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Eidgenössische Technische Hochschule, Zürich, Switzerland / David Ellwood, Igor Rodnianski,
Gigliola Staffilani, Jared Wunsch, editors.

pages cm – (Clay mathematics proceedings ; volume 17)
Includes bibliographical references.
ISBN 978-0-8218-6861-4 (alk. paper)
1. Evolution equations. 2. Wave equation. I. Ellwood, D. (David), 1966– editor of compila-

tion. II. Rodnianski, Igor, 1972– editor of compilation. III. Staffilani, Gigliola, 1966– editor of
compilation. IV. Wunsch, Jared, 1971– editor of compilation. V. Title.

QC20.7.E88C53 2008
515′.353–dc23

2013002427

Copying and reprinting. Material in this book may be reproduced by any means for edu-
cational and scientific purposes without fee or permission with the exception of reproduction by
services that collect fees for delivery of documents and provided that the customary acknowledg-
ment of the source is given. This consent does not extend to other kinds of copying for general
distribution, for advertising or promotional purposes, or for resale. Requests for permission for
commercial use of material should be addressed to the Acquisitions Department, American Math-
ematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can
also be made by e-mail to reprint-permission@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In
such cases, requests for permission to use or reprint should be addressed directly to the author(s).
(Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of
each article.)

c© 2013 by the Clay Mathematics Institute. All rights reserved.
Published by the American Mathematical Society, Providence, RI,

for the Clay Mathematics Institute, Cambridge, MA.
Printed in the United States of America.

The Clay Mathematics Institute retains all rights
except those granted to the United States Government.

©∞ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.

Visit the AMS home page at http://www.ams.org/
Visit the Clay Mathematics Institute home page at http://www.claymath.org/

10 9 8 7 6 5 4 3 2 1 18 17 16 15 14 13



Contents

Preface vii

Microlocal Analysis and Evolution Equations: Lecture Notes
from the 2008 CMI/ETH Summer School (April 25, 2013)

Jared Wunsch 1

Some Global Aspects of Linear Wave Equations
Dean Baskin and Rafe Mazzeo 73

Lectures on Black Holes and Linear Waves
Mihalis Dafermos and Igor Rodnianski 97

The Theory of Nonlinear Schrödinger Equations
Gigliola Staffilani 207

On the Singularity Formation for the Nonlinear Schrödinger Equation
Pierre Raphaël 269
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Preface

This volume contains the lecture notes, rather loosely construed, from a sum-
mer school held at ETH in Zürich from June 23 to July 18, 2008. The school was
hosted by both the mathematics and the physics departments at ETH, and the
organizers would like to thank those departments for their hospitality, and many
people, especially Gian Michele Graf, for invaluable organizational assistance. We
are also grateful to Jörg Fröhlich and Horst Knörrer at ETH for scientific guidance
and to Marcela Krämer from ETH and Amanda Battese and Candace Bott from
CMI for their practical help. The dedication of the students in the school con-
tributed inestimably to the breadth and accuracy of these notes, as did the help of
a team of anonymous referees. Finally we would like to thank Vida Salahi for her
work and dedication in managing the editorial process of this volume, as well as
Naomi Kraker for dealing with the final stages of the project.

While we intended from the beginning to emphasize the unity of techniques
and outlooks in the broad subject of evolution equations, procrastination and dis-
traction prevented us from coordinating as extensively as we would have liked the
content of the main courses. It therefore came as a very happy surprise, on ar-
riving and starting the courses, that the subject of PDE seemed to enforce its
unity on us, rather than vice-versa. In the first three weeks of the school, various
common threads appeared, some of them anticipated and some not. The role of
energy estimates, via commutator and multiplier arguments, had always been en-
visioned as one of the technical focuses of the school. The appearance of symmetry
and approximate symmetry arguments, and of scaling arguments therefore came
as no great surprise, arising throughout the main courses. Virial and Morawetz
estimates formed the backbone of much of the beginning of the Wunsch-Mazzeo
and Staffilani-Raphael courses. The general framework of extending local well-
posedness to global via appropriate conserved quantities of course arose essentially
in both the Staffilani-Raphaël course on the nonlinear Schrödinger equation and
in the Rodnianski-Dafermos course, which focused more on hyperbolic equations
arising from Lagrangian field theories. In both the Rodnianski-Dafermos course
and that of Wunsch-Mazzeo, a good deal of Riemannian, pseudo-Riemannian, and
symplectic geometry was shared, some expressly and some implicitly.

Other common themes shared by the main courses and various of the mini-
courses included: The role of mixed long-distance, long-time asymptotics, lead-
ing to estimates for the wave operator along and orthogonal to the null cone and
to radiation fields and the Lax-Phillips transform; nonlinear evolution equations
as many-particle limits of linear many-body quantum-mechanical problems; anal-
ysis of blowup regimes through appropriate rescalings and both variational and
dynamical techniques. Other central topics were: critical equations and blowup

vii



viii PREFACE

versus scattering; scattering itself, construed in terms of wave operators or in time-
dependent formulation; parametrices in position space, in Fourier space, and in
phase space and their different uses; local well-posedness via induction on energy;
and concentration/compactness arguments.

“Evolution equations” is an area too rich in diverse phenomenology to ever be
a single coherent subject, but we hope that this volume illuminates some of the
major threads woven through it.

David Ellwood
Igor Rodnianski

Gigliola Staffilani
Jared Wunsch

October 2012
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1. Introduction

The point of these notes, and the lectures from which they came, is not to pro-
vide a rigorous and complete introduction to microlocal analysis—many good ones
now exist—but rather to give a quick and impressionistic feel for how the subject
is used in practice. In particular, the philosophy is to crudely axiomatize the ma-
chinery of pseudodifferential and Fourier integral operators, and then to see what
problems this enables us to solve. The primary emphasis is on application of com-
mutator methods to yield microlocal energy estimates, and on simple parametrix
constructions in the framework of the calculus of Fourier integral operators; the
rigorous justification of the computations is kept as much as possible inside a black
box. By contrast, the author has found that lecture courses focusing on a careful
development of the inner workings of this black box can (at least when he is the
lecturer) too easily bog down in technicality, leaving the students with no notion of
why one might suffer through such agonies. The ideal education, of course, includes
both approaches. . .

A wide range of more comprehensive and careful treatments of this subject are
now available. Among those that the reader might want to consult for supplemen-
tary reading are [17], [7], [22], [24], [26], [2], [28], [16] (with the last three focusing

2010 Mathematics Subject Classification. Primary 35L05, 35P25, 35Q41, 58J40, 58J47,
58J50.

c©2013 Jared Wunsch
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2 JARED WUNSCH

on the “semi-classical” point of view, which is not covered here). Hörmander’s trea-
tise [11], [12], [13], [14] remains the definitive reference on many aspects of the
subject.

Some familiarity with the theory of distributions (or a willingness to pick it
up) is a prerequisite for reading these notes, and fine treatments of this material
include [11] and [6]. (Additionally, an appendix sets out the notation and most
basic concepts in Fourier analysis and distribution theory.)

Much of the hard technical work in what follows has been shifted onto the
reader, in the form of exercises. Doing at least some of them is essential to following
the exposition. The exercises that are marked with a “star” are in general harder
or longer than those without, in some cases requiring ideas not developed here.

The author has many debts to acknowledge in the preparation of these notes.
The students at the CMI/ETH summer school were the ideal audience, and pro-
vided helpful suggestions on the exposition, as well as turning up numerous errors
and inconsistencies in the notes (although many more surely remain). Discussions
with Andrew Hassell, Michael Taylor, András Vasy, and Maciej Zworski were very
valuable in the preparation of these lectures and notes. Rohan Kadakia kindly
corrected a number of errrors in the final version of the manuscript. Finally, the
author wishes to gratefully acknowledge Richard Melrose, who taught him most of
what he knows of this subject: a strong influence of Melrose’s own excellent lecture
notes [17] can surely be detected here.

The author would like to thank the Clay Mathematics Institute and ETH for
their sponsorship of the summer school, and MSRI for its hospitality in Fall 2008,
while the notes were being revised. The author also acknowledges partial support
from NSF grant DMS-0700318.

2. Prequel: energy methods and commutators

This section is supposed to be like the part of an action movie before the
opening credits: a few explosions and a car chase to get you in the right frame of
mind, to be followed by a more careful exposition of plot.

2.1. The Schrödinger equation on Rn. Let us consider a solution ψ to the
Schrödinger equation on R× Rn :

(2.1) i−1∂tψ −∇2ψ = 0.

The complex-valued “wavefunction” ψ is supposed to describe the time-evolution
of a free quantum particle (in rather unphysical units). We’ll use the notation
Δ = −∇2 (note the sign: it makes the operator positive, but is a bit non-standard).

Consider, for any self-adjoint operator A, the quantity

〈Aψ,ψ〉
where 〈·, ·〉 is the sesquilinear L2-inner product on Rn. In the usual interpretation of
QM, this is the expectation value of the “observable” A. Since ∂tψ = i∇2ψ = −iΔψ,
we can easily find the time-evolution of the expectation of A :

∂t〈Aψ,ψ〉 = 〈∂t(A)ψ, ψ〉+ 〈A(−iΔ)ψ, ψ〉+ 〈Aψ, (−iΔ)ψ〉.
Now, using the self-adjointness of Δ and the sesquilinearity, we may rewrite this as

(2.2) ∂t〈Aψ,ψ〉 = 〈∂t(A)ψ, ψ〉+ i〈[Δ, A]ψ, ψ〉
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where [S, T ] denotes the commutator ST − TS of two operators (and ∂t(A) repre-
sents the derivative of the operator itself, which may have time-dependence). Note
that this computation is a bit bogus in that it’s a formal manipulation that we’ve
done without regard to whether the quantities involved make sense, or whether
the formal integration by parts (i.e. the use of the self-adjointness of Δ) was justi-
fied. For now, let’s just keep in mind that this makes sense for sufficiently “nice”
solutions, and postpone the technicalities.

If you want to learn things about ψ(t, x), you might try to use (2.2) with a
judicious choice of A. For instance, setting A = Id shows that the L2-norm of
ψ(t, ·) is conserved. Additionally, choosing A = Δk shows that the Hk norm is
conserved (see the appendix for a definition of this norm). In both these examples,
we are using the fact that [Δ, A] = 0.

A more interesting example might be the following: set A = ∂r, the radial
derivative. We may write the Laplace operator on R

n in polar coordinates as

Δ = −∂2
r −

n− 1

r
∂r +

Δθ

r2

where Δθ is the Laplacian on Sn−1; thus we compute

[Δ, ∂r] = 2
Δθ

r3
− (n− 1)

r2
∂r.

Exercise 2.1. Do this computation! (Be aware that ∂r is not a differential
operator with smooth coefficients.)

This is kind of a funny looking operator. Note that Δ is self-adjoint, and ∂r
wants to be anti-self-adjoint, but isn’t quite. In fact, it makes more sense to replace
∂r by

A = (1/2)(∂r − ∂∗
r ) = ∂r +

n− 1

2r
,

which corrects ∂r by a lower-order term to be anti-self-adjoint.

Exercise 2.2. Show that

∂∗
r = −∂r −

n− 1

r
.

Trying again, we get by dint of a little work:

(2.3) [Δ, ∂r +
n− 1

2r
] =

2Δθ

r3
+

(n− 1)(n− 3)

2r3
,

provided n, the dimension, is at least 4.

Exercise 2.3. Derive (2.3), where you should think of both sides as operators
from Schwartz functions to tempered distributions (see the appendix for defini-
tions). What happens if n = 3? If n = 2? Be very careful about differentiating
negative powers of r in the context of distribution theory. . .

Why do we like (2.3)? Well, it has the very lovely feature that both summands
on the RHS are positive operators. Let’s plug this into (2.2) and integrate on a
finite time interval:

i−1〈Aψ,ψ〉
∣∣T
0
=

∫ T

0

〈
2Δθ

r3
ψ, ψ

〉
+

〈
(n− 1)(n− 3)

2r3
ψ, ψ

〉
dt

=

∫ T

0

2
∥∥∥r−1/2∇/ψ

∥∥∥2

dt+
(n− 1)(n− 3)

2

∥∥∥r−3/2ψ
∥∥∥2

dt,
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where ∇/ represents the (correctly scaled) angular gradient: ∇/ = r−1∇θ, where ∇θ

denotes the gradient on Sn−1.
Now, we’re going to turn the way we use this estimate on its head, relative

to what we did with conservation of L2 and Hk norms: the left-hand-side can
be estimated by a constant times the H1/2 norm of the initial data. This should
be at least plausible for the derivative term, since morally, half a derivative can be
dumped on each copy of u, but is complicated by the fact that ∂r is not a differential
operator on Rn with smooth coefficients. The following (somewhat lengthy) pair
of exercises goes somewhat far afield from the main thrust of these notes, but is
necessary to justify our H1/2 estimate.

In the sequel, we employ the useful notation f � g to indicate that f ≤ Cg
for some C ∈ R+; when f and g are Banach norms of some function, C is always
supposed to be independent of the function.

Exercise* 2.4.

(1) Verify that for u ∈ S(Rn) with n ≥ 3, |〈∂ru, u〉| � ‖u‖2H1/2 .
Hint: Use the fact that

∂r =
∑
|x|−1

xj∂xj .

Check that x/|x| is a bounded multiplier on both L2 and H1, and hence,
by interpolation and duality, on H−1/2. An efficient treatment of the in-
terpolation methods you will need can be found in [25]. You will probably
also need to use Hardy’s inequality (see Exercise 2.5).

(2) Likewise, show that the
〈
r−1u, u

〉
term is bounded by a multiple of ‖u‖2H1/2

(again, use Exercise 2.5).

Exercise 2.5. Prove Hardy’s inequality : if u ∈ H1(Rn) with n ≥ 3, then

(n− 2)2

4

∫ |u|2
r2

dx ≤
∫
|∇u|2 dx.

Hint: In polar coordinates, we have for u ∈ S(Rn)∫ |u|2
r2

dx =

∫
Sn−1

∫ ∞

0

|u|2rn−3 dr dθ.

Integrate by parts in the r integral, and apply Cauchy-Schwarz.

So we obtain, finally, the Morawetz inequality : if ψ0 ∈ H1/2(Rn), with n ≥ 4
then

(2.4) 2

∫ T

0

∥∥∥r−1/2∇/ψ
∥∥∥2

dt+
(n− 1)(n− 3)

2

∫ T

0

∥∥∥r−3/2ψ
∥∥∥2

dt � ‖ψ0‖2H1/2 .

Now remember that we’ve been working rather formally, and there’s no guarantee
that either of the terms on the LHS is finite a priori. But the RHS is finite, so since
both terms on the LHS are positive, both must be finite, provided ψ0 ∈ H1/2. (This
is a dangerously sloppy way of reasoning—see the exercises below.) So we get, at
one stroke two nice pieces of information: if ψ0 ∈ H1/2, we obtain the finiteness of
both terms on the left.

Let’s try and understand these. The term∫ T

0

∥∥∥r−3/2ψ
∥∥∥2

dt
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gives us a weighted estimate, which we can write as

(2.5) ψ ∈ r3/2L2([0, T ];L2(Rn))

for any T, or, more briefly, as

(2.6) ψ ∈ r3/2L2
locL

2.

(The right side of (2.5) denotes the Hilbert space of functions that are of the form
r3/2 times an element of the space of L2 functions on [0, T ] with values in the Hilbert
space L2(Rn); note that whenever we use the condensed notation (2.6), the Hilbert
space for the time variables will precede that for the spatial variables.) So ψ can’t
“bunch up” too much at the origin. Incidentally, our whole setup was translation
invariant, so in fact we can conclude

ψ ∈ |x− x0|3/2L2
locL

2

for any x0 ∈ R
n, and ψ can’t bunch up too much anywhere at all.

How about the other term? One interesting thing we can do is the following:
Choose x0, x1 in Rn, and let X be a smooth vector field with support disjoint from
the line x0x1. Then we may write X in the form

X = X0 + X1

with Xi smooth, and Xi ⊥ (x − xi) for i = 0, 1; in other words, we split X into
angular vector fields with respect to the origin of coordinates placed at x0 and x1

respectively. Moreover, we can arrange that the coefficients of Xi be bounded in
terms of the coefficients of X (provided we bound the support uniformly away from
x0x1). Thus, we can estimate for any such vector field X and any u ∈ C∞c (Rn)∫

|Xu|2 dx �
∫ ∣∣∣|x− x0|−1/2∇/ 0u

∣∣∣2 dx+

∫ ∣∣∣|x− x1|−1/2∇/ 1u
∣∣∣2 dx

where ∇/ i is the angular gradient with respect to the origin of coordinates at xi.
Since for a solution of the Schrödinger equation, (2.4) tells us that the time integral
of each of these latter terms is bounded by the squaredH1/2 norm of the initial data,
we can assemble these estimates with the choices X = χ∂xj for any χ ∈ C∞c (Rn) to
obtain ∫ T

0

‖χ∇ψ‖2 dt � ‖ψ0‖2H1/2 .

In more compact notation, we have shown that

ψ0 ∈ H1/2 =⇒ ψ ∈ L2
locH

1
loc.

This is called the local smoothing estimate. It says that on average in time, the
solution is locally half a derivative smoother than the initial data was; one conse-
quence is that in fact, with initial data in H1/2, the solution is in H1 in space at
almost every time.

Exercise 2.6. Work out the Morawetz estimate in dimension 3. (This is in
many ways the nicest case.) Note that our techniques yield no estimate in dimension
2, however.

In fact, if all we care about is the local smoothing estimate (and this is fre-
quently the case) there is an easier commutator argument that we can employ to
get just that estimate. Let f(r) be a function on R+ that equals 0 for r < 1, is
increasing, and equals 1 for r ≥ 2. Set A = f(r)∂r and employ (2.2) just as we did
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before. The commutant f(r)∂r (as opposed to just ∂r) has the virtue of actually
being a smooth vector field on Rn. So we can write

[Δ, f(r)∂r] = −2f ′(r)∂2
r + 2r−3f(r)Δθ +R

where R is a first order operator with coefficients in C∞c (Rn). As we didn’t bother
to make our commutant anti-self-adjoint, we might like to fix things up now by
rewriting

[Δ, f(r)∂r] = −2∂∗
rf

′(r)∂r + 2r−3f(r)Δθ +R′

where R′ is of the same type as R. Note that both main terms on the right are now
nonnegative operators, and also that the term containing ∂∗

r is not, appearances to
the contrary, singular at the origin, owing to the vanishing of f ′ there. Thus we
obtain, by another use of (2.2),

(2.7)

∫ T

0

∥∥∥√
f ′(r)∂rψ

∥∥∥2

dt+

∫ T

0

∥∥∥√
f(r)r−1/2∇/ψ

∥∥∥2

dt

�
∫ T

0

|〈R′ψ, ψ〉| dt+ |〈f(r)∂rψ, ψ〉||T0 .

Now the first term on the RHS is bounded by a multiple of ‖ψ0‖2H1/2 (as R′ is first
order with coefficients in C∞c (Rn)); the second term is likewise (since f is bounded
with compactly supported derivative, and zero near the origin). This gives us an
estimate of the desired form, valid on any compact subset of supp f ∩supp f ′, which
can be translated to contain any point.

Exercise 2.7. This exercise is on giving some rigorous underpinnings to some
of the formal estimates above. It also gets you thinking about the alternative,
Fourier-theoretic, picture of how might think about solutions to the Schrödinger
equation.1

(1) Using the Fourier transform,2 show that if ψ0 ∈ L2(Rn), there exists a
unique solution ψ(t, x) to (2.1) with ψ(0, x) = ψ0.

(2) As long as you’re at it, use the Fourier transform to derive the explicit
form of the solution: show that

ψ(t, x) = ψ0 ∗Kt

where Kt is the “Schrödinger kernel;” give an explicit formula for Kt.
(3) Use your explicit formula for Kt to show that if ψ0 ∈ L1 then ψ(T, x) ∈

L∞(Rn) for any T 
= 0.
(4) Show using the first part, i.e. by thinking about the solution operator as

a Fourier multiplier, that if ψ0 ∈ Hs then ψ(t, x) ∈ L∞(Rt;H
s), hence

give another proof that Hs regularity is conserved.
(5) Likewise, show that the Schrödinger evolution in Rn takes Schwartz func-

tions to Schwartz functions.
(6) Rigorously justify the Morawetz inequality if ψ0 ∈ S(Rn). Then use a

density argument to rigorously justify it for ψ0 ∈ H1/2(Rn).

1If you want to work hard, you might try to derive the local smoothing estimate from the
explicit form of the Schrödinger kernel derived below. It’s not so easy!

2See the appendix for a very brief review of the Fourier transform acting on tempered distri-
butions and L2-based Sobolev spaces.
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2.2. The Schrödinger equation with a metric. Now let us change our
problem a bit. Say we are on an n-dimensional manifold, or even just on Rn

endowed with a complete non-Euclidean Riemannian metric g. There is a canonical
choice for the Laplace operator in this setting:

Δ = d∗d

where d takes functions to one-forms, and the adjoint is with respect to L2 inner
products on both (which of course also involve the volume form associated to the
Riemannian metric). This yields, in coordinates,

(2.8) Δ = − 1
√
g
∂xigij

√
g∂xj ,

where
∑n

i,j=1 g
ij∂xi⊗∂xj is the dual metric on forms (hence gij is the inverse matrix

to gij) and g denotes det(gij).

Exercise 2.8. Check this computation!

Exercise 2.9. Write the Euclidean metric on R3 in spherical coordinates, and
use (2.8) to compute the Laplacian in spherical coordinates.

We can now consider the Schrödinger equation with the Euclidean Laplacian
replaced by this new “Laplace-Beltrami” operator. By standard results in the
spectral theory of self-adjoint operators,3 there is still a solution in L∞(R;L2)
given any L2 initial data—this generalizes our Fourier transform computation in
Exercise 2.7—but its form and its properties are much harder to read off.

Computing commutators with this operator is a little trickier than in the Eu-
clidean case, but certainly feasible; you might certainly try computing [Δ, ∂r+(n−
1)/(2r)] where r is the distance from some fixed point.

Exercise 2.10. Write out the Laplace operator in Riemannian polar coordi-
nates, and compute [Δ, ∂r + (n− 1)/(2r)] near r = 0.

But what happens when we get beyond the injectivity radius? Of course, the
r variable doesn’t make any sense any more. Moreover, if we try to think of ∂r
as the operator of differentiating “along geodesics emanating from the origin” then
at a conjugate point to 0, we have the problem that we’re somehow supposed to
be be simultaneously differentiating in two different directions. One fix for this
problem is to employ the calculus of pseudodifferential operators, which permits us
to construct operators that behave differently depending on what direction we’re
looking in: we can make operators that separate out the different geodesics passing
through the conjugate point, and do different things along them.

2.3. The wave equation. Let

�u ≡ (∂2
t +Δ)u = 0

denote the wave equation on R × R
n (recall that Δ = −

∑
∂2
xi). For simplicity of

notation, let us consider only real-valued solutions in this section.

3The operator Δ is manifestly formally self-adjoint, but in fact turns out to be essentially
self-adjoint on C∞

c (X) for X any complete manifold.
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The usual route to thinking about the energy of a solution to the wave equation
is as follows. We consider the integral

(2.9) 0 =

∫ T

0

〈�u, ∂tu〉 dt

where 〈·, ·〉 is the inner product on L2(Rn). Then integrating by parts in t and in x
gives the conservation of

‖∂tu‖2 + ‖∇u‖2.
We can recast this formally as a commutator argument, if we like, by considering

the commutator with the indicator function of an interval:

0 =

∫
R

〈
[�, 1[0,T ](t)∂t]u, u

〉
dt.

The integral vanishes, at least formally, by self-adjointness of �—it is in fact a
better idea to think of this whole thing as an inner product on Rn+1 :〈

[�, 1[0,T ](t)]∂tu, u
〉
Rn+1 .

Having gone this far, we might like to replace the indicator function with something
smooth, to give a better justification for this formal integration by parts; let χ(t)
be a smooth approximator to the indicator function with χ′ = φ1−φ2 with φ1 and
φ2 nonnegative bump functions supported respectively in (−ε, ε) and (T − ε, T + ε),
with φ2(·) = φ1(· − T ) Let A = χ(t)∂t + ∂tχ(t). Then we have

[�, A] = 2∂tχ
′∂t + ∂2

t χ
′ + χ′∂2

t ,

and by (formal) anti-self-adjointness of ∂t (and the fact that u is assumed real),

0 = 〈[�, A]u, u〉
Rn+1 = −2〈χ′∂tu, ∂tu〉Rn+1 + 2

〈
χ′u, ∂2

t u
〉
Rn+1

= −2〈χ′∂tu, ∂tu〉Rn+1 + 2
〈
χ′u,∇2u

〉
Rn+1

= −2〈χ′∂tu, ∂tu〉Rn+1 − 2〈χ′∇,∇u〉
Rn+1

= −2
∫
Rn+1

φ1(t)(|ut|2 + |∇u|2) dt dx

+ 2

∫
Rn+1

φ2(t)(|ut|2 + |∇u|2) dt dx.

Thus, the energy on the time interval [T − ε, T + ε] (modulated by the cutoff φ2) is
the same as that in the time interval [−ε, ε] (modulated by φ1).

We can get fancier, of course. Finite propagation speed is usually proved by
considering the variant of (2.9)∫ −T1

−T2

∫
|x|2≤t2

�u ∂tu dx dt,

with 0 < T1 < T2. Integrating by parts gives negative boundary terms, and we find
that the energy in

{t = −T1, |x|2 ≤ T 2
1 }

is bounded by that in

{t = −T2, |x|2 ≤ T 2
2 }.

Hence if the solution has zero Cauchy data (i.e. value, time-derivative) on the latter
surface, it also has zero Cauchy data on the former.

Exercise 2.11. Go through this argument to show finite propagation speed.
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Making this argument into a commutator argument is messier, but still possible:

Exercise* 2.12. Write a positive commutator version of the proof of finite
propagation speed, using smooth cutoffs instead of integrations by parts. (An
account of energy estimates with smooth temporal cutoffs, in the general setting of
Lorentzian manifolds, can be found in [27, Section 3].)

There is of course also a Morawetz estimate for the wave equation! (Indeed,
this was what Morawetz originally proved.)

Exercise* 2.13. Derive (part of) the Morawetz estimate: Let u solve

�u = 0, (u, ∂tu)|t=0 = (f, g)

on Rn, with n ≥ 4. Show that∥∥∥r−3/2u
∥∥∥
L2

loc(R
n+1)

� ‖f‖2H1 + ‖g‖2L2 ;

this is analogous to the weight part of the Morawetz estimate we derived for the
Schrödinger equation. There is in fact no need for the local L2 norm—the global
spacetime estimate works too: prove this estimate, and use it to draw a conclusion
about the long-time decay of a solution to the wave equation with Cauchy data in
C∞c (Rn)⊕ C∞c (Rn).

Hint: consider 〈[�, χ(t)(∂r + (n− 1)/(2r))]u, u〉
Rn+1 .

3. The pseudodifferential calculus

Recall that we hoped to describe a class of operators enriching the differential
operators that would, among other things, enable us to deal properly with the local
smoothing estimate on manifolds, where conjugate points caused our commutator
arguments with ordinary differential operators to break down. One solution to this
problem turns out to lie in the calculus of pseudodifferential operators.

3.1. Differential operators. What kind of a creature is a pseudodifferential
operator? Well, first let’s think more seriously about differential operators. A
linear differential operator of order m is something of the form

(3.1) P =
∑

|α|≤m

aα(x)D
α

where Dj = i−1(∂/∂xj) and we employ “multiindex notation:”

Dα = Dα1
1 . . . Dαn

n ,

|α| =
∑

αj .

We will always take our coefficients to be smooth:

aα ∈ C∞(Rn).

We let

Diffm(Rn)

denote the collection of all differential operators of order m on Rn (and will later
employ the analogous notation on a manifold).
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If P ∈ Diffm(Rn) is given by (3.1), we can associate with P a function by
formally turning differentiation in xj into a formal variable ξj with (ξ1, . . . , ξn) ∈
R

n :

p(x, ξ) =
∑

aα(x)ξ
α.

This is called the “total (left-) symbol” of P ; of course, knowing p is equivalent
to knowing P. Note that p(x, ξ) is a rather special kind of a function on R2n : it
is actually polynomial in the ξ variables with smooth coefficients. Let us write
p = σtot(P ).

Note that

σtot : P �→ p

is not a ring homomorpism: we have

PQ =
∑
α,β

pα(x)D
αqβ(x)D

β,

and if we expand out this product to be of the form∑
γ

cγ(x)D
γ ,

then the coefficients cγ will involve all kinds of derivatives of the qβ ’s. This is a
pain, but on the other hand life would be pretty boring if the ring of differential
operators were commutative.

If we make do with less, though, composition of operators doesn’t look so bad.
We let σm(P ), the principal symbol of P, just be the symbol of the top-order parts
of P :

σm(P ) =
∑

|α|=m

aα(x)ξ
α.

Note that σm(P ) is a homogeneous degree-m polynomial in ξ, i.e., a polynomial
such that σm(P )(x, λξ) = λmσm(P )(x, ξ) for λ ∈ R. As a result, we can reconstruct
it from its value at |ξ| = 1, and it makes sense for many purposes to just consider
it as a (rather special) smooth function on R

n × Sn−1. It turns out to make more
invariant sense to regard the principal symbol as a homogeneous polynomial on
T ∗Rn, so that once we have scaled away the action of R+, we may regard it as
a function on S∗Rn, the unit cotangent bundle of Rn, which is simply defined as
T ∗

R
n/R+ (or identified with the bundle of unit covectors in, say, the Euclidean

metric). To clarify when we are talking about the symbol on S∗Rn, we define4

σ̂m(P ) = σm(P )||ξ|=1 ∈ C∞(S∗
R

n).

Now it is the case that the principal symbol is a homomorphism:

Proposition 3.1. For P,Q differential operators of order m resp. m′,

σm+m′(PQ) = σm(P )σm′(Q).

(and likewise with σ̂).

Exercise 3.1. Verify this!
Moreover, the principal symbol has another lovely property that the total sym-

bol lacks: it behaves well under change of variables. If y = φ(x) is a change of

4The reader is warned that this notation is not a standard one.
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variables, with φ a diffeomorphism, and if P is a differential operator in the x
variables, we can of course define a pushforward of P by

(φ∗P )f = P (φ∗f)

Then in particular,

φ∗(Dxj ) =
∑
k

∂yk

∂xj
Dyk ,

hence

φ∗(D
α
x ) = Dα1

x1 . . .Dαn
xn =

(
n∑

k1=1

∂yk1

∂x1
Dyk1

)α1

. . .

(
n∑

kn=1

∂ykn

∂xn
Dykn

)αn

;

when we again try to write this in our usual form, as a sum of coefficients times
derivatives, we end up with a hideous mess involving high derivatives of the diffeo-
morphism φ. But, if we restrict ourselves to dealing with principal symbols alone,
the expression simplifies in both form and (especially) interpretation:

Proposition 3.2. If P is a differential operator given by (3.1), and y = φ(x),
then

σm(φ∗P )(y, η) =
∑

|α|=m

aα(φ
−1(y))

(
n∑

k1=1

∂yk1

∂x1
ηk1

)α1

. . .

(
n∑

kn=1

∂ykn

∂xn
ηkn

)αn

where η are the new variables “dual” to the y variables.

This corresponds exactly to the behavior of a function defined on the cotangent
bundle: if φ is a diffeomorphism from R

n
x to R

n
y , then it induces a map Φ = φ∗ :

T ∗Rn
y → T ∗Rn

x , and
σm(φ∗P ) = Φ∗(σm(P )).

Exercise 3.2. Prove the proposition, and verify this interpretation of it.
Notwithstanding its poor properties, it is nonetheless a useful fact that the map

σtot : P �→ p

is one-to-one and onto polynomials with smooth coefficients; it therefore has an
inverse, which we shall denote

Op� : p �→ P,

taking functions on T ∗Rn that happen to be polynomial in the fiber variables to
differential operators on Rn. Op� is called a “quantization” map.5 You may wonder
about the 
 in the subscript: it stands for “left,” and has to do with the fact that
we chose to write differential operators in the form (3.1) instead of as

P =
∑

|α|≤m

Dαaα(x),

with the coefficients on the right. This would have changed the definition of σtot

and hence of its inverse.
Note that Op�(x

j) = xj (i.e. the operation of multiplication by xj) while
Op�(ξj) = Dj .

Why not, you might ask, try to extend this quantization map to a more general
class of functions on T ∗

R
n? This is indeed how we obtain the calculus of pseudo-

differential operators. The tricky point to keep in mind, however, is that for most

5It is far from unique, as will become readily apparent.
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purposes, it is asking too much to deal with the quantizations of all possible func-
tions on T ∗Rn, so we’ll deal only with a class of functions that are somewhat akin
to polynomials in the fiber variables.

3.2. Quantum mechanics. One reason why you might care about the ex-
istence of a quantization map, and give it such a suggestive name, lies in the
foundations of quantum mechanics.

It is helpful to think about T ∗Rn as being a classical phase space, with the
x variables (in the base) being “position” and the ξ variables (the fiber variables)
as “momenta” in the various directions. The general notion of classical mechanics
(in its Hamiltonian formulation) is as follows: The state of a particle is a point in
the phase space T ∗Rn, and moves along some curve in T ∗Rn as time evolves; an
observable p(x, ξ) is a function on the phase space that we may evaluate at the state
(x, ξ) of our particle to give a number (the observation). By contrast, a quantum
particle is described by a complex-valued function ψ(x) on Rn, and a quantum
observable is a self-adjoint operator P acting on functions on Rn. Doing the same
measurement repeatedly on identically prepared quantum states is not guaranteed
to produce the same number each time, but at least we can talk about the expected
value of the observation, and it’s simply

〈Pψ, ψ〉L2(Rn).

In the early development of quantum mechanics, physicists sought a way to trans-
form the classical world into the quantum world, i.e. of taking functions on T ∗Rn

to operators on6 L2(Rn). This is, loosely speaking, the process of “quantization.”
We now turn to the question of describing the dynamics in the quantum and

classical worlds. To describe how the point in phase space corresponding to a
classical particle in Hamiltonian mechanics evolves in time, we use the notion of
the “Poisson bracket” of two observables. In coordinates, we can explicitly define

{f, g} ≡
∑ ∂f

∂ξj

∂g

∂xj
− ∂f

∂xj

∂g

∂ξj

(this in fact makes invariant sense on any symplectic manifold). The map g �→ {f, g}
defines a vector field7 (the Hamilton vector field) associated to f :

Hf =
∑ ∂f

∂ξj

∂

∂xj
− ∂f

∂xj

∂

∂ξj
.

The classical time-evolution is along the flow generated by the Hamilton vector
field associated to the energy function of our system, i.e. the flow along Hh for
some given h ∈ C∞(T ∗Rn). By contrast, the wavefunction for a quantum particle
evolves in time according to the Schrödinger equation (2.1), with −∇2 in general
replaced by a self-adjoint “Hamiltonian operator” H whose principal symbol is the
energy function h.8 By a mild generalization of (2.2), the time derivative of the

6Well, they are not necessarily going to be defined on all of L2; the technical subtleties of
unbounded self-adjoint operators will mostly not concern us here, however.

7We use the geometers’ convention of identifying a vector and the directional derivative along
it.

8For honest physical applications, one really ought to introduce the semi-classical point of
view here, carrying Planck’s constant along as a small parameter and using an associated notion
of principal symbol.
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expectation of an observable A is related to the commutator

[H,A].

One of the essential features of quantum mechanics is that

σm+m′([H,A]) = i{σm(H), σm′(A)},
so that the time-evolution of the quantum observable A is related to the classi-
cal evolution of its symbol along the Hamilton flow; this is the “correspondence
principle” between classical and quantum mechanics.9

3.3. Quantization. How might we construct a quantization map extending
the usual quantization on fiber-polynomials?

Let F denote the Fourier transform (see Appendix for details). Then we may
write, on Rn,

(Dxjψ)(x) = F−1ξjFu = (2π)−n

∫
eix·ξξj

∫
e−iy·ξψ(y) dy dξ

=
1

2π

∫∫
ξje

i(x−y)·ξψ(y) dy dξ.

Likewise, since F−1F = I, we of course have

(xjψ)(x) = (2π)−n

∫∫
xjei(x−y)·ξψ(y) dy dξ.

Going a bit further, we see that at least for a fiber polynomial a(x, ξ) =
∑

aα(x)ξ
α

we have

(3.2) (Op�(a)ψ)(x) =
∑

aα(x)D
αψ(x) = (2π)−n

∫∫
a(x, ξ)ei(x−y)·ξψ(y) dy dξ;

stripping away the function ψ, we can also simply write the Schwartz kernel (see
Appendix) of the operator Op�(a) as

κ
(
Op�(a)

)
= (2π)−n

∫
a(x, ξ)ei(x−y)·ξ dξ.

(Making sense of the integrals written above is not entirely trivial: Given ψ ∈
S(Rn), we can make sense of the ξ integral in (3.2), which looks (potentially)
divergent, by observing that

(1 + |ξ|2)−k(1 + Δy)
kei(x−y)·ξ = ei(x−y)·ξ

for all k ∈ N; repeatedly integrating by parts in y then moves the derivatives onto
ψ. This method brings down an arbitrary negative power of (1+ |ξ|2) at the cost of
differentiating ψ, thus making the ξ integral convergent.10 Similar arguments yield
continuity of Op�(a) as a map S(Rn)→ S(Rn), hence we can extend to let Op�(a)
act on ψ ∈ S ′ by duality. For more details, cf. [17].)

Exercise* 3.3. Verify the vague assertions in the parenthetical remark above.
You may wish to consult, for example, the beginning of [10].

9In the semi-classical setting, the correspondence principle tells that we can in a sense recover
CM from QM in the limit when Planck’s constant tends to zero. What we have in this setting
is a correspondence principle that works at high energies, i.e. in doing computations with high-
frequency waves.

10This kind of integration by parts argument is ubiquitous in the subject, and somewhat
scanted in these notes, relative to its true importance.



14 JARED WUNSCH

This of course suggests that we use (3.2) as the definition of Op�(a) for more
general observables (“symbols”) a. And we do. In Rn, we set

(3.3) (Op�(a)ψ)(x) =
1

(2π)n

∫
a(x, ξ)ei(x−y)·ξψ(y) dy dξ.

We can define the pseudodifferential operators on Rn to be just the range of this
quantization map on some reasonable set of symbols a, to be discussed below.

On a Riemannian manifold, we can make similar constructions global by cut-
ting off near the diagonal and using the exponential map and its inverse. The
pseudodifferential operators are those whose Schwartz kernels11 near the diagonal
look like (3.3) in local coordinates, and that away from the diagonal are allowed
to be arbitrary functions in C∞(X × X). If the manifold is noncompact, we will
often assume further that operators are properly supported, i.e. that both left- and
right-projection give proper maps from the support of the Schwartz kernel to X.

3.4. The pseudodifferential calculus.

Definition 3.3. A function a on T ∗
R

n is a classical symbol of order m if

• a ∈ C∞(T ∗Rn)
• On |ξ| > 1, we have

a(x, ξ) = |ξ|mã(x, ξ̂, |ξ|−1),

where ã is a smooth function on Rn
x × Sn−1

ξ̂
× R+, and

ξ̂ =
ξ

|ξ| ∈ Sn−1.

We then write a ∈ Sm
cl (T

∗
R

n).

It is convenient to introduce the notation

〈ξ〉 = (1 + |ξ|2)1/2,
so that 〈ξ〉 behaves like |ξ| near infinity, but is smooth and nonvanishing at 0. A
fancy way of saying that a is a classical symbol of order m is thus to simply say
that a is equal to 〈ξ〉m times a smooth function on the fiberwise radial compactifi-

cation of T ∗Rn, denoted T
∗
Rn. This compactification is defined as follows: We can

diffeomorphically identify Rn
ξ with the interior of the unit ball by first mapping it

to the upper hemisphere of Sn ⊂ Rn+1 by mapping

(3.4) ξ �→
(

ξ

〈ξ〉 ,
1

〈ξ〉

)
and identifying this latter space with the interior of the ball. Then 1/〈ξ〉 becomes
a boundary defining function, i.e. one that cuts out the boundary nondegenerately
as its zero-set; 1/|ξ| is also a valid boundary defining function near the boundary
of the ball, i.e. away from its singularity.

A very important consequence is that we can write a Taylor series for a near
|ξ|−1 = 0 (the “sphere at infinity”) to obtain

a(x, ξ) ∼
∞∑
j=0

am−j(x, ξ̂)|ξ|m−j , with am−j ∈ C∞(Rn × Sn−1),

11For some remarks on the Schwartz kernel theorem, see the Appendix.
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and where the tilde denotes an “asymptotic expansion”—truncating the expansion

at the |ξ|m−N term gives an error that is O(|ξ|m−N−1).12

If X is a Riemannian manifold, we may define Sm
cl (T

∗X) in the same fashion,
insisting that these conditions hold in local coordinates.13

(For later use, we will also want symbols in a more general geometric setting:
if E is a vector bundle we define

Sm
cl (E)

to consist of smooth functions having an asymptotic expansion, as above, in the
fiber variables. Often, we will be concerned with trivial examples like E = R

n
x×R

k
ξ ,

where we will usually use Greek letters to distinguish the fiber variables.)
The classical symbols are the functions that we will “quantize” into operators

using the definition (3.3). As with fiber-polynomials, the symbol that we quantize
to make a given operator will transform in a complicated manner under change

of variables, but the top order part of the symbol, am(x, ξ̂) ∈ C∞(S∗Rn), will
transform invariantly.

Exercise 3.4. We say that a function a ∈ C∞(T ∗X) is a Kohn-Nirenberg
symbol of order m on T ∗X (and write a ∈ Sm

KN(T
∗X)) if for all α, β,

(3.5) sup 〈ξ〉|β|−m|∂α
x ∂

β
ξ a| = Cα,β <∞.

Check that Sm
cl,c(T

∗Rn) ⊂ Sm
KN(T

∗Rn), where the extra subscript c denotes
compact support in the base variables. Find examples of Kohn-Nirenberg symbols
compactly supported in x that are not classical symbols.14

In the interests of full disclosure, it should be pointed out that it is the Kohn-
Nirenberg symbols, rather than the classical ones defined above, that are conven-
tionally used in the definition of the pseudodifferential calculus.

At this point, as discussed in the previous section, we are in a position to “de-
fine” the pseudodifferential calculus as sketched at the end of the previous section:
it consists of operators whose Schwartz kernels near the diagonal look like the quan-
tizations of classical symbols, and away from the diagonal are smooth. While our
quantization procedure so far has been restricted to R

n, the theory is in fact clean-
est on compact manifolds, so we shall state the properties of the calculus only for
X a compact n-manifold.15 Most of the properties continue to hold on noncompact
manifolds provided we are a little more careful either to control the behavior of the
symbols at infinity, or if we restrict ourselves to “properly supported” operators,
where the projections to each factor of the support of the Schwartz kernels give
proper maps. We will therefore not shy away from pseudodifferential operators on
Rn, for instance, even though they are technically a bit distinct; indeed we will only
use them in situations where we could in fact localize, and work on a large torus
instead.

12This does not, of course, mean that the series has to converge, or, if it converges, that it
has to converge to a : we never said a had to be analytic in |ξ|−1, after all.

13One should of course check that the conditions for being a classical symbol are in fact
coordinate invariant.

14Note that most authors use Sm to denote Sm
KN.

15Some remarks about the noncompact case will be found in the explanatory notes that
follow.
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Instead of trying to make a definition of the calculus and read off its properties,
we shall simply try to axiomatize these objects:

The space of pseudodifferential operators Ψ∗(X) on a compact

manifold X enjoys the following properties. (Note that this enumeration
is followed by further commentary.)

(I) (Algebra property) Ψm(X) is a vector space for each m ∈ R. If A ∈
Ψm(X) and B ∈ Ψm′

(X) then AB ∈ Ψm+m′
(X). Also, A∗ ∈ Ψm(X).

Composition of operators is associative and distributive. The identity
operator is in Ψ0(X).

(II) (Characterization of smoothing operators) We let

Ψ−∞(X) =
⋂
m

Ψm(X);

the operators in Ψ−∞(X) are exactly those whose Schwartz kernels are
C∞ functions on X × X, and can also be characterized by the property
that they map distributions to smooth functions on X.

(III) (Principal symbol homomorphism) There is family of linear “principal
symbol maps” σ̂m : Ψm(X) → C∞(S∗X) such that if A ∈ Ψm(X) and

B ∈ Ψm′
(X),

σ̂m+m′(AB) = σ̂m(A)σ̂m′(B)

and

σ̂m(A∗) = σ̂m(A)

We think of the principal symbol either as a function on the unit cosphere
bundle S∗X or as a homogeneous function of degreem on T ∗X, depending
on the context, and we let σm(A) denote the latter.

(IV) (Symbol exact sequence) There is a short exact sequence

0→ Ψm−1(X)→ Ψm(X)
σ̂m→ C∞(S∗X)→ 0,

hence the principal symbol of order m is 0 if and only if an operator is of
order m− 1.

(V) There is a linear “quantization map” Op : Sm
cl (T

∗X)→ Ψm(X) such that

if a ∼
∑∞

j=0 am−j(x, ξ̂)|ξ|m−j ∈ Sm
cl (T

∗X) then

σ̂m(Op(a)) = am(x, ξ̂).

The map Op is onto, modulo Ψ−∞(X).

(VI) (Symbol of commutator) If A ∈ Ψm(X), B ∈ Ψm′
(X) then16 [A,B] ∈

Ψm+m′−1(X), and we have

σm+m′([A,B]) = i{σm(a), σm′(b)}.

(VII) (L2-boundedness, compactness) If A = Op(a) ∈ Ψ0(X) then A : L2(X)→
L2(X) is bounded, with a bound depending on finitely many constants
Cα,β in (3.5). Moreoever, if A ∈ Ψm(X), then

A ∈ L(Hs(X), Hs−m(X)) for all s ∈ R.

16That the order is m+m′ − 1 follows from Properties (III), (IV).
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Note in particular that A maps C∞(X) → C∞(X). As a further conse-
quence, note that operators of negative order are compact operators on
L2(X).

(VIII) (Asymptotic summation) Given Aj ∈ Ψm−j(X), with j ∈ N, there exists
A ∈ Ψm(X) such that

A ∼
∑
j

Aj ,

which means that

A−
N∑
j=0

Aj ∈ Ψm−N−1(X)

for each N.
(IX) (Microsupport) Let A = Op(a) + R, R ∈ Ψ−∞(X). The set of (x0, ξ̂0) ∈

S∗X such that a(x, ξ) = O(|ξ|−∞) for x, ξ̂ in some neighborhood of (x0, ξ̂0)
is well-defined, independent of our choice of quantization map. Its comple-
ment is called the microsupport of A, and is denoted WF′ A. We moreover
have

WF′ AB ⊆WF′ A ∩WF′ B, WF′(A+B) ⊆WF′ A ∪WF′ B,

WF′ A∗ = WF′ A.

The condition WF′ A = ∅ is equivalent to A ∈ Ψ−∞(X).

Commentary:

(I) If we begin by defining our operators on R
n by the formula (3.3), with

a ∈ Sm
cl (T

∗Rn), it is quite nontrivial to verify that the composition of
two such operators is of the same type; likewise for adjoints. Much of the
work that we are omitting in developing the calculus goes into verifying
this property.

(II) On a non-compact manifold, it is only among, say, properly supported
operators that elements of Ψ−∞(X) are characterized by mapping distri-
butions to smooth functions.

(III) Note that there is no sensible, invariant, way to associate, to an operator
A, a “total symbol” a such that A = Op(a). As we saw before, a putative
“total symbol” even for differential operators would be catastrophically
bad under change of variables. Moreover, as we also saw for differential
operators, it’s a little hard to see what the total symbol of the composition
is. This principal symbol map is a compromise that turns out to be
extremely useful, especially when coupled with the asymptotic summation
property, in making iterative arguments.

(IV) A good way to think of this is that σ̂m is just the obstruction to an
operator in Ψm(X) being of order m− 1.

(V) The map Op is far from unique. Even on Rn, for instance, we can use
Op� as defined by (3.2) but we could also use the “Weyl” quantization

(OpW (a)ψ)(x) = (2π)−n

∫∫
a((x+ y)/2, ξ)ei(x−y)·ξψ(y) dy dξ

or the “right” quantization

(Opr(a)ψ)(x) = (2π)−n

∫∫
a(y, ξ)ei(x−y)·ξψ(y) dy dξ
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or any of the obvious interpolating choices. On a manifold the choices to
be made are even more striking. One convenient choice that works globally
on a manifold is what might be called “Riemann-Weyl” quantization: Fix
a Riemannian metric g. Given a ∈ Sm

cl (T
∗X), define the Schwartz kernel

of an operator A by

κ(A)(x, y) = (2π)−n

∫
χ(x, y)a(m(x, y), ξ)ei(exp

−1
y (x),ξ) dgξ;

here χ is a cutoff localizing near the diagonal and in particular, within the
injectivity radius; m(x, y) denotes the midpoint of the shortest geodesic
between x, y, exp denotes the exponential map, and the round brackets
denote the pairing of vectors and covectors. The “Weyl” in the name
refers to the evaluation of a at m(x, y) as opposed to x or y (which give
rise to corresponding “left” and “right” quantizations respectively—also
acceptable choices). The “Riemann” of course refers to our use of a choice
of metric.

We will often only employ a single simple consequence of the existence
of a quantization map: given am ∈ C∞(S∗X) and m ∈ R, there exists
A ∈ Ψm(X) with principal symbol am and with WF′ A = supp am.

(VI) A priori of course AB − BA ∈ Ψm+m′
(X); however the principal symbol

vanishes, by the commutativity of C∞(S∗X). Hence the need for a lower-
order term, which is subtler, and noncommutative. That the Poisson
bracket is well-defined independent of coordinates reflects the fact that
T ∗X is naturally a symplectic manifold, and the Poisson bracket is well-
defined on such a manifold (see §4.1 below).

Exercise 3.5. Check (by actually performing a change of coordi-
nates) that if f, g ∈ C∞(T ∗X), then {f, g} is well-defined, independent of
coordinates.

This property is the one which ties classical dynamics to quantum
evolution, as the discussion in §3.2 shows.

(VII) Remarkably, the mapping property is one that can be derived from the
other properties of the calculus purely algebraically, with the only analytic
input being boundedness of operators in Ψ−∞(X). This is the famous
Hörmander “square-root” argument—see [10], as well as Exercise 3.12
below.

On noncompact manifolds, restricting our attention to properly sup-
ported operators gives boundedness L2 → L2

loc.
The compactness of negative order operators of course follows from

boundedness, together with Rellich’s lemma, but is worth emphasizing; we
can regard σ̂0 as the “obstruction to compactness” in general. On non-
compact manifolds, this compactness property fails quite badly, resulting
in much interesting mathematics.

(VIII) This follows from our ability to do the corresponding “asymptotic summa-
tion” of total symbols, which in turn is precisely “Borel’s Lemma,” which
tells us that any sequence of coefficients are the Taylor coefficients of a
C∞ function; here we are applying the result to smooth functions on the
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radial compactification of T ∗X, and the Taylor series is in the variable
σ = |ξ|−1, at σ = 0.

(IX) Since the total symbol is not well-defined, it is not so obvious that the
microsupport is well-defined; verifying this requires checking how the total
symbol transforms under change of coordinates; likewise, we may verify
that the (highly non-invariant) formula for the total symbol of the com-
position respects microsupports to give information about WF′ AB.

3.5. Some consequences. If you believe that there exists a calculus of oper-
ators with the properties enumerated above, well, then you believe quite a lot! For
instance:

Theorem 3.4. Let P ∈ Ψm(X) with σ̂m(P ) nowhere vanishing on S∗X. Then
there exists Q ∈ Ψ−m(X) such that

QP − I, PQ− I ∈ Ψ−∞(X).

In other words, P has an approximate inverse (“parametrix”) which succeeds
in inverting it modulo smoothing operators.

An operator P with nonvanishing principal symbol is said to be elliptic. Note
that this theorem gives us, via the Sobolev estimates of (VII), the usual elliptic
regularity estimates. In particular, we can deduce

Pu ∈ C∞(X) =⇒ u ∈ C∞(X).

Exercise 3.6. Prove this.

Proof. Let q−m = (1/σ̂m(P )); let Q−m ∈ Ψ−m(X) have principal symbol
q−m. (Such an operator exists by the exactness of the short exact symbol sequence.)
Then by (III),

σ̂0(PQ−m) = 1,

hence by (IV),17

PQ−m − I = R−1 ∈ Ψ−1(X).

Now we try to correct for this “error term:” pick Q−m−1 ∈ Ψ−m−1(X) with

σ̂−m−1(Q−m−1) = −σ̂−1(R−1)/σ̂m(P ).

Then we have

P (Q−m +Q−m−1)− I = R−2 ∈ Ψ−2(X).

Continuing iteratively, we get a series of Qj ∈ Ψ−m−j such that

P (Q−m + · · ·+Q−m−N )− I ∈ Ψ−N−1(X).

Using (VIII), pick

Q ∼
−∞∑

j=−m

Qj .

This gives the desired parametrix:

Exercise 3.7.

(1) Check that PQ− I ∈ Ψ−∞(X).

17The identity operator has principal symbol equal to 1, since the symbol map is a
homomorphism.
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(2) Check that QP − I ∈ Ψ−∞(X). (Hint: First check that a left parametrix
exists; you may find it helpful to take adjoints. Then check that the left
parametrix must agree with the right parametrix.)

�
Exercise 3.8. Show that an elliptic pseudodifferential operator on a compact

manifold is Fredholm. (Hint: You can show, for instance, that the kernel is finite
dimensional by observing that the existence of a parametrix implies that the identity
operator on the kernel is equal to a smoothing operator, which is compact.)

Exercise* 3.9.

(1) LetX be a compact manifold. Show that if P ∈ Ψm(X) is elliptic, and has
an actual inverse operator P−1 as a map from smooth functions to smooth
functions, then P−1 ∈ Ψ−m(X). (Hint: Show that the parametrix differs
from the inverse by an operator in Ψ−∞(X)—remember that an operator
is in Ψ−∞(X) if and only if it maps distributions to smooth functions.)

(2) More generally, show that if P ∈ Ψm(X) is elliptic, then there exists a
generalized inverse of P, inverting P on its range, mapping to the ortho-
complement of the kernel, and annihilating the orthocomplement of the
range, that lies in Ψ−m(X).

Exercise* 3.10. Let X be compact, and P an elliptic operator on X, as above,
with positive order. Using the spectral theorem for compact, self-adjoint operators,
show that if P ∗ = P, then there is an orthornormal basis for L2(X) of eigenfunctions
of P, with eigenvalues tending to +∞. Show that the eigenfunctions are in C∞(X).
(Hint: show that there exists a basis of such eigenfunctions for the generalized
inverse Q and then see what you can say about P.)

Exercise 3.11. Let X be compact.

(1) Show that the principal symbol of Δ, the Laplace-Beltrami operator on a
compact Riemannian manifold, is just

|ξ|2g ≡
∑

gij(x)ξiξj ,

the metric induced on the cotangent bundle.
(2) Using the previous exercise, conclude that there exists an orthonormal

basis for L2(X) of eigenfunctions of Δ, with eigenvalues tending toward
+∞.

Exercise 3.12. Work out the Hörmander “square root trick” on a compact
manifold X as follows.

(1) Show that if P ∈ Ψ0(X) is self-adjoint, with positive principal symbol,
then P has an approximate square root, i.e. there exists Q ∈ Ψ0(X)
such that Q∗ = Q and P − Q2 ∈ Ψ−∞(X). (Hint: Use an iterative
construction, as in the proof of existence of elliptic parametrices.)

(2) Show that operators in Ψ−∞(X) are L2-bounded.
(3) Show that an operator A ∈ Ψ0(X) is L2-bounded. (Hint: Take an ap-

proximate square root of λI −A∗A for λ� 0.)

As usual, let Δ denote the Laplacian on a compact manifold. By Exercise 3.12,
there exists an operator A ∈ Ψ1(X) such that A2 = Δ + R, with R ∈ Ψ−∞(X).

By abstract methods of spectral theory, we know that
√
Δ exists as an unbounded
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operator on L2(X). (This is a very simple use of the functional calculus: merely take√
Δ to act by multiplication by λj on each φj , where (φj , λ

2
j ) are the eigenfunctions

and eigenvalues of the Laplacian, from Exercise 3.11.) In fact, we can improve this
argument to obtain:

Proposition 3.5. √
Δ ∈ Ψ1(X).

Indeed, it follows from a theorem of Seeley that all complex powers of a self-
adjoint, elliptic pseudodifferential operator18 on a compact manifold are pseudodif-
ferential operators.

All proofs of the proposition seem to introduce an auxiliary parameter in some
way, and the following (taken directly from [24, Chapter XII, §1]) seems one of the
simplest. An alternative approach, using the theory of elliptic boundary problems,
is sketched in [26, pp.32-33, Exercises 4–6].

Proof. Let A be the self-adjoint parametrix constructed in Exercise 3.12, so
that

A2 −Δ = R ∈ Ψ−∞(X).

By taking a parametrix for the square root of A, in turn, we obtain

A = B2 +R′

with B ∈ Ψ1/2(X) and R′ ∈ Ψ−∞, both self-adjoint; then pairing with a test
function φ shows that

〈Aφ, φ〉 ≥ 〈R′φ, φ〉 ≥ −C‖u‖2

for some C ∈ R. Thus, A can only have finitely many nonpositive eigenvalues
(since it has a compact generalized inverse) hence its eigenvalues can accumulate
only at +∞). So we may alter A by the smoothing operator projecting off of these
eigenspaces, and maintain

A2 −Δ = R ∈ Ψ−∞(X)

(with a different R, of course) while now ensuring that A is positive.
Now we may write, using the spectral theorem,

(Δ′)−1/2 =
1

2πi

∫
Γ

z−1/2((Δ′)− z)−1 dz

where Γ is a contour encircling the positive real axis counterclockwise, and given
by Im z = Re z for z sufficiently large, and Δ′ is given by Δ minus the projection
onto constants (hence has no zero eigenvalue). (The integral converges in norm, as
self-adjointness of Δ′ yields∥∥((Δ′)− z)−1

∥∥
L2→L2 � |Im z|−1.)

Likewise, since A2 = Δ′+R (with R yet another smoothing operator) we may write

A−1 =
1

2πi

∫
Γ

z−1/2((Δ′) +R− z)−1 dz

18Seeley’s theorem is better yet: self-adjointness is unnecessary.
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Hence

(Δ′)−1/2 −A−1 =
1

2πi

∫
Γ

z−1/2
[
((Δ′)− z)−1 − ((Δ′) +R− z)−1

]
dz

=
1

2πi

∫
Γ

z−1/2((Δ′)− z)−1R((Δ′) +R− z)−1 dz.

Now the integrand, z−1/2((Δ′)− z)−1R((Δ′) +R− z)−1, is for each z a smoothing
operator, and decays fast enough that when applied to any u ∈ D′(X), the integral
converges to an element of C∞(X) (in particular, the integral converges in C0(X),
even after application of Δk on the left, for any k). Hence

(Δ′)−1/2 −A−1 = E ∈ Ψ−∞(X);

thus we also obtain
(Δ′)1/2 = (A−1 + E)−1 ∈ Ψ1(X);

as (Δ′)1/2 differs from Δ1/2 by the smoothing operator of projection onto constants,
this shows that

Δ1/2 ∈ Ψ1(X). �

4. Wavefront set

If P ∈ Ψm(X) and (x0, ξ0) ∈ S∗X, we say P is elliptic at (x0, ξ0) if σ̂m(P )(x0, ξ0) 
=
0. Of course if P is elliptic at each point in S∗X, it is elliptic in the sense defined
above. We let

ell(P ) = {(x, ξ) : P is elliptic at (x, ξ)},
and let

ΣP = S∗X\ ell(X);

ΣP is known as the characteristic set of P.

Exercise 4.1.

(1) Show that ellP ⊆WF′ P.
(2) If P is a differential operator of order m of the form

∑
aα(x)D

α then
show that WF′ P = π∗(

⋃
supp aα), while ellP may be smaller.

The following “partition of unity” result, and variants on it, will frequently be
useful in discussing microsupports. It yields an operator that is microlocally the
identity on a compact set, and microsupported close to it.

Lemma 4.1. Given K ⊂ U ⊂ S∗X with K compact, U open, there exists a
self-adjoint operator B ∈ Ψ0(X) with

WF′(Id−B) ∩K = ∅, WF′ B ⊂ U.

Exercise 4.2. Prove the lemma. (Hint: You might wish to try constructing
B in the form

Op(ψσtot(Id))

where σtot(Id) is the total symbol of the identity (which is simply 1 for all the usual
quantizations on R

n) and ψ is a cutoff function equal to 1 on K and supported in
U. Then make B self-adjoint.)

Theorem 4.2. If P ∈ Ψm(X) is elliptic at (x0, ξ0), there exists a microlocal
elliptic parametrix Q ∈ Ψ−m(X) such that

(x0, ξ0) /∈WF′(PQ− I) ∪WF′(QP − I).
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In other words, you should think of Q as inverting P microlocally near (x0, ξ0).

Exercise 4.3. Prove the theorem. (Hint: If B is a microlocal partition of
unity as in Lemma 4.1, microsupported sufficiently close to (x0, ξ0) and microlocally
the identity in a smaller neighborhood, then show

W = BP + λOp(〈ξ〉m)(Id−B)

is globally elliptic provided λ ∈ C is chosen appropriately. Now, using the existence
of an elliptic parametrix for W, prove the theorem.)

Let u be a distribution on a manifold X. We define the wavefront set of u as
follows.

Definition 4.3. The wavefront set of u,

WFu ⊆ S∗X,

is given by

(x0, ξ0) /∈WFu

if and only if there exists P ∈ Ψ0(X), elliptic at (x0, ξ0), such that

Pu ∈ C∞.

Exercise 4.4. Show that the choice of Ψ0(X) in this definition is immaterial,
and that we get the same definition of WFu if we require P ∈ Ψm(X) instead.

Note that the wavefront set is, from its definition, a closed set. Instead of
viewing WFu as a subset of S∗X, we also, on occasion, think of WFu as a conic
subset of T ∗X\o, with o denoting the zero section; a conic set in a vector bundle
is just one that is invariant under the R

+ action on the fibers.
An important variant is as follows: we say that

(x0, ξ0) /∈WFm u

if and only if there exists P ∈ Ψm(X), elliptic at (x0, ξ0) such that

Pu ∈ L2(X).

Proposition 4.4. WFu = ∅ if and only if u ∈ C∞(X); WFm u = ∅ if and
only if u ∈ Hm

loc(X).

The wavefront set serves the purpose of measuring not just where, but also
in what (co-)direction, a distribution fails to be in C∞(X) (or Hm in the case of
the indexed version). It is instructive to think about testing for such regularity,

at least on Rn, by localizing and Fourier transforming. Given (x0, ξ̂0) ∈ S∗Rn, let
φ ∈ C∞c (Rn) be nonzero at x0; let γ ∈ C∞(Rn) be given by

γ(ξ) = ψ
(∣∣ ξ

|ξ| − ξ̂0
∣∣)χ(|ξ|)

where ψ is a cutoff function supported near x = 0 and χ(t) ∈ C∞(R) is equal to 0
for t < 1 and 1 for t > 2. Think of γ as a cutoff in a cone of directions near ξ0, but
modified to be smooth at the origin. (We will use such a construction frequently,

and refer in future to a function such as γ as a “conic cutoff near direction ξ̂0.”.)
Now note that φ(x)γ(ξ) is a symbol of order zero, and

(4.1) Op�(φ(x)γ(ξ))
∗ = Opr(φ(x)γ(ξ))u = (2π)−nF−1γ(ξ)F(φu).
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By definition, if Op�(φ(x)γ(ξ))
∗u ∈ C∞, then (x0, ξ0) /∈ WFu. Note that since φu

has compact support, we automatically have F(φu) ∈ C∞, hence F−1γF(φu) is
rapidly decreasing. Since F is an isomorphism from S(Rn) to itself, we see that it
in fact suffices to have

γF(φu) ∈ S(Rn)

to be able to conclude that (x0, ξ0) /∈ WFu. Conversely, one can check that the
class of operators of the form

Op�(φ(x)γ(ξ))
∗

is rich enough that this in fact amounts to a characterization of wavefront set:

Proposition 4.5. We have (x0, ξ0) /∈ WFu if and only if there exist φ, γ as
above with

γF(φu) ∈ S(Rn).

Exercise 4.5. Prove the Proposition. (Hint: If A ∈ Ψ0(Rn) is elliptic at
(x0, ξ0) and Au ∈ C∞(Rn), construct B = Op�(φ(x)γ(ξ))

∗ as above so that WF′ B
is contained in the set where A is elliptic. Hence there is a microlocal parametrix
Q such that B(QA− I) ∈ Ψ−∞(X).)

Note that if u is smooth near x0, then we have φu ∈ C∞c (Rn) for appropriately
chosen φ, hence there is no wavefront set in the fiber over x0.

If, by contrast, u is not smooth in any neighborhood of x0, then we of course do
not have F(φu) ∈ S, although it is in C∞; the wavefront set includes the directions
in which it fails to be rapidly decaying.

Thus, we can easily see that in fact the projection to the base variables of WFu
is the singular support of u, i.e. the points which have no neighborhood in which
the distribution u is a C∞ function.

Exercise 4.6. Let Ω ⊂ R
n be a domain with smooth boundary. Show that

WF1Ω = SN∗(∂Ω), the spherical normal bundle of the boundary. (Hint: You
may want to use the fact that the definition of WFu is coordinate-invariant.)

We have a result constraining the wavefront set of a solution to a PDE or, more
generally, a pseudodifferential equation, directly following from the definition:

Theorem 4.6. If Pu ∈ C∞(X), then WFu ⊆ ΣP .

Proof. By definition, Pu ∈ C∞(X) means that WFu ∩ ellP = ∅. �

Theorem 4.7. If P ∈ Ψ∗(X), WFPu ⊆WFu ∩WF′ P.

Exercise 4.7. Prove this, using microlocal elliptic parametrices for the inclu-
sion in WFu.

The property of pseudodifferential operators that WFPu ⊆ WFu is called
“microlocality:” the operators are not “local,” in that they do move supports of
distributions around, but they don’t move singularities, even in the refined sense
of wavefront set.

We shall also need related results on Sobolev based wavefront sets in what
follows:

Proposition 4.8. If P ∈ Ψm(X), WFk−m Pu ⊆WFk u∩WF′ P for all k ∈ R.
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Corollary 4.9. Let P ∈ Ψm(X). If

WF′ P ∩WFm u = ∅

then

Pu ∈ L2(X).

Exercise 4.8. Prove the proposition (again using a microlocal elliptic parametrix)
and the corollary.

We will have occasion to use the following relationship between ordinary and
Sobolev-based wavefront sets:

Proposition 4.10.

WFu =
⋃
k

WFk u.

Exercise 4.9. Prove the proposition.

Exercise 4.10. Let � denote the wave operator,

�u = D2
t u−Δu

on M = R×X with X a Riemannian manifold. Show if �u = 0 then the wavefront
set of u is a subset of the “wave cone” {τ2 = |ξ|2g} where τ is the dual variable to t

and ξ to x in T ∗(M).

Exercise 4.11.

(1) Let k < n, and let ι : Rk → Rn denote the inclusion map.
Show that there is a continuous restriction map on compactly sup-

ported distributions with no wavefront set conormal to Rk :

ι∗ : {u ∈ E ′(Rn) : WFu ∩ SN∗(Rk) = ∅} → E ′(Rk).

Hint: Show that it suffices to consider u supported in a small neighbor-
hood of a single point in Rk. Then take the Fourier transform of u and
try to integrate in the conormal variables to obtain the Fourier transform
of the restriction.

(2) Show that, with the notation of the previous part,

WF ι∗u ⊆ ι∗(WFu)

where ι∗ : T ∗
RkR

n → T ∗Rk is the naturally defined projection map.
(3) Show that both the previous parts make sense, and are valid, for restriction

to an embedded submanifold Y of a manifold X.
(4) Show that if u is a distribution on R

k
x and v is a distribution on R

l
y then

w = u(x)v(y) is a distribution on Rk+l and

WFw ⊆
[
(suppu, 0)×WF v

]
∪

[
WFu× (supp v, 0)

]
∪WFu×WF v.

(Hint: Localize and Fourier transform, as in (4.1).)

You might wonder: given P, can the wavefront set of a solution to Pu = 0 be
any closed subset of Σ? The answer is no, there are, in general, further constraints.
To talk about them effectively, we should digress briefly back into geometry.
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4.1. Hamilton flows. We now amplify the discussion §3.2 of Hamiltonian
mechanics and symplectic geometry, generalizing it to a broader geometric context.

Let N be a symplectic manifold, that is to say, one endowed with a closed,
nondegenerate19 two-form. (Our prime example is N = T ∗X, endowed with the
form

∑
dξj ∧ dxj ; by Darboux’s theorem, every symplectic manifold in fact locally

looks like this.)
Given a real-valued function a ∈ C∞(N), we can make a Hamilton vector field

from a as follows: by nondegeneracy, there is a unique vector field Ha such that
ιHa

ω ≡ ω(·,Ha) = da.

Exercise 4.12. Check that in local coordinates in T ∗X,

Ha =

n∑
j=1

∂a

∂ξj
∂xj − ∂a

∂xj
∂ξj .

Thus, for any smooth function b, we may define the Poisson bracket

{a, b} = Ha(b)

Exercise 4.13. Check that the Poisson bracket is antisymmetric.

It is easy to verify that the flow along Ha preserves both the symplectic form
and the function a : we have from Cartan’s formula (and since ω is closed):

LHa
(ω) = dιHa

ω = d(da) = 0;

also,

Ha(a) = da(Ha) = ω(Ha,Ha) = 0.

The integral curves of the vector field Ha are called the bicharacteristics of a
and those lying inside Σa = {a = 0} are called null bicharacteristics.

Exercise* 4.14.

(1) Show that the bicharacteristics of |ξ|g = (σ2(Δ))1/2 project to X to be

geodesics. The flow along the Hamilton vector field of |ξ|g is known as
geodesic flow.

(2) Show that the null bicharacteristics of σ2(�) are lifts to T ∗(R × X) of
geodesics of X, traversed both forward and backward at unit speed.

Recall that the setting of symplectic manifolds is exactly that of Hamiltonian
mechanics: given such a manifold, we can regard it as the phase space for a particle;
specifying a function (the “energy” or “Hamiltonian”) gives a vector field, and the
flow along this vector field is supposed to describe the time-evolution of our particle
in the phase space.

Exercise 4.15. Check that the phase space evolution of the harmonic oscillator
Hamiltonian, (1/2)(ξ2 + x2) on T ∗R, agrees with what you learned in physics class
long ago.

19Nondegeneracy of ω means that contraction with ω is an isomorphism from TpN to T ∗
pN

at each point.
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4.2. Propagation of singularities.

Theorem 4.11 (Hörmander). Let Pu ∈ C∞(X), with P ∈ Ψm(X) an opera-
tor with real principal symbol. Then WFu is a union of maximally extended null
bicharacteristics of σ̂m(P ) in S∗X.

We should slightly clarify the usage here: to make sense of these null bichar-
acteristics, we should actually take the Hamilton vector field of the homogeneous
version of the symbol, σm(P ); this is a homogeneous vector field, and its integral
curves thus have well-defined projections onto S∗X. If the Hamilton vector field
should be “radial” at some point q ∈ T ∗X, i.e. coincide with a multiple of the
vector field ξ · ∂ξ there, then the projection of the integral curve through q is just a
single point in S∗X, and the theorem gives no further information about wavefront
set at that point.

For P = �, the theorem says that the wavefront set lies in the “light cone,”
and propagates forward and backward at unit speed along geodesics. If we take the
fundamental solution to the wave equation20u = sin(t

√
Δ/
√
Δ)δp, it is not hard to

compute that in fact for small, nonzero time,21

WFu ⊆ N∗{d(·, p) = |t|} ≡ L;
This is a generalization of Huygens’s Principle, which tells us that in R×R

n, for n
odd, the support of the fundamental solution is on this expanding sphere (but which
is a highly unstable property). Note that L is in fact the bicharacteristic flowout
of all covectors in Σ projecting to N∗({p}) at t = 0, and under this interpretation,
L ⊂ T ∗(R×X) makes sense for all times, not just for short time, regardless of the
metric geometry. We shall return to and amplify this point of view in §9.

Exercise 4.16.

(1) Suppose that �u = 0 on R × Rn and u(t, x) ∈ C∞ for (t, x) ∈ (−ε, ε) ×
B(0, 1) for some ε > 0. Show, using Theorem 4.11, that u ∈ C∞ on
{|x| < 1−|t|}. Can you show this more directly using the energy methods
described in §2.3?

(2) Suppose that �u = 0 on R × Rn and u(t, x) ∈ C∞ for (t, x) ∈ (−ε, ε) ×
(B(0, 1)\B(0, 1/2)) for some ε > 0. Show, using the theorem, that u ∈ C∞
in {|x| < 1− |t|} ∩ {|t| ∈ (3/4, 1)}

Proof.
22 Note that we already know that WFu ⊆ ΣP by Theorem 4.6, hence

what remains to be proved is the flow-invariance.
Let q ∈ ΣP ⊂ S∗X. By homogeneity of σm(P ), we can write the Hamilton

vector field in T ∗X in a neighborhood of q as

(4.2) Hp = |ξ|m−1
(V + hR),

where R denotes the radial vector field ξ · ∂ξ, h is a function on S∗X, and V is the
pullback under quotient of a vector field on S∗X itself, i.e. V is homogeneous of

20This is the spectral-theoretic way of writing the solution with initial value 0 and initial
time-derivative δp.

21Well, I am cheating a bit here, as we haven’t stated any results allowing us to relate the
wavefront set of Cauchy data for the wavefront set of the solution to the equation. To understand
how to do this, you should read [17].

22This proof is very close to those employed by Melrose in [17] and [18].
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degree zero with no radial component, hence of the form
∑

j fj(x, ξ̂)∂ξ̂j+gj(x, ξ̂)∂xj .

Note that if a is homogeneous of degree l then

(4.3) Ra = la.

(Exercise: Verify these consequences of homogeneity.)
By the comments above, we may take V 
= 0 near q; otherwise the theorem

is void. Thus, without loss of generality, we may employ a coordinate system
α1, . . . , α2n−1 for S∗X in which

(4.4) V = ∂α1
,

hence using α, |ξ| as coordinates in T ∗X,

Hp = ∂α1
+ hR;

we may shift coordinates so that α(q) = 0. We split the α variables into α1 and
α′ = (α2, . . . , αn−1).

Since WFu is closed, it suffices to prove the following: if q /∈ WFu then
Φt(q) /∈ WFu for t ∈ [−1, 1], where Φt denotes the flow generated by V.23 (This
will show that the intersection of WFu with the bicharacteristic through q is both
open and closed, hence is the whole thing.)

We can make separate arguments for t ∈ [0, 1] and t ∈ [−1, 0], and will do so
(in fact, we will leave one case to the reader).

For simplicity, let us take Pu = 0; we leave the case of an inhomogeneous
equation for the reader (it introduces extra terms, but no serious changes will in
fact be necessary in the proof).

Since WFu is closed, our assumption that q /∈ WFu tells us that there is in
fact a 2δ-neighborhood of 0 in the α coordinates that is disjoint from WFu; we are
trying to extend this regularity along the rest of the set (α1, α

′) ∈ [0, 1] × 0. We
proceed as follows: let

(4.5) s0 = sup{s : WFs u ∩ {(α1, α
′) ∈ [0, 1]×B(0, δ)} = ∅}.

Pick any s < s0. We will show that in fact

(4.6) WFs+1/2 u ∩ {(α1, α
′) ∈ [0, 1]×B(0, δ)} = ∅,

thus establishing that s0 = ∞, which is the desired result (by Proposition 4.10).
One can regard this strategy as iteratively obtaining more and more regularity
for u along the bicharacteristic (i.e. the idea is that we start by knowing some
possibly very bad regularity, and we step by step conclude that we can improve
upon this regularity, half a derivative at a time). More colloquially, the idea is
that the “energy,” as measured by testing the distribution u by pseudodifferential
operators, should be comparable at different points along the bicharacteristic curve.

Now we prove the estimates that yield (4.6) via commutator methods. Let φ(s)
be a cutoff function with

(4.7)
φ(t) > 0 on (−1, 1),

suppφ = [−1, 1] .

23Of course, we are assuming here that the interval [−1, 1] remains in our coordinate neigh-
borhood; rescale the coordinates if necessary to make this so.
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Let φδ(s) = φ(δ−1s); arrange that
√
φ ∈ C∞. Let χ be a cutoff function equal to 1

on (0, 1) and with χ′ = ψ1−ψ2, with ψ1 supported on (−δ, δ) and ψ2 on (1−δ, 1+δ);
we will further assume that

√
χ,
√
ψi ∈ C∞.

Exercise 4.17. Verify that cutoffs with these properties exist.

In our coordinate system for S∗X, let

â = φδ(|α′|)χ(α1)e
−λα1 ∈ C∞(S∗X),

with λ � 0 to be chosen presently. Passing to the corresponding function on
a ∈ C∞(T ∗X) that is homogeneous of degree 2s−m+ 2, we have

(4.8) Hp(a) = |ξ|2s+1(− λφδ(|α′|)χ(α1)e
−λα1

+ φδ(|α′|)(ψ1 − ψ2)e
−λα1 + h(α)(2s−m+ 2)a

)
with h given by (4.2). Since a 2δ coordinate neighborhood of the origin was as-
sumed absent from WFu, we have in particular ensured that suppφδ(|α′|)ψ1(α1)
is contained in (WFu)c. We also have supp â ⊂ (WFs u)c by (4.5), since s < s0.

suppψ1φδ suppψ2φδ

Hp

supp â

α1

χ(α1)e
−λα1

Figure 1. The support of the commutant and its value along the
line α′ = 0. The support of the term ψ1(α1)φδ(|α′|) is arranged to
be contained in the complement of WFu, while the support of the
whole of a is arranged to be in the complement of WFs u.

Let A ∈ Ψ2s−m+2(X) be given by the quantization of a.24 Since σm(P ) is real
by assumption, we have P ∗ − P ∈ Ψm−1(X). (Exercise: Check this!) Thus the
“commutator” P ∗A−AP, which is a priori of order 2s+2, has vanishing principal
symbol of order 2s+ 2, hence it in fact lies in Ψ2s+1(X), and we may write

(P ∗A−AP ) = [P,A] + (P ∗ − P )A,

24I.e., really A is given by cutting off a near ξ = 0 to give a smooth total symbol and
quantizing that.
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with

(4.9) iσ2s+1([P,A] + (P ∗ − P )A) = Hp(a) + σm−1(P
∗ − P )a

= −λφδ(|α′|)χ(α1)e
−λα1 |ξ|2s+1

+ φδ(|α′|)(ψ1 − ψ2)e
−λα1 |ξ|2s+1

+ (iσm−1(P
∗ − P ) + h(α)(2s−m+ 2))a,

by (4.2),(4.3), and (4.4). If λ � 0 is chosen sufficiently large, we may absorb the
third term into the first, and write the RHS of (4.9) as

−f(α)φδ(|α′|)χ(α1) + φδ(|α′|)(ψ1 − ψ2)e
−λα1

with f > 0 on the support of φδχ.
Let B ∈ Ψ(2s+1)/2(X) be obtained by quantization of

|ξ|s+1/2(f(α)φδ(|α′|)χ(α1))
1/2;

and let Ci ∈ Ψ(2s+1)/2(X) be obtained by quantization of

|ξ|s+1/2
(φδ(|α′|)ψi(α1))

1/2e−λα1/2.

Then by the symbol calculus, i.e. by Properties III, IV of the calculus of pseudo-
differential operators,

(4.10) i(P ∗A− AP ) = i(P ∗ − P )A+ i[P,A] = −B∗B + C∗
1C1 − C∗

2C2 +R

with R ∈ Ψ2s(X), hence of lower order than the other terms; moreover we have
WF′ R ⊂ supp â.

Now we “pair” both sides of (4.10) with our solution u. We have

i〈(P ∗A−AP )u, u〉 = 〈(−B∗B + C∗
1C1 − C∗

2C2 +R)u, u〉;
as we are taking Pu = 0, the LHS vanishes.25 We thus have, rearranging this
equation,

(4.11) ‖Bu‖2 + ‖C2u‖2 = ‖C1u‖2 + 〈Ru, u〉.
I claim that the RHS is finite: Recall that R lies in Ψ2s(X). Let Λ be an operator of
order s, elliptic on WF′ R and with WF′ Λ contained in the complement of WFs u.

Exercise 4.18. Show that such a Λ exists.

Thus, letting Υ be a microlocal parametrix for Λ on WF′ R, we have

WF′ R ∩WF′(Id−ΛΥ) = ∅,
hence

R − ΛΥR = E ∈ Ψ−∞(X).

Thus,
|〈Ru, u〉| ≤ |〈ΥRu,Λ∗u〉|+ |〈Eu, u〉| <∞

by Corollary 4.9 since WF′ ΥR ∪WF′ Λ∗ ⊂ (WFs u)c (and since E is smoothing).

Returning to (4.11), we also note that the term ‖C1u‖2 is finite by our assumptions

on the location of WFs+1/2 u (and another use of Corollary (4.9)). Thus,

‖Bu‖ <∞,

and consequently,

WFs+1/2 u ∩ ellB = ∅,
which was the desired estimate. �

25In the case of an inhomogeneous equation, it is of course here that extra terms arise.
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Exercise 4.19. Now see how the argument should be modified to yield absence

of WFs+1/2 u on
{α′ ∈ [−1, 0], α′ = 0}.

One cheap alternative to going through the whole proof might be to notice that
we also have (−P )u ∈ C∞, and that H−p = −Hp; thus, the “forward propagation”
that we have just proved should yield backward propagation along Hp as well.

The fine print: Now, having done all that, note that it was a cheat. In particular,
we didn’t know a priori that we could apply any of the operators that we used to
u and obtain an L2 function, let alone justify the formal integrations by parts
used to move adjoints across the pairings. Therefore, to make the above argument
rigorous, we need to modify it with an approximation argument. This is similar to
the situation in Exercise 2.7, except in that case, we had a natural way of obtaining
smooth solutions to the equation which approximated the desired one: we could
replace our initial data ψ0 for the Schrödinger equation by, for instance, e−εΔψ0; the
solution at later time is then just e−εΔψ, and we can consider the limit ε ↓ 0. In the
general case to which this theorem applies, though, we do not have any convenient
families of smoothing operators commuting with P. So we instead take the tack
of smoothing our operators rather than the solution u. We should manufacture a
family of smoothing operators Gε that strongly approach the identity as ε ↓ 0, and
replace A by AGε everywhere it appears above. If we do this sensibly, then the
analogs of the estimates proved above yield the desired estimates in the ε ↓ 0 limit.
Of course, we need to know how Gε passes through commutators, etc., so the right
thing to do is to take the Gε themselves to be pseudodifferential approximations of
the identity, something like

Gε = Op�(ϕ(ε|ξ|))
on Rn, with ϕ ∈ C∞c (R) a cutoff equal to 1 near 0. We content ourselves with refer-
ring the interested reader to [18] for the analogous development in the “scattering
calculus” including details of the approximation argument.

Exercise 4.20.

(1) Show the following variant of Theorem 4.11: if P ∈ Ψm(X) is an operator

with real principal symbol, and Pu ∈ C∞(X), show that WFk u is a union
of maximally extended bicharacteristics of P for each k ∈ R. (Hint: the
proof is a subset of the proof of Theorem 4.11.)

(2) Show the following inhomogeneous variant of Theorem 4.11: if P ∈ Ψm(X)
is an operator with real principal symbol, and Pu = f, show that
WFu\WF f is a union of maximally extended bicharacteristics of P.

Exercise 4.21.

(1) What does Theorem 4.11 tell us about solutions to the Schrödinger equa-
tion? (Hint: not much.)

(2) Nonetheless: let ψ(t, x) be a solution to the Schrödinger equation on
R ×X with (X, g) a Riemannian manifold; suppose that ψ(0, x) = ψ0 ∈
H1/2(X). Define a set S1 ⊂ S∗X by

q /∈ S1 ⇐⇒ there exists A ∈ Ψ1(X), q ∈ ell(A),

such that

∫ 1

0

‖Aψ‖2 dt <∞.
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(In other words, S1 is a kind of wavefront set measuring where in the
phase space S∗X we have ψ ∈ L2([0, 1];H1(X))—cf. Exercise 2.7.)

Show that S1 is invariant under the geodesic flow on S∗X. (See Ex-
ercise 4.14 for the definition of geodesic flow.)

(Hint: use (2.2) with A an appropriately chosen pseudodifferential
operator of order zero, constructed much like the ones used in proving
Theorem 4.11.)

Reflect on the following interpretation: “propagation of L2H1 regular-
ity for the Schrödinger equation occurs at infinite speed along geodesics.”

5. Traces

It turns out to be of considerable interest in spectral geometry to consider
the traces of operators manufactured from Δ, the Laplace-Beltrami operator on a
compact26 Riemannian manifold. The famous question posed by Kac [15], “Can
one hear the shape of a drum,” has a natural extension to this context: Recall from
Exercise 3.11 that there exists an orthonormal basis φj of eigenfunctions of Δ with
eigenvalues λ2

j → +∞; what, one wonders, can one recover of the geometry of a
Riemannian manifold from the sequence of frequencies λj? Using PDE methods to
understand traces of functions of the Laplacian has led to a better understanding
of these inverse spectral problems.

Recall from Proposition 3.5 that
√
Δ is a first-order pseudodifferential operator

on X. It is a slightly inconvenient fact that while
√
Δ ∈ Ψ1(X),

√
Δ /∈ Ψ1(R×X) :

its Schwartz kernel is easily seen to be singular away from the diagonal. But this
turns out be be of little practical importance for our considerations here: it is close
enough!

Let us now consider the operator

(5.1) U(t) = e−it
√
Δ

which can be defined by the functional calculus to act as the scalar operator e−itλj

on each φj . U(t) is unitary, and indeed is the solution operator to the Cauchy
problem for the equation

(5.2) (∂t + i
√
Δ)u = 0;

that is to say, if u = U(t)f, we have

(∂t + i
√
Δ)u = 0, and u(0, x) = f(x).

Equation (5.2) is easily seen to be very closely related to the wave equation: if u

solves (5.2) then applying ∂t − i
√
Δ, we see that u also satisfies the wave equation.

Of course, (5.2) only requires a single Cauchy datum, unlike the wave equation, so
the trade-off is that the Cauchy data of u as a solution to �u = 0 are constrained:
we have

u(0, x) = f(x), ∂tu(0, x) = −i
√
Δf.

The real and imaginary parts of the operator U(t) are exactly the solution oper-
ators to the (more usual) Cauchy problem for the wave equation with u(0, x) =

f(x), ∂tu(0, x) = 0 and with u(0, x) = 0, ∂tu(0, x) = −i
√
Δf(x) respectively.

26We especially emphasize that X denotes a compact manifold throughout this section.
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Why is the operator U(t) of interest? Well, suppose that we are interested in
the sequence of λj ’s. It makes sense to combine these numbers into a generating
function, and certainly one option would be to take the exponential sum27∑

j

e−itλj

This is, at least formally, nothing but the trace of the operator U(t). One of the prin-
cipal virtues of this generating function is that if we let N(λ) denote the “counting
function”

N(λ) = #{λj ≤ λ},
then we have

N ′(λ) =
∑
j

δ(λ− λj),

hence ∑
e−itλj = (2π)n/2Fλ→t(N

′(λ))(t).

This is all a bit optimistic, as U(t) is easily seen to be not of trace class—
for example at t = 0 it is the identity. So we should try and think of TrU(t)
as a distribution. We do know that for any test function ϕ(t) ∈ S(R) and any
f ∈ L2(X),

(5.3)

∫
ϕ(t)U(t)f dt =

∫
(1 +D2

t )
−k(1 +D2

t )
k(ϕ(t))U(t)f dt

=

∫
(1 +D2

t )
k(ϕ(t))(1 +D2

t )
−kU(t)f dt

=

∫
(1 +D2

t )
k(ϕ(t))(1 + Δ)−kU(t)f dt,

since D2
tU = ΔU. Here we can, if we like, consider (1 + Δ)−k to be defined by the

functional calculus; it is in fact pseudodifferential, of order −2k. We easily obtain
(using either point of view) the estimate:

(1 + Δ)−kU(t) : L2(X)→ H2k(X);

hence, for k � 0, the operator (1 + Δ)−kU(t) is of trace class.

Exercise 5.1. Prove that this operator is of trace class for k � 0. (Hint: One
easy route is to think about first choosing k large enough that the Schwartz kernel is
continuous, hence the operator is Hilbert-Schmidt; then you can take k even larger
to get a trace-class operator, by factoring into a product of two Hilbert-Schmidt
operators (see Appendix).)

Equation (5.3) thus establishes that

TrU(t) : ϕ �→ Tr

∫
ϕ(t)U(t) dt

makes sense as a distribution on R. We can thus write

(5.4) TrU(t) = (2π)n/2F(N ′)(t).

27This choice of generating function, corresponding to taking the wave trace, is of course one
choice among many. Some other approaches include taking the trace of the complex powers of the
Laplacian or the heat trace. The idea of using (at least some version of) the wave trace originates
with Levitan and Avakumovič.
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where both sides are defined as distributions. Our next goal is to try to understand
the left side of this equality through PDE methods.

Exercise 5.2. Show that if the Schwartz kernel K(x, y) of a bounded, normal
operator T on L2(X) is in Ck(X) for sufficiently large k, then T is of trace-class
and

TrT =

∫
K(x, x) dg(x).

(Hint: Check that K is trace-class as in the previous exercise. Then apply the
spectral theorem for compact normal operators, and use the basis of eigenfunctions
of K when computing the trace. The crucial thing to check is that if ϕj are the
eigenfunctions, then ∑

ϕj(x)ϕj(y) = δΔ,

the delta-distribution at the diagonal, since this is nothing but a spectral resolution
of the identity operator.)

As a consequence of Exercise 5.2, we can compute the distribution TrU(t) in
another way if we can compute the Schwartz kernel of U(t). Indeed, knowing even
rather crude things about U(t) can give us some useful information here.

Theorem 5.1. Let Φt be the geodesic flow, i.e. the flow generated by the Hamil-
ton vector field of |ξ|g ≡ (

∑
gijξiξj)

1/2. Then

WFU(t)f = Φt(WF f).

We begin with a lemma:

Lemma 5.2. Let (∂t + i
√
Δ)u = 0. Then

(x0, ξ0) ∈WFu|t=t0

if and only if

(t = t0, τ = −|ξ0|, x0, ξ0) ∈WFu.

Proof.
28 Suppose q = (x0, ξ0) ∈WFu|t=t0 . Since q̃ = (t = t0, τ = −|ξ0|, x0, ξ0)

is the only vector in Σ∂t+i
√
Δ that projects to (x0, ξ0), it must lie in the wavefront

set of u by Exercise 4.11.
The converse is harder. Suppose q /∈ WFu|t=t0 . Let v = H(t − t0)u, with H

denoting the Heaviside function. Then

(∂t + i
√
Δ)v = δ(t− t0)u(t0, x) ≡ f.

and v vanishes identically for t < t0. By the last part of Exercise 4.11,

q̃ /∈WF f,

hence (since WF f only lies over t = t0) certainly no points along the bicharacteristic
through q̃ lie in WF f. Moreover, no points along this bicharacteristic lie in WF v
for t < t0 (since v is in fact zero there). Hence by the version of the propagation of
singularities in the second part of Exercise 4.20, this bicharacteristic is absent from
WFu. In particular, q̃ /∈WFu. �

28I am grateful to András Vasy for showing me this proof.
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Theorem 5.1 now follows directly29 from the lemma and Theorem 4.11.
We now require a result on microlocal partitions of unity somewhat generalizing

Lemma 4.1:

Exercise 5.3. Let ρj , j = 1, . . . , N be a smooth partition of unity for S∗X.
Show that there exists Aj ∈ Ψ0(X) with WF′ Aj = supp ρj , σ̂0(Aj) = ρj , A

∗
j = Aj ,

and
N∑
j=1

A2
j = Id−R,

with R ∈ Ψ−∞(X).

For a distribution u, let singsupp u (the “singular support” of u) be the pro-
jection of its wavefront set, i.e. the complement of the largest open set on which it
is in C∞.

Theorem 5.3.

singsuppTrU(t) ⊆ {0} ∪ {lengths of closed geodesics on X}.

This theorem is due to Chazarain and to Duistermaat-Guillemin.
We begin with the following dynamical result:

Lemma 5.4. Let L not be the length of any closed geodesic. Then there exists
ε > 0 and a cover Ui of S∗X by open sets such that for t ∈ (L − ε, L + ε), there
exists no geodesic with start- and endpoints both contained in the same Ui.

Exercise 5.4.

(1) Prove the lemma. (Hint: The cosphere bundle is compact.)
(2) As long as you’re at it, show that 0 is an isolated point in the set of lengths

of closed geodesics (“length spectrum”), and that the length spectrum is
a closed set.

We now prove Theorem 5.3.

Proof. Let L not be the length of any closed geodesic on X. Let Uj be a cover
of S∗X as given by Lemma 5.4. Let ρj be a partition of unity subordinate to Uj

and let Aj be a microlocal partition of unity as in Exercise 5.3. Then, calculating
with distributions on R

1, we have

TrU(t) =
∑
j

TrA2
jU(t) + TrRU(t)

=
∑
j

TrAjU(t)Aj +TrRU(t)

and, more generally,

D2m
t TrU(t) =

∑
j

TrAjΔ
mU(t)Aj +TrRΔmU(t).

29Here is one of the places where we should worry about the fact that
√
Δ is not a pseudodif-

ferential operator on R×X. This problem is seen not to affect the proof of Hörmander’s theorem

if we note that composing
√
Δ with a pseudodifferential operator that is microsupported in a

neighborhood of the characteristic set {|τ | = −|ξ|g} yields an operator that is pseudodifferential,

and that the symbol calculus extends to such compositions. (The author confesses that this is not
entirely a trivial matter.)
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Let u be a distribution on X; then WFAju ⊆ WF′ Aj ⊂ Uj . Thus Theorem 5.1
gives

WFΔmU(t)Aju ⊆ Φt(Uj).

But by construction, this set is disjoint from Uj and hence from WF′ Aj . Hence for
any m,30

AjΔ
mU(t)Aj ∈ L∞([L− ε, L+ ε]; Ψ−∞(X));

consequently,
D2m

t TrU(t) ∈ L∞([L− ε, L+ ε]). �

Exercise 5.5. Show that in the special case of X = S1, Theorem 5.3 can be
deduced from the Poisson summation formula. For this reason it is often referred
to as the Poisson relation.

One is tempted to conclude from (5.4) and Theorem 5.3 that one can “hear” the
lengths of closed geodesics on a manifold, since the right side of (5.4) is determined
by the spectrum, and the left side seems to be a distribution from whose singularities
we can read off the lengths of closed geodesics. The trouble with this approach
is that we do not know with any certainty from Theorem 5.3 that the putative
singularities in TrU(t) at lengths of closed geodesics are actually there: perhaps
the distribution is, after all, miraculously smooth. Thus, proving actual inverse
spectral results requires somewhat more care, as we shall see. To this end, we will
begin studying the operator U(t) more constructively in the following section.

6. A parametrix for the wave operator

In order to learn more about the wave trace, we will have to bite the bullet
and construct an approximation (“parametrix”) for the fundamental solution to the
wave equation on a manifold. The approach will have a similar iterative flavor to
the technique we used to construct an approximate inverse for an elliptic operator,
but we have now left the comfortable world of pseudodifferential operators: the
parametrix we construct is going to be something rather different. Exactly what,
and how to systematize the kinds of calculation we do here, will be discussed later
on.

As this construction will be local, we will work in a single coordinate patch,
which we identify with Rn; for the sake of exposition, we omit the coordinate
maps and partitions of unity necessary to glue this construction into a Riemannian
manifold.

Consider once again the “half-wave equation”31

(6.1) (Dt +
√
Δ)u = 0

on R
n, where Δ is the Laplace-Beltrami operator with respect to a metric g. Our

goal is to find a distribution u approximately solving (6.1) with initial data

u(0, x, y) = δ(x− y)

for any y ∈ R
n. Recall that if we let U denote the exact solution to (6.1) with

initial data δ(x− y) then U can also be interpreted as (the Schwartz kernel of) the

30We technically have to work just a little to obtain the uniformity in time: observe that
AjΔ

mU(t)Aj are a continuous (or even smooth) family of smoothing operators. We have been

avoiding the topological issues necessary to easily dispose of such matters, however.
31Remember that Dt = i−1∂t.
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“solution operator” mapping initial data f to the solution e−it
√
Δf with that initial

data, evaluated at time t; this is why we denote it U, as we did above, and why we
will often think of our parametrix u(t, x, y) as a family in t of integral kernels of
operators on Rn.

We do not expect U(t, x, y) or our parametrix for it to be the Schwartz kernel of
a pseudodifferential operator, as it moves wavefront set around, by Theorem 4.11;
recall that pseudodifferential operators are microlocal, which is to say they don’t
do that. But we will try and construct our parametrix u(t, x, y) as something of
roughly the same form, which is to say as an oscillatory integral

u(t, x, y) =

∫
a(t, x, η)eiΦ dη

where the main difference is that the “phase function” Φ = Φ(t, x, y, η) will be
something a good deal more interesting than (x− y) · η; indeed, this phase function
is where all the geometry of the problem turns out to reside.

First, let’s write our initial data as an oscillatory integral:

δ(x− y) = (2π)−n

∫
ei(x−y)·η dη.

Let us now try, as an Ansatz, modifying the phase as it varies in t, x by setting

(6.2) u(t, x, y) = (2π)−n

∫
a(t, x, η)ei(φ(t,x,η)−y·η) dη;

then if φ(0, x, η) = x · η and a(0, x, η) = 1, we recover our initial data; moreover,
if φ were to remain unchanged as t varied we would have nothing but a family of
pseudodifferential operators. Let us assume that a is a classical symbol of order 0
in η, so that we have an asymptotic expansion

a ∼ a0 + |η|−1
a−1 + |η|−2

a−2 + . . . , aj = aj(t, x, η̂).

Let us further assume that φ is homogeneous in η of degree 1, hence matches the
homogeneity32 of x · η.

Now if u solves the half-wave equation, it solves the wave equation, hence we
have

�u = 0;

As we seek an approximate solution, we will instead accept

�u ∈ C∞((−ε, ε)t × R
n).

Our strategy is to plug (6.2) into this equation and see what is forced upon us. To
this end, note that if we have an expression

(6.3) v = (2π)−n

∫
b(t, x, y, η)ei(φ(t,x,η)−y·η) dη;

where b is a symbol of order −∞, then v lies in C∞, as the integral converges
absolutely, together with all its t, x, y derivatives. So terms of this form will be
acceptable errors.

Applying � to (6.2), we group terms according to their order in η. The “worst
case” terms involve factors of η2, and can only be produced by second-order terms

32That is is then likely to be singular at η = 0 will not in fact concern us, as it will turn out
that we may as well assume that a vanishes near η = 0.
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in �, with all derivatives falling on the exponential term. Since the second-order
terms in Δ are just ∑

gij(x)DiDj ,

we can write the term this produces from the phase as |dxφ|2g or, equivalently,

|∇xφ|2g. Thus, the equation that we need to solve to make the η2 terms vanish is
just

(6.4) (∂tφ)
2 − |∇xφ|2g = 0.

Recall that we further want our phase to agree with the standard pseudodifferential
one at time zero, i.e. we want

(6.5) φ(0, x, η) = x · η.

Combining this information with (6.4) we easily see that we in particular have

(∂tφ|t=0)
2 = |η|2g,

and we need to make an arbitrary choice of sign in solving this to get the initial
time-derivative: we will choose33

(6.6) ∂tφ|t=0 = −|η|g.

If our metric is the Euclidean metric, we can easily solve (6.4), (6.5), and (6.6)
by setting

φ(t, x, η) = x · η − t|η|.
More generally, the construction of a phase satisfying (6.4),(6.5) and (6.6) is the
classic construction of Hamilton-Jacobi theory, and is sketched in the following
exercise.

Exercise 6.1.

(1) Show that equation (6.4) is equivalent to the statement that for each η,
the graph of dt,xφ(t, x, η) is contained in the set

Λ = {τ2 − |ξ|2g = 0} ⊂ T ∗(Rt × R
n
x)

(where the variables τ and ξ are the canonical dual variables to t and x
respectively). The condition (6.5) implies

dxφ(t, x, η)|t=0 = η · dx.

Equation (6.6) gives further

(6.7) dt,xφ(t, x, η)|t=0 = −|η| dt+ η · dx;

accordingly, for fixed η, let

G0 = {t = 0, x ∈ R
n, τ = −|η|, ξ = η} ⊂ T ∗(R× R

n).

(2) Let H denote the Hamilton vector field of τ2 − |ξ|2g. Show that flow along
H preserves Λ and that H is transverse to G0.

33We will use this solution for reasons that will become apparent presently—it is the right
one to solve (5.2) and not merely the wave equation.
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(3) Show that there is a solution to (6.4),(6.7) for t ∈ (−ε, ε) where the graph
of dt,xφ is given by flowing out the set G0 under H. (Among other things,
you need to check that the resulting smooth manifold is indeed the graph
of the differential of a function.) Show that this solution can be integrated
to give a solution to (6.4),(6.5).

Employing the phase φ constructed in Exercise 6.1, we have now solved away
the homogeneous degree-two (in η) terms in the application of � to our parametrix.
We thus move on to the degree-one terms, which are as follows:

(6.8) 2DtφDta0 − 2〈Dxφ,Dx〉ga0 + r1(t, x, y, η)

where r1 is a homogeneous function of degree 1 independent of a0, i.e. determined
completely by φ. Given that φ solves the eikonal equation, we can rewrite (6.8) by
factoring out |∇xφ| and noting that our sign choice ∂tφ = −|∇xφ| must persist
away from t = 0 (for a short time, anyway). In this way we obtain

2∂ta0 + 2
〈 ∇xφ

|∇xφ| g
, ∂x

〉
g
a0 − r̃1 = 0,

with r̃1 homogeneous of degree 0. This is a transport equation that we would like
to solve, with the initial condition a0(0, x, y, η) = 1 (the symbol of the identity
operator). We can easily see that a solution exists with the desired initial condition
a0(0, y, η) = 1, as, letting

H = 2∂t + 2
〈 ∇xφ

|∇xφ| g
, ∂x

〉
g

we see that H is a nonvanishing vector field, transverse to t = 0, hence we may solve

Ha0 = r̃1, a0|t=0 = 1

by standard ODE methods.
Now we consider degree-zero terms in η. We find that they are of the form

2DtφDta−1 − 2〈Dxφ,Dx〉ga−1 + r0(t, x, y, η)

where r0 only depends on a0 and φ (i.e. not on a−1). Thus, we may use the same
procedure as above to find a−1 with initial value zero, making the degree-zero term
vanish. (Note that the vector field H along which we need to flow remains the same
as in the previous step.)

We continue in this manner, solving successive transport equations along the
flow of H so as to drive down the order in η of the error term. Finally we Borel
sum the resulting symbols, obtaining a symbol

a(t, x, η) ∈ S0
cl(R

2n
x,y × R

n
η )

such that

a(0, x, η) = 1,

and

(6.9) �u = �
(
(2π)−n

∫
a(t, x, η)ei(φ(t,x,η)−y·η) dη

)

= (2π)−n

∫
b(t, x, y, η)ei(φ(t,x,η)−y·η) dη ∈ C∞((−ε, ε)×X),

since b ∈ S−∞.
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Now we need to check that (6.9) implies that in fact u differs by a smooth term
from the actual solution. We will show soon (in the next section) that our choice
of the phase implies that34 WFu ⊂ {τ < 0}. Hence, using this fact, we have

(6.10) (∂t − i
√
Δ)(∂t + i

√
Δ)u = f ∈ C∞.

Now ∂t − i
√
Δ is elliptic on τ < 0, so, letting Q denote a microlocal elliptic

parametrix, we have

Q(∂t − i
√
Δ) = I + E

with WF′ E ∩WFu = ∅. Thus, applying Q to both sides of (6.10), we have

(∂t + i
√
Δ)u ∈ C∞.

Also, as we have arranged that a(0, x, η) = 1, we have got our initial data exactly
right: u(0, x, y) = δ(x− y). Letting U denote the actual solution operator to (5.2),
we thus find

(∂t + i
√
Δ)(u− U) ∈ C∞, u(0, x, y)− U(0, x, y) = 0;

hence by global energy estimates35 we have

u− U ∈ C∞((−ε, ε)× R
n).

7. The wave trace

Our treatment of this material (and, in part, that of the previous section)
closely follows the treatment in [7], which is in turn based on work of Hörmander
[9].

Recall that, if N(λ) = #{λj ≤ λ} and U(t) is given by (5.1), then

(7.1) TrU(t) = (2π)n/2F(N ′(λ)).

Thus, the singularities of TrU(t) are related to the growth of N(λ). We think that
TrU(t) should have singularities at zero, together with lengths of closed geodesics;
since U(0) is the identity (which has a very divergent trace), the singularity at
t = 0, at least, seems certain to appear. We will thus spend some time discussing
this singularity of the wave trace and its consequences for spectral geometry.

What is the form of the singularity of TrU(t) at t = 0? Our parametrix from
the previous section was

u(t, x, y) = (2π)−n

∫
a(t, x, η)ei(φ(t,x,η)−y·η) dη,

where φ(t, x, η) = x · η − t|η|g(x) +O(t2), and a(t, x, η) = 1 +O(t). Thus,

(7.2) u(t, x, x) = (2π)−n

∫
a(t, x, η)ei(−t|η|g(x)+O(t2|η|)) dη,

where we have used the homogeneity of the phase in writing the error term as
O(t2|η|).

34This can also be verified directly, with localization, Fourier transform, and elbow grease.
35We can either use the estimates developed in §2.3, adapted to this variable coefficient

setting, and with a power of the Laplacian applied to the solution (in order to gain derivatives);
or we can apply Theorem 4.11, which is overkill.
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Formally, we would now like to conclude that the singularity at t = 0 is ap-
proximately that of

u(t, x, x) = (2π)−n

∫
e−it|η|g(x) dη

so that integrating in x would give, if all goes well,

(7.3)

TrU(t) ∼
∫

u(t, x, x) dx

∼ (2π)−n

∫∫
e−it|η|g dη dx

= (2π)−n

∫∫∫
σ>0,|θ|=1

e−itσ|θ|gσn−1 dσ dθ dx

= (2π)−n/2

∫∫
F(σn−1H(σ))(t|θ|g) dθ dx,

with H denoting the Heaviside function. (Recall that the notation f ∼ g means
that (f/g)→ 1, in this case as t→ 0.) If we crudely try to solve (7.1) for N ′(λ) by
applying an inverse Fourier transform to TrU(t) and pretending that the singularity
of TrU(t) at t = 0 is all that matters, we find, formally, that (7.3) yields

N ′(λ) ∼ (2π)−n/2F−1
t→λ TrU(t)

∼ (2π)−n

∫∫
|θ|=1

|θ|−1
g

( λ

|θ|g

)n−1

dθ dx

= (2π)−nλn−1

∫∫
|θ|=1

|θ|−n
g dθ dx.

Integrating would formally yield

N(λ) ∼ (2π)−nλ
n

n

∫∫
|θ|=1

|θ|−n
g dθ dx

= (2π)−nλn

∫∫∫
|θ|=1,ρ∈(0,1)

|θ|−n
g ρn−1 dρ dθ dx

= (2π)−nλn

∫∫∫
|σθ|g<1

σn−1 dσdθ dx,

where we have, in the last line, set σ = ρ/|θ|g, with the result that definition of the
region of integration now involves the metric. This last quantity can easily be seen
to be simply the volume in phase space of the set |ξ|g < 1, otherwise known as the

unit ball bundle.36 Thus, we obtain formally

N(λ) ∼ (2π)−nλn Vol(B∗X) = (2π)−nVol({|ξ|g < λ}).
This is all nonsense, of course, for several different reasons. First, we were very

imprecise about dropping higher order terms in t in computing the asymptotics of
the trace as t → 0. Furthermore, we formally computed with N ′ as if it were a
smooth function, but of course N ′ is quite singular (a sum of delta distributions).
Moreover, and potentially most seriously, there are in general infinitely many sin-
gularities in TrU(t) that might be contributing to the asymptotic behavior of its
Fourier transform: we have been concerning ourselves only with the one near t = 0.

36Recall that on a symplectic manifold (N2n, ω) we have a naturally defined volume form
ωn, and it is this volume that we are integrating over the unit ball here.
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However: the above argument does give the right leading order asymptotics, the
so-called “Weyl Law.” What follows is (the outline of) a rigorous version of the
above argument.

To begin, we need a cutoff function to localize us near the singularity at t = 0,
where our parametrix is valid.

Exercise 7.1. Show that there exists ρ ∈ S(R) with ρ̂ compactly supported,
ρ̂(0) = 1, ρ̂(t) = ρ̂(−t), ρ(λ) > 0 for all λ, and ρ̂ supported in an arbitrarily small
neighborhood of 0. (Hint: Start with a smooth, compactly supported ρ̂; convolve
with its complex conjugate, and scale.)

We now consider

F−1
t→λ

(
ρ̂(t) Tru(t)

)
= (2π)−n−1/2

∫∫∫
ρ̂(t)a(t, x, η)ei(t(λ−|η|g)+O(t2|η|)) dx dη dt

= (2π)−n−1/2

∫∫∫
ρ̂(t)a(t, x, λσθ)eitλ(1−σ+O(t2σ))(λσ)n−1 dx dσ dθ dt;

here we have used the change of variables η = λσθ with |θ| = 1. We now employ
the method of stationary phase to estimate the asymptotics of the integral in t, σ.
If ρ̂ is chosen supported sufficiently close to the origin, then the unique stationary
point on the support of the amplitude is at σ = 1, t = 0; we thus obtain a complete
asymptotic expansion in λ beginning with the terms

Aλn−1 +O(λn−2)

where
A = n(2π)−nVol(B∗X).

Exercise* 7.2. Do this stationary phase computation. If you don’t know
about the method of stationary phase, this is your chance to learn it, e.g. from
[11].

Thus, since u− U ∈ C∞((−ε, ε)× Rn), (7.1) yields

Proposition 7.1.

(ρ ∗N ′)(λ) ∼ Aλn−1 +O(λn−2).

We now try to make a “Tauberian” argument to extract the desired asymptotics
of N(λ) from this estimate.

Lemma 7.2.
N(λ+ 1)−N(λ) = O(λn−1).

Proof. By Proposition 7.1 and since N ′(λ) =
∑

δ(λ− λj), we have∑
ρ(λ− λj) ∼ Aλn−1 +O(λn−2);

thus, by positivity of ρ(λ),

( inf
[−1,1]

ρ) (#{λj : λ− 1 < λj < λ+ 1}) ≤
∑

ρ(λ− λj) = O(λn−1),

and the estimate follows as the infimum is strictly positive. �

This yields at least a crude estimate:
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Corollary 7.3.

N(λ) = O(λn).

A more technically useful result is:

Corollary 7.4.

N(λ− τ )−N(λ) � 〈τ 〉n〈λ〉n−1.

Exercise 7.3. Prove the corollaries. (For the latter, begin with the interme-

diate estimate 〈τ 〉〈|λ|+ |τ |〉n−1.)

Now we work harder.

Exercise 7.4. Show that we can antidifferentiate the convolution to get∫ λ

−∞
(ρ ∗N ′)(μ) dμ = (ρ ∗N)(λ).

As a result, we of course have

(ρ ∗N)(λ) = Aλn/n+O(λn−1) = Bλn +O(λn−1)

where B = A/n = (2π)−nVol(B∗X).
Thus, since

∫
ρ(μ) dμ = 1,

N(λ) = (N ∗ ρ)(λ)−
∫
(N(λ− μ)−N(λ))ρ(μ) dμ

= Bλn +O(λn−1)−
∫

O(〈μ〉n〈λ〉n−1
)ρ(μ) dμ

= Bλn +O(λn−1),

where we have used Corollary 7.4 in the penultimate equality. We record what we
have now obtained as a theorem, better known as Weyl’s law with remainder term.
This form of the remainder term is sharp, and not so easy to obtain by other means.

Theorem 7.5.

N(λ) = (2π)−nVol(B∗X)λn +O(λn−1).

As noted above, it is perhaps suggestive to view the main term as the volume
of the sublevel set in phase space {(x, ξ) : σ(Δ)(x, ξ) ≤ λ2}. Weyl’s law is one of the
most beautiful instances of the quantum-classical correspondence, in which we can
deduce something about a quantum quantity (the counting function for eigenvalues,
also known as energy levels) in terms of a classical quantity, in this case the volume
of a region of phase space.

Exercise* 7.5. Show that the error term in Weyl’s law is sharp on spheres.

8. Lagrangian distributions

The form of the parametrix that we used for the wave equation turns out
to be a special case of a very general and powerful class of distributions, known
as Lagrangian distributions, introduced by Hörmander. Here we will give a very
sketchy introduction to the general theory of Lagrangian distributions, and see both
how it systematizes and extends our parametrix construction for the wave equation
and how (in principle, at least) it can be made to yield the Duistermaat-Guillemin
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trace formula, which gives us an explicit description of the singularities of the wave
trace.

We begin with a special case of the theory.

8.1. Conormal distributions. Let X be a smooth manifold of dimension n
and let Y be a submanifold of codimension k. The conormal distributions with re-
spect to Y are a special class of distributions having wavefront set37 in the conormal
bundle of Y, N∗Y. Let us suppose that Y is locally cut out by defining functions
ρ1, . . . , ρk ∈ C∞(X), i.e. that (at least locally), {ρ1 = · · · = ρk = 0} = Y, and
dρ1, . . . , dρk are linearly independent on Y. Then we may (locally) extend the ρj ’s
to a complete coordinate system

(x1, . . . xk, y1, . . . yn−k)

with
x1 = ρ1, . . . , xk = ρk,

so that Y = {x = 0}. In these coordinates, how might we write down some distri-
butions with wavefront set lying only in N∗Y ? Well, we can try to make things
that are singular in the x variables at x = 0, with the y’s behaving like smooth
parameters. How do we create singularities at x = 0? One very nice answer is in
the following:

Lemma 8.1. Let a(ξ) ∈ Sm
cl (R

k
ξ ) for some m. Then WFF−1(a) ⊆ N∗({0}).

Proof. Writing

F−1(a)(x) = (2π)−k/2

∫
a(ξ)eiξ·x dξ,

we first note that
F−1(a)(x) ∈ H−m−k/2−ε(Rk)

for any a ∈ Sm
cl and for all ε > 0. Moreover for all j,

(xiDxj )F−1(a)(x) = (2π)−k/2

∫
a(ξ)(xiDxj )eiξ·x dx

= (2π)−k/2

∫
xiξja(ξ)e

iξ·x dξ

= (2π)−k/2

∫
ξja(ξ)Dξie

iξ·x dξ

= −(2π)−k/2

∫
Dξi(ξja(ξ))e

iξ·x dξ,

where we have integrated by parts in the final line. Note that if a ∈ Sm
cl then

Dξi(ξja(ξ)) ∈ Sm
cl too (cf. Exercise 3.4). Thus we also have

(xiDxj )F−1(a)(x) ∈ H−m−k/2−ε(Rk).

Iterating this argument gives

(8.1) (xi1Dxj1
) . . . (xilDxjl

)F−1(a)(x) ∈ H−m−k/2−ε(Rk)

for all choices of indices and all l ∈ N. Thus F−1a is smooth38 away from x = 0. �
37Recall that we have defined the wavefront set to lie in S∗X but it is often convenient to

regard it as a conic subset of T ∗X\o, with o denoting the zero-section.
38We are of course proving more than the lemma states here: (8.1) gives a more precise

“conormality” estimate that is valid uniformly across the origin.
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By the same token, we have more generally,

Proposition 8.2. Let ρ1, . . . , ρk be (local) defining functions for Y ⊂ X and
let

(8.2) a ∈ S
m+(n−2k)/4
cl (Rn

x × R
k
ξ )

be compactly supported in x. Then

(8.3) u(x) = (2π)−(n+2k)/4

∫
Rk

a(x, θ)ei(ρ1θ1+···+ρkθk) dθ

has wavefront set contained in N∗Y. Moreover there exists s ∈ R such that if
V1, . . . Vl are vector fields tangent to Y, then

V1 . . . Vlu ∈ Hs.

Exercise 8.1. Prove the proposition. You will probably find it helpful to
change to a coordinate system (x1, . . . , xk, y1, . . . , yn−k) in which x1, . . . , xk =
ρ1, . . . , ρk. Note that in this coordinate system, any vector field tangent to Y can
be written ∑

aij(x, y)x
i∂xj +

∑
bj(x, y)∂yj .

What values of s, the Sobolev exponent in the proposition, are allowable?

Definition 8.3. A distribution u ∈ D′(X) is a conormal distribution with
respect to Y, of order m, if it can (locally) be written in the form (8.3) with symbol
as in (8.2).

While it may appear that the definition of conormal distributions depends on
the choice of the defining functions ρj , this is in fact not the case. The rather
peculiar-looking convention on the orders of distributions is not supposed to make
much sense just yet.

Note that examples of conormal distributions include δ(x) ∈ R
n (conormal with

respect to the origin), and more generally, delta distributions along submanifolds.
Also quite pertinent is the example of pseudodifferential operators: if A = Op�(a) ∈
Ψm(X) then the Schwartz kernel of A is a conormal distribution with respect to
the diagonal in X×X, of order m. (This goes at least some of the way to explaining
the convention on orders.) Indeed, we could (at some pedagogical cost) simply have
introduced conormal distributions and then used the notion to define the Schwartz
kernels of pseudodifferential operators in the first place.

8.2. Lagrangian distributions. We now introduce a powerful generalization
of conormal distributions, the class of Lagrangian distributions.39 We begin by
introducing some underlying geometric notions.

An important notion from symplectic geometry is that of a Lagrangian sub-
manifold L of a symplectic manifold N2n. This is a submanifold of dimension n on
which the symplectic form vanishes. We can always find local coordinates in which
the symplectic form is given by ω =

∑
dxi ∧ dyi and L = {y = 0}, so there are no

interesting local invariants of Lagrangian manifolds.
A conic Lagrangian manifold in T ∗X is a Lagrangian submanifold of T ∗X\o

that is invariant under the R+ action on the fibers. (Here, o denotes the zero-
section.)

39These were first studied by Hörmander [10].
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Among the most important examples of conic Lagrangians are the following:
let Y ⊂ X be any submanifold; then N∗Y ⊂ T ∗X is a conic Lagrangian.

Exercise 8.2. Verify this.

The trick to defining Lagrangian distributions is to figure out how to associate
a phase function φ with a conic Lagrangian L in T ∗X.

Definition 8.4. A nondegenerate phase function is a smooth function φ(x, θ),
locally defined on a coordinate neighborhood of X×Rk, such that φ is homogeneous
of degree 1 in θ and such that the differentials d(∂φ/∂θj) are linearly independent
on the set

C =

{
(x, θ) :

∂φ

∂θj
= 0 for all j = 1, . . . , k

}
.

The phase function is said to locally parametrize the conic Lagrangian L if

C � (x, θ) �→ (x, dxφ)

is a local diffeomorphism from C to L.

Exercise 8.3.

(1) Show that, in the notation of the definition above, C is automatically a
manifold, and the map C � (x, θ) �→ (x, dxφ) is automatically a local
diffeomorphism from C to its image, which is a conic Lagrangian.

(2) Show that if ρj are definining functions for Y ⊂ X then

φ =
∑

ρjθj

is a nondegenerate parametrization of N∗Y.
(3) What Lagrangian is parametrized by the phase function used in our

parametrix for the half-wave operator in the Euclidean case, given by

φ(t, x, y, θ) = (x− y) · θ − t|θ|?

It turns out that every conic Lagrangian manifold has a local parametrization;
the trouble is, in fact, that it has lots of them.

Definition 8.5. A Lagrangian distribution of order m with respect to the
Lagrangian L as one that is given, locally near any point in X, by a finite sum of
oscillatory integrals of the form

(2π)−(n+2k)/4

∫
Rk

a(x, θ)eiφ(x,θ) dθ

where

a ∈ S
m+(n−2k)/4
cl (Rn

x × R
k
θ)

and where φ is a nondegenerate phase function parametrizing L. Let Im(X,L)
denote the space of all Lagrangian distributions on X with respect to L of order
m.

Note that the connection between k, the number of phase variables, and the
geometry of L is not obvious; indeed, it turns out that we have some choice in
how many phase variables to use. As there are many different ways to parametrize
a given conic Lagrangian manifold, one tricky aspect of the theory of Lagrangian
distributions is necessarily the proof that using different parametrizations (possibly
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involving different numbers of phase variables) gives us the same class of distribu-
tions.

The analogue of the iterated regularity property of conormal distributions, i.e.
our ability to repeatedly differentiate along vector fields tangent to Y, turns out to
be as follows:

Proposition 8.6. Let u ∈ Im(X,L). There exists s such that for any l ∈ N

and for any A1, . . . , Al ∈ Ψ1(X) with σ1(Aj)|L = 0, we have

A1 . . . Alu ∈ Hs(X).

Of course, once this holds for one s, it holds for all smaller values; the precise
range of possible values of s is related to the order m of the Lagrangian distribution;
we will not pursue this relationship here, however. This iterated regularity prop-
erty of Lagrangian distributions completely characterizes them if we use “Kohn-
Nirenberg” symbols (as in Exercise 3.4) instead of “classical” ones (see [14]).

8.3. Fourier integral operators. Fourier integral operators (“FIO’s”) quan-
tize classical maps from a phase space to itself just as pseudodifferential operators
quantize classical observables (i.e. functions on the phase space). The maps from
phase space to itself that we may quantize in this manner are the symplectomor-
phisms, exactly the class of transformations of phase space that arise in classical
mechanics. We recall that a symplectomorphism between symplectic manifolds is
a diffeomorphism that preserves the symplectic form. We further define a homoge-
neous symplectomorphism from T ∗X to T ∗X to be one that is homogeneous in the
fiber variables, i.e. commutes with the R+ action on the fibers.

An important class of homogeneous symplectomorphisms is those obtained as
follows:

Exercise 8.4. Show that the time-1 flowout of the Hamilton vector field of a
homogeneous function of degree 1 on T ∗X is a homogeneous symplectomorphism.

Given a homogeneous symplectomorphism Φ : T ∗X → T ∗X, consider its graph
ΓΦ ⊂ (T ∗X\o)× (T ∗X\o). Since Φ is a symplectomorphism, we have

ι∗π∗
Lω = ι∗π∗

Rω,

where ι is inclusion of ΓΦ in (T ∗X\o) × (T ∗X\o), and π• are the left and right
projections. If we alter ΓΦ slightly, forming

Γ′
Φ = {(x1, ξ1, x2, ξ2) : (x1, ξ1, x2,−ξ2) ∈ ΓΦ},

and let ι′ denote the inclusion of this manifold, then we find that a sign is flipped,
and

(ι′)∗π∗
Lω + (ι′)∗π∗

Rω = 0;

since Ω = (π∗
Lω + π∗

Rω) is just the symplectic form on

T ∗(X ×X) = T ∗X × T ∗X,

we thus find that Γ′
Φ is Lagrangian in T ∗(X ×X). In fact, it is easily to verify that

given a diffeomorphism Φ, Γ′
Φ is Lagrangian if and only if Φ is a symplectomorphism.

Exercise 8.5. Check this.
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Now we simply define the class of Fourier integral operators (of order m) as-
sociated with the symplectomorphism Φ of X to be those operators from smooth
functions to distributions whose Schwartz kernels lie in the Lagrangian distributions

Im(X ×X,Γ′
Φ).

It would be nice if this class of operators turned out to have good properties such
as behaving well under composition, as pseudodifferential operators certainly do.
We note right off the bat that these operators include pseudodifferential operators,
as well as a number of other, familiar examples:

(1) Ψm(X) = Im(X ×X,Γ′
Id).

(2) In Rn, fix α and let Tf(x) = f(x− α) Then T has Schwartz kernel

δ(x− x′ − α)

which is clearly conormal of order zero at x−x′−α = 0. Note that this is
certainly not a pseudodifferential operator, as it moves wavefront around;
indeed, it is associated with the symplectomorphism Φ(x, ξ) = (x+ α, ξ),
and it it no coincidence that

WFTf = Φ(WF f).

(3) As a generalization of the previous example, note that if φ : X → X is a
diffeomorphism, then we may set

Tf(x) = f(φ(x));

this is a FIO associated to the homogeneous symplectomorphism

Φ(x, ξ) = (φ−1(x), φ∗
φ−1(x)(ξ))

induced by φ on T ∗X.

Exercise 8.6. Work out this last example carefully.

Now it turns out to be helpful to actually consider a broader class of FIO’s
than we have described so far. Instead of just using Lagrangian submanifolds of
T ∗(X×X) given by Γ′ = Γ′

Φ where Φ is a symplectomorphism, we just require that
Γ′ be a reasonable Lagrangian (and we allow operators between different manifolds
while we are at it):

Definition 8.7. Let X,Y be two manifolds (not necessarily of the same di-
mension). A homogeneous canonical relation from T ∗Y to T ∗X is a homogeneous
submanifold Γ of (T ∗X\o)× (T ∗Y \o), closed in T ∗(X × Y )\o such that

Γ′ ≡ {(x, ξ, y, η) : (x, ξ, y,−η) ∈ Γ}

is Lagrangian in T ∗(X × Y ).

We can view Γ as giving a multivalued generalization of a symplectomorphism,
with

Γ(y, η) ≡ {(x, ξ) : (x, ξ, y, η) ∈ Γ}.
and, more generally, if S ⊂ T ∗Y is conic,

(8.4) Γ(S) ≡ {(x, ξ) : there exists (y, η) ∈ S, with (x, ξ, y, η) ∈ Γ}.
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Definition 8.8. A Fourier integral operator of order m associated to a homo-
geneous canonical relation Γ is an operator from C∞c (Y ) to D′(X) with Schwartz
kernel in

Im(X × Y,Γ′).

Exercise 8.7. Show that a homogeneous canonical relation Γ is associated to
a symplectomorphism if and only if its projections onto both factors T ∗X and T ∗Y
are diffeomorphisms.

Exercise 8.8.

(1) Let Y ⊂ X be a submanifold. Show that the operation of restriction of a
smooth function on X to Y is an FIO.

(2) Endow X with a metric, and consider the volume form dgY on Y arising
from the restriction of this metric; show that the map taking a function f
on Y to the distribution φ �→

∫
Y
φ|Y (y)f(y)dgY is an FIO. (Think of it as

just multiplying f by the delta-distribution along Y, which makes sense
if we choose a metric.) What is the relationship between the restriction
FIO and this one, which you might think of as an extension map?

In the special case that Γ is a canonical relation that is locally the graph of a
symplectomorphism, we say it is a local canonical graph.

We now briefly enumerate the properties of the FIO calculus, somewhat in
parallel with our discussion of pseudodifferential operators. These theorems are
considerably deeper, however. In preparation for our discussion of composition,
suppose that

Γ1 ⊂ T ∗X\o× T ∗Y \o,
Γ2 ⊂ T ∗Y \o× T ∗Z\o

are homogeneous canonical relations. We say that Γ1 and Γ2 are transverse if the
manifolds

Γ1 × Γ2 and T ∗X ×ΔT∗Y × T ∗Z

intersect transversely in T ∗X×T ∗Y ×T ∗Y ×T ∗Z; here ΔT∗Y denotes the diagonal
submanifold.

Exercise 8.9. Show that if either Γ1 or Γ2 is the graph of a symplectomor-
phism, then Γ1 and Γ2 are transverse.

In what follows, we will as usual assume for simplicity that all manifolds are
compact.40 In the following list of properties, some are special to FIO’s, that is
to say, Lagrangian distributions on product manifolds, viewed as operators; others
are more generally properties of Lagrangian distributions per se, hence their state-
ments do not necessarily involve products of manifolds. In the interests of brevity,
we focus on the deeper properties, and omit trivialities such as associativity of com-
position. Note also that for brevity we will systematically confuse operators with
their Schwartz kernels.

(I) (Algebra property) If S ∈ Im(X × Y,Γ′
1) and T ∈ Im

′
(Y × Z,Γ′

2) and Γ1

and Γ2 are transverse, then

S ◦ T ∈ Im+m′
(X × Z, (Γ1 ◦ Γ2)

′),

40In the absence of this assumption, we need as usual to add various hypotheses of properness.
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where

(8.5) Γ1 ◦ Γ2 = {(x, ξ, z, ζ) : (x, ξ, y, η) ∈ Γ1

and (y, η, z, ζ) ∈ Γ2 for some (y, η)}.
Moreover,

S∗ ∈ Im(Y ×X, (Γ−1)′)

where Γ−1 is obtained from Γ by switching factors.
(II) (Characterization of smoothing operators) The distributions in I−∞(X,L)

are exactly those in C∞(X); composition of an operator S ∈ Im(X×Y,Γ′)
on either side with a smoothing operator (i.e. one with smooth Schwartz
kernel) yields a smoothing operator.

(III) (Principal symbol homomorphism) There is family of linear “principal
symbol maps”

(8.6) σm : Im(X,L)→ S
m+(dimX)/4
cl (L;L)

S
m−1+(dimX)/4
cl (L;L)

.

Here L is a certain canonically defined line bundle on L (see the commen-
tary below), and Sm

cl (L;L) denotes L-valued symbols. We may identify
the quotient space in (8.6) with

C∞(S∗L;L),
and we call the resulting map σ̂m instead. If S, T, are as in (I), with
canonical relations Γ1,Γ2 intersecting transversely,

σm+m′(ST ) = σm(S)σm′(T )

and

σm(A∗) = s∗σm(A),

where s is the map interchanging the two factors. The product of the
symbols, at (x, ξ, z, ζ) ∈ Γ1 ◦ Γ2, is defined as

σm(S)(x, ξ, y, η) · σm′(T )(y, η, z, ζ)

evaluated at (the unique) (y, η) such that (x, ξ, y, η) ∈ Γ1, (y, η, z, ζ) ∈ Γ2.
(IV) (Symbol exact sequence) There is a short exact sequence

0→ Im−1(X,L)→ Im(X,L) σ̂m→ C∞(S∗L;L)→ 0.

Hence the symbol is 0 if and only if an operator is of lower order.
(V) Given L, there is a linear “quantization map”

Op : S
m+(dimX)/4
cl (L;L)→ Im(X,L)

such that if

a ∼
∞∑
j=0

am+(dimX)/4−j(x, ξ̂)|ξ|m+(dimX)/4−j ∈ S
m+(dimX)/4
cl (L;L)

then

σm(Op(a)) = am+(dimX)/4(x, ξ̂).

The map Op is onto, modulo C∞(X).
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(VI) (Product with vanishing principal symbol) If P ∈ Diffm(X) is self-adjoint

and u ∈ Im
′
(X,L), with L ⊂ ΣP ≡ {σm(P ) = 0}, then

Pu ∈ Im+m′−1(X,L)
and

σm+m′−1(Pu) = i−1Hp(σm′(u)),

with Hp denoting the Hamilton vector field.
(VII) (L2-boundedness, compactness) If T ∈ Im(X × Y,Γ) is associated to a

local canonical graph, then

T ∈ L(Hs(Y ), Hs−m(X)) for all s ∈ R.

Negative-order operators of this type acting on L2(X) are thus compact.
(VIII) (Asymptotic summation) Given uj ∈ Im−j(X,L), with j ∈ N, there exists

u ∈ Im(X,L) such that

u ∼
∑
j

uj ,

which means that

u−
N∑
j=0

uj ∈ Im−N−1(X,L)

for each N.
(IX) (Microsupport) The microsupport of T ∈ Im(X × Y,Γ′) is well defined as

the largest conic subset Γ̃ ⊂ Γ on which the symbol is O(|ξ|−∞). We have

WFTu ⊆ Γ̃(WFu)

for any distribution u on Y, where the action of Γ̃ on WFu is given by
(8.4). Furthermore,

WF′(S ◦ T ) ⊆WF′ S ◦WF′ T.

Commentary:

(I) This is a major result. Since FIO’s include pseudodifferential operators,
this includes the composition property for pseudodifferential operators as
a special case. Another special case, when Z a point, yields the statement
that an FIO applied to a Lagrangian distribution on the manifold Y with
respect to the Lagrangian L ⊂ T ∗Y is a Lagrangian distribution associated
to Γ(L), where Γ is the canonical relation of the FIO and Γ(L) is defined
by (8.4).

One remarkable corollary of this result is as follows: As will be dis-
cussed below, what our parametrix construction in §6 really showed was
that for t sufficiently small, and fixed, we have

e−it
√
Δ ∈ I0(X ×X,Lt)

where Lt is the backwards geodesic flowout, for time t, in the left factor
of N∗Δ, of the conormal bundle to the diagonal in T ∗(X ×X).

Exercise* 8.10. Verify this assertion! (Try this now, but fear not:
we will discuss this example further in §9 and you can try again then.)
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Now e−it
√
Δ is a one-parameter group and so the composition property

for FIO’s allows us to conclude that in fact e−it
√
Δ is an FIO for all times

t, associated to the same flowout described above. The interesting subtlety
is that while Lt is an inward- or outward-pointing conormal bundle for
small positive resp. negative time (i.e. in the regime where our parametrix
construction worked directly), for t exceeding the injectivity radius, it
ceases to be a conormal bundle, while remaining a smooth Lagrangian
manifold in T ∗(X ×X).

(III) Modulo bundle factors, the principal symbol is defined as follows: if u ∈
Im(X,L) is given by

u = (2π)−(n+2k)/4

∫
Rk

a(x, θ)eiφ(x,θ) dθ,

then σm(u) is defined by first restricting a(x, θ) to the manifold

C = {(x, θ) : dθφ = 0};
as φ is a nondegenerate phase function, this manifold is locally diffeomor-
phic (via a homogeneous diffeomorphism) to L, hence we may identify a|C
with a function on L; transferring this function to L via the local diffeo-
morphism and taking the top-order homogeneous term in the asymptotic
expansion gives the principal symbol.

Much has been swept under the rug here—for a proper discussion, see,
e.g., [10]. In particular, the line bundle L contains not just the density
factors that we have been studiously ignoring—the Schwartz kernel of an
operator from functions to functions on X is actually a “right-density” on
X × X, i.e. a section of the pullback of the bundle |Ωn(X)| in the right
factor—but also the celebrated “Keller-Maslov index,” which is related
to the indeterminacy in choosing the phase function parametrizing the
Lagrangian. We will not enter into a serious discussion of these issues here.
We have also omitted discussion of the geometry of composing canonical
relations, and the fact that transverse canonical relations compose to give
a new canonical relation, with a unique point y, η such that (x, ξ, y, η) ∈
Γ1, (y, η, z, ζ) ∈ Γ2 whenever (x, ξ, z, ζ) ∈ Γ1 ◦ Γ2.

(VI) There is a more general version of this statement valid for any P ∈ Ψm(X)
characteristic on L, but it involves the notion of subprincipal symbol,
which requires some explanation; see [5, §5.2–5.3]. Moreover, if we are
a little more honest about making this computation work invariantly, so
that the symbol has a density factor in it (one factor in the line bundle
L,) then we should really write

σm+m′−1(Pu) = i−1LHp
σm′(u),

where LZ denotes the Lie derivative along the vector field Z.
(VII) This is fairly easy to prove, as if T of order m is associated to a symplec-

tomorphism from Y to X, it is easy to check from the previous properties
that T ∗T is an FIO associated with the canonical relation given by the
identity map, and hence

T ∗T ∈ Ψ2m(Y ),

and we may invoke boundedness results for the pseudodifferential calculus.
In cases when T is not associated to a local canonical graph, this argument
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fails badly (i.e. interestingly), and the optimal mapping properties are a
subject of ongoing research.

Finally, as with the pseudodifferential calculus, we may define a notion of el-
lipticity for FIO’s, and the above properties imply that (microlocal) parametrices
exist for the inverses of elliptic operators associated to symplectomorphisms.

9. The wave trace, redux

Let us briefly revisit our construction of the parametrix for the half-wave equa-
tion in the light of the FIO calculus. Here is what we did, in hindsight: we sought
a distribution

u ∈ Im(R×X ×X,L)
for some Lagrangian L, and some order m, with

u(0, x, y) = δ(x− y)

such that

(Dt +
√
Δx)u ∈ I−∞((−ε, ε)×X ×X,L) = C∞((−ε, ε)×X ×X).

We begin by sorting out what m, the order of u, should be. Since

u|t=0 = δ(x− y) = (2π)−n

∫
Rn

ei(x−y)·θ dθ,

we were led us to a solution that for t small was of the form∫
Rn

a(t, x, y, θ)eiΦ(t,x,y,θ) dθ

with a a symbol of order zero such that a(0, x, y, θ) = 1, and Φ a nondegenerate
phase function such that Φ(0, x, y, θ) = (x − y) · θ. This was certainly the rough
form of our earlier Ansatz; it should now be regarded as a Lagrangian distribution,
of course. Since dim(R×X×X) = 2n+1 and we have n phase variables θ1, . . . , θn,
the convention on orders of FIO’s leads to m = −1/4.

Now we address the following question: what Lagrangian L ought we to choose?
Since

�t,x ∈ Diff2(R×X ×X) ⊂ Ψ2(R×X ×X),

we a priori would have

�u ∈ I7/4(R×X ×X,L);
as we would like smoothness of �u, we ought to start by making the principal
symbol of �u vanish. The symbol of � vanishes only on

Σ� = {τ2 = |ξ|2g}
hence the easiest way to ensure vanishing of the principal symbol is simply to
arrange that

(9.1) L ⊂ Σ�.

Now, recall that our initial conditions were to be

u(0, x, y) = δ(x− y),

where we may view this as a Lagrangian distribution on X × X with respect to
N∗Δ, the conormal to the diagonal:

N∗Δ = {(x, y, ξ, η) : x = y, ξ = −η}.
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It is not difficult to check that the requirement that u|t=0 gives this lower-dimensional
Lagrangian41 together with the requirement (9.1) that L should lie in the charac-
teristic set implies that L ∩ {t = 0} should just consist of points in Σ� projecting
to points in N∗Δ, i.e. that we should in fact have

L ∩ {t = 0} = {(t = 0, τ = −|η|g, x = y, ξ = −η)} ⊂ T ∗(R×X ×X).

Here we have chosen the sign τ = −|η|g in view of our real interest, which is in
solving

(Dt +
√
Δ)u = 0

rather than the full wave equation;42 we have thus kept L inside the characteristic
set of Dt +

√
Δ, which is one of the two components of Σ�.

Let L0 now denote L ∩ {t = 0}. The set L0 is a manifold on which the sym-
plectic form vanishes (an “isotropic” manifold), of dimension one less than half the
dimension of T ∗(R × X × X). (Exercise: Check this! Most of the work is done
already, as N∗(Δ) is Lagrangian in T ∗(X ×X).)

We now proceed as follows to find a Lagrangian (necessarily one dimensional
larger) containing L0: let H = H� denote the Hamilton vector field of the symbol of
the wave operator, in the variables (t, x, τ, ξ). (I.e., take the Hamilton vector field of
�(t,x) on the cotangent bundle of R×X×X—nothing interesting happens in y, η.)
By construction, L0 ⊂ Σ�; we now define L to be the union of integral curves of H
passing through points in L0. More concretely, these are all backwards unit-speed
parametrized geodesics beginning at (x = y, ξ = −η), where (x, ξ) evolves along
the geodesic flow, and (y, η) are fixed. (Meanwhile, t is evolving at unit speed,
and τ is constrained by the requirement that we are in the characteristic set so
that τ = −|ξ|g.) The manifold L stays inside Σ� (indeed, inside the component

that is ΣDt+
√
Δ) since H is tangent to this manifold; moreover, L is automatically

Lagrangian since ω vanishes on L0 and σ2(�) does as well, so that for Y ∈ TL0,
we further have

ω(Y,H) = (d(σ2(�)),Y) = Yσ2(�) = 0.

This gives vanishing of ω on the tangent space to L at points along t = 0; to
conclude it more generally, just recall that the flow generated by a Hamilton vector
field is a family of symplectomorphisms.

Exercise 9.1. Check that L is in fact the only connected conic Lagrangian
manifold passing through L0 and lying in Σ�. (Hint: Observe that H is in fact
the unique vector at each point along L0 that has the property ω(Y,H) = 0 for all
Y ∈ TL0.)

Thus, to recapitulate, if we obtain L by flowing out L0 (the lift of the conormal

bundle of the diagonal to the characteristic set of Dt +
√
Δ) along H, the Hamilton

vector field of �, we produce a Lagrangian on which � is characteristic.

41We really ought to think a bit about restriction of Lagrangian distributions here: this
is best done by regarding the restriction operator itself as an FIO (cf. Exercise 8.8). We shall
omit further discussion of this point, but remark that it should at least seem plausible that the
Lagrangian manifold associated to the restriction is the projection (i.e. pullback under inclusion),
of the Lagrangian in the ambient space—cf. Exercise 4.11.

42We have chosen to emphasize this distinction only at this critical juncture only because
as it is in some respects more pleasant to deal with � than with the half-wave operator when
possible.
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Exercise 9.2. Show that the phase function φ(t, x, η)−y·η that we constructed
explicitly in §6 does indeed parametrize

L = {(t, τ, x, ξ, y,−η) : τ = −|ξ|g, (x, ξ) = Φt(y, η)

(with Φt denoting geodesic flow, i.e. the flow generated by the Hamilton vector field
of |ξ|g) over |t|  1.

Compare our solution to the eikonal equation using Hamilton-Jacobi theory in
Exercise 6.1 to what we have done here.

We now remark that while our parametrization of the Lagrangian in §6 worked
only for small t, the definition given here of L ⊂ T ∗(R × X × X) makes sense
globally in t, not merely for short time. When t is small and positive and y fixed,
the projection of L to (x, ξ) is just the inward-pointing conormal bundle to an
expanding geodesic sphere centered at y; when t exceeds the injectivity radius of X,
L ceases to be a conormal bundle, but remains a well-behaved smooth Lagrangian.

Let us now return from our lengthy digression on the construction of L to recall
what it gets us. Solving the eikonal equation, i.e. choosing L, has reduced our error
term by one order, and we have achieved

�u ∈ I3/4(R×X ×X,L);
to proceed further, we invoke Property (VI) of FIO’s, to compute

σ3/4(�u) = i−1Hσ−1/4(u);

setting this equal to zero yields our first transport equation, and it is solved by
simply insisting that σ−1/4(u) be constant along the flow, hence equal to 1, its
value at t = 0 (which was dictated by our δ-function initial data).

Now we have achieved �u = r−1/4 ∈ I−1/4 Adding an element u−5/4 of

I−5/4(R × X × X,L) to solve this error away and again applying (VI) yields the
transport equation

i−1H(σ−5/4(u−5/4)) = −σ−1/4(r−1/4),

which we may solve as before. Continuing in this manner and asymptotically sum-
ming the resulting terms, we have our parametrix u ∈ I−1/4(R×X ×X,L).

Now we describe, very roughly, how to use the FIO calculus to compute the
singularities of TrU(t) at lengths of closed geodesics.

Let T denote the operator C∞(R×X ×X)→ C∞(R) given by43

T : f(t, x, y) �→
∫
X

f(t, x, x) dx.

Thus, TrU = T (U), and we seek to identify this composition as a Lagrangian
distribution on R1; such a distribution is thus conormal to some set of points; as
we saw above (and will see again below) these points may only be the lengths of
closed geodesics, together with 0.

The Schwartz kernel of T is the distribution

δ(t− t′)δ(x− y)

43It is here that our omission of density factors becomes most serious: T should really act
on densities defined along the diagonal, so that the integral over X is well-defined. Fortunately,
U itself should be a right-density (i.e. a section of the density bundle lifted from the right factor);
restricted to the diagonal, this yields a density of the desired type.
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on R × R × X × X; it is thus conormal to t = t′, x = y, i.e. is a Lagrangian
distribution with respect to the Lagrangian

{t = t′, x = y, τ = −τ ′, ξ = −η}.
Noting that if we reshuffle the factors into (R × X) × (R × X), the distribution
δ(t− t′)δ(x− y) becomes the kernel of the identity operator, we can easily see that
the order of this Lagrangian distribution is 0. Thus,

T ∈ I0(R× R×X ×X,Γ′)

where the relation Γ : T ∗(R×X ×X)→ T ∗R maps as follows:

Γ(t, τ, x, ξ, y, η) =

{
∅, if (x, ξ) 
= (y,−η)
(t, τ ), if (x, ξ) = (y,−η).

Let L be the Lagrangian for our parametrix u constructed above. If an interval
about L ∈ R contains no lengths of closed geodesics, then we see that no points
in L lie over {(x, ξ) = (y,−η)} for t near L, hence Γ(L) has no points over this
interval, i.e. the composition Tu is smooth in this interval. This gives another proof
of the Poisson relation, Theorem 5.3.

If, by contrast, there is a closed geodesic of length L, then

{(L, τ ) : τ < 0} ∈ Γ(L).
Note that in effect we get a contribution from every (x, ξ) lying along the geodesic,
and that in particular, the fiber over (L, τ ) of the projection on the left factor(

T ∗
R×ΔT∗(R×X×X)×T∗(R×X×X)

)
∩ (Γ× L)→ T ∗

R

(giving the composition Γ(L)) consists of at least a whole geodesic of length L,
rather than a single point. Thus, the composition of these canonical relations
is not transverse and the machinery described thus far does not apply. In [3],
Duistermaat-Guillemin remedied this deficiency by constructing a theory of com-
position of FIO’s with canonical relations intersecting cleanly.

Definition 9.1. Two manifolds X,Y intersect cleanly if X ∩ Y is a manifold
with T (X ∩ Y ) = TX ∩ TY at points of intersection.

For instance, pairs of coordinate axes intersect cleanly but not transversely in
R

n. In general, in the notation of Property (I), if the intersection of the product
of canonical relations Γ1 × Γ2 with the partial diagonal T ∗X ×Δ × T ∗Z is clean,
we define the excess, e, to be the dimension of the fiber of the projection from this
intersection to T ∗X × T ∗Z; this is zero in the case of transversality. Duistermaat-
Guillemin show:

S ◦ T ∈ Im+m′+e/2(X × Z, (Γ1 ◦ Γ2)
′)

i.e. composition goes as before, but with a change in order. In addition the symbol
of the product is obtained by integrating the product of the symbols over the e-
dimensional fiber of the projection in what turns out to be an invariant way.

Let us now assume that there are finitely many closed geodesics of length L, and
that they are nondegenerate in the following sense. For each closed bicharacteristic
(i.e. lift to S∗X of a closed geodesic) γ ⊂ S∗X, pick a point p ∈ γ and let Z ⊂
S∗X be a small patch of a hypersurface through p transverse to γ. Shrinking Z as
necessary, we can consider the map Pγ : Z → Z taking a point to its first intersection
with Z under the bicharacteristic flow on S∗X. This is called a Poincaré map. Since
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Pγ(p) = p, we can consider dPγ : TpZ → TpZ. We say that the closed geodesic is
nondegenerate if Id−dPγ is invertible. Note that this condition is independent of
our choices of p and Z, as are the eigenvalues of Id−dPγ .

The following is due to Duistermaat-Guillemin [3]:

Theorem 9.2. Assume that all closed geodesics of length L on X are nonde-
generate. Then

lim
t→L

(t− L) TrU(t) =
∑

γ of length L

L

2π
iσγ |Id−dPγ |−1/2,

where Pγ is the Poincaré map corresponding to the geodesic γ, and σγ is the number
of conjugate points along the geodesic.

A proof of this theorem requires understanding the symbol of the clean compo-
sition Tu (where u is our parametrix for the half-wave equation). This lies beyond
the scope of these notes. We merely note that we are in the setting of clean com-
position with excess 1, hence locally near t = L,

Tu ∈ I0−1/4+1/2(R, {t = L, τ < 0}).
This Lagrangian is easily seen to be parametrized, locally near t = L, by the phase
function with one fiber variable44

φ(t, θ) =

{
(t− L)θ, θ < 0,

0, θ ≥ 0;

hence we may write

Tu = (2π)−3/4

∫ ∞

0

a(t, θ)e−i(t−L)θ dθ,

where a ∈ S0(R × R) has an asymptotic expansion a ∼ a0 + |θ|−1a−1 + . . . . Our
task is to find the leading-order behavior of Tu, and this is of course dictated by
its principal symbol. To top order, a is given by the constant function a0(L, 1),
hence Tu is (to leading order) a universal constant times a0(L, 1) times the Fourier
transform of the Heaviside function, evaluated at t − L. Thus, the limit in the
statement of the theorem is, up to a constant factor, just the value of a0(L, 1). The
whole problem, then, is to compute the principal symbol of this clean composition,
and we refer the interested reader to [3] for the (rather tricky) computation.45

10. A global calculus of pseudodifferential operators

10.1. The scattering calculus on R
n. We now return to some of the prob-

lems discussed in §2, involving operators on noncompact manifolds. Recall that
the Morawetz estimate on Rn, for instance, hinged upon a global commutator ar-
gument, involving the commutator of the Laplacian with (1/2)(Dr + D∗

r ) on Rn.
Generalizing this estimate to noncompact manifolds will require some understand-
ing of differential and pseudodifferential operators that is uniform near infinity.

44This phase function should of course be modified to make it smooth across θ = 0, but
making this modification will only add a term in C∞(R) to the Lagrangian distribution we write
down.

45We note that the factor iσγ is the contribution of the (in)famous Keller-Maslov index, and
is in many ways the subtlest part of the answer.
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Recall that thus far, we have focused on the calculus of pseudodifferential opera-
tors on compact manifolds; in discussing operators on Rn, we have avoided as far
as possible any discussion of asymptotic behavior at spatial infinity. Thus, our
next step is to discuss a calculus of operators—initially just on Rn—that involves
sensible bounds near infinity.

Thus, let us consider pseudodifferential symbols defined on all of T ∗Rn with
no restrictions on the support in the base variables, with asymptotic expansions in
both the base and fiber variables, both separately and jointly. To this end, note

that changing to variables |x|−1, x̂, |ξ|−1, and ξ̂ amounts to compactifying the base
and fiber variables of T ∗Rn radially, to make the space Bn

x ×Bn
ξ , with Bn denoting

the closed unit ball. (Recall that we defined a radial compactification map in (3.4),

and that while 〈ξ〉−1
and 〈x〉−1

are what we should really use as defining functions

for the spheres at infinity, |ξ|−1 and |x|−1 are acceptable substitutes as long as we
stay away from the origin in the corresponding variables.) The space Bn × Bn

is a manifold with codimension-two corners, i.e. a manifold locally modelled on
[0, 1) × [0, 1) × R2n−2; its boundary is the union of the two smooth hypersurfaces

Sn−1
x ×Bn

ξ and Bn
x ×Sn−1

ξ . In our local coordinates, |x|−1 and |ξ|−1 are the defining

functions for the two boundary hypersurfaces, i.e. the variables locally in [0, 1), while

a choice of n− 1 of each of the x̂ and ξ̂ variables gives the remaining R
n−2.

σ

ρBn × Sn−1

Sn−1 ×Bn

Sn−1 × Sn−1

Figure 2. The manifold with corners Bn ×Bn in the case n = 1.
At the top (and bottom) are the boundary faces from Bn × Sn−1

arising from the compactification of the second factor—this is
“fiber infinity.” At left (and right) are the faces from Sn−1 × Bn,
arising from compactification of the first factor—this is “spatial
infinity.” The corner(s) at which these faces meet is Sn−1 × Sn−1.

The functions ρ = |x|−1 and σ = |ξ|−1 can be locally taken as
defining functions for the spatial infinity resp. fiber infinity bound-
ary faces. The disconnectedness of Bn × Sn−1 and Sn−1 × Bn is
of course a feature unique to dimension one.
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We now let46

Sm,l
sc (T ∗

R
n)

denote the space of a ∈ C∞(T ∗
R

n) such that47

(10.1) 〈ξ〉−m〈x〉−la ∈ C∞(Bn ×Bn).

This condition gives asymptotic expansions (i.e., Taylor series) in various regimes:

(10.2)

a(x, ξ) ∼
∑
|ξ|m−j

a•,j(x, ξ̂), as ξ →∞, x ∈ U � R
n ∼= (Bn)◦

a(x, ξ) ∼
∑
|x|l−i

ai,•(x̂, ξ), as x→∞, ξ ∈ V � R
n ∼= (Bn)◦

a(x, ξ) ∼
∑
|x|l−i|ξ|m−j

aij(x̂, ξ̂), as x, ξ →∞.

Finally, let

Ψm,l
sc (Rn)

denote the space consisting of the (left) quantizations of these symbols. The “sc”
stands for “scattering.”48

This is an algebra of pseudodifferential operators, containing all ordinary pseu-
dodifferential operators on Rn with compactly supported Schwartz kernels. The
algebra of scattering pseudodifferential operators enjoys all the good properties of
our usual algebra, plus some more that derive from its good behavior at infinity. We
can compose operators to get new operators, and if A ∈ Ψm,l

sc (Rn), B ∈ Ψm′,l′

sc (Rn),

we have AB ∈ Ψm+m′,l+l′

sc (Rn). Likewise, adjoints preserve orders. What is novel
here, however, is the principal symbol map.

As the symbols defined by (10.1) are those that, up to overall factors, are
smooth functions on Bn × Bn, we can define the principal symbol of order m, l of
the operator Op(a) as

σ̂m,l(A) = 〈ξ〉−m〈x〉−l
a|∂(Bn×Bn);

this can be further split into pieces corresponding to the restrictions to the two
boundary hypersurfaces:

σ̂m,l(A) = (σ̂ξ
m,l(A), σ̂x

m,l(A))

where

σ̂ξ
m,l(A)(x, ξ̂) ∈ C∞(Bn × Sn−1)

is nothing but the ordinary principal symbol, rescaled by a power of 〈x〉, and

σ̂x
m,l(A)(x̂, ξ) ∈ C∞(Sn−1 ×Bn)

is the novel piece of the symbol, measuring the behavior of the operator at spatial
infinity. Note that these two pieces of the principal symbol are not independent:

46This space should really be called Sm,l
cl,sc, with the cl once again indicating “classicality” (as

opposed to Kohn-Nirenberg type of estimates alone). We omit the cl so as not to clutter up the
notation.

47We are abusing notation here by ignoring the diffeomorphism of radial compactification,
thus identifying C∞(Bn ×Bn) directly with a space of functions on Rn × Rn.

48This is a space of operators considered by many authors; as we are following roughly the
treatment of Melrose [18], we have adopted his notation for the space. Note, however, that we
have reversed the sign from his convention for the order l.
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they must agree at the corner, Sn−1 × Sn−1. We may also choose to think of the
principal symbol as

σm,l(A) ∈ Sm,l
sc (T ∗

R
n)/Sm−1,l−1

sc (T ∗
R

n),

and we will often confuse the symbol with its equivalence class; this is usually less

confusing than keeping track of the rescaling factor 〈ξ〉m〈x〉l.
The principal symbol short exact sequence thus reads:

0→ Ψm−1,l−l
sc (Rn)→ Ψm,l(Rn)

σ̂m,l→ C∞(∂(Bn ×Bn))→ 0.

Thus, vanishing of this symbol yields improvement in both orders at once; cor-
respondingly, vanishing of one part of the symbol gives improvement in just one
order:

0→ Ψm−1,l
sc (Rn)→ Ψm,l(Rn)

σ̂ξ
m,l→ C∞(Bn × Sn−1)→ 0,

0→ Ψm,l−1
sc (Rn)→ Ψm,l(Rn)

σ̂x
m,l→ C∞(Sn−1 ×Bn)→ 0.

The symbol of the product of two scattering operators is indeed the product of
the symbols,49 as (equivalence classes of) smooth functions on ∂(Bn ×Bn).

The symbol of the commutator of two scattering operators (which is of lower
order than the product in both filtrations) is, as one might suspect, given by i times
the Poisson bracket of the symbols.

The residual calculus is particularly nice in this setting: instead of merely
consisting of smoothing operators, it consists of operators that are “Schwartzing”—
they create decay as well as smoothness:

R ∈ Ψ−∞,−∞
sc (Rn)⇐⇒ R : S ′(Rn)→ S(Rn).

One problem with using the ordinary calculus for global matters is that we can
only conclude compactness of operators of negative order for compactly supported
operators. Here, we have a much more precise result:

Proposition 10.1. An operator in Ψ0,0
sc (Rn) is bounded on L2(Rn); an operator

of order (m, l) with m, l < 0 is compact on L2(Rn).

Associated to the expanded notion of symbol, there is are associated notions of
ellipticity (nonvanishing of the principal symbol) and of WF′ (lack of infinite order
vanishing of the total symbol). We have an associated family of Sobolev spaces:

u ∈ Hm,l
sc (Rn)⇐⇒ ∀A ∈ Ψm,l

sc (Rn), Au ∈ L2(Rn).

Operators in the calculus act on this scale of Sobolev spaces in the obvious way.
Since smoothing operators are “Schwartzing,” it is not hard to see that

H−∞,−∞
sc (Rn) = S(Rn).

(We will return to an explicit description of these Sobolev spaces shortly.)
There is also an associated wavefront set:

WFsc u ⊂ ∂(Bn ×Bn)

49It is exactly this innocuous statement, which the reader might think routine, that separates
the scattering calculus from many other choices of pseudodifferential calculus on noncompact man-
ifolds: typically the “symbol at infinity” (here σ̂x

m,l(x̂, ξ)) will compose under operator composition

in a more complex, noncommutative way.
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is defined by

p /∈WFsc u⇐⇒ there exists A ∈ Ψ0,0
sc (Rn), elliptic at p, with Au ∈ S.

In (Bn
x )

◦ × Sn−1
ξ ⊂ ∂(Bn × Bn), (i.e., in the usual cotangent bundle of Rn) this

definition just coincides with ordinary wavefront set; but “at infinity,” i.e. in Sn−1
x ×

Bn
ξ , it measures something new. To see what, let us consider some examples.

Example 10.2.

(1) Constant coefficient vector fields on Rn : If v ∈ Rn and P = i−1v · ∇,
then, we can write

P = Op�(v · ξ);
the principal symbol is thus

σ1,0(P ) = v · ξ

(2) Likewise, the symbol of the Euclidean Laplacian Δ is σ2,0(Δ) = |ξ|2. Note
that the Laplacian is not elliptic in the scattering calculus, as its principal
symbol vanishes at ξ = 0 on the boundary face Sn−1

x × Bn
ξ . This should

come as no suprise, as Δ has nullspace in S ′(Rn) (given by harmonic
polynomials) that does not lie in L2, hence is not consistent with elliptic
regularity in the scattering calculus sense: if Q is elliptic in the scattering
calculus,

Qu ∈ S(Rn) =⇒ u ∈ S(Rn).

On the other hand, consider Id+Δ. We have Id ∈ Ψ0,0
sc (Rn), hence

adding it certainly does not alter the “ordinary” part of the symbol, living
on (Bn)◦ × Sn−1. But it does affect the symbol in Sn−1 ×Bn : we have

σ2,0(Id+Δ) = 1 + |ξ|2;
Id+Δ is an elliptic operator in the scattering calculus, and of course it is
the case that (Id+Δ)u ∈ S(Rn) implies that u is likewise Schwartz.

(3) If we vary the metric from the Euclidean metric to some other metric g,
we may or may not obtain a scattering differential operator; for example,
if g were periodic, we certainly would not, as the total symbol of Δ would
clearly lack an asymptotic expansion as |x| → ∞. Suppose, however, that
we may write in spherical coordinates on R

n

g = dr2 + r2
∑

hij(r
−1, θ)dθidθj for r > R0 � 0.

where hij is a smooth function of its arguments, and

hij(0, θ)dθ
idθj

is the standard metric on the “sphere at infinity.” We will call such a met-
ric asymptotically Euclidean. Then the corresponding Laplace operator is
in the scattering calculus.

Exercise 10.1. Check that this operator does lie in the scattering
calculus.

Let Δ denote the Laplacian with respect to an asymptotically Eu-
clidean metric. Then

(Id+Δ)−1 ∈ Ψ−2,0
sc (Rn).
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(4) 〈x〉2(Id+Δ) ∈ Ψ2,2
sc (Rn) and has symbol 〈x〉2(1 + |ξ|2). This is globally

elliptic.

By the last example, we find that

u ∈ H2,2
sc (Rn)⇐⇒ 〈x〉2(Id+Δ)u ∈ L2(Rn);

interpolation and duality arguments allow us to conclude more generally that the
scattering Sobolev spaces coincide with the usual weighted Sobolev spaces:

Hm,l
sc (Rn) = 〈x〉−lHm(Rn).

We now turn to some examples illustrating the scattering wavefront set. Con-
sider the plane wave

u(x) = eiα·x.

We have

(Dxj − αj)u = 0 for all j = 1, . . . , n.

The symbol of the operator Dxj − αj is ξj − αj , hence the intersection of the
characteristic sets of these operators is just the points in Sn−1 ×Bn where ξ = α.
As a consequence, we have

WFsc(e
iα·x) ⊆ {(x̂, ξ) ∈ Sn−1 × R

n : ξ = α}
(here we are as usual identifying (Bn)◦ ∼= Rn). In fact this containment turns out
to be equality, as we see by the following characterization of scattering wavefront
set.

Proposition 10.3. Let p = (x̂0, ξ0) ∈ Sn−1 × Rn. We have

p /∈WFsc u

if and only if there exist cutoff functions φ ∈ C∞c (Rn) nonzero at ξ0 and γ ∈ C∞(Rn)
nonzero in a conic neighborhood of the direction x̂0 such that

φF(γu) ∈ S(Rn).

This is of course closely analogous to the characterization of ordinary wavefront
set in Proposition 4.5, and is proved in an analogous manner. Note that if u is a
Schwartz function in a set of the form{∣∣ x

|x| − x̂0

∣∣ < ε, |x| > R0

}
for any ε > 0, R0 � 0, then there is no scattering wavefront set at points of the
form (x̂0, ξ) for any ξ ∈ Rn. Thus, this new piece of the wavefront set measures
the asymptotics of u in different directions toward spatial infinity: x̂0 provides the
direction, while the value of ξ0 records oscillatory behavior of a specific frequency.

There is also, of course, a similar characterization of WFsc u inside Sn−1×Sn−1.
We leave this as an exercise for the reader.

10.2. Applications of the scattering calculus. As an example of how we
might use the scattering calculus to obtain global results on manifolds, let us return
to the local smoothing estimate from §2.1. Recall that if ψ satisfies the Schrödinger
equation (2.1) on Rn with initial data ψ0 ∈ H1/2, this estimate (or, at least, one
version of it) tells us that

(10.3) ψ ∈ L2
loc(Rt;H

1
loc(R

n)),
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hence the solution is (locally) half a derivative smoother than the data, on average.
How might we obtain this estimate on a manifold, with Δ replaced by the Laplace-
Beltrami operator (which we also denote Δ)? For a start, note that (10.3) fails
badly on compact manifolds; in particular, recall that since [Δ,Δs] = 0 for all
s ∈ R, the Hs norms are conserved under the evolution, hence if ψ0 /∈ Hs, with
s > 1/2, then we certainly do not have50 ψ ∈ L2

loc(Rt;H
s). So if we seek a broader

geometric context for this estimate, we had better try noncompact manifolds.
Recall that we initially obtained the estimate by a commutator argument with

the Morawetz commutant

∂r +
n− 1

2r
,

which actually gave more information; we noted that we could, instead, have used
a simpler commutant f(r)Dr, with f(r) = 0 near r = 0, nondecreasing, and equal
to 1 for r ≥ 2 (say): this gives a commutator with a term

χ′(r)D2
r

which, when paired with ψ and integrated in time, tests for H1 regularity in an
annular neighborhood of the origin (which could have been translated to be any-
where); other terms in the commutator are positive also, modulo estimable error
terms, and we thus obtain the local smoothing estimate. Generalizing this is tricky,
as the positivity of the symbol of the term

i[Δ, Dr]

on Rn is delicate: the symbol of this commutator is given by the Poisson bracket

{|ξ|2, ξ · x̂} = 2ξ · ∂x(ξ · x̂) =
2

|x|
(
|ξ|2 − (ξ · x̂)2

)
which is nonnegative but does actually vanish at ξ ‖ x, i.e. in radial directions. If

we perturb the Euclidean metric a bit, and replace |ξ|2 with |ξ|2g, the symbol of the

Laplace-Beltrami operator, but leave the inner product 〈ξ, x〉 =
∑

ξjx
j , then this

computation fails to give positivity. So we have to be more careful. We might try
to adapt

∑
ξjx

j to the new metric instead, but this is problematic, as it doesn’t
really make much invariant sense. Moreover, it seems even more problematic upon
interpretation: what positivity of {|ξ|2g, a} means is just that a is increasing along

the bicharacteristic flow of |ξ|2g, i.e. is increasing along (the lifts to the cosphere

bundle of) geodesics. This is clearly impossible if there are any closed (i.e., periodic)
geodesics, or indeed if there are geodesics that remain in a compact set for all time,
hence our difficulty in obtaining an estimate on compact manifolds.

Exercise 10.2. Suppose that a geodesic γ remains in a compact subset of Rn

(equipped with a non-Euclidean metric) for all t > 0. Let p = (γ(0), (γ′(0))∗) ∈
T ∗Rn (with ∗ denoting dual under the metric). Show that there cannot exist a

smooth a ∈ C∞(T ∗
R

n) with {|ξ|2g, a} ≥ ε > 0 and a(p) 
= 0.

50Note that this argument fails on Rn exactly because of the distinction between local and
global Sobolev regularity: there is nothing preventing a solution on Rn with initial data in H1/2

from being locally H1—or even smooth on arbitrarily large compact sets—in return for having
nasty behavior near infinity.
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Definition 10.4. Let g be an asymptotically Euclidean metric on Rn, and let
γ be a geodesic. We say that γ is not trapped forward/backward if

lim
t→±∞

|γ(t)| =∞.

We say that γ is trapped if it is trapped both forward and backward. We also
use the same notation for the bicharacteristic projecting to γ. Moreover, we say
that a point in S∗Rn along a non-(forward/backward)-trapped geodesic is itself
non-(forward/backward)-trapped.

It is a theorem of Doi [4] that the local smoothing estimate (10.3) cannot hold
near a trapped geodesic. (The total failure of (10.3) on compact manifolds should
make this plausible, but it turns out to be considerably more delicate to show that
it fails even if the only trapping is, for instance, a single, highly unstable, closed
geodesic.) As a result we will require some strong geometric hypotheses in in order
to find a general context in which (10.3) holds.

The following is a result of Craig-Kappeler-Strauss [1]:

Theorem 10.5. Consider ψ a solution to the Schrödinger equation on asymp-
totically Euclidean space, with ψ0 ∈ H1/2(Rn). The estimate (10.3) holds mi-
crolocally at any (x0, ξ0) that lies on a nontrapped bicharacteristic, i.e. for any
A ∈ Ψ1(Rn) compactly supported and microsupported sufficiently near to (x0, ξ0),
we have for any T > 0,51 ∫ T

0

‖Aψ‖2 dt � ‖ψ0‖2H1/2 .

Proof. We will prove the theorem by using a commutator argument in the
scattering calculus. To begin, we recall from Exercise 4.21 that the set along which
microlocal L2

locH
1 regularity holds is invariant under the geodesic flow. Hence it

suffices just to obtain regularity of this form somewhere along the geodesic γ. The
convenient place to do this is out near infinity.

In order to make a commutator argument, note that it is very useful to have
a quantity that behaves monotonically along the flow. We refer to points in T ∗Rn

near infinity (i.e. for |x| � 0) as incoming if ξ̂ · x̂ < 0 and outgoing if ξ̂ · x̂ > 0
(this corresponds to moving toward or away from the origin, respectively, under
asymptotically Euclidean geodesic flow). Heuristically, under the classical evo-
lution, points move from being incoming to being outgoing. More precisely, we
observe that the Hamilton vector field of p ≡ σ2,0(Δ) is given by

Hp = −
∑

ξiξj
∂gij(x)

∂xk
∂ξk + 2

∑
ξig

ij(x)∂xj .

Recalling that gij has an asymptotic expansion with leading term given by the
identity metric, we can write this as

(10.4) Hp = 2ξ · ∂x +O(|x|−1|ξ|)∂x +O(|x|−1|ξ|2)∂ξ
(where in fact the whole vector field is homogeneous of degree 1 in ξ).

Exercise 10.3. Verify (10.4).

51More generally, we can replace the Sobolev exponents 1/2 and 1 by s and s+ 1/2 respec-

tively; in particular, L2 initial data gives an L2H1/2 estimate.
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Thus,

Hp(ξ̂ · x̂) =
|ξ|
|x|

(
1− (ξ̂ · x̂)2

)
+O(|ξ||x|−1

).

This is thus positive, as long as ξ̂ · x̂ is away from ±1, and |x| is large,52 i.e., as long
as we stay away from precisely incoming or outgoing points. Thus, we manufacture
a scattering symbol for a commutant that has increase owing to the increase in
“outgoingness:” Let χ(s) denote a smooth function that equals 0 for s < 1/4 and
1 for s > 1/2, with χ′ a square of a smooth function, nonzero in the interior of its
support. Let χδ(s) = χ(δs). We choose

a(x, ξ) = |ξ|gχ(−ξ̂ · x̂)χδ(|x|)χ(|ξ|g).
Thus a is supported at incoming points at which |x| ≥ 1/(4δ) � 0; the first χ
factor localizes near incoming points, and the factor of χδ keeps |x| large. (The
factor χ(|ξ|g) simply cuts off near the origin in ξ to yield a smooth symbol.) Under
the flow on the support of a, x tends to decrease and we become more outgoing,
so the tendency is the leave the support of a along the flow. This is the essential
point in the following:

Exercise 10.4. Check that a ∈ S1,0
sc (T ∗Rn) and that if δ is chosen sufficiently

small, we may write

Hpa = −b2 − c2

where

(1) b ∈ S
1,−1/2
sc (T ∗

R
n) is supported in suppχ′(−ξ̂ · x̂)χδ(|x|)

(2) c ∈ S
1,−1/2
sc (T ∗Rn) is supported in suppχ(−ξ̂ · x̂)χ′

δ(|x|) and nonzero on
the interior of that set.

(Note that |ξ|g is annihilated by Hp, so the terms containing |ξ|g simply do not

contribute.)

Now let A ∈ Ψ1,0
sc (Rn) have principal symbol a. Then we have

i[Δ, A] = −B∗B − C∗C +R

with B = Op(b), C = Op(c) ∈ Ψ
1,−1/2
sc (Rn), and R ∈ Ψ1,−2

sc (Rn).
Hence, ∫ T

0

‖Cψ‖2 dt ≤
∣∣∣〈Aψ,ψ〉

∣∣T
0

∣∣∣ +
∣∣∣∣∣
∫ T

0

〈Rψ,ψ〉 dt
∣∣∣∣∣.

As 〈Aψ,ψ〉 is bounded by the L∞H1/2 norm of ψ and hence by ‖ψ0‖2H1/2 , and the
R term likewise,53 we obtain

(10.5)

∫ T

0

‖Cψ‖2 dt � ‖ψ0‖2H1/2 .

52Largeness of ξ plays no role because of homogeneity of the Hamilton vector field of the
principal symbol of Δ.

53In fact, the R term is considerably better than necessary for this step, as it has weight −2
rather than just 0 (which would be all we need to obtain the estimate). The astute reader may
thus recognize that we are far from using the full power of the scattering calculus here. A proof of
the global estimate in Exercise 10.6 requires a more serious use of the symbol calculus, however,
as do the estimates which are the focus of [1], which show that microlocal decay of the initial data
yields higher regularity of the solution along bicharacteristics.
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Exercise* 10.5. Show that for any R0 > 0, there exists δ > 0 sufficiently
small that if (x0, ξ0) ∈ T ∗Rn ∩ {|x| < R0} lies along a non-backward trapped
bicharacteristic, some point on that bicharacteristic with t  0 lies in ellC, with
C = Op(c) constructed as above.

Thus, rays starting close to the origin that pass through |x| ∼ δ−1 for t  0
are incoming when they do so. This is an exercise in ODE. You might begin by
showing that if a backward bicharacteristic starting in {|x| < R0} passes through

the hypersurface |x| = R′ with R′ � 0, then it must have ξ̂ · x̂ < 0 there, and that

ξ̂ · x̂ will keep decreasing thereafter along the backward flow.

Given a non-backward-trapped point q ∈ S∗Rn, Exercise 10.5 tells us that we
may construct a commutant A as above so that the commutator term C is elliptic
somewhere along the bicharacteristic through q. Equation 10.5 tells us that we have
the desired L2H1 estimate on ellC, and the flow-invariance from Exercise 4.21 yields
the same conclusion at q. Thus, we have proved the desired result at non-backward-
trapped points. It remains to consider non-forward-trapped points.

Suppose, then, that q = (x0, ξ0) ∈ T ∗Rn is non-forward-trapped; then note
that q′ = (x0,−ξ0) is non-backward-trapped. Consider then the function ψ : if

(Dt +Δ)ψ = 0

then

(−Dt +Δ)ψ = 0,

i.e.

ψ̃(t, x) = ψ(T − t, x)

again solves the Schrödinger equation. Of course, by unitarity,∥∥ψ̃(0, x)∥∥
H1/2 = ‖ψ0‖H1/2 .

Since q′ is non-backward trapped, we thus find that there exists C ∈ Ψ
1,−1/2
sc (Rn),

elliptic at q′, with ∫ T

0

∥∥∥Cψ̃
∥∥∥2

dt �
∥∥ψ̃(0, x)∥∥2

H1/2 = ‖ψ0‖2H1/2 ;

on the other hand, ∥∥∥Cψ̃(t, ·)
∥∥∥2

=
∥∥Cψ(T − t, ·)

∥∥2

=
∥∥Cψ(T − t, ·)

∥∥2
,

where

C = Op�(c(x, ξ)), and C = Op�(c(x,−ξ));
thus, C tests for regularity at q, and we have obtained the desired estimate at q. �

Corollary 10.6. On an asymptotically Euclidean space with no trapped geodesics,
the local smoothing estimate holds everywhere.

Exercise* 10.6. (Global (weighted) smoothing.) Show that if there are no
trapped geodesics, and ψ0 ∈ L2, we have∫ T

0

∥∥∥〈x〉−1/2−εψ
∥∥∥2

H1/2
dt � ‖ψ0‖2L2
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for every ε > 0. (This is a bit involved; a solution can be found, e.g., in Appendix
II of [8].)

10.3. The scattering calculus on manifolds. We can generalize the de-
scription of the scattering calculus to manifolds quite easily, following the prescrip-
tion of Melrose [18]. Let X be a compact manifold with boundary. We will, in
practice, think of the interior, X◦, as a noncompact manifold (with a complete
metric) that just happens to come pre-equipped with a compactification to X. Our
motivating example will be X = Bn, where X◦ is then diffeomorphically identified
with Rn via the radial compactification map. Recall that on Rn, radially compact-
ified to the ball, we used coordinates near Sn−1, the “boundary at infinity,” given
by

ρ =
1

|x| , θ =
x

|x| ,

where in fact ρ together with an appropriate choice of n− 1 of the θ’s furnish local
coordinates near a point. In these coordinates, what do constant coefficient vector
fields on R

n look like? We have

∂xj = ρ∂θj − ρ
∑

θkθj∂θk − ρ2θj∂ρ.

Recall moreover that functions in C∞(Bn) correspond exactly, under radial
(un)compactification, to symbols of order zero on R

n. So in fact it is easy to check
more generally that vector fields on Rn with zero-symbol coefficients correspond
exactly to vector fields on Bn that, near Sn−1, take the form

a(ρ, θ)ρ2∂ρ +
∑

bj(ρ, θ)ρ∂θj ,

with a, bj ∈ C∞(Bn).
We generalize this notion as follows. Given our manifold X, let ρ ∈ C∞(X)

denote a boundary defining function, i.e.

ρ ≥ 0 on X, ρ−1(0) = ∂X, dρ 
= 0 on ∂X.

Let θj be local coordinates on ∂X. We define scattering vector fields on X to be
those that can be written locally, near ∂X, in the form

a(ρ, θ)ρ2∂ρ +
∑

bj(ρ, θ)ρ∂θj ,

with a, bj ∈ C∞(X). Let

Vsc(X) = {scattering vector fields on X}

Exercise 10.7.

(1) Show that Vsc(X) is well-defined, independent of the choices of ρ, θ.
(2) Let Vb(X) denote the space of smooth vector fields on X tangent to ∂X.

Show that
Vsc(X) = ρVb(X)

(3) Show that both Vsc(X) and Vb(X) are Lie algebras.

As we can locally describe the elements of Vsc(X) as the C∞-span of n vector
fields, Vsc(X) is itself the space of sections of a vector bundle, denoted

scTX.

There is also of course a dual bundle, denoted
scT ∗X,
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whose sections are the C∞-span of the one-forms

dρ

ρ2
,
dθj

ρ
.

Over X◦, we may of course canonically identify scT ∗X with T ∗X, and the canonical
one-form on the latter pulls back to give a canonical one-form

(10.6) ξ
dρ

ρ2
+ η · dθ

ρ

defining coordinates ξ, η on the fibers of scT ∗X.
The scattering calculus on R

n is concocted to contain scattering vector fields:

Exercise 10.8. Show that Ψ1,0
sc (Rn) ⊃ Vsc(Bn).

We can, following Melrose, define the scattering calculus more generally as

follows. Let scT
∗
X denote the fiber-compactification of the bundle scT ∗X, i.e. we are

radially compactifying each fiber to a ball, just as we did globally in compactifying
T ∗Rn to Bn ×Bn, only this time, the base is already compact. Now let

Sm,l
sc (scT ∗X) = σ−mρ−lC∞(scT

∗
X),

where σ is a boundary defining function for the fibers. We can (by dint of some
work!) quantize these “total” symbols to a space of operators, denoted

Ψm,l
sc (X).

(Note that in the case X = Bn, we recover what we were previously writing as
Ψm,l

sc (Rn); the latter usage, with Rn instead of the more correct Bn, was an abuse
of the usual notation.) The principal symbol of a scattering operator is, in this

invariant picture, a smooth function on ∂(scT
∗
X); or equivalently, an equivalence

class of smooth functions on scT
∗
X; or, in the partially uncompactified picture, an

equivalence class of smooth symbols on scT ∗X. (It is this last point of view that we
shall mostly adopt.) In the coordinates defined by the canonical one-form (10.6),
we have

(10.7) σ1,0(ρ
2Dρ) = ξ, σ1,0(ρDθj ) = ηj .

Recall that the Euclidean metric may be written in polar coordinates as

d(ρ−1)2 + (ρ−1)2h(θ, dθ)

with h denoting the standard metric on Sn−1. We can generalize this to define a
scattering metric as one on a manifold with boundary X that can be written in the
form

dρ2

ρ4
+

h(ρ, θ, dθ)

ρ2

locally near ∂X, with ρ a boundary defining function, and h now a smooth family
in ρ of metrics on ∂X.54

54The usual definition, as in [18], is a little more general, allowing dρ terms in h; however, it
was shown by Joshi-Sá Barreto that these terms can always be eliminated by appropriate choice
of coordinates.



MICROLOCAL ANALYSIS 69

Exercise 10.9.

(1) Show that if g is a scattering metric on X, then the Laplace operator with
respect to g can be written

Δ = (ρ2Dρ)
2 +O(ρ3)Dρ + ρ2Δθ

where Δθ is the family of Laplacians on ∂X associated to the family of
metrics h(r, θ, dθ).

(2) Show that for λ ∈ C,

σ2,0(Δ− λ2) = ξ2 + |η|2h − λ2.

(Note that this entails noticing that you can drop the O(ρ3)Dρ terms

for different reasons at the the two different boundary faces of scT
∗
X.

The term −λ2 is of course only relevant at the ρ = 0 face; it does not
contribute to the part of the symbol at fiber infinity, as it is a lower-order
term there.)

As a consequence of Exercise 10.9, note as before that for λ ∈ R, the Helmholz
operator Δ − λ2 is not elliptic in the scattering sense: there are points in scT ∗

∂XX

where ξ2 + |η|2h = λ2.
We now turn to scattering wavefront set WFsc, which can, as one might expect,

be defined in the usual manner as a subset of

∂(scT
∗
X),

hence is a subset of boundary faces at fiber infinity and at spatial infinity (i.e.,
over ∂X). The scattering wavefront set is the obstruction to a distribution lying

in Ċ∞(X), where Ċ∞(X) denotes the set of smooth functions on X decaying to
infinite order at ∂X. This space is the analogue of the space of Schwartz functions
in our compactified picture:

Exercise 10.10. Show that pullback under the radial compactification map
sends Ċ∞(Bn) to S(Rn).

By (10.7), it is not hard to see that

(ρ2Dρ − α)u = 0 =⇒WFsc u ⊂ {ρ = 0, ξ = α},
(ρDθj − β)u = 0 =⇒WFsc u ⊂ {ρ = 0, ηj = β}.

The following variant provides a useful family of examples (and can be proved with
only a little more thought): if a(ρ, θ) and φ(ρ, θ) ∈ C∞(X), then55

WFsc

(
a(ρ, θ)eiφ(ρ,θ)/ρ

)
= {(ρ = 0, θ, d(φ(ρ, θ)/ρ) : (0, θ) ∈ ess-supp a},

where ess-supp a ⊆ ∂X denotes the “essential support” of a, i.e. the points near
which a is not O(ρ∞).

Of course, if

(10.8) (Δ− λ2)u = f ∈ Ċ∞(X),

then we have, by microlocal elliptic regularity,

WFsc u ⊂ {ρ = 0, ξ2 + |η|2h = λ2}.

55The distribution aeiφ used here is a simple example of a Legendrian distribution. The
class of Legendrian distributions on manifolds with boundary, introduced by Melrose-Zworski
[19], stands in the same relationship to Lagrangian distributions as scattering wavefront set does
to ordinary wavefront set.
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In fact, there is a propagation of singularities theorem for scattering operators of
real principal type that further constrains the scattering wavefront set of a solution
to (10.8): it must be invariant under the (appropriately rescaled) Hamilton vector
field of the symbol of Δ− λ2.

Exercise* 10.11. Let ω = d(ξ dρ/ρ2 + η · dθ/ρ) and let

p = ξ2 + |η|2h − λ2;

show that up to an overall scaling factor, the Hamilton vector field of p with respect
to the symplectic form ω is, on the face, ρ = 0 just

Hp = 2ξη · ∂η − 2|η|2h0
∂ξ + Hh0

where h0 = h|ρ=0, and Hh0
is the Hamilton vector field of h0, i.e. (twice) geodesic

flow on ∂X.
Show that maximally extended bicharacteristics of Hp project to the θ variables

to be geodesics of length π. (Hint: reparametrize the flow.)
(For a careful treatment of the material in this exercise and indeed in this

section, see [18].)

Appendix

We give an extremely sketchy account of some background material on Fourier
transforms, distribution theory, and Sobolev spaces. For further details, see, for
instance, [25] or [11].

Let S(Rn), the Schwartz space, denote the space

{φ ∈ C∞(Rn) : sup
∣∣xα∂β

xφ
∣∣ <∞ ∀α, β},

topologized by the seminorms given by the suprema. The dual space to S(Rn),
denoted S ′(Rn), is the space of tempered distributions.

For φ ∈ S(Rn), let

Fφ(ξ) = (2π)−n/2

∫
φ(x)e−iξ·x dx.

Then Fφ ∈ S(Rn), too; indeed, F : S(Rn) → S(Rn) is an isomorphism, and its
inverse is closely related:

F−1ψ(x) = (2π)−n/2

∫
ψ(ξ)e+iξ·x dx.

We can, by duality, then define F on tempered distributions.
Let E ′(Rn) denote the space of compactly supported distributions on Rn. When

X is a compact manifold without boundary, we let D′(X) denote the dual space of
C∞(X).

We define the (L2-based) Sobolev spaces by

Hs(Rn) = {u ∈ S ′(Rn) : 〈ξ〉sFu(ξ) ∈ L2(Rn)},

where 〈ξ〉 = (1 + |ξ|2)1/2. If s is a positive integer, this definition coincides exactly
with the space of L2 functions having s distributional derivatives also lying in L2.
We note that the operation of multiplication by a Schwartz function is a bounded
map on each Hs; this is most easily proved by interpolation arguments similar to
(but easier than) those alluded to in Exercise 2.4—cf. [25].
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Throughout these notes we will take for granted the Schwartz kernel theorem,
not so much as a result to be quoted but as a world-view. Recall that this result
says any continuous linear operator

S(Rn)→ S ′(Rn)

is of the form

u �→
∫

k(x, y)u(y) dy

for a unique k ∈ S ′(Rn×Rn); a corresponding result also holds on all the manifolds
that we will consider. We thus consistently take the liberty of confusing operators
with their Schwartz kernels, although we let κ(A) denote the Schwartz kernel of
the operator A when we wish to emphasize the difference.

Some results relating Schwartz kernels to traces are important for our discussion
of the wave trace. Recall that an operator T on a separable Hilbert space is called
Hilbert-Schmidt if ∑

j

‖Tej‖2 <∞

where {ej} is any orthonormal basis. In the special case when our Hilbert space
is L2(X) with X a manifold, the condition to be Hilbert-Schmidt turns out to be
easy to verify in terms of the Schwartz kernel: T is Hilbert-Schmidt if and only if
κ(T ), its Schwartz kernel,56 lies in L2(X ×X).

A trace-class operator is one such that∑
i,j

|〈Tei, fj〉| <∞

for every pair of orthormal bases {ei}, {fj}. It turns out to be the case that an
operator T is trace-class if and only if it can be written

T = PQ

with P,Q Hilbert-Schmidt. The trace of a trace-class operator is given by∑
i

〈Tei, ei〉

over an orthonormal basis: this turns out to be well-defined. We refer the reader
to [20] for further discussion of trace-class and Hilbert-Schmidt operators.

References

[1] Craig, W., Kappeler, T., Strauss, W. Microlocal dispersive smoothing for the Schrödinger
equation, Comm. Pure Appl. Math. 48 (1995), no. 8, 769–860.
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Some Global Aspects of Linear Wave Equations

Dean Baskin and Rafe Mazzeo

Abstract. This paper surveys a few aspects of the global theory of wave
equations. This material is structured around the contents of a minicourse
given by the second author during the CMI/ETH Summer School on evolution
equations during the Summer of 2008.

1. Introduction

The week-long minicourse on which this brief survey paper is based came after
a vigorous, detailed and outstanding series of lectures by Jared Wunsch on the ap-
plications of microlocal analysis to the study of linear wave equations. Both lecture
series took place at the Clay Mathematics Institute Summer School at ETH Zürich
in 2008. The goal of this minicourse was to describe a few topics which involve
global aspects of wave theory, relying at least to some extent on the microlocal un-
derpinnings from Wunsch’s lectures. The first of these topics is an account of some
striking consequences that can be derived from the finite propagation speed prop-
erty. While this had been applied in various interesting ways before, the systematic
development of this principle appears in the very influential paper of Cheeger, Gro-
mov and Taylor [CGT82]. We recall how this property, applied to solutions of
the wave equation associated to a Laplace-type operator, can be used to obtain
estimates for solutions of various related operators. We present only one applica-
tion of this, which is a lovely argument due to Gilles Carron which estimates the
off-diagonal decay profile of the Green function for generalized Laplace-type oper-
ators on globally symmetric spaces of noncompact type. This result had caught
the lecturer’s eye in the months before this Clay meeting and nicely illustrates the
unexpected power of the finite propagation speed method. Following this, the re-
mainder of the lectures reviewed several different approaches to scattering theory
and described a few of the relationships between these. The primary goal, however,
was to introduce the Friedlander radiation fields and explain how they give a con-
crete realization of the Lax–Phillips translation representation. We follow suit here,
recalling the outlines of a few of the numerous successful approaches to scattering
theory and culminating in a discussion of these radiation fields.

This paper attempts to give some feel for what was presented in these lectures.
The reader should be warned that the topics covered here are in many places old-
fashioned and we omit any mention of many of the most important recent advances
and trends in scattering theory. The material here is meant to indicate a few things
that can be accomplished, often with not very sophisticated machinery by modern
standards. We typically make very restrictive assumptions in order to convey the
main essence of the ideas. We give references for further reading interspersed inter
alia, but do not make any claim to a comprehensive bibliography.
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The material assembled here is based on the notes of the first-named author; the
lecturer (and second author) is extremely grateful to him not only for this careful
recording of the lectures, but also for his enthusiasm during the lectures and his
very substantial assistance in writing this paper. We did discuss at some point,
but later abandoned, the possibility of writing a much more exhaustive treatment
of some of the topics here, particularly the theory of radiation fields. That will
unfortunately have to wait for another day and other authors. We hope that this
survey accomplishes what the original lectures also attempted, which is to whet the
reader’s curiosity to learn more about this subject. Needless to say, wave theory is
an immense subject and we mention here only a very small set of possible topics.

Throughout this paper we focus on properties of solutions, and of the solution
operator, for the wave operator

(1.1) �V = D2
t − L, where L = ∇∗∇+ V

acting on sections of some bundle E over a Riemannian manifold (M, g), where
∇ is the covariant derivative of some connection on E and V is a (self-adjoint)
potential of order 0, which can either be scalar or an endomorphism of E. For
simplicity we typically assume that V is smooth and compactly supported, although
neither of these properties is present in almost any of the interesting physical or
geometric applications. Furthermore, we often discuss only the scalar Laplacian
and its perturbations, although the extension of all results below to this slightly
more general framework is usually just notational. Finally, here and below we write
D = 1

i ∂.
As noted above, we take advantage of the luxury of being able to refer back

to the excellent lecture notes by Jared Wunsch [Wun08] covering his longer mini-
course. Those notes provide a nice introduction for many central themes and re-
sults in the subject, including the existence of solutions of the equation �u = f
with vanishing Cauchy data, or of �u = 0 with prescribed nonzero Cauchy data,
along a noncharacteristic hypersurface, the positive commutator method leading
to Hörmander’s renowned theorem on propagation of singularities of solutions, the
finite propagation speed property, and much else besides. Using this as a blanket
resource, we can dive right into the material at hand.

There are now many terrific monographs concerning the local and global aspects
of wave equations. Michael Taylor’s three-volume series [Tay11] belongs high on
this list; it contains an amazing amount of information about many different topics.
Other recent monographs with a particular focus on hyperbolic equations include
those by Alinhac [Ali09], Lax [Lax06], Rauch [Rau12]; we mention also the new
book by Zworski on semiclassical analysis [Zwo12].

The first part of this survey, in § 2, focuses on the finite propagation speed
property for solutions of the wave equation. After sketching a proof of this property
in § 2.1, we state some key facts about the Cheeger–Gromov–Taylor theory in § 2.2,
which leads to the discussion in § 2.3 of Carron’s application of these ideas to
estimate certain geometric operators on globally symmetric spaces of noncompact
type. The second part, § 3, presents a few different perspectives in scattering theory.
We begin in § 3.1 with some topics in stationary scattering theory, then move on in
§ 3.2 to several formulations of time-dependent scattering theory: progressing wave
solutions, Møller wave operators, Lax–Phillips theory, and the theory of Friedlander
radiation fields.
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2. Finite propagation speed and its consequences

Although [Wun08] contains a proof of the basic finite propagation speed prop-
erty for the operator �V , we begin by recalling this familiar argument very briefly.
We then show how using the functional calculus one can write the Schwartz kernels
of various functions of the elliptic operator L in terms of the Schwartz kernel of
the wave operator. This leads directly to the important Cheeger–Gromov–Taylor
theory which uses finite propagation speed to obtain interesting estimates for these
Schwartz kernels. We illustrate this with an outline of Carron’s estimates for the
resolvent and heat kernel of generalized Laplacians on symmetric spaces of non-
compact type.

2.1. Finite propagation speed. The fundamental identity behind finite prop-
agation speed is the observation that for any sufficiently regular function u,

(2.1) divx(ut∇u) = ut�0u+
1

2
∂t(u

2
t + |∇u|2).

We suppose that the space on which we are doing calculations has a global time
function t and moreover, splits as R×M , with a static Lorentzian metric −dt2+h,
where (M,h) is a Riemannian manifold. A hypersurface Y ⊂ R × M is called
spacelike if its unit normal ν (with respect to this Lorentzian metric) satisfies ν ·ν <
0. Suppose that Ω ⊂ R×M is a domain bounded by two spacelike hypersurfaces,
∂Ω = Y1 ∪ Y2, which meet transversely along a codimension two submanifold, and
that u is a solution of the homogeneous wave equation, �0u = 0. Integrate (2.1)
over Ω. The left side is transformed using the divergence theorem; the first term on
the right vanishes while the second term is also transformed to a boundary integral.
If νj = (νt,j , νx,j) is the upward-pointing unit normal to Yj , decomposed into its
vertical (t) and horizontal (x) components, then we obtain∫

Y1

(|ut|2 + |∇u|2)|νt,1| − 2ut · ∂ν1
u|νx,1|

=

∫
Y2

(|ut|2 + |∇u|2)|νt,2| − 2ut · ∂ν2
u|νx,2|.

Since νj is timelike, the integrand on each side is bounded from below by c(|ut|2 +
|∇u|2) for some c > 0 which depends on Yj . We conclude that if ut = ∇u = 0 on
Y1, then these same quantities must also vanish on Y2. Finally, if Ω is foliated by
spacelike hypersurfaces, then the vanishing of (ut,∇u) on the bottom (spacelike)
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boundary of Ω can be propagated throughout this entire region, and hence if u
vanishes at Y1, then u ≡ 0 in Ω.

If we consider wave operators with terms of order 0 or 1, then this calculation
can be adapted to show that if Ω is foliated by spacelike hypersurfaces Zs, 0 ≤ s ≤ 1,
then the integral over Zs of |ut|2 + |∇u|2 satisfies a differential inequality, and the
fact that it vanishes when s = 0 implies that it vanishes for all s ≤ 1.

To interpret this calculation, we observe that there many natural domains Ω
which can be foliated by spacelike hypersurfaces in this way. Indeed, suppose that
p = (t1, x1) is any point, and D−

t1,x1
denotes the (backward) domain of dependence

of this point, i.e. the set of points in R × M which can be reached by timelike
paths traveling backward in t and emanating from (t1, x1). Let Y be one of the
level sets {t = t0} where t0 < t1. Then the region Ω = {(t, x) ∈ D−

t1,x1
: t ≥ t0}

can be shown to have a spacelike foliation by submanifolds Ys which all intersect
along the submanifold {(t, x) ∈ D−

t1,x1
: t = t0}. Thus any homogeneous solution of

�V u = 0 which vanishes along with its normal derivative along {t = t0} vanishes
throughout this Ω. This implies that if the Cauchy data of u at t0 is supported in
some subset K, then the Cauchy data of u at t1 = t0+τ , where τ > 0, is supported
in the subset Kτ = {(t1, x) : distg(x,K) ≤ τ}, which is precisely what is meant by
saying that the support of a solution propagates with speed 1. For more general
variable coefficient hyperbolic equations, the speed of propagation may be variable
but is still finite.

2.2. Cheeger–Gromov–Taylor theory. Consider the fundamental solution
for the problem

�V u = 0, u|t=0 = φ, ∂tu|t=0 = 0.

It is customary to write this solution operator as cos(t
√
L), so that the solution

u(t, x) is equal to cos(t
√
L)φ. We assume for simplicity that L has no negative

eigenvalues so that
∥∥∥cos(t√L)

∥∥∥ ≤ 1. This is an instance of the functional calcu-

lus for self-adjoint operators, which are defined in purely abstract terms using the
spectral theorem and can be used to describe solution operators for various equa-
tions involving L. There are many interesting examples, including prominently the
resolvent and heat operator

RL(λ) := (L− λ2)−1 and e−tL.

The abstract definitions of these operators (i.e. defined using the spectral the-
orem) are all well and good, but in order to use them one usually wishes to know
much more about their mapping properties. For example, a priori, using only these
abstract definitions, we only know how one of these functions of L acts on L2 func-
tions, but not on other function spaces. The goal then is to obtain a more concrete
understanding of the Schwartz kernels of any one of these operators. Of course,
there is a lot of theory devoted to doing just this. Thus the classical theory of
pseudodifferential operators gives a nice picture of the resolvent for λ varying in a
compact region in C disjoint from the spectrum, while the theory of semiclassical
pseudodifferential operators provides a means to understand this family of oper-
ators as λ tends to infinity in various directions in the complex plane. Similarly,
the well-known heat-kernel parametrix construction, cf. [BGV92], gives a way to
understand the asymptotic behavior of the Schwartz kernel of the solution operator
for the heat equation in various regimes of the space R+ ×M ×M . These theories
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and constructions give very precise information, but are often very intricate, and
furthermore, it is often hard to use these ideas directly to say anything interesting
about global behavior of these Schwartz kernels. The idea in [CGT82] is that one
can extract, often in a rather simple way, some very useful global behavior of these
kernels using mainly the finite propagation speed property of cos(t

√
L) and some

other simple properties, such as the fact that the norm of cos(t
√
L) as a bounded

operator on L2 never exceeds 1.
To explain this, suppose that f(s) is a smooth, even function on R which decays

sufficiently rapidly so that the following manipulations are justified. Assuming
L ≥ 0 for simplicity, we define f(

√
L) using the spectral theorem, but at the same

time we can spectrally synthesize this function of L directly from the wave kernel:

f(
√
L) =

1

2π

∫ ∞

−∞
f̂(s) cos(s

√
L) ds.

The simple but crucial observation is that this is not just an identity about abstract
self-adjoint operators, but also calculates the Schwartz kernel of f(

√
L) in terms of

the Schwartz kernel of the wave operator.
The following discussion is drawn from the paper [CGT82]. Suppose that f

has the property that its Fourier transform f̂(s) is integrable, along with a certain
number of its derivatives, on R \ (−ε, ε) for any ε > 0. The first key result is that
under such a hypothesis, if u ∈ L2 has support in a ball Br(y), then for R > r,

||f(
√
L)u||L2(M\BR(y)) ≤ π−1||u||L2

∫ ∞

R−r

|f̂(s)| ds.

The proof is very simple. We know that cos(s
√
L)u has support in Br+|s|(y), so

that

||f(
√
L)u|| ≤ 1

π

∥∥∥∥
∫ ∞

R−r

f̂(s) cos(s
√
L)u ds

∥∥∥∥ ≤ 1

π
||u||

∫ ∞

R−r

|f̂(s)| ds.

A very similar argument gives bounds for ||Lpf(
√
L)Lqu|| depending on the inte-

gral of some higher derivatives of f̂(s) over the same half-line. The particularly

useful aspect of this is that the integrals of |∂�
sf̂ | which appear on the right in

these estimates start at R− r rather than at 0, and hence if these functions decay
at some rate, then the right sides of these inequalities exhibit the corresponding
decay. Assuming we are on a space with appropriate local uniformity of the metric
(or coefficients of L), then we can deduce from this some off-diagonal pointwise

estimates for the Schwartz kernel f(
√
L)(z, w). By off-diagonal we mean that the

estimates are valid in any region where dist (z, w) 
 0. One reason for assuming
this local uniformity for L is that these arguments require bounds on the injectiv-
ity radius and volumes of geodesic balls, for example, in order to pass from L2 to
pointwise estimates.

2.3. Carron’s theorem. This subsection provides a concrete example of how
this all works. We describe some of the main features in the paper [Car10] of Carron
which uses the ideas above to derive fairly accurate pointwise bounds on the off-
diagonal decay of the resolvent kernel and heat-kernel for Laplace-type operators
on symmetric spaces of noncompact type.

In order to describe this we must first explain at least a small amount about the
geometry of these spaces. This is recounted elsewhere in much greater detail; the
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classic reference is [Hel84], but we refer (self-servingly) to [MV05] for an analyst’s
point of view of this geometry.

Symmetric spaces are distinguished amongst general Riemannian manifolds by
the richness of their isometry groups. Their defining property is that the geodesic
reflection around any point (expp(v) �→ expp(−v)) extends to a global isometry;
Cartan’s classic characterization is that any such space is necessarily of the form
G/K, where G is a semisimple Lie group and K ⊂ G is a maximal compact sub-
group, endowed with an invariant metric. Because of this, almost all of the basic
structure theory can be reduced to algebra and hence described quite explicitly.
We shall focus on one particular realization stemming from the polar decompo-
sition G = KAK, where K is as above and A is a maximal connected abelian
subgroup. For a symmetric space X of noncompact type, this subgroup A is iso-
morphic (and isometric) to a copy of Rk for some k, where the positive integer k
is called the rank of X. Using this polar decomposition, we identify G/K ∼= KA.
The map Φ : K ×A → X, Φ(k, a) = ka, is surjective, but far from injective.

It is best to think of the simplest special case, the real hyperbolic space Hn;
here A ∼= R and K = SO(n). The image of the origin 0 ∈ A via Φ is a single point
o ∈ X, and this point is fixed by the entire (left) action of K. The space X is the
union of geodesic lines through o which all intersect pairwise only at this point. The
group K acts transitively on this space of geodesic lines through o with stabilizer
SO(n− 1). Note that there are elements of K which take a geodesic to itself but
reverses its orientation; this means that we get a less redundant ‘parametrization’
by restricting Φ to K × R+. Geometrically, we have the familiar picture of Hn as
R+ × Sn−1 with the warped product metric dr2 + sinh2 r dθ2.

For a general symmetric space X of rank k > 1, this picture generalizes as
follows. The space X is the union of the various images of A by elements k ∈ K,
and all of these images intersect at o, though kA ∩ k′A often consists of a larger
subspace. These translates of A by k ∈ K should be thought of as the radial
directions in X. Another important piece of structure is the existence of a finite
set of linear functionals Λ = {αj} on A called the roots. These divide into positive
and negative roots, Λ = Λ+∪Λ−, and the positive roots determine a (closed) sector
V ⊂ A by V = {αj ≥ 0 ∀ αj ∈ Λ+}. This sector V is the analogue of the half-line
in Hn, and the restriction of Φ to K × V is still surjective, and if K ′ ⊂ K denotes
the isotropy group at a generic point, then we can regard X as being the product
V × (K/K ′) with certain submanifolds of K/K ′ collapsed along various boundary
faces of V . In terms of this data, we can finally write down the multiply-warped
product metric

g = da2 +
∑
j

sinh2 αj dn
2
j ,

where the sum is over positive roots, da2 is the Euclidean metric on A and dn2
j is

a metric on a certain subbundle of the tangent bundle of K/K ′ corresponding to
the root αj .

For simplicity here we just discuss the scalar Laplacian Δ on X and, following
the theme of this section, consider the problem of estimating the Schwartz kernels
of f(

√
−Δ) for suitable functions f . Because Δ commutes with all isometries on

X, the Schwartz kernel Kf (x, x
′) of this operator depends effectively on a smaller

number of variables. Given any pair of distinct points x, x′ ∈ X, choose an isometry
ϕ of X so that ϕ(x′) = o and ϕ(x) lies in some particular copy of A. If we ask



SOME GLOBAL ASPECTS OF LINEAR WAVE EQUATIONS 79

that ϕ(x) = a ∈ V ⊂ A, then ϕ is almost uniquely determined. We thus have that
Kf (x, x

′) = Kf (ϕ(x), o) = Kf (a, 0). In other words, Kf is really only a function
of the k Euclidean variables a = (a1, . . . , ak). In particular, when the rank of X is
1, then Kf reduces to a function of one variable r ≥ 0.

This reduction points to the difficulty of studying functions of the Laplacian
on symmetric spaces of rank greater than 1. Indeed, while the resolvent kernel
R(λ;x, x′) on a space of rank 1 depends only on dist(x, x′) and hence can be an-
alyzed completely by ODE methods, the same is not true when the rank of X is
larger. Similarly, even in the rank 1 setting, the heat kernel H(t, x, x′) depends
on two variables, t and dist(x, x′), but unlike the Euclidean case, there is no ex-
tra homogeneity which reduces this further to a function of one variable. Thus the
problem which Carron’s theorem answers is how to give good estimates on these re-
duced functions, R(λ, a) and H(t, a), where a ∈ A is the ‘relative position’ between
x, x′ ∈ X.

Theorem 2.2 (Carron [Car10]). Let X be a symmetric space of noncompact
type and rank k and consider the Schwartz kernels R(λ, a) and H(t, a) of the resol-
vent (−Δ−λ0−λ2)−1 and heat operator etΔ, written in reduced form as above. The
number λ0 here is the bottom of the spectrum of −Δ; it may be calculated explicitly.
Then

|R(λ, a)| ≤ Ce−ρ(a)−Re(λ) dist(a,o)

and

|H(t, a)| ≤ Ce−λ0t−ρ(a)−dist2(a,0)/4t Φt(a).

The function Φt(a) is a somewhat messy but quite explicit and understandable func-
tion which is a rational function of a and certain powers of t. The linear functional
ρ on A is half the sum of the ‘restricted’ positive roots; this is a standard object
which appears frequently.

It is known that the upper bounds given here are sharp in the sense that there
are lower bounds that differ just by the constant multiple for these same kernels. We
refer also to the papers [AJ99] and [LM10] sharper bounds obtained by different
and more complicated methods.

The proofs of these estimates are clever but not very long, and in the remainder
of this section we give a few of the ideas which go into them.

The first step is that if a ∈ A is arbitrary and ε ∈ (0, 1), then we can estimate
from above and below the volume of the set KB(a, ε), where B(a, ε) is a ball
of radius ε in A centered around a. This can be done because we have very good
information on the Jacobian determinant for the coordinate change implicit in some
natural coordinatizations induced by K ×A → X.

Let us first study the resolvent. Fix a ∈ A such that dist(a, o) ≥ 2. We shall
obtain a pointwise estimate for |R(λ, a)| in B(o, 1) starting from L2 estimates in this
same ball of functions of the form u = R(λ)σ, where σ varies over all L2 functions
in the “annular shell” D := KB(a, 1) which vanish outside D. Thus,

u = R(λ, ·)σ =

∫ ∞

0

e−λξ

λ
cos(ξ

√
−Δ− λ0)σ dξ.
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Using that || cos(ξ
√
−Δ− λ0)||L2→L2 = 1 as well as finite propagation speed, be-

cause of the support properties of σ, we obtain

||u||L2(B(o,1)) ≤
∫ ∞

dist(a,o)−2

e−Re(λ)ξ

|λ| ||σ||L2 ≤ 1

|λ|2 e
−Re(λ)(dist(a,o)−2)||σ||L2 .

From here, using local elliptic estimates, we obtain that

|u(o)| ≤ Ce−Re(λ) dist(a,o)||σ||L2(D).

In other words, this estimates the norm of the mapping T defined by L2(D) � σ �→
R(λ)σ|o, whence (using the L∞ → L∞ norm of TT ∗),

(2.3)

∫
D

|R(λ, x, o)|2 dx ≤ Ce−2Re(λ) dist(a,o).

We next wish to find a similar estimate where the integral on the left is only
over some ball B(ka, 1/4) ⊂ D rather than the entire annular region D. More
specifically we assert that

Vol(B(ka, 1/4))

∫
B(ka,1/4)

|R(λ, x, o)|2 dx ≤ Ce−2Re(λ) dist(a,o).

This must hold, since if it were to fail for every B(ka, 1/4), then the sum over all
such balls would lead to a violation of (2.3).

Finally, noting that the volume of this ball is approximately e2ρ(a), and applying
the same local elliptic estimates as before to estimate the value at a point in terms
of a local L2 norm, we conclude that

|R(λ, a, o)| ≤ Ce−Re(λ) dist(a,o)−ρ(a).

This is the desired off-diagonal decay estimate.
The corresponding argument to estimate the off-diagonal behavior of the heat

kernel proceeds in a very similar way, substituting local parabolic estimates for
local elliptic estimates. We refer to [Car10] for details.

It is worth remarking that there are other very effective ways to establish so-
called Gaussian bounds for heat kernels under rather general circumstances. We
mention in particular the beautiful theory developed by Grigor’yan and Saloff-
Coste, see [SC02], [Gri09]. These techniques work in far more general circum-
stances, and depend on quite different underlying principles. However, one point
of interest in Carron’s work is that he is able to obtain the correct ‘subexponential’
factor Φt(a) in the estimate of |H(t, a)|, which might be impossible using those
more general approaches.

3. Scattering theory

For the second and longer part of this survey, we turn to an entirely differ-
ent aspect of the global theory of wave equations and discuss some approaches to
mathematical scattering theory. This classical subject has deep physical origins,
and has received numerous mathematical formulations. While these approaches are
mostly equivalent, the correspondences between them are not always obvious. In
the following pages we first review one point of view on stationary scattering theory,
then turn to some perspectives on the corresponding time-dependent theory. This
is all done with a distinctly PDE (rather than, say, operator-theoretic) focus. We
conclude with a discussion of a more abstract functional analytic setup of scattering
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theory due to Lax and Phillips centered around the notion of a translation repre-
sentation and explain how the theory of radiation fields developed by Friedlander
provides a concrete realization of the translation representation.

There are numerous settings in which to introduce any of these topics, includ-
ing scattering by potentials, which is the study of Schrödinger operators −Δ + V
on Rn, or scattering by obstacles, which studies these same operators but on ex-
terior domains R

n \ O with some elliptic boundary condition at ∂O. There are
also significant differences between the cases n odd and n even in each of these
theories. Finally, it is also natural to consider these same problems on manifolds
which are asymptotically Euclidean or asymptotically conic at infinity (or indeed,
have some other type of asymptotically regular geometry, e.g. asymptotically hy-
perbolic). Each setting requires different sets of techniques, and in order to make
this exposition as simple as possible, we focus on the combination of hypotheses
where everything works out most simply. Namely, we study the scattering theory
associated to L = −Δ + V on an odd-dimensional Euclidean space Rn, with the
strong assumption that V ∈ C∞

0 . We describe the structure theory for solutions of
the Helmholtz equation (L− λ2)u = 0, and for �V := � + V = D2

t − L, the time-
dependent wave equation, and give some indication how objects in these respective
settings correspond to one another.

There are very many excellent references to each part of what we discuss (and
much that is closely related that we do not discuss), so we relegate almost all of the
technicalities to those sources. We mention in particular [RS78, Vol. IV], [Tay11,
Ch. 9], [Per83], [Yaf10] and [Mel95]. The material on radiation fields is spread
over several papers, starting from the original work by F.G. Friedlander [Fri80].
There is a forthcoming and detailed survey of this subject by Melrose and Wang
[MW], to which the discussion here is intended to be an introduction.

3.1. Stationary scattering theory. The stationary formulation of scatter-
ing theory concerns the elliptic operator L−λ2, where here and below, L = −Δ+V ,
with V ∈ C∞

0 (and real-valued!). It is obvious that L is bounded below, i.e.

∫
Rn

(Lu)udV ≥ −C

∫
Rn

|u|2 dV

for all u ∈ C∞
0 (Rn), and with little more work one can also prove that it has a

unique self-adjoint extension as an unbounded operator on L2(Rn). Indeed, this
is yet another consequence of the finite speed of propagation, see [Che73]. Its
spectrum is contained in a half-line [−C,∞); the positive ray [0,∞) comprises
the entire continuous spectrum, and there are a finite number of L2 eigenvalues
in the [−C, 0). If we allow V to be less regular, simple examples show that this
negative interval may contain an infinite sequence of such eigenvalues converging
to 0; the basic example of this is when V (x) = −1/|x|, which is the potential for
the Schrödinger operator modeling the hydrogen atom.

Assume initially that λ lies in the lower half-plane �λ < 0. Provided that
λ �= −i|λj | corresponding to any of the negative eigenvalues −λ2

j < 0, the operator

L− λ2 has an L2 bounded inverse,

RV (λ) = (L− λ2)−1.
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This is called the resolvent and is a meromorphic family of bounded operators on
L2 with poles in the lower half-plane at the points −i|λj |; these are all simple since
L is self-adjoint.

The first issue is to show that the continuous spectrum (λ2 ∈ [0,∞)) is ab-
solutely continuous, or in other words, that the singular continuous part of the
spectrum is empty. More specifically, we must find an L-invariant orthogonal split-
ting L2(Rn) = Hpp ⊕Hac, so that the restriction of L to Hpp is discrete, while the
restriction of L to Hac is absolutely continuous. It is a classical theorem due to
Friedrichs that in this setting any L2 eigenvalue of L is strictly negative. The proof
consists of showing that if any such eigenvalue is positive, then the corresponding
eigenfunction must vanish outside a compact set, which violates standard unique
continuation theorems. (This uses that V is compactly supported – if V only de-
cays rapidly then the argument is a bit more intricate.) By the general spectral
theorem, the absolute continuity of L|Hac

is equivalent to the existence of a unitary

isomorphism U : Hac −→ L2(R;Y ), where Y is an auxiliary Hilbert space, so that
the self-adjoint operator U ◦L◦U−1 on L2(R;Y ) is multiplication by the coordinate
function t ∈ R. One of the goals of scattering theory is to exhibit this unitary iso-
morphism explicitly, which is done using the Møller wave operators, see below. A
closely related goal is to understand the structure of generalized (non-L2) solutions
to the equation (L − λ2)u = 0, λ2 > 0. The key tool for all these questions is the
resolvent RV (λ), introduced above.

Let us first consider the free Laplacian L0 = −Δ on Rn. When λ ∈ R\{0}, the
nullspace E(λ) of the operator −Δ−λ2 (acting on tempered distributions) contains
the plane wave solutions eiλz·ω for any ω ∈ Sn−1. Any linear combination of these
plane waves also lies in E(λ), and indeed, general superpositions of these plane wave
solutions span all of E(λ). We explain this more carefully. For any g ∈ C∞(Sn−1),
define

u(z) =

∫
Sn−1

eiλz·ωg(ω) dω.

This is a solution of (−Δ−λ2)u = 0, and the most general (polynomially bounded)
element of E(λ) can always be obtained from this same representation but allowing
g to be a distribution. The “smooth” elements of E(λ) are those where g is smooth.

We can look at this a different way. Note that since ω �→ z · ω is a Morse
function on Sn−1, and has critical points ω = ±z/|z|, the stationary phase lemma
shows that (assuming g is smooth), the integral expression for u has an asymptotic
expansion of the form

(3.1) u(z) ∼ eiλ|z||z|−n−1
2

∞∑
j=0

|z|−ja+,j(θ) + e−iλ|z||z|−n−1
2

∞∑
j=0

|z|−ja−,j(θ).

Here z = |z|θ, θ ∈ Sn−1 are polar coordinates on Rn. As part of this, one obtains
that up to a multiple of 2π, a±,0 = i∓(n−1)/2g(±θ). Closely related is the assertion
that any u ∈ E(λ) has an expansion of this same form and moreover, fixing any
a+,0 ∈ D′(Sn−1), there is a unique u ∈ E(λ) with this distribution as its leading
coefficient. It is reasonable to regard the operator P : a+,0 �→ u as solving a
Dirichlet problem at infinity for −Δ−λ2, and hence we call P the Poisson operator.

The free scattering operator at energy λ is the map S0(λ) sending the function
a+,0 to a−,0. Using the explicit representation above, we see that in this free setting,
S0(λ)a(θ) = in−1a(−θ); it is just a constant multiple of the antipodal map.
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Proceeding slightly further with the free problem, suppose that Imλ < 0. Using
the Fourier transform, one can determine the inverse of −Δ − λ2 (as an operator
on Schwartz functions) via

R0(λ)f = (−Δ− λ2)−1f = (2π)−n

∫
Rn

eiz·ζ(|ζ|2 − λ2)−1f̂(ζ) dζ.

When n is odd, this has a particularly simple form: there is a simple polynomial
pn(α) of degree (n− 1)/2 such that the Schwartz kernel of R0(λ) can be written as

(3.2) |z − z′|2−n pn(λ|z − z′|)e−iλ|z−z′|.

(In particular, p3(α) is simply a constant.) There is a related but slightly more
complicated formula when n is even. This explicit expression shows that as a
function of λ, R0(λ) continues holomorphically from the lower “physical” half-
plane {�λ < 0} to the entire complex plane when n ≥ 3 is odd. When n = 1,
this continuation has a simple pole at λ = 0, and when n is even, there is a similar
continuation but to the infinitely sheeted logarithmic Riemann surface branched at
the origin. To make sense of this, one can say that this Schwartz kernel continues as
a holomorphic function taking values in distributions; an alternate and equivalent
sense is to regard the continuation taking values in the space of bounded operators
L2
c → L2

loc, (this domain space consists of compactly supported L2 functions). From
(3.1) and stationary phase, one proves that if f ∈ C∞

c (Rn), then

R0(λ)f = e−iλ|z||z|−
n−1
2 w,

where w is a smooth function on the radial compactification of R
n. This last

assertion about smoothness on the compactification is simply a concise way of
stating that w has an asymptotic expansion

w ∼
∞∑
j=0

wj(θ)|z|−j .

Let us now pass to the analogous considerations for the operator L. Some
versions of all the structural results about solutions remain true. These are typically
proved by a perturbative argument, which means that one no longer has explicit
formulæ. The starting point is the Lippmann–Schwinger formula, which gives a
relationship between R0(λ) and RV (λ) in the region in the λ-plane where they
both make sense. This states that

RV (λ) = R0(λ) (I + V R0(λ))
−1 = (I +R0(λ)V )−1 R0(λ).

The issue is to prove that the inverses of I+V R0(λ) and I+R0(λ)V make sense, and
to do this one observes that V R0(λ) and R0(λ)V are compact operators (between
suitable function spaces), so that one can invoke the analytic Fredholm theorem to
obtain that these inverses, and hence RV (λ) itself, are meromorphic on the region
where R0(λ) is holomorphic (hence on C when n is odd and greater than 1).

The argument sketched earlier that L has no L2 eigenvalues embedded in the
continuous spectrum implies that RV (λ) has no poles on the real axis. (The argu-
ment for regularity at λ = 0 requires slightly more care.) On the other hand, the
negative eigenvalues λj of L correspond to poles of RV (λ) at −i|λj |. The new and
perhaps unexpected phenomenon is that RV (λ) may have poles in the upper half-
plane (and indeed, this always occurs if V is nontrivial). These poles are known
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as the resonances of L, and their location and distribution has been the target of
much research.

Let EV (λ) denote the nullspace of L − λ2 (say in S ′(Rn)). Just as in the free
case, this space may be generated using “distorted” plane waves. These are defined
as follows. For any ω ∈ Sn−1 and λ ∈ R \ {0}, there is a function Wλ,ω which is
smooth on the radial compactification of Rn so that

φλ,ω(z) = eiλz·ω + e−iλ|z||z|−
n−1
2 Wλ,ω

lies in EV (λ). Note that the second term here is simply R0(λ)(−V eiλz·ω). Super-
positions of these can be used as before to generate all elements of EV (λ). Indeed,
if g ∈ C∞(Sn−1), then the general “smooth” element of EV (λ) can be written as

u(z) =

∫
Sn−1

φλ,ωg(ω) dω.

Using stationary phase as before, this integral has an asymptotic expansion of
exactly the same form as (3.1). The leading coefficient a+,0(θ) is again just (a
multiple of) g, but now the other leading coefficient a−,0(θ) is not simply the
reflection g(−θ), but rather a sum of this reflection plus an extra term which is an
integral over Sn involving both g and V . The scattering operator SV (λ), which
sends a+,0 �→ a−,0, is again unitary, and is the sum of the antipodal operator and
another term which has a smooth Schwartz kernel. The map PV (λ) which sends
a+,0 to u is again called the Poisson operator.

The results and definitions above continue to hold in suitably modified form
not only for obstacle scattering, but also in the rather general setting of asymp-
totically Euclidean or asymptotically conic manifolds (these are called scattering
manifolds [Mel94] by Melrose). For more on this as well as many further details
about everything discussed above, we refer to the book of Melrose [Mel95]; see
also [Mel94] and [MZ96].

3.2. Time-dependent scattering. We now turn our attention to the time-
dependent formulation of scattering theory, and its relationship with stationary
scattering. This time-dependent theory involves the study of “large time” properties
of solutions of the wave equation. The connection with the stationary approach is
via the Fourier transform in time; indeed, this Fourier transform carries L−D2

t to
L−λ2, and asymptotic properties of as |t| → ∞ correspond to ‘local in λ’ properties
of the latter operator. For the wave equation associated to L = −Δ + V , where
V is compactly supported, the intuitive picture is that one sends in a wave for
times t � 0 from some direction at infinity and then observes what happens as
this wave interacts with the potential and then scatters into a sum of plane waves
as t ↗ +∞. Amongst the many good sources for this material, we refer to the
books of Friedlander [Fri75], Lax [Lax06], Lax–Phillips [LP89], Taylor [Tay11]
and Melrose [Mel95].

3.2.1. Progressing wave solutions. We begin by describing the special class of
progressing wave solutions for wave operators. The calculations here go back to the
dawn of microlocal analysis and can be regarded as the nexus of many constructions
and ideas in that field. This construction is quite geometric and it is most naturally
phrased in terms of the wave operator on a general Lorentzian metric g. The special
case of a static metric g = − dt2+h on the product of R with a Riemannian manifold
(M,h) is of particular interest, and we discuss at the end how this specializes for
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the particular operator �V = � + V on Minkowski space. For more details, we
refer the reader to the book of Friedlander [Fri75].

Thus let (X, g) be a Lorentzian manifold and consider �g + V , where V ∈
C∞
c (X). We look for solutions u to (�g + V )u = 0 which have the form

u = ϕα(Γ),

where ϕ is smooth, α is a distribution on R which models the ‘wave form’ of the
solution, and Γ is a function on X with nowhere vanishing gradient which we call
the phase function. To be concrete, we typically let α = δ, the Dirac delta function,
or α = xk

+ for some k ≥ 0, but the key feature we require of α is that it behave like
a homogeneous function in the sense that its successive derivatives and integrals are
progressively more or less smooth than α itself. Of course, it is usually impossible
to choose solutions of (�g + V )u = 0 which have this precise form, but the goal
is to add increasingly higher order correction terms of a similar form involving the
integrals of α so that, in the end, this initial expression is the first term in some
asymptotic expansion of an exact solution.

The first step is to calculate

(�g + V )u =
1√
|g|

∂i

(
gij

√
|g|∂ju

)
+ V u

= α′′(Γ)g (∇Γ,∇Γ)ϕ+ α′(Γ) (2g (∇Γ,∇ϕ) + ϕ�gΓ)

+ α(Γ) (�ϕ+ V ϕ) .

As indicated above, assume that αk is a sequence of distributions on R such
that αk = α′

k+1. (Again, refer to the basic example α0 = δ, αk+1 = 1
k!x

k
+.) Let us

now assume that

(3.3) u ∼
∑
k≥0

uk =
∑
k≥0

ϕk(t, z)αk(Γ).

We apply the calculation above and group together the terms of the same order
(where the order of αk is k and each derivative lowers the order by 1).

Grouping terms of the same order, we attempt to choose ϕk so that each term
vanishes. The only term of order −2 is ϕ0α

′′
0 (Γ)g (∇Γ,∇Γ), so the first requirement

is that

g (∇Γ,∇Γ) = 0.

This is known as the eikonal equation and states that ∇Γ is a null-vector for the
metric g. This is a global nonlinear Hamilton–Jacobi equation for Γ. In the special
case X = R×M , g = − dt2 + h, the eikonal equation can be written as

(∂tΓ)
2 = |∇hΓ|2 ;

if we write Γ = t− S, where S is a function on M , then

|∇hS|2 = 1.

It is straightforward to see that the level sets S = const are at constant distance
from one another, so in general, S(x) = disth (x, Z) where Z is some fixed level set
of S. Even in the more general Lorentzian setting, the function Γ incorporates a
lot of the distance geometry of g.

In any case, fix a solution Γ of the eikonal equation. We have now arranged that
the term of order −2 vanishes. In fact, for any k, the term containing g(∇Γ,∇Γ)
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vanishes, and so the equations for the higher coefficients simplify to transport equa-
tions. In particular, the term of order −1 reduces to

α′
0(Γ) (2g (∇Γ,∇ϕ0) + ϕ0�Γ) .

Since ∇Γ is nowhere vanishing, this is a linear ODE for ϕ0 along the integral curves
of ∇Γ, which means that given any initial conditions for ϕ0 on the characteristic
surface Γ = constant we may solve this equation locally.

The term of order k − 1 yields an inhomogeneous transport equation for ϕk in
terms of Γ, ϕ0, . . . , ϕk. We solve this transport equation with vanishing initial data
and proceed inductively to choose all ϕk.

It is possible to asymptotically sum the series (3.3). This means that we can
choose a function v with the property that

v −
N∑

k=0

ϕkαk(Γ)

is as smooth as the next term in the series, ϕN+1αN+1(Γ). By construction,
(�g + V )v = f ∈ C∞(X). We must now invoke a theorem guaranteeing the ex-
istence of a smooth solution w for the initial value problem (�g + V )w = f with
vanishing Cauchy data vanishes, where f is smooth. Given this, then u = v−w is a
solution of the original equation and the expansion we have calculated determines
the singularity profile of u. Note that these singularities of u occur precisely along
the union of level sets Γ = c where one (and hence every) αk is singular at c.

For the special case where g = −dt2 + dx2 on Minkowski space, fix ω ∈ Sn−1

and consider the equation(
∂2
t −Δz + V

)
u = 0, u = δ(t− z · ω) when t � 0.

The eikonal equation |∇Γ|2g = 0 has solution Γ(t, z) = t− z · ω. This gives a global
solution of the wave equation for all t when V ≡ 0. However, by the propagation of
singularities theorem, the wave front set of the solution u for the perturbed problem
with this initial data in the distant past agrees with that of this exact free solution.
Hence it makes sense to look for a solution of the perturbed problem of the form

u ∼ δ(t− z · ω) +
∑
k≥0

ϕk(t, z)x
k
+(t− z · ω),

for some choice of smooth functions ϕk. This fits exactly into the scheme above
(and was, of course, the setting for the original version of these calculations). The
first transport equation is

2 (∂t − ω · ∇z)ϕ0 = 0,

which means that ϕ0 is a function of t = z · ω and z; its Cauchy data is defined on
the hypersurface t = z ·ω, and the equation dictates that it must be constant along
the lines parallel to ω.

Once we have determined ϕ0, . . . , ϕk, then the (k + 1)st transport equation is

2(k + 1) (∂t − ω · ∇z)ϕk+1 = − (� + V )ϕk,

which we solve with vanishing initial data. Carrying this procedure out for all k
determines the Taylor series of u along the hypersurface {t = z · ω}. As described
earlier, we can use the Borel Lemma to choose an asymptotic sum v for this series,
so that (� + V ) v = f is smooth and v satisfies the correct “initial condition” for
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t � 0. We can then find a smooth correction term w which solves away this error
term. Thus u = v − w is an exact solution

The calculations here were historical precursors to the more elaborate but ul-
timately very similar ones which come up in the construction of Fourier integral
operators. Indeed, solving the eikonal equation for Γ is the direct analogue of solv-
ing the eikonal equation for the phase of an FIO. For potential scattering, keeping
track of the parametric dependence on ω fixes the phase; the solutions of the trans-
port equations are the coefficients in the expansion of the amplitude, and these
correspond to the terms in the expansion for the symbol of the FIO.

3.2.2. Møller wave operators. We now turn to another perspective on time-
dependent scattering, which is through the definition of the so-called Møller wave
operators. This can be regarded as a formalization of the discussion above; there
we described how to calculate the profile of the solution obtained by “sending in” a
delta function along a particular direction. Our goal now is to put this information
together into a map which compares the long-time evolution with respect to the
perturbed equation against that for the free equation.

Let us suppose now that g = −dt2 + h is a static Lorentzian metric. For any
(C∞

c ) potential V , define the wave evolution operator

UV (t) : C
∞
c (Rn)× C∞

c (Rn) → C∞
c (Rn)× C∞

c (Rn),

where, if u solves the Cauchy problem

(� + V )u = 0, (u, ∂tu) |t=0 = (φ, ψ),

then UV (t0)(φ, ψ) = (u, ∂tu)|t=t0 . The free wave evolution operator U0(t) is defined
analogously using solutions for �u = 0 instead. Uniqueness of solutions of these
Cauchy problems implies that UV and U0 are groups, i.e. U∗(t)

−1 = U∗(−t) and
U∗(t+ s) = U∗(t)U∗(s) for ∗ = 0 or V .

Now define the Møller wave operators W± by

W±(φ, ψ) = lim
t→±∞

UV (−t)U0(t)(φ, ψ),

when the limit exists. This limit is meant to be taken in the sense of strong operator
convergence. If we define the energy space

HE =

{
(φ, ψ) :

∫
ψ2 + |∇zφ|2 dV < ∞

}
,

then W± extends by continuity to all of HE . It can be proved that if certain
local measurements of this energy decay appropriately, then −Δ + V has no L2

eigenvalues and this extension is an isomorphism of HE to itself. If −Δ+ V does
have L2 eigenvalues, then Hpp determines a finite dimensional subspace in HE and
W± is an isomorphism from HE onto the orthogonal complement of Hpp, which we
denote H⊥

E .
Since U0(t) and UV (t) are unitary, the wave operators W± are characterized by

the property that

‖UV (t)W±(φ, ψ)− U0(t)(φ, ψ)‖HE
→ 0 as t → ±∞

for all (φ, ψ) ∈ H⊥
E . Now define the scattering operator

S = W−1
+ W−;
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this is an isomorphism of H⊥
E . It describes the relationship between the asymptotic

free wave emerging as t ↗ +∞ for a solution of the perturbed equation (�+V )u = 0
in terms of the incoming free wave for t � 0.

These operators lead directly to the unitary isomorphism mentioned earlier
which intertwines L (or rather, its restriction to Hac), with a simple multiplication
operator. In other words, the existence and properties of the wave operators and
scattering matrix proves that the singular continuous spectrum of L is empty.

There are many other settings where one can define analogues of the Møller
wave and scattering operators. Classically this is done for exterior domains, and
more recently on asymptotically Euclidean or conic manifolds (where the structure
of the scattering matrix is quite intriguing, see [MZ96]), as well as other geometric
settings such as asymptotically hyperbolic manifolds, etc. There is also a parallel
and vigorous line of research concerning the possibility of defining the analogues of
wave and scattering operators for various classes of nonlinear evolution equations.

3.2.3. Lax–Phillips theory and radiation fields. In this final section we present
yet another approach to scattering theory. This is the more abstract approach
developed by Lax and Phillips [LP89], which has played an influential paradig-
matic role. Directly following this we describe the theory pioneered by Friedlander
[Fri80] on what he called the radiation fields associated to solutions of a linear
wave equation. These describe certain asymptotic information about waves, and
beyond their purely analytic appeal, they also provide a beautiful realization of the
Lax–Phillips theory. These radiation fields have received quite a lot of attention in
recent years, and the theory has been extended to various nonlinear settings as well.
There is a forthcoming and much more detailed survey specifically about radiation
fields [MW] to which we direct the reader.

Throughout this section we fix a Hilbert space H and a unitary semigroup U(t)
which acts on it. The specific application we have in mind is that H is the space
HE of finite energy initial data for the wave equation on Rn with n odd and U(t) is
the wave evolution operator. More precisely, let H0 be the completion of the space
C∞
c (Rn)× C∞

c (Rn) with respect to the norm

‖(φ, ψ)‖2H0
=

∫
Rn

(
|∇φ(z)|2 + |ψ(z)|2

)
dz;

then, for (φ, ψ) ∈ H0, let U0(t)(φ, ψ) be as defined in the previous section. The
unitarity of U0 corresponds to conservation of energy for solutions of this wave
equation.

Return now to the general formulation.

Definition 3.4. A closed subspace D ⊂ H is called outgoing, respectively
incoming, if

(i) U(t)D ⊂ D for t > 0, respectively t < 0,
(ii)

⋂
t∈R

U(t)D = {0}, and
(iii)

⋃
t∈R

U(t)D = H.

In the example above, the space D+ consists of the pairs (φ, ψ) ∈ H0 for which
the solution u(t, z) vanishes for |z| ≤ t when t ≥ 0. Continuous dependence of
solutions of the wave equation on initial data shows that D+ is a closed subspace.
The first and second properties follow from the observation that if (φ, ψ) ∈ H0,
then by finite propagation speed, the solution of the wave equation with initial
data U(s)(φ, ψ) vanishes for |z| ≤ t+ s.



SOME GLOBAL ASPECTS OF LINEAR WAVE EQUATIONS 89

The third property is more subtle. For the unperturbed wave equation in odd
dimensions, it is a consequence of Huygens’ principle; in even dimensions, one may
prove it using local energy decay, but it can also be proved fairly explicitly via the
Radon transform. We say more about this later.

The fundamental result of Lax–Phillips theory is the existence of a translation
representation:

Theorem 3.5 ([LP89, Chapter II, Theorem 3.1]). Let U(t) be a group of
unitary operators on H, and D an outgoing subspace with respect to U(t). Then
there exists a Hilbert space K and an isometric isomorphism

Φ : H → L2 ((−∞,∞);K)

such that Φ(D) = L2 ((0,∞);K) and Φ ◦U(t) = Tt ◦Φ, where (T (t)f)(s) = f(s− t)
is the standard translation action of R on L2(R;K). The isomorphism Φ is unique
up to an isomorphism of K.

The isomorphism given here is called an outgoing translation representation of
U(t). There is an essentially identical result giving an isomorphism Φ′ which maps
an incoming subspace D− to L2 ((−∞, 0);K) and intertwines U(t) with T (t). This
is called an incoming translation representation. The auxiliary Hilbert space K
may be taken to be the same as for the outgoing translation representation, but of
course the map Φ′ is different than Φ.

Returning again to the unperturbed wave equation in Rn, n odd, there is an
explicit way to obtain the translation representations using the Radon transform.

Definition 3.6. For any f ∈ C∞
c (Rn), define the Radon transform

(Rf)(s, θ) =

∫
〈z,θ〉=s

f(z) dσ(z),

where dσ(z) is surface measure on the hyperplane 〈z, θ〉 = s. Clearly Rf ∈ C∞
c (R×

Sn−1).

A key property of the Radon transform for our purposes is that it is invertible
and in fact the inversion formula is quite explicit:

f(z) =
1

2 (2π)n−1

∫
Sn−1

(
|Ds|n−1 Rf

)
(z · θ, θ) dθ,

where |Ds| is defined by conjugating multiplication by |σ| with respect to the Fourier
transform. A remarkable fact, which can be proved by direct computation, is that
R intertwines the Laplacians on Rn and R,

RΔf = ∂2
sRf.

We now define the Lax–Phillips transform: for n odd, and (φ, ψ) ∈ C∞
c (Rn)×

C∞
c (Rn), let

LP(φ, ψ)(s, θ) =
1

(2π)(n−1)/2

(
D(n+1)/2

s (Rφ) (s, θ)−D(n−1)/2
s (Rψ) (s, θ)

)
.

Theorem 3.7 (See [Mel95, Section 3.4]). For n odd, the Lax–Phillips trans-
form LP extends to a unitary isomorphism

LP : H0 → L2
(
R;L2(Sn−1)

)
,
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and is a translation representation,

(LPU0(t)(φ, ψ)) (s, θ) = (Tt LP(φ, ψ)) (s, θ) = (LP(φ, ψ)) (s− t, θ).

One consequence of Theorem 3.7 is that H0 splits as an orthogonal direct sum
of the incoming and outgoing subspaces:

(3.8) H0 = D+ ⊕D−.

In particular, in this special case, the outgoing and incoming isomorphisms Φ and
Φ′ are equal.

Now consider the wave equation with potential. As before, assume that n is
odd and V ∈ C∞

c (Rn) is real-valued. Choose R so that suppV ⊆ B(0, R). Let U(t)
be the group associated to the Cauchy problem

(3.9) �u+ V u = 0, (u, ∂tu)|t=0 = (φ, ψ),

i.e. U(t)(φ, ψ) = (u(t), ∂tu(t)). Since V does not depend on t, there is a conserved
energy,

(3.10) ‖(u(t), ∂tu(t))‖2E =

∫
Rn

(
|∂tu(t, z)|2 + |∇u(t, z)|2 + V (z) |u(t, z)|2

)
dz.

The Hilbert space H is the set of pairs (φ, ψ) for which this energy is finite. It is
not hard to see, using the Sobolev inequality, that H and H0 consist of the same
pairs of elements, although the norm is different. The energy extends to the bilinear
pairing on H:

(3.11)

〈(
φ1

ψ1

)
,

(
φ2

ψ2

)〉
=

∫
Rn

(
∇φ1 · ∇φ2 + V (z)φ1φ2 + ψ1ψ2

)
dz.

Consider now the operator

A =

(
0 1

Δ− V 0

)
;

this is anti-symmetric with respect to the pairing (3.11). The wave group U(t) can
be regarded instead as the solution operator for the system

∂t

(
u0

u1

)
= A

(
u0

u1

)
,

(
u0

u1

)∣∣∣∣
t=0

=

(
φ
ψ

)
.

We now make a simplifying assumption that L = −Δ+V has no L2 eigenvalues,
or equivalently, that A has no such eigenvalues. Without this assumption, the
results below require a projection off the finite dimensional space Hpp. We refer
to [LP66] for more details about how to proceed without this assumption. The
advantage of this assumption is that now the energy (3.10) is positive definite.

For this perturbed problem, we define the incoming and outgoing subspaces
D±,R ⊂ H to consist of those elements (φ, ψ) so that U0(t)(φ, ψ) vanishes in |z| ≤
t + R for t ≥ 0, respectively |z| ≤ −t + R for t ≤ 0. Thus, in terms of the free
incoming and outgoing subspaces, D±,R = U0(±R)D±. The verification that these
satisfy all the correct properties relies on the following

Lemma 3.12. If f = (φ, ψ) ∈ D+,R, then U0(t)f = U(t)f for t > 0; the analo-
gous statement holds for D−,R when t < 0.
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We now use this to show that D+,R is an outgoing subspace for U(t) on H.
Indeed, by this lemma, the first two properties follow from the corresponding prop-
erties of D+. For the third property, suppose we know that for any compact subset
K ⊂ Rn and any solution u of (3.9), we have

lim
t→∞

‖u(t)‖2E,K :=

lim
t→∞

∫
K

(
|∂tu(t, z)|2 + |∇u(t, z)|2 + V (z)|u(t, z)|2

)
dz = 0.

This is called local energy decay, and is known to be true in many circumstances.
Now consider the initial data f = (φ, ψ) ∈ H with f ⊥

⋃
U(t)D+,R with re-

spect to the pairing (3.11). Thus U(t)f ⊥ D+,R for any t, and in particular,

U(t)f ⊥ D+,R with respect to the standard pairing on Ḣ1 × L2. This shows that
U0(−R)U(t)f ⊥ D+ with respect to the standard pairing, and hence U0(−R)U(t)f ∈
D− and U0(−2R)U(t)f ∈ D−,R.

Consider now v(s, z) = U(s)U0(−2R)U(t)f . By Lemma 3.12, v(s, z) agrees
with U0(s)U0(−2R)U(t)f for s < 0 and thus vanishes for |z| ≤ −s+R for s < 0.

Now we bring in the local energy decay. This implies that for any ε > 0, if t
is sufficiently large then ‖U(t)f‖E,B(5R) < ε. For such t, finite propagation speed

implies both

‖U0(−2R)U(t)f‖E,B(3R) < ε, and ‖U(−2R)U(t)f‖E,B(3R) < ε.

Because the two equations and the initial data agree outside B(R), using finite
propagation speed again, we get that U0(−2R)U(t)f = U(−2R)U(t)f for |z| > 3R
and hence

‖U0(−2R)U(t)f − U(−2R)U(t)f‖E < 2ε.

Because U(t) is unitary with respect to (3.11), applying U(2R− t) to the difference
shows that

‖U(2R− t)U0(−2R)U(t)f − f‖E < 2ε.

Finally, since t is large, 2R − t < 0 and so U(2R − t)U0(−2R)U(t)f = U0(2R −
t)U0(−2R)U(t)f by Lemma 3.12. This shows that in fact

‖U0(−t)U(t)f − f‖E < 2ε.

Because U0(−R)U(t)f ∈ D−, the first term here is an element of D−,t−R and thus
vanishes for |z| ≤ t−R. Taking t even larger gives

‖f‖E < 2ε,

and therefore f = 0. This establishes the third property.

Theorem 3.5 asserts the existence of incoming and outgoing translation repre-
sentations for the incoming and outgoing subspaces D−,R and D+,R. We shall give
a a concrete realization of these using the so-called radiation fields.

Our next goal is to show that a particular quantitative rate of local energy
decay implies that the local energy actually decays exponentially.

Theorem 3.13 (See [LP89, Chapter V, Theorem 3.2]). Suppose that for each
compact subset K ⊂ Rn there is a function cK(t) which tends to 0 as t → ∞, such
that if the Cauchy data u(0) have support in K, then

(3.14) ‖u(t)‖2E,K ≤ cK(t) ‖u(0)‖2E .
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Then there are positive constants C and α depending on K such that if u(0) is
supported in K, then

(3.15) ‖u(t)‖E,K ≤ Ce−αt ‖u(0)‖E
for all t > 0.

The proof uses the compactness properties of the Lax–Phillips semigroup Z(t),
which we introduce now. If P±,R are the orthogonal projections onto the ortho-
complements of D±,R, then Z(t) is given for t ≥ 0 by

Z(t) = P+,RU(t)P−,R.

The local energy decay hypothesis in the theorem statement implies that, for t large
enough, Z(t) has norm bounded by 1/2, and repeated application of Z(t) leads to
the exponential decay.

We are now in a position to introduce the radiation field of a solution u to the
perturbed wave equation. The idea is to identify initial data for u with a normalized
limit of the solution along outgoing (or incoming) light rays. As before, we start
with the definition of these radiation fields for the unperturbed operator.

Suppose that u solves �0u = 0 with initial data (φ, ψ). Introduce coordinates
s = t − |z| and x = |z|−1; these parametrize the family of outgoing light rays and
the position along them. Now define the auxiliary function

v : Rs × (0,∞)x × Sn−1
θ → R, v(s, x, θ) = x−n−1

2 u

(
s+

1

x
,
1

x
θ

)
.

Here 1
xθ is simply z in polar coordinates. Finite speed of propagation implies that

v vanishes for s � 0, and so has a smooth extension across x = 0 for s � 0.
Since x2gM is nondegenerate at x = 0, v satisfies a hyperbolic equation that is also
nondegenerate across x = 0 and so v extends smoothly across x = 0. We then
define the forward radiation field operator R+ by

R+(φ, ψ)(s, θ) = ∂sv(s, 0, θ).

The derivative of v is included here to make

R+ : H0 → L2(R× Sn−1)

an isometric isomorphism. Furthermore, the Minkowski metric is static, so R+

intertwines wave evolution and translation in s:

R+U0(T )(φ, ψ)(s, θ) = R+(φ, ψ)(s− T, θ).

Now observe that if f ∈ D+, then R+f vanishes when s ≥ 0. This follows from
the unitarity of the radiation field operator, and the fact that the inverse image of
those functions in L2(R×Sn−1) supported in the nonpositive half-cylinder form an

outgoing subspace D̃+:

D̃+ =
{
R−1

+ f : f(s, θ) = 0 for s > 0
}
.

Indeed, this is a closed subspace; the first and second properties follow directly from
the fact that R+ is a translation representation, while the third property follows

from the surjectivity of R+. One may also define D̃− via the backward radiation
field R−; this encodes information from solutions in the limit as t ↘ −∞. For the
free wave equation, R+ has an explicit expression in terms of the Radon transform,

and this can be used to show that H0 = D̃+ ⊕ D̃−.
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For the perturbed equation the forward and backward radiation fields, L±, are
defined in the same way. We can also define the scattering operator A using the
radiation fields by

A = L+L−1
− .

Thus A maps data at past null infinity into data at future null infinity. The rela-
tionship to the scattering operator S introduced in Section 3.2.2 is that

S = R−1
+ L+L−1

− R− = R−1
+ AR−.

The conjugation of A by the Fourier transform in s corresponds to the scattering
matrix employed by Melrose in [Mel94].

The radiation field exists and is a unitary operator in a variety of geometric
settings. On asymptotically Euclidean spaces, this is due to Friedlander [Fri80,
Fri01] and Sá Barreto [SB03, SB08]; on asymptotically real and complex hy-
perbolic manifolds it was proved by Sá Barreto [SB05], and Guillarmou and Sá
Barreto [GSB08], respectively. In the asymptotically Euclidean and real hyper-
bolic cases, Sá Barreto and Wunsch [SBW05] prove that it is a Fourier integral
operator with canonical relation given by the sojourn relation, a close relative of
the Busemann function in each of these geometric settings. The radiation field has
also been defined in certain nonlinear and non-static situations. In particular, the
first author and Sá Barreto show [BSB12] that it exists and is norm-preserving
for certain semilinear wave equations in R3, while Wang [Wan10, Wan11] defined
the radiation field for the Einstein equations on perturbations of Minkowski space
when the spatial dimension is at least 4. Forthcoming work of the first author,
Vasy, and Wunsch [BVW] analyzes the s → ∞ asymptotics of the radiation field
on (typically non-static) perturbations of Minkowski space.

References

[AJ99] J.-P. Anker and L. Ji. Heat kernel and Green function estimates on noncompact sym-
metric spaces. Geom. Funct. Anal., 9(6):1035–1091, 1999.

[Ali09] Serge Alinhac. Hyperbolic partial differential equations. Universitext. Springer, Dor-
drecht, 2009.
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Abstract. These lecture notes, based on a course given at the Zürich Clay
Summer School (June 23–July 18 2008), review our current mathematical
understanding of the global behaviour of waves on black hole exterior back-
grounds. Interest in this problem stems from its relationship to the non-linear
stability of the black hole spacetimes themselves as solutions to the Einstein
equations, one of the central open problems of general relativity. After an

introductory discussion of the Schwarzschild geometry and the black hole con-
cept, the classical theorem of Kay and Wald on the boundedness of scalar
waves on the exterior region of Schwarzschild is reviewed. The original proof
is presented, followed by a new more robust proof of a stronger boundedness
statement. The problem of decay of scalar waves on Schwarzschild is then
addressed, and a theorem proving quantitative decay is stated and its proof
sketched. This decay statement is carefully contrasted with the type of state-
ments derived heuristically in the physics literature for the asymptotic tails of
individual spherical harmonics. Following this, our recent proof of the bound-
edness of solutions to the wave equation on axisymmetric stationary back-
grounds (including slowly-rotating Kerr and Kerr-Newman) is reviewed and
a new decay result for slowly-rotating Kerr spacetimes is stated and proved.
This last result was announced at the summer school and appears in print
here for the first time. A discussion of the analogue of these problems for
spacetimes with a positive cosmological constant Λ > 0 follows. Finally, a
general framework is given for capturing the red-shift effect for non-extremal
black holes. This unifies and extends some of the analysis of the previous sec-
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1. Introduction: General relativity and evolution

Black holes are one of the fundamental predictions of general relativity. At the
same time, they are one of its least understood (and most often misunderstood)
aspects. These lectures intend to introduce the black hole concept and the analysis
of waves on black hole backgrounds (M, g) by means of the example of the scalar
wave equation

(1) �gψ = 0.

We do not assume the reader is familiar with general relativity, only basic
analysis and differential geometry. In this introductory section, we briefly describe
general relativity in outline form, taking from the beginning the evolutionary point
of view which puts the Cauchy problem for the Einstein equations–the system of
nonlinear partial differential equations (see (2) below) governing the theory–at the
centre. The problem (1) can be viewed as a poor man’s linearisation for the Einstein
equations. Study of (1) is then intimately related to the problem of the dynamic
stability of the black hole spacetimes (M, g) themselves. Thus, one should view
the subject of these lectures as intimately connected to the very tenability of the
black hole concept in the theory.

1.1. General relativity and the Einstein equations. General relativity
postulates a 4-dimensional Lorentzian manifold (M, g)–space-time–which is to sat-
isfy the Einstein equations

(2) Rμν − 1

2
gμνR = 8πTμν .

Here, Rμν , R denote the Ricci and scalar curvature of g, respectively, and Tμν

denotes a symmetric 2-tensor on M termed the stress-energy-momentum tensor of
matter. (Necessary background on Lorentzian geometry to understand the above
notation is given in Appendix A.) The equations (2) in of themselves do not
close, but must be coupled to “matter equations” satisfied by a collection {Ψi} of
matter fields defined on M, together with a constitutive relation determining Tμν

from {g,Ψi}. These equations and relations are stipulated by the relevant contin-
uum field theory (electromagnetism, fluid dynamics, etc.) describing the matter.
The formulation of general relativity represents the culmination of the classical
field-theoretic world-view where physics is governed by a closed system of partial
differential equations.

Einstein was led to the system (2) in 1915, after a 7-year struggle to incorporate
gravity into his earlier principle of relativity. In the field-theoretic formulation of the
“Newtonian” theory, gravity was described by the Newtonian potential φ satisfying
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the Poisson equation

(3) �φ = 4πμ,

where μ denotes the mass-density of matter. It is truly remarkable that the con-
straints of consistency were so rigid that incorporating gravitation required finally
a complete reworking of the principle of relativity, leading to a theory where New-
tonian gravity, special relativity and Euclidean geometry each emerge as limiting
aspects of one dynamic geometrical structure–the Lorentzian metric–naturally liv-
ing on a 4-dimensional spacetime continuum. A second remarkable aspect of general
relativity is that, in contrast to its Newtonian predecessor, the theory is non-trivial
even in the absence of matter. In that case, we set Tμν = 0 and the system (2)
takes the form

(4) Rμν = 0.

The equations (4) are known as the Einstein vacuum equations. Whereas (3) is a
linear elliptic equation, (4) can be seen to form a closed system of non-linear (but
quasilinear) wave equations. Essentially all of the characteristic features of the
dynamics of the Einstein equations are already present in the study of the vacuum
equations (4).

1.2. Special solutions: Minkowski, Schwarzschild, Kerr. To under-
stand a theory like general relativity where the fundamental equations (4) are non-
linear, the first goal often is to identify and study important explicit solutions, i.e.,
solutions which can be written in closed form.1 Much of the early history of general
relativity centred around the discovery and interpretation of such solutions. The
simplest explicit solution to the Einstein vacuum equations (4) is Minkowski space
R3+1. The next simplest solution of (4) is the so-called Schwarzschild solution, writ-
ten down [139] already in 1916. This is in fact a one-parameter family of solutions
(M, gM ), the parameter M identified with mass. See (5) below for the metric form.
The Schwarzschild family lives as a subfamily in a larger two-parameter family of
explicit solutions (M, gM,a) known as the Kerr solutions, discussed in Section 5.1.
These were discovered only much later [99] (1963).

When the Schwarzschild solution was first written down in local coordinates,
the necessary concepts to understand its geometry had not yet been developed.
It took nearly 50 years from the time when Schwarzschild was first discovered for
its global geometry to be sufficiently well understood so as to be given a suitable
name: Schwarzschild and Kerr were examples of what came to be known as black
hole spacetimes2. The Schwarzschild solution also illustrates another feature of the
Einstein equations, namely, the presence of singularities.

We will spend Section 2 telling the story of the emergence of the black hole
notion and sorting out what the distinct notions of “black hole” and “singularity”
mean. For the purpose of the present introductory section, let us take the notion
of “black hole” as a “black box” and make some general remarks on the role of
explicit solutions, whatever might be their properties. These remarks are relevant
for any physical theory governed by an evolution equation.

1The traditional terminology in general relativity for such solutions is exact solutions.
2This name is due to John Wheeler.
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1.3. Dynamics and the stability problem. Explicit solutions are indeed
suggestive as to how general solutions behave, but only if they are appropriately
“stable”. In general relativity, this notion can in turn only be understood after
the problem of dynamics for (4) has been formulated, that is to say, the Cauchy
problem.

In contrast to other non-linear field theories arising in physics, in the case of
general relativity, even formulating the Cauchy problem requires addressing several
conceptual issues (e.g. in what sense is (4) hyperbolic?), and these took a long time
to be correctly sorted out. Important advances in this process include the iden-
tification of the harmonic gauge by de Donder [70], the existence and uniqueness
theorems for general quasilinear wave equations in the 1930’s based on work of
Friedrichs, Schauder, Sobolev, Petrovsky, Leray and others, and Leray’s notion of
global hyperbolicity [112]. The well-posedness of the appropriate Cauchy problem
for the vacuum equations (4) was finally formulated and proven in celebrated work
of Choquet-Bruhat [33] (1952) and Choquet-Bruhat–Geroch [35] (1969). See Ap-
pendix B for a concise survey of these developments and the precise statement of
the existence and uniqueness theorems and some comments on their proof.

In retrospect, much of the confusion in early discussions of the Schwarzschild
solution can be traced to the lack of a dynamic framework to understand the the-
ory. It is only in the context of the language provided by [35] that one can then
formulate the dynamical stability problem and examine the relevance of various
explicit solutions.

The stability of Minkowski space was first proven in the monumental work of
Christodoulou and Klainerman [51]. See Appendix B.5 for a formulation of this
result. The dynamical stability of the Kerr family as a family of solutions to the
Cauchy problem for the Einstein equations, even restricted to parameter values
near Schwarzschild, i.e. |a| � M ,3 is yet to be understood and poses an important
challenge for the mathematical study of general relativity in the coming years. See
Section 5.6 for a formulation of this problem. In fact, even the most basic linear
properties of waves (e.g. solutions of (1)) on Kerr spacetime backgrounds (or more
generally, backgrounds near Kerr) have only recently been understood. In view of
the wave-like features of the Einstein equations (4) (see in particular Appendix B.4),
this latter problem should be thought of as a prerequisite for understanding the
non-linear stability problem.

1.4. Outline of the lectures. The above linear problem will be the main
topic of these lectures: We shall here develop from the beginning the study of the
linear homogeneous wave equation (1) on fixed black hole spacetime backgrounds
(M, g). We have already referred in passing to the content of some of the later
sections. Let us give here a complete outline: Section 2 will introduce the black
hole concept and the Schwarzschild geometry in the wider context of open problems
in general relativity. Section 3 will concern the basic boundedness properties for
solutions ψ of (1) on Schwarzschild exterior backgrounds. Section 4 will concern
quantitative decay properties for ψ. Section 5 will move on to spacetimes (M, g)
“near” Schwarzschild, including slowly rotating Kerr, discussing boundedness and
decay properties for solutions to (1) on such (M, g), and ending in Section 5.6 with
a formulation of the non-linear stability problem for Kerr, the open problem which

3Note that without symmetry assumptions one cannot study the stability problem for
Schwarzschild per se. Only the larger Kerr family can be stable.
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in some sense provides the central motivation for these notes. Section 6 will consider
the analogues of these problems in spacetimes with a positive cosmological constant
Λ, Section 7 will give a multiplier-type estimate valid for general non-degenerate
Killing horizons which quantifies the classical red-shift effect. The importance of
the red-shift effect as a stabilising mechanism for the analysis of waves on black
hole backgrounds will be a common theme throughout these lectures. The notes
end with a collection of open problems in Section 8.

The proof of Theorem 5.2 of Section 5 as well as all results of Section 7 appear
in print in these notes for the first time. The discussion of Section 3.3 as well as the
proof of Theorem 4.1 have also been streamlined in comparison with previous pre-
sentations. We have given a guide to background literature in Sections 3.4, 4.4, 5.5
and 6.3.

We have tried to strike a balance in these notes between making the discussion
self-contained and providing the necessary background to appreciate the place of the
problem (1) in the context of the current state of the art of the Cauchy problem for
the Einstein equations (2) or (4) and the main open problems and conjectures which
will guide this subject in the future. Our solution has been to use the history of the
Schwarzschild solution as a starting point in Section 2 for a number of digressions
into the study of gravitational collapse, singularities, and the weak and strong
cosmic censorship conjectures, deferring, however, formal development of various
important notions relating to Lorentzian geometry and the well-posedness of the
Einstein equations to a series of Appendices. We have already referred to these
appendices in the text. The informal nature of Section 2 should make it clear that
the discussion is not intended as a proper survey, but merely to expose the reader
to important open problems in the field and point to some references for further
study. The impatient reader is encouraged to move quickly through Section 2 at
a first reading. The problem (1) is itself rather self-contained, requiring only basic
analysis and differential geometry, together with a good understanding of the black
hole spacetimes, in particular, their so-called causal geometry. The discussion of
Section 2 should be more than enough for the latter, although the reader may want
to supplement this with a more general discussion, for instance [55].

These notes accompanied a series of lectures at a summer school on “Evolution
Equations” organised by the Clay Mathematics Institute, June–July 2008. The
centrality of the evolutionary point of view in general relativity is often absent
from textbook discussions. (See however the recent [133].) We hope that these
notes contribute to the point of view that puts general relativity at the centre of
modern developments in partial differential equations of evolution.

2. The Schwarzschild metric and black holes

Practically all concepts in the development of general relativity and much of
its history can be told from the point of view of the Schwarzschild solution. We
now readily associate this solution with the black hole concept. It is important
to remember, however, that the Schwarzschild solution was first discovered in a
thoroughly classical astrophysical setting: it was to represent the vacuum region
outside a star. The black hole interpretation–though in some sense inevitable–
historically only emerged much later.

The most efficient way to present the Schwarzschild solution is to begin at the
onset with Kruskal’s maximal extension as a point of departure. Instead, we shall
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take advantage of the informal nature of the present notes to attempt a more conver-
sational and “historical” presentation of the Schwarzschild metric and its interpre-
tation.4 Although certainly not the quickest route, this approach has the advantage
of highlighting the themes which have become so important in the subject–in partic-
ular, singularities, black holes and their event horizons–with the excitement of their
step-by-step unravelling from their origin in a model for the simplest of general rel-
ativistic stars. The Schwarzschild solution will naturally lead to discussions of the
Oppenheimer-Snyder collapse model, the cosmic censorship conjectures, trapped
surfaces and Penrose’s incompleteness theorems, and recent work of Christodoulou
on trapped surface formation in vacuum collapse, and we elaborate on these topics
in Sections 2.6–2.8. (The discussion in these three last sections was not included in
the lectures, however, and is not necessary for understanding the rest of the notes.)

2.1. Schwarzschild’s stars. The most basic self-gravitating objects are stars.
In the most primitive stellar models, dating from the 19th century, stars are mod-
elled by a self-gravitating fluid surrounded by vacuum. Moreover, to a first approx-
imation, classically stars are spherically symmetric and static.

It should not be surprising then that early research on the Einstein equations
(2) would address the question of the existence and structure of general relativistic
stars in the new theory. In view of our above discussion, the most basic problem
is to understand spherically symmetric, static metrics, represented in coordinates
(t, r, θ, φ), such that the spacetime has two regions: In the region r ≤ R0–the
interior of the star–the metric should solve a suitable Einstein-matter system (2)
with appropriate matter, and in the region r ≥ R0–the exterior of the star–the
spacetime should be vacuum, i.e. the metric should solve (4).

vacuum

star

r
=

0

r
=

R
0

This is the problem first addressed by Schwarzschild [139, 140], already in
1916. Schwarzschild considered the vacuum region first [139] and arrived5 at the

4This in no way should be considered as a true attempt at the history of the solution, simply
a pedagogical approach to its study. See for example [76].

5As is often the case, the actual history is more complicated. Schwarzschild based his work
on an earlier version of Einstein’s theory which, while obtaining the correct vacuum equations,
imposed a condition on admissible coordinate systems which would in fact exclude the coordinates
of (5). Thus he had to use a rescaled r as a coordinate. Once this condition was removed from
the theory, there is no reason not to take r itself as the coordinate. It is in this sense that these
coordinates can reasonably be called “Schwarzschild coordinates”.
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one-parameter family of solutions:

(5) g = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2).

Every student of this subject should explicitly check that this solves (4) (Exercise).
In [140], Schwarzschild found interior metrics for the darker shaded region

r ≤ R0 above. In this region, matter is described by a perfect fluid. We shall not
write down explicitly such metrics here, as this would require a long digression into
fluids, their equations of state, etc. See [44]. Suffice it to say here that the existence
of such solutions required that one take the constant M positive, and the value R0

marking the boundary of the star always satisfied R0 > 2M . The constant M could
then be identified with the total mass of the star as measured by considering the
orbits of far-away test particles.6 In fact, for most reasonable matter models, static
solutions of the type described above only exist under a stronger restriction on R0

(namely R0 ≥ 9M/4) now known as the Buchdahl inequality. See [14, 2, 97].
The restriction on R0 necessary for the existence of Schwarzschild’s stars ap-

pears quite fortuitous: It is manifest from the form (5) that the components of g
are singular if the (t, r, θ, φ) coordinate system for the vacuum region is extended
to r = 2M . But a natural (if perhaps seemingly of only academic interest) ques-
tion arises, namely, what happens if one does away completely with the star and
tries simply to consider the expression (5) for all values of r? This at first glance
would appear to be the problem of understanding the gravitational field of a “point
particle” with the particle removed.7

For much of the history of general relativity, the degeneration of the metric
functions at r = 2M , when written in these coordinates, was understood as meaning
that the gravitational field should be considered singular there. This was the famous
Schwarzschild “singularity”.8 Since “singularities” were considered “bad” by most
pioneers of the theory, various arguments were concocted to show that the behaviour
of g where r = 2M is to be thought of as “pathological”, “unstable”, “unphysical”
and thus, the solution should not be considered there. The constraint on R0 related
to the Buchdahl inequality seemed to give support to this point of view. See
also [75].

With the benefit of hindsight, we now know that the interpretation of the
previous paragraph is incorrect, on essentially every level: neither is r = 2M a
singularity, nor are singularities–which do in fact occur!–necessarily to be discarded!
Nor is it true that non-existence of static stars renders the behaviour at r = 2M–
whatever it is–“unstable” or “unphysical”; on the contrary, it was an early hint of
gravitational collapse! Let us put aside this hindsight for now and try to discover for
ourselves the geometry and “true” singularities hidden in (5), as well as the correct
framework for identifying “physical” solutions. In so doing, we are retracing in
part the steps of early pioneers who studied these issues without the benefit of the
global geometric framework we now have at our disposal. All the notions referred
to above will reveal themselves in the next subsections.

6Test particles in general relativity follow timelike geodesics of the spacetime metric. Exer-
cise: Explain the statement claimed about far-away test particles. See also Appendix B.2.3.

7Hence the title of [139].
8Let the reader keep in mind that there is a good reason for the quotation marks here and

for those that follow.
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2.2. Extensions beyond the horizon. The fact that the behaviour of the
metric at r = 2M is not singular, but simply akin to the well-known breakdown
of the coordinates (5) at θ = 0, π (this latter breakdown having never confused
anyone. . . ), is actually quite easy to see, and there is no better way to appreciate
this than by doing the actual calculations. Let us see how to proceed.

First of all, before even attempting a change of coordinates, the following is
already suggestive: Consider say a future-directed9 ingoing radial null geodesic.
The image of such a null ray is in fact depicted below:

r
=

2
M

One can compute that this has finite affine length to the future, i.e. these null
geodesics are future-incomplete, while scalar curvature invariants remain bounded
as s → ∞. It is an amusing exercise to put oneself in this point of view and carry
out the above computations in these coordinates.

Of course, as such the above doesn’t show anything.10 But it turns out that
indeed the metric can be extended to be defined on a “bigger” manifold. One
defines a new coordinate

t∗ = t+ 2M log(r − 2M).

This metric then takes the form

(6) g = −
(
1− 2M

r

)
(dt∗)2 +

4M

r
dt∗ dr +

(
1 +

2M

r

)
dr2 + r2dσS2

on r > 2M . Note that ∂
∂t∗ = ∂

∂t , each interpreted in its respective coordinate
system. But now (6) can clearly be defined in the region r > 0, −∞ < t∗ < ∞,
and, by explicit computation or better, by analytic continuation, the metric (6)
must satisfy (4) for all r > 0.

Transformations similar to the above were already known to Eddington and
Lemaitre [111] in the early 1930’s. Nonetheless, from the point of view of that
time, it was difficult to interpret their significance. The formalisation of the man-
ifold concept and associated language had not yet become common knowledge to
physicists (or most mathematicians for that matter), and in any case, there was
no selection principle as to what should the underlying manifold M be on which
a solution g to (4) should live, or, to put it another way, the domain of g in (4) is
not specified a priori by the theory. So, even if the solutions (6) exist, how do we
know that they are “physical”?

9We time-orient the metric by ∂t. See Appendix A.
10Consider for instance a cone with the vertex removed. . .
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This problem can in fact only be clarified in the context of the Cauchy problem
for (2) coupled to appropriate matter. Once the Cauchy problem for (4) is formu-
lated correctly, then one can assign a unique spacetime to an appropriate notion
of initial data set. This is the maximal development of Appendix B. It is only the
initial data set, and the matter model, which can be judged for “physicality”. One
cannot throw away the resulting maximal development just because one does not
like its properties!

From this point of view, the question of whether the extension (6) was “phys-
ical” was resolved in 1939 by Oppenheimer and Snyder [125]. Specifically, they
showed that the extension (6) for t ≥ 0 arose as a subset of the solution to the Ein-
stein equations coupled to a reasonable (to a first approximation at least) matter
model, evolving from physically plausible initial data. With hindsight, the notion
of black hole was born in that paper.

Had history proceeded differently, we could base our further discussion on [125].
Unfortunately, the model [125] was ahead of its time. As mentioned in the intro-
duction, the proper language to formulate the Cauchy problem in general only
came in 1969 [35]. The interpretation of explicit solutions remained the main
route to understanding the theory. We will follow thus this route to the black hole
concept–via the geometric study of so-called maximally extended Schwarzschild–
even though this spacetime is not to be regarded as “physical”. It was through
the study of this spacetime that the relevant notions were first understood and the
important Penrose diagrammatic notation was developed. We shall return to [125]
only in Section 2.5.3.

2.3. The maximal extension of Synge and Kruskal. Let us for now avoid
the question of what the underlying manifold “should” be, a question whose answer
requires physical input (see paragraphs above), and simply ask the purely mathe-
matical question of how big the underlying manifold “can” be. This leads to the
notion of a “maximally extended” solution. In the case of Schwarzschild, this will
be a spacetime which, although not to be taken as a model for anything per se, can
serve as a reference for the formulation of all important concepts in the subject.

To motivate this notion of “maximally extended” solution, let us examine our
first extension a little more closely. The light cones can be drawn as follows:

r
=

0

r
=

2
M

Let us look say at null geodesics. One can see (Exercise) that future di-
rected null geodesics either approach r = 0 or are future-complete. In the former
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case, scalar invariants of the curvature blow up in the limit as the affine param-
eter approaches its supremum (Exercise). The spacetime is thus “singular” in
this sense. It thus follows from the above properties that the above spacetime is
future null geodesically incomplete, but also future null geodesically inextendible as
a C2 Lorentzian metric, i.e. there does not exist a larger 4-dimensional Lorentzian
manifold with C2 metric such that the spacetime above embeds isometrically into
the larger one such that a future null geodesic passes into the extension.

On the other hand, one can see that past-directed null geodesics are not all
complete, yet no curvature quantity blows up along them (Exercise). Again, this
suggests that something may still be missing!

Synge was the first to consider these issues systematically and construct “max-
imal extensions” of the original Schwarzschild metric in a paper [146] of 1950. A
more concise approach to such a construction was given in a celebrated 1960 pa-
per [107] of Kruskal. Indeed, let M be the manifold with differentiable structure
given by U × S2 where U is the open subset T 2 − R2 < 1 of the (T,R)-plane.
Consider the metric g

g =
32M3

r
e−r/2M (−dT 2 + dR2) + r2dσ2

S

where r is defined implicitly by

T 2 −R2 =
(
1− r

2M

)
er/2M .

The region U is depicted below:

r = 0

T
=
−
R

T
=
R

r = 0

This is a spherically symmetric 4-dimensional Lorentzian manifold satisfying (4)
such that the original Schwarzschild metric is isometric to the region R > |T |
(where t is given by tanh

(
t

4M

)
= T/R), and our previous partial extension is

isometric to the region T > −R (Exercise). It can be shown now (Exercise) that
(M, g) is inextendible as a C2 (in fact C0) Lorentzian manifold, that is to say, if

i : (M, g) → (M̃, g̃)

is an isometric embedding, where (M̃, g̃) is a C2 (in fact C0) 4-dimensional Lorentzian

manifold, then necessarily i(M) = M̃.
The above property defines the sense in which our spacetime is “maximally”

extended, and thus, (M, g) is called sometimes maximally-extended Schwarzschild.
In later sections, we will often just call it “the Schwarzschild solution”.

Note that the form of the metric is such that the light cones are as depicted.
Thus, one can read off much of the causal structure by sight.

It may come as a surprise that in maximally-extended Schwarzschild, there
are two regions which are isometric to the original r > 2M Schwarzschild region.
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Alternatively, a Cauchy surface11 will have topology S2×R with two asymptotically
flat ends. This suggests that this spacetime is not to be taken as a physical model.
We will discuss this later on. For now, let us simply try to understand better the
global geometry of the metric.

2.4. The Penrose diagram of Schwarzschild. There is an even more useful
way to represent the above spacetime. First, let us define null coordinates U =
T − R, V = T + R. These coordinates have infinite range. We may rescale them
by u = u(U), v = v(V ) to have finite range. (Note the freedom in the choice of u
and v!) The domain of (u, v) coordinates, when represented in the plane where the
axes are at 45 and 135 degrees with the horizontal, is known as a Penrose diagram
of Schwarzschild. Such a Penrose diagram is depicted below12:

i0

I+

i+i+

i− i−

i0

r
=
2M

r = 0

r = 0

r
=
2M

I −

I−

I +

In more geometric language, one says that a Penrose diagram corresponds to
the image of a bounded conformal map

M/SO(3) = Q → R
1+1,

where one makes the identification v = t+x, u = t−x where (t, x) are now the stan-
dard coordinates R

1+1 represented in the standard way on the plane. We further
assume that the map preserves the time orientation, where Minkowski space is ori-
ented by ∂t. (In our application, this is a fancy way of saying that u′(U), v′(V ) > 0).
It follows that the map preserves the causal structure of Q. In particular, we can
“read off” the radial null geodesics of M from the depiction.

Now we may turn to the boundary induced by the causal embedding. We
define I± to be the boundary components as depicted.13 These are characterized
geometrically as follows: I+ are limit points of future-directed null rays in Q along
which r → ∞. Similarly, I− are limit points of past-directed null rays for which
r → ∞. We call I+ future null infinity and I− past null infinity. The remaining
boundary components i0 and i± depicted are often given the names spacelike infinity
and future (past) timelike infinity, respectively.

In the physical application, it is important to remember that asymptotically
flat14 spacetimes like our (M, g) are not meant to represent the whole universe15,

11See Appendix A.
12How can (u, v) be chosen so that the r = 0 boundaries are horizontal lines? (Exercise)
13Our convention is that open endpoint circles are not contained in the intervals they bound,

and dotted lines are not contained in the regions they bound, whereas solid lines are.
14See Appendix B.2.3 for a definition.
15The study of that problem is what is known as “cosmology”. See Section 6.
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but rather, the gravitational field in the vicinity of an isolated self-gravitating sys-
tem. I+ is an idealisation of far away observers who can receive radiation from
the system. In this sense, “we”–as astrophysical observers of stellar collapse, say–
are located at I+. The ambient causal structure of R1+1 allows us to talk about
J−(p)∩Q for p ∈ I+16 and this will lead us to the black hole concept. Therein lies
the use of the Penrose diagram representation.

The systematic use of the conformal point of view to represent the global ge-
ometry of spacetimes is one of the many great contributions of Penrose to general
relativity. These representations can be traced back to the well-known “spacetime
diagrams” of special relativity, promoted especially by Synge [147]. The “formal”
use of Penrose diagrams in the sense above goes back to Carter [28], in whose hands
these diagrams became a powerful tool for determining the global structure of all
classical black hole spacetimes. It is hard to overemphasise how important it is for
the student of this subject to become comfortable with these representations.

2.5. The black hole concept. With Penrose diagram notation, we may now
explain the black hole concept.

2.5.1. The definitions for Schwarzschild. First an important remark: In Schwarzs-
child, the boundary component I+ enjoys a limiting affine completeness. More
specifically, normalising a sequence of ingoing radial null vectors by parallel trans-
port along an outgoing geodesic meeting I+, the affine length of the null geodesics
generated by these vectors, parametrized by their parallel transport (restricted to
J−(I+)), tends to infinity:

I +

I−

This has the interpretation that far-away observers in the radiation zone can observe
for all time. (This is in some sense related to the presence of timelike geodesics near
infinity of infinite length, but the completeness is best formulated with respect to
I+.) A similar statement clearly holds for I−.

Given this completeness property, we define now the black hole region to be
Q \ J−(I+), and the white hole region to be Q \ J+(I−). Thus, the black hole
corresponds to those points of spacetime which cannot “send signals” to future null
infinity, or, in the physical interpretation, to far-away observers who (in view of the
completeness property!) nonetheless can observe radiation for infinite time.

The future boundary of J−(I+) in Q (alternatively characterized as the past
boundary of the black hole region) is a null hypersurface known as the future event
horizon, and is denoted by H+. Exchanging past and future, we obtain the past
event horizon H−. In maximal Schwarzschild, {r = 2M} = H+ ∪H−. The subset
J−(I+) ∩ J+(I−) is known as the domain of outer communications.

16Refer to Appendix A for J±.
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2.5.2. Minkowski space. Note that in the case of Minkowski space, Q =
R3+1/SO(3) is a manifold with boundary since the SO(3) action has a locus of
fixed points, the centre of symmetry. A Penrose diagram of Minkowski space is
easily seen to be:

r
=

0

I +

I−

Here I+ and I− are characterized as before, and enjoy the same completeness
property as in Schwarzschild. One reads off immediately that J−(I+) ∩ Q = Q,
i.e. R3+1 does not contain a black hole under the above definitions.

2.5.3. Oppenheimer-Snyder. Having now the notation of Penrose diagrams, we
can concisely describe the geometry of the Oppenheimer-Snyder solutions referred
to earlier, without giving explicit forms of the metric. Like Schwarzschild’s original
picture of the gravitational field of a spherically symmetric star, these solutions
involve a region r ≤ R0 solving (2) and r ≥ R0 satisfying (4). The matter is
described now by a pressureless fluid which is initially assumed homogeneous in
addition to being spherically symmetric. The assumption of staticity is however
dropped, and for appropriate initial conditions, it follows that R0(t

∗) → 0 with
respect to a suitable time coordinate t∗. (In fact, the Einstein equations can be
reduced to an o.d.e. for R0(t

∗).) We say that the star “collapses”.17 A Penrose
diagram of such a solution (to the future of a Cauchy hypersurface) can be seen to
be of the form:

r
=

0

r = 0

H
+ I +

The lighter shaded region is isometric to a subset of maximal Schwarzschild, in fact
a subset of the original extension of Section 2.2. In particular, the completeness
property of I+ holds, and as before, we identify the black hole region to be Q \
J−(I+).

In contrast to maximal Schwarzschild, where the initial configuration is un-
physical (the Cauchy surface has two ends and topology R × S2), here the initial
configuration is entirely plausible: the Cauchy surface is topologically R3, and its
geometry is not far from Euclidean space. The Oppenheimer-Snyder model [125]
should be viewed as the most basic black hole solution arising from physically plau-
sible regular initial data.18

17Note that R0(t∗) → 0 does not mean that the star collapses to “a point”, merely that the
spheres which foliate the interior of the star shrink to 0 area. The limiting singular boundary is
a spacelike hypersurface as depicted.

18 Note however the end of Section 2.6.2.
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It is traditional in general relativity to “think” Oppenheimer-Snyder but “write”
maximally-extended Schwarzschild. In particular, one often imports terminology
like “collapse” in discussing Schwarzschild, and one often reformulates our defini-
tions replacing I+ with one of its connected components, that is to say, we will
often write J−(I+) ∩ J+(I+) meaning J−(I+

A ) ∩ J+(I−
A ), etc. In any case, the

precise relation between the two solutions should be clear from the above discus-
sion. In view of Cauchy stability results [91], sufficiently general theorems about
the Cauchy problem on maximal Schwarzschild lead immediately to such results on
Oppenheimer-Snyder. (See for instance the exercise in Section 3.2.6.) One should
always keep this relation in mind.

2.5.4. General definitions? The above definition of black hole for the Schwarzs-
child metric should be thought of as a blueprint for how to define the notion of black
hole region in general. That is to say, to define the black hole region, one needs

(1) some notion of future null infinity I+,
(2) a way of identifying J−(I+), and
(3) some characterization of the “completeness” of I+.19

If I+ is indeed complete, we can define the black hole region as

“the complement in M of J−(I+)”.

For spherically symmetric spacetimes arising as solutions of the Cauchy prob-
lem for (2), one can show that there always exists a Penrose diagram, and thus, a
definition can be formalised along precisely these lines (see [60]). For spacetimes
without symmetry, however, even defining the relevant asymptotic structure so that
this structure is compatible with the theorems one is to prove is a main part of the
problem. This has been accomplished definitively only in the case of perturba-
tions of Minkowski space. In particular, Christodoulou and Klainerman [51] have
shown that spacetimes arising from perturbations of Minkowski initial data have
a complete I+ in a well defined sense, whose past can be identified and is indeed
the whole spacetime. See Appendix B.5. That is to say, small perturbations of
Minkowski space cannot form black holes.

2.6. Birkhoff’s theorem. Formal Penrose diagrams are a powerful tool for
understanding the global causal structure of spherically symmetric spacetimes. Un-
fortunately, however, it turns out that the study of spherically symmetric vacuum
spacetimes is not that rich. In fact, the Schwarzschild family parametrizes all
spherically symmetric vacuum spacetimes in a sense to be explained in this section.

2.6.1. Schwarzschild for M < 0. Before stating the theorem, recall that in
discussing Schwarzschild we have previously restricted to parameter value M > 0.
For the uniqueness statement, we must enlarge the family to include all parameter
values.

If we set M = 0 in (5), we of course obtain Minkowski space in spherical
polar coordinates. A suitable maximal extension is Minkowski space as we know
it, represented by the Penrose diagram of Section 2.5.2.

19The characterization of completeness can be formulated for general asymptotically flat
vacuum space times using the results of [51]. This formulation is due to Christodoulou [47].
Previous attempts to formalise these notions rested on “asymptotic simplicity” and “weak asymp-
totic simplicity”. See [91]. Although the qualitative picture suggested by these notions appears
plausible, the detailed asymptotic behaviour of solutions to the Einstein equations turns out to
be much more subtle, and Christodoulou has proven [48] that these notions cannot capture even
the simplest generic physically interesting systems.
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On the other hand, we may also take M < 0 in (5). This is so-called negative
mass Schwarzschild. The metric element (5) for such M is now regular for all
r > 0. The limiting singular behaviour of the metric at r = 0 is in fact essential,
i.e. one can show that along inextendible incomplete geodesics the curvature blows
up. Thus, one immediately arrives at a maximally extended solution which can be
seen to have Penrose diagram:

r
=

0

I−

I +

Note that in contrast to the case of R3+1, the boundary r = 0 is here depicted by
a dotted line denoting (according to our conventions) that it is not part of Q!

2.6.2. Naked singularities and weak cosmic censorship. The above spacetime is
interpreted as having a “naked singularity”. The traditional way of describing this
in the physics literature is to remark that the “singularity” B = {r = 0} is “visible”
to I+, i.e., J−(I+)∩B �= ∅. From the point of view of the Cauchy problem, however,
this characterization is meaningless because the above maximal extension is not
globally hyperbolic, i.e. it is not uniquely characterized by an appropriate notion of
initial data.20 From the point of view of the Cauchy problem, one must not consider
maximal extensions but the maximal Cauchy development of initial data, which by
definition is globally hyperbolic (see Theorem B.4 of Appendix B). Considering an
inextendible spacelike hypersurface Σ as a Cauchy surface, the maximal Cauchy
development of Σ would be the darker shaded region depicted below:

Σ

I−

I +

r
=

0

The proper characterization of “having a naked singularity”, from the point of view
of the darker shaded spacetime, is that its I+ is incomplete. Of course, this example
does not say anything about the dynamic formation of naked singularities, because
the inital data hypersurface Σ is already in some sense “singular”, for instance, it
is geodesically incomplete, and the curvature blows up along incomplete geodesics.
The dynamic formation of a naked singularity from regular, complete initial data

20See Appendix A for the definition of global hyperbolicity.



112 MIHALIS DAFERMOS AND IGOR RODNIANSKI

would be pictured by:

I +

r
=

0

where we are to understand also in the above that I+ is incomplete. The conjecture
that for generic asymptotically flat21 initial data for “reasonable” Einstein-matter
systems, the maximal Cauchy development “possesses a complete I+” is known as
weak cosmic censorship.22

In light of the above conjecture, the story of the Oppenheimer-Snyder solution
and its role in the emergence of the black hole concept does have an interesting
epilogue. Recall that in the Oppenheimer-Snyder solutions, the region r ≤ R0,
in addition to being spherically symmetric, is homogeneous. It turns out that by
considering spherically symmetric initial data for which the “star” is no longer ho-
mogeneous, Christodoulou has proven that one can arrive at spacetimes for which
“naked singularities” form [39] with Penrose diagram as above and with I+ incom-
plete. Moreover, it is shown in [39] that this occurs for an open subset of initial
data within spherical symmetry, with respect to a suitable topology on the set of
spherically symmetric initial data. Thus, weak cosmic censorship is violated in this
model, at least if the conjecture is restricted to spherically symmetric data.

The fact that in the Oppenheimer-Snyder solutions black holes formed appears
thus to be a rather fortuitous accident! Nonetheless, we should note that the failure
of weak cosmic censorship in this context is believed to be due to the inappropri-
ateness of the pressureless model, not as indicative of actual phenomena. Hence,
the restriction on the matter model to be “reasonable” in the formulation of the
conjecture. In a remarkable series of papers, Christodoulou [45, 47] has shown
weak cosmic censorship to be true for the Einstein-scalar field system under spher-
ical symmetry. On the other hand, he has also shown [43] that the assumption of
genericity is still necessary by explicitly constructing solutions of this system with
incomplete I+ and Penrose diagram as depicted above.23

2.6.3. Birkhoff’s theorem. Let us understand now by “Schwarzschild solution
with parameter M” (where M ∈ R) the maximally extended Schwarzschild metrics
described above.

We have the so-called Birkhoff’s theorem:

Theorem 2.1. Let (M, g) be a spherically symmetric solution to the vacuum
equations (4). Then it is locally isometric to a Schwarzschild solution with param-
eter M , for some M ∈ R.

In particular, spherically symmetric solutions to (4) possess an additional Killing
field not in the Lie algebra so(3). (Exercise: Prove Theorem 2.1. Formulate and
prove a global version of the result.)

21See Appendix B.2.3 for a formulation of this notion. Note that asymptotically flat data
are in particular complete.

22This conjecture is originally due to Penrose [127]. The present formulation is taken from
Christodoulou [47].

23The discovery [43] of these naked singularities led to the discovery of so-called critical
collapse phenomena [37] which has since become a popular topic of investigation [87].
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2.6.4. Higher dimensions. In 3+ 1 dimensions, spherical symmetry is the only
symmetry assumption compatible with asymptotic flatness (see Appendix B.2.3),
such that moreover the symmetry group acts transitively on 2-dimensional orbits.
Thus, Birkhoff’s theorem means that vacuum gravitational collapse cannot be stud-
ied in a 1 + 1 dimensional setting by imposing symmetry. The simplest mod-
els for dynamic gravitational collapse thus necessarily involve matter, as in the
Oppenheimer-Snyder model [125] or the Einstein-scalar field system studied by
Christodoulou [41, 45]

Moving, however, to 4 + 1 dimensions, asymptotically flat manifolds can ad-
mit a more general SU(2) symmetry acting transitively on 3-dimensional group
orbits. The Einstein vacuum equations (4) under this symmetry admit 2 dynam-
ical degrees of freedom and can be written as a nonlinear system on a 1 + 1-
dimensional Lorentzian quotient Q = M/SU(2), where the dynamical degrees
of freedom of the metric are reflected by two nonlinear scalar fields on Q. This
symmetry–known as “Triaxial Bianchi IX”–was first identified by Bizon, Chmaj
and Schmidt [16, 17] who derived the equations on Q and studied the resulting
system numerically. The symmetry includes spherical symmetry as a special case,
and thus, is admitted in particular by 4+1-dimensional Schwarzschild24. The non-
linear stability of the Schwarzschild family as solutions of the vacuum equations
(4) can then be studied–within the class of Triaxial Bianchi IX initial data–as a
1+1 dimensional problem. Asymptotic stability for the Schwarzschild spacetime in
this setting has been recently shown in the thesis of Holzegel [93, 62, 94], adapt-
ing vector field multiplier estimates similar to Section 4 to a situation where the
metric is not known a priori. The construction of the relevant mutipliers is then
quite subtle, as they must be normalised “from the future” in a bootstrap setting.
The thesis [93] is a good reference for understanding the relation of the linear the-
ory to the non-linear black hole stability problem. See also Open problem 13 in
Section 8.6.

2.7. Geodesic incompleteness and “singularities”. Is the picture of grav-
itational collapse as exhibited by Schwarzschild (or better, Oppenheimer-Snyder)
stable? This question is behind the later chapters in the notes, where essentially
the considerations hope to be part of a future understanding of the stability of the
exterior region up to the event horizon, i.e. the closure of the past of null infinity
to the future of a Cauchy surface. (See Section 5.6 for a formulation of this open
problem.) What is remarkable, however, is that there is a feature of Schwarzschild
which can easily be shown to be “stable”, without understanding the p.d.e. aspects
of (2): its geodesic incompleteness.

2.7.1. Trapped surfaces. First a definition: Let (M, g) be a time-oriented
Lorentzian manifold, and S a closed spacelike 2-surface. For any point p ∈ S,
we may define two null mean curvatures trχ and trχ̄, corresponding to the two
future-directed null vectors n(x), n̄(x), where n, n̄ are normal to S at x. We say
that S is trapped if trχ < 0, trχ̄ < 0.

Exercise: Show that points p ∈ Q \ clos(J−(I+)) correspond to trapped sur-
faces of M. Can there be other trapped surfaces? (Refer also for instance to [12].)

24Exercise: Work out explicitly the higher dimensional analogue of the Schwarzschild solu-
tion for all dimensions.
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2.7.2. Penrose’s incompleteness theorem.

Theorem 2.2. (Penrose 1965 [126]) Let (M, g) be globally hyperbolic25 with
non-compact Cauchy surface Σ, where g is a C2 metric, and let

(7) RμνV
μV ν ≥ 0

for all null vectors V . Then if M contains a closed trapped two-surface S, it follows
that (M, g) is future causally geodesically incomplete.

This is the celebrated Penrose incompleteness theorem.
Note that solutions of the Einstein vacuum equations (4) satisfy (7). (Inequality

(7), known as the null convergence condition, is also satisfied for solutions to the
Einstein equations (2) coupled to most plausible matter models, specifically, if
the energy momentum tensor Tμν satisfies TμνV

μV ν ≥ 0 for all null V μ.) On
the other hand, by definition, the unique solution to the Cauchy problem (the
so-called maximal Cauchy development of initial data) is globally hyperbolic (see
Appendix B.3). Thus, the theorem applies to the maximal development of (say)
asymptotically flat (see Appendix B.2.3) vacuum initial data containing a trapped
surface. Note finally that by Cauchy stability [91], the presence of a trapped surface
in M is clearly “stable” to perturbation of initial data.

From the point of view of gravitational collapse, it is more appropriate to define
a slightly different notion of trapped. We restrict to S ⊂ Σ a Cauchy surface such
that S bounds a disc in Σ. We then can define a unique outward null vector field n
along S, and we say that S is trapped if trχ < 0 and antitrapped26 if trχ̄ > 0, where
trχ̄ denotes the mean curvature with respect to a conjugate “inward” null vector
field. The analogue of Penrose’s incompleteness theorem holds under this definition.
One may also prove the interesting result that antitrapped surface cannot form if
they are not present initially. See [49].

Note finally that there are related incompleteness statements due to Penrose
and Hawking [91] relevant in cosmological (see Section 6) settings.

2.7.3. “Singularities” and strong cosmic censorship. Following [49], we have
called Theorem 2.2 an “incompleteness theorem” and not a “singularity theorem”.
This is of course an issue of semantics, but let us further discuss this point briefly as
it may serve to clarify various issues. The term “singularity” has had a tortuous his-
tory in the context of general relativity. As we have seen, its first appearance was to
describe something that turned out not to be a singularity at all–the “Schwarzschild
singularity”. It was later realised that behaviour which could indeed reasonably be
described by the word “singularity” did in fact occur in solutions, as exemplified
by the r = 0 singular “boundary” of Schwarzschild towards which curvature scalars
blow up. The presence of this singular behaviour “coincides” in Schwarzschild with
the fact that the spacetime is future causally geodesically incomplete–in fact, the
curvature blows up along all incomplete causal geodesics. In view of the fact that
it is the incompleteness property which can be inferred from Theorem 2.2, it was
tempting to redefine “singularity” as geodesic incompleteness (see [91]) and to call
Theorem 2.2 a “singularity theorem”.

This is of course a perfectly valid point of view. But is it correct then to as-
sociate the incompleteness of Theorem 2.2 to “singularity” in the sense of “break-
down” of the metric? Breakdown of the metric is most easily understood with

25See Appendix A.
26Note that there exist other conventions in the literature for this terminology. See [12].
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curvature blowup as above, but more generally, it is captured by the notion of “in-
extendibility” of the Lorentzian manifold in some regularity class. We have already
remarked that maximally-extended Schwarzschild is inextendible in the strongest
of senses, i.e. as a C0 Lorentzian metric. It turns out, however, that the statement
of Theorem 2.2, even when applied to the maximal development of complete initial
data for (4), is compatible with the solution being extendible as a C∞ Lorentzian
metric such that every incomplete causal geodesic of the original spacetime enter
the extension! This is in fact what happens in the case of Kerr initial data. (See
Section 5.1 for a discussion of the Kerr metric.) The reason that the existence of
such extensions does not contradict the “maximality” of the “maximal develop-
ment” is that these extensions fail to be globally hyperbolic, while the “maximal
development” is “maximal” in the class of globally hyperbolic spacetimes (see The-
orem B.4 of Appendix B). In the context of Kerr initial data, Theorem 2.2 is thus
not saying that breakdown of the metric occurs, merely that globally hyperbolic-
ity breaks down, and thus further extensions cease to be predictable from initial
data.27

A similar phenomenon is exhibited by the Reissner-Nordström solution of the
Einstein-Maxwell equations [91], which, unlike Kerr, is spherically symmetric and
thus admits a Penrose diagram representation:

Σ

H +
B H

+
A

i0

CH
+

CH +

I+
AI+

B

I−
A

I−
B

What is drawn above is the maximal development of Σ. The spacetime is future
causally geodesically incomplete, but can be extended smoothly to a (M̃, g̃) such
that all inextendible geodesics leave the original spacetime. The boundary of (M, g)
in the extension corresponds to CH+ above. Such boundaries are known as Cauchy
horizons.

The strong cosmic censorship conjecture says that the maximal development
of generic asymptotically flat initial data for the vacuum Einstein equations is

27Further confusion can arise from the fact that “maximal extensions” of Kerr constructed
with the help of analyticity are still geodesically incomplete and inextendible, in particular, with
the curvature blowing up along all incomplete causal geodesics. Thus, one often talks of the
“singularities” of Kerr, referring to the ideal singular boundaries one can attach to such extensions.
One must remember, however, that these extensions are of no relevance from the point of view of
the Cauchy problem, and in any case, their singular behaviour in principle has nothing to do with
Theorem 2.2.
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inextendible as a suitably regular Lorentzian metric.28 One can view this conjecture
as saying that whenever one has geodesic incompleteness, it is due to breakdown
of the metric in the sense discussed above. (In view of the above comments, for
this conjecture to be true, the behaviour of the Kerr metric described above would
have to be unstable to perturbation.29) Thus, if by the term “singularity” one
wants to suggest “breakdown of the metric”, it is only a positive resolution of the
strong cosmic censorship conjecture that would in particular (generically) make
Theorem 2.2 into a true “singularity theorem”.

2.8. Christodoulou’s work on trapped surface formation in vacuum.
These notes would not be complete without a brief discussion of the recent break-
through by Christodoulou [53] on the understanding of trapped surface formation
for the vacuum.

The story begins with Christodoulou’s earlier [41], where a condition is given
ensuring that trapped surfaces form for spherically symmetric solutions of the
Einstein-scalar field system. The condition is that the difference in so-called Hawk-
ing mass m of two concentric spheres on an outgoing null hupersurface be suffi-
ciently large with respect to the difference in area radius r of the spheres. This
is a surprising result as it shows that trapped surface formation can arise from
initial conditions which are as close to dispersed as possible, in the sense that the
supremum of the quantity 2m/r can be taken arbitrarily small initially.

The results of [41] lead immediately (see for instance [61]) to the existence
of smooth spherically symmetric solutions of the Einstein-scalar field system with
Penrose diagram

I +

r
=

0

I−

H
+

r = 0

p

where the point p depicted corresponds to a trapped surface, and the spacetime is
past geodesically complete with a complete past null infinity, whose future is the
entire spacetime, i.e., the spacetime contains no white holes.30 Thus, black hole
formation can arise from spacetimes with a complete regular past.31

28As with weak cosmic censorship, the original formulation of this conjecture is due to Pen-
rose [128]. The formulation given here is from [47]. Related formulations are given in [54, 118].
One can also pose the conjecture for compact initial data, and for various Einstein-matter systems.
It should be emphasised that “strong cosmic censorship” does not imply “weak cosmic censor-
ship”. For instance, one can imagine a spacetime with Penrose diagram as in the last diagram
of Section 2.6.2, with incomplete I+, but still inextendible across the null “boundary” emerging
from the centre.

29Note that the instability concerns a region “far inside” the black hole interior. The black
hole exterior is expected to be stable (as in the formulation of Section 5.6), hence these notes.
See [58, 59] for the resolution of a spherically symmetric version of this problem, where the role
of the Kerr metric is played by Reissner-Nordström metrics.

30The triangle “under” the darker shaded region can in fact be taken to be Minkowski.
31The singular boundary in general consists of a possibly empty null component emanating

from the regular centre, and a spacelike component where r = 0 in the limit and across which
the spacetime is inextendible as a C0 Lorentzian metric. (This boundary could “bite off” the
top corner of the darker shaded rectangle.) The null component arising from the centre can be
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In [53], Christodoulou constructs vacuum solutions by prescribing a charac-
teristic initial value problem with data on (what will be) I−. This I− is taken
to be past complete, and in fact, the data is taken to be trivial to the past of a
sphere on I−. Thus, the development will include a region where the metric is
Minkowski, corresponding precisely to the lower lighter shaded triangle above. It is
shown that–as long as the incoming energy per unit solid angle in all directions32 is
sufficiently large in a strip of I− right after the trivial part, where sufficiently large
is taken in comparison with the affine length of the generators of I−–a trapped
surface arises in the domain of development of the data restricted to the past of
this strip. Comparing with the spherically symmetric picture above, this trapped
surface would arise precisely as before in the analogue of the darker shaded region
depicted.

In contrast to the spherically symmetric case, where given the lower triangle,
existence of the solution in the darker shaded region (at least as far as trapped
surface formation) follows immediately, for vacuum collapse, showing the existence
of a sufficiently “big” spacetime is a major difficulty. For this, the results of [53]
exploit a hierarchy in the Einstein equations (4) in the context of what is there
called the “short pulse method”. This method may have many other applications
for nonlinear problems.

One could in principle hope to extend [53] to show the formation of black hole
spacetimes in the sense described previously. For this, one must first extend the
initial data suitably, for instance so that I− is complete. If the resulting spacetime
can be shown to possess a complete future null infinity I+, then, since the trapped
surface shown to form can be proven (using the methods of the proof of Theo-
rem 2.2) not to be in the past of null infinity, the spacetime will indeed contain a
black hole region.33 Of course, resolution of this problem would appear comparable
in difficulty to the stability problem for the Kerr family (see the formulation of
Section 5.6).

3. The wave equation on Schwarzschild I: uniform boundedness

In the remainder of these lectures, we will concern ourselves solely with linear
wave equations on black hole backgrounds, specifically, the scalar linear homo-
geneous wave equation (1). As explained in the introduction, the study of the
solutions to such equations is motivated by the stability problem for the black hole
spacetimes themselves as solutions to (4). The equation (1) can be viewed as a
poor man’s linearisation of (4), neglecting tensorial structure. Other linear prob-
lems with a much closer relationship to the study of the Einstein equations will be
discussed in Section 8.

3.1. Preliminaries. Let (M, g) denote (maximally-extended) Schwarzschild
with parameter M > 0. Let Σ be an arbitrary Cauchy surface, that is to say,

shown to be empty generically after passing to a slightly less regular class of solutions, for which
well-posedness still holds. See Christodoulou’s proof of the cosmic censorship conjectures [45] for
the Einstein-scalar field system.

32This is defined in terms of the shear of I−.
33In spherical symmetry, the completeness of null infinity follows immediately once a single

trapped surface has formed, for the Einstein equations coupled to a wide class of matter models.
See for instance [60]. For vacuum collapse, Christodoulou has formulated a statement on trapped
surface formation that would imply weak cosmic censorship. See [47].
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a hypersurface with the property that every inextendible causal geodesic in M
intersects Σ precisely once. (See Appendix A.)

Proposition 3.1.1. If ψ ∈ H2
loc(Σ), ψ

′ ∈ H1
loc(Σ), then there is a unique ψ

with ψ|S ∈ H2
loc(S), nSψ|S ∈ H1

loc(S), for all spacelike S ⊂ M, satisfying

�gψ = 0, ψ|Σ = ψ, nΣψ|Σ = ψ′,

where nΣ denotes the future unit normal of Σ. For m ≥ 1, if ψ ∈ Hm+1
loc , ψ′ ∈

Hm
loc, then ψ|S ∈ Hm+1

loc (S), nSψ|S ∈ Hm
loc(S). Moreover, if ψ1,ψ

′
1, and ψ2,ψ

′
2

are as above and ψ1 = ψ2, ψ′
1 = ψ′

2 in an open set U ⊂ Σ, then ψ1 = ψ2 in
M\ J±(Σ \ clos(U)).

We will be interested in understanding the behaviour of ψ in the exterior of the
black hole and white hole regions, up to and including the horizons. It is enough
of course to understand the behaviour in the region

D .
= clos

(
J−(I+

A ) ∩ J+(I−
A )

)
∩Q

where I±
A denote a pair of connected components of I±, respectively, with a com-

mon limit point.34

Moreover, it suffices (Exercise: Why?) to assume that Σ ∩H− = ∅, and that
we are interested in the behaviour in J−(I+) ∩ J+(Σ). Note that in this case,
by the domain of dependence property of the above proposition, we have that the
solution in this region is determined by ψ|D∩Σ, ψ

′|D∩Σ. In the case where Σ itself
is spherically symmetric, then its projection to Q will look like:

r = 0

r = 0

I −

I−

I +

I+ r
=
2Mr

=
2M Σ

i0i0

D

If Σ is not itself spherically symmetric, then its projection to Q will in general have
open interior. Nonetheless, we shall always depict Σ as above.

3.2. The Kay–Wald boundedness theorem. The most basic problem is
to obtain uniform boundedness for ψ. This is resolved in the celebrated:

Theorem 3.1. Let ψ, ψ, ψ′ be as in Proposition 3.1.1, with ψ ∈ Hm+1
loc (Σ),

ψ′ ∈ Hm
loc(Σ) for a sufficiently high m, and such that ψ, ψ′ decay suitably at i0.

Then there is a constant D depending on ψ, ψ′ such that

|ψ| ≤ D

in D.

34We will sometimes be sloppy with distinguishing between π−1(p) and p, where π : M → Q
denotes the natural projection, distinguishing J−(p) and J−(p) ∩ Q, etc. The context should
make clear what is meant.
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The proof of this theorem is due to Wald [151] and Kay–Wald [98]. The “easy
part” of the proof (Section 3.2.3) is a classic application of vector field commutators
and multipliers, together with elliptic estimates and the Sobolev inequality. The
main difficulties arise at the horizon, and these are overcome by what is essentially
a clever trick. In this section, we will go through the original argument, as it is a
nice introduction to vector field multiplier and commutator techniques, as well as
to the geometry of Schwarzschild. We will then point out (Section 3.2.7) various
disadvantages of the method of proof. Afterwards, we give a new proof that in fact
achieves a stronger result (Theorem 3.2). As we shall see, the techniques of this
proof will be essential for future applications.

3.2.1. The Killing fields of Schwarzschild. Recall the symmetries of (M, g):
(M, g) is spherically symmetric, i.e. there is a basis of Killing vectors {Ωi}3i=1

spanning the Lie algebra so(3). These are sometimes known as angular momentum
operators. In addition, there is another Killing field T (equal to ∂t in the coordinates
(5)) which is hypersurface orthogonal and future directed timelike near i0. This
Killing field is in fact timelike everywhere in J−(I+)∩ J+(I−), becoming null and
tangent to the horizon, vanishing at H+ ∩ H−. We say that the Schwarzschild
metric in J−(I+)∩J+(I−) is static. T is spacelike in the black hole and white hole
regions.

Note that whereas in Minkowski space R3+1, the Killing fields at any point span
the tangent space, this is no longer the case for Schwarzschild. We shall return to
this point later.

3.2.2. The current JT and its energy estimate. Let ϕt denote the 1-parameter
group of diffeomorphisms generated by the Killing field T . Define Στ = ϕt(Σ∩D).
We have that {Στ}τ≥0 defines a spacelike foliation of

R .
= ∪τ≥0Στ .

Define

H+(0, τ )
.
= H+ ∩ J+(Σ0) ∩ J−(Στ ),

and

R(0, τ )
.
= ∪0≤τ̄≤τΣτ̄ .

Let nμ
Σ denote the future directed unit normal of Σ, and let nμ

H define a null
generator of H+, and give H+ the associated volume form.35

Let JT
μ (ψ) denote the energy current defined by applying the vector field T as

a multiplier, i.e.

JT
μ (ψ) = Tμν(ψ)T

ν = (∂μψ∂νψ − 1

2
gμν∂

αψ∂αψ)T
ν

with its associated current KT (ψ),

KT (ψ) = TπμνTμν(ψ) = ∇μJT
μ (ψ),

where Tμν denotes the standard energy momentum tensor of ψ (see Appendix D).
Since T is Killing, and ∇μTμν = 0, it follows that KT (ψ) = 0, and the divergence

35Recall that for null surfaces, the definition of a volume form relies on the choice of a normal.
All integrals in what follow will always be with respect to the natural volume form, and in the
case of a null hypersurface, with respect to the volume form related to the given choice of normal.
See Appendix C.
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theorem (See Appendix C) applied to JT
μ in the region R(0, τ ) yields

(8)

∫
Στ

JT
μ (ψ)nμ

Στ
+

∫
H+(0,τ)

JT
μ (ψ)nμ

H =

∫
Σ0

JT
μ (ψ)nμ

Σ0
.

See

r = 0

r = 0

I −

I−

I +

I+ H
+ (0

, τ
)

r
=
2M Σ

i0i0

D

Στ

Since T is future-directed causal in D, we have

(9) JT
μ (ψ)nμ

Σ ≥ 0, JT
μ (ψ)nμ

H ≥ 0.

Let us fix an r0 > 2M . It follows from (8), (9) that∫
Στ∩{r≥r0}

JT
μ (ψ)nμ

Στ
≤

∫
Σ0

JT
μ (ψ)nμ

Σ0
.

As long as −g(T, nΣ0
) ≤ B for some constant B,36 we have

B(r0,Σ)((∂tψ)
2+(∂rψ)

2+ |∇/ ψ|2) ≥ JT
μ (ψ)nμ ≥ b(r0,Σ)((∂tψ)

2+(∂rψ)
2+ |∇/ ψ|2).

Here, |∇/ψ|2 denotes the induced norm on the group orbits of the SO(3) action,
with ∇/ the gradient of the induced metric on the group orbits. We thus have∫

Στ∩{r≥r0}
(∂tψ)

2 + (∂rψ)
2 + |∇/ψ|2 ≤ B(r0,Σ)

∫
Σ0

JT
μ (ψ)nμ

Σ0
.

3.2.3. T as a commutator and pointwise estimates away from the horizon. We
may now commute the equation with T (See Appendix E), i.e., since [�g, T ] = 0,
if �gψ = 0 then �g(Tψ) = 0. We thus obtain an estimate

(10)

∫
Στ∩{r≥r0}

(∂2
t ψ)

2 + (∂r∂tψ)
2 + |∇/ ∂tψ|2 ≤ B(r0,Σ)

∫
Σ0

JT
μ (Tψ)nμ

Σ0
.

Exercise: By elliptic estimates and a Sobolev estimate show that if ψ(x) → 0 as
x → i0, then (10) implies that for r ≥ r0,

(11) |ψ|2 ≤ B(r0,Σ)

(∫
Σ0

JT
μ (ψ)nμ

Σ0
+

∫
Σ0

JT
μ (Tψ)nμ

Σ0

)
,

for solutions ψ of �gψ = 0.
The right hand side of (11) is finite under the assumptions of Theorem 3.1, for

m = 1. Thus, proving the estimate of Theorem 3.1 away from the horizon poses
no difficulty. The difficulty of Theorem 3.1 is obtaining estimates which hold up to
the horizon.

36For definiteness, one could choose Σ to be a surface of constant t∗ defined in Section 2.2,
or alternatively, require that it be of constant t for large r.
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Remark: The above argument via elliptic estimates clearly also holds for
Minkowski space. But in that case, there is an alternative “easier” argument,
namely, to commute with all translations.37 We see thus already that the lack of
Killing fields in Schwarzschild makes things more difficult. We shall again return
to this point later.

3.2.4. Degeneration at the horizon. As one takes r0 → 2M , the constantB(r0,Σ)
provided by the estimate (11) blows up. This is precisely because T becomes null
on H+ and thus its control over derivatives of ψ degenerates. Thus, one cannot
prove uniform boundedness holding up to the horizon by the above.

Let us examine more carefully this degeneration on various hypersurfaces.
On Στ , we have only

(12) JT
μ (ψ)nμ

Στ
≥ B(Στ )((∂t∗ψ)

2 + (1− 2M/r)(∂rψ)
2 + |∇/ψ|2).

We see the degeneration in the presence of the factor (1 − 2M/r). Note that
(Exercise) 1 − 2M/r vanishes to first order on H+ \ H−. Alternatively, one can
examine the flux on the horizon H+ itself. For definiteness, let us choose nH+ = T
in R∩H+. We have

(13) JT
μ (ψ)Tμ = (Tψ)2.

Comparing with the analogous computation on a null cone in Minkowski space, one
sees that a term |∇/ψ|2 is “missing”.

Are estimates of the terms (12), (13) enough to control ψ? It is a good idea to
play with these estimates on your own, allowing yourself to commute the equation
with T and Ωi to obtain higher order estimates. Exercise: Why does this not lead
to an estimate as in (11)?

It turns out that there is a way around this problem and the degeneration on
the horizon is suggestive. For suppose there existed a ψ̃ such that

(14) �gψ̃ = 0, T ψ̃ = ψ.

Let us see immediately how one can obtain estimates on the horizon itself. For this,
we note that

JT
μ (ψ̃)Tμ + JT

μ (ψ)Tμ = ψ2 + (Tψ)2.

Commuting now with the whole Lie algebra of isometries, we obtain

JT
μ (ψ̃)Tμ + JT

μ (ψ)Tμ +
∑
i

JT
μ (Ωiψ̃)T

μ + JT
μ (Tψ)Tμ · · ·

= ψ2 + (Tψ)2 +
∑
i

(Ωiψ)
2 + (T 2ψ)2 + · · · .

Clearly, by a Sobolev estimate applied on the horizon, together with the estimate∫
H+∩R

JT
μ (Γ(α)ψ̃)nμ

H ≤
∫
Σ0

JT
μ (Γ(α)ψ̃)nμ

Σ0

for Γ = T,Ωi (here (α) denotes a multi-index of arbitrary order), we would obtain

(15) |ψ|2 ≤ B
∑

Γ=T,Ωi

∑
|(α)|≤2

∫
Σ0

JT
μ (Γ(α)ψ̃)nμ

Σ0

on H+ ∩R.

37Easier, but not necessarily better. . .
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It turns out that the estimate (15) can be extended to points not on the horizon
by considering t = c surfaces. Note that these hypersurfaces all meet atH+∩H−. It
is an informative calculation to examine the nature of the degeneration of estimates
on such hypersurfaces because it is of a double nature, since, in addition to T
becoming null, the limit of (subsets of) these spacelike hypersurfaces approaches
the null horizon H+. We leave the details as an exercise.

3.2.5. Inverting an elliptic operator. So can a ψ̃ satisfying (14) actually be
constructed? We have

Proposition 3.2.1. Suppose m is sufficiently high, ψ, ψ′ decay suitably at i0,
and ψ|H+∩H− = 0, Ξψ|H+∩H− = 0 for some spherically symmetric timelike vector

field Ξ defined along H+ ∩ H−. Then there exists a ψ̃ satisfying �gψ̃ = 0 with

T ψ̃ = ψ in D, and moreover, the right hand side of (15) is finite.

Formally, one sees that on t = c say, if we let ḡ denote the induced Riemannian
metric, and if we impose initial data

T ψ̃|t=c = ψ,

ψ̃|t=c = A−1Tψ,

where A = �(1−2M/r)−1ḡ+(2M/r2)(1−2M/r)∂r, and let ψ̃ solve the wave equation
with this data, then

T ψ̃ = ψ

as desired.
So to use the above, it suffices to ask whether the initial data for ψ̃ above

can be constructed and have sufficient regularity so as for the right hand side of
(15) to be defined. To impose the first condition, since T = 0 along H+ ∩ H−,
one must have that ψ vanish there to some order. For the second condition, note
first that the metric (1 − 2M/r)−1ḡ has an asymptotically hyperbolic end and an
asymptotically flat end. Thus, to construct A−1Tψ suitably well-behaved38, one
must have that Tψ decays appropriately towards the ends. We leave to the reader
the task of verifying that the assumptions of the Proposition are sufficient.

3.2.6. The discrete isometry. Proposition 3.2.1, together with estimates (15)
and (11), yield the proof of Theorem 3.1 in the special case that the conditions of
Proposition 3.2.1 happen to be satisfied. In the original paper of Wald [151], one
took Σ0 to coincide with t = 0 and restricted to data ψ, ψ′ which were supported in
a compact region not containing H+∩H−. Clearly, however, this is a deficiency, as
general solutions will be supported in H+ ∩H−. (See also the last exercise below.)

It turns out, however, that one can overcome the restriction on the support by
the following trick: Note that the previous proposition produces a ψ̃ such that T ψ̃ =
ψ on all of D. We only require however that T ψ̃ = ψ on R. The idea is to define a
new ψ̄, ψ̄′ on Σ, such that ψ̄ = ψ, ψ̄′ = ψ′ on Σ0 and, denoting by ψ̄ the solution
to the Cauchy problem with the new data, ψ̄|H+∩H− = 0, Ξψ̄|H+∩H− = 0. By the
previous proposition and the domain of dependence property of Proposition 3.1.1,
we will have indeed constructed a ψ̃ with T ψ̃ = ψ in R for which the right hand
side of (15) is finite.

Remark that Schwarzschild admits a discrete symmetry generated by the map
R → −R in the Kruskal R-coordinate defined in section 2.3. Define ψ̄, ψ̄′ so that
ψ̄(R, ·) = −ψ̄(−R, ·), ψ̄′(R, ·) = −ψ̄′(−R, ·).

38so that we may apply to this quantity the arguments of Section 3.2.4.
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Proposition 3.2.2. Under the above assumptions, it follows that

ψ̄(R, ·) = −ψ̄(−R, ·).

The proof of the above is left as an exercise in preservation of symmetry for
solutions of the wave equation. It follows immediately that

ψ̄|H+∩H− = 0

and that

∂U ψ̄ = −∂V ψ̄,

and thus (∂U + ∂V )ψ̄ = 0. Here U and V are the bounded null coordinates of
Section 2.3. In view of the above remarks and Proposition 3.2.1 with Ξ = ∂U +∂V ,
we have shown the full statement of Theorem 3.1.

Exercise: Work out explicit regularity assumptions and quantitative depen-
dence on initial data in Theorem 3.1, describing in particular decay assumptions
necessary at i0.

Exercise: Prove the analogue of Theorem 3.1 on the Oppenheimer-Snyder
spacetime discussed previously. Hint: One need not know the explicit form of the
metric, the statement given about the Penrose diagram suffices. Convince yourself
that the original restricted version of Theorem 3.1 due to Wald [151], where the
support of ψ is restricted near H+ ∩H−, is not sufficient to yield this result.

3.2.7. Remarks. The clever proof described above successfully obtains point-
wise boundedness for ψ up to the horizon H+. Does this really close the book,
however, on the boundedness question? From various points of view, it may be
desirable to go further.

(1) Even though one obtains the “correct” pointwise result, one does not
obtain boundedness at the horizon for the energy measured by a local
observer, that is to say, bounds for∫

Στ

J
nΣτ
μ (ψ)nμ

Στ
.

This indicates that it would be difficult to use this result even for the
simplest non-linear problems.

(2) One does not obtain boundedness for transverse derivatives to the horizon,
i.e. in (t∗, r) coordinates, ∂rψ, ∂

2
rψ, etc. (Exercise: Why not?)

(3) The dependence on initial data is somewhat unnatural. (Exercise: Work
out explicitly what it is.)

As far as the method of proof is concerned, there are additional short-
comings when the proof is viewed from the standpoint of possible future
generalisations:

(4) To obtain control at the horizon, one must commute (see (15)) with all an-
gular momentum operators Ωi. Thus the spherical symmetry of Schwarzs-
child is used in a fundamental way.

(5) The exact staticity is fundamental for the construction of ψ̃. It is not clear
how to generalise this argument in the case say where T is not hypersurface
orthogonal and Killing but one assumes merely that its deformation tensor
Tπμν decays. This would be the situation in a bootstrap setting of a non-
linear stability problem.
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(6) The construction of ψ̄ requires the discrete isometry of Schwarzschild,
which again, cannot be expected to be stable.

3.3. The red-shift and a new proof of boundedness. We give in this
section a new proof of boundedness which overcomes the shortcomings outlined
above. In essence, the previous proof limited itself by relying solely on Killing fields
as multipliers and commutators. It turns out that there is an important physical
aspect of Schwarzschild which can be captured by other vector-field multipliers
and commutators which are not however Killing. This is related to the celebrated
red-shift effect.

3.3.1. The classical red-shift. The red-shift effect is one of the most celebrated
aspects of black holes. It is classically described as follows: Suppose two observers,
A and B are such that A crosses the event horizon and B does not. If A emits a
signal at constant frequency as he measures it, then the frequency at which it is
received by B is “shifted to the red”.

B

H+

I+

A

The consequences of this for the appearance of a collapsing star to far-away ob-
servers were first explored in the seminal paper of Oppenheimer-Snyder [125] re-
ferred to at length in Section 2. For a nice discussion, see also the classic text-
book [117].

The red-shift effect as described above is a global one, and essentially depends
only on the fact that the proper time of B is infinite whereas the proper time of A
before crossing H+ is finite. In the case of the Schwarzschild black hole, there is a
“local” version of this red-shift: If B also crosses the event horizon but at advanced
time later than A:

H+

I+

A

B

then the frequency at which B receives at his horizon crossing time is shifted to
the red by a factor depending exponentially on the advanced time difference of the
crossing points of A and B.

The exponential factor is determined by the so-called surface gravity, a quantity
that can in fact be defined for all so-called Killing horizons. This localised red-shift
effect depends only on the positivity of this quantity. We shall understand this
more general situation in Section 7. Let us for now simply explore how we can
“capture” the red-shift effect in the Schwarzschild geometry.

3.3.2. The vector fields N , Y , and Ŷ . It turns out that a “vector field multi-
plier” version of this localised red-shift effect is captured by the following
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Proposition 3.3.1. There exists a ϕt-invariant smooth future-directed timelike
vector field N on R and a positive constant b > 0 such that

KN (ψ) ≥ bJN
μ (ψ)Nμ

on H+.

(See Appendix D for the JN , KN notation.)

Proof. Note first that since T is tangent to H+, it follows that given any
σ < ∞, there clearly exists a vector field Y on R such that

(1) Y is ϕt invariant and spherically symmetric.
(2) Y is future-directed null on H+ and transverse to H+, say g(T, Y ) = −2.
(3) On H+,

(16) ∇Y Y = −σ (Y + T ).

Since T is tangent to H+, along which Y is null, we have

(17) g(∇TY, Y ) = 0.

From properties 1 and 2, and the form of the Schwarzschild metric, one computes
(Exercise)

(18) g(∇TY, T )
.
= 2κ > 0

on H+. Defining a local frame E1, E2 for the SO(3) orbits, we note

g(∇Ei
Y, Y ) =

1

2
Eig(Y, Y ) = 0,

g(∇E1
Y,E2) = −g(Y,∇E1

E2) = −g(Y,∇E2
E1) = g(∇E2

Y,E1).

Writing thus

(19) ∇TY = −κY + a1 E1 + a2 E2

(20) ∇Y Y = −σ T − σ Y

(21) ∇E1
Y = h1

1 E1 + h2
1 E2 −

1

2
a1 Y

(22) ∇E2
Y = h1

2 E1 + h2
2 E2 −

1

2
a2 Y

with (h2
1 = h1

2), we now compute

KY =
1

2
(T(Y, Y )κ+T(T, Y )σ +T(T, T )σ)

− 1

2
(T(E1, Y )a1 +T(E2, Y )a2)

+T(E1, E1)h
1
1 +T(E2, E2)h

1
2 +T(E1, E2)(h

2
1 + h1

2)

where we denote the energy momentum tensor by T, to prevent confusion with T .
(Note that, in view of the fact that Q imbeds as a totally geodesic submanifold of
M, we have in fact a1 = a2 = 0. This is of no importance in our computations,
however.) It follows immediately in view again of the algebraic properties of T,
that

KY ≥ 1

2
κT(Y, Y ) +

1

4
σT(T, Y + T )

− cT(T, Y + T )− c
√
T(T, Y + T )T(Y, Y )
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where c is independent of the choice of σ. It follows that choosing σ large enough,
we have

KY ≥ b JT+Y
μ (T + Y )μ.

So just set N = T + Y , noting that KN = KT +KY = KY . �
The computation (18) represents a well known property of stationary black

holes holes and the constant κ is the so-called surface gravity. (See [148].) Note
that since Y is ϕt-invariant and T is Killing, we have

g(∇TY, T ) = g(∇Y T, T ) = −g(∇TT, Y )

on H+. On the other hand

g(∇TT,Ei) = −g(∇Ei
T, T ) = 0,

since T is null on H+. Thus, κ is alternatively characterized by

∇TT = κT

on H+. We will elaborate on this in Section 7, where a generalisation of Proposi-
tion 3.3.1 will be presented.

Exercise: Relate the strength of the red-shift with the constant κ, for the case
where observers A and B both cross the horizon, but B at advanced time v later
than A.

If one desires an explicit form of the vector field, then one can argue as follows:
Define first the vector field Ŷ by

(23) Ŷ =
1

1− 2M/r
∂u.

(See Appendix F.) Note that this vector field satisfies g(∇Ŷ Ŷ , T ) = 0. Define

Y = (1 + δ1(r − 2M))Ŷ + δ2(r − 2M)T.

It suffices to choose δ1, δ2 appropriately.
The behaviour of N away from the horizon is of course irrelevant in the above

proposition. It will be useful for us to have the following:

Corollary 3.1. Let Σ be as before. There exists a ϕt-invariant smooth future-
directed timelike vector field N on R, constants b > 0, B > 0, and two values
2M < r0 < r1 < ∞ such that

(1) KN ≥ b JN
μ nμ

Σ for r ≤ r0,
(2) N = T for r ≥ r1,
(3) |KN | ≤ BJT

μ nμ
Σ, and JN

μ nμ
Σ ∼ JTnμ

Σ for r0 ≤ r ≤ r1.

3.3.3. N as a multiplier. Recall the definition of R(0, τ ). Applying the energy
identity with the current JN in this region, we obtain∫

Στ

JN
μ nμ

Σ +

∫
H+(0,τ)

JN
μ nμ

H +

∫
{r≤r0}∩R(0,τ)

KN

=

∫
{r0≤r≤r1}∩R(0,τ)

(−KN ) +

∫
Σ0

JN
μ nμ

Σ.(24)

The reason for writing the above identity in this form will become apparent in what
follows. Note that since N is timelike at H+, we see all the “usual terms” in the
flux integrals, i.e.

JN
μ nμ

H ∼ (∂t∗ψ)
2 + |∇/ψ|2,
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and

JN
μ nμ

Στ
∼ (∂t∗ψ)

2 + (∂rψ)
2 + |∇/ψ|2.

The constants in the ∼ depend as usual on the choice of the original Σ0 and the
precise choice of N .

Now the identity (24) also holds where Σ0 is replaced by Στ ′ , H+(0, τ ) is
replaced by H+(τ ′, τ ), and R(0, τ ) is replaced by R(τ ′, τ ), for an arbitrary 0 ≤
τ ′ ≤ τ .

We may add to both sides of (24) an arbitrary multiple of the spacetime integral∫
{r≥r0}∩R(τ ′,τ) J

T
μ nμ

Σ. In view of the fact that

∫
{r≥r′}∩R(τ ′,τ)

JN
μ nμ

Σ ∼
∫ τ

τ ′

(∫
{r≥r′}∩Στ̄

JN
μ nμ

Σ

)
dτ̄

for any r′ ≥ 2M (where ∼ depends on Σ0, N), from the inequalities shown and
property 3 of Corollary 3.1 we obtain∫

Στ

JN
μ nμ

Σ + b

∫ τ

τ ′

(∫
Στ̄

JN
μ nμ

Σ

)
dτ̄ ≤ B

∫ τ

τ ′

(∫
Στ̄

JT
μ nμ

Σ

)
dτ̄ +

∫
Στ′

JN
μ nμ

Σ.

On the other hand, in view of our previous (8), (9), we have

(25)

∫ τ

τ ′

(∫
Στ̄

JT
μ nμ

Σ

)
dτ̄ ≤ (τ − τ ′)

∫
Σ0

JT
μ nμ

Σ.

Setting

f(τ ) =

∫
Στ

JN
μ nμ

Σ

we have that

(26) f(τ ) + b

∫ τ

τ ′
f(τ̄)dτ̄ ≤ BD(τ − τ ′) + f(τ ′)

for all τ ≥ τ ′ ≥ 0, from which it follows (Exercise) that f ≤ B(D + f(0)). (We
use the inequality with D =

∫
Σ0

JT
μ nμ

Σ0
.) In view of the trivial inequality∫

Σ0

JT
μ nμ

Σ0
≤ B

∫
Σ0

JN
μ nμ

Σ0
,

we obtain

(27)

∫
Στ

JN
μ nμ

Στ
≤ B

∫
Σ0

JN
μ nμ

Σ0
.

We have obtained a “local observer’s” energy estimate. This addresses point 1
of Section 3.2.7.

3.3.4. Ŷ as a commutator. It turns out (Exercise) that from (27), one could
obtain pointwise bounds as before on ψ by commuting with angular momentum
operators Ωi. No construction of ψ̃, ψ̄, etc., would be necessary, and this would
thus address points 3, 5, 6 of Section 3.2.7.

Commuting with Ωi clearly would not address however point 4. Moreover, it
would not address point 2. Exercise: Why not?

It turns out that one can resolve this problem by applying N not only as a
multiplier, but also as a commutator. The calculations are slightly easier if we
more simply commute with Ŷ defined in (23).
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Proposition 3.3.2. Let ψ satisfy �gψ = 0. Then we may write

(28) �g(Ŷ ψ) =

(
2

r
− 2M

r2

)
Ŷ (Ŷ (ψ))− 4

r
(Ŷ (Tψ)) + P1ψ

where P1 is the first order operator P1ψ
.
= 2

r2 (Tψ − Ŷ ψ).

This is proven easily with the help of Appendix E. As we shall see, the sign
of the first term on the right hand side of (28) is important. We will interpret this
computation geometrically in terms of the sign of the surface gravity in Theorem 7.2
of Section 7.

Let us first note that our boundedness result gives us in particular

(29)

∫
{r≤r0}∩R(0,τ)

KN (ψ) ≤ BD τ

where D comes from initial data. (Exercise: Why?) Commute now the wave
equation with T and apply the multiplier N . See Appendix E. One obtains in
particular an estimate for

(30)

∫
{r≤r0}∩R(0,τ)

(Ŷ Tψ)2 ≤ B

∫
{r≤r0}∩R(0,τ)

KN (Tψ) ≤ BD τ,

where again D refers to a quantity coming from initial data. Commuting now the
wave equation with Ŷ and applying the multiplier N , one obtains an energy identity
of the form∫

Στ

JN
μ (Ŷ ψ)nμ

Σ +

∫
H+(0,τ)

JN
μ (Ŷ ψ)nμ

H +

∫
{r≤r0}∩R(0,τ)

KN (Ŷ ψ)

=

∫
{r0≤r≤r1}∩R(0,τ)

(−KN (Ŷ (ψ))

+

∫
{r≤r0}∩R(0,τ)

EN (Ŷ ψ) +

∫
{r≥r0}∩R(0,τ)

EN (Ŷ ψ)

+

∫
Σ0

JN
μ (Ŷ ψ)nμ

Σ,

where JN (Ŷ ψ), KN (Ŷ ψ) are defined by (123), (124), respectively, with Ŷ ψ replac-
ing ψ, and

EN (Ŷ ψ) = −(NŶ ψ)

(
2

r
Ŷ (Ŷ (ψ))− 4

r
(Ŷ (Tψ)) + P1ψ

)

= −2

r
(Ŷ (Ŷ (ψ)))2

− 2

r
((N − Ŷ )Ŷ ψ)(Ŷ Ŷ ψ) +

4

r
(NŶ ψ)(Ŷ (Tψ))

− (NŶ ψ)P1ψ.

The first term on the right hand side has a good sign! Applying Cauchy-Schwarz
and the fact that N − Ŷ = T on H+, it follows that choosing r0 accordingly, one
obtains that the second two terms can be bounded in r ≤ r0 by

εKN (Ŷ ψ) + ε−1(Ŷ Tψ)2

whereas the last term can be bounded by

εKN (Ŷ ψ) + ε−1KN (ψ).
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In view of (29) and (30), one obtains∫
{r≤r0}∩R(0,τ)

EN (Ŷ ψ) ≤ ε

∫
{r≤r0}∩R(0,τ)

KN (Ŷ ψ) +Bε−1Dτ.

Exercise: Show how from this one can arrive again at an inequality (26).

Commuting repeatedly with T , Ŷ , the above scheme plus elliptic estimates
yield natural Hm estimates for all m. Pointwise estimates for all derivatives then
follow by a standard Sobolev estimate.

3.3.5. The statement of the boundedness theorem. We obtain finally

Theorem 3.2. Let Σ be a Cauchy hypersurface for Schwarzschild such that
Σ ∩ H− = ∅, let Σ0 = D ∩ Σ, let Στ denote the translation of Σ0, let nΣτ

denote
the future normal of Στ , and let R = ∪τ≥0Στ . Assume −g(nΣ0

, T ) is uniformly
bounded. Then there exists a constant C depending only on Σ0 such that the follow-
ing holds. Let ψ, ψ, ψ′ be as in Proposition 3.1.1, with ψ ∈ Hk+1

loc (Σ), ψ′ ∈ Hk
loc(Σ),

and ∫
Σ0

JT
μ (Tmψ)nμ

Σ0
< ∞

for 0 ≤ m ≤ k. Then

|∇Στψ|Hk(Στ ) + |nψ|Hk(Στ ) ≤ C
(
|∇Σ0ψ|Hk(Σ0) + |ψ′|Hk(Σ0)

)
.

If k ≥ 1, then we have∑
0≤m≤k−1

∑
m1+m2=m,mi≥0

|(∇Σ)m1nm2ψ| ≤ C

(
lim
x→i0

|ψ|+ |∇Σ(0)ψ|Hk(Σ0) + |ψ′|Hk(Σ0)

)

in R.

Note that (∇Σ)m1nm2ψ denotes an m1-tensor on the Riemannian manifold Στ ,
and | · | on the left hand side of the last inequality above just denotes the induced
norm on such tensors.

3.4. Comments and further reading. The first discussion of the wave
equation on Schwarzschild is perhaps the work of Regge and Wheeler [131], but
the true mathematical study of this problem was initiated by Wald [151], who
proved Theorem 3.1 under the assumption that ψ vanished in a neighbourhood of
H+∩H−. The full statement of Theorem 3.1 and the proof presented in Section 3.2
is due to Kay and Wald [98]. The present notes owe a lot to the geometric view
point emphasised in the works [151, 98].

Use of the vector field Y as a multiplier was first introduced in our [65], and its
use is central in [66] and [67]. In particular, the property formalised by Proposi-
tion 3.3.1 was discovered there. It appears that this may be key to a stable under-
standing of black hole event horizons. See Section 3.5 below, as well as Section 7,
for a generalisation of Proposition 3.3.1.

It is interesting to note that in [66, 67], Y had always been used in conjunction
with vector fields X of the type to be discussed in the next section (which require
a more delicate global construction) as well as T . This meant that one always
had to obtain more than boundedness (i.e. decay!) in order to obtain the proper
boundedness result at the horizon. Consequently, one had to use many aspects of
the structure of Schwarzschild, particularly, the trapping to be discussed in later
lectures. The argument given above, where boundedness is obtained using only
N and T as multipliers is presented for the first time in a self-contained fashion
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in these lectures. The argument can be read off, however, from the more general
argument of [68] concerning perturbations of Schwarzschild including Kerr. The

use of Ŷ as a commutator to estimate higher order quantities also originates in [68].
The geometry behind this computation is further discussed in Section 7.

Note that the use of Y together with T is of course equivalent to the use of N
and T . We have chosen to give a name to the vector field N = T + Y merely for
convenience. Timelike vector fields are more convenient when perturbing. . .

Another remark on the use of Ŷ as a commutator: Enlarging the choice of
commutators has proven very important in previous work on the global analysis of
the wave equation. In a seminal paper, Klainerman [100] showed improved decay
for the wave equation on Minkowski space in the interior region by commutation
with scaling and Lorentz boosts. This was a key step for further developments for
long time existence for quasilinear wave equations [101].

The distinct role of multipliers and commutators and the geometric consid-
erations which enter into their construction is beautifully elaborated by Christo-
doulou [52].

3.5. Perturbing? Can the proof of Theorem 3.2 be adapted to hold for space-
times “near” Schwarzschild? To answer this, one must first decide what one means
by the notion of “near”. Perhaps the simplest class of perturbed metrics would
be those that retain the same differentiable structure of R, retain H+ as a null
hypersurface, and retain the Killing field T . One infers (without computation!)
that the statement of Proposition 3.3.1 and thus Corollary 3.1 is stable to such
perturbations of the metric. Therein lies the power of that Proposition and of the
multiplier N . (In fact, see Section 7.) Unfortunately, one easily sees that our ar-
gument proving Theorem 3.2 is still unstable, even in the class of perturbations
just described. The reason is the following: Our argument relies essentially on an a
priori estimate for

∫
Στ

JT
μ nμ (see (25)), which requires T to be non-spacelike in R.

When one perturbs, T will in general become spacelike in a region of R. (As we
shall see in Section 5.1, this happens in particular in the case of Kerr. The region
where T is spacelike is known as the ergoregion.)

There is a sense in which the above is the only obstruction to perturbing the
above argument, i.e. one can solve the following

Exercise: Fix the differentiable structure of R and the vector field T . Let g
be a metric sufficiently close to Schwarzschild such that H+ is null, and suppose T
is Killing and non-spacelike in R, and T is null on H+. Then Theorem 3.2 applies.
(In fact, one need not assume that T is non-spacelike in R, only that T is null on
the horizon.) See also Section 7.

Exercise: Now do the above where T is not assumed to be Killing, but Tπμν

is assumed to decay suitably. What precise assumptions must one impose?
This discussion may suggest that there is in fact no stable boundedness argu-

ment, that is to say, a “stable argument” would of necessity need to prove more
than boundedness, i.e. decay. We shall see later that there is a sense in which this
is true and a sense in which it is not! But before exploring this, let us understand
how one can go beyond boundedness and prove quantitative decay for waves on
Schwarzschild itself. It is quantitative decay after all that we must understand if
we are to understand nonlinear problems.
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4. The wave equation on Schwarzschild II: quantitative decay rates

Quantitative decay rates are central for our understanding of non-linear prob-
lems. To discuss energy decay for solutions ψ of �gψ = 0 on Schwarzschild, one

must consider a different foliation. Let Σ̃0 be a spacelike hypersurface terminating
on null infinity and define Σ̃τ (for τ ≥ 0) by future translation.

H
+ (0

, τ
) I +

I−

t = 0

Σ̃0

D

Σ̃τ

The main result of this section is the following

Theorem 4.1. There exists a constant C depending only on Σ̃0 such that the
following holds. Let ψ ∈ H4

loc, ψ
′ ∈ H3

loc, and suppose limx→i0 ψ = 0 and

E1 =
∑

|(α)|≤3

∑
Γ={Ωi}

∫
t=0

r2Jn0
μ (Γ(α)ψ)nμ

0 < ∞

where n0 denotes the unit normal of the hypersurface {t = 0}. Then

(31)

∫
Σ̃τ

JN
μ (ψ)nμ

Σ̃τ
≤ CE1τ

−2,

where N is the vector field of Section 3.3.2. Now let ψ ∈ H7
loc, ψ′ ∈ H6

loc,
limx→i0 ψ = 0, and suppose

E2 =
∑

|(α)|≤6

∑
Γ={Ωi}

∫
t=0

r2Jn0
μ (Γ(α)ψ)nμ

0 < ∞.

Then

(32) sup
Σ̃τ

√
r|ψ| ≤ C

√
E2τ

−1, sup
Σ̃τ

r|ψ| ≤ C
√
E2τ

−1/2.

The fact that (31) “loses derivatives” is a fundamental aspect of this problem
related to the trapping phenomenon, to be discussed in what follows, although
the precise number of derivatives lost above is wasteful. Indeed, there are several
aspects in which the above results can be improved. See Proposition 4.2.1 and the
exercise of Section 4.3.

We can also express the pointwise decay in terms of advanced and retarded
null coordinates u and v. Defining39 v = 2(t + r∗) = 2(t + r + 2M log(r − 2M)),
u = 2(t− r∗) = 2(t− r − 2M log(r − 2M)), it follows in particular from (32) that

(33) |ψ| ≤ CE2(|v|+ 1)−1, |rψ| ≤ C(r0)E2(max{u, 1})− 1
2 ,

where the first inequality applies in D ∩ clos({t ≥ 0}), whereas the second applies
only in D∩{t ≥ 0}∩{r ≥ r0}, with C(r0) → ∞ as r0 → 2M . See also Appendix F.

39The strange convention on the factor of 2 is chosen simply to agree with [65].
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Note that, as in Minkowski space, the first inequality of (33) is sharp as a uniform
decay rate in v.

4.1. A spacetime integral estimate. The zero’th step in the proof of The-
orem 4.1 is an estimate for a spacetime integral whose integrand should control the
quantity

(34) χJN
μ (ψ)nμ

Σ̃τ

where χ is a ϕt-invariant weight function such that χ degenerates only at infinity.
Estimates of the spacetime integral (34) have their origin in the classical virial
theorem, which in Minkowski space essentially arises from applying the energy
identity to the current JV with V = ∂

∂r .
Naively, one might expect to be able to obtain an estimate of the form say

(35)

∫
R̃(0,τ)

χJN
μ (ψ)nμ

Σ̃τ
≤ B

∫
Σ̃0

JN
μ nμ

Σ̃0
,

for such a χ. It turns out that there is a well known high-frequency obstruc-
tion for the existence of an estimate of the form (35) arising from trapped null
geodesics. This problem has been long studied in the context of the wave equa-
tion in Minkowski space outside of an obstacle, where the analogue of trapped null
geodesics are straight lines which reflect off the obstacle’s boundary in such a way
so as to remain in a compact subset of space. In Schwarzschild, one can easily infer
from a continuity argument the existence of a family of null geodesics with i+ as
a limit point.40 But in view of the integrability of geodesic flow, one can in fact
understand all such geodesics explicitly.

Exercise: Show that the hypersurface r = 3M is spanned by null geodesics.
Show that from every point in R, there is a codimension-one subset of future
directed null directions whose corresponding geodesics approach r = 3M , and all
other null geodesics either cross H+ or meet I+.

The timelike hypersurface r = 3M is traditionally called the photon sphere.
Let us first see how one can capture this high frequency obstruction.

4.1.1. A multiplier X for high angular frequencies. We look for a multiplier
with the property that the spacetime integral it generates is positive definite. Since
in Minkowski space, this is provided by the vector field ∂r, we will look for simple
generalisations. Calculations are slightly easier when one considers ∂r∗ associated
to Regge-Wheeler coordinates (r∗, t). See Appendix F.2 for the definition of this
coordinate system.41 For X = f(r∗)∂r∗ , where f is a general function, we obtain
the formula

KX =
f ′

1− 2M/r
(∂r∗ψ)

2 +
f

r

(
1− 3M

r

)
|∇/ ψ|2 − 1

4

(
2f ′ + 4

r − 2M

r2
f

)
∇αψ∇αψ.

Here f ′ denotes df
dr∗ . We can now define a “modified” current

JX,w
μ = JX

μ (ψ) +
1

8
w∂μ(ψ

2)− 1

8
(∂μw)ψ

2

40This can be thought of as a very weak notion of what it would mean for a null geodesic to
be trapped from the point of view of decay results with respect to the foliation Σ̃τ .

41Remember, when considering coordinate vector fields, one has to specify the entire coor-
dinate system. When considering ∂r , it is here to be understood that we are using Schwarzschild
coordinates, and when considering ∂r∗ , it is to be understood that we are using Regge-Wheeler
coordinates. The precise choice of the angular coordinates is of course irrelevant.
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associated to the vector field X and the function w. Let

KX,w = ∇μJX,w
μ .

Choosing

w = f ′ + 2
r − 2M

r2
f +

δ(r − 2M)

r5

(
1− 3M

r

)
f,

we have

KX,w =

(
f ′

1− 2M/r
− δf

2r4

(
1− 3M

r

))
(∂r∗ψ)

2

+
f

r

(
1− 3M

r

)((
1− δ(r − 2M)

2r4

)
|∇/ψ|2 + δ

2r3
(∂tψ)

2

)

−
(
1

8
�g

(
2f ′ + 4

r − 2M

r2
f + 2

δ(r − 2M)

r5

(
1− 3M

r

)
f

))
ψ2.

Recall that in view of the spherical symmetry of M, we may decompose

ψ =
∑

�≥0,|m|≤�

ψ�,m(r, t)Ym,�(θ, φ)

where Ym,� are the so-called spherical harmonics, each summand satisfies again the
wave equation, and the convergence is in L2 of the SO(3) orbits.

Let us assume that ψ�,m = 0 for spherical harmonic number � ≤ L for some L to
be determined. We look for KX,w such that

∫
S2
KX,w ≥ 0, but also

∫
S2
|JX,w

μ nμ| ≤
B
∫
S2
JN
μ nμ. Here

∫
S2

denotes integration over group orbits of the SO(3) action.
For such ψ, in view of the resulting inequality

L(L+ 1)

r2

∫
S2

ψ2 ≤
∫
S2

|∇/ψ|2,

it follows that taking L sufficiently large and 0 < δ < 1 sufficiently small so that

1− δ(1−2M/r)
2r3 ≥ 1

2 , it clearly suffices to construct an f with the following properties:

(1) |f | ≤ B,
(2) f ′ ≥ B(1− 2M/r)r−4,
(3) f(r = 3M) = 0,

(4) − 1
8�g

(
2f ′ + 4 r−2M

r2 f + 2 δ(r−2M)
r5

(
1− 3M

r

)
f
)
(r = 3M) > 0,

(5) 1
8�g

(
2f ′ + 4 r−2M

r2 f + 2 δ(r−2M)
r5

(
1− 3M

r

)
f
)
≤ B̃r−3

for some constants B, B̃. Exercise. Show that one can construct such a function.
Note the significance of the photon sphere!
4.1.2. A multiplier X for all frequencies. Constructing a multiplier for all spher-

ical harmonics, so as to capture in addition “low frequency” effects, is more tricky.
It turns out, however, that one can actually define a current which does not require
spherical harmonic decomposition at all. The current is of the form:

JX
μ (ψ) = eJN

μ (ψ) + JXa

μ (ψ) +
∑
i

JXb,wb

μ (Ωiψ)

− 1

2

r(f b)′

f b(r − 2M)

(
r − 2M

r2
− (r∗ − α− α1/2)

α2 + (r∗ − α− α1/2)2

)
Xb

μψ
2.
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Here, N is as in Section 3.3.2, Xa = fa∂r∗ , X
b = f b∂r∗ , the warped current JX,w

is defined as in Section 4.1.1,

fa = − Ca

αr2
+

ca
r3

,

f b =
1

α

(
tan−1 r∗ − α− α1/2

α
− tan−1(−1− α−1/2)

)
,

wb =
1

8

(
(f b)′ + 2

r − 2M

r2
f b

)
,

and e, Ca, ca, α are positive parameters which must be chosen accordingly. With
these choices, one can show (after some computation) that the divergence KX =
∇μJX

μ controls in particular

(36)

∫
S2

KX(ψ) ≥ bχ

∫
S2

JN
μ (ψ)nμ,

where χ is non-vanishing but decays (polynomially) as r → ∞. Note that in view
of the normalisation (125) of the r∗ coordinate, Xb = 0 precisely at r = 3M . The
left hand side of the inequality (36) controls also second order derivatives which
degenerate however at r = 3M . We have dropped these terms. It is actually useful
for applications that the JXa

(ψ) part of the current is not “modified” by a function
wa, and thus ψ itself does not occur in the boundary terms. That is to say

(37) |JX
μ (ψ)nμ| ≤ B

(
JN
μ (ψ)nμ +

3∑
i=1

JN
μ (Ωiψ)n

μ

)
.

On the event horizon H+, we have a better one-sided bound

(38) −JX
μ (ψ)nμ

H+ ≤ B

(
JT
μ (ψ)nμ

H+ +

3∑
i=1

JT
μ (Ωiψ)n

μ
H+

)
.

For details of the construction, see [67].
In view of (36), (37) and (38), together with the previous boundedness result

Theorem 3.2, one obtains in particular the estimate

(39)

∫
R̃(τ ′,τ)

χJN
ν (ψ)nν

Σ̃
≤ B

∫
Σ̃(τ ′)

(
JN
μ (ψ) +

3∑
i=1

JN
μ (Ωiψ)

)
nμ

Σ̃τ
,

for some nonvanishing ϕt-invariant function χ which decays polynomially as r → ∞.
On the other hand, considering the current JX

μ (P≤Lψ) + JX,w
μ ((I − P≤L)ψ),

where JX,w
μ is the current of Section 4.1.1 and P≤Lψ denotes the projection to the

space spanned by spherical harmonics with � ≤ L, we obtain the estimate

(40)

∫
R̃(τ ′,τ)

χhJN
ν (ψ)nν

Σ̃
≤ B

∫
Σ̃(τ ′)

JN
μ (ψ)nμ

Σ̃τ
,

where h is any smooth nonnegative function 0 ≤ h ≤ 1 vanishing at r = 3M , and
B depends also on the choice of function h.
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4.2. The Morawetz conformal Z multiplier and energy decay. How
does the estimate (39) assist us to prove decay?

Recall that energy decay can be proven in Minkowski space with the help of
the so-called Morawetz current. Let

(41) Z = u2∂u + v2∂v

and define

JZ,w
μ (ψ) = JZ

μ (ψ) +
tr∗(1− 2M/r)

2r
ψ∂μψ − r∗(1− 2M/r)

4r
ψ2∂μt.

(Here (u, v), (r∗, t) are the coordinate systems of Appendix F.) Setting M = 0, this
corresponds precisely to the current introduced by Morawetz [119] on Minkowski
space.

It is a good exercise to show that (for M > 0!) the coefficients of this current
are C0 but not C1 across H+ ∪H−.

To understand how one hopes to use this current, let us recall the situation
in Minkowski space. There, the significance of (41) arises since it is a conformal
Killing field. Setting M = 0, r∗ = r in the above one obtains42

(42)

∫
t=τ

JZ,w
μ nμ ≥ 0,

(43) KZ,w = 0.

The inequality (42) remains true in the Schwarzschild case and one can obtain
exactly as before

(44)

∫
t=τ

JZ,w
μ nμ ≥ b

∫
t=τ

u2(∂uψ)
2 + v2(∂vψ)

2 +

(
1− 2M

r

)
(u2 + v2)|∇/ψ|2.

(In fact, we have dropped positive 0’th order terms from the right hand side of
(44), which will be useful for us later on in Section 4.3.) Note that away from the
horizon, we have that

(45)

∫
t=τ

JZ,w
μ nμ ≥ b(r0, R)τ2

∫
{t=τ}∩{r0≤r≤R}

JN
μ nμ.

Thus, if the left hand side of (45) could be shown to be bounded, this would

prove the first statement of Theorem 4.1 where Σ̃τ is replaced however with {t =
τ} ∩ {r0 ≤ r ≤ R}.

In the case of Minkowski space, the boundedness of the left hand side of (44)
follows immediately by (43) and the energy identity

(46)

∫
t=τ

JZ,w
μ +

∫
0≤t≤τ

KZ,w =

∫
t=0

JZ,w
μ

as long as the data are suitably regular and decay so as for the right hand side to
be bounded. For Schwarzschild, one cannot expect (43) to hold, and this is why we
have introduced the X-related currents.

First the good news: There exist constants r0 < R such that

KZ,w ≥ 0

42The reason for introducing the 0’th order terms is because the wave equation is not con-
formally invariant. It is remarkable that one can nonetheless obtain positive definite boundary
terms, although a slightly unsettling feature is that this positivity property (42) requires looking
specifically at constant t = τ surfaces and integrating.
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for r ≤ r0, and in fact

(47) KZ,w ≥ b
t

r3
ψ2

for r ≥ R and some constant b. These terms have the “right sign” in the energy
identity (46). In {r0 ≤ r ≤ R}, however, the best we can do is

−KZ,w ≤ B t (|∇/ψ|2 + |ψ|2).

This is the bad news, although, in view of the presence of trapping, it is to be
expected. Using also (47), we may estimate∫

0≤t≤τ

−KZ,w ≤ B

∫
{0≤t≤τ}∩{r0≤r≤R}

t JN
μ nμ

≤ B τ

∫
{0≤t≤τ}∩{r0≤r≤R}

JN
μ nμ.(48)

In view of the fact that the first integral on the right hand side of (48) is bounded
by (39), and the weight τ2 in (45), applying the energy identity of the current JZ,w

in the region 0 ≤ t ≤ τ , we obtain immediately a preliminary version of the first
statement of the Theorem 4.1, but with τ2 replaced by τ , and the hypersurfaces
Σ̃τ replaced by {t = τ} ∩ {r′ ≤ r ≤ R′} for some constants r′, R′, but where B
depends on these constants. (Note the geometry of this region. All {t = constant}
hypersurfaces have common boundary H+∩H−. Exercise: Justify the integration
by parts (46), in view of the fact that Z and w are only C0 at H+ ∪H−.)

Using the current JT and an easy geometric argument, it is not difficult to
replace the hypersurfaces {t = τ} ∩ {r′ ≤ r ≤ R′} above with Σ̃τ ∩ {r ≥ r′},43
obtaining
(49)∫
Σ̃τ∩{r≥r′}

JN
μ (ψ)nμ ≤ B τ−1

(∫
t=0

JZ,w
μ (ψ)nμ +

∫
Σ̃0

JN
μ (ψ)nμ +

3∑
i=1

JN
μ (Ωiψ)n

μ

)
.

To obtain decay for the nondegenerate energy near the horizon, note that by
the pigeonhole principle in view of the boundedness of the left hand side of (39)

and what has just been proven, there exists (exercise) a dyadic sequence Σ̃τi for
which the first statement of Theorem 4.1 holds, with τ−2 replaced by τ−1

i . Finally,
by Theorem 3.2, we immediately (exercise: why?) remove the restriction to the
dyadic sequence.

We have thus obtained
(50)∫

Σ̃τ

JN
μ (ψ)nμ ≤ B τ−1

(∫
t=0

JZ,w
μ (ψ)nμ +

∫
Σ̃0

JN
μ (ψ)nμ +

3∑
i=1

JN
μ (Ωiψ)n

μ

)
.

The statement (50) loses one power of τ in comparison with the first statement
of Theorem 3.2. How do we obtain the full result? First of all, note that, commuting
once again with Ωj , it follows that (50) holds for ψ replaced with Ωjψ. Now we may

partition R̃(0, τ ) dyadically into subregions R̃(τi, τi+1) and revisit the X-estimate

43Hint: Use (44) to estimate the energy on {t = t0} ∩ J+(Σ̃τ ) with weights in τ . Send

t0 → ∞ and estimate backwards to Σ̃τ using conservation of the JT flux.
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(39) on each such region. In view of (50) applied to both ψ and Ωjψ, the estimate
(39) gives

(51)

∫
R̃(τi,τi+1)

χJN
ν (ψ)nν

Σ̃
≤ BDτ−1

i ,

where D is a quantity coming from data. Summing over i, this gives us that∫
R(0,τ)

t χJN
ν (ψ)nν

Σ̃
≤ BD(1 + log |τ + 1|).

This estimates in particular the first term on the right hand side of the first in-
equality of (48). Applying this inequality, we obtain as before (49), but with
τ−2(1+log |τ+1|) replacing τ . Using (51) and a pigeonhole principle, one improves
this to (50), with τ−2(1+log |τ+1|) now replacing τ . Iterating this argument again
one removes the log (exercise).

Note that this loss of derivatives in (31) simply arises from the loss in (39). If Ωi

could be replaced by Ωε
i in (39), then the loss would be 3ε. The latter refinement can

in fact be deduced from the original (31) using in addition work of Blue-Soffer [21].
Running the argument of this section with the ε-loss version of (31), we obtain now

Proposition 4.2.1. For any ε > 0, statement (31) holds with 3 replaced by ε
in the definition of E1 and C replaced by Cε.

4.3. Pointwise decay. To derive pointwise decay for ψ itself, we should re-
member that we have in fact dropped a good 0’th order term from the estimate
(44). In particular, we have also∫

t=τ

JZ,w
μ (ψ)nμ ≥ b

∫
{t=τ}∩{r≥r0}

(τ2r−2 + 1)ψ2.

From this and the previously derived bounds, pointwise decay can be shown easily
by applying Ωi as commutators and Sobolev estimates. See [65] for details.

Exercise: Derive pointwise decay for all derivatives of ψ, including transverse
derivatives to the horizon of any order, by commuting in addition with Ŷ as in the
proof of Theorem 3.2.

4.4. Comments and further reading.
4.4.1. The X-estimate. The origin of the use of vector field multipliers of the

type X (as in Section 4.1) for proving decay for solutions of the wave equation goes
back to Morawetz. (These identities are generalisations of the classical virial iden-
tity, which has itself a long and complicated history.) In the context of Schwarzs-
child black holes, the first results in the direction of such estimates were in Laba
and Soffer [110] for a certain “Schrödinger” equation (related to the Schwarzschild
t-function), and, for the wave equation, in Blue and Soffer [19]. These results were
incomplete (see [20]), however, and the first estimate of this type was actually
obtained in our [65], motivated by the original calculations of [19, 110]. This
estimate required decomposition of ψ into individual spherical harmonics ψ�, and
choosing the current JX,w separately for each ψ�. A slightly different approach
to this estimate is provided by [20]. A somewhat simpler choice of current JX,w

which provides an estimate for all sufficiently high spherical harmonics was first
presented by Alinhac [1]. Our Section 4.1.1 is similar in spirit. The first estimate
not requiring a spherical harmonic decomposition was obtained in [67]. This is the
current of Section 4.1.2. The problem of reducing the loss of derivatives in (39) has
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been addressed in Blue-Soffer [21].44 The results of [21] in fact also apply to the
Reissner-Nordström metric.

A slightly different construction of a current as in Section 4.1.2 has been given
by Marzuola and collaborators [116]. This current does not require commuting
with Ωi. In their subsequent [115], the considerations of [116] are combined with
ideas from [65, 67] to obtain an estimate which does not degenerate on the horizon:
One includes a piece of the current JN of Section 3.3.2 and exploits Proposition 3.1.

4.4.2. The Z-estimate. The use of vector-field multipliers of the type Z also
goes back to celebrated work of Morawetz, in the context of the wave equation
outside convex obstacles [119]. The geometric interpretation of this estimate arose
later, and the use of Z adapted to the causal geometry of a non-trivial metric first
appears perhaps in the proof of stability of Minkowski space [51]. The decay result
Theorem 4.1 was obtained in our [65]. A result yielding similar decay away from the
horizon (but weaker decay along the horizon) was proven independently in a nice
paper of Blue and Sterbenz [22]. Both [22] and [65] make use of a current based
on the vector field Z. In [22], the error term analogous to KZ,w of Section 4.2
was controlled with the help of an auxiliary collection of multipliers with linear
weights in t, chosen at the level of each spherical harmonic, whereas in [65], these
error terms are controlled directly from (39) by a dyadic iteration scheme similar
to the one we have given here in Section 4.2. The paper [22] does not obtain
estimates for the non-degenerate energy flux (31); moreover, a slower pointwise
decay rate near the horizon is achieved in comparison to Theorem 4.1. Motivated
by [65], the authors of [22] have since given a different argument [23] to obtain
just the pointwise estimate (32) on the horizon, exploiting the “good” term in KZ,w

near the horizon. The proof of Theorem 4.1 presented in Section 4.2 is a slightly
modified version of the scheme in [65], avoiding spherical harmonic decompositions
(for obtaining (39)) by using in particular the result of [67].

4.4.3. Other results. Statement (32) of Theorem 4.1 has been generalised to
the Maxwell case by Blue [18]. In fact, the Maxwell case is much “cleaner”, as
the current JZ need not be modified by a function w, and its flux is pointwise
positive through any spacelike hypersurface. The considerations near the horizon
follow [23] and thus the analogue of (31) is not in fact obtained, only decay for the
degenerate flux of JT . Nevertheless, the non-degenerate (31) for Maxwell can be
proven following the methods of this section, using in particular currents associated
to the vector field Y (Exercise).

To our knowledge, the above discussion exhausts the quantitative pointwise
and energy decay-type statements which are known for general solutions of the
wave equation on Schwarzschild.45 The best previously known results on general
solutions of the wave equation were non-quantitative decay type statements which
we briefly mention. A pointwise decay without a rate was first proven in the
thesis of Twainy [149]. Scattering and asymptotic completeness statements for
the wave, Klein-Gordon, Maxwell and Dirac equations have been obtained by [72,
73, 5, 4, 122]. These type of statements are typically insensitive to the amount
of trapping. See the related discussion of Section 4.6, where the statement of

44A related refinement, where h of (40) is replaced by a function vanishing logarithmically
at 3M , follows from [115] referred to below.

45For fixed spherical harmonic � = 0, there is also the quantitative result of [63], to be
mentioned in Section 4.6.
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Theorem 4.1 is compared to non-quantitative statements heuristically derived in
the physics literature.

4.5. Perturbing? Use of the JN current “stabilises” the proof of Theorem 4.1
with respect to considerations near the horizon. There is, however, a sense in which
the above argument is still fundamentally attached to Schwarzschild. The approach
taken to derive the multiplier estimate (36) depends on the structure of the trapping
set, in particular, the fact that trapped null geodesics approach a codimension-1
subset of spacetime, the photon sphere. Overcoming the restrictiveness of this
approach is the fundamental remaining difficulty in extending these techniques to
Kerr, as will be accomplished in Section 5.3. Precise implications of this fact for
multiplier estimates are discussed further in [1].

4.6. Aside: Quantitative vs. non-quantitative results and the heuris-
tic tradition. The study of wave equations on Schwarzschild has a long history
in the physics literature, beginning with the pioneering Regge and Wheeler [131].
These studies have all been associated with showing “stability”.

A seminal paper is that of Price [130]. There, insightful heuristic arguments
were put forth deriving the asymptotic tail of each spherical harmonic ψ� evolving
from compactly supported initial data, suggesting that for r > 2M ,

(52) ψ�(r, t) ∼ C�t
−(3+2�).

These arguments were later extended by Gundlach et al [88] to suggest

(53) ψ�|H+ ∼ C�v
−(3+2�), rψ�|I+ ∼ C̄�u

−(2+�).

Another approach to these heuristics via the analytic continuation of the Green’s
function was followed by [31]. The latter approach in principle could perhaps be
turned into a rigorous proof, at least for solutions not supported on H+ ∩ H−.
See [114, 106] for just (52) for the � = 0 case.

Statements of the form (52) are interesting because, if proven, they would give
the fine structure of the tail of the solution. However, it is important to realise
that statements like (52) in of themselves would not give quantitative bounds for
the size of the solution at all later times in terms of initial data. In fact, the above
heuristics do not even suggest what the best such quantitative result would be, they
only give a heuristic lower bound on the best possible quantitative decay rate in a
theorem like Theorem 4.1.

Let us elaborate on this further. For fixed spherical harmonic, by compactness
a statement of the form (52) would immediately yield some bound

(54) |ψ�|(r, t) ≤ D(r, ψ�)t
−3,

for some constant D depending on r and on the solution itself. It is not clear,
however, what the sharp such quantitative inequality of the form (54) is supposed
to be when the constant is to depend on a natural quantity associated to data. It
is the latter, however, which is important for the nonlinear stability problem.

There is a setting in which a quantitative version of (54) has indeed been
obtained: The results of [63] (which apply to the nonlinear problem where the
scalar field is coupled to the Einstein equation, but which can be specialised to the
decoupled case of the � = 0 harmonic on Schwarzschild) prove in particular that

(55) |nΣτ
ψ0|+ |ψ0| ≤ CεD(ψ,ψ′)τ−3+ε, |rψ0| ≤ CD(ψ,ψ′)τ−2
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where Cε depends only on ε, andD(ψ,ψ′) is a quantity depending only on the initial
JT energy and a pointwise weighted C1 norm. In view of the relation between τ , u,
and v, (55) includes also decay on the horizon and null infinity as in the heuristically
derived (53). The fact that the power 3 indeed appears in both in the quantitative
(55) and in (54) may be in part accidental. See also [15].

For general solutions, i.e. for the sum over spherical harmonics, the situation
is even worse. In fact, a statement like (52) a priori gives no information whatso-
ever of any sort, even of the non-quantitative kind. It is in principle compatible
with lim supt→∞ ψ(r, t) = ∞.46 It is well known, moreover, that to understand
quantitative decay rates for general solutions, one must quantify trapping. This
is not, however, captured by the heuristics leading to (52), essentially because for
fixed �, the effects of trapping concern an intermediate time interval not reflected
in the tail. It should thus not be surprising that these heuristics do not address the
fundamental problem at hand.

Another direction for heuristic work has been the study of so-called quasi-
normal modes. These are solutions with time dependence e−iωt for ω with negative
imaginary part, and appropriate boundary conditions. These occur as poles of the
analytic continuation of the resolvent of an associated elliptic problem, and in the
scattering theory literature are typically known as resonances. Quasinormal modes
are discussed in the nice survey article of Kokkotas and Schmidt [104]. Rigorous
results on the distribution of resonances have been achieved in Bachelot–Motet-
Bachelot [7] and Sá Barreto-Zworski [135]. The asymptotic distribution of the
quasi-normal modes as � → ∞ can be thought to reflect trapping. On the other
hand, these modes do not reflect the “low-frequency” effects giving rise to tails.
Thus, they too tell only part of the story. See, however, the case of Schwarzschild-
de Sitter in Section 6.

Finally, we should mention Stewart [144]. This is to our knowledge the first
clear discussion in the physics literature of the relevance of trapping on the Schwarzs-
child metric in this context and the difference between quantitative and non-
quantitative decay rates. It is interesting to compare Section 3 of [144] with what
has now been proven: Although the predictions of [144] do not quite match the
situation in Schwarzschild (it is in particular incompatible with (52)), they apply
well to the Schwarzschild-de Sitter case developed in Section 6.

The upshot of the present discussion is the following: Statements of the form (52),
while interesting, may have little to do with the problem of non-linear stability of
black holes, and are perhaps more interesting for the lower bounds that they sug-
gest.47 In fact, in view of their non-quantitative nature, these results are less
relevant for the stability problem than the quantitative boundedness theorem of
Kay and Wald. Even the statement of Section 3.2.3 cannot be derived as a corol-
lary of the statement (52), nor would knowing (52) simplify in any way the proof
of Section 3.2.3.

5. Perturbing Schwarzschild: Kerr and beyond

We now turn to the problem of perturbing the Schwarzschild metric and proving
boundedness and decay for the wave equation on the backgrounds of such perturbed

46Of course, given the quantitative result of Theorem 3.2 and the statement (52), one could
then infer that for each r > 2M , then limt→∞ φ(r, t) = 0, without however a rate (exercise).

47See for instance the relevance of this in [59].
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metrics. Let us recall our dilemma: The boundedness argument of Section 3 re-
quired that T remains causal everywhere in the exterior. In view of the comments
of Section 3.5, this is clearly unstable. On the other hand, the decay argument
of Section 4 requires understanding the trapped set and in particular, uses the
fact that in Schwarzschild, a certain codimension-1 subset of spacetime–the photon
sphere–plays a special role. Again, as discussed in Section 4.5, this special structure
is unstable.

It turns out that nonetheless, these issues can be addressed and both bound-
edness (see Theorem 5.1) and decay (see Theorem 5.2) can be proven for the wave
equation on suitable perturbations of Schwarzschild. As we shall see, the bound-
edness proof (See Section 5.2) turns out to be more robust and can be applied to
a larger class of metrics–but it too requires some insight from the Schwarzschild
decay argument! The decay proof (See Section 5.3) will require us to restrict to
exactly Kerr spacetimes.

Without further delay, perhaps it is time to introduce the Kerr family. . .

5.1. The Kerr metric. The Kerr metric is a 2-parameter family of metrics
first discovered [99] in 1963. The parameters are calledmass M and specific angular
momentum a, i.e. angular momentum per unit mass. In so-called Boyer-Lindquist
local coordinates, the metric element takes the form:

−
(
1− 2M

r
(
1 + a2 cos2 θ

r2

)
)

dt2 +
1 + a2 cos2 θ

r2

1− 2M
r + a2

r2

dr2 + r2
(
1 +

a2 cos2 θ

r2

)
dθ2

+r2

(
1 +

a2

r2
+

(
2M

r

)
a2 sin2 θ

r2
(
1 + a2 cos2 θ

r2

)
)
sin2 θ dφ2

−4M
a sin2 θ

r
(
1 + a2 cos2 θ

r2

) dt dφ.
The vector fields ∂t and ∂φ are Killing. We say that the Kerr family is stationary
and axisymmetric.48 Traditionally, one denotes

Δ = r2 − 2Mr + a2.

If a = 0, the Kerr metric clearly reduces to Schwarzschild (5).
Maximal extensions of the Kerr metric were first constructed by Carter [29].

For parameter range 0 ≤ |a| < M , these maximal extensions have black hole regions
and white hole regions bounded by future and past event horizons H± meeting at
a bifurcate sphere. The above coordinate system is defined in a domain of outer
communications, and the horizon will correspond to the limit r → r+, where r+ is
the larger positive root of Δ = 0, i.e.

r+ = M +
√
M2 − a2.

Since the motivation of our study is the Cauchy problem for the Einstein equa-
tions, it is more natural to consider not maximal extensions, but maximal devel-
opments of complete initial data. (See Appendix B.) In the Schwarzschild case,
the maximal development of initial data on a Cauchy surface Σ as described pre-
viously coincides with maximally-extended Schwarzschild. In Kerr, if we are to
take an asymptotically flat (with two ends) hypersurface in a maximally extended

48There are various conventions on the meaning of the words “stationary” and “axisymmet-
ric” depending on the context. Let us not worry about this here. . .
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Kerr for parameter range 0 < |a| < M , then its maximal development will have a
smooth boundary in maximally-extended Kerr. This boundary is what is known as
a Cauchy horizon. We have already discussed this phenomenon in Section 2.7.3 in
the context of strong cosmic censorship. The maximally extended Kerr solutions
are quite bizarre, in particular, they contain closed timelike curves. This is of no
concern to us here, however. By definition, for us the term “Kerr metric (M, gM,a)”
will always denote the maximal development of a complete asymptotically flat hy-
persurface Σ, as above, with two ends. One can depict the Penrose-diagrammatic
representation of a suitable two-dimensional timelike slice of this solution as below:

DH
+
A

i0

CH
+

CH +

Σ

I+
AI+

B

I−
A

I−
B

H +
B

This depiction coincides with the standard Penrose diagram of the spherically sym-
metric Reissner-Nordström metric [91, 148].

With this convention in mind, we note that the dependence of gM,a on a is
smooth in the range 0 ≤ |a| < M . In particular, Kerr solutions with small |a| � M
can be viewed as close to Schwarzschild.

One can see this explicitly in the subregion of interest to us by passing to a
new system of coordinates. Define

t∗ = t+ t̄(r)

φ∗ = φ+ φ̄(r)

where
dt̄

dr
(r) = (r2 + a2)/Δ,

dφ̄

dr
(r) = a/Δ.

(These coordinates are often known as Kerr-star coordinates.) These coordinates
are regular across H+\H−.49 We may finally define a coordinate rSchw = rSchw(r, a)
such that which takes [r+,∞) → [2M,∞) with smooth dependence in a and such
that rSchw(r, 0) is the identity map. In particular, if we define Σ0 by D = {t∗ = 0},
and define R = D ∩ {t∗ ≥ 0}, and fix rSchw, t∗, φ∗ Schwarzschild coordinates,
then the metric functions of gM,a written in terms of these coordinates as defined
previously depend smoothly on a for 0 ≤ |a| < M in R, and, for a = 0, reduce to
the Schwarzschild metric form in (r, t∗, φ, θ) coordinates where t∗ is defined from
Schwarzschild t as above.

49Of course, one again needs two coordinate systems in view of the breakdown of spherical
coordinates. We shall suppress this issue in the discussion that follows.
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We note that ∂t = ∂t∗ in the intersection of the coordinate systems. We
immediately note that ∂t is spacelike on the horizon, except where θ = 0, π, i.e. on
the axis of symmetry. Note that we shall often abuse notation (as we just have
done) and speak of ∂t on the horizon or at θ = 0, where of course the (r, t, θ, φ)
coordinate system breaks down, and formally, this notation is meaningless.

In general, the part of the domain of outer communications plus horizon where
∂t is spacelike is known as the ergoregion. It is bounded by a hypersurface known as
the ergosphere. The ergosphere meets the horizon on the axis of symmetry θ = 0, π.

The ergosphere allows for a particle “process”, originally discovered by Pen-
rose [127], for extracting energy out of a black hole. This came to be known as
the Penrose process. In his thesis, Christodoulou [38] discovered the existence of
a quantity–the so-called irreducible mass of the black hole–which he showed to be
always nondecreasing in a Penrose process. The analogy between this quantity
and entropy led later to a subject known as “black hole thermodynamics” [8, 11].
This is currently the subject of intense investigation from the point of view of high
energy physics.

In the context of the study of �gψ = 0, we have already discussed in Section 5
the effect of the ergoregion: It is precisely the presence of the ergoregion that makes
our previous proof of boundedness for Schwarzschild not immediately generalise for
Kerr. Moreover, in contrast to the Schwarzschild case, there is no “easy result”
that one can obtain away from the horizon analogous to Section 3.2.3. In fact,
the problem of proving any sort of boundedness statement for general solutions to�gψ = 0 on Kerr had been open until very recently. We will describe in the next
section our recent resolution [68] of this problem.

5.2. Boundedness for axisymmetric stationary black holes. We will
derive a rather general boundedness theorem for a class of axisymmetric stationary
black hole exteriors near Schwarzschild. The result (Theorem 5.1) will include
slowly rotating Kerr solutions with parameters |a| � M .

We have already explained in what sense the Kerr metric is “close” to Schwarzs-
child in the region R. Let us note that with respect to the coordinates rSchw, t

∗, φ∗,
θ in R, then ∂t∗ and ∂φ∗ are Killing for both the Schwarzschild and the Kerr met-
ric. The class of metrics which will concern us here are metrics defined on R such
that the metric functions are close to Schwarzschild in a suitable sense50, and ∂t∗ ,
∂φ∗ are Killing, where these are defined with respect to the ambient Schwarzschild
coordinates.

There is however an additional geometric assumption we shall need, and this
is motivated by a geometric property of the Kerr spacetime, to be described in the
section that follows immediately.

5.2.1. Killing fields on the horizon. Let us here remark a geometric property
of the Kerr spacetime itself which turns out to be of utmost importance in what
follows: Let V denote a null generator of H+. Then

(56) V ∈ Span{∂t∗ , ∂φ∗}.
There is a deep reason why this is true. For stationary black holes with non-
degenerate horizons, a celebrated argument of Hawking [91] retrieves a second
Killing field in the direction of the null generator V . Thus, if ∂t∗ and ∂φ∗ span the
complete set of Killing fields, then V must evidently be in their span.

50This requires moving to an auxiliary coordinate system. See [68].



144 MIHALIS DAFERMOS AND IGOR RODNIANSKI

In fact, choosing V accordingly we have

(57) V = ∂t∗ + (a/2Mr+)∂φ∗

(For the Kerr solution, we have that there exists a timelike direction in the
span of ∂t∗ and ∂φ∗ for all points outside the horizon. We shall not explicitly make
reference to this property, although in view of Section 7, one can infer this property
(exercise) for small perturbations of Schwarzschild of the type considered here,
i.e., given any point p outside the horizon, there exists a Killing field V (depending
on p) such that V (p) is timelike.)

5.2.2. The axisymmetric case. From (57), it follows that there is a constant
ω0 > 0, depending only on the parameters a and M , such that if

(58) |∂t∗ψ|2 ≥ ω0|∂φ∗ψ|2,

on H+, then the flux satisfies

(59) JT
μ (ψ)nμ

H+ ≥ 0.

Note also that, for fixed M , we can take

(60) ω0 → 0, as a → 0.

There is an immediate application of (58). Let us restrict for the moment to
axisymmetric solutions, i.e. to ψ such that ∂φψ = 0. It follows that (58) trivially
holds. As a result, our argument proving boundedness is stable, i.e. Theorem 3.2
holds for axisymmetric solutions of the wave equation on Kerr spacetimes with
|a| � M . (See the exercise of Section 3.5.) In fact, the restriction on a can be be
removed (Exercise, or go directly to Section 7).

Let us note that the above considerations make sense not only for Kerr but for
the more general class of metrics on R close to Schwarzschild such that ∂t∗ , ∂φ∗ are
Killing, H+ is null and (56) holds. In particular, (58) implies (59), where in (60),
the condition a → 0 is replaced by the condition that the metric is taken suitably
close to Schwarzschild. The discussion which follows will refer to metrics
satisfying these assumptions.51 For simplicity, the reader can specialise the
discussion below to the case of a Kerr metric with |a| � M .

5.2.3. Superradiant and non-superradiant frequencies. There is a more general
setting where we can make use of (58). Let us suppose for the time being that we

could take the Fourier transform ψ̂(ω) of our solution ψ in t∗ and then expand in
azimuthal modes ψm, i.e. modes associated to the Killing vector field ∂φ∗ .

If we were to restrict ψ to the frequency range

(61) |ω|2 ≥ ω0m
2,

then (58) and thus (59) holds after integrating alongH+. In view of this, frequencies
in the range (61) are known as nonsuperradiant frequencies. The frequency range

(62) |ω|2 ≤ ω0m
2

determines the so-called superradiant frequencies. In the physics literature, the
main difficulty of this problem has traditionally been perceived to “lie” with these
frequencies.

51They are summarised again in the formulation of Theorem 5.1.
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Let us pretend for the time being that using the Fourier transform, we could
indeed decompose

(63) ψ = ψ� + ψ�

where ψ� is supported in (61), whereas ψ� is supported in (62).

In view of the discussion immediately above and the comments of Section 5.2.2,
it is plausible to expect that one could indeed prove boundedness for ψ� in the man-

ner of the proof of Theorem 3.2. In particular, if one could localise the integrated
version of (59) to arbitrary sufficiently large subsegments H(τ ′, τ ′′), one could ob-
tain

(64)

∫
Στ

J
nΣτ
μ (ψ�)n

μ
Στ

≤ B

∫
Σ0

J
nΣ0
μ (ψ�)n

μ
Σ0

.

This would leave ψ�. Since this frequency range does not suggest a direct
boundedness argument, it is natural to revisit the decay mechanism of Schwarzs-
child. We have already discussed (see Section 4.5) the instability of the decay argu-
ment; this instability arose from the structure of the set of trapped null geodesics.
At the heuristic level, however, it is easy to see that, if one can take ω0 suffi-
ciently small, then solutions supported in (62) cannot be trapped. In particular,
for |a| � M , superradiant frequencies for �gψ = 0 on Kerr are not trapped.
This will be the fundamental observation allowing for the boundedness theorem.
Let us see how this statement can be understood from the point of view of energy
currents.

5.2.4. A stable energy estimate for superradiant frequencies. We continue here
our heuristic point of view, where we assume a decomposition (63) where ψ� is

supported in (62). In particular, one has an inequality

(65)

∫ ∞

−∞

∫ 2π

0

ω2
0(∂φψ�)

2 dφ∗ dt∗ ≥
∫ ∞

−∞

∫ 2π

0

(∂tψ�)
2 dφ∗ dt∗

for all (r, θ). We shall see below that (65) allows us easily to construct a suitable
stable current for Schwarzschild.

It may actually be a worthwhile exercise for the reader to come up with a
suitable current for themselves. The choice is actually quite flexible in comparison
with the considerations of Section 4.1. Our choice (see [68]) is defined by

(66) JX = eJN + JXa + JXb,wb

where here, N is the vector field of Section 3.3.2, Xa = fa∂r∗ , with

fa = −r−4(r0)
4, for r ≤ r0

fa = −1, for r0 ≤ r ≤ R1,

fa = −1 +

∫ r

R1

dr̃

4r̃
for R1 ≤ r ≤ R2,

fa = 0 for r ≥ R2,

Xb = fb∂r∗ with

fb = χ(r∗)π−1

∫ r∗

0

α

x2 + α2
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and χ(r∗) is a smooth cutoff with χ = 0 for r∗ ≤ 0 and χ = 1 for r∗ ≥ 1. Here r
and r∗ are Schwarzschild coordinates.52 The function wb is given by

wb = f ′
b +

2

r
(1− 2M/r)(1−M/r)fb.

The parameters e, α, r0, R1, R2 must be chosen accordingly!
Restricting to the range (62), using (65), with some computation we would

obtain

(67)

∫ ∞

−∞

∫ 2π

0

KX(ψ�) dφ
∗ dt∗ ≥ b

∫ ∞

−∞

∫ 2π

0

χJnΣ
μ (ψ�)n

μ
Σ dφ∗ dt∗,

for all (r, θ).
The above inequality can immediately be seen to be stable to small53 axisym-

metric, stationary perturbations of the Schwarzschild metric. That is to say, for
such metrics, if ψ� is supported in (62) (where frequencies here are defined by

Fourier transform in coordinates t∗, φ∗), then the inequality (67) holds as before.
In particular, (67) holds for Kerr for small |a| � M .

How would (67) give boundedness for ψ�? We need in fact to suppose something

slightly stronger, namely that (67) holds localised to R(0, τ ). Consider the currents

J = JN + e2J
X, K = ∇μJμ,

where e2 is a positive parameters, and JN is the current of Section 3.3.2. Then,
for metrics g close enough to Schwarzschild, and for e2 sufficiently small, we would
have from a localised (67) that ∫

R(0,τ)

K(ψ�) ≥ 0,

∫
H(0,τ)

Jμ(ψ�)n
μ
H ≥ 0,

and thus ∫
Στ

Jμ(ψ�)n
μ
Στ

≤
∫
Σ0

Jμ(ψ�)n
μ
Σ0

.

Moreover, for g sufficiently close to Schwarzschild and e1, e2 suitably defined, we
also have (exercise) ∫

Στ

J
nΣτ
μ (ψ�)n

μ ≤ B

∫
Στ

Jμ(ψ�)n
μ
Στ

.

We thus would obtain

(68)

∫
Στ

J
nΣτ
μ (ψ�)n

μ ≤ B

∫
Σ0

J
nΣ0
μ (ψ�)n

μ.

Adding (68) and (64), we would obtain∫
Στ

J
nΣτ
μ (ψ)nμ ≤ B

∫
Σ0

J
nΣ0
μ (ψ)nμ

52Since we are dealing now with general perturbations of Schwarzschild, we shall now use r
for what we previously denoted by rSchw. Note that in the special case that our metric is Kerr,
this r is different from the Boyer-Lindquist r.

53Of course, in view of the degeneration towards i0, it is important that smallness is under-
stood in a weighted sense.
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provided that we could also estimate say

(69)

∫
Σ0

J
nΣ0
μ (ψ�)n

μ ≤ B

∫
Σ0

J
nΣ0
μ (ψ)nμ.

5.2.5. Cutoff and decomposition. Unfortunately, things are not so simple!
For one thing, to take the Fourier transform necessary to decompose in fre-

quency, one would need to know a priori that ψ(t∗, ·) is in L2(t∗). What we want
to prove at this stage is much less. A priori, ψ can grow exponentially in t∗. In
order to apply the above, one must cut off the solution appropriately in time.

This is achieved as follows. For definiteness, define Σ0 to be t∗ = 0, and Στ as
before. We will also need two auxiliary families of hypersurfaces defined as follows.
(The motivation for considering these will be discussed in Section 5.2.6.) Let χ be
a cutoff such that χ(x) = 0 for x ≥ 0 and χ = 1 for x ≤ −1, and define t± by

t+ = t∗ − χ(−r +R)(1 + r −R)1/2

and
t− = t∗ + χ(−r +R)(1 + r −R)1/2

where R is a large constant, which must be chosen appropriately. Let us define
then

Σ+(τ )
.
= {t+ = τ}, Σ−(τ )

.
= {t− = τ}.

Finally, we define

R(τ1, τ2) =
⋃

τ1≤τ≤τ2

Σ(τ ),

R+(τ1, τ2) =
⋃

τ1≤τ≤τ2

Σ+(τ ),

R−(τ1, τ2) =
⋃

τ1≤τ≤τ2

Σ−(τ ).

Let ξ now be a cutoff function such that ξ = 1 in J+(Σ−
1 ) ∩ J−(Σ+

τ−1), and

ξ = 0 in J+(Σ+
τ ) ∩ J−(Σ−

0 ). We may finally define

ψ� = ξψ.

The function ψ� is a solution of the inhomogeneous equation

�gψ� = F, F = 2∇αξ∇αψ + �gξ ψ.

Note that F is supported in R−(0, 1) ∪R+(τ − 1, τ ).
Another problem is that sharp cutoffs in frequency behave poorly under locali-

sation. We thus do the following: Let ζ be a smooth cutoff supported in [−2, 2] with
the property that ζ = 1 in [−1, 1], and let ω0 > 0 be a parameter to be determined
later. For an arbitrary Ψ of compact support in t∗, define

Ψ�(t
∗, ·) .

=
∑
m 	=0

eimφ∗
∫ ∞

−∞
ζ((ω0m)−1ω) Ψ̂m(ω, ·) eiωt∗dω,

Ψ�(t
∗, ·) .

= Ψ0 +
∑
m 	=0

eimφ∗
∫ ∞

−∞

(
1− ζ((ω0m)−1ω)

)
Ψ̂m(ω, ·) eiωt∗dω.

Note of course that Ψ� +Ψ� = Ψ. We shall use the notation ψ� for (ψ�)� and ψ�
for (ψ�)�. Note that ψ�, ψ� satisfy

(70) �gψ� = F�, �gψ� = F�.
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5.2.6. The bootstrap. With ψ�, ψ� well defined, we now try to fill in the argu-

ment heuristically outlined before.
We wish to show the boundedness of

(71) q
.
= sup

0≤τ̄≤τ

∫
Στ̄

JN
μ nμ.

We will argue by continuity in τ . We have already seen heuristically how to obtain
a bound for q in Sections 5.2.3 and 5.2.4. When interpreted for the ψ�, ψ� defined

above, these arguments produce error terms from:

• the inhomogeneous terms F�, F� from (70)

• the fact that we wish to localise estimates (59) and (65) to subregions
H+(τ ′, τ ′′) and R(τ ′, τ ′′) resepectively

• the fact that (69) is not exactly true.

These error terms can be controlled by q itself. For this, one studies carefully the
time-decay of F�, F� away from the cutoff region R−(0, 1) ∪ R+(τ − 1, τ ) using

classical properties of the Fourier transform. An important subtlety arises from the
presence of 0’th order terms in ψ, and it is here that the divergence of the region
R± from R(0, τ ) is exploited to exchange decay in τ and r.

To close the continuity argument, it is essential not only that the error terms
be controlled by q itself, but that a small constant is retrieved, i.e. that the error
terms are controlled by εq, so that they can be absorbed. For this, use is made of
the fact that for metrics in the allowed class sufficiently close to Schwarzschild (in
the Kerr case, for |a| � M), one can control a priori the exponential growth rate
of (71) to be small. See [68].

5.2.7. Pointwise bounds. Having proven the uniform boundedness of (71), one
argues as in the proof of Theorem 3.2 to obtain higher order energy and point-
wise bounds. In particular, the positivity property in the computation of Proposi-
tion 3.3.2 is stable. (It turns out that this positivity property persists in fact for
much more general black hole spacetimes and there is in fact a geometric reason
for this! See Chapter 7.)

5.2.8. The boundedness theorem. We have finally

Theorem 5.1. Let g be a metric defined on the differentiable manifold R with
stratified boundary H+ ∪Σ0, and let T and Φ = Ω1 be Schwarzschild Killing fields.
Assume

(1) g is sufficiently close to Schwarzschild in an appropriate sense
(2) T and Φ are Killing with respect to g
(3) H+ is null with respect to g and T and Φ span the null generator of H+.

Then the statement of Theorem 3.2 holds.

See [68] for the precise formulation of the closeness assumption 1.

Corollary 5.1. The result applies to Kerr, and to the more general Kerr-
Newman family (solving Einstein-Maxwell), for parameters |a| � M (and also
|Q| � M in the Kerr-Newman case).

Thus, we have quantitative pointwise and energy bounds for ψ and arbitrary
derivatives on slowly rotating Kerr and Kerr-Newman exteriors.
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5.3. Decay for Kerr. To obtain decay results analogous to Theorem 4.1, one
needs to understand trapping. For general perturbations of Schwarzschild of the
class considered in Theorem 5.1, it is not a priori clear what stability properties
one can infer about the nature of the trapped set, and how these can be exploited.
But for the Kerr family itself, the trapping structure can easily be understood, in
view of the complete integrability of geodesic flow discovered by Carter [29]. The
codimensionality of the trapped set persists, but in contrast to the Schwarzschild
case where trapped null geodesics all approach the codimension-1 subset r = 3M
of spacetime, in Kerr, this codimensionality must be viewed in phase space.

5.3.1. Separation. There is a convenient way of doing phase space analysis in
Kerr spacetimes, namely, as discovered by Carter [30], the wave equation can be
separated. Walker and Penrose [153] later showed that both the complete integra-
bility of geodesic flow and the separability of the wave equation have their funda-
mental origin in the presence of a Killing tensor.54 In fact, as we shall see, in view
of its intimate relation with the integrability of geodesic flow, Carter’s separation
of �g immediately captures the codimensionality of the trapped set.

The separation of the wave equation requires taking the Fourier transform, and
then expanding into oblate spheroidal harmonics. As before, taking the Fourier
transform requires cutting off in time. We shall here do the cutoff, however, in a
somewhat different fashion.

Let Στ be defined specifically as t∗ = τ . Given τ ′ < τ , define R(τ ′, τ ) as before,
and let ξ be a cutoff function as in Section 5.2.5, but with Στ ′+1 replacing Σ−

1 , Στ ′

replacing Σ−
0 , and Στ replacing Σ+

τ , Στ−1 replacing Σ+
τ−1. Define as before

ψ� = ξψ.

The function ψ� is a solution of the inhomogeneous equation

�gψ� = F, F = 2∇αξ∇αψ + �gξ ψ.

Note that F is supported in R(τ ′, τ ′ + 1) ∪R(τ − 1, τ ).
Since ψ� is compactly supported in t for each fixed r > r+, we may consider

its Fourier transform ψ̂� = ψ̂�(ω, ·). We may now decompose

ψ̂�(ω, ·) =
∑
m,�

Rω
m�(r)Sm�(aω, cos θ)e

imφ,

F̂ (ω, ·) =
∑
m,�

Fω
m�(r)Sm�(aω, cos θ)e

imφ,

where Sm� are the oblate spheroidal harmonics. For each m ∈ Z, and fixed ω, these
are a basis of eigenfunctions Sm� satisfying

− 1

sin θ

d

dθ

(
sin θ

d

dθ
Sm�

)
+

m2

sin2 θ
Sm� − a2ω2 cos2 θSm� = λm�Sm�,

and, in addition, satisfying the orthogonality conditions with respect to the θ vari-
able,∫ 2π

0

dϕ

∫ 1

−1

d(cos θ)eimφSm�(aω, cos θ) e
−im′φSm′�′(aω, cos θ) = δmm′δ��′ .

54See [32, 108] for recent higher-dimensional generalisations of these properties.
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Here, the λm�(ω) are the eigenvalues associated with the harmonics Sm�. Each of
the functions Rω

m�(r) is a solution of the following problem

Δ
d

dr

(
Δ
Rω

m�

dr

)
+
(
a2m2 + (r2 + a2)2ω2 − 4aMrmω −Δ(λm� + a2ω2)

)
Rω

m�

= Δ
(
(r2 + a2 cos2 θ)F

)ω
m�

.

Note that if a = 0, we typically label Sm� by � ≥ |m| such that

λm�(ω) = �(�+ 1)/2.

With this choice, Sm� coincides with the standard spherical harmonics Ym�.
Given any ω1 > 0, λ1 > 0 then we can choose a such that for |ω| ≤ ω1,

λm� ≤ λ1, then
|λm� − �(�+ 1)/2| ≤ ε.

Rewriting the equation for the oblate spheroidal function

− 1

sin θ

d

dθ

(
sin θ

d

dθ
Sm�

)
+

m2

sin2 θ
Sm� = λm�Sm� + a2ω2 cos2 θSm�,

the smallest eigenvalue of the operator on the left hand side of the above equation
is m(m+ 1). This implies that

(72) λm� ≥ m(m+ 1)− a2ω2.

This will be all that we require about λm�. For a more detailed analysis of λm�,
see [81].

5.3.2. Frequency decomposition. Let ζ be a sharp cutoff function such that
ζ = 1 for |x| ≤ 1 and ζ = 0 for |x| > 1. Note that

(73) ζ2 = ζ.

Let ω1, λ1 be (potentially large) constants to be determined, and λ2 be a (poten-
tially small) constant to be determined.

Let us define

ψ� =

∫ ∞

−∞
ζ(ω/ω1)

∑
m,�:λm�(ω)≤λ1

Rω
m�(r)Sm�(aω, cos θ)e

imφeiωtdω,

ψ �=

∫ ∞

−∞
ζ(ω/ω1)

∑
m,�:λm�(ω)>λ1

Rω
m�(r)Sm�(aω, cos θ)e

imφeiωtdω,

ψ� =

∫ ∞

−∞
(1− ζ(ω/ω1))

∑
m,�:λm�(ω)≥λ2ω2

Rω
m�(r)Sm�(aω, cos θ)e

imφeiωtdω,

ψ� =

∫ ∞

−∞
(1− ζ(ω/ω1))

∑
m,�:λm�(ω)<λ2ω2

Rω
m�(r)Sm�(aω, cos θ)e

imφeiωtdω.

We have clearly
ψ� = ψ� + ψ �+ ψ� + ψ�.

For quick reference, we note:

• ψ� is supported in |ω| ≤ ω1, λm� ≤ λ1,

• ψ �is supported in |ω| ≤ ω1, λm� > λ1,

• ψ� is supported in |ω| ≥ ω1, λm� ≥ λ2ω
2 and

• ψ� is supported in |ω| ≥ ω1, λm� < λ2ω
2.
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5.3.3. The trapped frequencies. Trapping takes place in ψ�. We show here how

to construct a multiplier for this frequency range.
Defining a coordinate r∗ by

dr∗

dr
=

r2 + a2

Δ

and setting

u(r) = (r2 + a2)1/2Rω
m�(r), H(r) =

Δ((r2 + a2 cos2 θ)F )ωm�(r)

(r2 + a2)3/2
,

then u satisfies
d2

(dr∗)2
u+ (ω2 − V ω

m�(r))u = H

where

V ω
m�(r) =

4Mramω − a2m2 +Δ(λm� + ω2a2)

(r2 + a2)2
+

Δ(3r2 − 4Mr + a2)

(r2 + a2)3
− 3Δ2r2

(r2 + a2)4
.

Consider the following quantity

Q = f

(∣∣∣∣ dudr∗
∣∣∣∣
2

+ (ω2 − V )|u|2
)

+
df

dr∗
Re

(
du

dr∗
ū

)
− 1

2

d2f

dr∗2
|u|2.

Then, with the notation ′ = d
dr∗ ,

(74) Q′ = 2f ′|u′|2 − fV ′|u|2 +Re(2fH̄u′ + f ′H̄u)− 1

2
f ′′′|u|2.

For ψ�, we have

(75) λm� + ω2a2 ≥ (λ2 + a2)ω2 ≥ (λ2 + a2)ω2
1 .

We set

V0 = (λm� + ω2a2)
r2 − 2Mr

(r2 + a2)2

so that

V1 = V−V0 =
4Mramω − a2m2 + a2(λm� + ω2a2)

(r2 + a2)2
+
Δ(3r2 − 4Mr + a2)

(r2 + a2)3
− 3Δ2r2

(r2 + a2)4
.

Using (72), (75), we easily see that

r3|V ′
1 |+

∣∣∣∣∣
(
(r2 + a2)4

Δr2
V ′
1

)′
∣∣∣∣∣ ≤ CΔr−2

(
|amω|+ a2(λm� + a2ω2) + 1

)
≤ εΔr−2(λm� + a2ω2),(76)

where ε can be made arbitrarily small, if ω1 is chosen sufficiently large, and a is
chosen a < ε. On the other hand

V ′
0 = 2

Δ

(r2 + a2)4
(λm� + ω2a2)

(
(r −M)(r2 + a2)− 2r(r2 − 2Mr)

)
= −2

Δr2

(r2 + a2)4
(
λm� + ω2a2

)(
r − 3M + a2

r −M

r2

)
.(77)
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This computation implies that V ′
0 has a simple zero in the a2 neighbourhood of

r = 3M . Furthermore,(
(r2 + a2)4

Δr2
V ′
0

)′
≤ −Δr−2(λm� + ω2a2).

From the above and (76), it follows that for ω1 sufficiently large and a sufficiently
small, we have (

(r2 + a2)4

Δr2
V ′

)′
≤ −1

2
Δr−2(λm� + ω2a2).

This alone implies that V ′ has at most a simple zero.
To show that V ′ indeed has a zero we examine the boundary values at r+ and

∞. From (77) we see that

(r2 + a2)4

Δr2
V ′
0 ∼ C(λm� + ω2a2)

for some positive constant C on the horizon and

(r2 + a2)4

Δr2
V ′
0 ∼ −2r(λm� + ω2a2)

near r = ∞. On the other hand, from the inequality as applied to the first term on
the right hand side of (76), it follows that∣∣∣∣ (r2 + a2)4

Δr2
V ′
1

∣∣∣∣ ≤ εr(λm� + ω2a2),

where ε can be chosen arbitrarily small if ω1 is chosen sufficiently large and a
sufficiently small. Thus, for suitable choice of ω1, it follows that

(r2 + a2)4

Δr2
V ′

∣∣∣
r+

=
(r2 + a2)4

Δr2
(V ′

0 + V ′
1)
∣∣∣
r+

> 0 >
(r2 + a2)4

Δr2
(V ′

0 + V ′
1)
∣∣∣
∞

=
(r2 + a2)4

Δr2
V ′

∣∣∣
∞
,

and thus V ′ has a unique zero. Let us denote the r-value of this zero by rωm�.
We now choose f so that

(1) f ′ ≥ 0,
(2) f ≤ 0 for r ≤ rωm� and f ≥ 0 for r ≥ rωm� ,
(3) −fV ′ − 1

2f
′′′ ≥ c.

Property 3 can be verified by ensuring that f ′′′(rωm�) < 0 as well as requiring that
f ′′′ < 0 at the horizon. We may moreover normalise f to −1 on the horizon.
Finally, we may assume that there exists an R such that for all r ≥ R, f is of the
form:

f = tan−1 r∗ − α−
√
α

α
− tan−1(−1− α−1/2)

In particular, for r ≥ R, the function f will not depend on ω, �, m.
Note the similarity of this construction with that of Section 4.1.1, modulo the

need for complete separation to centre the function f appropriately.
Integrating the identity (74) and using that u → 0 as r → ∞ we obtain that

for any compact set K1 in r∗ and a certain compact set K2 (which in particular
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does not contain r = 3M), there exists a positive constant b > 0 so that

b

∫
K1

(|u′|2 + |u|2)dr + b(λm� + ω2)

∫
K2

|u|2dr

≤
(
|u′|2 + (ω2 − V )|u|2

)
(r+) +

∫ ∞

−∞
Re(2fH̄u′ + f ′H̄u) dr∗.

On the horizon r = r+, we have u′ = (iω + (iam/2Mr+))u and

V (r+) =
4Mramω − a2m2

(r2+ + a2)2
.

Therefore, we obtain

b

∫
K1

(|u′|2 + |u|2) dr∗ + b(λm� + ω2)

∫
K2

|u|2 dr∗

≤ (ω2 + εm2)|u|2(r+) +
∫ ∞

−∞
Re(2fH̄u′ + f ′H̄u) dr∗.(78)

We now wish to reinstate the dropped indices m, �, ω, and sum over m, � and
integrate over ω. Note that by the orthogonality of the Sω

m�, it follows that for any
functions α and β with coefficients defined by

α̂(ω, ·) =
∑
m,�

αω
m�(r)Sm�(aω, cos θ)e

imφ, β̂(ω, ·) =
∑
m,�

βω
m�(r)Sm�(aω, cos θ)e

imφ,

we have ∫
α2(t∗, r, θ, ϕ) sin θdϕ dθ dt =

∫ ∞

−∞

∑
m,�

|αω
m�(r)|2dω,

∫
α · β sin θdϕ dθ dt =

∫ ∞

−∞

∑
m,�

αω
m� · β̄ω

m�dω.

Clearly, the summed and integrated left hand side of (78) bounds

b

∫ ∞

−∞
dt∗

∫
K1

(
(∂rψ�)

2 + ψ2
�

)
dVg + b

∫
K2

∑
i

(∂iψ�)
2 dVg.

Similarly, we read off immediately that the first term on the right hand side of (78)
upon summation and integration yields precisely∫

H+

(
(Tψ�)

2 + ε(∂φ∗ψ�)
2
)
.

Note that we can bound∫
H+

(
(Tψ�)

2 + ε(∂φ∗ψ�)
2
)

≤
∫
H+

(
(Tψ�)2 + ε(∂φ∗ψ�)2

)
≤ B

∫
Στ′

JN
μ (ψ)nμ

Σ + ε

∫
H(τ ′,τ)

(∂φ∗ψ)2.

(Exercise: Why?)
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The “error term” of the right hand side of (78) is more tricky. To estimate the
second summand of the integrand, note that∫

|ω|≥ω1

∑
m,�:λm�(ω)≥λ2ω2

(f ′)ωm�(r)H̄
ω
m�(r)u

ω
m�(r)dω

≤
∫
|ω|≥ω1

∑
m,�:λm�(ω)≥λ2ω2

δ−1Δ−1(r2 + a2)|(f ′)ωm�H
ω
m�|2(r) + δΔ(r2 + a2)−1|uω

m�|2dω

≤
∫
|ω|≥ω1

∑
m,�:λm�(ω)≥λ2ω2

δ−1Δ−1(r2 + a2)B|Hω
m�|2(r) + δΔ|Rω

m�|2dω

≤ δ−1BΔ

∫
(F�)

2 sin θ dφ dθ dt+ δΔ

∫
(ψ�)

2 sin θ dφ dθ dt

≤ δ−1BΔ

∫
F 2 sin θ dφ dθ dt+ δΔ

∫
ψ2 sin θ dφ dθ dt,

where δ can be chosen arbitrarily. In particular, this estimate holds for r ≤ R. For
r ≥ R, in view of the fact that f is independent of ω, m, �, we have in fact∫

|ω|≥ω1

∑
m,�:λm�(ω)≥λ2ω2

(f ′)(r)H̄ω
m�(r)u

ω
m�(r)dω

= f ′(r)

∫
|ω|≥ω1

∑
m,�:λm�(ω)≥λ2ω2

H̄ω
m�(r)u

ω
m�(r)dω

= f ′(r)(r2 + a2)−1

∫
((r2 + a2 cos2 θ)F )�ψ� sin θ dφ dθ dt

= f ′(r)(r2 + a2)−1

∫
((r2 + a2 cos2 θ)F )�ψ� sin θ dφ dθ dt,

where for the last line we have used (73). The first summand of the error integrand
of (78) can be estimated similarly.

We thus obtain

b

∫
R
χ
(
(∂rψ�)

2 + ψ2
�

)
+ b

∫
R
χhJN

μ (ψ�)N
μ

≤B

∫
Στ′

JN
μ (ψ)nμ

Σ + ε

∫
H(τ ′,τ)

(∂φψ)
2 + δ−1B

∫
R∩{r≤R}

F 2

+ δ

∫
R∩{r≤R}

ψ2 + (∂rψ)
2

+

∫ ∞

−∞
dt∗

∫
r≥R

(
2f(r2 + a2)−1/2((r2 + a2 cos2 θ)F )�∂r∗((r

2 + a2)1/2ψ�)

+f ′((r2 + a2 cos2 θ)F )�ψ�

) Δ

r2 + a2
sin θ dφ∗ dθ dr∗,(79)

where χ is a cutoff which degenerates at infinity and h is a function 0 ≤ h ≤ 1
which vanishes in a suitable neighbourhood of r = 3M .

5.3.4. The untrapped frequencies. Given λ2 sufficiently small and any choice
of ω1, λ1, then, for a sufficiently small (where sufficiently small depends on these
latter two constants), it follows that for � = �, �, �, we may produce currents of
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type J
X�
μ as in Section 5.2.4 such that

b

∫
R
χJN

μ (ψ�)Nμ + χ̃ψ2� ≤
∫
R
K

X�(ψ�)

for χ a suitable cutoff function degenerating at infinity, and χ̃ a suitable cutoff
function degenerating at infinity and vanishing in a neighbourhood of H+. These
currents can in fact be chosen independently of a for such small a, and moreover,
they can be chosen so that, defining

EX� .
= ∇μJ

X�
μ −K

X� ,

we have on the one hand

∫
R∩{r≥R}

EX� =

∫ ∞

−∞
dt∗

∫
r≥R

(
2f(r2 + a2)−1/2((r2 + a2 cos2 θ)F )�∂r∗((r2 + a2)1/2ψ�)

+f ′((r2 + a2 cos2 θ)F )�ψ�) Δ

r2 + a2
sin θ dφ∗ dθ dr∗

for the f of Section 5.3.3, and on the other hand, for the region r ≤ R, we have

∫
R∩{r≤R}

EX� ≤ Bδ−1

∫
R∩{r≤R}

F 2 +Bδ

∫
R∩{r≤R}

ψ2
�

+ (∂rψ�)2 + χJN
μ (ψ�)nμ

where χ is supported near the horizon and away from a neighbourhood of 3M .
Moreover, one can show as in Section 5.2.6 that

−
∫
H
J
X�
μ (ψ�)nμ ≤ −

∫
H
JT
μ (ψ�)nμ

≤ −
∫
H
JT
μ (ψ�)nμ

≤ B

∫
Στ′

JN
μ (ψ)nμ.

(Exercise: Prove the last inequality.)
From the identity

∫
H+

J
X�
μ (ψ�)nμ

H +

∫
R
K

X�(ψ�) =
∫
R
EX�(ψ�)
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and the above remarks, one obtains finally an estimate∫
R
χ(JN

μ (ψ�) + JN
μ (ψ �) + JN

μ (ψ�))n
μ
Στ

≤B

∫
Στ′

JN
μ (ψ)nμ +Bδ−1

∫
R∩{r≤R}

F 2

+Bδ

∫
R∩{r≤R}

ψ2 + (∂rψ)
2 + χJN

μ (ψ)Nμ

+

∫ ∞

−∞
dt∗

∫
r≥R

⎛
⎜⎝2f(r2 + a2)−1/2

∑
�=�, �,�

((r2 + a2 cos2 θ)F )�∂r∗((r2 + a2)1/2ψ�)

+f ′
∑

�=�, �,�

((r2 + a2 cos2 θ))F )�ψ�
⎞
⎟⎠ Δ

r2 + a2
sin θ dφ∗ dθ dr∗.

(80)

5.3.5. The integrated decay estimates. Now, we will add (79), (80) and the
energy identity of eJY (ψ)∫

Σ̃τ

JN
μ (ψ)nμ

Σ̃τ
+

∫
R̃(τ ′,τ)∩{r≤r0}

eKY (ψ)

= −
∫
H(τ ′,τ)

eJY
μ (ψ)nμ

H +

∫
R̃(τ ′,τ)∩{r0≤r≤r1}

eKY (ψ) +

∫
Σ̃τ′

JN
μ (ψ)nμ

Σ̃τ′
(81)

for a small e with ε � e, and where r0 < r1 < 3M are as in Corollary 3.1, and r1
is in the support of K2.

In the resulting inequality, the left hand side bounds in particular

(82)

∫
R(τ ′+1,τ−1)

χ(hJN
μ (ψ)Nμ + (∂rψ)

2)

where χ is a cutoff decaying at infinity, χ̃ is a cutoff decaying at infinity and
vanishing at H+ and h is a function with 0 ≤ h ≤ 1 such that h vanishes precisely
in a neighbourhood of r = 3M . (As a → 0, this neighbourhood can be chosen
smaller and smaller in the sense of the coordinate r.)

Let us examine the right hand side of the resulting inequality.
The second term of the first line of the right hand side of (79) is absorbed by

the first term on the right hand side of (81) provided that ε � e.
The third term of the first line of the right hand side of (79) and the second

term of (80) are bounded by

Bδ−1

∫
Στ′

JN
μ (ψ)nμ

Στ′

in view of Theorem 5.1.
The second line of the right side of (79) and the third term of (80) can be

absorbed by (82), provided that δ is chosen suitably small, whereas the second
term of the right hand side of (81) can be absorbed by (82), provided that e is
sufficiently small.
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The fourth terms of the right hand sides of (79) and (80) combine to yield∫ ∞

−∞
dt∗

∫
r≥R

(
2f(r2 + a2)−1/2(r2 + a2 cos2 θ)F∂r∗((r

2 + a2)1/2ψ�)

+f ′(r2 + a2 cos2 θ)Fψ�
) Δ

r2 + a2
sin θ dφ∗ dθ dr∗.

Note where F is supported and how it decays. Using our boundedness Theorem 5.1,
a Hardy inequality and integration by parts we may now bound this term by

B

∫
Στ′

JN
μ (ψ)nμ

Στ
.

But the remaining terms on the right hand side of (79), (80) and (81) are also of
this form! We thus obtain

Proposition 5.3.1. There exists a ϕt-invariant weight χ, degenerating only
at i0, and a second ϕt-invariant weight h, which vanishes on a neighbourhood of
r = 3M , and a constant B > 0 such that the following estimates hold for all τ ′ ≤ τ ,∫

R(τ ′,τ)

χhJN
μ (ψ)Nμ + χψ2 ≤ B

∫
Στ′

JN
μ (ψ)nμ

Στ′∫
R(τ ′,τ)

χJN
μ (ψ)Nμ + χψ2 ≤ B

∫
Στ′

(JN
μ (ψ) + JN

μ (Tψ))nμ
Στ′

for all solutions �gψ = 0 on Kerr.

Similar estimates could be shown on regions R̃(τ ′, τ ), Σ̃′
τ , after having derived

a priori suitable decay of ψ in r.55

5.3.6. The Z-estimate. To turn integrated decay as in Proposition 5.3.1 into
decay of energy and pointwise decay, we must adapt the argument of Section 4.2.

Let V be a φt-invariant vector field such that V = ∂t∗ for r ≥ r+ + c2 and
V = ∂t∗ + (a/2Mr+)∂φ∗ for f ≤ r+ + c1 for some c1 < c2, and such that V is
timelike in R \ H+. Note that V is Killing except in r+ + c1 ≤ r ≤ r+ + c2. As
a → 0, we can construct such a V with c2 arbitrarily small.

Now let us define u and v to be the Schwarzschild56 coordinates

u = t− r∗Schw,

v = t+ r∗Schw.

With respect to the coordinates (u, v, φ∗, θ), defining L = ∂u, then L vanishes
smoothly along the horizon. Define L̄ = V − L. Finally, define the vector field

Z = u2L+ v2L.

Note that under these choices Z is null on H+. With w as before, the currents
JZ,w together with JN can be used to control the energy fluxes on Στ with weights.
Use of the energy identities of JZ,w and JN leads to estimates of the form

(83)

∫
Στ

χψ2 +

∫
Στ∩{r�τ}

JN
μ (ψ)nμ

Σ̃τ
≤ BDτ−2 +B τ−2

∫
R(0,τ)

E ,

55In the section that follows, we shall in fact localise the above estimate in a different way
applying a cutoff function. The resulting 0’th order terms which arise can be controlled using the
“good” 0’th order term in the boundary integrals of JZ,w .

56Recall that we are considering both the Kerr and Schwarzschild metric on the fixed differ-
entiable structure R as described in Section 5.1.
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where χ is a cutoff function supported suitably, and where E is an error term arising
from the part of KZ,w which has the “wrong” sign; D arises from data.

We may partition

E = E1 + E2 + E3
where

• E1 is supported in some region r0 ≤ r ≤ R0,
• E2 is supported in r ≤ r0 and
• E3 is supported in r ≥ R0.

Recall that L+L is Killing for r ≥ 2M+c2. It follows (Exercise) that choosing
c2 < r0, there are no terms growing quadratically in t for E1, E3. Moreover, by our
construction, Z depends smoothly on a away from the horizon. The behaviour near
the horizon is more subtle as Z itself is not smooth! We shall return to this when
discussing E2.

In view of our above remarks, we have that

E1 ≤ B t(JN
μ (ψ)Nμ + ψ2),

just like in the case of Schwarzschild. In view of Proposition 5.3.1, this leads to

the following estimate: If ψ̂ = ψ in R(τ ′, τ ′′) ∩ {r ≤ R0}, where ψ̂ solves again

�gψ̂ = 0, then

(84)

∫
R(τ ′,τ ′′)

E1(ψ) =
∫
R(τ ′,τ ′′)

E1(ψ̂) ≤ Bτ ′
∫
Στ′

(JN
μ (ψ̂) + JN

μ (T ψ̂))nμ

Σ̃τ′
.

The introduction of ψ̂ is related to our localisation procedure we shall carry out in
what follows.

Recall that in the Schwarzschild case, for R0 suitably chosen, there is no E3
term, as the termKZ,w has a good sign in that region. (See Section 4.2.) Examining
the r-decay of error terms in the smooth dependence of Z in a, we obtain

E3 ≤ ε tr−2JN
μ (ψ)Nμ

where ε can be made arbitrarily small if a is small. If τ ′′ − τ ′ ∼ τ ′ ∼ t, this leads
to an estimate∫

R(τ ′,τ ′′)

E3(ψ) ≤ ε(τ ′′ − τ ′)(τ ′′ + τ ′)

∫
Στ′∩{r�τ ′′−τ ′}

JN
μ (ψ)nμ

Στ′

+ ε log |τ ′′ − τ ′|
∫
Στ′

JN
μ (ψ)nμ

Στ′ .(85)

In the region r+ + c1 ≤ r ≤ r+ + c2, then, choosing r0 such that E2 is absent
in Schwarzschild, we can argue without computation from the smooth dependence
on a that

E2 ≤ ε t2(JN
μ (ψ)Nμ + ψ2)

where ε can be made arbitrarily small by choosing a small. The necessity of a
quadratically growing error term arises from the fact that L + L is not Killing in
this region.57

As we have already mentioned, an important subtlety occurs near the horizon
H+ where Z fails to be C1. This means that E2 is not necessarily small in local

57Alternatively, one can keep L + L Killing at the expense of Z failing to be causal on the
horizon. This would lead to errors of a similar nature.
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coordinates, and one must understand how to bound the singular terms. It turns
out that these singular terms have a structure:

Proposition 5.3.2. Let V̂ , Ŷ , E1, E2 extend V to a null frame in r ≤ r++c1.
We have

E2 ≤ εv| log(r − r+)|p(T(Ŷ , V̂ ) +T(V̂ , V̂ )) + εv JN
μ (ψ)Nμ.

Proof. The warping function w can be chosen as in Schwarzschild near H+,
and thus, the extra terms it generates are harmless. For the worst behaviour, it
suffices to examine now KZ itself. We must show that terms of the form:

| log(r − r+)|p(T (Ŷ , Ŷ ))

do not appear in the computation for KZ .
The relevant property follows from examining the covariant derivative of Z

with respect to the null frame:

∇V̂ Z = 2u(V̂ u)L+ 2vV̂ (v)L+ v2∇V̂ V − 4r∗v∇V̂ L+ 4(r∗)2∇V̂ L,

∇Ŷ Z = 2u(Ŷ u)L+ 2v(Ŷ v)L+ v2∇Ŷ V − 4r∗v∇Ŷ L+ 4(r∗)2∇Ŷ L,

∇E1
Z = 2u(E1u)L+ 2v(E1v)L+ v2∇E1

V − 4r∗v∇E1
L+ 4(r∗)2∇E1

L,

∇E2
Z = 2u(E2u)L+ 2v(E2v)L+ v2∇E2

V − 4r∗v∇E2
L+ 4(r∗)2∇E2

L.

�

To estimate now E2, we first remark that with Proposition 5.3.1, we can obtain
the following refinement of the red-shift multiplier construction of Corollary 3.1:

Proposition 5.3.3. If we weaken the requirement that N be smooth in Corol-
lary 3.1 with the statement that N is C0 at H+ and smooth away from H+, then
given p ≥ 0, we may construct an N as in Corollary 3.1 where property 1 is replaced
by the stronger inequality:

KN (ψ) ≥ bp| log(r − r+)|p(T(Ŷ , V̂ ) +T(V̂ , V̂ ))

for r ≤ r0.

It now follows immediately from Proposition 5.3.1 that with ψ and ψ̂ as before,
we have

(86)

∫
R(τ ′,τ ′′)

E2(ψ) ≤ ε(τ ′)2
∫
Στ′

JN
μ (ψ̂)nμ

Στ′ .

To obtain energy decay from (83), (85), (84) and (86), we argue now by conti-
nuity. Introduce the bootstrap assumptions

(87)

∫
Στ∩{r�τ}

JN
μ (ψ)Nμ + χψ2 ≤ C Dτ−2+2δ,

(88)

∫
Στ∩{r�τ}

JN
μ (Tψ)Nμ ≤ C ′ Dτ−1+2δ

for a δ > 0.
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Now dyadically decompose the interval [0, τ ] by τi < τi+1. Using (84) and the
above, we obtain∫

R(0,τ)

E1(ψ) ≤
∑
i

∫
R(τi,τi+1)

E1(ψ)

≤
∑
i

τi

∫
Στi

(JN
μ (ψ̂) + JN

μ (T ψ̂))Nμ

≤
∑
i

τi

∫
Στi

∩{r�τi+1−τi}
(JN

μ (ψ) + JN
μ (Tψ))Nμ + χψ2

≤
∑
i

τi(τ
−2+2δ
i CD + τ−1+2δ

i C ′D)

≤ δ−1(CDτ−1+2δ + C ′Dτ2δ).(89)

Here, ψ̂ is constructed separately on each dyadic region R(τi, τi+1) by throwing a
cutoff on ψ|Στi

equal to 1 in r � τi+1−τi and vanishing in τi+1−τi � r, solving again

the initial value problem in R(τi, τi+1), and exploiting the domain of dependence
property. See the original [65] for this localisation scheme. The parameters of the
“dyadic” decomposition must be chosen accordingly for the constants to work out.
Similarly, using (86) we obtain∫

R(0,τ)

E2(ψ) ≤
∑
i

∫
R(τi,τi+1)

E2(ψ)

≤ ε
∑
i

τ2i

∫
Στi

JN
μ (ψ̂)Nμ

≤ ε
∑
i

τ2i

∫
Στi

∩{r�τi+1−τi}
JN
μ (ψ)Nμ + χψ2

≤ ε
∑
i

τ2i τ
−2+2δ
i CD

≤ εδ−1τ2δCD(90)

and using (85)∫
R(0,τ)

E3(ψ) ≤
∑
i

∫
R(τi,τi+1)

E3(ψ)

≤ ε
∑
i

(
τ2i

∫
Στi

JN
μ (ψ)Nμ +

∫
Στi

JN
μ (ψ)nμ

Στi

)

≤ ε
∑
i

(τ2i τ
−2+2δ
i CD +D log τ ′)

≤ εδ−1τ2δCD.(91)

For Tψ we obtain ∫
R(0,τ)

E1(Tψ) ≤ BDτ,(92)
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R(0,τ)

E2(Tψ) ≤
∑
i

∫
R(τi,τi+1)

E2(Tψ)

≤ ε
∑
i

τ2i

∫
Στi

JN
μ (T ψ̂)Nμ

≤ ε
∑
i

τ2i

∫
Στi

∩{r�τi+1−τi}
JN
μ (Tψ)Nμ + χ(Tψ)2

≤ ε
∑
i

τ2i (τ
−1+2δ
i C ′D + τ−2+2δ

i CD)

≤ εδ−1τ1+2δC ′D + εδ−1τ2δCD,(93)

∫
R(0,τ)

E3(Tψ) ≤
∑
i

∫
R(τi,τi+1)

E3(Tψ)

≤ ε
∑
i

(
τ2i

∫
Στi

JN
μ (Tψ)Nμ +

∫
Στi

JN
μ (Tψ)nμ

Στi

)

≤ ε
∑
i

(τ2i τ
−1+2δ
i C ′D +D log τi)

≤ εδ−1τ1+2δC ′D.(94)

We use here the algebra of constants where Bε = ε. The constant D is a quantity
coming from data. Exercise: What is D and why is (92) true?

For ε � δ and C ′ sufficiently large, we see that from (83) applied to Tψ in
place of ψ, using (92), (93), we improve (88).

On the other hand choosing C ′ � C and then τ sufficiently large, we have

τ−2δ−1(CDτ−1+2δ + C ′Dτ2δ) ≤ 1

2
CDτ−2+2δ

and thus, again for ε � δ, using (89), (90) we can improve (87) from (83).

Once one obtains (87), then decay can be extended to decay in Σ̃τ by the
argument of Section 4.2, by applying conservation of the JT flux backwards.58

5.3.7. Pointwise bounds. In any region r ≤ R, we may now obtain pointwise
decay bounds simply by further commutation with T , N as in Section 3.3.4. To
obtain the correct pointwise decay statement towards null infinity, one must also
commute the equation with a basis Ωi for the Lie algebra of the Schwarzschild
metric, exploiting the r-weights of these vector fields. Defining Ω̃i = ζ(r)Ωi, where

ζ is a cutoff which vanishes for r ≤ R0, where 3M � R0, and, setting ψ̃ = Ω̃ψ, we
have

�gψ̃ = F1∂
2ψ + F2∂ψ

where F1 = O(r−2) and F2 = O(r−3). Having estimates already for ψ, Tψ, one

can may apply the X and Z estimates as before for ψ̃, only, in view of the F2 term,
now one must exploit also the X-estimate in D+(Στi ∩{r � τi+1−τi})∩J−(Στi+1

).
We leave this as an exercise.

58Note that in view of the fact that we argued by continuity to obtain (87), we could not

obtain this extended decay through Σ̃τ earlier. This is why we have localised as in [65], not as in
Section 4.2.
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5.3.8. The decay theorem. We have obtained thus

Theorem 5.2. Let (M, g) be Kerr for |a| � M , D be the closure of its domain
of dependence, let Σ0 be the surface D∩{t∗ = 0}, let ψ, ψ′ be initial data on Σ0 such
that ψ ∈ Hs

loc(Σ), ψ
′ ∈ Hs−1

loc (Σ) for s ≥ 1, and limx→i0 ψ = 0, and let ψ be the
corresponding unique solution of �gψ = 0. Let ϕτ denote the 1-parameter family

of diffeomorphisms generated by T , let Σ̃0 be an arbitrary spacelike hypersurface in
J+(Σ0 \ U) where U is an open neighbourhood of the asymptotically flat end59, and

define Σ̃τ = ϕτ (Σ̃0). Let s ≥ 3 and assume

E1
.
=

∫
Σ0

r2(Jn0
μ (ψ) + Jn0

μ (Tψ) + Jn0
μ (TTψ))nμ

0 < ∞.

Then there exists a δ > 0 depending on a (with δ → 0 as a → 0) and a B depending

only on Σ̃0 such that ∫
Σ̃τ

JN (ψ)nμ

Σ̃τ
≤ BE1 τ

−2+2δ.

Now let s ≥ 5 and assume

E2
.
=

∑
|α|≤2

∑
Γ={T,N,Ωi}

∫
Σ0

r2(Jn0
μ (Γαψ) + Jn0

μ (ΓαTψ) + Jn0
μ (ΓαTTψ))nμ

0 < ∞

where Ωi are the Schwarzschild angular momentum operators. Then

sup
Σ̃τ

√
r|ψ| ≤ B

√
E2 τ

−1+δ, sup
Σ̃τ

r|ψ| ≤ B
√
E2 τ

(−1+δ)/2.

One can obtain decay for arbitrary derivatives, including transversal derivatives
to H+, using additional commutation by N . See [69].

5.4. Black hole uniqueness. In the context of the vacuum equations (4), the
Kerr solution plays an important role not only because it is believed to be stable,
but because it is believed to be the only stationary black hole solution.60 This is
the celebrated no-hair “theorem”. In the case of the Einstein-Maxwell equations,
there is an analogous no-hair “theorem” stating uniqueness for Kerr-Newman. A
general reference is [92].

Neither of these results is close to being a theorem in the generality which
they are often stated. Reasonably definitive statements have only been proven
in the much easier static case, and in the case where axisymmetry is assumed
a priori and the horizon is assumed connected, i.e. that there is one black hole.
Axisymmetry can be inferred from stationarity under various special assumptions,
including the especially restrictive assumption of analyticity. See [57] for the latest
on the analytic case, and [96] for new interesting results in the direction of removing
the analyticity assumption in inferring axisymmetry from stationarity.

Nonetheless, the expectation that black hole uniqueness is true reasonably
raises the question: why the interest in more general black holes, allowed in Theo-
rem 5.1?

For a classical “astrophysical” motivation, note that black hole solutions can in
principle exist in the presence of persistent atmospheres. Perhaps the simplest such
constructions would involve solutions of the Einstein-Vlasov system, where matter

59This is just the assumption that Σ̃0 “terminates” on null infinity
60A further extrapolation leads to the “belief” that all vacuum solutions eventually decom-

pose into n Kerr solutions moving away from each other.



LECTURES ON BLACK HOLES AND LINEAR WAVES 163

is described by a distribution function on phase space invariant under geodesic
flow. These black hole spacetimes would in general not be Kerr even in their
vacuum regions. Recent speculations in high energy physics yield other possible
motivations: There are now a variety of “hairy black holes” solving Einstein-matter
systems for non-classical matter, like Yang-Mills fields [141], and a large variety
of vacuum black holes in higher dimensions [77], many of which are currently the
topic of intense study.

There is, however, a second type of reason, which is relevant even when we
restrict our attention to the vacuum equations (4) in dimension 4. The less infor-
mation one must use about the spacetime to obtain quantitative control on fields,
the better chance one has at obtaining a stability theorem. The essentially non-
quantitative61 aspect of our current limited understanding of black hole uniqueness
should make it clear that these arguments probably will not have a place in a sta-
bility proof. Indeed, it would be an interesting problem to explore the possibility of
obtaining a more quantitative version of uniqueness theorems (in a neighbourhood
of Kerr) following ideas in this section.

5.5. Comments and further reading. Theorem 5.1 was proven in [68]. In
particular, this provided the first global result of any kind for general solutions
of the Cauchy problem on a (non-Schwarzschild) Kerr background. Theorem 5.2
was first announced at the Clay Summer School where these notes were lectured.
Results in the direction of Proposition 5.3.1 are independently being studied in
work in progress by Tataru-Tohaneanu62 and Andersson-Blue63.

The best previous results concerning Kerr had been obtained by Finster and
collaborators in an important series of papers culminating in [79]. See also [80].
The methods of [79] are spectral theoretic, with many pretty applications of con-
tour integration and o.d.e. techniques. The results of [79] do not apply to general
solutions of the Cauchy problem, however, only to individual azimuthal modes,
i.e. solutions ψm of fixed m. In addition, [79] imposes the restrictive assumption
that H+ ∩ H− not be in the support of the modes. (Recall the discussion of Sec-
tion 3.2.6.) Under these assumptions, the main result stated in [79] is that

(95) lim
t→∞

ψm(r, t) = 0

for any r > r+. Note that the reason that (95) did not yield any statement concern-
ing general solutions, i.e. the sum over m–not even a non-quantitative one–is that
one did not have a quantitative boundedness statement as in Theorem 5.1. More-
over, one should mention that even for fixed m, the results of [79] are in principle
compatible with the statement

sup
H+

ψm = ∞,

i.e. that the azimuthal modes blow up along the horizon. See the comments in
Section 4.6. It is important to note, however, that the statement of [79] need not
restrict to |a| � M , but concerns the entire subextremal range |a| < M . Thus,
the statement (95) of [79] is currently the only known statement available in the

61As should be apparent by the role of analyticity or Carleman estimates.
62communication from Mihai Tohaneanu, a summer school participant who attended these

lectures
63lecture of P. Blue, Mittag-Leffler, September 2008
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literature concerning azimuthal modes on Kerr spacetimes for large but subextremal
a.

There has also been interesting work on the Dirac equation [78, 90], for which
superradiance does not occur, and the Klein-Gordon equation [89]. For the latter,
see also Section 8.3.

5.6. The nonlinear stability problem for Kerr. We have motivated these
notes with the nonlinear stability problem of Kerr. Let us give finally a rough
formulation.

Conjecture 5.1. Let (Σ, ḡ, K) be a vacuum initial data set (see Appendix B.2)
sufficiently close (in a weighted sense) to the initial data on Cauchy hypersurface in
the Kerr solution (M, gM,a) for some parameters 0 ≤ |a| < M . Then the maximal
vacuum development (M, g) possesses a complete null infinity I+ such that the
metric restricted to J−(I+) approaches a Kerr solution (M, gMf ,af

) in a uniform

way (with respect to a foliation of the type Σ̃τ of Section 4) with quantitative decay
rates, where Mf , af are near M , a respectively.

Let us make some remarks concerning the above statement. Under the as-
sumptions of the above conjecture, (M, g) certainly contains a trapped surface S
by Cauchy stability. By Penrose’s incompleteness theorem (Theorem 2.2), this im-
plies that (M, g) is future causally geodesically incomplete. By the methods of the
proof of Theorem 2.2, it is easy to see that S ∩ J−(I+) = ∅. Thus, as soon as I+

is shown to be complete, it would follow that the spacetime has a black hole region
in the sense of Section 2.5.4.64

In view of this, one can also formulate the problem where the initial data are
assumed close to Kerr initial data on an incomplete subset of a Cauchy hypersurface
with one asymptotically flat end and bounded by a trapped surface. This is in fact
the physical problem65, but in view of Cauchy stability, it is equivalent to the
formulation we have given above. Note also the open problem described in the last
paragraph of Section 2.8.

In the spherically symmetric analogue of this problem where the Einstein equa-
tions are coupled with matter, or the Bianchi-triaxial IX vacuum problem discussed
in Section 2.6.4, the completeness of null infinity can be inferred easily without de-
tailed understanding of the geometry [60, 62]. One can view this as an “orbital
stability” statement. In this spherically symmetric case, the asymptotic stability
can then be studied a posteriori, as in [63, 94]. This latter problem is much more
difficult.

In the case of Conjecture 5.1, in contrast to the symmetric cases mentioned
above, one does not expect to be able to show any weaker stability statement
than the asymptotic stability with decay rates as stated. Note that it is only the
Kerr family as a whole–not the Schwarzschild subfamily–which is expected to be
asymptotically stable: Choosing a = 0 certainly does not imply that af = 0. On
the other hand, if |a| � M , then by the formulation of the above conjecture, it
would follow that |af | � Mf . It is with this in mind that we have considered the
|a| � M case in these lecture notes.

64Let us also remark the obvious fact that the above conjecture implies in particular that
weak cosmic censorship holds in a neighbourhood of Kerr data.

65Cf. the comments on the relation between maximally-extended Schwarzschild and
Oppenheimer-Snyder.
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6. The cosmological constant Λ and Schwarzschild-de Sitter

Another interesting setting for the study of the stability problem are black holes
within cosmological spacetimes. Cosmological spacetimes–as opposed to asymptot-
ically flat spacetimes (See Appendix B.2.3), which model spacetime in the vicinity
of an isolated self-gravitating system–are supposed to model the whole universe.
The working hypothesis of classical cosmology is that the universe is approximately
homogeneous and isotropic (sometimes known as the Copernican principle [91]).
In the Newtonian theory, it was not possible to formulate a cosmological model sat-
isfying this hypothesis.66 One of the major successes of general relativity was that
the theory allowed for such solutions, thus making cosmology into a mathematical
science.

In the early years of mathematical cosmology, it was assumed that the universe
should be static67. To allow for such static cosmological solutions, Einstein modified
his equations (2) by adding a 0’th order term:

(96) Rμν − 1

2
gμνR + Λgμν = 8πTμν .

Here Λ is a constant known as the cosmological constant. When coupled with a
perfect fluid, this system admits a static, homogeneous, isotropic solution with
Λ > 0 and topology S3 ×R. This spacetime is sometimes called the Einstein static
universe.

Cosmological solutions with various values of the parameter Λ were studied by
Friedmann and Lemaitre, under the hypothesis of exact homogeneity and isotropy.
Static solutions are in fact always unstable under perturbation of initial data. Typ-
ical homogeneous isotropic solutions expand or contract, or both, beginning and
or ending in singular configurations. As with the early studies (referred to in Sec-
tions 2.2) illuminating the extensions of the Schwarzschild metric across the horizon,
these were ahead of their time.68 (See the forthcoming book [123] for a history
of this fascinating early period in the history of mathematical cosmology.) These
predictions were taken more seriously with Hubble’s observational discovery of the
expansion of the universe, and the subsequent evolutionary theories of matter, but
the relevance of the solutions near where they are actually singular was taken se-
riously only after the incompleteness theorems of Penrose and Hawking–Penrose
were proven (see Section 2.7).

We shall not go into a general discussion of cosmology here, nor tell the fascinat-
ing story of the ups and downs of Λ–from its adoption by Einstein to his subsequent
well-known rejection of it, to its later “triumphant” return in current cosmological
models, taking a very small positive value, the “explanation” of which is widely
regarded as one of the outstanding puzzles of theoretical physics. Rather, let us
pass directly to the object of our study here, one of the simplest examples of an
inhomogeneous “cosmological” spacetime, where non-trivial small scale structure
occurs in an ambient expanding cosmology. This is the Schwarzschild–de Sitter
solution.

66It is possible, however, if one geometrically reinterprets the Newtonian theory and allows
space to be–say–the torus. See [132]. These reinterpretations, of course, postdate the formulation
of general relativity.

67much like in the early studies of asymptotically flat spacetimes discussed in Section 2.1
68In fact, the two are very closely related! The interior region of the Oppenheimer-Snyder

collapsing star is precisely isometric to a region of a Friedmann universe. See [117].



166 MIHALIS DAFERMOS AND IGOR RODNIANSKI

6.1. The Schwarzschild-de Sitter geometry. Again, this metric was dis-
covered in local coordinates early in the history of general relativity, independently
by Kottler [105] and Weyl [155]. Fixing Λ > 0,69 Schwarzschild-de Sitter is a
one-parameter family of solutions of the form

(97) −(1− 2M/r − Λr2)dt2 + (1− 2M/r − Λr2)−1dr2 + r2dσS2 .

The black hole case is the case where 0 < M < 1
3
√
Λ
. A maximally-extended

solution (see [28, 85]) then has as Penrose diagram the infinitely repeating chain:

r = ∞

r = ∞

r = 0

r = 0

H −

H +

D
H
+

Σ

H
−

To construct “cosmological solutions” one often takes spatially compact quotients.
(One can also glue such regions into other cosmological spacetimes. See [56]. For
more on the geometry of this solution, see [10].)

6.2. Boundedness and decay. The region “analogous” to the region studied
previously for Schwarzschild and Kerr is the darker shaded region D above. The

horizon H+
separates D from an “expanding” region where the spacetime is similar

to the celebrated de Sitter space. If Σ is a Cauchy surface such that Σ ∩ H− =

Σ∩H−
= ∅, then let us define Σ0 = D∩Σ, and let us define Στ to be the translates

of Σ0 by the flow ϕt generated by the Killing field T (= ∂
∂t ). Note that, in contrast

to the Schwarzschild or Kerr case, Σ0 is compact.
We have

Theorem 6.1. The statement of Theorem 3.2 holds for these spacetimes, where
Σ, Σ0, Στ are as above, and limx→i0 |ψ| is replaced by supx∈Σ0

|ψ|.
Proof. The proof of the above theorem is as in the Schwarzschild case, except

that in addition to the analogue of N , one must use a vector field N̄ which plays
the role of N near the “cosmological horizon” H̄+. It is a good exercise for the
reader to think about the properties required to construct such a N̄ . A general
construction of such a vector field applicable to all non-extremal stationary black
holes is done in Section 7. �

As for decay, we have

Theorem 6.2. For every k ≥ 0, there exist constants Ck such that the following
holds. Let ψ ∈ Hk+1

loc , ψ′ ∈ Hk
loc, and define

Ek
.
=

∑
|(α)|≤k

∑
Γ={Ωi}

∫
Σ0

J
nΣτ
μ (Γαψ)nμ

Στ
.

Then

(98)

∫
Στ

J
nΣτ
μ (ψ)nμ

Στ
≤ CkEkτ

−k.

69The expression (97) with Λ < 0 defines Schwarzschild–anti-de Sitter. See Section 8.4.
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For k > 1 we have

(99) sup
Στ

|ψ − ψ0| ≤ Ck

√
Ekτ

−k+1
2 ,

where ψ0 denotes the 0’th spherical harmonic, for which we have for instance the
estimate

(100) sup
Στ

|ψ0| ≤ sup
x∈Σ0

ψ0 + C0

√
E0(ψ0,ψ′

0).

The proof of this theorem uses the vector fields T , Y and Ȳ (alternatively N ,
N̄), together with a version of X as multipliers, and requires commutation of the
equation with Ωi to quantify the loss caused by trapping. (Like Schwarzschild,
the Schwarzschild-de Sitter metric has a photon sphere which is at r = 3M for all
values of Λ in the allowed range. See [86] for a discussion of the optical geometry
of this metric and its importance for gravitational lensing.) An estimate analogous
to (39) is obtained, but without the χ weight, in view of the compactness of Σ0.
The result of the Theorem follows essentially immediately, in view of Theorem 6.1
and a pigeonhole argument. No use need be made of a vector field of the type Z as
in Section 4.2. Note that for ψ = constant, Ek = 0, so removing the 0’th spherical
harmonic in (99) is necessary. See [66] for details.

Note that if Ωi can be replaced by Ωε
i in (39), then it follows that the loss in

derivatives for energy decay at any polynomial rate k in (98) can be made arbitrarily
small. If Ωi could be replaced by log Ωi, then what would one obtain? (Exercise)

It would be a nice exercise to commute with Ŷ as in the proof of Theorem 6.1,
to obtain pointwise decay for arbitrary derivatives of k. See the related exercise in
Section 4.3 concerning improving the statement of Theorem 4.1.

6.3. Comments and further reading. Theorem 6.2 was proven in [66].
Independently, the problem of the wave equation on Schwarzschild-de Sitter has
been considered in a nice paper of Bony-Häfner [24] using methods of scattering
theory. In that setting, the presence of trapping is manifest by the appearance of
resonances, that is to say, the poles of the analytic continuation of the resolvent.70

The relevant estimates on the distribution of these necessary for the analysis of [24]
had been obtained earlier by Sá Barreto and Zworski [135].

In contrast to Theorem 6.2, the theorem of Bony-Häfner [24] makes the familiar
restrictive assumption on the support of initial data discussed in Section 3.2.5. For
these data, however, the results of [24] obtain better decay than Theorem 6.2 away
from the horizon, namely exponential, at the cost of only an ε derivative. The
decay results of [24] degenerate at the horizon, in particular, they do not retrieve
even boundedness for ψ itself. However, using the result of [24] together with the
analogue of the red-shift Y estimate as used in the proof of Theorem 6.2, one can
prove exponential decay up to and including the horizon, i.e. exponential decay in
the parameter τ (Exercise). This still requires, however, the restrictive hypothesis
of [24] concerning the support of the data. It would be interesting to sort out
whether the restrictive hypothesis can be removed from [24], and whether this
fast decay is stable to perturbation. There also appears to be interesting work in
progress by Sá Barreto, Melrose and Vasy [150] on a related problem.

70In the physics literature, these are known as quasi-normal modes. See [104] for a nice
survey, as well as the discussion in Section 4.6.
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One should expect that the statement of Theorem 6.1 holds for the wave equa-
tion on axisymmetric stationary perturbations of Schwarzschild-de Sitter, in par-
ticular, slowly rotating Kerr-de Sitter, in analogy to Theorem 5.1.

Finally, we note that in many context, more natural than the wave equation
is the conformally covariant wave equation �gψ − 1

6Rψ = 0. For Schwarzschild-de
Sitter, this is then a special case of Klein-Gordon (106) with μ > 0. The analogue
of Theorem 6.1 holds by virtue of Section 7.2. Exercise: Prove the analogue of
Theorem 6.2 for this equation.

7. Epilogue: The red-shift effect for non-extremal black holes

We give in this section general assumptions for the existence of vector fields
Y and N as in Section 3.3.2. As an application, we can obtain the boundedness
result of Theorem 3.2 or Theorem 6.1 for all classical non-extremal black holes for
general nonnegative cosmological constant Λ ≥ 0. See [91, 148, 28] for discussions
of these solutions.

7.1. A general construction of vector fields Y and N . Recall that a
Killing horizon is a null hypersurface whose normal is Killing [92, 148]. Let H
be a sufficiently regular Killing horizon with (future-directed) generator the Killing
field V , which bounds a spacetime D. Let ϕV

t denote the one-parameter family
of transformations generated by V , assumed to be globally defined for all t ≥ 0.
Assume there exists a spatial hypersurface Σ ⊂ D transverse to V , such that
Σ ∩H = S is a compact 2-surface. Consider the region

R′ = ∪t≥0ϕ
V
t (Σ)

and assume that R′ ∩ D is smoothly foliated by ϕt(Σ).
Note that

∇V V = κV

for some function κ : H → R.

Theorem 7.1. Let H, D, R′, Σ, V , ϕV
t be as above. Suppose κ > 0. Then there

exists a φV
t -invariant future-directed timelike vector field N on R′ and a constant

b > 0 such that
KN ≥ b JN

μ Nμ

in an open ϕt-invariant (for t ≥ 0) subset Ũ ⊂ R′ containing H ∩R′.

Proof. Define Y on S so that Y is future directed null, say

(101) g(Y, V ) = −2,

and orthogonal to S. Moreover, extend Y off S so that

(102) ∇Y Y = −σ(Y + V )

on S. Now push Y forward by ϕV
t to a vector field on U . Note that all the above

relations still hold on H.
It is easy to see that the relations (19)–(22) hold as before, where E1, E2 are

a local frame for Tpϕ
V
t (S). Now a1, a2 are not necessarily 0, hence our having

included them in the original computation! We define as before

N = V + Y.

Note that it is the compactness of S which gives the uniformity of the choice of b
in the statement of the theorem. �
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We also have the following commutation theorem

Theorem 7.2. Under the assumptions of the above theorem, if ψ satisfies�gψ = 0, then for all k ≥ 1.

�g(Y
kψ) = κkY

k+1ψ +
∑

0≤|m|≤k+1, 0≤m4≤k

cmEm1
1 Em2

2 Tm3Y m4ψ

on H+, where κk > 0.

Proof. From (19)–(22), we deduce that relative to the null frame (on the
horizon) V, Y,E1, E2 the deformation tensor Y π takes the form

Y πY Y = 2σ, Y πV V = 2κ, Y πV Y = σ, Y πY Ei
= 0, Y πV Ei

= ai, Y πEiEj
= hj

i .

As a result the principal part of the commutator expression–the term 2 Y παβDαDβψ
can be written as follows

2 Y παβ∇α∇βψ = κ∇2
Y Y ψ + σ(∇2

V V +∇2
Y V )ψ − ai∇2

Y Ei
ψ + 2hi

j∇2
EiEj

ψ.

The result now follows by induction on k. �

7.2. Applications. The proposition applies in particular to sub-extremal Kerr
and Kerr-Newman, as well as to both horizons of sub-extremal Kerr-de Sitter, Kerr-
Newman-de Sitter, etc. Let us give the following general, albeit somewhat awkward
statement:

Theorem 7.3. Let (R, g) be a manifold with stratified boundary H+ ∪Σ, such
that R is globally hyperbolic with past boundary the Cauchy hypersurface Σ, where
Σ and H are themselves manifolds with (common) boundary S. Assume

H+ = ∪n
i=1H+

i , S = ∪n
i=1Si,

where the unions are disjoint and each H+
i , Si is connected. Assume each H+

i

satisfies the assumptions of Theorem 7.1 with future-directed Killing field Vi, some
subset Σi ⊂ Σ, and cross section a connected component Si of S. Let us assume
there exists a Killing field T with future complete orbits, and ϕt is the one-parameter
family of transformations generated by T . Let Ũi be given by Theorem 7.1 and
assume that there exists a V as above such that

R = ϕt(Σ \ V) ∪ ∪n
i=1Ũi.

and

−g((ϕVi
t )∗nΣ, nΣτ

) ≤ B

where Στ = ϕτ (Σ), ϕVi
t represents the one-parameter family of transformations

generated by V i, and the last inequality is assumed for all values of t, τ where the
left hand side can be defined. Finally, let ψ be a solution to the wave equation and
assume that for any open neighbourhood V of S in Σ, there exists a positive constant
bV > 0 such that

(103) JT
μ (T kψ)nμ

Σ ≥ bVJ
nΣ
μ (T kψ)nμ

Σ

in Σ \ V and

(104) Tψ = ciViψ

on H+
i . It follows that the first statement of Theorem 3.2 holds for ψ.
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Assume in addition that Σ is compact or asymptotically flat, in the weak sense
of the validity of a Sobolev estimate (11) near infinity. Then the second statement
of Theorem 3.2 holds for ψ.

In the case where T is assumed timelike in R \ H+, then (104) is automatic,
whereas (103) holds if

−g(T, T ) ≥ −bV g(nμ, T )

in Σ \ V . Thus we have

Corollary 7.1. The above theorem applies to Reissner-Nordström, Reissner-
Nordström-de Sitter, etc, for all subextremal range of parameters. Thus Theo-
rem 3.2 holds for all such metrics.71

On the other hand, (104), (103) can be easily seen to hold for axisymmetric
solutions ψ0 of �gψ = 0 on backgrounds in the Kerr family (see Section 5.2). We
thus have

Corollary 7.2. The statement of Theorem 3.2 holds for axisymmetric solu-
tions ψ0 of for Kerr-Newman and Kerr-Newman-de Sitter for the full subextremal
range of parameters.72

Let us also mention that the the theorems of this section apply to the Klein-
Gordon equation �gψ = μ2ψ, as well as to the Maxwell equations (Exercise).

8. Open problems

We end these notes with a discussion of open problems. Some of these are
related to Conjecture 5.1, but all have independent interest.

8.1. The wave equation. The decay rates of Theorem 4.1 are sharp as uni-
form decay rates in v for any nontrivial class of initial data. On the other hand,
it would be nice to obtain more decay in the interior, possibly under a stronger
assumption on initial data.

Open problem 1. Show that there exists a δ > 0 such that (31) holds with τ
replaced with τ−2(1+δ), for a suitable redefinition of E1. Show the same thing for
Kerr spacetimes with |a| � M .

At the very least, it would be nice to obtain this result for the energy restricted
to Σ̃τ ∩ {r ≤ R}.

Recall how the algebraic structure of the Kerr solution is used in a fundamental
way in the proof of Theorem 5.2. On the other hand, one would think that the va-
lidity of the results should depend only on the robustness of the trapping structure.
This suggests the following

Open problem 2. Show the analogue of Theorem 5.2 for the wave equation
on metrics close to Schwarzschild with as few as possible geometric assumptions on
the metric.

71In the Λ = 0 case this range is M > 0, 0 ≤ |Q| < M . Exercise: What is it for Λ > 0?
72In the Λ = 0 case this range is M > 0, 0 ≤ |Q| <

√
M2 − a2. Exercise: What is it for

Λ > 0?
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For instance, can Theorem 5.2 be proven under the assumptions of Theo-
rem 5.1? Under even weaker assumptions?

Our results for Kerr require |a| � M . Of course, this is a “valid” assumption
in the context of the nonlinear stability problem, in the sense that if this condition
is assumed on the parameters of the initial reference Kerr solution, one expects it
holds for the final Kerr solution. Nonetheless, one certainly would like a result for
all cases. See the discussion in Section 5.5.

Open problem 3. Show the analogue of Theorem 5.2 for Kerr solutions in
the entire subextremal range 0 ≤ |a| < M .

The extremal case |a| = M may be quite different in view of the fact that
Section 7 cannot apply:

Open problem 4. Understand the behaviour of solutions to the wave equation
on extremal Reissner-Nordström, extremal Schwarzschild-de Sitter, and extremal
Kerr.

Turning to the case of Λ > 0, we have already remarked that the analogue of
Theorems 6.1 and 6.2 should certainly hold in the case of Kerr-de Sitter. In the case
of both Schwarzschild-de Sitter and Kerr-de Sitter, another interesting problem is

to understand the behaviour in the region C = J+(H+

A) ∩ J+(H+

B), where H+
A, H

+
B

are two cosmological horizons meeting at a sphere:

Open problem 5. Understand the behaviour of solutions to the wave equa-
tion in region C of Schwarzschild-de Sitter and Kerr-de Sitter, in particular, their
behaviour along r = ∞ as i+ is approached.

Let us add that in the case of cosmological constant, in some contexts it is
appropriate to replace �g with the conformally covariant wave operator �g − 1

6R.
In view of the fact that R is constant, this is a special case of the Klein-Gordon
equation discussed in Section 8.3 below.

8.2. Higher spin. The wave equation is a “poor man’s” linearisation of the
Einstein equations (4). The role of linearisation in the mathematical theory of
nonlinear partial differential equations is of a different nature than that which one
might imagine from the formal “perturbation” theory which one still encounters
in the physics literature. Rather than linearising the equations, one considers the
solution of the nonlinear equation from the point of view of a related linear equation
that it itself satisfies.

In the case of the simplest nonlinear equations (say (107) discussed in Sec-
tion 8.6 below), typically this means freezing the right hand side, i.e. treating it as
a given inhomogeneous term. In the case of the Einstein equations, the proper ana-
logue of this procedure is much more geometric. Specifically, it amounts to looking
at the so called Bianchi equations

(105) ∇[μRνλ]ρσ = 0,

which are already linear as equations for the curvature tensor when g is regarded
as fixed. For more on this point of view, see [51]. The above equations for a field
Sλμνρ with the symmetries of the Riemann curvature tensor are in general known
as the spin-2 equations. This motivates:
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Open problem 6. State and prove the spin-2 version of Theorems 5.1 or 5.2
(or Open problem 1) on Kerr metric backgrounds or more generally, metrics settling
down to Kerr.

In addition to [51], a good reference for these problems is [50], where this
problem is resolved just for Minkowski space. In contrast to the case of Minkowski
space, an additional difficulty in the above problem for the black hole setting arises
from the presence of nontrivial stationary solutions provided by the curvature tensor
of the solutions themselves. This will have to be accounted for in the statement
of any decay theorem. From the “linearisation” point of view, the existence of
stationary solutions is of course related to the fact that it is the 2-parameter Kerr
family which is expected to be stable, not an individual solution.

8.3. The Klein-Gordon equation. Another important problem is the Klein-
Gordon equation

(106) �gψ = μψ.

A large body of heuristic studies suggest the existence of a sequence of quasinormal
modes (see Section 4.6) approaching the real axis from below in the Schwarzschild
case. When the metric is perturbed to Kerr, it is thought that essentially this
sequence “moves up” and produces exponentially growing solutions. See [158, 71].
This suggests

Open problem 7. Construct an exponentially growing solution of (106) on
Kerr, for arbitrarily small μ > 0 and arbitrary small a.

Interestingly, if one fixed m, then adapting the proof of Section 5.2, one can
show that for μ > 0 sufficiently small and a sufficiently small, depending on m, the
statement of Theorem 5.1 holds for (106) for such Kerr’s. This is consistent with
the quasinormal mode picture, as one must take m → ∞ for the modes to approach
the real axis in Schwarzschild. This shows how misleading fixed-m results can be
when compared to the actual physical problem.

8.4. Asymptotically anti-de Sitter spacetimes. In discussing the cosmo-
logical constant we have considered only the case Λ > 0. This is the case of current
interest in cosmology. On the other hand, from the completely different viewpoint
of high energy physics, there has been intense interest in the case Λ < 0. See [84].

The expression (97) for Λ < 0 defines a solution known as Schwarzschild-anti-de
Sitter. A Penrose diagramme of this solution is given below.

i−

H +

H
+

i−

i+

I

i+

I

r = 0

r = 0
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The timelike character of infinity means that this solution is not globally hyperbolic.
As with Schwarzschild-de Sitter, Schwarzschild-anti-de Sitter can be viewed as a
subfamily of a larger Kerr-anti de Sitter family, with similar properties.

Again, as with Schwarzschild-de Sitter, the role of the wave equation is in
some contexts replaced by the conformally covariant wave equation. Note that this
corresponds to (106) with a negative μ = 2Λ/3 < 0.

Even in the case of anti-de Sitter space itself (setM = 0 in (97)), the question of
the existence and uniqueness of dynamics is subtle in view of the timelike character
of the ideal boundary I. It turns out that dynamics are unique for (106) only
if the μ ≥ 5Λ/12, whereas for the total energy to be nonnegative one must have
μ ≥ 3Λ/4. Under our conventions, the conformally covariant wave equation lies
between these values. See [6, 26].

Open problem 8. For suitable ranges of μ, understand the boundedness and
blow-up properties for solutions of (106) on Schwarzschild-anti de Sitter and Kerr-
anti de Sitter.

See [109, 27] for background.

8.5. Higher dimensions. All the black hole solutions described above have
higher dimensional analogues. See [77, 120]. These are currently of great interest
from the point of view of high energy physics.

Open problem 9. Study all the problems of Sections 8.1–8.4 in dimension
greater than 4.

Higher dimensions also brings a wealth of explicit black hole solutions such
that the topology of spatial sections of H+ is no longer spherical. In particular,
in 5 spacetime dimensions there exist “black string” solutions, and much more
interestingly, asymptotically flat “black ring” solutions with horizon topology S1×
S2. See [77].

Open problem 10. Investigate the dynamics of the wave equation �gψ = 0
and related equations on black ring backgrounds.

8.6. Nonlinear problems. The eventual goal of this subject is to study the
global dynamics of the Einstein equations (4) themselves and in particular, to
resolve Conjecture 5.1.

It may be interesting, however, to first look at simpler non-linear equations on
fixed black hole backgrounds and ask whether decay results of the type proven here
are sufficient to show non-linear stability.

The simplest non-linear perturbation of the wave equation is

(107) �gψ = V ′(ψ)

where V = V (x) is a potential function. Aspects of this problem on a Schwarzschild
background have been studied by [121, 64, 22, 115].

Open problem 11. Investigate the problem (107) on Kerr backgrounds.

In particular, in view of the discussion of Section 8.3, one may be able to
construct solutions of (107) with V = μψ2+ |ψ|p, for μ > 0 and for arbitrarily large
p, arising from arbitrarily small, decaying initial data, which blow up in finite time.
This would be quite interesting.
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A nonlinear problem with a stronger relation to (4) is the wave map problem.
Wave maps are maps Φ : M → N where M is Lorentzian and N is Riemannian,
which are critical points of the Lagrangian

L(Φ) =
∫

|dΦ|2gN

In local coordinates, the equations take the form

�gMΦk = −Γk
ijg

αβ
M (∂αΦ

i∂βetaΦ
j),

where Γk
ij denote the Christoffel symbols of gN . See the lecture notes of Struwe [145]

for a nice introduction.

Open problem 12. Show global existence in the domain of outer communica-
tions for small data solutions of the wave map problem, for arbitrary target manifold
N , on Schwarzschild and Kerr backgrounds.

All the above problems concern fixed black hole backgrounds. One of the essen-
tial difficulties in proving Conjecture 5.1 is dealing with a black hole background
which is not known a priori, and whose geometry must thus be recovered in a
bootstrap setting. It would be nice to have more tractable model problems which
address this difficulty. One can arrive at such problems by passing to symmetry
classes. The closest analogue to Conjecture 5.1 in such a context is perhaps pro-
vided by the results of Holzegel [94], which concern the dynamic stability of the
5-dimensional Schwarzschild as a solution of (4), restricted under Triaxial Bianchi
IX symmetry. See Section 2.6.4. In the symmetric setting, one can perhaps attain
more insight on the geometric difficulties by attempting a large-data problem. For
instance

Open problem 13. Show that the maximal development of asymptotically flat
triaxial Bianchi IX vacuum initial data for the 5-dimensional vacuum equations
containing a trapped surface settles down to Schwarzschild.

The analogue of the above statement has in fact been proven for the Einstein-
scalar field system under spherical symmetry [40, 63]. In the direction of the
above, another interesting set of problems is provided by the Einstein-Maxwell-
charged scalar field system under spherical symmetry. For both the charged-scalar
field system and the Bianchi IX vacuum system, even more ambitious than Open
problem 13 would be to study the strong and weak cosmic censorship conjectures,
possibly unifying the analysis of [45, 58, 59]. Discussion of these open problems,
however, is beyond the scope of the present notes.
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10. Addendum: December 2011

It has been over 3 years since our July 2008 Clay Summer School Lectures
in Zürich and the subsequent posting of these Lecture Notes shortly thereafter to
the arxiv. The intervening period has witnessed remarkable progress concerning
the study of waves on black holes, at a rate in no way foreseen by us. It is espe-
cially satisfying that so much of this progress has been accomplished by participants
in the Clay Summer School (Aretakis, Baskin, Blue, Holzegel, Schlue, Smulevici,
Tohaneanu) as well as by two of the other lecturers (Vasy, Wunsch)!

In submitting a final version of these notes for publication by the CMI, we
wish to record, at least briefly, some of the highlights of these rapid subsequent
developments–hence this Addendum. These exciting works have clarified issues,
resolved fully or partially open problems, fulfilled prophesies, but also, modified (at
least to some extent) various aspects of our point of view. For instance, were
we to rewrite these notes, we would certainly replace Sections 4.2 and 5.3.6 with
an exposition of the results described in Section 10.5 below, which give what we
believe to be a definitive approach to obtaining robust pointwise decay from integrated
local energy decay. As another example, our discussion of finer polynomial tails in
Section 4.6 would certainly be enhanced by an exposition of the results described
in Section 10.7 below. We have resisted, however, the temptation to modify the
original text with the benefit of this hindsight. Our lecture notes were not meant as
a definitive treatment of the subject, but rather, as a snapshot of the field as it stood
in the Summer of 2008. Moreover, these lecture notes double as an original research
paper, giving for the first time a proof of integrated local energy decay on slowly
rotating Kerr (Proposition 5.3.1), pointwise decay on Kerr (Theorem 5.2), and
the general red-shift multiplier and commutation constructions (Theorems 7.1, 7.2
and 7.3) that have proven very useful in much subsequent work. We feel that in
view of this double role, it is important to preserve the notes’ original form for the
historical record.

We have thus confined all references to subsequent developments to this Adden-
dum, leaving the rest of the text “as is”, except for various typographical changes
and corrections to minor errors in some formulas which could cause confusion. We
thank particularly Stefanos Aretakis, Gustav Holzegel, Igor Khavkine, Jan Sbierski
and Volker Schlue for their careful readings and for pointing out many such errors
in the original version of these notes.

Mihalis Dafermos
Igor Rodnianski

Cambridge (UK and USA), December 2011

10.1. Two new approaches to dispersion on slowly-rotating Kerr
|a| � M . Since the Clay Summer School, two additional approaches to integrated
local energy decay for the wave equation on Kerr exteriors with |a| � M , originally
proven as Proposition 5.2 of these notes, have been completed.

The first such additional approach is due to Tataru–Tohaneanu:

D. Tataru and M. Tohaneanu A local energy estimate on Kerr black hole back-
grounds Int. Math. Res. Not. 2011, no. 2, 248–292
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and was in fact posted to the arxiv in parallel with the arxiv version of these lec-
ture notes. Recall from the discussion of Section 5.3 that the main difficulty for
proving Proposition 5.2, after the stability issues at the horizon had been sorted
out in [65, 68] using the red-shift, was capturing the obstruction posed by trap-
ping in the high-frequency limit. In our own approach, as given for the first time
in these lecture notes, this difficulty was resolved by using Carter’s separation of
the wave equation as a tool to frequency-localise the energy current constructions
of Section 5.3. Tataru–Tohaneanu instead appeal to separation at the level of the
equations of geodesic flow, but microlocalise according to the standard pseudodiffer-
ential calculus applied only in a neighbourhood of the Schwarzschild photon sphere
with respect to an ambient Euclidean coordinate system. The method of red-shift
commutation, introduced in our previous [68], is then applied so as to complete the
argument, giving also an alternative proof of the pointwise boundedness statement
of [68], when the latter is specialised to the exactly Kerr case.

The second new approach to Proposition 5.2 of these lecture notes, due to
Andersson–Blue, and appearing in:

L. Andersson and P. Blue Hidden symmetries and decay for the wave equation on
the Kerr spacetime, arXiv:0908.2265,

replaces the above two frequency localisation techniques by a third, which combines
classical vector field multipliers with commutation by a second order differential
operator constructed from the so-called Carter tensor. Carter’s separation of the
wave equation is in fact intimately connected with these operators and the relevant
positivity computation can be directly translated to the formalism of Section 5.3.
(In this language, one is choosing an f as in formula (74) with polynomial ω-
dependence which has an interpretation as commutation by a differential operator.)
The fact that the implicit frequency analysis is accomplished using only differential
operators gives the Andersson–Blue argument many attractive features. The result
is slightly weaker, however, than that given by our previous method (as well as that
described in the paragraph above), as commutation gives rise to an estimate at the
level of a weighted H3 norm, rather than H1 as in Proposition 5.2.

Let us add that we ourselves have given yet another proof of Proposition 5.2
in our

M. Dafermos and I. Rodnianski Decay for solutions of the wave equation on Kerr
exterior spacetimes I-II: The cases |a| � M or axisymmetry arXiv:1010.5132

For the high frequency domain, this proof follows closely the proof of these notes,
but in the new argument, the full potential (no pun intended!) of the separation
is exploited to construct novel low-frequency currents, which make the proof com-
pletely independent of both our previous decay work on Schwarzschild [65] and of
our previous general boundedness theorem [68], both of which were used (albeit
simply as a convenience) in the proof contained in Section 5.3. In particular, the
above paper yields as a by-product yet another proof of local energy decay for the
Schwarzschild case, completely self-contained, and having the additional advan-
tage that, in providing a systematic approach to low frequencies, the proof gives a
blue-print which can be applied to a wide variety of spacetimes. This has indeed
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proven useful for subsequent developments in the extremal case and in AdS (see
Sections 10.3 and 10.10 below).

Moreover, the above new proof unifies the small |a| � M case with the case of
axisymmetric solutions in the full subextremal range |a| < M , where superradiance
is absent and one can appeal to Theorem 7.3.

In contrast, as we shall see, the case of general, non-axisymmetric solutions in
the full range |a| < M required a new insight, which we turn to immediately the
next section!

10.2. The full subextremal range |a| < M . (cf. Open problem 3)

The case |a| � M is characterized by the fact that superradiance is a small
parameter. This played a fundamental role in both the general boundedness re-
sult [68] which inaugurated the study of the wave equation on Kerr, as well as the
subsequent decay results just described.

Let us briefly recall the role of the small parameter for both boundedness and
decay:

In our original general boundedness result [68], the smallness of |a| was ex-
ploited first to show that the difficulties of superradiance and trapping were “dis-
joint”. Essentially this can be understood in physical space: The ergoregion is in a
small neighbourhood of the horizon, while trapping is confined to a region near the
Schwarzschild photon sphere; for |a| � M , these two regions are well separated.
Using only the separation with respect to ω and m, this allowed one to construct a
multiplier current with positive bulk term (and without degeneration) for the super-
radiant frequencies but bypass constructing such a current for the non-superradiant
frequencies, relying instead on an independent boundedness argument. In this, the
smallness of |a| is exploited a second time so as to ensure the positivity of the
boundary terms in the energy current applied to the superradiant frequencies–in
effect, here one uses that the “strength” of superradiance can be taken as a small
parameter.

In the decay problem for slowly rotating Kerr spacetimes, one does not need to
handle separately the superradiant and non-superradiant frequencies, for essentially
one applies to all frequencies the argument which above was applied only to the
superradiant frequencies, at the expense however of now having to face the difficulty
of capturing trapping. Nonetheless, the smallness of |a| in its second manifestation
described above, namely as allowing for the “strength” of superradiance to be taken
as a small parameter, is exploited just as above, for the control of the boundary
terms. This applies both to our approach and that of Tataru–Tohaneanu mentioned
above. In the work of Andersson–Blue, a similar scheme is used again requiring
small |a| for control of the boundary terms, but with the use of N replaced by a
vector field in the span of the Killing fields T and Φ.

In turning to the general subextremal range |a| < M , it is not too difficult
to see (in the context of the frequency localisation given by Carter’s separation)
that currents generating a non-negative bulk term can still be constructed–here
one is in particular implicitly exploiting the fact that the dynamics of geodesic flow
near the set of trapped geodesics remain normally hyperbolic. These constructions,
however, as such, do not allow one to control the boundary terms. For this, it
turned out that one must return to the insight of the boundedness paper concern-
ing the “disjointness” of the trapped and superradiant frequencies. Fortuitously,
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it turns out that trapping and superradiance remain disjoint in the whole
subextremal range. In contrast to the |a| � M case, however, this is not ob-
vious at all from pure physical-space considerations as the ergoregion in general
now contains trapped null geodesics. It is thus very much a phase space phenom-
enon. This disjointness can moreover be quantified, in particular, one can exploit
the superradiant/non-superradiant decomposition in the multiplier constructions
to ensure that the boundary terms are also controlled. One obtains thus the pre-
cise analogue of Proposition 5.2 for the whole subextremal range |a| < M . See
Section 11 of

M. Dafermos and I. Rodnianski The black hole stability problem for linear scalar
perturbations arXiv:1010.5137

In view also of the results to be discussed in Section 10.5 below, the above result
is sufficient to obtain the full set of decay estimates in the whole subextremal range.
Thus, with the above, the study of the scalar wave equation on the subextremal
Kerr family is complete.

Let us conclude this discussion with a remark about the miraculous disjointness
of the trapping and superradiance phenomena. A special case of this disjointness is
the absence of trapped null geodesics which are orthogonal to ∂t. This is related to
the conditional pseudoconvexity property that had played a fundamental role in the
Ionsecu–Klainerman approach to uniqueness of Kerr via unique continuation [96].
It would be of great interest to understand more conceptually the origin of this
feature. See also the next section for a discussion of the extremal case |a| = M .

10.3. The extremal case Q = M or |a| = M . (cf. Open problem 4)

The simplest example of an extremal black hole spacetime is extremal Reissner–
Nordström with parameters Q = M . As we have discussed in Section 8.1, on such
spacetimes the red-shift factor on the horizon vanishes. Thus, even a uniform
boundedness result in the style of Theorem 7.3 is now non-trivial.

This problem was taken up by Aretakis in a series of papers

S. Aretakis Stability and instability of extreme Reissner–Nordström black hole space-
times for linear scalar perturbations I Comm. Math. Phys. 307 (2011), 17–63

S. Aretakis Stability and instability of extreme Reissner–Nordström black hole space-
times for linear scalar perturbations II, Ann. Henri Poincare 12 (2011), 1491–1538

which we shall describe briefly in what follows.
First, one sees easily that in the extremal case, there is no pure-vector field

translation-invariant current satisfying KN ≥ 0 near the horizon, where N is time-
like at H+. With a suitable modification term, this problem can be overcome, and
the above series of papers indeed begins by constructing a current JN,1 satisfying

(108) KN,1 ≥ 0

near the horizon. It is however not possible to obtain

(109) KN,1 ≥ JN
μ Nμ.
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The bulk term associated to the JN,1 energy identity thus must still degenerate at
the horizon.

In view of the failure of (109) to hold, the above current is still not sufficient
to be used together with just T , in the manner of the argument of Section 3.3, to
obtain uniform boundedness up to and including the horizon.

Given, however, an analogue of an X-estimate, the nonnegativity property
(108) near the horizon is then sufficient to retrieve the boundedness of the boundary
terms JN,1, and thus uniform boundedness of the non-degenerate energy. One sees
that in the extremal case, the problem of boundedness for the non-degenerate energy
is inextricably coupled with local energy decay.73

The next result of the above series of papers indeed obtains the desired X
estimate, and thus, in view of the above remarks, both integrated local energy
decay and non-degenerate boundedness. Note, however, that, in view again of
the failure of (109), the spacetime integral in this estimate still degenerates at the
horizon, though the boundary term does not.

This weaker version of integrated local energy decay, together with the uniform
boundedness, can in turn be used to show decay for the degenerate JT -energy flux
through a suitable foliation, as well as pointwise decay, following the new method
outlined in Section 10.5 below. Again, however, the degeneration at the horizon
requires a modification of this method through the introduction of yet another
vector field. See the comments at the end of Section 10.5.

Perhaps the most surprising result of this work, however, is the fact that the
above degeneracies in the estimates are in fact necessary. Using a hierarchy of
conservation laws on the horizon, Aretakis proves that the non-degenerate JN -
energy generically does not decay through a foliation Σ̃τ , and higher order JN -
based energies blow up! Thus, extreme black holes are (mildly) unstable
on the event horizon itself!

In a more recent paper

S Aretakis Decay of axisymmetric solutions of the wave equation on extreme Kerr
backgrounds, arXiv:1110.2006

Aretakis has extended his stability results to axisymmetric solutions on extremal
Kerr. Obtaining analogues of the instability results in the Kerr case remains an
open problem.

The non-axisymmetric case comes with yet another difficulty. The main in-
sight leading to the resolution of the decay problem in the full subextremal range,
discussed in Section 10.2 above, namely that trapped frequencies are not superra-
diant, degenerates precisely at extremality! The repercussions of this phenomenon
for quantitative decay estimates are yet to be explored.

10.4. Improved decay and non-linear applications. (cf. Open problem
12)

73This situation is reminiscent of the original proof of uniform boundedness in [65] (i.e. before
the argument of Section 3.3 introduced in our later [68] was developed) where uniform boundedness
was obtained only after obtaining the X estimate. See the discussion in Section 3.4 of these notes.
The extremal case thus brings us full circle.
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The pointwise estimates of Theorem 4.1 for Schwarzschild yield in particular a
uniform decay bound |ψ| ≤ Ct−1, and this rate is sharp as a uniform decay bound
in t, in view of the behaviour of φ along the light cone. The decay obtained in the
above theorem is no better, however, in the region r ≤ R, where one expects more
decay; it is indeed essential to have this improvement for nonlinear applications.

In Minkowski space, seemingly strong decay results in such a region can be
obtained from the fundamental solution, most famously, the strong Huygens prin-
ciple for solutions arising from data with compact support, which states that for
large enough t, the solution vanishes in r ≤ R. As is well-known, however, this
level of decay is not “seen” by non-linear problems. The robust measure of de-
cay key to nonlinear stability properties in the most difficult 3 dimensional case
is precisely that first captured by weighted commutator estimates introduced by
Klainerman. This allowed proving for instance that |∂tψ| ≤ Ct−5/2 for fixed r,
where C depends on a suitable initial weighted higher-order energy norm. The
significance of this rate is simply that it is greater than 1, and thus, integrable in
time. (For some problems, the relevant decay estimate may involve an even slower
rate, e.g. ≤ Ct−2–but still integrable!–but never faster.) From the modern point of
view, these type of estimates thus represent the sharp robust improved decay result
on Minkowski space.

This problem of improved decay in the black hole setting was taken up by
J. Luk. It turned out to be expedient to use a single commutation with the analogue
of the scaling vector field on top of the weighted multiplier Z. Results were first
obtained for Schwarzschild in:

J. Luk Improved decay for solutions to the linear wave equation on a Schwarzschild
black hole, Ann. Henri Poincaré 11 (2010), no. 5, 805–880

Results for slowly-rotating Kerr followed in

J. Luk A vector field method approach to improved decay for solutions to the wave
equation on a slowly rotating Kerr black hole, arXiv:1009.0671

The ultimate test of whether one has “the right” decay-type results is whether
they can be used to prove a non-linear stability result by exploiting dispersion. This
is indeed accomplished in

J. Luk The null condition and global existence for nonlinear wave equations on
slowly rotating Kerr spacetimes, arXiv:1009.4109

With the above paper, a certain chapter is closed: In the scalar case, one
now understands the dispersive mechanism on black holes sufficiently well to tackle
nonlinear stability problems with quadratic nonlinearities in derivatives. But alas,
the black hole stability problem is not a scalar problem! For a discussion of progress
on understanding its tensorial aspects see Section 10.11.

10.5. A new physical space method for decay. The method of Section 12
of [65], streamlined in Section 4.2 of these notes, was already suggestive of the fact
that the integrated local energy decay coupled with the well-known behaviour at
null infinity together represented the only essential properties required for obtaining
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the “full” decay results. An additional difficulty, however, whose conceptual origin
was not clear, was caused by the weights of the vector field Z near the horizon and
the necessity of the positivity of both the associated bulk and boundary terms.

In Schwarzschild, by what appears to be a miracle, the vector field Z was
actually well behaved near the horizon (see Section 4.2). Already in slowly rotating
Kerr, however, this breaks down, and this fact was responsible for the loss of δ in
the argument given in these notes (see Section 5.3.6).

This phenomenon motivated a rethinking of the traditional use of the vector
field Z. It turns out that the difficulty of the behaviour of Z near the horizon
is in fact completely artificial, and the whole argument can be done in a much
more transparent–and, as we shall see, robust–manner with no weights in t, only
weights in r.

The crux of the new method is to replace Z with a p-hierarchy of rp-weighted
vector field currents which are used in sequence with p = 2, 1, 0, coupled at each
stage with the boundedness and integrated local energy decay result. The bulk
term of the p-current of the hierarchy is related to the boundary term of the p− 1-
current. One obtains thus (after several iterations) quadratic τ−2 decay of the

energy flux through foliations Σ̃τ , and from this, the associated pointwise decay
bounds by commutations with T and–as systematised in Section 7–N . The power
τ−2 is dictated by the maximum p which can be taken in the hierarchy, p = 2.

The nature of this argument is such that one need not use any information
about the geometry in the region of finite r, other than that already encoded in
the boundedness and integrated decay statements. This allows one to formulate a
“black box” type theorem, stating that given a boundedness result to all orders and
an integrated decay statement, possibly with finite derivative loss (as one expects
when “good” trapping is present), one could obtain all the results traditionally
proven through application of the multiplier Z (in fact, the improved decay results
of Klainerman’s vector field method [100] essential for non-linear problems: see
below). This argument was first presented in

M. Dafermos and I. Rodnianski, A new physical-space approach to decay for the
wave equation with applications to black hole spacetimes, in XVIth International
Congress on Mathematical Physics, P. Exner (ed.), World Scientific, London, 2009,
pp. 421–433

In particular, in view of the integrated decay result of Section 10.2, the above
argument applies to Kerr in the full subextremal range |a| < M .

Adapting ideas from the work of Luk to the setting of this new argument,
Schlue has extended this method (in fact in all dimensions, see Section 10.9!) so
as to retrieve the improved decay of Section 10.4. Essentially, upon commutation
with weighted vector fields in r (but again, not in t for fixed r), one can extend the
p-hierarchy to p > 2, allowing for more decay in τ of higher-order energies, from
which improved decay follows.

Let us note that this new method has a host of novel applications to the study of
linear and nonlinear wave equations on nonstationary perturbations of Minkowski
space, boundary value problems, etc. See for example
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S. Yang Global solutions of nonlinear wave equations in time dependent inhomoge-
nous media, arXiv:1010.4341

Finally, let us explicitly remark that the extremal Reissner–Nordström Q = M
or extremal Kerr case |a| = M do not satisfy the “black box” assumptions of the
new method described above, precisely due to the degeneration of the estimates at
the horizon. Nonetheless, the method has been extended so as to apply also to this
case by Aretakis in the works referred to in Section 10.3 above, by adding to the
hierarchy of estimates described above yet another, associated to a vector field P
supported near the horizon. The vector fields N , P and T then stand in a hierarchal
relation analogous to the p-hierarchy at null infinity.

10.6. Quasinormal modes and Kerr-de-Sitter. Recall our brief discussion
of the cosmological case from Section 6. One approach to proving exponential
decay in the Schwarzschild-de Sitter spacetime, in the region between the event
and cosmological horizons, was by proving resolvent estimates in a strip below the
real axis [24]. To be extended to the Kerr case, as a first step, one needed to
understand the asymptotic distribution of the poles of the resolvent–the so-called
quasinormal modes, in the spirit of results of Sa Barreto–Zworski [135]. As the
ω-dependence of the resolvent is non-standard, even defining these poles requires a
new argument. This was accomplished in two beautiful papers of Dyatlov

S. Dyatlov Quasi-normal modes and exponential decay for the Kerr–de Sitter black
hole Commun. Math. Phys. 306 (2011), 119–163

S. Dyatlov Asymptotic distribution of quasi-normal modes for Kerr–de Sitter black
holes to appear in Annales Henri Poincaré

where the Schwarzschild–de Sitter picture of [135, 24] was reproduced for slowly
rotating Kerr–de Sitter black holes, and this was used to show exponential decay
type results.

A drawback of the resolvent approach, already in the Schwarzschild–de Sitter
case [24], is that it required data supported away from the horizons. (See how-
ever [150].) By combining the approach with the red-shift estimates as introduced
in [65, 68], Dyatlov was able to remove this limitation, both allowing for general
data, and obtaining non-degenerate estimates at and beyond the horizons:

S. Dyatlov Exponential energy decay for Kerr–de Sitter black holes beyond event
horizons, to appear in Mathematical Research Letters

Another approach to exponential decay on de-Sitter space based on resolvent
estimates is given by Vasy:

A. Vasy Microlocal analysis of asymptotically hyperbolic Kerr-de Sitter spaces (with
an appendix by S. Dyatlov), arXiv:1012.4391

10.7. Fine tails revisited. As we have noted before, the decay results of
Section 10.4 and 10.5 are sharp from the point of view of applications to non-linear
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problems, as they correspond exactly to the full decay results of Klainerman’s vector
field method [100] on Minkowski space.

On the other hand, one may ask to what extent can these results be improved
if one is willing to specialise the data to be rapidly decaying (say compactly sup-
ported) and very regular (say C∞), and if one is not so picky about the underlying
regularity assumptions on the metric–for instance, if one is only interested in exactly
Schwarzschild or Kerr spacetimes.

In Minkowski space, under such assumptions one would have the strong Huy-
gens principle. As discussed in Section 4.6, backscattering of low frequencies from
far away curvature already suggests that generically one must have at best a poly-
nomially decaying tail. Note, however, that these tails are still “finer” (i.e. they
correspond to faster decay) than the improved polynomial decay rates in the inte-
rior governed by the vector field method, described in Section 10.4. There is thus
a gap between what is sharp from the point of view of the initial data norms of the
vector field method and that which may hold for a more restricted class of data.

As discussed in Section 4.6, the first work to obtain a quantitative estimate clos-
ing this gap was our work [63] on the spherically symmetric Einstein–(Maxwell)–
scalar field system, where we showed that if a non-extremal black hole formed, one
could estimate the solution in the region r ≤ R, by Cεv

−3+ε, provided that the data
initially decayed very fast at spatial infinity. When specialised to the linear problem
of spherically symmetric waves on a fixed subextremal Reissner–Nordström back-
ground, the result also applies, and Cε can be estimated by a weighted C1 norm of
data.

The above work, which concerns fully dynamic, radiative solutions of an Einstein-
matter system, may at first suggest that, indeed, it is purely low-frequency backscat-
tering that determines asymptotics. The spherically symmetric case, however, is
anomalous, in particular, because it does not exhibit the phenomenon of trapping,
which, as discussed in Section 4.6, effects the nature of any quantitative decay
statement.74 At the time of writing of these lecture notes, it was not clear whether
there was any non-spherically symmetric regime where the tails arising from the
low-frequency backscattering off far away curvature are not dwarfed by other phe-
nomena.

It turns out, however, that indeed, in various special cases, one can prove rates
of decay exactly up to the obstruction from low-frequency backscattering, by first
making rigorous some of the low-frequency estimates from the physics literature,
and then combining these with quantitative control of trapping, similar to the
integrated local energy decay estimates discussed in these notes, so as to control
the “totality of high frequencies”.

With respect to the first part of the programme, we have already discussed
various results concerning the � = 0 case above and in Section 4.6. This programme
was continued in

R. Donninger, W. Schlag and A. Soffer A proof of Price’s law on Schwarzschild black
hole manifold for all angular momenta, Adv. Math. 266 (2011), no. 1, 484–540

74The spherically symmetric Einstein–scalar field case is anomalous in a second way, in that
the quadratic non-linearities of the Einstein equations do not effect the radiative properties, as
these are determined by the scalar field whose dynamics are linear.
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where a quantitative estimate is shown for each fixed spherical harmonic number
�, coinciding with Price’s prediction for � = 0 in the compactly supported case, but
slightly weaker for higher �, but still, increasing with �. Subsequently, in

R. Donninger, W. Schlag and A. Soffer On pointwise decay for linear waves on a
Schwarzschild black hole background, to appear in Commun. Math. Phys.

it is then shown that one could sum the spherical harmonics starting from any �0 to
obtain that the sum still satisfies the faster decay rate shown above associated to
�0. The proof indeed now requires quantitative control of trapping similar to that
provided by the integrated local energy decay estimates of Section 4.1. This latter
result gives a quantitative formulation of the principle that the totality of “higher
spherical modes” indeed decays faster.

Another noteworthy result in the above direction is the quite general result of
Tataru:

D. Tataru Local decay of waves on asymptotically flat stationary spacetimes, to
appear, Amer. J. Math.

which says that for exactly stationary spacetimes, then, given a uniform bounded-
ness, integrated local energy decay result and good asymptotics at infinity, one can
retrieve the worst-mode decay prediction of Price for very regular initial data that
decays rapidly at spatial infinity.

In view of our results described in Section 10.2, the result of the above paper
can now be applied to the Kerr family in the whole subextremal range |a| < M ,
just like our own approach of Section 10.5. It cannot be stressed too much that
in order to be applicable in the black hole context, the assumptions of the above
paper require non-degenerate estimates, in fact to all order, on the horizon, and
thus require both the multiplier and commutator propositions of Section 7. In
particular, the above paper cannot be applied in the extremal case |a| = M , in
view of the results of Section 10.3. Nonetheless, it would be interesting to attempt
to adapt the approach of the above paper to the extremal case, following the lines
of Aretakis’s adaptation of our own method of Section 10.5.

The above work of Tataru relied heavily on resolvent estimates and was re-
stricted to exactly stationary spacetimes. A different approach, using the fun-
damental solution of the standard wave operator on Minkowski space, was given
subsequently in

D. Tataru, J. Metcalfe and M. Tohaneanu Price’s law on nonstationary spacetimes,
arXiv:1104.5437

This requires even more restrictive initial data but allows to treat the wave equation
on a certain class of dynamical spacetimes, which do not however radiate energy
to infinity. Upon imposing the Einstein equations, however, this class essentially
reduces to the stationary case.

10.8. Applications of dynamical systems to trapping. A common theme
in all the work quantifying the trapping obstruction has been the latter’s close
relation to geodesic flow. Often this relation is only implicit in the constructions.
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It would be nice to make this more explicit, so as in particular to be able to exploit
perturbative results in dynamical systems to draw conclusions on decay for waves
on say stationary perturbations of Kerr. A first result in this direction is given by
very nice work of Wunsch–Zworski:

J. Wunsch and M. Zworski Resolvent estimates for normally hyperbolic trapped sets,
Ann. Henri Poincaré, to appear

10.9. Higher dimensions. (cf. Open problem 9)

In his Smith–Knight prize essay,

V. Schlue Linear waves on higher dimensional Schwarzschild black holes Rayleigh
Smith Knight Essay, January 2010, University of Cambridge

Schlue proved the analogue of integrated local energy decay (i.e. the analogue of
(39), and then, used this to prove the analogue of Theorem 4.1, by also generalising
the 3-dimensional construction of the vector field Z to all higher dimensions. In
particular, the details of the scheme described in Section 4.2 of these notes (which
differs slightly from the approach [65]) are presented there.

In his subsequent

V. Schlue Linear waves on higher dimensional Schwarzschild black holes,
arXiv:1012.5963

he took the new approach of Section 10.5, generalising it to all dimensions, and
extending it so as to yield the improved decay of Luk in the interior region. This
argument has far reaching applications beyond the black hole setting. See the
discussion of Section 10.5. It remains an open problem, however, to obtain the
correct dimensionally dependent improved decay rates, which should become faster
with larger n.

Laul and Metcalfe present an independent, alternative construction for the in-
tegrated local energy decay part of the above work in the case of higher dimensional
Schwarzschild:

P. Laul and J. Metcalfe Localized energy estimates for wave equations on high di-
mensional Schwarzschild space-times, Proc. Amer. Math. Soc., to appear

The Laul–Metcalfe construction has the attractive feature that, following [115], it
avoids the angular frequency localisation of [65] in an alternative way from our own
method, introduced in [67], of combining multipliers with commutation by angular
momentum operators.

10.10. Asymptotically-AdS spacetimes. (cf. Open problem 8)

The mathematical study of the wave and Klein–Gordon equation on gen-
eral asymptotically-AdS spacetimes was initiated by Holzegel who proved uniform
boundedness for solutions if the mass satisfied the Breitenlohner–Freedman bound:
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G. Holzegel On the massive wave equation on slowly rotating Kerr-AdS spacetimes
Commun. Math. Phys. 294 (2009), 169–197

The above problem is non-standard as the underlying spacetime is not globally
hyperbolic. The issue of well-posedness must thus also be addressed and such a
theorem was indeed obtained in

G. Holzegel Well-posedness for the massive wave equation on asymptotically anti-de
Sitter spacetimes, arXiv:1103.0710

with a suitable boundary condition at infinity that ensures the finiteness of energy.
The above work in particular shed new light on the Breitenlohner-Freedman bound,
which now appears as the best constant in a Hardy inequality. An alternative
approach to well-posedness has been given by Vasy:

A. Vasy The wave equation on asymptotically Anti-de Sitter spaces, to appear in
Analysis and PDE

Finally, we mention that there is a range of mass parameters which admit an alter-
native boundary condition at infinity, and there is work in progress of C. Warnick
which obtains well-posedness in that setting as well.

Most recently, in joint work of Holzegel and Smulevici, logarithmic decay has
been shown for general solutions of Klein–Gordon on Kerr–AdS.

G. Holzegel and J. Smulevici Decay properties of Klein–Gordon fields on Kerr–AdS
spacetimes, arXiv:1110.6794

In the Schwarzschild–AdS case, it is in fact shown that individual spherical har-
monics decay exponentially. For general solutions made up of infinitely many such
spherical harmonics, again, it is only shown that the solution decays logarithmically.
This slow decay result is expected to be sharp as a quantitative measure
of decay, in view of the conjectured existence of a sequence of quasinormal modes
ωi exponentially approaching the real axis as Re(ωi) → ±∞.

Previously, Holzegel–Smulevici had investigated the coupled spherically sym-
metric Einstein–Klein–Gordon system in a series of papers. After settling the well-
posedness issue in

G. Holzegel and J. Smulevici Self-gravitating Klein–Gordon fields in asymptotically
Anti-de Sitter spacetimes, Annales Henri Poincaré, to appear

they prove asymptotic stability of Schwarzschild–AdS in

G. Holzegel and J. Smulevici Stability of Schwarzschild-AdS for the spherically sym-
metric Einstein–Klein–Gordon system, arXiv:1103.3672,

in fact, small perturbations of Schwarzschild–AdS exponentially converge to
Schwarzschild–AdS.

The spherically symmetric work was motivated by an older conjecture:
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Conjecture 10.1 (Dafermos–Holzegel, 2006). Schwarzschild–AdS is the end-
state of generic initial data for the Einstein–Klein–Gordon system under spherical
symmetry, including those data which are arbitrarily small. In particular, pure
AdS would be dynamically unstable.75

This was motivated on the one hand by the existence of an infinite sequence
of stationary solutions of the wave equation on pure AdS (and thus the lack of a
dispersive mechanism), and on the other hand, the fact that in spherical symmetry
the presence of the horizon provides an effective route for dispersion. Following
Holzegel–Smulevici’s work, numerical evidence for this behaviour was obtained by
Bizoń–Rostworowski in

P. Bizoń and A. Rostworowski On weakly turbulent instability of anti-de Sitter
space, Phys. Rev. Lett. 107:031102, 2011

The above paper also gives a more detailed heuristic analysis of this instability from
the point of second order perturbation theory.

One should not be fooled, however, by the spherically symmetric picture, where
trapped surface formation guarantees then exponential convergence to Schwarzschild–
AdS! In view of the slow decay result for general solutions of the wave equation
Kerr–AdS, this suggests that when non-spherically symmetric perturbations are
allowed, then Kerr–AdS should be subject to the same instability considerations as
pure AdS. In view of this, Holzegel–Smulevici conjecture

Conjecture 10.2 (Holzegel–Smulevici). All asymptotically AdS vacuum space-
times are non-linearly unstable.

10.11. Gravitational perturbations. (cf. Open problem 6)

As discussed in Section 3, the wave equation is a “poor man’s” linearisation
for the Einstein equations themselves. The actual linearisation carries tensorial
structure–and the nature of this structure is still poorly understood.

One of the main difficulties of the linearised Einstein equations is that they
do not carry an obvious analogue of the energy-momentum tensor from which to
construct conserved currents. The situation is actually somewhat clearer when
one considers the full Einstein equations, but allows a priori assumptions on the
“spin coefficients”, which one does not try to retrieve.76 This approach has been
considered by Holzegel in:

G. Holzegel Ultimately Schwarzschildean spacetimes and the black hole stability
problem, arXiv:1010.3216

In this setting, the curvature tensor of the spacetime satisfies the Bianchi equa-
tions and thus admits an energy defined by the Bel-Robinson tensor. (Note in con-
trast that when linearising the Einstein equations around Schwarzschild or Kerr,

75See M. Dafermos, The Black Hole Stability Problem. Newton Institute, Cambridge, 2006
http://www.newton.ac.uk/webseminars/pg+ws/2006/gmx/1010/dafermos/ and M. Dafermos and
G. Holzegel, Dynamic instability of solitons in 4+1 dimensional gravity with negative cosmological
constant, unpublished manuscript, 2006

76This can be viewed as the “non-linear PDEer’s” linearisation, familiar from bootstrap
arguments.
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the “linearised” curvature tensor will not satisfy the Bianchi equations.) Of course,
as this is a fully dynamic spacetime without a Killing field, this energy does not
lead to a conserved current, but generates a divergence which can be understood
geometrically in terms of contractions with the deformation tensor of a suitable
vector field. Using this setup, Holzegel is able to prove a conditional decay result.

The above work of Holzegel contains many other results of independent interest,
including, a generalisation of the red-shift estimates of Section 7 for the Einstein
equations themselves as well as a generalisation of the method of Section 10.5,
using it to capture peeling properties as well as a version of the null condition. In
particular, the latter may suggest yet another approach to the proof of stability of
Minkowski space.

Another result which, though far easier than the stability problem, gives in-
sight into its novel nonlinear and tensorial aspects, is the problem of constructing
non-trivial examples of spacetimes which asymptote to Schwarzschild or Kerr, pa-
rameterised by free “scattering” data on the event horizon and null infinity. We
have very recently obtained precisely such a result, in collaboration with Holzegel:

M. Dafermos, G. Holzegel, and I. Rodnianski Construction of ultimately Schwarzs-
child and Kerr spacetimes, in preparation

Most interestingly, the above work in particular identifies how to renormalise
both the optical structure equations and the Bianchi equations so as to capture
approach to a particular Schwarzschild or Kerr solution. Through this renormali-
sation, energies can be constructed which involve only those quantities that radiate
away.

Let us mention also that, like in the stability problem, the above work requires
capturing an appropriate version of peeling and the null condition, and this is
accomplished directly at the level of the Bianchi equations, using an adaptation of
the method of Section 10.5, following also the previous work of Holzegel referred to
above.

Finally, an interesting twist in this “scattering” problem is that the redshift,
which throughout these notes has always played the role of a stabilising mechanism,
now works against us. For in trying to solve the problem backwards, one confronts
the positivity computation of Section 7 as a blue-shift effect ! To counterbalance
this effect, in order to construct our spacetimes in the above work, one must impose
exponential approach to Schwarzschild or Kerr along the event horizon and along
null infinity.77

For solutions evolving from generic initial data near Schwarzschild or Kerr, now
imposed on an asymptotically flat Cauchy surface, on the basis of the conjectured
sharpness of the inverse polynomial decay rates for wave equations along78 I+ and
H+ obtained as in Section 10.5 or 10.7, one expects that the radiation fields along

77We stress however that we are not imposing additional decay towards null infinity. The
decay in r corresponds precisely to the decay one obtains in the “forward problem”, and thus the
free scattering data of the problem corresponds precisely to the scattering data induced by general
solutions of the “forward” problem from the point of view of their functional freedom. Additional
decay in r would effectively force the scattering data at null infinity to vanish.

78Decay along null infinity or the event horizon is related to the improved decay rates in the
interior. We stress again, as in the previous footnote, that this is not the decay rate in r towards
null infinity, which is also of course polynomial.
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null infinity and the dynamic fields on the event horizon should decay polynomi-
ally, not exponentially. The estimates of the above work strongly suggest, however,
that if one were to start with “generic” such power-law decaying scattering data,
and attempt to solve backwards, the solution would not exist up to an asymptoti-
cally flat Cauchy surface. This in turn suggests that the characterization of the set
of solutions arising from regular asymptotically flat Cauchy data is not encoded in
the falloff rate of scattering data along I+ and H+ alone, but in non-local correla-
tions between these two sets of data. Thus, as a matter of principle, the “generic”
case from the forward perspective is not easily captured when starting from scat-
tering data at H+ and I+, and the type of result proven in the above paper can be
expected to be an optimal result of its kind.

Appendix A. Lorentzian geometry

The reader who wishes a formal introduction to Lorentzian geometry can con-
sult [91]. For the reader familiar with the concepts and notations of Riemannian
geometry, the following remarks should suffice for a quick introduction.

A.1. The Lorentzian signature. Lorentzian geometry is defined as in Rie-
mannian geometry, except that the metric g is not assumed positive definite, but of
signature (−,+, . . . ,+). That is to say, we assume that at each point p ∈ Mn+1,79

we may find a basis ei of the tangent space TpM, i = 0, . . . , n, such that

g = −e0 ⊗ e0 + e1 ⊗ e1 + · · ·+ en ⊗ en.

In Riemannian geometry, the − in the first term on the right hand side would be
+.

A non-zero vector v ∈ TpM is called timelike, spacelike, or null, according
to whether g(v, v) < 0, g(v, v) > 0, or g(v, v) = 0. Null and timelike vectors
collectively are known as causal. There are various conventions for the 0-vector.
Let us not concern ourselves with such issues here.

The appellations timelike, spacelike, null are inherited by vector fields and
immersed curves by their tangent vectors, i.e. a vector field V is timelike if V (p) is
timelike, etc., and a curve γ is timelike if γ̇ is timelike, etc. On the other hand, a
submanifold Σ ⊂ M is said to be spacelike if its induced geometry is Riemannian,
timelike if its induced geometry is Lorentzian, and null if its induced geometry is
degenerate. (Check that these two definitions coincide for embedded curves.) For a
codimension-1 submanifold Σ ⊂ M, at every p ∈ M , there exists a non-zero normal
nμ, i.e. a vector in TpM such that g(n, v) = 0 for all v ∈ TpΣ. It is easily seen that
Σ is spacelike iff n is timelike, Σ is timelike iff n is spacelike, and Σ is null iff n is
null. Note that in the latter case n ∈ TpΣ. The normal of Σ is thus tangent to Σ.

A.2. Time-orientation and causality. A time-orientation on (M, g) is de-
fined by an equivalence class [K] whereK is a continuous timelike vector field, where
K1 ∼ K2 if g(K1,K2) < 0. A Lorentzian manifold admitting a time-orientation
is called time-orientable, and a triple (M, g, [K]) is said to be a time-oriented
Lorentzian manifold. Sometimes one reserves the use of the word “spacetime”
for such triples. In any case, we shall always consider time-oriented Lorentzian
manifolds and often drop explicit mention of the time orientation.

79It is conventional to denote the dimension of the manifold by n+ 1.
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Given this, we may further partition causal vectors as follows. A causal vector
v is said to be future-pointing if g(v,K) < 0, otherwise past-pointing, where K is
a representative for the time orientation. As before, these names are inherited by
causal curves, i.e. we may now talk of a future-directed timelike curve, etc. Given
p, we define the causal future J+(p) by

J+(p) = p ∪ {q ∈ M : ∃γ : [0, 1] → M : γ̇ future-pointing, causal}
Similarly, we define J−(p) where future is replaced by past in the above. If S ⊂ M
is a set, then we define

J±(S) = ∪p∈SJ
±(p).

A.3. Covariant derivatives, geodesics, curvature. The standard local
notions of Riemannian geometry carry over. In particular, one defines the Christof-
fel symbols

Γμ
νλ =

1

2
gμα(∂νgαλ + ∂λgνα − ∂αgνλ),

and geodesics γ(t) = (xα(t)) are defined as solutions to

ẍμ + Γμ
νλẋ

ν ẋλ = 0.

Here gμν denote the components of g with respect to a local coordinate system xμ,
gμν denotes the components of the inverse metric, and we are applying the Einstein
summation convention where repeated upper and lower indices are summed. The
Christoffel symbols allow us to define the covariant derivative on (k, l) tensor fields
by

∇λA
ν1...νk
μ1...μ�

= ∂λA
ν1...νk
μ1...μ�

+
k∑

i=1

Γνi

λρA
ν1...ρ...νk
μ1...μ�

−
l∑

i=1

Γρ
λμi

Aν1...νk
μ1...ρ...μ�

where it is understood that ρ replaces νi, μi, respectively in the two terms on the
right. This defines (k, l+1) tensor. As usual, if we contract this with a vector v at
p, then we will denote this operator as ∇v and we note that this can be defined in
the case that the tensor field is defined only on a curve tangent to v at p. We may
thus express the geodesic equation as

∇γ̇ γ̇ = 0.

The Riemann curvature tensor is given by

Rμ
νλρ

.
= ∂λΓ

μ
ρν − ∂ρΓ

μ
λν + Γα

ρνΓ
μ
λα − Γα

λνΓ
μ
ρα,

and the Ricci and scalar curvatures by

Rμν
.
= Rα

μαν , R
.
= gμνRμν .

Using the same letter R to denote all these tensors is conventional in relativity, the
number of indices indicating which tensor is being referred to. For this reason we
will avoid writing “the tensor R”. The expression R without indices will always
denote the scalar curvature. As usual, we shall also use the letter R with indices to
denote the various manifestations of these tensors with indices raised and lowered
by the inverse metric and metric, e.g.

Rμνλρ = gμαR
α
νλρ

Note the important formula

∇α∇βZμ −∇α∇βZμ = RσμαβZ
σ
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We say that an immersed curve γ : I → M is inextendible if there does not
exist an immersed curve γ̃ : J → M where J ⊃ I and γ̃|I = γ.

We say that (M, g) is geodesically complete if for all inextendible geodesics γ :
I → M, then I = R. Otherwise, we say that it is geodesically incomplete. We can
similarly define the notion of spacelike geodesic (in)completeness, timelike geodesic
completeness, causal geodesic completeness, etc, by restricting the definition to
such geodesics. In the latter two cases, we may further specialise, e.g. to the
notion of future causal geodesic completeness, by replacing the condition I = R

with I ⊃ (a,∞) for some a.
We say that a spacelike hypersurface Σ ⊂ M is Cauchy if every inextendible

causal curve in M intersects it precisely once. A spacetime (M, g) admitting such
a hypersurface is called globally hyperbolic. This notion was first introduced by
Leray [112].

Appendix B. The Cauchy problem for the Einstein equations

We outline here for reference the basic framework of the Cauchy problem for
the Einstein equations

(110) Rμν − 1

2
gμνR + Λgμν = 8πTμν .

Here Λ is a constant known as the cosmological constant and Tμν is the so-called
energy momentum tensor of matter. We will consider mainly the vacuum case

(111) Rμν = Λgμν ,

where the system closes in itself. If the reader wants to set Λ = 0, he should feel
free to do so. To illustrate the case of matter, we will consider the example of a
scalar field.

B.1. The constraint equations. Let Σ be a spacelike hypersurface in (M, g),
with future directed unit timelike normal N . By definition, Σ inherits a Riemannian
metric from g. On the other hand, we can define the so-called second fundamental
form of Σ to be the symmetric covariant 2-tensor in TΣ defined by

K(u, v) = −g(∇uV,N)

where V denotes an arbitrary extension of v to a vector field along Σ, and ∇ here
denotes the connection of g. As in Riemannian geometry, one easily shows that the
above indeed defines a tensor on TΣ, and that it is symmetric.

Suppose now (M, g) satisfies (110) with some tensor Tμν . With Σ as above,
let ḡab, ∇̄, Kab denote the induced metric, connection, and second fundamental
form, respectively, of Σ. Let barred quantities and Latin indices refer to tensors,
curvature, etc., on Σ, and let Πν

a(p) denote the components of the pullback map
T ∗M → T ∗Σ. It follows that

(112) R̄+ (Ka
a )

2 −Ka
bK

b
a = 16π Tμνn

μnν + 2Λ,

(113) ∇bK
b
a −∇aK

b
b = 16πΠν

aTμνn
μ.

To see this, one derives as in Riemannian geometry the Gauss and Codazzi equa-
tions, take traces, and apply (110).
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B.2. Initial data. It is clear that (112), (113) are necessary conditions on the
induced geometry of a spacelike hypersurface Σ so as to arise as a hypersurface in a
spacetime satisfying (110). As we shall see, immediately, they will also be sufficient
conditions for solving the initial value problem.

B.2.1. The vacuum case. Let Σ be a 3-manifold, ḡ a Riemannian metric on Σ,
and K a symmetric covariant 2-tensor. We shall call (Σ, ḡ, K) a vacuum initial data
set with cosmological constant Λ if (112)–(113) are satisfied with Tμν = 0. Note
that in this case, equations (112)–(113) refer only to Σ, ḡ, K.

B.2.2. The case of matter. Let us here provide only the case for the Einstein-
scalar field case. Here, the system is (110) coupled with

(114) �gψ = 0,

(115) Tμν = ∂μψ∂νψ − 1

2
gμν∇αψ∇αψ.

First note that were Σ a spacelike hypersurface in a spacetime (M, g) satisfying
the Einstein-scalar field system with massless scalar field ψ, and nμ were the future-
directed normal, then setting ψ′ = nμ∂μφ, ψ = φ|Σ we have

Tμνn
μnν =

1

2
((ψ′)2 + ∇̄aψ∇̄aψ),

Πν
aTμνn

μ = ψ′∇̄aψ,

where latin indices and barred quantities refer to Σ and its induced metric and
connection.

This motivates the following: Let Σ be a 3-manifold, ḡ a Riemannian metric
on Σ, K a symmetric covariant 2-tensor, and ψ : Σ → R, ψ′ : Σ → R functions.
We shall call (Σ, ḡ, K) an Einstein-scalar field initial data set with cosmological
constant Λ if (112)–(113) are satisfied replacing Tμνn

μnν with 1
2 ((ψ

′)2+∇̄aψ∇̄aψ),

and replacing Πν
aTμνn

μ with ψ′∇̄aψ.
Note again that with the above replacements the equations (112)–(113) do not

refer to an ambient spacetime M. See [36] for the construction of solutions to this
system.

B.2.3. Asymptotic flatness and the positive mass theorem. The study of the
Einstein constraint equations is non-trivial!

Let us refer in this section to a triple (Σ, ḡ, K) where Σ is a 3-manifold, ḡ a
Riemannian metric, and K a symmetric two-tensor on Σ as an initial data set,
even though we have not specified a particular closed system of equations. An
initial data set (Σ, ḡ, K) is strongly asymptotically flat with one end if there exists
a compact set K ⊂ Σ and a coordinate chart on Σ \ K which is a diffeomorphism
to the complement of a ball in R3, and for which

gab =

(
1 +

2M

r

)
δab + o2(r

−1), kab = o1(r
−2),

where δab denotes the Euclidean metric and r denotes the Euclidean polar coordi-
nate.

In appropriate units, M is the “mass” measured by asymptotic observers, when
comparing to Newtonian motion in the frame δab. On the other hand, under the
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assumption of a global coordinate system well-behaved at infinity, M can be com-
puted by integration of the t00 component of a certain pseudotensor80 added to
T 0
0 . In this manifestation, the quantity E = M is known as the total energy.81

This relation was first studied by Einstein and is discussed in Weyl’s book Raum-
Zeit-Materie [154]. If one looks at E for a family of hypersurfaces with the above
asymptotics, then E is conserved.

A celebrated theorem of Schoen-Yau [137, 138] (see also [156]) states

Theorem B.1. Let (Σ, ḡ, K) be strongly asymptotically flat with one end and
satisfy (112), (113) with Λ = 0, and where Tμνn

μnν , Πν
aTμνn

μ are replaced by the
scalar μ and the tensor Ja, respectively, defined on Σ, such that moreover μ ≥√
JaJa. Suppose moreover the asymptotics are strengthened by replacing o2(r

−1)
by O4(r

−2) and o1(r
−2) by O3(r

−3). Then M ≥ 0 and M = 0 iff Σ embeds
isometrically into R3+1 with induced metric ḡ and second fundamental form K.

The assumption μ ≥
√
JaJa holds if the matter satisfies the dominant energy

condition [91]. In particular, it holds for the Einstein scalar field system of Sec-
tion B.2.2, and (of course) for the vacuum case. The statement we have given
above is weaker than the full strength of the Schoen-Yau result. For the most
general assumptions under which mass can be defined, see [9].

One can define the notion of strongly asymptotically flat with k ends by assum-
ing that there exists a compact K such that Σ \ K is a disjoint union of k regions
possessing a chart as in the above definition. The Cauchy surface Σ of Schwarzs-
child of Kerr with 0 ≤ |a| < M , can be chosen to be strongly asymptotically flat
with 2-ends. The mass of both ends coincides with the parameterM of the solution.

The above theorem applies to this case as well for the parameter M associated
to any end. If M = 0 for one end, then it follows by the rigidity statement that
there is only one end. Note why Schwarzschild with M < 0 does not provide a
counterexample.

The association of “naked singularities” with negative mass Schwarzschild gave
the impression that the positive energy theorem protects against naked singularities.
This is not true! See the examples discussed in Section 2.6.2.

In the presence of black holes, one expects a strengthening of the lower bound
on mass in Theorem B.1 to include a term related to the square root of the area of a
cross section of the horizon. Such inequalities were first discussed by Penrose [127]
with the Bondi mass in place of the mass defined above. All inequalities of this type
are often called Penrose inequalities. It is not clear what this term should be, as the
horizon is only identifiable after global properties of the maximal development have
been understood. Thus, one often replaces this area in the conjectured inequality
with the area of a suitably defined apparent horizon. Such a statement has indeed
been obtained in the so-called Riemannian case (corresponding to K = 0) where
the relevant notion of apparent horizon coincides with that of minimal surface. See
the important papers of Huisken–Ilmanen [95] and Bray [25].

80This is subtle: The Einstein vacuum equations arise from the Hilbert Lagrangian L(g) =∫
R which is 2nd order in the metric. In local coordinates, the highest order term is a divergence,

and the Lagrangian can thus be replaced by a new Lagrangian which is 1st order in the metric.
The resultant Lagrangian density, however, is no longer coordinate invariant. The quantity t00
now arises from “Noether’s theorem” [124]. See [49] for a nice discussion.

81With the above asymptotics, the so-called linear momentum vanishes. Thus, in this case
“mass” and energy are equivalent.
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B.3. The maximal development. Let (Σ, ḡ, K) denote a smooth vacuum
initial data set with cosmological constant Λ. We say that a smooth spacetime
(M, g) is a smooth development of initial data if

(1) (M, g) satisfies the Einstein vacuum equations (4) with cosmological con-
stant Λ.

(2) There exists a smooth embedding i : Σ → M such that (M, g) is globally
hyperbolic with Cauchy surface i(Σ), and ḡ, K are the induced metric
and second fundamental form, respectively.

The original local existence and uniqueness theorems were proven in 1952 by
Choquet-Bruhat [33].82 In modern language, they can be formulated as follows

Theorem B.2. Let (Σ, ḡ, K) be as in the statement of the above theorem. Then
there exists a smooth development (M, g) of initial data.

Theorem B.3. Let M, M̃ be two smooth developments of initial data. Then
there exists a third development M′ and isometric embeddings j : M′ → M, j̃ :

M′ → M̃ commuting with i, ĩ.

Application of Zorn’s lemma, the above two theorems and simple facts about
Lorentzian causality yields:

Theorem B.4. (Choquet-Bruhat–Geroch [35]) Let (Σ, ḡ, K) denote a smooth
vacuum initial data set with cosmological constant Λ. Then there exists a unique
development of initial data (M, g) satisfying the following maximality statement: If

(M̃, g̃) satisfies (1), (2) with embedding ĩ, then there exists an isometric embedding

j : M̃ → M such that j commutes with ĩ.

The spacetime (M, g) is known as the maximal development of (Σ, ḡ, K). The
spacetime M∩J+(Σ) is known as the maximal future development and M∩J−(Σ)
the maximal past development.

We have formulated the above theorems in the class of smooth initial data.
They are of course proven in classes of finite regularity. There has been much recent
work in proving a version of Theorem B.2 under minimal regularity assumptions.
The current state of the art requires only ḡ ∈ H2+ε, K ∈ H1+ε. See [102].

We leave as an exercise formulating the analogue of Theorem B.4 for the
Einstein-scalar field system (110), (114), (115), where the notion of initial data set
is that given in Section B.2.2.

B.4. Harmonic coordinates and the proof of local existence. The state-
ments of Theorems B.2 and B.3 are coordinate independent. Their proofs, however,
require fixing a gauge which determines the form of the metric functions in coordi-
nates from initial data. The classic gauge is the so-called harmonic gauge83. Here
the coordinates xμ are required to satisfy

(116) �gx
μ = 0.

Equivalently, this gauge is characterized by the condition

(117) gμνΓα
μν = 0.

82Then called Fourès-Bruhat.
83also known as wave coordinates
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A linearised version of these coordinates was used by Einstein [74] to predict
gravitational waves. It appears that de Donder [70] was the first to consider har-
monic coordinates in general. These coordinates are discussed extensively in the
book of Fock [82].

The result of Theorem B.3 actually predates Theorem B.2, and in some form

was first proven by Stellmacher [143]. Given two developments (M, g), (M̃, g̃) one
constructs for each harmonic coordinates xμ, x̃μ adapted to Σ, such that gμν = g̃μν ,
∂λgμν = ∂λg̃μν along Σ. In these coordinates, the Einstein vacuum equations can
be expressed as

(118) �gg
μν = Qμν,αβ

ικλρστ g
ικ ∂αg

λρ ∂βetag
στ

for which uniqueness follows from general results of Schauder [136]. This theorem
gives in addition a domain of dependence property.84

Existence for solutions of the system (118) with smooth initial data would also
follow from the results of Schauder [136]. This does not immediately yield a proof
of Theorem B.2, because one does not have a priori the spacetime metric g so as
to impose (116) or (117)! The crucial observation is that if (117) is true “to first
order” on Σ, and g is defined to be the unique solution to (118), then (117) will hold,
and thus, g will solve (110). Thus, to prove Theorem B.2, it suffices to show that
one can arrange for (117) to be true “to first order” initially. Choquet-Bruhat [33]
showed that this can be done precisely when the constraint equations (112)–(113)
are satisfied with vanishing right hand side. Interestingly, to obtain existence for
(118), Choquet-Bruhat’s proof [33] does not in fact appeal to the techniques of
Schauder [136], but, following Sobolev, rests on a Kirchhoff formula representation
of the solution. Recently, new representations of this type have found applications
to refined extension criteria [103].

An interesting feature of the classical existence and uniqueness proofs is that
Theorem B.3 requires more regularity than Theorem B.2. This is because solutions
of (116) are a priori only as regular as the metric. This difficulty has recently been
overcome in [129].

B.5. Stability of Minkowski space. The most celebrated global result on
the Einstein equations is the stability of Minkowski space, first proven in monu-
mental work of Christodoulou and Klainerman [51]:

Theorem B.5. Let (Σ, ḡ, K) be a strongly asymptotically flat vacuum ini-
tial data set, assumed sufficiently close to Minkowski space in a weighted sense.
Then the maximal development is geodesically complete, and the spacetime ap-
proaches Minkowski space (with quantitative decay rates) in all directions. More-
over, a complete future null infinity I+ can be attached to the spacetime such that
J−(I+) = M.

The above theorem also allows one to rigorously define the laws of gravitational
radiation. These laws are nonlinear even at infinity. Theorem B.5 led to the
discovery of Christodoulou’s memory effect [42].

A new proof of a version of stability of Minkowski space using harmonic coor-
dinates has been given in [113]. This has now been extended in various directions

84There is even earlier work on uniqueness in the analytic category going back to Hilbert,
appealing to Cauchy-Kovalevskaya. Unfortunately, nature is not analytic; in particular, one cannot
infer the domain of dependence property from those considerations.
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in [34]. The original result [51] was extended to the Maxwell case in the Ph.D. the-
sis of Zipser [157]. Bieri [13] has very recently given a proof of a version of stability
of Minkowski space under weak asymptotics and regularity assumptions, following
the basic setup of [51].

There was an earlier semi-global result of Friedrich [83] where initial data were
prescribed on a hyperboloidal initial hypersurface meeting I+.

A common misconception is that it is the positivity of mass which is somehow
responsible for the stability of Minkowski space. The results of [113] for this are very
telling, for they apply not only to the Einstein-vacuum equations, but also to the
Einstein-scalar field system of Section B.2.2, including the case where the definition
of the energy-momentum tensor (115) is replaced with its negative. Minkowski
space is then not even a local minimiser for the mass functional in the class of
perturbations allowed! Nonetheless, by the results of [113], Minkowski space is
still stable in this context.

Another point which cannot be overemphasised: It is essential that the small-
ness in (B.5) concern a weighted norm. Compare with the results of Section 2.8.

Stability of Minkowski space is the only truly global result on the maximal de-
velopment which has been obtained for asymptotically flat initial data without sym-
metry. There are a number of important results applicable in cosmological settings,
due to Friedrich [83], Andersson-Moncrief [3], and most recently Ringstrom [134].

Other than this, our current global understanding of solutions to the Einstein
equations (in particular all work on the cosmic censorship conjectures) has been
confined to solutions under symmetry. We have given many such references in the
asymptotically flat setting in the course of Section 2. The cosmological setting is
beyond the scope of these notes, but we refer the reader to the recent review article
and book of Rendall [132, 133] for an overview and many references.

Appendix C. The divergence theorem

Let (M, g) be a spacetime, and let Σ0, Σ1 be homologous spacelike hypersur-
faces with common boundary, bounding a spacetime region B, with Σ1 ⊂ J+(Σ0).
Let nμ

0 , n
μ
1 denote the future unit normals of Σ0, Σ1 respectively, and let Pμ denote

a one-form. Under our convention on the signature, the divergence theorem takes
the form

(119)

∫
Σ1

Pμn
μ
1 +

∫
B
∇μPμ =

∫
Σ0

Pμn
μ
0 ,

where all integrals are with respect to the induced volume form.
This is defined as follows. The volume form of spacetime is√

− det gdx0 . . . dxn

where det g denotes the determinant of the matrix gαβ in the above coordinates.
The induced volume form of a spacelike hypersurface is defined as in Riemannian
geometry.

We will also consider the case where (part of) Σ1 is null. Then, we choose
arbitrarily a future-directed null generator nΣ

1 for Σ1 arbitrarily and define the
volume element so that the divergence theorem applies. For instance the divergence
theorem in the region R(τ ′, τ ′′) (described in the lectures) for an arbitrary current
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Pμ then takes the form∫
Στ′′

Pμn
μ
Στ′′ +

∫
H(τ ′,τ ′′)

Pμn
μ
H +

∫
R(τ ′,τ ′′)

∇μPμ =

∫
Στ′

Pμn
μ
Στ′ ,

where the volume elements are as described.
Note how the form of this theorem can change depending on sign conventions

regarding the directions of the normal, the definition of the divergence and the
signature of the metric.

Appendix D. Vector field multipliers and their currents

Let ψ be a solution of

(120) �gψ = 0

on a Lorentzian manifold (M, g). Define

(121) Tμν(ψ) = ∂μψ∂νψ − 1

2
gμν∂

αψ∂αψ

We call Tμν the energy-momentum tensor of ψ.85 Note the symmetry property

Tμν = Tνμ.

The wave equation (120) implies

(122) ∇μTμν = 0.

Given a vector field V μ, we may define the associated currents

(123) JV
μ (ψ) = V νTμν(ψ)

(124) KV = V πμνT
μν(ψ)

where V π is the deformation tensor defined by

V πμν =
1

2
∇(μVν) =

1

2
(LV g)μν .

The identity (122) gives

∇μJV
μ (ψ) = KV (ψ).

Note that JV
μ (ψ) and KV (ψ) both depend only on the 1-jet of ψ, yet the latter

is the divergence of the former. Applying the divergence theorem (119), this allows
one to relate quantities of the same order.

The existence of a tensor Tμν(ψ) satisfying (122) follows from the fact that
equation (120) derives from a Lagrangian of a specific type. These issues were
first systematically studied by Noether [124]. For more general such Lagrangian
theories, two currents Jμ, K with ∇μJμ = K, both depending only on the 1-jet,
but not necessarily arising from Tμν as above, are known as compatible currents.
These have been introduced and classified by Christodoulou [46].

85Note that this is the same expression that appears on the right hand side of (110) in the
Einstein-scalar field system. See Section B.2.2.
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Appendix E. Vector field commutators

Proposition E.0.1. Let ψ be a solution of the equation of the scalar equation

�gψ = f,

and X be a vectorfield. Then

�g(Xψ) = X(f) + 2Xπαβ∇α∇βψ +
(
2(∇α Xπαμ)− (∇μ

Xπα
α)
)
∇μψ.

Proof. To show this we write

X(�gψ) = LX(gαβ∇α∇βψ) = −2Xπαβ∇α∇βψ + gαβLX(∇α∇βψ).

Furthermore,

LX(∇α∇βψ)−∇αLX∇βψ = −
(
(∇β

Xπαμ)− (∇μ
Xπβα) + (∇α

Xπμβ)
)
∇μψ

and

LX∇βψ = ∇X∇βψ +∇βX
μ∇μψ = ∇β(Xψ).

�

Appendix F. Some useful Schwarzschild computations

In this section, (M, g) refers to maximal Schwarzschild with M > 0, Q =
M/SO(3), I±, J∓(I±) are as defined in Section 2.4.

F.1. Schwarzschild coordinates (r, t). The coordinates are (r, t) and the
metric takes the form

−(1− 2M/r)dt2 + (1− 2M/r)−1dr2 + r2dσS2 .

These coordinates can be used to cover any of the four connected components of
Q\H±. In particular, the region J−(I+

A )∩J+(I−
A ) (where I±

A correspond to a pair
of connected components of I± sharing a limit point in the embedding) is covered
by a Schwarzschild coordinate system where 2M < r < ∞, −∞ < t < ∞. Note
that r has an invariant characterization namely r(x) =

√
Area(S)/4π where S is

the unique group orbit of the SO(3) action containing x.86

The hypersurface {t = c} in the Schwarzschild coordinate region J−(I+
A ) ∩

J+(I−
A ) extends regularly to a hypersurface with boundary in M where the bound-

ary is precisely H+ ∩H−.
The coordinate vector field ∂t is Killing (and extends to the globally defined

Killing field T ).
In a slight abuse of notation, we will often extend Schwarzschild coordinate

notation to D, the closure of J−(I+
A ) ∩ J+(I−

A ). For instance, we may talk of the
vector field ∂t “on” H±, or of {t = c} having boundary H+ ∩H−, etc.

86Compare with the Minkowski case M = 0 where the SO(3) action is of course not unique.
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F.2. Regge-Wheeler coordinates (r∗, t). Here t is as before and

(125) r∗ = r + 2M log(r − 2M)− 3M − 2M logM

and the metric takes the form

−(1− 2M/r)(−dt2 + (dr∗)2) + r2dσS2

where r is defined implicitly by (125). A coordinate chart defined in −∞ < r∗ < ∞,
−∞ < t < ∞ covers J−(I+

A ) ∩ J+(I−
A ).

The constant renormalisation of the coordinate is taken so that r∗ = 0 at the
photon sphere, where r = 3M .

Note the explicit form of the wave operator

�gψ = −(1− 2M/r)−1(∂2
t ψ − r−2∂r∗(r

2∂r∗ψ)) +∇/A∇/Aψ

where ∇/ denotes the induced covariant derivative on the group orbit spheres.
Similar warnings of abuse of notation apply, for instance, we may write ∂t = ∂r∗

on H+.

F.3. Double null coordinates (u, v). Our convention is to define

u =
1

2
(t− r∗),

v =
1

2
(t+ r∗).

The metric takes the form

−4(1− 2M/r)dudv + r2dσS2

and J−(I+
A ) ∩ J+(I−

A ) is covered by a chart −∞ < u < ∞, −∞ < v < ∞.
The usual comments about abuse of notation hold, in particular, we may now

parametrize H+ ∩ D with {∞} × [−∞,∞) and similarly H− ∩ D with (−∞,∞]×
{−∞}, and write ∂v(−∞, v) = ∂t(−∞, v), ∂u(−∞, v) = 0.

Note that the vector field (1−2M/r)−1∂u extends to a regular vector null field
across H+ \H−. Thus, with the basis ∂v, (1− 2M/r)−1∂u, one can choose regular
vector fields near H+ \ H− without changing to regular coordinates. In practice,
this can be convenient.
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1. Introduction

The title of these lecture notes is certainly too ambitious. In fact here we will
mainly consider semilinear Schrödinger initial value problems (IVP)

(1)

{
iut +

1
2Δu = λ|u|p−1u,

u(x, 0) = u0(x)

where λ = ±1, p > 1, u : R×M → C, and M is a manifold1. Even in this relatively
special case we will not be able to mention all the findings and results concerning
the initial value problem (1) and for this we apologize in advance.

Schrödinger equations are classified as dispersive partial differential equations
and the justification for this name comes from the fact that if no boundary con-
ditions are imposed their solutions tend to be waves which spread out spatially.
But what does this mean mathematically? A simple and complete mathematical

2010 Mathematics Subject Classification. Primary 35Axx, 35Bxx, 35Exx, 35Gxx, 35Lxx,
35Qxx, 42-XX.
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1In most cases M is the Euclidean space Rn and only at the end we will mention some results

and references when M is a different kind of manifold.
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characterization of the word dispersion is given to us for example by R. Palais in
[66]. Although his definition is given for one dimensional waves, the concept is
expressed so clearly that it is probably a good idea to follow almost2 literally his
explanation: “Let us [next] consider linear wave equations of the form

ut + P

(
∂

∂x

)
u = 0,

where P is polynomial. Recall that a solution u(t, x), which Fourier transform is
of the form ei(kx−ωt), is called a plane-wave solution; k is called the wave number
(waves per unit of length) and ω the (angular) frequency. Rewriting this in the
form eik(x−(ω/k)t), we recognize that this is a traveling wave of velocity ω

k . If we
substitute this u(t, x) into our wave equation, we get a formula determining a unique
frequency ω(k) associated to any wave number k, which we can write in the form

(2)
ω(k)

k
=

1

ik
P (ik).

This is called the “dispersive relation” for this wave equation. Note that it expresses
the velocity for the plane-wave solution with wave number k. For example, P ( ∂

∂x ) =

c ∂
∂x gives the linear advection equation ut + cux = 0, which has the dispersion

relation ω
k = c, showing of course that all plane-wave solutions travel at the same

velocity c, and we say that we have trivial dispersion in this case. On the other

hand if we take P
(

∂
∂x

)
= − i

2

(
∂
∂x

)2
, then our wave equation is iut +

1
2uxx = 0,

which is the linear Schrödinger equation, and we have the non-trivial dispersion
relation ω

k = k
2 . In this case, plane waves of large wave-number (and hence high

frequency) are traveling much faster than low-frequency waves. The effect of this
is to “broaden a wave packet”. That is, suppose our initial condition is u0(x). We
can use the Fourier transform3 to write u0 in the form

u0(x) =

∫
û0(k)e

ikx dk,

and then, by superposition, the solution to our wave equation will be

u(t, x) =

∫
û0(k)e

ik(x−(ω(k)/k)t) dk.

Suppose for example that our initial wave form is a highly peaked Gaussian. Then
in the case of the linear advection equation all the Fourier modes travel together
at the same speed and the Gaussian lump remains highly peaked over time. On
the other hand, for the linearized Schrödinger equation the various Fourier modes
all travel at different velocities, so after time they start canceling each other by
destructive interference, and the original sharp Gaussian quickly broadens”.

As one can imagine dispersive equations are proposed as descriptions of certain
phenomena that occur in nature. But it turned out that some of these equations
appear also in more abstract mathematical areas like algebraic geometry [46], and
certainly we are not in the position to discuss this beautiful part of mathematics
here.

2R. Palais actually uses the Airy equation as an example, while we use the linear Schrödinger
equation to be consistent with the topic of the lectures.

3In these lectures we will ignore the absolute constants that may appear in other definitions
for the Fourier transform.
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The questions that we will address here are more phenomenological. Assume
that a profile of a wave is given at time t = 0, (initial data). Is it possible to
prove that there exists a unique wave that “lives” for an interval of time [0, T ], that
satisfies the equation, and that at time t = 0 has the assigned profile? What kind
of properties does the wave have at later times? Does it “live” for all times or does
it “blowup” in finite time?

Our intuition tells us that, if we start with nice and small initial data, then
all the questions above should be easier to answer. This is indeed often true. In
general in this case one can prove that the wave exists for all times, it is unique and
its “size”, measured taking into account the order of smoothness, can be controlled
in a reasonable way. But what happens when we are not in this advantageous
setting? These lecture notes are devoted to the understanding of how much of the
above is still true when we consider large data and long interval of times. To be
able to give a rigorous setting for the study of the initial value problem in (1) and
to avoid any confusion in the future we need a strong mathematical definition for
well-posedness. We consider the general initial value problem of type

(3)

{
∂tu+ Pm(∂x1

, . . . , ∂xn
)u+N(u, ∂α

xu) = 0,
u(x, 0) = u0(x), x ∈ Rn( or x ∈ Tn), t ∈ R,

where m ∈ N, Pm(∂x1
, . . . , ∂xn

) is a differential operator with constant coefficients
of order m and N(u, ∂α

x u) is the nonlinear part of the equation, that is a nonlinear
function that depends on u and derivatives of u up to order m − 1. The function
u0(x) is the initial condition or initial profile, and most of the time is called initial
data. Above we pointed out the fact that finding a solution for an IVP strongly
depends on the regularity one asks for the solution itself. So we first have to decide
how we “measure” the regularity of a function. The most common way of doing so
is to decide where the weak derivatives of the function “live”. It is indeed time to
recall the definition of Sobolev spaces4.

Definition 1.1. We say that a function f ∈ Hk(Rn), k ∈ N if f and all its
partial derivatives up to order k are in L2. We recall that Hk(Rn) is a Banach
space with the norm

‖f‖Hk =
k∑

|α|=0

‖∂α
x f‖L2 ,

where α(α1, . . . , αn) and |α| =
∑n

i=1 αi is its length.

We also recall here the definition of the Fourier transform.

Definition 1.2. Assume f ∈ L2(Rn), then the Fourier transform of f is defined
as

f̂(ξ) =
1

(2π)n

∫
Rn

ei〈x,ξ〉f(x) dx

where 〈·〉 is the inner product in Rn. We also have an inverse Fourier formula

f(x) =

∫
Rn

e−i〈x,ξ〉f̂(x) dx.

4In more sophisticated instances one replaces Sobolev spaces with different ones, like Lp

spaces, Hölder spaces, and so on.
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If the function is defined on the torus Tn then the Fourier transform is defined as

f̂(k) =
1

(2π)n

∫
Tn

ei〈x,k〉f(x) dx

and the inverse Fourier formula is

f(x) =
∑
k∈Z

e−i〈x,k〉f̂(k).

Remark 1.3. Because ∂̂α
x f(ξ) = (iξ)αf̂(ξ), it is easy to see that f ∈ Hk(Rn)

if and only if ∫
Rn

|f̂(ξ)|2(1 + |ξ|)2k dξ < ∞,

and moreover (∫
Rn

|f̂(ξ)|2(1 + |ξ|)2k dξ
)1/2

∼ ‖f‖Hk .

Then we can generalize our notion of Sobolev space and define Hs(Rn), s ∈ R as
the set of functions such that∫

Rn

|f̂(ξ)|2(1 + |ξ|)2s dξ < ∞.

Also Hs(Rn) is a Banach space with norm(∫
Rn

|f̂(ξ)|2(1 + |ξ|)2s dξ
)1/2

∼ ‖f‖Hs .

Sometimes it is useful to use the homogeneous Sobolev space Ḣs(Rn). This is the
space of functions such that ∫

Rn

|f̂(ξ)|2|ξ|2s dξ < ∞.

Clearly all these observations can be made for Sobolev spaces in Tn, except that in
this case Ḣs(Tn) and Hs(Tn) coincides.

We use ‖f‖Lp to denote the Lp(Rn) norm. We often need mixed norm spaces,
so for example, we say that f ∈ Lq

tL
p
x if ‖(‖f(t, x)‖Lp

x
)‖Lq

t
< ∞. Here we also use

the Sobolev space W 1,p, that is functions, that together with their gradient, belong
to the space Lp. Finally, for a fixed interval of time [0, T ] and a Banach space of
functions Z, we denote with C([0, T ], Z) the space of continuous maps from [0, T ]
to Z.

We are now ready to give a first definition of well-posedness. We will give a
more refined one later in Subsection 3.10.

Definition 1.4. We say that the IVP (3) is locally well-posed (l.w.p) in Hs

if, given u0 ∈ Hs, there exist T , a Banach space of functions XT ⊂ C([−T, T ];Hs)
and a unique u ∈ XT which solves (3). Moreover we ask that there is continuity
with respect to the initial data in the appropriate topology. We say that (3) is
globally well-posed (g.w.p) in Hs if the definition above is satisfied in any interval
of time [−T, T ].

Remark 1.5. The intervals of time are symmetric about the origin because
the problems that we study here, that are of type (1), are all time reversible (i.e.
if u(t, x) is a solution, then so is −u(x,−t)).
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We end this introduction with some notations. Throughout the notes we use
C to denote various constants. If C depends on other quantities as well, this will
be indicated by explicit subscripting, e.g. C‖u0‖2

will depend on ‖u0‖2. We use
A � B to denote an estimate of the form A ≤ CB, where C is an absolute constant.
We use a+ and a− to denote expressions of the form a + ε and a − ε, for some
0 < ε � 1.

I would like to thank Jim Colliander, Mark Keel, Hideo Takaoka and Terry Tao
for the wonderful collaboration we had for several years: almost all the material I
am presenting here comes from joint papers with them. I would like to thank my
student Vedran Sohinger, who read these notes in a very early stage and pointed
out several typos and inconsistencies. A special thanks also to the careful referee
who corrected several typos and inconsistencies. Finally a very warm thank you
to the Clay Institute and ETH, for their support and hospitality, and to all the
people who attended the lectures, without you the summer school would have been
impossible5.

2. The Linear Schrödinger Equation in R
n: Dispersive and Strichartz

Estimates

In this lecture we introduce some of the most important estimates relative to
the linear Schrödinger IVP

(4)

{
ivt +

1
2Δv = 0,

v(x, 0) = u0(x).

It is important to understand as much as possible the solution v of (4) that we will
denote with v(t, x) = S(t)u0(x), since by the Duhamel principle one can write the
solution of the associated forced or nonlinear problem

(5)

{
iut +

1
2Δu = F (u),

u(x, 0) = u0(x).

as

(6) u(t, x) = S(t)u0 − i

∫ t

0

S(t− t′)F (u(t′)) dt′.

Problem 2.1. Prove the Duhamel Principle (6).

The solution of the linear problem (4) is easily computable by taking Fourier
transform. In fact by fixing the frequency ξ problem (4) transforms into the ODE

(7)

{
iv̂t(t, ξ)− 1

2 |ξ|2v̂(t, ξ) = 0,
v̂(ξ, 0) = û0(ξ)

and we can write its solution as

v̂(t, ξ) = e−i 1
2 |ξ|

2tû0(ξ).

5These lecture notes were written in 2008, since then enormous progress has been made
in several of the problems introduced here. In particular I would like to mention the complete
solution of the L2-critical Schrd̈inger problem, see [59, 60] and [37].



212 G. STAFFILANI

In general the solution v(t, x) above is denoted by S(t)u0, where S(t) is called the
Schrödinger group. If we define, in the distributional sense,

Kt(x) =
1

(πit)n/2
ei

|x|2
2t

then we have

(8) S(t)u0(x) = eitΔu0(x) = u0 	 Kt(x) =
1

(πit)n/2

∫
ei

|x−y|2
2t u0(y) dy

Problem 2.2. Prove, in the sense of distributions, that the inverse Fourier

transform of e−i 1
2 |ξ|

2t is Kt(x) =
1

(πit)n/2 e
i |x|2

2t .

As mentioned already

(9) Ŝ(t)u0(ξ) = e−i 1
2 |ξ|

2tû0(ξ),

and this last one can be interpreted as saying that the solution S(t)u0 above is the
adjoint of the Fourier transform restricted on the paraboloid P = {(ξ, |ξ|2) for ξ ∈
R

n}. This remark, strictly linked to (8) and (9), can be used to prove a variety
of very deep estimates for S(t)u0, see for example [71]. For example from (8) we
immediately have the so called Dispersive Estimate

(10) ‖S(t)u0‖L∞ � 1

tn/2
‖u0‖L1 .

From (9) instead we have the conservation of the homogeneous Sobolev norms6

(11) ‖S(t)u0‖Ḣs = ‖u0‖Ḣs ,

for all s ∈ R. Interpolating (10) with (11) when s = 0 and using a so called TT ∗

argument one can prove the non-endpoint Strichartz estimates in Theorem 2.3
below. The endpoint estimate is due to Tao and Keel who use a more sophisticated
argument [49]. See [73] for some concise proofs, and [19] for a complete list of
authors who contributed to the final version of the following theorem.

Theorem 2.3 (Strichartz Estimates for the Schrödinger operator). Fix n ≥ 1.
We call a pair (q, r) of exponents admissible if 2 ≤ q, r ≤ ∞, 2

q + n
r = n

2 and

(q, r, n) 
= (2,∞, 2). Then for any admissible exponents (q, r) and (q̃, r̃) we have
the homogeneous Strichartz estimate

(12) ‖S(t)u0‖Lq
tL

r
x(R×Rn) � ‖u0‖L2

x(R
n)

and the inhomogeneous Strichartz estimate

(13)

∥∥∥∥
∫ t

0

S(t− t′)F (t′) dt′
∥∥∥∥
Lq

tL
r
x(R×Rn)

� ‖F‖Lq̃′Lr̃′
x (R×Rn),

where 1
q̃ + 1

q̃′ = 1 and 1
r̃ + 1

r̃′ = 1.

To finish this lecture we would like to present a refined bilinear Strichartz
estimate due originally to Bourgain in [9] (see also [12]).

6We will see later that the L2 norm is conserved also for the nonlinear problem (1).
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Theorem 2.4. Let n ≥ 2. For any spacetime slab I∗ × Rn, any t0 ∈ I∗, and
for any δ > 0, we have

‖uv‖L2
tL

2
x(I∗×Rn) ≤ C(δ)(‖u(t0)‖Ḣ−1/2+δ + ‖(i∂t +

1

2
Δ)u‖

L1
t Ḣ

−1/2+δ
x

)

× (‖v(t0)‖
Ḣ

n−1
2

−δ + ‖(i∂t +
1

2
Δ)v‖

L1
t Ḣ

n−1
2

−δ
x

).
(14)

This estimate is very useful when u is high frequency and v is low frequency,
as it moves plenty of derivatives onto the low frequency term. This estimate shows
in particular that there is little interaction between high and low frequencies. One
can also check easily that when n = 2 one recovers the L4

tL
4
x Strichartz estimate

contained in Theorem 2.3 above.

Proof. We fix δ, and allow our implicit constants to depend on δ. We begin
by addressing the homogeneous case, with u(t) := eit

1
2Δζ and v(t) := eit

1
2Δψ and

consider the more general problem of proving

(15) ‖uv‖L2
t,x

� ‖ζ‖Ḣα1‖ψ‖Ḣα2 .

Scaling invariance for this estimate7 demands that α1 + α2 = n
2 − 1. Our first goal

is to prove this for α1 = − 1
2 +δ and α2 = n−1

2 −δ. The estimate (15) may be recast
using duality and renormalization as∫

g(ξ1 + ξ2, |ξ1|2 + |ξ2|2)|ξ1|−α1 ζ̂(ξ1)|ξ2|−α2 ψ̂(ξ2)dξ1dξ2(16)

� ‖g‖L2(R×Rn)‖ζ‖L2(Rn)‖ψ‖L2(Rn).

Since α2 ≥ α1, we may restrict our attention to the interactions with |ξ1| ≥ |ξ2|.
Indeed, in the remaining case we can multiply by ( |ξ2||ξ1| )

α2−α1 ≥ 1 to return to the

case under consideration. In fact, we may further restrict our attention to the case
where |ξ1| > 4|ξ2| since, in the other case, we can move the frequencies between
the two factors and reduce to the case where α1 = α2, which can be treated by
L4
t,x Strichartz estimates8 when n ≥ 2. Next, we decompose |ξ1| dyadically and |ξ2|

in dyadic multiples of the size of |ξ1| by rewriting the quantity to be controlled as
(N,Λ dyadic):

∑
N

∑
Λ

∫ ∫
gN (ξ1 + ξ2, |ξ1|2 + |ξ2|2)|ξ1|−α1 ζ̂N (ξ1)|ξ2|−α2 ψ̂ΛN (ξ2)dξ1dξ2.

Note that subscripts on g, ζ, ψ have been inserted to evoke the localizations to
|ξ1 + ξ2| ∼ N, |ξ1| ∼ N, |ξ2| ∼ ΛN , respectively. Note that in the situation we are
considering here, namely |ξ1| ≥ 4|ξ2|, we have that |ξ1+ ξ2| ∼ |ξ1| and this explains
why g may be so localized.

By renaming components, we may assume that |ξ11 | ∼ |ξ1| and |ξ12 | ∼ |ξ2|. Write
ξ2 = (ξ12 , ξ2). We now change variables by writing u = ξ1 + ξ2, v = |ξ1|2 + |ξ2|2 and

7Here we use the fact that if v is solution to the linear Schrödinger equation, then vλ(t, x) =
v( x

λ
, t
λ2 ) is also solution.
8In one dimension n = 1, Lemma 2.4 fails when u, v have comparable frequencies, but

continues to hold when u, v have separated frequencies; see [24] for further discussion.
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dudv = Jdξ12dξ1. A calculation then shows that J = |2(ξ11 ± ξ12)| ∼ |ξ1|. Therefore,
upon changing variables in the inner two integrals, we encounter∑

N

N−α1

∑
Λ≤1

(ΛN)−α2

∫
Rn−1

∫
R

∫
Rn

gN (u, v)HN,Λ(u, v, ξ2)dudvdξ2

where

HN,Λ(u, v, ξ2) =
ζ̂N (ξ1)ψ̂ΛN (ξ2)

J
.

We apply Cauchy-Schwarz on the u, v integration and change back to the original
variables to obtain

∑
N

N−α1‖gN‖L2

∑
Λ≤1

(ΛN)−α2

∫
Rn−1

[∫
R

∫
Rn

|ζ̂N (ξ1)|2 |̂ψΛN (ξ2)|2
J

dξ1dξ
1
2

] 1
2

dξ2.

We recall that J ∼ N and use Cauchy-Schwarz in the ξ2 integration, keeping in
mind the localization |ξ2| ∼ ΛN , to get∑

N

N−α1− 1
2 ‖gN‖L2

∑
Λ≤1

(ΛN)−α2+
n−1
2 ‖ζ̂N‖L2‖ψ̂ΛN‖L2 .

Choose α1 = − 1
2 + δ and α2 = n−1

2 − δ with δ > 0 to obtain∑
N

‖gN‖L2‖ζ̂N‖L2

∑
Λ≤1

Λδ‖ψ̂ΛN‖L2

which may be summed up, after using the Schwarz inequality, and the Plancherel
theorem will give the claimed homogeneous estimate.

We turn our attention to the inhomogeneous estimate (14). For simplicity we
set F := (i∂t +Δ)u and G := (i∂t +Δ)v. Then we use Duhamel’s formula (6) to
write

u = ei(t−t0)Δu(t0)− i

∫ t

t0

ei(t−t′)ΔF (t′) dt′, v = ei(t−t0)Δv(t0)− i

∫ t

t0

ei(t−t′)ΔG(t′).

We obtain9

‖uv‖L2 �
∥∥∥ei(t−t0)Δu(t0)e

i(t−t0)Δv(t0)
∥∥∥
L2

+

∥∥∥∥ei(t−t0)Δu(t0)

∫ t

t0

ei(t−t′)ΔG(t′) dt′
∥∥∥∥
L2

+

∥∥∥∥ei(t−t0)Δv(t0)

∫ t

t0

ei(t−t′)ΔF (t′)dt′
∥∥∥∥
L2

+

∥∥∥∥
∫ t

t0

ei(t−t′)ΔF (t′)dt′
∫ t

t0

ei(t−t′′)ΔG(x, t′′) dt′′
∥∥∥∥
L2

:= I1 + I2 + I3 + I4.

The first term was treated in the first part of the proof. The second and the third
are similar so we consider only I2. Using the Minkowski inequality we have

I2 �
∫
R

‖ei(t−t0)Δu(t0)e
i(t−t′)ΔG(t′)‖L2 dt′,

9Alternatively, one can absorb the homogeneous components ei(t−t0)Δu(t0), ei(t−t0)Δv(t0)
into the inhomogeneous term by adding an artificial forcing term of δ(t−t0)u(t0) and δ(t−t0)v(t0)
to F and G respectively, where δ is the Dirac delta.
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and in this case the theorem follows from the homogeneous estimate proved above.
Finally, again by Minkowski’s inequality we have

I4 �
∫
R

∫
R

‖ei(t−t′)ΔF (t′)ei(t−t′′)ΔG(t′′)‖L2
x
dt′dt′′,

and the proof follows by inserting in the integrand the homogeneous estimate above.
�

Remark 2.5. In the situation where the initial data are dyadically localized in
frequency space, the estimate (15) is valid [9] at the endpoint α1 = − 1

2 , α2 = n−1
2 .

Bourgain’s argument also establishes the result with α1 = − 1
2 + δ, α2 = n−1

2 + δ,
which is not scale invariant. However, the full estimate fails at the endpoint.

Problem 2.6. Consider the following two questions:

(1) Prove that the full estimate at the endpoint is false by calculating the left

and right sides of (16) in the situation where ζ̂1 = χR1
with R1 = {ξ :

ξ1 = Ne1 + O(N
1
2 )} (where e1 denotes the first coordinate unit vector),

ψ̂2(ξ2) = |ξ2|−
n−1
2 χR2

where R2 = {ξ2 : 1 � |ξ2| � N
1
2 , ξ2 · e1 = O(1)}

and g(u, v) = χR0
(u, v) with R0 = {(u, v) : u = Ne1 + O(N

1
2 ), v =

|u|2 +O(N)}.
(2) Use the same counterexample to show that the estimate

‖uv‖L2
t,x

� ‖ζ‖Ḣα
1
‖ψ‖Ḣα

2
,

where u(t) = eitΔζ, v(t) = eitΔψ, also fails at the endpoint.

3. The Nonlinear Schrödinger Equation (NLS) in Rn: Conservation
Laws, Classical Morawetz and Virial Identity, Invariances for the

Equation

In this section we consider the (NLS) IVP (1) and we formally talk about the
solution u(t, x) as an object that exists, is smooth etc. Of course to be able to use
whatever we say here later we will need to work on making this formal assumption
true!

Given an equation it is always a good idea to read as much as possible out of
it. So one should always ask what are the rigid constraints that an equation im-
poses on its solutions a-priori. Here we will look at conservation laws (in this case
integrals involving the solution that are independent of time), some inequalities
(or monotonicity formulas) that a solution has to satisfy, symmetries and invari-
ances that a solution to (1) can be subject to. All three of these elements are
somehow related (see for example Noether’s theorem [73]) and here we will not
even attempt to discuss ALL the possible connections. It is true though that in
describing these important features of the equation one often has to recall some
basic principles/quantities coming from physics like conservation of mass, energy
and momentum, the notion of density, interaction of particles, resonance etc.

3.1. Conservation laws. A simple way to interpret physically the function
u(t, x) solving a Schrödinger equation is to think about |u(t, x)|2 as the particle
density at place x and at time t. Then it shouldn’t come as a surprise that the den-
sity, momentum and energy are conserved in time. More precisely if we introduce
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the pseudo-stress-energy tensor Tα,β for α, β = 0, 1, ..., n then

T00 = |u|2 (mass density)(17)

T0j = Tj0 = Im(ū∂xj
u) (momentum density)(18)

Tjk = Re(∂xj
u∂xk

u)− 1

4
δj,kΔ(|u|2) + λ

p− 1

p+ 1
δjk|u|p+1 (stress tensor)(19)

then by using the equation one can show that

(20) ∂tT00 + ∂xj
T0j = 0 and ∂tTj0 + ∂xk

Tjk = 0

for all j, k = 1, ..., n .

Problem 3.2. Prove (20) using the equation.

The conservation laws summarized in (20) are said to be local in the sense
that they hold pointwise in the physical space. Clearly by integrating in space and
assuming that u vanishes at infinity one also has the conserved integrals

m(t) =

∫
T00(t, x) dx =

∫
|u|2(t, x) dx (mass)(21)

pj(t) = −
∫

T0j(t, x) = −
∫

Im(ū∂xj
u) dx (momentum).(22)

We observe here that the stress tensor in (19) is not conserved, but it plays an
important role in some “sophisticated” monotonicity formulas involving the solution
u. To obtain the conservation of energy E(t) we need to remember that the total
energy of a system at time t is

E(t) = K(t) + P (t)

the sum of kinetic and potential energy. In our case

K(t) =
1

2

∫
|∇u|2(t, x) dx and P (t) =

2λ

p+ 1

∫
|u(t, x)|p+1 dx

and hence

(23) E(t) =
1

2

∫
|∇u|2(t, x) dx+

2λ

p+ 1

∫
|u(t, x)|p+1 dx = E(0).

We immediately observe that now the sign of λ plays a very important role since
by picking λ = −1 one can produce a negative energy. We will discus this later in
greater details.

Problem 3.3. Prove the conservation of energy (23) by using the equation.

As we will see, to have an a-priori control in time of an energy like in (23)
when λ = 1 is an essential tool in order to prove that a solution exists for all times.
But it is also true that often this is not sufficient. This is indeed the case when
the problem is critical 10. We need then other a-priori controls on norms for the
solution u. This is the content of the next subsection.

10The notion of criticality will be introduced below.
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3.4. Viriel and Classical Morawetz Identities. The Viriel identity was
first introduced by Glassey [40] to show blowup for certain focusing (λ = −1) NLS
problems. The classical11 Morawetz identity was introduced instead by Morawetz
in the context of the wave equations [64]. In the NLS case it was introduced by Lin
and Strauss [61]. Morawetz type identities are particularly useful in the defocusing
setting (λ = 1).

In general these identities are used in order to show that a positive quantity (of-
ten a norm) involving the solution u has a monotonic behavior in time. Monotonic
quantities are used systematically in the context of elliptic equations and although
both the Viriel and Morawetz estimates go back to the 70’s only recently they have
been used, together with their variations, in a surprisingly powerful way in the
context of dispersive equations.

Suppose that a function a(x) is measuring a particular quantity for our system12

and we want to look at its overage value and in particular at its change in time.
To do so we integrate a(x) against the mass density tensor in (17) and we compute
using (20) and integration by parts

(24) ∂t

∫
a(x)|u|2(t, x) dx =

∫
∂xj

a(x)Im(ū∂xj
u)(t, x) dx.

At this stage there is no obvious sign for the right hand side of the equality. The
integrals appearing above have special names. In fact we can introduce the following
definition:

Definition 3.5. Given the IVP (1), we define the associated Virial potential

(25) Va(t) =

∫
a(x)|u(t, x)|2dx

and the associated Morawetz action

(26) Ma(t) =

∫
∂xj

a(x)Im(u∂xj
u)dx.

By taking the second derivative in time and by using again (20), we obtain

∂2
t Va(t) = ∂2

t

∫
a(x)|u|2(t, x) dx = ∂tMa(t) =

∫
(∂xj

∂xk
a(x))Re(∂xj

u∂xk
u) dx

+
λ(p− 1)

p+ 1

∫
|u(t, x)|p+1Δa(x) dx− 1

4
|u|2(t, x)Δ2a(x) dx.

Now let’s make a particular choice for a(x).

• If a(x) = |x|2, then Δ2a(x) = 0 and Δa(x) = 2n so

(27) ∂2
t

∫
|x|2|u|2(t, x) dx = 4E +

2λ

p+ 1
[n(p− 1)− 4]

∫
|u|p+1 dx.

Remark 3.6. For example in the focusing case λ = −1, when n = 3
and p > 7

3 , if one starts with E < 0, then the function f(t) =∫
|x|2|u|2(t, x) dx is concave down and positive (f ′(t) is monotone de-

creasing). Hence there exists T ∗ < ∞ such that there the function cannot

11Here we talk about classical Morawetz type identities in order to distinguish them from
the Interaction Morawetz ones.

12For example a(x) could represent the distance to a particular point, or the characteristic
function of a particular domain.
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longer exists. This was in fact the original argument of Glassey to show
the existence of blowup time for certain focusing NLS equations.

• If a(x) = |x|, then (24) becomes

(28) ∂t

∫
|x||u|2(t, x) dx =

∫
Im(ū

x

|x| · ∇u)(t, x) dx,

and from here

∂tM|x| = ∂t

∫
Im(ū

x

|x| · ∇u)(t, x) dx =

∫ |∇/ u(t, x)|2
|x| dx(29)

+
2(n− 1)(p− 1)λ

p+ 1

∫ |u(t, x)|p+1

|x| dx− 1

4

∫
|u(t, x)|2(Δ2|x|) dx,

where ∇/ u := ∇− x
|x| (

x
|x| · ∇) denotes the angular gradient of u.

Problem 3.7. Above we used a(x) = |x| which is clearly non smooth

at zero. Check that if we take n ≥ 3 and we replace |x| with
√
x2 + ε2 and

let ε → 0, then the identity (29) is correct.

One can then compute that for n ≥ 3, (Δ2|x|) ≤ 0 in the sense
of distributions. As a consequence, in the defocusing case λ = 1, after
integrating in time over an interval [t0, t1] one has

(30)∫ t1

t0

|∇/ u(t, x)|2
|x| dx,

∫ t1

t0

∫ |u(t, x)|p+1

|x| dx � sup
[t0,t1]

∣∣∣∣
∫

Im(ū
x

|x| · ∇u)(t, x) dx

∣∣∣∣ .
One can easily estimate the right hand side as

sup
[t0,t1]

∣∣∣∣
∫

Im(ū
x

|x| · ∇u)(t, x) dx

∣∣∣∣ � ‖u0‖L2E1/2

by using both conservation of mass and energy. But if less regularity is
preferable then one can use the Hardy inequality (see Lemma A.10 in [73])
as in Lemma 6.9 that will be introduced later in Section 6, to obtain

(31)

∫ t1

t0

|∇/ u(t, x)|2
|x| dx,

∫ t1

t0

∫ |u(t, x)|p+1

|x| dx � sup
[t0,t1]

‖u(t)‖2H1/2 ,

where now the disadvantage is the fact that the H1/2 norm of u is not
uniformly bounded in time.

3.8. Invariances and symmetries. In this section we only list invariances
and symmetries but we do not attempt to describe their usefulness and applications
except for one of them that we will start using in today’s lecture.

(1) Scaling Symmetry: If u solve the IVP (1) then

(32) uμ(t, x) = μ− 2
p−1 u

(
t

μ2
,
x

μ
,

)
and uμ,0(x) = μ− 2

p−1 u0

(
x

μ
,

)
solves the IVP for any μ ∈ R.

(2) Galilean Invariance: If u is again a solution to (1) then

eix·veit|v|
2/2u(t, x− vt) with initial data eix·vu0(x)

for every v ∈ Rn also solves the same IVP.
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(3) Obvious Symmetries: Time and space translation invariance, spatial
rotation, phase rotation symmetry eiθu, time reversal.

(4) Pseudo-conformal Symmetry: In the case p = 1 + 4
n , if u is solution

for (1) then also

(33)
1

|t|n/2 u
(
1

t
,
x

t

)
ei|x|

2/2t

for t 
= 0 is solution to the same equation.

We now concentrate on the scaling symmetry and we show how this can be
used to understand for which nonlinerity (or for which p > 1) the problem of
well-posedness is most difficult to address.

If we compute ‖uμ,0‖Ḣs we see that

(34) ‖uμ,0‖Ḣs = μ−s+sc‖u0‖Ḣs ,

where

sc =
n

2
− 2

p− 1
.

Let us consider the rescaled initial data uμ,0 and the associated solution uμ(t, x)
that is now defined in the time interval [0, μ2T ]. From (34) it is clear that if we
take μ → +∞ then

(1) if s > sc (sub-critical case) the norm of the initial data can be made
small while at the same time the interval of time is made longer: our
intuition says that this is the best possible setting for well-posedness,

(2) if s = sc (critical case) the norm is invariant while the interval of time
is made longer. This looks like a problematic situation.

(3) if s < sc (super-critical case) the norm grows as the time interval gets
longer. Scaling is obviously against us.

In order to have a better intuition for scaling that also relates the dispersive
part of the solution Δu with the nonlinear part of it |u|p−1u, we use an informal
argument as in [73]. Let’s consider a special type of initial wave u0. We want u0

such that its support in Fourier space is localized at a large frequency N � 1, its
support in space is inside a Ball of radius 1/N and its amplitude is A. Here we are
making the assumption that scaling is the only symmetry that could interfere with
a behavior that goes from linear to nonlinear, but in general this is not the only
one. We have

‖u0‖L2 ∼ AN−n/2, ‖u0‖Ḣs ∼ ANs−n/2.

If we want ‖u0‖Ḣs small then we need to ask that A � Nn/2−s. Now under this
restriction we want to compare the linear term Δu with the nonlinear part |u|p−1u:

|Δu| ∼ AN2 while |u|p ∼ Ap.

From here if AN2 � Ap we believe that the linear behavior would win, alternatively
the nonlinear one would. Putting everything together we have that

Ap−1 � N2 and A � Nn/2−s =⇒ s > sc (more linear)(35)

Ap−1 � N2 and A � Nn/2−s =⇒ s < sc (more nonlinear).(36)

As announced at the beginning the so called “scaling argument” presented here
should only be used as a guideline since in delivering it we make a purely formal
calculation. On the other hand in some cases ill-posedness results below critical
exponent have been obtained (see for example [22, 23]).
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Problem 3.9. Prove the conservation of mass using Fourier transform for the
IVP (1) when n = 1 and p = 3.

3.10. Definition of well-posedness. We conclude this lecture by giving the
precise definition of local and global well-posedness for an initial value problem,
which in this case we will specify to be of type (1).

Definition 3.11 (Well-posedness). We say that the IVP (1) is locally well-
posed (l.w.p) in Hs(Rn) if for any ball B in the space Hs(Rn) there exist a time
T and a Banach space of functions X ⊂ L∞([−T, T ], Hs(Rn)) such that for each
initial data u0 ∈ B there exists a unique solution u ∈ X ∩ C([−T, T ], Hs(Rn)) for
the integral equation

(37) u(t, x) = S(t)u0 − iλ

∫ t

0

S(t− t′)|u|p−1u(t′)) dt′.

Furthermore the map u0 → u is continuous as a map from Hs into C([−T, T ],
Hs(Rn)). If uniqueness is obtained in C([−T, T ], Hs(Rn)), then we say that local
well -posedness is unconditional.

If this hold for all T ∈ R then we say that the IVP is globally well-posed (g.w.p).

Remark 3.12. Our notion of global well-posedness does not require that
‖u(t)‖Hs(Rn) remains uniformly bounded in time. In fact, unless s = 0, 1 and one
can use the conservation of mass or energy, it is not a triviality to show such an uni-
form bound. This can be obtained as a consequence of scattering, when scattering
is available. In general this is a question related to weak turbulence theory.

4. Local and global well-posedness for the H1(Rn) subcritical NLS

Our intuition suggests that if one assumes enough regularity then l.w.p. should
be true basically for any p > 1. We do not prove this here but one can check
this in [19, 73], or use the argument that we will present below and the fact that
for s > n/2 the space Hs is an algebra to obtain this result directly. Here we
consider instead the IVP (1) with a nonlinearity that is H1 subcritical, that is
1 < p < 1 + 4

n−2 for n ≥ 3 and 1 < p < ∞ for n = 1, 2. To prove l.w.p for Hs(Rn),
the general strategy that we will follow is based on the contraction method. This
method is based on these four steps:

(1) Definition of the operator

L(v) = χ(t/T )S(t)u0 + cχ(t/T )

∫ t

0

S(t− t′)|v|p−1v(t′)) dt′

where χ(r) denotes a smooth nonnegative bump even function, supported
on −2 ≤ r ≤ 2 and satisfying χ(r) = 1 for −1 ≤ r ≤ 1.

(2) Definition of a Banach space X such that X ⊂ L∞([−T, T ], Hs(Rn)).
(3) Proof of the fact that for any ball B ⊂ Hs(Rn), there exist T and a

ball BX ⊂ X such that the operator L sends BX into itself and it is a
contraction there.

(4) Extension of the uniqueness result in BX to a unique result in the whole
space X.

We observe that the continuity with respect to the initial data will be a consequence
of the fact that the solution is found through a contraction argument. In fact in
this case we obtain way more than just continuity.
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Problem 4.1. Discuss the regularity of the map u0 → u from Hs into
L∞([−T, T ], Hs(Rn)) when l.w.p. is proved by contraction method.

We state the main theorem (for a complete list of authors who contributed to
the final version of this theorem see [19]):

Theorem 4.2. Assume that 1 < p < 1 + 4
n−2 for n ≥ 3 and 1 < p < ∞

for n = 1, 2. Then the IVP (1) is l.w.p in Hs(Rn) for all sc < s ≤ 1, where
sc =

n
2 − 2

p−1 . Moreover if the nonlinearity is algebraic, that is n = 2, 3 and p = 3,

then there is persistence of regularity, that is if u0 ∈ Hm, m ≥ 1 then the solution
u(t) ∈ Hm(Rn)), for all t in its time of existence. If in (1) we assume that λ = 1
(defocusing) then the IVP is globally well-posed for s = 1.

Here we prove a less general version of this theorem, namely that under the
conditions given above on p there is g.w.p in H1. We do not prove l.w.p. for
sc < s ≤ 1 since we would need to introduce a product rule for fractional derivatives
and it would become too technical.

Our starting point is the definition of a Banach space X based on the norms
we introduced with the Strichartz estimates.

Definition 4.3. Assume I = [−T, T ] is fixed. The space S0(I × R
n) is the

closure of the Schwartz functions under the norm

‖f‖S0(I×Rn) = sup
(q,r) admissible

‖f‖Lq
tL

r
x
.

We then define the space S1(I ×Rn) where the closure is taken with respect to the
norm

‖f‖S1(I×Rn) = ‖f‖S0(I×Rn) + ‖∇f‖S0(I×Rn).

Proof. We consider the operator Lv and using (12) and (13) we obtain

(38) ‖Lv‖S1(I×Rn) ≤ C1‖u0‖H1 + C2‖|v|p−1(|v|+ |∇v|)‖
Lq′

t Lr′
x
,

where (q, r) is a Strichartz admissible pair. Below we will only estimate the term
in the right hand side of 38 that contains the gradient. To treat the other term one
can use interpolation and Sobolev embedding theorem. The best couple to use in
this context is the one that solves the system

2

q
+

n

r
=

n

2
Strichartz Condition(39)

(p− 1)

(
1

r
− s

n

)
=

1

r′
− 1

r
,(40)

and the meaning of the second equation will become clear below. The solutions to
the system is

1

r
=

1

(p+ 1)
+

(p− 1)

(p+ 1)

s

n
and

1

q
=

(p− 1)(n− 2s)

4(p+ 1)
.

From here it follows that13

1

q′
>

p

q
=⇒ s > sc =

n

2
− 2

p− 1
.

13As mentioned above here we only address l.w.p. in H1, but it is clear that if one uses
fractional derivatives and (41) l.w.p in Hs, s > sc can also be obtained based on the fact that r
and q are given in terms of s and s > sc.
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Then by Hölder inequality repeated

‖|v|p−1|∇v|‖
Lq′

t Lr′
x

≤ Tα‖|v|p−1|∇v|‖
L

q/p
t Lr′

x
≤ ‖∇v‖Lq

tL
r
x
‖v‖p−1

Lq
tL

r̃
x

where 1
r̃ = 1

r − s
n . By Sobolev embedding

(41) ‖v‖Lq
tL

r̃
x

� ‖(1 + Δ
s
2 )v‖Lq

tL
r
x
,

and since we are assuming that we are in the H1 subcritical regime 1 < p < 1+ 4
n−2

it also follows that s ≤ 1 and as a consequence

‖|v|p−1|∇v|‖
Lq′

t Lr′
x
≤ Tα‖v‖pS1 .

We can now conclude that

(42) ‖Lv‖S1(I×Rn) ≤ C1‖u0‖H1 + C2T
α‖v‖pS1 .

With similar arguments one also obtains

(43) ‖Lv − Lw‖S1(I×Rn) ≤ C2T
α(‖v‖p−1

S1 + ‖w|p−1
S1 )‖v − w‖S1 .

We are now ready to set up the contraction: pick R = 2C1‖u0‖H1 and T such that

(44) C2T
αRp−1 <

1

2
⇐⇒ T � ‖u0‖

1−p
α

H1 ,

then clearly from (42), (43) and (44) it follows that L : BR → BR, where BR is the
ball centered at zero and radius R in S1, and L is a contraction. There is a unique
fixed point u ∈ BR that is in fact a solution to our integral equation. The next
two properties for u that we need to show are continuity with respect to time, that
is u ∈ C([−T, T ], H1) and uniqueness in the whole space S1. The first is left to
the reader since it is a simple consequence of the representation of u through the
Duhamel formula (6). For the second we assume that there exists another solution
ũ ∈ S1 for the IVP (1). Using again the Duhamel formula for both u and ũ and
the estimates presented above for Lv we obtain that on an interval of time δ

‖u− ũ‖S1
δ
≤ C2δ

α(‖ũ‖p−1
S1
T

+ ‖u|p−1
S1
T
)‖u− ũ‖S1

δ

where here we use the lover index δ or T to stress that in the first case the space
S1 is relative to the interval [−δ, δ] and in the second to [−T, T ]. Since u and ũ are
fixed we can introduce

M = max(‖ũ‖p−1
S1
T

+ ‖u|p−1
S1
T
)

and if δ is small enough in terms of C2, α and M we obtain

‖u− ũ‖S1
δ
≤ 1

2
‖u− ũ‖S1

δ

which forces u = ũ in [−δ, δ]. To cover the whole interval [−T, T ] then one iterates
this argument T

δ times and the conclusion follows.
Before going to the proof of g.w.p we would like to consider the question of

propagation of regularity. As mentioned above with this we mean the answer
to the following question: assume that in (1), with the restrictions on p above, we
start with u0 ∈ Hm, m ≥ 1. Is it true that the unique solution u ∈ S1 also belongs
to Hm at any later time t ∈ [0, T ]? The answer to this depends on the regularity of
the non-linear term, more precisely the regularity of the function f(z) = |z|p−1z.
This function is not C∞ for all p, hence one cannot expect propagation of regularity
for all p in the considered range. On the other hand if f is algebraic, namely when
p−1 = 2k for some k ∈ N, then propagation of regularity follows from the estimates
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we presented above. Briefly we can go back to (42) and if we repeat the same
argument we obtain that for the solution u that we already found using only H1

regularity we also have

‖Dmu‖S0 ≤ C1‖u0‖Hm + C2T
α‖u‖2kS1‖Dmu‖S0

because when we apply the operator Dm the term with Dmu appears linearly14.
Since we already know that C2T

α‖u‖2kS1 ≤ 1
2 we then obtain15 that

‖Dmu‖S0 � ‖u0‖Hm .

We are now ready for the iteration of the local in time solution u to a uniformly
global one16. The first step is to go back to (44) and notice that T depends on
the H1 norm of the initial data. From the previous lecture we learned that for a
smooth17 solution u to (1) the conservation of the energy and mass gives an a priori
uniform bound

‖u(t)‖H1 ≤ C∗(‖u0‖H1),

so if we take now T ∗ ∼ (C∗)
1−p
α we can repeat the argument above with no changes.

In particular when we get to time T ∗ we can apply the argument again with the
new initial data u(T ∗) and the same T ∗ will work. In this way we can cover the
whole time real lime and well-posedness becomes global. But in the argument we
just outlined there is a caviat in the sense that if u0 ∈ H1 we do not have a smooth
solution u. This obstacle can be overcome by introducing various smoothing tools.
The precise argument can be found in [19]. �

Remark 4.4. We are not addressing in this first part of the course g.w.p. for
the focusing NLS (1) even in the subcritical case. In order to address this issue we
need to introduce stationary solutions (or solitons) and this will be done later.

Remark 4.5. By carefully keeping track of the various exponents that have
been introduced in order to get to (42) one can see that for the criticalH1 problem,
that is p = 1 + 4

n−2 , the estimates are border line. In fact one gets

(45) ‖Lv‖S1(I×Rn) ≤ C1‖u0‖H1 + C2‖v‖pS1 .

The main difference between this and (42) is that there is no time factor appearing
in the right hand side. This of course makes the contraction more difficult to attain
by shrinking the time. On the other hand if one starts with small data ‖u0‖H1 ≤ ε
and calls now R = 2C1ε, then a sufficient condition on ε to have a contraction
would be

C2R
p−1 = C2(2C1ε)

p−1 ≤ 1

2
.

14Here we are cheating a little since we are ignoring the mixed lower order derivatives. For
this reason the constant C2 is the same as the one in (42). If one does this calculation correctly
then that constant C2 will need to be replaced by a larger one, which will shrink the time T . To
cover the whole interval [−T, T ] then one uses the iteration we introduced while proving uniqueness
in S1.

15Here we are cheating again in the sense that in principle we cannot even talk about Dmu
since we don’t know yet that this expression makes sense. The rigorous procedure tells us to start
with a smooth and decaying approximation of the initial data, the associated solution exists and
is unique. Only at this point one can use the argument proposed here to get the uniform bound
independent of the approximation.

16This argument only works when a uniform H1 bound in time for the solution is available,
for example in the defocusing case or when the L2 norm of the initial data is small enough.

17Here with smooth we also mean zero at infinity.
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This would also guarantee a uniform global solution in H1.

One could ask if at least l.w.p could be still achieved for large data. The
following theorem gives a positive answer.

Theorem 4.6 (L.w.p. for H1 critical NLS). Assume that p = 1 + 4
n−2 and

u0 ∈ H1. Assume also that there exists T such that

(46) ‖S(t)u0‖
L

2(n+2)
n−2

[−T,T ]
W

1,
2n(n+2)

n2+4
x

≤ ε

for ε small enough. Then (1) is H1 well posed in [−T, T ].

Proof. We first notice that the pair ( 2(n+2)
n−2 , 2n(n+2)

n2+4 ) is Strichartz admissible.

We define the new space S̃1 using the following norm

‖f‖S̃1 := T‖f‖S1 + ‖f‖
L

2(n+2)
n−2

[−T,T ]
W

1,
2n(n+2)

n2+4
x

,

The idea is to use a contraction method in this space based on the smallness as-
sumption (46). As we did in the proof of Theorem 4.2 we estimate Lv in the space

S̃1:

‖Lv‖S̃1 � T‖u0‖H1 + ‖S(t)u0‖
L

2(n+2)
n−2

[−T,T ]
W

1,
2n(n+2)

n2+4
x

+ ‖|v| 4
n−2 (|v|+ |∇v|)‖

Lq̃′
[−T,T ]

Lr̃′
x

Now we pick the Strichartz pair (q̃, r̃) = (2, 2n
n−2 ) and we obtain by Hölder

‖|v| 4
n−2 (|v|+ |∇v|)‖

Lq̃′
[−T,T ]

Lr̃′
x

� ‖v‖
4

n−2

L
2(n+2)
n−2

[−T,T ]
L

2(n+2)
n−2

x

‖v‖
L

2(n+2)
n−2

[−T,T ]
W

1,
2n(n+2)

n2+4
x

.

By the Sobolev embedding theorem we then have

‖v‖
L

2(n+2)
n−2

[−T,T ]
L

2(n+2)
n−2

x

� ‖v‖
L

2(n+2)
n−2

[−T,T ]
W

1,
2n(n+2)

n2+4
x

,

hence the final bound

(47) ‖Lv‖S̃1 � T‖u0‖H1 + ‖S(t)u0‖
L

2(n+2)
n−2

[−T,T ]
W

1,
2n(n+2)

n2+4
x

+ ‖v‖1+
4

n−2

L

2(n+2)
n−2

[−T,T ]
W

1,
2n(n+2)

n2+4
x

.

Now if T is small enough, in particular T ∼ ε‖u0‖−1
H1 , using (46), we deduce from

(47) that

‖Lv‖S̃1 ≤ 2C0ε+ C1‖v‖
1+ 4

n−2

L

2(n+2)
n−2

[−T,T ]
W

1,
2n(n+2)

n2+4
x

.

We then take a ball B of radius R = 4C0ε and if ε is small enough then L sends B
into itself and it is a contraction. The rest is now routine. This argument proved
the theorem in the interval of time of length approximately ε‖u0‖−1

H1 . In order to
cover an arbitrary interval [−T, T ], then one has to use again the conservation of
energy and mass that gives a uniform bound on ‖u‖H1 . �

Remark 4.7. We have the following two facts:
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(1) By the homogeneous Strichartz estimate (12) it follows that

‖S(t)u0‖
L

2(n+2)
n−2

[−T,T ]
W

1,
2n(n+2)

n2+4
x

� ‖u0‖H1

hence we recover above the small data g.w.p we discussed in Remark 4.5.
(2) Given any data u0 ∈ H1, again by (12) we have

‖S(t)u0‖
L

2(n+2)
n−2

[−T,T ]
W

1,
2n(n+2)

n2+4
x

≤ C,

so we can use the time integral to claim that for T small enough (46) is
satisfied. This gives l.w.p. but it is important to notice that in this case
T = T (u0) depends also on the profile of the initial data, not only on its
H1 norm.

The next theorem gives a sort of criteria for the g.w.p. of the H1 critical NLS.
It says that if a certain Strichartz norm of the solution (actually any of them would
do!) stays a-priori bounded, then g.w.p. follows.

Theorem 4.8 (G.w.p. for H1 critical NLS with L
2(n+2)
n−2

t L
2(n+2)
n−2

x bound). As-
sume that p = 1 + 4

n−2 and u0 ∈ H1. Assume also the a priori estimate

(48) ‖u‖
L

2(n+2)
n−2

[−T,T ]
L

2(n+2)
n−2

x

≤ C

for any solution u to (1) with p = 1+ 4
n−2 . Then this IVP is H1 globally well posed.

Proof. Fix ε to be determined later. Also assume that our until data belongs
to Hk, k ≥ 1. Using (48) we can find finitely many intervals of time I1, ..., IM such
that

(49) ‖u‖
L

2(n+2)
n−2

Ij
L

2(n+2)
n−2

x

≤ ε

for all j = 1, ..,M . The goal here is to prove that as a consequence of (49) one
actually has the stronger bound

(50) ‖u‖Sk
Ij

≤ C, for all k ≥ 1,

for all j = 1, ..,M and putting all the intervals together

(51) ‖u‖Sk ≤ C, for all k ≥ 1.

How do we use now this bound? We consider a method that is know as the Energy
Method. This argument is based on a priori global bounds of high Sobolev norms,
see for example [38] for details. In our case, if we start with data in Hk, k � 1,
the bound (51) in particular gives a uniform bound of the solution in Hk, not just
in H1, which we knew as a consequence of the conservation of Hamiltonian and
mass. This is enough to show that there is a unique, classical global solution for
our initial value problem. If the initial data is only in H1 then an approximation
by data in Hk, k � 1 can be used and a continuity argument concludes the proof.

It is now time to prove (50). Using estimates like the ones in the proof of
Theorem 4.6 this time applied to the Duhamel representation of a solution u we
have

‖u‖S1
Ij

≤ C1‖u0‖H1 + C2‖u‖
4

n−2

L
2(n+2)
n−2

Ij
L

2(n+2)
n−2

x

‖u‖S1
Ij

≤ C1‖u0‖H1 + C2ε
4

n−2 ‖u‖S1
Ij
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and if C2ε
4

n−2 < 1/2 then (50) follows. �

We end this section by announcing that similar theorems, replacing H1 with
L2 are available for the L2 subcritical NLS, that is when 1 < p < 1+ 4

n . We do not
list them here, but they can be found in [73].

5. Global well-posedness for the H1(Rn) subcritical NLS and the
“I-method”

We learned during last lecture that for the H1 subcritical NLS, i.e. 1 < p <
1 + 4

n−2 and hence sc < 1, l.w.p for (1), either focusing or defocusing, is available

in Hs(Rn) for any s, sc ≤ s ≤ 1. We also learned that if s = 1, in the defocusing
case, uniform g.w.p is a consequence of the conservation of mass and energy. We
then ask: if 0 ≤ sc < s < 1 is the defocusing NLS problem globally well posed
in Hs? This problem is particularly interesting when we consider the L2 critical
NLS, i.e. sc = 0 and p = 1 + 4

n . In this case the L2 norm cannot be used to
iterate the l.w.p. since the time interval of existence also depends on the profile
of the initial data. It is clear then that this is a difficult question since we are
in a regime when the conservation of the L2 norm is too little of an information
and the conservation of the Hamiltonian cannot be used since the data has not
enough regularity. It was exactly to answer these kinds of questions that the “I-
method” [24, 25, 26, 27, 50, 51] was invented. Unfortunately the method is quite
technical to be applied in higher dimensions in its full strength. The results that we
will report below are not optimal and in general they concern the L2 critical case
p = 1+ 4

n since that one is the most interesting, but similar results are available for

the general H1 subcritical case when sc < 1 (see [20, 78]). We will list below the
state of the art at this point for this problem for the L2 critical case. We will give
references but we will not prove these theorems in full generality. At the end of
this lecture we will prove a weaker result than the one stated here when n = 2, see
Theorem 5.2. We should also say here that if one assumes radial symmetry, then
the L2 critical NLS for n ≥ 2 has been proved to be globally well-posed both in the
defocusing and focusing case with the assumption that the mass of the initial data
is strictly less than the mass of the stationary solution. These results are contained
in a series of very recent and deep papers [59, 60, 75, 76], see also [58]. The point
here is instead to address the question of global well-posedness without assuming
radial symmetry and to present the “I-method”.

Theorem 5.1 (G.w.p for (1) with λ = 1, p = 1 + 4
n and n ≥ 3). The initial

value problem (1) with λ = 1, p = 1 + 4
n is globally well-posed in Hs(Rn), for any

1 ≥ s >
√
7−1
3 when n = 3, and for any 1 ≥ s >

−(n−2)+
√

(n−2)2+8(n−2)

4 for n ≥ 4.

Here we have to assume that s ≤ 1 since in general the non smoothness of the
nonlinearity doesn’t allow us to prove persistence of regularity. The proof of this
theorem can be found in [34].

Theorem 5.2 (G.w.p for (1) with λ = 1, p = 1 + 4
n and n = 2). The initial

value problem (1) with λ = 1, n = 2 and p = 3 is globally well-posed in Hs(R2), for
any 1 > s > 2

5 . Moreover the solution satisfies

(52) sup
[0,T ]

‖u(t)‖Hs ≤ C(1 + T )
3s(1−s)
2(5s−2) ,



THE THEORY OF NONLINEAR SCHRÖDINGER EQUATIONS 227

where the constant C depends only on the index s and ‖u0‖L2 .

Here the theorem is stated only for s < 1 since we already know that global
well-posedness for s ≥ 1 follows from conservation of mass and energy as explained
in the previous lecture18.

For the proof of Theorem 5.2 see [32]. The argument is based on a combination
of the “I-method” as in [25, 26, 28] and a refined two dimensional Morawetz
interaction inequality. This combination first appeared in [39].

Finally we recall the result for the L2 critical problem for n = 1:

Theorem 5.3 (G.w.p for (1) with λ = 1, p = 1 + 4
n and n = 1). The initial

value problem (1) with λ = 1, n = 1 and p = 5 is globally well-posed in Hs(R), for
any 1 > s > 1

3 . Moreover the solution satisfies

(53) sup
[0,T ]

‖u(t)‖Hs ≤ C(1 + T )
s(1−s)
2(3s−1) ,

where the constant C depends only on the index s and ‖u0‖L2 .

For the proof of this theorem see [36].
As promised we sketch now the proof of a weaker result than the one reported

in Theorem 5.2, namely g.w.p. for s > 4/7. This proof is a summary of the work
that appeared in [26]. Since below we will often refer to a particular IVP we write
it here once for all

(54)

{
iut +

1
2Δu = |u|2u,

u(x, 0) = u0(x).

To start the argument we need to introduce some notations and state some
lemmas.

We will use the weighted Sobolev norms,

||ψ||Xs,b
≡ ||〈ξ〉s〈τ − |ξ|2〉bψ̃(ξ, τ )||L2(Rn×R).(55)

Here ψ̃ is the space-time Fourier transform of ψ. We will need local-in-time esti-
mates in terms of truncated versions of the norms (55),

||f ||Xδ
s,b

≡ inf
ψ=fon [0,δ]

||ψ||Xδ
s,b
.(56)

We will often use the notation 1
2+ ≡ 1

2 + ε for some universal 0 < ε � 1. Similarly,

we shall write 1
2− ≡ 1

2 − ε, and 1
2 −− ≡ 1

2 − 2ε.
For a Schrödinger admissible pair (q, r) we have what we will call the Lq

tL
r
x

Strichartz estimate:

||φ||Lq
tL

r
x(R

n+1) � ||φ||X
0, 1

2
+
,(57)

which can be proved to be a consequence of (55).
Finally, we will need a refined version of these estimates due to Bourgain [9].

18It is an open problem to obtain a polynomial bound like in (52) for this problem when
s > 1 and the data are not radial. In fact if if p > 3 a uniform bound follows from scattering. But
scattering is still an open problem for general data for the L2 critical NLS. We should also stress
that these kinds of polynomial bounds for higher Sobolev norms are particularly interesting since
they are related to the weak turbulence theory, a topic that we will not address here.
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Lemma 5.4. Let ψ1, ψ2 ∈ Xδ
0, 12+

be supported on spatial frequencies |ξ| ∼

N1, N2, respectively. Then for N1 ≤ N2, one has

||ψ1 · ψ2||L2([0,δ]×R2) �
(
N1

N2

) 1
2

||ψ1||Xδ

0, 1
2
+

||ψ2||Xδ

0, 1
2
+

.(58)

In addition, (58) holds (with the same proof) if we replace the product ψ1 · ψ2 on
the left with either ψ1 · ψ2 or ψ1 · ψ2.

This lemma is a consequence of Theorem 2.4.

Problem 5.5. Show how to deduce (57) and (58).
Hint: Consider the space of frequencies both in time and space. Partition it into
parabolic strips of approximate unit size. On each of these strips a function ψ can
be viewed as a solution of the linear problem. Use the appropriate Strichartz or
improved Strichartz on each of them and then sum with the appropriate weight.

For rough initial data, with s < 1, the energy is infinite, and so the conservation
law (23) is meaningless. Instead, here we use the fact that a smoothed version of
the solution of the IVP (54) has a finite energy which is almost conserved in time.
We express this ‘smoothed version’ as follows.

Given s < 1 and a parameter N � 1, define the multiplier operator

ÎNf(ξ) ≡ mN (ξ)f̂(ξ),(59)

where the multiplier mN (ξ) is smooth, radially symmetric, nonincreasing in |ξ| and

mN (ξ) =

⎧⎨
⎩
1 |ξ| ≤ N(

N
|ξ|

)1−s

|ξ| ≥ 2N.
(60)

For simplicity, we will eventually drop the N from the notation, writing I and m for
(59) and (60). Note that for solution and initial data u, u0 of (54), the quantities
||u||Hs(Rn)(t) and E(INu)(t) (see (23)) can be compared,

E(INu)(t) ≤
(
N1−s||u(·, t)||Ḣs(R2)

)2

+ ||u(t, ·)||4L4(R2),(61)

||u(·, t)||2Hs(R2) � E(INu)(t) + ||u0||2L2(R2).(62)

Indeed, the Ḣ1(R2) component of the left hand side of (61) is bounded by the right
side by using the definition of IN and by considering separately those frequencies
|ξ| ≤ N and |ξ| ≥ N . The L4 component of the energy in (61) is bounded by the
right hand side of (61) by using (for example) the Hörmander-Mikhlin multiplier
theorem. The bound (62) follows quickly from (60) and L2 conservation (21) by

considering separately the Ḣs(R2) and L2(R2) components of the left hand side of
(62).

To prove our result, we may assume that u0 ∈ C∞
0 (R2), and show that the

resulting global-in-time solution grows at most polynomially in the Hs norm,

||u(t, ·)||Hs(R2) ≤ C1t
M + C2,(63)

where the constants C1, C2,M depend only on ||u0||Hs(R2) and not on higher reg-
ularity norms of the smooth data. The result then follows immediately from (63),
the local-in-time theory discussed in the previous lecture, and a standard density
argument.
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By (62), it suffices to show

E(INu)(t) � (1 + t)2M .(64)

for some N = N(t). (See (71), (72) below for the definition of N and the growth
rate M we eventually establish). The following proposition, represents an “almost
conservation law” and will yield (64).

Proposition 5.6. Given s > 4
7 , N � 1, and initial data u0 ∈ C∞

0 (R2) (see
preceding remark) with E(INφ0) ≤ 1, then there exists a δ = δ(||u0||L2(R2)) > 0 so
that the solution

u(x, t) ∈ C([0, δ], Hs(R2))

of (54) satisfies

E(INu)(t) = E(INu)(0) +O(N− 3
2+),(65)

for all t ∈ [0, δ].

We first show that Proposition 5.6 implies (64). Recall that the initial value
problem here has a scaling symmetry, and is Hs-subcritical when 1 > s > 0, and
n = 2. That is, if u is a solution, so too

uλ(x, t) :=
1

λ
u(

x

λ
,
t

λ2
).(66)

Using (61), the following energy can be made arbitrarily small by taking λ large,

E(INuλ,0) ≤
(
(N2−2s)λ−2s + λ−2

)
· (1 + ||u0||Hs(R2))

4(67)

≤ C0(N
2−2sλ−2s) · (1 + ||u0||Hs(R2))

4.(68)

It is important to remark that since the problem is L2 critical, ‖u0‖L2 ∼ ‖uλ,0‖L2 .
Assuming N � 1 is given19, we choose our scaling parameter λ = λ(N, ||u0||Hs(R2))

λ = N
1−s
s

(
1

2C0

)− 1
2s

·
(
1 + ||u0||Hs(R2)

) 2
s(69)

so that E(INuλ,0) ≤ 1
2 . We may now apply Proposition 5.6 to the scaled initial

data uλ,0, and in fact we may reapply this proposition until the size of E(INuλ)(t)

reaches 1, that is at least C1 ·N
3
2− times. Hence

E(INuλ)(C1N
3
2−δ) ∼ 1.(70)

We now have to undo the scaling: given any T0 � 1, we establish the polyno-
mial growth (64) from (70) by first choosing our parameter N � 1 so that

(71) T0 ∼
N

3
2−

λ2
C1 · δ ∼ N

7s−4
2s −,

where we’ve kept in mind (69). Note the exponent of N on the right of (71) is
positive provided s > 4

7 , hence the definition of N makes sense for arbitrary T0. In
two space dimensions,

E(INu)(t) = λ2E(INuλ)(λ
2t).

19The parameter N will be chosen shortly.
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We use (69), (70), and (71) to conclude that for T0 � 1,

E(INu)(T0) ≤ C2T

1−s
7
4
s−1

+

0 ,(72)

where N is chosen as in (71) and C2 = C2(||u0||Hs(R2), δ). Together with (62), the
bound (72) establishes the desired polynomial bound (63).

It remains then to prove Proposition 5.6. We will need the following modified
version of the usual local existence theorem, wherein we control for small times the
smoothed solution in the Xδ

1, 12+
norm.

Proposition 5.7. Assume 4
7 < s < 1 and we are given data for the IVP (54)

with E(Iu0) ≤ 1. Then there is a constant δ = δ(||u0||L2(R2)) so that the solution
u obeys the following bound on the time interval [0, δ],

||Iu||Xδ

1, 1
2
+

� 1.(73)

Proof. We mimic the typical iteration argument showing local existence. We
will need the following three estimates involving the Xs,δ spaces (55) and functions
F (x, t), f(x). (Throughout this section, the implicit constants in the notation �
are independent of δ.)

‖S(t)f‖Xδ

1, 1
2
+

� ‖f‖H1(R2),(74) ∥∥∥∥
∫ t

0

S(t− τ )F (x, τ )dτ

∥∥∥∥
X

1, 1
2
+

� ‖F‖Xδ

1,− 1
2
+

,(75)

‖F‖Xδ
1,−b

� δP ‖F‖Xδ
1,−β

,(76)

where in (76) we have 0 < β < b < 1
2 , and P = 1

2 (1−
β
b ) > 0. The bounds (74), (75)

are analogous to estimates (3.13), (3.15) in [55]. As for (76), by duality it suffices
to show

||F ||Xδ
−1,β

� δP ||F ||Xδ
−1,b

.

Interpolation gives

||F ||Xδ
−1,β

� ||F ||(1−
β
b )−

Xδ
−1,0

· ||F ||
β
b

Xδ
−1,b

.

As b ∈ (0, 12 ), arguing exactly as on page 771 of [33],

||F ||Xδ
−1,0

� δ
1
2 ||F ||Xδ

−1,b
,

and (76) follows.
Duhamel’s principle gives us

||Iu||Xδ

1, 1
2
+

=

∥∥∥∥S(t)(Iu0) +

∫ t

0

S(t− τ )I(uūu)(τ )dτ

∥∥∥∥
Xδ

1, 1
2
+

� ||Iu0||H1(R2) + ||I(uuu)||Xδ

1,− 1
2
+

� ||Iu0||H1(R2) + δε||I(uuu)||Xδ

1,− 1
2
++

,(77)
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where − 1
2++ is a real number slightly larger than − 1

2+ and ε > 0. By the definition
of the restricted norm (56),

||Iu||Xδ

1, 1
2
+

� ||Iu0||H1(R2) + δε||I(ψψψ)||X
1,− 1

2
++

,(78)

where the function ψ agrees with u for t ∈ [0, δ], and

||Iu||Xδ

1, 1
2
+

∼ ||Iψ||X
1, 1

2
+
.(79)

We will show shortly that

||I(ψψψ)||X
1,− 1

2
++

� ||Iψ||3X
1, 1

2
+
.(80)

Setting then Q(δ) ≡ ||Iu(t)||Xδ

1, 1
2
+

, the bounds (77), (79) and (80) yield

Q(δ) � ||Iu0||H1(R2) + δε(Q(δ))3.(81)

Note

||Iu0||H1(R2) � (E(Iu0))
1
2 + ||u0||L2(R2) � 1 + ||u0||L2(R2).(82)

As Q is continuous in the variable δ, a bootstrap argument yields (73) from (81),
(82).

It remains to show (80). Using the interpolation lemma of [31], it suffices to
show

||ψψ̄ψ||X
s,− 1

2
++

� ||ψ||3X
s, 1

2
+
,(83)

for all 4
7 < s < 1. By duality and a “Leibniz” rule20, (83) follows from

∣∣∣∣
∫
R

∫
R2

(〈∇〉su1)u2u3u4dxdt

∣∣∣∣ � ||u1||X
s, 1

2
+
· ||u2||X

s, 1
2
+
· ||u3||X

s, 1
2
+
||u4||X

0, 1
2
−−

.

(84)

Note that since the factors in the integrand on the left here will be taken in absolute
value, the relative placement of complex conjugates is irrelevant. Use Hölder’s
inequality on the left side of (84), taking the factors in, respectively, L4

x,t, L
4
x,t, L

6
x,t

and L3
x,t. Using a Strichartz inequality,

||〈∇〉su1||L4
x,t(R

2+1) � ||〈∇〉su1||X
0, 1

2
+

= ||u1||X
s, 1

2
+
,

and

||u2||L4
x,t(R

2+1) � ||u2||X
0, 1

2
+

� ||u2||X
s, 1

2
+
.

The bound for the third factor uses Sobolev embedding and the L6
tL

3
x Strichartz

estimate,

||u3||L6
tL

6
x(R

2+1) � ||〈∇〉 1
3u3||L6

tL
3
x(R

2+1)

� ||〈∇〉 1
3u3||X

0, 1
2
+

≤ ||u3||X
s, 1

2
+
.

20By this, we mean the operator 〈D〉s can be distributed over the product by taking Fourier
transform and using 〈ξ1 + . . . ξ4〉s � 〈ξ1〉s + . . . 〈ξ4〉s.
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It remains to bound ||u4||L3(R2+1). Interpolating between ||u4||L2
tL

2
x

≤ ||u4||X0,0

and the Strichartz estimate ||u4||L4
tL

4
x

� ||u4||X
0, 1

2
+
yields

||u4||L3
tL

3
x

� ||u4||X
0, 1

2
−−

.

This completes the proof of (84), and hence Proposition 5.7. �

Before we proceed to the proof of Proposition 5.6 we would like to present the
proof of conservation of mass21 for (54) using Fourier transform. Understanding
this proof is fundamental to understand the types of cancelations that will make
E(Iu) almost conserved.

Proposition 5.8. Assume that u is a solution to (54) smooth and decaying at
infinity. Then ‖u(t)‖2L2 = ‖u0‖2L2 .

Proof. We write this L2 norm using Plancherel formula

‖u(t)‖2L2 =

∫
û(ξ, t)û(ξ, t) dξ

Using the equation we then have

d

dt
‖u(t)‖2L2 = 2Re

∫
(û(ξ, t))tû(ξ, t) dξ

= −Im

∫
|ξ|2û(ξ, t)û(ξ, t) dξ − 2Im

∫
û2ū(ξ)û(ξ, t) dξ

= −2Im

∫
ξ1+ξ2+ξ3−ξ=0

û(ξ1)¯̂u(−ξ2)û(ξ3)¯̂u(ξ) dξdξ1dξ2dξ3

= −2Im

∫
ξ1+ξ2+ξ3+ξ4=0

û(ξ1)¯̂u(−ξ2)û(ξ3)¯̂u(−ξ4) dξ1dξ2dξ3dξ4

and by symmetry

2Im

∫
ξ1+ξ2+ξ3+ξ4=0

û(ξ1)¯̂u(−ξ2)û(ξ3)¯̂u(−ξ4) dξ1dξ2dξ3dξ4 =

Im

∫
ξ1+ξ2+ξ3+ξ4=0

û(ξ1)¯̂u(−ξ2)û(ξ3)¯̂u(−ξ4) dξ1dξ2dξ3dξ4

+ Im

∫
ξ1+ξ2+ξ3+ξ4=0

û(−ξ2)¯̂u(ξ1)û(−ξ4)¯̂u(ξ3) dξ1dξ2dξ3dξ4 = 0

�

Problem 5.9. Prove the conservation of energy (23) by using Fourier trans-
form.

21Actually showing the proof of conservation of energy would be even more appropriate here
since in Proposition 5.6 we will be dealing with an energy instead of a mass, but clearly for the
mass the calculation is less involved and the ideas are still present in full power!
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Proof of Proposition 5.6. The usual energy (23) is shown to be conserved
by differentiating in time, integrating by parts, and using the equation (54),

∂tE(u) = Re

∫
R2

ut(|u|2u−Δu)dx

= Re

∫
R2

ut(|u|2u−Δu− iut)dx

= 0.

We follow the same strategy to estimate the growth of E(Iu)(t),

∂tE(Iu)(t) = Re

∫
R2

I(u)t(|Iu|2Iu−ΔIu− iIut)dx

= Re

∫
R2

I(u)t(|Iu|2Iu− I(|u|2u))dx,

where in the last step we’ve applied I to (54). When we integrate in time and apply
the Parseval formula22 it remains for us to bound

(85) E(Iu(δ))− E(Iu(0)) =∫ δ

0

∫
∑4

j=1 ξj=0

(
1− m(ξ2 + ξ3 + ξ4)

m(ξ2) ·m(ξ3) ·m(ξ4)

)
Î∂tu(ξ1)Îu(ξ2)Îu(ξ3)Îu(ξ4).

The reader may ignore the appearance of complex conjugates here and in the sequel,
as they have no impact on the availability of estimates, (see e.g. Lemma 5.4 above).
We include the complex conjugates for completeness.

We use the equation to substitute for ∂tI(u) in (85). Our aim is to show that

Term1 +Term2 � N− 3
2+,(86)

where the two terms on the left are

Term1 ≡(87) ∣∣∣∫ δ

0

∫
∑4

i=1 ξi=0

(
1− m(ξ2+ξ3+ξ4)

m(ξ2)m(ξ3)m(ξ4)

)
̂(ΔIu)(ξ1) · Îu(ξ2) · Îu(ξ3) · Îu(ξ4)

∣∣∣
Term2 ≡(88)∣∣∣∣∫ δ

0

∫
∑4

i=1 ξi=0

(
1− m(ξ2+ξ3+ξ4)

m(ξ2)m(ξ3)m(ξ4)

)
̂(I(|u|2u))(ξ1) · Îu(ξ2) · Îu(ξ3) · Îu(ξ4)

∣∣∣∣ .
From this point on the proof proceeds with a case by case analysis based on

the relative magnitude of various frequencies. The basic cancellation of the type
we presented in the proof of Proposition 5.8 are fundamental as is the fact that
the multiplier is smooth. We send the reader to the original paper for a complete
proof. �

Remark 5.10. Here we only gave an idea of the “I-method”. One can im-
plement it in more effective ways by defining formally families of energies that, if
controlled analytically, are proved to be more and more almost conserved. This was
in fact the case for the one dimensional derivative NLS [24, 25] and the KdV [27]
for example. Unfortunately controlling these families of energies becomes more

22That is,
∫
Rn f1(x)f2(x)f3(x)f4(x)dx =

∫
ξ1+ξ2+ξ3+ξ4=0 f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)f̂4(ξ4) where

∫
∑

i ξi=0 here denotes integration with respect to the hyperplane’s measure

δ0(ξ1 + ξ2 + ξ3 + ξ4)dξ1dξ2dξ3dξ4, with δ0 the one dimensional Dirac mass.
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difficult in higher dimensions since orthogonality issues start appearing, see for
example [30].

6. Interaction Morawetz estimates and scattering

In the last lecture we discussed the question of global well-posedness. Once one
can prove that given an initial data a unique solution evolving from that data exists
for all times it becomes natural to ask how this solution looks like as t → ±∞. The
theory that addresses these questions is called scattering theory. In order to put
scattering in a more general context we need a few definitions. We will give them
by assuming that the solution for (1) is defined globally in time with respect to the
energy space H1, but it will be easy to generalize them when more general Sobolev
spaces are considered.

Definition 6.1 (Scattering). Given a global solution u ∈ H1 to (1) we say
that u scatters to u+ ∈ H1 if

(89) ‖u(t)− S(t)u+‖H1 −→ 0 as t → +∞.

Clearly a similar definition is given if t → −∞.

Remark 6.2. Using the properties of the group S(t) it is easy to see that (89)
is equivalent to

(90) ‖S(−t)u(t)− u+‖H1 −→ 0 as t → +∞.

Since by the Duhamel formula (6)

S(−t)u(t)− u+ = u0 − u+ − i

∫ t

0

S(−t′)|u(t′)|p−1u(t′) dt′

it is clear that scattering is equivalent to showing that the improper time integral∫ ∞

0

S(−t′)|u(t′)|p−1u(t′) dt′

converges in H1 and in particular this will give the formula for u+, i.e.

(91) u+ = u0 − i

∫ ∞

0

S(−t′)|u(t′)|p−1u(t′) dt′.

One can also consider an inverse problem: assume u+ ∈ H1, can we find an
initial data u0 ∈ H1 such that the global solution u for (1) scatters to u+?

Definition 6.3 (Wave Operator). Assume that for any u+ ∈ H1 there exists
a unique u0 ∈ H1 such that the solution u to (1) scatters to u+ in the sense of (91).
Then we define the wave operator

Ω+ : H1 −→ H1 such that Ω+(u+) = u0.

In order to prove the existence of Ω+ it is useful to write the solution u in terms
of u+. In fact using the Duhamel representation (6) and (91) above we can write

(92) u(t) = S(t)u+ − i

∫ ∞

t

S(t− t′)(|u(t′)|p−1u(t′) dt′,

and being able to define Ω+ is equivalent to being able to define (92) for t = 0.

Remark 6.4. From the two definitions given above it is clear that proving
scattering is equivalent to proving that the wave operator Ω+ is invertible. In this
case we also say that we have Asymptotic Completeness.
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At first, from the definitions, it is not clear what is harder to prove, if existence
of the wave operator or asymptotic completeness. But in practice the former is eas-
ier. One of the reasons is that the existence of the wave operator usually follows from
the strong23 dispersive estimates (10) and from iteration of local well-posedness.
On the other hand to prove scattering one needs global space time bounds that
are very difficult to get. Here we only address the question of existence of the
wave operator (see [19]) briefly in Theorem 6.14, but we will concentrate on the
scattering issue much more. The bibliography on scattering is quite large (see for
example [19] for a good list of results), but certainly the work of Ginibre and Velo
(see for example [42]) takes a special stand in it. But in this lecture we will take
a different and more recent approach that is based on the so called Interaction
Morawetz Estimates [28, 73, 78].

6.5. Interaction Morawetz Estimates. At this point there are several ways
one can present these estimates: as weighted overages of the classical Morawetz
estimates presented in Section 3 [28, 78], as classical Morawetz estimates applied
to tensors of solutions to (1) [20, 44, 45], or as more general and refined calculations
dealing with vector fields [32, 68]. Here we describe the first one, which was also
the original one given in 3 dimensions24.

In the following we introduce an interaction potential generalization of the
classical Morawetz action and associated inequalities. We first recall the standard
Morawetz action centered at a point and the proof that this action is monotonically
increasing with time when the nonlinearity is defocusing. The interaction general-
ization is introduced in the second subsection. The key consequence of the analysis
in this section is the L4

x,t estimate (116).
The discussion in this section will be carried out in the context of the following

generalization of (1):

i∂tu+ αΔu = μf(|u|2)u, u : R× R
3 �−→ C,(93)

u(0) = u0.(94)

Here f is a smooth function f : R+ �−→ R+ and α and μ are real constants that
permit us to easily distinguish in the analysis below those terms arising from the
Laplacian or the nonlinearity. We also define F (z) =

∫ z

0
f(s)ds.

We will use polar coordinates x = rω, r > 0, ω ∈ S2, and write Δω for the
Laplace-Beltrami operator on S2. For ease of reference below, we record some
alternate forms of the equation in (93):

(95) ut = iαΔu− iμf(|u|2)u,

(96) ut = −iαΔu+ iμf(|u|2)u,

(97) ut = iαurr + i
2α

r
ur + i

α

r2
Δωu− iμf(|u|2)u,

23Especially in higher dimensions.
24The reader will see below that for n = 1, 2 the argument breaks down. In fact for n = 1

one needs to use tensors of solutions [20] and for n = 2 one either is happy with a local in time
estimate [39] or needs to introduce a much more refined argument [32]. For n > 3 the argument
below can be used but the estimates are less “clean” than the L4

tL
4
x norm we find below. But

some use of standard harmonic analysis leads to a better space time estimates which is as good
as the one we prove here [70, 77, 78].
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(98) (rut) = iα(ru)rr + i
α

r
Δωu− iμrf(|u|2)u,

(99) (rut) = −iα(ru)rr − i
α

r
Δωu+ iμf(|u|2)u.

6.6. Standard Morawetz action and inequalities. We will call the fol-
lowing quantity the Morawetz action centered at 0 for the solution u of (93) and
this should be compared with (29),

(100) M0[u](t) =

∫
R3

Im[ū(t, x)∇u(t, x)] · x

|x|dx.

We check using the equation that,

(101) ∂t(|u|2) = −2α∇ · Im[u(t, x)∇u(t, x)],

hence we may interpret M0 as the spatial average of the radial component of the
L2-mass current. We might expect that M0 will increase with time if the wave u
scatters since such behavior involves a broadening redistribution of the L2-mass.
The following proposition of Lin and Strauss [61] that is equivalent to (29), indeed
gives d

dtM0[u](t) ≥ 0 for defocusing equations.

Proposition 6.7. [61] If u solves (93)-(94) then the Morawetz action at 0
satisfies the identity

(102) ∂tM0[u](t) = 4πα|u(t, 0)|2 +
∫
R3

2α

|x| |∇/ 0u(t, x)|2dx

+ μ

∫
R3

2

|x|
{
|u|2f(|u|2)(t)− F (|u|2)

}
dx,

where ∇/ 0 is the angular component of the derivative,

(103) ∇/ 0u = ∇u− x

|x| (
x

|x| · ∇u).

In particular, M0 is an increasing function of time if the equation (93) satisfies the
repulsivity condition,

(104) μ
{
|u|2f(|u|2)(t)− F (|u|2)

}
≥ 0.

Note that for pure power potentials F (x) = 2
p+1x

p+1
2 , where the nonlinear term

in (93) is |u|p−1u, the function |u|2f(|u|2)−F (|u|2) = p−1
2 F (|u|2). Hence condition

(104) holds.
We may center the above argument at any other point y ∈ R3 with corre-

sponding results. Toward this end, define the Morawetz action centered at y to
be,

(105) My[u](t) =

∫
R3

Im[u(x)∇u(x)] · x− y

|x− y|dx.

We shall often drop the u from this notation, as we did previously in writing M0(t).

Corollary 6.8. If u solves (93) the Morawetz action at y satisfies the identity

d

dt
My = 4πα|u(t, y)|2 +

∫
R3

2α

|x− y| |∇/ yu(t, x)|2dx(106)

+

∫
R3

2μ

|x− y|
{
|u|2f(|u|2)− F (|u|2)

}
dx,
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where ∇/ yu ≡ ∇u− x−y
|x−y|

(
x−y
|x−y| · ∇u

)
. In particular, My is an increasing function

of time if the nonlinearity satisfies the repulsivity condition (104).

Corollary 6.8 shows that a solution is, on average, repulsed from any fixed point
y in the sense that My[u](t) is increasing with time.

For our scattering results, we’ll need the following pointwise bound forMy[u](t).

Lemma 6.9. Assume u is a solution of (93) and My[u](t) as in (105). Then,

(107) |My[u](t)| � ‖u(t)‖2
Ḣ

1
2
x

.

Proof. Without loss of generality we take y = 0. This is a refinement of the
easy bound using Cauchy-Schwarz |My[u](t)| � ‖u(t)‖L2

x
‖∇u(t)‖L2

x
. By duality

| Im
∫
R3

u(x, t)∂ru(x, t)dx | ≤ ‖u‖
Ḣ

1
2 (R3)

· ‖∂ru‖
Ḣ− 1

2 (R3)
.

It suffices to show ‖∂ru‖
Ḣ− 1

2 (R3)
≤ ‖u‖

Ḣ− 1
2 (R3)

. By duality and the definition

∂r ≡ x
|x| · ∇, it remains to prove,

‖ x

|x|f‖Ḣ 1
2 (R3)

≤ ‖f‖
Ḣ

1
2 (R3)

,(108)

for any f for which the right hand side is finite. Inequality (108) follows from
interpolating between the following two bounds,

‖ x

|x|f‖L2(R3) ≤ ‖f‖L2(R3)

‖ x

|x|f‖Ḣ1(R3) � ‖f‖H1(R3)

the first of which is trivial, the second of which follows from Hardy’s inequality,

‖∇
(

x

|x|f
)
‖L2 ≤ ‖ x

|x| · ∇f‖L2 + ‖ 1

|x|f‖L2

� ‖∇f‖L2 .

�

The well-known Morawetz-type inequalities, so useful in proving local decay
or scattering for (93), arise by integrating the identity (102) or (106) in time. For
nonlinear Schrödinger equations, this argument appears in the work of Lin and
Strauss [61], who cite as motivation earlier work on Klein-Gordon equations by
Morawetz [64].

Corollary 6.10 (Morawetz estimate centered at y.). Suppose u solves (93)-
(94). Then for any y ∈ R3,

(109) 2 sup
t∈[0,T ]

‖u(t)‖2
Ḣ

1
2
x

� 4πα

∫ T

0

|u(t, y)|2dt+
∫ T

0

∫
R3

2α

|x− y| |∇/ yu(t, x)|2dxdt

+

∫ T

0

∫
R3

2μ

|x− y|
{
|u|2f(|u|2)− F (|u|2)

}
dxdt.
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Assuming (93) has a repulsive nonlinearity as in (104), all terms on the right
side of the inequality (109) are positive. The inequality therefore gives in particular

a bound uniform in T for the quantity
∫ T

0

∫
R3

|u(t,x)|4
|x−y| dxdt, for solutions u of the

defocusing (1), when p = 3.
In their proof of scattering in the energy space for the cubic defocusing problem

(1), Ginibre and Velo [42] combine this relatively localized25 decay estimate with
a bound surrogate for finite propagation speed in order to show the solution is in
certain global-in-time Lebesgue spaces Lq([0,∞), Lr(R3)). Scattering follows rather
quickly, as will be shown later.

In the following section, we show how to establish an unweighted, global in time
Lebesgue space bound directly. The argument below involves the identity (106), but
our estimate arises eventually from the linear part of the equation, more specifically
from the first term on the right of (106), rather than the third (nonlinearity) term.

6.11. Morawetz interaction potential. Given a solution u of (93), we de-
fine the Morawetz interaction potential to be

(110) M(t) =

∫
R3

|u(t, y)|2My(t)dy.

The bound (107) immediately implies

(111) |M(t)| � ‖u(t)‖2L2‖u(t)‖2
Ḣ

1
2
x

.

If u solves (93) then the identity (106) gives us the following identity for d
dtM(t),

(112)
d

dt
M(t) = 4πα

∫
y

|u(y)|4dy +
∫
R3

∫
R3

2α

|x− y| |u(y)|
2|∇/ yu(x)|2dxdy

+

∫
R3

∫
R3

2μ

|x− y| |u(y)|
2
{
|u(x)|2f(|u(x)|2)− F (|u(x)|2)

}
dxdy

+

∫
R3

∂t(|u(t, y)|2) My(t)dy.

We write the right side of (112) as I+ II + III + IV , and work now to rewrite this
as a sum involving nonnegative terms.

Proposition 6.12. Referring to the terms comprising (112), we have

(113) IV ≥ −II.

Consequently, solutions of (93) satisfy

d

dt
M(t) ≥ 4πα

∫
R3

|u(t, y)|4dy(114)

+

∫
R3

∫
R3

2μ

|x− y| |u(t, y)|
2
{
|u|2f(|u|2)− F (|u|2)

}
dxdy.

In particular, M(t) is monotone increasing for equations with repulsive nonlinear-
ities.

25The bound mentioned here may be considered localized since it implies decay of the solution
near the fixed point y, but doesn’t preclude the solution staying large at a point which moves
rapidly away from y, for example.
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Assuming Proposition 6.12 for the moment, we combine (111) and (114) to
obtain the following estimate which plays the major new role in our scattering
analysis below.

Corollary 6.13. Take u to be a smooth solution to the initial value problem
(93)-(94) above, under the repulsivity assumption (104). Then we have the following
interaction Morawetz inequalities,

(115) 2‖u(0)‖2L2 sup
t∈[0,T ]

‖u(t)‖2
Ḣ

1
2
x

� 4πα

∫ T

0

∫
R3

|u(t, y)|4dydt

+

∫ T

0

∫
y

∫
x

2μ

|x− y| |u(t, y)|
2
{
|u|2f(|u|2)− F (|u|2)

}
(t, x)dxdydt.

In particular, we obtain the following spacetime L4([0, T ]× R
3) estimate,

(116)

∫ T

0

∫
R3

|u(t, y)|4dydt ≤ C‖u0‖2L2(R3) sup
t∈[0,T ]

‖u(t)‖2
Ḣ

1
2
x

,

where C is independent of T .

Of course, for solutions of the defocusing IVP (1) starting from finite energy
initial data, the right side of (116) is uniformly bounded by energy considerations
- leading to a rather direct proof of the result in [42] of scattering in the energy
space that we will present below.

Proof. We now turn to the proof of Proposition 6.12. Use (101) to write

IV = −
∫
R3

y

∇ · Im[2αu(y)∇u(y)]My(t)dy

= −
∫
y

∫
x

∂yl
Im[2αu(y)∂yl

u(y)] Im[u(x)
xm − ym
|x− y| ∂xm

u(x)]dxdy,

where repeated indices are implicitly summed. We integrate by parts in y, moving
the leading ∂yl

to the unit vector x−y
|x−y| . Note that,

(117) ∂yl

(
xm − ym
|x− y|

)
=

−δlm
|x− y| +

(xl − yl)(xm − ym)

|x− y|3 .

Write p(x) = Im[u(x)∇u(x)] for the mass current at x and use (117) to obtain

(118) IV = −2α

∫
y

∫
x

[
p(y) · p(x)− (p(y) · x− y

|x− y| )(p(x) ·
x− y

|x− y| )
]

dxdy

|x− y| .

The preceding integrand has a natural geometric interpretation. We are removing
the inner product of the components of p(y) and p(x) parallel to the vector x−y

|x−y|
from the full inner product of p(y) and p(x). This amounts to taking the inner
product of π(x−y)⊥p(y)·π(x−y)⊥p(x) where we have introduced the projections onto

the subspace of R3 perpendicular to the vector x−y
|x−y| . But

|π(x−y)⊥p(y)| =
∣∣p(y)− x− y

|x− y|
( x− y

|x− y| · p(y)
)∣∣(119)

= |Im[u(y)∇/ xu(y)| ≤ |u(y)| · |∇/ xu(y)|.
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A similar identity and inequality holds upon switching the roles of x and y in (119).
We have thus shown that

(120) IV ≥ −2α

∫
y

∫
x

|u(x)| · |∇/ yu(x)| · |u(y)| · |∇/ xu(y)|
dxdy

|x− y| .

The conclusion (113) follows by applying the elementary bound |ab| ≤ 1
2 (a

2 + b2)
with a = |u(y)| · |∇/ yu(x)| and b = |u(x)| · |∇/ xu(y)|. �

We now state the following theorem as an example of how to use Morawetz
interaction estimates in order to prove scattering

Theorem 6.14. Consider the cubic, defocusing, NLS (1) in R3 with H1 initial
data. Then the wave operator exists and there is asymptotic completeness.

Remark 6.15. Theorem 6.14 is not the best known result for this cubic NLS.
In fact in [28] this same IVP was considered and the L4

tL
4
x Morawetz estimate was

used to prove scattering below H1. For other H1 subcritical scattering results one
should also consult [78] when n ≥ 3, [32] when n = 2 and [20] when n = 1. In
these cases if one wants to show scattering with regularity s < 1, for example when
n = 3 in [28], the argument is more complicated than the one described for H1

since one has to prove that the Hs norm of the solution is bounded by using the
“I-method” as in Section 5. The basic idea though is the same.

Proof. Existence of Ω+: we go back to the formula (92). The idea is to go first
from t = +∞ to t = T for some T > 0 using some smallness and then solve the
problem in the finite interval of time backward from T to 0.

We know already in what kind of spaces we can argue by contraction method:
the space S1 containing all the admissible Strichartz norms of the function and
its derivatives and possibly also those that are embedded into these norms by the
Sobolev theorem. But in this case there is one more request that we want to make.
We want a smallness assumption, possibly obtained by shrinking the time interval
or better by taking the time interval at infinity where the “tail” of the function
lives. For this reason we should avoid any norm that contains a L∞

t . So we proceed

in two steps first we consider the smaller space S̃1 given by the norm

‖f‖S̃1 = ‖f‖L5
tL

5
x
+ ‖f‖

L
10/3
t W

1,10/3
x

.

Notice that by Sobolev

‖f‖L5
tL

5
x

� ‖f‖
L5

tW
1,30/11
x

and (5, 30/11) is a Strichartz admissible pair. It follows that if u+ ∈ H1 then by
(12)

(121) ‖S(t)u+‖S̃1
[T,∞)

≤ ε

for T large enough. From (92) if we define

(122) Lv(t) = S(t)u+ + i

∫ ∞

t

S(t− t′)(|v(t′)|2v(t′) dt′,

and we use (13), where we pick the couple (q̃, r̃) = (10/3, 10/3), we have

‖Lv‖S̃1
[T,∞)

≤ ε+ C‖|v|2(|v|+ |∇v|)‖
L

10/7

[T,∞)
L

10/7
x

(123)

≤ ε+ C‖v‖2L5
[T,∞)

L5
x
‖v‖

L
10/3

[T,∞)
W

1,10/3
x

= ε+ C‖v‖3
S̃1

[T,∞)
.
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With a similar estimate

(124) ‖Lv − Lw‖S̃1
[T,∞)

≤ C(‖v‖S̃1
[T,∞)

+ ‖w‖S̃1
[T,∞)

)‖v − w‖S̃1
[T,∞)

.

Thanks to the presence of ε one can proceed with the contraction argument. This
would give a solution in [T,∞), which in particular has the property that

(125) ‖u‖S̃1
[T,∞)

� ε.

But we didn’t prove that this solution is in C([T,∞), H1) for example. To do this
we need to go back and estimate the solution u in the Strichartz space S1

[T,∞). We

in fact have by (12) and (13)

‖u‖S1 ≤ C‖u+‖H1 + C‖|u|2(|v|+ |∇u|)‖
L

10/7

[T,∞)
L

10/7
x

and from (125)

‖u‖S1 ≤ C‖u+‖H1 + C‖u‖3
S̃1

[T,∞)
� ‖u+‖H1 ,

and we are done in the interval [T,∞).
We now need to proceed from t = T back to t = 0. Since the problem is

subcritical, an iteration of local well-posedness like we presented in Section 5, using
the conservation of the energy and mass, will suffice to cover the finite interval
[0, T ].

Invertibility of Ω+: This is the proof of scattering and we need to go back to
(91). From here we see that we only need to show that the integral involving the
global solution u ∫ ∞

0

S(t)(|u|2u)(t) dt

converges in H1. By the dual of the homogeneous Strichartz estimate (12) we have
that ∥∥∥∥

∫ ∞

0

S(t)|u|2u(t) dt
∥∥∥∥
H1

� ‖|u|2(|u|+ |∇u|)‖
L

10/7
t L

10/7
x

� C‖u‖2L5
tL

5
x
‖u‖

L
10/3
t W

1,10/3
x

� ‖u‖3S1 .

Clearly to conclude it would be enough to show that ‖u‖S1 ≤ C. This is in fact
proved in the following proposition. �

Proposition 6.16. Assume that u is the H1 global solution to the cubic, de-
focusing NLS in R3. Then

‖u‖S1 ≤ C.

Proof. We first observe that (116) provides a bound in L4
tL

4
x. It is to be

noted that in R
3 this norm is not an admissible Strichartz norm so we need to do a

bit more work. We start by picking ε � 1 to be defined later and intervals of time
Ik, k = 1, ...,M < ∞ such that

(126) ‖u‖L4
Ik

L4
x
≤ ε,

for all k = 1, ...,M . We now work on each separate interval and at the end we put
everything back together. Since for now Ik is fixed we drop the index k and we set
I = [a, b]. By the Duhamel principle and (12) and (13) we have as above

(127) ‖u‖S1
I

� ‖u(a)‖H1 + ‖u‖2L5
IL

5
x
‖u‖

L
10/3
I W

1,10/3
x

.
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It is important to notice that 10/3 < 4 < 5 < 10, where (10/3, 10/3) is an admissible
pair in the L2 sense and (10, 10) is admissible in the H1 sense since by Sobolev

‖u‖L10
t L10

x
≤ ‖u‖

L10
t W

1,30/13
x

,

and (10, 30/13) is an admissible pair. It follows by interpolation and (126) that

‖u‖L5
IL

5
x

� εα‖u‖1−α
S1
I

,

for some α > 0. As a consequence (127) gives

‖u‖S1
I

� ‖u(a)‖H1 + ε2α‖u‖3−2α
S1
I

,

and since the H1 norm is uniformly bounded by energy and mass we have

(128) ‖u‖S1
I

� 1 + ε2α‖u‖3−2α
S1
I

.

We now use a continuity argument. Set X(t) = ‖u‖S1
[a,a+t]

. One can easily prove

that X(t) is continuous. From (128) we have

X(t) � 1 + ε2αX(t)3−2α.

Then if ε is small enough there exist X0 < X1, X1 � 1 such that either X(t) ≤ X0

or X(t) ≥ X1. But since X(0) � 1 and X(t) is continuous it follows that X(t) ≤ X0

for all t ∈ I. This conclusion can be made for all Ik, k = 1, ...,M and this concludes
the proof. �

7. Global well-posedness for the H1(Rn) critical NLS -Part I

We recall that the H1 critical exponent for (1) is p = 1 + 4
n−2 . We also recall

the following theorem that can be basically completely proved using either directly
or indirectly theorems and arguments already presented in Section 5 and Section 6:

Theorem 7.1 (Local or global small data well-posedness for the H1 critical
NLS). We have the following two results:

(1) For any u0 ∈ H1 there exist T = T (u0) and a unique solution u ∈ S1
[T,T ]

to (1) with p = 1 + 4
n−2 and μ = ±1. Moreover there is continuity with

respect to the initial data.
(2) There exists ε small enough such that for any u0, ‖u0‖H1 ≤ ε there exists

a unique global solution u ∈ S1 to (1) with p = 1 + 4
n−2 and μ = ±1.

Moreover there is continuity with respect to the initial data and scattering
in the sense that there exists u± ∈ H1 such that

‖u(t)− S(t)u±‖H1 −→ 0 as t → ±∞.

Proof. It is clear that the part about well-posedness is a summary of what
has been proved in Section 5. The part about scattering instead can be proved as
in Section 6 and by simply observing that Proposition 6.16 follows directly from
the well-posedness proof thanks to the small data assumption. �

Remark 7.2. We first remark that this theorem doesn’t see the focusing or
defocusing nature of the equation. This clearly means that in Theorem 8.1 the NLS
is treated as a “small” perturbation of the linear problem. Due to the criticality
of the problem and hence the fact that T depends also on the profile of the initial
data an iteration argument based on the conservation of mass and energy is not
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possible. It is also clear that even increasing the regularity of the data the large
data problem doesn’t become any easier.

The first breakthrough on this problem is due to Bourgain [13]. He considers
the defocusing case with n = 3, 4 and assumes radial symmetry for the problem. He
proves the second part of Theorem 8.1 for arbitrarily large radially symmetric data.
Here we summarize the main steps of Bourgain’s proof for n = 3, which doesn’t
really do justice to the novelty and depth of the proof itself. The background
argument is done by induction on the size of the energy E, the only quantity,
besides the mass that here doesn’t play much of a role, that remains controlled
over time. From Theorem 8.1 the first step of the induction (small E) is in place.
Let’s now assume the second induction assumption that if E < E0, for E0 arbitrarily
large, then the theorem is true. We take E = E0 and we want to prove that also in
this case the theorem is true. One first shows that the theorem follows if and only
if the norm L10

t L10
x of the solution remains bounded (see Theorem 4.8). Then the

proof proceeds by contradiction. One supposes that there is a solution u such that
‖u‖L10

t L10
x

is arbitrarily large and E = E0. The heart of the proof is on showing

that at some time t0 there is concentration of the H1 norm: there exists a small ball
B0 centered at the origin such that ‖u(t0)‖H1(B0) > δ, and this ball is “sufficiently
isolated” from the rest of the solution . It is here that the radial assumption is
used. At this point one restarts the evolution at time t0 by splitting the data as

ψ0 = u(t0)χB0
and ψ1 = u(t0)(1− χB0

),

where χB0
is the indicator function for the ball B0, and evolving ψ0 with NLS and

ψ1 with a difference equation so that the sum of the two evolutions give the solution
to NLS. Since now ψ0 ∈ H1 and xψ ∈ L2 it follows26 that the evolution v of ψ0 is
global in time. Moreover since E(ψ0) ∼ δ2 it follows that E(ψ1) < E0 − δ2. Hence
for the difference equation we are in the induction assumption. This is not quite
like to have the equation under the induction assumption, but with some relatively
straightforward perturbation theory27 one also gets that the evolution w of ψ1 is
global. Hence we have a global evolution for the solution u = v+w to NLS and as
a consequence a uniform bound for ‖u‖L10

t L10
x

which is a contradiction.
Almost at the same time, with the same radial symmetry assumption above,

Grillakis [43] proved a slighter weaker result than Bourgain’s, namely existence and
uniqueness for smooth global solution. It took few more years to remove the radial
assumption and obtain the following theorem and its corollary [29]:

Theorem 7.3. For any u0 with finite energy, E(u0) < ∞, there exists a

unique28 global solution u ∈ C0
t (Ḣ

1
x)∩L10

t,x to (1) with p = 5, n = 3, μ = 1 such that

(129)

∫ ∞

−∞

∫
R3

|u(t, x)|10 dxdt ≤ C(E(u0)).

for some constant C(E(u0)) that depends only on the energy.

26This result is for example proved in [19] as a consequence of the pseudo-conformal trans-
formation and a monotonicity formula linked to it.

27That works tanks to the fact that the ball is “sufficiently” isolated from the rest of the

solution.
28In fact, uniqueness actually holds in the larger space C0

t (Ḣ
1
x) (thus eliminating the con-

straint that u ∈ L10
t,x) [29].
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As one can see from Theorem 4.8 and from the arguments in Section 6, the
L10
t,x bound above also gives scattering and and persistence of regularity:

Corollary 7.4. Let u0 have finite energy. Then there exist finite energy
solutions u±(t, x) to the free Schrödinger equation (i∂t +Δ)u± = 0 such that

‖u±(t)− u(t)‖Ḣ1 → 0 as t → ±∞.

Furthermore, the maps u0 �→ u±(0) are homeomorphisms from Ḣ1(R3) to Ḣ1(R3).
Finally, if u0 ∈ Hs for some s > 1, then u(t) ∈ Hs for all time t, and one has the
uniform bound

sup
t∈R

‖u(t)‖Hs ≤ C(E(u0), s)‖u0‖Hs .

Most of the rest of this lecture and Section 8 will be devoted to give an idea
of the proof for Theorem 8.3. Still for the defocusing case and for n > 3 we recall
first the result of Tao [74], where an equivalent of Theorem 8.3 is proved still under
the radial assumption, the result of Ryckman and Visan [70] for n = 4, where the
radial assumption is removed, and finally the full generalization for any n ≥ 5 by
Visan [77].

The situation in the focusing case was first considered successfully by Kenig
and Merle. They prove the following theorem [52]:

Theorem 7.5. Assume that E(u0) < E(W ), ‖u0‖Ḣ1 < ‖W‖Ḣ1 , where n =
3, 4, 5 and u0 is radial and W is the stationary solution. Then the solution u to the
critical H1 focusing IVP (1) with data u0 at t = 0 is defined for all time and there

exists u± ∈ Ḣ1 such that

‖S(t)u± − u(t)‖Ḣ1 → 0 as t → ±∞.

Moreover for u0 radial, E(u0) < E(W ), but ‖u0‖Ḣ1 > ‖W‖Ḣ1 , the solution must
break down in finite time.

This result has been extended in every dimension n ≥ 3 and for general data in
[57]. Moreover a similar result has been proved by Kenig and Merle for the critical
wave equation without the radial assumption [53], see also [54]. The proof of The-
orem 8.5 introduces a new point of view for these problems. Using a concentration-
compactness argument the authors reduce matters to a rigidity theorem, which is
proved with the aid of a localized Virial identity (in the spirit of Merle [62, 63]).
The radiality enters only in the proof of the rigidity theorem. In the case of the
critical wave equation other consideration of elliptic nature are used to remove the
radial assumption. The authors also use in their approach a profile decomposition
proved in the context of the Schrödinger equation by Keraani [56]. For a more
elaborate discussion one should consult [58].

7.6. Idea of the proof of Theorem 8.3. To give a complete proof of this
theorem in less than two lectures is impossible, so we will first outline the idea of
the proof and then we only show rigorously few parts of it.

First the naive approach: we follow the strategy of induction/contraddiction
introduced by Bourgain. We define Ecrit the critical energy below which the L10

t L10
x

norm of a solutions stays bounded by some constant depending on the energy. We
then identify a smooth minimal energy blow up solution u of energy Ecrit such that

(130) ‖u‖L10
t L10

x
> M,
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where M is as large as we please. For this solution we then show a series of
properties that at the end will actually give

(131) ‖u‖L10
t L10

x
≤ C(Ecrit),

contradicting (149).
This is in order the summary of the properties we prove for the minimal energy

blow up solution on a fixed (compact) interval of time I:

(1) Frequency and space localization: For each t ∈ I there exists N(t) >
0 and x(t) ∈ R3 such that û(t) is mostly supported at frequency of size
proportional to N(t) and u(t) is mostly supported on a ball centered at
x(t) and radius proportional to 1

N(t) . To prove the frequency localization

part one uses the intuition that the minimal energy blow up solution u, at
a given time t0, cannot have two components u− and u+ which Fourier
transforms are supported respectively in |ξ| ≤ N and |ξ| ≥ KN, K � 1,
and such that both pieces carrie a large amount of energy. The reason
for this is that the energy relative to u− will make the energy relative
to u+ smaller than Ecrit and viceversa. Hence both u− and u+ can flow
globally. On the other hand ifK is large enough their nonlinear interaction
is basically negligible, hence perturbation theory says that u ∼ u− +
u+, hence u exists globally and its L10

t L10
x norm is uniformly bounded, a

contradiction. A similar, but just a bit more complicated, argument gives
also space localization.

(2) Frequency localized interaction Morawetz inequality: As we men-
tioned several times whenever a problem is not a perturbation of the linear
one, like the critical ones for example, in order to obtain a global state-
ment we need to have a global space-time bound. We learned that the
Morawetz estimates for the defocusing problem and the Viriel identity for
the focusing one are the types of estimates that we want to have. Bour-
gain in fact used the classical Morawetz estimate that appears in (30) with
p = 5. Here the presence of the denominator forced the radial symmetry.
In our argument instead we would like to use the Interaction Morawetz
estimate (116). This is weaker in the sense that we only have the fourth
power, but it is also stronger since we do not have a denominator. We
keep in mind that our final goal is to show boundedness of the L10

I L10
x

norm of the minimal energy blow up solution u so we need to upgrade the
L4
IL

4
x norm. We believe that for the low frequencies, where the energy is

very small thanks to localization, Strichartz estimates will be enough to
give us the bound in the L10

I L10
x norm. For the high frequencies we also

have small energy, but we expect that the Strichartz estimates are too
weak here. So the idea is to first prove (116) for the high frequency part
of the solution. We have for all N∗ < Nmin

(132)

∫
I

∫
|P≥N∗u(t, x)|4 dxdt � η1N

−3
∗ ,

where Nmin = inft∈I N(t) for which one can prove Nmin > 0 and η1 is a
small quantity. Note that the quantities appearing in the right hand side
of (151) are independent of I.
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(3) Uniform boundedness of time interval I: Assuming thatN(t) doesn’t
run to infinity, use the L4

IL
4
x bound, which is uniform in I, to get a uni-

form bound on the length of time interval I itself. With this information
now, since most of the solution remains on a uniformly bounded frequency
window, perturbation will provide the final uniform bound for the L10

I L10
x

norm.
(4) Uniform Boundedness of N(t): We mentioned above that there exists

Nmin such that 0 < Nmin ≤ N(t), and this in not hard to prove. In fact
by rescaling29 one can assume that

Nmin = 1.

The difficult part is to show that there exists Nmax < ∞ such that

N(t) ≤ Nmax.

Again by contradiction one assumes that given R � 1 there exists tR
such that N(tR) > R and by definition most of the energy is located
on frequencies R < N(tR) � |ξ|. But then one can prove by a simple
application of the “I-method” that although the energy has migrated on
very large frequencies, some littering of mass has been left on medium
frequencies. But mass on medium frequencies is equivalent to energy,
hence there is some significant energy left over on medium frequencies. If
then R is large enough these two pieces of the solution u, the one at very
high frequencies and the one at medium frequencies, are very separated
and each has a significant amount of energy. But this cannot happen for
an energy critical blow up solution, as discussed above. Hence Nmax must
be bounded.

In order to proceed with the outline given above we use heavily Strichartz estimates
(12) and (13), the improved bilinear estimate (14) and multilinear estimates of
different kinds. A very important tool that was mentioned often above is the theory
of perturbation that in practice is made of a serious of perturbation lemmas. These
lemmas are particularly useful when we have to claim that if u is a solution to NLS
and v is a solution to an equation which is a small perturbation of NLS, then u and
v are close to each other and if one exists the other does too. Here we report two
examples of such lemmas.

Lemma 7.7 (Short-time perturbations). Let I be a compact interval, and let ũ
be a function on I ×R3 which is a near-solution to (1) with p = 5 and μ = 1 in the
sense that

(133) (i∂t +
1

2
Δ)ũ = |ũ|4ũ+ e

for some function e. Suppose that we also have the energy bound

‖ũ‖L∞
t Ḣ1

x(I×R3) ≤ E

for some E > 0. Let t0 ∈ I, and let u(t0) be close to ũ(t0) in the sense that

(134) ‖u(t0)− ũ(t0)‖Ḣ1
x
≤ E′

29Since the problem isH1 critical and we only use the energy, nothing will change by rescaling!
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for some E′ > 0. Assume also that we have the smallness conditions

‖∇ũ‖
L10

t L
30/13
x (I×R3)

≤ ε0(135)

‖∇ei(t−t0)Δ(u(t0)− ũ(t0))‖L10
t L

30/13
x (I×R3)

≤ ε(136)

‖∇e‖
L2

tL
6/5
x

≤ ε(137)

for some 0 < ε < ε0, where ε0 is some constant ε0 = ε0(E,E′) > 0.
We conclude that there exists a solution u to (1) with p = 5 and μ = 1 on

I × R
3 with the specified initial data u(t0) at t0, and furthermore

‖u− ũ‖Ṡ1(I×R3) � E′(138)

‖u‖Ṡ1(I×R3) � E′ + E(139)

‖u− ũ‖L10
t,x(I×R3) � ‖∇(u− ũ)‖

L10
t L

30/13
x (I×R3)

� ε(140)

‖∇(i∂t +
1

2
Δ)(u− ũ)‖

L2
tL

6/5
x (I×R3)

� ε.(141)

Note that u(t0) − ũ(t0) is allowed to have large energy, albeit at the cost of
forcing ε to be smaller, and worsening the bounds in (157). From the Strichartz
estimate (12), we see that the hypothesis (155) is redundant if one is willing to take
E′ = O(ε).

Proof. By the well-posedness theory presented in Section 5, it suffice to prove
(157) - (160) as a priori estimates30. We establish these bounds for t ≥ t0, since
the corresponding bounds for the t ≤ t0 portion of I are proved similarly.

First note that the Strichartz estimate (12) and (13) give,

‖ũ‖Ṡ1(I×R3) � E + ‖ũ‖L10
t,x(I×R3) · ‖ũ‖4Ṡ1(I×R3)

+ ε.

By (154) and Sobolev embedding we have ‖ũ‖L10
t,x(I×R3) � ε0. A standard continuity

argument in I then gives (if ε0 is sufficiently small depending on E)

‖ũ‖Ṡ1(I×R3) � E.(142)

Define v := u− ũ. For each t ∈ I define the quantity

S(t) := ‖∇(i∂t +
1

2
Δ)v‖

L2
tL

6/5
x ([t0,t]×R3)

.

From using again Strichartz estimates and the definition of S1, (155), we have

‖∇v‖
L10

t L
30/13
x ([t0,t]×R3)

� ‖∇(v − ei(t−t0)
1
2Δv(t0))‖L10

t L
30/13
x ([t0,t]×R3)

(143)

+ ‖∇ei(t−t0)
1
2Δv(t0)‖L10

t L
30/13
x ([t0,t]×R3)

� ‖v − ei(t−t0)
1
2Δv(t0)‖Ṡ1([t0,t]×R3) + ε

� S(t) + ε.(144)

On the other hand, since v obeys the equation

(i∂t +
1

2
Δ)v = |ũ+ v|4(ũ+ v)− |ũ|4ũ− e =

5∑
j=1

Ø(vj ũ5−j)− e

30That is, we may assume the solution u already exists and is smooth on the entire interval
I.
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where Ø(v1, v2, v3, v4, v5) denotes any combination of vi and v̄j . By some standard
multilinear estimates, (154), (156), (163) then

S(t) � ε+

5∑
j=1

(S(t) + ε)jε5−j
0 .

If ε0 is sufficiently small, a standard continuity argument then yields the bound
S(t) � ε for all t ∈ I. This gives (160), and (159) follows from (163). Applying
Strichartz inequalities again, (153) we then conclude (157) (if ε is sufficiently small),
and then from (161) and the triangle inequality we conclude (158). �

We will actually be more interested in iterating the above lemma to deal with
the more general situation of near-solutions with finite but arbitrarily large L10

t,x

norms.

Lemma 7.8 (Long-time perturbations). Let I be a compact interval, and let ũ
be a function on I × R3 which obeys the bounds

(145) ‖ũ‖L10
t,x(I×R3) ≤ M

and

(146) ‖ũ‖L∞
t Ḣ1

x(I×R3) ≤ E

for some M,E > 0. Suppose also that ũ is a near-solution to (1) with p = 5 and
μ = 1 in the sense that it solves (152) for some e. Let t0 ∈ I, and let u(t0) be close
to ũ(t0) in the sense that

‖u(t0)− ũ(t0)‖Ḣ1
x
≤ E′

for some E′ > 0. Assume also that we have the smallness conditions,

‖∇ei(t−t0)
1
2Δ(u(t0)− ũ(t0))‖L10

t L
30/13
x (I×R3)

≤ ε(147)

‖∇e‖
L2

tL
6/5
x (I×R3)

≤ ε

for 0 < ε < ε1, where ε1 is some constant ε1 = ε1(E,E′,M) > 0. We conclude
there exists a solution u to (1) with p = 5 and μ = 1 on I × R3 with the specified
initial data u(t0) at t0, and furthermore

‖u− ũ‖Ṡ1(I×R3) ≤ C(M,E,E′)

‖u‖Ṡ1(I×R3) ≤ C(M,E,E′)

‖u− ũ‖L10
t,x(I×R3) ≤ ‖∇(u− ũ)‖

L10
t L

30/13
x (I×R3)

≤ C(M,E,E′)ε.

Once again, the hypothesis (166) is redundant by the Strichartz estimate if one
is willing to take E′ = O(ε); however it will be useful in our applications to know
that this Lemma can tolerate a perturbation which is large in the energy norm but

whose free evolution is small in the L10
t Ẇ

1,30/13
x norm.

This lemma is already useful in the e = 0 case, as it says that one has local
well-posedness in the energy space whenever the L10

t,x norm is bounded; in fact
one has locally Lipschitz dependence on the initial data. For similar perturbative
results see [13], [12].
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Proof. As in the previous proof, we may assume that t0 is the lower bound of
the interval I. Let ε0 = ε0(E, 2E′) be as in Lemma 8.7. (We need to replace E′ by

the slightly larger 2E′ as the Ḣ1 norm of u− ũ is going to grow slightly in time.)

The first step is to establish a Ṡ1 bound on ũ. Using (164) we may subdivide
I into C(M, ε0) time intervals such that the L10

t,x norm of ũ is at most ε0 on each
such interval. By using (165) and Strichartz estimates, as in the proof of (161), we

see that the Ṡ1 norm of ũ is O(E) on each of these intervals. Summing up over all
the intervals we conclude

‖ũ‖Ṡ1(I×R3) ≤ C(M,E, ε0)

and in particular

‖∇ũ‖
L10

t L
30/13
x (I×R3)

≤ C(M,E, ε0).

We can then subdivide the interval I into N ≤ C(M,E, ε0) subintervals Ij ≡
[Tj , Tj+1] so that on each Ij we have,

‖∇ũ‖
L10

t L
30/13
x (Ij×R3)

≤ ε0.

We can then verify inductively using Lemma 8.7 for each j that if ε1 is sufficiently
small depending on ε0, N , E, E′, then we have

‖u− ũ‖Ṡ1(Ij×R3) ≤ C(j)E′

‖u‖Ṡ1(Ij×R3) ≤ C(j)(E′ + E)

‖∇(u− ũ)‖
L10

t L
30/13
x (Ij×R3)

≤ C(j)ε

‖∇(i∂t +
1

2
Δ)(u− ũ)‖

L2
tL

6/5
x (Ij×R3)

≤ C(j)ε

and hence by Strichartz we have

‖∇ei(t−Tj+1)
1
2Δ(u(Tj+1)− ũ(Tj+1))‖L10

t L
30/13
x (I×R3)

≤ ‖∇ei(t−Tj)
1
2Δ(u(Tj)− ũ(Tj))‖L10

t L
30/13
x (I×R3)

+ C(j)ε

and

‖u(Tj+1)− ũ(Tj+1)‖Ḣ1 ≤ ‖u(Tj)− ũ(Tj)‖Ḣ1 + C(j)ε

allowing one to continue the induction (if ε1 is sufficiently small depending on E,
N , E′, ε0, then the quantity in (153) will not exceed 2E′). The claim follows. �

8. Global well-posedness for the H1(Rn) critical NLS -Part I

We recall that the H1 critical exponent for (1) is p = 1 + 4
n−2 . We also recall

the following theorem that can be basically completely proved using either directly
or indirectly theorems and arguments already presented in Section 5 and Section 6:

Theorem 8.1 (Local or global small data well-posedness for the H1 critical
NLS). We have the following two results:

(1) For any u0 ∈ H1 there exist T = T (u0) and a unique solution u ∈ S1
[T,T ]

to (1) with p = 1 + 4
n−2 and μ = ±1. Moreover there is continuity with

respect to the initial data.



250 G. STAFFILANI

(2) There exists ε small enough such that for any u0, ‖u0‖H1 ≤ ε there exists
a unique global solution u ∈ S1 to (1) with p = 1 + 4

n−2 and μ = ±1.
Moreover there is continuity with respect to the initial data and scattering
in the sense that there exists u± ∈ H1 such that

‖u(t)− S(t)u±‖H1 −→ 0 as t → ±∞.

Proof. It is clear that the part about well-posedness is a summary of what
has been proved in Section 5. The part about scattering instead can be proved as
in Section 6 and by simply observing that Proposition 6.16 follows directly from
the well-posedness proof thanks to the small data assumption. �

Remark 8.2. We first remark that this theorem doesn’t see the focusing or
defocusing nature of the equation. This clearly means that in Theorem 8.1 the NLS
is treated as a “small” perturbation of the linear problem. Due to the criticality
of the problem and hence the fact that T depends also on the profile of the initial
data an iteration argument based on the conservation of mass and energy is not
possible. It is also clear that even increasing the regularity of the data the large
data problem doesn’t become any easier.

The first breakthrough on this problem is due to Bourgain [13]. He considers
the defocusing case with n = 3, 4 and assumes radial symmetry for the problem. He
proves the second part of Theorem 8.1 for arbitrarily large radially symmetric data.
Here we summarize the main steps of Bourgain’s proof for n = 3, which doesn’t
really do justice to the novelty and depth of the proof itself. The background
argument is done by induction on the size of the energy E, the only quantity,
besides the mass that here doesn’t play much of a role, that remains controlled
over time. From Theorem 8.1 the first step of the induction (small E) is in place.
Let’s now assume the second induction assumption that if E < E0, for E0 arbitrarily
large, then the theorem is true. We take E = E0 and we want to prove that also in
this case the theorem is true. One first shows that the theorem follows if and only
if the norm L10

t L10
x of the solution remains bounded (see Theorem 4.8). Then the

proof proceeds by contradiction. One supposes that there is a solution u such that
‖u‖L10

t L10
x

is arbitrarily large and E = E0. The heart of the proof is on showing

that at some time t0 there is concentration of the H1 norm: there exists a small ball
B0 centered at the origin such that ‖u(t0)‖H1(B0) > δ, and this ball is “sufficiently
isolated” from the rest of the solution . It is here that the radial assumption is
used. At this point one restarts the evolution at time t0 by splitting the data as

ψ0 = u(t0)χB0
and ψ1 = u(t0)(1− χB0

),

where χB0
is the indicator function for the ball B0, and evolving ψ0 with NLS and

ψ1 with a difference equation so that the sum of the two evolutions give the solution
to NLS. Since now ψ0 ∈ H1 and xψ ∈ L2 it follows31 that the evolution v of ψ0 is
global in time. Moreover since E(ψ0) ∼ δ2 it follows that E(ψ1) < E0 − δ2. Hence
for the difference equation we are in the induction assumption. This is not quite
like to have the equation under the induction assumption, but with some relatively
straightforward perturbation theory32 one also gets that the evolution w of ψ1 is

31This result is for example proved in [19] as a consequence of the pseudo-conformal trans-
formation and a monotonicity formula linked to it.

32That works tanks to the fact that the ball is “sufficiently” isolated from the rest of the
solution.
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global. Hence we have a global evolution for the solution u = v+w to NLS and as
a consequence a uniform bound for ‖u‖L10

t L10
x

which is a contradiction.
Almost at the same time, with the same radial symmetry assumption above,

Grillakis [43] proved a slighter weaker result than Bourgain’s, namely existence and
uniqueness for smooth global solution. It took few more years to remove the radial
assumption and obtain the following theorem and its corollary [29]:

Theorem 8.3. For any u0 with finite energy, E(u0) < ∞, there exists a

unique33 global solution u ∈ C0
t (Ḣ

1
x)∩L10

t,x to (1) with p = 5, n = 3, μ = 1 such that

(148)

∫ ∞

−∞

∫
R3

|u(t, x)|10 dxdt ≤ C(E(u0)).

for some constant C(E(u0)) that depends only on the energy.

As one can see from Theorem 4.8 and from the arguments in Section 6, the
L10
t,x bound above also gives scattering and and persistence of regularity:

Corollary 8.4. Let u0 have finite energy. Then there exist finite energy
solutions u±(t, x) to the free Schrödinger equation (i∂t +Δ)u± = 0 such that

‖u±(t)− u(t)‖Ḣ1 → 0 as t → ±∞.

Furthermore, the maps u0 �→ u±(0) are homeomorphisms from Ḣ1(R3) to Ḣ1(R3).
Finally, if u0 ∈ Hs for some s > 1, then u(t) ∈ Hs for all time t, and one has the
uniform bound

sup
t∈R

‖u(t)‖Hs ≤ C(E(u0), s)‖u0‖Hs .

Most of the rest of this lecture and Section 8 will be devoted to give an idea
of the proof for Theorem 8.3. Still for the defocusing case and for n > 3 we recall
first the result of Tao [74], where an equivalent of Theorem 8.3 is proved still under
the radial assumption, the result of Ryckman and Visan [70] for n = 4, where the
radial assumption is removed, and finally the full generalization for any n ≥ 5 by
Visan [77].

The situation in the focusing case was first considered successfully by Kenig
and Merle. They prove the following theorem [52]:

Theorem 8.5. Assume that E(u0) < E(W ), ‖u0‖Ḣ1 < ‖W‖Ḣ1 , where n =
3, 4, 5 and u0 is radial and W is the stationary solution. Then the solution u to the
critical H1 focusing IVP (1) with data u0 at t = 0 is defined for all time and there

exists u± ∈ Ḣ1 such that

‖S(t)u± − u(t)‖Ḣ1 → 0 as t → ±∞.

Moreover for u0 radial, E(u0) < E(W ), but ‖u0‖Ḣ1 > ‖W‖Ḣ1 , the solution must
break down in finite time.

This result has been extended in every dimension n ≥ 3 and for general data in
[57]. Moreover a similar result has been proved by Kenig and Merle for the critical
wave equation without the radial assumption [53], see also [54]. The proof of The-
orem 8.5 introduces a new point of view for these problems. Using a concentration-
compactness argument the authors reduce matters to a rigidity theorem, which is

33In fact, uniqueness actually holds in the larger space C0
t (Ḣ

1
x) (thus eliminating the con-

straint that u ∈ L10
t,x) [29].
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proved with the aid of a localized Virial identity (in the spirit of Merle [62, 63]).
The radiality enters only in the proof of the rigidity theorem. In the case of the
critical wave equation other consideration of elliptic nature are used to remove the
radial assumption. The authors also use in their approach a profile decomposition
proved in the context of the Schrödinger equation by Keraani [56]. For a more
elaborate discussion one should consult [58].

8.6. Idea of the proof of Theorem 8.3. To give a complete proof of this
theorem in less than two lectures is impossible, so we will first outline the idea of
the proof and then we only show rigorously few parts of it.

First the naive approach: we follow the strategy of induction/contraddiction
introduced by Bourgain. We define Ecrit the critical energy below which the L10

t L10
x

norm of a solutions stays bounded by some constant depending on the energy. We
then identify a smooth minimal energy blow up solution u of energy Ecrit such that

(149) ‖u‖L10
t L10

x
> M,

where M is as large as we please. For this solution we then show a series of
properties that at the end will actually give

(150) ‖u‖L10
t L10

x
≤ C(Ecrit),

contradicting (149).
This is in order the summary of the properties we prove for the minimal energy

blow up solution on a fixed (compact) interval of time I:

(1) Frequency and space localization: For each t ∈ I there exists N(t) >
0 and x(t) ∈ R3 such that û(t) is mostly supported at frequency of size
proportional to N(t) and u(t) is mostly supported on a ball centered at
x(t) and radius proportional to 1

N(t) . To prove the frequency localization

part one uses the intuition that the minimal energy blow up solution u, at
a given time t0, cannot have two components u− and u+ which Fourier
transforms are supported respectively in |ξ| ≤ N and |ξ| ≥ KN, K � 1,
and such that both pieces carrie a large amount of energy. The reason
for this is that the energy relative to u− will make the energy relative
to u+ smaller than Ecrit and viceversa. Hence both u− and u+ can flow
globally. On the other hand ifK is large enough their nonlinear interaction
is basically negligible, hence perturbation theory says that u ∼ u− +
u+, hence u exists globally and its L10

t L10
x norm is uniformly bounded, a

contradiction. A similar, but just a bit more complicated, argument gives
also space localization.

(2) Frequency localized interaction Morawetz inequality: As we men-
tioned several times whenever a problem is not a perturbation of the linear
one, like the critical ones for example, in order to obtain a global state-
ment we need to have a global space-time bound. We learned that the
Morawetz estimates for the defocusing problem and the Viriel identity for
the focusing one are the types of estimates that we want to have. Bour-
gain in fact used the classical Morawetz estimate that appears in (30) with
p = 5. Here the presence of the denominator forced the radial symmetry.
In our argument instead we would like to use the Interaction Morawetz
estimate (116). This is weaker in the sense that we only have the fourth
power, but it is also stronger since we do not have a denominator. We
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keep in mind that our final goal is to show boundedness of the L10
I L10

x

norm of the minimal energy blow up solution u so we need to upgrade the
L4
IL

4
x norm. We believe that for the low frequencies, where the energy is

very small thanks to localization, Strichartz estimates will be enough to
give us the bound in the L10

I L10
x norm. For the high frequencies we also

have small energy, but we expect that the Strichartz estimates are too
weak here. So the idea is to first prove (116) for the high frequency part
of the solution. We have for all N∗ < Nmin

(151)

∫
I

∫
|P≥N∗u(t, x)|4 dxdt � η1N

−3
∗ ,

where Nmin = inft∈I N(t) for which one can prove Nmin > 0 and η1 is a
small quantity. Note that the quantities appearing in the right hand side
of (151) are independent of I.

(3) Uniform boundedness of time interval I: Assuming thatN(t) doesn’t
run to infinity, use the L4

IL
4
x bound, which is uniform in I, to get a uni-

form bound on the length of time interval I itself. With this information
now, since most of the solution remains on a uniformly bounded frequency
window, perturbation will provide the final uniform bound for the L10

I L10
x

norm.
(4) Uniform Boundedness of N(t): We mentioned above that there exists

Nmin such that 0 < Nmin ≤ N(t), and this in not hard to prove. In fact
by rescaling34 one can assume that

Nmin = 1.

The difficult part is to show that there exists Nmax < ∞ such that

N(t) ≤ Nmax.

Again by contradiction one assumes that given R � 1 there exists tR
such that N(tR) > R and by definition most of the energy is located
on frequencies R < N(tR) � |ξ|. But then one can prove by a simple
application of the “I-method” that although the energy has migrated on
very large frequencies, some littering of mass has been left on medium
frequencies. But mass on medium frequencies is equivalent to energy,
hence there is some significant energy left over on medium frequencies. If
then R is large enough these two pieces of the solution u, the one at very
high frequencies and the one at medium frequencies, are very separated
and each has a significant amount of energy. But this cannot happen for
an energy critical blow up solution, as discussed above. Hence Nmax must
be bounded.

In order to proceed with the outline given above we use heavily Strichartz estimates
(12) and (13), the improved bilinear estimate (14) and multilinear estimates of
different kinds. A very important tool that was mentioned often above is the theory
of perturbation that in practice is made of a serious of perturbation lemmas. These
lemmas are particularly useful when we have to claim that if u is a solution to NLS
and v is a solution to an equation which is a small perturbation of NLS, then u and
v are close to each other and if one exists the other does too. Here we report two
examples of such lemmas.

34Since the problem isH1 critical and we only use the energy, nothing will change by rescaling!
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Lemma 8.7 (Short-time perturbations). Let I be a compact interval, and let ũ
be a function on I ×R3 which is a near-solution to (1) with p = 5 and μ = 1 in the
sense that

(152) (i∂t +
1

2
Δ)ũ = |ũ|4ũ+ e

for some function e. Suppose that we also have the energy bound

‖ũ‖L∞
t Ḣ1

x(I×R3) ≤ E

for some E > 0. Let t0 ∈ I, and let u(t0) be close to ũ(t0) in the sense that

(153) ‖u(t0)− ũ(t0)‖Ḣ1
x
≤ E′

for some E′ > 0. Assume also that we have the smallness conditions

‖∇ũ‖
L10

t L
30/13
x (I×R3)

≤ ε0(154)

‖∇ei(t−t0)Δ(u(t0)− ũ(t0))‖L10
t L

30/13
x (I×R3)

≤ ε(155)

‖∇e‖
L2

tL
6/5
x

≤ ε(156)

for some 0 < ε < ε0, where ε0 is some constant ε0 = ε0(E,E′) > 0.
We conclude that there exists a solution u to (1) with p = 5 and μ = 1 on

I × R
3 with the specified initial data u(t0) at t0, and furthermore

‖u− ũ‖Ṡ1(I×R3) � E′(157)

‖u‖Ṡ1(I×R3) � E′ + E(158)

‖u− ũ‖L10
t,x(I×R3) � ‖∇(u− ũ)‖

L10
t L

30/13
x (I×R3)

� ε(159)

‖∇(i∂t +
1

2
Δ)(u− ũ)‖

L2
tL

6/5
x (I×R3)

� ε.(160)

Note that u(t0) − ũ(t0) is allowed to have large energy, albeit at the cost of
forcing ε to be smaller, and worsening the bounds in (157). From the Strichartz
estimate (12), we see that the hypothesis (155) is redundant if one is willing to take
E′ = O(ε).

Proof. By the well-posedness theory presented in Section 5, it suffice to prove
(157) - (160) as a priori estimates35. We establish these bounds for t ≥ t0, since
the corresponding bounds for the t ≤ t0 portion of I are proved similarly.

First note that the Strichartz estimate (12) and (13) give,

‖ũ‖Ṡ1(I×R3) � E + ‖ũ‖L10
t,x(I×R3) · ‖ũ‖4Ṡ1(I×R3)

+ ε.

By (154) and Sobolev embedding we have ‖ũ‖L10
t,x(I×R3) � ε0. A standard continuity

argument in I then gives (if ε0 is sufficiently small depending on E)

‖ũ‖Ṡ1(I×R3) � E.(161)

Define v := u− ũ. For each t ∈ I define the quantity

S(t) := ‖∇(i∂t +
1

2
Δ)v‖

L2
tL

6/5
x ([t0,t]×R3)

.

35That is, we may assume the solution u already exists and is smooth on the entire interval
I.
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From using again Strichartz estimates and the definition of S1, (155), we have

‖∇v‖
L10

t L
30/13
x ([t0,t]×R3)

� ‖∇(v − ei(t−t0)
1
2Δv(t0))‖L10

t L
30/13
x ([t0,t]×R3)

(162)

+ ‖∇ei(t−t0)
1
2Δv(t0)‖L10

t L
30/13
x ([t0,t]×R3)

� ‖v − ei(t−t0)
1
2Δv(t0)‖Ṡ1([t0,t]×R3) + ε

� S(t) + ε.(163)

On the other hand, since v obeys the equation

(i∂t +
1

2
Δ)v = |ũ+ v|4(ũ+ v)− |ũ|4ũ− e =

5∑
j=1

Ø(vj ũ5−j)− e

where Ø(v1, v2, v3, v4, v5) denotes any combination of vi and v̄j . By some standard
multilinear estimates, (154), (156), (163) then

S(t) � ε+

5∑
j=1

(S(t) + ε)jε5−j
0 .

If ε0 is sufficiently small, a standard continuity argument then yields the bound
S(t) � ε for all t ∈ I. This gives (160), and (159) follows from (163). Applying
Strichartz inequalities again, (153) we then conclude (157) (if ε is sufficiently small),
and then from (161) and the triangle inequality we conclude (158). �

We will actually be more interested in iterating the above lemma to deal with
the more general situation of near-solutions with finite but arbitrarily large L10

t,x

norms.

Lemma 8.8 (Long-time perturbations). Let I be a compact interval, and let ũ
be a function on I × R3 which obeys the bounds

(164) ‖ũ‖L10
t,x(I×R3) ≤ M

and

(165) ‖ũ‖L∞
t Ḣ1

x(I×R3) ≤ E

for some M,E > 0. Suppose also that ũ is a near-solution to (1) with p = 5 and
μ = 1 in the sense that it solves (152) for some e. Let t0 ∈ I, and let u(t0) be close
to ũ(t0) in the sense that

‖u(t0)− ũ(t0)‖Ḣ1
x
≤ E′

for some E′ > 0. Assume also that we have the smallness conditions,

‖∇ei(t−t0)
1
2Δ(u(t0)− ũ(t0))‖L10

t L
30/13
x (I×R3)

≤ ε(166)

‖∇e‖
L2

tL
6/5
x (I×R3)

≤ ε

for 0 < ε < ε1, where ε1 is some constant ε1 = ε1(E,E′,M) > 0. We conclude
there exists a solution u to (1) with p = 5 and μ = 1 on I × R3 with the specified
initial data u(t0) at t0, and furthermore

‖u− ũ‖Ṡ1(I×R3) ≤ C(M,E,E′)

‖u‖Ṡ1(I×R3) ≤ C(M,E,E′)

‖u− ũ‖L10
t,x(I×R3) ≤ ‖∇(u− ũ)‖

L10
t L

30/13
x (I×R3)

≤ C(M,E,E′)ε.
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Once again, the hypothesis (166) is redundant by the Strichartz estimate if one
is willing to take E′ = O(ε); however it will be useful in our applications to know
that this Lemma can tolerate a perturbation which is large in the energy norm but

whose free evolution is small in the L10
t Ẇ

1,30/13
x norm.

This lemma is already useful in the e = 0 case, as it says that one has local
well-posedness in the energy space whenever the L10

t,x norm is bounded; in fact
one has locally Lipschitz dependence on the initial data. For similar perturbative
results see [13], [12].

Proof. As in the previous proof, we may assume that t0 is the lower bound of
the interval I. Let ε0 = ε0(E, 2E′) be as in Lemma 8.7. (We need to replace E′ by

the slightly larger 2E′ as the Ḣ1 norm of u− ũ is going to grow slightly in time.)

The first step is to establish a Ṡ1 bound on ũ. Using (164) we may subdivide
I into C(M, ε0) time intervals such that the L10

t,x norm of ũ is at most ε0 on each
such interval. By using (165) and Strichartz estimates, as in the proof of (161), we

see that the Ṡ1 norm of ũ is O(E) on each of these intervals. Summing up over all
the intervals we conclude

‖ũ‖Ṡ1(I×R3) ≤ C(M,E, ε0)

and in particular

‖∇ũ‖
L10

t L
30/13
x (I×R3)

≤ C(M,E, ε0).

We can then subdivide the interval I into N ≤ C(M,E, ε0) subintervals Ij ≡
[Tj , Tj+1] so that on each Ij we have,

‖∇ũ‖
L10

t L
30/13
x (Ij×R3)

≤ ε0.

We can then verify inductively using Lemma 8.7 for each j that if ε1 is sufficiently
small depending on ε0, N , E, E′, then we have

‖u− ũ‖Ṡ1(Ij×R3) ≤ C(j)E′

‖u‖Ṡ1(Ij×R3) ≤ C(j)(E′ + E)

‖∇(u− ũ)‖
L10

t L
30/13
x (Ij×R3)

≤ C(j)ε

‖∇(i∂t +
1

2
Δ)(u− ũ)‖

L2
tL

6/5
x (Ij×R3)

≤ C(j)ε

and hence by Strichartz we have

‖∇ei(t−Tj+1)
1
2Δ(u(Tj+1)− ũ(Tj+1))‖L10

t L
30/13
x (I×R3)

≤ ‖∇ei(t−Tj)
1
2Δ(u(Tj)− ũ(Tj))‖L10

t L
30/13
x (I×R3)

+ C(j)ε

and

‖u(Tj+1)− ũ(Tj+1)‖Ḣ1 ≤ ‖u(Tj)− ũ(Tj)‖Ḣ1 + C(j)ε

allowing one to continue the induction (if ε1 is sufficiently small depending on E,
N , E′, ε0, then the quantity in (153) will not exceed 2E′). The claim follows. �
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9. The periodic NLS

So far we only talked about the Schrödinger equation on R
n, and one can

certainly define this equation in more general manifolds M by replacing the usual
Laplacian Δ with the Laplace-Beltrami operator ΔM . In recent years there has
been a flurry of activity concerning well-posedness and blow up of the IVP (1) on
different manifolds, see for example in the setting of compact Riemannian manifolds
(M,g) [8, 7, 17, 18]. In this case the conclusions are generally weaker than
those in Euclidean spaces: there is no scattering to linear solutions, or some other
type of asymptotic control of the nonlinear evolution as t → ∞. Moreover, in
certain cases such as the spheres Sn, the well-posedness theory requires sufficiently
subcritical nonlinearities, due to concentration of certain spherical harmonics, see
[16]. The situation is different when we are in the setting of symmetric spaces
of noncompact type36. The simplest such spaces are the hyperbolic spaces Hn,
n ≥ 2. On hyperbolic spaces one can in fact prove stronger theorems than on
Euclidean spaces. For the linear flow one can exhibit a larger class of global in
time Strichartz estimates [1, 47], (for radial functions these were already proved
in [3, 4, 5, 67]). For the nonlinear flow with N(u) = u|u|p−1 one can prove
noneuclidean Morawetz inequalities, and scattering in H1 in the full subcritical
range p ∈ (1, 1 + 4/(n− 2)), [47]. These stronger theorems are possible because of
the more robust geometry at infinity of noncompact symmetric spaces compared to
Euclidean spaces; for example, the scattering result for the nonlinear Schrödinger
equation can be interpreted as the absence of long range effects of the nonlinearity.

Here we cannot clearly address all the work mentioned above, but instead we
will consider the spacial case of the periodic NLS (1), or in other words the problem
on the torus Tn. The first work on the periodic NLS with non smooth data goes
back to Bourgain [8]. Since we already learned from Section 2 that the first step to
take is to analyze in the best possible way the linear problem, we will do this now.
We cannot hope to prove Strichartz estimates starting from a dispersive estimate
since there is no dispersion here in the sense introduced in Section 2. This is because
the periodic condition at the boundary does not allow the solution to decay in time.
So one needs to use a different analysis. We start by saying that the torus that will
be considered here is the one on which

Δ̂Tnf(k) =

n∑
i=1

k2i f̂(k).

The situation is very different if instead one consider general37 tori T̃n where

(167) Δ̂
T̃nf(k) = (

n∑
i=1

a2i k
2
i )f̂(k),

where a2i > 0 for i = 1, .., n. in this case the theorems below are either not proved
or the results are much weaker, [15].

Let’s go back to Tn. We will show here only one bilinear estimate that is
particularly instructive:

36The symmetric spaces of noncompact type are simply connected Riemannian manifolds of
nonpositive sectional curvature, without Euclidean factors, and for which every geodesic symmetry
defines an isometry.

37These are also called irrational tori.
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Theorem 9.1. Assume φi has Fourier transform supported at frequency Ni for
i = 1, 2 and that S(t)φi is the linear solution for the linear IVP (4) on T2 with
data φi . Then if N1 ≥ N2, for any ε > 0 we have

(168) ‖χ(t)S(t)φ1χ(t)S(t)φ2‖L2
tL

2
T2

� N ε
2‖φ1‖L2‖φ2‖L2 ,

where χ(t) is a smooth cut off function in time near t = 0.

This theorem is only part of a more general conjecture of Bourgian [8] (see also
[41]) that we now recall. Assume that φ is supported at frequency N and assume
that

‖χ(t)S(t)φ‖Lr
tL

r
Tn

≤ K(n, r,N)‖φ‖L2
Tn
,

then we have the following estimates for K(n, r,N)

Conjecture 9.2. With the above assumptions

K(n, r,N) < Cr for r <
2(n+ 2)

n
(169)

K(n, r,N) � N ε for r =
2(n+ 2)

n
(170)

K(n, r,N) < CrN
n
2 −n+2

r for r >
2(n+ 2)

n
(171)

For a partial proof of this conjecture see [8].

Remark 9.3. It is important to note that (168) can also be read as the
L4
[−1,1]L

4
x Strichartz estimate, since in fact (4, 4) is an admissible pair in this case.

Based on this and on the techniques to prove well-posedness in Section 4, we can
immediately deduce for example that for the H1 subcritical IVP (1) in T

2 l.w.p. is
available for 0 < s ≤ 1 when the nonlinearity is not algebraic and 0 < s when it
is. Also it should be stressed that l.w.p. for s = 0 cannot be proved using (170)
because the loss of regularity represented by N ε. It should be said that this loss
can be proved to be even smaller, of the order of log(N), see footnote at the end of
the lecture.

Problem 9.4. Prove that there exists φ such that

‖χ(t)S(t)φ‖L4
tL

4
T2

∼ log(N)‖φ‖L2
T2
,

(see [41]).

The proof of (168) is based on some number theoretic facts that we recall in the
following three lemmas; see also related estimates in the work of Bourgain [7, 15]
and [35].

The following lemma is known as Pick’s Lemma [69]:

Lemma 9.5. Let Ar be the area of a simply connected lattice polygon. Let E
denote the number of lattice points on the polygon edges and I the number of lattice
points in the interior of the polygon. Then

Ar = I +
1

2
E − 1.

Lemma 9.6. Let C be a circle of radius R. If γ is an arc on C of length

|γ| <
(
3
4R

)1/3
, then γ contains at most 2 lattice points.
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Proof. We prove the lemma by contradiction. Assume that there are 3 lattice
points P1, P2 and P3 on an arc γ = AB of C, and denote by T (P1, P2, P3) the triangle
with vertices P1, P2 and P3. Then, by Lemma 9.5 we have

Area of T (P1, P2, P3) = I +
1

2
E − 1 ≥ I +

3

2
− 1 = I +

1

2
≥ 1

2
.

We shall prove that under the assumption that |γ| <
(
3
4R

)1/3
, then

(172) Area of T (P1, P2, P3) <
1

2
,

hence γ must contain at most two lattice points.

O

B

θθ

A

γ

C

Figure 1. Triangle area.

We observe that (see Figure 1)

Area of the sector ABO = R2θ,

Area of the triangle ABO = R2 sin θ cos θ.

Hence, for any P1, P2, P3 on γ we have

(173) Area of T (P1, P2, P3) ≤ R2θ −R2 sin θ cos θ = R2(θ − 1

2
sin(2θ)).

One can easily check that

(174) θ − 1

2
sin(2θ) ≤ 2

3
θ3.
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Thus (173), (174) and the fact that |γ| = 2Rθ imply that

Area of T (P1, P2, P3) ≤
2

3
R2θ3 =

1

12
R2(|γ|R−1)3 <

1

2
,

where to obtain the last inequality we used the assumption that |γ| <
(
3
4R

)1/3
.

Therefore (172) is proved. �

Also we recall the following result of Gauss, see, for example [48]

Lemma 9.7. Let K be a convex domain in R2. If

N(λ) = #{Z2 ∩ λK},
then, for λ � 1

N(λ) = λ2|K|+O(λ),

where |K| denotes the area of K and #A denotes the number of points of a set A.

We are now ready for the proof of Theorem 9.1

Proof. Let ψ be a positive even Schwartz function such that ψ = χ̂. Then we
have (here we use for simplicity

∫
dk =

∑
k)

B = ‖χ(t)(S(t)φ1) χ(t)(S(t)φ2)‖L2
tL

2
x

=

∥∥∥∥
∫
k=k1+k2, τ=τ1+τ2

φ̂1(k1)φ̂2(k2)ψ(τ1 − k21) ψ(τ2 − k22) dk1 dk2 dτ1 dτ2

∥∥∥∥
L2

τL
2
k

�
∥∥∥∥∥
(∫

k=k1+k2

ψ̃(τ − k21 − k22) dk1 dk2

)1/2

×

×
(∫

k=k1+k2

ψ̃(τ − k21 − k22) |φ̂1(k1)|2 |φ̂2(k2)|2 dk1 dk2

)1/2
∥∥∥∥∥
L2

τL
2
k

,

(175)

where to obtain (175) we used Cauchy-Schwartz and the following definition of

ψ̃ ∈ S ∫
τ=τ1+τ2

ψ(τ1 − k21) ψ(τ2 − k22) dτ1dτ2 = ψ̃(τ − k21 − k22).

An application of Hölder gives us the following upper bound on (175)

(176) M

∥∥∥∥∥
(∫

k=k1+k2

ψ̃(τ − k21 − k22) |φ̂1(k1)|2 |φ̂2(k2)|2 dk1 dk2

)1/2
∥∥∥∥∥
L2

τL
2
k

,

where

M =

∥∥∥∥
∫
k=k1+k2

ψ̃(τ − k21 − k22) dk1 dk2

∥∥∥∥
1/2

L∞
τ L∞

k

.

Now by integration in τ followed by Fubini in k1, k2 and two applications of Plan-
charel we have∥∥∥∥∥

(∫
k=k1+k2

ψ̃(τ − k21 − k22) |φ̂1(k1)|2 |φ̂2(k2)|2 dk1 dk2

)1/2
∥∥∥∥∥
L2

k,τ

� ‖φ1‖L2
x
‖φ2‖L2

x
,
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which combined with (175), (176) gives

(177) B � M‖φ1‖L2
x
‖φ2‖L2

x
.

We find an upper bound on M as follows:

(178) M �
(
sup
τ,k

#S

) 1
2

,

where

S = {k1 ∈ Z
2 | |k1| ∼ N1, |k − k1| ∼ N2, |k|2 − 2k1 · (k − k1) = τ +O(1)}.

For notational purposes, let us rename k1 = z, that is

S = {z ∈ Z
2 | |z| ∼ N1, |k − z| ∼ N2, |k|2 + 2|z|2 − 2k · z = τ + O(1)}.

Let z0 be an element of S i.e.

(179) |z0| ∼ N1, |k − z0| ∼ N2,

and

(180) |k|2 + 2|z0|2 − 2k · z0 = τ +O(1).

In order to obtain an upper bound on #S, we shall count the number of l’s ∈ Z2

such that z0 + l ∈ S where z0 satisfies (179) - (180). Thus such l’s must satisfy

(181) |z0 + l| ∼ N1, |z0 + l − k| ∼ N2,

and

(182) |k|2 + 2 |z0 + l|2 − 2k · (z0 + l) = τ +O(1).

However by (180) we can rewrite the left hand side of (182) as follows

|k|2 + 2 |z0 + l|2 − 2k · (z0 + l)

= |k|2 + 2|z0|2 + 2 |l|2 + 4z0 · l − 2k · z0 − 2k · l
= τ +O(1) + 2 |l|2 + 4z0 · l − 2k · l.

Therefore (182) holds if

(183) |l|2 + 2l · (z0 −
k

2
) = O(1).

Moreover, (179) and (181) yield

|l| = |l + z0 − k − z0 + k| � N2 +N2,

that is

(184) |l| � N2.

Finally we observe that (179) together with the assumption that N1 >> N2 implies
that

N1 ∼ N1 −N2 ∼
∣∣∣∣
∣∣∣∣z02 − k

2

∣∣∣∣− ∣∣∣z0
2

∣∣∣
∣∣∣∣ ≤

∣∣∣∣z0 − k

2

∣∣∣∣ ≤
∣∣∣∣z02 − k

2

∣∣∣∣+ ∣∣∣z0
2

∣∣∣ ∼ N2 +N1 � N1,

i.e.

(185)

∣∣∣∣z0 − k

2

∣∣∣∣ ∼ N1.
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Hence, it suffices to count the l′s ∈ Z2 satisfying (183) and (184) where z0 is such
that (185) holds.

Let w = (a, b) denote the vector z0 − k
2 . Thus we need to count the number of

points in the set A

(186) A = {l ∈ Z
2 :

∣∣ |l|2 + 2l · w
∣∣ = O(1), |l| � N2, |w| ∼ N1},

or equivalently,

A =

{(x, y) ∈ Z
2 :

∣∣x2 + y2 + 2(ax+ by)
∣∣ ≤ c, x2 + y2 ≤ (σ2N2)

2, a2 + b2 ∼ N2
1 },

(187)

for some c, σ2 > 0. Let C−, C+ be the following circles,

C− : (x+ a)2 + (y + b)2 = −c+ (a2 + b2)

C+ : (x+ a)2 + (y + b)2 = c+ (a2 + b2)

and for any integer n, let Cn be the circle

Cn : (x+ a)2 + (y + b)2 = n+ (a2 + b2).

Finally, let D denote the disk

D : x2 + y2 ≤ (σ2N2)
2.

C

B

D

Cλ
0

Cλ+

Dλ

θM

Cλ−

Cλn

γn

Figure 2. Circular sector (here ignore λ).

We need to count the number of lattice points inside D that are on arcs of
circles Cn, with

−c ≤ n ≤ c.
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Precisely, the total number of lattice point in A can be bounded from above by

(188) 2c×#(Cn ∩D).

Denote by γn the arc of circle Cn which is contained in D. Notice that (see
Figure 2)

(189) |γn| ≤ RMθM

where RM =
√
c+ σ1N2

1 for some constant σ1 > 0, and θM is the angle between
the line segment CB and CD, which lie along the tangent lines from C = (−a,−b)
to the circle x2 + y2 = (σ2N2)

2. Hence,

sin θM ≤ σ
N2

N1
,

for some constant σ > 0. Since N1 � N2, we can assume that sin θM > 1
2θM .

Hence,

(190) θM < 2σ
N2

N1
.

In order to count efficiently the number of lattice points on each γn, we distinguish
two cases based on the application of Lemma 9.6.

Case 1: 2σN2

N1
<

(
3
4

) 1
3 R

− 2
3

M .

In this case (189)-(190) guarantee that the hypothesis of Lemma 9.6 is satisfied by
each arc of circle γn. Hence, on each γn there are at most two lattice points.

Case 2: 2σN2

N1
≥

(
3
4

) 1
3 R

− 2
3

M .

In this case we approximate the number of lattice points on γn by the number38 of
lattice points on Cn (see for example [6, 8] ):

(191) #Cn � Rε
M ∼ (N1)

ε � (N2)
3ε

for any ε > 0.

Combining the estimate in (188), Case 1 and Case 2 we conclude that

#S � 1 +N ε
2 ,

for any ε > 0. Since N2 ≥ 1, together with (178), this implies that

M � N ε
2 ,

for all positive ε’s. Hence (168) follows. �

38Actually by Gauss Theorem one can get a even better logarithmic estimate in terms of the
radius.
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On the Singularity Formation for the Nonlinear
Schrödinger Equation

Pierre Raphaël

These notes are an introduction to the qualitative description of singularity for-
mation for the nonlinear Schrödinger equation. Part of the material was presented
during the 2008 Clay summer school on Nonlinear Evolution Equations at the ETH
Zurich. The manuscript has been enriched with additions in 2012 in order to give a
more accurate view on this very active research field and present a number of open
problems.

We consider the semi linear Schrödinger equation

(0.1) (NLS)

{
iut = −Δu− |u|p−1u, (t, x) ∈ [0, T )× RN

u(0, x) = u0(x), u0 : RN → C

with u0 ∈ H1 = {u,∇u ∈ L2(RN )} in dimension N ≥ 1 and for energy subcritical
nonlinearities:

(0.2) 1 < p < 2∗ − 1 with 2∗ =

{
+∞ for N = 1, 2
2N
N−2 for N ≥ 3

.

where 2∗ is the Sobolev exponent of the injection Ḣ1 ↪→ L2∗ . The case p = 3
appears in various areas of physics: for the propagation of waves in non linear
media and optical fibers for N = 1, the focusing of laser beams for N = 2, the
Bose-Einstein condensation phenomenon for N = 3, see the monograph [106] for a
more systematic introduction to this physical aspect of the problem.

Our aim is to develop tools for the qualitative description of the flow for data
in the energy space H1, and this includes long time existence, scattering or forma-
tion of singularities. The possibility of finite time blow up corresponding to a self
focusing of the nonlinear wave and the concentration of energy will be of particu-
lar interest to us. Note that (NLS) is an infinite dimensional Hamiltonian system
without any space localization property and infinite speed of propagation. It is
in this context together with the critical generalized (gKdV) equation1 one of the
few examples where blow up is known to occur. For (NLS), an elementary proof
of existence of blow up solutions is known since the 60’s but is based on energy
constraints and is not constructive. In particular, no qualitative information of any

2010 Mathematics Subject Classification. Primary 35Q51, 35Q55.
1see (4.22).
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type on the blow up dynamics is obtained this way. In fact, the theory of global
existence or blow up for (NLS) as known up to now is intimately connected to the
theory of ground states or solitons which are special periodic in time solutions to
the Hamiltonian system. A central question is the stability of these solutions and
the description of the flow around them which has attracted a considerable amount
of work for the past thirty years.

These notes are organized as follows.

In the first section, we recall the main standard results about subcritical non
linear Schrödinger equations and in particular the existence and orbital stability
of soliton like solutions which relies on nowadays standard variational tools. In
section 2, we introduce the blow up problem and present some of the very few gen-
eral results known on the singularity formation in this case, and this includes old
results from the 50’s and very recent ones. Section 3 focuses onto the mass critical
problem p = 1 + 4

N and we extend in the critical blow up regime the subcritical
variational theory of ground states. In section 4, we present the state of the art
on the question of description of the flow near the ground state for mass critical
problems, including recent complete answers for the generalized (gKdV) problem.
In section 5, we present a detailed proof of the pioneering result obtained in col-
laboration with F.Merle in [71], [72] on the derivation of the sharp log-log upper
bound on blow up rate for a suitable class of initial data near the ground state
solitary wave.

We expect the presentation to be essentially self contained provided the prior
knowledge of standard tools in the study of non linear PDE’s, in particular Sobolev
embeddings.

1. The subcritical problem

We recall in this section the main classical facts regarding the global well posed-
ness in the energy space of (NLS), and the main variational tools at the heart of
the proof of the existence and stability of special periodic solutions: the ground
state solitary waves.

1.1. Global well posedness in the subcritical case. Let us consider the
general non linear Schrödinger equation:

(1.1)

{
iut = −Δu− |u|p−1u
u(0, x) = u0(x) ∈ H1

with p satisfying the energy subcriticality assumption (0.2). The local well posed-
ness of (1.1) in H1 is a result of Ginibre, Velo, [23], see also [31]. Thus, for u0 ∈ H1,
there exists 0 < T ≤ +∞ such that u(t) ∈ C([0, T ), H1). Moreover, the life time
of the solution can be proved to be lower bounded by a function depending on the
H1 size of the solution only, T (u0) ≥ f(‖u0‖H1), and hence there holds the blow
up alternative:

(1.2) T < +∞ implies lim
t→T

‖u(t)‖H1 = +∞.

We refer to [11] for a complete introduction to the Cauchy theory. To prove the
global existence of the solution, it thus suffices to control the size of the solution
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in H1. This is achieved in some cases using the invariants of the flow. Indeed, the
following H1 quantities are conserved:

• L2-norm:

(1.3)

∫
|u(t, x)|2 =

∫
|u0(x)|2;

• Energy -or Hamiltonian-:

(1.4) E(u(t, x)) =
1

2

∫
|∇u(t, x)|2 − 1

p+ 1

∫
|u(t, x)|p+1 = E(u0);

• Momentum:

(1.5) Im

(∫
∇uu(t, x)

)
= Im

(∫
∇u0u0(x)

)
.

Note that the growth condition on the non linearity (0.2) ensures from Sobolev
embedding that the energy is well defined, and this is why H1 is referred to as the
energy space. These invariants are related to the group of symmetry of (1.1) in H1:

• Space-time translation invariance: if u(t, x) solves (1.1), then so does u(t+
t0, x+ x0), t0 ∈ R, x0 ∈ RN .

• Phase invariance: if u(t, x) solves (1.1), then so does u(t, x)eiγ , γ ∈ R.
• Scaling invariance: if u(t, x) solves (1.1), then so does uλ(t, x) =

λ
2

p−1 u(λ2t, λx), λ > 0.

• Galilean invariance: if u(t, x) solves (1.1), then so does u(t, x−βt)ei
β
2 ·(x−

β
2 t),

β ∈ R
N .

Let us point out that this group of H1 symmetries is the same like for the linear
Schrödinger equation -up to the conformal invariance to which we will come back
later-.

The critical space is a fundamental phenomenological number for the analysis
and is defined as the number of derivatives in L2 which are left invariant by the
scaling symmetry of the flow:

(1.6) ‖uλ(t)‖Ḣsc = ‖u(λ2t)‖Ḣsc for sc =
N

2
− 2

p− 1
.

Observe that sc < 1 from (0.2).

A direct consequence of the Cauchy theory, the conservation laws and Sobolev
embeddings is the celebrated global existence result:

Theorem 1.1 (Global wellposedness in the subcritical case). Let N ≥ 1 and
1 < p < 1 + 4

N -equivalently sc < 0-, then all solutions to ( 1.1) are global and

bounded in H1.

Proof of Theorem 1.1. By L2 conservation: ‖u(t)‖L2 = ‖u0‖L2 . Moreover,
the Gagliardo-Nirenberg interpolation estimate:

(1.7) ∀v ∈ H1,

∫
|v|p+1 ≤ C(N, p)

(∫
|∇v|2

)N(p−1)
4

(∫
|v|2

) p+1
2 −N(p−1)

4
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applied to v = u(t) implies using the conservation of the energy and the L2 norm:

∀t ∈ [0, T ), E0 ≥ 1

2

⎡
⎣∫ |∇v|2 − C(u0)

(∫
|∇v|2

)N(p−1)
4

⎤
⎦ .

The subcriticality assumption p < 1 + 4
N now implies an a priori bound on the H1

norm which concludes the proof of Theorem 1.1. �

The critical exponent

p = 1 +
4

N
ie sc = 0

arises from this analysis and corresponds to the so-called L2 or mass critical case.
It is the smallest power nonlinearity for which blow up can occur and corresponds to
an exact balance between the kinetic and potential energies under the constraint of
conserved L2 mass. The L2 supercritical -and energy subcritical cases- correspond
to

1 +
4

N
< p < 2∗ − 1 ie 0 < sc < 1.

1.2. The solitary wave. A fundamental feature of the focusing (NLS) prob-
lem is the existence of time periodic solutions. Indeed,

u(t, x) = φ(x)eit

is an H1 solution to (1.1) iff φ solves the nonlinear elliptic equation:

(1.8) Δφ− φ+ φ|φ|p−1 = 0, φ ∈ H1(RN ).

There are various ways to construct solutions to (1.8), the simplest one being to
look for radial solutions via a shooting method, [4].

Proposition 1.2 (Existence of solitary waves). (i) For N = 1, all solutions
to ( 1.8) are translates of

(1.9) Q(x) =

⎛
⎝ p+ 1

2 cosh2
(

(p−1)x
2

)
⎞
⎠

p−1

.

(ii) For N ≥ 2, there exist a sequence of radial solutions (Qn)n≥0 with increasing
L2 norm such that Qn vanishes n times on RN .

The exact structure of the set of solutions to (1.8) is not known in dimension
N ≥ 2. An important rigidity property however which combines nonlinear elliptic
techniques and ODE techniques is the uniqueness of the nonnegative solution to
(1.8).

Proposition 1.3 (Uniqueness of the ground state). All solutions to

(1.10) Δφ− φ+ φ|φ|p−1 = 0, φ ∈ H1(RN ), φ(x) > 0

are a translate of an exponentially decreasing C2 radial profile Q(r) ([22]) which
is the unique nonnegative radially symmetric solution to ( 1.8) ([42]). Q is the so
called ground state solution.
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The uniqueness is thus the consequence of two facts. A positive decaying at
infinity solution to (1.10) is necessarily radially symmetric with respect to a point,
this is a very deep and non trivial result due to Gidas, Ni, Nirenberg [22] which
relies on the maximum principle. And then there is uniqueness of the radial de-
caying positive solution in the ODE sense. The original -and delicate- proof of
this last fact by Kwong [42] has been revisited by MacLeod [52] and is very nicely
presented in the Appendix of Tao [107]. We also refer to [48] for a beautiful ex-
tension of uniqueness methods to nonlocal problems where the ODE approach fails.

Let us now observe that we may let the full group of symmetries of (1.1) act
on the solitary wave u(t, x) = Q(x)eit to get a 2N +2 parameters family of solitary
waves: for (λ0, x0, γ0, β) ∈ R∗

+ × RN × R× RN ,

u(t, x) = λ
2

p−1

0 Q(λ0(x+ x0)− λ2
0βt)e

iλ2
0teiγ0ei

β
2 ·(λ0(x+x0)−λ2

0βt).

These waves are moving according to the free Galilean motion and oscillating at a
phase related to their size: the larger the λ0, the wilder the oscillations in time. An
explicit computation reveals that the solitary wave can be made arbitrarily small
in H1 in the subcritical regime sc < 0 only.

1.3. Orbital stability of the ground states in the subcritical case. We
address in this section the question of the stability of the ground state solitary wave
u(t, x) = Q(x)eit, Q > 0, as a solution to (1.1) in the mass subcritical case

(1.11) 1 < p < 1 +
4

N
, sc < 0.

Let us first observe that two trivial instabilities are given by the symmetries of the
equation:

• Scaling instability: ∀λ > 0, the solution to (1.1) with initial data u0(x) =

λ
2

p−1Q(λx) is u(t, x) = λ
2

p−1Q(λx)eiλ
2t.

• Galilean instability: ∀β > 0, the solution to (1.1) with initial data u0(x) =

Q(x)eiβ is u(t, x) = Q(x− βt)eit+
β
2 ·(x−

β
2 t).

In both cases,

sup
t∈R

|u(t, x)−Q(x)eit| > |Q(x)|

and thus the solution does not stay uniformly close to Q. Cazenave and Lions
[12] proved that these trivial instabilities are the only ones in the mass ubcritical
setting: this is the celebrated orbital stability of the ground state solitary wave.

Theorem 1.4 (Orbital stability of the ground state, [12]). Let N ≥ 1 and p
satisfy ( 1.11). For all ε > 0, there exists δ(ε) such that the following holds true.
Let u0 ∈ H1 with

‖u0 −Q‖H1 < δ(ε),

then there exist a translation shift x(t) ∈ C0(R,RN ) and a phase shift γ(t) ∈
C0(R,R) such that:

∀t ∈ R, ‖u(t, x)−Q(x− x(t))eiγ(t)‖H1 < ε.

The strength -and the weakness- of the proof is that it relies only on the conser-
vation laws and the variational characterization of the ground state solitary wave.
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This study falls into the classical sets of concentration compactness techniques as
introduced by Lions in [50],[51]. Given λ > 0, we let

Qλ(x) = λ
2

p−1Q(λx).

The following variational result immediately implies Theorem 1.4:

Proposition 1.5 (Description of the minimizing sequences). Let N ≥ 1 and
p satisfy ( 1.11). Let M > 0 be fixed.
(i) Variational characterization of Q: The minimization problem

(1.12) I(M) = inf
‖u‖L2=M

E(u)

is attained on the family

Qλ(M)(· − x0)e
iγ0 , x0 ∈ R

N , γ0 ∈ R,

where λ(M) is the unique scaling such that ‖Qλ(M)‖L2 = M.
(ii) Description of the minimizing sequences: Any minimizing sequence vn to ( 1.12)
is relatively compact in H1 up to translation and phase shifts, that is up to a sub-
sequence:

vn(·+ xn)e
iγn → Qλ(M) in H1.

The fact that Proposition 1.5 implies Theorem 1.4 is now a simple consequence
of the conservation laws and is left to the reader. The next section is devoted to
the proof of Proposition 1.5.

1.4. The concentration compactness argument. The first key to the
proof of Proposition 1.5 is the description of the lack of compactness in R

N of
the Sobolev injection H1 ↪→ Lp+1, 2 ≤ p + 1 < 2∗. This description is a conse-
quence of Lions’ concentration compactness Lemma. Let us recall that the injection
is compact on a smooth bounded domain. Note also that the injection is still com-
pact when restricted to radial functions in dimension N ≥ 2. Here one uses the
estimate:

u2(r) = −
∫ +∞

r

u(s)u′(s)ds and thus ‖u‖L∞(r≥R) ≤
C

R
N−1

2

‖∇u‖
1
2

L2‖u‖
1
2

L2

so that any H1 bounded sequence of radially symmetric functions is Lp+1 compact.
This would considerably simplify the proof of Proposition 1.5 when restricting the
problem to radially symmetric functions. In general, there holds the following:

Proposition 1.6 (Description of the lack of compactness of H1 ↪→ Lq). Let a
sequence un ∈ H1 with

(1.13) ‖un‖L2 = M, ‖∇un‖L2 ≤ C,

Then there exists a subsequence unk
such that one of the following three scenario

occurs:
(i) Compactness: ∃yk ∈ R

N such that

(1.14) ∀2 ≤ q < 2∗, unk
(·+ yk) → u in Lq.

(ii) Vanishing:

(1.15) ∀2 < q < 2∗, unk
→ 0 in Lq.
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(iii) Dichotomy: ∃vk, wk, ∃0 < α < 1 such that ∀2 ≤ q < 2∗:

(1.16)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Supp(vk) ∩ Supp(wk) = ∅, dist(Supp(vk), Supp(wk)) → +∞,
‖vk‖H1 + ‖wk‖H1 ≤ C,
‖vk‖L2 → αM, ‖wk‖L2 → (1− α)M,
limk→+∞

∣∣∫ |unk
|q −

∫
|vk|q −

∫
|wk|q|

∣∣ = 0,
lim infk→+∞

∫
|∇unk

|2 −
∫
|∇vk|2 −

∫
|∇wk|2 ≥ 0.

Remark 1.7. The key in the dichotomy case is that there is no loss of potential
energy during the splitting in space of unk

into two bumps vk, wk which support go
away from each other, while on the other hand only a lower semi continuity bound
can be derived for the kinetic energy.

Remark 1.8. The case dichotomy corresponds to the localization of the first
bubble of concentration. One can then continue the extraction iteratively and obtain
the profile decomposition of the sequence un, see P. Gerard [21], Hmidi, Keraani
[28] for a very elegant proof.

The proof of Proposition 1.6 is given in Appendix A. We now show how the
description of the lack of compactness of the Sobolev injection is a powerful tool
for the study of variational problems.

Proof of Proposition 1.5. step1 Computation of I(M). Let I(M) be given
by (1.12). We claim that

(1.17) −∞ < I(M) = M
2(1−sc)

|sc| I(1) < 0.

Indeed, I(M) > −∞ follows directly form the Gagliardo-Nirenberg inequality (1.7)
and the subcriticality condition (1.11). The computation of the nonpositive value
of the infimum follows from the scaling properties of the problem. First, given
u ∈ H1 with ‖u‖L2 = 1, we use the L2 scaling

vλ(x) = λ
N
2 u(λx)

to get:

E(vλ) = λ2

[
1

2

∫
|∇u|2 − 1

(p+ 1)λ(p−1)|sc|

∫
|u|p+1

]
.

Letting λ → 0 yields I(1) < 0. The homogeneity in M of I(M) is derived using the
scaling of the equation

vλ(x) = λ
2

p−1 u(λx), ‖vλ‖L2 = λ|sc|‖u‖L2 , E(vλ) = λ2(1−sc)E(u),

which yields the claim.
Let now un be a minimizing sequence for I(M). Then un is bounded in H1 from
(1.7) and satisfies the assumptions of Proposition 1.5, and we now examine the
various scenario:

step 2 Vanishing cannot occur. Otherwise, from (1.15):

I(M) = lim
k→+∞

E(unk
) ≥ lim inf

k→+∞

1

2

∫
|∇unk

|2 ≥ 0

which contradicts (1.17).
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step 3 Dichotomy cannot occur. Otherwise, from (1.16), we have sequences
vk, wk and 0 < α < 1 such that

‖vk‖L2 = αM, ‖wk‖L2 = (1− α)M

and

I(M) ≥ lim inf
k→+∞

E(vk) + lim inf
k→+∞

E(wk).

In particular, this implies:

(1.18) I(M) ≥ I(αM) + I((1− α)M)

and thus from (1.17):

1 ≤ α
2(1−sc)

|sc| + (1− α)
2(1−sc)

|sc| for some 0 < α < 1.

Now a straightforward convexity argument implies from 2(1−sc)
|sc| > 1 that α = 0 or

α = 1, a contradiction.

step 4 Conclusion. We conclude that only compactness occurs ie

unk
(·+ xk) → u in Lp+1.

Observe then from the strong Lp+1 convergence and the lower semicontinuity of
the Ḣ1 norm that u attains the infimum:

‖u‖L2 = M, E(u) = I(M).

It thus remains to characterize the infimum. We claim that:

(1.19) u(x) = Qλ(M)(·+ x0)e
iγ0

which concludes the proof of Proposition 1.6.
Proof of (1.19): First observe from

∫
|∇|u||2 ≤

∫
|∇u|2 that v = |u| is a minimizer

with v ≥ 0. From standard Euler Lagrange theory, v solves

Δv + v|v|p−1 = μv, v ∈ H1.

The Lagrange multiplier, which a priori depends on v, can be computed by multi-
plying the equation by v and then y · ∇v (Pohozaev integration) leading to:

μ = μ(M) =
N + 2− p(N − 2)

2M
(

N(p−1)
4 − 1

) I(M) > 0.

We now observe by rescaling that w(x) = λ
2

p−1 v(λx) with λ =
√
μ satisfies

Δw − w + w|w|p−1 = 0, w ∈ H1(RN ), w ≥ 0,

and w non zero. From the uniqueness statement of Proposition 1.3, this yields:

w(x) = Q(x− x0),

and hence v(x) = Qλ(M)(x − x0). This implies in particular that v does not van-

ish which together with
∫
|∇u|2 =

∫
|∇|u||2 -because they both are minimizers-

implies2

u(x) = |u(x)|eiγ0 = Qλ(M)(x− x0)e
iγ0 ,

and (1.19) is proved. �

2see for example[49].
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Furthers comments

1. More general nonlinearities: The proof we have presented reproduces the
original argument by Cazenave, Lions [12] and heavily relies onto the specific scal-
ing properties of the nonlinearity. The advantage of this argument is to completely
avoid the linearization near the ground state, but the prize to pay is the proof of
global estimates like (1.18) which may be non trivial in the absence of symmetries.
Another approach to stability proceeds by brute force linearization and the deriva-
tion of suitable coercivity properties of the linearized operator close to the ground
state as for example done in Grillakis, Shatah, Strauss [26] to treat more general
nonlinearities. We also refer to [44], [46], [47] for analogue results for gravitational
kinetic equations which display a similar structure.

2. Asymptotic stability: An important question is to know whether, when sta-
bility holds, asymptotic stability also holds, that is do solutions asymptotically
converge to the ground state in some local norm in space as t → +∞? This kind
of property corresponds to a form of asymptotic irreversibility of the flow. This is
an extremely delicate problem which has attracted a considerable amount of work
for the past ten years. For some specific type of nonlinearities, asymptotic stability
holds due to a fine tuning mechanism known as the ”Fermi Golden Rule”, see Sof-
fer, Weinstein [105], Rodnianski, Soffer, Schlag [102], Sulem, Buslaev [10], Sigal,
Zhou [20]. However, the case of pure power is still open because essentially small
solitons are delicate to deal with. Indeed, in the pure power case, a soliton Qλ can
be made arbitrarily small in H1 and not disperse. Moreover, one should keep in
mind that the asymptotic stability is false in the completely integrable case N = 1,
p = 3, see [112].

3. Generic long time dynamics: In general, one expects the long time behavior
of the solution to correspond to a splitting of the solution into a non dispersive part
corresponding to a sum of decoupled solitary waves moving at different speeds and
a radiative part which disperses -ie goes to 0 in L∞ say-. Such a general behavior
has been proved in the integrable case for the KdV system

(KdV )

{
ut + (uxx + u2)x = 0, (t, x) ∈ [0, T )× R,
u(0, x) = u0(x), u0 : RN → R,

but complete integrability plays a very specific role here. See Rodnianski, Soffer,
Schlag [102], Martel, Merle, Tsai [63], for the case of non integrable (NLS) systems
but with specific nonlinearities. One should think here that in general, even the
simpler question of the orbital stability of the multisolitary wave in the pure power
case for (NLS) is open.

2. The blow up problem

We focus in this section on the NLS problem (1.1) with mass critical/super
critical and energy subcritical nonlinearities, or equivalently according to (1.6):

0 ≤ sc < 1, 1 +
4

N
≤ p < 2∗ − 1.

Our aim is to collect old and new results regarding the qualitative description of
blow up solutions which involves so far many open problems.



278 P. RAPHAËL

2.1. Existence of blow up solutions: the virial law. The Cauchy theory
ensures global existence for small data in H1 but for large data, the Gagliardo
Nirenberg inequality (1.7) does not suffice anymore to ensure global existence. A
well known global obstructive argument known as the virial law allows one to very
easily prove the existence of finite time blow up solutions.

Theorem 2.1 (Virial blow up for E0 < 0). Let u0 ∈ Σ = H1 ∩ {xu ∈ L2} with

E0 < 0,

then the corresponding solution to ( 1.1) blows up in finite time 0 < T < +∞.

Proof of Theorem 2.1. Integrating by parts in (1.1), we find:

(2.1)
d2

dt2

∫
|x|2|u(t, x)|2dx = 4N(p− 1)E0 −

16sc
N − 2sc

∫
|∇u|2 ≤ 4N(p− 1)E0

from sc ≥ 0. Hence from E0 < 0, the positive quantity
∫
|x|2|u(t, x)|2dx lies below

an inverted parabola and hence the solution cannot exist for all times. �

This blow up argument is extraordinary because it provides a blow up crite-
rion based essentially on a pure Hamiltonian information E0 < 0 which applies to
arbitrarily large initial data in H1. In particular, it exhibits an open region of the
energy space -up to extra integrability condition- where blow up is proven to be
a stable phenomenon. While it may seem at first hand to be very specific to the
(NLS) problem, this kind of convexity argument is very common for parabolic or
wave type problems, see for example [30], kinetic problems [25], or even compress-
ible Euler equations, [104]. However, it has has two major weaknesses:
(i) It heavily relies on a very specific algebra and hence is very unstable by per-
turbation of the equation. It thus is completely unable to predict blow up even in
situations where it is strongly expected. A typical case is for example (NLS) on a
domain with Dirichlet boundary conditions, [96].
(ii) More fundamentally, this argument is purely obstructive in nature and says
very little a priori on the singularity formation. In fact the blow up time formally
predicted which is the time of vanishing of the variance

∫
|x|2|u|2 is almost never

correct, solutions generically blow up before.

2.2. Scaling lower bound on blow up rate. In the setting of arbitrarily
large initial data, little is known regarding the description of the singularity for-
mation. This is mainly a consequence of the fact that the virial blow up argument
does not provide any insight into the blow up dynamics. More generally, the a pri-
ori control of the blow up speed ‖∇u(t)‖L2 which plays a fundamental role for the
classification of blow up dynamics for example for the heat or the wave equation,
is poorly understood. However a general lower bound on the blow up rate holds as
a very simple consequence of the scaling invariance of the problem:

Proposition 2.2 (Scaling lower bound on blow up rate). Let N ≥ 1, 0 ≤ sc <
1. Let u0 ∈ H1 such that the corresponding solution u(t) to ( 1.1) blows up in finite
time 0 < T < +∞, then there holds:

(2.2) ∀t ∈ [0, T ), ‖∇u(t)‖L2 ≥ C(u0)

(T − t)
1−sc

2

.



SINGULARITY FORMATION FOR THE NONLINEAR SCHRÖDINGER EQUATION 279

Proof of Proposition 2.2. We give the proof for sc = 0 which is elementary
and based on the scaling invariance of the equation and the local well posedness
theory in H1. The proof for sc > 0 is similar and requires the Cauchy theory in
Ḣsc ∩ Ḣ1, see [76]. Consider for fixed t ∈ [0, T )

vt(τ, z) = ‖∇u(t)‖−
N
2

L2 u
(
t+ ‖∇u(t)‖−2

L2 τ, ‖∇u(t)‖−1
L2 z

)
.

vt is a solution to (1.1) by scaling invariance. We have ‖∇vt(0)‖L2 = 1, ‖vt‖L2 =
‖u0‖L2 , and thus by the resolution of the Cauchy problem locally in time by fixed
point argument, there exists τ0 > 0 independent of t such that vt is defined on
[0, τ0]. Therefore, t+ ‖∇u(t)‖−2

L2 τ0 ≤ T which is the desired result. �

One can ask for the sharpness of the bound (2.2), or equivalently for the exis-
tence of self similar solutions in the energy space, i.e. solutions which blow according
to the scaling law

(2.3) ‖∇u(t)‖L2 ∼ 1

(T − t)
1−sc

2

.

For sc = 0, it is an important open problem, [7]. It is however proved in [97], [74]
that the lower bound (2.2) is not sharp for data near the ground state in connection
with the log log law, see Theorem 4.3. On the contrary, for sc > 0, a stable self
similar blow up regime in the sense of (2.3) is observed numerically, [106], and a
rigorous derivation of these solutions is obtained in collaboration with Merle and
Szeftel in [78] for slightly super critical problems:

Theorem 2.3 (Existence and stability of self similar solutions, [78]). Let 1 ≤
N ≤ 5 and 0 < sc � 1. Then there exists an open set of initial data u0 ∈ H1 such
that the corresponding solution to (1.1) blows up with in finite time T = T (u0) <
+∞ with the self similar speed:

‖∇u(t)‖L2 ∼ 1

(T − t)
1−sc

2

.

The extension of this result to the full critical range sc < 1 is an important
open problem, in particular to address the physical case N = p = 3, sc =

1
2 , but is

confronted to the construction and the understanding of the stationary self similar
profiles which is poorly understood, see [78] for a further discussion.

2.3. On concentration of the critical norm. A second general phenom-
enon of finite blow up solutions is the concentration of the critical norm. The
first result of this type goes back to Merle, Tsutsumi, [81] in the radial case, and
generalized by Nawa, [92], for the mass critical NLS.

Theorem 2.4 (L2 concentration phenomenon for sc = 0, [81], [92]). Let sc =
0. Let u0 ∈ H1 such that the corresponding solution u(t) to ( 1.1) blows up in finite
time 0 < T < +∞. Then there exists x(t) ∈ C0([0, T )RN ) such that:

(2.4) ∀R > 0, lim inf
t→T

∫
|x−x(t)|≤R

|u(t, x)|2dx ≥
∫

Q2.

Theorem 2.4 relies on the sharp variational characterization of the ground state
solitary wave Q and we therefore postpone the proof to section 3.1. We refer to
[108] for an extension to critical regularity u0 ∈ L2. Two natural questions follow-
ing Theorem 2.4 are still open in the general case:
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(i) Does the function x(t) have a limit as t → T defining then at least one exact
blow up point in space where L2 concentration takes place?
(ii) Which is the exact amount of mass focused by the blow up dynamic?

An explicit construction of blow up solutions due to Merle, [64], is the following:
let k points (xi)1≤i≤k ∈ RN , then there exists a blow up solution u(t) which blows
up in finite time 0 < T < +∞ exactly at these k points and accumulates exactly
the mass:

|u(t)|2 ⇀ Σ1≤i≤k‖Q‖2L2δx=xi
as t → T,

in the sense of measures. A general conjecture concerning L2 concentration is for-
mulated in [75] and states that a blow up solution focuses a quantized and universal
amount of mass at a finite number of points in RN , the rest of the L2 mass being
purely dispersed. The exact statement which is directly related to the soliton res-
olution conjecture is the following:

Conjecture (*): Let u(t) ∈ H1 be a solution to ( 1.1) which blows up in finite

time 0 < T < +∞. Then there exist (xi)1≤i≤L ∈ RN with L ≤
∫
|u0|2∫
Q2 , and u∗ ∈ L2

such that: ∀R > 0,

u(t) → u∗ in L2(RN −
⋃

1≤i≤L

B(xi, R))

and |u(t)|2 ⇀ Σ1≤i≤Lmiδx=xi
+ |u∗|2 with mi ∈ [

∫
Q2,+∞).

Let us now address the same question of the behavior of the critical norm for
the super critical NLS 0 < sc < 1. There is no simple a priori lower bound like
for (2.2) for the critical norm ‖u(t)‖Ḣsc which is invariant by the scaling symmetry
of the flow. Moreover, a major difference between the mass critical problem and
the super critical problem is that the critical norm is conserved by the flow for
sc = 0 only, and this leads to dramatic differences in the blow up dynamics. We for
example proved in [76] that for radial data the critical norm not only concentrates
at blow up, it explodes:

Theorem 2.5 (Blow up of the critical norm, [76]). Let 0 < sc < 1, p < 5 and
N ≥ 2. There exists a universal constant γ = γ(N, p) > 0 such that the following
holds true. Let u0 ∈ H1 with radial symmetry and assume that the corresponding
solution to (1.1) blows up in finite time T < +∞. Then there holds the lower bound
for t close enough to T :

‖u(t)‖Ḣsc ≥ | log(T − t)|γ(N,p).

Related results were proved for the Navier Stokes equation [16], and are a first
step towards the understanding of the formation of the blow up bubble. Note that
the logarithmic lower bound can be proved to be sharp in some regimes, [78], but
there also exist regimes where the critical norm blows up polynomially, [80]. The
regimes N = 1, 2 with p ≥ 5 are still open, as well as the general non radial case.
The proof relies on the quantification of a Liouville type theorem, see [38] for recent
extensions to the wave equation.
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2.4. A sharp upper bound on blow up rate. We now address the question
of upper bounds on blow up rate for general solutions. A simple observation by
Merle is that for 0 < sc < 1, the brute force time integration of the virial law (2.1)
not only implies finite time blow up for E0 < 0, it also immediately yields an upper
bound on the blow up rate for any finite time blow up solution:

Theorem 2.6 (General upper bound on blow up rate). Let 0 < sc < 1 and
u0 ∈ Σ such that the corresponding solution to (1.1) blows up in finite time 0 <
T < +∞, then:

(2.5)

∫ T

0

(T − t)‖∇u(t)‖2L2dt < +∞.

Note that in particular on a subsequence

‖∇u(tn)‖L2(T − tn) → 0 as tn → T.

Interestingly enough, this bound fails for sc = 0, see (3.10), and in fact there exists
no known upper bound on blow up rate in the mass critical case which is one of
the reason why the mass critical problem is in some sense more degenerate3. For
0 < sc < 1, we observed in collaboration with Merle and Szeftel [80] that a relatively
elementary argument based on a localization of the virial identity as initiated in
[76] implies an improved upper bound for u0 radial.

Theorem 2.7 (Sharp upper bound on blow up rate for radial data, [80]). Let

N ≥ 2, 0 < sc < 1, p < 5.

Let the interpolation number4

(2.6) α =
5− p

(p− 1)(N − 1)
.

Let u0 ∈ H1 with radial symmetry and assume that the corresponding solution
u ∈ C([0, T ), H1) of (1.1) blows up in finite time T < +∞. Then there holds the
space time upper bound:

(2.7)

∫ T

t

(T − τ )‖∇u(τ )‖2L2dτ ≤ C(u0)(T − t)
2α

1+α .

This implies in particular

‖∇u(tn)‖L2 � 1

(T − tn)
1

1+α

on a subsequence tn → T . Note that it would be very interesting to obtain the
pointwise bound for all times.

Before proving Theorem 2.7 which relies on a sharp localization of the virial
law, let us say that we do not know if the bound (2.5) is sharp. However, we claim
that the general bound for radial data (2.7) is indeed sharp and saturated on a new
class of blow up solutions: the collapsing ring profiles.

3The example of the (gKdV) problem and Theorem 4.9 indicate that there may be no bound...
4Observe that 0 < α < 1.
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Theorem 2.8 (Collapsing ring solutions, [80]). Let

N ≥ 2, 0 < sc < 1, p < 5,

let 0 < α < 1 be given by (2.6) and the Galilean shift:

β∞ =

√
5− p

p+ 3
.

Let Q be the one dimensional mass subcritical ground state (1.9). Then there exists
a time t < 0 and a solution u ∈ C([t, 0), H1) of (1.1) with radial symmetry which
blows up at time T = 0 according to the following dynamics. There exist geometrical
parameters (r(t), λ(t), γ(t)) ∈ R∗

+ × R∗
+ × R such that:

(2.8) u(t, r)− 1

λ
2

p−1 (t)

[
Qe−iβ∞y

](r − r(t)

λ(t)

)
eiγ(t) → 0 in L2(RN ).

The blow up speed, the radius of concentration and the phase drift are given by the
asymptotic laws:

(2.9) r(t) ∼ |t| α
1+α , λ(t) ∼ |t| 1

1+α , γ(t) ∼ |t|−
1−α
1+α as t ↑ 0.

Moreover, the blow up speed admits the equivalent:

(2.10) ‖∇u(t)‖L2 ∼ 1

(T − t)
1

1+α

as t ↑ 0.

Comments on the result:

1. Standing and collapsing ring: The construction of ring solutions started in
[98], [100] for p = 5 in dimension N ≥ 2 where we constructed standing ring blow
up solutions which concentrate on a standing sphere r = 1 at the speed given by
the log-log law (4.14). The idea is that the geometry of the blow up set given by
a standing sphere allows one to reduce the leading order blow up dynamics to the
one dimension quintic NLS which is the mass critical one for p = 5. This has been
further extended to other geometries in higher dimensions [29], [114]. Then in the
breakthrough paper [17], Fibich, Gavish and Wang extended formally the construc-
tion to 3 < p < 5 in dimension N = 2 and observed numerically the collapsing ring
solutions which existence is made rigorous in [80]. Note that the collapsing ring is
expected to be stable by radial perturbation of the data, but this is still an open
problem.

2. Mass concentration: The ring solutions have a quite unexpected blow up
behavior. Indeed, despite the fact that the problem is mass super critical, the
structure (2.8) coupled with the speeds (2.9) imply the concentration of the L2

mass

(2.11) |u(t)|2 ⇀ ‖Q‖2L2δx=0 as t ↑ 0.

A contrario the self similar blow up solutions of Theorem 2.3 constructed in [78]
have a strong limit in L2 at blow up time. In fact, by rescaling, we can let the
amount of concentrated mass in (2.11) be arbitrary, and hence the expected quan-
tization of Conjecture (*) for the mass critical problem does not hold here. In
some sense, the proof of Theorem 2.8 amounts showing that in the ring regime, the
super critical problem can be treated as a mass critical problem. Moreoever, this
is the first construction of blow up solutions for a large set of super critical regimes
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including the physical one N = p = 3.

We now turn to the proof of the sharp upper bound (2.7) which relies on a
suitably localized virial identity in the continuation of [76].

Proof of Theorem 2.7. step 1 Localized virial identity. Let N ≥ 2, 0 <
sc < 1 and u ∈ C([0, T ), H1) be a radially symmetric finite time blow up solution
0 < T < +∞. Pick a time t0 < T and a radius 0 < R = R(t0) � 1 to be chosen.
Let χ ∈ C∞

c (RN ) and recall the localized virial identity5 for radial solutions:

(2.12)
1

2

d

dτ

∫
χ|u|2 = Im

(∫
∇χ · ∇uu

)
,

1

2

d

dτ
Im

(∫
∇χ · ∇uu

)
=

∫
χ′′|∇u|2 − 1

4

∫
Δ2χ|u|2 −

(
1

2
− 1

p+ 1

)∫
Δχ|u|p+1.

Applying with χ = ψR = R2ψ( x
R ) where ψ(x) = |x|2

2 for |x| ≤ 2 and ψ(x) = 0 for
|x| ≥ 3, we get:

1

2

d

dτ
Im

(∫
∇ψR · ∇uu

)

=

∫
ψ′′(

x

R
)|∇u|2 − 1

4R2

∫
Δ2ψ(

x

R
)|u|2 −

(
1

2
− 1

p+ 1

)∫
Δψ(

x

R
)|u|p+1

≤
∫

|∇u|2 −N

(
1

2
− 1

p+ 1

)∫
|u|p+1 + C

[
1

R2

∫
2R≤|x|≤3R

|v|2 +
∫
|x|≥R

|u|p+1

]
.

Now from the conservation of the energy:∫
|u|p+1 =

p+ 1

2

∫
|∇u|2 − (p+ 1)E(u0)

from which∫
|∇u|2 −N

(
1

2
− 1

p+ 1

)∫
|u|p+1 =

N(p− 1)

2
E(u0)−

2sc
N − 2sc

∫
|∇u|2,

and thus:

2sc
N − 2sc

∫
|∇u|2 + 1

2

d

dτ
Im

(∫
∇ψR · ∇uu

)

�
[
|E0|+

∫
|x|≥R

|u|p+1 +
1

R2

∫
2R≤|x|≤3R

|u|2
]

(2.13)

≤ C(u0)

[
1 +

1

R2
+

∫
|x|≥R

|u|p+1

]

from the energy and L2 norm conservations.

step 2 Radial Gagliardo-Nirenberg interpolation estimate. In order to control
the outer nonlinear term in (2.13), we recall the radial interpolation bound:

‖u‖L∞(r≥R) ≤
‖∇u‖

1
2

L2‖u‖
1
2

L2

R
N−1

2

,

5see [76] for further details.
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which together with the L2 conservation law ensures:∫
|x|≥R

|u|p+1 ≤ ‖u‖p−1
L∞(r≥R)

∫
|u|2 ≤ C(u0)

R
(N−1)(p−1)

2

‖∇u‖
p−1
2

L2

≤ δ
2sc

N − 2sc

∫
|∇u|2 + C

δR
2(N−1)(p−1)

(5−p)

= δ
2sc

N − 2sc

∫
|∇u|2 + C

δR
2
α

where we used Hölder for p < 5 and the definition of α (2.6). Injecting this into
(2.13) yields for δ > 0 small enough using R � 1 and 0 < α < 1:

(2.14)
sc

N − 2sc

∫
|∇u|2 + d

dτ
Im

(∫
∇ψR · ∇uu

)
≤ C(u0, p)

R
2
α

step 3 Time integration. We now integrate (2.14) twice in time on [t0, t2] using
(2.12). This yields up to constants using Fubini in time:∫

ψR|u(t2)|2 +
∫ t2

t0

(t2 − t)‖∇u(t)‖2L2dt

� (t2 − t0)
2

R
2
α

+ (t2 − t0)

∣∣∣∣Im
(∫

∇ψR · ∇uu

)
(t0)

∣∣∣∣+
∫

ψR|u(t0)|2

≤ C(u0)

[
(t2 − t0)

2

R
2
α

+R(t2 − t0)‖∇u(t0)‖L2 +R2‖u0‖2L2

]
.

We now let t → T . We conclude that the integral in the left hand side converges
and

(2.15)

∫ T

t0

(T−t)‖∇u(t)‖2L2dt ≤ C(u0)

[
(T − t0)

2

R
2
α

+R(T − t0)‖∇u(t0)‖L2 +R2

]
.

We now optimize in R by choosing:

(T − t0)
2

R
2
α

= R2 ie R(t0) = (T − t0)
α

1+α .

(2.15) now becomes:∫ T

t0

(T − t)‖∇u(t)‖2L2dt ≤ C(u0)
[
(T − t0)

2α
1+α + (T − t0)

α
1+α (T − t0)‖∇u(t0)‖L2

]
≤ C(u0)(T − t0)

2α
1+α + (T − t0)

2‖∇u(t0)‖2L2 .(2.16)

In order to integrate this differential inequality, let

(2.17) g(t0) =

∫ T

t0

(T − t)‖∇u(t)‖2L2dt,

then (2.16) means:

g(t) ≤ C(T − t)
2α

1+α − (T − t)g′(t)

ie (
g

T − t

)′
=

1

(T − t)2
((T − t)g′ + g) ≤ C(u0)

(T − t)2−
2α

1+α

.
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Integrating this in time yields

g(t)

T − t
� 1 +

1

(T − t)1−
2α

1+α

ie g(t) � (T − t)
2α

1+α

for t close enough to T , which together with (2.17) yields (2.7). �

2.5. More blow up problems. The study of singularity formation for non-
linear dispersive equations has experienced a substantial acceleration since the end
of the 1990’s in particular in the continuation of the pioneering breakthrough works
by Merle and Zaag on the nonlinear heat equation [83], [84], [85], and Martel and
Merle on the mass critical (gKdV) problem [55], [56], [57], [58], [59]. The analysis
has spread to various other problems and led to the development of new tools. It
is not the aim of these notes to give a complete account of the existing literature,
but we would like to point out the deep unity between some of these recent works.
One particularly active direction or research is on energy critical models sc = 1
which surprisingly enough display a similar structure like the mass critical prob-
lem, even though essential new phenomenons occur. This includes energy critical
wave or heat problems, or more geometric problems like wave and Schrödinger maps
for which the sole existence of blow up solutions in the critical regimes has been
a long standing open problem. Among the key results obtained in the past ten
years, let us mention some dynamical constructions: the first construction of blow
up solutions for the energy critical wave map problem by Krieger, Schlag, Tataru
[41], the derivation of the stable regime for the wave map jointly with Rodnianski
[99], the first construction of blow up bubble for the Schrödinger map problem and
the discovery of the rotational instability jointly with Merle and Rodnianski [77].
Moreover, a new generation of classification theorems have occurred in the direc-
tion of the multi solitary wave resolution conjecture, see in particular Duyckaerts,
Kenig, Merle [15] for the energy critical nonlinear wave equation and the spectacu-
lar series of works by Merle and Zaag [86], [87], [88], [89], [90] which give the first
complete classification of all blow up regimes for a nonlinear wave equation.

3. The mass critical problem

We focus in this section and for the rest of these notes onto the L2 critical case

p = 1 +
4

N
, sc = 0.

which is the smallest power nonlinearity for which blow up occurs. We will show
that a large part of the orbital stability theory developed for subcritical problems
still applies in some generalized sense and provides some essential information on
the structure of the blow up bubble. We will in particular show that there exists
a sharp criterion for global existence, Theorem 3.5, and obtain the first dynami-
cal informations on the structure of the singularity formation which are mostly a
consequence of the variational characterization of the ground state solitary wave.

3.1. Variational characterization of the ground state. The minimiza-
tion problem (1.12) is no longer adapted to the critical problem due to the L2

scaling invariance

(3.1) uλ(t, x) = λ
N
2 u(λ2t, λx).
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Indeed, one easily proves that I(M) = 0 for M << 1 and I(M) = −∞ for M � 1.
In fact, as observed by Weinstein [111], the L2 criticality of (1.1) corresponds to an
exact balance between the kinetic and potential energies which can be quantified
through the knowledge of the sharp constant in the Gagliardo-Nirenberg inequality
(1.7).

Proposition 3.1 (Sharp Gagliardo-Nirenberg estimate, [111]). Let the H1

functional:

(3.2) J(v) =
(
∫
|∇v|2)(

∫
|v|2) 2

N∫
|v|2+ 4

N

.

The minimization problem

min
v∈H1, v 
=0

J(v)

is attained on the three parameters family:

λ
N
2
0 Q(λ0x+ x0)e

iγ0 , (λ0, x0, γ0) ∈ R
+
∗ × R

N × R,

where Q is the unique ground state solution to:

(3.3)

{
ΔQ−Q+Q1+ 4

N = 0, Q > 0, Q radial
Q(r) → 0 as r → +∞.

In particular, there holds the following Gagliardo-Nirenberg inequality with best con-
stant:

(3.4) ∀v ∈ H1, E(v) ≥ 1

2

∫
|∇v|2

(
1−

(
‖v‖L2

‖Q‖L2

) 4
N

)
.

While E(Q) = I(M) < 0 in the subcritical case, we have in the critical case 6

E(Q) = 0.

A reformulation of (3.4) which is very useful is the following variational character-
ization of Q:

Proposition 3.2 (Variational characterization of the ground state). Let v ∈
H1 such that ∫

|v|2 =

∫
Q2 and E(v) = 0,

then

v(x) = λ
N
2
0 Q(λ0x+ x0)e

iγ0 ,

for some parameters λ0 ∈ R∗
+, x0 ∈ RN , γ0 ∈ R.

To sum up, the situation is as follows: let v ∈ H1, then if ‖v‖L2 < ‖Q‖L2 , the
kinetic energy dominates the potential energy and (3.4) yields E(v) > C(v)

∫
|∇v|2

and the energy is in particular non negative; at the critical mass level ‖v‖L2 =
‖Q‖L2 , the only zero energy function is Q up to the symmetries of scaling, phase
and translation which generate the three dimensional manifold of minimizers of
(3.2). For ‖v‖L2 > ‖Q‖L2 , the sign of the energy is no longer prescribed.

6This can be seen for example by multiplying the Q equation by N
2
Q+y ·∇Q and integrating

by parts.
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Remark 3.3. Remark that on the contrary to the subcritical case, the scaling
( 3.1) leaves the L2 norm invariant and hence there are no small solitary waves in
the critical case.

A simple consequence of the sharp lower bound (3.4) is the concentration of
the mass at blow up given by Theorem 2.4.

Proof of Theorem 2.4. The proof is purely variational. We prove the re-
sult in the radial case for N ≥ 2. The general case follows from concentration
compactness techniques, see [91], [28]. Let u0 ∈ H1 radial and assume that the
corresponding solution u(t) to (1.1) blows up at time 0 < T < +∞, or equivalently:

(3.5) lim
t→T

‖∇u(t)‖L2 = +∞.

We need to prove (2.4) and argue by contradiction: assume that for some R > 0
and ε > 0, there holds on some sequence tn → T ,

(3.6) lim
n→+∞

∫
|y|≤R

|u(tn, y)|2dy ≤
∫

Q2 − ε.

Let us rescale the solution by its size and set:

λ(tn) =
1

‖∇u(tn)‖L2

, vn(y) = λ
N
2 (tn)u(tn, λ(tn)y),

then from explicit computation:

(3.7) ‖∇vn‖L2 = 1 and E(vn) = λ2(tn)E(u).

First observe that vn is H1 bounded and we may assume on a sequence n → +∞:

vn ⇀ V in H1.

We first claim that V is non zero. Indeed, from (3.5), (3.7) and the conservation of
the energy for u(t), E(vn) → 0 as n → +∞, and thus:

1

2 + 4
N

∫
|vn|2+

4
N =

1

2

∫
|∇vn|2 − E(vn) =

1

2
− E(vn) →

1

2
as n → +∞.

Now from the compact embedding of H1
radial ↪→ L2+ 4

N , vn → V in L2+ 4
N up to a

subsequence, and thus 1
2+ 4

N

∫
|V |2+ 4

N ≥ 1
2 and V is non zero. Moreover, from the

weak H1 convergence and the strong L2+ 4
N convergence,

E(V ) ≤ lim inf
n→+∞

E(vn) = 0.

Last, we have from (3.5), (3.6) and the weak H1 convergence: ∀A > 0∫
|y|≤A

|V (y)|2dy ≤ lim inf
n→+∞

∫
|y|≤A

|vn(y)|2dy ≤ lim
n→+∞

∫
|y|≤ R

λ(tn)

|v(tn, y)|2dy

= lim
n→+∞

∫
|x|≤R

|u(tn, x)|2dx ≤
∫

Q2 − ε.

Thus
∫
|V |2 ≤

∫
Q2 − ε which together with V non zero and E(V ) ≤ 0 contradicts

the sharp Gagliardo-Nirenberg inequality (3.4). �

The proof in the non radial case has been simplified by Hmidi, Keraani [28],
which derived the following optimal result from concentration compactness - more
precisely profile decomposition- techniques:
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Lemma 3.4. Let a sequence un ∈ H1 with

lim sup
n→+∞

‖∇un‖L2 ≤ ‖∇Q‖L2 , lim sup
n→+∞

‖un‖
L2+ 4

N
≥ ‖Q‖

L2+ 4
N
,

then there exists xn ∈ RN and V ∈ H1 such that up to a subsequence:

vn(·+ xn) ⇀ V in H1 with ‖V ‖L2 ≥ ‖Q‖L2 .

3.2. The sharp global wellposedness criterion. A generalization of The-
orem 1.1 has been obtained by Weinstein [111]:

Theorem 3.5 (Global well posedness for subcritical mass, [111]). Let u0 ∈ H1

with ‖u0‖L2 < ‖Q‖L2 , the corresponding solution u(t) to ( 1.1) is global and bounded
in H1. More precisely, the solution scatters as t±∞.

Proof of Theorem 3.5. From the conservation of the L2 norm, ‖u(t)‖L2 <
‖Q‖L2 for all t ∈ [0, T ), and thus an a priori bound on ‖u(t)‖H1 follows from
the conservation of the energy and the sharp Gagliardo-Nirenberg inequality (3.4)
applied to v = u(t). The scattering claim is easily proved for u0 ∈ Σ = H1 ∩ {xu ∈
L2} using the explicit pseudo conformal symmetry: if u(t, x) is a solution to (1.1),
then so is

(3.8) v(t, x) =
1

|t|N2
u(

−1

t
,
x

t
)ei

|x|2
4t .

The pseudo conformal symmetry is a well known symmetry of the linear Schrödinger
flow and a symmetry of the nonlinear problem in the mass critical case only. It is
moreover an L2 isometry and thus applying Weinstein’s criterion to v ensures that
v has a limit in Σ as t ↑ 0, and hence u scatters as t → +∞ as readily seen on
(3.8). The case when u0 ∈ L2 only is considerably more delicate and relies on the
rigidity theorem approach developed by Kenig, Merle [33], see Killip, Tao, Visan,
Li, Zhang [35], [36], [37] and references therein, Dodson [14]. �

A spectacular feature is that Weinstein’s criterion for global existence is sharp.
On the one hand, from (3.3),

W (t, x) = Q(x)eit

is a gobal solution to (1.1) with critical mass ‖W‖L2 = ‖Q‖L2 which does not dis-
perse. One should thus think of ‖Q‖L2 as the minimal amount of mass required
to avoid complete dispersion of the wave, and the solitary wave is the smallest non
linear object for which dispersion and concentration exactly balance each other.

Observe now that the pseudo conformal symmetry (3.8) applied to the solitary
wave solution u(t, x) = Q(x)eit yields the explicit minimal mass blow up element:

(3.9) S(t, x) =
1

|t|N2
Q(

x

t
)e−i |x|2

4t + i
t

which scatters as t → −∞, and blows up at the origin at the speed

(3.10) ‖∇S(t)‖L2 ∼ 1

|t|
by concentrating its mass:

(3.11) |S(t)|2 ⇀ ‖Q‖2L2δx=0 as t ↑ 0.



SINGULARITY FORMATION FOR THE NONLINEAR SCHRÖDINGER EQUATION 289

Remark 3.6. For the mass critical NLS, the sharp threshold for global existence
and for scattering are therefore the same. This in fact an exceptional case induced
by the Laplace operator and the Galilean symmetry -which is again an L2 isometry-.
For a more general dispersion of the type (−Δ)α, these threshold are not the same,
[39].

3.3. Orbital stability of the ground state. More can be said on the struc-
ture of the singularity formation, and in particular on the blow up profile for initial
data with L2 mass just above the critical mass required for blow up:

(3.12) u0 ∈ Bα∗ = {u0 ∈ H1 with

∫
Q2 ≤

∫
|u0|2 ≤

∫
Q2 + α∗}

for some parameter α∗ > 0 small enough. This situation is moreover conjectured
to locally describe the generic blow up dynamic around one blow up point.

Let us recall that E(Q) = 0 together with the virial blow up result of Theorem
2.1 imply the instability of the solitary wave Q(x)eit. We claim however that the
orbital stability of Q may be retrieved in some sense according to the following
generalization of Theorem 1.4:

Theorem 3.7 (Orbital stability in the critical case). Let N ≥ 1. For all α∗ > 0
small enough, there exists δ(α∗) with δ(α∗) → 0 as α∗ → 0 such that the following
holds true. Let u0 ∈ H1 with

(3.13)

∫
|u0|2 ≤

∫
Q2 + α∗, E(u) ≤ α∗

∫
|∇u|2,

and let u(t) be the corresponding solution to ( 1.1) with life time 0 < T ≤ +∞, then
there exist (x(t), γ(t)) ∈ C0([0, T ),RN × R) such that:

(3.14) ∀t ∈ [0, T ), ‖λN
2 (t)u(t, λ(t)x+ x(t))e−iγ(t) −Q‖H1 < δ(α∗).

Note that a finite time blow up solution with small super critical mass auto-
matically satisfies (3.13) near blow up time, and hence it is close to the ground
state in H1 up to the set of H1 symmetries. This property is again purely based on
the conservation laws and the variational characterization of Q, and not on refined
properties of the flow.

Proof of Theorem 3.7. Equivalently, we need to prove the following: let a
sequence un ∈ H1 with

(3.15) ‖un‖L2 → ‖Q‖L2 , lim sup
n→+∞

E(un)

‖∇un‖2L2

≤ 0,

let

(3.16) vn = λ
N
2
n u(λnx) with λn =

‖∇Q‖L2

‖∇un‖L2

,

then there exist xn ∈ RN , γn ∈ R such that:

(3.17) vn(·+ xn)e
iγn → Q in H1 as n → +∞.

Indeed, observe from (3.15) and (3.16) that

‖vn‖L2 → ‖Q‖L2 , ‖∇vn‖L2 = ‖∇Q‖L2 , lim sup
n→+∞

E(vn) ≤ 0.
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We now apply Proposition 1.6 to vn. If vanishing occurs, then up to a subsequence,
we have for n large enough:

E(vn) ≥
‖∇Q‖2L2

4
which contradicts lim supn→+∞ E(vn) ≤ 0. If dichotomy occurs, then there exist
wk, zk and 0 < α < 1 such that

‖wk‖L2 → α‖Q‖L2 , ‖zk‖L2 → (1− α)‖Q‖L2 and 0 ≥ lim sup
k→+∞

(E(wk) + E(zk)).

But from the sharp Gagliardo-Nirenberg inequality (3.4) applied to wk and zk, this
implies

‖∇wk‖L2 + ‖∇zk‖L2 → 0 as k → +∞
and thus

‖vnk
‖
L2+ 4

N
→ 0 as k → +∞,

and we are back to the vanishing case. Hence compactness occurs and

vn(·+ xn) → V strongly in L2+ 4
N , L2

up to a subsequence. But then E(v) ≤ 0 and ‖V ‖L2 = ‖Q‖L2 imply from (3.4) and
Proposition 3.2 that V (x) = Q(x + x0)e

iγ0 . This in turns implies E(V ) = 0 and
thus |∇vn(·+ xn)|2L2 → |∇Q|2L2 which impies (3.17). �

4. Dynamical construction of blow up solutions

We give in this section an overview on the known results on singularity forma-
tion in the mass critical case which go beyond the pure variational analysis of the
previous section and rely on an explicit construction of blow up solutions for data
near the ground state. This kind of question still attracts a considerable amount of
interest, and we shall not be able to give a complete overview of the existing litera-
ture in these notes. We shall only give some key results in connection in particular
with the question of the description of the flow near the ground state solitary wave
which is the first nonlinear object.

4.1. Minimal mass blow up. Initial data u0 ∈ H1 with subcritical mass
‖u0‖L2 < ‖Q‖L2 generate global bounded solutions from Theorem 3.5. Moreo-
ever, there exists an explicit minimal mass blow up element S(t) induced by the
pseudo conformal symmetry (3.8) and explicitly given by (3.9). The existence of the
minimal element plays a distinguished role in the Kenig Merle approach to global
existence [33]. An essential feature of (3.9) is that S(t) is compact up to the sym-
metries of the flow, meaning that all the mass is put into the singularity formation.
The basic intuition is that such a behavior is very special, and minimal elements
should be classified7. This was proved using the pseudo conformal symmetry in a
seminal work by Merle:

Theorem 4.1 (Classification of the minimal mass blow up solution, [66]). Let
u0 ∈ H1 with

‖u0‖L2 = ‖Q‖L2 .

7This is a dispersive intuition which for example is completely false in the parabolic setting,
[5].
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Assume that the corresponding solution to ( 1.1) blows up in finite time 0 < T <
+∞. Then

u(t) = S(t)

up to the symmetries.

Before giving the proof of Merle’s classification Theorem, let us say that the
question of the existence of minimal elements in various settings has been a long
standing open problem, mostly due to the fact that the existence of the minimal
element for NLS relies entirely on the exceptional pseudo conformal symmetry.
Merle in [67] considered the inhomogeneous problem

i∂tu+Δu+ k(x)u|u|2 = 0, x ∈ R
2

which breaks the full symmetry group, and obtains for non smooth k non existence
results of minimal elements. A contrario and more recently, a sharp criterion for
the existence and uniqueness of minimal solutions is derived in collaboration with
Szeftel in [101] which relies on a dynamical construction and new Lypapounov
rigidity functionals at the minimal mass level. A further extension to non local
dispersion can be found in [39] which shows that minimal mass blow up is in fact
the generic situation, and has little to do with the pseudo conformal symmetry, see
also [2] for an extension to curved backgrounds, and Theorem 4.6 for the case of
the critical (gKdV).

Proof of Theorem 4.1. This is the first proof of classification of minimal
elements in the Schrödinger setting. We advise the reader to compare it with the
proof of the Liouville theorem in [33] and observe the deep unity of both argu-
ments. The original proof by Merle [66] has been further simplified by Banica [1]
and Hmidi, Keraani [27], and it is the proof we present now.

step 1 Compactness of the flow in H1 up to scaling. Let u as in the hypothesis
of the Theorem with blow up time 0 < T < ∞. Let

λ(t) =
|∇Q|L2

‖∇u(t)‖L2

→ 0 as t → T.

Then

v(t, x) = λ
N
2 (t)u(t, λ(t)x+ x(t))

satisfies:

‖∇v(t)‖L2 = ‖∇Q‖L2 , lim
t→T

E(v) = 0, ‖v(t)‖L2 = ‖Q‖L2 .

Arguing as for the proof of Theorem 3.7, we conclude from standard concentration
compactness techniques and the variational characterization of the ground state
that:

(4.1) v(t, x+ x(t))eiγ(t) → Q in H1 as t → T.

step 2 A refined Cauchy-Schwarz for critical mass functions. For ‖w‖L2 <
‖Q‖L2 , the energy controls the kinetic energy from (3.4). This controls fails for
‖w‖L2 = ‖Q‖L2 but can be retrieved in some weak sense. Indeed, Banica observed
the following: let a smooth real valued ψ and w ∈ H1 with ‖w‖L2 = ‖Q‖L2 , then:

(4.2)

∣∣∣∣
∫

Im(∇ψ · ∇ww)

∣∣∣∣
2

�
√
E(w)

(∫
|∇ψ|2|w|2

) 1
2

.
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Indeed, for any a > 0,

‖weiaψ‖L2 = ‖Q‖L2 and thus E(weiaψ) ≥ 0

and the result follows by expanding in a.

step 3 L2 compactness of u and control of the concentration point. We now
claim that u is L2 compact: ∀ε > 0, ∃R > 0 such that

(4.3) ∀t ∈ [0, T ),

∫
|x|≥R

|u(t, x)|2dx < ε.

Indeed, pick ε small enough, For R > 0, let χR(x) = χ( x
R ) where χ is a smooth

radial cut off function with χ(r) = 0 for r ≤ 1
2 , χ(r) = 1 for r ≥ 1. Then integrating

by parts in (1.1) and using (4.2), we get:∣∣∣∣12 d

dt

∫
χR|u|2

∣∣∣∣ =
∣∣∣∣Im

∫
∇χR · ∇uu

∣∣∣∣ ≤ C
√

E(u)

(∫
|∇χR|2|u|2

) 1
2

≤ C

R

√
E0‖u0‖L2

where we used the conservation of energy and L2 norm in the last step. Integrating
in time on [0, T ] and using T < +∞ yields (4.3).
Now observe that (4.1) and (4.3) automatically imply a localization of the concen-
tration point:

(4.4) ∀t ∈ [0, T ), |x(t)| ≤ C(u0).

step 4 u ∈ Σ. From (4.4) and up to a translation in space, we may consider a
sequence of times tn → T such that

x(tn) → 0 ∈ R
N .

From (4.1), (4.3):

(4.5) |u(tn, x)|2 ⇀

(∫
|Q|2

)
δ0 as tn → T.

This means that at time T , all the mass is at the origin. Even though there is no
finite speed of propagation for (NLS), the idea is to integrate backwards from the
singularity to conclude that this implies that there was not much mass initially at
infinity, that is

(4.6) u0 ∈ Σ = H1 ∩ {xu} ∈ L2.

This step is very important and corresponds to a non trivial gain of regularity for
the asymptotic object which is a direct consequence of its non dispersive behavior.
Let a smooth radial cut off function ψ(r) = r2 for r ≤ 1, ψ(r) = 8 for r ≥ 2 and
such that |∇ψ|2 ≤ Cψ. Let A > 0 and ψA(r) = A2ψ( r

A ), then:

(4.7) |∇ψA|2 � ψA.

Then integrating by parts in (1.1), we have using (4.2) and (4.7):∣∣∣∣12 d

dt

∫
ψA|u|2

∣∣∣∣ =

∣∣∣∣Im
∫
(∇ψA · ∇uu)

∣∣∣∣ �
√
E0

(∫
|∇ψA|2|u|2

) 1
2

�
√

E0

(∫
ψA|u|2

) 1
2
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or equivalently:

(4.8)

∣∣∣∣∣ ddt
√∫

ψA|u|2
∣∣∣∣∣ �

√
E0.

Now observe from (4.5) that∫
ψA|u(tn)|2 → 0 as tn → T.

Integrating (4.8) on [t, tn] and letting tn → T , we thus get:

∀t ∈ [0, T ),

√∫
ψA|u(t)|2 ≤ C(E0)(T − t).

Note that the right hand side of the above expression is independent of A. We may
thus let A → ∞ and conclude to an even more precise version of (4.6):

(4.9) ∀t ∈ [0, T ), u(t) ∈ Σ with

∫
|x|2|u(t, x)|2dx → 0 as t → T.

step 5 Pseudo-conformal transformation. The conclusion of the proof is pure
magic. It relies on the following completely general fact. Let u(t) be a solution to
(1.1) leaving on [0, T ), then

v(t, x) =

(
T

T + t

)N
2

u

(
tT

T + t
,

Tx

T + t

)
ei

|x|2
4(T+t)

is a solution to (1.1) with

‖v‖L2 = ‖u‖L2 and E(v) =
1

8
lim
t→T

∫
|x|2|u(t, x)|2dx.

Applying this to u and using (4.9), this implies that

‖v‖L2 = ‖u‖L2 = ‖Q‖L2 and E(v) = 0.

From Proposition 3.2, v = Q up to the symmetries of the flow, and this concludes
the proof of Theorem 4.1. �

4.2. Log log blow up. The only explicit blow up solution we have encoun-
tered so far is the minimal mass blow up bubble (3.9). This bubble is intrinsically
unstable because a mass subcritical perturbation leads to a globally defined so-
lution. The question of the description of stable blow up bubbles has attracted
a considerable attention which started in the 80’s with the development of sharp
numerical methods and the prediction of the ”log-log law” for NLS by Landman,
Papanicoalou, Sulem, Sulem [43].

To simplify the presentation, let us restrict our attention with mass just above
the minimal required for singularity formation
(4.10)

u0 ∈ Bα∗ =
{
u0 ∈ H1 with ‖Q‖L2 < ‖u0‖L2 < ‖Q‖L2 + α∗} , 0 < α∗ � 1.

A general and fundamental open problem is to completely describe the flow for such
initial data which in some sense corresponds according to the scattering statement of
Theorem 3.5 to the first non linear zone. The generalized orbital stability statement
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of Theorem 3.7 ensures that under (4.10), if u blows up at T < +∞. then for t
close enough to T , the solution must admit a nonlinear decomposition

(4.11) u(t, x) =
1

λ(t)
N
2

(Q+ ε)(t,
x− x(t)

λ(t)
)eiγ(t),

where

(4.12) ‖ε(t)‖H1 ≤ δ(α∗), λ(t) ∼ 1

‖∇u(t)‖L2

.

This decomposition implies that in any blow up regime, the ground state solitary
wave Q is a good approximation of the blow up profile, and this is the starting
point for a perturbative analysis. The sharp description of the blow up bubble now
relies on the extraction of the finite dimensional and possibly universal dynamic
for the evolution of the geometrical parameters (λ(t), x(t), γ(t)) which is coupled to
the infinite dimensional dispersive dynamic driving the small excess of mass ε(t).

Remark 4.2. An illuminating computation is to reformulate (3.9) for the min-
imal blow up element in terms of (4.11):

λ(t) = |t|, ε(t, y) = Q(y)

(
e−i b(t)|y|2

4 − 1

)
, b(t) = |t|.

All possible regimes of λ(t) are not known, but some progress has been done
on the understanding of stable and threshold dynamics. The following Theorem
summarizes the series of results obtained in [71], [72], [73], [74], [75], [97]:

Theorem 4.3 ([71], [72], [73], [74], [75], [97]). Let N ≤ 5. There exists a
universal constant α∗ > 0 such that the following holds true. Let u0 ∈ Bα∗ and
u ∈ C([0, T ), H1), 0 < T ≤ +∞ be the corresponding solution to (1.1).
(i) Sharp L2 concentration: Assume T < +∞, then there exist parameters
(λ(t), x(t), γ(t)) ∈ C1([0, T ),R∗

+ ×RN ×R) and an asymptotic profile u∗ ∈ L2 such
that

(4.13) u(t)− 1

λ(t)
N
2

Q

(
x− x(t)

λ(t)

)
eiγ(t) → u∗ in L2 as t → T,

and the blow up point is finite:

x(t) → x(T ) ∈ R
N as t → T.

(ii) Classification of the speed: Under (i), the solution is either in the log-log regime

(4.14) λ(t)

√
log | log(T − t)|

T − t
→

√
2π as t → T

and then the asymptotic profile is not smooth:

(4.15) u∗ /∈ H1 and u∗ /∈ Lp for p > 2,

or there holds the sharp lower bound

(4.16) λ(t) � C(u0)(T − t)

and the improved regularity:

(4.17) u∗ ∈ H1.

(iii) Sufficient condition for log-log blow up: Assume E0 < 0, then the solution
blows un finite time T < +∞ in the log log regime (4.14).
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(iv) H1 stability of the log log blow up: More generally, the set of initial data in
Bα∗ such that the corresponding solution to ( 1.1) blows up in finite time with the
log-log law ( 4.14) is open in H1.

Comments on the result:

1. The log log law. The log log law (4.14) of stable blow up was first proposed
in the pioneering formal and numerical work [43]. The first rigorous construction
of such a solution is due to Galina Perelman [95] in dimension N = 1. The proof
of Theorem 4.3 involves a mild coercivity property of the linearized operator close
to Q, see the Spectral Property 5.6, which is proved in dimension N = 1 in [71]
and checked numerically in an elementary way in [18] for N ≤ 5. Here we face the
difficulty that there is no explicit formula for the ground state in dimensions N ≥ 2.

2. Upper bound on the blow up speed: There exists no upper bound of no type
on the blow up speed ‖∇u(t)‖L2 in the mass critical case, even for data u0 ∈ Bα∗

only. The lower bound (4.16) is sharp and saturated by the minimal blow up ele-
ment S(t). The derivation of slower blow up, which through the pseudo conformal
symmetry is equivalent to the construction of infinite time grow up solutions, is
linked to the description of the flow near the ground state which is still incomplete
for (NLS). The intuition is led here by the recent classification results obtained for
the mass critical KdV problem which we present in section 4.5.

3. Quantization of the blow up mass: The strong convergence (4.13) gives a
complete description of the blow up bubble in the scaling invariance space and
implies in particular that the mass which is put into the singularity formation is
quantized

|u(t)|2 ⇀ ‖Q‖2L2δx=x(T ) + |u∗|2 as t → T, |u∗|2 ∈ L1

which shows the validity of the conjecture (*) for near minimal mass blow up
solutions. This kind of general asymptotic simplification theorem started in the
dispersive setting in the pioneering works by Martel and Merle [55] , and was
recently propagated to impressive classification result -without assumption of size
on the data- for energy critical wave equations [15]. Underlying the convergence
(4.13) is the asymptotic stability statement of the solitary wave as the universal
attractor of all blow up solutions which in the language (4.11) means

ε(t, x) → 0 as t → T in L2
loc.

In fact, there are steps in the proof of Theorem 4.3 and the derivation of either
upper bounds or lower bounds on the blow up rate is intimately connected to the
question of dispersion for the excess of mass ε(t, x).

4. Asymptotic profile: The regularity of the asymptotic profile u∗ sees the
change of regime because in the stable log log regime, the singular and regular
parts of the solution are very much coupled, while they are more separated in any
other regimes.

4.3. Threshold dynamics. We still consider small super critical mass initial
data u0 ∈ Bα∗ . Theorem 4.3 describes the stable log log blow up. The explicit
minimal mass blow up given by (4.3) does not belong to this class and is unstable.
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Bourgain and Wang [8] observed however that S(t) can be stabilized on a finite
codimensional manifold, and they do so by integrating the flow backwards from
the singularity. The excess of mass in this regime corresponds to a flat and smooth
asymptotic profile. More precisely, let N = 1, 2, fix the origin as the blow up point
and let a limiting profile u∗ ∈ H1 such that

(4.18)
di

dxi
u∗(0) = 0, 1 ≤ i ≤ A, A � 1,

then one can build a solution to (1.1) which blows up at t = 0 at x = 0 and satisfies:

(4.19) u(t)− S(t) → u∗ in H1 as t ↑ 0.

We refer to [40] for a further discussion on the manifold construction. Note that
this produces blow up solutions with super critical mass ‖u0‖L2 > ‖Q‖L2 which
saturate the lower bound (4.16):

‖∇u(t)‖L2 ∼ 1

T − t
.

Also for small L2 perturbation of S(−1), the Bourgain Wang solution blows up
at t = 0 but is global and scatters as t → −∞, simply because S(t) scatters as
t → −∞, and scattering is an L2 stable behavior8.

We proved in collaboration with Merle and Szeftel in [79] that these solutions
sit on the border between the two open sets of solutions which scatter to the left as
t → −∞ and respectively are global to the right and scatter as t → +∞, and blow
up in finite time in the log log regime.

Theorem 4.4 (Strong instability of Bourgain Wang solutions, [79]). Let N =
1, 2. Let u∗ be a smooth radially symmetric satisfying the degeneracy at blow up
point (4.18). Let u0

BW ∈ C((−∞, 0), H1) be the corresponding Bourgain-Wang.
solution. Then there exists a continuous map

Γ : [−1, 1] → Σ

such that the following holds true. Given η ∈ [−1, 1], let uη(t) be the solution to
(1.1) with data uη(−1) = Γ(η), then:

• Γ(0) = u0
BW (−1) ie ∀t < 0, uη=0(t) = u0

BW (t) is the Bourgain Wang
solution on (−∞, 0) with blow up profile S(t) and regular part u∗;

• ∀η ∈ (0, 1], uη ∈ C(R,Σ) is global in time and scatters forward and back-
wards;

• ∀η ∈ [−1, 0), uη ∈ C((−∞, T ∗
η ),Σ) scatters to the left and blows up in

finite time T ∗
η < 0 on the right in the log-log regime (4.14) with

(4.20) T ∗
η → 0 as η → 0.

Note that this theorem describes the flow near the Bourgain Wang solution
along one instability solution. A major open problem in the field is to describe the
flow near the ground state Q. Theorem 4.4 is a first step towards the description
of the flow near the Bourgain Wang solutions which itself is a very interesting open
problem.

8This is a simple consequence of Strichartz estimates and the L2 critical Cauchy theory of
Cazenave-Weissler [13].
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4.4. Structural instability of the log-log law. Another model with fun-
damental physical relevance, [106], is the Zakharov system in dimensions N = 2, 3:

(4.21)

{
iut = −Δu+ nu
1
c20
ntt = Δn+Δ|u|2

for some fixed constant 0 < c0 < +∞. In the limit c0 → +∞, we formally recover
(1.1). In dimension N = 2, this system displays a variational structure like (1.1),
even though the scaling symmetry is destroyed by the wave coupling. In particular,
a virial law in the spirit of (2.1) holds and yields finite time blow up for radial non
positive energy initial data, see Merle [69]. Moreover, a one parameter family of
blow up solutions has been constructed as a continuation of the exact S(t) solution
for (1.1), see Glangetas, Merle, [24]. These explicit solutions have blow up speed:

‖∇u(t)‖L2 ∼ C(u0)

T − t

and appear to be stable from numerics, see Papanicolaou, Sulem, Sulem, Wang,
[94]. Now from Merle, [68], all finite time blow up solutions to ( 4.21) satisfy

‖∇u(t)‖L2 ≥ C(u0)

T − t
.

In particular, there will be no log-log blow up solutions for (4.21). This fact sug-
gests that in some sense, the Zakharov system provides a much more stable and
robust blow up dynamics than its asymptotic limit (NLS). This fact enlightens
the belief that the log-log law heavily relies on the specific algebraic structure of
(1.1), and some non linear degeneracy properties will indeed be at the heart of our
understanding of the blow up dynamics. Let us insist that the fine study of the
singularity formation for the Zakharov system is mostly open, and in some sense
it is the first towards the understanding of more physical and complicated systems
related to Maxwell’s equations.

4.5. Classification of the flow near Q: the case of the generalized
KdV. We present in this section the recent series of results [62], [61], [60] which
give a complete description of the flow near the ground for an L2 critical problem:
the generalized KdV equation

(4.22) (gKdV )

{
∂tu+ (uxx + u5)x = 0
u|t=0 = u0

, (t, x) ∈ R× R.

This problem admits the same L2 norm and energy conservation laws like (NLS),
and the same mass critical scaling. The solitary wave is here a traveling wave
solution

u(t, x) = Q(x− t)

where Q is the one dimensional ground state

Q(x) =

(
3

ch2(2x)

) 1
4

.

This model problem has been thoroughly studied by Martel and Merle in the pio-
neering breakthrough works [55], [56],[57],[58], [59]

as a toy model for which the pseudo conformal symmetry and the associated
virial algebra are lost. The long standing open problem of the existence of blow up
solutions was solved in [70], but the structure of the singularity formation was still
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only poorly understood. We give in the series of works [62], [61], [60] a complete
description of the flow near the ground state and expect that the obtained picture
is canonical.
More precisely, let the set of initial data

A =

{
u0 = Q+ ε0 with ‖ε0‖H1 < α0 and

∫
y>0

y10ε20 < 1

}
,

and consider the L2 tube around the family of solitary waves

Tα∗ =

{
u ∈ H1 with inf

λ0>0, x0∈R

‖u− 1

λ
1
2
0

Q

(
.− x0

λ0

)
‖L2 < α∗

}
.

We first claim the rigidity of the dynamics for data in A:

Theorem 4.5 (Rigidity of the flow in A, [62]). Let 0 < α0 � α∗ � 1 and
u0 ∈ A. Let u ∈ C([0, T ), H1) be the corresponding solution to (4.22). Then one of
the following three scenarios occurs:
(Blow up): the solution blows up in finite time 0 < T < +∞ in the universal regime

(4.23) ‖u(t)‖H1 =
�(u0) + o(1)

T − t
as t → T, �(u0) > 0.

(Soliton): the solution is global T = +∞ and converges asymptotically to a solitary
wave.
(Exit): the solution leaves the tube Tα∗ at some time 0 < t∗u < +∞.
Moreover, the scenarios (Blow up) and (Exit) are stable by small perturbation of
the data in A.

In other words, we obtain a complete classification of solutions with data in
A which remain close in the L2 critical sense to the manifold of solitary waves.
It remains to understand the long time dynamics in the (Exit) regime. The first
step is the existence and uniqueness of a minimal blow up element which is the
generalization of the S(t) dynamics for (NLS):

Theorem 4.6 (Existence and uniqueness of the minimal mass blow up element,
[61]).

(i) Existence. There exists a solution S̃(t) ∈ C((0,+∞), H1) to (4.22) with minimal

mass ‖S̃(t)‖L2 = ‖Q‖L2 which blows up backward at the origin at the speed

‖∇S̃(t)‖L2 ∼ 1

t
as t ↓ 0,

and is globally defined on the right in time.
(ii) Uniqueness. Let u0 ∈ H1 with ‖u0‖L2 = ‖Q‖L2 and assume that the corre-
sponding solution u(t) to (4.22) blows up in finite time. Then

u ≡ S

up to the symmetries of the flow.

In other words, we recover Merle’s result in the absence of pseudo conformal
symmetry, and the proof is here completely dynamical and deeply related to the
analysis of the inhomogeneous NLS model in [101]. We now claim that S̃ is the
universal attractor of all solutions in the (Exit) regime.
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Theorem 4.7 (Description of the (Exit) scenario, [61]). Let u(t) be a solution
of (4.22) corresponding to the (Exit) scenario in Theorem 4.6 and let t∗u � 1 be
the corresponding exit time. Then there exist τ∗ = τ∗(α∗) (independent of u) and
(λ∗

u, x
∗
u) such that∥∥∥(λ∗

u)
1
2 u (t∗u, λ

∗
ux+ x∗

u)− S̃(τ∗, x)
∥∥∥
L2

≤ δI(α0),

where δI(α0) → 0 as α0 → 0.

In fact a solution at the (Exit) time acquires a specific profile with a large
defocusing spreading λ∗

u � 1 -coherent with dispersion-. Understanding the flow

for u after the (Exit) is now equivalent to controlling the flow of S̃(t) for large
times. For (NLS), we can see on the formula (3.9) that S(t) blows up at t = 0 and

scatters as t → +∞. For (gKdV), we know from Theorem 4.6 that S̃(t) is global as
t → +∞, but scattering is not known. We however expect that this holds true, in
which case because scattering is open in L2 thanks to the Kenig, Ponce, Vega L2

critical theory [34], we obtain the following:

Corollary 4.8. Assume that S(t) scatters as t → +∞. Then any solution in
the (Exit) scenario is global for positive time and scatters as t → +∞.

It is important to notice that the above results rely on the explicit computation
of the solution in the various regimes, and not on algebraic virial type identities.
Indeed we introduce the nonlinear decomposition of the flow

u(t, x) =
1

λ(t)
1
2

(Q+ ε)

(
t,
x− x(t)

λ(t)

)

and show that to leading order, λ(t) obeys the dynamical system

(4.24) λtt = 0, λ(0) = 1.

The three regimes (Exit), (Blow up), (Soliton) now correspond respectively to
λt(0) > 0, λt(0) < 0 and the threshold dynamic λt(0) = 0.

Our last result shows that the universality of the leading order ODE (4.24)
is valid under the decay assumption u0 ∈ A only, and indeed the tail of slowly
decaying data can interact with the solitary wave which for (KdV) is moving to the
right, and this may lead to new exotic singular regimes:

Theorem 4.9 (Exotic blow up regimes, [60]).
(i) Blow up in finite time: for any ν > 11

13 , there exists u ∈ C((0, 1], H1) solution to
(4.22) which blows up at t = 0 with speed

(4.25) ‖ux(t)‖L2 ∼ t−ν as t → 0+.

(ii) Blow up in infinite time: there exists u ∈ C([1,+∞), H1) solution of (4.22)
growing up at +∞ with speed

(4.26) ‖ux(t)‖L2 ∼ et as t → +∞.

For any ν > 0, there exists u ∈ C([1,+∞), H1) solution of (4.22) blowing up at
+∞ with

(4.27) ‖ux(t)‖L2 ∼ tν as t → +∞.

Such solutions can be constructed arbitrarily close in H1 to the ground state solitary
wave.
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Note that this implies in particular that blow up can be arbitrarily slow.

We expect that the (KdV) picture is fairly general, and Theorem 4.4 is a first
step towards a similar description for the mass critical NLS. Let also mention that
in super critical regimes and large dimensions, Nakanishi and Schlag have obtained
a related classification of the flow near the solitary wave which in particular involves
a complete description of the scattering zone and its boundary.

5. The log log upper bound on blow up rate

Our aim in this section is to present a self contained proof of the first result
contained in Theorem 4.3 for the mass critical problem and for small super critical
mass initial data.

Theorem 5.1 ([71],[72]). Let N ≤ 4. There exist universal constants α∗, C∗ >
0 such that the following holds true. Given u0 ∈ Bα∗ with

(5.1) EG(u) = E(u)− 1

2

(
Im(

∫
∇uu)

|u|L2

)2

< 0,

then the corresponding solution u(t) to ( 1.1) blows up in finite time 0 < T < +∞
and there holds for t close to T :

(5.2) ‖∇u(t)‖L2 ≤ C∗
(
log | log(T − t)|

T − t

) 1
2

.

This theorem is the first fundamental improvement on the virial law: it not
only shows blow up in finite time of non positive energy solutions, it also gives
an upper bound on the blow up rate which in particular rules out the S(t) type of
dynamic. Moreover the steps of the proof are in some sense canonical for our study.

The heart of our analysis will be to exhibit as a consequence of dispersive prop-
erties of ( 1.1) close to Q strong rigidity constraints for the dynamics of non positive
energy solutions. These will in turn imply monotonicity properties, that is the ex-
istence of a Lyapounov function. The corresponding estimates will then allow us to
prove blow up in a dynamical way and the sharp upper bound on the blow up speed
will follow.

5.1. Existence of the geometrical decomposition. Let an initial data
u0 ∈ Bα∗ with EG(u0) < 0. First observe that up to a fixed Galilean transform, we
may equivalently assume

(5.3) E(u0) < 0 and Im

∫
∇uu0 = 0.

Proposition 3.7 thus applies and implies for t ∈ [0, T ) the existence of a geometrical
decomposition

u(t, x) =
1

λ
N
2
0 (t)

(Q+ ε0)(t,
x− x0(t)

λ0(t)
)eiγ0(t), ‖ε0‖H1 ≤ δ(α∗).

Let us observe that this geometrical decomposition is by no mean unique. Nev-
ertheless, one can freeze and regularize this decomposition by choosing a set of
orthogonality conditions on the excess of mass: this is the modulation argument
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which will be examined later on. Let us so far assume that we have a smooth
decomposition of the solution: ∀t ∈ [0, T ),

(5.4) u(t, x) =
1

λ(t)
N
2

(Q+ ε)(t,
x− x(t)

λ(t)
)eiγ(t)

with

λ(t) ∼ C

‖∇u(t)‖L2

and ‖ε(t)‖H1 ≤ δ(α∗) → 0 as α∗ → 0.

To study the blow up dynamic is now equivalent to understanding the coupling
between the finite dimensional dynamic which governs the evolution of the geomet-
rical parameters (λ(t), γ(t), x(t)) and the infinite dimensional dispersive dynamic
which drives the excess of mass ε(t).

To enlighten the main issues, let us rewrite (1.1) in the so-called rescaled vari-
ables. Let us introduce the rescaled time:

s(t) =

∫ t

0

dτ

λ2(τ )
.

It is elementary to check that whatever is the blow up behavior of u(t), one always
has:

s([0, T )) = R
+.

Let us set:

v(s, y) = eiγ(t)λ(t)
N
2 u(t, λ(t)x+ x(t)).

For a given function f , we introduce the generator of L2 scaling

Λf =
N

2
f + y · ∇f

then from direct computation, u(t, x) solves (1.1) on [0, T ) iff v(s, y) solves: ∀s ≥ 0,

(5.5) ivs +Δv − v + v|v| 4
N = i

λs

λ
Λv + i

xs

λ
· ∇v + γ̃sv,

where γ̃ = −γ − s. Now v(s, y) = Q(y) + ε(s, y) and we linearize (5.5) close to Q.
The obtained system has the form:

(5.6) iεs + Lε = i
λs

λ
ΛQ+ γsQ+ i

xs

λ
· ∇Q+R(ε),

R(ε) formally quadratic in ε, and L = (L+, L−) is the matrix linearized operator
closed to Q which has components:

L+ = −Δ+ 1−
(
1 +

4

N

)
Q

4
N , L− = −Δ+ 1−Q

4
N .

A standard approach is to think of equation (5.6) in the following way: it is essen-
tially a linear equation forced by terms depending on the law for the geometrical
parameters. The classical study of this kind of system relies on the understanding
of the dispersive properties of the propagator eisL of the linearized operator close to
Q. In particular, one needs to exhibit its spectral structure. This has been partially
done by Weinstein, [110], using the variational characterization of Q. The result is
the following: L is a non self adjoint operator with a generalized eigenspace at zero.
The eigenmodes are explicit and generated by the symmetries of the problem:

L+ (ΛQ) = −2Q (scaling invariance), L+(∇Q) = 0 (translation invariance),
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L−(Q) = 0 (phase invariance), L−(yQ) = −2∇Q (Galilean invariance).

An additional relation is induced by the pseudo-conformal symmetry:

L−(|y|2Q) = −4ΛQ,

and this in turns implies the existence of an additional mode ρ solution to

L+ρ = −|y|2Q.

These explicit directions induce “growing” solutions to the homogeneous linear
equation i∂sε + Lε = 0. More precisely, there exists a (2N+3) dimensional space
S spanned by the above directions such that H1 = M ⊕ S with |eisLε|H1 ≤ C
for ε ∈ M and |eisLε|H1 ∼ s3 for ε ∈ S. As each symmetry is at the heart of a
growing direction, a first idea is to use the symmetries from modulation theory to a
priori ensure that ε is orthogonal to S. Roughly speaking, the strategy to construct
blow up solutions is then: chose the parameters λ, γ, x so as to get good a priori
dispersive estimates on ε in order to build it from a fixed point scheme. Now the
fundamental problem is that one has (2N+2) symmetries, but (2N+3) bad modes
in the set S. Both constructions in [8] and [95] develop non trivial strategies to
overcome this intrinsic difficulty of the problem.

Our strategy will be more non linear. On the basis of the decomposition ( 5.4),
we will prove bounds on ε induced by the virial structure ( 2.1). The proof will
rely on non linear degeneracies of the structure of ( 1.1) around Q. Using then
the Hamiltonian information E0 < 0, we will inject these estimates into the finite
dimensional dynamic which governs λ(t) -which measures the size of the solution-
and prove rigidity properties of Lyapounov type. This will then allow us to prove
finite time blow up together with the control of the blow up speed.

5.2. Choice of the blow up profile. Before exhibiting the modulation the-
ory type of arguments, we present in this subsection a formal discussion regarding
explicit solutions of equation (5.5) which is inspired from a discussion in [106].
This corresponds to a finite dimensional reduction of the problem which actually
computes the leading order terms of the solution.

First, let us observe that the key geometrical parameter is λ which measures
the size of the solution. Let us then set

−λs

λ
= b

and look for solutions to a simpler version of (5.5):

ivs +Δv − v + ib

(
N

2
v + y · ∇v

)
+ v|v| 4

N = 0.

From the orbital stability property, we want solutions which remain close to Q in
H1. Let us look for solutions of the form v(s, y) = Qb(s)(y) where the mappings
b → Qb and the law for b(s) are the unknown. We think of b as remaining uniformly
small and Qb=0 = Q. Injecting this ansatz into the equation, we get:

i
db

ds

(
∂Qb

∂b

)
+ΔQb(s) −Qb(s) + ib(s)

(
N

2
Qb(s) + y · ∇Qb(s)

)
+Qb(s)|Qb(s)|

4
N = 0.
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To handle the linear group, we let P b(s) = ei
b(s)
4 |y|2Qb(s) and solve:

(5.7) i
db

ds

(
∂P b

∂b

)
+ΔP b(s)−P b(s)+

(
db

ds
+ b2(s)

)
|y|2
4

P b(s) +P b(s)|P b(s)|
4
N = 0.

A remarkable fact related to the specific algebraic structure of (1.1) around Q is
that (5.7) admits three solutions:

• The first one is (b(s), P b(s)) = (0, Q), that is the ground state itself. This
is just a consequence of the scaling invariance.

• The second one is (b(s), P b(s)) = ( 1s , Q). This non trivial solution is a
rewriting of the explicit critical mass blow up solution S(t) and is induced
by the pseudo-conformal symmetry.

• The third one is given by (b(s), P b(s)) = (b, P b) for some fixed non zero

constant b and P b satisfies:

(5.8) ΔP b − P b +
b2

4
|y|2P b + P b|P b|

4
N = 0.

This corresponds to self similar profiles. Indeed, recall that b = −λs

λ , so

if b is frozen, we have from ds
dt = 1

λ2 :

b = −λs

λ
= −λλt ie λ(t) =

√
2b(T − t),

this is the scaling law for the blow up speed.

Now a crucial point again is -[103]- that the solutions to (5.8) never belong to
L2 from a logarithmic divergence at infinity:

|Pb(y)| ∼
C(Pb)

|y|N2
as |y| → +∞.

This behavior is a consequence of the oscillations induced by the linear group af-
ter the turning point |y| ≥ 2

|b| . Nevertheless, in the ball |y| < 2
|b| , the operator

−Δ+ 1− b2|y|2
4 is coercive, and no oscillations will take place in this zone.

Because we track a log-log correction to the self similar law as an upper bound

on the blow up speed, the profiles Qb = e−i b
4 |y|

2

P b with P b solving (5.8) are natural
candidates as refinements of the Q profile in the geometrical decomposition (4.11).
Nevertheless, as they are not in L2, we need to build a smooth localized version
avoiding the non L2 tail, what according to the above discussion is doable in the
coercive zone |y| < 2

|b| .

Proposition 5.2 (Localized self similar profiles). There exist universal con-
stants C > 0, η∗ > 0 such that the following holds true. For all 0 < η < η∗,
there exist constants ν∗(η) > 0, b∗(η) > 0 going to zero as η → 0 such that for all
|b| < b∗(η), let

Rb =
2

|b|
√
1− η, R−

b =
√
1− ηRb,

BRb
= {y ∈ R

N , |y| ≤ Rb}. Then there exists a unique radial solution Qb to⎧⎪⎨
⎪⎩

ΔQb −Qb + ib
(
N
2 Qb + y · ∇Qb

)
+Qb|Qb|

4
N = 0,

Pb = Qbe
i b|y|2

4 > 0 in BRb
,

Qb(0) ∈ (Q(0)− ν∗(η), Q(0) + ν∗(η)), Qb(Rb) = 0.



304 P. RAPHAËL

Moreover, let a smooth radially symmetric cut-off function φb(x) = 0 for |x| ≥ Rb

and φb(x) = 1 for |x| ≤ R−
b , 0 ≤ φb(x) ≤ 1 and set

Q̃b(r) = Qb(r)φb(r),

then

Q̃b → Q as b → 0

in some very strong sense, and Q̃b satisfies

(5.9) ΔQ̃b − Q̃b + ib(Q̃b)1 + Q̃b|Q̃b|
4
N = −Ψb

with

Supp(Ψ) ⊂ {R−
b ≤ |y| ≤ Rb} and |Ψb|C1 ≤ e−

C
|b| .

Eventually, Q̃b has supercritical mass:

(5.10)

∫
|Q̃b|2 =

∫
Q2 + c0b

2 + o(b2) as b → 0

for some universal constant c0 > 0.

The meaning of this proposition is that one can build localized profiles Q̃b on
the ball BRb

which are a smooth function of b and approximate Q in a very strong
sense as b → 0, and these profiles satisfy the self similar equation up to an ex-
ponentially small term Ψb supported around the turning point 2

b . The proof of
this Proposition uses standard variational tools in the setting of non linear elliptic
problems. In fact, the implicit function theorem would do the job as well, see [95].

Now one can think of making a formal expansion of Q̃b in terms of b, and the
first term is non zero:

∂Q̃b

∂b |b=0
= − i

4
|y|2Q.

However, the energy of Q̃b is degenerated in b at all orders:

(5.11) |E(Q̃b)| ≤ e−
C
|b| ,

for some universal constant C > 0.

The existence of a one parameter family of profiles satisfying the self similar
equation up to an exponentially small term and having an exponentially small energy
is an algebraic property of the structure of ( 1.1) around Q which is at the heart of
the existence of the log-log regime.

5.3. Modulation theory. We are now in position to exhibit the sharp de-
composition needed for the proof of the log-log upper bound. From Theorem 3.7
and the proximity of Q̃b to Q in H1, the solution u(t) to (1.1) is for all time close
to the four dimensional manifold

M = {eiγλN
2 Q̃b(λy + x), (λ, γ, x, b) ∈ R

∗
+ × R× R

N × R}.
We now sharpen the decomposition according to the following Lemma. In the
sequel, we let

ε = ε1 + iε2

be the real and imaginary parts decomposition.
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Lemma 5.3 (Non linear modulation of the solution close to M). There exist
C1 functions of time (λ, γ, x, b) : [0, T ) → (0,+∞)× R× RN × R such that:

(5.12) ∀t ∈ [0, T ), ε(t, y) = eiγ(t)λ
N
2 (t)u(t, λ(t)y + x(t))− Q̃b(t)(y)

satisfies:
(i)

(5.13)
(
ε1(t),ΛΣb(t)

)
+

(
ε2(t),ΛΘb(t)

)
= 0,

(5.14)
(
ε1(t), yΣb(t)

)
+

(
ε2(t), yΘb(t)

)
= 0,

(5.15) −
(
ε1(t),Λ

2Θb(t)

)
+

(
ε2(t),Λ

2Σb(t)

)
= 0,

(5.16) −
(
ε1(t),ΛΘb(t)

)
+

(
ε2(t),ΛΣb(t)

)
= 0,

where ε = ε1 + iε2, Q̃b = Σb + iΘb in terms of real and imaginary parts;

(ii) |1− λ(t)
‖∇u(t)‖L2

|∇Q|L2

|+ ‖ε(t)‖H1 + |b(t)| ≤ δ(α∗) with δ(α∗) → 0 as α∗ → 0.

Let us insist onto the fact that the reason for this precise choice of orthogonality
conditions is a fundamental issue which will be addressed in the next section.

Proof of Lemma 5.3. This Lemma follows the standard frame of modulation
theory and is obtained from Theorem 3.7 using the implicit function theorem. From
Theorem 3.7, there exist parameters γ0(t) ∈ R and x0(t) ∈ RN such that with

λ0(t) =
|∇Q|L2

‖∇u(t)‖L2
,

∀t ∈ [0, T ),
∣∣∣Q− eiγ0(t)λ0(t)

N
2 u(λ0(t)x+ x0(t))

∣∣∣
H1

< δ(α∗)

with δ(α∗) → 0 as α∗ → 0. Now we sharpen this decomposition using the

fact that Q̃b → Q in H1 as b → 0, i.e. we chose (λ(t), γ(t), x(t), b(t)) close to
(λ0(t), γ0(t), x0(t), 0) such that

ε(t, y) = eiγ(t)λ1/2(t)u(t, λ(t)y + x(t))− Q̃b(t)(y)

is small in H1 and satisfies suitable orthogonality conditions (5.13), (5.14), (5.15)
and (5.16).The existence of such a decomposition is a consequence of the implicit
function Theorem. For δ > 0, let Vδ = {v ∈ H1(C); |v − Q|H1 ≤ δ}, and for
v ∈ H1(C), λ1 > 0, γ1 ∈ R, x1 ∈ RN , b ∈ R small, define

(5.17) ελ1,γ1,x1,b(y) = eiγ1λ
N
2
1 v(λ1y + x1)− Q̃b.

We claim that there exists δ > 0 and a unique C1 map : Vδ → (1 − λ, 1 + λ) ×
(−γ, γ)×B(0, x)× (−b, b) such that if v ∈ Vδ, there is a unique (λ1, γ1, x1, b) such
that ελ1,γ1,x1,b = (ελ1,γ1,x1,b)1 + i(ελ1,γ1,x1,b)2 defined as in (5.17) satisfies

ρ1(v) = ((ελ1,γ1,x1,b)1,ΛΣb) + ((ελ1,γ1,x1,b)2,ΛΘb) = 0,

ρ2(v) = ((ελ1,γ1,x1,b)1, yΣb) + ((ελ1,γ1,x1,b)2, yΘb) = 0,

ρ3(v) = −
(
(ελ1,γ1,x1,b)1,Λ

2Θb

)
+

(
(ελ1,γ1,x1,b)2,Λ

2Σb

)
= 0,

ρ4(v) = ((ελ1,γ1,x1,b)1,ΛΘb)− ((ελ1,γ1,x1,b)2,ΛΣb) = 0.

Moreover, there exists a constant C1 > 0 such that if v ∈ Vδ, then |ελ1,γ1,x1
|H1 +

|λ1−1|+ |γ1|+ |x1|+ |b| ≤ C1δ. Indeed, we view the above functionals ρ1, ρ2, ρ3, ρ4

as functions of (λ1, γ1, x1, b, v). We first compute at (λ1, γ1, x1, b, v) = (1, 0, 0, 0, v):
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∂ελ1,γ1,x1,b

∂x1
= ∇v,

∂ελ1,γ1,x1,b

∂λ1
=

N

2
v + x · ∇v,

∂ελ1,γ1,x1,b

∂γ1
= iv,

∂ελ1,γ1,x1,b

∂b
= −

(
∂Q̃b

∂b

)
|b=0

.

Now recall that (Q̃b)|b=0 = Q and
(

∂Q̃b

∂b

)
|b=0

= −i |y|
2

4 Q. Therefore, we obtain

at the point (λ1, γ1, x1, b, v) = (1, 0, 0, 0, Q),

∂ρ1

∂λ1
= |ΛQ|22,

∂ρ1

∂γ1
= 0,

∂ρ1

∂x1
= 0,

∂ρ1

∂b
= 0,

∂ρ2

∂λ1
= 0,

∂ρ2

∂γ1
= 0,

∂ρ2

∂x1
= −1

2
|Q|22,

∂ρ2

∂b
= 0,

∂ρ3

∂λ1
= 0,

∂ρ3

∂γ1
= −|ΛQ|22,

∂ρ3

∂x1
= 0,

∂ρ3

∂b
= 0,

∂ρ4

∂λ1
= 0,

∂ρ4

∂γ1
= 0,

∂ρ4

∂x1
= 0,

∂ρ4

∂b
=

1

4
|yQ|22.

The Jacobian of the above functional is non zero, thus the implicit function
Theorem applies and conclusion follows. �

Let us now write down the equation satisfied by ε in rescaled variables. To
simplify notations, we note

Q̃b = Σ+Θ

in terms of real and imaginary parts. We have: ∀s ∈ R+, ∀y ∈ R
N ,

bs
∂Σ

∂b
+ ∂sε1 −M−(ε) + bΛε1 =

(
λs

λ
+ b

)
ΛΣ + γ̃sΘ+

xs

λ
· ∇Σ(5.18)

+

(
λs

λ
+ b

)
Λε1 + γ̃sε2 +

xs

λ
· ∇ε1

+ Im(Ψ)−R2(ε)

bs
∂Θ

∂b
+ ∂sε2 +M+(ε) + bΛε2 =

(
λs

λ
+ b

)
ΛΛΘ− γ̃sΣ+

xs

λ
· ∇Θ(5.19)

+

(
λs

λ
+ b

)
Λε2 − γ̃sε1 +

xs

λ
· ∇ε2

− Re(Ψ) +R1(ε),

with γ̃(s) = −s− γ(s). The linear operator close to Q̃b is now a deformation of the
linear operator L close to Q and is M = (M+,M−) with

M+(ε) = −Δε1 + ε1 −
(

4Σ2

N |Q̃b|2
+ 1

)
|Q̃b|

4
N ε1 −

(
4ΣΘ

N |Q̃b|2
|Q̃b|

4
N

)
ε2,

M−(ε) = −Δε2 + ε2 −
(

4Θ2

N |Q̃b|2
+ 1

)
|Q̃b|

4
N ε2 −

(
4ΣΘ

N |Q̃b|2
|Q̃b|

4
N

)
ε1.

The formally quadratic in ε interaction terms are:

R1(ε) = (ε1+Σ)|ε+Q̃b|
4
N −Σ|Q̃b|

4
N −

(
4Σ2

N |Q̃b|2
+ 1

)
|Q̃b|

4
N ε1−

(
4ΣΘ

N |Q̃b|2
|Q̃b|

4
N

)
ε2,
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R2(ε) = (ε2+Θ)|ε+Q̃b|
4
N −Θ|Q̃b|

4
N −

(
4Θ2

N |Q̃b|2
+ 1

)
|Q̃b|

4
N ε2−

(
4ΣΘ

N |Q̃b|2
|Q̃b|

4
N

)
ε1.

Two natural estimates may now be performed:

• First, we may rewrite the conservation laws in the rescaled variables and
linearize the obtained identities close to Q. This will give crucial degen-
eracy estimates on some specific order one in ε scalar products.

• Next, we may inject the orthogonality conditions of Lemma 5.3 into the
equations (5.18), (5.19). This will compute the geometrical parameters in
their differential form λs

λ , γ̃s,
xs

λ , bs in terms of ε: these are the so called
modulation equations. This step requires estimating the non linear inter-
action terms. A crucial point here is to use the fact that the ground state
Q is exponentially decreasing in space.

The outcome is the following:

Lemma 5.4 (First estimates on the decomposition). We have for all s ≥ 0:
(i) Estimates induced by the conservation of the energy and the momentum:

(5.20) |(ε1, Q)| ≤ δ(α∗)

(∫
|∇ε|2 +

∫
|ε|2e−|y|

) 1
2

+ e−
C
|b| + Cλ2|E0|,

(5.21) |(ε2,∇Q)| � δ(α∗)

(∫
|∇ε|2 +

∫
|ε|2e−|y|

) 1
2

.

(ii) Estimate on the geometrical parameters in differential form:

(5.22)

∣∣∣∣λs

λ
+ b

∣∣∣∣+ |bs|+ |γ̃s| �
(∫

|∇ε|2 +
∫

|ε|2e−|y|
) 1

2

+ e−
C
|b| ,

(5.23)
∣∣∣xs

λ

∣∣∣ � δ(α∗)

(∫
|∇ε|2 +

∫
|ε|2e−|y|

) 1
2

+ e−
C
|b| ,

where δ(α∗) → 0 as α∗ → 0.

Remark 5.5. The exponentially small term in the degeneracy estimate ( 5.20)

is in fact related to the value of E(Q̃b), so we use here in a fundamental way the
non linear degeneracy estimate ( 5.11).

Comments on Lemma 5.4:

1. Ḣ1 norm: The norm which appears in the estimates of Lemma 5.4 is es-
sentially a local norm in space. The conservation of the energy indeed relates the∫
|∇ε|2 norm with the local norm. These two norms will turn out to play an equiv-

alent role in the analysis. A key is that no global L2 norm is needed so far.

2. Degeneracy of the translation shift: Comparing estimates (5.22) and (5.23),
we see that the term induced by translation invariance is smaller than the ones
induced by scaling and phase invariances. This non trivial fact is an outcome of
our use of the Galilean transform to ensure the zero momentum condition (5.3).
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5.4. The virial type dispersive estimate. We now turn to the proof of
the dispersive virial type inequality at the heart of the proof of the log-log upper
bound. This information will be obtained as a consequence of the virial structure
of (1.1) in Σ.

Let us first recall that the virial identity (2.1) corresponds to two identities:

(5.24)
d2

dt2

∫
|x|2|u|2 = 4

d

dt
Im(

∫
x · ∇uu) = 16E0.

We want to understand what information can be extracted from this dispersive
information in the variables of the geometrical decomposition.

To clarify the claim, let us consider an ε solution to the linear homogeneous
equation

(5.25) i∂sε+ Lε = 0

where L = (L+, L−) is the linearized operator close to Q. A dispersive information
on ε may be extracted using a similar virial law like (2.1):

(5.26)
1

2

d

ds
Im(

∫
y · ∇εε) = H(ε, ε),

where H(ε, ε) = (L1ε1, ε1)+ (L2ε2, ε2) is a Schrödinger type quadratic form decou-
pled in the real and imaginary parts with explicit Schrödinger operators:

L1 = −Δ+
2

N

(
4

N
+ 1

)
Q

4
N −1y · ∇Q , L2 = −Δ+

2

N
Q

4
N −1y · ∇Q.

Note that both these operators are of the form −Δ+V for some smooth well local-
ized time independent potential V (y), and thus from standard spectral theory, they
both have a finite number of negative eigenvalues, and then continuous spectrum
on [0,+∞). A simple outcome is then that given an ε ∈ H1 which is orthogonal to
all the bound states of L1,L2, then H(ε, ε) is coercive, that is

H(ε, ε) ≥ δ0

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
for some universal constant δ0 > 0. Now assume that for some reason -it will be in
our case a consequence of modulation theory and the conservation laws-, ε is indeed
for all times orthogonal to the bound states -and resonances...-, then injecting the
coercive control of H(ε, ε) into (5.26) yields:

(5.27)
1

2

d

ds
Im(

∫
y · ∇εε) ≥ δ0

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
.

Integrating this in time yields a standard dispersive information: a space time norm
is controlled by a norm in space.

We want to apply this strategy to the full ε equation. There are two main
obstructions.

First, it is not reasonable to assume that ε is orthogonal to the exact bound
states of H. In particular, due to the right hand side in the ε equation, other second
order terms will appear which will need be controlled. We thus have to exhibit a set
of orthogonality conditions which ensures both the coercivity of the quadratic form
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H and the control of these other second order interactions. Note that the number
of orthogonality conditions we can ensure on ε is the number of symmetries plus the
one from b. A first key is the following Spectral Property which has been proved
in dimension N = 1 in [71] using the explicit value of Q and checked numerically
for N = 2, 3, 4.

Proposition 5.6 (Spectral Property). Let N = 1, 2, 3, 4. There exists a uni-
versal constant δ0 > 0 such that ∀ε = ε1 + iε2 ∈ H1,

H(ε, ε) ≥ δ0

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
− 1

δ0

{
(ε1, Q)2 + (ε1,ΛQ)2 + (ε1, yQ)2

+ (ε2,ΛQ)2 + (ε2,Λ
2Q)2 + (ε2,∇Q)2

}
.(5.28)

To prove this property amounts first counting exactly the number of negative
eigenvalues of each Schrödinger operator, and then prove that the specific chosen
set of orthogonality conditions, which is not exactly the set of the bound states, is
enough to ensure the coercivity of the quadratic form. Both these issues appear to
be non trivial when Q is not explicit, but obvious to check numerically through the
drawing of a small number (less than 10) explicit curves.

Then, the second major obstruction is the fact that the right hand side Im(
∫
y ·

∇εε) in (5.27) is an unbounded function of ε in H1. This is a priori a major ob-
struction to the strategy, but an additional non linear algebra inherited from the
virial law ( 2.1) rules out this difficulty.

The formal computation is as follows. Given a function f ∈ Σ, we let Φ(f) =
Im(

∫
y · ∇ff). According to (5.26), we want to compute d

dsΦ(ε). Now from (5.24)
and the conservation of the energy:

∀t ∈ [0, T ), Φ(u(t)) = 4E0t+ c0

for some constant c0. The key observation is that the quantity Φ(u) is scaling,
phase and also translation invariant from zero momentum assumption (5.3). Using
(5.12), we get:

∀t ∈ [0, T ), Φ(ε+ Q̃b) = 4E0t+ c0.

We now expand this according to:

Φ(ε+ Q̃b) = Φ(Q̃b)− 2(ε2,ΛΣ) + 2(ε1,ΛΘ) + Φ(ε).

A simple algebra yields:

Φ(Q̃b) = − b

2
|yQ̃b|22 ∼ −Cb

for some universal constant C > 0. Next, from the choice of orthogonality condition
(5.16),

(ε2,ΛΣ)− (ε1,ΛΘ) = 0.

We thus get using dt
ds = λ2:

(Φ(ε))s ∼ 4λ2E0 + Cbs.

In other words, to compute the a priori unbounded quantity (Φ(ε))s for the full non
linear equation is from the virial law equivalent to computing the time derivative
of bs, what of course makes now perfectly sense in H1.
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The virial dispersive structure on u(t) in Σ thus induces a dispersive structure

in L2
loc ∩ Ḣ1 on ε(s) for the full non linear equation.

The key dispersive virial estimate is now the following.

Proposition 5.7 (Local viriel estimate in ε). There exist universal constants
δ0 > 0, C > 0 such that for all s ≥ 0, there holds:

(5.29) bs ≥ δ0

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
− λ2E0 − e−

C
|b| .

Proof of Proposition 5.7. Using the heuristics, we can compute in a suit-
able way bs using the orthogonality condition (5.16). The computation -see Lemma
5 in [72]- yields:

1

4
|yQ|22bs = H(ε, ε) + 2λ2|E0| −

xs

λ
· {(ε2,∇ΛΣ)− (ε1,∇ΛΘ)}(5.30)

−
(
λs

λ
+ b

){
(ε2,Λ

2Σ)− (ε1,Λ
2Θ)

}
− γ̃s {(ε1,ΛΣ) + (ε2,ΛΘ)}

− (ε1, ReΛΨ))− (ε2, Im(ΛΨ)) + (l.o.t),

where the lower order terms may be estimated from the smallness of ε in H1:

|l.o.t| ≤ δ(α∗)

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
.

We now explain how the choice of orthogonality conditions and the conservation
laws allow us to deduce (5.29).

step 1 Modulation theory for phase and scaling. The choice of orthogonality
conditions (5.15), (5.13) has been made to cancel the two second order in ε scalar
products in (5.30):(

λs

λ
+ b

){
(ε2,Λ

2Σ)− (ε1,Λ
2Θ)

}
+ γ̃s {(ε1,ΛΣ) + (ε2,ΛΘ)} = 0.

step 2 Elliptic estimate on the quadratic form H. We now need to control
the negative directions in the quadratic form as given by Proposition 5.6. The
directions (ε1,ΛQ), (ε1, yQ), (ε2,Λ

2Q) and (ε2,ΛQ) are treated thanks to the choice

of orthogonality conditions and the closeness of Q̃b to Q for |b| small. For example,

(ε2,ΛQ)2 = | {(ε2,ΛQ− ΛΣ) + (ε1,ΛΘ)}+ (ε2,ΛΣ)− (ε1,ΛΘ)|2

= |(ε2,ΛQ− ΛΣ) + (ε1,ΛΘ)|2

so that

(ε2,ΛQ)2 ≤ δ(α∗)(

∫
|∇ε|2 +

∫
|ε|2e−|y|).

Similarly, we have:

(5.31) (ε1, yQ)2 + (ε2,Λ
2Q)2 + (ε1,ΛQ)2 ≤ δ(α∗)(

∫
|∇ε|2 +

∫
|ε|2e−|y|).

The negative direction (ε1, Q)2 is treated from the conservation of the energy which
implied (5.20). The direction (ε2,∇Q) is treated from the zero momentum condition



SINGULARITY FORMATION FOR THE NONLINEAR SCHRÖDINGER EQUATION 311

which ensured (5.21). Putting this together yields:

(ε1, Q)2 + (ε2,∇Q)2 ≤ δ(α∗)

(∫
|∇ε|2 +

∫
|ε|2e−|y| + λ2|E0|

)
+ e−

C
|b| .

step 3 Modulation theory for translation and use of Galilean invariance. The
Galilean invariance has been used to ensure the zero momentum condition (5.3)
which in turn led together with the choice of orthogonality condition (5.14) to the
degeneracy estimate (5.23):

|xs

λ
| � δ(α∗)(

∫
|∇ε|2 +

∫
|ε|2e−|y|)

1
2 + e−

C
|b| .

Therefore, we estimate the term induced by translation invariance in (5.30) as

∣∣∣xs

λ
· {(ε2,∇ΛΣ)− (ε1,∇ΛΘ)}

∣∣∣ � δ(α∗)

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
+ e−

C
|b| .

step 4 Conclusion. Injecting these estimates into the elliptic estimate (5.28)
yields so far:

bs ≥ δ0

(∫
|∇ε|2 +

∫
|ε|2e−|y|

)
− 2λ2E0 − e−

C
|b| − 1

δ0
(λ2E0)

2.

We now use in a crucial way the sign of the energy E0 < 0 and the smallness
λ2|E0| ≤ δ(α∗) which is a consequence of the conservation of the energy to conclude.

�

5.5. Monotonicity and control of the blow up speed. The virial disper-
sive estimate (5.29) means a control of the excess of mass ε by an exponentially
small correction in b in time averaging sense. More specifically, this means that
in rescaled variables, the solution writes Q̃b + ε where Q̃b is the regular deforma-
tion of Q and the rest is in a suitable norm exponentially small in b. This is thus
an expansion of the solution with respect to an internal parameter in the problem: b.

This virial control is the first dispersive estimate for the infinite dimensional
dynamic driving ε. Observe that it means little by itself if nothing is known about
b(t). We shall now inject this information into the finite dimensional dynamic driv-
ing the geometrical parameters. The outcome will be a rigidity property for the
parameter b(t) which will in turn imply the existence of a Lyapounov functional in
the problem. This step will again heavily rely on the conservation of the energy.

We start with exhibiting the rigidity property which proof is a maximum prin-
ciple type of argument.

Proposition 5.8 (Rigidity property for b). b(s) vanishes at most once on R+.

Note that the existence of a quantity with prescribed sign in the description
of the dynamic is unexpected. Indeed, b is no more then the projection of some a
priori highly oscillatory function onto a prescribed direction. It is a very specific
feature of the blow up dynamic that this projection has a fixed sign.
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Proof of Proposition 5.8. Assume that there exists some time s1 ≥ 0 such
that b(s1) = 0 and bs(s1) ≤ 0, then from (5.29), ε(s1) = 0. Thus from the conserva-

tion of the L2 norm and Q̃b(s1) = Q, we conclude
∫
|u0|2 =

∫
Q2 what contradicts

the strictly negative energy assumption. �

The next step is to get the exact sign of b. This is done by injecting the
virial dispersive information (5.29) into the modulation equation for the scaling
parameter what will yield

(5.32) −λs

λ
∼ b.

The key rigidity property is the following:

Proposition 5.9 (Rigidity of the flow). There exists a time s0 ≥ 0 such that

∀s > s0, b(s) > 0.

Moreover, the size of the solution is in this regime an almost Lyapounov functional
in the sense that:

(5.33) ∀s2 ≥ s1 ≥ s0, λ(s2) ≤ 2λ(s1).

Proof of Proposition 5.9. step 1 Equation for the scaling parameter. The
modulation equation for the scaling parameter λ inherited from choice of orthogo-
nality condition (5.13) implied control (5.22):∣∣∣∣λs

λ
+ b

∣∣∣∣ �
(∫

|∇ε|2 +
∫

|ε|2e−|y|
) 1

2

+ e−
C
|b| ,

which implies (5.32) in a weak sense. Nevertheless, this estimate is not good enough
to possibly use the virial estimate (5.29). We claim using extra degeneracies of the
equation that (5.22) can be improved for:

(5.34)

∣∣∣∣λs

λ
+ b

∣∣∣∣ �
(∫

|∇ε|2 +
∫

|ε|2e−|y|
)
+ e−

C
|b|

step 2 Use of the virial dispersive relation and the rigidity property. We now
inject the virial dispersive relation (5.29) into (5.34) to get:∣∣∣∣λs

λ
+ b

∣∣∣∣ � bs + e−
C
|b| .

We integrate this inequality in time to get: ∀0 ≤ s1 ≤ s2,

(5.35)

∣∣∣∣log
(
λ(s2)

λ(s1)

)
+

∫ s2

s1

b(s)ds

∣∣∣∣ ≤ 1

4
+

∫ s2

s1

e−
C

|b(s)| ds.

The key is now to use the rigidity property of Proposition 5.8 to ensure that b(s)
has a fixed sign for s ≥ s̃0, and thus: ∀s ≥ s̃0,

(5.36)

∣∣∣∣
∫ s2

s1

e−
C

|b(s)| ds

∣∣∣∣ ≤ 1

2

∣∣∣∣
∫ s2

s1

b(s)ds

∣∣∣∣ .
step 3 b is positive for s large enough. Assume that

∣∣∣∫ +∞
0

b(s)ds
∣∣∣ < +∞,

then b has a fixed sign for s ≥ s̃0 and |bs| ≤ C, and thus: b(s) → 0 as s → +∞.
Now from (5.35) and (5.36), this implies that | log(λ(s))| ≤ C as s → +∞, and in
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particular λ(s) ≥ λ0 > 0 for s large enough. Injecting this into virial control (5.29)
for s large enough yields:

bs ≥
1

2
|E0|λ2

0.

Integrating this on large time intervals contradicts the uniform boundedness of
b. Here we have used again the assumption E0 < 0. We thus have proved:∣∣∣∫ +∞

0
b(s)ds

∣∣∣ = +∞.

Now assume that b(s) < 0 for all s ≥ s̃1, then from (5.35) and (5.36) again, we
conclude that log(λ(s)) → +∞ as s → +∞. Now from λ(t) ∼ 1

‖∇u(t)‖L2
, this yields

‖∇u(t)‖L2 → 0 as t → T . But from Gagliardo-Nirenberg inequality and the con-
servation of the energy and the L2 mass, this implies E0 = 0, contradicting again
the assumption E0 < 0.

step 4 Almost monotonicity of the norm. We now are in position to prove
(5.33). Indeed, injecting the sign of b into (5.35) and (5.36) yields in particular:
∀s0 ≤ s1 ≤ s2,

(5.37)
1

4
+

1

2

∫ s2

s1

b(s)ds ≤ − log

(
λ(s2)

λ(s1)

)
≤ 1

4
+ 2

∫ s2

s1

b(s)ds,

and thus:

∀s0 ≤ s1 ≤ s2, − log

(
λ(s2)

λ(s1)

)
≥ 1

4
,

what yields (5.33). This concludes the proof of Proposition 5.9.

Note that from the above proof, we have obtained
∫ +∞
0

b(s)ds = +∞, and thus
from (5.37):

(5.38) λ(s) → 0 as s → ∞,

that is finite or infinite time blow up. On the contrary to the virial argument, the
blow up proof is no longer obstructive but completely dynamical, and relies mostly
on the rigidity property of Proposition 5.8. �

Let us now conclude the proof of Theorem 5.1. We need to prove finite time
blow up together with the log-log upper bound (5.2) on blow up rate.

Proof of Theorem 5.1. step 1 Lower bound on b(s). We claim: there exist
some universal constant C > 0 and some time s1 > 0 such that ∀s ≥ s1,

(5.39) Cb(s) ≥ 1

log | log(λ(s))| .

Indeed, first recall (5.29). Now that we know the sign of b(s) for s ≥ s0 from
Proposition 5.9, and we may thus view (5.29) as a differential inequality for b for
s > s0:

bs ≥ −e−
C
b ≥ −b2e−

C
2b ie − bs

b2
e

C
2b ≤ 1.

We integrate this inequality from the non vanishing property of b and get for s ≥ s̃1
large enough:

(5.40) e
C

b(s) ≤ s+ e
C

b(1) � s ie b(s) � 1

log(s)
.
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We now recall (5.37) on the time interval [s̃1, s]:

1

2

∫ s

s̃1

b ≤ − log(
λ(s)

λ(s̃1)
) +

1

4
≤ −2 log(λ(s))

for s ≥ s̃2 large enough from λ(s) → 0 as s → +∞. Inject (5.40) into the above
inequality, we get for s ≥ s̃3

s

log(s)
�

∫ s

s̃2

dτ

log(τ )
≤ 1

4

∫ s

s̃2

b ≤ − log(λ(s)) ie | log(λ(s))| � s

log(s)

and thus for s large

log | log(λ(s))| ≥ log(s)− log(log(s)) ≥ 1

2
log(s)

and conclusion follows from (5.40). This concludes the proof of (5.39).

step 2 Finite time blow up and control of the blow up speed. We first use
the finite or infinite time blow up result (5.38) to consider a sequence of times
tn → T ∈ [0,+∞] defined for n large such that

λ(tn) = 2−n.

Let sn = s(tn) the corresponding sequence and t such that s(t) = s0 given by
Proposition 5.9. Note that we may assume n ≥ n such that tn ≥ t. Remark that
0 < tn < tn+1 from (5.33), and so 0 < sn < sn+1. Moreover, there holds from
(5.33)

(5.41) ∀s ∈ [sn, sn+1], 2−n−1 ≤ λ(s) ≤ 2−(n−1).

We now claim that (5.2) follows from a control from above of the size of the intervals
[tn, tn+1] for n ≥ n.
Let n ≥ n. (5.39) implies∫ sn+1

sn

ds

log | log(λ(s))| �
∫ sn+1

sn

b(s)ds.

(5.37) with s1 = sn and s2 = sn+1 yields:

1

2

∫ sn+1

sn

b(s) ≤ 1

4
− |yQ|2L2 log(

λ(sn+1)

λ(sn)
) � 1.

Therefore,

∀n ≥ n,

∫ sn+1

sn

ds

log | log(λ(s))| � 1.

Now we change variables in the integral at the left of the above inequality according
to ds

dt = 1
λ2(s) and estimate with (5.41):

1 �
∫ sn+1

sn

ds

log | log(λ(s))| =
∫ tn+1

tn

dt

λ2(t) log | log(λ(t))|

≥ 1

10λ2(tn) log | log(λ(tn))|

∫ tn+1

tn

dt

so that

tn+1 − tn � λ2(tn) log | log(λ(tn))|.
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From λ(tn) = 2−n and summing the above inequality in n, we first get

T < +∞
and

T − tn �
∑
k≥n

2−2k log(k) =
∑

n≤k≤2n

2−2k log(k) +
∑
k≥2n

2−2k log(k)

� 2−2n log(n) + 2−4n log(2n)
∑
k≥0

2−2k log(2n+ k)

log(2n)

� 2−2n log(n) + 2−4n log(n) � 2−2n log(n) � λ2(tn) log | log(λ(tn))|.
From the monotonicity of λ (5.33), we extend the above control to the whole se-
quence t ≥ t. Let t ≥ t, then t ∈ [tn, tn+1] for some n ≥ n, and from 1

2λ(tn) ≤
λ(t) ≤ 2λ(tn), we conclude

λ2(t) log | log(λ(t))| � λ2(tn) log | log(λ(tn))| � T − tn � T − t.

Now remark that the function f(x) = x2 log | log(x)| is non decreasing in a neigh-
borhood at the right of x = 0, and moreover

f

(
C

2

√
T − t

log | log(T − t)|

)

=
C2

4

(T − t)

log | log(T − t)| log
∣∣∣∣∣log

(
C

√
T − t

log | log(T − t)|

)∣∣∣∣∣ ≤ C(T − t)

for t close enough to T , so that we get for some universal constant C∗:

f(λ(t)) ≥ f

(
C∗

√
T − t

log | log(T − t)|

)
ie λ(t) ≥ C∗

√
T − t

log | log(T − t)|

and (5.2) is proved.
�

Appendix

This Appendix is devoted to the proof of the concentration compactness Lemma,
i.e. Proposition 1.6. We follow Cazenave [11].

Proof of Proposition 1.6. . Let un ∈ H1 be as in the hypothesis of Propo-
sition 1.6.

step 1 Concentration function. Let the sequence of concentration functions:

ρn(R) = sup
y∈RN

∫
B(y,R)

|un(x)|2dx.

The following facts are elementary and left to the reader:

• Monotonicity: ∀n ≥ 0, ρn(R) is a nondecreasing function of R.
• The concentration point is attained:

∀R > 0, ∀n ≥ 0, ∃yn(R) ∈ R
N such that ρn(R) =

∫
B(yn(R),R)

|un(x)|2dx.



316 P. RAPHAËL

• Uniform Hölder continuity: ∃C,α > 0 independent of n such that

(5.42) ∀R1, R2 > 0, ∀n ≥ 0, |ρn(R1)− ρn(R2)| ≤ C|RN
1 −RN

2 |α.
This last fact is a simple consequence of the H1 bound (1.13).

step 2 Limit of concentration functions. From (5.42) and Ascoli’s theorem,
there exists a subsequence nk → +∞ and a nondecreasing limit ρ such that

(5.43) ∀R > 0, lim
k→+∞

ρnk
(R) = ρ(R).

Let now

μ = lim
R→+∞

lim inf
n→+∞

ρn(R).

By definition, there exists Rk → +∞ such that

lim
k→+∞

ρnk
(Rk) = μ.

We now claim some stability of the sequence Rk which is a very general and simple
fact but crucial for the rest of the argument:

(5.44) μ = lim
k→+∞

ρnk
(Rk) = lim

k→+∞
ρnk

(
Rk

2
) = lim

R→+∞
ρ(R).

Proof of (5.44): First oberve from the monotonicity of ρnk
that

(5.45) lim sup
k→+∞

ρnk
(
Rk

2
) ≤ lim sup

k→+∞
ρnk

(Rk) = μ.

For the other sense, we argue as follows. For every R > 0, there holds:

ρ(R) = lim inf
k→+∞

ρnk
(R) ≥ lim inf

n→+∞
ρn(R)

and thus:

(5.46) lim
R→+∞

ρ(R) ≥ μ.

Eventually, for any R > 0, we have Rk

2 ≥ R for k large enough and thus:

ρnk
(
Rk

2
) ≥ ρnk

(R).

Letting k → +∞ implies:

∀R > 0, lim
k→+∞

ρnk
(
Rk

2
) ≥ ρ(R).

Letting now R > 0 yields:

lim
k→+∞

ρnk
(
Rk

2
) ≥ lim

R→+∞
ρ(R) ≥ μ

where we used (5.46) in the last step. This together with (5.45) concludes the proof
of (5.44).
The proof now proceed by making an hypothesis on μ.

Step 3: μ = 0 is vanishing. Assume μ = 0. Then from (5.44), limR→+∞ ρ(R) =
0. But ρ is nondecreasing positive so: ∀R > 0, ρ(R) = 0. In particular, ρ(1) = 0
and thus

(5.47) lim
k→+∞

ρnk
(1) = lim

k→+∞
sup
y∈RN

∫
B(y,1)

|unk
|2 = 0.
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We claim that this together with the H1 bound on unk
implies (1.15). There is

a slight difficulty here which is that we need to pass from a local information -
vanishing on every ball- to a global information -vanishing of the global Lq norm-.
This relies on a refinement of the Gagliardo Nirenberg interpolation inequality.
Indeed, we claim that

(5.48) ∀u ∈ H1,

∫
|u|2+ 4

N � ‖u‖2H1‖u‖
4
N

L2

can be refined for:

(5.49) ∀u ∈ H1,

∫
|u|2+ 4

N � ‖u‖2H1

[
sup
y∈RN

∫
B(y,1)

|u|2
] 2

N

.

This together with (5.47) implies

unk
→ 0 in L2+ 4

N as k → +∞
and (1.15) follows by interpolation using the global H1 bound.
Proof of (5.49): Let a partition of Rd with disjoint rectangles Qj of side 1

2 . Assume
N ≥ 3 and write Hölder noticing:

1

2 + 4
N

=
α

2
+

1− α
2N
N−2

with α =
2

N + 2

so that

‖u‖
L2+ 4

N (Qi)
� ‖u‖αL2(Qj)

‖u‖1−α
L2∗ (Qj)

and hence using Sobolev in Qj :

‖u‖2+
4
d

L2+ 4
d

� ‖u‖
4
d

L2(Qj)
‖u‖2H1(Qj)

where the Sobolev constant does not depend on j thanks to the translation invari-
ance of Lebesgue’s mesure. We may now sum on the disjoint cubes:∫

|u|2+ 4
N dx = Σj≥1

∫
Qj

|u|2+ 4
N dx �

[
sup
j≥1

‖u‖2L2(Qj)

] 2
d

Σj≥1‖u‖2H1(Qj)

=

[
sup
j≥1

‖u‖2L2(Qj)

] 2
N

‖u‖2H1

and (5.49) is proved. The cases N = 1, 2 is similar and left to the reader.

Step 4: μ = M is compactness. Let nk be the sequence satisfying (5.43). For
R > 0, let yk(R) such that

(5.50) ρnk
(R) =

∫
B(yk(R),R)

|unk
(x)|2dx.

Pick ε > 0. Then from (5.44), there exist R0, R(ε) such that

ρ(R0) >
M

2
, ρ(R(ε)) > M − ε.

Hence there exists k0(ε) such that ∀k ≥ k0(ε),

ρnk
(R0) =

∫
B(yk(R0),R0)

|unk
|2 >

M

2
, ρnk

(R(ε)) =

∫
B(yk(R(ε)),R(ε))

|unk
|2 > M−ε.
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But the total L2 mass being M , this implies that the balls B(yk(R0), R0) and
B(yk(R(ε)), R(ε)) cannot be disjoint. Hence -draw a picture- we can find R1(ε)
such that:

∀ε > 0, ∀k ≥ k0(ε),

∫
B(yk(R0),R1(ε))

|unk
|2 ≥ M − ε.

By possibly raising the value of R1(ε) for the values k ∈ [1, k0(ε)], this implies that
the sequence vk = unk

(·+ yk(R0)) is L
2 compact:

∀ε > 0, ∃R2(ε) > 0 such that ∀k ≥ 1,

∫
|y|≥R2(ε)

|vk(y)|2dy < ε.

The compactness of the embedding H1 ↪→ L2(B(0, R(ε))) then implies that vk a
Cauchy sequence in L2, and the H1 boundedness now implies (1.14) by interpola-
tion.

Step 5: 0 < μ < M is dichotomy. Let again (nk, Rk) satisfying (5.43), (5.44).
Then we can write:

unk
= vk + wk + zk

with

vk = unk
1|y−yk(

Rk
2 )|≤Rk

2

, wk = unk
1|y−yk(

Rk
2 )|≥Rk

, zk = unk
1Rk

2 <|y−yk(
Rk
2 )|<Rk

.

The key is to observe from (5.50) and (5.44) that:∫
|zk|2 =

∫
B(yk(

Rk
2 ),Rk)

|unk
|2 −

∫
B(yk(

Rk
2 ),

Rk
2 )

|unk
|2

≤ ρnk
(Rk)−

∫
B(yk(

Rk
2 ),

Rk
2 )

|unk
|2 = ρnk

(Rk)− ρnk
(
Rk

2
)

→ 0 as k → +∞.

The claim dichotomy now follows by taking smooth cut off in the localization. The
Lp norm of zk will go to zero using the vanishing of the L2 norm and the global H1

bound, and the error introduced by localization will be treated using Rk → +∞.
This is left to the reader.
This concludes the proof of Proposition 1.6. �
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[60] Martel, Y.; Merle, F.; Raphaël, P.; Blow up for the critical gKdV equation III: exotic regimes,
submitted.
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[76] Merle, F.; Raphaël, P., Blow up of the critical norm for some radial L2 super critical nonlinear
Schrödinger equations, Amer. J. Math. 130 (2008), no. 4, 945–978.
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1. Introduction

We will be discussing the Cauchy problem for the nonlinear Schrödinger equa-
tion:

(1.1)

{
iut = −Δu+ μ|u|pu
u(t = 0, x) = u0(x).

Here u : R×Rd → C is a complex-valued function of time and space, the Laplacian
is in the space variables only, μ ∈ R \ {0}, and p ≥ 0. By rescaling the values of u,
it is possible to restrict attention to the cases μ = −1 or μ = +1; these are known
as the focusing and defocusing equations, respectively.

The class of solutions to (1.1) is left invariant by the scaling

(1.2) u(t, x) �→ λ
2
p u(λ2t, λx).

This scaling defines a notion of criticality, specifically, for a given Banach space of
initial data u0, the problem is called critical if the norm is invariant under (1.2).
The problem is called subcritical if the norm of the rescaled solution diverges as
λ → ∞; if the norm shrinks to zero, then the problem is supercritical. Notice that
sub-/super-criticality is determined by the response of the norm to the behaviour of
u0 at small length scales, or equivalently, at high-frequencies. This is natural as the
low frequencies are comparatively harmless; they are both smooth and slow-moving.

To date, most authors have focused on initial data belonging to L2
x-based

Sobolev spaces

(1.3) ‖u0‖2Hs
x
:=

∫
Rd

|û0(ξ)|2 (1 + |ξ|2)s dξ or ‖u0‖2Ḣs
x
:=

∫
Rd

|û0(ξ)|2 |ξ|2s dξ.

These are known as the inhomogeneous and homogeneous Sobolev spaces, respec-
tively. The latter is better behaved under scaling, which makes it the more natural
choice for studying critical problems. Let us pause to reiterate criticality in these
terms.

Definition 1.1. Consider the initial value problem (1.1) for u0 ∈ Ḣs
x(R

d).
This problem is critical when s = sc := d

2 − 2
p , subcritical when s > sc, and

supercritical when s < sc.
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In these notes, we will be focusing on two specific critical problems, which
are singled out by the fact that the critical regularity coincides with a conserved
quantity. These are the mass-critical equation,

(1.4) iut = −Δu+ μ|u| 4d u,
which is associated with the conservation of mass,

(1.5) M(u(t)) :=

∫
Rd

|u(t, x)|2 dx,

and the energy-critical equation (in dimensions d ≥ 3),

(1.6) iut = −Δu+ μ|u| 4
d−2 u,

which is associated with the conservation of energy,

(1.7) E(u(t)) :=

∫
Rd

1
2 |∇u(t, x)|2 + μd−2

2d |u(t, x)| 2d
d−2 dx.

For subcritical equations, the local problem is well understood, because it is
amenable to treatment as a perturbation of the linear equation. This has lead
to a satisfactory global theory at conserved regularity. A major theme of cur-
rent research is to understand the global behaviour of subcritical solutions at non-
conserved regularity. By comparison, supercritical equations, even at conserved
regularity, are terra incognita at present.

To describe the current state of affairs regarding the mass- and energy-critical
nonlinear Schrödinger equations we need to introduce a certain amount of vocabu-
lary. We begin with what it means to be a solution of (1.4) or (1.6).

Definition 1.2 (Solution). Let I be an interval containing the origin. A

function u : I × Rd → C is a (strong) solution to (1.6) if it lies in the class C0
t Ḣ

1
x

and obeys the Duhamel formula

u(t) = eitΔu0 − iμ

∫ t

0

ei(t−s)Δ|u(s)| 4
d−2 u(s) ds.(1.8)

for all t ∈ I. We say that u is a solution to (1.4) if it belongs to both C0
t L

2
x and

L
2(d+2)/d
t,loc L

2(d+2)/d
x and also obeys

u(t) = eitΔu0 − iμ

∫ t

0

ei(t−s)Δ|u(s)| 4d u(s) ds.(1.9)

For the definition of Lq
tL

r
x see (1.10).

When we say that (1.8) or (1.9) are obeyed, we mean as a weak integral of

distributions. Note that in the mass-critical case, the nonlinearity |u| 4du is not even
a distribution for arbitrary u ∈ C0

t L
2
x and d ≤ 3. This is one reason we require

u to have some additional spacetime integrability. A second reason (the primary
one for d ≥ 4) is that uniqueness of solutions is not currently known without this
hypothesis. The particular spacetime integrability we require holds for solutions
of the linear equation (this is Strichartz inequality, Theorem 3.2); moreover, in
Section 3 we will show that (1.4) does admit local solutions in this space.

The existence of local solutions, that is, solutions on some small neighbourhood
of t = 0, was proved by Cazenave and Weissler, [13, 14]. Note that in this result,
the time of existence depends on the profile of u0 rather than simply its norm.
Indeed, the latter would be inconsistent with scaling invariance.
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Primarily, these notes are devoted to global questions, specifically, whether the
solution exists forever (I = R) and if it does, what is its asymptotic behaviour as
t → ±∞. Here are the main notions:

Definition 1.3. A Cauchy problem is called globally wellposed if solutions exist
for all time, are unique, and depend continuously on the initial data. A stronger
notion is that the problem admits global spacetime bounds. In the mass-critical
case, (1.4), this means that the solution u also obeys∫

R

∫
Rd

|u(t, x)|
2(d+2)

d dx dt ≤ C(M(u0))

for some function C. For the analogous notion in the energy-critical case, (1.6),
replace u by ∇u and u0 by ∇u0. We say that asymptotic completeness holds if for
each (global) solution u there exist u+ and u− so that

u(t)− eitΔu+ → 0 as t → ∞ and u(t)− eitΔu− → 0 as t → −∞.

Note that u+ and u− are supposed to lie in the same space as the initial data;
convergence is with respect to its norm. A converse notion is the existence of wave
operators. This means that for each u+ there is a global solution u of the nonlinear
problem so that u(t) − eitΔu+ → 0 and similarly for each u−. We say scattering
holds if wave operators exist and are asymptotically complete.

Simple arguments show that scattering follows from global spacetime bounds.
In the defocusing case (μ = +1), we believe that critical equations admit global
spacetime bounds even when the critical Sobolev norm does not correspond to a
conserved quantity. No such bold claim can hold in the focusing case; indeed, there
are explicit counterexamples.

As we will discuss in Subsection 4.1, the elliptic problem

−Δf − |f | 4d f = −f

on Rd admits Schwartz-space solutions. Indeed, there is a unique non-negative
spherically symmetric Schwartz solution, which we denote by Q; see [49, 105].
This function is known as the ground state; it is, at least, the lowest eigenstate of
the operator f �→ −Δf −Q4/df .

Now, u(t, x) = eitQ(x) is a global solution to the mass-critical focusing NLS
that manifestly does not obey spacetime bounds, nor does it scatter (cf. (4.28)).
Furthermore, by applying the pseudo-conformal identity, (2.12), we may transform
this to a solution that blows up in finite time:

u(t, x) = (1− t)−
d
2 e−i |x|2

4(1−t)
+i t

1−t Q
(

x
1−t

)
.

By comparison, the work of Cazenave and Weissler mentioned before shows
that initial data of sufficiently small mass (that is, L2

x norm) does lead to global
solutions obeying spacetime bounds. Thus one may hope to identify the minimal
mass at which such good behaviour first fails; M(Q) is one candidate. Indeed, it is
widely believed to be the correct answer:

Conjecture 1.4. For arbitrary initial data u0 ∈ L2
x(R

d), the defocusing mass-
critical nonlinear Schrödinger equation is globally wellposed and solutions obey
global spacetime bounds; in particular, scattering holds.

For the focusing equation, the same conclusions hold for initial data obeying
M(u0) < M(Q).
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Perhaps the earliest (and one of the strongest) indications that M(Q) is the
correct bound in the focusing case comes from work of Weinstein, [105], which
proves global well-posedness for H1

x initial data obeying M(u0) < M(Q). Recent
progress toward settling the conjecture (at critical regularity) is discussed in the
next subsection.

Before formulating the analogous conjecture for the energy-critical problem, let
us discuss the natural candidate for the role of Q. By a result of Pohožaev, [68],

the equation −Δf − |f | 4
d−2 f = −βf does not have Ḣ1

x(R
d) solutions for β 
= 0.

When β = 0, this equation has a very explicit solution, namely,

W (x) :=
(
1 + 1

d(d−2) |x|
2
)− d−2

2 .

From the elliptic equation, we see that u(t, x) = W (x) is a stationary solution
of (1.6). The general belief is that W is the minimal counterexample to global
spacetime bounds in the energy-critical setting; however, the way in which it is
minimal is more subtle than in the mass-critical setting. Firstly, we should not
measure minimality in terms of the energy, (1.7), since the energy can be made
arbitrarily negative. An alternative is to consider the kinetic energy,

E0(u(t)) :=

∫
Rd

1
2 |∇u(t, x)|2 dx.

However, this creates problems of its own since it is not a conserved quantity. The
solution we choose (cf. [38, 44]) is to assert that the only way a solution can fail to
be global and obey spacetime bounds is if its kinetic energy matches (or exceeds)
that of W , at least asymptotically:

Conjecture 1.5. For arbitrary initial data u0 ∈ Ḣ1
x(R

d), the defocusing
energy-critical nonlinear Schrödinger equation is globally wellposed and solutions
obey global spacetime bounds; in particular, scattering holds.

For the focusing equation, we have the following statement: Let u : I×Rd → C

be a solution to (1.6) such that

E∗ := sup
t∈I

E0(u(t)) < E0(W ).

Then ∫
I

∫
Rd

|u(t, x)|
2(d+2)
d−2 dx dt ≤ C(E∗) < ∞.

The defocusing case of this conjecture has been completely resolved, while
for the focusing equation only the three- and four-dimensional cases remain open.
These results, as well as some of their precursors, are the topic of the next subsec-
tion.

1.1. Where are we? And how did we get there? We will not discuss
the nonlinear wave equation in these notes; however, it seems appropriate to point
out that global well-posedness for the defocusing energy-critical wave equation was
proved (after considerable effort) some years before the analogous result for the
nonlinear Schrödinger equation; see [78] where references to the original papers
may be found. Treatment of the focusing energy-critical wave equation is much
more recent, [39]. There is no analogue of mass conservation for NLW and hence
no true analogue of the mass-critical NLS.
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Turning now to NLS, we would like to point out two important differences
between it and NLW. First, it does not enjoy finite speed of propagation. Second,
in the wave case, the natural monotonicity formula (i.e., the Morawetz identity) has
critical scaling; this is not the case for NLS. Both differences have had an important
effect on how the theory has developed.

In [6], Bourgain considers the two-dimensional mass-critical NLS for inital data
in L2

x. It is shown that in order for a solution to blow up, it must concentrate some
finite amount of mass in ever smaller sets (as one approaches the blowup time).
Perhaps more important than the result itself were two aspects of the proof: the
use of recent progress toward the restriction conjecture (see Conjecture 4.17) and
a rather precise form of inverse Strichartz inequality.

Using these ingredients, Merle and Vega [58] obtained a concentration com-
pactness principle for the mass-critical NLS in two dimensions. (For the analogous
result in other dimensions, see [4, 12].) The formulation mimics results for the
wave equation [3], although the proof is very different. The techniques used for
the wave equation are better suited to the energy-critical NLS and were used by
Keraani [41] to obtain a concentration compactness principle for this equation.
These concentration compactness principles are discussed in Section 4 and play an
important role in the arguments presented in these notes. History, however, took a
slightly different route.

The first major step toward verifying either conjecture was Bourgain’s proof,
[7], of global spacetime bounds for the defocusing energy-critical NLS in three and
four dimensions with spherically symmetric data. A major new tool introduced
therein was ‘induction on energy’. We will now try to convey the outline. The
role of the base step is played by the fact that global spacetime bounds are known
for small data, say for data with energy less than e0. Next we choose a small η
depending on e0. If all solutions with energy less than e1 := e0+η obey satisfactory
spacetime bounds then we are ready to move to the next step. Suppose not, that
is, suppose that there is a (local) solution u with enormous spacetime norm, but
energy less than e1. Then, using Morawetz and inverse Strichartz-type inequalities,
one may show that the there is a bubble of concentration carrying energy � η that
is protected by a comparatively long time interval over which u has little spacetime
norm. If we remove the bubble, we obtain initial data with energy less than e0
which then leads to a global solution with good bounds (thanks to the inductive
hypothesis). Taking advantage of the buffer zone, it is possible to glue the bubble
back in without completely destroying this bound. By defining what was meant
earlier by ‘satisfactory spacetime bound’ in an appropriate manner, we reach a
contradiction. This proves the result for solutions with energy less than e1. Next,
we turn our attention to solutions with energy less that e2 := e1 + η(e1), and so
on, and so on.

Concentration results such as those mentioned in the previous paragraph pro-
vide important leverage in critical problems; the size of the bubbles they exhibit
provide a characteristic length scale. The fact that we are dealing with scale-
invariant problems means that any length scale must be dictated by the solution; it
cannot be imposed from without. It is only through breaking the scaling symmetry,
in a manner such as this, that non-critical tools such as the Morawetz identity can
be properly brought to bear.
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In [32], Grillakis showed global regularity for the three-dimensional energy-
critical defocusing NLS with spherically symmetric initial data, that is, he proved
that smooth spherically symmetric initial data leads to a global smooth solution.
This can be deduced a posteriori from [7]; however, the argument in [32] is rather
different. Subsequent progress in the spherically symmetric case, including the
treatment of higher dimensions, can be found in [89].

The big breakthrough for non-spherically symmetric initial data was made in
[20]. This paper brought a wealth of new ideas and tools to the problem, of which we
will describe just a few. First, the authors use an interaction Morawetz inequality
(introduced in [19]), which is much better suited to the non-symmetric case than
the (Lin–Strauss) Morawetz used in previous works. See Section 7 for a discussion
of both.

Unfortunately, the interaction Morawetz identity is further from critical scal-
ing than its predecessor, which necessitates a much stronger form of concentration
result. By reaping the ultimate potential of the induction on energy technique, the
authors of [20] showed that it suffices to consider solutions that are well localized
in both space and frequency. Indeed, modulo the action of scaling and space trans-
lations, these solutions remain in a very small neighbourhood of a compact set in
Ḣ1

x(R
3).

The argument from [20] was generalized to four space dimensions in [75] and
then to dimensions five and higher in [103, 104]. Taken together, these papers
resolve the defocusing case of Conjecture 1.5.

In [42], Keraani used the concentration compactness statements discussed ear-
lier to show that if the mass-critical NLS did not obey global spacetime bounds,
then there is a solution u with minimal mass and infinite spacetime norm. Simple
contrapositive would show that there is a sequence of global solutions with mass
growing to the minimal value whose spacetime norms diverge to infinity. The point
here is that the limit object exists, albeit after passing to a subsequence and per-
forming symmetry operations. An additional immediate consequence of this com-
pactness principle is that the minimal mass blowup solution u is almost periodic
modulo symmetries (cf. Definition 5.1). This is a stronger form of concentration
result than is provided by the induction on energy technique. We will turn to a
more formal comparison shortly. The existence of minimal blowup solutions was
adapted to the energy-critical case in [38], which is also the first application of this
important innovation to the well-posedness problem. The main result of that paper
was to prove the focusing case of Conjecture 1.5 for spherically symmetric data in
dimensions d = 3, 4, 5. This was extended to all dimensions in [47]. For general
(non-symmetric) data in dimensions five and higher, Conjecture 1.5 was proved in
[44]. The complete details of this argument will be presented here. The conjecture
remains open for d = 3, 4.

The difference between the ‘minimal blowup solution’ strategy and the ‘in-
duction on energy’ approach is akin to that between the well ordering principle
(any non-empty subset of {0, 1, 2, . . .} contains a least element) and the principle of
induction. By its intrinsically recursive nature, induction is well suited to obtain-
ing concrete bounds and this is, indeed, what the induction on energy approach
provides. By contrast, proof by contradiction, which is the basis of the minimal
counterexample approach, often leads to cleaner simpler arguments, but can sel-
dom be made effective. These general principles hold true in the NLS setting. The
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minimal counterexample approach leads to simpler proofs, particularly because it
allows for a much more modular approach — induction on energy requires deli-
cately interconnected arguments that cannot be disentangled until the very end —
however, it does not seem possible to obtain effective bounds without reverting to
the older technology. On pedagogical grounds, we will confine our attention to the
minimal counterexample method in these notes.

Perhaps we have done too good a job of distinguishing the two approaches; they
are two sides of the same coin: they may look very different, but are built upon
the same substrate, namely, improved Strichartz inequalities. These are discussed
in Subsection 4.4.

Let us now describe the current state of affairs for the mass-critical equation.
Building on developments in the energy-critical case, Conjecture 1.4 has been settled
for spherically symmetric data in dimensions two and higher. For the defocusing
case, d ≥ 3, see [96, 97]. For d = 2, both focusing and defocusing, see [43]. The
latter argument was adapted to treat the d ≥ 3 focusing case in [46].

With so much of the road left to travel, it would be premature to try to discern
what parts of the these works may prove valuable in settling the full conjecture. We
present here a number of building blocks taken from those papers that we believe
will be useful in the non-symmetric case.
Acknowledgements We are grateful to Jason Murphy, Shuanglin Shao, Betsy
Stovall, and Michael Struwe for comments and corrections.
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1.2. Notation. We will be regularly referring to the spacetime norms

(1.10)
∥∥u∥∥

Lq
tL

r
x(R×Rd)

:=

(∫
R

[ ∫
Rd

|u(t, x)|r dx
] q

r

dt

) 1
q

,

with obvious changes if q or r is infinity. To save space in in-line formulas, we will
abbreviate

‖f‖r := ‖f‖Lr
x

and ‖u‖q,r := ‖u‖Lq
tL

r
x
.

We write X � Y to indicate that X ≤ CY for some constant C, which is
permitted to depend on the ambient spatial dimension, d, without further comment.
Other dependencies of C will be indicated with subscripts, for example, X �u Y .
We will write X ∼ Y to indicate that X � Y � X.

We use the ‘Japanese bracket’ convention: 〈x〉 := (1+ |x|2)1/2 as well as 〈∇〉 :=
(1−Δ)1/2. Similarly, |∇|s denotes the Fourier multiplier with symbol |ξ|s. These
are used to define the Sobolev norms

‖f‖W s,r := ‖〈∇〉sf‖Lr
x
.

Our convention for the Fourier transform is

f̂(ξ) = (2π)−
d
2

∫
Rd

e−ix·ξf(x) dx

so that

f(x) = (2π)−
d
2

∫
Rd

eix·ξ f̂(ξ) dξ and

∫
Rd

|f̂(ξ)|2 dξ =

∫
Rd

|f(x)|2 dx.



NONLINEAR SCHRÖDINGER EQUATIONS AT CRITICAL REGULARITY 333

Notations associated to Littlewood-Paley projections are discussed in Appendix A.

2. Symmetries

2.1. Hamiltonian formulation. As we will see, the nonlinear Schrödinger
equation may be viewed as an infinite dimensional Hamiltonian system. In the
finite dimensional case, Hamiltonian mechanics has many general theorems of wide
applicability. In the PDE setting, however, these tend to become guiding principles
with each system requiring its own special treatment; indeed, compare the local
theory for ODE with that for PDE. In what follows, we will take a rather formal
approach, since it is not difficult to check the conclusions a posteriori. In particular,
we will allow ourselves a rather fluid notion of phase space. In all cases, it will be
a vector space of functions from Rd into C. If we were working with polynomial
nonlinearities, it would be reasonable to use Schwartz space. However, in the case
of fractional power nonlinearities, this space is not conserved by the flow; besides,
the main goal of these notes is to work in low regularity spaces.

A symplectic form is a closed non-degenerate (anti-symmetric) 2-form on phase
space. In particular, it takes two tangent vectors f, g at a point u in phase space
and returns a real number. The symplectic form relevant to us is

ω(f, g) := Im

∫
Rd

f(x)g(x) dx.

Notice that this implies q(x) : u �→ Reu(x) and p(x) : u �→ Imu(x) are canonically
conjugate coordinates (indexed by x). In light of this, we see that (with the sign
conventions in [1]) the Poisson bracket associated to ω is given by

(2.1) {G,F}(u) =
∫
Rd

δF

δp

∣∣∣∣
u

(x)
δG

δq

∣∣∣∣
u

(x)− δF

δq

∣∣∣∣
u

(x)
δG

δp

∣∣∣∣
u

(x) dx,

where the functional derivatives are defined by

lim
ε→0

G(u+ εv)−G(u)

ε
= dG

∣∣
u
(v) =

∫
Rd

δG

δq

∣∣∣∣
u

(x) Re v(x) +
δG

δp

∣∣∣∣
u

(x) Im v(x) dx

for all v : Rd → C. In particular, {q(y), p(x)}(u) = δ(x − y), independent of u,
which expresses the fact that these are canonically conjugate coordinates.

For a general real-valued function H defined on phase space, the associated
(Hamiltonian) flow is defined by

ut = ∇ωH(u) where the vector field ∇ωH is defined by dH(·) = ω(·,∇ωH).

A consequence (or alternate definition) is that for any function F on phase space,

d
dtF (u(t)) = {F,H}(u(t)).

In particular, qt = δH
δp and pt = − δH

δq , which are the usual form of Hamilton’s

equations. When needed, we will write exp(t∇ωH) for the time-t flow map.
With all these notions in place, we leave the final (indeed central) point to the

reader:

Exercise. Show that formally, the Hamiltonian

H(u) :=

∫
Rd

1
2 |∇u|2 + μ

p+2 |u|
p+2 dx(2.2)
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leads to the flow

iut = −Δu+ μ|u|pu.(2.3)

2.2. The symmetries. In this subsection, we will list the main symmetries
of (2.3), together with a brief discussion of each.

Recall that Noether’s Theorem guarantees that there is a bijection between
conserved quantities and one-parameter groups of symplectomorphisms preserving
the Hamiltonian. Specifically, using the conserved quantity as a Hamiltonian leads
to a (symplectic form preserving) flow that conserves the original Hamiltonian. In
each case that this theorem is applicable, we will note the corresponding conserva-
tion law. Some important symmetries do not preserve the symplectic form and/or
the Hamiltonian; nevertheless, we will still be able to find an appropriate substitute
for a corresponding conserved quantity.

Time translations. If u(t) is a solution of (2.3), then clearly so is u(t + τ ) for
τ fixed. This symmetry is associated with conservation of the Hamiltonian (2.2).

Space translations. It is not difficult to see that both the Hamiltonian (2.2) and
the symplectic/Poisson structure are invariant under spatial translations: u(t, x) �→
u(t, x− x0). This symmetry is generated by the total momentum

P (u) :=

∫
Rd

2 Im
(
ū∇u

)
dx.(2.4)

Indeed, given x0 ∈ Rd,

u(x− x0) =
[
e

1
4∇ω(x0·P )u

]
(x).

The factor 2 has been included in (2.4) to match conventions elsewhere.
Space rotations. Invariance under rotations of the coordinate axes corresponds

to the conservation of angular momentum. The later is a tensor with
(
d
2

)
compo-

nents, indexed by pairs 1 ≤ j < k ≤ d:

Ljk(u) = i

∫
Rd

ū[xj∂ku− xk∂ju] dx.

Concomitant with the non-commutativity of the rotation group SO(d), the compo-
nents of angular momentum do not all Poisson commute with one another, forming
instead, a representation of the Lie algebra so(d).

Phase rotations. The map u(x) �→ eiθu(x) is a simple form of gauge symmetry.
It is connected to the conservation of mass:

M(u) :=

∫
Rd

|u|2 dx obeys eτ∇ωMu = e−2iτu.(2.5)

Time reversal. As intuition dictates, one may invert the time evolution by
simply reversing all momenta. Given our choice of canonical coordinates, this
corresponds to the map u �→ ū. We leave the reader to check that

et∇ωH ū = e−t∇ωHu.

Galilei boosts. A central tenet of mechanics is that the same laws of motion
apply in all inertial (non-accelerating) reference frames. Combined with an absolute
notion of time, this leads directly to Galilean relativity.

The class of solutions to the nonlinear Schrödinger equation (2.3) is left invari-
ant by Galilei boosts:

u(t, x) �→ eix·ξ0−it|ξ0|2u(t, x− 2ξ0t),(2.6)
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where ξ0 ∈ Rd denotes (half the) relative velocity of the two reference frames.
There are two (connected) problems with applying Noether’s Theorem in this

case: the symmetry explicitly involves time, it is not simply a transformation of
phase space, and it does not leave the Hamiltonian invariant (cf. Proposition 2.3
below). As we will explain, the appropriate substitute for a conserved quantity is

X(u) :=

∫
Rd

x|u|2 dx.(2.7)

This represents the location of the centre of mass, at least when M(u) = 1.
The time derivative of X is

(2.8) {X,H} = P, which implies {{X,H}, H} = 0.

Thus, although it is not conserved, X has a very simple time evolution:

X(u(t)) = X(u(0)) + t · P (u(0)).

It remains for us to connect X with Galilei boosts. The first indication of this
is [

e−
1
2∇ω(ξ0·X)u

]
(x) = eix·ξ0u(x),

which reproduces the action of a Galilei boost on the initial data u(t = 0). Perhaps
this is enough to convince the reader of a connection; however, we wish to use
this example to elucidate a little abstract theory. The central tenet is quite sim-
ple: One may extend the privileged status of conserved quantities, that is, those
obeying {F,H} = 0, to those functions F that together with H generate a finite-
dimensional Lie algebra under the action of the Poisson bracket. The concomitant
group multiplication law gives a form of time-dependent symmetry.

Together with the Hamiltonian, X generates a (2d+2)-dimensional Lie algebra
under the action of the Poisson bracket. The basis vectors are H, M , and Xj , Pj ,
1 ≤ j ≤ d and the only non-zero brackets among them are

(2.9) {X,H} = P and {Xj , Pk} = 4δjkM.

Note that (X,P,M) form the Heisenberg Lie algebra; indeed, the corresponding
flows (on u) exactly reproduce the standard Schrödinger representation of the
Heisenberg group. Using the (Lie group) commutation laws induced by (2.9), we
obtain

et∇ωHe−
1
2∇ω(ξ0·X) = e

t
2∇ω(ξ0·P−|ξ0|2M)e−

1
2∇ω(ξ0·X)et∇ωH ,

which is exactly the statement that (2.6) preserves solutions to (2.3).
Scaling. The scaling symmetry for (2.3) is

(2.10) u(t, x) �→ λ
2
p u(λ2t, λx).

This does not preserve the symplectic/Poisson structure, except in the mass-critical
(p = 4

d ) case. It does not preserve the Hamiltonian unless p = 4
d−2 , which corre-

sponds to the energy-critical equation.
As noted, the mass-critical scaling does preserve the symplectic/Poisson struc-

ture, which guarantees that it is generated by some Hamiltonian flow. A few
computations reveal that

A(u) := 1
4i

∫
Rd

ū(x · ∇+∇ · x)u dx = 1
2

∫
Rd

x · Im(ū∇u) dx

obeys [
e−τ∇ωAu

]
(x) = e

d
2 τu(eτx).
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and further, that

{A,H} = 2H + μ(pd−4)
2(p+2)

∫
Rd

|u|2+p dx.

This is the best substitute we have for a conservation law associated to (2.10).
The peculiar combination of kinetic and potential energies on the right-hand side
actually turns out to play an important role; see Section 7.

Specializing to the mass-critical or the linear Schrödinger equation, we obtain
the simple relation {A,H} = 2H, which is much more amenable to a Lie-theoretic
perspective. In particular,

et∇ωHe−τ∇ωA = e−τ∇ωAee
2τ t∇ωH ,

which reproduces (2.10).
Lens transformations. An idealized lens advances (or retards) the phase of the

incident wave in proportion to the square of the distance to the optical axis. This
leads us to consider

(2.11) V (u) :=

∫
Rd

|x|2|u|2 dx,

which is the generator of lens transformations:

[eτ∇ωV u](x) = e−2iτ |x|2u(x).

The time evolution of V is given by {V,H} = 8A.
Under the linear or mass-critical nonlinear Schrödinger evolutions, A behaves

in a simple manner, as we discussed above. This leads directly to a time-dependent
symmetry, known as the pseudo-conformal symmetry ; see (2.12) below. We leave
the computations to the reader’s private pleasure:

Exercise. In the mass-critical (or linear) case, H,A, V form a three dimen-
sional Lie algebra with relations {A,H} = 2H, {V,H} = 8A, and {V,A} = 2V .
By comparing this with matrices of the form[

−a −8v
h a

]
,

show that this is the Lie algebra of SL2(R). Use this (or not) to verify that

(2.12)
[ α β
γ δ

]
: ψ(t, x) �→ (βt+ δ)−

d
2 e

iβ|x|2
4(βt+δ)ψ

(
αt+γ
βt+δ ,

x
βt+δ

)
gives an explicit representation of SL2(R) on the class of mass-critical solutions.

2.3. Group therapy. The main purpose of this subsection is to introduce
some notation we will be using for (a subgroup of) the symmetries just introduced.
After that, we will record the effect of symmetries on the major conserved quantities.

Definition 2.1 (Mass-critical symmetry group). For any phase θ ∈ R/2πZ,
position x0 ∈ Rd, frequency ξ0 ∈ Rd, and scaling parameter λ > 0, we define the
unitary transformation gθ,x0,ξ0,λ : L2

x(R
d) → L2

x(R
d) by the formula

[gθ,ξ0,x0,λf ](x) :=
1

λd/2
eiθeix·ξ0f

(x− x0

λ

)
.

We let G be the collection of such transformations. If u : I × Rd → C, we define
Tgθ,ξ0,x0,λ

u : λ2I × Rd → C, where λ2I := {λ2t : t ∈ I}, by the formula

[Tgθ,ξ0,x0,λ
u](t, x) :=

1

λd/2
eiθeix·ξ0e−it|ξ0|2u

(
t

λ2
,
x− x0 − 2ξ0t

λ

)
,
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or equivalently,

[Tgθ,ξ0,x0,λ
u](t) = gθ−t|ξ0|2,ξ0,x0+2ξ0t,λ

(
u
(
λ−2t

))
.

Note that if u is a solution to the mass-critical NLS, then Tgu is also solution and
has initial data g[u(t = 0)].

Definition 2.2 (Energy-critical symmetry group). For any phase θ ∈ R/2πZ,
position x0 ∈ Rd, and scaling parameter λ > 0, we define a unitary transformation
gθ,x0,λ : Ḣ1

x(R
d) → Ḣ1

x(R
d) by

[gθ,x0,λf ](x) := λ− d−2
2 eiθf

(
λ−1(x− x0)

)
.

Let G denote the collection of such transformations. For a function u : I×Rd → C,
we define Tgθ,x0,λ

u : λ2I × Rd → C, where λ2I := {λ2t : t ∈ I}, by the formula

[Tgθ,x0,λ
u](t, x) := λ− d−2

2 eiθu
(
λ−2t, λ−1(x− x0)

)
.

Note that if u is a solution to the energy-critical NLS, then so is Tgu; the latter has
initial data g[u(t = 0)].

The next proposition shows how the total mass, momentum, and energy are
affected by elements of the mass- or energy-critical symmetry groups. In the latter
case, we also record the effect of Galilei boosts. Although they have been omitted
from the definition of the symmetry group (they will not be required in the concen-
tration compactness step), they are valuable in further simplifying the structure of
minimal blowup solutions.

Proposition 2.3 (Mass, Momentum, and Energy under symmetries). Let g
be an element of the mass-critical symmetry group with parameters θ, x, ξ, and λ.
Then

(2.13)
M(gu0) = M(u0), P (gu0) = 2ξM(u) + λ−1P (u0),

E(gu0) = λ−2E(u0) +
1
2λ

−1ξ · P (u0) +
1
2 |ξ|

2M(u0).

The analogous statement for the energy-critical case reads

M(v0) = λ2M(u0), P (v0) = 2λ2ξM(u0) + λP (u0),

E(v0) = E(u0) +
1
2λξ · P (u0) +

1
2λ

2|ξ|2M(u0),
(2.14)

where v0(x) = [e−
1
2∇ω(ξ·X)gu0](x) = eix·ξ[gu0](x).

Corollary 2.4 (Minimal energy in the rest frame). Let ũ ∈ L∞
t H1

x be a
blowup solution to the mass- or energy-critical NLS. Then there is a blowup solution
u ∈ L∞

t H1
x, obeying M(u) = M(ũ), E(u) ≤ E(ũ), and

P (u(t)) = 2 Im

∫
Rd

u(t, x)∇u(t, x) dx ≡ 0.

Note also that ‖∇u‖∞,2 ≤ ‖∇ũ‖∞,2.

Proof. Choose u to be the unique Galilei boost of ũ that has zero momentum.
All the conclusions now follow quickly from the formulae above. Note that u has
minimal energy among all Galilei boosts of ũ; indeed, this is an expression of the
well-know physical fact that the total energy can be decomposed as the energy
viewed in the centre of mass frame plus the energy arising from the motion of the
center of mass (cf. [50, §8]). �
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2.4. Complete integrability. The purpose of this subsection is to share an
observation of Jürgen Moser: scattering implies complete integrability. This was
passed on to us by Percy Deift.

In the finite dimensional setting, a Hamiltonian flow on a 2n-dimensional phase
space is called completely integrable if it admits n functionally independent Pois-
son commuting conserved quantities. An essentially equivalent formulation is the
existence of action-angle coordinates (cf. [1]). These are a system of canonically
conjugate coordinates I1, . . . , In, φ1, . . . , φn, which is to say

{Ij , Ik} = {φj , φk} = 0 {Ij , φk} = δjk,

so that under the flow,
d
dt Ij = 0 and d

dtφj = ωj(I1, . . . , In).

Here ω1, . . . , ωn are smooth functions.
In what follows, we will exemplify Moser’s assertion in the context of the mass-

critical defocusing equation. For clarity of exposition, we presuppose the truth of
the associated global well-posedness and scattering conjecture. The principal ideas
can be applied to any NLS setting.

As we will see in Section 3, we are guaranteed that the wave operator

Ω : u0 �→ u+ = lim
t→∞

e−itΔu(t)

defines a bijection on L2
x(R

d); here u(t) denotes the solution of NLS with initial data
u0. In fact, since both the free Schrödinger and the NLS evolutions are Hamiltonian,
the wave operator preserves the symplectic form. As the Fourier transform is also
bijective and symplectic (both follow from unitarity), so is the combined map

Ω̂ : u0 �→ û+, which obeys
[
Ω̂(u(t))

]
(ξ) = e−it|ξ|2 û+(ξ).

Thus we have found a symplectic map that trivializes the flow; moreover, we have
an infinite family of Poisson commuting conserved quantities, namely,

u �→
∫
Rd

g(ξ)|û+(ξ)| dξ

as g varies over real-valued functions in L2
ξ(R

d). Lastly, to see that these do indeed
Poisson commute and also to exhibit action-angle variables, we note that if we
define I(ξ) = 1

2 |û+(ξ)|2 and φ(ξ) by û+(ξ) = |û+(ξ)|e−iφ(ξ), then

{I(ξ), I(η)} = {φ(ξ), φ(η)} = 0, {I(ξ), φ(η)} = δ(ξ − η),

d
dt I(ξ) = 0, and d

dtφ(ξ) = |ξ|2.

Remark. By integrating |û+(ξ)|2 against appropriate powers of ξ, one obtains

conserved quantities that agree with the asymptotic Ḣs
x norm. For s = 0 or s = 1,

these are exactly the mass and energy. For general values of s, the conserved
quantities need not take such a simple (polynomial in u, ū, and their derivatives)
form.

3. The local theory

3.1. Dispersive and Strichartz inequalities. It is not difficult to check (or
derive) that the fundamental solution of the heat equation is given by

esΔ(x, y) = (2π)−d

∫
Rd

eiξ·(x−y)−s|ξ|2 dξ = (4πs)−d/2e−|x−y|2/4s
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for all s > 0. By analytic continuation, we find the fundamental solution of the free
Schrödinger equation:

(3.1) eitΔ(x, y) = (4πit)−d/2ei|x−y|2/4t

for all t 
= 0. Note that here

(4πit)−d/2 = (4π|t|)−d/2e−iπd sign(t)/4.

From (3.1) one easily derives the standard dispersive inequality

(3.2) ‖eitΔf‖Lp
x(Rd) � |t|d( 1

p−
1
2 )‖f‖

Lp′
x (Rd)

for all t 
= 0 and 2 ≤ p ≤ ∞, where 1
p + 1

p′ = 1.

A different way to express the dispersive effect of the operator eitΔ is in terms of
spacetime integrability. To state the estimates, we first need the following definition.

Definition 3.1 (Admissible pairs). For d ≥ 1, we say that a pair of exponents
(q, r) is Schrödinger-admissible if

(3.3)
2

q
+

d

r
=

d

2
, 2 ≤ q, r ≤ ∞, and (d, q, r) 
= (2, 2,∞).

For a fixed spacetime slab I × Rd, we define the Strichartz norm

(3.4) ‖u‖S0(I) := sup
(q,r) admissible

‖u‖Lq
tL

r
x(I×Rd)

We write S0(I) for the closure of all test functions under this norm and denote by
N0(I) the dual of S0(I).

Remark. In the case of two space dimensions, the absence of the endpoint
requires us to restrict the supremum in (3.4) to a closed subset of admissible pairs.
As any reasonable argument only involves finitely many admissible pairs, this is of
little consequence.

We are now ready to state the standard Strichartz estimates:

Theorem 3.2 (Strichartz). Let 0 ≤ s ≤ 1, let I be a compact time interval,
and let u : I × Rd → C be a solution to the forced Schrödinger equation

iut +Δu = F.

Then,

‖|∇|su‖S0(I) � ‖u(t0)‖Ḣs
x
+ ‖|∇|sF‖N0(I)

for any t0 ∈ I.

Proof. We will treat the non-endpoint cases in Subsection 4.4 following [28,
83]. For the endpoint (q, r) =

(
2, 2d

d−2

)
in dimensions d ≥ 3, see [37]. For failure of

the d = 2 endpoint, see [59]. This endpoint can be partially recovered in the case
of spherically symmetric functions; see [82, 87]. �
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3.2. The Ḣs
x critical case. In this subsection we revisit the local theory at

critical regularity. Consider the initial-value problem

(3.5)

{
iut +Δu = F (u)

u(0) = u0

where u(t, x) is a complex-valued function of spacetime R×Rd with d ≥ 1. Assume
that the nonlinearity F : C → C is continuously differentiable and obeys the power-
type estimates

F (z) = O
(
|z|1+p

)
(3.6)

Fz(z), Fz̄(z) = O
(
|z|p

)
(3.7)

Fz(z)− Fz(w), Fz̄(z)− Fz̄(w) = O
(
|z − w|min{p,1}(|z|+ |w|)max{0,p−1})(3.8)

for some p > 0, where Fz and Fz̄ are the usual complex derivatives

Fz :=
1

2

(∂F
∂x

− i
∂F

∂y

)
, Fz̄ :=

1

2

(∂F
∂x

+ i
∂F

∂y

)
.

For future reference, we record the chain rule

(3.9) ∇F (u(x)) = Fz(u(x))∇u(x) + Fz̄(u(x))∇u(x),

as well as the closely related integral identity

(3.10) F (z)−F (w) = (z−w)

∫ 1

0

Fz

(
w+θ(z−w)

)
dθ+(z − w)

∫ 1

0

Fz̄

(
w+θ(z−w)

)
dθ

for any z, w ∈ C; in particular, from (3.7), (3.10), and the triangle inequality, we
have the estimate ∣∣F (z)− F (w)

∣∣ � |z − w|
(
|z|p + |w|p

)
.(3.11)

The model example of a nonlinearity obeying the conditions above is F (u) =

|u|pu, for which the critical homogeneous Sobolev space is Ḣsc
x with sc := d

2 − 2
p .

The local theory for (3.5) at this critical regularity was developed by Cazenave and
Weissler [13, 14, 15]. Like them, we are interested in strong solutions to (3.5).

Definition 3.3 (Solution). A function u : I × Rd → C on a non-empty time

interval 0 ∈ I ⊂ R is a solution (more precisely, a strong Ḣsc
x (Rd) solution) to (3.5)

if it lies in the class C0
t Ḣ

sc
x (K×Rd)∩Lp+2

t L
dp(p+2)

4
x (K×Rd) for all compact K ⊂ I,

and obeys the Duhamel formula

u(t) = eitΔu(0)− i

∫ t

0

ei(t−s)ΔF (u(s)) ds(3.12)

for all t ∈ I. We refer to the interval I as the lifespan of u. We say that u is a
maximal-lifespan solution if the solution cannot be extended to any strictly larger
interval. We say that u is a global solution if I = R.

Note that for sc ∈ {0, 1}, this is slightly different from the definition of solution
given in the introduction. However, one of the consequences of the theory developed
in this section is that the two notions are equivalent.
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Theorem 3.4 (Standard local well-posedness, [13, 14, 15]). Let d ≥ 1 and
u0 ∈ Hsc

x (Rd). Assume further that 0 ≤ sc ≤ 1. There exists η0 = η0(d) > 0 such
that if 0 < η ≤ η0 and I is a compact interval containing zero such that∥∥|∇|sceitΔu0

∥∥
Lp+2

t L

2d(p+2)
2(d−2)+dp
x (I×Rd)

≤ η,(3.13)

then there exists a unique solution u to (3.5) on I × Rd. Moreover, we have the
bounds ∥∥|∇|scu

∥∥
Lp+2

t L

2d(p+2)
2(d−2)+dp
x (I×Rd)

≤ 2η(3.14)

∥∥|∇|scu
∥∥
S0(I×Rd)

�
∥∥|∇|scu0

∥∥
L2

x
+ η1+p(3.15)

‖u‖S0(I×Rd) � ‖u0‖L2
x
.(3.16)

Remarks. 1. By Strichartz inequality, we know that∥∥|∇|sceitΔu0

∥∥
Lp+2

t L

2d(p+2)
2(d−2)+dp
x (R×Rd)

�
∥∥|∇|scu0

∥∥
L2

x
.

Thus, (3.13) holds for initial data with sufficiently small norm. Alternatively, by the
monotone convergence theorem, (3.13) holds provided I is chosen sufficiently small.
Note that by scaling, the length of the interval I depends on the fine properties of
u0, not only on its norm.

2. Note that the initial data in the theorem above is assumed to belong to the
inhomogeneous Sobolev space Hsc

x (Rd), as in the work of Cazenave and Weissler.
This makes the proof significantly simpler. In the next two subsections, we will
present a technique which allows one to show uniform continuous dependence of the
solution u upon the initial data u0 in critical spaces. This technique (or indeed, the

result) can be used to treat initial data in the homogeneous Sobolev space Ḣsc
x (Rd).

3. The sole purpose of the restriction to sc ≤ 1 is to simplify the statement
and proof. In any event, it covers the two cases of greatest interest to us, sc = 0, 1.

Proof. We will essentially repeat the original argument from [14]; the frac-
tional chain rule Lemma A.11 leads to some simplifications.

The theorem follows from a contraction mapping argument. More precisely,
using the Strichartz estimates from Theorem 3.2, we will show that the solution
map u �→ Φ(u) defined by

Φ(u)(t) := eitΔu0 − i

∫ t

0

ei(t−s)ΔF (u(s)) ds,

is a contraction on the set B1 ∩B2 where

B1 :=
{
u ∈ L∞

t Hsc
x (I × R

d) : ‖u‖L∞
t Hsc

x (I×Rd) ≤ 2‖u0‖Hsc
x

+ C(d)(2η)1+p
}

B2 :=
{
u ∈ Lp+2

t W
sc,

2d(p+2)
2(d−2)+dp

x (I × R
d) :

∥∥|∇|scu
∥∥
Lp+2

t L

2d(p+2)
2(d−2)+dp
x (I×Rd)

≤2η

and
∥∥u∥∥

Lp+2
t L

2d(p+2)
2(d−2)+dp
x (I×Rd)

≤2C(d)‖u0‖L2
x

}
under the metric given by

d(u, v) := ‖u− v‖
Lp+2

t L

2d(p+2)
2(d−2)+dp
x (I×Rd)

.
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Here C(d) denotes the constant from the Strichartz inequality. Note that the norm
appearing in the metric scales like L2

x; see the second remark above. Note that
both B1 and B2 are closed (and hence complete) in this metric.

Using Strichartz inequality followed by the fractional chain rule Lemma A.11
and Sobolev embedding, we find that for u ∈ B1 ∩B2,

‖Φ(u)‖L∞
t Hsc

x (I×Rd)

≤ ‖u0‖Hsc
x

+ C(d)
∥∥〈∇〉scF (u)

∥∥
L

p+2
p+1
t L

2d(p+2)
2(d+2)+dp
x (I×Rd)

≤ ‖u0‖Hsc
x

+ C(d)
∥∥〈∇〉scu

∥∥
Lp+2

t L

2d(p+2)
2(d−2)+dp
x (I×Rd)

‖u‖p
Lp+2

t L
dp(p+2)

4
x (I×Rd)

≤ ‖u0‖Hsc
x

+ C(d)
(
2η + 2C(d)‖u0‖L2

x

)∥∥|∇|scu
∥∥p
Lp+2

t L

2d(p+2)
2(d−2)+dp
x (I×Rd)

≤ ‖u0‖Hsc
x

+ C(d)
(
2η + 2C(d)‖u0‖L2

x

)
(2η)p

and similarly,∥∥Φ(u)∥∥
Lp+2

t L

2d(p+2)
2(d−2)+dp
x (I×Rd)

≤ C(d)‖u0‖L2
x
+ C(d)

∥∥F (u)
∥∥
L

p+2
p+1
t L

2d(p+2)
2(d+2)+dp
x (I×Rd)

≤ C(d)‖u0‖L2
x
+ 2C(d)2‖u0‖L2

x
(2η)p.

Arguing as above and invoking (3.13), we obtain∥∥|∇|scΦ(u)
∥∥
Lp+2

t L

2d(p+2)
2(d−2)+dp
x (I×Rd)

≤ η + C(d)
∥∥|∇|scF (u)

∥∥
L

p+2
p+1
t L

2d(p+2)
2(d+2)+dp
x (I×Rd)

≤ η + C(d)(2η)1+p.

Thus, choosing η0 = η0(d) sufficiently small, we see that for 0 < η ≤ η0, the
functional Φ maps the set B1 ∩ B2 back to itself. To see that Φ is a contraction,
we repeat the computations above and use (3.11) to obtain∥∥Φ(u)− Φ(v)

∥∥
Lp+2

t L

2d(p+2)
2(d−2)+dp
x (I×Rd)

≤ C(d)
∥∥F (u)− F (v)

∥∥
L

p+2
p+1
t L

2d(p+2)
2(d+2)+dp
x (I×Rd)

≤ C(d)(2η)p‖u− v‖
Lp+2

t L

2d(p+2)
2(d−2)+dp
x (I×Rd)

.

Thus, choosing η0 = η0(d) even smaller (if necessary), we can guarantee that Φ is
a contraction on the set B1 ∩ B2. By the contraction mapping theorem, it follows
that Φ has a fixed point in B1 ∩ B2. Moreover, noting that Φ maps into C0

t H
sc
x

(not just L∞
t Hsc

x ), we derive that the fixed point of Φ is indeed a solution to (3.5).
We now turn our attention to the uniqueness statement. Since uniqueness is

a local property, it suffices to study a neighbourhood of t = 0. By Definition 3.3,
any solution to (3.5) belongs to B1 ∩B2 on some such neighbourhood. Uniqueness
thus follows from uniqueness in the contraction mapping theorem.

The claims (3.15) and (3.16) follow from another application of Strichartz in-
equality, as above. �

We end this section with a collection of statements which encapsulate the local
theory for (3.5).

Corollary 3.5 (Local theory, [13, 14, 15]). Let d ≥ 1 and u0 ∈ Hsc
x (Rd).

Assume also that 0 ≤ sc ≤ 1. Then there exists a unique maximal-lifespan solution
u : I × Rd → C to (3.5) with initial data u(0) = u0. This solution also has the
following properties:
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• (Local existence) I is an open neighbourhood of zero.
• (Energy and mass conservation) The mass of u is conserved, that is, M(u(t)) =
M(u0) for all t ∈ I. Moreover, if sc = 1 then the energy of u is also conserved,
that is, E(u(t)) = E(u0) for all t ∈ I.
• (Blowup criterion) If sup I is finite, then u blows up forward in time, that is,
there exists a time t ∈ I such that∥∥u∥∥

Lp+2
t L

pd(p+2)
4

x ([t,sup I)×Rd)
= ∞.

A similar statement holds in the negative time direction.
• (Scattering) If sup I = +∞ and u does not blow up forward in time, then u
scatters forward in time, that is, there exists a unique u+ ∈ Hsc

x (Rd) such that

(3.17) lim
t→+∞

‖u(t)− eitΔu+‖Hsc
x (Rd) = 0.

Conversely, given u+ ∈ Hsc
x (Rd) there exists a unique solution to (3.5) in a neigh-

bourhood of infinity so that (3.17) holds.
• (Small data global existence) If

∥∥|∇|scu0

∥∥
2
is sufficiently small (depending on

d), then u is a global solution which does not blow up either forward or backward
in time. Indeed,

(3.18)
∥∥|∇|scu

∥∥
S0(R)

�
∥∥|∇|scu0

∥∥
2
.

• (Unconditional uniqueness in the energy-critical case) Suppose sc = 1 and ũ ∈
C0

t Ḣ
1
x(J × R

d) obeys (3.12) and ũ(t0) = u0, then J ⊆ I and ũ ≡ u throughout J .

Proof. The corollary is a consequence of Theorem 3.4 and its proof. We leave
it as an exercise. �

3.3. Stability: the mass-critical case. An important part of the local well-
posedness theory is the study of how the strong solutions built in the previous
subsection depend upon the initial data. More precisely, we would like to know
whether small perturbations of the initial data lead to small changes in the solution.
More generally, we are interested in developing a stability theory for (3.5). By
stability, we mean the following property: Given an approximate solution to (3.5),
say ũ obeying {

iũt +Δũ = F (ũ) + e

ũ(0, x) = ũ0(x)

with e small in a suitable space and ũ0−u0 small in Ḣsc
x , then there exists a genuine

solution u to (3.5) which stays very close to ũ in critical norms. The question of
continuous dependence of the solution upon the initial data corresponds to taking
e = 0; the case where e 
= 0 can be used to consider situations where NLS is only
an approximate model for the physical system under consideration.

Although stability is a local question, it plays an important role in all existing
treatments of the global well-posedness problem for NLS at critical regularity. It
has also proved useful in the treatment of local and global questions for more exotic
nonlinearities [95, 108].

In these notes, we will only address the stability question for the mass- and
energy-critical NLS. The techniques we will employ (particularly, those from the
next subsection) can be used to develop a stability theory for the more general
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equation (3.5). We start with the mass-critical equation, which is the more elemen-
tary of the two. That is to say, for the remainder of this subsection we adopt the
following

Convention. The nonlinearity F obeys (3.6) through (3.8) and (3.11) with
p = 4/d.

Lemma 3.6 (Short-time perturbations, [95]). Let I be a compact interval and
let ũ be an approximate solution to (3.5) in the sense that

(i∂t +Δ)ũ = F (ũ) + e,

for some function e. Assume that

‖ũ‖L∞
t L2

x(I×Rd) ≤ M(3.19)

for some positive constant M . Let t0 ∈ I and let u(t0) be such that

‖u(t0)− ũ(t0)‖L2
x
≤ M ′(3.20)

for some M ′ > 0. Assume also the smallness conditions

‖ũ‖
L

2(d+2)
d

t,x (I×Rd)
≤ ε0(3.21)

∥∥ei(t−t0)Δ
(
u(t0)− ũ(t0)

)∥∥
L

2(d+2)
d

t,x (I×Rd)
≤ ε(3.22)

‖e‖N0(I) ≤ ε,(3.23)

for some 0 < ε ≤ ε0 where ε0 = ε0(M,M ′) > 0 is a small constant. Then, there
exists a solution u to (3.5) on I×Rd with initial data u(t0) at time t = t0 satisfying

‖u− ũ‖
L

2(d+2)
d

t,x (I×Rd)
� ε(3.24)

‖u− ũ‖S0(I) � M ′(3.25)

‖u‖S0(I) � M +M ′(3.26)

‖F (u)− F (ũ)‖N0(I) � ε.(3.27)

Remark. Note that by Strichartz,∥∥ei(t−t0)Δ
(
u(t0)− ũ(t0)

)∥∥
L

2(d+2)
d

t,x (I×Rd)
� ‖u(t0)− ũ(t0)‖L2

x
,

so hypothesis (3.22) is redundant if M ′ = O(ε).

Proof. By symmetry, we may assume t0 = inf I. Let w := u − ũ. Then w
satisfies the following initial value problem{

iwt +Δw = F (ũ+ w)− F (ũ)− e

w(t0) = u(t0)− ũ(t0).

For t ∈ I we define

A(t) :=
∥∥F (ũ+ w)− F (ũ)

∥∥
N0([t0,t])

.

By (3.21),

A(t) �
∥∥F (ũ+ w)− F (ũ)

∥∥
L

2(d+2)
d+4

t,x ([t0,t]×Rd)

� ‖w‖1+
4
d

L
2(d+2)

d
t,x ([t0,t]×Rd)

+ ‖ũ‖
4
d

L
2(d+2)

d
t,x ([t0,t]×Rd)

‖w‖
L

2(d+2)
d

t,x ([t0,t]×Rd)
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� ‖w‖1+
4
d

L
2(d+2)

d
t,x ([t0,t]×Rd)

+ ε
4
d
0 ‖w‖

L
2(d+2)

d
t,x ([t0,t]×Rd)

.(3.28)

On the other hand, by Strichartz, (3.22), and (3.23), we get

‖w‖
L

2(d+2)
d

t,x ([t0,t]×Rd)
� ‖ei(t−t0)Δw(t0)‖

L
2(d+2)

d
t,x ([t0,t]×Rd)

+A(t) + ‖e‖N0([t0,t])

� A(t) + ε.(3.29)

Combining (3.28) and (3.29), we obtain

A(t) � (A(t) + ε)1+
4
d + ε

4
d
0 (A(t) + ε).

A standard continuity argument then shows that if ε0 is taken sufficiently small,

A(t) � ε for any t ∈ I,

which implies (3.27). Using (3.27) and (3.29), one easily derives (3.24). Moreover,
by Strichartz, (3.20), (3.23), and (3.27),

‖w‖S0(I) � ‖w(t0)‖L2
x
+ ‖F (ũ+ w)− F (ũ)‖N0(I) + ‖e‖N0(I) � M ′ + ε,

which establishes (3.25) for ε0 = ε0(M
′) sufficiently small.

To prove (3.26), we use Strichartz, (3.19), (3.20), (3.27), and (3.21):

‖u‖S0(I) � ‖u(t0)‖L2
x
+ ‖F (u)‖N0(I)

� ‖ũ(t0)‖L2
x
+ ‖u(t0)− ũ(t0)‖L2

x
+ ‖F (u)− F (ũ)‖N0(I) + ‖F (ũ)‖N0(I)

� M +M ′ + ε+ ‖ũ‖1+
4
d

L
2(d+2)

d
t,x (I×Rd)

� M +M ′ + ε+ ε
1+ 4

d
0 .

Choosing ε0 = ε0(M,M ′) sufficiently small, this finishes the proof of the lemma. �

Building upon the previous result, we are now able to prove stability for the
mass-critical NLS.

Theorem 3.7 (Mass-critical stability result, [95]). Let I be a compact interval
and let ũ be an approximate solution to (3.5) in the sense that

(i∂t +Δ)ũ = F (ũ) + e,

for some function e. Assume that

‖ũ‖L∞
t L2

x(I×Rd) ≤ M(3.30)

‖ũ‖
L

2(d+2)
d

t,x (I×Rd)
≤ L,(3.31)

for some positive constants M and L. Let t0 ∈ I and let u(t0) obey

‖u(t0)− ũ(t0)‖L2
x
≤ M ′(3.32)

for some M ′ > 0. Moreover, assume the smallness conditions∥∥ei(t−t0)Δ
(
u(t0)− ũ(t0)

)∥∥
L

2(d+2)
d

t,x (I×Rd)
≤ ε(3.33)

‖e‖N0(I) ≤ ε,(3.34)
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for some 0 < ε ≤ ε1 where ε1 = ε1(M,M ′, L) > 0 is a small constant. Then, there
exists a solution u to (3.5) on I×Rd with initial data u(t0) at time t = t0 satisfying

‖u− ũ‖
L

2(d+2)
d

t,x (I×Rd)
≤ εC(M,M ′, L)(3.35)

‖u− ũ‖S0(I) ≤ C(M,M ′, L)M ′(3.36)

‖u‖S0(I) ≤ C(M,M ′, L).(3.37)

Proof. Subdivide I into J ∼ (1 + L
ε0
)

2(d+2)
d subintervals Ij = [tj , tj+1], 0 ≤

j < J , such that

‖ũ‖
L

2(d+2)
d

t,x (Ij×Rd)
≤ ε0,

where ε0 = ε0(M, 2M ′) is as in Lemma 3.6. We need to replace M ′ by 2M ′ as the
mass of the difference u− ũ might grow slightly in time.

By choosing ε1 sufficiently small depending on J , M , and M ′, we can apply
Lemma 3.6 to obtain for each j and all 0 < ε < ε1

‖u− ũ‖
L

2(d+2)
d

t,x (Ij×Rd)
≤ C(j)ε

‖u− ũ‖S0(Ij) ≤ C(j)M ′

‖u‖S0(Ij) ≤ C(j)(M +M ′)

‖F (u)− F (ũ)‖N0(Ij) ≤ C(j)ε,

provided we can prove that analogues of (3.32) and (3.33) hold with t0 replaced
by tj . In order to verify this, we use an inductive argument. By Strichartz, (3.32),
(3.34), and the inductive hypothesis,

‖u(tj)− ũ(tj)‖L2
x

� ‖u(t0)− ũ(t0)‖L2
x
+ ‖F (u)− F (ũ)‖N0([t0,tj ]) + ‖e‖N0([t0,tj ])

� M ′ +

j−1∑
k=0

C(k)ε+ ε.

Similarly, by Strichartz, (3.33), (3.34), and the inductive hypothesis,∥∥ei(t−tj)Δ
(
u(tj)− ũ(tj)

)∥∥
L

2(d+2)
d

t,x (Ij×Rd)

�
∥∥ei(t−t0)Δ

(
u(t0)− ũ(t0)

)∥∥
L

2(d+2)
d

t,x (Ij×Rd)
+ ‖e‖N0([t0,tj ])

+ ‖F (u)− F (ũ)‖N0([t0,tj ])

� ε+

j−1∑
k=0

C(k)ε.

Choosing ε1 sufficiently small depending on J , M , and M ′, we can guarantee that
the hypotheses of Lemma 3.6 continue to hold as j varies. �

3.4. Stability: the energy-critical case. In this subsection we address the
stability theory for the energy-critical NLS, that is, we adopt the following

Convention. The nonlinearity F obeys (3.6) through (3.8) and (3.11) with
p = 4/(d− 2) and d ≥ 3.
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To motivate the approach we will take, let us consider the question of continuous
dependence of the solution upon the initial data. To make things as simple as
possible, let us choose initial data u0, ũ0 ∈ H1

x which are small:

‖u0‖Ḣ1
x
+ ‖ũ0‖Ḣ1

x
≤ η0.

By Corollary 3.5, if η0 is sufficiently small, there exist unique global solutions u
and ũ to (3.5) with initial data u0 and ũ0, respectively; moreover, they satisfy

‖∇u‖S0(R) + ‖∇ũ‖S0(R) � η0.

We would like to see that if u0 and ũ0 are close in Ḣ1
x, say ‖∇(u0− ũ0)‖2 ≤ ε � η0,

then u and ũ remain close in energy-critical norms, measured in terms of ε, not η0.
An application of Strichartz inequality combined with the bounds above yields

‖∇(u− ũ)‖S0(R) �‖∇(u0 − ũ0)‖L2
x
+ η

4
d−2

0 ‖∇(u− ũ)‖S0(R) + η0‖∇(u− ũ)‖
4

d−2

S0(R).

If 4/(d − 2) ≥ 1, a simple bootstrap argument will imply continuous dependence
of the solution upon the initial data. However, this will not work if 4/(d− 2) < 1,
that is, if d > 6. The obstacle comes from the last term above; tiny numbers
become much larger when raised to a fractional power. Ultimately, the problem
stems from the fact that in high dimensions the derivative maps Fz and Fz̄ are
merely Hölder continuous rather than Lipschitz. The remedy is to work in spaces
with fractional derivatives (rather than a full derivative), while still maintaining
criticality with respect to the scaling. This is the approach taken by Tao and Visan
[94], who proved stability for the energy-critical NLS in all dimensions d ≥ 3 (see
also [20, 75] for earlier treatments in dimensions d = 3, 4). A similar technique
was employed by Nakanishi [64] for the energy-critical Klein-Gordon equation in
high dimensions.

Here we present a small improvement upon the results obtained in [94] made
possible by the fractional chain rule for fractional powers; see Lemma A.12. The
proof is rather involved and will occupy the remainder of this subsection. It is joint
work with Xiaoyi Zhang (unpublished).

Theorem 3.8 (Energy-critical stability result). Let I be a compact time inter-
val and let ũ be an approximate solution to (3.5) on I × Rd in the sense that

iũt +Δũ = F (ũ) + e

for some function e. Assume that

‖ũ‖L∞
t Ḣ1

x(I×Rd) ≤ E(3.38)

‖ũ‖
L

2(d+2)
d−2

t,x (I×Rd)

≤ L(3.39)

for some positive constants E and L. Let t0 ∈ I and let u(t0) obey

‖u(t0)− ũ(t0)‖Ḣ1
x
≤ E′(3.40)

for some positive constant E′. Assume also the smallness conditions∥∥ei(t−t0)Δ
(
u(t0)− ũ(t0)

)∥∥
L

2(d+2)
d−2

t,x (I×Rd)

≤ ε(3.41)

‖∇e‖N0(I) ≤ ε(3.42)
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for some 0 < ε < ε1 = ε1(E,E′, L). Then, there exists a unique strong solution
u : I × Rd �→ C to (3.5) with initial data u(t0) at time t = t0 satisfying

‖u− ũ‖
L

2(d+2)
d−2

t,x (I×Rd)

� C(E,E′, L)εc(3.43)

‖∇(u− ũ)‖Ṡ0(I) � C(E,E′, L)E′(3.44)

‖∇u‖Ṡ0(I) � C(E,E′, L),(3.45)

where 0 < c = c(d) < 1.

Remark. The result in [94] assumes( ∑
N∈2Z

∥∥∇PNei(t−t0)Δ
(
u(t0)− ũ(t0)

)∥∥2
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

)1/2

≤ ε

in place of (3.41). Note that by Sobolev embedding, this is a strictly stronger
requirement.

One of the consequences of the theorem above is a local well-posedness state-
ment in energy-critical norms. More precisely, in Theorem 3.4 and Corollary 3.5
one can remove the assumption that the initial data belongs to L2

x, since every

Ḣ1
x function is well approximated by H1

x functions. Alternatively, one may use the
techniques we present to prove the following corollary directly. The approach we
have chosen is motivated by the desire to introduce the difficulties one at a time.

Corollary 3.9 (Local well-posedness). Let I be a compact time interval, t0 ∈
I, and let u0 ∈ Ḣ1

x(R
d). Assume that

‖u0‖Ḣ1
x
≤ E.

Then for any ε > 0 there exists δ = δ(E, ε) > 0 such that if∥∥ei(t−t0)Δu0

∥∥
L

2(d+2)
d−2

t,x (I×Rd)

< δ,

then there exists a unique solution u to (3.5) with initial data u0 at time t = t0.
Moreover,

‖u‖
L

2(d+2)
d−2

t,x (I×Rd)

≤ ε and ‖∇u‖S0(I) ≤ 2E.

We now turn our attention to the proof of Theorem 3.8. Let us first introduce
the spaces we will use; as mentioned above, these are critical with respect to scaling
and have a small fractional number of derivatives. Throughout the remainder of
this subsection, for any time interval I we will use the abbreviations

(3.46)

‖u‖X0(I) := ‖u‖
L

d(d+2)
2(d−2)
t L

2d2(d+2)

(d+4)(d−2)2
x (I×Rd)

‖u‖X(I) :=
∥∥|∇| 4

d+2 u
∥∥
L

d(d+2)
2(d−2)
t L

2d2(d+2)

d3−4d+16
x (I×Rd)

‖F‖Y (I) :=
∥∥|∇| 4

d+2F
∥∥
L

d
2
t L

2d2(d+2)

d3+4d2+4d−16
x (I×Rd)

.

First, we connect the spaces in which the solution to (3.5) is measured to the
spaces in which the nonlinearity is measured. As usual, this is done via a Strichartz
inequality; we reproduce the standard proof.
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Lemma 3.10 (Strichartz estimate). Let I be a compact time interval containing
t0. Then ∥∥∥∫ t

t0

ei(t−s)ΔF (s) ds
∥∥∥
X(I)

� ‖F‖Y (I).

Proof. By the dispersive estimate (3.2),∥∥ei(t−s)ΔF (s)
∥∥
L

2d2(d+2)

d3−4d+16
x

� |t− s|−
d2+2d−8
d(d+2) ‖F (s)‖

L

2d2(d+2)

d3+4d2+4d−16
x

.

An application of the Hardy-Littlewood-Sobolev inequality yields∥∥∥∫ t

t0

ei(t−s)ΔF (s)ds
∥∥∥
L

d(d+2)
2(d−2)
t L

2d2(d+2)

d3−4d+16
x (I×Rd)

� ‖F‖
L

d
2
t L

2d2(d+2)

d3+4d2+4d−16
x (I×Rd)

.

As the differentiation operator |∇| 4
d+2 commutes with the free evolution, we recover

the claim. �

We next establish some connections between the spaces defined in (3.46) and
the usual Strichartz spaces.

Lemma 3.11 (Interpolations). For any compact time interval I,

‖u‖X0(I) � ‖u‖X(I) � ‖∇u‖S0(I)(3.47)

‖u‖X(I) � ‖u‖
1

d+2

L

2(d+2)
d−2

t,x (I×Rd)

‖∇u‖
d+1
d+2

S0(I)(3.48)

‖u‖
L

2(d+2)
d−2

t,x (I×Rd)

� ‖u‖cX(I)‖∇u‖1−c
S0(I),(3.49)

where 0 < c = c(d) ≤ 1.

Proof. A simple application of Sobolev embedding yields (3.47).
Using interpolation followed by Sobolev embedding,

‖u‖X(I) � ‖u‖
1

d+2

L

2(d+2)
d−2

t,x (I×Rd)

∥∥|∇| 4
d+1 u

∥∥ d+1
d+2

L

2d(d+1)(d+2)
(d−2)(3d+8)

t L

2d2(d+1)(d+2)

d4+d3−2d2+8d+32
x (I×Rd)

� ‖u‖
1

d+2

L

2(d+2)
d−2

t,x (I×Rd)

‖∇u‖
d+1
d+2

S0(I).

This settles (3.48).
To establish (3.49), we analyze two cases. When d = 3, interpolation yields

‖u‖
L

2(d+2)
d−2

t,x (I×Rd)

� ‖u‖
3
4

X0(I)‖u‖
1
4

L∞
t L

2d
d−2
x (I×Rd)

and the claim follows (with c = 3
4 ) from (3.47) and Sobolev embedding. For d ≥ 4,

another application of interpolation gives

‖u‖
L

2(d+2)
d−2

t,x (I×Rd)

� ‖u‖
2

d−2

X0(I)‖u‖
d−4
d−2

L
2d

d−2
t L

2d2

(d−2)2
x (I×Rd)

and the claim follows again (with c = 2
d−2 ) from (3.47) and Sobolev embedding. �

Finally, we derive estimates that will help us control the nonlinearity. The
main tools we use in deriving these estimates are the fractional chain rules; see
Lemmas A.11 and A.12.
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Lemma 3.12 (Nonlinear estimates). Let I a compact time interval. Then,

‖F (u)‖Y (I) � ‖u‖
d+2
d−2

X(I)(3.50)

and

‖Fz(u+ v)w‖Y (I) + ‖Fz̄(u+ v)w̄‖Y (I)(3.51)

�
(
‖u‖

8
d2−4

X(I) ‖∇u‖
4d

d2−4

S0(I) + ‖v‖
8

d2−4

X(I) ‖∇v‖
4d

d2−4

S0(I)

)
‖w‖X(I).

Proof. Throughout the proof, all spacetime norms are on I × Rd.
Applying Lemma A.11 combined with (3.7) and (3.47) we find

‖F (u)‖Y (I) � ‖u‖
4

d−2

L

d(d+2)
2(d−2)
t L

2d2(d+2)

(d−2)2(d+4)
x

∥∥|∇| 4
d+2 u

∥∥
L

d(d+2)
2(d−2)
t L

2d2(d+2)

d3−4d+16
x

� ‖u‖
d+2
d−2

X(I).

This establishes (3.50).
We now turn to (3.51); we only treat the first term on the left-hand side, as

the second can be handled similarly. By Lemma A.10 followed by (3.7) and (3.47),

‖Fz(u+v)w‖Y (I)

� ‖Fz(u+ v)‖
L

d(d+2)
8

t L

d2(d+2)
2(d−2)(d+4)
x

∥∥|∇| 4
d+2w

∥∥
L

d(d+2)
2(d−2)
t L

2d2(d+2)

d3−4d+16
x

+
∥∥|∇| 4

d+2Fz(u+ v)
∥∥
L

d(d+2)
8

t L

d2(d+2)

2d2+8d−16
x

‖w‖X0(I)

� ‖u+ v‖
4

d−2

X0(I)‖w‖X(I) +
∥∥|∇| 4

d+2Fz(u+ v)
∥∥
L

d(d+2)
8

t L

d2(d+2)

2d2+8d−16
x

‖w‖X(I).

Thus, the claim will follow from (3.47), once we establish∥∥|∇| 4
d+2Fz(u+ v)

∥∥
L

d(d+2)
8

t L

d2(d+2)

2d2+8d−16
x

(3.52)

� ‖u‖
8

d2−4

X(I) ‖∇u‖
4d

d2−4

S0(I) + ‖v‖
8

d2−4

X(I) ‖∇v‖
4d

d2−4

S0(I).

In dimensions 3 ≤ d ≤ 5, this follows from Lemma A.11 and (3.47):∥∥|∇| 4
d+2Fz(u+ v)

∥∥
L

d(d+2)
8

t L

d2(d+2)

2d2+8d−16
x

� ‖u+ v‖
6−d
d−2

X0(I)‖u+ v‖X(I) � ‖u+ v‖
4

d−2

X(I).

To derive (3.52) in dimensions d ≥ 6, we apply Lemma A.12 (with α := 4
d−2 ,

s := 4
d+2 , and σ := d

d+2 ) followed by Hölder’s inequality in the time variable,

Sobolev embedding, and (3.47):∥∥|∇| 4
d+2Fz(u+ v)

∥∥
L

d(d+2)
8

t L

d2(d+2)

2d2+8d−16
x

� ‖u+ v‖
8

d(d−2)

L

d(d+2)
2(d−2)
t L

2d2(d+2)

(d+4)(d−2)2
x

∥∥|∇| d
d+2 (u+ v)

∥∥ 4
d

L

d(d+2)
2(d−2)
t L

2d2(d+2)

d3+2d2−12d+16
x

�
∥∥|∇| d

d+2 (u+ v)
∥∥ 4

d−2

L

d(d+2)
2(d−2)
t L

2d2(d+2)

d3+2d2−12d+16
x

� ‖u‖
8

d2−4

X(I) ‖∇u‖
4d

d2−4

S0(I) + ‖v‖
8

d2−4

X(I) ‖∇v‖
4d

d2−4

S0(I).

This settles (3.52) and hence (3.51). �



NONLINEAR SCHRÖDINGER EQUATIONS AT CRITICAL REGULARITY 351

We have now all the tools we need to attack Theorem 3.8. As in the mass-
critical setting, the stability result for the energy-critical NLS will be obtained
iteratively from a short-time perturbation result.

Lemma 3.13 (Short-time perturbations). Let I be a compact time interval and
let ũ be an approximate solution to (3.5) on I × Rd in the sense that

iũt +Δũ = F (ũ) + e

for some function e. Assume that

‖ũ‖L∞
t Ḣ1

x(I×Rd) ≤ E

for some positive constant E. Moreover, let t0 ∈ I and let u(t0) obey

‖u(t0)− ũ(t0)‖Ḣ1
x
≤ E′

for some positive constant E′. Assume also the smallness conditions

‖ũ‖X(I) ≤ δ(3.53) ∥∥ei(t−t0)Δ
(
u(t0)− ũ(t0)

)∥∥
X(I)

≤ ε(3.54)

‖∇e‖N0(I) ≤ ε(3.55)

for some small 0 < δ = δ(E) and 0 < ε < ε0(E,E′). Then there exists a unique
solution u : I × Rd → C to (3.5) with initial data u(t0) at time t = t0 satisfying

‖u− ũ‖X(I) � ε(3.56)

‖∇(u− ũ)‖S0(I) � E′(3.57)

‖∇u‖S0(I) � E + E′(3.58)

‖F (u)− F (ũ)‖Y (I) � ε(3.59) ∥∥∇(
F (u)− F (ũ)

)∥∥
N0(I)

� E′.(3.60)

Proof. We prove the lemma under the additional assumption thatM(u) < ∞,
so that we can rely on Theorem 3.4 to guarantee that u exists. This additional as-
sumption can be removed a posteriori by the usual limiting argument: approximate
u(t0) in Ḣ1

x by {un(t0)}n ⊆ H1
x and apply the lemma with ũ = um, u = un, and

e = 0 to deduce that the sequence of solutions {un}n with initial data {un(t0)}n
is Cauchy in energy-critical norms and thus convergent to a solution u with ini-
tial data u(t0) which obeys ∇u ∈ S0(I). Thus, it suffices to prove (3.56) through
(3.60) as a priori estimates, that is we assume that the solution u exists and obeys
∇u ∈ S0(I).

We start by deriving some bounds on ũ and u. By Strichartz, Lemma 3.11,
(3.53), and (3.55),

‖∇ũ‖S0(I) � ‖ũ‖L∞
t Ḣ1

x(I×Rd) + ‖∇F (ũ)‖N0(I) + ‖∇e‖N0(I)

� E + ‖ũ‖
4

d−2

L
2(d+2)
d−2

t,x (I×Rd)

‖∇ũ‖S0(I) + ε

� E + δ
4c

d−2 ‖∇ũ‖1+
4(1−c)
d−2

S0(I) + ε,

where c = c(d) is as in Lemma 3.11. Choosing δ small depending on d,E and ε0
sufficiently small depending on E, we obtain

(3.61) ‖∇ũ‖S0(I) � E.
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Moreover, by Lemma 3.10, Lemma 3.12, (3.53), and (3.55),∥∥ei(t−t0)Δũ(t0)
∥∥
X(I)

� ‖ũ‖X(I) + ‖F (ũ)‖Y (I) + ‖∇e‖N0(I) � δ + δ
d+2
d−2 + ε � δ,

provided δ and ε0 are chosen sufficiently small. Combining this with (3.54) and the
triangle inequality, we obtain∥∥ei(t−t0)Δu(t0)

∥∥
X(I)

� δ.

Thus, another application of Lemma 3.10 combined with Lemma 3.12 gives

‖u‖X(I) �
∥∥ei(t−t0)Δu(t0)

∥∥
X(I)

+ ‖F (u)‖Y (I) � δ + ‖u‖
d+2
d−2

X(I).

Choosing δ sufficiently small, the usual bootstrap argument yields

‖u‖X(I) � δ.(3.62)

Next we derive the claimed bounds on w := u− ũ. Note that w is a solution to{
iwt +Δw = F (ũ+ w)− F (ũ)− e

w(t0) = u(t0)− ũ(t0).

Using Lemma 3.10 together with Lemma 3.11 and (3.55), we see that

‖w‖X(I) �
∥∥ei(t−t0)Δ

(
u(t0)− ũ(t0)

)∥∥
X(I)

+ ‖∇e‖N0(I) + ‖F (u)− F (ũ)‖Y (I)

� ε+ ‖F (u)− F (ũ)‖Y (I).

To estimate the difference of the nonlinearities, we use Lemma 3.12, (3.53), and
(3.61):

‖F (u)− F (ũ)‖Y (I) �
[
‖ũ‖

8
d2−4

X(I) ‖∇ũ‖
4d

d2−4

S0(I) + ‖w‖
8

d2−4

X(I) ‖∇w‖
4d

d2−4

S0(I)

]
‖w‖X(I)

� δ
8

d2−4E
4d

d2−4 ‖w‖X(I) + ‖∇w‖
4d

d2−4

S0(I)‖w‖
1+ 8

d2−4

X(I) .(3.63)

Thus, choosing δ sufficiently small depending only on E, we obtain

‖w‖X(I) � ε+ ‖∇w‖
4d

d2−4

S0(I)‖w‖
1+ 8

d2−4

X(I) .(3.64)

On the other hand, by the Strichartz inequality and the hypotheses,

‖∇w‖S0(I) � ‖u0 − ũ0‖Ḣ1
x
+ ‖∇e‖N0(I) +

∥∥∇(
F (u)− F (ũ)

)∥∥
N0(I)

� E′ + ε+
∥∥∇(

F (u)− F (ũ)
)∥∥

N0(I)
.(3.65)

To estimate the difference of the nonlinearities, we consider low and high dimen-
sions separately. Consider first 3 ≤ d ≤ 5. Using Hölder’s inequality followed by
Lemma 3.11, (3.53), (3.61), and (3.62),∥∥∇(

F (u)−F (ũ)
)∥∥

N0(I)

�
∥∥∇(

F (u)− F (ũ)
)∥∥

L

2d(d+2)

d2+2d+4
t L

2d2(d+2)

d3+4d2+4d−8
x (I×Rd)

� ‖∇ũ‖S0(I)

(
‖u‖X0(I) + ‖ũ‖X0(I)

) 6−d
d−2 ‖w‖X0(I) + ‖u‖

4
d−2

X0(I)‖∇w‖S0(I)

�
(
Eδ

6−d
d−2 + δ

4
d−2

)
‖∇w‖S0(I).(3.66)

Thus, choosing δ small depending only on E, (3.65) implies

‖∇w‖S0(I) � E′ + ε
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for 3 ≤ d ≤ 5. Consider now higher dimensions, that is, d ≥ 6. Using Hölder’s
inequality followed by Lemma 3.11, (3.61), and (3.62),∥∥∇(

F (u)− F (ũ)
)∥∥

N0(I)
�

∥∥∇(
F (u)− F (ũ)

)∥∥
L

2d(d+2)

d2+2d+4
t L

2d2(d+2)

d3+4d2+4d−8
x (I×Rd)

� ‖∇ũ‖S0(I)‖w‖
4

d−2

X0(I) + ‖u‖
4

d−2

X0(I)‖∇w‖S0(I)

� E‖w‖
4

d−2

X(I) + δ
4

d−2 ‖∇w‖S0(I).(3.67)

Therefore, taking δ sufficiently small, (3.65) implies

‖∇w‖S0(I) � E′ + ε+ E‖w‖
4

d−2

X(I)

for d ≥ 6. Collecting the estimates for low and high dimensions (and choosing
ε0 = ε0(E

′) sufficiently small), we obtain

‖∇w‖S0(I) � E′ + E‖w‖
4

d−2

X(I)(3.68)

for all d ≥ 3.
Combining (3.64) with (3.68), the usual bootstrap argument yields (3.56) and

(3.57), provided ε0 is chosen sufficiently small depending on E and E′. By the
triangle inequality, (3.57) and (3.61) imply (3.58).

Claims (3.59) and (3.60) follow from (3.63), (3.66), and (3.67) combined with
(3.56) and (3.57), provided we take δ sufficiently small depending on E and ε0
sufficiently small depending on E, E′. �

We are finally in a position to prove the energy-critical stability result.

Proof of Theorem 3.8. Our first goal is to show

(3.69) ‖∇ũ‖S0(I) ≤ C(E,L).

Indeed, by (3.39) we may divide I into J0 = J0(L, η) subintervals Ij = [tj , tj+1]
such that on each spacetime slab Ij × R

d

‖ũ‖
L

2(d+2)
d−2

t,x (Ij×Rd)

≤ η

for a small constant η > 0 to be chosen in a moment. By the Strichartz inequality
combined with (3.38) and (3.42),

‖∇ũ‖S0(Ij) � ‖ũ(tj)‖Ḣ1
x
+ ‖∇e‖N0(Ij) + ‖∇F (ũ)‖N0(Ij)

� E + ε+ ‖ũ‖
4

d−2

L
2(d+2)
d−2

t,x (Ij×Rd)

‖∇ũ‖S0(Ij)

� E + ε+ η
4

d−2 ‖∇ũ‖S0(Ij).

Thus, choosing η > 0 small depending on the dimension d and ε1 sufficiently small
depending on E, we obtain

‖∇ũ‖S0(Ij) � E.

Summing this over all subintervals Ij , we derive (3.69).
Using Lemma 3.11 together with (3.69) and then with (3.40) and (3.41), we

obtain

‖ũ‖X(I) ≤ C(E,L)(3.70) ∥∥ei(t−t0)Δ
(
u(t0)− ũ(t0)

)∥∥
X(I)

� ε
1

d+2 (E′)
d+1
d+2 .(3.71)
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By (3.70), we may divide I into J1 = J1(E,L) subintervals Ij = [tj , tj+1] such that
on each spacetime slab Ij × Rd

‖ũ‖X(Ij) ≤ δ

for some small δ = δ(E) > 0 as in Lemma 3.13. Moreover, taking ε1(E,E′, L) suffi-
ciently small compared to ε0(E,C(J1)E

′), (3.71) guarantees (3.54) with ε replaced
by εc � ε0, where c may be taken equal to 1

2(d+2) . Note that E′ is being replaced

by C(J1)E
′, as the energy of the difference of the two initial data may increase with

each iteration.
Thus, choosing ε1 sufficiently small (depending on J1, E, and E′), we may

apply Lemma 3.13 to obtain for each 0 ≤ j < J1 and all 0 < ε < ε1,

(3.72)

‖u− ũ‖X(Ij) ≤ C(j)εc

‖u− ũ‖Ṡ1(Ij)
≤ C(j)E′

‖u‖Ṡ1(Ij)
≤ C(j)(E + E′)

‖F (u)− F (ũ)‖Y (Ij) ≤ C(j)εc∥∥∇(
F (u)− F (ũ)

)∥∥
N0(Ij)

≤ C(j)E′,

provided we can show∥∥ei(t−tj)Δ
(
u(tj)− ũ(tj)

)∥∥
X(Ij)

� εc and ‖u(tj)− ũ(tj)‖Ḣ1
x(R

d) � E′(3.73)

for each 0 ≤ j < J1. By Lemma 3.10 and the inductive hypothesis,∥∥ei(t−tj)Δ
(
u(tj)− ũ(tj)

)∥∥
X(Ij)

�
∥∥ei(t−t0)Δ

(
u(t0)− ũ(t0)

)∥∥
X(Ij)

+ ‖∇e‖N0(I) + ‖F (u)− F (ũ)‖Y ([t0,tj ])

� εc + ε+

j−1∑
k=0

C(k)εc.

Similarly, by the Strichartz inequality and the inductive hypothesis,

‖u(tj)−ũ(tj)‖Ḣ1
x

� ‖u(t0)− ũ(t0)‖Ḣ1
x
+ ‖∇e‖N0([t0,tj ]) +

∥∥∇(
F (u)− F (ũ)

)∥∥
N0([t0,tj ])

� E′ + ε+

j−1∑
k=0

C(k)E′.

Taking ε1 sufficiently small depending on J1, E, and E′, we see that (3.73) is
satisfied.

Summing the bounds in (3.72) over all subintervals Ij and using Lemma 3.11,
we derive (3.43) through (3.45). This completes the proof of the theorem. �

4. A word from our sponsor: Harmonic Analysis

Without doubt, recent progress on nonlinear Schrödinger equations at critical
regularity has been made possible by the introduction of important ideas from
harmonic analysis, particularly some related to the restriction conjecture.
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4.1. The Gagliardo–Nirenberg inequality. The sharp constant for the
Gagliardo–Nirenberg inequality was derived by Nagy [63], in the one-dimensional
setting, and by Weinstein [105] for higher dimensions. We begin by recounting
this theorem. After that, we will present two applications to nonlinear Schrödinger
equations.

Theorem 4.1 (Sharp Gagliardo–Nirenberg, [63, 105]). Fix d ≥ 1 and 0 < p <
∞ for d = 1, 2 or 0 < p < 4

d−2 for d ≥ 3. Then for all f ∈ H1
x(R

d),

(4.1)
∥∥f∥∥p+2

Lp+2
x

≤ 2(p+2)
4−p(d−2)

(
pd

4−p(d−2)

)− pd
4 ‖Q‖−p

L2
x

∥∥f∥∥p+2− pd
2

L2
x

∥∥∇f
∥∥ pd

2

L2
x
.

Here Q denotes the unique positive radial Schwartz solution to ΔQ + Qp+1 = Q.
Moreover, equality holds in (4.1) if and only if f(x) = αQ(λ(x − x0)) for some
α ∈ C, λ ∈ (0,∞), and x0 ∈ Rd.

Proof. The traditional (non-sharp) Gagliardo–Nirenberg inequality says

(4.2) J(f) :=

∥∥f∥∥p+2

Lp+2
x∥∥f∥∥p+2− pd

2

L2
x

∥∥∇f
∥∥ pd

2

L2
x

≤ C.

What we seek here is the optimal constant C = Cd in this inequality. We will
present only the proof for d ≥ 2, following [105].

It suffices to consider merely non-negative spherically symmetric functions,
since we may replace f by its spherically symmetric decreasing rearrangement f∗

(cf. [54, §7.17]). The Ḣ1
x norm of f∗ is no larger than that of f , while the L2

x and
L2+p
x norms are invariant under f �→ f∗. Thus J(f) ≤ J(f∗).

Let fn be an optimizing sequence (of non-negative spherically symmetric func-
tions). By rescaling space and the values of the function, we may assume that
‖∇fn‖2 = ‖fn‖2 = 1. We are now ready for the key step in the argument: The
embedding H1

rad ↪→ L2+p
x is compact; see Lemma A.4. Thus we may deduce that,

up to a subsequence, fn converge strongly in L2+p
x . Additionally, since fn is an

optimizing sequence, we can upgrade the weak convergence of fn in H1
x (courtesy

of Alaoglu’s theorem) to strong convergence.
In the previous paragraph, we deduced that optimizers exist, that is, there are

functions f maximizing J(f). Moreover, f has been normalized to obey ‖∇f‖2 =

‖f‖2 = 1, which implies Cd = ‖f‖p+2
p+2. By studying small Schwartz-space pertur-

bations of f , we quickly see that any optimizer f must be a distributional solution
to

(4.3) (p+ 2)f1+p − Cd

{
(p+ 2− pd

2 )f − pd
2 Δf

}
= 0.

This equation can be reduced to ΔQ+Qp+1 = Q by setting

f(x) = α
1
pQ(β

1
2x) with β = 4−p(d−2)

pd and α = pdβ
2(p+2)Cd.

Taking advantage of ‖f‖2 = 1, we may deduce Cd = 2(p+2)
4−p(d−2)β

pd/4‖Q‖−p
2 .

We now turn to the uniqueness question. It is very tempting to believe that
J(f) ≤ J(f∗) with equality if and only if f(x) = eiθf∗(x + x0) for some θ ∈
[0, 2π) and x0 ∈ Rd. (This would immediately imply that any optimizer is radially
symmetric up to translations.) Alas, it is not true without an additional constraint,
for instance, that ∇f∗ does not vanish on a set of positive measure; see [11].
Fortunately for us, as f∗ is a non-zero spherically symmetric solution to (4.3),
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∇f∗ cannot vanish on a set of positive measure; indeed this is a basic uniqueness
property of ODEs.

This leaves us to show uniqueness of positive spherically symmetric solutions
of ΔQ+Qp+1 = Q, for which we refer the reader to [49]. �

Remark. That rearrangement of a non-spherically-symmetric function may
fail to reduce the Ḣ1

x norm can be demonstrated with a simple example, which we
will now describe. Let φ ∈ C∞(Rd) be supported on {|x| ≤ 2} and obey φ(x) = 1
when |x| ≤ 1. The skewed ‘wedding cake’ f(x) = φ(x)+φ(4(x−x0)) with |x0| ≤ 1

2

has Ḣ1
x norm equal to that of its spherically-symmetric decreasing rearrangement.

The main application of Theorem 4.1 in these notes is embodied by the following

Corollary 4.2 (Kinetic energy trapping). Let f ∈ H1
x(R

d) obey ‖f‖2 < ‖Q‖2.
Then ‖∇f‖22 � E(f), where E denotes the energy associated to the mass-critical
focusing NLS. The implicit constant depends only on ‖f‖2/‖Q‖2.

Proof. Exercise. �
Combining this with the standard local well-posedness result for subcritical

equations and the conservation of mass and energy, we obtain:

Corollary 4.3 (Focusing mass-critical NLS in H1
x, [105]). For initial data

u(0) ∈ H1
x obeying ‖u(0)‖2 < ‖Q‖2, the focusing mass-critical NLS is globally

wellposed.

Proof. Exercise. �
Note that this result does not claim that these global solutions scatter. In-

deed, scaling shows that scattering for H1
x initial data is essentially equivalent to

scattering for general L2
x initial data.

4.2. Refined Sobolev embedding. In this subsection, we will describe sev-
eral refinements of the classical Sobolev embedding inequality. The first is the
determination of the optimal constant in that inequality. The following theorem is
a special case of results of Aubin [2] and Talenti [86] (see also [5, 73]):

Theorem 4.4 (Sharp Sobolev embedding). For d ≥ 3 and f ∈ Ḣ1
x(R

d),

(4.4) ‖f‖
L

2d
d−2
x

≤ Cd‖∇f‖L2
x

with equality if and only if f = αW (λ(x − x0)) for some α ∈ C, λ ∈ (0,∞), and
x0 ∈ Rd. Here W denotes

(4.5) W (x) :=
(
1 + 1

d(d−2) |x|
2
)− d−2

2 ,

which is the unique non-negative radial Ḣ1
x solution to ΔW + W

d+2
d−2 = 0, up to

scaling.

In this context, the analogue of Corollary 4.2 is

Corollary 4.5 (Energy trapping, [38]). Assume E(u0) ≤ (1 − δ0)E(W ) for
some δ0 > 0. Then there exists a positive constant δ1 so that if ‖∇u0‖2 ≤ ‖∇W‖2,
then

‖∇u0‖22 ≤ (1− δ1)‖∇W‖22.
Here E denotes the energy functional associated to the focusing energy-critical NLS.
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Proof. Exercise. �

We will discuss the proof of Theorem 4.4 in some detail as it is our first brush
with our sworn enemy: scaling invariance. First let us note that the argument used
to prove Theorem 4.1 will not work here. For instance, fn(x) = n(d−2)/2W (nx)
is a radial optimizing sequence that does not converge. To put it another way,
Lemma A.4 fails for p = 2d

d−2 because of scaling.

There are several proofs of Theorem 4.4. The textbook [54] gives an elegant
treatment relying on the connection to the Hardy–Littlewood–Sobolev inequality
and a (hidden) conformal symmetry. We will be giving a proof that does not rely
heavily on rearrangement ideas, since we wish to introduce some techniques that
will be important when we discuss improvements to Strichartz inequality.

Lions gave a rearrangement-free proof of the existence of optimizers as one of
the first applications of the concentration compactness principle; see [56]. The
proof we present is a descendant of the one given there. The philosophy underly-
ing concentration compactness has also led to a second kind of refinement to the
classical Sobolev embedding, which has proved valuable in the treatment of the
energy-critical NLS. The goal is not to understand the maximal possible value of
the ratio J(f) := ‖f‖2d/(d−2) ÷ ‖∇f‖2, but rather for what kind of functions this
is big (or equivalently, for which f it is small). Before giving a precise statement,
we quickly introduce some of the ideas that will motivate the formulation. We will
then revisit the Gagliardo–Nirenberg inequality from this perspective.

Let A : X → Y be a linear transformation between two Banach spaces. Recall
that A is called compact if for every bounded sequence fn ∈ X, the sequence Afn
has a convergent subsequence. A slightly more convoluted way of saying this is the
following.

Exercise. Suppose X is reflexive. Then A : X → Y is compact if and only
if for any bounded sequence {fn} ⊆ X there exists φ ∈ X so that along some
subsequence fn = φ+ rn with Arn → 0 in Y . (This may fail if X is not reflexive.)

Even for 2 < q < 2d
d−2 , the embedding H1

x ↪→ Lq
x is not compact since given any

non-zero f ∈ H1
x(R

d), the sequence of translates fn(x) = f(x−xn), associated to a
sequence xn → ∞ in Rd, is uniformly bounded inH1

x(R
d), but has no Lq

x-convergent
subsequence. A first attempt to address this failure of compactness, might be to
seek a convergent subsequence from among the translates of the original sequence.
This does not quite work as can be seen by considering fn(x) = φ1(x)+φ2(x−xn)
for some fixed φ1, φ2 ∈ H1

x(R
d).

Having just seen the example of a sequence that breaks into two ‘bubbles’ we
may begin to despair that a sequence fn may break into infinitely many small
bubbles dancing around R

d more or less at random. It is time for some good news:
q > 2, which is to say that in the inequality

‖f
∥∥
Lq

x
� ‖f‖1−θ

L2
x

‖∇f‖θL2
x
, θ = (q−2)d

2q ,

the power of f integrated on the left-hand side is larger than the power of f and
∇f that is integrated on the right-hand side. The significance of this is that the �q

norm of many small numbers is much much smaller than the �2 norm of the same
collection of numbers. Therefore, a large collection of tiny bubbles whose total H1

x

norm is of order one will have a negligible Lq
x norm.
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Theorem 4.6 (The Gagliardo–Nirenberg inequality: bubble decomposition,
[33]). Fix d ≥ 2, 2 < q < 2d

d−2 , and let fn be a bounded sequence in H1
x(R

d). Then

there exist J∗ ∈ {0, 1, 2, . . .}∪{∞}, {φj}J∗

j=1 ⊆ H1
x, and {xj

n}J
∗

j=1 ⊆ Rd so that along
some subsequence in n we may write

(4.6) fn(x) =

J∑
j=1

φj(x− xj
n) + rJn(x) for all 0 ≤ J ≤ J∗,

where

lim sup
J→J∗

lim sup
n→∞

∥∥rJn∥∥Lq
x
= 0(4.7)

sup
J

lim sup
n→∞

∣∣∣∣‖fn‖2H1
x
−

( J∑
j=1

‖φj‖2H1
x
+ ‖rJn‖2H1

x

)∣∣∣∣ = 0(4.8)

lim sup
J→J∗

∣∣∣∣lim sup
n→∞

∥∥fn∥∥qLq
x
−

J∑
j=1

∥∥φj
∥∥q

Lq
x

∣∣∣∣ = 0.(4.9)

Moreover, for each j 
= j′, we have |xj
n − xj′

n | → ∞. When J∗ is finite, we define
lim supJ→J∗ a(J) := a(J∗) for any a : {0, 1, . . . , J∗} → R.

We will not make use of this result and we leave its proof to the avid reader who
wishes to cement their understanding of the methods described in this subsection.
Note that φj represent the bubbles into which the subsequence is decomposing and
J∗ is their number. They may be regarded as ordered by decreasing H1

x norm. The
functions rJn represent a remainder term, which is guaranteed to be asymptotically
irrelevant in Lq

x, but need not converge to zero in H1
x. This is why rJn needs to

appear in (4.8), even as J → ∞. Indeed, this is the essence of compactness.
Regarding (4.8), we also wish to point out that the divergence of the xj

n from one
another implies that the H1

x norms of the individual bubbles decouple. That they
also decouple from rJn is a more subtle statement. It is an expression of the fact
that for each pair j ≤ J ,

rJn(x+ xj
n) ⇀ 0 weakly in H1

x,

which is built into the way φj are chosen. (It can also be derived a posteriori from
the conclusions of this theorem, cf. [44, Lemma 2.10].)

The analogue of Theorem 4.6 for Sobolev embedding reads very similarly; it is
merely necessary to incorporate the scaling symmetry.

Theorem 4.7 (Sobolev embedding: bubble decomposition, [26]). Fix d ≥ 3

and let fn be a bounded sequence in Ḣ1
x(R

d). Then there exist J∗ ∈ {0, 1, 2, . . .} ∪
{∞}, {φj}J∗

j=1 ⊆ Ḣ1
x, {xj

n}J
∗

j=1 ⊆ Rd, and {λj
n}J

∗

j=1 ⊆ (0,∞) so that along some
subsequence in n we may write

fn(x) =

J∑
j=1

(λj
n)

2−d
2 φj

(
(x− xj

n)/λ
j
n

)
+ rJn(x) for all 0 ≤ J ≤ J∗(4.10)

with the following five properties:

lim sup
J→J∗

lim sup
n→∞

∥∥rJn∥∥
L

2d
d−2
x

= 0(4.11)
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sup
J

lim sup
n→∞

∣∣∣∣‖fn‖2Ḣ1
x
−

(
‖rJn‖2Ḣ1

x
+

J∑
j=1

‖φj‖2
Ḣ1

x

)∣∣∣∣ = 0(4.12)

lim sup
J→J∗

lim sup
n→∞

∣∣∣∣∥∥fn∥∥ 2d
d−2

L
2d

d−2
x

−
J∑

j=1

∥∥φj
∥∥ 2d

d−2

L
2d

d−2
x

∣∣∣∣ = 0(4.13)

lim inf
n→∞

[
|xj

n − xj′

n |2

λj
nλ

j′
n

+
λj
n

λj′
n

+
λj′

n

λj
n

]
= ∞ for all j 
= j′(4.14)

(λj
n)

d−2
2 rJn

(
λj
nx+ xj

n

)
⇀ 0 weakly in Ḣ1

x for each j ≤ J .(4.15)

Notice that (4.14) says that each pair of bubbles are either widely separated
in space or live at very different length scales (or possibly both). This time, we
have incorporated the strong form of rJn decoupling, (4.15), into the statement of
the theorem.

Before embarking on the proofs of Theorems 4.4 and 4.7, let us briefly de-
part on a small historical excursion. We will, at least, explain why we use the
word ‘bubble’. In [76], Sacks and Uhlenbeck proved the existence of minimal-area
spheres in Riemannian manifolds in certain (higher) homotopy classes. They also
gave a vivid explanation of why the result is merely for some homotopy classes:
sometimes the minimal sphere is not really a sphere, but two (or more) spheres
joined by one-dimensional geodesic ‘umbilical cords’. This obstruction necessitated
an ingenious snipping procedure, which can be viewed as an early precursor to the
bubble decomposition above. (In this setting, the group of translations is replaced
by the group of conformal maps of S2, that is, of Möbius transformations.)

Minimal surfaces correspond to zero mean curvature. In general, soap films
produce surfaces with constant mean curvature. In fact, the mean curvature is
proportional to the pressure difference between the two sides; this can be non-zero,
as in the case of a spherical bubble. Around the same time as the work of Sacks
and Uhlenbeck described above, Wente, [106], considered the problem of a large
bubble blown on a (comparatively) small wire. He shows that the resulting bubble
is asymptotically spherical. The result relies on the extremal property by which
the bubble is constructed and, thanks to a subadditivity-type argument deep within
the proof, avoids the possibility of multiple bubbles. Consideration of more gen-
eral (non-extremal) surfaces of constant mean curvature necessitates a full bubble
decomposition. This was worked out independently by Brézis and Coron, [9], and
Struwe, [85].

Shortly prior to its appearance in the highly nonlinear setting of constant mean
curvature surfaces, Struwe proved a bubble decomposition for the energy-critical

elliptic problem Δu + |u| 4
d−2 u = 0. This is clearly closely related to Sobolev em-

bedding. Nonetheless, Theorem 4.7 is from [26] (building upon some earlier work)
as noted above.

As we will see, there is a simple trick for finding the translation parameters xj
n

appearing in (4.10); it uses little more than Hölder’s inequality. To deal with the
scaling symmetry we need something a little more sophisticated. Littlewood–Paley
theory is the natural choice; separating scales is exactly what it does!

Proposition 4.8 (An embedding). For d ≥ 3 and f ∈ S(Rd),

(4.16)
∥∥f∥∥

L
2d

d−2
x

�
∥∥∇f

∥∥ d−2
d

L2
x

· sup
N∈2Z

∥∥fN∥∥ 2
d

L
2d

d−2
x

.
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Proof. First we give the proof for d ≥ 4. The key ingredient is the well-known
estimate for the Littlewood–Paley square function, Lemma A.7, which we use in
the first step. We also use Bernstein’s inequality, Lemma A.6.

‖f‖
2d

d−2

L
2d

d−2
x

�
∫
Rd

(∑
M

|fM |2
) d

2(d−2)
(∑

N

|fN |2
) d

2(d−2)

dx

�
∑

M≤N

∫
Rd

|fM | d
d−2 |fN | d

d−2 dx

�
(
sup
K∈2Z

∥∥fK∥∥
L

2d
d−2
x

) 4
d−2 ∑

M≤N

∥∥fM∥∥
L

2d
d−4
x

∥∥fN∥∥
L2

x

�
(
sup
K∈2Z

∥∥fK∥∥
L

2d
d−2
x

) 4
d−2 ∑

M≤N

M−1N−1
∥∥∇fM

∥∥
L

2d
d−4
x

∥∥∇fN
∥∥
L2

x

�
(
sup
K∈2Z

∥∥fK∥∥
L

2d
d−2
x

) 4
d−2 ∑

M≤N

MN−1
∥∥∇fM

∥∥
L2

x

∥∥∇fN
∥∥
L2

x

�
(
sup
K∈2Z

∥∥fK∥∥
L

2d
d−2
x

) 4
d−2

( ∑
K∈2Z

∥∥∇fK
∥∥2
L2

x

)
.

In passing from the first line to the second, we used that d
2(d−2) ≤ 1, which is

the origin of the restriction d ≥ 4. To treat three dimensions, one modifies the
argument as follows:

‖f‖6L6
x

�
∫
Rd

(∑
K

|fK |2
)(∑

M

|fM |2
)(∑

N

|fN |2
)
dx

�
∑

K≤M≤N

‖fK‖L6
x
‖fK‖L∞

x
‖fM‖2L6

x
‖fN‖L3

x
‖fN‖L6

x

�
(
sup
L∈2Z

∥∥fL∥∥4L6
x

) ∑
K≤M≤N

K
3
2N

1
2 ‖fK‖L2

x
‖fN‖L2

x

�
(
sup
L∈2Z

∥∥fL∥∥4L6
x

) ∑
K≤M≤N

K
1
2N− 1

2 ‖∇fK‖L2
x
‖∇fN‖L2

x
,

which leads to (4.16) via Schur’s test and other elementary considerations. �

Our next result introduces the important idea of inverse inequalities. The
content of such inequalities is as follows: if a bounded sequence in some strong norm

(e.g. Ḣ1
x) does not converge weakly to zero in a weaker norm (e.g., L

2d/(d−2)
x ), then

this can be attributed to the sequence containing a bubble of concentration. While
we have not seen the following precise statement in print, it is a natural off-shoot
of existing ideas.

Proposition 4.9 (Inverse Sobolev Embedding). Fix d ≥ 3 and let {fn} ⊆
Ḣ1

x(R
d). If

(4.17) lim
n→∞

‖fn‖Ḣ1
x(R

d) = A and lim inf
n→∞

‖fn‖
L

2d
d−2
x (Rd)

= ε,
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then there exist a subsequence in n, φ ∈ Ḣ1
x(R

d), {λn} ⊆ (0,∞), and {xn} ⊆ Rd

so that along the subsequence, we have the following three properties:

λ
d−2
2

n fn(λnx+ xn) ⇀ φ(x) weakly in Ḣ1
x(R

d)(4.18)

lim
n→∞

[∥∥fn(x)∥∥2Ḣ1
x
−

∥∥fn(x)− λ
2−d
2

n φ
(
λ−1
n (x− xn)

)∥∥2
Ḣ1

x

]
= ‖φ‖2

Ḣ1
x

� A2
(
ε
A

) d2

2(4.19)

lim sup
n→∞

∥∥∥fn(x)− λ
2−d
2

n φ
(
λ−1
n (x− xn)

)∥∥∥ 2d
d−2

L
2d

d−2
x (Rd)

≤ ε
2d

d−2

[
1− c

(
ε
A

) d(d+2)
2

]
.(4.20)

Here c is a (dimension-dependent) constant.

Proof. By passing to a subsequence, we may assume that ‖fn‖ 2d
d−2

→ ε from
the very beginning. This will not be important until we turn our attention to (4.20).

By Proposition 4.8, there exists {Nn} ⊆ 2Z so that

lim inf
n→∞

‖PNn
fn‖

L
2d

d−2
x (Rd)

� ε
d
2A− d−2

2 .

We set λn = N−1
n . To find xn, we use Hölder’s inequality:

ε
d
2 A− d−2

2 � lim inf
n→∞

∥∥PNn
fn

∥∥
L

2d
d−2
x (Rd)

� lim inf
n→∞

∥∥PNn
fn

∥∥ d−2
d

L2
x(R

d)

∥∥PNn
fn

∥∥ 2
d

L∞
x (Rd)

� lim inf
n→∞

(
AN−1

n

) d−2
d

∥∥PNn
fn

∥∥ 2
d

L∞
x (Rd)

.

That is, there exists xn ∈ Rd so that

(4.21) lim inf
n→∞

N
2−d
2

n

∣∣[PNn
fn](xn)

∣∣ � ε
d2

4 A1− d2

4 .

Having chosen the parameters λn and xn, Alaoglu’s theorem guarantees that
(4.18) holds for some subsequence in n and some φ ∈ Ḣ1

x. To see that φ is non-zero,
let us write k for the convolution kernel of the Littlewood–Paley projection onto
frequencies of size one. That is, let k := P1δ0. Using (4.21) we obtain

|〈k, φ〉| = lim
n→∞

∣∣∣∣
∫
Rd

k̄(x)N
− d−2

2
n fn(xn +N−1

n x) dx

∣∣∣∣
= lim

n→∞
N

2−d
2

n

∣∣∣∣
∫
Rd

Nd
n k̄

(
Nn(y − xn)

)
fn(y) dy

∣∣∣∣
= lim

n→∞
N

2−d
2

n

∣∣[PNn
fn](xn)

∣∣
� ε

d2

4 A1− d2

4 .

This implies that ‖∇φ‖2 � ‖φ‖ 2d
d−2

� ε
d2

4 A1− d2

4 . To deduce (4.19) we apply the

following basic Hilbert-space fact:

(4.22) gn ⇀ g =⇒ ‖gn‖2 − ‖g − gn‖2 → ‖g‖2

with gn := λ
d−2
2

n fn(λnx+ xn).
To obtain (4.20), we are going to need to work a little harder (cf. the warning

below). First we note that since gn is bounded in Ḣ1
x(R

d), we may pass to a further
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subsequence so that gn → φ in L2
x-sense on any compact set (via the Rellich–

Kondrashov Theorem). By passing to yet another subsequence, we can then guar-
antee that gn → φ almost everywhere in R

d. Thus we may apply Lemma A.5 to
obtain

lim sup
n→∞

∥∥∥λd−2
2

n fn(λnx+ xn)− φ(x)
∥∥∥ 2d

d−2

L
2d

d−2
x (Rd)

= ε
2d

d−2 −
∥∥φ∥∥ 2d

d−2

L
2d

d−2
x (Rd)

.

This gives (4.20) after taking into account the invariance of the norm under sym-
metries. �

Warning. It is very tempting to believe that extracting a bubble automatically
reduces the Lq

x(R
d) norm, which is to say that some adequate analogue of (4.22)

holds outside of Hilbert spaces. This is not the case; indeed, for 1 ≤ q < ∞,

(4.23)
(
gn ⇀ g in Lq

x ⇒ lim sup
[
‖gn‖Lq

x
− ‖gn − g‖Lq

x

]
≥ 0

)
⇒ q = 2.

To see this, it suffices to consider the case where gn and g are supported on the
same unit cube and where g is equal to a constant there. Under these restrictions,
(4.23) reduces to the following probabilistic statement:(

E
{
|X|q} ≥ E

{
|X − E(X)|q

}
for all random variables X

)
⇒ q = 2.

This in turn can be verified by a random variable taking only two values. Indeed,
let X be the random variable defined by X = 2 with probability p and X = −1
with probability 1− p and consider p close to 1

3 .

With Proposition 4.9 in hand, we will be able to quickly complete the

Proof of Theorem 4.7. As ‖∇fn‖2 is a bounded sequence, we may pass to
a subsequence so that it converges. Applying Proposition 4.9 recursively leads to

f1
n := fn(x)− (λ1

n)
2−d
2 φ1

(
(x− x1

n)/λ
1
n

)
f2
n := f1

n(x)− (λ2
n)

2−d
2 φ2

(
(x− x2

n)/λ
2
n

)
...

f j+1
n := f j

n(x)− (λj
n)

2−d
2 φj

(
(x− xj

n)/λ
j
n

)
,

where in passing from each iteration to the next we successively require n to lie in
an ever smaller (infinite!) subset of the integers. This process terminates (and J∗

is finite) as soon as we have lim infn→∞ ‖f j0
n ‖ 2d

d−2
= 0; indeed, J∗ = j0. In this case

we restrict n to lie in the final subsequence. If instead J∗ = ∞, we simply restrict
n to lie in the diagonal subsequence.

Setting r0n := fn and rJn := fJ
n for 1 ≤ J ≤ J∗, it remains to check the various

conclusions of the theorem. Equation (4.11) is inherited directly from (4.20). We
turn now to (4.14); this is a consequence of (4.18) and the fact that (by our choice
of J∗) all φj are non-zero. Claim (4.15) follows from (4.14) and (4.20). Next, by
approximating φj by C∞

c functions, it is not difficult to deduce (4.13) from (4.11)
and (4.14). Lastly, (4.12) follows from (4.14) and (4.15) together with (4.22). �

Proof of Theorem 4.4. The key point is to show the existence of optimizers;
once this is known, one may repeat the arguments from Theorem 4.1.
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Let fn be a maximizing sequence for the ratio

J(f) := ‖f‖
2d

d−2

L
2d

d−2
x

÷ ‖∇f‖
2d

d−2

L2
x

with ‖∇fn‖2 ≡ 1. Applying Theorem 4.7 and passing to the requisite subsequence,
we find

(4.24) sup
f

J(f) = lim
n→∞

J(fn) =
∞∑
j=1

∥∥φj
∥∥ 2d

d−2

L
2d

d−2
x

≤ sup
f

J(f)
∞∑
j=1

∥∥∇φj
∥∥ 2d

d−2

L2
x
.

We also find
∑∞

j=1 ‖∇φj‖22 ≤ 1, where the inequality stems from the omission of

rJn . Combining these two observations with 2d
d−2 > 2, we see that only one of the φj

may have non-zero norm; indeed, we must also have ‖∇φj‖2 = 1. Thus fn can be
made to converge strongly by applying symmetries to each function. This confirms
the existence of an optimizer. �

While Proposition 4.8 seems a little odd, it is well suited to proving Theo-
rem 4.7, as we saw. To finish this subsection, we will describe some more natural
improved Sobolev embeddings. These are expressed in terms of Besov norms,

‖f‖Ḃs
p,q

:=

( ∑
N∈2Z

∥∥NsfN
∥∥q

Lp
x

) 1
q

,

though we will not presuppose any familiarity with Besov spaces. The following
result is a strengthening of Sobolev embedding in terms of Besov spaces (cf. [48,
p. 56] or [99, p. 170]):

Proposition 4.10 (Besov embedding). For d ≥ 3 and f ∈ S(Rd),

(4.25)
∥∥f∥∥ 2d

d−2

L
2d

d−2
x

�
∑
N∈2Z

∥∥NfN
∥∥ 2d

d−2

L2
x

∼
∑
N∈2Z

∥∥∇fN
∥∥ 2d

d−2

L2
x

That is, Ḃ1
2,2d/(d−2) ↪→ L

2d/(d−2)
x .

Proof. Exercise: prove this result by mimicking the proof of Proposition 4.8.
�

By applying Hölder’s inequality to the sum over 2Z, we see that this proposition

directly implies Ḃ1
2,q ↪→ L

2d/(d−2)
x for any q ≤ 2d

d−2 (e.g., q = 2 corresponds to the

usual Sobolev embedding). Larger values of q are forbidden, as can be seen by
considering a linear combination of many many bumps that are well separated
both in space and in characteristic length scale. In this sense, the embedding given
above is sharp.

The following variant of Proposition 4.10 forms the basis for the proof of The-
orem 4.7 in [26]; see [26, Proposition 3.1] or [27, Théorème 1].

Corollary 4.11 (Interpolated Besov embedding, [27]). For d ≥ 3 and f ∈
S(Rd),

(4.26)
∥∥f∥∥

L
2d

d−2
x

�
∥∥f∥∥1− 2

d

Ḣ1
x

· sup
N∈2Z

∥∥∇fN
∥∥ 2

d

L2
x
∼

∥∥f∥∥1− 2
d

Ḃ1
2,2

∥∥f∥∥ 2
d

Ḃ1
2,∞

.

Proof. Exercise ×2: deduce this from Proposition 4.10 and then indepen-
dently from Proposition 4.8. �
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Note that relative to Proposition 4.8, the only difference is that the supremum

factor contains the Ḣ1
x norm rather than the L

2d/(d−2)
x norm. It is this change that

allowed us to include (4.20) in Proposition 4.9, which in turn simplified the proof
of Theorem 4.7.

4.3. In praise of stationary phase. Although we are blessed with a simple
exact formula for the kernel of the free propagator eitΔ,

(4.27) eitΔ(x, y) = (2π)−d

∫
Rd

eiξ·(x−y)−it|ξ|2 dξ = (4πit)−d/2ei|x−y|2/4t,

many of its properties are more clearly visible from the method of stationary phase.
Our first result is perhaps the best known of this genre. The name we use

originates in optics, where it describes diffraction patterns in the (monochromatic)
paraxial approximation. In particular, it shows how a laser pointer can be used to
draw Fourier transforms.

Lemma 4.12 (Fraunhofer formula). For ψ ∈ L2
x(R

d) and t → ±∞,

(4.28)
∥∥[eitΔψ](x)− (2it)−

d
2 ei|x|

2/4tψ̂
(
x
2t

)∥∥
L2

x
→ 0.

Proof. While this asymptotic is most easily understood in terms of stationary
phase, the simplest proof dodges around this point. By (4.27), we have the identity

LHS(4.28) =
∥∥∥(4πit)−d

2

∫
Rd

ei|x−y|2/4t[1− e−i|y|2/4t]ψ(y) dy
∥∥∥
L2

x

=
∥∥∥∫

Rd

eitΔ(x, y) [1− e−i|y|2/4t]ψ(y) dy
∥∥∥
L2

x

=
∥∥[1− e−i|y|2/4t]ψ(y)

∥∥
L2

y
.(4.29)

The result now follows from the dominated convergence theorem. �

The Fraunhofer formula clearly shows that wave packets centered at frequency
ξ travel with velocity 2ξ. That is, the group velocity is 2ξ, in the usual jargon. By
comparison, plane wave solutions, eiξ·(x−ξt), travel at the phase velocity ξ. As one
last piece of jargon, we define the dispersion relation: it is the relation ω = ω(ξ), so
that plane wave solutions take the form eiξ·x−iωt. In particular, for the Schrödinger
equation, ω = |ξ|2.

The remaining two results in this subsection are both expressions of the dis-
persive nature of the free propagator, that is, of the fact that different frequencies
travel at different speeds. In the first instance, this is quite clear. The second result
shows that high-frequency waves spend little time near the spatial origin.

Lemma 4.13 (Kernel estimates). For any m ≥ 0, the kernel of the linear prop-
agator obeys the following estimates:

(4.30)
∣∣(PNeitΔ)(x, y)

∣∣�m

⎧⎪⎨
⎪⎩
|t|−d/2 : |x− y| ∼ N |t| ≥ N−1

Nd

〈N2t〉m〈N |x− y|〉m : otherwise.

Proof. Exercise in stationary phase. �
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Proposition 4.14 (Local Smoothing, [21, 79, 100]). Fix ϕ ∈ C∞
c (Rd). Then

for all f ∈ L2
x(R

d) and R > 0,

(4.31)

∫
R

∫
Rd

∣∣[|∇| 12 eitΔf
]
(x)

∣∣2ϕ(x/R) dx dt �ϕ R‖f‖2L2
x(R

d)

and so,

(4.32)

∫
R

∫
Rd

∣∣[|∇| 12 eitΔf
]
(x)

∣∣2〈x〉−1−ε dx dt �ε ‖f‖2L2
x(R

d)

for any ε > 0.

Proof. Both (4.31) and (4.32) follow from the same argument (though the
second can also be deduced from the first by summing over dyadic R): Given
a : Rd → [0,∞),∫∫ ∣∣[|∇| 12 eitΔf

]
(x)

∣∣2a(x) dx dt ∼ ∫∫ |ξ| 12 |η| 12
|ξ|+ |η| â(η − ξ)δ(|ξ| − |η|)f̂(ξ)f̂(η) dξ dη.

The result now follows from Schur’s test. �

Exercise. Show that for d ≥ 2, one may make the replacement |∇| �→ 〈∇〉 in
(4.32) provided one also requires ε ≥ 1.

The next result is Lemma 3.7 from [41] extended to all dimensions. This will
be used in the proof of Lemma 5.7. We give a quantitative proof.

Corollary 4.15. Given φ ∈ Ḣ1
x(R

d),

‖∇eitΔφ‖3L2
t,x([−T,T ]×{|x|≤R}) � T

2
d+2R

3d+2
2(d+2) ‖eitΔφ‖

L
2(d+2)/(d−2)
t,x

‖∇φ‖2L2
x
.

Proof. Given N > 0, Hölder’s and Bernstein’s inequalities imply

‖∇eitΔφ<N‖L2
t,x([−T,T ]×{|x|≤R}) � T 2/(d+2)R2d/(d+2)‖eitΔ∇φ<N‖

L
2(d+2)/(d−2)
t,x

� T 2/(d+2)R2d/(d+2) N ‖eitΔφ‖
L

2(d+2)/(d−2)
t,x

.

On the other hand, the high frequencies can be estimated using local smoothing:

‖∇eitΔφ≥N‖L2
t,x([−T,T ]×{|x|≤R}) � R1/2‖|∇|1/2φ≥N‖L2

x

� N−1/2R1/2‖∇φ‖L2
x
.

The result now follows by optimizing the choice of N . �

4.4. Improved Strichartz inequalities. Let us begin by recalling the orig-
inal Strichartz inequality in a slightly different formulation (cf. Theorem 3.2).

Theorem 4.16 (Strichartz). Fix 2 ≤ q, r, q̃, r̃ ≤ ∞ with 2
q +

d
r = 2

q̃ +
d
r̃ = d

2 . If

d = 2, we also require that q, q̃ > 2. Then∥∥eitΔu0

∥∥
Lq

tL
r
x(R×Rd)

� ‖u0‖L2
x(R

d)(4.33) ∥∥∥∫
R

e−itΔF (t) dt
∥∥∥
L2

x(R
d)

� ‖F‖
Lq′

t Lr′
x (R×Rd)

(4.34)

∥∥∥∫
s<t

ei(t−s)ΔF (s) ds
∥∥∥
Lq

tL
r
x(R×Rd)

� ‖F‖
Lq̃′

t Lr̃′
x (R×Rd)

(4.35)

for all u0 ∈ S(Rd) and F ∈ S(R× R
d).
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Proof. We treat the case q, q̃ > 2. The endpoint case is more involved; see
[37].

The linear operators in (4.33) and (4.34) are adjoints of one another; thus, by
the method of TT ∗ both will follow once we prove

(4.36)
∥∥∥∫

R

ei(t−s)ΔF (s) ds
∥∥∥
Lq

tL
r
x(R×Rd)

� ‖F‖
Lq′

t Lr′
x (R×Rd)

.

By the dispersive estimate (3.2) and then the Hardy-Littlewood-Sobolev inequality,
we have

LHS(4.36) �
∥∥∥∫

R

|t− s| dr− d
2 ‖F (s)‖Lr′

x
ds

∥∥∥
Lq

t (R)
� RHS(4.36).

The argument just presented also covers (4.35) in the case q = q̃, r = r̃. To go
beyond this case, it helps to consider the estimate in dualized form:

(4.37)
∣∣∣∫∫

s<t

〈ei(t−s)ΔF (s), G(t)〉 ds dt
∣∣∣ � ‖F‖

Lq′
t Lr′

x (R×Rd)
‖G‖

Lq̃′
t Lr̃′

x (R×Rd)
.

The case q̃ = ∞, r̃ = 2 follows from (4.34):

LHS(4.37) ≤
∥∥∥∫

s<t

ei(t−s)ΔF (s) ds
∥∥∥
L∞

t L2
x

‖G‖L1
tL

2
x

� ‖F‖
Lq′

t Lr′
x
‖G‖L1

tL
2
x

Interpolating between this and the case q = q̃ mentioned above proves (4.35) for
all exponents where q ≤ q̃. The other case may be deduced symmetrically. �

The main purpose of this subsection is to discuss some variants and exten-
sions of Theorem 4.16. While (4.33) and (4.34) do not hold for any larger class
of exponents, (4.35) does. Indeed, this fact plays an important role in the proof
of the endpoint case, [37]. We have seen one instance of this already, namely,
Lemma 3.10. For the largest set of exponents currently known (and a discussion of
counterexamples), see [25, 101].

One may also consider changing the norm on the right-hand side of (4.33).
Placing u0 in an Lp

x space, brings us back to the dispersive estimate, (3.2). Asking
for bounds in terms of û0 leads us directly to a profound question:

Conjecture 4.17 (Stein’s Restriction Conjecture, [80]).

(4.38) ‖eitΔf‖Lq
t,x(R×Rd) � ‖f̂‖Lp

ξ(R
d)

provided d+2
d p′ = q > 2(d+1)

d .

Despite intensive effort, this conjecture remains unresolved except when d = 1,
[24, 109]. To date, the best result we know is that the conjecture holds for q >
2(d+3)
d+1 , [88]. The proof of this takes advantage of a certain bilinear estimate, which

we reproduce below as Theorem 4.20.
A variety of bilinear estimates have played an important role in the treatment

of mass- and energy-critical NLS. The first such estimate we give appears as [66,
Theorem 2] in the one dimensional setting, as [6, Lemma 111] for d = 2, and as
[20, Lemma 3.4] for general dimensions. We postpone further discussion until after
Corollary 4.19.

Theorem 4.18 (Bilinear Strichartz I, [6, 20, 66]). Fix d ≥ 1 and M ≤ N ,
then ∥∥[eitΔPMf ][eitΔPNg]

∥∥
L2

t,x(R×Rd)
� M

d−1
2 N− 1

2 ‖f‖L2
x(R

d)‖g‖L2
x(R

d)(4.39)
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When d = 1 we require M ≤ 1
4N , so that PNPM = 0.

Proof. For M ∼ N and d 
= 1, the result follows from the L2
x → L4

tL
2d

d−1

x

Strichartz inequality and Bernstein.
Turning to the case M ≤ 1

4N , we note that by duality and the Parseval identity,
it suffices to show

(4.40)

∣∣∣∫∫
Rd×Rd

F (|ξ|2 + |η|2, ξ + η)f̂M (ξ)ĝN(η) dξ dη
∣∣∣

� M
d−1
2 N− 1

2 ‖F‖L2
ω,ξ(R

1+d)‖f̂‖L2
ξ(R

d)‖ĝ‖L2
ξ(R

d).

Indeed, by breaking the region of integration into several pieces (and rotating the
coordinate system appropriately), we may restrict the region of integration to a set
where η1−ξ1 � N . Next, we make the change of variables ζ = ξ+η, ω = |ξ|2+ |η|2,
and β = (ξ2, . . . , ξd). Note that |β| � M while the Jacobian is J ∼ N−1. Using
this information together with Cauchy–Schwarz:

LHS(4.40) =
∣∣∣∫∫∫ F (ω, ζ)f̂M (ξ)ĝN(η)J dω dζ dβ

∣∣∣
≤ ‖F‖L2

ω,ξ(R
1+d)

∫ [∫∫
|f̂M (ξ)|2|ĝN (η)|2J2 dω dζ

] 1
2

dβ

� ‖F‖L2
ω,ξ(R

1+d)M
d−1
2

(∫∫∫
|f̂M (ξ)|2|ĝN (η)|2J2 dω dζ dβ

) 1
2

� ‖F‖L2
ω,ξ(R

1+d)M
d−1
2

(∫∫
|f̂M (ξ)|2|ĝN (η)|2N−1 dξ dη

) 1
2

,

which implies (4.39). �

Corollary 4.19 (Bilinear Strichartz, II). Let M , N , and d be as above. Given
any spacetime slab I × R

d, any t0 ∈ I, and any functions u, v defined on I × R
d,

‖(P≥Nu)(P≤Mv)‖L2
t,x

� M
d−1
2 N− 1

2

(
‖P≥Nu(t0)‖L2

x
+ ‖(i∂t +Δ)P≥Nu‖

L

2(d+2)
d+4

t,x

)

×
(
‖P≤Mv(t0)‖L2

x
+ ‖(i∂t +Δ)P≤Mv‖

L

2(d+2)
d+4

t,x

)
,

where all spacetime norms are taken over I × R
d.

Proof. See [104, Lemma 2.5], which builds on earlier versions in [8, 20]. �

We now embark on a brief discussion of Theorem 4.18. The total power of
M and N in (4.39) is dictated by scaling; the point here is that we can skew it
heavily in favour of M , thereby obtaining smallness when M � N . Results of this
type have played a vital role in the treatment of mass- and energy-critical NLS,
because they have made it possible to ‘break’ the scaling symmetry. More pre-
cisely, Theorem 4.18 shows that interactions between widely separated scales are
suppressed, thus, ultimately, permitting one to focus on a single scale at a time. We
have already seen a related example of such spontaneous symmetry breaking in the
previous subsection (and will see another shortly), namely, that individual optimiz-
ers in the Sobolev embedding inequality fail to be dilation/translation invariant;
indeed, they have a very definite location and intrinsic length scale.



368 ROWAN KILLIP AND MONICA VIŞAN

The particular bilinear estimate given in Theorem 4.18 has proved more useful
for the energy-critical NLS than for the mass-critical problem. For the mass-critical
NLS, we need a different kind of bilinear estimate:

Theorem 4.20 (Bilinear Restriction, [88]). Let f, g ∈ L2
x(R

d). Suppose that
for some c > 0,

N := dist(supp f̂ , supp ĝ) ≥ cmax{diam(supp f̂), diam(supp ĝ)}.
Then for q > d+3

d+1 , ∥∥[eitΔf ][eitΔg]∥∥
Lq

t,x
�c N

d− d+2
q ‖f‖L2

x
‖g‖L2

x

Remarks. 1. For a fuller discussion of this result and its context, see [88,
93]. In particular, we note that Theorem 4.20 was conjectured by Klainerman and
Machedon and that Tao indicates that his work was inspired by the analogous result
for the wave equation, [107].

2. For q = d+2
d (or greater) this follows from Theorem 4.16 (and Bernstein).

The point here is that some q < d+2
d are allowed.

3. Whether the theorem remains true for q = d+3
d+1 is currently open (except

when d = 1); however it does fail for q smaller (cf. [93, §2.7]). The picture to have
in mind is of one train overtaking another: two wave packets that are long in the
common direction of propagation (though not so large in the transverse direction)
travelling at different speeds. More precisely, consider

f = δ
d+1
2 φ(δ2x1)φ(δx2) · · ·φ(δxd) and g = δ

d+1
2 eix1φ(δ2x1)φ(δx2) · · ·φ(δxd)

with φ̂ ∈ C∞(R) of compact support and δ ↓ 0. Note that if the wave packets are
made more slender in the transverse direction, they will disperse too quickly.

We will not even attempt to outline the proof of Theorem 4.20; however, we will
endeavour to provide a reasonable description of how it is used in the treatment of
NLS. To do this, we need to introduce the standard family of dyadic cubes, which
we do next. After that, we give an immediate corollary of Theorem 4.20, using this
new vocabulary.

Definition 4.21. Given j ∈ Z, we write Dj = Dj(R
d) for the set of all dyadic

cubes of side-length 2j in Rd:

Dj =
{ d∏
l=1

[
2jkl, 2

j(kl + 1)
)
⊆ R

d : k ∈ Z
d
}
.

We also write D = ∪jDj . Given Q ∈ D, we define fQ by f̂Q = χQf̂ .

Corollary 4.22. Suppose Q,Q′ ∈ D with

dist(Q,Q′) � diam(Q) = diam(Q′),

then for some p < 2 (indeed, an interval of such p)∥∥[eitΔfQ][eitΔfQ′ ]
∥∥
L

d2+3d+1
d(d+1)

t,x

� |Q|1−
2
p−

1
d2+3d+1 ‖f̂‖Lp

ξ(Q)‖f̂‖Lp
ξ(Q

′).

Proof. The result follows from interpolating between Theorem 4.20 and∥∥[eitΔf ][eitΔg]
∥∥
L∞

t,x
� ‖f̂‖L1

ξ
‖ĝ‖L1

ξ
,

which is a consequence of the fact that the Fourier transform maps L1
ξ → L∞

x . �
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Our next theorem is clearly a strengthening of Theorem 4.16 (apply Hölder’s
inequality inside the second factor in (4.42)). The name is taken from the standard
notation for the norm appearing on the right-hand side in (4.41). It was first
proved in the case d = 2; see [62, Theorem 4.2]. For higher dimensions, see [4,
Theorem 1.2] and for d = 1, see [12, Proposition 2.1].

Theorem 4.23 (Xq
p Strichartz, [4, 12, 62]). Given f ∈ S, 1

2 < 1
p < 1

2 +
1

(d+1)(d+2) , and
p
2 < β < 1,

∥∥eitΔf∥∥
L

2(d+2)
d

t,x (R1+d)
�

[∑
Q∈D

(
|Q| 12− 1

p

∥∥f̂∥∥
Lp

ξ(Q)

) 2(d+2)
d

] d
2(d+2)

(4.41)

� ‖f‖β
L2

x(R
d)

[
sup
Q∈D

|Q| 12− 1
p

∥∥f̂∥∥
Lp

ξ(Q)

]1−β

.(4.42)

Recall that this sum is over all dyadic cubes Q of all sizes.

We will not prove this result; however, the proof of Proposition 4.24 below is
closely modelled on the argument given in [4]. This proposition is a small tweaking
of (the proof of) (4.42) so as to exhibit the supremum of a spacetime norm.

Proposition 4.24. Let q = 2(d2+3d+1)
d2 . Then

∥∥eitΔf∥∥
L

2(d+2)
d

t,x (R1+d)
� ‖f‖

d+1
d+2

L2
x(R

d)

(
sup
Q∈D

|Q|
d+2
dq − 1

2

∥∥eitΔfQ∥∥
Lq

t,x(R
1+d)

) 1
d+2

.(4.43)

Proof. As noted above, we will be mimicking [4], albeit with a small twist.
The first part of the argument is based on the proof of their Theorem 1.2.

Given distinct ξ, ξ′ ∈ R
d, there is a unique maximal pair of dyadic cubes Q � ξ

and Q′ � ξ′ obeying

(4.44) |Q| = |Q′| and dist(Q,Q′) ≥ 4 diam(Q).

Let F denote the family of all such pairs as ξ 
= ξ′ vary over Rd. According to this
definition,

(4.45)
∑

(Q,Q′)∈F
χQ(ξ)χQ′(ξ′) = 1 for a.e. (ξ, ξ′) ∈ R

d × R
d.

Note that since Q and Q′ are maximal, dist(Q,Q′) ≤ 10 diam(Q). In addition, this
shows that given Q there are a bounded number of Q′ so that (Q,Q′) ∈ F , that is,

(4.46) ∀Q ∈ D, #
{
Q′ : (Q,Q′) ∈ F

}
� 1.

In view of (4.45), we can write

[eitΔf ]2 =
∑

(Q,Q′)∈F
[eitΔfQ][e

itΔfQ′ ],

which clearly brings Corollary 4.22 into the game. Treating the sum via the triangle
inequality is not a winning play; we need to do a bit better. The key point is to
look at the spacetime Fourier supports of the products on the right-hand side. As
we will see, their dilates have bounded overlap.

Given F : R× Rd → C we write

F̂ (ω, ξ) = (2π)−
d+1
2

∫
Rd

∫
R

eiωt−iξ·xF (t, x) dt dx.
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With this convention,

(4.47) supp
(
[eitΔfQ][e

itΔfQ′ ]̂) ⊆ R(Q+Q′)

whereQ+Q′ denotes the Minkowski (or ‘all pairs’) sum and R denotes an associated
parallelepiped that we will now define. Given a cube Q′′ in Rd (and Q + Q′ is a
cube), we define

R(Q′′) =
{
(ω, η) : η ∈ Q′′ and 2 ≤

ω − 1
2 |c(Q′′)|2 − c(Q′′) · [η − c(Q′′)]

diam(Q′′)2
≤ 19

}
where c(Q′′) denotes the center of the cube Q′′. To verify (4.47) we merely need to
note that for ξ ∈ Q and ξ′ ∈ Q′,

|ξ|2 + |ξ′|2 = 1
2 |ξ + ξ′|2 + 1

2 |ξ − ξ′|2

= 1
2 |c(Q+Q′)|2 + c(Q+Q′) · [ξ + ξ′ − c(Q+Q′)]

+ 1
2 |ξ + ξ′ − c(Q+Q′)|2 + 1

2 |ξ − ξ′|2,

|ξ + ξ′ − c(Q + Q′)| ≤ diam(Q), and 4 diam(Q) ≤ |ξ − ξ′| ≤ 12 diam(Q). We also
remind the reader that diam(Q+Q′) = diam(Q) + diam(Q′) = 2 diam(Q).

Before we can turn to the analytical portion of the argument, we still need
to control the overlap of the Fourier supports, or rather, of the enclosing paral-
lelepipeds. We claim that for any α ≤ 1.01,

(4.48) sup
ω,η

∑
(Q,Q′)∈F

χαR(Q+Q′)(ω, η) � 1,

where αR denotes the α-dilate of R with the same center. To see this, we argue
as follows: Given (ω, η) ∈ αR(Q+Q′), a few computations show that diam(Q)2 ∼
ω − 1

2 |η|2, which allows us to identify the size of Q to within a bounded number
of dyadic generations. This then gives an upper bound on the distance between Q
and Q′. Lastly, since η ∈ α(Q + Q′) we may deduce that both Q and Q′ must lie
within O(diamQ) of 1

2η. To recap, each (ω, η) belongs to a bounded number of
αR(Q+Q′), which is exactly (4.48).

With the information we have gathered together, we are now ready to begin
estimating the right-hand side of (4.43). For d ≥ 2, may apply Lemma A.9, Hölder’s
inequality, Corollary 4.22, and (4.46) as follows:

∥∥eitΔf∥∥ 2(d+2)
d

L
2(d+2)

d
t,x

=

∥∥∥∥ ∑
(Q,Q′)∈F

[eitΔfQ][e
itΔfQ′ ]

∥∥∥∥
d+2
d

L
d+2
d

t,x

�
∑

(Q,Q′)∈F

∥∥[eitΔfQ][eitΔfQ′ ]
∥∥ d+2

d

L
d+2
d

t,x

�
∑

(Q,Q′)∈F

∥∥eitΔfQ∥∥ 1
d

Lq
t,x

∥∥eitΔfQ′
∥∥ 1

d

Lq
t,x

∥∥[eitΔfQ][eitΔfQ′ ]
∥∥ d+1

d

L

d2+3d+1
d(d+1)

t,x

�
(
sup
Q∈D

|Q|
d+2
dq − 1

2

∥∥eitΔfQ∥∥
Lq

t,x

)2
d

·
∑
Q∈D

(
|Q|−

2−p
p

∥∥f̂∥∥2
Lp

ξ(Q)

) d+1
d

for some p < 2. While the final inequality obtained above holds when d = 1, the
argument needs minor modifications (cf. the first inequality). In this case, one
should use (A.2) in place of Lemma A.9; we leave the details to the reader.
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In order to complete the proof of the proposition, we need to show that the

sum given above can be bounded in terms of the L2
ξ norm of f̂ . Once again we turn

to [4] for advice, this time, to the proof of their Theorem 1.3 (see also [8, p. 37] for
the case d = 2).

The key idea is to break f̂ into two pieces, depending on the size of Q:

f̂(ξ) = χ{|f̂ |≥2−jd/2}(ξ)f̂(ξ) + χ{|f̂ |≤2−jd/2}(ξ)f̂(ξ) =: f̂ j(ξ) + f̂j(ξ).

Here and below we assume (without loss of generality) that f is L2
x-normalized;

otherwise the size of f has to be incorporated into the height of this splitting, with
concomitant detriment to readability.

For the first piece, we need only use the fact that p < 2:

∑
j∈Z

∑
Q∈Dj

(
|Q|−

2−p
p

∥∥f̂ j
∥∥2

Lp
ξ(Q)

) d+1
d �

(∑
j∈Z

∑
Q∈Dj

|Q|−
2−p
2

∥∥f̂ j
∥∥p

Lp
ξ(Q)

) 2(d+1)
pd

�
(∫

Rd

∑
j:|f̂ |≥2−jd/2

2−jd 2−p
2

∣∣f̂(ξ)∣∣p dξ)
2(d+1)

pd

�
(∫

Rd

∣∣f̂(ξ)∣∣2 dξ)
2(d+1)

pd

� 1.

For the second piece, we lead off with Hölder’s inequality:

∑
j∈Z

∑
Q∈Dj

(
|Q|−

2−p
p

∥∥f̂j∥∥2Lp
ξ(Q)

) d+1
d �

∑
j∈Z

∑
Q∈Dj

|Q| 1d
∥∥f̂j∥∥ 2(d+1)

d

L
2(d+1)

d
ξ (Q)

�
∫
Rd

∑
j:|f̂ |≤2−jd/2

(
2−

jd
2

)− 2
d
∣∣f̂(ξ)∣∣ 2(d+1)

d dξ

�
∫
Rd

∣∣f̂(ξ)∣∣2 dξ � 1.

This completes the proof of (4.43). �

We are now ready to state our preferred form of inverse Strichartz inequality.
For other variants, see for example, [6, §§2–3], [58, Theorem 1], [92, Appendix A].

Proposition 4.25 (Inverse Strichartz Inequality). Fix d ≥ 1 and {fn} ⊆
L2
x(R

d). Suppose that

lim
n→∞

‖fn‖L2
x(R

d) = A and lim
n→∞

‖eitΔfn‖
L

2(d+2)
d

t,x (R1+d)
= ε.

Then there exist a subsequence in n, φ ∈ L2
x(R

d), {λn} ⊆ (0,∞), {ξn} ⊆ R
d, and

{(tn, xn)} ⊆ R1+d so that along the subsequence, we have the following:

λ
d
2
n e

−iξn·(λnx+xn)[eitnΔfn](λnx+ xn) ⇀ φ(x) weakly in L2
x(R

d)(4.49)

lim
n→∞

‖fn‖2L2
x
− ‖fn − φn‖2L2

x
= ‖φ‖2L2

x
� A2

(
ε
A

)2(d+1)(d+2)
(4.50)

lim sup
n→∞

∥∥eitΔ(fn − φn)
∥∥ 2(d+2)

d

L
2(d+2)

d
t,x (R1+d)

≤ ε
2(d+2)

d

[
1− c

(
ε
A

)β]
,(4.51)
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where c and β are (dimension-dependent) constants and

(4.52) φn(x) := e−itnΔ[g0,ξn,xn,λn
φ](x) = λ

− d
2

n e−itnΔ
[
eiξn·φ

(
λ−1
n (· − xn)

)]
(x).

Proof. By Proposition 4.24, there exists {Qn} ⊆ D so that

(4.53) ε(d+2)A−(d+1) � lim inf
n→∞

|Qn|
d+2
dq − 1

2 ‖eitΔ(fn)Qn
‖Lq

t,x(R
1+d)

where q = 2(d2 + 3d + 1)/d2. We choose λ−1
n to be the side-length of Qn, which

implies |Qn| = λ−d
n . We also set ξn := c(Qn), that is, the centre of this cube.

Next we determine xn and tn. By Hölder’s inequality,

lim inf
n→∞

|Qn|
d+2
dq − 1

2 ‖eitΔ(fn)Qn
‖Lq

t,x(R
1+d)

� lim inf
n→∞

|Qn|
d+2
dq − 1

2 ‖eitΔ(fn)Qn
‖

d(d+2)

d2+3d+1

L
2(d+2)

d
t,x (R1+d)

‖eitΔ(fn)Qn
‖

d+1

d2+3d+1

L
∞
t,x(R

1+d)

� lim inf
n→∞

λ
d
2−

d+2
q

n ε
d(d+2)

d2+3d+1 ‖eitΔ(fn)Qn
‖

d+1

d2+3d+1

L∞
t,x(R

1+d)
.

Thus by (4.53), there exists {(tn, xn)} ⊆ R1+d so that

(4.54) lim inf
n→∞

λ
d
2
n

∣∣[eitnΔ(fn)Qn

]
(xn)

∣∣ � ε(d+1)(d+2)A−(d2+3d+1).

Having selected our symmetry parameters, weak compactness of L2
x(R

d) (i.e.
Alaoglu’s theorem) guarantees that (4.49) holds for some φ ∈ L2

x(R
d) and some

subsequence in n. Our next job is to show that φ carries non-trivial norm.

Define h so that ĥ is the characteristic function of the cube [− 1
2 ,

1
2 )

d. From
(4.54) we obtain

|〈h, φ〉| = lim
n→∞

∣∣∣∣
∫

h̄(x)λ
d
2
n e

−iξn·(λnx+xn)[eitnΔfn](λnx+ xn) dx

∣∣∣∣
= lim

n→∞
λ

d
2
n

∣∣∣[eitnΔ(fn)Qn

]
(xn)

∣∣∣
� ε(d+1)(d+2)A−(d2+3d+1),(4.55)

which quickly implies (4.50) as seen in the proof of Proposition 4.9. This leaves us
to consider (4.51). First we claim that after passing to a subsequence,

eitΔ
[
λ

d
2
n e

−iξn·(λnx+xn)[eitnΔfn](λnx+ xn)
]
→ eitΔφ(x) for a.e. (t, x) ∈ R

1+d.

Indeed, this follows from the local smoothing estimate, Proposition 4.14, and the
Rellich–Kondrashov Theorem. Thus by applying Lemma A.5 and transferring the
symmetries, we obtain

‖eitΔfn‖
2(d+2)

d

L
2(d+2)

d
t,x (R1+d)

− ‖eitΔ(fn − φn)‖
2(d+2)

d

L
2(d+2)

d
t,x (R1+d)

− ‖eitΔφn‖
2(d+2)

d

L
2(d+2)

d
t,x (R1+d)

→ 0.

The requisite lower bound on the right-hand side follows from (4.55). �

Note that one may replace (4.49) by weak convergence of the free evolutions:

Exercise. Let {fn} be a bounded sequence L2
x(R

d). Show that fn ⇀ f weakly

in L2
x(R

d) if and only if eitΔfn ⇀ eitΔf weakly in L
2(d+2)/d
x (R× Rd).
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The next two theorems are Strichartz analogues of the bubble decomposition
discussed in the previous subsection. This kind of result was introduced by Bahouri
and Gérard [3] in the context of the wave equation; we will follow their nomenclature
and refer to it as a ‘profile decomposition’. What we will present here are the mass-
and energy-critical analogues of the linear profile decomposition given in that paper.
Analogues of the nonlinear version appear in the proofs of Propositions 5.3 and 5.6.

The mass-critical linear profile decomposition was first proved in the case of
two space dimensions. This is a result of Merle and Vega [58]; see also [6, §§2–3]
for results of a very similar spirit. Carles and Keraani treated the one-dimensional
case [12, Theorem 1.4]. The result was obtained for general dimension by Begout
and Vargas [4]. We remind the reader that the definition of the symmetry group
G associated to the mass-critical equation can be found in Subsection 2.3.

Theorem 4.26 (Mass-critical linear profile decomposition, [4, 12, 58]). Let un

be a bounded sequence in L2
x(R

d). Then (after passing to a subsequence if necessary)
there exist J∗ ∈ {0, 1, . . .} ∪ {∞}, functions {φj}J∗

j=1 ⊆ L2
x(R

d), group elements

{gjn}J
∗

j=1 ⊆ G, and times {tjn}J
∗

j=1 ⊆ R so that defining wJ
n by

(4.56) un =

J∑
j=1

gjne
itjnΔφj + wJ

n ,

we have the following properties:

lim
J→J∗

lim sup
n→∞

‖eitΔwJ
n‖

L
2(d+2)

d
t,x

= 0(4.57)

e−itjnΔ
[
(gjn)

−1wJ
n

]
⇀ 0 weakly in L2

x(R
d) for each j ≤ J ,(4.58)

sup
J

lim
n→∞

[
‖un‖2L2

x(R
d) −

J∑
j=1

‖φj‖2L2
x(R

d) − ‖wJ
n‖2L2

x(R
d)

]
= 0(4.59)

and lastly, for j 
= k and n → ∞,

(4.60)

λj
n

λk
n

+
λk
n

λj
n

+ λj
nλ

k
n|ξjn − ξkn|2 +

∣∣tjn(λj
n)

2 − tkn(λ
k
n)

2
∣∣

λj
nλk

n

+
|xj

n − xk
n − 2tjn(λ

j
n)

2(ξjn − ξkn)|2

λj
nλk

n

→ ∞.

Here λj
n, ξ

j
n, x

j
n are the parameters associated to gjn (the θ parameter is zero).

Proof. Exercise: mimic the proof of Theorem 4.7 using Proposition 4.25 in
place of Proposition 4.9. Note that the order of the propagator and the symmetries
is changed in (4.56) relative to (4.52). As a result, the meaning of xj

n and tjn has
also changed relative to the parameters appearing in Proposition 4.25; indeed, the
change can be deduced from

e−itnΔ[g0,ξn,xn,λn
φ](x) = gtn|ξn|2,ξn,xn−2tnξn,λn

[
e−itn(λn)

−2Δφ
]
(x).

In addition, there is also a change in the sign of tjn. �

The analogue of (4.13) can be added to the conclusions of Theorem 4.26, which
is to say that the profiles also decouple in the symmetric Strichartz norm; indeed,
this follows a posteriori from (4.57) and (4.60). We will not need this fact.
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The linear profile decomposition in the energy-critical case was proved by Ker-
aani [41]. As in the treatment of the wave equation [3], the original argument used
refinements of Sobolev embedding rather than of Strichartz inequality.

Theorem 4.27 (Energy-critical linear profile decomposition, [41]). Fix d ≥ 3

and let {un}n≥1 be a sequence of functions bounded in Ḣ1
x(R

d). Then, after passing

to a subsequence if necessary, there exist J∗ ∈ {0, 1, . . .}∪{∞}, functions {φj}J∗

j=1 ⊂
Ḣ1

x(R
d), group elements {gjn}J

∗

j=1 ⊂ G, and times {tjn}J
∗

j=1 ⊂ R such that for each
1 ≤ J ≤ J∗, we have the decomposition

un =

J∑
j=1

gjne
itjnΔφj + wJ

n(4.61)

with the following properties:

lim
J→J∗

lim sup
n→∞

∥∥eitΔwJ
n

∥∥
L

2(d+2)
d−2

t,x (R×Rd)

= 0(4.62)

e−itjnΔ
[
(gjn)

−1wJ
n

]
⇀ 0 weakly in Ḣ1

x(R
d) for each j ≤ J(4.63)

lim
n→∞

[
‖∇un

∥∥2
2
−

J∑
j=1

‖∇φj‖22 − ‖∇wJ
n‖22

]
= 0(4.64)

and for each j 
= k,

λj
n

λk
n

+
λk
n

λj
n

+
|xj

n − xk
n|2

λj
nλk

n

+

∣∣tjn(λj
n)

2 − tkn(λ
k
n)

2
∣∣

λj
nλk

n

→ ∞ as n → ∞,(4.65)

where λj
n and xj

n are the symmetry parameters associated to gjn by Definition 2.2;
the θ parameter is identically zero.

Proof. Exercise. Deduce this result from Theorem 4.26. Note that the dis-
appearance of the Galilei boosts can be attributed to the absence of a gradient in
(4.62).

The original approach taken by Keraani involves interpolation, Theorem 4.7,
and a Strichartz inequality with unequal space and time exponents. See [41] for
more information on how this can be done. �

4.5. Radial Improvements. Most problems related to critical NLS have first
been solved in the case of spherically symmetric data. This allows one to take
advantage of stronger harmonic analysis tools, some of which we record below. In
truth, however, the greatest advantage really appears in the nonlinear analysis.

Lemma 4.28 (Weighted Radial Strichartz, [43]). Let F ∈ L
2(d+2)/(d+4)
t,x (R×Rd)

and u0 ∈ L2
x(R

d) be spherically symmetric. Then,

u(t) := ei(t−t0)Δu0 − i

∫ t

t0

ei(t−t′)ΔF (t′) dt′

obeys the estimate∥∥|x| 2(d−1)
q u

∥∥
Lq

tL
2q

q−4
x (R×Rd)

� ‖u0‖L2
x(R

d) + ‖F‖
L

2(d+2)
d+4

t,x (R×Rd)

for all 4 ≤ q ≤ ∞.
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Proof. For q = ∞, this corresponds to the trivial endpoint in the Strichartz
inequality. We will only prove the result for the q = 4 endpoint, since the remaining
cases then follow by interpolation.

As in the proof of the Strichartz inequality, the method of TT ∗ together with
Hardy–Littlewood–Sobolev inequality reduce matters to proving that

(4.66)
∥∥|x| d−1

2 eitΔ|x|
d−1
2 g

∥∥
L∞

x (Rd)
� |t|− 1

2 ‖g‖L1
x(R

d)

for all radial functions g.
Let Prad denote the projection onto radial functions, which commutes with the

free propagator. Then

[eitΔPrad](x, y) = (4πit)−
d
2 ei

|x|2+|y|2
4t

∫
Sd−1

e−i |y|ω·x
2t dσ(ω),

where dσ denotes the uniform probability measure on the unit sphere Sd−1. Using
stationary phase (or properties of Bessel functions), one sees that∣∣[eitΔPrad](x, y)

∣∣ � |t|− d
2

( |y||x|
|t|

)− d−1
2 � |t|− 1

2 |x|−
d−1
2 |y|−

d−1
2 .

The radial dispersive estimate (4.66) now follows easily. �

The last two results are taken from the thesis work of Shuanglin Shao.

Theorem 4.29 (Shao’s Strichartz Estimate, [77, Corollary 6.2]). If f ∈ L2
x(R

d)
is spherically symmetric with d ≥ 2, then

(4.67) ‖PNeitΔf‖Lq
t,x(R×Rd) �q N

d
2−

d+2
q ‖f‖L2

x(R
d),

provided q > 4d+2
2d−1 .

The new point is that q can go below 2(d+ 2)/d, which is the exponent given
by Theorem 4.16. The Knapp counterexample (a wave packet whose momentum is
concentrated in a single direction) shows that such an improvement is not possible
without the radial assumption. Spherical symmetry also allows for stronger bilinear
estimates, extending both Theorem 4.18 and Theorem 4.20. We record here only a
special case of [77, Corollary 6.5]:

Theorem 4.30 (Shao’s Bilinear Estimate, [77, Corollary 6.5]). Fix d ≥ 2 and
f, g ∈ L2

x(R
d) spherically symmetric. Then∥∥[eitΔf≤1][e

itΔgN ]
∥∥
Lq

t,x
� Nd− d+2

q ‖f‖L2
x
‖g‖L2

x

for any 2(d+2)
2d+1 < q ≤ 2 and N ≥ 4.

5. Minimal blowup solutions

The purpose of this section is to prove that if the global well-posedness and
scattering conjectures were to fail, then one could construct minimal counterexam-
ples. These counterexamples are minimal blowup solutions and enjoy a wealth of
properties, all of which are consequences of their minimality.

The discovery that such minimal blowup solutions would exist was made by
Keraani [42, Theorem 1.3] in the context of the mass-critical equation. This was
later adapted to the energy-critical setting by Kenig and Merle, [38].
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We would also like to mention that earlier works on the energy-critical NLS
(see [7, 20, 75, 104]) proposed almost-minimal blowup solutions as counterexam-
ples to the global well-posedness and scattering conjecture. These solutions were
shown to have space and frequency localization properties similar to (but slightly
weaker than) those of the minimal blowup solutions. In fact, on a technical level,
the tools involved in obtaining both types of counterexamples are closely related.
However, while the earlier methods have the advantage of being quantitative, they
add significantly to the complexity of the argument.

In these notes, we will only prove the existence of minimal blowup solutions for
the mass- and energy-critical nonlinear Schrödinger equations. However, using the
arguments presented below (especially those for the energy-critical NLS), one can
construct minimal blowup solutions for the more general equation (3.5); see [40]
for one such example.

5.1. The mass-critical NLS. In the defocusing case, μ = +1, Conjecture 1.4
says that all solutions obey spacetime bounds depending only on the mass. With
this in mind, let

L+(M) := sup{SI(u) : u : I × R
d → C such that M(u) ≤ M},

where the supremum is taken over all solutions u : I × R
d → C to the defocusing

mass-critical NLS and

SI(u) :=

∫
I

∫
Rd

|u(t, x)|
2(d+2)

d dx dt.

Note that L+ : [0,∞) → [0,∞] is nondecreasing and, by Theorem 3.7, continuous.
Thus, failure of Conjecture 1.4 (in the defocusing case) is equivalent to the existence
of a critical mass, Mc ∈ (0,∞), so that

L+(M) < ∞ for M < Mc and L+(M) = ∞ for M ≥ Mc.

Similarly, in the focusing case, μ = −1, we may define L− :
[
0,M(Q)

]
→ [0,∞]

by

L−(M) := sup{SI(u) : u : I × R
d → C such that M(u) ≤ M},

where the supremum is again taken over all solutions of the focusing equation.
Much as before, failure of Conjecture 1.4 corresponds to the existence of a critical
mass Mc ∈ (0,M(Q)), where L− changes from being finite to infinite.

Note that the explicit solution u(t, x) = eitQ(x) shows that L−(M(Q)) = ∞.
Note also that from the local well-posedness theory (see Corollary 3.5),

L+(M) + L−(M) � M
d+2
d for M ≤ η0,(5.1)

where η0 = η0(d) is the threshold from the small data theory.
In order to treat the focusing and defocusing equations in as uniform a manner

as possible, we adopt the following convention.

Convention. We write L for L± with the understanding that L = L+ in the
defocusing case and L = L− in the focusing case.

By the discussion above, we see that any initial data u0 with M(u0) < Mc

must give rise to a global solution, which obeys

SR(u) ≤ L
(
M(u0)

)
.
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This fact plays much the same role as the inductive hypothesis in the induction on
mass/energy approach.

Our goals for this subsection are firstly, to show that if Conjecture 1.4 fails,
then there exists a blowup solution u to (1.4) whose mass is exactly equal to the
critical mass Mc and secondly, to derive some of its properties. In order to state
the precise result, we need the following important concept:

Definition 5.1 (Almost periodicity modulo symmetries). Fix μ and d ≥ 1. A
solution u to the mass-critical NLS (1.4) with lifespan I is said to be almost periodic
modulo symmetries if there exist (possibly discontinuous) functions N : I → R+,
ξ : I → Rd, x : I → Rd and a function C : R+ → R+ such that∫

|x−x(t)|≥C(η)/N(t)

|u(t, x)|2 dx+

∫
|ξ−ξ(t)|≥C(η)N(t)

|û(t, ξ)|2 dξ ≤ η

for all t ∈ I and η > 0. We refer to the function N as the frequency scale function
for the solution u, ξ is the frequency center function, x is the spatial center function,
and C is the compactness modulus function. Furthermore, if we can select x(t) =
ξ(t) = 0, then we say that u is almost periodic modulo scaling.

Remarks. 1. The parameter N(t) measures the frequency scale of the solution
at time t, and 1/N(t) measures the spatial scale; see [43, 96, 97] for further
discussion. Note that we have the freedom to modify N(t) by any bounded function
of t, provided that we also modify the compactness modulus function C accordingly.
In particular, one could restrict N(t) to be a power of 2 if one wished, although we
will not do so here. Alternatively, the fact that the solution trajectory t �→ u(t)
is continuous in L2

x(R
d) can be used to show that the functions N , ξ, x may be

chosen to depend continuously on t (cf. Lemma 5.18).
2. One can view ξ(t) and x(t) as roughly measuring the (normalised) momen-

tum and center-of-mass, respectively, at time t, although as u is only assumed to
lie in L2

x(R
d), these latter quantities are not quite rigourously defined.

3. By Proposition A.1, a family of functions is precompact in L2
x(R

d) if and
only if it is norm-bounded and there exists a compactness modulus function C so
that ∫

|x|≥C(η)

|f(x)|2 dx+

∫
|ξ|≥C(η)

|f̂(ξ)|2 dξ ≤ η

for all functions f in the family. Thus, an equivalent formulation of Definition 5.1
is as follows: u is almost periodic modulo symmetries if and only if there exists a
compact subset K of L2

x(R
d) such that the orbit {u(t) : t ∈ I} is contained inside

GK := {gf : g ∈ G, f ∈ K}. This perspective also clarifies why we use the term
‘almost periodic’.

We are now ready to state the main result of this subsection.

Theorem 5.2 (Reduction to almost periodic solutions, [42, 96]). Fix μ and d
and suppose that Conjecture 1.4 failed for this choice. Then there exists a maximal-
lifespan solution u with mass M(u) = Mc, which is almost periodic modulo sym-
metries and which blows up both forward and backward in time.

Remark. If we consider Conjecture 1.4 in the case of spherically symmetric
data (d ≥ 2), then the conclusion may be strengthened to almost periodicity modulo
scaling, that is, x(t) ≡ 0 ≡ ξ(t). This is the greatest advantage in restricting to
such data.



378 ROWAN KILLIP AND MONICA VIŞAN

The proof of Theorem 5.2 rests on the following key proposition, asserting
a certain compactness (modulo symmetries) in sequences of solutions with mass
converging to the critical mass from below.

Proposition 5.3 (Palais–Smale condition modulo symmetries, [96]). Fix μ
and d, and suppose that Conjecture 1.4 failed for this choice. Let un : In×R

d → C

be a sequence of solutions and tn ∈ In a sequence of times such that M(un) ≤ Mc,
M(un) → Mc, and

(5.2) lim
n→∞

S≥tn(un) = lim
n→∞

S≤tn(un) = +∞.

Then the sequence Gun(tn) has a subsequence which converges in the G\L2
x(R

d)
topology.

Remark. The hypothesis (5.2) asserts that the sequence un asymptotically
blows up both forward and backward in time. Both components of this hypothesis
are essential, as can be seen by considering the pseudo-conformal transformation
of the ground state, which only blows up in one direction (and whose orbit is non-
compact in the other direction, even after quotienting out by G).

Proof. Using the time-translation symmetry of (1.4), we may take tn = 0 for
all n; thus, we may assume

(5.3) lim
n→∞

S≥0(un) = lim
n→∞

S≤0(un) = +∞.

Applying Theorem 4.26 to the bounded sequence un(0) (passing to a subse-
quence if necessary), we obtain the linear profile decomposition

(5.4) un(0) =

J∑
j=1

gjne
itjnΔφj + wJ

n

with the stated properties.
By refining the subsequence once for each j and using a standard diagonal-

isation argument, we may assume that for each j the sequence tjn, n = 1, 2, . . .
converges to some time tj ∈ [−∞,+∞]. If tj ∈ (−∞,+∞), we may shift φj by

the linear propagator eit
jΔ, and so assume that tj = 0. Moreover, we may assume

that tjn ≡ 0, since the error eit
j
nΔφj − φj may be absorbed into wJ

n ; this will not
significantly affect the scattering size of the linear evolution of wJ

n , thanks to the
Strichartz inequality and the L2

x-continuity of the free propagator. Thus, for each
j either tjn ≡ 0 or tjn → ±∞ as n → ∞.

We now define a nonlinear profile vj : Ij × R
d → C associated to φj and

depending on the limiting value of tjn, as follows:

• If tjn ≡ 0, we define vj to be the maximal-lifespan solution with initial
data vj(0) = φj .

• If tjn → ∞, we define vj to be the maximal-lifespan solution which scatters
forward in time to eitΔφj .

• If tjn → −∞, we define vj to be the maximal-lifespan solution which
scatters backward in time to eitΔφj .

Finally, for each j, n ≥ 1 we define vjn : Ijn × Rd → C by

vjn(t) := Tgj
n

[
vj(·+ tjn)

]
(t),
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where Ijn := {t ∈ R : (λj
n)

−2t+ tjn ∈ Ij}. Each vjn is a solution to (1.4) with initial
data vjn(0) = gjnv

j(tjn). Note that for each J , we have

(5.5) un(0)−
J∑

j=1

vjn(0)− wJ
n −→ 0 in L2

x as n → ∞,

by virtue of the way vjn is constructed.
From Theorem 4.26 we have the mass decoupling

(5.6)
J∗∑
j=1

M(φj) ≤ lim sup
n→∞

M(un(0)) ≤ Mc

and in particular, supj M(φj) ≤ Mc.
Case I: Suppose first that

(5.7) sup
j

M(φj) ≤ Mc − ε

for some ε > 0; we will eventually show that this leads to a contradiction. Indeed,
by the discussion at the beginning of this subsection it follows that in this case, all
vjn are defined globally in time and obey the estimates

M(vjn) = M(φj) ≤ Mc − ε

and (in view of (5.1))

(5.8) S(vjn) ≤ L(M(φj)) � M(φj)
d+2
d � M(φj).

We will eventually derive a bound on the scattering size of un, thus contradict-
ing (5.3). In order to achieve this, we will use the stability result Theorem 3.7. To
this end, we define an approximate solution

(5.9) uJ
n(t) :=

J∑
j=1

vjn(t) + eitΔwJ
n .

Note that by the asymptotic orthogonality conditions in Theorem 4.26, followed by
(5.8) and (5.6),

(5.10)

lim
J→J∗

lim sup
n→∞

S(uJ
n) ≤ lim

J→J∗
lim sup
n→∞

S

( J∑
j=1

vjn

)

= lim
J→J∗

lim sup
n→∞

J∑
j=1

S(vjn) � lim
J→J∗

J∑
j=1

M(φj) � Mc.

We will show that uJ
n is indeed a good approximation to un for n, J sufficiently

large.

Lemma 5.4 (Asymptotic agreement with initial data). For any J ≥ 1 we have

lim
n→∞

M
(
uJ
n(0)− un(0)

)
= 0.

Proof. This follows from (5.5), (5.4), and (5.9). �

Lemma 5.5 (Asymptotic solution to the equation). We have

lim
J→J∗

lim sup
n→∞

∥∥(i∂t +Δ)uJ
n − F (uJ

n)
∥∥
L

2(d+2)
d+4

t,x (R×Rd)

= 0.



380 ROWAN KILLIP AND MONICA VIŞAN

Proof. By the definition of uJ
n, we have

(i∂t +Δ)uJ
n =

J∑
j=1

F (vjn)

and so, by the triangle inequality, it suffices to show that

lim
J→J∗

lim sup
n→∞

∥∥F (uJ
n − eitΔwJ

n)− F (uJ
n)

∥∥
L

2(d+2)
d+4

t,x (R×Rd)

= 0

and

lim
n→∞

∥∥∥∥F
( J∑

j=1

vjn

)
−

J∑
j=1

F (vjn)

∥∥∥∥
L

2(d+2)
d+4

t,x (R×Rd)

= 0 for all J ≥ 1.

That the first limit is zero follows fairly quickly from the asymptotically van-
ishing scattering size of eitΔwJ

n together with (5.10); indeed, one need only invoke
(3.11) and Hölder’s inequality. To see that the second limit is zero, we use the
elementary inequality

∣∣F ( J∑
j=1

zj
)
−

J∑
j=1

F (zj)
∣∣ ≤ CJ,d

∑
j 
=j′

|zj ||zj′ |
4
d ,

for some CJ,d < ∞, (5.8), and the asymptotic orthogonality of the vjn provided by
(4.60) from Theorem 4.26. �

We are now in a position to apply the stability result Theorem 3.7. Let δ > 0
be a small number. Then, by the above two lemmas, we have

M
(
uJ
n(0)− un(0)

)
+

∥∥(i∂t +Δ)uJ
n − F (uJ

n)
∥∥
L

2(d+2)
d+4

t,x (R×Rd)

≤ δ,

provided J is sufficiently large (depending on δ) and n is sufficiently large (depend-
ing on J, δ). Invoking (5.10), we may apply Theorem 3.7 (for δ chosen small enough
depending on Mc) to deduce that un exists globally and

SR(un) � Mc.

This contradicts (5.3).
Case II: The only remaining possibility is that (5.7) fails for every ε > 0, and

thus

sup
j

M(φj) = Mc.

Comparing this with (5.6), we see J∗ = 1, that is, there is only one bubble. Con-
sequently, the profile decomposition simplifies to

(5.11) un(0) = gne
itnΔφ+ wn

for some sequence tn ∈ R such that either tn ≡ 0 or tn → ±∞, gn ∈ G, some φ
of mass M(φ) = Mc, and some wn with M(wn) → 0 (and hence S(eitΔwn) → 0)
as n → ∞ (this is from (4.59)). By applying the symmetry operation Tg−1

n
to un,

which does not affect the hypotheses of Proposition 5.3, we may take all gn to be
the identity, and thus

M
(
un(0)− eitnΔφ

)
→ 0 as n → ∞.

If tn ≡ 0, then un(0) converge in L2
x(R

d) to φ, and thus Gun(0) converge in
G\L2

x(R
d), as desired. So the only remaining case is when tn → ±∞; we shall
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assume that tn → ∞, as the other case is similar. By the Strichartz inequality we
have

SR(e
itΔφ) < ∞

and hence, by time-translation invariance and monotone convergence,

lim
n→∞

S≥0(e
itΔeitnΔφ) = 0.

As the action of G preserves linear solutions of the Schrödinger equation, we have
eitΔgn = Tgne

itΔ; as Tgn preserves the scattering norm S (as well as S≥0 and S≤0),
we deduce

lim
n→∞

S≥0(e
itΔgne

itnΔφ) = 0.

Since S(eitΔwn) → 0 as n → ∞, we see from (5.11) that

lim
n→∞

S≥0(e
itΔun(0)) = 0.

Applying Theorem 3.7 (using 0 as the approximate solution and un(0) as the initial
data), we conclude that

lim
n→∞

S≥0(un) = 0.

But this contradicts one of the estimates in (5.3). A similar argument, using the
other half of (5.3), allows us to exclude the possibility that tn → −∞. This
concludes the proof of Proposition 5.3. �

We are finally ready to extract the minimal-mass blowup solution to (1.4).

Proof of Theorem 5.2. By the definition of the critical mass Mc (and the
continuity of L), we can find a sequence un : In × R

d → C of maximal-lifespan
solutions with M(un) ≤ Mc and limn→∞ S(un) = +∞. By choosing tn ∈ In to be

the median time of the L
2(d+2)/d
t,x norm of un (cf. the “middle third” trick in [7]),

we can thus arrange that (5.2) holds. By time-translation invariance we may take
tn = 0.

Invoking Proposition 5.3 and passing to a subsequence if necessary, we find
group elements gn ∈ G such that gnun(0) converges strongly in L2

x(R
d) to some

function u0 ∈ L2
x(R

d). By applying the group action Tgn to the solutions un we
may take gn to all be the identity; thus, un(0) converge strongly in L2

x(R
d) to u0.

In particular this implies M(u0) ≤ Mc.
Let u : I × R

n → C be the maximal-lifespan solution to (1.4) with initial data
u(0) = u0 as given by Corollary 3.5. We claim that u blows up both forward
and backward in time. Indeed, if u does not blow up forward in time (say), then
[0,+∞) ⊆ I and S≥0(u) < ∞. By Theorem 3.7, this implies that for sufficiently
large n, we have [0,+∞) ⊆ In and

lim sup
n→∞

S≥0(un) < ∞,

contradicting (5.2). By the definition of Mc, this forces M(u0) ≥ Mc and hence
M(u0) must be exactly Mc.

It remains to show that the solution u is almost periodic modulo G. Consider
an arbitrary sequence u(t′n) in the orbit {u(t) : t ∈ I}. Now, since u blows up both

forward and backward in time, but is locally in L
2(d+2)/d
t,x , we have

S≥t′n(u) = S≤t′n(u) = ∞.
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Applying Proposition 5.3 once again, we see that Gu(t′n) has a convergent subse-
quence in G\L2

x(R
d). Thus, the orbit {Gu(t) : t ∈ I} is precompact in G\L2

x(R
d),

as desired. �

5.2. The energy-critical NLS. In this subsection, we outline the proof of
the existence of a minimal kinetic energy blowup solution to the energy-critical NLS
(1.6). The argument we present is from [44], which builds upon earlier work by
Kenig and Merle [38]. The fact that the kinetic energy is not a conserved quantity
for (1.6) introduces several difficulties over the material presented in the previous
subsection. We will elaborate upon them at the appropriate time.

Let us start by investigating what the failure of Conjecture 1.5 would imply.
If μ = +1, for any 0 ≤ E0 < ∞, we define

L+(E0) := sup{SI(u) : u : I × R
d → C such that sup

t∈I
‖∇u(t)‖22 ≤ E0},

where the supremum is taken over all solutions u : I×R
d → C to (1.6). Throughout

this subsection we will use the notation

SI(u) :=

∫
I

∫
Rd

|u(t, x)|
2(d+2)
d−2 dx dt

for the scattering size of u on an interval I. Note that this is an energy-critical
Strichartz norm.

Similarly, if μ = −1, for any 0 ≤ E0 ≤ ‖∇W‖22, we define

L−(E0) := sup{SI(u) : u : I × R
d → C such that sup

t∈I
‖∇u(t)‖22 ≤ E0},

where the supremum is again taken over all solutions u : I × R
d → C to (1.6).

Thus, L+ :
[
0,∞) → [0,∞] and L− :

[
0, ‖∇W‖22

]
→ [0,∞] are non-decreasing

functions with L−(‖∇W‖22
)
= ∞. Moreover, from the local well-posedness theory

(see Corollary 3.5),

L+(E0) + L−(E0) � E
d+2
d−2

0 for E0 ≤ η0,

where η0 = η0(d) is the threshold from the small data theory.
From the stability result Theorem 3.8, we see that L+ and L− are continuous.

Therefore, there must exist a unique critical kinetic energy Ec such that 0 < Ec ≤
∞ if μ > 0 and 0 < Ec ≤ ‖∇W‖22 if μ < 0 and such that L±(E0) < ∞ for E0 < Ec

and L±(E0) = ∞ for E0 ≥ Ec. To ease notation, we adopt the same convention as
in the mass-critical case:

Convention. We write L for L± with the understanding that L = L+ in the
defocusing case and L = L− in the focusing case.

By the discussion above, we see that if u : I × Rd → C is a maximal-lifespan
solution to (1.6) such that supt∈I ‖∇u(t)‖22 < Ec, then u is global and

SR(u) ≤ L
(
sup
t∈I

‖∇u(t)‖22
)
.

Failure of Conjecture 1.5 is equivalent to 0 < Ec < ∞ in the defocusing case and
0 < Ec < ‖∇W‖22 in the focusing case.

Just as in the mass-critical case, the extraction of a minimal blowup solution
will be a consequence of the following key compactness result.
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Proposition 5.6 (Palais–Smale condition modulo symmetries, [44]). Fix μ
and d ≥ 3. Let un : In × Rd �→ C be a sequence of solutions to (1.6) such that

lim sup
n→∞

sup
t∈In

‖∇un(t)‖22 = Ec(5.12)

and

lim
n→∞

S≥tn(un) = lim
n→∞

S≤tn(un) = ∞.

for some sequence of times tn ∈ In. Then the sequence un(tn) has a subsequence

which converges in Ḣ1
x(R

d) modulo symmetries.

Proof. Using the time-translation symmetry of the equation (1.6), we may
set tn = 0 for all n ≥ 1. Thus,

(5.13) lim
n→∞

S≥0(un) = lim
n→∞

S≤0(un) = ∞.

Applying the linear profile decomposition Theorem 4.27 to the sequence un(0)

(which is bounded in Ḣ1
x(R

d) by (5.12)) and passing to a subsequence if necessary,
we obtain the decomposition

un(0) =

J∑
j=1

gjne
itjnΔφj + wJ

n .

Arguing as in the proof of Proposition 5.3, we may assume that for each j ≥ 1
either tjn ≡ 0 or tjn → ±∞ as n → ∞. Continuing as there, we define the nonlinear
profiles vj : Ij × R

d → C and vjn : Ijn × R
d → C.

By the asymptotic decoupling of the kinetic energy, there exists J0 ≥ 1 such
that

‖∇φj‖22 ≤ η0 for all j ≥ J0,

where η0 = η0(d) is the threshold for the small data theory. Hence, by Corollary 3.9,
for all n ≥ 1 and all j ≥ J0 the solutions vjn are global and moreover,

sup
t∈R

‖∇vjn(t)‖22 + SR(v
j
n) � ‖∇φj‖22.(5.14)

At this point the proof of the Palais–Smale condition for the energy-critical
NLS starts to diverge from that in the mass-critical case. Indeed, as the kinetic
energy is not a conserved quantity, even if vjn(0) = gjnv

j(tjn) has kinetic energy less
than the critical value Ec, this does not guarantee the same will hold throughout
the lifespan of vjn and in particular, it does not guarantee global existence nor
global spacetime bounds. As a consequence, we must actively search for a profile
responsible for the asymptotic blowup (5.13). As we will see shortly, the existence
of at least one such profile is a consequence of the stability result Theorem 3.8 and
the asymptotic orthogonality of the profiles given by Theorem 4.27.

Lemma 5.7 (At least one bad profile). There exists 1 ≤ j0 < J0 such that

lim sup
n→∞

S
[0, sup I

j0
n )

(vj0n ) = ∞.

Proof. We argue by contradiction. Assume that for all 1 ≤ j < J0,

lim sup
n→∞

S[0, sup Ij
n)
(vjn) < ∞.(5.15)
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In particular, this implies sup Ijn = ∞ for all 1 ≤ j < J0 and all sufficiently large
n. Combining (5.15) with (5.14), and then using (5.12),

(5.16)
∑
j≥1

S[0,∞)(v
j
n) � 1 +

∑
j≥J0

‖∇φj‖22 � 1 + Ec

for all n sufficiently large.
Using the estimates above and the stability result Theorem 3.8, we will derive

a bound on the scattering size of un (for n sufficiently large), thus contradicting
(5.13). To this end, we define the approximate solution

uJ
n(t) :=

J∑
j=1

vjn(t) + eitΔwJ
n .

Note that by (5.16) and the asymptotic vanishing of the scattering size of eitΔwJ
n ,

(5.17)

lim
J→J∗

lim sup
n→∞

S[0,∞)(u
J
n) � lim

J→J∗
lim sup
n→∞

(
S[0,∞)

( J∑
j=1

vjn
)
+ S[0,∞)

(
eitΔwJ

n

))

� lim
J→J∗

lim sup
n→∞

J∑
j=1

S[0,∞)(v
j
n) � 1 + Ec.

The next two lemmas show that uJ
n is indeed a good approximation to un for

n and J sufficiently large.

Lemma 5.8 (Asymptotic agreement with initial data). For any J ≥ 1 we have

lim
n→∞

∥∥uJ
n(0)− un(0)

∥∥
Ḣ1

x(R
d)

= 0.

Proof. Exercise: mimic the proof of Lemma 5.4. �

Lemma 5.9 (Asymptotic solution to the equation). We have

lim
J→J∗

lim sup
n→∞

∥∥∇[
(i∂t +Δ)uJ

n − F (uJ
n)

]∥∥
L

2(d+2)
d+4

t,x ([0,∞)×Rd)

= 0.

Proof. Exercise: mimic the proof of Lemma 5.5. There is one new difficulty,
namely, one needs to show that

lim
J→J∗

lim sup
n→∞

‖vjn∇eitΔwJ
n‖

L
d+2
d−1
t,x ([0,∞)×Rd)

= 0

for each j ≤ J . After transferring symmetries to wJ
n , this follows from Corol-

lary 4.15. �

We are now in a position to apply the stability result Theorem 3.8. Indeed,
invoking the two lemmas above and (5.17), we conclude that for n sufficiently large,

S[0,∞)(un) � 1 + Ec,

thus contradicting (5.13). This finishes the proof of Lemma 5.7. �

Returning to the proof of Proposition 5.6 and rearranging the indices, we may
assume that there exists 1 ≤ J1 < J0 such that

lim sup
n→∞

S[0, sup Ij
n)
(vjn) = ∞ for 1 ≤ j ≤ J1 and lim sup

n→∞
S[0,∞)(v

j
n) < ∞ for j > J1.

Passing to a subsequence in n, we can guarantee that S[0, sup I1
n)
(v1n) → ∞.
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At this point our enemy scenario is that consisting of two or more profiles
that take turns at driving the scattering norm of un to infinity. In order to finish
the proof of the Palais–Smale condition, we have to prove that only one profile is
responsible for the asymptotic blowup (5.13). In order to achieve this, we have to
prove kinetic energy decoupling for the nonlinear profiles for large periods of time,
large enough that the kinetic energy of v1n has achieved the critical kinetic energy.

For each m,n ≥ 1 let us define an integer j(m,n) ∈ {1, . . . , J1} and an interval
Km

n of the form [0, τ ] by

(5.18) sup
1≤j≤J1

SKm
n
(vjn) = SKm

n
(vj(m,n)

n ) = m.

By the pigeonhole principle, there is a 1 ≤ j1 ≤ J1 so that for infinitely many m
one has j(m,n) = j1 for infinitely many n. Note that the infinite set of n for which
this holds may be m-dependent. By reordering the indices, we may assume that
j1 = 1. Then, by the definition of the critical kinetic energy, we obtain

lim sup
m→∞

lim sup
n→∞

sup
t∈Km

n

‖∇v1n(t)‖22 ≥ Ec.(5.19)

On the other hand, by virtue of (5.18), all vjn have finite scattering size on Km
n

for each m ≥ 1. Thus, by the same argument used in Lemma 5.7, we see that for
n and J sufficiently large, uJ

n is a good approximation to un on each Km
n . More

precisely,

lim
J→J∗

lim sup
n→∞

‖uJ
n − un‖L∞

t Ḣ1
x(K

m
n ×Rd) = 0(5.20)

for each m ≥ 1.
Our next result proves asymptotic kinetic energy decoupling for uJ

n.

Lemma 5.10 (Kinetic energy decoupling for uJ
n). For all J ≥ 1 and m ≥ 1,

lim sup
n→∞

sup
t∈Km

n

∣∣∣‖∇uJ
n(t)‖22 −

J∑
j=1

‖∇vjn(t)‖22 − ‖∇wJ
n‖22

∣∣∣ = 0.

Proof. Fix J ≥ 1 and m ≥ 1. Then, for all t ∈ Km
n ,

‖∇uJ
n(t)‖22 = 〈∇uJ

n(t),∇uJ
n(t)〉

=

J∑
j=1

‖∇vjn(t)‖22 + ‖∇wJ
n‖22 +

∑
j 
=j′

〈∇vjn(t),∇vj
′

n (t)〉

+

J∑
j=1

(〈
∇eitΔwJ

n ,∇vjn(t)
〉
+

〈
∇vjn(t),∇eitΔwJ

n

〉)
.

To prove Lemma 5.10, it thus suffices to show that for all sequences tn ∈ Km
n ,

〈∇vjn(tn),∇vj
′

n (tn)〉 → 0 as n → ∞(5.21)

and 〈
∇eitnΔwJ

n ,∇vjn(tn)
〉
→ 0 as n → ∞(5.22)

for all 1 ≤ j, j′ ≤ J with j 
= j′. We will only demonstrate the latter, which requires
(4.63); the former can be deduced in much the same manner using the asymptotic
orthogonality of the nonlinear profiles.



386 ROWAN KILLIP AND MONICA VIŞAN

By a change of variables,〈
∇eitnΔwJ

n ,∇vjn(tn)
〉
=

〈
∇eitn(λ

j
n)

−2Δ[(gjn)
−1wJ

n ],∇vj
(

tn
(λj

n)2
+ tjn

)〉
.(5.23)

As tn ∈ Km
n ⊆ [0, sup Ijn) for all 1 ≤ j ≤ J1, we have tn(λ

j
n)

−2 + tjn ∈ Ij for all
j ≥ 1. Recall that Ij is the maximal lifespan of vj ; for j > J1 this is R. By refining
the sequence once for every j and using the standard diagonalisation argument, we
may assume tn(λ

j
n)

−2 + tjn converges for every j.
Fix 1 ≤ j ≤ J . If tn(λ

j
n)

−2 + tjn converges to some point τ j in the interior
of Ij , then by the continuity of the flow, vj

(
tn(λ

j
n)

−2 + tjn
)
converges to vj(τ j) in

Ḣ1
x(R

d). On the other hand,

lim sup
n→∞

∥∥eitn(λj
n)

−2Δ[(gjn)
−1wJ

n ]
∥∥
Ḣ1

x(R
d)

= lim sup
n→∞

‖wJ
n‖Ḣ1

x(R
d) � Ec.(5.24)

Combining this with (5.23), we obtain

lim
n→∞

〈
∇eitnΔwJ

n ,∇vjn(tn)
〉
= lim

n→∞

〈
∇eitn(λ

j
n)

−2Δ[(gjn)
−1wJ

n ],∇vj(τ j)
〉

= lim
n→∞

〈
∇e−itjnΔ[(gjn)

−1wJ
n ],∇e−iτjΔvj(τ j)

〉
.

Invoking (4.63), we deduce (5.22).
Consider now the case when tn(λ

j
n)

−2 + tjn converges to sup Ij . Then we must
have sup Ij = ∞ and vj scatters forward in time. This is clearly true if tjn → ∞ as
n → ∞; in the other cases, failure would imply

lim sup
n→∞

S[0,tn](v
j
n) = lim sup

n→∞
S[

tjn,tn(λ
j
n)−2+tjn

](vj) = ∞,

which contradicts tn ∈ Km
n . Therefore, there exists φj ∈ Ḣ1

x(R
d) such that

lim
n→∞

∥∥∥vj(tn(λj
n)

−2 + tjn
)
− ei

(
tn(λ

j
n)

−2+tjn

)
Δφj

∥∥∥
Ḣ1

x(R
d)

= 0.

Together with (5.23), this yields

lim
n→∞

〈
∇eitnΔwJ

n ,∇vjn(tn)
〉
= lim

n→∞

〈
∇e−itjnΔ[(gjn)

−1wJ
n ],∇φj

〉
,

which by (4.63) implies (5.22).
Finally, we consider the case when tn(λ

j
n)

−2 + tjn converges to inf Ij . Since
tn(λ

j
n)

−2 ≥ 0 and inf Ij < ∞ for all j ≥ 1 we see that tjn does not converge to
+∞. Moreover, if tjn ≡ 0, then inf Ij < 0; as tn(λ

j
n)

−2 ≥ 0, we see that tjn cannot
be identically zero. This leaves tjn → −∞ as n → ∞. Thus inf Ij = −∞ and vj

scatters backward in time to eitΔφj . We obtain

lim
n→∞

∥∥∥vj(tn(λj
n)

−2 + tjn
)
− ei

(
tn(λ

j
n)

−2+tjn

)
Δφj

∥∥∥
Ḣ1

x(R
d)

= 0,

which by (5.23) implies

lim
n→∞

〈
∇eitnΔwJ

n ,∇vjn(tn)
〉
= lim

n→∞

〈
∇e−itjnΔ[(gjn)

−1wJ
n ],∇φj

〉
.

Invoking (4.63) once again, we derive (5.22).
This finishes the proof of Lemma 5.10. �
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Returning to the proof of Proposition 5.6 and using (5.12) and (5.20) together
with Lemma 5.10, we find

Ec ≥ lim sup
n→∞

sup
t∈Km

n

‖∇un(t)‖22 = lim
J→∞

lim sup
n→∞

{
‖∇wJ

n‖22 + sup
t∈Km

n

J∑
j=1

‖∇vjn(t)‖22
}

for each m ≥ 1. Invoking (5.19), we thus obtain the simplified decomposition

un(0) = gne
iτnΔφ+ wn(5.25)

for some gn ∈ G, τn ∈ R, and some functions φ,wn ∈ Ḣ1
x(R

d) with wn → 0 strongly

in Ḣ1
x(R

d). Moreover, the sequence τn obeys τn ≡ 0 or τn → ±∞.
If τn ≡ 0, (5.25) immediately implies that un(0) converge modulo symmetries

to φ, which proves Proposition 5.6 in this case. Finally, arguing as in the proof of
the Palais–Smale condition in the mass-critical case, one shows that this is the only
possible case, that is, τn cannot converge to either ∞ or −∞.

This completes the proof of Proposition 5.6. �

With the Palais–Smale condition in place, we can now extract a minimal blowup
solution, very much as we did in the previous subsection. Let us first revisit the
definition of almost periodicity in the energy-critical context.

Definition 5.11 (Almost periodicity modulo symmetries). Fix μ and d ≥
3. A solution u to the energy-critical NLS (1.6) with lifespan I and uniformly
bounded kinetic energy is said to be almost periodic modulo symmetries if there
exist (possibly discontinuous) functions N : I → R+, x : I → Rd, and a function
C : R+ → R+ such that∫

|x−x(t)|≥C(η)/N(t)

|∇u(t, x)|2 dx+

∫
|ξ|≥C(η)N(t)

|ξû(t, ξ)|2 dξ ≤ η

for all t ∈ I and η > 0. We refer to the function N as the frequency scale function
for the solution u, x is the spatial center function, and C is the compactness modulus
function.

Remark. Comparing Definitions 5.1 and 5.11, we see that there are two differ-
ences. The first is that in the energy-critical case, compactness is in Ḣ1

x rather than
in L2

x. A deeper difference is the absence of Galilei boosts among the symmetry
parameters in the energy-critical case. While Galilei boosts leave the mass and the
equation invariant, they modify the energy (cf. Proposition 2.3); boundedness of
the kinetic energy implies |ξ(t)|/N(t) = O(1), which allows us to take ξ(t) ≡ 0 in
the definition above, modifying the compactness modulus function if necessary.

We are now ready to introduce the central result of this subsection.

Theorem 5.12 (Reduction to almost periodic solutions, [44]). Fix μ and d ≥ 3
and suppose that Conjecture 1.5 failed for this choice of μ and d. Then there exists a
maximal-lifespan solution u : I ×R

d → C to (1.6) such that supt∈I ‖∇u(t)‖22 = Ec,
u is almost periodic modulo symmetries and blows up both forward and backward in
time.

Proof. Exercise. �
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5.3. Almost periodic solutions. In this subsection, we continue our study
of solutions to (1.4) and (1.6) that are almost periodic modulo symmetries. We
record basic properties of the frequency scale function N(t), spatial center function
x(t), and frequency center function ξ(t). Most of the material we present is taken
from [43].

Lemma 5.13 (Quasi-uniqueness of N(t), x(t), ξ(t)). Let u be a non-zero solution
to (1.4) with lifespan I, which is almost periodic modulo symmetries with parameters
N(t), x(t), ξ(t) and compactness modulus function C, and also almost periodic mod-
ulo symmetries with parameters N ′(t), x′(t), ξ′(t) and compactness modulus function
C ′. Then we have

N(t) ∼u,C,C′ N ′(t), |x(t)− x′(t)| �u,C,C′
1

N(t)
, |ξ(t)− ξ′(t)| �u,C,C′ N(t)

for all t ∈ I. A similar result holds for almost periodic solutions to (1.6).

Proof. Let u be a solution to (1.4). We turn to the first claim and notice that
by symmetry, it suffices to establish the bound N ′(t) �u,C,C′ N(t).

Fix t and let η > 0 to be chosen later. By Definition 5.1 we have∫
|x−x′(t)|≥C′(η)/N ′(t)

|u(t, x)|2 dx ≤ η

and ∫
|ξ−ξ(t)|≥C(η)N(t)

|û(t, ξ)|2 dξ ≤ η.

We split u := u1 + u2, where u1(t, x) := u(t, x)χ|x−x′(t)|≥C′(η)/N ′(t) and u2(t, x) :=
u(t, x)χ|x−x′(t)|<C′(η)/N ′(t). Then, by Plancherel’s theorem we have∫

Rd

|û1(t, ξ)|2 dξ � η,(5.26)

while from Cauchy-Schwarz we have

sup
ξ∈Rd

|û2(t, ξ)|2 �η,C′ M(u)N ′(t)−d.

Integrating the last inequality over the ball |ξ − ξ(t)| ≤ C(η)N(t) and invoking
(5.26), we conclude that∫

Rd

|û(t, ξ)|2 dξ � η +Oη,C,C′(M(u)N(t)dN ′(t)−d).

Thus, by Plancherel and mass conservation,

M(u) � η +Oη,C,C′(M(u)N(t)dN ′(t)−d).

Choosing η to be a small multiple of M(u) (which is non-zero by hypothesis), we
obtain the first claim.

The last two claims now follow from a quick inspection of Definition 5.1. �

To describe how the symmetry parameters depend on u, we use the natural
notion of convergence for solutions:

Definition 5.14 (Convergence of solutions). Let un : In × Rd → C be a
sequence of solutions to the mass-critical NLS, let u : I × R

d → C be another
solution, and let K be a compact time interval. We say that un converge uniformly
to u on K if K ⊂ I, K ⊂ In for all sufficiently large n, and un converges strongly to
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u in C0
t L

2
x(K×R

d)∩L
2(d+2)/d
t,x (K×R

d) as n → ∞. We say that un converge locally
uniformly to u if un converges uniformly to u on every compact interval K ⊂ I.

In the energy-critical case, we ask that un → u on K × R
d in the C0

t Ḣ
1
x ∩

L
2(d+2)/(d−2)
t,x topology.

Lemma 5.15 (Quasi-continuous dependence of N(t), x(t), ξ(t) on u). Let un be
a sequence of solutions to (1.4) with lifespans In, which are almost periodic modulo
symmetries with parameters Nn(t), xn(t), ξn(t) and compactness modulus function
C : R+ → R

+, independent of n. Suppose that un converge locally uniformly to a
non-zero solution u to (1.4) with lifespan I. Then u is almost periodic modulo sym-
metries with some parameters N(t), x(t), ξ(t) and the same compactness modulus
function C. Furthermore, we have

lim inf
n→∞

Nn(t) �u,C N(t) �u,C lim sup
n→∞

Nn(t)(5.27)

lim sup
n→∞

|xn(t)− x(t)| �u,C
1

N(t)
(5.28)

lim sup
n→∞

|ξn(t)− ξ(t)| �u,C N(t)(5.29)

for all t ∈ I. A similar result holds for the energy-critical NLS.

Proof. We first show that

0 < lim inf
n→∞

Nn(t) ≤ lim sup
n→∞

Nn(t) < ∞(5.30)

lim sup
n→∞

|xn(t)|Nn(t) + lim sup
n→∞

|ξn(t)|
Nn(t)

< ∞(5.31)

for all t ∈ I. Indeed, if one of the inequalities in (5.30) failed for some t, then (by
passing to a subsequence if necessary) Nn(t) would converge to zero or to infinity
as n → ∞. Thus, by Definition 5.1, un(t) would converge weakly to zero, and
hence, by the local uniform convergence, would converge strongly to zero. But this
contradicts the hypothesis that u is not identically zero. This establishes (5.30). A
similar argument settles (5.31).

From (5.30) and (5.31), we see that for each t ∈ I the sequences Nn(t), xn(t),
and ξn(t) each have at least one limit point, which we denote N(t), x(t), and
ξ(t), respectively. Using the local uniform convergence, we easily verify that u is al-
most periodic modulo symmetries with parameters N(t), x(t), ξ(t) and compactness
modulus function C.

It remains to establish (5.27) through (5.29), which we prove by contradiction.
Suppose for example that (5.27) failed. Then given any A, there exists a t ∈ I for
which Nn(t) has at least two limit points which are separated by a ratio of at least
A, and so u has two frequency scale functions with compactness modulus function
C, which are separated by this ratio. This contradicts Lemma 5.13 for A large
enough depending on u. Hence (5.27) holds. A similar argument establishes (5.28)
and (5.29). �

Definition 5.16 (Normalised solution). Let u be a solution to (1.4), which is
almost periodic modulo symmetries with parameters N(t), x(t), ξ(t). We say that
u is normalised if the lifespan I contains zero and

N(0) = 1, x(0) = ξ(0) = 0.
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More generally, we can define the normalisation of a solution u at a time t0 ∈ I by

(5.32) u[t0] := Tg0,−ξ(t0)/N(t0),−x(t0)N(t0),N(t0)

(
u(·+ t0)

)
.

Observe that u[t0] is a normalised solution which is almost periodic modulo sym-
metries and has lifespan

I [t0] := {s ∈ R : t0 + sN(t0)
−2 ∈ I}

(so, in particular, 0 ∈ I [t0]). The parameters of u[t0] are given by

(5.33)

N [t0](s) :=
N
(
t0 + sN(t0)

−2
)

N(t0)

ξ[t0](s) :=
ξ
(
t0 + sN(t0)

−2
)
− ξ(t0)

N(t0)

x[t0](s) := N(t0)
[
x
(
t0 + sN(t0)

−2
)
− x(t0)

]
− 2

ξ(t0)

N(t0)
s

and it has the same compactness modulus function as u. Furthermore, if u is a
maximal-lifespan solution then so is u[t0]. A similar definition can be made in the
energy-critical case.

Lemma 5.17 (Compactness of normalized almost periodic solutions). Let un be
a sequence of normalised maximal-lifespan solutions to (1.4) with lifespans In � 0,
which are almost periodic modulo symmetries with parameters Nn, xn, ξn and a
uniform compactness modulus function C. Assume that we also have a uniform
mass bound

(5.34) 0 < inf
n

M(un) ≤ sup
n

M(un) < ∞.

Then, after passing to a subsequence if necessary, there exists a non-zero maximal-
lifespan solution u to (1.4) with lifespan I � 0 that is almost periodic modulo sym-
metries, such that un converge locally uniformly to u. A similar statement holds in
the energy-critical setting.

Proof. By hypothesis and Definition 5.1, we see that for every ε > 0 there
exists R > 0 such that ∫

|x|≥R

|un(0, x)|2 dx ≤ ε

and ∫
|ξ|≥R

|ûn(0, ξ)|2 dξ ≤ ε

for all n. From this, (5.34), and Proposition A.1, we see that the sequence un(0) is
precompact in the strong topology of L2

x(R
d). Thus, by passing to a subsequence

if necessary, we can find u0 ∈ L2
x(R

d) such that un(0) converge strongly to u0 in
L2
x(R

d). From (5.34) we see that u0 is not identically zero.
Now let u be the maximal Cauchy development of u0 from time 0, with lifespan

I. By Theorem 3.7, un converge locally uniformly to u. The remaining claims now
follow from Lemma 5.15. �

Lemma 5.18 (Local constancy of N(t), x(t), ξ(t)). Let u be a non-zero maximal-
lifespan solution to (1.4) with lifespan I that is almost periodic modulo symmetries
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with parameters N(t), x(t), ξ(t). Then there exists a small number δ, depending on
u, such that for every t0 ∈ I we have

(5.35)
[
t0 − δN(t0)

−2, t0 + δN(t0)
−2

]
⊂ I

and

(5.36)
N(t) ∼u N(t0), |ξ(t)− ξ(t0)| �u N(t0),∣∣x(t)− x(t0)− 2(t− t0)ξ(t0)

∣∣ �u N(t0)
−1

whenever |t − t0| ≤ δN(t0)
−2. The same statement holds for the energy-critical

NLS if we set ξ(t) ≡ 0.

Proof. Let us first establish (5.35). We argue by contradiction. Assume (5.35)
fails. Then, there exist sequences tn ∈ I and δn → 0 such that tn + δnN(tn)

−2 
∈ I
for all n. Define the normalisations u[tn] of u at time tn as in (5.32). Then, u[tn]

are maximal-lifespan normalised solutions whose lifespans I [tn] contain 0 but not
δn; they are also almost periodic modulo symmetries with parameters given by
(5.33) and the same compactness modulus function C as u. Applying Lemma 5.17
(and passing to a subsequence if necessary), we conclude that u[tn] converge locally
uniformly to a maximal-lifespan solution v with some lifespan J � 0. By the local
well-posedness theory, J is open and so contains δn for all sufficiently large n. This
contradicts the local uniform convergence as, by hypothesis, δn does not belong to
I [tn]. Hence (5.35) holds.

We now show (5.36). Again, we argue by contradiction, shrinking δ if necessary.
Suppose one of the three claims in (5.36) failed no matter how small one selected
δ. Then, one can find sequences tn, t

′
n ∈ I such that sn := (t′n − tn)N(tn)

2 → 0
but N(t′n)/N(tn) converge to either zero or infinity (if the first claim failed) or
|ξ(t′n) − ξ(tn)|/N(tn) → ∞ (if the second claim failed) or |x(t′n) − x(tn) − 2(t′n −
tn)ξ(tn)|N(tn) → ∞ (if the third claim failed). If we define u[tn] as before and apply
Lemma 5.17 (passing to a subsequence if necessary), we see once again that u[tn]

converge locally uniformly to a maximal-lifespan solution v with some open lifespan
J � 0. But then N [tn](sn) converge to either zero or infinity or ξ[tn](sn) → ∞ or
x[tn](sn) → ∞ and thus, by Definition 5.1, u[tn](sn) converge weakly to zero. On
the other hand, since sn converge to zero and u[tn] are locally uniformly convergent
to v ∈ C0

t,locL
2
x(J×Rd), we may conclude that u[tn](sn) converge strongly to v(0) in

L2
x(R

d). Thus v(0) = 0 and M(u[tn]) converge to M(v) = 0. But since M(u(n)) =
M(u), we see that u vanishes identically, a contradiction. Thus (5.36) holds. �

Corollary 5.19 (N(t) at blowup). Let u be a non-zero maximal-lifespan
solution to (1.4) with lifespan I that is almost periodic modulo symmetries with
frequency scale function N : I → R+. If T is any finite endpoint of I, then
N(t) �u |T − t|−1/2; in particular, limt→T N(t) = ∞. If I is infinite or semi-
infinite, then for any t0 ∈ I we have N(t) �u min{N(t0), |t−t0|−1/2}. The identical
statement holds for the energy-critical NLS.

Proof. This is immediate from (5.35). �
Lemma 5.20 (Local quasi-boundedness of N). Let u be a non-zero solution to

the mass-critical NLS with lifespan I that is almost periodic modulo symmetries
with frequency scale function N : I → R+. If K is any compact subset of I, then

0 < inf
t∈K

N(t) ≤ sup
t∈K

N(t) < ∞.
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The same statement holds in the energy-critical setting.

Proof. We only prove the first inequality; the other follows similarly.
We argue by contradiction. Suppose that the first inequality fails. Then, there

exists a sequence tn ∈ K such that limn→∞ N(tn) = 0 and hence, by Definition 5.1,
u(tn) converge weakly to zero. Since K is compact, we can assume tn converge to a
limit t0 ∈ K. As u ∈ C0

t L
2
x(K × R

d), we see that u(tn) converge strongly to u(t0).
Thus u(t0) must be zero, contradicting the hypothesis. �

Lemma 5.21 (Strichartz norms via N(t)). Let u be a non-zero solution to the
mass-critical NLS with lifespan I that is almost periodic modulo symmetries with
parameters N(t), x(t), ξ(t). If J is any subinterval of I, then

(5.37)

∫
J

N(t)2 dt �u

∫
J

∫
Rd

|u(t, x)|
2(d+2)

d dx dt �u 1 +

∫
J

N(t)2 dt.

Similarly, if u is a non-zero solution to the energy-critical NLS on I × R
d that is

almost periodic modulo symmetries with parameters N(t), x(t), then∫
J

N(t)2 dt �u

∫
J

∫
Rd

|u(t, x)|
2(d+2)
d−2 dx dt �u 1 +

∫
J

N(t)2 dt

for any subinterval J ⊂ I.

Proof. We consider the mass-critical case; the claim in the energy-critical
case can be proved similarly. Let u be a solution to (1.4) as in the statement of the
lemma. We first prove

(5.38)

∫
J

∫
Rd

|u(t, x)|
2(d+2)

d dx dt �u 1 +

∫
J

N(t)2 dt.

Let 0 < η < 1 be a small parameter to be chosen momentarily and partition J into
subintervals Ij so that

(5.39)

∫
Ij

N(t)2 dt ≤ η;

this requires at most η−1 × RHS(5.38) many intervals.
For each j, we may choose tj ∈ Ij so that

(5.40) N(tj)
2|Ij | ≤ 2η.

By Strichartz inequality followed by Hölder and Bernstein, we obtain

‖u‖
L

2(d+2)
d

t,x

� ‖ei(t−tj)Δu(tj)‖
L

2(d+2)
d

t,x

+ ‖u‖
d+4
d

L
2(d+2)

d
t,x

� ‖u≥N0
(tj)‖L2

x
+ ‖ei(t−tj)Δu≤N0

(tj)‖
L

2(d+2)
d

t,x

+ ‖u‖
d+4
d

L
2(d+2)

d
t,x

� ‖u≥N0
(tj)‖L2

x
+ |Ij |

d
2(d+2)N

d
d+2

0 ‖u(tj)‖L2
x
+ ‖u‖

d+4
d

L
2(d+2)

d
t,x

,

where all spacetime norms are taken on the slab Ij × R
d. Choosing N0 as a large

multiple of N(tj) and using Definition 5.1, one can make the first term as small
as one wishes. Subsequently, choosing η sufficiently small depending on M(u) and
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invoking (5.40), one may also render the second term arbitrarily small. Thus, by
the usual bootstrap argument we obtain∫

Ij

∫
Rd

|u(t, x)|
2(d+2)

d dx dt ≤ 1.

Using the bound on the number of intervals Ij , this leads to (5.38).
Now we prove

(5.41)

∫
J

∫
Rd

|u(t, x)|
2(d+2)

d dx dt �u

∫
J

N(t)2 dt.

Using Definition 5.1 and choosing η sufficiently small depending on M(u), we can
guarantee that ∫

|x−x(t)|≤C(η)N(t)−1

|u(t, x)|2 dx �u 1(5.42)

for all t ∈ J . On the other hand, a simple application of Hölder’s inequality yields∫
Rd

|u(t, x)|
2(d+2)

d dx �u

(∫
|x−x(t)|≤C(η)N(t)−1

|u(t, x)|2
) d+2

d

N(t)2.

Thus, using (5.42) and integrating over J we derive (5.41). �

Corollary 5.22 (Maximal-lifespan almost periodic solutions blow up). Let u
be a maximal-lifespan solution to the mass- or energy-critical NLS that is almost
periodic modulo symmetries. Then u blows up both forward and backward in time.

Proof. In the case of a finite endpoint, this amounts to the definition of
maximal-lifespan; see Corollary 3.5. Indeed, the assumption of almost-periodicity
is redundant in this case.

In the case of an infinite endpoint, we see that by Corollary 5.19, N(t) �u

〈t − t0〉−1/2. Thus by Lemma 5.21, the spacetime norm diverges, which is the
definition of blowup. �

We end this subsection with a result concerning the behaviour of almost peri-
odic solutions at the endpoints of their maximal lifespan.

Proposition 5.23 (Asymptotic orthogonality to free evolutions, [96]). Let
u : I×Rd → C be a maximal-lifespan solution to (1.4) that is almost periodic modulo
symmetries. Then e−itΔu(t) converges weakly to zero in L2

x(R
d) as t → sup I or

t → inf I. In particular, we have the ‘reduced’ Duhamel formulae

(5.43)

u(t) = i lim
T→ sup I

∫ T

t

ei(t−t′)ΔF (u(t′)) dt′

= −i lim
T→ inf I

∫ t

T

ei(t−t′)ΔF (u(t′)) dt′,

where the limits are to be understood in the weak L2
x topology. In the energy-critical

case, the same formulae hold in the weak Ḣ1
x topology.

Proof. Let us just prove the claim as t → sup I, since the reverse claim is
similar.

Assume first that sup I < ∞. Then by Corollary 5.19,

lim
t→ sup I

N(t) = ∞.
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By Definition 5.1, this implies that u(t) converges weakly to zero as t → sup I. As
sup I < ∞ and the map t �→ eitΔ is continuous in the strong operator topology on
L2
x, we see that e−itΔu(t) converges weakly to zero, as desired.

Now suppose instead that sup I = ∞. It suffices to show that

lim
t→∞

〈
u(t), eitΔφ

〉
L2

x(R
d)

= 0

for all test functions φ ∈ C∞
c (Rd). Let η > 0 be a small parameter; using Hölder’s

inequality and Definition 5.1, we estimate∣∣∣〈u(t), eitΔφ〉
L2

x(R
d)

∣∣∣2
�

∣∣∣∣
∫
|x−x(t)|≤C(η)/N(t)

u(t, x)eitΔφ(x) dx

∣∣∣∣
2

+

∣∣∣∣
∫
|x−x(t)|≥C(η)/N(t)

u(t, x)eitΔφ(x) dx

∣∣∣∣
2

�
∫
|x−x(t)|≤C(η)/N(t)

|eitΔφ(x)|2 dx+ η‖φ‖2L2
x
.

The claim now follows from Lemma 4.12, Corollary 5.19, and an easy change of
variables. �

5.4. Further refinements: the enemies. The purpose of this subsection is
to construct more refined counterexamples than those provided by Theorems 5.2
and 5.12, should the global well-posedness and scattering conjectures fail. These
theorems provide little information about the behaviour of N(t) over the lifespan I
of the solution. In this subsection we strengthen those results by showing that the
failure of Conjecture 1.4 or 1.5 implies the existence of at least one of three types
of almost periodic solutions u for which N(t) and I have very particular properties.

We would like to point out that elementary scaling arguments show that one
may assume that N(t) is either bounded from above or from below at least on half
of its maximal lifespan; see for example, [97, Theorem 3.3] or [38, 57]. However,
several recent results seem to require finer control on the nature of the blowup as
one approaches either endpoint of the interval I.

We start with the mass-critical equation.

Theorem 5.24 (Three enemies: the mass-critical NLS, [43]). Fix μ, d and
suppose that Conjecture 1.4 fails for this choice of μ and d. Then there exists a
maximal-lifespan solution u to (1.4), which is almost periodic modulo symmetries,
blows up both forward and backward in time, and in the focusing case also obeys
M(u) < M(Q).

We can also ensure that the lifespan I and the frequency scale function N(t)
match one of the following three scenarios:

I. (Soliton-like solution) We have I = R and

N(t) = 1 for all t ∈ R.

II. (Double high-to-low frequency cascade) We have I = R,

lim inf
t→−∞

N(t) = lim inf
t→+∞

N(t) = 0, and sup
t∈R

N(t) < ∞.

III. (Self-similar solution) We have I = (0,+∞) and

N(t) = t−1/2 for all t ∈ I.
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Proof. Fix μ and d. Invoking Theorem 5.2, we can find a solution v with
maximal lifespan J , which is almost periodic modulo symmetries and blows up both
forward and backward in time; also, in the focusing case we have M(v) < M(Q).

Let Nv(t) be the frequency scale function associated to v as in Definition 5.1,
and let C : R+ → R+ be its compactness modulus function. The solution v partially
satisfies the conclusions of Theorem 5.24, but we are not necessarily in one of the
three scenarios listed there. To extract a solution u with these additional properties,
we will have to perform some further manipulations primarily based on the scaling
and time-translation symmetries.

For any T ≥ 0, define the quantity

(5.44) osc(T ) := inf
t0∈J

sup{Nv(t) : t ∈ J and |t− t0| ≤ TNv(t0)
−2}

inf{Nv(t) : t ∈ J and |t− t0| ≤ TNv(t0)−2} .

Roughly speaking, this measures the least possible oscillation one can find in Nv

on time intervals of normalised duration T . This quantity is clearly non-decreasing
in T . If osc(T ) is bounded, we will be able to extract a soliton-like solution; this is

Case I: limT→∞ osc(T ) < ∞.
In this case, we have arbitrarily long periods of stability for Nv. More precisely,

we can find a finite number A = Av, a sequence tn of times in J , and a sequence
Tn → ∞ such that

sup{Nv(t) : t ∈ J and |t− tn| ≤ TnNv(tn)
−2}

inf{Nv(t) : t ∈ J and |t− tn| ≤ TnNv(tn)−2} < A

for all n. Note that this, together with Lemma 5.18, implies that

[tn − TnNv(tn)
−2, tn + TnNv(tn)

−2] ⊂ J

and

Nv(t) ∼v Nv(tn)

for all t in this interval.
Now define the normalisations v[tn] of v at times tn as in (5.32). Then v[tn] is

a maximal-lifespan normalised solution with lifespan

Jn := {s ∈ R : tn +Nv(tn)
−2s ∈ J} ⊃ [−Tn, Tn]

and mass M(v). It is almost periodic modulo scaling with frequency scale function

Nv[tn](s) :=
Nv

(
tn +Nv(tn)

−2s
)

Nv(tn)

and compactness modulus function C. In particular, we see that

(5.45) Nv[tn](s) ∼v 1

for all s ∈ [−Tn, Tn].
We now apply Lemma 5.17 and conclude (passing to a subsequence if necessary)

that v[tn] converge locally uniformly to a maximal-lifespan solution u with mass
M(v) defined on an open interval I containing 0 and which is almost periodic
modulo symmetries. As Tn → ∞, Lemma 5.15 and (5.45) imply that the frequency
scale function N : I → R+ of u satisfies

0 < inf
t∈I

N(t) ≤ sup
t∈I

N(t) < ∞.
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In particular, by Corollary 5.19, I = R. By modifying C by a bounded factor we
may now normalise N ≡ 1. We have thus constructed a soliton-like solution in the
sense of Theorem 5.24.

When osc(T ) is unbounded, we must seek a solution belonging to one of the
remaining two scenarios. To distinguish between them, we introduce the quantity

a(t0) :=
inft∈J:t≤t0 Nv(t) + inft∈J:t≥t0 Nv(t)

Nv(t0)

for every t0 ∈ J . This measures the extent to which Nv(t) decays to zero on both
sides of t0. Clearly, this quantity takes values in the interval [0, 2].

Case II: limT→∞ osc(T ) = ∞ and inft0∈J a(t0) = 0.
In this case, there are no long periods of stability but there are times about

which there are arbitrarily large cascades from high to low frequencies in both
future and past directions. This will allow us to extract a solution with a double
high-to-low frequency cascade as defined in Theorem 5.24.

As inft0∈J a(t0) = 0, there exists a sequence of times tn ∈ J such that a(tn) → 0
as n → ∞. By the definition of a, we can also find times t−n < tn < t+n with
t−n , t

+
n ∈ J such that

Nv(t
−
n )

Nv(tn)
→ 0 and

Nv(t
+
n )

Nv(tn)
→ 0.

Choose t−n < t′n < t+n so that

Nv(t
′
n) ∼ sup

t−n ≤t≤t+n

Nv(t);

then,
Nv(t

−
n )

Nv(t′n)
→ 0 and

Nv(t
+
n )

Nv(t′n)
→ 0.

We define the rescaled and translated times s−n < 0 < s+n by

s±n := Nv(t
′
n)

2(t±n − t′n)

and the normalisations v[t
′
n] at times t′n by (5.32). These are normalised maximal-

lifespan solutions with lifespans containing [s−n , s
+
n ], which are almost periodic mod-

ulo G with frequency scale functions

(5.46) N
v[t′n](s) :=

Nv

(
t′n +Nv(t

′
n)

−2s
)

Nv(t′n)
.

By the way we chose t′n, we see that

(5.47) N
v[t′n](s) � 1

for all s−n ≤ s ≤ s+n . Moreover,

(5.48) N
v[t′n](s±n ) → 0 as n → ∞

for either choice of sign.
We now apply Lemma 5.17 and conclude (passing to a subsequence if neces-

sary) that v[t
′
n] converge locally uniformly to a maximal-lifespan solution u of mass

M(v) defined on an open interval I containing 0, which is almost periodic modulo
symmetries.

Let N be a frequency scale function for u. From Lemma 5.20 we see that N(t)
is bounded from below on any compact set K ⊂ I. From this and Lemma 5.15 (and
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Lemma 5.13), we see that N
v[t′n](t) is also bounded from below, uniformly in t ∈ K,

for all sufficiently large n (depending on K). As a consequence of this and (5.48),
we see that s−n and s+n cannot have any limit points in K; thus K ⊂ [s−n , s

+
n ] for all

sufficiently large n. Therefore, s±n converge to the endpoints of I. Combining this
with Lemma 5.15 and (5.47), we conclude that

(5.49) sup
t∈I

N(t) < ∞.

Corollary 5.19 now implies that I has no finite endpoints, that is, I = R.
In order to prove that u is a double high-to-low frequency cascade, we merely

need to show that

(5.50) lim inf
t→+∞

N(t) = lim inf
t→−∞

N(t) = 0.

By time reversal symmetry, it suffices to establish that lim inft→+∞ N(t) = 0.
Suppose that this is not the case. Then, using (5.49) we may deduce

N(t) ∼u 1

for all t ≥ 0. We conclude from Lemma 5.15 that for every m ≥ 1, there exists an
nm such that

N
v
[t′nm

](t) ∼u 1

for all 0 ≤ t ≤ m. But by (5.44) and (5.46) this implies that

osc(εm) �u 1

for all m and some ε = ε(u) > 0 independent of m. Note that ε is chosen as a lower
bound on the quantities N(t′′nm

)2/N(t′nm
)2 where t′′nm

= t′nm
+ m

2 N(t′nm
)−2. This

contradicts the hypothesis limT→∞ osc(T ) = ∞ and so settles Case II.

Case III: limT→∞ osc(T ) = ∞ and inft0∈J a(t0) > 0.
In this case, there are no long periods of stability and no double cascades from

high to low frequencies; we will be able to extract a self-similar solution in the sense
of Theorem 5.24.

Let ε = ε(v) > 0 be such that inft0∈J a(t0) ≥ 2ε. We call a time t0 future-
focusing if

(5.51) Nv(t) ≥ εNv(t0) for all t ∈ J with t ≥ t0

and past-focusing if

(5.52) Nv(t) ≥ εNv(t0) for all t ∈ J with t ≤ t0.

From the choice of ε we see that every time t0 ∈ J is either future-focusing or
past-focusing, or possibly both.

We will now show that either all sufficiently late times are future-focusing or
that all sufficiently early times are past-focusing. If this were false, there would be
a future-focusing time t0 and a sequence of past-focusing times tn that converge to
sup J . For sufficiently large n, we have tn ≥ t0. By (5.51) and (5.52) we then see
that

Nv(tn) ∼v Nv(t0)

for all such n. For any t0 < t < tn, we know that t is either past-focusing or
future-focusing; thus we have either Nv(t0) ≥ εNv(t) or Nv(tn) ≥ εNv(t). Also,
since t0 is future-focusing, Nv(t) ≥ εNv(t0). We conclude that

Nv(t) ∼v Nv(t0)
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for all t0 < t < tn; since tn → sup J , this claim in fact holds for all t0 < t < sup J .
In particular, from Corollary 5.19 we see that v does not blow up forward in finite
time, that is, sup J = ∞. The function Nv is now bounded above and below on the
interval (t0,+∞), which implies that limT→∞ osc(T ) < ∞, a contradiction. This
proves the assertion at the beginning of the paragraph.

We may now assume that future-focusing occurs for all sufficiently late times;
more precisely, we can find t0 ∈ J such that all times t ≥ t0 are future-focusing.
The case when all sufficiently early times are past-focusing reduces to this via time-
reversal symmetry.

We will now recursively construct a new sequence of times tn. More precisely,
we will explain how to choose tn+1 from tn.

As limT→∞ osc(T ) = ∞, we have osc(B) ≥ 2/ε for some sufficiently large
B = B(v) > 0. Given J � tn > t0 set A = 2Bε−2 and t′n = tn + 1

2ANv(tn)
−2. As

tn > t0, it is future-focusing and so Nv(t
′
n) ≥ εNv(tn). From this, we see that{

t : |t− t′n| ≤ BNv(t
′
n)

−2
}
⊆

[
tn, tn +ANv(tn)

−2
]

and thus, by the definition of B and the fact that all t ≥ tn are future-focusing,

(5.53) sup
t∈J∩[tn,tn+ANv(tn)−2]

Nv(t) ≥ 2Nv(tn).

Using this and Lemma 5.18, we see that for every tn ∈ J with tn ≥ t0 there exists
a time tn+1 ∈ J obeying

(5.54) tn < tn+1 ≤ tn +AN(tn)
−2

such that

(5.55) 2Nv(tn) ≤ Nv(tn+1) �v Nv(tn)

and

(5.56) Nv(t) ∼v Nv(tn) for all tn ≤ t ≤ tn+1.

From (5.55) we have
Nv(tn) ≥ 2nNv(t0)

for all n ≥ 0, which by (5.54) implies

tn+1 ≤ tn +Ov(2
−2nNv(t0)

−2).

Thus tn converge to a limit and Nv(tn) to infinity. In view of Lemma 5.20, this
implies that sup J is finite and limn→∞ tn = sup J .

Let n ≥ 0. By (5.55),

Nv(tn+m) ≥ 2mNv(tn)

for all m ≥ 0 and so, using (5.54) we obtain

0 < tn+m+1 − tn+m �v 2−2mNv(tn)
−2.

Summing this series in m, we conclude that

sup J − tn �v Nv(tn)
−2.

Combining this with Corollary 5.19, we obtain

sup J − tn ∼v Nv(tn)
−2.

In particular, we have

sup J − tn+1 ∼v sup J − tn ∼v Nv(tn)
−2.
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Applying (5.55) and (5.56) shows

sup J − t ∼v Nv(t)
−2

for all tn ≤ t ≤ tn+1. Since tn converge to sup J , we conclude that

sup J − t ∼v Nv(t)
−2

for all t0 ≤ t < sup J .
As we have the freedom to modify N(t) by a bounded function (modifying C

appropriately), we may normalise

Nv(t) = (sup J − t)−1/2

for all t0 ≤ t < sup J . It is now not difficult to extract our sought-after self-similar
solution by suitably rescaling the interval (t0, sup J) as follows.

Consider the normalisations v[tn] of v at times tn (cf. (5.32)). These are
maximal-lifespan normalised solutions of mass M(v), whose lifespans include the
interval (

− sup J − t0
sup J − tn

, 1
)
,

and which are almost periodic modulo scaling with compactness modulus function
C and frequency scale functions

(5.57) Nv[tn](s) = (1− s)−1/2

for all − sup J−t0
sup J−tn

< s < 1. We now apply Lemma 5.17 and conclude (passing to a

subsequence if necessary) that v[tn] converge locally uniformly to a maximal-lifespan
solution u of mass M(v) defined on an open interval I containing (−∞, 1), which
is almost periodic modulo symmetries.

By Lemma 5.15 and (5.57), we see that u has a frequency scale function N
obeying

N(s) ∼v (1− s)−1/2

for all s ∈ (−∞, 1). By modifying N (and C) by a bounded factor, we may
normalise

N(s) = (1− s)−1/2.

From this, Lemma 5.18, and Corollary 5.19 we see that we must have I = (−∞, 1).
Applying a time translation (by −1) followed by a time reversal, we obtain our
sought-after self-similar solution.

This finishes the proof of Theorem 5.24. �
Finally, we identify the enemies in the energy-critical setting. The precise

statement we present is not as ambitious as the one for the mass-critical NLS, but
it has proven sufficient to resolve the global well-posedness and scattering conjecture
in high dimensions.

Theorem 5.25 (Three enemies: the energy-critical NLS, [44]). Fix μ and d ≥ 3
and suppose that Conjecture 1.5 fails for this choice of μ and d. Then there exists
a minimal kinetic energy, maximal-lifespan solution u to (1.6), which is almost
periodic modulo symmetries, ‖u‖

L
2(d+2)/(d−2)
t,x (I×Rd)

= ∞, and in the focusing case

also obeys supt∈I ‖∇u(t)‖2 < ‖∇W‖2.
We can also ensure that the lifespan I and the frequency scale function N : I →

R+ match one of the following three scenarios:

I. (Finite-time blowup) We have that either | inf I| < ∞ or sup I < ∞.
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II. (Soliton-like solution) We have I = R and

N(t) = 1 for all t ∈ R.

III. (Low-to-high frequency cascade) We have I = R,

inf
t∈R

N(t) ≥ 1, and lim sup
t→+∞

N(t) = ∞.

Proof. Exercise: adapt the proof of Theorem 5.24 to cover this case. �

6. Quantifying the compactness

In this section we continue our study of minimal blowup solutions, particularly,
the study of the enemies described in Theorems 5.24 and 5.25. As we have seen in
Section 5, one of properties that these minimal blowup solutions enjoy is that their
orbit is precompact (modulo symmetries) in L2

x (in the mass-critical case) or in Ḣ1
x

(in the energy-critical case). We will now show that these minimal counterexamples
to the global well-posedness and scattering conjectures enjoy additional regularity
and decay, properties which one should regard as a strengthening of the precom-
pactness of their profiles, indeed, as a way to quantify this (pre)compactness.

The goal is to show that solutions corresponding to the three scenarios de-
scribed in Theorem 5.24 belong to L∞

t H1
x (or even L∞

t H1+ε
x for some ε = ε(d) > 0)

throughout their lifespan, while solutions corresponding to the three scenarios de-
scribed in Theorem 5.25 belong to L∞

t L2
x (or even L∞

t Ḣ−ε
x for some ε = ε(d) > 0).

As we will see in Section 8, this additional regularity and decay is sufficient to pre-
clude the enemies to the global well-posedness and scattering conjectures. To give
just a quick example of how this works, let us notice that in order to preclude the
self-similar solution described in Theorem 5.24, it suffices to prove that such a solu-
tion belongs to L∞

t H1
x, since then it is global (see Weinstein [105] for the focusing

case); this contradicts the fact that a self-similar solution blows up at t = 0.
The goal described in the paragraph above is by no means easily achievable;

indeed, most of the effort and innovation in proving the global well-posedness and
scattering conjectures concentrate in attaining this goal. In the mass-critical case,
additional regularity for the enemies described in Theorem 5.24 was so far only
proved in dimensions d ≥ 2 under the additional assumption of spherical symmetry
on the initial data; see [43, 46] and also [97]. Removing the spherical symme-
try assumption even in the defocusing case (when one has the advantage of using
Morawetz-type inequalities) has proven quite difficult and is still an open problem.

In the energy-critical case, the goal was achieved in dimensions d ≥ 5 in [44],
thus resolving the global well-posedness and scattering conjecture in this case. In
lower dimensions d = 3, 4, the conjecture was only proved under the additional
assumption of spherical symmetry on the initial data; see [38]. Unlike in the mass-
critical case, for the energy-critical NLS this assumption is sufficiently strong that
one does not need to achieve the goal in order to rule out the enemies. Indeed, in
these low dimensions, the goal described above is presumably too ambitious since
even the ground state W does not belong to L2

x in this case. Removing the spherical
symmetry assumption for d = 3, 4 remains quite a challenge.

In the mass-critical case, we will only revisit the proof of additional regularity
for the self-similar solution (cf. Theorem 5.24) and only in the spherically symmetric
case, as it appears in [43, 46]. We will, however, present the complete argument
for the energy-critical NLS in dimensions d ≥ 5, following [44].
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6.1. Additional regularity: the self-similar scenario.

Theorem 6.1 (Regularity in the self-similar case, [43, 46]). Let d ≥ 2 and
let u be a spherically symmetric solution to (1.4) that is almost periodic modulo
scaling and self-similar in the sense of Theorem 5.24. Then u(t) ∈ Hs

x(R
d) for all

t ∈ (0,∞) and all 0 ≤ s < 1 + 4
d .

Corollary 6.2 (Absence of self-similar solutions). For d ≥ 2 there are no
spherically symmetric solutions to (1.4) that are self-similar in the sense of Theo-
rem 5.24.

Proof. By Theorem 6.1, any such solution would obey u(t) ∈ H1
x(R

d) for all
t ∈ (0,∞). Then, by the H1

x global well-posedness theory (see Corollary 4.3 in
the focusing case), there exists a global solution with initial data u(t0) at some
time t0 ∈ (0,∞). On the other hand, self-similar solutions blow up at time t = 0.
These two facts (combined with the uniqueness statement in Corollary 3.5) yield a
contradiction. �

The remainder of this subsection is devoted to proving Theorem 6.1.
Let u be as in Theorem 6.1. For any A > 0, we define

M(A) := sup
T>0

‖u>AT−1/2(T )‖L2
x(R

d)

S(A) := sup
T>0

‖u>AT−1/2‖
L

2(d+2)/d
t,x ([T,2T ]×Rd)

N (A) := sup
T>0

‖P>AT−1/2F (u)‖
L

2(d+2)/(d+4)
t,x ([T,2T ]×Rd)

.

(6.1)

The notation chosen indicates the quantity being measured, namely, the mass, the
symmetric Strichartz norm, and the nonlinearity in the adjoint Strichartz norm,
respectively. As u is self-similar, N(t) is comparable to T−1/2 for t in the inter-
val [T, 2T ]. Thus, the Littlewood-Paley projections are adapted to the natural
frequency scale on each dyadic time interval.

To prove Theorem 6.1 it suffices to show that for every 0 < s < 1 + 4
d we have

(6.2) M(A) �s,u A−s,

whenever A is sufficiently large depending on u and s. To establish this, we need a
variety of estimates linking M, S, and N . From mass conservation, Lemma 5.21,
self-similarity, and Hölder’s inequality, we see that

(6.3) M(A) + S(A) +N (A) �u 1

for all A > 0. From the Strichartz inequality (Theorem 3.2), we also see that

(6.4) S(A) � M(A) +N (A)

for all A > 0. One more application of Strichartz inequality combined with
Lemma 5.21 and self-similarity shows

‖u‖
L2

tL
2d

d−2
x ([T,2T ]×Rd)

�u 1.(6.5)

Next, we obtain a deeper connection between these quantities.
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Lemma 6.3 (Nonlinear estimate). Let η > 0 and 0 < s < 1+ 4
d . For all A > 100

and 0 < β ≤ 1, we have

(6.6)

N (A) �u

∑
N≤ηAβ

(
N
A

)sS(N) +
[
S(ηA

β
2(d−1) ) + S(ηAβ)

] 4
dS(ηAβ)

+A− 2β

d2
[
M(ηAβ) +N (ηAβ)

]
.

Proof. Fix η > 0 and 0 < s < 1 + 4
d . It suffices to bound∥∥P

>AT− 1
2
F (u)

∥∥
L

2(d+2)
d+4

t,x ([T,2T ]×Rd)

by the right-hand side of (6.6) for fixed T > 0, A > 100, and 0 < β ≤ 1.
To achieve this, we decompose

(6.7)
F (u) = F (u

≤ηAβT− 1
2
) +O

(
|u

≤ηAαT− 1
2
| 4d |u

>ηAβT− 1
2
|
)

+O
(
|u

ηAαT− 1
2 <·≤ηAβT− 1

2
| 4d |u

>ηAβT− 1
2
|
)
+ O

(
|u

>ηAβT− 1
2
|1+ 4

d

)
,

where α = β
2(d−1) . To estimate the contribution from the last two terms in the

expansion above, we discard the projection onto high frequencies and then use
Hölder’s inequality and (6.1):∥∥|u

ηAαT− 1
2 <·≤ηAβT− 1

2
| 4d u

>ηAβT− 1
2

∥∥
L

2(d+2)
d+4

t,x ([T,2T ]×Rd)

� S(ηAα)
4
dS(ηAβ)

∥∥|u
>ηAβT− 1

2
|1+ 4

d

∥∥
L

2(d+2)
d+4

t,x ([T,2T ]×Rd)

� S(ηAβ)1+
4
d .

To estimate the contribution coming from second term on the right-hand side of
(6.7), we discard the projection onto high frequencies and then use Hölder’s in-
equality, Lemma A.6, Corollary 4.19, and (6.4):∥∥P

>AT− 1
2
O
(
|u

≤ηAαT− 1
2
| 4d |u

>ηAβT− 1
2
|
)∥∥

L

2(d+2)
d+4

t,x ([T,2T ]×Rd)

�
∥∥u

≤ηAαT− 1
2
u
>ηAβT− 1

2

∥∥ 8
d2

L2
t,x([T,2T ]×Rd)

∥∥u
>ηAβT− 1

2

∥∥1− 8
d2

L
2(d+2)

d
t,x ([T,2T ]×Rd)

×
∥∥u

≤ηAαT− 1
2

∥∥ 4
d−

8
d2

L2
t,x([T,2T ]×Rd)

�u

[
(ηAβT− 1

2 )−
1
2 (ηAαT− 1

2 )
d−1
2

] 8
d2
[
M(ηAβ) +N (ηAβ)

] 8
d2 S(ηAβ)1−

8
d2 T

2
d−

4
d2

�u A− 2β

d2
[
M(ηAβ) +N (ηAβ)

]
.

We now turn to the first term on the right-hand side of (6.7). By Lemma A.6 and
Corollary A.14 combined with (6.3), we estimate

‖P
>AT− 1

2
F (u

≤ηAβT− 1
2
)‖

L
2(d+2)
d+4

t,x ([T,2T ]×Rd)

� (AT− 1
2 )−s

∥∥|∇|sF (u
≤ηAβT− 1

2
)
∥∥
L

2(d+2)
d+4

t,x ([T,2T ]×Rd)

�u (AT− 1
2 )−s

∥∥|∇|su
≤ηAβT− 1

2

∥∥
L

2(d+2)
d

t,x ([T,2T ]×Rd)

�u

∑
N≤ηAβ

(
N
A

)sS(N),
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which is acceptable. This finishes the proof of the lemma. �

We have some decay as A → ∞:

Lemma 6.4 (Qualitative decay). We have

(6.8) lim
A→∞

M(A) = lim
A→∞

S(A) = lim
A→∞

N (A) = 0.

Proof. The vanishing of the first limit follows from Definition 5.1, (6.1), and
self-similarity. By interpolation, (6.1), and (6.5),

S(A) � M(A)
2

d+2 ‖u
≥AT− 1

2
‖

d
d+2

L2
tL

2d
d−2
x ([T,2T ]×Rd)

�u M(A)
2

d+2 .

Thus, as the first limit in (6.8) vanishes, we obtain that the second limit vanishes.
The vanishing of the third limit follows from that of the second and Lemma 6.3. �

We have now gathered enough tools to prove some regularity, albeit in the
symmetric Strichartz space. As such, the next result is the crux of this subsection.

Proposition 6.5 (Quantitative decay estimate). Let 0 < η < 1 and 0 < s <
1 + 4

d . If η is sufficiently small depending on u and s, and A is sufficiently large
depending on u, s, and η,

S(A) ≤
∑

N≤ηA

(
N
A

)sS(N) +A− 1
d2 .(6.9)

In particular, by Lemma A.15,

S(A) �u A− 1
d2 ,(6.10)

for all A > 0.

Proof. Fix η ∈ (0, 1) and 0 < s < 1+ 4
d . To establish (6.9), it suffices to show∥∥u>AT−1/2

∥∥
L

2(d+2)
d

t,x ([T,2T ]×Rd)
�u,ε

∑
N≤ηA

(
N
A

)s+εS(N) +A− 3
2d2(6.11)

for all T > 0 and some small ε = ε(d, s) > 0, since then (6.9) follows by requiring
η to be small and A to be large, both depending upon u.

Fix T > 0. By writing the Duhamel formula (3.12) beginning at T
2 and then

using the Strichartz inequality, we obtain∥∥u>AT−1/2

∥∥
L

2(d+2)
d

t,x ([T,2T ]×Rd)
�

∥∥P>AT−1/2ei(t−
T
2 )Δu(T2 )

∥∥
L

2(d+2)
d

t,x ([T,2T ]×Rd)

+
∥∥P>AT−1/2F (u)

∥∥
L

2(d+2)
d+4

t,x ([T2 ,2T ]×Rd)

.

Consider the second term. By (6.1), we have∥∥P>AT−1/2F (u)
∥∥
L

2(d+2)
d+4

t,x ([T2 ,2T ]×Rd)

� N (A/2).

Using Lemma 6.3 (with β = 1 and s replaced by s+ ε for some 0 < ε < 1 + 4
d − s)

combined with Lemma 6.4 (choosing A sufficiently large depending on u, s, and η),
and (6.3), we derive∥∥P>AT−1/2F (u)

∥∥
L

2(d+2)
d+4

t,x ([T2 ,2T ]×Rd)

�u,ε RHS(6.11).

Thus, the second term is acceptable.
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We now consider the first term. It suffices to show∥∥P>AT−1/2ei(t−
T
2 )Δu(T2 )

∥∥
L

2(d+2)
d

t,x ([T,2T ]×Rd)
�u A− 3

2d2 ,(6.12)

which we will deduce by first proving two estimates at a single frequency scale,
interpolating between them, and then summing.

From Theorem 4.29 and mass conservation, we have∥∥PBT−1/2ei(t−
T
2 )Δu(T2 )

∥∥
Lq

t,x([T,2T ]×Rd)
�u,q (BT−1/2)

d
2−

d+2
q(6.13)

for all 4d+2
2d−1 < q ≤ 2(d+2)

d and B > 0. This is our first estimate.

Using the Duhamel formula (3.12), we write

PBT−1/2ei(t−
T
2 )Δu(T2 ) = PBT−1/2ei(t−δ)Δu(δ)− i

∫ T
2

δ

PBT−1/2ei(t−t′)ΔF (u(t′)) dt′

for any δ > 0. By self-similarity, the former term converges strongly to zero in L2
x

as δ → 0. Convergence to zero in L
2d/(d−2)
x then follows from Lemma A.6. Thus,

using Hölder’s inequality followed by the dispersive estimate (3.2), and then (6.5),
we estimate∥∥PBT−1/2ei(t−

T
2 )Δu(T2 )

∥∥
L

2d
d−2
t,x ([T,2T ]×Rd)

� T
d−2
2d

∥∥∥∫ T
2

0

1

t− t′
‖F (u(t′))‖

L
2d

d+2
x

dt′
∥∥∥
L∞

t ([T,2T ])

� T− d+2
2d ‖F (u)‖

L1
tL

2d
d+2
x ((0,T2 ]×Rd)

� T− d+2
2d

∑
0<τ≤ T

4

‖F (u)‖
L1

tL
2d

d+2
x ([τ,2τ ]×Rd)

� T− d+2
2d

∑
0<τ≤ T

4

τ1/2‖u‖
L2

tL
2d

d−2
x ([τ,2τ ]×Rd)

‖u‖
4
d

L∞
t L2

x([τ,2τ ]×Rd)

�u T−1/d.

Interpolating between the estimate just proved and the q = 2d(d+2)(4d−3)
4d3−3d2+12 case

of (6.13), we obtain

‖PBT−1/2ei(t−
T
2 )Δu(T2 )‖

L
2(d+2)

d
t,x ([T,2T ]×Rd)

�u B− 3
2d2 .

Summing this over dyadic B ≥ A yields (6.12) and hence (6.11). �

Corollary 6.6. For any A > 0 we have

M(A) + S(A) +N (A) �u A−1/d2

.

Proof. The bound on S was proved in the previous proposition. The bound
on N follows from this, Lemma 6.3 with β = 1, and (6.3).

We now turn to the bound on M. By Proposition 5.23 and weak lower semi-
continuity of the norm,

‖P>AT−1/2u(T )‖2 ≤
∞∑
k=0

∥∥∥∫ 2k+1T

2kT

ei(T−t′)ΔP>AT−1/2F (u(t′)) dt′
∥∥∥
2
.(6.14)
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Intuitively, the reason for using the Duhamel formula forward in time is that the
solution becomes smoother as N(t) → 0.

Combining (6.14) with Strichartz inequality and (6.1), we get

M(A) = sup
T>0

‖P>AT−1/2u(T )‖2 �
∞∑
k=0

N (2k/2A).(6.15)

The desired bound on M now follows from that on N . �

Proof of Theorem 6.1. Let 0 < s < 1 + 4
d . Combining Lemma 6.3 (with

β = 1− 1
2d2 ), (6.4), and (6.15), we deduce that if

S(A) +M(A) +N (A) �u A−σ

for some 0 < σ < s, then

S(A) +M(A) +N (A) �u A−σ
(
A− s−σ

2d2 +A
− (d+1)(3d−2)σ

2d3(d−1) +A− 3−σ

2d2
− d2−2

2d4

)
.

More precisely, Lemma 6.3 provides the bound on N (A), then (6.15) gives the
bound on M(A) and then finally (6.4) gives the bound on S(A).

Iterating this statement shows that u(t) ∈ Hs
x(R

d) for all 0 < s < 1 + 4
d . Note

that Corollary 6.6 allows us to begin the iteration with σ = d−2. �

6.2. Additional decay: the finite-time blowup case. We consider now
the energy-critical NLS. The purpose of the next two subsections is to prove that
solutions corresponding to the three scenarios described in Theorem 5.25 obey ad-
ditional decay, in particular, they belong to L∞

t L2
x or better (at least in dimensions

d ≥ 5).
We start with the finite-time blowup scenario and show that in this case, the

solution has finite mass; indeed, we will show that the solution must have zero
mass, and hence derive a contradiction to the fact that it is, after all, a blowup
solution. In this particular case, we do not need to restrict to dimensions d ≥ 5.
The argument is essentially taken from [38].

Theorem 6.7 (No finite-time blowup). Let d ≥ 3. Then there are no maximal-
lifespan solutions u : I × Rd → C to (1.6) that are almost periodic modulo symme-
tries, obey

SI(u) = ∞,(6.16)

and

(6.17) sup
t∈I

‖∇u(t)‖2 < ∞,

and are such that either | inf I| < ∞ or sup I < ∞.

Proof. Suppose for a contradiction that there existed such a solution u. With-
out loss of generality, we may assume sup I < ∞. By Corollary 5.19, we must have

lim inf
t↗sup I

N(t) = ∞.(6.18)

We now show that (6.18) implies

lim sup
t↗ sup I

∫
|x|≤R

|u(t, x)|2 dx = 0 for all R > 0.(6.19)
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Indeed, let 0 < η < 1 and t ∈ I. By Hölder’s inequality, Sobolev embedding, and
(6.17),∫

|x|≤R

|u(t, x)|2 dx ≤
∫
|x−x(t)|≤ηR

|u(t, x)|2 dx+

∫
|x|≤R

|x−x(t)|>ηR

|u(t, x)|2 dx

� η2R2‖u(t)‖22d
d−2

+R2
(∫

|x−x(t)|>ηR

|u(t, x)| 2d
d−2 dx

) d−2
d

� η2R2 +R2
(∫

|x−x(t)|>ηR

|u(t, x)| 2d
d−2 dx

) d−2
d

.

Letting η → 0, we can make the first term on the right-hand side of the inequality
above as small as we wish. On the other hand, by (6.18) and Definition 5.11, we
see that

lim sup
t↗sup I

∫
|x−x(t)|>ηR

|u(t, x)| 2d
d−2 dx = 0.

This proves (6.19).
The next step is to prove that (6.19) implies the solution u is identically zero,

thus contradicting (6.16). For t ∈ I define

MR(t) :=

∫
Rd

φ
( |x|

R

)
|u(t, x)|2 dx,

where φ is a smooth, radial function, such that

φ(r) =

{
1 for r ≤ 1

0 for r ≥ 2.

By (6.19),

lim sup
t↗sup I

MR(t) = 0 for all R > 0.(6.20)

On the other hand, a simple computation involving Hardy’s inequality and (6.17)
shows

|∂tMR(t)| � ‖∇u(t)‖2
∥∥∥u(t)|x|

∥∥∥
2

� ‖∇u(t)‖22 �u 1.

Thus, by the Fundamental Theorem of Calculus,

MR(t1) = MR(t2)−
∫ t2

t1

∂tMR(t) dt �u MR(t2) + |t2 − t1|

for all t1, t2 ∈ I and R > 0. Letting t2 ↗ sup I and invoking (6.20), we deduce

MR(t1) �u | sup I − t1|.

Now letting R → ∞ we obtain u(t1) ∈ L2
x(R

d). Finally, letting t1 ↗ sup I and
using the conservation of mass, we conclude u ≡ 0, contradicting (6.16).

This concludes the proof of Theorem 6.7. �
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6.3. Additional decay: the global case. In this subsection we prove

Theorem 6.8 (Negative regularity in the global case, [44]). Let d ≥ 5 and let
u be a global solution to (1.6) that is almost periodic modulo symmetries. Suppose
also that

sup
t∈R

‖∇u(t)‖L2
x
< ∞(6.21)

and

inf
t∈R

N(t) ≥ 1.(6.22)

Then u ∈ L∞
t Ḣ−ε

x (R× Rd) for some ε = ε(d) > 0. In particular, u ∈ L∞
t L2

x.

The proof of Theorem 6.8 is achieved in two steps: First, we ‘break’ scaling in a
Lebesque space; more precisely, we prove that our solution lives in L∞

t Lp
x for some

2 < p < 2d
d−2 . Next, we use a double Duhamel trick to upgrade this to u ∈ L∞

t Ḣ1−s
x

for some s = s(p, d) > 0. Iterating the second step finitely many times, we derive
Theorem 6.8.

The double Duhamel trick was used in [91] for a similar purpose; however, in
that paper, the breach of scaling comes directly from the subcritical nature of the
nonlinearity. An earlier related instance of this trick can be found in [20, §14].

Let u be a solution to (1.6) that obeys the hypotheses of Theorem 6.8. Let
η > 0 be a small constant to be chosen later. Then by the almost periodicity
modulo symmetries combined with (6.22), there exists N0 = N0(η) such that

‖∇u≤N0
‖L∞

t L2
x(R×Rd) ≤ η.(6.23)

We turn now to our first step, that is, breaking scaling in a Lebesgue space.
To this end, we define

A(N) :=

⎧⎨
⎩
N− 2

d−2 supt∈R
‖uN (t)‖

L

2(d−2)
d−4

x

for d ≥ 6

N− 1
2 supt∈R

‖uN (t)‖L5
x

for d = 5.

for frequencies N ≤ 10N0. Note that by Bernstein’s inequality combined with
Sobolev embedding and (6.21),

A(N) � ‖uN‖
L∞

t L
2d

d−2
x

� ‖∇u‖L∞
t L2

x
< ∞.

We next prove a recurrence formula for A(N).

Lemma 6.9 (Recurrence). For all N ≤ 10N0,

A(N) �u

(
N
N0

)α
+ η

4
d−2

∑
N
10≤N1≤N0

(
N
N1

)α
A(N1) + η

4
d−2

∑
N1<

N
10

(
N1

N

)α
A(N1),

where α := min{ 2
d−2 ,

1
2}.

Proof. We first give the proof in dimensions d ≥ 6. Once this is completed,
we will explain the changes necessary to treat d = 5.

Fix N ≤ 10N0. By time-translation symmetry, it suffices to prove

N− 2
d−2 ‖uN (0)‖

L
2(d−2)
d−4

x

�u

(
N
N0

) 2
d−2 + η

4
d−2

∑
N
10≤N1≤N0

(
N
N1

) 2
d−2A(N1)
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+ η
4

d−2

∑
N1<

N
10

(
N1

N

) 2
d−2A(N1).(6.24)

Using the Duhamel formula (5.43) into the future followed by the triangle
inequality, Bernstein, and the dispersive inequality, we estimate

N− 2
d−2 ‖uN (0)‖

L

2(d−2)
d−4

x

≤ N− 2
d−2

∥∥∥∫ N−2

0

e−itΔPNF (u(t)) dt
∥∥∥
L

2(d−2)
d−4

x

+N− 2
d−2

∫ ∞

N−2

∥∥e−itΔPNF (u(t))
∥∥
L

2(d−2)
d−4

x

dt

� N
∥∥∥∫ N−2

0

e−itΔPNF (u(t)) dt
∥∥∥
L2

x

+N− 2
d−2 ‖PNF (u)‖

L∞
t L

2(d−2)
d

x

∫ ∞

N−2

t−
d

d−2 dt

� N−1‖PNF (u)‖L∞
t L2

x
+N

2
d−2 ‖PNF (u)‖

L∞
t L

2(d−2)
d

x

� N
2

d−2 ‖PNF (u)‖
L∞

t L
2(d−2)

d
x

.(6.25)

Using the Fundamental Theorem of Calculus, we decompose

F (u) = O(|u>N0
||u≤N0

| 4
d−2 ) +O(|u>N0

|
d+2
d−2 ) + F (u N

10≤·≤N0
)

+ u< N
10

∫ 1

0

Fz

(
u N

10≤·≤N0
+ θu< N

10

)
dθ(6.26)

+ u< N
10

∫ 1

0

Fz̄

(
u N

10≤·≤N0
+ θu< N

10

)
dθ.

The contribution to the right-hand side of (6.25) coming from terms that con-
tain at least one copy of u>N0

can be estimated in the following manner: Using
Hölder, Bernstein, and (6.21),

N
2

d−2 ‖PNO(|u>N0
||u| 4

d−2 )
∥∥
L∞

t L
2(d−2)

d
x

� N
2

d−2 ‖u>N0
‖
L∞

t L

2d(d−2)

d2−4d+8
x

‖u‖
4

d−2

L∞
t L

2d
d−2
x

�u N
2

d−2N
− 2

d−2

0 .(6.27)

Thus, this contribution is acceptable.
Next we turn to the contribution to the right-hand side of (6.25) coming from

the last two terms in (6.26); it suffices to consider the first of them since similar
arguments can be used to deal with the second.

Lemma A.13 yields∥∥P> N
10
Fz(u)

∥∥
L∞

t L
d−2
2

x

� N− 4
d−2 ‖∇u‖

4
d−2

L∞
t L2

x
.

Thus, by Hölder’s inequality and (6.23),

N
2

d−2

∥∥∥PN

(
u< N

10

∫ 1

0

Fz

(
u N

10≤·≤N0
+ θu< N

10

)
dθ

)∥∥∥
L∞

t L
2(d−2)

d
x

� N
2

d−2 ‖u< N
10
‖
L∞

t L

2(d−2)
d−4

x

∥∥∥P> N
10

(∫ 1

0

Fz

(
u N

10≤·≤N0
+ θu< N

10

)
dθ

)∥∥∥
L∞

t L
d−2
2

x
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� N− 2
d−2 ‖u< N

10
‖
L∞

t L

2(d−2)
d−4

x

‖∇u≤N0
‖

4
d−2

L∞
t L2

x

� η
4

d−2

∑
N1<

N
10

(
N1

N

) 2
d−2A(N1).(6.28)

Hence, the contribution coming from the last two terms in (6.26) is acceptable.
We are left to estimate the contribution of F (u N

10≤·≤N0
) to the right-hand side

of (6.25). We need only show

‖F (u N
10≤·≤N0

)‖
L∞

t L
2(d−2)

d
x

� η
4

d−2

∑
N
10≤N1≤N0

N
− 2

d−2

1 A(N1).(6.29)

As d ≥ 6, we have 4
d−2 ≤ 1. Using the triangle inequality, Bernstein, (6.23), and

Hölder, we estimate as follows:

‖F (u N
10≤·≤N0

)‖
L∞

t L
2(d−2)

d
x

�
∑

N
10≤N1≤N0

∥∥uN1
|u N

10≤·≤N0
| 4
d−2

∥∥
L∞

t L
2(d−2)

d
x

�
∑

N
10≤N1,N2≤N0

∥∥uN1
|uN2

| 4
d−2

∥∥
L∞

t L
2(d−2)

d
x

�
∑

N
10≤N1≤N2≤N0

‖uN1
‖
L∞

t L
2(d−2)
d−4

x

‖uN2
‖

4
d−2

L∞
t L2

x

+
∑

N
10≤N2≤N1≤N0

‖uN1
‖

4
d−2

L∞
t L2

x
‖uN1

‖
d−6
d−2

L∞
t L

2(d−2)
d−4

x

‖uN2
‖

4
d−2

L∞
t L

2(d−2)
d−4

x

�
∑

N
10≤N1≤N2≤N0

‖uN1
‖
L∞

t L
2(d−2)
d−4

x

η
4

d−2N
− 4

d−2

2

+
∑

N
10≤N2≤N1≤N0

η
4

d−2N
− 4

d−2

1 ‖uN1
‖

d−6
d−2

L∞
t L

2(d−2)
d−4

x

‖uN2
‖

4
d−2

L∞
t L

2(d−2)
d−4

x

� η
4

d−2

∑
N
10≤N1≤N0

N
− 2

d−2

1 A(N1)

+ η
4

d−2

∑
N
10≤N2≤N1≤N0

(
N2

N1

) 16
(d−2)2

(
N

− 2
d−2

1 A(N1)
) d−6

d−2
(
N

− 2
d−2

2 A(N2)
) 4

d−2

� η
4

d−2

∑
N
10≤N1≤N0

N
− 2

d−2

1 A(N1).

This proves (6.29) and so completes the proof of the lemma in dimensions d ≥ 6.
Consider now d = 5. Arguing as for (6.25), we have

N− 1
2 ‖uN (0)‖L5

x
� N

1
2 ‖PNF (u)‖

L∞
t L

5
4
x

,

which we estimate by decomposing the nonlinearity as in (6.26). The analogue of
(6.27) in this case is

N
1
2 ‖PNO(|u>N0

||u| 4
d−2 )

∥∥
L∞

t L
5
4
x

� N
1
2 ‖u>N0

‖
L∞

t L
5
2
x

‖u‖
4
3

L∞
t L

10
3

x

�u N
1
2N

− 1
2

0 .
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Using Bernstein and Lemma A.11 together with (6.23), we replace (6.28) by

N
1
2

∥∥∥PN

(
u< N

10

∫ 1

0

Fz

(
u N

10≤·≤N0
+ θu< N

10

)
dθ

)∥∥∥
L∞

t L
5
4
x

� N
1
2 ‖u< N

10
‖L∞

t L5
x

∥∥∥P> N
10

(∫ 1

0

Fz

(
u N

10≤·≤N0
+ θu< N

10

)
dθ

)∥∥∥
L∞

t L
5
3
x

� N− 1
2 ‖u< N

10
‖L∞

t L5
x
‖∇u≤N0

‖L∞
t L2

x
‖u≤N0

‖
1
3

L∞
t L

10
3

x

� η
4
3

∑
N1<

N
10

(
N1

N

) 1
2A(N1).

Finally, arguing as for (6.29), we estimate

‖F (u N
10≤·≤N0

)‖
L∞

t L
5
4
x

�
∑

N
10≤N1,N2≤N0

∥∥uN1
uN2

|u N
10≤·≤N0

| 13
∥∥
L∞

t L
5
4
x

�
∑

N
10≤N1≤N2,N3≤N0

‖uN1
‖L∞

t L5
x
‖uN2

‖
L∞

t L
20
9

x

‖uN3
‖

1
3

L∞
t L

20
9

x

+
∑

N
10≤N3≤N1≤N2≤N0

‖uN1
‖

2
3

L∞
t L5

x
‖uN1

‖
1
3

L∞
t L

20
9

x

‖uN2
‖
L∞

t L
20
9

x

‖uN3
‖

1
3

L∞
t L5

x

�
∑

N
10≤N1≤N2,N3≤N0

‖uN1
‖L∞

t L5
x
ηN

− 3
4

2 η
1
3N

− 1
4

3

+
∑

N
10≤N3≤N1≤N2≤N0

‖uN1
‖

2
3

L∞
t L5

x
η

1
3N

− 1
4

1 ηN
− 3

4
2 ‖uN3

‖
1
3

L∞
t L5

x

� η
4
3

∑
N
10≤N1≤N0

N
− 1

2
1 A(N1)

+ η
4
3

∑
N
10≤N3≤N1≤N0

(
N3

N1

) 1
3
(
N

− 1
2

1 A(N1)
) 2

3
(
N

− 1
2

3 A(N3)
) 1

3

� η
4
3

∑
N
10≤N1≤N0

N
− 1

2
1 A(N1).

Putting everything together completes the proof of the lemma in the case d = 5. �

This lemma leads very quickly to our first goal:

Proposition 6.10 (Lp
x breach of scaling). Let u be as in Theorem 6.8. Then

u ∈ L∞
t Lp

x for 2(d+1)
d−1 ≤ p < 2d

d−2 .(6.30)

In particular, by Hölder’s inequality,

∇F (u) ∈ L∞
t Lr

x for 2(d−2)(d+1)
d2+3d−6 ≤ r < 2d

d+4 .(6.31)

Remark. As will be seen in the proof, p and r can be allowed to be smaller;
however, the statement given will suffice for our purposes.
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Proof. We only present the details for d ≥ 6. The treatment of d = 5 is
completely analogous.

Combining Lemma 6.9 with Lemma A.15, we deduce

‖uN‖
L∞

t L

2(d−2)
d−4

x

�u N
4

d−2− for all N ≤ 10N0.(6.32)

In applying Lemma A.15, we set N = 10 · 2−kN0, xk = A(10 · 2−kN0), and take η
sufficiently small.

By interpolation followed by (6.32), Bernstein, and (6.21),

‖uN‖L∞
t Lp

x
≤ ‖uN‖(d−2)( 1

2−
1
p )

L∞
t L

2(d−2)
d−4

x

‖uN‖
d−2
p − d−4

2

L∞
t L2

x

�u N
2(p−2)

p −N
d−4
2 − d−2

p

�u N
1

d+1−

for all N ≤ 10N0. Thus, using Bernstein together with (6.21), we obtain

‖u‖L∞
t Lp

x
≤ ‖u≤N0

‖L∞
t Lp

x
+ ‖u>N0

‖L∞
t Lp

x
�u

∑
N≤N0

N
1

d+1− +
∑

N>N0

N
d−2
2 − d

p �u 1,

which completes the proof of the proposition. �

Remark. With a few modifications, the argument used in dimension five can
be adapted to dimensions three and four. However, while we may extend Propo-
sition 6.10 in this way, u(t, x) = W (x) provides an explicit counterexample to
Theorem 6.8 in these dimensions. At a technical level, the obstruction is that the
strongest dispersive estimate available is |t|−d/2, which is insufficient to perform
both integrals in the double Duhamel trick below when d ≤ 4.

The second step is to use the double Duhamel trick to upgrade (6.30) to ‘hon-
est’ negative regularity (i.e., in Sobolev sense). This will be achieved by repeated
application of the following

Proposition 6.11 (Some negative regularity). Let d ≥ 5 and let u be as in

Theorem 6.8. Assume further that |∇|sF (u) ∈ L∞
t Lr

x for some 2(d−2)(d+1)
d2+3d−6 ≤ r <

2d
d+4 and some 0 ≤ s ≤ 1. Then there exists s0 = s0(r, d) > 0 such that u ∈
L∞
t Ḣs−s0+

x .

Proof. The proposition will follow once we establish∥∥|∇|suN

∥∥
L∞

t L2
x

�u Ns0 for all N > 0 and s0 := d
r − d+4

2 > 0.(6.33)

Indeed, by Bernstein combined with this and (6.21),∥∥|∇|s−s0+u
∥∥
L∞

t L2
x
≤

∥∥|∇|s−s0+u≤1

∥∥
L∞

t L2
x
+

∥∥|∇|s−s0+u>1

∥∥
L∞

t L2
x

�u

∑
N≤1

N0+ +
∑
N>1

N (s−s0+)−1

�u 1.

Thus, we are left to prove (6.33). By time-translation symmetry, it suffices to
prove ∥∥|∇|suN (0)

∥∥
L2

x
�u Ns0 for all N > 0 and s0 := d

r − d+4
2 > 0.(6.34)
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Using the Duhamel formula (5.43) both in the future and in the past, we write∥∥|∇|suN (0)
∥∥2
L2

x

= lim
T→∞

lim
T ′→−∞

〈
i

∫ T

0

e−itΔPN |∇|sF (u(t)) dt,−i

∫ 0

T ′
e−iτΔPN |∇|sF (u(τ )) dτ

〉
≤

∫ ∞

0

∫ 0

−∞

∣∣∣〈PN |∇|sF (u(t)), ei(t−τ)ΔPN |∇|sF (u(τ ))
〉∣∣∣ dt dτ.

We estimate the term inside the integrals in two ways. On one hand, using Hölder
and the dispersive estimate,∣∣∣〈PN |∇|sF (u(t)), ei(t−τ)ΔPN |∇|sF (u(τ ))

〉∣∣∣
�

∥∥PN |∇|sF (u(t))
∥∥
Lr

x

∥∥ei(t−τ)ΔPN |∇|sF (u(τ ))
∥∥
Lr′

x

� |t− τ | d2− d
r

∥∥|∇|sF (u)
∥∥2
L∞

t Lr
x
.

On the other hand, using Bernstein,∣∣∣〈PN |∇|sF (u(t)), ei(t−τ)ΔPN |∇|sF (u(τ ))
〉∣∣∣

�
∥∥PN |∇|sF (u(t))

∥∥
L2

x

∥∥ei(t−τ)ΔPN |∇|sF (u(τ ))
∥∥
L2

x

� N2( d
r−

d
2 )
∥∥|∇|sF (u)

∥∥2
L∞

t Lr
x
.

Thus,∥∥|∇|suN (0)
∥∥2
L2

x
�

∥∥|∇|sF (u)
∥∥2
L∞

t Lr
x

∫ ∞

0

∫ 0

−∞
min{|t− τ |−1, N2} d

r−
d
2 dt dτ

� N2s0
∥∥|∇|sF (u)

∥∥2
L∞

t Lr
x
.

To obtain the last inequality we used the fact that d
r − d

2 > 2 since r < 2d
d+4 . Thus

(6.34) holds, which finishes the proof of the proposition. �
Proof of Theorem 6.8. Proposition 6.10 allows us to apply Proposition 6.11

with s = 1. We conclude that u ∈ L∞
t Ḣ1−s0+

x for some s0 = s0(r, d) > 0. Com-
bining this with the fractional chain rule Lemma A.11 and (6.30), we deduce that

|∇|1−s0+F (u) ∈ L∞
t Lr

x for some 2(d−2)(d+1)
d2+3d−6 ≤ r < 2d

d+4 . We are thus in the po-

sition to apply Proposition 6.11 again and obtain u ∈ L∞
t Ḣ1−2s0+

x . Iterating this

procedure finitely many times, we derive u ∈ L∞
t Ḣ−ε

x for any 0 < ε < s0.
This completes the proof of Theorem 6.8. �
6.4. Compactness in other topologies. In this subsection we show that

solutions to the mass-critical NLS (or energy-critical NLS), which are solitons in
the sense of Theorem 5.24 (or Theorem 5.25) and which enjoy sufficient additional

regularity (or decay), have orbits that are not only precompact in L2
x (or Ḣ1

x) but

also in Ḣ1
x (or L2

x). Combining the two gives precompactness in H1
x.

Lemma 6.12 (H1
x compactness for the mass-critical NLS). Let d ≥ 1 and let u

be a soliton in the sense of Theorem 5.24. Assume further that u ∈ L∞
t H1+ε

x for
some ε = ε(d) > 0. Then for every η > 0 there exists C(η) > 0 such that

sup
t∈R

∫
|x−x(t)|≥C(η)

|∇u(t, x)|2 dx �u η.
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Remark. The hypotheses of Lemma 6.12 are known to be satisfied in dimen-
sions d ≥ 2 for spherically symmetric initial data; see [43, 46].

Proof. The entire argument takes place at a fixed t; in particular, we may
assume x(t) = 0.

First we control the contribution from the high frequencies. As u ∈ L∞
t H1+ε

x

for some ε > 0, then for any R > 0,∥∥∇u>N (t)
∥∥
L2

x(|x|≥R)
≤

∥∥∇u>N (t)
∥∥
L2

x
� N−ε

∥∥|∇|1+εu
∥∥
L∞

t L2
x
�u N−ε.

This can be made smaller than η by choosing N = N(η) sufficiently large.
We now turn to the contribution coming from the low frequencies. A simple

application of Schur’s test reveals the following: For any m ≥ 0,∥∥χ|x|≥2R∇P≤Nχ|x|≤R

∥∥
L2

x→L2
x

�m N〈RN〉−m

uniformly in R,N > 0. Thus, by Bernstein’s inequality,∥∥∇u≤N (t)
∥∥
L2

x(|x|≥R)

≤
∥∥χ|x|≥R∇P≤Nχ|x|≤R/2u(t)

∥∥
L2

x
+
∥∥χ|x|≥R∇P≤Nχ|x|≥R/2u(t)

∥∥
L2

x

�u N〈RN〉−100 +N‖u(t)‖L2
x(|x|≥R/2).

Choosing R sufficiently large (depending on N and η), we can ensure that the
contribution of the low frequencies is less than η.

Combining the estimates for high and low frequencies yields the claim. �
We now turn our attention to the energy-critical NLS.

Lemma 6.13 (H1
x compactness for the energy-critical NLS). Let d ≥ 3 and

let u be a soliton in the sense of Theorem 5.25 that belongs to L∞
t Ḣ−ε

x for some
ε = ε(d) > 0. Then for every η > 0 there exists C(η) > 0 such that

sup
t∈R

∫
|x−x(t)|≥C(η)

|u(t, x)|2 dx �u η.

Remark. By Theorem 6.8, the hypotheses of this lemma are satisfied in di-
mensions d ≥ 5.

Proof. The entire argument takes place at a fixed t; in particular, we may
assume x(t) = 0.

First we control the contribution from the low frequencies: by hypothesis,∥∥u<N (t)
∥∥
L2

x(|x|≥R)
≤

∥∥u<N (t)
∥∥
L2

x
� Nε

∥∥|∇|−εu
∥∥
L∞

t L2
x
�u Nε.

This can be made smaller than η by choosing N = N(η) small enough.
We now turn to the contribution from the high frequencies. A simple applica-

tion of Schur’s test reveals the following: For any m ≥ 0,∥∥χ|x|≥2RΔ
−1∇P≥Nχ|x|≤R

∥∥
L2

x→L2
x

�m N−1〈RN〉−m

uniformly in R,N > 0. On the other hand, by Bernstein,∥∥χ|x|≥2RΔ
−1∇P≥Nχ|x|≥R

∥∥
L2

x→L2
x

� N−1.

Together, these lead quickly to∫
|x|≥2R

|u≥N (t, x)|2 dx � N−2〈RN〉−100‖∇u(t)‖2L2
x
+N−2

∫
|x|≥R

|∇u(t, x)|2 dx.
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By choosing R large enough, we can render the first term smaller than η; the same
is true of the second summand by virtue of Ḣ1

x-compactness:

sup
t∈R

∫
|x−x(t)|≥C(η1)

|∇u(t, x)|2 dx ≤ η1.

The lemma follows by combining our estimates for u<N and u≥N . �

7. Monotonicity formulae

The goal of this section it to introduce certain monotonicity formulae for the
(non)linear Schrödinger equation. These have proved to be very powerful tools in
the analysis of NLS; indeed, they have become sine qua non both for proving well-
posedness and for describing the behaviour of solutions that blow up. Our goal here
is just to give a small taste of what is available and how it can be used. Specific
application to the mass- and energy- critical problems is discussed in Section 8.

7.1. The classical Virial theorem. Consider a classical mechanical system
with n position coordinates, q1, . . . , qn, and n corresponding momenta, p1, . . . , pn.
The energy is a sum of kinetic and potential terms,

H = K + V with K =
∑

1
2mj

p2j and V = V (q1, . . . , qn),

where mj denote the mass of the particle associated to the jth coordinate. The
basic precursor of all virial-like identities are the following simple calculations:

d
dt

∑
1
2mjq

2
j =

∑
mj q̇jqj =

∑
pjqj ,(7.1)

d
dt

∑
pjqj =

∑
pj q̇j + ṗjqj =

∑
1
mj

p2j − ∂V
∂qj

qj .(7.2)

Theorem 7.1 (The Virial Theorem of Clausius, [17]). If V is a homogeneous
function of degree k, then the time averages of kinetic and potential energies are
related by 〈K〉 = k

2 〈V 〉 along any orbit that remains inside a compact set in phase
space. More precisely,

(7.3)
1

2T

∫ T

−T

[∑
1

2mj
p2j(t)− k

2V (q1(t), . . . , qn(t))

]
dt = O( 1

T )

as T → ∞.

Proof. The result follows quickly from (7.2) together with∑
∂V
∂qj

qj = kV,

which is a consequence of the homogeneity of V . �

Remark. The quantity
∑

ṗjqj (or rather, its time average) is known as the
virial. The name was coined by Clausius and derives from the Latin for ‘force’. A
more famous notion (and name) due to Clausius is ‘entropy’. His nomenclature for
kinetic energy, ‘vis viva’, and potential energy, ‘ergal’, however, did not catch on.

Example 7.1. For gravitational attraction, the potential energy is homoge-
neous of degree −1. Thus, for the eight major planets (whose orbits are approxi-
mately circular), the virial theorem gives a relation between the orbital radius r and
the orbital velocity v of the form v2 = GM/r, where M is the solar mass and G is
the gravitational constant. As the orbital period is given by T = 2πr/v, we obtain
Kepler’s third law: T 2/r3 is the same for all the major planets. Indeed, we find
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that this constant is 4π2/GM = 3.0×10−19s2m−3, which agrees with astronomical
data.

Example 7.2 (Weighing things in space). Through a telescope, one may ap-
proximately measure lengths and speeds (Doppler effect). Now consider applying
the virial identity to some form of self-gravitating ensemble of similar objects (e.g.,
stars or galaxies). The potential energy is quadratic in the mass, while the kinetic
energy is linear in the mass. Given the typical distances involved and the typical
speeds involved, one can quickly pop out a crude estimate for the total mass.

7.2. Some Lyapunov functions. In the field of ordinary differential equa-
tions, functions that are monotone in time (under the flow) are traditionally referred
to as Lyapunov functions, in honour of the important work of A. M. Lyapunov on
stability. Our applications of monotonicity formulae are perhaps better described
as instability. The following two examples convey something of the spirit of this.

Example 7.3. Consider a particle in R
3 \ {0} moving in the presence of a

repulsive potential V (q), for example, V (q) = |q|−1. The word repulsive is meant
in the technical sense that q · ∇V (q) < 0, which says that the radial component
of the force on the particle always points away from the origin. By referring to
(7.2), we see that

∑
pjqj is strictly increasing (in time) along any trajectory of the

system. We immediately see that there can be no periodic orbits; indeed, any orbit
must escape to (spatial) infinity as t → ±∞.

Example 7.4. If we choose mj ≡ 1 and V (q) = −|q|−2, then (7.1) and (7.2)
become

d2

dt2
1
2 |q|

2 = 2H(p, q).

If the initial energy is negative, then |q(t)|2 is a concave function of time. It is also
non-negative. Thus we see that the particle falls into the origin in finite time.

In this section, we will discuss Lyapunov functionals for the flow

(7.4) iut = −Δu+ V u+ μ|u|pu.
We need only consider as potential Lyapunov functionals those which are odd under
time reversal; even functionals, at least, cannot be monotone. Probably the simplest
example is the quadratic form associated to a self-adjoint differential operator of
first order:

(7.5)

F (u) := 1
i

∫
Rd

ū(x)
[
aj(x)∂j + ∂jaj(x)

]
u(x) dx

= 2

∫
Rd

aj(x) Im
(
ū(x)∂ju(x)

)
dx,

where aj are real-valued functions on Rd and (both here and below) the repeated
index j is summed over 1 ≤ j ≤ d. As we will only consider cases where F (u)
has spherical symmetry, we are guaranteed that there is a function a(x) so that
aj(x) = ∂ja(x). This restriction has the happy consequence that we may use
subscripts to denote partial derivatives, which we shall do from now on. A more
scientific consequence is the first part of the following:

Lemma 7.2 (Morawetz/Virial identity). Under the flow (7.4),

F (u) =
d

dt

∫
Rd

a(x)|u(t, x)|2 dx(7.6)
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d

dt
F (u(t)) =

∫
Rd

−ajjkk|u|2 + 4ajkūjuk + μ 2p
p+2ajj |u|

p+2 − 2ajVj |u|2.(7.7)

Here (as always in this subsection) subscripts indicate partial derivatives and re-
peated indices are summed.

We will discuss three applications in approximately historical order. Our first
relates to the spectral and scattering theory of the linear Schrödinger equation
and can be viewed as a quantum version of Example 7.3. Earlier still, identities
analogous to (7.7) played an important role in the problem of obstacle scattering for
the linear wave equation. Identities of this type are commonly known as Morawetz
identities in honour of her pioneering work in this direction; see [53] for the link to
scattering theory and [60] for an early retrospective.

Before discussing the linear Schrödinger equation, we first wish to present some
completely abstract results about Lyapunov functions in quantum mechanics. The
Putnam of the first theorem is not that of the competition; the name of the second
theorem was coined in [70] and reflects the initials of Ruelle, Amrein, Georgescu,
and Enss, rather than any ill-feeling.

Theorem 7.3 (Putnam–Kato Theorem, [36, 69]). Let H and A be bounded
self-adjoint operators on a Hilbert space. If C := i[H,A] is positive definite, then
H has purely absolutely continuous spectrum.

Remark. Under certain technical assumptions, one may allow H and/or A
to be unbounded; indeed, in the PDE context, this is the most common situation.
However, our goal here is simply to give a taste of what may be expected.

Proof. As A is bounded, we can quickly see that 〈e−itHφ,Ce−itHφ〉 belongs
to L1

t (R) for all vectors φ. Thus, for all vectors φ in the range of
√
C, which is

dense in the Hilbert space, we have 〈φ, e−itHφ〉 ∈ L2
t (R). The result now follows

from the fact that only absolutely continuous measures can have square integrable
Fourier transforms (cf. Parseval’s Theorem). �

Theorem 7.4 (RAGE Theorem). Let H be a self-adjoint operator with purely
absolutely continuous spectrum and let C be a bounded self-adjoint operator with
C(H − i)−1 compact. Then

〈e−itHφ, Ce−itHφ〉 → 0, as t → ±∞,

for all φ in the Hilbert space. If H has purely continuous spectrum, then

1

2T

∫ T

−T

〈e−itHφ, Ce−itHφ〉 dt → 0, as T → ±∞.

Proof. The results follow (respectively) from the Riemann–Lebesgue lemma
and Wiener’s lemma,

1

2T

∫ T

−T

∣∣∣∣
∫

e−iωt dμ(ω)

∣∣∣∣
2

dt −→
∑
ω∈R

∣∣μ({ω})∣∣2 as T → ∞,

after first applying the spectral theorem. �
The connection of Theorem 7.3 to Lyapunov functions is clear. We have in-

cluded Theorem 7.4 to convey the fact that Theorem 7.3 guarantees that all trajec-
tories escape to infinity in a fairly strong sense; indeed one may deduce the following
from the RAGE Theorem:
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Exercise. SupposeH is a self-adjoint operator and φ a vector in the associated
Hilbert space. Show that the orbit {e−itHφ : t ∈ R} is pre-compact if and only if
φ is a linear combination of eigenvectors of H, that is, if and only if the spectral
measure associated to (H,φ) is of pure-point type.

Finally, we turn to our long-promised application to the linear Schrödinger
equation. What we present is a special case of results contained in two early papers
of R. Lavine, [51, 52]. This material is also discussed at some length in [71, §XIII.7].
Note that our particular statement has been chosen to simplify the exposition and
in no way represents the limit of the method.

Theorem 7.5. Suppose d ≥ 3 and V : Rd → R obeys |V (x)| � 〈x〉−1−ε and is
repulsive in the sense that x · ∇V ≤ 0 as a distribution. Then H := −Δ + V has
purely absolutely continuous spectrum. Moreover, the limits limt→±∞ e−itΔe−itH

and limt→±∞ eitHeitΔ exist in the strong topology and define unitary operators.

Proof. We will prove absolute continuity by adapting the argument used to
prove Theorem 7.3. For the scattering results, see the references given above.

Set a(x) = 〈x〉. For φ ∈ C∞
c (Rd), let u(t) := e−itHφ. Then by (7.7),

(7.8)
d

dt
F (u(t)) ≥

∫
Rd

|u(t, x)|2[−ΔΔa](x) dx �
∫
Rd

|u(t, x)|2〈x〉−7 dx.

Note that the missing terms have the right sign for the following reasons: a is
convex, so ajk is a positive definite matrix; μ is zero since we consider the linear
equation; the potential is assumed repulsive.

Now, mass/energy conservation guarantee that u ∈ L∞
t H1

x, which then implies
that F (u) is bounded. Integrating (7.8) in time and using φ ∈ L2(〈x〉7 dx), we
may deduce that 〈φ, e−itHφ〉 ∈ L2(dt). This proves that the spectral measure
associated to (H,φ) is absolutely continuous (via Parseval’s theorem) for a dense
set of φ ∈ L2

x(R
d). Thus, we may conclude that H has purely absolutely continuous

spectrum. �
Before turning to the nonlinear Schrödinger equation, we wish to draw the

readers attention to two further developments connected to the material just de-
scribed. The first is Mourre’s method, which extends and refines the ideas behind
the proof of Theorem 7.5. This is surveyed in [22, Ch. 4]. Chapter 5 of that book
describes the Enss method in scattering theory. The idea here is that because of
the RAGE Theorem, any part of the solution not described by bound states must
travel far from the (spatial) origin. Once far away, the wave packet will continue
to move outward since the potential is very weak out there. Parts of the argument
in [43] can be viewed as an NLS incarnation of the Enss approach.

Our first NLS application of the Morawetz/Virial identity is an analogue of
Example 7.4 and shows that for certain initial data, the solution of NLS must blow
up in finite time. This is the well-known concavity argument; see, for instance,
[31, 102]:

Theorem 7.6 (Finite-time blow up). Consider

(7.9) iut = −Δu− |u|pu with 4
d ≤ p ≤ 4

d−2 .

Initial data u0 ∈ Σ := {f ∈ H1
x(R

d) : |x|f ∈ L2
x(R

d)} with negative energy (that
is, E(u0) < 0) lead to solutions which blow up in finite time in both the past and
future.
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Remark. Such negative energy initial data do exist. Indeed, if f ∈ Σ is non-
zero then u0 = λf will have negative energy for λ sufficiently large, because the
kinetic and potential energies contain different powers of u0. By the same reasoning,
E(u0) > 0 for small initial data.

Proof. By the local theory discussed in Section 3, the H1
x norm will remain

finite (though not necessarily uniformly bounded!) for as long as the solution exists.
Choosing a(x) = |x|2 in (7.6) gives

d

dt

∫
Rd

|x|2|u(t, x)|2 dx = 4

∫
Rd

Im
(
ū(x) x · ∇u(x)

)
dx = O(‖∇u‖L2

x
‖xu‖L2

x
),(7.10)

which shows that the the second moment will also remain finite throughout the
lifespan of the solution. More importantly, (7.7) from Lemma 7.2 shows that

d2

dt2

∫
Rd

|x|2|u(t, x)|2 dx =

∫
Rd

8|∇u(t, x)|2 − 4pd
p+2 |u(t, x)|

p+2 dx(7.11)

= 16E(u0)−
∫
Rd

4(pd−4)
p+2 |u(t, x)|p+2 dx.(7.12)

Thus (using the conservation and negativity of energy) we see that a manifestly
positive quantity is trapped beneath an inverted parabola, at least on the lifespan
of the solution. This guarantees that the lifespan must be finite in both time
directions. �

There are two natural directions to try to extend Theorem 7.6. The first is
to weaken the hypothesis u0 ∈ Σ; indeed, it certainly seems reasonable to imagine
that the result still holds for negative energy data u0 ∈ H1

x. At present this is only
known under the additional assumption that u0 is spherically symmetric; see [65]
where this is proved for 4/d ≤ p < min{4, 4/(d − 2)} and d ≥ 2. Secondly, one
might hope to take advantage of the second term on the right-hand side of (7.12)
to prove finite-time blowup for certain positive energy initial data. This is indeed
possible:

Exercise ([38, Remark 3.14]). Use Theorem 4.4 to prove the following in the
energy-critical case: if E(u0) < E(W ) then RHS(7.11) cannot change sign. In
particular, if u0 ∈ Σ, E(u0) < E(W ), and RHS(7.11) is negative for u0, then the
solution will blow up in finite time.

Combining this with the argument in [65], one may show that if u0 ∈ H1
rad,

E(u0) < E(W ), and RHS(7.11) is negative for u0, then the solution will blow up
in finite time; for complete details see [44]. Analogous arguments in the subcritical
case can be found in [34].

The first application of Lemma 7.2 to the scattering problem for NLS appears
to be [55], although the authors freely acknowledge their debt to earlier work on
the nonlinear Klein–Gordon equation, [60, 61]. This innovation led to consider-
able developments in the scattering theory for the energy-subcritical (but mass-
supercritical) defocusing problem, particularly at the hands of Ginibre and Velo;
see [29], for example, and the references therein.

The Morawetz identity also played a very important role in the first treatment
of the large-data energy-critical problem [7]; this was for spherically symmetric
data:
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Proposition 7.7 (Morawetz à la Bourgain, [7]). Let u be a spherically sym-
metric solution to the defocusing energy-critical NLS on a spacetime slab I × Rd.
Then, for any K ≥ 1, we have

(7.13)

∫
I

∫
|x|≤K|I|

1
2

|u(t, x)| 2d
d−2

|x| dx dt � K|I| 12E(u).

In particular, for this NLS there are no solitons or low-to-high cascades, in the
sense of Theorem 5.25.

Proof. The inequality (7.13) follows (with a little work) from Lemma 7.2 with
a(x) := Rψ

(
x
R

)
, provided we take R = K|I|1/2 and choose ψ(x) to be a spherically

symmetric nondecreasing (in radius) function obeying

ψ(x) =

{
|x| if |x| ≤ 1
3
2 if |x| ≥ 2,

which is smooth except at the origin.
We now turn our attention to the second assertion. By Lemma 5.18, we may

partition R into intervals Ij so that for some tj ∈ Ij we have |Ij | ∼u N(tj)
−2 and

N(t) ∼u N(tj) for all t ∈ Ij . Let I be the union of some contiguous sub-collection
of the intervals Ij . Then, using almost periodicity, (7.13) implies

(7.14)

∫
I

N(t) dt �u |I| 12E(u).

This shows that N(t) must go to zero rather quickly; it is certainly inconsistent
with the scenarios mentioned in the proposition. �

Bourgain’s argument [7] was simplified and extended in [89], which also obtains
a much better spacetime bound. See also [45], which incorporates some further
simplifications made possible by Lemma A.12.

The papers just referenced do not discuss almost periodic solutions, nor did
the extraction of the three enemies (Theorem 5.25) exist at that time. It was
however known that solutions with large Strichartz norm must regularly contain
bubbles of energy concentration; the natural analogue of N(t) is the reciprocal
of the characteristic length scale of these bubbles. Following [89], the Morawetz
inequality was used roughly as follows: by making the most of (7.14), it is shown
that there must be a cascade of bubbles of rapidly changing size in a comparatively
small amount of time. This is then contradicted using the almost conservation of
mass in finite regions.

With the exception of Theorem 7.6, the applications of Lemma 7.2 that we
have discussed so far have discarded the kinetic term ajkuj ūk. Indeed, as long
as a is a convex function, it will have a favourable sign. By choosing a slightly
more convex a, one may exhibit a weighted version of the kinetic energy. This
non-linear analogue of local smoothing (cf. Proposition 4.14) has proved valuable
in the treatment of the mass-critical NLS, at least, for spherically symmetric data;
see [97].

Exercise (See [90, p. 87]). Let u be a solution of (7.4) in three or more
dimensions with V ≡ 0 and μ ≥ 0. By using Lemma 7.2 with a(x) = 〈x〉− ε〈x〉1−ε,
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show that ∫
I

∫
Rd

|∇u(t, x)|2〈x〉−1−ε dx dt � ‖u‖L∞
t L2

x
‖∇u‖L∞

t L2
x
.

In fact, (a further exercise) the right-hand side can be upgraded to ‖|∇|1/2u‖2∞,2.

The restriction to dimensions three and higher stems from the lack of a good
choice for a in one and two dimensions, that is, of a convex a with ak bounded and
−ΔΔa positive.

7.3. Interaction Morawetz. The weight appearing in (7.13) is strongly tied
to the case of spherically symmetric data. In [19], a variant of the Morawetz identity
was introduced that is better adapted to the treatment of general (not spherically
symmetric) data. This is the topic of this subsection.

One of the early applications of the new monotonicity formula was to the proof
of global well-posedness and scattering for the three dimensional energy-critical
defocusing nonlinear Schrödinger equation, [20]. This argument was subsequently
adapted to four dimensions, [75], and then to dimensions five and higher, [103,
104].

In the papers just mentioned, it was necessary to introduce a frequency cutoff;
this means that one needs to consider solutions to an inhomogeneous NLS:

iut = −Δu+ |u|pu+ F,(7.15)

where F is some function of space and time. Note that we limit ourselves to the
defocusing case, since this is where the interaction Morawetz identity has proved
most useful.

Beginning with (7.15), a few elementary computations reveal

∂t|u|2 = −2 Im(ukū)k + 2 Im(F ū)(7.16)

∂t2 Im(ukū) = Δ
(
|u|2

)
k
− 4Re

(
ūkuj

)
j
− 2p

p+2

(
|u|p+2

)
k
+ 2Re

(
ukF̄ − Fkū

)
.(7.17)

As in the previous subsection, subscripts denote spatial derivatives and repeated
indices are summed.

Proposition 7.8 (Interaction Morawetz, [19]). If u obeys (7.15) and

(7.18) M(t) := 2

∫∫
Rd×Rd

|u(y)|2ak(x− y) Im{uk(x)ū(x)} dx dy,

for some even convex function a : Rd → R, then

∂tM(t) ≥
∫∫

Rd×Rd

{
− akkjj(x− y) |u(y)|2|u(x)|2 + 2p

p+2akk(x− y)|u(x)|p+2|u(y)|2

+ 2ak(x− y)|u(y)|2 Re
[
uk(x)F̄ (x)− Fk(x)ū(x)

]
+ 4ak(x− y)(ImF (y)ū(y))(Imuk(x)ū(x))

}
dx dy.(7.19)

Proof. Patient computation shows that with the addition of one term, (7.19)
would become an equality. In this way, one sees that the claim is equivalent to

4

∫∫
Rd×Rd

ajk(x− y)
[
|u(y)|2ūj(x)uk(x)− (Im ū(y)uj(y))(Im ū(x)uk(x))

]
dx dy ≥ 0,

which is what we will explain here.
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Fix x and y. As a is convex, the matrix ajk(x−y) is positive semi-definite. Now
suppose e is one of the eigenvectors of this matrix. By elementary considerations,∣∣ekej(Im ū(y)uj(y))(Im ū(x)uk(x))

∣∣ ≤ |u(y)| |e · ∇u(y)| |u(x)| |e · ∇u(x)|
≤ 1

2 |u(x)|
2|e · ∇u(y)|2 + 1

2 |u(y)|
2|e · ∇u(x)|2.

Writing out ajk(x− y) in terms of its eigenvalues and vectors, this shows that the
integrand is indeed non-negative, at least, after symmetrization under x ↔ y. �

Exercise (See [19]). Show that for d = 3 and a(x) = |x|, Lemma 7.8 implies∫
R

∫
R3

|u(t, x)|4 dx dt � ‖u‖3L∞
t L2

x
‖∇u‖L∞

t L2
x

for solutions of (7.15) with F ≡ 0.

In dimensions d ≥ 4, there is an analogous result although the left-hand side
takes a much less simple form. Nevertheless, it allows one to deduce the following:

Proposition 7.9. For d ≥ 3 and F ≡ 0, any solution to (7.15) obeys

‖u‖
Ld+1

t L

2(d+1)
d−1

x (I×Rd)

� ‖u‖L∞
t H1

x(I×Rd).

As noted above, this is in [19] when d = 3. For d ≥ 4, the result appears as
[95, Proposition 5.1]; see also [103, §5], which uses the same ideas. One application
of this lemma given in [95] is a simplified proof of scattering for defocusing inter-
critical NLS. The original proof by Ginibre and Velo, [29], used the standard (Lin–
Strauss) Morawetz identity.

As noted at the end of the previous section, there are some difficulties in using
the standard Morawetz estimate in one and two dimensions. Some of these difficul-
ties can be alleviated by switching to the interaction Morawetz estimate. See for
instance [67]. There is also a four-particle interaction Morawetz that has proved
effective in the one-dimensional setting:

Proposition 7.10 ([18, Proposition 3.1]). Let u be a solution to a defocusing
NLS in one space dimension, then∫

I

∫
R

|u(t, x)|8 dx dt � ‖u‖2
L∞

t Ḣ
1/2
x (I×R)

‖u0‖6L∞
t L2

x(I×R).(7.20)

For a recent review of interaction Morawetz inequalities and their application
to the scattering problem for inter-critical NLS see [30].

8. Nihilism

In this section we use conservation laws and monotonicity formulae to preclude
the global enemies described in Theorems 5.24 and 5.25, provided that these enemies
obey additional regularity/decay. More precisely, we show how to dispense with
soliton and frequency cascade solutions that belong to L∞

t H1+ε
x for some ε > 0

in the mass-critical case or to L∞
t Ḣ−ε

x in the energy-critical case. Recall that in
the mass-critical case, the spherically symmetric soliton and cascade were shown to
enjoy such additional regularity in [43, 46] for d ≥ 2. For the energy-critical NLS,
Theorem 6.8 established the decay needed in dimensions d ≥ 5.

We remind the reader that enemies which are not global, that is, the self-similar
solution (in the mass-critical case) or the finite-time blowup solution (in the energy-
critical case) can be precluded via more direct techniques. In the former case it is
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sufficient to prove u(t) ∈ H1
x for some t ∈ (0,∞), since then the global theory for

H1
x initial data leads to a contradiction. Theorem 6.1 establishes this for spherically

symmetric initial data and d ≥ 2.
For the energy-critical NLS, finite-time blowup solutions (as described in The-

orem 5.25) were precluded in Theorem 6.7 for all dimensions d ≥ 3.

8.1. Frequency cascade solutions. We first turn our attention to high-to-
low frequency cascade solutions of the mass-critical NLS (cf. Theorem 5.24). We
will show that no such solutions may belong to L∞

t H1+ε
x for some ε > 0. We would

like to point out that regularity above H1
x is needed for the argument we present

below.

Theorem 8.1 (Absence of mass-critical cascades). Let d ≥ 1. There are no
non-zero global solutions to (1.4) which are double high-to-low frequency cascades
in the sense of Theorem 5.24 and which obey u ∈ L∞

t H1+ε
x for some ε = ε(d) > 0.

Proof. Suppose to the contrary that there is such a solution u. Using a
Galilean transformation, we may set its momentum equal to zero, that is,∫

Rd

ξ|û(t, ξ)|2 dξ = 0.

Note that u remains in L∞
t H1+ε

x .
By hypothesis u ∈ L∞

t H1
x and so the energy

E(u) = E(u(t)) =

∫
Rd

1
2 |∇u(t, x)|2 + μ d

2(d+2) |u(t, x)|
2(d+2)

d dx

is finite and conserved. Moreover, as M(u) < M(Q) in the focusing case, the sharp
Gagliardo-Nirenberg inequality gives

(8.1) ‖∇u(t)‖2L2
x(R

d) ∼u E(u) ∼u 1

for all t ∈ R. We will now reach a contradiction by proving that ‖∇u(t)‖2 → 0
along any sequence where N(t) → 0. The existence of two such time sequences is
guaranteed by the fact that u is a double high-to-low frequency cascade.

Let η > 0 be arbitrary. By Definition 5.1, we can find C(η) > 0 such that∫
|ξ−ξ(t)|≥C(η)N(t)

|û(t, ξ)|2 dξ ≤ η2

for all t. Meanwhile, by hypothesis, u ∈ L∞
t H1+ε

x (R× Rd) for some ε > 0. Thus,∫
Rd

|ξ|2+2ε|û(t, ξ)|2 dξ �u 1

for all t. Therefore, combining the two estimates gives∫
|ξ−ξ(t)|≥C(η)N(t)

|ξ|2|û(t, ξ)|2 dξ �u η
2ε

1+ε .

On the other hand, from mass conservation and Plancherel’s theorem we have∫
|ξ−ξ(t)|≤C(η)N(t)

|ξ|2|û(t, ξ)|2 dξ �u

[
C(η)N(t) + |ξ(t)|

]2
.

Summing these last two bounds and using Plancherel’s theorem again, we obtain

‖∇u(t)‖L2
x(R

d) �u η
ε

1+ε + C(η)N(t) + |ξ(t)|
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for all t. As u is a double high-to-low frequency cascade, there exists a sequence of
times tn → ∞ such that N(tn) → 0. As η > 0 is arbitrary, it remains to prove that
|ξ(tn)| → 0 as n → ∞ in order to deduce ‖∇u(tn)‖2 → 0, which would contradict
(8.1), thus concluding the proof of the theorem.

To see that |ξ(tn)| → 0 as n → ∞ we use mass conservation, the uniform

H
1/2+ε
x bound for some ε > 0, and the fact that N(tn) → 0, together with the

vanishing of the total momentum of u. �

We now turn our attention to the energy-critical NLS and preclude low-to-high
frequency cascade solutions belonging to L∞

t Ḣ−ε
x for some ε > 0.

Theorem 8.2 (Absence of energy-critical cascades). Let d ≥ 3. There are
no non-zero global solutions to (1.6) that are low-to-high frequency cascades in the

sense of Theorem 5.25 and that belong to L∞
t Ḣ−ε

x for some ε > 0.

Proof. Suppose for a contradiction that there existed such a solution u. Then
by hypothesis, u ∈ L∞

t L2
x; thus, by the conservation of mass,

0 < M(u) = M(u(t)) =

∫
Rd

|u(t, x)|2 dx < ∞ for all t ∈ R.(8.2)

Let η > 0 be a small constant. By almost periodicity modulo symmetries, there
exists c(η) > 0 such that ∫

|ξ|≤c(η)N(t)

|ξ|2|û(t, ξ)|2 dξ ≤ η2

for all t ∈ R. On the other hand, as u ∈ L∞
t Ḣ−ε

x for some ε > 0,∫
|ξ|≤c(η)N(t)

|ξ|−2ε|û(t, ξ)|2 dξ �u 1

for all t ∈ R. Hence, by Hölder’s inequality,∫
|ξ|≤c(η)N(t)

|û(t, ξ)|2 dξ �u η
2ε

1+ε for all t ∈ R.(8.3)

Meanwhile, by elementary considerations and recalling that u has uniformly
bounded kinetic energy,

(8.4)

∫
|ξ|≥c(η)N(t)

|û(t, ξ)|2 dξ ≤ [c(η)N(t)]−2

∫
Rd

|ξ|2|û(t, ξ)|2 dξ �u [c(η)N(t)]−2.

Collecting (8.3) and (8.4) and using Plancherel’s theorem, we obtain

0 ≤ M(u) �u c(η)−2N(t)−2 + η
2ε

1+ε

for all t ∈ R. As u is a low-to-high cascade, there is a sequence of times tn → ∞
so that N(tn) → ∞. As η > 0 is arbitrary, we conclude M(u) = 0 and hence u is
identically zero. This contradicts (8.2). �

8.2. Fall of the soliton solutions. We now turn our attention to soliton-
like solutions to the mass- and energy-critical NLS as described in Theorem 5.24
and 5.25 and preclude those which obey additional regularity/decay. In the defo-
cusing case, this can be achieved using the interaction Morawetz inequality given
in Proposition 7.9. We leave the precise details to the reader, noting only that the
assumed regularity/decay allow one to bound the right-hand side.
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In order to treat the focusing problem, we need to rely on the virial identity,
which is much more closely wedded to x = 0. This requires us to control the
motion of x(t), which we do next using an argument from [23]. This step can be
skipped over in the case of spherically symmetric initial data, since then one may
take x(t) ≡ 0.

Lemma 8.3 (Control over x(t)). Suppose there is an L∞
t H1

x soliton-like solution
to the mass-critical NLS in the sense of Theorem 5.24. Then there exists a solution
u with all these properties that additionally obeys

|x(t)| = o(t) as t → ∞.

Similarly, if u is a is a minimal kinetic energy soliton-like solution to the energy-
critical NLS in the sense of Theorem 5.25 that belongs to L∞

t Ḣ−ε
x for some ε > 0,

then the same conclusion holds.

Proof. We will prove the claim for soliton-like solutions to the energy-critical
NLS and leave the mass-critical case as an exercise.

We argue by contradiction. Suppose there exist δ > 0 and a sequence tn → ∞
such that

|x(tn)| > δtn for all n ≥ 1.(8.5)

By spatial-translation symmetry, we may assume x(0) = 0.
Let η > 0 be a small constant to be chosen later. By the almost periodicity of

u and Lemma 6.13, there exists C(η) > 0 such that

sup
t∈R

∫
|x−x(t)|>C(η)

(
|∇u(t, x)|2 + |u(t, x)|2

)
dx ≤ η.(8.6)

Define

Tn := inf{t ∈ [0, tn] : |x(t)| = |x(tn)|} ≤ tn and Rn := C(η) + sup
t∈[0,Tn]

|x(t)|.(8.7)

Now let φ be a smooth, radial function such that

φ(r) =

{
1 for r ≤ 1

0 for r ≥ 2,

and define the truncated ‘position’

XR(t) :=

∫
Rd

xφ
( |x|

R

)
|u(t, x)|2 dx.

By hypothesis, u ∈ L∞
t L2

x; together with (8.6) this implies

|XRn
(0)| ≤

∣∣∣∫
|x|≤C(η)

xφ
( |x|
Rn

)
|u(0, x)|2 dx

∣∣∣+ ∣∣∣∫
|x|≥C(η)

xφ
( |x|
Rn

)
|u(0, x)|2 dx

∣∣∣
≤ C(η)M(u) + 2ηRn.

On the other hand, by the triangle inequality combined with (8.6) and (8.7),

|XRn
(Tn)| ≥ |x(Tn)|M(u)− |x(Tn)|

∣∣∣∫
Rd

[
1− φ

( |x|
Rn

)]
|u(Tn, x)|2 dx

∣∣∣
−

∣∣∣∫
|x−x(Tn)|≤C(η)

[
x− x(Tn)

]
φ
( |x|
Rn

)
|u(Tn, x)|2 dx

∣∣∣
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−
∣∣∣∫

|x−x(Tn)|≥C(η)

[
x− x(Tn)

]
φ
( |x|
Rn

)
|u(Tn, x)|2 dx

∣∣∣
≥ |x(Tn)|[M(u)− η]− C(η)M(u)− η[2Rn + |x(Tn)|]
≥ |x(Tn)|[M(u)− 4η]− 3C(η)M(u).

Thus, taking η > 0 sufficiently small (depending on M(u)),∣∣XRn
(Tn)−XRn

(0)
∣∣ �M(u) |x(Tn)| − C(η).

A simple computation establishes

∂tXR(t) = 2 Im

∫
Rd

φ
( |x|

R

)
∇u(t, x)u(t, x) dx

+ 2 Im

∫
Rd

x

|x|Rφ′( |x|
R

)
x · ∇u(t, x)u(t, x) dx.

As a minimal kinetic energy blowup solution must have zero momentum (see Corol-
lary 2.4), using Cauchy-Schwarz and (8.6) we obtain∣∣∂tXRn

(t)
∣∣ ≤ ∣∣∣2 Im ∫

Rd

[
1− φ

( |x|
Rn

)]
∇u(t, x)u(t, x)dx

∣∣∣
+

∣∣∣2 Im ∫
Rd

x

|x|Rφ′( |x|
Rn

)
x · ∇u(t, x)u(t, x) dx

∣∣∣
≤ 6η

for all t ∈ [0, Tn].
Thus, by the Fundamental Theorem of Calculus,

|x(Tn)| − C(η) �M(u) ηTn.

Recalling that |x(Tn)| = |x(tn)| > δtn ≥ δTn and letting n → ∞ we derive a
contradiction. �

We are finally in a position to preclude our last enemies.

Theorem 8.4 (No solitons). There are no solutions to the mass-critical NLS
that are solitons in the sense of Theorem 5.24 and that belong to L∞

t H1+ε
x for some

ε > 0. Similarly, there are no solutions to the energy-critical NLS that are solitons
in the sense of Theorem 5.25 and that belong to L∞

t Ḣ−ε
x for some ε > 0.

Proof. We only prove the claim for the mass-critical NLS and leave the
energy-critical case as exercise. Suppose for a contradiction that there existed
such a solution u.

Let η > 0 be a small constant to be specified later. Then, by Definition 5.1 and
Lemma 6.12 there exists C(η) > 0 such that

(8.8) sup
t∈R

∫
|x−x(t)|>C(η)

(
|u(t, x)|2 + |∇u(t, x)|2

)
dx ≤ η.

Moreover, by Lemma 8.3, |x(t)| = o(t) as t → ∞. Thus, there exists T0 = T0(η) ∈ R

such that

|x(t)| ≤ ηt for all t ≥ T0.(8.9)

Now let φ be a smooth, radial function such that

φ(r) =

{
r for r ≤ 1

0 for r ≥ 2,
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and define

VR(t) :=

∫
Rd

a(x)|u(t, x)|2 dx,

where a(x) := R2φ
( |x|2

R2

)
for some R > 0.

Differentiating VR with respect to the time variable, we find

∂tVR(t) = 4 Im

∫
Rd

φ′( |x|2
R2

)
u(t, x) x · ∇u(t, x) dx.

as in (7.6). By hypothesis u ∈ L∞
t H1

x and so we obtain

|∂tVR(t)| � R‖∇u(t)‖2‖u(t)‖2 �u R(8.10)

for all t ∈ R and R > 0.
Further, using (7.7) for our specific choice of a, we find

∂ttVR(t) = 16E(u) +O

(
1

R2

∫
|x|≥R

|u(t, x)|2 dx
)

+O

(∫
|x|≥R

[
|∇u(t, x)|2 + |u(t, x)|

2(d+2)
d

]
dx

)
.

Recall that in the focusing case, M(u) < M(Q). As a consequence, the sharp
Gagliardo–Nirenberg inequality implies that the energy is a positive quantity in the
focusing case as well as in the defocusing case. Indeed,

E(u) �u

∫
Rd

|∇u(t, x)|2 dx > 0.

Thus, choosing η > 0 sufficiently small and R := C(η) + supT0≤t≤T1
|x(t)| and

invoking (8.8), we obtain

∂ttVR(t) ≥ 8E(u) > 0.(8.11)

Using the Fundamental Theorem of Calculus on the interval [T0, T1] together
with (8.10) and (8.11), we obtain

(T1 − T0)E(u) �u R �u C(η) + sup
T0≤t≤T1

|x(t)|

for all T1 ≥ T0. Invoking (8.9) and taking η sufficiently small and then T1 sufficiently
large, we derive a contradiction to E(u) > 0. �

Appendix A. Background material

A.1. Compactness in Lp. Recall that a family of continuous functions on a
compact set K ⊂ Rd is precompact in C0(K) if and only if it is uniformly bounded
and equicontinuous. This is the Arzelà–Ascoli theorem. The natural generalization
to Lp spaces is due to M. Riesz [72] and reads as follows:

Proposition A.1. Fix 1 ≤ p < ∞. A family of functions F ⊂ Lp(Rd) is
precompact in this topology if and only if it obeys the following three conditions:
(i) There exists A > 0 so that ‖f‖p ≤ A for all f ∈ F .
(ii) For any ε > 0 there exists δ > 0 so that

∫
Rd |f(x)− f(x+ y)|p dx < ε for all

f ∈ F and all |y| < δ.
(iii) For any ε > 0 there exists R so that

∫
|x|≥R

|f |p dx < ε for all f ∈ F .
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Remark. By analogy to the case of continuous functions (or of measures) it
is natural to refer to the three conditions as uniform boundedness, equicontinuity,
and tightness, respectively.

Proof. If F is precompact, it may be covered by balls of radius 1
2ε around

a finite collection of functions, {fj}. As any single function obeys (i)–(iii), these
properties can be extended to the whole family by approximation by an fj .

We now turn to sufficiency. Given ε > 0, our job is to show that there are
finitely many functions {fj} so that the ε-balls centered at these points cover F .
We will find these points via the usual Arzelà–Ascoli theorem, which requires us
to approximate F by a family of continuous functions of compact support. Let
φ : Rd → [0,∞) be a smooth function supported by {|x| ≤ 1} with φ(x) = 1 in a
neighbourhood of x = 0 and

∫
Rd φ(x) dx = 1. Given R > 0 we define

fR(x) := φ
(
x
R

) ∫
Rd

Rdφ
(
R(x− y)

)
f(y) dy

and write FR := {fR : f ∈ F}. Employing the three conditions, we see that it
is possible to choose R so large that ‖f − fR‖p < 1

2ε for all f ∈ F . We also
see that FR is a uniformly bounded family of equicontinuous functions on the
compact set {|x| ≤ R}. Thus, FR is precompact and we may find a finite family
{fj} ⊆ C0({|x| ≤ R}) so that FR is covered by the Lp-balls of radius 1

2ε around
these points. By construction, the ε-balls around these points cover F . �

In the L2 case it is natural to replace (ii) by a condition on the Fourier trans-
form:

Corollary A.2. A family of functions is precompact in L2(Rd) if and only if
it obeys the following two conditions:
(i) There exists A > 0 so that ‖f‖ ≤ A for all f ∈ F .

(ii) For all ε > 0 there exists R > 0 so that
∫
|x|≥R

|f(x)|2 dx+
∫
|ξ|≥R

|f̂(ξ)|2 dξ < ε

for all f ∈ F .

Proof. Necessity follows as before. Regarding the sufficiency of these condi-
tions, we note that∫

Rd

|f(x+ y)− f(x)|2 dx ∼
∫
Rd

|eiξy − 1|2|f̂(ξ)|2 dξ,

which allows us to rely on the preceding proposition. �

As well as being useful in the treatment of NLS with spherically symmetric
data, the following allows one to obtain tightness in the proof of Lemma A.4.

Lemma A.3 (Weighted radial Sobolev embedding). Let f ∈ H1
x(R

d) be spher-
ically symmetric. Suppose ω : [0,∞) → [0, 1] obeys 0 ≤ ω(r) ≤ Cω(ρ) whenever
r < ρ. Then ∣∣|x| d−1

2 ω(|x|)f(x)
∣∣2 �d C2‖f

∥∥
L2

x(R
d)
‖ω2∇f

∥∥
L2

x(R
d)

for all x ∈ Rd.

Proof. It suffices to establish the claim for spherically symmetric Schwartz
functions f , which we write as functions of radius alone. Let r ≥ 0. By the
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Fundamental Theorem of Calculus and the Cauchy–Schwarz inequality,

rd−1ω(r)2|f(r)|2 = 2rd−1ω(r)2Re

∫ ∞

r

f̄(ρ)f ′(ρ) dρ

≤ 2C2

∫ ∞

r

ρd−1ω(ρ)2|f(ρ)| |f ′(ρ)| dρ

≤ 2C2
(∫ ∞

r

ρd−1|f(ρ)|2 dρ
) 1

2
(∫ ∞

r

ρd−1ω(ρ)4|f ′(ρ)|2 dρ
) 1

2

≤ 2C2‖f
∥∥
L2(ρd−1dρ)

‖ω2f ′∥∥
L2(ρd−1dρ)

,

from which the claim follows. �

Lemma A.4 (Compactness in spherically symmetric Gagliardo–Nirenberg). The
embedding H1

rad(R
d) ↪→ Lp(Rd) is compact for d ≥ 2 and 2 < p < 2d

d−2 .

Proof. Exercise. �

Our last lemma for this subsection is not strictly a compactness statement;
however, it is very helpful to us in some places where we rely on weak-∗ compactness.
Recall that under weak-∗ limits, the norm may jump down (i.e., the norm is weak-
∗ lower semicontinuous). The question is, by how much? As we have seen in
Subsection 4.2, this has a very satisfactory answer in Hilbert space (cf. (4.22)), but
less so in other Lp spaces.

In our applications, regularity allows us to upgrade weak-∗ convergence to
almost everywhere convergence. The lower semicontinuity of the norm under this
notion of convergence is essentially Fatou’s lemma. The following quantitative
version of this is due to Brézis and Lieb [10] (see also [54, Theorem 1.9]):

Lemma A.5 (Refined Fatou). Suppose {fn} ⊆ Lp
x(R

d) with lim sup ‖fn‖p < ∞.
If fn → f almost everywhere, then∫

Rd

∣∣∣|fn|p − |fn − f |p − |f |p
∣∣∣ dx → 0.

In particular, ‖fn‖pp − ‖fn − f‖pp → ‖f‖pp.

A.2. Littlewood–Paley theory. Let ϕ(ξ) be a radial bump function sup-
ported in the ball {ξ ∈ Rd : |ξ| ≤ 11

10} and equal to 1 on the ball {ξ ∈ Rd : |ξ| ≤ 1}.
For each number N > 0, we define the Fourier multipliers

P̂≤Nf(ξ) := ϕ(ξ/N)f̂(ξ)

P̂>Nf(ξ) := (1− ϕ(ξ/N))f̂(ξ)

P̂Nf(ξ) := (ϕ(ξ/N)− ϕ(2ξ/N))f̂(ξ)

and similarly P<N and P≥N . We also define

PM<·≤N := P≤N − P≤M =
∑

M<N ′≤N

PN ′

whenever M < N . We will usually use these multipliers when M and N are dyadic
numbers (that is, of the form 2n for some integer n); in particular, all summations
over N or M are understood to be over dyadic numbers. Nevertheless, it will
occasionally be convenient to allow M and N to not be a power of 2.
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Like all Fourier multipliers, the Littlewood-Paley operators commute with the
propagator eitΔ, as well as with differential operators such as i∂t +Δ. We will use
basic properties of these operators many many times, including

Lemma A.6 (Bernstein estimates). For 1 ≤ p ≤ q ≤ ∞,∥∥|∇|±sPNf
∥∥
Lp

x(Rd)
∼ N±s‖PNf‖Lp

x(Rd),

‖P≤Nf‖Lq
x(Rd) � N

d
p−

d
q ‖P≤Nf‖Lp

x(Rd),

‖PNf‖Lq
x(Rd) � N

d
p−

d
q ‖PNf‖Lp

x(Rd).

Lemma A.7 (Square function estimates). Given a Schwartz function f , let

S(f)(x) :=
(∑∣∣PNf(x)

∣∣2)1/2

,

which is known as the Littlewood–Paley square function. For 1 < p < ∞,

‖S(f)‖Lp
x
∼ ‖f‖Lp

x
.

Our next estimate is a weak form of square function estimate that does not
require the same amount of sparseness of the Fourier supports. We first saw this
estimate as [93, Lemma 6.1]. While it is formulated there for rectangles, we prefer
to state it for parallepipeds. It makes the proof no more involved, but reduces the
amount of arithmetic required when we actually use it.

Definition A.8. A parallelepiped in R
d is a set of the form

R =
{
Ax+ c : x ∈ [− 1

2 ,
1
2 ]

d
}
,

where A ∈ GLd(R) and c ∈ Rd. The variable c = c(R) denotes the center of R.
Given α ∈ (0,∞), we write αR or α-dilate of R to refer to the parallelpiped formed
from R by replacing A by αA.

Let us adopt a uniform notion of smoothed Fourier restriction operator to a
parallelepiped, since we will need it in the proof below. Given α > 1, fix a non-
negative ψ ∈ C∞

c (Rd) with

ψ(x) = 1 for all x ∈ [− 1
2 ,

1
2 ]

d and supp(ψ) ⊆ [−α
2 ,

α
2 ]

d.

With this fixed, we define PR by

[PRf ]̂ (ξ) = ψ
(
A−1(ξ − c)

)
f̂(ξ),

or equivalently, by

(A.1) PRf = KR ∗ f where KR(x) = |det(A)| eix·c ψ̂(ATx).

Here A and c are the matrix and vector used to define R. In particular, we note
that ∫

Rd

|KR(x)| dx � 1 uniformly in R.

Lemma A.9. Let {Rk} be a family of parallelpipeds in R
d obeying

sup
ξ

∑
χαRk

(ξ) � 1

for some α > 1. Fix 1 ≤ p ≤ 2. Then∥∥∑PRk
fk

∥∥p
Lp

x(Rd)
�

∑∥∥fk∥∥pLp
x(Rd)

for any {fk} ⊆ Lp
x(R

d).
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Proof. When p = 2, the result follows from Plancherel’s Theorem; when
p = 1, it follows from the triangle inequality. The remaining cases can then be
obtained by interpolation. �

Remark. The case 2 < p ≤ ∞ is also discussed in [93]; in this case, the
estimate reads

(A.2)
∥∥∑PRk

fk
∥∥p′

Lp
x(Rd)

�
∑∥∥fk∥∥p′

Lp
x(Rd)

and the proof is essentially the same. For such p, one can actually recover the full
square function estimate; see [35, 74].

A.3. Fractional calculus.

Lemma A.10 (Product rule, [16]). Let s ∈ (0, 1] and 1 < r, p1, p2, q1, q2 < ∞
such that 1

r = 1
pi

+ 1
qi

for i = 1, 2. Then,∥∥|∇|s(fg)
∥∥
r

� ‖f‖p1

∥∥|∇|sg
∥∥
q1

+
∥∥|∇|sf

∥∥
p2
‖g‖q2 .

We will also need the following fractional chain rule from [16]. For a textbook
treatment, see [98, §2.4].

Lemma A.11 (Fractional chain rule, [16]). Suppose G ∈ C1(C), s ∈ (0, 1], and
1 < p, p1, p2 < ∞ are such that 1

p = 1
p1

+ 1
p2
. Then,

‖|∇|sG(u)‖p � ‖G′(u)‖p1
‖|∇|su‖p2

.

When the function G is no longer C1, but merely Hölder continuous, we have
the following chain rule:

Lemma A.12 (Fractional chain rule for a Hölder continuous function, [104]).
Let G be a Hölder continuous function of order 0 < α < 1. Then, for every
0 < s < α, 1 < p < ∞, and s

α < σ < 1 we have∥∥|∇|sG(u)
∥∥
p

�
∥∥|u|α− s

σ

∥∥
p1

∥∥|∇|σu
∥∥ s

σ
s
σ p2

,(A.3)

provided 1
p = 1

p1
+ 1

p2
and (1− s

ασ )p1 > 1.

The next result is formally similar to the preceding lemma; however, the proof
is much simpler. It is used in the proof of Lemma 6.9.

Lemma A.13 (Nonlinear Bernstein). Let G : C → C be Hölder continuous of
order 0 < α ≤ 1. Then

‖PNG(u)‖
L

p/α
x (Rd)

� N−α‖∇u‖αLp
x(Rd)

for any 1 ≤ p < ∞ and u ∈ Ẇ 1,p(Rd).

Proof. Given h ∈ R
d, the Fundamental Theorem of Calculus implies

(A.4) u(x+ h)− u(x) =

∫ 1

0

h · ∇u(x+ θh) dθ

and thus, ∥∥G(u(x+ h))−G(u(x))
∥∥
L

p/α
x (Rd)

� |h|α‖∇u‖αLp
x(Rd).

Now let k denote the convolution kernel of the Littlewood-Paley projection P1,
so that

[PNf ](x) =

∫
Rd

Ndk(N(x− y))f(y) dy
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=

∫
Rd

Ndk(−Nh)[f(x+ h)− f(x)] dh.

Note that in obtaining the second identity, we used the fact that
∫
Rd k(x) dx = 0.

Combining this with (A.4) and using the triangle inequality, we obtain

‖PNG(u)‖
L

p/α
x (Rd)

� ‖∇u‖αLp
x(Rd)

∫
Rd

|h|αNd|k(−Nh)| dh

� N−α‖∇u‖αLp
x(Rd),

which proves the lemma. �

Lastly, we record a particular consequence of Lemma A.12 that is used for
Lemma 6.3.

Corollary A.14. Let 0 ≤ s < 1 + 4
d and F (u) = |u|4/du. Then, on any

spacetime slab I × R
d we have∥∥|∇|sF (u)

∥∥
L

2(d+2)
d+4

t,x

�
∥∥|∇|su

∥∥
L

2(d+2)
d

t,x

‖u‖
4
d

L
2(d+2)

d
t,x

.

Proof. Fix a compact interval I. Throughout the proof, all spacetime esti-
mates will be on I × Rd.

For 0 < s ≤ 1, the claim is an easy consequence of Lemma A.11. It remains to
address the case 1 < s < 1 + 4

d . We will only give details for d ≥ 5; the main ideas
carry over to lower dimensions.

Using the chain rule and the fractional product rule, we estimate as follows:∥∥|∇|sF (u)
∥∥
L

2(d+2)
d+4

t,x

�
∥∥|∇|s−1

(
Fz(u)∇u+ Fz̄(u)∇ū

)∥∥
L

2(d+2)
d+4

t,x

�
∥∥|∇|su

∥∥
L

2(d+2)
d

t,x

‖u‖
4
d

L
2(d+2)

d
t,x

+ ‖∇u‖
L

2(d+2)
d

t,x

[∥∥|∇|s−1Fz(u)
∥∥
L

d+2
2

t,x

+
∥∥|∇|s−1Fz̄(u)

∥∥
L

d+2
2

t,x

]
.

The claim will follow from this, once we establish

∥∥|∇|s−1Fz(u)
∥∥
L

d+2
2

t,x

+
∥∥|∇|s−1Fz̄(u)

∥∥
L

d+2
2

t,x

�
∥∥|∇|σu

∥∥ s−1
σ

L
2(d+2)

d
t,x

‖u‖
4
d−

s−1
σ

L
2(d+2)

d
t,x

(A.5)

for some d(s−1)
4 < σ < 1. Indeed, by interpolation,∥∥|∇|σu

∥∥
L

2(d+2)
d

t,x

�
∥∥|∇|su

∥∥σ
s

L
2(d+2)

d
t,x

‖u‖1−
σ
s

L
2(d+2)

d
t,x

and

‖∇u‖
L

2(d+2)
d

t,x

�
∥∥|∇|su

∥∥ 1
s

L
2(d+2)

d
t,x

‖u‖1−
1
s

L
2(d+2)

d
t,x

.

To derive (A.5), we merely observe that Fz and Fz̄ are Hölder continuous
functions of order 4

d and then apply Lemma A.12 (with α := 4
d and s := s− 1). �
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A.4. A Gronwall inequality. Our last technical tool is the most elementary.
It is a form of Gronwall’s inequality that involves both the past and the future,
‘acausal’ in the terminology of [90]. It is used in Section 6.

Lemma A.15. Fix γ > 0. Given 0 < η < 1
2 (1 − 2−γ) and {bk} ∈ �∞(Z+), let

xk ∈ �∞(Z+) be a non-negative sequence obeying

xk ≤ bk + η

∞∑
l=0

2−γ|k−l|xl for all k ≥ 0.(A.6)

Then

xk �
k∑

l=0

r|k−l|bl for all k ≥ 0(A.7)

for some r = r(η) ∈ (2−γ , 1). Moreover, r ↓ 2−γ as η ↓ 0.

Proof. Our proof follows a well-travelled path. By decreasing entries in bk we
can achieve equality in (A.6); since this also reduces the righthand side of (A.7), it
suffices to prove the lemma in this case. Note that since xk ∈ �∞, bk will remain a
bounded sequence.

Let A denote the doubly infinite matrix with entries Ak,l = 2−γ|k−l| and let P
denote the natural projection from �2(Z) onto �2(Z+). Our goal is to show that
(A.7) holds for any solution of

(A.8) (1− ηPAP ∗)x = b.

First we observe that since

‖A‖ =
∑
k∈Z

2−γ|k| =
1 + 2−γ

1− 2−γ
,

ηA is a contraction on �∞. Thus, we may write

x =

∞∑
p=0

(ηPAP ∗)pb ≤
∞∑
p=0

P (ηA)pP ∗b = P (1− ηA)−1P ∗b,

where the inequality is meant entry-wise. The justification for this inequality is
simply that the matrix A has non-negative entries. We will complete the proof
of (A.7) by computing the entries of (1 − ηA)−1. This is easily done via Fourier
methods: Let

a(z) :=
∑
k∈Z

2−γ|k|zk = 1 +
2−γz

1− 2−γz
+

2−γz−1

1− 2−γz−1

and

f(z) :=
1

1− ηa(z)
=

(z − 2γ)(z − 2−γ)

z2 − (2−γ + 2γ − η2γ + η2−γ)z + 1

= 1 +
(1− r2−γ)(r2γ − 1)

(1− r2)

[
1 +

rz

1− rz
+

rz−1

1− rz−1

]
,

where r ∈ (0, 1) and 1/r are the roots of z2 − (2−γ + 2γ − η2γ + η2−γ)z + 1 = 0.
From this formula, we can immediately read off the Fourier coefficients of f , which
give us the matrix elements of (1− ηA)−1. In particular, they are O(r|k−l|). �
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Wave Maps with and without Symmetries

Michael Struwe

Introduction

Many of the results on wave maps seem highly technical and require deep results
from harmonic analysis for a complete understanding. In these three lectures we
present direct approaches to certain global aspects of the wave map problem, with
powerful conclusions.

The Cauchy problem for wave maps

In this first lecture we recall the approach presented in [20] for showing global
existence and uniqueness for the Cauchy problem for wave maps from the (1+m)-
dimensional Minkowski space, m ≥ 4, to any complete Riemannian manifold with
bounded curvature, provided the initial data are small in the critical norm.

1.1. Wave maps. Let (N, h) be a complete Riemannian manifold of dimen-
sion k with ∂N = ∅. We denote space-time coordinates on R

m+1 as (t, x) =
(xα), 0 ≤ α ≤ m. A wave map u : Rm+1 → N is a solution to the equation

(1) Dα∂αu = 0,

where ∂α = ∂
∂xα and where we raise and lower indices with the Minkowski metric

(ηαβ) = diag(−1, 1, . . . , 1). We tacitly sum over repeated indices. Moreover, D is
the covariant pull-back derivative in the bundle u∗TN .

The equivalent extrinsic form of equation (1) reveals that this is a quasilinear
wave equation. Recall that the Nash embedding theorem permits to regard N as
a submanifold of some Euclidean R

n. Letting u = (u1, . . . , un) : Rm+1 → N ↪→ R
n

be the corresponding extrinsic representation of our wave map u, equation (1) then
takes the form

(2) �ui = −∂α∂αu
i = ui

tt −Δui = Bi
jk(u)∂αu

j∂αuk, 1 ≤ i ≤ n,

where B(p) : TpN × TpN → (TpN)⊥ is the second fundamental form of N ⊂ R
n at

any p ∈ N . This extrinsic form of the wave map equation (1) will be very useful in
the sequel.

Note that equation (2) geometrically can be interpreted simply as saying that
�u ⊥ TuN , which immediately gives the intrinsic form (1). Moreover, in the case
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when N = Sk ↪→ Rk+1 equation (2) takes the form �u = λu for some scalar
function λ. Taking account of the fact that |u|2 ≡ 1, we compute

λ = �u · u = −∂α(∂αu · u) + ∂αu∂
αu = ∂αu∂

αu = |∇u|2 − |ut|2

and thus find the equation

(3) �u = utt −Δu = (|∇u|2 − |ut|2)u
for a wave map u : Rm+1 → Sk ↪→ Rk+1.

We study the Cauchy problem for wave maps with initial data

(4) (u, ut)|t=0
= (u0, u1) ∈ Ḣ

m
2 × Ḣ

m
2 −1(Rm;TN),

where Ḣs for any s denotes the homogenous Sobolev space. Note that from
any solution u to equation (1) or (2), we can obtain further solutions by scaling
uR(t, x) = u(Rt,Rx). In view of the invariance

(5) ||(u, ut)|t=0
||
Ḣ

m
2 ×Ḣ

m
2

−1(Rm;TN)
= ||(uR, uR

t )|t=0
||
Ḣ

m
2 ×Ḣ

m
2

−1(Rm;TN)

the Ḣ
m
2 × Ḣ

m
2 −1-regularity is critical.

With L(2m,2)(Rm) ↪→ L2m(Rm) denoting the Lorentz space, the main result
from [20] may now be stated, as follows.

Theorem 1.1. Suppose N is complete, without boundary and has bounded cur-
vature in the sense that the curvature operator R and the second fundamental form
B and all their derivatives are bounded, and let m ≥ 4. Then there is a constant
ε0 > 0 such that for any (u0, u1) ∈ H

m
2 ×H

m
2 −1(Rm;TN) satisfying

||u0||Ḣ m
2
+ ||u1||Ḣ m

2
−1 < ε0

there exists a unique global solution u ∈ C0(R;H
m
2 ) ∩ C1(R;H

m
2 −1) of (1), (4)

satisfying

(6) sup
t

||du(t)||
Ḣ

m
2

−1 +

∫
R

||du(t)||2L(2m,2)(Rm) dt ≤ Cε0

and preserving any higher regularity of the data.

For N = Sk, global wellposedness of the Cauchy problem (1), (4) for initial
data having small energy in the critical norm was first shown by Tao [26], [27],
initially only for m ≥ 5 and finally for all m ≥ 2. For m ≥ 5, by a variant
of Tao’s method, Klainerman-Rodnianski [10] were able to extend his results to
general targets, independently and almost simultaneously with our work [20] with
Shatah. Similar results are due to Nahmod - Stefanov - Uhlenbeck [16]. In the
low-dimensional cases 2 ≤ m ≤ 3 for wave maps u : Rm+1 → H2 to hyperbolic
space H2, the analogue of Theorem 1.1 was obtained by Krieger [12], [13]. Finally,
Tataru [30] established well-posedness of the Cauchy problem for (1), (4) for initial
data of small critical energy in the low-dimensional cases 2 ≤ m ≤ 3 also for general
targets. Previous work of Tataru [28], [29] already had shown the problem to be
wellposed for initial data of small energy in a critical Besov space.

Whereas the methods of Tao, Klainerman-Rodnianski, Tataru, and many oth-
ers working on this problem strongly rely on Littlewood-Paley theory and a so-
phisticated analysis of the interaction between different frequency components of a
solution, the approach in [20] requires no microlocalization. It proceeds in physical
space and is very direct, using as a tool essentially only the Strichartz estimate and
its recent subtle improvement by Keel and Tao [9].
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Terence Tao, and independently also Sergiu Klainerman and Igor Rodnianski
pointed out that estimates similar to the crucial L1

tL
∞
x -estimate in Lemma 1.2

below can also be obtained from bilinear estimates for the wave equation obtained
by Klainerman-Tataru [11]. Tristan Rivière has brought to our attention further
applications of Lorentz spaces in gauge theory related to our use of Lorentz spaces
here.

1.2. Uniqueness and higher regularity. The condition (6) easily yields
uniqueness when we consider the extrinsic form (2) of the wave map system. Indeed,
let u and v be solutions to (2) of class H

m
2 with u, v ∈ C0(R;H

m
2 )∩C1(R;H

m
2 −1),

and suppose that

u|t=0
= v|t=0

, ut|t=0
= vt|t=0

.

Moreover, we assume (6), that is, in particular,

||du||2L2
tL

2m
x

=

∫
R

||du(t)||2L2m(Rm) dt < ∞,

and similarly for v. Then w = u− v satisfies

wtt −Δw = [B(u)−B(v)](∂αu, ∂
αu) +B(v)(∂αu+ ∂αv, ∂

αw).

Multiplying by wt, we obtain

1

2

d

dt
||dw(t)||2L2 = I(t) + II(t),

where by Sobolev’s embedding Ḣ1(Rm) ↪→ L
2m

m−2 (Rm) we can estimate

I(t) =

∫
Rm

〈[B(u)−B(v)](∂αu, ∂
αu), wt〉 dx ≤ C

∫
Rm

|du|2|w||dw| dx

≤ C||du||2L2m ||w||
L

2m
m−2

||dw||L2 ≤ C||du||2L2m ||dw||2L2 .

In order to bound the term II(t), we note that orthogonality 〈B(u)(·, ·), ut〉 = 0 =
〈B(v)(·, ·), vt〉 implies

|〈B(v)(∂αu, ∂
αw), wt〉| = |〈B(v)(∂αu, ∂

αw), ut〉|
= |〈[B(v)−B(u)](∂αu, ∂

αw), ut〉| ≤ C|du|2|w||dw|,
and similarly for the term involving ∂αv.

Thus also this term can be bounded

II(t) ≤ C(||du||2L2m + ||dv||2L2m)||dw||2L2 ,

yielding the inequality

d

dt
||dw||2L2 ≤ C(||du||2L2m + ||dv||2L2m)||dw||2L2 .

Hence we obtain the uniform estimate

||dw||2L∞
t L2

x
≤ ||dw(0)||2L2 · exp(C(||du||2L2

tL
2m
x

+ ||dv||2L2
tL

2m
x

)).

Since dw(0) = 0, uniqueness follows.
Higher regularity estimates for (smooth) solutions u of (2) satisfying (6) for

sufficiently small ε > 0 can be obtained in similar fashion by differentiating the
intrinsic form of the wave map equation covariantly in spatial directions and using
standard energy estimates; see [20] for details.
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1.3. Moving frames and Gauge condition. Our approach requires the
construction of a suitable frame for the pull-back bundle u∗TN , as pioneered by
Christodoulou-Tahvildar-Zadeh [2] and Hélein [7]. With no loss of generality, we
may assume that TN is parallelizable, that is, there exist smooth vector fields
e1, . . . , ek such that at each p ∈ N the collection e1(p), . . . , ek(p) is an orthonormal
basis for TpN ; see [2], [7]. Given a (smooth) map u : Rm+1 → N then the vector
fields ea ◦ u, 1 ≤ a ≤ k, yield a smooth orthonormal frame for the pull-back bundle
u∗TN . Moreover, we may freely rotate this frame at any point z = (t, x) ∈ Rm+1

with a matrix (Rb
a) = (Rb

a(z)) ∈ SO(k), thus obtaining the frame

ea = Rb
aeb ◦ u, 1 ≤ a ≤ k.

Expressing du as

(7) du = qaea

with an Rk-valued 1-form q = qα dxα, then we have

|du|2 = |q|2 =

m∑
α=0

|qα|2 .

In particular, for 1 ≤ p ≤ ∞ the Lp-norm of du is well-defined, independently of
the choice of “gauge” (Rb

a), and coincides with the Lp-norm of du in the extrinsic
representation of u as a map u : Rm+1 → N ⊂ Rm. Later we will see that if the
gauge R is suitably chosen, and if ε0 > 0 is sufficiently small, also the norms of the
derivatives of du and the derivatives of q agree up to a multiplicative constant.

Letting D = (Dα)0≤α≤m be the pull-back covariant derivative, we have

(8) Dea = Ab
aeb, 1 ≤ a ≤ k,

for some matrix-valued 1-form A = Aαdx
α. Fix a pair of space-time indices 0 ≤

α, β ≤ m. The curvature of D enters in the commutation relation

DαDβea −DβDαea = Dα(A
b
a,βeb)−Dβ(A

b
a,αeb)

= (∂αA
c
a,β − ∂βA

c
a,α +Ac

b,αA
b
a,β −Ac

b,βA
b
a,α)ec = F c

a,αβec,

or

(9) ∂αAβ − ∂βAα + [Aα, Aβ] = Fαβ = R(∂αu, ∂βu)

for short. (The comma separates the form subscript from the vector subscript and
does not indicate a differential.)

Following Hélein [7] we choose the columb gauge

(10)

m∑
i=1

∂iAi = 0.

This results in the equation

(11) ΔAβ + ∂i[Ai, Aβ] = ∂iFiβ = ∂i(R(∂iu, ∂βu)), 0 ≤ β ≤ m,

where we tacitly sum over 1 ≤ i ≤ m. Given u : Rm+1 → N with du having
sufficiently small Lm-norm, this equation admits a unique solution A which for any
fixed time we may represent as

(12) Aβ = Gi ∗ ([Ai, Aβ]− Fiβ),

where
G(x) =

c

|x|m−2
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is the fundamental solution to the Laplace operator on Rm and Gi = −∂iG.
Indeed, from (11) and elliptic regularity theory we have the a-priori estimate

||A||Lm ≤ C||A||
Ẇ 1,m

2
≤ C||[A,A]||

L
m
2
+ C||F ||

L
m
2

≤ C||A||2Lm + C||R||L∞ ||du||2Lm ;

confer [5], Section 4.3. For sufficiently small ||A||Lm we may absorb the first term
on the right on the left hand side of this equation to obtain at any fixed time the
estimate with constants C independent of t

(13) ||A||Lm ≤ C||A||
Ẇ 1,m

2
≤ C||du||2Lm ≤ C||du||2

Ḣ
m
2

−1 ≤ Cε0.

For later use we derive further estimates for the connection 1-form A and the
curvature F , assuming that ε0 > 0 is sufficiently small. For the sake of exposition,
we indicate these estimates only in the case when m = 4 and refer to [20] for the
general case. For 1 ≤ s ≤ ∞ again denote as L(p,s)(Rm) the Lorentz space.

Lemma 1.2. Let m = 4, and fix r = 8/5.
(i) For any time t there holds

‖∇2A‖Lr + ‖∇∂0A‖Lr ≤ C‖∇F‖Lr ≤ C‖du‖L8‖du‖Ḣ1 .

(ii) For any time t we have

‖A‖L∞ ≤ C‖du‖2L(8,2) .

Proof. (i) To estimate ∇2A, observe that equation (11) implies

(14) ‖∇2A‖Lr ≤ C‖∇[A,A]‖Lr + C‖∇F‖Lr .

By Hölder’s inequality and Sobolev’s embedding we can estimate

‖∇[A,A]‖Lr ≤ 2‖∇A‖Lr1‖A‖Lm ≤ C‖∇2A‖Lr‖A‖Lm ,

where
1

r1
=

1

r
− 1

m
=

3

8
.

From (13) and (14) then, for sufficiently small ε0 > 0 we obtain

‖∇2A‖Lr ≤ C‖∇F‖Lr .

The term ∇F only involves terms of the form R(∇∂αu, ∂βu) and ∇R(∂αu, ∂βu)
and therefore may be estimated

|∇F | ≤ C(|∇du||du|+ |du|3).
Letting q = 8 = 2m, so that 1/r = 5/8 = 1/q + 1/2, upon estimating

‖∇F‖Lr ≤ C(‖∇du‖L2‖du‖Lq + ‖du‖2L4‖du‖Lq ) ,

from Sobolev’s embedding ‖du‖L4 ≤ C‖du‖Ḣ1 ≤ C we conclude that

‖∇2A‖Lr ≤ C‖∇F‖Lr ≤ C‖du‖L8‖du‖Ḣ1 .

To estimate ∇∂0A we note that the equations

∂0Ai = ∂iA0 + [Ai, A0] + F0i

and
Δ∂0A0 + ∂i∂0[Ai, A0] = ∂i∂0Fi0 ,

from (11) make exchanging of time derivative by spatial derivative possible and
thus imply the desired estimate.
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(ii) By the Sobolev embedding into Lorentz spaces and i), we have

‖A‖L(8,2) ≤ C‖A‖
L(8, 8

5
) ≤ ‖A‖

Ẇ 2, 8
5
≤ C‖du‖L8 .

Therefore, and since for any m ≥ 4 we have Gi ∈ L( m
m−1 ,∞), the dual of L(m,1),

using the representation of A given by (12) we obtain

‖A‖L∞ ≤ C(‖[A,A]‖L(4,1) + ‖F‖L(4,1)) ≤ C(‖A‖2L(8,2) + ‖du‖2L(8,2)) ≤ C‖du‖2L(8,2) ,

as claimed. �

1.4. Equivalence of Norms. Estimate (13) implies the equivalence of the
extrinsic H�-norm of du and the H�-norm of q for any 	, provided ε0 > 0 is suffi-
ciently small. To see this consider a vector field W in u∗TN whose coordinates in
the frame {ea} are given by

W = Qaea = Qe

with

‖W‖L2 = ‖Q‖L2 .

The extrinsic partial derivative of W can be computed from the covariant derivative
and the second fundamental form B as

DkW = ∂kW +B(u)(∂ku,W ) = (∂kQ+AQ)e ;

that is,

∂kW = (∂kQ+AQ)e−B(u)(∂ku,Qe).

Therefore from (12), Sobolev embedding, and boundedness of the second funda-
mental form B we obtain∣∣ ||∂W ||L2 − ||∂Q||L2

∣∣ ≤ C(‖AQ‖L2 + ‖duQ‖L2)

≤ C(‖A‖Lm + ‖du‖Lm)‖∂Q‖L2 ≤ Cε0‖∂Q‖L2) .

By linearity of the map Q �→ W and interpolation we conclude the equivalence
of the Hs-norms of Q and W for all 0 ≤ s ≤ 1. The same argument establishes
the equivalence of the covariant and extrinsic Hs-norms of W for 0 ≤ s ≤ 1. By
applying this argument iteratively to W = ∇�du for 	 = 0, 1, . . . , we then obtain
the equivalence of the Hs-norm of du and Hs-norm of q for any s ≥ 0, provided
ε0 > 0 is sufficiently small.

1.5. A priori bounds. In order to obtain the a-priori bounds from which we
may derive existence, we represent a local smooth solution u of (1), (4) in terms of
the 1-form q given by (7), where the frame (ea) is in Coulomb gauge.

From (8) then we have the equations

0 = Dα∂βu−Dβ∂αu = (Dαqβ −Dβqα)e,

where we denote

(15) Dαqβ = (∂α +Aα)qβ ;

in components, this is

Dα(q
a
βea) = (∂αq

c
β +Ac

a,αq
a
β)ec.

Again the comma separates the form subscript from the vector subscript and does
not indicate a differential.
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That is, we have

(16) Dαqβ −Dβqα = 0.

Moreover, the wave map equation (1) yields the equation

(17) Dαqα = 0.

Differentiating (17) with respect to xβ and using (9), (16), we derive the covariant
wave equation

0 = DβD
αqα = DαDβqα + Fα

β qα = DαDαqβ + Fα
β qα.

Expanding this identity using (15), we obtain

(∂2
t −Δ)qβ = 2Aα∂αqβ + (∂αAα)qβ +AαAαqβ + Fα

β qα =: hβ .(18)

We can estimate q in terms of the initial data and h by using the Strichartz
estimate for the linear wave equation

(19) �v = h, v|t=0
= f, vt|t=0

= g.

Again denoting as Ḣγ = (
√
−Δ)−γL2(Rm) the homogeneous Sobolev space, and

as L(p,r)(Rm) the Lorentz space, from Keel-Tao [9], Corollary 1.3, if h = 0 for any
T > 0 we have

||v||
L2([0,T ];L

2(m−1)
m−3 (Rm))

+ ||v||C0([0,T ];Ḣγ(Rm)) + ||vt||C0([0,T ];Ḣγ−1(Rm))

≤ C(||f ||Ḣγ(Rm) + ||g||Ḣγ−1(Rm)).

where γ = m+1
2(m−1) . If m = 4, we have γ = 5

6 and the preceding becomes

||v||L2([0,T ];L6(R4)) + ||v||C0([0,T ];Ḣ5/6(R4)) + ||vt||C0([0,T ];Ḣ−1/6(R4))

≤ C(||f ||Ḣ5/6(R4) + ||g||Ḣ−1/6(R4)).
(20)

By real interpolation between this estimate and the analogous estimate for deriva-
tives of v, and using the embedding (in the notation of [9])

(L2
tL

6
x, L

2
t Ẇ

1,6
x ) 1

6 ,2
↪→ L2

tL
(8,2)
x ,

we obtain

(21) ||v||
L2

tL
(8,2)
x

+ ||dv||C0([0,T ];L2) ≤ C(||f ||Ḣ1 + ||g||L2).

By Duhamel’s principle, for general h it then follows that

(22) ||v||
L2

tL
(8,2)
x

+ ||dv||C0
t L

2
x
≤ C(||f ||Ḣ1 + ||g||L2 + ||h||L1

tL
2
x
).

(The crucial gain of the Lorentz exponent by real interpolation was already observed
by Keel and Tao [9] but was omitted in the final statement of their theorem.)

We will apply estimate (22) to equation (18) on any time interval [0, T ] such
that ||du||Ḣ1 remains sufficiently small, uniformly for 0 < t < T . Also using the
equivalence of the Hs-norms of du and q for s ≤ 1 on any such time interval, we
obtain

||du||C0
t Ḣ

1
x
+ ||du||

L2
tL

(8,2)
x

≤ C(||dq||C0
t L

2
x
+ ||q||

L2
tL

(8,2)
x

)

≤ C(||dq(0)||L2 + ||h||L1
tL

2
x
) ≤ C(||du(0)||Ḣ1 + ||h||L1

tL
2
x
)

≤ C(||u0||Ḣ2 + ||u1||Ḣ1 + ||h||L1
tL

2
x
) .
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To estimate the various terms in h we observe that by Lemma 1.2 at any time
t with r1 = 8/3 we have

||h||L2 ≤ 2‖A∂q‖L2 + ‖∂Aq‖L2 + ‖A2q‖L2 + ‖Fq‖L2

≤ 2‖A‖L∞‖q‖Ḣ1 +
(
‖∇A‖Lr1 + ‖A2‖Lr1 + ‖F‖Lr1

)
‖q‖L8 .

But Lemma 1.2 with r = 8/5 implies

‖∇A‖Lr1 + ‖A2‖Lr1 + ‖F‖Lr1 ≤ C(‖∇2A‖Lr + ‖∇(A2)‖Lr + ‖∇F‖Lr)

≤ C‖du‖L8‖du‖Ḣ1 .

Here we also used Sobolev’s embedding and (13) to bound

‖∇(A2)‖Lr ≤ C‖∇A‖Lr1‖A‖L4 ≤ C‖∇2A‖Lr .

From Lemma 1.2 we then obtain

||h||L2 ≤ C‖q‖L8‖du‖L8‖du‖Ḣ1 + 2‖A‖L∞‖q‖Ḣ1 ≤ C‖du‖2L(8,2)‖du‖Ḣ1 .

Using these estimates, we can bound h by

||h||L1
tL

2
x
≤ C||du||2

L2
tL

(8,2)
x

‖du‖L∞
t Ḣ1

x

and we conclude that

||du||L∞
t Ḣ1 + ||du||

L2
tL

(8,2)
x

≤ C(||u0||Ḣ2 + ||u1||Ḣ1 + ||du||2
L2

tL
(8,2)
x

‖du‖L∞
t Ḣ1

x
) .

A global priori bound on ||du||L∞
t Ḣ1

x
+ ||du||L2

tL
8
x
thus follows, provided ||u0||Ḣ2 +

||u1||Ḣ1 is sufficiently small.

1.6. Existence. Recall C∞×C∞(Rm;TN) is dense inH
m
2 ×H

m
2 −1(Rm;TN).

We can thus find smooth data (u
(k)
0 , u

(k)
1 ) → (u0, u1) in H

m
2 × H

m
2 −1(Rm;TN).

The local solutions u(k) to the Cauchy problem for (1) with data (u
(k)
0 , u

(k)
1 ) by our

a-priori bounds and regularity results for sufficiently small energy

||u0||2Ḣ m
2
+ ||u1||2Ḣ m

2
−1 < ε0

then may be extended as smooth solutions to (1), (4) for all time and will satisfy
the uniform estimates

||du(k)||
C0

t Ḣ
m
2

−1
x

+ ||du(k)||
L2

tL
(2m,2)
x

≤ C(||u(k)
0 ||

Ḣ
m
2
+ ||u(k)

1 ||
Ḣ

m
2

−1) < Cε0

for sufficiently large k.

Hence as k → ∞ a subsequence u(k) ⇁ u weakly in H
m
2

loc(R
m+1), where

||du||
C0

t Ḣ
m
2

−1 + ||du||
L2

tL
(2m,2)
x

≤ C(||u0||Ḣ m
2
+ ||u1||Ḣ m

2
−1) .

Since m
2 ≥ 2, by Rellich’s theorem for a further subsequence du(k) → du converges

pointwise almost everywhere, and u solves (1), (4), as claimed.
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Wave maps with symmetries I

The H1-energy is the only known conserved quantity for the wave map system.
The case when m = 2 therefore is particularly interesting, because in this dimension
the H1-energy is critical and one may hope to obtain also global results and a
characterization of singularities. Indeed, this is possible in the case of symmetry.

In this second lecture, we study co-rotational wave maps from (1+2)-dimensional
Minkowski space into a target surface of revolution. In the third lecture, finally, we
investigate rotationally symmetric wave maps on R

1+2.

2.1. Corotational wave maps. Let N be a surface of revolution with metric

ds2 = dρ2 + g2(ρ)dθ2,

where θ ∈ S1 and with g ∈ C∞(R) satisfying g(0) = 0, g′(0) = 1. Moreover, we
assume that g is odd and either

(23) g(ρ) > 0 for all ρ > 0

with

(24)

∫ ∞

0

|g(ρ)| dρ = ∞,

or, if N is compact, that g has a first zero ρ1 > 0 where g′(ρ1) = −1, and that g is
periodic with period 2ρ1. Note that in this second case assumption (24) is trivially
satisfied. The case (23) corresponds to non-compact surfaces; condition (24) is a
technical assumption needed to rule out that N contains a “sphere at infinity”.

We regard (ρ, θ) as polar coordinates on N . Letting (r, φ) be the usual polar
coordinates on R2, we then consider equivariant wave maps u : R× R2 → N given
by

ρ = h(t, r), θ = φ.

The equation (2) for a wave map u = (u1, . . . , un) : R2+1 → N ↪→ Rn, that is

(25) �ui = Bi
jk(u)∂αu

j∂βuk, 1 ≤ i ≤ n,

in this co-rotational case simplifies to the nonlinear scalar equation

(26) �h+
f(h)

r2
= 0,

where

�h = htt −Δh = htt −
1

r

(
rhr

)
r
= htt − hrr −

hr

r
and with f(h) = g(h)g′(h). If N = S2, for example, we have g(h) = sin(h) and
f(h) = 1

2sin(2h)
In [21], Shatah and Tahvildar-Zadeh showed that the initial value problem for

(25) with smooth equivariant data

(27) (u, ut)|t=0
= (u0, u1)

of finite energy admits a unique smooth solution for small time, which may be
extended for all time if the target surface N is geodesically convex.

The latter condition is equivalent to the assumption g′(ρ) ≥ 0 for all ρ > 0.
This condition was later weakened by Grillakis [4] who showed that it suffices to
assume

(g(ρ)ρ)′ = g(ρ) + g′(ρ)ρ > 0 for ρ > 0 .

Note that this hypothesis, in particular, implies conditions (23) and (24).
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In [23] we improve these results and show that conditions (23) and (24) already
suffice for proving global well-posedness of the Cauchy problem for (26). In fact,
we show that for general target surfaces N satisfying (24) the appearance of a
singularity in (26) is related to the existence of a non-constant harmonic map
u : S2 → N , thereby confirming a long-standing conjecture about wave maps in this
special, co-rotational case. But if N also satisfies (23), any co-rotational harmonic
map u : S2 → N is constant, and global well-posedness follows.

On the other hand, when N = S2 on the basis of numerical work of Bizon et
al. [1] and Isenberg-Liebling [8] it had been conjectured that for suitable initial
data equivariant wave maps u : R × R2 → S2 indeed may develop singularities in
finite time. In a penetrating analysis, Krieger-Schlag-Tataru [14] and Rodnianski-
Sterbenz [17] recently were able to confirm this conjecture also theoretically and
give a rigorous proof of blow-up.

2.2. Results. By the results of Shatah-Tahvildar-Zadeh [21] singularities of
co-rotational maps may be detected by measuring their energy

E(u(t), R) =
1

2

∫
BR(0)

|Du(t)|2 dx,

with |Du|2 = |ut|2 + |∇u|2. In terms of h = h(t) we have

E(u(t), R) = π

∫ R

0

(
|Dh|2 + g2(h)

r2
)
rdr.

We also let

E(u(t)) = lim
R→∞

E(u(t), R).

By [21] there exists a number ε0 = ε0(N) > 0 such that the Cauchy problem for
co-rotational wave maps for smooth data with energy E(u(0)) < ε0 admits a global
smooth solution; confer also [19], Theorem 8.1. By finite speed of propagation,
similarly we obtain well-posedness of the Cauchy problem for time t ≤ R, provided
E(u(0), R) < ε0.

Conversely, let u : [0, t0[×R2 → N be a smooth co-rotational wave map. Then
z0 = (t0, 0) is a (first) singularity and t0 is the blow-up time of u if and only if there
holds

(28) inf
0≤t<t0

E(u(t), t0 − t) ≥ ε0 > 0.

In fact, for any map u satisfying (28) the space-time gradientDu cannot be bounded
near the origin (0, 0). On the other hand, negating condition (28) we can find a
time t < t0 such that

E(u(t), R) < ε0

for some R > t0− t and the results quoted above will allow us to extend u smoothly
as a solution to (25) on a neighborhood of z0 = (t0, 0). Observe that, by symmetry,
u can only blow up at the origin.

We can now state our main result.

Theorem 2.1. Let u be a smooth co-rotational solution to (25) blowing up at
time t0. Then there exist sequences Ri ↓ 0, ti ↑ t0(i → ∞) such that

ui(t, x) = u(ti +Rit, Rix) → u∞(t, x)
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strongly in H1
loc(] − 1, 1[×R2), where u∞ is a non-constant, time-independent so-

lution of (25) giving rise to a non-constant, smooth co-rotational harmonic map
u : S2 → N .

As a consequence, for target manifolds that do not admit non-constant co-
rotational harmonic spheres we obtain global existence of smooth solutions to the
Cauchy problem (25), (27) for smooth co-rotational data. In particular, we can
improve Grillakis’ result as follows.

Theorem 2.2. Suppose N is a surface of revolution with metric ds2 = dρ2 +
g2(ρ)dθ2 satisfying (23) and (24). Then for any smooth co-rotational data the
Cauchy problem (25), (27) admits a unique global smooth solution.

As we shall see in Lecture 3, similar results also hold true in the case of radially
symmetric wave maps u = u(t, r) from R

1+2 to an arbitrary closed target manifold;
confer [24], [25].

2.3. Notation. Let u : [0, t0[×R2 → N be a smooth co-rotational wave map
blowing up at time t0 and let h = h(t, r) be the associated solution of (26).

For convenience we shift and reverse time and then scale our space-time coor-
dinate z = (t, x) so that in our new coordinates u is an equivariant solution to (25)
on ]0, 1]× R2 blowing up at the origin.

Letting
KT = {z = (t, x); 0 ≤ |x| ≤ t ≤ T}

be the forward light cone with vertex at the origin, truncated at height T , with
lateral boundary

MT = {(t, x) ∈ KT ; |x| = t},
we also introduce the flux

Flux(u, T ) =
1

2

∫
MT

|D||u|2 do = π

∫ T

0

(
|ht + hr|2 +

g2(h)

r2

) ∣∣
t=r

r dr.

Here, |D||u|2 denotes the energy of all derivatives in directions tangent to MT .

2.4. Basic estimates. We recall the energy bounds and decay estimates for
(25) from [21]; these can also be found in [19], Chapter 8.1. Since B(u)(v, w) ⊥
TuN from (25) we obtain the conservation law

(29) 0 = �u · ut =
∂

∂t
e− div m

for the densities

e =
1

2
(|∇u|2 + |ut|2), m = ∇u · ut

of energy and momentum. Observe that |m| ≤ e. Integrating (29) over a truncated
cone KT0 \KT for 0 < T ≤ T0 ≤ 1 we then find the identity∫

{T}×BT (0)

e dx+
1

2

∫
MT0\MT

|D||u|2 do =

∫
{T0}×BT0

(0)

e dx .

From this we deduce the energy inequality

(30) E(u(t), R) ≤ E(u(t+ τ ), R+ |τ |).
for any t, τ, R > 0. (Of course, in the present case we only consider values such
that 0 < t, t+ τ ≤ 1.)
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Moreover, we conclude that

lim
T↓0

∫
{T}×BT (0)

e dx

exists and we have decay of the flux

(31) Flux(u, T ) → 0 as T ↓ 0.

Condition (24) together with the energy inequality implies the uniform bounds

(32) sup
r<R

|h(t, r)| ≤ C(E(u(t), R)) for any R > 0

for the function h associated with u, where C(s) → 0 as s → 0. Indeed, let

G(s)) =

∫ s

0

|g(ρ)| dρ.

Since (24) implies that G(s) → ∞ as s → ∞ it then suffices to estimate

G(|h(t, R)|) =
∫ R

0

(G(|h(t, r)|)r dr ≤
∫ R

0

|g(h(t, r))||hr(t, r)| dr

≤ 1

2

∫ R

0

(
|hr|2 +

g2(h(t, r))

r2
)
rdr ≤ CE(u(t), R) .

Moreover we have exterior energy decay: For any 0 < λ ≤ 1 as t → 0 there
holds

(33) E(u(t), t)− E(u(t), λt) → 0.

An immediate consequence of (33) is the decay of time derivatives: Suppose that
N satisfies (24). Then

(34)
1

T

∫
KT

|ut|2 dz → 0 as T → 0.

These estimates seem particular to the rotationally symmetric setting. The (lengthy)
proof of (33) and the derivation of (34) are given in the appendix.

Finally, as is also well-known, in view of the uniform energy bounds (30) above,
we have uniform Hölder continuity away from x = 0.

Lemma 2.3. For any r0 > 0, any (t, r) and (s, q) with 2r0 ≤ q ≤ s < t ≤
1, 2r0 ≤ r ≤ t there holds

(35) |h(t, r)− h(s, q)|2 ≤ C(|r − q|+ |t− s|)

with a constant C depending only on the energy E(u(1), 1) and r0.

Proof. Given r0 > 0, for any t and r0 ≤ r′ < r ≤ t ≤ 1 by Hölder’s inequality and
(30) we have

|h(t, r)− h(t, r′)|2 ≤
(∫ r

r′
|hr| dr′′

)2

≤ r − r′

r′
·
∫ r

r′
|hr|2 r′′ dr′′ ≤ C

r − r′

r0
,

while for any s < t and r0 ≤ r′ ≤ s we find

|h(s, r′)− h(t, r′)|2 ≤
(∫ t

s

|ht(t
′, r′)| dt′

)2

≤ t− s

r0

∫ t

s

|ht(t
′, r′)|2 r′ dt′.
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Combining these inequalities, for any (t, r) and (s, q) with 2r0 ≤ q ≤ s < t ≤
1, 2r0 ≤ r ≤ t and any r′ with r0 ≤ r′ ≤ r1 := inf{q, r} we find

|h(t, r)− h(s, q)|2 ≤ C
r − r′ + q − r′

r0
+ 2

t− s

r0

∫ t

s

|ht(t
′, r′)|2 r′ dt′.

Taking the average with respect to r′ ∈ [r1−min{r0, |r− q|+ |t−s|}, r1], we obtain
the claim. �

2.5. Proofs of Theorems 2.1 and 2.2. Fix a number ε1 = ε1(N) > 0 to be
determined below. For 0 < t ≤ 1 then choose R = R(t) > 0 so that

(36) ε1 ≤ E(u(t), 6R(t)) ≤ 2ε1.

Applying the energy inequality (30), for any |τ | ≤ 5R we have

(37) E(u(t+ τ ), R) ≤ E(u(t), 6R) ≤ 2ε1

and similarly

(38) ε1 ≤ E(u(t+ τ ), 6R+ |τ |) ≤ E(u(t+ τ ), 11R).

We will choose ε1 so that 2ε1 < ε0. Then, in particular, from (28) and (36) we
deduce the inequality

(39) 6R(t) < t

for all t. In fact, we obtain a much stronger result.

Lemma 2.4. R(t)/t → 0 as t → 0.

Proof. Suppose by contradiction that for some sequence ti ↓ 0 (i → ∞) with
associated radii Ri = R(ti) there holds 6Ri ≥ λti for some constant λ > 0. Then
from (28) and (36) we deduce that

0 < ε0 − 2ε1 ≤ E(u(ti), ti)− E(u(ti), 6Ri) ≤ E(u(ti), ti)− E(u(ti), λti),

contradicting (33) for large i ∈ N. �

The following lemma is the main new technical ingredient in our work [23].
Consider the intervals ΛR(t)(t) =]t − R(t), t + R(t)[, 0 < t ≤ 1. By Vitali’s

theorem we can find a countable subfamily of disjoint intervals Λi = ΛR(ti)(ti), i ∈
N, such that ]0, 1] ⊂ ∪∞

i=1Λ
∗
i , where Λ∗

i = Λ5R(ti)(ti). Observe that (39) implies

(40) inf Λ∗
i = ti − 5R(ti) > R(ti) =: Ri

for each i. For any τ > 0 the interval [τ, 1] is covered by finitely many intervals Λ∗
i

which, however, fail to cover ]0, 1] completely in view of (40). Therefore, we may
assume that ti → 0 as i → ∞.

Lemma 2.5. With the above notations there holds

lim inf
i→∞

1

Ri

∫
Λi

∫
Bt(0)

|ut|2 dx dt = 0.

Proof. Negating the assertion, we can find a number δ > 0 and an index i0 ∈ N

such that

(41)

∫
Λi

∫
Bt(0)

|ut|2 dx dt ≥ δRi for i ≥ i0.
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Given 0 < T < inf ∪i<i0Λ
∗
i , let I0 = {i ; inf Λ∗

i < T} ⊂ {i0, i0 + 1, . . . }. Observe
that

]0, T [⊂ ∪i∈I0Λ
∗
i .

By (40) we have
Ri < inf Λ∗

i = ti − 5Ri < T

and therefore
ti +Ri < T + 6Ri < 7T

for all i ∈ I0. It follows that

(42) ∪i∈I0Λi ⊂]0, 7T ].

By choice of I0, our assumption (41), and in view of (42) we now obtain that

δT ≤ δ
∑
i∈I0

diamΛ∗
i = 10 δ

∑
i∈I0

Ri ≤ 10
∑
i∈I0

∫
Λi

∫
Bt(0)

|ut|2 dx dt

= 10

∫
∪i∈I0

Λi

∫
Bt(0)

|ut|2 dx dt ≤ 10

∫
K7T

|ut|2 dz,
(43)

where we also used the fact that the intervals Λi are disjoint. But for small T > 0
this contradicts (34), thus proving the lemma. �

Proof of Theorem 2.1. i) Letting

ui(t, x) = u(ti +Rit, Rix), i ∈ N,

from Lemma 2.5 for a suitable subsequence we obtain

(44)

∫ 1

−1

∫
Bri

(0)

|∂tui|2 dx dt → 0 as i → ∞,

where ri = ti/Ri − 1 → ∞ as i → ∞ on account of Lemma 2.4. Relabelling, we
may assume that (44) holds true for the original sequence (ui).

Moreover, the energy inequality (30) implies the uniform bound

(45) E(ui(t), ri) ≤ E(u(1), 1) =: E0

for all i ∈ N and |t| ≤ 1.
Hence we may extract a further subsequence such that ui ⇁ u∞ weakly in H1

loc

and locally uniformly away from x = 0 on [−1, 1] × R2 as i → ∞, and similarly
for the associated functions hi. Their limit h∞ then is associated with u∞ and is a
time-independent solution of (26) away from x = 0. It follows that u∞(t, x) = u(x)
is a time-independent solution of (25) on ]−1, 1[×(R2\{0}); that is, u : R2\{0} → N
is a smooth, co-rotational harmonic map with finite energy

E(u) =

∫
R2

|∇u|2 dx ≤ lim inf
i→∞

sup
|t|≤1

E(ui(t), ri) ≤ E0.

By [18] then u extends to a smooth harmonic map u : R2 → N . Since R2 is
conformal to S2 \ {p0} by stereographic projection from any point p0 ∈ S2 and
since the composition of a harmonic map with a conformal transformation again
yields a harmonic map with the same energy, we may thus regard u as a harmonic
map from S2 \ {p0} to N . Finally, recalling that E(u) < ∞ and again using [18],
we see that the map u extends to a smooth equivariant harmonic map u : S2 → N .

ii) To show that u is non-constant we now establish strong convergence

ui → u∞ in H1
loc(]− 1, 1[×R

2)
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as i → ∞. Recalling (37), we have

E(ui(t), 1) ≤ 2ε1, E(u∞(t), 1) ≤ 2ε1

uniformly in i and |t| ≤ 1. Hence, from (32) for sufficiently small ε1 > 0 the images
of B1(0) under ui(t) or u∞ are all contained in a fixed coordinate system around
the center of symmetry O ∈ N . In addition, we can achieve that

(46) sup
|t|,|x|≤1

|B(ui)||ui − u∞| ≤ 1

4

uniformly in i ∈ N, provided ε1 > 0 is chosen sufficiently small.
For any ϕ ∈ C∞

0 (] − 1, 1[×R2) with 0 ≤ ϕ ≤ 1 then, upon multiplying the
equation (25) for ui by (ui − u∞)ϕ and integrating by parts we obtain

(47)

∫
R1+2

|D(ui − u∞)|2ϕdz ≤
∫
R1+2

|B(ui)||Dui|2|ui − u∞|ϕdz + I,

with error

|I| ≤ C

∫
R1+2

(|∂tui|2ϕ+ |Dui||ui − u∞||Dϕ|) dz

+
∑
α

|
∫
R1+2

∂αu∞∂α(ui − u∞)ϕdz| → 0 as i → ∞

in view of (44) and since ui → u∞ strongly in L2
loc by Rellich’s theorem.

Now we estimate

|Dui|2 ≤ 2|D(ui − u∞)|2 + 2|Du∞|2

and observe that ∫
R1+2

|Du∞|2|ui − u∞|ϕdz → 0

as i → ∞ by bounded almost everywhere convergence ui → u∞ and Lebesgue’s
theorem on dominated convergence. Also recalling (46), we thus may absorb the
first term on the right of (47) on the left to obtain that∫

R1+2

|D(ui − u∞)|2ϕdz → 0

as i → ∞. Since ϕ as above is arbitrary, this yields the desired convergence ui → u∞
in H1

loc(]− 1, 1[×R2).
But, recalling (38), we also have the uniform lower bound

ε1 ≤ E(ui(t), 11)

for all i ∈ N and |t| ≤ 1 and we conclude that u∞ �≡ const, as claimed. Therefore,
also u : S2 → N is non-constant, and the proof of Theorem 2.1 is complete. �

Proof of Theorem 2.2. In view of Theorem 2.1 it suffices to show that any
co-rotational harmonic map u : S2 → N with finite energy is constant. Let u be
such a map, viewed as a map u : R2 → N . Also consider the associated distance
function ρ = h(r), a time-independent solution of (26). The image u(S2) being
compact there exists r0 > 0 such that

|h(r0)| = max
r>0

|h(r)|.

Hence hr(r0) = 0 and therefore ur(x) = 0 for any x ∈ ∂Br0(0).



498 MICHAEL STRUWE

Since any harmonic map u : R2 → N with finite energy is conformal, the van-
ishing of ur implies that also uφ vanishes along ∂Br0(0), and we conclude that

u ≡ const on ∂Br0(0). Equivariance of u then implies that g(h(r0)) = 0 and hence
h(r0) = 0 on account of (23). But then h ≡ 0 by choice of r0, and u ≡ const ≡ O,
as desired. �

Wave maps with symmetries II

In this final lecture we show that the Cauchy problem for radially symmetric
wave maps u(t, x) = u(t, |x|) from the (1 + 2)-dimensional Minkowski space to
an arbitrary smooth, compact Riemannian manifold without boundary is globally
well-posed for arbitrary smooth, radially symmetric data.

3.1. The result. Again let N be a smooth, compact Riemmanian k-manifold
without boundary, isometrically embedded in R

n. Given smooth, radially sym-
metric data (u0, u1) = (u0(|x|), u1(|x|)) : R2 → TN , by a result of Christodoulou-
Tahvildar-Zadeh [2] there is a unique smooth solution u = (u1, . . . , un) = u(t, |x|)
for small time to the Cauchy problem for the equation

(48) �u = utt −Δu = B(u)(∂αu, ∂
αu) ⊥ TuN,

with initial data

(49) (u, ut)|t=0
= (u0, u1).

Here B again denotes the second fundamental form of N .
As shown by Christodoulou-Tahvildar-Zadeh [2], the solution may be extended

globally, if the energy of u is small or if the range of u is contained in a convex part
of the target N . Either condition, however, turns out to be unnecessary. In fact,
by using the blow-up analysis from [23] that we presented in the second lecture,
in [24], [25] we showed that the local solution may be extended globally for any
target manifold.

Theorem 3.1. Let N ⊂ R
n be a smooth, compact Riemannian manifold with-

out boundary. Then for any radially symmetric data (u0, u1) = (u0(|x|), u1(|x|)) ∈
C∞(R2;TN) there exists a unique, smooth solution u = u(t, |x|) to the Cauchy
problem (48), (49), defined for all time.

The regularity requirements on the data may be relaxed; we consider smooth
data mainly for ease of exposition.

Summarizing the ideas of the proof, as in the co-rotational symmetric setting
of [23] that we described in the second lecture, again we argue indirectly. Thus, we
suppose that the local solution u to (48), (49) becomes singular in finite time. As
before we then obtain a sequence of rescaled solutions ul on the region ]− 1, 1[×R

2

with energy bounds and such that ∂tul → 0 in L2
loc(]−1, 1[×R2). Finally, rephrasing

the wave map equation intrinsically as described in the first lecture, and imposing
the exponential gauge, we establish energy decay. But this contradicts the blow-up
criterion of Christodoulou and Tahvildar-Zadeh [2] and completes the proof.

I would like to thank Jalal Shatah for suggesting the use of the exponential
gauge.
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3.2. Basic estimates. Let u = u(t, |x|) : [0, t0[×R2 → N ⊂ Rn be a smooth
radially symmetric wave map blowing up at time t0. Necessarily, blow-up occurs at
x = 0. As before, upon shifting and reversing time and then scaling our space-time
coordinates suitably, we may assume that u is a smooth radial solution to (48) on
]0, 1]× R2 blowing up at the origin. Again let

KT = {z = (t, x); 0 ≤ |x| ≤ t ≤ T}
be the truncated forward light cone from the origin with lateral boundary

MT = {(t, x) ∈ KT ; |x| = t}.
Denoting as

e =
1

2
|Du|2 =

1

2
(|ut|2 + |ur|2), f =

1

2
|D||u|2 =

1

2
|ut + ur|2

the energy and flux density of u, and letting

E(u,R) =

∫
BR(0)

e dx, Flux(u, T ) =

∫
MT

f do

be the local energy and the flux through MT , then from [2], [21] we have the
following results just as in the co-rotational setting. The identity (29) again leads
to the energy inequality: For any t, τ, R > 0 there holds

(50) E(u(t), R) ≤ E(u(t+ τ ), R+ |τ |).
Again, we only consider values such that 0 < t, t + τ ≤ 1. Together with [2] this
yields the blow-up criterion: There exists ε0 = ε0(N) > 0 such that

(51) E(u(t), t) ≥ ε0 for all 0 < t ≤ 1 .

Moreover, we have flux decay:

(52) Flux(u, T ) → 0 as T → 0.

As shown in the Appendix, similar to (33) and (34) we also have exterior energy
decay and decay of time derivatives: For any 0 < λ ≤ 1 as t → 0 there holds

(53) E(u(t), t)− E(u(t), λt) → 0,

and

(54)
1

T

∫
KT

|ut|2 dz → 0 as T → 0.

Moreover, as shown in Lemma 2.3, the function u is locally uniformly Hölder con-
tinuous on ]0, 1]×B1(0) away from x = 0.

Fix a number 0 < ε1 = ε1(N) < ε0/2 as determined below. For 0 < t ≤ 1 we
again choose R = R(t) so that

(55) ε1 ≤ E(u(t), 6R) ≤ 2ε1.

Then from (50) for any |τ | ≤ 5R we have

(56) E(u(t+ τ ), R) ≤ E(u(t), 6R) ≤ 2ε1 < ε0

and similarly

(57) ε1 ≤ E(u(t+ τ ), 6R+ |τ |) ≤ E(u(t+ τ ), 11R).

In particular, combining (51) and (55) we deduce the inequality

(58) 6R(t) ≤ t
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for all t. In fact, from (51), (53), and (55) as in Lemma 2.4 we even obtain that

(59) R(t)/t → 0 as t ↓ 0.

As in Lemma 2.5 we consider the intervals ΛR(t)(t) =]t − R(t), t + R(t)[, 0 <
t ≤ 1. An application of Vitali’s covering theorem and (54) then yields a sequence
tl → 0 with corresponding radii Rl = R(tl) such that

1

Rl

∫
Λl

(∫
Bt(0)

|ut|2 dx
)

dt → 0

as l → ∞, where Λl = ΛRl
(tl), l ∈ N. Rescale, letting

ul(t, x) = u(tl +Rlt, Rlx), l ∈ N.

Observe that ul solves (48) on [−1, 1]× R
2 with

(60)

∫ 1

−1

(∫
Dl(t)

|∂tul|2 dx
)

dt → 0 as l → ∞,

where

Dl(t) = {x;Rl|x| ≤ tl +Rlt}
exhausts R2 as l → ∞ uniformly in |t| ≤ 1 on account of (59).

Moreover, from (50), (51), (56), and (57) we have the uniform energy estimates

(61)
1

2
E(ul(t), 1) ≤ ε1 ≤ E(ul(t), 11)

and

(62) ε0 ≤ 1

2

∫
Dl(t)

|Dul|2 dx = E(u(tl +Rlt), tl +Rlt) ≤ E(u(1), 1) =: E0,

uniformly for |t| ≤ 1 and sufficiently large l ∈ N. Hence, we may assume that
ul ⇁ u∞ weakly in H1

loc(] − 1, 1[×R2) and locally uniformly away from x = 0,
where u∞(t, x) = u∞(|x|) is a time-independent radial map u∞ : R2 → N with
finite energy E(u∞) ≤ E0.

Lemma 3.2. We have u∞ ≡ const, and Dul → 0 in L2
loc(] − 1, 1[×(R2 \ {0})

as l → ∞.

Proof. We claim that u∞ is smooth and harmonic. Indeed, fix any function
ϕ ∈ C∞

0 (]− 1, 1[×R2) vanishing near x = 0. Upon multiplying (48) by (ul − u∞)ϕ
and integrating by parts, we then have∫

R1+2

|D(ul − u∞)|2ϕdz =

∫
R1+2

〈B(ul)(∂αul, ∂
αul), ul − u∞〉ϕdz + I,

where

|I| ≤ 2

∫
R1+2

|∂tul|2ϕdz +

∫
R1+2

|Dul||ul − u∞||Dϕ| dz

+

∣∣∣∣
∫
R1+2

Du∞ ·D(ul − u∞)ϕdz

∣∣∣∣ → 0

as l → ∞. Observing that (ul − u∞)ϕ → 0 uniformly, moreover, we have∫
R1+2

〈B(ul)(∂αul, ∂
αul), ul − u∞〉ϕdz → 0
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as l → ∞, and ul → u∞ strongly in H1
loc(]− 1, 1[×R2 \ {0}). Thus, we may pass to

the distribution limit in equation (48) for ul and find that u∞ is weakly harmonic
on R

2 \ {0}. Since u∞ has finite energy, by results of [18] then u∞ is smooth and
extends to a smooth, radially symmetric harmonic map u∞ : R2 → N .

Next recall that a harmonic map u∞ : R2 → N with finite energy is conformal;
in particular, there holds |∂ru∞| = 1

r |∂φu∞| ≡ 0, and u∞ must be constant. �

Finally we note the following estimate similar to [2], Lemma 4.

Lemma 3.3. For any ψ = ψ(t) ∈ C∞
0 (]− 1, 1[) there holds∫ 1

−1

∫
B1(0)

|∂tul|2ψ| log |x|| dx dt =
∫ 1

−1

∫
B1(0)

e(ul)ψ dx dt+ o(1),

where o(1) → 0 as l → ∞.

Proof. In radial coordinates r = |x|, equation (48) for u = ul may be written in
the form

(63) utt −
1

r
∂r(rur) ⊥ TuN.

Multiplying by urψr
2 log r, we obtain

0 =
d

dt

(
〈ut, ur〉ψr2 log r

)
− d

dr

(
|ut|2 + |ur|2

2
ψr2 log r

)
+ |ut|2ψr log r − 〈ut, ur〉ψtr

2 log r + e(u)rψ.

Upon integrating this identity over the domain 0 < r < 1, |t| < 1 and observing
that the boundary terms vanish, we find∫ 1

−1

∫ 1

0

|ut|2ψr log r dr dt+
∫ 1

−1

∫ 1

0

e(u)rψ dr dt =

∫ 1

−1

∫ 1

0

〈ut, ur〉ψtr
2 log r dr dt.

In view of (60), (62), and Hölder’s inequality the last term may be estimated∣∣∣∣
∫ 1

−1

∫ 1

0

〈ut, ur〉ψtr
2 log r dr dt

∣∣∣∣
2

=

∣∣∣∣ 1

2π

∫ 1

−1

∫
B1(0)

〈ut, ur〉ψtr log r dx dt

∣∣∣∣
2

≤ C

∫ 1

−1

∫
B1(0)

|ut|2 dx dt ·
∫ 1

−1

∫
B1(0)

|ur|2 dx dt → 0 as l → ∞,

proving the claim. �

3.3. Intrinsic setting. Recalling the set-up from our first lecture, in terms
of the pull-back covariant derivative D in u∗TN we may write equation (63) as

(64) Dtut −
1

r
Dr(rur) = 0.

Again we may assume that TN is parallelizable and we let e1, . . . , ek be a smooth
orthonormal frame field such that at any point p ∈ N the vectors e1(p), . . . , ek(p)
form an orthonormal basis for TpN . From (ei)1≤i≤k we then obtain a frame ei =

Rj
i (ej ◦ u), 1 ≤ i ≤ k, for the pull-back bundle, where R = R(t, r) = (Rj

i ) is a
smooth map from R1+2 into SO(k).

Denoting

Dei = Aj
iej
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with a matrix-valued connection 1-form A = A0 dt+A1 dr, we compute the curva-
ture F of D via the commutation relation (9), or, more concisely,

dA+
1

2
[A,A] = F.

Moreover, we now impose the “exponential gauge” condition A1 = 0. This yields
the relation

∗dA = −∂rA0 = F01.

If we normalize A0(t, 1) = 0 for all t, from this relation we obtain

A0 =

∫ 1

r

F01 ds.

Observing that

(65) |F01| ≤ C|du|2,
from (61) we then deduce the estimate

|A0| ≤ a0 :=

∫ 1

r

|F01| ds ≤ C

∫ 1

r

|du|2 ds ≤ Cε1r
−1.

Note that in the exponential gauge for any fixed time t the frame field e = e(t, r)
is obtained by parallel transport along the curve γ(r) = u(t, r) from the frame e(t, 1)
at r = 1.

Expressing du as

du = ut dt+ ur dr = qiei,

where q = q0 dt + q1 dr is a vector-valued 1-form with coefficients q = (qi)1≤i≤k,
and using the notation

Dα∂βu = Dα(q
i
βei) = (∂αq

j
β +Aj

iαq
i
β)ej =: (Dαqβ)

jej

from our first lecture, we then may write equation (64) in the form

(66) Dtq0 −
1

r
Dr(rq1) = ∂tq0 +A0q0 −

1

r
∂r(rq1) = 0.

Moreover, we have the commutation relation Drq0 = Dtq1; that is,

(67) ∂rq0 = ∂tq1 +A0q1.

Finally there holds

(68) |q0| = |ut|, |q1| = |ur|.

3.4. Proof of Theorem 3.1. By using Lemma 3.3 we show that (60) for
sufficiently small ε1 > 0 leads to a contradiction with (61).

Fix a cut-off function 0 ≤ ϕ = ϕ(r) ≤ 1 in C∞
0 ([0, 1[) such that ϕ(r) = 1 for

r ≤ 1/2. Also fix 0 ≤ ψ = ψ(t) ≤ 1 in C∞
0 (]−1, 1[) such that ψ(t) = 1 for |t| ≤ 1/2.

For u = ul with associated 1-forms q, let

Q = Ql =

∫ 1

r

q1ϕds.

Note that by Hölder’s inequality and (61) for 0 < r < 1 we can estimate

(69) |Q|2 ≤
(∫ 1

r

|q| ds
)2

≤
∫ 1

r

s|q|2 ds ·
∫ 1

r

ds

s
≤ Cε1 log(

1

r
).
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We will also use the bound

(70)

(∫ r

0

s|q|ϕds

)2

≤
∫ r

0

s|q|2 ds ·
∫ r

0

s ds ≤ Cε1r
2

resulting from (61). Similarly, we have(∫ r

0

s|q0|| log s|1/2ϕds

)2

≤ r2

2

∫ 1

0

s|q0|2| log s| ds,

which in view of (61), (65), and Lemma 3.3 allows to estimate∫ 1

−1

∫ 1

0

( ∫ r

0

s|q0|| log s|1/2ϕds

)
|F01|ψ dr dt

≤
∫ 1

−1

( ∫ 1

0

s|q0|2| log s| ds
)1/2( ∫ 1

0

r|F01| dr
)
ψ dt

≤ Cε1

( ∫ 1

−1

∫ 1

0

s|q0|2| log s|ψ ds dt

)1/2

≤ Cε
3/2
1 .

(71)

Also note that Lemma 3.2 implies∫ 1

−1

∫ 1

0

r| log r|1/2|q|ψ dr dt ≤ C

(∫ 1

−1

∫
B1(0)

r| log r||Du|2ψ dx dt

)1/2

→ 0(72)

as l → ∞.
Using the function Qϕψr as a multiplier, from (67) then we obtain∫ 1

−1

∫ 1

0

∂tq0Qϕψr dr dt = −
∫ 1

−1

∫ 1

0

q0

( ∫ 1

r

∂tq1ϕds

)
ϕψr dr dt+ I

=

∫ 1

−1

∫ 1

0

|q0|2ϕ2ψr dr dt+

∫ 1

−1

∫ 1

0

q0

(∫ 1

r

A0q1ϕds

)
ϕψr dr dt+ II,

where, in view of (69), and (72),

|I| = |
∫ 1

−1

∫ 1

0

q0Qϕψtr dr dt| ≤ C

∫ 1

−1

∫ 1

0

r|q0|| log r|1/2|ψt| dr dt → 0

as l → ∞. Similarly,

|II| ≤ |I|+ |
∫ 1

−1

∫ 1

0

q0

(∫ 1

r

q0∂rϕds

)
ϕψr dr dt|

≤ |I|+ C

∫ 1

−1

∫ 1

0

r|q0|| log r|1/2ψ dr dt → 0.

On the other hand, noting that

1

r
∂r(rq1)rQ = ∂r(rq1Q) + r|q1|2ϕ,

we obtain ∫ 1

−1

∫ 1

0

1

r
∂r(rq1)rQϕψ dr dt =

∫ 1

−1

∫ 1

0

r|q1|2ϕ2ψ dr dt+ III,

where, by (69) and (72),

|III| ≤
∫ 1

−1

∫ 1

0

r|q1||Q||ϕr|ψ dr dt ≤ C

∫ 1

−1

∫ 1

0

r| log r|1/2|q1|ψ dr dt → 0
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as l → ∞. Thus, from (66) we deduce the identity∫ 1

−1

∫ 1

0

r(|q1|2 − |q0|2)ϕ2ψ dr dt+ o(1)

=

∫ 1

−1

∫ 1

0

q0

( ∫ 1

r

A0q1ϕds

)
ϕψr dr dt+

∫ 1

−1

∫ 1

0

A0q0

( ∫ 1

r

q1ϕds

)
ϕψr dr dt,

where o(1) → 0 as l → ∞. Using (70), (65) and repeated integration by parts, we
find∫ 1

−1

∫ 1

0

q0

( ∫ 1

r

A0q1ϕds

)
ϕψr dr dt =

∫ 1

−1

∫ 1

0

( ∫ r

0

q0ϕs ds

)
A0q1ϕψ dr dt

≤ Cε
1/2
1

∫ 1

−1

∫ 1

0

ra0|q1|ϕψ dr dt = Cε
1/2
1

∫ 1

−1

∫ 1

0

r|q1|ϕ
( ∫ 1

r

|F01| ds
)
ψ dr dt

= Cε
1/2
1

∫ 1

−1

∫ 1

0

( ∫ r

0

s|q1|ϕds

)
|F01|ψ dr dt ≤ Cε1

∫ 1

−1

∫ 1

0

r|F01|ψ dr dt

≤ Cε1

∫ 1

−1

∫ 1

0

r|du|2ψ dr dt ≤ Cε21.

Similarly, we estimate, now using (69) and (71),∫ 1

−1

∫ 1

0

A0q0

( ∫ 1

r

q1ϕds

)
ϕψr dr dt ≤ Cε

1/2
1

∫ 1

−1

∫ 1

0

a0|q0|| log r|1/2ϕψr dr dt

= Cε
1/2
1

∫ 1

−1

∫ 1

0

r|q0|| log r|1/2ϕ
( ∫ 1

r

|F01| ds
)
ψ dr dt

= Cε
1/2
1

∫ 1

−1

∫ 1

0

(∫ r

0

s|q0|| log s|1/2ϕds

)
|F01|ψ dr dt ≤ Cε21.

But then from (61), Lemma 3.2, and (60), with error o(1) → 0 as l → ∞ we obtain

ε1 ≤ 1

2

∫ 1

−1

∫
B11(0)

|Du|2ψ dx dt ≤ π

∫ 1

−1

∫ 1

0

r|q|2ϕ2ψ dr dt+ o(1)

≤ π

∫ 1

−1

∫ 1

0

r(|q1|2 − |q0|2)ϕ2ψ dr dt+ o(1) ≤ Cε21 + o(1),

which is impossible for sufficiently small ε1 > 0 and large l. The proof of Theorem
3.1 is complete.

Appendix A: Exterior energy decay

In this Appendix we recall the proof of the following lemma which is funda-
mental for the treatment of the equivariant and rotationally symmetric case.

Lemma 4.1. Let u be a radially symmetric solution of (48) or a co-rotational
wave map on K = K1 which is smooth away from the origin. Then for any 0 <
λ ≤ 1 as t → 0 there holds

E(u(t), t)− E(u(t), λt) → 0.

Proof. We follow the presentation in [19]. Therefore in the following we change
time t to −t.
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With the notation

(73) e =
1

2
(|ur|2 + |ut|2), m = ur · ut, l =

1

2
(|ur|2 − |ut|2)

for a radially symmetric solution u of (48) we compute

(74)
∂

∂t
(rm)− ∂

∂r
(re) = rur · (utt −

1

r
(rur)r) + l = l,

thereby observing the geometric interpretation (63) of (48) and the fact that ur ∈
TuN . Moreover, recalling the equation (29) we have

(75)
∂

∂t
(re)− ∂

∂r
(rm) = 0.

Similarly, for a co-rotational wave map u with associated function h solving
(26) we let

e =
1

2
(|ur|2 + |ut|2) =

1

2
(|hr|2 + |ht|2 +

g2(h)

r2
), m = hr · ht,

L =
1

2
(|hr|2 +

g2(h)

r2
− |ht|2)−

2

r
f(h)hr

(76)

and we compute

(77) ∂t(re)− ∂r(rm) = 0, ∂t(rm)− ∂r(re) = L.

Changing coordinates to

(78) η = t+ r , ξ = t− r ,

and introducing

A2 = r(e+m), B2 = r(e−m) ,

identities (74), (75) turn into

∂ξA2 =
l

2
,

∂ηB2 = − l

2
,

where

r2l2 ≤ A2B2 .

Likewise, (77) can be written as

∂ξA2 =
L

2
,

∂ηB2 = −L

2
,

where now, with F = g2/2, and using the fact that |h| ≤ C(E0) by (32) to bound
f2(h) ≤ CF (h),

L2 ≤ 3

4

(
h2
t − h2

r

)2
+

12

r2
h2
rf

2(h) +
3

r4
F 2(h)

≤ C

[
1

4
(h2

t − h2
r)

2 +
1

r2
(h2

t + h2
r)F (h) +

1

r4
F 2(h)

]

=
C

r2
A2B2 .
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Thus in both cases we get the inequalities

(79) |∂ξA| ≤ C

r
B , |∂ηB| ≤

C

r
A .

Upon integrating (79) on a rectangle Γ = [η, 0] × [ξ0, ξ], as shown in Figure 1,
we obtain

A(η, ξ) ≤ A(η, ξ0) + C

∫ ξ

ξ0

B(0, ξ′)
η − ξ′

dξ′ + C2

∫ ξ

ξ0

∫ 0

η

A(η′, ξ′)

(η − ξ′)(η′ − ξ′)
dη′ dξ′ .

�����

��

���

�
�

�
�

�
�

�
�

�
�
�
�
�
�
�
�

��
�

�
�

���
�

�
�

�

r

t ηξ

ξ0

r=λ|t|

Γ

←(η,ξ)

Figure 1. Domain of integration Γ.

First we estimate the second term on the right.

∫ ξ

ξ0

B(0, ξ′)
η − ξ′

dξ′ ≤
(∫ ξ

ξ0

B2(0, ξ′) dξ′

)1/2 (∫ ξ

ξ0

dξ′

(η − ξ′)2

)1/2

= (Flux(ξ0)− Flux(ξ))
1/2

√
1

η − ξ
− 1

η − ξ0

≤ C

√
Flux(ξ0)

|η − ξ| .

Letting

(80) a(η, ξ) = sup
η≤η′≤0

√
η′ − ξA(η′, ξ) ,

the third term may be bounded

∫ ξ

ξ0

∫ 0

η

A(η′, ξ′)

(η − ξ′)(η′ − ξ′)
dη′ dξ′ ≤

∫ ξ

ξ0

∫ 0

η

a(η, ξ′)

(η − ξ′)(η′ − ξ′)3/2
dη′ dξ′

≤
∫ ξ

ξ0

a(η, ξ′)

η − ξ′

(
1√

η − ξ′
− 1√

−ξ′

)
dξ′ ≤

∫ ξ

ξ0

a(η, ξ′)
η

ξ′(η − ξ′)3/2
dξ′ .

(81)

Also observing that

(82) sup
η≤η′≤0

√
η′ − ξA(η′, ξ0) ≤ sup

η≤η′≤0

√
η′ − ξ√
η′ − ξ0

a(η, ξ0) =

√
−ξ√
−ξ0

a(η, ξ0)
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with constants C1, C2 we then obtain

a(η, ξ) ≤
√
−ξ√
−ξ0

a(η, ξ0) + C1

√
Flux(ξ0) + C2

∫ ξ

ξ0

a(η, ξ′)
η

ξ′(η − ξ′)
dξ′ .

Setting

(83) ρ(ξ′) =
η

ξ′(η − ξ′)
,

and letting

(84) F (ξ) =

∫ ξ

ξ0

a(η, ξ′)ρ(ξ′) dξ′, G(ξ) =

√
−ξ√
−ξ0

a(η, ξ0) + C1

√
Flux(ξ0) ,

for any fixed η we then find the differential inequality

(85) F ′ ≤ Gρ+ C2Fρ in [ξ0, λ
′η] ,

where λ′ = (1 + λ)/(1− λ) > 1. Applying Gronwall’s lemma we obtain

(86) F (ξ) ≤
∫ ξ

ξ0

G(ξ′)ρ(ξ′)e
C2

∫ ξ

ξ′ ρ(ξ
′′)dξ′′

dξ′ .

But for ξ0 ≤ ξ′ ≤ ξ = λ′η we have∫ ξ

ξ′
ρ(ξ′′)dξ′′ =

∫ ξ

ξ′

η

ξ′′(η − ξ′′)
dξ′′ = log

ξ(η − ξ′)

ξ′(η − ξ)
= log

ξ(ξ − λ′ξ′)

ξ′(ξ − λ′ξ)
≤ log

λ′

λ′ − 1
.

Hence we can estimate

a(η, ξ) ≤ G+ C2F

≤
√
−ξ√
−ξ0

a(η, ξ0) + C1

√
Flux(ξ0)

+ C3

∫ ξ

ξ0

(√
−ξ′√
−ξ0

a(η, ξ0) + C1

√
Flux(ξ0)

)
η

ξ′(η − ξ′)
dξ′ ,

(87)

where C3 = eC2 log λ′
λ′−1 . We also know that

a(η, ξ0) ≤ sup
η≤η′≤0

√
η′ − ξ0 sup

η≤η′≤0
A(η′, ξ0) ≤ C(ξ0)

√
−ξ0 ,

because u is assumed to be regular away from the origin, implying thatA is bounded
by a constant depending on ξ0. Now, given ε > 0, we can fix ξ0 < 0 small enough
such that C1

√
Flux(ξ0) < ε. Then,

a(ξ/λ′, ξ) ≤ C(ξ0)
√

−ξ + ε+ C(ξ0)

∫ ξ

ξ0

ξ/λ′
√
−ξ′(ξ/λ′ − ξ′)

dξ′ + Cε

≤ C(ξ0)
√

−ξ + Cε ≤ Cε

for ξ < 0 small enough. Therefore,

A(η, ξ) ≤ a(ξ/λ′, ξ)√
η − ξ

≤ Cε√
η − ξ

for (η, ξ) small enough inside Kλ
ext. Hence,∫ 0

η

A2(η′, ξ)dη′ ≤ Cε2
∫ 0

ξ/λ′

dη′

η′ − ξ
= Cε2 log

1

(λ′ − 1)
= Cε2 .

Finally, if we integrate the energy identity (75)) on the triangle Δ (as shown in



508 MICHAEL STRUWE

�����

��

���

�
�

�
�

�
�

�
�

	
	
	
	
	
	
	
	

�� ��

r

t ηξ

1

2 3

Figure 2. Triangular region Δ.

Figure 2 with vertices at (η, ξ), (0, ξ), and (0, η + ξ), with η = ξ/λ′ as before), we
obtain

0 = −
∫ |t|

λ|t|
e(r, t)r dr −

∫ 0

η

r(e+m)dη′ +

∫ ξ

ξ+η

r(e−m)dξ′ = I+ II+ III .

As t → 0 we proved that II → 0; moreover, III → 0 because it is the flux, and
therefore I → 0. �

As consequence we obtain the decay of time derivatives.

Corollary 4.2. Let u be a radially symmetric solution of (48) or a co-rotational
wave map on K = K1 which is smooth away from the origin. In the latter case
also suppose that N satisfies (24). Then

1

T

∫
KT

|ut|2 dz → 0 as T → 0.

Proof. Again we change time t to −t. Multiply the identity (74), (77), respectively,
by r and integrate on the truncated cone

K−ε
T

∼= {(t, r); t ≤ −ε, 0 ≤ r ≤ −t ≤ −T},
and let ε → 0 to obtain∣∣∣∣

∫∫
K0

T

u2
t r dr dt−

∫ |T |

0

(utur)
∣∣
t=T

r2 dr

∣∣∣∣ ≤ C|T |Flux(T ) .

Therefore, for any λ ∈]0, 1[ we have

1

|T |

∫ 0

T

∫ −t

0

u2
t r dr dt ≤

1

|T |

∫ |T |

0

|(utur)
∣∣
t=T

|r2 dr + C Flux(T )

≤ C

|T |

∫ |T |

0

e(T, r)r2 dr + C Flux(T )

≤ C

|T |

(∫ λ|T |

0

e(T, r)r2 dr +

∫ |T |

λ|T |
e(T, r)r2dr

)
+ C Flux(T )

≤ C(λE0 + Eλ
ext(T ) + Flux(T )) .

Given ε > 0 we then may choose λ > 0 such that the first term on the right is less
then ε/3. By Lemma 4.1 and by decay of the flux the second and third terms also
will be less than ε/3 for T sufficiently close to 0. �
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1. Introduction

A quantum mechanical system of N particles in d dimensions can be described
by a complex valued wave function ψN ∈ L2(RdN , dx1 . . .dxN ). The variables
x1, . . . , xN ∈ Rd represent the position of the N particles. Physically, the absolute
value squared of ψN (x1, x2, . . . , xN ) is interpreted as the probability density for
finding particle one at x1, particle two at x2, and so on. Because of this probabilistic
interpretation, we will always consider wave functions ψN with L2-norm equal to
one.

In Nature there exist two different types of particles; bosons and fermions.
Bosonic systems are described by wave functions which are symmetric with respect
to permutations, in the sense that

(1.1) ψN (xπ1, xπ2, . . . , xπN ) = ψN (x1, . . . , xN )

for every permutation π ∈ SN . Fermionic systems, on the other hand, are described
by antisymmetric wave functions satisfying

ψN (xπ1, xπ2, . . . , xπN ) = σπψN (x1, . . . , xN ) for all π ∈ SN ,

where σπ is the sign of the permutation π; σπ = +1 if π is even (in the sense
that it can be written as the composition of an even number of transpositions) and
σπ = −1 if it is odd. In these notes we are only going to consider bosonic systems;
the wave function ψN will always be taken from the Hilbert space L2

s(R
dN ), the

subspace of L2(RdN ) consisting of all functions satisfying (1.1).

2010 Mathematics Subject Classification. Primary 35Q55, 81Q15, 81T18, 81V70.

c©2013 Benjamin Schlein
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Observables of the N -particle system are self adjoint operators over L2
s(R

dN ).
The expected value of an observable A in a state described by the wave function
ψN is given by the inner product

〈ψN , AψN 〉 =
∫

dx1 . . . dxN ψN (x1, . . . , xN ) (AψN )(x1, . . . , xN ).

The multiplication operator xj is the observable measuring the position of the j-
th particle. The differential operator pj = −i∇j is the observable measuring the
momentum of the j-th particle (pj is called the momentum operator of the j-th
particle).

The time evolution of an N -particle wave function ψN ∈ L2
s(R

dN ) is governed
by the Schrödinger equation

(1.2) i∂tψN,t = HNψN,t .

Here, and in the rest of these notes, the subscript t indicates the time dependence
of the wave function; all time-derivatives will be explicitly written as ∂t. On the
right hand side of (1.2), HN is a self-adjoint operator acting on the Hilbert space
L2
s(R

dN ), usually known as the Hamilton operator (or Hamiltonian) of the sys-
tem. We will consider only time-independent Hamilton operators with two body
interactions, which have the form

HN =

N∑
j=1

(
−Δxj

+ Vext(xj)
)
+ λ

N∑
i<j

V (xi − xj) .

The first part of the Hamiltonian is a sum of one-body operators (operators acting
on one particle only); the sum of the Laplacians is the kinetic part of the Hamil-
tonian. The function Vext describes an external potential which acts in the same
way on all N particles. For example, Vext may describe a confining potential which
traps the particles in a certain region. The second part of the Hamiltonian, given
by a sum over all pairs of particles, describes the interactions among the particles
(λ ∈ R is a coupling constant). The Hamilton operator is the observable associated
with the energy of the system. In other words, the expectation

〈ψN , HNψN 〉 =
∫

dx1 . . .dxN ψN (x1, . . . , xN )(HNψN )(x1, . . . , xN )

gives the energy of the system in the state described by the wave function ψN .

Note that the Schrödinger equation (1.2) is linear and, since HN is a self-
adjoint operator, it preserves the L2-norm of the wave function (moreover, since
HN is invariant with respect to permutations, it also preserves the permutation
symmetry of the wave function). In fact, the solution to (1.2), with initial condition
ψN,t=0 = ψN , can be written by means of the unitary group generated by HN as

(1.3) ψN,t = e−iHN tψN for all t ∈ R .

The global well-posedness of (1.2) is not an issue here. The study of (1.2) is focused,
therefore, on other questions concerning the qualitative and quantitative behavior of
the solution ψN,t. Despite the linearity of the equation, these questions are usually
quite hard to answer, because in physically interesting situation the number of
particles N is very large; it varies between N � 103 for very dilute Bose-Einstein
samples, up to values of the order N � 1030 in stars. For such huge values of N , it
is of course impossible to compute the solution (1.3) explicitly; numerical methods
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are completely useless as well (unless the interaction among the particles is switched
off).

Fortunately, also from the point of view of physics, it is not so important
to know the precise solution to (1.2); it is much more important, for physicists
performing experiments, to have information about the macroscopic properties of
the system, which describe the typical behavior of the particles, and result from
averaging over a large number of particles. Restricting the attention to macroscopic
quantities simplifies the study of the solution ψN,t, but it still does not make it
accessible to mathematical analysis. To further simplify matters, we are going to
let the number of particles N tend to infinity. The macroscopic properties of the
system, computed in the limiting regime N → ∞, are then expected to be a good
approximation for the macroscopic properties observed in experiments, where the
number of particles N is very large, but finite (in some cases it is possible to obtain
explicit bounds on the difference between the limiting behavior as N → ∞ and the
behavior for large but finite N ; see Section 4.2).

To consider the limit of large N , we are going to make use of the marginal
or reduced density matrices associated with an N particle wave function ψN ∈
L2
s(R

dN ). First of all, we define the density matrix γN = |ψN 〉〈ψN | associated with
ψN as the orthogonal projection onto ψN ; we use here and henceforth the notation
|ψ〉〈ψ| to indicate the orthogonal projection onto ψ (Dirac bracket notation). Note
that, expressed through the density matrix γN , the expectation 〈ψN , AψN 〉 of the
observable A can be written as TrAγN . The kernel of the operator γN is then given
by

γN (x;x′) = ψ(x)ψ(x′) ,

where we introduced the notation x = (x1, . . . , xN ),x′ = (x′
1, . . . , x

′
N ) ∈ RdN .

Note that the L2-normalization of ψN implies that Tr γN = 1. For k = 1, . . . , N ,

we define the k-particle marginal density γ
(k)
N associated with ψN as the partial

trace of γN over the degrees of freedom of the last (N − k) particles:

γ
(k)
N = Trk+1,k+2,...,N |ψN 〉〈ψN |

where Trk+1,...,N denotes the partial trace over the particle k + 1, k + 2, . . . , N . In

other words, γ
(k)
N is defined as the non-negative trace class operator on L2

s(R
dk)

with kernel given by

γ
(k)
N (xk;x

′
k) =

∫
dxN−k γN (xk,xN−k;x

′
k,xN−k)

=

∫
dxN−k ψN (xk,xN−k)ψN (x′

k,xN−k) .

(1.4)

The last equation can be considered as the definition of partial trace. Here we
used the notation xk = (x1, . . . , xk),x

′
k = (x′

1, . . . , x
′
k) ∈ R

dk as well as xN−k =

(xk+1, . . . , xN ) ∈ R
d(N−k). By definition, Tr γ

(k)
N = 1 for all N and for all k =

1, . . . , N (note that, in the physics literature, one normally uses a different normal-
ization of the reduced density matrices). For fixed k < N , the k-particle density
matrix does not contain the full information about the state described by ψN .

Knowledge of the k-particle marginal γ
(k)
N , however, is sufficient to compute the

expectation of every k-particle observable in the state described by the wave func-
tion ψN . In fact, if A(k) denotes an arbitrary bounded operator on L2(Rdk), and
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if A(k) ⊗ 1(N−k) denotes the operator on L2(RdN ) which acts as A(k) on the first k
particles, and as the identity on the last (N − k) particles, we have

(1.5)
〈
ψN ,
(
A(k) ⊗ 1(N−k)

)
ψN

〉
= Tr

(
A(k) ⊗ 1(N−k)

)
γN = Tr A(k)γ

(k)
N .

Thus, γ
(k)
N is sufficient to compute the expectation of arbitrary observables which

depend non-trivially on at most k particles (because of the permutation symmetry,
it is not important on which particles it acts, just that it acts at most on k particles).

Marginal densities play an important role in the analysis of the N → ∞ limit
because, in contrast to the wave function ψN and to the density matrix γN , the

k-particle marginal γ
(k)
N can have, for every fixed k ∈ N, a well-defined limit as

N → ∞ (because, if we fix k ∈ N, {γ(k)
N } defines a sequence of operators all acting

on the same space L2(Rdk)).

In these notes we are going to study macroscopic properties of the dynamics
of bosonic N -particle systems, in the limit N → ∞. We are interested in the

time-evolution of marginal densities γ
(k)
N,t associated with the solution ψN,t to the

Schrödinger equation (1.2), for fixed k, and as N → ∞. Unfortunately, it is not so

simple to describe the time-dependence of γ
(k)
N,t in the limit of large N ; in fact it

is in general impossible to obtain closed equations for the evolution of the limiting

k-particle density γ
(k)
∞,t = limN→∞ γ

(k)
N,t (in general it is not even clear that this limit

exists). Nevertheless, there are some physically interesting situations for which it

is indeed possible to prove the existence of γ
(k)
∞,t and to derive closed equations to

describe its dynamics. In Section 2, we are going to study the time evolution of

factorized initial wave functions of the form ψN (x) =
∏N

j=1 ϕ(xj) in the so-called
mean field limit. We will show that in this case, for every fixed k ∈ N, the k-
particle marginal associated with the solution to the Schrödinger equation ψN,t

converges, as N → ∞, to the limiting k-particle density γ
(k)
∞,t = |ϕt〉〈ϕt|⊗k, where

ϕt is the solution of a certain one-particle nonlinear Schrödinger equation, known
as the Hartree equation. In Section 3, we are going to study the time-evolution of
Bose-Einstein condensates, in the so-called Gross-Pitaevskii limit. As we will see,
although it describes a very different physical situation, the Gross-Pitaevskii scaling
can be formally interpreted as a mean-field limit, with a very singular interaction
potentials. Also in this case we will prove that the time evolution of the marginal
densities can be described through a one-particle nonlinear Schrödinger equation
(known as the time-dependent Gross-Pitaevskii equation); however, because of the
singularity of the interaction potential, the analysis in this case is going to be much
more involved. In Section 4, we will come back to the study of mean field models,
and we will discuss how to prove quantitative estimates on the rate of convergence
towards the Hartree dynamics.

Notation. Throughout these notes, we will make use of the notation x =
(x1, . . . , xN ),x′ = (x1, . . . x

′
N ) ∈ R

dN , and for k = 1, . . . , N , xk = (x1, . . . , xk),x
′
k =

(x′
1, . . . , x

′
k) ∈ R

dk, and xN−k = (xk+1, . . . , xN ) ∈ R
d(N−k) (starting from Section

3, we will fix d = 3). We will also use the shorthand notation ∇j = ∇xj
and

Δj = Δxj
.
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2. Derivation of the Hartree Equation in the Mean Field Limit

2.1. Mean Field Systems. A mean-field system is described by an N -body
Hamilton operator of the form

(2.1) HN =

N∑
j=1

(−Δj + Vext(xj)) +
1

N

N∑
i<j

V (xi − xj)

acting on the Hilbert space L2
s(R

dN ), the subspace of L2(RdN ) consisting of per-
mutation symmetric functions. In these notes we will only discuss bosonic systems,
which are described by symmetric wave functions. Note, however, that the mean
field limit for fermionic system has also been considered in the literature; see, for
example, [26, 31, 7]. In (2.1) and henceforth, we use the notation Δj = Δxj

(similarly, we will use the notation ∇j = ∇xj
). The mean-field character of the

Hamiltonian is expressed by the factor 1/N in front of the interaction; this factor
guarantees that the kinetic and potential energies are typically both of order N .

We are interested in the solution ψN,t = e−iHN tψN of the Schrödinger equation
(1.2) with Hamiltonian HN given by (2.1) and with factorized initial data

(2.2) ψN (x) =

N∏
j=1

ϕ(xj) ,

for some ϕ ∈ L2(Rd). The physical motivation for studying the evolution of factor-
ized wave functions is that states close to the ground state of HN (the eigenvector
associated with the lowest eigenvalue), which are the most accessible and thus the
most interesting states, can be approximately described by wave functions like (2.2)
(the results which we are going to discuss in this section do not require strict fac-
torization as in (2.2); instead condensation of the initial wave function in the sense
of (3.1) would be sufficient).

Because of the interaction among the particles, the factorization (2.2) is not
preserved by the time evolution; in other words, the evolved wave function ψN,t is
not given by the product of one-particle wave functions, if t 
= 0. However, due
to the mean-field character of the interaction each particle interacts very weakly
(the strength of the interaction is of the order 1/N) with all other (N −1) particles
(at least in the initial state, every particle is described by the same one-particle
orbital; every particles therefore “sees” all other particles). For this reason, we may
expect that, in the limit of large N , the total interaction potential experienced by a
typical particle in the system can be effectively replaced by an averaged, mean-field,
potential, and therefore that factorization is approximately, and in an appropriate
sense, preserved by the time evolution. In other words, we may expect that, in a
sense to be made precise,

(2.3) ψN,t(x1, . . . , xN ) �
N∏
j=1

ϕt(xj) as N → ∞
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for an evolved one-particle orbital ϕt. Assuming (2.3), it is simple to derive a
self-consistent equation for the time-evolution of the one-particle orbital ϕt. In
fact, (2.3) states that, for every fixed time t, the N particles are independently
distributed in space with density |ϕt(x)|2. If this is true, the total potential expe-
rienced, for example, by the first particle can be approximated by

1

N

∑
j≥2

V (x1−xj) �
1

N

∑
j≥2

∫
dy V (x1−y)|ϕt(y)|2 =

N − 1

N
(V ∗|ϕt|2) � (V ∗|ϕt|2)

as N → ∞. It follows that, if (2.3) holds true, the one-particle orbital ϕt must
satisfy the self-consistent equation

(2.4) i∂tϕt = −Δϕt + (V ∗ |ϕt|2)ϕt

with initial data ϕt=0 = ϕ given by (2.2). Equation (2.4) is known as the Hartree
equation; it is an example of a cubic nonlinear Schrödinger equation on Rd. Starting
from the linear Schrödinger equation (1.2) on R

dN , we obtain, for the evolution of
factorized wave functions, a nonlinear Schrödinger equation on Rd; the nonlinearity
in the Hartree equation is a consequence of the many-body effects in the linear
dynamics.

The convergence of ψN,t to the factorized wave function on the r.h.s. of (2.3)
as N → ∞ cannot hold in the L2-sense; we cannot expect, in other words, that

‖ψN,t − ϕ⊗N
t ‖ → 0 as N → ∞ (we use here the notation ϕ⊗N (x) =

∏N
j=1 ϕ(xj)).

Instead, (2.3) has to be understood as convergence of marginal densities. Recall

that, for k = 1, . . . , N , the k-particle marginal γ
(k)
N,t associated with ψN,t is defined

as the non-negative trace class operator on L2(Rdk) with kernel given by

γ
(k)
N,t(xk;x

′
k) =

∫
dxN−k γN,t(xk,xN−k;x

′
k,xN−k)

=

∫
dxN−k ψN,t(xk,xN−k)ψN,t(x

′
k,xN−k) .

(2.5)

It turns out that (2.3) holds in the sense that, for every fixed k ∈ N, the k-particle
marginal density associated with the left hand side converges, as N → ∞, to the k-
particle marginal density associated with the right hand side (which is independent
of N , if N ≥ k). In other words, assuming (2.2), one can show that, for a large
class of interaction potentials, and for every fixed t ∈ R and k ∈ N,

(2.6) Tr
∣∣∣γ(k)

N,t − |ϕt〉〈ϕt|⊗k
∣∣∣ → 0 as N → ∞ ,

where ϕt is the solution to the Hartree equation (2.4) with initial data ϕt=0 = ϕ.
It is important here that the time t ∈ R and the integer k ≥ 1 are fixed; the
convergence is not uniform in these two parameters. From (1.5), we observe that
(2.6) implies (and is actually equivalent to the condition) that, for every fixed t ∈ R

and k ∈ N, and for every fixed compact operator J (k) on L2
s(R

dk),

(2.7)
〈
ψN,t,

(
J (k) ⊗ 1(N−k)

)
ψN,t

〉
→ 〈ϕ⊗k

t , J (k)ϕ⊗k
t 〉

as N → ∞. This means that, if we are interested in the expectation of observables
which depend non-trivially on a fixed number k of particles, then we can approx-
imate, as N → ∞, the true solution ψN,t to the N -body Schrödinger equation by
the product of N copies of the solution ϕt to the Hartree equation (2.4). This ap-
proximation, however, is in general not valid if we are interested in the expectation
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of observables depending on a macroscopic (that is, proportional to N) number of
particles.

The first rigorous results establishing a relation between the many body Schrö-
dinger evolution and the nonlinear Hartree dynamics were obtained by Hepp in
[21] (for smooth interaction potentials) and then generalized by Ginibre and Velo
to singular potentials in [20]. These works were inspired by techniques used in
quantum field theory. We will discuss this method in Section 4, where we present
a recent proof of (2.6), obtained in collaboration with I. Rodnianski in [28], which
provides a quantitative control of the rate of convergence and makes use of the
original idea of Hepp.

The first proof of the convergence (2.6) was obtained by Spohn in [30], for
bounded potentials. The method introduced by Spohn was then extended to sin-
gular potentials. In [16], Erdős and Yau proved (2.6) for a Coulomb potential
V (x) = ±1/|x|; partial results for the Coulomb potential were also obtained by
Bardos, Golse and Mauser in [5] (note that recently a new proof of (2.6) for the
case of a Coulomb interaction has been proposed by Fröhlich, Knowles, and Schwarz
in [19]). In [9], a joint work with A. Elgart, we considered again the Coulomb po-
tential, but this time assuming a relativistic dispersion for the bosons. Recently, in
a series of papers [11, 12, 13, 14, 15] in collaboration with L. Erdős and H.-T.
Yau (and also in [8], a collaboration with A. Elgart, L. Erdős and H.-T. Yau) the
strategy of [30] was applied to systems with an N -dependent interaction poten-
tial, which converges, in the limit N → ∞, to a delta-function. Note that in the
one-dimensional setting, potentials converging to a delta-interaction have been con-
sidered by Adami, Golse and Teta in [2] (making use of previous results obtained
by the same authors in collaboration with Bardos in [1]) . We will discuss these
systems in Section 3.

Recently, a different approach to the proof of (2.6) has been proposed by
Fröhlich, Schwarz and Graffi in [17]. For smooth potentials, they can consider
the mean-field limit uniformly in Planck’s constant � (up to errors exponentially
small in time); this allows them to combine the semiclassical limit and the mean
field limit. It is also interesting to remark that the mean-field limit (2.6) can be
interpreted as a Egorov-type theorem; this was observed by Fröhlich, Knowles, and
Pizzo in [18].

2.2. Derivation of the Hartree Equation for Bounded Potentials. We
consider, in this section, the dynamics generated by the mean field Hamiltonian
(2.1) under the assumption that the interaction potential is a bounded operator.
We will assume, in other words, that V ∈ L∞(Rd) (recall that the operator norm
of the multiplication operator V (xi − xj) is given by the L∞-norm of the function
V ). To simplify a little bit the analysis we will also assume the external potential
Vext in the Hamiltonian (2.1) to vanish; the techniques discussed here can however
be easily extended to Vext 
= 0.

Theorem 2.1 (Spohn, [30]). Suppose that

HN =
N∑
j=1

−Δj +
1

N

∑
i<j

V (xi − xj)
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with V ∈ L∞(Rd). Let ψN = ϕ⊗N ∈ L2(RdN ) for some ϕ ∈ L2(Rd) with ‖ϕ‖ = 1.

Let ψN,t = e−iHN tψN , and denote by γ
(k)
N,t the k-particle marginal density associated

with ψN,t. Then, for every fixed t ∈ R, and for every fixed k ≥ 1, we have

(2.8) Tr
∣∣∣γ(k)

N,t − |ϕt〉〈ϕt|⊗k
∣∣∣ → 0

as N → ∞. Here ϕt denotes the solution to the Hartree equation

(2.9) i∂tϕt = −Δϕt + (V ∗ |ϕt|2)ϕt

with initial data ϕt=0 = ϕ.

Proof. The proof is based on the study of the time evolution of the marginal

densities γ
(k)
N,t in the limit N → ∞. From (1.2), it is simple to show that the dynam-

ics of the marginals is governed by a hierarchy of N coupled equation, commonly
known as the BBGKY hierarchy:

i∂tγ
(k)
N,t =

k∑
j=1

[
−Δj , γ

(k)
N,t

]
+

1

N

k∑
i<j

[
V (xi − xj), γ

(k)
N,t

]

+
(N − k)

N

k∑
j=1

Trk+1

[
V (xj − xk+1), γ

(k+1)
N,t

]
.

(2.10)

We use here the convention that γ
(k)
N,t = 0 if k > N . Moreover [A,B] = AB − BA

denotes the commutator of the two operators A and B. The symbol Trk+1 denotes
the partial trace over the (k + 1)-th particle; the kernel of the k-particle operator

Trk+1 [V (xj − xk+1), γ
(k+1)
N,t ] is given by

(
Trk+1

[
V (xj − xk+1), γ

(k+1)
N,t

] )
(xk;x

′
k)

=

∫
dxk+1

(
V (xj − xk+1)− V (x′

j − xk+1)
)
γ(k+1)(xk, xk+1;x

′
k, xk+1) .

(2.11)

Rewriting the BBGKY hierarchy (2.10) in integral form, we find

γ
(k)
N,t =U (k)(t)γ(k) +

1

N

∫ t

0

dsU (k)(t− s)A(k)γ
(k)
N,s

+

(
1− k

N

)∫ t

0

dsU (k)(t− s)B(k)γ
(k+1)
N,s

(2.12)

where U (k)(t) denotes the free evolution of k particles, defined by

(2.13) U (k)(t)γ(k) = eit
∑k

j=1 Δjγ(k)e−it
∑k

j=1 Δj

and the maps A(k) and B(k) are defined by

(2.14) A(k)γ(k) = −i

k∑
j=1

[
V (xi − xj), γ

(k)
]

and, respectively, by

(2.15) B(k)γ(k+1) = −i
k∑

j=1

Trk+1

[
V (xj − xk+1), γ

(k+1)
]
.
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Note that B(k) maps (k+1)-particle operators into k-particle operators (while A(k)

maps k-particle operators into k-particle operators). Since we are interested in the
limitN → ∞ with fixed k ≥ 1, it is clear that the second term on the r.h.s. of (2.12),
as well as the contribution proportional to k/N to the third term on the r.h.s. of
(2.12) should be considered as small perturbations. Iterating the integral equation
(2.12) for n times, and stopping the iteration every time we hit a perturbation, we
obtain the Duhamel type series

γ
(k)
N,t = U (k)(t)γ

(k)
0

+

n−1∑
m=1

∫ t

0

ds1 . . .

∫ sm−1

0

dsm U (k)(t− s1)B
(k)U (k+1)(s1 − s2) . . .

· · · ×B(k+m−1)U (k+m)(sm)γ
(k+m)
0

+

∫ t

0

ds1 . . .

∫ sn−1

0

dsn U (k)(t− s1)B
(k)U (k+1)(s1 − s2) . . . B

(k+n−1)γ
(k+n)
N,sn

+
1

N

N∑
m=1

∫ t

0

ds1 . . .

∫ sm−1

0

dsmU (k)(t− s1)B
(k) . . .

· · · × U (k+m−1)(sm−1 − sm)A(k+m−1)γ
(k+m−1)
N,sm

−
n∑

m=1

k +m− 1

N

∫ t

0

ds1 . . .

∫ sm−1

0

dsm U (k)(t− s1)B
(k) . . .

· · · ×B(k+m−1)γ
(k+m)
N,sm

.

(2.16)

To show (2.8), we need to compare γ
(k)
N,t with γ

(k)
∞,t = |ϕt〉〈ϕt|⊗k, where ϕt is the so-

lution to the Hartree equation (2.9). It is simple to check that the family {γ(k)
∞,t}k≥1

solves the infinite hierarchy (written directly in integral form)

(2.17) γ
(k)
∞,t = U (k)(t)γ

(k)
0 +

∫ t

0

dsU (k)(t− s)B(k)γ(k+1)
∞,s

which leads, after iteration, to the expansion

γ
(k)
∞,t = U (k)(t)γ

(k)
0

+

n−1∑
m=1

∫ t

0

ds1 . . .

∫ sm−1

0

dsm U (k)(t− s1)B
(k)U (k+1)(s1 − s2) . . .

· · · ×B(k+m−1)U (k+m)(sm)γ
(k+m)
0

+

∫ t

0

ds1 . . .

∫ sn−1

0

dsn U (k)(t− s1)B
(k)U (k+1)(s1 − s2) . . .

· · · ×B(k+n−1)γ(k+n)
∞,sn

.

(2.18)



520 BENJAMIN SCHLEIN

The difference between γ
(k)
N,t and γ

(k)
∞,t can thus be bounded by

Tr
∣∣∣γ(k)

N,t − γ
(k)
∞,t

∣∣∣
≤
∫ t

0

ds1 . . .

∫ sn−1

0

dsn Tr
∣∣∣U (k)(t− s1)B

(k)U (k+1)(s1 − s2) . . .

· · · ×B(k+n−1)
(
γ
(k+n)
N,sn

− γ(k+n)
∞,sn

) ∣∣∣
+

1

N

N∑
m=1

∫ t

0

ds1 . . .

∫ sm−1

0

dsmTr
∣∣∣U (k)(t− s1)B

(k) . . .

· · · × U (k+m−1)(sm−1 − sm)A(k+m−1)γ
(k+m−1)
N,sm

∣∣∣
+

n∑
m=1

k +m− 1

N

∫ t

0

ds1 . . .

∫ sm−1

0

dsm Tr
∣∣∣U (k)(t− s1)B

(k) . . .

· · · ×B(k+m−1)γ
(k+m)
N,sm

∣∣∣ .

(2.19)

Next we observe that, since U (k)(t) is a unitary operator,

(2.20) Tr
∣∣∣U (k)(t)γ(k)

∣∣∣ = Tr
∣∣∣γ(k)

∣∣∣ .
Moreover, since V is a bounded potential, we have

(2.21) Tr
∣∣∣A(k)γ(k)

∣∣∣ ≤ k2‖V ‖Tr
∣∣∣γ(k)

∣∣∣
and

(2.22) Tr
∣∣∣B(k)γ(k+1)

∣∣∣ ≤ 2k‖V ‖Tr
∣∣∣γ(k+1)

∣∣∣
where we used the fact that

(2.23) Tr
∣∣∣Trk+1γ

(k+1)
∣∣∣ ≤ Tr

∣∣∣γ(k+1)
∣∣∣ .

(Here the trace on the r.h.s. is a trace over (k+1) particles.) Applying these bounds
iteratively to the terms on the r.h.s. of (2.19), and using the a-priori information

Tr
∣∣∣γ(k+n)

N,t

∣∣∣ = Tr γ
(k+n)
N,t = 1 (and analogously for γ

(k+n)
∞,t ), we obtain

Tr
∣∣∣γ(k)

N,t − γ
(k)
∞,t

∣∣∣ ≤ 2 (2‖V ‖t)n (k + n− 1)!

(k − 1)!n!

+
2

N

n∑
m=1

(2‖V ‖t)m(k +m− 1)
(k +m− 1)!

m!(k − 1)!

≤ 2k (4‖V ‖t)n +
k 2k+1

N

N∑
m=1

(4‖V ‖t)m .

(2.24)

If 0 < t ≤ t0, with t0 = 1/(8‖V ‖), it follows that

Tr
∣∣∣γ(k)

N,t − γ
(k)
∞,t

∣∣∣ ≤ 2k

2n
+

k2k+1

N
.
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Since the l.h.s. is independent of the order n of the expansion, it follows that

(2.25) Tr
∣∣∣γ(k)

N,t − γ
(k)
∞,t

∣∣∣ ≤ k2k+1

N
and thus that

(2.26) Tr
∣∣∣γ(k)

N,t − γ
(k)
∞,t

∣∣∣→ 0 as N → ∞

for all 0 ≤ t ≤ t0 and for all k ≥ 1. Next, set

t1 := sup
{
t > 0 : lim

N→∞
Tr
∣∣∣γ(k)

N,s − γ(k)
∞,s

∣∣∣ = 0 for all fixed 0 ≤ s ≤ t and k ≥ 1
}
.

From (2.26), it follows that t1 ≥ t0. We show that t1 = ∞ by contradiction.
Suppose that t1 < ∞. Then, if t2 = t1 − (t0/2), we have, by definition,

(2.27) lim
N→∞

Tr
∣∣∣γ(k)

N,t2
− γ

(k)
∞,t2

∣∣∣ = 0 for all k ≥ 1.

Starting from (2.27), we are going to prove that

(2.28) lim
N→∞

Tr
∣∣∣γ(k)

N,t − γ
(k)
∞,t

∣∣∣ = 0

for all k ≥ 1 and for all 0 ≤ t ≤ t1 + (t0/2); this contradicts the definition of t1.

To show (2.28), we expand γ
(k)
N,t and γ

(k)
∞,t in Duhamel series similar to (2.16) and

(2.18), but starting at time t2 = t1 − (t0/2). Analogously to (2.19), we obtain, for
t = t2 + τ ,

Tr
∣∣∣γ(k)

N,t − γ
(k)
∞,t

∣∣∣
≤ Tr

∣∣∣U (k)(τ )
(
γ
(k)
N,t2

− γ
(k)
∞,t2

)∣∣∣
+

n−1∑
m=1

∫ τ

0

ds1 . . .

∫ sm−1

0

dsm Tr
∣∣∣U (k)(τ − s1)B

(k)U (k+1)(s1 − s2) . . .

· · · ×B(k+m−1)U (k+m)(sm)
(
γ
(k+n)
N,t2

− γ
(k+n)
∞,t2

) ∣∣∣
+

∫ τ

0

ds1 . . .

∫ sn−1

0

dsn Tr
∣∣∣U (k)(τ − s1)B

(k) . . . B(k+n−1)
(
γ
(k+n)
N,sn

− γ(k+n)
∞,sn

)∣∣∣
+

1

N

N∑
m=1

∫ τ

0

ds1 . . .

∫ sm−1

0

dsmTr
∣∣∣U (k)(τ − s1)B

(k) . . .

· · · × U (k+m−1)(sm−1 − sm)A(k+m−1)γ
(k+m−1)
N,sm

∣∣∣
+

n∑
m=1

k +m− 1

N

∫ τ

0

ds1 . . .

∫ sm−1

0

dsm Tr
∣∣∣U (k)(τ − s1)B

(k) . . .

· · · ×B(k+m−1)γ
(k+m)
N,sm

∣∣∣ .

(2.29)

With respect to (2.19), we have one more term on the r.h.s. of the last equation,
due to the fact that at time t = t2 the densities do not coincide (while they do at
time t = 0). Analogously to (2.24) we find

Tr
∣∣∣γ(k)

N,t − γ
(k)
∞,t

∣∣∣ ≤ 2k
n−1∑
m=0

1

2m
Tr
∣∣∣(γ(k+m)

N,t2
− γ

(k+m)
∞,t2

)∣∣∣+ 2k

2n
+

k2k+1

N
,
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if t1 − (t0/2) ≤ t ≤ t1 + (t0/2) (that is, if 0 ≤ τ ≤ t0). Choosing first n > 0
sufficiently large (to make the second term on the r.h.s. smaller than ε/3), and
then N > 0 sufficiently large (this guarantees that the third term, and, by (2.27),
also the first term, are smaller than ε/3), the quantity on the l.h.s. can be made
smaller than any ε > 0 (for arbitrary k ≥ 1 and t1 − (t0/2) ≤ t ≤ t1+(t0/2)). This
shows (2.28) and completes the proof of the theorem. �

2.3. Another Proof of Theorem 2.1. From the proof of Theorem 2.1 pre-
sented above, we notice that the expansion of the BBGKY hierarchy in (2.16) is
much more involved than the corresponding expansion (2.18) of the infinite hierar-
chy (2.17). It turns out that it is possible to avoid the expansion of the BBGKY
hierarchy making use of a simple compactness argument; this will be especially
important when dealing with singular potentials. In the following we explain the
main steps of this alternative proof to Theorem 2.1. Then, in the next section, we
will illustrate how to extend it to potentials with a Coulomb singularity.

The idea, which was first presented in [5, 4, 16], consists in characterizing the

limit of the densities γ
(k)
N,t as the unique solution to the infinite hierarchy of equa-

tions (2.17); combined with the compactness, this information provides a proof of
Theorem 2.1. More precisely, the proof is divided into three main steps. First of all,

one shows the compactness of the sequence {γ(k)
N,t}k≥1 with respect to an appropri-

ate weak topology. Then, one proves that an arbitrary limit point {γ(k)
∞,t}k≥1 of the

sequence {γ(k)
N,t}Nk=1 is a solution to the infinite hierarchy (2.17) (one proves, in other

words, the convergence to the infinite hierarchy). Finally, one shows the uniqueness
of the solution to the infinite hierarchy (2.17). Since it is simple to verify that the

factorized family {γ(k)
∞,t}k≥1, with γ

(k)
t = |ϕt〉〈ϕt|⊗k for all k ≥ 1, is a solution to

the infinite hierarchy, it follows immediately that γ
(k)
N,t → |ϕt〉〈ϕt|⊗k as N → ∞ (at

first only in the weak topology with respect to which we have compactness; since
the limit is an orthogonal rank one projection, it is however simple to check that
weak convergence implies strong convergence, in the sense (2.8)). Next, we discuss
these three main steps (compactness, convergence, and uniqueness) in some more
details.

Compactness: Let L1
k ≡ L1(L2(Rdk)) denote the space of trace class opera-

tors on L2(Rdk), equipped with the trace norm

‖A‖1 = Tr |A| = Tr (A∗A)1/2 for all A ∈ L1
k .

Moreover, let Kk ≡ K(L2(Rdk)) be the space of compact operators on L2(Rdk),
equipped with the operator norm. Then L1

k and Kk are Banach spaces and L1
k = K∗

k

(see, for example, [27][Theorem VI.26]). By definition, the k-particle marginal

density γ
(k)
N,t is a non-negative operator in L1

k, with

‖γ(k)
N,t‖1 = Tr |γ(k)

N,t| = Tr γ
(k)
N,t = 1

for all N ≥ k. For fixed t ∈ R and k ≥ 1, it follows from the Banach-Alaouglu The-

orem that the sequence {γ(k)
N,t}N≥k is compact with respect to the weak* topology

of L1
k.

Since we want to identify limit points of the sequence γ
(k)
N,t as solutions to the

system of integral equations (2.17), compactness for fixed t ∈ R is not enough. To
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make sure that there are subsequences of γ
(k)
N,t which converge for all times in a

certain interval, we use the fact that, since Kk is separable, the weak* topology
on the unit ball of L1

k is metrizable. It is possible, in other words, to introduce a
metric ηk on L1

k such that a uniformly bounded sequence {An}n∈N ∈ L1
k converges

to A ∈ L1
k as n → ∞ with respect to the weak* topology of L1

k if and only if
ηk(An, A) → 0 (see [29][Theorem 3.16], for the explicit construction of the metric
ηk). For arbitrary T > 0 let C([0, T ],Lk

1) be the space of functions of t ∈ [0, T ] with
values in L1

k which are continuous with respect to the metric ηk; on C([0, T ],L1
k)

we can define the metric

(2.30) η̂k(γ
(k)(·), γ̄(k)(·)) := sup

t∈[0,T ]

ηk(γ
(k)(t), γ̄(k)(t)) .

Finally, we denote by τprod the topology on the space
⊕

k≥1C([0, T ],L1
k) given by

the product of the topologies generated by the metrics η̂k on C([0, T ],L1
k).

The metric structure introduced on the space
⊕

k≥1C([0, T ],L1
k) allows us

to invoke the Arzela-Ascoli Theorem to prove the compactness of the sequence

ΓN,t = {γ(k)
N,t}Nk=1. We obtain the following proposition (for the detailed proof, see,

for example, [13, Section 6]).

Proposition 2.2. Fix T > 0. Then ΓN,t = {γ(k)
N,t}Nk=1 ∈

⊕
k≥1C([0, T ],L1

k) is
a compact sequence with respect to the product topology τprod defined above. For any

limit point Γ∞,t = {γ(k)
∞,t}k≥1, γ

(k)
∞,t is symmetric w.r.t. permutations, non-negative

and such that

(2.31) Tr γ
(k)
∞,t ≤ 1

for every k ≥ 1.

Remark. Convergence of ΓN,t = {γ(k)
N,t}Nk=1 to Γ∞,t = {γ(k)

∞,t}k≥1 with respect
to the topology τprod is equivalent to the statement that, for every fixed k ≥ 1, and

for every fixed compact operator J (k) ∈ Kk,

(2.32) TrJ (k)
(
γ
(k)
N,t − γ

(k)
∞,t

)
→ 0

as N → ∞, uniformly in t for t ∈ [0, T ]. Compactness of ΓN,t with respect to
the topology τprod means therefore that for every sequence {Mj}j∈N there exists a
subsequence {Nj}j∈N ⊂ {Mj}j∈N and a limit point Γ∞,t such that ΓNj ,t → Γ∞,t in
the sense (2.32).

Convergence: The second main step consists in characterizing the limit points

of the (compact) sequence ΓN,t = {γ(k)
N,t}k≥1 as solutions to the infinite hierarchy

of equations (2.17).

Proposition 2.3. Suppose that V ∈ L∞(Rd) such that V (x) → 0 as |x| → ∞.

Assume moreover that Γ∞,t = {γ(k)
∞,t}k≥1 ∈

⊕
k≥1 C([0, T ],L1

k) is a limit point of

the sequence ΓN,t = {γ(k)
N,t}Nk=1 with respect to the product topology τprod. Then

γ
(k)
∞,0 = |ϕ〉〈ϕ|⊗k and

(2.33) γ
(k)
∞,t = U (k)(t)γ

(k)
0,∞ +

∫ t

0

dsU (k)(t− s)B(k)γ(k+1)
∞,s
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for all k ≥ 1. Here U (k)(t), and B(k) are defined as in ( 2.13) and, respectively, in
( 2.15).

Note that in Proposition 2.3 we assume the potential to vanish at infinity. This
condition, which was not required in Section 2.2, is not essential but it simplifies the
proof and it is also satisfied for the singular potentials (like the Coulomb potential)
that we are going to study in the next sections.

Proof. Passing to a subsequence we can assume that ΓN,t → Γ∞,t as N → ∞,
with respect to the product topology τprod; this implies immediately that γ∞,0 =
|ϕ〉〈ϕ|⊗k. To prove (2.33), on the other hand, it is enough to show that for every
fixed k ≥ 1, and for every fixed J (k) from a dense subset of Kk,

Tr J (k)γ
(k)
∞,t = TrJ (k)U (k)(t)γ

(k)
∞,0 +

∫ t

0

dsU (k)(t− s)TrJ (k)B(k)γ(k+1)
∞,s .(2.34)

To demonstrate (2.34), we start from the BBGKY hierarchy (2.12) which leads to
the relations

TrJ (k)γ
(k)
N,t = TrJ (k)U (k)(t)γ

(k)
N,0

+
1

N

k∑
j=1

∫ t

0

dsTrJ (k)U (k)(t− s)
[
V (xi − xj), γ

(k)
N,s

]

+
N − k

N

∫ t

0

dsTrJ (k)U (k)(t− s)B(k)γ
(k+1)
N,s .

(2.35)

Since, by assumption, the l.h.s. and the first term on the r.h.s. of the last equation
converge, as N → ∞, to the l.h.s. and, respectively, to the first term on the r.h.s.
of (2.34) (for every compact operator J (k)), (2.33) follows if we can prove that

(2.36)
1

N

k∑
j=1

∫ t

0

dsTrJ (k)U (k)(t− s)
[
V (xi − xj), γ

(k)
N,s

]
→ 0

and that
(2.37)

N − k

N

∫ t

0

dsTrJ (k)U (k)(t− s)B(k)γ
(k+1)
N,s →

∫ t

0

dsTrJ (k)U (k)(t− s)B(k)γ(k+1)
∞,s

as N → ∞. Eq. (2.36) follows because∣∣∣TrJ (k)U (k)(t− s)
[
V (xi − xj), γ

(k)
N,s

]∣∣∣ ≤ 2‖J (k)‖‖V ‖Tr
∣∣∣γ(k)

N,s

∣∣∣ ≤ 2‖J (k)‖‖V ‖

is finite, uniformly in N . To prove Eq. (2.37) one can use a similar argument,
combined with the observation that

Tr J (k)U (k)(t− s)B(k)
(
γ
(k+1)
N,s − γ(k+1)

∞,s

)
= kTr

[(
U (k)(s− t)J (k)

)
V (x1 − xk+1)− V (x1 − xk+1)

(
U (k)(s− t)J (k)

)]
×
(
γ
(k+1)
N,s − γ(k+1)

∞,s

)
→ 0

as N → ∞. This does not follow directly from the assumption that ΓN,t → Γ∞,t

with respect to the topology τprod because the operators (U (k)(s − t)J (k))V (x1 −
xk+1) and V (x1 − xk+1)(U (k)(s− t)J (k)) are not compact on L2(Rd(k+1)). Instead
we have to apply an approximation argument, cutting off high momenta in the
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xk+1-variable, and using the fact that, by energy conservation, Tr∇∗
k+1γ

(k+1)
N,t ∇k+1

is bounded, uniformly in N and in t (and that, therefore, Tr∇∗
k+1γ

(k+1)
∞,t ∇k+1 is

bounded as well). Note that, because of the assumption that V (x) → 0 as |x| → ∞,
we only need a cutoff in momentum, and no cutoff in position space is necessary.
The details of this approximation argument can be found, for example, in Eq. (7.35)
and Eq. (7.36) in the proof of Theorem 7.1 in [13] (after replacing δβ through the
bounded potential V ). �

Uniqueness: to conclude the proof of Theorem 2.1, we still have to prove the
uniqueness of the solution to the infinite hierarchy (2.33).

Proposition 2.4. Fix Γ∞,0 = {γ(k)
∞,0}k≥1 ∈

⊕
k≥1 L1

k. Then there exists at

most one solution Γ∞,t = {γ(k)
∞,t}k≥1 ∈

⊕
k≥1 C([0, T ],Lk

1) to the infinite hierarchy

( 2.33) such that γ
(k)
∞,t=0 = γ

(k)
∞,0 and Tr |γ(k)

∞,t| ≤ 1 for all k ≥ 1 and all t ∈ [0, T ].

Proof. Suppose that {γ(k)
∞,1,t}k≥1 and {γ(k)

∞,2,t}k≥1 are two solutions of (2.33)

with the same initial data {γ(k)
∞,0}k≥1, such that Tr |γ(k)

∞,i,t| ≤ 1, for all k ≥ 1,

t ∈ [0, T ], and for i = 1, 2. Then we can expand γ
(k)
∞,1,t and γ

(k)
∞,2,t in the Duhamel

series (2.19). It follows that

Tr
∣∣∣γ(k)

∞,1,t − γ
(k)
∞,2,t

∣∣∣ ≤ ∫ t

0

ds1 . . .

∫ sn−1

0

dsn

× Tr
∣∣∣U (k)(t− s1)B

(k) . . . B(k+n−1)
(
γ
(k+n)
∞,1,sn

− γ
(k+n)
∞,2,sn

)∣∣∣ .
Applying recursively the bounds (2.20) and (2.22), we obtain

Tr
∣∣∣γ(k)

∞,1,t − γ
(k)
∞,2,t

∣∣∣ ≤ (k + n− 1)!

(k − 1)!n!
(2‖V ‖t)n ≤ 2k (4‖V ‖t)n

and thus, for 0 < t < 1/8‖V ‖,

Tr
∣∣∣γ(k)

∞,1,t − γ
(k)
∞,2,t

∣∣∣ ≤ 2k−n .

Since the l.h.s. is independent of n ≥ 1, it has to vanish. This proves uniqueness for
short time. Iterating the same argument, we obtain uniqueness for all times. �

2.4. Derivation of the Hartree Equation for a Coulomb Potential.
The arguments presented in Section 2.2 and in Section 2.3 required the interac-
tion potential V to be bounded. Unfortunately, several systems of physical interest
are described by unbounded potential. For example, in a non-relativistic approx-
imation, a system of gravitating bosons (a boson star) can be described by the
Hamiltonian

(2.38) HN =

N∑
j=1

−Δj −
λ

N

N∑
i<j

1

|xi − xj |

with a singular Coulomb interaction among the particles. The factor of 1/N in front
of the potential energy can be justified, when describing gravitating particles, by the
smallness of the gravitational constant. As in the case of bounded potential, we are
interested in the dynamics generated by the Hamiltonian (2.38) on factorized initial
N -particle wave functions. We specialize here in the physically most interesting case
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of particles moving in three dimensions; however, the theorem remains valid in all
dimensions d ≥ 2.

Theorem 2.5 (Erdős-Yau, [16]). Let ψN = ϕ⊗N for some ϕ ∈ H1(R3) and
let ψN,t = e−iHN tψN where the Hamiltonian HN is defined as in ( 2.38). Then, for
arbitrary k ≥ 1 and t ∈ R, we have

(2.39) Tr
∣∣∣γ(k)

N,t − |ϕt〉〈ϕt|⊗k
∣∣∣→ 0

as N → ∞. Here ϕt is the solution to the nonlinear Hartree equation

i∂tϕt = −Δϕt − λ

(
1

| · | ∗ |ϕt|2
)
ϕt

with initial data ϕt=0 = ϕ.

Remark. Although, physically, the value of the constant λ is positive (cor-
responding to the Coulomb attraction among gravitating particles), the theorem
remains valid also for negative values of λ (corresponding to repulsive Coulomb
interaction).

The general strategy used in [16] to prove Theorem 2.5 is the same as the
one outlined in Section 2.3. First one proves the compactness of the sequence of

marginal {γ(k)
N,t}Nk=1 with respect to an appropriate weak topology (the product

topology τprod introduced after (2.30)), then one shows that an arbitrary limit

point {γ(k)
∞,t}k≥1 of the sequence {γ(k)

N,t}Nk=1 is a solution to the infinite hierarchy of
equations

(2.40) γ
(k)
t = U (k)(t)γ(k) +

∫ t

0

dsU (k)(t− s)B(k)γ(k+1)
s

where U (k) is the free evolution defined in (2.13), and the collision map B(k) is now
given by

(2.41) B(k)γ(k+1) = −iλ

k∑
j=1

Trk+1

[
1

|xj − xk+1|
, γ(k+1)

]
.

Finally, one proves the uniqueness of the solution to (2.40). Although the proof of
the compactness and of the convergence also require several changes with respect
to what we discussed in Section 2.3, the main difficulty one has to face when
the bounded potential is replaced by the Coulomb interaction is the proof of the
uniqueness of the solution to the infinite hierarchy. The key idea introduced by
Erdős and Yau in [16] was to restrict the class of densities for which uniqueness
must be proven. In Proposition 2.4, uniqueness is proved in the class of densities

with Tr |γ(k)
t | ≤ 1 for all k ≥ 1, and all t ∈ [0, T ] (but the same argument works

under the weaker assumption Tr |γ(k)
t | ≤ Ck, for some constant C < ∞). Following

[16], in the case of a Coulomb potential we are only going to show the uniqueness

of (2.40) in the class of densities Γt = {γ(k)
t }k≥1 satisfying the a-priori bound

(2.42) Tr
∣∣∣(1−Δ1)

1/2 . . . (1−Δk)
1/2γ

(k)
t (1−Δk)

1/2 . . . (1−Δ1)
1/2
∣∣∣ ≤ Ck

for all k ≥ 1 and for all t ∈ [0, T ]. Note that, for non-negative densities γ
(k)
t ≥ 0

(in the sense of operators, that is, in the sense that 〈ψ(k), γ
(k)
t ψ(k)〉 ≥ 0 for all
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ψ(k) ∈ L2(R3k)) we have

Tr
∣∣∣(1−Δ1)

1/2 . . . (1−Δk)
1/2γ

(k)
t (1−Δk)

1/2 . . . (1−Δ1)
1/2
∣∣∣

= Tr (1−Δ1) . . . (1−Δk)γ
(k)
t .

There is, of course, a price to pay in order to restrict the proof of the uniqueness
to this class of densities. In fact, to apply this uniqueness result to the proof of

Theorem 2.5, one has to show that an arbitrary limit point Γ∞,t = {γ(k)
∞,t}k≥1 of the

sequence of densities ΓN,t = {γ(k)
N,t}Nk=1 associated with ψN,t satisfies the a-priori

bound (2.42). Due to the Coulomb singularity, this is actually not so simple and
requires an additional approximation argument.

Approximation of the Coulomb singularity: For a fixed ε > 0 we define
the regularized Hamiltonian

(2.43) H̃N =

N∑
j=1

−Δj −
λ

N

N∑
i<j

1

|xi − xj |+ εN−1
.

Moreover, for a fixed sufficiently small δ > 0, we introduce the regularized initial
data

(2.44) ψ̃N =
χ(δH̃N/N)ψN

‖χ(δH̃N/N)ψN‖
(recall that ψN = ϕ⊗N )

where χ ∈ C∞
0 (R) is a monotone decreasing function such that χ(s) = 1 for all

s ≤ 1 and χ(s) = 0 for all s ≥ 2. We consider then the regularized evolution of the
regularized initial wave function

ψ̃N,t = e−iH̃N tψ̃N .

The advantage of working with the regularized wave function ψ̃N,t instead of ψN,t

is that it satisfies the following strong a-priori bounds.

Proposition 2.6. Let ψ̃N,t = e−iH̃N tψ̃N , for some fixed ε, δ > 0. Then there
exists a constant C > 0 (depending on ε, δ) and, for all k ≥ 1, there exists N0 =
N0(k) > k such that

(2.45) 〈ψ̃N,t, (1−Δ1) . . . (1−Δk) ψ̃N,t〉 ≤ Ck

for all N ≥ N0.

Remark. Expressed in terms of the k-particle marginal γ̃
(k)
N,t associated with

ψ̃N,t, the bound (2.45) reads

(2.46) Tr (1−Δ1) . . . (1−Δk) γ̃
(k)
N,t ≤ Ck .

We will show Proposition 2.6 below, making use of Proposition 2.7; we will see
there that the regularization of the Coulomb singularity and of the initial wave func-
tion both play an important role. For the solution ψN,t of the original Schrödinger
equation with the original factorized initial data ψN = ϕ⊗N it is not known whether
bounds like (2.45) hold true.

In order for the regularized wave function ψ̃N,t to be useful, one needs to
prove that it approximates, in an appropriate sense, the wave function ψN,t. To
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compare the two N -particle wave function, we introduce a third wave function

ψ̂N,t = e−iH̃N tψN , and we use the triangle inequality

(2.47) ‖ψN,t − ψ̃N,t‖ ≤ ‖ψN,t − ψ̂N,t‖+ ‖ψ̂N,t − ψ̃N,t‖ .

The second term is actually independent of time because of the unitarity of the

evolution. Using the definition of the regularized initial data ψ̃N , one can prove
that

‖ψ̂N,t − ψ̃N,t‖ = ‖ψN − ψ̃N‖ ≤ Cδ1/2

uniformly in N . To control the first term on the r.h.s. of (2.47), we observe that

d

dt

∥∥∥ψN,t − ψ̂N,t

∥∥∥2 = 2Im
〈(

HN − H̃N

)
ψ̂N,t, ψN,t − ψ̂N,t

〉
and thus that

(2.48)

∣∣∣∣ ddt
∥∥∥ψN,t − ψ̂N,t

∥∥∥2∣∣∣∣ ≤ 2
∥∥∥(HN − H̃N

)
ψ̂N,t

∥∥∥ ∥∥∥ψN,t − ψ̂N,t

∥∥∥ .

We have

‖(HN − H̃N )ψ̂N,t‖ =

∥∥∥∥∥∥
ε

N2

N∑
i<j

1

|xi − xj | (|xi − xj |+ εN−1)
ψ̂N,t

∥∥∥∥∥∥ .

Using the permutation symmetry of ψ̂N,t, it follows that

‖(HN−H̃N )ψ̂N,t‖2

≤ ε2
〈
ψ̂N,t,

1

|x1 − x2| (|x1 − x2|+ εN−1)

× 1

|x3 − x4| (|x3 − x4|+ εN−1)
ψ̂N,t

〉

+ ε2N−1
〈
ψ̂N,t,

1

|x1 − x2| (|x1 − x2|+ εN−1)

× 1

|x2 − x3| (|x2 − x3|+ εN−1)
ψ̂N,t

〉

+ ε2N−2
〈
ψ̂N,t,

1

|x1 − x2|2 (|x1 − x2|+ εN−1)2
ψ̂N,t

〉
and thus

‖(HN − H̃N )ψ̂N,t‖2 ≤ ε2
〈
ψ̂N,t,

1

|x1 − x2|2|x3 − x4|2
ψ̂N,t

〉

+ ε2N−1
〈
ψ̂N,t,

1

|x1 − x2|2|x2 − x3|2
ψ̂N,t

〉

+ ε1/2N−1/2
〈
ψ̂N,t,

1

|x1 − x2|5/2
ψ̂N,t

〉
.

Applying Hardy inequalities in the form

(2.49)
1

|xi − xj |α
≤ C(1−Δi)

β/2(1−Δj)
γ/2
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for every 0 ≤ α < 3, if β + γ ≥ α (see [9][Lemma 9.1] for a proof) we find that

‖(HN − H̃N )ψ̂N,t‖2 ≤ ε2(1 +N−1)〈ψ̂N,t, (1−Δ1)(1−Δ3)ψ̂N,t〉
+ ε1/2N−1/2〈ψ̂N,t, (1−Δ1)(1−Δ2)ψ̂N,t〉

and thus, from (2.46),

‖(HN − H̃N )ψ̂N,t‖ ≤ Cε1/4

uniformly in N . From (2.48), applying Gronwall’s Lemma, it follows that

‖ψN,t − ψ̂N,t‖ ≤ Cε1/4t .

From (2.47), we obtain that

‖ψN,t − ψ̃N,t‖ ≤ C
(
ε1/4t+ δ1/2

)
and thus

(2.50) Tr
∣∣∣γ(k)

N,t − γ̃
(k)
N,t

∣∣∣ ≤ C
(
ε1/4t+ δ1/2

)
for every k ∈ N, uniformly in N ≥ k. Because of (2.50), it suffices to prove

(2.39) with γ
(k)
N,t (the k-particle marginal associated with ψN,t) replaced by γ̃

(k)
N,t

(the k-particle marginal associated with the regularized wave function ψ̃N,t) for
fixed ε, δ > 0; at the end (2.39) follows by letting ε, δ → 0. Note that in [16]
a slightly different approximation of the initial data was used; the details of the
approximation presented above can be found (for a different model) in [12][Section
5].

Energy estimates: To prove the a-priori bounds of Proposition 2.6, one can
use so called energy estimates; these are estimates that compare the expectation of
high powers of the Hamiltonian with corresponding powers of the kinetic energy.

Proposition 2.7. Suppose that H̃N is defined as in ( 2.43) with λ > 0 (the
case λ < 0 is simpler). Then there exist constants C1 > 1 and C2 > 0 and, for
every k ≥ 1, there exists an N0 = N0(k) ∈ N such that

(2.51) 〈ψN , (H̃N + C1N)k ψN 〉 ≥ Ck
2N

k 〈ψN , (−Δ1 + C1) . . . (−Δk + C1)ψN 〉
for every ψN ∈ L2

s(R
3N ) (symmetric with respect to permutations) and for every

N > N0.

Proof. Using the operator inequality

1

|xi − xj |
≤ π

4
|∇j |

we can find a constant C1 > 1 (depending on the coupling constant λ) such that

(2.52)
λ

|xi − xj |
≤ 1

2
(−Δj + C1) =

1

2
S2
j ,

where we defined Sj = (−Δj + C1)
1/2. Note also that, for every 0 < α < 3 there

exists a constant Cα < ∞ such that

(2.53)
1

|xi − xj |α
≤ CαS

α
j .

We are going to prove (2.51) for C1 fixed as in (2.52), and for an arbitrary
0 < C2 < 1/2. The proof is by a two-step induction over k ≥ 0. For k = 0, the
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claim is trivial. For k = 1, it follows from (2.52) because, as an operator inequality
on the permutation symmetric space L2

s(R
3N ), we have

(H̃N + C1N) ≥ NS2
1 − N

2

λ

|x1 − x2|
≥ C2NS2

1 .(2.54)

Next we assume that (2.51) holds for all k ≤ n and we prove it for k = n + 2,
for an arbitrary n ∈ N. To this end, we observe that, because of the induction
assumption,

(H̃N + C1N)n+2 = (H̃N + C1N)(H̃N + C1N)n(H̃N + C1N)

≥ Cn
2 N

n(H̃N + C1N)S2
1 . . . S

2
n(H̃N + C1N),

for all N ≥ N0(n). Writing

(H̃N + C1N) =
∑

j≥n+1

S2
j + hN , with hN =

n∑
j=1

S2
j − λ

N

N∑
i<j

1

|xi − xj |+ εN−1

it follows that

(H̃N + C1N)n+2 ≥ Cn
2 N

n(N − n)(N − n− 1)S2
1 . . . S

2
n+2

+ Cn
2 N

n(N − n)S4
1S

2
2 . . . S

2
n+1

+ Cn
2 N

n(N − n)
(
S2
1 . . . S

2
n+1 hN + h.c.

)
.

(2.55)

The first two terms are positive. As for the third term, by the definition of hN , we
find that

(
S2
1 . . .S

2
n+1 hN + h.c.

)
≥ − (N − n)(N − n− 1)

2N

(
S2
1 . . . S

2
n+1

λ

|xn+2 − xn+3|+ εN−1
+ h.c.

)

− (N − n)n

N

(
S2
1 . . . S

2
n+1

λ

|x1 − xn+2|+ εN−1
+ h.c.

)

− n(n− 1)

2N

(
S2
1 . . . S

2
n+1

λ

|x1 − x2|+ εN−1
+ h.c.

)
.

(2.56)

The first term on the r.h.s. of (2.56) can be bounded by

(
S2
1 . . .S

2
n+1

λ

|xn+2 − xn+3|+ εN−1
+ h.c.

)

≤ 2S1 . . . Sn+1
λ

|xn+2 − xn+3|
Sn+1 . . . S1 ≤ S2

1 . . . S
2
n+2 .

(2.57)
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As for the second term on the r.h.s. of (2.56), we remark that(
S2
1 . . . S

2
n+1

λ

|x1 − xn+2|+ εN−1
+ h.c

)

= Sn+1 . . . S2

(
(−Δ1 + C1)

λ

|x1 − xn+2|+ εN−1
+ h.c.

)
S2 . . . Sn+1

≤ 2C1 Sn+1 . . . S2
λ

|x1 − xn+2|+ εN−1
S2 . . . Sn+1

+ 2Sn+1 . . . S2∇∗
1

λ

|x1 − xn+2|+ εN−1
∇1S2 . . . Sn+1

+ λSn+1 . . . S2

(
∇∗

1

(x1 − xn+2)

|x1 − xn+2| (|x1 − xn+2|+ εN−1)
2 + h.c.

)
S2 . . . Sn+1 .

Applying a Schwarz inequality in the last term, we conclude that there exists a
constant D > 0 (depending on λ) such that

(2.58)
(
S2
1 . . . S

2
n+1

λ

|x1 − xn+2|+ εN−1
+ h.c.

)
≤ DS2

1 . . . S
2
n+2 .

Similarly, using the operator inequalities (2.53), the last term on the r.h.s. of (2.56)
can be bounded by
(2.59)(

S2
1 . . . S

2
n+1

1

|x1 − x2|+ εN−1
+ h.c.

)
≤ Dε−1N S2

1 . . . S
2
n+1 +DS4

1S
2
2 . . . S

2
n+1

for all 0 < ε < 1 and for a constant D depending only on λ (it is at this point that
the condition ε > 0 is needed). Inserting (2.57), (2.58), and (2.59) in the r.h.s. of
(2.56), and the resulting bound in the r.h.s. of (2.55), we obtain that there exists
N0 > 0 (depending on n) such that

(H̃N + C1N)n+2 ≥ Cn+2
2 S2

1 . . . S
2
n+2

for all N > N0. Note that the value of N0 also depends on the parameter ε > 0. �

Using the result of Proposition 2.7, it is simple to complete the proof of the

a-priori bounds for ψ̃N,t = e−iH̃N tψ̃N (recall the definition of the regularized initial

data ψ̃N in (2.44)).

Proof of Proposition 2.6. From (2.51), and since C1 > 1, we have

〈ψ̃N,t, (1−Δ1) . . . (1−Δk)ψ̃N,t〉 ≤ 〈ψ̃N,t, (C1 −Δ1) . . . (C1 −Δk)ψ̃N,t〉

≤ 1

Ck
2N

k
〈ψ̃N,t, (H̃N + C1N)kψ̃N,t〉

=
1

Ck
2N

k
〈ψ̃N , (H̃N + C1N)kψ̃N 〉

where in the last line we used the fact that the expectation of any power of H̃N is

preserved by the time-evolution. From the definition (2.44) of ψ̃N , we immediately
obtain (2.45). �
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Since the a-priori bounds for γ̃
(k)
N,t obtained in Proposition 2.6 hold uniformly

in N , they can also be used to derive a-priori bounds on the limit points {γ(k)
∞,t}k≥1

of the sequence {γ(k)
N,t}Nk=1.

Corollary 2.8. Suppose that Γ∞,t = {γ(k)
∞,t}k≥1 ∈

⊕
k≥1C([0, T ],L1

k) is a

limit point of the sequence Γ̃N,t = {γ̃(k)
N,t}Nk=1 with respect to the product topology

τprod defined after ( 2.30). Then γ
(k)
∞,t ≥ 0 and there exists a constant C such that

(2.60) Tr (1−Δ1) . . . (1−Δk)γ
(k)
∞,t ≤ Ck

for all k ≥ 1.

Uniqueness: The bounds of Corollary 2.8 are crucial; from (2.60) it follows
that it is enough to show the uniqueness of the infinite hierarchy (2.33) in the class
of densities satisfying (2.60), a much simpler task than proving uniqueness for all

densities with Tr |γ(k)
t | ≤ Ck.

Theorem 2.9. Fix {γ(k)}k≥1 ∈
⊕

k≥1 L1
k. Then there exists at most one solu-

tion {γ(k)
t }k≥1 ∈

⊕
k≥1C([0, T ],L1

k) to the infinite hierarchy ( 2.40), such that

(2.61) Tr
∣∣∣(1−Δ1)

1/2 . . . (1−Δk)
1/2γ

(k)
t (1−Δk)

1/2 . . . (1−Δ1)
1/2
∣∣∣ ≤ Ck

for all k ≥ 1, and all t ∈ [0, T ].

Proof. We define the norm

‖γ(k)‖Hk
= Tr

∣∣∣(1−Δ1)
1/2 . . . (1−Δk)

1/2γ(k)(1−Δk)
1/2 . . . (1−Δ1)

1/2
∣∣∣

and we observe that there exists a constant C > 0 with (recall the definition (2.41)
for the collision map B(k))

(2.62) ‖B(k)γ(k+1)‖Hk
≤ Ck‖γ(k+1)‖Hk+1

.

To prove (2.62), we write

‖B(k)γ(k+1)‖Hk
≤

k∑
j=1

Tr

∣∣∣∣S1 . . . Sk

(
Trk+1

1

|xj − xk+1|
γ(k+1)

)
Sk . . . S1

∣∣∣∣
+

k∑
j=1

Tr

∣∣∣∣S1 . . . Sk

(
Trk+1 γ

(k+1) 1

|xj − xk+1|

)
Sk . . . S1

∣∣∣∣ .
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All terms can be handled similarly. We show how to bound the summand with
j = 1 on the first line.

Tr
∣∣∣S1 . . . Sk

(
Trk+1

1

|x1 − xk+1|
γ(k+1)

)
Sk . . . S1

∣∣∣
= Tr

∣∣∣∣S1 . . . Sk

(
Trk+1S

−1
k+1

1

|x1 − xk+1|
S−1
k+1Sk+1γ

(k+1)Sk+1

)
Sk . . . S1

∣∣∣∣
≤ Tr

∣∣∣∣S1S
−1
k+1

1

|xj − xk+1|
S−1
k+1S

−1
1 S1 . . . SkSk+1γ

(k+1)Sk+1Sk . . . S1

∣∣∣∣
≤ ‖S1S

−1
k+1

1

|x1 − xk+1|
S−1
k+1S

−1
1 ‖ ‖γ(k+1)‖Hk+1

≤ C‖γ(k+1)‖Hk+1

where in the second line we used the cyclicity of the partial trace, in the third line
we used (2.23) and, in the last line, we used the bound

(2.63) ‖S1S
−1
k+1

1

|x1 − xk+1|
S−1
k+1S

−1
1 ‖ < ∞ .

To prove (2.63) we write, assuming for example that k = 1,

S1S
−1
2

1

|x1 − x2|
S−1
2 S−1

1

= S−1
1 S−1

2 (1−Δ1)
1

|x1 − x2|
S−1
2 S−1

1

= S−1
1 S−1

2

1

|x1 − x2|
S−1
2 S−1

1

+ S−1
1 S−1

2 ∇∗
1

1

|x1 − x2|
∇1S

−1
2 S−1

1 + S−1
1 S−1

2 ∇∗
1

(x1 − x2)

|x1 − x2|3
S−1
1 S−1

2 ,

and we use the norm-estimates ‖∇1S
−1
1 ‖ < ∞ and ‖S−1

2 |x1 − x2|−αS−1
2 ‖ < ∞ for

all 0 ≤ α ≤ 2 (by (2.49)).

Suppose now that {γ(k)
i,t }k≥1, for i = 1, 2 are two solutions to the infinite hier-

archy (2.40). Using (2.18), we can expand both γ
(k)
1,t and γ

(k)
2,t in a Duhamel series.

From (2.62), and from the fact that ‖U (k)γ(k)‖Hk
= ‖γ(k)‖Hk

, we obtain that∥∥∥γ(k)
1,t − γ

(k)
2,t

∥∥∥
Hk

≤ Cn (k + n)!

k!

∫ t

0

ds1 . . .

∫ sn−1

0

dsn ‖γ(k+n)
1,sn

− γ
(k+n)
2,sn

‖Hk+n

≤ Ck(Ct)n

for any n. Here we used the a-priori bounds (2.61). For t ≤ 1/(2C), the l.h.s.
must vanish. This shows uniqueness for short time, and thus, by iteration, for all
times. �

3. Dynamics of Bose-Einstein Condensates: the Gross-Pitaevskii
Equation

Dilute Bose gases at very low temperature are characterized by the macro-
scopic occupancy of a single one-particle state; a non-vanishing fraction of the total
number of particles N is described by the same one-particle orbital. Although this
phenomenon, known as Bose-Einstein condensation, has been predicted in the early
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days of quantum mechanics, the first experimental evidence for its existence was
only obtained in 1995, in experiments performed by groups led by Cornell and Wie-
man at the University of Colorado at Boulder and by Ketterle at MIT (see [3, 6]).
In these important experiments, atomic gases were initially trapped by magnetic
fields and cooled down at very low temperatures. Then the magnetic traps were
switched off and the consequent time evolution of the gas was observed; for suf-
ficiently small temperatures, it was observed that the gas coherently moves as a
single particle, a clear sign for the existence of condensation.

To describe these experiments from a theoretical point of view, we have, first
of all, to give a precise definition of Bose-Einstein condensation. It is simple to
understand the meaning of condensation if one considers factorized wave functions,
given by the (symmetrization of the) product of one-particle orbitals. In this case, to
decide whether we have condensation, we only have to count the number of particles
occupying every orbital; if there is a single orbital with macroscopic occupancy
the wave function exhibits Bose-Einstein condensation, otherwise it does not. In

particular, wave functions of the form ψN (x) =
∏N

j=1 ϕ(xj), for some ϕ ∈ L2(R3)

(we consider in this section three dimensional systems only), exhibit Bose-Einstein
condensation; since in these examples all particles occupy the same one-particle
orbital, we say that ψN exhibits complete Bose-Einstein condensation in the state
ϕ.

Although factorized wave functions were used as initial data in Theorem 2.1
and Theorem 2.5, they are, from a physical point of view, not very satisfactory,
because they do not allow for any correlation among the particles. Since we would
like to consider systems of interacting particles, the complete absence of correlations
is not a realistic assumption. For this reason, we want to give a definition of Bose-
Einstein condensation, in particular of complete Bose-Einstein condensation, that
applies also to wave functions which are not factorized. To this end, we will make use

of the one-particle density γ
(1)
N associated with an N -particle wave function ψN . By

definition (see (1.4)), the one-particle density is a non-negative trace class operator

on L2(R3) with trace equal to one. It is simple to verify that the eigenvalues of γ
(1)
N

(which are all non-negative and sum up to one) can be interpreted as probabilities
for finding particles in the state described by the corresponding eigenvector (a
one-particle orbital). This observation justifies the following definition of Bose-
Einstein condensation. We will say that a sequence {ψN}N∈N with ψN ∈ L2

s(R
3N )

exhibits complete Bose-Einstein condensation in the one-particle state with orbital
ϕ ∈ L2(R3) if

(3.1) Tr
∣∣∣γ(1)

N − |ϕ〉〈ϕ|
∣∣∣→ 0

as N → ∞. In particular, complete Bose-Einstein condensation implies that the

largest eigenvalue of γ
(1)
N converges to one, asN → ∞. More generally, we say that a

sequence {ψN}N∈N exhibits (not necessarily complete) Bose-Einstein condensation

if the largest eigenvalue of γ
(1)
N remains strictly positive in the limit N → ∞. Note

that condensation is not a property of a single N -particle wave function ψN , but it
is a property characterizing a sequence {ψN}N∈N in the limit N → ∞.

It is in general very difficult to verify that Bose-Einstein condensation occurs in
physically interesting wave functions of interacting systems. There exists, however,
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a class of interacting systems for which complete condensation of the ground state
has been recently established.

In [24], Lieb, Yngvason, and Seiringer considered a trapped Bose gas consisting
of N three-dimensional particles described by the Hamiltonian

(3.2) Htrap
N =

N∑
j=1

(−Δj + Vext(xj)) +
N∑
i<j

VN (xi − xj),

where Vext is an external confining potential with lim|x|→∞ Vext(x) = ∞, and

VN (x) = N2V (Nx), where V is pointwise positive, spherically symmetric, and
rapidly decaying (for simplicity, V can be thought of as being compactly sup-
ported). Note that the potential VN scales with N so that its scattering length is of
the order 1/N (Gross-Pitaevskii scaling). The scattering length of V is a physical
quantity measuring the effective range of the potential; two particles interacting
through V see each others, when they are far apart, as hard spheres with radius
given by the scattering length of V . More precisely, if f denotes the spherical
symmetric solution to the zero-energy scattering equation
(3.3)(

−Δ+
1

2
V (x)

)
f = 0 with boundary condition f(x) → 1 as |x| → ∞,

the scattering length of V is defined by

a0 = lim
|x|→∞

|x| − |x|f(x) .

This limit can be proven to exist if V decays sufficiently fast at infinity. Another
equivalent characterization of the scattering length is given by

(3.4) 8πa0 =

∫
dxV (x)f(x) .

It is simple to verify that, if f solves (3.3), the rescaled function fN (x) = f(Nx)
solves the zero energy scattering equation with rescaled potential VN , that is

(3.5)

(
−Δ+

1

2
VN

)
fN = 0 with fN (x) → 1 as |x| → ∞ .

This implies immediately that the scattering length of VN is given by a = a0/N ,
where a0 is the scattering length of the unscaled potential V . Note that, for |x| � a,
fN (x) � 1 − a/|x|. For |x| < a, fN remains bounded; for practical purposes, we
can think of this function as fN (x) � 1− a/(|x|+ a).

Letting N → ∞, Lieb, Yngvason, and Seiringer showed that the ground state
energy E(N) of (3.2) divided by the number of particle N converges to

lim
N→∞

E(N)

N
= min

ϕ∈L2(R3): ‖ϕ‖=1
EGP(ϕ)

where EGP is the Gross-Pitaevskii energy functional

(3.6) EGP(ϕ) =

∫
dx
(
|∇ϕ(x)|2 + Vext(x)|ϕ(x)|2 + 4πa0|ϕ(x)|4

)
.

Later, in [22], Lieb and Seiringer also proved that the ground state of the
Hamiltonian (3.2) exhibits complete Bose-Einstein condensation into the minimizer
of the Gross-Pitaevskii energy functional EGP. More precisely they showed that, if
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ψN is the ground state wave function of the Hamiltonian (3.2) and if γ
(1)
N denotes

the corresponding one-particle marginal, then

(3.7) γ
(1)
N → |φGP〉〈φGP| as N → ∞ ,

where φGP ∈ L2(R3) is the minimizer of the Gross-Pitaevskii energy functional
(3.6).

To describe the experiments mentioned above, it is important to understand the
time-evolution of the Bose-Einstein condensate after removing the external traps.
We define therefore the translation invariant Hamiltonian

(3.8) HN =

N∑
j=1

−Δj +

N∑
i<j

VN (xi − xj)

and we consider solutions to the N -particle Schrödinger equation

(3.9) i∂tψN,t = HNψN,t ⇒ ψN,t = e−iHN tψN

with initial data ψN exhibiting complete Bose-Einstein condensation. In a series
of joint articles with L. Erdős and H.-T. Yau, see [12, 13, 14, 15], we prove that,
for every fixed time t ∈ R, the evolved N -particle wave function ψN,t still exhibits
complete Bose-Einstein condensation. Moreover we show that the time evolution of
the condensate wave function evolves according to the one-particle time-dependent
Gross-Pitaevskii equation associated with the energy functional EGP. Our main
result is the following theorem.

Theorem 3.1. Suppose that V ≥ 0 is spherically symmetric and V (x) ≤
C〈x〉−σ, for some σ > 5, and for all x ∈ R3. Assume that the family {ψN}N∈N

with ψN ∈ L2
s(R

3N ) and ‖ψN‖ = 1 for all N , has finite energy per particle, that is

(3.10) 〈ψN , HNψN 〉 ≤ CN

for all N ∈ N, and that it exhibits complete Bose-Einstein condensation in the sense
that

(3.11) Tr
∣∣∣γ(1)

N − |ϕ〉〈ϕ|
∣∣∣→ 0

as N → ∞ for some ϕ ∈ L2(R3). Then, for every k ≥ 1 and t ∈ R, we have

(3.12) Tr
∣∣∣γ(k)

N,t − |ϕt〉〈ϕt|⊗k
∣∣∣→ 0

as N → ∞. Here ϕt is the solution of the nonlinear Gross-Pitaevskii equation

(3.13) i∂tϕt = −Δϕt + 8πa0|ϕt|2ϕt

with initial data ϕt=0 = ϕ.

Making use of an approximation of the initial N -particle wave function (simi-
larly to (2.44)), it is possible to replace the assumption (3.10) with the much more
stringent condition

(3.14) 〈ψN , Hk
NψN 〉 ≤ CkNk

for all k ∈ N. In the following we will illustrate the main ideas involved in the proof
of Theorem 3.1, assuming the initial wave function ψN to satisfy (3.14).
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3.1. Comparison with Mean-Field Systems. The formal relation of the
Hamiltonian (3.8) with the mean-field Hamiltonian (2.1) considered in Section 2 is
evident; (3.8) can in fact be rewritten as

(3.15) HN =
N∑
j=1

−Δj +
1

N

∑
i<j

vN (xi − xj)

with vN (x) = N3V (Nx). Since we are considering three dimensional systems, vN
converges to a delta-function in the limit of large N ; at least formally, as N → ∞,
we have vN (x) → b0δ(x), where b0 =

∫
V (x)dx. In other words, the Hamiltonian

(3.8) in the Gross-Pitaevskii scaling can be formally interpreted as a mean field
Hamiltonian with an N -dependent potential which converges, as N → ∞, to a
δ-function. Despite the formal similarity, it should be stressed that the physics de-
scribed by the Gross-Pitaevskii Hamiltonian is completely different from the physics
described by the mean field Hamiltonian (2.1). In a mean-field system, each parti-
cle typically interacts with all other particles through a very weak potential. The
Gross-Pitaevskii Hamiltonian (3.8), on the other hand, describes a very dilute gas,
where interactions are very rare and at the same time very strong. Although the
physics described by (2.1) and (3.8) are completely different, due to the formal sim-
ilarity of the two models, we may try to apply the strategy discussed in Section 2.3
to prove Theorem 3.1. In other words, we may try to prove Theorem 3.1 by showing

the compactness of the sequence ΓN,t = {γ(k)
N,t}Nk=1 with respect to an appropriate

weak topology (it is going to be the same topology introduced in Section 2.3), the
convergence to an infinite hierarchy similar to (2.33), and the uniqueness of the
solution to the infinite hierarchy. It turns out that it is indeed possible to extend
the general strategy introduced in Section 2.3 to prove Theorem 3.1; however, as
we will see, many important modifications of the arguments used for bounded or
for Coulomb potential are required. We discuss next the main changes.

First of all, the simple observation that, formally, vN (x) → b0δ(x) as N → ∞
may lead to the conclusion that the evolution of the condensate wave function ϕt

should be described by the nonlinear Hartree equation (2.9) with V replaced by
b0δ, that is by the equation

(3.16) i∂tϕt = −Δϕt + b0(δ ∗ |ϕt|2)ϕt = −Δϕt + b0|ϕt|2ϕt .

Comparing with (3.13), we note that (3.16) is characterized by a different coupling
constant in front of the nonlinearity. The emergence of the scattering length in the
Gross-Pitaevskii equation (3.13) is the consequence of a subtle interplay between
the N -dependent interaction potential and the short scale correlation structure de-
veloped by the solution of the N -particle Schrödinger equation ψN,t (as we will see,
the correlation structure varies on lengths of the order 1/N , the same lengthscale
characterizing the interaction potential). This remark implies that, in order to
prove the convergence to the infinite hierarchy (where the coupling constant 8πa0
already appears), we will need to identify the singular correlation structure of ψN,t

(which is then inherited by the marginal densities γ
(k)
N,t). This is one of the main

difficulties in the proof of the convergence, which was completely absent in the
analysis of mean-field systems presented in Section 2; we will discuss it in more
details in Section 3.2 and in Section 3.3.
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The presence of the correlation structure in ψN,t also affects the proof of a-priori
bounds

(3.17) Tr (1−Δ1) . . . (1−Δk)γ
(k)
∞,t ≤ Ck

for all k ≥ 1, t ∈ R, for the limit points Γ∞,t = {γ(k)
∞,t}k≥1 of the marginal densities

ΓN,t = {γ(k)
N,t}Nk=1 associated with ψN,t. As in the case of a Coulomb potential

discussed in Section 2.4, these a-priori bounds play a fundamental role because
they allow us to restrict the proof of the uniqueness to a smaller class of densities.

In Section 2.4, we derived the a-priori bounds for γ
(k)
∞,t making use of the estimates

(2.46) which hold uniformly in N , for N sufficiently large (in turns, the bounds
(2.46) were obtained through the energy estimates of Proposition 2.7). In the
present setting, however, bounds of the form

(3.18) Tr (1−Δ1) . . . (1−Δk)γ
(k)
N,t ≤ Ck

cannot hold uniformly in N , because of the short scale correlation structure devel-
oped by the solution of the Schrödinger equation. Remember in fact that the short
scale structure varies on the length scale 1/N ; therefore, when we take derivatives

of γ
(k)
N,t as in (3.18), we cannot expect to obtain bounds uniform in N (unless we

take only one derivative, because of energy conservation). Although the marginals

γ
(k)
N,t, for large but finite N , do not satisfy the strong estimates (3.18), it turns out

that one can still prove the a-priori bound (3.17) on the limit point γ
(k)
∞,t. This is

indeed possible because in the weak limit N → ∞, the singular short scale cor-

relation structure characterizing the marginal densities γ
(k)
N,t disappears, producing

limit points γ
(k)
∞,t which are much more regular than the densities γ

(k)
N,t. Because of

the absence of estimates of the form (3.18) for γ
(k)
N,t, the proof of the a-priori bounds

for the limit points γ
(k)
∞,t requires completely new ideas with respect to what has

been discussed in Section 2.4; we briefly discuss the most important ones in Section
3.4.

Finally, the singularity of the interaction potential strongly affects the proof of
the uniqueness of the solution to the infinite hierarchy. In Section 2.4, the main
idea to prove the uniqueness of the infinite hierarchy was to expand the solution in
a Duhamel series and to control all Coulomb potentials appearing in the expansion
through Laplacians acting on appropriate variables and at the end to control the
expectation of the Laplacians through the a-priori bounds (2.46) on the densities

γ
(k)
∞,t. In this argument, it was very important that the Coulomb potential can be

controlled by the kinetic energy, in the sense of the operator inequality

(3.19)
1

|x| ≤ C(1−Δ) .

In the present setting, the Coulomb potential has to be replaced by a δ-function.
In three dimensions, the δ-potential cannot be controlled by the kinetic energy. In
other words, the bound

δ(x) ≤ C(1−Δ)α

is not true for α = 1; it only holds if α > 3/2 (in three dimensions, the L∞

norm of a function can be controlled by the Hα-norm, only if α > 3/2). This
observation implies that the a-priori bounds (3.17) are not sufficient to conclude
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the proof of the uniqueness of the infinite hierarchy with delta-interaction (while
similar bounds were enough to prove the uniqueness of the infinite hierarchy with
Coulomb potential). Since it does not seem possible to improve the a-priori bounds
to gain control of higher derivatives (one would need more than 3/2 derivatives per
particle), we need new techniques to prove the uniqueness of the infinite hierarchy.
We will briefly discuss these new methods in Section 3.5.

3.2. Convergence to the Infinite Hierarchy. The goal of this section is
to discuss the main ideas used to prove the next proposition which identifies limit

points of the sequence ΓN,t = {γ(k)
N,t}Nk=1 as solutions to a certain infinite hierarchy

of equations (this proposition replaces Proposition 2.3, which was stated for mean-
field systems with bounded interaction potential).

Proposition 3.2. Suppose that V ≥ 0, with V (x) ≤ C〈x〉−σ, for some σ > 5,
and for all x ∈ R3. Assume that the sequence ψN satisfies ( 3.11) and the additional

assumption ( 3.14). Fix T > 0 and let Γ∞,t = {γ(k)
∞,t}k≥1 ∈

⊕
k≥1C([0, T ],L1

k) be

a limit point of ΓN,t = {γ(k)
N,t}Nk=1 (with respect to the product topology τprod defined

in Section 2.3). Then Γ∞,t is a solution to the infinite hierarchy
(3.20)

γ
(k)
∞,t = U (k)(t)γ

(k)
∞,0 − 8πa0i

k∑
j=1

∫ t

0

dsU (k)(t− s)Trk+1

[
δ(xj − xk+1), γ

(k+1)
∞,s

]

with initial data γ
(k)
∞,0 = |ϕ〉〈ϕ|⊗k (see ( 2.13) for the definition of U (k)).

The detailed proof of this proposition can be found in [15, Theorem 8.1] (for
small interaction potential, see also [13, Theorem 7.1]).

To prove the proposition, we start by studying the time-evolution of the mar-

ginal densities γ
(k)
N,t, which is governed by the BBGKY hierarchy. In integral form,

the BBGKY hierarchy is given by

γ
(k)
N,t = U (k)(t)γ

(k)
N,0 − i

k∑
i<j

∫ t

0

dsU (k)(t− s)
[
VN (xi − xj), γ

(k)
N,s

]

− i(N − k)

k∑
j=1

∫ t

0

ds U (k)(t− s) Trk+1

[
VN (xj − xk+1), γ

(k+1)
N,s

]
.

(3.21)

Assuming (by passing to an appropriate subsequence) that ΓN,t → Γ∞,t as N → ∞
with respect to the product topology τprod introduced in Section 2.3, it is simple to
prove that the l.h.s. and the first term on the r.h.s. of (3.21) converge, as N → ∞,
to the l.h.s. and, respectively, to the first term on the r.h.s. of (3.20). The second
term on the r.h.s. of (3.21), on the other hand, can be proven to vanish in the
limit N → ∞ (at least formally, this follows by the observation that the second
term is smaller by a factor of N w.r.t. the third term). The fact that the second
term on the r.h.s. of (3.21) is negligible in the limit N → ∞ (compared with the
third term) corresponds to the physical intuition that the interactions among the
first k particles affect their time-evolution less than their interaction with the other
(N − k) particles.

To conclude the proof of Proposition 3.2, we only need to show that the third
term on the r.h.s. of (3.21) converges, as N → ∞, to the last term on the r.h.s.
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of (3.20). As already remarked in Section 3.1, this convergence relies critically on

the correlation structure characterizing the (k+1)-particle density γ
(k+1)
N,t . A naive

approach, based on the observation that (N − k)VN (xj − xk+1) � N3V (N(xj −
xk+1)) � b0δ(xj − xk+1) for large N , fails to explain the coupling constant in
front of the last term on the r.h.s. of (3.20). The emergence of the scattering
length can only be understood by taking into account the correlation structure of

γ
(k+1)
N,t . Assuming for a moment that the correlations can be described, in good

approximation, by the solution fN to the zero-energy scattering equation (3.5), we
can expect that, for large N ,

(3.22) γ
(k+1)
N,t (xk+1;x

′
k+1) � fN (xj − xk+1)γ

(k+1)
∞,t (xk+1;x

′
k+1)

in the region where xj − xk+1 is of the order 1/N (and all other variables are at

larger distances). Assuming some regularity of the limit point γ
(k+1)
∞,t , and using

(3.4), the approximation (3.22) immediately leads to

(
Trk+1(N − k)VN (xj − xk+1)γ

(k+1)
N,t

)
(xk;x

′
k)

�
∫

dxk+1 N
3V (N(xj − xk+1))f(N(xj − xk+1))γ

(k+1)
∞,t (xk, xk+1;x

′
k, xk+1)

=

∫
dy V (y)f(y)γ

(k+1)
∞,t

(
xk, xj +

y

N
;x′

k, xj +
y

N

)

�
(∫

dy V (y)f(y)

)
γ
(k+1)
∞,t (xk, xj ;x

′
k, xj)

= 8πa0

∫
dxk+1 δ(xj − xk+1)γ

(k+1)
∞,t (xk, xk+1;x

′
k, xk+1)

(3.23)

and thus explains the emergence of the scattering length on the r.h.s. of (3.20)
(note that the third term on r.h.s. of (3.21) is a commutator and thus produces two
summands; in (3.23) we only consider one of these terms, the other can be handled
analogously). This heuristic argument shows that in order to prove Proposition 3.2
we need to identify the short scale structure of the marginal densities and prove
that it can be described by the function fN as in (3.22). To this end we are going
to use energy estimates. In [13] and [15], we developed two different approaches
to this problem. The first approach is simpler, but it only works for sufficiently
small interaction potentials. The second approach is a little bit more involved, but
it can be used for all potentials satisfying the assumptions of Theorem 3.1. In the
following we will focus on the first, simpler, approach; in the next subsection, we
present the main ideas of the second approach.

To measure the strength of the interaction potential V , we define the dimen-
sionless constant

(3.24) ρ = sup
x∈R3

|x|2V (x) +

∫
dx

|x|V (x).

Proposition 3.3. Assume that the potential V satisfies the conditions of The-
orem 3.1, and suppose that ρ > 0 is sufficiently small. Then there exists C > 0
such that

(3.25) 〈ψ,H2
Nψ〉 ≥ CN2

∫
dx

∣∣∣∣∇i∇j
ψ(x)

fN (xi − xj)

∣∣∣∣
2
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for all i 
= j and for all ψ ∈ L2
s(R

3N , dx).

This energy estimate, combined with the assumption (3.14) on the initial
wave function ψN , leads to the following a-priori bounds on the solution ψN,t =
e−iHN tψN of the Schrödinger equation (3.9).

Corollary 3.4. Assume that V satisfies the conditions of Theorem 3.1, and
suppose that ρ > 0 is sufficiently small. Suppose that ψN satisfies ( 3.10) and
( 3.14). Then we have

(3.26)

∫
dx

∣∣∣∣∇i∇j
ψN,t(x)

fN (xi − xj)

∣∣∣∣
2

≤ C

for all i 
= j, uniformly in N ∈ N and in t ∈ R. Therefore, if γ
(k)
N,t denotes the

k-particle marginal associated with ψN,t, we have, for every 1 ≤ i, j ≤ k with i 
= j,

Tr (1−Δi)(1−Δj)
1

fN (xi − xj)
γ
(k)
N,t

1

fN (xi − xj)
≤ C

uniformly in N ∈ N and in t ∈ R.

Proof. Using (3.25), the conservation of the energy along the time evolution,
and the assumption (3.14) on the initial wave function ψN , we find∫

dx

∣∣∣∣∇i∇j
ψN,t(x)

fN (xi − xj)

∣∣∣∣
2

≤ CN−2〈ψN,t, H
2
NψN,t〉 = CN−2〈ψN , H2

NψN 〉 ≤ C.

�

Remark that the a-priori bounds (3.26) cannot hold true if we do not divide
the solution ψN,t of the Schrödinger equation by fN (xi − xj). In fact, using that
fN (x) � 1− a0/(N |x|+ 1), it is simple to check that∫

dx |∇2fN (x)|2 � N .

This implies that, if we replace ψN,t(x)/fN (xi−xj) by ψN (x) the integral in (3.26)
would be of order N . Only after removing the singular factor fN (xi − xj) from
ψN,t(x) we can obtain useful bounds on the regular part of the wave function (reg-
ular in the variable (xi − xj)). These a-priori bounds allow us to identify the
correlation structure of the wave function ψN,t and to show that, when xi and xj

are close to each other, ψN,t(x) can be approximated by the time independent cor-
relation factor fN (xi−xj), which varies on the length scale 1/N , multiplied with a
regular part (which only varies on scales of order one). In other words, the bounds
(3.26) establish a strong separation of scales for the solution ψN,t of the N -particle
Schrödinger equation, and for its marginal densities; on length scales of order 1/N ,
ψN,t is characterized by a singular, time independent, short scale correlation struc-
ture described by the the solution fN to the zero-energy scattering equation. On
scales of order one, on the other hand, the wave function ψN,t is regular, and, as
it follows from Theorem 3.1, it can be approximated, in an appropriate sense, by
products of the solution to the time-dependent Gross-Pitaevskii equation. Remark
that although the short-scale correlation structure is time independent, it still af-
fects, in a non-trivial way, the time-evolution on length scales of order one (because
it produces the scattering length in the Gross-Pitaevskii equation).
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Proof of Proposition 3.3. We decompose the Hamiltonian (3.8) as

HN =
N∑
j=1

hj with hj = −Δj +
1

2

∑
i
=j

VN (xi − xj) .

For an arbitrary permutation symmetric wave function ψ and for any fixed i 
= j,
we have

〈ψ,H2
Nψ〉 = N〈ψ, h2

iψ〉+N(N − 1)〈ψ, hihjψ〉 ≥ N(N − 1)〈ψ, hihjψ〉 .

Using the positivity of the potential, we find
(3.27)

〈ψ,H2
Nψ〉 ≥ N(N − 1)

〈
ψ,

(
−Δi +

1

2
VN (xi − xj)

)(
−Δj +

1

2
VN (xi − xj)

)
ψ

〉
.

Next, we define φ(x) by ψ(x) = fN (xi−xj)φ(x) (φ is well defined because fN (x) >
0 for all x ∈ R3); note that the definition of the function φ depends on the choice
of i, j. Then

1

fN (xi − xj)
Δi (fN (xi − xj)φ(x))

= Δiφ(x) +
(ΔfN )(xi − xj)

fN (xi − xj)
φ(x) + 2

∇fN (xi − xj)

fN (xi − xj)
∇iφ(x) .

From (3.3) it follows that

1

fN (xi − xj)

(
−Δi +

1

2
VN (xi − xj)

)
fN (xi − xj)φ(x) = Liφ(x)

and analogously

1

fN (xi − xj)

(
−Δj +

1

2
VN (xi − xj)

)
fN (xi − xj)φ(x) = Ljφ(x)

where we defined

L	 = −Δ	 + 2
∇	 fN (xi − xj)

fN (xi − xj)
∇	, for � = i, j .

Remark that, for � = i, j, the operator L	 satisfies

∫
dx f2

N (xi − xj) L	 φ(x) ψ(x) =

∫
dx f2

N (xi − xj) φ(x) L	 ψ(x)

=

∫
dx f2

N (xi − xj) ∇	 φ(x) ∇	 ψ(x) .
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Therefore, from (3.27), we obtain

〈ψ,H2
Nψ〉 ≥ N(N − 1)

∫
dx f2

N (xi − xj) Li φ(x)Lj φ(x)

= N(N − 1)

∫
dx f2

N (xi − xj) ∇iφ(x)∇iLj φ(x)

= N(N − 1)

∫
dx f2

N (xi − xj) ∇iφ(x)Lj ∇iφ(x)

+N(N − 1)

∫
dx f2

N (xi − xj) ∇iφ(x) [∇i, Lj ]φ(x)

= N(N − 1)

∫
dx f2

N (xi − xj) |∇j∇iφ(x)|2

+N(N − 1)

∫
dx f2

N (xi − xj)

(
∇i

∇fN (xi − xj)

fN (xi − xj)

)
∇iφ(x)∇jφ(x) .

(3.28)

To control the second term on the right hand side of the last equation we use bounds
on the function fN , which can be derived from the zero energy scattering equation
(3.3):

(3.29) 1− Cρ ≤ fN (x) ≤ 1, |∇fN (x)| ≤ C
ρ

|x| , |∇2fN (x)| ≤ C
ρ

|x|2

for constants C independent of N and of the potential V (recall the definition of
the dimensionless constant ρ from (3.24)). Therefore, for ρ < 1,∣∣∣ ∫ dx f2

N (xi − xj)

(
∇i

∇fN (xi − xj)

fN (xi − xj)

)
∇iφ(x)∇jφ(x)

∣∣∣
≤ Cρ

∫
dx

1

|xi − xj |2
|∇iφ(x)| |∇jφ(x)|

≤ Cρ

∫
dx

1

|xi − xj |2
(
|∇iφ(x)|2 + |∇jφ(x)|2

)
≤ Cρ

∫
dx |∇i∇jφ(x)|2

where we used Hardy inequality. Thus, from (3.28), and using again the first bound
in (3.29), we obtain

〈ψ,H2
Nψ〉 ≥ N(N − 1)(1− Cρ)

∫
dx |∇i∇jφ(x)|2

which implies (3.25). �

Equipped with the a-priori bounds of Corollary 3.4, we can now come back to
the problem of proving the convergence of the last term on the r.h.s. of (3.21) to
the last term on the r.h.s. of (2.6). For simplicity, we consider the case k = 1, and
we only discuss the term with the interaction potential on the left of the density
(the commutator also has a term with the interaction on the right of the density,
which can be handled analogously). After multiplying with a smooth one-particle
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observable J (1) (a compact operator on L2(R3), with sufficiently smooth kernel),
we need to prove that

Tr
(
U (1)(s− t)J (1)

)(
N3V (N(x1 − x2))γ

(2)
N,t − 8πa0δ(x1 − x2)γ

(2)
∞,t

)
→ 0

as N → ∞. To this end we decompose the difference in several terms. We use the

notation J
(1)
t = U (1)(t)J (1), and, for a bounded function h(x) ≥ 0 with

∫
dxh(x) =

1, we define hα(x) = α−3h(α−1x) for all α > 0. Then we have

Tr
(
U (1)(s− t)J (1)

)(
N3V (N(x1 − x2))γ

(2)
N,t − 8πa0δ(x1 − x2)γ

(2)
∞,t

)
= Tr J

(1)
s−t N

3V (N(x1 − x2))f(N(x1 − x2))

× 1

f(N(x1 − x2))
γ
(2)
N,t

1

f(N(x1 − x2))
(f(N(x1 − x2))− 1)

+ Tr J
(1)
s−t

(
N3V (N(x1 − x2))f(N(x1 − x2))− 8πa0δ(x1 − x2)

)
× 1

f(N(x1 − x2))
γ
(2)
N,t

1

f(N(x1 − x2))

+ 8πa0 Tr J
(1)
s−t (δ(x1 − x2)− hα(x1 − x2))

1

f(N(x1 − x2))
γ
(2)
N,t

1

f(N(x1 − x2))

+ 8πa0 Tr J
(1)
s−thα(x1 − x2)

(
1

f(N(x1 − x2))
γ
(2)
N,t

1

f(N(x1 − x2))
− γ

(2)
N,t

)

+ 8πa0 Tr J
(1)
s−thα(x1 − x2)

(
γ
(2)
N,t − γ

(2)
∞,t

)
+ 8πa0 Tr J

(1)
s−t (hα(x1 − x2)− δ(x1 − x2)) γ

(2)
∞,t .

(3.30)

The idea here is that in order to compare the N -dependent potential N3V (N(x1−
x2)) with the limiting δ-potential, we have to test it against a regular density (using
an appropriate Poincaré inequality). For this reason, we first regularize the density

γ
(2)
N,t in the variable (x1 − x2) dividing it by the correlation function fN (x1 − x2)

on the left and the right (first term on the r.h.s. of the last equation). Using

the regularity of f−1
N (x1 − x2)γ

(2)
N,tf

−1
N (x1 − x2) from Corollary 3.4, we can then

compare, in the regime of large N , the interaction potential with the delta-function
(second term on the r.h.s.). At this point we are still not done, because, in order to
remove the regularizing factors f−1

N (x1 − x2) (fourth term on the r.h.s. of (3.30))

and in order to replace the density γ
(2)
N,t by its limit point γ

(2)
∞,t (fifth term on the

r.h.s. of (3.30)), we need to test the density against a compact observable. For this
reason, in the third term on the r.h.s. of (3.30), we replace the δ-function (which
is of course not bounded) by the function hα which approximate the delta-function
on the length scale α; it is important here that α is now decoupled from N . In the
last term, after removing all the N dependence, we go back to the δ-potential using

the regularity of the limiting density γ
(2)
∞,t.

To control the first and fourth term on the r.h.s. of (3.30), we use the fact that
1 − fN (x1 − x2) � 1/(N |x1 − x2| + 1) varies on a length scale of order 1/N . It
follows that the first term converges to zero as N → ∞, as well as the fourth term,
for every fixed α > 0. To estimate the second, the third and the last term, we make
use of appropriate Poincaré inequalities, combined with the result of Corollary 3.4
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and, for the last term, of Proposition 3.7 (we present an example of a Poincaré
inequality, which can be used to estimate these terms in Appendix A). It follows
that the second term converges to zero as N → ∞, and that the third and the fifth
terms converge to zero as α → 0, uniformly in N . Finally, the fifth term on the
r.h.s. of (3.30) converges to zero as N → ∞, for every fixed α; this follows from

the assumption that γ
(2)
N,t → γ

(2)
∞,t as N → ∞ with respect to the weak* topology

(some additional work has to be done here, because the operator J
(1)
s−thα(x1 − x2)

is not compact). Therefore, if we first fix α > 0 and let N → ∞ and then we let
α → 0 all terms on the r.h.s. of (3.30) converge to zero; this concludes the proof of
Proposition 3.2.

3.3. Convergence for Large Interaction Potentials. As pointed out in
Section 3.2, the energy estimate given in Proposition 3.3, which was a crucial in-
gredient for the proof of Proposition 3.2, only holds for sufficiently small potentials
(for sufficiently small values of the parameter ρ defined in (3.24)). For large po-
tentials, we need a different approach. The new technique, developed in [15], is
based on the use of the wave operator associated with the one-particle Hamiltonian
hN = −Δ+ (1/2)VN , defined through the strong limit

(3.31) WN = s− lim
t→∞

eihN teiΔt .

Under the assumptions of Theorem 3.1 on the potential V , it is simple to show that
the limit (3.31) exists, that the wave operator WN is complete, in the sense that

W−1
N = W ∗

N = s− lim
t→∞

e−iΔte−ihN t ,

and that it satisfies the intertwining relation

(3.32) W ∗
N hWN = −Δ .

It is also important to observe that the wave operator WN is related by simple
scaling to the wave operator W associated with the one-particle Hamiltonian h =
−Δ+(1/2)V (and defined analogously to (3.31)). In fact, if WN (x;x′) and W (x;x′)
denote the kernels of WN and, respectively, of W , we have

WN (x;x′) = N3W (Nx;Nx′) and W ∗
N (x;x′) = N3W ∗(Nx;Nx′) .

In particular this implies that the norm of WN , as an operator from Lp(R3) to
Lp(R3), for arbitrary 1 ≤ p ≤ ∞, is independent of N . From the work of Yajima,
see [32, 33], we know that, under the conditions on V assumed in Theorem 3.1, W
is a bounded operator from Lp(R3) to Lp(R3), for all 1 ≤ p ≤ ∞. Therefore

‖WN‖Lp→Lp = ‖W‖Lp→Lp < ∞ for all 1 ≤ p ≤ ∞ .

In the following we will denote by WN,(i,j) the wave operator WN acting only on
the relative variable xj − xi. In other words, the action of WN,(i,j) on a N -particle

wave function ψN ∈ L2(R3N ) is given by

(
WN,(i,j)ψN

)
(x)

=

∫
dv WN (xj − xi; v)ψN

(
x1, . . . ,

xi + xj

2
+

v

2
, . . . ,

xi + xj

2
− v

2
, . . . , xN

)
(3.33)
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if j < i (the formula for i > j is similar). Similarly, we define W ∗
N,(i,j). Using

the wave operator we have the following energy estimate, which replaces Proposi-
tion 3.3, and whose proof can be found in [15, Proposition 5.2].

Proposition 3.5. Suppose V ≥ 0, V ∈ L1(R3) ∩ L2(R3) and V (x) = V (−x)
for all x ∈ R3. Then we have, for every i 
= j,

(3.34) 〈ψN , H2
NψN 〉 ≥ CN2

∫
dx
∣∣∣(∇i · ∇j) W

∗
N,(i,j)ψN

∣∣∣2 .

From Proposition 3.5, we obtain immediately an a-priori bound on ψN,t and
on its marginal densities.

Corollary 3.6. Assume that V satisfies the conditions of Theorem 3.1. Sup-
pose that ψN satisfies ( 3.10) and ( 3.14). Then we have, for all i 
= j,

(3.35)

∫
dx
∣∣∣(∇i · ∇j)W

∗
N,(i,j)ψN,t(x)

∣∣∣2 ≤ C

uniformly in N ∈ N and t ∈ R. Therefore, if γ
(k)
N,t denote the k-particle marginal

associated with ψN,t, we have, for every 1 ≤ i, j ≤ k with i 
= j,

Tr
(
(∇i · ∇j)

2 −Δi −Δj + 1
)
W ∗

N,(i,j)γ
(k)
N,tWN,(i,j) ≤ C

uniformly in N ∈ N and in t ∈ R.

The philosophy of the bounds (3.35) and (3.26) is the same; first we have to
regularize the wave function ψN,t, and then we can prove useful bounds on its
derivatives. There are however important differences. In (3.26) we regularized ψN,t

in position space, by factoring out the short scale correlation structure fN (xi−xj).
In (3.35), instead, we regularize ψN,t applying the wave operator W ∗

N,(i,j). Another

important difference is that (3.35) is weaker than (3.26); in fact, (3.35) only gives a

control on the combination
∑3

α=1 ∂xi,α
∂xj,α

, while (3.26) controls ∂xi,α
∂xj,β

for all
1 ≤ α, β ≤ 3. The weakness of the bound (3.35) makes the proof of the convergence
more difficult. In particular we have to establish new Poincaré inequalities, which
only require control of the inner product ∇i · ∇j . It turns out that the weaker
control provided by (3.35) is still enough to conclude the proof of convergence to
the infinite hierarchy (Proposition 3.2). For more details, see [15, Section 8].

3.4. A-Priori Estimates on Limit Points Γ∞,t. In this section we present
some of the arguments involved in the proof of the a-priori bounds (3.17).

Proposition 3.7. Assume that V satisfies the conditions of Theorem 3.1. Sup-

pose ψN satisfies ( 3.10) and ( 3.14). Let Γ∞,t = {γ(k)
∞,t}k≥1 ∈

⊕
k≥1 C([0, T ],L1

k) be

a limit point of the sequence ΓN,t = {γ(k)
N,t}Nk=1 with respect to the product topology

τprod defined in Section 2.3. Then γ
(k)
∞,t ≥ 0 and there exists a constant C such that

(3.36) Tr (1−Δ1) . . . (1−Δk)γ
(k)
∞,t ≤ Ck

for all k ≥ 1 and t ∈ [0, T ].

The main difficulty in proving Proposition 3.7 is the fact that the estimate

(3.36) does not hold true if we replace γ
(k)
∞,t with the marginal density γ

(k)
N,t. More

precisely,

(3.37) Tr (1−Δ1) . . . (1−Δk)γ
(k)
N,t ≤ Ck
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cannot hold true with a constant C independent of N . In fact, for finite N and

k > 1, the k-particle density γ
(k)
N,t still contains the singular short scale correlation

structure. For example, when particle one and particle two are very close to each
other (at distances of order 1/N), we can expect the two-particle density to be
approximately given by

γ
(2)
N,t(x2,x

′
2) � const fN (x1 − x2)fN (x′

1 − x′
2)

(the constant part takes into account factors which vary on larger scales). It is then
simple to check that

Tr (1−Δ1)(1−Δ2)γ
(2)
N,t � N .

Only after taking the weak limit N → ∞, the short scale correlation structure
disappears (because it varies on a length scale of order 1/N), and one can hope to
prove bounds like (3.36).

To overcome this problem, we cutoff the wave function ψN,t when two or more
particles come at distances smaller than some intermediate length scale �, with
N−1 � � � 1 (more precisely, the cutoff will be effective only when one or more
particles come close to one of the variable xj over which we want to take derivatives).
For fixed j = 1, . . . , N , we define θj ∈ C∞(R3N ) such that

θj(x) �
{

1 if |xi − xj | � � for all i 
= j
0 if there exists i 
= j with |xi − xj | � �

.

It is important, for our analysis, that θj controls its derivatives (in the sense that,

for example, |∇iθj | ≤ C�−1θ
1/2
j ); for this reason we cannot use standard compactly

supported cutoffs. Instead we have to construct appropriate functions which decay
exponentially when particles come close together (the prototype of such function

is θ(x) = exp[−�−ε exp(−
√
(x/�)2 + 1)]). Making use of the functions θj(x), we

prove the following higher order energy estimates.

Proposition 3.8. Choose � � 1 such that N�2 � 1. Then there exist con-
stants C1 and C2 such that, for any ψ ∈ L2

s(R
3N ),

(3.38) 〈ψ, (HN + C1N)kψ〉 ≥ C2N
k

∫
dx θ1(x) . . . θk−1(x) |∇1 . . .∇kψ(x)|2 .

The meaning of the bound (3.38) is clear. The L2-norm of the k-th derivative
∇1 . . .∇kψ can be controlled by the expectation of the k-th power of the energy
per particle, if we restrict the integration domain to regions where the first (k− 1)
particles are “isolated” (in the sense that there is no particle at distances smaller
than � from x1, x2, . . . , xk−1).

Note that we can allow one “free derivative”; in (3.38) we take the derivative
over xk although there is no cutoff θk(x). The reason is that the correlation struc-
ture becomes singular, in the L2-sense, only when we derive it twice (if one uses
the zero energy solution fN introduced in (3.3) to describe the correlations, this
can be seen by observing that |∇fN (x)| ≤ 1/|x|, which is locally square integrable).
Remark that the condition N�2 � 1 is necessary to control the error due to the
localization of the kinetic energy on distances of order �. The proof of Proposition
3.8 is based on induction over k; for details see Section 7 in [15].
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From the estimates (3.38), using the preservation of the expectation of Hk
N

along the time evolution and the condition (3.14), we obtain the following bounds
for the solution ψN,t = e−iHN tψN of the Schrödinger equation (3.9).∫

dx θ1(x) . . . θk−1(x) |∇1 . . .∇kψN,t(x)|2 ≤ Ck

uniformly in N and t, and for all k ≥ 1. Translating these bounds in the language
of the density matrix γN,t, we obtain

(3.39) Tr θ1 . . . θk−1∇1 . . .∇kγN,t∇∗
1 . . .∇∗

k ≤ Ck .

The idea now is to use the freedom in the choice of the cutoff length �. If we fix
the position of all particles but xj , it is clear that the cutoff θj is effective at most
in a volume of the order N�3. If we choose � such that N�3 → 0 as N → ∞ (which
is of course compatible with the condition that N�2 � 1), we can expect that, in
the limit of large N , the cutoff becomes negligible. This approach yields in fact the
desired results; starting from (3.39), and choosing � such that N�3 � 1, we can
complete the proof of Proposition 3.7 (see Proposition 6.3 in [13] for more details).

3.5. Uniqueness of the Solution to the Infinite Hierarchy. To complete
the proof of Theorem 3.1 we have to prove the uniqueness of the solution to the
infinite hierarchy (3.20) in the class of densities satisfying the a-priori bounds (3.36).
Remark that the uniqueness of the infinite hierarchy (3.20), in a different class of
densities, was recently proven by Klainerman and Machedon in [25]. The proof
proposed by Klainerman and Machedon is simpler than the proof of Proposition
3.9 which we discuss below. Unfortunately, the result of [25] cannot be applied to
the proof of Theorem 3.1, because it is not yet clear whether limit points of the

sequence of marginal densities ΓN,t = {γ(k)
N,t}Nk=1 fit into the class of densities for

which uniqueness is proven.

Proposition 3.9. Fix T > 0 and Γ = {γ(k)}k≥1 ∈
⊕

k≥1 L1
k. Then there exists

at most one solution Γt = {γ(k)
t }k≥1 ∈

⊕
C([0, T ],Lk) of the infinite hierarchy

( 3.20) with Γt=0 = Γ, such that γ
(k)
t ≥ 0 is symmetric with respect to permutations,

and

(3.40) Tr (1−Δ1) . . . (1−Δk) γ
(k)
t ≤ Ck

for all k ≥ 1 and all t ∈ [0, T ].

In this section we briefly explain some of the main steps involved in the proof
of Proposition 3.9; the details can be found in [12][Section 9].

To shorten the notation, we write the infinite hierarchy (3.20) in the form

(3.41) γt = U (k)(t)γ0 +

∫ t

0

ds U (k)(t− s)B(k)γ(k+1)
s ,

where U (k)(t) denotes the free evolution of k particles

U (k)(t)γ(k) = eit
∑k

j=1 Δjγ(k)e−it
∑k

j=1 Δj
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and the collision operator B(k) maps (k + 1)-particle operators into k-particle op-
erators according to

(3.42) B(k)γ(k+1) = −8iπa0

k∑
j=1

Trk+1

[
δ(xj − xk+1), γ

(k+1)
]
.

The map B(k) is defined as in Section 2; in particular the kernel of B(k)γ(k+1) is
given by the expression on the r.h.s. of (2.11), with V (x) replaced by 8πa0δ(x).

Iterating (3.41) n times we obtain the Duhamel type series

(3.43) γ
(k)
t = U (k)(t)γ

(k)
0 +

n−1∑
m=1

ξ
(k)
m,t + η

(k)
n,t

with

ξ
(k)
m,t =

∫ t

0

ds1 . . .

∫ sm−1

0

dsm U (k)(t− s1)B
(k)U (k+1)(s1 − s2)B

(k+1) . . .

×B(k+m−1)U (k+m)(sm)γ
(k+m)
0

=

k∑
j1=1

k+1∑
j2=1

· · ·
k+m∑
jm=1

∫ t

0

ds1 . . .

∫ sm−1

0

dsm U (k)(t− s1)

× Trk+1

[
δ(xj1 − xk+1),U (k+1)(s1 − s2)Trk+2

[
δ(xj2 − xk+2), . . .

× Trk+m

[
δ(xjm − xk+m),U (k+m)(sm)γ

(k+m)
0

]
. . .
]]

(3.44)

and the error term

η
(k)
n,t =

∫ t

0

ds1

∫ s1

0

ds2 . . .

∫ sn−1

0

dsn U (k)(t− s1)B
(k)U (k+1)(s1 − s2)B

(k+1) . . .

. . . B(k+n−1)γ(k+m)
sn .

(3.45)

Note that the error term (3.45) has exactly the same form as the terms in (3.44),
with the only difference that the last free evolution is replaced by the full evolution

γ
(k+m)
sn .

To prove the uniqueness of the infinite hierarchy, it is enough to prove that the
fully expanded terms (3.44) are well-defined and that the error term (3.45) converges
to zero as n → ∞ (in some norm, or even after testing it against a sufficiently large
class of smooth observables). The main problem here is that the delta function in
the collision operator B(k) cannot be controlled by the kinetic energy (in the sense
that, in three dimensions, the operator inequality δ(x) ≤ C(1 −Δ) does not hold
true). For this reason, the a-priori estimates (3.40) are not sufficient to show that
(3.45) converges to zero, as n → ∞. Instead, we have to make use of the smoothing
effects of the free evolutions U (k+j)(sj−sj+1) in (3.45) (in a similar way, Stricharzt
estimates are used to prove the well-posedness of nonlinear Schrödinger equations).
To this end, we rewrite each term in the series (3.43) as a sum of contributions
associated with certain Feynman graphs, and then we prove the convergence of the
Duhamel expansion by controlling each contribution separately.
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2k+2m leaves2k roots

Vertices:

Figure 1. A Feynman graph in Fm,k and its two types of vertices

The details of the diagrammatic expansion can be found in [12, Section 9].

Here we only sketch the main ideas. We start by considering the term ξ
(k)
m,t in

(3.44). After multiplying it with a compact k-particle observable J (k) and taking
the trace, we expand the result as

(3.46) Tr J (k)ξ
(k)
m,t =

∑
Λ∈Fm,k

KΛ,t

where KΛ,t is the contribution associated with the Feynman graph Λ. Here Fm,k

denotes the set of all graphs consisting of 2k disjoint, paired, oriented, and rooted
trees with m vertices. An example of a graph in Fm,k is drawn in Figure 1. Each
vertex has one of the two forms drawn in Figure 1, with one “father”-edge on the
left (closer to the root of the tree) and three “son”-edges on the right. One of the
son edge is marked (the one drawn on the same level as the father edge; the other
two son edges are drawn below). Graphs in Fm,k have 2k + 3m edges, 2k roots
(the edges on the very left), and 2k+2m leaves (the edges on the very right). It is
possible to show that the number of different graphs in Fm,k is bounded by 24m+k.

The particular form of the graphs in Fm,k is due to the quantum mechanical
nature of the expansion; the presence of a commutator in the collision operator
(3.42) implies that, for every B(k+j) in (3.44), we can choose whether to write
the interaction on the left or on the right of the density. When we draw the
corresponding vertex in a graph in Fm,k, we have to choose whether to attach it
on the incoming or on the outgoing edge.

Graphs in Fm,k are characterized by a natural partial ordering among the ver-
tices (v ≺ v′ if the vertex v is on the path from v′ to the roots); there is, however,
no total ordering. The absence of total ordering among the vertices is the conse-
quence of a rearrangement of the summands on the r.h.s. of (3.44); by removing the
order between times associated with non-ordered vertices we substantially reduce
the number of terms in the expansion. In fact, while (3.44) contains (m + k)!/k!
summands, in (3.46) we are only summing over at most 24m+k contributions. The
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price we have to pay is that the apparent gain of a factor 1/m! due to the ordering
of the time integrals in (3.44) is lost in the new expansion (3.46). However, since we
want to use the time integrations to smooth out singularities it seems quite difficult
to make use of this factor 1/m!. In fact, we find that the expansion (3.46) is better
suited for analyzing the cumulative space-time smoothing effects of the multiple
free evolutions than (3.44).

Because of the pairing of the 2k trees, there is a natural pairing between the
2k roots of the graph. Moreover, it is also possible to define a natural pairing of
the leaves of the graph (this is evident in Figure 1); two leaves �1 and �2 are paired
if there exists an edge e1 on the path from �1 back to the roots, and an edge e2 on
the path from �2 to the roots, such that e1 and e2 are the two unmarked son-edges
of the same vertex (or, in case there is no unmarked sons in the path from �1 and
�2 to the roots, if the two roots connected to �1 and �2 are paired).

For Λ ∈ Fm,k, we denote by E(Λ), V (Λ), R(Λ) and L(Λ) the set of all edges,
vertices, roots and, respectively, leaves in the graph Λ. For every edge e ∈ E(Λ),
we introduce a three-dimensional momentum variable pe and a one-dimensional

frequency variable αe. Then, denoting by γ̂
(k+m)
0 and by Ĵ (k) the kernels of the

density γ
(k+m)
0 and of the observable J (k) in Fourier space, the contribution KΛ,t

in (3.46) is given by

KΛ,t =

∫ ∏
e∈E(Λ)

dpedαe

αe − p2e + iτeμe

∏
v∈V (Λ)

δ

(∑
e∈v

±αe

)
δ

(∑
e∈v

±pe

)

× exp

⎛
⎝−it

∑
e∈R(Λ)

τe(αe + iτeμe)

⎞
⎠ Ĵ (k)

(
{pe}e∈R(Λ)

)
γ̂
(k+m)
0

(
{pe}e∈L(Λ)

)
.

(3.47)

Here τe = ±1, according to the orientation of the edge e. We observe from (3.47)
that the momenta of the roots of Λ are the variables of the kernel of J (k), while

the momenta of the leaves of Λ are the variables of the kernel of γ
(k+m)
0 (this also

explain why roots and leaves of Λ need to be paired).

The denominators (αe − p2e + iτeμe)
−1 are called propagators; they correspond

to the free evolutions in the expansion (3.44) and they enter the expression (3.47)
through the formula

eitp
2

=

∫ ∞

−∞
dα

eit(α+iμ)

α− p2 + iμ

(here and in (3.47) the measure dα is defined by dα = d′α/(2πi) where d′α is the
Lebesgue measure on R).

The regularization factors μe in (3.47) have to be chosen such that μfather =∑
e= son μe at every vertex. The delta-functions in (3.47) express momentum and

frequency conservation (the sum over e ∈ v denotes the sum over all edges adjacent
to the vertex v; here ±αe = αe if the edge points towards the vertex, while ±αe =
−αe if the edge points out of the vertex, and analogously for ±pe).

An analogous expansion can be obtained for the error term η
(k)
n,t in (3.45). The

problem now is to analyze the integral (3.47) (and the corresponding integral for
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the error term). Through an appropriate choice of the regularization factors μe one
can extract the time dependence of KΛ,t and show that

|KΛ,t| ≤ Ck+m tm/4

∫ ∏
e∈E(Γ)

dαedpe
〈αe − p2e〉

∏
v∈V (Γ)

δ

(∑
e∈v

±αe

)
δ

(∑
e∈v

±pe

)

×
∣∣∣Ĵ (k)

(
{pe}e∈R(Γ)

) ∣∣∣ ∣∣∣γ̂(k+m)
0

(
{pe}e∈L(Γ)

) ∣∣∣
(3.48)

where we introduced the notation 〈x〉 = (1 + x2)1/2.

Because of the singularity of the interaction at zero, we may be faced here with
an ultraviolet problem; we have to show that all integrations in (3.48) are finite
in the regime of large momenta and large frequency. Because of (3.40), we know

that the kernel γ̂
(k+m)
0 ({pe}e∈L(Λ)) in (3.48) provides decay in the momenta of the

leaves. From (3.40) we have, in momentum space,∫
dp1 . . .dpn (p21 + 1) . . . (p2n + 1) γ̂

(n)
0 (p1, . . . , pn; p1, . . . , pn) ≤ Cn

for all n ≥ 1. Heuristically, this suggests that

(3.49) |γ̂(k+m)
0 ({pe}e∈L(Λ))| �

∏
e∈L(Λ)

〈pe〉−5/2 ,

where 〈p〉 = (1 + p2)1/2. Using this decay in the momenta of the leaves and the
decay of the propagators 〈αe − p2e〉−1, e ∈ E(Λ), we can prove the finiteness of
all the momentum and frequency integrals in (3.47). On the heuristic level, this
can be seen using a simple power counting argument. Fix κ � 1, and cutoff all
momenta |pe| ≥ κ and all frequencies |αe| ≥ κ2. Each pe-integral scales then as
κ3, and each αe-integral scales as κ2. Since we have 2k + 3m edges in Λ, we have
2k+ 3m momentum- and frequency integrations. However, because of the m delta
functions (due to momentum and frequency conservation), we effectively only have
to perform 2k + 2m momentum- and frequency-integrations. Therefore the whole
integral in (3.47) carries a volume factor of the order κ5(2k+2m) = κ10k+10m. Now,
since there are 2k + 2m leaves in the graph Λ, the estimate (3.49) guarantees a
decay of the order κ−5/2(2k+2m) = κ−5k−5m. The 2k + 3m propagators, on the
other hand, provide a decay of the order κ−2(2k+3m) = κ−4k−6m. Choosing the

observable J (k) so that Ĵ (k) decays sufficiently fast at infinity, we can also gain an
additional decay κ−6k. Since

κ10k+10m · κ−5k−5m−4k−6m−6k = κ−m−5k � 1

for κ � 1, we can expect (3.47) to converge in the large momentum and large fre-
quency regime. Remark the importance of the decay provided by the free evolution
(through the propagators); without making use of it, we would not be able to prove
the uniqueness of the infinite hierarchy.

This heuristic argument is clearly far from rigorous. To obtain a rigorous proof,
we use an integration scheme dictated by the structure of the graph Λ; we start by
integrating the momenta and the frequency of the leaves (for which (3.49) provides
sufficient decay). The point here is that when we perform the integrations over the
momenta of the leaves we have to propagate the decay to the next edges on the
left. We move iteratively from the right to the left of the graph, until we reach
the roots; at every step we integrate the frequencies and momenta of the son edges
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α up
uα rp

r

α wp

p α

w

dd

Figure 2. Integration scheme: a typical vertex

of a fixed vertex and as a result we obtain decay in the momentum of the father

edge. When we reach the roots, we use the decay of the kernel Ĵ (k) to complete
the integration scheme. In a typical step, we consider a vertex as the one drawn in
Figure 2 and we assume to have decay in the momenta of the three son-edges, in
the form |pe|−λ, e = u, d, w (for some 2 < λ < 5/2). Then we integrate over the
frequencies αu, αd, αw and the momenta pu, pd, pw of the son-edges and as a result
we obtain a decaying factor |pr|−λ in the momentum of the father edge. In other
words, we prove bounds of the form
(3.50)∫

dαudαddαwdpudpddpw
|pu|λ|pd|λ|pw|λ

δ(αr = αu + αd − αw)δ(pr = pu + pd − pw)

〈αu − p2u〉〈αd − p2d〉〈αw − p2w〉
≤ const

|pr|λ
.

Power counting implies that (3.50) can only be correct if λ > 2. On the other hand,
to start the integration scheme we need λ < 5/2 (from (3.49) this is the decay in
the momenta of the leaves, obtained from the a-priori estimates). It turns out that,
choosing λ = 2 + ε for a sufficiently small ε > 0, (3.50) can be made precise, and
the integration scheme can be completed.

After integrating all the frequency and momentum variables, from (3.48) we
obtain that

|KΛ,t| ≤ Ck+m tm/4

for every Λ ∈ Fm,k. Since the number of diagrams in Fm,k is bounded by Ck+m,
it follows immediately that ∣∣∣Tr J (k) ξ

(k)
m,t

∣∣∣ ≤ Ck+mtm/4 .

Note that, from (3.44), one may expect ξ
(k)
m,t to be proportional to tm. The reason

why we only get a bound proportional to tm/4 is that we effectively use part of the
time integration to control the singularity of the potentials.

The only property of γ
(k+m)
0 used in the analysis of (3.47) is the estimate (3.40),

which provides the necessary decay in the momenta of the leaves. Since the a-priori
bound (3.40) hold uniformly in time, we can use a similar argument to bound the

contribution arising from the error term η
(k)
n,t in (3.45) (as explained above, also η

(k)
n,t

can be expanded analogously to (3.46), with contributions associated to Feynman
graphs similar to (3.47); the difference, of course, is that these contributions will

depend on γ
(k+n)
s for all s ∈ [0, t], while (3.47) only depends on the initial data).

We get

(3.51)
∣∣∣Tr J (k) η

(k)
n,t

∣∣∣ ≤ Ck+n tn/4 .
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This bound immediately implies the uniqueness. In fact, given two solutions Γ1,t =

{γ(k)
1,t }k≥1 and Γ2,t = {γ(k)

2,t }k≥1 of the infinite hierarchy (3.41), both satisfying the

a-priori bounds (3.40) and with the same initial data, we can expand both in a
Duhamel series of order n as in (3.43). If we fix k ≥ 1, and consider the difference

between γ
(k)
1,t and γ

(k)
2,t , all terms (3.44) cancel out because they only depend on

the initial data. Therefore, from (3.51), we immediately obtain that, for arbitrary
(sufficiently smooth) compact k-particle operators J (k),∣∣∣TrJ (k)

(
γ
(k)
1,t − γ

(k)
2,t

)∣∣∣ ≤ 2Ck+n tn/4 .

Since it is independent of n, the left side has to vanish for all t < 1/(2C)4. This
proves uniqueness for short times. But then, since the a-priori bounds hold uni-
formly in time, the argument can be repeated to prove uniqueness for all times.

3.6. Other Microscopic Models Leading to the Nonlinear Schrödinger
Equation. As discussed in Section 3.1, the strategy used to prove Theorem 3.1 is
dictated by the formal similarity with the mean-field systems discussed in Sec-
tion 2; from (3.15) the Hamiltonian characterizing dilute Bose gases in the Gross-
Pitaevskii scaling can be formally interpreted as a mean field Hamiltonian with
an N -dependent potential converging to a delta-function as N → ∞ (the physics
described by the two models is however completely different). The choice of the
N -dependent potential VN (x) = N2V (Nx) in the Gross-Pitaevskii scaling is, of
course, not the only choice for which the formal identification with a mean-field
model is possible. For arbitrary β > 0, we can for example define the N -particle
Hamiltonian

HN,β =

N∑
j=1

−Δj +
1

N

∑
i<j

N3βV (Nβ(xi − xj))

acting on the Hilbert space L2
s(R

3N ). The Hamiltonian (3.8) is recovered by choos-
ing β = 1. For 0 < β < 1, the potential N3βV (Nβx) still converges to a delta-
function as N → ∞, but the convergence is slower. This fact has important con-
sequences for the macroscopic dynamics; it turns out, in fact, that for 0 < β < 1
the correlation structure developed by the evolved wave function ψN,β,t = e−iHN,βt

varies on much shorter length scales compared with the length scale N−β char-
acterizing the potential. Therefore, for 0 < β < 1, the time evolution of the
condensate wave function is still governed by a cubic nonlinear Schrödinger equa-
tion; this time, however, the coupling constant in front of the nonlinearity is given
by b0 =

∫
V instead of 8πa0 (recall that the emergence of the scattering length

in the Gross-Pitaevskii equation was a consequence of the interplay between the
correlation structure in the many body wave function and the interaction potential;
since, for 0 < β < 1, the potential and the correlation structure vary on different
length scales, this interplay is suppressed). The following theorem can be proven
using the techniques developed in [15] (the statement for 0 < β < 1/2 was proven
in [12]; in [13], the whole range 0 < β ≤ 1 was covered, but only for sufficiently
small potentials).

Theorem 3.10. Suppose that V ≥ 0 satisfies the same assumption as in The-

orem 3.1, and assume that 0 < β ≤ 1. Let ψN (x) =
∏N

j=1 ϕ(xj), for some
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ϕ ∈ H1(R3) and ψN,t = e−iHβ,N tψN with the mean-field Hamiltonian

Hβ,N =

N∑
j=1

−Δj +
1

N

N∑
i<j

N3βV (Nβ(xi − xj)) .

Then, for every fixed k ≥ 1 and t ∈ R, we have

γ
(k)
N,t → |ϕt〉〈ϕt|⊗k

as N → ∞, where ϕt is the solution to the nonlinear Schrödinger equation

i∂tϕt = −Δϕt + σ|ϕt|2ϕt

with initial data ϕt=0 = ϕ and with

σ =

{
8πa0 if β = 1
b0 if 0 < β < 1

.

4. Rate of Convergence towards Mean-Field Dynamics

From the results of Section 2, we obtain that, for every fixed t ∈ R, and for
every fixed k ∈ N,

γ
(k)
N,t → |ϕt〉〈ϕt|⊗k

where γ
(k)
N,t is the k-particle density associated with the solution ψN,t of the N -

particle Schrödinger equation, and ϕt is the solution of the Hartree equation. From
Theorem 2.1 and Theorem 2.5, we do not get any information about the rate of

convergence of γ
(k)
N,t to |ϕt〉〈ϕt|⊗k. We only know that the difference γ

(k)
N,t−|ϕt〉〈ϕt|⊗k

converges to zero, but we do not know how fast. Also in Section 3, we do not
obtain any information about the rate of convergence of the N -particle Schrödinger
evolution towards the Gross-Pitaevskii equation. This is not only a question of
academic interest; in order to apply these results to physically relevant situations,
bounds on the error are essential.

For bounded potential, (2.25) implies (specializing to the case k = 1) that

(4.1) Tr
∣∣∣γ(1)

N,t − |ϕt〉〈ϕt|
∣∣∣ ≤ CN−1

for sufficiently short times 0 ≤ t ≤ t0 = 1/(8‖V ‖). Iterating the argument leading
to (4.1) to obtain estimates valid for larger times, it is possible to derive bounds of
the form

(4.2) Tr
∣∣∣γ(1)

N,t − |ϕt〉〈ϕt|
∣∣∣ ≤ C

N2−t .

Although (4.2) shows that, for every fixed t > 0, the difference γ
(1)
N,t − |ϕt〉〈ϕt|

converges to zero, it is not very useful in applications because it deteriorates too

fast; one would like to find bounds on the difference γ
(1)
N,t − |ϕt〉〈ϕt| which are of

the same order in N for every fixed time.

In [28], a joint work with I. Rodnianski, we obtain such bounds for mean-
field systems with potential having at most a Coulomb singularity; the problem
of obtaining error estimates for the Gross-Pitaevskii dynamics is still open. To
prove such bounds, we do not make use of the BBGKY hierarchy. Instead, we
use an approach, introduced by Hepp in [21] and extended by Ginibre and Velo in
[20], based on embedding theN -body Schrödinger system into the second quantized
Fock-space representation and on the use of coherent states as initial data (coherent
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states do not have a fixed number of particles; this is what makes the use of a
Fock-space representation necessary). The Hartree dynamics emerges as the main
component of the evolution of coherent states in the mean field limit. To obtain

bounds on the difference γ
(1)
N,t − |ϕt〉〈ϕt| for initial data describing coherent states,

it is therefore enough to study the fluctuations around the Hartree dynamics, and
to prove that, in an appropriate sense, they are small. Since factorized N -particle
wave functions can be written as appropriate linear combinations of coherent states,
the estimates for coherent initial data can be translated into bounds for factorized
initial data. Using these techniques, we prove in [28] the following theorem. We
focus in this section on three dimensional systems, which are the most interesting
from the point of view of physics; most of the results however can be extended to
dimension d 
= 3.

Theorem 4.1. Suppose that there exists D > 0 such that the operator inequality

(4.3) V 2(x) ≤ D (1−Δx)

holds true. Let

ψN (x) =

N∏
j=1

ϕ(xj),

for some ϕ ∈ H1(R3) with ‖ϕ‖ = 1. Denote by ψN,t = e−iHN tψN the solution to

the Schrödinger equation ( 1.2) with initial data ψN,0 = ψN , and let γ
(1)
N,t be the one-

particle density associated with ψN,t. Then there exist constants C,K, depending
only on the H1 norm of ϕ and on the constant D on the r.h.s. of ( 4.3) such that

(4.4) Tr
∣∣∣γ(1)

N,t − |ϕt〉〈ϕt|
∣∣∣ ≤ C

N1/2
eK|t| ,

for every t ∈ R and every N ∈ N. Here ϕt is the solution to the nonlinear Hartree
equation

(4.5) i∂tϕt = −Δϕt + (V ∗ |ϕt|2)ϕt

with initial data ϕt=0 = ϕ.

Remarks. Condition (4.3) is in particular satisfied by bounded potentials and
by potentials with an attractive or repulsive Coulomb singularity. Theorem 4.1
implies therefore Theorem 2.1 and Theorem 2.5. Note, moreover, that the decay
of the order N−1/2 on the r.h.s. of (4.4) is not expected to be optimal. In fact,
for initially coherent states we obtain in Theorem 4.4 the expected decay of the
order 1/N for every fixed time t ∈ R; unfortunately, when factorized initial data
are expressed as a superposition of coherent states, part of the decay is lost (note,
however, that for a certain class of bounded potential a decay of the order N−1 for
factorized initial data has recently been established in [10]).

4.1. Fock-Space Representation. We define the bosonic Fock space over
L2(R3, dx) as the Hilbert space

F =
⊕
n≥0

L2(R3, dx)⊗sn = C⊕
⊕
n≥1

L2
s(R

3n, dx1 . . .dxn) ,

where we put L2(R3)⊗s0 = C. Vectors in F are sequences ψ = {ψ(n)}n≥0 of

n-particle wave functions ψ(n) ∈ L2
s(R

3n) with
∑

n≥0 ‖ψ(n)‖2 < ∞. The scalar
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product on F is defined by

〈ψ1, ψ2〉 =
∑
n≥0

〈ψ(n)
1 , ψ

(n)
2 〉L2(R3n)

= ψ
(0)
1 ψ

(0)
2 +

∑
n≥1

∫
dx1 . . . dxn ψ

(n)
1 (x1, . . . , xn)ψ

(n)
2 (x1, . . . , xn) .

An N particle state with wave function ψN is described on F by the sequence
{ψ(n)}n≥0 where ψ(n) = 0 for all n 
= N and ψ(N) = ψN . The vector {1, 0, 0, . . . } ∈
F is called the vacuum, and will be denoted by Ω.

On F , we define the number of particles operator N , by (Nψ)(n) = nψ(n).
Eigenvectors ofN are vectors of the form {0, . . . , 0, ψ(m), 0, . . . } with a fixed number
of particles m. For f ∈ L2(R3) we also define the creation operator a∗(f) and the
annihilation operator a(f) on F by

(a∗(f)ψ)
(n)

(x1, . . . , xn) =
1√
n

n∑
j=1

f(xj)ψ
(n−1)(x1, . . . , xj−1, xj+1, . . . , xn)

(a(f)ψ)(n) (x1, . . . , xn) =
√
n+ 1

∫
dx f(x)ψ(n+1)(x, x1, . . . , xn) .

The operators a∗(f) and a(f) are unbounded, densely defined and closed; a∗(f)
creates a particle with wave function f , a(f) annihilates it. It is simple to check
that, for arbitrary n ≥ 1,

(a∗(f))n√
n!

Ω = {0, . . . , 0, f⊗n, 0, . . . } .

The creation operator a∗(f) is the adjoint of the annihilation operator a(f) (note
that by definition a(f) is anti-linear in f), and they satisfy the canonical commu-
tation relations

(4.6) [a(f), a∗(g)] = 〈f, g〉L2(R3), [a(f), a(g)] = [a∗(f), a∗(g)] = 0 .

For every f ∈ L2(R3), we introduce the self adjoint operator

φ(f) = a∗(f) + a(f) .

We will also make use of operator valued distributions a∗x and ax (x ∈ R3), defined
so that

a∗(f) =

∫
dx f(x) a∗x

a(f) =

∫
dx f(x) ax

for every f ∈ L2(R3). The canonical commutation relations take the form

[ax, a
∗
y] = δ(x− y) [ax, ay] = [a∗x, a

∗
y] = 0 .

The number of particle operator, expressed through the distributions ax, a
∗
x, is given

by

N =

∫
dx a∗xax .

The following lemma provides some useful bounds to control creation and an-
nihilation operators in terms of the number of particle operator N .
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Lemma 4.2. Let f ∈ L2(R3). Then

‖a(f)ψ‖ ≤ ‖f‖ ‖N 1/2ψ‖

‖a∗(f)ψ‖ ≤ ‖f‖ ‖ (N + 1)
1/2

ψ‖

‖φ(f)ψ‖ ≤ 2‖f‖‖ (N + 1)
1/2

ψ‖ .

Proof. The last inequality clearly follows from the first two. To prove the
first bound we note that

‖a(f)ψ‖ ≤
∫

dx |f(x)| ‖axψ‖ ≤
(∫

dx |f(x)|2
)1/2 (∫

dx ‖axψ‖2
)1/2

= ‖f‖ ‖N 1/2ψ‖ .

The second estimate follows by the canonical commutation relations (4.6) because

‖a∗(f)ψ‖2 = 〈ψ, a(f)a∗(f)ψ〉 = 〈ψ, a∗(f)a(f)ψ〉+ ‖f‖2‖ψ‖2

= ‖a(f)ψ‖2 + ‖f‖2‖ψ‖2

≤ ‖f‖2
(
‖N 1/2ψ‖+ ‖ψ‖2

)
= ‖f‖2‖ (N + 1)

1/2
ψ‖2 .

�

Given ψ ∈ F , we define the one-particle density γ
(1)
ψ associated with ψ as the

operator on L2(R3) with kernel given by

(4.7) γ
(1)
ψ (x; y) =

1

〈ψ,Nψ〉 〈ψ, a
∗
yaxψ〉 .

By definition, γ
(1)
ψ is a positive trace class operator on L2(R3) with Tr γ

(1)
ψ = 1. For

every N -particle state with wave function ψN ∈ L2
s(R

3N ) (described on F by the
sequence {0, 0, . . . , ψN , 0, 0, . . . }) it is simple to see that this definition is equivalent
to the definition (1.4).

We define the Hamiltonian HN on F by (HNψ)(n) = H(n)
N ψ(n), with

H(n)
N = −

n∑
j=1

Δj +
1

N

n∑
i<j

V (xi − xj) .

Using the distributions ax, a
∗
x, HN can be rewritten as

(4.8) HN =

∫
dx∇xa

∗
x∇xax +

1

2N

∫
dxdy V (x− y)a∗xa

∗
yayax .

By definition the Hamiltonian HN leaves sectors of F with a fixed number of
particles invariant. Moreover, it is clear that on the N -particle sector, HN agrees
with the Hamiltonian HN (the subscript N in HN is a reminder of the scaling factor
1/N in front of the potential energy). We will study the dynamics generated by the
operator HN . In particular we will consider the time evolution of coherent states,
which we introduce next.

For f ∈ L2(R3), we define the Weyl-operator

W (f) = exp (a∗(f)− a(f)) = exp

(∫
dx (f(x)a∗x − f(x)ax)

)
.
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Then the coherent state ψ(f) ∈ F with one-particle wave function f is defined by

ψ(f) = W (f)Ω .

Notice that

(4.9) ψ(f) = W (f)Ω = e−‖f‖2/2
∑
n≥0

(a∗(f))n

n!
Ω = e−‖f‖2/2

∑
n≥0

1√
n!

f⊗n ,

where f⊗n indicates the Fock-vector {0, . . . , 0, f⊗n, 0, . . . }. This follows from

exp(a∗(f)− a(f)) = e−‖f‖2/2 exp(a∗(f)) exp(−a(f))

which is a consequence of the fact that the commutator [a(f), a∗(f)] = ‖f‖2 com-
mutes with a(f) and a∗(f). From (4.9), it follows that coherent states are super-
positions of states with different number of particles (the probability of having n

particles in ψ(f) is given by e−‖f‖2‖f‖2n/n!).

In the following lemma we collect some important and well known properties
of Weyl operators and coherent states.

Lemma 4.3. Let f, g ∈ L2(R3).

i) The Weyl operator satisfy the relations

W (f)W (g) = W (g)W (f)e−2i Im 〈f,g〉 = W (f + g)e−i Im 〈f,g〉 .

ii) W (f) is a unitary operator and

W (f)∗ = W (f)−1 = W (−f).

iii) For every x ∈ R
3, we have

W ∗(f)axW (f) = ax + f(x), and W ∗(f)a∗xW (f) = a∗x + f(x) .

iv) From iii) it follows that coherent states are eigenvectors of annihilation
operators

axψ(f) = f(x)ψ(f) ⇒ a(g)ψ(f) = 〈g, f〉L2ψ(f) .

v) The expectation of the number of particles in the coherent state ψ(f) is
given by ‖f‖2, that is

〈ψ(f),Nψ(f)〉 = ‖f‖2 .

Also the variance of the number of particles in ψ(f) is given by ‖f‖2 (the
distribution of N is Poisson), that is

〈ψ(f),N 2ψ(f)〉 − 〈ψ(f),Nψ(f)〉2 = ‖f‖2 .

vi) Coherent states are normalized but not orthogonal to each other. In fact

〈ψ(f), ψ(g)〉 = e−
1
2 (‖f‖

2+‖g‖2−2(f,g)) ⇒ |〈ψ(f), ψ(g)〉| = e−
1
2 ‖f−g‖2

.



560 BENJAMIN SCHLEIN

4.2. Time Evolution of Coherent States. Next we study the dynamics of
coherent states with expected number of particles N in the limit N → ∞. We
choose the initial data

ψ(
√
Nϕ) = W (

√
Nϕ)Ω for ϕ ∈ H1(R3) with ‖ϕ‖ = 1

and we consider its time evolution ψ(N, t) = e−iHN tψ(
√
Nϕ) with the Hamiltonian

HN defined in (4.8).

Theorem 4.4. Suppose that there exists D > 0 such that the operator inequality

(4.10) V 2(x) ≤ D(1−Δx)

holds true. Let Γ
(1)
N,t be the one-particle marginal associated with the Fock-space vec-

tor ψ(N, t) = e−iHN tW (
√
Nϕ)Ω (as defined in ( 4.7)). Then there exist constants

C,K > 0 (only depending on the H1-norm of ϕ and on the constant D appearing
in ( 4.10)) such that

(4.11) Tr
∣∣∣Γ(1)

N,t − |ϕt〉〈ϕt|
∣∣∣ ≤ C

N
eK|t|

for all t ∈ R.

We explain next the main steps in the proof of Theorem 4.4. By (4.7), the

kernel of Γ
(1)
N,t is given by

Γ
(1)
N,t(x; y) =

1

N

〈
Ω,W ∗(

√
Nϕ)eiHN ta∗yaxe

−iHN tW (
√
Nϕ)Ω

〉
= ϕt(x)ϕt(y)

+
ϕt(y)√

N

〈
Ω,W ∗(

√
Nϕ)eiHN t(ax −

√
Nϕt(x))e

−iHN tW (
√
Nϕ)Ω

〉

+
ϕt(x)√

N

〈
Ω,W ∗(

√
Nϕ)eiHN t(a∗y −

√
Nϕt(y))e

−iHN tW (
√
Nϕ)Ω

〉

+
1

N

〈
Ω,W ∗(

√
Nϕ)eiHN t(a∗y −

√
Nϕt(y))

× (ax −
√
Nϕt(x))e

−iHN tW (
√
Nϕ)Ω

〉
.

(4.12)

It was observed by Hepp in [21] (see also Eqs. (1.17)-(1.28) in [20]) that

W ∗(
√
Nϕs) e

iHN (t−s)(ax −
√
Nϕt(x))e

−iHN (t−s)W (
√
Nϕs)

= UN (t; s)∗ ax UN (t; s) = UN (s; t) ax UN (t; s)
(4.13)

where the unitary evolution UN (t; s) is determined by the equation

(4.14) i∂tUN (t; s) = LN (t)UN (t; s) and UN (s; s) = 1
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with the generator

LN (t) =

∫
dx∇xa

∗
x∇xax +

∫
dx
(
V ∗ |ϕt|2

)
(x) a∗xax

+

∫
dxdy V (x− y)ϕt(x)ϕt(y)a

∗
yax

+
1

2

∫
dxdy V (x− y)

(
ϕt(x)ϕt(y)a

∗
xa

∗
y + ϕt(x)ϕt(y)axay

)
+

1√
N

∫
dxdy V (x− y) a∗x

(
ϕt(y)a

∗
y + ϕt(y)ay

)
ax

+
1

2N

∫
dxdy V (x− y) a∗xa

∗
yayax .

(4.15)

It follows from (4.12) that

Γ
(1)
N,t(x, y)− ϕt(x)ϕt(y) =

1

N

〈
Ω,UN (t; 0)∗a∗yaxUN (t; 0)Ω

〉
+

ϕt(x)√
N

〈
Ω,UN (t; 0)∗a∗yUN (t; 0)Ω

〉
+

ϕt(y)√
N

〈Ω,UN (t; 0)∗axUN (t; 0)Ω〉 .

(4.16)

In order to produce another decaying factor 1/
√
N in the last two term on the

r.h.s. of the last equation, we compare the evolution UN (t; 0) with another evolution

ŨN (t; 0) defined through the equation

(4.17) i∂tŨN (t; s) = L̃N (t) ŨN (t; s) with ŨN (s; s) = 1

and

L̃N (t) =

∫
dx∇xa

∗
x∇xax +

∫
dx
(
V ∗ |ϕt|2

)
(x) a∗xax

+

∫
dxdy V (x− y)ϕt(x)ϕt(y)a

∗
yax

+
1

2

∫
dxdy V (x− y)

(
ϕt(x)ϕt(y)a

∗
xa

∗
y + ϕt(x)ϕt(y)axay

)
+

1

2N

∫
dxdy V (x− y) a∗xa

∗
yayax .

From (4.16) we find

Γ
(1)
N,t(x; y)− ϕt(x)ϕt(y)

=
1

N
〈Ω,UN (t; 0)∗a∗yaxUN (t; 0)Ω〉

+
ϕt(x)√

N

(〈
Ω,UN (t; 0)∗a∗y

(
UN (t; 0)− ŨN (t; 0)

)
Ω
〉

+
〈
Ω,
(
UN (t; 0)∗ − ŨN (t; 0)∗

)
a∗yŨN (t; 0)Ω

〉)
+

ϕt(y)√
N

(〈
Ω,UN (t; 0)∗ax

(
UN (t; 0)− ŨN (t; 0)

)
Ω
〉

+
〈
Ω,
(
UN (t; 0)∗ − ŨN (t; 0)∗

)
axŨN (t; 0)Ω

〉)
,

(4.18)
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because 〈
Ω, ŨN (t; 0)∗ay ŨN (t; 0)Ω

〉
=
〈
Ω, ŨN (t; 0)∗a∗x ŨN (t; 0)Ω

〉
= 0 .

This follows from the observation that, although the evolution ŨN (t) does not
preserve the number of particles, it preserves the parity (it commutes with (−1)N ).
From (4.18), it easily follows that

∥∥∥Γ(1)
N,t − |ϕt〉〈ϕt|

∥∥∥
HS

≤ 1

N
〈UN (t; 0)Ω,NUN (t; 0)Ω〉

+
2√
N

‖(UN (t; 0)− ŨN (t; 0))Ω‖ ‖(N + 1)1/2UN (t; 0)Ω‖

+
2√
N

‖(UN (t; 0)− ŨN (t; 0))Ω‖ ‖(N + 1)1/2ŨN (t; 0)Ω‖ .

(4.19)

To bound the r.h.s. of (4.19), we need to compare the dynamics UN (t; 0) and

ŨN (t; 0), and to control the growth of the number of particle N with respect to the

fluctuation dynamics UN (t; 0) and ŨN (t; 0). We show, first of all, that

(4.20) 〈ŨN (t; 0) Ω,N ŨN (t; 0)Ω〉 ≤ C eK|t| .

To prove this bound, we compute the time derivative

d

dt
〈ŨN (t; 0) Ω, (N + 1) ŨN (t; 0)Ω〉

= 〈ŨN (t; 0)Ω, [L̃N(t),N ]ŨN (t; 0)Ω〉
= 〈ŨN (t; 0)Ω, [L̃N(t),N ]ŨN (t; 0)Ω〉

= 2Im

∫
dxdyV (x− y)ϕt(x)ϕt(y)〈ŨN (t; 0)Ω, [a∗xa

∗
y,N ]ŨN (t; 0)Ω〉

= 4Im

∫
dxdyV (x− y)ϕt(x)ϕt(y)〈ŨN (t; 0)Ω, a∗xa

∗
yŨN (t; 0)Ω〉 .

Thus, from Lemma 4.2, we obtain∣∣∣ d
dt

〈ŨN (t; 0)Ω, (N + 1)ŨN (t; 0)Ω〉
∣∣∣

≤ 4

∫
dx|ϕt(x)|‖axŨN (t; 0)Ω‖ ‖a∗(V (x− .)ϕt)ŨN (t; 0)Ω‖

≤ 4 sup
x

‖V (x− .)ϕt‖‖(N + 1)1/2ŨN (t; 0)Ω‖2

≤ C 〈ŨN (t; 0)Ω, (N + 1)ŨN (t; 0)Ω〉 ,

(4.21)

where we used the fact that

‖V (x− .)ϕt‖2 =

∫
dy |V (x− y)|2|ϕt(y)|2 ≤ C‖ϕt‖2H1

≤ C‖ϕ‖2H1

because of the assumption (4.10). From (4.21), we obtain (4.20) applying Gron-
wall’s Lemma.

Making use of (4.20) (and of an analogous bound for the growth of the expec-

tation of N 4 w.r.t. the evolution ŨN (t; 0); see [28][Lemma 3.7]), we can derive the
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bound

(4.22)
∥∥∥(UN (t; 0)− ŨN (t; 0)

)
Ω
∥∥∥ ≤ C√

N
eK|t|

for the difference between the two time evolutions UN (t; 0) and ŨN (t; 0) (note that,

at least formally, the difference between the two generators LN (t) and L̃N (t) is a
term of the order N−1/2; this explains the decay in N on the r.h.s. of (4.22)).

In [21, 20] the time evolution U(t; s) was proven to converge, as N → ∞, to a
limiting dynamics U∞(t; s) defined by

i∂tU∞(t; s) = L∞(t)U∞(t; s) and U∞(s; s) = 1

with generator

L∞(t) =

∫
dx∇xa

∗
x∇xax +

∫
dx
(
V ∗ |ϕt|2

)
(x) a∗xax

+

∫
dxdy V (x− y)ϕt(x)ϕt(y)a

∗
yax

+
1

2

∫
dxdy V (x− y)

(
ϕt(x)ϕt(y)a

∗
xa

∗
y + ϕt(x)ϕt(y)axay

)
.

In this sense, Hepp (in [21], for smooth potentials) and Ginibre-Velo (in [20],
for singular potentials) were able to identify the limiting time evolution of the
fluctuations around the Hartree dynamics. Analogously to (4.22), the bound (4.20)
can also be used to show that, for a dense set of Ψ ∈ F , there exists constants C,K
such that ‖(UN (t; s)−U∞(t; s))Ψ‖ ≤ CN−1/2eK|t−s|, giving therefore a quantitative
control on the convergence established in [21, 20].

Note, however, that the convergence of UN (t; s) to the dynamics U∞(t; s) is

still not enough to obtain estimates on the difference between Γ
(1)
N,t and |ϕt〉〈ϕt|. In

fact, to reach this goal, we still need, by (4.19), to control the growth of N with
respect to the time evolution UN (t; s). We are going to prove that

(4.23) 〈UN (t; 0) Ω,N UN (t; 0)Ω〉 ≤ C eK|t| .

Inserting (4.20), (4.22) and (4.23) on the r.h.s. of (4.19), it follows immediately
that

(4.24)
∥∥∥Γ(1)

N,t − |ϕt〉〈ϕt|
∥∥∥
HS

≤ C
eK|t|

N
,

which implies the claim (4.11). In fact, since |ϕt〉〈ϕt| is a rank one projection,

the operator δγ = γ
(1)
N,t − |ϕt〉〈ϕt| has at most one negative eigenvalue. Noticing

that Tr δγ = 0, it follows that δγ has a negative eigenvalue, and that the negative
eigenvalue must equal, in absolute value, the sum of all its positive eigenvalues.
Therefore, the trace norm of δγ is twice as large as the operator norm of δγ. Since
the operator norm is always controlled by the Hilbert Schmidt norm, we obtain
(4.11) (this nice argument was pointed out to us by R. Seiringer).

The proof of (4.23) is much more involved than the proof of the analogous
bound (4.20). This is a consequence of the presence, in the generator LN (t), of
terms which are cubic in the creation and annihilation operators (these terms are

absent from L̃N (t)). Because of these terms, also the commutator [LN (t),N ] is
cubic in creation and annihilation operators, and thus its expectation (in absolute
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value) cannot be controlled by the expectation of N . For this reason, to prove
(4.23), we have to introduce yet another approximate dynamics WN (t; s), defined
by

i∂tWN (t; s) = KN (t)WN (t; s), with WN (s; s) = 1

and with generator

KN (t) =

∫
dx∇xa

∗
x∇xax +

∫
dx
(
V ∗ |ϕt|2

)
(x) a∗xax

+

∫
dxdy V (x− y)ϕt(x)ϕt(y)a

∗
yax

+
1

2

∫
dxdy V (x− y)

(
ϕt(x)ϕt(y)a

∗
xa

∗
y + ϕt(x)ϕt(y)axay

)
+

1√
N

∫
dxdy V (x− y) a∗x

(
ϕt(y)χ(N < N)a∗y + ϕt(y)ayχ(N < N)

)
ax

+
1

2N

∫
dxdy V (x− y) a∗xa

∗
yayax .

(4.25)

Observe, that the generator KN (t) has exactly the same form as the generator
LN (t); the only difference is the presence of a cutoff in the number of particles N
inserted in the cubic term. Thanks to the cutoff in N and to the factor N−1/2

in front of the cubic term in KN (t), we can prove, making use of a Gronwall-type
argument, that

(4.26) 〈WN (t; s) Ω,N WN (t; s)Ω〉 ≤ C eK|t−s| .

Actually, it is simple to see that the last inequality can be improved to

(4.27) 〈WN (t; s) Ω,N j WN (t; s)Ω〉 ≤ Cj e
Kj |t−s| .

for every j ∈ N and for appropriate j-dependent constants Cj and Kj . To obtain
(4.23), we still have to compare the dynamics UN (t; s) and WN (t; s). To this end,
we first show weak a-priori bounds of the form

(4.28) 〈UN (t; s)ψ,N j UN (t; s)ψ〉 ≤ C 〈ψ, (N +N + 1)jψ〉

for every ψ ∈ F and for j = 1, 2, 3 (these bounds hold uniformly in t, s ∈ R and can
be proven using the very definition of the unitary group UN (t; s); see [28][Lemma
3.6]). Using (4.28), we find

〈UN (t; 0)Ω,N (UN (t; 0)−WN (t; 0))Ω〉
= 〈UN (t; 0)Ω,NUN (t; 0) (1− UN (t; 0)∗WN (t; 0))Ω〉

= − i

∫ t

0

ds 〈UN (t; 0)Ω,NUN (t; s) (LN (s)−KN (s))WN (s; 0)Ω〉

= − i√
N

∫ t

0

ds

∫
dx dyV (x− y)〈UN (t; 0)Ω,NUN (t; s)a∗x

×
(
ϕt(y)ayχ(N > N) + ϕt(y)χ(N > N)a∗y

)
axWN (s; 0)Ω〉
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Therefore

〈UN (t; 0)Ω,N (UN (t; 0)−WN (t; 0))Ω〉

= − i√
N

∫ t

0

ds

∫
dx 〈axUN (t; s)∗NUN (t; 0)Ω,

× a(V (x− .)ϕt)χ(N > N)axWN (s; 0)Ω〉

− i√
N

∫ t

0

ds

∫
dx〈axUN (t; s)∗NUN (t; 0)Ω,

× χ(N > N)a∗(V (x− .)ϕt)axWN (s; 0)Ω〉 .
Hence∣∣∣〈UN (t; 0)Ω,N (UN (t; 0)−WN (t; 0))Ω〉

∣∣∣
≤ 1√

N

∫ t

0

ds

∫
dx‖axUN (t; s)∗NUN (t; 0)Ω‖

× ‖a(V (x− .)ϕt)axχ(N > N + 1)WN (s; 0)Ω‖

+
1√
N

∫ t

0

ds

∫
dx‖axUN (t; s)∗NUN (t; 0)Ω‖

× ‖a∗(V (x− .)ϕt)axχ(N > N)WN (s; 0)Ω‖

≤ 2 supx ‖V (x− .)ϕt‖√
N

∫ t

0

ds‖N 1/2UN (t; s)∗NUN (t; 0)ψ‖

× ‖Nχ(N > N)WN (s; 0)ψ‖ .

Therefore, using the inequality χ(N > N) ≤ (N/N)2 and applying (4.27) (with
j = 4) and (4.28) (first with j = 1, and then with j = 3) we can bound the two
norms in the s-integral. It follows that∣∣∣〈UN (t; 0)Ω,N (UN (t; 0)−WN (t; 0))Ω〉

∣∣∣ ≤ CeKt

which, combined with (4.26), implies (4.23).

4.3. Time-evolution of Factorized Initial Data. To prove Theorem 4.1,
we express the factorized initial data as a linear combination of coherent states.
Using the properties listed in Lemma 4.3, it is simple to check that

{0, 0, . . . , 0, ϕ⊗N , 0, 0, . . . } =
(a∗(ϕ))N√

N !
Ω = dN

∫ 2π

0

dθ

2π
eiθNW (e−iθ

√
Nϕ)Ω

with the constant

dN =

√
N !

NN/2e−N/2
� N1/4 .

The kernel of the one-particle density γ
(1)
N,t associated with the solution of the

Schrödinger equation {0, . . . , 0, e−iHN tϕ⊗N , 0, . . . } is thus given by (see (4.7))

γ
(1)
N,t(x; y)

=
1

N

〈
(a∗(ϕ))N√

N !
Ω, eiHN ta∗yaxe

−iHN t (a
∗(ϕ))N√
N !

Ω

〉

=
d2N
N

∫ 2π

0

dθ1
2π

∫ 2π

0

dθ2
2π

e−iθ1Neiθ2N 〈W (e−iθ1
√
Nϕ)Ω, a∗y(t)ax(t)W (e−iθ2

√
Nϕ)Ω〉
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where we introduced the notation ax(t) = eiHN taxe
−iHN t. Next, we expand

γ
(1)
N,t(x; y) =

d2N
N

∫ 2π

0

dθ1
2π

∫ 2π

0

dθ2
2π

e−iθ1Neiθ2N
〈
W (e−iθ1

√
Nϕ)Ω,

×
(
a∗y(t)− eiθ1

√
Nϕt(y)

)(
ax(t)− e−iθ2

√
Nϕt(x)

)
W (e−iθ2

√
Nϕ)Ω

〉
+

d2N ϕt(y)√
N

∫ 2π

0

dθ1
2π

∫ 2π

0

dθ2
2π

e−iθ1(N−1)eiθ2N

×
〈
W (e−iθ1

√
Nϕ)Ω,

(
ax(t)− e−iθ2

√
Nϕt(x)

)
W (e−iθ2

√
Nϕ)Ω

〉
+

d2N ϕt(x)√
N

∫ 2π

0

dθ1
2π

∫ 2π

0

dθ2
2π

e−iθ1Neiθ2(N−1)

×
〈
W (e−iθ1

√
Nϕ)Ω,

(
a∗y(t)− eiθ1

√
Nϕt(y)

)
W (e−iθ2

√
Nϕ)Ω

〉
+ d2N ϕt(x)ϕt(y)

∫ 2π

0

dθ1
2π

∫ 2π

0

dθ2
2π

e−iθ1(N−1)eiθ2(N−1)

×
〈
W (e−iθ1

√
Nϕ)Ω, W (e−iθ2

√
Nϕ)Ω

〉
.

(4.29)

Since

dN

∫ 2π

0

dθ

2π
eiθ(N−1)W (e−iθ

√
Nϕ)Ω

= dNe−N/2
∞∑
j=0

(∫ 2π

0

dθ

2π
eiθ(N−1−j)

)
N j/2 (a

∗(ϕ))j

j!
Ω

= dN
e−N/2N (N−1)/2

√
N − 1!

(a∗(ϕ))N−1

N − 1!
Ω = ϕ⊗N−1 ,

we find that

γ
(1)
N,t (x; y)− ϕt(x)ϕt(y)

=
d2N
N

∫ 2π

0

dθ1
2π

∫ 2π

0

dθ2
2π

e−iθ1Neiθ2N
〈
W (e−iθ1

√
Nϕ)Ω,

(
a∗y(t)− eiθ1

√
Nϕt(y)

)
×
(
ax(t)− e−iθ2

√
Nϕt(x)

)
W (e−iθ2

√
Nϕ)Ω

〉
+

dN ϕt(y)√
N

∫ 2π

0

dθ2
2π

eiθ2N
〈
ϕ⊗(N−1),

(
ax(t)− e−iθ2

√
Nϕt(x)

)
×W (e−iθ2

√
Nϕ)Ω

〉
+

dN ϕt(x)√
N

∫ 2π

0

dθ1
2π

e−iθ1N
〈
W (e−iθ1

√
Nϕ)Ω,

(
a∗y(t)− eiθ1

√
Nϕt(y)

)
× ϕ⊗(N−1)

〉

(4.30)
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and thus∣∣∣γ(1)
N,t (x; y)− ϕt(x)ϕt(y)

∣∣∣ ≤ d2N
N

∫ 2π

0

dθ1
2π

∫ 2π

0

dθ2
2π

‖ayUθ1
N (t; 0)Ω‖ ‖axUθ2

N (t; 0)Ω‖

+
dN |ϕt(y)|√

N

∫ 2π

0

dθ

2π
‖axUθ

N (t; 0)Ω‖

+
dN |ϕt(x)|√

N

∫ 2π

0

dθ

2π
‖ayUθ

N (t; 0)Ω‖

where Uθ
N (t; s) is defined as (4.14), with ϕt replaced by eiθϕt (we are using, here,

the fact that, although the Hartree equation is nonlinear, eiθϕt is always a solution
if ϕt is). Since dN � N1/4, it follows from the bound (4.23) for the growth of
the expectation of N with respect to the fluctuation evolution Uθ

N (t; s) (the bound
clearly holds uniformly in θ) that∥∥∥γ(1)

N,t − |ϕt〉〈ϕt|
∥∥∥
HS

≤ C

N1/4
eKt

and therefore (using the argument presented after (4.24) that

(4.31) Tr
∣∣∣γ(1)

N,t − |ϕt〉〈ϕt|
∣∣∣ ≤ C

N1/4
eKt .

To improve the decay in N on the r.h.s. of (4.31) from N−1/4 to N−1/2 (as
claimed in Theorem 4.1), it is necessary to study the second and third error terms
on the r.h.s. of (4.30) more precisely; for the details, see [28][Lemma 4.2].

Appendix A. Non-Standard Sobolev- and Poincaré Inequalities

In this section, we collect some non-standard Sobolev- and Poincaré-type in-
equalities which are very useful when dealing with singular potentials.

Lemma A.1 (Sobolev-type inequalities). Let ψ ∈ L2(R6, dx1dx2). If V ∈
L3/2(R3), we have

(A.1) 〈ψ, V (x1 − x2)ψ〉 ≤ C‖V ‖3/2 〈ψ, (1−Δ1)ψ〉 .

If V ∈ L1(R3), then

(A.2) 〈ψ, V (x1 − x2)ψ〉 ≤ C‖V ‖1 〈ψ, (1−Δ1)(1−Δ2)ψ〉

The first bound follows from a Hölder inequality followed by a standard Sobolev
inequality (in the variable x1, with fixed x2). The proof of (A.2) can be obtained
through the same arguments used in the proof of the next Poincaré-type inequality
(see [16]).

Lemma A.2 (Poincaré-type inequality). Suppose that h ∈ L1(R3) is a proba-
bility density with

∫
dx |x|1/2 h(x) < ∞. For α > 0, let hα(x) = α−3h(x/α). Then

we have, for every 0 ≤ κ < 1/2,

|〈ϕ, (hα(x1 − x2)− δ(x1 − x2))ψ〉|
≤ Cακ〈ϕ, (1−Δ1)(1−Δ2)ϕ〉1/2〈ψ, (1−Δ1)(1−Δ2)ψ〉1/2 .
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Proof. We rewrite the inner product in Fourier space.〈
ϕ,
(
hα(x1 − x2)− δ(x1 − x2)

)
ψ
〉
=

∫
dp1dp2dq1dq2dx δ(p1 + p2 − q1 − q2)

× ϕ̂(p1, p2) ψ̂(q1, q2)h(x)
(
eiα(p1−q1)·x − 1

)
.

Using that |eiα(p1−q1)·x − 1| ≤ ακ|x|κ|p1 − q1|κ, we obtain∣∣∣〈ϕ,(hα(x1 − x2)− δ(x1 − x2)
)
ψ〉
∣∣∣

≤ ακ

(∫
dxh(x)|x|κ

)

×
∫

dp1dp2dq1dq2 δ(p1 + p2 − q1 − q2) (|p1|κ + |q1|κ) |ϕ̂(p1, p2)| |ψ̂(q1, q2)| .

We show how to control the term proportional to |p1|κ; the other term can be
handled similarly.∣∣∣〈ϕ, (hα(x1 − x2)− δ(x1 − x2))ψ〉

∣∣∣
≤ Cακ

∫
dp1dp2dq1dq2 δ(p1 + p2 − q1 − q2)

× |p1|κ(1 + p21)
(1−κ)/2(1 + p22)

1/2

(1 + q21)
1/2(1 + q22)

1/2
|ϕ̂(p1, p2)|

(1 + q21)
1/2(1 + q22)

1/2

(1 + p21)
(1−κ)/2(1 + p22)

1/2
|ψ̂(q1, q2)|

≤ Cακ

(∫
dp1dp2dq1dq2 δ(p1 + p2 − q1 − q2)

(1 + p21)(1 + p22)

(1 + q21)(1 + q22)
|ϕ̂(p1, p2)|2

)1/2

×
(∫

dp1dp2dq1dq2 δ(p1 + p2 − q1 − q2)
(1 + q21)(1 + q22)

(1 + p21)
1−κ(1 + p22)

|ψ̂(q1, q2)|2
)1/2

≤ Cα1/2〈ϕ, (1−Δ1)(1−Δ2)ϕ〉1/2〈ψ, (1−Δ1)(1−Δ2)ψ〉1/2

×
(
sup
p

∫
dq

1

(1 + q2)(1 + (p− q)2)

) 1
2
(
sup
q

∫
dp

1

(1 + p2)(1 + (q − p)2)1−κ

) 1
2

.

The claim follows because

(A.3) sup
q∈R3

∫
dp

1

(1 + p2)(1 + (q − p)2)1−κ
≤ C

for all κ < 1/2. To prove (A.3) we consider the three regions |p| > 2|q|, |q|/2 ≤
|p| ≤ 2|q| and |p| < |q|/2 separately. Since |p − q| > |p|/2 for |p| > 2|q|, it follows
that ∫

|p|>2|q|

dp

(1 + p2)(1 + (q − p)2)1−κ
≤
∫
|p|>2|q|

dp(
1 + p2

4

)2−κ

< C

∫
dp

(1 + p2)2−κ < ∞

for κ < 1/2, uniformly in q. For |p| < |q|/2, we use the fact that |q − p| > |q|/2,
and we obtain∫

|p|<|q|/2

dp

(1 + p2)(1 + (q − p)2)1−κ
≤ C

(1 + q2)1−κ

∫
|p|<|q|/2

dp

1 + p2
≤ C|q|

(1 + q2)1−κ
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which is bounded uniformly in q. Finally, in the region |q|/2 ≤ |p| ≤ 2|q|, we use
that ∫

|q|/2<|p|<2|q|

dp

(1 + p2)(1 + (q − p)2)1−κ
≤ C

(1 + q2)

∫
|p|<3|q|

dp

(1 + p2)1−κ

≤ C
|q|2κ+1

1 + q2
< ∞

uniformly in q ∈ R
3, for all κ < 1/2. �

In the approach developed in [15] for the case of large interaction potential we
can only prove weaker estimates on the solution ψN,t of the Schrödinger equation.
As discussed in Section 3.3, we can only prove that

〈W ∗
N,(i,j)ψN,t,

(
(∇i · ∇j)

2 −Δi −Δj + 1
)
W ∗

N,(i,j)ψN,t〉 ≤ C

uniformly in N and t. For this reason, we need estimates which only require the
boundedness of the expectation of this particular combination of derivatives. The
next lemma gives a Sobolev inequality of this type.

Lemma A.3. Suppose V ∈ L1(R3). Then

|〈ϕ, V (x1 − x2)ψ〉| ≤ C‖V ‖1 〈ψ,
(
(∇1 · ∇2)

2 −Δ1 −Δ2 + 1
)
ψ〉1/2

× 〈ϕ,
(
(∇1 · ∇2)

2 −Δ1 −Δ2 + 1
)
ϕ〉1/2

for every ψ, ϕ ∈ L2(R6, dx1dx2).

Proof. Switching to Fourier space, we find

〈ϕ, V (x1 − x2)ψ〉 =
∫

dp1dp2dq1dq2

× ϕ̂(p1, p2)ψ̂(q1, q2) V̂ (q1 − p1) δ(p1 + p2 − q1 − q2) .

Therefore, with a weighted Schwarz inequality,∣∣∣〈ϕ, V (x1 − x2)ψ〉
∣∣∣

≤ ‖V̂ ‖∞

×
(∫

dp1dp2dq1dq2
(p1 · p2)2 + p21 + p22 + 1

(q1 · q2)2 + q21 + q22 + 1
|ϕ̂(p1, p2)|2δ(p1 + p2 − q1 − q2)

) 1
2

×
(∫

dp1dp2dq1dq2
(q1 · q2)2 + q21 + q22 + 1

(p1 · p2)2 + p21 + p22 + 1
|ψ̂(q1, q2)|2 δ(p1 + p2 − q1 − q2)

) 1
2

≤ ‖V ‖1
(
sup
p

∫
dq

1

(q · (p− q))2 + q2 + (p− q)2 + 1

)

×
〈
ψ,
(
(∇1 · ∇2)

2 −Δ1 −Δ2 + 1
)
ψ
〉1/2 〈

ϕ,
(
(∇1 · ∇2)

2 −Δ1 −Δ2 + 1
)
ϕ
〉1/2

.

The lemma follows from

(A.4) sup
p∈R3

∫
dq

1

(q · (p− q))2 + q2 + (p− q)2 + 1
< ∞ .
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To prove (A.4), we write∫
dq

1

(q · (p− q))2 + q2 + (p− q)2 + 1

=

∫
|q− p

2 |>|p|
dq

1((
q − p

2

)2 − p2

4

)2
+ q2 + (p− q)2 + 1

+

∫
|q− p

2 |<|p|
dq

1((
q − p

2

)2 − p2

4

)2
+ q2 + (p− q)2 + 1

.

(A.5)

The first term on the r.h.s. of the last equation is bounded by∫
|q− p

2 |>|p|
dq

1((
q − p

2

)2 − p2

4

)2
+ q2 + (p− q)2 + 1

≤
∫
|q− p

2 |>|p|
dq

1
9
16

∣∣q − p
2

∣∣4 + 1
≤ 16

9

∫
R3

dq
1

|q|4 + 1
< ∞ ,

uniformly in p ∈ R3. As for the second term on the r.h.s. of (A.5), we observe that∫
|q− p

2 |<|p|
dq

1((
q − p

2

)2 − p2

4

)2
+ q2 + (p− q)2 + 1

=

∫
|x|<|p|

dx
1(

x2 − p2

4

)2
+
(
x+ p

2

)2
+
(
x− p

2

)2
+ 1

= 4π

∫ |p|

0

dr
r2(

r2 − |p|2
4

)2
+ 2r2 + |p|2

2 + 1

≤ C|p|2
∫ |p|/2

−|p|/2
dr

1

r2 (r + |p|)2 +
(
r + |p|

2

)2
+ |p|2

4 + 1

≤ C

∫ |p|/2

−|p|/2
dr

1

r2 + 1
≤ C

∫
R

dr
1

r2 + 1
< ∞,

uniformly in p. �
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