)

)
...
)
.

In the following we will only consider the second class of symbols, including their
regularization, renormalization and application to multiple zeta values. A parallel
approach applies to the first class of symbols with application to non-strict multiple
zeta values in Eq. (22) [61, 75].

Theorem 6.3. [55] Given σi ∈ Pαi,0, i = 1, . . . , k, setting σ := σ1 ⊗ · · · ⊗ σk,
the function σ̃ defined by:

(51) σ̃ := σ1 Q
(
· · ·σk−2Q

(
σk−1Q(σk)

)
...
)

which interpolates nested sums in the following way:

σ̃(n1) =
∑

0�nk<nk−1<···<n2<n1

σ1(n1) · · ·σk(nk), ∀n1 ∈ N,

lies in P∗,k−1 that is expressed as linear combinations of (positively supported) sym-
bols in Pα1+···+αj+j−1,j−1, j ∈ {1, . . . , k}.

On the ground of this result, we define the cut-off nested discrete sum of a
tensor product of (positively supported) classical symbols.



170 LI GUO, SYLVIE PAYCHA, BINGYONG XIE, AND BIN ZHANG

Definition 6.4. For σ1, . . . , σk ∈ P∗,0 and σ := σ1 ⊗ · · · ⊗ σk we call

Chen

−
∑
<

σ :=

∞
−
∑
0

σ̃ = −
∑

0<nk<···<n1

σ1(n1) · · ·σk(nk)

the cut-off nested sum of σ = σ1 ⊗ · · · ⊗ σk.

6.2.2. The pole structure of nested sums of symbols. To build meromorphic

extensions, we combine the cut-off sum
∞
−
∑
0

introduced in (50) with holomorphic

deformations of the symbol in the integrand.
A family {a(z)}z∈Ω in a topological vector space A which is parameterized

by a complex domain Ω, is holomorphic at z0 ∈ Ω if the corresponding function
f : Ω → A admits a Taylor expansion in a neighborhood Nz0 of z0

a(z) =

∞∑
k=0

a(k)(z0)
(z − z0)

k

k!

which is convergent, uniformly on compact subsets of Nz0 (i.e. locally uniformly),
with respect to the topology on A. The vector spaces of functions we consider here
are C(R,C) and C∞(R,C) equipped with their usual topologies, namely uniform
convergence on compact subsets, and uniform convergence of all derivatives on
compact subsets respectively.

Definition 6.5. Let k be a non-negative integer, and let Ω be a domain in C.
A simple holomorphic family of log-polyhomogeneous symbols σ(z) ∈ S∗,k

parameterized by Ω is a holomorphic family σ(z)(ξ) := σ(z, ξ) of smooth functions
on R such that:

(a) the order α : Ω → C is holomorphic on Ω,

(b) σ(z)(ξ) =
∑k

l=0 σl(z)(ξ) log
l |ξ| with

σl(z)(ξ) ∼
∑
j�0

σ(z)α(z)−j,l(ξ).

Here σ(z)α(z)−j,l is positively homogeneous of degree α(z)− j,
(c) for any positive integer N there is some positive integer KN such that the

remainder term

σ(N)(z)(ξ) := σ(z)(ξ)−
k∑

l=0

KN∑
j=0

σ(z)α(z)−j,l(ξ) log
l |ξ| = o(|ξ|−N )

is holomorphic in z ∈ Ω as a function of ξ and verifies for any ε > 0 the
following estimates:

∂β
ξ ∂

k
zσ(N)(z)(ξ) = o(|ξ|−N−|β|+ε)

locally uniformly in z ∈ Ω for k ∈ N and β ∈ Nn.

A holomorphic family of log-polyhomogeneous symbols is a finite linear
combination (over C) of simple holomorphic families.

It follows from the Euler-MacLaurin formula (see e.g. [38, 55]) that for any
holomorphic family σ(z) of symbols in P∗,∗, we have

∞
−
∑
n=0

σ(z)(n) = −
∫ ∞

0

σ(z)(ξ) dξ + C(σ(z))
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with z �→ C(σ(z)) a holomorphic function at zero. Hence, z �→
∞
−
∑
n=0

σ(z)(n) and

z �→ −
∫∞
0

σ(z)(ξ) dξ have the same pole structure. Results by Kontsevich and
Vishik [49] for classical symbols and their generalization by Lesch [52] to log-
polyhomogeneous symbols, and relative to the pole structure of cut-off integrals
of holomorphic families of symbols, therefore carry out to discrete cut-off sums of
holomorphic (positively supported) log-polyhomogeneous symbols. Let us briefly
recall the notion of holomorphic regularization inspired by [49].

Definition 6.6. A holomorphic regularization procedure on S∗,∗ is a
map

R : S∗,∗ → HolΩ (S∗,∗)

f �→ {σ(z) = σf (z)}z∈Ω

where Ω is an open subset of C containing 0, and HolΩ (S∗,∗) is the algebra of
holomorphic families in S∗,∗ , such that for any f ∈ S∗,∗,

(a) σ(0) = f ,
(b) the holomorphic family σ(z) can be written as a linear combination of

simple ones:

σ(z) =

k∑
j=1

σj(z),

the holomorphic order αj(z) of which verifies Re(α′
j(z)) < 0 for any z ∈ Ω

and any j ∈ {1, . . . , k}.
A holomorphic regularization R is simple if, for any log-polyhomogeneous symbol
σ ∈ Sα,k, the holomorphic family R(σ) is simple. Since we only consider simple
holomorphic regularizations, we drop the explicit mention of simplicity.

A similar definition holds with suitable subalgebras of S∗,∗, e.g. classical sym-
bols S∗,0 instead of log-polyhomogeneous. Holomorphic regularization procedures
naturally arise in physics:

Example 6.7. Let z �→ τ (z) ∈ S∗,0 be a holomorphic family of classical symbols
such that τ (0) = 1 and τ (z) has holomorphic order α(z) with Re(α′(z)) < 0. Then

R : σ �→ σ(z) := σ τ (z)

yields a holomorphic regularization on S∗,∗ as well as on S∗,0. Choosing τ (z)(ξ) :=
χ(ξ) +

(
1 − χ(ξ)

)(
H(z) |ξ|−z

)
where H is a scalar valued holomorphic map such

that H(0) = 1, and where χ is a smooth cut-off function which is identically one
outside the unit interval and zero in a small neighborhood of zero, we get

R(σ)(z)(ξ) = χ(ξ)σ(ξ) +
(
1− χ(ξ)

)(
H(z) σ(ξ) |ξ|−z

)
.

Dimensional regularization commonly used in physics is of this type, where H is ex-
pressed in terms of Gamma functions which account for a “complexified” volume of
the unit sphere. When H ≡ 1, such a regularization R is called Riesz regularization.

Proposition 6.8. Given a holomorphic regularization R : σ �→ σ(z) on P∗,k,

for any σ ∈ P∗,k, the map z �→
∞
−
∑
0
σ(z) is meromorphic with poles of order � k+1 in

the discrete set α−1 ({−1, 0, 1, 2, · · · }) whenever σ(z) is a holomorphic family with
order α(z) such that Re(α′(z)) �= 0 for any z in Ω.
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Let Ω ⊂ C be an open neighborhood of 0. Given symbols σ1, · · · , σk ∈ P∗,0, and
a holomorphic regularization R which sends σi to σi(z) with order αi(z), z ∈ Ω, we
build holomorphic perturbations in the complex multivariable z := (z1, · · · , zk) ∈
Ωk of the symbols σ̃ introduced in (51):

σ̃(z) := σ1(z1)Q
(
· · ·σk−2(zk−2)Q

(
σk−1(zk−1)Q(σk(zk))

)
...
)
.

By Theorem 6.3, these are linear combinations of log-polyhomogeneous symbols of
log-type j − 1 and order α1(z1) + · · · + αj(zj) + j − 1, j ∈ {1, . . . , k}. Applying
Proposition 6.8 to each of these symbols provides information on the pole structure
of nested sums of (positively supported) classical symbols reminiscent of the pole
structure of multiple zeta functions [1, 25, 73].

Theorem 6.9. Fix symbols σ1, · · · , σk ∈ P∗,0 and a holomorphic regularization
R which sends σi to σi(z) with order αi(z).

(a) The map

(z1, · · · , zk) �→
Chen

−
∑
<

σ1(z1)⊗ · · · ⊗ σk(zk)

is meromorphic with poles on a countable number of hypersurfaces

j∑
i=1

αi(zi) ∈ −j + N0,

of multiplicity j varying in {1, · · · , k}. Here N0 stands for the set of non-
negative integers.

(b) Let σ(z) := σ1(z)⊗ · · · ⊗ σk(z) with z ∈ Ω. Assume that the orders αi(z)
of the σi’s are nonconstant affine with α′

j(0) = −q for any j in {1, · · · , k}

and some positive real number q. The map z �→
Chen

−
∑
<

σ(z) is meromorphic

on Ω with poles z ∈ (
∑j

i=1 αi(0) + j − N0)/(q j) of order � j.
(c) If Re(α1(z1) + · · ·+ αj(zj)) < −j for any j ∈ {1, . . . , k}, the nested sums

converge and boil down to ordinary nested sums (independently of the per-
turbation). Setting σ = σ1 ⊗ · · · ⊗ σk we have:

Chen,R

−
∑
<

σ := lim
z→0

Chen

−
∑
<

σ(z) =

Chen∑
<

σ.

6.3. A twisted holomorphic regularization. We now take A to be a sub-
algebra of P∗,0 equipped with the ordinary product on functions. Any holomorphic
regularization R on A with parameter space Ω ⊂ C induces one on the tensor
algebra T (A):

R̃(σ1 ⊗ · · · ⊗ σk)(z1, · · · , zk) := R(σ1)(z1)⊗ · · · ⊗ R(σk)(zk).

It is compatible with the shuffle product

R̃ ((σ1 ⊗ · · · ⊗ σk)X(σk+1 ⊗ · · · ⊗ σk+l)) = R̃ (σ1 ⊗ · · · ⊗ σk)XR̃ (σk+1 ⊗ · · · ⊗ σk+l)

for any σi ∈ A, i ∈ {1, · · · , k + l}.

Remark 6.10. Note that R̃(σ1Xσ2)(z1, z2) �= R(σ1)(z1)XR(σ2)(z2) even though

R̃(σ1Xσ2)(z1, z2) = (R(σ1)XR(σ2))(z1, z2).
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Let

δk : C → C⊗k, z �→ z · 1⊗k,

be the diagonal map δ : C �→ T (C) and δ∗ the induced map on tensor products of
holomorphic symbols

δ∗k : T (HolΩ (A)) → HolΩ (T (A)) , σ �→ σ ◦ δk.

The regularization R̃ induces a one parameter holomorphic regularization:(
δ∗ ◦ R̃

)
(σ1 ⊗ · · · ⊗ σk)(z) = R(σ1)(z)⊗ · · · ⊗ R(σk)(z)

compatible with the shuffle product:(
δ∗ ◦ R̃

)
((σ1 ⊗ · · · ⊗ σk)X (σk+1 ⊗ · · · ⊗ σk+l))

=
(
δ∗ ◦ R̃

)
(σ1 ⊗ · · · ⊗ σk) X

(
δ∗ ◦ R̃

)
(σk+1 ⊗ · · · ⊗ σk+l) ,(52)

for any σi ∈ A, i ∈ {1, · · · , k + l}.
Twisting it by Hoffman’s isomorphism in Theorem 2.8 yields a holomorphic

regularization
(
δ∗ ◦ R̃

)∗
(denoted by R∗ in [55]) on T (A):(
δ∗ ◦ R̃

)∗
:= exp ◦

(
δ∗ ◦ R̃

)
◦ log,

which is compatible with the stuffle product:

(53)
(
δ∗ ◦ R̃

)∗
(σ ∗ τ ) =

(
δ∗ ◦ R̃

)∗
(σ) ∗

(
δ∗ ◦ R̃

)∗
(τ ), ∀σ, τ ∈ T (A) .

Consequently, the following regularization

(54) R̃∗(σ1 ⊗ · · · ⊗ σk)(z1, · · · , zk) = exp ◦R̃ ◦ log(σ1 ⊗ · · · ⊗ σk) (z1, · · · , zk)
is compatible with stuffle relations after symmetrization in the complex variables
zi

(55)
(
R̃∗(σ ∗ τ )

)
sym

=
(
R̃∗(σ) ∗ R̃∗(τ )

)
sym

, ∀σ, τ ∈ T (A) ,

where the subscript sym stands for symmetrization

fsym(z1, · · · , zk) :=
1

k!

∑
τ∈Σk

f(zτ(1), · · · , zτ(k)),

over all the complex variables z1, · · · , zk+l if σ is a tensor of degree k and τ a tensor
of degree l. Setting z1 = · · · = zk+l = z in (55) yields back (53) so that (55) can be
seen as a polarization of (53). Given symbols σ1, · · · , σk in P∗,0, and a holomorphic
regularization R : σ �→ σ(z), sending σi to σi(z) with order αi(z), we are now ready
to build a map

(z1, · · · , zk) �→
Chen

−
∑
<

R̃∗(σ1 ⊗ · · · ⊗ σk)(z1, · · · , zk),

which, by Theorem 6.9, is meromorphic with poles on a countable number of hy-
persurfaces

j∑
i=1

αi(zi) ∈ −j + N0,
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with multiplicity j varying in {1, · · · , k}. In particular, if the holomorphic regular-
ization R sends a symbol σ to a symbol σ(z) with order α(z) = α(0)− q z for some
positive real number q, the hypersurfaces of poles are given by

j∑
i=1

zi ∈
∑j

i=1 αi(0) + j − n

q
, n ∈ N0,

so that hyperplanes of poles containing the origin correspond to
∑j

i=1 zi = 0 each
of which with multiplicity j varying in {1, · · · , k}.

6.4. Meromorphic nested sums of symbols. Let Mer0(C) denote the
germ of meromorphic functions in a neighborhood of zero in the complex plane
and let Hol0(C) be the germ of holomorphic functions at zero. We consider the
(Grothendieck closure of the) tensor algebra

T (Mer0(C)) =
∞⊕
k=0

T k(Mer0(C))

over Mer0(C) and its subalgebra T (Hol0(C)) := ⊕∞
k=0T

k(Hol0(C)) where we have
set

T k(Mer0(C)) := ⊗̂k
Mer0(C), T k(Hol0(C)) := ⊗̂k

Hol0(C)

and where ⊗̂ stands for the Grothendieck closure. They come equipped with the
product:

(f1 ⊗ · · · ⊗ fk)
⊗

(fk+1 ⊗ · · · ⊗ fk+l) = f1 ⊗ · · · ⊗ fk ⊗ fk+1 ⊗ · · · ⊗ fk+l.

We consider the following linear extension of T k(Mer0(C)) which corresponds to
germs at zero of meromorphic maps in severable variables with linear poles. Let
LMer0(C

∞) := ⊕∞
k=1LMer0(C

k) where

LMer0(C
k) :=

{
m∏
i=1

fi ◦ Li

∣∣∣ fi ∈ Mer0(C), Li ∈
(
Ck
)∗}

or equivalently,

LMer0(C
k) :=

{
(z1, · · · , zk) �→

h(z1, · · · , zk)∏
L∈(Ck)∗ (L(z1, · · · , zk))mL

∣∣∣h ∈ Hol0(C
k),mL ∈ N

}
.

Setting m = k and Li(z1, · · · , zk) = zi yields a canonical injection

i : T k(Mer0(C)) → LMer0(C
k),

f1 ⊗ · · · ⊗ fk �→
(
(z1, · · · , zk) �→

k∏
i=1

fi ◦ Li(z1, · · · , zk)
)
,

and the tensor product on T (Mer0(C)) extends to LMer0(C
∞), by

(
(z1, · · · , zk) �→

m∏
i=1

fi ◦ Li(z1, · · · , zk)
)
•
(
(z1, · · · , zl) �→

n∏
j=1

fm+j ◦ Li+j(z1, · · · , zl)
)

(56)

=
(
(z1, · · · , zk, · · · , zk+l) �→

m∏
i=1

fi ◦ Li(z1, · · · , zk)
n∏

j=1

fm+j ◦ Lm+j(zk+1, · · · , zk+l)
)

which makes it a graded algebra.
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Specializing to linear forms

Lk :=

⎧⎨
⎩L ∈

(
Ck
)∗ | ∃ J ⊂ {1, · · · , k}, L(z1, · · · , zk) =

∑
j∈J

zj

⎫⎬
⎭

gives rise to a subalgebra LM0(C
∞) := ⊕∞

k=1LM0(C
k) ⊂ LMer0(C

∞) defined by

LM0(C
k) :=

{
(z1, · · · , zk) �→

h(z1, · · · , zk)∏
L∈Lk

(L(z1, · · · , zk))mL

∣∣∣h ∈ Hol0(C
k),mL ∈ N

}
.

For future use, we consider the map δ∗ : LM0(C
k) → Mer0(C) defined by

δ∗k : LM0(C
k) → Mer0(C), f �→ f ◦ δk,

induced by the diagonal map δ : C �→ T (C) previously defined.

By definition of the twisted regularization R̃∗, the expressions
Chen

−
∑
<

R̃∗(σ1 ⊗

· · ·⊗σk)(z1, · · · , zk) are linear combinations of expressions of the type
Chen

−
∑
<

τ1(u1)⊗

· · · ⊗ τl(uk) with symbols τj(uj) built from products of the σi(zi)’s. It therefore

follows from Theorem 6.9, that the functions (z1, · · · , zk) �→
Chen

−
∑
<

R̃∗(σ1 ⊗ · · · ⊗

σk)(z1, · · · , zk) lie in LM0(C
k). Since the stuffle relations are satisfied for conver-

gent nested sums, given two tensor products σ = σ1⊗· · ·⊗σk and τ = τ1⊗· · ·⊗ τl
of symbols in P, setting σi(zi) := R(σi)(zi), for Re(zi) sufficiently large we have:

Chen

−
∑
<

(
R̃∗ (σ1 ⊗ · · · ⊗ σk) (z1, · · · , zk)

)
∗
(
R̃∗ (τ1 ⊗ · · · ⊗ τl) (zk+1, · · · , zk+l)

)

=
(Chen

−
∑
<

R̃∗(σ1 ⊗ · · · ⊗ σk)(z1, · · · , zk)
)(Chen

−
∑
<

R̃∗(τ1 ⊗ · · · ⊗ τl)(zk+1, · · · , zk+l)
)
.

By analytic continuation (see for example [29], in particular the Identity Theorem
in Chapter 1, Section A, or [45]), this holds as an identity of meromorphic functions.
Since (

R̃∗ ((σ1 ⊗ · · · ⊗ σk) ∗ (τ1 ⊗ · · · ⊗ τl)) (z1, · · · , zk+l)
)
sym

=
((

R̃∗(σ1 ⊗ · · · ⊗ σk) ∗ R̃∗(τ1 ⊗ · · · ⊗ τl)
)
(z1, · · · , zk+l)

)
sym

,

symmetrization in the variables zi yields(
Chen

−
∑
<

(
R̃

∗(σ1 ⊗ · · · ⊗ σk) ∗ R̃∗(τ1 ⊗ · · · ⊗ τl)
)
(z1, · · · , zk+l)

)
sym

=
((Chen

−
∑
<

R̃
∗(σ1 ⊗ · · · ⊗ σk)(z1, · · · , zk)

)(Chen

−
∑
<

R̃
∗(τ1 ⊗ · · · ⊗ τl)(zk+1, · · · , zk+l)

))
sym

.

This can be reformulated as follows.

Theorem 6.11. [55] Let A be a subalgebra of P∗,0 and let R be a holomorphic
regularization which sends a symbol σ to a symbol σ(z) with order α(z) = α(0)−q z
for some positive real number q.
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(a) The map

ΨR : (T (A) , ∗) → (LM0(C
∞), •)

σ1 ⊗ · · · ⊗ σk �→
(
(z1, · · · , zk) �→

Chen

−
∑
<

R̃∗(σ1 ⊗ · · · ⊗ σk)(z1, · · · , zk)
)
,

satisfies the following relation:(
ΨR(σ ∗ τ )

)
sym

=
(
ΨR(σ) •ΨR(τ )

)
sym

,

which holds as an equality of meromorphic functions in several variables.
Here, as before the subscript sym stands for the symmetrization in the
complex variables zi.

(b) After composition with δ∗ this in turn gives rise to a map

ψR : (T (A) , ∗) → Mer0(C)

σ1 ⊗ · · · ⊗ σk �→
(
z �→ δ∗ ◦

Chen

−
∑
<

R̃�(σ1 ⊗ · · · ⊗ σk)(z)

)
,(57)

which is an algebra morphism. In other words, ψR satisfies the relation:

ψR(σ ∗ τ ) = ψR(σ) · ψR(τ ),

which holds as an equality of meromorphic functions in one variable.

6.5. Renormalized nested sums of symbols. We want to extract finite
parts from the meromorphic functions in Theorem 6.11 while preserving the stuffle
relations using a renormalization procedure. Renormalized evaluators inspired from
generalized evaluators used in physics provide a first renormalization procedure.

6.5.1. Renormalized nested sums via renormalized evaluators. We call regular-
ized evaluator at zero on the germ Mer0(C) of meromorphic functions around zero,
any linear form on Mer0(C) which extends the evaluation at zero ev0 : h �→ h(0)
on holomorphic germs at zero. The map evreg0 defined by

evreg0 := ev0 ◦ (I −Π),

where Π : Mer0(C) → Mer0(C) as defined in Example 2.4 corresponds to the
projection onto the pole part of the Laurent expansion at zero, is such a regularized
evaluator at zero. When we need to specify the complex variable z we also write
evregz=0. Following Speer [67] we introduce renormalized evaluators which correspond
to his generalized evaluators.

Definition 6.12. A renormalized evaluator Λ on a graded subalgebra B =
⊕∞

k=0Bk of LMer0(C
∞) = ⊕∞

k=0LMer0(C
k) equipped with the product • introduced

in (56), is a character on B which is compatible with the filtration induced by
the grading and extends the ordinary evaluation at zero on holomorphic maps.
Equivalently, Λ satisfies all of the following:

(a) It is compatible with the filtration: Let BK := ⊕K
k=0Bk and ΛK := Λ|BK .

Then ΛK+1|BK = ΛK .
(b) It coincides with the evaluation map at zero on holomorphic maps:

Λ|T (Hol0(C)) = ev0.
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(c) It fulfills a multiplicativity property:

Λ(f • g) = Λ(f) Λ(g), ∀f, g ∈ B.

We call the evaluator symmetric if moreover for any f in Bk and τ in Σk, we have

Λ(fτ ) = Λ(f),

where we have set fτ (z1, · · · , zk) := f(zτ(1), · · · , zτ(k)).

Example 6.13. Any regularized evaluator at zero λ on Mer0(C) uniquely ex-

tends to a renormalized evaluator λ̃ on the tensor algebra (T (Mer0(C)) ,⊗) defined
by

λ̃(f1 ⊗ · · · ⊗ fk) =
k∏

i=1

λ(fi).

Example 6.14. Any regularized evaluator λ on Mer0(C) extends to renormal-
ized evaluators Λ and Λ′ on LMer0(C

∞) defined on LMer0(C
k) by

Λ := λz1 ◦ · · · ◦ λzk , Λ′ := λzk ◦ · · · ◦ λz1

and to a symmetrized evaluator defined on LMer0(C
k) by

Λsym :=
1

k!

∑
τ∈Σk

λzτ(1)
◦ · · · ◦ λzτ(k)

,

where λzi stands for the evaluator λ implemented in the sole variable zi, the others

being kept fixed. Their restrictions to T (Mer0(C)) all coincide with λ̃.

Example 6.15. Take λ := evreg0 , and set with the above notations

evren0 := Λ; evren
′

0 := Λ′, evren,sym0 := Λsym,

then given a holomorphic function h(z1, z2) in a neighborhood of 0 and setting

f(z1, z2) :=
h(z1,z2)
z1+z2

, we have

evren0 (f) = ∂1h(0, 0), evren
′

0 (f) = ∂2h(0, 0),

evren,sym0 (f) =
∂1h(0, 0) + ∂2h(0, 0)

2
= evreg0 ◦ δ∗ (f) ,

though in general,

evren,sym0 �= evreg0 ◦ δ∗.

Proposition 6.16. Let A be a subalgebra of P∗,0 and let R be a holomorphic
regularization which sends a symbol σ to a symbol σ(z) with order α(z) = α(0)−q z
for some positive real number q. Let E be a symmetrized renormalized evaluator on
LM0. The map

ΨR,E : (T (A) , ∗) → C

σ1 ⊗ · · · ⊗ σk �→ E ◦ΨR(σ1 ⊗ · · · ⊗ σk)

defines a character. In other words, ΨR,E satisfies the stuffle relation:

ΨR,E(σ ∗ τ ) = ΨR,E(σ) · ΨR,E(τ ).

Remark 6.17. Here, we use the fact that for a symmetrized evaluator Λ we have
Λ(f) = Λ(fsym) where as before the subscript “sym” stands for the symmetrization
in the complex variables zi.



178 LI GUO, SYLVIE PAYCHA, BINGYONG XIE, AND BIN ZHANG

This proposition gives rise to renormalized nested sums of symbols

Chen,R,E

−
∑
<

σ1 ⊗ · · · ⊗ σk := ΨR,E(σ1 ⊗ · · · ⊗ σk)

which obey stuffle relations:

Chen,R,E

−
∑
<

(σ ∗ τ ) =
(

Chen,R,E

−
∑
<

σ

) (
Chen,R,E

−
∑
<

τ

)
.

6.5.2. Renormalized nested sums via algebraic Birkhoff decomposition. On the
other hand, the tensor algebra T (A) can be equipped with the deconcatenation
coproduct:

Δ (σ1 ⊗ · · · ⊗ σk) :=
k∑

j=0

(σ1 ⊗ · · · ⊗ σj)
⊗

(σj+1 ⊗ · · · ⊗ σk)

which then inherits a structure of connected graded commutative Hopf algebra
[42]. Using the convolution product � associated with the product and coproduct
on T (A) and since Mer0(C) embeds into the Rota-Baxter algebra C[ε−1, ε]] we
can implement an algebraic Birkhoff decomposition as in (31) to the map ψR in
Eq. (57):

ψR =
(
ψR
−
)�(−1)

� ψR
+

associated with the minimal substraction scheme to build characters

ψR
+(0) : (T (A) , ∗) → C.

Proposition 6.18. [55] Let A be a subalgebra of P∗,0 and let R be a holo-
morphic regularization which sends a symbol σ to a symbol σ(z) with order α(z) =
α(0)− q z for some positive real number q. The map

ψR,Birk : (T (A) , ∗) → C

σ1 ⊗ · · · ⊗ σk �→ ψR
+(0)(σ1 ⊗ · · · ⊗ σk)

defines a character

ψR,Birk(σ ∗ τ ) = ψR,Birk(σ) · ψR,Birk(τ ).

The map yields an alternative set of renormalized nested sums of symbols

Chen,R,Birk

−
∑
<

σ1 ⊗ · · · ⊗ σk := ψR,Birk(σ1 ⊗ · · · ⊗ σk)

which obey stuffle relations:

Chen,R,Birk

−
∑
<

(σ ∗ τ ) =
(

Chen,R,Birk

−
∑
<

σ

) (
Chen,R,Birk

−
∑
<

τ

)
.

6.6. Renormalized (Hurwitz) multiple zeta values at non-positive in-
tegers.
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6.6.1. An algebra of symbols. Since we consider both zeta and Hurwitz zeta
functions, let us first observe that for any non-negative number v and any σ in
P∗,k, the map ξ �→ t∗vσ(ξ) := σ(ξ + v) defines a symbol in P∗,k.

Let Ã be the subalgebra of P∗,0 generated by the continuous functions with
support inside the interval (0, 1) and the set

{σ ∈ P∗,0 ∣∣ ∃v ∈ [0,+∞), ∃s ∈ C, σ(ξ) = (ξ + v)−s when ξ ≥ 1}.

Consider the ideal N of Ã of continuous functions with support inside the interval

(0, 1). The quotient algebra A = Ã/N is then generated by elements σs,v ∈ P∗,0

with σs,v(ξ) = (ξ+v)−s for |ξ| ≥ 1. For any v ∈ R+ the subspace Av of A generated
by {σs,v | s ∈ C} is a subalgebra of A. We equip Av with the following holomorphic
regularization on an open neighborhood Ω of 0 in C:

R : Av → HolΩ (Av)

σs,v �→ (z �→ (1− χ) σs,v + χ σs+z,v)

where χ is any smooth cut-off function which is identically one outside the unit ball
and vanishes in a small neighborhood of 0.

Let W be the C-vector space freely spanned symbols indexed by sequences
(u1, . . . , uk) of real numbers. In other words, W is T (W ) where W = ⊕u∈RRxu

where we identify xu with u for simplicity and set xu · xv = xu+v, u, v ∈ R. We
then define the stuffle product on W as usual in Eq. (8) or Eq. (11) with λ = 1.
The map

σ : W → T (Av), u = (u1, · · · , uk) �→ σu;v := σ(u1,...,uk; v) := σu1;v ⊗ · · · ⊗ σuk;v

induces a stuffle product on T(Av):

σu;v ∗ σu′;v := σu∗u′;v.

As before, we twist the regularization R̃ induced by R on T (Av) by the Hoff-

man isomorphism (14) to build a twisted holomorphic regularization R̃∗ in several
variables which satisfies(

R̃∗(σu;v) ∗ R̃∗(σu′;v)
)
sym

=
(
R̃∗(σu∗u′;v)

)
sym

and a twisted holomorphic regularization δ∗ ◦ R̃∗ in one variable compatible with
the stuffle product:(

δ∗ ◦ R̃∗(σu;v)
)
∗
(
δ∗ ◦ R̃∗(σu′;v)

)
= δ∗ ◦ R̃∗(σu∗u′;v).

6.6.2. Multiple zeta values renormalized via renormalized evaluators. Let Ω be
an open neighborhood of 0 in C and let R : σ �→ {σ(z)}z∈Ω be the holomorphic

regularization procedure on Ã previously introduced. The multiple Hurwitz zeta
functions defined by:

ζ(s1, . . . , sk; v1, . . . , vk) := ΨR(σs1,v1 ⊗ · · · ⊗ σsk,vk)

are meromorphic in all variables with poles1 on a countable family of hyperplanes
s1 + · · ·+ sj ∈]−∞, j]∩Z, j varying from 1 to k. When v1 = · · · = vk = v, we set

ζ(s1, . . . , sk; v) := ζ(s1, . . . , sk; v1, . . . , vk)

1When k = 2 and v1 = · · · = vl = v a more refined analysis actually shows that for some any
negative real number v, poles actually only arise for s1 = −1 or s1 + s2 ∈ {−2,−1, 0, 2, 4, 6, · · · }.
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in which case they satisfy the following relations:(
ζE(u ∗ u′; v)

)
sym

=
(
ζE(u; v) ζE(u′; v)

)
sym

.

The renormalized multiple Hurwitz zeta values derived from a symmetrized
renormalized evaluator E on LM0(C

∞):

ζE(s1, . . . , sk; v1, . . . , vk) := ΨR,E(σs1,v1 ⊗ · · · ⊗ σsk,vk)

denoted by ζR,E(s1, . . . , sk; v) when v1 = · · · = vk = v, in which case they satisfy
stuffle relations:

ζE(u ∗ u′; v) = ζE(u; v) ζE(u′; v).

When k = 1, the symmetrized renormalized evaluator E1 coincides with the regu-
larized evaluator at zero evreg0 and

ζ(s1; v) := ζE(s1; v)

is independent of E. Note that the meromorphic map ζ(s; v) :=
∞
−
∑
n=0

σs,v(n) differs

from the usual Hurwitz function ζ(u, v)(s) :=
∞
−
∑
n=0

(n + v)−s by the first term v−s.

At a negative integer −a, using the Euler MacLaurin formula, one can check that

ζ(−a, v) = −Ba+1(v)

a+ 1
; ζ(−a; v) = −Ba+1(v)

a+ 1
− va

which are rational numbers whenever v is rational.
Let us now compute renormalized values in the case k = 2 using a renormalized

evaluator. For any a ∈ R and m ∈ N− {0} we introduce the notation:

[a]j := a(a− 1) · · · (a− j + 1).

We extend this to j = 0 and j = −1 by setting: [a]0 := 1, [a]−1 := 1
a+1 . Combining

Definition (54)

R̃∗(σ1 ⊗ σ2)(z1, z2) = σ1(z1)⊗ σ2(z2)−
1

2
(σ1 • σ2)(z1) +

1

2
σ1(z1) • σ2(z2)

applied to the regularization

R(σi)(z)(x) = (x+ v)−si−z of order αi(z) = −si − zi,

with the Euler-MacLaurin formula (48) and following [55] (see the proof of Theorem
9 applied to the symbols σs1, v, σs2, v), we compute

ζ(s1, s2; v)(z1, z2)

= ΨR(σs1, v ⊗ σs2, v)(z1, z2)

=

Chen

−
∑
<

σs1, v(z1)⊗ σs2, v(z2) +
1

2
σs1, v(z1) σs2, v(z2)−

1

2
(σs1, v σs2, v)(z1)

=

2J2∑
j=0

Bj
[−s2 − z2]j−1

j!
(ζ(s1 + s2 + z1 + z2 + j − 1; v)− ζ(s1 + z1; v))

+
1

2
ζ(s1 + s2 + z1 + z2; v)−

1

2
ζ(s1 + s2 + z1; v)

+
[−s2 − z2]2J2+1

(2J2 + 1)!

∞
−
∑
0

(
(n+ v)−s1−z1

∫ n

1

B2J2+1(y) (y + v)−s2−z2−2J2−1 dy

)
.
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Hence, for non-positive integers s1 = −a1, s2 = −a2 and 2J2 = a1 + a2 + 2 we
have:

ζ(−a1,−a2; v)(z1, z2)

=

a1+a2+2∑
j=0

Bj
[a2 − z2]j−1

j!

(
ζ(−a1 − a2 + z1 + z2 + j − 1; v)(58)

−ζ(−a1 + z1; v)
)

+
1

2
ζ(−a1 − a2 + z1 + z2; v)−

1

2
ζ(−a1 − a2 + z1; v)

+
[a2 − z2]a2+2

(a2 + 2)!

∞
−
∑
0

(
(n+ v)a1−z1

∫ n

1

Ba1+a2+3(y) (y + v)−2 dy

)
.

The last line on the right hand side is a holomorphic expression at zero on which
all renormalized evaluators at zero vanish. The second line on the right hand side
is a linear combination of ordinary zeta functions at negative integers which are
holomorphic at zero. Any evaluator Λ at zero vanishes on these terms; indeed, we
have

Λ (ζ(−a1 − a2 + z1 + z2; v)− ζ(−a1 − a2 + z1; v))

= ζ(−a1 − a2; v)− ζ(−a1 − a2; v) = 0.

Only when evaluated on the expression on the first line of the right hand side can
various evaluators differ.

We want to implement the symmetrized evaluator at zero

evren,sym0 :=
1

2

(
evregz2=0 ◦ ev

reg
z1=0 + evregz1=0 ◦ ev

reg
z2=0

)
introduced in Example 6.15. We first compute

evregz1=0

(
evregz2=0 (ζ(−a1,−a2; v)(z1, z2))

)
= evregz1=0

(
evregz2=0

( a1+a2+2∑
j=0

Bj
[a2 − z2]j−1

j!

(
ζ(−a1 − a2 + z1 + z2 + j − 1; v)

−ζ(−a1 + z1; v)
)))

= evregz1=0

⎛
⎝a2+1∑

j=0

Bj
[a2]j−1

j!
(ζ(−a1 − a2 + z1 + j − 1; v)− ζ(−a1 + z1; v))

⎞
⎠

=
1

a2 + 1

a2+1∑
j=0

Bj

(
a2+1

j

)
(ζ(−a1 − a2 + j − 1; v)− ζ(−a1; v)) .

This leads to:

evregz1=0

(
evregz2=0 (ζ(−a1,−a2; v)(z1, z2))

)
:= evregz1=0

(
evregz2=0 (ζ(−a1,−a2; v)(z1, z2; 0))

)
(59)

=
1

a2 + 1

a2+1∑
j=0

Bj

(
a2+1

j

) (
− Ba1+a2−j+2(v)

a1 + a2 − j + 2
− va1+a2−j+2

+
Ba1+1(v)

a1 + 1
+ va1+1

)
.
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We next compute

evregz2=0

(
evregz1=0 (ζ(−a1,−a2; v)(z1, z2))

)
=evregz2=0

(
evregz1=0

( B0

a2 − z2 + 1

(
ζ(−a1 − a2 + z1 + z2 − 1; v)− ζ(−a1 + z1; v)

)))

+evregz2=0

(
evregz1=0

( a1+1∑
j=1

Bj
[a2 − z2]j−1

j!

(
ζ(−a1 − a2 + z1 + z2 + j − 1; v)

−ζ(−a1 + z1; v)
)))

+evregz2=0

(
evregz1=0

( a1+a2+2∑
j=a1+2

Bj
[a2 − z2]j−1

j!

(
ζ(−a1 − a2 + z1 + z2 + j − 1; v)

−ζ(−a1 + z1; v)
)))

= evregz2=0

(
B0

a2 + 1
(ζ(−a1 − a2 + z2 − 1; v)− ζ(−a1; v))

)

+evregz2=0

( a1+1∑
j=1

Bj
[a2 − z2]j−1

j!
(ζ(−a1 − a2 + z2 + j − 1; v)− ζ(−a1; v))

)

+

a2+1∑
j=1

Bj+a1+1 ∂z2

(
[a2 − z2]j+a1

(j + a1 + 1)!

)
|z2=0

Resz2=0 (ζ(−a2 + z2 + j; v))

=
1

a2 + 1

a2+1∑
j=0

Bj

(
a2+1

j

)
(ζ(−a1 − a2 + j − 1; v)− ζ(−a1; v))

+(−1)a1+1a1!a2!
Ba1+a2+2

(a1 + a2 + 2)!
,

since the only contribution to the residue comes from the term j = a1 + a2 + 2.
This combined with (49) applied to k = a2 + 1 yields

evregz2=0

(
evregz1=0 (ζ(−a1,−a2; v)(z1, z2))

)
= − 1

a2 + 1

a2+1∑
j=0

Bj

((
a2+1

j

)
Ba1+a2−j+2(v)

a1 + a2 − j + 2
+ va1+a2−j+2

)
(60)

+
Ba1+1

a1 + 1

(
Ba2+1(v)

a2 + 1
+ va2+1

)
+ (−1)a1+1a1!a2!

Ba1+a2+2

(a1 + a2 + 2)!
.

Combining (59) and (60) yields

ζev(−a1,−a2; v) := evren,sym0 (ζ(−a1,−a2; v)(z1, z2))

= − 1

a2 + 1

a2+1∑
j=0

Bj

(
a2+1

j

) (
Ba1+a2−j+2(v)

a1 + a2 − j + 2
+ va1+a2−j+2

)
(61)

+
Ba1+1

a1 + 1

(
Ba2+1(v)

a2 + 1
+ va2+1

)
+ (−1)a1+1a1!a2!

Ba1+a2+2

2 (a1 + a2 + 2)!
.

Since Bernoulli polynomials Bk(x) are of degree k in x renormalized multiple zeta
values of depth 2 at non-positive arguments (−a1,−a2) derived this way are poly-
nomials of degree a1 + a2 +2 in the parameter v with rational coefficients given by
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rational linear combinations of Bernoulli numbers, and hence give rise to rational
numbers for any rational value of v. More generally, an inductive procedure on
k carried out in the same spirit as the proof of Theorem 10 in [55] would show
that the renormalized multiple zeta values ζE(−a1, · · · ,−ak; v) of depth k at non-
positive integer arguments (−a1, · · · ,−ak) are polynomials in the parameter v with
rational coefficients so that they lead to rational numbers for rational values of v.

6.6.3. Multiple zeta values renormalized via Birkhoff decomposition. The renor-
malized multiple Hurwitz zeta values derived from a Birkhoff decomposition:

ζBirk(s1, . . . , sk; v1, . . . , vk) := ΨR,Birk(σs1,v1 ⊗ · · · ⊗ σsk,vk)

denoted by ζBirk(s1, . . . , sk; v) when v1 = · · · = vk = v, satisfy stuffle relations

ζBirk(u ∗ u′; v) = ζBirk(u; v) ζBirk(u′; v).

A striking holomorphy property arises at non-positive integer arguments [55]
after implementing the diagonal map δ.

Proposition 6.19. At non-positive integer arguments si and for a rational
parameter v, the map

z �→ ψR (σs1,v ⊗ · · · ⊗ σsk,v) (z)

defined in ( 57) is holomorphic at zero.

Consequently,

ζBirk(s1, . . . , sk; v) = lim
z→0

ψR(σs1,v ⊗ · · · ⊗ σsk,v).

Let us compute double zeta values at non-positive integer arguments using Birkhoff
decomposition. Setting z1 = z2 = z in (58) leads to

ζ(−a1,−a2; v)(z)

=

a2+1∑
j=0

Bj
[a2 − z]j−1

j!
(ζ(−a1 − a2 + 2z + j − 1; v)− ζ(−a1 + z; v))

+
[a2 − z]a2+2

(a2 + 2)!

∞
−
∑
0

(
(n+ v)a1−z

∫ n

1

Ba1+a2+3(y) (y + v)−2 dy

)
.

Evaluating this expression at z = 0 in a similar manner to the previous computation,
yields:

ζBirk(−a1,−a2; v)

= lim
z→0

⎛
⎝a2+1∑

j=0

Bj
[a2 − z]j−1

j!
(ζ(−a1 − a2 + 2z + j − 1; v)− ζ(−a1 + z; v))

⎞
⎠

=

a2+1∑
j=0

Bj
[a2]j−1

j!
(ζ(−a1 − a2 + j − 1; v)− ζ(−a1; v))

+(−1)a1+1a1!a2!
Ba1+a2+2

2 (a1 + a2 + 2)!
.
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Table 2. Values of renormalized MZVs, Part II

ζ(−a1,−a2) a1 = 0 a1 = 1 a1 = 2 a1 = 3 a1 = 4 a1 = 5 a1 = 6

a2 = 0 3
8

1
12

7
720

− 1
120

− 11
2 520

1
252

1
224

a2 = 1 1
24

1
288

− 1
240

− 19
10 080

1
504

41
20 160

− 1
480

a2 = 2 − 7
720

− 1
240

0 1
504

113
151 200

− 1
480

− 307
166 320

a2 = 3 − 1
240

1
840

1
504

1
28 800

− 1
480

− 281
332 640

1
264

a2 = 4 11
2 520

1
504

− 113
151 200

− 1
480

0 1
264

117 977
75 675 600

a2 = 5 1
504

− 103
60 480

− 1
480

1
1232

1
264

1
127 008

− 691
65 520

a2 = 6 − 1
224

− 1
480

307
166 320

1
264

− 117 977
75 675 600

− 691
65 520

0

For v = 0 this yields:

ζBirk(−a1,−a2) := ζBirk(−a1,−a2; 0)

= − 1

a2 + 1

a2+1∑
j=0

Bj

(
a2+1

j

)
Ba1+a2−j+2

a1 + a2 − j + 2

+
Ba1+1

a1 + 1

Ba2+1

a2 + 1
+ (−1)a1+1a1!a2!

Ba1+a2+2

2 (a1 + a2 + 2)!

which coincides with (61).
Thus, renormalized double zeta values at non-positive integers obtained by two

different methods – using the symmetrized renormalized evaluator evren,sym0 or a
Birkhoff decomposition– coincide.

Formula (61) yields Table 2 of values ζ(−a1,−a2) for a1, a2 ∈ {0, . . . , 6} derived
in [55]:

This table of values differs from the one derived in [36] (see Table 1) with which
it however matches for arguments (a, b) with a+ b odd, and b �= 0 and for diagonal
arguments (−a,−a). It would be interesting to see whether the two tables could
have a better match when the second table is obtained from ζBirk(−a1,−a2; ν) with
a different value of ν.
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1994

[71] D. Zagier, Multiple zeta values, unpublished manuscript, Bonn 1995.
[72] J. Zhao, Multiple q-zeta functions and multiple q-polylogarithms. Ramanujan J. 14

(2007), 189–221
[73] J. Zhao, Analytic continuation of multiple zeta functions. Proc. Amer. Math. Soc. 128

(2000), 1275-1283.
[74] W. Zimmermann, Convergence of Bogoliubov’s method of renormalization in momen-

tum space, Comm. Math. Phys. 15 (1969), 208-234.

[75] W. Zudilin, Algebraic relations for multiple zeta values, (Russian), Uspekhi Mat. Nauk,
58, no.1, 2003, 3–32, translation in Russian Math. Survey, 58, (2003) 1–29.

Department of Mathematics and Computer Science, Rutgers University, Newark,

NJ 07102, USA

E-mail address: liguo@rutgers.edu

Laboratoire de Mathématiques Appliquées, Université Blaise Pascal (Clermont II),
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