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Introduction

Classically, arithmetic is the study of rational or integral solutions of Diophan-
tine equations. From a modern standpoint, this is a particular case of the study
of schemes over algebraically nonclosed fields and more general commutative rings.
The geometric viewpoint, dating back to ancient Greece, has been a source of in-
spiration to generations of mathematicians. The guiding principle is that

geometry determines arithmetic.

The tremendous power of this principle has been amply demonstrated in the
works of Faltings on the Mordell conjecture and Wiles on Fermat’s last theorem.

This volume grew out of the 2006 Clay Summer School held at the Mathemati-
sches Institut of the University of Gottingen. The goal of the school was to introduce
participants to the wealth of new techniques and results in arithmetic geometry.
The first three weeks of the school were devoted to three main courses, covering
curves, surfaces and higher-dimensional varieties, respectively; the last week was
dedicated to more advanced topics. An important component of the school was a
seminar focused on computational and algorithmic aspects of arithmetic geometry.
The present proceedings volume reflects this structure.

Curves:

The main geometric invariant of a curve is its genus; the arithmetic is very
different for curves of genus 0,1 and > 2 respectively. In genus 0, we can answer,
completely and effectively, whether or not a curve contains rational points and how
these points are distributed. The theory of genus 1 curves is one of the richest sub-
jects in mathematics, with spectacular recent theorems, e.g., modularity of elliptic
curves over the rationals, and with many outstanding open questions, such as the
Birch/Swinnerton-Dyer conjecture. In higher genus, the most fundamental result
is the proof of the Mordell conjecture by Faltings, and the most challenging open
question is to give an effective version of this result.

The lecture notes by Darmon cover the following topics:

e Faltings’ proof of the Mordell Conjecture;

e Rational points on modular curves and Mazur’s approach to bounding
them;

e Rational points on Fermat curves and Wiles’ proof of Fermat’s Last The-
orem;
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e FElliptic curves and the Birch and Swinnerton-Dyer conjecture, following
Gross-Zagier and Kolyvagin.

Contributions by Chapdelaine, Charollois, Dasgupta, Greenberg, Rebolledo, and
Voight discuss more specialised topics that grew out of these lectures, such as

o Generalised Fermat equations (Chapdelaine);

e Merel’s extension of Mazur’s techniques to study rational points on mod-
ular curves over number fields, and the uniform boundedness conjecture
for torsion of elliptic curves (Rebolledo);

e Natural generalisations of Fermat’s Last Theorem due to Kraus and Hal-
berstadt, building on Frey’s approach (Charollois);

e CM points on modular curves and their applications to elliptic curves
(Dasgupta, Voight);

e Shimura curves with a focus on computational aspects (Voight, Green-
berg):

o Stark-Heegner points (Greenberg).

In addition, a paper by Manin treats modular symbols (which play an important
role in Merel’s proof of the uniform boundedness conjecture explained in Rebolledo’s
article) and discusses higher dimensional generalizations.

Surfaces:

The geometry of surfaces over the complex numbers is much more involved, and
their birational classification was a milestone in algebraic geometry. Hassett’s paper
gives a thorough introduction to this classification over nonclosed fields, and its
implications for Diophantine questions like the existence of rational points and weak
approximation. It also touches on geometric descent constructions generalizing
Fermat’s descent (universal torsors) and algebraic approaches to these objects (Cox
rings).

Harari’s paper discusses non-abelian versions of descent, which have yielded
new counterexamples to local-global principles for rational points on surfaces over
number fields. Once rational points exist, one can ask whether they are Zariski
dense and analyze their distribution with respect to heights; these questions are
addressed, for both surfaces and higher-dimensional varieties, in Tschinkel’s survey.

Vioreanu offers tantalizing computational evidence for conjectures about the
algebraic structure of rational points on cubic surfaces. He explores whether all
points can be generated from a small number using elementary geometric opera-
tions.

Higher-dimensional varieties:

Some of the most interesting higher-dimensional varieties from the arithmetic
point of view are low-degree hypersurfaces and varieties closely related to algebraic
groups: toric varieties, homogeneous spaces, and equivariant compactifications of
groups. Here one is interested in existence questions, density of rational points, and
counting points of bounded height. For the last problem, height zeta functions are
an important tool and techniques of harmonic analysis can be profitably employed.
A selection of recent results in this direction appears in the survey of Tschinkel.
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we have a basis (xg, x1,x2) for I'(D) for which S can be given by

S(xo,x1,12) = 368640025
— 256(339752% — 85697179 — 4573)x]
+ (513022527 — 1860100232 + 1384142323 — 41802125 + 9x5)xd
— 8(5643x5xy — 24955123 + 2092323 — balxy).

The symmetry takes (zg : z1 : x2) to (—z9 : x1 : w2), and the node is at
(g : &1 : @2) = (0: 0 :1). Our model of X/Q is obtained from the double
cover y? = S(z0,71,72) by blowing up the preimage of this node. In the picture,
the real locus of the sextic curve C' : S = 0 is plotted in black in the (xo/x2, z1/x2)
plane; it consists of nine components, together with an isolated point at the node.

A line ¢ C P? is tritangent to C if and only if it lifts to a pair of smooth rational
curves {4 on X. Then ¢, +¢_ = D in NS(X). Orthogonal projection to L ® Q
then maps NS(X) to a lattice L' containing L with index 2, taking the curves ¢
to a pair of vectors v = {4 — %D € L' of norm 5/2 that are orthogonal to Ry.
Conversely, every such pair comes from a tritangent line. There are 43 such lines;
one of these is zo = 0, which is the line at infinity in our picture, and the remaining
42 are plotted in green. (Some of the tangency points are not in the picture because
they are either complex conjugate or real but outside the picture frame.)

Each of these lines has the property that the restriction S|, is the square of a
cubic polynomial. The same is true if ¢ is a line passing through the node of C' and
tangent to C' at two other points. There are nine such lines, plotted in gray. They
correspond to norm-(5/2) vectors in L’ not orthogonal to Ry, up to multiplication
by —1 and translation by Ry.

A generic line A C P2 meets these 43 + 9 lines in 52 distinct points that lift to
52 pairs of rational points on the genus-2 curve y? = S|y. This already improves
on the previous record for an infinite family of genus-2 curves over Q (which was
24 pairs, due to Mestre). We do better yet by exploiting rational curves of higher
degree in P2 on which S restricts to a perfect square.

There are 1240 conics ¢ C P? for which S|. is a square; geometrically these
are the conics such that each point in the intersection ¢ N C' has even multiplicity
(either the node of C' or a point of tangency). Such a conic lifts to a pair of rational
curves ¢+ on X with ¢y + ¢ = 2D. These ¢4 come from vectors c. — D € L
of norm 4 up to translation by R, except for norm-4 vectors of the form v — v’
with v,v" € L’ of norm 5/2. The conics ¢ are all rational over Q, because for each
c we can find ¢’ such that cy - ¢/, is odd. In general the intersections of ¢ with a
generic line A C P? need not be rational, but we can choose \ so as to gain a few
rational points. Most notably, 18 of the conics happen to pass through the point
Py:(xo: 21 :a2) = (0:1:3) on the axis of symmetry xg = 0 of the sextic C.
These conics are plotted in purple on our picture. If X is a generic line through Py
then the genus-2 curve y? = S|, gains 18 more pairs of points above the second
intersections of A\ with the purple conics. We also lose one pair because two of
our 52 tritangent lines pass through Py, but we gain two more pairs by finding two
rational cubic curves x C P2 for which S|, is a square and P, is the node of x. This
brings the total to 52+18—1+2 = 71. If ¢, ¢ are two of the remaining 1222 conics
such that (¢1)4 - (c2)+ is odd then we have infinitely many choices (parametrized
by an elliptic curve of positive rank) of lines A © Py for which each of AN ¢; and
AN co consists of two further rational points, bringing our total to 75. This is the
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current record for the number of pairs of rational points on an infinite family of
genus-2 curves over Q; the previous record, due to Mestre, was 24 pairs.

In another direction, C' has the rational point P : (zg : 21 : 22) = (0: 1 :0)
(in our picture this is the point at infinity in the horizontal direction). If A 5 Py
then the genus-2 curve y? = S|y has a rational Weierstrass point mapping to P;.
The tangent to P is the line of infinity, which is one of our 52 tritangent lines;
but this still leaves 51 pairs of rational points. In fact we get 4 more because four
of our 1240 conics contain P;. These are shown in our picture as red horizontal
parabolas. As before we can get at least 4 more pairs for infinitely many choices
of A\ parametrized by an elliptic curve of positive rank. This yields infinitely many
genus-2 curves over Q with a rational Weierstrass point and at least 59 further
pairs of rational points.

References

[Sch08] Matthias Schiitt, K3 surfaces with Picard rank 20, 2008, arXiv:0804.1558.

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE, MA 02138
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Introduction

Algebraic number theory is first and foremost the study of Diophantine equa-
tions. Such a definition is arguably too narrow for a subject whose scope has
expanded over the years to encompass an ever-growing list of fundamental notions:
number fields and their class groups, abelian varieties, moduli spaces, Galois repre-
sentations, p-divisible groups, modular forms, Shimura varieties, and L-functions,
to name just a few. All of these subjects will be broached (sometimes too briefly,
for reasons having less to do with their relative importance than with limitations of
time, space, and the author’s grasp of the subject) in this survey, which is devoted
to the first nontrivial class of Diophantine equations: those associated to varieties
of dimension one, or algebraic curves.

The term Diophantine equation refers to a system of polynomial equations

2000 Mathematics Subject Classification. Primary 11G30, Secondary 11G05, 11G18, 11G40,
14G05, 14G35.

(©2009 Henri Darmon
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fl(,ljl,.. .,l'n) = 0

fm(.’lfl,...,.’lin) =0

Given such a system, one wishes to understand (and, if possible, determine com-
pletely) its set of integer or rational solutions.

Little of the essential features of the question are lost, and much flexibility is
gained, if one replaces the base ring Z by a more general ring 0. The prototypical
examples are the ring of integers Ok of a number field K, or the ring Ok g of its
S-integers, for a suitable finite set .S of primes of Og.

Fiz such a base ring O = Ok g from now on, and assume that the polynomials
in (1) have coefficients in O.

If R is any O-algebra, the set of solutions of (1) with coordinates in R is denoted
X (R):

X(R) :={(x1,...,z,) € R" satisfying (1)} .
The functor R — X (R) from the category of O-algebras to the category of sets is
representable,

(2) X(R) =Homp(Ax,R), where Ax = Ol[z1,...,z5]/(f1,--s fm)-
In this way the system (1) determines the affine scheme X := Spec(Ax) over
Spec(0).

When the polynomials in (1) are homogeneous, it is customary to view X as
giving rise to a projective scheme over O. When R is a principal ideal domain, the
set X(R) is a subset of the set P,_1(R) of n-tuples (x1,...,2z,) € R™ satisfying
Rx1 + -+ Rx, = R, taken modulo the equivalence relation defined by

(1, @) ~ (@, .., m,)  if el — xja) =0, vV 1<4,5<n.
Specifically,
X(R) :={(z1,...,2n) € Pp_1(R) satistying (1)}.
In the projective setting, replacing the base ring O by its fraction field K, and X by
its generic fiber X x—a projective variety over K—does not change the Diophantine
problem. For instance, the natural map X (0) — X (K) is a bijection. So there

is no distinction between the study of integral and rational points on a scheme
whose generic fiber is a projective variety.

Here are some of the basic questions that can be asked about the behaviour of
X(0).

QUESTION 1. What is the cardinality of X(0)? Is it finite, or infinite?

QUESTION 2. If X(O) is finite, can its cardinality be bounded by a quantity
depending in a simple way on X and OF

QUESTION 3. Can X (O) be effectively determined?

The arithmetic complexity of a point P € X (O)—roughly speaking, the amount
of space that would be required to store the coordinates of P on a computer—is
measured by a (logarithmic) height function

h:X(0O)— R.
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The precise definitions and basic properties of heights are discussed elsewhere in
this volume. Let us just mention that for any real B > 0, the number N(X; B) of
P € X(O) with h(P) < B is finite, in any reasonable definition of h.

QUESTION 4. When X (O) is infinite, what can be said about the asymptotics
of the function N(X;B) as B — co?

A related question is concerned with the equidistribution properties of the points
in X(O) (ordered by increasing height), relative to some natural measure on X (R)
or X(C).

An algebraic curve over O is a scheme X (either affine or projective) of relative
dimension one over Spec(Q). If its generic fiber is smooth, the set X (C) (relative to
a chosen embedding of O into C, through which C becomes an O-algebra) is a one-
dimensional complex manifold. While a curve is often described by equations like
(1), it is to be viewed up to isomorphism, as an equivalence class of such equations
modulo suitable changes of variables. The main objects we will study are curves
X over Spec(O), and the behaviour of the sets X(R) as R ranges over different
O-algebras.

Remark. The term “integral points on elliptic curves” is often used (particularly by
number theorists) to refer to the integral solutions of an affine Weierstrass equation:

Ey:y?=a234ax+b
which describes an affine curve over the base ring Z[a,b]. This is an abuse of

terminology, since elliptic curves are always defined as projective varieties by passing
to the projective equation
E:y?z =23 + axz? + b3,

resulting in the addition of the “point at infinity” O := (0, 1,0) to Ey. This passage
is crucial. Note, for instance, that FE has the structure of an algebraic group, while
Ey does not. It should be kept in mind that the common usage “integral points on
E” refers to the integral points on the affine curve Eyg = E — {O}, which is not an
elliptic curve at all, and that, according to the definitions in standard usage, E(O)
is equal to F(K) because E is projective.

The fundamental trichotomy for curves

Suppose that the curve X is generically smooth, i.e., its generic fiber is a nonsingular
curve over K, so that X (C) has the structure of a smooth Riemann surface. The
set X (C) is (topologically and analytically) identified with

X(C)~S—{P,...,Ps},
where S is a compact Riemann surface (of genus g, say) and P,..., Ps are dis-

tinct points. The invariants g and s, which completely determine the topological
isomorphism class of X (C), can be packaged into the Euler characteristic

X(X)=2-2g—s.
The answers to Questions 1—4 above depend on the sign of x(X) in an essential

way.

I. Positive Euler characteristic. If x(X) > 0, then ¢ = 0 and s = 0 or 1.
Therefore X is isomorphic over K either to the projective line P; or the affine line
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Al. Forms of P; over K correspond to conics, for which one has the following basic
result.

THEOREM 5. Let X be a smooth conic over K. The following are equivalent.

(a) The curve X is isomorphic over K to Py.
(b) The set X(K) is nonempty.
(¢) The set X(K,) is nonempty, for all completions K, of K.

The equivalence between (a) and (b) follows from the Riemann—Roch theorem:
given a rational point co € X (K), there is a rational function with only a simple
pole at oco; such a function gives an isomorphism between X and P; over K. The
equivalence between (b) and (c) is the Hasse-Minkowski theorem, one of the most
basic instances of the so-called local-global principle which is discussed at greater
length elsewhere in this volume.

REMARK 6. The proof of the Hasse-Minkowski theorem, which relies on the
geometry of numbers, leads to an upper bound on the smallest height of a point
on X(K), and thus is effective. Attempts to generalise Theorem 5 to higher di-
mensional varieties have led to a rich theory which forms the basis for some of the
articles in this volume.

The case of positive Euler characteristic, for which the basic questions 1-—4 are
in some sense well-understood thanks to Theorem 5, will not be treated any further
in these notes.

II. Euler characteristic zero. There are two types of curve with Euler charac-
teristic zero:

e The affine case: ¢ =0 and s = 2.
e The projective case: g =1 and s = 0.

The prototypical example of the affine case is when
X =Py — {0,000} = Gyp,.

The set X(O) = O* is an abelian group under multiplication, and X is naturally
equipped with the structure of a commutative group scheme over . Something
similar happens in the projective case: since X is a curve of genus one, it is isomor-
phic over K either to an elliptic curve, if X (K) # (), or to a principal homogeneous
space over such a curve. For the following theorem, suppose that X (O) # 0, and
that X can be equipped with the structure of a group scheme over O.

THEOREM 7. The group X(O) is finitely generated.

In the affine case, Theorem 7 is essentially Dirichlet’s S-unit theorem, while in
the projective case it corresponds to the Mordell-Weil Theorem that the group of
rational points on an elliptic curve over a number field is finitely generated.

III. Negative Euler characteristic. The theory of curves with negative Euler
characteristic is dominated by the following basic finiteness result.

THEOREM 8. If x(X) < 0, then X(O) is finite.
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In the affine case this is a theorem of Siegel proved in 1929. In the interesting
special case where X =Py — {0, 1, 00}, the points in X (O) correspond to solutions
of the so-called S-unit equation

ut+v=1 withu,veO*.

In the projective case Theorem 8 used to be known as the Mordell Conjecture.
Its proof by Faltings in 1983 represents a significant achievement in the Diophantine
theory of curves.

We now describe the contents of these notes.

Section 1 recalls some preliminary results that are used heavily in later sec-
tions: the main finiteness results of algebraic number theory, and the method of
descent based on unramified coverings and the Chevalley—Weil theorem. Hugo
Chapdelaine’s article [Chaa] in these proceedings further develops these themes by
describing a relatively elementary application of Faltings’ theorem to a Diophan-
tine equation—the generalised Fermat equation xP + y? + 2" = 0—that appears to
fall somewhat beyond the scope of the study of algebraic curves, but to which, it
turns out, the “fundamental trichotomy” described in this introduction can still be
applied.

The main goal of Section 2 is to give a survey of Faltings’ proof of the Mordell
Conjecture. In many ways, this section forms the heart of these notes. The ideas in
Section 2 are used to motivate the startlingly diverse array of techniques that arise
in the Diophantine study of curves. These techniques are deployed in subsequent
sections to study several important and illustrative classes of algebraic curves—
specifically, modular curves, Fermat curves, and elliptic curves.

Section 3 focuses on what may appear at first glance to be a rather special
collection of algebraic curves, the so-called modular curves over Q classifying iso-
morphism classes of elliptic curves with extra level structure. Singling out modular
curves for careful study can be justified on (at least) two grounds.

(1) They are the simplest examples of moduli spaces. Classifying the rational
points on modular curves translates into “uniform boundedness” state-
ments for the size of torsion subgroups of elliptic curves over Q, and
therefore leads to nontrivial results concerning rational points on curves
of genus one.

(2) Modular curves are also the simplest examples of Shimura varieties, and
their Jacobians and f-adic cohomology are closely tied to spaces of mod-
ular forms. (It is from this connection that they derive their name.) This
makes it feasible to address finer questions about the rational points on
modular curves, following a line of attack that was initiated by Mazur
[Maz77] in his landmark paper on the Eisenstein ideal.

Section 3 attempts to convey some of the flavour of Mazur’s approach by describing
a simple but illustrative special case of his general results: namely, his proof of
the conjecture, originally due to Ogg, that the size of the torsion subgroup of
elliptic curves over Q is uniformly bounded, by 14. The approach we describe
incorporates an important strengthening due to Merel exploiting progress on the
Birch and Swinnerton-Dyer conjecture that grew out of later work of Gross—Zagier
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and Kolyvagin—Logachev. Marusia Rebolledo’s article [Reb] in these proceedings
takes this development one step further by describing Merel’s proof of the strong
uniform boundedness conjecture over number fields: given d > 1, the modular curves
Y1 (p) contain no points of degree d when p is large enough (relative to d).

Section 4 describes the approach initiated by Frey, Serre, and Ribet for reducing
Fermat’s Last Theorem to deep questions about the relationship between elliptic
curves and modular forms. This subject is only lightly touched upon in these
notes. Pierre Charollois’s article in this volume [Chab] describes a technique of
Halberstadt and Kraus that strengthens the “modular approach” to prove a result
on the generalised Fermat equation axP + by? 4 cz? = 0 that is notable for its
generality. This result also suggests that it might be profitable to view the modular
approach as part of a general method, rather than just a serendipitous “trick” for
proving Fermat’s Last Theorem.

Section 5 gives a rapid summary of the author’s second week of lectures at the
Gottingen summer school, devoted largely to curves of genus 1, particularly elliptic
curves. This section is less detailed than the others, partly because it covers topics
that have already been treated elsewhere, notably in [Dar04]. The main topics
that are touched upon (albeit briefly) in Section 5 are:

(1) The collection of Heegner points on a modular elliptic curve, and Kolyva-
gin’s use of them to prove essentially all of the Birch and Swinnerton-Dyer
conjecture for elliptic curves with analytic rank < 1. Kolyvagin’s tech-
niques also supply a crucial ingredient in Merel’s proof of the uniform
boundedness conjecture, further justifying its inclusion as a topic in the
present notes. The article by Samit Dasgupta and John Voight [DV] in
these proceedings describes an application of the theory of Heegner points
to Sylvester’s conjecture on the primes that can be expressed as a sum of
two rational cubes.

(2) Variants of the modular parametrisation which can be used to produce
more general systems of algebraic points on elliptic curves over Q. Such
systems are likely to continue to play an important role in further progress
on the Birch and Swinnerton-Dyer conjecture. A key example is the fact
that many elliptic curves defined over totally real fields are expected to
occur as factors of the Jacobians of Shimura curves attached to certain
quaternion algebras. The articles by John Voight [Voi] and Matthew
Greenberg [Greb] in these proceedings discuss the problem of calculat-
ing with Shimura curves and their associated parametrisations from two
different angles: from the point of view of producing explicit equations
in [Voi|, and relying on the Cherednik—Drinfeld p-adic uniformisation in
[Greb].

(3) The theory of Stark—Heegner points, which is meant to generalise classical
Heegner points. Matthew Greenberg’s second article [Grea] in these pro-
ceedings discusses Stark—Heegner points attached to elliptic curves over
imaginary quadratic fields. Proving the existence and basic algebraicity
properties of the points that Greenberg describes how to calculate numer-
ically would lead to significant progress on the Birch and Swinnerton-Dyer
conjecture—at present, there is no elliptic curve that is “genuinely” de-
fined over a quadratic imaginary field for which this conjecture is proved
in even its weakest form.
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1. Preliminaries

1.1. Zero-dimensional varieties. In order to get a good understanding of
algebraic varieties of dimension d + 1, it is useful to understand the totality of
algebraic varieties of dimension d. Such a principle is hardly surprising, since a
(d + 1)-dimensional variety can be expressed as a family of d-dimensional vari-
eties, parametrized by a one-dimensional base. Any discussion of the Diophantine
properties of curves must therefore necessarily begin with a mention of the zero-
dimensional case.

A zero-dimensional variety (of finite type) over a field K is an affine scheme
of the form X = Spec(R), where R is a finite-dimensional commutative K-algebra
without nilpotent elements. Let

n = #X(K) = #Hom(R, K) = dimg (R),

where K denotes as usual an algebraic closure of the field K. Finding the rational
points on X amounts to solving a degree n polynomial in one variable over K.

An integral model of X over O is an affine scheme of the form Spec(Rp), where
Ro C R is an O-algebra satisfying Rop ®o K = R. Such a model is said to be
smooth if Ro is finitely generated as an O-module and Rp/p is a ring without
nilpotent elements for all p € Spec(Q). The reader can check that X has a smooth
model over Spec(0O) if and only if R =[], L; is a product of field extensions L;/K
which are unramified outside of S.

It is of interest to consider the collection of zero-dimensional varieties of fixed
cardinality n which possess a smooth model over Spec(Q). The following classical
finiteness result is extremely useful in the study of curves.

THEOREM 1.1 (Hermite-Minkowski). Given n and O = Ok g, there are finitely
many isomorphism classes of varieties of cardinality n over K which possess a
smooth model over Spec(O). Equivalently, there are finitely many field extensions
of K of degree at most n which are unramified outside of S.

The proof is explained, for example, in [Szp85], p. 91. In the simplest special
case where K = Q and S = (), we mention the following more precise statement:

THEOREM 1.2 (Minkowski). Any zero—dimensional variety over Q which has
a smooth model over Spec(Z) is isomorphic to Spec(Q™) for some n > 1. Equiva-
lently, there are no nontrivial everywhere unramified field extensions of Q.

1.2. Etale morphisms and the Chevalley—Weil theorem. If 7: X — Y
is a nonconstant, finite morphism of projective curves defined over K (or of affine
curves over O = Ok g), then 7 induces finite-to-one maps 7 : X(K) — Y(K)
and 1o : X(O) — Y(0O). In particular, if Y (K) is finite, then so is X (K). This
simple principle reduces the study of rational points on a curve X to the often
simpler study of points on the image curve Y. (For instance, the genus of Y is less
than or equal to the genus of X, by the Riemann—Hurwitz formula.) As a historical
illustration, Fermat proved that the equation x* + y* = 2% (which corresponds to
a projective curve of genus 3 over Q) has no nontrivial rational points by studying
the integer solutions of the auxiliary equation z* + y* = 22 which are primitive in
the sense of [Chaa]. These primitive solutions correspond to rational points on a
curve of genus one (in line with the principles explained in [Chaa]), and Fermat
was able to dispose of these rational points by his method of descent.
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In contrast, the finiteness of X (K) does not imply the finiteness of Y (K) in
general, because the maps 7w or m» need not be surjective, and in fact are usually
far from being so. The following weakening of the notion of surjectivity is frequently
useful in practice.

DEFINITION 1.3. The map 7 : X — Y of curves over Spec(Ok s) is said to
be almost surjective if there is a finite extension L of K and a finite set 1" of primes
of L containing the primes above those in S, such that Y (O, g) is contained in the
image of 7o, .-

DEFINITION 1.4. A morphism 7 : X — Y of curves over Spec(Of,s) is said
to be generically étale if it satisfies any of the following equivalent conditions:
(a) The induced map n¢ : X(C) — Y(C) is an unramified covering of
Riemann surfaces;
(b) The map nx : Xx — Yk is an étale morphism of K-varieties on the
generic fibers;
(c) There exists a finite set S” O S of primes of K such that the map 7o, , :
X0y o = Yo, , is a finite étale morphism of schemes over Spec(Ok,s7).

The following result, known as the Chevalley—Weil theorem, gives a criterion
for a map 7 to be almost surjective.

THEOREM 1.5 (Chevalley-Weil). If the morphism 7 is generically étale, then
it is almost surjective.

PROOF. Suppose that 7 is generically étale. By Property (c) in the definition,
we may suitably enlarge S so that the map 7 becomes étale over Spec(Ok,s). If
P belongs to Y (O) = Hom(Spec(0),Y), let P*(X) = 7~ 1(P) denote the fiber of
7 above P. This fiber can be described as a scheme over Spec(Q) by viewing P as
a morphism Spec(Q) — Y, and 7~ !(P) as the scheme-theoretic pullback of 7 to
Spec(O) via P, for which the following diagram is cartesian

P(X) — X
1 1
Spec(O) 2oy

Note that 7=1(P) is a zero-dimensional scheme over Spec(Q) of cardinality n =
deg(m), which is smooth because 7 is étale. By the Hermite—Minkowski theorem
(Theorem 1.1) there are finitely many possibilities for 771(P), as P ranges over
Y (O). Hence the compositum L of their fraction fields is a finite extension of K.
Let T denote the set of primes of L above those in S. Then, by construction, Y (O)
is contained in (X (O r)). It follows that 7 is almost surjective. O

EXaAMPLE 1.6. The Klein and Fermat curves. The quartic curve
(3) Y:ady+yPz+282=0
studied by Felix Klein is a curve of genus 3 having an automorphism group G =
PSLy(F7) of order 168. By the Hurwitz bound, this is the largest number of
automorphisms a curve of genus 3 may have. (A curve with this property is in fact
unique up to Q-isomorphism.) The curve Y is also a model for the modular curve

X (7). (Cf. Section 4.1 for a brief discussion of X(n).) The automorphism group
PSLy(7) arises from the transformations that preserve the fibers of the natural
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projection of Y(7) onto the j-line. In [Hur08], Hurwitz proved that Y has no
nontrivial rational points, as follows: let (z,y,z) be a point on the Klein quartic
with integer coordinates, satisfying ged(z,y,2) = 1. Although z, y and z have no
common factor, they need not be pairwise coprime; setting

u=ged(z,y), v=gedy,z), w=ged(z, z),

one sees (after changing the signs of u, v, and/or w if necessary) that

(4) (z,y,2) = (vw, v3u, wv) =: 7(u,v,w).

Substituting back into the original equation (3) and dividing by u3v3w3
that (u,v,w) is a rational point on the Fermat curve of degree 7:

, one finds

X:u +v"+w" =0.

Through this argument, Hurwitz showed that the map 7 : X — Y given by (4), a
generically étale map of degree 7, is almost surjective (in fact, surjective) on rational
points. This is a simple special case of Theorem 1.5. Hurwitz then applied Lamé’s
result for the Fermat equation of degree 7 to conclude that the Klein quartic has
no integer solutions except the trivial ones.

Note that this example gives a nontrivial Diophantine relation between mod-
ular curves and Fermat curves. More sophisticated connections between these two
classes of curves are discussed in Section 4.

ExAMPLE 1.7. Algebraic groups. Recall that O is the ring of S-integers of
a number field K. Let G be any commutative group scheme of finite type over
Spec(O). Then for any integer n > 1, the morphism [n] given by g — g™ is generi-
cally étale (more precisely, étale over Spec(O[1/n])). Therefore, the Chevalley-Weil
theorem implies that there is a finite extension L of K for which G(O)/nG(QO) maps
to the kernel of the natural map G(K)/nG(K) — G(L)/nG(L). A standard con-
struction shows that this kernel injects into the finite group H'(Gal(L/K), G[n](L)),
where G[n|(L) is the finite group of n-torsion points on G(L). It follows that
G(0)/nG(0O) is finite. (When G = G,,,, this statement is a weak form of Dirich-
let’s S-unit theorem, while when G = A is an elliptic curve or an abelian variety,
it is the weak Mordell-Weil theorem asserting that A(K)/nA(K) is finite.)

ExAMPLE 1.8. It is not hard to exhibit a projective curve X of genus greater
than 1 equipped with a map 7 : X — P; which is unramified outside {0, 1, cc0}.
Examples include

(a) The Fermat curve z" + y"™ = 2™ with w(z,y, 2) = 2™ /2";
(b) The modular curves Xo(n) and X;(n) introduced in Section 3.1, with their
natural maps to the j-line.

One can use the map 7 to show that Theorem 8 for projective curves (Faltings’
Theorem) implies the case X =Py — {0, 1,00} over Spec(O) of Theorem 8 (Siegel’s
Theorem).

More generally, a celebrated theorem of Belyi asserts that any projective curve
X/K can be equipped with a morphism 7 : X — P; which is unramified outside
{0,1,00}. (See Hugo Chapdelaine’s article in these proceedings.) This fact has
been exploited by Elkies [E1k91] to prove that the abc conjecture implies Faltings’
theorem.
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Further topic: Hugo Chapdelaine’s article in these proceedings explains how the
discussion of unramified coverings and the Chevalley—Weil Theorem can be adapted
to treat the primitive solutions of the generalised Fermat equation zP +y14 2" = 0.
The reader who has mastered the ideas in Section 1 may skip directly to this article
if so inclined.

2. Faltings’ theorem

This section is devoted to explaining the main ideas in Faltings’ proof of the
Mordell Conjecture (Theorem 8 for projective curves over number fields).

THEOREM 2.1 (Faltings). Let X be a smooth projective curve of genus > 2
defined over a number field K. Then X (K) is finite.

The proof will be presented as a series of reductions.

2.1. Prelude: the Shafarevich problem. The first of these reductions, ex-
plained in Section 2.2, reduces Theorem 2.1 to a finiteness conjecture of Shafarevich.
The Shafarevich problem is concerned with the collection of all arithmetic objects
sharing certain common features and having “good reduction” over the ring O of
S-integers of a number field K, taken, of course, up to isomorphism over K. Some
key examples are:

(1) the set F4(O) of smooth zero-dimensional schemes over Spec(Q) of cardi-
nality d;
(2) the set M4(O) of smooth curves of genus g over Spec(O);
(3) the set A4(O) of abelian schemes of dimension g over Spec(O);
(4) the set Z,(O) of K-isogeny classes of abelian varieties of dimension g over
Spec(0).
The following question is known as the Shafarevich problem:

QUESTION 2.2. How large are the sets above? Are they finite?

One can also ask what happens for specific values of K and S, the most inter-
esting special case being O =Z (i.e., K = Q and S = ().
We now discuss these questions for the various cases listed above:
(1) The set F;4(O) corresponds to the set of étale K-algebras (i.e., products of
separable field extensions) of rank d over K which are unramified outside
S. The finiteness of F4(O) is just a restatement of the Hermite-Minkowski
Theorem (Theorem 1.1).
(2) The set Mo(O) consists of the set of smooth conics over K which have
good reduction outside of S. It admits a cohomological interpretation, via
the exact sequence

0 — Mo(0) — H*(K, £1) — @D H*(K,, £1).
vgS
The fundamental results of local and global class field theory imply that
My (0) is finite, and in fact, its order can be evaluated precisely:

#Mo(0) = 275771,

where r is the number of real places of K. In particular, when K = Q
and S = (), then My(Z) consists of one element, corresponding to the
projective line IP; over Q.
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(3) The set M;(O) can be infinite; in fact, an infinite set of curves of genus
1 which are all isomorphic over K and have good reduction outside of S
can sometimes be found, even if S consists of just one prime of K. (See
[Maz86], p. 241.) On the other hand, a deep conjecture of Shafarevich
and Tate implies that M;(O) is finite if S is empty. Also, if one replaces
M by the set £ of K-isomorphism classes of elliptic curves, i.e., curves
of genus 1 equipped with a K-rational point, then Shafarevich [Saf63]
showed that £(0O) is always finite.

When g > 1, the following conjecture of Shafarevich can be viewed as a one-
dimensional analogue of the Hermite—-Minkowski theorem (Theorem 1.1):

CONJECTURE 2.3. Let g > 2 be an integer, and let O be the ring of S-integers
of a number field K, for a finite set S of primes of K.

(a) (Shafarevich conjecture for curves). The set My(O) is finite, i.e., there
are only finitely many K -isomorphism classes of curves of genus g defined
over K and having good reduction outside of S.

(b) (Shafarevich conjecture for abelian varieties). The set Aqy(O) is finite,
i.e., there are only finitely many isomorphism classes of abelian varieties
of dimension g defined over K and having good reduction outside of S.

(c) (Shafarevich conjecture for isogeny classes). The set I,(O) is finite, i.e.,
there are only finitely many K -isogeny classes of abelian varieties of di-
mension g with good reduction outside of S.

REMARK 2.4. Tt is a deep theorem of Fontaine [Fon85] that the sets A(Z) and
My(Z) are empty for g > 2, i.e., there are no abelian varieties, or smooth curves of
genus > 2, over Spec(Z).

2.2. First reduction: the Kodaira—Parshin trick. In [Par68|, Parshin
showed that part (a) of Conjecture 2.3 implies Theorem 2.1.

THEOREM 2.5. (Kodaira—Parshin). The Shafarevich conjecture for curves im-
plies Mordell’s conjecture.

SKETCH OF PROOF. Let X be a curve of genus g > 1 defined over a number
field K. To each point P € X(K) one associates a curve Xp and a covering map
¢p : Xp — X with the following properties:

(1) The curve Xp and the map ¢p can be defined over a finite extension K’
of K which does not depend on P.

(2) The genus ¢’ of Xp (and the degree of ¢p) is fixed and in particular does
not depend on P.

(3) The map ¢p is ramified only over the point P.

(4) The curve Xp has good reduction outside a finite set of primes S” of K’
which does not depend on P.

For a description of this assignment, see [Maz86], p. 243-244, [FWG192], p. 191-
197, or [Par68]. The reader should note that one has some leeway in constructing
it, and that different versions appear in the literature.

We will describe one approach here, which consists in considering the embed-
ding X — J of X into its Jacobian that sends P to the origin of J, and letting
X be the pullback to X of the multiplication-by-2 map [2] : J — J. This map
induces an unramified covering 7 : X —» X of degree 229, and hence the genus
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of X can be calculated explicitly using the Riemann—Hurwitz formula. The fiber
7~ 1(P) can be written as

m~Y(P)=P+D,

where P corresponds to the identity element of .J, and hence belongs to X (K), and
D is an effective divisor of degree 229 —1 defined over K with support disjoint from
P. Let Jp be the generalised Jacobian attached to X and D: the group Jp(K)
is identified with the group of degree zero divisors on X with support outside D,
modulo the subgroup of principal divisors of the form div(f), as f ranges over the
functions satisfying f(Dy) = 1, for all degree zero divisors Dy supported on D.
The functor L — Jp(K)9% (where G, := Gal(L/L)) on finite extensions of K is
representable by the algebraic group over K denoted Jp, which is an extension of
J by a torus T over K of rank (229 — 2). In other words, there is a natural exact
sequence

1—T —Jp—J —1

of commutative algebraic groups over K.

One can embed X — D into Jp by sending a point @ to the equivalence class
of the divisor (Q) — (P). The multiplication-by-2 map [2] on .Jp induces a map
X9 — X — D, as summarised by the following diagram with Cartesian squares in
which the vertical maps are induced by multiplication by 2:

JD < XJOD

4 1
(5) Jgp +— X-D — J
\ \
X — J

The closure Xp of X% has the desired properties 1-4: it is defined over K, and
it follows directly from the Riemann—Hurwitz formula that its genus ¢’ does not
depend on P. Furthermore, the map X% — X — D is unramified, and hence
Xp — X is ramified only over the point P. Finally, if X is smooth over Spec(QO),
the curve Xp has a smooth model over O’ := O[1/2].

The assignment P — X p therefore gives rise to a well-defined map

Ry X(K) — My (O).

But this assignment is finite-to-one; for otherwise there would be a curve Y and
infinitely many (by property 3) distinct maps ¢p : Y — X. This would contradict
the following geometric finiteness result of De Franchis (cf. [Maz86], p. 227).

THEOREM 2.6. If X andY are curves over any field K, andY has genus g > 2,
then the set Mor k(X,Y) of K-morphisms from X toY is finite.

The Shafarevich conjecture for curves, which asserts the finiteness of My (O’),
therefore implies the finiteness of X (K'). This completes the proof of Theorem
2.5. (Il

REMARK 2.7. The reader will note that the proof of Theorem 2.5 breaks down
(as it should!) when g = 1, because the set Mor (Y, X) can be (and in fact,
frequently is) infinite when X has genus 1.
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2.3. Second reduction: passing to the Jacobian. The second step in the
proof of the Mordell conjecture consists in observing that the Shafarevich conjecture
for curves would follow from the corresponding statement for abelian varieties.

PROPOSITION 2.8. The Shafarevich conjecture for curves follows from the Sha-
farevich conjecture for abelian varieties.

To prove Proposition 2.8, one studies the map R which associates to a curve
X its Jacobian J. If X is smooth over Spec(Q), the same is true of J, and hence Ry
defines a map M,(0) — A4(O). Key to Proposition 2.8 is the following corollary
of Torelli’s theorem:

THEOREM 2.9. If g > 2, then the map Rs is finite-to-one.

Proor. Torelli’s theorem asserts that a curve X of genus > 2 can be recovered
by the data of its Jacobian J together with the principal polarisation associated
to the Riemann theta-divisor. But a given abelian variety can carry only finitely
many principal polarisations. (See [CS86] for a more detailed exposition of the
Torelli Theorem and surrounding concepts.) (]

2.4. Third reduction: passing to isogeny classes. The third, crucial and
more difficult reduction was carried out by Faltings himself.

THEOREM 2.10. (Faltings). The Shafarevich conjecture for abelian varieties
follows from the Shafarevich conjecture for isogeny classes.

As one would expect, the proof is based on showing that the natural map
R3 : Ay(O) — Z,(O) has finite fibers. This is a consequence of the following key
result:

THEOREM 2.11. (Faltings) There are finitely many isomorphism classes of
abelian varieties over K in a given K-isogeny class.

This result is the technical heart of Faltings’ proof, and rests on his theory of
heights on moduli spaces of abelian varieties. Things become somewhat simpler
if we assume that the abelian varieties in the isogeny class are semistable. This
can be assumed without loss of generality because of Grothendieck’s semistable
reduction theorem which asserts that every abelian variety becomes semistable
after a finite extension of the ground field (for instance, one over which the points
of order 3 become rational). For a finite extension K'/K, there are finitely many K-
isomorphism classes of abelian varieties that are K’-isomorphic to a given abelian
variety over K’, and hence the finiteness of the K-isogeny class follows from that
of any K’-isogeny class.

Faltings defines a height function (now called the Faltings height) of an abelian
variety. We will not dwell on the definition, but will content ourselves with stating
two of its main finiteness properties:

THEOREM 2.12. Let K be a number field and H be a positive constant. There
are finitely many isomorphism classes of g-dimensional abelian varieties over K
with height less than H.

The second finiteness property concerns the behaviour of the Faltings height on
a K-isogeny class. Given a prime ¢, the f-isogeny class of an abelian variety A is the
set of abelian varieties which are isogenous to A via an isogeny of /-power degree.
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More generally, if M is any finite set of rational primes, two abelian varieties are
said to be M-isogenous if they are related by a K-isogeny whose degree is a product
of primes in M.

THEOREM 2.13. If A is a semistable abelian variety over a number field K,
then:

(1) There exists a finite set M of rational primes, depending only on the
isogeny class of A, such that if A — B is a K-isogeny of degree not
divisible by the primes in M, then

h(A) = h(B).

(2) For any finite set S of rational primes, the Faltings height is bounded on
S-isogeny classes.

The proof of this theorem relies on deep results of Tate and Raynaud on group
schemes and p-divisible groups; cf. Theorems 2.4 and 2.6 of [Del85].

For more details on the proof of theorems 2.12 and 2.13 see the expositions
[CS86], [FWGT92], [Szp85]|, [Del85], or [ZP89]. Note that these two theorems

together imply:

PROPOSITION 2.14. Let A be a semistable abelian variety over K, and let M
be as in part 1 of Theorem 2.183.
(1) Up to K-isomorphism, there are finitely many abelian varieties that are
K -isogenous to A via an isogeny of degree not divisible by the primes in
M.
(2) Given any abelian variety B over K and any finite set S of rational

primes, there are finitely many abelian varieties in the S-isogeny class
of B.

Proof of Theorem 2.11: Let ¢ : A — B be a K-isogeny. We can write ¢ as a
composition of isogenies
AL By 2 By,

where ¢ is of degree not divisible by the primes in M, and ¢; is an M-isogeny. By
part 1 of Proposition 2.14, there are finitely many possibilities for ¢ and for By.
By part 2 of this proposition, for each By there are finitely many possibilities for
Bi. Theorem 2.11 follows.

2.5. Fourth reduction: from isogeny classes to /-adic representations.
To an abelian variety A over K of dimension g and a prime ¢, one can associate
the ¢-adic Tate module and ¢-adic representations

Tp(A) = lim A["], Ve(A) == To(A) @ Qu,

where the inverse limit is taken with respect to the multiplication-by-¢ maps. The
Q. vector space V;(A) is 2g-dimensional and is equipped with a Qg-linear action
by two commuting Qg-algebras F and Il defined by

E=Endkg(A)®Q,, Mg :=Z/J[[Gk]] ® Qq.

Here Z,[[Gk]] denotes the profinite group ring hm Z, [Gal(L/K)], where the pro-
jective limit is taken over all finite Galois extensions L C K of K.
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If A and B are K-isogenous abelian varieties, they give rise to f-adic repre-
sentations that are isomorphic as IIx-modules. In other words, the assignment
A — Vy(A) yields a map

Isomorphism classes of
R, :Z,(0) — { 2g-dimensional ¢-adic
representations of ITx

The strategy will now consist in showing that R4 has finite fibers, and finally in
describing the image R, precisely enough to show that it is finite.

We begin by introducing some further notations and recalling some background.
Given a prime v of K, let I, C G, C Gk be the inertia and decomposition sub-
groups of Gk attached to v. Note that the groups G, and I, are only well-defined
up to conjugation in G, since they depend on a choice of a prime of K above
v. The quotient G, /I, is procyclic with a canonical generator Frob, called the
Frobenius element at v, which induces the automorphism = — =™V on the residue
field, where Nv denotes the norm of v (the cardinality of the associated residue
field).

If V' is any finite-dimensional Qg-vector space equipped with a continuous IT k-
action, we say that V is unramified at v if I, acts trivially on V. When this
happens, the Frobenius element Frob, € G, /I, gives an element of GL(V') which
is well-defined up to conjugation in this group.

The following theorem lists some of the basic properties of V;(A).

THEOREM 2.15. Let A be an abelian scheme over Spec(Ok,s). The £-adic
Galois representation Vy(A) satisfies the following properties:

(1) It is semisimple as a representation of E.

(2) It is unramified at allv ¢ S’ := S U {\|(}.

(3) (Rationality) If v ¢ S’, then the characteristic polynomial of Frob, has
rational integer coefficients. The complex roots of this polynomial have
absolute value Nv'/2.

(4) (Tate conjecture) The representation Vy(A) is semisimple as a represen-
tation of Ik .

Property (1) follows from the basic theory of duality for abelian varieties, and
properties (2) and (3) were shown by Weil (cf. [Weid8]). Property (4), a particular
case of the Tate conjecture, is one of Faltings’ important contributions. We now
explain how Faltings proved the semisimplicity of V;(A) over Ik, adapting an idea
used by Tate to prove the corresponding statement over finite fields.

LEMMA 2.16. For every Ik -invariant subspace W in Vy(A), there is an element
u € I/ such that

uVe(A) = W.
PROOF. The Z;-module W, = W N Ty(A) gives rise to a collection of groups
W, = Weo/{"W4 C A[€"] which are defined over K and compatible under the

natural maps A[(" 1] — A[("]. Let
ot A— A, = A/W,,

be the natural isogeny with kernel W,,, and let 3,, denote the isogeny characterised
by
anﬁn = €n7 Bnan ="
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Note that 8, (A,[¢"]) = W,, by construction, in light of the first identity above. By
Faltings’ finiteness theorem 2.11, there exists an infinite set I = {ng,n1,...} C Z>°
for which there exist isomorphisms

v; . Ano ~ Az
for all ¢ € I. Now define a sequence of K-endomorphisms of A by the rule
U = 6i1/i04n0~

Since Endg (A) ® Z, is compact in the f-adic topology, the sequence (u;) has a
convergent subsequence (u;);cs in this topology. Let u denote the limit of such
a subsequence. After eventually refining J further, we can assume that for each
1 € J, we have natural maps

w(A[l]) = wi(A[Y]) — Bi(All']) = W;
with kernel and cokernel bounded independently of i, because they arise from a,,.
It follows that
u(Ve(A)) =W,

as was to be shown. ]
COROLLARY 2.17. The representation Vy(A) is a semisimple Il -module.

PRrROOF. Let W be a Ilk-stable subspace of V;(A), and let u € E be an element
constructed in Lemma 2.16, satistying u(V;(A)) = W. Consider the right ideal uF
in the algebra E. Because F is semisimple, this ideal is generated by an idempotent
ug. Note that ug(Vz(A)) = W. The subspace ker(ug) is therefore a IIx-stable
complement of W in Vp(A). Hence V;(A) is semisimple over IIk. O

In conclusion, let Repg(Gk,2g) be the set of isomorphism classes of rational
semisimple f-adic representations of G i of dimension 2¢g which are unramified out-
side of S. We have shown that R4 maps Z,(O) to Repg(Gk,2¢g). To complete the
proof of the Mordell conjecture, it remains to show:

(1) The map Ry is finite-to-one.
(2) The set Repg(Gk,2g) is finite.

We will prove the first in the next section, and the second in Section 2.7.

2.6. The isogeny conjecture. The proof of the following deep conjecture of
Tate is a cornerstone of Faltings’ strategy for proving the Mordell conjecture.

THEOREM 2.18. (Isogeny conjecture). Let A and B be abelian varieties defined
over a number field K. If Vy(A) is isomorphic to Vy(B) as a i -module, then the
abelian varieties A and B are isogenous.

In other words, the map Ry is injective.
We first note that Theorem 2.18 can be reduced to the following statement,
known as the Tate conjecture for abelian varieties.

THEOREM 2.19. (Tate conjecture). Let A and B be abelian varieties defined
over K. Then the natural map

Hompg (A, B) ® Qy — Homyy, (Vz(A), Vi(B))

18 surjective.
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To see that Theorem 2.19 implies Theorem 2.18, let j : V;(A) ~ Vy(B) be a
IIx-equivariant isomorphism. By Theorem 2.19, this isomorphism comes from an
element u € Homg (A, B) ® Q. After multiplying « by some power of ¢, we can
assume that u belongs to Homg (A, B) ® Zy. Note that Homg (A, B) is dense in
Hompg (A, B) ® Zy. Any good enough f-adic approximation to u in Homg (A, B)
gives the desired K-isogeny between A and B. Theorem 2.18 follows.

We next observe that Theorem 2.19 can be reduced to the following special
case:

THEOREM 2.20. Let A be an abelian variety over K. The natural map
El’ldK(A) R Qp — EndnK (W(A))
18 surjective.

The fact that Theorem 2.20 implies Theorem 2.19 can be seen by applying
Theorem 2.20 to the abelian variety A x B, since

Endg (A x B) = Endg(A) @ Homg (A, B) ® Homg (B, A) @ Endg (B)
and likewise for End(Vz(A x B)) = End(Vz(A) x Vi(B)).

Proof of Theorem 2.20: Let ¢ be an element of Endy, (Vi(A)), and let
W = {(z,¢(x)) € Vi(A) x Vi(A)} C Ve(A x A)

be the graph of ¢. Note that W is IIx-stable. Hence there is an endomorphism
u € Endg(A x A) ® Qp = Ms(FE) associated to W by Lemma 2.16, satisfying
u(Vp(Ax A))=W.

Let E° = Endg(Vz(A)) denote the commutant of E in End(V,(A)). For any
a € E°, the matrix (§ 0) with entries in End(V;(A)) commutes with u € My(E) C
M5(End(Ve(A)). It follows that this matrix preserves W = image(u), and hence «
commutes with ¢. Since this argument is valid for any o € E°, the endomorphism
¢ belongs to the double commutant E° which is equal to E by the semisimplicity
of Vy(A) as a module over E.

2.7. The finiteness principle for rational ¢-adic representations. Now
that the map R4 has been shown to be injective, it remains to prove that the target
Reps(Gk,2g) is finite. The main theorem of this section is:

THEOREM 2.21. (Finiteness principle for rational semisimple (-adic represen-
tations). Let K be a number field and S a finite set of primes of K. Then there are
finitely many isomorphism classes of rational, semisimple (-adic representations of
Gx of dimension d which are unramified outside of S.

Remark. The reader will observe that this finiteness principle is close in spirit
to the Hermite-Minkowski theorem: it asserts that there are only finitely many
extensions of K (albeit, of infinite degree) of a certain special kind with bounded
ramification. The proof of Theorem 2.21 will in fact rely crucially on the Hermite—
Minkowski theorem, as well as on the Chebotarev density theorem.

We begin by establishing the following key lemma.

LEMMA 2.22. There exists a finite set T of primes of K (depending on S and
d) satisfying the following two properties:
(1) T is disjoint from Sy := S U {v|¢}.
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(2) Two representations pi, p2 € Repg(Gk,d) are isomorphic if and only if
trace(p1 (Frob,)) = trace(pz(Froby)),  for allv € T.

ProoF. Consider the set of all extensions of K of degree < 124 which are
unramified outside S;. By Theorem 1.1 (Hermite—-Minkowski), there are finitely
many such extensions, and hence their compositum L is a finite extension of K.
Let T = {v1,...vn} be a set of primes of K which are not in S and such that
the Frobenius conjugacy classes Frob,,, generate Gal(L/K). The existence of such
a finite set follows from the Chebotarev density theorem. We claim that this set
T satisfies the conclusion of Lemma 2.22. Given pq, p2 € Repg(Gk,d), a choice of
G k-stable Zy-lattices in the underlying representation spaces makes it possible to
view each p; as a homomorphism from Z[[G k]| to My(Zy). Let

J=p1©p2: Z[Gk]] — Ma(Ze) x Ma(Zy),
and let M denote the image of j. The induced homomorphism
j : GK — (]\4/&7\4)><

factors through Gal(L/K), since the cardinality of M /¢M is at most 2 and j is
unramified outside of Sy. It follows that the elements

j(Froby, ), ..., j(Frob,, )
generate M /¢M. By Nakayama’s lemma, the elements
j(Froby,), ..., j(Frob,,)

generate M as a Zg-module.
In particular, if

trace(p1 (Frob,,;)) = trace(pz2(Frob,,)), forj=1,...,N,
then
M - A C Md(Zg) X Md(Zg),
where A = {(A, B) such that trace(A4) = trace(B)}. Therefore one has

trace(p1(0)) = trace(pa(o)) for all o € Ilk.

Hence p; and po have the same traces. Since they are semisimple, it follows that
they are isomorphic as Il -representations. O

Proof of Theorem 2.21. Let T = {v1,...,un} be as in the statement of Lemma
2.22. The assignment

p— (Tr (p(Froby,)), ..., Tr (p(Frob,, )))

is injective on Repg(Gk,d), and can only assume finitely many values, by the
rationality of p. (More precisely, each Tr (Frob,,) is a rational integer of absolute

value < dNvY/ 2.) Theorem 2.21 follows.

%
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2.8. A summary of Faltings’ proof. Faltings’ proof of Mordell’s conjecture
is based on a sequence of maps (here X is a curve of genus g defined over K and
having good reduction outside of the finite set S of primes of K):

K-rational RN Curves of genus ¢’ over K’
points on X with good reduction outside S’

n Isomorphism classes of semistable
== abelian varieties of dimension ¢’
with good reduction outside S’

Isogeny classes of abelian varieties
of dimension ¢’
with good reduction outside S’

RiCN

Ry Rational semisimple ¢-adic representations
of dimension 2¢’ unramified outside S,

(1) The map R; is given by Parshin’s construction, and is finite-to-one, by
the geometric theorem of De Franchis.

(2) The map Rs is defined by passing to the Jacobian of a curve, and is
finite-to-one by Torelli’s theorem.

(3) The map Rj3 is the obvious one, and is finite-to-one, by Faltings’ funda-
mental Theorem 2.11 on finiteness of abelian varieties in a given isogeny
class.

(4) The map R4 is defined by passing to the Tate module, and is one-to-
one, thanks to the Tate conjectures proved by Faltings. The proof of
the Tate conjectures is obtained by combining a strategy of Tate with the
finiteness Theorem 2.11. These ideas are also used to show that the Galois
representations arising in the image of R4 are semisimple.

(5) The last set in this sequence of maps is finite by the finiteness principle for
rational semisimple ¢-adic representations, which is itself a consequence
of the Chebotarev density theorem and the Hermite—-Minkowski theorem.

3. Modular curves and Mazur’s theorem

The first step in the proof of the Mordell conjecture (the Kodaira—Parshin
reduction) consists in transforming a question about rational points on a given curve
into the Shafarevich conjecture. This new Diophantine question is concerned with
the moduli space of curves themselves, to which an array of techniques (notably,
Jacobians, f-adic representations, etc.) can be applied. It is therefore apparent
that the extra structures afforded by moduli spaces are of great help in studying
the Diophantine questions that are associated to them. So it is natural to examine
more closely the simplest class of moduli spaces, which are also curves in their own
right: the modular curves classifying elliptic curves with extra level structure.

3.1. Modular curves. Let p be a prime > 5, and write Z for the ring Z[1/p].
The functor Y;(p) which to any Z-algebra R associates the set of R-isomorphism
classes of pairs (E, P) where E is an elliptic curve over Spec(R) and P is a point of
order p on Fp is representable by a smooth affine scheme over Spec(Z) of relative
dimension one, denoted Y7 (p).

The group (Z/pZ)* acts on Yi(p) by the rule ¢t - (E, P) := (E,tP), and the
quotient of Y7 (p) by this action is an affine scheme Yy (p) over Spec(Z) which is a
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coarse moduli scheme classifying pairs (F, C) consisting of an elliptic curve over R
and a cyclic subgroup scheme C' C F of order p defined over R.

These curves admit analytic descriptions as quotients of the Poincaré upper
half-plane

H={reC, Im(7) > 0}
by the action of the following discrete subgroups of SLo(Z):

{(Z Z) witha—1=¢c=d—-1=0 (modp)}7

To(p) = {(CC‘ Z) with ¢ =0 (modp)}.

For example, the curve Yy(1) is identified with Spec(Z[j]), and a birational (singu-
lar, even on the generic fiber) model for Yj(p) over Spec(Z) is given by

Spec(Z13, 41/ ®p (4, 5"));

where ®,(z,y) € Zlz,y] is the canonical modular polynomial of bidegree p + 1
satisfying ®,(j(7),j(pT)) =0, for all 7 € H.

A rational point on Y;(p) (resp. on Yy(p)) determines an elliptic curve over Q
with a Q-rational point of order p (resp. a rational subgroup of order p). The main
goal of this section is to explain the proof of the following theorem of Mazur.

L'1(p)

THEOREM 3.1. If p > 13, then Y1(p)(Q) = 0.

REMARK 3.2. Note that Theorem 3.1 can be viewed as a theorem about curves
in two different ways. Firstly, it asserts that the collection of modular curves Y;(p),
whose genera grow with p, have no rational points once p is large enough—a type of
statement that is similar in flavour to Fermat’s Last Theorem. Secondly, it leads to
the uniform boundedness of the size of the torsion subgroups E(Q)tors as E ranges
over all elliptic curves over Q, and is therefore also a theorem about curves of genus
one.

3.2. Mazur’s criterion. An important role is played in Mazur’s argument
by the compactification Xg(p) of the affine curve Yy(p). As a Riemann surface,
Xo(p)(C) is obtained by adjoining to Yy(p) a finite set of cusps which are in bijection
with the orbits of I'g(p) acting on P; (Q) by Mobius transformations. More precisely,
letting H* := H UP1(Q), we have

Xo(p)(C) = To(p)\H* = (Fo(p)\H) U{0, 00} = Yo(p)(C) U {0, 00}

The complex structure in a neighbourhood of oo is defined by letting ¢ = e2™7 be
a local parameter at co.

The equation for the universal elliptic curve in a formal punctured neighbour-
hood of oo is given by the Tate curve

Eg=Z[[q]*/d* :y* + ay = 2 + a(q)z + b(q)  over Z((q)),

where

(o) 1 (o)
a(q) = —52 os(n)q", -5 Z To5(n) + bos(n))q".
n=1 n=1
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(Recall that ox(n) =34, d*.) The discriminant of E, is equal to

A(E,) =q [0 =M,
n>1
and therefore E, defines an elliptic curve over Z((g)).

The important g-expansion principle asserts that the parameter ¢ is also a
local parameter for the scheme Xy(p)z in a neighborhood of co. Thanks to the
g-expansion principle, the completion of the local ring of Xy(p)z at oo is identified
with the power series ring Z[[¢]]:

@Xo(p),oo = Z|[q])-

A basic technique in Mazur’s proof is to study the behaviour of certain maps on
modular curves, via their behaviour in a formal neighbourhood of co. The following
definition will be useful.

DEFINITION 3.3. A morphism j : X — Y of schemes over Z is a formal
immersion at © € X (Z) if the induced map on completed local rings

j* : OY,j(x) — OX,a:
is surjective.

Let Jo(p) denote the Jacobian of Xo(p). It is an abelian variety over Z and is
equipped with an embedding

@ : Xo(p) — Jo(p)

defined by letting ®(z) be the class of the degree zero divisor (z) — (00).

If Jy(p) is any quotient of Jy(p), let js : Xo(p) — J¢(p) be the map obtained
by composing ® with the projection to Ji(p). The following criterion of Mazur for
Y1(p)(Q) = 0 is the main result of this section.

THEOREM 3.4. Assume that p > 7. Suppose that there is an abelian variety
quotient Jy(p) of Jo(p) satisfying the following conditions:
(a) The map jy : Xo(p) — J4(p) is a formal immersion at co.
(b) Ji(p)(Q) is finite.
Then Yi1(p)(Q) = 0.

SKETCH OF PROOF. Let Z be a point in Y;(p)(Q) corresponding to the pair
(E, P), where E is an elliptic curve over Q and P € E(Q) is of order p. Let £ be
the minimal Weierstrass model of E over Z.

The proof is divided into four steps.

Step 1. If E has potentially good reduction at the prime 3, then the special fiber &,
is either an elliptic curve, or an extension of a finite group of connected components
of cardinality 223" by the additive group G, /Fy- Such a group cannot contain a
point of order p > 7, by the Hasse bound. Hence E has potentially multiplicative
reduction at 3.

Step 2. Let € Xo(p)(Q) be the image of Z under the natural map: it corresponds
to the pair (E, (P)) consisting of the curve E and the cyclic subgroup generated
by P. By Step 1, the point = reduces to one of the cusps 0 or co of Xy(p) modulo
3. It can be assumed without loss of generality that x reduces to oo, by replacing
(E,(P)) by (E/{P), E[p]/(P)) otherwise.
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Step 3. Consider the element js(x) € Jy(p)(Q). By step 2 this element belongs to
the formal group Jﬁ1 (p)(Q3), which is torsion-free because Qg is absolutely unram-
ified. It also belongs to Jy(p)(Q), which is torsion by assumption. It follows that
ju (33) =0.

Step 4. We now use the fact that jj is a formal immersion to deduce that x = oo.
To see this, let Spec(R) be an affine neighborhood of co containing . The point x
gives rise to a ring homomorphism « : R — Zg3, which factors through the local
ring @Xo(p),oo = Z[[q]], so that = can be viewed as a map Z|[[g]] — Z3. By step 3,
we have
T o ji = 000 ji.

It follows that z = oo, since j; was assumed to be surjective, contradicting the
initial assumption that x belongs to Yy(p). O

Magzur’s criterion reduces Theorem 3.1 to the problem of exhibiting a quotient
Js(p) of Jo(p) satisfying the conditions of Theorem 3.4.

3.3. The Jacobian Jy(p). The fact that makes it possible to analyse the
Jacobian Jy(p) precisely, and exhibit a nontrivial quotient of it with finite Mordell-
WEeil group, arises from two related ingredients.

(a) Hecke operators. If n is an integer that is not divisible by p, the modular
curve Xg(np) is equipped with two maps 1, 73 to Xo(p), defined by

m(E,C) = (E,Cpl),  ma(E,C) = (E/Cn],C/Cln]).

The pair (7, m) gives rise to an embedding of Xy(pn) in the product
Xo(p) x Xo(p). The image in this product, denoted T,,, is an algebraic
correspondence on Xo(p) defined over Q, which gives rise to an endomor-
phism of Jo(p) defined over Q. On the level of divisors, T), is described
by

(6) T.(E,.C)= ) (B0,
E—E'
where the sum is taken over the cyclic isogenies ¢ : E — E’ of degree
n, and C’ = ¢(C). Let T denote the subring of Endg(Jo(p)) generated
by the Hecke operators T),. It is finitely generated (as a ring, and even
as a module) over Z. Our basic approach to constructing Jy(p) is to use
the endomorphisms in T to decompose the abelian variety Jo(p) (up to
Q-isogeny) into smaller pieces which can then be analysed individually. If
R is any ring, let T denote the R-algebra T ® R.

(b) Modular forms. If R is any Z-algebra, let Sa(p, R) denote the space of
regular differentials on Xo(p)r. Restriction to the formal neighborhood
Spec(R[[q]]) of oo € Xo(p) gives rise to a map (called the g-expansion
map)

g-exp : Sa(p, R) — R][q]]dg.
When R = C, the space Sa2(p, C) is identified with the vector space of
homomorphic functions f : H — C for which
(1) the differential 2mif(7)dr is invariant under I'y(p), i.e.,

f <Z77'——J|52> = (er +d)*f(7), for all < (Cl Z ) € To(p).
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(ii) 2mif(7)dr extends to a holomorphic differential on the compactified
modular curve Xo(p). In particular, it admits a Fourier expansion of

the form
oo

§ 27rzn7'

so that g-exp(2mif(7)dr) = Zn:l anq %.
The action of the Hecke operators T, on Jy(p)r induces an action on the
cotangent space Sa(p, R), which can be described explicitly on the level of the
g-expansions. For example, if £ # p is prime,

(7) Tl( anq"” > Za q”/£+€Za q —

n=1
There is an extra Hecke operator T}, defined via an algebraic correspondence
Xo(p*) € Xo(p) x Xo(p)

which admits the following simpler formula for its action on g-expansions:

(8) T, < anq” ) Zan /v | =
n=1 q
pln

The definition of Ty for ¢ prime can then be extended to all integers n by the
multiplicativity relations implicit in the following identity of formal Dirichlet series:

(9) S Tt =1 =Tp ) [J(1 = Toe™ 4+ £172)7"

n>1 l#p

In other words,
Tmn = Tan if gcd(m, n) = ]., T[n+1 = angn — ngn—l.

PropoOsSITION 3.5. The algebra Tq is a commutative semisimple algebra of
dimension g := dimgq S2(p, Q) = genus(Xo(p)).

SKETCH. The fact that Tq is commutative follows from the explicit description
of the operators T, as correspondences given in (6) (or, if one prefers, from equation
(7) describing its effect on g-expansions). The semisimplicity arises from the fact
that the operators T, are self-adjoint with respect to the Hermitian pairing on
Sa(p, C) (Petersson scalar product) defined by

1
7/ w1 /\(1)2.
2i Jro(p)\u

(We mention in passing that in general, the operator Tp acting on S3(N, C) need
not be self-adjoint when ¢|N, but it is self-adjoint when restricted to the space of
so-called newforms. We are using implicitly the fact that Sa(p, C) is equal to its
subspace of newforms.) One computes the dimension of Tq by showing that the
bilinear pairing

(wl,w2> =

Tq x S2(p, Q) — Q, (T, f) :=a1(Tf)

is left and right nondegenerate, and in fact positive definite. The details are left to
the reader (who may also consult Section 2.2 of [Dar04] for more details). O
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As a consequence of Proposition 3.5 and its proof, one has the decomposition
Tq=K; x---x K;

of Tq into a product of totally real fields, with Z;ZI[KJ» : Q] = n. The factors K
are indexed by:

(a) The points ¢1,...,¢; of Spec(Tq), viewed as algebra homomorphisms
¢; : Tq — Q (taken modulo the natural action of Gq = Gal(Q/Q)).

(b) The distinct Gq-equivalences classes fi,..., f; of eigenforms for T, nor-
malised so that a1(fj) = 1. The g-expansions of these eigenforms are
described by

£i =Y 6;(T)q"
n=1
The quotient Ay attached to f is defined by letting

As = Jo(p)/Is, where Iy :=ker(T — Kjy).

With these notations, the main result of this section is the following FEichler-
Shimura decomposition, which asserts that Jy(p) is isogenous to a product of Q-
simple factors indexed by the (G g-orbits of) normalised eigenforms f; (j =1,...,¢t).

THEOREM 3.6. The abelian variety Jo(p) is Q-isogenous to the product

t
[T4s
=1

of Q-simple abelian varieties Ay,. The varieties Ay that occur in this decomposition
have the following properties:

(a) dim(Ay) = [Kf: QJ;
(b) The natural image of Tq in Endg(Ay) ® Q is isomorphic to K.

For more details on this decomposition see Chapter 2 of [Dar04].
Thanks to Theorem 3.6, we are reduced to the following question:

QUESTION 3.7. Find a criterion involving the normalised eigenform f for the
quotient Ay to have finite Mordell-Weil group.

3.4. The Birch and Swinnerton-Dyer conjecture. The key to bounding
the rank of A;(Q) (and showing that this rank is zero, for a sufficiently large
collection of normalised eigenforms f) lies in studying the so-called Hasse—Weil
L-series attached to Ay.

Let A be an abelian variety (of dimension d, say) defined over Q. The Hasse—
Weil L-series of A is most conveniently defined in terms of the ¢-adic representation
Ve(A) that was introduced in Section 2.5. If p # ¢ is a prime, the Frobenius
element acts naturally on on the space Vy(A)% of vectors in V;(A) that are fixed
under the action of the inertia group at p. (Recall that V,(A)» = V,(A) if A
has good reduction at p # £.) By the rationality of the representation V;(A), the
characteristic polynomial

has integer coefficients. Furthermore, it does not depend on the choice of ¢, and
can therefore be defined for all p. This makes it possible to define the Hasse—Weil
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L-series as a function of the complex variable s, by the infinite product

L(4,s) =] Ee) "

Using the rationality of the Galois representation V;(f) in the sense of Theorem
2.15, one can show that the infinite product defining L(A,s) converges uniformly
on compact subsets of {s € C|R(s) > 3/2}, and hence defines an analytic function
in this region.

Concerning the behaviour of L(A, s) and its connection to the arithmetic of A
over Q, there are the following two fundamental conjectures:

CONJECTURE 3.8. The L-series L(A,s) has an analytic continuation to the
entire complex plane and a functional equation of the form
A(A, s) = (21)"BT(s)IN*/2L(A,s) = £A(A,2 — s),
where N is the conductor of A.
In particular, if Conjecture 3.8 is true, the process of analytic continuation
gives meaning to the behaviour of L(A, s) in a neighborhood of the central critical
point s = 1 for the functional equation, and in particular, the order of vanishing of

L(A,s) at s =1 is defined. The Birch and Swinnerton-Dyer conjecture relates this
order of vanishing to the arithmetic of A over Q:

CONJECTURE 3.9. If A is an abelian variety over Q, then
rank(A(Q)) = ords=1(L(4, s)).
In particular, A(Q) is finite if L(A,1) # 0.
Both Conjectures 3.8 and 3.9 are far from being proved in general. But much

more is known when A = Ay occurs in the Eichler-Shimura decomposition of the
modular Jacobian Jy(N), as will be explained in the next section.

3.5. Hecke theory. A newform of level N is a normalised eigenform f =
Yot anq"% on I'o(N) whose associated sequence (an)n,n)=1 of Fourier coeffi-
cients is different from that of any eigenform g on I'o(d) with d|N and d # N.

To each newform f =3 ., anq"% € S3(N, C), one can associate an L-series

L(f,s):= i apn”°.
n=1

This L-series enjoys the following properties, which were established by Hecke:
(a) Euler product: It admits the Euler product factorisation given by
L(f,s)=[J(@—app +p" 72 QA = app™) ",
ptN pIN

as can be seen by applying ¢s to the formal identity (9) expressing the
Hecke operators T;, in terms of the operators T, for £ prime.

(b) Integral representation: The L-series L(f,s) can be represented as an
integral transform of the modular form f, by the formula:

(10) A(f,5) := (2m)T(s)N*/L(f.5) = N*/? /OOO fGitye~tt,
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where I'(s) = fooo e~'t*~1dt is the I'-function. In particular, because f
is of rapid decay at the cusps, this integral converges absolutely to an
analytic function of s € C.

(c¢) Functional equation: The involution w defined on So(N, C) by the rule

(1) w00 = 2t (57

commutes with the Hecke operators and hence preserves its associated
eigenspaces. It follows that for the eigenform f,

(12) w(f) =¢cf, wheree==+1.
The L-series L(f,s) satisfies the functional equation

(13) A(f,s) = =A(w(f),2 —s) = —eA(f,2 — s).

It is a direct calculation to derive this functional equation from the integral
representation of A(f,s).

For the next result, we view f as an element of S3(N, Kyf). (Recall that Ky
is the totally real field generated by the Fourier coefficients of f.) Any complex
embedding o : Ky — C yields an eigenform f° with complex coefficients, to which
the Hecke L-function L(f?,s) may be attached. The following result relates the
L-series of Hasse-Weil and of Hecke.

THEOREM 3.10. Let Ay be the abelian variety associated to the newform f €
S2(N, C) by the Eichler-Shimura construction. Then

LAz, s)= [ L(f.9).

O':Kf —C
In particular, Conjecture 3.8 holds for Ay.

The main ingredient in the proof of Theorem 3.10 is the Eichler—Shimura con-
gruence which relates the Hecke correspondence T, C X((N)? in characteristic p
to the graph of the Frobenius morphism and its transpose. For more details and
references see Chapter 2 of [Dar04].

Theorem 3.10 reveals that one has better control of the arithmetic of the abelian
varieties Ay—Conjecture 3.8 remains open for the general abelian variety A over
Q. In fact, one has the following strong evidence for Conjecture 3.9 for the abelian
varieties Aj.

THEOREM 3.11. If L(Ay,1) # 0, then A¢(Q) is finite.

The main ingredients that go into the proof of Theorem 3.11 are

(1) The theory of Heegner points on modular curves;

(2) The theorem of Gross—Zagier expressing the canonical heights of the im-
ages of these points in Ay in terms of special values of L-series closely
related to L(f, s);

(3) A theorem of Kolyvagin which relates the system of Heegner points and
the arithmetic of Ay over Q.

These ingredients will be discussed in somewhat more detail in Section 5 devoted
to elliptic curves and the Birch and Swinnerton-Dyer conjecture.
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3.6. The winding quotient. The criterion for the finiteness of A;(Q) sup-
plied by Theorem 3.11 allows us to construct a quotient Jy(p) which is in some
sense the “largest possible” quotient with finite Mordell-Weil group.

We construct Jy(p), following Merel, by letting ey be the vertical path from
0 to ico on H; its image in Xy(p) gives an element in the relative homology
H,(Xo(p)(C), Z; {cusps}). By a result of Manin—Drinfeld, the element ey gives
rise to an element e in the rational homology H := H;(X(p)(C), Q). This element
is referred to as the winding element.

The Hecke algebra T = Tq acts on H by functoriality of correspondences. Let
ey denote the image of e in H/I;H. The integral formula (10) for L(f,s) shows
that

er #0 if and only if L(f,1) # 0.

Hence it is natural to define
Je(p) :== Jo(p)/I., where I, := Annr(e).
THEOREM 3.12. The Mordell-Weil group J.(p)(Q) is finite.

PRrooOF. Up to isogeny, J(p) decomposes as

e 70 L(f.1)#0

Theorem 3.11 implies that Af(Q) is finite for all the f that appear in this decom-
position. The theorem follows. (Il

In order to exploit Mazur’s criterion with Jy(p) = Je(p), and thereby prove
Theorem 3.1, it remains to show that the natural map j. : Xo(p) — Je(p) is a
formal immersion at co. (So that in particular J.(p) is nontrivial, which is not
clear a priori from its definition!) This is done in the article of Marusia Rebolledo
in these proceedings (cf. Theorem 4 of Section 2.3 of [Reb]). Rebolledo’s article
goes significantly further by showing that the natural map from the d-th symmetric
power Xo(p)@ of Xo(p) sending (Pi, ..., Py) to the image in J;(p) of the divisor
class (Py) + - -+ (P;) — d(c0) is a formal immersion at (oo, ...,00), as soon as p is
sufficiently large relative to d.

REMARK 3.13. Our presentation of Mazur’s argument incorporates an im-
portant simplification due to Merel, which consists in working with the winding
quotient J.(p) whose finiteness is known thanks to Theorem 3.11. At the time
of Mazur’s original proof described in [Maz77], Theorems 3.11 and 3.12 were
not available, and Mazur’s approach worked with the so-called FEisenstein quo-
tient Jeis(p). This quotient contains a rational torsion subgroup of order n =
numerator(%), and one of the key results in [Maz77] is to establish the finite-
ness of Juis(Q) by an n-descent argument. In Merel’s approach, Mazur’s somewhat
delicate “Eisenstein descent” is in effect replaced by Kolyvagin’s descent based on

Heegner points and the theorem of Gross—Zagier.

3.7. More results and questions. By various refinements of the techniques
discussed above, Mazur was able to classify all possible rational torsion subgroups
of elliptic curves over Q and obtained the following results:
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THEOREM 3.14. Let T be the torsion subgroup of the Mordell-Weil group of an
elliptic curve E over Q. Then T is isomorphic to one of the following 15 groups:

Z/mZ for 1<m<10 orm =12,
Z/2mZ x Z/2Z  for 1<m<4.

For the proof, see [Maz77], p. 156. We note in passing that all possibilities for T
that are not ruled out by Mazur’s theorem do in fact occur infinitely often: the
associated modular curves are of genus 0 and have a rational point.

Mazur’s theorem implies that rational points of order p on elliptic curves cannot
occur for p > 7. One can ask similar questions for rational subgroups. In this
direction, Mazur proved the following result in [Maz78].

THEOREM 3.15. Suppose that there is an elliptic curve E over Q with a rational
subgroup of prime order p. Then p < 19 or p = 37,43,67, or 163.

The four exceptional values of p in Theorem 3.15 correspond to discriminants
of imaginary quadratic fields of class number one. The corresponding elliptic curves
with complex multiplication can be defined over Q and have a rational subgroup
of order p.

Theorem 3.15 implies that for large enough p, the Galois representation

PEp: GQ — Aut(E[p])

is always irreducible. One can also ask whether, for large enough p, this Galois
representation is in fact necessarily surjective. The existence of elliptic curves with
complex multiplication, for which pg , is never surjective when p > 3, precludes
an affirmative answer to this question. Discarding elliptic curves with complex
multiplication, the following conjecture (which appears in [Ser72], p. 299, §4.3,
phrased more prudently as an open question) can be proposed:

CONJECTURE 3.16. (Surjectivity conjecture) If E is an elliptic curve over Q
without complex multiplication, and p > 19 is prime, then the Galois representation
associated to E|p| is surjective.

The surjectivity conjecture remains open, more than 30 years after [MazT77].
The hypothetical cases that are the most difficult to dispose of are those where the
image of pg, is contained in the normalizer of a Cartan subgroup, particularly a
nonsplit Cartan subgroup.

It is also natural to search for analogues of Theorem 3.14 over number fields
other than Q; a remarkable breakthrough was achieved on this problem by S.
Kamienny and Merel around 1992 ([Kam92], [Mer96]).

THEOREM 3.17. Let K be a number field. Then the size of E(K )tors 18 bounded
by a constant B(K) which depends only on K. In fact, this constant can be made
to depend only on the degree of K over Q.

The proof of this theorem is explained in the article by Marusia Rebolledo
[Reb] in these proceedings.

We finish with a conjecture that can be viewed as a “mod p analogue” of
Theorem 2.18 (Tate’s isogeny conjecture).

CONJECTURE 3.18. There exists an integer M such that, for all p > M, any
two elliptic curves By and Es over Q are isogenous if and only if E1[p] =~ Es[p] as
Gq-modules.
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This conjecture appears to be difficult. It is not even clear what the best
value M might be, assuming it exists. (Calculations of Cremona [Cre] based on
his complete tables of elliptic curves over Q of conductor < 30,000 show that
necessarily M > 13.) We mention Conjecture 3.18 here because it implies strong
results about ternary Diophantine equations analogous to Fermat’s Last Theorem,
thanks to the methods explained in Section 4.

4. Fermat curves
The purpose of this section is to discuss the Fermat curves
Fp:x™+y"=2",

and the proof of Fermat’s Last Theorem, that these curves have no nontrivial
rational points when n > 3. Fermat’s Last Theorem has the same flavour as
Mazur’s Theorem 3.1, since it determines all of the rational points in a naturally
arising infinite collection of algebraic curves. Although Fermat curves are simpler to
write down as explicit equations, they do not admit a direct moduli interpretation,
and therefore turn out to be harder to analyse than modular curves. In fact, the
eventual solution of Fermat’s Last Theorem is based on an elaborate reduction of
the study of Fermat curves to Diophantine questions about modular curves. In
particular, Theorem 3.1—its statement, as well as some of the techniques used in
its proof—play an essential role in the proof of Fermat’s Last Theorem.

4.1. Motivation for the strategy. Hugo Chapdelaine’s article in these pro-
ceedings discusses the more general problem of classifying the primitive integer
solutions of the generalised Fermat equation

(14) P +yI+ 2" =0,

and sets up a “dictionary” relating

Strategies for studying Unramified coverings
primitive solutions of and of P; —{0,1, 00}
P +yl+2"=0 of signature (p, q,r)

The idea explained in [Chaa] is that, given an unramified covering
m: X — P —{0,1,00},

one can study (14) by
(1) Attempting to classify the possible fibers of 7 over the points in

p
Ypgr = {Z_T’ with a? +b? = ¢" and (a,b, ¢) primitive} Cc P1(Q).

Since the ramification in these fibers is bounded, there can only be finitely
many, by the Hermite—-Minkowski theorem. In particular, the compositum
of these extensions is a finite extension of Q, denoted L.

(2) Understanding the L-rational points on the curve X.

To apply these principles to the classical Fermat equation, one is led to consider
unramified coverings of P; — {0, 1, 00} of signature (p, p, p). Among such coverings,
one finds:



36 HENRI DARMON

(1) the Fermat curve F), : P 4+ y? = 2P itself, equipped with the natural
projection 7 : (z,y,2) — t = i—z of degree p?. For this m, it is clear that
7(Fp(Q)) D Xy p,p; but this merely leads to a tautological reformulation
of the original question.

(2) There are many coverings of signature (p, p, p) with solvable Galois groups,
and studying these leads to classical attempts to prove Fermat’s Last
Theorem by factoring z? 4+ y? over the p-th cyclotomic fields. This circle
of ideas led to many interesting questions on cyclotomic fields and their
class groups, but has proved unsuccessful (so far) in settling Fermat’s Last
Theorem.

A third type of covering is obtained from modular curves. These coverings, which
are nonsolvable, arise naturally in light of the strong results obtained in Section 3.

More precisely, let Y (n) be the open modular curve that classifies elliptic curves
with full level n structure, i.e., pairs

(E,t:Z/nZ X i, — Eln))

where ¢ is an identification which induces an isomorphism

2 2 2
N NZ/Z x ) = pn = N\(E0]) = pin-
Over the base Z = Z[1/2], the curve Y (2)z is identified with
Spec(Z[\, 1/A, 1/ — 1)) = (B, — {0,1,50})z,
where A is the parameter that occurs in the Legendre family
Ey:y? =z(z—1)(z - \).
The natural covering map 7 : Y (2p) — Y (2) is an unramified covering of signature

(p, p,p), with Galois group SLy(Z/pZ)/(£1). Given A = & ¢ % the fiber

P P.DP>
771(\) is contained in the field of definition of the field of p-division points of the

elliptic curve
(15) y* = x(x —1)(x — a?/cP).
In practice, it is more convenient to work with the closely related Frey curve,
Eope:y? =x(x —aP)(z —cP),
which differs from (15) by a quadratic twist, and replace the study of the fiber of
m at A with considerations involving the mod p Galois representation
Pape: Gq — Aut(Eqap.c[p]) ~ GL2(Z/pZ).

We normalise (a,b,c) so that a = 3 (mod 4) and ¢ is even. (This can always
be done, by permuting a, b and ¢ and changing their signs if necessary.) With this
normalisation, the minimal discriminant, conductor, and j-invariant associated to
Eqp,c are

28(b?P + aPcP)?
1 A = 278(abc)?P N = 14 = ————.
( 6) (a‘ C) ’ Zl_! ) J (abc)Zp

In particular, the elliptic curve Eq ;. is semistable: it has either good or (split or
nonsplit) multiplicative reduction at all primes. (The reader may wish to consult
Section 2 of the article by Pierre Charollois in this proceedings volume, which
discusses the local invariants of Frey curves in greater detail.)
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4.2. Galois representations associated to Frey curves. The following
theorem states the main local properties of the Galois representation pg p,c.

THEOREM 4.1. The representation p = pq.p.. has the following properties.

(a) It is unramified outside 2 and p;
(b) The restriction of p to a decomposition group Do at 2 is of the form

cyc R
pa,b,c|D2 = ( X 6 w ’L/)_l > )

where Xeye : Gq, — (Z/pZ)* is the mod p cyclotomic character, and v
is an unramified character of order 1 or 2.

(¢) The restriction of p to D,, comes from the Galois action on the points of
a finite flat group scheme over Zj.

PROOF. (a) Let £ # 2,p be a prime. The analysis of the restriction of p = pg p.c
to D, can be divided into three cases:

Case 1: The prime ¢ does not divide abc. In that case, it is a prime of good
reduction for E, ., and the action of Dy on E, p.[p] is therefore unramified, by
the criterion of Néron—-Ogg—Shafarevich.

Case 2: The prime £ divides abc. It is therefore a prime of multiplicative reduction
for Fgp.. Hence the curve E, 4., or a twist of it over the unramified quadratic
extension of Qy, is isomorphic to the Tate curve G,/ qZZ over Qg. More precisely,
replacing E, . by its twist if necessary, we have an identification which respects
the action of Gq, on both sides:

(17) E(Qe) =~ Q) /{a),
where ¢, € Q) is the f-adic Tate period, which is obtained by inverting the power
series with integer coefficients

1
j=—4+7444196884q + - - -
q

that expresses j in terms of ¢, to obtain a power series

q=Tate(1/j) =1/j+--- € (1/5)Z[[1/5]]*.
In particular, note that, by (16),
(18) orde(ge) = ordy(1/4) = ordg(A) =0 (mod p).

The explicit description of the Gq,-module E(Qy) given by (17) implies that
BE(Qu)lp] ~ {¢aq,"", 0<ab<p-1},

where (, is a primitive pth root of unity in QZX In the basis ((p, ql}/p) for E[p], the
restriction of p = pg b to D, can be written as

_ [ Xeye(o)¥(0) k(o)
(19) ploy = (XU K,
where Xcyc is the p-th cyclotomic character giving the action of D, on the p-th
roots of unity, and v is an unramified character of order at most 2 (which is trivial
precisely when F has split multiplicative reduction at ¢.) Furthermore, the cocycle
K is unramified, by (18): this is because the extension Q((p, ql}/p) through which
pa,b,c|GQZ factors is unramified. Part (a) of Theorem 4.1 follows.
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(b) When ¢ = 2, the elliptic curve E,p . has multiplicative reduction at 2, and
hence is identified with a Tate curve over Qz. The result then follows from (19)
with ¢ = 2.

(c) When ¢ = p does not divide abc, the Galois representation p, p . arises from the
p-torsion of an elliptic curve with good reduction at p, and hence from a finite flat
group scheme over Z,. In the case where plabc (which corresponds to what was
known classically as the second case of Fermat’s Last Theorem) one has a similar
conclusion: essentially, the condition ord,(¢g,) = 0 (mod p) limits the ramification
of papc at p and implies that E, ; .[p] extends to a finite flat group scheme over
Z,, in spite of the fact that E, ;. itself does not have a smooth model over Z,. U

The following theorem gives a global property of the representation pg p,c.
THEOREM 4.2 (Mazur). The Galois representation pgp. is irreducible.

PROOF. This follows (at least when p is large enough) from Theorem 3.15. We
will now give a self-contained proof which rests on the ideas developed in the proof
of Theorem 3.4.

Suppose that p, s ¢ is reducible. Then E = E, ;. has a rational subgroup C' of
order p, and the pair (E,C') gives rise to a rational point z on the modular curve
Xo(p). Let £ # p be an odd prime that divides abc. Then E has multiplicative
reduction at ¢. Therefore, the point x reduces to one of the cusps 0 or oo of
Xo(p) modulo ¢. It can be assumed without loss of generality that x reduces to
00, as in Step 2 of the proof of Theorem 3.4. Now recall the natural projection
D, : Jo(p) — Je(p) of Jo(p) to its winding quotient J.(p), and the resulting map
je : Xo(p) — Je(p). The element j.(z) belongs to the formal group J2(p)(Qq),
which is torsion-free, and to J.(p)(Q), which is torsion by Theorem 3.12. Hence
Je(x) = 0. We now use the fact that j, is a formal immersion to deduce that = oo,
as in Step 4 of the proof of Theorem 3.4 (with 3 replaced by £). O

REMARK 4.3. The importance of the Diophantine study of modular curves
described in Section 3 in the proof of Fermat’s Last Theorem, via Theorem 4.2,
cannot be overemphasised. It is sometimes underplayed in expositions of Fermat’s
Last Theorem, which tend to focus on the ingredients that were supplied later.

Thanks to Theorems 4.1 and 4.2, Fermat’s Last Theorem is now reduced to
the problem of “classifying” the irreducible two-dimensional mod p representations
satisfying the strong restrictions on ramification imposed by Theorem 4.1—or in
some sense, to make Theorem 1.1 precise for the class of extensions of Q arising
from such representations. The control we have over questions of this type (which
in general seem very hard) arises from the deep and largely conjectural connection
that is predicted to exist between Galois representations and modular forms.

4.3. Modular forms and Galois representations. Let f =) a,q¢" be a
newform in Sy(N, C). Let K denote as before the finite extension of Q generated
by the Fourier coefficients of f, so that f belongs to Sa(N,Ky). The Fourier
coefficients of f belong to the ring Oy of integers of K. Let p be a prime ideal of
Oy and let K, denote the completion of K at p.

THEOREM 4.4. There exists a Galois representation
prp: Gq — GLa(Kyy)
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such that

(1) The representation py, is unramified outside Np.

(2) The characteristic polynomial of py.,(Froby) is equal to x* — apx + ¢, for
all primes £ not dividing p.

(3) The representation py,, is odd, i.e., the image of complex conjugation has
etgenvalues 1 and —1.

SKETCH OF PROOF. Let A; be the abelian variety quotient of Jy(IN) associ-
ated to f by the Eichler—Shimura construction (Theorem 3.6). Its endomorphism
ring Endq(Ay) contains T/I¢, which is an order in K. In this way, the Galois
representation V,,(Ay) is equipped with an action of K ® Q, which commutes with
the action of Gq. Let

Vie =Vo(Af) @k, Ky p.
It is a two-dimensional Ky ,-vector space, equipped with a continuous linear action
of Gq. The fact that it has the desired properties, particularly property (2), is a
consequence of the FEichler—Shimura congruence that was used to prove the equality
of L-series given in Theorem 3.10. See Chapter 2 of [Dar04] for further details and
references. O

4.4. Serre’s conjecture. Modular forms can also be used to construct two-
dimensional representations of Gq over finite fields. More precisely, let Oy, be the
ring of integers of K. Since Gq is compact and acts continuously on Vy ,, it pre-
serves an Oy ,-stable sublattice Vﬁp C Vj of rank two over Oy, ,,. Let Fy := Oy, /p
be the residue field of Oy at p. The action of Gq on the two-dimensional IF,-vector
space Wy, 1= Vﬁp / pV}9’p gives rise to a two-dimensional mod p representation

prp : G — GLo(Fy).

Like its p-adic counterpart, this representation is unramified outside of pN and also
satisfies parts 2 and 3 of Theorem 4.4.
In [Ser87], Serre associated to any two-dimensional Galois representation

(20) p:Gq — GLy(F)

with coefficients in a finite field F two invariants N(p) and k(p), called the Serre
conductor and Serre weight of p, respectively. The Serre conductor N(p) is only
divisible by primes distinct from the characteristic of F at which p is ramified. When
p = py,p arises from a modular form, the Serre conductor N (p) always divides (but
is not necessarily equal to) the level N of f. In particular, using parts (a) and (b)
of Theorem 4.1, one can show that

(21) N(pmb,c) =2.

The recipe for defining k(p) is somewhat more involved, but depends only on
the restriction of p to the decomposition group (in fact, the inertia group) at p.
It will suffice, for the purposes of this survey, to note that when p arises from the
p-division points of a finite flat group scheme over Z,, then Serre’s recipe gives
k(p) = 2. Hence, by part (c) of Theorem 4.1,

(22) k(pa,b,c) =2.
In [Ser87], Serre conjectured that any odd irreducible two-dimensional mod p

Galois representation p as in (20) necessarily arises from an appropriate modular
form mod p of weight k(p) and level N(p). This conjecture has recently been proved



40 HENRI DARMON

by Khare and Wintenberger (cf. Theorem 1.2 of [KW]) in the case where N(pgp.c)
is odd, and follows in the general case from a similar method, using a result of Kisin
[Kis].

THEOREM 4.5. Let p be an odd, irreducible two-dimensional mod p representa-
tion of Gq. Then there exists an eigenform f of weight k(p) on I'y(N(p)), and a
prime p|p of the field Ky such that p is isomorphic to py, as a representation of
Gq.

Proof of Fermat’s Last Theorem. Let (a,b,c) be a primitive nontrivial solution of
Fermat’s equation a? 4 y? = 2P, and consider the Galois representation p = pg p ¢
associated to the p-division points of the associated Frey curve. It follows from
Theorem 4.2 that p is an odd, irreducible mod p representation of Gq. Its Serre
conductor and weight are N(p) = 2 and k(p) = 2 by (21) and (22). Therefore
Theorem 4.5 implies the existence of a nontrivial cusp form in S5(2, C). This leads
to a contradiction, because there are no such cusp forms: the modular curve X (2)
has genus zero and hence has no regular differentials. This contradiction implies
Fermat’s Last Theorem.

4.5. The Shimura—Taniyama conjecture. Historically, the proof of The-
orem 4.5 by Khare and Wintenberger came almost 10 years after Wiles proved
Fermat’s Last theorem. In essence, Wiles proved enough of Theorem 4.5 to cover
the Galois representations pgp . arising from hypothetical solutions of Fermat’s
equation.

More precisely, the articles [Wil95] and [TW95] proved the following result,
known as the Shimura-Taniyama conjecture for semistable elliptic curves:

THEOREM 4.6. Let E be a semistable elliptic curve over Q of conductor N.
Then there is a normalised eigenform f in Sa(N,Z) such that V,(E) is isomorphic
to Vp(Af)

The proof of this theorem—or even an outline of its main ideas—is beyond
the scope of this survey. For details the reader is invited to consult [DDT94] for
example.

Theorem 4.6 implies that p, p . arises from a modular form in Se(N, C), where
N = Haabc ¢. The Serre conjecture (Theorem 4.5) for p, .. then follows from an
earlier theorem of Ribet (which also played an important role in Wiles’ original
approach to proving Theorem Theorem 4.6.)

THEOREM 4.7. Suppose that p is odd. Let p be an irreducible mod p Galois
representation which arises from a modular form (of some weight and level). Then
it also arises from an eigenform of weight k(p) and level N(p).

Aside from the fact that it proves Fermat’s Last Theorem, the importance of
Theorem 4.6 can be justified on several other levels.

Firstly, the methods used to prove Theorem 4.6 were subsequently refined in
[BCDTO1] to prove the full Shimura—Taniyama conjecture: all elliptic curves over
Q are modular. This result is of great importance in understanding the arithmetic
of elliptic curves over Q, as will be explained in more detail in the next section.

Secondly—and this is a theme that we will not begin to do justice to, because
it falls outside the scope of this survey—Wiles’ method for proving Theorem 4.6
has led to a general, flexible method for establishing relationships between Galois
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representations and modular forms. It was by building on these techniques that
Khare and Wintenberger proved Serre’s conjecture (Theorem 4.5). Over the years,
many other conjectures of this type have been proved building on the proof of The-
orem 4.6: for instance, special cases of Artin’s conjecture relating representations
with finite image to modular forms of weight one (cf. for example [Tay03] and the
references contained therein), and a proof of the Sato—Tate conjecture for elliptic
curves over Q in [Tay], [HSBT], and [CHT)].

Closer to the themes that have been developed in this section, we mention a
natural generalisation of Theorem 4.6 concerning abelian varieties of GLo-type. An
abelian variety A over Q is said to be of GLo-type if Endg(A4) ® Q contains a field
K with [K : Q] = dim(A). The reason for this terminology is that such an A gives
rise, for each prime ideal p of K, to a two-dimensional Galois representation

PAp - GQ — GLg(Kp)

arising from the action of Gq on V,(A4) ®k K,. The abelian varieties A arising
from the Eichler-Shimura construction are examples of abelian varieties of GLo-
type. A conjecture of Fontaine and Mazur predicts that all abelian varieties of
GL,-type arise as quotients of Jacobians of modular curves. It can be shown that
this generalisation of the Shimura-Taniyama conjecture follows from Theorem 4.5.
(Ct. for example [Ser87] or the introduction of [Kis].)

4.6. A summary of Wiles’ proof. There are some enlightening parallels to
be drawn between the proof of Fermat’s Last Theorem and Faltings’ proof of the
Mordell conjecture as summarised in Section 2.8. Like Faltings’ proof, the proof of
Fermat’s Last theorem is based on a sequence of maps, resulting in a sequence of
transformations leading from the original problem to questions about other types
of structures, such as Galois representations, and ultimately modular forms. These
reductions are summarised in the diagram below.

Integer solutions " Semistable elliptic curves
(a,b,c) of — of conductor N = abc
aP +yP = 2P and discriminant 278 (abc)??

Irreducible galois representations
— p: Gq — GLo(F,)
with N(p) =2 and k(p) = 2.

Rs, Cusp forms in
S2(2,Z/pZ).

(1) The map R; is defined via the Frey curve, and is reminiscent of the
Kodaira—Parshin construction of Section 2.2. An important difference
is that the set of primes of bad reduction of the Frey curve associated to
(a,b, ) is not bounded independently of (a, b, ¢). In fact, the set of primes
of bad reduction for E consists ezactly of the primes that divide abc.

(2) The map R4 plays a role analogous to the passage to the ¢-adic representa-
tions in Faltings’ proof. An important difference here is that we consider
mod p representations (with coefficients in a finite field) rather than p-
adic representations. The justification for doing this is given by Theorem
4.1, which shows that the mod p representation p attached to E, . has
bounded ramification. Note that the corresponding p-adic representation
would be ramified precisely at the primes dividing pabc. It is an exercise
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to show that the map Ry is finite-to-one when p > 7. (Hint: use Faltings’
Theorem 2.1, and the fact that X (p) has genus > 1 when p > 7.) It is
even believed that Ry is injective once p is large enough (cf. Conjecture
3.18), but this assertion is still unproved.

(3) The map Rs is a new ingredient that has no counterpart in Faltings’
proof of Mordell’s conjecture, and exploits the deep “dictionary” that is
expected to exist between Galois representations and modular forms—in
this case, the Serre conjecture proved by Khare and Wintenberger.

(4) The final step in the argument exploits the fact that there are no modular
forms of weight two and level two. This last point may seem like a “lucky
accident” in the proof of Fermat’s Last Theorem. Indeed the presence
of modular forms of higher level presents an obstruction for the method
based on Frey curves to yield results on more general ternary Diophan-
tine equations of Fermat type. However, see the article by Charollois in
this volume [Chab], where a refinement of the techniques described in
this section leads to a strikingly general result on the generalised Fermat
equation az? + byP + czP = 0.

REMARK 4.8. One of the consequences of Conjecture 3.18 is that the generalised
Fermat equation az™ + by™ + ¢z™ = 0 (with a, b, ¢ fixed) has no primitive integer
solutions (z,y,z) with zyz # 0,41, once n is large enough. (The reader who
masters the ideas in the article by Pierre Charollois in this proceedings volume will
be able to prove this assertion.)

5. Elliptic curves

After surveying curves of genus > 1, we turn our attention to curves of genus
1. A projective curve of genus 1 over a field K, equipped with a distinguished K-
rational point over that field, is endowed with a natural structure of a commutative
algebraic group over K for which the distinguished element becomes the identity.
Such a curve is called an elliptic curve.

If F is an elliptic curve defined over a number field K, then the Mordell-Weil
Theorem (cf. Theorem 7 of the introduction) asserts that the group E(K) of K-
rational points on E is finitely generated. Let r(E, K) denote the rank of this
finitely generated abelian group. Many of the important questions in the theory
of elliptic curves revolve around calculating this invariant, and understanding its
behaviour as F or K vary.

QUESTION 5.1. Is there an effective algorithm to calculate r(E,K), given E
and K ?

Showing that Fermat’s method of descent yields such an effective algorithm is
intimately connected to the Shafarevich—Tate conjecture asserting the finiteness of
the Shafarevich-Tate group III (E/K) of E/K.

One can also fix a base field (the most natural, and interesting, case being the
case where K = Q) and ask

QUESTION 5.2. Is the rank r(E, K) unbounded, as E ranges over all elliptic
curves defined over K ?

One can also fix an elliptic curve E and enquire about the variation of r(E, K)
as K ranges over different number fields.
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The main tool available at present to study r(F, K) is the relationship between
the rank and the Hasse—Weil L-series predicted by the Birch and Swinnerton-Dyer
conjecture (Conjecture 3.9).

Assume that E is an elliptic curve over Q. Thanks to Theorem 4.6 (and its
extension to all elliptic curves over Q given in [BCDTO01]), the Hasse—Weil L-series
L(E,s) is equal to L(f, s) for some newform f of weight two. In particular, L(FE, s)
has an analytic continuation to the entire complex plane, and a functional equation.

The main result we will discuss in this section is the following:

THEOREM 5.3. Let E be an elliptic curve over Q, and let L(E, s) be its Hasse—
Weil L-series. If r := ords—1L(F,s) < 1, then r(FE,Q) = r and II(E/Q) is
finite.

5.1. Modular parametrisations. Let E be an elliptic curve over Q of con-
ductor N. Recall the modular curve Xo(N) that was introduced in Section 3.1.

The following theorem, which produces a dominant rational map from such a curve
to E, plays a crucial role in the proof of Theorem 5.3.

THEOREM 5.4. There exists a nonconstant map of curves over Q

PROOF. By Theorem 4.6, there is a normalised eigenform f in So(V, Z) satis-
tying L(E,s) = L(f,s). Let A be the quotient of Jy(INV) associated to f via the
Eichler-Shimura construction. By assumption, the Galois representations V,(E)
and V,(Ay) are isomorphic. Hence the isogeny conjecture (Theorem 2.18) implies
the existence of an isogeny « : Ay — E defined over Q. Composing such an
isogeny with the natural surjective morphism Jo(N) — Ay gives a nonconstant
map ® : Jy(N) — E. The modular parametrisation ¢ is defined by setting

p(x) = 0((z) = (c0)). 0

It is useful to describe briefly how the modular parametrisation ¢ can be com-
puted analytically. The pullback ¢*(wg) is a nonzero rational multiple of the
differential form

wy = 2mif(T)dr = Z anq"%.
n=1

Denote by A the collection of periods of wy (integrals of wy against smooth closed
one-chains C in Xo(N)(C)):

Af = {/ wy, where 0C = 0}.
c

It is a lattice in C, and Af(C) ~ C/Ay. Let us replace E by Ay, so that o = 1. It
is suggestive (for later generalisations) to view ¢ as a map

¢ : Div'(Xo(N)) — E.
This map is defined on Div®(Xo(N)(C)) by the rule

(23) o(A) ::/wa (mod Ay),

where the integral is taken over any smooth one-chain C' whose boundary is A.
The invariant ¢(A) € C/Ay is viewed as a point on E(C) via the Weierstrass
uniformisation.
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5.2. Heegner points. Perhaps the most important arithmetic application of
the modular parametrisation arises from the fact that Xo(N) is endowed with a
systematic supply of algebraic points defined over abelian extensions of imaginary
quadratic fields—the so-called CM-points. These points correspond, in the moduli
interpretation of Xo(N), to pairs (A, C) where A is an elliptic curve whose endo-
morphism ring @ = End(A4) is an order in a quadratic imaginary field K. Such an
elliptic curve is said to have complex multiplication by K, and the corresponding
points on Xo(N) are called CM-points attached to K. Let CM(K) denote the set
of all CM points in Xo(NN) attached to K. It satisfies the following properties.

(1) The set CM(K) is dense in Xo(NN)(C) (relative to the Zariski topology,
and also the complex topology).

(2) Let K2® denote the maximal abelian extension of K. Then CM(K) is
contained in Xo(N)(K?P).

(3) Analytically, CM(K) = To(N)\(H N K).

DEFINITION 5.5. The collection of points

HP(K) := {SD(A)}AeDiVD(CM(K)) C E(Kab)
is called the system of Heegner points on E attached to K.

The usefulness of Heegner points arises from two facts:

(1) They can be related to L-series, thanks to the theorem of Gross-Zagier
and its generalisations.

(2) They can be used to bound Mordell-Weil groups and Shafarevich-Tate
groups of elliptic curves, following a descent method that was discovered
by Kolyvagin.

Heegner points and L-series.
For simplicity, suppose that the imaginary quadratic field K satisfies the fol-
lowing so-called Heegner hypothesis:

HYPOTHESIS 5.6. There exists a ideal N of norm N in Ok with cyclic quotient.

This hypothesis is used to construct a distinguished element in HP(K). More
precisely, let h denote the class number of K, and let H be its Hilbert class field. By
the theory of complex multiplication, there are precisely A distinct (up to isomor-
phism over C) elliptic curves A4, ..., A; having endomorphism ring equal to Ok.
The j-invariants of these curves belong to H, and are permuted simply transitively
by the action of Gal(H/K). It is therefore possible to choose Ay, ..., A; in such a
way that they are defined over H, and permuted by the action of Gal(H/K).

The pairs (A;, A;[N]) (with 1 < ¢ < h) correspond to points P; in Xo(N)(H).
Let

(24) P = ((P1) + -+ (Pn) — h(o0)) € E(K).

The fact that the point Pk has an explicit moduli description makes it possible to
establish some of its key properties. For example, let P denote the image of Pk
under complex conjugation. Then it can be shown that

(25) P = wPg  (mod E(K)iors),
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where w € {£1} is the negative of the sign in the functional equation for L(E, s) =
L(f,s). (Cf. Chapter 3 of [Dar04].) This provides a simple connection between
the behaviour of Px and the L-series L(E, s).

We note that, in many cases where Hypothesis 5.6 is satisfied (for example,
when all the primes dividing N are split in the quadratic imaginary field K), the
sign in the functional equation for the Hasse—Weil L-series L(E/K, s) is —1, so that
L(E/K,1) = 0. It then becomes natural to consider the first derivative L'(E/K, 1)
at the central critical point. The following theorem of Gross and Zagier establishes
an explicit link between Pk and this quantity.

THEOREM 5.7. Let (f, f) denote the Petersson scalar product of f with itself,
and let h(Pg) denote the Néron—Tate canonical height of Px on E(K). There is
an explicit nonzero rational number t such that

(26) L'(E/K,1) =t-(f, f) - h(Pxk).
In particular, the point Pk is of infinite order if and only if L'(E/K,1) # 0.

The proof of Theorem 5.7 given in [GZ86] proceeds by a direct calculation in
which both sides of (26) are computed explicitly, compared, and found to be equal.

REMARK 5.8. Let P, be a point in CM(K) corresponding to an elliptic curve
with endomorphism ring equal to the order O,, of conductor n in K. Such a point
can be defined over the ring class field H,, of K of conductor n, whose Galois group
G, = Gal(H, /K) is canonically identified with the class group Pic(0,,) by class
field theory. If x : G,, — C* is a complex character, one can generalise (24) to
define

(27) P, = ( > X(U)Pg) € E(H,)® C.

O'EGn

A generalisation of Theorem 5.7 due to S. Zhang (cf. for example [ZhaO1b],
[ZhaOla], [How| and [HowO07]) relates the height of P, to the derivative of the
twisted L-series L(E/K, x,s) at s = 1.

When L'(E/K,1) # 0, the method of Heegner points gives an efficient method
for producing a point of infinite order in E(K). The following proposition asserts
the existence of many K for which the L-series does not vanish.

PROPOSITION 5.9. Suppose that r := ords—1L(E,s) < 1. Then there exist
infinitely many imaginary quadratic fields K satisfying Hypothesis 5.6 for which

ords=1(L(E/K,s)) = 1.

The proof of this proposition is explained in [MM97].

Heegner points and arithmetic: Kolyvagin’s descent

Theorem 5.7 implies that if L'(E/K,1) # 0, then Pk is of infinite order and
hence r(E, K) > 1. The following theorem of Kolyvagin gives a bound in the other
direction as well.

THEOREM 5.10 (Kolyvagin). Suppose that Pk is of infinite order in E(K).
Then r(E,K) =1, and III(E/K) is finite.
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For a proof of this theorem, see [Gro91] or Chapter 10 of [Dar04]. Let us
just mention here that Kolyvagin’s proof makes essential use of the fact that the
point Pk does not come alone, but rather is part of a norm-compatible system of
points in F(K?P) arising from the (infinite) collection of points in HP(K). These
points are used to construct global cohomology classes in H!(K, E[p]) whose local
behaviour can be controlled precisely and related to Px. Under the assumption
that Pg is of infinite order, this system of ramified cohomology classes is enough
to bound the p-Selmer group of E/K and show that r(E,K) = 1.

5.3. Proof of Theorem 5.3. We will now explain how the properties of Px
and HP(K) described in the previous section can be combined to prove Theorem
9.3:

PRrROOF OF THEOREM 5.3. Assume that » < 1. By Proposition 5.9, there is an
imaginary quadratic field K satisfying Hypothesis 5.6, for which

ords—1(L(E/K,s)) = 1.

Fix such a K, and consider the point Pg. Since L'(E/K,1) # 0, Theorem 5.7
implies that Pk is of infinite order. Theorem 5.10 then shows that

r(E,K)=1, and I(F/K) is finite.
Let E’ denote the quadratic twist of E over K. We then have
1=7r(E,K)=r(F,Q)+r(F,Q).

To be able to ignore finer phenomena associated to torsion in F(K), it is convenient
to replace Pk by its image in F(K) ® Q. Since E(K) ® Q is generated by Pk, it
follows that B

[0 if Pgx = —Px,
’"(E’Q)_{ 1 if Px = Px.

Theorem 5.3 now follows from (25). O

REMARK 5.11. The proof of Theorem 5.3 carries over with only minor changes
when E is replaced by the abelian variety quotient Ay attached to an arbitrary
eigenform f of weight 2 on I'g(V). This is how Theorem 3.11 is proved:

L(Af, 1) #0 = A¢(Q) is finite.

The reader will recall the key role played by this theorem in the proof of Theo-
rem 3.1 and (even more importantly) in Merel’s proof of the uniform boundedness
conjecture for elliptic curves explained in Marusia Rebolledo’s article in these pro-
ceedings.

5.4. Modularity of elliptic curves over totally real fields. Because of
the crucial role played by the system HP(K) in the proof of Theorem 5.3, it is
natural to ask whether such structures are present in more general settings. For
example, we would like to prove analogues of Theorem 5.3 for elliptic curves defined
over number fields other than Q. The class of number fields for which this program
is best understood is the class of totally real fields.

More precisely, let F' be a totally real field of degree n, and let E be an elliptic
curve over F', of conductor N. Assume, for simplicity, that F' has narrow class
number one, so that in particular the conductor can now be viewed as a totally
positive element of Op rather than just an ideal.
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The group I'g(N; Op) C SLo(Op) is defined as the group of matrices that are
upper triangular modulo N. The n distinct real embeddings vy,...,v, : F — R
of F allow us to view I'o(IN; Op) as a subgroup of SLo(R)™. This subgroup acts
discretely on the product H", and the analytic quotient I'g(N; Op)\H" represents
the natural generalisation of modular curves to this setting:

(1) This quotient is identified with the complex points of an n-dimensional
algebraic variety Yo(IN; Op) defined over F. This variety can be com-
pactified by adjoining a finite set of cusps, much as in the setting n =1
of classical modular curves. A suitable desingularisation of the resulting
projective variety is denoted Xo(N;OF), and is called a Hilbert modular
variety. Hilbert modular varieties are basic examples of higher dimen-
sional Shimura varieties.

(2) The variety Xo(N;OF) is equipped with natural Hecke correspondences
T indexed by the prime ideals of Op.

(3) These correspondences induce linear actions on the n-th deRham coho-
mology H}n(Xo(N;OF)), and the eigenvalues of the Hecke operators are
expected to encode the same type of arithmetic information as in the case
where F' = Q.

To amplify this last point and make it more precise, we state the following gener-
alisation of the Shimura—Taniyama conjecture to elliptic curves over F:

CONJECTURE 5.12. Let E be an elliptic curve over F of conductor N. There
exists a closed (in fact, holomorphic) differential form w € Hlz (Xo(N; Or)) satis-
fying

T\(w) = ax(E)w,

for all primes A4 N of Op.

REMARK 5.13. In some cases, the methods of Wiles for proving the modularity
of elliptic curves over Q have been extended to the setting of elliptic curves over
totally real fields, and many cases of Conjecture 5.12 can be made unconditional.

5.5. Shimura curves. When n > 1, the holomorphic differential form w
whose existence is predicted by Conjecture 5.12 cannot be used to directly produce
an analogue of the modular parametrisation. In this sense, there is no immediate
generalisation of Theorem 5.4, which plays such a crucial role in the construction
of HP(K') when n = 1.

To extend the notion of Heegner points, it is necessary to introduce another
generalisation of modular curves: the so-called Shimura curves associated to certain
quaternion algebras over F'.

A quaternion algebra B over F' is said to be almost totally definite if

B ®,, R ~ My(R), B®,, R~H, for2<j<n.
We can associate to any order R in B a discrete subgroup
I':= ’Ul(RX) C SLQ(R),

which acts discretely on H by Mobius transformations. When F' = Q and B =
M>(Q) is the split quaternion algebra, one recovers the analytic description of the
modular curves Xo(N). Otherwise, the analytic quotient I' C H is a compact
Riemann surface which can be identified with the complex points of an algebraic
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curve X possessing a canonical model over F. The curve X can be related (fol-
lowing a construction of Shimura) to the solution of a moduli problem and is also
equipped with a supply CM(K) C X (K?®") of CM points, associated this time to
any quadratic totally imaginary extension K of F.

An elliptic curve E over F' is said to be arithmetically uniformisable if there is
a nonconstant map defined over F', generalising Theorem 5.4,

¢ : Div'(X) — E.

The theory of Jacquet—Langlands gives a precise (partly conjectural) understanding
of the class of elliptic curves that should be arithmetically uniformisable:

THEOREM 5.14. Let E be an elliptic curve over F which is not isogenous to
any of its Galois conjugates. Then E is arithmetically uniformisable if

(1) E is modular in the sense of Conjecture 5.12;
(2) E has potentially semistable reduction at a prime of F, or can be defined
over a field F' of odd degree.

The collection HP(K) := ¢(Div'(CM(K))) C E(K?P), for suitable totally
complex quadratic extensions K/F, can be used to obtain results analogous to
Theorem 5.3 for elliptic curves over totally real fields. See [Zha01b] where general
results in this direction are obtained.

The articles [Voi] and [Greb] in this volume describe Shimura curves and
the associated parametrisations in more detail, from a computational angle. The
article [Voi| discusses explicit equations for Shimura curves of low degree, and
[Greb] explains how to approach the numerical calculation of the systems HP(K)
of Heegner points via p-adic integration of the associated modular forms, exploiting
the theory of p-adic uniformisation of these curves due to Cherednik and Drinfeld.

5.6. Stark—Heegner points. Heegner points arising from Shimura curve
parametrisations do not completely dispel the mystery surrounding the Birch and
Swinnerton-Dyer conjecture for (modular) elliptic curves over totally real fields,
since (even assuming the modularity Conjecture 5.12) there remain elliptic curves
over F that are not arithmetically uniformisable.

The simplest example of such an elliptic curve is one that has everywhere good
reduction over a totally real field F' of even degree, and is not isogenous to any of
its Galois conjugates. (More generally, one can also consider any quadratic twist of
such a curve.) For these elliptic curves, there is at present very little evidence for the
Birch and Swinnerton-Dyer conjecture, and in particular the analogue of Theorem
5.3 is still unproved when ords—1 L(E/F,s) = 1. (In the case where L(FE/F,1) # 0,
see the work of Matteo Longo [Lon06].)

The notion of Stark—Heegner points represents an attempt to remedy this sit-
uation (albeit conjecturally) by exploiting the holomorphic differential n-form w
whose existence is predicted by Conjecture 5.12 rather than resorting to a Shimura
curve parametrisation. We note that the holomorphic form w can be written

w=f(T1,...,Tn)dry - dTp,

where f is a (holomorphic) Hilbert modular form of parallel weight 2 on T'g(N),

satisfying, for all matrices (2Y) € Io(N),

a;m + by anTy + by
C17'1"’Cl17'."CnT'rL"'dn

> = (017'1 + d1)2 s (CnTn + dn)Qf(Tl, .. .,Tn).
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We let any unit € € O} act on H™ by the rule:

€% T: = €575 if6j>0;
7 €5T; if6j<0.

For any subset S C {2,...,n} of cardinality m, we can then define a closed differ-
ential n-form of type (n — m, m) by choosing a unit € of O which is negative at
the places of S, and positive at the other embeddings, and setting

ws = flexT,...,exT)d(exTy)...d(e*Ty,).

Finally we set

WE ‘= E wegs.

Sc{2,...,n}

The following conjecture is due to Oda [Oda82].

CONJECTURE 5.15. The set of periods
Aj = {/ wE forCEHn(XO(N,F)(C),Z)}CC
c

is a lattice which is commensurable with the period lattice of Ey := v1(E).

Conjecture 5.15 can be used to define a generalisation of the modular parametri-
sation of equation (23). This map is defined on homologically trivial (n — 1)-cycles
on Xo(N; Op)(C) by the rule

(28) w(A) = / wg (mod Ay), where 0C = A.
C

The interest of this generalisation of (23) is that it is possible to define a collection of
distinguished topological (n — 1)-cycles on which ¢ is conjectured to take algebraic
values.

These cycles, which play the same role that Heegner divisors of degree zero
played in the case where n = 1, are defined in terms of certain quadratic extensions
K of F. Such a quadratic extension is said to be almost totally real if

K®, R~C, K®,, R~RoR for 2<j <n.

Let ¢ : K — My(F) be an F-algebra embedding, and let K{* be the group of
elements whose norm to F is equal to 1. The torus vy (¢(K7)) acts on H with a
unique fixed point 71, and ((K) acts on the region {71} x H"~! without fixed
points. The orbit of any point in this region under the action of (((K ®r R)])
is a real (n — 1)-dimensional manifold Z, C {r1} x H"~! which is homeomorphic
to R"~1. The group G, := t(K*) NTy(N,OF) is an abelian group of rank n — 1,
corresponding to a finite index subgroup of the group of relative units in K/F.
Consider a fundamental region for the action of G, on Z,. The image A, of such a
region in the Hilbert modular variety Xo(N; Op) is a closed (n — 1)-cycle, which is
topologically isomorphic to a real (n — 1)-dimensional torus.

CONJECTURE 5.16. Assume that A, is homologically trivial. Then the point
©(A,) € E1(C) is an algebraic point, and is in fact the image of a point in E(K?P)
under any embedding K*® — C extending v, : F — R..
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REMARK 5.17. The original formulation of Conjecture 5.16 given in [DL03] was
phrased in terms of group cohomology. The definition of ¢(A,) used in Conjecture
5.16, which suggests an analogy between ¢ and higher Abel-Jacobi maps, was
formulated only later, in [CDO8] (in a context where cusp forms are replaced by
Eisenstein series; the elements ¢(A,) can then be related to Stark units). The
equivalence between Conjecture 5.16 and the main conjecture of [DL03] is explained
in [CDO8).

Conjecture 5.16 can be formulated more precisely, in a way that makes a pre-
diction about the fields of definition of the points ¢(4A,). It is expected that the
system of points

HP(K) = {SO(AL)}L:K—>M2(F)7

as ¢ ranges over all possible embeddings, gives rise to an infinite collection of alge-
braic points in E(K?") with properties similar to those of the system of Heegner
points defined in Section 5.2. Such a system of points (if its existence, and basic
properties, could be established, a tall order at present!) would lead to a proof of
Theorem 5.3 for all (modular) elliptic curves defined over totally real fields, not
just those that are arithmetically uniformisable.

For more details on Conjecture 5.16, a more precise formulation, and numerical
evidence, see Chapter 8 of [Dar04], or [DLO03]. For an explanation of the relation
between Conjecture 5.16 and the conjectures of [DL03], see [CDO08|.

The Stark-Heegner points attached to Hilbert modular forms that were defined
and studied in [DLO03] and [CDO08] can be viewed as the basic prototype for the
general notion of Stark-Heegner points. Here are some further variants that have
been explored so far in the literature:

(1) If E is an elliptic curve over Q of conductor N = pM with pt M, a p-
adic analogue of the map ¢ of equation (28)—described in terms of group
cohomology rather than singular cohomology, following the same approach
and in [DLO3]—is defined in [Dar01], by viewing F as uniformised by
the “mock Hilbert surface”

Lo(M;Z[1/p)\(H, x H),

where H,, := C, — Q, is the p-adic upper half plane, and I'o(M; Z[1/p]) is
the group of matrices in SLo(Z[1/p]) which are upper-triangular modulo
M. The resulting map ¢ associates a point in P, € E(Q,) to any embed-
ding ¢ : K — M5(Q) when K is a real quadratic field in which p is inert.
The system {P,} C E(Q,), as ¢ ranges over all embeddings of K into
M5(Q), is expected to yield a system of points in E(K?P) with the same
properties as the Heegner points attached to an imaginary quadratic base
field. This construction is not expected to yield new cases of the Birch
and Swinnerton-Dyer over the base field Q—this conjecture is completely
known when ords—1L(E,s) < 1, thanks to Theorem 5.3. However, it
would give new cases of this conjecture over certain abelian extensions
of real quadratic fields, and, more importantly perhaps, it suggests an
explicit analytic construction of class fields of real quadratic fields. For
more details on Stark-Heegner points attached to real quadratic fields, see
[Dar01] or Chapter 9 of [Dar04]. The article [DP06] describes efficient
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algorithms for calculating the points ¢(A,), and uses them to gather nu-
merical evidence for the conjectures of [Dar01], while [BD] provides some
theoretical evidence.

The article [Tri06] formulates and tests numerically a Stark—Heegner con-
struction that leads to conjectural systems of algebraic points on elliptic
curves defined over a quadratic imaginary base field. The details of the
construction of [Tri06] are explained in the article [Grea] by Matt Green-
berg in this proceedings volume. We remark that there is not a single
example of an elliptic curve E genuinely defined over such a field (i.e.,
which is not isogenous to its Galois conjugate) for which Theorem 5.3 (or
even just the Shafarevich—Tate conjecture) has been proved.
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1. The main result

This Chapter gives some finiteness results for the set of primitive solutions of
the generalized Fermat equation

(1) P +yl = 2"

where the exponents p, ¢, r satisfy the inequality 1/p + 1/q + 1/r < 1. The very
special ‘shape’ of the surface defined by (1) allows us to use some geometry to
reduce its study to the study of non-abelian unramified covers of P!\{0, 1,00} of
signature (p,q,r) in the sense of Definition 1.1. Therefore the study of the arith-
metic of equation (1) can be transferred to the setting of algebraic curves. The
main ingredients in the proof are a variant of the Chevalley-Weil theorem, and the
finiteness theorems of Hermite-Minkowski and Faltings. This finiteness result for
(1) which was proved in [DG95] can be viewed as an illustrative special case of the
Campana program which was presented in Dan Abramovich’s lecture series at this
summer school.

The author would like to thank Henri Darmon for a careful proofreading of this
article which led to many improvements.

A solution (a,b,c) € Z3 of (1) is called nontrivial if abc # 0 and primitive if
ged(a, b, ¢) = 1. When the exponents p, ¢ and 7 are pairwise coprime, the following
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exercise shows that (1) has infinitely many nontrivial but not necessarily primitive
solutions.
Exercise 1 Let p, ¢ and r be pairwise coprime. Show that the affine surface defined
by 2P +y? = 2" in A% is rational, i.e., the quotient field of Q[z,y, 2]/ (2P + y? — 2")
is purely transcendental of degree 2 over Q.

From now on we are only interested in studying the set of nontrivial primitive
solutions of (1). The study of (1) can be split into three cases:

(1) The spherical case: 1/p+1/q+ 1/r > 1. The possibilities are {p,q,r} =
(2,2, k) with & > 2, {2,3,3},{2,3,4} and {2,3,5).

(2) The Euclidean case: 1/p+1/q+1/r = 1. The possibilities are {p,q,r} =
{3,3,3}, {2,4,4} and {2,3,6}.

(3) The hyperbolic case: 1/p+1/q+1/r < 1.

This division is reminiscent of the classification of algebraic curves which also falls
into 3 cases depending on the genus or the sign of the Euler characteristic. Here is
the main theorem that we wish to prove.

THEOREM 1.1. (Darmon, Granville) If 1/p+1/q+1/r <1 then (1) has only
finitely many nontrivial primitive solutions.

Note that the statement of this theorem concerns the existence of integral points
on a surface. We would like to reduce the study of integral solutions of (1) to the
study of K-rational points on an auxiliary projective curve X/K where K is a
suitable number field. We consider the map

{Set of nontrivial primitive solutions of equation (1)} — P*(Q) C P*(C)

aP
(a/a b7 C) = F7

which allows us to reduce the study of (1) to the study of certain branched coverings
of P1(C). We define the set

p
Xpqr = {a_r €Q:a’ + b =c",abc # 0,gcd(a, b, c) = 1} C PY(Q).
&

Exercise 2 Show that #X,,, < oo if and only if (1) has finitely many primitive
solutions.

Now let us explain the main ideas of Theorem 1.1.
Proof of Theorem 1.1 We want to show that the set of nontrivial primitive
solutions of (1) is finite. By Exercise 2, it is enough to show that ¥, , , is finite
when 1/p+1/¢+ 1/r < 1. The proof can be broken into four steps.
First step: The existence of a Galois branched covering.

DEFINITION 1.1. A Galois covering 7 : X — P! is said to be of signature (p, q,r)
if its ramification indices above 0,1 and oo are equal to p, ¢ and r respectively, and
if 7 is unramified everywhere else.

The first stage of the proof consists in constructing a Galois covering of P!
of signature (p,q,r) defined over a suitable number field K and Galois over that
field (The construction of such a cover will be done in detail in Section 2). The
Riemann-Hurwitz formula then determines the genus g(X) of X in terms of the
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degree d of 7 :
20(X) =2 = d2g(P'(©) = 2) + - D+ g =D+ S - )

=d(1-1/p—1/q—1/r).
Since 1 —1/p—1/q — 1/r > 0 we conclude that g(X) > 1.

Second step: A Chevalley-Weil theorem for branched coverings.

Given t € P}(K), let L; be the smallest field of definition of the closed points
in 771(¢). As is explained in Section 3, the field L; is a Galois extension of K
with Galois group isomorphic (non-canonically) to a subgroup of Gal(X/P'). The
Chevalley-Weil theorem for branched coverings (see Theorem 3.2) shows that the
ramification of L¢, for t € ¥, 4., is bounded independently of t, in light of the
following elementary property of 3, , ,:

LEMMA 1.1. Let t = ‘;—f € Xp,q,; then for all prime numbers ¢ we have
(1) ve(Numerator(t)) = 0 (mod p),
(2) ve(Numerator(t — 1)) =0 (mod q),
(3) ve(Numerator()) = 0 (mod r),
where for x € Q, ve(x) stands for the valuation of = at the prime .

Note that the proof of Lemma 1.1 uses in a crucial way the primitivity of the
solution (a,b, ¢) corresponding to ¢ = ‘Z—,p and the fact that t — 1 = —i’—j.

Third step: Hermite-Minkowski.

By the Hermite-Minkowski theorem (cf. Theorem 1.1 in Section 1.1 of [Dar])
the compositum L of all the number fields L, for t € 3, 4 ,, is a finite extension of
K.

Fourth step: Faltings’ Theorem.

By definition of L we have 7=1(%, ;) € X (L). Since g(X) > 1, we deduce by
Faltings’ theorem that X (L) is a finite set and therefore 7=(%, , ) and %, ;. are
also finite sets. This concludes the sketch of the proof of Theorem 1.1. [

REMARK 1.1. The conclusion of Theorem 1.1 remains the same if we replace the
equation 2P + y9 = 2" by the more general equation AzP + By? = C'z" for nonzero
fixed integers A, B and C'. For a further discussion of the equation AxP+By9 = C2",
see [DGI5].

REMARK 1.2. In some special cases, for example when (p, ¢,7) = (n,n,n) with
n > 3 we know by the work of Wiles and Taylor (see [Wil95] and [TW95]) that
(1) has no nontrivial solutions. Using similar techniques, Darmon and Merel (see
[Dar00] and [DM97]) could also treat the case (p,p,r) where r = 2 or 3 and p is
a prime number larger than or equal to 6 —r to conclude that (1) has no nontrivial
primitive solutions.

For the rest of the paper, we would like first to explain in detail the construction
of the auxiliary branched covering (X, 7, P} of signature (p, ¢, ) above {0, 1,00}
which was needed in the first step of the proof of Theorem 1.1. Secondly, we would
like to give a more detailed discussion about the variant of the Chevalley-Weil
theorem that we have used to control the ramification of the number field L; over
K for the special elements t € ¥, ;.. We won’t say anything about Steps 3 and 4,
which are discussed in [Dar|. Sections 2 and 3 are devoted to a discussion of Steps
1 and 2 respectively.
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2. Construction of the branched covering

In this section we will use the theory of Riemann surfaces in order to construct
certain analytic Galois branched coverings over P!(C) unramified outside {0, 1, c0}.

For every triple of integers (p, q,r) with p, ¢, > 2 we define the Hecke triangle
group by the abstract presentation

Lpgr = (10,71, Yoo 176 = 71 = V% = M0MY00 = 1)

It is convenient to allow the exponents p, ¢ and r to be infinite, which will be taken
to mean that the order of the corresponding element is infinite.

One has that m1(P(C)\{0,1,00}) ~ T'us 00,00 = {l0, 1, lo|lol1loe = 1), which is
isomorphic to the free group on two generators. We have the short exact sequence

%)
1= Npgr = T'coo,00 = Ipgr =1,

where ¢(ly) = 70, ¢(l1) =y and N, 4, = ker(y). The universal covering space of
P1(C)\{0, 1, 00}) is the upper half-plane, see for example Theorem 6.4.3 of [Ser92].
Let us denote by

(2) 0:H — PH(C)\{0,1,00}

a choice of such a universal covering map. From the theory of covering spaces
one has a (non-canonical) isomorphism between the group of deck transforma-
tions of (2) and the fundamental group of P!(C)\{0,1,00}); see for example §30
of [Mun00]. Such an isomorphism allows us to define an action of I'eg o000 =
71 (PY(C)\{0,1,00}) on H. From this, one may deduce the following diagram:

H

-

U .= /H/Np)q)r 0

o

PHC)\{0,1,00} ~ H/T'x.00,00

where 6; (resp. 62) is the covering map induced by the action of N, 4, on H (resp.
T'oo,00,00/Npg.r o0 U).

Note that U is a connected Riemann surface such that m1(U) ~ N, ,, and
that 6, is a Galois covering map with Galois group isomorphic to I's 0,00 /Np,q,r =
I'p.q.r- One can show that 65 is of finite degree if and only if 1/p+1/¢+1/r > 1 (see
Exercise 4). Since in our setting we work under the assumption that 1/p+ 1/q +
1/r < 1 we see that in this case the map 65 is never of finite degree. The pair (U, 02)
is universal among all Galois coverings over P1(C)\{0, 1, 00} of signature (p, q,7) in
the following sense: Let m : X — P*(C) be a Galois branched covering unramified
outside {0, 1, co} with ramification index p above 0, g above 1 and r above co. Then
7 factors through 05, i.e., there exists a covering map s : U — X\m71({0,1, 00})
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which makes the following diagram commutative:

PL(C)\{0,1, 00}

Note that 52 is onto and unramified since all the ramification happens already in
m. Let us assume that m is finite of degree d; then, in this case, X is a compact
Riemann surface. Using the Riemann-Hurwitz formula one gets that

d

20(X) - 2= d2g(PH(C) =2+ S(p— 1) + Sa— D+ 5= 1)

=d(1-1/p—1/q—1/r).
‘We thus see that

(1) g(X)=01if1/p+1/q+1/r > 1,

(2) g(X)=1if1/p+1/¢+1/r=1,

(3) g(X)>2if1/p+1/¢g+1/r <1.
Again using Theorem 6.4.3 of [Ser92], one may deduce that the universal covering
space of X is PY(C) if 1/p+1/q¢+1/r > 1, Cif 1/p+1/q+1/r = 1, and H if
1/p+1/q+ 1/r < 1. This explains the trichotomy for the study of (1).

We would like to give a geometrical realization of the universal pair (U, 6s)
in the case where 1/p + 1/q + 1/r < 1. This will be used to understand the set
of elliptic elements of T’ ,, (see Exercise 3). Since 1/p + 1/q+ 1/r < 1, there
exists a hyperbolic triangle in the Poincaré unit disc with angles 7 /p, w/q, 7/r; see
Figure 1. Let op be the symmetry with respect to the geodesic passing through

FiGURE 1. Hyperbolic triangle inside the Poincaré disc.
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QR, o¢ the symmetry with respect to the geodesic passing through PR and oy the
symmetry with respect to the geodesic passing through PQ. Let yvp = ogogr be
the rotation around P with angle 27”, Yo = orop be the rotation around @) with
angle 27” and yr = opog be the rotation around R with angle 27” We have drawn
the image of the triangle PQ R under the rotation vyp in Figure 1. Since the open
unit disc D(0, 1) is biholomorphic to H we can identify the group (yp,vg,7Vr) as
a subgroup of PSLy(R) ~ Aut(#). We have an isomorphism between (vp, V0, Vr)
and ', ;- given by vp — 70, 7 +— 71 and Vg — Yoo (prove it by using Figure
1). In particular, we can think of I'y ,, as a subgroup of PSLy(R). The group
I'p.q.r, when applied to the triangle PQR, gives a ‘half tessellation’ of D(0,1). A
fundamental domain for the action of I', ;,» on D(0,1) is given for example by
the geodesic quadrilateral PQR(Q)’, where the geodesic RQ’ is identified with the
geodesic RQ and the geodesic PQ with the geodesic PQ’. It thus follows that the
quotient H/I', , - is isomorphic to P!(C). Let

T H = H/Tp g, = PHC).

Since PSLy(C) acts triply transitively on P*(C) we can assume that 7(P) =
0,7(Q) = 1 and 7(R) = oco. Therefore the Galois branched covering 7 has sig-
nature (p,q,r) above {0,1,00}. Unfortunately 7 has infinite degree but the next
lemma takes care of this difficulty.

Exercise 3 Define U := H\71{0,1,00}. Show that the map

Ty : U = PHC)\{0,1, 00}

corresponds to the universal map associated to Galois branched coverings over
P1(C) of signature (p,q,r). It thus gives a geometrical realization of U as the unit
disc minus the vertices of all the I', , ,-translates of the triangle PQR. Conclude
that an element v € I', 4, is elliptic if and only if it fixes a vertex of a I'j 4,-
translate of the triangle PQR. Recall that an elliptic element in PSLs(R) is by
definition a matrix which fixes a point in .

Exercise 4 Show that I'y, , , is finite if and only if 1/p+1/g+1/r > 1. Show that
Iy . is infinite and nonabelian if and only if 1/p +1/¢+ 1/r < 1.

LEMMA 2.1. There exists a normal subgroup H < T, , , such that [I', , . : H] <
oo and such that H acts without fixed point, i.e., H contains no elliptic elements.

REMARK 2.1. Note that the set of all elliptic elements of I, ; . consists of the
union of the conjugacy classes in ', of 75, v and v%. Moreover, if H is as in
Lemma 2.1 then the orders of %,, 7; and 7, in I',,,/H are equal to p,¢ and r,
respectively.

Proof of lemma 2.1 We follow essentially the proof of Proposition 4.4 of
[Beu04]. Let us construct an abstract group homomorphism of ', , - onto a certain
subgroup of PSLy(C) for which all its matrices have algebraic entries. Consider
the matrices

-1 —1,—1
A—< 0 _421’_1) C( 0 C2p<2q_1) B=AC™!
CZp CQ;D + C2p *CZpCZq CQr + Czr
where ¢, = €2™/™. One can verify that the orders of A, B and C' in PSLy(C) are

p,q and r, respectively. For example, to show that A has order p one can use the
observation that (—1,1) and (—(, ', 1) are eigenvectors with eigenvalues (s, and
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(2;1. A similar argument can be used for B and C. We thus have an onto group
homomorphism

p:Tper— (A B,C)=N CPSLy(R)

given by p(10) = A™%, p(11) = B,p(7ss) = C, where R = Z[C2p, (¢, G2r]. Note
that p sends an elliptic element of ', , - to an elliptic element of A" and all elliptic
elements of N are contained in a conjugacy class of AZ, BZ or CZ. Let 7 be some

prime ideal of R. Note that A = P (CZP 01) P~ for some matrix P € PSLy(R).
Therefore if A (mod 7) = I (mod 7) then (Cé” <§1) = I (mod ), where I
stands for the identity matrix. This implies that 7|(1 — (3,). We have a similar
thing for B and C'. Let us choose a prime ideal 7 such that 7 does not divide 1 —
for 1 <k <n-—1andn € {p,q,r}. Finally, define the group

(3) H:={geT,,.lp(g) =1 (mod )}

The group H satisfies the property of Lemma 2.1. [
We can finally define the auxiliary curve that was used in the course of the
proof of Theorem 1.1. Define

X :=H/H,
where H is as in Lemma 2.1 and let 7 be the natural map
(4) m: X = H/Tpr = PHC).

By construction 7 is a finite complex analytic Galois branched covering over P!(C)
of signature (p,q,7). Since 7 has finite degree and P!(C) is compact we deduce
that X is a compact Riemann surface. Note that the complex structure of X is
inherited from the complex structure of #, where some care should be taken in
order to define local charts around fixed points of elliptic elements of I', ;..

There is a dictionary between non singular projective curves over C and com-
pact Riemann surfaces:

THEOREM 2.1. Any compact Riemann surface S is algebraic.

Let us sketch a proof of this important result in the special case where S is the
compact Riemann surface X that was previously constructed as a quotient of the
upper half-plane.

Sketch of the proof We will break the proof into three steps.

Step 1: X admits a large supply of non-constant meromorphic functions.

We first show that X admits a large supply of non-constant meromorphic func-
tions in the sense that for every pair of points P,Q € X with P # @ there exists
a meromorphic function f on X such that f(P) # f(Q) (separates points) and for
every P € X there exists a meromorphic function g on X such that g is a local
chart in a small neighborhood of P (separates tangents).

Let G be the preimage of H under the natural projection SLy(R) — PSLa(R).
Note that G is a discrete subgroup of SLs(R) which contains the element —I. For
every pair of points P, Q) € H consider the Poincaré series (modular form)

(5) Im PQ? ZTPQ gz g’ ) "

geqG
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where m is any fixed even integer larger or equal to 4, rpg(z) = %, gz = Zj—js

and j(g,z) = (cz+d) for g = (2 }) € G. The infinite sum (5) converges absolutely
since m > 3. Therefore the function f,,(P, @, z) is meromorphic on H and satisfies
the important transformation formula

Note that when m is odd, the transformation formula (6) applied to the matrix
—I € G implies that f,,,(P, Q, ) is identically equal to 0. Let P, Q@ € H be arbitrary
points such that GP and GQ are distinct right orbits. Now choose a third point
R € H such that f,,(R,Q,z) does not vanish at z = P (It is easy to see that such
a point R always exists by considering for example the function w — f,,(w, @, P)).
A simple calculation reveals that the function f,,(R, @, z) has a pole of order one
at every elements of GQ (this uses the fact that m is even). It thus follows that
fm(R, @, z) is a non-constant meromorphic function on H. Now let us consider the
quotient

_ fm(R,P,2)
B f77L(R7 Q? Z) '

Using (6), one readily sees that F,,(z) descends to a meromorphic function on X.
Moreover, by construction, it has a zero of order one at the point GQ € X and a
pole of order one at the point GP € X. This shows that X has a set of meromorphic
functions that separates points and tangents.
Step 2: Riemann-Roch.

Let D be a divisor of X and let Lp be the locally free Ox-module of rank 1
associated to D where for every open set U C X

Lp(U)={f:U — C: fis meromorphic and div(f) > —D|y }.

Then the famous theorem of Riemann-Roch says

F.(z)

THEOREM 2.2. (Riemann-Clebsch-Roch)
dime HY(X, Lp) — dime HY (X, Lp) = deg(D) + 1 — g,
where g stands for the genus of X and deg(D) for the degree of the divisor D.
For an elementary proof of Theorem 2.2 which uses only Step 1, see chapter IV
of [Mir95].
Step 3: Construction of a planar parametrization of X.
PROPOSITION 2.1. Let z be a non-constant meromorphic function on X. Then

there exists a meromorphic function f and an irreducible algebraic equation P(z, f)
defined over C such that the map

x> (2(2), f(x))
is a conformal bijection of X onto the compact Riemann surface associated to the
irreducible equation P(z, f) = 0.

Proposition 2.1 is a nice application of Riemann-Roch and the analytic contin-
uation principle for germs of holomorphic functions. For a detailed proof, see for
example the discussion on p. 242 of [Jos06]. This concludes the sketch of the proof
of the algebraicity of X. 0O



NON-ABELIAN DESCENT AND THE GENERALIZED FERMAT EQUATION 63

REMARK 2.2. Historically, Riemann proved the inequality dimc H°(X, Lp) <
deg(D) +1 by constructing meromorphic differential forms with prescribed poles
at points appearing in D, see [Rie57]. His construction appealed to the so-called
Dirichlet’s principle which back then was not rigorously proved. An inequality go-
ing in the other direction was proved by Clebsch (see [Cle65]) and then refined
by Roch (see [Roc65]). In general, the construction of non-constant meromorphic
functions (or non-zero meromorphic differential forms) on an abstract compact
complex manifold of dimension one (i.e., a compact Riemann surface) is a highly
non-trivial fact. When the dimension is higher than one, it is the lack of non-
constant meromorphic functions which prevents compact complex manifolds to be
algebraic. In dimension one, the construction of such functions can done abstractly
by the use of harmonic analysis; see for example Section 5.2 of [Jos06]. Note that
in Step 1 of the previous argument, we could get around this non-trivial fact by
taking advantage of the description of X as a certain quotient of 7. This allowed us
to define directly Poincaré series which are meromorphic “-fold differential forms.
The idea of constructing meromorphic % -fold differential forms by averaging over
the elements of a Fuchsian group is due to Poincaré. Poincaré was the first one
to announce that for every algebraic curve P(x,y) = 0 (of genus > 2) there exists
two non-constant Fuchsian functions f(z) and g(z) such that P(f(2),g(z)) =0, see
[P0i82]. Finally, we should mention a more recent way of proving Theorem 2.1 un-
der the additional assumption that the compact Riemann surface S admits a single
non-constant meromorphic function f, i.e., a non-constant holomorphic function
f:S — PY(C). This alternative approach is a special case of a general equivalence
between analytic and algebraic coherent sheaves on smooth projective algebraic
varieties. Very often, this equivalence is quoted under the acronym ‘GAGA princi-
ple’; see Section 6.1 of [Ser92] and [Ser56]. The key point is that this holomorphic
function f: S — P!(C) gives rise to a coherent analytic sheaf 7 on P!(C) (which
is an algebraic curve) and therefore, by GAGA, F is an algebraic sheaf. From this
we may conclude that S is algebraic.

Now we recall that we have constructed previously a branched covering 7 :
X — PL(C) of signature (p,q,r). Now, armed with Proposition 2.1, we know that
there exists a meromorphic function f on X and a polynomial P(z,y) € Clz,y]
such that P(rw, f) = 0. Let M be the subfield of C generated by the coefficients
of P(z,y). Note that M is a finitely generated field over Q. In general the field M
will not be an algebraic extension over Q. Nevertheless we have the following key
proposition:

PROPOSITION 2.2. There exists a smooth projective algebraic curve X defined
over a number field K such that the following diagram commutes:

x—21-%

%

where § : X(C) — X(C) is an isomorphism defined over C and where 7 is a
branched covering defined over K.

Proposition 2.2 is a direct application of the following general result:
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THEOREM 2.3. Let V be an algebraic variety defined over an algebraically
closed field L of characteristic 0, and let L' be an algebraically closed field extension
of L. Then every covering p : U — V defined over L' comes from a covering
p' U — V defined over L in the sense that there exists a commutative diagram

U—=1u

%

where g is an isomorphism of varieties defined over L' and p’ is a covering defined
over L.

Proof See the proof of Theorem 6.3.3 of [Ser92]. O

Let us explain how the existence of f and 7 follows from Theorem 2.3. Let Y
be the algebraic curve over C defined by X\771{0,1,00}. Note that 7|y : ¥ —
P1\{0,1, 00} is a covering defined over C and that P*\{0, 1, 0o} is an algebraic curve
defined over Q (in fact over Q!). From Theorem 2.3, we know that there exists a
covering 7 : V' — P'\{0, 1,00} defined over Q and an isomorphism g : ¥ — Y’
defined over C such that 7’ og = 7. Let K be the field generated by the coefficients
of the equations defining the algebraic curve Y’. Note that K is finitely generated
over Q and therefore it is a number field. The open Riemann surfaces Y (C) and
Y’(C) admit natural compactifications X and X (just add the deleted points) where
X can be chosen to be defined over K. Finally, note that the map g (resp. 7’)
extends uniquely to a map g : X — X defined over C (resp. T : X — P! defined
over K).

REMARK 2.3. Unfortunately, the proof of Theorem 2.3 doesn’t give any control
on the number field K which appears in Proposition 2.2. For a different proof which
gives some control on the number field K, see [K6c04].

REMARK 2.4. Note that Proposition 2.2 implies the ‘if part’ of the famous
Belyi’s theorem, which states that a compact Riemann surface X admits a model
over Q if and only if there exists a branched covering 7 : X — P!(C) which is
unramified outside {0, 1, co}. Historically, this direction is due to Weil; see [Wei56].
The ‘only if part’ is not really longer to prove, in fact it is shorter. Its proof is

completely algorithmic and is due to Belyi; see [Bel79].

REMARK 2.5. In general, for higher dimensional complex varieties one has the
following criterion which characterizes varieties which admit a model over a number
field

THEOREM 2.4. (Gonzilez-Diez) An irreducible complex projective variety X
can be defined over a number field if and only if the family of all its conjugates X7,
where o is any field automorphism of C, contains only finitely many isomorphism
classes of complex projective varieties.

For a proof of this criterion see [GD06].

Combining Theorem 2.1, Proposition 2.2 and our discussion on branched cov-
erings we see that every finite index normal subgroup H < I', , . which contains
no elliptic elements gives rise to an algebraic Galois branched covering over P! of
signature (p,q,r) defined over a suitable number field K, where the number field
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K depends on H. Such covers turn out to be extremely useful since they can be
used to study the set of integral solutions of (1). From the previous observation
one may deduce the following general principle:

PRINCIPLE 2.1. There is a dictionary between the distinct strategies for studying
xP +y? = 2" and the finite quotients of the Hecke triangle group I'y .

This principle is slightly imprecise but at least, from the author’s point of view,
has the virtue of being inspiring. We won’t say more about it and we encourage
the reader to look at [Dar04] where Principle 2.1 is explained in greater detail.

3. A Chevalley-Weil theorem for branched coverings

In this section we would like to present a variant of the Chevalley-Weil theorem
that allowed us, during the second step of the proof of Theorem 1.1, to control the
ramification of the field extension L; over K for the special elements ¢ € 3, ;. Let
us first recall the Chevalley-Weil theorem in the context of curves (see also Section
1.2 of [Dar]).

THEOREM 3.1. (Chevalley-Weil) Let X and Y be smooth schemes of relative
dimension one defined over the ring of S-integers Or s of a number field L, where
S is a finite set of places of L. Let f : X — Y be a morphism of schemes defined
over Or g which is unramified over the generic fiber. Then there exists a finite
extension L' /L such that

FHY(Ors)) € X(Or ),
where the set of places S’ extends the set of places of S.

REMARK 3.1. In the statement it was important to work with integral models
of X and Y in order to make sense of the notion of integral points, i.e., Oy, g-valued
points. In general, the notions of integral points and rational points differ since the
set X(Op,s) could be smaller that the set X (L). For example, consider the affine
curve E defined by the equation 32 — 23 — 73z = 0. By Siegel’s Theorem one has
that #E(Z) < co. On the other hand, since the Mordell-Weil group of E/Q has
positive rank, one has that #F(Q) = co. However, there is an important situation
where the two notions coincide, namely in the special case where the curve X is
projective.

REMARK 3.2. At this point we can’t resist giving a nice application of the
Chevalley-Weil theorem when combined with Faltings’ theorem. Consider the affine
complex curve embedded in A*(C) defined by the zero locus

Z(u+v—1,uw—1,vt—1) = {(u,v,w,t) € A*(C) : ut+v—1=uw—1=ovt—1=0}.
It is easy to see that the map
PYH(C)\{0,1,00} = Z(u+v — 1,uw — 1,0t — 1)
[u, 1] — (u, 1 —u, 1/u,1/(u — 1))
is an isomorphism of complex curves. From this, we deduce that the coordinate

ring of P*(C)\{0,1, 0} is

1 1
Clu. =
[u’u’u—l

| ~ Clu,v,w,t]/(u+v—1uw—1,vt — 1).
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Now choose a covering (so unramified)
7:Y(C) — PY(C)\{0,1,00}

where Y(C) is an open Riemann surface of genus larger than or equal to 2 (there are
infinitely many possibilities for 7). Finally, combining Faltings and Chevalley-Weil
we may conclude that the equation

ut+v=1

has only finitely many solutions in OZ, g Where L is an arbitrary number field and S
is any finite set of places of L. Historically, Siegel was the first to prove this result.
Of course, he proved it without appealing to Faltings’ theorem.

For the rest of this section we would like to discuss in more detail the variant
of the Chevalley-Weil theorem that was used in the proof of Theorem 1.1. Let
(X, PL) be the algebraic Galois branched covering of degree d, with Galois
group G and signature (p, q,r) constructed in Section 2. Let us fix an embedding
of K into C. Since 7 is defined over K we have a natural action of Gal(C/K) on
all the fibers of 7 above points ¢t € P!(K). Moreover, for every t € P*(C)\{0, 1,00},
we have a simply transitive action of G on 7~ 1(t) since 7 is Galois. We thus get
two group homomorphisms:

p1: Gal(C/K) — Sym(n~(t)) and ps: G — Sym(n~'(t)).

It is important to know how p; and p, are related. Let us choose a complex
embedding ¢ : X(C) < PV (C). For every P € X(C) let us denote the image of
P by ¢ by ¢(P) = [po(P),1(P),...,on(P)] € PV(C). For t € P'(K)\{0,1,00}
define the number field L; to be the field generated over K by all the coordinates
of o(P) for all P € 7=1(t). Let m=1(t) = {P1,..., P4}. The first thing to notice is
that the number field L’ := K(¢(P1)) is equal to L. For every i € {1,...,d} there
exists an element g € G such that g(¢(Py)) = ¢(P;). Therefore the coordinates of
©(P;) can be expressed algebraically in terms of the coordinates of ¢(Py) so L' = L.
It thus follows that the action of an element ¢ € Gal(K/K) on L; is completely
determined by its action on the coordinates of ¢(Py). Since o(p(P1)) = ©(F;)
for a unique ¢ we readily see that every automorphism of L;/K can be realized
‘algebraically’ by the action of a unique element g € G (G acts simply transitively
on the fibers). We have the following identification

Gal(L;/K) = {g € G : 30 € Gal(K/K) such that o(¢(P})) = gp(P;)} C G.

We would now like to understand the ramification of L; over K when t € P}(K).
The morphism 7 : Xx — P} induces an inclusion of fields K (P') ~ K (z) — K(X),
where x is a variable. Note that K(X)/K(x) is Galois. Let t € K. We define the
specialization of 7 at ¢ to be the K-algebra map

K~ K[z]/(x —t) = K[X]/(x —t)
where K[X] corresponds to the integral closure of K[z] in K(X). Let
t € PH(K)\{0,1,00}.

Since 7 is unramified at all the points above ¢ we have (v — t)K[X] = p1---p,
where the p;’s are distinct prime ideals of K[X]. We thus find that K[X]/(z —1) ~
Li®- - @ L,, where L; = K[X]|/p;. Note that all L;’s are Galois over K with
Galois group D(p;/(x —t)) = {g € G : g(p;) = p;} so that all the L;’s collapse to
the same number field in a fixed algebraic closure of K.
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Exercise 5 Show that L;/K ~ L;/K.
In order to understand the ramification of L; over K we need to define the
arithmetic intersection between two points a,b € P}(K) at a prime ideal p of K.

DEFINITION 3.1. Let p be a prime ideal of K and a,b € K U {co}. We define
ordg,(a —b) if ordg,(a) > 0,0rd,(b) >0

I (a,b) = ordp(% - %) if ordp(%) > 0,0rdp(%) >0
0 otherwise
where ord,(0) = oo and ord,(c0) = —oo0.

Before stating the Chevalley-Weil theorem for branched coverings we need to
make one more definition.

DEFINITION 3.2. Let X % P! be a Galois branched covering over C. A Galois

branched covering = : Xg & PL is called a good model for X & Pl oover K if
the primes of Ok (when viewed as primes in Og[x]) that ramify in Ok [Xk| are
contained in Spaq. The ring O [Xk] stands for the integral closure of Ok[z] in
K(Xk) and the set Shaq is the union of the set of primes that divide the order of
G and the set of primes at which two branch points meet.

We can now state in more detail a result due to Beckmann which implies the
‘ramification control’ of Ly /K ~ L;/K (by Exercise 5), where

(7) KX|/(e-t)=Li® - &L,

and L; for t € X, 4, is defined as in Step 2 of the proof of Theorem 1.1. We have
the following theorem, which is a special case of Theorem 1.2 of [Bec91].

THEOREM 3.2. (Chevalley-Weil for branched coverings) Assume that Xk &
PL is a good model where G = (o, 71, Vo) and let L = Ly be as in (7). Then L is
ramified only at the places S = Spaq U Sy where

Shad := {@ is a finite prime of K : p|#G}
and
Sy = {p is a finite prime of K : I,(t,j) > 0 for some j € {0,1,00}}.

Moreover, if t meets j € {0,1,00} at g, i.e., I,(t,j) > 0 (note that j can at most
meet one of those values) then

I (t,j
I(p/p) = (7"
up to conjugation in G where p is some prime ideal of L above .

The last part of the theorem says basically that the geometric ramification
‘controls’ the arithmetic ramification.

REMARK 3.3. In general one cannot always guarantee the existence of a good
model but nevertheless, Theorem 3.2 remains valid if we add to the set Spa.q the
finite set of primes that prevent the model to be good.

Using the previous theorem one deduces the following proposition.

PROPOSITION 3.1. Let t € ¥, and @t Spaa then L, /K is unramified at p.
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Proof Since t € 5,4, € PY(C)\{0, 1,00} we have t = & for coprime integers
a,c. Moreover t — 1 = ,%ﬁ for b and ¢ coprime. By Lemma 1.1 we have

I,(t,0)=0 (mod p),
Io(t,1) =0 (mod g),
I,(t,00) =0 (mod r).

Using the last part of Theorem 3.2 we deduce that I(p/p) = 1. Therefore L, is
unramified at p. O
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Merel’s theorem on the boundedness of the torsion of elliptic
curves

Marusia Rebolledo

ABSTRACT. In this note, we give the key steps of Merel’s proof of the Strong
Uniform Boundedness Conjecture. This proof relies on three fundamental in-
gredients: the geometric approach of Mazur and Kamienny, the innovative
introduction of the winding quotient by Merel, and the use of Manin’s presen-
tation of the homology group of modular curves.

1. Introduction

Interest in elliptic curves dates back at least to Fermat, who introduced his
fundamental method of infinite descent to prove his “Last Theorem” in degree 4.
Poincaré seems to have been the first to conjecture, around 1901, the now famous
theorem of Mordell asserting that the group of rational points of an elliptic curve
over Q is finitely generated. This result was later generalized by Weil to encompass
all abelian varieties over number fields. If E is an elliptic curve over a number field
K, it is therefore known that

BEEK)=Z' &T

as abstract groups, where T' = E(K )iors is the finite torsion subgroup of E(K). The
integer r, called the rank, is a subtle invariant about which little is known and which
can be rather hard to compute given F and K. The torsion subgroup, in contrast,
is readily computed in specific instances, and this makes it realistic to ask more
ambitious questions about the variation of E(K )t with E and K. A fundamental
result in this direction is the theorem of Mazur presented in Chapter 3 of Darmon’s
lecture in this volume, which gives a uniform bound on E(Q)iors as E varies over
all elliptic curves over Q. Kamienny [Kam92] was able to extend Mazur’s result
to quadratic fields, obtaining a bound on E(K )i for K quadratic that was even
independent of K itself. This led him to formulate the Strong Uniform Boundedness
Conjecture, asserting that the cardinality of F(K )iors can be bounded above by
a constant which depends only on the degree of K/Q. (The weaker conjecture
asserting that the torsion can be bounded uniformly in the field K is presented as
being ‘a part of the folklore’ by Cassels [Cas66] (p. 264).) Actually, according to
Demjanenko (see [Dem72] and entry MR0302654 in Mathematical Reviews) this
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conjecture was posed in the 70’s by Shafarevich; his paper proved a result in this
direction. The Strong Uniform Boundedness Conjecture was proved in 1994 by
Merel, building on the methods developed by Mazur and Kamienny.

THEOREM 1 (Merel 1994). For alld € Z,d > 1 there exists a constant B(d) > 0
such that for all elliptic curves E over a number field K with [K : Q] = d then

‘ E(K)tors |S B(d)~
Merel actually proved the following bound on the prime numbers dividing E (K )tors:

THEOREM 2 (Merel - 1994). Let E be an elliptic curve over a number field K
such that [K : Q) =d > 1. Let p be a prime number. If E(K) has a p-torsion point
then p < a3

It is then sufficient to conclude for the case d > 1. Mazur and Kamienny [KM95]
have indeed shown that, by work of Faltings and Frey, Theorem 2 implies Theo-
rem 1. The case d = 1 of Theorem 1 has been proved by Mazur [Maz77, MazT78]
in 1976 as explained by Henri Darmon in his lecture. Mazur gives more precisely a
list of all possibilities for the torsion group over Q. It was actually a conjecture of
Levi formulated around 1908. We can mention also that the cases 2 < d < 8 and
9 < d < 14 have been treated respectively by Kamienny and Mazur (see [KM95]),
and Abramovich [Abr95].

The goal of this note is to give the key steps of the proof of Theorem 2.

REMARK 1. Oesterlé [Oes] later improved the bound of Theorem 2 to (3%/2+1)?
but we will focus on Merel’s original proof (see Section 3.6 concerning Oesterlé’s
trick).

REMARK 2. Unfortunately, the reduction of Theorem 1 to Theorem 2 is not
effective; this explains why the global bound B(d) is not explicit. However, in 1999,
Parent [Par99] gave a bound for the p"-torsion (r > 1, p prime) and thus obtained
a global effective bound for the torsion (later improved by Oesterlé). This bound
is exponential in d. It is conjectured that B(d) can be made polynomial in d.

We will now give the sketch of the proof of Theorem 2. From now on, we
will denote by d > 1, an integer, by p a prime number and write Z = Z[1/p].
Following the traditional approach, Mazur and Kamienny translated the assertion
of the theorem into an assertion about rational points of some modular curves.

2. Mazur’s method

2.1. To a problem on modular curves. We briefly recall that there exist
smooth schemes Xy(p) and X;(p) over Z which classify, coarsely and finely re-
spectively, the generalized elliptic curves endowed with a subgroup, respectively a
point, of order p. We refer for instance to Chapter 3 of [Dar| for more details. We
denote by Yy(p) and Y;(p) the respective affine parts of Xo(p) and X;(p). We use
the subscript g for the algebraic curves over Q obtained by taking the generic fiber
of Xo(p) or X1(p). We will denote by Jo(p) the Néron model over Z of the Jacobian
Jo(p)q of Xo(p)o-

Suppose that F is an elliptic curve over a number field K of degree d > 1
over QQ, endowed with a K-rational p-torsion point P. Then (E, P) defines a point



MEREL’S THEOREM ON THE BOUNDEDNESS OF TORSION 73

Z € Yi(p)(K). We can map this point to a point x € Yy(p)(K) through the usual
covering X1(p) — Xo(p).

If we denote by v1,...,v4 the embeddings of K into C, we then obtain a point
z = (vi(z),...,v4(z)) € Xo(p)P(Q). Here we denote by Xo(p)@ the d-th sym-
metric power of X((p), that is to say the quotient scheme of Xy (p) by the action of
the permutation group Xg4. It is a smooth scheme over Z.

2.2. The Mazur and Kamienny strategy. The strategy is almost the same
as in the case d = 1 explained in [Dar] Ch.3. Let Ag denote an abelian variety
quotient of Jo(p)g and A its Néron model over Z. Kamienny’s idea is to approach
the Uniform Boundedness Conjecture by studying the natural morphism

(d)
@2 Xo(p)@ L= Jo(p) — A

defined as follows. Over Q, this morphism is defined as the composition of the
Albanese morphism (Q1,...,Qq) — [(Q1) + ... (Qq4) — d(c0)] with the surjection of
Jo(p)g to Ag. It then extends to a morphism from the smooth Z-scheme X (p)(?)
to A. For any prime number [ # p, we denote by gb%)]Fl : Xo(p)](F'li) — Ap, the
morphism obtained by taking the special fibers at [. Just as in the case d = 1, we
have

THEOREM 3 (Mazur-Kamienny). Suppose that
(1) A(Q) is finite;
(2) there exists a prime number | > 2 such that p > (1+1%2)? and d)iﬁ‘l is a

formal immersion at oold
F, -

Then Y1(p)(K) is empty for all number fields K of degree d over Q, i.e., there does
not exist any elliptic curve with a point of order p over any number field of degree
d.

PROOF. The proof of this theorem is analogous to the one in the case d = 1.
The principal ingredients of the proof are explained in [Dar] Ch. 3. For a complete
proof, the reader can see [Maz78|, [Kam92] or, for a summary, [Edi95]. The
idea is the following: suppose that there exists a number field K of degree d and a
point of Y1 (p)(K) and consider the point z € Xo(p)(¥(Q) obtained as explained in
Section 2.1. The condition p > (1 + 1%2)? of Theorem 3 implies that the section
s of Xo(p)(d) corresponding to x crosses co(® in the fiber at I. Since s # co(®,
the fact that (bff_)m is a formal immersion at oo]%‘li) and Condition 1 will then give a
contradiction.

|

We now need an abelian variety Ag quotient of Jy(p)g of rank 0 (see section 3.1)
and a formal immersion criterion (see below).

2.3. Criterion of formal immersion. Recall first that a morphism ¢ :
X — Y of noetherian schemes is a formal immersion at a point x € X which
maps to y € Y if the induced morphism on the formal completed local rings
é : 63/\y — (7; is surjective. Equivalently, it follows from Nakayama’s lemma
that ¢ is a formal immersion at x if the two following conditions hold:
(1) the morphism induced on the residue fields k(y) — k(x) is an isomor-
phism;
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(2) the morphism induced on the cotangent spaces ¢* : Cot, (Y) — Cot,(X)
is surjective.

The first condition is verified in our situation, so we are now looking for a criterion
to have

d) * d
¢E43FL : Cot(Ar,) — COtoogw (Xo(p)z(gl))

*
surjective. For this, we will look in more detail at d)(f) .

Let R be a Z-algebra. As in [Dar], denote by S2(I'g(p), R) the regular dif-
ferentials on Xo(p)gr = Xo(p) xz R. For R = C, we obtain the vector space of
classical modular forms S(To(p), C). The g-expansion principle gives an injective
morphism of R-modules

S2(Lo(p), R) = Rllq]].

Furthermore, we have an isomorphism between Cot(.Jy(p)(C)) and S2(Ty(p), C)
coming from the composition of
(1) the isomorphism H°(Jy(p)(C), Q') — Cot(Jo(p)(C)) which maps a dif-
ferential form to its evaluation at O ;
(2) the isomorphism H°(Jy(p)(C), Q1) 2, H(Xo(p)(C), Q) = So(Ty(p), C)
given by Serre duality.
It is a nontrivial fact that this isomorphism Cot(Jy(p)(C)) = S2(To(p), C) extends
to an isomorphism over Z (and actually even over Z). Indeed, Grothendieck du-
ality can be applied in this setting instead of Serre duality and we then obtain an
isomorphism: Cot(Jy(p)) = S2(To(p), Z) (see [Maz78] 2 ¢e)).
Our next task is to analyze the cotangent bundle Cot ) (Xo(p)@). Recall

that ¢ is a formal local parameter of Xo(p) at oo, i.e., Ox,(p),c0 = Z|[q]]. We then
have

OXO(p)(d)s(OO)(d) =Zlq, .., quEd = Zlo1, ..., 04
where for i = 1,...,d, ¢; is a local parameter at co on the ith factor of Xg(p)?
and oy =q1 4+ +¢qq,---,04 = q1 - - qq are the symmetric functions in ¢y, ..., qq.

Consequently, Cot__(a) (Xo(p)(®) is a free Z-module of rank d with a basis given by
the differential forms (doy,...,dog).
We obtain the following diagram:

*

Cot(Jo(p) — = Sa(To(p), 2)—22 Z[[q]]
\ng(d)*
Cot(Xo(p)@)

LEMMA 1. Let w € Cot(Jo(p)) be such that ¢*(w) has a g-expansion equal to
Z7n>1 amqm%~ Then we ha'l}e

¢(d)*(w) = aydoy — agdoy + -+ (—1)" Lagdoy.

PROOF. Denote by 7 : Xo(p)¢ — Xo(p)@ the canonical map. We have

d
W*¢(d)*(w) = Z Z amqrdiqli = Z ammildsm

i=1m>1 di m>1
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where s, = Z?:l g/". Then Newton’s formula
Sm — 018m—1 + -+ (—=1)"mo, =0

gives m~tds,, = (—1)™do,, for m € {1,...,d}. O

We suppose in the sequel that Ag is the quotient of Jo(p)g by an ideal I of the
Hecke algebra T C End(Jy(p)g), so that there is an induced action of T on A. The
exact sequence

0— IJy(p)g — Jo(p)g = Ag — 0

induces a reverse exact sequence for the cotangent bundles after scalar extension
by Z[1/2]

0 — Cot(Az[1/2)) — Cot(Jo(p)z/2) — Cot(Jo(p)zp 2) ] = 0

where we denote by Cot(Jo(p) z[1/2))[{] the differential forms annihilated by /. This
is due to a specialization lemma of Raynaud (see [Maz78] Proposition 1.1 and
Corollary 1.1).

Let | # 2,p be a prime number. We finally have the following diagram in
characteristic [:

Cot(As, ) Cot(Jo(p)z,) — o S(To(p), FI) -2 Fy[[g]

(@
W\\ l%l

ARy
Cot_w (Xo(p)i?)

(d)
o0,

This diagram and Lemma 1 give a criterion for ¢Ej}l‘“z to be a formal immersion

at oo](Fcll) (see Theorem 5 below). Historically, Mazur first showed the following result

which completes the proof of Mazur’s theorem sketched in Section 4 of [Dar] using
for Ag the Eisenstein quotient.

THEOREM 4. The morphism ¢4, is a formal immersion at oop, for all prime
numbers | # 2, p.

PROOF. There is a nonzero w € Cot(Ap,) such that ¢y (w) € S2(L'o(p),F) is
an eigenform (under the action of the Hecke algebra T). Then by the g-expansion
principle and the injectivities in the above diagram, its g-expansion is not identically
zero (because if it were, ¢ (w) itself would be zero). We deduce that a;(w) # 0:
indeed, if it were, since w is an eigenform, we should have a,,(w) = a1(Trw) =
Am(w)ai(w) =0 for all m > 1, so w = 0, which is impossible. It follows that a;(w)
spans Cotooy, (Xo(p)r,) 2 F; and, by Lemma 1, that ¢4 p, is a formal immersion at
QR - O

THEOREM 5 (Kamienny). The following assertions are equivalent:

(1) (Xj& is a formal immersion at oo]gff) ;

(2) there exist d weight-two cusp forms f1,..., fa annihilated by I such that
the vectors (a1(fi), ..., aq(fi))i=1,....a are linearly independent mod l;
(3) the images of Ty, ..., Ty in T/(IT 4+ I) are F;-linearly independent.
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PRrOOF. The equivalence of (1) and (2) follows directly from Lemma 1 since
Cot(A) maps to the forms annihilated by I via the isomorphism ¢*. Condition
(3) is dual to Condition (2) Indeed, the multiplicity one theorem implies that the
pairing

<7 > : SQ(FO(p)vZ) xT — Z
(fa t) — a (tf)
is perfect and then induces an isomorphism of T-modules between S3(I'o(p), Z) and
the Z-dual of T. For a more detailed proof of this theorem, see [Kam92] or [Oes]
Sections 3, 4 and 6. O

3. Merel’s proof

3.1. The Winding Quotient. Denote by Je g the winding quotient (see
[Dar] Ch. 3) and J. its Néron model over Z. We just recall that J. g is the
abelian variety quotient of Jy(p)g by the winding ideal I. of T.

Considering Theorem 3, we are now looking for a quotient Ag of Jy(p)g by an
ideal I C T such that A(Q) is finite. Mazur and Kamienny have used the Eisenstein
quotient, which has this property (see [Maz77, Kam92]). Merel’s fundamental
innovation was to use the winding quotient; this quotient is larger and easier to
exploit than the Eisenstein quotient. This was made possible after the works of
Kolyvagin on the Birch and Swinnerton-Dyer conjecture; indeed, it then turned out
that J.(Q) is finite by construction (see [Mer96] or [Dar] for a summary). Actually,
the Birch and Swinnerton-Dyer conjecture predicts that the winding quotient is the
largest quotient of Jy(p)g of rank zero.

Finally, to prove Theorem 2, thanks to Theorems 3 and 5, it suffices to deter-
mine for which prime numbers p the following is true for a prime number [ # 2
such that p > (1 +1%/2)2:

(%;) the images of Ty, ..., Ty in T/(IT + I.) are F;-linearly independent.

3.2. Merel’s strategy. Suppose now that d > 3. Recall that the Hecke al-
gebra T C End(Jy(p)) also acts on the first group of absolute singular homology
Hy(X;7Z) of the compact Riemann surface X = Xy(p)(C) and that I. is the an-
nihilator of the winding element e € Hy(X;Q) (see the article of Darmon in this
volume). Then T-e is a free T/I.-module of rank 1. It follows that (x;) is equivalent
to

(*;) the images of Tye, ..., Tye in Te/lTe are Fj-linearly independent.
As before, the characteristic zero analogous condition
(%) The, ..., Tye are Z-linearly independent in T - e.

is equivalent to ¢f) being a formal immersion at oogl ) I (%) is true for a prime
number [ then (%) is true, while the condition (x) implies (x;) for almost all prime
numbers /. Kamienny showed that if (%) is true then there exists a prime number
I < 2(d!)®/? (depending on p) such that (x;) is true (see [Kam92] Corollary 3.4 and
[Edi95] 4.3 for the precise bound). The heart of Merel’s proof for the boundedness
of the torsion of elliptic curves is then to prove (x) for p > B > 2041 (g1)54/2 >
(1+ (2(d1)>/2)%72)2.

We will now explain the key steps of this proof omitting the details of the
calculations. For a completed proof, we will refer to [Mer96].
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Consider a fixed prime number p > a3 for d > 3 an integer. To prove that
e, Tye, ..., Tye are linearly independent, it suffices to prove that so are e, tse, . .. tge
where t,, = T,,— o’ (r) with ¢’(r) the sum of divisors of r coprime to p. These slightly
different Hecke operators ¢, are more pleasant to work with because they annihilate
the “Eisenstein part” of e and we can then work as if e were equal to the modular
symbol {0,000} (see section 3.3 for a definition)?.

The idea of the proof is to use the intersection product

o: Hi(X;Z) x Hi(X;Z) — Z.

Suppose indeed that Aje+ Ajtae+-- -+ A.te.e =0 for 1 < ¢ < dand some Aq,..., A,
in Z with A\, # 0. The strategy is then to find z. € H(X;Z) such that

i) tce®x, #0 and ii) treoex., =0 (1<r<c-—1).

This will give a contradiction.?

Two key facts make it possible to follow this strategy: first, there is a pre-
sentation of H;(X;Z) by generators and relations due to Manin [Man72] (see the
section 3.3); secondly, a lemma called lemme des cordes by Merel (Proposition 1
below) enables us to compute the intersection product of two such generators. It
suffices then to express t,e in terms of Manin’s generators (see 3.4).

3.3. Manin’s symbols. Denote by $ the Poincaré upper half-plane. For
a, B € PL(Q), consider the image in ['g(p)\$ of the geodesic path from « to 3 in .
Denote by {«, 8} its homology class in the homology group H; (X, cusps; Z) relative
to the set cusps of the cusps of X.

EXERCISE 1. (1) Show that {c, B} is the sum of classes of type {b/d,a/c}
with a,b,c,d € Z such that ad — bec =1 (hint: use continued fractions).
(2) Show that {b/d,a/c} depends only on the coset To(p) (2 5).
For a solution of this exercise, see [Man72] for instance.
The preceding results imply that there is a surjective map
€+ Z[Lo(p)\SL2(Z)] —  Hi(X, cusps; Z)
Lo(p) g — {g-0.g-00} ={5, 2} g=(2})€SL(2).
Since there is moreover an isomorphism
Lo(p)\SL2(Z) — PY(F,)
To(p)- (2%) —  [c:d],
we will simply write £(c/d) := £((25)).
For k € F¥ we obtain {(k) = {0, 1/k} which is an element of H;(X;Z) (seen as
a submodule of H; (X, cusps;Z)) because 0 and 1/k are conjugate modulo T'g(p).
These elements are generators of H1(X;Z). The other generators of Hy (X, cusps;Z)
are £(0) and £(o0) and they verify £(0) = —£(o0) = {0, 00}.
The following proposition, called lemme des cordes by Merel, gives a method to
compute the intersection product of two Manin symbols in the absolute homology

group. For k € {1,...,p— 1}, denote by k. the element of {1,...,p— 1} such that
kk, = —1 (mod p).

1In the relative homology group, the winding element e differs from {0,000} by an element
which is an eigenvector for all T, with system of eigenvalues {¢’(n)},>1 (up to a constant): this
is what I called the Eisenstein part.

2Actually, for ¢ = 1 the situation will be slightly different because of the Eisenstein part of e.
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Fos

FIGURE 1. Lemme des cordes. Here {(k) @ £(K') = —1.

PRrROPOSITION 1 (Merel). Let k, k' € {1,...,p— 1}. Denote by C}, the chord of
the unit circle from e*™5+/? to e27k/P qnd similarly for k'. Then

§(k) o §(K') = Cp, A Cy,

where Cyr A\ Cy, is the number of intersections of Cy by Ci (equal to 1,0 or —1
according to the trigonometric orientation of the unit circle).

PROOF. See [Mer96] Lemma 4. O

3.4. Two useful formulas. Because of their technical aspect, we will not
reproduce the proofs of the following formulas which appear in Lemmas 2 and 3 of
[Mer96|.

We have first a formula for ¢,.e (r > 1) in terms of the Manin symbols &(k):

PROPOSITION 2 (Merel). Let r < p be a positive integer. Then
tre=— Y &w/t)
(w t)ex

where X, is the set of matrices (4 7) of determinant r such that 0 < w < t and
u>v>0.

For r = 1, we can compute directly the intersection of e with a Manin generator:

PRrROPOSITION 3 (Merel). For any k € {1,...,p — 1} we have
k. —k

(p—1eeol(k) = (p—1) = 125(k,p),

where S(k,p) = Z,’;}) Bl(%)Bl(%h) is the Dedekind sum and B the first Bernoulli
polynomial made 1-periodic.

REMARK 3. Note that in Proposition 2 the £(0) and £(oo) terms vanish. This
is not surprising since t,e lies in the absolute homology group.

3.5. Conclusion of the proof. We will now explain how Merel put all the
previous ingredients together to obtain the proof of (x) for p large enough.
Suppose that there are integers A1, ..., A\g such that

)\16 -+ )\27526 + -+ )\dtde =0.

We will show successively that A\; = 0 for all < € {1,...,d}, treating the case of \;
independently.
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k

(v -1)/d -

L«

FIGURE 2. Case 7 = 1.

Case i = 1. We look for z of the form x; = £(k) for some k such that
i)eo&(k)#0 and ii) treo&(k) =0 (L<r<d).

Suppose that p > d. By Proposition 2, the condition i7) is equivalent to

> Ew/tyelk)=0 (1<r<d).

(¢ )eX

It suffices to find k such that {(w/t) e £(k) = 0 for all (¢ ) € X,. That is what
Merel does. Let I € {1,...,p—1} such that [ = wt~! (mod p) for some (% ?) € X,.
Then I, = —tw~! (mod p). By Remark 3, we can suppose that neither ¢ nor w are
divisible by p.

EXERCISE 2. Show that | and [, are larger than %.

Applying the lemme des cordes it suffices to find k such that both the complex
numbers e275/P and e2i7k+/P are in a portion of the circle where e27/? cannot be,
so for instance, by the exercise, such that both k and k, lie in [0, %[. Merel uses
then the following analytic lemma ([Mer96] Lemma 5) to ensure that, provided
p>d*® and k € ZN 25, & + 1] then k, € ZN]& —1- 1, %[. (More precisely,
this is already true when p/log*(p) > d*.)

LEMMA 2. Let p be a prime number and a,b > 1 two real numbers. Let A, B C
{1,...,p — 1} be two intervals of cardinalities p/a and p/b respectively. If p >
a®b?log* (p) then there exists k € A such that k. € B.

We deduce from the following exercise that condition i) above is also verified
assuming that p > 43¢
EXERCISE 3. Using the Dedekind’s reciprocity formula
p k 1
12(S(k, Sp,k)=-3+>+—-+—
(S(k,p) +5(p, k) et
and the inequality |12S(p, k)| < k, show that

> - _
co&(k) 1]:0d 10d — 2

for all k as before.
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q+9
k

FIcure 3. Case i > 1.

Case ¢ > 1. Suppose now that
)\the +--F /\ctce =0

for some ¢ < d. The method is almost the same as before: we look for x. = £(k)
such that

i) tce @ &(k) #£0 and i) treo&(k) =0 (2<r<c).

We remark that in the formulas for t,.e,r = 2,..., ¢, of Proposition 2, the Manin
symbol £(1/¢) occurs only in t.e and not in t.e for r < c. So we will look for & such
that £(1/c) @ £(k) = +1 and £(w/t) e £(k) =0 for all (%) € X, (r < c¢) such that
w/t #1/c.

Let ¢ and [ in {1,...,p — 1} such that ¢ = 1/¢ (mod p) and | = w/t # 1/c
(mod p) for some (,, {) € X, (r <c).

EXERCISE 4. Show that |l — q| > 0, where § = d’g;flj).

By the same analytic lemma as before, it is possible to find k €]q, ¢ + ¢] such
that k. € [¢ — d,¢] and ¢, & [q — J,q + 6] when p is large enough, more precisely
when p/log*(p) > Sup(d®,400d*). By the lemme des cordes, this then forces A, to
be zero.

This finishes the proof of Theorem 2.

3.6. Oesterlé’s variant. As we said in Remark 1, Oesterlé improved Merel’s
bound for the torsion of elliptic curves. For this, Oesterlé proved directly the formal
immersion in positive characteristic:

PROPOSITION 4. Suppose that p/log* p > (2d)®. Then for all | > 3, the condi-
tion (%) is true, that is to say ¢Ej}l‘“z is a formal immersion at oo[(FCll),

For d > 33, Theorem 2 with the bound (342 + 1)? then follows directly from
Theorem 4, since p > (3%2 + 1)? implies p/log* p > (2d)°® in that case. Oesterlé
studied the cases d < 37 by computations.

Let us give a sketch of proof of Proposition 4. Let T, be defined by T, = >, T

slr+s
for all » > 1 and, instead of t,, = T,.—o’(r) (r > 1), consider the following generators

of the Eisenstein ideal I:

T — if
L =n, and L»:{’” TR ),
if p|r
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where we denote by n, the numerator of (p —1)/12. We have t, = -, I, for
all 7 > 1.

PROPOSITION 5. If the images of Ise, ..., Irqe in Ie/lle are Fi-linearly inde-
pendent, then Tye, ..., Tqe are Fi-linearly independent in Te/lTe; that is to say (%)
s true.

PRrOOF. We have

o Iz, — 21, if  is odd
YT = .
Iyy — 31, + 21, )5 if r is even.
So if Ise,...,Iy-e are linearly independent in Ie/lle, so are The,...,T4Ty e and,
since The = (Th — 3)e € Ie, we obtain that Tje,...,Tje are linearly independent
in Te/ITe. But T, = T + >, ., Ts so Tie, ..., Tye are linearly independent in
Te/iTe. O

Moreover, Oesterlé used Proposition 2 and the lemme des cordes to give an
explicit formula for ¢.e o {(k) and then for I,e o {(k) (which is the unique “r-th
term” of t,.e @ £(k)):

W fese® = 2] - 2] ut - ut) rzake . po)

p p
where v,.(k) = #{(a,a’,b,V) € Z,a,a’,b,b/ > 1,ad’ + b0’ = r,(a,b) = 1,0k = a
(mod p)}. The end of the proof is then mutatis mutandis the same as Merel’s:
using Lemma 2, Oesterlé showed that, when p/log*(p) > d®, it is possible for each
r > 2 to find k such that I,e e £(k) = 1 and I;e e £(k) = 0 for s < r. He deduced
that for p/log*(p) > dS, Ise, ..., I e are linearly independent. Applying this for 2d
instead of d and using Proposition 5 gives Proposition 4.

This is how one can obtain Oesterlé’s bound. As we said in Remark 2, the
question of finding a bound growing polynomially in d remains open.

REMARK 4. As Merel pointed out to me, the result of Proposition 5 is still
true replacing I, by ¢, (2 < r < 2d). Indeed, a calculation proves that t;7; €
t2i + > _1<j<; LTj. Using the results of the section 3.5 case i > 1, it follows that
when p/log*(p) > Sup(d®,400d*), (x;) is true for all [ > 3. Since p > (3%/2 + 1)2
implies p/ log*(p) > Sup(d®,400d*) provided that d > 37, it gives Oesterlé’s bound
in that case. The other cases have been studied by Oesterlé.
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AsstracT. In this paper, we summarize the work of Halberstadt and Kraus on generalized
Fermat equations of the shape ax" + by" = ¢Z". In particular, we sketch the proof that, for
fixed odd coprime integer coefficients a, b, c, there is a set of primes n of positive density
for which only trivial solutions (x, y, 2) occur.
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1. Introduction

Our purpose is to publicize the statement and the proof of the following theorem
[HK 02, théoreme 2.1]:

Tueorem 1.1 (Halberstadt-Kraus (2002)). Let a, b, ¢ be odd pairwise coprimeintegers.
Then thereis a set of primes P = $(a, b, ) of positive density such that if p € #, then the
equation

@ axP +by? +cz’ =0
has only trivial rational solutions (x,y, 2) € QS.
A solution (X, y, 2) is called trivial in our context if xyz = 0.

One must point out that before Wiles’s work, even the case a = b = ¢ = 1 was
unknown. Theorem 1.1 exhibits the first infinite family of generalized Fermat equations
having only trivial solutions.

Note that the set of primes # will be given by congruence conditions. These can be
made more precise and explicit for particular choices of triples (a, b, ¢). For instance, the
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(©2009 Pierre Charollois
83
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proof of Theorem 1.1 yields the following, providing a partial answer to a question raised
by Serre [Ser87, p.204]:

Tueorem 1.2, If p> 7 isa prime number satisfying p £ 1 mod 12, the equation
XP+3yP+52° =0
has only trivial solutions over Q. So does the equation
XP +yP +1572° = 0.

The proof of these theorems relies crucially on the modularity theorem for elliptic
curves from Wiles and his followers, as well as Ribet’s level-lowering theorem. Another
expository paper on the application of these modular techniques to Diophantine equations
can be found in [Sik07].

It is a pleasure to thank Henri Darmon and Alain Kraus for their help and their support.

2. Preliminary section

In this section, we give some classical necessary preparation for the theorems. Namely,
following the lines of the exposition in section 4 of [Dar], we attach successively three
objects to a hypothetical solution (X, y, ) of (1):

1. AFrey curve Ey whose invariants can be computed.

2. Arepresentation p describing the action of Gal(Q/Q) on the p-division points of
Eo.

3. Corresponding to p is a cusp form f of weight 2 for T'o(N), where N divides the
conductor of Ey. We then reduce to the case where f has integer coefficients.

After this preparation, the point is to be able to discard all such modular forms. Halber-
stadt and Kraus manage to do so using their so-called “symplectic criterion” which will be
explained in detail in the last section.

We proceed by contradiction and start from a hypothetical non-trivial solution

(x ¥, 2 €Q’
of equation (1). Adjusting p™-powers and clearing denominators, we can assume without
loss of generality that x, y, z are coprime integers, and that a, b and ¢ do not contain any
p™-powers.

One can reorder and label the three integers axP, byP and cz” by A, B and C respec-
tively so that B is the only even integer among them, and A = +£1 mod 4. By adjusting
the signs of our solution, we are reduced to the case where A = -1 mod 4. To this data
A+ B+ C = 0 we attach the Frey curve over Q

Eo:  Y2=X(X-A(X+B).

The computation of its invariants on this model using classical formulae [Sil86, p.46] leads
to:
& =16(A>+ AB+B?) and A = 16(abc)?(xy2)*® = 16(ABC)?.

If £ + 2 is a prime dividing A, it cannot divide &. Hence Ej is semi-stable outside 2.

To study the reduction of Eq at £ = 2, let us change the variables to X’ = 4X and
Y’ = 8Y + 4X. Assuming that 16 divides B (since we will assume that p > 5, even 32
divides B), one obtains a global minimal Weierstrass equation for Eq over Q. At this point
the minimal discriminant turns out to be

3] A(Ep) = 2"8(ABC)?,
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and c4(Ep) is odd. Finally, Eq is also semi-stable at £ = 2, and thus is semi-stable. Its
conductor is the radical of the discriminant, that is (because 32 divides B)

N, = [] ¢
¢ prime, (|ABC

Key observation: Notice the factor 2 involved in formula (2) for the minimal discrim-
inant. The “minus sign” of the exponent turns out to be crucial in the proof of Theorem
1.1

The set of p-torsion points Eo[p] of Eq(Q) forms a Fp-vector space of dimension 2.
The absolute Galois group Go = Gal(Q/Q) acts naturally on Eg[p]. Thus we obtain a
representation

p. GQ - AUt(Eo[p]) ~ GLZ(FP)

If p is reducible, then E, contains a rational subgroup of order p. This cannot be the case
if p > 17 because of the boundedness result of Mazur [Maz77, Th. 8] for the torsion of
elliptic curves over Q. Hence p is irreducible if p is large enough. Notice how our original
Diophantine question has been transferred to this new Diophantine problem solved by
Mazur. For more on this result, see [Reb] in this volume. This bound p > 17 is sufficient
for us to prove Theorem 1.1. Nevertheless, a more precise result is given in [Kra97,
Lemma 4] showing that p is irreducible as soon as p > 5.

Serre [Ser 87] associates to such a representation a conductor N|Ng,. In our context we
have

N = 2 rad(abc) := 2 [_[ .
¢ prime, ¢|abc

By the result of Wiles [Wil95], the semi-stable elliptic curve Eq is modular: the func-
tion on the upper half-plane 7 — 3.1 an(Eo)q" belongs to the space S,(I'o(Ng,)) of cusp-
idal modular forms of weight 2 on I'y(Ng, ).

The “lowering the level” Theorem of Ribet [Rib90] ensures that the representation p
is then modular: there exists a newform f = g+ > 5> @,q" of weight 2 on I'o(N) (where N
now depends only on abc and not on (X, vy, 2) or p) and a place p of Ky = Q(ay, ..., an,...)
above p such that

3) i) a = a/(Eo) mod p if £ 4 Ng,p
i) ag=«(+1) mod p if €| Ng, and ¢ + pN.

In the case of Fermat’s last Theorem, one could show that N = 2 and the previous
results were enough () to derive a contradiction since there is no cusp form of weight 2
and this level. In proving Theorem 1.1 and 1.2, Halberstadt and Kraus needed to refute the
existence of such a form using an additional argument.

3. Proof of Theorems1l.1and 1.2

Let f be the modular form of level N given by the previous construction. Both f and
N do not depend on the solution (X, y, 2) nor on p. We first reduce to the case where the
modular form f has coefficients in Z. Otherwise, the finite extension K = K of Q has
degree bounded by g = dimg(S)*(I'o(N)). Let a, ¢ Z for the smallest possible prime £.
Both g and ¢ do not depend on p. We can assume that ¢ does not divide pN because a,
would be 0, +1. Thus in the previous case i) p divides Nk,q(a, — a,(Eo)), while in case ii)
p divides Nk q(a, = (£ + 1)). The Hasse bound gives |a,(Eo)| < 2 V¢, while Weil-Deligne’s
bound shows that |o-(a)| < 2 V¢ for each real embedding o of K.
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In any case p is bounded by a number depending only on a, b, c. Therefore, choosing
large enough p we can make sure that f has integer coefficients. Under this hypothesis, the
Eichler-Shimura theory provides an elliptic curve E” over Q of conductor N such that the
Hasse-Weil function of E’ is 3 a,ns.

For almost all primes ¢, the congruence relations (3) impose that a, = a,(Eg) mod p.
This is enough to show that the Galois modules E[p] and E’[p] are isomorphic. For, if
¢ ¥ pNg, the Frobenius element Frob, in Aut(E[p]) has trace (resp. determinant) a, mod
p (resp. ¢ mod p). The same occurs with E’. By the Chebotarev density theorem, this
implies that an element g € Gg has the same characteristic polynomial when it acts on
E[p] or E’[p]. Thus the two representations of Gq in the p-division points of E and E’
have isomorphic semi-simplifications. Our assertion follows since E[p] is irreducible.

At this point, the following key proposition is in order:

ProrosiTion 3.1 ( [KO92], Prop. 2). Let E and E’ be two €elliptic curves over Q with
minimal discriminants A and A’, and let p be a prime number.

Assume that the groups of p-torsion points E[p] and E’[p] are isomorphic as Gg-
modules. Assume also that E and E’ have multiplicative reduction at a common prime
¢ # p such that p does not divide the valuation v,(A). Then we have

a) The prime p does not divide v (A").
b) The following conditions are equivalent:
(i) thereis a symplectic (viz. compatible with the Wil pairing on E[p] and
E’[p]) isomorphism between these two representations.
(ii) the quotient v,(A)/v,(A”) isa squarein (Z/pZ)*.

We postpone the proof of this “symplectic criterion” to the last section. The way it
implies Theorems 1.1 and 1.2 is a bit tricky. Up to isogeny, there is only a finite number of
elliptic curves over Q of conductor N, say E, ..., En. We label our previous curve E” = E;
among them, and we want to apply the criterion to the pair (Eo, E;).

Recall that Eq has minimal discriminant

A(Eo) = 2-°(abc)’ (xy2)?P.

We can assume that |abc| > 2 by Fermat’s last theorem. Now we choose a first prime ¢;
dividing the odd integer abc, and ¢, = 2. If p is large enough, p divides neither v, (A(Ep))
nor v, (A(Ep)).

Let us emphasise that we are not going to decide whether or not E; and Eq are sym-
plectically isomorphic. But in both cases, Proposition 3.1.b implies that the product of the
two terms

vV, (A(Eo)) mod pand V2(A(Eo))
Vi, (AGE))) V2(A(E))
isa sguare mod p because both terms are simultaneously squares or non-squares.

Equality (2) shows that the numerator of this product is

Ve, (A(Eo))V2(A(Eo)) = 2 v, (abc)(-8)  mod p
= —-16v,(abc) mod p.

mod p

Therefore the symplectic criterion implies that the integer n; defined by
nj = —vg, (@bc)ve, (ACE}))V2(A(E;))

has to be a square mod p.
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Hence if p >,p¢ 0 is a prime satisfying

@ (%’):-1 forall j=1,...,h,

the equation axP + byP + c¢z? = 0 has no non-trivial solution. It remains to show that these
conditions are simultaneously satisfied on a set of positive density. To do this, let p be a
prime such that

i) —1isanon-square mod p;
if) each prime divisor of nj (j = 1,..., h) is a square mod p.

The previous two conditions define a subset of # which has positive density by Cheb-
otarev’s Theorem. Theorem 1.1 follows. O

Proof of Theorem 1.2 (sketch):

Both equations xP + 3yP + 5z° = 0 and xP + yP + 15z = 0 have coefficients a, b, ¢
satisfying abc = 15. The existence of a putative non-trivial rational solution with p > 7
leads to cusp forms of level N = 30. There is only one such newform of weight 2. Thus
the Galois module Ey[p] has to be isomorphic to E;[p], where E; is an elliptic curve of
conductor 30, say 30A1 in Cremona’s tables. The minimal discriminant of E; is

A(E;) = —23%5.

Then we choose ¢; = 2 and ¢, = 5 to deduce that n; = —1 must be a square mod p.
But we could also use ¢, = 3 and obtain that —3 must be a square mod p.

The only primes p satisfying both conditions are those congruent to 1 mod 12. If we
avoid such primes, there can be no non-trivial solutions. Therefore we obtain the conclu-
sion of Theorem 1.2, at least for p large enough. The lower bound for p can be made
precise using the explicit formulations of [Kra97]. o

4. Proof of the symplectic criterion

We conclude this paper by proving the key Proposition 3.1, following closely the lines
of [KO92]. The proof consists of a local study of E and E’ at the place ¢, for which the
Tate curve model can be used to make the computations explicit.

Let K = Q)" denote the maximal unramified extension of Q. Both E and E’ having
multiplicative reduction over Q at ¢, their j-invariant is not an integer in K. We deduce
from [Sil94, Th. V.5.3] that E is uniformized over K by a Tate curve Gn,/q%, where g in K
has valuation e = —Vv,(j(E)) = v¢(A). The same is true for E’, with a @ € K of valuation
e = Vg(A').

The given isomorphism and the previous uniformizations combine to provide a
Gal(K/K)-module isomorphism ¥ between the p-division points E[p] of K*/g” and those
E'[p] of K*/q”. .

Let us describe the effect of Gk = Gal(K/K) and ¥ on a basis of E[p], following
[Sil94, Prop. 5.6.1]. First note that K contains the p'-roots of unity, and let us fix ¢ a
primitive one. Fix also y € K, a p™-root of g. Then {¢¢f, yoZ} forms a basis for E[p]. The
Galois group G acts transitively on the p conjugates {¢ly, 1 < j < p}. Hence there is a
distinguished element o € G which satisfies o(¢) = £y, i.e. whose matrix is (§ 1).

As G fixes ¢, it acts trivially on E[p] iff y is in K, that is, iff p divides e = v,(q). The
same assertion holds for E’[p] and €. These two Galois modules are isomorphic and p
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does not divide e by assumption, so we conclude that p cannot divide €, which is assertion
a). Hence there are integers mand n such that

€ = ne+ mp.

We detail how ¥ acts on our basis. Since g’ /(q"I™?) is a unit in K, it has a p™-root
a € K. We obtain a p™-root of g by setting ' = y"IMa, completing a basis {¢qZ, v'of 2}
of E’[p].

Observe that for all g € Gk, we have P(/0?)? = P((¢g?)9) = P(/o?) because WP is
compatible with Gg. Therefore the matrix of W with respect to the previous basis is upper
triangular, say of the form (35).

The very definitions of o and y’ lead to the identity o(y’) = oc(y)"oc(IMa) = Y.
Compatibility between ¥ and o can be written in matrix terms as follows:

a blf1 1) (1 n)\fab

0 d 0 1/ {0 1 0 d/)
Identification of upper right entries shows the intermediate identity
(5) a=nd.

Now we turn to the Weil pairing. It is a bilinear alternate pairing satisfying the follow-
ing identities on E[p] and E’[p] respectively:

BOyd®, ¢a’) =¢. B'(yq”, ¢q%) =¢.
Assuming that ¥ is a symplectic isomorphism, we obtain
¢ = B(yq’, (o) = B'(Y(a), Y(£a) = B'(°y'q=, ¢*q®) = ¢
It follows thatad = 1 mod p, or nd?> =1 mod p by (5) and n is a square modulo p.
Reciprocally, if n is a square modulo p, there is an integer r such that r>nd> = 1

mod p. It can be easily checked that the r™-power W' defines the required symplectic
isomorphism between the Tate curves, hence E and E’ are symplectically isomorphic. o

5. Limitations of the method

The paper [HK 02] presents the symplectic method and two others (called the reduc-
tion method and the decomposition method) to handle the case of different generalized
Fermat equations. Even if Theorem 1.1 is successful, as it solves an infinite family of
Fermat equations, many questions are still open.

For instance, the remaining case p = 1 mod 12 in Theorem 1.2 cannot be settled
using the methods of Halberstadt and Kraus. This would provide a complete answer to the
question raised by Serre.

The authors also mention (Exemple 2.12) the case of the curve

16X’ + 87y’ + 6257 = 0.

Denote by E, the corresponding Frey curve and by E; the elliptic curve 435C2. The
symplectic criterion cannot ensure that p7E° and p7E1 are not isomorphic since Ey and E;
have discriminants 325829 (xyz)'* and 3*5%29? respectively.

Moreover, the aim of their three methods is to show that the set of solutions of some
generalized Fermat equation is trivial. Thus the case of the Diophantine equation axP +
byP + ¢z’ = 0 with a + b + ¢ = 0 falls out of their scope because the non-trivial solution
(1,1,1) has to be considered.
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Nevertheless, a result in this setting has been obtained in [DM97], providing an opti-
mistic conclusion to this section and to this note:

Tueorem 5.1 (Darmon-Merel (1997) [DM97]). Let n > 3 be an arbitrary integer.

Then the equation
X"+y'-22"=0
has no integer solutions (x,y, 2) € Z3 with | xyz|> 1.
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Heegner points and Sylvester’s conjecture
Samit Dasgupta and John Voight

ABSTRACT. We consider the classical Diophantine problem of writing positive
integers n as the sum of two rational cubes, i.e. n = 23 + y3 for z,y € Q. A
conjecture attributed to Sylvester asserts that a rational prime p > 3 can be
so expressed if p = 4,7,8 (mod 9). The theory of mock Heegner points gives
a method for exhibiting such a pair (z,y) in certain cases. In this article, we
give an expository treatment of this theory, focusing on two main examples:
a theorem of Satgé, which asserts that 3 4+ y3 = 2p has a solution if p = 2
(mod 9), and a proof sketch that Sylvester’s conjecture is true if p = 4,7
(mod 9) and 3 is not a cube modulo p.

1. A Diophantine problem

1.1. Sums of rational cubes. We begin with the following simple Diophan-
tine question.

QUESTION. Which positive integers n can be written as the sum of two cubes
of rational numbers?

For n € Z~g, let E, denote the (projective nonsingular) curve defined by the
equation 23 4¢3 = nz3. This curve has the obvious rational point co = (1 : —1: 0),
and equipped with this point the curve F, has the structure of an elliptic curve
over Q. The equation for E,, can be transformed via the change of variables

(1) X=12n——, Y =36n"""Y
Tty r+y

to yield the affine Weierstrass equation Y2 = X3 — 432n2.

We then have the equivalent question: Which curves F,, have a nontrivial ratio-
nal point? For n not a cube or twice a cube, F,,(Q)tors = {00} (see [Sil86, Exercise
10.19]), so also equivalently, which curves E,, have positive rank rk(E,(Q)) > 07?

EXAMPLES. Famously, 1729 = 13 4 123 = 92 + 103; also,

15642626656646177\ ° —15616184186396177 \ * _ o4
590736058375050 590736058375050 T

2000 Mathematics Subject Classification. Primary 11G05; Secondary 11F11, 11D25.
Key words and phrases. Modular forms, elliptic curves, Heegner points, Diophantine
equations.
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In each case, these solutions yield generators for the group E,(Q). (Note n =94 =
247 is a case covered by Satgé’s theorem below, cf. §3.1.)

1.2. Sylvester’s conjecture. We now consider the case n = p > 5 is prime.

CONJECTURE (Sylvester, Selmer [Sel51]). Ifp=4,7,8 (mod 9), then p is the
sum of two rational cubes.

Although this conjecture is traditionally attributed to Sylvester (see [Syl79b,
§2] where he considers “classes of numbers that cannot be resolved into the sum or
difference of two rational cubes”), we cannot find a specific reference in his work to
the above statement or one of its kind (see also [Syl79a, Syl80a, Syl80b]).

An explicit 3-descent (as in [Sel51], see also [Sat86]) shows that

0, ifp=2,5 (mod 9);
tk(E,(Q)) << 1, ifp=4,7,8 (mod 9);
2, ifp=1 (mod 9).
Hence rk(E,(Q)) = 0 for p = 2,5 (mod 9), a statement which can be traced back

to Pépin, Lucas, and Sylvester [Syl79b, Section 2, Title 1].

The sign of the functional equation for the L-series of E, is
-1, ifp=4,7,8 (mod 9);
+1, otherwise.

sign(L(E,/Q,s)) = {

(See [Kob02]; this can be derived from the determination of the local root numbers
wy(Eyp) = (=3/p) and w3(E,) =1 if and only if p = £1 (mod 9).)

Putting these together, for p = 4,7,8 (mod 9), the Birch-Swinnerton-Dyer
(BSD) conjecture predicts that rk(E,(Q)) = 1.

1.3. A few words on the case p = 1 (mod 9). For p = 1 (mod 9), the
BSD conjecture predicts that rk(E,(Q)) = 0 or 2, depending on p. This case was
investigated by Rodriguez-Villegas and Zagier [RVZ95].

Define S, € R by
I'(3)°V3
uey e - s,

then in fact S, € Z, and conjecturally (BSD) we have S, = 0 if #E,(Q) =
and S, = #H_I( ») otherwise. Rodriguez-Villegas and Zagier give two formulas for
Sp, one of which proves that S, is a square. They also give an efficient method to
determine whether S}, = 0.

1.4. The case p=4,7,8 (mod 9): an overview. Assume from now on that
p=4,7,8 (mod 9). We can easily verify Sylvester’s conjecture for small primes p.

7=2%4(-1)°

13 = (7/3)3 + (2/3)3

17 = (18/7)* 4 (—=1/7)3
31 = (137/42)3 + (—65/42)3
43 = (7/2)% + (1/2)*
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Again, the BSD conjecture predicts that we should always have that p is the sum
of two cubes. General philosophy predicts that in this situation where E, has
expected rank 1, one should be able to construct rational nontorsion points on £,
using the theory of complex multiplication (CM).

In §2, we introduce the construction of Heegner points, which uses the canonical
modular parametrization ® : Xo(N) — E, where N is the conductor of E,; this
strategy requires a choice of imaginary quadratic extension K and is therefore not
entirely “natural”. If instead we try to involve the field K = Q(w), we arrive at a
theory of mock Heegner points. We then choose a fixed modular parametrization
Xo(N) — E where E is a designated twist of E, for each prime p.

In §3, we illustrate one such example, originally due to Satgé. We look at the
parametrization X((36) — E where E : y? = 23 4+ 1 is a twist of the curve Es,.
We show that when p = 2 (mod 9), the equation 23 + y* = 2p has a solution; the
proof involves a careful analysis of the relevant Galois action using the Shimura
reciprocity law and explicit recognition of modular automorphisms.

In §4, we return to Sylvester’s conjecture, and we sketch a proof that the
conjecture is true if p = 4,7 (mod 9) and 3 is not a cube modulo p; here, we
employ the parametrization X((243) — Fg. We close with some open questions.

2. Heegner and Mock Heegner points

2.1. Heegner points. The curve E, has conductor N = 9p? if p = 7 (mod 9)
and conductor N = 27p? if p = 4,8 (mod 9). We have the modular parametrization

d: Xo(N) = E,,

from which we may define Heegner points as follows.

Let K = Q(\/E) be a imaginary quadratic field of discriminant D such that 3
and p split in K; the pair (E,, K) then satisfies the Heegner hypothesis. Let Ok
denote the ring of integers of K, and let 91 C Ok be a cyclic ideal of norm V.
Then the cyclic N-isogeny

C/Ox —C/M!
defines a CM point P € Xo(N)(H), where H is the Hilbert class field of K.

Let Y = Try/x ®(P) € E,(K) denote the trace, known as a Heegner point.
After adding a torsion point if necessary, we may assume Y € E,(Q) (see [Dar04,
§3.4], and note E,(K)tors = Ep[3](K) = Z/3Z.)

2.2. Gross-Zagier formula. The Gross-Zagier formula indicates when we
expect the point Y € E,(Q) to be nontorsion, i.e. when its canonical height h(Y")
is nonzero.

THEOREM (Gross-Zagier formula [Dar04, Theorem 3.20]). We have
WY) = L'(E,/K,1) = L'(E,/Q, 1)L(E,/Q, xx, 1)-

Here the symbol = denotes equality up to an explicit nonzero “fudge factor.”
Thus if we choose K such that L(E,/Q, xk,1) # 0, the BSD conjecture implies
that h(Y) # 0 and hence Y will be nontorsion. Working algebraically, without
making any reference to L-functions, one might hope to prove that Y is nontorsion
directly and unconditionally. But this strategy seems tricky—in particular, no

natural candidate for K presents itself. In the next section we discuss a more
“natural” approach to constructing a nontorsion point on E,,.
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2.3. Mock Heegner points. We consider a variation of the above method
where we construct what are known as mock Heegner points; this terminology is
due to Monsky [Mon90, p. 46], although Heegner’s original construction can be
described as an example of such “mock” Heegner points.

Consider the field K = Q(v/—3) = Q(w), where w is a primitive cube root of
unity. Note that the elliptic curve E,, : 3 + y3 = nz® has CM by O, given by

Wiz, y) = (wz, wy).

The prime 3 is ramified in K, so the Heegner hypothesis is not satisfied for
the pair (E,, K). Nevertheless, Heegner-like constructions of points defined by CM
theory may still produce nontorsion points in certain situations.

2.4. Twisting. Notice that

(2) (r/p) + (/9P =1 = 1’45 =p.

The obvious equivalence (2) suggests that to find points on E,(K'), we may identify
E, as the cubic twist of Ey by ¢/p. More precisely, let L = K(¢/p), and let o be the
generator of Gal(L/K) satisfying o({/p) = w¢p. The Galois group Gal(K/Q) is
generated by complex conjugation, which we denote by —. We have an isomorphism
of groups

Ep(Q) = {(r/p,s//p) € Ex(L) : 7,5 € Q}
={Y€E(L): Y’ =uw?Y, Y =Y}

In other words, we look for points on E (L) with specified behavior under Gal(L/Q).

More generally (see [Sil86, §X.5]), if F/Q is an elliptic curve, then one defines
the set of twists of E to be the set of elliptic curves over QQ that become isomorphic
to E over Q, modulo isomorphism over Q. There is a natural bijection between the
set of twists of F and the Galois cohomology group

HY(Q, Aut(E)) := H(Cal(Q/Q), Aut(Ey)).
In our setting,

E(Q)={Y e E(L): Y’ =w?Y, Y =Y}
(3) ={Y € Ei(L):Y" =c¢,;Y forall 7 € Gal(L/Q)}

where [c,] € H'(Q,Aut(E)) is the cohomology class represented by the cocycle
cr = /p/7(/p). To find a point Y in the set (3), we may take any @ € (L) and
consider the twisted trace

Q =Q+wQ” +w*Q” € Ey(L).

The point Q" has the property that (Q')° = w?(Q’).

Now suppose that Q' is nontorsion. Consider then the point Y = Q' + Q' in
the set (3); either it will be nontorsion, or else it will be trivial and then instead
v/—3Q’ is a nontorsion point in the set (3). Thus, in any case, a nontorsion @’ will
yield a nontorsion Y.
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2.5. Mock Heegner points on Xy(27). To summarize, if we can construct
a point Q € E1(L), then by taking a twisted trace we can construct a (hopefully
nontorsion) point Y € E,(Q). We look to CM theory to construct the point Q.
We have a modular parametrization

d:Xo(27) = By Y2 49Y = X3 27
n(92)"  n(32)°
n(32)n(272)%" n(272)* )
where 7n(z) = ¢*/?* T[>, (1 — ¢") is the Dedekind eta-function and q = exp(27iz).
n=1

In this case, the map & is an isomorphism of curves.
The field L = K(¢/p) is a cyclic extension of K with conductor

zn—>(X,Y):<

. )3p, ifp=47 (mod9);
f(L/K)_f_{p7 ifp=38 (mod 9).

As L is of dihedral type over Q, it is contained in the ring class field of K of
conductor f, denoted Hy. Let Ok, = Z+ fOk denote the order of Ok of conductor
f,and let P € X(27)(Hy) be defined by a cyclic 27-isogeny between elliptic curves
with CM by Ok . We define the point Q@ = Trg, /1, ®(P) € E1(L) and ask: Is the
point () nontorsion?

Let us compute an example with p = 7. For an element z in the complex upper
half plane ), denote by (z) the elliptic curve C/(1, z). We have a cyclic 27-isogeny,
obtained as a chain of 3-isogenies, given by

(4) {wp/3) = (wp) = ((wp +2)/3) = ((wp +2)/9);

this isogeny has conductor 3p. Under the identification I'o(N)\$H = Yy(IV), an
element z € §) represents the isogeny (z) — (Nz). The isogeny in (4) is represented
by the point z = M(wp/3), where M = (31) € SLy(Z). In this case, we have
H; = Hj, = K(a) with a = /=7 = V/Texp(mi/6). One computes that the point
®(z) =P =(X,Y) € E1(Hs,p), in Weiestrass coordinates as above, agrees with the
point

X

(—180w — 90)a”® + (—216w — 216)a* + 2 (—345w — 690)a
— 4140” + (330w — 330)a + 1 (1581w),
Y = (—6210w + 6210)a” — 14877wa® + (—23760w — 11880)a*
+ (—28458w — 28458)a? + (—22725w — 45450)a — 54441
to the precision computed. One can then verify computationally that
Q="Try,,L(P) = (3w,0) € E1(L)

is torsion!

The method we have outlined thus fails in this case; we see similar behavior
for the eight other distinguished cyclic 27-isogenies of conductor 3p, as well as for
other values of p.

3. Satgé’s construction

3.1. Satgé’s construction. Our first attempt at constructing a mock Heeg-
ner point using the parametrization X((27) — E; (in §2.5) yielded only torsion
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points on E,(Q). We now exhibit a similar construction which does work, but not
one which addresses Sylvester’s conjecture.

THEOREM (Satgé [Sat87]). If p =2 (mod 9), then #FE5,(Q) =oc0. If p=5
(mod 9), then #FE5,(Q) = oc.

Another result in the same vein is the following.

THEOREM (Coward [Cow00]). If p = 2 (mod 9), then #E25,(Q) = co. If
p =5 (mod 9), then #Es5,2(Q) = oo.

Our expository treatment of Satgé’s theorem will treat the first case, where
p = 2 (mod 9); see also the undergraduate thesis of Balakrishnan [Bal06]. The
second statement follows similarly. Our proof proceeds different than that of Satgé;
his original proof is phrased instead in the language of modular forms.

3.2. Twisting. Instead of the parametrization X¢(27) — E7, we use
: Xo(36) = F:y? =a3+1.

Over K, the cubic twist of E by ¢/p is isomorphic to Ey,. (Over Q, it is the
sextic twist of E by v/—27p?, given by y? = 2% — 27p?, which is isomorphic to Eay;
the quadratic twist by v/—3 yields a curve which is isomorphic over K, as well as
3-isogenous over QQ.) The twisting is then given by the group isomorphism

Es(Q) = {P = (r¢/p,svV—3) € E(L):1,s € Q}
={Pe€ E(L): P° =c¢,;P for all T € Gal(L/Q)}
where [c;] € HY(Gal(L/Q), Aut(E)
cr = %, where 8 = v/ —27p2.

3.3. From Hg, to Hs,. From the cyclic 36-isogeny (wp/6) — (6wp) of con-
ductor 6p, we obtain a point P € E(Hg,), where F : y* = 2% + 1.
We have the following diagram of fields.

Hgp = HBp(\?/i)

) is represented by the cocycle

Q

As we now describe, it turns out that the trace from Hg), to Hs), is unnecessary
in the trace from He), to L. Let

p < Gal(ng/H3p) C Gal(Hﬁp/K)
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satisfy p(\s/i) = w/2.
PROPOSITION. For P € E(Hg)y) as defined above, we have
PP =P+ (0,1),
where (0,1) is a 3-torsion point.
This proposition can be proved using the methods we introduce below, and so

is left to the reader. It follows from this proposition that Try,, /g, P = 3P. To
eliminate this factor of 3, we introduce the point

T = (—V/4,—V=3) € E[3](Hs)

and note that it also satisfies T = T + (0, 1). Thus letting
(5) Pr=P-T,
we find (Pr)? = Pr, so Pr € E(Hsp).

3.4. From Hs, to Q. Define
(6) Q=Try,, /L Pr € E(L).
We now claim that the following equation holds.

PROPOSITION. Let o € Gal(L/K) satisfy 0(¢/p) = w/p. Then we have
(7) Q7 =wQ+ (0,-1).

The point (0,—1) is a 3-torsion point. It follows from equation (7) that the
twisted trace is just

Y i=Q+w?Q” +wQ” =3Q € E(L),
which via twisting corresponds to a point Y’ € Es,(K).

To conclude the proof of Theorem 3.1, assuming that equation (7) holds, we
need to prove that Y, and hence Y’, is nontorsion. It suffices to prove that Q is
nontorsion. But Eios(L) = {0, (0,£1)}, and no S in this set satisfies equation (7):
indeed, S7 = S = wS, so equation (7) for S would yield the contradiction S =

S+(0,—1). Note that this argument proves not only that the point Y’ is nontorsion,
but that it is not divisible by 3 in the group Es,(K)/E2p(K)tors-

3.5. The Gal(L/K)-action. We now prove the equation (7). We will in
fact prove an equation for P € E(Hg,). We choose a lift of o € Gal(L/K) to
Gal(Hgp/K). Namely, we let o = 1+ 2pw and let I, = aOx N Ok g,. One can
show directly that under the Artin map

(8) Frob : I 6/ Prep — Gal(Hep/K),

the ideal I, corresponds to an element o € Gal(Hz,/K) such that o(¥/p) = w¥/p.
In (8), Ik ¢p denotes the group of fractional ideals of K that are relatively prime to
6p, and Py g, denotes the subgroup generated by principal ideals («) where o € Ok
satisfies & = a (mod 6p) for some a € (Z/6pZ)*.

The equation we will prove is

(9) P° =wP +(-1,0),
from which one can deduce equation (7) using equations (5) and (6). The proof
uses two ingredients: an explicit calculation with the Shimura reciprocity law, and

an explicit identification of this action with a modular automorphism.
We begin with the first of these two steps in the following lemma.
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LEMMA. We have P° = (3wp/2) — ((2wp +1)/3).

PROOF. The point P is given by the isogeny (wp/6) — (6wp). The Shimura
reciprocity law ([Shi71, §6.8]) implies that P is given by the isogeny

171 (wp/6) = It - (6wp).

An explicit calculation shows that I, - (wp/6) ~ (3wp/2), where ~ denotes homoth-
ety equivalence. Similarly, we find that I !(6wp) ~ ((2wp +1)/3), thus concluding
the proof. O

We now proceed with the second step. Any element of the normalizer of T'(36)
in the group PSLy(R) provides by linear fractional transformations an automor-
phism of T'x(36)\H* = X,(36). The group of such modular automorphisms is
denoted N(I'x(36)). In the second step of the proof of (9), we find a modular
automorphism M such that M(P) = P°. Moreover, since X((36) is a curve of
genus one, it is easy to determine its automorphism group; we may then identify M
explicitly as an element of this automorphism group to obtain the relation (9). For
more details concerning the results on modular automorphisms used in this section,
see [Ogg80].

We now look for a matrix M in N(T'¢(36)) such that M (P) = P°. Let H be the
subgroup of N(I'9(36)) generated by the Atkin-Lehner involutions ws = (55 _3)
and wg = (4 3), together with the ezotic automorphism e = (}9) of order 6—there
exists such an exotic automorphism ( 5, ) normalizing To(N) whenever t € Zg
satisfies t | 24 and t? | N (see [Ogg80]). The group H is a solvable group of order
#H = 72. One computes directly that M = (396 :145) € H satisfies M(P) = P?,
using the previous lemma.

Now the matrix M corresponds to an element of Aut(X,(36)), the automor-
phism group of X((36) as an abstract curve. Via the isomorphism ®, we may
view X((36) as the elliptic curve E and hence write M(Z) = aZ + b for some
a € Aut(F) = ug and some b € E(K). To determine a and b, we evaluate M on
the cusps. The point co € X((36) corresponds under ® to the origin of the elliptic
curve. We find that M (co0) = 1/4, which corresponds to the point ®(1/4) = (-1,0).
Thus b = (—1,0). Similarly, evaluating at the cusp 0, we find that a = w. Putting
these pieces together, we have P? = M(P) = wP + (—1,0) as claimed.

3.6. An example with p = 11. We illustrate the method of the preceding
section with p = 11. Beginning with z = wp/6, we compute P € E(Hg,) with
z-coordinate which satisfies

2% + 462331656wz>° + 11767817160w2>* + 17918205787223% + 543458657808wz>2
+ -+ +50331648z> + 1939159514087424wz> + 16777216 = 0

to the precision computed.
We next compute Pr = P — T € E(Hs,), where T = (—+/4, —/—=3) as above.
The point Pr has z-coordinate which satisfies

252" + (354w — 270)z'! 4 (—5313w — 3432)2'% + (2376w + 17578)z”
+ (21879w — 297)z® + (—6732w — 24552)z” + (—16632w + 61116)z°
+ (3168w — 9504)x° + (—12672w — 45936)x" + (—19008w — 2816)z”
+ (10560w)z” + (17664w — 5376)z + 10240 = 0.



HEEGNER POINTS AND SYLVESTER’S CONJECTURE 99

The trace Q = Try, L Pr € E(L), again to the precision calculated, is the
point

1849 .2 645 . 225w+ 225
= (- Y1 e w4 2 T 220
@ ( 5776 56 VI T T 5Te
27735w + 55470 5—2  —9675w + 9675 5 —  871202w + 435601
200000 T ORI Ay — R T B by
438976 T 138076 + 438976 )

We indeed find that the equation Q7 = w@+ (0,1) holds as in (7). Finally, the
twisted trace is

voso-

SRR =3
79297693200 11661518761992000
The point Y gives rise to the solution (as in (1))

684469533791312783 \  661146496267328783 3_22
112919729369578740 112919729369578740 ) 7

which is twice a Mordell-Weil generator (17299/9954, 25469/9954).

767848016929 672808015029320783
s r)

4. Sylvester’s conjecture, revisited

4.1. A theorem of Elkies: A breakthrough. We now return to the original
question of Sylvester’s conjecture. In 1994, Elkies announced the following result
[E1k94], which remains unpublished.

THEOREM (Elkies). If p=4,7 (mod 9), then #E,(Q) = #E,2(Q) = oo.

The method of Elkies can be sketched as follows. Write p = 77 € Z[w], where
m, T =1 (mod 3). Elkies defines a modular curve X defined over K, and constructs
an explicit modular parametrization

P: X s E:2*+y =7

defined over K. He uses the map ® to define a point on E, over K ({/7), and twists
to get a point in E,(K).

4.2. Mock Heegner points, revisited. Using the strategy of mock Heegner
points, we have re-proved the theorem under a further hypothesis on p.

THEOREM. Ifp=4,7 (mod 9) and 3 is not a cube modulo p, then #E,(Q) =
#Epz (Q) = OQ.

We remark that two-thirds of primes p = 4,7 (mod 9) have the property that
3 is not a cube modulo p.

We only provide a sketch of the proof. Consider the modular parametrization
® : X0(243) — Eo : 2® +y> = 9; the curve X(243) = X(3%) has genus 19. The
modular automorphism group of Xy(243) is isomorphic to Z/3Z x S3, where the S5

28 1/3 : : . _ (0 -1
s} { ) and the Atkin-Lehner involution wa43 = (243 o )

The modular parametrization ® is exactly the quotient of X((243) by this Ss.

We start with a cyclic 243-isogeny of conductor 9p, which yields a point P €
Eq(Hyg,). One can descend the point P € Eg(Ho,) with a twist by v/3 to a point
Q € Ey(Hsp). We next consider the trace R = Try, /1 @ € E1(L). We show that
R? = wR+T where o(¢/p) = ¢/p and T is a 3-torsion point. Thus R yields a point

factor is generated by (
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Y € E,2(K) by twisting. (This depends on the choice of P; another choice yields
a point on E,(K).)

Unfortunately, there exist points S € Ey (K )tors that satisfy the equation S7 =
S = wS + T! Indeed, in certain cases the point R (equivalently, Y) is torsion; see
section 4.4 below for a discussion of when we expect R to be torsion. To prove that
the point R is nontorsion when 3 is not a cube modulo p, we instead consider the
reduction of R modulo p. The prime p factors as (pp)® in L, so we consider the pair

(R mod p, R mod B) € (E1)r, x (E1)r, = E1(Fp).

By an explicit computation with n-products, we are able to show that when 3 is not
a cube modulo p, this reduction is not the image of any torsion point S € E7(L)tors-

4.3. Example. We illustrate our method with p = 7.
The isogeny (7Tw/9) — ((7Tw —1)/27) is a cyclic 243-isogeny with conductor 63,
which yields a point P = (x,y) € Fg(Hgz) with

28 —812% + 5184 =0, 5 + 63y> + 4536 = 0.
The twist Q = (z,y) € F1(Hz;) has
2 + 3wz + 4w =0, %+ 7y> +56=0.
We again have Hy; = K (o) where a® + 7 = 0; we then recognize

Q= (%w2a3 — %oﬂ, —%o/L + %a)

to the precision computed. The trace R = Try,, 1, @ € E1(L) is then simply

R = (_% v 727 1?10‘)2)7

which yields the solution Y = (11/3,—-2/3), i.e.

)

4.4. A Gross-Zagier formula. A direct naive analogue of the Gross-Zagier
formula in this case would state that
B(Y> = L/(E9/Ka X3p> 1)7

where x3p, : Gal(Hs,/K) — s is the cubic character associated to the field K ({/3p).
Since formally
L(Ey/K, X3p,s) = L(E,/Q, s)L(E5,2/Q, ),

this formula becomes
hY) = L'(E,/Q,1)L(Es,2 /Q, 1).

When 3 is not a cube modulo p, one can prove that rk(F3,2(Q)) = 0 (see [Sat86]),
which motivates the fact that the point Y in our construction is nontorsion in this
case. Furthermore, one can show that 3 is a cube modulo p if and only if either 3
divides #III(E3,2/Q) or rk(Fs,2/Q) > 0; the order of this Tate-Shafarevich group
is conjecturally the “algebraic part” of L(FEs5,2/Q,1) when this value is non-zero.
Thus the “naive analogue of Gross-Zagier” combined with the BSD conjecture
suggest the equivalence

Y is divisible by 3 in E,(K)/E,(K)iors <= 3 is a cube modulo p.



HEEGNER POINTS AND SYLVESTER’S CONJECTURE 101

The proof sketched in §4.2 yields the forward direction of this implication uncon-
ditionally. It should be possible to prove the converse as well, though we have not
yet attempted to do so.

In our description of Satgé’s construction with p =2 (mod 9), we constructed
a point on the cubic twist of Ey by ¢p, so a direct analogue of Gross-Zagier would
yield

MY) = L'(E2p/Q, 1) L(E2y2 /Q, 1).

In this case one can prove that rk(Fs,2 (Q)) = 0 and 3 { #11(Ey,: /Q) without extra
conditions. This provides intuition for why Satgé’s construction produces points

that are provably not divisible by 3 (in particular nontorsion) without any extra
condition, whereas our result for p = 4,7 (mod 9) requires an extra condition.

QUESTION. What is the precise statement of the Gross-Zagier formula in the
cases when the Heegner hypothesis does not hold?

This is the subject of current research by Ben Howard at Boston College. Some
aspect of this new formula (perhaps some extra Euler factors which sometimes
trivially vanish) would have to account for various cases when the mock Heegner
point is torsion even when the derivative of the L-function is not zero. Also, this
formula would have to exhibit a dependence on the choice of CM point—the formula
will in general not depend only on the conductor as in the classical Heegner case.

4.5. The case p = 8 (mod 9). What remains untouched by our discussion
so far is the case p = 8 (mod 9) in Sylvester’s conjecture. In this case, we may
use the parametrization ® : X((243) — F3 and a cyclic isogeny of conductor 9p,
corresponding to a point P € E3(Hgp).

Adding a torsion point, the point P descends with a twist to a point @) €
Eq(Hsp), and a twisted trace Y € E,(Q). Here, Gross-Zagier would imply that

h(Y) = L'(Es/ K, xop, 1) = L'(E,/Q, 1) L(Eoy2 /Q, 1).

There seems to be no simple criterion for L(Ey,2/Q, 1) # 0, though one could hope
to prove an analogue of the formulas of Rodriguez-Villegas and Zagier [RVZ95].

QUESTION. When p =8 (mod 9), can one prove that the point Y is nontorsion
when L(Ey,2/Q,1) # 0, or perhaps at least when 3 does not divide the algebraic
part of L(Ey,2/Q,1)?
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Shimura curve computations

John Voight

ABSTRACT. We introduce Shimura curves first as Riemann surfaces and then
as moduli spaces for certain abelian varieties. We give concrete examples of
these curves and do some explicit computations with them.

1. Introduction: modular curves

We motivate the introduction of Shimura curves by first recalling the definition
of modular curves.
For each N € Z+(, we define the subgroup

To(N) = {(i Z) € SLy(Z) : ¢ =0 (mod N)} C SLa(2).

The group I'g(N) acts on the completed upper half-plane $* = § UP!(R) by linear
fractional transformations, and the quotient Xo(N)c = Lo(N)\$H* can be given the
structure of a compact Riemann surface. The curve Xo(NN)c parametrizes cyclic
N-isogenies between (generalized) elliptic curves and therefore has a model Xo(N)g
defined over Q. On X((NV)g, we also have CM points, which correspond to isogenies
between elliptic curves which have complex multiplication (CM) by an imaginary
quadratic field K.

Shimura curves arise in generalizing this construction from the matrix ring
M>(Q) to certain quaternion algebras over totally real fields F. A Shimura curve
is the quotient of the upper half-plane $) by a discrete, “arithmetic” subgroup of
Aut(9) = PSLy(R). Such a curve also admits a description as a moduli space,
yielding a model defined over a number field, and similarly comes equipped with
CM points.

The study of the classical modular curves has long proved rewarding for math-
ematicians both theoretically and computationally, and an expanding list of con-
jectures have been naturally generalized to the setting of Shimura curves. These
curves, which although at first are only abstractly defined, can also be made very
concrete.

In §2, we briefly review the relevant theory of quaternion algebras and then
define Shimura curves as Riemann surfaces. In §3, we provide a detailed example
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of a Shimura curve over Q. In §4, we discuss the arithmetic of Shimura curves:
we explain their interpretation as moduli spaces, and define CM points, Atkin-
Lehner quotients, and level structure. Finally, in §5, we illustrate these concepts by
considering the case of Shimura curves arising from triangle groups, in some sense
the “simplest” class, and do some explicit computations with them.

2. Quaternion algebras and complex Shimura curves

2.1. Quaternion algebras. We refer to [Vig80] as a reference for this sec-
tion.

As in the introduction, we look again at SLo(Z) C M2(Q): we have taken the
group of elements of determinant 1 with integral entries in the Q-algebra M (Q).
The algebras akin to M>(Q) are quaternion algebras.

Let F' be a field with char F' # 2. A quaternion algebra over F is a central
simple F-algebra of dimension 4. Equivalently, an F-algebra B is a quaternion
algebra if and only if there exist a, 3 € B which generate B as an F-algebra such
that

a2:av 52:b7 6a:_a5

b
for some a,b € F*. We denote this algebra by B = (aj:' )

EXAMPLE. As examples of quaternion algebras, we have the ring of 2 x 2-

1.1 -1,-1
matrices over F, or My(F) = ( 1’:‘ ), and the division ring H = ( ]1753 > of

Hamiltonians.

From now on, let B denote a quaternion algebra over F'. There is a unique
anti-involution ~ : B — B, called conjugation, with the property that aa € F for
all @ € B. The map nrd(a) = aa is known as the reduced norm.

b
EXAMPLE. If B = (al,? ), and 0 =z + ya + 20 + waf, then

0=z —ya— 26 —waB, and nrd(h) = 2* — ay® — bz* + abw?.

From now on, let F' be a number field. Let v be a noncomplex place of F', and
let F, denote the completion of F' at v. If B, = B ®p F,, is a division ring, we
say that B is ramified at v; otherwise B, = My(F,) and we say B is split at v.
The number of places v where B is ramified is finite and of even cardinality; their
product is the discriminant disc(B) of B. Two quaternion algebras B, B’ over F'
are isomorphic (as F-algebras) if and only if disc(B) = disc(B’).

Let Zp denote the ring of integers of F. An order of B is a subring O C B
(containing 1) which is a Zp-submodule satisfying FO = B. A mazimal order is an
order which is maximal under inclusion. Maximal orders are not unique—but we
mention that in our situation (where B has at least one unramified infinite place,
see the next section), a maximal order in B is unique up to conjugation.

2.2. Shimura curves as Riemann surfaces. Let O C B be a maximal
order. We then define the group analogous to SLy(Z), namely the group of units
of O of norm 1:

O] ={y€ O :nrd(y) =1}.
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In order to obtain a discrete subgroup of PSLy(R) (see [Kat92, Theorem 5.3.4]),
we insist that F' is a totally real (number) field and that B is split at exactly one
real place, so that
B < B®g R = My(R) x HIFU-L,
We denote by to : B < M3(R) the projection onto the first factor.
We then define the group

I'B(1) = 150(OF /{£1}) C PSLy(R).

The quotient XZ(1)c = I'P(1)\$ can be given the structure of a Riemann surface
[Kat92, §5.2] and is known as a Shimura curve.

From now on, we assume that B % M>(Q), so that we avoid the (classical)
case of modular curves; it then follows that B is a division ring and, unlike the
case for modular curves, the Riemann surface X (1)c is already compact [Kat92,
Theorem 5.4.1].

3. Example

We now make this theory concrete by considering an extended example.
We take F' = Q and the quaternion algebra B over Q with disc(B) = 6, i.e. B
is ramified at the primes 2 and 3, and unramified at all other places, including oc.

—-1,3
Explicitly, we may take B = < (QS >, so that «, 8 € B satisfy

a?=-1, p*>=3, Ba=-ap.
We find the maximal order
O=ZSZa®ZL B 7S where § = (1+a+ 5+ afB)/2,
and we have an embedding
loo : B — M3(R)

o= (035 )

With respect to this embedding, we compute a fundamental domain D for the
action of I'B(1) = 1,,(Of/{£1}) as follows. (For an alternate presentation, see
[ABO04, §5.5.2] or [KV03, §5.1].)
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The elements
Nn=a, p=a+d, 3=2a+af, u=1+a—-F+0
are known as side-pairing elements; they yield the presentation
PP 2,y |9 =7 =28 =71 = mwren = 1)

One can compute the area u(D) of the above fundamental domain D by trian-
gulation, but we also have the formula (see [E1k98, §2.2])

p(D)=uxPW) == T b-1="1

pl|disc(B)

The group I'?(1) then tessellates $ as follows.

(The algorithm for drawing hyperbolic polygons is due to Verrill [Ver06].)
The genus g of X can be computed by the Riemann-Hurwitz formula as

22 = M) (-1

q

where e, is the number of (conjugacy classes of) elliptic points of order ¢. From
the presentation for I'®(1) above, we can see directly that e; = e3 = 2 and hence

29—2=1/3-2(1-1/2) —2(1—1/3) = —2

so g = 0. Alternatively, we can compute the number of these elements by the
formulas

= I (-G) s e L (- ()

pldisc(B) pldisc(B)

Since the genus of X is zero, we have a map X”(1)c — PL.
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4. Arithmetic of Shimura curves

4.1. Shimura curves as moduli spaces. Just as with modular curves,
Shimura curves are in fact moduli spaces, and this moduli description yields a
model for XZ(1)¢ which is defined over a number field.

In the case F' = Q, the curve X (1) is a coarse moduli space for pairs (4,¢),
where:

e A is an abelian surface, and
e 1: O < End(A4) is an embedding.

We say that such an A has quaternionic multiplication (QM) by O. The involution
~ on O induces via ¢ an involution on End(A), and there is a unique principal
polarization on A which is compatible with this involution, then identified with the
Rosati involution.

If F # Q, the moduli description is more complicated: since B is then neither
totally definite nor totally indefinite, it follows from the classification of endomor-
phism algebras of abelian varieties over C (see [Mum?70, Theorem 21.3]) that we
cannot have End(A) ®7z Q = B. Instead, one must choose an imaginary quadratic
extension K of F, as in [Zha01, §1.1.2], and consider a moduli problem over K.
For simplicity, we assume from now on that F' has narrow class number 1: under
this hypothesis, we have a natural choice, namely K = F(y/—d), where d is a to-
tally positive generator for the discriminant disc(B). One may then think of the
objects parametrized by a Shimura curve X?(1)p as “abelian varieties with QM
by O”—the precise meaning of this phrase will be neglected here.

It then follows from this moduli description that there exists a canonical model
XB(1)p for XP(1)¢ defined over F, a theorem due to Shimura [Shi67] and Deligne
[Del71].

4.2. Example: Models. The model XZ(1)g over Q for our Shimura curve
with disc(B) = 6 is given by the conic

XB(1)g:a? +y* +322 =0,

a result attributed to Thara [Kur79, p. 279].

This identification can be made quite explicit, a computation due to Baba-
Granath [BGOS8]. For k € Z>(, we denote by Mj(T") the space of holomorphic
weight k modular forms for the group I' = T'B(1), namely, the space of holomorphic
maps f : $ — C such that

F(E5) = et

for all v = (‘Z g) € I'. Using an elementary formula due to Shimura, we compute
the dimension of My (T):

dime My(T) = dime Mg(T) =1, dimg Mi5(T) = 3.

From this, one can show that there exist normalized hy € My (T) for k = 4,6,12
such that
hiy + 3hg + h§ =0,

which realizes the map XZ(1)c — XZ(1)q.
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4.3. CM points. On the modular curves X(N), we have CM points arising
from elliptic curves with extra endomorphisms. These points are defined over ring
class extensions H of an imaginary quadratic field K, and the Shimura reciprocity
law describes explicitly the action of Gal(H/K) on them. In a similar way, on the
Shimura curve X Z(1) we have CM points which correspond to abelian varieties with
extra endomorphisms. Let K O F' be a totally imaginary quadratic extension which
splits B, i.e. B®p K = My(K); the field K splits B if and only if there exists an
embedding tx : K — B, and the map vtk is concretely given by an element u € O
such that Zplu] = Zk. Let z = zp be the fixed point of too(i) in $; we then
say z is a CM point on XB(1)c. When F = Q, CM points on XZ(1) correspond
to abelian surfaces A with endomorphism algebra End(A4) ®z Q = My (K); the
interpretation is again more subtle when F' # Q, but there one may think of these
points as similarly having “extra endomorphisms”.

On the model XZ (1), these points are defined over the Hilbert class field H of
K (or more generally, ring class extensions), and one has also a Shimura reciprocity
law; see [Shi67] for a discussion and proof.

4.4. Example: CM points. The following computation can be found in
Elkies [E1k98, §3.4] and Baba-Granath [BGO0S8, §3.3].

We return to the example from §2, with FF = Q. Let K = Q(v/—19), and
Zx = Z[(14++/—19)/2]. We have # Cl(Zk) = 1, and the elliptic curve E = C/Zg
with CM by Zg has j-invariant —963.

The genus 2 curve C defined by

C:y? =2t 301 +9V—-19)t" —3(1 — 9vV/—19)t> +2

has Jacobian J(C') & E x E, and End(J (C’)) M5(Zk). This curve C “cor-
responds” to the moduli point [C] = (32 : : 134/—19) on the Shimura curve
XB(1): 22+ 3y% + 2% = 0. (The field of moduli of the point [C] is Q, but Q is not a
field of definition for C; the automorphism group of C is Aut(C) = Z /27 x Z/27Z.)

4.5. Atkin-Lehner involutions. Shimura curves also possess natural invo-
lutions, just like modular curves. The normalizer

N(O)={a e B*/F* : O = O«, nrd(«) is totally positive}
acts via Lo, as automorphisms of XZ(1)x, and generates a subgroup

we [ z/2z=z/2z).
p|disc(B)

The elements of W are known as Atkin-Lehner involutions. Letting T'B*(1) =
Loo (N (0)), we see that the curve X P*(1) = I'B*(1)\$ is the quotient of XZ(1) by
w.

When F = Q, these involutions have a natural moduli interpretation. Recall
that the curve X Z(1) parametrizes pairs (4, ), where A is an abelian surface (over
C, say) with QM by O specified by an embedding ¢ : O — End(A). But there may
be more than one such embedding ¢ for a given A, even up to isomorphism: for
each divisor m | disc(B), we can “twist” ¢ by m to obtain a new pair (A4,:™). All
such twists arise in this way (see [Rot04, §3]), and therefore the quotient X Z*(1)
of XB(1) by W parametrizes abelian surfaces A which can be given the structure
¢ of QM by O, without a particular choice of «.



SHIMURA CURVE COMPUTATIONS 109

4.6. Example: Atkin-Lehner quotient. The two Atkin-Lehner involutions
wa, w3 act on XB(1)g: 22 +y% + 322 =0 by

wa(w:y:z)=(x:—y:2), wy(@:y:2)=(-w:y:2).
The quotients are therefore
X —— Xx(w2) —_pl X ——— x{ws) — p!
(:y:2)—(2:2) (:y:2)—(y:2).

and the quotient by the full group W = (ws, w3) can be given by

JX XV =p!
(z:y:z)—— (1692 : 922),
under our normalization. Our moduli point [C] corresponding to K with discrimi-

nant —19 was [C] = (32 : 27 : 13y/=19), and so we find j([C]) = 81/64 = 31/26.

4.7. Level structure: congruence subgroups. Having defined the group
I'B(1) which replaces PSLy(Z), we now introduce the curves analogous to the
modular curves. Let 91 be an ideal of Zg that is coprime to the discriminant of B,
and let Zp,m be the completion of Zp at ; then there exists an embedding

g0 =0 Rz Zp’m = MQ(ZF’YJ‘[)
We define
TEM) = {tae(7) : v € OF, tn(v) is upper triangular modulo M} /{+1}

and we again obtain a Riemann surface X (9)c = T'F (MN)\H.

In a similar way, for F' = Q, the curves X (V)¢ parametrize cyclic N-isogenies
between abelian surfaces with QM by O. For any F, one can also show that the
curve X (M)c admits a model over a number field.

5. Triangle groups
5.1. The (2,4, 6)-triangle group. Recall from §4.5 that the group
I'B*(1) = {teo(@) : @« € B*/F*, aO = Oa, nrd(a) is totally positive}
realizes the space X5*(1) = I'B*(1)\$. The quotient
FB*(I)
= 7./27.

pldisc(B)

arises from elements whose reduced norm divides disc(B) = 6.
We can see the group I'®*(1) again explicitly: it has a presentation

TB*(1) 22 (59,54, 56 | 52 = 57 = 55 = 565450 = 1)

where
So=—14+2a—B+2), s4=—-1+a, se =—-24+a+0
have nrd(sy) = 6, nrd(sy) = 2, nrd(sg) = 3, respectively. This group I'?*(1)
is known as a (2,4, 6)-triangle group; a fundamental domain D for I'P*(1) is the
union of a fundamental triangle, a hyperbolic triangle with angles 7/2,7/4,7/6
with vertices at the fixed points of so, s4, sg, respectively, together with its image
in the reflection in the geodesic connecting any two of the vertices.
We can visualize the (2,4, 6)-triangle group I'?*(1) inside I'?(1) as follows.
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5.2. Cocompact arithmetic triangle groups. More generally, for p,q,r €
Z>o with 1/p+1/q+ 1/r < 1, we may define the (p, ¢, r)-triangle group similarly
as the group with presentation

(Sps Sqs Sr | sh=sl =5, =555, = 1).

By work of Takeuchi [Tak77], there are exactly 18 quaternion algebras B (up to
isomorphism), defined over one of 13 totally real fields F, that give rise to such
a cocompact arithmetic triangle group TP*(1). Already these contain a number of
curves worthwhile of study. (In this light, we could consider the classical SLy(Z)
to be a (2, 3, 0o)-triangle group, though we still exclude this case in our discussion.)

Each of these “simplest” Shimura curves has genus zero, so we have a map
j: XB*(1) — PL. (In fact, one can show that the canonical model provided by
Shimura and Deligne for X ?*(1)¢ over F is already PL.) We normalize this map
by taking the images of the elliptic fixed points z,, z4, 2» of sp, 54, Sy, Tespectively,
to be 0,1, co.

5.3. Explicit computation of CM points. To summarize, from cocompact
arithmetic triangle groups associated with certain quaternion algebras B over to-
tally real fields F' we obtain Riemann surfaces X 2*(1) of genus 0 together with a
map j : XB*(1) — PL. There are CM points of arithmetic interest which we would
like to compute.

THEOREM ([V0i06]). There exists an algorithm that, given a totally imaginary
quadratic field K D F, computes the CM point j(z) € P(C) associated to K to
arbitrary precision, as well as all of its conjugates by the group Gal(H/K).

One can then recognize the value j as an algebraic number by considering the
polynomial defined by its conjugates.

5.4. Second example. We now give an example where F' # Q. Let F' be the
totally real subfield of Q((9), where (o is a primitive ninth root of unity. We have

Zp = Z|b], where b = —({o + 1/(y). We take B = <_3’b
a, 8 with

), i.e. B is generated by

a?=-3, B*=0b, Pa=-apf.
Here, we have disc(B) = Zp, i.e. B is ramified at no finite place and at exactly
two of the three real places. We fix the isomorphism to, : B&r R = My(R), given

explicitly as
0 3 vb 0
W(_l 0), gH(O _ﬁ)
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We next compute a maximal order O = Zp ® Zp( ® Zpn @ Zpw, where
(=—3b+2(20> —b—4)a
n=—21b3+£(20* —b—4)ap
w=—b+3(0* - Da—bs+ L(b? - 1)ap.
By work of Takeuchi [Tak77], we know that I'®(1) = T'B*(1) is a triangle group
with signature (p,q,r) = (2,3,9). Explicitly, we find the generators
so=b+w—2ns3=—1+ (b> = 3)( + (=2 + 6)w + (b*> + b — 3)n, 59 = —(
which satisfy the relations s3 = s3 = sJ = s28359 = 1. The fixed points of these
elements are

2o = 0.395526.. . .1, z5 = —0.153515... + 0.364518. .., 2o =1,

and they form the vertices of a fundamental triangle.

O

/TN N

4&“!&5’!“"52’#»’!2’41\» X ket Wi o %

&

Each triangle in the above figure is a fundamental domain formed by the union
of two such fundamental triangles.

5.5. CM points. As an example, we first take K = F'(1/—2) with class num-
ber 3. We find p € O satisfying y? +2 = 0, so Zr[u] = Zx has discriminant —8;
explicitly,
p=(=b*=b+1)+ (=2 +2)C + (2b> = b — 5)w + (—=b*> + b+ 1)n.
We obtain the CM point j(z) = 17137.9737... as well as its Galois conjugates
0.5834...40.4516. . .14, which yields the minimal polynomial for j = j(z)

3 1096905 -2 | 41938476081 ; _ 9781803409 _
J 61 J T 2007152 J T0iss76 — U

to the precision computed (300 digits). Note that

9781803409 __ 727121992
1048576 220 -
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We verify that K(j) = H = K(c), where ¢ — 3¢+ 10 = 0.

Larger examples can be computed, including over ring class extensions. Con-
sider the field K = F(y/—5) with discriminant disc(K/F) = —20. We consider the
order Zg y C K of conductor f = b — 1; note that Np,g(b—1) = 3.

The CM point z has j = j(z) which satisfies a polynomial of degree 14 =
# Cl(Zk,5), with N(j) equal to

| T1%127°163*17924874971%1619°259172699%7451°10079713859%17099°
2845989996997199 '

The extension K (j) = K(c) is generated by an element ¢ which satisfies

Mt — e 2012 4196 — 3710 — 12267 + 25168 + 2117
— 589¢8 +470¢° — 41¢* — 733 + 2262 + 11+ 1 = 0.
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Computing Heegner points arising from
Shimura curve parametrizations
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ABSTRACT. Let E be an elliptic curve defined over Q or over a real quadratic
field which is uniformized by the Jacobian of a Shimura curve X. We discuss a
p-adic analytic algorithm for computing certain Heegner points on E — images
under the above uniformization of degree zero CM-divisors on X.

1. Heegner points

1.1. Modular parametrizations. Let F/Q be an elliptic curve of conductor
N. By the modularity theorem of Wiles et. al., we have a holomorphic modular
parametrization
by Xo(N)(C) — E(C),

where the Riemann surface Xo(N)(C) is the quotient of the extended complex upper
half-plane H by the standard congruence subgroup I'o(N) of level N. Assume that
® n(00) is the zero element of E(C). Let P € Xo(N)(C) and let 7 € H be any lift
of P. Then
(1.1) Oy (P) = W(/ 27rifE(z)dz) :W(Zwe%””)

o0 n>1

n

where W is the Weierstrass parametrization of E, fg € S2(N) is the normalized
newform attached to F and a,(fg) is the n-th Fourier coefficient of fg.

1.2. CM-points. For the purposes of this talk, a quadratic order (resp. an
imaginary quadratic order) O is a subring of a quadratic number field (resp. an
imaginary quadratic number field) K such that K = QO.

The Riemann surface Xo(V)(C) may be identified with the complex-valued
points of a curve Xo(N) defined over Q. This curve is in fact a moduli space —
Xo(N) classifies isogenies P = (A — A’) of elliptic curves whose kernel is cyclic of
order N. We will call a point P € Xo(N)(C) a CM-point, and say that P has CM
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by the quadratic order O, if both A and A’ have CM by O. In this case, the theory
of complex multiplication says that

P e Xo(N)(Ho), where Hp = ring class field attached to O.

1.3. The classical Heegner hypothesis. Let O C K be an imaginary qua-
dratic order of discriminant prime to N.

LEMMA 1.1 ([Dar04, Proposition 3.8]). The following are equivalent:

(1) There ezists a point on Xo(N) with CM by O.
(2) All primes £ dividing N split in K.

Conditions (1) and (2) are know as the Heegner hypothesis. Thus, when the
Heegner hypothesis is satisfied, the above construction yields a systematic supply of
algebraic points on E defined over specific class fields of K. Due to the importance
of Heegner points to the arithmetic theory of elliptic curves (see [Dar| or [Dar04,
Chapter 3]), it is natural to desire an analogous construction of algebraic points
defined over class fields of imaginary quadratic fields which do not necessarily satisfy
this stringent hypothesis, as well as methods to compute such points in practice.
Such a generalization requires admitting uniformizations of E by certain Shimura
CUTVES.

2. Shimura-Heegner points

2.1. Shimura curve parametrizations (over Q). Assume that N is square-
free and let N = N*TN~ be a factorization of N such that N~ has an even number
of prime factors. Let C' be the unique quaternion algebra over Q ramified precisely
at N~. (For basic definitions related to quaternion algebras, see [Voi, §1.2] or the
comprehensive [Vig80].) Fix an identification to of C ®g R with Ma(R). Let S
be an Eichler order in C of level NT and set

TY(S) = {teo(8) : s € S, det oo (s) = 1}/{£1} C PSLy(R).
The group I'“(S) acts discontinuously on H with quotient denoted X (S)(C).
ExaMPLE 2.1. If N~ =1, then C = M>(Q) and S may be taken to be

Ro(N) := {(Z Z) € My(Z) : N* divides c}.

In this case, the group I'“(S) is the usual congruence subgroup I'g(N). It is known
that X (S)(C) is compact if and only if N~ # 1.

EXAMPLE 2.2. Suppose p = 3 (mod 4), N* = 1 and N= = 2p. Then the

-1
quaternion algebra C' is that which Voight denotes ( @p> in [Voi]. The Eichler
order S is simply a maximal order in C' and is unique up to conjugation by C*.

A space of modular forms Sy(I'“(S)), complete with Hecke action, can be
defined as in the classical case N~ = 1. By the modularity of F and the Jacquet-
Langlands correspondence, there exists an eigenform gg € So(I'“(S)) with system
of Hecke eigenvalues {a,(9r)} = {a,(E)}, as well as a map

dy+ n- : DivPH — Jac X9(S)(C) — E(C)
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given by

@) -=w( [ " ge)s),

where W is the Weierstrass parametrization of E(C). If N~ = 1, then we are in
the situation of §1.1 and ®y+ y- is induced by the map ® .

2.2. CM-points.

THEOREM 2.3 (Shimura). X (S)(C) is the set of complex points of a curve
XY(S) defined over Q. This curve classifies abelian surfaces with “level N¥-
structure” whose endomorphism rings contain S.

(For a discussion of this moduli problem, see [Zha01, Chapter 1].)

Let O C K be an imaginary quadratic order. We say a point P in X¢(S)(C)
has CM by O if it corresponds to an abelian surface whose endomorphism ring
contains O as a subring commuting with S. Let CM(O) denote the set of such
points P. The map from Jac X (S)(C) to E(C) induced by ®x+ y- is also defined
over Q, so

®y+ n- (DivP CM(0)) C E(Ho).
We will call these points on E Shimura-Heegner points.

2.3. The Shimura-Heegner hypothesis. Let O C K an imaginary qua-
dratic order whose discriminant is prime to N.

LEMMA 2.4. The following are equivalent
(1) The set CM(O) is nonempty.
(2) All primes { dividing N (resp. N~ ) are split (resp. inert) in K.

Call conditions (1) and (2) are the Shimura-Heegner hypothesis. If the Shimura-
Heegner hypothesis is satisfied for the maximal order O of K, call (NT, N7, K) a
Shimura-Heegner triple. (This is not standard terminology and is in force in this
paragraph only.) For a given imaginary quadratic field K of discriminant prime to
N, there exists a factorization N = NTN~ such that (NT, N7, K) is a Shimura-
Heegner triple if and only if the sign in the functional equation of L(E/K,s) is
—1. Thus, we have a Heegner-point type construction available exactly when the
Birch and Swinnerton-Dyer conjecture predicts that the rank of E(K) is positive
for reasons of parity.

2.4. Elliptic curves over real quadratic fields. The phenomenon of el-
liptic curves being parametrized by Shimura curves generalizes to certain elliptic
curves defined over totally real fields. For simplicity, let F' be a real quadratic field
with infinite places o1 and o3, and let p be a finite prime of F'. (The much more
mysterious case of imaginary quadratic base fields will be discussed in [Gre].) Let
C be the quaternion F-algebra ramified at p and oy and let S be a maximal order
of C. Fix an isomorphism

Loy 1 C ®py R — M3 (R),
and let
T9S) = {t,(5) : s €S, det 1y, (s) = 1}/{#1} C PSLy(R).
As before, I'“(S) acts discontinuously on H. The quotient I'\H is a compact

Riemann surface which admits a description as the complex points of a Shimura
curve X, as well as a corresponding CM-theory.
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Let f € Sa(p) be a Hilbert modular newform with rational Hecke eigenvalues.
Then the Jacquet-Langlands correspondence together with an Eichler-Shimura con-
struction implies the existence of an elliptic curve E/F parametrized by the Ja-
cobian variety J of X whose L-function matches that of f. Again, we want to
compute the images on F of degree zero CM divisors on J, which we also call
Shimura-Heegner points.

3. Computing Heegner and Shimura-Heegner points

The classical Heegner points may be efficiently computed using formula (1.1).
The quantities a,(fg) can be computed using the formula

ap(fr) = p+1—#E(F,),

(where p is a prime and E is the reduction of £ modulo p) in conjunction with the
Euler product for L(fg, s). For details and a complexity analysis, see [Elk94].

The following questions remain: How do we efficiently compute ® y+ y-, and
hence Shimura-Heegner points, when N~ # 17 The computability of the modular
parametrization @y of (1.1) relies on the Fourier expansion of fr. When N~ # 1,
such an expansion is not available. How about when FE is defined over a real
quadratic field?

In his article in this volume [Voi], John Voight discussed efficient methods for
computing CM-points on certain Shimura curves. Unfortunately (for our purposes),
the curves that he discussed were all of genus zero, and hence cannot parametrize
elliptic curves.

N. Elkies [Elk98] has also developed methods for performing these computa-
tions in certain cases using archimedean analysis and explicit presentations of the
groups I'(S). His methods are in fact related to those of Voight.

We present an approach based on p-adic analysis. Our main tools are the
Cherednik-Drinfeld theorem, p-adic integration and the theory of rigid-analytic
automorphic forms on definite quaternion algebras.

4. p-adic integration and uniformization

4.1. The Cherednik-Drinfeld interchange of invariants. Let £/Q be an
elliptic curve of conductor N = NT N~ and suppose that p is a prime dividing N .
(In particular, N~ # 1.) Let B be the quaternion algebra ramified at the primes
dividing N~ /p, together with the place at infinity. (We interchange the roles of
the places p and infinity — hence the title of this subsection.) Let R be an Eichler
Z-order in B of level N*tp.

EXAMPLE 4.1. In the situation of Example 2.2, B is the algebra of Hamilton’s
-1,-1
) in [Voi].

)

quaternions, denoted (

Since B is split at p, we may choose an isomorphism
tp: Bp = B &g Qp — M(Qp)

such that ¢, induces an isomorphism of R, := R ®z Z, with

Ro(pZ,) := {(i Z) € My(Z,) : p divides c} .
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4.2. The p-adic uniformization theorem.

DEFINITION 4.2 (Multiplicative integral). Let
e B3, be the standard decomposition of P!(Q,) into p™ +p™~* balls of radius

—n

p
e /1 be a Z-valued measure on P*(Q,), and

e f be a continuous, nonvanishing function on P1(Q,).
Define

f(z)dp(z) = lim Fto)H,
where ty is any point of U.

In his lecture on p-adic uniformization [Dar], Darmon constructs a Z-valued
distribution p g on P (Q,) (i.e. a finitely additive, Z-valued function on the compact-
open subsets of P*(Q,,)) which is invariant under the group R[1/p]; of units in R[1/p]
of reduced norm 1. (The group B, acts via ¢, on the projective line P1(Q,) and
hence on its compact-open subsets.) Let

Hp = P! (Cp) — P! (Qp)
be the p-adic upper half-plane and let
Tate : C; — E(Cp)
be the Tate parametrization of E.

THEOREM 4.3 (p-adic uniformization of E).
(1) (Cherednik-Drinfeld) There is a canonical surjective map

CD: H, — X9(S)(C,).
(2) (Bertolini-Darmon) The map CD satisfies

O+ N ((CD(T’)) — (CD(T))) = Tate (]él((@ | (Z_’;’)dﬂE(x)> .

Furthermore, one may explicitly describe CD™'(CM(O)) C H,p.

4.3. Some details. In this subsection, we briefly indicate how the map CD
is constructed and we identify the set CD™!'(CM(O)) C H,. Let

TEP(R[1/p]) = {1,(r) : 7 € R[1/p], det 1, (r) = 1}/{#1} C PSLy(Q,).
The group I'? (R[1/p]) acts discontinuously on H,, and the quotient I'Z(R[1/p])\ H,p,
has the structure of a rigid-analytic curve. To prove (1) of Theorem 4.3, Cherednik
and Drinfeld show that there is a canonical rigid-analytic isomorphism
CD : TB(R[1/p))\H, — X (5)c,.

Let O C K be an imaginary quadratic order satisfying the Shimura-Heegner
hypothesis. Call an embedding v of O[1/p] into R[1/p] optimal if it does not extend
to an embedding of a larger Z[1/p]-order in K and denote by &,(O) the set of all
such optimal embeddings. The Shimura-Heegner hypothesis guarantees that £,(O)
is nonempty. For each ¢ € £,(0O), the group O[1/p]* acts on H,, via the composite
tp 0 9 with a unique fixed point 7, € H, satisfying

(7) = (7)
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for all & € O[1/p]*. Let H,(O) be the set of all such 7,. It can be shown
(see [BD96]) that

H,(0) = CD~HCM(0)).
Set

(4.1) J(r,7") ]{»l(@p) (i_i) dug ().

By statement (2) of Theorem 4.3, the points Tate(J(r,7’)) for 7,7’ € H,(O) are
Shimura-Heegner points on E defined over the ring class field Hp attached to O.
Slightly more generally, we are interested in the image of an arbitrary element
2 € DivP H,,(0) in E(Hp). Suppose d has the form

n

0 =2(() ~ ().

i=1

For later use, we introduce the notation

][qu = H J(7i,71).
0 i=1

B+ y-(0) = Tate <]€ qu> .

Not only can we describe the Shimura-Heegner points analytically, but also the
action of Gal Ho/K on them: One can show (see [Gro87, §3.2]) that the class
group Pic O acts freely on the set H,(O). Let

rec: PicO — GalHp /K.

Thus we have

be the map induced by the reciprocity homomorphism of class field theory.

THEOREM 4.4 (Shimura’s reciprocity law). Let 7,7 € H,(O). Then for all
a € Pic O, we have

O - ((7'%) = (7)) = v - ((7) = (7))7°

We utilize Shimura’s reciprocity extensively in performing our computations.
Summing up this section, we have seen that to compute Shimura-Heegner points
p-adically, it suffices to be able to compute p-adic integrals of the form (4.1).

5. Computing p-adic integrals

5.1. The naive approach. It is natural to attempt to evaluate J(7,7’) from
the definition, i.e. by evaluating the “Riemann products” defining the multiplicative
integral (see Definition 4.2). One can show that we do not lose generality by
assuming that the reductions of the points 7 and 7/ lie in P!(FF,,) — P1(F,), and for
the rest of the talk we shall work under this assumption. In this case, it is not hard
to show that

o ty — 7' w(U) N

J(r, ") = H (tUT) (mod p™),
UeBN

where z =* 3 (mod p?V) means 2/y — 1 = 0 (mod p"). Unfortunately, the size of

By is p¥ +p"V~! — exponential in V. Thus, the naive approach does not facilitate

the calculation of (4.1) to high accuracy.
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5.2. Outline of the method. In this subsection, we give a sketch of our
alternate method for computing (4.1), and hence Shimura-Heegner points. For
complete details, see [Gre06].

First, we observe that the Teichmiiller representative of J(7,7’) is the same as

that of
Pl:[l <a _ T/)u(fH-pr)
o \a—T
an easily computed quantity. Consequently, it is sufficient to compute log J(7,7’),

where “log” denotes the (standard) branch of the p-adic logarithm satisfying log p =
0.

For simplicity, we assume that there is some i € R[1/p]} such that ¢,(i) =
(? _01). This is easy to arrange if B is the algebra of Hamilton’s quaternions, for
instance. Write

log J(r,7") = Z log J,(7,7"), where
a€P*(Fp)

nrt) = f (220 dusta)

a

and b, is the standard residue disk around a. Let

Tolr) = (14 s (o)

Ja(T):]{ (x —71)dpg(z), 0<a<p-1.

a

Then for each a € P!(F,), we have
Jo(1,7) = Jo (7)) I (7).

(To prove the above for a = 0o, we use the above assumption on the existence of
i.)

Straightforward manipulations (see [DP06, §1.3]) show that the expansions

(5.1) log Joo (T) = Z (_l)nrnw(O,n),

n
n>1
1
(5.2) log J(r) = Y ———w(a,n), 0<a<p-1.
= n(a—T)

are valid, where (following the notation of [DP06]),

w(am):/b (x —a)"dug(r), 0<a<p-—1.

a

Let

!
(5.3) M' = max{n:ord,(p"/n) < M}, M" =M+ VOgM J

log p
Examining formulas (5.1), (5.2), and (5.3), it is easy to deduce the following;:

PROPOSITION 5.1. To compute log J(7,7') to a precision of p~™ , it suffices to
compute the data

(5.4) wla,n) (mod pM"), 0<a<p—1, 0<n<M.
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THEOREM 5.2. The data (5.4) may be computed in O(M3p3log M) operations
on integers of size on the order of p™.

Theorem 5.2 is proved in detail in [Gre06, Proposition 7]. The idea is to re-
late the moments w(a,n) to certain automorphic forms on the definite quaternion
algebra B. We show that the data (5.4) is encoded in a natural way in an automor-
phic form &M ! taking values in a module of “approximate distributions” on Z,,.
®M" is characterized by a finite amount of data and can be represented nicely on a
computer. The form &M " is the M”-th term in a sequence of approximations ®,,.
The transition from the n-th approximation ®,, to the (n + 1)-st ®,,11 proceeds
by an application of the Hecke operator U,, a process which can be carried out
algorithmically. Each of the M” required applications of the U, operator requires
O(M?p3log M) operations on elements of Z/p™"Z. The running-time estimate of
Theorem 5.2 follows from the fact that M" ~ M.

6. Sample computations
EXAMPLE 6.1. Let E/Q be the curve
E:y’+ay+y=2a®+2> 702279 (38B2)

of conductor N =38 = 2-19. Taking N~ = N and p = 19 as in Example 4.1, we
have that B is the algebra of Hamilton’s quaternions. Consider the maximal order
O =7Z[¢] Cc K =Q(), where

e L+ VI
-

Both 2 and 19 are inert in K, so the Shimura-Heegner hypothesis is satisfied. One
may compute that

PicO = Z/2Z ® 7./2Z, Ho = K(vV—3,V5)

Let x1, x2, X3 be the characters of PicO of exact order 2. Assume these
characters are indexed so that the fields corresponding to x1, x2, and x3 are K(u),
K (v), and K(w), respectively, where

S e CR b VG R & 5
2 T2 2
We remark that K(u,v,w) is the Hilbert class field of K. Choose an optimal

embedding of O into the maximal order of B and let 7 € H,(O) be its fixed point.
Define degree 0 CM divisors

%= > xile)r, i=123
acPic O

(Note that this makes sense as x takes values in {1, —1}.) Define a degree 0 divisor
corresponding to the trivial character by

=Y (B+1-Tyr)",
aePicO

where T3 is the usual Hecke operator. Set

P; = Tate (][ oJHE) , 1=0,1,2,3.
0;
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We computed 19-adic approximations to the P; € E(K19) modulo 19%°. These
approximations were recognized as the global points

Py = (—4610/39, (—277799¢ 4 228034)/1521),

P, =(25/12,-94/9u + 265/72),

Py = (10, —11v),

P; = (1928695/2548, (—2397574904w + 1023044339)/463736).

But how do we recognize 19-adic approximations as points with algebraic co-
ordinates? We represent a generic element 19%u + 19%v¢ € K9 with u,v € Zi,
as the quadruple (a,u (mod 194°),b,v (mod 19°)). Thus, to recognize such an
approximation as an element of K, it suffices to be able to recognize an approx-
imation to an element of Zj, as a rational number. This is accomplished using
lattice reduction techniques as in [DP06]. These ideas allowed us to recognize the
coordinates of Py as elements of K. The coordinates x(P;) and y(P;) should be
rational over K (u), not over K itself. Let o be a generator of Gal K (u)/K. Using
Shimura reciprocity, we can compute approximations to (P;)? and y(P;)? in Kig.
If x(P1) = u+ vv/—15 with w,v € K, then

1 1
u=g(@(P) +2(BH)), v= ﬁ(ﬂpﬂ —z(P1)7).

Fixing an embedding of K (u) into K79, we may compute approximations to u and
v as elements of K19 and then attempt to recognize them as elements of K as
described above. The coordinate y(P;), as well as the coordinates of P, and Ps,
were identified in the same way.

We remark that, for this example, the computation of the data (5.4) to a
precision of 40 19-adic digits took approximately one minute.

EXAMPLE 6.2. Let
1+5
w = B 5

F=Q(w),
and consider the elliptic curve
E: ¥ +aoyt+wy=2a%—(w+1)2? — (30w +45)z — (11w + 117).
of conductor (3 — 5w) =: p. (We have (31) = pp.) In this case, the definite
quaternion algebra B which comes into play is the base change to F' of the Q-
algebra of Hamilton’s quaternions.
Consider the CM-field K = F(v/2w — 15) with maximal order O. PicO =

Z,/8Z and thus has a unique character x of exact order 2 with corresponding field
K(v/—13w +2). Choose a base point 7 € H,(O) and a define a divisor

0= > x@r°

a€PicO

P, = Tate <][ qu>
?

X

and a point

associated to x. (Again, this makes sense as x takes values in {1, —1}.)
Using the techniques described above, the point P, was recognized as the global
point

(x,y) € E(F(vV—13w +2)), where
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x =1/501689727224078580 %
(—20489329712955302181w+
1590697243182535465)

y = 1/794580338951539798133856600 x
(—24307562136394751979713438023w
— 52244062542753980406680036861)
x V/—13w +2
+ 1/1003379454448157160 x
(19987639985731223601w
— 1590697243182535465).

Our computations were all carried out using the Magma computer algebra system.
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The arithmetic of elliptic curves
over imaginary quadratic fields
and Stark-Heegner points

Matthew Greenberg

ABSTRACT. Heegner points are crucial to our understanding of the arithmetic
of elliptic curves over QQ as well as over totally real fields. In this note, we
describe a conjectural construction due to Trifkovi¢ of analogues of Heegner
points for elliptic curves defined over imaginary quadratic fields. We expect
these points to enrich our understanding of the arithmetic of such curves.

1. Introduction

A large proportion of research into the arithmetic of elliptic curves is devoted
to the understanding of Mordell-Weil groups — groups of points on elliptic curves
rational over number fields. Many questions regarding the structure of Mordell-
Weil groups, most famously the conjecture of Birch and Swinnerton-Dyer (BSD),
remain open. Much of what we do know about these groups (e.g. BSD for elliptic
curves over Q of analytic rank at most one) is due to the existence of a systematic
construction of points — so-called Heegner points — of Mordell-Weil groups in
towers of number fields. In appropriate situations, these Heegner points govern the
behaviour of Mordell-Weil groups in a very strong way.

Heegner points on an elliptic curve E are, by definition, the images of CM
points under modular parametrizations of E: dominant morphisms from modular
or Shimura curves to E. In particular, for Heegner points to exist, E needs to admit
a modular parametrization in the first place, a condition only reasonable to expect
in any kind of generality if £ can be defined over a totally real field. Due to the
absolutely crucial role played by Heegner points in the study of Mordell-Weil groups,
it is extremely natural to desire a generalization of the Heegner point construction
to elliptic curves which do not necessarily admit modular parametrizations. In this
article, we present such a generalization, due to Trifkovi¢ [Tri06], in the case of
elliptic curves defined over imaginary quadratic fields.

Trifkovi¢’s work is based on Darmon’s construction of Stark-Heegner points on
elliptic curves defined over Q — analogues of Heegner points which are conjectured
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Key words and phrases. elliptic curves, modular forms, imaginary quadratic fields, Stark-
Heegner points.

©2009 Matthew Greenberg
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to be rational over ring class fields of real quadratic fields. Although Darmon’s con-
struction makes essential use of the modular forms attached to elliptic curves over
Q, the modular parametrizations are not explicitly involved.! It is this characteris-
tic which raises the prospect of generalizing the Stark-Heegner point construction to
base fields other than totally real ones where, although modular parametrizations
are not expected to be available, the elliptic curves in question are still expected to
be “modular.”

The central role played by rational points in the arithmetic of elliptic curves is
summed up beautifully by the following lines from the abstract of [BMSWO07]:

“Rational points on elliptic curves are the gems of arithmetic:
they are, to Diophantine geometry, what units in rings of inte-
gers are to algebraic number theory, what algebraic cycles are to
algebraic geometry. A rational point in just the right context, at
one place in the theory, can inhibit and control — thanks to the
ideas of Kolyvagin — the existence of rational points and other
mathematical structures elsewhere.”

This article is divided into three main parts. First, we will define modular forms
and modular symbols relative to an imaginary quadratic base field and state some
fundamental results concerning these. Armed with these notions, we will describe
Trifkovié’s Stark-Heegner point construction and state his conjectures concerning
their algebricity. In the last part, we shall discuss issues related to the computation
of these points in practice.

The author would like to sincerely thank the anonymous referee for numerous
insightful suggestions which led to significant improvements in this article.

2. Modular forms for imaginary quadratic fields

2.1. Upper half-space. In addition to [Tri06], some good references for this
section are [Byg98, Cre84, Cre, CW94, Lin05]. Reference [Byg98] in particular
is extremely detailed and contains a wealth of background material. Let F' be an
imaginary quadratic field of discriminant D with maximal order O, and assume
that Of is a principal ideal domain. Fix an ideal N of Op. In analogy with the
classical situation, define

H = GLy(C)/C* - SU,
and call H the upper half-space. The group GLy(C) admits a decomposition
GL2(C) = BK Z, where

p={(0 D) S} Kest i zec

mirroring the analogous decomposition of GL3 (R) where

_ y z\ xR _ .
B_{<0 1>. y€R>o}’ K =S50, and Z =R~

Projecting onto the B-coordinate, we have an identification

HA{(z,t):2€C,t €Rsp}.

Ig, Dasgupta [Das05] has shown how to explicitly lift the Stark-Heegner points on F to an
appropriate modular Jacobian.
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The action of GL2(C) on H takes the form

b 1 _

The upper half-space H is equipped with a GLy(C)-invariant Euclidean metric given
by
4s? — dzdz + dt*
t2
Let H* be the disjoint union of H with P!(F). (Note that, although this is not
reflected in the notation, the set H* depends on the field F.) Extend the topology
of H to H* by declaring sets of the form

Up={(z,t) e H:t>h}U{oo},
as well as their translates by elements of GLy(F'), to be open. The action of

To(N) = {(Z Z) € GLo(Op) : cEN}.

extends naturally to H*, so we may consider the quotient
Xo(N) = Fo(N)\H*

We assume that Tg(AN) has no elements of finite order, in which case Xo(N) is a
smooth 3-manifold. (See [KurT78] for details on dealing with the situation where
['o(N) contains elements of finite order.) The points I'g(N)\P!(F) are called the
cusps of Xo(N).

2.2. Modular forms on the upper half space.

DEFINITION 2.1. A modular form of weight 2 for To(N) is a To(N)-invariant
harmonic differential form on #H. If it descends to a harmonic differential form on
Xo(N), then we call it a cusp form.

We denote the set of modular (resp. cusp) forms of weight two for T'g(N') by Mo (N)
(resp. So(N)). Consider the basis of smooth differential 1-forms on H given by

w = (w1, ws,ws3)" = (—dz/t,dt/t,dz/t)".
and let f = (f1, f2, f3)! be a vector of smooth functions on H.

LEMMA 2.2.
(1) The differential form f - w is To(N)-invariant if and only if
fz1) = (fN)(z,1) == J(v, (2,6)) f (7(2, 1))
for all v € To(N), where
r’A —2rsA  s2A
_ 1 - 2 1.2 _=
J(’Ya (Zat)) - ‘7‘|2 + |S|2 i |T’| |S| rs ’
s2A 2rsA r2A

A=dety, r=cz+d s=c¢ct.
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(2) The differential form f-w is harmonic if and only if the following partial
differential equations are satisfied:

%+%—f{f1:0

If f-w is a modular (resp. cusp) form, then we shall call f a modular (resp. cusp)
form too.

2.3. Fourier expansions and cusp forms. Suppose that f satisfies f|y = f
for all v € To(N). This implies that J((§ ), (2,t)) is the identity matrix for all
a € Op, so for each fixed t, the function f;(z,¢) is periodic with respect to the
lattice O C C. Let g(z) be any function with this property and let

Y:C— St Y(z) = g2mi(z+2)

be the standard unitary character of the additive group of C. Then g admits a
Fourier expansion of the form

9(2) =Y _ by ()x(2),

where x varies over the unitary characters of C which are trivial on Op. But each
of these characters has the form

1
2> (az) forsome a€dn=-——0Op.
w( ) F \/B F
Thus, the expansion of g takes the form
oz
z) = ¢y — .
a€OFp
It follows that for each o« € O there is a vector-valued function
crla,t) = (ci(ant), ca(a, t), c3(a, b))
of ¢ such that
oz
2, 1) = cela,t — .
0= 3 oot (5)

One may verify that if e € OF, and v = (§ 9), then cg|,(a,t) = c¢(ea, t). Therefore,
as f|y =, we have c(ea,t) = cf(a,t) for all e € OF and all « € O. Consequently,
recalling that we assume Op to be a PID, we may rewrite the above sum as a sum
over ideals of Op:

F(ert) = ep(0,1) + es(ant) w(am)
og(az);oF 662(9:} \/5

LEMMA 2.3. If cf,(0,t) = 0 for each v € GLo(OF), then f is a cusp form on
To(N).
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The harmonicity of f-w implies that the components of c¢(«, t) are of a special
form.

DEFINITION 2.4. For i = 0,1, let K;(t) denote the solution to the differential

equation
’K; 1dK; 1
+ - (1 + > K;=0

a2t dt 12i

which decreases rapidly at infinity (see [Byg98, Ch. 4]). The functions K; are
called Bessel functions.

Set
K(0) = (= 5500 Kalt) 51 (0)).

It can be shown that for each o € O there is a constant c¢(«) such that

47r|aft
cr(a,t) =cr(@)t?K | ——= |,
rlat) = cp(a)t (W)

so the Fourier expansion of f takes the form

L= (o) 4r|alt oz
fEn= Y o >tK(ﬁ>w(@).

a€eOp

2.4. Hecke operators. The vector space Mz (N') admits an action of certain
Hecke operators. Let A (resp. m) be a prime element of Op prime to (resp. dividing)
N. Then operators T and U, are defined by the “usual” formulas:

/=y f\(é j)+f\(3 ?)

a mod A

o= 30 7))

a mod 7

The effect of the Hecke operators on Fourier coeflicients is given by the familiar
formulas:

¢ (@) = {cf()\a) + Norm(N)es(a/A) if Aa,
1T cf()\a) 1f)\f0[7

e, (@) = cp(mar).

It follows that the operators Ty and U, depend only on the ideals (A) and (),
respectively.

The Hecke operators generate a commutative subalgebra of End Ms(A) which
preserves So(N). If f € So(N) is an eigenform for all the Hecke operators and is
normalized so that cy(1) = 1, then f|T = c¢s(A\)f and f|Ur = cf(m)f. A notion
of newform may be defined, and an Atkin-Lehner theory developed, in a manner
analogous to that employed in the classical case (i.e. over Q).
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2.5. L-functions and Shimura-Taniyama. Let f € So(N) be a normalized
newform and define

L(f,s)= Y. c¢s(a)Norm(a)™™,

(0)CaCOFR
where the sum is over nonzero ideals of Op.

THEOREM 2.5. The series defining L(f,s) converges in the right half-plane
Rs > 3/2. It admits an Euler product, analytic continuation to the whole complex
plane, and satisfies a functional equation relating its values at s and 2 — s.

The analogue of the Shimura-Taniyama conjecture in this context is:

CONJECTURE 2.6. There is a one-to-one correspondence between normalized
cuspidal newforms f € So(N) with rational Hecke-eigenvalues and isogeny classes
of elliptic curves E,p which do not have complex multiplication by an order in F.
If f corresponds to E, then

L(f,s) = L(E,s).

REMARK 2.7. If case that F has CM by an order in F', then F corresponds to
an Eisensein series on I'g(N) rather than to a cusp form.

REMARK 2.8. In the classical case (i.e. over Q), the Eichler-Shimura construc-
tion attaches both a Galois representation and an elliptic curve to a newform g.
In many cases, Richard Taylor has succeeded in constructing Galois representa-
tions attached to modular forms over imaginary quadratic fields by relating them
to holomorphic Siegel modular forms. This allows him to use algebro-geometric
methods to locate the desired Galois representations in the ¢-adic cohomology of
these varieties. His construction does not, however, give a construction of an elliptic
curve associated to the form g. If one has a prospective elliptic curve E in mind,
though, one can use the Faltings-Serre method to show that the Galois represen-
tation attached to ¢ is that arising from the Galois action on the Tate module of
E.

REMARK 2.9. In [Tri06, p. 432], the analogue of the Shimura-Taniyama con-
jecture is phrased in terms of plusforms. Trifkovi¢’s plusform condition is always
satisfied for the modular forms in this paper since we require them to be invariant
with respect to a congruence subgroup of GLy(OF) whereas Trifkovié¢ asks only for
invariance with respect to a conguence subgroup of SLy(OF).

3. Modular symbols and mixed period integrals

Let f € So(N) be a Hecke-eigenform where A" € Op. Suppose further that A
has the form 7 M, where 7 is a prime element of O (lying over the rational prime
p, say) and m{ M. Let F be the completion of F' at the ideal (7) and let Op . be
its ring of integers.

PROPOSITION 3.1 ([Kur78]). There exists a unique positive real number Qy €

R such that
{/ frw:irs cusps} = Q7.
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We call the quantity Qf the period of f. Using this definition of the period,
Darmon’s mixed period integral formalism (see [Dar01] or [Dar]) extends easily
to our setting: Let

F— {(i g) € GLo(Op[1/n]) i c M}.

The group GLa(Fy) acts from the left on P!(F}) by fractional linear transfor-
mations. We call a subset B of P*(Fy) a ball if it is of the form 0OF , for some
o € GLy(Fy). By the strong approximation theorem, the group I acts transitively
on the set B of these balls.

A Z-valued distribution on P*(Fy) is, by definition, a finitely additive, Z-valued
function on B. We shall denote the set of such by Dz(P'(Fy)). If u € Dz(P(Fy))
and ¢ is a nonvanishing, continuous, C,-valued function on P(Fy,), we define the
multiplicative integral

o(z)dp(x) = lim olzy)"V) e C2,
Fop, P =1 TT oo e

veu

where U varies over increasingly fine covers of P!(F,) by pairwise disjoint balls,
and zy is any point in U. (Note that since we are exponentiating by the values of
i, it is essential that p is Z-valued.)
Let cs(m) = %1 be the U,-eigenvalue of f and define a Dz(P'(F))-valued
modular symbol
F:PYF) x PY(F) — Dy(PY(Fy))
by the rule
ord, det o s
Fir = sHoOrm) = L o)
Qy ”
That F{r — s} is finitely additive follows from the fact that f is a U,-eigenform.
By Proposition 3.1, the distributions F{r — s} are all Z-valued.
Let H, denote the m-adic upper half-plane P!(C,) —P!(Fy). For cusps r, s and
points 7, 7" € H, define the mized period integral

7' rs z— 7 §
]{/T f= Pl(Fp)(I_T>dF{r%s}(x)€Cp.

Trifkovié conjectures that, up to certain m-adic periods, the above mixed period
integral map be written as a quotient of two indefinite integrals (defined below).
Let E/r be a representative of the isogeny class of elliptic curves associated to f by
Conjecture 2.6. Then E has multiplicative reduction over F and therefore a Tate
uniformization over C,, where p is the rational prime below 7.

CONJECTURE 3.2. There exists a lattice A C (C;*7 commensurable with the Tate
lattice of E and a function

(3.1) Hn x PHF) x PY(F) — C,, written (7,7,5) |—>][/ £,

such that

(1) ][W/’Ys ][/ f for all v € T and all cusps r, s,
][T/Sij[/ ][/fforallcuspsrst



132 MATTHEW GREENBERG

3) ]{/f=][/f/f/f in C3/A.

Since the Tate lattices of isogenous elliptic curves are commensurable, the above
conjecture does not depend on our choice of representative E of the isogeny class
of elliptic curves associated to f. We refer to the function in (3.1) as an indefinite
integral.

4. Stark-Heegner points

Let K/F be a quadratic extension in which () is inert and all prime ideals
dividing M are split (this is the analogue of the Heegner hypothesis in our situation)
and let O be a Op[l/7]-order in K of conductor prime to M. Let

R= {(Ccl Z) € M3(Op) : M divides c} .

We say that an embedding ¢ : K — My(F) of F-algebras is (O, R)-optimal if
P(K)N R = ¢(0). Let £(O, R) be the set of such embeddings. The conditions
that the primes dividing M split in K and that the conductor of O is prime to
M guarantee that £(O, R) is nonempty. The group I of units in R acts natu-
rally on £(O, R) by conjugation. Moreover, there is a natural free action of Pic O
on £(O, R)/T which partitions £(O, R)/T into 2°M)# Pic O orbits, where w(M)
denotes the number of prime factors of M. (For details, see [Tri06, §3.2].)
For each ¢ € £(O, R), there is a unique 7y € H, such that

o ()==(3)

for all o € K*. As () is inert in K/F, the point 7, actually lies in #,. Note that
if ¢ and ¢ are I-conjugate, then the corresponding fixed points 7 and 7/ in #, are
in the same I'-orbit.

Fix a generator vy of O}, a cusp r, and a positive integer ¢ such that A’ is
contained in the Tate lattice of E. To an optimal embedding ¢ € £(O, R), we
associate the period Jy, € Cy/A defined by

1) 7, :][Tru,/rf/f(w)r ;

and the point
Py = Tate(J}) € E(C,).

By the T-invariance property of the indefinite integral (property (1) of Conjec-
ture 3.2), the period Jy and the point Py depends only on the f‘—conjugacy class of
1. We call P, the Stark-Heegner point attached to the optimal embedding 1. Let
Hp be the ring class field associated to the order O and let

rec : PicO — GalHp /K
be the isomorphism induced by the reciprocity map of class field theory.

CONJECTURE 4.1 (Tritkovi¢). The point Py belongs to E(Hp). The Galois
action on Py is described by

(Pw)rec(a) _ Pzp“ )
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We expect the analogues of the formula of Gross-Zagier and the theorem of
Kolyvagin to hold in this context: Assuming Conjecture 4.1, we may let

Py = Tracep,, /x Py = Z Py« € E(K).
a€PicO

Let (-, -) denote the canonical height pairing on E(K).
CONJECTURE 4.2. There is an explicit nonzero fudge factor o such that
L'(E/K,1) = a(Px, Px).
In particular, L'(E/K,1) # 0 if and only if Pk is nontorsion.

CONJECTURE 4.3. Suppose that the point Pk has infinite order in E(K). Then
rank E(K) = 1.

Armed with suitable nonvanishing results for twists of the L-function of E,
Conjectures 4.2 and 4.3 should imply BSD for elliptic curves over F of analytic
rank at most one. For a sketch of this argument, see [Dar04, §3.9].

5. Computing Stark-Heegner points

In the absence of proofs for the above conjectures, some numerical evidence
supporting them is most desirable. Trifkovi¢ provides this in abundance in the
case where Op is a Euclidean domain and the conductor of E is prime. In order to
compute Jy, in this case, Trifkovié, following Darmon and Green [DGO02], begins by
producing a candidate for the indefinite integral. Since O is a Euclidean domain,
we may use Manin’s continued fraction algorithm to write an arbitrary degree zero
divisor (s) — (r) on P1(F) as

(s) = (r) = [(s) = (t)] + [(t1) = (t2)] + - + [(En1) = ()] + [(80) — (1)),

where each pair in square brackets is a pair of adjacent cusps. (Two elements
(a:b) and (c : d) of PL(F) are called adjacent if ad — bc = 1.) Therefore, by the
“path-multiplicativity” of the indefinite integral (property (2) of Conjecture 3.2),
we may assume that r and s are adjacent cusps. All adjacent pairs of cusps are I =
PSLy(O[1/x])-equivalent. (Note that I' = PSLy(Op[1/7]) because the conductor
of F is assumed to be prime.) Therefore, by property (1) of Conjecture 3.2, we
have reduced the computation of Jy to that of integrals of the form

T OO
1
0
Similar manipulations using the properties of the indefinite integral give the identity

RS R B Cra L )

Thus, we have reduced the calculation to that of multiplicative integrals of the form

T—T
fl;w@p) <$ - T’> du):

where 7,7’ € H, and p is a measure on P*(Fy). The ideas used in the computation
of such integrals are the same as those discussed in [Gre].
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We conclude with a numerical example taken from [Tri06, §1.3.2]. Let F' =
Q(a) where v = (1 + +/—3)/2 and consider the elliptic curve

E:y’4+ay=2*+ (a+1)2* + azx.

The curve E has prime conductor (7) of norm 73, where m = o + 8. The Mordell-
Weil group E(F') is cyclic of order 6 generated by the point (—1,1). Let K = F(f)
where 32 = 2a + 21. Then (7) is inert in the quadratic extension K of F. Let
¥ be an (Ok, Ma(Op[1/7]))-optimal embedding of K into My(F). As the class
number of K is one, we expect the Stark-Heegner point P, to be rational over
K = Hp,.. An approximation to P, module 739 was recognized as the global point
(z,y) € E(K), where

1259988 126090782

T = 197165027 T 127165027
_ (2003147975024 1037094266063
Y=\ 31646131095439" " 31646131095439

629994 ot 63045391
127165927 127165927°
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Lectures on Modular Symbols

Yuri I. Manin

ABSTRACT. In these lecture notes, written for the Clay Mathematics Insti-
tute Summer School “Arithmetic Geometry”, Gottingen 2006, I review some
classical and more recent results about modular symbols for SL(2), includ-
ing arithmetic motivations and applications, an iterated version of modular
symbols, and relations with the “non—commutative boundary” of the modular
tower for elliptic curves.

1. Introduction: arithmetic functions and Dirichlet series

1.1. Arithmetic functions. Many basic questions of number theory involve
the behavior of arithmetic functions, i.e. sequences of integers {a, |n > 1} defined
in terms of divisors of n, or numbers of solutions of a congruence modulo n, etc.
After having chosen such a function, one might ask for example:

(i) Is {an | n > 1} multiplicative, that is, does @, = amay, for (m,n) = 17

(ii) What is the asymptotic behavior of )" _\ an as N — co?

(iii) Can one give a “formula” for a,, if initially it was introduced only by a
computational prescription, such as a,, := the number of representations of n as a
sum of four squares?

A very universal machinery for studying such questions consists in introducing
a generating series for a, depending on a complex parameter, and studying the
analytic and algebraic properties of this series.

Two classes of series that are used most often are the Fourier series
o0
f(z) = Z ane?™nz (1.1)
n=1
and the Dirichlet series
o0
Li(s) =) ann " (1.2)
n=1

In full generality, they must be considered as formal series; however, if a,, does not
grow too fast, e.g. is bounded by a polynomial in n, then (1.1) converges in the
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upper half-plane H := {z € C|Imz > 0}, whereas (1.2) converges in some right
half plane Res > D.

1.2. Mellin transform and modularity. Some of the properties of {a,,} are
directly encoded in the generating Dirichlet series. For example, multiplicativity of
{a,} translates into the existence of an Euler product over primes p:

Li(s) =T Lsn(s),  Lppls) = app™™. (1.3)

Hence the Dirichlet series for the logarithmic derivative of such a function carries
information about the values of a,, restricted to powers of primes. This idea leads
to famous “explicit formulas” expressing partial sums of a,»’s via poles of the
logarithmic derivative of Lf(s) i.e. essentially zeroes of Ls(s). Applied to the
simplest multiplicative sequence a, = 1 for all n, this formalism produces the
classical relationship between primes and zeroes of Riemann’s zeta.

It turns out, however, that to establish the necessary analytic properties of
L (s) such as the analytic continuation in s and a functional equation, and generally
even the existence of an Euler product, one should focus first upon the Fourier series
f(2). The main reason for this is that interesting functions f(z) more often than not
possess, besides the obvious periodicity under z — z+ 1, additional symmetries, for
example, a simple behavior with respect to the substitution z — —z~!. This is the
case for f(z) = 32,5, €2™"°% (or the more symmetric > ez g2min®z)
to Ly(s) =((2s).

The transformations z + z + 1 and z — —2z~! together generate the full
modular group PSL(2,Z) of fractional linear transformations of H, and Fourier
series of various modular forms with respect to this group and its subgroups of
finite index generate a vast supply of most interesting arithmetic functions.

corresponding

The basic relation between f(z) and Ly (s) allowing one to translate analytic
properties of f(z) into those of Ly(s) is the integral Mellin transform

ao= [ a0 (5) % 14)

Here the s—th power in the integrand is interpreted as the branch of the exponential
function which takes real values for real s and imaginary z. Convergence at ioco
is usually automatic whereas convergence at 0 is justified by a functional equation
(possibly after disposing of a controlled singularity).

Whenever we can integrate termwise using (1.1) (for large Re s), an easy cal-
culation shows that
Ag(s) = (2m) T (s)Ly(s). (1.5)
A functional equation for f(z) with respect to z — —2z~! (or more generally, z
—(Nz)~! for some N) then leads formally to a functional equation of Riemann type
connecting As(s) with Af(1 —s) or Ap(D — s) for an appropriate D defining the
critical strip 0 < Res < D for Ls(s).

This is a very classical story, which acquired its final shape in the work of
Hecke in the 1920’s and 30’s. More modern insights concern the role of I'-factors
as Euler factors at arithmetic infinity, and most important, the universality of this
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picture and the existence of its vast generalizations crystallized in the Taniyama—
Weil conjecture and the so-called Langlands program. This involves, in particular,
consideration of much more general arithmetic groups than PSL(2) as modular
groups.

We will not discuss this vast development in these lectures and focus upon the
classical modular group and related modular symbols. For some generalizations,
see [AB90], [ART79].

2. Classical modular symbols and Shimura integrals

2.1. Modular symbols as integrals. Since we are interested in Mellin trans-
forms of the form (1.4) where f(z) has an appropriate modular behavior with re-
spect to a subgroup of PSL(2,Z), we must keep track of similar integrals taken
over PSL(2,Z)-images of the upper semi-axis as well. The latter are geodesics
connecting two cusps in the partial compactification H := H U P}(Q).

Roughly speaking, the classical modular symbols are linear functionals (spanned
by)

B8
(0,8} : fr / f(2)= "tz a.fePYQ)

on appropriate spaces of 1-forms f(z)z*~'dz. To be more precise, we must recall
the following definitions.

The group of real matrices with positive determinant GL*(2,R) acts on H
by fractional linear transformations z +— [g]z. Let j(g,2) := cz + d where (c,d)
is the lower row of g. Then we have, for any function f on H and homogeneous
polynomial P(X,Y) of degree k — 2,
9"[f(2) P(2,1) d2] := f([g]z) P(lg]2,1) d([g]z)
= f([g9]2) (§(g,2)) " *P(az +b,cz + d) det g d= (2.1)
where (a,b) is the upper row of g. From the definition it is clear that the diagonal
matrices act identically so that we have in fact an action of PGL*(2,R).
This action induces for any integer & > 2 the weight k action of GL™(2,R) on
functions on H. In the literature one finds two different normalizations of such an

action. They differ by a determinantal twist and therefore coincide on SL(2,R)
and the modular group. For example, in [Mer94] and [Man06] the action

Fll9le(2) == f([g]2) j(g,2)~F (det g)*/? (2.2)
is used.

A holomorphic function f(z) on H is a modular form of weight k for a group
I c SL(2,R) if f|[v]x(z) = f(2) for all v € T and f(z) is finite at cusps.

Such a form is called a cusp form if it vanishes at cusps.

Let Si(I") be the space of cusp forms of weight k. Denote by Shy(T") the space
of 1-forms on the complex upper half plane H of the form f(z) P(z,1)dz where
f € Sk(l), and P = P(X,Y) runs over homogeneous polynomials of degree k—2 in
two variables. Thus, the space Shy(I") is spanned by 1-forms of cusp modular type
with integral Mellin arguments in the critical strip in the terminology of [Man06],
Def. 2.1.1, and 3.3 below.
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We will now describe the space of classical modular symbols M S, (') as the
space of linear functionals on Sy (I") spanned by the Shimura integrals

B
f(z)— / f(2)z2" Mz 1<m<k—1; «oBcPHQ). (2.3)

Three descriptions of M S (T") are known:

(i) Combinatorial (Shimura-FEichler-Manin): generators and relations.

(ii) Geometric (Shokurov): M Sk (T') can be identified with a (part of ) the middle
homology of the Kuga-Sato variety M ®*).

(iii) Cohomological (Shimura): The dual space to M Sy (I") can be identified with
the cuspidal group cohomology H (I, Wy _2)cusp, With coefficients in the (k —2)-nd
symmetric power of the basic representation of SL(2).

We give some details below.

2.2. Combinatorial modular symbols. In this description, M S;(T") ap-
pears as an explicit subquotient of the space Wj_o ® C, where Wj_, consists of
polynomial forms P(X,Y) of degree k — 2 of two variables, and C' is the space of
formal linear combinations of pairs of cusps {a, 3} € P(Q). Coefficients of these
linear combinations can be Q, R or C, as in the theory of Hodge structures.

Each element of the form P ® {«, 5} produces a linear functional
fo / F(2) P2, 1)dz.
B

This is extended to all of Wj_o ® C by linearity.

Denote by C the quotient of C' by the subspace generated by sums {a, 8} +
{8,7} + {7, a}. Since [ +ff + [7 =0, our linear functional (Shimura integral)
descends to Wi_o ® C. We will still denote by P ® {«a, 8} the class of this element
in C.

The group GL'(2,Q) acts from the left on Wi_5 by (notation as in (2.1))

(gP)(X,Y) := P(bX — dY, —cX + aY),

and on C by g{«, 8} := {ga, gB}. Hence it acts on the tensor product. A change of
variable formula then shows that the Shimura integral restricted to Sk (") vanishes
on the subspace of Wy _o®C spanned by Pe{«, 8} —gP®{ga, g8} for all P € Wj,_o,
gel.

Denote by M Sk(T") the quotient of Wj,_o ® C by the latter subspace.

The subspace of cuspidal modular symbols M .Sy, (I") cysp is defined by the follow-
ing construction. Consider the space B freely spanned by P1(Q). Define the space
By (T') as the quotient of Wj,_o® B by the subspace generated by P@{a}—gP®{ga}
for all g € T. There is a well-defined boundary map M Sy (T') — Bg(T') induced by
P®{a,f} = P®{a} —P®{B}. Its kernel is denoted M Sk(I')cysp-

By construction, any (real) modular symbol in M .Sy (T')¢ysp defines a C—valued
functional [ on Sy (') and in fact even on Sy (T) & Sk(T).

The first result of the theory is:
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Theorem (Shimura). [ is an isomorphism of MSy(D)cusp with the dual
space of Sk(T') @ Si(T).

2.3. Geometric modular symbols. Let I'*) be the semidirect product T' x
(ZF=% x Z¥=?) acting on H x C¥~2 via

(s nym) (2,€) = (23 §(v,2) 71 (¢ + 2n +m))

where n = (nq,...,ng—2), m = (my,...,mi_2), ¢ = (¢1,...,Ck—2), and nz =
(nlz,...,nk_gz).

If f(z) is a I'—invariant cusp form of weight k, then
f(2)dz AdG A - A dC—2

is a I'™)—invariant holomorphic volume form on H x C*~2. Hence one can push
it down to a Zariski open smooth subset of the quotient I'*) \ (H x C*=2). An
appropriate smooth compactification M*) of this subset is called a Kuga-Sato
variety, cf. [Sho76],[Sho80b],[Sho80a].

Denote by wy the image of this form on M®) Notice that it depends only on
f, not on any Mellin argument. The latter can be accommodated in the structure
of (relative) cycles in M (%) so that integrating wy over such cycles we obtain the
respective Shimura integrals.

Concretely, let o, 3 € P1(Q) be two cusps in H and let p be a geodesic joining
a to B. Fix (n;) and (m;) as above. Construct a cubic singular cell p x (0,1)~2 —
HxCF2: (2,(t;)) = (2, (ti(zn;+m;))). Take the Sp_o-symmetrization of this cell
and push down the result to the Kuga—Sato variety. We will get a relative (modulo
fibers of M) over cusps) cycle whose homology class is Shokurov’s higher modular
symbol { «, 8; n,m}r. One easily sees that

Lﬂf(z)ﬁ(niz+mi)dz/ Wi .

{a,8;n,m}r
The singular cube (0,1)¥~2 may also be replaced by an evident singular simplex.

Theorem (Shokurov). (i) The map f — wy is an isomorphism Si(I') —

HO(M®) kL.

(ii) The homology subspace spanned by Shokurov modular symbols with van-
ishing boundary is canonically isomorphic to the space of cuspidal combinatorial
modular symbols.

2.4. Cohomological modular symbols. In this description, the space dual
to M Sy () is identified with the group cohomology H! (T, Wj_5).

A bridge between the geometric and the cohomological descriptions is furnished
by the identification of H*(T, Wk—_2)cusp With the cohomology of a local system on
M, 1, namely H}' (M, 1, Sym* ?R'7.Q).
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2.5. Some arithmetic applications. The formalism sketched above allows
one to get some quite precise information about two classes of number—theoretic
objects: coefficients of modular forms and their periods, which are essentially values
of their Mellin transforms at integer points of the critical strip. For illustration, we
give two examples taken from [Man72] and [ManT73|.

Ezxample 1. Let

(I)(Z) — e27riz H(l _ eZTrniz)24 _ ZT(’I’L)G%TMZ.
n=1 n=1

The coefficients 7(n) form a multiplicative sequence. This follows from the fact
that ®(z) is the (essentially unique) cusp form of weight 12 with respect to the full
modular group; hence in particular it is an eigenform for all Hecke operators, which
ensures multiplicativity.

The formalism of modular symbols leads to an expression for 7(n) through
representations of n by an indefinite quadratic form. Namely, we have

691 691
_ 11 OIL A8s52 _ a258y | 990 i6c4  A4s6
)= d'+ ) o (8507 — A%6%) 4 == (A% — ATS0). (24
d/n n=AA'+4§6'
The second summation is taken over the following set of solutions: we require that
A > ¢ >0 and either A’ > § >0, or A/n, A" =n/A§ =0,0< /A <1/2.

Periods of ®(z) are Shimura integrals
rp(P) == / ®(z)2"dz, 0<k<10—w
0

that is, via Mellin transform,
kliF+1

ri(®) = Wﬂb(k‘ +1).

The invariance of ®(2)(dz)% with respect to z — —z~! shows that
75(®) = 1 (@) (= 1)y i (®).
Finally, the formalism of modular symbols allows one to establish that the Q—space
spanned by periods is at most two—dimensional. More precisely,
691 691 52 5
T92.34.5° 23.32.5.7)’ (7‘1:713:715):(1:_24.3 : 22.3)'

Example 2: a non—commutative reciprocity law. Here we start with a cusp form
of weight two

(ro:re:ry) = (1:

F(Z) . 27z H(l _ e27rniz)2(1 _ e227rniz)2 _ Z )\ne2‘n’niz
n=1 n=1

with respect to the subgroup T'o(11) of T'.

The Mellin transform of this form can be identified with the Weil zeta function
of the elliptic modular curve T'o(11) \ H defined over Q. From this it follows that
for any prime p # 2,11, we can characterize 1 — A, + p as the number of solutions
of the congruence

v +y=2>—2>— 10z — 20modp (2.5)

(including the infinite solution).
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On the other hand, the formalism of modular symbols allows one to write for
this number an expression having the same structure as (2.4):

L=X+p= Y. yul(d0). (2.6)
p=AA'+686

This time, however, y11(4, ¢) is not a polynomial: it depends only on (A : ) mod 11:
for the values of the latter 0,00, +1, 42, £3,+4, +5mod 11, the values of y;; are
respectively 2, —2,0,10,5, —5, —10.

Thus, we have connected solutions modulo p of the equation (2.5) “depending
on 117 as its conductor with solutions modulo 11 of the equation p = AA’ +
66’ depending on p. This justifies the name “non—commutative reciprocity law”
suggested for (2.6) and its generalizations in [Man72].

Such formulas can be used to make more explicit the exact arithmetic content
of special cases of the very general and therefore somewhat abstruse Langlands
formalism.

Proofs of formulas for coefficients such as (2.4), (2.6) consist of two steps. For
simplicity, we will illustrate this for the case of weight two cusp form f(z) which is
an eigenform with respect to a Hecke operator T;, so that T}, f = a, f. We integrate
this identity, say, from 0 to ico and get

/ T,fdz = an/ fdz.
0 0

Now, use the explicit definition of the Hecke operator T,, on the left hand side
and make a change of variables. We will get a sum of modular symbols. Using
a continued fraction trick and a lemma initially proved by Heilbronn, we finally
reduce the left hand side to a sum over solutions of n = AA’ 4 §¢’.

2.6. Relations with noncommutative geometry and a real analog of p—
adic integration. The role of the upper half-plane in our constructions is of course
explained by the fact that it parametrizes elliptic curves: complex tori C/(1,7),
7 € H. The action of the modular group extends to this family, and the respective
quotient is a non—complete algebraic variety. The cusps 7 € P1(Q) can be added
to compactify this quotient by degenerate elliptic curves. However, for irrational
values § € R\ Q, the quotient C/(1,6) = C*/(e**) is a “bad” topological group,
and the common wisdom is that it is best represented by a non—commutative space,
(a version of) the quantum torus Ty.

Tori Ty are parametrized by § € R. However, if one considers only tori mod-
ulo Morita equivalence, then they are parametrized by PGL (2,Z) \ P}(R). Set—
theoretically, PGL (2,Z) \ P}(R) = the set of equivalence classes of a € [0,1)
modulo the relation

a=p < Ing,ni Vn >0, kpino(@) = knin, (5)-
Here k,(a) are successive components of the continued fraction of «.

Thus, we can imagine an “invisible boundary” of the modular tower supporting
a family of non—commutative spaces, the phantom of the classical modular family.
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This viewpoint was discussed in [MIMO02], see also [Mar05], and in particular
the Gauss problem on the distribution of continued fractions and its generalizations
were treated as a measure theory on the “non—commutative modular curves”.

We will describe here one result of this study, which produces an “co—adic ana-
logue” of the theory of p—adic integration used to construct p—adic Mellin transforms
of cusp forms in [Man73].

Fix a prime number N > 0 and put Gy = I'o(/N). We will assume that the
genus of X, = Xo(IV) is > 1. Consider a I'g(/V)-invariant differential w = f(2)dz
on H such that f(z) is a cusp eigenform of weight two for all Hecke operators
and denote by L(fN)(s) (resp. ¢(N)(s)) its Mellin transform (resp. Riemann’s zeta)

with omitted Euler N—factor. More precisely, the coefficients of L;N)(s) are Hecke
eigenvalues of f.

For o € (0,1), denote by p,(a)/gn(a) the n—th convergent of a.
Theorem. We have for Ret > 0:

qn + qn qn(a@)/qn+1(a)
/ Z H—ut() /O f(z)dz =

n=0 anrl
/ e (2.7)

If f z)dz # 0, we can read (2.7) as an expression for Lgc )( ) which has striking
structural sumlarltles to the p—adic Mellin integral. In particular, both formulas
involve a construction of a measure out of modular symbols, on (0,1) and on Z3
respectively.

ca+y LY+
C2+t) N>2+t

The proof of (2.7) given in [MMO2] combines an old lemma by P. Lévy with
the continued fractions trick alluded to above.

The Theorem above does not involve directly the non—commutative geometry
of the invisible boundary. However, it was shown in [MIMO02], Sec. 4, and [Mar05],
Sec. 6 of Ch. 4, that modular symbols themselves can be identified with specific
elements in the K—theory of this space, giving additional weight to the geometric
intuition behind this picture.

3. Iterated modular symbols

3.1. Multiple zeta values and iterated integrals. The theory of iterated
modular symbols (cf. [Man06], [Man05]) is a simultaneous generalization of two
constructions—of classical modular symbols and of multiple zeta values—and is an
elaboration of a special case of Chen’s iterated integrals theory ([Che77]) in a
holomorphic setting.

Multiple zeta values are the numbers given by the k—multiple Dirichlet series

Cma,ome) = Y ﬁ (3.1)

n -.-n
0<ni<--<np 1 k
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which converge for all integer m; > 1 and my, > 1, or equivalently by the m—multiple
iterated integrals, m = mq + - - - + my,

1 z z z
le / ! dZQ / 2 / Mh—1 dzmk
mi,...,mg) = — — —_— 3.2
$m ) /0 z1 Jo 22 Jo 0 L —zm, (3.2)

where the sequence of differential forms in the iterated integral consists of consec-

dz dz dz
utive subsequences of the form —,..., —, 1
z z ' 1-—

Easy combinatorial considerations allow one to express in two different ways
products ¢(l1,...,1;)-¢(mq,...,my) as linear combinations of multiple zeta values.

of lengths my, mg_1,...,m1.
z

If one uses for this the integral representation (3.2), one gets a sum over shuf-
fles which enumerate the simplices of highest dimension occurring in the natural
simplicial decomposition of the product of two integration simplices.

If one uses instead (3.1), one gets sums over shuffles with repetitions which
enumerate some simplices of lower dimension as well.

These relations and their consequences are called double shuffle relations. Both
types of relations can be succinctly written down in terms of formal series on free
noncommuting generators. One can include in these relations regularized multi-
ple zeta values for arguments where the convergence of (3.1), (3.2) fails. A clear
and systematic exposition of these results can be found in [Del01] and [Rac00],
[Rac02].

In fact, the formal generating series for (regularized) iterated integrals (3.2)
appeared in the famous Drinfeld paper [Dri90], essentially as the Drinfeld asso-
ctator, and more relations for multiple zeta values were implicitly deduced there.
The question about interdependence of (double) shuffle and associator relations
does not seem to be settled at the moment of writing this: cf. [Rac04]. The
problem of completeness of these systems of relations is equivalent to some difficult
transcendence questions.

Multiple zeta values are interesting, because they and their generalizations
appear in many different contexts involving mixed Tate motives ([DGO05], [Ter02]),
deformation quantization ([Kon99]), knot invariants, etc.

In order to make contact with modular symbols, notice first that the differen-

dz dz
tials —, 1 span the space of meromorphic differential forms with no more than

21—z
logarithmic singularities at points {0, 1,00} of P1(C). We can identify
(PY(C),{0,1,00}) = To(4) \ (H, cusps).

dz d
Then —Z, l_z lift to Eisenstein series of weight two for I'g(4) C SL(2,Z).
z

In the general theory sketched below, I'g(4) is replaced by an arbitrary (congru-
ence) subgroup I' of SL(2,Z), Eisenstein series of weight two are replaced by (cusp
form + Eisenstein series) with respect to I', multiplied by z°~!dz for appropriate
s. (We mostly focus on cusp forms; in the presence of logarithmic singularities, the
necessary regularization procedure is described for weight two in Sec. 3.6.)

Finally, ordinary integrals along geodesics connecting two cusps are replaced
by iterated integrals.
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3.2. Formalism of iterated integrals. We will work on a Riemann surface,
and study general iterated integrals of holomorphic 1-forms. We will show that
if one replaces a simple integral not by an individual iterated integral but by a
generating series of all such integrals, then the usual properties like additivity and
variable change formula reappear in a multiplicative/noncommutative version.

Let X be a connected complex Riemann surface, and wy = (w,|v € V) a
family of holomorphic 1-forms indexed by a finite set V. Denote by Ay := (4, |v €
V') free associative formal variables, commuting with complex numbers, functions,
and differentials on X, and put

Q=) Auw,

veV

Consider the total iterated integral of Q along a piecewise smooth path v : [0,1] —
UcCX:

LQ) =1+ / 2V (Q)(h) / Q) / @) (t) € ClAY))
n=1

taken over the simplex 0 < t, < --- < t; < 1. If 9, v/ with the same ends are
homotopic then J,(2) = J,/(2). Fixing implicitly such a homotopy class, we can
use another notation: z; = y(¢;) € X, a = ~v(0), z = (1),

Ja (&) :=1+§/:Q(zl)/:lg(22).../

Zn—1
a
If U C X is connected and simply connected, this is an unambiguously defined
element of Ox (U){(Ay)). Otherwise it is a multivalued function of z in this domain.

Proposition. (i) JZ(Q) as a function of z satisfies the equation

dJZ(Q) = Q(z) JZ(Q).

In other words, JZ(Q) is a horizontal (multi)section of the flat connection Vg =
d—1lg on Ox{({Ay)), where lg is the operator of left multiplication by Q.

(i) If U is a simply connected neighborhood of a, JZ(§) is the only horizontal
section with initial condition J¢ = 1. Any other horizontal section K* can be
uniquely written in the form CJZ(Q), C € C{(Ay)). In particular, for any b € U,

Jp () = JZ () JF ().

Corollary. Let v be a closed oriented contractible contour in U, ai,...,an
points along this contour (cyclically) ordered compatibly with orientation. Then
Tt () Jg2(Q) - - - Jgr=1 () g () = 1. (3.3)

Formula (3.3) is the multiplicative version of the additivity of simple integrals
with respect to the join of integration paths.

Proposition. Consider the comultiplication
A C{AV)) = ClAV)BoC((AV)), A4,) = A, @ 1+16 4,
and extend it to the series with coefficients C(X) and Q*(X). Then
A (Ji(wv)) = Tz (wv)@ox Ji (wy) - (3.4)



LECTURES ON MODULAR SYMBOLS 147

Claim 1. The identity (3.4) encodes all shuffle relations between the iterated
integrals of the forms w,.

Claim 2. The identity (3.4) is equivalent to the fact that log JZ(wy) can be
expressed as a series in commutators (of arbitrary length) of the variables A,.

Formula (3.4) expresses the group-like property of JZ(Q2). It is a multiplicative
version of the additivity of a simple integral as a functional of the integration form.

Functorality. Let ¢ : X — X be an automorphism such that ¢g* maps
into itself the linear space spanned by wy: g*(wy) = Y., Gouwy. Define g,(A,) =
> Avgou - Then we have

Tga(wv) = g«(J5 (wv)) - (3.5)

Formula (3.5) is a multiplicative version of the variable change formula.

3.3. Iterated integrals on the upper half—plane and total Mellin trans-
form. A 1-form w on H will be called a form of modular type if it can be rep-
resented as f(2)z°"!dz, where s is a complex number and f(z) is a modular form
of some weight with respect to a finite index subgroup I' of the modular group
SL(2,Z).

The modular form f(z) is then well defined and called the associated modular
form (to w), and the number s is called the Mellin argument of w.

w is called a form of cusp modular type if the associated f(z) is a cusp form.

Let f1,..., fr be a finite sequence of cusp forms with respect to I', w;(z) =
[(2) 2%~ dz. The iterated Mellin transform of (f;) is

M(f1y-oy fE;81,- -+, Sk) ::I?w(wl,...,wk.):

/:O wi(z1) /Z: wa(22) - '/Z_:_l wn(2n)-

Let fy = (fy|v € V) be a finite family of cusp forms with respect to I, sy =

(sy|v € V) a finite family of complex numbers, wy = (w,), where w,(z) =
fo(2) 2°*~1dz. The total Mellin transform of fy is

TM(fy;sv) = Jis(wy) =

1+Z Z Apy oo Au, M(forseoos fo,3 8015 S0,)-

Theorem. Assume that the space spanned by f,(z) is stable with respect to
gy : z+— —1/Nz. Let k, be the weight of f,(z), and ky = (k,). Then

TM(fvisv)=gn«(TM(fviky —sv)) ™"

for an appropriate linear transformation gn. of the formal variables A, .
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3.4. Iterated Shimura integrals and non—commutative cohomology.
Let G be a group, N a group with left action of G by group automorphisms:
(g,n) = gn. Cocycles with coefficients in N are defined as Z'(G,N) = {u :
G — N |u(g192) = u(g1) gr1u(ge) }- Two cocycles are cohomologous, u' ~ w, iff for
some n € N and all g € G, we have v/(g) = nu(g) (gn)~'. The cohomology set is
HY(G,N):= Z*(G,N)/(~). It is endowed with a marked point: the class of trivial
cocycles u(g) =n=1!- gn.

We will apply this formalism to iterated Shimura integrals. The role of G will
be played by a group G = PT' C PSL(2,Z) where I' C SL(2,7Z).

To define coefficients, choose as above a family of Shimura differentials w, =
fo(2)2™~1dz, where f, form a basis of @®;S(k;,T'), and for a fixed weight, m, runs
over all critical integers for this weight. The forms w, span a PI'-invariant space.

Put Q:= )" .y Ayw,. The role of N will be played by II := the group of group-like
elements of (143 - A,C((A,)))*. The left action of PI" on IT is the functorality
action g,.

Theorem. (i) For any a € H, the map PT — 11 : v = J%,(Q) is a noncom-
mutative 1-cocycle (, in Z1(PT,1I).

(ii) The cohomology class of (, in H*(PT,11) does not depend on the choice of
a and is called the noncommutative modular symbol.

(iii) This cohomology class belongs to the cuspidal subset H'(PT,11)qysp con-
sisting of those cohomology classes whose restriction on all stabilizers of I'—cusps is
trivial.

Using the non—commutative Shapiro Lemma, we can reduce the general case
to that of PSL(2,7Z).

Shapiro Lemma. Let G C H be a subgroup, N a left G—group, Ny =
Mape (N, H) with pointwise multiplication and left action of G, (g«¢)(h) := ¢(hg).
There is a canonical isomorphism of pointed sets:

HY(G,N) = H'(H,Ng).

In the notation as above, we apply it to the case
G:=PT, H:=PSL(2,Z), N:=1I, II":=Ny.

It is well known that H = PSL(2,Z) is a free product of two subgroups Z,
and Z3 generated respectively by

(0 -1 (0 -1
=\t o) "7 1)
Theorem. (i) An iterated Shimura cocycle restricted to (o,T) belongs to the

set
{(X,Y)ell’xTI°| X -0, X =1,V -7.Y - 72Y = 1}.

(i) The cohomology relation between cocycles translates as
(X,Y) ~ (m ' Xo.(m),m Y 1.(m)).

(#ii) The cuspidal part of the cohomology is generated by the pairs
{((X,Y)|32, X -0.Y = Z Yo7).Z}.
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3.5. Iterated Shimura integrals as multiple Dirichlet series. Start with
the family of 1-forms on H:

o0
wy(z) = E cv7n62m”zzm“_1dz, Com €C, my €Z,my>1; cyp = O(nc).
n=1

Put
L(zWpps -y Woy Jhs- vy J1) i=
627ri(n1+---+nk)z

(27riz)jk — Coing """ C?k;nlk .
N X v (nl + n2)mv2+J1 J2 ... (nl 4+t nk)m’vk+.7k—l Ik
Exponentials ensure absolute convergence for any z with Im z > 0. Formal substi-
tution z = 0 may lead to divergence.

Theorem. For any k > 1, (vi,...,v;) € V¥, and Im 2z > 0 we have
(270) o T T2 (e Wy, ) =
My —1 Mayy — 1471 My, —14+jk—1
(—1)Zi=a(me =) Z Z Z (—1)* x
Jj1=0 J2=0 Jk=0
(my, — Dy, — 1+ g1)! - (Mg, = 14 jx—1)!

— - L(2Z;We ooy Woys Ty -5 J1) -
jl']2']k' ( Vg v1 )

Proposition. Assume that wy as above is a basis of a space of 1-forms in-
variant with respect to gn. Then

0 (wv) = (ane (T2 () I (wr). (3.6)

Replacing the coefficients of the formal series in the r.h.s of (3.6) by their
(convergent) representations via multiple Dirichlet series with exponents we get
such representations for I2_(w.,,...,w,,) and avoid divergences at z = 0.

The multiple Dirichlet series generated by Shimura integrals as above do not
form, however, a closed system with respect to multiplication, so that we cannot
deduce an analog of shuffle relations with repetitions valid for multiple zeta values.
If we complete the family of such series using a combinatorial trick described in
[Man06], then representation of such series as iterated integrals will involve more
general 1-forms than we have been considering up to now. This subject deserves a
further study.

3.6. Differentials with logarithmic singularities at the endpoints of
integration. We will now assume, as in the initial Drinfeld setting, that the in-
tegration limits of the iterated integral are logarithmic singularities of the form
Q. Generally, they diverge and must be regularized. The dependence on the reg-
ularization can be described as a version of Deligne’s choice of the “base point at
infinity”.

Let a = a fixed point of the Riemann surface, z a variable point. Put r, , =
reS, Wy, Rg:=res, Q) = ZU 74,04y . Denote by t, a local parameter at a, and by
logt, a local branch of the logarithm real on ¢, € R. Finally, put tfe := eRalogta
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Definition. A local solution to dJ* = Q(z)J* is called normalized at a (with
respect to a choice of t,) if it is of the form J = K -tFa where K is a holomorphic
section in a neighborhood of a and K(a) = 1.

Claim. (i) The normalized solution exists and is unique.

(i) It depends only on the tangent vector /0%, |-

(iii) If J. = K'(t,)Ra is normalized with respect to t., and 7, = dt,/dt, |a,
then J, = J, - 7.

Now, having chosen (a,t,), (b, %), a 1-form Q = > A,w, with at most loga-
rithmic singularities at a, b, and a (homotopy class of) path(s) from a to b avoiding
other singularities of €2, we construct the normalized solutions J,, J, analytically
continued along v and the scattering operator

Ji = J, 1y € C{Av)).

Tts coefficients (as power series in (A,)), by definition, are reqularized iterated
integrals of (w,). It turns out that J¢ satisfy the general properties of the iterated
integrals summarized in 3.2.

Example: Drinfeld’s associator. Let X = P!(C), V = {0, 1},

1 dz 1 dz

wo = - w1 = - .
oM z 2mi 2 — 1

Then

Q= Agwo + Arwr
has poles at 0, 1, co with residues Ag/2mi, Ay /2mi, —(Ag+A1)/2mi respectively. Put
to=z,t1 = 1—2. Then j& in our notation is the Drinfeld associator ¢ z (Ao, 41).

Example: modular generalization of multiple zeta values. Let I' be
a congruence subgroup of the modular group, (f,) := a basis of Eisenstein series
of weight 2 wrt I', {w, = push forward of f,(z)dz} : 1-forms with logarithmic
singularities at cusps on Xp. The space of such forms has the maximal possible
dimension, because the difference of any two cusps has finite order in the Jacobian
(cf. [E1k90]).

Regularized iterated integrals of Eisenstein series of weight two along geodesics
between cusps provide a modular generalization of multiple zeta values.
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Rational surfaces over nonclosed fields

Brendan Hassett

ABSTRACT. This paper is based on lectures given at the Clay Summer School
on Arithmetic Geometry in July 2006.

These notes offer an introduction to the birational geometry of algebraic sur-
faces, emphasizing the aspects useful for arithmetic. The first three sections are
explicitly devoted to birational questions, with a special focus on rational surfaces.
We explain the special role these play in the larger classification theory. The ge-
ometry of rational ruled surfaces and Del Pezzo surfaces is studied in substantial
detail. We extend this theory to geometrically rational surfaces over non-closed
fields, enumerating the minimal surfaces and describing their geometric properties.
This gives essentially the complete classification of rational surfaces up to birational
equivalence.

The final two sections focus on singular Del Pezzo surfaces, universal torsors,
and their algebraic realizations through Cox rings. Current techniques for count-
ing rational points (on rational surfaces over number fields) often work better for
singular surfaces than for smooth surfaces. The actual enumeration of the rational
points often boils down to counting integral points on the universal torsor. Uni-
versal torsors were first employed in the (ongoing) search for effective criteria for
when rational surfaces over number fields admit rational points.

It might seem that these last two topics are far removed from birational ge-
ometry, at least the classical formulation for surfaces. However, singularities and
finite-generation questions play a central réle in the minimal model program. And
the challenges arising from working over non-closed fields help highlight structural
characteristics of this program that usually are only apparent over C in higher
dimensions. Indeed, these notes may be regarded as an arithmetically motivated
introduction to modern birational geometry.

In general, the prerequisites for these notes are a good understanding of alge-
braic geometry at the level of Hartshorne [Har77]. Some general understanding
of descent is needed to appreciate the applications to non-closed fields. Readers
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interested in applications to positive characteristic would benefit from some expo-
sure to étale cohomology at the level of Milne [Mil80]. There is one place where
we do not fully observe these prerequisites: The discussion of the Cone Theorem
is not self-contained although we do sketch the main ideas. Thankfully, a number
of books ([CKMS&88], [KM98|, [Rei97], [Kol96],[Mat02]) give good introductory
accounts of this important topic.

Finally, we should indicate how this account relates to others in the literature.
The general approach taken to the geometry of surfaces over algebraically closed
fields owes much to Beauville’s book [Bea96]| and Reid’s lecture notes [Rei97].
The extensions to non-closed fields draw from Kolldr’s book [Kol96]. Readers
interested in details of the Galois action on the lines of a Del Pezzo surface and its
implications for arithmetic should consult Manin’s classic book [Man74] and the
more recent survey [MT86]. The books [CKM88, KM98, Mat02] offer a good
introduction to modern birational geometry; [Laz04] has a comprehensive account
of linear series. We have made no effort to explain how universal torsors and Cox
rings are used for the descent of rational points; the recent book of Skorobogatov
[Sko01] does a fine job covering this material.

I am grateful to Anthony Varilly-Alvarado, Michael Joyce, Ambrus Pél, and
other members of the summer school for helpful comments.

1. Rational surfaces over algebraically closed fields

Let k be an algebraically closed field. Throughout, a variety will designate an
integral separated scheme of finite type over k.

1.1. Classical example: Cubic surfaces. Here a cubic surface means a
smooth cubic hypersurface X C P3. We recall a well-known construction for such
surfaces:

Let pq,...,ps € P2 be points in the projective plane in general position, i.e.,

e the points are distinct;

e no three of the points are collinear;

e the six points do not lie on a plane conic.
Consider the vector space of homogeneous cubics vanishing at these points; it is an
exercise to show this has dimension four

Iy, ps(3) = (Fo, Fi1, F, F3)
and has no additional basepoints.
The resulting linear series gives a rational map
p:P?2 -5 P3
[zo,21,22] +—  [Fo, F1, Fa, F3]
that is not well-defined at p1,...,pg. Consider the blow-up
B:X =Bl  pP*—P?
with exceptional divisors
Ey, ..., Fg.

Blowing up the base scheme of a linear series resolves its indeterminacy, so we

obtain a morphism
j: X - P
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with j = po .
PROPOSITION 1.1. The morphism j gives a closed embedding of X in P3.

We leave the proof as an exercise.

Given this, we may describe the image of j quite easily. The first step is to
analyze the Picard group Pic(X) and its associated intersection form

Pic(X) x Pic(X) — Z
(D1, D2) = Dy-Dy -’

We recall what happens to the intersection form under blow-ups. Let §: Y — P
be the blow-up of a smooth surface at a point, with exceptional divisor E. Then
we have an orthogonal direct-sum decomposition

Pic(Y) = Pic(P)®, ZE, E-E=E?=—1,
where the inclusion Pic(P) — Pic(Y) is induced by 5*.
Returning to our particular situation, we have
Pic(X)=ZL®ZE, ® -+ ® ZFs.
Here L is the pullback of the hyperplane from P? with L? = L-L =1 and L-E, = 0
for each a. We also have F, - E, =0 for a # b.
Since j is induced by the linear series of cubics with simple basepoints at
P1,---,Pe, Wwe have
j*O0ps(1) =Ox (3L — FEy — --- — Fg)
so that
deg(j(X))=(BL—Ey —---— Eg)>=9—-6=3.
This proves that the image is a smooth cubic surface. The images of the exceptional
divisors E1, ..., Eg have degree
E,-3L—F,—---—Fg)=1
and thus are lines on our cubic surface.

PROPOSITION 1.2. The cubic surface j(X) C P3 contains the following 27 lines:
e the exceptional curves E,;
e proper transforms of lines through p, and py, with class L — E, — Ey;

e proper transforms of conics through five basepoints pq, Py, De, Pd, Pe, With
class 2L — E, — Ey, — E. — E; — E..

This beautiful analysis leaves open a number of classification questions:
(1) Does every cubic surface arise as the blow-up of P? in six points in general
linear position?
(2) Are there exactly 27 lines on a cubic surface?
To address these, we introduce some general geometric definitions:
DEFINITION 1.3. Let Y be a smooth projective surface with canonical class Ky,
i.e., the divisor class associated with the differential two-forms Q2 = A? 0. We

say that Y is a Del Pezzo surface if —Ky is ample, i.e., there exists an embedding
Y C PV such that Opn (1)|Y = Oy (—rKy) for some r > 0.

Note that if Y is Del Pezzo then K}% > 0.
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REMARK 1.4. Let X C P3 be a cubic surface and H the hyperplane class on
P3. Adjunction

Kx = (Kps + X)|x = (—4H +3H)|x = —H|x
implies that any cubic surface is a Del Pezzo surface.

DEFINITION 1.5. Let Y be a smooth projective surface. A (—1)-curve is a
smooth rational curve £ C Y with E? = —1.

Of course, exceptional divisors are the main examples. We also have the fol-
lowing characterization.

PRrROPOSITION 1.6. Let Y be a smooth projective surface. Let E C'Y be an
irreducible curve with
E?<0, Ky-E<O.
Then E is a (—1)-curve. In particular, on a Del Pezzo surface every irreducible
curve with E? < 0 is a (—1)-curve.

PRrROOF. Let p,(FE) denote the arithmetic genus of E. Since E is an irreducible
curve we know that p,(F) > 0 with equality if and only if F ~ P!. Combining this
with the adjunction formula, we obtain

—2<2p,(E)-2=F-(Ky +E).
Thus E? = —1, Ky - E = —1, and F is a smooth rational curve. O

REMARK 1.7. The lines on a cubic surface are precisely its (—1)-curves. Indeed,
if £ C X is a line then the genus formula gives

—2=29(f) - 2=+ Kx-£ =01

Suppose then that

K:aLfb1E17~~~fb6E6
is a line on a cubic surface. Then the following equations must be satisfied
1 = —Kx-gz?)a—bl—bg—b3—b4—b5—b6
-1 = 2=a%>—-b3—b3—0b%—b] —b2— b2

and these can be solved explicitly. There are precisely 27 solutions; see Exer-
cise 1.1.6 and [ManT74, 26.2], especially for the connection with root systems. Thus
the cubic surfaces arising as blow-ups of P? in six points in general position have
precisely 27 lines.

We extend this analysis to all smooth cubic surfaces:

THEOREM 1.8. Let P19 = P(Sym®(k*)) parametrize all cubic surfaces and let
Z ={(X,0) : X cubic surface, £ C X line } C P2 x G(1,3)
denote the incidence correspondence. Let U C P denote the locus of smooth cubic
surfaces and
m Ly =24 Xpro U = U
the projection. Then w1 is a finite étale morphism.

Since U is connected the degree of m; is constant, and we conclude

COROLLARY 1.9. FEvery smooth cubic surface has 27 lines.
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PRrROOF. (cf. [Mum95, p. 173 ff.]) We claim that Z is proper and irreducible
of dimension 19: Each line £ is contained in a 20 — 4 = 16-dimensional linear series
of cubic surfaces, so the projection Z — G(1,3) is a P!5 bundle. Consequently,
is a proper morphism. In particular, for each one-parameter family of lines in cubic
surfaces (X4, ¢;), the flat limit

lim (Xt, gt)
t—0

is also a line in a cubic surface.
Let Ay /x denote the normal bundle of a line £ in a smooth cubic surface X.
We have Ny x ~ Op1(—1) so that

hO(Neyx) = h'(Niyx) = 0.

Recall that HO(M/X) (resp. H* (Mg/x)) is the tangent space (resp. obstruction
space) of the scheme of lines on X at £. It follows then that Zy is smooth of relative
dimension zero over U, i.e., my is étale. Furthermore, proper étale morphisms are

finite. O

One further piece of information can be extracted from this result: The inter-
sections of the 27 lines are constant over all the cubic surfaces. This means that
every cubic surface X contains a pair (and even a sextuple!) of pairwise disjoint
lines (cf. Exercise 1.1.3).

PrOPOSITION 1.10. Let X be a smooth cubic surface containing disjoint lines
Ey and E5. Let ly,...,05 denote the lines in X meeting By and Eo. There is a
birational morphism
p: X — PLxP!
= (pe (%), pe,(2))

where pg, : P2 --» P! is projection from E;. This contracts {y,... s to distinct
points qy,...,qs € P x P! satisfying the following genericity conditions:

e no pair of them lie on a ruling of P! x P!;

e 1o four of them lie on a curve of bidegree (1,1);

The inverse @~ !

q1,..-,05.

is given by the linear system of forms of bidegree (2,2) through

We leave this as an exercise.

COROLLARY 1.11. Every smooth cubic surface is isomorphic to P2 blown up at
S1T points.

PROOF. We first verify that Bl,, .. P! x P! is isomorphic to P? blown up at
six points. Indeed, we can realize P! x P! as a smooth quadric Q C P3, so that the
fibers of each projection are lines on Q. Let ¢ € @ be any point and R; and Rs the
two rulings passing though ¢. Projection from ¢

pg:Q --» P?
lifts to a morphism
Bl,Q — P?
contracting the proper transforms of R; and Rs. ]

Before concluding, we draw two morals from this story:

e (—1)-curves govern much of the geometry of a Del Pezzo surface;
e classifying (—1)-curves is a crucial step in classifying the surfaces.
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Exercises.

EXERCISE 1.1.1. Show that six distinct points on the plane impose independent
conditions on cubics if no four of the points are collinear. Show that the resulting
linear system has base scheme equal to these six points.

EXERCISE 1.1.2. Give a careful proof of Proposition 1.1.

EXERCISE 1.1.3. Verify that the 27 curves described in Proposition 1.2 are in
fact lines on the cubic surface. Check that each of these has self-intersection —1.
Show that

(1) each line is intersected by ten other lines;
(2) any pair of disjoint lines is intersected by five lines;
(3) each line is contained in a collection of six pairwise disjoint lines.

EXERCISE 1.1.4. Prove Proposition 1.10.

EXERCISE 1.1.5. Let X be a smooth cubic surface. Show that the intersection
form on K5 C Pic(X) is isomorphic to

PL P2 P33 P4 P55 Ps
| —2 1 0 0 0 0
p2| 1 =2 1 0 0 0
p3| O 1 -2 1 0 1 .
pa| O 0 1 -2 1 0
ps| O 0 0 1 -2 0
pe | O 0 1 0 0o -2

Up to sign, this is the Cartan matrix associated to the root system Eg.

EXERCISE 1.1.6. Consider a line on a cubic surface ¢ C X, and the associated
class A = 3 + Kx € Kx. Verify that A2 = =12 and A -1 = 0 (mod 3) for each
n € Ky C Pic(X). Deduce that there are a finite number of lines on a cubic
surface.

1.2. The structure of birational morphisms of surfaces. Our first task
is to show that all (—1)-curves arise as exceptional curves of blow-ups:

THEOREM 1.12 (Castelnuovo contraction criterion). [Har77, V.5.7] Let X be
a smooth projective surface and E C X a (—1)-curve. Then there exists a smooth
projective surface Y and a morphism B : X — Y contracting E to a point y € Y,
so that X is isomorphic to Bl,Y . Each morphism ¢ : X — Z contracting E admits
a factorization

v xSy sz
PRrOOF. (Sketch) Let H be a very ample divisor on X such that
HY(X,0x(H))=0.
Set L =Ox(H+(H-E)E) so that L|E ~ Og. For each n > 0 we have the inclusion
Ox(nH) = L" =0x(nH +n(H - E)E)
which is an isomorphism away from E. Thus the sections in the image of
I'X,0x(nH)) = IT'(X, L")
induce an embedding of X \ E.
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We claim that £ is globally generated, so we have a morphism
B:X =Y = Proj(T(X,L").
n>0
Since L|E is trivial, 8 necessarily contracts E to a point; 3 is an isomorphism away
from E.

Here is the idea: Since L|E is globally generated, it suffices to show that the
restriction

I(X,L) = T(E,L|E) ~T (P!, Opn)
is surjective. Taking the long exact sequence associated to
0— L(—E)— L— LIE — 0,
we are reduced to showing that H!(X,L(—F)) = 0. Indeed, we can show induc-
tively that HY(X,Ox(H +aF)) =0 fora=1,...,H - E — 1: The exact sequence
0—-0x(H+(a—-1)E) = Ox(H+aE) = Og(H-E—a)—0

expresses Ox (H + aF) as an extension of sheaves with vanishing H?!.

The trickiest bit is to check that Y is smooth and § is the blow-up of a point
of Y. The necessary local computation can be found in [Bea96, I1.17] or [Har77,
pp. 415].

For the factorization step, the standard isomorphism

Pic(X) = *Pic(Y) & ZE

identifies f*Pic(Y) with line bundles on X restricting to zero along E. Moreover,
the induced map

ry,M)—T(X,p"M)
is an isomorphism. Suppose that M is very ample on Z so that v is induced by

certain sections of * M. However, M = 3* M’ for some M’ on Y and the relevant
sections of ¥* M come from sections of M’. a

THEOREM 1.13. Let ¢ : X — Y be a birational morphism of smooth projective
surfaces. Then there exists a factorization
X=X AXxi 5 sX,.5x. =y
where each B; is a blow-up of a point on X;. (If ¢ is an isomorphism we take

Xo=X,.)

PROOF. We assume ¢ is not an isomorphism. Hence it is ramified and the

induced map
P03 — Q%
is not an isomorphism. Since these sheaves are invertible, we can therefore write
¢* Q3 = Q% (—(m1Ey + -+ + m,. Ey)),

where the F; are irreducible ¢-exceptional curves, i.e., ¢ contracts E; to a point in
Y. Since ¢* Ky |g, is trivial we have ¢* Ky - E; = 0. The multiplicity m; is positive
because ¢ is ramified along F;. In divisorial notation, we obtain the discrepancy
formula:

(11) Kx :¢*KY+ZmiEi; m; > 0.
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By the Hodge index theorem [Har77, V.1.9], the intersection form on
AN=7ZFE, + -+ ZE,

is negative definite, so in particular each E? < 0. We claim that Kx - E; < 0 for
some %; then Proposition 1.6 guarantees that E; is a (—1)-curve.
We know that

O - miE)? = ZmlEj : (Z m;Ej) = Zszz Ky

is negative, because the intersection form on A is negative definite. Hence some
FE; - Kx must be negative.
Using the Castelnuovo criterion we contract F;

X:X0—>X1,

so that Xy is the blow-up of X; at a point. Moreover, ¢ factors through Xj.
This factorization process terminates because the exceptional locus of ¢ has a finite
number of irreducible components. (Il

DEFINITION 1.14. A smooth projective surface X is minimal if every birational
morphism ¢ : X — Y to a smooth variety is an isomorphism.

Theorem 1.13 says that X is minimal if and only if it has no (—1)-curves.

Exercises.

EXERCISE 1.2.1. Let X be the blow-up of P? at [0,0, 1], [0, 1,0], [1,0,0]. Realize
X in P2 x P2 C P® using the bihomogeneous equations

ToYo = T1Y1 = T2Y2.

Verify that the proper transforms of the lines g = 0,21 = 0,25 = 0 are (—1)-curves
and write down explicit linear series contracting each one individually.

EXERCISE 1.2.2. Let X be a cubic surface, realized as P2 blown up at six points.
Describe a basepoint-free linear series on X contracting the six curves

2L - FE,— FEy,— FE.— E;— E,.
What is the image of the corresponding morphism X — Y7

1.3. Relative minimality and ruled surfaces. Let f : X — B denote a
dominant morphism from a smooth projective surface to a variety. We say that X
is minimal relative to f if there exists no commutative diagram

X N Y

N e
B

where ¢ is birational and Y is smooth. In analogy to Theorem 1.13, X is minimal
relative to f if and only if there are no (—1)-curves in the fibers of f.

A ruled surface is a morphism f : X — B from a smooth projective surface to
a smooth curve whose generic fiber is rational; it is minimal if it is minimal relative
to f. If f is smooth then each fiber is isomorphic to P'; in this case, f : X — B is
called a P*-bundle.
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PrOPOSITION 1.15. Let X be a smooth projective surface and f : X — B a
P'-bundle. Then each b € B admits an étale-open neighborhood U — B and an
isomorphism:

X xgU = P!l xU

pN e
U

PROOF. Since f is smooth it admits a multisection M C X with f|M un-
branched over b; let U C M denote the open set where f is unramified. The pull-
back g : X’ := X xg M — M admits the canonical diagonal section X. Consider the
direct images of Ox/(X). Cohomology and base change implies that R1g,.Ox/ (%)
is trivial and £ := ¢,Ox/(X) has rank two. Under these conditions cohomology
commutes with base change, so a fiber-by-fiber analysis shows that

9°9:0x:(¥) = Ox/(%)
is surjective and the induced morphism
X' = P(€)
is an isomorphism over M. O

THEOREM 1.16. Let f : X — B be a minimal ruled surface. Then X is a
P!-bundle over B.

Before proving this, we’ll require a preliminary result.

LEMMA 1.17. Let F' denote the class of a fiber of f. Consider a fiber of f
with irreducible components Ff1,..., E,.. Then we have Ef <0and F - E; =0 for
each i and Kx - E; < 0 for some 4. In particular, each reducible fiber contains a
(—1)-curve.

PRrROOF. Each fiber of f is numerically equivalent to F', i.e., has the same
intersection numbers with curves in X. Since these fibers are generally disjoint
from the F;, we have F'- E; = 0 for each 7 and F - F' = 0.

Express F' = Z:Zl m; E; where m; > 0 is the multiplicity of the fiber along F;.
Note that F' is connected, e.g., by Stein factorization. Thus each E; meets some
E; and

J#i
It follows that F; - E; < 0.
Finally, Kx - F = —2 by adjunction, so Kx - F; < 0 for some index. (]

PRrOOF. (Theorem 1.16)

The key point is to show that the fibers of f are all isomorphic to P'. Since f is
a dominant morphism from a nonsingular surface to a nonsingular curve, it is flat
with fibers of arithmetic genus zero. Each fiber is a Cartier divisor on X and thus
has no embedded points. Under the assumptions of Theorem 1.16, each fiber of f
is irreducible. We also have that each fiber has multiplicity one. Indeed, writing
F = mEFE we have

—2:Kx~F:me~E

som = 1,2. However, if m = 2 then adjunction yields 2g(E) -2 = E>*+KxFE = —1,
which is absurd. Thus each fiber of f is isomorphic to P!, and in particular f is
smooth. |
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We record one additional fact for future reference, whose proof is left as an
exercise:

ProproOSITION 1.18. Let Ey,...,E, be the components of a fiber of a ruled
surface; let F' denote the class of the fiber. The induced intersection form on

(ZEl + -+ ZET)/ZF
s negative definite and unimodular.
We now pursue a finer analysis of the structure of ruled surfaces.

PrROPOSITION 1.19. Let C be a variety defined over a field K such that Cg ~
IP’}—(. Then there exists a closed embedding C — P2 as a plane conic. There is a
quadratic extension K'/K such that Cxr ~ PL.,.

We leave the proof as an exercise.
We apply Proposition 1.19 in the case where K is the function field of the base
B and C' is the generic fiber f:

C - X

fol 24
Spec(k(B)) — B

The Tsen-Lang theorem says that every quadratic form in > 3 variables over
k(B) represents zero, so C(k(B)) # (). Each rational point corresponds to a section
Spec(k(B)) — C of f., and thus to a rational map from B to X. Since X is proper,
this extends uniquely to a section s : B — X of f. We have proven the following:

ProrosITION 1.20. Let f: X — B be a ruled surface. There exists a section
s:B—=X of f.

Combining this with the argument for Proposition 1.15, we obtain

COROLLARY 1.21 (Classification of ruled surfaces). Every minimal ruled surface
f: X — B is isomorphic to P(E) for some rank-two vector bundle € on B.

Combining this with Grothendieck’s classification of vector bundles on P! gives:

COROLLARY 1.22. Every ruled surface f : X — P!, minimal relative to f, is
isomorphic to a Hirzebruch surface

Fy :=P(Op1 ® Op1(—d)), d>0.
In particular, ruled surfaces over P! are rational.

See Exercise 1.3.3 for more details of the argument.

Exercises.

EXERCISE 1.3.1. Prove Proposition 1.19. Hint: Note that {2}, is an invertible
sheaf on C defined over K and coincides with Op:(—2) over C'g. Use the sections
of the dual (24)* to embed C.

EXERCISE 1.3.2. Prove Proposition 1.18. Hint: Use the mechanism of the proof
of Theorem 1.16.
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EXERCISE 1.3.3. Give a detailed proof for Corollary 1.22. For the classification
assertion, show that each vector bundle £ on P! decomposes as

T
5:@0}»1(%), a1 <apy <---<a,.
i=1

To establish rationality, exhibit a nonempty open subset U C P! such that £|U ~
ogr.

EXERCISE 1.3.4. For each d > 0, show there exists a diagram

Fq Faiq
where 8 (resp. ) is the blow-up of Fy (resp. Fy11) at a suitable point.

2. Effective cones and classification

From the modern point of view, the presence of (—1)-curves is controlled by
how the effective cone and the canonical class interact. In this section, we de-
velop technical tools for analyzing this interaction. We continue to work over an
algebraically closed field k.

2.1. Cones of curves and divisors. Let X be a smooth projective complex
variety, N1(X,Z) C Ho(X,Z) the sublattice generated by homology classes of alge-
braic curves in X, and N'(X,Z) C H?(X,Z) the Néron-Severi group parametrizing
homology classes of divisors in X.

We can extend these definitions to fields of positive characteristic: Consider
the Chow group of dimension (resp. codimension) one cycles in X; two cycles
are numerically equivalent if their intersections with any divisor (resp. curve) are
equal. We define N1(X,Z) (resp. N1(X,Z)) as the quotient of the corresponding
Chow group by the cycles numerically equivalent to zero. The rank of N1(X,7Z)
is bounded by the second (étale) Betti number of X; see [Mil80, V.3.28] for the
surface case.

DEFINITION 2.1. A Cartier divisor D on a variety X is nef (numerically even-
tually free or numerically effective) if D - C' > 0 for each curve C C X.

Here is the main example: A Cartier divisor D is semiample if N D is basepoint-
free for some N € N. Since ND remains basepoint-free when restricted to curves
C C X, we have D-C =degD|C > 0.

We have the monoid of effective curves

NE,(X,Z) = {[D] € N1(X,Z) : D effective sum of curves }
and the associated closed cone
NE;(X) = smallest closed cone containing NE; (X, Z) C N;(X,R),
as well as the monoid of effective divisors
NE!Y(X,Z) = {[D] € N'(X,Z) : D effective divisor }
and the associated cone of pseudo-effective divisors

Wl(X) = smallest closed cone containing NE'(X,Z) C N'(X,R).
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We also have the nef cone WI(X) C N'(X,R) and NM}(X) its interior. Note
that NM' (X) and NE;(X) are dual in the sense that

NM'(X) = {D € N'(X,R): D-C > 0 for each C' € NE,;(X)}.
These cones are governed by the following general results:

THEOREM 2.2. Let X be a proper variety and D a Cartier divisor on X.

(1) (Nakai criterion) D is ample if and only if DY™(%) . Z > 0 for each closed
subvariety Z C X.

(2) (Kleiman criterion) Assume X is projective. Then D is ample if and only
if D e NMi(X), i.e., D-C > 0 for each nonzero class C' in the closure of
the cone of curves on X.

It is not difficult to verify that an ample divisor necessarily satisfies these condi-
tions; we leave this as an exercise. We refer the reader to [KIM98, §1.5] for proofs
that these conditions are sufficient in general and to [Har77, §V.1] for Nakai’s
criterion in the special case of smooth projective surfaces.

THEOREM 2.3. Let X be a smooth projective variety. A divisor D € N (X,7Z)
lies in the pseudoeffective cone Wl(X) if and only if, for each ample H and rational
€ > 0, some multiple of D 4+ eH is effective. It lies in the interior

NE!(X) c NE'(X)
if and only if there exists an N > 0 so that
ND=A+F
where A is ample and E is effective. Such divisors are said to be big.
PrROOF. First, any divisor of the form H + FE is in the interior of the pseudoef-

fective cone. If B is an arbitrary divisor then nH + B is very ample for some n > 0,
and n(H + E) + B is effective.

Conversely, let D lie in the interior of NE' (X). Consider
D —NM}(X) c NY(X,R),

i.e., the cone of anti-ample divisor classes translated so that the vertex is at D.
Note that the ample cone of X is open, so we can pick a

B e NY(X,Q)Nn (D - NM(X))
and m > 0 so that ' := mB is an effective divisor. Express

B=D-tA

for A ample and t € Q~o. Thus

1
D=—FE+tA
m

and clearing denominators gives the desired result.
If D is not in WI(X) then, for each H ample, there exists an ¢ > 0 so that

D + eH is not effective. Conversely, if D € NE' (X) then D + ¢H € NEL(X) and
we can write

N(D+eH)=A+FE
where N > 0, A is ample, and F is effective. O
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COROLLARY 2.4. Let X be a smooth projective surface. A nef divisor D is big
if and only if D* > 0. Indeed, any divisor D (not necessarily nef) such that D* > 0
and D - H > 0 for some ample divisor H is big.

In fact, the analogous statement is true in all dimensions [KM98, 2.61].

PRrROOF. If D is big then we can express D = A + E, where A is an ample
Q-divisor and F is an effective Q-divisor. We expand

D?=D-(A+E)>D-A=A-A+A-E>0.

Conversely, if D? > 0 then the Riemann-Roch formula implies either

2

D
h°(Ox(mD)) > 7m2, m > 0,

or
2

D
h*(Ox(mD)) > 7m27 m > 0.

The latter possibility would imply Ky — mD is effective for m > 0, which is
incompatible with D being nef. (Actually, we only need that D - H > 0 for some
ample divisor H.) Given A very ample, a straightforward dimension count shows
that h°(Ox(mD — A)) remains positive for m > 0, i.e., that D can be expressed
as a sum of an ample and an effective divisor. O

Exercises.

EXERCISE 2.1.1. Let X denote the blow-up of P? at a point. Give examples of
big divisors D on X with D? < 0.

EXERCISE 2.1.2. Let X be a smooth projective variety. Verify that the con-
ditions of the Nakai and Kleiman criteria are necessary for a divisor to be ample.
When X is a surface, deduce the sufficiency of the Kleiman criterion from the Nakai
criterion.

EXERCISE 2.1.3. The wvolume of a Cartier divisor D on an n-dimensional pro-
jective variety X is defined [Laz04, 2.2.31] as

vol(D) = limsup h°(X, Ox(mD))/(m™/n!).

m— 00

When X is a smooth surface, show that D is big if and only if vol(D) > 0.

2.2. Examples of effective cones of surfaces. For surfaces that are ob-
tained by blowing up the plane 8 : X — P2, we write L for the pullback of the line
class on P? and Ey, F», ... for the exceptional curves.

(1) Let f; and fo denote the rulings of X = P! x P!, so that Pic(X) =
Z.f1 + Zfo. Then we have

NE(X) = {a1f1 + azfa : a1,a2 > 0}
and
NE{(X) = {a1f1 + aaf2 : a1,a2 > 0}.
(2) If X is P? blown up at one point then
NE(X) = {aE +b(L — E) : a,b > 0}.
(3) If X is P? blown up at two points then
ﬁl(X) = {a1E1 + agFy + b(L — ki — Eg) : al,a2,b > 0}
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(4) If X is P? blown up at three non-collinear points then
NEy(X) = (L — Ey — Ey, L — By — E3,L — Ey — E3, Ey, Ey, E3)

i.e., the cone generated by the designated divisors.
(5) If X is a cubic surface with lines /1, ..., {57 then

NE1(X) = (01, ..., blor) .

We describe a technique for verifying these claims, using the crucial fact that

curves and divisors coincide on surfaces, i.e., NE{(X) = WI(X ). To decide
whether a collection of irreducible curves I' = {C4,...,Cn} generates NE;(X),
it suffices to

e Compute a set of generators = for the dual cone (I')"; there are computer
programs like PORTA [CL97] and Polymake [GJ00] which can extract
= from T

e Check that each A; € Z can be written A; =Y m;;C;,m;; > 0.

Here is why this works: If D is effective then we can write
D=M+F, F=>Y» n;Cjn;>0,
J

where M is effective with no support at Cy,...,Cy. (Here F is the portion of the
fixed part of D supported in I'.) In particular, M -C; > 0 for each j, i.e., M € (I')".
But then M =", a;A; with a; > 0. Thus we have

M = Z aimijCj
ij

and D is an effective sum of the Cj.

EXAMPLE 2.5. For X = Bl,, ,,P? take I' = {E,E>,L — Ey — E»}, which
generates a simplicial cone. The dual generators are

E={L-E,L—-E,L}

and we can write

L-FE,=(L-E,—E))+Ey,, L—FEy,=(L—-FE;—Ey)+Ej,
L=(L—FE,—E>)+ E+ Es.

It follows that I generates NE; (X).
Exercises.

EXERCISE 2.2.1. Verify each of our claims about the generators of the effective
cone.

2.3. Extremal rays. We'll need the following general notion from convex
geometry:

DEFINITION 2.6. Given a closed cone C C R"™, an element R € C generates an
extremal ray if for each representation

R:D1+D2, Dl,DQEC
we have Dy, Dy € R>oR.
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We will conflate the element R and the ray R>¢R. For a polyhedral cone, i.e.,
one generated by a finite number of elements

C=(Cy,...,Cn) =R>oCy + -+ R>0Ch,

the extremal rays correspond to the irredundant generators. On the other hand,
for the cone over the unit circle

{(l',y,Z) ::1;2 +y2 _22 < 0} C Rd
each point of the circle yields an extremal ray.

Our main examples of extremal rays are (—1)-curves:

PROPOSITION 2.7. Let X be a smooth projective surface and E a (—1)-curve.
Then E is extremal in NE;(X).
If 6: X =Y is the blow-down of E then

B.NE{(X) = NE{(Y),
hence faces of NE1(Y) correspond to faces of NE{(X) containing E.
PROOF. If we could express E = D + Dy with Dy, Dy € NE1(X) not in R>E,
then
0= B*Dl + ﬁ* D2
for nonzero B.D; € NE;(Y). This contradicts the fact that NE;(Y) is strongly
convex, i.e., that the origin is extremal.
The inclusion
B.NF1(X) C NEy (V)
is clear because the image of an effective divisor is effective. On the other hand,
suppose that D is effective on Y. Since Y is nonsingular, D is a Cartier divisor and
B*D is a well-defined effective Cartier divisor. The projection formula 3,6*D = D
shows that D € 8.NE;(X). O

COROLLARY 2.8. Let X be Del Pezzo and 8 : X — Y a blow-down morphism.
Then'Y s Del Pezzo.

ProoOF. Indeed, we have the discrepancy formula
f*Ky = Kx — E,

where E is the exceptional curve. Since —Kx is positive on NE; (X)\ {0}, —Ky is
positive on NE;(Y) \ {0}. A direct argument that —Ky is ample can be extracted
from the proof of the Castelnuovo Contraction Criterion (Theorem 1.12). O

DEFINITION 2.9. Let X be a smooth projective surface. The positive cone C
denotes the component of

{D:D?>0}c N'(X,R)

containing the hyperplane class. (The Hodge index theorem implies this has two
connected components.) Let C denote its closure.

We can formulate a more general version of Proposition 2.7, which complements
Theorem 2.3 and Corollary 2.4:
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PropoSITION 2.10. [Kol96, 11.4] Let X be a smooth projective surface. Then
each irreducible curve D with D? < 0 lies in the boundary ONE;(X). Furthermore,

(2.1) NE;(X)=C+ > Rs¢D
D

where the sum is taken over irreducible curves D with D? < 0.

ProOF. Corollary 2.4 implies NE;(X) D C, and NE{(X) D C+ >, R>oD
follows immediately. It remains to establish the reverse inclusion.

First, suppose that D is irreducible with D? < 0. Let H be a very ample divisor
of X. Then for each rational € > 0 we claim that D — eH fails to be in the effective
cone. Indeed, if D — eH were effective then it could be expressed as a nonnegative
linear combination of irreducible curves, some different from D,

D—GHECOD+ZCJ'D]', CoE[O,l),Cj>O.
J

Regrouping terms, for some € > 0 we obtain

D-€éH=> dD;, ¢ >0.
J

However, this contradicts the fact that
D-(D-¢H)<0.
For D irreducible with D? < 0 consider the closed cone
V =(zeNE{(X):2z-D >0)C NE{(X),

which contains all effective divisors without support along D. Thus NE;(X) is
the smallest convex cone containing V' and D. Since D ¢ V, it follows that D is
extremal in NE; (X).

Conversely, suppose that Z is extremal with Z2? < 0. There is necessarily some
irreducible curve C such that C'- Z < 0. Let Z; denote a sequence of effective
Q-divisors approaching Z. Since Z; - C < 0 for i > 0, we must have that C? < 0.
Moreover C' appears in Z; with coefficient ¢; and ¢ = lime¢; > 0. Thus Z — c¢C' is
pseudoeffective and C' € R>¢Z by extremality. O

For special classes of surfaces, the negative extremal rays are necessarily (—1)-
curves or (—2)-curves, i.e., smooth rational curves with self-intersection —2:

COROLLARY 2.11. [Kol96, 11.4.14] Suppose X is a smooth projective surface
with —K x nef. Then the sum in expression (2.1) can be taken over D with D? = —1
or —2 and D ~ P!,

PROOF. Since Ky - D < 0 and D? < 0 then the adjunction formula
29(D) —2=D*+Kx-D
allows only the possibilities listed. O
Exercises.

EXERCISE 2.3.1. Classify extremal rays and describe decomposition (2.1) for:

e P2 blown up at two points or three non-collinear points;
e the Hirzebruch surfaces Fy.



RATIONAL SURFACES OVER NONCLOSED FIELDS 171

2.4. Structural results on the cone of curves I. The closed cone of ef-
fective curves has a very nice structure in the region where the canonical class fails
to be nef. There are two different approaches to these structural results. The first
emphasizes vanishing theorems (for higher cohomology) on line bundles and the
resulting implications for linear series, e.g., basepoint-freeness. You can find details
of this approach in references such as [Rei97, D] and [CKMS&88]. One significant
disadvantage is that the reliance on Kodaira-type vanishing makes generalization
to positive characteristic problematic. The second approach emphasizes the geo-
metric properties of the curves themselves, especially the bend-and-break technique
of Mori. This approach is taken in Mori’s original papers, as well as in [Kol96,
I1.4,IT1.1].

Since both approaches are important for applications, we will sketch the key
elements of each, referring to the literature for complete arguments.

THEOREM 2.12 (Cone Theorem). [Rei97, D.3.2] [KM98, Thm. 3.7] [CKMS88,
4.7] Let X be a smooth projective surface with canonical class Kx. There exists a
countable collection of R; € NE{(X) N Ny(X,Z) with Kx - R; <0 such that

NE1(X) = NE|(X) k20 + 3 RsoR;,

where the first term is the intersection of NE1 (X)) with the halfplane {v € N1(X,R) :
v-Kx > 0}. Given any ample divisor H and € > 0, there exists a finite number of
R; satisfying (Kx +€eH) - R; <0.

COROLLARY 2.13. Let X be a Del Pezzo surface. Then NE;(X) is a finite
rational polyhedral cone.

What’s even more remarkable is that the extremal rays can be interpreted geomet-
rically. The following theorem should be understood as a far-reaching extension of
the Castelnuovo contraction criterion (Theorem 1.12):

THEOREM 2.14 (Contraction Theorem). [Rei97, D.4] [KM98, Theorem 3.7]
Let X be a smooth projective surface and R a generator of an extremal ray with
Kx - R < 0. There exists a morphism ¢ : X — Y to a smooth projective variety,
with the following properties:

(1) ¢«R =0 and ¢ contracts those curves with classes in the ray R>oR;
(2) ¢ has relative Picard rank one and Pic(Y) can be identified with R+ C
Pic(X).

PRrROOF. The proofs of Theorems 2.12 and 2.14 are intertwined. We can only
offer a sketch of the arguments required. Some of these work only in characteristic
zero, but we will make clear which ones.

Suppose we want to analyze the part of the effective cone along which Kx
is negative. Fix an ample divisor H, which is necessarily positive along NE;(X).
Which divisors 7Kx + H, 7 € [0, 1], are nef? Consider the nef threshold

t =sup{r € R: 7Kx + H nef },

i.e., (tKx+H)" is a supporting hyperplane of NE; (X) provided ¢t K x +H is nonzero.
If we choose H suitably general, we can assume this hyperplane meets NE;(X) in
an extremal ray. (Of course, for special H it might cut out a higher-dimensional
face.)
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closed cone of orthogonal complement to tKy+H
effective curves N

orthogonal complement to H

orthogonal complement to Ky

FiGURE 1. Finding a supporting hyperplane of the cone of curves
(drawn in the projectivization of Ny (X, R))

The first step is the rationality of the nef threshold. The most straightforward
proof [Rei97, D.3.1] uses the Riemann-Roch formula and Kodaira vanishing, and
thus is valid only in characteristic zero:

LEMMA 2.15 (Rationality). The nef threshold is rational.

Thus the K x-negative extremal rays of the cone of effective curves are de-
termined by linear inequalities with rational coefficients. These rays here can be
chosen to be integral.

The second step is to show that the (Q-)divisor D := tKx + H is semiample.
Then the resulting morphism ¢ : X — Y will contract precisely the extremal rays
in the face supported by the hyperplane (tKx + H)*, which gives the contraction
theorem.

LEMMA 2.16 (Basepoint-freeness). Let D be a nef Q-divisor such that D =
tKx + H for H ample and ¢t > 0. Then D is semiample.

PROOF. Since D is nef we have D? > 0. If D? > 0 then the Nakai criterion
(Theorem 2.2) implies D is ample unless there exists an irreducible curve E with
D - E = 0. The Hodge index theorem implies £? < 0. Since Kx - £ < 0, Propo-
sition 1.6 implies that F is a (—1)-curve. The desired contraction exists by the
Castelnuovo Criterion (Theorem 1.12).

Now suppose D? = 0. If D is numerically equivalent to zero then —Kx is
ample. In this situation, D is semiample if and only if it is torsion, which is a
consequence of the following lemma.

LEMMA 2.17. Suppose that X is a smooth projective surface and —Kx is nef
and big, e.g., X is a Del Pezzo surface. Then
e H?(X,0x) =0 and Pic(X) is smooth;
e H'(X,0x) =0 and the identity component of Pic(X) is trivial.

PROOF. Since some positive multiple of —Kx is effective, no positive multiple
of Kx is effective. Thus
h*(X,0x) = h°(X,0x(Kx)) =0
and Pic(X) is smooth. The identity component has dimension ¢ = h'(X, Ox).

Let b;(X) denote the ith Betti number of X; in positive characteristic, we define
these using étale cohomology [Mil80]. Recall the formulas [Mil80, 111.4.18,V.3.12]
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b1(X) = 2¢ and
ea(X) = X(X) = bo(X) = by (X) + ba(X) — bs(X) + ba(X) = 2 — dg + b(X).
Noether’s formula
12x(Ox) = 1(X)? + ca( X)
and the fact that ¢;(X)? = K% > 0 imply
12(1 — q) > 2 —4q + ba(X).

Consequently
10 > 8q + bs (X)

and thus ¢ = 0 or ¢ = ba(X) = 1. To exclude the last case, observe that if the iden-
tity component of the Picard group is positive dimensional then so is the Albanese
variety. (Indeed, these abelian varieties are dual to each other.) Furthermore, the
Albanese map X — Alb(X) [Lan59, 11.3] is a dominating morphism to an elliptic
curve. The classes of a fiber and the pullback of an ample divisor from the Albanese
are necessarily independent; thus ba(X) > 2. O

We return to the proof of Lemma 2.16. If D is not numerically trivial then
Kx - D < 0 and Riemann-Roch imply that h°(X, Ox(mD)) grows at least linearly
in m. And since Corollary 2.4 ensures that D is not big, h°(Ox(mD)) cannot be
a quadratic function of m. Decompose D into a moving and a fixed part

D=M+F, M*>0, M-F>0.

Note that D« F = M - F + F? > 0 (since D is nef), M? = 0 (as M is not big), and
F? <0 (since F is not big). On the other hand,

0=D*=2M -F+F*>M. -F

so M -F =0 and F? = 0 as well. The Hodge index theorem implies that M
and F' are proportional in the Néron-Severi group, provided they are numerically
nontrivial. In particular, if F # 0 then Kx - F < 0 and h°(F,Ox(mF)) grows
linearly in m, contradicting the fact that F' is fixed. Thus D = M is moving with
perhaps isolated basepoints, the number of which is bounded by M? = 0. We
conclude that D is basepoint-free. O

This completes the proof of Theorem 2.14.

REMARK 2.18. This argument yields another result we shall use later: Let X
be a smooth projective surface with — K x nef and big. Assume that D is a nef line
bundle on X with D? = 0. Then D is semiample.

The third step is to bound the denominator of the nef threshold (cf. [Rei97,
D.3.1] and [CKMS88, 12.12]):

LEMMA 2.19 (Bounding denominators). Assume the nef threshold is rational.
Then its denominator is < 3.

PROOF. Again, the argument is a case-by-case analysis of D = tKyxy + H. If
D? > 0 then D is orthogonal to a (—1)-curve and ¢ € Z. If D is numerically trivial
then —Kx is ample and Lemma 2.17 implies x(Ox) = 1. Express —Kx = rL,
where L is a primitive ample divisor and r € N. It suffices to show that r < 3.
Noether’s formula and the argument for Lemma 2.17 give

12 =72L% + co(X) = r*L* 4+ 2 + by(X)
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so the only possibilities are r =1, 2, 3.

It remains to consider the situation where D? = 0 but D # 0. As we’ve seen,
D - Kx < 0 in this case. Furthermore, ' Kx + H is never effective for ¢’ > t. Here
we claim 2t € N. Otherwise, there exist m,n € N with m > 0 such that

mt=n+a, 1/2<a<l
Thus nKx + mH is ample, I'(Ox(—nKx —mH)) = 0, and
H*(Ox((n+1)Kx +mH)) =0
by Serre duality. We deduce

R (Ox((n+1)Kx + mH)) = x(Ox) + 5((n+ 1)Kx + mH) - (nKx +mH)
=x(0x) + (—a(l — a)K% + m(1 — 20)D - Kx + m*D?)
= constant + m - positive number

which is positive for m sufficiently large. Thus mH + (n + 1)Kx is effective, a
contradiction. O

To complete the proof of Theorem 2.12, we show that the K x-negative extremal
rays have no accumulation points and for any ample H there are finitely many such
rays in the region (Kx 4+ e¢H) < 0. Let Hy,..., Hy denote ample divisors forming
a basis for the Néron-Severi group such that

H=aHy+ - +aqHg, a1,...,aq € Qso.
Let t; denote the nef threshold of H;. Consider the local coordinate functions
H;- v
b _ 3
i (7) “Kx -~
on the open subset of P(N;(X,R)) where Kx # 0. For K x-negative extremal rays,
b;j > t;; Lemmas 2.15 and 2.19 imply these are rational numbers with denominators

dividing six. It follows that these rays have no accumulation points. The extremal
rays with (NKx + H) - R; <0 for some N € N have coordinates satisfying

a1by + -+ agbg < N.

Since the a; and b; are positive rational numbers with bounded denominators, there
are at most finitely many possibilities. (I

The structure of the contraction morphism ¢ : X — Y depends on the inter-
section properties of irreducible curves E generating our extremal ray:
Case E? < 0: Proposition 1.6 ensures E is a (—1)-curve and ¢ is the blow-down
of F.
Case E? = 0: By adjunction, E ~ P! and ¢ : X — Y fibers X over a curve with
generic fiber P1. The extremality implies all fibers are irreducible and reduced, thus
every fiber of ¢ is a projective line and we have a minimal ruled surface.
Case E? > 0: Corollary 2.4 implies F is big. Since f contracts £ and all its
deformations, ¢ is constant. Thus Pic(X) = Z and X is Del Pezzo.

Since the first case cannot occur when X is minimal, we obtain:

COROLLARY 2.20. Let X be a minimal smooth projective surface. Then one of
the following conditions holds:
o Kx is nef;
o X is a P'-bundle over a curve B;
e X is Del Pezzo with Pic(X) = Z.
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In the first instance, X 1is the unique minimal smooth projective surface in its
birational equivalence class.

PRrROOF. We only have to establish uniqueness: Let X’ be another minimal
smooth projective surface birational to X. Choose a factorization

Y
¢’ ¢
e N\
X’ X

where Y is smooth projective and the morphisms are birational. Indeed, ¢ and ¢’
are sequences of contractions of (—1)-curves (see Theorem 1.13). Express Ky =
¢0*Kx + F where F is an effective divisor with support equal to the exceptional
locus of ¢. If E C Y is a (—1)-curve contracted by ¢’ then

—-1=Ky -E>F-FE
as Kx is nef. Thus E is contained in the support of F' and is contracted by ¢'.
Since each ¢’-exceptional divisor is ¢-exceptional, we have a factorization
¢p:Y - X' = X,
Since X’ is minimal, it must equal X. (|
REMARK 2.21 (Relative version). Given a morphism f : X — B to a variety,
we can also consider the relative cone of effective curves

When B is smooth, this is the intersection of NE;(X) with the orthogonal com-
plement to f*Pic(B). The Cone Theorem 2.12 describes its structure in the region
where the canonical divisor Kx is negative. There is a relative version of the
Contraction Theorem giving contractions over B

X 2 Y
N Ve
B
The classification of ruled surfaces (Theorem 1.16) is a prime example.

Exercises.

EXERCISE 2.4.1. Let X be a smooth projective surface with Kx nef. Show
that X is not rational.

EXERCISE 2.4.2. Let pi,...,ps € P? be general points. Let py be the last
basepoint of the pencil of cubic curves containing these points. Show that X =
Blyy p1.... ps P? has an infinite number of (—1)-curves.

Hints: Let Ey,...,FEs denote the exceptional divisors. Consider the elliptic
fibration

n:X — P
induced by the linear series |f| with f = —Kx = 3L — Ey — --- — Eg. Verify that
sections of 7 are all (—1)-curves. Designate Ey as the zero section of n and let
o; : P! — X i =1,...,8 denote the sections associated with E,..., Fs. Given
sections o, ¢’ : P! — X we have
[0+ Y] = [o(PH)] +[0'(P")] — [Eo] + w(a,0")[f]

w(o, o) = ~[o(BY) — Eo] - [0 (P) ~ E.
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Use this to analyze mioq1 + - - - + mgos.

2.5. Structural results on the cone of curves II. Our discussion of the
Cone and Contraction Theorems is missing one crucial element: We have not shown
that the extremal rays are generated by classes of rational curves on X. Another
issue is that we cited arguments for the rationality of extremal rays relying on
vanishing theorems; these do not readily extend to positive characteristic. These
gaps can be filled using Mori’s ‘bend-and-break’ technique:

THEOREM 2.22 (Bend-and-break). [Kol96, I1.5.14] Let X be a smooth projec-
tive variety, C a smooth projective curve, and f : C — X a morphism. Let M be
a nef R-diwvisor. Assume that —Kx - C > 0. Then for each x € f(C) there is a
rational curve x € D, C X such that

M-C
—Kx-C’

This is a deep result that we will not prove here. The main idea is to use the
fact that the anticanonical class is negative to show that f admits deformations
ft : C — X whose images still contain x. This strategy works beautifully provided
C has genus zero, but in higher genus it is necessary to reduce modulo p and
precompose f with the Frobenius map. Then we consider limits of f;(C) C X as
t — 0; these necessarily contain rational curves x € D’ C X. We can iterate this
strategy until we obtain a rational curve D, > x with fairly small anticanonical
degree, i.e., —Kx - D, < dim(X) + 1.

We still have not mentioned the role of the divisor M. This is crucial in
applications to the cone of curves:

THEOREM 2.23 (Cone Theorem bis). [Kol96, I11.1.2] Let X be a smooth projec-
tive surface with canonical class Kx. There exists a countable collection of rational
curves L; C X with 0 < —Kx - L; < 3 such that

(2:2) NE1(X) = NE1(X)kyx0+ Y Rso[Li].

M - D, <2dim(X) ~Kx - D, <dim(X) + 1.

Given any ample divisor H and € > 0, there exists a finite number of L; satisfying

Proor. We offer a sketch proof following [Kol96]: Let M be an R-divisor
corresponding to a supporting hyperplane of a Kx-negative extremal ray R €
NE;(X). Thus M - R =0 and M -y > 0 for v € NE{(X) with v ¢ R>oR; in
particular, M is a nef R-divisor. We show that M is a supporting hyperplane of
the closure W of the cone associated to the right-hand side of (2.2). (We refer the
reader to [Kol96, II1.1] for the argument that the right-hand side of (2.2) defines
a closed cone.)

Assume this is not the case. Rescaling M if necessary, we may assume that
M-D > 1. for each irreducible curve D C X with [D] € W. Consider the functional

d) : Nl(X7R)KX<O —- R
vy = —M-v/Kx -y

which is nonnegative on NE;(X) k<o and positive away from Rs>qR. Choose a
sequence of effective curves with real coefficients approaching R

C; = ZaijC’ij,azj > 0, zl—lglo C; = R.
J
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For each 4, there exists an index j such that Kx -C;; < 0 and ¢(C;;) < ¢(C;). And
we have lim; o ¢(C;) = ¢(R) = 0.

On the other hand, bend-and-break yields rational curves L; such that
—KX . L,L' < 3 and

The left-hand side is bounded from below by 1 while the right-hand side approaches
zero, so we obtain a contradiction. O

2.6. Classification of surfaces.
THEOREM 2.24. If X is a Del Pezzo surface with Pic(X) = Z then X ~ P2,

PROOF. Our argument follows [Kol96, 111.3.7]. We first offer a short proof in
characteristic zero: Let L be a line bundle generating Pic(X) with L - Kx < 0.
Lemma 2.17 ensures that H!(Ox) = H?(Ox) = 0, so by Hodge theory we have
b1(X) = 0 and bo(X) = 1. Poincaré duality then implies L - L = 1. Noether’s
formula

12x(0x) = A (X) 4 co(X)

implies ¢?(X) = K% = 9. We conclude that Kx = —3L and x(L) = 3. Since
h*(X,L) = h°(X,Kx — L) = 0, we have h°(X, L) > 3. Moreover, the members
of the corresponding linear series are integral curves of genus zero, i.e., Pl’s. A
straightforward inductive argument shows that L is basepoint-free and thus induces
a degree-one morphism X — P?, ie., X ~ P2

We only used characteristic zero to show that Kx = —3L. Suppose then that
Kx = —rL for some r € N, where L is a generator of Pic(X). We have already
seen in the proof of Lemma 2.19 that r = 1,2,3. If r = 2 then

29(L) —2=L*+ KxL=—L?

so L? = 2 and g(L) = 0; Riemann-Roch then gives x(X,L) = 4. Arguing as
above, L is basepoint-free and defines a morphism ¢ : X — P™ for n > 3. The
image is a quadric surface or a plane, and the latter possibility would contradict
nondegeneracy. However, a quadric surface cannot be a rank-one Del Pezzo surface.

Finally, suppose that = 1. The Cone Theorem (Theorem 2.23) implies the
existence of a rational curve f : P — X with deg f*(—Kx) = deg f*L < 3. We
have f..[P!] = mL for some m € N with mL? < 3, and consequently K% < 3. Since
every curve in X has positive self-intersection, we can deduce a contradiction from
the following fact:

LEMMA 2.25. Let Y be a Del Pezzo surface with K}% < 4. Then Y contains a
(—1)-curve.

Such curves C' are called lines because —Ky - C = 1.

There are two general approaches to this. The most direct (see [Kol96, II1.3.6]
or Exercise 2.6.2) is to express Y as a hypersurface in a suitable weighted projective
space, i.e., as a cubic surface in P? (when K% = 3), a quartic surface in P(1,1,1,2)
(when K2 = 2), or as a sextic surface in P(1,1,2,3) (when K2 = 1). Proving
this entails a fair amount of ad hoc analysis of linear series. Another approach
(cf. [Isk79]) involves showing that Y lifts to characteristic zero and using the
classification tools available there. (|
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THEOREM 2.26 (Castelnuovo’s Criterion). [Bea96, V.6] [Kol96, I11.2.4] Let
X be a smooth projective minimal surface. Then X is rational if and only if

9(X) =h'(0x) =0, Py(X):=h"(X,0x(2Kx)) = 0.

PROOF. The necessity of the numerical conditions is clear, as Po(X) and ¢(X)
are birational invariants of smooth projective varieties. For sufficiency, we may
assume that X is minimal and falls into one of the three categories of Proposi-
tion 2.20. The third case (where X is Del Pezzo with Pic(X) = Z) is rational by
Theorem 2.24. In the second case (where X is ruled over a curve B), the assumption
¢(X) = 0 implies that B has genus zero. Corollary 1.22 yields that X is rational.
Finally, suppose that Kx is nef, so in particular K% > 0. We know that Kx is not
effective; if T'(X, Ox(Kx)) # 0 then I'(X, Ox (2K x)) # 0. Thus

x(0x) = h%(Ox) — h'(Ox) + h*(0x) =1
and
x(Ox(~Kx)) = K% +1>1.

Since h?(Ox(—Kx)) = h°(Ox(2Kx)) = 0 we conclude h°(Ox(—Kx)) > 0, i.e.,
—Kx is effective. As Kx is nef, the only possibility is Kx trivial, a contradiction.
|

COROLLARY 2.27. Del Pezzo surfaces are rational.

PROOF. Let X be a Del Pezzo surface. Since —Kx is ample we have that
Py(X) = 0. Lemma 2.17 gives h'(Ox) = 0. O

COROLLARY 2.28. Fach Del Pezzo surface X is isomorphic to one of the fol-
lowing:
o P! x P!;
o a blow-up of P? at eight or fewer points.

ProoFr. By Corollary 2.8, we just need to show that minimal Del Pezzo surfaces
X are either P2 or P! x P'. Our previous analysis implies X is P? or a Hirzebruch
surface F;. But then X contains a rational curve of self-intersection —d, so d = 0,1
by Proposition 1.6. O

REMARK 2.29. The classification of complex surfaces goes back to the work of
Castelnuovo and Enriques in the late 19th and early 20th centuries. The extension
to positive characteristic is largely due to Zariski, who first proved the Castelnuovo
rationality criterion in this context [Zar58a, Zar58b].

Exercises.

EXERCISE 2.6.1. Suppose that X is a surface such that Kx is not nef and
Pic(X) has rank at least three. Then X contains a (—1)-curve.

EXERCISE 2.6.2. Let Y be a Del Pezzo surface with K% = 3 (resp. K& = 4).
Show that —Ky is very ample and the image under | — Ky | is a cubic surface (resp.
complete intersection of two quadric hypersurfaces.) Conclude that Y contains a
line (cf. Corollary 1.9).
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3. Classifying surfaces over non-closed fields

Let k be a perfect field with algebraic closure k and Galois group G' = Gal(k/k).
Let X be a smooth projective surface over k so that

X = Xp=X X Spec(k) SpeC(;ﬂ)
is connected. We use Pic(X) to denote line bundles on X defined over k.

3.1. Minimal surfaces.

DEFINITION 3.1. A smooth projective surface X over k is minimal if any bira-
tional morphism over k to a smooth surface

¢: X =Y
is an isomorphism.

THEOREM 3.2. X is minimal if and only if X admits no Galois-invariant col-
lection of pairwise disjoint (—1)-curves.

PRrROOF. Suppose X is not minimal and admits a birational morphism ¢ : X —
Y. By Theorem 1.13, X admits a (—1)-curve E contracted by ¢. Since ¢ is
birational there are only a finite number of such curves, so let E1,..., E, denote
the curves in the Galois orbit of E. As we saw in the proof of Theorem 1.13, the
intersection form on ZFE, + - - - + ZE, is negative definite, thus the matrix

< EZE] E]2 ’ ? 7& J
has positive determinant. It follows that F; - F; < 1, which gives the disjointness.
Conversely, let Eq,..., E, denote a Galois-invariant collection of pairwise dis-

joint (—1)-curves. Let H be an ample divisor on X. Since H - E; = H - E; for each
1,7, the divisor

T
H' =H+) (H-E)E;
j=1
is also Galois-invariant. We just take Y = Proj(@D,,~,I'(X,nH’)), as in the proof
of Theorem 1.12. a O

REMARK 3.3 (Galois-invariant classes versus divisors defined over k). Not every
element L € Pic(X)® comes from a line bundle defined over k. Applying the
Hochschild-Serre spectral sequence [Mil80, II1.2.20], we find

— 01 _
HY(X,0%) = ker (H%Hl(X, 0%) 2 HZHO(X, (9;()>
which yields
B 01
Pic(X) = ker (Pic(X)G &, Br(k)) .
Since Br(k) is torsion, some power NL with N > 0 is defined.
On the other hand, when X (k) # 0 the homomorphism d9! is trivial. In-
deed, the spectral sequence shows that the image of d3' lies in the kernel of the

homomorphism

s* : Br(k) — Br(X) = H*(X,0%)
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induced by the structure map s : X — Spec(k). Each rational point = : Spec(k) —
X induces z* : Br(X) — Br(k), a left-inverse of s*. Thus s* is injective and d3! is
trivial. (See [CTS87] for a comprehensive discussion.)

EXAMPLE 3.4. Suppose we have a cubic surface X with six conjugate disjoint
lines F1, ..., Es. Does it follow that X is the blow-up of P? at six conjugate points?

The divisor class —Kx + E1 + -+ + Eg = 3L is definitely defined over k. The
corresponding linear series gives a morphism

X >Y cP®

blowing down Ei,...,FEg; here Y ~ P% is embedded via the cubic Veronese em-
bedding. This is an example of a Brauer-Severi variety, i.e., a variety Y such that
Y ~ Pglm(y) . Moreover, the invariant class

L € Pic(X)¢
comes from Pic(X) if and only if Y ~ P2. A diagram-chase shows that d3'(L) €
Br(k) vanishes if and only if [Y] € Br(k) is trivial.

Exercises.

EXERCISE 3.1.1. Let Y be a Brauer-Severi surface. Show there exists a smooth
cubic surface X admitting a birational morphism ¢ : X — Y. Hint: A generic
vector field on Y vanishes at three Galois-conjugate points. Blow up along two
such collections of points.

EXERCISE 3.1.2 (Degree seven Del Pezzo surfaces). Let X be a surface such
that X ~ Bl,, ,,(P?). Show there exists a birational morphism X — P2, obtained
by blowing up a pair of Galois-conjugate points.

EXERCISE 3.1.3 (Some degree eight Del Pezzo surfaces). Let X be a surface
such that X =~ Bl,(P?). Show that X is isomorphic to Bl,(P?) over k.

EXERCISE 3.1.4 (Degree five Del Pezzo surfaces). [Sko93] [SD72] Let X be a
surface such that X ~ Bl, . 1. », (P?), where the points are distinct and no three
are collinear.

(1) Show that the four points are projectively equivalent to
[1,0,0],10,1,0],[0,0,1],[1,1,1]

over k.

(2) Show that sections of —Kx embed X as a quintic surface in P°.

(3) Show that this surface is cut out by five quadrics. Hint: It suffices to
verify this on passage to k.

(4) Choose generic Qg, Q1, Q2 € Ix(2). Verify that

QoN@QiNQ2=XUW,

where W is isomorphic to BL,P2.
(5) Using Exercise 3.1.3, show that the exceptional divisor E C W is defined
over k and intersects X in one point.

Conclude that X (k) # 0.
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FIGURE 2. Degenerate fibers of a conic bundle

3.2. Conic bundles. Our treatment owes a great deal to Iskovskikh [Isk79].

DEFINITION 3.5. A conic bundle is a dominant morphism f : X — C from a
smooth projective minimal surface X to a smooth curve, so that the generic fiber
is a smooth curve of genus zero.

Of course, over an algebraically closed field this is the same as a minimal ruled
surface. However, without the Tsen-Lang Theorem we cannot construct a section
of f defined over k.

Proposition 1.19 does still apply: It guarantees that each smooth fiber of f is
a plane conic and splits over a quadratic extension. It follows that there exists a
bisection of f, i.e., an irreducible curve D C C so that f|p : D — C has degree
two. Indeed, intersect the generic fiber (realized as a plane conic) with a line and
take the closure in X.

~ THEOREM 3.6. Let f: X — C be a conic bundle. Then any reducible fibers of
X — C consist of two (—1)-curves intersecting in one point, conjugate under the
Galois action.

PROOF. Suppose F is a reducible fiber of X; designate the field of definition
of f(F) € C by k1 D k. The existence of a reducible fiber guarantees that X is not
relatively minimal and F contains a (—1)-curve (Theorem 1.16). Let E1,..., E, be
the Galois-orbit under the action of Gal(k; /k1); the E; are not pairwise disjoint by
minimality (Theorem 3.2).

We claim that the only combinatorial possibility is » = 2, E; - E5 = 1, and
E? =FE}=-1. Write T = E;U---UE, and set n = E; - (32 Ej), 1e., the
number of points of intersection of each component with the other components.
We can compute the arithmetic genus using

2pa(T) — 2= —=2r +rn.

Since F' has arithmetic genus zero p,(7) < 0 and n = 1, i.e., each connected
component of T' consists of two (—1)-curves meeting at one point. Reordering
indices if needed, let E; U E5 denote one of these components.
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By Proposition 1.18, if E1,..., E,; are the irreducible components of F' then
the intersection form on

r+s

(@ zE)/ZF

j=1
is negative definite. However, we have (E; + E2)2 = —1+ 2 —1 =0 so necessarily
F = E; + E5. This proves the claim and the result. O

We have seen (Proposition 1.19) that the generic fiber of f : X — C admits
a natural realization as a smooth plane conic. This is obtained using sections of
the dual to the differential one-forms. We can extend this over all of C' using the
relative dualizing sheaf
wy =% @ (f* Q)"
We have natural homomorphisms

1
Qp1(p) > Wr-1(p) = Wrlr-1(p);

where the first arrow is an isomorphism wherever f is smooth.

COROLLARY 3.7 (Conic bundles really are conic bundles). Let f : X — C be a
conic bundle with relative dualizing sheaf wy. Then we have an embedding over C
J _
X < P(fuws )

p e
C

realizing each fiber of X as a plane conic.

PrOOF. We use the classification of fibers in Theorem 3.6. For the smooth
fibers, the anticanonical embedding has already been discussed in Proposition 1.19.
For the reducible fibers, the anticanonical sheaf is very ample, realizing the fiber as
a union of two distinct lines in P2,

Thus for each p € C, w;1| #-1(p) 18 very ample and has no higher cohomology.
Cohomology and base change gives that f*wjﬁl is locally free of rank three and has
cohomology commuting with base extension. Thus we obtain a closed embedding
over C'

j: X = P(faw;h)
in a P2-bundle over C. ]

DEFINITION 3.8. A rational conic bundle is a conic bundle f : X — C over a
curve of genus zero.

3.3. Analysis of Néron-Severi lattices. We analyze the Néron-Severi group
of rational conic bundles f : X — P!. Note that K x is defined over the base field.

Theorem 3.6 and Corollary 1.22 imply that X is a blow-up of a Hirzebruch
surface at r points in distinct fibers:

X — Fd
N\ e
Pl
The corresponding reducible fibers of X — P! are denoted
EiUE|,EsUES,...,E.UE/,
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so that E; + E] = F for each 1.
There are a number of natural lattices to consider. We have the relative Néron-
Severi lattice

NY X - PL,Z)={De NY(X,Z): f.D=0} =ZF +ZE, + - -- + ZE,,
the quotient lattice
NYX =P, Z)/ZF = (ZE, + ZE5 + --- + ZE, + ZF)/ZF

with matrix

B, By ... E,
Eil-1 0 ... 0
By 0 =1 ... 0
E, 0 0 ... —1

and the image A of the orthogonal complement K5 . This is generated by
P1= Ei 7E23p2 =E 7E23p3 =E; 7E3a"'apr =FE._1—-F;
with intersection matrix

PL P2 pP3 P4 ... Pr—1 Pr
1 -2 0 1 0o ... 0 0

P2 0 —2 1 0

ps |1 1 -2 1

ps | 0O 0 1 —2 . . 0
: : 1 0
pr_1| O .o o1 =201
or | O ... ... 0 0 1 -2

Up to sign, this is the Cartan matrix associated to the root system D,..
Recall the traditional description of D,.: Consider

7" =Zey+ -+ Ze,

with the standard pairing e; - e; = d;;. Consider the index two sublattice

M={me +---+mpe, :my+...+m, =0 (mod 2)} CZ"
with generators

{—e1 —ez,e1 —ez,e2 —€3,...,6,_1 — €, }.
The Weyl group W (D,) acts on M via reflections associated to the roots {+e; +e;}.
It can be identified with signed r X r permutation matrices with determinant equal
to the sign of the permutation. It is thus a semidirect product
W(D,) = (Z/22)""' x &,,

where the first group should be interpreted as the diagonal matrices with entries
+1 and determinant 1 and the second group as the permutation matrices. Each
element of W (D,.) is thus classified by the induced permutation of signed coordinate
vectors

{e1,€] = —e1,...,ep,€, = —e, }.
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Identifying E; with e; and E! with e}, we obtain isomorphisms of lattices

M ~ —A

! Lo
Zr ~ —NYf:X —P'Z)/ZF

where the vertical arrows are inclusions of index-two subgroups. The Galois action

of G = Gal(k/k) on Pic(X) induces actions on both A and N*(X — P!, Z)/ZF. It
is worthwhile to compare these to the action of W(D,.) on M and Z".

Exercises.

EXERCISE 3.3.1. Let ¢ : X — Y be a birational extremal contraction of smooth
projective surfaces, i.e., a contraction of a collection of pairwise disjoint (—1)-curves.
Show that

A=KxNNY(¢p: X =Y, 7)
is isomorphic to the lattice
LZpy + -+ Lpr—
with intersections
-2 ifi=j
pi-p; =41 ifli—j]=1.
0 if |i —j|>1
This is the Cartan matrix for A,_;. Interpret the action of the Weyl group
W(A,_1) ~ &, in terms of the geometry of ¢.

3.4. Classification of minimal rational surfaces over general fields.
This is due to Manin [Man66] and Iskovskikh [Isk79]; another proof can be found
in [Kol96, I11.2].

THEOREM 3.9. Let X be a smooth projective minimal surface with X rational.
Then X is one of the following:

° ]P)Q,'
e X C P3 a smooth quadric with Pic(X) = Z;
e a Del Pezzo surface with Pic(X) = ZKx;
e a conic bundle f: X — C over a rational curve, with Pic(X) ~Z & Z.
Notice that the third case includes Brauer-Severi surfaces.
Thus if Y is a smooth projective rational surface over k then there exists a
birational morphism ¢ : Y — X defined over k, where X is one of the surfaces

listed in Theorem 3.9.

PROOF. Since X is rational K ¢ cannot be nef (Exercise 2.4.1), and there exists
an irreducible curve L C X such that K¢ - L < 0. In particular, NE;(X) admits
K g-negative extremal rays. By the Cone Theorem 2.23, elements of NE;(X) can
be expressed as

(31) C+ Z ai[Li], a; > 0,

where C' € NE; (X) satisfies C - K¢ > 0 and the L; are rational curves generating
K g-negative extremal rays. Of course, the Galois group G acts on Pic(X) and on
the K g-negative extremal rays. Thus for elements of NE; (X)) the two parts of (3.1)

can be taken to be G-invariant.
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Let NE;(X)¢ denote the closure of the Galois-invariant effective cone in the
real vector space spanned by Galois-invariant curve classes. Since NE;(X) has
Kx-negative curves, it necessarily admits a K x-negative extremal ray Z. This
need not be extremal in NE;(X), but it does lie in some face of that cone, which
we analyze. Since Z is extremal and K x-negative, it must be proportional to the
average over the orbit of a single extremal ray of X:

Z=aE, E=Y L;, Lj=g;Lg;€G.

Jj=1

In other words, the minimal face of NE;(X) containing Z is spanned by the Galois
orbit of one extremal ray.

Assume first that Pic(X) ~ Z, generated by some ample divisor H defined over
k. Then —Kx = rH for some positive integer r and X is Del Pezzo. When r > 1
we necessarily have X ~ P? or P! x P! by Corollary 2.28. In the first instance, X is
a Brauer-Severi surface with a line H defined over the ground field; thus T'(Ox (H))
gives an isomorphism X ~ P2. This is the first case of the theorem. In the second
instance, the line bundle Op1yp1(1,1) is defined over the ground field. Its global
sections give an embedding X < P3 whose image is a quadric surface. This is the
second case of the theorem. Finally, if —Kx generates Pic(X) then we are in the
third case of the theorem.

Now assume that Pic(X) has higher rank, so in particular E € ONE; (X)Y. Tt
follows that E? < 0. Indeed, if E? > 0 then E is big by Corollary 2.4 and thus lies
in the interior of the effective cone by Theorem 2.3. (And there are some extremal
L whose Galois orbits do not lie in any proper face of the cone of curves.)

Suppose now that E? < 0, which implies that L? < 0. As before, Proposi-
tion 1.6 implies L is a (—1)-curve. Furthermore, L N L; = () when L # L;; indeed,
if the Galois conjugates were nondisjoint then their sum would have nonnegative
self-intersection. Theorem 3.2 implies that X is not minimal, a contradiction.

Suppose next that E? = 0. If L? < 0 then we would still have that L is a
(—1)-curve. Since E? = 0 each curve meets precisely one of its Galois conjugates,
transversely at one point. Thus the orbit of L decomposes as

{Lla L?[}a {L27L/2}7 D) {L’ra L;'}a

where L; - L, = 1 and all other pairs of (—1)-curves are disjoint. Write F; = L; + L
so that F; - F,, = 0 for each ¢,m = 1,...,r; the Hodge index theorem implies that
Fy, = F, = ... = F, and E = rF; for each i. Contracting F (or equivalently,
Ly, L},..., L) gives a morphism

f:X—=C

whose generic fibers are smooth conics and with r > 0 degenerate fibers consisting
of reducible singular conics. This is the conic bundle case of the theorem.

Finally, suppose that £E? = 0 and L? = 0. Then each Galois conjugate of L
is necessarily disjoint from L, so the Hodge index theorem argument above shows
that [L] is Galois-invariant. Contracting L gives a conic bundle f : X — C without
degenerate fibers. ]

REMARK 3.10. This almost completes the birational classification of rational
surfaces. It remains to enumerate birational equivalences among the surfaces listed
in Theorem 3.9. This enumeration can be found in [MT86, 3.1.1, 3.3.2]
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Exercises.

EXERCISE 3.4.1. To get a feeling for the difficulties involved, show that if X is
minimal then X # Bl,, ., P2 Specify a Galois action on Pic(X), in particular,
a finite group acting linearly, preserving the intersection form, and fixing Kx.
Consider the orbits of the (—1)-curves under this action. Convince yourself there
is an orbit consisting of either

e disjoint (—1)-curves; or
e 7 disjoint pairs of (—1)-curves, with each pair meeting transversely at one
point.

3.5. An application: Rational points over function fields. Our next re-
sult is due to Manin and Colliot-Thélene [CT87]. For more context and discussion,
see [Kol96, IV .6]:

THEOREM 3.11. Let B be a smooth curve over C with function field k = C(B
Suppose that X is a smooth projective surface over k with X rational. Then X (k)

0.

).
£

Of course, this result can be obtained from the Graber-Harris-Starr Theorem
[GHSO03]. However, we will present it using our classification techniques.

ProOOF. We first reduce to the case where X is minimal. Suppose we have a
birational morphism ¢ : X — Y to a smooth projective surface. We can factor ¢
as a sequence

X=X X1—2>Xo—> =X, =Y
where each intermediate morphism is the blow-up of a Galois-orbit of points.

Suppose = € X;(k) is a rational point. If x is contained in the center of the
blow-up B; : X;_1 — X; then the exceptional divisor £ C X;_; is rational over k
and isomorphic to PL. Tt follows that E(k) # () and X;_1(k) # 0. If z is disjoint
from the center of X;_1 — X; then x lies in the open subset U C X;_1 over which
f3; is an isomorphism. Thus §; *(z) is a rational point of X;.

We consider the minimal cases one by one. The case X = IP? is straightforward.
The case of a quadric surface Q C P? follows from the Tsen-Lang Theorem.

We address the cases of Del Pezzo surfaces of degree d = K%. Del Pezzo
surfaces with certain degrees always have rational points. We assume without
proof standard results on anticanonical linear series |—K x| and embeddings of X
in projective space:

d =7 There is no minimal Del Pezzo surface in this degree—see Exercise 3.1.2.
d =28 (X =~ Bl,P?) There is no minimal Del Pezzo surface of the type—see
Exercise 3.1.3.
d =5 X always has a rational point—see Exercise 3.1.4.
d=1 X ~Bl,, . ,P? in this case and

—K¢=3L—-FE; —---— Eg.
In this situation, |- K x| is the pencil of cubics Cy,t € P!, passing through
p1,...,ps. The base locus of this pencil on P? consists of nine points, i.e.,
p1,...,ps and one additional point py. The basis locus of |[-Kx| on X

is just the point pg. Since —Kx is defined over k, the unique basepoint
po € X (k).
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We address the remaining cases using the classification results of §2.6. Since
k = C(B), we can use the following variant of the Tsen-Lang Theorem:

THEOREM 3.12. Let k be the function field of a curve defined over an alge-
braically closed field. Let F, ..., F,. € klxg,...,2,] be nonconstant weighted homo-
geneous polynomials, with weighted degrees satisfying

deg(Fy) + - - - + deg(F,) < n.
Then the system Fy = --+- = F, = 0 admits a nontrivial solution over k.

d = 3 Here X is a cubic surface in P? and the result follows from Tsen-Lang.

d =9 X is a Brauer-Severi surface. However, Exercise 3.1.1 allows us to blow
up X to obtain a cubic surface, which has rational points by the previous
case. (The reader knowledgeable in central simple algebras can prove
Br(C(B)) = 0 using properties of the reduced norm.)

d =4 Here X is a complete intersection of two quadrics in P* and our variant
of the Tsen-Lang Theorem applies.

d =2 Here |—Kx| induces a morphism

X — P?

of degree two, branched over a quartic plane curve. It follows that X is
a hypersurface of degree four in the weighted projective space P(2,1,1,1)
of the form w? = f(z,y,2). An application of the Tsen-Lang Theorem
gives our result.

d = 6 It suffices to show there exists a quadratic extension k’/k over which ratio-
nal points are dense on X. Then after blowing up two suitable conjugate
points we obtain a degree-four Del Pezzo surface, which has a rational
point.

From our analysis of the effective cone of X in §2.2, there are two nef

divisors L, L’ € Pic(X) so that
L’=(/)*=1,-Kx-L=-Kx-L =3.
Indeed, we take L' = 2L — E; — E5 — E5. Their sections induce morphisms
¢,¢' : X — P?
blowing down triples of disjoint (—1)-curves. Let k'/k be a quadratic
extension over which L and L’ are Gal(k’/k’) invariant. Then X is a
blow-up of a Brauer-Severi variety Y over k' at three conjugate points.

The d = 9 case shows that Y (and hence Xj/) has lots of k’-rational
points.

For the conic bundle case we apply the Tsen-Lang theorem twice. First, we
show that C(k) # 0 so C ~ P!. Taking a generic t € P!(k) so that X; := f~1(t) is
a smooth conic, a second application gives X (k) # 0. a

Exercises.

EXERCISE 3.5.1. Let X be a degree-one Del Pezzo surface over an arbitrary field
k. Give a complete proof that X (k) # (), based on the sketch above. Challenge:
When can you show that | X (k)| > 17

4. Singular surfaces

In this section, we work over an algebraically closed field.
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FI1cURE 3. Four general lines in the plane

4.1. Cubic surfaces revisited: the Cayley cubic. In §1.1, we constructed
smooth cubic surfaces by blowing up six points in general position on the plane.
What happens when we relax this assumption?

Consider configurations of six points obtained as pairwise intersections of four
general lines in the plane. Given four lines in general position, we can choose
coordinates to put them in the standard form:

by = {xo 20}7 b = {xl :0}, by = {.’L‘g 20}7 {3 = {l‘o—‘r.’L‘l + X2 :0}
The intersection points are denoted p;; = ¢; N ¢, for 0 <7 < j < 3.

The points po1, ..., p23 still impose independent conditions on homogeneous
cubics in zg, ..., zs, i.e.,
IP017-~71023 = <yOa Y1, Y2, Z/3>

where
Yo = x122(xo + 1 + 22) Y1 = xoT2(To + 21 + 2)
Yo = xox1 (o + 1 + T2) Y3 = —ToT1T2 ’
These satisfy the relation

YoY1y2 + y1Y2y3 + Y2y3yo + ysyoyr = 0;

the resulting cubic surface S C P2 is called the Cayley cubic surface in honor of
Arthur Cayley, who classified singular cubic surfaces [Cay69].
Here are some of its geometric properties:

e S has ordinary double points at
so =[1,0,0,0], s; =[0,1,0,0], s2 =[0,0,1,0], s3 =[0,0,0,1].
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S

2

FIGURE 4. Some lines on the Cayley cubic

It is the unique cubic surface with this configuration of singularities, up
to projective equivalence.
e S contains nine lines, i.e., the lines m;;,%,j = 0,...,3 spanned by s; and
s;, as well as the lines
{yo+tys=y1+v2=0} {wo+tyi=v2+ys =0}, {yo+y2=y1+ys=0}

e The birational map

[vo, y1, Y2, y3] : P? 58

factors as

X
B 15
vd N\
P2 S

where (3 is the blow-up of po1,...,p23 and o is the blow-up of so,. .., s3.
The exceptional divisors of 8 are the proper transforms E;; of the my;;

the exceptional divisors of o are the proper transforms ¢; of the ¢;.
e Express

PIC(X) = 7L D ZEOl &P ZE23

where L is the pullback of the hyperplane class of P? via 3. The canonical
class is

Kx = —3L+ Eo1 + Ep2 + Eoz + B2 + Ei13 + Ea3
and the proper transforms of the lines are
ly =L — Eo1 — Egz — Eg3, ¢} =L —Eg — E1p — Eu3,....

We have Kx - ¢; = 0 and (69)2 = —2 for each j, i.e., the exceptional
divisors of the resolution o are (—2)-curves.
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4.2. Why consider singular cubic surfaces?
Reason 1: Reduction modulo primes
Let X = {F(y0,%1,%2,y3) = 0} C P3 be a smooth cubic surface defined over Q;
we may assume that F' € Z[yo,y1, Y2, ys] and the greatest common divisor of the
coefficients of F' is 1. Consider the integral model

m: X ={F =0} C P} — Spec(Z),

which is flat and projective over Spec(Z). For each prime p, we have X, = X
(mod p), i.e., the fiber of X over p € Spec(Z). If p divides the discriminant of F
then &), will have singularities. These singular fibers have a strong influence on the
rational points of X.
Reason 1’: Degenerate fibers of families
This is the function-field analog of the previous situation. Let B be a complex
curve and

T X —B

a family of cubic surfaces, e.g., a pencil

{sF(yo,y1,Y2,Y3) +tG (Yo, y1,y2,y3) =0} C Py x Py,
with 7 being projection onto the second factor. At least some of the fibers A} =
7=1(b),b € B must be singular.
Reason 2: Counting rational points
Proving asymptotics for the number of rational points of bounded heights on singu-

lar cubic surfaces is often easier than the case of smooth cubic surfaces. Examples
include toric cubic surfaces [d1B98, Fou98, HBM99, Sal98]

yg = Y1Y2Ys3,
the Cayley cubic surface [HBO03], the ‘Eg cubic surface’ [d1BBDO07]

y1Ys + y2u5 + 93 = 0;
and a ‘Dy cubic surface’ [Bro06)

Y1y2ys = ya(y1 + y2 +y3)*.

4.3. What are ‘good’ singularities? Let S be a normal surface. A reso-
lution of singularities o : X — S is a birational proper morphism from a smooth
surface. Abhyankar proved the existence of resolutions of surface singularities in
arbitrary characteristic [Abh56]. A resolution o : X — S is minimal if there exists
no nontrivial factorization

X4y s
with Y smooth. This is equivalent to

e there are no (—1)-curves in the fibers of o; or
e K x is nef relative to o.
A relative analog of Corollary 2.20 (see Remark 2.21) implies that minimal resolu-
tions of singularities are unique, in the case of surfaces.
Recall that if ¢ : X — Y is a birational morphism of smooth projective surfaces
then (cf. Equation 1.1):

KX:qS*Ky—i—ZmiEi, m; > 0.

The following definition represents a weakening of this condition:
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DEFINITION 4.1. Suppose that S is a normal surface with a unique singularity
p; assume that Kg is a Q-Cartier divisor at p. (This is the case when S is a complete
intersection in some neighborhood of p). Then p € S is a canonical singularity if,
for each resolution of singularities o : X — S we have

Kx =0"Kg +ZmiEia m; > 0,

where the E; are exceptional divisors of o.

Note here that a priori the m; € Q; however, the classification of these singu-
larities shows a posteriori that the m; € Z.

PROPOSITION 4.2. Suppose that (S,p) is a canonical singularity. A resolution
of singularities o : X — S is minimal if and only if each m; =0, i.e., Kx = 0*Kg.
In this case, each o-exceptional curve is a (—2)-curve, i.e., a nonsingular rational
curve E with E? = —2.

PROOF. (<) Suppose that m; = 0 for each i. Then Kx - F; = 0 for each
o-exceptional divisor. The Hodge index theorem implies that the o-exceptional
divisors have negative self-intersection, i.e., E? < 0. The adjunction formula implies
that E? = —2 and F; is a nonsingular curve of arithmetic genus zero.

(=) Assume that o is minimal, i.e., the fibers of o contain no (—1)-curves.
Suppose that Ky # 0*Kg so that some m; # 0. It follows that (3, miE;)? < 0
and thus (3, m; E;)- E; < 0 for some o-exceptional curve E;. Consequently E? < 0
and Kx E; <0, so E; is a (—1)-curve by Proposition 1.6. O

Proposition 4.2 suggests the following variation on this definition

DEFINITION 4.3. A normal surface S has Du Val singularities if it admits a
resolution o : X — S such that Kx - E = 0 for each o-exceptional divisor E.

Patrick Du Val first classified surface singularities in terms of their discrepancies
(or in his terminology, the ‘conditions they impose on adjunction’) in [DV34]. This
definition is a priori more general than the class of canonical singularities: We do
not insist that Kg is Q-Cartier. However, we shall see later (Remark 4.7) that Du
Val singularities are canonical.

Exercises.

EXERCISE 4.3.1. We give an example of a surface with ‘bad’ singularities. Sup-
pose that p1,...,ps € £ C P? are distinct points lying on a line £. Consider

B:X :=Bl, PP

and let ¢ denote the proper transform of ¢, L the pullback of the hyperplane class
via B, and F1,..., F4 the exceptional divisors. Verify that
a. The divisor 4L — F1 — F5 — E3— E, is basepoint-free and yields a morphism
¢: X — PO,
b. If Y is the image of X under ¢, show that ¢ : X — Y is an isomorphism
over X \ ¢ and contracts £ to a point y € Y.
c. Show that Y is normal at y and the canonical class Ky is Q-Cartier.
Compute the divisor ¢* Ky .
e. Show that y € Y is not a Du Val singularity.
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4.4. Singular Del Pezzo surfaces.

DEFINITION 4.4. A singular Del Pezzo surface is a projective surface S with
Du Val singularities such that —Kg is ample.

If o : X — S is a minimal resolution of a singular Del Pezzo surface then
c*Kg = Kx, ie., —Kx is semiample.
Here is one good source of singular Del Pezzo surfaces. Suppose X is a smooth
projective surface with —Kx nef and big. It has the following properties:
. (—Kx)Q > 0;
e Any irreducible curve E with Kx - E =0 is a (—2)-curve.
e There are a finite number of (—2)-curves on X.

The first statement is a particular case of Corollary 2.4. The second is contained in
the proof of Proposition 4.2. The third follows from the fact that K% is negative
definite, and thus has a finite number of vectors of self-intersection —2.

THEOREM 4.5. Let X be a smooth projective surface with —Kx mnef and big.
Then each nef divisor D on X is semiample.

COROLLARY 4.6. Let X be a smooth projective surface with —Kx mnef and
big. Then —Kx is semiample. In particular, there exists a birational morphism
o:X — S to a singular Del Pezzo surface with 0*Kg = Kx.

PRrROOF. Remark 2.18 addresses this in the special case where D is not big, i.e.,
when D? = 0. Thus we may assume that D? > 0.

The Nakai criterion (Theorem 2.2) implies that D is ample unless D - FE = 0 for
some irreducible curve £ C X. The Hodge index theorem implies that each such
curve satisfies E? < 0. Since —Kx - E > 0, the only possibilities are (—1)-curves
(see Proposition 1.6) or (—2)-curves (see Proposition 4.2). In either case F ~ PL.

Suppose X admits (—1)-curves as above. We can apply the Castelnuovo con-
traction criterion (Theorem 1.12) to obtain a birational morphism 8 : X — Y
such that Y admits a big and nef divisor M on Y with 8*M = D and the only
curves orthogonal to M are (—2)-curves. Furthermore, —Ky remains nef and big
(cf. Corollary 2.8).

Let E4, ..., E, denote the (—2)-curves orthogonal to M. We exhibit a birational
morphism to a singular projective variety o : ¥ — S contracting precisely these
curves. Such a contraction exists for more general reasons [Rei97, 4.15] [Art62,
2.3] but we will sketch an argument in our situation.

We essentially copy the proof of the Castelnuovo Criterion. Let H be a very
ample line bundle on Y such that each positive multiple nH has no higher co-
homology. Write d; = H - F; for i« = 1,...,r. Since the intersection matrix of
ZFE1 + ---+ ZE, is negative definite, there exist positive integers n and by, ..., b,
such that

nH - Ez = 7(1)1E1 + - +brEr) . Ez
for each i. Let B=0;F1 + .-+ b.E, so that L := nH + B is orthogonal to each
E;.

The adjunction formula implies that each effective divisor A supported on
Fy U---U E, has nonpositive arithmetic genus; a straightforward induction gives
Hl(OA) = 0 as well. Here it is crucial that Ky - F; = 0 for each 4; it is not enough
to assume that each component of the exceptional locus is rational. Thus we have
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Oy (L)|B ~ Op, i.e., an isomorphism of invertible sheaves, not just an equality of
degrees. We obtain the exact sequence

0— Oy(nH) = Oy (L) - Op — 0.
Our vanishing assumption show that
I'(Y,0y (L)) - I'(Y,Op),

i.e., for each point of B there is a section of Oy (L) nonvanishing at that point.
The sections of Oy (L) induce an embedding away from Ey U --- U E,, so Oy (L)
is globally generated and induces a morphism ¢ : ¥ — S contracting precisely
Eq,...,E,.. In particular, Oy (L) is the pullback of an ample line bundle on S via
.

To complete the argument, we show there exists a Cartier divisor NV on S such
that o* N is a positive multiple of M. Repeating the previous argument for M +mL
with m > 0, we get the same contraction o : Y — S. Here the argument shows that
mL + M is the pullback of an ample line bundle from S. It follows that M = ¢* N
for some Cartier divisor N on X.

Finally, N is ample on S by the Nakai criterion, as we have contracted all the
curves along which it is nonpositive. ([

REMARK 4.7. A variation on this argument shows that Du Val singularities are
canonical. Suppose that ¢ : Y — S is a minimal resolution of Du Val singularities.
The canonical class Ky is nef relative to ¢ and thus globally generated relative to
o. We obtain a factorization

Y — Projg @J*Oy(TLKy) = 8.

n>0

Since w is a bijective morphism of normal surfaces, it is an isomorphism. However,
the canonical divisor of the intermediate surface is Q-Cartier by construction.

REMARK 4.8. Suppose the base field is algebraically closed of characteristic
zero. There do exist smooth projective rational surfaces admitting nef divisors that
are not semiample [Zar62, §2]. Thus the assumption that —Kx be nef and big
in Theorem 4.5 is necessary. (See Exercise 4.4.1 below and [Laz04, 2.3] for more
discussion.)

We record one last consequence of Theorem 4.5, an extension of Corollary 2.13:

PROPOSITION 4.9. Let X be a smooth projective surface with —Kx nef and
big. Then NE;1(X) is a finite rational polyhedral cone, generated by (—2)-curves
and K x-negative extremal rational curves.

PROOF. Apply Proposition 2.10 and Corollary 2.11: NE;(X) is generated by
the nonnegative cone C, along with the (—1)-curves and (—2)-curves. The Hodge
index theorem implies that Kx is negative on C \ {0}, so any extremal rays of
NE; (X) arising from C are necessarily K x-negative.

The Cone Theorem 2.23 implies that the K x-negative part of the effective
cone is generated by curves L; with —Kx - L; < 3. Theorem 4.5 gives that —Kx
is semiample and induces ¢ : X — S. Thus there are at most a finite number
of classes [L;] arising as K x-negative extremal rays. Indeed, the curves in S with
anticanonical degree < 3 are parametrized by a scheme of finite type, as the curves
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in projective space of bounded degree are parameterized by a Hilbert scheme of
finite type. We see in particular that X admits a finite number of (—1)-curves.
Clearly, there are a finite number of (—2)-curves, as these are all o-exceptional.
Thus NE; (X) admits a finite number of extremal rays, with the desired interpre-
tations. ]

Exercises.

EXERCISE 4.4.1. Assume the base field is of characteristic zero.

Let C' C P? denote a smooth cubic plane curve and H the hyperplane class on
P2, Choose points py, ..., pg € C such that the divisors p; + - -+ + pg and H|C' are
linearly independent over Q. Consider the blow-up

X :=Bl, . P25 P

with exceptional curves F1, ..., Eg. Show that D = —-Kx =38*H —E; —---— Ejy
is nef but not semiample.

Now choose points ¢, ..., q12 € C such that ¢; +- - -+ ¢12 and H|C are linearly
independent. Consider the blow-up

Y :=Bl,,  ,P? 5> P?

with exceptional curves Fi,..., Fis. Show that D' = 4v*H — Fy — - -+ — Fy5 is nef
but not semiample. Indeed, demonstrate that for each n > 0 the divisor nD’ has
the proper transform of C' as a fixed component.

4.5. Classification of Du Val singularities. Suppose that o : X — S is a
minimal resolution of a Du Val surface singularity p € S. Consider the intersection
numbers of the irreducible components E, ..., E,. of 0~!(p), which we put into a
symmetric matrix (E; - E;); j=1,... . This has the following properties:

e (E; - E;) is negative definite, by the Hodge index theorem;

e E2 = —2 for each i, by Proposition 4.2;

e E;-E; =0,1 for each i # j; indeed, if E; - E; > 1 then (E; + E;)* > 0;
e we cannot express

(Br,... By = {Ba,,....Ea Y U{Ey,,..., By __}

with E,, - Ep, = 0 for each [, m; this is because o~ !(p) is connected.

Matrices of this type occur throughout mathematics, especially in the classi-
fication of the simple root systems via Dynkin diagrams/Cartan matrices in Lie
theory. We cannot dwell too much on these interactions, except to refer the reader
to some of the literature on this beautiful theory [Bri71, Dur79, SB01]. We list
the possible matrices that can arise [FH91, 21.2]. First, we have the infinite series

-2 1 o ... ... 0
1 -2 1
A 0 ) 5 -2 ifi=j
S B E;-E;=<1 if|li—j|=1
N I 0 0 otherwise




0
0
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and then the exceptional lattices

1 0 ... 0 0
-2 1 0 )
-2 1 : 1
1 -2 o| EiEi=
1 0
1 -2 1 0
0o 0 1 =2
-2 1 0 0 0 0
1 -2 0 0 0 1
0 0 -2 1 0 0
Eq o 0 1 -2 0 1
0o 0 0 0 -2 1
o 1 0 1 1 =2
-2 1 0 0 0 0 0
1 =21 0 0 0 0
o 1 -2 0 0 0 1
E; 0o 0 0 -2 1 0 0
o 0 0 1 -2 0 1
o 0 0 0 0 -2 1
o 0 1 0 1 1 =2
-2 1 0 0 0 0 0 0
1 -2 1. 0 0 0 0 0
0O 1 -2 1 0 0 0 0
o 0 1 -2 0 0 0 1
o 0 0 0 -2 1 0 0
o 0 o0 0 1 -2 0 1
o 0 0O 0 o0 0 -2 1

0 0 0 1 0 1 1 -2
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ifi=j

if i — jl =1,
i,j >3

or if {4,j}

={1,3},{2,3}

otherwise

Remarkably, in characteristic zero there is a unique singularity associated to
each of these matrices.

PRrROPOSITION 4.10. Assume that the base field is algebraically closed of char-
acteristic zero. Then, up to analytic isomorphism, there is a unique Du Val surface
singularity associated to each Cartan matrix enumerated above:

Ar>1 |22 =024y 1!
D,,r>4|22=y@®>+y 2
E¢ | 22=23+y
E; | 2% = y(a® +¢?)

Eg |22 =22+

For a modern proof of this, we refer the reader to [KIM98, §4.2]. It turns out
that these singularities are also related to the class of ‘simple’ hypersurface singu-
larities, which can be independently classified [AGZV85]. There are a multitude
of classical characterizations of Du Val singularities [Dur79].
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ExAMPLE 4.11. The Cayley cubic surface has four A; singularities. The toric
cubic surface

yg = Y1Y2¥3
has three Aj singularities at [0, 1,0, 0],[0,0, 1,0], and [0, 0,0, 1].

5. Cox rings and universal torsors

We work over an algebraically closed field k unless specified otherwise.

5.1. Universal torsors. Universal torsors are an important tool in higher-
dimensional arithmetic geometry. They play a fundamental role in the modern
theory of descent for rational varieties [CTS87]. They are also an important tech-
nique and conceptual tool for counting rational points of bounded height [Sal98].

Let X be a smooth projective variety. Assume that Pic(X) is a free abelian
group of rank r, generated by the line bundles Lq,...,L, on X. Let Tx =
Hom(Pic(X), G,,) denote the Néron-Severi torus of X, i.e., the torus with character
group Hom(Tx, G,,) = Pic(X).

DEFINITION 5.1. [CTS87] The universal torsor over X

TX — U

!
X

is a principal homogeneous space over X with structure group Tx with the following
universal property: Given a line bundle L on X, if A\j, : Tx — G,, = GL; denotes
the corresponding character then the line bundle V,, associated to U equals L. In
other words, if U is given by a cocycle {7;;} € H*(X,Tx) then L is given by the
cocycle {/\L (Tij)} € Hl(Xa Gm)'

Constructing U is straightforward in some sense: Choose L1, ..., L, freely gen-
erating Pic(X) and write
Pi=L;'"\0oxcL;!
for the complement of the zero-section. This is a G,,-principal bundle arising from
Li_l. Then we can take
U:P1 XX"'XXPT
and T'x-action

TX xU — U
(t;s1,...,8r) = (A_p, (t)s1,...,A—L, (t)s,)
where s; is a local section of P; and \j, is the character associated with L.

However, for arithmetic applications it is important to have a more concrete
presentation of the universal torsor.

EXAMPLE 5.2. Consider the case X = P". The standard quotient presentation
P" = (A1 0)/Gp

can be interpreted as an identification:

~

O]}Dn(—l) \ Opn — Antl \ 0

pN Ve
]PJ’I’L
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In other words, we regard Opn(—1) as the ‘universal line’ over P™. Since Opn(—1)
generates Pic(P"), we have

U = Opn(—1)\ 0pn = A"\ 0,

equivariant with respect to the action of G,, = Tp~. Note that we can regard

A" = Spec (EB L(P", Opn (N))) .

Nez
More generally, the universal torsor

T]Pm <pPn U
J
P x P»
can be identified with

A e \ ({70 = = 2 =0} U {yo =+ =9, = 0}).
Here the torus acts by the rule

(tlatQ) . (:EO; <oy Ty Yoy - - 7yn) = (tlxﬂv cee 7tlxmat2y03 s 7t2yn)-

Decomposing the polynomial ring under this action, we can regard

Am+n+2 _ Spec @ F(Pm X Pn7 O]pmx]pn (N17 NQ))
N1,N2€Z

Exercises.

EXERCISE 5.1.1. Realize the universal torsor over X = P! x P! x P! as an
explicit open subset U C A®. Describe the action of T on U.

5.2. Universal torsors over nonclosed fields. We can only offer a brief
summary here; we refer the reader to [CTS87] and [Sko01] for details and arith-
metic applications.

Let k be a perfect field with absolute Galois group . Suppose that X is
defined over k and X satisfies the assumptions made in §5.1. The Galois action

on Pic(X) allows us to define the torus Tx over k. Precisely, the action induces a
representation on the character group

0:G — Aut(Hom(Ts,G,,)) = Aut(Pic(X)),
which gives the descent data for Tx. A wuniversal torsor over X is a principal
homogeneous space
TX — U

1
X

defined over k, such that the universal property is satisfied on passage to the alge-
braic closure.

Note our use of the indefinite article: Over a nonclosed field, a variety may
have more than one universal torsor. Indeed, since any universal torsor U comes
with a Tx-action over X, given a cocycle n € H}(Tg) we can twist to obtain

TX — un

1
X

3
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another universal torsor over k. However, if the Galois action on Pic(X) is trivial
then
Hg(Tx) = Hg(Gy,) =0

by Hilbert’s Theorem 90. Here the universal torsor is unique whenever it exists.

On the other hand, there may be obstructions to descending a universal torsor
over X to the field k. These reside in HZ(Tx); indeed, the situation is analogous
to the descent obstruction for line bundles discussed in Remark 3.3. Whenever
X (k) # 0 this obstruction vanishes [CTS87, 2.2.8], which makes universal torsors
an important tool for deciding whether X has rational points.

5.3. Cox rings. Let X be a normal projective variety such that the Weil
divisor class group is freely generated by Dq,..., D,.

DEFINITION 5.3. The Cox ring of X is defined as
Cox(X)= @ TI(X,0x(mDi+--+n.D,))
(n1,...,np)EL"
with multiplication

NX,0x(miDy +---4+m.D,)) x'(X,Ox(niD1+---+n,.D,)) —
I'X,0x((my +n1)Dy+ -+ (my +n,)D,))

defined by (s,t) — st.

EXAMPLE 5.4. We start with the eponymous example [Cox95]: Let X be a
projective toric variety of dimension n

Gy, x X = X.

Let Dq,..., Dy denote the boundary divisors, i.e., the irreducible components of
the complement of the dense open torus orbit. Let s; € I'(X, Ox(D;)) denote the
canonical section, i.e., the one associated with the inclusion

OX — Ox(Dl)

(Actually, s; is canonical up to a nonzero scalar.) Recall that

e cach effective divisor D on X can be expressed as a nonnegative linear
combination

D=niDy+---4+ngDg, ni,...,nq>0;
e the canonical section s of Ox (D) admits a unique expression
S:f(sh...,sd)

where f is a polynomial over k in d variables.

Thus the Cox ring of X is a polynomial ring
Cox(X) ~ k[s1,...,84d]
with generators indexed by the boundary divisors.

We list some basic properties of the Cox ring of a smooth projective variety.
We continue to assume that Dy, ..., D, are divisors freely generating Pic(X).
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o Cox(X) is graded by Pic(X), i.e.,
Cox(X)~ P Cox(X)s, Cox(X);~T(X,L).
LEPic(X)
Indeed, for a unique choice of (n1,...,n,) € Z" we have an isomorphism
L~0Ox(niDy+---+n.D,).
e Cox(X) has a natural action by T'x via the rule
(t1yenostyp) s =171 107

when s € I(X,O0x(n1Dy + - - - + n,.D,.)).
e The nonzero graded pieces of Cox(X) are indexed by NE'(X,Z). If

Cox(X) is finitely generated then WI(X ) is a finitely generated ratio-
nal polyhedral cone.

5.4. Two theorems. We start with a general result:

PROPOSITION 5.5. Let X be a projective variety and Ay, ..., A, semiample
Cartier divisors on X. Then the ring
(5.1) @ 1—‘(OX(nlAl et nrAr))

N1yeeeyyp >0
is finitely generated.

PROOF. (based on [HKOO, 2.8], with suggestions from A. Vérilly-Alvarado) It
suffices to show that for some positive NV € N the ring

P TOx(NmA +--+n.A)))
Ny, >0

is finitely generated. Indeed, the full ring is integral over this subring, so our result
follows by finiteness of integral closure. Since Ay, ..., A, are semiample, there exists
an N > 0 such that NAq,..., NA, are globally generated. Thus we may assume
that Aq,..., A, are globally generated.

We first consider the special case 7 = 1. We obtain a morphism

¢: X =P :=P((Ox(A1))"),
with ¢*Opm (1) = Ox(A;1). This admits a Stein factorization
xLyLpr

with g finite and f having connected fibers, so in particular f,Ox = Oy. Further-
more, g*Opm (1) is ample on Y and thus

PrE.g 0p(n)
n>0
is finitely generated. The projection formula gives
for each n € N, so

Prx,ox(nay))

n>0
is also finitely generated.
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Now suppose r is arbitrary. Consider the vector bundle
V=4¢ --dA
and the associated projective bundle
7:P(V*) = X.
We have the tautological quotient bundle
TV = Opy+)(1);

since V is globally generated (being the direct sum of globally generated line bun-
dles), Op(y-)(1) is semiample. In particular, the ring

(5.2) PrEw), Opw-(n)
n>0

is finitely generated.
The tautological quotient induces

Sym"7*V — Opy+y(n),
and taking direct images via the projection formula we obtain
Sym"V = 1, Opey+)(n)
and
I'(X,Sym"V) = T(P(V"), Opey+y(n)).
Since (5.2) is finitely generated, the algebra
Prx,sym™v)
n>0
is finitely generated as well. Using the decomposition

Sym"V = @ Ox(nA; +---+n.A),

ni+--+n.=n
ni,...,np>0

we conclude that (5.1) is finitely generated. O
REMARK 5.6 (due to A. Vérilly-Alvarado). If A; and As are ample then there

exists an N € N such that the multiplication maps
F(X7 Ox(leAl)) ® ].—‘(,X7 OX(NmQAQ)) — F(X, Ox(N(m1A1 + mQAQ)))

are surjective for each my, mo > 0. However, this fails for semiample divisors.

Let h: X — P! xP! be a double cover branched over a smooth curve of bidegree
(2d,2d); composing with the projections yield morphisms g; : X — P!, i = 1,2, with
connected fibers. Let f; and fa be the fibers of P! x P!; take A; and A, to be their
preimages on X. Then we have

['(X,0x(mA;)) = T(P', Opi (m))
for each m > 0, i.e., sections of
F()(7 Ox(mlAl)) ® F(X, OX (mgAQ))

are obtained via pullback from sections of I'(P! x P!, Opiypi(my, m2)). Since
mi1A1 + moAs is very ample on X for suitable mq,mo > 0, we conclude that

F()(7 Ox(mlAl)) ® F(X, Ox(mgAQ)) — F(X7 OX(m1A1 + mQAg))
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cannot be surjective. Indeed, the decomposable sections cannot separate points in
a fiber of h.

THEOREM 5.7. Suppose X is a smooth projective variety with Pic(X) free of
finite rank. Assume that Cox(X) is finitely generated. Then the universal torsor
admits an embedding

t: U < Spec(Cox (X))
that is equivariant under the action of the Néron-Severi torus T .

PROOF. First, we construct the morphism ¢. Again, let D, ..., D, denote divi-
sors freely generating the divisor class group of X. The cone of effective divisors of
X is finite rational polyhedral and strictly convex, so we can choose Dy, ..., D, such
that each effective divisor on X can be written as a nonnegative linear combination
of Dy,...,D,. (Of course, the D, themselves need not be effective.)

Let Lq,..., L, designate the line bundles associated to the invertible sheaves
Ox(D1),...,0x(D,). Writing P; = L;l \ Ox we have

U=P xx - xx P, CL{ " xx - xx L *

which we interpret as the natural inclusion of

Specy @ Ox(niDy+-+-+n.D,)
(n1,...,np)EL"
into
Specy @ Ox(niDy+---+n.D,)
N1yeeeyyp >0
For each (ni,...,n,) € Z%,, we have

"X, 0x(niDy+ - +n.D;) @ Ox = Ox(n1Dy + -+ +n,.D,)
which induces
Specy (@(nh_“’m‘)ezgo Ox(miDi+---+ nrDT)> —
Specx (Buy,...meze, DOx(mDy+ -+ +1,.D,)) @ Ox )

Since each effective divisor is a nonnegative sum of the D;, the target is isomorphic
to X x Spec(Cox(X)). Thus we get a morphism
U — X x Spec(Cox(X))

pN e
X

and composing with the projection yields
t: U — Spec(Cox(X)).

Our construction is clearly equivariant with respect to the actions of T'x.
We prove ¢ is an open embedding. First, observe that Spec(Cox(X)) is normal,
i.e., Cox(X) is integrally closed in its fraction field. Since X is normal,

B Ox(ubDi+--+n.D,)

is a sheaf of integrally-closed domains, whose global sections form an integrally
closed domain (cf, [Har77, Ex. 5.14(a)]). Furthermore, Cox(X) is even a UFD



202 BRENDAN HASSETT

[EKWO04, Cor. 1.2]; this should not be surprising, as every effective divisor D on
X naturally yields a principal divisor on Spec(Cox(X)), namely, the locus where
the associated section s € T'(X, Ox (D)) C Cox(X) vanishes.

We next exhibit a finitely-generated T'x-invariant subalgebra

R C Cox(X)
such that the induced morphism
j: U % Spec(Cox(X)) — Spec(R)
is an open embedding. Choose ample divisors Ay, ..., A, freely generating Pic(X).
(Since being ample is an open condition, we can certainly produce these.) For each
ample A;, we obtain an embedding
X — }P’(wz)

into a weighted projective space, where the weights

w; = (Wi, - - - 7wij(i))
index the degrees of a minimal set of homogeneous generators for the graded ring
Tily- - Tij(i) € @ F(X7 OX(NAi)).
N>0
Take products to obtain
X < [[P(w)
i=1
and let R denote the multihomogeneous coordinate ring of X, i.e., the quotient of

the polynomial ring in the x;; by the multihomogeneous polynomials cutting out
X. We can then identify

T

U = Spec(R) — U{le ==z ) = 0}

i=1
Thus we have a diagram
U 5 V :=Spec(Cox(X))
id I
jU) < W :=Spec(R)
with V' normal and j an open embedding. Let U’ C V denote the pre-image of
j(U) in V. The induced morphism

B:U —4§(U)~U
1

is a birational morphism from a normal variety with a section, induced by ¢t o j~.
Any such morphism is an isomorphism. Indeed, the composed morphism

v Ausuy

agrees with the identity on a dense subset of U’, hence is the identity. Thus 8 and
¢ are inverses of each other. ]

THEOREM 5.8. Let X be a smooth projective surface with —Kx mnef and big.
Then Cox(X) is finitely generated.
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PROOF. Proposition 4.9 implies that NE;(X) is a finite rational polyhedral
cone admitting a finite number of (—1)- and (—2)-curves. Thus the nef cone of X
takes the form

(A1,..., A

where the A; are nef divisors. Theorem 4.5 guarantees that each A; is semiample.
Consider the subring of the Cox ring

Cox'(X) := @ I'(X,0x(D))
De(Aq,...,A.)

which is finitely generated by Proposition 5.5.

We next set up some notation, relying on the fact that —Kx is semiample with
associated contraction o : X — S (Corollary 4.6). Let E1,..., E, denote the (—2)-
curves on X, i.e., the curves contracted by o. Let Fi, ..., Fy denote the (—1)-curves
on X. Choose generators 7; € I'(Ox(F;)) and &; € T'(Ox(F;)), which are unique
up to scalars. We regard these as elements of Cox(X).

LEMMA 5.9. Let D be an effective divisor on X. Express
(5.3) D=M+F

where F' is the fixed part and M is the moving part. Then the support of F' consists
of (—1)- and (—2)-curves.

PRrROOF. Suppose that the fixed part of F' contains an irreducible component
C that is not a (—1)- or (—2)-curve. It follows that C? > 0. Since C is effective,
we have
h*(0x(C)) = h°(Ox(Kx — C)) = 0.
Otherwise, n(Kx — C) would be effective for each n > 0, which contradicts our
assumption that —Kx is big. The Hodge index theorem implies —Kx - C' > 0, so
Riemann-Roch implies h°(Ox (C)) > 1, which means that C is not fixed. O

We interpret this via the Cox ring: Each homogeneous element ¢ € Cox(X)
can be identified with an effective divisor D = {¢t = 0}. Expression (5.3) translates
into t = m - f, where m € Cox'(X) and

f :77%1 "'777(~LT i)l _,_é‘i’s’ a17"'7a7‘ab1a'~'7bs S N.
It follows then that
Cox(X) = Cox' (X) [y - s 0y &1y -+, &5

which completes our proof. (Il

REMARK 5.10. We make a few observations on the significance of Theorem 5.8
and recent generalizations.

e Hu and Keel [HKO00] showed that smooth projective varieties with finitely
generated Cox rings behave extremely well from the standpoint of bira-
tional geometry. Indeed, they designate such varieties Mori Dream Spaces.

e Shokurov [Sho96, §6] demonstrated how a robust version of the log mini-
mal model program would imply that many classes of varieties have finitely
generated Cox rings. For example, he established that log Fano threefolds
over fields of characteristic zero have this property. These are a natural
generalization of the singular Del Pezzo surfaces discussed here.
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e As an application of their proof of the existence of minimal models for
varieties of log general type (over fields of characteristic zero), Birkar,
Cascini, Hacon, and M°Kernan proved that log Fano varieties of arbitrary
dimension have finitely generated Cox rings [BCHMO06, 1.3.1].

Exercises. Suppose D is an effective divisor on a smooth projective surface
X. Consider the graded ring

R(D) := P I'(X, Ox(mD)).
m>0
In the classic paper [Zar62], Zariski analyzed when this ring is finitely generated.

EXERCISE 5.4.1. Recall the notation of the second half of Exercise 4.4.1. Show
that R(D’) is not finitely generated.

EXERCISE 5.4.2. Assume D admits a Zariski decomposition [Zar62, 7.7] [Laz04,
2.3.19], i.e.,
(5.4) D=P+N

where P and N are Q-divisors with the following properties:
e P is nef;
e N is effective with support
supp(N) = {Ci}
generating a negative definite (or trivial) sublattice of the Néron-Severi

group;
e P.C; =0 for each C; € supp(N).

Deduce that
e for each n > 0 the map
I'X,Ox(nD — [nN])) — I'(Ox(nD))
is an isomorphism;
o I'(X,0x(nP)) ~T(Ox(nD)) for n > 0 such that nN is integral.
If —Kx is nef and big, deduce also that
e P is semiample;
e supp(N) C {E1,...,E., Fi,...,Fs}, the union of the (—1)- and (—2)-
curves on X.

Hint: The second assertion is a corollary of the first. To prove this, note that any
divisor A with
nD — [nN] <A=<nD

intersects some component in supp(/N) negatively, and thus has that component in
its fixed part.

EXERCISE 5.4.3. Let X be the Hirzebruch surface Fo, ¥ the class of a section
at infinity, f the class of a fiber:

by
f

This admits a unique (—2)-curve E =X — 2f.

—~ N M
O Y~
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e Show that Cox(X) =~ k[n, fo, feo,t] Where
D(Ox(E) =kn, T(Ox(f)) = hfo+ fuc
and
D(Ox (%)) = knfg + knfofe + knfa +kt.
e Show that the Zariski decomposition of the divisor D =¥ — f is
D=P+N, P= %Z,N: %E
Verify that the fixed part of nD for n > 0is [nN] = [n/2]E.

5.5. More Cox rings of Del Pezzo surfaces. For blow-ups 3 : X — P2, we
write L for the pullback of the line class on P? and E;, Fs, ... for the exceptional
curves.

EXAMPLE 5.11 (Degree Six Del Pezzo Surfaces). Let X be isomorphic to P?
blown up at three non-collinear points, which can be taken to be p; = [1,0,0],
p2 = [0,1,0], and ps = [0,0,1]. This is a toric variety under the action of the
diagonal torus. We have seen in §2.2 that NE; (X) is generated by the (—1)-curves:

{E1, B2, B3, Erg, Bz, Eog}
where Ej; is the proper transform of the line joining p; and p; with class L—E; — E;.
Here we have (cf. [BP04, 3.1]):
Cox(X) = k[n1,m2,m3, M2, M3, M23]-

EXAMPLE 5.12 (Degree Five Del Pezzo Surfaces). This example is due to
Skorobogatov [Sko93] (see also [BP04, 4.1]). Suppose that X is isomorphic to
P? blown up at four points in linear general position, which can be taken to be
p1 = [1,0,0], po = [0,1,0], ps = [0,0,1], and py = [1,1,1]. Let E;,i = 1,...,4
denote the exceptional curves and E;; the proper transforms of the lines joining p;,
with class F;; = L — E; — E;. Skorobogatov shows there exist normalizations of
the generators 7;5 € I'(Ox (E;)) and n;; € I'(Ox (E;;)) such that

COX(X) = k['l’hQ, R 7"745]/ <P17P27P37P47P5>
where each P; is a Plicker relation
Pi = NjkMim — Nj1MNkm + NimMkl, {ivja k7 la m} = {1’ 27 3747 5}7] <k<l<m.
More geometrically, Cox(X) is the projective coordinate ring of the Grassmannian
G(1,4) C P,

EXAMPLE 5.13 (Eg cubic surface). See [HT04, §3] for more details. Let S C P3

denote the (unique) cubic surface with a singularity of type Eg

S ={(w,r,y,2): vy* +yw? +2° =0} C P?

and ¢ : X — S its minimal resolution of singularities. Let Ei,..., Eg denote
the exceptional curves of ¢ and ¢ C X the proper transform of the unique line
{y = z =0} C S. The effective cone here is simplicially generated by (—1)- and
(—2)-curves

NE,(X) = (¢, Ey, E2, E3, Ey, E5, Eg)
but the corresponding elements &, &1, ...,& € Cox(X) do not suffice to generate
it. In this case, for a suitable ordering of the F; we have

Cox(X) = k[€1, ..., &6, &0, 71, T2, 7o) [ (Te€ €565 + T3 60 + TETE).
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We mention some other significant results:

Batyrev and Popov [BP04] showed that the Cox ring of a Del Pezzo
surface X of degree d = 2,3,4,5,6 is generated by sections associated
with (—1)-curves on X. They show the relations (up to radical) are given
by quadratic expressions analogous to the Pliicker-type relations above.
Furthermore, they conjectured that these quadratic relations actually gen-
erate the ideal of all relations.

The Batyrev-Popov conjecture was proven for Del Pezzo surfaces of degree
d > 4 and cubic surfaces without Eckardt points by Stillman, Testa, and
Velasco [STVO07|. Derenthal [Der06a] has also made significant contri-
butions to our understanding of the relations in the Cox ring.

Laface and Velasco [LV07] established the Batyrev-Popov conjecture when
d > 2. Sturmfels and Xu [SX08] and Testa, Varilly-Alvarado, and Velasco
[TVAVO08] address Del Pezzo surfaces of degree one.

For d = 2,3,4,5 the affine variety Spec(Cox(X)) can be related to ho-
mogeneous spaces G/ P, where G is a simply-connected algebraic group
associated to the root system arising from Ky C N'(S,Z) (cf. §3.3.) Here
P is the maximal parabolic subgroup associated to a representation of G
naturally connected with the (—1)-curves on X. (This generalized the re-
lation discussed between Grassmannians and Cox rings of degree-five Del
Pezzos.) See [SS07] and [Der07] for details, as well as [Pop01] for the
case of degree four.

There are numerous examples of singular Del Pezzo surfaces (like the Eg
cubic surface) whose Cox rings admit a single relation. These are classified
in [Der06b].

Exercises.

EXERCISE 5.5.1. Let X be the blow-up of P? at three collinear points. Compute
generators and relations for Cox(X). Hint: You can find the answer in [Has04].

[Abh56]

[AGZV85]

[Art62]

[BCHMO6]

[Bea96]

[BPO4]

[Bri71]
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Non-abelian descent

David Harari

ABSTRACT. These notes are the written version of three one hour talks pre-
sented at the 2006 Clay summer school in Goettingen. They address the appli-
cation of the technique of non-abelian descent for rational points to bielliptic
and Enriques surfaces.

For any field k of characteristic zero, we fix an algebraic closure k of k and we
set I := Gal (k/k) (we will sometimes write T';, for T if several fields are involved).
The group I is the inverse limit of the groups Gal (L/k) when L runs over all finite
Galois extensions of k. If k is a number field, we let €5, denote the set of all places
of k, and k, the completion of k at v.

1. Review of non-abelian cohomology

In this section k is any field of characteristic zero. The main reference for the
non-abelian cohomology of groups is Serre’s book [Ser94], chapter 1.5.

Let G be an algebraic group over Ek (all k-groups are assumed to be linear, but
not necessarily connected), and set G = G Xy k.

Examples :

e G finite (defining G is the same as giving the abstract finite group G(k),
equipped with a continuous action of I' for the profinite topology on I'
and the discrete topology on G(k)), e.g., Z/n (cyclic group of order n
with trivial Galois action), y,, (group of nth-roots of unity in k with the
natural Galois action).

e G can be a k-torus (this means that G is isomorphic to some power of the
multiplicative group G,,,), e.g., the 1-dimensional torus R}( /ka defined
by the affine equation z? — ay? = 1, where ¢ € k* is a constant and
K := k(y/a). More generally, if L is a finite extension of k with k-basis
(w1, ...,wr), the (r—1) dimensional torus Ri/ka is defined by the affine
equation

Npjgp(riwr + -+ zpw,) =1

where x1, ..., x, are the variables.
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e G = PGL, (it is semi-simple and adjoint, that is, the center is trivial),
G = SL,, (it is semi-simple and simply connected).

e G = O(q) (orthogonal group of a quadratic form ¢); this group is not
connected, there is an exact sequence of k-groups

1—S0(q) - 0(q) = Z/2—0

If the rank of ¢ is at least 3, then SO(q) is semi-simple (but not simply
connected : its universal covering is Spin(q)); if ¢ = (1, —a) is of rank 2,
then SO(q) is just the torus R}qum with K = k(\/a).

We define the group H°(k,G) = H(T',G(k)) = G(k). For example H°(Q, j1,,)
is trivial if n is odd. The Galois cohomology set H'(k,G) = H*(T,G(k)) is the
quotient of the set of 1-cocycles Z'(k,G) by an equivalence relation defined as
follows. The set Z'(k,G) consists of continuous maps f : I' — G(k) satisfying the
cocycle condition

f(niv2) = flm) " (92)

for each v1,72 € T. Two cocycles f, g are equivalent if there exists b € G(k) such

that f(y) = b=tg(y)7b for every v € I'. There is no canonical group structure on

H(k,G) if G is not commutative, but there is a distinguished element (denoted

0), namely, the class of the trivial cocycle. Therefore H!(k,G) is a pointed set.
Remark: The continuity assumption implies that

H'(k,G) = lim H'(Gal (L/K),G(L))
L

where L runs over the finite Galois extensions of k.

Other definition of H!(k,G). It is also possible to define H!(k,G) as the set
of isomorphism classes of principal homogeneous spaces (p.h.s) of G over k. By
definition such a p.h.s. is a non-empty set A, equipped with a left action of I' and

a simply-transitive right action of G(k), such that the compatibility formula

Y(z.g) =(x) - 7(9)
holds for every vy € I', 2 € A, g € G(k).

The correspondence between the two definitions goes as follows :
Let v — ¢, be a cocyclein Z'(k, G). Then define A as the p.h.s. with underlying

set G(k), but the twisted action of I' defined by v(z) = ¢y Yz (and G(k) acts on
the right on A). One checks that cohomologous cocycles give isomorphic p.h.s.

Conversely if A is a p.h.s. of G over k, choose a point g € A; then for each
v € T, there exists a unique ¢, € G(k) such that y(zo) = zg - ¢,. This defines a
cocycle in Z1(k,G), and the cohomology class of this cocycle does not depend on
xo; moreover isomorphic p.h.s. also give cohomologous cocycles.

Remark: In the case we consider, any p.h.s. A is representable by the k-variety
X defined as the quotient of G xj k by the action of I corresponding to A (the
quotient exists because a group variety is quasi-projective). The k-variety X is a
k-form of G := G x k (that is X ~ G), and the p.h.s. A is trivial iff X (k) # 0;
the latter is also equivalent to the existence of xg € A such that vy(xg) = x¢ for all
vel.

Properties of H'(k,G).
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e The set H!(k,G) is covariant in G (easy with the cocycle definition), and
in k (it is contravariant in Speck): if k C L is an inclusion of fields, then
there is a map H'(k,G) — H'(L,G), induced by the map X +— X xj L
from isomorphism classes of k-p.h.s. to isomorphism classes of L-p.h.s.

o If

1-G, -Gy —G3—1

is an exact sequence of k-groups (this means that the sequence of groups

1 = Gi(k) — Ga(k) — Gs(k) — 1 is exact), then there is an exact
sequence of pointed sets

1 — Gi(k) = Ga(k) = Gs(k) — H' (k,G1) — H'(k,Gs) — H'(k,G3).

In the special case when (G is central in G5, this sequence can be extended
with a map H'(k,G3) — H?(k,G1), but this map is not a morphism of
groups in general, even if G; and G3 are abelian.

Remark: “Exact sequence” of pointed sets means that the image of a map is
the kernel of the following map; it can happen that a map has trivial kernel but is
not injective.

Examples.

e By Hilbert’s Theorem 90, we have H'(k,GL,) = H'(k,SL,) = 0.

e If T is a non-split torus, it can happen that H'(k,T) # 0. For example
if T = R}(/k(}m7 we have H'(k,T) = k*/NK*; to see this, write T
as the kernel of the norm map Rg,,G, — Gy, (Where Ry stands for
Weil’s restriction), and use Hilbert’s Theorem 90 (by Shapiro’s lemma, the
cohomology group H'(k, Rk /1 Gyy,) is isomorphic to H'(K,G,,) (hence
it is zero) because (Ry/Gm)(k) is the Galois module induced by k* and
the inclusion ' — T).

e Suppose G is a semi-simple, connected and simply connected group. Then
H'(k,G) = 0 when k is a p-adic field. For a number field k, the natural
map

H'(k,G) = @ H'(k,,G)

vEQR

is an isomorphism (Kneser/Harder/Chernousov). These are special cases
of “Serre’s conjecture II” (see [Ser94], I11.3).

e The exact sequence 1 — G,, — GL,, — PGL,, — 1 is central. It induces
an exact sequence

1 — H'(k,PGL,) — H*(k,G,,) = Brk

Actually the theory of central simple algebras implies that the map from
H'(k,PGL,) to the Brauer group Brk is injective, its image is a subset
of the n-torsion (Br k)[n], and the union of the images of H!(k,PGL,,) in
Brk is the whole Br k. By class field theory, the image of H'(k,PGL,,) is
the whole (Brk)[n] when k is a p-adic field or a number field, but not in
general.
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2. Extension to étale cohomology

A reference for this section is Skorobogatov’s book [Sko01], I.5. See also
[HS02], section 4.

Let X be an algebraic k-variety. The cohomology set H!(X, G) is defined using
Cech cocycles for the étale topology. As in the case X = Speck, the pointed set
H'(X, Q) classifies isomorphism classes of (right) X-torsors (i.e. p.h.s) under G.
Namely, such a torsor is a k-variety Y equipped with a faithfully flat morphism
f:Y — X and a right action of G on Y, such that G(k) acts simply transitively
on Yz := f~1(z) for each geometric point Z € X (k).

The functorial properties of H!(X, G) are as in the case X = Spec k, and there
is also the same behaviour relative to short exact sequences of k-groups (simply
replacing k by X). In particular the class [Y] of a torsor Y in H'(X,G) is zero
iff Y is isomorphic to the trivial torsor X xj; G iff the morphism f : ¥ — X
has an X-section. If X’ — X is a morphism of k-varieties, it induces a map
HY(X,G) - HY(X',G), which maps [Y] to [Y xx X']. A morphism of k-groups
G — H induces a map H'(X,G) — H'(X, H), such that the image of [Y] is the
class of the contracted product Y x© H, which is defined as the quotient of Y x G
by the diagonal action

(y,9) - hi=(y-h,h""g)
of H.

Let m € X(k) and [Y] € HY(X,G). The k-morphism Speck — X corre-
sponding to m induces an evaluation map [Y] — [Y](m) € H'(k,G), and we have
[Y](m) = 0 iff the fibre Y}, of the torsor Y — X has a k-point. More generally, for
every cocycle ¢ € Z1(k,G), the equality [Y](m) = [¢] holds iff [Y¢](m) = 0, where
Y© is the twisted torsor of Y by c: it is an X-torsor under the twisted group G°.
The group G¢ is an inner form of G: namely, G = G and the new Galois action on
G° is given by v(g) = ¢, Vgc,;l for every v € I and g € G°(k) = G(k); the torsor Y°
is isomorphic to Y over k, but the Galois action on Y is twisted via the formula

Y(y) ="y -t

If G is abelian, then G¢ = G and [Y¢] = [Y] — [¢] in the abelian group H*(X, Q).
We obtain the obvious (albeit important) descent statement:

PrOPOSITION 2.1. Let f : Y — X be a torsor under a k-group G. For each
ce€ ZYk,Q), let f¢:Y° — X be the corresponding twisted torsor. Then

Xky= |J foemw)
[cJeH (k,G)

From now on we assume that k is a number field. Let X be a smooth variety
such that X (k,) # 0 for every completion k, of k. Let X(Ay) be the set of adelic
points of X; if X is projective this set is just [] X(ky). Let f:Y — X be a
torsor under a k-algebraic group GG, and define

XA = U e
[JeH(k,Q)

In other words X (Ay)/ is the subset of X (A},) consisting of those points (P,) such
that the evaluation [Y](P,) € [],cq, H'(ky,G) belongs to the diagonal image of
H'(k,G). In particular X (k) C X (Ay)7, hence the condition X (Aj)! = () is an

VEN
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obstruction to the Hasse principle, the descent obstruction associated to the torsor
f:Y — X (or to the cohomology class [Y] € H'(X, G)).

Remark: This construction is not interesting if G is semi-simple and simply
connected, or if G is a split torus. Indeed, in these cases we have H'(k,G) = 0 for
every field k, hence X (A)f = X(Ay).

THEOREM 2.2 ([HS02], Th. 4.7). Assume further that X is projective. Then

X (AR contains the closure X (k) of X (k) in X(Ay).

This theorem is a consequence of the so-called Borel-Serre theorem in Galois
cohomology ([Ser94], II1.4). If X is projective and X (Aj)f # X (Ay), we obtain
a descent obstruction to weak approximation.

A natural question is to compare these descent obstructions to the so-called
Brauer-Manin obstruction. Let X be a smooth and geometrically integral k-variety
and Br X = H%(X,G,,) its Brauer group (if X is the spectrum of a field F', then
Br X is just the classical Brauer group Br F' of the field F'). The reciprocity law in
global class field theory yields an exact sequence

0— Brk — @BrkUM”Q/Z—m
vEQ

where j, : Brk, — Q/Z is the local invariant. Therefore, the set X (k) is a subset
of the subset
X(Ap)P = {(P,) € X(Ag),Ya € Br X, Y j,(a(P,))
vEQ

In particular the condition X (A)B" = () implies that X (k) = (). This is the Brauer-
Manin obstruction to the Hasse principle. If X is assumed to be projective, then the
set X (A})PT contains X (k) ([CTS87], II.1) and the condition X (Az)B" # X(Ay)
is the Brauer-Manin obstruction to weak approximation.

0}

Special cases. a) The theory of descent developed by Colliot-Théléne and San-
suc [CTS87] (refined by Skorobogatov) implies that the Brauer-Manin obstruction
associated to Br1X := ker[Br X — Br X| corresponds to considering all descent
obstructions associated to groups G of multiplicative type (i.e. commutative linear
groups whose connected component of 1 is a torus), see [HS02], Theorem 4.9.

b) There are examples of Brauer-Manin obstructions associated to “transcen-
dental” elements (that is, elements that do not vanish in Br X) of Br X ([Har96],
[Wit04]); they correspond to descent obstructions related to G = PGL,, ([HS02],
Th. 4.10). This uses the exact sequence H'(X,GL,) — H'(X,PGL,) — BrX,
and a theorem of Gabber (cf. [dJ05]) saying that Br X is the union of the images
of H*(X,PGL,,) in Br X.

c¢) For G finite and non-commutative, the descent obstruction can refine the
Brauer-Manin obstruction, that is, the set X (Aj)B* can be strictly bigger than
X(Ay)!. An example of this situation will be explained in the next section.

3. Bielliptic surfaces

~ 3.1. First properties of bielliptic surfaces. Geometrically (that is, over
k), a bielliptic surface is the quotient of the product F; X Es of two elliptic curves
by the free action of a finite group F (there are 7 possibilities for F', see for example
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[Bea78], V1.20). We shall say that a k-variety X is a bielliptic surface if X := X xk
is a bielliptic surface. Then the geometric invariants of X are H?(X,Ox) = 0 and
dim H'(X,0x) = 1. In particular the geometric Brauer group Br X is finite by
Grothendieck’s results ([Gro68]).

In these notes, we will restrict ourselves to the case F' = Z/2. We consider
a bielliptic surface X over k, equipped with an étale covering Y with group Z/2,
such that Y is the product of two elliptic curves. In particular there is an exact
sequence associated to the geometric étale fundamental groups

1l-m)->m(X)—=>Z/2— 1.

Unlike 71 (Y), 71(X) is not abelian. Indeed 7(Y) is isomorphic to Z* and 1 (X)P
is of rank 2 because dim H'(X,0x) = 1.

Bielliptic surfaces were used by Colliot-Thélene, Skorobogatov and Swinnerton-
Dyer ([CTSSD97]) to disprove a conjecture of Mazur. Then Skorobogatov ex-
ploited the properties of these surfaces to give the first counterexample to the
Hasse principle not accounted for by the Brauer-Manin obstruction. In the next
subsection, we will summarize his construction.

3.2. Skorobogatov’s construction. The reference for this subsection is the
paper [Sko99].

THEOREM 3.1 (Skorobogatov, 1997). There exists a bielliptic surface X over
k= Q such that X(Q) =0 but X (Aq)B" # 0.

The idea is as follows. Skorobogatov constructs a tower of coverings
Y =C'xD—>Y=CxDLX

where C' and D are curves of genus one with D(Q) # 0 (but C(Q) = 0), with the
following properties. The map C’ — C makes C’ into a torsor under the finite
k-group E|[2] consisting of 2-torsion points of an elliptic curve E, such that C itself
is a k-torsor under E. The class [C'] € H'(k, E) is an element of order exactly
4 in the Tate-Shafarevich group II(E). Recall that by definition III(E) is the
subgroup of H!(k, E) corresponding to elements whose restriction to H!(k,, E) is
zero for every place v of k. In particular C’ has points in every completion of k but
C'(k) = 0.
Now the proof of Theorem 3.1 essentially breaks into two steps.

a) Under some assumptions (mainly the fact that E(k) has no points of order
exactly 2), prove that (f')*(Br X) C 7*(Br D), where f’ is the map Y’ — X and 7
the projection Y’ — D. This relies on careful computations of Br X ~ E[2] (hence
(Br X)' = 0) and of NS X. Then it is very easy to construct points in X (A)B": it
is sufficient to take the projection (Q,) of ((P,), R) € Y'(Ay), where R € D(k) and
(P,) € C'(Ag)); indeed for o € Br X such that (f')*(«) = 7*(8) with 8 € Br D,

we have
> Gu(a(@) = > B(D)

vEQ vEQ
(by functoriality) and (D) = 0 because D is a rational point.
b) Prove that X (k) # 0. This uses a descent argument. Only Y and the twist
Y~ of Y by (—1) € H'(Q,Z/2) = Q*/Q*? have points everywhere locally. Then
one shows by a direct computation that Y(Q) =Y~ (Q) = 0.
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3.3. Interpretation in terms of non-abelian torsors. In [Sko99] Sko-
robogatov explains his counterexample by an “iterated version” of the Brauer-
Manin obstruction. Namely, he shows that all twisted torsors Y¢ of ¥ — X satisfy
Y¢(A)B" = (). This implies Y¢(k) = (), hence X (k) = () by Proposition 2.1.

Actually (see [HS02], subsection 5.1 for a complete description of the situation)
the emptyness of Y (Ay)B" corresponds to a descent obstruction associated to a
torsor g : Z — Y under a finite abelian k-group (which is a k-form of E[4]). The
composite map h = f o g makes Z a torsor over X, but its structural group G is
not abelian (G is a semi-direct product E[4] x Z/2). We have X (Aj)" = (), which
shows that the descent obstruction associated to a finite and non-abelian group can
refine the Brauer-Manin obstruction. The situation is different for commutative
groups or linear connected groups (see [Har02], Th. 2).

More generally, the fact that the geometric étale fundamental group 71(X) is
not abelian is often crucial to construct counterexamples as above. Here is a general
statement about weak approximation:

THEOREM 3.2 ([Har00]). Let X be a smooth, projective and geometrically
integral k-variety with X (k) # 0. Assume that H*(X,Ox) = 0 and that 7, (X) is
not abelian. Assume further that the Albanese map (over k) is flat with connected
and reduced fibres. Then the closure X (k) of X(k) in X(Ayg) is strictly smaller

than X (Ay)B".

The condition on the Albanese map is technical (anyway it holds as soon as
HY(X,0x) =0, or dim H(X,Ox) = 1 and dim X > 2), the important point here
being dim X > dim H!(X, Ox).

For example, the theorem applies to any bielliptic surface. It works also for
some étale quotients of abelian varieties (in higher dimension), and for some elliptic
surfaces, as well as for certain general type surfaces. Nevertheless, constructing a
similar counterexample to the Hasse principle for a variety of general type remains
an open problem.

The idea to prove Theorem 3.2 is that the conditions on H' and H? mean
that the set X (Aj)B" is sufficiently big. Then the condition on 7 (X) yields a
descent obstruction (associated to a finite and non-abelian group) for some points
in X(A)Pr.

The theorem does not apply to Enriques surfaces (the geometric fundamental
group is Z/2). However we will see in the next sections that using torsors under an
extension of Z /2 by a torus, it is still possible to refine the Brauer-Manin obstruction
for such surfaces.

4. Composition of two torsors

From now on we follow the paper [HS05]. Our goal is to construct an Enriques
surface X over k and a torsor f : Z — X under a linear algebraic group G such that
X (A)B is not a subset of X(Ay)/ (in particular the Brauer-Manin obstruction
to weak approximation is not the only one). As mentioned before, the group G has
to be non-connected and non-commutative. Since we are going to define G as an
extension, it is necessary to know that under certain conditions, the composition
of two torsors is still a torsor. That is the aim of this section.



218 DAVID HARARI

Let Z — Y be a torsor under a k-torus 7. Colliot-Thélene and Sansuc defined
the notion of type of the torsor Y: it is an element of Homp(T,PicY), where T is
the Galois module of characters of T = T x, k. To define the type, observe that each
element y of T = Hom(T, G,,,) induces a pushout x,([Z]) € H'(Y, G,,) = PicY of
the class [Z] € H'(Y, T); we obtain a homomorphism 7' — PicY, which is clearly
I'-equivariant: this is the type of the torsor Z. When PicY is torsion-free and T
is the Néron-Severi torus of Y (that is, T is isomorphic to PicY’), Colliot-Thélene
and Sansuc also defined universal torsors as torsors whose type A is an isomorphism
PicY — PicY (see for example [Sko01], (2.22) for more details).

PropPOSITION 4.1 ([HSO05]). Let X be a smooth, projective, geometrically in-
tegral k-variety. Let f :'Y — X be a torsor under a finite k-group H, and let
p:Z =Y be atorsor under a k-torus T'. Assume that the image Im A C PicY of

the type A of Z is H(k)-invariant (e.g. Z universal). Then there exist a k-group G
(extension of H by T) such that fop: Z — X makes Z an X-torsor under G.

The special case of this proposition we are interested in is when X is an Enriques
surface. In this case (assuming X (k) # ()), we have a Z/2-torsor f : Y — X, where
Y is a K3 surface, and a universal torsor Z — Y under the Néron-Severi torus of
Y. We obtain a torsor g : Z — X under a linear k-group G and an exact sequence

1-T—-G—Z/2—1

It can be shown ([HS05], page 9, example 3) that the group G is commutative if
and only if the map f* : Pic X — PicY is surjective; this is the “generic” situation,
but not the one we are going to consider for our construction.

5. A family of Enriques surfaces of Kummer type
The main theorem is the following.

THEOREM 5.1 ([HSO05]). There exist an Enriques surface X over k = Q, a
torsor g : Z — X under a linear group G, and an adelic point (P,) € X(Ay)
such that (P,) € X(A)B" but (P,) ¢ X(Ax)9. In particular the Brauer-Manin
obstruction to weak approximation is not the only one for X.

It is likely that there exists an Enriques surface X such that X(A;)P" # @ and
X (k) =0 (via a descent obstruction associated to a torsor as in Theorem 5.1), but
no such example is known.

Let us explain briefly the construction leading to Theorem 5.1. We start with
genus one projective curves Dy, D5 given by affine equations

yi = di(2* — a)(2* — ab?)

Y2 = do(t* — a)(t* — ac?)
where b, ¢, d;,ds are constant elements of k*, and a is a non-square element of k*.
We also demand that b, ¢ are not +1. Note that the Jacobian varieties Ey, F5 of Dy,
Dy have all 2-torsion points defined over k. Let Y be the Kummer surface defined
as the minimal desingularization of (D7 x Ds)/(—1), where (—1) is the involution

induced by multiplication by —1 on D; and D,. Namely, the K3 surface Y is a
minimal smooth and projective model of the affine variety

y? = d(2? — a)(2® — ab®)(t* — a)(t* — ac?)
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where d = dyds. It is equipped with the fixed-point-free involution o : (z,t,y) —
(—x,—t,—y), and the quotient X = Y/o is an Enriques surface (the associated
morphism Y — X will be denoted f).

Under very mild conditions on the constants a, b, ¢, d1, ds, we obtain that the
elliptic curves E1 and E5 are not k-isogenous (one just has to check that the modular
invariant j; of E; is not integral over Z[js], where j3 is the modular invariant of
E5). From this we deduce the following important fact:

PROPOSITION 5.2. There exist 24 lines on Y, defined over L = k(y/a), such
that:
a) PicY is generated by the classes of these 24 lines.

b) The action of the Enriques involution o on the 24 lines coincides with the
action of Gal (L/k).

The property b) is especially interesting, because it simplifies computations of
group cohomology related to X. For example we can now show the following result:

PROPOSITION 5.3. Let Br1 X = ker[Br X — BrX]. Then f*(Br1X) consists
of constants (i.e. elements of Im [Brk — BrY]).

Proof: We have Br X/Brk = H'(k, Pic X) (cf. [Sko01], Corollary 2.3.9). The
image of this group in H!(k, PicY) = Br,Y/Brk factors through H!(k, Pic X /tors)
because PicY is torsion-free. Thus it is sufficient to prove that H'(k, Pic X /tors) =
0. The Hochschild-Serre spectral sequence associated to f : Y — X yields an exact
sequence

0—Z/2 — PicX — (PicY)? =0

(here we are using H*(Z/2,k*) = HY(Z/2,k*) = 0). Therefore PicX /tors =
(PicY)? is a lattice with trivial Galois action because the Galois action on PicY
coincides with the action of o thanks to Proposition 5.2. It follows that

H*(k, Pic X /tors) = 0.
O

Since X is a projective surface satisfying H?(X,Ox) = 0 and NSX = Z/2,
Grothendieck’s results [Gro68] imply that Br X = Z/2. The most difficult part in
[HS05] consists of proving that the non-trivial element of Br X does not come from
an element of Br X, which means Br X = Br;X. This holds as soon as neither —d
nor —ad is a square in k*. Using Proposition 5.3 and functoriality, we obtain

PROPOSITION 5.4. Assume that neither —d nor —ad is a square in k*. Then
the projection on X of every adelic point (N,) € Y (Ay) belongs to X (Ay)BT.

The end of the proof of Theorem 5.1 consists of finding an adelic point (N,)
on Y such that (N,) € Y(Ag)?, where p : Z — Y is a universal torsor. This is
possible for example for k = Q, a =5, b = 13, ¢ = 2, d = 1. Using Prop 4.1, we
obtain a torsor g : Z — X under a group G by composing p with f : ¥ — X.
The group G is an extension of Z/2 by a torus, but it is not commutative. Finally
a Galois cohomology computation (sort of non-commutative “diagram-chasing”)
shows that the property (N,) € Y(Ag)? implies that (M,) := f(N,) does not
belong to X (Ay)9, although it is an element of X (Aj)®" by Proposition 5.4.
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Remark: Actually, instead of working with a universal torsor it is easier to
work with a torsor of another type (satisfying the assumptions of Proposition 4.1),
which is associated to the 1-dimensional torus RlL /ka. Then G is a k-form of an
orthogonal group Os.

6. A summary of results, conjectures, and questions

The following summarizes what is known, what should be true, and what is
completely unknown about the Hasse principle and weak approximation on surfaces.
Notice that for geometrically simply connected varieties, descent obstructions as-
sociated to linear groups cannot refine the Brauer-Manin obstruction because of
[Har02], Th.2.

[Bea78]

[CT90]

Rational surfaces: it has been conjectured by Colliot-Théléne and Sansuc
that the Brauer-Manin obstruction to the Hasse principle and weak ap-
proximation is the only one. Several significant cases are known (Chatelet
surfaces, conic bundles with at most 5 degenerate fibres [CTSSD8&7a,
CTSSD87b|, [CT90], [SS91]).

Abelian surfaces (with finite Tate-Shafarevich group): The Brauer-Manin
obstruction to the Hasse principle is the only one, and the same results
holds for weak approximation if archimedean places are not taken into
account ([Man71], [Wan96)).

Bielliptic surfaces: The Brauer-Manin obstruction to the Hasse princi-
ple is not the only one ([Sko99]), and similarly for weak approxima-
tion ([Har00]). The descent obstruction (associated to a finite non-
commutative group) can refine the Brauer-Manin obstruction.

K3 surfaces: since a K3 surface is geometrically simply connected, de-
scent obstructions do not refine Brauer-Manin obstruction according to
[Har02], Th. 2. (but “transcendental” obstructions can play a role, see
[Wit04]). I have no clear idea whether the Brauer-Manin obstruction
should be the only one (neither for Hasse principle nor for weak approxi-
mation).

Enriques surfaces: The descent obstruction (associated to a non-connected
linear group) can refine the Brauer-Manin obstruction, which is not the
only one for weak approximation ([HS05]). It is likely (but not known)
that the same should hold for the Hasse principle.

Elliptic surfaces with Kodaira dimension 1: the Brauer-Manin obstruction
is not the only one for weak approximation, because of descent obstruc-
tions associated to finite non-commutative groups ([Har00]). The same
should hold for the Hasse principle.

General type surfaces: the situation is the same as for elliptic surfaces
with Kodaira dimension 1.
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Mordell-Weil Problem for Cubic Surfaces, Numerical
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ABSTRACT. Let V' be a plane smooth cubic curve over a finitely generated
field k. The Mordell-Weil theorem for V' states that there is a finite subset
P C V(k) such that the whole V (k) can be obtained from P by drawing secants
and tangents through pairs of previously constructed points and consecutively
adding their new intersection points with V. In this paper we present numerical
data regarding the analogous statement for cubic surfaces. For the surfaces
examined, we also test Manin’s conjecture relating the asymptotics of rational
points of bounded height on a Fano variety with the rank of the Picard group
of the surface.

1. Introduction

Let V be a smooth cubic surface over a field k in P3. If z,y, 2 € V (k) are three
points (with multiplicities) lying on a line in P2 not belonging to V, we write z =
yoz. Thus o is a partial and multivalued composition law on V' (k). Note that zox
is defined as the set of points in the intersection of V (k) with the tangent plane at
x. If x does not lie on a line, this is a cubic curve C(x) with double point z € V' (k).
This whole set must be considered as the domain of the multivalued expression
xox, because geometrically all its points can be obtained by drawing tangents with
k-rational direction to z. This means that an important source for generating new
rational points on the cubic surface will be doubling the points that were already
generated. The analogue of the Mordell-Weil theorem for cubic surfaces states that
(V(k),0) is finitely generated, i.e., there is a finite subset P C V (k) such that the
whole V' (k) can be obtained from P by drawing secants and tangent planes through
pairs of (not necessarily distinct) previously constructed points, and consecutively
adding their new intersection points with V. By drawing secants we can add only
one rational point to P, while tangent sections give us an infinite number of points
that can be generated, by the note above. For a more thorough discussion of
various versions of finite generation cf. [KMO1]. Note that, by Theorem 11.7 of
[Man86], finite generation of (V(k),o) implies that the universal quasi-group of
(V(k),o0), as defined in [Man86]|, chapter II, is finite and has 2"3™ elements for
some n,m € Zxg.
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In the following, we present the procedure we used to test whether (V(Q), o) is
finitely generated, and the results we obtained for thirteen diagonal cubic surfaces,
six of them having the rank of their Picard group equal to 1, and seven of them
mentioned in [PTO01], illustrating the cases of surfaces with ranks 2 and 3 of the
Picard group. We also bring numerical evidence supporting Manin’s conjecture
for the asymptotics of rational points of bounded height on a Fano variety. Note
that John Slater and Sir Peter Swinnerton-Dyer have proved in [SP98] a one-sided
estimate for the conjecture in the case when V' contains two rational skew lines.
All the computations were done using the Magma computer algebra system (cf.
[BCP97].)

2. Description of the procedure

Let az®+by? +c2® +du® = 0, where a, b, ¢, d are nonzero integers, be a diagonal
cubic surface. Using a program due to Dan Bernstein (see [Ber01]), we find all
rational points on this surface up to height H = 10° or H = 1.5 - 10°, where the
height of a rational point P = (2 : y: z : u), with z,y, z,u € Z and ged(x,y, z,u) =
1 is defined as

hmax (P) := max{|x[, [y], [2], ul} .
We consider also another height function Ay, : V(Q) — Ry defined by
hsum (P) == [z] + |y[ + 2] + [u] .

Note that a rational point P can be uniquely written in the above form up to
a sign change of the coordinates. So, if we assume, in addition, that the first
nonzero coordinate of P is positive, then there is a unique such ‘canonical’ form
corresponding to each point P. We order the rational points by increasing hgym.
If there are two or more points having the same height hgum, then we order them
lexicographically according to their coordinates in the canonical form. This defines
a total order on the set of rational points. We will write P < @ if P precedes @ in
the sorted list, and use the number of a point in this list as its name. We will also
refer to this number as the index of a rational point.

We will use the hpax height function only to study the asymptotics of the
number of rational points on a cubic surface, while for the ordering of the points
and in the implementation of the main function we will use hgym.

For testing whether a given set of rational points is generating, we use the
procedure Test Generating Set (TGS), which is described below.

The procedure implements essentially a descent method. Given an index bound
n and a set of points GeneratedSet that is presumably generating, we perform
the following iterative process. In one iteration of loop, we consider all points
in the range {1,...,n} that are not in GeneratedSet and test whether they can
be decomposed as x o y, with z,y € GeneratedSet. FEvery point that can be
decomposed in such a way is added to the GeneratedSet and at the end of the
loop, the procedure is reiterated. As now GeneratedSet is bigger, there may be
additional points in the range {1,...,n} that can be generated because we can
choose the points x, y for a possible decomposition from a bigger set. The procedure
is repeated until GeneratedSet stabilizes, i.e., until some iteration of the loop does
not add any new points to the GeneratedSet.

In order to avoid repeating some operations of composing points, we use the
additional variables OldGeneratedSet, Just Added and Decomp. OldGeneratedSet



MORDELL-WEIL PROBLEM FOR CUBIC SURFACES, NUMERICAL EVIDENCE 225

stores the value of GeneratedSet at the beginning of the iteration of the loop.
At the end of the preceding loop, a number of points will have been added to
GeneratedSet. These points are stored in the set variable JustAdded. During an
iteration of the loop, we store in Decomp decompositions of the type ¢ = j o k,
with 7,5,k < n, i,k ¢ GeneratedSet and j € GeneratedSet. These are the only
decompositions that we could further use. Indeed, if, at some point, k was added
to GeneratedSet, then by searching in Decomp, we would find the decomposition
jok of i and we would add i to GeneratedSet without performing any composition
of points (which requires multiplications, so is computationally expensive) because
we know, by the way we constructed Decomp, that j € GeneratedSet already.

Receiving as input the parameters GeneratedSet (a set of points in V(Q) that
is assumed to be generating), and n (the index bound for the points used in the
decompositions), the TGS procedure does the following:

(1) Set Decomp = (), OldGeneratedSet = ().
(2) Set JustAdded = GeneratedSet \ OldGeneratedSet,
OldGeneratedSet = GeneratedSet.
(3) If JustAdded = ), return GeneratedSet.
(4) For every point i € {1,2,...,n} \ GeneratedSet do:
search in Decomp for decompositions of ¢ as xoy with y € Just Added
if such a decomposition exists, add i to GeneratedSet
else for every point j in JustAdded do:
k=ioj
if k € JustAdded
add ¢ to GeneratedSet
break
else if k < n add the decomposition (j o k) of i to Decomp
end for
end for.
(5) Go to step 2.

Let us explain in more detail the way the algorithm works. Suppose that
an iteration of the outer loop has just finished, and we are in step 2. We set
Just Added = GeneratedSet\ OldGeneratedSet and test whether this is the empty
set. If this is so, then during the last iteration we could not generate any new points,
so the maximum set of points that can be generated is the current GeneratedSet.
If JustAdded is not empty, then during the last iteration we found a number of
new points that could be generated and added them to GeneratedSet (these are the
elements of JustAdded), so there is hope of generating other points. We consider a
point ¢ ¢ GeneratedSet. Since we have already tested during the previous iteration
whether we could decompose i as x oy, with z,y € OldGeneratedSet, all we have
to check now is whether we can write i = z oy for x € JustAdded and either
y € OldGeneratedSet or y € JustAdded. At the previous iterations of the loop
all compositions of ¢ with points in OldGeneratedSet that could further be used
(i.e., compositions whose result is not bigger than n) were stored in Decomp, so
we can check for the first possibility by searching in the vector Decomp. Since
by construction we only store in Decomp decompositions of the type x oy, with
x € GeneratedSet, all we have to check in the beginning of step 4 is whether
y € JustAdded—we are sure that © € GeneratedSet. In order to check for the second
possibility, we have to compose i with every point j € JustAdded. If the result k of
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the composition is in Just Added, then we can write x as a composition of two points
in JustAdded, so we add i to GeneratedSet. If the result k ¢ JustAdded, but could
be further used (i.e., k& < n), then we store the corresponding decomposition j o k
of ¢ in Decomp. The ‘out of bounds’ compositions, i.e., such that i o j > n, are
implicitly remembered in the process (in the sense that they are done only once.)

Using the vector Decomp of course implies a trade off between space and speed,
but we considered the latter to be more important. Even with Decomp, the compu-
tations for TGS for bounds n in the range of 10° last for several days and sometimes
even weeks on an Intel Pentium IV processor with 2.26 GHz.

Before we proceed with the presentation of the results, let us provide an esti-
mate of the height of the composition of two rational points. Here by h we mean
either hpyax Or hgum Since the estimation of the asymptotics does not depend on the
choice of the height function.

LEMMA 2.1. Let V : az® + by + ¢z + du® = 0 be a diagonal cubic surface,
where a,b, c,d are nonzero integers, and let K := max{|a|, |b|,]|c|,|d|}. If A1 and
As are two distinct points in V(Q) that do not lie on a line in V, then

h(Al o Ag) = O(K . h(A1)2 . h(AQ)Q) .

Proof: Let Ay = (1 :y1 : 21 : u1), Aa = (T2 : Y2 : 22 : u2) be in canonical form.
Then one can check that
Aj oAy = (axy — Bag:ayr — Bys : azy — Bza : auy — Busg)
where
o = azx123 + byrys + 2122 + dugul € 7,
B = arizy +bylys + czize + dutug € 7.
Since the above coordinates of A1 0 Ay are integers, the conclusion follows. This up-
per bound cannot be improved because, in most cases, the formula given represents
Aj o A in canonical form (up to a sign change of the coordinates).
Concerning the doubling of points, if A € V(Q) is a rational point not lying
on a line in V, then there is no upper bound for the height of the points in Ao A
(since there are infinitely many such points). On the other hand, there can be many
points of small height in A o A, especially if A has small height.

3. Results

Listed below are the thirteen diagonal cubic surfaces that were tested for finite
generation, ordered according to the ranks of their Picard groups:

Rank 1 Picard group:
1) o3 +2y% + 323 + 4u® = 0.
) 2%+ 2y3 + 323 4+ 5ud = 0.
) 1723 + 18y3 + 192% + 20u® = 0.
4) 423 + 5y® +62% + Tu® = 0.
) 923 + 10y + 112% + 12u® = 0.
) 23 +5y% 4+ 62% + 10u® = 0.

Rank 2 Picard group:
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(7) 2+ 9>+ 223 +4u® = 0.
(8) @ +y3 + 523 + 25u® = 0.
(9) 2+ 9>+ 323+ 9u® = 0.

Rank 3 Picard group:

(10) 23 + 93 + 223 4+ 2u3 = 0.

(11) 23 +y3 + 523 4+ 5u = 0.

(12) 2% +y3 + 723 + Tu® = 0.

(13) 223 + 293 + 323 + 3u® = 0.

The first six cubic surfaces illustrate the case of Picard group of rank 1. The
third surface was considered as an example of a diagonal cubic surface with bigger
coefficients. The lack of success in finding a generating set for this surface (as
opposed to all the other surfaces examined by that point) motivated the study of the
surfaces 4-5, which have coefficients of intermediate value between the coefficients
of the first, successful surface, and the third, problematic one. Surface 6 is aimed
to illustrate the case of surfaces with ‘random’ coefficients. The remaining seven
surfaces were taken from [PTO01] as examples of cubic surfaces with the ranks of
the Picard group 2 and 3.

In order to find a suitable generating set G to begin with, we tested several
small sets for finite generation up to a small index n (n = 100, or n = 1000). We
observed that, if the set G generates more than 80% — 90% of the first n points
for a small n, then this is a good indicator that the set G will generate roughly
the same percentage of all points up to a much bigger index bound N (which we
took to be either 5-10* or 10°). We chose the initial small sets to be the set of
points of indices {1,2,3,4}. If this did not yield a large enough percentage of points
generated, we would enlarge the initial set to G = {1,2,3,4,5}, and continue this
way. Generally, we were ‘lucky’, in the sense that a few tries would provide us with
a good generating set G (a set G that generates most of the first n points.) Then
we would eliminate from G the ‘superfluous’ points, i.e., the points that could be
obtained by composing other points in G. This is the reason for which, for example,
the first surface has G = {3} instead of G = {1,2,3,4}: the points of indices 1, 2
and 4 lie in the tangent plane at the point of index 3.

At first, the only exception was the surface 3, which represents, at least com-
putationally, a problem. Having added the surfaces 4-5, we noticed that it is hard
to find a generating set using this naive method for these surfaces as well.

The generating sets we found are given in Table 1; these are listed both as sets
of indices and as sets of rational points. Here, and in all subsequent tables, the
label ‘S’ stands for ‘surface’.

Before we go on and list the results we obtained using the TestGeneratingSet
procedure, let us provide an indication of the asymptotics of the number of points
on each cubic surface up to some height H. Note that, as we used Dan Bernstein’s
program to find rational points on the diagonal cubic surfaces, here ‘height’ refers to
hmax- The asymptotics of the number of points seems to be related to the percentage
of points that can be generated up to some height. For the last seven surfaces, we
did not take into consideration the points on the trivial rational lines, i.e., points
of the type (z : —z : y : —y), except for the point (1: —1:0:0) on the surfaces 7-9
and the points (1: —1:0:0), (0:0:1:-1), (1: =1:1:—=1)and (1: -1:-1:1)
on the surfaces 10-13, which we need for finite generation.
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TABLE 1. Generating sets

‘ S || G as set of indices | G as set of points |

1 || {3} {1:-1:-1:1)}

2 || {1,2,4} {(0:1:1:-1),(1:1:-1:0),(2: -2:1:1)}

6 || {2} {(1:-1:-1:1)}

71 {3} {1:-1:-1:1)}

8 || {1,2} {(1:-1:0:0),(1:4:-2:-1)}

9 || {1,2,4} {1:-1:0:0),(1:2:0:—-1),(1:2:-3:2)}

10 || {5,6} {1:-1:-1:1),(1:-1:1:-1)}

11| {3,4} {1:-1:-1:1),(1:-1:1:-1)}

12/ {1,2,5,6} {(0:0:1:-1),(1:-1:0:0),(1:—1:—-1:1),
(I:=1:1:-1)}

13 || {1,2,3,4,5} {(0:0:1:-1),(1:-1:0:0),(1:~1:-1:1),
(I1:=1:1:-1),(3:=6:1:5)}

TABLE 2. Data on points of bounded height

S Number of points up to height
100 | 200 | 500 | 1000 | 2000 5000 | 10000 | 20000 | 50000 | 100000

7 163 436 906 1827 4408 8754 17332 43280 86329
180 358 855 1683 3244 8097 16436 32704 82581 166825
16 25 62 117 204 502 1055 2084 5479 10840
37 78 206 414 778 1937 3877 7756 19701 39433
1580 3148 6257 15499 31134
55 120 316 646 1285 3131 6397 12753 32072 64102
196 458 | 1308 2746 6004 16758 35958 75984 205284 433526
142 292 766 1734 3872 10892 23338 49608 135128 286040
200 438 | 1270 2768 6200 17434 37018 78980 215626 455164
89218 | 205198 | 465226 | 1364810 | 3051198
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11 || 412 | 1012 | 3328 7964 | 18676 56412 | 131512 | 299776 881774 | 1976482
12 || 702 | 1870 | 6010 | 14130 | 33156 | 100580 | 228696 | 520700 | 1526532 | 3420784
13 || 384 | 1052 | 3196 7752 | 18400 56348 | 130476 | 298860 876776 | 1966160

Table 2 includes intermediate results of the number of points up to different
height limits. These results seem to confirm Manin’s conjecture relating the asymp-
totics of rational points of bounded height on a Fano variety with the rank of the
Picard group of the surface (see [FMT89]:)

#{PeV(Q):h(P)<H} ~ CHlogrkPiC(V)*l H

for H — oo, where h is an anticanonical height on V.

For the surfaces with rank of the Picard group equal to 1 we computed, ad-
ditionally, the number of rational points up to slightly greater height limits, as
summarized in Table 3 (-’ means ‘not computed’.)

Relevant to our claim that these results seem to confirm Manin’s conjecture
are the graphs (Figures 1, 2, and 3) based on the tables above. In all graphs,
we plotted the number of points up to height H divided by H log"¥*(V)=1 H for
various values of H. The conjecture would be verified if the plotted points would
become arbitrarily close, in the limit, to a line parallel to the Ox axis, of equation
y = C, where C' is the constant predicted by Manin’s conjecture. For a conjecture
about the value of this constant, see [PT01].
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TABLE 3. Additional data for surfaces with Picard group of rank one

S Number of points up to height
150000 | 200000 | 250000 | 300000

129473 - - -
250286 - - -
16123 | 21627 | 27026 | 32507
59100 | 78498 - —
46436 | 61958 | 77518 | 93079
96065 - - -
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-

10 10 10* 10 10
height

F1GURE 1. Surfaces with Picard group of rank 1

In the remaining, by ‘height’ we mean hgyp,.

Note that for the surfaces with rank of the Picard group equal to two, most of
the points are ‘doubled’, i.e., if (x : y : z : u) is a point on the cubic surface, then so
is (y: x: z : u), while for the surfaces with rank of the Picard group equal to three,
most of the points are ‘quadrupled’, i.e., if (x : y : z : u) is a point on the cubic
surface, then so are (y:x:z:u), (x:y:u:z)and (y:2:u:z). In the following
we list the results which were obtained using the TestGeneratingSet procedure. The
generating sets used are the ones enumerated above, while the index bounds and the
corresponding height bounds are given in the third and second columns of Table 4.
‘# iter’ is the number of iterations of the outer loop of the procedure, and the
‘first bad point’ refers to the point of smallest index that could not be generated
by the procedure. For example, the first line in the table reads “The procedure
TestGeneratingSet called for surface 1, with index bound 100 corresponding to the
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FI1GURE 2. Surfaces with Picard group of rank 2
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F1GURE 3. Surfaces with Picard group of rank 3

height bound 317, and initial generating set G = {3} (or G ={(1: —-1:—-1:1)}),
generates 74 rational points, which represents 74.0% of the first 100 points, in
4 iterations of the outer loop. The point of smallest height which could not be
generated has index 30 and height 86.”
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TABLE 4. Statistics on the points generated by our potential gen-
erating set

Surface Height Index | # points | % points | # iter | First bad point
bound bound | generated | generated Index ‘ Height

1 317 100 74 74.0 4 30 86
1 617 200 160 80.0 9 30 86
1 1,443 500 463 92.6 16 42 130
1 2,788 1,000 923 92.3 15 255 788
1 5,574 2,000 1,859 93.0 14 543 | 1,541
1 14, 456 5,000 4,747 94.9 15 1,145 | 3,192
1 29,074 | 10,000 9,462 94.6 14 1,593 | 4,423
1 58,775 | 20,000 18,957 94.8 14 3,633 | 10,322
1 147,343 | 50,000 47,418 94.8 13 8,522 | 24,677
1 296, 822 | 100,000 94,910 94.9 13 8,522 | 24,677
2 150 100 97 97.0 7 85 124
2 282 200 196 98.0 9 90 134
2 703 500 483 96.6 8 258 364
2 1,477 1,000 973 97.3 9 358 511
2 3,020 2,000 1931 96.6 9 625 943
2 7,663 5,000 4,813 96.3 10 1,040 | 1,542
2 15,405 | 10,000 9,659 96.6 11 1,775 | 2,656
2 30,651 | 20,000 19, 259 96.3 11 4,262 | 6,539
2 75,845 | 50,000 48,181 96.3 11 10,073 | 15,539
2 151,171 | 100, 000 96,477 96.5 12 15,223 | 23,243
6 388 100 86 86.0 5 49 209
6 762 200 176 88.0 5 49 209
6 1,864 500 468 93.6 10 169 641
6 3,687 1,000 937 93.7 11 181 688
6 7,557 2,000 1,867 93.3 11 513 | 1,926
6 18,976 5,000 4,677 93.6 11 1,078 | 3,984
6 37,612 | 10,000 9,410 94.1 11 2,271 | 8,661
6 74,617 | 20,000 18,963 94.8 11 2,662 | 10,125
6 186,532 | 50,000 47,436 94.9 12 6,373 | 24,068
7 129 100 100 100.0 6 — —
7 245 200 194 97.0 6 127 167
7 538 500 490 98.0 8 304 376
7 980 1,000 990 99.0 7 550 612
7 1,889 2,000 1,984 99.2 7 1,022 992
7 4,230 5,000 4,974 99.5 7 2,620 | 2,401
7 7,974 | 10,000 9,934 99.3 8 5,610 | 4,707
7 14,775 | 20,000 19,934 99.7 8 7,512 | 6,222
7 34,339 | 50,000 49, 880 99.8 7 19,666 | 14,554
7 64,682 | 100, 000 99, 812 99.8 8 38,212 | 26,672
7 94,215 | 150,000 149,744 99.8 9 38,212 | 26,672
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TABLE 5. Statistics on the points generated by our potential gen-
erating set, contd.

Surface || Height Index | # points | % points | # iter | First bad point
bound bound | generated | generated Index | Height

8 172 100 81 81.0 6 42 78
8 316 200 170 85.0 8 56 104
8 750 500 488 97.6 9 152 234
8 1,412 1,000 988 98.8 8 516 774
8 2,484 2,000 1,960 98.0 8 516 774
8 5,632 5,000 4,922 98.4 9 1,855 | 2,322
8 10,354 | 10,000 9,874 98.7 8 3,708 | 4,296
8 19,444 | 20,000 19, 836 99.2 8 6,852 | 7,538
8 44,750 | 50,000 49,720 99.4 8 16,058 | 15,812
8 84,436 | 100, 000 99, 626 99.6 9 32,420 | 30,072
9 114 100 48 48.0 4 8 24
9 242 200 198 99.0 9 126 146
9 522 500 484 96.8 9 318 346
9 978 1,000 956 95.6 11 379 414
9 1,822 2,000 1,968 98.4 9 781 770
9 3,878 5,000 4,954 99.1 9 1,602 | 1,472
9 7,254 | 10,000 9,936 99.4 9 3,728 | 3,046
9 13,610 | 20,000 19,908 99.5 9 10,420 | 7,522
9 31,320 | 50,000 49, 806 99.6 8 21,142 | 14, 342
9 58,852 | 100, 000 99,778 99.8 9 32,036 | 20,884
10 61 100 92 92.0 3 79 51
10 91 200 200 100.0 3 — —
10 214 500 496 99.2 5 419 184
10 358 1,000 980 98.0 6 651 255
10 612 2,000 1,996 99.8 5 1,791 554
10 1,225 5,000 4,940 98.8 5 2,259 674
10 2,143 | 10,000 9,916 99.2 6 3,675 976
10 3,806 | 20,000 19,852 99.3 6 5,779 | 1,396
10 8,020 | 50,000 49,732 99.5 7 20,870 | 3,949
11 94 100 89 89.0 5 61 56
11 144 200 184 92.0 5 61 56
11 274 500 492 98.4 6 257 174
11 474 1,000 988 98.8 6 757 382
11 802 2,000 1,960 98.0 6 1,177 528
11 1,688 5,000 4,924 98.5 7 1,495 642
11 2,882 | 10,000 9, 888 98.9 8 3,873 | 1,386
11 5,100 | 20,000 19,732 98.7 9 6,207 | 2,004
11 10,880 | 50,000 49, 544 99.1 9 11,737 | 3,308
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TABLE 6. Statistics on the points generated by our potential gen-
erating set, contd.

Surface || Height | Index | # points | % points | # iter | First bad point
bound | bound | generated | generated Index | Height

12 48 100 96 96.0 4 95 46
12 92 200 192 96.0 4 95 46
12 186 500 476 95.2 5 223 106
12 286 | 1,000 956 95.6 6 223 106
12 484 | 2,000 1,969 98.5 5 964 284
12 1,014 | 5,000 4,911 98.2 6 2,315 548
12 1,740 | 10,000 9,880 98.8 6 3,486 764
12 3,066 | 20,000 19,832 99.2 7 4,030 856
12 6,514 | 50,000 49,532 99.1 7 16,064 | 2,578
13 106 100 96 96.0 4 41 75
13 167 200 196 98.0 5 169 153
13 316 500 484 96.8 6 169 153
13 515 | 1,000 980 98.0 6 572 360
13 910 | 2,000 1,944 97.2 6 860 465
13 1,885 | 5,000 4,896 97.9 7 1,937 897
13 3,310 | 10,000 9,780 97.8 7 3,102 | 1,323
13 5,727 | 20,000 19,672 98.4 7 4,785 | 1,816
13 12,139 | 50,000 48,256 96.5 8 8,202 | 2,805

Note that, in general, when using a greater index bound we found that the ‘first
bad point’ changed (i.e., another point of greater height and index became the ‘first
bad point’), meaning that using stepping stones of bigger height typically fills up
the gaps obtained when using a lower index bound. This is a good indicator that
if we continue increasing the index (and thus the height) bounds, we will gradually
generate all the points up to bigger and bigger heights.

Let us see now what happens with the ‘problematic surfaces’ 3-5. The data is
displayed in Table 7. Unfortunately, any try of finding a generating set to begin
with, that finds ‘first bad points’ of increasing height, and that generates a percent-
age of points similar to the ones obtained for the ‘good’ surfaces was not successful.
Not even a ‘brute force’ approach like considering the initial GeneratedSet to be,
say, the first 100 or 1000 points does not yield satisfactory results. The results
are better for the surfaces 4-5 than for the surface 3, with the biggest coefficients,
but still very ‘bad’. In Table 7 we provide an illustration of the behavior of these
surfaces when starting with the GeneratedSet = {1,2,...,10}.

These results seem to support either that {1,2,...,10} is not a generating set
for any of the three surfaces, or that the stepping stones needed to fill up the gaps
(i.e., the rational points needed to decompose the ‘first bad points’) have very big
heights. Although the percentages of generated points obtained for the surfaces 4-5
are slightly better than the percentages for the surface 3, they still become smaller
and smaller as the index bound limit (and so also the height) grow. But the most
important negative indicator is that ‘the first bad point’ never changes.
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TABLE 7. Statistics for the ‘problematic surfaces’

Surface | Height | Index | # points | % points | # iter | First bad point
bound | bound | generated | generated Index | Height

3 2,161 100 17 17.0 2 13 203
3 5,495 200 24 12.0 2 13 203
3 13,429 500 35 7.0 2 13 203
3 25,874 | 1,000 49 4.9 2 13 203
3 51,663 | 2,000 81 4.1 2 13 203
3 124,062 | 5,000 154 3.1 2 13 203
3 251,103 | 10,000 274 2.7 2 13 203
3 505,619 | 20,000 429 2.1 2 13 203
4 658 100 26 26.0 1 12 50
4 1,345 200 50 25.0 2 12 50
4 3,307 500 102 20.4 2 12 50
4 6,774 | 1,000 172 17.2 3 12 50
4 13,772 | 2,000 284 14.2 3 12 50
4 34,552 | 5,000 487 9.7 3 12 50
4 68,425 | 10,000 781 7.8 3 12 50
4 135,691 | 20,000 1,222 6.1 4 12 50
5 844 100 19 19.0 1 13 103
5 1,691 200 26 13.0 2 13 103
5 4,394 500 51 10.2 2 13 103
5 8,780 | 1,000 80 8.0 2 13 103
5 16,962 | 2,000 119 6.0 2 13 103
5 43,224 | 5,000 216 4.3 2 13 103
5 87,176 | 10,000 338 3.4 3 13 103
5 174,128 | 20,000 538 2.7 3 13 103

In order to make progress, we introduced another approach to finding a gen-
erating set for the surfaces 3-5, based on the idea of ‘throwing in’ (adding to the
Generated Set) the first bad points if they cannot be generated by decomposition.
Our aim is to obtain, after adding sufficiently many ‘first bad points’, a set of points
that generates a stable (or even better, increasing) percentage of points for increas-
ing index bounds, and a ‘changing first bad point’ behavior, i.e., applying the TGS
procedure to increasing index bounds would result in finding ‘first bad points’ of
increasing heights.

We implement this new approach in the following way. We apply the TGS
procedure to a (small) generating set and an index bound of 1000. We obtain a
‘first bad point’ that unfortunately stays the same when increasing the index bound
(as observed when using our first approach). We apply again the TGS procedure
to the initial generating set and this first bad point, with an index bound of 1000.
We obtain another ‘first bad point’, of bigger index and height than the initial one.
We add this point to our generating set (which now contains also the initial ‘first
bad point’) and continue this way. We stop when we have added sufficiently many
‘first bad points’ to our initial set so that this new, bigger generating set fulfills the
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two objectives mentioned above. Once we have obtained such a set, we stop adding
points to our generating set and just increase the index bounds to make sure the
percentage of generated points is indeed stable or increasing, and that the height
of the ‘first bad point’ grows as the index bound is increased.

For example, for surface 4, we start with Generated Set = {1,2,...,10}. We
obtain the first bad point 12, which is stable—stays the same even if we increase the
index bound. We add it to the Generated Set and call again the TGS procedure.
‘We obtain more points, and another first bad point. We add this new bad point to
the Generated Set and continue this way, gradually filling the holes. At first we kept
the index bound constant, until we obtained a reasonable percentage of generated
points. Then we tested whether the ‘first bad point’ changes when increasing the
index bound and keeping the initial Generated Set constant (i.e., we stopped filling
the holes, and just increased the index bound.) For surfaces 4 and 5 this approach
seems reasonably successful, as reflected in Tables 8 and 9.

Unfortunately, for surface 3 this approach does not seem to work. After adding
many more ‘first bad points’ to the initial generating set than for the surfaces 4-5,
we still did not obtain a ‘good’ generating set, as illustrated in Table 10.

Since this process was too slow, we tried ‘throwing’ in our Generated Set not
only the first bad point, but the first 10 bad points at every step (see Table 11).

This was again too slow, so we started inserting the first 20 bad points to our
Generated Set (see Table 12).

Next we present other statistical data.

It seems that the percentage of points on a surface that can be strongly decom-
posed (a point x is strongly decomposable if it has a decomposition = y o z with
Y,z < z) up to some index N is approximately constant for various values of N.
This suggests that this percentage may be an invariant for the surface.

It seems likely that if this percentage is bigger then TestGeneratingSet will
generate more points (up to some index), using a suitable GeneratedSet. This is
confirmed if we study the first two surfaces. Surface 1 has roughly % points that
are not strongly decomposable up to the index N (for N > 1000), while the surface
2 has only ~ % such points; and indeed, if we compare the results of TGS for the
two surfaces, we notice that TGS for the surface 2 generates more points (up to the
same index) than TGS for the surface 1. Also, note that the percentage of points
that are strongly decomposable for the surface 3 is very small (approximately 10%.)
This may be one of the explanations for our lack of success with this surface.

4. Conclusion

The theory surrounding the Mordell-Weil problem for cubic surfaces seems
not very well developed, mainly because of the difficulties caused by the lack of a
group structure on the operation of composing points. In this paper we presented
numerical data for thirteen diagonal cubic surfaces, in the hope of developing some
intuition on a possible finiteness conjecture (first mentioned by Manin, cf. [Man86]
and [Man97]). For each of the surfaces, we tried to find a generating set. A naive
method gave positive results for ten of the surfaces, while a more rigorous method
was needed to obtain similar (but not as positive) results for two of the other
surfaces. For these surfaces, the numerical data suggest that they might be indeed
finitely generated. The remaining surface resisted both methods. We cannot say,
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TABLE 8. Analysis of surface 4 using ‘TGS’ procedure

Surface | Height | Index | # points | % points | # iter | First bad point
bound | bound | generated | generated Index | Height

4 6,774 | 1,000 172 17.2 3 12 50
4 6,774 | 1,000 177 17.7 3 13 55
4 6,774 | 1,000 194 194 4 14 63
4 6,774 | 1,000 210 21.0 4 15 73
4 6,774 | 1,000 218 21.8 4 20 107
4 6,774 | 1,000 230 23.0 4 21 108
4 6,774 | 1,000 237 23.7 4 22 110
4 6,774 | 1,000 249 24.9 5 23 125
4 6,774 | 1,000 268 26.8 6 25 179
4 6,774 | 1,000 282 28.2 6 27 193
4 6,774 | 1,000 296 29.6 6 28 199
4 6,774 | 1,000 325 32.5 13 32 215
4 6,774 | 1,000 328 32.8 13 35 249
4 6,774 | 1,000 335 33.5 13 37 262
4 6,774 | 1,000 338 33.8 13 43 297
4 6,774 | 1,000 342 34.2 13 49 317
4 6,774 | 1,000 349 34.9 13 52 329
4 6,774 | 1,000 351 35.1 13 58 370
4 6,774 | 1,000 353 35.3 13 62 396
4 6,774 | 1,000 360 36.0 13 66 413
4 6,774 | 1,000 372 37.2 13 69 438
4 6,774 | 1,000 394 39.4 18 73 467
4 6,774 | 1,000 400 40.0 18 76 487
4 34,552 | 5,000 1,331 26.6 38 89 570
4 68,425 | 10,000 2,769 27.7 50 92 611
4 135,691 | 20,000 6,365 31.8 53 189 1,230
4 204,042 | 30,000 10, 142 33.8 50 233 1,605
4 271,092 | 40,000 14,403 36.0 45 324 | 2,115
4 339,994 | 50,000 18,409 36.8 51 352 | 2,387

however, whether this means that the surface is not finitely generated, or that this

is just a sign of the limits of the methods used.
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TABLE 9. Analysis of surface 5 using ‘TGS’ procedure

Surface Height | Index | # points | % points | # iter | First bad point
bound | bound | generated | generated Index | Height

5 8,780 | 1,000 80 8.0 2 13 103
5 8,780 | 1,000 87 8.7 3 14 111
5 8,780 | 1,000 100 10.0 3 15 112
5 8,780 | 1,000 114 11.4 6 16 122
5 8,780 | 1,000 142 14.2 8 17 125
5 8,780 | 1,000 149 14.9 8 18 126
5 8,780 | 1,000 157 15.7 8 19 127
5 8,780 | 1,000 170 17.0 8 21 150
5 8,780 | 1,000 175 17.5 8 23 168
5 8,780 | 1,000 177 17.7 8 25 177
5 8,780 | 1,000 207 20.7 16 27 188
5 8,780 | 1,000 211 21.1 16 28 190
5 8,780 | 1,000 219 21.9 16 32 211
5 8,780 | 1,000 223 22.3 16 37 276
5 8,780 | 1,000 230 23.0 16 39 298
5 8,780 | 1,000 232 23.2 16 44 350
5 8,780 | 1,000 236 23.6 16 45 363
5 8,780 | 1,000 237 23.7 16 46 367
5 8,780 | 1,000 242 24.2 16 47 369
5 8,780 | 1,000 268 26.8 16 56 427
5 8,780 | 1,000 276 27.6 16 57 431
5 8,780 | 1,000 282 28.2 16 59 445
5 8,780 | 1,000 311 31.1 16 60 464
5 8,780 | 1,000 313 31.3 16 62 487
5 8,780 | 1,000 319 31.9 16 66 581
5 8,780 | 1,000 337 33.7 16 68 595
5 8,780 | 1,000 339 33.9 16 69 602
5 8,780 | 1,000 347 34.7 16 75 631
5 8,780 | 1,000 356 35.6 16 76 637
5 8,780 | 1,000 365 36.5 16 84 695
5 8,780 | 1,000 369 36.9 16 87 719
5 8,780 | 1,000 380 38.0 16 88 733
5 8,780 | 1,000 385 38.5 16 91 745
5 8,780 | 1,000 390 39.0 16 93 771
5 8,780 | 1,000 409 40.9 16 96 801
5 8,780 | 1,000 413 41.3 16 103 862
5 43,224 | 5,000 1,881 37.6 29 118 1,015
5 87,176 | 10,000 3,650 36.5 32 145 1,197
5 174,128 | 20,000 7,236 36.2 37 295 2,554
5 262,052 | 30,000 11, 367 37.9 44 325 2,774
5 349,121 | 40,000 15,842 39.6 44 461 3,988
5 437,046 | 50,000 20,103 40.2 35 461 3,988
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TABLE 10. Surface 3 remains problematic after adding the ‘first
bad point’ at every step
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Surface || Height | Index | # points | % points | # iter | First bad point
bound | bound | generated | generated Index | Height

3 25,874 | 1,000 49 4.9 2 13 203
3 25,874 | 1,000 52 5.2 2 14 248
3 25,874 | 1,000 54 5.4 2 15 260
3 25,874 | 1,000 57 5.7 2 16 264
3 25,874 | 1,000 60 6.0 2 18 335
3 25,874 | 1,000 62 6.2 2 19 337
3 25,874 | 1,000 64 6.4 2 20 383
3 25,874 | 1,000 66 6.6 2 21 413
3 25,874 | 1,000 67 6.7 2 22 433
3 25,874 | 1,000 69 6.9 2 23 434
3 25,874 | 1,000 71 7.1 2 26 526
3 25,874 | 1,000 73 7.3 2 27 573
3 25,874 | 1,000 76 7.6 2 28 605
3 25,874 | 1,000 77 7.7 2 29 630
3 25,874 | 1,000 78 7.8 2 31 699
3 25,874 | 1,000 80 8.0 2 32 711
3 25,874 | 1,000 82 8.2 2 35 754
3 25,874 | 1,000 85 8.5 2 36 772
3 25,874 | 1,000 86 8.6 2 37 775
3 25,874 | 1,000 88 8.8 2 39 808
3 25,874 | 1,000 90 9.0 2 40 819
3 25,874 | 1,000 93 9.3 2 41 853
3 25,874 | 1,000 95 9.5 2 42 868
3 25,874 | 1,000 98 9.8 2 43 872
3 25,874 | 1,000 99 9.9 2 44 895
3 25,874 | 1,000 100 10.0 2 45 895
3 25,874 | 1,000 106 10.6 3 48 1,021
3 25,874 | 1,000 108 10.8 3 49 1,032
3 25,874 | 1,000 109 10.9 3 50 1,042
3 25,874 | 1,000 110 11.0 3 51 1,061
3 25,874 | 1,000 111 11.1 3 52 1,062
3 25,874 | 1,000 112 11.2 3 53 1,079
3 25,874 | 1,000 113 11.3 3 54 1,097
3 25,874 | 1,000 116 11.6 3 55 1,120
3 25,874 | 1,000 117 11.7 3 56 1,131
3 25,874 | 1,000 118 11.8 3 58 1,226
3 25,874 | 1,000 120 12.0 3 59 1,270
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11. Or the first ten bad points

Surface || Height | Index | # points | % points | # iter | First bad point
bound | bound | generated | generated Index | Height

3 25,874 | 1,000 137 13.7 3 69 1,496
3 25,874 | 1,000 151 15.1 3 82 1,741
3 25,874 | 1,000 164 16.4 3 95 2,110
3 25,874 | 1,000 177 17.7 2 107 2,458
3 25,874 | 1,000 187 18.7 2 118 2,753
3 25,874 | 1,000 207 20.7 5 134 3,039
3 25,874 | 1,000 220 22.0 5 146 3,391
3 25,874 | 1,000 233 23.3 5 160 3,928
3 25,874 | 1,000 243 24.3 5 174 4,686
3 25,874 | 1,000 255 25.5 5 184 4,865
3 25,874 | 1,000 268 26.8 5 197 5,257

TABLE 12. Or even the first twenty bad points

Surface || Height | Index | # points | % points | # iter | First bad point
bound | bound | generated | generated Index | Height

3 25,874 | 1,000 301 30.1 5 226 6,309
3 25,874 | 1,000 325 32.5 5 248 6,311
3 25,874 | 1,000 347 34.7 5 269 7,255
3 25,874 | 1,000 367 36.7 5 290 7,873
3 25,874 | 1,000 388 38.8 5 314 8,592
3 25,874 | 1,000 409 40.9 5 338 9,134
3 25,874 | 1,000 434 43.4 5 359 9,673
3 51,663 | 2,000 536 26.8 5 359 9,673
3 124,062 | 5,000 734 14.7 5 359 9,673
3 251,103 | 10,000 985 9.9 5 359 9,673
3 505,619 | 20,000 1,298 6.5 7 359 9,673
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Algebraic varieties with many rational points

Yuri Tschinkel

ABSTRACT. We survey rational points on higher-dimensional algebraic vari-
eties, addressing questions about existence, density, and distribution with re-
spect to heights. Key examples for existence and density problems include
hypersurfaces, complete intersections, and K3 surfaces. For varieties closely
related to linear algebraic groups, e.g., equivariant compactifications of groups
and homogeneous spaces, questions concerning the asymptotic distribution of
points of bounded height are closely related to adelic harmonic analysis on the
groups. On the other hand, analytic techniques lead naturally to investiga-
tions of global geometric invariants of the underlying varieties, studied in the
context of the minimal model program.
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Introduction

Let f € Z[t,z1,...,x,] be a polynomial with coefficients in the integers. Con-

sider
f(t,xla' "axn) = Oa
as an equation in the unknowns ¢, 1, . . ., z, or as an algebraic family of equations in
x1,...,T, parametrized by t. We are interested in integer solutions: their existence
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and distribution. Sometimes the emphasis is on individual equations, e.g.,
l,n + yn — Z’ﬂ,

sometimes we want to understand a typical equation, i.e., a general equation in some
family. To draw inspiration (and techniques) from different branches of algebra
it is necessary to consider solutions with values in other rings and fields, most
importantly, finite fields I, finite extensions of Q, or the function fields F,(¢) and
C(t). While there is a wealth of ad hoc elementary tricks to deal with individual
equations, and deep theories focusing on their visible or hidden symmetries, our
primary approach here will be via geometry.

Basic geometric objects are the affine space A™ and the projective space P =
(A"T1\ 0) /Gy, the quotient by the diagonal action of the multiplicative group.
Concretely, affine algebraic varieties X*f C A™ are defined by systems of polyno-
mial equations with coefficients in some base ring R; their solutions with values
in R, X*(R), are called R-integral points. Projective varieties are defined by ho-
mogeneous equations, and XP™(R) = XP™J(F), the F-rational points on XPr,
where F' is the fraction field of R. The geometric advantages of working with “com-
pact” projective varieties translate to important technical advantages in the study
of equations, and the theory of rational points is currently much better developed.

The sets of rational points X (F') reflect on the one hand the geometric and
algebraic complexity of X (e.g., the dimension of X), and on the other hand the
structure of the ground field F' (e.g., its topology, analytic structure). It is im-
portant to consider the variation of X (F’), as F' runs over extensions of F, either
algebraic extensions or completions. It is also important to study projective and
birational invariants of X, its birational models, automorphisms, fibration struc-
tures, deformations. Each point of view contributes its own set of techniques, and
it is the interaction of ideas from a diverse set of mathematical cultures that makes
the subject so appealing and vibrant.

The focus in these notes will be on smooth projective varieties X defined over
Q, with many Q-rational points. Main examples are varieties Q-birational to P
and hypersurfaces in P” of low degree. We will study the relationship between the
global geometry of X over C and the distribution of rational points in the Zariski
topology and with respect to heights. Here are the problems we face:

e Existence of solutions: local obstructions, the Hasse principle, global ob-
structions;

e Density in various topologies: Zariski density, weak approximation;

e Distribution with respect to heights: bounds on smallest points, asymp-
totics.

Here is the road map of the paper. Section 1 contains a summary of basic
terms from complex algebraic geometry: main invariants of algebraic varieties,
classification schemes, and examples most relevant to arithmetic in dimension > 2.
Section 2 is devoted to the existence of rational and integral points, including
aspects of decidability, effectivity, local and global obstructions. In Section 3 we
discuss Lang’s conjecture and its converse, focusing on varieties with nontrivial
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endomorphisms and fibration structures. Section 4 introduces heights, counting
functions, and height zeta functions. We explain conjectures of Batyrev, Manin,
Peyre and their refinements. The remaining sections are devoted to geometric and
analytic techniques employed in the proof of these conjectures: universal torsors,
harmonic analysis on adelic groups, p-adic integration and “estimates”.

Acknowledgments. I am very grateful to V. Batyrev, F. Bogomolov, U. Deren-
thal, A. Chambert-Loir, J. Franke, J. Harris, B. Hassett, A. Kresch, Yu. Manin,
E. Peyre, J. Shalika, M. Strauch and R. Takloo-Bighash for the many hours of
listening and sharing their ideas. Partial support was provided by National Science
Foundation Grants 0554280 and 0602333.

1. Geometry background

We discuss basic notions and techniques of algebraic geometry that are com-
monly encountered by number theorists. For most of this section, F' is an al-
gebraically closed field of characteristic zero. Geometry over algebraically closed
fields of positive characteristic, e.g., algebraic closure of a finite field, differs in sev-
eral aspects: difficulties arising from inseparable morphisms, “unexpected” maps
between algebraic varieties, additional symmetries, lack (at present) of resolution of
singularities. Geometry over nonclosed fields, especially number fields, introduces
new phenomena: varieties may have forms, not all constructions descend to the
ground field, parameter counts do not suffice. In practice, it is “equivariant geom-
etry for finite groups”, with Galois symmetries acting on all geometric invariants
and special loci. The case of surfaces is addressed in detail in [Has].

1.1. Basic invariants. Let X be a smooth projective algebraic variety over F.
Over ground fields of characteristic zero we can pass to a resolution of singularities
and replace any algebraic variety by a smooth projective model. We seek to isolate
invariants of X that are most relevant for arithmetic investigations.

There are two natural types of invariants: birational invariants, i.e., invariants
of the function field F(X), and projective geometry invariants, i.e., those arising
from a concrete representation of X as a subvariety of P". Examples are the
dimension dim(X), defined as the transcendence degree of F'(X) over F, and the
degree of X in the given projective embedding. For hypersurfaces Xy C P" the
degree is simply the degree of the defining homogeneous polynomial. In general, it
is defined via the Hilbert function of the homogeneous ideal, or geometrically, as the
number of intersection points with a general hyperplane of codimension dim(X).

The degree alone is not a sensitive indicator of the complexity of the variety:
Veronese embeddings of P! < P" exhibit it as a curve of degree n. In general, we
may want to consider all possible projective embeddings of a variety X. Two such
embeddings can be “composed” via the Segre embedding P x P™ — PV, where
N = nm+n+m. For example, we have the standard embedding P! x P! < P3, with
image a smooth quadric. In this way, projective embeddings of X form a “monoid”;
the corresponding abelian group is the Picard group Pic(X). Alternatively, it is the
group of isomorphism classes of line bundles on X. Cohomologically, in the Zariski
(or étale) topology,

Pic(X) = HY(X,G,,),
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where G,, is the sheaf of invertible functions. Yet another description is
Pic(X) = Div(X)/ (C(X)*/C"),

where Div(X) is the free abelian group generated by codimension one subvarieties of
X, and C(X)* is the multiplicative group of rational functions of X, each f € C(X)*
giving rise to a principal divisor div(f) (divisor of zeroes and poles of f). Sometimes
it is convenient to identify divisors with their classes in Pic(X). Note that Pic is
a contravariant functor: a morphism X — X induces a homomorphism of abelian

groups Pic(X) — Pic(X). There is an exact sequence
1 — Pic’(X) — Pic(X) — NS(X) — 1,

where the subgroup Pic(X) can be endowed with the structure of a connected pro-
jective algebraic variety. The finitely generated group NS(X) is called the Néron-
Severi group of X. In most applications in this paper, Pic?(X) is trivial.

Given a projective variety X C P", via an explicit system of homogeneous
equations, we can easily write down at least one divisor on X, a hyperplane section
L in this embedding. Another divisor, the divisor of zeroes of a differential form of
top degree on X, can also be computed from the equations. Its class Kx € Pic(X),
i.e., the class of the line bundle Q(;{lm(x), is called the canonical class. In general, it is
not known how to write down effectively divisors whose classes are not proportional
to linear combinations of Kx and L. This can be done for some varieties over Q,
e.g., smooth cubic surfaces in X3 C P? (see Section 1.9), but already for smooth
quartics X, C P? it is unknown how to compute even the rank of NS(X) (for some
partial results in this direction, see Section 1.10).

Elements in Pic(X) corresponding to projective embeddings generate the ample
cone Aampie(X) C Pic(X)r := Pic(X) ® R; ample divisors arise as hyperplane sec-
tions of X in a projective embedding. The closure Apef(X) of Agmple(X) in Pic(X)g
is called the nef cone. An effective divisor is a sum with nonnegative coefficients
of irreducible subvarieties of codimension one. Their classes span the effective cone
Ao (X); divisors arising as hyperplane sections of projective embeddings of some
Zariski open subset of X form the interior of Aqg(X). These cones and their com-
binatorial structure encode important geometric information. For example, for all
divisors D € Aper(X) and all curves C C X, the intersection number D - C' > 0
[Kle66]. Divisors on the boundary of Agmple(X) give rise to fibration structures
on X; we will discuss this in more detail in Section 1.4.

Ezample 1.1.1. Let X be a smooth projective variety, ¥ C X a smooth subva-
riety and 7 : X = Bly (X) — X the blowup of X in Y, i.e., the complement in X
of the exceptional divisor E := n~1(Y') is isomorphic to X \ Y, and E itself can be
identified with the projectivized normal cone to X at Y. Then

Pic(X) ~ Pic(X) ® ZE
and
K; =7"(Kx)+ O((codim(Y) — 1)E)
(see [Har77, Exercise 8.5]). Note that
T (Ao (X)) € Aesr (X)),

but that pullbacks of ample divisors are not necessarily ample.
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Ezxample 1.1.2. Let X C P™ be a smooth hypersurface of dimension > 3 and
degree d. Then Pic(X) = NS(X) = ZL, generated by the class of the hyperplane
section, and

Aample(X) = Aet(X) = R>oL.
The canonical class is
Kx=—-(n+1-d)L.

Ezxample 1.1.3. If X is a smooth cubic surface over an algebraically closed
field, then Pic(X) = Z". The anticanonical class is proportional to the sum of 27
exceptional curves (lines):

1
-Kx = §(D1 + -+ Day).

The effective cone Aqg(X) C Pic(X)g is spanned by the classes of the lines.
On the other hand, the effective cone of a minimal resolution of the singular
cubic surface
2., .2 3 _
Tory +xir3 + x5 =0
is a simplicial cone (in R”) [HT04].

Ezxample 1.1.4. Let G be a connected solvable linear algebraic group, e.g., the
additive group G' = G,, an algebraic torus G = G¢, or the group of upper triangular
matrices. Let X be an equivariant compactification of G, i.e., there is a morphism
G x X — X extending the action G x G — G of G on itself. Using equivariant
resolution of singularities, if necessary, we may assume that X is smooth projective
and that the boundary

X\G=D=|]J D;, with D irreducible,
=
is a divisor with normal crossings. Every divisor D on X is equivalent to a divisor
with support in the boundary since it can be “moved” there by the action of G (see
e.g. [CLTO02, Proposition 1.1]. Thus Pic(X) is generated by the components D,
and the relations are given by functions with zeroes and poles supported in D, i.e.,
by the characters X¥*(G). We have an exact sequence

(1.1) 0— X*(G) = @ ZD; > Pic(X) =0

icT
The cone of effective divisors Aeg(X) C Pic(X)r is the image of the simplicial cone
@,cz R>oD; under the projection 7. The anticanonical class is

—Kx = @ kiD;, with k; > 1, for all 4.
ieT
For unipotent G one has x; > 2, for all ¢ [HT99].

For higher-dimensional varieties without extra symmetries, the computation
of the ample and effective cones, and of the position of Kx with respect to these
cones, is a difficult problem. A sample of recent papers on this subject is: [CS06],
[Far06], [FG03], [Cas07], [HT03], [HT02a], [GKMO02]. However, we have the
following fundamental result (see also Section 1.4):
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THEOREM 1.1.5. Let X be a smooth projective variety with —Kx € Aample(X).
Then Anet(X) is a finitely generated rational cone. If —Kx is big and nef then
Aot (X) is finitely generated.

Finite generation of the nef cone goes back to Mori (see [CKMB88] for an intro-
duction). The result concerning A.g(X) has been proved in [Bat92] in dimension
< 3, and in higher dimensions in [BCHMO6] (see also [Ara05], [Leh08]).

1.2. Classification schemes. In some arithmetic investigations (e.g., Zariski
density or rational points) we rely mostly on birational properties of X; in others
(e.g., asymptotics of points of bounded height), we need to work in a fixed projective
embedding.

Among birational invariants, the most important are those arising from a com-
parison of X with a projective space:

(1) rationality: there exists a birational isomorphism X ~ P", i.e., an isomor-
phism of function fields F(X) = F(P™), for some n € N;

(2) wunirationality: there exists a dominant map P" --» X;

(3) rational connectedness: for general x1,x2 € X (F) there exists a morphism
f : P! — X such that 1,25 € f(P1).

It is easy to see that
1) =(@2)=3).

Over algebraically closed ground fields, these properties are equivalent in dimension
two, but (may) diverge in higher dimensions: there are examples with (1) # (2) but
so far no examples with (2) # (3). Finer classifications result when the ground field
F' is not assumed to be algebraically closed, e.g., there exist unirational but not
rational cubic surfaces over nonclosed fields. The first unirational but not rational
threefolds over C were constructed in [IM71] and [CG72]. The approach of [IM71]
was to study the group Bir(X) of birational automorphisms of X; finiteness of
Bir(X), i.e., birational rigidity, implies nonrationality.

Interesting unirational varieties arise as quotients V/G, where V. = A" is a
representation space for a faithful action of a linear algebraic group G. For ex-
ample, the moduli space My, of n points on P! is birational to (P!)"/PGLs.
Moduli spaces of degree d hypersurfaces X C P" are naturally isomorphic to
P(Sym?(A"+1))/PGL,41. Rationality of V/G is known as Noether’s problem. It
has a positive solution for G being the symmetric group &,, the group PGLs
[Kat82], [BK85], and in many other cases [SB89], [SB88]. Counterexamples for
some finite G were constructed in [Sal84], [Bog87]; nonrationality is detected by
the unramified Brauer group, Bry,(V/G), closely related to the Brauer group of the
function field Br(F(V/G)) = HZ, (F(V/G), Gy,).

Now we turn to invariants arising from projective geometry, i.e., ample line
bundles on X. For smooth curves C, an important invariant is the genus g(C) :=
dim(H°(C, K¢)). In higher dimensions, one considers the Kodaira dimension

log(dim(H(X,nKx)))
log(n)

(1.2) k(X) := limsup

)
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and the related graded canonical section ring

(1.3) R(X,Kx) = P HO(X,nKx).
n>0

A fundamental theorem is that this ring is finitely generated [BCHMOG6].

A very rough classification of smooth algebraic varieties is based on the position
of the anticanonical class with respect to the cone of ample divisors. Numerically,
this is reflected in the value of the Kodaira dimension. There are three main cases:

e [fano: —Kx ample, with x(X) = —o0;
e general type: Kx ample, k(X) = dim(X);
o intermediate type, e.g., k(X ) = 0.

The qualitative behavior of rational points on X mirrors this classification (see
Section 3). In our arithmetic applications we will mostly encounter Fano varieties
and varieties of intermediate type.

For curves, this classification can be read off from the genus: curves of genus 0
are of Fano type, of genus 1 of intermediate type, and of genus > 2 of general type.
Other examples of varieties in each group are:

e Fano: P, smooth degree d hypersurfaces X4 C P", with d < n;

e general type: hypersurfaces Xy C P", with d > n 4 2, moduli spaces of
curves of high genus and abelian varieties of high dimension;

e intermediate type: abelian varieties, Calabi-Yau varieties.

There are only finitely many families of smooth Fano varieties in each dimension
[KMM92]. On the other hand, the universe of varieties of general type is boundless
and there are many open classification questions already in dimension 2.

In finer classification schemes such as the Minimal Model Program (MMP)
it is important to take into account fibration structures and mild singularities (see
[KMM87] and [CamO04]). Analogously, in many arithmetic questions, the passage
to fibrations is inevitable (see Section 4.14). These often arise from the section rings

(1.4) R(X,L) = @ H(X,nL).
n>0
Consequently, one considers the litaka dimension
log(dim(H®(X,nL)))
log(n) '

(1.5) k(X, L) := limsup

Finally, a pair (X, D), where X is smooth projective and D is an effective divisor in
X, gives rise to another set of invariants: the log Kodaira dimension k(X, Kx + D)
and the log canonical ring R(X, Kx + D), whose finite generation is also known in
many cases [BCHMO6]. Again, one distinguishes

e log Fano: k(X,—(Kx + D)) = dim(X);
e log general type: k(X,Kx + D) = dim(X);
e [og intermediate type: none of the above.

This classification has consequences for the study of integral points on the open
variety X \ D.
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1.3. Singularities. Assume that X is normal and Q-Cartier, i.e., there exists
an integer m such that mKy is a Cartier divisor. Let X be a normal variety
and f : X — X a proper birational morphism. Denote by E an irreducible f-
exceptional divisor and by e its generic point. Let g = 0 be a local equation of F.
Locally, we can write

f*(generator of O(mKx)) = g™ (dy; A--- Adyn)™

for some d(FE) € Q such that md(F) € Z. If, in addition, K ¢ is a line bundle (e.g.,
X is smooth), then mK g is linearly equivalent to

ff(mKx)+ Z m-d(E;)E;;  E; exceptional,
i

and numerically

K~ ["(Kx)+ Y d(E)E;.

The number d(E) is called the discrepancy of X at the exceptional divisor E. The
discrepancy discr(X) of X is
discr(X) := inf{d(F) |all f,E}
If X is smooth then discr(X) = 1. In general (see e.g., [Kol92, Proposition 1.9]),
discr(X) € {—oo} U [—1,1].

DEFINITION 1.3.1. The singularities of X are called

o terminal if discr(X) > 0 and
e canonical if discr(X) > 0.

It is essential to remember that terminal = smooth in codimension 2 and that
for surfaces, canonical means Du Val singularities.

Canonical isolated singularities on surfaces are classified via Dynkin diagrams:
Let f : X — X be the minimal desingularization. Then the submodule in Pic(X)
spanned by the classes of exceptional curves (with the restriction of the intersec-
tion form) is isomorphic to the root lattice of the corresponding Dynkin diagram
(exceptional curves give simple roots).

On surfaces, canonical singularities don’t influence the expected asymptotics
for rational points on the complement to all exceptional curves: for (singular) Del
Pezzo surfaces X we still expect an asymptotic of points of bounded anticanonical
height of the shape Blog(B)%~9, where d is the degree of X, just like in the smooth
case (see Section 4.10). This fails when the singularities are worse than canonical.

Ezample 1.3.2. Let w = (wo, ..., w,) € N, with ged(wy, ..., w,) =1 and let
X = X(w) =P(wo, ..., wy,)
be a weighted projective space, i.e., we have a quotient map
(A™H1\ 0) Zm X,
where the torus G,, acts by

A (Zoye oy Tng1) = (A0, ..., A ay,).
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For w = (1,...,1) it is the usual projective space, e.g., P> = P(1,1,1). The
weighted projective plane P(1,1,2) has a canonical singularity and the singularity
of P(1,1,m), with m > 3, is worse than canonical.

For a discussion of singularities on general weighted projective spaces and so
called fake weighted projective spaces see, e.g., [Kas08].

1.4. Minimal Model Program. Here we recall basic notions from the Min-
imal Model Program (MMP) (see [CKMB&8|, [KM98|, [KMMS87], [Mat02] for
more details). The starting point is the following fundamental theorem due to Mori
[Mor82]:

THEOREM 1.4.1. Let X be a smooth Fano variety of dimension n. Then through
every geometric point of X there passes a rational curve of —K x-degree < n + 1.

These rational curves move in families. Their specializations are rational curves,
which may move again, and again, until one arrives at “rigid” rational curves.

THEOREM 1.4.2 (Cone theorem). Let X be a smooth Fano variety. Then the
closure of the cone of (equivalence classes of ) effective curves in Ha(X, R) is finitely
generated by classes of rational curves.

The generating rational curves are called extremal rays; they correspond to
codimension-1 faces of the dual cone of nef divisors. Mori’s Minimal Model Program
links the convex geometry of the nef cone Aper(X) with birational transformations
of X. Pick a divisor D on the face dual to an extremal ray [C]. It is not ample
anymore, but it still defines a map

X — Proj(R(X, D)),
which contracts the curve C to a point. The map is one of the following:

e a fibration over a base of smaller dimension, and the restriction of D to a
general fiber proportional to the anticanonical class of the fiber, which is
a (possibly singular) Fano variety,

e a birational map contracting a divisor,

e a contraction of a subvariety in codimension > 2 (a small contraction).

The image could be singular, as in Example 1.3.2, and one of the most difficult
issues of MMP was to develop a framework which allows one to maneuver between
birational models with singularities in a restricted class, while keeping track of the
modifications of the Mori cone of curves. In arithmetic applications, for example
proofs of the existence of rational points as in, e.g., [CTSSD87a], [CTSSD87b],
[CTS89], one relies on the fibration method and descent, applied to some auxiliary
varieties. Finding the “right” fibration is an art. Mori’s theory gives a systematic
approach to these questions.

A variant of Mori’s theory, the Fujita program, analyzes fibrations arising from
divisors on the boundary of the effective cone Aeg(X). This theory turns up in the
analysis of height zeta functions in Section 6 (see also Section 4.13).

Let X be smooth projective with Pic(X) = NS(X) and a finitely generated
effective cone Aog(X). For a line bundle L on X define

(1.6) a(L) :=min(a|al + Kx € Aegr(X)).



252 YURI TSCHINKEL

We will also need the notion of the geometric hypersurface of linear growth:
(L.7) SEO™ = (L € NS(X)& (L) = 1)

Let b(L) be the maximal codimension of a face of Aegr(X) containing a(L)L + Kx.
In particular,

a(—-Kx)=1 and b(—Kx)=rkPic(X).

These invariants arise in Manin’s conjecture in Section 4.10 and the analysis of
analytic properties of height zeta functions in Section 6.1.

1.5. Campana’s program. Recently, Campana developed a new approach
to classification of algebraic varieties with the goal of formulating necessary and
sufficient conditions for potential density of rational points, i.e., Zariski density after
a finite extension of the ground field. The key notions are: the core of an algebraic
variety and special varieties. Special varieties include Fano varieties and Calabi—Yau
varieties. They are conjectured to have a potentially dense set of rational points.
This program is explained in [Abr].

1.6. Cox rings. Again, we assume that X is a smooth projective variety with
Pic(X) = NS(X). Examples are Fano varieties, equivariant compactifications of
algebraic groups and holomorphic symplectic varieties. Fix line bundles L, ..., L,
whose classes generate Pic(X). For v = (v1,...,v,) € Z" we put

L =L"®---@ L.
The Cox ring is the multigraded section ring

Cox(X) := @) H(X,L").

veZL"

The nonzero graded pieces of Cox(X) are in bijection with effective divisors of
X. The key issue is finite generation of this ring. This has been proved under
quite general assumptions in [BCHMO6, Corollary 1.1.9]. Assume that Cox(X) is
finitely generated. Then both Aeg(X) and Aper(X) are finitely generated polyhedral
(see [HKOO, Proposition 2.9]). Other important facts are:

e X is a toric variety if and only if Cox(X) is a polynomial ring [Cox95],
[HKO00, Corollary 2.10]; Cox rings of some equivariant compactifications
of other semi-simple groups are computed in [Bri07];

e Cox(X) is multigraded for NS(X), in particular, it carries a natural action
of the dual torus Txg (see Section 6.6 for details on the duality between
lattices and algebraic tori).

1.7. Universal torsors. We continue to work over an algebraically closed
field. Let G be a linear algebraic group and X an algebraic variety. A G-torsor
over X is a principal G-bundle 7 : Tx — X. Basic examples are GL,,-torsors;
they arise from vector bundles over X. For instance, each line bundle L gives
rise to a GL; = G,,-torsor over X. Up to isomorphism, G-torsors are classified
by HZ (X,G); line bundles are classified by H}, (X,G,,) = Pic(X). When G is
commutative, H}, (X, G) is a group.
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Let G = G!, be an algebraic torus and X*(G) = Z" its character lattice.
A G-torsor over an algebraic variety X is determined, up to isomorphism, by a
homomorphism

(1.8) X : X" (G) — Pic(X).

Assume that Pic(X) = NS(X) = Z" and that x is in fact an isomorphism. The
arising G-torsors are called universal. The introduction of universal torsors is moti-
vated by the fact that over nonclosed fields they “untwist” the action of the Galois
group on the Picard group of X (see Sections 1.13 and 2.5). The “extra dimensions”
and “extra symmetries” provided by the torsor add crucial freedom in the analysis
of the geometry and arithmetic of the underlying variety. Examples of applications
to rational points will be presented in Sections 2.5 and 5. This explains the surge
of interest in explicit equations for universal torsors, the study of their geometry:
singularities and fibration structures.

Assume that Cox(X) is finitely generated. Then Spec (Cox(X)) contains a
universal torsor Tx of X as an open subset. More precisely, let

T x = Spec (Cox(X)).

Fix an ample class LY € Pic(X) and let x, € X*(Ing) be the corresponding char-
acter. Then
X = Proj @ HY(X, O(nL?))) = T [ Txs,
n>0

the geometric invariant theory quotient linearized by x,. The unstable locus is
Z, ={tcTx|f(t)=0 Vfec Cox(X)n,, n>0}

Let W, be the set of t € Tx such that the orbit of ¢ is not closed in Tix\ Z,,, or such
that ¢ has a positive-dimensional stabilizer. Geometric invariant theory implies that

'TX\WI,::T)(%X

is a geometric quotient, i.e., Tx is a Tng-torsor over X.

1.8. Hypersurfaces. We now turn from the general theory to specific vari-
eties. Let X = Xy C P" be a smooth hypersurface of degree d. We have already
described some of its invariants in Example 1.1.2, at least when dim(X) > 3. In
particular, in this case Pic(X) ~ Z and Tns = G,,. The universal torsor is the
hypersurface in A"*1\ 0 given by the vanishing of the defining polynomial f.

In dimension two, there are more possibilities. The most interesting cases are
d = 2,3, and 4. A quadric X3 is isomorphic to P! x P! and has Picard group
Pic(Xs2) ~ Z @ Z. A cubic has Picard group of rank 7. These are examples of
Del Pezzo surfaces discussed in Section 1.9 and extensively in [Has]. They are
birational to P2. A smooth quartic Xy C P? is an example of a K3 surface (see
Section 1.10). We have Pic(Xy) = Z", with r between 1 and 20. They are not
rational and, in general, do not admit nontrivial fibrations.

Cubic and quartic surfaces have a rich geometric structure, with large “hidden”
symmetries. This translates into many intricate arithmetic issues.
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1.9. Del Pezzo surfaces. A smooth projective surface X with ample anti-
canonical class is called a Del Pezzo surface. Standard examples are P2 and P! x P*.
Over algebraically closed ground fields, all other Del Pezzo surfaces X,. are obtained
as blowups of P? in r < 8 points in general position (e.g., no three on a line, no 6
on a conic). The number d = 9 — r is the anticanonical degree of X,.. Del Pezzo
surfaces of low degree admit the following realizations:

d = 4: intersection of two quadrics in P*;

d = 3: hypersurface of degree 3 in P?;

d = 2: hypersurface of degree 4 in the weighted projective space P(1,1, 1, 2)
given by

w? = fy(x,y,2), with f irreducible, deg(f)) = 4.

d = 1: hypersurface of degree 6 in P(1,1,2,3) given by

Visually and mathematically most appealing are, perhaps, the cubic surfaces with
d = 3. Note that for d = 1, the anticanonical linear series has one base point, in
particular, Xg(F') # 0, over F, even when F is not algebraically closed.

Let us compute the geometric invariants of a Del Pezzo surface of degree d,
expanding Example 1.1.3. Since Pic(P?) = ZL, the hyperplane class, we have

Pic(X,) = ZL & ZE, ® --- ® ZE,,

where F; are the full preimages of the blown-up points. The canonical class is
computed as in Example 1.1.1,

Kx, =-3L+(E1+ -+ E,).
The intersection pairing defines a quadratic form on Pic(X,.), with L? =1, L- E; =
0, B; - E; =0, for i # j, and E]2 = —1. Let W, be the subgroup of GL,11(Z) of
elements preserving Kx, and the intersection pairing. For r > 2 there are other

classes with square —1, e.g., preimages of lines passing through two points, conics
through five points:

L—(El—l—Ej), 2L—(E1+—|—E5), etc.

The classes whose intersection with Kx, is also —1 are called (classes of ) ezceptional
curves; these curves are lines in the anticanonical embedding. Their number n(r)
can be found in the table below. We have

n(r)
_KX,. = Cr Z Eja
j=1

the sum over all exceptional curves, where ¢, € Q can be easily computed, e.g.,
cg = 1/9. The effective cone is spanned by the n(r) classes of exceptional curves,
and the nef cone is the cone dual to Aeg(X,) with respect to the intersection pairing
on Pic(X,). Put

(1.9) a(X;) i= vol (Anet (X,) N{C'[ (= Kx,,C) = 1}).

This “volume” of the nef cone has been computed in [Der0Q7al:
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r 1] 2 3 1 5 6 7 ] 8
n(ry | 1 | 3 6 10 16 27 | 56 | 240
a(X,) [ 1/6 [ 1/24 [ 1/72 [ 1/144 [ 1/180 | 1/120 | 1/30 | 1

Given a Del Pezzo surface over a number field, the equations of the lines can
be written down explicitly. This is easy for the diagonal cubic surface

o+l + o+l =0.

Writing
3 3
o} +af = [+ Gay) = af +ai = [ (e + o) =0,
r=1 r=1

with 4,7,k,1 € [0,...,3], and permuting indices we get all 27 lines. In general,
equations for the lines can be obtained by solving the corresponding equations on
the Grassmannian of lines.

Degenerations of Del Pezzo surfaces are also interesting and important. Typi-
cally, they arise as special fibers of fibrations, and their analysis is unavoidable in
the theory of models over rings such as Z, or C[t]. A classification of singular Del
Pezzo surfaces can be found in [BW79], [DP80]. Models of Del Pezzo surfaces
over curves are discussed in [Cor96]. Volumes of nef cones of singular Del Pezzo
surfaces are computed in [DJTO8].

We turn to Cox rings of Del Pezzo surfaces. Smooth Del Pezzo surfaces of degree
d > 6 are toric and their Cox rings are polynomial rings on 12 — d generators. The
generators and relations of the Cox rings of Del Pezzo surfaces have been computed
[BP04], [Der06], [STVO07], [TVAVO08], [SX08]. For r € {4,5,6,7} the generators
are the nonzero sections from exceptional curves and the relations are induced by
fibration structures on X, (rulings). In degree 1 two extra generators are needed,
the independent sections of H?(Xg, —Kx,).

It was known for a long time that the (affine cone over the) Grassmannian
Gr(2,5) is a universal torsor for the unique (smooth) degree 5 Del Pezzo surface
(this was used in [SD72] and [Sko93] to prove that every Del Pezzo surface of
degree 5 has a rational point). Batyrev conjectured that universal torsors of other
Del Pezzo surfaces should embed into (affine cones over) other Grassmannians, and
this is why:

One of the most remarkable facts of the theory of Del Pezzo surfaces is the
“hidden” symmetry of the collection of exceptional curves in the Picard lattice.
Indeed, for r = 3,4,5,...,8, the group W,. is the Weyl group of a root system:

(110) R'r‘ S {Al X A27A47D57E67E77E8}7

and the root lattice itself is the orthogonal to Kx, in Pic(X,.), the primitive Picard
group. Let G, be the simply-connected Lie group with the corresponding root sys-
tem. The embedding Pic(X,_1) — Pic(X,) induces an embedding of root lattices
R,._1 — R,, and identifies a unique simple root «, in the set of simple roots of
R,, as the complement of the simple roots from R,_;. This defines a parabolic
subgroup P, C G, (see Section 6.4). Batyrev’s conjecture was that the flag variety
P.\G, contains a universal torsor of X,.
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Recent work on Cox rings of Del Pezzo surfaces established this geometric
connection between smooth Del Pezzo surfaces and Lie groups with root systems of
the corresponding type: r = 5 was treated in [Pop01] and r = 6,7 in [Der07b], via
explicit manipulations with defining equations. The papers [SS07] and [SS08] give
conceptual, representation-theoretic proofs of these results. It would be important
to extend this to singular Del Pezzo surfaces.

Ezample 1.9.1 (Degree four). Here are some examples of singular degree four
Del Pezzo surfaces X = {Qo = 0} N {Q = 0} C P*, where Qo = zoz1 + 23 and Q
is given in the table below. Let X be the minimal desingularization of X. In all
cases below the Cox ring is given by

Cox(X) = F[n1,...,n0/(f)

with one relation f [Der07b]. Note that the Cox ring of a smooth degree 4 Del
Pezzo surface has 16 generators and 20 relations (see Example 5.3.2).

Singularities Q f
3A, To(z1 + T2) + 1374 N475 + M 7677 + 189
Ar+ A; a3 + Taxs + T n679 + 11778 + M173N37E
A; 23 + 2420 + (To + 1) | M5M9 + MN3NT + M3NENS
Dy 3 + T4 + T N3MENs + Nangie + N217
D5 2122 + Ty + T3 N33 + mangne + naning.

Example 1.9.2 (Cubics). Here are some singular cubic surfaces X C P3, given
by the vanishing of the corresponding cubic form:

4A, ToT1T2 + T1T2T3 + Tox3Tg + T3Tox1
2A1 + AQ ToL1Ty — x%(xl “+ 2o + Zg)
2A1 + Az | zom179 = 23(71 + T2)
A1+ 2As | xoz1T0 = 1];‘1.%‘% + .’L‘g
A1+ Az | mor170 = (21 + X2) (25 — 2%)
A1 + A4 ToT1Ty = 1‘%.132 + .73333%
Al + A5 ToL1Tg — ZL’? — l‘%fﬂz

3A2 ToL1Tg — l’g

Ay ToT1Toy = x% — xjx% + x%xg
As T3 = 23 + xox3 — 2373

Dy T1ToT3 = l‘o(331 + 2o + 333)2
D5 a:ox% + xlxg + .73%33‘3

Eg o3 = z1(z170 + 23).

Further examples of Cox rings of singular Del Pezzo surfaces can be found in
[Der06] and [DTO07]. In practice, most geometric questions are easier for smooth
surfaces, while most arithmetic questions turn out to be easier in the singular case.
For a survey of arithmetic problems on rational surfaces, see Sections 2.4 and 3.4,
as well as [MT86].
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Ezample 1.9.3. In some applications, torsors for subtori of Txg are also used.
Let X be the diagonal cubic surface
zh+ 2} + a5 + 25 = 0.
The following equations were derived in [CTKS87]:

Tx = 11012213 + T21T22T23 + 31%32233 = 0 c P8
11021231 + T12T22%32 + 13223733 = 0

This is a torsor for G = G2,.

1.10. K3 surfaces. Let X be a smooth projective surface with trivial canoni-
cal class. There are two possibilities: X could be an abelian surface or a K3 surface.
In the latter case, X is simply-connected and h!(X,Ox) = 0. The Picard group
Pic(X) of a K3 surface X is a torsion-free Z-module of rank < 20 and the intersec-
tion form on Pic(X) is even, i.e., the square of every class is an even integer. K3
surfaces of with polarizations of small degree can be realized as complete intersec-
tions in projective space. The most common examples are K3 surfaces of degree 2,
given explicitly as double covers X — P? ramified in a curve of degree 6; or quartic
surfaces X C P3.

Ezxample 1.10.1. The Fermat quartic
syttt =0
has Picard rank 20 over Q(y/—1). The surface X given by
xyd +y2d + 22wt =0
has Pic(Xg) = Z?° (see [Ino78] for more explicit examples). All such K3 surfaces

are classified in [Sch08].
The surface

w(zd + y3 + 23 + 222 + zw?) = 32%y? + daPyz + 2227 + 29”2 + xy2® + Y222
has geometric Picard rank 1, i.e., Pic(Xg) = Z [vLOT7].
Other interesting examples arise from abelian surfaces as follows: Let

1A — A
a — —a

be the standard involution. Its fixed points are the 2-torsion points of A. The
quotient A/¢ has 16 singularities (the images of the fixed points). The minimal
resolution of these singularities is a K3 surface, called a Kummer surface. There are
several other finite group actions on abelian surfaces such that a similar construction
results in a K3 surface, a generalized Kummer surface (see [Kat87]).

The nef cone of a polarized K3 surface (X, g) admits the following character-
ization: h is ample if and only if (h,C) > 0 for each class C with (¢,C) > 0
and (C,C) > —2. The Torelli theorem implies an intrinsic description of automor-
phisms: every automorphism of H?(X,Z) preserving the intersection pairing and
the nef cone arises from an automorphism of X. There is an extensive literature
devoted to the classification of possible automorphism groups [Nik81], [Dol08].
These automorphisms give examples of interesting algebraic dynamical systems



258 YURI TSCHINKEL

[McMO02|, [Can01]; they can be used to propagate rational points and curves
[BTO00], and to define canonical heights [Sil91], [Kaw08].

1.11. Threefolds. The classification of smooth Fano threefolds was a major
achievement completed in the works of Iskovskikh [Isk79], [IP99a], and Mori-
Mukai [MM&86]. There are more than 100 families. Among them, for example,
cubics X3 C P*, quartics X; C P* or double covers of Wy — P3, ramified in a
surface of degree 6. Many of these varieties, including the above examples, are
not rational. Unirationality of cubics can be seen directly by projecting from a
line on X3. The nonrationality of cubics was proved in [CG72] using intermediate
Jacobians. Nonrationality of quartics was proved by establishing birational rigidity,
i.e., showing triviality of the group of birational automorphisms, via an analysis of
mazimal singularities of such maps [IM71]. This technique has been substantially
generalized in recent years (see [Isk01], [Puk98], [Puk07], [Che05]). Some quartic
threefolds are also unirational, e.g., the diagonal, Fermat type, quartic

It is expected that the general quartic is not unirational. However, it admits an
elliptic fibration: fix a line [ € X4 C P* and consider a plane in P* containing this
line, the residual plane curve has degree three and genus 1. A general double cover
W5 does not admit an elliptic or abelian fibration, even birationally [CP07].

1.12. Holomorphic symplectic varieties. Let X be a smooth projective
simply-connected variety. It is called holomorphic symplectic if it carries a unique,
modulo constants, nondegenerate holomorphic two-form. Typical examples are K3
surfaces X and their Hilbert schemes X" of zero-dimensional length-n subschemes.
Another example is the variety of lines of a smooth cubic fourfold; it is deformation
equivalent to X2 of a K3 surface [BD85].

These varieties are interesting for the following reasons:

e The symplectic forms allows one to define a quadratic form on Pic(X),
the Beauville-Bogomolov form. The symmetries of the lattice carry rich
geometric information.

e There is a Torelli theorem, connecting the symmetries of the cohomology
lattice with symmetries of the variety.

e there is a conjectural characterization of the ample cone and of abelian
fibration structures, at least in dimension 4 [HT01].

Using this structure as a compass, one can find a plethora of examples with (La-
grangian) abelian fibrations over P or with infinite endomorphisms, resp. birational
automorphisms, which are interesting for arithmetic and algebraic dynamics.

1.13. Nonclosed fields. There is a lot to say: F-rationality, F-unirationality,
Galois actions on Pic(X ), Br(X ), algebraic points, special loci, descent of Galois-
invariant structures to the ground field etc. Here we touch on just one aspect: the
effective computation of the Picard group as a Galois module, for Del Pezzo and
K3 surfaces.
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Let X = X, be a Del Pezzo surface over F. A splitting field is a normal
extension of the ground field over which each exceptional curve is defined. The
action of the Galois group I' factors through a subgroup of the group of symmetries
of the exceptional curves, i.e., W,.. In our arithmetic applications we need to know

e Pic(X) as a Galois module, more specifically, the Galois cohomology
HY(T', Pic(Xz)) = Br(X)/Br(F);
this group is an obstruction to F-rationality, and also a source of obstruc-
tions to the Hasse principle and weak approximation (see Section 2.4);
e the effective cone Aeg(Xp).
For Del Pezzo surfaces, the possible values of H!(I", Pic(X )) have been computed
[SD93], [KST89], [Ura96], [Cor07]. This information alone does not suffice.
The effective Chebotarev theorem [LO77] implies that, given equations defining a
Del Pezzo surface, the Galois action on the exceptional curves, i.e., the image of
the Galois group in the Weyl group W,., can be computed in principle. The cone
A (XF) is spanned by the Galois orbits on these curves.
It would be useful to have a Magma implementation of an algorithm computing
the Galois representation on Pic(X), for X a Del Pezzo surface over Q.

Ezample 1.13.1. The Picard group may be smaller over nonclosed fields: for
X/Q given by
o+ at+ a2l +a=0
Pic(Xg) = Z*. Tt has a basis e, €2, €3, e4 such that A.g(X) is spanned by
ez, €3, 3e1—2e3—eq, 261 —ex—e3—€q, €1 — ey,
461 — 282 — 263 — €4, €1 — €2, 261 — 262 — €4, 261 — €3
(see [PTO1)).
Ezample 1.13.2 (Maximal Galois action). Let X/Q be the cubic surface
3 + 2zy® 4+ 11y3 4 3222 + 5yw + Tzw? = 0.

Then the Galois group acting on the 27 lines is W(Eg) [EJO8a] (see [Eke90],
[Ern94], [VAZO08], and [Zar08], for more examples).

No algorithms for computing even the rank, or the geometric rank, of a K3
surface over a number field are known at present. There are infinitely many possi-
bilities for the Galois action on the Picard lattice.

Ezxample 1.13.3. Let X be a K3 surface over a number field Q. Fix a model X
over Z. For primes p of good reduction we have an injection

Pic(Xg) < Pic(X, ).

The rank of Pic(X]Fp) is always even. In some examples, it can be computed by
counting points over I, for several r, and by using the Weil conjectures.

This local information can sometimes be used to determine the rank of Pic(Xg).
Let p, ¢ be distinct primes of good reduction such that the corresponding local ranks
are < 2 and the discriminants of the lattices Pic(Xp ), Pic(Xp, ) do not differ by
a square of a rational number. Then the rank of Pic(Xg) equals 1. This idea has
been used in [vLO7].
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2. Existence of points

2.1. Projective spaces and their forms. Let F be a field and F an alge-
braic closure of F'. A projective space over F' has many rational points: they are
dense in the Zariski topology and in the adelic topology. Varieties F-birational to
a projective space inherit these properties.

Over nonclosed fields F', projective spaces have forms, the so-called Brauer—
Severi varieties. These are isomorphic to P™ over F' but not necessarily over F.
They can be classified via the nonabelian cohomology group H!(F, Aut(P")), where
Aut(P™) = PGL, 41 is the group of algebraic automorphisms of P". The basic
example is a conic C C P?, e.g.,

(2.1) ax® +by* + ¢z* =0,

with a, b, ¢ square-free and pairwise coprime. It is easy to verify solvability of this
equation in R and modulo p, for all primes p. Legendre proved that (2.1) has
primitive solutions in Z if and only if it has nontrivial solutions in R and modulo
powers of p, for all primes p. This is an instance of a local-to-global principle that
will be discussed in Section 2.4.

Checking solvability modulo p is a finite problem which gives a finite proce-
dure to verify solvability in Z. Actually, the proof of Legendre’s theorem provides
effective bounds for the size of the smallest solution, e.g.,

max(|z[, |y, |2]) < 2abe

(see [Kneb9] for a sharper bound), which gives another approach to checking
solvability—try all z,y,2 € N subject to the inequality. If C(Q) # 0, then the
conic is Q-isomorphic to P': draw lines through a Q-point in C.
One could also ask about the number N(B) of triples of nonzero coprime square-
free integers
(a,b,c) € Z*, max(|al,|b],|c]) < B

such that Equation (2.1) has a nontrivial solution. It is [Guo95]:

9 1\*/? 3 B
N(B)=WH<1—5> (1+%)W(1+0(1)), B — .

I am not aware of a conceptual algebro-geometric interpretation of this density.

In general, forms of P™ over number fields satisfy the local-to-global principle.
Moreover, Brauer—Severi varieties with at least one F-rational point are split over
F, i.e., isomorphic to P™ over F'. It would be useful to have a routine (in Magma) that
would check efficiently whether or not a Brauer—Severi variety of small dimension
over QQ, presented by explicit equations, is split, and to find the smallest solution.
The frequency of split fibers in families of Brauer—Severi varieties is studied in
[Ser90].

2.2. Hypersurfaces. Algebraically, the simplest examples of varieties are hy-
persurfaces, defined by a single homogeneous equation f(x) = 0. Many classical
Diophantine problems reduce to the study of rational points on hypersurfaces. Be-
low we give two proofs and one heuristic argument to motivate the idea that hy-
persurfaces of low degree should have many rational points.
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THEOREM 2.2.1. [Che35|, [War35] Let X = X C P™ be a hypersurface over
a finite field F' given by the equation f(x) = 0. If deg(f) < n then X(F) # (.

PRrROOF. We reproduce a textbook argument [BS66], for F' =T,,.
Step 1. Consider the §-function

pil a_ | -1 modp ifp—1]d
ﬂx o 0 modp ifp—11d

Step 2. Apply it to a (not necessarily homogeneous) polynomial ¢ € F,[xo, ..., zy],
with deg(¢) < n(p —1). Then

Z ¢($07"'7xn) =0 mOdp

TOyeees T,

Indeed, for monomials, we have

Z b gdn = H(Z:ﬁ?), with do+---+d, <n(p—1).
Lo, Tn
For some j, we have 0 < d; <p— 1.

Step 3. For ¢(z) =1 — f(z)P~! we have deg(¢) < deg(f) - (p —1). Then
N(f) = #{z[f(@) =0} = D é(x)=0 mod p,

since deg(f) < n.

Step 4. The equation f(x) =0 has a trivial solution. It follows that
N(f) >1 and X(FF,) #0.

A far-reaching generalization is the following theorem.

THEOREM 2.2.2. [Esn03] If X is a smooth Fano variety over a finite field F,
then
X(Fq) #0.

Now we pass to the case in which FF = Q. Given a form f € Z[xzg,...,2,],
homogeneous of degree d, we ask how many solutions x = (g, ..., x,) € Z"*! to the
equation f(x) = 0 should we expect? Primitive solutions with ged(zo, ..., z,) =1,
up to diagonal multiplication with +1, are in bijection with rational points on the
hypersurface X; C P". We have |f(z)| = O(BY), for ||z| = max;(|z;|) < B.
We may argue that f takes values 0,1,2,... with equal probability, so that the
probability of f(x) = 0 is B~ There are B"*! “events” with ||z|| < B. In
conclusion, we expect B"+1~¢ solutions with ||z|| < B. There are three cases:

e n+ 1< d: as B — oo we should have fewer and fewer solutions, and,
eventually, none!

e n+1—d=0: this is the stable regime, we get no information in the limit
B — oo

e n+1—d > 0: the expected number of solutions grows.
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We will see many instances when this heuristic reasoning fails. However, it is
reasonable, as a first approximation, at least when

n+1—d>0.

Diagonal hypersurfaces have attracted the attention of computational number
theorists (see http://euler.free.fr). A sample is given below:

Ezample 2.2.3.
e There are no rational points (with non-zero coordinates) on the Fano 5-
fold z§ = 3°5_, % with height < 2.6+ 10.
e There are 12 (up to signs and permutations) rational points on z§ =
Z;:l x? of height < 10° (with non-zero coordinates).
e The number of rational points (up to signs, permutations and with non-
zero coordinates) on the Fano 5-fold x§ + 2§ = 2?22 9 of height < 10*
(resp. 2-10%,3-10%) is 12 (resp. 33, 57).
Clearly, it is difficult to generate solutions when n — d is small. On the other
hand, we have the following theorem:

THEOREM 2.2.4. [Bir62] If n > (deg(f) —1)-298()) | and f is smooth then the
number N(f,B) of solutions x = (x;) with max(|z;|) < B is

N(f,B) =[] 7 mcB" ™41 +0(1)), as B— oo,
p

where T,,Too are the p-adic, resp. real, densities. The Euler product converges
provided local solutions exist for all p and in R.

We sketch the method of a proof of this result in Section 4.6.

Now we assume that X = Xy is a hypersurface over a function field in one
variable F' = C(t). We have

THEOREM 2.2.5. If deg(f) <n then X;(C(t)) # 0.

PRrROOF. It suffices to count parameters: Insert z; = x;(t) € C[t], of degree e,

into
f = Z fJxJ = Oa
J
with |J| = deg(f). This gives a system of e - deg(f) + const equations in e(n + 1)
variables. This system is solvable for e > 0, provided deg(f) < n. O

2.3. Decidability. Hilbert’s 10th problem has a negative solution: there is no
algorithm to decide whether a or not a Diophantine equation is solvable in integers
(see [Mat00], [Mat06]). In fact, there exist Diophantine equations

fi(xy, ..o xn) = ft 21,0 20)
such that the set of t € Z with the property that f; has infinitely many primitive
solutions (x1,...,,) is algorithmically random [Cha94]'.

lThe author’s abstract: “One normally thinks that everything that is true is true for a reason. I've

found mathematical truths that are true for no reason at all. These mathematical truths are beyond the power
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There are many results concerning undecidability of general Diophantine equa-
tions over other rings and fields (for a recent survey, see [Poo08b]). The case of
rational points, over a number field, is open; even for a cubic surface we cannot
decide, at present, whether or not there are rational points.

2.4. Obstructions. As we have just said, there is no hope of finding an algo-
rithm which would determine the solvability of a Diophantine equation in integers,
i.e., there is no algorithm to test for the existence of integral points on quasi-
projective varieties. The corresponding question for homogeneous equations, i.e.,
for rational points, is still open. It is reasonable to expect that at least for cer-
tain classes of algebraic varieties, for example, for Del Pezzo surfaces, the existence
question can be answered. In this section we survey some recent results in this
direction.

Let Xp be a scheme over a base scheme B. We are looking for obstructions
to the existence of points X (B), i.e., sections of the structure morphism X — B.
Each morphism B’ — B gives rise to a base-change diagram, and each section
z : B — X provides a section 2’ : B" — Xp.

X%XB/ X%XB/
| T
B<=——5H B<~——PpH

This gives rise to a local obstruction, since it is sometimes easier to check that
Xp/(B') = 0. In practice, B could be a curve and B’ a cover, or an analytic
neighborhood of a point on B. In the number-theoretic context, B = Spec (F') and
B’ = Spec (F,), where v is a valuation of the number field F' and F, the v-adic
completion of F. One says that the local-global principle, or the Hasse principle,
holds, if the existence of F-rational points is implied by the existence of v-adic
points in all completions.

Example 2.4.1. The Hasse principle holds for:

(1) smooth quadrics Xy C P";

(2) Brauer—Severi varieties;

(3) Del Pezzo surfaces of degree > 5;

(4) Chatelet surfaces y*> — az? = f(xo, 1), where f is an irreducible polyno-
mial of degree < 4 [CTSSD8&87b];

(5) hypersurfaces Xy C P”, for n > d (see Theorem 2.2.4).

The Hasse principle may fail for cubic curves, e.g.,

32% + 4y° +52% = 0.

of mathematical reasoning because they are accidental and random. Using software written in Mathematica that
runs on an IBM RS/6000 workstation, I constructed a perverse 200-page algebraic equation with a parameter
t and 17,000 unknowns. For each whole-number value of the parameter t, we ask whether this equation has a
finite or an infinite number of whole number solutions. The answers escape the power of mathematical reason

because they are completely random and accidental.”
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In topology, there is a classical obstruction theory to the existence of sections.
An adaptation to algebraic geometry is formulated as follows: Let € be a contravari-
ant functor from the category of schemes over a base scheme B to the category of
abelian groups. Applying the functor € to the diagrams above, we have

¢(X) — ¢(Xp) ¢(X) — (Xp)
] ol
¢(B) > ¢(B) ¢(B) > ¢(B)

If for all sections ', the image of &’ in €(B’) is nontrivial in the cokernel of the
map €(B) — €(B’), then we have a problem, i.e., an obstruction to the existence
of B-points on X. So far, this is still a version of a local obstruction. However, a
global obstruction may arise, when we vary B’.

We are interested in the case when B = Spec (F), for a number field F', with
B’ ranging over all completions F,. A global obstruction is possible whenever the
map

¢(Spec (F)) — H €(Spec (F,))

has a nontrivial cokernel. What are sensible choices for €7 Basic contravariant
functors on schemes are €(—) := HZ (—, G,,). For i = 1, we get the Picard functor,
introduced in Section 1.1. However, by Hilbert’s theorem 90,

H} (F,G,,) := H} (Spec (F),G,,) = 0,

for all fields F', and this won’t generate an obstruction. For i = 2, we get the
(cohomological) Brauer group Br(X) = HZ (X, G,,), classifying sheaves of central
simple algebras over X, modulo equivalence (see [Mil80, Chapter 4]). By class
class field theory, we have an exact sequence

(2.2) 0 Br(F) —» @ Br(F) =5" Q/z — 0,

where inv, : Br(F,) — Q/Z is the local invariant. We apply it to the diagram and
obtain

Br(Xp) ——> @, Br(Xr,)

e
>, invy,

O BI'(F) @v Br(FU)

Q/Z 07

Define

(2.3) X(Ap)P = (] {(@wo)v € X(Ap)| D inv(A(z,)) = 0}.
A€eBr(X) v

Let X (F') be the closure of X(F') in X(Ap), in the adelic topology. One says that
X satisfies weak approximation over F if X(F) = X(Ar). We have

X(F)c X(F)C X(Ar)B" C X(Ap).
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From this we derive the Brauer—Manin obstruction to the Hasse principle and weak
approximation:
o if X(Ap) # 0 but X(Ar)B" = 0 then X(F) = 0, i.e., the Hasse principle
fails;
o if X(Ap)# X(Ap)B" then weak approximation fails.

Del Pezzo surfaces of degree > 5 satisfy the Hasse principle and weak approxi-
mation. Arithmetically most interesting are Del Pezzo surfaces of degree 4,3, and
2: these may fail the Hasse principle:

o deg = 4: 22 +w? = (2% — 2¢°)(3y? — 2?) [Isk71];
o deg = 3: 523 + 1292 + 92° + 10w® = 0 [CG66];
o deg = 2: w? =22* — 3y* — 62* [KT04a].

One says that the Brauer—-Manin obstruction to the existence of rational points

is the only one if X (Ax)B* # () implies that X (F) # (). This holds for:

(1) certain curves of genus > 2 (see, e.g., [Sto07]);

(2) principal homogeneous spaces for connected linear algebraic groups over
F [San81];

(3) Del Pezzo surfaces of degree > 3 admitting a conic bundle structure de-
fined over the ground field F;

(4) conjecturally(!), for all geometrically rational surfaces.

However, the Brauer—-Manin obstruction is not the only one, in general. Here is
a heuristic argument: a smooth hypersurface in P4 has trivial Br(X)/Br(F). It is
easy to satisfy local local conditions, so that for a positive proportion of hypersur-
faces one has X (Ap) # 0 (see [PVO04]). Consider X of very large degree. Lang’s
philosophy (see Conjecture 3.1.1) predicts that there are very few rational points
over any finite extension of the ground field. Why should there be points over F'?
This was made precise in [SW95]. The first unconditional result in this direc-
tion was [Sko99]: there exist surfaces X with empty Brauer-Manin obstructions
and étale covers X which acquire new Brauer group elements producing nontrivial
obstructions on X and a posteriori on X. These type of “multiple-descent”, non-
abelian, obstructions were systematically studied in [HS05], [HS02], [Sko01] (see
also [Har|, and [Pey05], [Har04]).

Insufficiency of these nonabelian obstructions for threefolds was established in
[Poo08a]. The counterexample is a fibration ¢ : X — C, defined over Q, such
that

e (' is a curve of genus > 2 with C'(Q) # 0 (e.g., a Fermat curve);
e every fiber X, for ¢ € C(Q), is the counterexample
22 +w? = (22 — 29°)(3y* — 2?)

from [Isk71], i.e., X (Ag) # 0, and X.(Q) = 0;
e Br(X) ~ Br(C), and the same holds for any base change under an étale
map C — C.
Then X (Ag)B" # 0, for every étale cover X — X, while X(Q) = 0.

2.5. Descent. Let T be an algebraic torus, considered as a group scheme, and
X a smooth projective variety over a number field F'. We assume that Pic(Xz) =
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NS(X ). The F-isomorphisms classes of T-torsors
m: T =X

are parametrized by H} (X,T). A rational point z € X (F) gives rise to the spe-
cialization homomorphism

oyt He (X, T) — HE(F,T),
with image a finite set. Thus the partition:

(2.4) Xy = |J w7,

TE€HL, (F,T)

exhibiting 7- as descent varieties.
We now consider the I' = Gal(F'/F)-module NS(X ) and the dual torus Txs.
The classifying map in Equation 1.8 is now

x @ HY(X, Tng) — Homp(NS(X ), Pic(X)),

a Tng-torsor T is called universal if x([T]) = Id (it may not exist over the ground
field F'). The set of forms of a universal torsor 7 can be viewed is a principal
homogeneous space under Hét (F,T). The main reasons for working with universal
torsors, rather than other torsors are:

e the Brauer—-Manin obstruction on X translates to local obstructions on
universal torsors, i.e.,

X(Ap)® = m(T(Ar));

reH}, (F,T)
e the Brauer—Manin obstruction on universal torsors vanishes.
The foundations of the theory are in [CTS87] and in the book [Sko01].

2.6. Effectivity. In light of the discussion in Section 2.3 it is important to
know whether or not the Brauer—Manin obstruction can be computed, effectively in
terms of the coefficients of the defining equations. There is an extensive literature
on such computations for curves (see the recent papers [Fly04], [BBFLO07] and ref-
erences therein) and for surfaces (e.g., [CTKS87], [BSDO04], [Cor07], [KT04b]).

Effective computability of the Brauer-Manin obstruction for all Del Pezzo sur-
faces over number fields has been proved in [KTO08]. The main steps are as follows:

(1) Computation of the equations of the exceptional curves and of the action
of the Galois group I of a splitting field on these curves as in Section 1.13.
One obtains the exact sequence of I'-modules

0 — Relations — @ZE; — Pic(X) — 0.

(2) We have
Br(X)/Br(F) = HY(T', Pic(X)).

Using the equations for exceptional curves and functions realizing relations
between the curves classes in the Picard group one can compute explicitly
Azumaya algebras {A;} representing the classes of Br(X)/Br(F).

(3) The local points X (F,) can be effectively decomposed into a finite union
of subsets such that each A; is constant on each of these subsets. This
step uses an effective version of the arithmetic Hilbert Nullstellensatz.
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(4) The last step, the computation of local invariants is also effective.

3. Density of points

3.1. Lang’s conjecture. One of the main principles underlying arithmetic
geometry is the expectation that the trichotomy in the classification of algebraic
varieties via the Kodaira dimension in Section 1.2 has an arithmetic manifestation.
The broadly accepted form of this is

CoNJECTURE 3.1.1 (Lang’s conjecture). Let X be a variety of general type,
i.e., a smooth projective variety with ample canonical class, defined over a number
field F. Then X (F') is not Zariski dense.

What about a converse? The obvious necessary condition for Zariski density
of rational points, granted Conjecture 3.1.1, is that X does not dominate a variety
of general type. This condition is not enough, as was shown in [CTSSD97]: there
exist surfaces that do not dominate curves of general type but which have étale
covers dominating curves of general type. By the Chevalley—Weil theorem (see,
e.g., [Abr] in this volume), these covers would have a dense set of rational points,
over some finite extension of the ground field, contradicting Conjecture 3.1.1.

As a first approximation, one expects that rational points are potentially dense
on Fano varieties, on rationally connected varieties, and on Calabi—Yau varieties.
Campana formulated precise conjectures characterizing varieties with potentially
dense rational points via the notion of special varieties (see Section 1.5). In the
following sections we survey techniques for proving density of rational points and
provide representative examples illustrating these. For a detailed discussion of
geometric aspects related to potential density see [Abr], and [Has03].

3.2. Zariski density over fixed fields. Here we address Zariski density of
rational points in the “unstable” situation, when the density of points is governed
by subtle number-theoretical properties, rather than geometric considerations. We
have the following fundamental result:

THEOREM 3.2.1. Let C' be a smooth curve of genus g = g(C) over a number
field F'. Then

e ifg=0 and C(F) # 0 then C(F) is Zariski dense;

e ifg=1 and C(F) # () then C(F) is an abelian group (the Mordell-Weil
group) and there is a constant cp (independent of C') bounding the order of
the torsion subgroup C'(F)iors of C(F) [Maz77|, [Mer96]; in particular,
if there is an F-rational point of infinite order then C'(F) is Zariski dense;

e if g > 2 then C(F) is finite [Fal83], [Fal91].

In higher dimensions we have:

THEOREM 3.2.2. Let X be an algebraic variety over a number field F. Assume
that X (F) # 0 and that X is one of the following

e X is a Del Pezzo surface of degree 2 and has a point on the complement
to the exceptional curves;

e X is a Del Pezzo surface of degree > 3;

e X is a Brauer-Severi variety.
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Then X (F) is Zariski dense.
The proof of the first two claims can be found in [Man86].

REMARK 3.2.3. Let X/F be a Del Pezzo surface of degree 1 (it always contains
an F-rational point, the base point of the anticanonical linear series) or a conic
bundle X — P!, with X(F) # (. It is unknown whether or not X (F) is Zariski
dense.

THEOREM 3.2.4. [E1k88] Let X C P? be the quartic K3 surface given by
(3.1) T+ ] + 3 = 23
Then X (Q) is Zariski dense.

The trivial solutions (1 :0: 0 : 1) etc are easily seen. The smallest nontrivial
solution is

(95800, 217 519, 414 560, 422 481).

Geometrically, over Q, the surface given by (3.1) is a Kummer surface, with many
elliptic fibrations.

Ezample 3.2.5. [EJ06] Let X C P3 be the quartic given by
ot 42yt = 2t 4 4t

The obvious Q-rational points are given by y = ¢ = 0 and * = +z. The next
smallest solution is

1484801* + 2 - 1203120* = 1169407* + 4 - 1157520
It is unknown whether or not X (Q) is Zariski dense.

3.3. Potential density: techniques. Here is a (short) list of possible strate-
gies to propagate points:

e use the group of automorphisms Aut(X), if it is infinite;

e try to find a dominant map X — X where X satisfies potential density
(for example, try to prove unirationality);

e try to find a fibration structure X — B where the fibers satisfy potential
density in some uniform way (that is, the field extensions needed to insure
potential density of the fibers V4 can be uniformly controlled).

In particular, it is important for us keep track of minimal conditions which
would insure Zariski density of points on varieties.

Ezxample 3.3.1. Let 7 : X — P! be a conic bundle, defined over a field F.
Then rational points on X are potentially dense. Indeed, by Tsen’s theorem, 7 has
a section s : P! — X (which is defined over some finite extension F’/F), each fiber
has an F’-rational point and it suffices to apply Theorem 3.2.1. Potential density
for conic bundles over higher-dimensional bases is an open problem.

If X is an abelian variety then there exists a finite extension F’/F and a point
P € X(F") such that the cyclic subgroup of X (F") generated by P is Zariski dense
(see, e.g., [HTO0ODb, Proposition 3.1]).
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Example 3.3.2. If 7 : X — P! is a Jacobian nonisotrivial elliptic fibration (7
admits a section and the j-invariant is nonconstant), then potential density follows
from a strong form of the Birch/Swinnerton-Dyer conjecture [GM97], [Man95].
The key problem is to control the variation of the root number (the sign of the
functional equation of the L-functions of the elliptic curve) (see [GM97]).

On the other hand, rational points on certain elliptic fibrations with multiple
fibers are not potentially dense [CTSSD97].

Ezample 3.3.3. One geometric approach to Zariski density of rational points
on (certain) elliptic fibration can be summarized as follows:

Case 1. Let m : X — B be a Jacobian elliptic fibration and e : B — X its
zero-section. Suppose that we have another section s which is nontorsion in the
Mordell-Weil group of X (F(B)). Then a specialization argument implies that the
restriction of the section to infinitely many fibers of 7w gives a nontorsion point in
the Mordell-Weil group of the corresponding fiber (see [Ser89], 11.1). In particular,
X(F) is Zariski dense, provided B(F') is Zariski dense in B.

Case 2. Suppose that w : X — B is an elliptic fibration with a multisection M
(an irreducible curve surjecting onto the base B). After a base change X xgM — M
the elliptic fibration acquires the identity section Id (the image of the diagonal under
M xp M —V xp M) and a (rational) section

TM SZdIdfTI‘(MXBM),

where d is the degree of m : M — B and Tr(M x g M) is obtained (over the generic
point) by summing all the points of M x g M. We will say that M is nontorsion if
Ty 1S nontorsion.

If M is nontorsion and if M (F) is Zariski dense then the same holds for X (F)
(see [BT99]).

REMARK 3.3.4. Similar arguments work for abelian fibrations [HT0O0c]. The
difficulty here is to formulate some simple geometric conditions ensuring that a
(multi)section leads to points which are not only of infinite order in the Mordell-Weil
groups of the corresponding fibers, but in fact generate Zariski dense subgroups.

3.4. Potential density for surfaces. By Theorem 3.2.1, potential density
holds for curves of genus g < 1. It holds for surfaces which become rational after a
finite extension of the ground field, e.g., for all Del Pezzo surfaces. The classification
theory in dimension 2 gives us a list of surfaces of Kodaira dimension 0:

e abelian surfaces;
e bielliptic surfaces;
e Enriques surfaces;
e K3 surfaces.

Potential density for the first two classes follows from Theorem 3.2.2. The
classification of Enriques surfaces X implies that either Aut(X) is infinite or X is
dominated by a K3 surface X with Aut(X) infinite [Kon86]. Thus we are reduced
to the study of K3 surfaces.
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THEOREM 3.4.1. [BT00] Let X be a K3 surface over any field of characteristic
zero. If X is elliptic or admits an infinite group of automorphisms then rational
points on X are potentially dense.

SKETCH OF THE PROOF. One needs to find sufficiently nondegenerate rational
or elliptic multisections of the elliptic fibration X — P!. These are produced using
deformation theory. One starts with special K3 surfaces which have rational curves
C; C X; in the desired homology class (for example, Kummer surfaces) and then
deforms the pair. This deformation technique has to be applied to twists of the
original elliptic surface. O

Example 3.4.2. A smooth hypersurface X C P! x P! x P! of bi-degree (2,2,2)
is a K3 surface with Aut(X) infinite.

Example 3.4.3. Every smooth quartic surface S; C P? which contains a line
is an elliptic K3 surface. Indeed, let M be this line and assume that both S4; and
M are defined over a number field F'. Consider the 1-parameter family of planes
P2 C P? containing M. The residual curve in the intersection P? N Sy is a plane
cubic intersecting M in 3 points. This gives a fibration 7 : Sy — P! with a rational
tri-section M.

To apply the strategy of Section 6.1 we need to ensure that M is nontorsion. A
sufficient condition, satisfied for generic quartics Sy, is that the restriction of 7w to
M ramifies in a smooth fiber of 7 : X — PL. Under this condition X (F) is Zariski
dense.

THEOREM 3.4.4. [HT00a] Let X C P3 be a quartic K3 surface containing a
line defined over a field F. If X is general, then X(F) is Zariski dense. In all
cases, there exists a finite extension F'/F such that X (F') is Zariski dense.

THEOREM 3.4.5. [BTO00] Let X be an elliptic K3 surface over a field F. Then
rational points are potentially dense.

Are there K3 surfaces X over Q with geometric Picard number 1, X(Q) #
and X (Q) not Zariski dense?

3.5. Potential density in dimension > 3. Potential density holds for uni-
rational varieties. Classification of (smooth) Fano threefolds and the detailed study
of occurring families implies unirationality for all but three cases:

e X,: quartics in P*;

e V/;: double covers of a cone over the Veronese surface in P? ramified in a
surface of degree 6;

e Ws: double covers of P? ramified in a surface of degree 6.

We now sketch the proof of potential density for quartics from [HTO0O0a]; the
case of V] is treated by similar techniques in [BT99].

The threefold X, contains a l-parameter family of lines. Choose a line M
(defined over some extension of the ground field, if necessary) and consider the
1-parameter family of hyperplanes P} C P* containing M. The generic hyperplane
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section Sy := P} N X, is a quartic surface with a line. Now we would like to argue
as in Example 3.4.3. We need to make sure that M is nontorsion in S; for a dense
set of t € P'. This will be the case for general X, and M. The analysis of all
exceptional cases requires care.

REMARK 3.5.1. It would be interesting to have further (nontrivial) examples of
birationally rigid Fano varieties with Zariski dense sets of rational points. Examples
of Calabi—Yau varieties over function fields of curves, with geometric Picard number
one and dense sets of rational points have been constructed in [HTO8Db]; little is
known over number fields.

THEOREM 3.5.2. [HTO00c] Let X be a K3 surface over a field F, of degree
2(n — 1). Then rational points on X™ are potentially dense.

The proof relies on the existence of an abelian fibration
Y = x5 p,

with a nontorsion multisection which has a potentially dense set of rational points.
Numerically, such fibrations are predicted by square-zero classes in the Picard group
Pic(Y), with respect to the Beauville-Bogomolov form (see Section 1.12). Geomet-
rically, the fibration is the degree n Jacobian fibration associated to hyperplane
sections of X.

THEOREM 3.5.3. [AVO08] Let Y be the Fano variety of lines on a general cubic
fourfold X3 C P over a field of characteristic zero. Then rational points on'Y are
potentially dense.

SKETCH OF PROOF. The key tool is a rational endomorphism ¢: ¥ — Y ana-
lyzed in [Voi04]: let [ on X3 C P5 be a general line and P? C P5 the unique plane
everywhere tangent to [,

PPNX =20+,
Let [[] € Y be the corresponding point and put ¢([l]) := ['], where ' is the residual
line in X3.

Generically, one can expect that the orbit {¢"([(])}nen is Zariski dense in Y.
This was proved by Amerik and Campana in [ACO8], over uncountable ground
fields. Over countable fields, one faces the difficulty that the countably many
exceptional loci could cover all algebraic points of Y. Amerik and Voisin were
able to overcome this obstacle over number fields. Rather than proving density of
{&™([) }nen they find surfaces ¥ C Y, birational to abelian surfaces, whose orbits
are dense in Y. The main effort goes into showing that one can choose sufficiently
general ¥ defined over Q, provided that Y is sufficiently general and still defined over
a number field. In particular, Y has geometric Picard number one. A case-by-case
geometric analysis excludes the possibility that the Zariski closure of {¢"(2)}nen
is a proper subvariety of F'. O

THEOREM 3.5.4. [HTO08a] Let Y be the variety of lines of a cubic fourfold
X3 C P which contains a cubic scroll T. Assume that the hyperplane section of
X3 containing T has exactly 6 double points in linear general position and that X3
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does not contain a plane. If X3 and T are defined over a field F then Y (F) is
Zariski dense.

REMARK 3.5.5. In higher dimensions, (smooth) hypersurfaces Xy C P" of
degree d represent a major challenge. The circle method works well when

n> 24

while the geometric methods for proving unirationality require at least a super-
exponential growth of n (see [HMP98] for a construction of a unirational para-
metrization).

3.6. Approximation. Let X be smooth and projective. Assume that X (F')
is dense in each X(F,). A natural question is whether or not X (F') is dense in
the adeles X (Ap). This weak approzimation may be obstructed globally, by the
Brauer—-Manin obstruction, as explained in Section 2.4. There are examples of
such obstructions for Del Pezzo surfaces in degree < 4, for conic bundles over P?
[Har96], and for K3 surfaces as in the following example.

Ezample 3.6.1. [Wit04] Let E — P! be the elliptic fibration given by
y> =x(x — g)(x —h) where g(t) =3(t—1)3(t+3) and h= g(—t).

Its minimal proper regular model X is an elliptic K3 surface that fails weak approx-
imation. The obstruction comes from transcendental classes in the Brauer group
of X.

The theory is parallel to the theory of the Brauer—Manin obstruction to the
Hasse principle, up to a certain point. The principal new feature is:

THEOREM 3.6.2. [Min89] Let X be a smooth projective variety over a number
field with a nontrivial geometric fundamental group. Then weak approximation fails

for X.
This applies to Enriques surfaces [HSO05].

Of particular interest are varieties which are unirational over the ground field F,
e.g., cubic surfaces with an F-rational point. Other natural examples are quotients
V/G, where G is a group and V' a G-representation, discussed in Section 1.2.

4. Counting problems

Here we consider projective algebraic varieties X C P" defined over a num-
ber field F. We assume that X (F') is Zariski dense. We seek to understand the
distribution of rational points with respect to heights.

4.1. Heights. First we assume that F' = Q. Then we can define a height of
integral (respectively rational) points on the affine (respectively projective) space
as follows

Haﬁinc : An(Z) = 7" — RZO
o= () o el = max (o)

H:P"(Q) = (Zpin \0)/£ — R0
x=(2g,...,%n) = |||l = max;(|z;]).
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Here Zgrﬁj are the primitive vectors. This induces heights on points of subvarieties
of affine or projective spaces. In some problems it is useful to work with alternative
norms, e.g., /> 7 instead of max;(|z;]). Such choices are referred to as a change

of metrization. A more conceptual definition of heights and adelic metrizations is
given in Section 4.8

4.2. Counting functions. For a subvariety X C P" put
N(X,B) := #{z € X(Q) [H(z) < B}.
What can be said about
N(X,B), for B— oo ?
Main questions here concern:

e (uniform) upper bounds,
e asymptotic formulas,
e geometric interpretation of the asymptotics.

By the very definition, N(X, B) depends on the projective embedding of X. For
X =P" over Q, with the standard embedding via the line bundle O(1), we get

1
C(n+1)

where 7o, is the volume of the unit ball with respect to the metrization of O(1).
But we may also consider the Veronese re-embedding

Pr - PN
x = 2l || =d,

N(P",B) = Too - B"T(1+0(1)), B — o0,

e.g.,
P! — P2,
(ro:z1) — (23:moz1:22).
The image yoy2 = y> has ~ B points of height < B. Similarly, the number of
rational points on height < B in the O(d)-embedding of P™ will be about B(*+1)/4,
More generally, if F/Q is a finite extension, put

Pn(F) — R>0
r v TTmax(frl,).
THEOREM 4.2.1. [SchT79]
(4.1)
hi R (n + 1yri+re=t ((omamyre \ ™
N(P"(F),B) = £ B""(1 +0(1)), B— o0
(P(F). B) wrCr(n+1) ( disc(F)> ( 1)
where

hg is the class number of F;

Rp the regulator;

r1 (resp. r2) the number of real (resp. pairs of complex) embeddings of F;
disc(F) the discriminant;

wg the number of roots of 1 in F;

(r the zeta function of F.
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With this starting point, one may try to prove asymptotic formulas of similar
precision for arbitrary projective algebraic varieties X, at least under some natural
geometric conditions. This program was initiated in [FMT89] and it has rapidly
grown in recent years.

4.3. Upper bounds. A first step in understanding growth rates of rational
points of bounded height is to obtain uniform upper and lower bounds, with effective
control of error terms. Results of this type are quite valuable in arguments using
fibration structures. Here is a sample:

e [BP89], [Pil96]: Let X C A? be a geometrically irreducible affine curve.
Then

#{z € X(Z) | Hafine(7) < B} Kaeg(x) BT log(B)2de8()+3,

e [EVO05]: Let X C P? be a geometrically irreducible curve of genus > 1.
Then there is a § > 0 such that

2
N(X(Q), B) <<deg(X),6 B deex) 5.
Fibering and using estimates for lower dimensional varieties, one has:

THEOREM 4.3.1. [Pil95] Let X C P™ be a geometrically irreducible variety,
and € > 0. Then

N(X(Q)7 B) <<deg(X),dim(X)’5 Bdim(X)_;'_ﬁ(x)_,’_€

The next breakthrough was accomplished in [HBO2]; further refinements com-
bined with algebro-geometric tools lead to

THEOREM 4.3.2 ([BHBSO06], [Sal07]). Let X C P™ be a geometrically irre-
ducible variety, and € > 0. Then

Bdim(X)—%+%+e deg(X) = 3
N(X(Q), B) <<deg(X),dim(X),s Bdim(X)i%+2\/d:g(X)+e deg(X) =45
Bdim(X)+e deg(X) >6

A survey of results on upper bounds, with detailed proofs, is in [HBO6].

4.4. Lower bounds. Let X be a projective variety over a number field F' and
let L be a very ample line bundle on X. This gives an embedding X — P"™. We fix
a height H on P™(F') and consider the counting function

N(X(F),L,B) = #{z € X(F)|HL(z) < B},

with respect to the induced height Hy, (see Section 4.8 for more explanations on
heights).

LEMMA 4.4.1. Let X be a smooth Fano wvariety over a number field F and
Y := Blz(X) a blowup in a smooth subvariety Z = Zp of codimension > 2. If
N(X°(F),—Kx,B) > Bl, for all dense Zariski open X° C X then the same holds
forY:

N(Y°(F),-Ky,B) > B'.
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PROOF. Let 7 : Y — X be the blowup. We have
—Ky = W*(—Kx) —D

with supp(D) C E, the exceptional divisor. It remains to use the fact that Hp(z)
is uniformly bounded from below on (X \ D)(F') (see, e.g., [BGO06, Proposition
2.3.9]), so that

N(m~H(X°)(F), —Ky,B) > ¢- N(X°(F), -Kx,B),
for some constant ¢ > 0 and an appropriate Zariski open X° C X. O

In particular, split Del Pezzo surfaces X,. satisfy the lower bound of Conjec-
ture 4.10.1
N(X,(F),-Kx,,B) > B'.

Finer lower bounds, in some nonsplit cases have been proved in [SSD98|:
N(X§(F),—Kx,,B) > B'log(B)" ™,

provided the cubic surface X¢ has at least two skew lines defined over F. This
gives support to Conjecture 4.10.2. The following theorem gives evidence for Con-
jecture 4.10.1 in dimension 3.

THEOREM 4.4.2. [Man93] Let X be a Fano threefold over a number field Fy.
For every Zariski open subset X° C X there exists a finite extension F/Fy such
that

N(X(F),—-Kx,B) > B'.

This relies on the classification of Fano threefolds (cf. [IP99b], [MMS&2],
[MMS86]). One case was missing from the classification when [Man93] was pub-
lished; the Fano threefold obtained as a blowup of P! x P! x P! in a curve of
tri-degree (1,1,3) [MMO3]. Lemma 4.4.1 proves the expected lower bound in this
case as well. An open question is whether or not one can choose the extension F'
independently of X°.

4.5. Finer issues. At the next level of precision we need to take into account
more refined arithmetic and geometric data. Specifically, we need to analyze the
possible sources of failure of the heuristic N(B) ~ B"*1~4 in Section 2.2:

e Local or global obstructions: as in
3+ 23 + 23 =0 or xf + 4o} + 1023 + 2523 = 0;

e Singularities: the surface x222 + 322 + 322 = wox 2923 has ~ B3/2
points of height < B, on every Zariski open subset, too many!

o Accumulating subvarieties: On xy + 3 + 23 + 23 = 0 there are ~ B?
points on Q-lines and and provably O(B4/ 3+¢) points in the complement
[HB97]. The expectation is Blog(B)3, over Q. Similar effects persist in
higher dimensions. A quartic X, C P* contains a l-parameter family of
lines, each contributing ~ B? to the asymptotic, while the expectation is
~ B. Lines on a cubic X3 C P* are parametrized by a surface, which is of
general type. We expect ~ B2 points of height < B on the cubic threefold,
and on each line. In [BGO06, Theorem 11.10.11] it is shown that

Niines(B) = ¢B*(1 +0(1)), as B — oo,



276 YURI TSCHINKEL

where the count is over F-rational points on lines defined over F', and the
constant c is a convergent sum of leading terms of contributions from each
line of the type (4.1). In particular, each line contributes a positive density
to the main term. On the other hand, one expects the same asymptotic
~ B? on the complement of the lines, with the leading term a product
of local densities. How to reconcile this? The forced compromise is to
discard such accumulating subvarieties and to hope that for some Zariski
open subset X° C X, the asymptotic of points of bounded height does
reflect the geometry of X, rather than the geometry of its subvarieties.
These finer issues are particularly striking in the case of K3 surfaces. They
may have local and global obstructions to the existence of rational points, they
may fail the heuristic asymptotic, and they may have accumulating subvarieties,
even infinitely many:

CONJECTURE 4.5.1. (see [BM90]) Let X be a K3 surface over a number field
F. Let L be a polarization, e > 0 and Y = Y (e, L) be the union of all F-rational
curves C C X (i.e., curves that are isomorphic to P! over F') that have L-degree
< 2/e. Then
N(X,L,B) =N(Y,L,B) + O(B°), as B — .

THEOREM 4.5.2. [McKO00] Let X — P! x P! be a double cover ramified over a
curve of bidegree (4,4). Then there exists an open cone A C Aampie(X) such that
for every L € A there exists a § > 0 such that

N(X,L,B) = N(Y,L,B) + O(B¥*%), as B — oo,

where d is the minimal L-degree of a rational curve on X and Y is the union of all
F-rational curves of degree d.

This theorem exhibits the first layer of an arithmetic stratification predicted in
Conjecture 4.5.1.

4.6. The circle method. Let f € Zxq,...,2,] be a homogeneous polyno-
mial of degree d such that the hypersurface Xy C P" is nonsingular. Let
Ng(B) :==#{x € Z"| f(x) =0, |x|]| <B}
be the counting function. In this section we sketch a proof of the following
THEOREM 4.6.1. [Bir62] Assume that n > 2%(d +1). Then
(4.2) N;(B) =0 -B""' 741+ 0(1)) B — oo,

where
0= H Tp " Too > 0,
P
provided f(x) = 0 is solvable in Z,, for all p, and in R.

The constants 7, and 7., admit an interpretation as local densities; these are
explained in a more conceptual framework in Section 4.12.

Substantial efforts have been put into reducing the number of variables, espe-
cially for low degrees. Another direction is the extension of the method to systems
of equations [Sch85] or to more general number fields [Ski97].
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10000 _|

FIGURE 1. Oscillations of S(«)

We now outline the main steps of the proof of the asymptotic formula 4.2. The
first is the introduction of a “delta”-function: for z € Z we have

1 .
/ eQﬂ'iazda — O 1f.]j 7é Qa
0 1 otherwise.

(4.3) Ns(B) = ; S(«) da,

Now we can write

where

S(Oé) — Z eQﬂ'iozf(x).

x€Z 1, x| <B

The function S(«) is wildly oscillating (see Figure 1), with peaks at o = a/q, for
small ¢. Indeed, the probability that f(x) is divisible by ¢ is higher for small ¢,
and each such term contributes 1 to S(«). The idea of the circle method is to
establish the asymptotic of the integral in equation 4.3, for B — oo, by extracting
the contributions of « close to rational numbers a/q with small ¢, and finding
appropriate bounds for integrals over the remaining intervals.
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More precisely, one introduces the magjor arcs

M= J Mg

(a,q)=1,q<BA

where A > 0 is a parameter to be specified, and

Mg = {a| o — a‘ < Bd+5}.
q

The minor arcs are the complement:

m:=[0,1] \ <.
The goal is to prove the bound
(4.4) / S(a)da = O(B"T1797¢) " for some € > 0,
m
and the asymptotic
(4.5) /zm S(a) da = HTp Too - B"T74(1 4 0(1)) for B — oco.
P

REMARK 4.6.2. Modern refinements employ “smoothed out” intervals, i.e., the
delta function of an interval in the major arcs is replaced by a smooth bell curve
with support in this interval. In Fourier analysis, “rough edges” translate into bad
bounds on the dual side, and should be avoided. An implementation of this idea,
leading to savings in the number of variables, can be found in [HB83].

There are various approaches to proving upper bounds in equation 4.4; most
are a variant or refinement of Weyl’s bounds (1916) [Wey16]. Weyl considered the
following exponential sums:

2mica?
s(a) == g e .
0<z<B
The main observation is that |s(«)| is “small”, when |o — a/q| is “large”. This is
easy to see when d = 1; summing the geometric series we get

1 — e2mia(B+1)
)l = [F

()’

where (o)) is the distance to the nearest integer. In general, Weyl’s differencing
technique is applied to reduce the degree, to eventually arrive at a geometric series.
We turn to major arcs. Let

a=—-+0
q

with 8 very small, and getting smaller as a function of B. Here we will assume that
|3] < B~ for some small ' > 0. We put x = qy + z, with z the corresponding
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residue class modulo ¢, and obtain
S(a) = Z 271G f(x) 2mif f (%)
x€ZM T, ||x[|<B
Z e2miq flay+2z) 2miBf(x)
lIx||<B

_ Z eQﬂ'i%f(z) ( Z eZTriﬁf(x))

llyll<B/q

=Y emiss@ / (2miB1() gy
z u

ylI<B/q

eQﬂ'i%f(z) ]
_ Z / eQTrz,Bf(x) dX,
"t Jix<s

z

where dy = ¢""'dx. The passage > — [ is justified for our choice of small 3—the
difference will be absorbed in the error term in (4.2). We have obtained

1 2mi s f(2)
e’ .
S(a) da = E E 7/ / 28I (X) dxdp,
/0 =5 T Jipiseoes Jixi<B

modulo a negligible error. We first deal with the integral on the right, called the
singular integral. Put 3’ = 8B? and x’ = x/B. The change of variables leads to

/ 3 o2miBBYf(¥) gn+l d(ﬁ) _ Bn+17d/ / e%iﬁlf(x')d(x’).
181< lIx||<B B 1871<8% J x| <1

1
Bd—3

We see the appearance of the main term B"+!1~% and the density

1
Too ::/ dﬂ'/ 2B F (<) gx!
0 [Ix[I<1

Now we analyze the singular series
e27ri%f(z)
Q= Z Z gt
a,q z

where the outer sum runs over positive coprime integers a,q, a < ¢ and ¢ < Q,
and the inner sum over residue classes z € (Z/q)"*!. This sum has the following
properties:

(1) multiplicativity in ¢; in particular we have

=[]0 A"
i=0

p

with 7g — 7, for @ — oo, (with small error term);
(2) and
k .
3 A _ o(f,p")

pi(nJrl) - pkn

)
i=0
where

o(f,p") == #{z mod p* | f(z)=0 mod p*}.
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Here, a discrete version of equation (4.3) comes into play:

p—l

#{solutions mod p*} = Z Z TR

However, our sums run over a with (a,p) = 1. A rearranging of terms leads to

Y Y Y e

= Oap") =p’ Z

1 2‘[]'"(14/57; f(2) " i
:Z %,z;w_lzz:zme S

af(z)

1

=0 (p

£ 2mi 2 f(2)
= Zp(nﬂ)(kﬂ) Z Z

=0 pk—i)=1 2

E

1 .
) g T}
n+1)(k—1i
— pn+1)(k—9)
In conclusion,
k
(4.6) T = HTp, where 7, = hm (ZJ;II: )

As soon as there is at least one (nonsingular) solution f(z) = 0 mod p, 7, # 0,
and in fact, for almost all p,

o(f,p") _ o(f.p)
pkn - pn
by Hensel’s lemma. Moreover, if 7, # 0 for all p, the Euler product in equation
(4.6) converges.
Let us illustrate this in the example of Fermat type equations
f(x) = agz§ + - + anz) = 0.
Using properties of Jacobi sums one can show that

o(f:p) c
pn — p(1’L+1)/27

)

for some ¢ > 0. The corresponding Fuler product
o(f,p) c
H pr < H (1 + p(n+1)/2>
p p

is convergent.

Some historical background: the circle method was firmly established in the
series of papers of Hardy and Littlewood Partitio numerorum. They comment: “A
method of great power and wide scope, applicable to almost any problem concerning
the decomposition of integers into parts of a particular kind, and to many against
which it is difficult to suggest any other obvious method of attack.”
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4.7. Function fields: heuristics. Here we present Batyrev’s heuristic argu-
ments from 1987, which lead to Conjecture 4.10.4. In the function field case, when
F =TF,(C), for some curve C, F-rational points on a projective variety X/F corre-
spond to sections C' — X, where X is a model of X over C'. Points of bounded height
correspond to sections of bounded degree with respect to an ample line bundle £
over X. Deformation theory allows one to compute the dimension of moduli spaces
of sections of fixed degree. The analytic properties of the associated generating
series lead to a heuristic asymptotic formula.

Let p be a prime and put ¢ = p™. Let A be a convex n-dimensional cone in R"
with vertex at 0. Let

fl, f2 :R" >R
be two linear functions such that
o fi(Z™) C Z;
e fo(x) >0 forall x € A\ {0};
e there exists an x € A\ {0} such that fi(x) > 0.

For each A € Z™ N A let M), be a set of cardinality
|My| := qmax(O,fl(A)),
and put M = UyM,. Let
@(m) == ¢?N | for m € M.

| M|
@ (S) = Z qsf2 (}\)
AEANZ™

Then the series

converges for
R(s) > a:= max(f1(2)/ fo(x)) > 0.

What happens around s = a? Choose an € > 0 and decompose the cone

A:=ArUA_,
where
Af = {zeA|fi(z)/fo(z) 2 a— €}
Ao = {zeAlfi(x)/f2(z) <a—¢}
Therefore,

O(s) =2 + D,
where ®_ converges absolutely for R(s) > a —e.

Now we make some assumptions concerning A: suppose that for all € € Qsg,
the cone AT is a rational finitely generated polyhedral cone. Then

AL =Az [ fi(@)/f2(x) = a}
is a face of AF, and thus also finitely generated polyhedral.

LEMMA 4.7.1. There exists a function G(s), holomorphic for R(s) > a — e,
such that
Ge(s)
(s —a)”’

D (s) =

where b is the dimension of the face A%.
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PRrROOF. For y € Qs we put
Ply) :=={z|z €A, folx) =y}

Consider the expansion

(I)(S) — Z Z qfl(A)*SfQ()\).

yEN AEP(y)NZn

Replacing by the integral, we obtain (with w = yz)

_ / Ty ( / qfl(w)sfz(w)dw>
0 P(y)

= /OO dy / y"—lq(fl(Z)—sz(Z))ydz
0 P(1)
(47) :/ dZ/ yn—lq(fl(z)—s)ydy
P(1) 0
*/ dz; /OO u" g du
pay (5= fiz)" Jo
:M/ R
(log(g))™ Jpa) (s — f1(2))™

It is already clear that we get a singularity at s = max(f1(z)) on P(1), which is a.
In general, let f be a linear function and

D(s) := /A(s — f(x))""dQ

where A is a polytope of dimension n — 1. Then ® is a rational function in s, with
an asymptotic at s = a given by

(b—1)!
(n—1)!
where Ay, is the polytope A N {f(z) = a}, voly, is its volume and b = 1 +
dim(Af,a). O

VOlﬁa (8 - a)_ba

Let C be a curve of genus g over the finite field F, and F' its function field.
Let X be a variety over [F; of dimension n. Then V := X x C'is a variety over F.
Every F-rational point x of V gives rise to a section & of the map V' — C. We have
a pairing

AYV)x A™(V) = Z
between the groups of (numerical) equivalence classes of codimension 1-cycles and
codimension n-cycles. We have

AM(V)=A"(X)2 AN C)a A" H(X) @ A°(O)

and

>,
=
I

Al X))o Z,
L = (Lx,?),
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Assume that L is a very ample line bundle on V. Then
g

is the height of the point x with respect to L. The height zeta function takes the
form (cf. Section 4.9)

Z(s)= > q 7"
z€eV(F)
S Y g,
yEA™(X)

where }

N(q) := #{z € V(F)|cl(z) = y}.
We proceed to give some heuristic(!) bound on N(q) The cycles in a given class y
are parametrized by an algebraic variety M, and

dim(Myz)) > x(Nv|z)

(the Euler characteristic of the normal bundle). More precisely, the local ring on
the moduli space is the quotient of a power series ring with h® (./\/'V‘ #) generators by
h! (Nyvz) relations. Our main heuristic assumption is that

N(q) — qdim(My) ~ qX(Nv\i)’

modulo smaller order terms. This assumption fails, for example, for points con-
tained in “exceptional” (accumulating) subvarieties.

By the short exact sequence
0—T: = Tviz = Nyjz =0
we have
X(Tviz) = (=Kv,Z) + (n+ 1)x(0%z),
XWNvz) = (=Kx, cl(z)) + nx(0z)

From now on we consider a modified height zeta function
Zmod(s) = Z qX(NV\i)*(L@)S.

We observe that its analytic properties are determined by the ratio between two
linear functions

(-Kx,-) and (L,-).
The relevant cone A is the cone spanned by classes of (maximally moving) effective
curves. The finite generation of this cone for Fano varieties is one of the main results
of Mori’s theory. Applying the Tauberian theorem 6.1.4 to Z04(s) we obtain the
heuristic formula:

N(X°,L,B) = cB*(log(B))"*(1 + o(1)),
where
a=a(A L) = r;lg{(((*KX, 2)/(L, 2))

and b = b(A, L) is the dimension of the face of the cone where this maximum is
achieved.
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4.8. Metrizations of line bundles. In this section we discuss a refined the-
ory of height functions, based on the notion of an adelically metrized line bundle.

Let F be a number field and disc(F') the discriminant of F' (over Q). The set of
places of F' will be denoted by Val(F'). We shall write v|oo if v is archimedean and
v t oo if v is nonarchimedean. For any place v of F we denote by F;, the completion
of F' at v and by o, the ring of v-adic integers (for v f 00). Let g, be the cardinality
of the residue field F, of F, for nonarchimedean valuations. The local absolute
value | - |, on F, is the multiplier of the Haar measure, i.e., d(az,) = |a|,dz, for
some Haar measure dz, on F,. We denote by A = Ap = H; F, the adele ring of
F. We have the product formula

H lal, =1, forall a€ F*.
veVal(F)

DEFINITION 4.8.1. Let X be an algebraic variety over F' and L a line bundle
on X. A v-adic metric on L is a family (|| - |[z)zex(r,) of v-adic Banach norms
on the fibers L, such that for all Zariski open subsets X° C X and every section
f € H°(X°, L) the map

X°(F,) = R, = |f]s,
is continuous in the v-adic topology on X°(F,).

Example 4.8.2. Assume that L is generated by global sections. Choose a basis
(f;)jep,....n) of HY(X, L) (over F). If f is a section such that f(z) # 0 then define

f; !
= J
Il = guax (1% @)

otherwise ||0||; := 0. This defines a v-adic metric on L. Of course, this metric
depends on the choice of (f;);c(o,....n]-

DEFINITION 4.8.3. Assume that L is generated by global sections. An adelic
metric on L is a collection of v-adic metrics, for every v € Val(F'), such that for all
but finitely many v € Val(F) the v-adic metric on L is defined by means of some

~~

fized basis (fj)je[o,i..,n] of HO(X, L).
We shall write || - [|a := (]| - ||) for an adelic metric on L and call a pair
L = (L, - ||a) an adelically metrized line bundle. Metrizations extend naturally

to tensor products and duals of metrized line bundles, which allows one to define
adelic metrizations on arbitrary line bundles L (on projective X): represent L as
L =1®L; ! with very ample Ly and Ls. Assume that L, Lo are adelically
metrized. An adelic metrization of L is any metrization which for all but finitely
many v is induced from the metrizations on Ly, Ls.

DEFINITION 4.8.4. Let £ = (L,| - ||a) be an adelically metrized line bundle on
X and f an F-rational section of L. Let X° C X be the maximal Zariski open
subset of X where f is defined and does not vanish. For all z = (), € X°(A) we
define the local
Hefo(ao) = Hf”;vl
and the global height function

He(e) = J[ Heroleo).

vEVal(F)
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By the product formula, the restriction of the global height to X°(F') does not
depend on the choice of f.

Example 4.8.5. For X = P! = (2 : #1) one has Pic(X) = Z, spanned by the
class L =[(1:0)]. For x = z¢/x1 € G4(A) and f = 1 we define

Hefo(z) = max(1, |z],).

The restriction of Hz = [], Hzfo to Go(F) C P! is the usual height on P! (with
respect to the usual metrization of £ = O(1)).

Ezxample 4.8.6. Let X be an equivariant compactification of a unipotent group
G and L a very ample line bundle on X. The space H(X, L), a representation
space for G, has a unique G-invariant section f, modulo scalars. Indeed, if we had
two nonproportional sections, their quotient would be a character of G, which is
trivial.

Fix such a section. We have f(g,) # 0, for all g, € G(F,). Put

Heto(g0) = [f(90)ll;" and Hep = [T Hepo

By the product formula, the global height is independent of the choice of f.

4.9. Height zeta functions. Let X be an algebraic variety over a global
field F, £ = (L,|| - ||a) an adelically metrized ample line bundle on X, H. a height
function associated to £, X° a subvariety of X, axo (L) the abscissa of convergence
of the height zeta function

Z(X°,L,s):= Y He(z)™
)

zEXO(F
PRrROPOSITION 4.9.1.

(1) The value of axe (L) depends only on the class of L in NS(X).

(2) Either 0 < axo(L) < 00, or axo(L) = —o0, the latter possibility corre-
sponding to the case of finite X°(F). If axo(L) > 0 for one ample L then
this is so for every ample L.

(3) axo(L™) = Laxe(L). In general, ax-(L) extends uniquely to a continu-
ous function on Aper(X)°, which is inverse linear on each half-line unless
it identically vanishes.

ProOF. All statements follow directly from the standard properties of heights.

In particular,

ax+(C) < a(P(F),0(m)) = "1

for some n,m. If Z(X°, L, s) converges at some negative s, then it must be a finite
sum. Since for two ample heights H, H we have

cH™ < H < dH", ¢,d,m,n >0,

the value of a can only be simultaneously positive or zero. Finally, if L and L’ are
close in the (real) topology of NS(V)g, then L — L’ is a linear combination of ample
classes with small coefficients, and so axo (L) is close to axo(L’'). O

By Property (1) of Proposition 4.9.1, we may write axo (L) = axo(L).
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Ezxample 4.9.2. For an abelian variety X and ample line bundle L we have

He () = exp(q(z) + I(z) + O(1)),
where q is a positive definite quadratic form on X (F)® Q and | is a linear form. It
follows that ax (L) = 0, although X (F') may well be Zariski dense in X. Also

N(X, £,B) = clog(B)"/2(1 + o(1)),

where r = rk X (F'). Hence, for a = 0, the power of log(B) in principle cannot be
calculated geometrically: it depends on the arithmetic of X and F. The hope is
that for a > 0 the situation is more stable.

DEFINITION 4.9.3. The arithmetic hypersurface of linear growth is
Y .= [ € NS(X)g |axo(L) = 1}.

PROPOSITION 4.9.4.

e Ifaxo(L) > 0 for some L, then E%{o“h is nonempty and intersects each
half-line in Aot (X)° in exactly one point.
e X5 :={L|ax-(L) <1} is convez.

PROOF. The first statement is clear. The second follows from the Holder in-
equality: if
0<o,00<1 and o+ =1
then
H:% (2)H 7 (z) < oHe(x) ™ 4+ o' Her(z) 7!
so that from L, L' € X%, it follows that oL + ¢'L’ € X%.. O

When rkNS(X) = 1, X xo is either empty, or consists of one point. Schanuel’s
theorem 4.2.1 implies that for P™(F'), this point is the anticanonical class.

DEFINITION 4.9.5. A subvariety Y C X° C X is called point accumulating, or
simply accumulating (in X° with respect to L), if

axo (L) = ay(L) > axo\y(L).
It is called weakly accumulating if
axo(L) = ay(L) = axo\y(L).

Ezxample 4.9.6. If we blow up an F-point of an abelian variety X, the excep-
tional divisor will be an accumulating subvariety in the resulting variety, although
to prove this we must analyze the height with respect to the exceptional divisor,
which is not quite obvious.

If X :=P™" x--- xP*, with n; > 0, then every fiber of a partial projection is
weakly accumulating with respect to the anticanonical class.

The role of accumulating subvarieties is different for various classes of varieties,
but we will generally try to pinpoint them in a geometric way. For example, on Fano
varieties we need to remove the — K x-accumulating subvarieties to ensure stable
effects, e.g., the linear growth conjecture. Weakly accumulating subvarieties some-
times allow one to obtain lower bounds for the growth rate of X(F) by analyzing
subvarieties of smaller dimension (as in Theorem 4.4.2).
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4.10. Manin’s conjecture. The following picture emerged from the analy-
sis of examples such as P", flag varieties, complete intersections of small degree
[FMT89], [BM90].

Let X be a smooth projective variety with ample anticanonical class over a
number field Fy. The conjectures below describe the asymptotic of rational points
of bounded height in a stable situation, i.e., after a sufficiently large finite extension
F/Fy and passing to a sufficiently small Zariski dense subset X° C X.

CONJECTURE 4.10.1 (Linear growth conjecture). One has
(4.8) B! < N(X°(F),-Kx,B) <« B,
CONJECTURE 4.10.2 (The power of log).
(4.9) N(X°(F),-Kx,B) < B'log(B)" !,
where r = rk Pic(XF).

CONJECTURE 4.10.3 (General polarizations / linear growth). Every smooth
projective X with —Kx € Apig(X) has a dense Zariski open subset X° such that

syt — ygeom
(see Definitions 4.9.3, (1.7)).

The next level of precision requires that Aeg(X) is a finitely generated polyhe-
dral cone. By Theorem 1.1.5, this holds when X is Fano.

CONJECTURE 4.10.4 (General polarizations / power of log). For all sufficiently
small Zariski open subsets X° C X and very ample L one has

(4.10) N(X°(F), L, B) = B*HP) 1og(B)*P =1 B - oo,
where a(L),b(L) are the constants defined in Section 1.4.

4.11. Counterexamples. Presently, no counterexamples to Conjecture 4.10.1
are known. However, Conjecture 4.10.2 fails in dimension 3. The geometric reason
for this failure comes from Mori fiber spaces, more specifically from “unexpected”
jumps in the rank of the Picard group in fibrations.

Let X C P be a smooth hypersurface. We know, by Lefschetz, that Pic(X) =
Pic(P") = Z, for n > 4. However, this may fail when X has dimension 2. Moreover,
the variation of the rank of the Picard group in a family of surfaces X; over a number
field F' may be nontrivial, even when geometrically, i.e., over the algebraic closure
F of F, the rank is constant.

The following example appeared in [BT96b]: consider a hypersurface X C
P x P3 given by a form of bidegree (1,3):

3
Z :vjy? = 0.
§j=0

By Lefschetz, the Picard group Pic(X) = Z2, with the basis of hyperplane sections
of P2, resp. IP’?,, and the anticanonical class is computed as in Example 1.1.2

~Kx = (3,1).
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Projection onto IP’i’, exhibits X as a P2-fibration over P3. The second Mori fiber space
structure on X is given by projection to P2, with fibers diagonal cubic surfaces.
The restriction of —Kx to each (smooth) fiber Xy is the anticanonical class of the
fiber.

The rank rk Pic(Xx) varies between 1 and 7. For example, if F' contains V=3,
then rk Pic(Xx) = 7 whenever all z; are cubes in F'. The lower bounds in Section 4.4
show that

N(Xg, —Kx,,B) =< Blog(B)°

for all such fibers, all dense Zariski open subsets X3 and all F. On the other hand,
Conjecture 4.10.2 implies that

N(XO7 _KXa B) = BlOg(B),

for some Zariski open X° C X, over a sufficiently large number field F. How-
ever, every Zariski open subset X° C X intersects infinitely many fibers Xx with
rk Pic(Xx) = 7 in a dense Zariski open subset. This is a contradiction.

4.12. Peyre’s refinement. The refinement concerns the conjectured asymp-
totic formula (4.9). Fix a metrization of —Kx = (—Kx, || - ||a). The expectation is
that

N(X°(F),~Kx,B) = ¢(—Kx) - B'log(B)""'(1+0(1)), as B — oo,

with r = rk Pic(X). Peyre’s achievement was to give a conceptual interpretation of
the constant ¢(—Kx) [Pey95]. Here we explain the key steps of his construction.
Let F' be a number field and F,, its v-adic completion. Let X be a smooth
algebraic variety over F' of dimension d equipped with an adelically metrized line
bundle K = Kx = (Kx,| - ||a)- Fix a point z € X(F,) and let z1,..., x4 be local
analytic coordinates in an analytic neighborhood U, of x giving a homeomorphism

¢ : U, — F2.

Let dy; A+ - - Adyg be the standard differential form on F¢ and f := ¢*(dy, A- - -Adyq)
its pullback to U,. Note that f is a local section of the canonical sheaf K x and that
a v-adic metric || - ||, on Kx gives rise to a norm |[/f(u)||, € Rsg, for each u € U,.
Let du, = dy1 - - - dyq be the standard Haar measure, normalized by

1
d v T T 790
/Ug o = 3,

where 0, is the local different (which equals 1 for almost all v).
Define the local v-adic measure &g, on U, via

/ e = / 1F(6~2 () lodso,
w (W)

for every open W C U,. This local measure glues to a measure wg , on X (F},).

Let X be a model of X over the integers op and let v be a place of good
reduction. Let F, = 0,/m, be the corresponding finite field and put ¢, = #F,.
Since X is projective, we have

T+ X(F,) = X(0,) — X(F,).
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/ L (‘D’C,U
Ty (Tw)

‘We have

/ (‘D’C,’U =
X(Fv)

T, EX(Fy)
_ X(Fy)
qd
d— d—
_ oy DO | TR GR) 1

NG Qo q;

where Tr, is the trace of the v-Frobenius on the ¢-adic cohomology of X. Trying to
integrate the product measure over X (A) is problematic, since the Euler product

X(F,
11 (d)

v Qv

diverges. In all examples of interest to us, the cohomology group Hzf_l(XFv,@g)
vanishes. For instance, this holds if the anticanonical class is ample. Still the
product diverges, since the 1/q, term does not vanish, for projective X. There is
a standard regularization procedure: Choose a finite set S C Val(F'), including all
v | 0o and all places of bad reduction. Put

\ L,(1,Pic(Xg)) v¢S
v 1 veS '’
where L, (s, Pic(Xg)) is the local factor of the Artin L-function associated to the Ga-
lois representation on the geometric Picard group. Define the regularized Tamagawa
measure
WK,w 1= )\;1&)](71).
Write
wi = L5(1, Pic(Xg))|disc(F)|~ d/2 Hw;c v

where
Ls(1, Pic(Xg)) = 11_>n11(5 — 1)"Ls(s, Pic(Xg))

and r is the rank of Pic(Xr), and define

(4.11) T(—Kx) = / wi.

X(F)

Ezxample 4.12.1. Let G be a linear algebraic group over F. It carries an F-
rational d-form w, where d = dim(G). This form is unique, modulo multiplication
by nonzero constants. Fixing w, we obtain an isomorphism Kx ~ Og, the structure
sheaf, which carries a natural adelic metrization (|| - [|4).

Let (A, A) be a pair consisting of a lattice and a strictly convex (closed) cone
in Ag: AN —A = 0. Let (4,A) be the pair consisting of the dual lattice and the
dual cone defined by

A:={Xec Ag|(N,\) >0, VX € A}
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The lattice A determines the normalization of the Lebesgue measure dé on Ap
(covolume =1). For a € Ac define

(4.12) Xp(a) == / e (@ dg,
A

The integral converges absolutely and uniformly for ®(a) in compacts contained in
the interior A° of A.

DEFINITION 4.12.2. Assume that X is smooth, NS(X) = Pic(X) and that
—Kx is in the interior of Aqg(X). We define

a(X) = Xy (x) (- Kx).

REMARK 4.12.3. This constant measures the volume of the polytope obtained
by intersecting the affine hyperplane (—Kx,-) = 1 with the dual to the cone of
effective divisors Aeg(X) in the dual to the Néron-Severi group. The explicit deter-
mination of «(X) can be a serious problem. For Del Pezzo surfaces, these volumes
are given in Section 1.9. For example, let X be the moduli space /\;1076. The dual to
the cone Aqg(X) has 3905 generators (in a 16-dimensional vector space), forming
25 orbits under the action of the symmetric group S¢ [HT02b].

CONJECTURE 4.12.4 (Leading constant). Let X be a Fano variety over F with
an adelically metrized anticanonical line bundle —Kx = (—Kx,|| - [|a). Assume
that X (F') is Zariski dense. Then there exists a Zariski open subset X° C X such
that

(4.13) N(X°(F), —Kx,B) = ¢(—Kx)B!log(B)" (1 + o(1)),
where r = rk Pic(Xr) and
(4.14) o(—Kx) = ¢(X, =Kx) = a(X)B(X)7(-Kx),

with 8(X) := #Br(X)/Br(F) (considered in Section 2.4), and 7(—Kx) the constant
defined in equation 4.11.

4.13. General polarizations. I follow closely the exposition in [BT98]. Let
E be a finite Galois extension of a number field F' such that all of the follow-
ing constructions are defined over E. Let (X°,£) be a smooth quasi-projective
d-dimensional variety together with a metrized very ample line bundle £ which

embeds X° in some projective space P". We denote by YL the normalization of
. <L . . T
the projective closure of X C P". In general, X = is singular. We will introduce
several notions relying on a resolution of singularities
p:X— 76.
Naturally, the defined objects will be independent of the choice of the resolution.
For a convex cone A C NS(X)g we define

a(A, L) :=a(A, p*L).
We will always assume that a(Aeg(X), L) > 0.

DEFINITION 4.13.1. A pair (X°, £) is called primitive if there exists a resolution
of singularities

p:X%YL
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such that a(Aeg(X), L) € Qs and for some k € N
((p*£)®a(Aeff(X)7£) ® KX)®k = 0(D),
where D is a rigid effective divisor (i.e., h%(X,O(vD)) =1 for all v >> 0).

Ezample 4.13.2. of a primitive pair: (X, —Kx), where X is a smooth projective
variety with —x a metrized very ample anticanonical line bundle.

Let k € N be such that a(A, £)k € N and consider

R(A L) = HX, (p°L)" M0 @ Fx)#9)=).
v>0
In both cases (A = Agmple Or A = Acg ) it is expected that R(A, L) is finitely
generated and that we have a fibration

T=n,: X - Y*,

where Y- = Proj(R(A, £)). For A = A.g(X) the generic fiber of 7 is expected to
be a primitive variety in the sense of Definition 4.13.1. More precisely, there should
be a diagram:
p: X = X°oX
i}
Y£
such that:
e dim(Y*) < dim(X);
e there exists a Zariski open U C Y* such that for all y € U(C) the pair
(X, L) is primitive (here X, = 7~ !(y) N X and L, is the restriction of £ to X);
e for all y € U(C) we have a(Aesr(X), £) = a(Aer(Xy), Ly);
e For all k¥ € N such that a(Aeg(X), £)k € N the vector bundle

Ly, = RO, (((p* L) e (X):5) g | ) OF)

is in fact an ample line bundle on Y£.
Such a fibration will be called an L-primitive fibration. A variety may admit
several primitive fibrations.

Ezample 4.13.3. Let X C P} x P} (n > 2) be a hypersurface given by a bi-
homogeneous form of bi-degree (di,ds). Both projections X — P} and X — P¥
are L-primitive, for appropriate £. In particular, for n = 3 and (d;,d2) = (1,3)
there are two distinct —/C x-primitive fibrations: one onto a point and another onto
P3,

4.14. Tamagawa numbers. For smooth projective Fano varieties X with an
adelically metrized anticanonical line bundle Peyre defined in [Pey95] a Tamagawa
number, generalizing the classical construction for linear algebraic groups (see Sec-
tion 4.12). We need to further generalize this to primitive pairs.

Abbreviate a(L) = a(Aeg(X), £) and let (X, L) be a primitive pair such that
O(D) = (9" ))& Kx)*
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where k is such that a(£)k € N and D is a rigid effective divisor as in Defini-
tion 4.13.1. Choose an F-rational section g € H°(X,O(D)); it is unique up to
multiplication by F*. Choose local analytic coordinates 1 ,,...,%q, in a neigh-
borhood U, of z € X(F,). In U, the section g has a representation

g = O (dxy y A Adag,)”,
where f is a local section of L. This defines a local v-adic measure in U, by

wegw = IflI5 der,y - dea,,

where dzy, - -drg, is the Haar measure on F? normalized by vol(od) = 1. A
standard argument shows that wg g, glues to a v-adic measure on X (F,). The
restriction of this measure to X (F,) does not depend on the choice of the resolution

p:X— X“. Thus we have a measure on X(Fy).
Denote by (D;) ey the irreducible components of the support of D and by

Pic(X, £) == Pic(X \ | D))
JjET
The Galois group I' acts on Pic(X, £). Let S be a finite set of places of bad reduction

for the data (p, Dj, etc.), including the archimedean places. Put A\, =1 for v € §,
Ay = Ly(1,Pic(X, £)) for v ¢ S and

we = L5(1, Pic(X, £))|disc(F)[ " T A\ we g
(Here L, is the local factor of the Artin L-function associated to the I'-module
Pic(X, £) and L%(1,Pic(X, L)) is the residue at s = 1 of the partial Artin L-

function.) By the product formula, the measure does not depend on the choice
of the F-rational section g. Define

(X, L) = /X(F)wg,

where X (F) C X(A) is the closure of X(F) in the direct product topology. The
convergence of the Euler product follows from

h!'(X,0x) = h*(X,0x) = 0.
We have a homomorphism
p : Pic(X)r — Pic(X, L)r
and we denote by
A (X, L) := p(Aegt (X)) C Pic(X, L)g.
DEFINITION 4.14.1. Let (X, L) be a primitive pair as above. Define
(X, L) :=a(X,L)B(X,L)T(X, L),

where

a(X, L) ==Xy wx.0)(p(—Kx)) and B(X,L):=[H'(T,Pic(X, L))].
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If (X,L£) is not primitive then some Zariski open subset U C X admits a
primitive fibration: there is a diagram

X - X
J
YL

such that for all y € Y£(F) the pair (U, £,) is primitive. Then

(4.15) U, L) = Z c(Uy, Ly),

yey?o°

where the right side is a possibly infinite, conjecturally(!) convergent sum over the
subset Y C Y4(F) of all those fibers U, where

a(L) = a(L,) and b(L) = rk Pic(X, L)' =tk Pic(X,, £,)".

In Section 6 we will see that even if we start with pairs (X, £) where X is a
smooth projective variety and L is a very ample adelically metrized line bundle
on X we still need to consider singular varieties arising as fibers of L-primitive
fibrations.

It is expected that the invariants of L-primitive fibrations defined above are
related to asymptotics of rational points of bounded L-height:

CONJECTURE 4.14.2 (Leading constant / General polarizations). Let X be a
Fano variety over a number field F with an adelically metrized very ample line
bundle £ = (L,|| - ||a). Assume that X (F') is Zariski dense. Then there exists a
Zariski open subset X° C X such that

(4.16) N(X°(F), L,B) = ¢(X°, £)B*F) log(B)*“~1(1 4 o(1)).

Note that the same variety X may admit several L-primitive fibrations (see
Section 4.11). Presumably, there are only finitely many isomorphism types of such
fibrations on a given X, at least when X is a Fano variety. Then the recipe would be
to consider fibrations with maximal (a(L),b(L)), ordered lexicographically. In Sec-
tion 6 we will see many examples of polarized varieties satisfying Conjecture 4.14.2.

4.15. Tamagawa number as a height. Why does the right side of For-
mula (4.15) converge? The natural idea is to interpret it as a height zeta function,
i.e., to think of the Tamagawa numbers of the fibers of an L-primitive fibration as
“heights”. One problem with this guess is that the “functorial” properties of these
notions under field extensions are quite different: Let U, be a fiber defined over the
ground field. The local and global heights of the point on the base y € Y° don’t
change under extensions. The local Tamagawa factors of U,, however, take into
account information about Fg-points of Uy, i.e., the density

7o = #Uy(Fy,) /g™,

for almost all v, which may vary nontrivially.
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In the absence of conclusive arguments, let us look at examples. For x € P3(Q),
let Xy C P2 be the diagonal cubic surface fibration

(4.17) Toyp + T1y7 + T2ys + way3 =0,

considered in Section 4.11. Let H : P3(Q) — R be the standard height as in
Section 4.1.

THEOREM 4.15.1. [EJO8b] For all € > 0 there exists a ¢ = c(€) such that

1 1 1 1/3—¢
> H —_— : ... : PR
() =€ (300 903)

In particular, we have the following fundamental finiteness property: for B > 0
there are finitely many x € P3(Q) such that 7(Sx) > B.
A similar result holds for 3 dimensional quartics.

THEOREM 4.15.2. [EJO7] Let Xx be the family of quartic threefolds

Toyo + T1Y1 + T2ys + T3ys + zay) =0,

with g < 0 and z1,...,24 > 0, x; € Z. For all ¢ > 0 there exists a c = c(€) such

that ,
1/4—e
1 1 1
>cH|{ —:t — .
(X0 = © <3«"0 3«"4)

4.16. Smallest points. Let X C P be a smooth Fano variety over a number
field F. What is the smallest height

m = m(X(F)) := min{H(z)}

of an F-rational points on X7 For a general discussion concerning bounds of solu-
tions of Diophantine equations in terms of the height of the equation, see [Mas02].
A sample result in this direction is [Pit71], [NP89]: Let

(4.18) szyld =0,
=0

with d odd and let x = (zg,...,x,) € Z""! be a vector with nonzero coordinates.
For n > d (e.g., n = 2% + 1) and any € > 0 there exists a constant ¢ such that
(4.18) has a solution y with

n
S Jaadl < [ il
=0

For d > 12, one can work with n > 4d?log(d). There have been a several improve-
ments of this result for specific values of d, e.g. [Cas55], [Die03] for quadrics and
[Bak89], [Brii94] for d = 3.

In our setup, the expectation

N(X°(F),-Kx,B) = aft(—Kx)B!log(B)"~1(1 + o(1)),

where r = rk Pic(X), and the hope that the points are equidistributed with respect
to the height leads to the guess that m(X) is inversely related to 7(—Kx), rather
than the height of the defining equations. Figure 2 shows the distribution of smallest
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FIGURE 2. Smallest height of a rational point versus the
Tamagawa number

points in comparison with the Tamagawa number on a sample of smooth quartic
threefolds of the form

x0y4:11y%+y§+y§+yi, o, T1 :1,,1000
On the other hand, there is the following result:
THEOREM 4.16.1. [EJO7], [EJO8b] Let X, C P* be the quartic threefold given
by
Ty =yi +ys+vs+yi, acN
Then there is no ¢ > 0 such that

m(X2(Q)) <

<
- 7(-Kx,)’

Let X, C P be the cubic surface given by

Va € 7.

cyd +4y3 + 203 +y3 =0, zeN

Assume the Generalized Riemann Hypothesis. Then there is no ¢ > 0 such that

m(X,(Q) < —

¢ wez
~ 7(—Kx,)
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It may still be the case that

c(e)
m(X(F)) < W

5. Counting points via universal torsors

5.1. The formalism. We explain the basic elements of the point counting
technique on universal torsors developed in [Pey04], [Sal98]. The prototype is the
projective space:

AT {0} Em pr,
The bound H(x) < B translates to a bound on A"*1(Z), it remains to replace the
lattice point count on A"*1(Z) by the volume of the domain. The coprimality on
the coordinates leads to the product of local densities formula
1 1

NB)=-——+
(B) 2¢(n+1)
where 7 is the volume of the unit ball with respect to the norm at infinity.

The lift of points in P*(Q) to primitive integral vectors in Z"+1\ 0, modulo 41
admits a generalization to the context of torsors

Tx TﬂX

Points in X (Q) can be lifted to certain integral points on 7Tx, uniquely, modulo the
action of Tns(Z) (the analog of the action by +1). The height bound on X (Q) lifts
to a bound on Tx (Z). The issue then is to prove, for B — oo, that

“Too - BT (14 0(1)), B — oo,

# lattice points = volume of the domain .

The setup for the generalization is as follows. Let X be a smooth projective
variety over a number field F. We assume that
HY(X,0x) =0, for i =1,2;
Pic(X ) = NS(X ) is torsion-free;
A (X) is a finitely generated rational cone;
—Kx is in the interior of Aqg(X);
X (F) is Zariski dense;
there is a Zariski open subset without strongly or weakly accumulating
subvarieties;
e all universal torsors over X satisfy the Hasse principle and weak approxi-
mation.

For simplicity of exposition we will ignore the Galois actions and assume that
NS(XF) = NS(X). Fix a line bundle L on X and consider the map

Z — NS(X)
1 [L]

By duality, we get a homomorphism ¢y, : Tns — G,, and the diagram
T YL I+

D

X:X
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compatible with the Tns-action (where L* = L\ 0). Fix a point tg € 7 (F) and an
adelic metrization £ = (L, || - ||) of L. For each v, we get a map

HC,T,’U : T(Fv) — Rso

ty = PO/ 1YL o)l

Fix an adelic height system H = [[, H, on X as in Section 4.8, i.e., abasis L1,..., L,
of Pic(X) and adelic metrizations of these line bundles. This determines compatible
adelic metrizations on all L € Pic(X). Define

Th,(0p) i={t € T(F,) [He70(t) <1 VL € Aegr(X)}.
Let
Tn(A) = HT(FU)

be the restricted product with respect to the collection

{Th, (00)}o-

This space does not depend on the choice of the points ¢y or on the choice of adelic
metrizations.

The next step is the definition of local Tamagawa measures on T (F),), whose
product becomes a global Tamagawa measure on Th(A). The main insight is that

e locally, in the v-adic topology, T (Fy) = X (Fy) x Tns(Fy);

e both factors carry a local Tamagawa measure (defined by the metrizations
of the corresponding canonical line bundles);

e the regularizing factor (needed to globalize the measure to the adeles, see
Equation 4.11) on X (F,) is A\, = L, (1, Pic(Xp), for almost all v, and the
regularizing factor on Txs(F,) is A, %

e the regularizing factors cancel and the product measure is integrable over
the adelic space Ti(AF).

One chooses a fundamental domain for the action of units Tns(o)/W (where W
is the group of torsion elements), establishes a bijection between the set of rational
points X (F') and certain integral points on T (integral with respect to the unstable
locus for the action of Txg) in this domain and compares a lattice point count,
over these integral points, with the adelic integral, over the space Tj(A). If the
difference between these counts goes into the error term, then Conjecture 4.12.4
holds.

The following sections explain concrete realizations of this formalism: examples
of universal torsors and counting problems on them.

5.2. Toric Del Pezzo surfaces. A toric surface is an equivariant compact-
ification of the two-dimensional algebraic torus G2,. Notation and terminology
regarding general toric varieties are explained in Section 6.6. Universal torsors of
toric varieties admit a natural embedding into affine space (see Section 1.6).

Example 5.2.1. Let X = Bly (P?) be the blowup of the projective plane in the
subscheme

Y:=(1:0:00U(0:1:00U(0:0:1),
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a toric Del Pezzo surface of degree 6. We can realize it as a subvariety X C
P} x P} x P, given by xoyozo = 1y121. The anticanonical height is given by

max(|zol, [z1]) x max(|yo, [y1]) x max(|zol, |211).

There are six exceptional curves: the preimages of the 3 points and the strict
transforms of lines joining two of these points.

Ezample 5.2.2 (Degree four). There are 3 toric Del Pezzo surfaces of degree 4,
given by X = {Qo = 0} N {Q = 0} C P*, with Qy = xoz1 + 23 and Q as in the
table below.

Singularities Q
4A1 324 + SC%
2A1 + Aq T1T2 + T3x4
2A1 + A3 T3 + 1374

Ezample 5.2.3 (Degree three). The unique toric cubic surface X is given by

zryz = wd.

The corresponding fan is spanned in Z2 by (1,1), (1, —2),(=2,1). Let X° = G2, C
X be the complement to the lines, i.e., the locus with w # 0. The lines correspond to
the three vectors spanning the fan. The universal torsor of the minimal resolution of
singularities X of X admits an embedding into A®, with coordinates corresponding
to exceptional curves on X. The preimage of X° in A? is the complement to the
coordinate hyperplanes. The asymptotic

N(X°(F),B) = c¢B'log(B)®(1 +0(1)), B — oo,
has been established in [BT98] using harmonic analysis (see Section 6.6) and in
[HBM99|, [Fou98|, [d1B01] using the torsor approach.

Example 5.2.4. The toric quartic surface

22yz = w!

is given by the fan (2,-1),(0,1),(—2,—1). Let X° be the complement to w = 0.
One has

N(X°(F),B) = cB'log(B)?(1 4 o(1)), B — oo,
with an explicit constant ¢ > 0 (see Section 6.6). This is more than suggested by
the naive heuristic in Section 2.2.

The torsor approach has been successfully implemented for toric varieties over
Q in [Sal98| and [d1BO1].

5.3. Torsors over Del Pezzo surfaces.

Ezxample 5.3.1. A quartic Del Pezzo surface X with two singularities of type
A can be realized as a blow-up of the following points

pr = (0:0:1)
pp = (1:0:0)
ps = (0:1:0)
ps = (1:0:1)
ps = (0:1:1)



VARIETIES WITH MANY RATIONAL POINTS 299

in P2 = (x¢ : 21 : ¥3). The anticanonical line bundle embeds X into P*:
(2221 : wox? : Tow1 2o 1 ToTo (T + T1 — T2) 1 T1Xo (X0 + 1 — T2)).
The Picard group is spanned by
Pic(X)=(L,FE4,--- , Es)
and Aeg(X) by
Ey, -+, Es
L—Fy—FEsL—Es—E, L —E,— Es, L — Ey— Es
L—F —Es—Es,[— E, — Ey— E,.
The universal torsor embeds into the affine variety

(23)(3) — (1)(124)(4) + (25)(
(23)(2) — (1)(135)(5) + (34)(
(124)(1)(2) — (34)(3) + (45)(
(25)(2) — (135)(1)(3) + (45)(4) = 0
(23)(45) + (34)(25) — (1)2(124)(135) = 0.

(with variables labeled by the corresponding exceptional curves). The complement
to the coordinate hyperplanes is a torsor over the complement of the lines on X.
Introducing additional variables

(24) = (1)(124), (35)" := (1)(135)
we see that the above equations define a P'-bundle over a codimension one subva-
riety of the (affine cone over the) Grassmannian Gr(2,5).
We need to estimate the number of 11-tuples of nonzero integers, satisfying the
equations above and subject to the inequalities

|(135)(124)(23)(1)(2)(3)] <
|(135)(124)(34)(1)(3)(4)] <

5 =0
4)=0
5 =0
4

W @

By symmetry, we can assume that [(2)| > |(4)| and write (2) = (2)'(4) + r2. Now
we weaken the first inequality to

|(135)(124)(23)(1)(4)(2)'(3)] < B.

There are O(Blog(B)®) 7-tuples of integers satisfying this inequality.

Step 1. Use equation (23)(3) — (1)(124)(4) 4+ (25)(5) to reconstruct (25), (5)
with ambiguity O(log(B)).

Step 2. Use (25)(2) — (135)(1)(3) + (45)(4) = 0 to reconstruct the residue ro
modulo (4). Notice that (25) and (4) are “almost” coprime since the corresponding
exceptional curves are disjoint.

Step 3. Reconstruct (2) and (45).

Step 4. Use (23)(2) — (1)(135)(5) + (34)(4) to reconstruct (34).
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In conclusion, if X° C X is the complement to the exceptional curves then
N(X°, —Kx,B) = O(Blog(B)").
We expect that
N(X° —Kx,B) = cBlog(B)°(1 + o(1))
as B — oo, where c is the constant defined in Section 4.12.

Ezample 5.3.2. The universal torsor of a smooth quartic Del Pezzo surface,
given as a blow-up of the five points

pr = (1:0:0)
p2 = (0:1:0)
P33 = (001)
ps = (1:1:1)
ps = (l:az:as),

assumed to be in general position, is given by the vanishing of polynomials in A6
on the left side of the table below. The right side shows the homogeneous forms
defining the Ds-Grassmannian in its Pliicker embedding into P'°.

(14)(23)  +(12)(34) —(13)(24) (00)(05) — (12)(34) + (13)(24) — (14)(23)
(00)(05)  +ag(az—1)(12)(34) —az(az—1)(13)(24)
(23)(03)  +(24)(04) —(12)(01) (12)(01) — (23)(03) 4 (24)(04) — (25)(05)
a2(23)(03)  +(25)(05) —(12)(01)
(12)(35)  —(13)(25) +(15)(23) (00)(04) — (12)(35) 4 (13)(25) — (15)(23)
(a2 —1)(12)(35)  +(00)(04) —(a3—1)(13)(25)
(12)(45) +(14)(25) —(15)(24) (00)(03) — (12)(45) + (14)(25) — (15)(24)
(00)(03) +a3(14)(25) —(15)(24)
(13)(45)  +(14)(35) —(15)(34) (00)(02) — (13)(45) + (14)(35) — (15)(34)
(00)(02)  +a2(14)(35) —(15)(34)
(23)(45)  +(24)(35) —(25)(34) (00)(01) — (23)(45) + (24)(35) — 25)(34)
(00)(01) +as(24)(35) —a3(25)(34)
(04)(34)  +(02)(23) —(01)(13) (13)(01) — (23)(02) + (34)(04) + 35)(05)
(05)(35)  +a3(02)(23) —(01)(13)
(a2 —1)(03)(34)  +(05)(45) —(a3—1)(02)(24) (14)(01) — (24)(02) 4 (34)(03) — (45)(05)
(03)(34)  +(01)(14) —(02)(24)
(04)(14)  +(03)(13) —(02)(12) (12)(02) — (13)(03) 4 (14)(04) — (15)(05)
(05)(15) +a2(03)(13) —a3(02)(12)
a3(02)(25) —a2(03)(35) —(01)(15) (15)(01) — (25)(02) + (35)(03) — (45)(04)
(a3 —1)(02)(25) —(a2—1)(03)(35) —(04)(45)

Connection to the Ds-Grassmannian

Ezample 5.3.3. The Cayley cubic is the unique cubic hypersurface in X C P3

with 4 double points (A;-singularities), the maximal number of double points on a

cubic surface. It can be given by the equation

The double points correspond to

(1:0:0:0),(0:1:0:0),(0:0:1:0),(0:0:0:1).

YoyY1y2 + Yoy1ys + Yoy2ys + y1y2ys = 0.
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It can be realized as the blow-up of P? = (21 : 29 : x3) in the points
g1 =(1:0:0),g2 =(0:1:0),g3 =(0:0:1),g4 =(1:—-1:0),g5=(1:0:—-1),g6 =(0:1:—1)

The points lie on a rigid configuration of 7 lines

z1 =0 (12)(13)(14)(1)

z9 =0 (12)(23)(24)(2)

3 =0 (13)(23)(34)(3)

4 =x1 + 22 + 23 =0 (14)(24)(34)(4)
21 +x3 =0 (13)(24) (13, 24)

23 +x3 =0 (23)(14)(14, 23)

21 +x2 =0 (12)(34)(12, 34).

The proper transform of the line z; is the (—2)-curve corresponding to (j). The
curves corresponding to (i5), (i7, kl) are (—1)-curves. The accumulating subvarieties
are exceptional curves. The (anticanonical) embedding X < P? is given by the
linear system

S1 = T17273
S = T2X3%4
§3 = X1T3%4
S4 = X1T2X4

The counting problem is: estimate
N(B) = #{(21, 22, 73) € Zpyipn/, | max(]si])/ ged(s) < B},
subject to the conditions
z;#00@=1,...,3), zj+x;,#0(1<i<j<3), z1+az2+z3#0.

We expect ~ Blog(B)® solutions. After dividing the coordinates by their ged, we
obtain

s = (1D(2)(3)(12)(13)(23)
sy = (2)(3)(4)(23)(24)(34)
s = (D(3)(4)(13)(14)(34)
sy = (1)(2)(4)(12)(14)(24)

These are special sections in the anticanonical series; other decomposable sections
are (1)(2)(12)%(12,34) and (12,34)(13,24)(14,23), for example. Here we use the
same notation (), (ij) etc. for the variables on the universal torsor as for exceptional
curves on the minimal resolution X of X. The conic bundles on X produce the
following affine equations for the universal torsor:

I (1)(13)(14)  +  (2)(23)(24) = (34)(12,34)

11 (1)(12)(14)  +  (3)(23)(34) = (24)(13,24)
11 (2)(12)(24)  + (3)(13)(34) = (14)(14,23)
IV —(3)(13)(23) + (4)(14)(24) = (12)(12,34)

Vo —(2)(12)(23) + (4)(14)(34) = (13)(13,24)
%! —()(A2)(1) + (4)(24)(34) = (23)(14,23)
VII )@ (24)2  +  (1)B)(3)2 = (12,34)(14,23)
VI —(1)(2)(12)2  + (3)(4)(34)%2 = (13,24)(14,23)
X @) (4)2 - (2)(3)(23)2 = (12,34)(13,24)

The counting problem is to estimate the number of 13-tuples of nonzero integers,
satisfying the equations above and subject to the inequality max;{|s;|} < B. Heath-
Brown proved in [HBO03] that there exist constants 0 < ¢ < ¢’ such that

cBlog(B)® < N(B) < ¢'Blog(B)°.
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FiGUure 3. The 5332 rational points of height < 100 on

Tox 2o = Ta(T1 + T2)

Ezample 5.3.4 (The 2A5 + Az cubic surface). The equation
TT1To = :c?,)(xl + x9)

defines a cubic surface X with singularities of indicated type. It contains 5 lines.
The Cox ring has the following presentation [Der07b]:

Cox(X) = Fln, - ., mol/(nangmo + mnang + nsno).-
The figure shows some rational points on this surface. 2 The expected asymptotic
N(X°(Q),B) = cB'log(B)®(1 + o(1))
on the complement of the 5 lines has not yet been proved.

5.4. Torsors over the Segre cubic threefold. In this section we work over
Q. The threefold X = My can be realized as the blow-up of P? in the points

g X1 X2 I3
@ 1 0 0 0
e 0 1 0 0
s 0 0 1 0
@w 0 0 0 1
G 1 1 1 1

and in the proper transforms of lines joining two of these points. The Segre cubic is
given as the image of X in P4 under the linear system 2L — (E; +- - -+ Es5) (quadrics

21 am grateful to U. Derenthal for allowing me to include it here.
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passing through the 5 points):

s1 = (22 —x3)71

sy = x3(wo— 1)

s3 = xo(r1 — x3)

sa = (xg—x1)220

S5 = (l‘l — 1'2)(1'0 — 1'3)
It can be realized in P5 = (yp : -+ - : y5) as

5 5
Sz = {Z?J? = Zyi =0}
i=0 i=0
(exhibiting the Gg-symmetry.) It contains 15 planes, given by the Gg-orbit of
Yot+ys=y1+ys=ys+ys =0,
and 10 singular double points, given by the Gg-orbit of
(T:1:1:-1:-1:-1).

This is the maximal number of nodes on a cubic threefold and Ss is the unique cubic
with this property. The hyperplane sections S5 N {y; = 0} are Clebsch diagonal
cubic surfaces (unique cubic surfaces with &5 as symmetry group. The hyperplane
sections S N {y; — y; = 0} are Cayley cubic surfaces (see Example 5.3.3). The
geometry and symmetry of these and similar varieties are described in detail in
[Hun96]. The counting problem on Ss is: find the number N(B) of all 4-tuples of
(zo, 1, T2, 23) € Z*/+ such that

o ged(zg, 21,2, 23) = 1;

o max;—1,_5(|s;|)/[ged(s1,.. ., 55) < B;

e z; #0 and z; —x; # 0 for all 4,5 # 4.
The last condition is excluding rational points contained in accumulating subvari-
eties (there are B3 rational points on planes P? C P4, with respect to the O(1)-
height). The second condition is the bound on the height.

First we need to determine
a(L) =inf{a|al + Kx € Aeg(X)},

where L is the line bundle giving the map to P*. We claim that a(L) = 2. This
follows from the fact that
> (i)

]
is on the boundary of Aes(X) (where (ij) is the class in Pic(X) of the preimage in
X of the line [;; C P* through ¢;, ;.

Therefore, we expect
N(B) = O(B*™)
as B — oo. In fact, it was shown in [BT98] that b(L) = 6. Consequently, one
expects
N(B) = cB?log(B)®(1 +o(1)), as B — co.



304 YURI TSCHINKEL

REMARK 5.4.1. The difficult part is to keep track of ged(sy, ..., s5). Indeed, if
we knew that this ged = 1 we could easily prove the bound O(B?*¢) by observing
that there are O(B!*¢) pairs of (positive) integers (z2 — x5, 1) (resp. (g —1,72))
satisfying (xo — x3)z1 < B (resp. (g — x1)x2 < B). Then we could reconstruct the
quadruple

(z2 — 3,21, 70 — T1,2)
and consequently
(z0, @1, 2, 73)
up to O(B?*°).

Thus it is necessary to introduce gcd between z;, etc. Again, we use the
symbols (7), (ij), (ijk) for variables on the torsor for X corresponding to the classes
of the preimages of points, lines, planes resp. Once we fix a point (zg, z1, T2, 23) €
Z* (such that ged(zo, 21,29, 73) = 1), the values of these coordinates over the
corresponding point on X can be expressed as greatest common divisors. For
example, we can write

= (123)(12)(13)(23)(1)(2)(3),

a product of integers (neglecting the sign of x3; in the torsor language, we are
looking at the orbit of Tng(Z)). Here is a self-explanatory list:

(123) I3 (12) T, T3

(124) Z9 (13) T1,T3

(125) To — I3 (14) T1,T2

(134) X1 (15) 1 —T3,T1 — X2

(135) a1 —xz3 (23) 3,20 — 23

(145) X1 — X9 (24) T2, X0

(234) ) (25) T3 — T2,To — T3

(235) o — I3 (34) T1,X0

(245) Tro — T2 (35) 1 —T3,T9 — X1

(345) xg—x1 (45) a1 — o, 20 — 1.

After dividing s; by the ged, we get

st = (125)(134)(12)(15)(25)(13)(14)(34)(1)
sh = (123)(245)(12)(13)(23)(24)(25)(45)(2)
sh = (234)(135)(23)(24)(34)(13)(15)(35)(3)
sy = (345)(124)(34)(35)(45)(12)(14)(24)(4)
sy = (145)(235)(14)(15)(45)(23)(35)(25)(5)

(note the symmetry with respect to the permutation (12345)). We claim that
ged(s), ..., s5) = 1. One can check this directly using the definition of the (%), (i),
and (ijk) as ged’s. For example, let us check that nontrivial divisors d # 1 of (1)
cannot divide any other s’. Such a d must divide (123) or (12) or (13) (see s).
Assume it divides (12). Then it doesn’t divide (13), (14) and (15) (the correspond-
ing divisors are disjoint). Therefore, d divides (135) (by s%) and (235) (by s).
Contradiction (indeed, (135) and (235) correspond to disjoint divisors). Assume
that d divides (123). Then it has to divide either (13) or (15) (from s%) and either
(12) or (14) (from sj). Contradiction.
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The integers (i), (i5), (ijk) satisfy a system of relations (these are equations for
the torsor induced from fibrations of Mg ¢ over P1):

I x0 x] Ty — 1
11 x0 x9 Ty — T2
111 x0 x3 Ty — T3
v 1 xo xr] — T2
A% x1 x3 ] — T3
VI x9 x3 o — T3

VII o — T g — T2 ] — T
VIII o — 1 g — T3 ] — T3
IX x1 — T2 ] — 3 o — T3
X xo — T3 g — T3 g — T2

which translates to

I (234)(23)(24)(2) — (134)(13)(14)(1) = (345)(45)(35)(5)
I (234)(23)(34)(3) — (124)(12)(14)(1) = (245)(25)(45)(5)
IIT (234)(24)(34)(4) — (123)(12)(13)(1) = (235)(25)(35)(5)
IV (134)(13)(34)(3) — (124)(12)(24)(2) = (145)(15)(45)(5)
Vo (134)(14)(34)(4) — (123)(12)(23)(2) = (135)(15)(35)(5)
VI (124)(14)(24)(4) — (123)(13)(23)(3) = (125)(15)(25)(5)
VII  (345)(34)(35)(3) — (245)(24)(25)(2) = —(145)(14)(15)(1)
VIIT  (345)(34)(45)(4) — (235)(23)(25)(2) = —(135)(13)(15)(1)
IX  (145)(14)(45)(4) — (135)(13)(35)(3) = —(125)(12)(25)(2)
X (125)(12)(15)(1) + (235)(23)(35)(3) =  —(245)(24)(45)(4)

The counting problem now becomes: find all 25-tuples of nonzero integers
satisfying the equations I — X and the inequality max(|s’[) < B.

REMARK 5.4.2. Note the analogy to the case of Mg s (the unique split Del
Pezzo surface of degree 5): the variety defined by the above equations is the Grass-
mannian Gr(2,6) (in its Pliicker embedding into P?4).

In [VW95] it is shown that there exist constants c,c’ > 0 such that
cB%log(B)® < N(B) < ¢’B%log(B)°®.

This uses a different (an intermediate) torsor over X—the determinantal variety
given by

det(%ij)gng =0.
THEOREM 5.4.3. [dIB07]

1/3
N(B) = iﬂx} HTP -B?log(B)® <1 + O(%)) )

where To, 18 the real density of points on X, and

(1 1)6(1+6+6+1)
T, = - ==
b p p p> P

is the p-adic density of points.

The proof of this result uses the Grassmannian Gr(2,6).
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5.5. Flag varieties and torsors. We have seen that for a Del Pezzo surface
of degree 5 and for the Segre cubic threefold the universal torsors are flag varieties;
and that lifting the count of rational points to these flag varieties yields the expected
asymptotic results.

More generally, let G be a semi-simple algebraic group, P C G a parabolic
subgroup. The flag variety P\G admits an action by any subtorus of the maximal
torus in G on the right. Choosing a linearization for this action and passing to the
quotient we obtain a plethora of examples of nonhomogeneous varieties X whose
torsors carry additional symmetries. These may be helpful in the counting rational
points on X.

Example 5.5.1. A flag variety for the group G, is the quadric hypersurface
VU1 + Voo + vausz + 22 = 0,

where the torus G2, C Gy acts as
v; = ANy, §=1,2 vz (M) o
u; )\j_luj, i=1,2 w3z AAous.

The quotient by G2, is a subvariety in the weighted projective space

P(1,2,2,2,3,3) = (2 : @1 : @2 : T3: Y1 : Ya2)
with the equations

To+ T1 + T2 + 22 =0 and T1T2T3 = Y1Y2.

6. Analytic approaches to height zeta functions
Consider the variety X C P° over Q given by
ToT1 — TX3 + T4x5 = 0.

It is visibly a quadric hypersurface and we could apply the circle method as in
Section 4.6. It is also the Grassmannian variety Gr(2,4) and an equivariant com-
pactification of G#. We could count rational points on X taking advantage of any
of the underlying structures. In this section we explain counting strategies based
on group actions and harmonic analysis.

6.1. Tools from analysis. Here we collect technical results from complex
and harmonic analysis which will be used in the treatment of height zeta functions.
For U C R" let
Ty :={se€C"|R(s) e U}

be the tube domain over U.

THEOREM 6.1.1 (Convexity principle). Let U C R™ be a connected open subset
and U the convex envelope of U, i.e., the smallest convex open set containing U.
Let Z(s) be a function holomorphic in Ty. Then Z(s) is holomorphic in Tg.

THEOREM 6.1.2 (Phragmen-Lindelof principle). Let ¢ be a holomorphic func-
tion for R(s) € [o1,02]. Assume that in this domain ¢ satisfies the following bounds
o [4(s)| = O(el!), for all e > 0;
o [p(or +it)| = O(|t|") and |¢(on + it) = |O(|t[*).
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Then, for all o € [01,02] one has

k—k ko — k
lp(o + it)| = O(|t]*),  where Lo
g —01 09 — 01

Using the functional equation and known bounds for I'(s) in vertical strips one
derives the convexity bounds,
1
(6.1) ¢G5 +it)l = O(|t['/**), Ve >0,
and
(s—1)

(6.2) -

C(erit)’ = O([t]) for R(s) >1—0,

for some sufficiently small § = §(¢) > 0. More generally, we have the following
bound for growth rates of Hecke L-functions:

PROPOSITION 6.1.3. For all € > 0 there exists a § > 0 such that
(6.3) IL(s, ) < X+ [SO)+[S(s))), for R(s) > 19,

for all nontrivial unramified characters x of G (Ar) /G (F), i.e., Xy is trivial on
G(0,), for all vt oo. Here

I(x) € @Gm(Fv)/Gm(ov) ~ Rt

v|oco
with 1,79 the number of real, resp. pairs of complexr embeddings of F'.

THEOREM 6.1.4 (Tauberian theorem). Let {\,} be an increasing sequence of
positive real numbers, with lim, oo A, = 00. Let {a,} be another sequence of
positive real numbers and put

a
Z(s) := )\—Z
n>1""
Assume that this series converges absolutely and uniformly to a holomorphic func-
tion in the tube domain T, C C, for some a > 0, and that it admits a representa-
tion
h(s)
Z(s) = ——,
() (s —a)b
where h is holomorphic in Tsq_, for some € > 0, with h(a) =¢ > 0, and b € N.
Then

N(B) := Z an = ﬁB“ log(B)""'(1 4+ o(1)),  for B — cc.
An<B
A frequently employed result is:
THEOREM 6.1.5 (Poisson formula). Let G be a locally compact abelian group

with Haar measure dg and H C G a closed subgroup. Let G be the Pontryagin dual
of G, i.e., the group of continuous homomorphisms

x:G—=S' cc
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into the unit circle (characters). Let f : G — C be a function satisfying some mild
assumptions (integrability, continuity) and let

ﬂw:Lﬂmx@@

be its Fourier transform. Then there exist Haar measures dh on H and dh™ on
H*L, the subgroup of characters trivial on H, such that

(6.4) /Hfdh: HLfAdhl.

A standard application is to H = Z C R = G. In this case H+ = H = Z, and

the formula reads
d fm)=>" fn).

neZ nez

This is a powerful identity which is used, e.g., to prove the functional equation
and meromorphic continuation of the Riemann zeta function. We will apply Equa-
tion (6.4) in the case when G is the group of adelic points of an algebraic torus
or an additive group, and H is the subgroup of rational points. This will allow
us to establish a meromorphic continuation of height zeta functions for equivariant
compactifications of these groups.

Another application of the Poisson formula arises as follows: Let A be a lattice
and A a convex cone in Ag. Let da be the Lebesgue measure on the dual space Ag
normalized by the dual lattice A. Let

Xa(s) = / e S0da,  R(s) € A°.
A

be the Laplace transform of the set-theoretic characteristic function of the dual
cone A; it was introduced in Section 4.12. The function X} is holomorphic for R(s)
contained in the interior A° of A.

Let 7 : A — A be a homomorphism of lattices, with finite cokernel A’
and kernel B C A, inducing a surjection A — A. Normalize the measure db by
vol(Bgr/B) = 1. Then

1 1
(6.5) Xi(n(s)) = @ F A X (s + ib) db.

In particular,
1 - 1
Xr(s) = —— ————dm.
A(s) (2m)d /MKH (sj +imy;)

6.2. Compactifications of groups and homogeneous spaces. As already
mentioned in Section 3, an easy way to generate examples of algebraic varieties
with many rational points is to use actions of algebraic groups. Here we discuss the
geometric properties of groups and their compactifications.

Let G be a linear algebraic group over a field F, and

o : G — PGLn+1
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an algebraic representation over F'. Let « € P"(F) be a point. The orbit o(G) -z C
P™ inherits rational points from G(F'). Let H C G be the stabilizer of z. In general,
we have an exact sequence

1— H(F) = G(F)— G/H(F) - H"(F,H) — - --

We will only consider examples when (G/H)(F) = G(F)/H(F).

By construction, the Zariski closure X of o(G) - x is geometrically isomorphic
to an equivariant compactification of the homogeneous space G/H. We have a
dictionary

equivariant compactification X D G/H,

(@zeP") & { G-linearized very ample line bundle L on X.

Representations of semi-simple groups do not deform, and can be characterized
by combinatorial data: lattices, polytopes, etc. Note, however, that the choice
of the initial point x € P™ can still give rise to moduli. On the other hand, the
classification of representations of unipotent groups is a wild problem, already for
G = G2. In this case, understanding the moduli of representations of a fixed
dimension is equivalent to classifying pairs of commuting matrices, up to conjugacy
(see [GP69]).

6.3. Basic principles. Here we explain some common features in the study
of height zeta functions of compactifications of groups and homogeneous spaces.

In all examples, we have Pic(X) = NS(X), a torsion-free abelian group. Choose
a basis of Pic(X) consisting of very ample line bundles L4, ..., L, and metrizations
L; = (Lj,| -|la). We obtain a height system:

He, « X(F) = Rso, for j=1,...,m
which can be extended to Pic(X)c, by linearity:

H: X(F)xPic(X)c — Rso,
(x,8) = [lj=1 He, (@)%,

where s := Z;Zl sjL;. For each j, the 1-parameter zeta function

Z(X,Lj,s)= Y He(2)*

zEX(F)

(6.6)

converges absolutely to a holomorphic function, for ®(s) > 0. It follows that

Z(X,s):= Y H(z,s)"

z€X(F)

converges absolutely to a holomorphic function for R(s) contained some cone in
Pic(X)g.

Step 1. One introduces a generalized height pairing
(6.7) H=]]H. : G(A) x Pic(X)c — C,
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such that the restriction of H to G(F') x Pic(X) coincides with the pairing in (6.6).
Since X is projective, the height zeta function

(6.8) Z(g,s) =Z(X,g,8):= Y H(ygs
YEG(F)

converges to a function which is continuous in g and holomorphic in s for R(s)
contained in some cone A C Pic(X)g. The standard height zeta function is obtained
by setting g = e, the identity in G(A). Our goal is to obtain a meromorphic
continuation to the tube domain T over an open neighborhood of [-Kx] = & €
Pic(X)r and to identify the poles of Z in this domain.

Step 2. It turns out that

Z(g,s) € L(G(F)\G(A)),
for R(s) > 0. This is immediate in the cocompact case, e.g., for G unipotent or
semi-simple anisotropic, and requires an argument in other cases. The L2-space
decomposes into unitary irreducible representations for the natural action of G(A).
We get a formal identity

(69) Z(g,S) = ZZQ(Q’S)

where the summation is over all irreducible unitary representations (g, H,) of G(A)
occurring in the right regular representation of G(A) in L2(G(F)\G(A)).

Step 3. In many cases, the leading pole of Z(g,s) arises from the trivial repre-
sentation, i.e., from the integral

6.10 / g, ldg = / gva dgv7
( ) G(AF) H

where dg, is a Haar measure on G(F,). To snnphfy the exposition we assume that
X\G=D= U D,
i€T
where D is a divisor with normal crossings whose components D; are geometrically

irreducible.
We choose integral models for X and D; and observe

G(F,) C X(Fy) — X(0v) = X(Fy) = |_| D (F
ICT
where

D[ = ﬂ Di7 D(I) = D[\ U D]I.
iel DI
For almost all v, we have

1, #D g—1
(611) /G(Fv) Hv(gvvs) dg, = TU (Z d1m(X) H qsi—m‘i‘l — 1) ’

ICZ q el

where 7, (G) is the local Tamagawa number of G and ; is the order of the pole of the
(unique modulo constants) top-degree differential form on G along D;. The height
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integrals are geometric versions of Igusa’s integrals. They are closely related to
“motivic” integrals of Batyrev, Kontsevich, Denef and Loeser (see [DL98], [DL99],
and [DLO1)).

This allows one to regularize explicitly the adelic integral (6.10). For example,
for unipotent G we have

(6.12) [ s g =T[¢rls— i+ 1) 0(s),
G(AF) i
with ®(s) holomorphic and absolutely bounded for R(s;) > k; — §, for all i.

Step 4. Next, one has to identify the leading poles of Z,(g,s), and to obtain
bounds which are sufficiently uniform in ¢ to yield a meromorphic continuation
of the right side of (6.9). This is nontrivial already for abelian groups G (see
Section 6.5 for the case when G = G7). Moreover, will need to show pointwise
convergence of the series, as a function of g € G(A).

For G abelian, e.g., an algebraic torus, all unitary representation have dimen-
sion one, and equation (6.9) is nothing but the usual Fourier expansion of a “pe-
riodic” function. The adelic Fourier coefficient is an Euler product, and the local
integrals can be evaluated explicitly.

For other groups, it is important to have a manageable parametrization of
representations occurring on the right side of the spectral expansion. For example,
for unipotent groups such a representation is provided by Kirillov’s orbit method
(see Section 6.7). For semi-simple groups one has to appeal to Langlands’ theory
of automorphic representations.

6.4. Generalized flag varieties. The case of generalized flag varieties X =
P\G has been treated in [FMT89]. Here we will assume that G is a split semi-
simple simply connected linear algebraic group over a number field F, and P a
parabolic subgroup containing a Borel subgroup F, with a Levi decomposition
Py = SpUp. Restriction of characters gives a homomorphism X*(P) — X*(P,). Let
7 : G — X = P\G be the canonical projection. We have an action of P on G x A!
via p- (g,a) — (pg, \(p)~*a). The quotient

Ly := P\(G x A')
is a line bundle on X and the assignment A\ — L) gives an isomorphism
X*(P) — Pic(X).
The anticanonical class is given by
—Kx =2pp,

the sum of roots of Sy occurring in the unipotent radical of P. Let Ay be the
basis of positive roots of the root system ®(Sy, G) determined by Py. These are
labeled by vertices of the Dynkin diagram of G. Let Al be the subset of roots
orthogonal to X*(P), with respect to the Weyl group invariant intersection form
(,) on X*(Fy), and

AP Z:A()\Aé).
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The cone of effective divisors Aeg(X) = Apner(X) is the (closure of the) positive
Weyl chamber, i.e.,
A (X) ={A e X" (P)r|{N\a) >0 forall «oe€Ap}
Fix a maximal compact subgroup K¢ = [[, K¢,» C G(AF) such that
G(Ar) = Po(Ar)Ke.
For g = pk, p = (pv)y € P(Ap) and k = (k,), € Kg put

Hp(g) = HHP,v(gv) with (A, Hpy(gv)) = log(|A(po)|)-

This defines an adelically metrized line bundle £ = £ = (Ly, || - ||a) on X by

(6.13) He(z) = e~ N HPOD D with 2 = 7(y).

The Eisenstein series

(6.14) EG(sA—pp.g) = Y M0
YEP(F)O\G(F)

specializes to the height zeta function

Z(s\) =Z(X,s\) = > H,(2)7" =EZ(sA— pp, L)
zEX(F)

Its analytic properties have been established in [Lan76] (see also [God95] or
[MW94, IV, 1.8]); they confirm the conjectures formulated in Section 4.12. The
case of function fields is considered in [LY02].

6.5. Additive groups. Let X be an equivariant compactification of an addi-
tive group G' = G”. For example, any blowup X = Bly (P"), with Y c P~ c P,
can be equipped with a structure of an equivariant compactification of GI'. In
particular, the Hilbert schemes of all algebraic subvarieties of P! appear in the
moduli of equivariant compactifications X as above. Some features of the geom-
etry of such compactifications have been explored in [HT99]. The analysis of
height zeta functions has to capture this geometric complexity. In this section we
present an approach to height zeta functions developed in [CLT00a], [CLTO00b],
and [CLTO02].

The Poisson formula yields

©15) 2= Y MO = [ Hew g + Y Aws),

YEG(F) G(Ar) -

where the sum runs over all nontrivial characters ¢ € (G(Ar)/G(F))* and
(6.16) fiws) = [ Hg.s) Mol
G(Ar)

is the Fourier transform, with an appropriately normalized Haar measure dg.

Ezample 6.5.1. The simplest case is G = G, = A! C P!, over F = Q, with the
standard height

Hy(z) = max(1, |z],), Heo(z) =1+ 22
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We have
(6.17) Z(s) = 3 H()~* :/ M) ~de + S A, s).
zeQ Ag »#o
The local Haar measure dz, is normalized by vol(Z,) = 1 so that
. . 1
vol(lz|, =p’) =p’ (1 — ];)
We have
/ Hy(z) " *dx, z/ ) *dx, + Z/ ) *dx,
P Zp j>1 |z]p= pJ
=1+ Zp_jsvol(m =p) = el N
£ p 1— p*(sfl)
Jj=1

22520y — I'((s—1)/2)
/R(1+ )7 e = el

Now we analyze the contributions from nontrivial characters. Each such char-
acter ¢ decomposes as a product of local characters, defined as follows:

wp — wp,ap . xp — eQﬂ'iap.mp’ ap c Qp;
Voo = Voo,an, © T > g2midoeT as € R.
A character is unramified at p if it is trivial on Z,, i.e., ap € Z,. Then @) = 1,, with
a € Ag. A character ¢ = 9, is unramified for all p iff @ € Z. Pontryagin duality
identifies Q, = Qp, R =R, and (Ag/Q)* = Q.

Since H, is invariant under the translation action by Z,, the local Fourier
transform H,(¢q,,s) vanishes unless v, is unramified at p. In particular, only
unramified characters are present in the expansion (6.17), i.e., we may assume that
Y =1, with a € Z\ 0. For p 1 a, we compute

Hp(s, ) =1+ Zp‘sj/ Waly) da, =1—p.
i>1 |z|p=p7
Putting it all together we obtain

-1 T(s-1/2)
)=y T

* Z H ' H Hp(l‘p)_sdxp : /R(l =+ 332)_5/2 . e?ﬂ'iamdx
pla

a€l p’(a

For R(s) > 2 — §, we have the upper bounds

(6.18) JIGHES) de,,|<<|H/ ~*dx, < |al®

pla

(6.19) |/(1 + 2272 2T gy < iy for any N € N,
R

#
(1+Ja)N

where the second inequality is proved via repeated integration by parts.
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Combining these bounds we establish a meromorphic continuation of the right
side of Equation (6.17) and thus of Z(s). It has an isolated pole at s = 2 (corre-
sponding to —Ky = 2L € Z = Pic(P')). The leading coefficient at this pole is the
Tamagawa number defined by Peyre.

Now we turn to the general case. We have seen in Example 1.1.4 that:
o Pic(X) =&, ZD;;
L] 7KX = Zz Iil'.Di, with Rj Z 2,
L Aeﬂ‘(X) = @1 RZODi~
For each irreducible boundary divisor we let f; be the unique, modulo scalars,
G-invariant section of H°(X,O(D;)). Local and global heights are given as in
Definition 4.8.4:

Hp, o(z) = [Ifi(@)[l;" and Hp,(z HHD“v

A key fact is that the local heights are invariant under the action of a compact
subgroup K¢, C G(F,), v1{ oo, with K¢, = G(0,), for almost all such v. We get
a height pairing:
H :GAr) xPic(X)e — C
(z,>; siDi) — [l Hp,(x)*

The main term in (6.15) is computed in (6.12); its analytic properties, i.e., loca-
tion and order of poles, leading constants at these poles, are in accordance with
Conjectures in Section 4.10.

We now analyze the “error terms” in equation (6.15), i.e., the contributions
from nontrivial characters. A character of G”(Ap) is determined by a “linear
form” (a,-) = fa, on G?, which gives a rational function f, € F(X)*. We have

div(fa) = Ba — Y di(fa)D
€L
with d; > 0, for all i. Put

Lo(a) := {i|di(fa) = 0}
Only the trivial character has Zo = Z. The computation of local integrals in (6.16)
is easier at places of good reduction of f,. The contribution to |:|(¢a,5) from
nonarchimedean places of bad reduction S(a) C Val(F) admits an a priori bound,
replacing the integrand by its absolute value. Iterated integration by parts at
archimedean places allows one to establish [CLT02, Corollary 10.5]:

Hta,s) = [] Cr(si—ri+1)- @als),
i€Tp(a)
with ®,(s) holomorphic for R(s;) > k; —1/2+¢, € > 0, and bounded by
c(e, N)1+[Is|)™' (1 + [lalle) ™™ N,N' €N.
We have
H(¢ba,s) = 0,
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unless 1, is trivial on Kg ;= HUTOO K¢, Thus only unramified characters 1,,
i.e., with a in a lattice, contribute to the Poisson formula 6.15. One obtains

Z(s) = fG(AF) H(g,s)"'dg + ZIOQI Z’t[}atzg(a):I F'(%n s)

[Liez Cr(si — ki +1) - ®(s) + E[gz [Lic Cr(si—ki+1)- o (s),

where ®(s) and ®;(s) are holomorphic in s and admit bounds in vertical strips.
Restricting to the line s(—Kx) shows that the pole of highest order is contributed
by the first term, i.e., by the trivial character. The leading coefficient at this pole
is the adelic height integral; matching of local measures proves Conjecture 4.12.4.
Consider the restriction to lines sL, for other L in the interior of A.s(X). Let
T correspond to the face of Ae(X) which does not contain a(L)L + Kx in its
interior. The poles of Z(sL) are at the predicted value s = a(L), of order < b(L).
They arise from those characters 1, which have I C Zy(a). These characters form
a subgroup of the group of characters of G(Ar)/G(F'). To show that the sum of
the coefficients at these poles does not vanish one applies the Poisson formula (6.4)
to this subgroup:

> H(ta,sL) = / H(g,sL)™"dg,
ta,ICTo(a) Ker
where Ker is the common kernel of these characters. One can identify
Ker = (G/G])(F) . G[(AF)7

where Gy C G is the subgroup defined by the vanishing of the linear forms (a, ).
The geometric interpretation of this sum, and of the leading coefficient at the pole,
leads to the formalism developed in Section 4.14, specifically to Equation (4.15).
In particular, Conjecture 4.14.2 holds.

6.6. Toric varieties. Analytic properties of height zeta functions of toric va-
rieties have been established in [BT95], [BT98], and [BT96a].
An algebraic torus is a linear algebraic group T over a field F' such that

TE >~ GZ’LE

for some finite Galois extension E/F. Such an extension is called a splitting field
of T. A torus is split if T' ~ (Gfln) p- The group of algebraic characters

M := X*(T) = Hom(T, E¥)

is a torsion-free I' := Gal(E/F)-module. The standard notation for its dual, the
cocharacters, is N := X, (T). There is an equivalence of categories:

d-dimensional integral d-dimensional
I'-representations, & algebraic tori, split over FE,
up to equivalence up to isomorphism

The local and global theory of tori can be summarized as follows: The local Galois
groups I, := Gal(E,,/F,) C T act on M. Put

M, = M v{oo, resp. M, =M™ ®R v | oo,
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and let N, be the dual groups. Write Ky, C T(F,) for the maximal compact
subgroup (after choosing an integral model, K¢, = T'(0,), the group of o,-valued
points of T, for almost all v). Then

(6.20) T(F,)/Kry < N, =N,
and this map is an isomorphism for v unramified in E/F. Adelically, we have

T(Ar) D T'(Ap) = {t| [[Im(t.)l, =1 ¥m € M"}

and
T(F) = T'(Ar).

THEOREM 6.6.1. We have

T(Ap)/T'(Ap) = Ng:

TY(Ap)/T(F) is compact;

KrNT(F) is finite;

the homomorphisms (T(Ar)/Kr - T(F))" — D.joc Mv @R has finite ker-
nel and image a direct sum of a lattice with ME.

Over algebraically closed fields, complete toric varieties, i.e., equivariant com-
pactifications of algebraic tori, are described and classified by a combinatorial struc-
ture (M, N,X), where ¥ = {o} is a fan, i.e., a collection of strictly convex cones in
Ng such that

(1) 0o forall o € %

(2) NR = UGEE g;

(3) every face 7 C o is in X;

(4) oNo’ € X and is face of o,0’.

A fan Y is called regular if the generators of every o € ¥ form part of a basis of
N. In this case, the corresponding toric variety Xy is smooth. The toric variety is
constructed as follows:

Xy = UU‘T where U, := Spec(F[M N a]),

and & C Mp is the cone dual to o C Ng. The fan ¥ encodes all geometric informa-
tion about Xy. For example, 1-dimensional generators eq,...,e, of 3 correspond
to boundary divisors Dy, ..., D,, i.e., the irreducible components of X5\ T. There
is an explicit criterion for projectivity and a description of the cohomology ring,
cellular structure, etc.

Over nonclosed ground fields F one has to account for the action of the Galois
group of a splitting field E/F. The necessary modifications can be described as
follows. The Galois group I' acts on M, N,3. A fan X is called I'-invariant if
v-oe X, forallyeI' o€ X. If ¥ is a complete regular I'-invariant fan such that,
over the splitting field, the resulting toric variety Xy g is projective, then it can be
descended to a complete algebraic variety X r over the ground field F' such that

X5 B~ X5 F ®gpec(r) Spec(E),

as F-varieties with I'-action. Let PL(X) be the group of piecewise linear Z-valued
functions ¢ on ¥. An element ¢ € PL(X) is determined by a collection of linear
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functions {ms ,}oex, C M, i.e., by its values s; := p(e;), j = 1,...,n, and we may
write ¢ = g, with s = (s1,...,s,). Note that, over a splitting field E,
PL(®) ~ PicT (Xy)

the group of isomorphism classes of T-linearized line bundles on Xy. We have an
exact sequence of I'-modules

0— M — PL(Z) — Pic(Xs) = 0
which leads to
0— M" = PL(®)" = Pic(Xs)' - HY(T, M) =0

This reflects the fact that every divisor is equivalent to a linear combination of
boundary divisors Dy,...,D,, and ¢ is determined by its values on ej,...,epn;
relations come from characters of T' (see Example 1.1.4). The cone of effective
divisors is given by:

Ag(Xs) =7m(R>9D1 + - -+ R>0Dy,)
and the anticanonical class is

—Ky =n(D1+---+ D,).

Ezample 6.6.2. Consider the simplest toric variety P! = {(zo : z1)}, an equi-
variant compactification of G,,,. We have three distinguished Zariski open subsets:

e P! 5 G,, = Spec(F[z,r1]) = Spec(F[z?])
e P! 5 Al = Spec(F[x]) = Spec(F[x%>0]),
e P! 5 Al = Spec(F[z™1]) = Spec(F[z%=0])
They correspond to the semigroups:
Z — dual to 0, Z>o— dual to Z>g, Z<o— dual to Z<.

The local heights can be defined combinatorially, via the introduced explicit charts:
on

o
= { Bl ol 2

|2+, otherwise.

As usual,

H(z) := [ [ Ho(2).

In general, for ¢ € PL(X)', L = L, and z = (), € T(F,) define

H[l,v(xv) = HZ,v(xva (;0) = qf(iv)7 HE({E, @) = H HE,v(xa (,0)7
v

where Z, is the image of z,, under the homomorphism (6.20), with ¢, = e, for v | co.
One can check that these formulas define an adelic metrization on the T-linearized
line bundle L = L,. More generally, for ¢ = (¢,), € T(Ap) one can define the
t-twisted adelic metrization £(t) of £L = (L, -]|) via

(621) HL‘(t),v = Hzﬁv(l'vtv).

The product formula implies that

Hﬁ(t) =Hg, for t € T(F).
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Th height pairing Hy, : T(Ap) x PL(X)E — C has the following properties:
e its restriction to T'(F) x PL(X)% descends to a well-defined pairing
T(F) x Pic(Xx)t — C;
o it is K7 ,-invariant, for all v.

The height zeta function

Z HEmSOs

z€T(F)

can be analyzed via the Poisson formula (6.4)

(6.22) Zs(s) := / Hs(x.s) dx,
(T(Ar)/Kr-T(F))"

where
fis)i= [ Haloen) x(o)da,
(Ar)

and the Haar measure is normalized by K. As before, the Fourier transform van-
ishes for characters y which are nontrivial on K. The integral converges absolutely
for R(s;) > 1 (for all j), and the goal is to obtain its meromorphic continuation to
the left of this domain.

Ezample 6.6.3. Consider the projective line P! over Q. We have
0 — M — PL(X) — Pic(P*) = 0

with M = Z and PL(X) = Z*. The Fourier transforms of local heights can be
computed as follows:

H Xma 71+Zp 51— Zm+zp sit+im _ (81+7’m)gp(2_im)’

n>1 n>1 Co(s1+ 52)
i * (=s1—im)z - (—s2+im)x 1 1
Hoo (Xm,S) = el dx + el dx = — + —.
0 0 S1+wm S —i1m

We obtain

Z(]P’l,sl,SQ):/RC(sl+im)C(S2—im)-( 1. + 1. )dm.

s1+1m So —1m

The integral converges for R(s1), R(s2) > 1, absolutely and uniformly on compact
subsets. It remains to establish its meromorphic continuation. This can be achieved
by shifting the contour of integration and computing the resulting residues.

It is helpful to compare this approach with the analysis of P! as an additive
variety in Example 6.5.1.

The Fourier transforms of local height functions Hz,v(xv, —s) in the case of G,
over Q are given by:

d
ket oesn (DI, e0 ﬁ v f oo,

1
2oes e;eo Grraesmm v | oo.
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where (m,), are the local components of the character y = x.,. The general case
of nonsplit tori over number fields requires more care. We have an exact sequence
of I'-modules:

0— M — PL(¥) — Pic(Xg) — 0,

with PL(X) a permutation module. Duality gives a sequence of groups:

0= Tpic(Ar) = Tpr(Arp) = T(AR),

with
k
Tpr(Ar) = H Rp, /rGm(AF) (restriction of scalars).
j=1
We get a map
623y (TAR)/Er T(E) = T (Gnlhr)/Cn(F))’
X — (X17 L) Xk)

This map has finite kernel, denoted by Ker(T"). Assembling local computations, we
have

- T2 Lss )
(6.24) Hs(x,s) = W

where @Qx(x,s) bounded uniformly in x, in compact subsets in R(s;) > 1/2 + 4,
6 >0, and

CZ,OO(Sa X)v

1 1
(T lImlloo) ™ (14 [Ixlloo) 1

¢80 (8, X)| <

This implies that

(6.25) Zs(s) = fe(s+im)dm,
My

where
fe(s) = > Hx:(x, s)
XE(T(AF) /K T(F))*
We have

(1) (s1—=1)...(sx — 1) fx(s) is holomorphic for R(s;) > 1 —6;

(2) fx satisfies growth conditions in vertical strips (this follows by applying
the Phragmen-Lindelof principle 6.1.2 to bound L-functions appearing in
equation (6.24));

(3) limy; 1 fu(s) = c(fs) # 0.

The integral (6.25) resembles the integral representation (6.5) for Xa_, (s — 1) (de-
fined in Equation 4.12). A technical theorem allows one to compute this integral
via iterated residues, in the neighborhood of ®(s) = (1,...,1). The Convexity
Principle 6.1.1 implies a meromorphic continuation of Zx(s) to a tubular neighbor-
hood of the shifted cone Aeg(Xy). The restriction Z(s(—Kyx)) of the height zeta
function to the line through the anticanonical class has a pole at s = 1 of order
rk Pic(Xx)" with leading coefficient a(Xy) - ¢(fx(0)) (see Definition 4.12.2). The
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identification of the factors 8 and 7 in Equation (4.14) requires an application of
the Poisson formula to the kernel Ker(7') from (6.23). One has

m Ker(x) = T(F) C T(Ar),

x€Ker(T)

the closure of T'(F) in the direct product topology. Converting the integral and
matching the measures yields

()= 3 Aus) = [ Mg g =500 [,

x€Ker(T) T(F) X5 (F)
proving Conjecture 4.12.4. Other line bundles require a version of the technical the-
orem above, and yet another application of Poisson formula, leading to £-primitive
fibrations discussed in Section 4.13.

6.7. Unipotent groups. Let X D G be an equivariant compactification of a
unipotent group over a number field F' and

X\G=D=|JD.
=
Throughout, we will assume that G acts on X on both sides, i.e., that X is a
compactification of G x G/G, or a bi-equivariant compactification. We also assume
that D is a divisor with normal crossings and its components D, are geometrically
irreducible. The main geometric invariants of X have been computed in Exam-
ple 1.1.4: The Picard group is freely generated by the classes of D;, the effective
cone is simplicial, and the anticanonical class is the sum of boundary components
with nonnegative coefficients.
Local and global heights have been defined in Example 4.8.6:

Hp, o(z) = [Ifi(@)[l;" and Hp,(z HHD“v

where f; is the unique G-invariant section of HO(X, D;). We get a height pairing:
H : G(Ar) x Pic(X)c — C

as in Section 6.3. The bi-equivariance of X implies that H is invariant under the

action on both sides of a compact open subgroup K of the finite adeles. Moreover,

we can arrange that H, is smooth in g, for archimedean v.
The height zeta function
- 3 weo!

YEG(F
is holomorphic in s, for R(s) > 0. As a functlon of g it is continuous and in

L2(G(F)\G(AF)), for these s. We proceed to analyze its spectral decomposition.
We get a formal identity

(6.26) Z(s;9) = > Zo(s;9),

where the sum is over all irreducible unitary representations (g, H,) of G(Ar) oc-
curring in the right regular representation of G(Ar) in L2(G(F)\G(Ar)). They are
parametrized by F-rational orbits O = O, under the coadjoint action of G on the
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dual of its Lie algebra g*. The relevant orbits are integral—there exists a lattice
in g*(F) such that Z,(s;g) = 0 unless the intersection of O with this lattice is
nonempty. The pole of highest order is contributed by the trivial representation
and integrality ensures that this representation is “isolated”.

Let ¢ be an integral representation as above. It has the following explicit
realization: There exists an F-rational subgroup M C G such that

o = Indf; (v),

where 1 is a certain character of M (Ag). In particular, for the trivial represen-
tation, M = G and ¢ is the trivial character. Further, there exists a finite set of
valuations S = S, such that dim(g,) =1 for v ¢ S and consequently

(6.27) Zy(s:9') =Z%(s39') - Zs(s;9').
It turns out that

Z%(s;g') == H/ Ho(s; 90g,) "1 (g0) dgo,
’L)QS M(Fv)

with an appropriately normalized Haar measure dg, on M (F,). The function Zg

is the projection of Z to @,cg 0v-

The first key result is the explicit computation of height integrals
[ Hulsing) Mol da,
M(Fy)

for almost all v. This has been done in [CLT02] for equivariant compactifications
of additive groups G? (see Section 6.5); the same approach works here too. The
contribution from the trivial representation can be computed using the formula of
Denef-Loeser, as in (6.12):

/G<AF> Hlsia) o= HCF(S" — ki +1) - B(s),

where ®(s) is holomorphic in
T:={s|R(s;) > ki —€ Vi}.

(Recall that —Kx = ), x;D;.) As in the case of additive groups in Section 6.5,
this term gives the “correct” pole at —Kx. The analysis of 1-dimensional repre-
sentations, with M = G, is similar to the additive case. New difficulties arise from
infinite-dimensional ¢ on the right side of the expansion (6.26).

Next we need to estimate dim(p,) and the local integrals for nonarchimedean
v € §,. The key result here is that the contribution to the Euler product from
these places is a holomorphic function which can be bounded from above by a
polynomial in the coordinates of g, for s € T. The uniform convergence of the
spectral expansion comes from estimates at the archimedean places: for every (left
or right) G-invariant differential operator 0 (and s € T) there exists a constant c(9)
such that

(6.28) / OH, (85 90) ™ dgo v < ().
G(F,)
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Let v be real. It is known that g, can be modeled in L?(R"), where 2r = dim(O).
More precisely, there exists an isometry

J o (7o, L2(RT)) — (ov, Ho)
(an analog of the O-distribution). Moreover, the universal enveloping algebra $i(g)
surjects onto the Weyl algebra of differential operators with polynomial coefficients

acting on the smooth vectors C*°(R") C L?(R"). In particular, we can find an
operator A acting as the (r-dimensional) harmonic oscillator

15 )
g a2,
e dxz I

with a; > 0. We choose an orthonormal basis of L?(R") consisting of A-eigenfunc-
tions {@y} (which are well-known) and analyze

/ Ho (51 90) 02 (90) g
G(F,)

where wy = j71(@,). Using integration by parts we find that for s € T and any
N € N there is a constant c¢(N, A) such that this integral is bounded by

(6.29) 1+ |A)"Ne(w, A).

This estimate suffices to conclude that for each ¢ the function Zg, is holomorphic
inT.

Now the issue is to prove the convergence of the sum in (6.26). Using any
element 9 € U(g) acting in H, by a scalar A(9) # 0 (for example, any element in
the center of £l(g)) we can improve the bound (6.29) to

(L4 [A)™MA(0)Me(Ny, No, A, 9)

(for any N1, Ny € N). However, we have to ensure the uniformity of such estimates
over the set of all p. This relies on a parametrization of coadjoint orbits. There is
a finite set {Xq} of “packets” of coadjoint orbits, each parametrized by a locally
closed subvariety Zgq C g*, and for each d a finite set of F-rational polynomials
{Par} on g* such that the restriction of each P4, to Zq is invariant under the
coadjoint action. Consequently, the corresponding derivatives

6d,r S il(g)
act in H, by multiplication by the scalar
Aor = Par(0).

There is a similar uniform construction of the “harmonic oscillator” Agq for each d.
Combining the resulting estimates we obtain the uniform convergence of the right
hand side in (6.26).

The last technical point is to prove that both expressions (6.8) and (6.26) for
Z(s;g) define continuous functions on G(F)\G(Ar). Then (6.9) gives the desired
meromorphic continuation of Z(s;e). See [STO04] for details in the case when G is
the Heisenberg group.
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Background material on representation theory of unipotent groups can be found
in the books [CG66], [Dix96] and the papers [Moo65], [Kir99].

6.8. Homogeneous spaces. Recall the setup of Section 6.2: G is an algebraic
group acting on PGL,, 1, X° the G-orbit through a point zg € P*(F) and X the
Zariski closure of X° in P". Let H be the stabilizer of = so that X° = H\G.
Thus X C P” is an equivariant compactification of the homogeneous space X°. Let
L = O(1) be the line bundle on X arising as a hyperplane section in this embedding.

THEOREM 6.8.1. [GOO08| Assume that

e (G is a connected simply connected semisimple F'-group;
o H is a semisimple mazximal connected F-subgroup of G;
e for all but finitely many places v, G(F,) acts transitively on X°(F,).

Then there exists a constant ¢ > 0 such that
N(B) = c¢-B®log(B)*"*(1 +0o(1)), B — ooc.
Here a = a(L) and b= b(L) are the constants defined in Section 1.4.

The main effort goes into establishing the asymptotic comparison
vol{z € X°(AF) | H(z) < B} < #{z € X°(F) | H(z) < B},

using techniques from ergodic theory. The identification of the constants a, b, ¢ from
the adelic volume follows by applying a Tauberian theory to the height integral as
in Step 3 of Section 6.3.
The group case, i.e.,
X°=GxG/qG,

has been treated in [STBTO7] using spectral methods and in [GMOO06] using
adelic mixing. See also [OhO08] for a comprehensive survey of applications of ergodic
theory to counting problems.

6.9. Fiber bundles. Let T be an algebraic torus with a left action X xT — X
on a smooth projective variety X. Let Pic” (X) be the group of isomorphism classes
of T-linearized line bundles on X. Let 7 — W be a T-torsor over a smooth
projective base W. One can form a twisted product

Y =X xTT,

as the quotient of X x 7 by the induced action (x,0)t — (xt,t=10). This is a
locally trivial fibration over W with fibers isomorphic to X. Interesting examples
of such varieties arise when 7 — W is a universal torsor and X is an equivariant
compactification of T". In this case, Y is a compactification of 7 and, following the
approach in Section 5, we can expect to see connections between arithmetic and
geometric properties of Y and W.

Here is a version of this construction combining varieties treated in Sections 6.4
and 6.6: let G be a semi-simple algebraic group, P C G a parabolic subgroup and
n : P — T a homomorphism to an algebraic torus. Let X be an equivariant
compactification of T'. Consider the twisted product

Y =X xP @G,
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i.e., the quotient of X x G by the P-action

(z,9)p —~ (zn(p),p~'9).

This is a locally trivial fiber bundle over W := P\G with fibers X. When P is the
Borel subgroup of G, T = P/U the maximal torus, X a smooth equivariant com-
pactification of T, and  : P — T the canonical projection, one obtains equivariant
compactifications of G/U, the so-called horospherical varieties.

The geometric properties of Y can be read off from the invariants of X, W and
7 (see [ST99], [CLTO01]):

e there is an exact sequence
0 — X(T) 55 Pic” (X) ® X*(P) — Pic(Y) — 0;

e A (Y) is the image of AZy(X) @ At (W) under the natural projection;
e the anticanonical class Ky is the image of (—Kx, —Kw).

Recall that X*(P) is a finite-index subgroup of Pic(W). Let # : ¥ — W
denote the projection and Ly, resp. L, a line bundle on W, resp. a T-linearized
line bundle on X. For L € Pic’(X) let LY be its image in Pic(Y). There is an
exact sequence

0 — Pic(W) = Pic(T) — Pic(X) — 0.

Let (7,9) € 7 1(y) € X x G, with g = pk, p € P(Ar),k € Kg. One can define
an adelic metrization of LY (see [ST99, Section 4.3]) such that

(6.30) Hev (y) = Hee) (),

where L£(n(p)) is the twisted adelic metrization of the T-linearized line bundle L on
X defined in Section 6.6. Consider the height zeta function

ZV.LY @ Lw,s) = 3, Hey()™ ) Heo(@)™
YEP(F)\G(F) ze€m=1(y)
The key property (6.30) implies that
D Hey (@) =Z(X, L(n(py)), 9)-
z€m=1(y)
Combining this with the Poisson formula 6.22, one obtains, at least formally
©31) 20" L 0 Lo = [ Fis(x.s) - ER(, x o) d,
(T(Ar)/Kr T(F))*

where (s,s") € Pic? (X)c@®X*(P)c, Y° = TxP G, and EE(s’, yon) is the Eisenstein
series (6.14). Analytic properties of the integral on the right side of (6.31) are
established following the approach in Section 6.6. Uniform bounds of the shape

[EE(s", x om)| < (1+ IS + [IxIe,
for R(s’) close to 2p, follow from Theorem 6.1.2, combined with Proposition 6.1.3.
THEOREM 6.9.1. [ST99] Conjecture 4.14.2 holds for Y = X x¥ G.
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Similar constructions can be carried out with parabolic subgroups Py, ..., P, in

groups G, . .

varieties

., Gy, and homomorphisms 7, : P; — G;_1, leading to Bott-Samelson

Y=P1\G1 XP2 Go X ... XPT \Gr,

which arise as desingularizations of Schubert varieties. Results concerning ana-
lytic properties of corresponding height zeta functions can be found in [Str98] and

[Stro1].
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ABSTRACT. We introduce some of the ideas and tools of birational geometry
which play a role in conjectures by Bombieri, Lang, Vojta and Campana on
the relationship between arithmetic and geometry. After a brief discussion of
geometry and arithmetic on curves in Section 0, we discuss Kodaira dimen-
sion of a variety and its conjectural relationship with arithmetic properties in
Section 1. In Section 2 we outline Campana’s approach aiming for a more
solid conjectural relationship with arithmetic through the core map. Section
3 outlines the minimal model program and discusses its current status. In
Section 4 we review Vojta’s conjectures and their relationship to Campana’s
conjectures and to the abc conjecture of Masser-Oesterlé.
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When thinking about the course “birational geometry for number theorists” I so
naively agreed to give at the Gottingen summer school, I could not avoid imagining
the spirit of the late Serge Lang, not so quietly beseeching one to do things right,
keeping the theorems functorial with respect to ideas, and definitions natural. But
most important is the fundamental tenet of Diophantine geometry, for which Lang
was one of the strongest and loudest advocates, which was so aptly summarized in
the introduction of Hindry-Silverman [HSO00]:

‘GEOMETRY DETERMINES ARITHMETIC.
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To make sense of this, largely conjectural, epithet, it is good to have some loose
background in birational geometry, which I will try to provide. For the arithmetic
motivation I will explain conjectures of Bombieri, Lang and Vojta, and new and
exciting versions of those due to Campana. In fact, I imagine Lang would insist
(strongly, as only he could) that Campana’s conjectures most urgently need further
investigation, and indeed in some sense they form the centerpiece of these notes.

Birational geometry is undergoing revolutionary developments these very days:
large portions of the minimal model program were solved soon after the Géttingen
lectures [BCHMO06], and it seems likely that more is to come. Also, a number
of people seem to have made new inroads into the long standing resolution of
singularities problem. I am not able to report on the latter, but I will give a brief
account of the minimal model program as it seems to stand at this point in time.

Our convention: a variety over k is an absolutely reduced and irreducible scheme
of finite type over k.

ACKNOWLEDGEMENTS: I thank the CMI and the organizers for inviting me, I
thank the colleagues and students at Brown for their patience with my ill prepared
preliminary lectures and numerous suggestions, I thank F. Campana for a number of
inspiring discussions, H.-H. T'seng and H. Ulfarsson for a number of good comments,
and L. Caporaso for the notes of her MSRI lecture [Cap], to which my lecture
plans grew increasingly close. The treatment of the minimal model program is
influenced by lectures of Ch. Hacon and J. McKernan and discussions with them.
Many thanks are due to the referee who caught a large number of errors and made
numerous suggestions. Of course all remaining errors are entirely my responsibility.
Anything new is partially supported by the NSF grants DMS-0301695 and DMS-
0603284.

0. Geometry and arithmetic of curves

The arithmetic of algebraic curves is one area where basic relationships between
geometry and arithmetic are known, rather than conjectured. Much of the material
here is covered in Darmon’s lectures of this summer school.

0.1. Closed curves. Consider a smooth projective algebraic curve C' defined
over a number field k. We are interested in a qualitative relationship between its
arithmetic and geometric properties.

We have three basic facts:

0.1.1. A curve of genus 0 becomes rational after at most a quadratic extension
k" of k, in which case its set of rational points C'(k¥') is infinite (and therefore dense
in the Zariski topology).

0.1.2. A curve of genus 1 has a rational point after a finite extension k' of k
(though the degree is not a priori bounded), and has positive Mordell-Weil rank
after a further quadratic extension k”/k’, in which case again its set of rational
points C'(k”) is infinite (and therefore dense in the Zariski topology).

We can immediately introduce the following definition:

DEFINITION 0.1.3. Let X be an algebraic variety defined over k. We say that
rational points on X are potentially dense if there is a finite extension &'/k such
that the set X (k) is dense in X/ in the Zariski topology.

Thus rational points on a curve of genus 0 or 1 are potentially dense.
Finally we have
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THEOREM 0.1.4 (Faltings, 1983). Let C' be an algebraic curve of genus > 1
over a number field k. Then C(k) is finite.

See, e.g. [Fal83, HS00].

In other words, rational points on a curve C' of genus g are potentially dense if
and only if g < 1.

0.1.5. So far there isn’t much birational geometry involved, because we have
the old theorem:

THEOREM 0.1.6. A smooth algebraic curve is uniquely determined by its func-
tion field.

But this is an opportunity to introduce a tool: on the curve C' we have a
canonical divisor class K¢, such that Oc(K¢) = Q, the sheaf of differentials, also
known by the notation wc—the dualizing sheaf. We have:

(1) deg Ko = 2g — 2 = —x*°P(C¢), where x*P(C¢) is the topological Euler
characteristic of the complex Riemann surface Cc.
(2) dim H%(C,0¢(K¢)) = g.

For future discussion, the first property will be useful. We can now summarize,
following [HS00]:
0.1.7.

| Degree of K¢ ‘ rational points ‘

2g—-2<0 potentially dense
2g—2>0 finite

0.2. Open curves.

0.2.1. Consider a smooth quasi-projective algebraic curve C defined over a
number field k. It has a unique smooth projective completion C' C C, and the
complement is a finite set ¥ = C' ~. C. Thinking of ¥ as a reduced divisor of some
degree n, a natural line bundle to consider is Oz(Kg + ¥) =~ wo(X), the sheaf
of differentials with logarithmic poles on ¥, whose degree is again —x"P(C) =
29 — 2 + n. The sign of 2g — 2 + n again serves as the geometric invariant to
consider.

0.2.2. Consider for example the affine line. Rational points on the affine line
are not much more interesting than those on P!. But we can also consider the
behavior of integral points, where interesting results do arise. However, what does
one mean by integral points on A'? The key is that integral points are an invariant
of an “integral model” of A! over Z.

0.2.3. Consider the ring of integers O and a finite set S C Spec Oy, of finite
primes. One can associate to it the ring Oy g of S-integers, of elements in K which
are in O, for any prime p ¢ S.

Now consider a model of C over Oy g, namely a scheme C of finite type over
Ok,s with an isomorphism of the generic fiber C;, >~ C. It is often useful to start
with a model C of C, and take C = C \ T, where ¥ is the closure of £ in C.
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Spec Or.s

® Speck

Now it is clear how to define integral points: an S-integral point on C is simply
an element of C(Oy,s), in other words, a section of C — Spec(O,s). This is related
to rational points on a proper curve as follows:

0.2.4. If ¥ = (), and the model chosen is proper, the notions of integral and
rational points agree, because of the valuative criterion for properness.

EXERCISE 0.2.5. Prove this!

We have the following facts:
0.2.6. If C is rational and n < 2, then after possibly enlarging k and S, any
integral model of C has an infinite collection of integral points.

EXERCISE 0.2.7. Prove this!
On the other hand, we have:

THEOREM 0.2.8 (Siegel’s Theorem). If n >3, orif g > 0 and n > 0, then for
any integral model C of C, the set of integral points C(Ok.g) is finite.

A good generalization of Definition 0.1.3 is the following;:

DEFINITION 0.2.9. Let X be an algebraic variety defined over k with a model
X over O g. We say that integral points on X are potentially dense if there is a
finite extension k'/k, and an enlargement S’ of the set of places in k' over S, such
that the set X'(Oy s/) is dense in X} in the Zariski topology.

We can apply this definition in the case of a curve C' and generalize 0.1.7, as
in [HS00], as follows:
0.2.10.

| degree of K5+ X | integral points |

2g—24+n<0 potentially dense
2g—24+n>0 finite
0.2.11. One lesson we must remember from this discussion is that

For open varieties we use integral points on integral models.

0.3. Faltings implies Siegel. Siegel’s theorem was proven years before Falt-
ings’s theorem. Yet it is instructive, especially in the later parts of these notes, to
give the following argument showing that Faltings’s theorem implies Siegel’s.

THEOREM 0.3.1 (Hermite-Minkowski, see [HS00] page 264). Let k be a number
field, S C Spec Oy, s a finite set of finite places, and d a positive integer. Then there
are only finitely many extensions k' /k of degree < d unramified outside S.



BIRATIONAL GEOMETRY FOR NUMBER THEORISTS 339

From which one can deduce

THEOREM 0.3.2 (Chevalley-Weil, see [HS00] page 292). Let w: X — ) be a
finite étale morphism of schemes over Oy g. Then there is a finite extension k' /k,
with ' lying over S, such that 7=*Y(Ok.s) C X(Ok 7).

On the geometric side we have an old topological result

THEOREM 0.3.3. If C is an open curve with 2g —2+mn > 0 and n > 0, defined
over k, there is a finite extension k'/k and a finite unramified covering D — C,
such that g(D) > 1.

EXERCISE 0.3.4. Combine these theorems to obtain a proof of Siegel’s theorem
assuming Faltings’s theorem.

This is discussed in Darmon’s lectures, as well as [HS00].
0.3.5. Our lesson this time is that

Rational and integral points can be controlled in finite étale covers.

0.4. Function field case. There is an old and distinguished tradition of com-
paring results over number fields with results over function fields. To avoid compli-
cations I will concentrate on function fields of characteristic 0, and consider closed
curves only.

0.4.1. If K is the function field of a complex variety B, then a variety X/K
is the generic fiber of a scheme X /B, and a K-rational point P € X(K) can be
thought of as a rational section of X — B. If B is a smooth curve and X — B is
proper, then again a K-rational point P € X (K) is equivalent to a regular section
B— X.

EXERCISE 0.4.2. Make sense of this (i.e., prove this)!

0.4.3. The notion of integral points is similarly defined using sections. When
dim B > 1 there is an intermediate notion of properly rational points: a K-rational
point p of X is a properly rational point of X /B if the closure B’ of p in X maps
properly to B.

Consider now C/K a curve. Of course it is possible that C is, or is birationally
equivalent to, Cy X B, in which case we have plenty of constant sections coming
from Cy(C), corresponding to constant points in C'(K). But that is almost all there
is:

THEOREM 0.4.4 (Manin [Man63|, Grauert [Gra65]). Let k be a field of char-
acteristic 0, let K be a regular extension of k, and C/K a smooth curve. Assume
g9(C) > 1. If C(K) is infinite, then there is a curve Co/k with (Co)x ~ C, such
that C(K) ~ Co(k) is finite.

EXERCISE 0.4.5. What does this mean for constant curves Cy X B in terms of
maps from Cj to B?

Working inductively on transcendence degree, and using Faltings’s Theorem,
we obtain:

THEOREM 0.4.6. Let C be a curve of genus > 1 over a field k finitely generated
over Q. Then the set of k-rational points C(k) is finite.

EXERCISE 0.4.7. Prove this, using previous results as given!

See [Sam66], [MS02] for appropriate statements in positive characteristics.
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1. Kodaira dimension

1.1. Titaka dimension. Consider now a smooth, projective variety X of di-
mension d over a field k of characteristic 0. We seek an analogue of the sign of
2g — 2 in this case. The approach is by counting sections of the canonical line
bundle Ox (Kx) = A\ QL. Titaka’s book [Iit82] is a good reference.

THEOREM 1.1.1. Let L be a line bundle on X. Assume h°(X,L"™) does not
vanish for all positive integers n. Then there is a unique integer k = k(X, L) with
0 <k <d such that

hO(X, L™
lim sup WX L)
n—00 nk
exists and is nonzero.
DEFINITION 1.1.2. (1) The integer (X, L) in the theorem is called the

Iitaka dimension of (X, L).

(2) In the special case L = Ox (K x) we write k(X) := x(X, L) and call x(X)
the Kodaira dimension of X.

(3) Tt is customary to set (X, L) to be either —1 or —oo if h%(X, L™) vanishes
for all positive integers n. It is safest to say in this case that the Iitaka
dimension is negative. I will use —oo.

We will see an algebraic justification for the —1 convention immediately in
Proposition 1.1.3, and a geometric justification for the more commonly used —oo
in Paragraph 1.2.7.

An algebraically meaningful presentation of the Ilitaka dimension is the follow-
ing:

ProproOSITION 1.1.3. Consider the algebra of sections

R(X,L):=EPH(X,L").
n>0
Then, with the —1 convention,
tr.degR(X,L) = k(X,L) + 1.

DEFINITION 1.1.4. We say that a property holds for a sufficiently high and
divisible n if there exists ng > 0 such that the property holds for every positive
multiple of ng.

A geometric meaning of (X, L) is given by the following:

PROPOSITION 1.1.5. Assume k(X,L) > 0. Then for sufficiently high and di-
visible n, the dimension of the image of the rational map ¢r» : X --» PHO(X, L")
is precisely (X, L).

Even more precise is:

PROPOSITION 1.1.6. There is ng > 0 such that the image ¢~ (X) is birational
to ¢rmno (X) for all m > 0 divisible by ng.

DEFINITION 1.1.7.

(1) The birational equivalence class of the variety ¢rno(X) is denoted by
I(X,L).
(2) The rational map X — I(X, L) is called the [itaka fibration of (X, L).
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(3) In case L is the canonical bundle wx, this map is simply called the litaka
fibration of X, written X — I(X)

The following notion is important:
DEFINITION 1.1.8. The variety X is said to be of general type of K(X) = dim X.

REMARK 1.1.9. The name is not as informative as one could wish. It comes
from the observation that surfaces not of general type can be nicely classified,
whereas there is a whole zoo of surfaces of general type.

EXERCISE 1.1.10. Prove Proposition 1.1.6:

(1) Show that if n,d > 0 and H°(X, L™) # 0 then there is a dominant rational
map ¢pna(X) --+» ¢rn(X) such that the following diagram is commuta-

tive:
brn
X = B na(X)
N o |
~ |
¢rn NI
prn (X).
(2) Conclude that dim ¢ (X) is a constant « for sufficiently high and divis-
ible n.

(3) Suppose n > 0 satisfies k := dim ¢~ (X). Show that for any d > 0, the
function field of ¢r4(X) is algebraic over the function field ¢ (X).

(4) Recall that for any variety X, any subfield L of K(X) containing k is
finitely generated. Apply this to the algebraic closure of ¢z (X) in K(X)
to complete the proof of the proposition.

For details see [Iit82].
EXERCISE 1.1.11. Use Proposition 1.1.6 to prove Theorem 1.1.1.
1.2. Properties and examples of the Kodaira dimension.

EXERCISE 1.2.1. Show that x(P™) = —oco. Show that x(A4) = 0 for an abelian
variety A.

1.2.2. Curves:

EXERCISE. Let C' be a smooth projective curve and L a line bundle. Prove
that
1 if deg L > 0,

K(C,L)=1<0 if L is torsion, and
< 0 otherwise.
In particular,

1 if g > 1,
k(C)=140 if g=1, and
<0 ifg=0.

1.2.3. Birational invariance:

EXERCISE. Let X’ --» X be a birational map of smooth projective varieties.
Show that the spaces H%(X,Ox(mKx)) and H°(X',Ox:(mKx)) are canonically
isomorphic. Deduce that k(X)) = x(X").

(See [Har77], Chapter II, Theorem 8.19).
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1.2.4. Generically finite dominant maps.

EXERCISE. Let f : X’ — X be a generically finite dominant map of smooth
projective varieties.
Show that k(X') > k(X).

1.2.5. Finite étale maps.

EXERCISE. Let f: X/ — X be a finite étale map of smooth projective varieties.
Show that k(X’) = k(X).

1.2.6. Field extensions:

EXERCISE. Let k’/k be a field extension, X a variety over k with line bundle
L, and X/, L/ the result of base change.
Show that x(X, L) = k(Xys, Lg/). In particular k(X)) = k(Xy/).

1.2.7. Products.
EXERCISE. Show that, with the —oo convention,

k(X7 x Xo, L1 ® Lo) = (X1, L1) + k(Xa, La).
Deduce that k(X1 x X3) = £(X71) + k(X2).

This so-called “easy additivity” of the Kodaira dimension is the main reason
for the —oo convention.
1.2.8. Fibrations. The following is subtle and difficult:

THEOREM (Siu’s theorem on deformation invariance of plurigenera [Siu98,
Siu02]). Let X — B be a smooth projective morphism with connected geometric
fibers, and m a positive integer. Then for closed points b € B, the dimension
hO(Xy, O(mKx,)) is independent of b € B. In particular k(X,) is independent of
the closed point b € B.

EXERCISE 1.2.9. Let X — B be a morphism of smooth projective varieties
with connected geometric fibers. Let b € B be such that X — B is smooth over b,
and let np € B be the generic point.

Use “cohomology and base change” and Siu’s theorem to deduce that

R(Xp) = K(Xpp)-
DEFINITION 1.2.10. The Kodaira defect of X is §(X) = dim(X) — x(X).

EXERCISE 1.2.11. Let X — B be a morphism of smooth projective varieties
with connected geometric fibers. Show that the Kodaira defects satisfy §(X) >
0(Xyy). Equivalently x(X) < dim(B) + &(X,,,).

We remark that before Siu’s deformation invariance theorem was proven, a
weaker and more technical result, yet still very useful, saying that the Kodaira
dimension is constant on “very general fibers” was used.

EXERCISE 1.2.12. Let Y — B be a morphism of smooth projective varieties
with connected geometric fibers, and Y — X a generically finite map. Show that
0(X) > 6(Y,,). In other words, x(X) < k(Yy,) + dim B.

This so-called “easy subadditivity” has many useful consequences.
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DEFINITION 1.2.13. We say that X is uniruled if there is a variety B of dimen-
sion dim X — 1 and a dominant rational map B x P! --» X.

EXERCISE 1.2.14. If X is uniruled, show that x(X) = —oc0.

The converse is an important conjecture, sometimes known as the (—o0)-
Conjecture. It is a consequence of the “good minimal model” conjecture:

CONJECTURE 1.2.15. Assume X is not uniruled. Then k(X) > 0.
EXERCISE 1.2.16. If X is covered by a family of elliptic curves, show that
K(X) <dimX —1.

1.2.17. Surfaces. Surfaces of Kodaira dimension < 2 are “completely classi-
fied”. Some of these you can place in the following table using what you have
learned so far. In the following description we give a representative of the bira-
tional class of each type:

| K | description ‘

—oo | ruled surfaces: P? or P! x C
0 a. abelian surfaces

b. bielliptic surfaces

k. K3 surfaces

e. Enriques surfaces

1 all other elliptic surfaces

1.2.18. Iitaka’s program. Here is a central conjecture of birational geometry:

CoNJECTURE (litaka). Let X — B be a surjective morphism of smooth projec-
tive varieties. Then
R(X) = K(B) + K(X,,).

1.2.19. Major progress on this conjecture was made through the years by sev-
eral geometers, including Fujita [Fuj78], Kawamata [Kaw85], Viehweg [Vie82]
and Kollar [Kol87]. The key, which makes this conjecture plausible, is the semi-
positivity properties of the relative dualizing sheaf wx g, which originate from work
of Arakelov and rely on deep Hodge theoretic arguments.

Two results will be important for these lectures.

THEOREM 1.2.20 (Kawamata). litaka’s conjecture follows from the Minimal
Model Program: if X,, has a good minimal model then k(X) > k(B) + k(X,,;).

THEOREM 1.2.21 (Viehweg). Iitaka’s conjecture holds in case B is of general
type, namely:

Let X — B be a surjective morphism of smooth projective varieties, and assume
k(B) =dim B. Then x(X) = dim(B) + (X, ).

Note that equality here is forced by the easy subadditivity inequality: x(X) <
dim(B) + k(X,,) always holds.

EXERCISE 1.2.22. Let X, By, By be smooth projective varieties. Suppose X —
By x Bs is generically finite to its image, and assume both X — B; surjective.
(1) Assume Bq, B are of general type. Use Viehweg’s theorem and the Ko-
daira defect inequality to conclude that X is of general type. (Hint for
a key step: construct a subvariety of general type V' C Bj, such that
X xp, V — By is generically finite and surjective.)
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(2) Assume k(Bjp),x(Bz2) > 0. Show that if litaka’s conjecture holds true,
then x(X) > 0.

EXERCISE 1.2.23. Let X be a smooth projective variety. Using the previous
exercise, show that there is a dominant rational map

Lx:X--» L(X)
such that
(1) L(X) is of general type, and
(2) the map is universal: if g : X --» Z is a dominant rational map with Z of

general type, there is a unique rational map L(g) : L(X) --» Z such that
the following diagram commutes:

X - 25 0(x)

N N |
AN
N
Z.
I call the map Lx the Lang map of X, and L(X) the Lang variety of X.

1.3. Uniruled varieties and rationally connected fibrations.

1.3.1. Uniruled varieties. For simplicity let us assume here that k is alge-
braically closed.

As indicated above, a variety X is said to be wuniruled if there is a (d — 1)-
dimensional variety B and a dominant rational map B x P! --» X. Instead of
B x P! one can take any variety Y — B whose generic fiber is a curve of genus
0. As discussed above, if X is uniruled then x(X) = —oo. The converse is the
important (—oo)-Conjecture 1.2.15.

A natural question is, can one “take all these rational curves out of the picture?”
The answer is yes, in the best possible sense.

DEFINITION 1.3.2. A smooth projective variety P is said to be rationally con-
nected if through any two points x,y € P there is a morphism from a rational curve
C — P having = and y in its image.

There are various equivalent ways to characterize rationally connected varieties.

THEOREM 1.3.3 (Campana [Cam92], Kollar-Miyaoka-Mori [KMM92]). Let
P be a smooth projective variety. The following are equivalent:

(1) P is rationally connected.

(2) Any two points are connected by a chain of rational curves.

(8) For any finite set of points S C P, there is a morphism from a rational
curve C' — P having S in its image.

(4) There is a “very free” rational curve on P—if dim P > 2 this means there
s a rational curve C' C P such that the normal bundle Nocp is ample.

Key properties:
THEOREM 1.3.4 ([Cam92, KMMO92]). Let X and X' be smooth projective

varieties, with X rationally connected.

(1) If X --+ X' is a dominant rational map (in particular when X and X'
are birationally equivalent) then X' is rationally connected.
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(2) If X' is deformation-equivalent to X then X' is rationally connected.
(3) If X' = Xy where k' [k is an algebraically closed field extension, then X'
is rationally connected if and only if X is.

EXERCISE 1.3.5. A variety is unirational if it is a dominant image of P". Show
that every unirational variety is rationally connected.

On the other hand, one expects the following:

CONJECTURE 1.3.6 (Kollar). There is a rationally connected threefold which is
not unirational. There should also exist some hypersurface of degree n in P™, n > 4
which is not unirational.

Rational connectedness often arises when there is some negativity of differential
forms, as in the following statement. A smooth projective variety X is Fano if its
anti-canonical divisor is ample. We have the following;:

THEOREM 1.3.7 (Kollar-Miyaoka-Mori, Campana). A Fano variety is rationally
connected.

CONJECTURE 1.3.8 (Kolldr-Miyaoka-Mori, Campana).
(1) A variety X is rationally connected if and only if

HO(X, (Q%)%") =0

for every positive integer n.
(2) A wvariety X is rationally connected if and only if every positive dimen-
sional dominant image X --» Z has k(Z) = —o0.

This conjecture follows from the minimal model program; see Conjecture 3.4.3
and 3.4.4.

Now we can break any variety X into a rationally connected fiber over a
nonuniruled base:

THEOREM 1.3.9 (Campana, Kolldr-Miyaoka-Mori, Graber-Harris-Starr). Let
X be a smooth projective variety. There is a birational morphism X' — X, a
variety Z(X), and a dominant morphism X' — Z(X) with connected fibers, such
that

(1) The general fiber of X' — Z(X) is rationally connected, and
(2) Z(X) is not uniruled.

Moreover, X' — X is an isomorphism in a neighborhood of the general fiber of
X' = Z(X).

The existence of a fibration containing “most” rational curves was proven in
the original papers by Campana and Kollar-Miyaoka-Mori. The crucial fact that
Z(X) is not uniruled was proven by Graber, Harris and Starr in [GHS03].

1.3.10. The rational map rx : X --+ Z(X) is called the mazimally rationally
connected fibration of X (or MRC fibration of X) and Z(X), which is well defined
up to birational equivalence, is called the MRC quotient of X.

1.3.11. The MRC fibration has the universal property of being “final” for dom-
inant rational maps X — B with rationally connected fibers.

One can construct similar fibrations with a similar universal property for maps
with fibers having H°(X, (2%, )®") = 0, or for fibers having no dominant morphism
to positive dimensional varieties of nonnegative Kodaira dimension. Conjecturally
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these agree with rx. Also conjecturally, assuming Iitaka’s conjecture, there exists
X --» 7' which is initial for maps to varieties of non-negative Kodaira dimension.
This conjecturally will also agree with rx. All these conjectures would follow from
the “good minimal model” conjecture.

1.3.12. Arithmetic, finally. The set of rational points on a rational curve is
Zariski-dense. The following is a natural extension:

CONJECTURE 1.3.13 (Campana). Let P be a rationally connected variety over
a number field k. Then rational points on P are potentially dense.

This conjecture and its sister 1.4.2 below was implicit in works of many, in-
cluding Bogomolov, Colliot-Thélene, Harris, Hassett, Tschinkel.

1.4. Geometry and arithmetic of the Iitaka fibration. We now want to
understand the geometry and arithmetic of varieties such as Z(X), i.e., non-uniruled
varieties. In view of Conjecture 1.2.15, we focus on the case x(X) > 0.

So let X satisfy x(X) > 0, and consider the Iitaka fibration X --» I(X). The
next proposition follows from easy subadditivity and Siu’s theorem:

PROPOSITION 1.4.1. Let F be a general fiber of X --+ I(X). Then x(F) =0.

CONJECTURE 1.4.2 (Campana). Let F' be a variety over a number field k sat-
isfying k(F') = 0. Then rational points on F' are potentially dense.

EXERCISE 1.4.3. Recall the Lang map in 1.2.23. Assuming Conjecture 1.2.15,
show that L(X) is the result of applying MRC fibrations and Iitaka fibrations,
alternating between the former and the latter, until the result stabilizes.

1.5. Lang’s conjecture. In this section we let £ be a number field, or any
field which is finitely generated over Q.
A highly inspiring conjecture in Diophantine geometry is the following:

CONJECTURE (Lang’s conjecture, weak form). Let X be a smooth projective
variety of general type over k. Then X (k) is not Zariski-dense in X .

In fact, motivated by analogy with conjectures on the Kobayashi pseudo-metric
of a variety of general type, Lang even proposed the following:

CONJECTURE (Lang’s geometric conjecture). Let X be a smooth complex pro-
jective variety of general type. There is a Zariski-closed proper subset S(X) C X,
whose irreducible components are not of general type, and such that every irreducible
subset T C X not of general type is contained in S(X).

The notation “S(X)” stands for “the special subvariety of X”. It is not hard
to see that S(X) is defined over any field of definition of X. The two conjectures
combine to give:

CoNJECTURE (Lang’s conjecture, strong form). Let X be a smooth projec-
tive variety of general type over k. Then for any finite extension k'/k, the set
(X N S(X))(K) is finite.

Here is a simple consequence:

PROPOSITION 1.5.1. Assume Lang’s conjecture holds true. Let X be a smooth
projective variety over a number field k. Assume there is a dominant rational

map X — Z, such that Z is a positive dimensional variety of general type (i.e.,
dim L(X) > 0). Then X (k) is not Zariski-dense in X .
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1.6. Uniformity of rational points. Lang’s conjecture can be investigated
whenever one has a variety of general type around. By considering certain subvari-
eties of the moduli space M, ,, of curves of genus g with n distinct points on them,
rather surprising and inspiring implications on the arithmetic of curves arise. This
is the subject of the work [CHM97] of L. Caporaso, J. Harris and B. Mazur. Here
are their key results:

THEOREM 1.6.1. Assume that the weak Lang’s conjecture holds true. Let k be
as above, and let g > 1 be an integer. Then there exists an integer N(k,g) such
that for every algebraic curve C' of genus g over k we have

#C(k) < N(k,g).

THEOREM 1.6.2. Assume that the strong Lang’s conjecture holds true. Let
g > 1 be an integer. Then there exists an integer N(g) such that for every finitely

generated field k there are, up to isomorphism, only finitely many algebraic curves
C of genus g over k with #C(k) > N(g).

Further results along these lines, involving higher dimensional varieties and
involving stronger results on curves can be found in [Has96], [Abr95|, [Pac97],
[AV96], [Abr97]. For instance, P. Pacelli’s result in [Pac97] says that the number
N(k, g) can be replaced for number fields by N(d, g), where d = [k : Q).

The reader may decide whether this shows the great power of the conjectures or
their unlikelihood. I prefer to be agnostic and rely on the conjectures for inspiration.

1.7. The search for an arithmetic dichotomy. As demonstrated in table
0.1.7, potential density of rational points on curves is dictated by geometry. Lang’s
conjecture carves out a class of higher dimensional varieties for which rational points
are, conjecturally, not potentially dense. Can this be extended to a dichotomy as
we have for curves?

One can naturally wonder—is the Kodaira dimension itself enough for deter-
mining potential density of points? Or else, maybe just the nonexistence of a map
to a positive dimensional variety of general type?

1.7.1. Rational points on surfaces. The following table, which I copied from a
lecture of L. Caporaso [Cap], describes what is known about surfaces.

CAPORASO’S TABLE: RATIONAL POINTS ON SURFACES

| Kodaira dimension | X (k) potentially dense | X (k) never dense |

K= —00 P? Pl x C (g(C) >2)
k=0 E x E, many others none known
k=1 many examples E xC (g(C) > 2)
k=2 none known many examples

The bottom row is the subject of Lang’s conjecture, and the x = 0 row is the
subject of Conjecture 1.4.2.

1.7.2. Failure of the dichotomy using (X ). The first clear lesson we learn from
this is, as Caporaso aptly put it in her lecture, that

| Diophantine geometry is not governed by the Kodaira dimension. |

On the top row we see that clearly: on a ruled surface over a curve of genus
> 2, rational points can never be dense by Faltings’s theorem. So it behaves very
differently from a rational surface.
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Even if one insists on working with varieties of non-negative Kodaira dimension,
the k = 1 row gives us trouble.

EXERCISE. Take a Lefschetz pencil of cubic curves in P2, parametrized by t,
and assume that it has two sections s1, so whose difference is not torsion on the
generic fiber. We use s; as the origin.

(1) Show that the dualizing sheaf of the total space S is Og(—[F]), where F'
is a fiber.

(2) Show that the relative dualizing sheaf is Og([F]). Take the base change
t = s3. We still have two sections, still denoted sq, s, such that the
difference is not torsion. We view s; as origin.

Show that the relative dualizing sheaf of the new surface X is Ox (3[F])
and its dualizing sheaf is Ox ([F]). Conclude that the resulting surface X
has Kodaira dimension 1.

(3) For any rational point p on P! where the section sy of X — P! is not

torsion, the fiber has a dense set of rational points.
In characteristic 0 it can be shown that the set of such points is dense.
For instance, by Mazur’s theorem the rational torsion points have order
at most 12, and therefore they lie on finitely many points of intersection
of so with the locus of torsion points of order < 12.
(4) Conclude that X has a dense set of rational points.

1.7.3. Failure of the dichotomy using the Lang map. The examples given above
still allow for a possible dichotomy based on the existence of a nontrivial map to a
variety of general type. But the following example, which fits in the right column on
row K = 1, shows this doesn’t work either. The example is due to Colliot-Thélene,
Skorobogatov and Swinnerton-Dyer [CTSSD97].

EXAMPLE. Let C be a curve with an involution ¢ : C' — C, such that the
quotient is rational. Consider an elliptic curve E with a 2-torsion point a, and
consider the fixed-point free action of Z/2Z on ' Y = E x C given by

(z,y) = (z + a,d(y)).

Let the quotient of Y by the involution be X. Then L(X) is trivial, though
rational points on X are not potentially dense by Chevalley-Weil and Faltings.

In the next section we address a conjectural approach to a dichotomy—due to
F. Campana—which has a chance to work.

1.8. Logarithmic Kodaira dimension and the Lang-Vojta conjectures.
We now briefly turn our attention to open varieties, following the lesson in section
0.2.11.

Let X be a smooth projective variety, D a reduced normal crossings divisor.
We can consider the quasiprojective variety X = X ~ D.

The logarithmic Kodaira dimension of X is defined to be the Iitaka dimension
k(X) := k(X, K5 + D). We say that X is of logarithmic general type if k(X) =
dim X.

It can be easily shown that x(X) is independent of the completion X C X, as
long as X is smooth and D is a normal crossings divisor. More invariance properties
can be discussed, but will take us too far afield.
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Now to arithmetic: suppose & is a model of X over Oy s. We can consider
integral points X (Op, s, ) for any finite extension L/k and enlargement Sy, of the
set of places over S.

The Lang-Vojta conjecture is the following:

CONJECTURE 1.8.1. If X is of logarithmic general type, then integral points are
not potentially dense on X, i.e., X(Op s, ) is not Zariski-dense for any L, St..

1.8.2. In case X = X is already projective, the Lang-Vojta conjecture reduces
to Lang’s conjecture: X is simply a variety of general type, integral points on X
are the same as rational points, and Lang’s conjecture asserts that X (k) is not
Zariski-dense in X.

1.8.3. The Lang-Vojta conjecture turns out to be a particular case of a more
precise and more refined conjecture of Vojta, which will be discussed in a later
section.

2. Campana’s program

For this section one important road sign is

THIS SITE IS UNDER CONSTRUCTION
DANGER! HEAVY EQUIPMENT CROSSING

A quick search on the web shows close to the top a number of web sites deriding
the idea of “site under construction”. Evidently these people have never engaged
in research!

2.0.1. Campana’s program is a new method of breaking algebraic varieties into
“pieces” which builds upon litaka’s program, but, by using a particular structure
on varieties which I will call “Campana constellations” enables one to get closer
to a classification which is compatible with arithmetic properties. There is in fact
an underlying more refined structure which I call “firmament” for the Campana
constellation, which might be the more fundamental structure to study. I believe
it truly does say something about rational points.

2.0.2. The term “constellation” is inspired by Aluffi’s celestial [Alu07], which
is in turn inspired by Hironaka.

Campana used the term “orbifold”, in analogy to orbifolds used in geometry,
but the analogy breaks down very early on. A suggested replacement “orbifold pair”
still does not make me too happy. Also, “Campana pair” is a term which Campana
himself is not comfortable using, nor could he shorten it to just “pair”, which is
insufficient. I was told by Campana that he would be happy to use “constellations”
if the term catches on.

2.1. One-dimensional Campana constellations.

2.1.1. The two key examples: elliptic surfaces. Let us inspect again Caporaso’s
table of surfaces, and concentrate on x = 1. We have in 1.7.2 and 1.7.3 two
examples, say S; — P! and Sy — P! of elliptic surfaces of Kodaira dimension 1
fibered over P'. But their arithmetic behavior is very different.

Campana asked the question: is there an underlying structure on the base P!
from which we can deduce this difference of behavior?

The key point is that the example in 1.7.3 has 2g + 2 double fibers lying over
a divisor D C P!. This means that the elliptic surface So — P! can be lifted
to Sy — P, where P is the orbifold structure P'(v/D) on P! obtained by taking
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the square root of D. Following the ideas of Darmon and Granville in [DG95],
one should consider the canonical divisor class Kp of P, viewed as a divisor with
rational coefficients on P!, namely Kp: + (1 —1/2)D. In general, when one has an
m-fold fiber over a divisor D, one wants to take D with coefficient (1 — 1/m).

Darmon and Granville prove, using Chevalley-Weil and Faltings, that such an
orbifold P has potentially dense set of integral points if and only if the Kodaira
dimension x(P) = k(P,Kp) < 1. And the image of a rational point on Sy is
an integral point on P. This fully explains our example: since integral points on
P = P'(v/D) are not Zariski-dense, and since rational points on Sy map to integral
points on P, rational points on Sy are not dense.

2.1.2. The multiplicity divisor. What should we declare the structure to be
when we have a fiber that looks like z2y® = 0, i.e. has two components of multi-
plicities 2 and 37 Here Campana departs from the classical orbifold picture: the
highest classical orbifold to which the fibration lifts has no new structure lying un-
der such a fiber, because ged(2,3) = 1. Campana makes a key observation that a
rich and interesting classification theory arises if one instead considers min(2,3) = 2
as the basis of the structure.

DEFINITION 2.1.3 (Campana). Consider a dominant morphism f : X — Y with
X,Y smooth and dimY = 1. Define a divisor with rational coefficients Ay = 3" d,,p
onY as follows: assume the divisor f*p on X decomposes as f*p = > m,;C;, where
C; are the distinct irreducible components of the fiber taken with reduced structure.
Then set

1 .
0p = 1——, where m, = minm;.
mp [

DEFINITION 2.1.4 (Campana).

(1) A Campana constellation curve (Y/A) is a pair consisting of a curve YV
along with a divisor A = )" d,p with rational coefficients, where each J,
is of the form &, =1 — 1/m,, for some integer m,,.

(2) The Campana constellation base of f : X — Y is the structure pair
consisting of Y with the divisor Ay defined above, denoted (Y/Ay).

The word used by Campana is orbifold, but as I have argued, the analogy with
orbifolds is shattered in this very definition.

The suggested terminology “constellation” will become better justified and
much more laden with meaning when we consider Y of higher dimension.

Campana’s definition deliberately does not distinguish between the structure
coming from a fiber of type 2 = 0 and one of type 2%y = 0. We will see later a
way to resurrect the difference to some extent using the notion of firmament, from
which a Campana constellation hangs.

DEFINITION 2.1.5 (Campana). The Kodaira dimension of a Campana constel-
lation curve (Y/A) is defined as the following Iitaka dimension:
R ((Y/A)) = 5(Y, Ky + A).
We say that (Y/A) is of general type if it has Kodaira dimension 1. We say that it
is special if it is not of general type.

EXERCISE 2.1.6. Classify special Campana constellation curves over C. See
[CamO05] for a detailed discussion.
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2.1.7. Models and integral points. Now to arithmetic. As we learned in Lesson
0.2.11, when dealing with a variety with a structure given by a divisor, we need
to speak about integral points on an integral model of the structure. Thus let Y
be an integral model of Y, proper over Oy g, and denote by A the closure of A.
As above we assume that A is the union of integral points of Y, denoted z;, and
for simplicity let us assume that they are disjoint (we can always achieve this by
enlarging S). It turns out that there is more than one natural notion to consider
in our theory - soft and firm. The firm notion will be introduced when firmaments
are considered.

DEFINITION. A k-rational point x on Y, considered as an integral point of ),
is said to be a soft S-integral point on (y/A) if for any integral point z in A and
any nonzero prime o C O, s such that the reductions coincide, x, = z,, we have

mult, (N z) > my,.

g

® Speck

A key property of this definition is:

PROPOSITION 2.1.8. Assume f: X — Y extends to a good model f : X =Y.
Then the image of a rational point on X is a soft S-integral point on (Y/Af).

So rational points on X can be investigated using integral points on a model
of Y. This makes the following very much relevant:

CONJECTURE 2.1.9 (Campana). Suppose the Campana constellation curve
(Y/A) is of general type. Then the set of soft S-integral point on any model
s not Zariski-dense.

This conjecture is not likely to follow readily from Faltings’s theorem, as the
following example suggests.

EXAMPLE 2.1.10. Let n > 4 be an integer. Let Y ~ P! and A the divisor
supported at 0,1 and oo with all multiplicities equal to (n — 1)/n. Then (Y/A) is
of general type.

Using the same as a model over Spec Z, we see that a point y on Y is a soft inte-
gral point on (Y/A) if at every prime where y reduces to 0, 1 or oo, the multiplicity
of this reduction is at least n.

Considering a triple a, b, ¢ of relatively prime integers with a™ + b = ¢V, the
point (aV : ¢) on Y is a soft integral point as soon as N > n.

It follows that Campana’s conjecture 2.1.9 implies asymptotic Fermat over any
number field.
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It also seems that the conjecture does not follow readily from any of the meth-
ods surrounding Wiles’s proof of Fermat. As we’ll see in the last section, the
conjecture does follow from the abe conjecture (which implies asymptotic Fermat).
In particular we have the following theorem in the function field case.

THEOREM 2.1.11 (Campana). Let B be a complex algebraic curve, and K its
function field, and let S C B be a finite set of closed points. Let (Y/A) be a
Campana constellation curve of general type defined over the function field K. Then
the set of non-constant soft S-integral points on any model Y — B is not Zariski-
dense.

2.1.12. Some examples.

(1) Consider f : A2 — A! given by t = 22. The constellation base has
A = 1/2(0), where (0) is the origin on Al. Sections of Oy (K + A) are
generated by dt, sections of Oy (2(K + A)) by (dt)?/t, and sections of
Oy (3(K + A)) by (dt)?/t.

(2) The same structure occurs for f : A2 — Al given by t = 2%y3 and
f:A? — Al given by t = 2292

(3) For f:A? — A given by t = 22y the constellation base is trivial.

(4) for f: A% — Al given by t = 2%y*, we get A = 2/3(0). Again sections of
Oy (2(K + A)) are generated by (dt)?/t, but sections of Oy (3(K + A))
are generated by (dt)3/t2.

2.2. Higher dimensional Campana constellations. We turn now to the
analogous situation of f : X — Y with higher dimensional Y.

One seeks to define objects, say Campana constellations (Y/A), in analogy to
the case of curves, which in some sense should help us understand the geometry
and arithmetic of plain varieties mapping to them.

Ideally, these objects should form a category extending the category of varieties,
at least with some interesting class of morphisms. Ideally these objects should have
a good notion of differential forms which fits into the standard theory of birational
geometry, for instance having well-behaved Kodaira dimension. Ideally there should
be a notion of integral points on (Y/A) which says something about rational points
of a “plain” variety X whenever X maps to (Y/A).

The theory we describe in this section, which is due to Campana in all but
some details, relies on divisorial data. We will describe a category of objects, called
Campana constellations, which at the moment only allows dominant morphisms.
This means that we do not have a satisfactory description of integral points, since
integral points are sections, and sections are not dominant morphisms. The theory
of firmaments aims at resolving this problem.

Unfortunately, points on Y are no longer divisors. And divisors on Y are not
quite sufficient to describe codimension > 1 behavior. Campana resolves this by
considering all birational models of Y separately. This brings him to define various
invariants, such as Kodaira dimension, depending on a morphism X — Y rather
than of the structure (Y/A) itself. I prefer to put all this data together using the
notion of a b-divisor, introduced by Shokurov [Sho03], based on ideas by Zariski
[Zar44]. I was also inspired by Aluffi’s [Alu07]. The main advantage is that all
invariants will be defined directly on the level of (Y/A). This structure has the
disadvantage that it is not obviously computable in finite or combinatorial terms.
It turns out that it is—this again will be addressed using firmaments.
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DEFINITION 2.2.1. Let k be a field and Y a variety over k. A rank 1 discrete
valuation on the function field K = K(Y') over k is a surjective group homomorphism
v: K* — 7Z, sending k* to 0, satisfying

v(z +y) = min(v(z), v(y))

with equality unless v(z) = v(y). We define v(0) = +o0.
The valuation ring of v is defined as
R, = {zek ’ v(z) > 0}.
Denote Y, = Spec R,, and its unique closed point by s, .

A rank 1 discrete valuation v is divisorial if there is a birational model Y’ of Y
and an irreducible divisor D’ C Y such that for all nonzero x € K(Y) = K(Y’) we
have

v(z) = multp z.

In this case we say v has divisorial center D' in Y.

DEFINITION 2.2.2. A b-divisor A on Y is an expression of the form
A = Z Cy -V,
v

a possibly infinite sum over divisorial valuations of C(Y") with rational coefficients,
which satisfies the following finiteness condition:
e for each birational model Y’ there are only finitely many v with divisorial
center on Y’ having ¢, # 0.
A b-divisor is of orbifold type if for each v there is a positive integer m, such
that ¢, =1 —1/m,.

Before we continue, here is an analogue of the strict transform of a divisor:

DEFINITION 2.2.3. Let Y be a variety, X a reduced scheme, and let f: X =Y
be a morphism. Consider an integral scheme Y’ with generic point 7, a gp\r_n/inant
morphism Y’ — Y, and the pullback X xy Y’ — Y’. The main part X xy Y’ of
X Xy Y’ is the closure of the generic fiber X Xy 7 inside X xy Y.

Here is a higher dimensional analogue of the divisor underlying the constellation
curve of a morphism X — Y

DEFINITION 2.2.4. Let Y be a variety, X a reduced scheme, and let f: X — Y
be a morphism, surjective on each irreducible component of X. For each divisorial
valuation v on K(Y') consider f’: X/, — Y,, where X, is a desingularization of the
main part of the pullback X xy Y,. Write f'*s, = 5. m;C;. Define

o, = 1— i with m, = minm,.
my i
The Campana b-divisor on Y associated to a dominant map f : X — Y is
defined to be the b-divisor
Ap=> b

EXERCISE 2.2.5. The definition is independent of the choice of desingularization
X,

This makes the b-divisor Ay invariant under proper birational transformations
on X and Y. In particular the notion makes sense for a dominant rational map f.
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DEFINITION 2.2.6. (1) A Campana constellation (Y/A) consists of a va-
riety Y with a b-divisor A such that, locally in the étale topology on Y,
thereis f: X — Y with A = Ay.

(2) The Campana constellation base of a morphism X — Y as above is
(Y/A)).

(3) The trivial constellation on Y is given by the zero b-divisor.

(4) For each birational model Y, define the Y’-divisorial part of A:

Ayl = Z (SVV.

v with divisorial support on Y’

The definition of a constellation feels a bit unsatisfactory because it requires,
at least locally, the existence of a morphism f. But using the notion of firmament,
especially toroidal firmament, we will make this structure more combinatorial, in
such a way that the existence of f is automatic.

2.2.7. Here’s why I like the word “constellation”: think of a divisorial valua-
tion v as a sort of “generalized point” on Y. Putting 4, > 0 suggests viewing a
“star” at that point. Replacing Y by higher and higher models Y is analogous to
using stronger and stronger telescopes to view farther stars deeper into space. The
picture I have in my mind is somewhat reminiscent of the astrological meaning of
“constellation”, not as just one group of stars, but rather as the arrangement of the
entire heavens at the time the “baby” X — Y is born. But hopefully it is better
grounded in reality.

We now consider morphisms. For constellations we work only with dominant
morphisms.

DEFINITION 2.2.8. (1) Let (X/Ax) be a Campana constellation, and f :
X — Y a proper dominant morphism. The constellation base (Y, A a )
is defined as follows: for each divisorial valuation v of Y and each divisorial
valuation p of X with center D dominating the center E of v, let

My, = my -multp(f*E).

Define 1
m, =minm,,, and 6, =1— —.
w/v my

Then set as before
Af,Ax = Z (Sl,l/.

(2) Let (X/Ax) and (Y/Ay) be Campana constellations and f: X - Y a
dominant morphism. Then f is said to be a constellation morphism if for
every divisorial valuation v on Y and any p/v we have m, < m,,,, where
as above m,;, = m, - multp(f*E). When f is proper this just means
Ay < Af,AX~

Now to differential forms:

DEFINITION 2.2.9. A rational m-canonical differential w on Y is said to be
regular on (Y/A) if for every divisorial valuation v on K(Y'), the polar multiplicity
of w at v satisfies

(W)oo,p < MOy

In other words, w is a section of Oy (m(Ky:+ Ay~)) on every birational model Y.
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The Kodaira dimension x((Y/A)) is defined using the ring of regular m-
canonical differentials on (Y/A).

EXERCISE 2.2.10. This is a birational invariant: if Y and Y’ are proper and
have the same function field, then x( (Y/A)) = s((Y'/A)).

THEOREM 2.2.11 (Campana [CamO04] Section 1.3). There is a birational model
Y’ with Ay a normal crossings divisor such that

Ii( (Y/A) ) = Ii()//7 Ky/ + Ayl),

and moreover the algebra of regular pluricanonical differentials on (Y/A) agrees
with the algebra of sections €P,,> HO(Y', Oy (m(Ky: + Ayr))).

Campana calls such a model admissible. This is proven using Bogomolov
sheaves, an important notion which is a bit far afield for the present discussion.
The formalism of firmaments, especially toroidal firmaments, allows one to give a
combinatorial proof of this result.

We remark that this theorem means that the new and ground-breaking finite
generation theorem of [BCHMO6)| applies, so the algebra of regular pluricanonical
differentials on (Y/A) is finitely generated.

It is not difficult to see that any birational model lying over an admissible
model is also admissible.

DEFINITION 2.2.12. A Campana constellation (Y/A) is said to be of general
type if K((Y/A)) =dimY.

A Campana constellation (X/A) is said to be special if there is no dominant
morphism (X/A) — (Y/A") where (Y/A') is of general type.

DEFINITION 2.2.13. Let f : X — Y be a dominant morphism of varieties
and (X/A) a Campana constellation, with A = >~ §,v. The generic fiber of f :
(X/A) =Y is the Campana constellation (X, A,), where X, is the generic fiber

of f: X =Y, and
A, = Z oLV,

Ve (yyx =0

namely the part of the b-divisor A supported on the generic fiber.

DEFINITION 2.2.14. (1) Given a Campana constellation (X/Ax), a dom-
inant morphism f : X — Y is special if its generic fiber is special.

(1’) In particular, considering X with trivial constellation, a dominant mor-
phism f: X — Y is special if its generic fiber is special as a variety with
trivial constellation.

(2) Given a Campana constellation (X/Ax), a proper dominant morphism
f:+ X =Y is said to have general type base if (Y/Af ) is of general
type.

(2’) In particular, considering X with trivial constellation, a proper dominant
morphism f : X — Y is said to have general type base if (Y/Ay) is of
general type.

Here is the main classification theorem of Campana:

THEOREM 2.2.15 (Campana). Let (X/Ax) be a Campana constellation on a
projective variety X . There ezists a dominant rational map ¢ : X --+ C(X), unique
up to birational equivalence, such that



356 DAN ABRAMOVICH

(1) the map c has special generic fiber, and
(2) the Campana constellation base (C(X)/Ac ay) is of general type.

This map s final for (1) and initial for (2).

This is the Campana core map of (X/Ax), the constellation (C(X)/A:ay)
being the core of (X/Ax). The key case is when X has the trivial constellation,
and then ¢ : X --» (C(X)/A.) is the Campana core map of X and (C(X)/A.)
the core of X.

2.2.16. More examples of constellation bases. The following is a collection of
examples which I find useful to keep in mind. The stated rules for the constellation
bases are explained below in 2.2.17.

(1) Consider f : A2 — A? given by s = 2%;t = y. We want to describe the
constellation base. Clearly on Y = A?, the divisor Ay = 1/2 (s = 0). But
what should the multiplicity be for a divisor on some blowup of Y'?

The point is that X — Y is toric, and A can be described using toric
geometry. Indeed, the multiplicity at a divisorial valuation v is precisely
dictated by the value of v(s), with a simple rule: if v(s) is even, we have
m, = 1sod, = 0, otherwise m, = 2 and 6, = 1/2. Regular pluricanonical
differentials are generated by (ds A dt)?/s.

(2) Consider now f : A2 — A2 given by s = 2%;¢t = y2. The rule this time:
m, =1 and 0, = 0 if and only if both v(s) and v(t) are even, otherwise
m, = 2 and §, = 1/2. Regular pluricanonical differentials are generated
by (ds A dt)?/st.

(3) f:A2UA% — A? given by s = 22;t = y; and s = x9;t = y2 The rule
this time: m, = 1 and J§, = 0 if and only if either v(s) or v(t) is even,
otherwise m, = 2 and §, = 1/2. Regular pluricanonical differentials are
generated by ds A dt.

(4) f:X — A2 given by the singular cover Spec C[s, ¢, v/st]. The rule: m,, = 1
and 0, = 0 if and only if either v(s) + v(t) is even, otherwise m, =
2 and 4, = 1/2. Regular pluricanonical differentials are generated by
(ds A dt)?/st.

(5) f: A3 — A? given by s = 2%y3;t = 2. The rule: m, = 1 and 6, = 0 if
and only if either v(s) = 0 or v(s) > 2, otherwise m,, = 2 and §, = 1/2.
Regular pluricanonical differentials are generated by (ds A dt)?/s.

2.2.17. Where does the rule come from? When we have a toric map of affine
toric varieties, we have a map of cones f, : 0x — oy. Inside these cones we have
lattices Nx and Ny - I am considering only the part of the lattice lying in the
closed cone, so it is only a monoid, not a group. The map f, maps Ny into a
sub-monoid I' C Ny. Each rank-1 discrete valuation v of Y has a corresponding
point n, € Ny, calculated by the value of v on the monomials of Y: in the case of
A? this point is simply (v(s),v(t)). The rule is: m,, is the minimal positive integer
such that

my -n, €1,

These toric examples form the basis for defining firmaments later on.
2.2.18. Rational points and the question of integral points. Campana made the
following bold conjecture:
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CONJECTURE 2.2.19 (Campana). Let X/k be a variety over a number field.
Then rational points are potentially dense on X if and only if X is special, i.e., if
and only if the core of X is a point.

It is natural to seek a good definition of integral points on a Campana constel-
lation and translate the non-special case of the conjecture above to a conjecture on
integral points on Campana constellations of general type.

The following definition covers part of the ground. It seems natural, yet it is
not satisfactory as it is quite restrictive. It is also not clear how these points behave
in morphisms. We’ll be able to go a bit further with firmaments.

DEFINITION 2.2.20. Let (Y/A) be a Campana constellation over a number field
k, and assume it is admissible as in Theorem 2.2.11 and the discussion therein.
Write as usual Ay = > (1 — 1/m;)A; for the part of A with divisorial support on
Y. Assume given a model (Y, Ay) of (Y,Ay) over Op,s, such that ) is smooth
and Ey a horizontal normal crossings divisor. Write Yy =Y ~ Ay.

Consider y € Yy(K). We say that y is a soft S-integral point on (Y/A) if for
any prime o where the Zariski closure g of y reduces to A we have

1 ~
Z—mult@Ai -y > L
m;

2.3. Bogomolov vs. Campana: some remarks about their philoso-
phies. Let us take a step back and reconsider what we are doing. After all, we
are trying to learn something about the geometry of a variety X from the data of
dominant morphisms X — Y it admits to other varieties. And somehow the effect
of such a map is encoded not only in the geometry of Y but in some extra structure.

Campana’s approach involves introducing a new category of objects, which I
call Campana constellations. For any dominant f : X — Y, this maps leaves an
indelible mark, namely a constellation, on the target Y, and you learn about X by
studying the constellations onto which it maps.

There is an approach which is technically closely related but philosophically
diametrically opposed, due to Bogomolov. Bogomolov suggests that since our object
of study is X, we need to look for the indelible mark f : X — Y leaves on X itself.
Bogomolov proposes to use what has come to be called a Bogomolov sheaf: let
d = dimY and consider the saturated image F,, of f*wi* in Sym” Q4. These form
a sheaf of algebras €,,,~, Fm, and it is said to be of general type if the algebra of
sections has dimension d + 1. Bogomolov suggests that such sheaves should have
an important role in the arithmetic and geometric properties of X.

Even if one prefers Bogomolov’s approach, I think the achievement of Cam-
pana’s Theorem 2.2.15 is remarkable and cannot be ignored. For example, it seems
that the preprint [Lu02] attempted to develop a theory based entirely on Bogo-
molov sheaves, but the author could not resist veering towards statements such as
Theorem 2.2.15.

So let us take a closer look at what we have been doing with Campana’s ap-
proach.

In essence, what we are trying to capture is a structure on Y that measures a
sort of equivalence class of dominant maps X — Y. In some sense, the structure
should measure to what extent the map X — Y has a section, perhaps locally and
up to proper birational maps, or perhaps on a suitable choice of discrete valuation
rings. There are some reasonable properties this should satisfy:
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It should be local on Y.

It should be invariant under modifications of X.

It should behave well under birational modifications of Y.

There should be a good notion of morphism of such structures, at least
on the level of dominant maps.

So far, our notion of constellation satisfies all of the above. We defined constel-
lations in terms of divisorial valuations, which live on the function field of Y, and
automatically behave well under birational maps. In fact I modified Campana’s
original definition, which relied on the divisor Ay, by introducing A precisely for
this purpose. One seems to lose in the category of computability, though not so
much if one can characterise and find admissible models. The definition was made
precisely to guarantee that if S is the spectrum of a complete discrete valuation
ring with algebraically closed residue field, and S — Y is dominant, then the map
lifts to S — (Y/A) if, and only if, it lifts to S — X.

But consider the following desirable properties, which are not yet achieved:

e The structure should be invariant under smooth maps on X.

e In some sense it should be recovered from an open covering of X.

e It should be computable.

e There should be a notion of morphisms, good enough to work with non-
dominant maps and integral points.

It seems that Campana constellations are wonderfully suited for purposes of
birational classification. Still they seem to lack some subtle information necessary
to have these last properties, such as good definitions of non-dominant morphisms
and integral points—at least I have not been successful in doing this directly on
constellations in a satisfactory manner. For these purposes I propose the notion of
firmaments. At this point I can achieve these desired properties under extenuating
circumstances, which at least enables one to state meaningful questions. It is very
much possible that at the end a simpler formalism will be discovered, and the whole
notion of firmaments will be redundant.

2.4. Firmaments supporting constellations and integral points. The
material in this section is very much incomplete as many details are missing and
many questions are yet unanswered.

2.4.1. Firmaments: valuative definition. Let me first define the notion of fir-
maments in a way that seems to make things a bit more complicated than con-
stellations, and where it is not clear that any additional desired properties are
achieved.

The underlying structure is still a datum attached to every divisorial valuation
v of Y. The datum is a subset I',, C N, and the sole requirement on each individual
I', is that

e ', is the union of finitely many non-zero additive submonoids of N.
and the structure is considered trivial if I', = N.

There is an additional requirement, namely that this should come locally from

a map X — Y, in the way described below.

DEFINITION 2.4.2. Let Y be a variety, X a reduced scheme, and let f : X =Y
be a morphism, surjective on each irreducible component of X. For each divisorial
valuation v on K(Y") consider f’: X| — Y, where X/, is a normal-crossings desin-
gularization of the main part of the pullback X xy Y,. Write F), for the fiber of X7,
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over s,. For each point € F,,, assume that the components of F,, passing through

x have multiplicities myq, . .., my, generating a submonoid
re = (mg,...,my) CN
Define
r, = U re.
z€F,

DEFINITION 2.4.3. A firmament T on Y is an assignment
v — I'yCN

which, locally in the étale topology of Y, comes from a morphism X — Y as above.

This condition requiring a local description, which seems harmless, is actually
crucial for the properties of firmaments.
A firmament supports a unique constellation:

DEFINITION 2.4.4. Let I" be a firmament. The multiplicity of the divisorial
valuation v is defined as m, = min(I', \ {0}). The constellation hanging by T is

AF:Z(1—m%>y.

2.4.5. Note that, according to the definition above, every firmament supports
a unique constellation, though a constellation can be supported by more than one
firmament. Depending on one’s background, this might agree or disagree with the
primitive cosmology of one’s culture. Think of it this way: as we said before,
the word “constellation” refers to the entire “heavens”, visible through stronger
and stronger telescopes Y/. The word “firmament” refers to an overarching solid
structure supporting the heavens, but solid as it may be, it is entirely imaginary
and certainly not unique.

2.4.6. Toroidal formalism. 1 wish to convince the reader that this extra struc-
ture I piled on top of constellations actually makes things better. For this purpose
I need to discuss a toroidal point of view.

In fact the right foundation to use seems to be that of logarithmic structures,
rather than toroidal geometry. For the longest time I stuck with toroidal geome-
try because the book [Boul5| had not been written. As [Ogu] and [GRO09] are
becoming available my excuses are running out, but I'll leave the translation work
for the future.

DEFINITION 2.4.7 ([KKMSD73], [Kat94], [AKO00]). (1) A toroidal em-
bedding U C X is the data of a variety X and a dense open set U with
complement a Weil divisor D = X ~ U, such that locally in the étale,
or analytic, topology, or formally, near every point, U C X admits an
isomorphism with (a neighborhood of a point in) T'C V, with T" a torus
and V a toric variety. (It is sometimes convenient to refer to the toroidal
structure using the divisor: (X, D).)

(2) Let Ux C X and Uy C Y be toroidal embeddings, then a dominant
morphism f : X — Y is said to be toroidal if étale locally near every
point of X there is a toric chart for X near x and a toric chart for Y near
f(z), such that on these charts f becomes a torus-equivariant morphism
of toric varieties.
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2.4.8. The cone complezx. Recall that, to a toroidal embedding U C X we can
attach an integral polyhedral cone complex ¥ x, consisting of strictly convex cones,
attached to each other along faces, and in each cone o a finitely generated, unit
free integral saturated monoid N, C o generating o as a real cone.

Note that I am departing from usual terminology, by taking N, to be the part
of the lattice lying in the cone, rather than the associated group. Note also that
in [KKMSD73|, [Kat94] the monoid M, dual to N, is used. While the use of
M, is natural from the point of view of logarithmic structures, all the action with
firmaments happens on its dual NV, so I use it instead.

2.4.9. Valuation rings and the cone complex. The complex X x can be pieced
together using the toric charts, where the picture is well known: for a toric variety
V', cones correspond to toric affine opens V,, and the lattice N, is the monoid of
one-parameter subgroups of the corresponding torus having a limit point in V,; it
is dual to the lattice of effective toric Cartier divisors M,,, which is the quotient of
the lattice of regular monomials M, by the unit monomials.

For our purposes it is convenient to recall the characterization of toric cones
using valuations given in [KKMSDT73]: let R be a discrete valuation ring with
valuation v, special point sp and generic point 7g; let ¢ : SpecR — X be a
morphism such that ¢(ng) C U and ¢(sg) lying in a stratum having chart V =

Spec k[M,]. One associates to ¢ the point n, in N, given by the rule
n(m) =v(¢p*m) Vm € M.

In case R = R, is a valuation ring of Y, I'll call this point n,. One can indeed
give a coherent picture including the case ¢(ngr) ¢ U, but I won’t discuss this here
and delay it for future treatment if one is called for. (It is however important for
giving a complete picture of the category and a complete picture of the arithmetic
structure.).

2.4.10. Functoriality. Given toroidal embeddings Ux C X and Uy C Y and
a morphism f : X — Y carrying Ux into Uy (but not necessarily toroidal) the
description above functorially associates a polyhedral morphism fs;, : ¥x — Xy
which is integral, that is, fs(N,) C N, whenever fx(o) C 7.

2.4.11. Toroidalizing a morphism. While most morphisms are not toroidal, we
have the following:

THEOREM (Abramovich-Karu). Let f : X — Y be a dominant morphism of
varieties. Then there exist modifications X' — X and Y' — 'Y and toroidal struc-
tures Ux: C X', Uy, C Y’ such that the resulting rational map f' : X' =Y’ is a
toroidal morphism:

UX/(—> X — X

L]
Uy/ ——Yy ——Y
Furthermore, f' can be chosen flat.

We now define toroidal firmaments, and give an alternative definition of firma-
ments in general:

DEFINITION 2.4.12. A toroidal firmament on a toroidal embedding U C X with
complex ¥ is a finite collection T' = {T'.. C N, }, where

e cach I') C N, is a finitely generate submonoid, not necessarily saturated,
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e each I generates the corresponding o as a cone,

e the collection is closed under restrictions to faces, i.e., for each I'\ and
each 7 < o there is j with 'Y N7 =T, and

e it is irredundant, in the sense that I'. ¢ I’ for different 4, j.

A morphism from a toroidal firmament I'x on a toroidal embedding Ux C X
to Ty on Uy C Y is a morphism f: X — Y with f(Ux) C Uy such that for each
o in ¥x and each i, and if fx (o) C 7, we have fx(I') C I'Z for some j.

We say that the toroidal firmament I'y is induced by f : X — Y from Ty if
for each 0 € ¥x and 7 € Xy such that fx (o) C 7, we have I = f'T'. N N,.

Given a proper birational equivalence ¢ : X; --» X5, then two toroidal fir-
maments I'x, and I'x, are said to be equivalent if there is a toroidal embedding
Us C X3, and a commutative diagram

X3
7N
Xi- - - ax,

where f; are modifications sending Us to U;, such that the two toroidal firmaments
on X3 induced by f; from I'x, are identical.

A firmament on an arbitrary X is the same as an equivalence class represented
by a modification X’ — X with a toroidal embedding U’ C X’ and a toroidal
firmament I' on X x/. A morphism of firmaments is a morphism of varieties which
becomes a morphism of toroidal firmaments on some toroidal model.

The trivial firmament is defined by I', = N, for all ¢ in X.

For the discussion below one can in fact replace T' by the union of the ', | but
I am not convinced that makes things better.

DEFINITION 2.4.13. (1) Let f : X — Y be a flat toroidal morphism of
toroidal embeddings. The base firmament I'¢ associated to X — Y is
defined by the images I'7 = f5 (N, ) for each cone 7 € X x over o € Xy. We
make this collection irredundant by taking the sub-collection of maximal
elements.

(2) Let f: X — Y be a dominant morphism of varieties. The base firmament
of f is represented by any I, where ' : X’ — Y’ is a flat toroidal
birational model of f.

(3) If X is reducible, decomposed as X = UX;, but f: X; — Y is dominant
for all ¢, we define the base firmament by the (maximal elements of) the
union of all the firmaments associated to X; — Y.

2.4.14. Equivalence of definitions. Given a firmament in the new definition,
given a toroidal model and given a divisorial valuation v, we have a corresponding
point n,, € N,. We define

I', = {k € N|kn, € T; for some i}.

This gives a firmament in the valuative definition.

Conversely, a firmament in the valuative definition has finitely many étale charts
Y; — Y where the firmament comes from X; — Y;. One can toroidalize each
X; — Y; simultaneously over some toroidal structure U C Y, and take the base
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toroidal firmament, associated UX; — Y. This gives a firmament in the “new”
sense on Y.

One can show that the two procedures are inverse to each other. Again I'll
leave this for a later treatment.

This shows in particular that any firmament supports a unique constellation,
thus allowing us access to the differential invariants of constellations.

2.4.15. Ezamples revisited. We can now revisit our examples of base constel-
lations in the one dimensional and higher dimensional cases, and recast them in
terms of firmaments. It then becomes evident that the rules we used to calculate
the constellations are simply the combinatorial data of firmaments!

(1) f:A% - Al given by t = 2% 7 =R>; N, = N;T = {2N}.

(2) f:A%— Al given by t = 2%y: T' = {N}, the trivial structure.

(3) f: A% — Al given by t = 2?y?: T = {2N}. Supported constellation:
A= Dy/2

(4) f:A? — Al given by t = 2%y3: T' = {2N + 3N}. Supported constellation:
A = Dy/2. Note: this is the same constellation as before, but hanging by
different firmaments.

(5) f: A% — Al given by t = 23y*: T = {3N + 4N}. Note: even I' \ {0} is
not saturated in its associated group.

(6) f:A? — A% given by s = 2%t =y: T = {2N x N}.
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_ JON JNON )
| NON NON
' NN NON )
C MOl JoN )
@ e o0

(7) f: A% — A given by s = 2%t = y*: T = {2N x 2N}.

_ JON NON )
O O0O00O0
' NN NON )
© O 0O0O0
®c e -0

(8) f : A2UA2 — A? given by s = 22t = 4 and s = xo;t = y3: T =

{2N x N|N x 2N}. Note: more than one semigroup. Ay = 0, but on
blowup the exceptional gets 1/2.

0000
| NON NON )
o000 0
MO JON
o000

(9) f:X — A2 given by SpecC[s, t,/st]: T' = {((2,0),(1,1),(0,2))}.

_ NN NON
ol NoN Ne
' MOl NON )
ol NoN Ne
Q0 o0

(10) f:A3 — A? given by s = 2%y3;t = 2: T = {(2N + 3N) x N}.
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Nl W W)
_ Ol N N
MOl N N )
"ol W N )
‘"@".".”.""
2.4.16. Arithmetic. We have learned our lesson—for arithmetic we need to talk

about integral points on integral models. I'll restrict to the toroidal case, leaving
the general situation to future work.

DEFINITION. An S-integral model of a toroidal firmament I'" on Y consists of
an integral toroidal model )’ of Y.

DEFINITION 2.4.17. Consider a toroidal firmament I' on Y/k, and a rational
point y such that the firmament is trivial in a neighborhood of y. Let ) be a
toroidal S-integral model.

Then y is a firm integral point of Y with respect to I if the section Spec Oy ¢ —
Y is a morphism of firmaments, when Spec Oy, s is endowed with the trivial firma-
ment.

Explicitly, at each prime g € Spec O s where y reduces to a stratum with cone
o, consider the associated point n, 6 € N,. Then y is firmly S-integral if for every
p we have n, € I}, for some i.

THEOREM 2.4.18. Let f : X — Y be a proper dominant morphism of varieties
over k. There exists a toroidal birational model X' — Y’ and an integral model
V' such that image of a rational point on X' is a firm S-integral point on )’ with
respect to I'y.

In fact, at least after throwing a few small primes into the trash-bin .S, a point
is S-integral on )’ with respect to I'y if and only if locally in the étale topology on
V' it lifts to a rational point on X. This is the motivation for the definition.

The following statements are due at least in spirit to Campana.

CONJECTURE 2.4.19. Let (Y/A) be a smooth projective Campana constella-
tion supported by firmament T'. Then points on Y integral with respect to I’ are
potentially dense if and only if (Y/A) is special.

Note that this conjecture implies Conjecture 2.2.19: assume this conjecture
holds true. Let X be a smooth projective variety. Then rational points are poten-
tially dense if and only if X is special.

3. The minimal model program

For the “quick and easy” introduction to the minimal model program see
[Deb01]. For a more detailed treatment starting from surfaces see [Mat02]. For
a full treatment up to 1999 see [KM98].

The minimal model program has a beautiful beginning, a rather technical main
body of work from the 80s and 90s, and quite an exciting present. In the present
account I will skip the technical main body of work.
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3.1. Cone of curves.

3.1.1. Groups of divisors and curves modulo numerical equivalence. Let X be
a smooth complex projective variety.

We denote by N1(X) the image of Pic(X) — H?(X,Z)/torsion C H%(X,Q).
This is the group of Cartier divisors modulo numerical equivalence.

We denote by N;(X) the subgroup of Ho(X,Q) generated by the fundamen-
tal classes of curves. This is the group of algebraic 1-cycles modulo numerical
equivalence.

The intersection pairing restricts to N*(X) x N1(X) — Z, which over Q is a
perfect pairing.

3.1.2. Cones of divisors and of curves. Denote by Amp(X) C N1(X)g the
cone generated by classes of ample divisors. We denote by NEF(X) the closure of
Amp(X) € N*(X)g, called the nef cone of X.

Denote by NE(X) C N1(X)g the cone generated by classes of curves. We
denote its closure by NE(X). The class of a curve C' in NE(X) is denoted [C].

THEOREM 3.1.3 (Kleiman). The class [D] of a Cartier divisor is in the closed
cone NEF(X) if and only if [D] - [C] > 0 for every algebraic curve C C X.
In other words, the cones NE(X) and NEF(X) are dual to each other.

3.2. Bend and break. For any divisor D on X which is not numerically
equivalent to 0, the subset

(D<0):={ve NEX)lv-D <0}

is a half-space. The minimal model program starts with the observation that this
set is especially important when D = Kx. In fact, in the case of surfaces, (Kx <
0)NNE(X) is a subcone generated by (—1)-curves, which suggests that it must say
something in higher dimensions. Indeed, as it turns out, it is in general a nice cone
generated by so-called “extremal rays”, represented by rational curves [C] which
can be contracted in something like a (—1) contraction.

Suppose again X is a smooth, projective variety with Kx not nef. Our first
goal is to show that there is some rational curve C' with Kx - C < 0.

The idea is to take an arbitrary curve on X, and to show, using deformation
theory, that it has to “move around a lot”—it has so many deformations that
eventually it has to break, unless it is already the rational curve we were looking
for.

3.2.1. Breaking curves. The key to showing that a curve breaks is the following:

LEMMA 3.2.2. Suppose C is a projective curve of genus > 0 with a pointp € C,
suppose B is a one dimensional affine curve, f : C x B — X a monconstant
morphism such that {p} x B — X is constant. Then, in the closure of f(CxB) C X,
there is a rational curve passing through f(p).

In genus 0 a little more will be needed:

LEMMA 3.2.3. Suppose C' is a projective curve of genus 0 with points p1,ps € C,
suppose B is a one dimensional affine curve, f : C x B — X a morphism such
that {p;} x B — X is constant, i = 1,2, and the image is two-dimensional. Then
the class [f(C)] € NE(X) is “reducible”: there are effective curves Cy,Cy passing
through p1,pa respectively, such that [C1] + [Ca] = [C].
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3.2.4. Some deformation theory. We need to understand deformations of a map
f:C — X fixing a point or two. The key is that the tangent space of the moduli
space of such maps—the deformation space—can be computed cohomologically, and
the number of equations of the deformation space is also bounded cohomologically.

LEMMA 3.2.5. The tangent space of the deformation space of f : C' — X fizing

poOINts P1, ..., Pn 18
H (€, Tx(= Y pi)) -

The obstructions lie in the next cohomology group:
H' (€, Tx(= Y pi)) -
The dimension of the deformation space is bounded below:

dimDef(f:C = X,p1,...,pn) > X(C,f*TX(_Zpi))
— —(KxC) + (1-g(C)—n)dm X

3.2.6. Rational curves. Let us consider the case where C is rational. Suppose
we have such a rational curve inside X with —(Kx-C) > dim X +2, and we consider
deformations fixing n = 2 of its points. Then —(Kx -C) + (1—g(C)—2)dim X =
—(Kx -C)—dim X > 2. Since C is inside X, the only ways f : C — X can deform
is either by the 1-parameter group of automorphisms, or, beyond 1-parameter, go
outside the image of C, and we get an image of dimension at least 2. So the
rational curve must break, and one of the resulting components C is a curve with
—(KX . Cl) < —(KX . C)

Suppose for a moment — K x is ample, so its intersection number with an effec-
tive curve is positive. In this case the process can only stop once we have a curve
C with

0<—(Kx -Cx) < dimX+1.

Note that this is optimal—the canonical line bundle on P" has degree r + 1 on any
line.

3.2.7. Higher genus. If X is any projective variety with K x not nef, then there
is some curve C' with Kx - C' < 0. To be able to break C we need

—(Kx-C)—g(C)dimX > 1.

There is apparently a problem: the genus term may offset the positivity of
—(Kx - C). One might think of replacing C by a curve covering C, but there is
again a problem: the genus increases in coverings roughly by a factor of the degree
of the cover, and this offsets the increase in —(Kx - C). There is one case when
this does not happen, that is in characteristic p we can take the iterated Frobenius
morphism Cl™ — €, and the genus of CI™ is g(C). We can apply our bound
and deduce that there is a rational curve C’ on X. If —Kx is ample we also have

< —(Kx - Cl) < dimX +1.

But our variety X was a complex projective variety. What do we do now? We
can find a smooth model X of X over some ring R finitely generated over Z, and
for each maximal ideal p C R the fiber &, has a rational curve on it.

How do we deduce that there is a rational curve on the original X7 If —Kx is
ample, the same is true for —Ky, and we deduce that there is a rational curve Cy
on each &, such that 0 < —(Kx,_-C,) < dim X +1. These are parametrized by a
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Hilbert scheme of finite type over R, and therefore this Hilbert scheme has a point
over C, namely there is a rational curve C'on X with 0 < —(Kx-C) < dim X+1.
In case —Kx is not ample, a more delicate argument is necessary. One fixes
an ample line bundle H on X, and given a curve C on X with —(Kx - C) < 0 one
shows that there is a rational curve C’ on each X, with
H-C
—(Kx-C)

Then one continues with a similar Hilbert scheme argument.

(H-C') < 2dim X

3.3. Cone theorem. Using some additional delicate arguments one proves:

THEOREM 3.3.1 (Cone theorem). Let X be a smooth projective variety. There
is a countable collection C; of rational curves on X with

0<—(Ky-C;) <dimX +1,

whose classes [C;] are discrete in the half space N1(X) k<o, such that

NE(X) =NE(X)kx>0+ ) Rso-[Ci].

The rays R>q - [C;] are called extremal rays (or, more precisely, extremal K x-
negative rays) of X.
These extremal rays have a crucial property:

THEOREM 3.3.2 (Contraction theorem). Let X be a smooth complex projective
variety and let R = R - [C] be an extremal Kx-negative ray. Then there is a
normal projective variety Z and a surjective morphism cg : X — Z with connected
fibers, unique up to unique isomorphism, such that for an irreducible curve D C X
we have cr(D) is a point if and only if [D] € R.

This map cpg is defined using a base-point-free linear system on X made out of
a combination of an ample sheaf H and Kx.

3.4. The minimal model program. If X has an extremal ray which gives
a contraction to a lower dimensional variety Z, then the fibers of cr are rationally
connected and we did learn something important about the structure of X: it is
uniruled.

Otherwise cg : X — Z is birational, but at least we have gotten rid of one
extremal ray - one piece of obstruction for Kx to be nef.

One is tempted to apply the contraction theorem repeatedly, replacing X by
Z, until we get to a variety with Kx nef. There is a problem: the variety Z is
often singular, and the theorems apply to smooth varieties. All we can say about
Z is that it has somewhat mild singularities: in general it has rational singulari-
ties; if the exceptional locus has codimension 1—the case of a so-called divisorial
contraction—the variety Z has so called terminal singularities. For surfaces, termi-
nal singularities are in fact smooth, and in fact contractions of extremal rays are
just (—1)-contraction, and we eventually are led to a minimal model. But in higher
dimensions singularities do occur.

The good news is that the theorems can be extended, in roughly the same form,
to varieties with terminal singularities. (The methods are very different from what
we have seen and I would rather not go into them.) So as long as we only need to
deal with divisorial contractions, we can continue as in the surface case.
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For non-divisorial contractions—so-called small contractions—we have the fol-
lowing recent major result of Birkar, Cascini, Hacon and McKernan:

THEOREM 3.4.1 (Flip Theorem [BCHMO6]). Suppose cg : X — Z is a small
extremal contraction on a variety X with terminal singularities. Then there exists
another small contraction CE : Xt — Z such that X+ has terminal singularities
and Kx+ - C > 0 for any curve C contracted by C}-;.

The transformation X --» X+ is known as a flip.

The proof of this theorem goes by way of a spectacular inductive argument,
where proofs of existence of minimal models for varieties of general type, finite gen-
eration of canonical rings, and finiteness of certain minimal models are intertwined.

CONJECTURE 3.4.2 (Termination Conjecture). Any sequence of flips is finite.
This implies the following:

CONJECTURE 3.4.3 (Minimal model conjecture). Let X be a smooth projective
variety. Then either X is uniruled, or there is a birational modification X --+ X'
such that X' has only terminal singularities and Kx is nef

Often one combines this with the following:

CONJECTURE 3.4.4 (Abundance). Let X be a projective variety with terminal
singularities and K x nef. Then for some integer m > 0, we have H*(X, Ox(mKx))
is base-point-free.

The two together are sometimes named “the good minimal model conjecture”.

The result is known for varieties of general type: it follows from the recent
theorem of [BCHMOS6] on finite generation of canonical rings.

As we have seen in previous sections, this conjecture has a number of far reach-
ing corollaries, including Titaka’s additivity conjecture and the (—oo)-conjecture.

4. Vojta, Campana and abc

In [Voj87], Paul Vojta started a speculative investigation in Diophantine ge-
ometry motivated by analogy with value distribution theory. His conjectures go in
the same direction as Lang’s—they are concerned with bounding the set of points
on a variety rather than constructing “many” rational points. Many of the actual
proofs in the subject, such as an alternative proof of Faltings’s theorem, use razor-
sharp tools such as Arakelov geometry. But to describe the relevant conjectures it
will suffice to discuss heights from the classical “naive” point of view. The reader
is encouraged to consult Hindry—Silverman [HS00] for a user—{riendly, Arakelov—
free treatment of the theory of heights (including a proof of Faltings’s theorem,
following Bombieri).

A crucial feature of Vojta’s conjectures is that they are not concerned just
with rational points, but with algebraic points of bounded degree. To account for
varying fields of definition, Vojta’s conjecture always has the discriminant of the
field of definition of a point P accounted for.

Vojta’s conjectures are thus much farther-reaching than Lang’s. You might
say, much more outrageous. On the other hand, working with all extensions of a
bounded degree allows for enormous flexibility in using geometric constructions in
the investigation of algebraic points. So, even if one is worried about the validity
of the conjectures, they serve as a wonderful testing ground for our arithmetic
intuition.
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4.1. Heights and related invariants. Consider a point in projective space
P=(zg:...:2.) €P", defined over some number field k, with set of places M.
Define the naive height of P to be

= [ max(llzollo, -, llzrll)-

veMy,

Here ||z||, = |z| for areal v, ||z||, = |2|? for a complex v, and ||z|, is normalized
so that ||p| = p~F»*@] otherwise. (If the coordinates can be chosen relatively
prime algebraic integers, then the product is of course a finite product over the
Archimedean places, where everything is as easy as can be expected.)

This height is independent of the homogeneous coordinates chosen, by the
product formula.

To keep things independent of a chosen field of definition, and to replace prod-
ucts by sums, one defines the normalized logarithmic height

h(P) = log H(P).

[k: Q] Q]

Now if X is a variety over k with a very ample line bundle L, one can consider
the embedding of X in a suitable P” via the complete linear system of H°(X,L).
We define the height hr(P) to be the height of the image point in P".

This definition of Az (P) is not valid for embeddings by incomplete linear sys-
tems, and is not additive in L. But it does satisfy these desired properties “al-
most”: hr(P) = h(P) + O(1) if we embed by an incomplete linear system, and
hror (P) = hp(P) + hp/(P) for very ample L, L’. This allows us to define

hr(P)=ha(P)—hp(P)
where A and B are very ample and L ® B = A. The function hy(P) is now only
well defined as a function on X (k) up to O(1).

Consider a finite set of places S containing all Archimedean places.

Let now X be a scheme proper over Oy g, and D a Cartier divisor.

The counting function of X, D relative to k, S is a function on points of X (k)
not lying on D. Suppose P € X(E), which we view again as an S-integral point
of X. Consider a place w of E not lying over S, with residue field x(w). Then the
restriction of D to P ~ Spec Op g is a fractional ideal with some multiplicity n,,
at w. We define the counting function as follows:

Ni.s(D, P)

log [ (w)].
wEME
wtS

A variant of this is the truncated counting function

1 .
NUHDP) = g 3 min(l, ) log ()|
’ weEME

wtS
Counting functions and truncated counting functions depend on the choice of
S and a model X, but only up to O(1). We’ll thus suppress the subscript S.
One defines the relative logarithmic discriminant of E/k as follows: suppose
the discriminant of a number field k is denoted Dj. Then define
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de(E) = log|Dp| — log|Dgl.

1
[E:4]
2. Vojta’s conjectures.

CONJECTURE 4.2.1. Let X be a smooth proper variety over a number field k,
D a normal crossings divisor on X, and A an ample line bundle on X. Let r be
a positive integer and € > 0. Then there is a proper Zariski-closed subset Z C X
containing D such that

Ni(D, P) + di(k(P)) > hi(p)(P) — €ha(P) — O(1)
for all P € X(k)~ Z with [k(P) : k]

IN

r.

In the original conjecture in [Voj87], the discriminant term came with a factor
dim X. By the time of [Voj98] Vojta came to the conclusion that the factor was
not well justified. A seemingly stronger version is

CONJECTURE 4.2.2. Let X be a smooth proper variety over a number field k,
D a normal crossings divisor on X, and A an ample line bundle on X. Let r be
a positive integer and € > 0. Then there is a proper Zariski-closed subset Z C X
containing D such that

NP (D, P) + di(k(P)) 2 hicy(0)(P) = cha(P) = O(1).
but in [Voj98], Vojta shows that the two conjectures are equivalent.

4.3. Vojta and abc. The following discussion is taken from [Voj98], section

The Masser-Oesterlé abc conjecture is the following:

CONJECTURE 4.3.1. For any € > 0 there is C > 0 such that for all a,b,c € Z,
with a + b+ ¢ =0 and ged(a, b, c) = 1 we have

max(lal, bl [c]) < C- ] »"*

plabe

Consider the point P = (a : b : ¢) € P2. Its height is log max(|al, |b], |c|). Of
course the point lies on the line X defined by « +y 4+ z = 0. If we denote by D
the divisor of zyz = 0, that is the intersection of X with the coordinate axes, and
if we set S = {oo}, then

NGE(D, Py =" logp.
plabe
So the abc conjecture says

h(P) < (1+ e )N§ 5(D, P) + O(1),
which, writing 1 — ¢’ = (1 + €)1, is the same as
(1—€)h(P) < NJ4(D, P) + O(1).

This is applied only to rational points on X, so dg(Q) = 0. We have Kx (D) =
Ox(1), and setting A = Ox(1) as well we get that abe is equivalent to

NEA(D, P) > hicy () (P) — €'ha(P) — O(1),

which is exactly what Vojta’s conjecture predicts in this case.
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Note that the same argument gives the abc conjecture over any fixed number
field.

4.4. abc and Campana. Material in this section follows Campana’s [CamO05].

Let us go back to Campana’s constellation curves. Recall Conjecture 2.1.9, in
particular a Campana constellation curve of general type over a number field is
conjectured to have a finite number of soft S-integral points.

Simple inequalities, along with Faltings’s theorem, allow Campana to reduce
to a finite number of cases, all on P'. The multiplicities m; that occur in these
“minimal” divisors A on P! are

(2,3,7), (2,4,5), (3,3,4), (2,2,2,3) and (2,2,2,2,2).

Now one claims that Campana’s conjecture in these cases follows from the abc
conjecture for the number field k. This follows from a simple application of Elkies’s
[E1k91]. Tt is easiest to verify in case k = Q when A is supported precisely at 3
points, with more points one needs to use Belyi maps (in the function field case one
uses a proven generalization of abc instead).
We may assume A is supported at 0,1 and co. An integral point on (P*/A) in
this case is a rational point a/c such that a, ¢ are integers, satisfying the following:
e whenever pla, in fact p™°|a;
e whenever pl|b, in fact p™|b; and
e whenever plc, in fact p™=|c,
where b = ¢ — a.
Now if M = max(|al, |b],|c|) then

]\41/7“)-',-1/7“-',-l/nOQ > |a|1/no|b‘1/n1 ‘c|1/n°°,
and by assumption a'/™ > Hp‘a p, and similarly for b, c. In other words

1\41/7zo—|-1/n1—‘,-l/noQ > H .
plabe

Since, by assumption, 1/ng+1/n14+1/n. < 1 we can take any 0 < e < 1—1/no+
1/n1 + 1/neo, for which the abe conjecture gives M€ < C'1,jape P, for some C.

So M1=1/notl/m+1/ne—¢ « ' and M is bounded, so there are only finitely many
such points.

4.5. Vojta and Campana. I speculate: Vojta’s higher dimensional conjec-
ture implies the non-special part of Campana’s conjecture 2.2.19, i.e., if X is non-
special its set of rational points is not dense.

The problem is precisely in understanding what happens when a point reduces
to the singular locus of D.
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Jason Michael Starr

ABSTRACT. These notes accompany lectures presented at the Clay Mathe-
matics Institute 2006 Summer School on Arithmetic Geometry. The lectures
summarize some recent progress on existence of rational points of projective
varieties defined over a function field over an algebraically closed field.

1. Introduction

These notes accompany lectures presented at the Clay Mathematics Institute 2006
Summer School on Arithmetic Geometry. They are more complete than the lectures
themselves. Exercises assigned during the lectures are proved as lemmas or propo-
sitions in these notes. Hopefully this makes the notes useful to a wider audience
than the original participants of the summer school.

This report describes some recent progress on questions in the interface between
arithmetic geometry and algebraic geometry. In fact the questions come from arith-
metic geometry: what is known about existence and “abundance” of points on alge-
braic varieties defined over a non-algebraically closed field K. But the answers are
in algebraic geometry, i.e., they apply only when the field K is the function field
of an algebraic variety over an algebraically closed field. For workers in number
theory, such answer are of limited interest. But hopefully the techniques will be of
interest, perhaps as simple analogues for more advanced techniques in arithmetic.
With regards to this hope, the reader is encouraged to look at two articles on the
arithmetic side, [GHMSO04a] and [GHMSO04b]. Also, of course, the answers have
interesting consequences within algebraic geometry itself.

There are three sections corresponding to the three lectures I delivered in the sum-
mer school. The first lecture proves the classical theorems of Chevalley-Warning
and Tsen-Lang: complete intersections in projective space of sufficiently low degree
defined over finite fields or over function fields always have rational points. These
theorems imply corollaries about the Brauer group and Galois cohomology of these
fields, which are also described.

The second section introduces rationally connected varieties and presents the proof
of Tom Graber, Joe Harris and myself of a conjecture of Kollar, Miyaoka and Mori:
every rationally connected fibration over a curve over an algebraically closed field of

2000 Mathematics Subject Classification. Primary 14G05, Secondary 11G35, 14F22, 14D15.

©2009 Jason Michael Starr
375



376 JASON MICHAEL STARR

characteristic 0 has a section. The proof presented here incorporates simplifications
due to A. J. de Jong. Some effort is made to indicate the changes necessary to prove
A. J. de Jong’s generalization to separably rationally connected fibrations over
curves over fields of arbitrary characteristic. In the course of the proof, we give a
thorough introduction to the “smoothing combs” technique of Kollar, Miyaoka and
Mori and its application to weak approximation for “generic jets” in smooth fibers
of rationally connected fibrations. This has been significantly generalized to weak
approximation for all jets in smooth fibers by Hassett and Tschinkel, cf. [HTO086].
Some corollaries of the Kollar-Miyaoka-Mori conjecture to Mumford’s conjecture,
fixed point theorems, and fundamental groups are also described (these were known
to follow before the conjecture was proved).

Finally, the last section hints at the beginnings of a generalization of the Kollar-
Miyaoka-Mori conjecture to higher-dimensional function fields (not just function
fields of curves). A rigorous result in this area is a second proof of A. J. de Jong’s
Period-Index Theorem: for a division algebra D whose center is the function field K
of a surface, the index of D equals the order of [D] in the Brauer group of K. This
also ties together the first and second sections. Historically the primary motivation
for the theorems of Chevalley, Tsen and Lang had to do with Brauer groups and
Galois cohomology. The subject has grown beyond these first steps. But the newer
results do have consequences for Brauer groups and Galois cohomology in much the
same vein as the original results in this subject.

Acknowledgments. I am grateful to the Clay Mathematics Institute for spon-
soring such an enjoyable summer school. I am grateful to Brendan Hassett, Yuri
Tschinkel and A. J. de Jong for useful conversations on the content and exposition
of these notes. And I am especially grateful to the referees whose comments, both
positive and negative, improved this article.

2. The Tsen-Lang theorem

A motivating problem in both arithmetic and geometry is the following.

PRrROBLEM 2.1. Given a field K and a K-variety X find sufficient, resp. neces-
sary, conditions for existence of a K-point of X.

The problem depends dramatically on the type of K: number field, finite field,
p-adic field, function field over a finite field, or function field over an algebraically
closed field. In arithmetic the number field case is most exciting. However the
geometric case, i.e., the case of a function field over an algebraically closed field, is
typically easier and may suggest approaches and conjectures in the arithmetic case.

Two results, the Chevalley-Warning theorem and Tsen’s theorem, deduce a suffi-
cient condition for existence of K-points by “counting”. More generally, counting
leads to a relative result: the Tsen-Lang theorem that a strong property about ex-
istence of k-points for a field k propagates to a weaker property about K-points for
certain field extensions K/k. The prototype result, both historically and logically,
is a theorem of Chevalley and its generalization by Warning. The counting result
at the heart of the proof is Lagrange’s theorem together with the observation that a
nonzero single-variable polynomial of degree < ¢ — 1 cannot have ¢ distinct zeroes.
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LEMMA 2.2. For a finite field K with q elements, the polynomial 1 — z97!
vanishes on K* and x? — x vanishes on all of K. For every integer n > 0, for the
K-algebra homomorphism

evy : K[Xo, ..., Xp] = Homgers (K", K),
evp(p(Xo, -, Xn)) = ((ag, -, an) — plag, ..., an)),
the kernel equals the ideal
I, = (X{ - Xo,..., X1 - X,).
Finally, the collection (X! — X;)i—o,...n is a Grobner basis with respect to every

monomial order refining the grading of monomials by total order. In particular, for
every p in I, some term of p of highest degree is in the ideal (X{,..., X4).

PROOF. Because K* is a group of order ¢ — 1, Lagrange’s theorem implies
a?"! =1 for every element a of K*,i.e., 1 — 29! vanishes on K*. Multiplying by
x shows that z? — x vanishes on K. Thus the ideal I,, is at least contained in the
kernel of ev,,.

Modulo X? — X,,, every element of K[Xj, ..., X,] is congruent to one of the form
p(X()v ey Xn) = qung_l + - +p0X27 Poy - -3 Pg—1 S K[X07 e 7Xn71]'

(Of course K™ is defined to be {0} and K[Xy,...,X,—1] is defined to be K if n
equals 0.) Since K has ¢ elements and since a nonzero polynomial of degree < g —1

can have at most ¢—1 distinct zeroes, for every (ag,...,an—1) € K™ the polynomial
p(ag,...,an-1,Xy) is zero on K if and only if
po(ao, ey an_l) == pq_l(ao, ey an_l).

Thus ev,(p) equals 0 if and only if each ev,_1(p;) equals 0. In that case, by the
induction hypothesis, each p; is in I,,_; (in case n = 0, each p; equals 0). Then,
since I,,_1 K[Xo,...,X,] is in I, p is in I,. Therefore, by induction on n, the
kernel of ev,, is precisely I,,.

Finally, Buchberger’s algorithm applied to the set (X — Xy, ..., XZ—X,,) produces
S-polynomials

Siy =X} (X{ - X;) — XX - X;) = X;(X] - Xi) — Xa(X] — Xj)

which have remainder 0. Therefore this set is a Grobner basis by Buchberger’s
criterion. O

THEOREM 2.3. [Che35],[War35] Let K be a finite field. Let n and r be
positive integers and let Fy, ..., F,. be nonconstant, homogeneous polynomials in
K[Xo, ..., Xn]. If

deg(Fy) + -+ deg(Fy) < n
then there exists (ag,...,a,) € K"t — {0} such that for every i = 1,...,r,
Fi(ag,...,a,) equals 0. Stated differently, the projective scheme V(Fy,..., F,) C
P% has a K-point.

PROOF. Denote by g the number of elements in K. The polynomial
G(Xo,.... X)) =1-JJ@—x71

=0
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equals 0 on {0} and equals 1 on K™™' — {0}. For the same reason, the polynomial
T
H(Xo,.... Xp) =1-[](1 = F;(Xo,..., Xn)*™")

j=1
equals 0 on
{(ao,...,an) € K"+1|F1(a0,...,an) = ... = F.,-(Clo,...,an) = 0}

and equals 1 on the complement of this set in K™*!. Since each F; is homogeneous,
0 is a common zero of FY,..., F,.. Thus the difference G — H equals 1 on

{(ag,...,an) € K™ —{0}|Fi(ag,...,an) = --- = F.(ao,...,a,) = 0}

and equals 0 on the complement of this set in K™ *!. Thus, to prove that Fi,..., F,
have a nontrivial common zero, it suffices to prove the polynomial G — H does not
lie in the ideal I,,.

Since
deg(F1) + -+ +deg(F;) < n,

H has strictly smaller degree than G. Thus the leading term of G — H equals
the leading term of G. There is only one term of G of degree deg(G). Thus, for
every monomial ordering refining the grading by total degree, the leading term of
G equals

(=)™ XXX

This is clearly divisible by none of X! for ¢ = 0,...,n, i.e., the leading term of
G — H is not in the ideal (X{,..., X9). Because (XJ — Xo,..., X4 — X,,) is a
Groébner basis for I,, with respect to the monomial order, G — H is not in I,,. [

On the geometric side, an analogue of Chevalley’s theorem was proved by Tsen, cf.
[Tse33]. This was later generalized independently by Tsen and Lang, cf. [Tse36],
[Lan52]. Lang introduced a definition which simplifies the argument.

DEFINITION 2.4. [Lan52] Let m be a nonnegative integer. A field K is called
Cin, or said to have property C,,, if it satisfies the following. For every positive
integer n and every sequence of positive integers (dy,...,d,) satisfying

"+ +d" <n,
every sequence (Fi, ..., F;) of homogeneous polynomials F; € K[Xy, ..., X,] with

deg(F;) = d; has a common zero in K"*! — {0}.

REMARK 2.5. In fact the definition in [Lan52] is a little bit different than this.
For fields having normic forms, Lang proves the definition above is equivalent to
his definition. And the definition above works best with the following results.

With this definition, the statement of the Chevalley-Warning theorem is quite sim-
ple: every finite field has property C7. The next result proves that property C,, is
preserved by algebraic extension.

LEMMA 2.6. For every nonnegative integer m, every algebraic extension of a
field with property C.,,, has property Cp,.
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PRrROOF. Let K be a field with property C,, and let L'/K be an algebraic
extension. For every sequence of polynomials (F7,..., F,) as in the definition, the
coefficients generate a finitely generated subextension L/K of L'/K. Thus clearly
it suffices to prove the lemma for finitely generated, algebraic extensions L/K.

Denote by e the finite dimension dimg(L). Because multiplication on L is K-
bilinear, each homogeneous, degree d;, polynomial map of L-vector spaces,
Fy . L0+ 1

is also a homogeneous, degree d;, polynomial map of K-vector spaces. Choosing
a K-basis for L and decomposing F; accordingly, F; is equivalent to e distinct
homogeneous, degree d;, polynomial maps of K-vector spaces,

Fij:LPH) S K j=1,...

The set of common zeroes of the collection of homogeneous polynomial maps
(F;li = 1,...,7) equals the set of common zeroes of the collection of homogeneous
polynomial functions (F; j|i =1,...,7r,j =1,...,e). Thus it suffices to prove there
is a nontrivial common zero of all the functions F; ;.

By hypothesis,
T
Z deg(F;)™ is no greater than n.
i=1

Thus, also

Z Z deg(F; ;)" =e Z deg(F;)™ is no greater than en.
i=1

i=1j=1
Since K has property C,, and since
dimg (LD e, (n+ 1) dimg (L) = e(n + 1),

is larger than en, the collection of homogeneous polynomials F; ; has a common
zero in L&+ — [0}, O

The heart of the Tsen-Lang theorem is the following proposition.

PROPOSITION 2.7. Let K/k be a function field of a curve, i.e., a finitely gener-
ated, separable field extension of transcendence degree 1. If k has property C,, then
K has property Cppi1-

This is proved in a series of steps. Let n, r and dy, ..., d, be positive integers such
that
1
dptt 4 4 dmtt <.
For every collection of homogeneous polynomials
Fy,... F. € K[XQ, R ,Xn], deg(F,) = di,

the goal is to prove that the collection of homogeneous, degree d;, polynomial maps
of K-vector spaces

Fi,..., B KO0
has a common zero. Of course, as in the proof of Lemma 2.6, this is also a collection
of homogeneous polynomial maps of k-vector spaces. Unfortunately both of these
k-vector spaces are infinite dimensional. However, using geometry, these polyno-
mial maps can be realized as the colimits of polynomial maps of finite dimensional
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k-vector spaces. For these maps there is an analogue of the Chevalley-Warning ar-
gument replacing the counting argument by a parameter counting argument which
ultimately follows from the Riemann-Roch theorem for curves. The first step is to
give a projective model of K/k.

LEMMA 2.8. For every separable, finitely generated field extension K/k of tran-
scendence degree 1, there exists a smooth, projective, connected curve C' over k and
an isomorphism of k-extensions K = k(C). Moreover the pair (C, K = k(C)) is
unique up to unique isomorphism.

PROOF. This is essentially the Zariski-Riemann surface of the extension K/k.
For a proof in the case that k is algebraically closed, see [Har77, Theorem 1.6.9].
The proof in the general case is similar. O

The isomorphism K 2 k(C') is useful because the infinite dimensional k-vector
space k(C) has a plethora of naturally-defined finite dimensional subspaces. For
every Cartier divisor D on C, denote by Vp the subspace

Vp := H(C,0c(D)) = {f € k(O)|div(f) + D > 0}.
The collection of all Cartier divisors D on C is a partially ordered set, where
D’ > D if and only if D’ — D is effective.

The system of subspaces Vp of k(C) is compatible for this partial order, i.e., if
D' > D then Vps D Vp. And K is the union of all the subspaces Vp, i.e., it is the
colimit of this compatible system of finite dimensional k-vector spaces. Thus for
all k-multilinear algebra operations which commute with colimits, the operation
on k(C) can be understood in terms of its restrictions to the finite dimensional
subspaces k(C). The next lemma makes this more concrete for the polynomial
map F.

LEMMA 2.9. Let C be a smooth, projective, connected curve over a field k and
let
F; e k)(C)[Xo,...,Xn]di, t=1,...,r
be a collection of polynomials in the spaces k(C)[Xo,...,Xnla, of homogeneous,
degree d; polynomials. There exists an effective, Cartier divisor P on C and for
every i =1,...,r there exists a global section Fc; of the coherent sheaf

Oc(P)[Xo,. .., Xula,

i

such that for every i = 1,...,r the germ of Fc; at the generic point of C equals
F;.

REMARK 2.10. In particular, for every Cartier divisor D on C' and for every
1 =1,...,r there is a homogeneous, degree d, polynomial map of k-vector spaces

: Vga(nJrl)

Fop — Wa,,p,0,» Wa,,pp = Va,D+P,

such that for every i = 1,...,r the restriction of F; to VB“”*” equals Fopi
considered as a map with target K (rather than the subspace Vypyp).

PROOF. The coefficients of each F; are rational functions on C. Each such
function has a polar divisor. Since there are only finitely many coefficients of the
finitely many polynomials F1,..., F}., there exists a single effective, Cartier divisor
P on C such that every coefficient is a global section of O¢/(P). O
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Because of Lemma 2.9, the original polynomial maps Fi, ..., F;. can be understood
in terms of their restrictions to the subspaces Vp. The dimensions of these subspaces
are determined by the Riemann-Roch theorem.

THEOREM 2.11 (Riemann-Roch for smooth, projective curves). Let k be a field.
Let C be a smooth, projective, connected curve over k. Denote by wcyy, the sheaf of
relative differentials of C' over k and denote by g(C) = genus(C) the unique integer
such that deg(we i) = 29(C) — 2. For every invertible sheaf L on C,
h(C, L) — h*(C,we ®o. LY) = deg(L) +1 — g(C).
REMARK 2.12. In particular, if deg(L) > deg(we) = 2¢(C) — 2 so that
we ®o. LY has negative degree, then h®(C,we ®e, L) equals zero. And then

hO(C, L) = deg(L) + 1 — g(C).

For a Cartier divisor D satisfying
deg(D) > 2¢g(C) — 2 and for each i = 1,...,r,d; deg(D) + deg(P) > 2¢(C) — 2,

VDED(nJrl

the Riemann-Roch theorem gives that ) and Wg,.p,p are finite dimensional

k-vector spaces of respective dimensions,
dimy, (VS ) = (n+ 1)h0(C, 0 (D)) = (n + 1)(deg(D) + 1 — g)
and
dimk(Wdi7p7D) = dim(VdiD+p) = d;deg(D) + deg(P) +1 —g.
In this case, choosing a basis for Wy, p,p and decomposing
Fepqi:Vp — Wa,.P.D

into its associated components, there exist dimy(Wy, p,p) homogeneous, degree d,
polynomial functions

1 . .
(FC7D7i)j : VDea(nJr ) — k) J = 1)"'ad1mk(Wdi,P,D)
such that a zero of F p ; is precisely the same as a common zero of all the functions

(Fo,pi)j-

PROOF OF PROPOSITION 2.7. By hypothesis, each d; and n+1—>"._, d;"“
are nonzero so that the fractions

29(C) — 2 — deg(P)
d;

foreachi=1,...,r,

and . .
(n+1->_,d")(g—1)+>_,d"deg(P)

n+ 1- E::l d;'n+1
are all defined. Let D be an effective, Cartier divisor on C' such that
2g(C) — 2 — deg(P) .
¥

d;
(n+1-3d")(g—1)+ 3, d" deg(P)
n+1-"_, d;”“

Because deg(D) > 2¢(C') — 2, the Riemann-Roch theorem states that
dimy, (VS ) = (n+ 1) dimy, (V) = (n + 1)(deg(D) + 1 — g).

deg(D) > 2¢(C) — 2, deg(D) > =1,...,r, and

deg(D) >
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For every i = 1,...,r, because d; is positive and because deg(D) > (2¢(C) — 2 —
deg(P))/d;, also
deg(d;D + P) = d; deg(D) + deg(P) is greater than 2¢(C) — 2.
Thus the Riemann-Roch theorem states that
dimy(Wy, p.p) = dimg(Vy, p+p) = d; deg(D) + deg(P) + 1 — g(C).

Thus for the collection of polynomial functions (Fe¢ p);,

dimy, (V) ZZdeg (Fo.p.a))™

i=1 3

equals

T

(n+1)(deg(D) +1 — Z (d; deg(D) 4 deg(P) + 1 — g(C))d" =

(n+1-> "d")deg(D) = [(n+1-> d")(g—1)+ Y _ dy" deg(P)].

i=1 i=1 i=1

(n+1_22 ld:n)( _1)+Zz 1 z deg( )
n+1->0_ d"t!

is positive, also

Because
deg(D) >

and because n+1— >

m—+1
1=1 dz

(n+1=Y d"™)deg(D) > [(n+1-> d")(g—1)+ > d" deg(P)].
i=1 =1 =1
Therefore

dimk(Vg("H)) is greater than Z Z deg((Fi,c,p);)™

=1 3

Because of the inequality above, and because k has property C,,, there is a nontriv-
ial common zero of the collection of homogeneous polynomial functions (Fe p);j,
i=1,...,r, 7 =1,...,dimg(Wy, p, p). Therefore there is a nontrivial common
zero of the collection of homogeneous polynomial maps Fc pg, @ = 1,...,r. By
Lemma 2.9, the image of this nonzero element in K®™*1 is a nonzero element
which is a common zero of the polynomials Fi, ..., F.. a

Proposition 2.7 is the main step in the proof of the Tsen-Lang theorem.

THEOREM 2.13 (The Tsen-Lang Theorem). [Lan52] Let K/k be a field exten-
sion with finite transcendence degree, tr.deg.(K/k) =t. If k has property C,, then
K has property Cpyit.

ProoOF. The proof of the theorem is by induction on ¢. When t = 0, i.e.,
when K/k is algebraic, the result follows from Lemma 2.6. Thus assume ¢ > 0 and
the result is known for ¢ — 1. Let (by,...,b;) be a transcendence basis for K/k.
Let E;, resp. E;_1, denote the subfield of K generated by k and by,...,b;, resp.
generated by k and by,...,b;—1. Since E;_1/k has transcendence degree t — 1, by
the induction hypothesis E;_; has property Cp,4i—1. Now E;/E; 1 is a purely
transcendental extension of transcendence degree 1. In particular, it is finitely
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generated and separable. Since E;_; has property C,,4:—1, by Proposition 2.7 F;
has property C,,t+. Finally by Lemma 2.6 again, since K/F; is algebraic and FE;
has property C,++, also K has property Ch,4¢. O

The homogeneous version of the Nullstellensatz implies a field k& has property Cy
if and only if k is algebraically closed. Thus one corollary of Theorem 2.13 is the
following.

COROLLARY 2.14. Let k be an algebraically closed field and let K/k be a field
extension of finite transcendence degree t. The field K has property C;.

In particular, the case t = 1 is historically the first result in this direction.

COROLLARY 2.15 (Tsen’s theorem). [Tse36] The function field of a curve over
an algebraically closed field has property C1.

Chevalley and Tsen recognized that property C1, which they called quasi-algebraic
closure, has an important consequence for division algebras. Lang recognized that
property Cy also has an important consequence for division algebras, cf. [Lan52,
Theorem 13]. Let K be a field. A division algebra with center K is a K-algebra
D with center K such that every nonzero element of D has a (left-right) inverse.
Although this is not always the case, we will also demand that dimg (D) is finite.

Denote by K the separable closure of K. Every division algebra with center K is
an example of a central simple algebra over K, i.e., a K-algebra A with center K
and dimg (A) finite such that A ® ¢ K is isomorphic as a K-algebra to the algebra
Mat,, xn(K) of n x n matrices with entries in K for some positive integer n. In
particular, dimg (A) = n? for a unique positive integer n. For a division algebra D
with center K, the unique positive integer n is called the index of D.

Let ¢ : A®x K — Matnxn(F) be an isomorphism of K-algebras. There is an
induced homogeneous, degree n, polynomial map of K-vector spaces

detog : A — Maty,xn(K) — K.
By the Skolem-Noether theorem, every other isomorphism
¢+ A®x K — Matyxn(K)
is of the form conj, o ¢ where a € Mat,,«,,(K) is an invertible element and

conj, : Maty,xn(K) — Maty,xn(K), conj,(b) = aba™*

is conjugation by a. But det oconj, equals det. Thus the map det o¢ is independent
of the particular choice of ¢. Since the Galois group of K /K acts on the polynomial
map through its action on ¢, the polynomial map is also Galois invariant. Therefore
there exists a unique homogeneous, degree n, polynomial map of K-vector spaces

Nrmy g : A— K
such that for every isomorphism of K-algebras ¢, det o¢ equals Nrm 4 /K @ 1.

The homogeneous, polynomial map of K-vectors spaces Nrmy, g is the reduced
norm of A. It is multiplicative, i.e.,

Va,b € A, Nrmy g(ab) = Nrmy g (a)Nrmy, k(D).
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And the restriction to the center K is the polynomial map A — A™. These properties
characterize the reduced norm. By the same type of Galois invariance argument as
above, and using Cramer’s rule, an element a of A has a (left and right) inverse if
and only if Nrm 4,k (a) is nonzero. In particular, if D is a division algebra the only
zero of Nrmy g is a = 0.

PROPOSITION 2.16. Let K be a field

(i) If K has property Cy, then the only division algebra with center K is K
itself.

(ii) If K has property Co then for every division algebra D with center K the
reduced norm map

Nrmp/g : D — K
s surjective.

PROOF. Let D be a division algebra with center K. Denote by n the index of D.
Because Matnxn(F) has dimension n? as a K-vector space, also D has dimension n?
as a K-vector space. If K has property C, then since the homogeneous polynomial
map Nrmp /g has only the trivial zero,

n = deg(Nrmp, ) > dimg (D) = n?,

i.e., n = 1. Thus for a field K with property C1, the only finite dimensional, division
algebra with center K has dimension 1, i.e., D equals K.

Next suppose that K has property Cs. Clearly Nrmp /;,(0) equals 0. Thus to prove
that

Nrmp/g : D — K
is surjective, it suffices to prove that for every nonzero ¢ € K there exists b in D
with Nrmp / (b) = c. Consider the homogeneous, degree n, polynomial map

Fo:D® K — K, (a,\)— Nrmp/g(a) —cA".

Since

dimg (D @ K) = n* 4+ 1 > deg(F.)?,
by property Cy the map F, has a zero (a,A) # (0,0), i.e., Nrmp/,(a) = cA™. In
particular, A must be nonzero since otherwise a is a nonzero element of D with
Nrmp g (a) = 0. But then b = (1/A)a is an element of D with Nrmp . (b) =c. O

It was later recognized, particularly through the work of Merkurjev and Suslin,
that these properties of division algebras are equivalent to properties of Galois
cohomology. The cohomological dimension of a field K is the smallest integer
cd(K) such that for every Abelian, discrete, torsion Galois module A and for every
integer m > cd(K),

H™(K/K,A) = {0}.

THEOREM 2.17. [Ser02, Proposition 5, §1.3.1], [Sus84, Corollary 24.9] Let K
be a field.

(i) The cohomological dimension of K is < 1 if and only if for every finite
extension L/ K, the only division algebra with center L is L itself.

(ii) If K is perfect, the cohomological dimension of K is < 2 if and only if 