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Preface

This volume is based on lectures given at the fourth Clay Mathematics Insti-
tute Summer School entitled “Harmonic Analysis, the Trace Formula, and Shimura
Varieties.” It was held at the Fields Institute in Toronto, Canada, from June 2 to
June 27, 2003.

The main goal of the School was to introduce graduate students and young
mathematicians to three broad and interrelated areas in the theory of automorphic
forms. Much of the volume is comprised of the articles of Arthur, Kottwitz, and
Milne. Although these articles are based on lectures given at the school, the authors
have chosen to go well beyond what was discussed there, in order to provide both a
sense of the underlying structure of the subject and a working knowledge of some
of its techniques. They were written to be self-contained in some places, and to
be used in conjunction with given references in others. We hope the volume will
convey the depth and beauty of this challenging field, in which there yet remains
so much to be discovered—perhaps some of it by you, the reader!

The theory of automorphic forms is formulated in terms of reductive algebraic
groups. This is sometimes a serious obstacle for mathematicians whose background
does not include Lie groups and Lie algebras. The monograph is by no means in-
tended to exclude such mathematicians, even though the theory of reductive groups
was an informal prerequisite for the Summer School. Some modest familiarity with
the language of algebraic groups is often sufficient, at least to get started. For
this reason, we have generally resisted the temptation to work with specific matrix
groups. The short article of Murnaghan contains a summary of some of the basic
properties of reductive algebraic groups that are used elsewhere in the monograph.

Much of the modern theory of automorphic forms is governed by two funda-
mental problems that are at the heart of the Langlands program. One is Lang-
lands’ principle of functoriality. The other is the general analogue of the Shimura-
Taniyama-Weil conjecture on modular elliptic curves. (See [A] and [L, §2].) These
problems are among the deepest questions in mathematics. It is premature to try
to guess what various techniques will play a role in their ultimate resolution. How-
ever, the trace formula and the theory of Shimura varieties are both likely to be
an essential part of the story. They have already been used to establish significant
special cases.

The trace formula has perhaps been more closely identified with the first prob-
lem. Special cases of functoriality arise naturally from the conjectural theory of
endoscopy, in which a comparison of trace formulas would be used to characterize
the internal structure of the automorphic representations of a given group. (See
[Sh] for a discussion of the first case to be investigated.) Likewise, Shimura varieties
are usually associated with the second problem. As higher dimensional analogues
of modular curves, they are attached by definition to certain reductive groups. In
many cases, it has been possible to establish reciprocity laws between f-adic Ga-
lois representations on their cohomology groups and automorphic representations
of the corresponding reductive groups. These laws can be formulated as an ex-
plicit formula for the zeta function of a Shimura variety in terms of automorphic
L-functions. (See [K] for a discussion of the rough form such a formula is expected
to take. The word “rough” should be taken seriously, given the current limitations
of our understanding.)

vii



viii PREFACE

The work of Wiles that led to a proof of Fermat’s Last Theorem suggests that
the two problems are inextricably linked. This is already apparent in the reciprocity
laws that have been established for Shimura varieties. Indeed, the conjectural for-
mula for the zeta function of a general Shimura variety requires the theory of
endoscopy even to state. Moreover, the proof of these reciprocity laws requires
a comparison of the (automorphic) trace formula with an (¢-adic) Lefschetz trace
formula. Some of the most striking parts of the argument are in the comparison
of the various terms in the two formulas. The most sophisticated Shimura vari-
eties for which there are complete results are the so-called Picard modular surfaces.
(See [LR], especially the summary on pp. 255-302.) Picard modular surfaces are
attached to unitary groups in three variables. It is no coincidence that the the-
ory of endoscopy has also been established for these groups, thereby yielding a
classification of their automorphic representations [R].

There is some discussion of these problems in the articles of Arthur and Milne.
However, the articles of both Arthur and Milne really are intended as introductions,
despite their length. The theory of endoscopy, and the automorphic description of
zeta functions of Shimura varieties, are at the forefront of present day research.
They are for the most part beyond the scope of this monograph.

The local terms in the trace formula are essentially analytic objects. They
include the invariant orbital integrals and irreducible characters that are the basis
for Harish-Chandra’s theory of local harmonic analysis. They also include weighted
orbital integrals and weighted characters, objects that arose for the first time with
the trace formula. The article of Kottwitz is devoted to the general study of these
terms at p-adic places. It is a largely self-contained course, which covers many
of Harish-Chandra’s basic results in invariant harmonic analysis, as well as their
weighted, noninvariant analogues.

The article of DeBacker focuses on the phenomenon of homogeneity in invari-
ant harmonic analysis at p-adic places. It concerns quantitative forms of some of
the basic theorems of p-adic harmonic analysis, such as Howe’s finiteness theorem
and Harish-Chandra’s local character expansion. The article also explains how ho-
mogeneity enters into Waldspurger’s analysis of stability for linear combinations of
nilpotent orbital integrals.

There are subtle questions concerning the terms in the trace formula that go
beyond those treated by Kottwitz and DeBacker. The most basic of these is known
as the fundamental lemma, even though it is still largely conjectural.! The article by
Hales contains a precise statement of the conjecture and some remarks on progress
toward a general proof. The fundamental lemma occupies a unique place in the
theory. It is a critical ingredient in the comparison of trace formulas that is part
of the theory of endoscopy. It has an equally indispensable role in the comparison
of (automorphic and ¢-adic) trace formulas needed to establish reciprocity laws for
Shimura varieties.

Some Shimura varieties are projective, which is to say that they are compact as
complex varieties. They correspond to reductive groups over QQ that are anisotropic.
The trace formula in this case simplifies considerably. It reduces to the Selberg trace
formula for compact quotient. On the other hand, the arithmetic geometry of such
varieties is still very rich. In particular, the comparison of individual terms in the

1Moreover7 the term lemma is ultimately a gross understatement.
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two kinds of trace formulas is of major interest. There is a great deal left to be
done, but it is in this case that there has been the most progress.

If the Shimura variety is not projective, the comparison is more sophisticated.
It has to be based on the relationship between L?-cohomology and intersection coho-
mology, conjectured by Zucker, and established by Saper and Stern, and Looijenga.
The article of Goresky describes several compactifications of open Shimura vari-
eties and their relations with associated cohomology groups. Goresky’s article also
serves as an introduction to work of Goresky and MacPherson, in which weighted
cohomology complexes on the reductive Borel-Serre compactification are used to
obtain a Lefschetz formula for the intersection cohomology of the Baily-Borel com-
pactification. According to Zucker’s conjecture, this last formula is equivalent to
the relevant form of the automorphic trace formula. There remains the important
open problem of establishing a corresponding ¢-adic Lefschetz formula that can be
compared with either one of these two formulas.

The reciprocity laws proved for Picard modular surfaces in [LR] apply to places
of good reduction. The same restriction has been implicit in our discussion of other
Shimura varieties. In the final analysis, one would like to establish reciprocity
laws between f-adic Galois representations and automorphic representations that
apply to all places. The theory of Shimura varieties at places of bad reduction is
considerably less developed, although there has certainly been progress. The article
of Haines is a survey of recent work in this direction, concentrating on the case of
level structures of parahoric type. It also touches upon the problem of comparing
the automorphic trace formula with the Lefschetz formula, now in the context of
bad reduction.

The article of Sarnak concerns the classical Ramanujan conjecture for modular
forms and its higher dimensional analogues. Langlands has shown that the gen-
eralized Ramanujan conjecture is a consequence of the principle of functoriality.
Conversely, it is possible that the generalized Ramanujan conjecture could play a
critical role in the study of those cases of functoriality that are not part of the the-
ory of endoscopy. Sarnak describes the present state of the conjecture and discusses
various techniques that have been successfully applied to special cases.

We have tried to present the contents of the monograph from a unified perspec-
tive. Our description has been centered around two fundamental problems that are
the essential expression of the Langlands program. The two problems ought to
be treated as signposts, which give direction to current work, but which point to
destinations that will not be reached in the foreseeable future. The reader is free to
draw whatever inspiration from them his or her temperament permits. In any case,
many of the questions discussed in the various articles here are of great interest
in their own right. In point of fact, there is probably too much in the monograph
for anyone to learn in a limited period of time. Perhaps the best strategy for a
beginner would be to start with one or two articles of special interest, and try to
master them.

As we have mentioned, participants were encouraged to bring a prior under-
standing of the basic properties of algebraic groups. The theory of reductive groups
is rooted in the structure of complex semisimple Lie algebras, for which [Se] and [H]
are good references. As for algebraic groups themselves, a familiarity with many of
the topics in [B] or [Sp] is certainly desirable, though perhaps not essential.
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Participants were also assumed to have some knowledge of number theory. The
main theorem of class field theory is reviewed without proof in the article of Milne.
A complete treatment can be found in [CF]. Tate’s article on global class field
theory in this reference contains a particularly good introduction to the theory.
The thesis of Tate, reprinted as a separate article in [CF], is also recommended
for its introduction to adeles and its construction of the basic abelian automorphic
L-functions.

A reader might also want to consult other general articles in automorphic forms.
A good introductory reference to the general theory of automorphic forms is the
proceedings of the Edinburgh instructional conference [BK].

This Clay Mathematics Institute Summer School could not have taken place
without the efforts of many people. We deeply appreciate the role of the Clay
Mathematics Institute in making this summer school possible, and thank Vida
Salahi in particular for the care and attention she exercised in bringing the volume
to its final form. We are most grateful to the staff of the Fields Institute, who did
such a superb job of making the School run smoothly. We are equally indebted
to all the lecturers, not only for agreeing to take part in the School, but also for
providing the texts collected in this volume. Last, but surely not least, we would
like to thank the participants, whose enthusiastic response made it all worthwhile.

James Arthur, David Ellwood, Robert Kottwitz.
August, 2005.
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Foreword

These notes are an attempt to provide an entry into a subject that has not
been very accessible. The problems of exposition are twofold. It is important to
present motivation and background for the kind of problems that the trace formula
is designed to solve. However, it is also important to provide the means for acquiring
some of the basic techniques of the subject. I have tried to steer a middle course
between these two sometimes divergent objectives. The reader should refer to earlier
articles [Lab2], [Lan14], and the monographs [Sho], [Ge], for different treatments
of some of the topics in these notes.

I had originally intended to write fifteen sections, corresponding roughly to
fifteen lectures on the trace formula given at the Summer School. These sections
comprise what has become Part I of the notes. They include much introductory
material, and culminate in what we have called the coarse (or unrefined) trace for-
mula. The coarse trace formula applies to a general connected, reductive algebraic
group. However, its terms are too crude to be of much use as they stand.

Part II contains fifteen more sections. It has two purposes. One is to transform
the trace formula of Part I into a refined formula, capable of yielding interesting
information about automorphic representations. The other is to discuss some of
the applications of the refined formula. The sections of Part II are considerably
longer and more advanced. I hope that a familiarity with the concepts of Part I
will allow a reader to deal with the more difficult topics in Part II. In fact, the later
sections still include some introductory material. For example, §16, §22, and §27
contain heuristic discussions of three general problems, each of which requires a
further refinement of the trace formula. Section 26 contains a general introduction
to Langlands’ principle of functoriality, to which many of the applications of the
trace formula are directed.

We begin with a discussion of some constructions that are part of the founda-
tions of the subject. In §1 we review the Selberg trace formula for compact quotient.
In §2 we introduce the ring A = A of adeles. We also try to illustrate why adelic
algebraic groups G(A), and their quotients G(F)\G(A), are more concrete objects
than they might appear at first sight. Section 3 is devoted to examples related to
§1 and §2. It includes a brief description of the Jacquet-Langlands correspondence
between quaternion algebras and GL(2). This correspondence is a striking example
of the kind of application of which the trace formula is capable. It also illustrates
the need for a trace formula for noncompact quotient.

In §4, we begin the study of noncompact quotient. We work with a general
algebraic group G, since this was a prerequisite for the Summer School. However,
we have tried to proceed gently, giving illustrations of a number of basic notions.
For example, §5 contains a discussion of roots and weights, and the related objects
needed for the study of noncompact quotient. To lend Part I an added appearance
of simplicity, we work over the ground field Q, instead of a general number field F'.

The rest of Part I is devoted to the general theme of truncation. The problem is
to modify divergent integrals so that they converge. At the risk of oversimplifying

3



4 JAMES ARTHUR

matters, we have tried to center the techniques of Part I around one basic result,
Theorem 6.1. Corollary 10.1 and Theorem 11.1, for example, are direct corollaries
of Theorem 6.1, as well as essential steps in the overall construction. Other results
in Part I also depend in an essential way on either the statement of Theorem 6.1
or a key aspect of its proof. Theorem 6.1 itself asserts that a truncation of the
function

K(zz)= Y fla"'y), fecz(G),

YEG(Q)

is integrable. It is the integral of this function over G(Q)\G(A) that yields a trace
formula in the case of compact quotient. The integral of its truncation in the general
case is what leads eventually to the coarse trace formula at the end of Part I.

After stating Theorem 6.1 in §6, we summarize the steps required to convert
the truncated integral into some semblance of a trace formula. We sketch the proof
of Theorem 6.1 in §8. The arguments here, as well as in the rest of Part I, are
both geometric and combinatorial. We present them at varying levels of generality.
However, with the notable exception of the review of Eisenstein series in §7, we have
tried in all cases to give some feeling for what is the essential idea. For example,
we often illustrate geometric points with simple diagrams, usually for the special
case G = SL(3). The geometry for SL(3) is simple enough to visualize, but often
complicated enough to capture the essential point in a general argument. [ am
indebted to Bill Casselman, and his flair for computer graphics, for the diagrams.
The combinatorial arguments are used in conjunction with the geometric arguments
to eliminate divergent terms from truncated functions. They rely ultimately on that
simplest of cancellation laws, the binomial identity

s fo s
P 1, ifS=0,
which holds for any finite set S (Identity 6.2).

The parallel sections §11 and §15 from the later stages of Part I anticipate the
general discussion of §16-21 in Part II. They provide refined formulas for “generic”
terms in the coarse trace formula. These formulas are explicit expressions, whose
local dependence on the given test function f is relatively transparent. The first
problem of refinement is to establish similar formulas for all of the terms. Because
the remaining terms are indexed by conjugacy classes and representations that are
singular, this problem is more difficult than any encountered in Part I. The solution
requires new analytic techniques, both local and global. It also requires extensions
of the combinatorial techniques of Part I, which are formulated in §17 as properties
of (G, M)-families. We refer the reader to §16-21 for descriptions of the various
results, as well as fairly substantial portions of their proofs.

The solution of the first problem yields a refined trace formula. We summarize
this new formula in §22, in order to examine why it is still not satisfactory. The
problem here is that its terms are not invariant under conjugation of f by elements
in G(A). They are in consequence not determined by the values taken by f at
irreducible characters. We describe the solution of this second problem in §23. It
yields an invariant trace formula, which we derive by modifying the terms in the
refined, noninvariant trace formula so that they become invariant in f.
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In §24-26 we pause to give three applications of the invariant trace formula.
They are, respectively, a finite closed formula for the traces of Hecke operators on
certain spaces, a term by term comparison of invariant trace formulas for general
linear groups and central simple algebras, and cyclic base change of prime order for
GL(n). Tt is our discussion of base change that provides the opportunity to review
Langlands’ principle of functoriality.

The comparisons of invariant trace formulas in §25 and §26 are directed at
special cases of functoriality. To study more general cases of functoriality, one
requires a third refinement of the trace formula.

The remaining problem is that the terms of the invariant trace formula are not
stable as linear forms in f. Stability is a subtler notion than invariance, and is
part of Langlands’ conjectural theory of endoscopy. We review it in §27. In §28
and §29 we describe the last of our three refinements. This gives rise to a stable
trace formula, each of whose terms is stable in f. Taken together, the results of
§29 can be regarded as a stabilization process, by which the invariant trace formula
is decomposed into a stable trace formula, and an error term composed of stable
trace formulas on smaller groups. The results are conditional upon the fundamental
lemma. The proofs, conditional as they may be, are still too difficult to permit more
than passing comment in §29.

The general theory of endoscopy includes a significant number of cases of func-
toriality. However, its avowed purpose is somewhat different. The principal aim of
the theory is to analyze the internal structure of representations of a given group.
Our last application is a broad illustration of what can be expected. In §30 we
describe a classification of representations of quasisplit classical groups, both local
and global, into packets. These results depend on the stable trace formula, and
the fundamental lemma in particular. They also presuppose an extension of the
stabilization of §29 to twisted groups.

As a means for investigating the general principle of functoriality, the theory
of endoscopy has very definite limitations. We have devoted a word after §30 to
some recent ideas of Langlands. The ideas are speculative, but they seem also to
represent the best hope for attacking the general problem. They entail using the
trace formula in ways that are completely new.

These notes are really somewhat of an experiment. The style varies from section
to section, ranging between the technical and the discursive. The more difficult
topics typically come in later sections. However, the progression is not always
linear, or even monotonic. For example, the material in §13-§15, §19-§21, §23, and
§25 is no doubt harder than much of the broader discussion in §16, §22, §26, and
§27. The last few sections of Part II tend to be more discursive, but they are also
highly compressed. This is the price we have had to pay for trying to get close to
the frontiers. The reader should feel free to bypass the more demanding passages,
at least initially, in order to develop an overall sense of the subject.

It would not have been possible to go very far by insisting on complete proofs.
On the other hand, a survey of the results might have left a reader no closer
to acquiring any of the basic techniques. The compromise has been to include
something representative of as many arguments as possible. It might be a sketch of
the general proof, a suggestive proof of some special case, or a geometric illustration
by a diagram. For obvious reasons, the usual heading “PROOF” does not appear
in the notes. However, each stated result is eventually followed by a small box
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[, when the discussion that passes for a proof has come to an end. This ought to
make the structure of each section more transparent. My hope is that a determined
reader will be able to learn the subject by reinforcing the partial arguments here,
when necessary, with the complete proofs in the given references.



Part I. The Unrefined Trace Formula
1. The Selberg trace formula for compact quotient

Suppose that H is a locally compact, unimodular topological group, and that I"
is a discrete subgroup of H. The space I'\ H of right cosets has a right H-invariant
Borel measure. Let R be the unitary representation of H by right translation on
the corresponding Hilbert space L?(T'\H). Thus,

(R(y)9)(x) = ¢(zy), ¢ € L2(D\H), z,y € H.

It is a fundamental problem to decompose R explicitly into irreducible unitary
representations. This should be regarded as a theoretical guidepost rather than a
concrete goal, since one does not expect an explicit solution in general. In fact,
even to state the problem precisely requires the theory of direct integrals.

The problem has an obvious meaning when the decomposition of R is discrete.
Suppose for example that H is the additive group R, and that I" is the subgroup
of integers. The irreducible unitary representations of R are the one dimensional
characters  — e, where \ ranges over the imaginary axis iR. The representation
R decomposes as direct sum over such characters, as A ranges over the subset 2miZ
of iR. More precisely, let R be the unitary representation of R on L?(Z) defined by

(R(y)c)(n) = *™c(n), c€ L*(Z).

The correspondence that maps ¢ € L?(Z\R) to its set of Fourier coefficients

b(n) = (z)e 2™nrdy, n € Z,
Z\R

is then a unitary isomorphism from L?(Z\R) onto L?(Z), which intertwines the
representations R and R. This is of course the Plancherel theorem for Fourier
series.

The other basic example to keep in mind occurs where H = R and I' = {1}.
In this case the decomposition of R is continuous, and is given by the Plancherel
theorem for Fourier transforms. The general intuition that can inform us is as
follows. For arbitrary H and I', there will be some parts of R that decompose
discretely, and therefore behave qualitatively like the theory of Fourier series, and
others that decompose continuously, and behave qualitatively like the theory of
Fourier transforms.

In the general case, we can study R by integrating it against a test function
f € C.(H). That is, we form the operator

R(f) = /H F(w)R(y)dy
7
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on L%(T'\H). We obtain

(R(N)$)(x) = /H (f W) RW)&) (x)dy
f(

=/ y)o(zy)dy
=/ F@™ y)o(y)dy
= [, (Zsew)ewa

yel’

for any ¢ € L2(T\H) and x € H. It follows that R(f) is an integral operator with
kernel

(1.1) K(z,y) =Y fz '), v,y € T\H.
yel’

The sum over 7 is finite for any x and g, since it may be taken over the intersection
of the discrete group I' with the compact subset

zsupp(f)y "

of H.

For the rest of the section, we consider the special case that I'\H is compact.
The operator R(f) then acquires two properties that allow us to investigate it
further. The first is that R decomposes discretely into irreducible representations
7, with finite multiplicities m(m, R). This is not hard to deduce from the spectral
theorem for compact operators. Since the kernel K (x,y) is a continuous function on
the compact space (I'\H) x (I'\ H), and is hence square integrable, the corresponding
operator R(f) is of Hilbert-Schmidt class. One applies the spectral theorem to the
compact self adjoint operators attached to functions of the form

flx)=(g*g")(x) = /Hg(y)g(xfly)dy, g € C.(H).

The second property is that for many functions, the operator R(f) is actually of
trace class, with

(1.2) tr R(f) = K(z,z)dx.
T\H

If H is a Lie group, for example, one can require that f be smooth as well as
compactly supported. Then R(f) becomes an integral operator with smooth kernel
on the compact manifold I'\H. It is well known that (1.2) holds for such operators.

Suppose that f is such that (1.2) holds. Let {I'} be a set of representatives of
conjugacy classes in I'. For any v € I" and any subset €2 of H, we write ), for the
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centralizer of v in 2. We can then write

tr(R(f)) = e K(z,z)dx

/F S

yel’

16 yex)de
/F\HZ S flat6 ey

¥E{T} S€T,\T

= Z /F\Hf(xlfyx)dx

ye{T'}

= Z/ / ™ u Y yuz)du da
~e{r} ’ Hy\H ST \Hy

= Z vol(F,Y\H,y)/ flz™ ya)da.
ve{l'} Ho\H

These manipulations follow from Fubini’s theorem, and the fact that for any se-
quence H; C Hy C H of unimodular groups, a right invariant measure on H;\H
can be written as the product of right invariant measures on Hy\H and H;\Ho
respectively. We have obtained what may be regarded as a geometric expansion
of tr(R(f)) in terms of conjugacy classes v in I'. By restricting R(f) to the irre-
ducible subspaces of L%(T'\H), we obtain a spectral expansion of R(f) in terms of
irreducible unitary representations « of H.
The two expansions tr(R( f )) provide an identity of linear forms

(1.3) S0 (1) () = 3 aff (x) fu (),

where ~ is summed over (a set of representatives of) conjugacy classes in T', and
7 is summed over (equivalence classes of) irreducible unitary representatives of H.
The linear forms on the geometric side are invariant orbital integrals

(1.4) fu(y) = /H e

with coefficients
H
ar () = vol(I';,\H),
while the linear forms on the spectral side are irreducible characters

(15) fu(m) = tx(x(9) = x| fa)w(o)ay).

with coefficients
afl (1) = m(m, R).
This is the Selberg trace formula for compact quotient.

We note that if H = R and I' = Z, the trace formula (1.3) reduces to the
Poisson summation formula. For another example, we could take H to be a finite
group and f(x) to be the character tr w(x) of an irreducible representation 7 of H.
In this case, (1.3) reduces to a special case of the Frobenius reciprocity theorem,
which applies to the trivial one dimensional representation of the subgroup I' of H.
(A minor extension of (1.3) specializes to the general form of Frobenius reciprocity.)
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Some of Selberg’s most striking applications of (1.3) were to the group H =
SL(2,R) of real, (2 x 2)-matrices of determinant one. Suppose that X is a compact
Riemann surface of genus greater than 1. The universal covering surface of X
is then the upper half plane, which we identify as usual with the space of cosets
SL(2,R)/SO(2,R). (Recall that the compact orthogonal group K = SO(2,R) is
the stabilizer of v/—1 under the transitive action of SL(2,R) on the upper half
plane by linear fractional transformations.) The Riemann surface becomes a space
of double cosets

X =T\H/K,

where T' is the fundamental group of X, embedding in SL(2,R) as a discrete sub-
group with compact quotient. By choosing left and right K-invariant functions
f € C°(H), Selberg was able to apply (1.3) to both the geometry and analysis of
X.

For example, closed geodesics on X are easily seen to be bijective with conju-
gacy classes in I'. Given a large positive integer N, Selberg chose f so that the left
hand side of (1.3) approximated the number g(/N) of closed geodesics of length less
than N. An analysis of the corresponding right hand side gave him an asymptotic
formula for g(N), with a sharp error term. Another example concerns the Laplace-
Beltrami operator A attached to X. In this case, Selberg chose f so that the right
hand side of (1.3) approximated the number h(N) of eigenvalues of A less than N.
An analysis of the corresponding left hand side then provided a sharp asymptotic
estimate for h(N).

The best known discrete subgroup of H = SL(2,R) is the group I' = SL(2,7Z)
of unimodular integral matrices. In this case, the quotient I'\H is not compact.
The example of I' = SL(2,7Z) is of special significance because it comes with the
supplementary operators introduced by Hecke. Hecke operators include a family of
commuting operators {1},} on L?(TI'\H), parametrized by prime numbers p, which
commute also with the action of the group H = SL(2,R). The families {c,}
of simultaneous eigenvalues of Hecke operators on L*(T'\H) are known to be of
fundamental arithmetic significance. Selberg was able to extend his trace formula
(1.3) to this example, and indeed to many other quotients of rank 1. He also
included traces of Hecke operators in his formulation. In particular, he obtained a
finite closed formula for the trace of 7, on any space of classical modular forms.

Selberg worked directly with Riemann surfaces and more general locally sym-
metric spaces, so the role of group theory in his papers is less explicit. We can
refer the reader to the basic articles [Sell] and [Sel2]. However, many of Selberg’s
results remain unpublished. The later articles [DL] and [JL, §16] used the language
of group theory to formulate and extend Selberg’s results for the upper half plane.

In the next section, we shall see how to incorporate the theory of Hecke oper-
ators into the general framework of (1.1). The connection is through adele groups,
where Hecke operators arise in a most natural way. Our ultimate goal is to describe
a general trace formula that applies to any adele group. The modern role of such
a trace formula has changed somewhat from the original focus of Selberg. Rather
than studying geometric and spectral data attached to a given group in isolation,
one tries to compare such data for different groups. In particular, one would like
to establish reciprocity laws among the fundamental arithmetic data associated to
Hecke operators on different groups.
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2. Algebraic groups and adeles

Suppose that G is a connected reductive algebraic group over a number field
F'. For example, we could take G to be the multiplicative group GL(n) of invertible
(n x n)-matrices, and F' to be the rational field Q. Our interest is in the general
setting of the last section, with I equal to G(F). It is easy to imagine that this
group could have arithmetic significance. However, it might not be at all clear
how to embed I' discretely into a locally compact group H. To do so, we have to
introduce the adele ring of F'.

Suppose for simplicity that F' equals the rational field Q. We have the usual

absolute value v (-) = | |00 on Q, and its corresponding completion Q,_ = Qo =
R. For each prime number p, there is also a p-adic absolute value v,(-) = |- |, on
Q, defined by

th=p"", t=prab~t,

for integers r, a and b with (a,p) = (b,p) = 1. One constructs its completion
Q., = Q, by a process identical to that of R. As a matter of fact, | - |, satisfies an
enhanced form of the triangle inequality

|t1 + ta|p < max {[t1],, |t2],}, t1,t2 € Q.
This has the effect of giving the compact “unit ball”
Ly = {tp €Qp: [tplp < 1}
in @, the structure of a subring of Q,. The completions Q, are all locally compact
fields. However, there are infinitely many of them, so their direct product is not
locally compact. One forms instead the restricted direct product

rest rest

A:HQU = RXHQp:RxAﬁn
v P
= {t:(tv): tp = ty, € Zy for almost allp}.

Endowed with the natural direct limit topology, A = Ag becomes a locally compact
ring, called the adele ring of . The diagonal image of Q in A is easily seen to be
discrete. It follows that H = G(A) is a locally compact group, in which I' = G(Q)
embeds as a discrete subgroup. (See [Tam?2].)

A similar construction applies to a general number field F', and gives rise to a
locally compact ring Ap. The diagonal embedding

I =G(F)C G(Ar) = H

exhibits G(F) as a discrete subgroup of the locally compact group G(Ar). However,
we may as well continue to assume that F' = Q. This represents no loss of generality,
since one can pass from F to Q by restriction of scalars. To be precise, if G is
the algebraic group over Q obtained by restriction of scalars from F to Q, then
I =G(F)=G1(Q), and H = G(Ar) = G1(A).

We can define an automorphic representation m of G(A) informally to be an
irreducible representation of G(A) that “occurs in” the decomposition of R. This
definition is not precise for the reason mentioned in §1, namely that there could be
a part of R that decomposes continuously. The formal definition [Lan6] is in fact
quite broad. It includes not only irreducible unitary representations of G(A) in the
continuous spectrum, but also analytic continuations of such representations.
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The introduction of adele groups appears to have imposed a new and perhaps
unwelcome level of abstraction onto the subject. The appearance is illusory. Sup-
pose for example that G is a simple group over Q. There are two possibilities:
either G(R) is noncompact (as in the case G = SL(2)), or it is not. If G(R) is
noncompact, the adelic theory for G may be reduced to the study of of arithmetic
quotients of G(R). As in the case G = SL(2) discussed at the end of §1, this is
closely related to the theory of Laplace-Beltrami operators on locally symmetric
Riemannian spaces attached to G(R). If G(R) is compact, the adelic theory re-
duces to the study of arithmetic quotients of a p-adic group G(Qp). This in turn is
closely related to the spectral theory of combinatorial Laplace operators on locally
symmetric hypergraphs attached to the Bruhat-Tits building of G(Q,).

These remarks are consequences of the theorem of strong approximation. Sup-
pose that S is a finite set of valuations of Q that contains the archimedean valuation
Uso- For any G, the product

G(Qs) = [[ G@.)
vES
is a locally compact group. Let K be an open compact subgroup of G(A®), where
AS={teA: t,=0,veS}

is the ring theoretic complement of Qg in A. Then G(Fs)K*® is an open subgroup
of G(A).

THEOREM 2.1. (a) (Strong approzimation) Suppose that G is simply connected,
in the sense that the topological space G(C) is simply connected, and that G'(Qg)
is noncompact for every simple factor G' of G over Q. Then

G(A) = G(Q) - G(Qs)K?.

(b) Assume only that G'(Qg) is noncompact for every simple quotient G’ of G
over Q. Then the set of double cosets

G(Q)\G(A)/G(Qs)K?
is finite.
For a proof of (a) in the special case G = SL(2) and S = {vs}, see [Shim,
Lemma 6.15]. The reader might then refer to [Kne] for a sketch of the general

argument, and to [P] for a comprehensive treatment. Part (b) is essentially a
corollary of (a). O

According to (b), we can write G(A) as a disjoint union

n

G(A) =[G 2" G(Qs)K?,

=1

for elements z' = 1, 22,...,2™ in G(A®). We can therefore write

GQ\GA)/K® = (GQ\G(Q) - 2" - G(Qs) K/ K7)

=

ﬁ
Il
-

(T5\G(Qs)),

@
Il
—

Il
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for discrete subgroups
=G(Qs) N (GQ) - 'K ("))
of G(Qg). We obtain a G(Qg)-isomorphism of Hilbert spaces

(2.1) L*(G(Q\G(A)/K?) @L2 L\G(Qs)).

The action of G(Qg) on the two spaces on each side of (2.1) is of course by right
translation. It corresponds to the action by right convolution on either space by
functions in the algebra C, (G ((@s)). There is a supplementary convolution algebra,
the Hecke algebra H(G (A%), K ) of compactly supported functions on G(A®) that
are left and right invariant under translation by K. This algebra acts by right
convolution on the left hand side of (2.1), in a way that clearly commutes with the
action of G(Qg). The corresponding action of H(G(A®), K°) on the right hand side
of (2.1) includes general analogues of the operators defined by Hecke on classical
modular forms.

This becomes more concrete if S = {v,}. Then A equals the subring Ag, =
{t e A: to =0} of “finite adeles” in A. If G satisfies the associated noncompact-
ness criterion of Theorem 2.1(b), and K is an open compact subgroup of G(Agy,),
we have a G(R)-isomorphism of Hilbert spaces

L*(G(Q)\G(A)/Ky) @LQ \G(R

for discrete subgroups I'', ..., '™ of G(R). The Hecke algebra H(G(Aﬁn), KO) acts
by convolution on the left hand side, and hence also on the right hand side.

Hecke operators are really at the heart of the theory. Their properties can be
formulated in representation theoretic terms. Any automorphic representation 7 of
G(A) can be decomposed as a restricted tensor product

(2.2) = ®7rv,

where 7, is an irreducible representation of the group G(Q,). Moreover, for every
valuation v = v, outside some finite set S, the representation 7, = m,, is unramified,
in the sense that its restriction to a suitable maximal compact subgroup K, of
G(Qp) contains the trivial representation. (See [F]. It is known that the trivial
representation of K, occurs in 7, with multiplicity at most one.) This gives rise to

a maximal compact subgroup K = [] K,, a Hecke algebra
p¢s
= QM = QH(G(Q), K,)
pES pEs

that is actually abelian, and an algebra homomorphism

(2.3) o(m¥) = ®c(7rp) cHY = ®Hp — C.

pgS pgS
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Indeed, if v° = @ v, belongs to the one-dimensional space of K“-fixed vectors for

¢S
the representation m° = @ m,, and h° = @ h,, belongs to H?, the vector
p¢sS pgsS
ﬂ'S(hS)US = ® (ﬂ'p(hp)vp)
p¢S

equals

o(m®, h¥)w = ® (c(mmp, hp)vp).
pEs

This formula defines the homomorphism (2.3) in terms of the unramified represen-
tation 75. Conversely, for any homomorphism H® — C, it is easy to see that there
is a unique unramified representation 7% of G(A®) for which the formula holds.

The decomposition (2.2) actually holds for general irreducible representations
7w of G(A). In this case, the components can be arbitrary. However, the condition
that m be automorphic is highly rigid. It imposes deep relationships among the
different unramified components m,, or equivalently, the different homomorphisms
c(mp) + H, — C. These relationships are expected to be of fundamental arithmetic
significance. They are summarized by Langlands’s principle of functoriality [Lan3],
and his conjecture that relates automorphic representations to motives [Lan7].
(For an elementary introduction to these conjectures, see [A28]. We shall review
the principle of functoriality and its relationship with unramified representations
in §26.) The general trace formula provides a means for analyzing some of the
relationships.

The group G(A) can be written as a direct product of the real group G(R) with
the totally disconnected group G(Agqy). We define

CZ(G(A)) = C(GR)) @ C°(G(An))

where C° (G (R)) is the usual space of smooth, compactly supported functions on
the Lie group G(R), and C°(G(Agyn)) is the space of locally constant, compactly
supported, complex valued functions on the totally disconnected group G(Agy).
The vector space C2°(G(A)) is an algebra under convolution, which is of course
contained in the algebra C.(G(A)) of continuous, compactly supported functions
on G(A).

Suppose that f belongs to C'° (G(A)) We can choose a finite set of valuations
S satisfying the condition of Theorem 2.1(b), an open compact subgroup K< of
G(A%), and an open compact subgroup Ko g of the product

Gex) = [] ¢@)

vES—{voo}

such that f is bi-invariant under the open compact subgroup Ko = Ky sK S of
G(Agn). In particular, the operator R(f) vanishes on the orthogonal complement
of L?(G(Q)\G(A)/K®) in L?(G(Q)\G(A)). We leave the reader the exercise of
using (1.1) and (2.1) to identify R(f) with an integral operator with smooth kernel
on a finite disjoint union of quotients of G(R).

Suppose, in particular, that G(Q)\G(A) happens to be compact. Then R(f)
may be identified with an integral operator with smooth kernel on a compact man-
ifold. It follows that R(f) is an operator of trace class, whose trace is given by
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1.2). The Selberg trace formula (1.3) is therefore valid for f, with I' = G(Q) and
H = G(A). (See [Tam1].)

3. Simple examples

We have tried to introduce adele groups as gently as possible, using the re-
lations between Hecke operators and automorphic representations as motivation.
Nevertheless, for a reader unfamiliar with such matters, it might take some time to
feel comfortable with the general theory. To supplement the discussion of §2; and
to acquire some sense of what one might hope to obtain in general, we shall look
at a few concrete examples.

Consider first the simplest example of all, the case that G equals the multi-
plicative group GL(1). Then G(Q) = Q*, while

GA)=A"={zecA: |z|£0, |zy|, =1 for almost all p}

is the multiplicative group of ideles for Q. If N is a positive integer with prime
factorization N = [[p®»Y), we write
P
Ky ={k€G(Am) =Af,: |kp— 1], < p~rW) for all p}.

A simple exercise for a reader unfamiliar with adeles is to check directly that K
is an open compact subgroup of Aj , that any open compact subgroup Ky contains
Ky for some N, and that the abelian group

G(Q\G(A)/GR)Ey = Q"\A"/R* Ky
is finite. The quotient G(Q)\G(A) = Q*\A* is not compact. This is because the
mapping
x—>|$‘:H|xv|va x € A¥,

v
is a continuous surjective homomorphism from A* to the multiplicative group (R*)°
of positive real numbers, whose kernel

Al={zeA: |z|=1}

contains Q*. The quotient Q*\A® is compact. Moreover, we can write the group
A* as a canonical direct product of A! with the group (R*)°. The failure of Q*\A*
to be compact is therefore entirely governed by the multiplicative group (R*)° of
positive real numbers.
An irreducible unitary representation of the abelian group GL(1,A) = A* is a
homomorphism
m: A —UQ1)={z€C": |z|=1}.
There is a free action
s: m— ws(x) = w(x)|z|®, s €1iR,

of the additive group iR on the set of such w. The orbits of iR are bijective
under the restriction mapping from A* to A' with the set of irreducible unitary
representations of A'. A similar statement applies to the larger set of irreducible
(not necessarily unitary) representations of A*, except that one has to replace iR
with the additive group C.

Returning to the case of a general group over Q, we write A¢ for the largest cen-
tral subgroup of G over Q that is a Q-split torus. In other words, A¢ is Q-isomorphic
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to a direct product GL(1)* of several copies of GL(1). The connected component
Ag(R)? of 1 in Ag(R) is isomorphic to the multiplicative group ((R*)O)k, which
in turn is isomorphic to the additive group R¥. We write X (G)q for the additive
group of homomorphisms x : g — ¢gX from G to GL(1) that are defined over Q.
Then X (G)g is a free abelian group of rank k. We also form the real vector space
g = HOHIZ (Xv(G)@7 R)
of dimension k. There is then a surjective homomorphism
Hg G(A) — agqg,

defined by

(Hg(x), x) = |log(zX)], z € G(A), x € X(G)o-
The group G(A) is a direct product of the normal subgroup

G(A)! = {z € G(A): Hg(z) =0}

with AG (R)O

We also have the dual vector space af, = X (G)g ®z R, and its complexification
a5 c = X(G)g ® C. If 7 is an irreducible unitary representation of G(A) and A
belongs to iag,, the product

ma(z) = m(z)erHe @) z € G(A),

is another irreducible unitary representation of G(A). The set of associated iaf,-
orbits is in bijective correspondence under the restriction mapping from G(A) to
G(A)! with the set of irreducible unitary representations of G(A)!. A similar as-
sertion applies the larger set of irreducible (not necessary unitary) representations,
except that one has to replace iag; with the complex vector space ag .

In the case G = GL(n), for example, we have

z 0
AcLn) = . 2 € GL(1) p = GL(1).
0 z

The abelian group X (GL(n))Q is isomorphic to Z, with canonical generator given

by the determinant mapping from GL(n) to GL(1). The adelic group GL(n, A) is
a direct product of the two groups

GL(n,A)' = {z € GL(n,A) : |det(z)| =1}
and
r 0
Acrm(R)? = cre®R)°
0 r

In general, G(Q) is contained in the subgroup G(A)! of G(A). The group
Ag(R)Y is therefore an immediate obstruction to G(Q)\G(A) being compact, as
indeed it was in the simplest example of G = GL(1). The real question is then
whether the quotient G(Q)\G(A)! is compact. When the answer is affirmative, the
discussion above tells us that the trace formula (1.3) can be applied. It holds for
I'=G(Q) and H = G(A)!, with f being the restriction to G(A)! of a function in
C= (GUA)).
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The simplest nonabelian example that gives compact quotient is the multiplica-
tive group
G={xe€A: x#0}
of a quaternion algebra over Q. By definition, A is a four dimensional division
algebra over Q, with center Q. It can be written in the form

A={$:$0+$1i+$2j+$3/€1 xae@}v

where the basis elements 1, ¢, j and k satisfy

ijszzka i2:a7 j2:b7
for nonzero elements a,b € Q*. Conversely, for any pair a,b € Q*, the Q-algebra
defined in this way is either a quaternion algebra or is isomorphic to the matrix
algebra M5(Q). For example, if a = b = —1, A is a quaternion algebra, since
A ®qgR is the classical Hamiltonian quaternion algebra over R. On the other hand,
if a =b =1, the mapping

10 10 0 1 0 1
2oy ) Trly _q)Tr2\y o) (1 o

is an isomorphism from A onto M>(Q). For any A, one defines an automorphism
r— T =x9— T11 — T2j — x3k
of A, and a multiplicative mapping
x — N(z) = 27 = x9 — ax? — bx3 + abx?

from A to Q. If N(z) # 0, 27! equals N(z)~'z. It follows that x € A is a unit if
and only if N(x) # 0.

The description of a quaternion algebra A in terms of rational numbers a, b € Q*
has the obvious attraction of being explicit. However, it is ultimately unsatisfactory.
Among other things, different pairs a and b can yield the same algebra A. There
is a more canonical characterization in terms of the completions A, = A ®g Q, at
valuations v of Q. If v = v, we know that A, is isomorphic to either the matrix
ring M>(R) or the Hamiltonian quaternion algebra over R. A similar property
holds for any other v. Namely, there is exactly one isomorphism class of quaternion
algebras over Q,, so there are again two possibilities for A,. Let V be the set of
valuations v such that A, is a quaternion algebra. It is then known that V is a
finite set of even order. Conversely, for any nonempty set V' of even order, there
is a unique isomorphism class of quaternion algebras A over QQ such that A, is a
quaternion algebra for each v € V and a matrix algebra M5(Q,) for each v outside
V.

We digress for a moment to note that this characterization of quaternion al-
gebras is part of a larger classification of reductive algebraic groups. The general
classification over a number field F', and its completions F},, is a beautiful union of
class field theory with the structure theory of reductive groups. One begins with a
group G over F' that is split, in the sense that it has a maximal torus that splits
over F'. By a basic theorem of Chevalley, the groups G are in bijective correspon-
dence with reductive groups over an algebraic closure F' of F. the classification
of which reduces largely to that of complex semisimple Lie algebras. The general
group G over F' is obtained from G¥ by twisting the action of the Galois group
Gal(F/F) by automorphisms of G%. It is a two stage process. One first constructs
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an “outer twist” G* of G that is quasisplit, in the sense that it has a Borel sub-
group that is defined over F. This is the easier step. It reduces to a knowledge
of the group of outer automorphisms of G%, something that is easy to describe in

terms of the general structure of reductive groups. One then constructs an “inner

twist” G 2 G*, where ) is an isomorphism such that for each o € Gal(F/F), the
composition

a(o) =yoa(y)™
belongs to the group Int(G*) of inner automorphisms of G*. The role of class field
theory is to classify the functions ¢ — «a(o). More precisely, class field theory
allows us to characterize the equivalence classes of such functions defined by the
Galois cohomology set

H'(F,Int(G*)) = H' (Gal(F/F),Int(G)*(F)).

It provides a classification of the finite sets of local inner twists H'! (Fv,lnt(GZ)),
and a characterization of the image of the map

HY(F,Int(G")) — [] ' (F. Int(G}))

in terms of an explicit generalization of the parity condition for quaternion algebras.
The map is injective, by the Hasse principle for the adjoint group Int(G*). Its image
therefore classifies the isomorphism classes of inner twists G of G* over F.

In the special case above, the classification of quaternion algebras A is equiva-
lent to that of the algebraic groups A*. In this case, G* = G% = GL(2). In general,
the theory is not especially well known, and goes beyond what we are assuming for
this course. However, as a structural foundation for the Langlands program, it is
well worth learning. A concise reference for a part of the theory is [Ko5, §1-2].

Let G be the multiplicative group of a quaternion algebra A over Q, as above.
The restriction of the norm mapping N to G is a generator of the group X(G)g.
In particular,

G(A)! = {x €G(A): |[N(z)| = 1}.

It is then not hard to see that the quotient G(Q)\G(A)! is compact. (The reason
is that GG has no proper parabolic subgroup over Q, a point we shall discuss in
the next section.) The Selberg trace formula (1.3) therefore holds for I' = G(Q),
H = G(A)', and [ the restriction to G(A)! of a function in C°(G(A)). If I'(G)
denotes the set of conjugacy classes in G(Q), and II(G) is the set of equivalence
classes of automorphic representations of G' (or more properly, restrictions to G(A)*
of automorphic representations of G(A)), we have

(3.1) Y. Mt = a®m)fa(m), feCx(GA)
~el (@) mell(G)

for the volume a%(vy) = aff (), the multiplicity a® () = aff (), the orbital integral

fa(v) = fu(v), and the character fo(m) = fu(w). Jacquet and Langlands gave a

striking application of this formula in §16 of their monograph [JL].

Any function in C2°(G(A)) is a finite linear combination of products
F=11 fo € CZ(G(Qy)).

Assume that f is of this form. Then fg(7) is a product of local orbital integrals
fu.c(7w), where 7, is the image of 7 in the set I'(G,) of conjugacy classes in G(Q,),
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and fg(m) is a product of local characters f, ¢(m,), where m, is the component of
7 in the set II(G,) of equivalence classes of irreducible representations of G(Q,).
Let V be the even set of valuations v such that G is not isomorphic to the group
G* = GL(2) over Q,. If v does not belong to V, the Q,-isomorphism from G to
G* is determined up to inner automorphisms. There is consequently a canonical
bijection 7, — 7 from I'(G,) to I'(G%), and a canonical bijection 7, — 7 from
II(Gy) to TI(G%). One can therefore define a function f; € C°(G%) for every v ¢ V.
such that

f:,G* (7:) = fv,G(%))
and

f:,G* (77;) = fv,G(Trv>7
for every v, € I'(G,) and m, € II(G,). This suggested to Jacquet and Langlands
the possibility of comparing (3.1) with the trace formula Selberg had obtained for
the group G* = GL(2) with noncompact quotient.

If v belongs to V, G(Q,) is the multiplicative group of a quaternion algebra
over Q,. In this case, there is a canonical bijection ~, — ~ from I'(G,) onto the
set T'en(G%) of semisimple conjugacy classes in G*(Q,) that are either central, or
do not have eigenvalues in Q,,. Moreover, there is a global bijection v — ~* from
I'(G) onto the set of semisimple conjugacy classes v* € T'(G*) such that for every
v € V, v belongs to Ten(G). For each v € V, Jacquet and Langlands assigned a
function f; € C°(G*(Qy)) to f, such that

if v € Ten(Gs
(3.2) f;,c:*('ﬁ:) _ fU,G('Yv)v 11 7, 6. ell( U)7
0, otherwise,

for every (strongly) regular class v, € I'veg(G}). (An element is strongly regular if
its centralizer is a maximal torus. The strongly regular orbital integrals of f are
known to determine the value taken by f at any invariant distribution on G*(Q,).)
This allowed them to attach a function

=11+
v
in C2°(G*(A)) to the original function f. They then observed that

fa(y), if v* is the image of v € I'(G),
0, otherwise,

(3-3) fe- (V") = {

for any class v* € I'(G*).

It happens that Selberg’s formula for the group G* = GL(2) contains a number
of supplementary terms, in addition to analogues of the terms in (3.1). However,
Jacquet and Langlands observed that the local vanishing conditions (3.2) force all
of the supplementary terms to vanish. They then used (3.3) to deduce that the
remaining terms on the geometric side equaled the corresponding terms on the
geometric side of (3.1). This left only a spectral identity

(3.4) o om(m Rye(n(f) = Y m(r", Ri)te(* (),
T€ll(G) T €T(G*)

where R}, is the subrepresentation of the regular representation of G*(A)! on
L?(G*(Q)\G*(A)") that decomposes discretely. By setting f = fsf?, for a fixed fi-
nite set S of valuations containing VU{v }, and a fixed function fg € C2° (G(Qs)),
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one can treat (3.4) as an identity of linear forms in a variable function f° belong-
ing to the Hecke algebra H(G®, K¥). Jacquet and Langlands used it to establish
an injective global correspondence m — 7* of automorphic representations, with
mr = m, for each v ¢ V. They also obtained an injective local correspondence
m, — m, of irreducible representations for each v € V, which is compatible with
the global correspondence, and also the local correspondence f, — f of functions.
Finally, they gave a simple description of the images of both the local and global
correspondences of representations.

The Jacquet-Langlands correspondence is remarkable for both the power of its
assertions and the simplicity of its proof. It tells us that the arithmetic information
carried by unramified components m, of automorphic representations 7 of G(A),
whatever form it might take, is included in the information carried by automorphic
representations 7* of G*(A). In the case vy, ¢ V, it also implies a correspondence
between spectra of Laplacians on certain compact Riemann surfaces, and discrete
spectra of Laplacians on noncompact surfaces. The Jacquet-Langlands correspon-
dence is a simple prototype of the higher reciprocity laws one might hope to deduce
from the trace formula. In particular, it is a clear illustration of the importance of
having a trace formula for noncompact quotient.

4. Noncompact quotient and parabolic subgroups

If G(Q)\G(A)! is not compact, the two properties that allowed us to derive
the trace formula (1.3) fail. The regular representation R does not decompose
discretely, and the operators R(f) are not of trace class. The two properties are
closely related, and are responsible for the fact that the integral (1.2) generally
diverges. To see what goes wrong, consider the case that G = GL(2), and take f
to be the restriction to H = G(A)" of a nonnegative function in C2°(G(A)). If the
integral (1.2) were to converge, the double integral

/ f(z™ yz)de
G\GA)! L eq(o)

would be finite. Using Fubini’s theorem to justify again the manipulations of §1,
we would then be able to write the double integral as

> vol(E@-\G)) [ fla~ye)da.

ve{GQ)} GAR\G@A)!

As it happens, however, the summand corresponding to =y is often infinite.
Sometimes the volume of G(Q),\G(A)! is infinite. Suppose that v = <71 0 ) ,

0 7
for a pair of distinct elements y; and 7 in Q*. Then

G, = {(%1 yo) C Y, ys € GL(l)} ~ GL(1) x GL(1),
2
so that
G(A)y = {(y1,92) € (A [yillye| = 1},
and

G(Q)\G(A); = (Q\A') x (Q"\A) = (Q"\A1)? x (R")".
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An invariant measure on the left hand quotient therefore corresponds to a Haar
measure on the abelian group on the right. Since this group is noncompact, the
quotient has infinite volume.

Sometimes the integral over G(A)}\G(A)" diverges. Suppose that v = <1 1).

0 1
Then
G(A)Vz{(g Z) yeA,zeA*}

The computation of the integral

/ fayoye = [ f(e~1a)da
G(A)I\G(A)? G(A)Z\G(A)

is a good exercise in understanding relations among the Haar measures d*a, du and
dz on A*; A, and G(A), respectively. One finds that the integral equals

/ / F(k™ p~typk)dpdk,
G (A\Po(a) J Po(A)\G(A)

where Py(A) is the subgroup of upper triangular matrices

CL* u * 1k *
{p—(o b*)' a*,b EA,uEA},

with left Haar measure

dep = |a*| " da*db* du,
and dk is a Borel measure on the compact space Py(A)\G(A). The integral then
reduces to an expression

(NI -p" =elh) (Z %) ,

p n=1

_ -1 (1w
) =e /PO(A)\G(A) /A / <k (0 1> k) dudk

for a positive constant c¢y. In particular, the integral is generally infinite.

Observe that the nonconvergent terms in the case G = GL(2) both come from
conjugacy classes in GL(2,Q) that intersect the parabolic subgroup Py of upper
triangular matrices. This suggests that rational parabolic subgroups are responsible
for the difficulties encountered in dealing with noncompact quotient. Our suspicion
is reinforced by the following characterization, discovered independently by Borel
and Harish-Chandra [BH] and Mostow and Tamagawa [MT]. For a general group
G over Q, the quotient G(Q)\G(A)! is noncompact if and only if G has a proper
parabolic subgroup P defined over Q.

We review some basic properties of parabolic subgroups, many of which are
discussed in the chapter [Mur] in this volume. We are assuming now that G
is a general connected reductive group over Q. A parabolic subgroup of G is an
algebraic subgroup P such that P(C)\G(C) is compact. We consider only parabolic
subgroups P that are defined over Q. Any such P has a Levi decomposition P =
M Np, which is a semidirect product of a reductive subgroup M of G over Q
with a normal unipotent subgroup Np of G over Q. The unipotent radical Np is
uniquely determined by P, while the Levi component M is uniquely determined up
to conjugation by P(Q).

where
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Let Py be a fixed minimal parabolic subgroup of G over Q, with a fixed Levi
decomposition Py = MyNy. Any subgroup P of G that contains Py is a parabolic
subgroup that is defined over Q. It is called a standard parabolic subgroup (relative
to Py). The set of standard parabolic subgroups of G is finite, and is a set of
representatives of the set of all G(Q)-conjugacy classes of parabolic subgroups over
Q. A standard parabolic subgroup P has a canonical Levi decomposition P =
MpNp, where Mp is the unique Levi component of P that contains My. Given
P, we can form the central subgroup Ap = Aps, of Mp, the real vector space
ap = ayp, and the surjective homomorphism Hp = Hyy, from Mp(A) onto ap.
In case P = Py, we often write Ay = Ap,, ap = ap, and Hy = Hp,.

In the example G = GL(n), one takes Py to be the Borel subgroup of upper
triangular matrices. The unipotent radical Ny of Py is the subgroup of unipotent
upper triangular matrices. For the Levi component M, one takes the subgroup of
diagonal matrices. There is then a bijection

P — (ni,...,np)

between standard parabolic subgroups P of G = GL(n) and partitions (n1,...,np)
of n. The group P is the subgroup of block upper triangular matrices associated

to (n1,...,np). The unipotent radical of P is the corresponding subgroup
L, | *
Np = .
0 1,
of block unipotent matrices, the canonical Levi component is the subgroup
| 0
Mp=<m= : m; € GL(n,;)
0 My,

of block diagonal matrices, while

allnl |

Ap=<a= : aleGL(l)
0 |a’PInp
Naturally, I stands here for the identity matrix of rank k. The free abelian group
X (Mp)g attached to Mp has a canonical basis of rational characters

xi: m— det(m;), me Mp, 1<i<p.

1
T np
sponding dual basis of ap, to identify both a} and ap with RP. With this interpre-
tation, the mapping Hp takes the form

We are free to use the basis nl—lxh e Xp of the vector space ap, and the corre-

1 1
Hp(m) = (n—llog|det m1|,...,n—log|det mp|> , m € Mp(A).

p
It follows that

Hp(a) = (loglai],...,loglayl), a€ Ap(A).
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For general GG, we have a variant of the regular representation R for any
standard parabolic subgroup P. It is the regular representation Rp of G(A) on
L?>(Np(A)Mp(Q)\G(A)), defined by

(Rp(y)9)(x) = ¢(zy), ¢ € L*(Np(A)Mp(Q\G(A)), =,y € G(A).

Using the language of induced representations, we can write
- G(A) ~ G(A)
Rp =Ind ") a0 (INp ) Mp @) = Indp i (Inpa) © Ragp),

where Ind%;(-) denotes a representation of H induced from a subgroup K, and 1x
denotes the trivial one dimensional representation of K. We can of course integrate
Rp against any function f € C2° (G(A)) This gives an operator Rp(f) on the
Hilbert space L? (Np(A)Mp(Q)\G(A)). Arguing as in the special case R = R of
§1, we find that Rp(f) is an integral operator with kernel

(41)  Kpley) = /N 2 Ty € No(A)Mp(@\G(A)

YEMPp(Q)

We have seen that the diagonal value K (z,x) = Kg(x,x) of the original kernel
need not be integrable over x € G(Q)\G(A). We have also suggested that parabolic
subgroups are somehow responsible for this failure. It makes sense to try to modify
K (z,x) by adding correction terms indexed by proper parabolic subgroups P. The
correction terms ought to be supported on some small neighbourhood of infinity, so
that they do not affect the values taken by K (z,x) on some large compact subset
of G(Q)\G(A)!. The diagonal value Kp(z,x) of the kernel of Rp(f) provides a
natural function for any P. However, Kp(z, ) is invariant under left translation
of & by the group Np(A)Mp(Q), rather than G(Q). One could try to rectify this
defect by summing Kp(dz,dz) over elements § in P(Q)\G(Q). However, this sum
does not generally converge. Even if it did, the resulting function on G(Q)\G(A)*
would not be supported on a small neighbourhood of infinity. The way around
this difficulty will be to multiply Kp(x,x) by a certain characteristic function on
Np(A)Mp(Q)\G(A) that is supported on a small neighbourhood of infinity, and
which depends on a choice of maximal compact subgroup K of G(A).

In case G = GL(n), the product

K =0(n,R) x [[GL(n,7Z,)

p

is a maximal compact subgroup of G(A). According to the Gramm-Schmidt or-
thogonalization lemma of linear algebra, we can write

GL(n,R) = By(R)O(n,R).
A variant of this process, applied to the height function
[0]lp = max{|vil, : 1 <i<n}, veQy,
on Q instead of the standard inner product on R", gives a decomposition
GL(n,Qp) = Po(Qp)GL(n, Zy),
for any p. It follows that GL(n,A) equals Py(A)K.



24 JAMES ARTHUR

These properties carry over to our general group G. We choose a suitable
maximal compact subgroup

K =[] K., K, C G(Q),

of G(A), with G(A) = Py(A)K [Ti, (3.3.2), (3.9], [A5, p. 9]. We fix K, and
consider a standard parabolic subgroup P of G. Since P contains Py, we obtain a
decomposition

G(A) = P(A)K = Np(A)Mp(A)K = Np(A)Mp(A)' Ap(R)°K.
We then define a continuous mapping
Hp: G(A) — ap
by setting
Hp(nmk) = Hyr, (m), n € Np(A), me Mp(A), ke K.

We shall multiply the kernel Kp(x,z) by the preimage under Hp of the character-
istic function of a certain cone in ap.

5. Roots and weights

We have fixed a minimal parabolic subgroup Py of GG, and a maximal compact
subgroup K of G(A). We want to use these objects to modify the kernel function
K(z,x) so that it becomes integrable. To prepare for the construction, as well as
for future geometric arguments, we review some properties of roots and weights.

The restriction homomorphism X (G)g — X (Ag)g is injective, and has finite
cokernel. If G = GL(n), for example, the homomorphism corresponds to the injec-
tion z — nz of Z into itself. We therefore obtain a canonical linear isomorphism

(5.1) ap=X(Mp)g®@R = X(Ap)g @ R.

Now suppose that P; and P, are two standard parabolic subgroups, with P; C
P,. There are then Q-rational embeddings

AP2 C Apl C Mpl C MPz-

The restriction homomorphism X (Mp,)g — X(Mp,)g is injective. It provides
a linear injection ap, < ap and a dual linear surjection ap, — ap,. We write
agf C ap, for the kernel of the latter mapping. The restriction homomorphism
X(Ap,)g — X(Ap,)q is surjective, and extends to a surjective mapping from
X(Ap,)o ® R to X(Ap,)o ® R. It thus provides a linear surjection ap + ap,,
and a dual linear injection ap, — ap,. Taken together, the four linear mappings
yield split exact sequences

* — * * *
0 — ClP2 — apl — apl/aP2 — 0
and
0—>Cl?f—>ap1<:)ap2—>0
of real vector spaces. We may therefore write
_ Py
ap, =ap, G ap

and
* * Pa\*
ap, = ap, ® (ap;)"
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For any P, we write ®p for the set of roots of (P, Ap). We also write np for
the Lie algebra of Np. Then ®p is a finite subset of nonzero elements in X(Ap)g
that parametrizes the decomposition

np = @na

acEdp

of np into eigenspaces under the adjoint action
Ad: Ap — GL(np)
of Ap. By definition,
Ny = {Xa enp: Ad(a)X, =a%X,, a € Ap},
for any o € ®p. We identify ® p with a subset of a}, under the canonical mappings
Op C X(Ap)g C X(Ap)g @R ~ ap.

If H belongs to the subspace ag of ap, a(H) = 0 for each @ € ®p, so Pp is
contained in the subspace (a%)* of a%. As is customary, we define a vector

1
pp =3 Z (dim ny)or
acdp
in (a§)*. We leave the reader to check that left and right Haar measures on the

group P(A) are related by
dgp = 2, p, p € P(A).

In particular, the group P(A) is not unimodular, if P # G.
We write &y = ®p,. The pair

(V,R) = ((a,)*, @0 U (—P9))

is a root system [Ser2], for which @ is a system of positive roots. We write

Wo = W§ for the Weyl group of (V, R). It is the finite group generated by reflections

about elements in ®g, and acts on the vector spaces V = (aIGDO)*, a; = ap,, and

ap = ap,. We also write Ag C @ for the set of simple roots attached to ®y. Then
Ay is a basis of the real vector space (af)* = (a§)*. Any element 3 € ®( can be

written uniquely
5 = Z naa7

acAg
for nonnegative integers n,. The corresponding set

Ag:{av: OZGA()}

of simple coroots is a basis of the vector space a§ = ago. We write

ﬁoz{wa: a € Ap}
for the set of simple weights, and
ﬁg:{wx: a€ Ao}

for the set of simple co-weights. In other words, Ay is the basis of (a§)* dual to
AY, and AY is the basis of a§ dual to A,.
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Standard parabolic subgroups are parametrized by subsets of Ag. More pre-
cisely, there is an order reversing bijection P < A¥ between standard parabolic
subgroups P of G and subsets Af" of Ag, such that

CLPZ{HEU.(): a(H)zO, OéEA(I)D}.

For any P, A¥ is a basis of the space af;o =al’. Let Ap be the set of linear forms
on ap obtained by restriction of elements in the complement Ag —AE of AF in Ay.
Then Ap is bijective with Ag — A, and any root in ®p can be written uniquely
as a nonnegative integral linear combination of elements in Ap. The set Ap is a
basis of (a%)*. We obtain a second basis of (a%)* by taking the subset
Ap = {wa : a€Ng— ALY

of 80. We shall write

A} ={a": aec Ap}
for the basis of a§ dual to Ap, and

ﬁﬁz{wX: a€ Ap}
for the basis of aIGD dual to Ap. We should point out that this notation is not
standard if P # Py. For in this case, a general element o € Ap is not part of a
root system (as defined in [Ser2]), so that o is not a coroot. Rather, if « is the
restriction to ap of the simple root 8 € Ag — AF, oV is the projection onto ap of
the coroot 3.

We have constructed two bases Ap and Ap of (a%)*, and corresponding dual
bases A}, and A}, of a§, for any P. More generally, suppose that Py C P, are two
standard parabolic subgroups. Then we can form two bases Agf and A% of (agf ),
and corresponding dual bases (ﬁ%)v and (Agf )Y of agf. The construction proceeds
in the obvious way from the bases we have already defined. For example, Agf is
the set of linear forms on the subspace agf of ap, obtained by restricting elements
in A(I)DZ — Agl, while 3%’ is the set of linear forms on a%’ obtained by restricting

elements in A P, — A p,. We note that P, N Mp, is a standard parabolic subgroup of
the reductive group Mp,, relative to the fixed minimal parabolic subgroup PoNMp,.
It follows from the definitions that

ap,NMp, = OP;, aﬁ?MP2 =ap, Apnmg, = AR,
and R R
Apanty, = AP
Consider again the example of G = GL(n). Its Lie algebra is the space M,, of
(n X n)-matrices, with the Lie bracket

[X,Y]=XY -YX,
and the adjoint action
Ad(g): X — gXg 1, ge G, X € M,
of G. The group
ai 0
Ag=_a= :a; € GL(1)
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acts by conjugation on the Lie algebra

0 % - %

noznPU:
*
0 0

Opro, and
Qo ={Bij: a — aiaj_l, i<}

As linear functionals on the vector space

U1 0
p = U: . cu; ER B
0 Up,
the roots @, take the form
Bij(u):uifuj, ’L<]

The decomposition of a general root in terms of the subset

Ag={0i =0Biiy1: 1 <i<n-—1},
of simple roots is given by

Bij = Bi+ -+ Bj-1, i < J.
The set of coroots equals
J
oy = {0 =ei—e;=(0,...,0,1,0,...,0,—1,0,...,0) : i<j},
N——

%

where we have identified ay with the vector space R™, equipped with the standard
basis e1,...,e,. The simple coroots form the basis

Ay ={B/ =ei—eiy1: 1<i<n-—1}

of the subspace

af ={ueR": Zui:O}.
The simple weights give the dual basis

Aoz{wil 1§Z§n71}’
where

n—1i 7
Wi(u): " (u1++ul)_(ﬁ)(uz+l++un)

The Weyl group W) of the root system for GL(n) is the symmetric group S, acting
by permutation of the coordinates of vectors in the space ag = R™. The dot product
on R™ give a W-invariant inner product (-,-) on both ag and af. It is obvious that

We leave to the reader the exercise of showing that

(@i, w;) >0, 1<i, j<n-—1.
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Suppose that P C GL(n) corresponds to the partition (n1,...,n,) of n. The
general embedding ap — ay we have defined corresponds to the embedding

to— (t1,.oty, toyeaitoy oy bty ), t e RP,
ni n2 np
of R? into R™. It follows that
AP ={Bi:i#Enm+ - +n,, 1<k<p-1}.
Since Ap is the set of restrictions to ap C ag of elements in the set

AO - AOP = {ﬁn176n1+n27 . '}7
we see that
Ap:{aii t—ti—tip1, 1 <i<p—1, tERp}.

The example of G = GL(n) provides algebraic intuition. It is useful for readers
less familiar with general algebraic groups. However, the truncation of the kernel
also requires geometric intuition. For this, the example of G = SL(3) is often
sufficient.

The root system for SL(3) is the same as for GL(3). In other words, we can
identify ag with the two dimensional subspace

{ueR?: Zuizo}
of R3, in which case

Ao = {B1, P2} C ®o = {B1, B2, B1 + Ba},

in the notation above. We can also identify ag isometrically with the two dimension
Euclidean plane. The singular (one-dimensional) hyperplanes, the coroots @, and
the simple coweights (A%)Y are then illustrated in the familiar Figures 5.1 and 5.2.

L/

1 aPl

BY + By

ap,

FIGURE 5.1. The two simple coroots 3y and (33 are orthogonal to
the respective subspaces ap, and ap, of ag. Their inner product is
negative, and they span an obtuse angled cone.

There are four standard parabolic subgroups Py, P, P, and G, with P; and P
being the maximal parabolic subgroups such that A(I)Dl = {f2} and AéDz = {1}
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wy
v,
Wo
>

FIGURE 5.2. The two simple coweights @ and w3 lie in the respec-
tive subspaces ap, and ap,. Their inner product is positive, and they
span an acute angled cone.

6. Statement and discussion of a theorem

Returning to the general case, we can now describe how to modify the function
K(z,z) on G(Q)\G(A). For a given standard parabolic subgroup P, we write 7p
for the characteristic function of the subset

ap={tcap: a(t) >0, a € Ap}

of ap. In the case G = SL(3), this subset is the open cone generated by wy and
@y in Figure 5.2 above. We also write 7p for the characteristic function of the
subset

{teap: w(t) >0, weAp}
of ap. In case G = SL(3), this subset is the open cone generated by 3 and 33 in
Figure 5.1.

The truncation of K (z,z) depends on a parameter T in the cone aj = aJ}SO that
is suitably regular, in the sense that 3(T) is large for each root 8 € Ay. For any
given T', we define
(6.1)

KN (x) = kT (x, f) = _(-1)8mAr/de) N Kp(62,62)7p (Hp(0x) — T).
P SEP(Q\G(Q)

This is the modified kernel, on which the general trace formula is based. A few
remarks might help to put it into perspective.

One has to show that for any z, the sum over ¢ in (6.1) may be taken over a
finite set. In the case G = SL(2), the reader can verify the property as an exercise in
reduction theory for modular forms. In general, it is a straightforward consequence
[A3, Lemma 5.1] of the Bruhat decomposition for G and the construction by Borel
and Harish-Chandra of an approximate fundamental domain for G(Q)\G(A). (We
shall recall both of these results later.) Thus, k%' (z) is given by a double sum over
(P,¢) in a finite set. It is a well defined function of x € G(Q)\G(A).

Observe that the term in (6.1) corresponding to P = G is just K(z,z). In
case G(Q)\G(A)! is compact, there are no proper parabolic subgroups P (over
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Q). Therefore kT (x) equals K(x,z) in this case, and the truncation operation is
trivial. In general, the terms with P # G represent functions on G(Q)\G(A)* that
are supported on some neighbourhood of infinity. Otherwise said, k7 (z) equals
K(z,x) for x in some large compact subset of G(Q)\G(A)! that depends on T

Recall that G(A) is a direct product of G(A)* with Ag(R)?. Observe also that
kT (z) is invariant under translation of x by Ag(R)°. It therefore suffices to study
kT (x) as a function of z in G(Q)\G(A)L.

THEOREM 6.1. The integral

(6.2) JI(f) = / kT (x, f)dx
G(Q\G(A)!

converges absolutely.

Theorem 6.1 does not in itself provide a trace formula. It is really just a first
step. We are giving it a central place in our discussion for two reasons. The state-
ment of the theorem serves as a reference point for outlining the general strategy.
In addition, the techniques required to prove it will be an essential part of many
other arguments.

Let us pause for a moment to outline the general steps that will take us to
the end of Part I. We shall describe informally what needs to be done in order to
convert Theorem 6.1 into some semblance of a trace formula.

Step 1. Find spectral expansions for the functions K(x,y) and k™ (x) that are
parallel to the geometric expansions (1.1) and (6.1).

This step is based on Langlands’s theory of Eisenstein series. We shall describe
it in the next section.
Step 2. Prove Theorem 6.1.

We shall sketch the argument in §8.
Step 3. Show that the function

T — JU(f)

defined a priori for points T € ag that are highly regular, extends to a polynomial
T € ag.

This step allows us to define J(f) for any T' € ag. It turns out that there is a
canonical point Ty € ag, depending on the choice of K, such that the distribution
J(f) = JT(f) is independent of the choice of Py (though still dependent of the
choice of K). For example, if G = GL(n) and K is the standard maximal compact
subgroup of GL(n,A), Ty = 0. We shall discuss these matters in §9, making full
use of Theorem 6.1.

Step 4. Convert the expansion (6.1) of kT (x) in terms of rational conjugacy classes
into a geometric expansion of J(f) = JTo(f).

We shall give a provisional solution to this problem in §10, as a direct corollary
of the proof of Theorem 6.1.

Step 5. Conwert the expansion of k™ (x) in §7 in terms of automorphic represen-
tations into a spectral expansion of J(f) = JT0(f).

This problem turns out to be somewhat harder than the last one. We shall
give a provisional solution in §14, as an application of a truncation operator on

functions on G(Q)\G(A)*.
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We shall call the provisional solutions we obtain for the problems of Steps 4
and 5 the coarse geometric expansion and the coarse spectral expansion, following
[CLL]. The identity of these two expansions can be regarded as a first attempt at
a general trace formula. However, because the terms in the two expansions are still
of an essentially global nature, the identity is of little use as it stands. The general
problem of refining the two expansions into more tractible local terms will be left
until Part II. In order to give some idea of what to expect, we shall deal with the
easiest terms near the end of Part I.

In §11, we will rewrite the geometric terms attached to certain semisimple
conjugacy classes in G(Q). The distributions so obtained are interesting new linear
forms in f, known as weighted orbital integrals. In §15, we will rewrite the spectral
terms attached to certain induced cuspidal automorphic representations of G(A).
The resulting distributions are again new linear forms in f, known as weighted
characters. This will set the stage for Part II, where one of the main tasks will be
to write the entire geometric expansion in terms of weighted orbital integrals, and
the entire spectral expansion in terms of weighted characters.

There is a common thread to Part I. It is the proof of Theorem 6.1. For
example, the proofs of Corollary 10.1, Theorem 11.1, Proposition 12.2 and parts
(ii) and (iii) of Theorem 14.1 either follow directly from, or are strongly motivated
by, the proof of Theorem 6.1. Moreover, the actual assertion of Theorem 6.1 is the
essential ingredient in the proofs of Theorems 9.1 and 9.4, as well as their geometric
analogues in §10 and their spectral analogues in §14. We have tried to emphasize
this pattern in order to give the reader some overview of the techniques.

The proof of Theorem 6.1 itself has both geometric and analytic components.
However, its essence is largely combinatorial. This is due to the cancellation in
(6.1) implicit in the alternating sum over P. At the heart of the proof is the
simplest of allncancellation laws, the identity obtained from the binomial expansion
of (14 (-1))".

IDENTITY 6.2. Suppose that S is a finite set. Then

(6.3) S (-1t IF = {1 if S =0,

oy 0 otherwise.

7. Eisenstein series

Eisenstein series are responsible for the greatest discrepancy between what we
need and what we can prove here. Either of the two main references [Lan5] or
[MW2] presents an enormous challenge to anyone starting to learn the subject.
Langlands’s survey article [Lan1] is a possible entry point. For the trace formula,
one can usually make do with a statement of the main theorems on Eisenstein
series. We give a summary, following [A2, §2].

The role of Eisenstein series is to provide a spectral expansion for the kernel
K(z,y). In general, the regular representation R of G(A) on L*(G(Q)\G(A)) does
not decompose discretely. Eisenstein series describe the continuous part of the
spectrum.

We write Rg disc for the restriction of the regular representation of G(A)! to
the subspace L3 (G(Q)\G(A)') of L*(G(Q)\G(A)') that decomposes discretely.

disc
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Since G(A) is a direct product of G(A)! with Ag(R)?, we can identify Rg disc
with the representation of G(A) on the subspace L% (G(Q)Aq(R)°\G(A)) of
L?(G(Q)Ag(R)°\G(A)) that decomposes discretely. For any point A € af; ¢, the
tensor product

RG,disc,)\(CC) = RG,disc(m)e)\(HG(z))7 S G(A),

is then a representation of G(A), which is unitary if A lies in iag;.

We have assumed from the beginning that the invariant measures in use satisfy
any obvious compatibility conditions. For example, if P is a standard parabolic
subgroup, it is easy to check that the Haar measures on the relevant subgroups of
G(A) can be chosen so that

f(z)dz

G(A)

- / F(pk)depdk
K JP)

:// / f(mnk)dndmdk

K Jap(a) Ipa)

:// / / f(mank)dndadmdk,
K JMpa)r JAp(®R)® JNp(4)

for any f € C° (G(A)) We are assuming implicitly that the Haar measures on
K and Np(A) are normalized so that the spaces K and Np(Q)\Np(A) each have
volume 1. The Haar measure dz on G(A) is then determined by Haar measures dm
and da on the groups Mp(A)! and Ap(R)?. We write dH for the Haar measure on
ap that corresponds to da under the exponential map. We then write d\ for the
Haar measure on 4ap that is dual to dH, in the sense that

/ / h(H)e MMDdHAA = h(0),

for any function h € C°(ap).
Suppose that P is a standard parabolic subgroup of G, and that A lies in a} .
We write

Yy — IP(A,Q)7 yeG(A)7
for the induced representation
Ind§E;’§§ (Inp(a) @ Ratp disc,))

of G(A) obtained from A and the discrete spectrum of the reductive group Mp.
This representation acts on the Hilbert space Hp of measurable functions

¢: Np(A)Mp(Q)Ap(R)\G(A) — C
such that the function
¢r 1 m — ¢(mx), m € Mp(Q)\Mp(A)*,
belongs to L3, (Mp(Q)\Mp(A)') for any « € G(A), and such that

disc
|2 = / / (6(mk) Pdmd < oo,
K JMp(Q)\Mp(A)!
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For any y € G(A), Zp(X, y) maps a function ¢ € Hp to the function
(Zp(M )8) (z) = ¢(ay)e+or)EHr @) g=(tpr) (Hr (@),

We have put the twist by A into the operator Zp(\,y) rather than the underlying
Hilbert space Hp, in order that Hp be independent of A. Recall that the function
ePP(HP () is the square root of the modular function of the group P(A). Tt is in-
cluded in the definition in order that the representation Zp(\) be unitary whenever
the inducing representation is unitary, which is to say, whenever A belongs to the
subset tap of ap .
Suppose that
RMp,disc = @’” = @ (®7rv)
™ ™ v

is the decomposition of Rps, dgise into irreducible representations @ = @, of
v

Mp(A)/Ap(R)Y. The induced representation Zp()\) then has a corresponding de-

composition
7p(N) = P7r(m) =P (Q Zr(mn)

in terms of induced representations Zp(m, ) of the local groups G(Q,). This follows
from the definition of induced representation, and the fact that

eMHyp(m)) — H eMHwp (mv)),

for any point m = [[m, in Mp(A). If A € ia}p is in general position, all of

v

the induced representations Zp(m, ») are irreducible. Thus, if we understand the
decomposition of the discrete spectrum of Mp into irreducible representations of
the local groups Mp(Q,), we understand the decomposition of the generic induced
representations Zp(A) into irreducible representations of the local groups G(Q,).

The aim of the theory of Eisenstein series is to construct intertwining operators
between the induced representations Zp(A) and the continuous part of the regular
representation R of G(A). The problem includes being able to construct intertwin-
ing operators among the representations Zp(A), as P and A vary. The symmetries
among pairs (P, \) are given by the Weyl sets W (ap, ap:) of Langlands. For a given
pair P and P’ of standard parabolic subgroups, W (ap,ap/) is defined as the set of
distinct linear isomorphisms from ap C ag onto apr C ag obtained by restriction
of elements in the Weyl group Wy. Suppose, for example that G = GL(n). If
P and P’ correspond to the partitions (n1,...,n,) and (nf,...,n,,) of n, the set
W (ap,ap:) is empty unless p = p’, in which case

W(ap,ap) = {s € Sy n; =nyu, 1 <i<p}

In general, we say that P and P’ are associated if the set W (ap, ap/) is nonempty.
We would expect a pair of induced representations Zp(A) and Zp/(N') to be equiva-
lent if P and P’ belong to the same associated class, and A’ = s\ for some element
s € W(CLP, ap/).

The formal definitions apply to any elements x € G(A), ¢ € Hp, and A € aj, ¢.
The associated Eisenstein series is

(7.1) E(x,¢,)\) = Z P(6x)ePHrr)(HP (7))
SEP(Q\G(Q)
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If s belongs to W(ap,ap), the operator
M(s,\): Hp — Hp
that intertwines Zp(\) with Zp/(sA) is defined by

(72) (M5, 0)9)(x) = / 9wy ) Hor Hp (i) o(oXtop ) (Ui dn,

where the integral is taken over the quotient
Np(A) NwsNp(A)w, \Np/(A),

and w; is any representative of s in G(Q). A reader so inclined could motivate both

definitions in terms of finite group theory. Each definition is a formal analogue of

a general construction by Mackey [Ma] for the space of intertwining operators

between two induced representations Indg1 (p1) and Indg2 (p2) of a finite group H.
It follows formally from the definitions that

E(SC, IP()‘a y)¢7 )‘) = E(Iya d)’ )‘)
and
M<57 )‘>IP()‘7 y) =1p (S>‘a y)M(S, )‘)'

These are the desired intertwining properties. However, (7.1) and (7.2) are defined
by sums and integrals over noncompact spaces. They do not generally converge. It
is this fact that makes the theory of Eisenstein series so difficult.

Let H% be the subspace of vectors ¢ € Hp that are K-finite, in the sense that
the subset

{Zp(\Ek)p: ke K}

of Hp spans a finite dimensional space, and that lie in a finite sum of irreducible
subspaces of Hp under the action Zp(\) of G(A). The two conditions do not depend
on the choice of A\. Taken together, they are equivalent to the requirement that the
function

¢($mmﬁn)a Too € G(R), Tfin € G(Aﬁn)a

be locally constant in zg,, and smooth, Kr-finite and Z..-finite in x,,, where Z
denotes the algebra of bi-invariant differential operators on G(R). The space H%
is dense in Hp.

For any P, we can form the chamber

(ap)t ={Aecap: A(@") >0, a € Ap}

in ap.

LEMMA 7.1 (Langlands). Suppose that ¢ € H% and that X lies in the open
subset

{Aeapc: Re(N) € pp+ (ap)"}

of apc.  Then the sum (7.1) and integral (7.2) that define E(z,¢,\) and
(M(s,A)¢)(x) both converge absolutely to analytic functions of . O

For spectral theory, one is interested in points A such that Zp(\) is unitary,
which is to say that A belongs to the real subspace iap of ap . This is outside the
domain of absolute convergence for (7.1) and (7.2). The problem is to show that
the functions E(x, ¢, A) and M (s, A)¢ have analytic continuation to this space. The
following theorem summarizes Langlands’ main results on Eisenstein series.
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THEOREM 7.2 (Langlands). (a) Suppose that ¢ € H%. Then E(z,$,\) and
M(s,A\)¢ can be analytically continued to meromorphic functions of A € apc that
satisfy the functional equations

(7.3) E(m,M(s,/\)(b, s)\) = E(z,¢,\)
and
(7.4) M(ts,\) = M(t,s\)M(s, \), t € W(ap:,apn).

If X € ia}, both E(x,$,)\) and M(s,\) are analytic, and M(s,\) extends to a
unitary operator from Hp to Hp:.
(b) Given an associated class P = {P}, define Lp to be the Hilbert space of
families of measurable functions
F={Fp: iap — Hp, PP}
that satisfy the symmetry condition
Fpi(sA) = M(s,\)Fp(\), s € W(ap,ap),

and the finiteness condition

191 = 32 et [ IERO)PdA < o,
iy

PeP

where

np= Y |W(ap,ap)|
PeP
for any P € P. Then the mapping that sends I to the function

> ngl/ E(z, Fp(\), \)d), z e G(A),
PepP iap

defined whenever Fp(\) is a smooth, compactly supported function of \ with values

in a finite dimensional subspace of H%, extends to a unitary mapping from Lp onto
a closed G(A)-invariant subspace L% (G(Q)\G(A)) of L*(G(Q)\G(A)). Moreover,
the original space L*>(G(Q)\G(A)) has an orthogonal direct sum decomposition

(7.5) L*(GQ\G(A) = P L3 (GQ\G(A)).
2
O

Theorem 7.2(b) gives a qualitative description of the decomposition of R. It
provides a finite decomposition
R @y
’P

where Rp is the restriction of R to the invariant subspace L%(G(Q)\G(A)) of
L*(G(Q)\G(A)). It also provides a unitary intertwining operator from Rp onto
the representation Ep of G(A) on Z'p defined by

(E'P(y)F)p()‘) =Ip(\y)Fpr(N), Fel?, PeP.

The theorem is thus compatible with the general intuition we retain from the theory
of Fourier series and Fourier transforms.
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Let Bp be an orthonormal basis of the Hilbert space Hp. We assume that
every ¢ € Bp lies in the dense subspace H%. It is a direct consequence of Theorem
7.2 that the kernel

K(y)= Y fla '), fecz(GA),

vEG(Q)

of R(f) also has a formal expansion

(7.6) St [ 3 B Ze(0 )0 Bl 00
P iap pEBP

in terms of Eisenstein series. A reader to whom this assertion is not clear might

consider the analogous assertion for the case H = R and I = {1}. If f belongs to

C2°(R), the spectral expansion

Klo) = fca+9) = 5 [ m(peemar JecE®)

of the kernel of R(f), in which

7r>\(f):/]Rf(u)e’\“du7

is just the inverse Fourier transform of f.

In the case of Eisenstein series, one has to show that the spectral expansion of
K (z,y) converges in order to make the formal argument rigorous. In general, it is
not feasible to estimate E(x, ¢, A) as a function of A € ia}. What saves the day is
the following simple idea of Selberg, which exploits only the underlying functional
analysis.

One first shows that f may be written as a finite linear combination of con-
volutions hj * ho of functions h; € C7 (G(A)), whose archimedean components are
differentiable of arbitrarily high order . An application of the Holder inequality to
the formal expansion (7.6) establishes that it is enough to prove the convergence in
the special case that f = h; xh}, where hj(z) = h;(z~1), and x = y. The integrand
in (7.6) is then easily seen to be nonnegative. In fact, the double integral over A and
¢ can be expressed as an increasing limit of nonnegative functions, each of which
is the kernel of the restriction of R(f) to an invariant subspace. Since this limit is
bounded by the nonnegative function

Ki(z,z)= Y (hixh})(a  yz),
7EG(Q)

the integral converges. (See [A3, p. 928-934].)
There is also a spectral expansion for the kernel

KQ(x,y):/N(A) Z f(z7yny)dn
Q

YEMq(Q)

of Ro(f), for any standard parabolic subgroup . One has only to replace the
multiplicity np = nG and the Eisenstein series F(z, 6, \) = E§(x, ¢, \) in (7.6) by
their relative analogues ng = npygnp and

E2(x,¢,\) = Z B(5z)e+er)(Hp (62)
SeP(Q\Q(Q)
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for each P C Q. Since P\Q = MgNP\Mg, the analytic continuation of Eg(a:, N
follows from Theorem 7.2(a), with (Mg, Mg N P) in place of (G, P). The spectral
expansion of Kqg(z,y) is

S0 B (2. Te(N £é N ER (v, 6, A)dA.

PCQ P geBp
If we substitute this formula into (6.1), we obtain a spectral expansion for the
truncated kernel k7 (z). The two expansions of k7 (z) ultimately give rise to two
formulas for the integral JZ(f). They are thus the source of the trace formula.

8. On the proof of the theorem

Theorem 6.1 represents a significant step in the direction of a trace formula.
It is time now to discuss its proof. We shall outline the main argument, proving
as much as possible. There are some lemmas whose full justification will be left to
the references. However, in these cases we shall try to give the basic geometric idea
behind the proof.

Suppose that T7 belongs to the real vector space ag, and that w is a compact
subset of Np,(A)Mp,(A)L. The subset

SY(Th) = §9(Th,w)
:{x:pak: pEw, CLEAQ(]R)O7 ke K, 6(Hp0(a)—T1) > 0, ﬁGAU}

of G(A) is called the Siegel set attached to 71 and w. The inequality in the definition
amounts to the assertion that

TPy (HPo(x) - Tl) = TP (HPO(G) - T1) =1.

For example, if G = SL(3), the condition is that the point Hp,(z) in the two
dimensional vector space ag lies in the open cone in Figure 8.1.

THEOREM 8.1 (Borel, Harish-Chandra). One can choose Ty and w so that
G(A) = GQS(T1,w).

This is one of the main results in the foundational paper [BH] of Borel and
Harish-Chandra. It was formulated in the adelic terms stated here in [Borl]. The
best reference might be the monograph [Bor2]. O

From now on, 7} and w are to be fixed as in Theorem 8.1. Suppose that T € ag
is a truncation parameter, in the earlier sense that 3(7") is large for each § € Ay.
We then form the truncated Siegel set

SC(Ty,T) = 8(Ty,T,w) = {x € S°(T1,w) : w(Hp,(z) —T) <0, we Ag}.

For example, if G = SL(3), S¢(Ty,T) is the set of elements z € SY(T}) such that
Hp, (z) lies in the relatively compact subset of ag illustrated in Figure 8.2.
We write F'“(x,T) for the characteristic function in = of the projection of
SY (T, T) onto G(Q)\G(A). Since G(A)! N S%(Ty,T) is compact, FE(-,T) has
compact support on G(Q)\G(A)!, and is invariant under translation by Ag(R)°.
More generally, suppose that P is a standard parabolic subgroup. We define
the sets S¥'(Ty) = SP(T1,w) and SF(T1,T) = ST (T1,T,w) and the characteristic

function F¥ (x, T) exactly as above, but with Ap,, ﬁpo and G(Q)\G(A) replaced by
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7,°

F1GURE 8.1. The shaded region is the projection onto ag of a Siegel
+

set for G = SL(3). It is the translate of the open cone ap, by a point
T: € ag. If Ty is sufficiently regular in the negative cone (—aJISO), the

Siegel set is an approximate fundamental domain.

7,°

FIGURE 8.2. The shaded region represents a truncation of the Siegel

set at a point T' € aJIS . The image of the truncated Siegel set in
0

SL(3,Q)\SL(3,A) is compact.

AL, 81130 and P(Q)\G(A) respectively. In particular, F¥(x,T) is the characteristic
function of a subset of P(Q)\G(A). More precisely, if

x = nmak, n € Np(A), m € Mp(A)}, a € Ap(R)°, k € K,

then
FP(x,T) = FP(m,T) = FM?(m,T).

LEMMA 8.2. For any x € G(A), we have

> > FP(6x,T)rp(Hp(dz)) = 1.

P 5eP(Q\G(Q)
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In case G = SL(2), the lemma follows directly from classical reduction theory,
as we shall see in Figure 8.3 below. The general proof is established from properties
of finite dimensional Q-rational representations of G. (See [A3, Lemma 6.4], a result
that is implicit in Langlands monograph, for example in [Lan5, Lemma 2.12].)

Lemma 8.2 can be restated geometrically in terms of the subsets

Gp(T) = {z € P(Q\G(A): FP(2,T) =1, 7p(Hp(z) - T) =1}

of P(Q)\G(A). The lemma asserts that for any P, the projection of P(Q)\G(A)
onto G(Q)\G(A) maps Gp(T) injectively onto a subset Gp(T) of G(Q)\G(A),
and that G(Q)\G(A) is a disjoint union over P of the sets Gp(T). Otherwise
said, G(Q)\G(A)! has a partition parametrized by the set of standard parabolic
subgroups, which separates the problem of noncompactness from the topological
complexity of G(Q)\G(A)!. The subset corresponding to P = G is compact but
topologically complex, while the subset corresponding to P = F, is topologically
simple but highly noncompact. The subset corresponding to a group P & { Py, G} is
mixed, being a product of a compact set of intermediate complexity with a simple
set of intermediate degree of noncompactness. The partition of G(Q)\G(A)! is,
incidentally, closely related to the compactification of this space defined by Borel
and Serre.

Consider the case that G = SL(2). If K is the standard maximal compact
subgroup of SL(2,A), Theorem 2.1(a) tells us that

SL(2,Q\SL(2,A)/K = SL(2, Z)\SL(2,R)/SO(2) = SL(2, Z)\H,

where H = SL(2,R)/SO(2) is the upper half plane. Since they are right K-
invariant, the two sets Gp(T) in this case may be identified with subsets of
SL(2,Z)\'H, which we illustrate in Figure 8.3. The darker region in the figure
represents the standard fundamental domain for SL(2,Z) in H. Its intersection
with the lower bounded rectangle equals Gg(T), while its intersection with the
upper unbounded rectangle equals G p, (7). The larger unbounded rectangle repre-
sents a Siegel set, and its associated truncation. These facts, together with Lemma
8.2, follow in this case from a basic fact from classical reduction theory. Namely,
if v € SL(2,Z) and z € H are such that the y-coordinates of both z and vz are
greater than e”, then ~ is upper triangular.

For another example, consider the case that G = SL(3). In this case there
are four sets, corresponding to the four standard parabolic subgroups Py, P;, P>
and G. In Figure 8.4, we illustrate the partition of G(Q)\G(A)! by describing the
corresponding partition of the image in ag of the Siegel set S(T7). O

Lemma 8.2 is a critical first step in the proof of Theorem 6.1. We shall actually
apply it in a slightly different form. Suppose that P, C P. Then

Pl\P = (Pl n MP)NP\MPNP 2PN MP\MP.

We write 7/, = 7p,Anp and T = Tp,anr,- We shall regard these two functions as

characteristic functions on ag that depend only on the projection of ay onto agf,
relative to the decomposition

ap = ap’ @aﬁf @ ap,.
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GPO (T)

[ \

-1 —1/2 /2 1

FIGURE 8.3. An illustration for H = SL(2,R)/SO(2,R) of a stan-
dard fundamental domain and its truncation at a large positive num-
ber T, together with the more tractible Siegel set and its associated
truncation.

T,©

FIGURE 8.4. A partition of the region in Figure 8.1 into four sets,
parametrized by the four standard parabolic subgroups P of SL(3).
The set corresponding to P = F; is the truncated region in Figure
8.2.

If P is fixed, we obtain the identity

(8.1) > > FP (6, T)rh (Hp (1) = T) =1
{P1:P1CP}6:€P1(Q)\P(Q)
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by applying Lemma 8.2 to Mp instead of GG, noting at the same time that
FPr(y,T) = FMPi(m, T)
and
Hp,(y) = Hup, (m),
for any point

y = nmk, n € Np(A), me Mp(A), ke K.

We can now begin the proof of Theorem 6.1. We write

kT (z) = Z(_ )dim(Ap/AG) Z Kp(dx,02)7p (Hp(éz) _ T)

SeP(@Q\G(Q)
Z dlm(AP/AG) Z ( Z Z Jalie! ((51(5.1',T)7'51 (le ((51(5.’13) _ T))
P P CP§,eP1(Q)\P(Q)
'TP(HP(5$) —T)Kp(dz,0x),
by substituting (8.1) into the definition of k” (z). We then write
Kp(dx,6x) = Kp(010x,610x)
and
?p (Hp(dx) — T) = ?p (Hp(éléx) — T),
since both functions are left P(Q)-invariant. Combining the double sum over ¢ and

81 into a single sum over § € P;(Q)\G(Q), we write k7 (z) as the sum over pairs
Py C P of the product of (—1)4m(Ar/4c) with

> FP(ox,T)rf (Hp, (0x) — T)7p(Hp(67) — T) Kp(dx, 67).
SePL(Q\G(Q)
The next step is to consider the product
5 (Hp, (0x) — T)7p(Hp(6z) — T) = 74 (H1)7p(Hy),
for the vector
Hy, = Hp,(6z) — Tp,
in ap,. (We have written Tp, for the projection of T onto ap,.) We claim that
Th (H1)7p(Hy) = > (—1)dimAra/AQ) -8 (Hy )7 (Hy),
{P»,Q:PCP,CQ}
for fixed groups P; C P. Indeed, for a given pair of parabolic subgroups P C Q,
the set of P, with P C P, C @ is bijective with the collection of subsets AJI? of
Ag. Since
(—1)dim(Ar,/AQ) — (_1)IARI-IAR ]
the claim follows from Identity 6.2. We can therefore write
(8.2) Th(H)Fp(Hy) = > of(H),
{P2:P,DP}
where
op(Hy) = Y (—1)NmAn/ArE (Hy)R(Hy).
{Q:QD P>}
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LEMMA 8.3. Suppose that Py C P», and that
H, = H? + H,, H? € ap?, Hy € a,

s a point in the space agl = a,fij @a%. The function ogf (H1) then has the following
properties.

(a) 011312 (Hy) equals 0 or 1.

(b) If alff(Hl) =1, then TI};f(Hf) =1, and ||Hs|| < c||H?||, for a positive
constant ¢ that depends only on Py and Ps.

The proof of Lemma 8.3 is a straightforward analysis of roots and weights. It
is based on the intuition gained from the example of G = SL(3), P, = Py, and P a
(standard) maximal parabolic subgroup. For the general case, we refer the reader
to Lemma 6.1 of [A3], which gives an explicit description of the function Ugf from
which the conditions (a) and (b) are easily inferred. In the case of the example,
is summed over the set {P», G}, and we obtain a difference

op(Hy) = o2 (Hy) = 742 (Hy)7p,(Hy) — 7p, (Hy)

of two characteristic functions. The first characteristic function is supported on
the open cone generated by the vectors 3Y and wjy in Figure 8.5. The second
characteristic function is supported on the open cone generated by @) and wy .
The difference 0512 (H,) is therefore the characteristic function of the half open cone
generated by (Y and wy, the region shaded in Figure 8.5. It is obvious that this
function satisfies the conditions (i) and (ii).

FIGURE 8.5. The shaded region is the complement in the upper right
hand quadrant of the acute angled cone spanned by @) and @y . It
represents the support of the characteristic function agf (Hy) attached
to G = SL(3), P, = Py minimal, and P, maximal. This function has
compact support in the horizontal component Hy of Hy, and semi-
infinite support in the vertical component H?.
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We have established that kT (z) equals

Z (71)dim(Ap/AG) Z FP1 (5I,T)

pPCP dePL(Q\G(Q)
Z O'gf (Hp, (6x) —T))Kp((?ﬂ:,(h‘).
{PQZPQDP}
Therefore k7 (z) = k™ (z, f) has an expansion
(8.3) > > FP(ex,T)op (Hp, (0x) — T)kp, p,(62),
P1CP; 5e P1(Q\G(Q)

where kp, p,(z) = kp, p,(x, f) is the value at y = z of the alternating sum

(84) KP1,P2 ('xay) = Z (_l)dim(AP/AG)KP(zyy)

{P:P,CPCP2}
= (~1)timAr/ac) / f@™ yny)dn.
P Np(4)

YEMP(Q)
The function
\(2) = Xy (2) = FP (@, T)o 2 (Hp, (2) - T)
takes values 0 or 1. We can therefore write
E (@) < ) > X" (6x)lkp, p,(62)].
P1CP2 6eP(Q\G(Q)
It follows that

(8.5) / 16T (2)]dar <
GQ\G(A)!

Suppose that the variable of integration z € P;(Q)\G(A)! on the right hand side
of this inequality is decomposed as

X (@)lkpy p, ()| da.

Pich /Pl@)\c:(ml

(8.6) x = prark,
and
(8.7) Hp, (a1) = H? + Hy, H} € ap?, Hy €a§,

where p; € P1(Q)\Mp,(A)*Np,(A), a1 € Ap,(R)° N G(A)!, and k € K. The
integrand is then compactly supported in p;, kK and H;. We need only study its
behaviour in HZ, for points Hf with 7/2(H? — T) > 0. This is the heart of the
proof. It is where we exploit the cancellation implicit in the alternating sum over
P.

We claim that the sum over v € Mp(Q) in the formula for

kPth (Z‘) = KPl,Pz (x,x)

can be restricted to the subset P;(Q) N Mp(Q) of Mp(Q). More precisely, given
standard parabolic subgroups P, C P C P, a point T € aar with B(T) large
(relative to the support of f) for each 8 € Ag, and a point z € P;(Q)\G(A)! with

xT(z) # 0, we claim that

/ f(z™tynx)dn = 0,
Np(4)
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for any element 7 in the complement of P;(Q) in Mp(Q).
Consider the example that G = SL(2), P, = Py, and P = P, = G. Then
Np = Ng = {1}. Suppose that v belongs to the set

Mp(Q) - P (Q) = G(Q) — R(Q).

Then ~ is of the form <2 :), for some element ¢ € Q*. Suppose that z is such
that x7'(x) # 0. Then

U * e" 0
z :p1a1k7 b1 = (01 u 1) a; = (0 er) ) ke K7
1

for an element u; € A* with |u;| = 1 and a real number r that is large. We see that

| st = )
Np(A)
im0\ (u 0N "/ o\ [ur *\ /e 0
()6 ) CDE 6
:f<k—1 (u%;% :) k)

Since f is compactly supported, and |uZe®"c| = " is large, the last expression
vanishes. The claim therefore holds in the special case under consideration.

The claim in general is established on p. 944 of [A8]. Taking it now for granted,
we can then replace the sum over Mp(Q) in the expression for kp, p,(z) by a
sum over Py(Q) N Mp(Q). But Pi(Q) N Mp(Q) equals Mp, (Q)Nf, (Q), where
Nf;l = Np, N Mp is the unipotent radical of the parabolic subgroup P, N Mp of
Mp. We may therefore write kp, p,(x) as

Z (—1)dim{Ar/4c) Z Z / f(z™ prnz)dn.

{P:PiCPCP} REMp, (Q) veNE (Q)
Now the restriction of the exponential map
exp: np, = ngl énp — Np, = fole

is an isomorphism of algebraic varieties over Q, which maps the Haar measure dx;
on np, (A) to the Haar measure dn; on Np, (A). This allows us to write kp, p,(x)
as

Z ( Z (—1)dim(Ar/Ac) Z /nP(A) xluexp(C—kX)x)dX),

HEMp, (Q)  P:PiCPCP;} cenk,

There is one more operation to be performed on our expression for kp, p,(z).
We shall apply the Poisson summation formula for the locally compact abelian
group np, (A) to the sum over the discrete cocompact subgroup nf, (Q). We identify
nﬁl with dim(nﬁl)—copies of the additive group by choosing a rational basis of root
vectors. We can then identify ng (A) with its dual group by means of the standard

bilinear form (-,-) on A2 and a nontrivial additive character ¥ on A/Q. We
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obtain an expression

ZZ d1m (Ap/Ac) Z / x 1uexp(X1)x)¢(<§,X1>)dX1

gent (@ 7" (A)

for kp, p,(x). But nf; (Q) is contained in ngf (Q), for any P with Py C P C P,. As
P varies, certain summands will occur more than once, with differing signs. This
allows us at last to effect the cancellation given by the alternating sum over P. Set

nP1 —{fen Q) : £¢np (Q), for any P C Py}

It then follows from Identity 6.2 that kp, p,(x) equals
(8.8)

(_1)dim(Ap2/Ac) Z Z ( " f(x—luexp)ﬁxﬁp(@,X1>)dX1> .

HEMP, (Q) geny2 (Q)

We have now obtained an expression for kp, p,(z,z) that will be rapidly de-
creasing in the coordinate H? of x, relative to the decompositions (8.6) and (8.7).
The main reason is that the integral

hx,u(YI):/ w fla™ pexp X12)h ((Y1, X1))dXy

is a Schwartz-Bruhat function of ¥; € np, (A). This function varies smoothly with
x € G(A), and is finitely supported in p € Mp,(Q), independently of z in any
compact set.

We substitute the formula (8.8) for kp, p,(x) into the right hand side of (8.5),
and then decompose the integral over x according to the (8.6). We deduce that the

the integral
/ K7 () dr
GQ\G(A)!

is bounded by a constant multiple of

(8.9) Z Z Z sup/’hyu Ad (a1) )’dal,

P1CP; peMp, (Q) €€n (Q

where the integral is taken over the set of elements a; in Ap, (R)" N G(A)! with
crp1 (le (a1) — T) = 1, and the supremum is taken over the compact subset of
elements

y=a]'prark, p1 € P (Q)\Mp,(A)'Np (A), a € Ap (R)°NG(A), k € K,

in G(A)! with FP1(py,T) = O’P (Hp,(a1) = T) = 1. We have used two changes
of variables of integration here, with complementary Radon-Nikodym derivatives,
which together have allowed us to write

dX dx = d(alelal)dpldaldk, T =piark.

The mapping Ad(a;) in (8.9) acts by dilation on . We leave the reader to show
that this property implies that (8.9) is finite, and hence that the integral of [k (z)|
converges. (See [A3, Theorem 7.1].) This completes our discussion of the proof of
Theorem 6.1. g
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We have seen that Lemma 8.3 is an essential step in the proof of Theorem
6.1. There is a particularly simple case of this lemma that is important for other
combinatorial arguments. It is the identity

0, if P, £G,

8.10 —1)dim(Ar /AP) 2P ([T VT (Hy) =
(8.10) Z (-1 7p, (H1)Tp(H1) L itP —a,

{P:P,CP}

obtained by setting P, = P;. The identity holds for any standard parabolic sub-
group P; and any point Hy € ap,. Indeed, the left hand side of (8.10) equals
o’ﬁi (H1), so the identity follows from condition (ii) of Lemma 8.3.

There is also a parallel identity

0, if P #£G,

8.11 —1)dim(Ap /AP)ZD (F Hy) =
(8.11) (-1 Tp, (H1)7p(Hy) L itP—a

{P:P,CP}

related by inversion to (8.10). To see this, it is enough to consider the case that Py
is proper in G. One can then derive (8.11) from (8.10) by evaluating the expression

o (- AORE (Hy)rf (Hy )7 (Hy)
{P,Q:P\CPCQ}

as two different iterated sums. For if one takes ) to index the inner sum, and
assumes inductively that (8.11) holds whenever G is replaced by a proper Levi
subgroup, one finds that the expression equals the sum of 7p, (H;) with the left
hand side of (8.11). On the other hand, by taking the inner sum to be over P,
one sees from (8.10) that the expression reduces simply to 7p, (H1). It follows that
the left hand side of (8.11) vanishes, as required. In the case that G = SL(3) and
Py = Py is minimal, the reader can view the left hand side of (8.11) (or of (8.10)) as
an algebraic sum of four convex cones, formed in the obvious way from Figure 5.1.
In general, (8.11) is only one of several identities that can be deduced from (8.10).
We shall describe these identities, known collectively as Langlands’ combinatorial
lemma, in §17.

9. Qualitative behaviour of J7(f)

Theorem 6.1 allows us to define the linear form

JT(f) = J9T(f) = / K (2, f)d, f € C2(G(A)),

GQ\GA)!

on C¢° (G (A)) We are still a long way from converting the geometric and spectral
expansions of k7 (x, f) to an explicit trace formula. We put this question aside for
the moment, in order to investigate two qualitative properties of J7 (f).

The first property concerns the behaviour of J(f) as a function of 7T

THEOREM 9.1. For any f € C2°(G(A)), the function
T — JUf),

defined forT € aar sufficiently regular, is a polynomial in T whose degree is bounded
by the dimension of ag.
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We shall sketch the proof of Theorem 9.1. Let T} be a fixed point in ag with
B(T1) large for every 8 € Ag, and let T’ € ag be a variable point with 8(T'—T31) > 0
for each (. It would be enough to show that the function

T — S -I) = [ (¥ (z) — K7 (2) da
GQ\G(A)!
is a polynomial in T. If we substitute the definition (6.1) for the two functions in
the integrand, we see that the only terms in the resulting expression that depend
on T and T3 are differences of characteristic functions

?p (Hp(éx) - T) - ?p(Hp((Sl‘) - Tl)

We need to compare the supports of these two functions. We shall do so by ex-
panding the first function in terms of analogues of the second function for smaller
groups.

Suppose that H and X range over points in a§/. We define functions

I's(H, X), PO PR,
inductively on dim(Ap/Ag) by setting
(9.1) Tp(H = X)= 3 (-)IAMAOTRH)T(H, X),
{Q:Q>oP}

for any P. Since the summand with Q = P equals the product of (—1)dim(Ar/4c)
with I (H, X), (9.1) does indeed give an inductive definition of I, (H, X) in terms
of functions I'y (H, X) with dim(Ag/Ag) less than dim(Ap/Ag). It follows induc-
tively from the definition that I'p(H, X) depends only on the projections Hp and
Tp of H and T onto a$.

LEMMA 9.2. (a) For any X and P, the function
H — TI'p(H,X), H € af,

18 compactly supported.
(b) The function

X — /G I'»(H,X)dH, X €a§,
ap

is a homogeneous polynomial of degree equal to dim(aG).

Once again, we shall be content to motivate the lemma geometrically in some
special cases. For the general case, we refer the reader to [A5, Lemmas 2.1 and
2.2).

The simplest case is when a$ is one-dimensional. Suppose for example that
G = SL(3) and P = P, is a maximal parabolic subgroup. Then @ is summed over
the set {P;,G}. Taking X to be a fixed point in positive chamber in ag, we see
that H — I'x(H, X) is the difference of characteristic functions of two open half
lines, and is hence the characteristic function of the bounded half open interval in
Figure 9.1.

Suppose that G = SL(3) and P = Py. Then @ is summed over the set
{Py, P1, P>, G}, where P, and P, are the maximal parabolic subgroups represented
in Figure 5.1. If X is a fixed point in the positive chamber a(')" in af = ag, we
can describe the summands in (9.1) corresponding to P; and P, with the help of
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Tp(H, X) =1 Pp(H, X) =0
G
—C ) ap =
0 X

FIGURE 9.1. The half open, bounded interval represents the support
of a characteristic function I, (H, X)) of H, for a maximal parabolic
subgroup P C G. It is the complement of one open half line in
another.

Figure 9.1. We see that the function H — I'x(H, X) is a signed sum of character-
istic functions of four regions, two obtuse cones and two semi-infinite rectangles.
Keeping track of the signed contribution of each region in Figure 9.2, we see that
I's(H, X) is the characteristic function of the bounded shaded region in the figure.
It is clear that the area of this figure is a homogeneous polynomial of degree 2 in
the coordinates of X.

X
+1+1-1
0

FIGURE 9.2. The bounded shaded region represents the support of
the characteristic function I, (H, X) of H, for the minimal parabolic
subgroup P = Py of SL(3). It is an algebraic sum of four unbounded
regions, the two obtuse angled cones with vertices 0 and X, and the
two semi-infinite rectangles defined by 0 and the projections of X onto
the two spaces ap, and ap,.

O

Let us use Lemma 9.2 to prove Theorem 9.1. We set H = Hp(dz) — T1 and
X =T —T;. Then H — X equals Hp(dz) — T, and the expansion (9.1) is

7p(Hp(0x)—T) = > (-1)mA/A)28 (Hp(62) — T1) T (Hp(62) — T1, T — T1).
QDP
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Substituting the right hand side of this formula into the definition of JT(f), we
obtain

- [ S S ot
G(Q\G(A)? s5eP(Q\G(Q) QDP

= (— 1)dim(AP/AQ) C(ndzx)dx
Z /G(Q)\G(A)1 Z Z

pPcQ SeQ(Q\G(Q) neP(@Q\Q(Q)

= Z/ ( 1)dim(AP/AQ) Z C(nz)da,

QN\G(A)! pcg neEP(Q)NMq(Q)\Mq(Q)

where
Cly) = Kp(y,y)78 (Hp(y) — T))T, (Ho(y) — Th,T - Ty).

We are going to make a change of variables in the integral over z in Q(Q)\G(A)*.
Since the expression we ultimately obtain will be absolutely convergent, this change
of variables, as well as the ones above, will be justified by Fubini’s theorem.

We write = ngmgagk, for variables ng,mg,ag and k in Ng(Q)\Ng(A),
Mgo(Q)\Mg(A)', Ag(R)°NG(A)!, and K respectively. The invariant measures are
then related by

dz = 5@ (aQ)andedank.
The three factors in the product C(nz) become
F/Q(HQ<’I’] ) Tl,T Tl) :FQ(HQ(.I')—Tl,T—Tl) :F/Q(HQ(GQ)—T]_,T—T]_),
7 (Hp(nz) — T1) = 78 (Hp(nmg) — Th),
and

-1

Kp(nxmx)=/N(A) > fET mglag ng T - n - qmgagmek)dn.
P

YEMP(Q)

In this last integrand, the element 7 normalizes the variables ng and ag without
changing the measures. The same is true of the element . We can therefore absorb
both variables in the integral over n. Since

dg(ag)dn = d(aélnélanaQ),
the product of dg(ag) with Kp(nz,nz) equals
(9.2) / Z f k™ m =t n - pmgk)dn.
NP(A) ’YEMP

The original variable ng has now disappeared from all three factors, so we may as
well write

dn = d(n®ng) = dn%dng, n? e N2(A), ng € No(A),
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for the decomposition of the measure in Np(A). The last expression (9.2) is the
only factor that depends on the original variable k. Its integral over k equals

/ / / (k71m517771 -n9ng - nmeok)dn®dngdk
No(a) JNZ (4)

'yE]VI
z/ / / f(k™ m =t @ pmgnok)dngdkdn®
NQ (A) YEMp(Q) Ng(4)
/ > folmg'nt - yn? - nymg)dn®
N (A) ~EMp(Q)

= Kpnng, (nmmg,nmq),

where
folm) // F(k~Ymngk)dngdk, m € Mg(A),
N (A

and Kpna, (-, -) is the induced kernel ( 1), but with G, P, and f replaced by Mg,
PN Mg, and fg respectively. We have used the facts that

dng = d((nmq)~'ng(nmq)),
for  and m¢ as above, and that

5Q(m) — e2r@(Ho(m)) — 1,

when m = ~ lies in Mg(Q). The correspondence f — fg is a continuous linear
mapping from C° (G(A)) to C2° (MQ(A)) It was introduced originally by Harish-
Chandra to study questions of descent.

We now collect the various terms in the formula for J7(f). We see that J7(f)
equals the sum over @ and the integral over mg in Mg (Q)\Mg(A)* of the product
of

S (- 1)dmidr Ae) 3 Kpong (nmq, nmq)7E (Hp(nmg) — Th)
PCQ n€P(Q)NMq(Q\Mq(Q)

with the factor
pQ(Tl,T):/ I"Q(HQ(aQ)—Tl,T—Tl)da
AQ(R)°NG(R)?

- /G T0(H — Ty, T — Ty)dH.
a

Q

By Lemma 9.2, the last factor is a polynomial in T' of degree equal to dim(ag). To
analyze the first factor, we note that

dlm(Ap/AQ) = dim(ApmM'Q/AMQ)
and
?g (Hp(nmq) — Th) = ?%QMQ (Hpnmg (mmq) — Th),

and that the mapping P — PN Mg is a bijection from the set of standard parabolic
subgroups P of G with P C @ onto the set of standard parabolic subgroups of Mg.
The first factor therefore equals the analogue kT (mgq, fq) for T1, mqg and fg of the
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truncated kernel k7' (x, f). Its integral over mq equals JM@Ti(fg5). We conclude
that

(9:3) JEf) =D TN (fo)pe(Th,T).
QDPy
Therefore JZ(f) is a polynomial in T whose degree is bounded by the dimension

of aOG . This completes the proof of Theorem 9.1. ([

Having established Theorem 9.1, we are now free to define J7 (f) at any point T
in ag. We could always set T' = 0. However, it turns out that there is a better choice
in general. The question is related to the choice of minimal parabolic subgroup Fp.

We write P(Mpy) for the set of (minimal) parabolic subgroups of G with Levi
component M. The mapping

s — sPy = wsPOwgl7 s € Wy,

is then a bijection from Wy to P(Mp). We recall that wy is a representative of s
in G(Q). If G = GL(n), we can take ws to be a permutation matrix, an element
in G(Q) that also happens to lie in the standard maximal compact subgroup K of
G(A). In general, however, s might require a separate representative ws in K. The
quotient w; 1wy does belong to My(A), so the point

HPO (ws_1> = HMO (ws—lws)

in ag is independent of the choice of Py. By arguing inductively on the length of
s € Wy, one shows that there is a unique point Ty € ag; such that
(9.4) Hp,(w;') =Ty — s Ty,
for every s € Wy. (See [A5, Lemma 1.1].) In the case that G equals GL(n) and K
is the standard maximal compact subgroup of GL(n, A), Ty = 0.

PROPOSITION 9.3. The linear form

J(f)=JE(f), felx(Ga)),
defined as the value of the polynomial
JE(f) =TT ()
at T =Ty, is independent of the choice of Py € P(My).
The proof of Proposition 9.3 is a straightforward exercise. If T' € ag is highly

regular relative to Py, sT is highly regular relative to the group P} = sPy in P(My).
The mapping

P — P =sP=w,Pw;", PO P,

is a bijection between the relevant families {P > Py} and {P’ D Pj} of standard
parabolic subgroups. For any P, the mapping § — ¢ = w,d is a bijection from
P(Q)\G(Q) onto P'(Q)\G(Q). It follows from the definitions that

Tp(Hp(0x) = T) = 7p (sHp(w; '6'z) — sT)

=Tps (Hp/(é’x) —(sT — sTo + T())).

Comparing the definition (6.1) of the truncated kernel with its analogue for P =
sPy, we see that

Tiy () = I3, 100 (),
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where the subscripts indicate the minimal parabolic subgroups with respect to
which the linear forms have been defined. Each side of this identity extends to a
polynomial function of T € ay. Setting T' = Tj, we see that the linear form

J(f) = Tgy(F) = T3, ()
is indeed independent of the choice of Py. (See [A5, p. 18-19].) O
The second qualitative property of JZ(f) concerns its behaviour under con-
jugation by G(A). A distribution on G(A) is a linear form I on C°(G(A)) that

is continuous with respect to the natural topology. The distribution is said to be
invariant if

I(fY) = I(f), feCx(GA)), yeGA),
where
f(x) = flyzy™).

The proof of Theorem 6.1 implies that f — J7(f) is a distribution if 7' € a;o is
sufficiently regular. Since JT(f) is a polynomial in T, its coefficients are also dis-
tributions. In particular, f — J(f) is a distribution on G(A), which is independent
of the choice of Py € P(Mp). We would like to compute its obstruction to being
invariant.

Consider a point y € G(A), a function f € C® (G(A)), and a highly regular
point 7' € af. We are interested in the difference J(f¥) — JT(f).

To calculate JT(fY), we have to replace the factor

Kp(z,dz) = Z / fz7r Y yndz)dn
veMp(@) Y NP (A)

in the truncated kernel (6.1) by the expression

/N " Uz 6 tynya)dn = Kp(dazy ™t oy t).
YEMp(Q) " P

The last expression is invariant under translation of y by the central subgroup
Ag(R)?. We may as well therefore assume that y belongs to the subgroup G(A)!
of G(A). With this condition, we can make a change of variables + — zy in the
integral over G(Q)\G(A)! that defines JZ(f¥). We see that JZ (f¥) equals

/ (Z(_l)dim(Ap/AG) Z Kp((sm,aib)?p(Hp((SZEy) —T))d{E
GG = p 5EPQ\G@

If 6x = nmak, for elements n, m, a, and k in Np(A), Mp(A)L, Ap(R)°NG(A)!,
and K respectively, set kp(dx) = k. We can then write

7p(Hp(6zy) = T) =7p(Hp(a) + Hp(ky) = T)
=7p(Hp(6z) — T + Hp(kp(5z)y)).
The last expression has an expansion
3 (~1)imAe /AR (Hp(8a) — T)Tg (Hp(60) — T, ~Hp(kp(6)y))
QDP

given by (9.1), which we can substitute into the formula above for JZ(fY).
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The discussion now is identical to that of the proof of Theorem 9.1. Set

ug (k,y) = /G Iy (H,—Hg(ky))dH, ke K,
aQ
and
foulm) =So(m)?t [ [ ftmnk)uy(k dndb, m e Mo(4).
K JNg ()

The transformation f — fg, is a continuous linear mapping from Cg° (G(A))
to C2°(Mg(A)), which varies smoothly with y € G(A), and depends only on the
image of y in G(A)!. The proof of Theorem 9.1 then leads directly to the following
analogue

(9.5) JE) =0 T (fq)

QD P

of (9.3). Since we have taken Ko = K N Mg(A) as maximal compact subgroup of
Mg(A), Hp,(w; ') equals Hpyrr, (w; ') for any s in the subgroup Wg of Wy =
W§. The canonical point Ty € a§/, defined for G by (9.4), therefore projects onto
the canonical point in aOQ attached to Mg. Setting T' = T in (9.5), we obtain the
following result.

THEOREM 9.4. The distribution J satisfies the formula

T =Y T (fqu)

QDFPo

for conjugation of f € C°(G(A)) by y € G(A). O

10. The coarse geometric expansion

We have constructed a distribution J on G(A) from the truncated kernel
kT (z) = kT (x, f). The next step is to transform the geometric expansion for k7 ()
into a geometric expansion for J(f). The problem is more subtle than it might
first appear. This is because the truncation k7' (x) of K(z,) is not completely
compatible with the decomposition of K (z,x) according to conjugacy classes. The
difficulty comes from those conjugacy classes in G(Q) that are particular to the
case of noncompact quotient, namely the classes that are not semisimple.

In this section we shall deal with the easy part of the problem. We shall give
a geometric expansion of J(f) into terms parametrized by semisimple conjugacy
classes in G(Q). The proof requires only minor variations of the discussion of the
last two sections.

Recall that any element v in G(Q) has a Jordan decomposition v = pv. It is
the unique decomposition of v into a product of a semisimple element yu = 7, in
G(Q), with a unipotent element v = v, in G(Q) that commutes with v;. We define
two elements v and 4" in G(Q) to be O-equivalent if their semisimple parts 7, and
7. are G(Q)-conjugate. We then write @ = OF for the set of such equivalence
classes. A class 0 € O is thus a union of conjugacy classes in G(Q).

The set O is in obvious bijection with the semisimple conjugacy classes in G(Q).
We shall say that a semisimple conjugacy class in G(Q) is anisotropic if it does not
intersect P(Q), for any P C G. Then v € G(Q) represents an anisotropic class if
and only if Ag is the maximal Q-split torus in the connected centralizer H of ~ in
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G. (Such classes were called elliptic in [A3, §2]. However, the term elliptic is better
reserved for semisimple elements v in G(Q) such as 1, for which Ag is the maximal
split torus in the center of H.) We can define an anisotropic rational datum to be
an equivalence class of pairs (P, ), where P C G is a standard parabolic subgroup,
and « is an anisotropic conjugacy class in Mp(Q). The equivalence relation is
just conjugacy, which for standard parabolic subgroups is given by the Weyl sets
W (ap,ap) of §7. In other words, (P’,a’) is equivalent to (P, «) if a = w; 'a/w; for
some element s € W(ap,ap/). The mapping that sends {(P, «)} to the conjugacy
class of a in G(Q) is a bijection onto the set of semisimple conjugacy classes in G(Q).
We therefore have a canonical bijection from the set of anisotropic rational data
and our set O. Anisotropic rational data will not be needed for the constructions of
this section. We mention them in order to be able to recognize the formal relations
between these constructions and their spectral analogues in §12.

In case G = GL(n), the classes O are related to basic notions from linear
algebra. The Jordan decomposition is given by Jordan normal form. Two elements
v and 7' in GL(n,Q) are O-equivalent if and only if they have the same set of
complex eigenvalues (with multiplicity). This is the same as saying that v and
~" have the same characteristic polynomial. The set O of equivalence classes in
GL(n,Q) is thus bijective with the set of rational monic polynomials of degree
n with nonzero constant term. If o0 € O is an equivalence class, the intersection
0N P(Q) is empty for all P # G if and only if the characteristic polynomial of o
is irreducible over Q. This is the condition that o consist of a single anisotropic
conjugacy class in G(Q). A general equivalence class 0 € O consists of only one
conjugacy class if and only if the elements in o are all semisimple, which in turn is
equivalent to saying that the characteristic polynomial of o has distinct irreducible
factors over Q. We leave the reader to verify these properties from linear algebra.

If G is arbitrary, we have a decomposition

(10.1) K(z,z) = ZKO(x,x),

0cO

where

Ky(z,x) = Zf(:cilfyx).

YEO

More generally, we can write

Kp(z,x) = Z / f(z™tynx)dn = Z Kpo(x,x)
veMp(Q) Y VP (A) 0€0
for any P, where
Kpo(z,x) = Z / f(z™tynzx)dn.
veMp(@no * NP (&)

We therefore have a decomposition

(10.2) K (z) =) k! (x)

0cO
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of the truncated kernel, where
ko (x) = kg (z, f)

- Z(,l)dim(Ap/Ac)
P

The following extension of Theorem 6.1 can be regarded as a corollary of its proof.

/ Kp7(,(5:c,5x)?p (Hp((5$) 7T).
SeP(Q\G(Q)

COROLLARY 10.1. The double integral

(10.3) > / kL (x, f)dz
a0 /G@\G(a)!

converges absolutely.

The proof of Corollary 10.1 is in fact identical to the proof of Theorem 6.1
sketched in §8, but for one point. The discrepancy arises when we apply the Poisson
summation formula to the lattice ngl (Q), for standard parabolic subgroups P; C P.
To do so, we require a sum over the lattice, or what amounts to the same thing, a

sum over elements v € N};l (Q). In the proof of Theorem 6.1, we recall that such a
sum arose from the property

P1(Q) N Mp(Q) = Mp, (QNE, (Q).
That it also occurs in treating a class 0 € O is a consequence of the parallel property
(10.4) P(Q N Mp(Q)No= (Mp,(Q)No)Np, (Q).

This is in turn a consequence of the first assertion of the next lemma.

LEMMA 10.2. Suppose that P D Py, v € M(Q), and ¢ € Co.(Np(A)). Then
> Yooty me) = Y 6w)
§eNP(Q)1, \Np(Q) nENP(Q),, vENP(Q)

and

/ / ¢('y*1n1_1’yn2n1)dn2dn1 :/ o(n)dn,
Np(A)y \Np(A) JNp(A),, Np(4)

where Np(-),, denotes the centralizer of s in Np(-).

The proof of Lemma 10.2 is a typical change of variable argument for unipotent
groups. The first assertion represents a decomposition of a sum over Np(Q), while
the second is the corresponding decomposition of an adelic integral over Np(A).
(See [A3, Lemmas 2.1 and 2.2].) O

The first assertion of the lemma implies that P(Q) N o equals
(Mp(Q) No)Np(Q). If we apply it to the pair (Mp, Py N Mp) in place of (G, P),
we obtain the required relation (10.4). We then obtain Corollary 10.1 by following
step by step the proof of Theorem 6.1. (Theorem 7.1 of [A3] was actually stated
and proved directly for the functions kZ'(z) rather than their sum k7 (z).) O

Once we have Corollary 10.1, we can apply Fubini’s theorem to double integral
(10.3). We obtain an absolutely convergent expansion

JU) =TI,

0cO
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whose terms are given by absolutely convergent integrals

(10.5) JE(f) = / kX (z, f)d, 0€0.
GQ\G(A)!

The behaviour of JI'(f) as a function of T is similar to that of JT(f). We have
only to apply the proof of Theorem 9.1 to the absolutely convergent integral (10.5).
This tells us that for any f € C°(G(A)) and o € O, the function

T — Jg (/)

defined for T € af sufficiently regular in a sense that is independent of o, is a
polynomial in 7' of degree bounded by the dimension of a§. We can therefore
define JI'(f) for all values of T' € ag by its polynomial extension. We then set

Jo(f) = J3° (f), 0€0,

for the point Ty € a§ given by (9.4). The proof of Proposition 9.3 tells us that
Jo(f) is independent of the choice of minimal parabolic subgroup Py € P(Mp).

The distributions J,(f) = J¥(f) can sometimes be invariant, though they are
not generally so. To see this, we apply the proof of Theorem 9.4 to the absolutely
convergent integral (10.5). For any Q D Py and h € C2°(Mq(A)), set

20h) =D Jag? (h), 0€0,
0Q

where 0¢ ranges over the finite preimage of o in O@ under the obvious mapping
of OMa into @ = O%. We then obtain the variance property

(10.6) Jo(f) = 3 7 (fou): 0€ 0, yeG(h)
QDPy

in the notation of Theorem 9.4. Observe that o need not lie in the image the map
OMa — O attached to any proper parabolic subgroup @ C G. This is so precisely
when o is anisotropic, in the sense that it consists of a single anisotropic (semisimple)
conjugacy class. It is in this case that the distribution J,(f) is invariant.

The expansion of JZ(f) in terms of distributions JI (f) extends by polynomial
interpolation to all values of T'. Setting T' = Tj, we obtain an identity

(10.7) J(f) =Y Jo(f), fecz(GA)),

0cO

of distributions. This is what we will call the coarse geometric expansion. The
distributions J, (f) for which o is anisotropic are to be regarded as general analogues
of the geometric terms in the trace formula for compact quotient.

11. Weighted orbital integrals

The summands J,(f) in the coarse geometric expansion of J(f) were defined
in global terms. We need ultimately to describe them more explicitly. For example,
we would like to have a formula for J,(f) in which the dependence on the local
components f, of f is more transparent. In this section, we shall solve the problem
for “generic” classes 0 € O. For such classes, we shall express J,(f) as a weighted
orbital integral of f.
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We fix a class 0 € O, which for the moment we take to be arbitrary. Recall
that

Keolo) = Y [ s hmyn,
~EMp(Q)no ¥ VP (A)

for any P D Py. Lemma 10.2 provides a decomposition of the integral over Np(A)
onto a double integral. We define a modified function

(1L1)  Kpo(z.y)= > > / f@™p~ ynny)dn
YEMp (@0 nENP (@), \Np (@) ¥ VP (A)

by replacing the outer adelic integral of the lemma with a corresponding sum of
rational points. We then define a modified kernel kI'(z) = kI (x, f) by replac-
ing the function Kp,(dz,dx) in the formula for kI'(z) with the modified function

I?P,o (6x,6x). That is,

K (x, f) = (~1)dmAr/ae)  N* o Rp (0w, 62)7p (Hp (0x) — T).
P dEP(Q\G(Q)

THEOREM 11.1. If T € alﬁo is highly reqular, the integral

(11.2) / kL (x, f)dz
GQ\G(A)?

converges absolutely, and equals JI (f).

The proof of Theorem 11.1 is again similar to that of Theorem 6.1, or rather
its modification for the class o discussed in §10. Copying the formal manipulations
from the first half of §8, we write

(11.3) / E?(m)dx: Z/ XT(.’E)’I;p17P270((E)d.’E,
GQ\G(A)* PLCP, Y PLQ\G(A)!

where x7'(z) is as in (8.5), and

kpopo(m)y = > (—1)HmArMAGK, (2, 2).
{P:P,CPCP,s}

To justify these manipulations, we have to show that for any P; C P, the integral

(11.4) / (@) Fopy ()] d
PL(Q\G(A)?

is finite. This would also establish the absolute convergence assertion of the theo-
rem.
We estimate the integral (11.4) as in the second half of §8. We shall be content
simply to mention the main steps. The first is to show that if 7" is sufficiently
regular and x7(z) # 0, the summands in the formula for Kp,(x,z) vanish for
elements v in the complement of P,(Q) N Mp(Q)No in Mp(Q)No. The next step
is to write P1(Q) N Mp(Q) No as a product (Mp, (Q) No)NE (Q), by appealing to
Lemma 10.2. We then have to apply Lemma 10.2 again, with (Mp, P N Mp) in
place of (G, P), to the resulting sum over (u,v) in the product of Mp, (Q) No with
N£,(Q). This yields a threefold sum, one of which is taken over the set

N};l (Q)y, = exp (“51 (Q)#s)a
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where nf; (Q),, denotes the centralizer of s, in the Lie algebra np (Q). The last
step is to apply the Poisson summation formula to the lattice n; (Q),,, in nf (A),,.
The resulting cancellation from the alternating sum over P then yields a formula
for %p11p2,0(x) analogous to the formula (8.8) for kp, p,(z). Namely, Ep17p270(x)
equals the product of (—1)4m(Ar/46) with the sum over u € Mp, (Q) No of

> > / (A)_f(m”n”uexp(Xl)nx)w(@,X1>)dX1)7

nENP, (Q)n,\Np, (Q) 56"% (@,

where nllzf (Q)},, is the intersection of n% (Q),, with the set n% (Q) in (8.8). The
convergence of the integral (11.4) is then proved as at the end of §8. (See [A3,
p. 948-949].)

Once we have shown that the integrals (11.4) are finite, we know that the
identity (11.3) is valid. The remaining step is to compare it with the corresponding

identity

3 / @)y py o (@),
PL(Q\G(A)!

/ kI (z)dx =
GQ\G(A)! P.CPs

which we obtain by modifying the proof of Theorem 6.1 as in the last section.
Suppose that P; C P, are fixed. We can then write

/ X @)y o ()
P (Q\G(A)!

= / XT(.L“)(/ %p1’p270(n1$)dn1>dx,
Mp, (Q)Np, (A)\G(A)? Np, (Q)\Np, (A)

since xT'(z) is left Np, (A)-invariant. The integral of 7<:'p17p2’0(n1x) over nq is equal
to the sum over pairs

(P, 1), PCPCP, pe Mp (Q)No,

of the product of the sign (—1)3™(Ar/A¢) with the expression

/ Z (/ f(x_lnfln_lunnnlx)dn) dn;.
Np (Q\Np, Np(A),,

A) NENP(Q) s \Np(Q)

If we replace the variable ny by vnj, and then integrate over v in Np(Q)\Np(A),
we can change the sum over 7 to an integral over v in Np(Q),, \Np(A). Since
the resulting integrand is invariant under left translation of v by elements in the
larger group Np(A),,, we can in fact integrate v over Np(A), \Np(A). We can
thus change the sum of 7 in the expression to an adelic integral over v. Applying
Lemma 10.2 to the resulting double integral over v and n, we see that the expression

equals
/ / f(z™ ny b unnyz)dndn; .
Np (Q\Np, (A) /Np(A)

The signed sum over (P, 1) of this last expression equals

/ kpl,p%a(nlx)dnl.
Np, (Q\Np, (A)
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We conclude that

/ (@) o (o)ds
PL@\G(A)!

/ XT(x)(/ kPI,PQ,o(nlx)dm)dx
Mp, (@) Np, (A\G(A)! Npy (@\Np, (4)

= / XT(ilf)kP17p27o(ZL')d£L'.
PL(Q\G(A)!

We have shown that the summands corresponding to P; C P, in the two
identities are equal. It follows that

/ kD (z)dz = / kL (z)dz = JE(f).
G(Q\G(A)! GQ\G(A)!

This is the second assertion of Theorem 11.1. O

The formula (11.2) for JI(f) is better suited to computation. As an example,
we consider the special case that the class 0 € O consists entirely of semisimple
elements. Then o is a semisimple conjugacy class in G(Q), and for any element
v € o, the centralizer G(Q)., of v = =y, contains no nontrivial unipotent elements.
In particular, the group Np(Q),, = Np(Q), attached to any P is trivial. It follows
that

Kpo(z,x)= > > fla'n " yna).
YEMP(Q)NonENP(Q)
To proceed, we need to characterize the intersection Mp(Q) No.

In §7, we introduced the Weyl set W (ap,, Clpl/) attached to any pair of standard
parabolic subgroups P; and Pj. Suppose that P; is fixed. If P is any other standard
parabolic subgroup, we define W (P;; P) to be the set of elements s in the union over
P C P of the sets W (ap,,ap;) such that s~ta > 0 for every root « in the subset
Agl, of Ap;. In other words, s~'a belongs to the set ®p, for every such a.. Suppose
for example that G = GL(n), and that P; corresponds to the partition (v1,...,v,)
of n. We noted in §7 that each of the sets W (ap,,ap;) is identified with a subset of
the symmetric group Sp,. The union over P] of these sets is identified with the full
group Sp,. If P corresponds to the partition (ni,...,n,) of n, W(P;; P) becomes
the set of elements s € S, such that (vya),...,Vs(p,)) is finer than (ny,...,ny),
and such that s~1(i) < s71(i + 1), for any i that is not of the form nj + -+ + ny,
for some k.

The problem is simpler if we impose a second condition on 0. Suppose that
(P1, ) represents the anisotropic rational datum attached to o in the last section,
and that y; belongs to the anisotropic conjugacy class a; in Mp, (Q). Then 7,
represents the semisimple conjugacy class in 0. We know that the group H, obtained
by taking the connected component of 1 in the centralizer of 7; in G, is contained
in Mp,. For H would otherwise have a proper parabolic subgroup over Q, and
H(Q) would contain a nontrivial unipotent element, contradicting the condition
that o consist entirely of semisimple elements. The group H(Q) is of finite index in
G(Q),. We shall say that o is unramified if G(Q), is also contained in Mp,. This
is equivalent to asking that the stabilizer of the conjugacy class ay in W(ap,, ap,)
be equal to {1}. In the case G = GL(n), the condition is automatically satisfied,
since any centralizer is connected.
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Assume that o is unramified, and that (Py, 1) and 71 € oy are fixed as above.
The condition that o be unramified implies that if (P], ) is any other representa-
tive of the anisotropic rational datum of o, there is a unique element in W (ap,, ap;)
that maps a; to . Suppose that P is any standard parabolic subgroup and that
v is an element in Mp No. It follows easily from this discussion that + can be
expressed uniquely in the form

v = wmwg s € W(Py; P), p€ Mp(Q),, ., \Mp(Q),
where as usual,
MP(Q)wmw.:l =Mp oy (V)

is the centralizer of wsy;w; ! in Mp(Q). (See [A3, p. 950].)
Having characterized the intersection Mp(Q) N o, we can write

I?pyo(.’ﬂ x)

= > > > fat e e )

s€eW(P1;P) 1 neNp(Q)
= ZZf (z ' fwyw; ),
S s

where p and 7 are summed over the right cosets of Mp(Q) -1 in Mp(Q) and

W YW

P(Q) respectively. Therefore %‘,T(x) equals the expression

Z(_ )dim(AP/AG) Z IA{’PN((;SU,(;Z')?P(HP(éx) _T)

SeP(Q\G(Q)
= _(-pdmiariel N TN T fam 0 wepwy tox) e (Hp (62) — T),
P SEW (P1;P) &
where ¢ is summed over the right cosets of Mp(Q),, ., -1 in G(Q). Set 6; = w; s,
Since
71(MP(Q)w571ws )ws - G(Q)’Yl - MPl (Q)’Yn
we obtain
e

1)dmAr/Ae) ST pp 6Ty 6y2)7p (Hp(w,612) — T)

> (-1

P sEW (P1;P) 01
>

o1

a7 107 o) (612),

where §; is summed over right cosets of Mp, (Q),, in G(Q), and

VT (y) = p(y) = ) _(-1)tmAr/ae) X" wp (Hp(wey) - T)
P

seW (P1;P)

:Z Z Z (—1)WmAr/ A2 (Hps (wey) — T).

P{ seW(ap, ,aP{) {P:seW (Py;P)}
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Therefore

JI(f) = / W (2, f)da
GQ\G(A)?

- / @)y (z)dz.
MPl (Q)’n \G(A)l

The convergence of the second integral follows from the convergence of the first
integral (Theorem 11.1), and the fact (implied by Lemma 11.2 below) that the
function xr is nonnegative.

We can write

Mp, (@), \G(A)' = (Mp,(Q),,\Mp, (A)},) x (Mp, (A);\G(A)"),

where Mp, (A)} is the centralizer of 41 in the group Mp, (A)'. Since the centralizer

of v1 in Mp, (A) equals its centralizer G(A),, in G(A), we can also write
Mp, (A);\G(A)' = (Ap, (R)° NG(R)') x (G(A)4,\G(A)).

In the formula for JI'(f) we have just obtained, we are therefore free to decompose
the variable of integration as

x=may, me€ Mp, (Q),,\Mp,(A)L , ae Ap,(R)°NGR)!, y € G(A),,\G(A).

1’

Then f(z~ty2) = f(y tyy) and T (x) = ¥ (ay). Therefore

(AL5)  JT() = vol (Mp, (Q)\Mop, (4)?,) / o )k (v)dy,
G(A)4, \G(A)

where

vp, (y) =

/ W (ap)da= [ T (exp H -y
Ap, (R)ONG(R)! af,

It remains to evaluate the function v, (y).
For any parabolic subgroup @ D Fy and any point A € ag), define eg(A) to
be the sign +1 or —1 according to whether the number of roots o« € Ag with

A(aY) <0 is even or odd. Let
H — oo(AH), i€ a,

be the characteristic function of the set of H such that for any o € Ag, wo(H) >0
if A(e¥) <0, and w,(H) < 0 if A(a¥) > 0. These functions were introduced
by Langlands [Lanl], and are useful for studying certain convex polytopes. We
apply them to the discussion above by taking @ = Pj and A = sA4, for an element
s € W(ap,,ap;) and a point Ay in the chamber

(Cl*Pl)Jr = {Al S Clj:-1 : Al(av) >0, a € Apl}.

Suppose that s belongs to any one of the sets W (ap,, apll). We claim that for
any point H' € ap;, the expression

(11.6) > (mnimAr/Ae)z, (HY)
{P:seW (Py;P)}
that occurs in the definition of ¥ (y) equals
(117) €P{(8A1)¢p{(SA1,H/), A1 € (Cl};l)Jr.
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To see this, define a parabolic subgroup P® D Pj by setting
AP{S ={a€Ap: s 'a > 0}.
The element s then lies in W(Py; P) if and only if P{ C P C P®. The expression
(11.6) therefore equals
S (AR ()
{P:P{CPCP*}

If we write the projection of H' onto agl, in the form

anav7 a € Apy, cq ER,
(o9

we can apply (6.3) to the alternating sum over P. We see that the expression
equals the sign ep;(sA1) if H' lies in the support of the function ¢p,(sA1, H'), and
vanishes otherwise. The claim is therefore valid.

The function ¥ (exp H - y) equals

Z Z Z (_1)dim(AP/AG)§—\P (SH + HPI, (wsy) — TP{);
P/ SGW(Clpl,ap{) {P:seW(Py;P)}
where Tp, is the projection of T" onto ap;. This in turn equals

(11.8) S ) ep(sh)dpy(shy, sH + Hpy (wsy) — Tpy),

P{ seW(ap,.ap;)

by what we have just established. Now as a function H € agl, (11.8) would appear

to be complicated. It is not! One shows in fact that (11.8) equals the characteristic

function of the projection onto aIGD1 of the convex hull of

{Yé = Sil(Tpll - ler(wsy)) NS W(apl,aplf), Pll D PO}.
The proof of this fact [A1, Lemma 3.2] uses elementary properties of convex hulls
and a combinatorial lemma of Langlands [A1, §2]. We shall discuss it in greater
generality later, in §17. In the meantime, we shall illustrate the property geomet-
rically in the special case that G = SL(3).
Assume for the moment then that G = SL(3) and P, = Fy. In this case, the
signed sum of characteristic functions
d)Pl’ (SA17 sH + HPI’ (wsy) - T) = ¢P1’ (SAlv S(H - Ys))a H e ap, = CIICD;N
is over elements s parametrized by the symmetric group S3. We have of course the
simple roots Ap, = {a1, a2}, and the basis {a), a3} of ap, dual to Ap,. Writing
S(H — Yg) = tlaY + tQOé;, t; € R,
we see that ¢p; (sAl, s(H — YS)) is the characteristic function of the affine cone
{H=Y,+t1s"(a)) +tas () : t; >0if s (o) < 0; t; <0 if s~ (a) > 0}.
In Figure 11.1, we plot the six vertices {Y;}, the associated six cones, and the signs
its ' (o
5P1/(5A1) = (*1)‘{1' ( l)<0}|, s € Ss,

by which the corresponding characteristic functions have to be multiplied. We then
observe that the signs cancel in every region of the plane except the convex hull of
the set of vertices.
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Yi

FEl =11 =1

Y,

+1-14+1-1

FIGURE 11.1. The shaded region is the convex hull of six points
{Y5} in the two dimensional vector space a attached to SL(3). It is
a signed sum of six cones, with vertices at each of the six points.

Returning to the general case, we take for granted the assertion that (11.8)
is equal to the characteristic function of the convex hull. Then v} (y) equals the
volume of the given convex hull. In particular, the manipulations used to derive
the formula (11.5) for JI (f) are justified. Observe that

Yo =5 (Tp; = Hpy(wsy))
=5~ (Tp; — Hp)(Wsy) — Hpy(wswy )
= s (Tp; — Hp;(wsy) — (To) p; + s(To) p,)-
When T = Ty, the point Y; equals
—s ' Hp;(wsy) + (To) p,-

The point (Tp)p, is independent of s, and consequently represents a fixed translate
of the convex hull. Since it has no effect on the volume, it may be removed from
consideration.

We have established the following result, which we state with P and -y in place
of P; and ;.

THEOREM 11.2. Suppose that o € O is an unramified class, with anisotropic
rational datum represented by a pair (P,«). Then

(11.9) Jo(f) = vol(Mp(Q),\Mp(A)}) /G oy T e

where v is any element in the Mp(Q)-conjugacy class a,, and vp(x) is the volume
of the projection onto a5 of the convex hull of

{—s'Hp/(wsx): s€W(ap,ap/), P' D Py}.
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12. Cuspidal automorphic data

We shall temporarily put aside the finer analysis of the geometric expansion
in order to develop the spectral side. We are looking for spectral analogues of
the geometric results we have already obtained. In this section, we introduce a
set X that will serve as the analogue of the set O of §10. Its existence is a basic
consequence of Langlands’ theory of Eisenstein series.

A function ¢ in L?(G(Q)\G(A)') is said to be cuspidal if

(12.1) /N " ¢(nx)dn =0,

for every P # G and almost every o € G(A)!. This condition is a general analogue
of the vanishing of the constant term of a classical modular form, which character-
izes space of cusp forms. The subspace L2, (G(Q)\G(A)') of cuspidal functions
in L?(G(Q)\G(A)!) is closed and invariant under right translation by G(A)!. The
following property of this subspace is one of the foundations of the subject.
THEOREM 12.1 (Gelfand, Piatetski-Shapiro). The space L%, (G(Q)\G(A)?)

cusp
decomposes under the action of G(A)! into a discrete sum of irreducible represen-

tations with finite multiplicities. In particular, qusp (G(Q)\G(A)l) s a subspace

The proof is similar to that of the discreteness of the decomposition of R,
in the case of compact quotient. For if G(Q)\G(A)! is compact, there are no
proper parabolic subgroups, by the criterion of Borel and Harish-Chandra, and
L2, (GQ\G(A)!) equals L?(G(Q)\G(A)'). In general, one combines the van-
ishing condition (12.1) with the approximate fundamental domain of Theorem

8.1 to show that for any f € C2°(G(A)'), the restriction Reusp(f) of R(f) to
L2, (G(Q\G(A)') is of Hilbert-Schmidt class. In particular, if f(z) = f(z~1),

cusp
Reusp(f) is a compact self-adjoint operator. One then uses the spectral theorem to

show that L2, (G(Q)\G(A)") decomposes discretely. See [Lan5] and [Har4]. [

cusp

The theorem provides a G(A)!-invariant orthogonal decomposition
Lgusp (G(Q)\G(A)l) = @ Lgusp,o' (G(Q)\G(A)l) )

where o ranges over irreducible unitary representations of G(A)!, and

L21sp.o (GIQ\G(A)) is G(A)'-isomorphic to a finite number of copies of o. We
define a cuspidal automorphic datum to be an equivalence class of pairs (P, o),
where P C G is a standard parabolic subgroup of GG, and ¢ is an irreducible rep-
resentation of Mp(A)' such that the space L2, ,(Mp(Q)\Mp(A)') is nonzero.
The equivalence relation is defined by the conjugacy, which for standard parabolic
groups is given by the Weyl sets W (ap, aps). In other words, (P’,o’) is equivalent

to (P,o) if there is an element s € W(ap, aps) such that the representation

st m — o/ (wsmw?t), m € Mp(A)!,

of Mp(A)! is equivalent to 0. We write X = X for the set of cuspidal automorphic
data x = {(P,0)}.
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Cuspidal functions do not appear explicitly in Theorem 7.2, but they are an
essential ingredient of Langlands’s proof. For example, they give rise to a decom-
position

(12.2) L*(G(Q @ L3 csp (GQ\G(A)),

which is based on cuspidal automorphic data, and is more elementary than the
spectral decomposition (7.5). Let us describe it.

For any P, we have defined the right G(A)-invariant Hilbert space Hp of func-
tions on G(A), and the dense subspace H(},. Let H p,cusp be the subspace of vectors
¢ € Hp such that for almost all z € G(A), the function ¢,(m) = ¢(mz) on
Mp(Q)\Mp(A)! lies in the space Lcubp( Mp(Q)\Mp(A)'). Then

HP,cusp = @ H'P,cusp,aa
o

where for any irreducible unitary representation o of Mp(A)?, Hp,cusp,o is the
subspace of vectors ¢ € Hp cusp such that each of the functions ¢, lies in the
space L2, » (Mp(Q)\Mp(A)'). We write H} cusp and H%,Cusp,a for the respective
intersections of Hp cusp and Hp cusp,o With HO P
Suppose that ¥(A) is an entire function of A € aj pc of Paley-Wiener type, with
values in a finite dimensional subspace of functions z — ¥(\, x) in H% cusp,oc Lhen
U (A, x) is the Fourier transform in A of a smooth, compactly supported function
on ap. This means that for any point A € a}, the function

W(x) = / NP HP@) G () 7)dA
A+ia}

of x € Np(A)Mp(Q)\G(A) is compactly supported in Hp(x).
LeEmMA 12.2 (Langlands). The function
(Bo)w) = > (), v € G(Q\G(A),

seP(Q\G(Q)
lies in L*(G(Q)\G(A)).

LeEMMA 12.3 (Langlands). Suppose that W'(N,z) is a second such function,
attached to a pair (P',o'). Then the inner product formula

(123)  (Ey, By) = /A Y (ME ), VD)
AP seW(ap,aps)

holds if A is any point in a} such that (A — pp)(a") > 0 for every a € Ap.

If x is the class in X represented by a pair (P,0), let L2 (G(Q)\G(A)) be the
closed, G(A)-invariant subspace of L?(G(Q)\G(A)) generated by the functions Ev
attached to (P, o).

LEMMA 12.4 (Langlands). There is an orthogonal decomposition

(12.4) L*(GQ)\G(A) = P L2 (GQ\G(A)).

XEX
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Lemmas 12.2-12.4 are discussed in the early part of Langlands’s survey article
[Lanl]. They are the foundations for the rest of the theory, and for Theorem 7.2
in particular. We refer the reader to [Lanl] for brief remarks on the proofs, which
are relatively elementary. O

The inner product formula (12.3) is especially important. It is used in the
proof of both the analytic continuation (a) and the spectral decomposition (b) in
Theorem 7.2. Observe that the domain of integration in (12.3) is contained in the
region of absolute convergence of the cuspidal operator valued function M (s, \) in
the integrand. Once he had proved the meromorphic continuation of this func-
tion, Langlands was able to use (12.3) to establish the remaining analytic contin-
uation assertions of Theorem 7.2(a), and the spectral decomposition of the space
L2 (G(Q)\G(A)). His method was based on a change contour of integration from
A +ia}p to iap, and an elaborate analysis of the resulting residues. It was a tour de
force, the details of which comprise the notoriously difficult Chapter 7 of [Lan5].

Any class x = {(P,0)} in X determines an associated class P, = {P} of
standard parabolic subgroups. We then obtain a decomposition (12.2) from (12.4)
by setting

{xex:Py =P}
However, it is the finer decomposition (12.4) that is more often used. We shall
actually apply the obvious variant of (12.4) that holds for G(A)! in place of G(A),
or rather its restriction

(125) LdlSC( ( @Ldlscx \G( ))
XEX

to the discrete spectrum, in which
Liiser (GQ\G(A)') = Liic (GQ\G(A)') N LY (G(Q\G(A)').
If P is a standard parabolic subgroup, the correspondence
(leMp,O'l) — (Pl,O'l), P1CP, {(PlﬁMp,Ul)}ExMP,
yields a mapping xp — x from XM? to the set X = X¢. We can then write
Liiee (Mp(Q\Mp(A)') = @D Liie (Mp(Q\Mp(A)'),
XEX
where L3, x( Mp(Q)\Mp(A)') is the sum of those subspaces of

L2 (Mp(Q )\Mp(A)l) attached to classes xp € XM? in the fibre of x. Let Hp
be the subspace of functions ¢ in the Hilbert space Hp such that for almost all
z, the function ¢, (m) = ¢(mx) lies in L3 x( Mp(Q)\Mp(A)'). There is then an
orthogonal direct sum

Hp =P Hp.y
X
There is also an algebraic direct sum
(12.6) Hp = @HPX,

where HY, P 1 the intersection of Hp, with H%. For any A and f, we shall write
Zpy (A, f) for the restriction of the operator Zp (A, f) to the invariant subspace Hp
of Hp.



12. CUSPIDAL AUTOMORPHIC DATA 67

At the end of §7, we described the spectral expansions for both the kernel
K (x,y) and the truncated function k7 (z) in terms of Eisenstein series. They were
defined by means of an orthonormal basis Bp of Hp. We can assume that Bp is
compatible with the algebraic direct sum (12.6). In other words,

Bp = H B'P,X?

XEX

where Bp ,, is the intersection of Bp with H%,x‘ For any x € X we set

(12.7) (2,9) an/ > E(x,Zpy(X £)o, N E(y, ¢, \)dA

iy $EBp

where np is the integer defined in Theorem 7.2(b). It is a consequence of Lang-
lands’ construction of the spectral decomposition (7.5) from the more elementary
decomposition (12.4) that K, (x,y) is the kernel of the restriction of R(f) to the
invariant subspace L2 (G(Q)\G(A)) of L?(G(Q)\G(A)). It follows, either from this
or from the definition (12.7), that

(12.8) K(z,y) = > Ky(,y).
XEX

This is the spectral analogue of the geometric decomposition (10.1).
More generally, suppose that we fix P, and use P, C P in place of P to index
the orthonormal bases. Then we have

Kp(w,y) = Y Kpy(,y),
xXeEX

where Kp, (z,y) is equal to

(np,)” > Ef (2.Zp, (N F)é N ER (y, 6, A)dA

P1CP b $eBp, «
We obtain a decomposition
(12.9) KM (z) = kL (x)
XEX
where
T\ _ 1T
kx(x) - kx(xmf)
= (-pdmAr/ie) N Kp (0w, 62)7p (Hp(dx) — T).
P dEP(Q\G(Q)

This is the spectral analogue of the geometric decomposition (10.2) of the truncated
kernel.

We have given spectral versions of the constructions at the beginning of §10.
However, the spectral analogue of the coarse geometric expansion (10.7) is more
difficult. The problem is to obtain an analogue of Corollary 10.1. We know from

Theorem 6.1 that
/ Zk:T ’dx - / kT (2)]dz < oo.
G(Q\G(A)! G(Q\G(A)!
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To obtain a corresponding expansion for J7(f), we would need the stronger asser-
tion that the double integral

/G S K () da

@\G@&)! 3

is finite. Unlike the geometric case of Corollary 10.1, this is not an immediate
consequence of the proof of Theorem 6.1. It requires some new methods.

13. A truncation operator

The process that assigns the modified function k%' (z) = kT (z, f) to the original
kernel K (z,x) can be regarded as a construction that is based on the adjoint action
of G on itself. It is compatible with the geometry of classes 0 € O. The process
is less compatible with the spectral properties of classes x € X. However, we still
have to deal with the spectral expansion (12.9) of k7' (z). We do so by introducing
an operator that systematically truncates functions on G(Q)\G(A)!.

The operator depends on the same parameter T' used to define k7(z). It
acts on the space Bioc(G(Q)\G(A)') of locally bounded, measurable functions
on G(Q)\G(A)!. For any suitably regular point T € af and any function ¢ €
Bioc (G(Q)\G(A)'), we define AT¢ to be the function in Bio (G(Q)\G(A)') whose
value at x equals

(13.1) ) (—1)dimiar/de)

P seP(Q\G(Q)

/ $(nba)7p (Hp(6x) — T)dn.
Np(Q)\Np(A)

The inner sum may be taken over a finite set (that depends on z), while the
integrand is a bounded function of n. Notice the formal similarity of the definition
with that of &7 (x) in §6. Notice also that if ¢ belongs to L2, (G(Q)\G(A)'), then
ATp = ¢.

There are three basic properties of the operator A7 to be discussed in this
section. The first is that A is an orthogonal projection.

PROPOSITION 13.1. (a) For any Py, any ¢1 € Bioc(G(Q)\G(A)!), and any
x1 € G(A)!, the integral

/ (AT¢1)(TL1.’E1)dn1
Np (Q\Np, (4)

vanishes unless @(Hp, (z1) — T) < 0 for every w € ﬁpl.

(b) AT o AT = AT

(c) The operator AT is self-adjoint, in the sense that it satisfies the inner prod-
uct formula

(AT(bla ¢2) = (¢17 AT¢2>7
Jor functions ¢1 € Bioc (G(Q)\G(A)') and ¢3 € C.(G(Q)\G(A)!).
The first assertion of the proposition is Lemma 1.1 of [A4]. (The symbol <
in the statement of this lemma should in fact be <.) In the case G = SL(2), it

follows directly from classical reduction theory, as illustrated in the earlier Figure
8.3. In general, one has to apply the Bruhat decomposition to elements in the sum
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over P(Q)\G(Q) that occurs in the definition of AT¢. We recall that the Bruhat
decomposition is a double coset decomposition

G@ = [] (Bo(QuwsNo(Q))

seWy

of G(Q), which in turn leads easily to a characterization

PQ\GQ = [ (ws'No(Quwsn No(Q)\No(Q))

SGW(fJ\Wo

of P(Q)\G(Q). Various manipulations, which we will not reproduce here, reduce
the assertion of (i) to Identity 6.2.

The assertion (i) follows from (i). Indeed, (AT (AT ¢))(z) equals the sum over
P, D PR and d; € Pl(Q)\G(Q) of

/ (AT¢) (’I’Ll(sll')?pl (le (511‘) — T) dnl.
Np, (Q\Np, (A)
The term corresponding to P, = G equals (AT¢)(x), while if P, # G, the term
vanishes by (i) and the definition of 7p, .
To establish (iii), we observe that

(AT 1, b2)
:/ Z(_l)dim(Ap/AG) Z
GQ\GA) P 5€P(Q\G(Q)
. / 61(n6x)7p (Hp(82) — T)do(x)dndz
Np(Q)\Np(4)

)dim(Ar/Ac) / / ¢1(nx) g2 (2)7p (Hp(z) — T)dadn
Np(Q\Nr(4) J PQ\G(A)!

P
D (—1)dimAr/ae) / / ¢1(x)p2(na)7p (Hp(zx) — T)dzdn
5 Np(Q\Nr(4) J P@\G(A)!

1)dim(AP/AG) Z

SeP(Q\G(Q)

¢1(z)¢2(nézx)7p (Hp(6z) — T)dndx

/NP(Q)\NP(A)
= (¢1,AT o). O

It is not hard to show from (ii) and (iii) that AT extends to an orthogonal
projection from the space L?(G(Q)\G(A)) to itself. It is also easy to see that AT
preserves each of the spaces L%_Cusp (G(Q)\G(A)') in the cuspidal decomposition
(12.2). On the other hand, A7 is decidedly not compatible with the spectral decom-
position (7.5). It is an operator built upon the cuspidal properties of §12, rather
than the more sensitive spectral properties of Theorem 7.2.

The second property of the operator AT is that it transforms uniformly tem-
pered functions to rapidly decreasing functions. To describe this property quanti-
tatively, we need to choose a height function || - || on G(A).
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Suppose first that G is a general linear group GL(m), and that = (x;;) is a
matrix in GL(m, A). We define

H.IUHU = 1[]‘3‘X |x . ’U|’U
175
2,7

if v is a p-adic valuation, and
1
loolle = (D 7is0l2)”
0,J

if v is the archimedean valuation. Then ||z,||, = 1 for almost all v. The height

function
=) = H [
v

is therefore defined by a finite product. For arbitrary G, we fix a Q-rational injection
r: G — GL(m), and define

]l = lIr(@)]-
By choosing r appropriately, we can assume that the set of points © € G(A) with

lz]| <t is compact, for any ¢ > 0. The chosen height function || - || on G(A) then
satisfies

(13.2) eyl < llz[lllyll, z,y € G(A),
(13.3) lz= | < Collz(|™, z € G(A),
and

(13.4) {z € GQ): [lz]| < t}| < Cot™, t>0,

for positive contants Cp and Ny. (See [Bor2].)

We shall say that a function ¢ on G(Q)\G(A)! is rapidly decreasing if for any
positive integer N and any Siegel set S = SY(T) for G(A), there is a positive
constant C such that

()| < Ol =Y
for every x in 8' = SN G(A)'. The notion of uniformly tempered applies to the
space of smooth functions
C(G(Q\G(A)') = lim = (G(Q)\G(A)'/Ko).
Ko

By definition, C*(G(Q)\G(A)'/Ky) is the space of functions on G(Q)\G(A)* that
are right invariant under the open compact subgroup Ky of G(Agy,), and are infin-
itely differentiable as functions on the subgroup G(R)! = G(R) N G(A)! of G(A)*.
We can of course also define the larger space C (G(Q)\G(A)!) of functions of dif-
ferentiability class C” in the same way. If X is a left invariant differential operator
on G(R)! of degree k < r, and ¢ lies in C"(G(Q)\G(A)'/Ky), X¢ is a function in
C™F(G(Q)\G(A)'/Ky). Let us say that a function ¢ € C=°(G(Q)\G(A)') is uni-
formly tempered if there is an Ny > 0 with the property that for every left invariant
differentiable operator X on G(R)!, there is a constant cx such that

(X)(@)| < exllz]™,
for every z € G(A)L.
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PROPOSITION 13.2. (a) If ¢ € C*°(G(Q)\G(A)') is uniformly tempered, the
function AT ¢ is rapidly decreasing.

(b) Given a Siegel set S, positive integers N and Ny, and an open compact
subgroup Ko of G(Aan), we can choose a finite set {X;} of left invariant differential
operators on G(R)' and a positive integer r with the property that if (Q,dw) is
a measure space, and ¢(w): x — ¢(w,x) is any measurable function from Q to

C™(G(Q)\G(A)'/Ky), the supremum

(13.5) sup (HxHN/ |AT¢(w7w)|dw)
zeS?! Q
is bounded by

(13.6) w (I3 [ Ko l)

S
yeG(A)?

It is enough to prove (ii), since it is a refined version of (i). This assertion is
Lemma 1.4 of [A4], the proof of which is reminiscent of that of Theorem 6.1. The
initial stages of the two proofs are in fact identical. We multiply the summand
corresponding to P in

AT¢>(W7 x)
- Z(,l)dim(Ap/Ac)
P SeP(Q\G(Q)

by the left hand side of (8.1). We then apply the definition (8.2) to the product of
functions 7']1331 and Tp that occurs in the resulting expansion. The function AT ¢(o, x)
becomes the sum over pairs P; C P» and elements 6 € P;(Q)\G(Q) of the product

FP (6, T)op2 (Hp, (52) — T)bp, p, (w, 02),

1

/ ¢(w,ndz)dn - 7p(Hp(5z) — T)
Np(Q\Np(4)

where

(137)  dpmlwy) = 3 (—1)dmr/dc) / 6w, ny)dn.

{P:P,CPCP;} Ne(Q\Np(4)

Suppose that y = dx is such that the first two factors in the last product are
both nonzero. Replacing ¢ by a left P;(Q)-translate, if necessary, we can assume
that

y = 0x = nynmak,
for k € K, elements n,, n* and m in fixed compact subsets of Np,(A), N};f (A)
and Mp, (A)! respectively, and a point a € Ap, (R)? with agf (Hp,(a) = T) # 0.
Therefore

In*amk = n.ab,

y=0r=n4a-a"
where b belongs to a fixed compact subset of G(A)! that depends only on G. The

next step is to extract an estimate of rapid decrease for the function

¢P1,P2 (Wa y) = ¢P1,P2 (w7 5$) = ¢P17P2 (w’ ab)

from the alternating sum over P in (13.7).

At this point the argument diverges slightly from that of Theorem 6.1. The
quantitative nature of the assertion (ii) represents only a superficial difference,
since similar estimates are implicit in the discussion of §8. However, the integrals
in (13.7) are over quotients Np(Q)\Np(A) rather than groups Np(A), a reflection
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of the left G(Q)-invariance of the underlying function y — ¢(o,y). This alters the
way we realize the cancellation in the alternating sum over P. It entails having
to apply the Fourier inversion formula to a product of groups Q\A, in place of
the Poisson summation formula for a product of groups A. The problem is that
the quotient ngf (Q)\ngf (A) does not correspond with N };12 (Q\N 1};12 (A) under the
exponential mapping. However, the problem may be resolved by a straightforward
combinatorial argument that appears in [Har4, Lemma 11]. One constructs a finite
set of pairs

(NI_7NI)7 NPQCNI_CNICNPN

of Q-rational groups, where N; is normal in N; with abelian quotient N I, Each
index I parametrizes a subset

{Bra € @52 . ae AR}

of roots of the parabolic subgroup Mp, N P; of Mp, such that 3r , contains « in its
decomposition into simple roots. If X, € np, (Q) stands for a root vector relative
to Br,, the space

Q= @ QX
aeAﬁf
becomes a linear complement for the Lie algebra of N, (Q) in that of N;(Q). The

combinatorial argument yields an expansion of ¢p, p,(w,ab) as linear combination
over I of functions

(13.8) Z / / qS(w,uexp(X)ab)w«X,f))dudX,
ceatioy I @\nt @) N @\ @)

where
nI(Q)/ = {5 = Z 7ﬂorXI,oz T € Q*}
aeAiﬁ
(See [A4, p. 94].)
One can estimate (13.8) as in the proof of Theorem 6.1. In fact, it is not hard

to show that for any positive integer n, the product of e™I#r1 (9l with the integral
of the absolute value of (13.8) over w has a bound of the form (13.6). But

eI HEg (@)l > clua”ne > CZHn*aane _ 02”555””8’

for positive constants c1, co and €. Moreover, it is known that there is a positive
constant ¢ such that
[0x]| = =],

for any x in the Siegel set S, and any ¢ € G(Q). It follows that the supremum
swp sup (ol [ [orm(wr60)]d0)
z€S 5eP1(Q)\G(Q) Q

has a bound of the form (13.6). Since this supremum is independent of J, we have
only to estimate the sum

> FP(ox,T)op: (Hp, (67) - T).
5€P(Q\G(Q)

It follows from the definition (8.3) and the fact that both FFi(-,T) and Ugf(')
are characteristic functions that the summand corresponding to ¢ is bounded by
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7p, (Hp, (6z) — T). In §6 we invoked Lemma 5.1 of [A3] in order to say that the
sum over § in (6.1) could be taken over a finite set. The lemma actually asserts
that

Z ?Pl (HPI ((51‘) - T) < CT”:I:Hva

SEPLQN\G(Q)
for positive constants ¢y and Nj. We obtain an estimate (13.6) for (13.5) by
choosing n > e71(N + Ny). O

The proof of Proposition 13.2 we have just sketched is that of [A4, Lemma
1.4]. The details in [A4] are a little hard to follow, thanks to less than perfect
exposition and some typographical errors. Perhaps the discussion above will make
them easier to read.

The most immediate application of Proposition 13.2 is to an Kisenstein series
x — E(z,¢,\). Among the many properties established by Langlands in the course
of proving Theorem 7.2 was the fact that Eisenstein series are uniformly slowly
increasing. More precisely, there is a positive integer Ny such that for any vector ¢ €
H® and any left invariant differential operator X on G(R)!, there is an inequality

[ XE(z,¢, )] < exo(Vllz] ™, z € G(A),

in which cx 4(A) is a locally bounded function on the set of A € ap at which
E(x,¢,)) is analytic. It follows from Proposition 13.2 that for any N and any
Siegel set S, there is a locally bounded function ¢y 4(A) on the set of A at which
E(x,$, ) is analytic such that

(13.9) ATE(z,¢, )] < en gVl 77,

for every z € S'. In particular, the truncated Eisenstein series AT E(x, ¢, \) is
square integrable on G(Q)\G(A)!. As we shall see, the spectral expansion of the
trace formula depends on being able to evaluate the inner product of two truncated
Eisenstein series.

The third property of the truncation operator is one of cancellation. It concerns
the partial truncation operator A7 attached to a standard parabolic subgroup
Py D Py. If ¢ is any function in Bioc(P1(Q)\G(A)), we define AT-"1¢ to be the
function in Bioe (Mp, (Q)Np, (A)\G(A)') whose value at x equals

Z (_1)dim(AQ/Ap1)
{Q:PoCQCP:1} deQ(Q)\P1(Q
PROPOSITION 13.3. If ¢ belongs to Bioc (G(Q)\G(A)!), then
S AT, (Hp (6) - T) = 6(a).
P1DPy 6P (Q\G(Q)
More generally, if ¢ belongs to Bioe (P(Q)\G(A)l) for some P D Py, the sum
(13.10) > > AUP(sa)rh (Hp, (62) = T)

{P1:PyCP1CP} 6€P1(Q)\P(Q)

/ b(nda)7E (Ho(ox) — T).
I No@\Na ()

equals

/ o(nx)dn.
Np(Q\Np(4)
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If we substitute the definition of AT*"1¢ into (13.10), we obtain a double sum
over @ and P;. Combining the double sum over Q(Q)\P1(Q) and P;(Q)\P(Q) into
a single sum over Q(Q)\P(Q), we write (13.10) as the sum over parabolic subgroups
Q, with Py C Q C P, and elements 6 € Q(Q)\P(Q) of the product of

/ d(nox)
N@(Q)\Ng(A)

with

S (—tmA/Ar)ZR (He (52) — T)7h (Hp, (62) — T).
{P1:QCPCP}

Since 75, (Hp, (0x) = T) = 74, (Hg(6x) —T'), we can apply (8.11) to the alternating
sum over P;. This proves that the alternating sum vanishes unless () = P, in which
case it is trivially equal to 1. The formula of the lemma follows. (See [A4, Lemma
1.5].) O

14. The coarse spectral expansion

The truncation operator AT acts on functions on G(Q)\G(A)!. If h is a function
of two variables and A is a linear operator on any space of functions in G(A), we
write Ajh and Agh for the transforms of h obtained by letting A act separately
on the first and second variables respectively. We want to consider the case that
A = AT, and h(z,y) equals the x-component K, (z,y) of the kernel K (z,y) of R(f).
We recall that the parameter T in both the operator A7 and the modified kernel

kT () is a suitably regular point in ag .

THEOREM 14.1. (a) The double integral

(14.1) Z / A K (z,2)dx
S Je@nany

converges absolutely.
(b) If T is suitably regular, in a sense that depends only on the support of f,
the double integral

(14.2) Z /G kgg(as)dm

b U ET()INETV S

also converges absolutely.
(¢) If T is as in (it), we have

/ kL (z)da = / AT K (z,2)dx,
G@\GMA)! GQ\G(A)!

for any x € X.

The assertions of Theorem 14.1 are among the main results of [A4]. Their
proof is given in §2 of that paper. We shall try to give some idea of the argument.
The assertion (i) requires a quantitative estimate for the spectral expansion of
the kernel
K(zy) = Y fl@ ).

v€G(Q)
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The sum here can obviously be taken over elements v in the support of the function

u — f(x~luy). Since the support equals x-suppf-y~!, we can apply the properties
(13.2)—(13.4) of the height function || - ||. We see that

K (2, y)| < e(H)llzlI™ 1yl

for a positive number N; that depends only on G. For any x € X, K,(z,y) is
the kernel of the restriction of R(f) to the invariant subspace L2 (G(Q)\G(A)) of
L?(G(Q)\G(A)). It follows from the discussion at the end of §7 that the sum

D 1K ()l

XEX

of absolute values is bounded by a finite sum of products

N
W=
N

(X Kuten) (X Kealn)’ = (Ee.) (Kay).

of kernels K;(-,-) attached positive definite functions
fi=hi*hi, h; € Cr(G(A)).
It follows that

D E(a,y)l = el M g™, z,y € G(A),
X

for some constant ¢(f) depending on f.

A similar estimate holds for derivatives of the kernel. Suppose that X and Y
are left invariant differential operators on G(R) of degrees dy and dy. Suppose that
[ belongs to C% (G(A)), for some large positive integer r. The corresponding kernel
then satisfies

XIYéKX(£7y):K§7Y(xay)a XG%,

where K~ (z,y) is the kernel attached to a function fx,y in CI~4 =% (G(A)). It
follows that

DX YK (2, y)] < el fxv) el My M
XEX

for all z,y € G(A).

We combine the last estimate with Proposition 13.2(b). Choose the objects S,
N, Ny and K of Proposition 13.2(b) so that G(A) = G(Q)S, N is large, Ng = Ny,
and f is biinvariant under Ky. We can then find a finite set {Y;} of left invariant
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differential operators on G(R) such that
sup(nynNZmTK z9)|)
< sup (Znyn | L ke )
— N,
< sup (Znyn L z.9)|)
INlHyIINl)

< sup (Znyn Yo(f1,y,)
s(zdfl,m)anNa

?

for any x € G(A). Setting = = y, we see that there is a constant ¢; = ¢;(f) such
that

Y MK ()] < el N
X

for any # € S. Since any bounded function is integrable over S! = & N G(A)!,
we conclude that the sum over y of the functions |AL K, (z,z)| is integrable over
G(Q)\G(A)!. This is the assertion (a).

The proof of (b) and (c) begins with an expansion of the function k (z) =
kL (xz, f). We are not thinking of the x-form of the expansion (8.3) of k™ (x), but
rather a parallel expansion in terms of partial truncation operators. We shall derive
it as in §8, using Proposition 13.3 in place of Lemma 8.2.

The kernel Kp, (x,y) defined in §12 is invariant under left translation of either
variable by Np(A). In particular, we can write

KP,x(xvy) :/ KP,X(x7ny)dn'
(Q\Np(4)

It follows from the definition in §12 that k7 () equals

Z(—l)(AP/AG) Z 7p(Hp(6z) — T) / Kp,(dz,néx)dn
Np(Q\Np(4)

P SEP(Q\G(Q)

The integral over m can then be expanded according to Proposition 13.3. The
resulting sum over P;(Q)\P(Q) combines with that over P(Q)\G(Q) to give an
expression

> (—nydimlar/Ae) NP 2y (Hp(62)-T)mh (Hp, (62)-T) A3 Kpy (5z, 0x)
P CP 6P (Q\G(Q)
for k;[;(x) Applying the expansion (8.2), we write
7/:p (HP(CSJU) — T)TIIDDI (le (5$) — T)
=7p(Hp, (6z) — T, (Hp, (6z) — T)

= > op(Hp(0x)-T).

{Pz:PQDP}
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It follows that k7 (z) has an expansion

(14.3) > > op(Hp (0x) = T)Ay " Kp, p, o (0x, 62),
P, CP; 5e P (Q)\G(Q)

where

KPl,PQ,X($7y) = Z (_1)dim(AP/AG)KP’X(x7y)'
{P:P,CPCP,}

Observe that (14.3) is the same as the expansion (8.3) (or rather its x-analogue),
except that the partial “cut-off” function F¥1 (-, T) has been replaced by the partial
truncation operator A2,

We recall from Lemma 8.3 that Ugf vanishes if P, = P, # G, so the corre-
sponding summand in (14.3) equals 0. If P, = P, = G, oﬁf equals 1, and the
corresponding summand in (14.3) equals AT K, (z,z). It follows that the difference

KL () — AT K (2,2)

equals the modified expression (14.3) obtained by taking the first sum over P; C Ps.
Consider the integral over G(Q)\G(A)! of the absolute value of this difference. The
absolute value is of course bounded by the corresponding double sum of absolute
values, in which we can combine the integral with the sum over P;(Q)\G(Q). It
follows that the double integral

3 e, ) ALK )

XEX

is bounded by

(14.4) SN / op (Hp, (x) = T)|AY " Kpy py x (2, 7)|da.
x€X P CP, Y PHQ\G(A)!

The assertion (ii) would follow from (i) if it could be shown that (14.4) is finite. In
fact, one shows that for 7" highly regular, the integrand in (14.4) actually vanishes.
This obviously suffices to establish both (ii) and (iii).

Consider the integrand in (14.4) attached to a fixed pair P; C P>. In order to

treat the factor AL Kp, Ps,x» one studies the function

/ KPl,Pz(xanly)dnl
Np, (Q\Np, (4)

= Z (‘Ddim(AP/AG)/ Kp(z,n1y)dny

{P:PICPCP,} Np, (Q\Np, (A)
=SSyt [
P N

In the last summand corresponding to P, we change the triple integral to a double
integral over the product

Mp(Q)Np(A)/Np,(Q) x Np, (A).

This in turn can be written as a triple integral over the product

(Mp(Q)/Mp(Q) N Np,(Q)) x (Np(A)/Np(Q)) x Np, (A).

f(z ynnyy)dndn,.

P (Q\Np, (A) /NP () Jemp @)
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The integral over Np(A)/Np(Q) can then be absorbed in the integral over Np, (A).
Since

Mp(Q)/Mp(Q) N Np, (Q) = P(Q)/P1(Q) x Mp, (Q),

the sum over P takes the form

Z(_l)dim(Ap/AG) Z /N " Z f(x—l,y—l,ylnly)dnl
)7 N

P yEPL(Q)\P(Q 1 EMp, (Q)
=y (~pdmAr/ae) N Ky (L y).
P YEPL(Q\P(Q)

Let F'(Py, P») be the set of elements in P; (Q)\ P»(Q) which do not lie in P (Q)\P(Q)
for any P with P, C P C P,. The alternating sum over P and v then reduces to a
sum over v € F(Py, Py), by Identity 6.2. We have established that

(1) [ Kp, py(@,my)dng = (~1)5A/40) S™ K (ya,y).
Np, (Q\Np, (4) YEF(Py1,P2)

There remain two steps to showing that the integrand in (14.4) vanishes. The
first is to show that for any x and y, AL Kp, p, y(z,y) depends linearly on the
function of m € Mp, (Q)\Mp, (A)! obtained from the left hand side of (14.5) by
replacing y by my. This is related to the decompositions of §12, and is easily
established from the estimates we have discussed. The other is to show that if T is
highly regular relative to supp(f), and 0‘}1;? (Hp,(z)—T) # 0, then Kp, (yz,mz) =0
for all m and any v € F(Py, P5). This is a consequence of the Bruhat decomposition
for G(Q). In the interests of simplicity (rather than efficiency), we shall illustrate
the ideas in the concrete example of G = GL(2), referring the reader to [A4, §2]
for the general case.

Assume that G = GL(2), P, = Py and P, = G. The partial truncation operator
AT-P1 s then given simply by an integral over Np, (Q)\Np,(A). Therefore

AT K lavn) = [ (K, m9) = Ky () .
Npy (Q\Np, (4)
If x = (G, m), the integral of K, (z,ny) over n vanishes, since 7 is a cuspidal

automorphic representation of G(A), while K p, , (2, ny) vanishes by definition. The
integrand in (14.4) thus vanishes in this case for any 7.

For G = GL(2), we have reduced the problem to the remaining case that y
is represented by a pair (Pp,09). Since Mp, is the group of diagonal matrices in
GL(2), we can identify o with a pair of characters on the group Q*\A!. It follows
directly from the definitions that

/ Kpy (2, ny)dn = Kpy (2, 9)
Npy (Q)\Np,(A)

= / Kp,(z,my)oo(m)dm.
Mpy (Q\Mpy (A)!
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The spectral decomposition of the kernel K (z,y) also leads to a formula

/ K, (z,ny)dn
Npy (Q\Np, (4)

= / / K(xz,nmy)oo(m)dndm.
Mp, (Q\Mp, (A)r JNp, (Q)\Np, (A)

Indeed, the required contribution from the terms in K(z,y) corresponding to the
Hilbert space H¢g can be inferred from the fact that the representation of G(A)
on Hg is a sum of cuspidal automorphic representations and one-dimensional au-
tomorphic representations. To obtain the contribution from the terms in K(z,y)
corresponding to Hp,, we use the fact that for any ¢ € HOPO, the function

Npo (Q\Np, (A)

also belongs to H%O. Combining the two formulas, we see that
T,P
A2 IKPth,X(x’ y)

= / / Kp, p,(z,nmy)oo(m)dndm
Mpy (Q\Mpy (A)r S Npy (Q\Np, (A)

Y S et
Mpy (Q\Mpy (M) e p (P, Py)

for any x and y. This completes the first step in the case of G = GL(2).
For the second step, we note that

F(P1,P) = F(Py,G) = Py(Q)\(G(Q) — Py(A))

(@ (7 g) @},

by the Bruhat decomposition for GL(2). Setting y = x, we write

S Kp(yr.ma)

YEF(P1,Pz)

= Z / fz7 Yy tnmaz)dn
~EF(Py,Py) Y VPo ()

S D S DR () PR I
N () 1 0
Po™) e Np, (Q) pEMp, (Q)

for any m € Mp(A)!. We need to show that if T is highly regular relative to
supp(f), the product of any summand with O'gf (Hp,(z) — T) vanishes for each
z € G(A)!. Assume the contrary, and write

0
€T =Ny <8 T_l) maky, ny € NPO(A), re (R*)O, my € MPO(A)I, k€ K.

On the one hand, the number

ol (Hp,(x) = T) = 0& (Hp, (x) = T) = 75, (Hpo (g 91> - T)
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is positive, so that r is large relative to supp(f). On the other hand, it follows from
the discussion above that the point

,1V01 n
T 1 ) Hnme

belongs to supp(f), for some v € Np, (Q), p € Mp,(Q), n € Np,(A), and m €
Mp,(A)*. Substituting for x, we see that there is a point (‘j Z) in GL(2,A)!, with
lc| = 72, which lies in the fixed compact set K -supp f - K. This is a contradiction.
The argument in the case of G = GL(2) is thus complete. O

We have finished our remarks on the proof of Theorem 14.1. We can now
treat the double integral (14.2) as we did its geometric analogue (10.3) in §10. By
Fubini’s theorem, we obtain an absolutely convergent expression

GED PG

XEX

whose terms are given by absolutely convergent integrals
(14.6) JI(f) = / kL (x, f)dz, X € X.
GQ\G(A)!

Following the discussion of §10, we analyze J; (f) as a function of T' by means
of the proof of Theorem 9.1. Defined initially for T € aJ sufficiently regular, we
see that Jg (f) extends to any T € ag as a polynomial function whose degree is
bounded by the dimension of a§’. We then set

T (f) = I () X € X,

for the point Ty € ag" given by (9.4). By the proof of Proposition 9.3, each distribu-
tion J, (f) is independent of the choice of minimal parabolic subgroup Py € P(My).

The new distributions J, (f) = Jf (f) are again generally not invariant. Ap-
plying the proof of Theorem 9.4 to the absolutely convergent integral (14.6), we
obtain the variance property

(14.7) I (f9) = > T (fq.), X €X, yeG(A).
QDPy

As before, JyQ (fo,y) is defined as a finite sum of distributions J%Q (fo,y), in which
Xq ranges over the preimage of y in X*@ under the mapping of XM@ to X. Once
again, y need not lie in the image of the map ¥Me — X attached to any proper
parabolic subgroup @ € G. This is the case precisely when y is cuspidal, in the
sense that it is defined by a pair (G, ). When x is cuspidal, the distribution J, (f)
is in fact invariant.

The expansion of JZ(f) in terms of distributions J; (f) extends by polynomial
interpolation to all values of T'. Setting T' = Tj, we obtain an identity

(14.8) J(f) = J(f), f € C2(G(A)).
XEX

This is what we will call the coarse spectral expansion. The distributions J, (f) for
which x is cuspidal are to be regarded as general analogues of the spectral terms
in the trace formula for compact quotient.



15. WEIGHTED CHARACTERS 81

15. Weighted characters

This section is parallel to §11. It is aimed at the problem of describing the
summands J, (f) in the coarse spectral expansion more explicitly. At this point,
we can give a partial solution. We shall express J, (f) as a weighted character for
“generic” classes x € X.

For any y € X, Jg (f) is defined by the formula (14.6). However, Theorem
14.1(iii) and the definition (12.7) provide another expression

J;F(f) = / A K (2, 7)d
GQ\G(A)!

Zn_l/G(Q e (/ Z E(:c,Ip()\,f)gb,)\)md)\)dx

P $eBpy

for Jg (f). This second formula is better suited to computation.
Suppose that A\ € ia%. The function E(x,¢’,\) is slowly increasing for any
¢ € H +» While the function ATE(z,¢,)) is rapidly decreasing by (13.9). The

1ntegral
/ B(a. ¢/ NATE(z. 6. Njdz
G(Q\G(A)!

therefore converges, and consequently defines a Hermitian bilinear form on HO
By the intertwining property of Eisenstein series, this bilinear form behaves in the
natural way under the the actions of K and Z., on HO’X. It may therefore be
written as

(Mp, (N)e',6),
for a linear operator MIZ,X(/\) on HOP’X. Since AT is a self-adjoint projection, by
Proposition 13.1, we see that

) ME W)= [ AT ) RTEG da

for any vectors ¢’ and ¢ in H(I)%x' It follows that the operator M};.:X()\) is self-adjoint
and positive definite.
The following result can be regarded as a spectral analogue of Theorem 11.1.

THEOREM 15.1. IfT € a;o is suitably reqular, in a sense that depends only on
the support of f, the double integral

(15.2) > U (g (NTn O )N

ia}
converges absolutely, and equals JT (f).

This is Theorem 3.2 of [A4]. It includes the implicit assertion that the operator
in the integrand is of trace class, as well as that of the absolute convergence of
the integral. The precise assertion is Theorem 3.1 of [A4], which states that the

expression
)9 DY BNETENCYANGWSIIER
x P Jiap

is finite. As usual, || - ||; denotes the trace class norm, taken here for operators on
the Hilbert space Hp,y.
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Apart from the last convergence assertion, Theorem 15.1 is a formal conse-
quence of the expression above for J{ (f). It follows from the definition of MIZ,X(/\),
once we know that the integral over G(Q)\G(A)! in the expression can be taken in-
side the integral over A and the sum over ¢. The convergence assertion is a modest
extension of Theorem 14.1(i). Its proof combines the same two techniques, namely
the estimates for K(x,y) obtained from Selberg’s positivity argument, and the
estimates for AT given by Proposition 13.2. We refer the reader to §3 of [A4]. O

Suppose that P is fixed. Since the inner product (15.1) depends only on the

image of T" in the intersection (a§0)+ of aJ}SO with ago, we shall assume for the rest

of this section that 7" actually lies in (aIGDO)JF. It turns out that the inner product
can be computed explicitly for cuspidal Eisenstein series. The underlying reason

for this is that the constant term

/ E(nz, ¢, \)dn, € Hp, € ape,

NQ(Q@)\Nq(4)

defined for any standard @ D Py, has a relatively simple formula if ¢ is cuspidal.
Suppose that ¢ belongs to H ., and that X lies in a},¢. If Q is associated to

P, we have the basic formula

E(nx,$, \)dn = Z (M5, \)¢) (z)e(s> o) (Ha (@)

seW (ap,aq)

/NQ(Q)\NQ(A)

This is established in the domain of absolute convergence of Eisenstein series from
the integral formula for M (s, A)¢ and the Bruhat decomposition for G(Q) [Lanl,
Lemma 3]. More generally, suppose that @ is arbitrary. Then

(15.3) E(nz,¢,N)dn =Y E9(x,M(s,\)¢,s)\),

/NQ(Q)\NQ(A) seW(P;Q)

where we have written E9(-,-,.) = Egl (+,-,-), for the group P; such that s belongs
to W(ap,ap,). This is established inductively from the first formula by showing
that for any Q" C @, the @'-constant terms of each sides are equal. The formula
(15.3) allows us to express the truncated Eisenstein series AT E(x, ¢, \), for A in
its domain of absolute convergence, in terms of the signs g and characteristic
functions ¢ defined in §11.

LEMMA 15.2. Suppose that ¢ € Hopycusp and A € A+ iap, where A is any point

in the affine chamber pp + (a)". Then
(15.4) AE@,¢,N) = > Y o),
QRDOPo 5€Q(Q\G(Q)
where for any y € G(A), Yo (y) is the sum over s € W(ap,aq) of the expression

(15.5) eq(sM)po (sA, Ho(dx) — Tg)e M ra)HoW) (A1 (s, \)o) (y).

This is Lemma 4.1 of [A4]. To prove it, we note that for any @, s, and J, the
expression

eq(sh)¢qg (SAv Hq(éx) — TQ)
equals
(—1)4m(AR/A) 2y (H (52) — Th),
{RDQ:s€W (P;R)}
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by the identity of (11.7) and (11.6) established in §11. We substitute this into
the formula (15.5) for g (dz). We then take the sum over ¢ in (15.4) inside the
resulting sums over s and R. This allows us to decompose it into a double sum

over ¢ € Q(Q)\R(Q) and § € R(Q)\G(Q). The sum

S o) Ha(€n) (5, ) g) (¢67)
£€Q\R(Q)

converges absolutely to EF ((53&, M(s,\)o, s)\). It follows that the right hand side
of (15.4) equals

Z(—l)dim(AR/AG) Z { Z EER (62, M (s,\)9, s)) }?R(HR(&E) —Tg),
R § s

with § and s summed over R(Q)\G(Q) and W (P; R) respectively. Moreover, the
last expression in the brackets equals

/ E(ndz, ¢, N)dn,

Nr(Q)\Nr(A)

by (15.3). It then follows from the definition (13.1) that the right hand side of
(15.4) equals the truncated Eisenstein series on the right hand side of (15.4). (The
elementary convergence arguments needed to justify these manipulations are given
on p. 114 of [A4].) O

For any @, we treat the sum 1%)g in the last lemma as a function on
Ng(A)Mg(Q)\G(A)'. Tt then follows from the definition of the characteristic func-
tions ¢ (sA, -) and our choice of A that g (x) is rapidly decreasing in Hg(z). This
is slightly weaker than the condition of compact support imposed on the function
in §12. However, we shall still express the right hand side of (15.4) as the sum over
@ of functions (Etg)(x), following the notation of Lemma 12.2. In fact, the inner
product formula (12.3) is easily seen to hold under the slightly weaker conditions
here. We shall sketch how to use it to compute the inner product of truncated
Eisenstein series.

One has first to compute the Fourier transform

Uo(p,z) = e*(HJrPQ)(HQ(aI))wQ(ax)da’

/x‘lcz(IRi)"ﬁG(A)1
for any p € iag). This entails computing the integral
/ e(SAf‘L)(HQ(M))EQ(sA)QSQ (SA7 Hg(az) — TQ)da,

Aq(R)NG(A)!
which can be written as
/ i A=) e (sM) o (sA, H — To)dH,
“Q
after the obvious change of variables. A second change of variables
H= Y toa", to € R,
a€Aqg

simplifies the integral further. It becomes a product of integrals of rapidly decreasing
exponential functions over half lines, each of which contributes a linear form in sA—p
to the denominator. We have of course to multiply the resulting expression by the
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relevant Jacobian determinant, which equals the volume of ag modulo the lattice
Z(AY) generated by Ay. The result is

(15.6) Vo(px)= Y, e HO(M(s,0)0) (2)0g(sh — p) 7,
seW (ap,aq)

where

(15.7) B (sA — 1) =vol(aS/Z(A%)) " T (sh — w(a¥).

a€Aq

It is worth emphasizing that Wq(p, z) is a rather simple function of y, namely
a linear combination of products of exponentials with quotients of polynomials. We
have taken the real part A of A\ to be any point in pp + (a})T. Assume from now
on that it is also highly regular, in the sense that A(a") is large for every a € Ap.
Then g (u, x) is an analytic function of 4 in the tube in ag, ¢ over a ball B, around
0 in af, of large radius. Moreover, for any Ag € Bq,

Vo(p): o — Yo(u,z), e Ag +i(ag)”,
is a square integrable function of p with values in a finite dimensional subspace of
H .

Q,cusp

Consider another set of data P’, ¢/ € H}, ..o, and N € A’ +ia},, where P’ is
associated to P and A’ is a highly regular point in pps + (ap,)". These give rise
to a corresponding pair of functions ¢ (x) and ¥ (¢, z), for each standard Q’
associated to P’. Following the notation of Lemma 12.2, we write the inner product

(15.8) / AT E(z, ¢, VATE(z,¢', N)dz
GQ\G(A)!
as

>/ (Bvq) (@) (Edg) (@)da.
Q.q /G@\G(A)!
We are taking for granted the extension of Lemma 12.3 to the rapidly decreasing
functions ¢ and ¥g:. It yields the further expression

> ST (M) Uo(n). Yo (—t) dp

(G
Q,Q /Aati(ag) teW (ag,agr)

for the inner product, where Ag is any point in the intersection of pg + (ag)*
with the ball Bg. It follows from (15.6) (and its analogue for P’) that the inner
product (15.8) equals the sum over @ and s € W(ap,ag), and the integral over
€ Ag +i(a§)*, of the product of

(15.9) 0 (sA — p)~LelA=m(T)

with

(15.10) DD g (/N + tp) NI (M (2, ) M (s, N, M(s', X)),
Q/ t rd

The inner sums in (15.10) are over elements t € W(ag, ag/) and s’ € W(ap:, ag/).

There are three more steps. The first is to show that (15.10) is an analytic
function of p if the real part of y is any point in pg + (a*Q)+. The operator valued
functions M (¢, 1) are certainly analytic, since the integral formula (7.2) converges
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uniformly in the given domain. The remaining functions f¢g (s’ +tu)~! of u have
singularities along hyperplanes

{p: (SN +tu)(aV) =0}, a € Ay,
for fixed @', t, s/ and N. However, each such hyperplane occurs twice in the sum
(15.10), corresponding to a pair of multi-indices (Q',t,s) and (QY, Sat, Sos’) that
differ by a simple reflection about «. (By definition, @/, is the standard parabolic

subgroup such that s, belongs to W(ag/, aq: ).) It is a consequence of the functional
equations (7.4) that

(M (sat, p) M (s, M), M(sas', N)@') = (M(t, )M (s, )¢, M(s', N)¢'),
whenever (s'\ + tu)(a¥) = 0. It then follows that the singularities cancel from
the sum (15.10), and therefore that (15.10) is analytic in the given domain. (This
argument is a basic part of the theory of (G, M)-families, to be discussed in §17.)

The second step is to show that if s # 1, the integral over u of the product

of (15.9) and (15.10) vanishes. For any such s, there is a root a@ € Ay such that
(sAg)(a¥) < 0. As a function of p, (15.9) is analytic on any of the affine spaces

(Ag +rwa) +i(ad)", 0<7r<oo0.

We have just seen that the same property holds for the function (15.10). We can
therefore deform the contour of integration from Ag + i(ag)* to the affine space
attached to any r. The function M(¢, 1) is bounded independently of r on this
affine space, as is the product

o (T o(t)(T).

This leaves only the product
B (sh — 1)y (X + t) ",

which is the inverse of a polynomial in y of degree twice the dimension of the affine
space. The integral attached to r therefore approaches 0 as r approaches infinity.
The original integral therefore vanishes.

The final step is to set s = 1 in (15.9) and (15.10), and then integrate the
product of the resulting two expressions over p in Ag + i(ug)*. The group @
actually equals P when s equals 1. However, the point Ag in (ag)* = (a%)* does
not equal the real part A of \. Indeed, the conditions we have imposed imply that
(A —Ag)(aY) > 0 for each o € Ag. We change the contour of integration from
Ag + i(ag)* to the affine space

Ag +rpp + i(ag)*,

for a large positive number r. As in the second step, the integral approaches 0 as
r approaches infinity. In this case, however, the function

0q(sA — ) = 0p(\ — p)
contributes a multidimensional residue at u = A. Using a change of variables
w= Z ZaWa, zq € C,
aEAp

one sees without difficulty that the residue equals the value of (15.10) at s = 1 and
@ = A. This value is therefore equal to the original inner product (15.8). Since
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the original indices of summation ) and s have disappeared, we may as well re-
introduce them in place of the indices Q" and ¢ in (15.9). We then have the following
inner product formula.

PROPOSITION 15.3 (Langlands). Suppose that ¢ € HY .., and ¢' € HY,

for standard parabolic subgroups P and P'. The inner product

/ AT E(z, 6, N ATE(z, @/, N)da
G(Q\G(A)!

,cusp’

is then equal to the sum

(15.11) DTN TS g (sh+ 8 N) TN (M (s, M), M(s, X)),
Q s s

taken over Q D Py, s € W(ap,ag) and s’ € W(ap/,ag), as meromorphic functions
of \€apc and N € ap .

The discussion above has been rather dense. However, it does yield the required
formula if the real parts of A and A’ are suitably regular points in (a})* and (a},)™
respectively. Since both sides are meromorphic in A and X/, the formula holds in
general. (I

The argument we have given was taken from §4 of [A4]. The formula stated
by Langlands [Lan1, §9] actually differs slightly from (15.11). It contains an extra
signed sum over the ordered partitions p of the set Ag. The reader might find it
an interesting combinatorial exercise to prove directly that this formula reduces to
(15.11).

We shall say that a class x € X is unramified if for every pair (P, 7) in x, the
stabilizer of m in W(ap,ap) is {1}. This is obviously completely parallel to the
corresponding geometric definition in §11. Assume that x is unramified, and that
(P,7) is a fixed pair in y. We shall use Proposition 15.3 to evaluate the distribution
1 (f).

Suppose that ¢ and ¢’ are two vectors in the subspace H%ﬁcuspm of Hp. This
represents the special case of Proposition 15.3 with P’ = P. The factor

(M(s,X), M(s", X)¢')

in (15.11) vanishes if s # s, since M (s, \)¢ and M(s’, )¢’ lie in the orthogonal
subspaces HqQ cusp,sx and Hg cusp,s'x of Hg. We use the resulting simplification
to compute the inner product (15.1). We have of course to interchange the roles
of (¢,A) and (¢',\'), and then let X approach a fixed point A € ia}. Writing
N = X+ ¢, for a small point ¢ € 4a% in general position, we obtain

(ME(N)¢',¢) = lim ATB(x,¢' A+ QAT E(z, ¢, N)dx
’ —0Je@\Ga)
= li —1,(sO(T) ! )
> D Oo(sQ) et (M (s, A+ ()¢, M5, )0)
Q seW(ap,aq)
In particular, the last limit exists, and takes values in a finite dimensional space of
functions of the highly regular point 7' € (a$)*. (This is also easy to show directly.)
We can therefore extend both the limit and the operator MITDZX(/\) to all values of
Te aIC;'O so that the identity remains valid. Now, let M (ws, A) be the operator on
Hp defined by analytic continuation from the analogue of (7.2) in which wy has
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been replaced by the representative wy of s in K. Since M (s, \) is unitary, we see
easily from the definition (9.4) that

(M(s, A+ )¢, M(5,\)p) = (M(s,\) ' M(s,A+()¢', )

— e_(SC)(TO)(M({DS,)\)_1M(’LA[}S7)\ + C)qbla(b)
It follows that

(MEA ()9, 8) = lim S 737 0o (s¢) ™ (M(@s, )™ M (3, A+ Q)6 ).
Q s

This formula does not depend on the choice of 7. To compute the value
(15.12) tr(ME (AN ey (X, f))

at T' = Ty of the integrand in (15.2), we need only replace ¢’ by Zp, (A, f)¢, and
then sum ¢ over a suitable orthonormal basis of Hp,y.

Recall that Zp(my) denotes the representation of G(A) obtained by parabolic
induction from the representation

mx(m) = m(m)erHr(m) m € M(A),

of Mp(A). We can also write M (W, 7y) for the intertwining operator from Zp(my)
to Zg(smy) associated to an element s € W(ap, ag). Finally, let meysp(m) denote
the multiplicity of 7 in the representation R, cusp. Since

HRX = @ HP,cusp,s-rn

sEW (ap,ap)
the representation Zp, () is then isomorphic to a direct sum of
(15.13) [W(ap,ap)|meusp(T)

copies of the representation Zp(my). The trace (15.12) is therefore equal to the
product of (15.13) with

tr(MP(W/\)IP(W)\v f))7

where Mp(my) is the operator on underlying Hilbert space of Zp(wy) defined ex-
plicitly in terms of intertwining operators by

(15.14) MP(W)\)Z%E%(Z 3 9Q(SA)—1M(@7m—lM(wsm+<)).

Q SEW(GP,GQ)

Since P has been fixed, we shall let P; index the sum over standard parabolic
subgroups in the formula (15.2) for Jg(f). If P does not belong to Py, it turns
out that Hp, , = {0}. This is a consequence of Langlands’s construction [Lan5,
§7] of the full discrete spectrum in terms of residues of cuspidal Eisenstein series.
For the construction includes a description of the inner product on the residual
discrete spectrum in terms of residues of cuspidal self-intertwining operators. Since
X is unramified, there are no such operators, and the residual discrete spectrum
associated to x is automatically zero. This leaves only groups P; in the set P,,. For
any such Pp, the value at T = Tj of the corresponding integral in (15.2) equals the
integral over A € ia}, of (15.11). Since

np! [Pyl |W(ap, ap)| =1,

we obtain the following theorem.
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THEOREM 15.4. Suppose that x = {(P,7)} is unramified. Then

(15.15) Iy (f) = mcusp(ﬂ)/ tr(Mp(mx)Zp(ma, £))dA.

-
1ap



Part II. Refinements and Applications
16. The first problem of refinement

We have completed the general steps outlined in §6. The coarse geometric
expansion of §10 and the coarse spectral expansion of §14 give us an identity

(16.1) PRAGED P! feCx(GA)),

0O XEX

that holds for any reductive group G. We have also seen how to evaluate the
distributions J, (f) and J, (f) explicitly for unramified classes o and .

From now on, we shall generally work over an arbitrary number field F', whose
adele ring Ap we denote simply by A. We write S, for the set of archimedean
valuations of F', and we let g, denote the order of the residue class field of the
nonarchimedean completion F, attached to any v € S,,. We are now taking G to
be a fixed, connected reductive algebraic group over F'. We write Syam = Sram(G)
for the finite set of valuations of F' outside of which G is unramified. Thus, for any
v € Sram, G is quasisplit over F,,, and splits over some finite unramified extension
of F,.

The notation of Part I carries over with F' in place of Q. So do the results, since
they are valid for the group GG1 = Rp/oG over Q obtained from G by restriction
of scalars. For example, the real vector space ag, is canonically isomorphic to its
analogue ag for G. The kernel G(A)! of the canonical mapping Hg: G(A) — ag
is isomorphic to G (A)!. Tt is a factor in a direct product decomposition

G(A) = G(A)1 X A;;,
whose other factor
A;ro = AGI (R)O

embeds diagonally in the connected, abelian Lie group

I Ac(r.)".

'UESoo

We shall apply the notation and results of Part I without further comment.

The results in Part I that culminate in the identity (16.1) are the content
of the papers [A3], [A4] and [A5, §1-3], and a part of [Al, §1-3]. We note in
passing that there is another possible approach to the problem, which was used
more recently in a local context [A19]. It exploits the cruder truncation operation
of simply multiplying functions by the local analogue of the characteristic function
F%(-,T). Although the methods of [A19] have not been applied globally, they could
conceivably shorten some of the arguments. On the other hand, such methods are
perhaps less natural in the global context. They would lead to functions of T that
are asymptotic to the relevant polynomials, rather than being actually equal to
them.

The identity (16.1) can be regarded as a first approximation to a general trace
formula. Let us write Xyysp for the set of cuspidal classes in X'. A class x € &Xcygp is
thus of the form (G, ), where 7 is a cuspidal automorphic representation of G(A)*.
For any such x, the explicit formula of §15 specializes to

J(f) = a%(m) fa(m),

89



90 JAMES ARTHUR

where
fa(m) =tr(n(f)) = tr( /G . f(x)w(x)dm)

and

aG(w) = Musp ().
Recall that meysp(m) is the multiplicity of 7 in the representation Reusp of G(A)
on L2, (G(Q)\G(A)'). In particular,

tI‘(Rcusp(f)) = Z JX(f)

XEXcusp
The identity (16.1) can thus be written as a trace formula
(16.1) tr(Reusp (1) = D_Jo(H) = > I
0cO XEX —Xeusp

The problem is that the explicit formulas we have obtained so far do not apply to
all of the terms on the right.

It is also easy to see that (16.1) generalizes the Selberg trace formula (1.3) for
compact quotient. Let us write O,y for the set of anisotropic classes in O. A class
0 € Oanis is thus of form {7}, where v represents an anisotropic conjugacy class in
G(Q). (Recall that an anisotropic class is one that does not intersect P(Q) for any
proper P C G.) For any such o, the explicit formula of §11 specializes to

Jo(f) = a% () fa(7),

where

fa(y) = / fla™ yz)da
G(8)y\G(A)

aG('y) = Vol(G(F)V\G(A)i).
The identity (16.1) can therefore be written

and

(16.1)"
Yoo aMfe+ Y. L= D, @i+ D L)
YElanis(G) 0€O0—0Oanis TE€lcusp (G) XEX —Xeusp

where T'apis(G) is the set of conjugacy classes in G(F') that do not intersect any
proper group P(F), and Il.,s,(G) is the set of equivalence classes of cuspidal au-
tomorphic representations of G(A)!. Recall that G(F)\G(A)! is compact if and
only if G has no proper rational parabolic subgroup P. In this case O = O,yis and
X = Xousp, and (16.1)” reduces to the trace formula for compact quotient discussed
in §1.

For general G, the equivalent formulas (16.1), (16.1)’, and (16.1)" are of limited
use as they stand. Without explicit expressions for all of the distributions J,(f) and
Jy (f), one cannot get much information about the discrete (or cuspidal) spectrum.
In the language of [CLL], we need to refine the coarse geometric and spectral
expansions we have constructed.

What exactly are we looking for? The unramified cases solved in §11 and §15
will serve as guidelines.

The weighted orbital integral on the right hand side of the formula (11.9) is
defined explicitly in terms of f. It is easier to handle than the original global
construction of the distribution J,(f) on the left hand side of the formula. We
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would like to have a similar formula in general. The problem is that the right hand
side of (11.9) does not make sense for more general classes 0 € O. It is in fact not
so simple to define weighted orbital integrals for arbitrary elements in M. We shall
do so in §18. Then in §19, we shall describe a general formula for J,(f) as a linear
combination of weighted orbital integrals.

The weighted character on the right hand side of (15.15) is also defined ex-
plicitly in terms of f. It is again easier to handle than the global construction
of the distribution J, (f) on the left hand side. Weighted characters are actually
rather easy to define in general. However, this advantage is accompanied by a del-
icate analytic problem that does not occur on the geometric side. It concerns an
interchange of two limits that arises when one tries to evaluate J, (f) for general
classes x € X. We shall describe the solution of the analytic problem in §20. In
§21 we shall give a general formula for J, (f) as a linear combination of weighted
characters.

We adjust our focus slightly in Part II, which is to say, for the rest of the paper.
We have already agreed to work over a general number field F instead of Q. We
shall make three further changes, all minor, in the conventions of Part I.

The first is a small change of notation. If H is a connected algebraic group over
a given field k, and v belongs to H(k), we shall denote the centralizer of v in H by
H,  instead of H,. We reserve the symbol H, for the Zariski connected component
of 1in H, . Then H, is a connected algebraic group over k, which is reductive if
H is reductive and -y is semisimple. This convention leads to a slightly different way
of writing the formula (11.9) for unramified classes 0 € O. In particular, suppose
that o is anisotropic. Then

Jo(f) = a% () fa(7),

where we now write

aG(’y) = vol(Gﬂ,(F)\G,y(A)l)

fa(v) =/ f(z™ yz)da.
G (A\G(A)

This would seem to be in conflict with the notation of (16.1)”, since the group
G+ (A)" here is of finite index in the group denoted G(A)! above. There is in fact
no discrepancy, for the reason that the two factors a®(y) and fg(v) depend in
either case on an implicit and unrestricted choice of Haar measure on the given
isotropy group.

The second change is to make the discussion more canonical by allowing the
minimal parabolic subgroup P, to vary. We have, after all, shown that the distribu-
tions J,(f) and J, (f) are independent of Py. Some new notation is required, which
we may as well formulate for an arbitrary field k£ that contains F'. We can of course
regard G as a reductive algebraic group over k. Parabolic subgroups certainly make
sense in this context, as do other algebraic objects we have discussed.

By a Levi subgroup of G over k, we mean an k-rational Levi component of
some k-rational parabolic subgroup of G. Any such group M is reductive, and
comes with a maximal k-split central torus Aj;, and a corresponding real vector
space apr. (A Levi subgroup M of G over F is also a Levi subgroup over k, but
Ay and ap; depend on the choice of base field. Failure to remember this can lead
to embarrassing errors!) Given M, we write L(M) = L% (M) for the set of Levi

and
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subgroups of G over k that contain M, and F(M) = F (M) for the set of parabolic
subgroups of G over k that contain M. Any element Q € F(M) has a unique Levi
component Mg in £(M), and hence a canonical Levi decomposition @ = MgNg.
We write P(M) for the subset of groups @ € F(M) such that Mg = M. For any
P € P(M), the roots of (P, Ajs) determine an open chamber a}; in the vector space
aps. Similarly, the corresponding coroots determine a chamber (a}kw);g in the dual
space aj;.

The sets P(M), L(M) and F(M) are all finite. They can be described in terms
of the geometry on the space ap;. To see this, we use the singular hyperplanes in
aps defined by the roots of (G, Ay). For example, the correspondence P — a}, is
a bijection from P(M) onto the set of connected components in the complement in
aps of the set of singular hyperplanes. We shall say that two groups P, P’ € P(M)
are adjacent if their chambers share a common wall. The mapping L — ar, is
a bijection from L£(M) onto the set of subspaces of ap; obtained by intersecting
singular hyperplanes. The third set F(M) is clearly the disjoint union over L €
L(M) of the sets P(L). The mapping Q — ag is therefore a bijection from F(M)
onto the set of “facets” in ajs, obtained from chambers of subspaces ay,. Since any
element in aj; belongs to a unique facet, there is a surjective mapping from ay; to
F(M).

Suppose for example that G is the split group SL(3), that k is any field, and that
M = M is the standard minimal Levi subgroup. The singular hyperplanes in the
two dimensional space ays are illustrated in Figure 16.1. The set P(M) is bijective
with the six open chambers in the diagram. The set £(M) has five elements,
consisting of the two-dimensional space ay;, the three one-dimensional lines, and
the zero-dimensional origin. The set F (M) has thirteen elements, consisting of six
open chambers, six half lines, and the origin. The intuition gained from Figure
16.1, simple though it is, is often useful in understanding operations we perform in
general.

FIGURE 16.1. The three singular hyperplanes in the two dimensional
space ap; = ag attached to G = SL(3).

Suppose now that £ = F. Even though we do not fix the minimal parabolic
subgroup as in Part I, we shall work with a fixed minimal Levi subgroup My of G
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over Q. We denote the associated sets £(My) and F(My) by £ = LS and F = FC,
respectively.

The variance formulas (10.6) and (14.7) can be written without reference to Fj.
The reason is that for a given Py € P(My), any group R € F is the image under
some element in the restricted Weyl group Wy = WOG of a unique group Q € F
with @ D Py. It is an easy consequence of the definitions that JM=(f Rry) equals
J29 (fo.y) for any o, and that JY"(fr,y) equals J2'® (fq.) for any x. The order
of the preimage of @ in F is equal to the quotient \WéVIQHW(ﬂ*l. Letting @ now
stand for an arbitrary group in F, we can write the earlier formulas as

(16.2) Jo(fY) = 3 IWe @ IWE 13" (fou), 0€0,
QEF
and
M, _
(16.3) T(fY) = D7 W R IwE T Ma (fq.,), XEX.
QEF

The third point is a slight change of emphasis. The distributions J,(f) and
Jy(f) in (16.1) depend only on the restriction of f to G(A)'. We have in fact
identified f implicitly with its restriction to G(A)!, in writing Reusp(f) above for
example. Let us now formalize the convention by setting C° (G(A)l) equal to the
space of functions on G(A)" obtained by restriction of functions in C°(G(A)). We
can then take the test function f to be an element in C2°(G(A)!) rather than
C2°(G(A)), thereby regarding (16.1) as an identity of distributions on G(A)*. This
adjustment is obviously quite trivial. However, as we shall see in §22, it raises an
interesting philosophical question that is at the heart of some key operations on
the trace formula.

17. (G, M)-families

The terms in the refined trace formula will have some interesting combinato-
rial properties. To analyze them, one introduces the notion of a (G, M)-family of
functions. We shall see that among other things, (G, M)-families provide a partial
unification of the study of weighted orbital integrals and weighted characters.

We are now working in the setting of the last section. Then G is defined over
the fixed number field F, and hence over any given extension k of F. Let M be a
Levi subgroup of G over k. Suppose that for each P € P(M),

CP()\)v A\ E Z'Cl}ﬂw,
is a smooth function on the real vector space ia},;. The collection
{er(N): P eP(M)}

is called a (G, M)-family if cp(X) = cpr (), for any pair of adjacent groups P, P’ €
P(M), and any point A in the hyperplane spanned by the common wall of the
chambers i(a%;)} and i(a};) 5. We shall describe a basic operation that assigns a
supplementary smooth function cps(A) on ia}, to any (G, M)-family {cp(N)}.

The algebraic definitions of §4 and §5 of course hold with the field % in place of
Q. In particular, for any P € P(M) we have the simple roots Ap of (P, Aps), and
the associated sets AY,, Ap and (3 p)V. We are assuming we have fixed a suitable
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Haar measure on the subspace a§; = a% of ap;. We then define a homogeneous

polynomial

0p(A) = vol(a§/Z(A%) - ] M), A\ € i’y
aEAp

on ia},, where Z(A}) is the lattice spanned by the basis A} of a§;.

LEMMA 17.1. For any (G, M)-family {cp(X\)}, the sum
(17.1) e = Y ep(NIp(N)

PEP(M)
extends to a smooth function of A € ia},.

The only possible singularities of cps(A) are simple poles along hyperplanes
in ia}, of the form A(a¥) = 0. These in turn come from adjacent pairs P and
P’ for which @ and o’ = (—a) are respective simple roots. Using the fact that
cp(N) = epr(A) for any A on the hyperplane, one sees directly that the simple poles
cancel, and therefore that cps(A) does extend to a smooth function. (See [A5,
Lemma 6.2].) O

We often write cpy = ¢pr(0) for the value of ¢pr(A) at A = 0. It is in this form
that the (G, M)-families from harmonic analysis usually appear.

We shall first describe a basic example that provides useful geometric intuition.
Suppose that

y={Yp: PePM)}
is a family of points in ap; parametrized by P(M). We say that ) is a positive,
(G, M)-orthogonal set if for every pair P and P’ of adjacent groups in P(M),
whose chambers share the wall determined by the uniquely determined simple root
[ A AP,
Yp — Yp/ = 7"O¢Otv7

for a nonnegative number r,. Assume that this condition holds. The collection
(17.2) cp(N,Y) = 0P, A €iat,, PeP(M),

is then a (G, M)-family of functions, which extend analytically to all points X in the
complex space aj;c. As with any (G, M)-family, the associated smooth function
e (A, YY) depends on the choice of Haar measure on a$;. In this case, the function
has a simple interpretation.

Observe first that

Yp =Y5 + Vg, YS €a$, Yo € ag,

where Y¢ is independent of the choice of P € P(M). Subtracting the fixed point
Yo € ag from each Yp, we can assume that Yp € a]GVI. Now in §11, we attached
a sign ep(A) and a characteristic function ¢p(A,-) on ays to each P € P(M) and
A € apr. Suppose that A is in general position, and that A is any point in aj; ¢
whose real part equals A. The function

ep(Mop(A, H — Yp)erH), H € a§),
is then rapidly decreasing. By writing

H= Y taa", to € R,
a€EAp
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we deduce easily that the integral of this function over H equals
AP (N) L = ep(X, V)0p(N) L
It then follows that

(17:3) > o) = / nr (H, Y)e* D,
PEP(M) agy
where
bu(HY)= > ep(A)dp(A H—Yp).
PEP(M)
LEMMA 17.2. The function
H — wM(Hvy)v HECL%Z,

is the characteristic function of the convex hull in af; of V.

The main step in the proof of Lemma 17.2 is the combinatorial lemma of
Langlands mentioned at the end of §8. This result asserts that

1, if A(aY) >0, a€Ap,
0, otherwise,

(17.4) Y R (NSRA, H)ro(H) = {

QDP

for any P € P(M) and H € ayps, where Eg and ¢% denote objects attached to
the parabolic subgroup P N Mg of Mg. Langlands’s geometric proof of (17.4) was
reproduced in [A1, §2]. There is a different combinatorial proof [A3, Corollary
6.3], which combines an induction argument with (8.10) and Identity 6.2. Given
the formula (17.4), one then observes that ¢ (H,)) is independent of the point
A. This follows inductively from the expression obtained by summing the left hand
side of (17.4) over P € P(M) [A1l, Lemma 3.1]. Finally, by varying A, one shows
that R
oas(H.) = {1, if w(H ~Yp) <0, = Ap, P € P(M),
0, otherwise.
The inequalities on the right characterize the convex hull of ), according to the
Krein-Millman theorem. (See [A1, Lemma 3.2].) O

The convex hull of ) is of course compact. It follows that the integral on the
right hand side of (17.3) converges absolutely, uniformly for A € iay, . We can
therefore identify the smooth function c¢ps(\,Y) with the Fourier transform of the
characteristic function of the convex hull of Y. Its value cp(Y) at A = 0 is simply
the volume of the convex hull. We have actually been assuming that the point
Yo € ag attached to Y equals zero. However, if Y is nonzero, the convex hull of
Y represents a compactly supported distribution in the affine subspace Yg + afj of
apr. The last two assertions therefore remain valid for any V.

Consider the case that G = SL(3) and M equals the standard minimal Levi
subgroup. The convex hull of a typical set ) is illustrated in Figure 17.1, a diagram
on which one could superimpose six convex cones, as in the earlier special case of
Figure 11.1. The six points Yp are the six vertices in the diagram. We have chosen
them here to lie in the associated chambers a;. Notice that with this condition,
the intersection of the convex hull with the closure of a chamber a}f; equals a set
of the kind illustrated in Figure 9.2. This suggests that the characteristic function
Y (H,Y) is closely related to the functions I'x (-, Yp) defined in §9.
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Yp

FIGURE 17.1. The convex hull of six points {Yp} in the two dimen-
sional space ag attached to SL(3). Observe that its intersection with
any of the six chambers aJIS in the diagram is a region like that in

Figure 9.2.

Suppose that X is any point in a§;. According to Lemma 9.2, the function

H — T'5(H, X) on af; is compactly supported for any P € P(M). The integral

(17.5) / I (H, X)eMNDaH

afr
therefore converges uniformly to an analytic function of A € aj; . To compute it,
we first note that for any P € P(M),

Y (nimiAe AR (H)7 (H - X)

QDOP
=) (-ntimiAe/Aa)zB ) Y (—1) A AFE ()T, (H, X)
QDP Q'DQ

=3 (X (ymmteedrR )RS () )T (H, X)
QDOP {Q@:PCQcQ’}
:F/P(Hv X),
by the inductive definition (9.1) and the formula (8.10). Suppose that the real part
of A lies in the negative chamber —(a};)5. Then the integral

/ T8 (H)7o(H — X)e*HdH
afy
converges. Changing variables by writing
H= > tzw’+ Y teaV, tw,ta € R,
weAY a€lq
one sees without difficulty that the integral equals
(,1)dim(Ap/Ac)eAcz(X)§g()\)fng(/\Q)ﬂ’

where Aq is the projection of A onto af, ¢, and

B2(N) = Opoint, (V) = vol(a2/Z((A)) ™" T A=)

wEAg
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(See [A5, p. 15].) It follows that the original integral (17.5) equals

(17.6) Y (—1ytmiAr/Ae)AeIgE () o (Ag)
QDOP
In particular, the function (17.6) extends to an analytic function of A € ahsc

Suppose now that for a given P € P(M), cp(A) is an arbitrary smooth function
of \ € ia},;. Motivated by the computation above, we set

(17.7) cp(A) = Y (~1)mAr/AQ) e, (1) (V) g (Ag) T
QDP

where cq is the restriction of cp to iag, and Aq is again the projection of A onto
iag). Then c’p is defined on the complement of a finite set of hyperplanes in ia},.

LEMMA 17.3. ci(A) extends to a smooth function of A € iay,.

The lemma is not surprising, given what we have established in the special case

that cp(A) = e*X). One can either adapt the discussion above to the more general

case, as in [A3, Lemma 6.1], or approximate cp(\) by functions of the form e*(X),

and apply the results above directly. (I

Assume now that {cp(A) : P € P(M)} is a general (G, M)-family. There
are two restriction operations that give rise to two new families. Suppose that
Q € F(M). If R belongs to PMe (M), we set

RN = cqr (M),
where Q(R) is the unique group in P(M) that is contained in @), and whose inter-
section with Mg equals R. Then {cg()\) : R € PMa(M)} is an (Mg, M)-family.
The other restriction operation applies to a given group L € £L(M). If A lies in the
subspace ia} of ia},, and Q is any group in P(L), we set
cQ(A) = cp(N),

for any group P € P(M) with P C Q. Since we started with a (G, M)-family, this
function is independent of the choice of P, and the resulting collection
{cg(N\) : Q € P(L)} is a (G, L)-family. Observe that the definition (17.7) can
be applied to any Q. It yields a smooth function c(A) on ia} that depends only
on cq(A). Again, we often write df, = dg,(0) for the value of dgy(A) at A = 0.

Let {dp(\) : P € P(M)} be a second (G, M)-family. Then the pointwise
product

(ed)p(A) = cp(N)dp(N), PeP(M),

is also a (G, M)-family.

LEMMA 17.4. The product (G, M)-family satisfies the splitting formula
(cd)u(N) = > GNdy(Ae)
QEP(M)
In particular the values at A = 0 of the functions in the formula satisfy

(17.8) (cd)pr = > .
QEF (M)
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The lemma is an easy consequence of a formula

(17.9) cpNIPN) =) ch(MQ)IEN) Y, P e P(M),
QDP

where Qg = 0pnn,,, which we obtain by inverting the definition (17.7). To derive
(17.9), we write

> h(AQIZ(N) !

QDP

=Y N (—nimAe/teen (Ag)Bg (Ag) g (Ag) THZ (M) !
QDOPQR'DOQ

=Y @Dl ) (YD (Lm0 108 (Ag) ).
Q' DOP {Q:PCQCQ’}

The expression in the brackets may be written as a Fourier transform

[, (X (im0 g ),
P {Q:PCQCQ}

provided that the real part of A lies in —(a},)5. The identity (8.11) tells us that

the expression equals 0 or 1, according to whether @’ properly contains P or not.

The formula (17.9) follows. Once we have (17.9), we see that

()N = > ep(Ndp(N)Ip(N) "

PeP(M)

D ep(N) D di(A)IE(N) !
P

QDP

S0 e )doe)

QeF(M) {PeP(M):PCQ}
= D Ndp0a),
QEeF(M)
as required. (See [A3, Lemma 6.3].) O

Suppose for example that ¢p(A) = 1 for each P and A. This is the family
attached to the trivial positive (G, M)-orthogonal set Y = 0. Then ¢%(\) equals
0 unless @ lies in the subset P(M) of F(M), in which case it equals 1. Tt follows
that

(17.10) du(N) = > dp(N).

PeP(M)
In the case that dp(\) is of the special form (17.2), this formula matches the
intuition we obtained from Figure 17.1 and Figure 9.2. For general {dp()\)}, and
for {¢p(A)} subject only to a supplementary condition that the numbers
(17.11) k=%, LeL(M), QeP(L),

be independent of the choice of @, (17.10) can be applied to the splitting formula
(17.8). We obtain a simpler splitting formula

(17.12) (cd)y = Y ciyde
LeL(M)
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Suppose that {¢p(A)} and {dp(N)} correspond to positive (G, M)-orthogonal
sets Y = {Yp} and Z = {Zp}. Then the product family {(cd)p(\)} corresponds
to the sum Y+ Z = {Yp + Zp}. In this case, (17.8) is similar to a classical formula
for mixed volumes. In the case that G = SL(3) and M is minimal, it is illustrated
in Figure 17.2.

FIGURE 17.2. The entire region is the convex hull of six points {Yp +
Zp} in the two dimensional space ag attached to SL(3). The inner
shaded region is the convex hull of the six points {Yp}. For any P,
the area of the darker shaded region with vertex Yp equals the area
of a region in Figure 9.2. The areas of the six rectangular regions
represent mixed volumes between the sets {Yp} and {Zp}.

In addition to the splitting formula (17.8), there is a descent formula that relates
the two restriction operations we have defined. It applies in fact to a generalization
of the second operation.

Suppose that M contains a Levi subgroup M; of G over some extension k; of
k. Then ays is contained in the vector space aps, attached to M;. Suppose that
{ep, (M) : P € P(My)} is a (G1, My )-family. If P belongs to P(M) and A lies in
the subspace iaj, of iaj, , we set

cp(A) = cp,(A)

for any P, € P(M;) with P, C P. This function is independent of the choice
of Py, and the resulting collection {cp(A) : P € P(M)} is a (G, M)-family. We
would like to express the supplementary function cps(A) in terms of corresponding
functions c?jl(/\l) attached to groups Q1 € F(M7). A necessary step is of course
to fix Haar measures on each of the spaces aﬁ/}l, as L1 = Lg, ranges over L(M).
For example, we could fix a suitable Euclidean inner product on the space ayy,,
and then take the Haar measure on aﬁjl attached to the restricted inner product.
For each Ly, we introduce a nonnegative number d§; (M, Ly) to make the relevant
measures compatible. We define dz\G41 (M, L1) to be 0 unless the natural map

M . L e
an, B ap, — aap
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is an isomorphism, in which case df/jl (M, L) is the factor by which the product

Haar measure on ct]L\/[1 @ ak}l must be multiplied in order to be equal to the Haar
measure on a]\G/ll. (The measure on aj is the quotient of the chosen measures on
a§;, and a;.)

There is one other choice to be made. Given M and My, we select a small
vector £ in general position in a%l. If L, is any group £(M;) with d]\GA,1 (M, L) #0,
the affine space £ + ag\;/f intersects agl at one point. This point is nonsingular, and

so belongs to a chamber agl, for a unique group @1 € P(L1). The point £ thus
determines a section

Ll — Q17 Ll S £<M1)7 ngl(M7 Ll) # Oa
from L to its fibre P(Ly).
LEMMA 17.5. For Fy D F, My C M, and {cp,(A\1)} as above, we have

eV = Y dS (M, L) (N, \ € iat,.
LyeL(My)

In particular, the values at A = 0 of these functions satisfy

(17.13) e =Y dS, (M, Ly)c.
Lle[:(Ml)

Lemma 17.5 is proved under slightly more general conditions in [A13, Propo-
sition 7.1]. We shall be content to illustrate it geometrically in a very special case.
Suppose that k = k1, G = SL(3), M is a maximal Levi subgroup, M; is a minimal
Levi subgroup, and {cp, (A1)} is of the special form (17.2). The points {Yp, } are
the six vertices of the polytope in Figure 17.3. They are of course bijective with the
set of minimal parabolic subgroups P; € P(M;). The six edges in the polytope are
bijective with the six maximal parabolic subgroups @1 € F(M7). The two vertical
edges are perpendicular to aps, so the corresponding coefficients dg\;/h (M, Ly) van-
ish. The remaining four edges occur in pairs, corresponding to two pairs of groups
Q1 € P(L;) attached to the two maximal Levi subgroups L; # M. However, the
upward pointing vector £ € u%l singles out the upper two edges. The projections of
these two edges onto the line a;; are disjoint (apart from the interior vertex), with
union equal to the line segment obtained by intersecting a;; with the polytope.
The length of this line segment is the sum of the lengths of the two upper edges,
scaled in each case by the associated coefficient dﬁl (M, Ly).

If this simple example is not persuasive, the reader could perform some slightly
more complicated geometric experiments. Suppose that dim(aps, ) = 3 and {cp, (A1)}
is of the special form (17.2), but that k, G, k1, and M; are otherwise arbitrary. It
is interesting to convince oneself geometrically of the validity of the lemma in the
two cases dim ap; = 1 and dim ap; = 2. The motivation for the general proof is
based on these examples. |

We sometimes use a variant of Lemma 17.5, which is included in the general
formulation of [A13, Propositon 7.1]. It concerns the case that F' = Fj, but where
M is embedded diagonally in the Levi subgroup M = M x M of G = G x G. Then
ays is embedded diagonally in the space apg = aps ®aps. Elements in £(M) consist
of pairs L = (L1, L), for Levi subgroups L1, Ls € L(M) of G. (We have written
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|
M
arr,

4
|

FIGURE 17.3. An illustration of the proof of Lemma 17.5, with
G = SL(3), M maximal, and M; = My minimal. The two up-
per edges of the polytope project onto the two interior intervals on
the horizontal axis. In each case, the projection contracts the length
by the appropriate determinant d%l (M, Ly).

A
A

apr—

M, G, and L in place of M7, G1, and L1, since we are now using L; to denote the
first component of £.) The corresponding coefficient in (17.13) satisfies

A (M, £) = 25 W5 dGy (L, Ly),
while if P belongs to P(M), the pair P = (P, P) in P(M) satisfies
Op () = 22 dm@SDg,()), \ € ik,
We choose a small point £ in general position in the space
aje = {(H,~H): H € ay},
and let
(L1,Ly) — (Q1,Q2), Ly, Ly € L(M), d§;(L1, Ls) # 0,

be the corresponding section from (L1, L) to its fibre P(L1) x P(Lg). If £ is written
in the form %51 - %52, Q; is in fact the group in P(L;) such that & belongs to agi.

LEMMA 17.6. The product (G, M)-family of Lemma 17.4 satisfies the alternate
splitting formula

(cd)uN) = D dS(L1, La)c (NeFz ().
Ll,LQGE(Af)

In particular, the values at A = 0 of the functions in the formula satisfy

(17.14) (edm =Y, d§(Ly, Lo)ctdy.
Ly,LaeL(M)

(See [A13, Corollary 7.4].) O
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18. Local behaviour of weighted orbital integrals

We now consider the refinement of the coarse geometric expansion (10.7). In
this section, we shall construct the general weighted orbital integrals that are to be
the local ingredients. In the next section, we shall describe how to expand J(f) as
a linear combination of weighted orbital integrals, with certain global coefficients.

Recall that invariant orbital integrals (1.4) arose naturally at the beginning of
the article. Weighted orbital integrals are noninvariant analogues of these distribu-
tions. We define them by scaling the invariant measure dz with a function vas(x)
obtained from a certain (G, M)-family.

The simplest case concerns the setting at the end of §16, in which k is a com-
pletion F, of F. Then M is a Levi subgroup of G over F,. We also have to fix a
suitable maximal compact subgroup K, of G(k) = G(F,). If x, is an element in
G(Fy), and P belongs to P(M), we form the point Hp(z,) in aps as in §4. It is a
consequence of the definitions that

{YP = 7HP(I’1)) . P € P(M)}
is a positive (G, M)-orthogonal set. The functions
vp(\, 1) = e AHPE) A €iat,, PeP(M),

then form a (G, M)-family. The associated smooth function

v (A, xy) = Z vp(A,2,)0p(N) !

PEP(M)
is the Fourier transform of the characteristic function of the convex hull in a§; of
the projection onto a§; of the points {—Hp(x,): P € P(M)}. The number
var(20) = var (0, 2,) = lim > wp(\x)fp(N)
PEP(M)

equals the volume of this convex hull.

For the trace formula, we need to consider the global case that £ = F. Until
further notice, the maximal compact subgroup K = [[ K, of G(A) will remain
fixed. Suppose that M is a Levi subgroup in the finite set £ = £(M;), and that x
belongs to G(A). The collection

(18.1) vp(\, ) = e AMHP@), \€iay,, PeP(M),
is then a (G, M)-family of functions. The limit
(18.2) op () = )1\13}) Z vp(\,z)0p(N) 7

PeP(M)

exists and equals the volume of the convex hull in a% of the projection of the points
{—=Hp(z) : P € P(M)}. To see how this function is related to the discussion of
§11, choose a parabolic subgroup P € P(M), and a minimal parabolic subgroup Py
of G over QQ that is contained in P. The correspondence

(P',s) — Q=w," P, P'> Py, s€Wlap,ap),

is then a bijection from the disjoint union over P’ of the sets W (ap, ap/) onto the
set P(M), with the property that

s Hp/(wsz) = Ho(x).
It follows that vas(z) equals the weight function vp(z) of Theorem 11.2.
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The local and global cases are of course related. For any z € G(A), we can
write

Hp(x) = Hp(w), P cP(M),

where x,, is the component of z in G(F,). For almost every valuation v, z, lies in
K,, and Hp(z,) = 0. We obtain a finite sum

Hp(l‘) = Z HP(xv)a

veS

where S is a finite set of valuations that contains the set So, of archimedean valu-
ations. We may therefore fix S, and take z to be a point in the product

veS

The (G, M)-family {vp(A,x)} decomposes into a pointwise product

ve(\z) = [[ vp(A 20), \eiay, PeP(M),
vES
of (G, M)-families {vp(\,z,)}. We can therefore use the splitting formula (17.14)
and the descent formula (17.13) (with ¥ = F and k; = F),) to express the volume
vp () in terms of volumes associated to the points x, € G(Fy).
We fix the Levi subgroup M of G over F. We also fix an arbitrary finite set .S

of valuations, and write Kg = [] K, for the maximal compact subgroup of G(Fys).
veS
Suppose that v = [ 7, is an element in M (Fg). Our goal is to construct a weighted

orbital integral of a function f € C® (G(Fs)) over the space of Fg-valued points
in the conjugacy class of G induced from ~. More precisely, let ¥¢ be the union
of those conjugacy classes in G(Fs) that for any P € P(M) intersect YNp(Fs) in
a nonempty open set. We shall define the weighted orbital integral attached to M
and ~ by means of a canonical, noninvariant Borel measure on <.

For any v, the connected centralizer G, is an algebraic group over F,. We

regard the product G, = [[ G, as a scheme over Fg, which is to say simply that
veS

G, (Fs) = [] G (F).

veS

It is known [R] that this group is unimodular, and hence that there is a right invari-
ant measure dx on the quotient G,(Fs)\G(Fs). The correspondence
x — z~'yx is a surjective mapping from G.,(Fs)\G(Fs) onto the conjugacy class of
v in G(Fs), with finite fibres (corresponding to the connected components in the full
centralizer G, 4 (Fs)). Now if 7 is not semisimple, the preimage in G- (Fs)\G(Fs)
of a compact subset of the conjugacy class of v (in the topology induced from
G(Fs)) need not be compact. Nevertheless, a theorem of Deligne and Rao [R] as-
serts that the measure dx defines a G(Fg)-invariant Borel measure on the conjugacy
class of . We obtain a continuous G(Fg)-invariant linear form

f — / f(xil'yac)dx7 f € CX(Fs),
Gy (Fs)\G(Fs)

on C°(G(Fs)).
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Suppose first that G, is contained in M. In other words, G, = M,. This
condition holds for example if 7 is the image in M (Fs) of an element in M (F') that
represents an unramified class o0 € O, as in Theorem 11.2. With this condition, we
define the weighted orbital integral

Tu (v, f) = Ji (7. f)
of f € C*(G(Fs)) at v by
183 dulnh) =p0)E [ Fla~ ) oss (@) .
G~(Fs)\G(Fs)
The normalizing factor
D(y) =D%~) = [[ D% ()
veES
is the generalized Weyl discriminant
[] det (1 —Ad(0n)) .
veS

where o, is the semisimple part of v,, and g, is the Lie algebra of G, . Its presence
in the definition simplifies some formulas. Since G, is contained in M, and vy (mz)
equals vy (z) for any m € M(Fgs), the integral is well defined.

LEMMA 18.1. Suppose that y is any point in G(Fs). Then

(18.4) Tu(n = I fow)
QEF (M)
where
(185)  fou(m) = dgm)? [ S /. o T g )

form € Mq(Fs), and

(18.6) ug (k,y) = /aG Iy (H,—Hg(ky))dH.
Q
This formula is Lemma 8.2 of [A5]. It probably does not come as a surprise,
since the global distributions J,(f) satisfy a similar formula (16.2), and Theorem
11.2 tells us that for many o, J,(f) is a weighted orbital integral.
To prove the lemma, we first write

Ju (7, 1Y) = [D()]

=

/ flyz ' yzy o (z)de
G~ (Fs)\G(Fs)

= |D(y)|* Fla~ ya)ons (zy)da.

/Gv(Fs)\G(Fs)
We then observe that

vp(\, zy) = e MNHPEY) = o= AHP (@) o=AHP (kp(2)y)

- UP<)\7 J))’LLP()\, x, y)7
where

UP(/\a z, y) = ei)\(HP(kP(a:)y))a
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and kp(z) is the point Kg such that xkp(z)~! belongs to P(Fs). It is a consequence
of Lemma 17.4 that
vulay) = Y v (@)ug(e,y).
QEF (M)

If k belongs to K, it follows from the definition (18.6) of ug (K, y), and the equality
of (17.5) with (17.6) established in §17, that ug(k,y) is indeed of the form (17.7).
Making two standard changes of variables in the integral over z in G, (Fs)\G(FYs),
we write

%/fx 2)ou (o) da

“M

%/fx Lyw)o ()l (2, y)da

wl»—‘

///f (k™ 0™ m ™ ymnk)o (m)ug (k, y)dmdndk

|DM(’Y)‘%5Q(’Y)%///f(k_lm_lvmnk)v]%(m)ub(k,y)dndkdm

1
@Dj o™ @M
)

Mwﬁ/mWme%WMm

for integrals over m, n, and k in Mg ,(Fs)\Mq(F), Ng(Fs), and Kg respectively.
This equals the right hand side of (18.4), as required. O

The distribution (18.3) is to be regarded as a local object, despite the fact that
M is a Levi subgroup of G over F. It can be reduced to the more elementary
distributions

JMU('Yv,fU)7 Yo € Mv(Fv)a fv € Ccoo (G(Fv))v

defined for Levi subgroups M, of G over F, by the obvious analogues of (18.3).
Suppose for example that S is a disjoint union of two sets of valuations S; and
Ss. Suppose that

f= It fi € C=(G(Fs,))
and that
Y =M, vi € M(Fg,).

We continue to assume that G, = M., so that G.,, = M, for i = 1,2. We apply
the general splitting formula (17.14) to the (G, M)-family

’l)p()\,ail,xg) = ’Up()\,!L‘l)Up()\,.’I?Q), Pe P(M), x; € G(Fsl)
We then deduce from (18.3) that
(187) JM(’}/M]C) = Z d (L17L2)J (’717le) (’727sz)
Lqi,Loel(M)

where (L1, La) — (Q1,Q2) is the section in (17.14), and

fio.(ms) = 6, (my)? / / (k7 mangks), dngdk,
Ks, JNgq, (Fs,)
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for m; € Mg, (Fs,). If we apply this result inductively, we can reduce the compound
distributions (18.3) to the simple case that S contains one element.

Suppose that S does consist of one element v. Assume that M, is a Levi
subgroup of G over F,, and that v, is an element in M, (F,) with G,, = M, ,,.
Then M, ,, = M,, and M, = G,, . The first of these conditions implies that the
induced class ¥ equals the conjugacy class of 7, in M(F,). The second implies
that the distribution

I (VY £0) = T (v, fo)

is defined by (18.3), for any f, € C2°(G(F,)). We apply the general descent formula
(17.13) to the (G, M)-family

vp(\, Ty), PeP(M), x, € G(F,).
We then deduce from (18.3) that
(18.8) JM(’Yi];V[’fv) = Z d%U(Mv Lv)Jj%/[i,(’vafv,Qv)v
Ly €L(My)

where L, — @, is the section in (17.13). The two formulas (18.7) and (18.8)
together provide the required reduction of (18.3).

Suppose now that v € M(Fs) is arbitrary. In the most extreme case, for
example, v could be the identity element in M(Fg). The problem of defining a
weighted orbital integral is now much harder. We cannot form the integral (18.3),
since var(x) is no longer a well defined function on G, (Fg)\G(Fs). Nor can we
change the domain of integration to M., (Fs)\G(Fs), since the integral might then
not converge.

What we do instead is to replace v by a point a7y, for a small variable point
a € Ap(Fs) in general position. Then G4y = My, so we can define Jys(av, f) by
the integral (18.3). The idea is to construct a distribution Jas (7, f) from the values
taken by Jys (a7, f) around a = 1. This is somewhat subtle. To get an idea of what
happens, let us consider the special case of GL(2).

Assume that F = Q, G = GL(2), M = My is minimal, S is the archimedean
t1 O

valuation vy, and v = 1. Then ay = a = (O .
2

>, for distinct positive real
numbers t; and to. Since
Gor (R)\G(R) = M(R)\P(R)Kz = Np(R)Kz,

where P is the standard Borel subgroup of upper triangular matrices, the integral
(18.3) can be written as

(18.9) Jul(a, f) = |D(a)|2 / / F(k~'n"ank)vy (n)dndk.
Kz JNp(R)
It is easy to compute the function vps(n). We first write
var(n) = ;jn% (e*)‘(HP("))Gp()\)*l + e*A(Hﬁ(n))gﬁ()\)*l)
= ;in})(l — e MHp())g ()L
= lim A(Hp(n))Ma¥) " vol(a§; /Z(a))

= e>l'< (Hﬁ(n)) )
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where P is the Borel subgroup of lower triangular matrices, « is the simple root
of (P, Ap), e} is the linear form on ay; = R? defined by projecting R? onto the
first component, and the measure on aJ\CZ = {(H, —H): H ¢ ]R} is defined by
Lebesgue measure on R. We then note that n lies in a set N5(R) (g u91> K,
for a positive real number u, and hence that

ej (Hp(n)) = log |u| = log|(1,0)n].

It follows that if n = (é 1) then

(18.10) var(n) =log ||(1,z)|| = %log(l +2?).

We make the standard change of variables

(18.11) no—— v—an"lan — ((1) z(1 1t1_1t2)) — ((1) §>

in the last integral over Np(R). This entails multiplying the factor |D(a)|z by the
Jacobian determinant

|D(a)|"ZeP" (@ = |D(a)| "% (185 1)2

of the transformation. We conclude that Jys(a, f) equals

(tlt:,—l)%/KR/Rf(kl <t01 g) <é ‘f) k)( log (1+€2(1 — t7 ')~ ))dgdk.

The logarithmic factor in the last expression for Jys(a, f) blows up at a = 1.
However, we can modify it by adding a logarithmic factor

rir(a) =logla(a) — a(a) ! =log [ty ' — 7 't
that is independent of £. This yields a locally integrable function
1 _ _
¢ — slog((htz' + (1 -7 +€9)), £ER,

whose integral over any compact subset of R is bounded near a = 1. Observe that

(tltgl)%/KR/f k‘l (tl O> ((1) §> k)dgdk
a)|2 / / f(k~'n" ank)dndk
Kr JNp(R)
_JG(

It follows from the domlnated convergence theorem that the limit
lim (Jar(a, £) + i (a)Ja(a, f))

exists, and equals the integral

(L, f) = /K/ k 1( > )1og(2|§|)dgdk.

This is how we define the weighted orbital integral in the case G = GL(2). As
a distribution on GL(2,R), it is given by a noninvariant Borel measure on the

conjugacy class 1¢ of the matrix <(1) 1)
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For arbitrary F, G, M, S, and -y, the techniques are more elaborate. However,
the basic method is similar. One begins with the general analogue of the formula
(18.9), valid for a fixed group P € P(M). One then computes the function vys(n) as
above, using a variable irreducible right G-module over F' in place of the standard
two-dimensional GL(2)-module, and a highest weight vector in place of (1,0). If

v — n=n(v,va)

is the inverse of the bijection n — (ya)~*n=!(ya)n of Np(R), the problem becomes
that of understanding the behaviour of the function

UM (n(u, ’ya))

near a = 1. This leads to general analogues of the factor r§;(a) defined above for

GL(2).

THEOREM 18.2. For any F, G, M, S, and v € M(Fs), there are canonical
functions

Tll\‘/[(77a)a Le E(M)’
defined for small points a € Ap(Fs) in general position, such that the limit
(18.12) Tu(r, ) =lim > 0 rip(y.a)Jr(ar, f)

LeL(M)

exists and equals the integral of f with respect to a Borel measure on the set v©.

This is Theorem 5.2 of [A12], one of the principal results of [A12]. There are
two basic steps in its proof. The first is construct the functions 7, (v,a). The
second is to establish the existence and properties of the limit.

The function 7%, (v,a) is understood to depend only on L, M, v, and a (and
not G), so we need only construct it when L = G. In this case, the function is
defined as the limit

i) =tm (Y re(hy.00p(0)7)

PeP(M)

associated to a certain (G, M)-family

rp(\,7y,a) = H Hrgv (%/\,uu,av), A €iajy,.
vES B,

The factors in this last product are defined in terms of the Jordan decomposition
Yo = Oy, of the v-component of v. Let P, be the parabolic subgroup P NG, of
Go,. The indices (8, then range over the reduced roots of (P,,, Ay, ). Any such
B, determines a Levi subgroup G, g, of G, , and a maximal parabolic subgroup
Py, 5, = Ps, NGy, 3, of Go, g, With Levi component M, . We will not describe
the factors in the product further, except to say that they are of the form

ra, (A uy, ay) = |agu _ a;ﬁv|/J(Bu,uv)A(ﬁX)7 A= %)\7

for positive constants p(8,,u,), and that they are defined by subjecting G5, 3,,
M, , and u, to an analysis similar to that of the special case GL(2), My, and 1
(with v = v ) above.

The existence of the limit (18.12) is more subtle. The functions rg, (A, 1y, ay)
are defined so as to make the associated limits for G, g,, M,,, and u, exist.
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However, these limits are simpler. They concern a variable a,, that is essentially one-
dimensional (since M,, is a maximal Levi subgroup in G, g,), while the variable
a in (18.12) is multidimensional (since M is an arbitrary Levi subgroup of G).
The existence of the general limit depends on algebraic geometry, specifically a
surprising application by Langlands of Zariski’s main theorem [A12, §4], and some
elementary analysis [A12, Lemma 6.1]. The fact that the resulting distribution
f — Ju(v, f) is a measure is a consequence of the proof of the existence of the
limit. (]

Once we have defined the general distributions Jas(7, f), we can extend the
properties established in the special case that G-, = M,. First of all, we note that
Ju (7, f) depends only on the conjugacy class of v in M(Fg). It is also easy to see
from the definition (18.12) that

‘]M1(FYlaf) = JM(V?f))
where v; = woyw; ! = woyw; ! and My = wsMw; !, for elements v € M(Fs) and
s € Wo.
Suppose that y lies in G(Fs), and that v € M (Fs) is arbitrary. It then follows
from (18.12) and Lemma 18.1 that

JM(’% fy) :(11_% Z T]I\Z(’}/va)JL(a’yvfy)
LeL(M)

) M
—tim 3 Y k.0 (@ fa,)
LeL(M) QeF (L)

im > (X e f))

a—1

QEF(M) LecMa (M)

= > Ll fau)
QeF(L)
The formula (18.4) therefore holds in general.

The splitting formula (18.7) and the descent formula (18.8) also hold in gen-
eral. In particular, the general distributions Jys(7, f) can be reduced to the more
elementary local distributions Jz, (vo, fo). The proof entails application to the
general definition (18.12) of the special cases of these formulas already established.
One has to also apply Lemmas 17.5 and 17.6 to the coefficients r¥, (v, a) in (18.12).
The argument is not difficult, but is more complicated than the general proof of

(18.4) above. We refer the reader to the proofs of Theorem 8.1 and Proposition 9.1
of [A13].

19. The fine geometric expansion

We now turn to the global side of the problem. It would be enough to express
the distribution J,(f) in explicit terms, for any 0 € O. We solved the problem
for unramified classes 0 in §11 by writing J,(f) as a weighted orbital integral. We
would like to have a similar formula that applies to an arbitrary class o.

The general weighted orbital integrals defined in the last section are linear
forms on the space C5°(G(Fs)), where S is any finite set of valuations. Assume
that S is a large finite set that contains the archimedean valuations S, and write
C°(G(Fs)') for the space of functions on G(Fs)' = G(Fs) N G(A)" obtained by
restriction of functions in C°(G(Fs)). If v belongs to the intersection of M (Fs)



110 JAMES ARTHUR

with G(Fs)!, we can obviously define the corresponding weighted orbital integral
as a linear form on C2°(G(Fs)'). Let

XS:HXU

vegS

be the characteristic function of the maximal compact subgroup

K% =] K.
vES
of G(A®%). The mapping f — fx° is then an injection of C°(G(Fs)!) into
C(G(A)'). We shall identify C2°(G(Fs)!) with its image in C°(G(A)). We
can thus form the distribution J,(f) for any f € C2°(G(Fs)'). Our goal is to write
it explicitly in terms of weighted orbital integrals of f.

Suppose first that o consists entirely of unipotent elements. Then o = oypip =
Ug(F), where Ug is the closed variety of unipotent elements in G. It is this class
in O that is furthest from being unramified, and which is consequently the most
difficult to handle. In general, there are infinitely many G(F')-conjugacy classes in
Ug(F). However, we say that two elements v1,v2 € Ug(F) are (G, S)-equivalent if
they are G(Fs)-conjugate. The associated set (Uq(F)) o Of equivalence classes is
then finite. The next theorem gives an expansion of the distribution

Junip(f) = Janip(f) = Jaci,,ip (f)

whose terms are indexed by the finite sets (Uns(F)) ,, o-

THEOREM 19.1. For any S as above, there are uniquely determined coefficients

a™ (S, u), MelL, ue (UM(F))Mﬁ’
with
(19.1) a™(S,1) = vol(M(F)\M(A)"),
such that
(19.2) Tuin(D) = S WWE ST @M (S )T (u, f),
MeL u€Unm (F))m,s

for any f € C(G(Fs)').

This is the main result, Theorem 8.1, of the paper [A10]. The full proof is too
long for the space we have here. However, the basic idea is easy to describe.

Assume inductively that the theorem is valid if G is replaced by any proper
Levi subgroup. It is understood that the coefficients a™ (S, u) depend only on M
(and not G). The induction hypothesis therefore implies that the coefficients have
been defined whenever M is proper in G. We can therefore set

Tunip(f) = Jumip () = Y WIS > @™ (S,w)dulu, f),

MeL
MeG u€Un(F))m,s

for any f € C2°(G(Fs)'). Suppose that y € G(Fs). By (16.2) and (18.4), we can
write the difference

Tunip(fy) - Tunip(f)
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as the difference between the global expression

M, —1 M
Junip (fY) = Junip(f) = Z Wy Q||WOG| ljuni%(fQ,y)
QEF
Q#G

and the local expression

YowtwETt Y @M S ) (I (u, ) = Tar(u, f)

M#G w€(Un (Q))m, s
M, _ Mg — M,
= W WY W W e (8, w) T (u, fo )
M#G QEF(M) u

The difference between Tynip(fY) and Tynip(f) is therefore equal to the sum over

Q € F with Q # G of the product of |Wéw

M, Mg, — M,
Tomip(fow) = D W= > (S, u) Ty (us fou)-
MecMe w€Un (F))m,s

?||W§|~1 with the expression

The last expression vanishes by our induction assumption. It follows that Tinip (fY)
equals Tynip(f), and therefore that the distribution Tynip on G(Fs)! is invariant.
Recall that Jynip(f) is the value at T' = T of the polynomial

T () = / KT (o f)de,
G(F)\G(A)!

where
kljlllip(zv f) = Z (71)dim(AP/AG) Z KP,unip(5x7 (Sx)?P (HP((;I) - T)
POP, SeP(F)\G(F)
and

Kp ynip(dz, 0z) = Z / f(z= 1o tundz)dn.
uellnr (F) 7 NP (A)
It follows that Junip(f) vanishes for any function f € C2°(G(A)') that vanishes
on the unipotent set in G(Fs)!. For any such function, the distributions Jas(u, f)
all vanish as well, according to Theorem 18.2. We conclude that the invariant
distribution Ty annihilates any function in C2°(G(Fs)!') that vanishes on the
unipotent set. It follows from this that

Tunip(f) = ZQG(Sv u)JG(ua f)v

for coefficients a® (S, u) parametrized by unipotent classes u in G(Fs).

It remains to show that a®(S,u) vanishes unless u is the image of a unipotent
class in G(F), and to evaluate a“ (S, u) explicitly as a Tamagawa number in the case
that uw = 1. This is the hard part. The two assertions are plausible enough. The
integrand k{nip(x, f) above is supported on the space of G(A)-conjugacy classes that
come from F-rational unipotent classes. Moreover, the contribution to k{nip(x, f)
from the class 1 equals f(1), which is obviously independent of = and T. The

integral over G(F)\G(A)! of this contribution converges, and equals the product
vol (G(F)\G(A)") (1) = vol(G(F)\G(A)') Ja(1, f).
However, Junip(f) is defined in terms of the polynomial JI, (f), which depends

unip
on a fixed minimal parabolic subgroup Py € P(My), and is equal to an integral
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whose convergence we can control only for suitably regular points T € ajSO. Among
other difficulties, the dependence of JuTnip( f) on the local components f, is not at
all transparent. It is therefore not trivial to deduce the remaining two assertions
from the intuition we have.
There are two steps. The first is to approximate Ji,;,(f) by the integral of the
function
Kunip(z, ) = Z flz™ ux)

u€Uq (F)

over a compact set. The assertion is that

(19.3)

Jgnip(f) 7/ FG(IL',T)Kunjp(ZU,x)dl‘ S eiédpo(T%
GU\G(A)!

where F¢(-,T) is the compactly supported function on G(F)\G(A)! defined in §8,
and

dp,(T) = aé&fpo a(T).

This inequality is Theorem 3.1 of [A10]. Its proof includes an assertion that
FG(,T) equals the image of the constant function 1 on G(F)\G(A)! under the
truncation operator AT [A10, Lemma 2.1]. The estimate (19.3), incidentally, is
reminiscent of our remarks on the local trace formula at the beginning of §16.

The second step is to solve a kind of lattice point problem. Let U be a unipotent
conjugacy class in G(F'). If v is a valuation in S and £ > 0, one can define a function
fo. € CF (G(A)l) that, roughly speaking, truncates the function f(x) whenever
the distance from x, to the G(F,)-conjugacy class of U is greater than e. (See the
beginning of §4 of [A10]. The function f7, equals f at any point in G(A)! that
is conjugate to any point in U(F), where U is the Zariski closure of U.) One then
establishes an inequality

(19.4) / FC(,T) Yo e e)lde < T+ TN,

where || - || is a continuous seminorm on C2°(G(A)'), and dy = dim(ag). This
inequality is the main technical result, Lemma 4.1, of the paper [A10]. Its proof
in §5-6 of [A10] relies on that traditional technique for lattice point problems, the
Poisson summation formula.

The inequalities (19.3) and (19.4) are easily combined. By letting & approach
0, one deduces the remaining two assertions of Theorem 19.1 from the definition of
Junip(f) = Jg;‘l)ip(f) in terms of JI, (f). (See [A10, §4].) O

unip

Remark. The explicit formula (19.1) for a* (S, 1) is independent of the set
S. For nontrivial elements u € Uy (F), the coefficients a™ (S, u) do depend on S.
One sees this in the case G = GL(2) from the term (v) on p. 516 of [JL]. As
a matter of fact, it is only in the case G = GL(2) that the general coefficients
aM(S,u) have been evaluated. It would be very interesting to understand them
better in other examples, although this does not seem to be necessary for presently
conceived applications of the trace formula.

The case 0 = ounip We have just discussed is the the most difficult. It is the
furthest from the unramified case solved explicitly in §11. For a general class o, one
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fashions a descent argument from the techniques of §11. This reduces the problem
of computing J,(f) to the unipotent case of Theorem 19.1.

We need a couple of definitions before we can state the general result. We say
that a semisimple element o € G(F') is F-elliptic if Ag, equals Ag. In the case
G = GL(n), for example, a diagonal element o in G(F) is F-elliptic if and only if
it is a scalar.

Suppose that v is an element in G(F') with semisimple Jordan component o,
and that S is a large finite set of valuations of F' that contains S.,. We shall say
that a second element 4" in G(F) is (G, S)-equivalent to + if there is a § € G(F)
with the following two properties.

(i) o is also the semisimple Jordan component of §—14/4.
(ii) The unipotent elements o~ 1y and 0=1614'§ in G, (F) are (G, S)-equivalent,

in the sense of the earlier definition.
There could be several classes u € (Ug, (F)) o. g such that ou is (G, S)-equivalent

to . The set of such u, which we write simply as {u : ou ~ v}, has a transitive
action under the finite group

19(0) = Go 4 (F)/Go(F).

We define

(19.5) a%(8,y) =% (@) () D a%(S,u),
{u:ocu~~v}

where

G _J 1, if o is F-elliptic in G,
e7(0) = .
0, otherwise.

Then a%(S,~) depends only on the (G, S)-equivalence class of 7. If ~y is semisimple,
we can use (19.1) to express a®(S,7). In this case, we see that

(19.6) a®(8,7) = €% ()¢ ()|~ vol (G4 (F)\G4 (A)'),
and in particular, that (S, ) is independent of S.

THEOREM 19.2. Suppose that o is any class in O. Then there is a finite set S,

of valuations of F' that contains S such that for any finite set S O S, and any
function f € C°(G(Fs)'),

(19.7) Jo(f)y=>_ wwg = > aMS ) Iu(n f),

MeL YE(M(F)No)n,s

where (M(F) N o)M g 18 the finite set of (M, S)-equivalence classes in M(F) o,
and Jy (7, f) is the general weighted orbital integral of f defined in §18.

This is the main result, Theorem 8.1, of the paper [A11]. The strategy is to
establish formulas of descent that reduce each side of the putative formula (19.7)
to the unipotent case (19.2). We are speaking of what might be called “semisimple
descent” here. It pertains to the Jordan decomposition, and is therefore different
from the property of “parabolic descent” in the formula (18.8). We shall attempt
to give a brief idea of the proof.
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The reduction is actually a generalization of the unramified case treated in §11.
In particular, it begins with the formula

JI(f) = / W7 (2, f)da
G(F)\G(A)!

of Theorem 11.1. We recall that

k(@ )= Y (-pdm@r/ae) N Kp (0w, 0x)7p (Hp(d7) — T),
PDOPy SeP(F)\G(F)

where Py € P(Mp) is a fixed minimal parabolic subgroup. The definition (11.1)
expresses K po(0x,0x) in terms of f, and the Jordan decomposition of elements
v € MpNo. The formula contains integrals over unipotent adelic groups Ng(A) =
Np(A),,, where R is the parabolic subgroup P N G,, of G,,. It is therefore quite
plausible that JI'(f) can be reduced to unipotent distributions Jﬁl’gH (®) attached
to reductive subgroups H of G, and functions ® € C2°(H(A)') obtained from
f and T by descent. However, the combinatorics of the reduction are somewhat
complicated.

One begins as in §11 by fixing a pair (Py,a) that represents the anisotropic
rational datum of 0. Then Pj is a parabolic subgroup, which is standard relative
to the fixed minimal parabolic subgroup Py € P(My) used to construct J,(f). One
also fixes an element o = 7 in the anisotropic (semisimple) conjugacy class a; in
Mp,(F). Then P;, = P, NG, is a minimal parabolic subgroup of G, with Levi
component My, = Mp, N G,. The groups H above are Levi subgroups M, of G,
in the finite set £7 = L% (M;,). The corresponding functions ® = &, of descent
in C¢° (MU(A)l) depend on T, and among other things, a set of representatives y
of G,(A)\G(A) in G(A). (See [A11, p. 199].)

We take S, to be any finite set of valuations of F' that contains S, and such
that any v € S, satisfies the following four conditions.

() (D6, =1,
(ii) The intersection K, , = K, N G,(F,) is an admissible maximal compact
subgroup of G,(F,).
(iii) oK,0 ! = K,.
(iv) If y, € G(F,) is such that y, tola, (F,)y, meets 0 K,, then y, belongs to
Gy (Fy)K,.

(See [A11, p. 203].) We choose S D S, and f € C2°(G(F)'), as in the statement
of the theorem. It then turns out that for any group M, € L, the corresponding
functions of descent ®, all lie in the subspace C5° (M, (Fg)') of C°(M,(A)Y).

Recall that J,(f) is the value at T' = T} of the polynomial J7 (f). The unipotent
distribution Jﬁfp(¢y) is the value of a polynomial J%;’I;T" (®,) of T, in a subspace
a1, of ag at a fixed point Tp,. In the descent formula, the groups M, are of the
form Mp, where R ranges over the set F7 = F% (M,). The formula is

(198 L(h =) [ (3 W T () ) d,
Go(A\G(A) * pero

where @, 1, is obtained from the general descent function ®, by specializing T’
to the point T4 = Ty — T, [All, Lemma 6.2]. Since the general functions @,
and their specializations ® g, 7, are somewhat technical, we have not attempted to
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define them. However, their construction is formally like that of the functions fg ,
in (18.5). In particular, it relies on the splitting formula of Lemma 17.4.

The formula (19.8) of geometric descent has an analogue for weighted orbital
integrals. Suppose that M is a Levi subgroup of G that contains My = Mp,. Then
o is contained in M (F). Set v = ou, where u is a unipotent element in M, (Fs).
The formula is

(199) J]\/[(Wv f) = / Z J]]\\/[4f (’U,, (PR,y,T1>)dy?

Ga(Fs)\G(Fs) * peFo(M,)

where f is any function in C°(G(Fs)!), and F7(M,) = F% (M,) ([A11, Corol-
lary 8.7]).

The formulas (19.8) and (19.9) of geometric descent must seem rather murky,
given the limited extent of our discussion. However, the reader will no doubt agree
that the existence of such formulas is plausible. Taking them for granted, one
can well imagine that an application of Theorem 19.1 to the distributions in these
formulas would lead to an expansion of J,(f). The required formula (19.7) for J,(f)
does indeed follow from Theorem 19.1, used in conjunction with the definition (19.5)
of the coefficients a™ (S, ). O

If A is a compact neighbourhood of 1 in G(A)!, we write CX°(G(A)!) for the
subspace of functions in C2°(G(A)') that are supported on A. For example, we
could take A to be the set

Ay ={z € G(A) : log|z|| < N}

attached to a positive number N. In this case we write C37(G(A)') in place of
CXy (G(A)'). For any A, we can certainly find a finite set S of valuations of F
containing S, such that A is the product of a compact neighbourhood of 1 in
G(Fs)! with K. We write SQ for the minimal such set. We also write

CX (G(Fs)') = CX(G(A)') N CZ(G(Fs)'),

for any finite set S O SR. The fine geometric expansion is given by the following
corollary of the last theorem.

COROLLARY 19.3. Given a compact neighbourhood A of 1 in G(A)L, we can
find a finite set Sa D SX of valuations of F such that for any finite set S O Sa,
and any f € CX(G(Fs)'),

(19.10) JH =Y wWwETt Y a1,

MeL YE(M(F))m,s
where (M (F)),, g 18 the set of (M, S)-equivalence classes in M(F). The summands
on the right hand side of (19.10) vanish for all but finite many ~.

The corollary is Theorem 9.2 of [A11]. It follows immediately from Theorem
19.2 above, once we know that there is a finite subset of O outside of which J,(f)
vanishes for any f € CX° (G(A)l). This property follows immediately from [A11,
Lemma 9.1], which asserts that there are only finitely many classes 0 € O such that
the set

{z7'yz: € G(A), v €0}

meets A, and is proved in the appendix of [A11]. O
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20. Application of a Paley-Wiener theorem

The next two sections will be devoted to the refinement of the coarse spectral
expansion (14.8). These sections are longer and more intricate than anything so
far. For one reason, there are results from a number of different sources that we
need to discuss. Moreover, we have included more details than in some of the
earlier arguments. The refined spectral expansion is deeper than its geometric
counterpart, dependent as it is on Eisenstein series, and we need to get a feeling for
the techniques. In particular, it is important to understand how global intertwining
operators intervene in the “discrete part” of the spectral expansion.

The spectral side is complicated by the presence of a delicate analytic problem,
with origins in the theory of Eisenstein series. It can be described as that of
interchanging two limits. We shall see how to resolve the problem in this section.
The computations of the fine spectral expansion will then be treated in the next
section.

In order to use the results of Part I, we shall work for the time being with a
fixed minimal parabolic subgroup Py € P(Mp). Suppose that x € X indexes one
of the summands in the coarse spectral expansion. According to Theorem 15.1,

GEDY n;l/* tr(ME (NIpx (A, £))dA,

PD Py

where T € a;o is suitably regular, and ng()\) is the operator on Hp, defined
by the inner product (15.1) of truncated Eisenstein series. In the next section,
we shall see that the explicit inner product formula for truncated Eisenstein series
in Proposition 15.3 holds in general, provided it is interpreted as an asymptotic
formula in 7. We might therefore hope to compute Jg (f) as an explicit polynomial
in T by letting the distance
dp,(T) = (lGingO a(T)

approach infinity. However, any such computation seems to require estimates for
the derivatives of MIZ,X()\) that are uniform in A. This would amount to estimating
derivatives in A of Eisenstein series outside the domain of absolute convergence,
something that is highly problematical. On the other hand, if we could multiply
the integrand in the formula for J; (f) above by a smooth, compactly supported
cut-off function in A, the computations ought to be manageable. The analytic
problem is to show that one can indeed insert such a cut-off function.

In the formula for Jg (f) we have just quoted from Part I, f belongs to
C2°(G(A)). We are now taking f to be a function in C2°(G(A)!). For any such f,
the integrand in the formula is a well defined function of A in ia},/iaf,. The
formula remains valid for f € C® (G(A)l), so long as we take the integral over
A € iap/iag,.

The class x € & will be fixed for the rest of this section. We shall first state
three preliminary lemmas, all of which are consequences of Theorem 14.1 and its
proof. For any P D Py, we write

Hpyx = @ Hpx,m
s

where 7 ranges over the set Il (M p(A)l) of equivalence classes of irreducible
unitary representations of Mp(A)!, and Hpy~ is the intersection of Hp, with
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the subspace Hp . of vectors ¢ € Hp such that for each z € G(A), the function
¢z (m) = ¢(mx) in L3, (Mp(Q)\Mp(A)') is a matrix coefficient of 7. We write
Ipy,x (A, f) for the restriction of Zp (A, f) to Hpy,». We then set

\IIZ(Aa f) = nl_i’ltr(ng()‘)IP,x,ﬂ(Aa f))v
for any f € C°(G(A)') and X € ia} /ia;.
LEMMA 20.1. There are positive constants Cy and dy such that for any
f€CE(G(A)Y), anyn >0, and any T € ag with dp,(T) > Co,
S [ SN I < (1 T
POPR, i0p/i0G
for a constant c,, ¢ that is independent of T'.

The lemma is a variant of Proposition 14.1(a). One obtains the factor
(L 4+ [JAID™ in the estimate by choosing a suitable differentiable operator A on
G(R), and applying the arguments of Theorem 14.1(a) to Af in place of f. (See
[A7, Proposition 2.1]. One can in fact take dy = dim ay.) ]

LEMMA 20.2. There is a constant Cy such that for any N > 0 and any
f€C¥(G(A)Y), the expression

(20.1) Y / BT, F)dA
PoPy « iay, /ia,

equals J;{(f), and is hence a polynomial in T of degree bounded by dy = dim ag,
whenever

de(T) > Co(l + N)

The expression equals

/ ATA K (2,2)dz = / ALK, (2, 7)de.
GF\G(A)! GFN\G(A)!

The lemma follows from Theorem 14.1(c), and an analysis of how the proof of this
result depends quantitatively on the support of f. (See [A7, Proposition 2.2].) O

If 71,79 € Mynit (KR) are irreducible unitary representations of Kg, set

fry () :/ / tr(71 (k1)) f(ky "aky M)t (o (ko) ) dkidks,
for any function f € C2°(G(A)'). Then

f@) =" frim(2).
T1,T2
LEMMA 20.3. There is a decomposition

L) =D T (frim).

T1,72
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The lemma follows easily from an inspection of how the estimates of the proof
of Theorem 14.1 depend on left and right translation of f by Kg. (See [A7, Propo-
sition 2.3].) O

The last three lemmas form the backdrop for our discussion of the analytic
problem. The third lemma allows us to assume that f belongs to the Hecke algebra

H(G) =H(G(A)') = H(G(A)', K)

of K-finite functions in Cg° (G(A)l). We recall that f is K-finite if the space of
functions on G(A)! spanned by left and right K-translates of f is finite dimensional.
The second lemma describes the qualitative behaviour of JY'(f) as a function of T,
quantitatively in terms of the support of f. If we could somehow construct a family
of new functions in H(G) in terms of the operators Zp, ~(f), with some control
over their supports, we might be able to bring this lemma to bear on our analytic
difficulties.

Our rescue comes in the form of a Paley-Wiener theorem, or rather a corollary
of the theorem that deals with multipliers. Multipliers are defined in terms of
infinitesimal characters. To describe them, we have to fix an appropriate Cartan
subalgebra.

For each archimedean valuation v € S,, of F, we fix a real vector space

hv =1b, P ao,
where b, is a Cartan subalgebra of the compact Lie group K, N My(F,). We then

set
h=bo = EP bo-

VES
This space can be identified with a split Cartan subalgebra of the Lie group G (Fi),
where
Fu=Fs = P Fo.
VES

and G} is a split F-form of the group G. In particular, the complex Weyl group
W = W of the Lie group G(F) acts on h. The space h comes with a canonical
projection h — ap, for any standard parabolic subgroup P O Py, whose transpose
is an injection aj C h* of dual spaces. It is convenient to fix a positive definite,
W-invariant inner product (-,-) of h. The corresponding Euclidean norm || - || on f
restricts to a Wy-invariant Euclidean norm on ag. We assume that it is dominated
by the height function on G(A) fixed earlier, in the sense that

[H|| < log|[exp H], H € ag.

The infinitesimal character of an irreducible representation 7o € II(G(Fi)) is
represented by a W-orbit v,__ in the complex dual space b of h. It satisfies

Too(2fo0) = (1(2), Vo) oo (foo), 7€ 2o, foo € CF(G(Fx)),

where h: Z,, — S(bc)" is the isomorphism of Harish-Chandra, from the algebra
Z., of bi-invariant differential operators on G(F,) onto the algebra of W-invariant
polynomials on b, that plays a central role in his work on representations of real
groups. The algebra Z,, acts on the Hecke algebra H(G(A)) of G(A) through
the G(Fx )-component of a given function f. However, the space of functions zf,
z € Z4, is not rich enough for us to exploit Lemma 20.2.
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Let £(5)" be the convolution algebra of W-invariant, compactly supported
distributions on . According to the classical Paley-Wiener theorem, the adjoint
Fourier transform o — @ is an isomorphism from £(h)" onto the algebra of entire,
W-invariant functions a(v) on b of exponential type that are slowly increasing on
cylinders

{vebht: |Re(v)| <}, r > 0.

The subalgebra C°(h)" is mapped onto the subalgebra of functions @ that are
rapidly decreasing on cylinders. (By the adjoint Fourier transform @ we mean
the transpose-inverse of the standard Fourier transform on functions, rather than
simply the transpose. In other words,

a(v) = / a(H)e" ) dH,
b
in case « is a function.)
We write H(G(Fx)) = H(G(Fx), K ) for the Hecke algebraof Koo = [] K,

VESeo
finite functions in C°(G(Fx)), and Hy (G(Fx)) for the subspace of functions in

H(G(Fx)) supported on the set
{Too € G(Fx) : log|lzso] < N}
THEOREM 20.4. There is a canonical action
i fo — focas ac &), fo € H(G(Fx)),
of E06) on H(G(Fx)) with the property that
Too(foo.a) = A(Vr ) Too (foo),
for any o € I(G(Fx)). Moreover, if fs belongs to Hy(G(Fx)) and o is

supported on the subset of points H € b with ||H|| < Na, then foo lies in
Hyin, (G(Fx)).

(See [A9, Theorem 4.2].) O

This is the multiplier theorem we will apply to the expression (20.1). We shall
treat (20.1) as a linear functional of f in the Hecke algebra H(G) = H(G(A)'). If
! is the subspace of points in h whose projection onto ag vanishes, we shall take
a to be in the subspace £(h1)W of distributions in £(h)" supported on ht. If f
belongs to the Hecke algebra H(G(A)) on G(A), we define f, to be the function
in H(G(A)) obtained by letting o act on the archimedean component of f. The
restriction of f, to G(A)! will then depend only on the restriction of f to G(A)!. In
other words, f, € H(G) is defined for any f € H(G). We shall substitute functions
of this form into (20.1).

Suppose that P D Py and 7 € Iy (Mp(A)') are as in (20.1). Then 7 is the
restriction to Mp(A)! of a unitary representation

Moo & Tfin Too € Hunit (MP(FOO))7 Tfin € Hunit (MP(Aﬁn))y
of Mp(A). We obtain a linear form v, = v,__ on h¢, which we decompose
Vn = Xy +1Y5, X, Y €05,

into real and imaginary parts. These points actually stand for orbits in h* of the
complex Weyl group of Mp(F,), but we can take them to be fixed representatives
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of the corresponding orbits. Then X, is uniquely determined by =, while the
imaginary part Y is determined by 7 only modulo a}. However, we may as well
identify Y, with the unique representative in h* of the coset in h*/a} of smallest
norm ||Y;||. This amounts to taking the representation 7, of Mp(Fy) to be
invariant under the subgroup A—]\tfp,oo of Mp(Fy), a convention that is already
implicit in the notation Hp , above.

If B is any W-invariant function on ih*, we define a function

B:(\) = B(iYr + \), A € dap,
on iap. We also write
B®(v) = B(ev), v € ib*,
for any € > 0. We shall want B to be rapidly decreasing on ih*/iaf,. An obvious can-
didate would be the Paley-Wiener function @ attached to a function a € C°(h1)W.
However, the point of this exercise is to allow B to be an arbitrary element in the
space S(ih* /ia,)" of W-invariant Schwartz functions on ib* /iaf,.
The next theorem provides the way out of our analytic difficulties.
THEOREM 20.5. (a) For any B € S(ib* Jiak)"V and f € H(G), there is a unique
polynomial PT (B, f) in T such that the difference

(20.2) DN D S AENGENEV S O
Pop, Yiep/iag
approaches 0 as T approaches infinity in any cone

ap, ={T € ao: dp,(T) > ([T}, r > 0.

(b) If B(0) =1, then
JE(f) = lim P7(B7, ).

This is the main result, Theorem 6.3, of the paper [A7]. We shall sketch the
proof.

The idea is to approximate B by Paley-Wiener functions @, for a« € C°(ht)
Assume that f belongs to the space

Ha(G) = H(G) N O (G(R)Y),
for some fixed N > 0, and that « is a general element in £(h*)". Then f, lies in

Hn+n, (G). For any P D Py and X € iah, Zp(A, fo) is an operator on Hp whose
restriction to Hp, » equals

w

a(Vw + A)IP,XJT(A» f)
Applying Lemma 20.2 with f, in place of f, we see that the expression

(20.3) > / S @ + VUL, £)dA
PoP, iak, fial, o

equals J'(fo) whenever dp,(T) > Co(14+ N 4 N,), and is hence a polynomial in T

in this range. The sum over 7 in (20.3) can actually be taken over a finite set that

depends only on x and f. This is implicit in Langlands’s proof of Theorem 7.2,

specifically his construction of the full discrete spectrum from residues of cuspidal

Eisenstein series.
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Suppose that a belongs to the subspace C2°(h")" of £(p*)". Then JT(fa)
equals

> / > / I, f)e= N o (H)dHAA.
PoP, ial /ial, o 1
By Lemma 20.1, integral

r(H, f) = / TL (N, )M an

iay /iag,

converges to a bounded, smooth function of H € h!. It follows that

T = [ (X S e agan,

PDOPy m

whenever dp, (T) > Co(1+ N+ N,). Since C2°(h1)"W is dense in £(h!) (in the weak
topology), the assertion actually holds for any a € £(h!)" (with the integral being
interpreted as evaluation of the distribution «).

If H is any point in h', let 5z be the Dirac measure on h' at H. The sym-
metrization

ag = W[} Z Os—1H
seW

belongs to £(h1)W. The function

P (H, f) = J} (fou)

is therefore a well defined polynomial in 7', of degree bounded by dy. The support
of ap is contained in the ball about the origin of radius ||H]||, so we can take
N, = |[|H||. Tt follows that

(20.4) pTCH ) =30 S WY Wl (s H, fere T,

PDPy seW
for all H and T with dp,(T) > Co(1 + N + ||H]||). The right hand expression may
be regarded as a triple sum over a finite set. It follows that p? (H, f) is a smooth
function of H € h! for all T in the given domain, and hence for all T, by polynomial
interpolation. Observe that ag = dp, and therefore that f,, = f. It follows that

P (0, f) = JE (f)-
To study the right hand side of (20.4), we group the nonzero summands with
a given real exponent X,. More precisely, we define an equivalence relation on the
triple indices of summation in (20.4) by setting (P’,7’,s') ~ (P,m,s) if ¢ X =

sX,. If T is any equivalence class, we set Xt = sX, for any (P, 7, s) € I'. We also
define
GE(H f) = W7 30 e T (s, ).
(P,m,s)el

Then L (H, f) is a bounded, smooth function of H € h! that is defined for all T
with dp, (T) greater than some absolute constant. In fact, Lemma 20.1 implies that
for any invariant differential operator D on h!, there is a constant cp. ¢ such that

(20.5) |Dyi (H, f)| < ep (1 +T|)%, Heb', dp(T) > Co,

for constants Cy and dj independent of f. In particular, we can assume that the
constants Cp in (20.4) and (20.5) are the same. Let £ = £; be the finite set of
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equivalence classes I' such that the function oL (H, f) is not identically zero. It
then follows from (20.4) that

> X el(H, f) - p"(H, f) =0,

reg

whenever dp,(T) > Co(1 + N + ||H||). The proof of Theorem 20.5 rests on an
argument that combines this last identity with the inequality (20.5). We shall
describe it in detail for a special case.

Suppose that there is only one class I', and that Xr = 0. In other words, if 7
indexes a nonzero summand in (20.4), X, vanishes. The identity (20.4) becomes

(20.6) YL (H, f) —p" (H, f) =0, dp,(T) > Co(1+ N + ||H||).

It is easy to deduce in this case that pT (H, f) is a slowly increasing function of H.
In fact, we claim that for every invariant differential operator D on h', there is a
constant cp ¢ such that

(20.7) [Dp"(H, f)| < ep, s (1+ [[HIN™ (1 + [ TI)™,

for all H € h* and T € ag. Since p? (H, f) is a polynomial in 7' whose degree
is bounded by dy, it would be enough to establish an estimate for each of the
coefficients of pT (H, f) as functions of H. For any H, we choose T so that dp,(T)
is greater than Cy(1 + N + ||H||), but so that ||| is less than Ci(1 + ||H||), for
some large constant Cy (depending on Cy and N). It follows from (20.6) and (20.5)
that

|Dp" (H, )| = [DYf (H, f)] < ep,s(L+ )™
d
<eps(L+Ci(L+ [ HI))™ < cp A+ [H|)®,
for some constant c’D’ - Letting T vary within the chosen domain, we obtain a sim-
ilar estimate for each of the coefficients of p” (H, f) by interpolation. The claimed
inequality (20.7) follows.

We shall now prove Theorem 20.5(a), in the special case under consideration.
We can write

B) = [ (.

where 8 € S(h1)W is the standard Fourier transform B of the given function B €
S(ih*Jiag)"W'. We then form the integral

PIB.H) =" (3.0) = [ 0" s,

which converges by (20.7). This is the required polynomial in T. We have to show
that it is asymptotic to the expression

(20.8) > / > WI(A, £)Br(N)dA.

PoP, Yep/iag 1
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We write the expression (20.8) as

Z/Z > wl(x f/ (Y=t B(H)dHAA

ay/iag

- / L e e s
/ZZIWI LS G5, eV 6T B g dH

seW
- [ vt naunan

by the definition of B, (\), the definition of ¥X (H, f), the fact that 3(H) is W-
symmetric and our assumption that Xpr = 0. It follows that the difference (20.2)
between p?(B, f) and (20.8) has absolute value bounded by the integral

/ WE(H, f) — p" (H, f)||3(H)|dH.

We can assume that 7" lies in a fixed cone af, , and is large. If dp, (T) is greater
than Cyo(1+ N + | H]||), the integrand vanishes by (20.6). We may therefore restrict
the domain of integration to the subset of points H € h' with

1]l > €5 dpy (T) = (14 N) = Cg e[| T = (1 + N) > |7
for some fixed positive number 1. For any such H, we have
(Wi (H, f) = p" (H, /)| < [¢f (H, /)| + [p" (H, f)]
< er(L+ || =),
for some ¢; > 0, by (20.5) and (20.7). We also have
[B(H)| < ca(1+ ||H|))~ (2o aim 00, Heb',

for some co > 0. The integral is therefore bounded by
6162/ (1 [[H[))2% (1 + || H||) = 2do+2dim 0D g,
IH > IT
a quantity that is in turn bounded by an expression
— — —2dim bt
crcar T [ (0 )24
bl

that approaches 0 as T approaches infinity. It follows that the difference (20.2)
approaches 0 as T" approaches infinity in aj, . We have established Theorem 20.5(a),
in the special case under consideration, by combining (20.5), (20.6), and (20.7).

Next we prove Theorem 20.5(b), in the given special case. Recall that JI'(f)
is the value of p”'(H, f) at H = 0. We have to show that this equals the limit of
PT (B¢, f) as ¢ approaches 0, under the assumption that B(0) = 1. Now

(B)(H) = (B)-(H) = .(H),
where
Be(H) = e~ @m0 g1 H).
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Therefore

PIBE ) =" (3o ) = [ 278 D)8

=IE [ W70 =20 )8,

since J{ (f) = pT(0, f), and [ . = B*(0) = 1. But if we combine the mean value
theorem with (20.7), we see that

" (H, ) = p" (0, /) < el H[[(L+ [ H[)% (1 + | TI)™,
for some fixed ¢ > 0, and all H and T. We can assume that € < 1. Then

/hl lp"(H, f) —p" (0, N)|B-(H)|dH
— 5_dim(h1) /bl |pT(H, f) _pT(va)HB(E_lHHdH

= || WCH ) =T 0. pligum

< C/hl ellHII(1+ leH)* (1 + | TI)%*[B(H)|dH

< de(1+ T,
where
¢ =c /b NI E |

It follows that
lim (p"(B%, f) = Jy(f)) =0,
as required.
We have established Theorem 20.5 in the special case that there is only one

class I' € €, and that X = 0. In general, there are several classes, so there can be
nonzero points Xr. In place of (20.6), we have the more general identity

S X I GL(H, f) - (H, f) =0, dry(T) > Co(1+ N + |1H])).
r

In particular, p? (H, f) can have exponential growth in H, and need not be tem-
pered. It cannot be integrated against a Schwartz function 8 of H. Now each
function L (H, f) is tempered in H, by (20.7). The question is whether it is as-
ymptotic to a polynomial in T. In other words, does the polynomial p’ (H, f) have
a I-component X (F)pl(H_ £)?

To answer the question, we take Hr to be the point in h' such that the inner
product (Hr, H) equals X1 (H), for each H € h. We claim that for fixed H, the
function

t — ¢ (tHr + H, f), teR,

is a finite linear combination of unitary exponential functions. To see this, we first
note that the function equals

|W‘—1 Z eiYW(Sfl(tHF'f‘H))wZ;(S—l(tHF +H),f)
(P,m,s)er
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For any (P,m, s) € I, the linear form X, = s !Xt is the real part of the in-
finitestimal character of a unitary representation 7 of Mp(A)!l. It follows that the
corresponding point s ™' Hp in h! lies in the kernel h* of the projection of § onto
ap. On the other hand, the function

)= [ WOy
iay /iag,
is invariant under translation by h”. Consequently
Y (s7'(tHr + H)) = ¢L (s~ H).

The claim follows.
It is now pretty clear that we can construct the I'-component of the polynomial

pr(H. ) =) XTIy, f), dp,(T) > Co(1+ N + || H|),
Te&

in terms of its direction of real exponential growth. If one examines the question
more closely, taking into consideration the derivation of (20.7) above, one obtains
the following lemma.

LEMMA 20.6. There are functions
pr(H, f) Hebp', T ek,
which are smooth in H and polynomials in T of degree at most dy, such that

P (H, [) =Y X pl(H, f),

ree

and such that if D is any invariant differential operator on h', then

(206  [DEF(H, 1) = pf (H, )] < ep e @1+ T,
for all H and T with dp,(T) > Co(1 + N + ||H||), and
(20.7) |Dpi(H, f)| < ep,p(L+ [H|)* @+ T])*™,

for all H and T, with Cy, § and cp, being positive constants.
See [A7, Proposition 5.1]. O

Given Lemma 20.6, we set
bh0.9)= | wtonppnan

for any function 3 € S(h')"W and any I' € £. We then argue as above, using the
inequalities (20.5), (20.6)" and (20.7)" in place of (20.5), (20.6), and (20.7). We
deduce that for any I' and (3,

eoow)  Jim ([ wE@nsunan—ple.0) <0, Ted,
and that
(20.9(0)) tim p (5. ) = pF (0. ).

if [ 3 =1, exactly as in the proofs of (a) and (b) in the special case of Theorem
20.5 above. (See [A7, Lemmas 6.2 and 6.1].)
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To establish Theorem 20.5 in general, we set
PT(B.f) = vt (8, ). p=B.
reg
Then, as in the proof of the special case of Theorem 20.5(a) above, we deduce that

Z/ > UL\, f)Bx dAfZ/z/;FHf H)dH
iy /iag o reg

It follows from (20.9(a)) that the difference between the expression on the right
hand side of this identity and P (B, f) approaches 0 as T approaches infinity in
ap,- The same is therefore true of the difference between the expression on the left
hand side of the identity and P (B, f). This gives Theorem 20.5(a). For Theorem
20.5(b), we use (20.9(b)) to write

lim P7(B7, f) = lim > pf (5, f)
1"65

=> o0, ) =p"(0,f) = JL(£),
ree
if B(0) = f [ = 1. This completes our discussion of the proof of Theorem 20.5. O

21. The fine spectral expansion

We have taken care of the primary analytic obstruction to computing the distri-
butions J, (f). Its resolution is contained in Theorem 20.5, which applies to objects
X € X, Py € P(My), f € H(G), and B € S(ib*/iag)"W, with B(0) = 1. We take B
to be compactly supported. The function

Br(\) = B(iYy + ), A € ia}p,

attached to any P D Py and 7 € ILyni (Mp(A)') then belongs to CZ°(ia} /iag,).

Suppose that a” and b are two functions defined on some cone dp,(T) > Cj
in ag. We shall write a7 ~ bT if a” — b approaches 0 as T approaches infinity in
any cone ap, . Theorem 20.5(a) tells us that

PT(B, / D WE £)Br(A)dA

ap/ing

= > ' / tr(ME  (NIpyr (A ) Br(A)dA,
PoP, o Jiay [ia,
where PT(B, f) is a polynomial in T that depends linearly on B. The fact that
each B(\) has compact support is critical. It removes the analytic problem of
reconciling an asymptotic limit in 7" with an integral in A over a noncompact space.
Our task is to compute PT(B, f) explicitly, as a bilinear form in the functions
{Br(\)} and the operators {Zp, (A, f)}. We will then obtain an explicit formula
for JY'(f) from the assertion
JL(f) = lim PY(B7, f)
e—0

of Theorem 20.5(b).

The operator M} () is defined by (15.1) in terms of an inner product of
truncated Eisenstein series attached to P. Proposition 15.3 gives the explicit inner
product formula of Langlands, which applies to the special case that the Eisenstein
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series are cuspidal. It turns out that the same formula holds asymptotically in T'
for arbitrary Eisenstein series.

THEOREM 21.1. Suppose that ¢ € H% and ¢/ € HS,, for standard parabolic
subgroups P, P' D Py. Then the difference between the inner product

/ AT B(w, ¢, VATE(z, ¢/, X)da
G(F)\G(A)!

and the sum

(21.1) Z Z Z Oo(sA + S’X/)_le(‘g)‘“/y)(ﬂ (M(s,A) g, M(s',\)¢')
Q s s’

over Q D Py, s € W(ap,aq), and s’ € W(ap:,aq) is bounded by a product
e(A X, g, ¢)e =t (D),

where € > 0, and c¢c(\, N, ¢, ") is a locally bounded function on the set of points
A€ ape and N € ap, ¢ at which the Eisenstein series are analytic.

This is [A6, Theorem 9.1], which is the main result of the paper [A6]. The
proof begins with the special case already established for cuspidal Eisenstein series
in Proposition 15.3. One then uses the results of Langlands in [Lan5, §7], which
express arbitrary Eisenstein series in terms of residues of cuspidal Eisenstein series.
This process is not canonical in general. Nevertheless, one can still show that (21.1)
is an asymptotic approximation for the expression obtained from the appropriate
residues of the corresponding formula for cuspidal Eisenstein series. O

Let us write w? (X, X, ¢, ¢') for the expression (21.1). If B, is any function in
C(ia}p/iag,), the theorem tells us that

/ e (ME (NTp (A, £)é, 6) By (A)dA

N/ o W (AN Zp (N, o, @) By(N)dA.

We shall apply this asymptotic formula to the functions B, = B,. Since f is K-
finite, Zp, (A, f)¢ vanishes for all but finitely many vectors ¢ in the orthonormal
basis Bp,, of Hp,. This is a consequence of Langlands’ construction of the discrete
spectrum, as we have noted earlier. We assume that Bp, is a disjoint union of
orthonormal bases Bp, » of the spaces Hp ». It then follows that

PY(B, f)
~Y Y (/ > WTAA Ty (A £)6,6) Ba(N)dA).
PSPy m OR/19G GeBp

The problem is to find an explicit polynomial function of T, for any P and 7, which
is asymptotic in T to the expression in the brackets.

Suppose that P, 7, and ¢ are fixed, and that A lies in Za},. Changing the indices
of summation in the definition (21.1), we write

wT (Aa Aazp,x,ﬂ'(Aa f)¢a ¢)
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as the limit as A\’ approaches A of the expression
wh (NN Zp(\, £)o,9)
=D 2D O N =) TN TND (M, NI (A, o M, N)9)

Pyt t
=D D) 0p (N = V) TN D) (M (5, VYT (N, £), M(t, N)6),
s Pt

for sums over P, O Py and t,t € W(ap,ap,), and for s = t~!t' ranging over
the group W(Mp) = W(ap,ap). Since A is purely imaginary, the adjoint of the
operator M (t, \) equals M (¢, \)~!. The sum

(212) Z wT (>\7 )‘a IP,X,ﬂ' ()‘v f)d)v ¢)
PEBP,x,x
therefore equals the limit as \' approaches \ of
SN 0p, (t(sN — A) N I (M (8, A) " M (ts, X )Tp oy (A, f))-
s (Plvt)
Set M = Mp. The correspondence
(Plat) - Q:w;lplwh P, D P, tEW(Clp,Clpl),
is then a bijection from the set of pairs (Pp, t) in the last sum onto the set P(M). For
any group @ € P(M) and any element s € W(M), there is a unitary intertwining
operator
MQ|p(S,)\) : HP — HQ, )\Gia}‘w.
It is defined by analytic continuation from the analogue of the integral formula
(7.2), in which P’ is replaced by Q. If (Py,t) is the preimage of @, it is easy to see
from the definitions that
M (s, X') = tMqyp(s, X )elX +ra) To=t 7o),
where ¢: Hg — Hp, is the operator defined by

(tg)(z) = ¢(w; "), ¢ € Hp.
The point Tj is used as in §15 to measure the discrepancy between the two repre-
sentatives wy and wy of the element t € Wy. (See [A8, (1.4)].) It follows that

M(t7 A)_lM(tS,)\/) — MQ‘P()\)_IMQ‘P(S, A/)e(SA/_A)(TO_t—1T0)7

where Mg p(A) = Mg p(1,A). Next, we define a point Yq(7') to be the projection
onto ay; of the point
1T — Tp) + Tp.
Then
(SN =) (T) o (sN = A)(To—t"To) _ o(sX' =) (Yo(T))
Finally, it is clear that
Op, (H(sN —A)) " =g (sA —A) 7L
It follows that (21.2) equals the limit as A’ approaches A of the sum over s € W (M)
of
21.3) Y tr(Mgip(\) T Mgip(s, X)Zpyx (X, £)) el =MD, (s —2) 71
QeP(M)
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The expression (21.3) looks rather like the basic function (17.1) we have at-
tached to any (G, M)-family. We shall therefore study it as a function of the
variable

A=s\N -\

The expression becomes

> caM)do(M)bg(n) ",
QeP(M)
where
co(A) = eAYo(T)
and
dg (A) = tI‘(MQ|p(>\)71MQ|p(S, )\,)Ip7x,ﬂ()\, f))
It follows easily from the definition of Y (T') that {cg(A)} is a (G, M)-family. The
operators Mg p(s,\') in the second factor satisfy a functional equation

MQ/|p(S, /\/) = MQ/‘Q(S)\I)MQ‘[)(S, )\I)7 Q/ € P(M)

It follows easily from this that {dg(A)} is also a (G, M)-family. (See [A8, p. 1298].
Of course dg(A) depends on the kernel of the mapping (A, \) — A as well as on A,
but at the moment we are only interested in the variable A.) The expression (21.3)
therefore reduces to something we have studied, namely the function (cd)ar(A)
attached to the (G, M)-family {(cd)g(A)}. By Lemma 17.1, the function has no
singularities in A. It follows that the expression (21.3) extends to a smooth function
of (N, ) in ia%, x ia},.

Remember that we are supposed to take the limit, as \' approaches A, of the
sum over s € W (M) of (21.3). We will then want to integrate the product of B, (\)
with the resulting function of X over the space ia},/iag,. From what we have just
observed, the integral and limit may be taken inside the sum over s. It turns out
that the asymptotic limit in 7' may also be taken inside the sum over s. In other
words, it is possible to find an explicit polynomial in T that is asymptotic to the
integral over A\ of the product B,(\) with value at A\’ = X of (21.3). We shall
describe how to do this, using the product formula of Lemma 17.4.

Suppose that s € W (M) is fixed. Let L be the smallest Levi subgroup in £(M)
that contains a representative of s. Then ay equals the kernel of s in ap;. The
element s therefore belongs to the subset

I/VL(M)reg ={te WE(M) : ker(t) =ar},

of regular elements in WX (M). Given s, we set A = \ + ¢, where ( is restricted to
lie in the subspace ia} of ia}, associated to s. Then s¢ = ¢, and

A=(sA—X)+¢
is the decomposition of A relative to the direct sum
iay, = i(ak,)* @ia}.
If A\r is the projection of A onto ia}, the mapping
(A Q) — (A, A), N e iayy, C € iaj,

is a linear automorphism of the vector space iay, ®ia7. In particular, the points A
and X' = X + ¢ are uniquely determined by A and A\j. Let us write

co(A,T) = AYa(T)
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and
dQ (Aa )‘L) = tr(MQ|P()\)71MQ\P(Sa A + Q)ZP7X,7T()\7 f))a

in order to keep track of our two (G, M)-families on the supplementary variables.
They of course remain (G, M)-families in the variable A. For A = A + ¢ as above,
the expression (21.3) equals

Z €Q (A, T)dQ (A, )‘L>6Q (A)_l = Z c§\q4 (A, T)de’(ASU )‘L)a
QEF(M) SEF(M)

by the product formula of Lemma 17.4. To evaluate (21.3) at X' = A, we set { = 0.
This entails simply replacing A by s\ — A. The value of (21.3) at A’ = X therefore
equals

> (A=A T)ds((sA = Ns, Ar).
SeF(M)

We have therefore to consider the integral

(21.4) / S (oA = AT ((sA — Vs, Ar) ) B (W)X,
il /19G " seF(M)

for M = Mp, w € Hunit(M(A)l), L e L(M) and s € WE(M)yeq, and for T in a

fixed domain a’, . We need to show that the integral is asymptotic to an explicit

polynomial in 7. This will allow us to construct PT(B) simply by summing the

product of this polynomial with n;,l over P D Py, m, L, and s.

We first decompose the integral (21.4) into a double integral over i(af,)* and
iaj /iag,. If A belongs to ia},, sA — A depends only on the projection p of A onto
i(ak,)*. Since the mapping

Fo:p—sp—p
is a linear isomorphism of i(ak,)*, (21.4) equals the product of the inverse
-1
[det(s — 1y, |

of the determinant of this mapping with the sum over S € F(M) of
@) [ T B (R ) + N rd
i(al,)* Jia} Jial

Next, we note that the dependence of the integral on T is through the term
5 (u,T). For fixed S, the set
Yar(T) = {Ys(r)(T) : RePMs(M)}

is a positive (Mg, M )-orthogonal set of points in aps, which all project to a common
point Yg(7T') in ag. It follows from Lemma 17.2 that

St = [ ek D,
Ys(T)+ay,”

where 95,(-,T) is the characteristic function of the convex hull in ay; of V3§, (T).
We can therefore write (21.5) as

Mg
M

(21.6) / 5 (H,T)bs (H)AH,
Ys(T)+a
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where
oot = [ [ e s VB (R () + )
i(ay,)* Jiap iag

for any H € aps. Since ds(-,-) is smooth, and By(-) is both smooth and compactly
supported, ¢g(H) is a Schwartz function on ap;/ar.

There are two cases to consider. Suppose first that S does not belong to the
subset F(L) of F(M). Then ag is not contained in ar, and Ys(T') projects to a
nonzero point Ys(T)%, in a%,. In fact, it follows easily from the fact that 7 lies in
afp, that

IYs(D)§ll = T,
for some r; > 0. The function %, (-, T) is supported on a compact subset of the
affine space Ys(T') + a%s whose volume is bounded by a polynomial in 7. One
combines this with the fact that ¢g(H) is a Schwartz function on aps/ar to show
that (21.6) approaches 0 as T' approaches infinity in a}, . (See [A8, p. 1306].)
We can therefore assume that S belongs to F(L). Then
ay® = ak ©a}’s.

Since ¢g is ap-invariant, we are free to write (21.6) as

L o ([, st s mma)an

As it turns out, we can simplify matters further by replacing
Ui (U + H,T)

with ¢7 (H,T), where 17 (H, T) is the characteristic function in az, of the set Y7 (T)
obtained in the obvious way from Y3,(T). More precisely, the difference between
the last expression and the product
(21.7) ¢s(U)AU - o7 (H,T)dH

L

M
ak, Ys(T)+aj

approaches 0 as T" approaches infinity in a%, . Suppose for example that G = SL(3),
M = Mj is minimal, Mg = G, and that L is a standard maximal Levi subgroup
M. Then Yg(T') = 0, and the difference

P (H,T) — 3 (U + H,T), Uecak, Heay,

is the characteristic function of the darker shaded region in Figure 21.1. Since
$s5(U) is rapidly decreasing on the vertical af,-axis in the figure, the integral over
(U,H) of its product with the difference above does indeed approach 0. In the
general case, the lemmas in [A8, §3] show that the convex hull of Yy, (T) has the
same qualitative behaviour as is Figure 21.1. (See [A8, p. 1307-1308].)

The problem thus reduces to the computation of the product (21.7), for any
element S € F(L). The first factor in the product can be written as

bs(U)AU = / (0. M) B (\)dA,
al, ia} /ial

by the Fourier inversion formula in a%;. The second factor equals

/ WS (H, T)AH = ¢3(0,T)
Ys(T)+a

Mg
L
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|
ag

ar

FIGURE 21.1. The vertices represent the six points Yp(7T'), as P
ranges over P(My). Since T' ranges over a set a5, , the distance from
any vertex to the horizontal ap-axis is bounded below by a positive
multiple of |||

by Lemma 17.2, and is therefore a polynomial in 7. In particular, (21.7) is already
a polynomial in T'. To express its contribution to the asymptotic value of (21.4), we
need only sum S over F(L). We conclude that (21.4) differs from the polynomial

—1 ’
(21.8) | det(s — 1)qz | / | > 20, T)ds (0, )\))Bw()\)dA
iay /iak SeF(L)

by an expression that approaches 0 as T" approaches infinity in af .
The sum

(21.9) > 20, T)dg(0, )
SeF(L)
in (21.8) comes from a product
cg, (A, T)dg, (A, N), Q1 € P(L), A €iaj,
of (G, L)-families. By Lemma 17.4, it equals the value at A = 0 of the sum
> cai(A D)o, (A Mg, (M)~
Q1€P(L)

Recall the definition of the (G, M)-family {dg(A, )} of which the (G, L)-family
{dg, (A, \)} is the restriction. Since A and A lie in the subspace ia} of ia},, AL
equals A, and

C=A-(sA—X)=A.

It follows from the definitions and the functional equations of the global intertwining
operators that

d(A,N) = tr(Moip(\) ™ Mgip(s, A+ A)Zpy < (A, f))
= tr(Mgp(A) "' Mgip(A + A)Mpjp(s, A+ M) Zpy <(A, f)),
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for any Q € P(M). Since the point A + A lies in the space ia} fixed by s, the
operator

MP(S,O) = Mp‘p(S,)\ + A)
is independent of A and A. To deal with the other operators, we define
Mq(A, A, P) = Mgip(A) ™' Mg p(A+ A),
and
MG(A, A, P) = VI Mg p(3) ™ Mg p (A + A)
=co(A, T)Mqg(A, A\ P),
for any @ € P(M). As functions of A in the larger domain ia},, these objects form

two (G, M )-families as @) varies over P(M). With A restricted to ia} as above, the
functions

MTl(Aa)HP):Mg(Aa)‘aP)a Ql EP(L)a QCQla

form a (G, L)-family as Q1 varies over P(L). It follows from the definitions that
(21.9) equals

lim cq, (A, T)dg, (A, Mg, (M)~
- Q1€P(L)
= I{IH%) Z tI‘(MTl (AvAvp)MP(SaO)IP,X,W(>Hf))0Q1 (A)71
Q1€P(L)

= lim tr(ML (A, X, P)Mp(5,0)Zp (A, f))
= tr(ME (A, P)Mp(s,0)Zpy (X, f)).

We substitute this formula into (21.8). The resulting expression is the required
polynomial approximation to (21.4).

The following proposition is Theorem 4.1 of [A8]. We have completed a rea-
sonably comprehensive sketch of its proof.

PROPOSITION 21.2. For any f € H(G) and B € C(ib* /iak)V, the polyno-
mial PT(B, f) equals the sum over P D Py, 7 € i (MP(A)I), L e L(Mp), and
s€e WL(MP)reg of the product of

np!| det(s — 1) 45|~
with

[ MEOPIMR(s,0)Zrr (O D) Ba ()N =
iay /iag,

Recall that
JI(f) = tim PT(B, f),
where B¢(v) = B(ev), and B(0) is assumed to be 1. Therefore
() = T (f) = lim PR(B ).
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Now

Mfo()\»P) = AIH}) Z CQ: (A7TO)MQ1 (A’AaP)0Q1 (A)71
Q1€P(L)

lim Y AT Mg, (AN, P)ig, ()
Q1EP(L)

= lim A% T Mo, (A, P)g,(A)
Q1EP(L)
= M\ P),

since Yg, (To) is just the projection of T onto ar. We substitute this into the
formula above. The canonical point Tj € ag is independent of the minimal parabolic
subgroup Py € P(M;) we fixed at the beginning of the section. Moreover, if M =
Mp, the function
tr(ML(A» P)MP(Sv O)IP,X,Tr(Aa f))

is easily seen to be independent of the choice of P € P(M). We can therefore
rewrite the formula of Proposition 21.2 in terms of Levi subgroups M € L rather
than standard parabolic subgroups P O FPy. Making the appropriate adjustments
to the coefficients, one obtains the following formula as a corollary of the last one.
(See [A8, Theorem 5.2].)

COROLLARY 21.3. For any f € H(G), the linear form J, (f) equals the limit as
e approaches 0 of the expression obtained by taking the sum over M € L, L € L(M),
T € Munit (M (A)Y), and s € WE(M),eq of the product of

(Wo W5 || det(s — 1)

L |71
L3vs

with
/ tr(Mp(X, P)Mp(5,0)Zpy.x (A, f))B2(A)dA. O
ia} /iaf

The final step is to get rid of the function BE and the associated limit in e.
Recall that B had the indispensable role of truncating the support of integrals that
would otherwise be unmanageable. The function

B:(A) = B(e(iYr + )

is compactly supported in A € iaj} /iaf,, but converges pointwise to 1 as € approaches
0. If we can show that the integral

(21.10) / o WML PIMp (s, 00 )N

converges absolutely, we could remove the limit in € by an appeal to the dominated
convergence theorem. One establishes absolute convergence by normalizing the
intertwining operators from which the operator My, (A, P) is constructed.

Suppose that m, € II(M(F,)) is an irreducible representation of M(F,), for a
Levi subgroup M € £ and a valuation v of F. We write

Wv,A(mv) = Wv(mv)eA(HM(mv))y My, € M(Fv),

as usual, for the twist of 7, by an element A\ € aj;c. If P € P(M), Ip(my,n)
denotes the corresponding induced representation of G(F,), acting on a Hilbert
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space Hp(m,) of vector valued functions on K,. If @ € P(M) is another parabolic
subgroup, and ¢ belongs to Hp(m,), the integral

/ B(nyy, )ePHPPIHP(0z0)) o= (M) (Ho(2u)) g
No(Fy)NNp(Fy)\Nq(Fy)

*

converges if the real part of \ is highly regular in the chamber (a};)5. It defines
an operator
JQ‘p(Trv,)\) : Hp(ﬂ'v) — HQ(?TU)

that intertwines the local induced representations Zp(m, ) and Zg(my,x). One
knows that Jo|p(my,x) can be analytically continued to a meromorphic function of
A € aj; ¢ with values in the corresponding space of intertwining operators. (See
[Har5], [KnS], and [Shal].) This is a local analogue of Langlands’ analytic contin-
uation of the global operators Mg p(A). Unlike the operators Mg p()), however,
the local operators Jg|p(my,x) are not transitive in Q and P. For example, if P is
the group in P(M) opposite to P, Harish-Chandra has proved that

Tp1p(mox)Tpp(Ton) = piar (mun) ™1,

where piar(my 1) is a meromorphic scalar valued function that is closely related to
the Plancherel density. To make the operators Jo p (7, x) have better properties,
one must multiply them by suitable scalar normalizing factors.

THEOREM 21.4. For any M, v, and w, € H(M(E,)), one can choose mero-
morphic scalar valued functions

QP (Tu,\),s A€ ay e, PQePM),
such that the normalized intertwining operators
(21.11) Roip(mon) = rqip(mun) Joip ()
have the following properties.
(i) Rgp(mon) = Roiq(mua)Ro p(mo,n), Q.Q,PePM).

(ii) The K,-finite matriz coefficients of Rgp(my,n) are rational functions of
the variables {\(a) : « € Ap} if v is archimedean, and the variables
{qv_)‘(av) : a € Ap} if v is nonarchimedean.

(ili) If m, is unitary, the operator Rq p(myx) is unitary for X\ € iay;, and
hence analytic.

(iv) If G is unramified at v, and ¢ € H(m,) is the characteristic function of
K,, Royp(mor)d equals ¢.

See [A15, Theorem 2.1] and [CLL, Lecture 15]. The factors rgp(my x) are
defined as products, over reduced roots [ of (Q), Aps) that are not roots of (P, Aps),
of meromorphic functions r3(my) that depend only on A(5Y). The main step is to
establish the property
(21.12) rpip(To )T p (To,0) = par (T0,0) 7,
in the case that M is maximal. (]

Remarks. 1. The assertions of the theorem are purely local. They can be
formulated for Levi subgroups and parabolic subgroups that are defined over F,.
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2. Suppose that @) 7, is an irreducible representation of M (A), whose restric-

tion to M(A)! we denote by 7. The product
(21.13) RQ‘P(T(,\) :®RQ‘p(7TrU’)\)

is then a well defined transformation of the dense subspace H%(m) of K-finite
vectors in Hp(w). Indeed, for any ¢ € HY(w), Rop(ma)¢ can be expressed as a
finite product by (iv). If 7 is unitary and A € iaj;, Rop(m\) extends to a unitary
transformation of the entire Hilbert space Hp ().

Suppose that © € It (M (A)l) is any representation that occurs in the dis-
crete part Rz qisc of Rps. In other words, the subspace Hp » of Hp is nonzero. The
restriction of the global intertwining operator Mg p () to Hp  can be expressed in
terms of the local intertwining operators above. It is isomorphic to mgjs.(7)-copies
of the operator

Joip(my) = ® Joip(mun),

defined for any unitary extension )7, of 7 to M(A) by analytic continuation in

v
A If {rgip(my,2)} is any family of local normalizing factors that for each v satisfy
the conditions of Theorem 21.4, the scalar-valued product

(21.14) roip(my) = [ [ raip (o)

v
is also defined by analytic continuation in A, and is analytic for A € iaj,. Let
Rgip(\) be the operator on ‘Hp whose restriction to any subspace Hp . equals
the product of rgp(mx)~" with the restriction of Mg p(A). In other words, the
restriction of Rgp()\) to Hp, is isomorphic to mgisc(m)-copies of the operator
(2.13). We define

(21.15) ’I“Q(A, 7'&')\,P) :TQ|P(7T)\)71TQ“D(7T)\+A), 'Hp77r 3& {O},
and

Ro(A, N, P) = Rop(A\) 'Roip(A+ A),
for points A and X in iaj},;. Then {rq(A,m\)} and {Rqo(A, A, P)} are new (G, M)-
families of A. They give rise to functions rp(my, P) and Ry (A, P) of A for any
L € L(M). We write rr(my) = ri(m\, P), since this function is easily seen to be
independent of the choice of P.

LEMMA 21.5. (a) There is a positive integer n such that

[ Il s < oc.
iay,/iag

(b) The integral (21.10) converges absolutely.

The integrand in (21.10) depends only on the restriction My (X, P), » of the
operator Mp (A, P) to Hpy,». But Mp(A, P)y ~ can be defined in terms of the
product of the two new (G, M)-families above. Moreover, we are free to apply

the simpler version (17.12) of the usual splitting formula. This is because for any
S € F(L) and @ € P(S5), the number

rp(m) =rg(m)
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is independent of the choice of Q [A8, Corollary 7.4]. Therefore

ML()\aP)X,ﬂ' = Z TE(T‘—A)RS()‘?P)XJ”
SeF(L)

where Rg(\, P)y,» denotes the restriction of Rg(A, P) to Hp,y,». The integral
(21.10) can therefore be decomposed as a sum

(21.16) Z / rf(ﬂ',\)tr(Rs()\,P)MP(S,O)ZP,X,Tr()\,f))d/\.
SeF(L) iay /iaf,

Since f lies in the Hecke algebra H(G), the operator Zp, (A, f) is supported on
a finite dimensional subspace of Hp, ». Moreover, it is an easy consequence of
the conditions (ii)—(iv) of Theorem 21.4 that any matrix coefficient of the operator

Rs(A, P) is a rational function in finitely many complex variables {\(a), q;’\(av)},
which is analytic for A € ia},. Since Zp (A, f) is rapidly decreasing in A, part (b)
of the lemma follows inductively from (a). (See [A8, §8].)

It is enough to establish part (a) in the case that M is a maximal Levi subgroup.
This is because for general M and L, r (my) can be written as a finite linear

combination of products
A () - .r%” (),
for Levi subgroups My, ..., M, in £(M), with dim(ay /ap;) = 1, such that the

mapping

P
an/ac — E(an/an)
i=1
is an isomorphism. (See [A8, §7].) In case M is maximal, one combines (21.16) with
estimates based on Selberg’s positivity argument used to prove Theorem 14.1(a).
(See [A8, §8-9].) O

It is a consequence of Langlands’ construction of the discrete spectrum of M in
terms of residues of cuspidal Eisenstein series that the sum over m € Il (M (A)l)
in Corollary 21.3 can be taken over a finite set. Lemma 21.5(b) asserts that for any
m, the integral (21.10) converges absolutely. Combining the dominated convergence
theorem with the formula of Corollary 21.3, we obtain the following theorem.

THEOREM 21.6. For any f € H(G), the linear form J,(f) equals the sum over
MeL, LeL(M),n €Il (M(A)), and s € WE(M)yeg of the product of
(21.17) (W IWg' |~ det(s — 1)qg, |
with

[ ML PIMi(s, 0T mr (0, )N
ia} /ia,

(See [A8, Theorem 8.2].) O

Remarks. 3. There is an error in [A8, §8]. It is the ill-considered inequality
stated on p. 1329 of [A8], three lines above the expression (8.4), which was taken
from [A5, (7.6)]. The inequality seems to be false if f lies in the complement of
H(G) in C (G(A)l), and 7 is nontempered. Consequently, the last formula for
Jy(f) does not hold if f lies in the complement of H(G) in C°(G(A)').
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The fine spectral expansion of J(f) is the sum over y € X of the formulas for
Jy(f) provided by the last theorem. It is convenient to express this expansion in
terms of infinitesimal characters.

A representation m € I i (M (A)l) has an archimedean infinitesimal character,
consisting of a W-orbit of points v, = X + Y in b /iaf,. The imaginary part Yz
is really an aj,-coset in h*, but as in §20, we can identify it with the unique point
in the coset for which the norm ||Yx|| is minimal. We then define

I nie (M (A)") = {7 € Munit (M(A)") = [Im(vr)]| = Yz = t},

for any nonnegative real number t.
Recall that a class x € X is a Wy-orbit of pairs (My, ), with m being a
cuspidal automorphic representation of Mj(A)l. Setting v, = vy, we define a

linear form

Ji(f) = > I (f), t>0, feH),

{xeX:|Tm(vy)||=t}

in which the sum may be taken over a finite set. Then

J(f) =D Julf).

t>0

We also write Zp, (A, f) for the restriction of the operator Zp(A, f) to the invariant
subspace

HP,t = @ HP,X,TM
{06m): I Im(vy) | =t}
of Hp. It is again a consequence of Langlands’ construction of the discrete spectrum
that if ||[Im(ry)|| = t, the space Hp,y,» vanishes unless 7 belongs to Iy yni¢ (M (A)1).
In other words, the representation Zp () is equivalent to a direct sum of induced
representations of the form Zp(my), for m € II; ynit (M(A)l) The fine spectral
expansion is then given by the following corollary of Theorem 21.6.

COROLLARY 21.7. For any f € H(G), the linear form J(f) equals the sum
overt>0, M €L, L€ L(M), and s € WL(M),eg of the product of the coefficient
(21.17) with the linear form

(21.18) / tr(Mp (X, P)Mp(s,0)Zp(X, f))dA. O
ia} /iag

The fine spectral expansion is thus an explicit sum of integrals. Among these
integrals, the ones that are discrete have special significance. They correspond to
the terms with I = G. The discrete part of the fine spectral expansion attached to
any t equals the linear form
(21.19)

Inaise(f) = D> WM WS~ Y [ det(s — 1)ag |~ tr(Mp(s,0)Zp, (0, f)).
MeL SEW (M )reg

It contains the t-part of the discrete spectrum, as well as singular points in the ¢-
parts of continuous spectra. Observe that we have not shown that the sum over ¢ of
these distributions converges. To do so, one would need to extend Miiller’s solution
of the trace class conjecture [Mul], as has been done in the case G = GL(n) by
Miiller and Speh [MS]. It is only after I; qisc(f) has been enlarged to the linear
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form Ji(f), by including the corresponding continuous terms, that the spectral
arguments we have discussed yield the absolute convergence of the sum over ¢.
However, it turns out that this circumstance does not effect our ability to use trace
formulas to compare discrete spectra on different groups.

22. The problem of invariance

In the last four sections, we have refined both the geometric and spectral sides
of the original formula (16.1). Let us now step back for a moment to assess the
present state of affairs. The fine geometric expansion of Corollary 19.3 is transpar-
ent in its overall structure. It is a simple linear combination of weighted orbital
integrals, taken over Levi subgroups M € L. The fine spectral expansion of Corol-
lary 21.7 is also quite explicit, but it contains a more complicated double sum over
Levi subgroups M C L. In order to focus our discussion on the next stage of devel-
opment, we need to rewrite the spectral side so that it is parallel to the geometric
side.

We shall first revisit the fine geometric expansion. This expansion is a sum
of products of local distributions Jys (7, f) with global coefficients a™ (S, ), where
S D Siam is a large finite set of valuations depending on the support of f, and

v € (M(F)),, ¢ is an (M, S)-equivalence class. Let us write

(22.1) I(M)s = (M(F)) S D Sram,

M,S’

in order to emphasize that this set is a quotient of the set I'(M) of conjugacy
classes in M(F). The semi-simple component 75 of a class v € I'(M)g can be
identified with a semisimple conjugacy class in M (F'). By choosing S to be large,
we guarantee that for any class v with Jas (7, f) # 0, the set

Int(M(A%))ys = {m ™ 'yym: m e M(A®)}

intersects the maximal compact subgroup Ky, of M(AS). If S is any finite set
containing Syam, and 7 is a class in I'(M)g, we shall write
oM () = {aM(S, v), if Int (M(A®))vs N K3y #0,

(22.2) .
0, otherwise.

If f belongs to H(G) = H(G(A)'), we also write

J]\/I(’Yv.f) = JM(’Ya fS)a

where fg is the restriction of f to the subgroup G(Fs)! of G(A)!. We can then write
the fine geometric expansion slightly more elegantly as the limit over increasing sets
S of expressions

SWTIWE T Y aM ()T, f).

MeL yel(M)s

The limit stabilizes for large finite sets .S.

To write the spectral expansion in parallel form, we have first to introduce
suitable weighted characters Jy(, f). Suppose that 7 belongs to Iy (M (A)').
Then 7 can be identified with an orbit 7y of ia}, in Il (M(A)) In the last
section, we defined normalized intertwining operators Rg p(my) in terms (21.11)
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and (21.13) of a suitable choice of local normalizing factors {rq p(my,x)}. We now
introduce the corresponding (G, M )-family

Ro(A, 7y, P) = RQ|p(7T)\)71RQ|P(7T)\+A), Qe P(M), A€iay,
of operators on Hp(m), which we use to define the linear form
(22.3) (s, f) = tr(Ras(ma, P)Zp(mr, f)) feH(GA)),
on H(G(A)). We then set
(22.4) Tulr, £y = [ Taslms, i f €M),
iay,

where f is any function in H(G(A)) whose restriction to G(A)! equals f. The
last linear form does indeed depend only on 7 and f. It is the required weighted
character.

The core of the fine spectral expansion is the t-discrete part Iy gisc(f), defined
for any t > 0 and f € H(G) by (21.19). The term “discrete” refers obviously to the
fact that we can write the distribution as a linear combination
(22.5) Laisc(f) = > afe(mfa()

TEI unit (G(A)Y)

of irreducible characters, with complex coefficients adGiSC(ﬂ). It is a consequence of
Langlands’ construction of the discrete spectrum that for any f, the sum may be
taken over a finite set. (See [A14, Lemmas 4.1 and 4.2].) Let II; 4isc(G) be the
subset of irreducible constituents of induced representations

o, M €L, o€ My it (M(A)), X € i}, /iak,
of G(A)!, where the representation oy of M(A)NG(A)! satisfies the two conditions.
(1) agie(o) #0.
(ii) there is an element s € WY (aps)eq such that soy = 0.
As a discrete subset of II; ypit (G(A)l), II; gisc(G) is a convenient domain for the
coefficients a§;_. (7).

It is also useful to introduce a manageable domain of induced representations
in Iy unie (G(A)!). We define a set

(22.6) (G) = {n§: ML, mellg(M), \<iay/iag},

equipped with the measure dwf for which

1) [ sfang = S wwet S [ efHan
I, (G) MerL TEM dine(ar) ia}, /iag

for any reasonable function ¢ on II,(G). If 7 belongs to a set II; gisc(M), the global
normalizing factors rq|p(mx) can be defined by analytic continuation of a product
(21.14). We can therefore form the (G, M)-family {rg(A, m»)} as in (21.15). The
associated function rys(my) = r§;(my) is analytic in A, and satisfies the estimate of
Lemma 21.5(a). We define a coefficient function on II,(G) by setting

(22.8) a% (7)) = all (m)r§ (), M e L, €T gise(M), \ € ia},/iak.
It is not hard to show that the right hand side of this expression depends only on

the induced representation ﬂf, at least on the complement of a set of measure 0 in
IL(G).
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For any M € L, we write II(M) for the union over ¢t > 0 of the sets II;(M).
The analogues of (22.7) and (22.8) for M provide a measure dm and a function
aM(r) on TI(M). Since we have now terminated our relationship with the earlier
parameter of truncation, we allow ourselves henceforth to let 1" stand for a positive
real number. With this notation, we write II(M)? for the union over ¢t < T of the
sets II;(M). The refined spectral expansion then takes the form of a limit, as T
approaches infinity, of a sum of integrals over the sets II(M)T.

We can now formulate the refined trace formula as an identity between two
parallel expansions. We state it as a corollary of the results at the end of §19 and
§21.

COROLLARY 22.1. For any f € H(QG), J(f) has a geometric expansion

229) I =lm 3 WIWET Y @) S)
MeL ~yel'(M)s

and a spectral expansion

(22.10) I =t 35 WEIWE [ M () £
T I(M)T
MeLl

The geometric expansion (22.9) is essentially that of Corollary 19.3, as we
noted above. The spectral expansion (22.10) is a straightforward reformulation of
the expansion of Corollary 21.7, which is established in the first part of the proof
of Theorem 4.4 of [A14]. One applies the appropriate analogue of the splitting
formula (21.16) to the integral (21.18). This gives an expansion of J;(f) as a triple
sum over Levi subgroups M C L C S and a simple sum over s € WL(aM)reg. One
then observes that the sum over M gives rise to a form of the distribution Itfdisc,
for which one can substitute the analogue of (22.5). Having removed the original
sum over M, we are free to write M in place of the index S. The expression (21.18)
becomes a sum over M € L£(L) and an integral over A € ia} /ia};,. The last step
is to rewrite the integral as a double integral over the product of iaj /ia}, with
ia};/iaf. The spectral expansion (22.10) then follows from the definitions of the
linear forms Jy; (7, f), the coefficients a™ (7), and the measure dr. O

Although the refined trace formula of Corollary 22.1 is a considerable improve-
ment over its predecessor (16.1), it still has defects. There are of course the ques-
tions inherent in the two limits. These difficulties were mentioned briefly in §19 (in
the remark following Theorem 19.1) and in §21 (at the end of the section). The
spectral problem has been solved for GL(n), while the geometric problem is open
for any group other than GL(2). Both problems will be relevant to any attempt to
exploit the trace formula of G in isolation. However, they seem to have no bearing
on our ability to compare trace formulas on different groups. We shall not discuss
them further.

Our concern here is with the failure of the linear forms Jy; (7, f) and Jas(m, f)
to be invariant. There is also the disconcerting fact that they depend on a non-
canonical choice of maximal compact subgroup K of G(A). Of course, the domain
H(G) of the linear forms already depends on K, through its archimedean com-
ponent K.,. However, even when we can extend the linear forms to the larger
domain Cg° (G(A)l), which we can invariably do in the geometric case, they are
still fundamentally dependent on K.
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To see why the lack of invariance is a concern, we recall the Jacquet-Langlands
correspondence described in §3. Their mapping @ — 7" of automorphic repre-
sentations was governed by a correspondence f — f* from functions f on the
multiplicative group G(A) of an adelic quaternion algebra, and functions f* on
the adelic group G*(A) attached to G* = GL(2). The correspondence of functions
was defined by identifying invariant orbital integrals. It is expected that for any
G, the set of strongly regular invariant orbital integrals spans a dense subspace
of the entire space of invariant distributions. (The same is expected of the set of
irreducible tempered characters.) We might therefore be able to transfer invariant
distributions between suitably related groups. However, we cannot expect to be
able to transfer distributions that are not invariant.

The problem is to transform the identity between the expansions (22.9) and
(22.10) into a more canonical formula, whose terms are invariant distributions. How
can we do this? The first thing to observe is that the weighted orbital integrals in
(22.9) and the weighted characters in (22.10) fail to be invariant in a similar way.
By the construction of §18, the weighted orbital integrals satisfy the relation

vay Z J ’7 fQ’y)a

QeF (M)

for any f € C°(G(A)Y), v € T(M)g, and y € G(A). A minor technical lacuna
arises here when we restrict f to the domain H(G) of the weighted characters, since
the transformation f — f¥ does not send H(G) to itself. However, the convolutions
Lyf=hxfand R, f = fxh of f by a fixed function h € H(G) do preserve H(G).
We define a linear form on H(G) to be invariant if for any such h it assumes the
same values at Ly f and Ry, f. The relation above is equivalent to a formula

(22.11) Tu(y.Lnf)= > Jy°(v.Ronl),
QEF(M)
where
Ronf = h(y)(Ry-1f)qndy
G(A)!

and (R,-1f)(x) = f(ry), which applies equally well to functions f in either
C2°(G(A)') or H(G). It is no surprise to discover that the weighted characters sat-
isfy a similar formula, since we know that the original distributions J, (f) and J, (f)
satisfy the parallel variance formulas (16.2) and (16.3). It follows from Lemma 6.2
of [A15] that

(22.12) Ju(m Luf) =Y Ty Ronf),
QEF (M)

for any f € H(G), 7 € (M) and h € H(G).

We have just seen that the two families of linear forms in the trace formula
satisfy parallel variance formulas. It seems entirely plausible that we could con-
struct an invariant distribution by taking a typical noninvariant distribution from
one of the two families, and subtracting from it some combination of noninvariant
distributions from the other family. Two questions arise. What would be the pre-
cise mechanics of the process? At a more philosophical level, should we subtract
some combination of weighted characters from a given weighted orbital integral, or
should we start with a weighted character and subtract from it some combination
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of weighted orbital integrals? We shall discuss the second question in the rest of
this section, leaving the first question for the beginning of the next section.

Consider the example that G = GL(2), and M is the minimal Levi subgroup
GL(1) x GL(1) of the diagonal matrices. Suppose that f € H(G), and that S
is a large finite set of valuations. We can then identify f with a function on
H(G(Fs)'). The weighted orbital integral v — Jas(v, f) is a compactly supported,
locally integrable function on the group

M(Fs)' = {(a,b) € Fs x Fs : |a| = |b] = 1}.

The weighted character ™ — Jys(m, f) is a Schwartz function on the group
I unit (M (Fs)l) of unitary characters on M (Fs)'. We could form the distribution

(22.13) Tar( ) — / (1) ag (, Fd, y € M(Fs)",
Hunit(M(FS)l)

by modifying the weighted orbital integral. We could also form the distribution

(22.14) I (m, f) = m(V)Jar (v, f)d, 7 € Munie (M (Fs)),
M(Fg)*
by modifying the weighted character. According to the variance formulas above,
each of these distributions is invariant. Which one should we take?
The terms in the trace formula for G = GL(2) that are not invariant are the
ones attached to our minimal Levi subgroup M. They can be written as

LM\ MEY) S )

~YEM(os)

and 1
= > I (7, f)

2 mell(M(0s)\M (Fs)')
respectively, for the discrete, cocompact subring

os={vy€F: |7, <1, v&S}

of Fig. Can we apply the Poisson summation formula to either of these expressions?
Such an application to the first expression would yield an invariant trace formula
for GL(2) with terms of the form (22.14). An application of Poisson summation
to the second expression would yield an invariant trace formula with terms of the
form (22.13).

We need to be careful. Continuing with the example G = GL(2), suppose
that f lies in the Hecke algebra H(G(Fs)) on G(Fs), and consider Jy(7, f) and

Ju (m, f) as functions on the larger groups M (Fs) and Il (M (Fs)) respectively.
The function Jys (7, f) is still compactly supported. However, it has singularities
at points v whose eigenvalues at some place v € S are equal. Indeed, in the
example v = R examined in §18, we saw that the weighted orbital integral had a
logarithmic singularity. If the logarithmic term is removed, the resulting function
of 7 is bounded, but it still fails to be smooth. Langlands showed that the function
was nevertheless well enough behaved to be able to apply the Poisson summation
formula. He made the trace formula for GL(2) invariant in this way, using the
distributions (22.14) in his proof of base change for GL(2) [Lan9]. A particular
advantage of this approach is a formulation of the contribution of weighted orbital
integrals in terms of a continuous spectral variable, which can be separated from the
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discrete spectrum. For groups of higher rank, however, the singularities of weighted
orbital integrals seem to be quite unmanageable.

The other function Jy (, f) belongs to the Schwartz space on Il (M (Fs)),
but it need not lie in the Paley-Wiener space. This is because the operator-valued
weight factor

RM(’]T,P), 7Tel—lunit(]\4(F‘S))a

is a rational function in the continuous parameters of m, which acquires poles in the
complex domain II(M(Fs)). Therefore Jy(m, f) is not the Fourier transform of a
compactly supported function on M (Fs). This again does not preclude applying
Poisson summation in the case under consideration. However, it does not seem to
bode well for higher rank.

What is one to do? I would argue that it is more natural in general to work with
the geometric invariant distributions (22.13) than with their spectral counterparts
(22.14). Weighted characters satisfy splitting formulas analogous to (18.7). In the
example under consideration, the formula is

JM(TFM}T):Z JM 7Tv7fv waG 7Tw

veS wWHv

where 7 = @ 7, and f = [] f., and Jas (7, f) is the local weighted character
veS veES
defined by the obvious analogue of (22.3). It follows from this that the Fourier

transform

T ) = / (1) Jas (, Fd, + e M(Fy),
unit (M (Fs))

of Jps(m, f) is equal to a sum of products

J&(Vaf):Z(JM"YUafv waG’Yw)
veS w#v
for v = [] 7». The invariant orbital integrals f,, ¢(yw) are all compactly sup-

veS
ported, even though the functions J{; (v, f») are not. Remember that we are

supposed to take the Poisson summation formula for the diagonal subgroup

M(Fs)! = {*y € M(Fs): Hu(v) =Y Hu(v) = 0}
veS
of M(Fs). The intersection of this subgroup with any set that is a product of a
noncompact subset of M(F,) with compact subsets of each of the complementary
groups M(F,,) is compact. It follows that if f belongs to H(G(Fs)'), the weighted
character

wlmf) = [ Tualma, HA 7 € Mo (M(F5)1),
iay,
that actually occurs in the trace formula belongs to the Paley-Wiener space on
I onit (M(Fs)l) after all.
Suppose now that G is arbitrary. It turns out that the phenomenon we have
just described for GL(2) holds in general. The underlying reason again is the fact
that the weighted characters occur on the spectral side in the form of integrals

(22.4), rather than as a discrete sum of linear forms (22.3). Otherwise said, the fine
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spectral expansion of Corollary 21.7 is composed of continuous integrals (21.18),
while the fine geometric expansion of Corollary 19.3 is given by a discrete sum.

What if it had been the other way around? What if the weighted orbital
integrals had occurred on the geometric side in the form of integrals

. Jutve Pua f € H(G), 7 € T(M)s,
ARl oo
over the subgroup AX/[’OO of M(A), with f now being a function in H(G(A)) such
that

f@ = [ Feoe

Al oo

while the weighted characters had occurred as a discrete sum of distributions (22.4)?
It would then have been more natural to work with the general analogues of the
spectral invariant distributions (22.14), rather than their geometric counterparts
(22.13). Were this the case, we might want to identify f € H(G) with a function
on the quotient Ag,oo\G(A). We would then identify II(M) with a family of rep-
resentations of AXLOC\M(A). In the example G = GL(2) above, this would lead to
an application of the Poisson summation formula to the discrete image of M(og)
in A]T/[,OO\M(A), rather than to the discrete subgroup M(og) of M(A).

These questions are not completely hypothetical. In the local trace formula
[A19], which we do not have space to discuss here, weighted characters and weighted
orbital integrals both occur continuously. One could therefore make the local trace
formula invariant in one of two natural ways. One could equally well work with
the general analogues of either of the two families (22.13) or (22.14) of invariant
distributions.

23. The invariant trace formula

We have settled on trying to make the trace formula invariant by adding com-
binations of weighted characters to a given weighted orbital integral. We can now
focus on the mechanics of the process.

For flexibility, we take S to be any finite set of valuations of F. The trace
formula applies to the case that S is large, and contains S;.;,. In the example of
G = GL(2) in §22, the correction term in the invariant distribution (22.13) is a
Fourier transform of the function

JM(7T7f), WEHunit(M(FS)).

In the general case, M of course need not be abelian. The appropriate analogue of
the abelian dual group is not the set ITpit (M (Fs)) of all unitary representations.
It is rather the subset Iliemp (M(Fs)) of representations m € Ilypjt (M(Fs)) that
are tempered, in the sense that the distributional character f — fg(7) on G(Fs)
extends to a continuous linear form on Harish-Chandra’s Schwartz space C(G(Fys)).
Tempered representations are the spectral ingredients of Harish-Chandra’s general
theory of local harmonic analysis. They can be characterized as irreducible con-
stituents of representations obtained by unitary induction from discrete series of
Levi subgroups.
The tempered characters provide a mapping

f - fg(’]T), fGH(G(FS))a ’/TGHtemp(G(FS))a
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from H(G(Fs)) onto a space Z(G(Fs)) of complex-valued functions on
Miemp (G(Fs)). The image of this mapping has been characterized in terms of the in-
ternal parameters of Iiemp (G(Fs)) ([CD], [BDK]). Roughly speaking, Z(G(Fs))
is the space of all functions in Itemp (G(F S)) that have finite support in all discrete
parameters, and lie in the relevant Paley-Wiener space in each continuous param-
eter. Consider a linear form i on Z(G(Fs)) that is continuous with respect to the
natural topology. The corresponding linear form

f—ilfe), f e H(G(Fy)),

on H(G(Fs)) is both continuous and invariant. Conversely, suppose that I is any
continuous, invariant linear form on H(G(Fs)). We say that I is supported on
characters if I(f) = 0 for any f € H(G(FS)) with fo = 0. If this is so, there is a

continuous linear form I on Z(G(Fs)) such that

~

I(fe) = 1(f), f € H(G(Fs)).

We refer to I as the invariant Fourier transform of I. It is believed that every
continuous, invariant linear form on 7 (G(F S)) is supported on characters. This
property is known to hold in many cases, but I do not have a comprehensive refer-
ence. The point is actually not so important here, since in making the trace formula
invariant, one can show directly that the relevant invariant forms are supported on
characters.

We want to apply these notions to Levi subgroups M of G. In particular, we
use the associated embedding T — I of distributions as a substitute for the Fourier
transform of functions in (22.13). However, we have first to take care of the problem
mentioned in the last section. Stated in the language of this section, the problem
is that the function

T — JI\/I(va)a 71—EHtemp(J\I(F‘S))’

attached to any f € H(G(Fs)) does not generally lie in Z(M (Fs)). To deal with
it, we introduce a variant of the space Z(M (Fs)).

We shall say that a set S has the closure property if it either contains an
archimedean valuation v, or contains only nonarchimedean valuations with a com-
mon residual characteristic. We assume until further notice that S has this property.
The image

ag,s = Ha(G(Fs))
of G(Fs) in ag is then a closed subgroup of ag. It equals ag if S contains an
archimedean place, and is a lattice in ag otherwise. In spectral terms, the action
m — my of tag, on Hiemp (G(FS)) lifts to the quotient

iag s = i(ag/abs), at, g = Hom(ag s, 27Z),

of iaf,. If ¢ belongs to Z(G(Fs)), we set

o(r,Z) = / P(my)e D d\ 7 € Miemp (G(Fs)), Z € ag.s.

m*G,S
This allows us to identify I(G(Fs)) with a space of functions ¢ on Iljemp (G(Fs)) X
ag,s such that
¢(mr, Z) = D g(m, 2).
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If f belongs to H(G(Fs)), we have

fo(m, Z) = te(n(f7)) = tr(/

G(Fs)”?

f(x)ﬂ'(x)dx) ,

where fZ is the restriction of f to the closed subset
G(Fs)? = {z € G(Fs) : Hg(x) = Z}
of G(Fg). In particular, fg(m,0) is the character of the restriction of 7 to the
subgroup G(Fs)! of G(Fg).
We use the interpretation of Z(G(Fs)) as a space of functions on G(Fs) X ag,s
to define a larger space Zoo(G(Fs)). It is clear that

r

where I' ranges over finite sets of irreducible representations of the compact group
Ks = [] Ky, and Z(G(Fs)). is the space of functions ¢ € Z(G(Fs)) such that
veS

¢(, Z) vanishes for any 7 € Hiemp (G(Fs)) whose restriction to Kg does not con-
tain some representation in I'. For any I', we define 7, (G(FS))F to be the space of
functions ¢ on G(Fs) X ag,g with the property that for any function b € C°(ag,s),
the product

o(m, 2)b(Z), 7 € Tiomp (G(Fs)), Z € ag.s,
lies in Z(G(Fs)),.. We then set
IaC(G(Fs)) = limIaC<G(F5))F.

—
I

It is also clear that

H(G(Fs)) = lim H(G(Fs))y,
r

where H(G(Fs)) . is the subspace of functions in H(G(Fys)) that transform on each
side under Kg according to representations in I'. We define H,, (G(Fs))F to be the
space of functions f on G(Fg) such that each product

f(.%‘)b(f‘[@(w))7 x e G(Fs)7 be Cgo(ac’s),
belongs to H(G(Fs)),. We then set
Hac(G(Fs)) = lim Hae (G(Fs)) .-
r

it
The functions f € Hac (G(FS)) thus have “almost compact support”, in the sense
that fZ has compact support for any Z € ag,s. If f belongs to Hac (G(FS)), we
set

fa(m, Z) = tr(w(fz)), TEe Htemp(G(Fg)), Z €ag,s.

Then f — fg is a continuous linear mapping from H,. (G(FS)) onto Ly (G(FS))
The mapping I — T can obviously be extended to an isomorphism from the space
of continuous linear forms on H,. (G(Fg)) that are supported on characters, and
the space of continuous linear forms on Z,. (G(Fy)).
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Having completed these preliminary remarks, we are now in a position to in-
terpret the set of weighted characters attached to M as a transform of functions.
Suppose that f € Hac (G(F 5)) We first attach a general meromorphic function

(23.1) Ini(ma, £7) = tr(Rae(ma, P)p(ma, 7)), A€ aiy s

toany M € L, w € H(M(FS)) and Z € ag,g. We can then attach a natural linear
form Jy(m, X, f) to any X € aps. For example, if Jy(my, fZ) is analytic for
A € iay,, we set

(23.2) Ju(m, X, f) = / Jar(m, f2)e 20 AN,
iay, g/t0g g

where Z is the image of X in ag s. (In general, one must take a linear combination
of integrals over contours ep +ia}, g/iag; g, for groups P € P(M) and small points
ep € (a4,)p. See [A15, §7].) The premise underlying (23.2) holds if 7 is unitary. If
in addition, S O Syam and X = 0, (23.2) reduces to the earlier definition (22.4). Our
transform is given by the special case that m belongs to the subset Iliemp (M (FS))
of Iynit (M(FS)) We define ¢/(f) to be the function

(7, X) — dm(f,m, X) = I (m, X, f), 7 € Hyemp (M (Fs)), X € an,s,
on Htemp(M(Fs)) X apS-
ProprosITION 23.1. The mapping
f— om(f), f € Hae(G(Fs)),
s a continuous linear transformation from H.c (G(FS)) to Tac (M(FS))

This is Theorem 12.1 of [A15]. The proof in [A15] is based on a study of the
residues of the meromorphic functions

X — Ju(ma, £2), A€ ajy e ™€ Miomp (M(Fs)).

A somewhat simpler proof is implicit in the results of [A13]. (See the remark on
p. 370 of [A13].) It is based on the splitting and descent formulas for the functions
(23.1), which are parallel to (18.7) and (18.8), and are consequences of Lemmas
17.5 and 17.6. These formulas in turn yield splitting and descent formulas for the
linear forms (23.2), and consequently, for the functions ¢/ (f, 7, X). They reduce
the problem to the special case that S contains one element v, M is replaced by a
Levi subgroup M, over F,, and = is replaced by a tempered representation 7, of
M, (F,) that is not properly induced. The family of such representations can be
parametrized by a set that is discrete modulo the action of the connected group
iy, p, = W@y, (p}- The proposition can then be established from the definition of

Toc (M (Fs)). 0

It is the mappings ¢y, that allow us to transform the various noninvariant
linear forms to invariant forms. We state the construction as a pair of parallel
theorems, to be followed by an extended series of remarks. The first theorem
describes the general analogues of the invariant linear forms (22.13). The second
theorem describes associated spectral objects. Both theorems apply to a fixed finite
set of valuations S with the closure property, and a Levi subgroup M € L.
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THEOREM 23.2. There are invariant linear forms

IM(’%f):IJ\Gd(’va)a IYEM(FS)a feHac(G(FS))a
that are supported on characters, and satisfy
(23.3) v ) =Ju(v, )= > Th(v.en(h).
LeL(M)
L#G

THEOREM 23.3. There are invariant linear forms
In(m, X, f) = I5(m, X, f), well(M(Fs)), X €ans, f€ Ha(G(Fs)),

that are supported on characters, and satisfy

(234) IM(TrvX?f):JM(Wava)_ Z TII\//[(WaquSL(f))

LeL(M)
L#AG

Remarks. 1. In the special case that G equals GL(2), M is minimal, and S
contains the set Syam = S0, the right hand side of (23.3) reduces to the original
expression (22.13). For in this case, the value of ¢/ (m, X, f) at X = 0 equals the
function Jps(, f) in (22.13). Since the linear form I}/ (v) in this case is just the
evaluation map of a function on M (Fg)?! at +, f% (v, @ (f)) reduces to the integral
in (23.13) by the Fourier inversion formula for the abelian group M (Fs)*.

2. The formulas (23.3) and (23.4) amount to inductive definitions of Ips (7, f)
and Ips(m, X, f). We need to know that these linear forms are supported on char-
acters in order that the summands on the right hand sides of the two formulas be
defined.

3. The theorems give nothing new in the case that M = G and X = Z. For it
follows immediately from the definitions that

Ic(v, f) = Ja(v, [) = fa(v)
and
IG(Wa Z, f) = JG(7T7 Z, f) = .fG(7T7 Z)

4. The linear forms Ip;(v, f) of Theorem 23.2 are really the primary ob-
jects. We see inductively from (23.3) that In/(7, f) depends only on f#, where
Z = Hg (7). In particular, Ins(7, f) is determined by its restriction to the subspace
H(G(Fs)) of Hac (G(FS)) One can in fact show that as a continuous linear form on
H(G(Fs)), Int(7, f) extends continuously to the Schwartz space C(G(Fs)) [A21].
In other words, Ip(7, f) is a tempered distribution. It has an independent role in
local harmonic analysis.

5. The linear forms Iy (m, X, f) of Theorem 23.3 are secondary objects, but
they are still interesting. We see inductively from (23.4) that Ip;(m, X, f) depends
only on f#, where Z is the image of X in ag g, so Ip(m, X, f) is also determined
by its restriction to ’H(G(F 5)) However, it is not a tempered distribution. If 7 is
tempered,

JI\/I(Wvaf) = d)M(fvﬂ-aX) = fj\]\/?(ﬂvX7¢JV[(f))a
by definition. It follows inductively from (23.4) that
fa(m, Z), it M =G,
0, otherwise,

(23.5) In(m, X, f) = {
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in this case. But if 7 is nontempered, Ip; (7, X, f) is considerably more complicated.
Suppose for example that G is semisimple, M is maximal, F = Q, S = {vy}, and
T =0y, for 0 € Myemp (M(R)) and p € ajrc. We assume that Re(u) is in general
position. Then

JM(TraXa f) = / JM(O.M-‘r)nf)ei)\(X)dAa

*
85

while
o1 (f, 7, X) = o) / Tar(ox, e XdA,
iajw

It follows that Ip;(m, X, f) is the finite sum of residues
. (h—A)(X)
zn:AR:e?v (JM(UA7f)e )a

obtained in deforming one contour of integration to the other. In general, In;(mw, X, f)
is a more elaborate combination of residues of general functions J LLf (oA, f)-
6. The linear forms Jys (7, f) and Jy(w, X, f) are strongly dependent on the

choice of maximal compact subgroup K¢ = [[ K, of G(Fs). However, it turns
vES
out that the invariant forms Ins (7, f) and Iy (7, X, f) are independent of Kg. The

proof of this fact is closely related to that of invariance, which we will discuss
presently. (See [A24, Lemma 3.4].) The invariant linear forms are thus canonical
objects, even though their construction is quite indirect.

7. The trace formula concerns the case that S O Siam, ¥ € M(Fs)!, and
X = 0. In this case, the summands corresponding to L in (23.3) and (23.4) depend
only on the image of ¢ (f) in the invariant Hecke algebra Z(L(Fs)') on L(Fs)'.
We can therefore take f to be a function in H(G(Fs)l), and treat ¢p; as the
mapping from H(G(Fs)l) to I(L(Fs)l) implicit in Proposition 23.1. In fact, since
these spaces both embed in the corresponding adelic spaces, we can take f to be a
function in the space H(G) = H(G(A)'), and ¢y to be a mapping from H(G) to
the adelic space Z(M) = Z(M(A)'). This is of course the setting of the invariant
trace formula. Recall that on the geometric side, v represents a class in the subset
I'(M)g of conjugacy classes in M (Fg). We write

(23.6) In (v, f) = In(v, fs)

as before, where fg is the restriction of f to the subgroup G(Fs)! of G(A)'. On
the spectral side, 7 is a representation in the subset II(M) of Iyt (M(A)!). In
this case, we write

(237) IM(W,f):IM(WS,O,fS)7
where S D Siam is any finite set outside of which both f and 7 are unramified, and
ms € Iynit (M(Fg)l) is the M (Fs)!-component of 7, or rather a representative in
Iunis (M (A)) of that component.

8. The distributions Ins (7, f) satisfy splitting and descent formulas. We have

(23.8) In(v. /)= D> df(Ta, LIyt (s )17 (e fo,ra),
Li,Loel(M)

and

(23‘9) IM(%J/\/I7fv) = Z dg\;/IU(Mﬂ Lv)f]\L/f;('Yvafv,Lv)y

L,eL(My)
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under the respective conditions of (18.7) and (18.8). (In (23.8), we of course have
also to ask each of the two subsets S; and Ss of S satisfy the closure property.) The
formulas are established from the inductive definition (23.3), the formulas (18.7)
and (18.8), and corresponding formulas for the functions Jas(my, f). (See [A13,
Proposition 9.1 and Corollary 8.2]. If f belongs to H(G(Fs)) and L € L(M), fr
is the function

W‘)fL(Tr):fG(ﬂ-G)a 7TGrLccmp(1-4(1:1‘.'?))3

in Z(L(Fs)). It is the image in Z(L(Fs)) of any of the functions fo € H(G(Fs)),
but is independent of the choice of @ € P(L).) The linear forms Jys (7, X, f) satisfy
their own splitting and descent formulas. Since these are slightly more complicated
to state, we simply refer the reader to [A13, Proposition 9.4 and Corollary 8.5].
One often needs to apply the splitting and descent formulas to the linear forms
(23.6) and (23.7) that are relevant to the trace formula. This is why one has to
formulate the definitions in terms of spaces H, (G(F S)) and Ty, (L(F S)), for general
sets S, even though the objects (23.6) and (23.7) can be constructed in terms of
the simpler spaces H(G) and Z(L).

The two theorems are really just definitions, apart from the assertions that
the linear forms are supported on characters. These assertions can be established
globally, by exploiting the invariant trace formula of which they are the terms. In
so doing, one discovers relations between the linear forms (23.3) and (23.4) that
are essential for comparing traces on different groups. We shall therefore state the
invariant trace formula as a third theorem, which is proved at the same time as the
other two.

The invariant trace formula is completely parallel to the refined noninvariant
formula of Corollary 22.1. It consists of two different expansions of a linear form
I(f) = IS(f) on H(G) that is the invariant analogue of the original form J(f). We
assume inductively that for any L € £ with L # G, I'” has been defined, and is
supported on characters. We can then define I(f) inductively in terms of J(f) by
setting

(23.10) I(f) = J() = Y WEIWS [ T (6(1)), f € H(G).

The (refined) invariant trace formula is then stated as follows.

THEOREM 23.4. For any f € H(G), I(f) has a geometric expansion
. M 1i7G|—1 M
(23.11) I(f) =tim > (W IWg™h > () In(r. ),

MEeL ~€ED(M)s

and a spectral expansion

— lim M G|—1 M .
(23.12) 1) =t 3 W /H o O )i

Remarks. 9. The limit in (23.11) stabilizes for large S. Moreover, for any
such S, the corresponding sums over v can be taken over finite sets. One can in
fact be more precise. Suppose that f belongs to the subspace H(G(Fv)') of H(G),
for some finite set V' O Sam, and is supported on a compact subset A of G(A).
Then the double sum in (23.11) is independent of S, so long as S is large in a
sense that depends only on V and A. Moreover, for any such S, each sum over
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~ can be taken over a finite set that depends only on V and A. These facts can
be established by induction from the corresponding properties of the noninvariant
geometric expansion (22.9). Alternatively, they can be established directly from
[A14, Lemma 3.2], as on p. 513 of [A14].

10. For any T, the integral in (23.12) converges absolutely. This follows by
induction from the corresponding property of the noninvariant spectral expansion
(22.10). There is a weak quantitative estimate for the convergence of the limit,
which is to say the convergence of the sum

f)= th(f)
t>0
of the linear forms
I _ IG _ M G|1—1 M I d
40 =150 = 32 W /MM)“ (7T (r, £)d

in terms of the multipliers of §20. For any r > 0, set
bu(r,T) ={veb,: [Re(@)[| <r, [[Imv]| =T},

where b} is a subset of b /iaf, that is defined as on p. 536 of [A14], and contains
the infinitesimal characters of all unitary representations of G(Fs,)'. Then for any
f € H(G), there are positive constants C, k and r with the following property. For
any positive numbers 7" and N, and any « in the subspace

CF (M"Y ={ae C®")" ¢ |lsuppal < N}
of £(h1)W, the estimate

(23.13) S IL(fa)l < Ce*Tsup ([a(v)))
t>T vehy (nT)

holds. (See [A14, Lemma 6.3].) This “weak multiplier estimate” serves as a sub-
stitute for the absolute convergence of the spectral expansion. It is critical for
applications.

As we noted above, the three theorems are proved together. We assume induc-
tively that they all hold if G is replaced by a proper Levi subgroup L.

It is easy to establish that the various linear forms are invariant. Fix S and
M as in the first two theorems, and let h be any function in H(G(Fs)). It follows
easily from (22.12) that

oL(Lnf)= Y ¢1%(Ronf), f € Hae(G(F5)),
QeF(L)
for any L € L(M). It then follows from (22.11) and the definition (23.3) that
IM (’Y, th)
Mg
= Y. Jut(nRond) = Y Y Thi(v0, % (Rons))
QeF (M) LeLEh Qer (L)

= > (BFeRean = Y Th(n61 (Bauf),

QEF (M) rec™Q (ar)
L#G
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for any element v € M (Fs). If Q # G, the associated summand can be written

Jri% (v, Ronf) — Z fﬁ](%QﬁyQ(RQ,hf))

LecMa (M)
M, 2 M, M,
= (JMQ(%RQ,hf) - Z It (7, ¢LQ(RQ,hf))) — Iy® (v, Ro.nf)-
LELMQ(M)
L#Mg

It therefore vanishes by (23.3). If @ = G, the corresponding summand equals

IS (v, R f) = I (v, R f),

again by (23.3). Therefore Ins(7y, Ly f) equals Ips(7y, Ry f). It follows that Ips(vy,-)
is an invariant distribution. Similarly, Ip;(7, X, ) is an invariant linear form for
any m € H(M (FS)) and X € aprs. A minor variant of the argument establishes
that the linear form 7 in (23.10) is invariant as well.

It is also easy to establish the required expansions of Theorem 23.4. To derive
the geometric expansion (23.11), we apply what we already know to the terms on
the right hand side of the definition (23.10). That is, we substitute the geomet-
ric expansion (22.9) for J(f), and we apply (23.11) inductively to the summand
It ((i)L(f)) attached to any L # G. We see that I(f) equals the difference between
the expressions

: M G|—1 M
lim Y (WTIWEIT D0 aM ()T 1)
MeL YEL(M)s

and

lim Y (WEWE ™ D0 W Wt D0 aM 0T (v 0n ()

L#£G MeLk ~vET(M)s

The second expression can be written as

m Y WIWE Y M) Y Th(ven(f).

Mec VET(M)s LeL(D)
Therefore I(f) equals

lim S0 W CLM(’Y)<JM('va)_ > fﬁ(v,m(f)))
M

~ET(M)s Lich)
Iy M1i7G—1 M
—11§HZ|WO W= > d N Iu(, ),
M ~yel' (M) s

by (23.3). This is the required geometric expansion (23.11). An identical argument
yields the spectral expansion (23.12).

We have established the required expansions of Theorem 23.4. We have also
shown that the terms in the expansions are invariant linear forms. The identity
between the two expansions can thus be regarded as an invariant trace formula. If
we knew that any invariant linear form was supported on characters, the inductive
definitions of Theorem 23.2 and Theorem 23.3 would be complete, and we would be
finished. Lacking such knowledge, we use the invariant trace formula to establish
the property directly for the specific invariant linear forms in question.
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PropPOSITION 23.5. The linear forms of Theorem 23.3 can be expressed in
terms of those of Theorem 23.2. In particular, if the linear forms {In(v)} are
all supported on characters, so are the linear forms {Ip (7, X)}.

The first assertion of the proposition might be more informative if it contained
the phrase “in principle”, since the algorithm is quite complicated. It is based on
the fact that the various residues that determine the linear forms {I/(w, X)} are
themselves determined by the asymptotic values in 7 of the linear forms {I/(7y)}.
We shall be content to illustrate the idea in a very special case.

Suppose that G = SL(2), and that M is minimal. Since M is also maximal, the
observations of Remark 5 above are relevant. Assume then that F'= Q, S = {vs},
and ™ = 0, as earlier. For simplicity, we assume also that f € H(G (R)) is invariant
under the central element <01 _01
M(R). It then follows from Remark 5 that for any X € as, Ins(mw, X, f) equals the
sum of residues of the function

>, and that o is the trivial representation of

(23.14) A — (JM(O—AJ)Q(M*A)(X))

obtained in deforming a contour of integration from (p + ia},) to iaj,.
On the other hand,

In (v, £) = Jar (v, £) = Tnf (7, 6ma ()
= JM(,-% f) */ JM(J)\, f)ef)‘(HM("/))d)\’

iay,

for any v € M (R). Given X, we choose 7y so that Hy;(y) = X. Since f is compactly
supported, Jas (7, f) is compactly supported in X. However, the integral over ia%, is
not generally compactly supported in X, since its inverse transform A — Jys(oy, f)
can have poles in the complex domain. Therefore Ins(7, f) need not be compactly
supported in X. In fact, it is the failure of Ip;(7y, f) to have compact support that
determines the residues of the function (23.14). For if we apply the proof of the
classical Paley-Wiener theorem to the integral over iaj},;, we see that the family of
functions

v — I (17, f), 1 e,

in which C is a suitable compact subset of M(R) and v is large relative to C
and f, spans a finite dimensional vector space. Moreover, it is easy to see that
this space is canonically isomorphic to the space of functions of X spanned by the
space of residues of (23.14). It follows that the distributions Iy (7, f) determine the
residues (23.14), and hence the linear forms In;(m, X, f). In particular, if Ins(y, f)
vanishes for all such v, then Ip;(m, X, f) vanishes for all X. Applied to the case
that fg = 0, this gives the second assertion of the proposition in the special case
under consideration.

For general G and M, the ideas are similar, but the details are considerably
more elaborate. When the dimension of aps/a¢g is greater than 1, we have to be
concerned with partial residues and with functions whose support is compact in
various directions. These are best handled with the supplementary mappings and
linear forms of [A13, §4]. The first assertion of the proposition is implicit in the
results of [A13, §4-5]. The second assertion is part of Theorem 6.1 of [A13]. O
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It remains to show that the distributions of Theorem 23.2 are supported on
characters. From the splitting formula (23.8), one sees easily that it is enough
to treat the case that S contains one valuation v. We therefore fix a function
fv € H(G(Fv)) with f, ¢ = 0. The problem is to show that Ips(7yy, f») = 0, for any
M € £ and v, € M(F,). How can we use the invariant trace formula to do this?
We begin by choosing an arbitrary function f¥ € H(G(A”)) and letting f be the
restriction of f,f¥ to G(A)'. We have then to isolate the corresponding geometric
expansion (23.11) in the invariant trace formula. But how is this possible, when
our control of the spectral side provided by Proposition 23.5 requires an a priori
knowledge of the terms on the geometric side?

The point is that the terms on the spectral side are not arbitrary members
of the family defined by Theorem 23.3. They are of the form Iy (m,0, f), where
S D Sram is large enough that f belongs to H(G(Fs)l), and 7 € Iynit (M(FS)) We
need to show only that these terms vanish. Combining an induction argument with
the splitting formula [A13, Proposition 9.4], one reduces the problem to showing
that Ins(my, Xy, fu) vanishes for any m, € It (M(E,)) and X, € ay, r,- The
fact that m, is unitary is critical. The representation need not be tempered, but
within the Grothendieck group it can be expressed as an integral linear combination
of induced (standard) representations

0—1];\{/\, Oy € Htcmp(Mv)7 A € (a%v)*a
for Levi subgroups M, of M over F,. If M, = M, A equals 0, and
IM(O'qj)\{AaXvafv) = IM(O-’UaX’U?f’U) =0,

by (23.5). If M, # M, we use the descent formula [A13, Corollary 8.5] to write
Iy (07%\, Xy, fv) in terms of linear forms

I]%j;(o'v,A7Yv>fv,L,,)a Y, € aM, Fy s

for Levi subgroups L, € L(M,) with L, # G. It follows from Proposition 23.5
and our induction hypotheses that I M(U%A,Xv, fv) again equals 0. Therefore
Ins(my, Xy, fv) vanishes, and so therefore do the integrands on the spectral side.

We conclude that for the given function f, the spectral expansion (23.12) of
I(f) vanishes. Therefore the geometric expansion (23.11) of I(f) also vanishes. In
dealing with the distributions Ins(7, f) in this expansion, we are free to apply the
splitting formula (23.8) recursively to the valuations v € S. If L € L(M) is a proper
Levi subgroup of G, the induction hypotheses imply that I L (Ve f») vanishes for
any element v, € M(F),). It follows that

I (v, ) = Ina (os f0) far (V) v eT(M)s,
where 7 = 7,7" is the decomposition of 7 relative to the product
M(Fs) = M(F,) x M(F).
Therefore
; M| 77G -1 M v vy
(23.15) hgn Z Wo™ Wyl Z a™ (NI (v, fo) frr(7") = 0.
MeL YEL(M)s

We are attempting to show that In(7,,f,) = 0, for any M € L and
Yo € M(F,). The definition (18.12) reduces the problem to the case that M, =
G.,. A further reduction based on invariant orbital integrals on M (F),) allows us
to assume that +, is strongly G-regular, in the sense that its centralizer in G is a
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maximal torus 7,. Finally, in view of the descent formula (23.9), we can assume
that T, is elliptic in M over F,,, which is to say that T, lies in no proper Levi sub-
group of M over F,. The problem is of course local. To solve it, one should really
start with objects Gy, M7, and T} over a local field F}, together with a function
f1 € H(G1(F1)) such that fi g, = 0. One then chooses global objects F, G, M,
and T such that iy = F,, G, = G, M1 = M,, and T} = T, for some valuation
v of F, as for example on p. 526 of [A14]. Among the general constraints on the
choice of G, M, and T is a condition that T'(F) be dense in T'(F),). This reduces the
problem to showing that Ip/(d, f,) vanishes for any G-regular element 6 € T'(F).
We can now sketch the proof of the remaining global argument. To exploit the
identity (23.15), we have to allow the complementary function f € H(G(A")) to
vary. We first fix a large finite set V' of valuations containing v, outside of which
G and T' are unramified. We then restrict f¥ to functions of the form fy{, Y, with
fV being the product over w € V of characteristic functions of K,,, whose support
is contained in a fixed compact neighbourhood AY of § in G(Av). According to
Remark 9, the sums over v € I'(M)g can be then taken over finite sets that are
independent of f¥, for a fixed finite set of valuations S D V that is also independent
of f¥. Since the factors f},;(7”) in (23.15) are actually distributions, we can allow
¥ to be a function in C2°(G(Fy)). We choose this function so that it is supported
on a small neighborhood of the image d}, of 6 in G(Fy;), and so that f},(d¥) = 1.
It is then easy to see that (23.15) reduces to an identity

S eI (s £2) = 0,

~

where + is summed over the conjugacy classes in M (F) that are G(F,,)-conjugate
to 0 for any w € V — {v} and are G(F,)-conjugate to a point in K, for every
w ¢V, and where each coefficient ¢(v) is positive. A final argument, based on the
Galois cohomology of T, establishes that any such + is actually G(F')-conjugate to
§. This means that v = w; 16w, for some element ws, € W (M), and hence that

IM(’}/) f’U) = IM((Sa f’U)
(See [A14, pp. 527-529].) It follows that

Iy (57 fv) =0,
as required.

We have completed our sketch of the proof that the linear forms of Theorems
23.2 and 23.3 are supported on characters. The proof is a generalization of an
argument introduced by Kazhdan to study invariant orbital integrals. (See [Kal],
[Ka2].) With its completion, we have also finished the collective proof of the three
theorems. O

We have just devoted what might seem to be a disproportionate amount of
space to a fairly arcane point. We have done so deliberately. Our proof that the
linear forms I/ (7, f) and Iy (m, X, f) are supported on characters can serve as a
model for a family of more sophisticated arguments that are part of the general
comparison of trace formulas. Instead of showing that I (v, f) and Ip (7, X, f)
vanish for certain functions f, as we have done here, one has to establish identities
among corresponding linear forms for suitably related functions on different groups.

The invariant trace formula of Theorem 23.4 simplifies if we impose local van-
ishing conditions on the function f. We say that a function f € H(G) is cuspidal
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at a place w if it is the restriction to G(A)! of a finite sum of functions [] f, whose

v
w-component f,, is cuspidal. This means that for any proper Levi subgroup M, of
G over F,,, the function

fw,Mw (Trw) = fw,G’(T(S)’ Tw € Htemp(M(Fw))a
in Z(M,(F,)) vanishes.

COROLLARY 23.6. (a) If f is cuspidal at one place w, then

I(f) = lim agisc(’]r)fc(ﬂ—)v
T JMgee(@)T
where Maise (G)T is the intersection of Maisc(G) with TI(G)T.
(b) If f is cuspidal at two places wy and waq, then

I(f)y=lm »_ a®(Mfcl).

YET(G)s

To establish the simple form of the spectral expansion in (a), one applies the
splitting formula [A13, Proposition 9.4] to the linear forms Ip/(m, f) in (23.12).
Combined with an argument similar to that following Proposition 23.5 above, this
establishes that Ip/(m, f) = 0, for any M # G, and for f as in (a). Since the
distribution

fa(m) = Ia(m, f)
vanishes for any 7 in the complement of Hgis.(G)T in II(G)T, the expansion (a)
follows. To establish the simple form of the spectral expansion in (b), one applies
the splitting formula (23.8) to the terms Ips (7, f) in (23.11). This establishes that
Ing(ny, f) =0, for any M # G, and for f as in (b). The expansion in (b) follows.
(See the proof of Theorem 7.1 of [A14].) O

24. A closed formula for the traces of Hecke operators

In the next three sections, we shall give three applications of the invariant
trace formula. The application in this section might be called the “finite case” of
the trace formula. It is a finite closed formula for the traces of Hecke operators on
general spaces of automorphic forms. The result can be regarded as an analogue
for higher rank of Selberg’s explicit formula for the traces of Hecke operators on
classical spaces of modular forms.

In this section, we revert to the setting that F' = Q, in order to match standard
notation for Shimura varieties. We also assume for simplicity that Ag is the split
component of G over R as well as over Q. The group

GR) = G(R)NG(A)!

then has compact center. The finite case of the trace formula is obtained by special-
izing the archimedean component of the function f € H(G) in the general invariant
trace formula. Before we do so, we shall formulate the problem in terms somewhat
more elementary than those of recent sections.

Suppose that mr € Ilunit (G(R)) is an irreducible unitary representation of
G(R), and that Ky is an open compact subgroup of G(Agy,). We can write

(24.1) Liise (7, G(Q)\G(A)' / Ko)
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for the mg-isotypical component of L2,  (G(Q)\G(A)'/Ky), which is to say, the

disc
largest subspace of L3 (G(Q)\G(A)'/Ky) that decomposes under the action of

disc
G(R)! into a sum of copies of the restriction of g to G(R)!. We can also write

Lgisc(ﬂ—R7 KO) = chiisc (T(-R’ G(Q)\G(A)/K(ﬁ C]R)
for the space of functions ¢ on G(Q)\G(A)/Ky such that

d(zz) = Er(2)p(x), z € Ag(R)Y,

where (g is the central character of g on AG(R)O, and such that the restriction
of ¢ to G(A)! lies in the space (24.1). The restriction mapping from G(A) to
G(A)! is then a G(R)!-isomorphism from L2, (mg, Ko) onto the space (24.1). The
action of G(R) by right translation on L3, (mr, Kj) is isomorphic to a direct sum
of copies of 7y, with finite multiplicity mgisc(mr, Kp). One would like to compute
the nonnegative integer mgisc(mr, Ko)-

More generally, suppose that h belongs to the nonarchimedean Hecke algebra
H(G(Aﬁn), Ko) attached to Ky. Let Raisc(mgr, k) be the operator on L3, (7r, Ko)
obtained by right convolution of h. As an endomorphism of the G(R)-module
L3,..(mr, Ko), Raisc(Tr,h) can be regarded as a square matrix of rank equal to
Maisc (TR, Ko). One would like a finite closed formula for its trace.

The problem just posed is too broad. However, it is reasonable to consider the
question when g belongs to a restricted class of representations. We shall assume
that mr belongs to the subset ITiemp, 2 (G(R)) of representations in IL (G(R)) that
are square integrable modulo the center of G(R). Selberg’s formula [Sell] describes
the solution to this problem in the case that G = SL(2), Ky = Ks, is maximal,
and 7g is any representation in the set Il (G(R)) = Iltemp,2 (G(R)) that is also
integrable.

The set Miemp,2(G(R)) is known as the discrete series, since it consists of those
unitary representations of G(R) whose restrictions to G(R)! occur discretely in the
local spectral decomposition of L?(G(R)'). The set is nonempty if and only if G
has a maximal torus T that is elliptic over R, which is to say that T(R)/Ag(R)
is compact. Assume for the rest of this section that T exists, and that Tg(R) is
contained in the subgroup KrAg(R) of G(R). Then Iliemp2(G(R)) is a disjoint
union of finite sets II3(u), parametrized by the irreducible finite dimensional repre-
sentations p of G(R) with unitary central character. For any such p, the set ITo(u)
consists of those representations in Iiemp 2 (G (R)) with the same infinitesimal char-
acter and central character as p. It is noncanonically bijective with the set of right
cosets of the Weyl group W (Kg,Tg) of Kg in the Weyl group W(G,T¢g) of G. In
particular, the number of elements in any packet II5(1) equals the quotient

w(G) = [W (K, T)| "' W(G, Tg)|-

The facts we have just stated are part of Harish-Chandra’s classification of
discrete series. The classification depends on a deep theory of characters that
Harish-Chandra developed expressly for the purpose. We recall that the character
of an arbitrary irreducible representation mr of G(R) is defined initially as the
distribution

fr — fra(mr) = tr(mr(fr)), fr € C(G(R)),

on G(R). Harish-Chandra proved the fundamental theorem that a character equals
a locally integrable function ©(mg, -) on G(R), whose restriction to the open dense
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set Greg(R) of strongly regular elements in G(R) is analytic [Har1], [Har2]. That

is,

fR,G(ﬂ'JR) = / f]R(fE)@(WR,I)dl‘, fR S Cgo (G(R))

Greg(R)

After he established his character theorem, Harish-Chandra was able to prove
a simple formula for the character values of any representation mg € Iiemp,2 (G(R))
in the discrete series on the regular elliptic set

TG,reg (]R) = TG (R) N Greg-

The formula is a signed sum of exponential functions that is remarkably similar
to the formula of Weyl for the character of a finite dimensional representation pu.
However, there are two essential differences. The first is that the sum over the
full Weyl group W (G, Ts) in Weyl’s formula is replaced by a sum over the Weyl
group W (Kg,Tg) of Kg. This is the reason that there are w(G) representations
mr associated to p. The second difference is that the real group G(R) generally
has several conjugacy classes of maximal tori T(R) over R. This means that the
character of mr has also to be specified on tori other than 7. Harish-Chandra gave
an algorithm for computing the values of ©(7g,-) on any set T;ee(R) in terms of
its values on T reg(R). The resulting expression is again a linear combination of
exponential functions, but now with more general integral coefficients, which can
be computed explicitly from Harish-Chandra’s algorithm. (For a different way of
looking at the algorithm, see [GKM].)

We return to the problem we have been discussing. We are going to impose
another restriction. Rather than evaluating the trace of a single matrix Rajsc(7g, h),
we have to be content at this point with a formula for the sum of such traces, taken
over g in a packet Iy (p). (Given p, we shall actually sum over the packet T (u"),
where

p(x) = "p(x) 7t z € G(R),

is the contragredient of p.) This restriction is dictated by the present state of
the invariant trace formula. There is a further refinement of the trace formula,
the stable trace formula, which we shall discuss in §29. It is expected that if the
stable trace formula is combined with the results we are about to describe, explicit
formulas for the individual traces can be esta