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Library of Congress Cataloging-in-Publication Data
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Automata Groups 165
Andrzej Zuk

Spectral Triples and KK-Theory: A Survey 197
Bram Mesland

Deformations of the Canonical Spectral Triples 213
R. Trinchero

Twisted Bundles and Twisted K-Theory 223
Max Karoubi

A Guided Tour Through the Garden of Noncommutative Motives 259
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Preface

This volume contains the proceedings of the third Luis Santaló Winter School,
organized by the Mathematics Department and the Santaló Mathematical Research
Institute of the School of Exact and Natural Sciences of the University of Buenos
Aires (FCEN). This series of schools is named after the geometer Luis Santaló.
Born in Spain, the celebrated founder of Integral Geometry was a Professor in our
department where he carried out most of his distinguished professional career.

This edition of the Santaló School took place in the FCEN from July 26 to
August 6 of 2010. On this occasion the school was devoted to Noncommutative
Geometry, and was supported by several institutions; the Clay Mathematics Insti-
tute was one of its main sponsors.

The topics of the school and the contents of this volume concern Noncommu-
tative Geometry in a broad sense: it encompasses the various mathematical and
physical theories that incorporate geometric ideas to study noncommutative phe-
nomena.

One of those theories is that of deformation quantization. A main result in
this area is Kontsevich’s formality theorem. It implies that a Poisson structure on
a manifold can always be formally quantized. More precisely it shows that there
is an isomorphism (although not canonical) between the moduli space of formal
deformations of Poisson structures on a manifold and the moduli space of star
products on the manifold. The question of understanding Morita equivalence of
star products under (a specific choice of) this isomorphism was solved by Henrique
Bursztyn and Stefan Waldmann; their article in the present volume gives a survey
of their work. They start by discussing how deformation quantization arises from
the quantization problem in physics. Then they review the basics on star products,
the main results on deformation quantization and the notion of Morita equivalence
of associative algebras. After this introductory material, they present a description
of Morita equivalence for star products as orbits of a suitable group action on
the one hand, and the B-field action on (formal) Poisson structures on the other.
Finally, they arrive at their main results on the classification of Morita equivalent
star products.

The next article, by Boris Tsygan, reviews Tamarkin’s proof of Kontsevich’s
formality theorem using the theory of operads. It also explains applications of the
formality theorem to noncommutative calculus and index theory. Noncommuta-
tive calculus defines classical algebraic structures arising from the usual calculus on
manifolds in terms of the algebra of functions on this manifold, in a way that is

vii



viii PREFACE

valid for any associative algebra, commutative or not. It turns out that noncom-
mutative analogs of the basic spaces arising in calculus are well-known complexes
from homological algebra. These complexes turn out to carry a very rich algebraic
structure, similar to the one carried by their classical counterparts. It follows from
Kontsevich’s formality theorem that when the algebra in question is the algebra of
functions, those noncommutative geometry structures are equivalent to the classical
ones. Another consequence is the algebraic index theorem for deformation quanti-
zations. This is a statement about a trace of a compactly supported difference of
projections in the algebra of matrices over a deformed algebra. It turns out that all
the data entering into this problem (namely, a deformed algebra, a trace on it, and
projections in it) can be classified using formal Poisson structures on the manifold.
The algebraic index theorem implies the celebrated index theorem of Atiyah-Singer
and its various generalizations.

Operad theory, mentioned before as related to Kontsevich’s formality theorem,
is the subject of Eduardo Hoefel’s paper. It follows from general theory that the
Fulton-MacPherson operad Fn and the little discs operad Dn are equivalent. Hoefel
gives an elementary proof of this fact by exhibiting a rather explicit homotopy
equivalence between them.

Many important examples in noncommutative geometry appear as crossed
products. Ralf Meyer’s lecture notes deal with several crossed-products of C∗-
algebras, (e.g. crossed-products by actions of locally compact groups, twisted
crossed-products, crossed products by C∗correspondences) and discuss notions of
equivalence of these constructions. The author shows how these examples lead nat-
urally to the concept of a strict 2-category and to the unifying approach of a functor
from a group to strict 2-categories whose objects are C∗-algebras. In addition, this
approach enables the author to define in all generality the crossed product of a
C∗-algebra by a group acting by Morita-Rieffel bimodules.

Jonathan Rosenberg’s article is concerned with two related but distinct top-
ics: noncommutative tori and Kasparov’s KK-theory. Noncommutative tori are
certain crossed products of the algebra of continuous functions on the unit circle
by an action of Z. They turn out to be noncommutative deformations of the al-
gebra of continuous functions on the 2-torus. The article reviews the classification
of noncommutative tori up to Morita equivalence, and of bundles (i.e. projec-
tive modules) over them, as well as some applications of noncommutative tori to
number theory and physics. Kasparov’s K-theory is one of the main homological
invariants in C∗-algebra theory. It can be presented in several equivalent manners;
the article reviews Kasparov’s original definition in terms of Kasparov bimodules
(or generalized elliptic pseudodifferential operators), Cuntz’s picture in terms of
quasi-homomorphisms, and Higson’s description of KK as a universal homology
theory for separable C∗-algebras. It assigns groups KK∗(A,B) to any two separa-
ble C∗-algebras A and B; usual operator K-theory and K-homology are recovered
by setting A (respectively B) equal to the complex numbers. The article also
considers the equivariant version of KK for C∗-algebras equipped with a group
action, and considers its applications to the K-theory of crossed products, includ-
ing the Pimsner-Voiculescu sequence for crossed products with Z (used for example
to compute the K-theory of noncommutative tori), Connes’ Thom isomorphism
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for crossed products with R and the Baum-Connes conjecture for crossed products
with general locally compact groups.

The Baum-Connes conjecture predicts that the K-theory of the reduced C∗-
algebra Cr(G) of a group G is the G-equivariant K-homology KKG

∗ (EG,C) of
the classifying space for proper actions. The conjecture is known to hold in many
cases. The point of the conjecture is that the K-homology is in principle easier to
compute than the K-theory of Cr(G), but concrete computations are often very
hard, especially if the group contains torsion. The article by Jean-François Lafont,
Ivonne Ortiz and Rubén Sánchez-Garćıa is concerned with computing the groups
KKG

∗ (EG,C) ⊗ Q in the case where G admits a 3-dimensional manifold model
M3 for EG. In this case the authors provide an explicit formula in terms of the
combinatorics of the model M3.

As noted above, groups play a key role in noncommutative geometry; group
theory is therefore an important tool in the area. Andrzej Zuk’s article presents an
introduction to the theory of groups generated by finite automata. This class con-
tains several remarkable countable groups, which provide solutions to long standing
questions in the field. For instance, Aleshin’s automata gives a group which is infin-
tely generated yet torsion; this answers affirmatively a question raised by Burnside
in 1902 of whether such groups could exist. Aleshin’s group is also an example
of a group which is not of polynomial growth yet it is of subexponential growth.
Other remarkable examples of automata groups are also presented, including a
group without uniform exponential growth, and exotic amenable groups.

In Connes’ theory of noncommutative geometry, spectral triples play the role
of noncommutative Riemannian manifolds; they are also the source of elements in
Kasparov’s KK-theory. Bram Mesland’s article deals with the construction of a
category of spectral triples that is compatible with the Kasparov product in KK-
theory. The theory described shows that by introducing a notion of smoothness on
unbounded KK-cycles, the Kasparov product of such cycles can be defined directly,
by an algebraic formula. This allows one to view such cycles as morphisms in a
category whose objects are spectral triples.

The article by Roberto Trinchero is also concerned with spectral triples. It pro-
vides a link between Connes’ noncommutative geometry and quantum field theory.
It displays, in detail, a toy model that aims to shed some light in the dimensional
renormalization framework of Quantum Field Theory, by comparison with the re-
sults obtained under the paradigm of such theory, where a Grasmannian algebra is
the starting point.

Max Karoubi’s article concerns twistedK-theory, a theory of very active current
research, which was originally defined by Karoubi and Donovan in the late 1960s.
The approach presented here is based on the notion of twisted vector bundles. Such
bundles may be interpreted as modules over suitable algebra bundles. Roughly
speaking, twisted K-theory appears as the Grothendieck group of the category of
twisted vector bundles. Thus a geometric description of the theory is obtained.
The usual operations on vector bundles are extended to twisted vector bundles.
The article also contains a section on cup-products, where it is shown that the



x PREFACE

various ways to define them coincide up to isomorphism. An analogue of the Chern
character is then defined, going from twisted K-theory to twisted cohomology. The
approach is based on a version of Chern-Weil theory for connections on twisted
vector bundles in the finite and infinite dimensional cases.

Noncommutative algebraic geometry is represented by Gonçalo Tabuada’s ar-
ticle. It surveys the theory of noncommutative motives, a fast developing area
of current research, led by Tabuada among others. In commutative algebraic ge-
ometry, Grothendieck envisioned a theory of motives as a universal cohomological
invariant for schemes, through which all the Weil cohomology theories should fac-
tor. The theory is currently one of the most active areas of research in commutative
algebraic geometry. In the noncommutative world, schemes are replaced by DG-
categories. Roughly speaking, a DG-category should be regarded as the category of
complexes of modules over the structure sheaf of the underlying noncommutative
scheme. There is a noncommutative motivic category whose objects are the DG-
categories, through which classical invariants such as K-theory and (topological)
Hochschild and cyclic homology all factor. The morphisms in the motivic category
form a bivariant theory of DG-categories with formal properties analogous to those
Kasparov’s KK-theory has in the C∗-algebra setting.

In conclusion, this volume presents a good sample of the wide range of aspects
of current research in noncommutative geometry and its applications.

Guillermo Cortiñas

Buenos Aires, June 2012
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1. Introduction

Deformation quantization [1] (see e.g. [15] for a survey) is a quantization
scheme in which algebras of quantum observables are obtained as formal deforma-
tions of classical observable algebras. For a smooth manifold M , let C∞(M) denote
the algebra of complex-valued smooth functions on M , and let C∞(M)[[�]] be the
space of formal power series in a parameter � with coefficients in C∞(M); defor-
mation quantization concerns the study of associative products � on C∞(M)[[�]],
known as star products, deforming the pointwise product on C∞(M),

f � g = fg +O(�),

in the sense of Gerstenhaber [13]. The noncommutativity of a star product � is
controlled, in first order, by a Poisson structure {·, ·} on M , in the sense that

f � g − g � f = i�{f, g}+O(�2).

Two fundamental issues in deformation quantization are the existence and iso-
morphism classification of star products on a given Poisson manifold, and the most

c© 2012 Henrique Bursztyn and Stefan Waldmann
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general results in these directions follow from Kontsevich’s formality theorem [18].
In these notes we treat another kind of classification problem in deformation quan-
tization, namely that of describing when two star products define Morita equivalent
algebras. This study started in [2, 5] (see also [17]), and here we will mostly review
the results obtained in [3] (where detailed proofs can be found), though from a less
technical perspective.

Morita equivalence [21] is an equivalence relation for algebras, which is based
on comparing their categories of representations. This type of equivalence is weaker
than the usual notion of algebra isomorphism, but strong enough to capture essen-
tial algebraic properties. The notion of Morita equivalence plays a central role in
noncommutative geometry and has also proven relevant at the interface of noncom-
mutative geometry and physics, see e.g. [17, 20, 27]. Although there are more
analytical versions of deformation quantization and Morita equivalence used in non-
commutative geometry (especially in the context of C∗-algebras, see e.g. [24, 25]
and [8, Chp. II, App. A]), our focus in these notes is on deformation quantization
and Morita equivalence in the purely algebraic setting.

The classification of Morita equivalent star products on a manifold M [3] builds
on Kontsevich’s classification result [18], which establishes a bijective correspon-
dence between the moduli space of star products on M , denoted by Def(M), and
the set FPois(M) of equivalence classes of formal families of Poisson structures on
M ,

(1.1) K∗ : FPois(M)
∼→ Def(M).

Morita equivalence of star products onM defines an equivalence relation on Def(M),
and these notes explain how one recognizes Morita equivalent star products in terms
of their classes in FPois(M), through Kontsevich’s correspondence (1.1). We divide
the discussion into two steps: first, we identify a canonical group action on Def(M)
whose orbit relation coincides with Morita equivalence of star products (Thm. 5.2);
second, we find the expression for the corresponding action on FPois(M), making
the quantization map (1.1) equivariant (Thm. 7.1).

This paper is structured much in the same way as the lectures presented at the
school. In Section 2, we briefly discuss how deformation quantization arises from
the quantization problem is physics; Section 3 reviews the basics on star products
and the main results on deformation quantization; Morita equivalence is recalled
in Section 4, while Section 5 presents a description of Morita equivalence for star
products as orbits of a suitable group action. Section 6 discusses the B-field action
on (formal) Poisson structures, and Section 7 presents the main results on the
classification of Morita equivalent star products.

Notation and conventions: For a smooth manifold M , C∞(M) denotes its al-
gebra of smooth complex-valued functions. Vector bundles E → M are taken to
be complex, unless stated otherwise. X •(M) denotes the graded algebra of (com-
plex) multivector fields on M , Ω•(M) is the graded algebra of (complex) differential
forms, while Ωp

cl(M) denotes the space of closed p-forms on M . We use the notation
H•

dR(M) for de Rham cohomology. For any vector space V over k = R or C, V [[�]]
denotes the space of formal power series with coefficients in V in a formal param-
eter �, naturally seen as a module over k[[�]]. We will use Einstein’s summation
convention whenever there is no risk of confusion.
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2. A word on quantization

Quantization is usually understood as a map assigning quantum observables
to classical ones. In general, classical observables are represented by smooth func-
tions on a symplectic or Poisson manifold (the classical “phase space”), whereas
quantum observables are given by (possibly unbounded) operators acting on some
(pre-)Hilbert space. A “quantization map” is expected to satisfy further compati-
bility properties (see e.g. [20] for a discussion), roughly saying that the algebraic
features of the space of classical observables (e.g. pointwise multiplication and
Poisson bracket of functions) should be obtained from those of quantum observ-
ables (e.g. operator products and commutators) in an appropriate limit “� → 0”.
As we will see in Section 3, deformation quantization offers a purely algebraic for-
mulation of quantization. In order to motivate it, we now briefly recall the simplest
quantization procedure in physics, known as canonical quantization.

Let us consider the classical phase space R2n = T ∗Rn, equipped with global
coordinates (q1, . . . , qn, p1, . . . , pn), and the canonical Poisson bracket

(2.1) {f, g} =
∂f

∂qj
∂g

∂pj
− ∂g

∂qj
∂f

∂pj
, f, g ∈ C∞(R2n),

so that the brackets of canonical coordinates are

{qk, p�} = δk� ,

for k, � = 1, . . . , n. Quantum mechanics tells us that the corresponding Hilbert
space in this case is L2(Rn), the space of wave functions on the configuration space
Rn = {(q1, . . . , qn)}. To simplify matters when dealing with unbounded operators,
we will instead consider the subspace C∞

0 (Rn) of compactly supported functions
on Rn. In canonical quantization, the classical observable qk ∈ C∞(T ∗Rn) is taken
to the multiplication operator Qk : C∞

0 (Rn) → C∞
0 (Rn), ψ �→ Qk(ψ), where

(2.2) Qk(ψ)(q) := qkψ(q), for q = (q1, . . . , qn) ∈ Rn,

while the classical observable p� ∈ C∞(T ∗Rn) is mapped to the differentiation
operator P� : C

∞
0 (Rn) → C∞

0 (Rn) given by

(2.3) ψ
P��→ −i�

∂ψ

∂q�
.

Here � is Planck’s constant. The requirements qk �→ Qk, p� �→ P�, together with
the condition that the constant function 1 is taken to the identity operator Id :
C∞

0 (Rn) → C∞
0 (Rn), constitute the core of canonical quantization.

A natural issue is whether one can extend the canonical quantization procedure
to assign operators to more general functions on T ∗Rn, including higher order
monomials of qk and p�. Since on the classical side qkp� = p�q

k, but on the quantum
side we have the canonical commutation relations

(2.4) [Qk, P�] = QkP� − P�Q
k = i�δk� ,

any such extension relies on the choice of an ordering prescription, for which one
has some freedom. As a concrete example, we consider the standard ordering,
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defined by writing, for a given monomial in qk and p�, all momentum variables
p� to the right, and then replacing qk by Qk and p� by P�; explicitly, this means
that qk1 · · · qkrp�1 · · · p�s is quantized by the operator Qk1 · · ·QkrP�1 · · ·P�s . If f is
a polynomial in qk and p�, k, � = 1, . . . , n, we can explicitly write this standard-
ordered quantization map as

(2.5) f �→
∞∑
r=0

1

r!

(
�

i

)r
∂rf

∂pk1
· · · ∂pkr

∣∣∣
p=0

∂r

∂qk1 · · · ∂qkr
.

One may verify that formula (2.5) in fact defines a linear bijection

(2.6) �Std : Pol(T
∗Rn) −→ DiffOp(Rn)

between the space Pol(T ∗Rn) of smooth functions on T ∗Rn that are polynomial in
the momentum variables p1, . . . , pn, and the space DiffOp(Rn) of differential opera-
tors with smooth coefficients on Rn. In order to compare the pointwise product and
Poisson bracket of classical observables with the operator product and commutator
of quantum observables, one may use the bijection (2.6) to pull back the operator
product to Pol(T ∗Rn),

(2.7) f �Std g := �−1
Std (�Std(f)�Std(g)) ,

so as to have all structures defined on the same space. A direct computation yields
the explicit formula for the new product �Std on Pol(T ∗Rn):

(2.8) f �Std g =

∞∑
r=0

1

r!

(
�

i

)r
∂rf

∂pk1
· · · ∂pkr

∂rg

∂qk1 · · · ∂qkr
.

With this formula at hand, one may directly check the following properties:

(1) f �Std g = fg +O(�);
(2) f �Std g − g �Std f = i�{f, g}+O(�2);
(3) The constant function 1 satisfies 1 �Std f = f = f �Std 1, for all f ∈

Pol(T ∗Rn);
(4) �Std is an associative product.

The associativity property is evident from construction, since �Std is isomorphic to
the composition product of differential operators. As we will see in the next section,
these properties of �Std underlie the general notion of a star product.

Before presenting the precise formulation of deformation quantization, we have
two final observations.

• First, we note that there are alternatives to the standard-ordering quan-
tization (2.5). From a physical perspective, one is also interested in com-
paring the involutions of the algebras at the classical and quantum levels,
i.e., complex conjugation of functions and adjoints of operators. Regard-
ing the standard-ordering quantization, the (formal) adjoint of �Std(f)
is not given by �Std(f). Instead, an integration by parts shows that
�Std(f)

∗ = �Std(N
2f), for the operator N : Pol(T ∗Rn) → Pol(T ∗Rn),

(2.9) N = exp

(
�

2i

∂2

∂qk∂pk

)
,

where exp is defined by its power series. If we pass to the Weyl-ordering
quantization map,

(2.10) �Weyl : Pol(T
∗Rn) → DiffOp(Rn), �Weyl(f) := �Std(Nf),
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we have �Weyl(f)
∗ = �Weyl(f). This quantization, when restricted to mono-

mials in qk, p�, agrees with the ordering prescribed by total symmetriza-
tion. Just as (2.7), the map (2.10) is a bijection, and it defines the Weyl
product �Weyl on Pol(T ∗Rn) by

(2.11) f �Weyl g = �−1
Weyl(�Weyl(f)�Weyl(g)).

The two products �Std and �Weyl on Pol(T ∗Rn) are related by

(2.12) f �Weyl g := N−1(Nf �Std Ng);

since N = Id +O(�), one may directly check that �Weyl satisfies the same
properties (1)–(4) listed above for �Std. But �Weyl satisfies an additional
compatibility condition relative to complex conjugation:

(2.13) f �Weyl g = g �Weyl f.

The are other possible orderings leading to products satisfying (2.13), such
as the so-called Wick ordering, see e.g. [28, Sec. 5.2.3].

• The second observation concerns the difficulties in extending the quan-
tization procedures discussed so far to manifolds other than T ∗Rn. The
quantizations �Std and �Weyl are only defined for functions in Pol(T ∗Rn),
i.e., polynomial in the momentum variables. On an arbitrary manifold M ,
however, there is no analog of this class of functions, and generally there
are no natural subalgebras of C∞(M) to be considered. From another
viewpoint, one sees that the expression for �Std in (2.8) does not make
sense for arbitrary smooth functions, as the radius of convergence in � is
typically 0, so �Std does not extend to a product on C∞(T ∗Rn) (and the
same holds for �Weyl). One can however interpret (2.8) as a formal power
series in the parameter �, i.e., as a product on C∞(T ∗Rn)[[�]]. This
viewpoint now carries over to arbitrary manifolds and leads to the general
concept of deformation quantization, in which quantization is formulated
in purely algebraic terms by means of associative product structures � on
C∞(M)[[�]] rather than operator representations 1.

3. Deformation quantization

Let M be a smooth manifold, and let C∞(M) denote its algebra of complex-
valued smooth functions. We consider C∞(M)[[�]], the set of formal power series
in � with coefficients in C∞(M), as a module over the ring C[[�]].

3.1. Star products. A star product [1] on M is an associative product � on
the C[[�]]-module C∞(M)[[�]] given as follows: for f, g ∈ C∞(M),

(3.1) f � g = fg +

∞∑
r=1

�rCr(f, g),

where Cr : C∞(M)×C∞(M) → C∞(M), r = 1, 2, . . ., are bidifferential operators,
and this product operation is extended to C∞(M)[[�]] by �-linearity (and �-adic

1Deformation quantization, in its most general form, completely avoids analytical issues (such
as convergence properties in � and related operator representations); these aspects are mostly
considered in particular classes of examples, see e.g. [15, Sec. 4] for a discussion and further
references.
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continuity). Additionally, we require that the constant function 1 ∈ C∞(M) is still
a unit for �:

1 � f = f � 1 = f, ∀f ∈ C∞(M).

Since

f � g = fg mod �, ∀f, g ∈ C∞(M),

one views star products as associative, but not necessarily commutative, defor-
mations (in the sense of [13]) of the pointwise product of functions on M . The
C[[�]]-algebra (C∞(M)[[�]], �) is called a deformation quantization of M .

Two star products � and �′ onM are said to be equivalent if there are differential
operators Tr : C∞(M) → C∞(M), r = 1, 2, . . ., such that

(3.2) T = Id +
∞∑
r=1

�rTr

satisfies

(3.3) T (f � g) = T (f) �′ T (g).

We define the moduli space of star products on M as the set of equivalence
classes of star products, and we denote it by Def(M).

Example 3.1. Formula (2.8) for �Std defines a star product on M = T ∗Rn,
and the same holds for the product �Weyl given in (2.11); by (2.12), the operator N
in (2.9) defines an equivalence between the star products �Std and �Weyl.

3.2. Noncommutativity in first order: Poisson structures. Given a star
product � on M , its noncommutativity is measured, in first order, by the bilinear
operation {·, ·} : C∞(M)× C∞(M) → C∞(M),

(3.4) {f, g} :=
1

i�
(f � g − g � f)

∣∣∣
�=0

=
1

i
(C1(f, g)− C1(g, f)), f, g ∈ C∞(M).

It follows from the associativity of � that {·, ·} is a Poisson structure on M (see e.g.
[7, Sec.19]); recall that this means that {·, ·} is a Lie bracket on C∞(M), which is
compatible with the pointwise product on C∞(M) via the Leibniz rule:

{f, gh} = {f, g}h+ {f, h}g, f, g, h ∈ C∞(M).

The Leibniz rule implies that any Poisson structure {·, ·} is equivalently de-
scribed by a bivector field π ∈ X 2(M), via

{f, g} = π(df, dg),

satisfying the additional condition (accounting for the Jacobi identity of {·, ·}) that
[π, π] = 0, where [·, ·] is an extension to X •(M) of the Lie bracket of vector fields,
known as the Schouten bracket. The pair (M,π) is called a Poisson manifold (see
e.g. [7] for more on Poisson geometry). If a star product � corresponds to a
Poisson structure π via (3.4), we say that � quantizes π, or that � is a deformation
quantization of the Poisson manifold (M,π).

A Poisson structure π on M defines a bundle map

(3.5) π� : T ∗M → TM, α �→ iαπ = π(α, ·).
We say that π is nondegenerate if (3.5) is an isomorphism, in which case π is
equivalent to a symplectic structure ω ∈ Ω2(M), defined by

(3.6) ω(π�(α), π�(β)) = π(β, α);
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alternatively, the 2-form ω is defined by the condition that the map TM → T ∗M ,
X �→ iXω, is inverse to (3.5).

Example 3.2. The star product �Std on T ∗Rn quantizes the classical Poisson
bracket

{f, g} =
∂f

∂qj
∂g

∂pj
− ∂g

∂qj
∂f

∂pj
,

defined by the (nondegenerate) bivector field π = ∂
∂qj ∧ ∂

∂pj
. The same holds for

�Weyl.

3.3. Existence and classification of star products. A direct computation
shows that if � and �′ are equivalent star products, i.e., define the same element in
Def(M), then they necessarily quantize the same Poisson structure. For a Poisson
structure π on M , we denote by

Def(M,π) ⊂ Def(M)

the subset of equivalence classes of star products quantizing π. The central issue
in deformation quantization is understanding Def(M,π), for example by finding
a concrete parametrization of this space. Concretely, deformation quantization
concerns the following fundamental issues:

• Given a Poisson structure π on M , is there a star product quantizing it?
• If there is a star product quantizing π, how many distinct equivalence
classes in Def(M) with this property are there?

The main result on existence and classification of star products on Poisson
manifolds follows from Kontsevich’s formality theorem [18], that we briefly recall.

Let X 2(M)[[�]] denote the space of formal power series in � with coefficients in
bivector fields. A formal Poisson structure on M is an element π� ∈ �X 2(M)[[�]],

π� =

∞∑
r=1

�rπr, πr ∈ X 2(M),

such that

(3.7) [π�, π�] = 0,

where [·, ·] denotes the �-bilinear extension of the Schouten bracket to formal power
series. It immediately follows from (3.7) that

[π1, π1] = 0,

i.e., π1 is an ordinary Poisson structure on M . So we view π� as a formal deforma-
tion of π1 in the realm of Poisson structures.

A formal Poisson structure π� defines a bracket {·, ·}� on C∞(M)[[�]] by

{f, g}� = π�(df, dg).

Two formal Poisson structures π� and π′
�
are equivalent if there is a formal dif-

feomorphism T = exp(
∑∞

r=1 �
rXr) : C∞(M)[[�]] → C∞(M)[[�]], where each

Xr ∈ X 1(M) is a vector field, satisfying

T{f, g}� = {Tf, Tg}′
�
.

(Here the exponential exp is defined by its formal series, and it gives a well-defined
formal power series in � since

∑∞
r=1 �

rXr starts at order �.) We define the moduli
space of formal Poisson structures on M as the set of equivalence classes of formal
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Poisson structures, and we denote it by FPois(M). One may readily verify that
two equivalent formal Poisson structures necessarily agree to first order in �, i.e.,
deform the same Poisson structure. So, given a Poisson structure π on M , we may
consider the subset

FPois(M,π) ⊂ FPois(M)

of equivalence classes of formal Poisson structures deforming π.
We can now state Kontsevich’s theorem [18].

Theorem 3.3. There is a one-to-one correspondence

(3.8) K∗ : FPois(M)
∼→ Def(M), [π�] = [�π1 + · · · ] �→ [�],

such that 1
i� [f, g]�

∣∣
�=0

= π1(df, dg).

For a given star product � on M , the element in FPois(M) corresponding to
[�] under (3.8) is called its characteristic class, or its Kontsevich class.

Theorem 3.3 answers the existence and classification questions for star products
as follows:

• Any Poisson structure π on M may be seen as a formal Poisson structure
�π. So it defines a class [�π] ∈ FPois(M), which is quantized by any star
product � such that [�] = K∗([�π1]).

• For any Poisson structure π on M , the map (3.8) restricts to a bijection

(3.9) FPois(M,π)
∼→ Def(M,π).

This means that the distinct classes of star products quantizing π are
in one-to-one correspondence with the distinct classes of formal Poisson
structures deforming π.

Remark 3.4.

(a) Theorem 3.3 is a consequence of a much more general result, known
as Kontsevich’s formality theorem [18]; this theorem asserts that, for
any manifold M , there is an L∞-quasi-isomorphism from the differential
graded Lie algebra (DGLA) X (M) of multivector fields on M to the DGLA
D(M) of multidifferential operators on M , and moreover the first Taylor
coefficient of this L∞-morphism agrees with the natural map X (M) →
D(M) (defined by viewing vector fields as differential operators). It is a
general fact that any L∞-quasi-isomorphism between DGLAs induces a
one-to-one correspondence between equivalence classes of Maurer-Cartan
elements. Theorem 3.3 follows from the observation that the Maurer-
Cartan elements in X (M)[[�]] are formal Poisson structures, whereas the
Maurer-Cartan elements in D(M)[[�]] are star products.

(b) We recall that the L∞-quasi-isomorphism from X (M) to D(M), also called
a formality, is not unique, and the map (3.8) may depend upon this choice
(see e.g. [12] for more details and references). Just as in [3], for the
purposes of these notes, we will consider the specific global formality con-
structed in [10]. The specific properties of the global formality that we will
need are explicitly listed in [3, Sec. 2.2].

In general, not much is known about the space FPois(M,π), which parametrizes
Def(M,π), according to (3.9). An exception is when the Poisson structure π is
nondegenerate, i.e., defined by a symplectic structure ω ∈ Ω2(M). In this case, any
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formal Poisson structure π� = �π +
∑∞

r=2 �
rπr is equivalent (similarly to (3.6)) to

a formal series 1
�
ω +

∑∞
r=0 �

rωr, where each ωr ∈ Ω2(M) is closed (see e.g. [15,
Prop. 13]); moreover, two formal Poisson structures π�, π′

�
deforming the same

Poisson structure π, and corresponding to 1
�
ω +

∑∞
r=0 �

rωr and 1
�
ω +

∑∞
r=0 �

rω′
r,

define the same class in FPois(M,π) if and only if, for all r ≥ 1, ωr and ω′
r are

cohomologous. As a result, FPois(M,π) is in bijection with H2
dR(M,C)[[�]]. But in

order to keep track of the symplectic form ω, one usually replaces H2
dR(M,C)[[�]]

by the affine space [ω]
�

+H2
dR(M,C)[[�]] and considers the identification

(3.10)
1

�
[ω] +H2

dR(M,C)[[�]] ∼= FPois(M,π).

By (3.9), the map K∗ induces a bijection

(3.11)
1

�
[ω] +H2

dR(M,C)[[�]]
∼→ Def(M,π),

which gives an explicit parametrization of star products on the symplectic mani-
fold (M,ω). The map (3.11) is proven in [3, Sec. 4] to coincide with the known
classification of symplectic star products (see e.g. [15, 16] for an exposition with
original references), which is intrinsic and prior to Kontsevich’s general result. The
element c(�) ∈ 1

�
[ω] +H2

dR(M,C)[[�]] corresponding to a star product � on (M,ω)
under (3.11) is known as its Fedosov-Deligne characteristic class. In particular, if
H2

dR(M) = {0}, all star products quantizing a fixed symplectic structure on M are
equivalent to one another. For star products satisfying the additional compatibility
condition (2.13), a classification is discussed in [23].

We now move on to the main issue addressed in these notes: characterizing
star products on a manifold M which are Morita equivalent in terms of their char-
acteristic classes. We first recall basic facts about Morita equivalence.

4. Morita equivalence reminder

In this section, we will consider k-algebras (always taken to be associative and
unital), where k is a commutative, unital, ground ring; we will be mostly interested
in the cases k = C or C[[�]].

Morita equivalence aims at characterizing a k-algebra in terms of its represen-
tation theory, i.e., its category of modules. Let us consider unital k-algebras A, B,
and denote their categories of left modules by AM and BM. In order to compare

AM and BM, we observe that any (B,A)-bimodule X (which we may also denote
by BXA, to stress the left B-action and right A-action) gives rise to a functor

AM → BM, defined on objects by tensor product:

V �→ X ⊗A V.

We call BXA invertible if there is an (A,B)-bimodule AYB such that X⊗AY ∼= B as
(B,B)-bimodules, and Y ⊗B X ∼= A as (A,A)-bimodules. In this case, the functor

AM → BM defined by BXA is an equivalence of categories.
We say that two unital k-algebras A and B are Morita equivalent if there

exists an invertible bimodule BXA. Note that if A and B are isomorphic algebras,
through an isomorphism ψ : B → A, then they are necessarily Morita equivalent:
A itself may be viewed as an invertible (B,A)-bimodule, with right A-action given
by algebra multiplication on the right, and left B-action given by left multiplication
via ψ, (b, a) �→ ψ(b)a. One readily verifies that Morita equivalence is a reflexive
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and symmetric relation; to see that it is transitive, hence an equivalence relation
for unital k-algebras, the key observation is that if Y is a (C,B)-bimodule and X
is a (B,A)-bimodule, then the tensor product

Y ⊗B X

is a (C,A)-bimodule, which is invertible provided X and Y are.
For any unital k-algebra A, the set of isomorphism classes of invertible (A,A)-

bimodules has a natural group structure with respect to bimodule tensor product;
we denote this group of “self-Morita equivalences” of A by Pic(A), and call it the
Picard group of A.

The main characterization of invertible bimodules is given by Morita’s theorem
[21] (see e.g. [19, Sec. 18]):

Theorem 4.1. A (B,A)-bimodule X is invertible if and only if the following
holds: as a right A-module, XA is finitely generated, projective, and full, and the
natural map B → End(XA) is an algebra isomorphism.

In other words, the theorem asserts that a bimodule BXA is invertible if and
only if the following is satisfied: there exists a projection P ∈ Mn(A), P 2 = P , for
some n ∈ N, so that, as a right A-module, XA ∼= PAn; additionally, XA being full
means that the ideal in A generated by the entries of P agrees with A; furthermore,
the left B-action on X identifies B with EndA(PAn) = PMn(A)P .

A simple example of Morita equivalent algebras is A and Mn(A) for any n ≥
1; in this case, an invertible bimodule is given by the free (Mn(A),A)-bimodule
An. Amongst commutative algebras, Morita equivalence boils down to algebra
isomorphism; nevertheless, the Picard group of a commutative algebra is generally
larger than its group of algebra automorphisms, as illustrated by the next example.

Example 4.2. Let A = C∞(M), equipped with the pointwise product. By
the smooth version of Serre-Swan’s theorem, see e.g. [22, Thm. 11.32], finitely
generated projective modules XA are given by the space of smooth sections of vector
bundles E → M ,

XA = Γ(E).

Writing E = PAn for a projection P , we see that tr(P ) = rank(E), so the mod-
ule XA is full whenever E has nonzero rank, in which case Γ(E) is an invertible
(Γ(End(E)), C∞(M))-bimodule. We conclude that all the algebras Morita equiva-
lent to C∞(M) are (isomorphic to one) of the form Γ(End(E)). In particular, for
any line bundle L → M , Γ(L) defines a self Morita equivalence of C∞(M), since
End(L) is the trivial line bundle M × C, so Γ(End(L)) ∼= C∞(M). Recall that
the set of isomorphism classes of complex line bundles over M forms a group (un-
der tensor product), denoted by Pic(M), which is isomorphic to the additive group
H2(M,Z).

To obtain a complete description of the Picard group of the algebra C∞(M),
recall that any automorphism of C∞(M) is realized by a diffeomorphism ϕ : M →
M via pullback,

f �→ ϕ∗f = f ◦ ϕ,
so the group of algebra automorphisms of C∞(M) is identified with Diff(M). Putting
these ingredients together, one verifies that

Pic(C∞(M)) = Diff(M)� Pic(M) = Diff(M)�H2(M,Z),
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where the semi-direct product is with respect to the action of Diff(M) on line bundles
(or integral cohomology classes) by pullback.

5. Morita equivalence of star products

We now address the issue of describing when two star products on a manifold
M define Morita equivalent C[[�]]-algebras. The main observation in this section
is that Morita equivalence can be described as orbits of an action on Def(M). Let
us start by describing when two star products define isomorphic C[[�]]-algebras.

5.1. Isomorphic star products. Any equivalence T between star products
� and �′, in the sense of Section 3.1, is an algebra isomorphism (by definition,
T = Id + O(�), so it is automatically invertible as a formal power series). But
not every isomorphism is an equivalence. In general, a C[[�]]-linear isomorphism
between star products � and �′ on M is of the form

T =
∞∑
r=0

�rTr,

where each Tr : C∞(M) → C∞(M) is a differential operator, such that (3.3) holds
(c.f. [15], Prop. 14 and Prop. 29); note that this forces T0 : C∞(M) → C∞(M) to
be an isomorphism of commutative algebras (relative to the pointwise product), but
not necessarily the identity. In particular, there is a diffeomorphism ϕ : M → M
such that

T0 = ϕ∗.

If we consider the natural action of the diffeomorphism group Diff(M) on star
products: � �→ �ϕ, where

(5.1) f �ϕ g = (ϕ−1)∗(ϕ∗f � ϕ∗g), ϕ ∈ Diff(M),

we see that it descends to an action of Diff(M) on Def(M),

(5.2) Diff(M)× Def(M) → Def(M), (ϕ, [�]) �→ [�ϕ],

in such a way that two star products �, �′ define isomorphic C[[�]]-algebras if and
only if their classes in Def(M) lie on the same Diff(M)-orbit.

Remark 5.1. Similarly, given a Poisson structure π on M and denoting by

Diffπ(M) ⊆ Diff(M)

the group of Poisson automorphisms of (M,π), we see that the action (5.2) restricts
to an action of Diffπ(M) on Def(M,π) whose orbits characterize isomorphic star
products quantizing π.

We will see that there is a larger group acting on Def(M) whose orbits charac-
terize Morita equivalence.

5.2. An action of Pic(M). By Morita’s characterization of invertible bi-
modules in Theorem 4.1, the first step in describing Morita equivalent star prod-
ucts is understanding, for a given star product � on M , the right modules over
(C∞(M)[[�]], �) that are finitely generated, projective, and full.

One obtains modules over (C∞(M)[[�]], �) by starting with a classical finitely
generated projective module over C∞(M), defined by a vector bundle E → M ,
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and then performing a deformation-quantization type procedure: one searches for
bilinear operators Rr : Γ(E)× C∞(M) → Γ(E), r = 1, 2, . . ., so that

(5.3) s • f := sf +

∞∑
r=1

�rRr(s, f), s ∈ Γ(E), f ∈ C∞(M),

defines a right module structure on Γ(E)[[�]] over (C∞(M)[[�]], �); i.e.,

(s • f) • g = s • (f � g).

One may show [4] that the deformation (5.3) is always unobstructed, for any choice
of �; moreover, the resulting module structure on Γ(E)[[�]] is unique, up to a
natural notion of equivalence. Also, the module (Γ(E)[[�]], •) over (C∞(M)[[�]], �)
is finitely generated, projective, and full, and any module with these properties
arises in this way.

The endomorphism algebra End(Γ(E)[[�]], •) may be identified, as a C[[�]]-
module, with Γ(End(E))[[�]]. As a result, it induces an associative product �′

on Γ(End(E))[[�]], deforming the (generally noncommutative) algebra Γ(End(E)).
For a line bundle L → M , since Γ(End(L)) ∼= C∞(M), it follows that �′ de-
fines a new star product on M . The equivalence class [�′] ∈ Def(M) is well-
defined, i.e., it is independent of the specific module deformation • or identification
(C∞(M)[[�]], �′) ∼= End(Γ(L)[[�]], •), and it is completely determined by the iso-
morphism class of L in Pic(M). The construction of �′ from � and L gives rise to
a canonical action [2]

(5.4) Φ : Pic(M)×Def(M) → Def(M), (L, [�]) �→ ΦL([�]).

Additionally, for any Poisson structure π, this action restricts to a well defined
action of Pic(M) on Def(M,π).

5.3. Morita equivalence as orbits. Let us consider the semi-direct product

Diff(M)� Pic(M),

which is nothing but the Picard group of C∞(M), see Example 4.2. By combin-
ing the actions of Diff(M) and Pic(M) on Def(M), described in (5.2) and (5.4),
one obtains a Diff(M) � Pic(M)-action on Def(M), which leads to the following
characterization of Morita equivalent star products, see [2]:

Theorem 5.2. Two star products � and �′ on M are Morita equivalent if and
only if [�], [�′] lie in the same Diff(M)� Pic(M)-orbit:

[�′] = ΦL([�ϕ])

Similarly (see Remark 5.1), two star products on M quantizing the same Pois-
son structure π are Morita equivalent if and only if the lie in the same orbit of
Diffπ(M)� Pic(M) on Def(M,π).

Our next step is to transfer the actions of Diff(M) and Pic(M) = H2(M,Z) to
FPois(M) via K∗ in (3.8); i.e, we will find explicit actions of Diff(M) and H2(M,Z)
on FPois(M) making K∗ equivariant with respect to Diff(M)�H2(M,Z).
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6. B-field action on formal Poisson structures

There is a natural way in which Poisson structures may be modified by closed
2-forms. In the context of formal Poisson structures, this leads to a natural action
of the abelian group H2

dR(M,C)[[�]] on FPois(M),

(6.1) H2
dR(M,C)[[�]]× FPois(M) → FPois(M),

that we will refer to as the B-field action, to be discussed in this section.

6.1. B-field transformations of Poisson structures. A convenient way to
describe how closed 2-forms may “act” on Poisson structures is to take a broader
perspective on Poisson geometry, following [9, 26], see also [14]. The starting
point is considering, for a manifold M , the direct sum TM ⊕ T ∗M . This bundle
is naturally equipped with two additional structures: a symmetric, nondegenerate,
fibrewise pairing, given for each x ∈ M by

(6.2) 〈(X,α), (Y, β)〉 = β(X) + α(Y ), X, Y ∈ TxM, α, β ∈ T ∗
xM,

as well as a bilinear operation on Γ(TM ⊕ T ∗M), known as the Courant bracket,
given by

(6.3) [[(X,α), (Y, β)]] := ([X,Y ],LXβ − iY dα),

for X,Y ∈ X 1(M) and α, β ∈ Ω1(M). The Courant bracket extends the usual Lie
bracket of vector fields, but it is not a Lie bracket itself.

One may use (6.2) and (6.3) to obtain an alternative description of Poisson
structures. Specifically, Poisson structures on M are in one-to-one correspondence
with subbundles L ⊂ TM ⊕ T ∗M satisfying the following conditions:

(a) L ∩ TM = {0},
(b) L = L⊥ (i.e., L is self orthogonal with respect to the pairing (6.2)), and
(c) Γ(L) is involutive with respect to the Courant bracket.

For a Poisson structure π, the bundle L ⊂ TM ⊕ T ∗M corresponding to it is (see
(3.5))

L = graph(π�) = {(π�(α), α) | α ∈ T ∗M}.
Indeed, (a) means that L is the graph of a bundle map ρ : T ∗M → TM , while
(b) says that ρ∗ = −ρ, so that ρ = π� for π ∈ X 2(M); finally, (c) accounts for
the condition [π, π] = 0. In general, subbundles L ⊂ TM ⊕ T ∗M satisfying only
(b) and (c) are referred to as Dirac structures [9]; Poisson structures are particular
cases also satisfying (a).

We will be interested in the group of bundle automorphisms of TM ⊕ T ∗M
which preserve the pairing (6.2) and the Courant bracket (6.3); we refer to such
automorphisms as Courant symmetries. Any diffeomorphism ϕ : M → M naturally
lifts to a Courant symmetry, through its natural lifts to TM and T ∗M . Another
type of Courant symmetry, known as B-field (or gauge) transformation, is defined
by closed 2-forms [26]: any B ∈ Ω2

cl(M) acts on TM ⊕ T ∗M via

(6.4) (X,α)
τB�→ (X,α+ iXB).

The full group of Courant symmetries turns out to be exactly Diff(M)� Ω2
cl(M).

For a Poisson structure π on M , the B-field transformation (6.4) takes L =
graph(π�) to the subbundle

τB(L) = {(π�(α), α+ iπ�(α)B) |α ∈ T ∗M} ⊂ TM ⊕ T ∗M,
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and since τB preserves (6.2) and (6.3), τB(L) automatically satisfies (b) and (c) (i.e.,
it is a Dirac structure). It follows that τB(L) determines a new Poisson structure
πB, via τB(L) = graph((πB)�), if and only if τB(L)∩TM = {0}, which is equivalent
to the condition that

(6.5) Id +B�π� : T ∗M → T ∗M is invertible,

where B� : TM → T ∗M , B�(X) = iXB. In this case, the Poisson structure πB is
completely characterized by

(6.6) (πB)� = π� ◦ (Id +B�π�)−1.

In conclusion, given a Poisson structure π and a closed 2-form B, if the compatibility
condition (6.5) holds, then (6.6) defines a new Poisson structure πB. A simple case
is when π is nondegenerate, hence equivalent to a symplectic form ω; then condition
(6.5) says that ω+B is nondegenerate, and πB is the Poisson structure associated
with it.

6.2. Formal Poisson structures and the B-field action. The whole dis-
cussion about B-field transformations carries over to formal Poisson structures –
and even simplifies in this context. Given a formal Poisson structure

π� = �π1 + �2π2 + · · · ∈ �X 2(M)[[�]]

and any B ∈ Ω2
cl(M)[[�]], then B�π�

�
= O(�), where here π�

�
and B� are the associ-

ated (formal series of) bundle maps. Hence (Id +B�π�
�
) is automatically invertible

as a formal power series (i.e., (6.5) is automatically satisfied),

(Id + B�π�
�
)−1 =

∞∑
n=0

(−1)n(B�π�
�
)n,

and the same formula as (6.6) defines an action of the abelian group Ω2
cl(M)[[�]] on

formal Poisson structures: π� �→ πB
�
, where

(πB
�
)� = π�

�
◦ (Id +B�π�

�
)−1.

There are two key observations concerning this action: First, the B-field trans-
formations of equivalent formal Poisson structures remain equivalent; second, the
B-field transformation by an exact 2-form B = dA does not change the equivalence
class of a formal Poisson structure. This leads to the next result [3, Prop. 3.10]:

Theorem 6.1. The action of Ω2
cl(M)[[�]] on formal Poisson structures descends

to an action

(6.7) H2
dR(M,C)[[�]]× FPois(M) → FPois(M), [π�] �→ [πB

�
]

This action is the identity to first order in �:

π� = �π1 +O(�) =⇒ πB
�
= �π1 +O(�).

So, for any Poisson structure π ∈ X 2(M), the action (6.7) restricts to

H2
dR(M,C)[[�]]× FPois(M,π) → FPois(M,π).

When π is symplectic, so that we have the identification (3.10), this action is simply

(6.8) [ω�] �→ [ω�] + [B],

for [ω�] ∈ 1
�
[ω] +H2

dR(M,C)[[�]] and [B] ∈ H2
dR(M,C)[[�]].
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7. Morita equivalent star products via Kontsevich’s classes

Our final goal is to present the description of Morita equivalent star products
in terms of their Kontsevich classes, i.e., by means of the correspondence

K∗ : FPois(M)
∼→ Def(M)

of Thm. 3.3. By Thm. 5.2, Morita equivalent star products are characterized by
lying on the same orbit of Diff(M) � Pic(M) on Def(M). In order to find the
corresponding action on FPois(M), we treat the actions of Diff(M) and Pic(M) ∼=
H2(M,Z) independently.

The group Diff(M) naturally acts on formal Poisson structures: for ϕ ∈ Diff(M),

π� =
∞∑
r=1

�rπr
ϕ�→ ϕ∗π� =

∞∑
r=1

�rϕ∗πr,

and this action induces an action of Diff(M) on FPois(M), with respect to which K∗
is equivariant [11]. This accounts for the classification of isomorphic star products
in terms of their Kontsevich classes, which is (the easy) part of the classification
up to Morita equivalence.

The less trivial part is due to the action (5.4) of Pic(M). In this respect, the
main result asserts that the transformation ΦL on Def(M) defined by a line bundle
L ∈ Pic(M) corresponds to the B-field transformation on FPois(M) by a curvature
form of L, see [3, Thm. 3.11]:

Theorem 7.1. The action Φ : Pic(M)×Def(M) → Def(M) satisfies

ΦL([�]) = K∗([π
B
�
]),

where B is a closed 2-form representing the cohomology class 2πic1(L), where c1(L)
is the Chern class of L → M .

A direct consequence is that flat line bundles (which are the torsion elements
in Pic(M)) act trivially on Def(M) under (5.4).

The theorem establishes a direct connection between the B-field action (6.7)
on formal Poisson structures and algebraic Morita equivalence: If a closed 2-form
B ∈ Ω2

cl(M) is 2πi-integral, then B-field related formal Poisson structures quantize
under K∗ to Morita equivalent star products.

The following classification results for Morita equivalent star products in terms
of their characteristic classes readily follow from Thm. 7.1:

• Two star products � and �′, with Kontsevich classes [π�] and [π′
�
], are

Morita equivalent if and only if there is a diffeomorphism ϕ : M → M
and a closed 2-form B whose cohomology class is 2πi-integral, such that

(7.1) [π′
�
] = [(ϕ∗π�)

B].

• If � and �′ quantize the same Poisson structure π, so that [π�], [π
′
�
] ∈

FPois(M,π), then the result is analogous: � and �′ are Morita equivalent
if and only if (7.1) holds, but now ϕ : M → M is a Poisson automorphism.

• Assume that � and �′ quantize the same nondegenerate Poisson struc-
ture, defined by a symplectic form ω. In this case, by (6.8), Theorem 7.1
recovers the characterization of Morita equivalent star products on sym-
plectic manifolds obtained in [5], in terms of Fedosov-Deligne classes
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(3.11): � and �′ are Morita equivalent if and only if there is a symplec-
tomorphism ϕ : M → M for which the difference c(�) − c(�′ϕ) is a 2πi-

integral class in H2
dR(M,C) (viewed as a subspace of H2

dR(M,C)[[�]] =
H2

dR(M,C) + �H2
dR(M,C)[[�]]).

Remark 7.2. These notes treat star-product algebras simply as associative uni-
tal C[[�]]-algebras. But these algebras often carry additional structure: one may
consider star products for which complex conjugation is an algebra involution (e.g.
the Weyl star product, see (2.13)), and use the fact that R[[�]] is an ordered ring
to obtain suitable notions of positivity on these algebras (e.g. positive elements,
positive linear functionals). One can develop refined notions of Morita equivalence
for star products, parallel to strong Morita equivalence of C∗-algebras, taking these
additional properties into account, see e.g. [6]. An overview of these more elaborate
aspects of Morita theory for star products can be found e.g. in [29].

References

[1] Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory
and quantization, I and II, Ann. Phys. 111 (1977), 61-151.

[2] Bursztyn, H.: Semiclassical geometry of quantum line bundles and Morita equivalence of star
products, Intern. Math. Res. Notices 16, 2002, 821–846.

[3] Bursztyn, H., Dolgushev, V., Waldmann, S.: Morita equivalence and characteristic classes
of star products, J. Reine Angew. Math. (Crelle’s Journal) 662 (2012), 95–163.

[4] Bursztyn, H., Waldmann, S.: Deformation quantization of Hermitian vector bundles, Lett.
Math. Phys. 53 (2000), 349–365.

[5] Bursztyn, H., Waldmann, S.: The characteristic classes of Morita equivalent star products
on symplectic manifolds, Commun. Math. Phys. 228 (2002), 103–121.

[6] Bursztyn, H., Waldmann, S.: Completely positive inner products and strong Morita equiv-
alence, Pacific J. Math., 222 (2005), 201–236.

[7] Cannas da Silva, A., Weinstein, A.: Geometric models for noncommutative algebras. Berkeley
Mathematics Lecture Notes, 10. American Mathematical Society, Providence, RI; Berkeley
Center for Pure and Applied Mathematics, Berkeley, CA, 1999.

[8] Connes, A.: Noncommutative geometry. Academic Press, Inc., San Diego, CA, 1994.
[9] Courant, T.: Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990), 631–661.

[10] Dolgushev, V.: Covariant and equivariant formality theorems, Advances in Math. 191 (2005),
147–177.

[11] Dolgushev, V.: A proof of Tsygan’s formality conjecture for an arbitrary smooth manifold.
PhD Thesis, MIT. Arxiv: math.QA/0504420.

[12] Dolgushev, V.: Exhausting formal quantization procedures. Arxiv:1111.2797.
[13] Gerstenhaber, M.: On the deformations of rings and algebras, Ann. Math., 78 (1963), 267–

288.
[14] Gualtieri, M.: Generalized complex geometry, Ann. Math. 174 (2011), 75–123.
[15] Gutt, S.: Variations on deformation quantization. In: Dito, G., Sternheimer, D. (Eds): Con-

ference Moshe Flato 1999. Quantization, deformations, and symmetries. Math. Physics stud-
ies no. 21, 217–254. Kluwer Academic Publishers, 2000.

[16] Gutt, S., Rawnsley, J.: Equivalence of star products on a symplectic manifold: an introduc-
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Noncommutative Calculus and Operads

Boris Tsygan

1. Introduction

This expository paper is based on lecture courses that the author taught at the
Hebrew University of Jerusalem in the year of 2009–2010 and at the Winter School
on Noncommutative Geometry at Buenos Aires in July-August of 2010. It gives
an overview of works on the topics of noncommutative calculus, operads and index
theorems.

Noncommutative calculus is a theory that defines classical algebraic structures
arising from the usual calculus on manifolds in terms of the algebra of functions
on this manifold, in a way that is valid for any associative algebra, commutative or
not. It turns out that noncommutative analogs of the basic spaces arising in calcu-
lus are well-known complexes from homological algebra. For example, the role of
noncommutative multivector fields is played by the Hochschild cochain complex of
the algebra; the the role of noncommutative forms is played by the Hochschild chain
complex, and the role of the noncommutative de Rham complex by the periodic
cyclic complex of the algebra. These complexes turn out to carry a very rich alge-
braic structure, similar to the one carried by their classical counterparts. Moreover,
when the algebra in question is the algebra of functions, the general structures from
noncommutative geometry are equivalent to the classical ones. These statements
rely on the Kontsevich formality theorem [72] and its analogs and generalizations.
We rely on the method of proof developed by Tamarkin in [104], [105]. The main
tool in this method is the theory of operads [86].

A consequence of the Kontsevich formality theorem is the classification of all
deformation quantizations [5] of a given manifold. Another consequence is the
algebraic index theorem for deformation quantizations. This is a statement about
a trace of a compactly supported difference of projections in the algebra of matrices
over a deformed algebra. It turns out that all the data entering into this problem
(namely, a deformed algebra, a trace on it, and projections in it) can be classified
using formal Poisson structures on the manifold. The answer is an expression very
similar to the right hand side of the Atiyah-Singer index theorem. For a deformation
of a symplectic structure, all the results mentioned above were obtained by Fedosov
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[44]; they imply the Atiyah-Singer index theorem and its various generalizations
[9].

The algebraic index theorem admits a generalization for deformation quantiza-
tions of complex analytic manifolds. In this new setting, a deformation quantization
as an algebra is replaced by a deformation quantization as an algebroid stack, a
trace by a Hochschild cocycle, and a difference of two projections by a perfect
complex of (twisted) modules. The situation becomes much more mysterious than
before, because both the classification of the data entering into the problem and
the final answer depend on a Drinfeld associator [36]. The algebraic index theo-
rem for deformation quantization of complex manifolds in its final form is due to
Willwacher ([118], [119], and to appear).

The author is greatly indebted to the organizers and the members of the audi-
ence of his course and talks in Jerusalem for the wonderful stimulating atmosphere.
He is especially thankful to Volodya Hinich and David Kazhdan with whom he
had multiple discussions on the subject and its relations to the theory of infinity-
categories, as well as to Ilan Barnea for a key argument on which Section 5 is
based. He is grateful to Oren Ben Bassat, Emmanouil Farjoun, Jake Solomon, Ran
Tesler and Amitai Zernik for very interesting and enjoyable discussions. It is my
great pleasure to thank Willie Cortiñas and of the other co-organizers of the Winter
School in Buenos Aires, as well as the audience of my lectures there.

2. Hochschild and cyclic homology of algebras

Let k denote a commutative algebra over a field of characteristic zero and let
A be a flat k-algebra with unit, not necessarily commutative. Let A = A/k · 1. For
p ≥ 0, let Cp(A)

def
= A⊗k A

⊗kp
. Define

b : Cp(A) → Cp−1(A)(2.1)

a0 ⊗ . . .⊗ ap �→ (−1)papa0 ⊗ . . .⊗ ap−1 +
p−1∑
i=0

(−1)ia0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ ap .

Then b2 = 0 and one gets the complex (C•, b), called the standard Hochschild com-
plex of A. The homology of this complex is denoted by H•(A,A), or by HH•(A).

Proposition 2.0.1. The map

B : Cp(A) → Cp+1(A)(2.2)

a0 ⊗ . . .⊗ ap �→
p∑

i=0

(−1)pi1⊗ ai ⊗ . . .⊗ ap ⊗ a0 ⊗ . . .⊗ ai−1

satisfies B2 = 0 and bB +Bb = 0 and therefore defines a map of complexes

B : C•(A) → C•(A)[−1]

Definition 2.0.2. For p ∈ Z let

CC−
p (A) =

∏
i≥p

i≡p mod 2

Ci(A)

CCper
p (A) =

∏
i≡p mod 2

Ci(A)
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CCp(A) =
⊕
i≤p

i≡p mod 2

Ci(A)

Since i ≥ 0, the third formula has a finite sum in the right hand side. The com-
plex (CC−

• (A), B+b) (respectively (CCper
• (A), B+b), respectively (CC•(A), B+b))

is called the negative cyclic (respectively periodic cyclic, respectively cyclic) com-
plex of A. The homology of these complexes is denoted by HC−

• (A) (respectively
by HCper

• (A), respectively by HC•(A)).
There are inclusions of complexes

(2.3) CC−
• (A)[−2] ↪→ CC−

• (A) ↪→ CCper
• (A)

and the short exact sequences

(2.4) 0 → CC−
• (A)[−2] → CC−

• (A) → C•(A) → 0

(2.5) 0 → C•(A) → CC•(A)
S→ CC•(A)[2] → 0

To the double complex CC•(A) one associates the spectral sequence

(2.6) E2
pq = Hp−q(A,A)

converging to HCp+q(A).
In what follows we will use the notation of Getzler and Jones ([54]). Let u

denote a variable of degree −2.

Definition 2.0.3. For any k-module M we denote by M [u] M -valued poly-
nomials in u, by M [[u]] M -valued power series, and by M((u)) M -valued Laurent
series in u.

The negative and periodic cyclic complexes are described by the following for-
mulas:

CC−
• (A) = (C•(A)[[u]], b+ uB)(2.7)

CCper
• (A) = (C•(A)((u)), b+ uB)(2.8)

CC•(A) = (C•(A)((u))/uC•(A)[[u]], b+ uB)(2.9)

In this language, the map S is just multiplication by u.

Remark 2.0.4. For an algebra A without unit, let Ã = A+ k · 1 and put

CC•(A) = Ker(CC•(Ã) → CC•(k));

similarly for the negative and periodic cyclic complexes. If A is a unital algebra
then these complexes are quasi-isomorphic to the ones defined above.

2.1. Homology of differential graded algebras. One can easily generalize
all the above constructions to the case when A is a differential graded algebra (DGA)
with the differential δ (i.e. A is a graded algebra and δ is a derivation of degree 1
such that δ2 = 0).

The action of δ extends to an action on Hochschild chains by the Leibniz rule:

δ(a0 ⊗ . . .⊗ ap) =

p∑
i=1

(−1)
∑

k<i (|ak|+1)+1(a0 ⊗ . . .⊗ δai ⊗ ldots⊗ ap)
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The maps b and B are modified to include signs:

(2.10) b(a0 ⊗ ldots⊗ ap) =

p−1∑
k=0

(−1)
∑k

i=0 (|ai|+1)+1a0 ⊗ ldots⊗ akak+1 ⊗ ldots⊗ ap

+(−1)|ap|+(|ap|+1)
∑p−1

i=0 (|ai|+1)apa0 ⊗ ldots⊗ ap−1

(2.11) B(a0⊗ ldots⊗ap) =

p∑
k=0

(−1)
∑

i≤k(|ai|+1)
∑

i≥k(|ai|+1)1⊗ak+1⊗ ldots⊗ap⊗

⊗a0 ⊗ ldots⊗ ak

The complex C•(A) now becomes the total complex of the double complex with
the differential b+ δ:

Cp(A) =
⊕

j−i=p

(A⊗A
⊗j

)i

The negative and the periodic cyclic complexes are defined as before in terms of
the new definition of C•(A). All the results of this section extend to the differential
graded case.

Remark 2.1.1. Note that the total complex consists of direct sums rather than
direct products. This choice, as well as the choice of defining the periodic cyclic
complex using Laurent series, is made so that a quasi-isomorphism of DG algebras
would induce a quasi-isomorphism of corresponding complexes.

2.2. The Hochschild cochain complex. Let A be a graded algebra with
unit over a commutative unital ring k of characteristic zero. A Hochschild d-cochain
is a linear map A⊗d → A. Put, for d ≥ 0,

(2.12) Cd(A) = Cd(A,A) = Homk(A
⊗d

, A)

where A = A/k · 1. Put
(2.13) |D| = (degree of the linear map D) + d

Put for cochains D and E from C•(A,A)

(2.14) (D � E)(a1, . . . , ad+e) = (−1)|E|
∑

i≤d(|ai|+1)D(a1, . . . , ad)×

(2.15) ×E(ad+1, . . . , ad+e);

(2.16) (D ◦ E)(a1, . . . , ad+e−1) =
∑
j≥0

(−1)(|E|+1)
∑j

i=1(|ai|+1)×

×D(a1, . . . , aj , E(aj+1, . . . , aj+e), . . . );

(2.17) [D, E] = D ◦ E − (−1)(|D|+1)(|E|+1)E ◦D
These operations define the graded associative algebra (C•(A,A) ,�) and the
graded Lie algebra (C•+1(A,A), [ , ]) (cf. [19]; [50]). Let

(2.18) m(a1, a2) = (−1)|a1| a1a2;

this is a 2-cochain of A (not in C2). Put

(2.19) δD = [m,D];

(2.20) (δD)(a1, . . . , ad+1) = (−1)|a1||D|+|D|+1×
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(2.21) ×a1D(a2, . . . , ad+1)+

+

d∑
j=1

(−1)|D|+1+
∑j

i=1(|ai|+1)D(a1, . . . , ajaj+1, . . . , ad+1)

+(−1)|D|
∑d

i=1(|ai|+1)D(a1, . . . , ad)ad+1

One has

(2.22) δ2 = 0; δ(D � E) = δD � E + (−1)|D|D � δE

(2.23) δ[D,E] = [δD,E] + (−1)|D|+1 [D, δE]

(δ2 = 0 follows from [m,m] = 0).
Thus C•(A,A) becomes a complex; we will denote it also by C•(A). The

cohomology of this complex is H•(A,A) or the Hochschild cohomology. We denote
it also by H•(A). The � product induces the Yoneda product on H•(A,A) =
Ext•A⊗A0(A,A). The operation [ , ] is the Gerstenhaber bracket [50].

If (A, ∂) is a differential graded algebra then one can define the differential ∂
acting on C•(A) by:

(2.24) ∂D = [∂,D]

Theorem 2.2.1. [50] The cup product and the Gerstenhaber bracket induce a
Gerstenhaber algebra structure on H•(A) (cf. 3.6.2 for the definition of a Gersten-
haber algebra).

For cochainsD andDi define a new Hochschild cochain by the following formula
of Gerstenhaber ([50]) and Getzler ([52]):

(2.25) D0{D1, . . . , Dm}(a1, . . . , an) =

=
∑

(−1)
∑

k≤ip
(|ak|+1)(|Dp|+1)

D0(a1, . . . , ai1 , D1(ai1+1, . . .), . . . ,

Dm(aim+1, . . .), . . .)

Proposition 2.2.2. One has

(D{E1, . . . , Ek}){F1, . . . , Fl} =
∑

(−1)
∑

q≤ip
(|Ep|+1)(|Fq|+1)×

×D{F1, . . . , E1{Fi1+1, . . . , }, . . . , Ek{Fik+1, . . . , }, . . . , }

The above proposition can be restated as follows. For a cochain D let D(k) be
the following k-cochain of C•(A):

D(k)(D1, . . . , Dk) = D{D1, . . . , Dk}

Proposition 2.2.3. The map

D �→
∑
k≥0

D(k)

is a morphism of differential graded algebras

C•(A) → C•(C•(A))

2.3. Products on Hochschild and cyclic complexes. Unless otherwise
specified, the reference for this subsection is [85].
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2.3.1. Product and coproduct; the Künneth exact sequence. For an alge-
bra A define the shuffle product

(2.26) sh : Cp(A)⊗ Cq(A) → Cp+q(A)

as follows.

(2.27) (a0 ⊗ . . .⊗ ap)⊗ (c0 ⊗ ldots⊗ cq) = a0c0 ⊗ shpq(a1, ldots, ap, c1, ldots, cq)

where

(2.28) shpq(x1, ldots, xp+q) =
∑

σ∈Sh(p,q)

sgn(σ)xσ−11 ⊗ ldots⊗ xσ−1(p+q)

and

Sh(p, q) = {σ ∈ Σp+q |σ1 < . . . < σp; σ(p+ 1) < ldots < σ(p+ q)}
In the graded case, sgn(σ) gets replaced by the sign computed by the following

rule: in all transpositions, the parity of ai is equal to |ai|+1 if i > 0, and similarly
for ci. A transposition contributes a product of parities.

The shuffle product is not a morphism of complexes unless A is commutative.
It defines, however, an exterior product as shown in the following theorem. For two
unital algebras A and C, let iA, iC be the embeddings a �→ a⊗ 1, resp. c �→ 1⊗ c
of A, resp. C, to A ⊗ C. We will use the same notation for the embeddings that
iA, iC induce on all the chain complexes considered by us.

Theorem 2.3.1. For two unital algebras A and C the composition

Cp(A)⊗ Cq(C)
iA⊗iC−→ Cp(A⊗ C)⊗ Cq(A⊗ C)

sh−→ Cp+q(A⊗ C)

defines a quasi-isomorphism

sh : C•(A)⊗ C•(C) → C•(A⊗ C)

To extend this theorem to cyclic complexes, define

(2.29) sh′ : Cp(A)⊗ Cq(A) → Cp+q+2(A)

as follows.

(2.30) (a0 ⊗ . . .⊗ ap)⊗ (c0 ⊗ . . .⊗ cq) �→ 1⊗ sh′p+1, q+1(a0, . . . , ap, c0, . . . , cq)

where

(2.31) sh′p+1,q+1(x0, . . . , xp+q+1) =
∑

σ∈Sh′(p+1,q+1)

sgn(σ)xσ−10 ⊗ . . .⊗ xσ−1(p+q+1)

and Sh′(p+1, q+1) is the set of all permutations σ ∈ Σp+q+2 such that σ0 < . . . <
σp, σ(p+ 1) < . . . < σ(p+ q + 1), and σ0 < σ(p+ 1).

Now define (2.29) to be the composition

Cp(A)⊗ Cq(C)
iA⊗iC−→ Cp(A⊗ C)⊗ Cq(A⊗ C)

sh′
−→ Cp+q+2(A⊗ C)

In the graded case, the sign rule is as follows: any ai has parity |ai| + 1, and
similarly for ci.

Theorem 2.3.2. The map sh+ush′ defines a k[[u]]-linear, (u)-adically contin-
uous quasi-isomorphism

(C•(A)⊗ C•(C))[[u]] → CC−
• (A⊗ C)
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as well as

(C•(A)⊗ C•(C))((u)) → CCper
• (A⊗ C)

(C•(A)⊗ C•(C))((u))/u(C•(A)⊗ C•(C))[[u]] → CC•(A⊗ C)

(differentials on the left hand sides are equal to b⊗ 1 + 1⊗ b+ u(B ⊗ 1 + 1⊗B)).

Note that the left hand side of the last formula maps to the tensor product
CC•(A) ⊗ CC•(C) : Δ(u−pc ⊗ c′) = (u−1 ⊗ 1 + 1 ⊗ u−1)pc ⊗ c′. One checks that
this map is an embedding whose cokernel is the kernel of the map u⊗ 1− 1⊗ u, or
S ⊗ 1− 1⊗ S where S is as in (2.5). From this we get

Theorem 2.3.3. There is a long exact sequence

→ HCn(A⊗ C)
Δ−→

⊕
p+q=n

HCp(A)⊗HCq(C)
S⊗1−1⊗S−→

⊕
p+q=n−2

HCp(A)⊗HCq(C)
×−→ HCn−1(A⊗ C)

Δ−→

2.4. Pairings between chains and cochains. Let us start with a motiva-
tion for what follows. We will see below that, when the ring of functions on a
manifold is replaced by an arbitrary algebra, then Hochschild chains play the role
of differential forms (with the differential B replacing the de Rham differential) and
Hochschild cochains play the role of multivector fields. We are looking for an analog
of pairings that are defined in the classical context, namely the contraction of a form
by a multivector field and the Lie derivative. In classical geometry, those pairings
satisfy various algebraic relations that we try to reproduce in general. We will show
that these relations are true up to homotopy; a much more complicated question
whether they are true up to all higher homotopies is postponed until section 8. For
a graded algebra A, for D ∈ Cd(A,A), define

(2.32) iD(a0 ⊗ . . .⊗ an) = (−1)|D|
∑

i≤d(|ai|+1)a0D(a1, . . . , ad)⊗ ad+1 ⊗ . . .⊗ an

Proposition 2.4.1.
[b, iD] = iδD

iDiE = (−1)|D||E|iE�D

Now, put

(2.33) LD(a0 ⊗ . . .⊗ an) =

n−d∑
k=1

εka0 ⊗ . . .⊗D(ak+1, . . . , ak+d)⊗ . . .⊗ an+

n∑
k=n+1−d

ηkD(ak+1, . . . , an, a0, . . .)⊗ . . .⊗ ak

(The second sum in the above formula is taken over all cyclic permutations
such that a0 is inside D). The signs are given by

εk = (|D|+ 1)
k∑

i=0

(|ai|+ 1)

and
ηk = |D|+ 1 +

∑
i≤k

(|ai|+ 1)
∑
i≥k

(|ai|+ 1)
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Proposition 2.4.2.

[LD, LE ] = L[D,E]

[b, LD] + LδD = 0

[LD, B] = 0

Now let us extend the above operations to the cyclic complex. Define

(2.34) SD(a0 ⊗ . . .⊗ an) =
∑

j≥0; k≥j+d

εjk1⊗ ak+1 ⊗ . . . a0 ⊗ . . .⊗

D(aj+1, . . . , aj+d)⊗ . . .⊗ ak

(The sum is taken over all cyclic permutations; a0 appears to the left of D). The
signs are as follows:

εjk = |D|(|a0|+
n∑

i=1

(|ai|+ 1)) + (|D|+ 1)

k∑
j+1

(|ai|+ 1) +
∑
i≤k

(|ai|+ 1)
∑
i≥k

(|ai|+ 1)

Proposition 2.4.3. ([96])

[b+ uB, iD + uSD]− iδD − uSδD = LD

Proposition 2.4.4. ([26]) There exists a linear transformation T (D,E) of the
Hochschild chain complex, bilinear in D, E ∈ C•(A,A), such that

[b+ uB, T (D,E)]− T (δD,E)− (−1)|D|T (D, δE) =

= [LD, iE + uSE ]− (−1)|D|+1(i[D,E] + uS[D,E])

2.5. Hochschild and cyclic complexes of A∞ algebras. They are defined
exactly as for DG algebras, the chain differential b being replaced by Lm and the
cochain differential δ by [m, ?] wherem is the Hochschild cochain from the definition
of an A∞ algebra.

2.6. Rigidity of periodic cyclic homology. The following is the Goodwillie
rigidity theorem [59]. A proof using operations on Hochschild and cyclic complexes
is given in [90]. Let A be an associative algebra over a ring k of characteristic zero.
Let I be a nilpotent two-sided ideal of A. Denote A0 = A/I.

Theorem 2.6.1. (Goodwillie) The natural map CCper
• (A) → CCper

• (A/I) is a
quasi-isomorphism.

2.7. Smooth functions. For a smooth manifold M one can compute the
Hochschild and cyclic homology of the algebra C∞(M) where the tensor product
in the definition of the Hochschild complex is one of the following three:

(2.35) C∞(M)⊗n = C∞(Mn);

(2.36) C∞(M)⊗n = germsΔ C∞(Mn);

(2.37) C∞(M)⊗n = jetsΔ C∞(Mn)

where Δ is the diagonal.
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Theorem 2.7.1. The map

μ : f0 ⊗ f1 ⊗ . . .⊗ fn �→ 1

n!
f0df1 . . . dfn

defines a quasi-isomorphism of complexes

C•(C
∞(M)) → (Ω•(M), 0)

and a C[[u]]-linear, (u)-adically continuous quasi-isomorphism

CC−
• (C∞(M)) → (Ω•(M)[[u]], ud)

Localizing with respect to u, we also get quasi-isomorphisms

CC•(C
∞(M)) → (Ω•(M)[u−1, u]]/uΩ•(M)[[u]], ud)

CCper
• (C∞(M)) → (Ω•(M)[u−1, u]], ud)

This theorem, for the tensor products (2.36, 2.37), is due essentially to Hochschild,
Kostant and Rosenberg (the Hochschild case) and to Connes (the cyclic cases). For
the tensor product (2.35), see [110].

2.7.1. Holomorphic functions. Let M be a complex manifold with the struc-
ture sheaf OM and the sheaf of holomorphic forms Ω•

M . If one uses one of the
following definitions of the tensor product, then C•(OM ), etc. are complexes of
sheaves:

(2.38) O⊗n
M = germsΔ OMn ;

(2.39) O⊗n
M = jetsΔ OMn

where Δ is the diagonal.

Theorem 2.7.2. The map

μ : f0 ⊗ f1 ⊗ . . .⊗ fn �→ 1

n!
f0df1 . . . dfn

defines a quasi-isomorphism of complexes of sheaves

C•(OM ) → (Ω•
M , 0)

and a C[[u]]-linear, (u)-adically quasi-isomorphism of complexes of sheaves

CC−
• (OM ) → (Ω•

M [[u]], ud)

Similarly for the complexes CC• and CCper.

3. Operads

3.1. Definition and basic properties.

Definition 3.1.1. An operad P in a symmetric monoidal category with direct
sums and products C is:

a) a collection of objects P(n), n ≥ 1, with an action of the symmetric group
Σn on P(n) for every n;

b) morphisms

opn1,...,nk
: P(k)⊗ P(n1)⊗ . . .⊗ P(nk) → P(n1 + . . .+ nk)

such that:
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(i)⊕
σ∈Σk

opnσ(1),...,nσ(k)
:
⊕
σ∈Σk

P(k)⊗P(nσ(1))⊗ . . . otimescP (nσ(k)) → P(n1+ . . .+nk)

is invariant under the action of the cross product Σk � (Σn1
× . . .× Σnk

);
(ii) the diagram

P(k)⊗
⊗

i P(li)⊗
⊗

i,j P(mi,j) −−−−→ P(k)⊗
⊗

i P(
∑

j mi,j)⏐⏐� ⏐⏐�
P(

∑
i li)⊗

⊗
i,j P(mi,j) −−−−→ P(

∑
i,j mi,j)

is commutative.

Here is an equivalent definition: an operad is an object P(I) for any nonempty
finite set I, functorial with respect to bijections of finite sets, together with a
morphism

opf : P(f) → P(I)

for every surjective map f : I → J, where we put

P(f) = P(J)⊗
⊗
j∈J

P(f−1({j});

for every pair of surjections I
g→ J

f→ K, and any element k of K, set

gk = g|(fg)−1({k}) : (fg)−1({k}) → g−1({k}).
We require the diagram

(3.1)

P(K)⊗
⊗

k∈K P(gk) −−−−→ P(fg)⏐⏐� ⏐⏐�
P(g) −−−−→ P(I)

to be commutative.
It is easy to see that the two definitions are equivalent. Indeed, starting from

Definition 3.1.1, put

P(I) =
⊕

φ:{1,...,k}∼→I

P(k)/ ∼

where (ψ, p) ∼ (φ, φψ−1p). In the opposite direction, define P(k) = P({1, . . . , k}).
An element e of P(1) is a unit of P if op1(p, e) = p for all p ∈ P(1), opn(e, p) = p

for all p ∈ P(n) for the operation opn : P(1)⊗P(n) → P(n). (This definition works
for categories such as spaces, complexes, etc.; in general, instead of an object e, one
should talk about a morphism from the object 1 to P(1)). An operad is unital if it
has a unit. For a unital operad P, and for every map, surjective or not, morphisms

(3.2) opf : P(f) → P(Ĩ), Ĩf = I
∐

(J − f(I)),

can be defined by mapping 1 to P using the unit, and then constructing the opera-
tion opf̃ , f(i) = f(i) for i ∈ I, f(j) = j for j ∈ J. In particular, taking f to be a map

whose image consists of one point, we get morphisms ◦i : P(k)⊗P(n) → P(n+k−1)
for 1 ≤ k ≤ n.
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Remark 3.1.2. We can define an operad P as a collection P(n) with actions
of Σn and with products opf as in (3.2) for any map f : I → J, surjective or
not, subject to the condition of invariance under Σn associative in the following

sense. For maps I
f→ J

f→K, define g̃ : I → J̃f as the composition I
g→J → J̃f , and

f̃g : Ĩf → K as fg on I and f on J − f(I). Observe that

P(K)⊗
⊗
k∈K

P(f−1({k}))⊗j∈J P(g−1({j})) ∼→ P(K)⊗
⊗
k∈K

P(gk);

P(J̃f )⊗
⊗
j∈J

P(g−1({j})) ∼→ P(g̃);

P(K)⊗
⊗
k∈K

P( ˜f−1({k})gk)
∼→ P(f̃g);

we get the diagram

(3.3)

P(K)⊗
⊗

k∈K P(gk) −−−−→ P(f̃g)⏐⏐� ⏐⏐�
P(g̃) −−−−→ P(Ĩfg)

that is required to be commutative. We can take this for the definition of an operad.
Any unital operad is an example, but there are others which are not exactly unital.

Example 3.1.3. For an object A, put EndA(n) = Hom(A⊗n, A). The action of
Σn and the operations op are the obvious ones. This is the operad of endomorphisms
of A.

A morphism of operads P → Q is a collection of morphisms P(n) → Q(n)
that agree with the action of Σn and with the operations opn1,...,nk

. A morphism
of unital operads is a morphism that sends the unit of P to the unit of Q.

3.1.1. Algebras over operads. An algebra over an operad P is an object A with
a morphism P → EndA. In other words, an algebra over P is an object A together
with Σn-invariant morphisms

P(n)⊗A⊗n → A

such that the diagram

P(k)⊗
⊗k

i=1 P(ni)⊗A⊗
∑k

i=1 ni −−−−→ P(
∑k

i=1 ni)⊗A⊗
∑k

i=1 ni⏐⏐�
⏐⏐�

P(k)⊗A⊗k −−−−→ A

is commutative. For an algebra over a unital operad P, one assumes in addition
that the composition A

∼→ 1⊗ A → P(1)⊗A → A is the identity.
A free algebra over P generated by V is

FreeP(V ) =
⊕
n

P(n)⊗Σn
V ⊗n

The action of P combines the operadic products on P and the free (tensor) product
on V ⊗•. The free algebra satisfies the usual universal property: For any P-algebra
A, a morphism of objects V → A extends to a unique morphism of P-algebras
FreeP(V ) → A.
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3.1.2. Colored operads. A colored operad is a set X (whose elements are called
colors), an object P(x1, . . . , xn; y) for every finite subset {x1, . . . , xn} and every
element y of X, an action of Aut({x1, . . . , xn}) on P(x1, . . . , xn; y), and morphisms

op : P(y1, . . . , yk; z)⊗
k⊗

i=1

P({xij}1≤j≤ni
; yi) → P({xij}1≤i≤k 1≤j≤ni

; z),

subject to the axioms of invariance and associativity generalizing the ones in Def-
inition 3.1.1. An algebra over a colored operad P is a collection of objects Ax,
x ∈ X, together with operations

P(x1, . . . , xn; y)⊗Ax1
⊗ . . .⊗Axn

→ Ay,

subject to axioms of invariance and associativity.

3.1.3. Topological operads. A topological operad is an operad in the category
of topological spaces where ⊗ stands for the Cartesian product. If P is a topological
operad then C−•(P) is an operad in the category of complexes. (We use the minus
sign to keep all our complexes cohomological, i.e. with differential of degree +1).
Its nth term is the singular complex of the space P(n).

3.2. DG operads. A DG operad is an operad in the category of complexes.
A DG operad for which P(n) = 0 for n 
= 1 is the same as an associative DG
algebra.

3.3. Cofibrant DG operads and algebras. A free DG operad generated
by a collection of complexes V (n) with an action of Σ(n) is defined as follows. Let
FreeOp(V )(n) be the direct sum over isomorphism classes of rooted trees T whose
external vertices are labeled by indexes 1, . . . , n:

FreeOp(V )(n) =
⊕
T

⊗
Internal vertices v of T

V ({edges outgoing from v})

The action of the symmetric group relabels the external vertices; the operadic
products graft the root of the tree corresponding to the argument in FreeOp(V )(ni)
to the vertex labeled by the index i of the tree corresponding to the factor in
FreeOp(V )(k). A free operad has the usual universal property: for a DG operad
P, a morphism of collections of Σn modules V (n) → P(n) extends to a unique
morphism of operads FreeOp(V ) → P.

3.3.1. Semifree operads and algebras. An algebra over a DG operad P is
semifree if:

(i) its underlying graded k-module is a free algebra generated by a graded
k-module V over the underlying graded operad of P;

(ii) there is a filtration on V : 0 = V0 ⊂ V1 ⊂ . . . , V = ∪nVn, such that the
differential sends Vn to the suboperad generated by Vk, k < n.

One defines a semifree DG operad exactly in the same way, denoting by V a
collection of Σn-modules.

A DG operad R (resp. an algebra R over a DG operad P) is cofibrant if it is
a retract of a semifree DG operad (resp. algebra), i.e. if there is a semifree Q and

maps R
i−→ Q

j−→ R such that ji = idR.
We say that a morphism of DG operads (resp. of algebras over a DG operad) is

a fibration if it is surjective. We say that a morphism is a weak equivalence if it is a
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quasi-isomorphism. It is easy to see that the above definition of a cofibrant object
is equivalent to the usual one: for every morphism p : P → Q that is a fibration
and a weak equivalence, and for every f : R → Q, there is a morphism f̃ : R → P
such that pf̃ = f.

3.3.2. Cofibrant resolutions. A cofibrant resolution of a DG operad P is a
cofibrant DG operadR together with a surjective quasi-isomorphism ofDG operads
R → P. Every DG operad has a cofibrant resolution. For two such resolutions R1

and R2, there is a morphism R1 → R2 over P. Any two such morphisms are
homotopic in the following sense. Let Ω•([0, 1]) be the DG algebra k[t, dt] with the
differential sending t to dt. Let eva : Ω•([0, 1]) → k be the morphism of algebras
sending t to a and dt to zero. Two morphisms f0, f1 : R1 → R2 are homotopic if
there is a morphism f : R1 → R2⊗Ω•([0, 1]) such that idR2

⊗eva = fa for f = 0, 1.

3.4. Bar and cobar constructions. The references for this subsection are
[56] for the case of operads and [54] for the case of DG operads.

3.4.1. Cooperads and coalgebras. The definition a cooperad and a coalgebra
over it is dual to that of an operad and an algebra over it. In particular, a cooperad
is a collection of objects B(n) with actions of Σn, together with morphisms

B(n1 + . . .+ nk) → B(k)⊗ B(n1)⊗ . . .⊗ B(nk),

and a coalgebra C over B is an object C together with morphisms

C → B(n)⊗ C⊗n,

subject to the conditions of Σn-invariance and coassociativity. A cofree coalgebra
over B (co)generated by a complex W is defined as

CofreeB(W ) =
∏
n≥1

(B(n)⊗W⊗n)Σn ;

a cofree cooperad (co)generated by a collection of Σn-modules W = {W (n)} is by
definition

CofreeCoop(W )(n) =
∏
T

⊗
Interior vertices v of T

W ({edges outgoing from v})

The cooperadic coproducts are induced by cutting a tree in all possible ways into
a subtree containing the root and k subtrees T1, . . . , Tk, such that the external
vertices of Ti are exactly the external vertices of T labeled by n1 + . . . + ni−1 +
1, . . . , n1 + . . .+ ni. The coaction of B on the cofree coalgebra is a combination of
the cooperadic coproducts on B and the cofree coproduct on the tensor coalgebra
W⊗•.

3.4.2. The bar construction. Let P be a DG operad as in Remark 3.1.2. The
bar construction of P is the cofree DG cooperad CofreeCoop(P[−1]) with the dif-
ferential defined by d = d1 + d2 where, for a rooted tree T,

d1(⊗Internal vertices v of T (p(v))) =
∑

±⊗v′ �=v p(v
′)⊗ dPp(v),

p(v) ∈ P({edges outgoing from v})[1], where dP is the differential on P[1];

d2(⊗v(p(v))) =
∑

Internal edges e of T

±c(e)(⊗v(p(v))).
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Here c(e) is the operator of contracting the edge e that acts as follows. Let v1
and v2 be vertices adjacent to e, v1 closer to the root than v2. Let Te be the tree
obtained from T by contracting the edge e. Consider the operation

P({ edges of T outgoing from v1})⊗ P({ edges of T outgoing from v2})
opfe→ P({edges of Te outgoing from v1})

corresponding to the map

fe : { edges of T outgoing from v2} → {edges of T outgoing from v1}
sending all edges to e. The operator c(e) replaces T by Te and the tensor factor
p(v1) ⊗ p(v2) by its image under opfe . The signs both in d1 and d2 are computed
according to the following rule: start from the root of T and advance to the vertex,
resp. to the edge. Passage through every factor p(v) at a vertex v introduces the
factor (−1)|p(v| (the degree in P[1]).

It is easy to see that this differential defines a DG cooperad structure on
CofreeCoop(P[−1]).We call this DG cooperad the bar construction of P and denote
it by Bar(P).

The dual definition starts with a DG cooperad B and produces the DG operad
Cobar(B).

Lemma 3.4.1. Let V = {V (n)} be a collection of Σn-modules. The embedding
of V into BarFreeOp(V ) that sends an element of V (n) into itself attached to a
corolla with n external vertices is a quasi-isomorphism of complexes.

Let P be a DG operad as in Remark 3.1.2. Consider the map CobarBar(P) → P
defined as follows. A free generator which is an element of CofreeCoop(P[1])[−1]
corresponding to a tree T is sent to zero unless T is a corolla, in which case it is
sent to the corresponding element of P(n).

Proposition 3.4.2. The above map CobarBar(P) → P is a surjective quasi-
isomorphism of DG operads.

The DG operad CobarBar(P) is the standard cofibrant resolution of P.

3.5. Koszul operads. The reference for this subsection is [56]. We give a very
brief sketch of the main definitions and results. Let V (2) be a k-module with an
action of Σ2. A quadratic operad generated by V (2) is a quotient of the free operad
FreeOp({V (2)}) by the ideal generated by a subspace R of (FreeOp({V (2)}))(3).

For a k-module X, let X∗ = Homk(X, k). Let V (2) and S be free k-modules
of finite rank. The Koszul dual operad to a quadratic operad P generated by V (2)
with relations R is the quadratic operad P∨ generated by V (2)[1]∗ subject to the
orthogonal complement R⊥ to R.

By definition, (P∨)∨ = P. There is a natural morphism of operads P∨ →
Bar(P)∗. The quadratic operad P is Koszul if this map is a quasi-isomorphism.

A quadratic operad P is Koszul if and only if P is.
The above constructions may be carried out if V (2) is replaced by a pair

(V (1), V (2)).
For a Koszul operad P, the DG operad Cobar(P∨) is a cofibrant resolution of

P. We will denote it by P∞.

3.6. Operads As, Com, Lie, Gerst, Calc, BV, and their ∞ analogs.
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3.6.1. As, Com, and Lie. Algebras over them are, respectively, graded associative
algebras, graded commutative algebras, and graded Lie algebras.

3.6.2. Gerstenhaber algebras. Let k be the ground ring of characteristic zero.
A Gerstenhaber algebra is a graded space A together with

• A graded commutative associative algebra structure on A;
• a graded Lie algebra structure on A•+1 such that

[a, bc] = [a, b]c+ (−1)(|a|−1)|b|)b[a, c]

Example 3.6.1. Let M be a smooth manifold. Then

V•
M = ∧•TM

is a sheaf of Gerstenhaber algebras.

The product is the exterior product, and the bracket is the Schouten bracket.
We denote by V(M) the Gerstenhaber algebra of global sections of this sheaf.

Example 3.6.2. Let g be a Lie algebra. Then

C•(g) = ∧•g

is a Gerstenhaber algebra.

The product is the exterior product, and the bracket is the unique bracket
which turns C•(g) into a Gerstenhaber algebra and which is the Lie bracket on
g = ∧1(g).

3.6.3. Calculi.

Definition 3.6.3. A precalculus is a pair of a Gerstenhaber algebra V• and a
graded space Ω• together with

• a structure of a graded module over the graded commutative algebra V• on
Ω−• (the corresponding action is denoted by ia, a ∈ V•);

• a structure of a graded module over the graded Lie algebra V•+1 on Ω−•

(the corresponding action is denoted by La, a ∈ V•) such that

[La, ib] = i[a,b]

and
Lab = (−1)|b|Laib + iaLb

Definition 3.6.4. A calculus is a precalculus together with an operator d of
degree 1 on Ω• such that d2 = 0 and

[d, ia] = (−1)|a|−1La.

Example 3.6.5. For any manifold one defines a calculus Calc(M) with V•

being the algebra of multivector fields, Ω• the space of differential forms, and d the
de Rham differential. The operator ia is the contraction of a form by a multivector
field.

Example 3.6.6. For any associative algebra A one defines a calculus Calc0(A)
by putting V• = H•(A,A) and Ω• = H•(A,A). The five operations from Definition
3.6.4 are the cup product, the Gerstenhaber bracket, the pairings iD and LD, and
the differential B, as in 2.4. The fact that it is indeed a calculus follows from
Theorem 2.4.4.
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A differential graded (dg) calculus is a calculus with extra differentials δ of
degree 1 on V• and b of degree −1 on Ω• which are derivations with respect to all
the structures.

Definition 3.6.7. 1) An �-calculus is a precalculus over the algebra k[�], |�| =
0, together with a k[�]-linear operator of degree +1 on Ω−• satisfying

d2 = 0; [d, ιa] = (−1)|a|−1�La

2) A u-calculus is a precalculus over the algebra k[u], |u| = 2, together with a
k[u]-linear operator of degree −1 on Ω−• satisfying

d2 = 0; [d, ιa] = (−1)|a|−1uLa

3.6.4. BV algebras.

Definition 3.6.8. A Batalin-Vilkovisky (BV) algebra is a Gerstenhaber algebra
together with an operator Δ : A → A of degree −1 satisfying

Δ2 = 0

and

(3.4) Δ(ab)−Δ(a)b− (−1)|a|aΔ(b) = (−1)|a|−1[a, b]

Note that the above axioms imply

(3.5) Δ([a, b])− [Δ(a), b] + (−1)|a|−1[a,Δ(b)] = 0

There are two variations of this definition.

Definition 3.6.9. 1) A BV�-algebra is a Gerstenhaber algebra over the algebra
k[�], |�| = 0, with a k[�]-linear operator Δ : A → A of degree −1 satisfying

Δ2 = 0,

the identity (3.5), and

(3.6) Δ(ab)−Δ(a)b− (−1)|a|aΔ(b) = (−1)|a|−1�[a, b]

2) 1) A BVu-algebra is a Gerstenhaber algebra over the algebra k[u], |u| = 2,
with a k[u]-linear operator Δ : A → A of degree +1 satisfying

Δ2 = 0,

the identity (3.5), and

(3.7) Δ(ab)−Δ(a)b− (−1)|a|aΔ(b) = (−1)|a|−1u[a, b]

Proposition 3.6.10. For a DG operad P, denote by P∨ its Koszul dual.

(1) As∨ = As; Com∨ = Lie; Lie∨ = Com;
(2) a complex A is an algebra over Gerst∨ if and only if A[1] is an algebra

over Gerst;
(3) a complex A is an algebra over BV∨

u if and only if A[1] is an algebra over
BV�;

(4) a complex A is an algebra over BV∨
�
if and only if A[1] is an algebra over

BVu;
(5) a pair of complexes (A,Ω) is an algebra over Calc∨u if and only if (A[1],Ω)

is an algebra over Calc�;
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(6) a pair of complexes (A,Ω) is an algebra over BV∨
u if and only if (A[1],Ω)

is an algebra over Calc�.
(7) All the operads above are Koszul.

The above result was proved in [56] for As, Com and Lie; in [54] for Gerst; and
in [49] for BV .

3.7. The Boardman-Vogt construction. For a topological operad P, Board-
man and Vogt constructed in [7] another topological operad WP, together with a

weak homotopy equivalence of topological operads WP ∼→ P. (In fact WP is a
cofibrant replacement of P). The space WP(n) consists of planar rooted trees T
with the following additional data:

(1) internal vertices of T of valency j + 1 are decorated by points of P(j);
(2) external vertices of T are decorated by numbers from 1 to n, so that the

map sending a vertex to its label is a bijection between the set of internal
vertices and {1, . . . , n};

(3) internal edges of T are decorated by numbers 0 ≤ r ≤ 1. The label r is
called the length of the edge.

If the length of an edge of a tree is zero, this tree is equivalent to the tree obtained by
contracting the edge, the label of the new vertex defined via operadic composition
from the labels of the two vertices incident to e.

3.8. Operads of little discs. Let D be the standard k-disc {x ∈ Rk| |x| ≤
1.}. For 1 ≤ i ≤ n, denote by Di a copy of D. Let LDk(n) be the space of
embeddings

(3.8)

n∐
i=1

Di → D

whose restriction to every component is affine Euclidean. The collection {LDk(n)}
is an operad in the category of topological spaces. The action of Sn is induced
from the action by permutations of the n copies of D. Operadic composition is as
follows. For embeddings

f :

m∐
i=1

Di → D

and

fi :

ni∐
ji=1

Dji → Di,

the embedding

(3.9) opn1,...,nm
(f ; f1, . . . , fm) :

m∐
i=1

ni∐
j=1

Dj → D

acts on every component Dji by the composition f ◦ fi.
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3.9. Fulton-MacPherson operads. The spaces FMk(n) were defined by
Fulton and MacPherson in [48]. The operadic structure on them was defined in
[54] by Getzler and Jones.

For k > 0, let R+ �Rk be the group of affine transformations of Rk generated
by positive dilations and translations. Define the configuration spaces to be

(3.10) Confk(n) = {(x1, . . . , xn)|xi ∈ Rk, xi 
= xj}/(R+ �Rk)

There are compactifications FMk(n) of Confk(n) that form an operad in the cate-
gory of topological spaces for each k > 0. As an operad of sets, FMk(n) is the free
operad generated by the collection of sets Confk(n) with the action of Sn. In fact
there are continuous bijections

(3.11) FreeOp({Confk(n)}) → FMk(n)

The spaces FMk(n) are manifolds with corners. They can be defined explicitly as
follows. Consider the functions θij : Confk(n) → Sk−1 and ρijk : Confk(n) → R by

(3.12) θij(x1, . . . , xn) =
xi − xj

|xi − xj |
; δijk(x1, . . . , xn) =

|xi − xj |
|xi − xk|

The map

(3.13) Confk(n) → (Sk−1)(
n
2) × [0,+∞](

n
3)

defined by all θij , i < j, and δijk, i < j < k, can be shown to be an embedding.
The space FMk(n) can be defined as the closure of the image of this embedding.

Kontsevich and Soibelman proved in [74] that the topological operads FMk

and LDk are weakly homotopy equivalent. In fact there is a homotopy equivalence
of topological operads

(3.14) WLDk
∼→ FMk .

constructed by Salvatore in [99], Prop. 4.9.

3.10. The operad of framed little discs. This operad constructed anal-
ogously to the operad rmLD2. By definition, FLD2(n) is the space of affine em-
beddings 3.8 together with points ai ∈ ∂Di, a ∈ ∂D. The operadic compositions
consist of those for LD2 and of rotating the discs Di so that the marked points on
the boundaries come together.

3.11. The colored operad of little discs and cylinders. The colored op-
erad LC has two colors that we denote by c and h. All spaces LC(x1, . . . , xn; y) are
empty if more than one xi is equal to h or if one xi is equal to h and y = c. For
n ≥ 0, let

LC(n)
def
= LC(c, . . . , c; c) = LD2(n)

and

LC(n, 1)
def
= LC(c, . . . , c,h;h).

The spaces LD(n) form a suboperad of LC. For r > 0, let Cr be the cylinder
S1 × [0, r]. By definition, LC(n, 1) is the space of data (r, g) where

g :

k∐
i=1

Di → Cr
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is an embedding such that g|Di is the composition

(3.15) Di
g̃i→ R× [0, r]

pr→ S1 × [0, 1]

of the projection with an affine Euclidean map g̃. The action of Sn on LC(n, 1) is
induced by permutations of the componentsDi. Let us define operadic compositions
of two types. The first is

LC(m, 1)× LC(n1)× . . .× LC(nm) → LC(n1 + . . .+ nm, 1);

it is defined exactly as the operadic composition in (3.9), with D replaced by Cr.
The second is

(3.16) LC(n, 1)× LC(m, 1) → LC(n+m, 1)

For g̃i : Di → Cr, 1 ≤ i ≤ n, and g̃′j : Dj → Cr′ , 1 ≤ j ≤ m, as in (3.15), define

(3.17) g̃′′ : (
n∐

i=1

Di)
∐

(

m∐
j=1

Dj) → R× [0, r + r′]

that sends z ∈ Di, 1 ≤ i ≤ n, to the image of g̃(z) under the map R × [0, r] →
R × [0, r + r′], (x, t) �→ (x, t), and z ∈ Dj , 1 ≤ i ≤ m, to the image of g̃′(z) under
the map R× [0, r′] → R× [0, r+r′], (x, t) �→ (x, t+r). Let g = pr◦ g̃ and g′ = pr◦ g̃′
The composition (3.17) of (g, r) and g′r′) is by definition (pr ◦ g̃′′, r + r′).

All other nonempty spaces LC(x1, . . . , xn; y), in other words spaces
LC(c, . . . c,h, . . . , c;h), together with the actions of symmetric groups and with
operadic compositions, are uniquely determined by the above and by the axioms of
colored operads.

3.11.1. The colored operad of little discs and framed cylinders. The col-
ored operad LfC is defined exactly as LC above, with the following modifications.
First, by definition, LC(n, 1) is the space of data (r, x0, x1, g) where r and g are as
above, x0 ∈ S1 × {0}, and x1 ∈ R × {r}, factorized by the action of the circle by
rotations on the factor S1. The composition

(3.18) LfC(n, 1)× LfC(m, 1) → LfC(n+m, 1)

is defined as follows: given (r, g, x0, x1) and (r′, g′, x′
0, x

′
1), their composition is

(r+ r′, g′′, x0, x
′
1 + x1 − x′

0) where g′′ = pr ◦ g̃′′ and g̃′′ is exactly as in (3.17), with

the only difference that it sends z ∈ Dj , 1 ≤ i ≤ m, to the image of g̃′(z) under the
map R × [0, r′] → R × [0, r + r′], (x, t) �→ (x + x1 − x′

0, t + r). Note that LC(1) is
contractible but LfC(1) is homotopy equivalent to S1.

3.11.2. The Fulton-MacPherson version of LC and of LfC. Note first that
the colored operad LC can be alternatively defined as follows: the spaces LC(n) are
as above; the spaces LC(n, 1) are defined as subspaces of LD2(n+ 1) consisting of
those embeddings (3.8) that map the center of Dn+1 to the center of D. The action
of the symmetric groups and the operadic compositions are induced from those of
LD2. Similarly, define the two-colored operad FMC as follows. Put FMC(n) =
FM(n); define FMC(n, 1) to be the subspace of FM(n+ 1) consisting of data

(T, {cv}|v ∈ {external vertices of T})
such that:
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(1) T is a rooted tree;
(2) cv ∈ Conf({edges outgoing from v});
(3) Consider the path from the root of T to the external vertex labeled by

n + 1 (the trunk of T ). Let e0 be the edge on this path that goes out of
a vertex v. Let cv = (xe) where e are all edges outgoing from v. Then
xe0 = 0.

We leave to the reader to define the operadic compositions and the action of the
symmetric groups, as well as the Fulton-MacPherson analog FMfC of the two-
colored operad LfC.

Proposition 3.11.1. The two-colored operads FMC and LC, resp. FMfC and
LfC, are weakly equivalent.

4. DG categories

The contents of this section are taken mostly from [37], [69], and [111].

4.1. Definition and basic properties. A differential graded (DG) category
A over k is a collection Ob(A) of elements called objects and of complexes A(x, y)
of k-modules for every x, y ∈ Ob(A), together with morphisms of complexes

(4.1) A(x, y)⊗A(y, z) → A(x, z), a⊗ b �→ ab,

and zero-cycles 1x ∈ A(x, x), such that (4.1) is associative and 1xa = a1y = a for
any a ∈ A(x, y). For a DG category, its homotopy category is the k-linear category
Ho(A) such that Ob(Ho(A)) = Ob(A) and Ho(A)(x, y) = H0(A(x, y), with the
units being the classes of 1x and the composition induced by (4.1).

A DG functor A → B is a map Ob(A) → Ob(B), x �→ Fx, and a collec-
tion of morphisms of complexes Fx,y : A(x, y) → B(Fx, Fy), x, y ∈ Ob(A), which
commutes with the composition (4.1) and such that Fx,x(1x) = 1Fx for all x.

The opposite DG category of A is defined by Ob(Aop) = Ob(A), Aop(x, y) =
A(y, x), the unit elements are the same as in A, and the composition (4.1) is the
one from A, composed with the transposition of tensor factors.

For two DG categories A and B, the tensor product A⊗B is defined as follows:
Ob(A⊗B) = Ob(A)×Ob(B); we denote the object (x, y) by x⊗ y;

(A⊗B)(x⊗ y, x′ ⊗ y′) = A(x, y)⊗B(x′, y′);

(a⊗ b)(a′ ⊗ b′) = (−1)|a
′||b|aa′ ⊗ bb′;1x⊗y = 1x ⊗ 1y.

4.2. Cofibrant DG categories. Cofibrant DG categories are defined exactly
following the general principle of 3.3.

4.3. Quasi-equivalences. A quasi-equivalence [101] between DG categories
A and B is a DG functor F : A → B such that a) F induces an equivalence of
homotopy categories and b) for any x, y ∈ Ob(A), Fx,y : A(x, y) → B(Fx, Fy) is a
quasi-isomorphism.

4.4. Drinfeld localization. For a full DG subcategory C of a DG category
A, the localization of A with respect to C is obtained from A as follows. Consider
DG categories kC and NC ; Ob(kC) = Ob(NC) = Ob(C); kC(x, y) = NC(x, y) = 0
if x 
= y; kC(x, x) = k · 1x; NC(x, x) is equal to the free algebra generated by one
element εx of degree −1 satisfying dεx = 1x for all x ∈ Ob(C). The localization of
A is the free product A ∗kC

NC . In other words, it is a DG category A such that:



NONCOMMUTATIVE CALCULUS AND OPERADS 39

(1) Ob(A) = Ob(x);
(2) there is a DG functor i : A → A which is the identity on objects;
(3) for every x ∈ Ob(C), there is an element εx of degree −1 in A(x, x)

satisfying dεx = 1x;
(4) for any other DG category A′ together with a DG functor i′ : A → A′

and elements ε′x as above, there is unique DG functor f : A → A′ such
that i′ = f ◦ i and εx �→ ε′x.

One has

A(x, y) =
⊕
n≥0

⊕
x1,...,xn∈Ob(C)

A(x, x1)εx1
A(x1, x2)εx2

. . . εxn
A(xn, y);

it is easy to define the composition and the differential explicitly.

4.5. DG modules over DG categories. A DG module over a DG cate-
gory A is a collection of complexes of k-modules M(x), x ∈ Ob(A), together with
morphisms of complexes

(4.2) A(x, y)⊗M(y) → A(x), a⊗m �→ am,

which is compatible with the composition (4.1) and such that 1xm = m for all x
and all m ∈ M(x). A DG bimodule over A is a collection of complexes M(x, y)
together with morphisms of complexes

(4.3) A(x, y)⊗M(y, z)⊗A(z, w) → M(x,w), a⊗m⊗ b �→ amb,

that agrees with the composition in A and such that 1xm1y = m for any x, y,m.
We put am = am1z and mb = 1xmb. A DG bimodule over A is the same as a DG
module over A⊗Aop.

4.6. Bar and cobar constructions for DG categories. The bar construc-
tion of a DG category A is a DG cocategory Bar(A) with the same objects where

Bar(A)(x, y) =
⊕
n≥0

⊕
x1,...,xn

A(x, x1)[1]⊗A(x1, x2)[1]⊗ . . .⊗A(xn, x)[1]

with the differential

d = d1 + d2;

d1(a1| . . . |an+1) =
n+1∑
i=1

±(a1| . . . |dai| . . . |an+1);

d2(a1| . . . |an+1) =

n∑
i=1

±(a1| . . . |aiai+1| . . . |an+1)

The signs are (−1)
∑

j<i(|ai|+1)+1 for the first sum and (−1)
∑

j≤i(|ai|+1) for the sec-
ond. The comultiplication is given by

Δ(a1| . . . |an+1) =
n+1∑
i=0

(a1| . . . |ai)⊗ (ai+1| . . . |an+1)

Dually, for a DG cocategory B one defines the DG category Cobar(B). The DG
category CobarBar(A) is a cofibrant resolution of A.
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4.6.1. Units and counits. It is convenient for us to work with DG (co)categories
without (co)units. For example, this is the case for Bar(A) and Cobar(B) (we sum,
by definition, over all tensor products with at least one factor). Let A+ be the
(co)category A with the (co)units added, i.e. A+(x, y) = A(x, y) for x 
= y and
A+(x, x) = A(x, x) ⊕ k idx . If A is a DG category then A+ is an augmented DG
category with units, i.e. there is a DG functor ε : A+ → kOb(A). The latter is
the DG category with the same objects as A and with kI(x, y) = 0 for x 
= y,
kI(x, x) = k. Dually, one defines the DG cocategory kOb(B) and the DG functor
η : kOb(B) → B+ for a DG cocategory B.

4.6.2. Tensor products. For DG (co)categories with (co)units, define A⊗B as
follows: Ob(A ⊗ B) = Ob(A) × Ob(B); (A ⊗ B)((x1, y1), (x2, y2)) = A(x1, y1) ⊗
B(x2, y2); the product is defined as (a1 ⊗ b1)(a2 ⊗ b2) = (−1)|a2||b1|a1a2 ⊗ b1b2,
and the coproduct in the dual way. This tensor product, when applied to two
(co)augmented DG (co)categories with (co)units, is again a (co)augmented DG
(co)category with (co)units: the (co)augmentation is given by ε⊗ ε, resp. η ⊗ η.

Definition 4.6.1. For DG categories A and B without units, put

A⊗B = Ker(ε⊗ ε : A+ ⊗B+ → kOb(A) ⊗ kOb(B)).

Dually, for For DG cocategories A and B without counits, put

A⊗ B = Coker(η ⊗ η : kOb(A) ⊗ kOb(B) → A+ ⊗B+).

One defines a morphism of DG cocategories

(4.4) Bar(A)⊗ Bar(B) → Bar(A⊗B)

by the standard formula for the shuffle product

(4.5) (a1| . . . |am)(b1| . . . |bn) =
∑

±(. . . |ai| . . . |bj | . . .)

The sum is taken over all shuffle permutations of the m+n symbols a1, . . . , am, b1,
. . . , bn), i.e. over all permutations that preserve the order of the ai’s and the
order of the bj ’s. The sign is computed as follows: a transposition of ai and

bj introduces a factor (−1)(|ai|+1)(bj |+1). Let us explain the meaning of the fac-
tors ai and bj in the formula. We assume ai ∈ A(xi−1, xi) and bj ∈ B(yj−1, yj)
for xi ∈ Ob(A) and yj ∈ Ob(B), 0 ≤ i ≤ m, 0 ≤ j ≤ m. Consider a sum-
mand (. . . |ai|bj |bj+1| . . . |bk|ai+1| . . .). In this summand, all bp, j ≤ p ≤ k, are
interpreted as idxi

⊗ bp ∈ (A ⊗ B)((xi, yp−1), (xi, yp)). Similarly, in the summand
(. . . |bi|aj |aj+1| . . . |ak|ai+1| . . .), all ap, j ≤ p ≤ k, are interpreted as ap ⊗ idyi

∈
(A⊗B)((xp−1, yi), (xp, yi)). Dually, one defines the morphism of DG cocategories

(4.6) Cobar(A⊗B) → Cobar(A)⊗ Cobar(B)

4.7. A∞ categories. An A∞ category is a natural generalization of both a
DG category and an A∞ algebra. We refer the reader, for example, to [75].

4.7.1. DG category C•(A,B). For two DG categories A and B, define the DG
category C•(A,B) as follows. Its objects are A∞ functors f : A → B. Define the
complex of morphisms as

C•(A,B)(f, g) = C•(A,f Bg)
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where fBg is the complex B viewed as an A∞ bimodule on which A acts on the
left via f and on the right via g. The composition is defined by the cup product as
in the formula (2.14).

Remark 4.7.1. Every A∞ functor f : A → B defines an A∞ (A,B)-bimodule

fB, namely the complex B on which A acts on the left via f and B on the right
in the standard way. If for example f, g : A → B are morphisms of algebras then
C•(A,f Bg) computes Ext•A⊗Bop(fB,g B). What we are going to construct below
does not seem to extend literally to all (A∞) bimodules. This applies also to
related constructions of the category of internal homomorphisms, such as in [68]
and [112]. One can overcome this by replacing A by the category of A-modules,
since every (A,B)-bimodule defines a functor between the categories of modules.

4.7.2. The bialgebra structure on Bar(C•(A,A)). Let us first recall the prod-
uct on the bar construction Bar(C•(A,A)) where C•(A,A) is the algebra of
Hochschild cochains of A with coefficients in A (cf. [54], [51]). For cochains Di

and Ej , define

(D1| . . . |Dm) • (E1| . . . |En) =
∑

±(. . . |D1{. . .}| . . . |Dm{. . .}| . . .)

Here the space denoted by . . . inside the braces contains Ej+1, . . . , Ek; outside the
braces, it contains Ej+1| . . . |Ek. The factorDi{Ej+1, . . . , Ek} is the brace operation
as in (2.25). The sum is taken over all possible combinations for which the natural
order of Ej ’s is preserved. The signs are computed as follows: a transposition of Di

and Ej introduces a sign (−1)(|Di|+1)(|Ej |+1). In other words, the right hand side is
the sum over all tensor products of Di{Ej+1, . . . , Ek}, k ≥ j, and Ep, so that the
natural orders of Di’s and of Ej ’s are preserved. For example,

(D) • (E) = (D|E) + (−1)(|D|+1)(|E|+1)(E|D) +D{E}

Proposition 4.7.2. The product • together with the comultiplication Δ makes
Bar(C•(A,A)) an associative bialgebra.

Now let us explain how to modify the product • and to get a DG functor

(4.7) • : Bar(C•(A,B))⊗ Bar(C•(B,C)) → Bar(C•(A,C))

4.7.3. The brace operations on C•(A,B). For Hochschild cochains D ∈
C•(B,f0 Cf1) and Ei ∈ C•(A,gi−1

Bgi , 1 ≤ i ≤ n, define the cochain

D{E1, . . . , En} ∈ C•(A,f0g0 Cf1gn)

by

(4.8) D{E1, . . . , En}(a1, . . . , aN ) =
∑

±D(. . . , E1(. . .), . . . , En(. . .), . . .)

where the space denoted by . . . within Ek(. . .) stands for aik+1, . . . , ajk , and the
space denoted by . . . between Ek(. . .) and Ek+1(. . .) stands for gk(ajk+1, . . . , ), gk(. . .),
. . . , gk(. . . , aik+1

). The sum is taken over all possible combinations such that ik ≤
jk ≤ ik+1. The signs are as in (2.25).
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4.7.4. The • product on Bar(C(A,B)). For Hochschild cochainsDi ∈ C•(B,fi−1
Cfi)

and Ej ∈ C•(A,gj−1
Bgj ), 1 ≤ i ≤ m, 1 ≤ j ≤ n, we have

(D1| . . . |Dm) ∈ Bar(C•(B,C))(f0, fm);

(D1| . . . |Dm) ∈ Bar(C•(A,B))(g0, gm);

define

(D1| . . . |Dm) • (E1| . . . |En) ∈ Bar(C•(A,C))(f0g0, fmgn)

by the formula in the beginning of 4.7.2, with the following modification. The ex-
pression Di{Ej+1, . . . , Ek} is now in C(A,C)(fi−1gj+1, figj), as explained above.
The space denoted by . . . between Di{Ej+1, . . . , Ek} and Di+1{Ep+1, . . . , Eq} con-
tains fi(Ek+1| . . .)|fi(. . .)| . . . |fi(. . . , Ep).Here, for anA∞ functor f and for cochains
E1, . . . , Ek,

(4.9) f(E1, . . . , Ek)(a1, . . . , aN ) =
∑

f(E1(a1, . . . , ai2−1), . . . , Ek(aik+1, . . . , an))

The sum is taken over all possible combinations 1 ≤ i1 ≤ i2 ≤ . . . ik ≤ n.

Lemma 4.7.3. 1) The product • is associative.
2) It is a morphism of DG cocategories. In other words, one has

Δ ◦ • = (•13 ⊗ •24) ◦ (Δ⊗Δ)

as morphisms

Bar(C•(A,B))(f0, f1)⊗ Bar(C•(B,C))(g0, g1) →

Bar(C•(A,C))(f0g0, fg)⊗ Bar(C•(A,C))(fg, f1g1)

4.7.5. Internal Hom of DG cocategories. Following the exposition of [68], we
explain the construction of Keller, Lyubashenko, Manzyuk, Kontsevich and Soibel-
man. For two k-modules V and W , let Hom(V,W ) be the set of homomorphisms
from V to W , and let Hom(V,W ) be the same set viewed as a k-module. The two
satisfy the property

(4.10) Hom(U ⊗ V,W )
∼→ Hom(U,Hom(V,W )).

In other words, Hom(V,W ) is the internal object of morphisms in the symmetric
monoidal category k−mod. The above equation automatically implies the existence
of an associative morphism

(4.11) Hom(U, V )⊗Hom(V,W ) → Hom(U,W )

If we replace the category of modules by the category of algebras, there is not much
chance of constructing anything like the internal object of morphisms. However, if
we replace k −mod by the category of coalgebras, the prospects are much better.
For our applications, it is better to consider counital coaugmented coalgebras. In
this category, objects Hom do not exist because the equation (4.10) does not agree
with coaugmentations. However, as explained in [68], the following is true.

Proposition 4.7.4. The category of coaugmented counital conilpotent cocate-
gories admits internal Homs. For two DG categories A and B, one has

(4.12) Hom(Bar(A),Bar(B)) = Bar(C(A,B))
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4.8. Hochschild and cyclic complexes of DG categories and A∞ cate-
gories. These are direct generalizations of the corresponding constructions for DG
algebras. The Hochschild chain complex of a DG category (or, more generally, of
an A∞ category) A is defined as

Cp(A) =
⊕

k−j=p

⊕
i0,...,ip∈Ob(A)

(A(i0, i1)⊗A(i1, i2)⊗ . . .⊗A(ip, i0))
j ;

the Hochschild cochain complex, as

Cp(A) =
∏

k+j=p

∏
i0,...,ip∈Ob(A)

Hom(A(i0, i1)⊗ . . .⊗A(ip−1, ip), A(i0, ip))
j ;

the formulas for the differentials b, B, and δ are identical to those defined above
for DG and A∞ algebras.

5. Infinity algebras and categories

We develop a version of the definitions of an infinity algebra over an operad,
an infinity category, and an infinity n-category. These definitions are closer to the
work of Lurie, and of Batanin, than the ones developed in 3. We compare the
two. We show that Hochschild cochains of a DG algebra (or DG category) form an
infinity two-category. We extend some of this discussion to the case of Hochschild
chains.

5.1. Infinity algebras over an operad. Let P be an operad in sets. Define
the category P# as the PROP associated to P. In other words, let P# be the
category whose objects are [n], n = 1, 2, 3, . . . , and whose morphisms are defined
by

(5.1) P#([n], [m]) = {Natural maps Xn → Xm}
where X is any set which is an algebra over P. By this we mean that morphisms
from [n] to [m] are all maps that you can construct universally, using the algebra
structure, from Xn to Xm where X is any set that is a P-algebra, so that every
component xj in the argument (x1, . . . , xn) is used exactly once.

Remark 5.1.1. When P = As, a P-algebra is an associative monoid. We will,
however, modify the definition slightly and require it to be a unital monoid. The
set of objects will be {[0], [1], [2], . . .}. Morphisms in As#([n], [m]) can be identified
with data

(f : {1, . . . , n} → {1, . . . ,m};<1, . . . , <m)

where <i is a linear order on f−1({i}). A natural morphism associated to such data
is defined by

(5.2) (x1, . . . , xn) �→ (
∏

f(j)=1

xj , . . . ,
∏

f(j)=m

xj)

where the products are taken according to the orders <i and the product over the
empty set is 1. This category was introduced in [42].

The category P# has a symmetric monoidal structure as follows. On objects,
[n] ⊗ [m] = [n + m]; on morphisms, f ⊗ f ′ : [n + n′] → [m + m′] is the natural
morphism obtained by concatenation of f and f ′.

The following definition is due to Leinster [80].
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Definition 5.1.2. Let C be a symmetric monoidal category with weak equiva-
lences. An infinity-algebra over P in C is a functor

A : P# → C; [n] �→ A(n)

together with a natural transformation

(5.3) Δ(n,m) : A(n+m) → A(n)⊗A(m)

which is a weak equivalence for every pair (n, m) and is coassociative, i.e.

idA(n)⊗Δ(m, k) = Δ(n,m)⊗ idA(k) : A(n+m+ k) → A(n)⊗A(m)⊗A(k)

Lemma 5.1.3. For an infinity algebra A in the category of complexes, there
exists a k[P]∞-algebra structure on A(1) such that the composition

P(n)⊗A(n)
idP ⊗Δ−→ P(n)⊗A(1)⊗n → A(1)

is homotopic to

P(n)⊗A(n) → P#(n, 1)⊗A(n) → A(1).

This structure can be chosen canonically up to homotopy.

Proof. One can define the DG coalgebra

∏
n

(Bar(P)(n)⊗A(n))Σn

over Bar(P) together with a coderivation d of degree one and square zero, using
the infinity algebra structure on A. Then one transfers the DG coalgebra structure
to the quasi-isomorphic complex

∏
n

(Bar(P)(n)⊗A⊗n)Σn

which is the cofree coalgebra over Bar(P) generated by A. The resulting coderiva-
tion gives a P∞-algebra structure on A. �

Remark 5.1.4. In [23], Costello uses a different definition of an infinity algebra
over a PROP in simplicial sets. For such a PROP P, an infinity P-algebra A is
defined as a functor P → C together with an associative natural transformation
A(n) ⊗ A(m) → A(n + m) which is a weak equivalence for every m and n. But,
when P = P# for an operad P, what we get is a strict algebra over P.

Remark 5.1.5. [80] When C = Top, then the definition of an infinity associa-
tive algebra leads to the definition of a Segal space X with X0 = pt. Indeed, put
Xn = A(n). Define di : A(n) → A(n−1) as follows. For 1 ≤ i ≤ n−1, di is induced

by the map (x1, . . . , xn) �→ (x1, . . . , xixi+1, . . . , xn) in As#([n], [n − 1]). For i = 0,
resp. i = n, define di to be the composition A(n) → A(1)× A(n− 1) → A(n− 1),
resp. A(n) → A(n − 1) × A(1) → A(n − 1). Degeneracy operators si are induced
by maps (x1, . . . , xn) �→ (x1, . . . , xi, 1, xi+1, . . . , xn).
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5.1.1. Multiple infinity algebras. A morphism A1 → A2 of infinity P-algebras
is a morphism of functors which is compatible with the underlying structure. By
definition, a morphism is a weak equivalence if every map A1(n) → A2(n) is a weak
equivalence.

Infinity P-algebras form a symmetric monoidal category: for two such algebras
A1 and A2, put (A1 ⊗A2)(n) = A1(n)⊗A2(n); the action of morphisms from P#

and the comultiplication Δ are defined as tensor products of those for A1 and A2.

Definition 5.1.6. An infinity (P,Q)-algebra is an infinity P-algebra in the
symmetric monoidal category of infinity Q-algebras.

In other words, an infinity (P,Q)-algebra is a collection of objectsA(m,n), mor-
phisms P#(m1,m2)⊗ A(m1, n) → A(m2, n), and weak equivalences Q#(n1, n2)⊗
A(m,n1) → A(m,n2), A(m1+m2, n) → A(m1, n)⊗A(m2, n), and A(m,n1+n2) →
A(m,n1)⊗A(m,n2) subject to various compatibilities.

Example 5.1.7. Let P ⊗ Q be the tensor product as in [39]; it is defined as
the free product of P and Q factorized by relations

α(β, . . . , β) = β(α, . . . , α) ∈ (P ⊗Q)(mn)

for all α ∈ P(m) and β ∈ Q(n); here α(β, . . . , β) denotes opn,...,n(α⊗ (β⊗ . . .⊗β))
and β(α, . . . , α) denotes opm,...,m(β ⊗ (α ⊗ . . . ⊗ α)). For a P ⊗ Q-algebra A one

can define an infinity (P,Q)-algebra with A(m,n) = A⊗mn.

5.2. Infinity categories.

Definition 5.2.1. For a set I, let As#I be the following category. Its objects
are directed graphs with the set of vertices I and with a finite number of edges. For

two such graphs Γ and Γ′, As#I (Γ,Γ
′) is the set of all natural maps∏

edges(Γ)

X(source(e), target(e)) →
∏

edges(Γ′)

X(source(e), target(e))

for any category X with Ob(X) = I; we require any argument xe ∈ X(source(e),
target(e)) to enter exactly once.

Note that As#I is a symmetric monoidal category if we put Γ ⊗ Γ′ = Γ
∐

Γ′

(disjoint union of edges with the same set of vertices). If I is a one-element set

then As#I is the category As# as in 5.

A map of sets F : I1 → I2 induces a monoidal functor F∗ : As#I1 → As#I2 .

Definition 5.2.2. An infinity category A in a symmetric monoidal category

C with weak equivalences is a set I and a functor A : As#I → C together with a
coassociative natural transformation

Δ(Γ,Γ′) : A(Γ
∐

Γ′) → A(Γ)⊗A(Γ′)

which is a weak equivalence for all Γ,Γ′ in Ob(As#I ).

5.3. Infinity 2-categories. Let C be the category of complexes, of simplicial
sets, or of topological spaces. For an infinity category A in C, define the homotopy
category Ho(A) by

ObHo(A) = I; Ho(A)(i, j) = H0(A(i → j))

in the case of complexes, or π0 in the other cases. (By i → j we denote the graph
with two vertices marked by i and j and one arrow from i to j).
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Definition 5.3.1. A morphism of infinity categories (I1, A1) → (I2, A2) is:
a) a map of sets F : I1 → I2;
b) a morphism of functors A1 → A2 ◦ F∗ which is compatible with Δ.
A morphism is by definition a weak equivalence if it induces an equivalence of

homotopy categories and every morphism A1(Γ) → A2(F∗(Γ)) is a weak equivalence.

The category of infinity categories is symmetric monoidal if one puts (I1, A1)⊗
(I2, A2) = (I1 × I2, A) where

A(Γ) = A1(Γ1)⊗A2(Γ2);

here Γ1 has one edge i1 → j1 for every edge (i1, i2) → (j1, j2) and Γ2 has one edge
i2 → j2 for every edge (i1, i2) → (j1, j2).

Definition 5.3.2. An infinity two-category is an infinity category in the sym-
metric monoidal category of infinity categories (the monoidal structure and weak
equivalences on the latter are defined above).

5.4. Hochschild cochains as an infinity two-category. It is well known
that categories form a two-category where one-morphisms are functors and two-
morphisms are natural transformations. Associative algebras also form a two-
category: one-morphisms between A and B are (A,B)-bimodules; two-morphisms
between (A,B)-bimodules M and N are morphisms of bimodules. In other words,
to any algebras A and B we can associate a category C(A,B) = (A,B) − bimod;
for any three algebras there is a functor

(5.4) C(A,B)× C(B,C) → C(A,C)

that satisfies the associativity property; it sends (M,N) to M ⊗B N. For any A,
there is the unit object idA of C(A) with respect to the above product. In fact
idA = A viewed as a bimodule. Note that

EndC(A,A)(id(A)) = Center(A).

Note also that the two-category of algebras maps to the two-category of categories:
an algebra A maps to the category A − mod, and a bimodule M to the functor
M ⊗−.

Our aim is to construct an infinity version of the above, namely an infinity
2-category whose objects are DG categories.

5.4.1. The construction of the infinity 2-category of Hochschild cochains.
Let I be any set of DG categories. We first define the infinity-category C in the
category of DG categories with the set of objects I. To do that, for any directed
graph Γ with set of vertices I and with finitely many edges, put

(5.5) C(Γ) = Cobar(
⊗

edges(Γ)

Bar(C(source(e), target(e))))

(recall that DG categories C(A,B) were defined in 4.7.4). For any f : Γ → Γ′ in

As#(Γ,Γ′), the corresponding map is induced by the • product and by insertion of
1. The coproduct Δ : C(Γ

∐
Γ′) → C(Γ)⊗ C(Γ′) is a partial case of the coproduct

(4.6).
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5.4.2. The module structure. Similarly to the above, one can define the no-
tion of an infinity algebra and an infinity module in a monoidal category C with
weak equivalences. Such an object is an infinity algebra {A(n)} and a collection of
objects {M(n − 1, 1)} subject to various axioms that we leave to the reader. (Al-
ternatively, one can replace the operad P in Definition 5.1.2 by the colored operad
As+). Similarly one can define an infinity functor from an infinity category to C.
The latter is a collection of objects M(Γ, v) where Γ is a graph as above and v is a
vertex of Γ.

Recall that we have constructed in 5.4.1 an infinity category C in the category
DGCat of DG categories such that the its value at the graph A → B with two
vertices and one edge is equal to

C(A → B) = CobarBar(C(A,B)).

One can extend this definition by constructing an infinity functor M from C to
DGCat such that M(A) = CobarBar(A). To do this, just observe that there is a
morphism of DG cocategories

(5.6) Bar(C(A,B))× Bar(A) → Bar(B)

that agrees with the product from Lemma 4.7.3.

5.4.3. The A∞ structure on chains of cochains. As a consequence of the
above, we get

Proposition 5.4.1. 1) The complex C−•(C
•(A,A), (C•(A,A)) carries a nat-

ural A∞ algebra structure such that

• All mn are k[[u]]-linear, (u)-adically continuous
• m1 = b+ δ + uB For x, y ∈ C•(A):
• (−1)|x|m2(x, y) = (sh+u sh′)(x, y)

For D, E ∈ C•(A,A):
• (−1)|D|m2(D,E) = D � E
• m2(1⊗D, 1⊗ E) + (−1)|D||E|m2(1⊗ E, 1⊗D) = (−1)|D|1⊗ [D, E]
• m2(D, 1⊗ E) + (−1)(|D|+1)|E|m2(1⊗ E, D) = (−1)|D|+1[D, E]

(we use the shuffle products as defined in 2.3.1).
2) The complex C−•(A,A) carries a natural structure of an A∞ module over

the A∞ algebra from 1), such that

• All μn are k[[u]]-linear, (u)-adically continuous
• μ1 = b+ uB on C•(A)[[u]]

For a ∈ C•(A)[[u]]:
• μ2(a,D) = (−1)|a||D|+|a|(iD + uSD)a
• μ2(a, 1⊗D) = (−1)|a||D|LDa

For a, x ∈ C•(A)[[u]]: (−1)|a|μ2(a, x) = (sh+u sh′)(a, x)

3) The above structures extend to negative cyclic complexes CC−
• .

Proof. In fact, the above is true if we replace C−• or CC−
• by any functor

which is multiplicative, i.e admits an associative Künneth map. �

Remark 5.4.2. An A∞ structure as above was constructed in [114]. It was
used in [33] to construct a Gauss-Manin connection on the periodic cyclic complex.

5.5. Hochschild chains.
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5.5.1. A 2-category with a trace functor. The two-category of algebras and
bimodules has an additional structure: a functor TrA : C(A,A) → k − mod such
that the two functors

(5.7) C(A,B)× C(B,A) → C(A,A)
TrA−→ k −mod

and

(5.8) C(A,B)× C(B,A) → C(B,A)× C(A,B) → C(B,B)
TrB−→ k −mod

coincide. Here the first functor from the left in (5.7) and the second from the
left in (5.8) are the products as in (5.4); the first functor from the left in (5.8)
is the permutation of factors. We call a two-category with a functor as above a
two-category with a trace functor.

For the two-category of algebras, the trace functor is defined as

(5.9) TrA(M) = M/[A,M ] = M ⊗A⊗Aop A = H0(A,M)

5.5.2. A dimodule over a 2-category. When we consider only those bimodules
that come from morphisms of algebras, we get another algebraic structure on the
two-category of algebras.

For an (A,B)-bimodule M , put

(5.10) M∨ = Hom(M,B)

which is a (B,A)-bimodule. We have a morphism of (B,B)-bimodules

(5.11) M∨ ⊗A M → B

For bimodules of the type that we will consider below, there is also a morphism of
(A,A)-bimodules

(5.12) A → M ⊗B M∨

such that the compositions

(5.13) M = A⊗A M → (M ⊗B M∨)⊗A M
∼→ M ⊗B (M∨ ⊗A M) → M

(5.14) M∨ = M∨ ⊗A 1 → M∨ ⊗A (M ⊗B M∨)
∼→ (M∨ ⊗A M)⊗B M∨ → M∨

are the identity morphisms. There is the second way to define a dual bimodule;
namely, for an (A,B)-bimodule M , define a (B,A)-bimodule

(5.15) M† = HomA(M,A).

There are bimodule morphisms M → M∨† and M → M†∨. The first one is an
isomorphism for M =f B as above, the second for M = Bf

∼→ (fB)∨. Put

(5.16) 〈M,N〉 = M ⊗B⊗Aop N∨ = (M ⊗B N∨)⊗A⊗Aop A

Let us describe the pairing 〈M,N〉, and the algebraic structure it is an example of, in
the special case when our bimodules are of the form fB where f is a homomorphism
of algebras. Denote, as above, by fBg the algebra B viewed as an A-bimodule on
which A acts on the left via f and on the right via g. Here f and g are two
homomorphisms A → B. We have

(5.17) 〈gB, fB〉 = TrB(fBg) = B/〈f(a)b− bg(a)|a ∈ A〉.
Denote

(5.18) T (A,B)(f, g) = 〈gB, fB〉
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Note also that

(5.19) C(A,B)(f, g) = HomA−B(fB,g B) = {b ∈ B|∀a ∈ A : g(a)b = bf(a)}.
The collection T (A,B) of k-modules T (A,B)(f, g) carries the following structure.

1. For every A and B, the collection T (A,B) is a bimodule over the category
C(A,B).

2. For every three algebras A, B, C, there are pairings

(5.20) T (A,B)(g0, g1)× C(B,C)(f0, f1) → T (A,C)(f0g0, f1g1)

and

(5.21) T (A,C)(f0g0, f1g1)× C(A,B)(g1, g0) → T (B,C)(f0, f1)

such that the following three compatibility conditions hold:

(1) the functors

T (A,B)(h0, h1)× C(B,C)(g0, g1)× C(C,D)(f0, f1) →
T (A,B)(h0, h1)× C(B,D)(g0h0, g1h1) → T (A,D)(f0g0h0, f1g1h1)

and

T (A,B)(h0, h1)× C(B,C)(g0, g1)× C(C,D)(f0, f1) →
T (A,C)(g0h0, g1h1)× C(C,D)(h0, h1) → T (A,D)(f0g0h0, f1g1h1)

are equal;
(2) the functors

T (A,D)(f0g0h0, f1g1h1)× C(A,B)(h1, h0)× C(B,C)(g1, g0) →
T (A,D)(f0g0h0, f1g1h1)× C(A,C)(g1h0, g1h1) → T (C,D)(f0, f1)

and

T (A,D)(f0g0h0, f1g1h1)× C(A,B)(h1, h0)× C(B,C)(g1, g0) →
T (B,D)(f0g0, f1g1)× C(B,C)(g1, g0) → T (C,D)(f0, f1)

are equal;
(3)

T (A,C)(g0h0, g1h1)× C(A,B)(h1, h0)× C(C,D)(f0, f1) →
T (B,C)(g0, g1)× C(C,D)(f0, f1) → T (B,D)(f0g0, f1g1)

and

T (A,C)(g0h0, g1h1)× C(A,B)(h1, h0)× C(C,D)(f0, f1) →
T (A,D)(f0g0h0, f1g1h1)× C(A,B)(h1, h0) → T (B,D)(f0g0, f1g1)

are equal.

3. The pairings (5.20), (5.21) are compatible with the C(A,B)-bimodule structures
on T (A,B).

We call a 2-category and a collection of T (A,B)(f, g) subject to the conditions
above a 2-category with a dimodule (for want of a better term).

When C is the 2-category of algebras and bimodules, and T (A,B)(f, g) are as
in (5.18), then the action (5.20) is defined as

(5.22) b⊗ c �→ f1(b)c = cf0(b)

for b ∈ g1Bg0 and c ∈ C(B,C)(f0, f1); the action (5.21) is defined as

(5.23) c⊗ b �→ f1(b)c ∼ cf0(b) ∈ T (B,C)(g1, g0)
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for b ∈ C(A,B)(g1, g0) = {b ∈ B|∀A : g1(a)b = bg0(a) and c ∈f1g1 Cf0g0 .
The definition of a dimodule is rather peculiar. If we replace categories C(A,B)

by sets, and therefore consider a category C instead of a two-category, we get the
definition of a (Cop, C)-bimodule. In the case of 2-categories that we are working
with, the notion of a dimodule is more subtle. If we put

T dual(A,B)(f, g) = Homk(T (A,B)(g, f), k)

then a dimodule defines two compatible actions

T (A,B)× C(B,C) → T (A,C)

C(A,B)× T dual(B,C) → T dual(A,C)

For any dimodule T over a 2-category C, the action (5.21) of the morphism
idg, f ∈ ObC(A,B), defines the morphism the action (5.20) of the morphism idf ,
f ∈ ObC(B,C), defines the morphism

(5.24) f∗ : T (A,B)(g0, g1) → T (A,C)(fg0, fg1);

the action (5.21) of the morphism idg, g ∈ ObC(A,B), defines the morphism

(5.25) g∗ : T (A,C)(f0g, f1g) → T (B,C)(f0, f1).

Our dimodule T has the following extra property (which does not seem to follow
from the axioms).

Lemma 5.5.1. Let f0, f1 : B → C and g0, g1 : A → B be one-morphisms in C
such that f0g0 = f1g1. Then the diagram

T (A,B)(g0, g1)
f1∗−−−−→ T (A,C)(f1g0, f1g1)

f0∗

⏐⏐� =

⏐⏐�
T (A,C)(f0g0, f0g1) −−−−→ T (A,C)(f1g0, f0g0)

=

⏐⏐� g0
∗
⏐⏐�

T (A,C)(f1g1, f0g1)
g1

∗

−−−−→ T (B,C)(f1, f0)

is commutative.

Proof. In fact, for b ∈g1 Bg0 , g1
∗f0∗(b) = f0(b) ∈ f0Cf1 ; g0

∗f1∗(b) = f1(b) ∈
f0Cf1 ; the two are equal in H0(B, f0Cf1) (their difference is equal to the Hochschild
chain differential of 1⊗b; here is the origin of the cyclic differential B, see below). �

5.5.3. The higher structure on Hochschild chains: the first step. We ex-
pect that, when we replace C(A,B)(f0, f1) by C•(A, f1Bf0) and T (A,B)(f0, f1) by
C•(A, f1Bf0), the result will carry a structure of an infinity dimodule with property
(5.5.1). Observe first that the morphisms (5.24), (5.25) can be written down easily:

(5.26) f∗(b0 ⊗ a1 . . .⊗⊗an) = f(b0)⊗ a1 . . .⊗ an;

(5.27) g∗(c0 ⊗ a1 ⊗ . . .⊗ an) = c0 ⊗ g(a1)⊗ . . .⊗ g(an).
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5.5.4. The origin of the differential B. Consider the statement of Lemma
5.5.1 in the partial case A = B = C, f1 = g0 = f, g1 = f0 = id . We see that the
two maps

id, f : C•(A, fA) → C•(A, fA)

should be homotopic. Here

f(a0 ⊗ a1 ⊗ . . .⊗ an) = f(a0)⊗ f(a1)⊗ . . .⊗ f(an).

In particular, C•(A,A) should carry an endomorphism of degree plus one. Such a
homotopy can be easily written down as

(5.28) B(f)(a0 ⊗ a1 . . .⊗ an) =

n∑
i=0

(−1)ni1⊗ f(ai)⊗ . . .⊗ f(an)⊗ a0 . . .⊗ ai−1

6. Deligne conjecture

6.1. Deligne conjecture for Hochschild cochains. In the early 90s, Deligne
conjectured that Hochschild cochains form a homotopy algebra over the operad of
chain complexes of the little discs operad. This conjecture was proved by McClure
and Smith in [88]. Subsequent proofs are contained in [4], [6], [63], [67], [74], [?],
[104].

Theorem 6.1.1. For any A∞ category A there is an action of a cofibrant
resolution of the DG operad C−•(LD2) on the Hochschild complex C•(A,A) such
that at the level of cohomology:

(1) the generator of H0(LD2(2)) acts by the cup product on H•(A,A);
(2) the generator of H1(LD2(2)) acts by the Gerstenhaber bracket on H•(A,A).
(3) This structure is natural with respect to isomorphisms.

6.2. Deligne conjecture for Hochschild chains. An extension of the Deligne
conjecture to chains maintains that the pair of complexes of Hochschild cochains
and chains is a homotopy algebra over the two-colored operad of little discs and
cylinders.

Theorem 6.2.1. For any A∞ category A there is an action of a cofibrant resolu-
tion of the DG operad C−•(LD2) on the pair of Hochschild complexes (C•(A,A), C−•
(A,A) such that at the level of cohomology:

(1) the generator of H0(LC(1, 1)) acts by the pairing H•(A,A)⊗H−•(A,A) →
H−•(A,A);

(2) the generator of H1(LC(1, 1)) acts by the pairing H•(A,A)⊗H−•(A,A) →
H−•+1(A,A).

(3) This structure is natural with respect to isomorphisms.

7. Formality of the operad of little two-discs

7.1. Associators. We follow the exposition in [3], [105], and [97].

7.1.1. The operad in categories PaB. Define the category PaB(n) as follows.
Its object is a parenthesized permutation, i.e. a pair (σ, π) of a permutation σ ∈ Sn

and a parenthesization π of length n. A parenthesization is by definition an element
of the free non-associative monoid with one generator •. Example (n = 6):

(7.1) π = ((••)((••)(••)))
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A morphism from (σ1, π1) to (σ2, π2) is an element of the braid group Bn whose
projection to Sn is equal to σ−1

2 σ1. The composition of morphisms is given by the
multiplication of braids.

To describe the operadic structure, it is more convenient to use a slightly dif-
ferent definition of PaB(n). A parenthesization of a finite ordered set A is a paren-
thesization of length n = |A| where the jth symbol • is replaced by aj for all
j.

For two total orders <1 and <2 on a finite set A, a pure braid between (A,<1)
and (A,<2) is a braid whose lower ends are decorated by elements of A in the
order <1, whose upper ends are decorated by elements of A in the order <2, and
whose strands all go from a to the same element a. For a finite set A, the category
PaB(A) is defined as follows:

(1) Objects of PaB(A) are pairs (<, π) where < is a total order on A and a
parenthesization of A;

(2) a morphism from (<1, π1) to (<2, π2) is a pure braid from (A,<1) to
(A,<2);

(3) the composition is the multiplication of braids.

Now let us define the operadic composition. Let A and B be totally ordered
finite sets. Consider the surjection A

∐
B → A

∐
{c} that is the identity on A and

that sends all elements of B to c. The operadic composition

(7.2) PaB(B)×PaB(A
∐

{c}) → PaB(A
∐

B)

corresponding to this surjection acts as follows: Let <1 be a total order on B, π1

a parenthesization of B, <2 a total order on A
∐
{c}, and π2 a parenthesization of

A
∐
{c}. Then the value of the functor (7.2) on ((<1, π1), (<2, π2) is (<, π) where

(1) < is the total order for which a < a′ iff a <2 a′; b < b′ iff b <1 b′; a < b iff
a <2 c;

(2) π is obtained from the parenthesization Π2 by replacing the symbol c with
the set B, parenthesized by π1.

Note that the operad of sets ObPaB is the free operad generated by one binary
operation. At the level of morphisms, let γ be a pure braid between (B,<1) and
(B,<′

1); let γ
′ be a pure braid between (A

∐
{c}, <2) and (A

∐
{c}, <′

2). The functor
(7.2) sends (γ, γ′) to γ′′ defined as γ′ in which the strand from c to c is replaced by
the pure braid γ.

7.1.2. The operad in Lie algebras t. For a finite set A, let t(A) be the Lie
algebra with generators tij , i, j ∈ A, subject to relations

(7.3) [tij , tkl] = 0

if i, j, k, l are all different;

(7.4) [tij , tik + tjk] = 0

if i, j, k are all different. We put t(n) = t({1, . . . , n}). These Lie algebras form
an operad in the category of Lie algebras where the monoidal structure is the
direct sum. The operadic compositions are uniquely defined by the compositions
◦j : t(m) ⊕ t(n) → t(n + m − 1) acting as follows. Let A and B be finite sets.
Consider the surjection A

∐
B → A

∐
{c} that is the identity on A and that sends



NONCOMMUTATIVE CALCULUS AND OPERADS 53

all elements of B to c. The operadic composition t(B) ⊕ t(A
∐
{c}) → t(A

∐
B)

corresponding to this surjection acts as follows:

(7.5) (tbb′ , taa′) �→ tbb′ + taa′ ; (tbb′ , tac) �→ tbb′ +
∑
b′′∈B

tab′′

for a, a′ ∈ A, b, b′ ∈ B. The action of the symmetric group on U(t(n)) is by permu-
tation of pairs of indices (ij).

The operad t gives rise to the operads U(t) and Û(t) in the category of algebras

and to the operad Û(t)
group

in the category of groups. Here U(t) is the universal

enveloping algebra of t, Û(t) its completion with respect to the augmentation ideal,

and Û(t)
group

the set of grouplike elements of this completion (with respect to the
coproduct for which all tij are primitive). Since every group is a category with one

object, we can consider Û(t)
group

as an operad in categories.

7.1.3. Definition of an associator. Let σ be the morphism in PaB(2) between

(12) and (21) corresponding to the generator of the pure braidgroup PB2
∼→ Z.

Let a be the morphism in PaB(3) between (12)3) and (1(23)) corresponding to the
trivial pure braid e.

Definition 7.1.1. An associator is a group element Φ ∈ Û(t(3))
group

such that
there is a morphism of operads in categories

PaB → Û(t)
group

that sends σ to exp( t122 ) and a to Φ.

The following theorem is essentially proven in [36]. It is formulated in the
language of operads in [105] which is based on [3].

Theorem 7.1.2. There exists an associator Φ.

Remark 7.1.3. The above theorem is plausible because the relations (7.3), (7.4)
are infinitesimal analogs of the defining relations in pure braid groups. Näıvely, t(n)
is the Lie algebra of PBn. If the latter were nilpotent, the theorem would follow
from rational homotopy theory. However, pure braid groups are far from being
nilpotent, so the existence of an associator is not easy to prove.

7.1.4. Parenthesized braids and little discs. Consider the embedding

(7.6) FM1 → FM2

induced by the embedding R → C
∼→ R2. Note that the zero strata of FM1 form an

operad in sets that is isomorphic to the operad ObPaB. We denote this suboperad
of FM1 (and FM2) by PaP. Denote by π1(FM2(n),PaP(n)) the full subcategory
of the fundamental groupoid of FM2 with the set of objects PaP(n). The collection
of categories π1(FM2(n),PaP(n)) is an operad that we denote by π1(FM2,PaP).

Lemma 7.1.4. There is an isomorphism of operads in categories

π1(FM2,PaP)
∼→ PaB
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7.2. Formality of the operad of chains of little two-discs.

Theorem 7.2.1. [105] There is a chain of weak equivalences between DG op-
erads C−•(LD2) and H−•(LD2).

Proof. There is a chain of equivalences of topological operads:

Nerve π1(FM2,PaP)
∼← Nerve π1(FM2)

∼← FM2

The morphism of nerves on the left is induced by an equivalence of categories and
therefore an equivalence. The map on the right is the classifying map which is an
equivalence because all FM2(n) are K(π, 1). By Lemma 7.1.4, there is a chain of
equivalences between Nerve PaB and FM2. Applying the functor C−• to this chain
of equivalences, we see that it is enough to construct a chain of weak equivalences
between C−•(Nerve PaB) and H−•(LD2), which is the same as H−•(FM2). An
associator Φ provides an equivalence

(7.7) C−•(Nerve PaB)
∼→ C−•(Nerve Û(t)

group
)

The right hand side of the above (if we replace singular chains of the geometric
realization by simplicial chains) is the completed version of the chain complex of

the group Û(t)
group

. It is not difficult to define the chain of equivalence below,
where Cobar stands for the cobar construction of the augmentation ideal or, what

is the same, the standard complex for computing Tor
U(t)
−• (k, k).

C−•(Nerve Û(t)
group

)
∼→ Ĉobar−•(U(t)+)

∼← Cobar−•(U(t)+)
∼← CLie

−• (t)

Finally, the right hand side is quasi-isomorphic to Gerst
∼→ H−•(LD2). �

7.3. Formality of the colored operad of little discs and cylinders.

Theorem 7.3.1. There are chains of weak equivalences between two-colored DG
operads C−•(LC) and H−•(LC), and between C−•(LfC) and H−•(LfC).

Proof. The proof for the case of LC is virtually identical to the proof of
Theorem 7.2.1. The proof for LfC requires a modification regarding the action of
S1. We omit it here. �

7.3.1. Gamma function of an associator. Note that

t(3)
∼→ FreeLie(t12, t23)⊕ k · (t12 + t13 + t23)

It is easy to see [36], [3] that one can choose Φ = Φ(t12, t23). Since Φ is grouplike,
log Φ is a Lie series in two variables. Put

(7.8) log Φ(x, y) = −
∞∑
k=1

ζΦ(k + 1) adkx(y) +O(y2)

and

(7.9) ΓΦ(u) = exp(
∞∑
n=2

(−1)nζΦ(n)u
n/n)

It is known that

(7.10) exp(

∞∑
n=1

ζΦ(2n)u
2n) = −1

2
(

u

eu − 1
− 1 +

u

2
)
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8. Noncommutative differential calculus

We deduce from 6 and 7 that the Hochschild cochain complex is an infinity
Gerstenhaber algebra and, more generally, the pair of the cochain and the chain
complexes is an infinity calculus. This admits the interpretation below, due to the
fact that infinity algebras can be rectified (cf. 3).

8.1. The Gerst∞ structure on Hochschild cochains. Below is the theorem
from [104].

Theorem 8.1.1. For every associative algebra A and every associator Φ, there
exists a Gerst∞ algebra structure on C•(A,A), natural with respect to isomorphisms
of algebras, such that

(1) The induced Gerstenhaber algebra structure on H•(A,A) is the standard
one, defined by the cup product and the Gerstenhaber bracket as in 2.2.

(2) The underlying L∞ structure on C•+1(A,A) is given by the Gerstenhaber
bracket.

8.2. The Calc∞ structure on Hochschild chains.

Theorem 8.2.1. [106], [35] For every associative algebra A and every associ-
ator Φ, there exists a Calc∞ algebra structure on (C•(A,A), C•(A,A)), such that

(1) The induced calculus structure on (H•(A,A), H•(A,A)) is defined by the
Gerstenhaber bracket, the cup product, the actions ιD and LD from 2.4,
and the cyclic differential B, as in Example 3.6.6.

(2) The induced structure of an L∞ module over C•+1(A,A) on C•(A)[[u]] is
defined by the differential b+ uB and the DG Lie algebra action LD from
2.4.

8.3. Enveloping algebra of a Gerstenhaber algebra. The following con-
struction is motivated by Example 3.6.5. For a Gerstenhaber algebra V•, let Y (V•)
be the associative algebra generated by two sets of generators ia, La, a ∈ V•, both
i and L linear in a,

|ia| = |a|; |La| = |a| − 1

subject to relations

iaib = iab; [La, Lb] = L[a,b];

[La, ib] = i[a,b]; Lab = (−1)|b|Laib + iaLb

The algebra Y (V•) is equipped with the differential d of degree one which is
defined as a derivation sending ia to (−1)|a|−1La and La to zero.

For a smooth manifold M one has a homomorphism

Y (V•(M)) → D(Ω•(M))

The right hand side is the algebra of differential operators on differential forms on
M , and the above homomorphism sends the generators ia, La to corresponding
differential operators on forms (cf. Example 3.6.5). It is easy to see that the above
map is in fact an isomorphism.
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8.3.1. Differential operators on forms in noncommutative calculus. Using
a standard rectification argument one can restate Theorem 8.2.1 as follows:

Theorem 8.3.1. For every associative algebra A and every associator Φ, there
exists a DG calculus (V•(A),Ω•(A)), natural with respect to isomorphisms of alge-
bras, such that:

1) there is a quasi-isomorphism of DGLA

V•+1(A) → C•+1(A,A)

and a compatible quasi-isomorphism of DG modules

(Ω•(A)[[u]], δ + ud) → (C•(A,A)[[u]], b+ uB)

where the right hand sides are equipped with the standard structures given by the
Gerstenhaber bracket and the operation LD; both maps are natural with respect to
isomorphisms of algebras;

2) The statement 1) of Theorem 8.2.1 holds.

Proposition 8.3.2. There is an A∞ quasi-isomorphism of A∞ algebras, nat-
ural with respect to isomorphisms of algebras:

Y (V•(A)) → C−•(C
•(A,A), C•(A,A))

that extends to an A∞ quasi-isomorphism

(Y (V•(A))[[u]], δ + ud) → CC−
−•(C

•(A,A), C•(A,A))

(the A∞ structures on the right hand side were defined in 5.4.1 ).

The proof is given in [107].

9. Formality theorems

For an associative algebra A and an associator Φ, let

(C•(A,A), C•(A,A))Φ

denote the Calc∞ algebra given by Theorem 8.2.1. Let X be a smooth manifold
(real, complex analytic, or algebraic over a field of characteristic zero).

Theorem 9.0.3. There is a Calc∞ quasi-isomorphism between the sheaves of
Calc∞ algebras (C•(OX ,OX), C•(OX ,OX))Φ and CalcX such that:

(1) the induced isomorphism

H•(OX ,OX) → H•(X,∧•TX)

is given by

c �→ ι(
√
ÂΦ(TX))IHKR(c);

(2) the induced isomorphism

H•(OX ,OX) → H−•(X,Ω)

is given by

c �→
√
ÂΦ(TX) ∧ IHKR(c)

where the left hand side stands for the hypercohomology of X in the sheaf of Hochschild

complexes, and
√
ÂΦ(TX) is the characteristic class of the tangent bundle TX cor-

responding to the symmetric power series ΓΦ(x1) . . .ΓΦ(xn). Here ΓΦ denotes the
gamma function of the associator Φ.
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The proof can be obtained from [118], [119].

10. Deformation quantization

Let M be a smooth manifold. By a deformation quantization of M we mean a
formal product

(10.1) f ∗ g = fg +

∞∑
k=1

(i�)kPk(f, g)

where Pk are bidifferential expressions, ∗ is associative, and 1 ∗ f = f ∗ 1 = f for
all f . Given such a product (which is called a star product), we define

(10.2) A�(M) = (C∞(M)[[�]], ∗)
This is an associative algebra over C[[�]]. By A�

c (M) we denote the ideal C∞
c (M)[[�]]

of this algebra. An isomorphism of two deformations is by definition a power series
T (f) = f + (i�)k

∑∞
k=1 Tk(f) where all Tk are differential operators and which is

an isomorphism of algebras.
Given a star product on M , for f, g ∈ C∞(M) let

(10.3) {f, g} = P1(f, g)− P1(g, f) =
1

t
[f, g]|� = 0.

This is a Poisson bracket corresponding to some Poisson structure on M . If this
Poisson structure is defined by a symplectic form ω, we say that A�(M) is a defor-
mation of the symplectic manifold (M, ω).

Recall the following classification result from [27], [29], [44], [91].

Theorem 10.0.4. Isomorphism classes of deformation quantizations of a sym-
plectic manifold (M,ω) are in a one-to-one correspondence with the set

1

i�
[ω] +H2(M,C[[�]])

where [ω] is the cohomology class of the symplectic structure ω.

In defining the Hochschild and cyclic complexes, we use k = C[[�]] as the ring
of scalars, and put

(10.4) A�(M)⊗n = jetsΔ C∞(Mn)[[�]]

Sometimes we are interested in the homology defined using C as the ring of scalars.
Then we use the standard definitions where the tensor products over C are defined
by

(10.5) A�(M)⊗Cn = jetsΔ C∞(Mn)[[�1, . . . , �n]]

Let A�(M) be a deformation of a symplectic manifold (M,ω).

Theorem 10.0.5. There exists a quasi-isomorphism

C•(A
�(M),A�(M))[�−1] → (Ω2n−•(M)((�)), i�d)

which extends to a C[[�, u]]-linear, (�, u)-adically continuous quasi-isomorphism

CC−
• (A

�(M))[�−1] → (Ω2n−•(M)[[u]]((�)), i�d)

An analogous theorem holds for A�
c (M) if we replace Ω• by Ω•

c .
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10.0.2. The canonical trace. Combining the first map from Theorem 10.0.5 in
the compactly supported case with integrating over M and dividing by 1

n! , one gets
the canonical trace of Fedosov

Tr : A�

c (M) → C((�))

It follows from Theorem 10.0.5 that, for M connected, this trace is unique up to
multiplication by an element of C((i�)).

11. Applications of formality theorems to deformation quantization

11.1. Kontsevich formality theorem and classification of deformation
quantizations. From Theorem 9.0.3 we recover the formality theorem of Kontse-
vich [71], [72]:

Theorem 11.1.1. For a C∞ manifold X there exists an L∞ quasi-isomorphism
of DGLA

Γ(X,∧•+1(TX)) → C•+1(C∞(X), C∞(X))

For a complex manifold X, or for a smooth algebraic variety X over a field of
characteristic zero, there exists an L∞ quasi-isomorphism of sheaves of DGLA

∧•+1(TX) → C•+1(OX ,OX)

Definition 11.1.2. A formal Poisson structure on a C∞ manifold X is a power
series π =

∑∞
n=0(i�)

n+1πn where πn are bivector fields and [π, π]Sch = 0 (here [ ]Sch
denotes the Schouten bracket, extended bilinearly to power series in � with values
in multivector fields). An equivalence between two formal Poisson structures π and
π′ is a series X =

∑∞
n=1(i�)

n+1Xn such that π′ = exp(LX)π.

From Theorem 11.1.1 one deduces [71], [72]

Theorem 11.1.3. There is a bijection between isomorphism classes of deforma-
tion quantizations of a C∞ manifold X and equivalence classes of formal Poisson
structures on X.

This theorem admits an analog for complex analytic manifolds and for smooth
algebraic varieties in characteristic zero. The correct generalization of a deformation
quantization is a formal deformation of the structure sheaf OX as an algebroid stack
(cf. [66], [73] for definitions).

Theorem 11.1.4. [11], [12] For any associator Φ, there is a bijection between
isomorphism classes of deformation quantizations of a complex manifold X and
equivalence classes of Maurer-Cartan elements of the DGLA

(�Ω0,•(X,∧•+1TX)[[�]], ∂)

11.1.1. Hochschild cohomology of deformed algebras. Let π be a formal
Poisson structure on a smooth manifold X. Denote by Aπ the deformation quantiza-
tion algebra given by Theorem 11.1.3. The Hochschild cochain complex C•(Aπ,Aπ)
is by definition the complex of multidifferential, C[[�]]-linear cochains. One deduces
from Theorem 11.1.1

Theorem 11.1.5. [71], [72] There is an L∞ quasi-isomorphism of DGLA

(Γ(X,∧•+1(TX))[[�]], [π,−]Sch)
∼→ C•(Aπ,Aπ)
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11.2. Formality theorem for chains and the Hochschild and cyclic
homology of deformed algebras. Note that, by Theorems 11.1.1 and 11.1.5,
the Hochschild and negative cyclic complexes of C∞(X), resp. of Aπ, are L∞-
modules over Γ•+1(TX), resp. over (Γ(X,∧•+1(TX))[[�]], [π,−]Sch).

Theorem 11.2.1. [31], [32], [98].

(1) There is a C[[u]]-linear, (u)-adically continuous L∞ quasi-isomorphism of
DG modules over the DGLA Γ(X,∧•+1(TX))

CC−
−•(C

∞(X))
∼→ (Ω−•[[u]], udDR)

whose reduction modulo u is an L∞ quasi-isomorphism

C−•(C
∞(X), C∞(X))

∼→ Ω−•(X)

(2) There is a C[[u]]-linear, (u)-adically continuous L∞ quasi-isomorphism of
DG modules over the DGLA (Γ(X,∧•+1(TX))[[�]], [π,−]Sch)

CC−
−•(Aπ)

∼→ (Ω−•(X)[[�, u]], Lπ + udDR)

whose reduction modulo u is an L∞ quasi-isomorphism

C−•(A
π,Aπ)

∼→ (Ω−•[[�]], Lπ)

11.2.1. The complex analytic case. Let π be a Maurer-Cartan element of
the DGLA (�Ω0,•(X,∧•+1TX)[[�]], ∂). Let Aπ

Φ be the algebroid stack deforma-
tion corresponding to π by Theorem 11.1.4. A Hochschild cochain complex C•(A)
of any algebroid stack A was defined in [11]; the complexes C−•(A), CC−

−•(A), and
CCper

−• (A) were defined in [14]. As in the usual case, C•+1(A) is a DGLA and the
chain complexes are DG modules over it.

Theorem 11.2.2. (1) There is L∞ quasi-isomorphism

Ω0,•(X,∧•+1(TX))[[�]], [π,−]Sch)
∼→ C•+1(Aπ

Φ)

(2) There is a C[[u]]-linear (u)-adically continuous quasi-isomorphism of L∞
modules over the left hand side of the above formula

CC−
−•(A

π
Φ)

∼→ (Ω0,•(X,Ω•
X)[[�, u]], ∂ + Lπ + u∂)

11.3. Algebraic index theorem for deformations of symplectic struc-
tures. Let M be a smooth symplectic manifold. Let A�

M be a deformation quan-
tization of a smooth symplectic manifold M. Recall that there exists canonical up
to homotopy equivalence quasi-isomorphism

(11.1) μ� : CC−
• (A�(M))[�−1] → (Ω2n−•(M)[[u]]((�))], i�d)

Localizing in u, we obtain a quasi-isomorphism

(11.2) μ� : CCper
• (A�(M))[�−1] → (Ω2n−•(M)((u))((�)), i�d)

(recall the notation from Definition 2.0.3).

Definition 11.3.1. The above morphisms are called the trace density mor-
phisms.
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The index theorem compares the trace density morphism to the principal sym-
bol morphism. To define the latter, consider the cyclic complex of the deformed
algebra where the scalar ring is C instead of C[[�]]. Consider the composition

CC−
• (A�M)) → CC−

• (C∞(M)) →

→ (Ω•(M)[[u]], ud) → (Ω•(M)[[u]][[�]], ud)

where the first morphism is reduction modulo �, the second one is μ from Theorem
2.7.1, and the third one is induced by the embedding C → C[[�]]. We will denote
this composition, followed by localization in �, by

(11.3) μ : CCper
• (A�(M)) → (Ω•(M)((u))((�)), ud)

To compare μ and μ�, let us identify the right hand sides by the isomorphism

(Ω2n−•(M)((u))((�)), i�d)→ (Ω•(M)((u))((�)), ud)

which is equal to ( t
u )

n−k on Ωk(M)((u))((�)). After this identification, we obtain
two morphisms

μ, μt : CCper
• (At(M)) → (Ω•(M)((u))((�)), ud)

where the left hand side is defined as the periodic cyclic complex with respect to
the ground ring C.

Theorem 11.3.2. At the level of cohomology,

μ� =

∞∑
p=0

up(Â(M)eθ)2p · μ

where Â(M) is the Â class of the tangent bundle of M viewed as a complex bundle
(with an almost complex structure compatible with the symplectic form), and θ ∈
1
i� [ω] + H2(M,C[[�]]) is the characteristic class of the deformation (cf. Theorem
10.0.4).

Note that the canonical trace Trcan is the composition of μ� with the integration
Ω2n((�)) → C((�)). Let P and Q be N×N matrices over At(M) such that P 2 = P ,
Q2 = Q, and P − Q is compactly supported. Let P0, Q0 be reductions of P , Q
modulo �. They are idempotent matrix-valued functions; their images P0C

N , Q0C
N

are vector bundles on M . Applying μ� to the the difference of Chern characters of
P and Q, we obtain the following index theorem of Fedosov [44] (cf. also [91]).

Theorem 11.3.3.

Trcan(P −Q) =

∫
M

(ch(P0C
N )− ch(Q0C

N ))Â(M)eθ

11.4. Algebraic index theorem. The algebraic index theorem compares
two morphisms from the periodic cyclic homology of a deformed algebra to the
de Rham cohomology of the underlying manifold.
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11.4.1. The trace density map.

Definition 11.4.1. For a C∞ manifold X, a formal Poisson structure π on
X, and for the deformation quantization algebra Aπ, define the trace density map

TR: CCper
−• (Aπ)

∼→ (Ω−•(X)[[�]]((u)), udDR)

to be the composition

CCper
−• (A

π)
∼→ (Ω−•(X)[[�]]((u)), Lπ + udDR)

∼→ (Ω−•(X)[[�]]((u)), udDR)

where the map on the right is (the first component of) the first quasi-isomorphism
(2), Theorem 11.2.1, localized with respect to u, and the map on the right is the
isomorphism exp( ιπu ).

11.4.2. The principal symbol map. Denote by CCper
−• (A

π)C the periodic cyclic
chain complex of Aπ where the ring of scalars is defined as C, not C[[�]].

Definition 11.4.2. Define the principal symbol map

σ : CCper
−• (A

π)C
∼→ (Ω−•(X)((u)), udDR)

to be the composition

CCper
−• (A

π)C
∼→ CCper

−• (C
∞(X))

∼→ (Ω−•(X)((u)), udDR)

where the map on the left is induced by the corresponding morphism of algebras
(reduction modulo �, a quasi-isomorphism by the Goodwillie rigidity theorem), and
the map on the right is the HKR quasi-isomorphism.

Theorem 11.4.3. For a ∈ HCper
−• (A

π)C,

TR(a) = ι(σ(a)) ∧
√

Â(TX)u

where ι : Ω−•(X)((u)) → Ω−•(X)[[�]]((u)) is the inclusion and√
Â(TX)u = (

√
Â(TX))2pu

±p

11.4.3. The complex analytic case. One defines, exactly as in 11.4.1 and in
11.4.2, the quasi-isomorphisms

TRΦ : CC−
−•(A

π
Φ)

∼→ (Ω0,•(X,Ω•
X)[[�, u]], ∂ + u∂)

and
σΦ : CC−

−•(A
π
Φ)C

∼→ (Ω0,•(X,Ω•
X)((u)), ∂ + u∂)

Theorem 11.4.4. For a ∈ HC−
−•(A

π
Φ)C,

TRΦ(a) = i(σΦ(a)) ∧ (
√

ÂΦ(TX))u

11.4.4. Algebraic index theorem for traces.

Theorem 11.4.5. Let Aπ be the deformation quantization of a C∞ manifold
M corresponding to a formal Poisson structure π. Let Tr: Aπ

c → C[[�]] be a trace
on the subalgebra of compactly supported functions. There exists a Poisson trace
τ : C∞(M)[[�]] → C[[�]] with respect to π such that, for any two idempotents P
and Q in MatrN (Aπ) such that P −Q is compactly supported,

Tr(P −Q) = 〈τ, exp(ιπ)(ch(P0 −Q0)Â
1
2 (M))〉
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where P0 = P (mod�), Q0 = Q(mod �), and Tr is extended to the trace on the
matrix algebra by Tr(a) =

∑
Tr(aii).
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Birkhäuser/Springer, New York, 2011, pp. 139–158.

[34] V. Dolgushev, D. Tamarkin, and B. Tsygan, The homotopy Gerstenhaber algebra of
Hochschild cochains of a regular algebra is formal, J. Noncommut. Geom., 1 (1), 2007,
1–25.

[35] V. Dolgushev, D. Tamarkin, and B. Tsygan, Formality theorems for Hochschild com-
plexes and their applications, Lett. Math. Phys. 90 (2009), no. 1-3, 103–136.

[36] V. Drinfeld, On quasi-triangular Hopf algebras and on a group that is closely con-

nected with Gal(Q)/Q, Leningrad J. Math. 2 (1991), 4, 829-860.

[37] V. Drinfeld, DG quotients of DG categories, Journal of Algebra 272, 2 (2004), pp.
643–691.

[38] M. Duflo, Caractères des groupes et des algèbres de Lie résolubles, Annales scien-
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[70] M. Kontsevich, Homological algebra of mirror symmetry, Proc. ICM I (1994), 120–139
[71] M. Kontsevich. Formality conjecture, In Deformation theory and symplectic geometry

(Ascona, 1996), volume 20 of Math. Phys. Stud., pages 139–156. Kluwer Acad. Publ.,
Dordrecht, 1997.

[72] M. Kontsevich. Deformation quantization of Poisson manifolds, Lett. Math. Phys.,
66(3), pages 157–216, 2003.

[73] M. Kontsevich. Deformation quantization of algebraic varieties, In EuroConférence
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Some Elementary Operadic Homotopy Equivalences

Eduardo Hoefel

Abstract. In this work we present an elementary construction of an operad
morphism that is also a homotopy equivalence between the operad given by
the Fulton-MacPherson compactification of configuration spaces and the lit-
tle n-disks operad. In particular, the construction gives an operadic homo-
topy equivalence between the associahedra and the little intervals. It can also

be extended to the case of the Kontsevich compactification and the Voronov
Swiss-cheese operad.

The little cubes operad Cn was introduced by Boardman and Vogt [2] and ex-
tensively used by many authors, including Peter May in his famous proof of the
Recognition Principle of n-fold loop spaces [11]. On the other hand, the real version
of the Fulton-MacPherson compactification of configuration spaces of points was
defined by Axelrod and Singer (see [1] where the manifold with corners structure
is presented in detail). In the case of Euclidean n-space, the Axelrod-Singer com-
pactification results in an operad Fn. This operad has also been studied by many
authors. Here we will just mention Markl’s characterization of Fn as an operadic
completion [9] and Salvatore’s proof of its cofibrancy [13]. It is also well known that
F1 gives Stasheff’s associahedra [15]. As a consequence of the cofibrancy proven
by Salvatore, the operads Fn and Cn are related by the existence of an operad mor-
phism ν : Fn → Cn that is also a homotopy equivalence, i.e. an operadic homotopy
equivalence. For more details and an extensive historical review, we refer the reader
to [10].

In this work we construct an operadic homotopy equivalence between Fn and
Dn explicitly by using elementary techniques, where Dn is the little disks analogue
of the little cubes operad. The constructions also applies to the Swiss-cheese operad
and the Kontesevich compactification. The Swiss-cheese operad was originally de-
fined by Voronov in [16] and a slightly different definition was given by Kontsevich
in [7]. The difference between the two versions of the Swiss-cheese operad from
the point of view of algebras over Koszul operads is explored in detail in [8], where
the second version is called the unital Swiss-cheese operad. In this paper we will
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Araucária project FA-490/16032.

c© 2012 Eduardo Hoefel

67



68 EDUARDO HOEFEL

restrict attention to the unital Swiss-cheese operad and show that it is operadically
homotopy equivalent to the Kontsevich compactification.

In Section 1 we review the little disks and the (unital) Swiss-cheese operad. The
manifold with corners structure, given by Axelrod and Singer, on the real version of
the Fulton-MacPherson compactification of the configurations spaces is reviewed in
Section 2 for the case of points in Euclidean space. The Kontsevich compactification
is also defined in Section 2. The construction of the explicit operadic homotopy
equivalence is given in Section 3. It is assumed that the reader has some familiarity
with the Fulton-MacPherson or the Axelrod-Singer compactification.

1. Little disks and Swiss-cheese

1.1. Little disks. Let D2 denote the standard unit disk in the complex plane
C. By a configuration of n disks in D2 we mean a map

d :
∐

1�s�n

D2
s → D2

from the disjoint union of n numbered standard disks D2
1 , . . . , D

2
n to D2 such that

d, when restricted to each disk, is a composition of translations and dilations.
The image of each restriction is called a little disk. The interiors of the little
disks are required to be disjoint. The space of all configurations of n disks is
denoted by D2(n) and is topologized as a subspace of (R2 × R+)n containing the
coordinates of the center and radius of each little disk. The symmetric group acts
on D2(n) by renumbering the disks. For n = 0, we define D2(0) = ∅. The Σ-
module D2 = {D2(n)}n�0 admits a well known structure of operad given by gluing
configurations of disks into little disks, see [10].

1.2. Swiss-cheese. Form,n � 0 such thatm+n > 0, let us define SC(n,m; o)
as the space of those configurations d ∈ D2(2n + m) such that its image in D2 is
invariant under complex conjugation and exactly m little disks are left fixed by
conjugation. A little disk that is fixed by conjugation must be centered at the real
line; in this case it is called open. Otherwise, it is called closed. The little disks in
SC(n,m; o) are labeled according the following rules:

i) Open disks have labels in {1, . . . ,m} and closed disks have labels in {1, . . . , 2n}.
ii) Closed disks in the upper half-plane have labels in {1, . . . , n}. If conjugation

interchanges the images of two closed disks, their labels must be congruent
modulo n.

There is an action of Sn×Sm on SC(n,m; o) extending the action of Sn×{e} on
pairs of closed disks having modulo n congruent labels and the action of {e} × Sm

on open disks. Figure 1 illustrates a point in the space SC(n,m; o).

Definition 1.2.1 (Swiss cheese operad). The 2-colored operad SC is defined
as follows. For m,n � 0 with m + n > 0, SC(n,m; o) is the configuration space
defined above and SC(0, 0; o) = ∅. For n � 0, SC(n, 0; c) is defined as D2(n) and
SC(n,m; c) = ∅ for m � 1. The operad structure in SC is given by:

◦c
i : SC(n,m;x)× SC(n′, 0; c) → SC(n+ n′ − 1, 0;x), for 1 � i � n

◦o
i : SC(n,m;x)× SC(n′,m′; o) → SC(n+ n′,m+m′ − 1;x), for 1 � i � m

When x = c and m = 0, ◦c
i is the usual gluing of little disks in D2. If x = o, then

◦c
i is defined by gluing each configuration of SC(n′, 0; c) in the little disk labeled by
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1

2

n

1 2 m

n+1

n+2

2n

. . .

. . .

. . .

Figure 1. A configuration in SC(n,m; o)

i and then taking the complex conjugate of the same configuration and gluing the
resulting configuration in the little disk labeled by i+ n. Since SC(n,m; c) = ∅ for
m � 1, ◦o

i is only defined for x = o and is given by the usual operation of D2.

2. Compactified Configurations Spaces

Let p, q be non-negative integers satisfying the inequality 2p+q � 2. We denote
by Conf(p, q) the configuration space of marked points on the upper closed half-
plane H = {z ∈ C | Im(z) � 0} with p points in the interior and q points on the
boundary (real line)

{(z1, . . . , zp, x1, . . . , xq) ∈ Hp+q | zi1 �= zi2 , xj1 �= xj2 Im(zi) > 0, Im(xj) = 0}.

The above configuration space Conf(p, q) is the Cartesian product of an open
subset of Hp and an open subset of Rq and, consequently, is a (2p+ q)-dimensional
smooth manifold. Let C(p, q) be the quotient of Conf(p, q) by the action of the
group of orientation preserving affine transformations that leaves the real line fixed:

C(p, q) = Conf(p, q)
/
(z �→ az + b) where a, b ∈ R, a > 0. The condition 2p+ q �

2 ensures that the action is free and thus C(p, q) is a (2p + q − 2)-dimensional
smooth manifold. In the case of points in the complex plane we have: Conf(n) =

{(z1, . . . , zn) ∈ Cn | zi �= zj , ∀i �= j} and C(n) = Conf(n)
/
(z �→ az + b) where

a ∈ R, a > 0 and b ∈ C. The manifold C(n) is (2n − 3)-dimensional and its real

Fulton-MacPherson compactification is denoted by C(n) (see [1]).
Let φ be the embedding φ : C(p, q) −→ C(2p+ q) defined by

(1) φ(z1, . . . , zp, x1, . . . , xq) = (z1, z̄1, . . . , zp, z̄p, x1, . . . , xq)

where z̄ denotes complex conjugation. The Fulton-MacPherson compactification of
C(p, q) is defined as the closure in C(2p+ q) of the image of φ and is denoted by

C(p, q). For a detailed combinatorial and geometrical study of C(p, q), we refer the
reader to [3].

Both compactifications C(n) and C(p, q) have the structure of manifolds with
corners whose boundary strata are labeled by trees (for details, see: [5, 14, 7, 12]).
This labelling by trees defines a 2-colored operad structure, denoted by H2. The
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Figure 2. The manifold C(3) is obtained from the 3-manifold
shown in this picture after identifying the two sides of the cylinder
through the identity map.

set of colors is {o, c} and

(2) H2(p, q;x) :=

⎧⎨
⎩

C(p, q), if x = o and 2p+ q � 2,

C(p), if x = c, q = 0 and p � 2,
∅, if x = c and q � 1.

In addition, we define H2(1, 0; c) and H2(0, 1; o) as one point spaces.

On the other hand, the sequence of manifolds {C(n)}n�1 gives the well known

operad F2, where C(1) is defined as the one-point space. The manifold C(2) is the

circle S1, while C(3) is the 3-manifold shown in Figure 2.

Since the three boundary components of C(3) are equivalent to tori, the bound-

ary defines three ways of embedding S1 × S1 into C(3) which is part of the operad

structure of F2. The manifold C(3) is called the Jacobi manifold because its fun-
damental class provides a parametrization for the Jacobiator J , the homotopy op-
erator for the Jacobi identity in a L∞-algebra. More about C(n) in relation to
L∞-algebras and the Deligne-Knudsen-Mumford compactification can be found in
[6, 4].

2.1. Coordinates on C(n). Before we proceed, let us review some properties

of C(n). The codimension k boundary stratum of C(n) will be denoted by ∂kC(n).
It consists of a disjoint union of open submanifolds. More explicitly, we have

(3) ∂kC(n) =
⊔

|T |=k

C(n)(T )

where the disjoint union is taken for all labelled trees T and |T | denotes the number

of internal edges of T . Each stratum C(n)(T ) is open in ∂kC(n) and the strata
satisfy the following properties:

1) If T is a corolla δk, then C(n)(δk) is homeomorphic to C(k);
2) If T = S1 ◦i S2, then C(n)(S1 ◦i S2) is homeomorphic to C(n)(S1)× C(n)(S2).

It is also worth mentioning that the closure of each stratum is given by

C(n)(T ) =
⊔

T ′→T

C(n)(T ′)

where T ′ → T means that T can be obtained from T ′ by contracting a finite number
of internal edges. Hence, the closure of ∂kC(n) is

⊔
|T |�k C(n)(T ).

After modding out by translations and dilations, a configuration �z ∈ C(p) may
be seen as a sequence of pairwise distinct points (z1, . . . , zp) ∈ C×p that is in normal

form, i.e., such that
∑

i∈[p] zi = 0 and
∑

i∈[p] |zi|2 = 1. In order to show that C(n)
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is a manifold with corners, Axelrod and Singer define ([1], formula 5.71), for each
tree S with n leaves and k internal edges, a map

(4) MS : C(n)(S)× (R�0)
k → Cn.

In [1], the points are in a Riemannian manifold and the coordinate system is defined
through the exponential. In our case, the manifold is C and the exponential map
is hidden in the affine structure of the complex plane. The family of maps MS are
characterized by the following properties:

i) For a corolla δn, it is defined as the identity Mδn = Id : C(n) → C(n) ⊆ Cn;
ii) if MS and MT are already defined, where S is a tree with n1 leaves and

k internal edges and T is a tree with n2 leaves and l internal edges, then
MS◦iT is defined as follows. First identify C(n)(S ◦i T ) × (R�0)

(k+l+1) =
C(n)(S)× (R�0)

k × C(n)(T )× (R�0)
l ×R�0, and then define

C(n)(S ◦i T )× (R�0)
(k+l+1) MS×MT×IdR ��C(n1)× C(n2)×R�0

γi ��Cn

where n = n1 + n2 − 1 and γi : C(n1)× C(n2)× R�0 → Cn is given by

(5) γi(�x, �y, t) = (x1, . . . , xi−1, xi + t(y1, . . . , yn2
), xi+1, . . . , xn1

),

where �x = (x1, . . . , xn1
) ∈ C(n1) and �y = (y1, . . . , yn2

) ∈ C(n2);
iii) the maps MS are Σn-equivariant in the following sense

M(Sσ) = (MS)σ, ∀σ ∈ Σn,

where the σ-action on the left hand side is the right Σn-action on trees, while
the action on the right hand side is the right Σn-action on Cn.

Remark 2.1.1. The reader should compare the above γi maps with Markl’s
pseudo-operad structure on Conf(n) [9]. The local charts on C(n) are given by the
following proposition proven in [1].

Proposition 2.1.2 (Axelrod-Singer). For any n-tree S with k internal edges
and any point p ∈ C(n)(S), there is an open neighborhood U of p in C(n)(S) and
an open neighborhood W of 0 in (R�0)

k such that MS maps U × (W \ ∂W ) into
Conf(n) and is a diffeomorphism onto its image.

Modding out by translations and dilations if necessary, we can assume that the
local MS maps assume values in C(n). Axelrod and Singer showed that the local

MS maps can be continuously extended to maps of the form MS : U ×W → C(n)

and that this set of local MS maps define a coordinate system on C(n) giving it a
structure of manifold with corners (see also: [12]).

3. Operadic Homotopy Equivalence

The explicit homotopy equivalence will use the coordinate system defined by
the local MS maps. The basic idea is to define the map from C(n) → D2(n) in the

obvious way on the interior of C(n) and extend it to the boundary as an operad
morphism. The continuity problem can be solved through a collar neighborhood
around the boundary.
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3.1. Collar Neighborhood. Let U be a collar neighborhood of ∂C(n) in

C(n), with a homeomorphism

(6) h : ∂C(n)× [0, 1) → U ⊆ C(n),

such that for any p ∈ ∂C(n) there is a neighborhood W of p such that h(W × [0, 1))

is a coordinate neighborhood of p in C(n). For any such p ∈ ∂C(n), the subset
h(p× [0, 1)) is called the fiber of p in the collar U and h(p× (0, 1)) is the open fiber

of p in the collar U . In view of the description of the coordinate system in C(n)
given by the local MS maps, all the configurations in a fiber are obtained from the
infinitesimal components of p by applying the compositions of the form (5) a finite
number of times for different values of i.

The projection π : D2(n) → C(n) taking each configuration of little disks into
the configuration of their centers modded out by translations and dilations will be
called the center projection.

Lemma 3.1.1. For any �x ∈ C(n), the inverse image π−1(�x) is convex in D2(n).

Proof. It is enough to show that if d1 and d2 are two configurations of little
disks in D2(n) such that the centers of d1 and d2 define two configurations of points
in C(n) that are the same modulo translation and dilation then

(7) δd1 + (1− δ)d2

gives a well defined configuration of little disks in D2(n) for all δ ∈ [0, 1]. Indeed,
note that the configurations can be presented in terms of centers and radii as follows:

d1 = ((a1, α1), . . . , (an, αn)) and d2 = ((b1, β1), . . . , (bn, βn)).

The disjointness between the interiors of two disks is given by

(8) ‖ai − aj‖ � αi + αj and ‖bi − bj‖ � βi + βj .

We denote by �a and �b the configurations of the centers in d1 and d2. Since

�a = λ�b+ d for some λ > 0 and d ∈ C, a straightforward computation shows that

‖(δai + (1− δ)bi)− (δaj + (1− δ)bj)‖ � (δαi + (1− δ)βi) + (δαj + (1− δ)βj).

Hence δd1 + (1− δ)d2 is a well defined configuration of little disks in D2(n). �

Corollary 3.1.2. For all p ∈ ∂C(n) and d1, d2 ∈ π−1[h(p× [0, 1))] any convex
combination

δd1 + (1− δ)d2, δ ∈ [0, 1]

gives a well defined configuration in D2(n).

Proof. In the previous lemma we have seen that if the centers of little discs
are related by translations and dilations, then the convex combination of the two
configurations of little disks is well defined in D2. From the definition of the local
MS maps in the previous section, if the centers of d1 and d2 are in the same fiber
of the tubular neighborhood, it follows that one is obtained from the other by a
sequence of translations and dilations. The result then follows from the previous
lemma. �
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Theorem 3.1.3. There is an operad morphism ν : F2 → D2 such that the
diagram

(9)

F2(n)

ν(n)

����
���

���
���

���
�

C(n)
��

ι

��

�� D2(n)

is homotopy commutative for each n � 1, where ι is the canonical inclusion C(n) ↪→
C(n) and C(n) → D2(n) is a right inverse to the center projection π : D2(n) →
C(n).

Proof. The open submanifold C(n) \ ∂C(n) of C(n) is homotopy equivalent
to C(n) which in turn is homeomorphic to the configuration space of n points in the
plane modded out by translations and dilations. After modding out by translations
and dilations, the configurations (xi)i∈[n] can be thought of as configurations in

normal form, i.e., such that
∑

i∈[n] xi = 0 and
∑

i∈[n] |xi|2 = 1. By assigning to

each point xi a disk centered at it with radius r = min{|xi − xj |, 1− |xi|}1�i<j�n,
we get a continuous map ν(n)1 : C(n) → D2(n) which is clearly a homotopy
equivalence.

We will show that the ν(n)1 can be extended to an operad morphism on C(n).

If n = 2 we are done, because C(2) is just the circle S1, hence C(2) = C(2). Now,

assuming that those maps are already extended for all C(k) with k < n, let us

show how to extend them to C(n). Since the boundary of C(n) has only strata

that are products of C(k) with k < n, we define ν(n)2 : ∂C(n) → D2(n) as an
operad morphism.

Now take a collar neighborhood U around the boundary in C(n) given by the
coordinate system of the previous section and extend ν(n)2 to the collar neigh-

borhood so that it is constant along each fiber. Since C(n) is compact, there is a

continuous function u : C(n) → [0, 1] that is 1 on ∂C(n) and vanishes outside the
collar neighborhood. We define ν(n) = (1 − u)ν(n)1 + uν(n)2. For each p in the
collar U , we have that ν(n)1(p) and ν(n)2(p) belong to π−1[h(p × [0, 1))], hence
the map ν(n) is well defined by Corollary 3.1.2. So we have an operad morphism
ν : F2 → D2. To see that the diagram (9) is homotopy commutative, we observe
that it is strict commutative on C(n) \ U which in turn is a deformation retract of

C(n) = F2(n). �

Remark 3.1.4. Notice that ν(n) : F2(n) → D2(n) is a homotopy equivalence
for each n � 1. So ν is an operadic homotopy equivalence. With the same argument,
one can construct operad morphisms νk : Fk → Dk lying in analogous homotopy
commutative diagrams. Hence each νk is an operadic homotopy equivalence. If
k = 1, it is well known that F1 is the operad given by Stasheff’s associahedra and
is operadically homotopy equivalent to D1.

Analogous results hold in the case of the Kontsevich compactification and Swiss-
cheese operad.

Corollary 3.1.5. There is a morphism of 2-colored operads μ : H2 → SC
which coincides with the morphism ν of Theorem 3.1.3 in color c and is such that



74 EDUARDO HOEFEL

the diagram

(10)

H2(p, q; o)

μ(p, q; o)

����
���

���
���

���
���

C(p, q)
��

ι

��

�� SC(p, q; o)

is homotopy commutative for p, q � 0 and p + q � 1, where ι is the canonical
inclusion C(p, q) ↪→ C(p, q) and C(p, q) → SC(p, q; o) is a right inverse to the
center projection π : SC(p, q; o) → C(p, q).

Proof. The manifold C(p, q) is embedded in C(2p+ q) in the same way that
SC(p, q; o) is embedded in D2(2p + q). Hence the operadic homotopy equivalence

C(2p+ q) → D2(2p + q) naturally restricts to a homotopy equivalence between

C(p, q) and SC(p, q; o). �
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Actions of Higher Categories on C*-Algebras

Ralf Meyer

Abstract. We examine crossed products for twisted group actions and are
led by this to introduce notions from higher category theory into the study of
operator algebras. These lectures are based on joint work with Alcides Buss
and Chenchang Zhu.

1. Crossed products and their universal property

A C∗-dynamical system consists of a C∗-algebra A, a (locally compact) group G,
and a (strongly continuous) action of G on A by ∗-automorphisms. Here we will
only consider the case where G is discrete for simplicity.

Already the most classical case is interesting: A = C(X) for some compact
space X, G = Z. An action α corresponds to a single homeomorphism Φ: X → X
by (αnf)(x) := f(Φ−nx) for all f ∈ C(X), x ∈ X, n ∈ Z. This is a (discrete)
dynamical system.

In this section, we briefly explain how to associate a crossed product C∗-algebra
to a C∗-dynamical system. The idea is to get interesting invariants of dynami-
cal systems by studying this single C∗-algebra. First, we recall some facts about
multipliers and introduce the notion of a morphism of C∗-algebras. This slightly
non-standard category is crucial to characterise crossed products by a universal
property. It is also used frequently to study locally compact quantum groups.

1.1. Multipliers. Let A be a C∗-algebra.

Definition 1.1. A multiplier of A is a map m : A → A for which there exists
an adjoint map m∗ : A → A such that a∗ ·m(b) = (m∗(a))∗ · b for all a, b ∈ A.

Multipliers are linear and right A-module homomorphisms for the obvious right
A-module structure on A. The norm of a multiplier is the usual operator norm,

‖m‖ := sup{‖m(a)‖ | a ∈ A, ‖a‖ ≤ 1}.
If m is a multiplier, then m∗ is uniquely determined and a multiplier as well, with
(m∗)∗ = m. If m1 and m2 are two multipliers of A, then so are linear combinations
of them and m1 ·m2 := m1 ◦m2, with adjoints (c1m1 + c2m2)

∗ = c1m
∗
1 + c2m

∗
2 for

c1, c2 ∈ C and (m1 ◦ m2)
∗ = m∗

2 ◦ m∗
1. The identity map is a multiplier, it is its

own adjoint.

2010 Mathematics Subject Classification. Primary 46L55, Seconary 18D05, 46L08.
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With the norm and algebraic operations described above, the multipliers form
a unital C∗-algebra, denoted M(A).

We will denote m(a) for m ∈ M(A) and a ∈ A by m · a or simply ma. We also
define am = a ·m := (m∗ · a∗)∗.

Lemma 1.2. The unitary multipliers in M(A) are precisely those isometric
right A-module isomorphisms u : A → A for which the adjoint of u is u−1.

Every a ∈ A defines a multiplier ma by mab := a · b, with m∗
a = ma∗ . This

embeds A as a closed ∗-ideal in M(A).

Exercise 1.3. If A is unital, then A ∼= M(A) via the embedding just described.

More generally, let B be a C∗-algebra containing A as an ideal. Then each
b ∈ B defines a multiplier mb of A by mba := b · a. This defines a ∗-homomorphism
B → M(A). It is injective if and only if A is an essential ideal in B, that is, b·a = 0
for all a ∈ A implies b = 0. Thus M(A) is the largest C∗-algebra containing A as
an essential ideal.

Definition 1.4. The strict topology on M(A) is defined by requiring that a
net of multipliers (mi)i∈I converges if and only if the nets (mi · a) and (m∗

i · a) are
norm convergent for all a ∈ A.

The subspace A is dense in M(A) in the strict topology: if (ui) is an approxi-
mate identity in A, then (m · ui) converges strictly to m for any m ∈ M(A). The
multiplier algebra is complete in the strict topology, that is, any strict Cauchy net
converges strictly to some limit in M(A). Thus M(A) is the completion of A in
the strict topology (restricted to A).

Example 1.5. For the C∗-algebra K(H) of compact operators on a Hilbert
space H, the multiplier algebra is M(K(H)) ∼= B(H), the C∗-algebra of all bounded
operators on H. We get an injective ∗-homomorphism B(H) → M(K(H)) from the
general theory. Surjectivity follows by examining the action of a multiplier on
rank-one operators.

Example 1.6. For the C∗-algebra C0(X) of continuous functions vanishing at
infinity on a locally compact space X, we get M(C0(X)) ∼= Cb(X), the C∗-algebra
of all continuous bounded functions on X. Once again, the general theory already
provides an injective ∗-homomorphism Cb(X) → M(C0(X)).

Recall that the spectrum of Cb(X) is the Stone–Čech compactification of X.
For this reason, the multiplier algebra may also be viewed as a non-commutative
generalisation of the Stone–Čech compactification for locally compact spaces.

Example 1.7. More generally, consider the C∗-algebra C0(X,A) of continuous
functions X → A that vanish at infinity, for a C∗-algebra A. Then M(C0(X,A))
is the C∗-algebra of all strictly continuous bounded functions X → M(A).

1.2. Morphisms of C∗-algebras.

Definition 1.8. Let A and B be C∗-algebras. A ∗-homomorphism f : A →
M(B) is called essential or non-degenerate if the linear span of f(A) · B is dense
in B.

If A is unital, f is essential if and only if f is unital.
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Proposition 1.9. A ∗-homomorphism f : A → M(B) is essential if and only
if it extends to a strictly continuous, unital ∗-homomorphism f̄ : M(A) → M(B).
This extension is defined by f̄(m) · f(a) · b = f(m · a) · b for all m ∈ M(A), a ∈ A,
b ∈ B.

In the following, we will write f for f̄ , not distinguishing in our notation be-
tween an essential ∗-homomorphism and its unique strictly continuous extension to
the multiplier algebra.

Clearly, the composition of two strictly continuous, unital ∗-homomorphisms is
again a strictly continuous, unital ∗-homomorphism. This also defines a composition
for essential ∗-homomorphisms, using Proposition 1.9. It is easy to see that this
composition is associative. Since identity maps are essential ∗-homomorphisms, we
get a category whose objects are the C∗-algebras and whose morphisms are the
essential ∗-homomorphisms. This will be our preferred category of C∗-algebras, so
that we briefly call essential ∗-homomorphisms A → M(B) morphisms from A
to B.

In the following, when I write something like “a morphism f : A → M(B),”
I mean that f is a morphism from A to B. I will never use morphisms from A
to M(B). There are no such morphisms unless A is unital, in which case the
morphisms from A to B are the same as morphisms from A to M(B), namely,
unital ∗-homomorphisms A → M(B).

Proposition 1.10. The invertible morphisms between two C∗-algebras A and B
are exactly the ∗-isomorphisms f : A → B.

Proof. It is clear that ∗-isomorphisms remain invertible when we view them
as morphisms. The point is that any isomorphism in the category of C∗-algebras
described above is of this form. It suffices to prove that an invertible morphism
must map A to B, not just to M(B) because then its inverse will also map B to A.
If f : A → M(B) is invertible with inverse g : B → M(A), then

f(A) = f(g(B) ·A) = B · f(A) ⊆ B

because g is essential and f ◦ g = IdB . �

1.3. Crossed products. LetG be a (discrete) group and letA be a C∗-algebra
equipped with an action of G by automorphisms, that is, a group homomorphism α
from G to the automorphism group Aut(A).

How should we represent this dynamics on a Hilbert space? Let us consider a
classical example.

Example 1.11. Let A = C0(X), G = Z, and let Φ: X → X be the homeo-
morphism that induces the action α of Z on A. Let μ be a Φ-invariant measure
on X, that is, μ(Φ(A)) = μ(A) for all measurable subsets A of X. Let H be the
Hilbert space L2(X,μ). We let A act on H by pointwise multiplication, that is, by
the representation π : A → B(H) defined by (π(a)h)(x) := a(x) · h(x) for all a ∈ A,
h ∈ H, x ∈ X. We let G act on H by the induced action, ρ : G → U(H) defined by
(ρ(n)h)(x) := h(Φ−nx) for all n ∈ G, h ∈ H, x ∈ X.

This should be a nice representation of the dynamical system (A,G, α). In
what sense are the representations π and ρ in this example compatible with each
other? — They satisfy the covariance condition in the next definition, so that (π, ρ)
is a covariant representation of (A,G, α).
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Definition 1.12. A covariant representation of (A,G, α) on a C∗-algebra D
is a pair (π, ρ) consisting of a morphism π : A → M(D) and a homomorphism ρ
from G to the group of unitary multipliers in D, satisfying the covariance condition
ρ(g)π(a)ρ(g)−1 = π(αg(a)) for all g ∈ G, a ∈ A.

Definition 1.13. A crossed product for (A,G, α) is a representing object for
covariant representations, that is, a C∗-algebra B with a covariant representation
(π0, ρ0), such that any covariant representation (π, ρ) on any D is of the form
(f ◦ π0, f ◦ ρ0) for a unique morphism f : B → D.

By general category theory, such a crossed product is determined uniquely if it
exists. We may construct a crossed product as follows. We let C[G,A] be the vector
space of finitely supported maps G → A, that is, finite formal linear combinations∑

g∈G agλg. We define a ∗-algebra structure on C[G,A] by

∑
g∈G

agλg ·
∑
g∈G

bgλg :=
∑
g∈G

∑
h∈G

ahαh(bh−1g)λg,

(∑
g∈G

agλg

)∗
:=

∑
g∈G

αg(ag−1)∗λg.

Any C∗-seminorm on C[G,A] is dominated by the norm
∑

g∈G‖ag‖. Hence the

supremum of all C∗-seminorms on C[G,A] is a C∗-seminorm (even a C∗-norm). The
completion of C[G,A] together with the obvious covariant representation a 	→ aλ1,
g 	→ λg, is a crossed product in the sense of the above definition.

Example 1.14. ForG = Z, the action α : Z → Aut(G) is determined by a single
automorphism α(1) because α(n) = αn for all n ∈ Z. Thus our construction above
contains a crossed product for pairs (A,α) with α ∈ Aut(A) a single automorphism.
A covariant representation in this case is equivalent to a morphism f : A → D
together with a unitary multiplier u of D such that uf(a)u∗ = f(α(a)).

2. How trivial are inner automorphisms?

As we shall see, we may consider inner automorphisms to be trivial in con-
nection with crossed products by a single automorphism, but not for more gen-
eral crossed products. Roughly speaking, inner automorphisms are non-trivial but
more trivial than general automorphisms. To make sense of this, we introduce
2-categories: in this setting, inner automorphisms are equivalent to but not equal
to the trivial automorphism.

2.1. Isomorphism of crossed products for automorphisms. Let A be
a C∗-algebra. For an automorphism α ∈ Aut(A), we define a crossed product
C∗(A,α) = A�α Z by a universal property as in Section 1.3. Recall that this is a
completion of C[Z, A]. Although this depends on the automorphism α, it turns out
that many automorphisms induce isomorphic crossed products in a canonical way.

Definition 2.1. Let u be a unitary multiplier of A. Then we define Adu ∈
Aut(A) by Adu(a) := uau∗. Automorphisms of this form are called inner auto-
morphisms. The inner automorphisms form a normal subgroup in Aut(A). The
quotient Aut(A) by this subgroup is called the outer automorphism group Out(A).
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Proposition 2.2. Let α ∈ Aut(A) and u ∈ UM(A). Then

C∗(A,α) ∼= C∗(A,Adu ◦ α).
Thus C∗(A,α) depends, up to isomorphism, only on the class of α in Out(A).

Proof. Abbreviate β := Adu ◦ α. Let (π, V ) be a covariant representation
of (A,α), that is, π : A → M(D) is a morphism and V ∈ UM(D), such that
V π(a)V ∗ = π(α(a)). Then (π, π(u) · V ) is a covariant representation of (A, β)
because

π(u)V π(a)(π(u)V )∗ = π(uα(a)u∗) = π(β(a)).

This is a natural bijection between covariant representations. Hence the universal
objects C∗(A,α) and C∗(A, β) must be isomorphic. �

Exercise 2.3. Describe the isomorphism between C∗(A,α) and C∗(B, β) ex-
plicitly as an isomorphism between the dense ∗-subalgebras C[Z, A].

2.2. A counterexample. The equivalence result for crossed products by a
single automorphism does not generalise to actions of other groups. For instance,
it fails for actions of Z2 on the C∗-algebra of compact operators K on the separable
Hilbert space H := �2Z. Recall that any automorphism of K is of the form T 	→
uTu∗ for a unitary operator u : H → H. Since M(K) = B(H), this says that all
automorphisms of K are inner. Hence crossed products for Z-actions on K are all
isomorphic (to the tensor product K ⊗ C∗(Z)). A representation of Z2 on K by
automorphisms is equivalent to a pair (α, β) of commuting automorphisms of K.
Let (U, V ) be unitaries on H with α = AdU , β = AdV . Then U∗λ(1,0) and V ∗λ(0,1)

commute with K in M(K�Z2). Since their products with elements of K generate
the crossed product, it follows that K � Z2 is isomorphic to a C∗-tensor product
of K with C∗(U∗λ(1,0), V

∗λ(0,1)). We compute

U∗λ(1,0) · V ∗λ(0,1) = U∗α(V ∗)λ(1,1) = U∗UV ∗U∗λ(1,1) = V ∗U∗λ(1,1),

V ∗λ(0,1) · U∗λ(1,0) = V ∗β(U∗)λ(1,1) = V ∗V U∗V ∗λ(1,1) = U∗V ∗λ(1,1).

Here we use that the covariance condition λga = αg(a)λg for g ∈ G, a ∈ A continues
to hold in M(A�α G) if a ∈ M(A), provided we use the unique extension of αg to
an automorphism of M(A).

Now AdUV = AdV U because α and β commute. But this only implies UV =
cV U for some c ∈ C with |c| = 1. Thus C∗(U∗λ(1,0), V

∗λ(0,1)) is a rotation algebra
with parameter ϑ := log(c)/2πi, and

K� Z2 ∼= K⊗Aϑ.

This depends on the parameter c. Since Out(K) is trivial, the composite homomor-
phism Z2 → Aut(K) → Out(K) is not enough to recover the crossed product.

2.3. Cocycle equivalence. The above counterexample shows that we must
be more careful in order to understand in what sense crossed products are not
affected by inner automorphisms. Let us carry over the proof method of the iso-
morphism A �α Z ∼= A �β Z if β = Adu ◦ α. That is, let G be a group, let A
be a C∗-algebra and let α and β be actions of G on A by automorphisms. Let D
be an auxiliary C∗-algebra. We want to construct a bijection between covariant
representations of (A,α,G) and (A, β,G) on D of the form (π, ρ) 	→ (π, ρ′) with
ρ′g = π(Ug)ρg for unitary multipliers Ug ∈ M(A) for all g ∈ G.
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The pair (π, ρ′) as defined above is a covariant representation of (A, β,G) if
and only if the following holds:

• π(Ug)ρgπ(Uh)ρh = π(Ugh)ρgh for all g, h ∈ G;
• π(Ug)ρgπ(a)ρ

∗
gπ(Ug)

∗ = π(βg(a)) for all g ∈ G, a ∈ A.

Using the covariance condition, we may simplify this to π(Ugαg(Uh)) = π(Ugh)
and π(Ugαg(a)U

∗
g ) = π(βg(a)). If we want the same Ug to work for all covariant

pairs (π, ρ), then we may as well assume that π is faithful, so that we arrive at the
conditions

Ugαg(Uh) = Ugh and AdUg
◦ αg = βg for all g, h ∈ G.

We take note of this in a definition:

Definition 2.4. The actions α and β are cocycle equivalent if there is a map
U : G → UM(A) with AdUg

◦ αg = βg for all g ∈ G and Ugαg(Uh) = Ugh for all
g, h ∈ G. (This involves the unique strictly continuous extension of αg to M(A).)

The same argument as for G = Z shows:

Theorem 2.5. A cocycle equivalence between two group actions induces an
isomorphism between the crossed product C∗-algebras.

Unitaries Ug with AdUg
◦ αg = βg for all g ∈ G exist if and only if α and β

become equal as maps to Out(A). Furthermore, if Ug exists at all, it is unique up
to multiplication by a central unitary. If the Ug are chosen to verify AdUg

◦αg = βg

for all g ∈ G, then the unitaries Ugαg(Uh)U
∗
gh for g, h ∈ G are necessarily central,

but they are not necessarily 1.

2.4. Interpretation. We have seen the following: automorphisms that differ
by an inner automorphism, may often be considered equivalent; but we must be
careful when several automorphisms interact. The notion of cocycle equivalence
makes precise what additional information is needed to get an isomorphism between
the crossed products for two actions that differ by inner automorphisms.

A better understanding of this phenomenon is crucial in order to treat other
problems of a similar nature. For instance, suppose that we are only given a group
homomorphism G → Out(A). What additional information is needed to define a
crossed product in such a situation? We certainly need something because different
group actions in the usual sense that give the same map G → Out(A) may have
non-isomorphic crossed products.

When we pass from Aut(A) to Out(A), then we form a quotient group. Non-
commutative geometry suggests to replace quotient spaces by groupoids (see also
Section 4.1). Following this general paradigm, we should replace Out(A) by a
groupoid. The object space of this groupoid is Aut(A). The set of arrows between
automorphisms f, g ∈ Aut(A) is the set of all unitary multipliers u ∈ M(A) with
Adu ◦ f = g. The composition in this groupoid is the multiplication of unitaries.
The identity morphism on an automorphism f is the unitary 1, and the inverse of u
is u∗ = u−1.

The groupoid just described treats Aut(A) merely as a set. In order to un-
derstand group actions by automorphisms, we must incorporate further structure
into this groupoid that reflects the multiplication in Aut(A) and its interaction
with unitaries. This leads us to the structure of a 2-category. Our first task is
to define 2-categories. We will only define strict 2-categories, following [4], and
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then give several examples. The most relevant example for us is the 2-category of
C∗-algebras with morphisms as arrows and unitaries as 2-arrows. This setup allows
us to interpret the cocycle relation appearing above, and to derive similar notions.

2.5. Strict 2-categories. The quick definition of a strict 2-category describes
it as a category enriched over categories. That is, for two objects x and y of our first
order category, we have a category of morphisms from x to y, and the composition of
morphisms lifts to a bifunctor between these morphism categories. This definition
is similar to the definition of a topological category: the latter is nothing but a
category enriched over topological spaces. We now write down more explicitly
what a category enriched over categories is (see also [1]).

Having categories of morphisms boils down to having arrows between objects
x → y, also called 1-arrows or 1-morphisms, and arrows between arrows

y x,

f

��

g

�� a
��

which are called 2-arrows, 2-morphisms, or bigons because of their shape. We prefer
to call them bigons because there are other ways to describe 2-categories that use
triangles or even more complicated shapes as 2-morphisms (see [1]).

The category structure on the space of arrows x → y provides a vertical com-
position of bigons

y x

f

��
g��

h

��
a��

b��
	→ y x.

f

��

h

�� b·va
��

The composition functor between the arrow categories provides both a composition
of arrows

z y
f�� x

g�� 	→ z x
fg��

and a horizontal composition of bigons

z y

f1

��

g1

�� a
��

x

f2

��

g2

�� b
��

	→ z x.

f1f2

��

g1g2

�� a·hb
��

These three compositions of arrows and bigons are associative and unital in an
appropriate sense. Furthermore, the horizontal and vertical products commute:
given a diagram

z y

f1

��
g1��

h1

		
a1��

b1��
x,

f2




g2��

h2

��
a2��

b2��

composing first vertically and then horizontally or the other way around produces
the same bigon f1f2 ⇒ h1h2.
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Let me emphasise again that the three composition operations and the associa-
tivity, unitality, and interchange conditions above only make explicit what is meant
by a category enriched over categories.

In any strict 2-category, the objects and arrows form an ordinary category. So
do the arrows and bigons with vertical composition of bigons as composition.

Example 2.6. Categories form a strict 2-category with small categories as
objects, functors between categories as arrows, and natural transformations between
functors as bigons. The composition of arrows is the composition of functors and
the vertical composition of bigons is the composition of natural transformations.
The horizontal composition of bigons yields the canonical natural transformation

Φ1,G2(A) ◦ F1(Φ2,A) = G1(Φ2,A) ◦ Φ1,F2(A) : F1

(
F2(A)

)
→ G1

(
G2(A)

)
for the diagram

C1 C2

F1

��

G1

 Φ1
��

C3.

F2

��

G2

 Φ2
��

This 2-categorical structure was, in fact, the reason to introduce categories in the
first place: a good understanding of categories is needed to understand natural
transformations, not to understand functors.

2.5.1. The strict 2-category C∗(2) of C∗-algebras. Now we turn C∗-algebras into
a strict 2-category. We take C∗-algebras as objects, of course. We take “morphisms”
(essential ∗-homomorphisms A → M(B)) as arrows (see Sections 1.1 and 1.2).

Let f and g be two morphisms from A to B; view them as strictly continuous,
unital ∗-homomorphisms from M(A) to M(B). An element b ∈ M(B) is called an
intertwiner from f to g if b · f(a) = g(a) · b for all a ∈ M(A) or, equivalently, for
all a ∈ A. If b is unitary, this is equivalent to g = Adb ◦ f , where Adb is the inner
automorphism generated by b. The set of bigons from f to g in C∗(2) is the set of
unitary intertwiners from f to g. (We also get a strict 2-category if we use arbitrary
intertwiners here; the restriction to unitaries is convenient because it ensures that
all 2-arrows are invertible.)

The vertical composition of intertwiners is the product in M(B). The horizon-
tal composition of two bigons c : f1 ⇒ g1 and b : f2 ⇒ g2 for composable pairs of
arrows f1, g1 : B ⇒ C and f2, g2 : A ⇒ B is

(2.7) c ·h b := c · f1(b) = g1(b) · c.
Notice that c ·h b is the unique intertwiner between f1 ◦ f2 and g1 ◦ g2 that we get
from c and b by a simple explicit formula. It is auspicious that the two possible
ways of defining such an intertwiner yield the same result.

Exercise 2.8. Verify that C∗(2) as defined above is a strict 2-category, that is,
verify that the composition products are associative and unital in the appropriate
sense, and verify the interchange law. The latter reduces to (2.7), by the way.

Definition 2.9. An arrow f in a 2-category is called an equivalence if there is
an arrow g (called a quasi-inverse of f) and invertible bigons between f ◦ g and an
identity map, and between g ◦ f and an identity map.

Exercise 2.10. Verify that any equivalence in C∗(2) is a ∗-isomorphism.
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How does our 2-category help to understand the cocycle relation?
Consider two group actions α and β of G on a C∗-algebra A. They are equal

if αg = βg for all g ∈ G. We have seen in examples that it is not enough to replace
equality by equivalence. We must, as additional data, specify the unitaries that
implement the equivalence explicitly. Thus an equivalence between the actions α
and β specifies bigons ug : αg → βg for all g ∈ G. These bigons are nothing but
unitary multipliers ug of A with ugαg(a)u

∗
g = βg(a) for all a ∈ A. Roughly speaking,

we must specify a reason for αg and βg to be equivalent.
Bigons ug : αg → βg and uh : αh → βh yield a bigon ug ·h uh : αg ◦αh → βg ◦βh.

Since we are dealing with group actions, αg ◦ αh = αgh and βgh = βg ◦ βh. Thus
ug ·h uh = ugαg(uh) = βg(uh)ug and ugh are two reasons for αgh and βgh to be
equivalent. The cocycle relation says ug ·h uh = ugh. We have understood the
combination ugαg(uh) as an elementary operation with unitary intertwiners: it is
their horizontal product.

2.6. Group actions up to inner automorphisms. We may also view a
group action on a C∗-algebra as a functor from the group (viewed as a category with
one object) to the category of C∗-algebras. Now we treat a group as a 2-category
with one object and only identity bigons. We want to study functors from this
2-category to the 2-category of C∗-algebras just introduced.

At this point we have a choice. The most obvious notion of functor is that of
a strict functor. This consists of maps between objects, arrows, and bigons that
preserve all the extra structure. If we do this, we get nothing new, so that we do
not discuss this further. But in the setting of 2-categories, it is customary to allow
functors that are only functorial in a weaker sense, where all equalities of arrows are
replaced by equivalences. These equivalences are given by bigons that are part of
the data of the functor. And there are certain coherence conditions, which appear
automatically, like the cocycle relation in the definition of cocycle equivalence for
group actions.

Let us build up these weak functors. To begin with, we need the same data as for
a usual group action: a C∗-algebra A and arrows (that is, morphisms) αg : A → A
for all g ∈ G. Further conditions that we will impose later imply that the αg are
∗-isomorphisms, not just morphisms.

For a group action in the usual sense, we would require the equalities αgαh =
αgh for all g, h ∈ G, and α1 = IdA. Now we replace these equations by additional
data: bigons ωg,h : αgαh ⇒ αgh for all g, h ∈ G and u : IdA ⇒ α1. More concretely,
these are unitary multipliers of A such that

ωg,hαg

(
αh(a)

)
ω∗
g,h = αgh(a) for all g, h ∈ G, a ∈ A,(2.11)

uau∗ = α1(a) for all a ∈ A.(2.12)

In the following, we will use the inverse bigons ω∗
g,h because the resulting formulas

are more familiar: they lead to Busby–Smith twisted group actions.
Given a group action αg, we get many more complicated equalities from the

basic ones above, for instance, α1αg = αg for all g ∈ G. In fact, there are two ways
to prove α1αg = αg, namely, α1αg = IdAαg = αg or α1αg = α1·g = αg. If we
replace equalities by bigons, then these two ways to prove an equation yield two
unitary intertwiners between the same arrows. In our example, we get the unitary
intertwiners u∗ ·h 1αg

and ω1,g from α1αg to αg, respectively, where 1αg
denotes the

identity bigon on the arrow αg, that is, the identity unitary.
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Now we can formulate a meta-coherence law: whenever an equation of arrows
for group actions may be proved in two different ways, the bigons that we get by
lifting these computations must be equal. For instance, we require the identity
u∗ ·h 1αg

= ω1,g for all g ∈ G, that is, u = ω∗
1,g as unitary multipliers of A.

Similarly, the two obvious ways of proving g·1 = g lead to an identity 1αg
·hu∗ =

ωg,1 for all g ∈ G, that is, αg(u) = ω∗
g,1 as unitary multipliers of A. Notice that the

recipe for horizontal products brings in αg. We may prove αgαhαk = αghk in two
ways, via αghαk or αgαhk. This leads to a coherence condition

ωgh,k ·v (ωg,h ·h 1αk
) = ωg,hk ·v (1αg

·h ωh,k)

or, explicitly,

(2.13) ω∗
g,h · ω∗

gh,k = αg(ω
∗
h,k) · ω∗

g,hk.

Now it turns out that all other coherence conditions that are contained in
our meta-coherence law follow from the ones we already have. We do not prove
this fact here. Thus a functor from G to C∗(2) is defined as a C∗-algebra A with
morphisms αg for all g ∈ G and unitaries ω∗

g,h for all g, h ∈ G and u satisfying the
three coherence conditions just listed.

Exercise 2.14. Since u = ω∗
1,1, the unitary u is redundant. Show that the

relations u = ω∗
1,g and αg(u) = ω∗

g,1 follow from (2.13). Thus a functor from G
to C∗(2) is equivalent to morphisms αg for all g ∈ G and unitaries ω∗

g,h for all

g, h ∈ G satisfying (2.11) and (2.13).
This should not be surprising because the equation α1 = 1 for group actions is

redundant: it follows from α1α1 = α1 because α1 is invertible. (Semigroup actions
would be a different matter.)

The above notion of a functor is exactly the notion of a Busby–Smith twisted
group action as defined in [5]. The cocycle relation (2.13) becomes completely
natural from the higher category point of view.

The notion we have just defined is a group action that only satisfies the usual
multiplicativity condition up to inner automorphisms. To get a well-behaved theory,
we also specify the unitaries that generate these inner automorphisms explicitly, and
we require these unitaries to satisfy some coherence conditions.

2.7. Transformations between group actions. What would be the appro-
priate notion of cocycle equivalence for Busby–Smith twisted group actions? To an-
swer this question, we study natural isomorphisms of functors between 2-categories.
Let (A,αg, ωg,h) and (B, βg, ψg,h) be two functors from the same group G to C∗(2).
A natural transformation between them contains an arrow f : A → B. If we were
dealing with functors between ordinary categories, this arrow would be required to
satisfy βg ◦ f = f ◦ αg for all g ∈ G. In the world of 2-categories, we weaken this
equality of arrows to an equivalence.

As before, we specify explicitly the bigons Wg : βgf ⇒ fαg that implement this
equivalence. That is, Wg is a unitary multiplier of B and satisfies

Wgβg

(
f(a)

)
W ∗

g = f
(
αg(a)

)
for all g ∈ G, a ∈ A.

It remains to determine the coherence conditions. The two ways of simpli-
fying βgβhf to fαgh via βgβhf ⇒ βgfαh ⇒ fαgαh ⇒ fαgh and via βgβhf ⇒
βghf ⇒ fαgh lead to a coherence law. It turns out that this single coherence
condition implies all other coherence conditions.
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Exercise 2.15. Formulate this coherence law explicitly.

Specialising to the case f = IdA, we get a notion of cocycle equivalence for
Busby–Smith twisted actions. Of course, this yields the notion already used in the
literature.

By the way, if we are given only A, (αg)g∈G, (ωg,h)g,h∈G, and (Wg)g∈G, then
there is a unique way to define βg and ψg,h so that the Wg form a natural iso-
morphism between (A,αg, ωg,h) and (B, βg, ψg,h). That is, we may conjugate a
Busby–Smith twisted action by an arbitrary cochain (Wg) and still get a Busby–
Smith twisted action.

Summing up, the mathematical structure in the 2-category of C∗-algebras C∗(2)
explains the notions of Busby–Smith twisted action and cocycle equivalence for such
actions.

3. Group actions by correspondences

We may also study another 2-category of C∗-algebras that is related to Morita–
Rieffel equivalence. Many important C∗-algebras are constructed from groupoids.
We will consider groupoids later. For the time being, one observation is impor-
tant: equivalent groupoids yield Morita–Rieffel equivalent C∗-algebras. Therefore,
it would be nice to have a category in which Morita–Rieffel equivalent C∗-algebras
become isomorphic. We will even construct a 2-category in which the Morita–Rieffel
equivalences are exactly the equivalences (see Definition 2.9).

3.1. Hilbert modules. Let B be a C∗-algebra. A Hilbert B-module is a right
B-module H with a B-valued inner product

H×H → B, (ξ, η) 	→ 〈ξ, η〉,

with the following properties:

• the inner product is conjugate-linear in the first and linear in the second
variable;

• 〈ξ1 · b1, ξ2 · b2〉 = b∗1 · 〈ξ1, ξ2〉 · b2 for all ξ1, ξ2 ∈ H, b1, b2 ∈ B;
• 〈ξ1, ξ2〉 = 〈ξ2, ξ1〉∗ for all ξ1, ξ2 ∈ H;
• 〈ξ, ξ〉 ≥ 0 for all ξ ∈ H;
• H is complete for the norm defined by ‖ξ‖2 := 〈ξ, ξ〉 for all ξ ∈ H. (This is
indeed a norm because of a Hilbert module generalisation of the Cauchy–
Schwarz inequality).

Example 3.1. A Hilbert C-module is exactly the same as a Hilbert space. We
get the above definition from the definition of a Hilbert space by replacing the
algebra of scalars by B everywhere.

Example 3.2. Let B be a C∗-algebra. Then B is a Hilbert B-module with
respect to the obvious right module structure and the inner product 〈b1, b2〉 := b∗1b2.
More generally, the same module structure and inner product work if we replace B
by a right ideal in B.

Definition 3.3. A map f : H1 → H2 between Hilbert B-modules is an ad-
jointable operator if there is an adjoint map f∗ : H2 → H1 such that 〈f∗ξ, η〉 =
〈ξ, fη〉 for all ξ ∈ H2, η ∈ H1.
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The adjoint of f is unique if it exists and is again adjointable with (f∗)∗ = f . An
adjointable operator is necessarily bounded, linear, and a B-module homomorphism.
The adjointable operators on a HilbertB-moduleH form a C∗-algebra in a canonical
way, which we denote by B(H).

Exercise 3.4. If we view a C∗-algebra as a Hilbert module as above, then
B(B) = M(B).

Definition 3.5. Let H1 and H2 be Hilbert B-modules. If ξ ∈ H1, η ∈ H2,
then we define a map |ξ〉 〈η| : H2 → H1 by |ξ〉 〈η| ζ := ξ · 〈η, ζ〉. The closed linear
span of these operators is denoted by K(H2,H1) or just K(H) if H = H1 = H2. Its
elements are called compact operators (although they are not compact in the sense
of Banach space theory).

Since T ◦ |ξ〉 〈η| = |T (ξ)〉 〈η| and |ξ〉 〈η|∗ = |η〉 〈ξ|, the compact operators K(H)
form a ∗-ideal in B(H).

Proposition 3.6. M(K(H)) ∼= B(H).

3.2. Correspondences. Let A and B be C∗-algebras.

Definition 3.7. A correspondence from A to B is a Hilbert B-module H
together with an essential ∗-homomorphism (morphism) A → B(H) = M(K(H)).

Lemma 3.8. A ∗-homomorphism A → B(H) is essential if and only if A · H is
dense in H.

Example 3.9. Let f : A → M(B) be a morphism. We may view f as a
correspondence by interpreting M(B) ∼= B(B) for B viewed as a Hilbert module
over itself.

We may compose correspondences by a tensor product construction. Let H1

be a correspondence from A to B and let H2 be a correspondence from B to C.
The product is obtained from H1 ⊗H2 by completing with respect to the C-valued
inner product

〈ξ1 ⊗ ξ2, η1 ⊗ η2〉 := 〈ξ2, 〈ξ1, η1〉B · η2〉C
for all ξ1, η1 ∈ H1, ξ2, η2 ∈ H2. We denote this completion also by H1 ⊗B H2.

Exercise 3.10. Let H1 be the correspondence associated to a morphism f : A →
M(B) as in Example 3.9. Then the composition is isomorphic to H2 as a Hilbert
C-module with the left A-module structure a · ξ := f(a) · ξ for all a ∈ A, ξ ∈ H2.

In particular, if f is an identity morphism, then it acts as a left identity for the
composition of correspondences, up to isomorphism. Check that the identity also
acts as a right identity.

If H1 and H2 come from morphisms f : A → M(B) and g : B → M(C), then
H1 ⊗B H2 comes from the morphism g ◦ f : A → M(C).

We can also turn C∗-algebras into a 2-category using correspondences as ar-
rows. The bigons are isomorphisms of correspondences, that is, Hilbert module
isomorphisms intertwining the given left module structures. But this leads to a
technical nuisance: the composition of correspondences is only associative up to
isomorphism, and units also work only up to isomorphism. 2-categories with this
technical problem are also called bicategories or weak 2-categories. They can be
treated by specifying the 2-arrows that make associativity and units work and re-
quiring suitable coherence laws for them. We will not discuss this here.
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Definition 3.11. A Hilbert B-module H is called full if the inner products
〈ξ, η〉 for ξ, η ∈ H span a dense subspace of B.

Definition 3.12. A Morita–Rieffel equivalence between two C∗-algebras A
and B is a full correspondence H from A to B where the left action of A is given
by an isomorphism A ∼= K(H).

Let H be a Morita–Rieffel equivalence from A to B. Then H is a full Hilbert
B-module. We turn H into a left A-module using the isomorphism A ∼= K(H),
and we use this isomorphism to view the map (ξ, η) 	→ |ξ〉 〈η| as an A-valued
inner product on H. With this structure, H becomes a full left Hilbert A-module.
Furthermore, the two inner products are related by the condition

〈ξ, η〉A · ζ = ξ · 〈η, ζ〉B for all ξ, η, ζ ∈ H.

This more symmetric definition of a Morita–Rieffel equivalence is Rieffel’s original
definition.

Lemma 3.13. A correspondence H from A to B is a Morita–Rieffel equivalence
if and only it is an equivalence in the correspondence 2-category, that is, there is a
correspondence H∗ from B to A such that H⊗B H∗ ∼= A and H∗ ⊗A H ∼= B.

3.3. Crossed products for group actions by correspondences. Our new
correspondence 2-category also yields a more general notion of group action where
automorphisms αg of A are replaced by correspondences from A to A. Since
these correspondences must be equivalences, they are actually Morita–Rieffel equiv-
alences. Here we briefly want to observe that the construction of crossed product
C∗-algebras extends very naturally to such more general actions. In fact, it could
be said that the construction becomes more natural.

A group action by correspondences of a group G on a C∗-algebra A consists
of correspondences αg for g ∈ G, an isomorphism u : A ∼= α1, and isomorphisms
ωg,h : αg ⊗A αh

∼= αgh. These are subject to coherence conditions as in Section 2.6.
There is no need to require analogues of (2.11) and (2.12): these two equations

are already expressed by the requirement that ωg,h is an isomorphism from αg⊗Aαh

to αgh and u is an isomorphism from the unit correspondence A to α1.
The coherence laws regarding u become u⊗A Idαg

= ω∗
1,g and Idαg

⊗A u = ω∗
g,1

for all g ∈ G. Equation 2.13 becomes

(ω∗
g,h ⊗A Idαk

) · ω∗
gh,k = (Idαg

⊗A ω∗
h,k) · ω∗

g,hk

for all g, h, k ∈ G; both sides are unitaries from αg ⊗A αh ⊗A αk to αghk. As in
Exercise 2.14, these coherence laws show that u is redundant provided all αg are
equivalences.

Here is what covariant representations are:

Definition 3.14. A covariant representation of a group action by correspon-
dence is a transformation in the correspondence 2-category to the trivial action
on C.

More explicitly, a transformation from a group action (A,αg, ωg,h) to C involves
a correspondence H from A to C and isomorphisms Vg : H → αg⊗AH for all g ∈ G
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such that the following diagram commutes:

(3.15) H
Vg ��

Vgh �������
�����

�����
�����

�����
����� αg ⊗A H

Idαg⊗AVh �� αg ⊗A αh ⊗A H

ωg,h⊗IdH

��
αgh ⊗A H.

A correspondence from A to C is just a non-degenerate representation π of A on
a Hilbert space. If the action αg is by automorphisms in the usual sense, then
αg ⊗A H is the representation π ◦ αg : A → B(H) on the same Hilbert space. Thus
the isomorphisms of correspondences Vg are simply unitary intertwiners onH from π
to π ◦ αg, that is, we get the condition

π(αg(a)) = V ∗
g π(a)Vg.

This differs from the usual definition of a covariant representation only in that we
have replaced Vg by V ∗

g . The commutative diagram (3.15) becomes π(ωg,h)·Vh·Vg =
Vgh, that is, g 	→ V ∗

g is a representation of G up to a correction by π(ω∗
g,h). Thus

Definition 3.14 reduces to the usual definition of a covariant representation for
group actions by automorphisms. Needless to say, we get the expected notion of a
covariant representation for Busby–Smith twisted actions.

Given a general action by correspondences, we may also define covariant repre-
sentations on a C∗-algebra D as transformations in the correspondence 2-category
to D with trivial G-action. Using this notion, we may then define the crossed prod-
uct by the following universal property: its morphisms to D are in natural bijection
with covariant representations by multipliers of D.

A concrete construction is also not very difficult. The unitary V ∗
g : αg⊗AH → H

induces a map φg : αg → B(H), with φg(x) mapping ξ ∈ H to V ∗
g (x⊗ ξ) ∈ H. Let

A[G] :=
⊕
g∈G

αg,

then a covariant representation induces a map
⊕

φg : A[G] → B(H). There is a
canonical ∗-algebra structure on A[G] for which all these maps are ∗-homomorphisms.
The enveloping C∗-algebra of this ∗-algebra has the correct universal property.

Once again, the notion of a group action by correspondences is not new: these
generalised group actions are equivalent to Fell bundles, and the above notion of
covariant representation is the traditional notion of representation of a Fell bundle.
The crossed product described above is the sectional C∗-algebra of a Fell bundle.

We may also let semigroups act on C∗-algebras by correspondences. The re-
sulting notion of a semigroup action by correspondences is essentially equivalent to
the notion of a product system. In our setting, however, the multiplication becomes
a map Es × Et → Ets, not Es × Et → Est. That is, we replace any semigroup
by its opposite semigroup. This ensures that a semigroup homomorphism from a
semigroup to the endomorphism semigroup of a C∗-algebra induces an action by
correspondences of the same semigroup.

Example 3.16. Let a groupG act on a C∗-algebra A by automorphisms (αg)g∈G

in the usual sense and let B be Morita equivalent to A by some equivalence A,B-
bimodule H. Then βg := H∗ ⊗A αg ⊗A H is a self-correspondence on B, and these
correspondences together with the canonical isomorphisms βg ⊗B βh → βhg and
B → β1 define an action of G on B by correspondences.
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Conversely, it is shown in [4] that any group action by correspondences is
equivalent to one of this form. Roughly speaking, the notion of a group action by
correspondences captures what is Morita-invariant about group actions.

4. Higher groupoids as symmetries of non-commutative spaces

The results above show that the 2-category structure on C∗-algebras is useful
to study Morita–Rieffel equivalence, equivalence of crossed products, and generali-
sations of crossed products to twisted group actions or group actions by correspon-
dences. But so far, we have only considered actions of groups in the usual sense.
We may, of course, generalise all this to actions of 2-groupoids. We believe that
this generalisation is very natural because we consider 2-groupoids to be the most
natural symmetry objects in non-commutative geometry, following [3].

Non-commutative spaces are often quotient spaces encoded by groupoids. We
should expect their symmetries to be quotient groups. And these quotient groups
are described by 2-categories. We first explain this point of view for groupoids.

4.1. Groupoids. A groupoid consists of two sets, the objects and the arrows,
together with some additional algebraic structure: each arrow has a source and
a range object, and there is an associative composition defined for arrows with
compatible range and source; there are unit arrows for all objects, and each arrow
is invertible. Thus groupoids may either be viewed as generalised groups or as
generalised spaces, emphasising the arrows or the objects.

A useful picture for our purposes is that a groupoid encodes a parametrisation
of a space. The objects of the groupoid are the parameters for points in our space.
The same point may be described by different parameters. The arrows are reasons
for two parameters to give the same point. There may be several reasons for two
parameters x and y to give the same point. There may even be interesting reasons
for x and x to give the same point in the quotient space. This leads to the isotropy
of the groupoid (arrows from x to x). Of course, if we have reasons why x and y,
and y and z yield the same point, then there will be a reason for x and z to yield the
same point. This leads to the composition of arrows, and identities and inverses are
also contained in this interpretation: the identity on x is the obvious reason why x
and x give the same point. And if x and y give the same point, so do y and x, and
a reason for the former yields a reason for the latter. In addition, to get a groupoid
we require algebraic assumptions for units and inverses and associativity. These
ensure that our reasoning is tame enough to work with it.

Example 4.1. Suppose we want to parametrise the space of all subspaces
of Rn. We may parametrise such a subspace by specifying a set of vectors that
span it. For dimension reasons, each subspace of Rn may be spanned by n vectors.
Thus we take (Rn)n ∼= Mn(R) as our parameter space. A matrix A parametrises
the subspace spanned by its columns or, equivalently, the range of the linear map
associated to A.

Of course, a subspace of Rn may correspond to many different matrices. If A
and B have the same range, then there is an invertible matrix T with A = BT .
Thus the arrow space of our groupoid is Mn(R) × GLn(R), where (A, T ) is the
reason why A and AT describe the same subspace. The composition of arrows is
essentially the multiplication in GLn(R). This groupoid has rather large isotropy.
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Alternatively, we could first fix the dimension k of a subspace and then pick
k linearly independent vectors that span a subspace of dimension k. This leads to
a different, non-equivalent groupoid whose objects are (ordered) families of linearly
independent vectors in Rn. Two such families of different cardinality certainly give
different subspaces, so that there are no arrows between them. Two families of
the same cardinality k give the same subspace if and only if they are related by a
matrix in GLk(R). The resulting groupoid has trivial isotropy.

This view on groupoids also leads to a definition of higher groupoids: here the
arrow space is parametrised by a space of arrows, with 2-arrows giving reasons for
arrows to be equivalent. Since the arrows themselves are reasons for points to be
equivalent, we expect to find the three composition operations in a 2-category. In
addition, we must require some algebraic conditions like associativity of the various
compositions.

4.2. The symmetries of rotation algebras. Now we argue that 2-groupoids
naturally appear as symmetries of non-commutative spaces.

Let ϑ ∈ [0, 1) and let λ := exp(2πiϑ). Recall that the rotation algebra Aϑ

is the universal C∗-algebra generated by two unitaries U and V that satisfy the
commutation relation V U = λUV . This C∗-algebra carries a natural gauge action
of the 2-torus T2 by α(z,w)(U

mV n) := zmwnUmV n for all m,n ∈ Z. This action
is effective, that is, αz,w = Id only for z = w = 1. However, there are many
parameters z, w for which αz,w is inner because

AdUaV b(UmV n) = UaV bUmV nV −bU−a = λbm−anUmV n.

Thus AdUaV b = αλb,λ−a .

To take this into account, we turn T2 into a 2-groupoid by adding 2-arrows
(a, b) : (z, w) ⇒ (λbz, λ−aw) for all a, b ∈ Z, z, w ∈ T. This 2-arrow is the reason
why αz,w and αλbz,λ−aw are equivalent automorphisms, that is, differ by inner
automorphisms. It is easy to define horizontal and vertical products for these
bigons. The map that sends (z, w) 	→ αz,w and (a, b) : (z, w) ⇒ (λbz, λ−aw) to
the unitary UaV b is an action of the 2-groupoid just described on the rotation
algebra Aϑ. This 2-groupoid is the non-commutative substitute for the quotient
group (T/λZ)2, which is either non-Hausdorff (for irrational ϑ) or has large isotropy
(for rational ϑ).

4.3. Other notions of symmetry? The above example shows in which way
a 2-groupoid may act on a C∗-algebra and thus encode its symmetries. There are
also other interesting ways to describe symmetries of C∗-algebras.

Locally compact quantum groups provide an established notion of this kind.
The idea of a locally compact quantum group is to equip the C∗-algebra C0(G)
for a locally compact group G with additional structure that reflects the group
structure on G and then to allow arbitrary C∗-algebras with the same kind of
extra structure. The multiplication on G clearly induces a morphism from C0(G)
to C0(G) ⊗ C0(G) ∼= C0(G × G), and this is enough to uniquely determine the
group structure on G. Correspondingly, a locally compact quantum group is a pair
(A,Δ), where A is a C∗-algebra and Δ is a morphism from A to A ⊗ A, subject
to several conditions. To state these conditions, we require the existence of further
structure like Haar weights or multiplicative unitaries. But the isomorphism type
of the locally compact quantum group only depends on the pair (A,Δ).
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Unfortunately, locally compact quantum groups cannot be used to encode the
group structure on the irrational rotation algebras. Recall that the irrational rota-
tion algebra encodes the non-commutative space T/λZ, which is a group. But Piotr
So�ltan [6] has shown that an irrational rotation algebra carries no structure of lo-
cally compact quantum group whatsoever. The following exercise gives an idea why
there exist locally compact spaces with no group structure, and hence C∗-algebras
with no quantum group structure.

Exercise 4.2. Show that there is no group structure on the locally compact
space G = [0, 1). Use that small open neighbourhoods of the points 0 ∈ G and
1/2 ∈ G are not homeomorphic.

It would be highly desirable to encode the group structure on the quotient
space T/λZ in a non-commutative object like the irrational rotation algebra, but
this seems to be impossible. This problem is a symptom of a more fundamental
problem: the construction of groupoid C∗-algebras is not functorial.

To see this, we do not even have to understand the definition of groupoid
C∗-algebras (which is not discussed above). It suffices to study two special classes
of groupoids.

First, we may consider groups as groupoids with only one object. The universal
property of the group C∗-algebra shows that any continuous group homomorphism
f : G → H between two locally compact groups induces a morphism from C∗(G) to
C∗(H). Thus (full) group C∗-algebras are covariantly functorial for group homo-
morphisms.

Secondly, we may consider spaces as groupoids with only identity arrows. Con-
tinuous functors in this case amount to continuous maps. And a continuous map
f : X → Y induces a morphism from C0(Y ) to C0(X). Since the groupoid C∗-algebra
for a space X viewed as a groupoid is just C0(X), this shows that groupoid
C∗-algebras are contravariantly functorial for spaces viewed as groupoids.

Taken together, groupoid C∗-algebras are sometimes covariantly functorial,
sometimes contravariantly functorial. But these things cannot be combined. When
taken on the category of all groupoids, the groupoid C∗-algebras are neither a co-
variant nor a contravariant functor. Isomorphisms of locally compact groupoids
induce isomorphisms of groupoid C∗-algebras, but general continuous functors in-
duce nothing.

The multiplication on T/λZ may be encoded by a functor between appropriate
groupoids describing T/λZ × T/λZ and T/λZ, but this functor induces nothing on
the level of C∗-algebras.

A way out is to use a different category of groupoids where the arrows are not
functors (see [2]). But in this category, T/λZ no longer carries a group structure.

The above problem is improved by passing to Kasparov theory. A basic ingre-
dient in index theory is wrong-way maps

f! : K
∗(X) → K∗(Y )

associated to certain maps f : X → Y (say, take f to be smooth and K-oriented).
This construction yields a covariant functor from the category of smooth manifolds
with smooth K-oriented maps as morphisms to Kasparov theory. It is possible
to extend this to proper Lie groupoids, using an appropriate notion of smooth
K-oriented map. On this category of groupoids, taking groupoid C∗-algebras is a
covariant functor to Kasparov theory. But this homotopy-invariant construction is
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not fine enough for some applications. Here algebraic K-theory would be a more
suitable invariant. But in what sense and generality does wrong-way functoriality
work in algebraic K-theory, as opposed to topological K-theory?

Working with 2-groupoids to some extent solves these problems: at least we
may describe in what sense the group T/λZ acts on itself by left translations; this
is exactly the action of the 2-group described above on the rotation algebra. But
this passage to 2-groupoids has not completely resolved the problem. When we try
to formulate an analogue of the Baum–Connes conjecture for 2-groupoids such as
the one discussed above, then the problem reappears.

Is there a good analogue of the Baum–Connes conjecture for 2-groupoids?
These questions lead us way beyond the scope of these introductory lectures.
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1. Introduction to Kasparov’s KK-theory

1.1. Why KK? KK-theory is a bivariant version of topological K-theory,
defined for C∗-algebras, with or without a group action. It can be defined for
either real or complex algebras, but in these notes we will stick to complex alge-
bras for simplicity. Thus if A and B are complex C∗-algebras, subject to a minor
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technical requirement (that B be σ-unital, which is certainly the case if it is either
unital or separable), an abelian group KK(A,B) is defined, with the property that
KK(C, B) = K(B) = K0(B) if the first algebra A is just the scalars. (For the
basic properties of K0, I refer you to the courses by Reich and Karoubi.) Dually,
KK(A,C) is contravariant in A and behaves like a “dual” to K(A). Furthermore,
there is an associative bilinear product

⊗B : KK(A,B)×KK(B,C) → KK(A,C),

about which we will say a lot more in Section 1.3. The theory was defined by
Gennadi Kasparov in a remarkable series of papers: [39, 40, 41]. However, the
definition at first seems highly technical and unmotivated, so it’s worth first seeing
where the theory comes from and why one might be interested in it. For purposes of
this introduction, we will only be concerned with the case where A and B are com-
mutative. Thus A = C0(X) and B = C0(Y ), where X and Y are locally compact
Hausdorff spaces. We will abbreviateKK(C0(X), C0(Y )) toKK(X,Y ). It is worth
pointing out that the study of KK(X,Y ) (without considering KK(A,B) more
generally) is already highly nontrivial, and encompasses most of the features of the
general theory. Note that we expect to have KK(C, C0(Y )) = KK(pt, Y ) = K(Y ),
theK-theory of Y with compact support. Recall that this is the Grothendieck group
of homotopy classes of complexes of vector bundles over Y that are exact off a com-
pact set. (See [72, §3] for this point of view.) It’s actually enough to take complexes
of length 2, so an element of K(Y ) is represented by a pair of vector bundles V

and V ′ over Y , together with a morphism of vector bundles V
ϕ−→ V ′ that is an iso-

morphism off a compact set. (Note that when Y is compact, the condition on ϕ is
vacuous, and hence ϕ can be homotoped to 0, so we can dispense with it entirely in
this case. Thus for Y compact, we just get usual K-theory, the Grothendieck group
of isomorphism classes of vector bundles.) Alternatively, K(Y ) can be identified

with the reduced K-theory K̃(Y+) of the one-point compactification Y+ of Y .
A good place to start in trying to understand KK is Atiyah’s paper [4] on

the Bott periodicity theorem. Bott periodicity, or more generally, the Thom iso-
morphism theorem for a complex vector bundle, asserts that if p : E → X is
a complex vector bundle (more generally, one could take an even-dimensional
real vector bundle with a spinc structure), then there is a natural isomorphism
βE : K(X) → K(E), called the Thom isomorphism in K-theory. In the special
case where X = pt, E is just Cn for some n, and we are asserting that there is

a natural isomorphism Z = K(pt) → K(Cn) = K(R2n) = K̃(S2n), the Bott pe-
riodicity map. The map βE can be described by the formula βE(a) = p∗(a) · τE .
Here p∗(a) is the pull-back of a ∈ K(X) to E. Since a had compact support, p∗(a)
has compact support in the base direction of E, but is constant on fibers of p, so
it certainly does not have compact support in the fiber direction. However, we
can multiply it by the Thom class τE , which does have compact support along the
fibers, and the product will have compact support in both directions, and will thus
give a class in K(E) (remember that since E is necessarily noncompact, assuming
n > 0, we need to use K-theory with compact support). The Thom class τE , in
turn, can be described [72, §3] as an explicit complex

∧•
p∗E over E. The vector

bundles in this complex are the exterior powers of E pulled back from X to E, and

the map at a point e ∈ Ex from
∧j Ex to

∧j+1 Ex is simply exterior product with
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e. This complex has compact support in the fiber directions since it is exact off the
zero-section of E. (If e �= 0, then the kernel of e∧— is spanned by products e∧ω.)

So far this is all simple vector bundle theory and KK is not needed. But it
comes in at the next step. How do we prove that βE is an isomorphism? The
simplest way would be to construct an inverse map αE : K(E) → K(X). But
there is no easy way to describe such a map using topology alone. As Atiyah
recognized, the easiest way to construct αE uses elliptic operators, in fact the family
of Dolbeault operators along the fibers of E. Thus whether we like it or not, some
analysis comes in at this stage. In more modern language, what we really want
is the class αE in KK(E,X) corresponding to this family of operators, and the
verification of the Thom isomorphism theorem is a Kasparov product calculation,
the fact that αE is a KK inverse to the class βE ∈ KK(X,E) described (in slightly
different terms) before. Atiyah also noticed [4] that it’s really just enough (because
of certain identities about products) to prove that αE is a one-way inverse to βE ,
or in other words, in the language of Kasparov theory, that βE ⊗E αE = 1X . This
comes down to an index calculation, which because of naturality comes down to
the single calculation β ⊗C α = 1 ∈ KK(pt, pt) when X is a point and E = C,
which amounts to the Riemann-Roch theorem for CP1.

What then isKK(X,Y ) whenX and Y are locally compact spaces? An element
of KK(X,Y ) defines a map of K-groups K(X) → K(Y ), but is more than this;
it is in effect a natural family of maps of K-groups K(X × Z) → K(Y × Z) for
arbitrary Z. Naturality of course means that one gets a natural transformation
of functors, from Z �→ K(X × Z) to Z �→ K(Y × Z). (Nigel Higson has pointed
out that one can use this in reverse to define KK(X,Y ) as a natural family of
maps of K-groups K(X × Z) → K(Y × Z) for arbitrary Z. The reason why
this works will be explained in Section 3.5.) In particular, since KK(X × Rj)
can be identified with K−j(X), an element of KK(X,Y ) defines a graded map of
K-groups Kj(X) → Kj(Y ), at least for j ≤ 0 (but then for arbitrary j because
of Bott periodicity). The example of Atiyah’s class αE ∈ KK(E,X), based on
a family of elliptic operators over E parametrized by X, shows that one gets an
element of the bivariant K-group KK(X,Y ) from a family of elliptic operators
over X parametrized by Y . The element that one gets should be invariant under
homotopies of such operators. Hence Kasparov’s definition of KK(A,B) is based
on a notion of homotopy classes of generalized elliptic operators for the first algebra
A, “parametrized” by the second algebra B (and thus commuting with a B-module
structure).

1.2. Kasparov’s original definition. As indicated above in Section 1.1, an
element of KK(A,B) is roughly speaking supposed to be a homotopy class of
families of elliptic pseudodifferential operators1 over A parametrized by B. For

1For those familiar with differential operators but not pseudodifferential operators, the latter
are a larger class in which one has a good “functional calculus.” Even though the elliptic operators
of greatest interest are in fact differential operators, one needs this larger class because the inverse
or the square root of a differential operator (when this makes sense) is a pseudodifferential operator,
but not a differential operator. Differential operators D are local; for a C∞ function f , Df(x)
only depends on f and a finite number of its derivatives at x. Pseudodifferential operators are
instead pseudolocal ; they are approximately local up to terms of lower order.
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technical reasons, it’s convenient to work with self-adjoint bounded operators2, but
it’s well-known that the most interesting elliptic operators send sections of one
vector bundle to sections of another. The way to get around this is to take our
operators to be self-adjoint, but odd with respect to a grading, i.e., of the form

(1.1) T = T ∗ =

(
0 F ∗

F 0

)
.

The operator F here really does act between different spaces, but T , built from
F and F ∗, is self-adjoint, making it easier to work with. Then we need various
conditions on T that correspond to the terms “elliptic,” “pseudodifferential,” and
“parametrized by B.” So this boils down to the following. A class in KK(A,B) is
represented by a Kasparov A-B-bimodule, that is, a Z/2-graded (right) Hilbert B-
moduleH = H0⊕H1, together with a B-linear operator T ∈ L(H) of the form (1.1),
and a (grading-preserving) ∗-representation φ of A on H, subject to the conditions
that φ(a)(T 2 − 1) ∈ K(H) and [φ(a), T ] ∈ K(H) for all a ∈ A. These conditions
require a few comments. The condition that φ(a)(T 2 − 1) ∈ K(H) is “ellipticity”
and the condition that [φ(a), T ] ∈ K(H) is “pseudolocality.” If B = C, a Hilbert B-
module is just a Hilbert space, L(H) is the algebra of bounded linear operators onH,
and K is the algebra of compact operators on H. If B = C0(Y ), a Hilbert B-module
is equivalent to a continuous field of Hilbert spaces over Y . In this case, K(H) is
the associated algebra of norm-continuous fields of compact operators, while L(H)
consists of continuous fields (continuity taken in the strong-∗ operator topology)
of bounded Hilbert space operators. If X is another locally compact space, then
it is easy to see that Kasparov’s conditions are an abstraction of a continuous
family of elliptic pseudolocal Hilbert space operators over X, parametrized by Y .
Finally, if B is arbitrary, a Hilbert B-module means a right B-module equipped
with a B-valued inner product 〈— ,—〉B, right B-linear in the second variable,
satisfying 〈ξ, η〉B = 〈η, ξ〉∗B and 〈ξ, ξ〉B ≥ 0 (in the sense of self-adjoint elements of
B), with equality only if ξ = 0. Such an inner product gives rise to a norm on H:

‖ξ‖ = ‖〈ξ, ξ〉B‖1/2B , and we require H to be complete with respect to this norm.
Given a Hilbert B-module H, there are two special C∗-algebras associated to it.
The first, called L(H), consists of bounded B-linear operators a on H, admitting
an adjoint a∗ with the usual property that 〈aξ, η〉B = 〈ξ, a∗η〉B for all ξ, η ∈ H.
Unlike the case where B = C, existence of an adjoint is not automatic, so it must be
explicitly assumed. Then inside L(H) is the ideal of B-compact operators. This is
the closed linear span of the “rank-one operators” Tξ,η defined by Tξ,η(ν) = ξ〈η, ν〉B.
Note that

〈Tξ,η(ν), ω〉B = 〈ξ〈η, ν〉B, ω〉B = 〈ω, ξ〈η, ν〉B〉∗B
= (〈ω, ξ〉B〈η, ν〉B)∗ = 〈η, ν〉∗B〈ω, ξ〉∗B
= 〈ν, η〉B〈ξ, ω〉B = 〈ν, η〈ξ, ω〉B〉B
= 〈ν, Tη,ξ(ω)〉B,

so that T ∗
ξ,η = Tη,ξ. It is also obvious that if a ∈ L(H), then aTξ,η = Taξ,η, while

Tξ,ηa = T ∗
η,ξ

(
a∗
)∗

=
(
a∗Tη,ξ

)∗
= T ∗

a∗η,ξ = Tξ,a∗η, so these rank-one operators

generate an ideal in L(H), which is just the usual ideal of compact operators in

2Often we want to apply the theory to self-adjoint differential operators D, which are never

bounded on L2 spaces. The trick is to replace D by the pseudodifferential operator D(1+D2)−
1
2 ,

which has the same index theory as D and is bounded.
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case B = C. For more on Hilbert C∗-modules and the C∗-algebras acting on them,
see [46] or [59, Ch. 2].

The simplest kind of Kasparov bimodule is associated to a homomorphism
φ : A → B. In this case, we simply take H = H0 = B, viewed as a right B-module,
with the B-valued inner product 〈b1, b2〉B = b∗1b2, and take H1 = 0 and T = 0.
In this case, L(H) = M(B) (the multiplier algebra of B, the largest C∗-algebra
containing B as an essential ideal), and K(H) = B. So φ maps A into K(H), and
even though T = 0, the condition that φ(a)(T 2 − 1) ∈ K(H) is satisfied for any
a ∈ A.

One special case which is especially important is the case where A = B and
φ is the identity map. The above construction then yields a distinguished element
1A ∈ KK(A,A), which will play an important role later.

In applications to index theory, Kasparov A-B-bimodules typically arise from
elliptic (or hypoelliptic) pseudodifferential operators. However, there are other ways
to generate Kasparov bimodules, which we will discuss in Section 1.4 below.

So far we have explained what the cycles are for KK-theory, but not the
equivalence relation that determines when two such cycles give the same KK-
element. First of all, there is a natural associative addition on Kasparov bimodules,
obtained by taking the direct sum of Hilbert B-modules and the block direct sum
of homomorphisms and operators. Then we divide out by the equivalence relation
generated by addition of degenerate Kasparov bimodules (those for which for all
a ∈ A, φ(a)(T 2 − 1) = 0 and [φ(a), T ] = 0) and by homotopy. (A homotopy
of Kasparov A-B-bimodules is just a Kasparov A-C([0, 1], B)-bimodule.) Then it
turns out that the resulting semigroup KK(A,B) is actually an abelian group,
with inversion given by reversing the grading, i.e., reversing the roles of H0 and
H1, and interchanging F and F ∗. Actually, it was not really necessary to divide
out by degenerate bimodules, since if (H, φ, T ) is degenerate, then (C0((0, 1],H)
(along with the action of A and the operator which are given by φ and T at each
point of (0, 1]) is a homotopy from (H, φ, T ) to the 0-module.

An interesting exercise is to consider what happens when A = C and B is
a unital C∗-algebra. Then if H0 and H1 are finitely generated projective (right)
B-modules and we take T = 0 and φ to be the usual action of C by scalar multipli-
cation, we get a Kasparov C-B-bimodule corresponding to the element [H0]− [H1]
of K0(B). With some work one can show that this gives an isomorphism between
the Grothendieck group K0(B) of usual K-theory and KK(C, B). By considering
what happens when one adjoins a unit, one can then show that there is still a
natural isomorphism between K0(B) and KK(C, B), even if B is nonunital.

Another important special case is when A and B are Morita equivalent in the
sense of Rieffel [60, 63] — see [59] for a very good textbook treatment. That
means we have an A-B-bimodule X with the following special properties:

(1) X is a right Hilbert B-module and a left Hilbert A-module.
(2) The left action of A is by bounded adjointable operators for the B-valued

inner product, and the right action of B is by bounded adjointable oper-
ators for the A-valued inner product.

(3) The A- and B-valued inner products on X are compatible in the sense
that if ξ, η, ν ∈ X, then A〈ξ, η〉ν = ξ〈η, ν〉B.

(4) The inner products are “full,” in the sense that the image of A〈— ,—〉 is
dense in A, and the image of 〈— ,—〉B is dense in B.
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Under these circumstances, X defines classes in [X] ∈ KK(A,B) and [X̃] ∈
KK(B,A) which are inverses to each other (with respect to the product discussed
below in Section 1.3). Thus as far as KK-theory is concerned, A and B are es-

sentially equivalent. The construction of [X] and of [X̃] is fairly straightforward;
for example, to construct [X], take H0 = X (viewed as a right Hilbert B-module),
H1 = 0, and T = 0, and let φ : A → L(H) be the left action of A (which factors
through L(H) by axiom (2)). By axiom (4) (which is really the key property), any
element of A can be approximated by linear combinations of inner products A〈ξ, η〉.
For such an inner product, we have

φ(A〈ξ, η〉)ν = ξ〈η, ν〉B = Tξ,η(ν),

so the action of A on H is by operators in K(H), which is what is needed for the
conditions for a Kasparov bimodule.

The prototype example of a Morita equivalence has A = C, B = K(H) (we
usually drop the H and just write K if the Hilbert space is infinite-dimensional and
separable), and X = H, with the B-valued inner product taking a pair of vectors in
H to the corresponding rank-one operator. Thus from the point of KK-theory, C
and K are essentially indistinguishable, and so are B and B ⊗K for any B. There
is a converse [11]; separable C∗-algebras A and B are Morita equivalent if and only
if A ⊗ K and B ⊗ K are isomorphic. (This condition, called stable isomorphism,
is obviously satisfied by B and B ⊗ K, since (B ⊗ K) ⊗ K ∼= B ⊗ (K ⊗ K) ∼=
B ⊗K.) However, a Morita equivalence between A and B leads directly to a KK-
equivalence, but not directly to an isomorphism A ⊗ K ∼= B ⊗ K (which requires
some arbitrary choices).

The most readable references for the material of this section are the book by
Blackadar [7], Chapter VIII, and the “primer” of Higson [32].

1.3. Connections and the product. The hardest aspect of Kasparov’s ap-
proach to KK is to prove that there is a well-defined, functorial, bilinear, and
associative product ⊗B : KK(A,B) × KK(B,C) → KK(A,C). There is also an
external product � : KK(A,B)×KK(C,D) → KK(A⊗ C,B ⊗D), where ⊗ de-
notes the completed tensor product. (For our purposes, the minimal or spatial
C∗-tensor product will suffice. This is defined as follows. Suppose A and B are
C∗-algebras represented on Hilbert spaces H1 and H2, respectively. Then A ⊗ B
is the completion of the algebraic tensor product for the operator norm on the
Hilbert space tensor product H1 ⊗H2. It turns out that up to ∗-isomorphism, this
is independent of the choice of representations of A and of B. There is a big class
of C∗-algebras, called the nuclear C∗-algebras, with the property that if one of the
algebras A and B is nuclear, all C∗-tensor products of A with B coincide, in which
case the spatial tensor product is the only C∗-tensor product. All commutative and
type I C∗-algebras are nuclear.) The external product is actually built from the
usual product using an operation called dilation (external product with 1). We can
dilate a class a ∈ KK(A,B) to a class a�1C ∈ KK(A⊗C,B⊗C), by taking a rep-
resentative (H, φ, T ) for a to the bimodule (H⊗C, φ⊗1C , T ⊗1). Similarly, we can
dilate a class b ∈ KK(C,D) (on the other side) to a class 1B�b ∈ KK(B⊗C,B⊗D).
Then

a� b = (a� 1C)⊗B⊗C (1B � b) ∈ KK(A⊗ C,B ⊗D),

and one can check that this is the same as what one gets by computing in the other
order as (1A � b)⊗A⊗D (a� 1D).
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The Kasparov products, as they are called, encompass the usual cup and cap
products relating K-theory and K-homology. For example, the cup product in
ordinary topological K-theory for a compact space X, ∪ : K(X)×K(X) → K(X),
is a composite of two products. Given a ∈ K(X) = KK(C, C(X)) and b ∈ K(X) =
KK(C, C(X)), we first form the external product a� b ∈ KK(C, C(X)⊗C(X)) =
KK(C, C(X ×X)). Then we have

a ∪ b = (a� b)⊗C(X×X) Δ,

where Δ ∈ KK(C(X × X), C(X)) is the class of the homomorphism defined by
restriction of functions on X ×X to the diagonal copy of X.

Similarly, we can obtain the cap product ∩ : K(X) × K0(X) → K0(X) as
follows. The K-homology group K0(X) is “dual” to K(X), and is given by the
Kasparov group KK(C(X),C). If a ∈ K(X) = KK(C, C(X)) and b ∈ K0(X) =
KK(C(X),C), we view a as a class a ∈ KK(C(X), C(X)) (by letting C(X) act on
the Kasparov module representing a on both the left and the right, which we can
do since C(X) is commutative)3, and then form the Kasparov product a⊗C(X) b ∈
KK(C(X),C) = K0(X).

In any event, it still remains to construct the productKK(A,B)×KK(B,C) →
KK(A,C). Suppose we have classes represented by (E1, φ1, T1) and (E2, φ2, T2),
where E1 is a right Hilbert B-module, E2 is a right Hilbert C-module, φ1 : A →
L(E1), φ2 : B → L(E2), T1 essentially commutes with the image of φ1, and T2

essentially commutes with the image of φ2. It is clear that we want to construct
the product using H = E1 ⊗B,φ2

E2 and φ = φ1 ⊗ 1: A → L(H). The main
difficulty is getting the correct operator T . In fact there is no canonical choice;
the choice is only unique up to homotopy. The most convenient method of doing
the construction seems to be using the notion of a connection due to Connes and
Skandalis [14], nicely explained in [7, §18] or [75]. However, one should be aware
that the existence of connections is not at all “abstract nonsense,” but depends on
a fairly deep result, the “Kasparov Technical Theorem” [31] (or one of its variants).

To motivate this, let’s just consider a simple example that comes up in index
theory, the construction of an “elliptic operator with coefficients in a vector bundle.”
Let T be an elliptic operator on a compact manifold M , which we take to be a
bounded operator of the form (1.1) (acting on a Z/2-graded Hilbert space H), and
let E be a complex vector bundle over M . Often we want to form TE , the same
operator with coefficients in the vector bundle E. This is actually a special case of
the Kasparov product, or of the cap product [E]∩ [T ]. The sections Γ(M,E) are a
finitely generated projective C(M)-module E ; since C(M) is commutative, we can
regard this as a C(M)-C(M)-bimodule, with the same action on the left and on
the right. Then E (concentrated entirely in degree 0, together with the 0-operator),
defines a KK-class [[E]] ∈ KK(M,M), while T defines a class [T ] in KK(M, pt).
Note that forgetting the left C(M)-action on E is the same as composing with
inclusion of the scalars C ↪→ C(M) to get from [[E]] a class [E] ∈ KK(pt,M) =
K(M), which is the usual K-theory class of E. The class of the operator TE will be
the Kasparov product [[E]]⊗M [T ] ∈ KK(M, pt). Defining the operator, however,
requires a choice of connection on the bundle E. One way to get this is to embed E
as a direct summand in a trivial bundleM×Cn. Then orthogonal projection onto E
is given by a self-adjoint projection p ∈ C(M,Mn(C)). We can certainly form T ⊗1

3Alternatively, one can also check that a = (a � 1)⊗C(X×X) Δ.
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acting on H⊗Cn, on which we have an obvious action of C(M)⊗Mn(C), but there
is no reason why T ⊗1 and p should commute, so there is no “natural” cut-down of
T to E. Thus we simply take the compression T ′ = p(T ⊗ 1)p acting on H′ = pH
with the obvious action φ′ of C(M). Since T commutes with the action of C(M)
up to compact operators, the commutator [p, T ⊗ 1] is also compact, so T ′ satisfies
the requirements that (T ′)2 − 1 ∈ K(H′) and [φ′(f), T ′] ∈ K(H′). Its Kasparov
class is well-defined, even though there is great freedom in choosing the operator
(corresponding to the freedom to embed E in a trivial bundle in many different
ways). The reason is that when n is large enough, all vector bundle embeddings
of E into M × Cn are isotopic, and thus the operators obtained by the above
construction will be homotopic in a way preserving the Kasparov requirements.

1.4. Cuntz’s approach. Joachim Cuntz noticed in [19] that all Kasparov
bimodules can be taken to come from the basic notion of a quasihomomorphism
between C∗-algebras A and B. A quasihomomorphism A ⇒ D � B is roughly
speaking a formal difference of two homomorphisms f± : A → D, neither of which
maps into B itself, but which agree modulo an ideal isomorphic to B. Thus a �→
f+(a) − f−(a) is a linear map A → B. Suppose for simplicity (one can always
reduce to this case) that D/B ∼= A, so that f± are two splittings for an extension

0 → B → D → A → 0.

Then for any split-exact functor F from C∗-algebras to abelian groups (meaning
it sends split extensions to short exact sequences — an example would be F (A) =
K(A ⊗ C) for some coefficient algebra C), we get an exact sequence with two
splittings

0 �� F (B) �� F (D) �� F (A) ��
(f+)∗��

(f−)∗

�� 0.

Thus (f+)∗ − (f−)∗ gives a well-defined homomorphism F (A) → F (B), which we
might well imagine should come from a class in KK(A,B). (Think about Section
1.1, where we mentioned Higson’s idea of defining KK(X,Y ) in terms of natural
transformations of functors, from Z �→ K(X × Z) to Z �→ K(Y × Z). We will
certainly get such a natural transformation from a quasihomomorphism C0(X) ⇒
D � C0(Y )⊗K, since C0(Y )⊗K and Y have the sameK-theory.) And indeed, given
a quasihomomorphism as above, we get a Kasparov A-B-bimodule, with B ⊕B as
the Hilbert B-module (with the obvious grading), with φ : A → L(B ⊕ B) defined
by (

f+ 0
0 f−

)
, and T =

(
0 1
1 0

)
.

The “almost commutation” relation is[(
f+(a) 0
0 f−(a)

)
,

(
0 1
1 0

)]
=

(
0 f+(a)− f−(a)

f−(a)− f+(a) 0

)
∈ K(B ⊕B),

since K(B⊕B) = M2(B). In the other direction, given a Kasparov A-B-bimodule,
one can add on a degenerate bimodule and do a homotopy to reduce it to something
roughly of this form, showing that all of KK(A,B) comes from quasihomomor-
phisms (see [7, §17.6]).
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The quasihomomorphism approach toKK makes it possible to defineKK(A,B)
in a seemingly simpler way [20]. To do this, Cuntz observed that a quasihomomor-
phism A ⇒ D � B factors through a universal algebra qA constructed as follows.
Start with the free product C∗-algebra QA = A∗A, the completion of linear combi-
nations of words in two copies of A. QA is characterized by the universal property
that its representations (on Hilbert spaces) are generated by two representations of
A (that may not commute). There is an obvious surjective homomorphism QA � A
obtained by identifying the two copies of A. The kernel of QA � A is called qA,
and if

0 �� B �� D �� A ��
f+

��

f−

�� 0

is a quasihomomorphism, we get a commutative diagram

0 �� qA ��

��

QA ��

��

A �� 0

0 �� B �� D �� A �� 0,

with the first copy of A in QA mapping to D via f+, and the second copy of A in
QA mapping to D via f−. Thus homotopy classes of (strict) quasihomomorphisms
from A to B can be identified with homotopy classes of ∗-homomorphisms from
qA to B, and KK(A,B) turns out to be simply the set of homotopy classes of
∗-homomorphisms from qA to B ⊗K.

1.5. Higson’s approach. There is still another very elegant approach toKK-
theory due to Nigel Higson [30]. Namely, one can construct an additive category
KK whose objects are the separable C∗-algebras, and where the morphisms from
A to B are given by KK(A,B). Associativity and bilinearity of the Kasparov
product, along with properties of the special elements 1A ∈ KK(A,A), ensure
that this is indeed an additive category. What Higson did is to give an alternative
construction of this category. Namely, start with the homotopy category of sep-
arable C∗-algebras, where the morphisms from A to B are the homotopy classes
of ∗-homomorphisms A → B. Then KK is the smallest additive category with
the same objects, these morphisms, plus enough additional morphisms so that two
basic properties are satisfied:

(1) Matrix stability. If A is an object in KK (that is, a separable C∗-algebra)
and if e is a rank-one projection in K = K(H),H a separable Hilbert space,
then the homomorphism a �→ a⊗e, viewed as an element of Hom(A,A⊗K),
is an equivalence in KK, i.e., has an inverse in KK(A⊗K, A).

(2) Split exactness. If 0 �� A �� B �� C ��
s��

0 is a split short
exact sequence of separable C∗-algebras, then for any separable C∗-alge-
bra D,

0 �� KK(D,A) �� KK(D,B) �� KK(D,C) ��
s∗		

0

and

0 �� KK(C,D) �� KK(B,D) ��
s∗		

KK(A,D) �� 0
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are split exact.

Incidentally, if one just starts with the homotopy category and requires (1),
matrix stability, that is already enough to guarantee that the resulting category
has Hom-sets which are commutative monoids and that composition is bilinear
[67, Theorem 3.1]. So it’s not asking much additional to require that one have an
additive category.

The proof of Higson’s theorem very much depends on the Cuntz construction
in Section 1.4 above. Basically, there are two main steps. The first is to show that
KK is split exact in both variables. (That KK is homotopy invariant is obvious
from the definition, and that it is matrix stable follows from our earlier comment
that Morita equivalences give invertible KK elements.) For the other step, let H
be the category obtained from the homotopy category of separable C∗-algebras by
Higson’s construction, and let H(A,B) be the group of morphisms from A to B in
H. The first step gives a canonical map H(A,B) → KK(A,B), and we need to
show this is surjective. Given Cuntz’s theorem that any class in KK(A,B) arises
from a ∗-homomorphism qA → B ⊗K, and the fact that matrix stability means B
and B ⊗K are equivalent in H, it suffices to show that A and qA are equivalent in
H. For this we use the commutative diagram with split exact rows

0 �� qA ��

φ

��

QA ��

ψ
����

A ��
s



0

0 �� A �� A⊕A �� A ��
s		

0,

where the downward arrow ψ sends the two copies of A in QA to the two copies
of A in A⊕ A. The downward arrows give canonical elements [φ] ∈ H(qA,A) and
[ψ] ∈ H(QA,A ⊕ A). But [ψ] has an inverse in H(A⊕ A,QA) represented by the
map

η : (a1, a2) �→
(
i1(a1) 0

0 i2(a2)

)
∈ M2(QA),

where i1 and i2 are the two canonical inclusions of A into QA. Indeed,

ψ ◦ η : (a1, a2) �→
(
(a1, 0), (0, 0)
(0, 0) (0, a2)

)
=

((
a1 0
0 0

)
,

(
0 0
0 a2

))

is homotopic to

(a1, a2) �→
(
(a1, a2), (0, 0)
(0, 0) (0, 0)

)
=

((
a1 0
0 0

)
,

(
a2 0
0 0

))

via “rotation” in the second coordinate (conjugation by

(
cos θ sin θ
− sin θ cos θ

)
as θ goes

from 0 to π/2), and similarly η ◦ ψ is homotopic to the stabilization map. So by
property (1), [η] and [ψ] are inverses in H. Then by split exactness, property (2),
[φ] is also invertible in H. Thus A and qA are equivalent in H. Finally, we need
to show that the natural map H(A,B) → KK(A,B) is also injective. But this
also follows from the same calculation, for if a KK element is trivial, that means
its underlying quasihomomorphism is homotopic to 0, and thus is trivial in the
homotopy category as a map qA → B ⊗K.
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2. K-theory and KK-theory of crossed products

2.1. Equivariant Kasparov theory. Many of the interesting applications of
KK-theory involve actions of groups in some way. For this, Kasparov also invented
an equivariant version of the theory. In what follows, G will always be a second-
countable locally compact group. A G-C∗-algebra will mean a C∗-algebra A, along
with an action of G on A by ∗-automorphisms, continuous in the sense that the
map G × A → A is jointly continuous. (Another way to say this is that if we
give AutA the topology of pointwise convergence, then G → AutA is a continuous
group homomorphism.) If G is compact, making the theory equivariant is rather
straightforward. We just require all algebras and Hilbert modules to be equipped
with G-actions, we require φ : A → L(H) to be G-equivariant, and we require
the operator T ∈ L(H) to be G-invariant. This produces groups KKG(A,B)
for (separable, say) G-C∗-algebras A and B, and the same argument as before
shows that KKG(C, B) ∼= KG

0 (B), equivariant K-theory. (In the commutative
case, this is described in [72]. A general description may be found in [7, §11].)
In particular, KKG(C,C) ∼= R(G), the representation ring of G, in other words,
the Grothendieck group of the category of finite-dimensional representations of
G, with product coming from the tensor product of representations. The rings
R(G) are commutative, Noetherian if G is a compact Lie group, and often easily

computable; for example, if G is compact and abelian, R(G) ∼= Z[Ĝ], the group
ring of the Pontrjagin dual. If G is a compact connected Lie group with maximal

torus T and Weyl group W = NG(T )/T , then R(G) ∼= R(T )W ∼= Z[T̂ ]W . The
properties of the Kasparov product all go through without change, since it is easy to
“average” things with respect to a compact group action. Then Kasparov product
with KKG(C,C) makes all KKG-groups into modules over the ground ring R(G),
so that homological algebra of the ring R(G) comes into play in understanding the

equivariant KK-category KKG.
When G is noncompact, the definition and properties of KKG are considerably

more subtle, and were worked out in [41]. A shorter exposition may be found in
[42]. The problem is that in this case, topological vector spaces with a continuous
G-action are very rarely completely decomposable, and there are rarely enough
G-equivariant operators to give anything useful. Kasparov’s solution was to work
with G-continuous rather than G-equivariant Hilbert modules and operators; rather
remarkably, these still give a useful theory with all the same formal properties as
before. The KKG-groups are again modules over the commutative ring R(G) =
KKG(C,C), though this ring no longer has such a simple interpretation as before,
and in fact, is not known for most connected semisimple Lie groups.

A few functorial properties of the KKG-groups will be needed below, so we
just mention a few of them. First of all, if H is a closed subgroup of G, then any
G-C∗-algebra is by restriction also an H-C∗-algebra, and we have restriction maps
KKG(A,B) → KKH(A,B). To go the other way, we can “induce” an H-C∗-alge-

bra A to get a G-C∗-algebra IndGH(A), defined by

IndGH(A) = {f ∈ C(G,A) | f(gh) = h · f(g) ∀g ∈ G, h ∈ H,

‖f(g)‖ → 0 as g → ∞ mod H} .

The induced action of G on IndG
H(A) is just left translation. For example, if A =

C0(X) with X a locally compact H-space, IndGH(A) is just C0(G×H X).
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If A and B are H-C∗-algebras, we then have an induction homomorphism

KKH(A,B) → KKG(IndGH(A), IndGH(B)).

The last basic operation on the KKG-groups depends on crossed products, so we
consider these next.

2.2. Basic properties of crossed products. Suppose A is a G-C∗-alge-
bra. Then one can define two new C∗-algebras, called the full and reduced crossed
products of A by G, which capture the essence of the group action. These are easiest
to define when G is discrete and A is unital. Then the full crossed product A�α G
(we often omit the α if there is no possibility of confusion) is the universal C∗-alge-
bra generated by a copy of A and unitaries ug, g ∈ G, subject to the commutation
condition ugau

∗
g = αg(a), where α denotes the action of G on A. The reduced

crossed product A �α,r G is the image of A �α G in its “regular representation”
π on L2(G,H), where H is a Hilbert space on which A acts faithfully, say by a
representation ρ. Here A acts by (π(a)f)(g) = ρ(αg−1(a))f(g) and G acts by left
translation. The compatibility condition is satisfied since

π(ug)π(a)π(u
∗
g)f(g

′) = (π(a)π(u∗
g)f)(g

−1g′)

= ρ(αg′−1g(a))(π(u
∗
g)f)(g

−1g′)

= ρ(αg′−1g(a))(f(g
′))

= ρ(αg′−1(αg(a))(f(g
′)) = π(αg(a))f(g

′).

In the general case (where A is not necessarily unital and G is not necessarily
discrete), the full crossed product is still defined as the universal C∗-algebra for
covariant pairs of a ∗-representation ρ of A and a unitary representation π of G,
satisfying the compatibility condition π(g)ρ(a)π(g−1) = ρ(αg(a)). It may be con-
structed by defining a convolution multiplication on Cc(G,A) and then completing
in the greatest C∗-algebra norm. The reduced crossed product A �α,r G is again
the image of A�αG in its “regular representation” on L2(G,H). For details of the
construction, see [53, §7.6] and [77, Ch. 2].

If A = C, the crossed product A � G is simply the universal C∗-algebra for
unitary representations of G, or the group C∗-algebra C∗(G), and A�rG is C∗

r (G),
the image of C∗(G) in the left regular representation on L2(G). The natural map
C∗(G) � C∗

r (G) is an isomorphism if and only if G is amenable.4 When the action
α is trivial (factors through the trivial group {1}), then A�G is the maximal tensor
product A ⊗max C∗(G) while A �r G is the minimal tensor product A ⊗ C∗

r (G).
Again, the natural map from A⊗max C∗(G) to A⊗C∗

r (G) is an isomorphism if and
only if G is amenable.

When A and the action α are arbitrary, the natural map A�αG � A�α,r G is
an isomorphism if G is amenable, but also more generally if the action α is amenable
in a certain sense. For example, if X is a locally compact G-space, the action is
automatically amenable if it is proper, whether or not G is amenable. A good short
survey of amenability for group actions may be found in [1].

When X is a locally compact G-space, the crossed product C0(X) � G often
serves as a good substitute for the “quotient space” X/G in cases where the latter
is badly behaved. Indeed, if G acts freely and properly on X, then C0(X) � G is
Morita equivalent to C0(X/G). If G acts locally freely and properly on X, then

4This is a reformulation of a famous theorem of Hulanicki [36].
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C0(X)�G is Morita equivalent to an “orbifold algebra” that encompasses not only
the topology of X/G but also the finite isotropy groups. But if the G-action is not
proper, X/G may be highly non-Hausdorff, while C0(X) � G may be a perfectly
well-behaved noncommutative algebra. A key case later on will the one where
X = T is the circle group, G = Z, and the generator of G acts by multiplication by
e2πiθ. When θ is irrational, every orbit is dense, so X/G is an indiscrete space (the
only open sets are ∅ and the whole space), and C(T)�Z is what’s usually denoted
Aθ, an irrational rotation algebra or noncommutative 2-torus.

The understanding of crossed products is often aided by various “imprimi-
tivity theorems” generalizing Mackey’s famous characterization of induced repre-
sentations. For example, an “imprimitivity theorem” due to Green shows that
IndGH(A)�G and A�H are Morita equivalent, if the induced actions are defined
as in Section 2.1.

Now we can explain the relationships between equivariant KK-theory and
crossed products. One connection is that if G is discrete and A is a G-C∗-alge-
bra, there is a natural isomorphism KKG(A,C) ∼= KK(A � G,C). Dually, if G
is compact, there is a natural Green-Julg isomorphism [7, §11.7] KKG(C, A) ∼=
KK(C, A�G). Still another connection is that there is (for arbitrary G) a functo-
rial homomorphism

j : KKG(A,B) → KK(A�G,B �G)

sending (when B = A) 1A to 1A�G. (In fact, j can be viewed as a functor from

the equivariant Kasparov category KKG to the non-equivariant Kasparov category
KK. Later we will study how close it is to being faithful.) There is also a variant
of j using reduced crossed products, denoted jr [41, §3.11]. If B = C and G is
discrete, then j can be identified with the mapKK(A�G,C) → KK(A�G,C∗(G))
induced by the inclusion of scalars C ↪→ C∗(G). (The fact that G is discrete means
that C∗(G) is unital.) The map j is split injective in this case since it is split
by the map induced by C∗(G) → C, corresponding to the trivial representation
of G. Similarly, if G is compact, then via Green-Julg, j can be identified with
the map KK(C, A � G) → KK(C∗(G), A � G) induced by the map C∗(G) →
C corresponding to the trivial representation of G. The map j is again a split
injection since C∗(G) splits as the direct sum of C and summands associated to
other representations.

2.3. The dual action and Takai duality. When the group G is not just

locally compact but also abelian, then it has a Pontrjagin dual group Ĝ. In this
case, given any G-C∗-algebra algebra A, say with α denoting the action of G on A,

there is a dual action α̂ of Ĝ on the crossed product A�G. When A is unital and
G is discrete, so that A � G is generated by a copy of A and unitaries ug, g ∈ G,
the dual action is given simply by

α̂γ(aug) = aug〈g, γ〉.

The same formula still applies in general, except that the elements a and ug don’t
quite live in the crossed product but in the multiplier algebra. (However, there is
a still a sense in which they generate the crossed product.) The key fact about the

dual action is the Takai duality theorem: (A�α G)�α̂ Ĝ ∼= A⊗K(L2(G)), and the

double dual action ˆ̂α of ˜̃G ∼= G on this algebra can be identified with α ⊗ Adλ,
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where λ is the left regular representation of G on L2(G). Good expositions may be
found in [53, §7.9] and in [77, Ch. 7].

2.4. Connes’ “Thom isomorphism”. Recall that the Thom isomorphism
theorem in K-theory (see Section 1.1) asserts that if E is a complex vector bundle
over X, there is an isomorphism of K-groups K(X) → K(E), implemented by
a KK-class in KK(X,E). Now if Cn (or R2n — there is no difference since we
are just considering the additive group structure) acts on X by a trivial action

α, then C0(X) �α Cn ∼= C0(X) ⊗ C∗(Cn) ∼= C0(X) ⊗ C0(Ĉ
n) ∼= C0(E), where

E is a trivial rank-n complex vector bundle over X. (We have used Pontrjagin
duality and the fact that abelian groups are amenable.) It follows that K(C0(X)) ∼=
K(C0(X) �α Cn). Since any action α of Cn is homotopic to the trivial action
and “K-theory is supposed to be homotopy invariant,” that suggests that perhaps
KK(A) ∼= KK(A �α Cn) for any C∗-algebra A and for any action α of Cn. This
is indeed true and the isomorphism is implemented by classes (which are inverse
to one another) in KK(A,A�α Cn) and KK(A�α Cn, A). It is clearly enough to
prove this in the case n = 1, since we can always break a crossed product by Cn

up as an n-fold iterated crossed product.
That A and A �α C are always KK-equivalent or that they at least have the

same K-theory, or (this is equivalent since one can always suspend on both sides)
that A ⊗ C0(R) and A �α R are always KK-equivalent or that they at least have
the same K-theory for any action of R, is called Connes’ “Thom isomorphism”
(with the name “Thom” in quotes since the only connection with the classical
Thom isomorphism is the one we have already explained). Connes’ original proof
is relatively elementary, but only gives an isomorphism of K-groups, not a KK-
equivalence, and can be found in [13] or in [22, §10.2].

To illustrate Connes’ idea, let’s suppose A is unital and we have a class in
K0(A) represented by a projection p ∈ A. (One can always reduce to this special
case.) If α were to fix p, then 1 �→ p gives an equivariant map from C to A

and thus would induce a map of crossed products C � R ∼= C0(R̂) → A �α R or

C � C ∼= C0(Ĉ) → A �α C giving a map on K-theory β : Z → K0(A � C). The
image of [p] under the isomorphism K0(A) → K0(A�C) will be β(1). So the idea is
to show that one can modify the action to one fixing p (using a cocycle conjugacy)
without changing the isomorphism class of the crossed product.

There are now quite a number of proofs of Connes’ theorem available, each using
somewhat different techniques. We just mention a few of them. A proof using K-
theory of Wiener-Hopf extensions is given in [62]. There are also fancier proofs using
KK-theory. If α is a given action of R on A and if β is the trivial action, one can try
to construct KKR elements c ∈ KKR((A,α), (A, β)) and d ∈ KKR((A, β), (A,α))

which are inverses of each other in KKR. Then the morphism j of Section 2.1 sends
these to KK-equivalences j(c) and j(d) between A�α R and A�β R ∼= A⊗C0(R).

Another rather elegant approach, using KK-theory but not the equivariant
groups, may be found in [28]. Fack and Skandalis use the group KK1(A,B), which
we have avoided so far in order to simplify the theory, but it can be defined with
triples (H, φ, T ) like those used for KK(A,B), but with two modifications:

(1) H is no longer graded, and there is no grading condition on φ.
(2) T is self-adjoint but with no grading condition, and φ(a)(T 2 − 1) ∈ K(H)

and [φ(a), T ] ∈ K(H) for all a ∈ A.
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It turns out that KK1(A,B) ∼= KK(A⊗C0(R), B), and that the Kasparov product
can be extended to a graded commutative product on the direct sum ofKK = KK0

and KK1. The product of two classes in KK1 can by Bott periodicity be taken to
land in KK0.

We can now explain the proof of Fack and Skandalis as follows. They show that
for each separable C∗-algebra A with an action α of R, there is a special element
tα ∈ KK1(A,A�αR) (constructed using a singular integral operator). Note by the
way that doing the construction with the dual action and applying Takai duality
gives tα̂ ∈ KK1(A�αR, A), since (A�αR)�α̂R ∼= A⊗K, which is Morita equivalent
to A. These elements have the following properties:

(1) (Normalization) If A = C (so that necessarily α = 1 is trivial), then t1 ∈
KK1(C, C0(R)) is the usual generator of this group (which is isomorphic
to Z).

(2) (Naturality) The elements are natural with respect to equivariant homo-
morphisms ρ : (A,α) → (C, γ), in that if ρ̄ denotes the induced map on
crossed products, then ρ̄∗(tα) = ρ∗(tγ) ∈ KK(A,C �γ R), and similarly,
ρ̄∗(tγ̂) = ρ∗(tα̂) ∈ KK(A�α R, C).

(3) (Compatibility with external products) Given x ∈ KK(A,B) and y ∈
KK(C,D),

(tα̂ ⊗A x)� y = t
α̂⊗1C

⊗A⊗C (x� y).

Similarly, given x ∈ KK(B,A) and y ∈ KK(D,C),

y � (x⊗A tα) = (y � x)⊗C⊗A t1C⊗α. �

Theorem 2.1 (Fack-Skandalis [28]). These properties completely determine tα,
and tα is a KK-equivalence (of degree 1) between A and A�α R.

Proof. Suppose we have elements tα satisfying the properties above. Let us
first show that tα⊗A�αR tα̂ = 1A. For s ∈ R, let αs be the rescaled action αs

t = αst.
Then define an action β of R on B = C([0, 1], A) by (βtf)(s) = αs

t (f(s)). Let
gs : B → A be evaluation at s, which is clearly an equivariant map (B, β) � (A,αs).

We also get maps ĝs : B �β R → A �αs R, and the double dual map ˆ̂gs can be
identified with gs ⊗ 1: B ⊗ K → A ⊗ K. By Axiom (2), (ḡs)∗(tβ) = g∗s (tαs) and
(gs)∗(tβ̂) = ḡ∗s (tα̂s). Let σs = tαs ⊗A�αsR tα̂s ∈ KK(A,A). By associativity of

Kasparov products,

(gs)∗
(
tβ ⊗B�βR

tβ̂
)
= tβ ⊗B�βR

(
tβ̂ ⊗B [gs]

)
= tβ ⊗B�βR

(
[ḡs]⊗A�αsR tα̂s

)
=

(
tβ ⊗B�βR

[ḡs]
)
⊗A�αsR tα̂s

=
(
[gs]⊗A tαs

)
⊗A�αsR tα̂s

= [gs]⊗A σs.

Since gs is a homotopy of maps B → A and KK is homotopy-invariant, [gs] = [g0].
But g0 is a homotopy equivalence with homotopy inverse f : a �→ a ⊗ 1, so we see
that

σs = [f ]⊗B

(
tβ ⊗B�βR

tβ̂
)
⊗B [g0]

is independent of s. In particular, σ1 = tα ⊗A�αR tα̂ agrees with σ0, which can be
computed to be 1A by Axioms (1) and (3) since the action of R is trivial in this
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case. So tα ⊗A�αR tα̂ = 1A. Replacing α by α̂ and using Takai duality, this also
implies that tα̂ ⊗A tα = 1A�αR

. So tα and tα̂ give KK-equivalences.
The uniqueness falls out at the same time, since we see from the above that

[gs] ⊗A tαs = tβ ⊗B�βR
[ḡs] ∈ KK(B,A �αs R), and that all the KK-elements

involved are KK-equivalences. Furthermore, we know by Axioms (1) and (3) that
tα0 = 1A � t1, where t1 is the special element of KK1(C, C0(R)) mentioned in
Axiom (1). This determines tβ (from the identity [g0]⊗A tα0 = tβ ⊗B�βR

[ḡ0]), and
then tα is determined from the identity [g0]⊗A tα = tβ ⊗B�βR

[ḡ1]. �

2.5. The Pimsner-Voiculescu Theorem. Connes’ Theorem from Section
2.4 computes K-theory or KK-theory for crossed products by R. This can be
used to compute K-theory or KK-theory for crossed products by Z, using the fact
from Section 2.2 that if A is a C∗-algebra equipped with an action α of Z (or
equivalently, a single ∗-automorphism θ, the image of 1 ∈ Z under the action), then

A �α Z is Morita equivalent to
(
IndR

Z
(A,α)

)
� R. The algebra Tθ = IndR

Z
(A,α)

is often called the mapping torus of (A, θ); it can be identified with the algebra of
continuous functions f : [0, 1] → A with f(1) = θ(f(0)). It comes with an obvious
short exact sequence

0 → C0((0, 1), A) → Tθ → A → 0,

for which the associated exact sequence in K-theory has the form

· · · → K1(A)
1−θ∗−−−→ K1(A) → K0(Tθ) → K0(A)

1−θ∗−−−→ K0(A) → · · · .

Since

K0(A�α Z) ∼= K0(Tθ �Indα R) ∼= K1(Tθ),

and similarly for K0, we obtain the Pimsner-Voiculescu exact sequence

(2.1)
· · · → K1(A)

1−θ∗−−−→ K1(A) → K1(A�α Z) →

→ K0(A)
1−θ∗−−−→ K0(A) → K0(A�α Z) → · · · .

Here one can check that the mapsKj(A) → Kj(A�αZ) are induced by the inclusion
of A into the crossed product. For another proof, closer to the original argument
of Pimsner and Voiculescu, see [22, Ch. 5].

2.6. The Baum-Connes Conjecture. The theorems of Connes and Pims-
ner-Voiculescu on K-theory of crossed products by R and Z suggest the question
of whether there are similar results for other groups G. In particular, one would
like to know if the K-theory of C∗

r (G), or better still, the K-theory of reduced
crossed products A � G, can be computed in a “topological” way. The answer in
many cases seems to be “yes,” and the conjectured answer is what is usually called
the Baum-Connes Conjecture, with or without coefficients. The special case of the
Baum-Connes Conjecture (without coefficients) for connected Lie groups is also
known as the Connes-Kasparov Conjecture, and is now a known theorem [76, 45].

The Baum-Connes conjecture also has other origins, such as the Novikov Con-
jecture on higher signatures and conjectures about algebraic K-theory of group
rings, which will be touched on in Reich’s lectures. These other motivations for the
conjecture mostly concern the case where G is discrete, which is actually the most
interesting case of the conjecture, though there are good reasons for not restricting
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only to this case. (For example, as we already saw in the case of Z, information
about discrete groups can often be obtained by embedding them in a Lie group.)

Here is the formal statement of the conjecture.

Conjecture 2.2 (Baum-Connes). Let G be a locally compact group, second-
countable for convenience. Let EG be the universal proper G-space. (This is a
contractible space on which G acts properly, characterized [6] up to G-homotopy
equivalence by two properties: that every compact subgroup of G has a fixed point
in EG, and that the two projections EG × EG → EG are G-homotopic. Here the
product space is given the diagonal G-action. If G has no compact subgroups, then
EG is the usual universal free G-space EG.) There is an assembly map

lim−→
X⊆EG

X/G compact

KG
∗ (X) → K∗(C

∗
r (G))

defined by taking G-indices of G-invariant elliptic operators, and this map is an
isomorphism.

Conjecture 2.3 (Baum-Connes with coefficients). With notation as in Con-
jecture 2.2, if A is any separable G-C∗-algebra, the assembly map

lim−→
X⊆EG

X/G compact

KKG
∗ (C0(X), A) → K∗(A�r G)

is an isomorphism.

Let’s see what the conjecture amounts to in some special cases. If G is compact,
EG can be taken to be a single point. The conjecture then asserts that the assembly
map KKG

∗ (pt, pt) → K∗(C
∗(G)) is an isomorphism. For G compact, C∗(G) is by

the Peter-Weyl Theorem the completed direct sum of matrix algebras
⊕

V End(V ),
where V runs over a set of representatives for the irreducible representations of
G. Thus K1(C

∗(G)) (remember this is topological K1) vanishes and K0(C
∗(G)) ∼=

R(G). The assembly map in this case is the Green-Julg isomorphism of Section
2.2. In fact, the same holds with coefficients; the assembly map KKG

∗ (C, A) =
KG

∗ (A) → K∗(A�G) is the Green-Julg isomorphism, and Conjecture 2.3 is true.
Next, suppose G = R. Since G has no compact subgroups and is contractible,

we can take EG = R with R acting on itself by translations. If A is an R-C∗-alge-
bra, the assembly map is a map KKR

∗ (C0(R), A) → K∗(A � R). This map turns
out to be Kasparov’s morphism

j : KKR

∗ (C0(R), A) → KK∗(C0(R)�R, A�R) = KK∗(K, A�R) ∼= K∗(A� R),

which is the isomorphism of Connes’ Theorem (Section 2.4). (The isomorphism
C0(R) � R ∼= K is a special case of the Imprimitivity Theorem giving a Morita

equivalence between
(
IndG{1} A

)
�G and A, or, if you prefer, of Takai duality from

Section 2.3.) So again the conjecture is true.
Another good test case is G = Z. Then EG = EG = R, with Z acting by

translations and quotient space T. The left-hand side of the conjecture is thus
KKZ(C0(R), A), while the right-hand side is K(A�Z), which is computed by the
Pimsner-Voiculescu sequence.

More generally, suppose G is discrete and torsion-free. Then EG = EG, and
the quotient space EG/G is the usual classifying space BG. The assembly map
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(for the conjecture without coefficients) maps Kcpt
∗ (BG) → K∗(C

∗
r (G)). (The left-

hand side is K-homology with compact supports.) This map can be viewed as
an index map, since classes in the K-homology group on the left are represented
by generalized Dirac operators D over Spinc manifolds M with a G-covering, and
the assembly map takes such an operator to its “Mishchenko-Fomenko index” with
values in the K-theory of the (reduced) group C∗-algebra. The connection between
this assembly map and the usual sort of assembly map studied by topologists is
discussed in [68]. In particular, Conjecture 2.2 implies a strong form of the Novikov
Conjecture for G.

2.7. The approach of Meyer and Nest. An interesting alternative ap-
proach to the Baum-Connes Conjecture has been proposed by Meyer and Nest
[51, 52]. This approach is also briefly sketched (in somewhat simplified form) in
[22, §5.3] and in [69, Ch. 5]. Meyer and Nest begin by observing that the equivari-

ant KK-category, KKG, naturally has the structure of a triangulated category. It
has a distinguished class E of weak equivalences, morphisms f ∈ KKG(A,B) which
restrict to equivalences in KKH(A,B) for every compact subgroup H of G. (Note
that if G has no nontrivial compact subgroups, for example if G is discrete and
torsion-free, then this condition just says that f is a KK-equivalence after forget-
ting the G-equivariant structure.) The Baum-Connes Conjecture with coefficients,
Conjecture 2.3, basically amounts to the assertion that if f ∈ KKG(A,B) is in E ,
then jr(f) ∈ KK(A �r G,B �r G) is a KK-equivalence.5 In particular, suppose
G has no nontrivial compact subgroups and satisfies Conjecture 2.3. Then if A
is a G-C∗-algebra which, forgetting the G-action, is contractible, then the unique
morphism in KKG(0, A) is a weak equivalence, and so (applying jr), the unique
morphism in KK(0, A�r G) is a KK-equivalence. Thus A�r G is K-contractible,
i.e., all of its topological K-groups must vanish. When G = R, this follows from
Connes’ Theorem, and when G = Z, this follows from the Pimsner-Voiculescu exact
sequence, (2.1).

Now that we have several different formulations of the Baum-Connes Conjec-
ture, it is natural to ask how widely the conjecture is valid. Here are some of the
things that are known:

(1) There is no known counterexample to Conjecture 2.2 (Baum-Connes for
groups, without coefficients). Counterexamples are now known [29] to
Conjecture 2.3 with G discrete and A even commutative, and to a gener-
alization of Conjecture 2.2 for groupoids.

(2) Conjecture 2.3 is true if G is amenable, or more generally, if it is
a-T-menable, that is, if it has an affine, isometric and metrically proper
action on a Hilbert space [33]. Such groups include all Lie groups whose
noncompact semisimple factors are all locally isomorphic to SO(n, 1) or
SU(n, 1) for some n.

(3) Conjecture 2.2 is true for connected reductive Lie groups, connected re-
ductive p-adic groups, for hyperbolic discrete groups, and for cocompact
lattice subgroups of Sp(n, 1) or SL(3,C) [45].

5The reason for using jr in place of j for can be seen from the case of G nonamenable with
property T. In this case, C∗(G) has a projection corresponding to the trivial representation of G
which is “isolated,” and thus maps to 0 in C∗

r (G). So these two algebras do not have the same
K-theory. It turns out, at least in many examples, that K0(C∗

r (G)) can be described in purely
topological terms, but K0(C∗(G)) cannot.
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There is now a vast literature on this subject, but our intention here is not to
be exhaustive, but just to give the reader some flavor of what’s going on.

3. The universal coefficient theorem for KK and some of its
applications

3.1. Introduction to the UCT. Now that we have discussedKK andKKG,
a natural question arises: how computable are they? In particular, is KK(A,B)
determined by K∗(A) and by K∗(B)? Is KKG(A,B) determined by KG

∗ (A) and
by KG

∗ (B)?
A first step was taken by Kasparov [40]: he pointed out that KK(X,Y ) is

given by an explicit topological formula when the one-point compactifications X+

and Y+ are finite CW complexes: KK(X,Y ) ∼= K̃(Y+ ∧ D(X+)), where D(X+)
denotes the Spanier-Whitehead dual of X+.

6

Let’s make a definition — we say the pair of C∗-algebras (A,B) satisfies the
Universal Coefficient Theorem for KK (or UCT for short) if there is an exact
sequence

(3.1) 0 →
⊕

∗∈Z/2

Ext1
Z
(K∗(A),K∗+1(B)) → KK(A,B)

ϕ−→
⊕

∗∈Z/2

HomZ(K∗(A),K∗(B)) → 0.

Here ϕ sends a KK-class to the induced map on K-groups.
We need one more definition. Let B be the bootstrap category, the small-

est full subcategory of the separable C∗-algebras (with the ∗-homomorphisms as
morphisms) containing all separable type I algebras, and closed under extensions,
countable C∗-inductive limits, and KK-equivalences. Note that KK-equivalences
include Morita equivalences, and type I algebras include commutative algebras.
Recall from Section 1.2 that stably isomorphic separable C∗-algebras are Morita
equivalent, hence KK-equivalent. Furthermore, separable type I C∗-algebras are
inductive limits of finite iterated extensions of stably commutative C∗-algebras [53,
Ch. 6]. Thus we could just as well replace the words “type I” by “commutative” in
the definition of B. Furthermore, any compact metric space is a countable (projec-
tive) limit of finite CW complexes. Dualizing, this means that any unital separable
commutative C∗-algebra is a countable inductive limit (i.e., categorical colimit) of
algebras of the form C(X), X a finite CW complex, and any separable commuta-
tive C∗-algebra is a countable inductive limit (i.e., colimit) of algebras of the form
C0(X), X+ a finite CW complex. We will use this fact shortly.

Theorem 3.1 (Rosenberg-Schochet [71]). The UCT holds for all pairs (A,B)
with A an object in B and B separable.

Unsolved problem: Is every separable nuclear C∗-algebra in B? Skandalis [74]
showed that there are non-nuclear algebras not in B, for which the UCT fails.

6Spanier-Whitehead duality basically interchanges homology and cohomology. In other
words, the (reduced) homology of D(X+) is the (reduced) cohomology of X+, and vice versa.
∧ denotes the smash product, the product in the category of spaces with distinguished basepoint.
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3.2. The proof of Rosenberg and Schochet. First suppose K∗(B) is in-
jective as a Z-module, i.e., divisible as an abelian group. Then HomZ(— ,K∗(B))
is an exact functor, so A �→ HomZ(K∗(A),K∗(B)) gives a cohomology theory on
C∗-algebras. In particular, ϕ is a natural transformation of homology theories for
locally compact spaces(

X �→ KK∗(C0(X), B)
)
�

(
X �→ HomZ(K

∗(X),K∗(B))
)
.

Since ϕ is an isomorphism for X = Rn by Bott periodicity, it is an isomorphism
whenever X+ is a sphere, and thus (by the analogue of the Eilenberg-Steenrod
uniqueness theorem for generalized homology theories) whenever X+ is a finite
CW complex.

We extend to arbitrary locally compact X by taking limits, and then to the rest
of B, using the observations we made before the proof of the theorem. In order to
know we can pass to countable inductive limits, we need one additional fact about
KK, namely that it is “countably additive” (sends countable C∗-algebra direct
sums in the first variable to products of abelian groups). This fact is not hard
to check from Kasparov’s original definition. And the corresponding property for
A �→ HomZ(K∗(A),K∗(B)) is clear from the fact that topological K-theory sends
C∗-algebra direct sums (categorical coproducts) to direct sums of abelian groups,
while HomZ(—, K∗(B)) sends coproducts to products. So the theorem holds when
K∗(B) is injective.

The rest of the proof uses an idea due to Atiyah [3], of geometric resolutions.
The idea is that given arbitrary B, we can change it up to KK-equivalence so that
it fits into a short exact sequence

0 → C → B → D → 0

for which the induced K-theory sequence is short exact:

K∗(B) � K∗(D) � K∗−1(C)

and K∗(D), K∗(C) are Z-injective. Then we use the theorem for KK∗(A,D) and
KK∗(A,C), along with the long exact sequence in KK in the second variable, to
get the UCT for (A,B). �

3.3. The equivariant case. If one asks about the UCT in the equivariant
case, then the homological algebra of the ground ring R(G) becomes relevant. This
is not always well behaved, so, as noticed by Hodgkin [35], one needs restrictions on
G to get anywhere. But for G a connected compact Lie group with π1(G) torsion-
free, R(G) has finite global dimension, and the spectral sequence one ends up with
does converge to the right limit.

Theorem 3.2 (Rosenberg-Schochet [70]). If G is a connected compact Lie
group with π1(G) torsion-free, and if A, B are separable G-C∗-algebras with A in
a suitable bootstrap category containing all commutative G-C∗-algebras, then there
is a convergent spectral sequence

ExtpR(G)(K
G
∗ (A),KG

q+∗(A)) ⇒ KKG
∗ (A,B).

The proof is more complicated than in the non-equivariant case, but in the
same spirit.

Also along the same lines, there is a UCT for KK of real C∗-algebras, due to
Boersema [9]. The homological algebra involved in this case is appreciably more
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complicated than in the complex C∗-algebra case, and is based on ideas of Bousfield
[10] on the classification of K-local spectra. The trick is this: the coefficient ring
for real K-theory is “bad” (it doesn’t have finite homological dimension), so one
works instead with “united K-theory,” based on looking at real, complex, and “self-
conjugate”K-theory all at once. Rather remarkably, this gives a category with good
homological properties. So one first proves a UCT for “united” KK-theory, then
uses this to obtain a calculation of KK for real C∗-algebras in terms of the united
K-groups.

3.4. The categorical approach. The UCT implies a lot of interesting facts
about the bootstrap category B. Here are a few examples.

Theorem 3.3 (Rosenberg-Schochet [71]). Let A, B be C∗-algebras in B. Then
A and B are KK-equivalent if and only if they have isomorphic topological K-
groups.

Proof. ⇒ is trivial. So suppose K∗(A) ∼= K∗(B). Choose an isomorphism

ψ : K∗(A) → K∗(B).

Since the map ϕ in the UCT (3.1) is surjective, ψ is realized by a class x ∈
KK(A,B) (not necessarily unique, but just pick one).

Now consider the commutative diagram with exact rows

0 �� Ext1
Z
(K∗+1(B),K∗(A)) ��

ψ∗∼=
��

KK∗(B,A)
ϕ ��

x⊗B

��

Hom(K∗(B),K∗(A)) ��

ψ∗∼=
��

0

0 �� Ext1
Z
(K∗+1(A),K∗(A)) �� KK∗(A,A)

ϕ �� Hom(K∗(A),K∗(A)) �� 0

By the 5-Lemma, Kasparov product with x is an isomorphism KK∗(B,A) →
KK∗(A,A). In particular, there exists y ∈ KK(B,A) with x⊗B y = 1A. Similarly,
there exists z ∈ KK(B,A) with z ⊗A x = 1B . Then by associativity

z = z ⊗A (x⊗B y) = (z ⊗A x)⊗B y = y

and we have a KK-inverse to x. �

Corollary 3.4. We can also describe B as the smallest full subcategory of the
separable C∗-algebras closed under KK-equivalence and containing the separable
commutative C∗-algebras. A separable C∗-algebra A has the property that (A,B)
satisfies the UCT for all separable C∗-algebras B if and only if it lies in B.

Proof. Let B′ be the smallest full subcategory of the separable C∗-algebras
closed under KK-equivalence and containing the separable commutative C∗-alge-
bras. By definition of B, B′ is a subcategory of B. But if A is in B, its K-groups are
countable. For any countable groups G0 and G1, it is easy to construct a second-
countable locally compact space with these K-groups. So there is a separable
commutative C∗-algebra C0(Y ) with K∗(C0(Y )) ∼= K∗(A) (just as abelian groups).
By Theorem 3.3, there is a KK-equivalence between A and C0(Y ), so A lies in B′.

As far as the last statement is concerned, one direction is the UCT itself. For
the other direction, suppose that (A,B) satisfies the UCT for all separable C∗-alge-
bras B. In particular, it holds for a commutative B with the same K-groups as A,
and by the argument above, A is KK-equivalent to B, hence lies in B. �
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Recall that KK(A,A) = EndKK(A) is a ring under Kasparov product. We can
now compute the ring structure.

Theorem 3.5 (Rosenberg-Schochet). Suppose A is in B. In the UCT sequence

0 →
⊕
i∈Z/2

Ext1
Z
(Ki+1(A),Ki(A)) → KK(A,A)

ϕ−→
⊕
i∈Z/2

End(Ki(A)) → 0,

ϕ is a split surjective homomorphism of rings, and J = kerϕ (the Ext term) is an
ideal with J2 = 0.

Proof. Choose A0 and A1 commutative with K0(A0) ∼= K0(A), K1(A0) = 0,
K0(A1) = 0, K1(A1) ∼= K1(A). Then by Theorem 3.3, A0⊕A1 is KK-equivalent to
A, and without loss of generality, we may assume we have an actual splitting A =
A0 ⊕A1. By the UCT, KK(A0, A0) ∼= EndK0(A) and KK(A1, A1) ∼= EndK1(A).

So KK(A0, A0) ⊕KK(A1, A1) is a subring of KK(A,A) mapping isomorphi-
cally under ϕ. This shows ϕ is split surjective. We also have J = KK(A0, A1) ⊕
KK(A1, A0). If, say, x lies in the first summand and y in the second, then x⊗A1

y
induces the 0-map on K0(A) and so is 0 in KK(A0, A0) ∼= End(K0(A)). Similarly,
y⊗A0

x induces the 0-map on K1(A) and so is 0 in KK(A1, A1) ∼= End(K1(A)). �
3.5. The homotopy-theoretic approach. There is a homotopy-theoretic

approach to the UCT that topologists might find attractive; it seems to have been
discovered independently by several people (e.g., [12, 38] — see also the review of
[12] in MathSciNet). Let A and B be C∗-algebras and let K(A) and K(B) be their
topological K-theory spectra. These are module spectra over K = K(C), the usual
spectrum of complex K-theory. Then we can define

KKtop(A,B) = π0(HomK

(
K(A),K(B))

)
.

This again uses ideas of Bousfield [10].

Theorem 3.6. There is a natural map KK(A,B) → KKtop(A,B), and it’s
an isomorphism if and only if the UCT holds for the pair (A,B).

Observe that KKtop(A,B) even makes sense for Banach algebras, and always
comes with a UCT.

We promised in Section 1 to show that defining KK(X,Y ) to be the set of
natural transformations

(Z �→ K(X × Z)) � (Z �→ K(Y × Z))

indeed agrees with Kasparov’s KK(C0(X), C0(Y )). Indeed, Z �→ K(X ×Z) is ba-
sically the cohomology theory defined by K(X), and Z �→ K(Y ×Z) is similarly the
cohomology theory defined by K(Y ). So the natural transformations (commuting
with Bott periodicity) are basically a model for KKtop(C0(X), C0(Y )).

3.6. Topological applications. The UCT can be used to prove facts about
topological K-theory which on their face have nothing to do with C∗-algebras or
KK. For example, we have the following purely topological fact:

Theorem 3.7. Let X and Y be locally compact spaces such that K∗(X) ∼=
K∗(Y ) just as abelian groups. Then the associated K-theory spectra K(X) and
K(Y ) are homotopy equivalent.

Proof. We have seen (Theorem 3.3) that the hypothesis implies C0(X) and
C0(Y ) are KK-equivalent, which gives the desired conclusion. �
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Note that this theorem is quite special to complex K-theory; it fails even for
ordinary cohomology (since one needs to consider the action of the Steenrod alge-
bra).

Similarly, the UCT implies facts about cohomology operations in complex K-
theory and K-theory mod p. For example, one has:

Theorem 3.8 (Rosenberg-Schochet [71]). The Z/2-graded ring of homology
operations for K(— ;Z/n) on the category of separable C∗-algebras is the exterior
algebra over Z/n on a single generator, the Bockstein β.

Theorem 3.9 (Araki-Toda [2], new proof by Rosenberg-Schochet in [71]).
There are exactly n admissible multiplications on K-theory mod n. When n is odd,
exactly one is commutative. When n = 2, neither is commutative.

3.7. Applications to C∗-algebras. Probably the most interesting applica-
tions of the UCT for KK are to the classification problem for nuclear C∗-algebras.
The Elliott program (to quote M. Rørdam from his review of the Kirchberg-Phillips
paper [43]) is to classify “all separable, nuclear C∗-algebras in terms of an invariant
that has K-theory as an important ingredient.” Kirchberg and Phillips have shown
how to do this for Kirchberg algebras, that is simple, purely infinite, separable and
nuclear C∗-algebras. The UCT for KK is a key ingredient.

Theorem 3.10 (Kirchberg-Phillips [43, 54]). Two stable Kirchberg algebras A
and B are isomorphic if and only if they are KK-equivalent; and moreover every
invertible element in KK(A,B) lifts to an isomorphism A → B. Similarly in the
unital case if one keeps track of [1A] ∈ K0(A).

We will not attempt to explain the proof of Kirchberg-Phillips, but it’s based
on the idea that a KK-class is given by a quasihomomorphism, which under the
specific hypotheses can be lifted to a true homomorphism. More recent results of
a somewhat similar nature may be found in [24, 23, 47].

Given the Kirchberg-Phillips result, one is still left with the question of de-
termining when two Kirchberg algebras are KK-equivalent. But those of “Cuntz
type” (like On)

7 lie in B, and Kirchberg and Phillips show that for all abelian groups
G0 and G1 and g ∈ G0, there is a nonunital Kirchberg algebra A ∈ B with these
K-groups, and there is a unital Kirchberg algebra A ∈ B with these K-groups and
with [1A] = g. So by the UCT, these algebras are classified by their K-groups.

The original work on the Elliott program dealt with the opposite extreme:
stably finite algebras. Here again, KK can play a useful role. Here is a typical
result from the vast literature:

Theorem 3.11 (Elliott [25]). If A and B are C∗-algebras of real rank 0 which
are inductive limits of certain “basic building blocks”, then any x ∈ KK(A,B)
preserving the “graded dimension range” can be lifted to a ∗-homomorphism A → B.
If x is a KK-equivalence, it can be lifted to an isomorphism.

The algebras considered in this theorem are automatically in the bootstrap
category B. This theorem applies, for example, to the irrational rotation algebras

7This is the fundamental example of a Kirchberg algebra, invented by Cuntz [18]. It is the
universal C∗-algebra generated by n isometries whose range projections are orthogonal and add to
1. Cuntz proved that it is simple, and showed that On ⊗K is a crossed product of a UHF algebra
(an inductive limit of matrix algebras) by an action of Z. But crossed products by Z preserve the
category B, because of the arguments in Sections 2.4 and 2.5. Thus On lies in B.
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Aθ, because of an amazing result by Elliott and Evans [26] that shows that these
algebras are indeed inductive limits of the required type.

4. A fundamental example in noncommutative geometry: topology and
geometry of the irrational rotation algebra

4.1. Basic facts about Aθ. We previously mentioned the algebra Aθ, defined
to be the crossed product C(T) �αθ

Z, where T is the circle group (thought of as
the unit circle in C) and where αθ sends the generator 1 ∈ Z to multiplication
by e2πiθ, i.e., rotation of the circle by an angle of 2πθ. This makes sense for any
θ ∈ R, but of course only the class of θ mod Z matters, so we might as well
take θ ∈ [0, 1). This algebra has two standard names: a rotation algebra (with
parameter θ), or irrational rotation algebra in the most important case of θ /∈ Q,
or a noncommutative (2-)torus, because of the fact that when θ = 0, we get back
simply C(T2), the continuous functions on the usual 2-torus. It is no exaggeration
to say that these C∗-algebras are the most important examples in (C∗-algebraic)
noncommutative geometry.

In this section we’ll try to lay out the basic facts about these algebras, without
attempting to prove everything or to explain the history of every result. The
standard references for a lot of this material are the fundamental papers of Rieffel
[61, 64]. A more extensive survey on this material can be found in [66].

We can describe the algebra Aθ quite concretely, using the definition of the
crossed product in Section 2.2. The algebra has two unitary generators U and V ,
one of them generating C(T) and the other corresponding to the generator of Z.
They satisfy the commutation relation

(4.1) UV = e2πiθV U.

The algebra Aθ is the completion of the noncommutative polynomials in U and
V . But because of the commutation relation, we can move all U ’s to the left and
all V ’s to the right in any noncommutative monomial in U and V , at the expense
of a scalar factor of modulus 1. Thus Aθ is the completion of the polynomials∑

m,n cm,nU
mV n (with only finitely many non-zero coefficients). In fact, every

element of Aθ is represented by a formal such infinite sum, but it is not so easy
to describe the C∗-algebra norm in terms of the sequence of Fourier coefficients
{cm,n}. The one thing we can say, since ‖U‖ = ‖V ‖ = 1, is that the C∗-norm is
bounded by the L1-norm, so that if the coefficients converge absolutely, then the
corresponding infinite sum does represent an element of Aθ. (But the converse is
false. This is classical when θ = 0, and amounts to the fact that there are continuous
functions whose Fourier series do not converge absolutely.)

The algebra Aθ has a canonical trace τ , i.e., a bounded linear functional with
τ (ab) = τ (ba) for all a, b ∈ Aθ. We normalize by taking τ (1) = 1. Usually we add
the condition that τ should send self-adjoint elements to real values, though when
θ is irrational, this is automatic. When θ = 0, τ is just integration with respect to
Haar measure on T2 (normalized to be a probability measure).

There is a basic dichotomy between two cases. If θ is irrational, then no different
powers of e2πiθ coincide. It is not too hard to show from this that Aθ is simple and
that there is a unique trace in this case, defined by the condition that τ (UmV n) = 0
if m �= 0 or n �= 0. (Recall we do require τ (1) = 1.) So τ simply picks out the
(0, 0) coefficient c0,0 from

∑
m,n cm,nU

mV n. On the other hand, if θ = p
q ∈ Q,
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then Aθ has a big center, and in fact Aθ is the algebra of sections of a bundle of
matrix algebras over T 2. In fact one can show in this case that Aθ

∼= EndT 2(V ),
the bundle endomorphisms of any complex line bundle V over T 2 with first Chern
class ≡ p (mod q) (times the usual generator of H2(T 2,Z)). The algebra has many
traces in this case, but it’s still convenient to let τ be the one with τ (UmV n) = 0
if m �= 0 or n �= 0. (This along with the condition that τ (1) = 1 then determines τ
uniquely.)

The K-theory of Aθ can be computed from the Pimsner-Voiculescu sequence of
Section 2.5. In fact, the main motivation of Pimsner and Voiculescu for developing
this sequence was to compute K∗(Aθ). Since αθ is isotopic to the trivial action,
regardless of the value of θ, the map 1 − α(1)∗ in (2.1) is always 0. Hence, just
as abelian groups, one always has K0(Aθ) ∼= K1(Aθ) ∼= Z2. But one wants more
than this; one wants a description of the generators. Tracing through the various
maps involved shows that one summand in K0 is generated by the rank-one free
module (or the projection 1), and that the two summands in K1 are generated by
U and V , respectively. But the interesting feature is the order structure on K0,
which comes from the inclusions of projective modules.8 Note that the trace gives
a homomorphism from K0(Aθ) to R, sending a projective module to the trace of
a self-adjoint projection (in some matrix algebra) representing it. (It’s a fact that
every idempotent in a C∗-algebra is similar to a self-adjoint one; see for example
[7, §4.6]. Since the trace takes real values on self-adjoint elements, the dimension
of a projection is real-valued.)

Theorem 4.1. If θ �∈ Q, the trace τ induces an isomorphism of K0(Aθ) with
Z+ θZ as ordered groups. If θ ∈ Q, then τ still sends K0(Aθ) to Z+ θZ (which is
equal to θZ in this case), but is no longer an isomorphism.

The original proof of this theorem was nonconstructive, i.e., it did not exhibit
a projective module of dimension θ that should be the missing generator of K0. We
will talk about this issue later in Section 4.3.

It follows from Theorem 4.1 that the irrational rotation algebras must split into
uncountably many Morita equivalence classes, since it is easy to see that Morita
equivalence preserves the ordering on K0, and since there are uncountably many
order isomorphism classes of subgroups of R of the form Z+ θZ. In fact, any order
isomorphism Z+ θZ → Z + θ′Z must be given by multiplication by some t �= 0 in
R, with the property that t ∈ Z+ θ′Z and tθ ∈ Z+ θ′Z. If we write t = cθ′ + d and
tθ = aθ′ + b, a, b, c, d ∈ Z, then

θ =

(
a b
c d

)
· θ′

for the usual action of 2 × 2 matrices by linear fractional transformations. Since
the Morita equivalence must be invertible, we also have(

a b
c d

)
∈ GL(2,Z).

So Morita equivalences of irrational rotation algebras correspond to the action of
GL(2,Z) by linear fractional transformations. The converse is also true.

8For any unital ring A and finitely generated projective modules P1 and P2, we say [P1] ≤ [P2]
in K0(A) if P1 is isomorphic to a submodule of P2.
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Theorem 4.2 (Rieffel). Any unital C∗-algebra Morita equivalent to an irra-
tional rotation algebra Aθ is a matrix algebra over Aθ′ with θ′ in the orbit of θ for
the action of GL(2,Z) on RP1 by linear fractional transformations. Every matrix
in GL(2,Z) gives rise to such a Morita equivalence.

This is not true by “general nonsense” but requires an explicit construction,
which arises from the following theorem of Rieffel:

Theorem 4.3 (Rieffel [63]). If G is a locally compact group with closed sub-
groups H and K, then H � (G/K) and (H\G)�K are Morita equivalent.

If we apply this with G = R, H = 2πZ, and K = 2πθZ, then H\G is the
usual model of T and (H\G) � K is Aθ, while H � (G/K) is A1/θ. The Morita
equivalence bimodule between these two algebras is a completion of S(R), with
the two generators of each algebra acting by translation and by multiplication by
an exponential, respectively. The reason why the two actions commute is that
translation by Z commutes with multiplication by e2πis, while translation by 1

θZ

commutes with multiplication by e2πiθs.

Since GL(2,Z) is generated by

(
−1 0
0 1

)
,

(
1 1
0 1

)
, and

(
0 1
1 0

)
, which act by

θ �→ −θ, θ �→ 1 + θ, and by θ �→ 1
θ , respectively, and since Aθ, A1+θ, and A−θ are

all isomorphic (since if U and V satisfy (4.1), U and V −1 satisfy the same relation
with θ replaced by −θ), Theorem 4.2 follows.

4.2. Basic facts about A∞
θ . One of the interesting things about Aθ is that it

behaves in many ways like a smooth manifold. That means that we should have an
analogue of the C∞ functions inside the algebra Aθ of “continuous” functions. To
find this, note that Aθ carries an action of the compact Lie group T2 via (z, w) ·U =
zU, (z, w) ·V = wV , for z, w ∈ T (viewed as complex numbers of modulus 1). This
is analogous to the action of T2 on itself by translations. The smooth subalgebra A∞

θ

is defined to be the set of C∞ vectors for this action, i.e., the elements a for which
(z, w) �→ (z, w) · a is C∞ as a map T2 → Aθ. Alternatively, we can describe A∞

θ

as the intersection of the domains of all polynomials in δ1 and δ2, the commuting
(unbounded) derivations obtained by differentiating the action. Since it is obvious
that δ1(U) = 2πiU and δ2(U) = 0, while δ2(V ) = 2πiV and δ1(V ) = 0, one readily
sees (as in the smooth case) that A∞

θ is a subalgebra and that it can be described
as

A∞
θ =

{∑
m,n

cm,nU
mV n | cm,n is rapidly decreasing

}
,

where “rapidly decreasing” means decreasing faster than the reciprocal of any pos-
itive polynomial in m and n. Thus A∞

θ is isomorphic as a topological vector space
(not as an algebra) to S(Z2) and then by Fourier transform to C∞(T2).

Proposition 4.4. The inclusion of A∞
θ into Aθ is “isospectral” (i.e., an ele-

ment of the subalgebra is invertible in the subalgebra if and only if it has an inverse
in the larger algebra), and thus the inclusion A∞

θ ↪→ Aθ induces an isomorphism
on K-theory.

Proof. Isospectral inclusions preserve K0 and (topological) K1, by the “Ka-
roubi density theorem,” so it is enough to prove the first statement. But this follows
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from the characterization of A∞
θ in terms of derivations, and the familiar identity

δj(a
−1) = −a−1δj(a)a

−1, iterated many times. �
From this Proposition, as well as the fact that there is no essential difference

between smooth and purely topological manifold topology in dimension 2, one might
be tempted to guess that Aθ and A∞

θ behave similarly in all important respects.
But a deep fact is that this is false; Aut(Aθ) and Aut(A∞

θ ) are quite different from
one another.

Theorem 4.5. If θ is irrational, every automorphism of A∞
θ is “orientation-

preserving,” i.e., the determinant of the induced map on K1(A
∞
θ ) ∼= K1(Aθ) ∼= Z2

is +1. On the other hand, Aθ has orientation-reversing automorphisms.

Comment: The first part of this is due to [21]. The second part is due to Elliott
and Evans [26, 25].

4.3. Geometry of vector bundles. In classical topology, vector bundles
play an important role in studying compact manifolds M . Recall Swan’s Theorem
([7, §1.7] or [22, §1.3.3]): there is an equivalence of categories between topologi-
cal (respectively, smooth) vector bundles over M and finitely generated projective
modules over C(M) (resp., C∞(M)), that comes from sending a vector bundle to
its module of continuous (or smooth) sections. Thus, in noncommutative geom-
etry, finitely generated projective modules play the same role as vector bundles.
Because of Proposition 4.4, when it comes to irrational rotation algebras, the “vec-
tor bundle” theory is essentially the same in both the continuous and C∞ cases,
in that every finitely generated projective module over Aθ is isomorphic to one
extended from a finitely generated projective module over A∞

θ , which is unique up
to isomorphism.

In general, K-theory gives the stable classification of vector bundles. The un-
stable classification is always more delicate, but, for Aθ, this too is known. It turns
out that the case of irrational θ is in a sense easier than the “classical” case of θ = 0,
since the “dimension” function given by the trace is a complete invariant when θ
is irrational, whereas when θ = 0, complex vector bundles over T2 are classified by
the pair consisting of the dimension and the first Chern class c1.

Theorem 4.6 (Rieffel [64]). For Aθ with θ irrational, complete cancellation
holds for finitely generated projective modules, i.e., if P ⊕ Q ∼= P ′ ⊕ Q as Aθ-
modules, for some finitely generated projective Aθ-modules P, P ′, Q, then P and P ′

are isomorphic. The isomorphism classes of projective submodules of a free Aθ-
module of rank n are distinguished by the trace, and are given exactly by elements
of K0(Aθ) ∼= Z+ θZ between 0 and n (inclusive).

Once one knows the classification of the “vector bundles,” in both the smooth
and continuous categories, a natural next step is to study “geometry” on them. In
his fundamental paper [15], Alain Connes explained how the theory of connections
and curvature in differential geometry can be carried over to the noncommutative
case, at least when one has an algebra A like Aθ with an action of a Lie group G
for which the “smooth subalgebra” A∞ is the set of C∞-vectors for the G-action
on A. (This of course applies here with G = T2 acting as we described above.)
Then if V is a finitely generated (right) A∞-module, a connection on V is a map
∇ : V → V ⊗ g∗ (g the Lie algebra of G) satisfying the usual Leibniz rule

∇X(v · a) = ∇X(v) · a+ v · (X · a), v ∈ V, a ∈ A∞, X ∈ g.
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Usually one requires a connection to be compatible with an inner product also.
Connections always exist and have a curvature 2-form Θ ∈ EndA(V )⊗

∧2
g∗ defined

as usual by
Θ(X,Y ) = ∇X∇Y −∇Y ∇X −∇[X,Y ].

Theorem 4.7 (Connes [15]). Every finitely generated projective module over

A∞
θ admits a connection of constant curvature (i.e., with the curvature in i

∧2
g∗).

The curvature can be taken to be 0 if and only if the module is free. More precisely,
on the projective module with “dimension” p + qθ > 0, p, q ∈ Z, the constant
curvature connections have curvature

Θ(δ1, δ2) =
2πiq

p+ qθ
.

Connes and Rieffel defined the notion of Yang-Mills energy of a connection,
precisely analogous to the classical case for smooth vector bundles over manifolds.
This is defined by

YM(∇) = −τEnd(V )

(
{Θ∇,Θ∇}

)
,

where {— ,—} is the natural bilinear form on 2-forms.

Theorem 4.8 (Connes and Rieffel [17, 65]). If V is a finitely generated pro-
jective module over A∞

θ , a connection ∇ on V gives a minimum for YM if and
only if it has constant curvature, and gives a critical point for YM if and only if
it is a direct sum of constant curvature connections (i.e., V has a decomposition
V1 ⊕ · · · ⊕ Vn with respect to which ∇ has a similar decomposition into connections
of constant curvature).

As we mentioned earlier, the original calculation of K0(Aθ) was nonconstruc-
tive, and the problem remained of explicitly exhibiting representatives for the
finitely generated projective modules. One answer is already implicit in what we
have explained: if P is a finitely generated projective A-module, then it gives rise
to a Morita equivalence between A and EndA(P ), so constructing all possible P ’s
is equivalent to finding all Morita equivalence bimodules for A. In the case of Aθ,
they are all similar to the bimodule we mentioned before between Aθ and A1/θ.
But one could ask for another answer to the problem, namely to give explicit repre-
sentatives for all the equivalence classes of projections in Aθ (or in matrix algebras
over it). Here two good solutions have been proposed, one by Rieffel [61] and one
by Boca [8]. Rieffel constructed explicit projections in Aθ of the form Uf+g+fU∗,
where f and g are functions of V . Boca instead constructed projections in terms of
theta-functions which can be described as follows: if X is an A-B Morita equiva-
lence bimodule as above, with A = Aθ, and if one can find an element ψ ∈ X with
〈ψ, ψ〉B = 1B , then A〈ψ, ψ〉 will be a projection in A. Boca’s projections come from
choosing ψ closely related to a Gaussian function in S(R).

4.4. Miscellaneous other facts about Aθ. Here we just mention a few
other things about the algebras Aθ. The work of Elliott and Evans [26, 25],
which we mentioned before, has more detailed implications for automorphisms and
endomorphisms of Aθ. Assuming θ is irrational, given any A ∈ GL(2,Z), there is
an automorphism of Aθ inducing the map A on K1(Aθ) ∼= Z2, and given any B ∈
End(Z2) (including 0!), there is a unital endomorphism of Aθ inducing the identity
on K0(Aθ) and the map B on K1(Aθ). Furthermore, the connected component of
the identity in Aut(Aθ) is topologically simple, and Aut(Aθ) is just an extension



APPLICATIONS OF NONCOMMUTATIVE GEOMETRY 121

of this connected group by GL(2,Z) [27]. All of this seems quite strange from the
perspective of ordinary manifold topology, since a self-map T 2 → T 2 inducing the
identity on K0(T 2) is of degree 1, and thus cannot induce the 0-map on K−1(T 2) ∼=
H1(T 2).

However, the endomorphisms constructed by Elliott’s procedure are unlikely
to be smooth. Kodaka [44] did construct some special smooth proper unital endo-
morphisms of irrational rotation algebras, but only when θ lies in a real quadratic
number field.

And one more structural fact about the algebras Aθ: they have real rank zero,
that is, finite linear combinations of projections are dense in the set of self-adjoint
elements.

5. Applications of the irrational rotation algebra in number theory and
physics

5.1. Applications to number theory. In this section we will discuss two
ways in which noncommutative tori arise in number theory: as “limit points” of the
moduli space of elliptic curves, and as noncommutative elliptic curves themselves.
These two points of view are interconnected, as is explained in [49, §4], which also
provides a good survey of this area, so this division is just for the purpose of giving
the reader a quick guide to the subject.

5.1.1. Noncommutative tori and the moduli space of elliptic curves. In complex
analysis or complex algebraic geometry, an elliptic curve is a complex manifold of
the form C/Λ, where Λ is a lattice, that is, a discrete cocompact subgroup, in the
vector group C. Note that Λ is then necessarily free abelian on two generators,
linearly independent over R. An elliptic curve is the same thing as a Riemann
surface of genus 1. The theory of elliptic functions shows that an elliptic curve
has an embedding into CP2 as a complex projective variety of dimension 1 and
degree 3. (In other words, it is the solution set of a homogeneous cubic polynomial
equation in three homogeneous coordinates.) If there is a complex number λ �= 0
with λΛ = Λ′, then multiplication by λ gives a holomorphic isomorphism from
C/Λ to C/Λ′, so we can identify these two elliptic curves as being identical (in the
holomorphic category). It is therefore no loss of generality to take Λ to be of the
form Z + τZ, with Im τ > 0, i.e., with τ ∈ h, the upper half-plane. Furthermore,
the isomorphism class of C/Λ only depends on the orbit of τ under the action of the
modular group Γ = SL(2,Z) on h by linear fractional transformations τ �→ aτ+b

cτ+d ,

since Γ is generated by

(
1 1
0 1

)
, which sends τ �→ τ + 1 and keeps Λ invariant,

and by

(
0 1
−1 0

)
, which sends τ �→ − 1

τ , and replaces Λ by 1
τ · Λ. In the other

direction, if there is a holomorphic isomorphism from C/Λ to C/Λ′, then lifting to
the universal covers gives a holomorphic map C → C with linear growth, which by
an application of Liouville’s Theorem has to be given by a linear polynomial. One
then quickly deduces that there is a a complex number λ �= 0 with λΛ = Λ′, and
so the moduli space of elliptic curves is precisely the quotient h/Γ. This is itself a
complex curve (1-dimensional complex manifold), but is noncompact.

Many problems in algebraic geometry and number theory have to do with
understanding limits of elliptic curves as one goes to infinity in the moduli space
h/Γ. In other words, one wants some sort of compactification of the moduli space.
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If we think of h as being an open disk in CP1, a natural way to compactify would
be to adjoin RP1 = R ∪ {∞} to h, then take the quotient. The problem, of course,
is that the action of Γ on RP1 is not proper, so the quotient is not Hausdorff. In
fact, the orbit of any irrational point θ ∈ R�Q is dense in RP1.

This is where irrational rotation algebras naturally fit in. In fact, we have al-
ready seen that if θ is irrational and B ∈ Γ, then AB·θ and Aθ are Morita equivalent.
Thus the orbit of θ ∈ R�Q under Γ 9 naturally parametrizes a Morita equivalence
class of noncommutative tori. This observation suggests that noncommutative tori
should be viewed as “limits” of degenerating elliptic curves.

5.1.2. Noncommutative tori as noncommutative elliptic curves. The other main
connection between noncommutative tori and algebraic geometry and arithmetic
comes from viewing them as noncommutative elliptic curves, by fixing a complex
structure. Of course, there is a big difference from the classical case. In addition
to a modular parameter τ ∈ h defining the complex structure, we also have the
noncommutativity parameter θ, which has no classical analogue. Just as there
are special elliptic curves (coming from imaginary quadratic number fields) with
complex multiplication, in other words, “extra” automorphisms with interesting
number-theoretic properties, Manin has proposed a program of studying noncom-
mutative elliptic curves with real multiplication [48], coming from real quadratic
number fields.

The study of noncommutative tori as noncommutative elliptic curves was done
largely by Polishchuk in a series of papers, notably [56], [57], and [58]. Fix some
irrational value of θ. If we think of δ1 and δ2 from Section 4.1 as corresponding to ∂

∂x

and ∂
∂y in the complex plane, then the ∂ operator of complex analysis, 1

2

(
∂
∂x + i ∂

∂y

)
,

is represented by 1
2 (δ1 + iδ2) =

i
2 (−iδ1 + δ2). More generally, the ∂ operator for

a more general “complex structure” on Aθ can be represented (up to a largely
irrelevant complex scalar factor) by the operator δτ = τδ1 + δ2, where τ is in
the lower half-plane.10 Then a holomorphic vector bundle over Aθ for this choice of
complex structure is a finitely generated projective (right) A∞

θ -module P , equipped

with a holomorphic connection, that is, an operator ∇ : P → P satisfying

(5.1) ∇(sa) = ∇(s)a+ sδτ (a).

Polishchuk then proved in [56] that the category C of holomorphic vector bundles
(P,∇) on (Aθ, τ ) is abelian, and is generated by the standard holomorphic bun-
dles (slight generalizations of the projective modules used above in Section 4.1 to
construct the Morita equivalence between Aθ and A1/θ, equipped with standard
holomorphic connections). More remarkably, the abelian category C can be recov-
ered from classical algebraic geometry, in the sense that C is equivalent to the heart
Cθ of a (nonstandard) t-structure defined by the parameter θ on the derived cate-
gory of coherent sheaves on the elliptic curve Eτ = C/(Z+ τZ). The definition of
Cθ uses something very much like the definition of stable vector bundle in geometric
invariant theory. In other words, one looks at the degree and rank of holomorphic
vector bundles over Eτ , and considers a “slope condition”: Cθ is built out of bundles

9More precisely, we should divide by the action of GL(2,Z), not SL(2,Z), but the usual
moduli space h/Γ can also be written as (h ∪ −h)/GL(2,Z), so that CP1/GL(2,Z) is a natural
compactification.

10It might have been easier to use δ1+τδ2 with τ ∈ h, but I’m trying to stick to Polishchuk’s
notational conventions. The parameter in h corresponding to his τ ∈ −h is 1

τ
.
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P for which deg(P ) ≥ θ rk(P ). Similarly, in [58], Polishchuk defines a category of
quasicoherent sheaves on (Aθ, τ ), and proves that it is abelian. Again he shows
that this category is equivalent to a subcategory, specified by the parameter θ, of
the derived category of quasicoherent sheaves on Eτ .

The next major step toward Manin’s real multiplication program may be found
in [57]. Here Polishchuk considers the case of Aθ with θ a quadratic irrational
number. (Thus θ /∈ Q, but Q(θ) is a real quadratic number field.) Then we may
assume there is a matrix g ∈ SL(2,Z) with gθ = θ, and g can be used to define
a nontrivial A∞

θ -A∞
θ bimodule Eg, which can be given a standard holomorphic

structure (5.1). Via tensor product over A∞
θ , we can define the tensor powers E⊗n,

and thus an associative graded algebra

(5.2) Bg(θ, τ ) =

∞⊕
n=0

H0(E⊗n
g ),

where H0(E⊗n
g ) is the space of “holomorphic sections” (i.e., the kernel of ∇) in

E⊗n
g . This turns out to be finite-dimensional for each n. The algebra structure

comes from the fact that the tensor product of two holomorphic sections is again
killed by ∇. (Note that H0(E⊗0) = ker δτ on A∞

θ , which is just the scalars.)
The algebra Bg(θ, τ ) can be viewed as the coordinate ring of a noncommutative
projective variety, and Polishchuk computes its Hilbert function.

A further step toward Manin’s theory of real multiplication was taken by Plazas
in [55]. Plazas actually gives explicit generators and relations for Bg(θ, τ ) in terms
of theta functions and theta constants, making the connection with number theory
that Manin had anticipated. In fact, Plazas proves that if the elliptic curve Eτ

is algebraic over a number field k, then the algebra Bg(θ, τ ) admits a rational
presentation over a finite algebraic extension of k. He also obtains some other
arithmetic results too technical to explain here.

5.2. Applications to physics. That the irrational rotation algebra has shown
up frequently in the physics literature is probably not surprising, given that one
of the most basic principles of quantum physics is the Heisenberg commutation
relation, which in the Weyl form11 becomes the fundamental relation (4.1), with θ
playing the role of Planck’s constant. In fact, noncommutative tori have appeared
in just about all areas of quantum physics, including quantum statistical mechan-
ics, condensed matter physics, and quantum field theory. However, here I will just
mention a few of the ways they have appeared in relation to string theory.

String theory is a fundamental particle theory in which point particles are
replaced by strings (that is, compact 1-manifolds, possibly with boundary) propa-
gating in space and time. The fundamental string is thus a field given by a map
from the string worldsheet Σ (a 2-manifold, given by the string propagating in time)
into a spacetime manifold X. To get a consistent theory of fundamental particles,
one usually requires the theory to be supersymmetric12 (so in particular, it involves

11It was Hermann Weyl who had the idea of exponentiating position and momentum to
unitary operators, to avoid the necessity of working with unbounded self-adjoint operators.

12Supersymmetry is a conjectured symmetry of physics that places bosons, particles like
photons that can “accumulate” in a single state, and fermions, particles like electrons that satisfy
the Pauli exclusion principle, on an equal footing. Such symmetry has not been observed yet
experimentally, but if it holds, it would impose significant constraints on elementary particle
theories.
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both fermions and bosons); then for reasons of anomaly cancellation, X has to
be 10-dimensional. Often it is taken to be a product of 4-dimensional Minkowski
space R4 with a Calabi-Yau 3-fold Y 6, that is, a compact complex Kähler mani-
fold of complex dimension 3 with an everywhere nonvanishing holomorphic 3-form.
Physicists often say that the theory is compactified on the compact manifold Y .

The basic idea of many of the applications of noncommutative tori to physics is
that under some circumstances, it seems that string theory, or other similar theories
(which include gauge theories, M-theory, and F-theory), should be compactified on
a noncommutative compact manifold, of which Aθ is the simplest example. (Indeed,
a product of Aθ’s with holomorphic structures, which we’ve argued above should be
considered to be noncommutative elliptic curves, can be considered to be a special
case of a noncommutative abelian variety, the simplest case of a noncommutative
Calabi-Yau.) This point of view is espoused in particular in the two classic papers
[16] and [73].

The first of these deals with matrix theory, which is a supersymmetric field
theory believed to be closely related to string theory. More precisely, Connes, Dou-
glas, and Schwarz consider two versions of matrix theory, the IKKT model (due
to Ishibashi, Kawai, Kitazawa, and Tsuchiya [37]) and the BFSS model (due to
Banks, Fischler, Shenker, and Susskind [5]). Matrix theory is a finite-dimensional
quantum theory (that is, the fields (X,Ψ) lie in a finite-dimensional space, which
for the IKKT model is C10|16 ×MN (C)); for example, the IKKT model is obtained
from ten-dimensional super-Yang-Mills gauge theory by “reduction to a point,” or
in other words, restricting the action functional to constant fields. But this model
leads to the action functional of superstring theory in the limit when the size N of
the matrices goes to infinity. The BFSS model roughly speaking corresponds to a
Wick rotation13 of the IKKT model. In any event, Connes, Douglas, and Schwarz
consider fields which satisfy a periodicity conditionXj+Rj = UjXjU

−1
j for j = 0, 1,

U0X1U
−1
0 = X1, U1X0U

−1
1 = X0, with the Ψα’s and Xj ’s for j > 1 commuting

with U0 and U1, and show that this leads to a theory living on Aθ for some value
of θ. From this point of view the significance of the noncommutativity parame-
ter θ is unclear, but later the authors identify this with a physical parameter that
transforms under an SL(2,Z) symmetry group acting by linear fractional transfor-
mations. (The SL(2,Z) symmetry is what is called S-duality, S for “strong-weak,”
in super-Yang-Mills gauge theory.)

The Seiberg-Witten paper [73] takes a somewhat more intuitive point of view,
and shows how string theory in flat space, in the presence of a constant but non-
zero B-field, leads to noncommutative tori. Thus we should digress and explain
what the B-field is; it is not quite the classical magnetic field of electromagnetism
(usually denoted by the same letter), but it serves a quite similar role. The B-field
is a differential 2-form on the spacetime manifold X; pulling back to the string
worldsheet Σ gives us a 2-form on Σ which can be integrated to give another term
(the Wess-Zumino term) in the string action functional. Seiberg and Witten argue
that turning on the B-field leads to an effective action which can be understood in
terms of spacetime becoming noncommutative.

Still another occurrence of noncommutative tori in string theory can be found
in [50]. (See also my book [69] for a more detailed exposition.) This also has to

13This is a trick often used by physicists, in which time t is replaced by it, so as to interchange
Lorentzian and Riemannian geometry.
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do with the B-field, though in a more subtle way. It turns out that in general
the B-field need not be globally well defined, and is only a locally defined 2-form.
(One can make rigorous sense of this using the notion of gerbes, which are nicely
described in [34].) However, H = dB is indeed a globally defined integral 3-form,
called the H-flux, which need not be exact. In fact, the form representing H can be
enhanced to specify a class H ∈ H3(X,Z) (the Dixmier-Douady class of the gerbe),
which is allowed to have a torsion component, and this is part of the topological
data defining a string theory.

The starting point for the appearance of noncommutative geometry is the anal-
ysis of what is called T-duality (T for “target space” or “torus”), which is an equiv-
alence between one string theory on a spacetime manifold X and a dual string

theory on another spacetime manifold X#. One expects that when X
p−→ Z is a

principal torus bundle (with fibers Tn) over a manifold Z, X# p#

−−→ Z is another
torus bundle over the same base Z, but with fibers that geometrically are the dual
tori to the fibers Tn of p. (When Λ ⊂ Rn is a lattice and Λ# is the dual lattice in
the dual space (Rn)∗, we call (Rn)∗/Λ# the dual torus to Rn/Λ.) When n = 1, one
can make this quite explicit, and the pair ([p], H) ∈ H2(Z,Z) × H3(X,Z), where

[p] is the equivalence class of the circle bundle X
p−→ Z, determines the dual pair

([p#], H#) ∈ H2(Z,Z) × H3(X#,Z). However, when n > 1, it can happen that
there is no T-dual in this sense. Varghese and I (in [50]) showed that one can
often explain these “missing T-duals” in terms of noncommutative geometry. For
example, when n = 2, the condition for existence of a (classical) T-dual is that
the edge homomorphism H3(X,Z) → E1,2

∞ ⊆ H1(Z,H2(T 2,Z)) ∼= H1(Z,Z) in the
Serre spectral sequence of the bundle p should send the H-flux H to 0. When this
is not the case, there is no classical T-dual, but there is a noncommutative T-dual,
which is a bundle of noncommutative tori over Z. For example, if X = T 3, H is the
usual generator of H3(X,Z) ∼= Z, Z = S1, and p is the trivial T 2-bundle T 3 → S1,
then the noncommutative T-dual is the group C∗-algebra A of the discrete Heisen-
berg group Γ = 〈U, V, W | W = [U, V ], [U,W ] = [V,W ] = 1〉. This C∗-algebra
is the algebra of sections of a bundle of algebras over S1, with the fiber over the
point e2πiθ being the noncommutative torus Aθ. (This fiber corresponds to unitary
representations of Γ sending the central element W to e2πiθ.) Confirmation that
this is the “right” T-dual comes for example from the calculation of the K-theory.
K∗(A) agrees with the H-twisted K-theory of X. However, X is the only princi-
pal T 2-bundle over Z, and without twisting, its K-theory is too big. We refer the
reader to [69] for a more complete explanation.
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Abstract. We consider groups G which have a cocompact, 3-manifold model
for the classifying space EG. We provide an algorithm for computing the ratio-
nalized equivariant K-homology of EG. Under the additional hypothesis that
the quotient 3-orbifold EG/G is geometrizable, the rationalized K-homology
groups coincide with the groups K∗(C∗

redG)⊗ Q. We illustrate our algorithm
on some concrete examples.

1. Introduction

We consider groups G which have a cocompact, 3-manifold model for the clas-
sifying space EG. For such groups, we are interested in computing the equivariant
K-homology of EG. We develop an algorithm to compute the rational equivariant
K-homology groups. If in addition we assume that the quotient 3-orbifold EG/G
is geometrizable, then G satisfies the Baum-Connes conjecture, and the rational
equivariant K-homology groups coincide with the groups K∗(C

∗
redG). These are

the rationalized (topological) K-theory groups of the reduced C∗-algebra of G.
Some general recipes exist for computing the rational K-theory of an arbitrary

group (see Lück and Oliver [LuO], as well as Lück [Lu1], [Lu2]). These general
recipes pass via the Chern character. They typically involve identifying certain
conjugacy classes of cyclic subgroups, their centralizers, and certain (group) ho-
mology computations. Similar formulas (with similar ingredients) appear in p-adic
K-theory, after tensoring with Qp (see for instance Adem [Ad]).

In contrast, our methods rely instead on the low-dimensionality of the model
for the classifying space EG. Given a description of the model space EG, our
procedure is entirely algorithmic, and returns the ranks of the K-homology groups.

Let us briefly outline the contents of this paper. In Section 2, we provide some
background material. Section 3 is devoted to explaining our algorithm, and the
requisite proofs showing that the algorithm gives the desired K-groups. In Section
4 we implement our algorithm on several concrete classes of examples. Section 5
has some concluding remarks.

c© 2012 J.-F. Lafont, I. J. Ortiz and R. J. Sánchez-Garćıa
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2. Background material

2.1. C∗-algebra. Given any discrete group G, one can form the associated
reduced C∗-algebra. This Banach algebra is obtained by looking at the action g �→
λg of G on the Hilbert space l2(G) of square summable complex-valued functions
on G, given by the left regular representation:

λg · f(h) = f
(
g−1h

)
g, h ∈ G, f ∈ l2(G).

The algebra C∗
r (G) is defined to be the operator norm closure of the linear span of

the operators λg inside the space B
(
l2(G)

)
of bounded linear operators on l2(G).

The Banach algebra C∗
r (G) encodes various analytic properties of the group G.

2.2. Topological K-theory. For a C∗-algebra A, the corresponding (topo-
logical) K-theory groups can be defined in the following manner. The group K0(A)
is defined to be the Grothendieck completion of the semi-group of finitely gener-
ated projective A-modules (with group operation given by direct sum). Since the
algebra A comes equipped with a topology, one has an induced topology on the
space GLn(A) of invertible (n × n)-matrices with entries in A, and as such one
can consider the group π0

(
GLn(A)

)
of connected components of GLn(A) (note

that this is indeed a group, not just a set). The group K1(A) is defined to be
limπ0

(
GLn(A)

)
, where the limit is taken with respect to the sequence of natural

inclusions of GLn(A) ↪→ GLn+1(A). The higher K-theory groups Kq(A) are sim-
ilarly defined to be limπq−1

(
GLn(A)

)
, for q ≥ 2. Alternatively, one can identify

the functors Kq(A) for all q ∈ Z via Bott 2-periodicity in q, i.e. Kq(A) ∼= Kq+2(A)
for all q.

2.3. Baum-Connes conjecture. Let us now recall the statement of the
Baum-Connes conjecture (see [BCH], [DL]). Given a discrete group G, there
exists a specific generalized equivariant homology theory having the property that,
if one evaluates it on a point ∗ with trivial G-action, the resulting homology groups
satisfy HG

n (∗) ∼= Kn(C
∗
r (G)). Now for any G-CW-complex X, one has an obvi-

ous equivariant map X → ∗. It follows from the basic properties of equivariant
homology theories that there is an induced assembly map:

HG
n (X) → HG

n (∗) ∼= Kn(C
∗
r (G)).

Associated to a discrete group G, we have a classifying space for proper actions EG.
The G-CW-complex EG is well-defined up to G-equivariant homotopy equivalence,
and is characterized by the following two properties:

• if H ≤ G is any infinite subgroup of G, then EGH = ∅, and
• if H ≤ G is any finite subgroup of G, then EGH is contractible.

The Baum-Connes conjecture states that the assembly map

HG
n (EG) → HG

n (∗) ∼= Kn(C
∗
r (G))

corresponding to EG is an isomorphism. For a thorough discussion of this topic,
we refer the reader to the book by Mislin and Valette [MV] or the survey article
by Lück and Reich [LuR].
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2.4. 3-orbifold groups. We are studying groups G having a cocompact 3-
manifold model for EG. Let X denote this specific model for the classifying space,
and for this section, we will further assume that the quotient 3-orbifold X/G is
geometrizable.

The validity of the Baum-Connes conjecture for fundamental groups of ori-
entable 3-manifolds has been established by Matthey, Oyono-Oyono, and Pitsch
[MOP, Thm. 1.1] (see also [MV, Thm. 5.18] or [LuR, Thm. 5.2]). The same ar-
gument works in the context of geometrizable 3-orbifolds. We provide some details
for the convenience of the reader.

Lemma 1. The Baum-Connes conjecture holds for the orbifold fundamental
group of geometrizable 3-orbifolds.

Proof. In fact, the stronger Baum-Connes property with coefficients holds for
this class of groups. This property states that a certain assembly map, associated
to a G-action on a separable C∗-algebra A, is an isomorphism (and recovers the
classical Baum-Connes conjecture when A = C). The coefficients version has better
inheritance properties, and in particular, is known to be inherited under graph
of groups constructions (amalgamations and HNN-extensions), see Oyono-Oyono
[O-O, Thm. 1.1].

The orbifold fundamental group of a geometrizable 3-orbifold can be expressed
as an iterated graph of groups, with all initial vertex groups being orbifold funda-
mental groups of geometric 3-orbifolds. Geometric 3-orbifolds are cofinite volume
quotients of one of the eight 3-dimensional geometries. Combined with Oyono-
Oyono’s result, the Lemma reduces to establishing the property for the orbifold
fundamental group of finite volume geometric 3-orbifolds.

The fundamental work of Higson and Kasparov [HK] established the Baum-
Connes property with coefficients for all groups satisfying the Haagerup property.
We refer the reader to the monograph [CCJJV] for a detailed exposition of the
Haagerup property. We will merely require the fact that groups acting with cofi-
nite volume on all eight 3-dimensional geometries (E3, S3, S2 × E1, H3, H2 × E1,

P̃ SL2(R), Nil, and Sol) always have the Haagerup property, which will conclude
the proof of the Lemma.

For the five geometries E3, S3, S2 × E1, Nil, and Sol, any group acting on
these will be amenable, and hence satisfy the Haagerup property. Lattices inside
groups locally isomorphic to SO(n, 1) are Haagerup (see [CCJJV, Thm. 4.0.1]),

and hence groups acting on the two geometries H3 and P̃ SL2(R) are Haagerup.
Finally, the Haagerup property is inherited by amenable extensions of Haagerup
groups (see [CCJJV, Example 6.1.6]). This implies that groups acting on H2×E1

are Haagerup, for any such group is a finite extension of a group which splits as a
product of Z with a lattice in SO(2, 1). This concludes the proof of the Lemma. �

Remark: If one assumes that the G-action is smooth and orientation preserving,
then Thurston’s geometrization conjecture (now a theorem) predicts that X/G is
a geometrizable 3-orbifold. The proof of the orbifold version of the conjecture was
originally outlined by Thurston, and was independently established by Boileau,
Leeb, and Porti [BLP] and Cooper, Hodgson, and Kerckhoff [CHK] (both loosely
following Thurston’s approach). The manifold version of the conjecture (i.e. trivial
isotropy groups) is of course due to the recent work of Perelman.
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Remark: If the quotient space X/G is not known to be geometrizable (for in-
stance, if the G-action is not smooth, or does not preserve the orientation), then
the argument in Lemma 1 does not apply. Nevertheless, our algorithm can still
be used to compute the rational equivariant K-homology of EG. It is however no
longer clear that this coincides with K(C∗

r (G))⊗Q.

2.5. Polyhedral CW-structures. Let us briefly comment on the G-CW-
structure of X. As the quotient space X/G is a connected 3-orbifold, we can
assume without loss of generality that the CW-structure contains a single orbit of
3-cell. Taking a representative 3-cell σ for the unique 3-cell orbit, we observe that
the closure of σ must contain representatives of each lower dimensional orbit of cells.
Indeed, if some lower dimensional cell had no orbit representatives contained in σ̄,
then there would be points in that lower dimensional cell with no neighborhood
homeomorphic to R3. Pulling back the 2-skeleton of the CW-structure via the
attaching map of the 3-cell σ, we obtain (i) a decomposition of the 2-sphere into
the pre-images of the individual cells, and (ii) an equivalence relation on the 2-
sphere, identifying together points which have the same image under the attaching
map. We note that the quotient space X/G can be reconstructed from this data.
If in addition we know the isotropy subgroups of points, then X itself can be
reconstructed from X/G. We will assume that we are given the G-action on X,
in the form of a partition and equivalence relation on the 2-sphere as above, along
with the isotropy data.

In some cases, one can find a G-CW-structure which is particularly simple: the
2-sphere coincides with the boundary of a polyhedron, the partition of the 2-sphere
is into the faces of the polyhedron, and the equivalence relation linearly identifies
together faces of the polyhedron. More precisely, we make the:

Definition 2. A polyhedral CW-structure is a CW-structure where each cell
is identified with the interior of a polyhedron Pi

∼= Dk, and the attaching map from
the boundary ∂Dk ∼= ∂Pi of a k-cell to the (k− 1)-skeleton, when restricted to each
s-dimensional face of ∂Pi, is a combinatorial homeomorphism onto an s-cell in the
(k − 1)-skeleton.

In the case where there is a polyhedral G-CW-structure on X with a single 3-
cell orbit, then our algorithms are particularly easy to implement. All the concrete
examples we will see in Section 4 come equipped with a polyhedral G-CW-structure.

Remark: It seems plausible that, if a G-CW-structure exists for a (topological)
G-action on a 3-manifold X, then a polyhedral G-CW-complex structure should
also exist. It also seems likely that, if a polyhedral G-CW-structure exists, then
the G-action on the 3-manifold X should be smoothable.

For some concrete examples of polyhedral G-CW-structures, consider the case
where X is either hyperbolic space H3 or Euclidean space R3, and the G-action is
via isometries. Then the desired G-equivariant polyhedral CW-complex structure
can be obtained by picking a suitable point p ∈ X, and considering the Voronoi
diagram with respect to the collection of points in the orbit G ·p. Another example,
where X is the 3-dimensional Nil-geometry, is discussed in Section 4.2.
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3. The algorithm

In this section, we describe the algorithm used to perform our computations.
Throughout this section, let G be a group with a smooth action on a 3-manifold,
providing a model for EG. We will assume that EG supports a polyhedral G-CW-
structure, and that P is a fundamental domain for the G-action on X, as described
in Section 2.5. So P is the polyhedron corresponding to the single 3-cell orbit,
and the orbit space BG is obtained from P by identifying various boundary faces
together. We emphasize that the polyhedral G-CW-structure assumption serves
only to facilitate the exposition: the algorithm works equally well with an arbitrary
G-CW-structure.

3.1. Spectral sequence analysis. As explained in the previous section, the
Baum-Connes conjecture provides an isomorphism:

HG
n (EG) → HG

n (∗) ∼= Kn(C
∗
r (G)).

We are interested in computing the equivariant homology group arising on the left
hand side of the assembly map. Since our group G is 3-dimensional, we will let
X denote the 3-dimensional manifold model for EG. To compute the equivariant
homology of X, one can use an Atiyah-Hirzebruch spectral sequence. Specifically,
there exists a spectral sequence (see [DL], or [Q, Section 8]), converging to the
group HG

n (X), with E2-terms obtained by taking the homology of the following
chain complex:

(1) · · · →
⊕

σ∈(X/G)(p+1)

Kq

(
C∗

r (Gσ)
)
→

⊕
σ∈(X/G)(p)

Kq

(
C∗

r (Gσ)
)
→ · · ·

In the above chain complex, (X/G)(i) consists of i-dimensional cells in the quotient
X/G, or equivalently, G-orbits of i-dimensional cells in X. The groups Gσ denote
the stabilizer of a cell in the orbit σ. Since our space X is 3-dimensional, we see
that our chain complex can only have non-zero terms in the range 0 ≤ p ≤ 3 (the
morphisms in the chain complex will be described later, see Section 3.3). Moreover,
since X is a model for EG, all the cell stabilizers Gσ must be finite subgroups of
G. For F a finite group, the groups Kq

(
C∗

r (F )
)
are easy to compute:

Kq

(
C∗

r (F )
)
=

{
0 if q is odd,

Zc(F ) if q is even.

Here, c(F ) denotes the number of conjugacy classes of elements in F . In fact, for q
even, Kq

(
C∗

r (F )
)
can be identified with the complex representation ring of F . This

immediately tells us that E2
pq = 0 for q odd. We will denote by C the chain complex

in equation (1) corresponding to the case where q is even. By the discussion above,
we know that Hp(C) = 0 except possibly in the range 0 ≤ p ≤ 3. We summarize
this discussion in the:

Fact 1: The only potentially non-vanishing terms on the E2-page (and hence any
Ek-page, k ≥ 2) occur when 0 ≤ p ≤ 3 and q is even.

Next we note that the differentials on the Ek-page of the spectral sequence
have bidegree (−k, k + 1), i.e. are of the form dkp,q : Ek

p,q → Ek
p−k,q+k−1. When

k = 2, alternating rows on the E2-page are zero (see Fact 1), which implies that
E3

p,q = E2
p,q. When k = 3, the differentials d3p,q shift horizontally by three units,
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and up by two units. So the only potentially non-zero differentials on the E3-page
are (up to vertical translation by the 2-periodicity in q) those of the form

d33,0 : E2
3,0

∼= E3
3,0 → E3

0,2
∼= E2

0,0.

Once we have k ≥ 4, the differentials dkp,q shift horizontally by k ≥ 4 units. But
Fact 1 tells us that the only non-zero terms occur in the vertical strip 0 ≤ p ≤ 3,
which forces E4

p,q
∼= E5

p,q
∼= · · · for all p, q. In other words, the spectral sequence

collapses at the E4-stage. Since the E2-terms are given by the homology of C, this
establishes:

Lemma 3. The groups Kq

(
C∗

r (G)
)
can be computed from the E4-page of the

spectral sequence, and coincide with

Kq

(
C∗

r (G)
)
=

{
H1(C)⊕ ker(d33,0) if q is odd,

coker(d33,0)⊕H2(C) if q is even,

where d33,0 : H3(C) → H0(C) is the differential appearing on the E3-page of the
spectral sequence.

Since we are only interested in the rationalized equivariant K-homology, we
can actually ignore the presence of any differentials: after tensoring with Q the
Atiyah-Hirzebruch spectral sequence collapses at the E2-page [Lu1, Remark 3.9].
Thus for q even,

Kq

(
C∗

r (G)
)
⊗Q ∼=

(
E2

0,q ⊗Q
)
⊕
(
E2

2,q−2 ⊗Q
) ∼= (H0(C)⊗Q)⊕ (H2(C)⊗Q) ,

and for q odd,

Kq

(
C∗

r (G)
)
⊗Q ∼=

(
E2

1,q−1 ⊗Q
)
⊕
(
E2

3,q−3 ⊗Q
) ∼= (H1(C)⊗Q)⊕ (H3(C)⊗Q) .

Lemma 4. The ranks of the groups Kq

(
C∗

r (G)
)
⊗Q are given by

rank
(
Kq

(
C∗

r (G)
)
⊗Q

)
=

{
rank

(
H1(C)⊗Q

)
+ rank

(
H3(C)⊗Q

)
if q is odd,

rank
(
H0(C)⊗Q

)
+ rank

(
H2(C)⊗Q

)
if q is even.

Remark: Alternatively this result follows directly from the equivariant Chern
character being a rational isomorphism [MV, Thm. 6.1].

In the next four sections, we explain how to algorithmically compute the ranks
of the four groups appearing in Lemma 4.

3.2. 1-skeleton of X/G and the group H0(C). For the group H0(C), we
make use of the result from [MV, Theorem 3.19]. For the convenience of the reader,
we restate the theorem:

Theorem 5. For G an arbitrary group, we have

H0(C)⊗Q ∼= Qcf(G),

where cf(G) denotes the number of conjugacy classes of elements of finite order in
the group G.

This reduces the computation of the rank ofH0(C)⊗Q to finding some algorithm
for computing the number cf(G). We now explain how one can compute the integer
cf(G) in terms of the 1-skeleton of the space X/G.
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For each cell σ in BG, we fix a reference cell σ̃ ∈ EG, having the property
that σ̃ maps to σ under the quotient map p : EG → BG. Associated to each cell
σ in BG, we have a finite subgroup Gσ̃ ≤ G, which is just the stabilizer of the
fixed pre-image σ̃ ∈ EG. Since the stabilizers of two distinct lifts σ̃, σ̃′ of the cell
σ are conjugate subgroups inside G, we note that the conjugacy class of the finite
subgroup Gσ̃ is independent of the choice of lift σ̃, and depends solely on the cell
σ ∈ BG. Now given a cell σ in BG with a boundary cell τ , we have associated
lifts σ̃, τ̃ . Of course, the lift τ̃ might not lie in the boundary of σ̃, but there exists
some other lift τ̃ ′ of τ which does lie in the boundary of σ̃. Clearly, we have an
inclusion Gσ̃ ↪→ Gτ̃ ′ . Fix an element gσ,τ ∈ G with the property that gσ,τ maps
the lift τ̃ ′ to the lift τ̃ . This gives us a map φτ

σ : Gσ̃ ↪→ Gτ̃ , obtained by composing
the inclusion Gσ̃ ↪→ Gτ̃ ′ with the isomorphism Gτ̃ ′ → Gτ̃ given by conjugation
by gσ,τ . Now the map φτ

σ isn’t well-defined, as there are different possible choices
for the element gσ,τ . However, if g′σ,τ represents a different choice of element, then

since both elements gσ,τ , g
′
σ,τ map τ̃ ′ to τ̃ , we see that the product

(
g′σ,τ

)(
gσ,τ )

−1

maps τ̃ to itself, and hence we obtain the equality g′σ,τ = h · gσ,τ , where h ∈ Gτ̃ .
This implies that the map φτ

σ is well-defined, up to post-composition by an inner
automorphism of Gτ̃ .

Consider the set F (G) consisting of the disjoint union of the finite groups Gṽ

where v ranges over vertices in the 0-skeleton (BG)(0) of BG. Form the smallest
equivalence relation ∼ on F (G) with the property that:

(i) for each vertex v ∈ (BG)(0), and elements g, h ∈ Gṽ which are conjugate
within Gṽ, we have g ∼ h, and

(ii) for each edge e ∈ (BG)(1) joining vertices v, w ∈ (BG)(0), and element g ∈ Gẽ,
we have φv

e(g) ∼ φw
e (g).

Note that, although the maps φτ
σ are not well-defined, the equivalence relation given

above is well-defined. Indeed, for any given edge e ∈ (BG)(1), the maps φv
e , φ

w
e are

only well-defined up to inner automorphisms of Gṽ, Gw̃. In view of property (i),
the resulting property (ii) is independent of the choice of representatives φv

e , φ
w
e .

For a finitely generated group, we let eq(G) denote the number of ∼ equivalence
classes on the corresponding set F (G). We can now establish:

Lemma 6. For G an arbitrary finitely generated group, we have cf(G) = eq(G).

Proof. Let us write g ≈ h if the elements g, h are conjugate in G. As each
element in F (G) is also an element in G, we now have the two equivalence relations
∼,≈ on the set F (G). It is immediate from the definition that g ∼ h implies g ≈ h.

Next, we argue that, for elements g, h ∈ F (G), g ≈ h implies g ∼ h. To see
this, assume that k ∈ G is a conjugating element, so g = khk−1. For the action
on EG, we know that g, h fix vertices ṽ, w̃ (respectively) in the 0-skeleton (EG)(0),
which project down to vertices v, w ∈ (BG)(0) (respectively). Since g = khk−1, we
also have that g fixes the vertex k ·w̃. The g fixed set EGg is contractible, so we can
find a path joining ṽ to k · w̃ inside the subcomplex EGg. Within this subcomplex,
we can push any path into the 1-skeleton, giving us a sequence of consecutive edges

within the graph
(
EGg

)(1) ⊆ (EG)(1) joining ṽ to k · w̃. This projects down to a

path in (BG)(1) joining the vertex v to the vertex w (as k · w̃ and w̃ lie in the same
G-orbit, they have the same projection). Using property (ii), the projected path
gives a sequence of elements g = g0 ∼ g1 ∼ · · · ∼ gk = h, where each pair gi, gi+1

are in the groups associated to consecutive vertices in the path.
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So we now have that the two equivalence relations ∼ and ≈ coincide on the set
F (G), and in particular, have the same number of equivalence classes. Of course,
the number of ∼ equivalence classes is precisely the number eq(G). On the other
hand, any element of finite order g in G must have non-trivial fixed set in EG. Since
the action is cellular, this forces the existence of a fixed vertex v̄ ∈ (EG)(0) (which
might not be unique). The vertex v̄ has an image vertex v ∈ (BG)(0) under the
quotient map, and hence g ≈ g̃ for some element g̃ in the set F (G), corresponding
to the subgroup Gṽ. This implies that the number of ≈ equivalence classes in F (G)
is equal to cf(G), concluding the proof. �

Remark: The procedure we described in this section works for any model for BG,
and would compute the β0 of the corresponding chain complex. On the other hand,
if one has a model for EG with the property that the quotient BG has few vertices
and edges, then it is fairly straightforward to calculate the number eq(G) from the
1-skeleton of BG. For the groups we are considering, we can use the model space
X. The 1-skeleton of BG is then a quotient of the 1-skeleton of the polyhedron P .
Along with Lemma 6, this allows us to easily compute the rank of H0(C) ⊗ Q for
the groups within our class.

3.3. Topology of X/G and the group H3(C). Our next step is to under-
stand the rank of the group H3(C)⊗ Q; this requires an understanding of the dif-
ferentials appearing in the chain complex C. In X, if we have a k-cell σ contained
in the closure of a (k + 1)-cell τ , then we have a natural inclusion of stabilizers
Gτ ↪→ Gσ. Applying the functor Kq

(
C∗

r (−)
)
, where q is even, we get an induced

morphism from the complex representation ring of Gτ to the complex representa-
tion ring of Gσ. Concretely, the image of a complex representation ρ of Gτ under
this morphism is the induced complex representation ρ ↑:= IndGσ

Gτ
ρ in Gσ, with

multiplicity given (as usual) by the degree of the attaching map from the boundary
sphere Sk = ∂τ to the sphere Sk = σ/∂σ. Note that conjugate representations
induce up to the same representation.

In the chain complex, the individual terms are indexed by orbits of cells in
X, rather than individual cells. To see what the chain map does, pick an orbit of
(k + 1)-cells, and fix an oriented representative τ . Then for each orbit of a k-cell,
one can look at the k-cells in that oriented orbit that are incident to τ , call them
σ1, . . . , σr. The stabilizer of each of the σi is a copy of the same group Gσ (where
the identification between these groups is well-defined up to inner automorphisms).
For each of these σi, the discussion in the previous paragraph allows us to obtain
a map on complex representation rings. Finally, one identifies the groups Gσi

with
the group Gσ, and take the sum of the maps on the complex representation rings.
This completes the description of the chain maps in the complex C.

Consider a representative σ for the single 3-cell orbit in the G-CW-complex X
(we can identify σ with the interior of the polyhedron P ). The stabilizer of σ must
be trivial (as any element stabilizing σ must stabilize all of X). We conclude that
C3 =

⊕
σ∈(X/G)(3) Kq

(
C∗

r (Gσ)
) ∼= Z, and the generator for this group is given by the

trivial representation of the trivial group. But inducing up the trivial representation
of the trivial group always gives the left regular representation, which is just the
sum of all irreducible representations. This tells us that, for each 2-cell in the
boundary of σ, the corresponding map on the K-group is non-trivial.
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Now when looking at the chain complex, the target of the differential is indexed
by orbits of 2-cells, rather than individual 2-cells. Each 2-cell orbit has either one
or two representatives lying in the boundary of σ. Whether there is one or two can
be decided as follows: look at the G-translate σ′ of σ which is adjacent to σ across
the given boundary 2-cell τ . Since X is a manifold model for EG, there is a unique
such σ′. As the stabilizer of the 3-cell is trivial, there is a unique element g ∈ G
which takes σ to σ′. Let τ ′ denote the pre-image g−1(τ ), a 2-cell in the boundary
of σ. Clearly g identifies together the cells τ, τ ′ in the quotient space X/G.

If τ = τ ′, then the cell τ descends to a boundary cell in quotient space X/G,
and the stabilizer of τ is isomorphic to Z2 (with non-trivial element given by g).
On the other hand, if τ �= τ ′, then τ descends to an interior cell in the quotient
space X/G, with trivial stabilizer.

Now if the 3-cell σ has a boundary 2-cell τ whose stabilizer is Z2, then the
orbit of τ intersects the boundary of σ in precisely τ . Looking at the coordi-
nate corresponding to the orbit of τ , we see that in this case the map Z −→⊕

f∈(X/G)(2)Kq

(
C∗

r (Gf )
)
in the chain complex is an injection, and hence that

E2
3,q = H3(C) = 0 for all even q.

The other possibility is that all boundary 2-cells are pairwise identified, in which
case the quotient space X/G is (topologically) a closed manifold. With respect to
the induced orientation on the boundary of σ, if any boundary 2-cell τ is identified
by an orientation preserving pairing to τ ′, then the quotient space X/G is a non-
orientable manifold. Focusing on the coordinate corresponding to the orbit of τ ,
we again see that the map Z −→

⊕
f∈(X/G)(2)Kq

(
C∗

r (Gf )
)
in the chain complex is

injective (the generator of Z maps to ±2 in the τ -coordinate). So in this case we
again conclude that E2

3,q = H3(C) = 0 for all even q.
Finally, we have the case where all pairs of boundary 2-cells are identified

together using orientation reversing pairings. Then the quotient space X/G is
(topologically) a closed orientable manifold. In this case, the corresponding map
Z −→

⊕
f∈X(2)Kq

(
C∗

r (Gf )
)
in the chain complex is just the zero map (the genera-

tor of Z maps to 0 in each τ -coordinate, due to the two occurrences with opposite
orientations). We summarize our discussion in the following:

Lemma 7. For our groups G, the third homology group H3(C) is either (i) iso-
morphic to Z, if the quotient space X/G is topologically a closed orientable manifold,
or (ii) trivial in all remaining cases.

Remark: In [MV, Lemma 3.21], it is shown that the comparison map from Hi(C)
to the ordinary homology of the quotient space Hi(BG;Z) is an isomorphism in all
degrees i > dim(EGsing)+1, and injective in degree i = dim(EGsing)+1. Note that
most of our Lemma 7 can also be deduced from this result. Indeed, our discussion
shows that, in case (i), the singular set is 1-dimensional (i.e. all cells of dimension
≥ 2 have trivial stabilizer), and hence H3(C) ∼= H3(X/G) ∼= Z. If X/G is non-
orientable, then [MV, Lemma 3.21] gives that H3(C) injects intoH3(X/G) ∼= Z2, so
our Lemma provides a bit more information. In the case where X/G has boundary,
[MV, Lemma 3.21] implies that H3(C) injects into H3(X/G) ∼= 0, so again recovers
our result. We chose to retain our original proof of Lemma 7, as a very similar
argument will be subsequently used to calculate H2(C) (which does not follow from
[MV, Lemma 3.21]).
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3.4. 2-skeleton of X/G and the rank of H2(C). Now we turn our attention
to the group H2(C). In order to describe this homology group, we will continue the
analysis initiated in the previous section. Recall that we have an explicit (com-
binatorial) polyhedron P which serves as a fundamental domain for the G-action.
We can view the quotient space X/G as obtained from the polyhedron P by iden-
tifying together certain faces of P . The CW-structure on X/G is induced from the
natural (combinatorial) CW-structure on the polyhedron P . The quotient space
X/G inherits the structure of a 3-dimensional orbifold. Note that, if we forget the
orbifold structure and just think about the underlying topological space, then X/G
is a compact manifold, with possibly non-empty boundary.

There is a close relationship between the isotropy of the cells inX/G, thought of
as a 3-orbifold, and the topology of X/G, viewed as a topological manifold. Indeed,
as was discussed in the previous Section 3.3, the stabilizer of any face σ of the
polyhedron P is either (i) trivial, or (ii) is isomorphic to Z2. In the first case, there
is an element in G which identifies the face σ with some other face of P . So at
the level of the quotient space X/G, σ maps to a 2-cell which lies in the interior
of the closed manifold X/G. In the second case, there are no other faces of the
polyhedron P that lie in the G-orbit of σ, and hence σ maps to a boundary 2-cell
of X/G. We summarize this analysis in the following

Fact 2: For any 2-cell σ in X/G, we have that:

i) σ lies in the boundary of X/G if and only if σ has isotropy Z2, and
ii) σ lies in the interior of X/G if and only if σ has trivial isotropy.

A similar analysis applies to 1-cells. Indeed, the stabilizer of any edge in the
polyhedron P must either be (i) a finite cyclic group, or (ii) a finite dihedral group.
But case (ii) can only occur if there is some orientation reversing isometry through
one of the faces containing the edge. This would force the edge to lie in the boundary
of the corresponding face, with the stabilizer of the face being Z2. In view of Fact
2, such an edge would have to lie in the boundary of X/G. Conversely, if one has an
edge in the boundary of X/G, then it has two adjacent faces (which might actually
coincide) in the boundary of X/G, each with stabilizer Z2, given by a reflection in
the face. In most cases, these two reflections will determine a dihedral stabilizer
for e; the exception occurs if the two incident faces have stabilizers which coincide
in G. In that case, the stabilizer of e will also be a Z2, and will coincide with the
stabilizers of the two incident faces. We summarize this discussion as our:

Fact 3: For any 1-cell e in X/G, we have that:

i) e lies in the interior of X/G if and only if e has isotropy a cyclic group, acting
by rotations around the edge,

ii) if e has isotropy a dihedral group, then e lies in the boundary of X/G,
iii) the remaining edges in the boundary ofX/G have stabilizer Z2, which coincides

with the Z2 stabilizer of the incident boundary faces.

With these observations in hand, we are now ready to calculate H2(C)⊗Q. In
order to understand this group, we need to understand the kernel of the morphism

Φ :
⊕

σ∈(X/G)(2)

K0

(
C∗

r (Gσ)
)
→

⊕
e∈(X/G)(1)

K0

(
C∗

r (Ge)
)
.
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Indeed, the group H2(C) is isomorphic to the quotient of ker(Φ) by a homomorphic
image of K0

(
C∗

r (Gτ )
) ∼= Z, where τ is a representative for the unique 3-cell orbit.

As such, we see that the rank of H2(C)⊗Q either coincides with the rank of ker(Φ),
or is one less than the rank of ker(Φ).

Our approach to analyzing ker(Φ) is to split up this group into smaller pieces,
which are more amenable to a geometric analysis. Let us introduce the notation
Φe, where e is an edge, for the composition of the map Φ with the projection onto
the summand K0

(
C∗

r (Ge)
)
. The next Lemma analyzes the behavior of the map Φ

in the vicinity of a boundary edge with stabilizer a dihedral group.

Lemma 8. Let e be a boundary edge, with stabilizer a dihedral group Dn. Then
we have:

(i) if σ is an incident interior face, then

Φe

(
K0

(
C∗

r (Gσ)
))

⊆ Z · 〈1, 1, . . . , 1, 1〉 ≤ K0

(
C∗

r (Dn)
)
,

(ii) if σ1, σ2 are the incident boundary faces, then

Φe

(
K0

(
C∗

r (Gσ1
)
)
⊕K0

(
C∗

r (Gσ2
)
))

∩ Z · 〈1, 1, . . . , 1, 1〉 = 〈0, . . . , 0〉.

Note that Lemma 8 tells us that, from the viewpoint of finding elements in
ker(Φ), boundary faces and interior faces that come together along an edge with
dihedral stabilizer have no interactions.

Proof. There are precisely two boundary faces which are incident to e, and
some indeterminate number of interior faces which are incident to e. From Fact 2,
the boundary faces each have corresponding Gσ

∼= Z2, while the interior faces each
have Gσ

∼= 1. For the boundary faces, we have

K0

(
C∗

r (Gσ)
)
= K0

(
C∗

r (Z2)
) ∼= Z⊕ Z

with generators given by the trivial representation and the sign representation of
the group Z2. The interior faces have K0

(
C∗

r (Gσ)
) ∼= Z, generated by the trivial

representation of the trivial group.
For each incidence of σ on e, the effect of Φe on the generator is obtained

by inducing up representations. But the trivial representation of the trivial group
always induces up to the left regular representation on the ambient group. The
latter is the sum of all irreducible representations, hence corresponds to the element
〈1, . . . , 1〉 ≤ K0

(
C∗

r (Zn)
)
. This tells us that, for each internal face, the image of Φe

lies in the subgroup Z · 〈1, 1, . . . , 1, 1〉, establishing (i).
On the other hand, an easy calculation (see Appendix A) shows that, if σ1, σ2 ∈

(X/G)(2) are the two boundary faces incident to e, then in the e-coordinate we have

Φe

(
K0

(
C∗

r (Gσ1
)
)
⊕K0

(
C∗

r (Gσ2
)
))

∩ Z · 〈1, 1, . . . , 1, 1〉 = 〈0, . . . , 0〉,

which is the statement of (ii). �

To analyze ker(Φ), we need to introduce some auxiliary spaces. Recall that
X/G is topologically a closed 3-manifold, possibly with boundary. We introduce
the following terminology for boundary components:

• a boundary component is dihedral if it has no edges with stabilizer Z2

(i.e. all its edges have stabilizers which are dihedral groups),
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• a boundary component is non-dihedral if it is not dihedral (i.e. it contains
at least one edge with stabilizer Z2),

• a dihedral boundary component is odd if it has no edges with stabilizer of
the form D2k (i.e. all its edges have stabilizers of the form D2k+1), and

• a dihedral boundary component is non-odd if it contains an edge e with
stabilizer of the formD2k (i.e. an edge whose stabilizer has order a multiple
of 4).

Let s denote the number of orientable non-odd dihedral boundary components, and
let t denote the number of orientable odd dihedral boundary components. Note that
it is straightforward to calculate the integers s, t from the polyhedral fundamental
domain P for the G-action on X.

Next, form the 2-complex Y by taking the union of the closure of all interior
faces of X/G, along with all the non-dihedral boundary components. We denote
by ∂Y ⊂ Y the subcomplex consisting of all non-dihedral boundary components.
By construction, ∂Y consists precisely of the subcomplex generated by the 2-cells
in Y ∩ ∂(X/G), so the choice of notation should cause no confusion. Let Z denote
the union of all dihedral boundary components of X/G.

By construction, every 2-cell in X/G appears either in Y or in Z, but not in
both. This gives rise to a decomposition of the indexing set (X/G)(2) = Y (2)

∐
Z(2),

which in turn yields a splitting:⊕
σ∈(X/G)(2)

K0

(
C∗

r (Gσ)
)
=

[ ⊕
σ∈Y (2)

K0

(
C∗

r (Gσ)
)]

⊕
[ ⊕
σ∈Z(2)

K0

(
C∗

r (Gσ)
)]
.

Let us denote by ΦY and ΦZ the restrictions of Φ to the first and second summands
described above. We then have the following:

Lemma 9. There is a splitting ker(Φ) = ker(ΦY )⊕ ker(ΦZ).

Proof. We clearly have the inclusion ker(Φ1) ⊕ ker(Φ2) ⊆ ker(Φ), so let us
focus on the opposite containment. If we have some arbitrary element v ∈ ker(Φ),
we can decompose v = vY + vZ , where we have vY ∈

⊕
σ∈Y (2) K0

(
C∗

r (Gσ)
)
, and

vZ ∈
⊕

σ∈Z(2) K0

(
C∗

r (Gσ)
)
. Let us first argue that vZ ∈ ker(ΦZ), i.e. that Φ(vZ) =

0. This is of course equivalent to showing that for every edge e, we have Φe(vZ) = 0.
Since vZ is supported on 2-cells lying in Z, it is clear that for any edge e �⊂ Z,

we have Φe(vZ) = 0. For edges e ⊂ Z, we have:

0 = Φe(v) = Φe(vY + vZ) = Φe(vY ) + Φe(vZ).

This tells us that Φe(vZ) = Φe(−vY ) lies in the intersection

(2) Φe

( ⊕
σ∈Y (2)

K0

(
C∗

r (Gσ)
))

∩ Φe

( ⊕
σ∈Z(2)

K0

(
C∗

r (Gσ)
))

.

But Y (2) contains all the interior faces incident to e, while Z(2) contains all boundary
faces incident to e. Since e ⊂ Z, and Z is the union of all dihedral boundary
components of X/G, we have that the stabilizer Ge must be dihedral. Applying
Lemma 8, we see that the intersection in equation (2) consists of just the zero
vector, and hence Φe(vZ) = 0.

Since we have shown that Φe(vZ) = 0 holds for all edges e, we obtain that
vZ ∈ ker(ΦZ), as desired. Finally, we have that

Φ(vY ) = Φ(v − vZ) = Φ(v)− Φ(vZ) = 0



RATIONAL EQUIVARIANT K-HOMOLOGY OF LOW DIMENSIONAL GROUPS 143

as both v, vZ are in the kernel of Φ. We conclude that vY ∈ ker(ΦY ), concluding
the proof of the Lemma. �

We now proceed to analyze each of ker(ΦY ), ker(ΦZ) separately. We start with:

Lemma 10. The group ker(ΦZ) is free abelian, of rank equal to s+ 2t.

Before establishing Lemma 10, recall that s, t counts the number of orientable
dihedral boundary components of X/G which are non-odd and odd, respectively.
From the definition of Z, we see that the number of connected components of the
space Z is precisely s+ t.

Proof. It is obvious that ker(ΦZ) decomposes as a direct sum of the kernels of
Φ restricted to the individual connected components of Z, which are precisely the
dihedral boundary components of X/G. So we can argue one dihedral boundary
component at a time. On a fixed dihedral boundary component, we have that each
2-cell contributes a Z⊕Z to the source of the map Φ, with canonical (ordered) basis
given by the trivial representation and the sign representation on Z2. Fix a bound-
ary edge e, and let σ1, σ2 be the two boundary faces incident to e. We assume that
the two faces are equipped with compatible orientations, and let (ai, bi) be elements
in the groups K0

(
C∗

r (Gσi
)
) ∼= Z ⊕ Z. Now assume that Φe

(
(a1, b1 | a2, b2)

)
= 0.

Then an easy computation (see Appendix A) shows that:

a) if e has stabilizer of the form D2k+1, then we must have a1 = a2 and b1 = b2,
b) if e has stabilizer of the form D2k, then we must have a1 = a2 = b1 = b2

(and since Z consists of dihedral boundary components, there are no edges e in
Z with stabilizer Z2). Note that reversing the orientation on one of the faces just
changes the sign of the corresponding entries. We can now calculate the contribution
of each boundary component to ker(ΦZ).

Non-orientable components: Any such boundary component contains an embedded
Möbius band. Without loss of generality, we can assume that the sequence of faces
σ1, . . . , σr cyclically encountered by this Möbius band are all distinct. At the cost of
flipping the orientations on σi, 2 ≤ i ≤ r, we can assume that consecutive pairs are
coherently oriented. Since we have a Möbius band, this forces the orientations of
σ1 and σr to be non-coherent along their common edge. So if we have an element
lying in ker(ΦZ), the coefficients along the cyclic sequence of faces must satisfy
(regardless of the edge stabilizers):

a1 = a2 = . . . = ak = −a1

b1 = b2 = . . . = bk = −b1

This forces a1 = b1 = 0. Regardless of the orientations and edge stabilizers, equa-
tions (a) and (b) imply that this propagates to force all coefficients to equal zero.
We conclude that any element in ker(ΦZ) must have all zero coefficients in the
2-cells corresponding to any non-orientable boundary component.

Orientable odd components: Fix a coherent orientation of all the 2-cells in the
boundary component. Then in view of equation (a) above, elements lying in ker(Φ)
must have all ai-coordinates equal, and all bi-coordinates equal (as one ranges over
2-cells within this fixed boundary component). This gives two degrees of freedom,
and hence such a boundary component contributes a Z2 to ker(ΦZ).
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Orientable non-odd components: Again, let us fix a coherent orientation of all the
2-cells in the boundary component. As in the odd component case, any element in
ker(ΦZ) must have all ai-coordinates equal, and all bi-coordinates equal. However,
the presence of a single edge with stabilizer of the form D2k forces, for the two
adjacent faces, to have corresponding a- and b-coordinates equal (see equation (b)
above). This in turn propagates to yield that all the a- and b-coordinates must be
equal. As such, we have one degree of freedom for elements in the kernel, and hence
such a boundary component contributes a single Z to ker(ΦZ). This concludes the
proof of Lemma 10. �

Next we focus on the group ker(ΦY ). We would like to relate ker(ΦY ) with the
second homology of the space Y . Let A denote the cellular chain complex for the
CW-complex Y , and let dY : A2 → A1 denote the differentials in the cellular chain
complex. Since Y is a 2-dimensional CW-complex, we have that H2(Y ) = ker(dY ).
Our next step is to establish:

Lemma 11. There is a split surjection φ : ker(ΦY ) → ker(dY ), providing a
direct sum decomposition ker(ΦY ) ∼= ker(φ)⊕ ker(dY ).

Proof. Let D ⊂ C denote the subcomplex of our original chain complex de-
termined by the subcollection of indices Y (k) ⊂ (X/G)(k). By construction, the
map ΦY we are interested in is the boundary operator ΦY : D2 → D1 appearing in
the chain complex D. We define the map

φ̂ : D2 =
⊕

σ∈Y (2)

K0

(
C∗

r (Gσ)
)
→

⊕
σ∈Y (2)

Z = A2

as the direct sum of maps φ̂σ : K0

(
C∗

r (Gσ)
)
→ Z, where:

• if Gσ is trivial, then φ̂σ : Z → Z takes the generator for K0

(
C∗

r (Gσ)
)
= Z

given by the trivial representation to the element 1 ∈ Z, and

• if Gσ = Z2, then φ̂σ : Z⊕Z → Z is given by φ̂σ(〈1, 0〉) = 1, φ̂σ(〈0, 1〉) = 0,
where, as usual, 〈1, 0〉, 〈0, 1〉 correspond to the trivial representation and
the sign representation respectively.

For any element z ∈ ker(ΦY ), a computation shows that (dY ◦ φ̂)(z) = 0, and hence

φ̂ restricts to a morphism φ : ker(ΦY ) → ker(dY ).
Next, we argue that the map φ : ker(ΦY ) → ker(dY ) is surjective. To see this,

we construct a map φ̄ : A2 → D2 as a direct sum of maps φ̄σ : Z → K0

(
C∗

r (Gσ)
)
.

In terms of our usual generating sets for the groups K0

(
C∗

r (Gσ)
)
, the maps φ̄σ are

given by:

• if Gσ is trivial, then φ̄σ : Z → Z is defined by φ̄σ(1) = 1, and
• if Gσ = Z2, then φ̄σ : Z → Z⊕ Z is defined by φ̄σ(1) = 〈1, 1〉.

We clearly have that φ̂ ◦ φ̄ : A2 → A2 is the identity, and an easy computation
shows that if z ∈ ker(dY ), then φ̄(z) ∈ ker(ΦY ). We conclude that the restriction
φ : ker(ΦY ) → ker(dY ) is surjective, and that the restriction of φ̄ to ker(dY ) provides
a splitting of this surjection. Since the map φ is a split surjection, we see that
ker(ΦY ) ∼= ker(dY )⊕ ker(φ), completing the proof of Lemma 11. �

So the last step is to identify ker(φ). Recall that Y is a 2-complex which
contains, as a subcomplex, the union of all boundary components of X/G which
have an edge with stabilizer Z2. This subcomplex was denoted by ∂Y ⊂ Y . We
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can again call a connected component in ∂Y odd if all its edges have stabilizers of
the form D2k+1, and non-odd otherwise (i.e. some edge has stabilizer of the form
D2k). Let t′ denote the number of orientable, odd connected components in ∂Y .
Then we have:

Lemma 12. The group ker(φ) is free abelian, of rank = t′.

Proof. From the definition of φ, it is easy to see what form an element in
ker(φ) must have: in terms of the splitting D2 =

⊕
σ∈Y (2) K0

(
C∗

r (Gσ)
)
, the el-

ement can only have non-zero terms in the coordinates corresponding to 2-cells
in ∂Y . Moreover, in the coordinates σ ∈ (∂Y )(2), the entries in the correspond-
ing K0

(
C∗

r (Gσ)
) ∼= Z ⊕ Z must lie in the subgroup Z · 〈0, 1〉. Finally, the fact

that the elements we are considering lie in ker(ΦY ) means that, at each edge
e ∈ (∂Y )(1), with incident edges σ1, σ2, we must have that the corresponding coef-
ficients 〈0, b1〉 ∈ K0

(
C∗

r (Gσ1
)
)
and 〈0, b2〉 ∈ K0

(
C∗

r (Gσ2
)
)
sum up to zero, i.e. that

b1 + b2 = 0. These properties almost characterize elements in ker(φ). Clearly, we
can again analyze the situation one connected component of ∂Y at a time. As in
the argument for Lemma 10, there are cases to consider:

Non-odd component: In the case where an element z ∈ ker(φ) is supported entirely
on a non-odd boundary component, there is one additional constraint. For the two
faces σ1, σ2 incident to the edge with stabilizer D2k, the fact that z ∈ ker(Φ) forces
the corresponding coefficients to satisfy b1 = b2 = a1 = a2 (see equation (b) in the
proof of Lemma 10). Since z ∈ ker(φ), we also have a1 = a2 = 0. This implies
that the coefficients b1 = b2 must also vanish. But then all the bi coefficients must
vanish. We conclude that any element z ∈ ker(φ) must have zero coefficients on all
2-cells contained in a non-odd component.

Odd component: In the case where an element z ∈ ker(φ) is supported entirely on an
odd boundary component, the conditions discussed above actually do characterize
an element in ker(φ). This is due to the fact that, at every edge, the bi components
are actually independent of the ai components (see equation (a) in the proof of
Lemma 10). But the description given above is just stating that the bi form the
coefficients for an (ordinary) 2-cycle in the boundary component. Such a 2-cycle
can only exist if the boundary component is orientable, in which case there is
a 1-dimensional family of such 2-cycles. We conclude that the orientable, odd
components each contribute a Z to ker(φ), while the non-orientable odd components
make no contributions.

Since t′ is the number of orientable, odd components in ∂Y , the Lemma follows. �

We now have all the required ingredients to establish:

Theorem 13. The group ker(Φ) is free abelian of rank s+ t′ + 2t+ β2(Y ).

Proof. Lemma 9 provides us with a splitting ker(Φ) = ker(ΦY ) ⊕ ker(ΦZ).
Lemma 10 shows that ker(ΦZ) is free abelian of rank = s + 2t. Lemma 11 yields
the splitting ker(ΦY ) ∼= ker(φ)⊕ ker(dY ). Finally, Lemma 12 tells us that ker(φ) is
free abelian of rank = t′, while the fact that Y is a 2-complex tells us that ker(dY )
is free abelian of rank = β2(Y ). �

As a consequence, we obtain the desired formula for β2(C).
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Corollary 14. For our groups G, we have that the rank of H2(C) ⊗ Q is
either:

• β2(Y ) if X/G is a closed, oriented, 3-manifold, or
• s+ t′ + 2t+ β2(Y )− 1 otherwise.

Remark: Corollary 14 gives us an algorithmically efficient method for computing
β2(C), as it merely requires counting certain boundary components of X/G (to
determine the integers s, t, t′), along with the calculation of the second Betti number
of an explicit 2-complex (for the β2(Y ) term).

3.5. Euler characteristic and the rank of H1(C). Using the procedure
described in the previous section, we will now assume that the ranks β0(C), β2(C),
and β3(C) have already been calculated. In order to compute the rank of H1(C)⊗Q,
we recall that any chain complex has an associated Euler characteristic. The latter
is defined to be the alternating sum of the ranks of the groups appearing in the
chain complex. It is an elementary exercise to verify that the Euler characteristic
also coincides with the alternating sum of the ranks of the homology groups of the
chain complex.

In our specific case, the Euler characteristic χ(C) of the chain complex C can
easily be calculated from the various groups Gσ, where σ ranges over the cells in
BG. Each cell σ in BG contributes (−1)dimσc(Gσ), where c(Gσ) is the number of
conjugacy classes in the stabilizer Gσ of the cell. Since the homology groups Hi(C)
vanish when i �= 0, 1, 2, 3, we also have the alternate formula

χ(C) = β0(C)− β1(C) + β2(C)− β3(C)

This allows us to solve for the rank of H1(C)⊗Q, yielding

Lemma 15. For our groups G, we have that the rank of H1(C) ⊗ Q coincides
with β1(C) = β0(C) + β2(C)− β3(C)− χ(C).

4. Some examples

We illustrate our algorithm by computing the rational topological K-theory of
several groups. The first two examples are classes of groups for which the topological
K-theory has already been computed. Since our algorithm does indeed recover
(rationally) the same results, these examples serve as a check on our method. The
last three examples provide some new computations.

The first example considers the particular case where G is additionally assumed
to be torsion-free. As a concrete special case, we deal with any semi-direct product
of Z2 with Z (the integral computation for these groups can be found in the recent
thesis of Isely [I]). The second example considers a finite extension of the integral
Heisenberg group by Z4. The integral topological K-theory (and algebraic K- and
L- theory) for this group has already been computed by Lück [Lu3].

The third and fourth classes of examples are hyperbolic Coxeter groups that
have previously been considered by Lafont, Ortiz, and Magurn in [LOM, Exam-
ple 7], and [LOM, Example 8] respectively (where their lower algebraic K-theory
was computed). The fifth example is an affine split crystallographic group, whose
algebraic K-theory has been studied by Farley and Ortiz [FO].
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4.1. Torsion-free examples. In the special case where G is torsion-free, our
algorithm becomes particularly simple, as we now proceed to explain.

Let G be a torsion-free group with a cocompact, 3-manifold model X for the
classifying space EG = EG. Firstly, recall that β0(C) = cf(G), where cf(G)
denotes the number of conjugacy classes of elements of finite order in G (our Lemma
6 provides a way of computing this integer from the 1-skeleton of X/G). Since G
is torsion-free, we obtain that β0(C) = 1.

Next, we consider the orbit space M := X/G. Recall that any boundary
component in the 3-manifold M gives 2-cells with stabilizer Z2. Since G is torsion-
free, the orbit space M has no boundary, hence is a closed 3-manifold. Then Lemma
7 tells us that

β3(C) =
{
1 if M orientable,

0 if M non-orientable.

To compute β2(C) we apply Corollary 14. The 2-simplex Y is just the 2-skeleton
of M and, as ∂M = ∅, we obtain that

β2(C) =
{
β2(Y ) if M orientable,

β2(Y )− 1 if M non-orientable.

Note that the 2nd Betti number of Y = M (2) can be deduced from that of M , as
follows. Since M is obtained from Y by attaching a single 3-cell, the Mayer-Vietoris
exact sequence gives

0 �� H3(M) �
� �� H2(S

2)
g �� H2(Y )⊕H2(D

3) �� �� H2(M) �� 0

(Here D3 is the attaching 3-disk.) Recall that H2(S
2) ∼= Z and H2(D

3) = 0. Hence
if M is orientable, H3(M) ∼= Z, the image of the map g is then torsion and tensoring
with Q gives β2(Y ) = β2(M). If M is non-orientable, H3(M) = 0, the map g is
injective and we have β2(Y ) − 1 = β2(M). Hence in all cases we actually obtain
that β2(C) = β2(M).

To compute β1(C) we should find χ(C). Since G is torsion-free all the isotropy
groups are trivial and thus χ(C) = χ(M). Since M is a closed 3-manifold, χ(M)
and therefore χ(C) are zero. Finally, Lemma 15 gives

β1(C) = β0(C) + β2(C)− β3(C)− χ(C) = β2(M)− β3(C) + 1,

which simplifies to two cases:

β1(C) =
{
β2(M) if M is orientable,

β2(M) + 1 if M is not orientable.

Finally applying Lemma 4, we deduce the:

Corollary 16. Let G be a torsion-free group, and X be a cocompact 3-
manifold model for EG = EG. Assume that the quotient 3-manifold M = X/G is
geometrizable (this is automatic, for instance, if M is orientable). Then we have
that

rank (Kq(C
∗
r (G))⊗Q) = β2(M) + 1

holds for all q.
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Remark: The number above is the sum of the even-dimensional Betti numbers of
M (which coincides with the sum of the odd-dimensional Betti numbers of M , by
Poincaré duality) — compare this with the Remark after Lemma 4.

Remark: Note that for G torsion-free, the dimension of the singular part is −1
and hence Lemma 3.21 in [MV] gives Hi(C) ∼= Hi(M) for i > 0 and an injection
H0(C) ↪→ H0(M). From this it follows that βi(C) = βi(M) for i = 1, 2, 3 and
β0(C) = β0(M) since 1 ≤ β0(C) ≤ β0(M) = 1. This is shown above by direct
application of our algorithm.

Semi-direct product of Z2 and Z. For a concrete example of the torsion-free
case, consider a semi-direct product Gα = Z2 �α Z, where α ∈ Aut(Z2) = GL2(Z).
The automorphism α can be realized (at the level of the fundamental group) by an
affine self diffeomorphism of the 2-torus T 2 = S1 × S1, f : T 2 → T 2. The mapping
torus Mf of the map f yields a closed 3-manifold which is aspherical and satisfies
π1(Mf ) ∼= Gα. Hence it is a model of BGα and its universal cover a model of EGα.
SinceGα is torsion-free (as it is the semi-direct product of torsion-free groups), these
spaces are also models of BGα respectively EGα. In particular, these examples
fall under the purview of Corollary 16, telling us that rank (Kq(C

∗
r (Gα))⊗Q) =

β2(Mf ) + 1. To complete the calculation, we just need to compute the 2nd Betti
number of the 3-manifold Mf . This follows from a straightforward application of
the Leray-Serre spectral sequence. We have included the details in Appendix B and
here we only quote the result

β2(Mf ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3 if α = Id,

2 if det(α) = 1, tr(α) = 2, α �= Id,

1 if det(α) = 1, tr(α) �= 2,

1 if det(α) = −1, tr(α) = 0,

0 if det(α) = −1, tr(α) �= 0.

Adding 1 we obtain

Kq(C
∗
r (Gα))⊗Q ∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Q4 if α = Id,

Q3 if det(α) = 1, tr(α) = 2, α �= Id,

Q2 if det(α) = 1, tr(α) �= 2,

Q2 if det(α) = −1, tr(α) = 0,

Q if det(α) = −1, tr(α) �= 0.

These results agree with the integral computations in Isely’s thesis [I, pp. 5-7],
giving us a first check on our method.

4.2. Nilmanifold example. In the previous section, we discussed examples
where the group was torsion-free, and hence the quotient space was a closed 3-
manifold. In this next example, we have a group with torsion, but with quotient
space again a closed 3-manifold.

The real Heisenberg group Hei(R) is the Lie group of upper unitriangular, 3×3
matrices with real entries. It is naturally homeomorphic to R3. The integral Heisen-
berg group Hei(Z) is the discrete subgroup consisting of matrices whose entries are
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in Z. There is an automorphism σ ∈ Aut
(
Hei(R)

)
of order 4 given by:

σ :

⎡
⎣ 1 x z

0 1 y
0 0 1

⎤
⎦ �→

⎡
⎣ 1 −y z − xy

0 1 x
0 0 1

⎤
⎦ .

This automorphism restricts to an automorphism of the discrete subgroup Hei(Z),
allowing us to define the group G := Hei(Z)� Z4. An explicit presentation of the
group G is given by

G :=

〈
a, b, c, t

∣∣∣∣∣ [a, c] = [b, c] = 1, [a, b] = c, t4 = 1
tat−1 = b, tbt−1 = a−1, tct−1 = c

〉

where as usual, [x, y] denotes the commutator of the elements x, y. In the above
presentation, we are identifying the generators a, b, c with the matrices in Hei(Z)
given by

Ta =

⎡
⎣ 1 1 0

0 1 0
0 0 1

⎤
⎦ , Tb =

⎡
⎣ 1 0 0

0 1 1
0 0 1

⎤
⎦ , Tc =

⎡
⎣ 1 0 1

0 1 0
0 0 1

⎤
⎦ .

These generate the normal subgroup Hei(Z)  G, while the conjugation by the last
generator t acts via the automorphism σ ∈ Aut

(
Hei(Z)

)
.

The action of Hei(Z) on Hei(R) given by left multiplication and the action of
Z4 on Hei(R) given by the automorphism σ fit together to give an action of the
group G on Hei(R). It is shown in [Lu3, Lemma 2.4] that this action on Hei(R)
provides a cocompact model for EG, with orbit space G\EG homeomorphic to S3.
In order to apply our algorithm, we need to identify a G-CW-structure on Hei(R).
Let us identify R3 with Hei(R) via the map

(x, y, z) ↔

⎡
⎣ 1 x z

0 1 y
0 0 1

⎤
⎦ .

Via this identification, we will think of G as acting on R3.
The action of the index four subgroup Hei(Z)  G on R3

(n,m, l) · (x, y, z) = (x+ n, y +m, z + ny + l)

is free. The quotient space Hei(Z)\R3 can be identified in two steps. First, we
quotient out by the normal subgroup H := 〈Tb, Tc〉 ∼= Z ⊕ Z. On any hyperplane
given by fixing the x-coordinate x = x0, the subgroup H leaves the hyperplane
invariant, with the generators Tb, Tc translating by one in the y and z coordinates
respectively. Quotienting out by H, we obtain that H\R3 is homeomorphic to
R × T 2, where the T 2 refers to the standard torus obtained from the unit square
(centered at the origin) by identifying the opposite sides. The quotient Hei(Z)\R3

can now be identified by looking at the action of the quotient group Hei(Z)/H
on the space R × T 2. The generator for Z ∼= Hei(Z)/H, being the image of the
matrix Tx ∈ Hei(Z), acts by (x, y, z) �→ (x+ 1, y, z + y). Putting this together, we
see that a fundamental domain for the Hei(Z)-action on R3 is given by the unit
cube [−1/2, 1/2]3 centered at the origin. The quotient 3-manifold M := Hei(Z)\R3

can now be obtained from the cube via a suitable identification of the faces. The
manifold M can also be thought of as the mapping torus of the map φ : T 2 → T 2

given by (y, z) �→ (y, y + z) (mod 1).
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Figure 1. P = [0, 1
2 ]×[0, 1

2 ]×[− 1
2 ,

1
2 ] is a fundamental polyhedron

for the action ofG on R3. In the quotient space G\R3, vertices with
the same label are identified, as are edges with the same endpoints
and the same shading. The four edges with both endpoints labelled
C are identified with the upward orientation. All faces with the
same labels are identified in quotient space. Three edges (two in
the quotient) have non-trivial isotropy, as indicated.

Next, we identify a fundamental domain for the G-action on R3. Observe
that, since Hei(Z)  G, there is an induced G/Hei(Z) ∼= Z4 on M , and a natural
identification between G\R3 and Z4\M . The manifold M naturally fibers over T 2,
with fiber S1, via the projection onto the (x, y)-plane. The Z4 action preserves the
S1-fibers, so induces an action on the 2-torus T 2. At the level of the fundamental
domain [−1/2, 1/2]2 ⊂ R2 in the (x, y)-plane, the Z4-action is given by (x, y) �→
(−y, x). This tells us that a fundamental domain for the Z4-action can be obtained
by restricting to the square [0, 1/2] × [0, 1/2]. As far as the isotropy goes, there
are four points in T 2 with non-trivial stabilizer: the images of points (0, 0) and
(1/2, 1/2) both have stabilizer Z4, and the images of the points (0, 1/2) and (1/2, 0),
both have stabilizer Z2 (and lie in the same σ-orbit).

We conclude that a fundamental domain for the G-action on R3 is given by
the rectangular prism P := [0, 1/2] × [0, 1/2] × [−1/2, 1/2] ⊂ R3 (Figure 1). The
interior of P gives the single 3-cell orbit for the equivariant polyhedral G-CW-
structure on R3. For the isotropy groups, we just need to understand the action
on the four vertical lines lying above each of the four points (0, 0), (1/2, 0), (0, 1/2),
and (1/2, 1/2). It is easy to see that the vertical line (0, 0, z) consists entirely of
points with stabilizer Z4, while the vertical lines (1/2, 0, z) and (0, 1/2, z) both have
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stabilizer Z2. On the other hand, the action of the element of order 4 on the S1-
fiber above the point (1/2, 1/2) can be calculated, and consists of a rotation by π/4
on the S1-fiber. So the stabilizers for points on the line (1/2, 1/2, z) are all trivial.

The last task remaining is to identify the gluings on the boundary of P . First,
we have that the top and bottom squares of P are identified (via Tz ∈ G). Secondly,
the two sides incident to the z-axis get “folded together” by σ ∈ G (which rotates
the front face π/2 radians to the left side face). Finally, the element Tx◦σ maps the
hyperplane y = 1/2 (containing the back face) to the hyperplane x = 1/2 (contain-
ing the right side face). This element takes the line (0, 1/2, z) to the line (1/2, 0, z),
identifying together the corresponding edges of P . On the line of intersection of
these two hyperplanes, the element acts by (1/2, 1/2, z) �→ (1/2, 1/2, z + 1/4).
These give us the identifications between the faces of P , allowing us to obtain the
description of G\R3 shown in Figure 1.

Example 17. For the group G := Hei(Z) � Z4 described above, we have that

rank
(
K0

(
C∗

r (G)
)
⊗Q

)
= 5 and rank

(
K1

(
C∗

r (G)
)
⊗Q

)
= 5.

Before establishing this result, we note that this is consistent with the com-
putation by Lück, who showed that Kn

(
C∗

r (G)
) ∼= Z5 for all n (see [Lu3, Thm.

2.6]). This serves as a second check on our algorithm, and is, to the best of our
knowledge, the only example in the literature of an explicit computation for the
topological K-theory of a 3-orbifold group with non-trivial torsion.

Proof. We apply our algorithm, using the polyhedron P described above. For
the ∼ equivalence classes on F (G), we note that the quotient space G\R3 has three
vertices, one each with stabilizer Z4 (vertex A), Z2 (vertex B), and the trivial group
(vertex C). The edges joining distinct edges all have trivial stabilizer, allowing us
to identify all the identity elements together. We conclude that there are precisely
five ∼ equivalence classes, corresponding to the three non-trivial elements in the Z4

vertex stabilizer, the single non-trivial element in the Z2 vertex stabilizer, and the
equivalence class combining all the trivial elements. This gives rank(H0(C)⊗Q) = 5.

Next we consider the quotient space G\R3. The faces of P are pairwise iden-
tified, so the quotient space is a closed manifold. Moreover, with respect to the
induced orientation on ∂P , the identifications between the faces are orientation
reversing, so the quotient space is an orientable closed 3-manifold. Lemma 7 gives
us that H3(C) ∼= Z, and hence that rank(H3(C)⊗Q) = 1. Note that, as mentioned
earlier, [Lu3, Lemma 2.4] shows that the quotient space is actually a 3-sphere (but
we do not need this fact for our computation).

The quotient space has empty boundary, so s = t = t′ = 0. The 2-complex Y
is just the 2-skeleton of the quotient space. This is the image of the boundary of P
after performing the required identifications. As such, Y is constructed from two
squares, a triangle, and a hexagon (see Figure 2). Note that the square correspond-
ing to the front face of P (which also gets identified to the left face) folds up to a
cylinder in Y , as its top and bottom edge get identified together (leftmost cylinder
in Figure 2). The union of the hexagon and triangle, forming the back face of P
(which also gets identified to the right face), similarly folds up to another cylinder
in Y (rightmost cylinder in Figure 2). The two cylinders attach together along
a common boundary loop (image of the edge BB) to form a single long cylinder.
At one of the endpoints, the cylinder attaches to a single loop (image of the edge
CC) by a degree four map. So, ignoring for the time being the last square, we
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Figure 2. 2-skeleton of the quotient space G\R3. The four side
faces of the polyhedron P fold up into the two adjacent cylinders.
On the right, the boundary circle of the cylinder gets attached to
the circle by a degree 4 map. The top and bottom faces of P
get identified into a single square, which attaches to the cylinder
as indicated. The two loops in the cylinder based at A,B have
isotropy Z4 and Z2 respectively. All remaining points have trivial
isotropy.

have a subcomplex of Y which deformation retracts to S1 (as it coincides with the
mapping cylinder of the degree four map of S1). Up to homotopy, we conclude that
Y coincides with S1, along with a single square attached. The square comes from
the top face of P (which also gets identified with the bottom face), which, after
composing with the homotopy to S1, attaches to the S1 via a degree one map of
the boundary. This tells us that Y is homotopy equivalent to a 2-disk, and hence
is contractible. By Corollary 14, we conclude that rank

(
H2(C)⊗Q

)
= 0.

Finally, we compute the Euler characteristic of C. We have three vertices, one
each with stabilizer Z4, Z2, and trivial. This gives an overall contribution of +7
to χ(C). We have six edges, one with stabilizer Z4, one with stabilizer Z2, and the
remainder with trivial stabilizer. This contributes −10 to χ(C). There are four faces
with trivial stabilizer, contributing +4 to to χ(C). There is one 3-cell with trivial
stabilizer, contributing −1. Summing these up, we see that χ(C) = 7−10+4−1 = 0.
From Lemma 15, we see that rank

(
H1(C)⊗Q

)
= 4. Applying Lemma 4, we deduce

that both the rational K-groups have rank = 5, as claimed. �

4.3. Hyperbolic reflection groups - I. Consider the groups Λn, n ≥ 5,
given by the following presentation:

Λn :=

〈
y, z, xi, 1 ≤ i ≤ n

∣∣∣∣∣
y2, z2,

x2
i , (xixi+1)

2, (xiz)
3, (xiy)

3, 1 ≤ i ≤ n

〉

The groups Λn are Coxeter groups, and the presentation given above is in fact a
Coxeter presentation of the group.
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Figure 3. Hyperbolic polyhedron for Λ5. Ordinary edges have
internal dihedral angle π/3. Dotted edges have internal dihedral
angle π/2.

Example 18. For the groups Λn whose presentations are given above,

(1) the rank of K0

(
C∗

r (Λn)
)
⊗Q is equal to 3n+ 4,

(2) the rank of K1

(
C∗

r (Λn)
)
⊗Q is equal to n+ 1.

Proof. The groups Λn arise as hyperbolic reflection groups, with underlying
polyhedron P the product of an n-gon with an interval. This polyhedron has exactly
two faces which are n-gons, and the dihedral angle along the edges of these two
faces is π/3. All the remaining edges have dihedral angle π/2. An illustration of
the polyhedron associated to the group Λ5 is shown in Figure 3. We will take the
Λn action on X := H3, with fundamental polyhedron P , and quotient space X/Λn

coinciding with P . Note that this action is a model for EΛn, as finite subgroups F
of Λn have non-empty fixed sets (the center of mass of any F -orbit will be a fixed
point of F ), which must be convex subsets (and hence contractible). Both of these
last statements are consequences of the fact that the action is by isometries on a
space of non-positive curvature.

Applying the argument detailed in Section 3, we compute β0(C) by counting
equivalence classes on the set F (Λn). Since X/Λn = P , the set F (Λn) consists of 2n
copies of the group S4. Each individual S4 has five conjugacy classes, given by the
possible cycle structures of elements, with typical representatives: e, (12), (123),
(1234), (12)(34). Next we consider how the edges identify the individual conjugacy
classes to get the equivalence classes for ∼.

Firstly, all the individual identity elements will be identified together, yielding
a single ∼ class. So we will henceforth focus on non-identity classes. Each of
the edges on the top n-gon has stabilizer D3

∼= S3, which has three conjugacy
classes, represented by e, (12), (123). Under the inclusion into each adjacent vertex
stabilizers, representative elements for these classes map to representative elements
with the same cycle structure. So we see that all of the 3-cycles in the stabilizers
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of the vertices in the top n-gon lie in the same ∼ class, and likewise for all of the 2-
cycles. A similar analysis applies to the vertices in the bottom n-gon. Finally, each
vertical edge has stabilizer D2, and under the inclusion into the adjacent vertices,
has image generated by the two permutations (12) and (34) (and hence identifies
three conjugacy classes together). Putting all this together, we see that the ∼
equivalence classes consist of:

• one class consisting of all the identity elements in the individual vertex
groups,

• n classes of elements of order = 2, coming from the identification of cycles
of the form (12)(34) for each pair of vertices joined by a vertical edge,

• one class of elements of order = 2, coming from the cycles of the form (12)
in all vertex stabilizers,

• two classes of elements of order = 3, each coming from the cycles of the
form (123) in the top and bottom n-gon respectively, and

• 2n classes of elements of order = 4, each coming from the cycles of the
form (1234) in each individual vertex stabilizer.

We conclude that the β0(C) = rank
(
H0(C)⊗Q

)
= 3n+ 4.

Since our quotient space X/Λn = P is not a closed orientable manifold, Lemma
7 tells us that H3(C) = 0. To calculate β2(C) = rank

(
H2(C) ⊗ Q

)
, we apply

Corollary 14. There is a single boundary component for X/Λn = P , which is
orientable and non-odd (it contains edges with stabilizer D2), and contains no
edges with stabilizer Z2, so s = 1, t = 0, and t′ = 0. Also, there are no interior
2-cells, and the single boundary component is of dihedral type, so Y = ∅. By
Corollary 14, we conclude that rank

(
H2(C)⊗Q

)
= 0.

To calculate rank
(
H1(C) ⊗ Q

)
, we need the Euler characteristic of the chain

complex C. There are 2n vertices, all with stabilizers S4, which each have five
conjugacy classes. There are a total of 3n edges, n of which have stabilizer D2 (with
four conjugacy classes), and 2n of which have stabilizer D3 (with three conjugacy
classes). There are n+ 2 faces, with stabilizers Z2, which each have two conjugacy
classes. There is one 3-cell, with trivial stabilizer, with a single conjugacy class.
Putting this together, we have that

χ(C) =
(
5(2n)

)
−
(
3(2n) + 4(n)

)
+

(
2(n+ 2)

)
− 1 = 2n+ 3

Applying Lemma 15, we can now calculate:

rank
(
H1(C)⊗Q

)
= (3n+ 4)− (2n+ 3) = n+ 1

Finally, applying Lemma 4, we obtain the desired result. �

4.4. Hyperbolic reflection groups - II. Next, let us consider a somewhat
more complicated family of examples. For an integer n ≥ 2, we consider the group
Γn, defined by the following presentation:

Γn :=

〈
x1, . . . , x6

∣∣∣∣∣
x2
i , (x1x2)

n, (x1x5)
2, (x1x6)

2, (x3x4)
2, (x2x5)

2, (x2x6)
2

(x1x4)
3, (x2x3)

3, (x4x5)
3, (x4x6)

3, (x3x5)
3, (x3x6)

3

〉

Observe that the groups Γn are Coxeter groups, and that the presentation given
above is in fact a Coxeter presentation of the group.

Example 19. For the groups Γn whose presentations are given above, we have
that:
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Figure 4. Hyperbolic polyhedron for Γn. Ordinary edges have
internal dihedral angle π/3. Dotted edges have internal dihedral
angle π/2. The thick edge has internal dihedral angle π/n.

rank
(
K0

(
C∗

r (Γn)
)
⊗Q

)
=

{
3
2 (n− 1) + 12 n odd,
3
2n+ 14 n even,

rank
(
K1

(
C∗

r (Γn)
)
⊗Q

)
=

{
3 n odd,

2 n even.

Proof. To verify the results stated in this example, we first observe that the
Coxeter groups Γn arise as hyperbolic reflection groups, with underlying polyhedron
P a combinatorial cube. The geodesic polyhedron associated to Γn is shown in
Figure 4. Again, we set X := H3, with fundamental polyhedron P , and quotient
space X/Γn coinciding with P . As in the previous example, X is a model for EG.

To apply our procedure, we start by considering the equivalence relation ∼
on the set F (Γn). Out of the eight vertices of the cube P , six have stabilizer
isomorphic to S4, while the remaining two have stabilizer Dn × Z2. We will think
of Dn as the symmetries of a regular n-gon, and let r0, r1 denote the reflection
in a vertex, and in the midpoint of an adjacent side respectively (so r0, r1 are the
standard Coxeter generators for Dn). Recall that the number of conjugacy classes
of Dn depends on the parity of n: each rotation φ is only conjugate to its inverse
φ−1, while the reflections ri fall into one or two conjugacy classes, depending on
whether n is odd or even. Crossing with Z2, each of these conjugacy class in Dn

gives rise to two conjugacy classes in Dn × Z2: the image class under the obvious
inclusion Dn ↪→ Dn×Z2, and its “flipped” image, obtained by composing with the
non-trivial element τ in the Z2-factor. Next, we need to see how conjugacy classes
in the individual vertex stabilizers get identified together by the edge stabilizers.
After performing these identifications, we obtain that the ∼ equivalence classes
consist of:

• one class consisting of all the identity elements in the individual vertex
groups,
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• six classes of elements of order = 4, each coming from the cycles of the
form (1234) in the six individual S4 vertex stabilizers,

• one class of elements of order = 3, coming from the cycles of the form
(123) in the six S4 vertex stabilizers (these classes get identified together
via the edges with stabilizer D3),

• one class of elements of order = 2, comprised from the cycles of the form
(12) in the six S4 vertex stabilizers (identified via the edges with stabilizer
D3), along with the the three elements of the form (r0, 1), (r1, 1), (1, τ ) in
the two vertices with stabilizer Dn × Z2 (identified via the edges with
stabilizer D2),

• one class of elements of order = 2, consisting of the elements of cycle form
(12)(34) in the two S4 vertex stabilizers which are joined together by an
edge with stabilizer D2 (which identifies these elements together),

• two or four classes (according to the parity of n), coming from the two
elements of the form (r0, τ ) or (r1, τ ) in the two vertices with stabilizer
Dn×Z2 (these two elements lie in the same conjugacy class when n odd),
which are each identified to elements with cycle form (12)(34) in one of
the two adjacent S4 vertex stabilizers,

• n − 1 or n conjugacy classes (according to n odd or even respectively),
coming from elements of the form (φi, τ ) in each of the two vertices with
stabilizer Dn × Z2, and

• (n − 1)/2 or n/2 conjugacy classes (according to n odd or even respec-
tively), coming from the elements of the form (φi, 1) in the two vertices
with stabilizer Dn × Z2 (the elements in the two copies get identified
together via the edge with stabilizer Dn).

Summing this up, we find that rank
(
H0(C)⊗Q

)
is 3

2 (n− 1) + 12 if n is odd, and
3
2n+ 14 if n is even.

The quotient space X/Γn = P is a 3-manifold with non-empty boundary, so
Lemma 7 gives us that H3(C) = 0. The only boundary component is orientable
and non-odd, and contains no edges with stabilizer Z2, so s = 1 and t = t′ = 0.
Moreover, there are no interior faces, so Y = ∅. By Corollary 14, we conclude that
rank

(
H2(C)⊗Q

)
= 0.

Next, let us calculate the rank of H1(C)⊗Q. To do this, we first compute the
Euler characteristic χ(C). We have six vertices, four with stabilizer S4 (having five
conjugacy classes), and two with stabilizer Dn × Z2 (having either n + 3 or n + 6
conjugacy classes, depending on whether n is odd or even). There are twelve edges,
six with stabilizer D3 (with three conjugacy classes), five with stabilizer D2 (with
four conjugacy classes), and one with stabilizer Dn (with (n + 3)/2 or (n + 6)/2
conjugacy classes, depending on whether n is odd or even). There are six faces,
each with stabilizer Z2 (with two conjugacy classes each). Finally, there is one
3-cell with trivial stabilizer. Taking the alternating sum, we obtain that the Euler
characteristic is

χ(C) =
{

3
2 (n− 1) + 9 n odd,
3
2n+ 12 n even.

From Lemma 15, the difference between χ(C) and the rank of H0(C)⊗Q yields the
rank of H1(C) ⊗ Q, giving us that the latter is either 3 or 2 according to whether
n is odd or even. Applying Lemma 4, we obtain the desired result. �
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Figure 5. The polyhedron pictured here is an exact convex com-
pact fundamental polyhedron for the action of G on R3. The
dashed lines represent axes of rotation (through 180 degrees) for
certain elements of G. Note that the base of the figure is an equi-
lateral triangle, but the top is only isosceles.

4.5. Crystallographic group. Our next example is taken from the work of
Farley and Ortiz [FO]. Consider the lattice L ⊂ R3 generated by the three vectors

v1 =

(
2/3
−1/3
2/3

)
, v2 =

(
1
−1
0

)
, v3 =

(
0
−1
1

)
,

and let G = Sym(L) denote the subgroup of Isom(R3) which maps L to itself. The
group G is one of the seven maximal split 3-dimensional crystallographic groups,
and is discussed at length in [FO, Section 6.8].

A polyhedral fundamental domain P for the G-action on R3 is provided in
Figure 5. Next we describe the stabilizers of the various faces, edges, and vertices
of P (given in terms of the labeling in Figure 5).

Face stabilizers: The two triangles at the top (collectively labelled by S2), and the
two triangles at the bottom (labelled by S5) have trivial stabilizer. The three
quadrilateral sides (S1, S3, and S4) each have stabilizer Z2, generated by the re-
flection in the 2-plane extending the corresponding side.

Edge stabilizers: The three vertical edges in Figure 5 each have stabilizer D3, gen-
erated by the reflections in the two incident faces. The two dotted edges (in the
middle of the faces S2 and S5) have stabilizer Z2, generated by a rotation by π
centered on the edge. All remaining edges have stabilizer Z2, generated by the
reflection in the (unique) incident face whose isotropy is non-trivial. Note that,
when one passes to the quotient space X/G, the two triangles in the top face S2

get identified together by the π-rotation in the dotted line (and similarly for the
two triangles in the bottom face S5).

Vertex stabilizers: The two vertices (0, 0, 0) and (5/6,−1/6,−1/6) have stabilizer
D3 × Z2. The two vertices (1/4, 1/4, 1/4) and (2/3,−1/3,−1/3) have stabilizer
D3. Finally, the two vertices (1/2, 1/2, 0) and (1/3,−1/6, 1/3), the midpoints of
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the edges at which the dotted lines terminate, have stabilizer D2. The remaining
vertices of P are in the same orbit as one of the six described above.

Example 20. For the split crystallographic group G described above, we have

that rank
(
K0

(
C∗

r (Γn)
)
⊗Q

)
= 12 and rank

(
K1

(
C∗

r (Γn)
)
⊗Q

)
= 0.

Proof. We apply our algorithm, using the polyhedron P above. Our first
step is to consider the ∼ equivalence relation on the set F (G). The vertex and edge
stabilizers for P have been described above, and the ∼ equivalence classes are given
as follows:

• one class consisting of all the identity elements in the individual vertex
groups,

• one class consisting of all the elements of order 3 in the individual vertex
groups (these occur in the four vertices with stabilizer D3 or D3×Z2, and
are identified together via three consecutive edges with stabilizer D3),

• one class of elements of order 2, consisting of elements of order two in the
vertex groups isomorphic to D3, along with elements of order two in the
canonical D3-subgroup within the vertex groups isomorphic to D3 × Z2

(these are identified together via the three consecutive edges with stabi-
lizer D3), and the elements of the form (1, 0) in the two vertex groups
isomorphic to D2

∼= Z2×Z2 (identified together via the edges S1∩S2 and
S3 ∩ S5),

• two classes of elements of order 2, coming from each of the two dotted
edges: the rotation by π in the edge identifies the element (0, 1) in one
endpoint (vertex with stabilizer D2

∼= Z2 ×Z2) with the element which is
a product of a reflection in D3 with a reflection in Z2 in the other endpoint
(vertex with stabilizer D3 × Z2),

• six remaining classes, two each in the vertices with stabilizer D3×Z2 and
one each in those with stabilizer D2 (these classes aren’t identified to any
others via the edges).

Summing this up, we see that rank(H0(C)⊗Q) = 11.
Next, we note that the quotient space X/G is obtained from the polyhedron

P by “folding up” the top and bottom triangle along the dotted lines, resulting in
D3, a 3-manifold with non-empty boundary. Lemma 7 gives us that H3(C) = 0.
The only boundary component is orientable and odd, and contains edges with
stabilizer Z2, so s = t = 0 and t′ = 1. The 2-complex Y clearly deformation
retracts to the boundary S2, so β2(Y ) = 1. By Corollary 14, we conclude that
rank

(
H2(C)⊗Q

)
= 1.

Next, we calculate the rank of H1(C) ⊗ Q. As usual, we first calculate the
Euler characteristic χ(C). We have six vertices, two with stabilizer D2 (having four
conjugacy classes), two with stabilizer D3 (having three conjugacy classes), and two
with stabilizer D3×Z2 (having six conjugacy classes), giving an overall contribution
of +26. There are nine edges, six with stabilizer Z2 (with two conjugacy classes),
and three with stabilizer D3 (with three conjugacy classes), giving a contribution
of −21. There are five faces, three with stabilizer Z2 (with two conjugacy classes
each), and two with trivial stabilizer (with one conjugacy class each), giving a
contribution of +8. There is one 3-cell with trivial stabilizer, contributing a −1.
Summing up these contributions, we obtain that the Euler characteristic is χ(C) =
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26− 21 + 8− 1 = 12. From Lemma 15, we see that the rank of H1(C)⊗Q is = 0.
Applying Lemma 4, we obtain the desired result. �

5. Concluding remarks

The examples in the previous section were chosen to illustrate our algorithm
on several different types of smooth 3-orbifold groups. As the reader can see, our
algorithm is quite easy to apply, once one has a good description of the orbit space
G\X. There are several natural directions for further work.

For instance, in Section 4.5, we applied our algorithm to a specific 3-dimensional
crystallographic group. It is known that, in dimension = 3, there are precisely 219
crystallographic groups up to isomorphism. One could in principle apply our al-
gorithm to produce a complete table of the rational K-theory groups of all 219
groups. The essential difficulty in doing this lies in finding some convenient, sys-
tematic way to identify polyhedral fundamental domains for each of these groups.
For the 73 split crystallographic groups, such fundamental domains can be found
in the forthcoming paper of Farley and Ortiz [FO].

Another reasonable direction would be to focus on uniform arithmetic lattices
Γ in the Lie group PSL2(C) ∼= Isom+(H3). One could try to analyze the rela-
tionship (if any) between the rational K-theory of such a Γ and the underlying
arithmetic structure. Again, the difficulty here lies in finding a good description
of the polyhedral fundamental domain for the action (in terms of the arithmetic
data).

In a different direction, one can consider hyperbolic reflection groups. These
are groups generated by reflections in the boundary faces of a geodesic polyhedron
P ⊂ H3. In this context, the polyhedron P serves as a polyhedral fundamental
domain for the action, so one can readily apply our algorithm to compute the
rational K-theory of the corresponding group (see the examples in Sections 4.3
and 4.4). One could try, in this special case, to refine our algorithm to produce
expressions for the integral K-theory groups, in terms of the combinatorial data of
the polyhedron P . This is the subject of an ongoing collaboration of the authors.
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Appendix A

In this Appendix, we provide the details for the computations used in some of
the proofs in Section 3.4. Let n ≥ 2 be an integer and Dn be the dihedral group
with presentation

Dn = 〈s1, s2 | s21 = s22 = (s1s2)
n〉.

We will compute the map

(3) ϕ : RC(Z2)⊕RC(Z2) −→ RC(Dn)
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given by induction between representation rings with respect to the subgroups
〈s1〉 and 〈s2〉 of Dn, both isomorphic to Z2, and opposite orientations. That is,
ϕ(ρ, τ ) = (ρ ↑)−(τ ↑), where ‘↑’ means induction between the corresponding groups.

Recall from the main text (see Section 3.4, particularly Lemma 8) that if e is a
boundary edge with stabilizer Dn and σ1 and σ2 are incident boundary faces, then
K0(C

∗
r (Gσi

)) ∼= RC(Z2) and the relevant part of the Bredon chain complex at the
edge e is the map given in equation (3).

The character table for Dn is given by

Dn (s1s2)
r s2(s1s2)

r

χ1 1 1
χ2 1 −1
χ̂3 (−1)r (−1)r

χ̂4 (−1)r (−1)r+1

φp 2 cos
(
2πpr
m

)
0

where 0 ≤ r ≤ n− 1, p varies between 1 and n/2− 1 if n is even or (n− 1)/2 if n
is odd and the hat ̂ denotes a character which appears only when n is even.
The character table for Z2 is given by

Z2 e si
ρ1 1 1
ρ2 1 −1

To compute the induction homomorphism we will use Frobenius reciprocity.
We first do the case 〈s1〉. The characters of Dn restricted to this subgroup are

e s1
χ1 ↓ 1 1
χ2 ↓ 1 −1
χ̂3 ↓ 1 −1
χ̂4 ↓ 1 1
φp ↓ 2 0

Multiplying with the rows of the character table of 〈s1〉 ∼= C2 we obtain the induced
representations

ρ1 ↑ = χ1 + χ̂4 +
∑

φp,
ρ2 ↑ = χ2 + χ̂3 +

∑
φp.

The case 〈s2〉 is analogous, but note that the characters 3 and 4 must be inter-
changed in the even case:

e sj
χ1 1 1
χ2 1 −1
χ̂3 1 1
χ̂4 1 −1
φp 2 0

and
ρ1 ↑ = χ1 + χ̂3 +

∑
φp,

ρ2 ↑ = χ2 + χ̂4 +
∑

φp.
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As maps of free abelian groups we obtain

Z2 → Zc(Dn)

(a, b) �→ (a, b, b̂, â, a+ b, . . . , a+ b) for 〈s1〉 ↪→ Dn,

(c, d) �→ (c, d, ĉ, d̂, c+ d, . . . , c+ d) for 〈s2〉 ↪→ Dn.

Finally, the map ϕ above is

RC (Z2)⊕RC (Z2) ∼= Z2 ⊕ Z2 → Zc(Dn) ∼= RC (Dn)

(a, b, c, d) �→ (a− c, b− d, b̂− c, â− d, S, . . . , S)

where S = a+ b− c− d.

As an immediate consequence of this computation, we see that if the element
〈k, k, . . . , k〉 lies in the image of φ, then one must have that

a− c = k = S = a+ b− c− d.

Subtracting a− c from both sides, we deduce that 0 = b− d = k. In other words,
the image of φ intersects the subgroup Z · 〈1, 1, . . . , 1〉 only in the zero vector (as
was stated in Lemma 8).

Another consequence is that it is easy to identify elements in the kernel of φ.
The equation

0 = (a− c, b− d, b̂− c, â− d, S, . . . , S)

forces a = c and b = d. If in addition, n is even, then we also have a = d, and hence
all terms must be equal. This was used in the arguments for both Lemma 10 and
Lemma 12.

Appendix B

In this Appendix we compute the 2nd Betti number of the 3-manifolds Mf

appearing in the Remark at the end of Section 4.1. The manifold Mf , as a mapping
torus, fibers over S1 with fiber T 2. For this fibration, the Leray-Serre spectral
sequence gives

E2
pq = Hp(S

1, Hq(T
2)) ⇒ Hp+q(Mf ).

Since S1 is 1-dimensional, E2
p,q = 0 unless p = 0, 1. The differentials have bidegree

(−2, 1) so the spectral sequence already collapses at the E2-page. This implies that

H2(Mf ) ∼= E2
0,2 ⊕ E2

1,1
∼= H0(S

1, H2(T
2))⊕H1(S

1, H1(T
2)).

Recall that this is not ordinary homology but rather homology with local coefficient
system given by the homology of the fiber.

The homology group H0(S
1, H2(T

2)) is obtained from the chain complex

0 �� Z
Id−f∗ �� Z �� 0

where f∗ : Z → Z is the map induced by the action of the gluing map f on the
local coefficient Z = H2(T

2). If det(α) = 1, f is orientation preserving and hence
f∗ = Id. This implies H0(S

1, H2(T
2)) ∼= Z. If det(α) = −1, f is orientation

reversing and hence f∗ = −Id. This implies H0(S
1, H2(T

2)) ∼= Z2.
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The homology group H1(S
1, H1(T

2)) is obtained from the chain complex

0 �� Z2
Id−f∗ �� Z2 �� 0

where now f∗ : Z2 → Z2 is induced by the action of the gluing map f on the local
coefficient Z2 = H1(T

2). Note that by construction f acts on π1(T
2) ∼= H1(T

2)
via the automorphism α. So the map above is Id− α and hence H1(S

1, H1(T
2)) ∼=

ker(Id−α). Suppose that α =
(
a b
c d

)
. Then Id−α =

(
1−a −b
−c 1−d

)
. The kernel of this

map has dimension 2 if and only if Id − α = 0, that is, α = Id. The dimension is
at least 1 if and only if the determinant is zero, that is,

(1− a)(1− d) = bc ⇔ 1− tr(α) + ad = bc ⇔ 1 + det(α) = tr(α).

This occurs if and only if det(α) = 1 and tr(α) = 2, or det(α) = −1 and tr(α) = 0.
Altogether, this gives us

β2(Mf ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3 if α = Id,

2 if det(α) = 1, tr(α) = 2, α �= Id,

1 if det(α) = 1, tr(α) �= 2,

1 if det(α) = −1, tr(α) = 0,

0 if det(α) = −1, tr(α) �= 0.
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Automata Groups

Andrzej Zuk

These notes present an introduction to the modern theory of groups generated
by finite automata.

The class of automata groups contains several remarkable countable groups.
Their study has led to the solution of a number of important problems in group
theory. Its recent applications have extended to the fields of algebra, geometry,
analysis and probability.

Rather than develop general theory we present solutions to some of the most im-
portant problems of group theory using automata groups. The reader will find sim-
ple constructions (with proofs) of infinite finitely generated torsion groups, groups of
intermediate growth, groups of non-uniform exponential growth or exotic amenable
groups.

The first section presents a definition and basic facts about automata groups.
Section 2 deals with spectral properties of groups generated by automata and is

motivated by a question of Atiyah about L2 Betti numbers of closed manifolds. It
contains the simplest examples of interesting groups generated by finite automata
like the lamplighter group.

In the following section we consider a group generated by a simple three state
automaton. Its study shows that it is an amenable group with a very rich algebraic
structure. This leads to a solution of some fundamental problems about amenable
groups.

In Section 4 the reader can find very simple constructions of infinite finitely
generated torsion groups (every element is of finite order). The question about
their existence was asked by Burnside in 1902 and motivated some of the most
important developments in group theory. This section introduces historically the
first examples of groups generated by a finite automaton, namely the Aleshin group
[1] from 1972. This group was rediscovered by Grigorchuk in 1980 [22]. Formally
the two groups are isomorphic up to a finite index.

In Section 5 we consider a growth type for groups. It is a fundamental invariant
for infinite finitely generated groups. The highlight is the presentation of historically
the first example of the so-called intermediate growth group, which is the group
from Section 4.
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57M20.

c© 2012 Andrzej Zuk
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Figure 1. The Aleshin automaton from 1972

Finally, Section 6 deals with a group defined by Wilson and presents a solution
to a problem of Gromov about groups of non-uniform exponential growth.

Some parts of the material presented here follow the author’s Bourbaki seminar
[50] on this subject.

1. Automata groups

1.1. Definition of groups generated by automata. The automata which
we consider are finite, reversible and have the same input and output alphabets,
say D = {0, 1, . . . , d − 1} for a certain integer d > 1. To such an automaton A
are associated a finite set of states Q, a transition function φ : Q×D → Q and the
exit function ψ : Q ×D → D. The automaton A is characterized by a quadruple
(D,Q, φ, ψ).

The automaton A is invertible if, for every q ∈ Q, the function ψ(q, ·) : D → D
is a bijection.

In this case, ψ(q, ·) can be identified with an element σq of the symmetric group
Sd on d = |D| symbols.

There is a convenient way to represent a finite automaton by a marked graph
Γ(A) whose vertices correspond to elements of Q.

Two states q, s ∈ Q are connected by an arrow labelled by i ∈ D if φ(q, i) = s;
each vertex q ∈ Q is labelled by a corresponding element σq of the symmetric group.

Figure 1 represents the Aleshin automaton from 1972 [1] which is historically
the first example of an automaton defined to construct a group. In this example
the alphabet consists of two letters 0 and 1. The elements of the symmetric group
S2 are denoted Id and ε. Aleshin defined a group associated to an automaton. This
construction is explained below.

The automata we just defined are non-initial. To make them initial we need
to mark some state q ∈ Q as the initial state. The initial automaton Aq =
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(D,Q, φ, ψ, q) acts on the right on the finite and infinite sequences over D in the fol-
lowing way. For every symbol x ∈ D the automaton immediately gives y = ψ(q, x)
and changes its initial state to φ(q, x).

By joining the exit of Aq to the input of another automaton Bs = (D,S, α, β, s),
we get a mapping which corresponds to the automaton called the composition of
Aq and Bs and is denoted by Aq � Bs.

This automaton is formally described as the automaton with a set of the states
Q× S and the transition and exit functions Φ, Ψ defined by

Φ((x, y), i) = (φ(x, i), α(y, ψ(x, i))),

Ψ((x, y), i) = β(y, ψ(x, i))

and the initial state (q, s).
The composition A � B of two non-initial automata is defined by the same

formulas for input and output functions but without indicating the initial state.
Two initial automata are equivalent if they define the same mapping. There is

an algorithm to minimize the number of states.
The automaton which produces the identity map on the set of sequences is

called trivial. If A is invertible then for every state q the automaton Aq admits an
inverse automaton A−1

q such that Aq�A
−1
q , A−1

q �Aq are equivalent to the trivial one.

The inverse automaton can be formally described as the automaton (D,Q, φ̃, ψ̃, q)

were φ̃(s, i) = φ(s, σs(i)), ψ̃(s, i) = σ−1
s (i) for s ∈ Q. The equivalence classes of

finite invertible automata over the alphabet D constitute a group called the group
of finite automata which depends on D. Every set of finite automata generates a
subgroup of this group.

Now let A be an invertible automaton. Let Q = {q1, . . . , qt} be the set of states
of A and let Aq1 , . . . , Aqt be the set of initial automata which can be obtained from
A. The group G(A) = 〈Aq1 , . . . , Aqt〉 is called the group generated or determined
by A.

1.2. Automata groups and wreath products. There is a relation between
automata groups and wreath products. For a group of the form G(A) one has the
following interpretation.

Let q ∈ Q be a state of A and let σq ∈ Sd be the permutation associated to this
state. For every symbol i ∈ D we denote by Aq,i the initial automaton having as
the initial state φ(q, i) (then Aq,i for i = 0, 1, . . . , d − 1 runs over the set of initial
automata which are neighbors of Aq, i.e. such that the graph Γ(A) has an arrow
from Aq to Aq,i).

Let G and F be the groups of finite type such that F is a group of permutations
of the set X (we are interested in the case where F is the symmetric group Sd and
X is the set {0, 1, . . . , d− 1}). We define the wreath product G � F of these groups
as follows. The elements of G � F are the couples (g, γ) where g : X → G is a
function such that g(x) is different from the identity element of G, denoted Id,
only for a finite number of elements x of X, and where γ is an element of F . The
multiplication in G � F is defined by:

(g1, γ1)(g2, γ2) = (g3, γ1γ2)

where

g3(x) = g1(x)g2(γ
−1
1 (x)) for x ∈ X.
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We write the elements of the group G�Sd as (a0, . . . , ad−1)σ, where a0, . . . , ad−1 ∈ G
and σ ∈ Sd.

The group G = G(A) admits the embedding into a wreath product G � Sd via
the application

Aq → (Aq,0, . . . , Aq,d−1)σq,

where q ∈ Q. The right-hand expression is called a wreath decomposition of A. We
write Aq = (Aq,0, . . . , Aq,d−1)σq.

For simplicity we denote by a the generator of Aa of the group generated by
the automaton A.

1.3. Action on the tree. The finite sequences over the alphabet D = {0, . . . ,
d− 1} are in bijection with the vertices of a rooted tree Td of degree d (whose root
corresponds to an empty sequence).

An initial automaton Aq acts on the sequences over D and thus acts on Td by
automorphisms. Therefore, for each group generated by an automaton, in particular
for a group of the form G(A), there exists a canonical action on a tree (for a theory
of actions on non-rooted trees, see [46]).

For a group G = G(A) acting by automorphisms on T , we denote by StG(n)
the subgroup of G made up of elements of G which act trivially on the level n of
the tree T . In a similar way, for a vertex u ∈ T we denote by StG(u) the subgroup
of G composed of the elements fixing u. The embedding of G into the wreath
product G �Sd induces φ : StG(1) → Gd into the base group of the wreath product.
This defines the canonical projections ψi : StG(1) → G (i = 1, . . . , d) defined by
ψi(g) = φ(g)|i for g ∈ StG(1).

The stabilizer StG(n) of the n-th level is the intersection of the stabilizers
of all vertices on this level. For a vertex u ∈ T we can define the projection
ψu : StG(u) → G.

Definition 1.1. A group G is fractal if for every vertex u, we have ψu(StG(u))
= G after the identification of the tree T with the subtree Tu issued from the vertex
u.

The rigid stabilizer of the vertex u is a subgroup RistG(u) of the automorphisms
of G which act trivially on T \ Tu. The rigid stabilizer of the n-th level RistG(n) is
the subgroup generated by the rigid stabilizers on this level.

A group G acting on a rooted tree T is called spherically transitive if it acts
transitively on each level. A spherically transitive group G ≤ Aut(T ) is branched if
RistG(n) is a finite index subgroup for each n ∈ N. A spherically transitive group
G ≤ Aut(T ) is weakly branched if |RistG(n)| = ∞ for all n ∈ N.

If there is no risk of confusion we omit the index G in StG(u), RistG(u), etc.
The embedding G → G � Sd, g → (g0, . . . , gd−1)σ defines the restriction gi of g

at the vertex i of the first level. The iteration of this procedure leads to the notion
of restriction gu of g at the vertex u.

Definition 1.2. We say that the group G is regularly weakly branched over
a subgroup K 	= {1} if K ≥ K × · · · ×K (direct product of d factors, each of them
acting on the corresponding subtree Tu, |u| = 1).
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We use the notations xy = y−1xy, [x, y] = x−1y−1xy and denote by 〈X〉Y the
normal closure of X in Y . The length of a word w and an element g are denoted
by |w| and |g| respectively.

1.4. Classification of the automata groups on two states with the
alphabet {0, 1}. For the alphabet on two letters the automata with just one state
produce only the trivial group or the group of order two.

We are going to analyze all groups generated by the automata on two states
with the alphabet on two letters.

Theorem 1.3 ([24]). The only groups generated by the automata on two states
over the alphabet on two letters are:

• the trivial group;
• the group of order two Z/2Z;
• the Klein group (Z/2Z)⊕ (Z/2Z);
• the infinite cyclic group Z;
• the infinite dihedral group D∞;
• the lamplighter group (⊕ZZ/2Z)� Z.

Proof. We denote by a and b the two states of the automaton. If both states are
labelled by the identity or both by e, then the group generated by the automaton
is either trivial or Z/2Z.

Thus we can suppose that one state, say a, is labelled by the identity and the
other by e. By exchanging if necessary 0 with 1, we can suppose that a = (a, a) or
a = (b, b) or a = (a, b).

(i) Case a = (a, a).
In this case a corresponds to the identity in the group. The exchange of 0 and

1 (this does not change a) reduces b to three possibilities: b = (b, b)e, b = (a, b)e or
b = (a, a)e.

The first case corresponds to Z/2Z, the second to Z and the third to Z/2Z.

(ii) Case a = (b, b).
The exchange of 0 and 1 (this does not change a) reduces b to three possibilities:

b = (b, b)e, b = (a, a)e or b = (a, b)e.
The first two possibilities correspond to the Klein group Z/2Z⊕Z/2Z. Indeed

a and b are of order two and commute.
The third case corresponds to the infinite cyclic group. Indeed

ab = (ba, b2)e,

ba = (ab, b2)e,

so a and b commute. Secondly

b2a = (b2a, b2a),

which implies the triviality of b2a.
Therefore the group is cyclic. The preceding relation ensures that the order of

a is twice the order of b. But a and b have the same order according to the relation
a = (b, b). As a and b are non-trivial it implies that the group is Z.

(iii) Case a = (a, b).
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Figure 2. The automaton which generates the lamplighter group

By considering if necessary the inverse automaton (which generates the same
group and does not change a) we can suppose that b satisfies one of three possibil-
ities: b = (b, b)e, b = (a, b)e or else b = (a, a)e.

In the first case b2 = (b2, b2) so b is of order 2. As a2 = (a2, b2), a is also of
order two. The relations a−1b = (a−1b, 1)e and (a−1b)2 = (a−1b, a−1b) imply that
a−1b is of infinite order. Therefore it is the infinite dihedral group D∞.

The second case corresponds to the lamplighter group (see the next section).
The third case can be analyzed in a similar way.

1.5. Algorithmic problems. An important aspect of groups generated by
finite automata is the existence of very effective algorithms. Here we concentrate
on the word problem. This constitutes an important criterion for deciding if some
groups are generated by automata.

The word problem has a solution for every group generated by a finite automa-
ton due to the algorithm presented below.

Proposition 1.4. The word problem is solvable for automata groups.

Proof. Let w be a word over the alphabet composed of the labelings of the states
of the automaton and their inverses.

1. Verify if w ∈ StG(1) (otherwise w 	= 1 in G).
2. Compute w = (w0, . . . , wd−1). Then

w = 1

in G iff wi = 1 in G for i = 0, . . . , d − 1. Go to 1. by replacing w by wi and
proceeding with every wi as with w.

If in some step we obtain a word which is not in StG(1) then w 	= 1 in G. If in
every step all the words wi1 , . . . , win already appeared in the algorithm then w = 1
in G.

This algorithm converges because the lengths of w0, . . ., wd−1 are at most the
length of w and after sufficiently many steps there is repetition of the words.

1.6. Important examples. In the following sections we present important
examples of automata groups, namely the lamplighter group, a group generated by
a three state automaton, the Wilson group and the Aleshin group.

There are several other groups which played an important role in the develop-
ment of the theory. Let us mention the Fabrykowski-Gupta group [14], the group
of Sushchansky [47] and the group of Gupta-Sidki [31].

For a general theory of automata groups one can refer to [2], [18] and [50].
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2. L2 Betti numbers of closed manifolds

2.1. A question of Atiyah. In 1976 Atiyah [3] introduced for a closed Rie-

mannian manifold (M, g) with the universal covering M̃ the analytic L2-Betti num-
bers bp(2)(M, g) which measure the size of the space of harmonic square-integrable

p-forms on M̃ . Let kp(x, y) be the (smooth) integral kernel of the orthogonal projec-
tion of all square integrable forms onto this subspace. On the diagonal, the fiberwise
trace trxkp(x, x) is defined and is invariant under deck transformations. It therefore
defines a smooth function on M , and Atiyah sets bp(2)(M, g) :=

∫
M

trxkp(x, x) dx.

By a result of Dodziuk [12] this does not depend on the metric.
A priori, the L2-Betti numbers are non-negative real numbers. However, we

can express the Euler characteristic χ(M), an integer, in terms of the L2-Betti
numbers in the usual way:

χ(M) =
∞∑
p=0

(−1)pbp(2)(M).

If π = π1(M) is a finite group, then the L2-Betti numbers can be expressed in terms

of ordinary Betti numbers as follows: bp(2)(M) = 1
|π|b

p(M̃).

Atiyah ended his paper with a question about the values of these numbers.
Later this question gave rise to the so-called Atiyah conjecture.

For a group Γ we denote by fin−1(Γ) the subgroup of Q generated by the
inverses of the orders of finite subgroups of Γ. For a closed manifold M we denote
by bi(2)(M) its i-th L2 Betti number.

Conjecture. — Let M be a closed manifold whose fundamental group π1(M)
is isomorphic to Γ. Then

bi(2)(M) ∈ fin−1(Γ)

for every integer i.

The Atiyah conjecture can be equivalently formulated in terms of the dimension
of the proper subspaces of the operators in Z[G] acting on �2(G) where G = π1(M).
If G is a finitely presented group and A a random walk operator on G, there is a
construction of a closed manifold M with fundamental group G and such that the
third L2 Betti number of M is equal to the von Neumann dimension of the kernel
of the operator A.

This problem is closely related to the Kaplansky zero-divisor problem. Let us
recall that conjecturally for any torsion-free group Γ, and for every A,B ∈ Z[Γ]
such that

(2.1) AB = 0,

either A = 0 or B = 0.
In the problem concerning L2 Betti numbers we look at the equation

(2.2) Ab = 0

where A ∈ Z[Γ] and b ∈ l2(Γ) and one can ask whether this equation implies that
either A = 0 or b = 0.

For some classes of groups it can be shown that the two questions are equivalent.
For instance, for an amenable group the equation (2.2) for b 	= 0 implies that there
exists 0 	= B ∈ Z[Γ] such that (2.1) holds.
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Another result which one could mention concerns left-orderable groups. It is
easy to see that such groups satisfy the Kaplansky zero-divisor conjecture. In [37]
it was proven that this generalizes to the equation (2.2).

Let us mention that the L2 condition is essential. For instance even for a free
group F2 = 〈a, b〉 there exists f 	= 0 such that

((a−1 + a+ b−1 + b)2 − 12)f = 0(2.3)

and f ∈ l2+ε(F2) for every ε > 0.
Indeed, one can even write f explicitly, namely

f(γ) =

(
1√
3

)|γ|

satisfies the equation (2.3).
As the number of elements in Γ of norm n is equal to 4 · 3n−1 we deduce that

f ∈ l2+ε(F2) for every ε > 0.

There are several texts presenting results about this conjecture; the most recent
one is the book by Lück [33] and many results confirm different forms of the Atiyah
conjecture.

The above conjecture is proved in many important cases, like the class C of
Linnell which includes extensions of free groups with elementary amenable quo-
tients, residually torsion-free elementary amenable groups and poly-free groups. It
is known that the class of groups for which the Atiyah conjecture holds is closed
under HNN-extensions, as long as fin−1(π) is discrete. It follows that it holds for
all subgroups of one-relator groups, and for all subgroups of right-angled Coxeter
groups. It is also proven that the class of all torsion-free groups for which the Atiyah
conjecture holds is closed under taking extension by groups in a certain large class,
namely the smallest class which contains all the torsion-free, elementary amenable
groups, and contains all the free groups, and is closed under taking subgroups,
extensions, directed unions, amalgamated free products, and HNN-extensions.

However, we show that the strong version mentioned above is false [27].

Theorem 2.1. Let G be the group given by the presentation

(2.4) G = 〈a, t, s | a2 = 1, [t, s] = 1, [t−1at, a] = 1, s−1as = at−1at〉.
Every finite subgroup of G is an abelian 2-group, in particular the order of any
finite subgroup of G is a power of 2. There exists a closed Riemannian manifold
(M, g) of dimension 7 such that π1(M) = G for which the third L2 Betti number is
equal to

b3(2)(M, g) =
1

3
.

The computation of the spectral measure which is presented later should be
compared with an approximation method for L2 Betti numbers for residually finite
groups.

Namely, let M be a closed manifold and let Γ be its fundamental group. We
consider the case when Γ is residually finite, i.e. there exists a sequence of finite
index subgroups Γn of Γ such that Γn > Γn+1 and

⋂
Γn = id.

Moreover, we ask for the property that Γi are normal subgroups of Γ (this
condition can always be achieved for residually finite groups). Then



AUTOMATA GROUPS 173

bi(2)(M) = lim
n→∞

bi(M̃/Γn)

[Γ : Γn]

where M̃ is the universal cover of M , bi denotes the usual i-th Betti number and
[Γ : Γn] is the index of Γn in Γ.

This result is due to Lück [34]. There is also a version of this result due to
Farber [16] where Γn is not necessarily a normal subgroup of Γ but only in some
asymptotic sense.

There are also approximation results for L2 Betti numbers by some finite di-
mensional kernels for amenable groups. In this case the approximating sequence is
defined using Følner sets (more information about amenable groups can be found
in Section 3).

2.2. The lamplighter group as an automaton group. The automaton
group from Figure 2 generates the lamplighter group [24]. This group can be
defined as the wreath product Z/2Z � Z or as a semi-direct product (⊕ZZ/2Z)� Z

with the action of Z on ⊕Z(Z/2Z) by translation.
Let a and b be the generators of the lamplighter group (⊕ZZ/2Z)�Z such that

a = (fa, ga), b = (fb, gb), where ga = gb ∈ Z is a generator of Z, fa ∈ ⊕Z(Z/2Z) is
the identity and fb = (. . . , 0, 0, 1, 0, 0, . . .) ∈ ⊕Z(Z/2Z) is such that 1 is in position
1. There is an isomorphism between this group and the group generated by the
automaton from Figure 2, where a and b correspond to the initial states of the
automaton.

2.3. Operator reccurence. Let now Γ be the group generated by the au-
tomaton from Figure 2. We denote by ∂T = E0 E1 the partition of the boundary
∂T associated to the subtrees T0 et T1 issuing from two vertices on the first level.
We have the isomorphism L2(∂T, μ) � L2(E0, μ0)⊕ L2(E1, μ1) where μi is the re-
striction of μ to Ei, as well as the isomorphism L2(∂T, μ) � L2(Ei, μi), for i = 0, 1,
coming from T � Ti.

In this way we get an isomorphism between H and H ⊕ H, where H is the
Hilbert space of infinite dimension. Thanks to this isomorphism, the operators
π(a), π(b) (also denoted by a and b, respectively), where π is a representation as in
Section 1.3, satisfy the following operator relations:

a =

(
0 a
b 0

)
, b =

(
a 0
0 b

)

which correspond to the wreath product relations: a = (a, b)e and b = (a, b).
Let πn be a permutation representation of the group G induced by the action

of G on the level n of the associated tree and let Hn be the space of functions on
the n-th level. Let an and bn be the matrices corresponding to generators for the
representation πn. Then a0 = b0 = 1 and

(2.5) an =

(
0 an−1

bn−1 0

)
, bn =

(
an−1 0
0 bn−1

)

keeping in mind the natural isomorphism Hn � Hn−1 ⊕Hn−1.
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2.4. The lamplighter group and spectral measure. We are interested in
the spectrum and the spectral measure of the Markov operator for the lamplighter
group.

For a finite generating subset S of G which is symmetric (S = S−1) we consider
the simple random walk on the Cayley graph Cay(G,S). Then the random walk
operator A : �2(G) → �2(G) is defined by

Af(g) =
1

|S|
∑
s∈S

f(sg),

where f ∈ �2(G) and g ∈ G.
As the operator A is bounded (we have ‖A‖ ≤ 1) and self-adjoint, it admits a

spectral decomposition

A =

∫ 1

−1

λdE(λ),

where E is a spectral measure. This measure is defined on the Borel subsets of the
interval [−1, 1] and takes its values in the space of projectors of the Hilbert space
�2(G). The Kesten spectral measure μ on the interval [−1, 1] is defined by

μ(B) = 〈E(B)δId, δId〉,
where B is a Borel subset of [−1, 1] and δId ∈ �2(G) is a function equal to 1 for the
identity element and 0 elsewhere.

For a closed and G-invariant subspace H of �2(G) we define its von Neumann
dimension dim(H) as

dim(H) = 〈prHδId, δId〉,
where prH is a projection of �2(G) on H.

Figure 3. The histogram of the spectrum of a+ a−1 + b+ b−1

For the lamplighter group we can compute this measure [24]:

Theorem 2.2. Let Γ be the group defined by the automaton from Figure 2,
with generators a et b. The random walk operator A on �2(Γ) has the following
eigenvalues:

cos
( l
q
π
)
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where q = 2, 3, 4, . . . and l = 1, . . . , q − 1.
The von Neumann dimension of the corresponding eigenspace is

dim

(
ker

(
A− cos(

l

q
π)
))

=
1

2q − 1

where (l, q) = 1.

In order to prove this theorem we use finite dimensional approximations πn

described above and first compute the eigenvalues of the matrices an+a−1
n +bn+b−1

n .

Let us introduce the following matrix:

Sn+1 =

(
0 Id2n

Id2n 0

)

for n ≥ 0 and let S0 = Id. So Sn = a−1
n bn = b−1

n an.
For n ≥ 0 let us define

Φn(λ, μ) = det(an + bn + a−1
n + b−1

n − λId2n − μSn),

where λ and μ are complex parameters.
In particular

Φ0 = 4− λ− μ,

Φ1 = (μ− λ)(4− λ− μ).

Proposition 2.3. If n ≥ 1 the following recursion holds:

Φn+1(λ, μ) = (μ− λ)2
n

Φn

(
−λ2 − μ2 − 2

μ− λ
,− 2

μ− λ

)
.

Proof. In the proof we will use the following simple fact: let A,B,C and D
be n by n matrices with complex coefficients such that AC = CA. Then

det

(
A B
C D

)
= det(AD − CB).
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Thus one obtains:

Φn+1(λ, μ) = det(an+1 + bn+1 + a−1
n+1 + b−1

n+1 − λId2n+1 − μSn+1)

= det

(
an + a−1

n − λ an + b−1
n − μ

bn + a−1
n − μ bn + b−1

n − λ

)

= det

(
a−1
n − b−1

n − λ+ μ an + b−1
n − μ

a−1
n − b−1

n + λ− μ bn + b−1
n − λ

)

= det

(
−2λ+ 2μ an − bn − μ+ λ

a−1
n − b−1

n + λ− μ bn + b−1
n − λ

)

= det((−2λ+ 2μ)(bn + b−1
n − λ)

−(a−1
n − b−1

n + λ− μ)(an − bn − μ+ λ))

= det((−λ+ μ)(an + bn + a−1
n + b−1

n ) + λ2 − μ2 − 2

+(a−1
n bn + b−1

n an))

= det((μ− λ)Id2n)

det

(
an + bn + a−1

n + b−1
n +

λ2 − μ2 − 2

μ− λ
Id2n +

2

μ− λ
Sn

)

= (μ− λ)2
n

Φn

(
−λ2 − μ2 − 2

μ− λ
,− 2

μ− λ

)
.

�

This implies the following expression for the determinant:

det(an + bn + a−1
n + b−1

n − 4 cos z · Id2n)
= Φn(4 cos z, 0)

= (4− 4 cos z)

(
1

sin(z)

)2n−1

2n
n∏

k=2

(sin(zk))2
n−k

sin(z(n+ 1)).

From this it is easy to see that the spectrum of the operator an+bn+a−1
n +b−1

n

is equal to

Sp(an + bn + a−1
n + b−1

n )

=

{
4 ∪ 4 cos

(
p

q
π

)
; q = 2, . . . , n+ 1, 1 ≤ p < q

}

The operators an + bn + a−1
n + b−1

n approximate the operator a+ b+ a−1 + b−1

and in our situation from the above computation one can deduce Theorem 2.2.
For a general approach to the approximation results for automata groups in

the setting of C∗ algebras see [45].

2.5. Construction of a manifold. The computation of the spectral measure
has several applications to random walks. In the following section we present an
application of this computation to a problem of Atiyah about L2 Betti numbers of
closed manifolds.

The proof of Theorem 2.1 relies on the results explained earlier concerning the
spectral measure of the random walk operator A on the lamplighter group, for
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which G is an HNN extension. The results imply

dim
(
ker(A)

)
=

1

3
,

but the denominator 3 does not divide the powers of 2, which are the orders of
finite subgroups of the lamplighter group. We present a construction of a manifold
from [28].

The lamplighter group is not finitely presented. However, it admits a recursive
presentation and therefore is a subgroup of a finitely presented group.

Let Γ denote the lamplighter group (⊕i∈ZZ/2Z) � Z, where the generator
of Z acts on ⊕i∈ZZ/2Z by translation. Γ is generated by t ∈ Z and by a =
(. . . , 0, 1, 0, . . . ) ∈ ⊕i∈ZZ/2Z and has the presentation

Γ = 〈a, t | a2 = 1, [t−katk, t−natn] = 1 ∀k, n ∈ Z〉.
Lemma 2.4. Let α : Γ → Γ be given by α(t) = t and α(a) = at−1at. This

defines an injective group homomorphism, and G is the ascending HNN-extension
of Γ along α. Moreover G′ is isomorphic to a countable direct sum of copies of
Z/2Z.

Proof. The first assertion can be easily checked. The second part follows from
the computation given below.

Let V be the HNN-extension of Γ along α. Then V has the presentation

V = 〈a, t, s | a2 = 1, [s, t] = 1, s−1as = at−1at = [a, t],

[t−katk, t−natn] = 1 ∀k, n ∈ Z〉.
Obviously, we have an epimorphism of G onto V mapping a to a, s to s, and
t to t. It only remains to show that every relation in the given presentation of
V follows from the relations of G. Observe first in G that by conjugation with
t−n, [t−k+nat−n+k, a] = 1 implies [t−katk, t−natn] = 1. Moreover, in the relation
of commutativity we can reverse the order of elements, i.e. [t−katk, t−natn] = 1
implies [t−natn, t−katk] = 1. Hence, it remains to prove [t−natn, a] = 1 in G for
n > 1. We will do this by induction on n. Assume therefore t−jatj commutes with
t−latl for 0 ≤ j ≤ l < n. Conjugate the relation [t−(n−1)atn−1, a] = 1 with s. We
obtain

(2.6) 1 = [t−(n−1)at−1attn−1, at−1at] = [(t−(n−1)atn−1)(t−natn), a(t−1at)].

Now observe that by induction a commutes with a1 := t−1at and with an−1t
−(n−1)

atn−1. This second relation also implies (by conjugation with t−1) that moreover,
t−1at commutes with an := t−natn. Therefore, we can simplify the commutator in
(2.6) to the desired

1 = (a−1
n a−1

n−1)(a
−1
1 a−1)(an−1an)(aa1) = a−1

n (a−1
n−1an−1)(a

−1
1 a1)a

−1ana

= [t−natn, a].

By induction we therefore see that V = G.
Using the presentation, we next check that the abelianization of V is isomorphic

to Z×Z, and s, t are mapped to two free generators, whereas a is mapped to zero.
Therefore, G′ is equal to the normal subgroup generated by a, which is generated by
s−lt−katksl, k, l ∈ Z, l < 0. All these elements are of order 2, and by conjugation
with sufficiently high powers of s we see that they all commute. Therefore, G′ is a
vector space over Z/2Z with countably many generators, and therefore isomorphic
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to a countable direct sum of copies of Z/2Z. Observe, however, that G′ is quite
different from the base of the HNN-extension Γ. The element sas−1 is a typical
example which is not contained in Γ but in G′. �

Since, by Lemma 2.4, G is a two-step HNN-extension of ⊕i∈ZZ/2Z, it follows
immediately that all finite subgroups of G are elementary abelian 2-groups. To
prove Theorem 2.1, we need to construct M .

As a corollary of Theorem 2.2, we obtain:

Corollary 2.5. There is an A ∈ ZG such that

dimG ker
(
A : l2(G) → l2(G)

)
=

1

3
.

Proof. Observe that if A is induced from Γ, i.e. A ∈ CΓ (so we can view
A also as an operator on l2(Γ)), then essentially prΓ = prG and we deduce that
dimΓ ker(A) = dimG ker(A). Therefore, it will be sufficient to find A ∈ ZΓ such
that dimΓ kerA = 1/3.

Take A of Theorem 2.2. Choosing p = 1 and q = 2, we see that 0 is in the
spectrum of A, and that dimΓ(kerA) = 1/3. �

Proposition 2.6. There is a 3-dimensional finite CW-complex X with π1(X) =

G and with b
(2)
3 (X) = 1

3 .

Proof. We perform a standard construction where one attaching map will be
given by the A of Corollary 2.5.

Let X ′ be a finite 2-dimensional CW-complex with π1(X
′) = G, e.g. the 2-

complex of the finite presentation given above. Let X ′′ be the wedge product
of X ′ and S2. The corresponding map α : S2 → X ′′ generates a free copy of
Z[π1(X

′′)] = Z[G] inside π2(X
′′). Define now X := X ′′ ∪f D3, where (f : S2 →

X ′′) ∈ π2(X
′′) is given by A ∈ Z[G] of Corollary 2.5, and where Z[G] ↪→ π2(X

′′) is
given using α. Choosing an appropriate basis of cells, it follows that on the cellular

L2-chain complex C
(2)
∗ (X̃) = C∗(X̃) ⊗ZG l2(G) of the universal covering X̃ of X,

the differential d3

l2(G) ∼= C
(2)
3 (X̃)

d3−→ C
(2)
2 (X̃) ∼= (l2(G))n

is given by the matrix (A, 0, . . . , 0)t, where t denotes transpose and n is the number
of 2-cells in X. Since there are no 4-cells, d4 is zero. Consequently,

b
(2)
3 (X) = dimG(ker d3) = dimG(kerA) =

1

3
.

We now can finish the proof of Theorem 2.1.
Choose a finite 3-dimensional simplicial complex Y homotopy equivalent to

the CW-complex X of Proposition 2.6. Then embed Y into R8 and thicken Y to
a homotopy equivalent 8-dimensional compact smooth manifold W with bound-
ary M . By transversality, the inclusion M ↪→ W is a 4-equivalence. Therefore,

b
(2)
3 (M) = b

(2)
3 (W ) = b

(2)
3 (X) = 1

3 and π1(M) = π1(X) = G. If we choose a smooth

Riemannian metric g on M , then by the L2-Hodge de Rham theorem we also obtain

b
(2)
3 (M, g) = 1

3 .

Remark 2.7. The dimension of the manifold which is a counterexample to the
strong Atiyah conjecture can be reduced to 6 as follows:
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It is known that
⊕

i∈Z
Z/2Z, Γ, G, and the direct limit of Γ

α−→ Γ
α−→ · · · all

have vanishing L2-Betti numbers in all degrees. Moreover, the zeroth and first L2-
Betti number of a space are equal to the first L2-Betti number of its fundamental

group, i.e. b
(2)
1 (G) = b

(2)
1 (X) = b

(2)
1 (M) = 0 = b

(2)
0 (X) = b

(2)
0 (M).

The CW-complex X has 1 zero-cell, 1 three-cell, and 3 one-cells and 5 two-cells
(using the presentation of G given in Theorem 2.1). Consequently, χ(X) = 2. Since

2 = χ(X) =

3∑
k=0

(−1)kbk(2)(X) = b2(2)(X)− b3(2)(X)b2(2)(X)− 1/3,

we have b2(2)(X) = 7/3.

Now we can do the same construction as in the proof of Theorem 2.1, but
embed Y into R7 instead of R8. The inclusion of the boundary M ′ of the regular
neighborhood W ′ into W ′ will now only be a 3-equivalence, but this is enough to
conclude that b2(2)(M

′) = b2(2)(W
′) = b2(2)(X) = 7/3, and the denominator still is

not a power of 2, giving the desired counterexample.
Using the Künneth formula and Poincaré duality for L2-cohomology, one can

on the other hand easily arrange that the dimension of a counterexample, as well
as the degree of the Betti number which contradicts the strong Atiyah conjecture,
is arbitrarily high.

Recently in [4] an uncountable family of lamplighter like groups was constructed
for which one obtained different von Neumann dimensions of the kernel of some
element in the group algebra, in particular some of these dimensions are irrational.
A similar construction [44] (see also [21]) led to a construction of a closed manifold
with irrational L2 Betti numbers.

3. Exotic amenable groups

3.1. Amenability. In 1929 von Neumann [41] defined the notion of amenabil-
ity, which became fundamental.

Definition 3.1. The group G is amenable if there is a measure μ defined on
all subsets of G such that

• μ(G) = 1;
• μ(A ∪B) = μ(A) + μ(B) for all disjoint A,B ⊂ G;
• μ(gA) = μ(A) for every g ∈ G and every A ⊂ G.

The origin of this definition is related to the Banach-Tarski paradoxical decom-
position of the sphere.

Namely, a group Γ is non-amenable if and only if it admits a paradoxical decom-
position, i.e. there exist A1, . . . , An, B1, . . . , Bk ⊂ Γ and g1, . . . , gn, h1, . . . , hk ∈ Γ
such that

A1∪̇ · · · ∪̇An∪̇B1∪̇ · · · ∪̇Bk = Γ

and

g1(A1)∪̇ · · · ∪̇gn(An) = Γ

h1(B1)∪̇ · · · ∪̇hk(Bk) = Γ.
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Such a decomposition clearly contradicts the existence of a left-invariant mea-
sure μ. For some groups one can construct it explicitly. For instance for a free
group F2 = 〈a, b〉 one can consider

A1 = words which start with a

A2 = words which start with a−1

B1 = words which start with b and all powers of b

B2 = words which start with b−1 but not powers of b

and g1 = id, g2 = a, h1 = id and h2 = b.
This notion became fundamental in the theory of infinite groups. There are

several important characterizations of amenability. One of the most important is
in terms of so-called Følner sets:

Theorem 3.2 ([17]). A countable group G is amenable if and only if there is
a sequence of finite subsets An of G such that for every g ∈ G

lim
n→∞

|An�gAn|/|An| = 0,

where � denotes a symmetric difference.

From this it follows that the groups of subexponential growth are amenable
and that this class is closed under the following elementary operations: extensions,
quotients, subgroups and direct limits.

Before the construction of the group generated by an automaton from Figure 4,
all groups known to be amenable could be obtained from groups of subexponential
growth using the elementary operations described above. For the history of different
conjectures concerning the class of amenable groups see [26]; the first reference is
the paper of Day [10].

3.2. Group generated by an automaton on three states. We are in-
terested in the group generated by the automaton on three states introduced in
[25].

Namely we consider the following three state automaton a = (c, b), b = (c, a)e,
c = (c, c). The state c corresponds to the identity, so that the automaton group is
defined by the following wreath product relations a = (1, b), b = (1, a)e.

This group appears also as the Galois group of iteration of the polynomial x2−1
over finite fields (Pink) and as a monodromy group of the ramified covering of the
Riemann sphere given by the polynomial z2 − 1 (see [40]).

One of the remarkable properties of this group is related to the amenability.

3.3. Algebraic properties of G.

Theorem 3.3 ([25]). Let G be the group generated by the automaton from
Figure 4.

The group G has following properties:
a) it is fractal;
b) it is regularly weakly branched over G′;
c) it has no torsion;
d) the semigroup generated by a and b is free;
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Figure 4. An automaton on three states

e) it admits a presentation

G = 〈a, b|σε(θm([a, ab])) = 1,m = 0, 1, . . . , ε = 0, 1〉,

where

σ :

{
a �→ b2

b �→ a
θ :

{
a �→ ab

2+1

b �→ b.

We present here proofs of some algebraic properties of G mentioned in Theo-
rem 3.3.

For G = 〈a, b〉, we have the relations a = (1, b) and b = (1, a)e.

Proposition 3.4. The group G is fractal.

Proof. We have

StG(1) = 〈a, ab, b2〉.
But

(3.7)
a = (1, b)
ab = e(1, a−1)(1, b)(1, a)e = (ba, 1)
b2 = (a, a),

and either of the images of the two projections of StG(1) is G, i.e. G is fractal.

Proposition 3.5. The group G is regularly weakly branched over G′, i.e.

G′ ≥ G′ ×G′.

Proof. Indeed, as

[a, b2] = (1, [b, a]),

using fractalness of G, we get G′ ≥ 〈[a, b2]〉G ≥ 1×〈[b, a]〉G = 1×G′ and (1×G′)b =
G′ × 1. Thus G′ contains G′ × G′ and as G′ 	= 1 the group G is regularly weakly
branched over G′.

Lemma 3.6. The semigroup generated by a and b is free.
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Proof. Consider two different words U(a, b) and V (a, b) which represent the same
element and such that ρ = max{|U |, |V |} is minimal. A direct verification shows
that ρ cannot be either 0 or 1.

Suppose that |U |b, the number of occurrences of b in U , is even (and thus |V |b
is as well). If this is not the case we can consider the words bU and bV , thus
increasing ρ by 1.

Now U and V are products of

am = (1, bm)

and

bamb = (1, a)e(1, bm)(1, a)e = (bma, a).

If one of these words has no b, say U = am, after projecting U and V on the first
coordinate we get 1 = V0 where the projection V0 is a non-empty word verifying
|V0| < |V | ≤ ρ. This contradicts the minimality of U and V .

We consider now the situation where b appears in both words at least twice. If
the number of occurrences of b in U and V were one, then by minimality they have
to be equal to ban and amb. But ban = (bn, a)e et amb = (1, bma)e which shows
that these words are different and represent different elements.

Thus both words contain two b’s and |U |, |V | ≤ ρ, where one of them contains
at least four b’s and |U |, |V | ≤ ρ+ 1.

If we consider projections of U and V on the second coordinate, we get two
different words (because of the minimality of U and V , they have to end with
different letters) and of lengths which are shorter. This contradicts the minimality
of ρ.

Lemma 3.7. We have the following relation:

γ3(G) = (γ3(G)× γ3(G))� 〈[[a, b], b]〉
where γ3(G) = [[G,G], G].

Proof. We start with the relations

γ3(G) = 〈[[a, b], a], [[a, b], b]〉G,

[[a, b], a] = [(ba, b−1), (1, b)] = 1,

(3.8) [[a, b], b] = (b−a, b)e(1, a−1)(ba, b−1)(1, a)e = (b−a, b)(b−a, ba) = (b−2a, bba).

The first two imply

γ3(G) = 〈[[a, b], b]〉G.
Thanks to the relation

[a, b2] = (1, [a, b])

we have

[[a, b2], a] = [(1, [a, b]), (1, b)] = (1, [[a, b], b]).

Let ξ = [[a, b], b]. Direct computations show that ξa, ξa
−1

, ξb, ξb
−1 ∈ 〈ξ〉 mod

γ3(G) × γ3(G) and 〈ξ〉 ∩ (γ3(G) × γ3(G)) = 1 because of (3.8) and (bba)n ∈ G′ if
and only if n = 0 and γ3(G) ≤ G′.

Lemma 3.8. We have the following relation:

G′′ = γ3(G)× γ3(G).
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Proof. Let f = (1, c) ∈ G, where c = [a, b]. For d = (b, b−1) ∈ G′ we get

[f, d−1] = [(1, [a, b]), (b−1, b)] = (1, [[a, b], b]) ∈ G′′.

This implies that G′′ ≥ 1 × γ3(G)and thus G′′ ≥ γ3(G) × γ3(G). As G′′ ≥ γ3(G)
according to Lemma 3.7 it is enough to show 〈ξ〉 ∩G′′ = 1.

One can easily show

(3.9) G′ = (G′ ×G′)� 〈c〉.
Using the relation (3.8) and the relation (3.9) we have

G′′ = 〈[c, f ]〉G.
But

[c, f ] = [(ba, b−1), (1, c)] = [1, [b−1, [a, b]]] ∈ 1× γ3(G).

This ends the proof.
Here is another general property of regular weakly branched groups which is

easy to prove.

Proposition 3.9. Let G be a regular weakly branched group over K. Then for
every normal subgroup N � G there exists n such that

K ′
n < N

where Kn = K × · · · × K (direct product of dn factors, each one acting on the
corresponding subtree).

3.4. An interesting dynamical system. Computations of spectra of ran-
dom walk operators for automata groups often lead to rational maps with interesting
dynamical properties. In analogy to the case of the lamplighter group we consider
the operators

Mn(λ, η) = πn(a) + πn(a
−1) + λ(πn(b) + πn(b

−1))− ηIn.

The operators Mn are given by 2n × 2n matrices. Let Qn = detMn. For instance

Q1(λ, η) = 2η + 2− λ,

Q2(λ, η) = −(2η − 2 + λ)(2η + 2− λ),

Q3(λ, η) = (2η + 2− λ)(2η − 2 + λ)(4η2 − λ2 + 4)

Q4(λ, η) = −(−2 + λ)(2η + 2− λ)(2η − 2 + λ)

(2λ2 − 8− λ3 + 4λ+ 4η2λ)(4η2 − λ2 + 4)

We have

Theorem 3.10 ([26]). a) If n ≥ 1 then

Qn+1(λ, η) = λ2n+1

Qn(F (λ, η))

where

F :

{
λ → −2− λ(2−λ)

η2

η → λ−2
η2

.

b) The spectrum Σ of M(λ, η), i.e. the set of pairs (λ, η) (including multiplic-
ities) for which the operator M(λ, η) is not invertible, is invariant with respect to
the map F : R2 → R2, i.e. F−1(Σ) = Σ.



184 ANDRZEJ ZUK

Figure 5. Zeros of Qn(λ, η)

The zeros of Qn(λ, η) are given in Figure 5 while the set of accumulation points
of the set ∪∞

n=1F
−n(x0, y0) is shown on Figure 6, suggesting that the map F should

have an attractor topology.

Figure 6. The attractor associated to the automaton from Figure 4

3.5. Amenability of the group generated by a three state automaton.
Let SG0 be the class of groups such that all finitely generated subgroups are of
subexponential growth. Suppose that α > 0 is an ordinal and we have defined SGβ

for any ordinal β < α. Now if α is a limit ordinal let

SGα =
⋃
β<α

SGβ.
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If α is not a limit ordinal let SGα be the class of groups which can be obtained
from groups in SGα−1 using either extensions or direct limits. Let

SG =
⋃
α

SGα.

The groups in this class are called subexponentially amenable.
SG is the smallest class of groups which contains groups of subexponential

growth and is closed under elementary operations. The classes SGα are closed
under taking subgroups and quotients.

Proposition 3.11 ([25]). The group G is not subexponentially amenable, i.e.
G 	∈ SG.

Proof. We start with the following lemmas:

Lemma 3.12. We have the relation

ψ1(γ3(G)) = 〈γ3(G), b2a〉.

Proof. It is a consequence of Lemma 3.7 and the relation (3.8).

Lemma 3.13. We have

ψ1(〈γ3(G), b2a〉) = 〈γ3(G), b2a, a〉.

Proof. It is a consequence of the preceding lemma and the relation b2a = (a, ab).

Lemma 3.14. For the projection on the second coordinate we have

ψ2(〈γ3(G), b2a, a〉) = G.

Proof. It follows from Lemma 3.7 and the relations b2a = (a, ab) and a = (1, b).

We can now prove Proposition 3.11. Suppose that G ∈ SGα for α minimal.
Then α cannot be 0 as G has exponential growth (the semigroup generated by a
and b is free according to Lemma 3.6). Moreover, α is not a limit ordinal, for if
G ∈ SGα for a limit ordinal then G ∈ SGβ for some ordinal β < α. Also, G is not
a direct limit (of an increasing sequence of groups) as it is finitely generated. Thus
there exist N , H ∈ SGα−1 such that the following sequence is exact:

1 → N → G → H → 1.

Thanks to Proposition 3.9 there exists n such that N > (RistG(n))
′ ≥ G′′×· · ·×G′′

(2n fois). So G′′ ∈ SGα−1 and then γ3(G) ∈ SGα−1 according to Lemma 3.8. Each
class SGα is closed with respect to quotients and subgroups. From Lemmas 3.12,
3.13, 3.14 we deduce that G ∈ SGα−1. Contradiction.

To show amenability of G one uses a criterion of Kesten [35] concerning random
walks on G.

Let μ be a symmetric probability measure supported on the generating set S
of G, i.e. G = 〈S〉, μ(s) = μ(s−1) for every s ∈ S and μ(S) = 1.

Let pn be the probability of return to the identity after n steps of the random
walk given by μ, i.e.

pn(Id, Id) = μ∗n(Id)

where μ∗n is the n-th power of the convolution of μ on G.
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Theorem 3.15 (Kesten [35]). The group G is amenable if and only if

lim
n→∞

2n
√
p2n(Id, Id) = 1.

Amenability of G was proven by Virag [48]. This proof was published in [6].
On G we consider the random walk Zn given by a symmetric measure μ on

S = {a, a−1, b, b−1} with weights {1, 1, r, r}, i.e. μ(a−1) = μ(a) = 1
2r+2 , μ(b

−1) =

μ(b) = r
2r+2 .

The image Zn by the embedding of G in G � S2 is denoted by

Zn = (Xn, Yn)εn

where Xn, Yn ∈ G and εn ∈ S2.
We define the stopping times σ and τ :

σ(0) = 0

σ(m+ 1) = min{n > σ(m) : εn = 1, Xn 	= Xσ(m)}
τ (0) = min{n > 0 : εn = e}

τ (m+ 1) = min{n > τ (m) : εn = e, Yn 	= Yτ(m)}
A simple computation shows:

Lemma 3.16. Xσ(m) and Yτ(m) are simple random walks on G according to the

distribution μ′(a−1) = μ′(a) = r
2r+4 , μ

′(b−1) = μ′(b) = 1
r+2 .

We remark that for r =
√
2 we get the same distribution on Zn, Xσ(n) and

Yτ(n).
One can also verify

Lemma 3.17. Almost surely

lim
m→∞

m

σ(m)
= lim

m→∞

m

τ (m)
=

2 + r

4 + 4r
<

1

2
.

To conclude we need to modify the distance on G, in order to control the norm
of Zn by the norms of Xn and Yn.

Let Tn be a finite subtree of n level of T on which acts G. For g ∈ G we define
||| · |||Tn

by:

||| g |||Tn
=

∑
γ∈∂Tn

(|gγ |+ 1)− 1.

Finally we define the distance ||| ||| on G :

||| g ||| = min
n

||| g |||Tn
.

One checks that for g = (g0, g1)e
0,1

|||g0|||+ |||g1||| ≤ |||g||| ≤ |||g0|||+ |||g1|||+ 1

and that the growth with respect to the metric ||| · ||| is at most exponential, i.e.
there exists a > 1 such that

(3.10) |{g : |||g||| ≤ n}| ≤ an.

We have

Proposition 3.18. Almost surely

lim
n→∞

|||Zn|||
n

= 0.
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Proof. The existence of the limit, which we denote by s, is a consequence of
Kingman’s ergodic theorem. Now

|||Zn|||
n

≤ |||Xn|||
n

+
|||Yn|||

n
+

1

n
.

But

lim
n→∞

|||Xn|||
n

= lim
n→∞

|||Xσ(n)|||
σ(n)

= lim
n→∞

|||Xσ(n)|||
n

lim
n→∞

n

σ(n)

and similarly for Yn. So for r =
√
2 if s > 0, by Lemma (3.17), s < s 1

2 + s 1
2 = s.

This contradiction implies that s = 0.

Proposition 3.19. The probability p(Z2n = Id) does not decay exponentially.

Proof. For every ε > 0, we have

p(|||Z2n||| ≤ εn) =
∑

g∈G,|||g|||≤εn

p(Z2n = g) ≤ p(Z2n = Id)× |{g ∈ G; |||g||| ≤ εn}|.

Thus according to (3.10)

p(Z2n = Id) ≥ p

(
|||Zn|||

n
< ε

)
· a−εn.

Following Proposition 3.18 and Kesten’s criterion the group generated by the
automaton from Figure 4 is amenable.

Using HNN extensions of the group G, one can construct amenable finitely
presented groups which are subexponentially amenable. In [26] we show that the
group

(3.11) G̃ = 〈b, t|[btb, bt] = 1, bt
2

= b2〉
has these properties.

The above proof can be adapted to prove amenability of a wide class of groups
generated by automata as was shown in [8] and [5].

4. Non uniform exponential growth

We present a group constructed by Wilson to solve a problem of Gromov. To
define it we use the language of wreath products (see Section 1.2).

4.1. Problem of Gromov. For groups of exponential growth, the growth
function depends on the generating set. It is natural to ask if one can define an
invariant independent of the generating set.

More precisely, for a group G generated by a finite set S one defines

h(G,S) = lim
n→∞

n
√
|{g ∈ G : |g|S ≤ n}|.

The entropy of the group G is then

h(G) = inf
S;〈S〉=G

h(G,S).

In 1981, Gromov [29] asked if for every G of exponential growth

h(G) > 1,

i.e. whether it has uniform exponential growth, which means that there exists a > 1
such that for every generating set

|{g ∈ G : |g|S ≤ n}| ≥ an.
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This very natural problem leads to some interesting results. The answer is
positive for several classes of groups like hyperbolic groups, finitely generated linear
groups [13, 7] and elementary amenable groups of exponential growth [43].

The first group without uniform exponential growth was constructed by Wilson
in 2003 [49].

4.2. Construction of Wilson. Let us consider A31, the alternating subgroup
of the symmetric group on 31 elements.

Theorem 4.1. Let H be a perfect group of finite type which satisfies the prop-
erty H � H � A31. Then there exists a sequence (xn) of elements of order 2 and a
sequence (yn) of elements of order 3 such that

(1) 〈xn, yn〉 = H for every n ;
(2) limn→∞ h(H, {xn, yn}) = 1.

Construction of H.

Let T31 be a rooted tree of degree 31. Let x ∈ Aut(T31) be such that it acts
nontrivially only on the first level. We define x ∈ Aut(T31) by its image in the
wreath product

x = (x, x, Id, . . . , Id).

Finally let
H = 〈x, x|x ∈ A31〉.

The group H is of finite type and H is perfect as A31 is.

Proposition 4.2. We have

H � H �A31.

Proof. Let σ = (2, 3, 4), ρ = (1, 3, 2) ∈ A31 and consider x, y ∈ A31. Then
[x, σy] = ([x, y], Id, . . . , Id). As A31 is perfect this shows that for every x ∈ A31

we have (x, Id, . . . , Id) ∈ H. Then ρ(x, Id, . . . , Id)−1x = (x, Id, . . . , Id). Thus H
contains {(h, Id, . . . , Id)|h ∈ H} and using x ∈ A31 we get H �A31 ⊆ H.

Now we explain what are the properties of the group A31 which we need.

Proposition 4.3. The group A31 can be generated by an element of order 2
and an element of order 3.

As H � H � A31 and H is perfect this implies that there exist u, v ∈ H such
that u2 = v3 = id and H = 〈u, v〉.

Proposition 4.4. Let H � H � A31 be a perfect group generated by u and v
such that u2 = v3 = id. Then there exist x, y ∈ A31 such that

• there exists α, β ∈ {1, . . . , 31}, α 	= β

x(α) = xy(α) = α

y(β) = β

• the elements

x̂ = (. . . , u, . . .)x

ŷ = (. . . , v, . . .)y,

where u is in position α and v in position β, satisfy x̂2 = ŷ3 = id and
〈x̂, ŷ〉 = H.
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Proof. We easily verify this proposition with explicit x, y, α and β [49].

Now let

γ′(n) = |{w ∈ H : |w|〈x̂,ŷ〉 ≤ n}|,
γ(n) = |{w ∈ H : |w|〈u,v〉 ≤ n}|.

Proposition 4.5. If we denote lim
n→∞

n
√
γ(n) = c and lim

n→∞
n
√
γ′(n) = c′, then

for s ≥ 3 we have

c′ ≤ max
(
c1−

1
2s , (1 + 2/s)(s+ 2)2/s

)
.

Proof. We start by explaining the second term. Consider Z/3Z ∗ Z/2Z. Let
ρn = {w ∈ Z/3Z ∗ Z/2Z; |w|〈x,y〉 ≤ n et | {xy−1xy ∈ w} |≤ [n/s]}.

Then lim
n→∞

n
√
ρn ≤ (1 + 2/s)(s+ 2)2/s.

Now let

B(n) = {w ∈ 〈x̂, ŷ〉; |w| ≤ n}
B+(n) = {w ∈ B(n); | {x̂ŷ−1x̂ŷ ∈ w} |≥ [n/s]}
B−(n) = B(n) \B+(n).

We get

x̂ŷ−1x̂ŷx̂ = (1, . . . , 1, v−1, . . . , u, . . . , v)xy−1xyx

where v−1 is in position xyx(β), u is in yx(α) and v in x(β).
If w ∈ B+(n) then | {x̂ŷ−1x̂ŷx̂} | is at least 1

2 [n/s] = r. Thus

|B+(n)| ≤ |A31|
∑

n1+...+n31≤n−2r

31∏
j=1

γ(ni) ≤ K(n)(c+ε)n−2r = K(n)(c+ε)n(1−1/2s)

where K(n) is a polynomial in n. We get the desired estimate.

The proof of the theorem is thus reduced to the following elementary lemma:

Lemma 4.6. There exists a sequence sn → ∞ such that

cn → 1

where c1 = 2 and cn = max

(
c
1− 1

2sn
n−1 , (1 + 2/sn)(sn + 2)2/sn

)
for n ≥ 2.

Finally, to show that H has exponential growth, one shows that it contains a
free semigroup.

In [8] there are constructions of groups which solve at the same time the prob-
lem about amenability explained in the previous section and the problem of Gro-
mov.

5. Burnside problem

In 1902 Burnside asked if there is an infinite finitely generated group such that
all elements are of finite order.

This problem inspired many developments in group theory in the twentieth
century. It forced one to construct and understand groups which are far away from
linear groups.
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The most important result concerning the existence of such groups is the the-
orem of Adyan-Novikov [42].

It was announced in the mid-fifties but the proof appeared only in the late
sixties. The length of the paper(s) (several hundred pages), which after all were
only showing that some groups are infinite, was an indication how complicated some
groups might be. In a way, since then group theory has became more a theory of
examples than a general theory.

Before the paper of Adyan-Novikov was published, Golod and Shafarevich [20]
presented another construction of infinite torsion groups, which unlike the Adyan-
Novikov examples are of unbounded exponent.

Let B(2, n) be a two-generated group given by the following presentation:

B(2, n) = 〈a, b|w(a, b)n〉
where w(a, b) are all possible words in a and b. Clearly elements of B(2, n) are of
order at most n.

Theorem 5.1 (Adyan-Novikov). If n is odd and n ≥ 665 then B(2, n) is
infinite.

The Aleshin group gives a very simple answer even if, unlike the groups of
Adyan-Novikov, the orders of its elements are not uniformly bounded.

5.1. The Aleshin group. Let us consider the finite inversible automaton
from Figure 1. The Aleshin group [1] is the group G generated by U and V .

Its study enabled one to give a particularly simple answer to the Burnside
problem and to solve a problem of Milnor.

Aleshin [1] proved:

Theorem 5.2. The group generated by U and V is torsion and infinite.

The original proof enables one to construct an uncountable family of infinite
p-groups for every prime number p.

The Aleshin group is by definition of finite type.
Let G be the group generated by the states a, b, c and d of the automaton

from Figure 1. It is easy to see that this group is commensurable with the group
generated by the states U and V and with the group generated by all states of the
automaton (i.e. these groups have finite index subgroups which are isomorphic).

We have relations:

a = (1, 1)e

b = (a, c)

c = (a, d)(5.12)

d = (1, b)

and also

aba = (c, a)

aca = (d, a)(5.13)

ada = (b, 1).

Proposition 5.3. The group G is infinite.
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Proof. Consider StG(1) which is of index 2 in G. Its projection on the first
coordinates contains a, b, c and d. Thus StG(1) surjects onto G which shows that
G is infinite.

Lemma 5.4. The group generated by b, c and d is isomorphic to the Klein
group Z/2Z⊕ Z/2Z.

Proof. It is a simple verification.

For g ∈ G we have g8 ∈ StG(3).

Lemma 5.5. For g8 consider its image in G8. Denote g8 = (g1, . . . , g8). Then
for g 	= id

(5.14) |gi| < |g|,
for the length with respect to generators a, b, c and d.

Proof. As a is of order 2 and b, c, d are elements of the Klein group, every element
g ∈ G can be written as

g = ak1ak2a · · · akna,
where ki ∈ {b, c, d} and the first and last a, denoted by a, do not necessarily appear.

Consider the block γ = kiaki+1a. Thanks to relations (5.12) and (5.13) its
image γ = (γ1, γ2) in G×G verifies

|γi| ≤
1

2
|γ|

for i = 1, 2. If ki or ki+1 is equal to d, one of these inequalities becomes strict:

(5.15) |γi| <
1

2
|γ|.

The relations (5.12) and (5.13) show that the image of ki or akia in G × G
gives c if ki = b and gives d if ki = c. Thus if we iterate this procedure 3 times we
are sure to be in the situation (5.15).

We have g2 ∈ StG(1), g
4 ∈ StG(2), g

8 ∈ StG(3) and thus

|gi| <
1

8
|g8| ≤ |g|.

Therefore we have the inequality (5.14).

One shows by induction on the length that every element is of finite order.
The Aleshin group is not finitely presented.
Actually there are no known examples of finitely presented, infinite torsion

groups.

6. Intermediate growth

The growth type for groups is one of the simplest invariants for infinite groups.

For a group G generated by a finite set S which we suppose to be symmetric
(i.e. such that S = S−1), we denote |g|S the minimal number of generators needed
to represent g. The growth of the group G describes the asymptotic behavior of
the function

bG(n) = |{g ∈ G : |g|S ≤ n}|.



192 ANDRZEJ ZUK

This type of growth is independent of the generating set. For instance, for nilpotent
groups it is polynomial and for a group which contains a subgroup or even semi-
group which is free the growth is exponential. For the history of this notion see
[29]. Its systematic study starts with results of Milnor.

Actually, polynomial growth characterizes nilpotent groups, namely a group of
polynomial growth contains a finite index subgroup which is nilpotent. This was
proven by Gromov using a solution to Hilbert fifth problem which is a characteri-
zation of Lie groups among topological groups. An elementary proof of Gromov’s
result was given recently by Kleiner [36].

In [39] it was asked if there are other types of growth. We present a solution
given in [23].

6.1. Growth of the Aleshin group.

Proposition 6.1. The group G is not of polynomial growth.

Proof. A polynomial growth group contains a finite index subgroup which is nilpo-
tent (Gromov) and contains a finite index subgroup which is torsion free (Malcev).
However, Aleshin’s theorem show that G is infinite and torsion. One can also prove
this proposition by a simple calculation.

Let us show that the Aleshin group has sub-exponential growth.
Let Γ = StG(3). Then [G : Γ] < ∞.

Lemma 6.2. For g ∈ Γ consider its image in G8. Denote g = (g1, . . . , g8).
Then

(6.16)
8∑

i=1

|gi| ≤
3

4
|g|+ 8,

for the length with respect to generators a, b, c and d.

Proof. As in the proof of Lemma 5.5 any element g ∈ G can be written as

g = ak1ak2a · · · akna,
where ki ∈ {b, c, d} and the first and last a, denoted by a, do not necessarily appear.

Consider the block γ = kiaki+1a. Thanks to relations (5.12) and (5.13) its
image γ = (γ1, γ2) in G×G verifies

|γ1|+ |γ2| ≤ |γ|.
If ki or ki+1 is equal to d, this inequality becomes

(6.17) |γ1|+ |γ2| ≤
3

4
|γ|.

The relations (5.12) and (5.13) show that the image of ki or akia in G × G
gives c if ki = b and gives d if ki = c. Thus if we iterate this procedure 3 times we
are sure to be in the situation (6.17). Therefore we have an inequality (6.16) (the
term 8 is due to the fact that |g| is not necessarily divisible by 8).

Proposition 6.3. The Aleshin group has sub-exponential growth.

Proof. The inequality (6.16) shows that

(6.18) |bΓ(k)| ≤
∑

k1+...+k8≤ 3
4k+8

|bG(k1)| × . . .× |bG(k8)|.
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It is important to compute the length with respect to a, b, c and d even if a does
not belong to Γ. As Γ is of finite index in G, we have

(6.19) lim
n→∞

n
√
|bG(n)| = lim

n→∞
n
√
|bΓ(n)| = α.

For every ε > 0 there exists c > 0 such that for n sufficiently large, we get

|bG(n)| ≤ c(α+ ε)n.

The majoration (6.18) ensures there is c′ such that

|bΓ(n)| ≤ c′n8(α+ ε)
3
4n+8.

Thus limn→∞
n
√
|bΓ(n)| ≤ α

3
4 which together with (6.19), implies

lim
n→∞

n
√
|bG(n)| = 1.

Therefore the Aleshin group has subexponential growth.

The exact asymptotic growth of this group is not known.
It is worth mentioning that in [9] one can find an example of a group of inter-

mediate growth for which there are 0 < α < β < 1 such that for infinitely many

n’s the size of balls is less than en
α

and for infinitely many n’s more than en
β

.
As was mentioned in the section concerning the Burnside problem, the Aleshin

group is not finitely presented.
Moreover, there are no known examples of finitely presented groups of inter-

mediate growth. The case of finitely presented groups of is particularly interesting
as it relates to the growth of Riemannian manifolds. Namely, for a closed Rie-
mannian manifold M , the growth type of the volume of balls on the universal cover

M̃ is equivalent to the growth type of the fundamental group of the manifold M .
The only condition on a group to be a fundamental group of a closed manifold is
to have a finite presentation. Therefore it is an open problem whether there are
closed manifolds with universal cover of intermediate growth.

7. Finitely presented groups

In these notes we presented some spectacular advances in group theory using
groups generated by finite automata. Many problems discussed here have very
natural analogues in the geometric context, namely for closed manifolds. Then
statements and conjectures about closed manifolds can be formulated in terms of
the fundamental group. Clearly the fundamental group of a closed manifold is
finitely presented. It is not very difficult to show that every finitely presented
group can be realized as the fundamental group of a closed 4-dimensional manifold.
The idea of this construction was explained in the section about L2 Betti numbers
although due to some other constraints it led to a 7-dimensional manifold.

The automata groups considered here were not finitely presented. However,
they admit very special presentations which enables one to embed them into finitely
presented groups and in some cases it provides solutions to geometric problems as
well. In order to explain this we have to review the notion of a recursive presenta-
tion.

Let us recall that a subset S of the natural numbers is called recursive if there
exists a totally computable function f such that f(x) = 1 if x ∈ S and f(x) = 0
if x 	∈ S and where a computable function is one for which there is an algorithm
(Turing machine) telling how to compute the function.
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Let S be a set and let FS be the free group on S. Let R be a set of irreducible
words on S and its inverses, i.e. a subset of FS . The group defined by a presentation
〈FS | R〉 is the quotient of FS by the smallest normal subgroup of FS containing R.

If S is indexed by a set consisting of all the natural numbers or a finite subset
of them, then we consider a simple one to one coding f : FS → N from the free
group on S to the natural numbers, such that we can find algorithms that, given
f(w), calculate w, and vice versa. We can then call a subset U of FS recursive
(respectively recursively enumerable) if f(U) is recursive (respectively recursively
enumerable). If S is indexed as above and R recursively enumerable, then the
presentation is a recursive presentation and the corresponding group is recursively
presented.

Examples of such presentations are given in sections about L2 Betti numbers
(the lamplighter group) and amenability (a group on three states). It appears that
it gives a precise characterization of subgroups of finitely presented groups.

In the sixties Higman [32] proved that a group is a subgroup of a finitely
presented group if and only if it admits a recursive presentation. Actually, there
is an algorithm how to embed a group with a given recursive presentation into a
finitely presented group. It consists of a series of HNN extensions.

This is exactly the procedure which was explained in detail in Section 2 to
embed the lamplighter group, and HNN extensions are used to obtain a group
with a finite presentation (2.4) and for a three-state automaton group we obtain a
presentation (3.11).

It was important that these extensions preserved properties which were crucial
for the problems which we considered. In the problem about L2 Betti numbers
it was important that there was no new torsion introduced by the extensions and
for amenability it was important that the extensions that we considered preserved
amenability.

However, these techniques failed to produce infinite, torsion, finitely presented
groups or finitely presented groups of intermediate growth. The reason is that the
extensions used to produce finitely presented groups introduce elements of infinite
order and lead to groups of exponential growth.
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p. 141 – 174.
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Spectral Triples and KK-Theory: A Survey

Bram Mesland

Introduction

This survey covers the material in the forthcoming paper [21], which deals with
the construction of a category of spectral triples that is compatible with the Kas-
parov product in KK-theory ([18]). These notes serve as an intuitive guide to the
results described there, avoiding the necessary technical proofs. We will also add
some background and a broader perspective on noncommutative geometry. The
theory described shows that, by introducing a notion of smoothness on unbounded
KK-cycles, the Kasparov product of such cycles can be defined directly, by an al-
gebraic formula. This allows one to view such cycles as morphisms in a category
whose objects are spectral triples.

We will consider all C∗-algebras to be equipped with a spectral triple that is
sufficiently smooth. A smooth KK-cycle for a pair of such C∗-algebras (A,B) is a
triple (E , S,∇), where the pair (E , S) is a KK-cycle in the sense of Baaj-Julg [1],
satisfying some smoothness conditions compatible with the given spectral triples,
and ∇ is a connection on the module, compatible with the operator S and the
smooth structure on E . Composition of such triples is defined by

(E , S,∇) ◦ (F , T,∇′) := (E⊗̃BF , S ⊗ 1 + 1⊗∇ T, 1⊗∇ ∇′),

and preserves all smoothness conditions. Moreover, it represents the Kasparov
product of the KK-cycles (E , S) and (F , T ).

In particular this allows one to compute such products explicitly in terms of the
operators and connection. This has possible applications to index problems, which
are often defined in terms of the Kasparov product. Since Chern character formulas
in cyclic homology are most easily computed for unbounded representatives (this is
Connes’ quantized calculus), explicit representatives of the Kasparov product are
desirable in such problems.
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Viewing spectral triples as noncommutative metric spaces, the notion of mor-
phism introduced here might shed light on the purely commutative problem of what
the correct notion of morphism between metric spaces should be.

1. Spectral triples and noncommutative geometry

By the Gelfand-Naimark theorem, C∗-algebras can be viewed as noncommu-
tative, locally compact Hausdorff topological spaces. This is the starting point
for noncommutative geometry. A continuous map f : X → Y between compact
Hausdorff spaces gives a *-homomorphism f∗ : C(Y ) → C(X) between the dual
C∗-algebras. Noncommutative algebras, however, might not admit any nontrivial
algebra homomorphisms. For intstance, the matrix algebra Mn(C) is a such a sim-
ple algebra. A more flexible notion of morphism for noncommutative algebras is
that of a suitable class of bimodules AEB, with composition coming from the tensor
product of bimodules.

Topological K-theory is the tool that generalizes in the most straightforward way
from spaces to C∗-algebras. From the definition of K-theory it follows readily that
K∗(A) ∼= K∗(Mn(A)) for any C∗-algebra A. This is one of the reasons why one
wants to regard these algebras as being equivalent. The notion of Morita equiv-
alence formalizes this notion of equivalence and is compatible with the notion of
bimodule morphism.

A Riemannian manifold M is a topological space with some finer structure defined
on it. This can be encoded by considering some (pseudo) differential operators on
the manifold, e.g. a Dirac operator (when M is Spinc), or a signature type operator.

In the spin case, the Riemannian metric on M can be recoverd from the Dirac
operator D by

d(x, y) = sup{‖f(x)− f(y)‖ : ‖[D, f ]‖ ≤ 1}.
The reader can consult [10] for a proof of this. Recently, some stronger reconstruc-
tion theorems have been announced [11].

This motivates the notion of spectral triple [8].

Definition 1.1. A spectral triple (A,H , D) consists of a Z/2-graded C∗-
algebra A represented on a likewise graded Hilbert space H , together with an
odd, selfadjoint operator D, with compact resolvent, such that

{a ∈ A : [D, a] ∈ B(H )},
is dense in A.

Commutative examples are plentiful, mainly given by manifolds. Other ex-
amples come from groups, group actions, and foliations. Also, there are various
extensions of the notion of spectral triple, notably in the type II and type III
setting. Again we refer to [7] for these topics.

2. The noncommutative torus

The subject of these notes is a notion of morphism for spectral triples, a gen-
eralization of maps between manifolds. Let us first discuss an example to illustrate
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this. It will be a noncommutative geometry description of the fibration of the torus
S1×S1 over the circle S1. The projection S1×S1 → S1 on either of the coordinates
is a smooth map, and the fiber over each point is again diffeomorphic to S1. Of
course this is a very simple fibration because it is just a direct product. However,
its noncommutative analogue is very instructive in illustrating the general theory
that follows.

The noncommutative torus Aθ is the C∗-algebra crossed product of the action
of Z on the circle S1 by a rotation over the angle 2πθ, denoted x 
→ αθ(x). The
algebra Cc(S

1 × Z) carries a convolution product

f ∗ g(x, n) =
∑
k∈Z

f(x, k)g(αk
θ(x), n− k),

defining a representation on H := L2(S1 × Z), yielding the C∗-algebra Aθ.

Another way to describe Aθ is as the universal C∗-algebra generated by two uni-
taries u, v subject to the relation uv = e2πiθvu. In this picture, elements of Aθ can
be described as series ∑

n,m∈Z

λn,munvm,

convergent in a certain norm, analogous to Fourier series.

The algebra Aθ carries two canonical unbounded derivations, defined on C∞
c (S1×Z)

by

∂1f(x, n) := nf(x, n), ∂2f(x, n) :=
1

2πi
∂f(x, n).

In the u, v picture, these derivations are

∂1u
nvm = munvm, ∂1u

nvm = nunvm.

On H ⊕ H this yields the operator

D :=

(
0 ∂1 − i∂2

∂1 + i∂2 0

)
.

giving the canonical spectral triple on Aθ.

3. “Fibration” over the circle

We now describe the structure that we think of as implementing the fibration of
Aθ over the circle algebra C(S1). It consists of an (Aθ, C(S1))-bimodule, equipped
with an unbounded operator and a connection. The precise structures present on
these modules will be described later in these notes. The reader is encouraged to
keep this example in mind.

Consider the module E = �2(Z)⊗̃C(S1) ∼= L2(S1)⊗̃C(S1). Here ⊗̃ denotes a
certain completed tensor product. It carries an unbounded, C(S1) linear operator

S : en ⊗ f 
→ nen ⊗ f.

The canonical spectral triple for the circle (C(S1), L2(S1), 1
2πi∂) defines a module

of 1-“forms”

Ω1
∂ := {

∑
fk[

1

2πi
∂, gk] : fk, gk ∈ Lip1(S1)} ⊂ B(L2(S1)),
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where Lip1 denotes the Lipschitz functions on S1. The module E carries a densely
defined connection

∇ : en ⊗ f 
→ en ⊗ [
1

2πi
∂, f ].

∇ is defined on a dense Lip1(S1)-submodule E1 ⊂ E , and maps it into E1⊗Lip1 Ω1
∂ .

It satisfies [∇, S] = 0. The tensor product E⊗̃C(S1)L
2(S1) is isomorphic to H .

Under this identification, the derivation ∂2 equals

e⊗ h 
→ e⊗ 1

2πi
∂h+∇(e)h.

This expression is well defined because ∇ satisfies a Leibniz rule

∇(ef) = ∇(e)f + e⊗ [
1

2πi
∂, f ].

We denote it by 1 ⊗∇
1

2πi∂. We thus see that the canonical spectral triple on Aθ

can be factorized as a graded tensor product

(Aθ,H ⊕ H , D) = (E, S,∇)⊗ (C(S1), L2(S1),
1

2πi
∂).

The tensor product on the right is to be interpreted as

E ⊗C(S1) L
2(S1)⊕ E ⊗C(S1) L

2(S1),

with operator (
0 S ⊗ 1− i1⊗∇

1
2πi∂

S ⊗ 1 + i1⊗∇
1

2πi∂ 0

)
.

Thus, by choosing the right gradings, the triple (E , S,∇) can be viewed as a
fibration of the noncommutative torus over the circle.

4. C∗-modules and regular operators

We now proceed by describing the modules, operators and connections involved
in a more rigorous manner. Let (A,B) be a pair of separable, Z/2-graded C∗-
algebras. The reader who feels uneasy thinking about graded C∗-algebras, can
think of trivially graded (i.e. ungraded) C∗-algebras. The reason for developing
the theory for graded algebras is that one can treat the even and odd cases of K-
theory at the same time. The standard reference for the theory of C∗-modules is
[20].

Definition 4.2. A C∗-module over B is a right B-module E equipped with a
positive definite B-valued inner product.

A positive definite B-valued inner product is a pairing E × E → B, satisfying

• 〈e1, e2〉 = 〈e2, e1〉∗,
• 〈e1, e2b〉 = 〈e1, e2〉b,
• 〈e, e〉 ≥ 0 and 〈e, e〉 = 0 ⇔ e = 0,
• E is complete in the norm ‖e‖2 := ‖〈e, e〉‖.

We use the notation E � B to indicate this structure.

The natural endomorphisms to consider in a C∗-module are the following:

End∗B(E) := {T : E → E : ∃T ∗ : E → E , 〈Te, f〉 = 〈e, T ∗f〉}.
Operators in End∗B(E) are automatically B-linear and bounded, and they form a
C∗-algebra in the operator norm and the involution T 
→ T ∗.
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There is a natural C∗-subalgebra, analogous to the compact operators on a Hilbert
space. The algebra of compact endomorphisms KB(E) ⊂ End∗B(E) is the C∗-
subalgebra generated by the operators e⊗ f(g) := e〈f, g〉.

An (A,B)-bimodule is a C∗-module E � B, together with a graded *-homomorphism
A → End∗B(E).

A regular operator in E is a densely defined closed operator, D : DomD → E ,
such that D∗ is densely defined in E and 1+D∗D has dense range. This condition
is automatic in the Hilbert space setting, but needs to be imposed in C∗-modules,
to avoid pathologies. The operator D is selfadjoint if it is symmetric on its domain,
and DomD∗ = DomD. An excellent reference for the theory of regular operators
in C∗-modules is [20].

5. Unbounded KK-theory

KK-theory associates to a pair (A,B) of separable, Z/2-graded C∗-algebras a
Z/2-graded abelian group KK∗(A,B). Kasparov [18] originally constructed and
described these groups using bounded Fredholm operators in C∗-modules.

A defining element of the group KK0(A,B) is a pair (E , F ) consisting of an (A,B)-
bimodule E , together with an operator F ∈ End∗B(E) satisfying

a(F 2 − 1), a(F − F ∗), [F, a] ∈ KB(E).

Subsequently one considers unitary equivalence classes of such pairs, and quotients
by the relation of homotopy to obtain the abelian group KK0(A,B). The groups
KKi(A,B) are defined as being KK0(A,B⊗̃Ci), where Ci is the i-th complex Clif-
ford algebra. This is a graded C∗-algebra, and it is at this point that working with
graded algebras comes in handy.

Kasparov’s main achievement was the construction of an associative, distributive
product

KKi(A,B)⊗Z KKj(B,C) → KKi+j(A,C),

now known as the Kasparov product. The Kasparov product has remarkable proper-
ties. It allows one to view the KK-groups as the morphisms in a category KK whose
objects are C∗-algebras. Moreover, Cuntz [12] and Higson [16] showed that that
KK-theory has a universal property, in the sense that any functor from C∗-algebras
to abelian groups which is Morita invariant and split exact, factors through this
category KK. Such functors are automatically homotopy invariant. In this sense
KK-theory is the universal cohomology theory for C∗-algebras.

In the above Fredholm picture, the Kasparov product is very difficult to define,
and we will refrain from doing so here. We will describe the product in a different
picture, given below.

Definition 5.3 ([1]). The cycles for KK0(A,B) may also be described by
pairs (E , D), where

• E is an (A,B)-bimodule.
• D : DomD → E is an odd selfadjoint regular operator.
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• ∀a ∈ A : a(1 +D2)−1 ∈ KB(E).
• The subalgebra

A1 := {a ∈ A : [D, a] ∈ End∗B(E)},
is dense in A.

Such pairs (E , D) are referred to as unbounded KK-cycles.

The relation between the bounded and the unbounded picture is given by a
simple procedure. The following results are due to Baaj-Julg[1].

Theorem 5.4 ([1]). Let F := D(1+D2)−
1
2 ∈ End∗B(E), the bounded transform

of D.

• (E , F ) is a Kasparov module, i.e. F ∗ = F and

∀a ∈ A, a(F 2 − 1), [F, a] ∈ KB(E).

• Two unbounded modules are equivalent if their bounded transforms are
homotopic. Any Kasparov module is homotopic to the bounded transform
of an unbounded one.

Their motivation for introducing the unbounded picture was that it simplifies
another product structure in Kasparov’s theory, the external product

KKi(A,B)⊗KKj(A
′, B′) → KKi+j(A⊗A′, B⊗B′),

where A,A′, B,B′ are distinct C∗-algebras. Baaj and Julg proved the following

Theorem 5.5 ([1]). On unbounded cycles, the external Kasparov product is
given by

(E , S)× (F , T ) := (E⊗F , S ⊗ 1 + 1⊗ T ),

where
1⊗ T (e⊗ f) := (−1)∂ee⊗ Tf.

In the case B = B′ = C, this product corresponds to the direct product of
manifolds. The case A = A′ = C gives the external product in topological K-
theory.

6. Algebraic intermezzo

When trying to define the internal Kasparov product

KKi(A,B)⊗KKj(B,C) → KKi+j(A,C),

on unbounded cycles, we run into the following problem. In the Fredholm picture,
Kasparov proved that on the module E⊗̃BF one can always find an operator,
unique up to homotopy, that defines the class of the Kasparov product. In the
unbounded picture, as in the case of the external product, the natural guess for
the operator is something like S ⊗ 1 + 1 ⊗ T . However, the expression 1 ⊗ T does
not make sense, since T does not commute with the elements of B, and we take a
balanced tensor product. It turns out that there is a notion of connection which
corrects for this problem. The algebraic theory of forms and connections is de-
scribed in detail in [13].

For clarity, we first consider the following structure of a category on algebraic
(A,B)-bimodules with odd operator (E,D).



SPECTRAL TRIPLES AND KK-THEORY: A SURVEY 203

Definition 6.6. Let B be an algebra. The module of 1-forms of B is the
kernel of the graded multiplication map

Ω1(B) := ker(B ⊗B
m−→ B)

b1 ⊗ b2 
→ b1γ(b2),

where γ ∈ AutB is the grading automorphism. The universal derivation d : B →
Ω1(B) is given by

b 
→ 1⊗ b− γ(b)⊗ 1.

Any derivation δ : B → M into a B-bimodule M factors through the bimodule
Ω1(B) in the following sense.

Proposition 6.7 ([13]). The bimodule Ω1(B) is universal for derivations δ :
B → M , where M is a B-bimodule. That is, for any such δ there is a unique map
jδ : Ω1(B) → M such that δ = jδ ◦ d.

The map jδ is defined by setting jδ(da) = δ(a). This determines jδ as a
bimodule map, because the elements da generate Ω1(B) as a bimodule.

Definition 6.8. A connection on a right B-module E is a map

∇ : E → E ⊗B Ω1(B),

satisfying

∇(eb) = ∇(e)b+ e⊗ db.

If a connection ∇ on E is given, F is a (B,C)-bimodule and T ∈ EndB(F ),
then the operator

1⊗∇ T (e⊗ f) := (−1)∂e∂T (e⊗ Tf +∇T (e)f),

is well defined on E ⊗B F . Here ∂e, ∂T ∈ {0, 1} denote the degree of the homoge-
neous elements e and T respectively. The connection ∇T : E → E ⊗B EndC(F ) is
the composition jδ ◦ ∇ with δ the derivation b 
→ [T, b]. When a connection ∇′ is
given on F , we can apply the same trick and define a connection

1⊗∇ ∇′ : E ⊗B F → E ⊗B F ⊗C Ω1(C),

now by using the derivation b 
→ [∇, b]. An isomorphism of triples (E, S,∇) and
(E′, S′,∇′) is a bimodule isomorphism g : E → F with the additional properties
that

• g−1S′g = S;
• g−1∇′g = ∇.

Of course, isomorphism of triples is an equivalence relation.

Proposition 6.9 ([21]). Let A,B,C be algebras, E,F (A,B)− and (B,C)−
bimodules respectively. The composition law

(E, S,∇) ◦ (F, T,∇′) := (E ⊗B F, S ⊗ 1 + 1⊗∇ T, 1⊗∇ ∇′),

is associative up to isomorphism. Isomorphism classes of triples (E, S,∇) are the
morphisms in a category whose objects are pairs (E,D), where E is an (A,B)-
bimodule and D ∈ EndB(E) an endomorphism.

Remark 6.10. A morphism from (G,D) to (F, T ) is a triple (E, S,∇) such
that (E ⊗B F, S ⊗ 1 + 1⊗∇ T ) is isomorphic to (G,D).
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In this setting a spectral triple (A,H , D) is more conveniently denoted by just
(H , D). In particular, these are (A,C) bimodules. Unfortunately, the algebraic
setting discussed above is not appropriate for dealing with spectral triples. It needs
to be enriched to accommodate for the analytic phenomena governing them.

In order to construct a category of spectral triples (or unbounded bimodules)
in which the morphisms are unbounded bimodues (E , D), with some notion of
connection, several problems need to be addressed:

• Unbounded regular operators are not endomorphisms (i.e. not everywhere
defined).

• The graded commutators [D, a] are endomorphisms only for a in a dense
subalgebra of A.

• An analytic version of Ω1(B) and the notion of connection for dense sub-
algebras are needed.

• The product operator S ⊗ 1 + 1 ⊗∇ T should be selfadjoint, regular and
have compact resolvent.

All these issues can be resolved by introducing an appropriate notion of smoothness
for unbounded KK-cycles.

7. Operator algebras and modules

To overcome the aforementioned problems, we need to broaden our scope from
C∗-algebras to operator spaces. The algebraic structures of algebras and modules
will need operator space analogues as well. Operator space theory was developed
by Effros and Ruan [14],[22], and many others.

Definition 7.11. An operator space is a closed subspace of some C∗-algebra.

The main feature of an operator space X is that it comes with canonical matrix
norms, i.e. Mn(X) carries a canonical norm. A map φ : X → Y between operator
spaces is completely bounded if ‖φ‖cb := supn ‖φn‖ < ∞, where φn : Mn(X) →
Mn(Y ) is the map induced by φ. It is completely contractive if ‖φ‖cb ≤ 1. The
completely bounded maps form the natural class of maps between operator spaces.

Example 7.12. A *-homomorphism φ : A → B between C∗-algebras is au-
tomatically completely bounded, as is an adjointable operator T ∈ End∗B(E ,F )
between C∗-modules.

The natural tensor product for operator spaces X and Y is the Haagerup tensor
product, denoted by X⊗̃Y . Its norm is given by

‖z‖ := inf{‖
∑

xix
∗
i ‖

1
2 ‖

∑
y∗i yi‖

1
2 : z =

∑
xi ⊗ yi}.

Note that although x∗ need not be an element of X, it does make sense in the con-
taining C∗-algebra of X. The space X⊗̃Y is again an operator space. An operator
algebra is an operator space A whose multiplication A⊗̃A → A is completely con-
tractive. An involutive operator algebra is an operator algebra with an involution
a 
→ a∗ which is completely bounded. An operator module M over an operator
algebra B is an operator space M , which is also a (say) right B-module, such that
the module action M⊗̃B → M is completely bounded. The Haagerup module ten-
sor product M⊗̃BN of right and left B operator modules M and N , respectively, is
the quotient of M⊗̃N by the closed subspace generated by mb⊗ n−m⊗ bn. The
reader can consult [6] and [5] for many aspects of the theory of operator modules.
Also, see [15] for a survey on operator space tensor products.
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Example 7.13. A C∗-module E � B is canonically an operator space by
viewing it as the upper right corner of its linking algebra KB(B⊕E). As such it is
an operator module and the Haagerup tensor product of C∗-modules is completely
isometrically isomorphic to the C∗-module tensor product.

D.P. Blecher [4] observed that, when E is countably generated, by choosing an
approximate unit

un =
∑

1≤|i|≤n

xi ⊗ xi ∈ KB(E),

(which is possible by Kasparov’s stabilization theorem [18]) E can be written as
an inductive limit of the canonical modules B2n. This is done by considering the
maps

φn : (bi) 
→
∑

1≤|i|≤n

xibi, ψn : e 
→ (〈xi, e〉),

which are completely contractive, and φn ◦ ψn → 1 strongly. The inner product in
E can be recovered from these maps as

〈e, f〉 := lim
α
〈ψn(e), ψn(f)〉n.

8. Stably rigged modules

Blecher used his observation to develop a theory of modules over operator
algebras, that are in many ways similar to C∗-modules. In case the algebra is
actually a C∗-algebra, this class of modules coincides with that of C∗-modules. See
[3] for details.

Definition 8.14 (Blecher). Let B be an operator algebra with contractive
countable approximate identity. A rigged module over B is a right operator module
E over B together with completely contractive module maps ψn : E → B2n and
φn : B2n → E, such that φn ◦ ψn converges strongly to 1, and φn is B-essential.
When φn, ψn and the approximate identity are merely completely bounded, E is
an stably rigged module.

The difference between rigged and stably rigged modules might seem only for-
mal at first sight. However, the contractivity assumption is a fairly strong one.

Theorem 8.15 (Blecher). A rigged module over a C∗-algebra is a C∗-module,
and the Haagerup tensor product of (stably) rigged modules is again a (stably) rigged
module.

A rigged module over a C∗-algebra is completely isometrically isomorphic to a
C∗-module. In the cb-setting such a theorem has not been established, and can def-
initely not be proven in a similar way. An important corollary of the above theorem
is that for a rigged module E over an operator algebra B, and a completely con-
tractive homomorphism B → End∗C(F ), with F � C a C∗-module, the Haagerup
tensor product E⊗̃BF is a genuine C∗-module. This fact will be exploited when
dealing with graphs of unbounded operators.
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9. Sobolev modules

This section describes the construction of Sobolev modules and algebras as de-
veloped in [21]. They are the analogues of the usual Sobolev spaces that appear in
Riemannian geometry, but we describe them in a more algebraic manner. For this
reason we obtain only Sobolev spaces indexed by the natural numbers, as opposed
to the positive real numbers. This is to avoid the use of functional calculus.

The graph of a regular operator D in E is the closed submodule

G(D) := {(e,De) : e ∈ DomD} ⊂ E ⊕ E .

If D is selfadjoint, we define

DomD2 := {(e,De) ∈ G(D) : e ∈ DomD2},
and

D2 : (e,De) 
→ (De,D2e).

Lemma 9.16. Let D be a selfadjoint regular operator in E . The operator D2

is selfadjoint and regular in G(D).

Iterating this construction gives the Sobolev chain of D:

· · · → G(Dn+1) → G(Dn) → · · · → G(D2) → G(D) → E .

In C∗-modules, not every closed submodule is the range of a projection in End∗B(E).
Modules with this property are called complemented submodules. The following the-
orem states that the graph of a regular operator in a C∗-module is a complemented
submodule. The regularity condition on unbounded operators is imposed mainly
for this reason.

Theorem 9.17 ([2],[20],[23]). Let D be a selfadjoint regular operator in E .
Then

pD :=

(
(1 +D2)−1 D(1 +D2)−1

D(1 +D2)−1 D2(1 +D2)−1

)
,

is a projection in End∗B(E ⊕ E), and p(E ⊕ E) = G(D). Moreover

G(D)⊕ vG(D) ∼= E ⊕ E ,

is an orthogonal direct sum, where v is the unitary v : (x, y) 
→ (−y, x).

This result is attributed to several people, but Woronowicz explicitly mentions
the projection pD, which is why we refer to it as the Woronowicz projection. The
Sobolev modules and Woronowicz projections can be used to construct a chain of
subalgebras

· · · ⊂ Ak+1 ⊂ Ak ⊂ · · · ⊂ A1 ⊂ A,

for any spectral triple or KK-cycle, in the following way. For a KK-cycle (E , D),
we have a representation

π1 : A1 → End∗B(E ⊕ E) ∼= M2(End
∗
B(E))

a 
→
(

a 0
[D, a] (−1)∂aa

)
.
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This gives a representation

θ1 : A1 → End∗B(G(D))⊕ End∗B(vG(D))

a 
→ pDπ1(a)pD + p⊥Dπ1(a)p
⊥
D.

The restriction χ1 of θ1 to G(D) acts as

χ1(a) :

(
e
De

)

→

(
ae
Dae

)
.

This allows us to inductively define

An+1 := {a ∈ An : [D, θn(a)] ∈ End∗B(G(Dn))},
πn+1 : An → End∗B(G(Dn)⊕G(Dn))

a 
→
(

θn(a) 0
[D, θn(a)] (−1)∂aθn(a)

)
,

(9.1)

(9.2) θn+1(a) := pn+1pnπn+1(a)pnpn+1 + p⊥n+1p
⊥
n πn+1(a)p

⊥
n p

⊥
n+1.

Definition 9.18. The algebra An is the n-th Sobolev subalgebra of A. It
allows for a completely contractive representation χn : An → G(Dn), which is not
a *-homomorphism. When A = End∗B(E), we write Sobn(D) for An.

The algebras An can also be characterized by a relative boundedness condition.

Proposition 9.19 ([21]). We have a ∈ An if and only if

(ad(D))n(a)(D ± i)−n+1, (ad(D))n(a∗)(D ± i)−n+1 ∈ End∗B(E).

The representations
⊕n

j=0 πj realize An a closed subspace of a C∗-algebra, i.e.
as an operator space. Taking these representations as defining the topology on An,
the inclusions An+1 → An become completely contractive *-homomorphisms.

Proposition 9.20 ([21]). The involution on An is a complete anti-isometry.

Thus, the Sobolev subalgebras are involutive operator algebras in their natural
operator space topology.

10. Smoothness

Although the Sobolev subalgebras of a givenKK-cycle always exist and contain
the identity, in general we know very little about them. One of the conditions in
the definition of KK-cycle is that the algebra A1 is dense in the C∗-algebra A.
This can be interpreted as a smoothness condition.

Definition 10.21. A KK-cycle (E,D) is said to be (left) Ck if Ak is dense in
A. It is said to be (left) smooth is it is (left) Ck for all k and A =

⋂
k Ak is dense

in A.

This definition of smoothness is weaker then the one employed in [8]. In par-
ticular, spectral triples coming from manifolds are smooth in our sense. Indeed, for
a Ck-cycle the Sobolev algebras have good properties.

Theorem 10.22 ([21]). If (E,D) is Ck then the algebras Ai for i ≤ k are
stable under holomorphic functional calculus in A.
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Definition 10.23. A smooth C∗-algebra is an inverse system of involutive
operator algebras

· · · → An+1 → An → · · · → A,

coming from a spectral triple.

Smooth C∗-algebras should be thought of as the analogues of smooth manifolds.
By holomorphic stability, any finitely generated projective module over a unital
smooth C∗-algebra can be smoothened. In the case of countably generated modules,
smoothness is not direct anymore, and needs to be imposed on the module.

Definition 10.24. Let B be a Ck-algebra, and E � B a C∗-module. E is
said to be Ck if there is an approximate unit

un :=
∑

1≤|i|≤n

xi ⊗ xi ∈ KB(E),

such that the norm of the infinite matrix

‖(〈xi, xj〉)‖k ≤ C.

Remark 10.25. The k-norm is the norm induced by the representation
⊕k

j=0 πj .
Since this is an operator norm, it gives norms for all matrix algebras.

The approximate unit, the existence of which is demanded, can be used to
construct a chain of submodules

· · · ⊂ Ek+1 ⊂ Ek ⊂ · · · ⊂ E1 ⊂ E ,

which correspond to higher order Lipschitz sections of a vector bundle. In the
finitely generated unital case the approximate unit is an actual unit. It is no more
than a choice of projection in the subalgebra, which, as mentioned above, is always
possible.

Proposition 10.26. Let B be a smooth C∗-algebra and E a Ck-B-module.
Then

Ek := {e ∈ E : 〈xi, e〉 ∈ Bk, sup
n

‖
∑

1≤|i|≤n

ei〈xα
i , e〉‖k < ∞},

is an stably rigged Bk-module. Moreover, the inclusions Ek+1 → Ek are completely
contractive with dense range, and Ek+1⊗̃Bk+1

Bk
∼= Ek.

The Ek are stably rigged modules, but they are constructed in a very specific
way. This allows us to say a lot more about them than for general stably rigged
modules.

Theorem 10.27. Let E be a countably generated Ck-module over a Ck-algebra
B. For all i ≤ k, there are cb-isomorphisms Ei ⊕ HBi

∼= HBi
, compatible with the

Ck-structure. Consequently, a countably generated C∗-module is a Ck module if
and only if it is completely isomorphic to a direct summand in a rigged module.

For stably rigged modules, operator algebras End∗B(E) and KB(E) are defined
[3]. For Ck-modules over a Ck-algebra, the definitions are the same as in the
C∗-case.
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Theorem 10.28 ([21]). The submodules Ei ⊂ E , i ≤ k, inherit a Bi-valued
inner product by restriction of the inner product on E . We have

End∗Bi
(Ei) = {T : Ei → Ei : ∃T ∗ : Ei → Ei, 〈Te, f〉 = 〈e, T ∗f〉},

and KB〉(E
i) is the i-operator norm closure of the finite rank operators in End∗Bi

(Ei).
Moreover there is a cb-isomorphism

KBi
(Ei) ∼= Ei⊗̃Bi

Ei∗,

and

KBi
(Ei) = KB(E) ∩ End∗Bi

(Ei).

That is, they are those operators T : Ei → Ei that admit an adjoint with
respect to the above inner product. Such operators are automatically completely
bounded. The involution T 
→ T ∗ is in general not a complete isometry, but we
have 1

C ‖T‖i ≤ ‖T ∗‖i ≤ C‖T‖i for some C ≥ 1. In particular, unitaries are not
necessarily isometries.

Remark 10.29. Note that the topology on the Ei is not defined by the inner
product, but by the approximate unit.

In case we have two smooth C∗-algebras A and B, we can now state what it
means for a smooth module to be smooth as a bimodule.

Definition 10.30. Let A,B be Ck-algebras. A Ck-module E � B is a Ck

bimodule if the A representation restricts to representations Ai → End∗Bi
(Ei), for

i ≤ k.

11. Transverse operators

The theory of regular operators can be developed for Ck-modules. Definitions
and most of the essential results still hold true, but their proofs are quite different
from the C∗ setting. Thus, a selfadjoint operator D : DomD → Ei is said to
be regular if it is closed, its domain DomD ⊂ Ei is dense in Ei, and equals the
domain of its adjoint and the range of the operators D± i is all of Ei. A selfadjoint
regular operator in Ek extends to a regular operator in Ei, i ≤ k, as D ⊗ 1, by
proposition 10.26. The main result on selfadjoint regular operators in Ck-modules
is the existence of the Woronowicz projection.

Theorem 11.31. Let E be a Ck-module over a Ck-algebra B, and D a selfad-
joint regular operator in Ek. Then

pD :=

(
(1 +D2)−1 D(1 +D2)−1

D(1 +D2)−1 D2(1 +D2)−1

)
,

is a projection in End∗Bk
(Ek ⊕ Ek), and p(Ek ⊕ Ek) = G(D). Moreover

G(D)⊕ vG(D) ∼= (Ek ⊕ Ek),

is an orthogonal direct sum, where v is the unitary v : (x, y) 
→ (−y, x).

This implies that we get Sobolev subalgebras Sobki (D) ⊂ End∗Bk
(Ek) for all

i. We can use the same formulae (9.1),(9.2) to define the representations πk
i , θ

k
i of

these Sobolev algebras. We get the same relative boundedness conditions as in
proposition 9.19, but now for the i-norms.
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Definition 11.32. A KK-cycle (E , D) over Ck-algebras (A,B) is said to be
Ck if E is a Ck-bimodule, and D restricts to a regular operator in Ek.

D is said to be transverse Ck if Ai → Sobii(D) completely boundedly, for all
i ≤ k (transversality).

12. Smooth connections

The Haagerup tensor product linearizes the multiplication in an operator al-
gebra continuously. Since the definition of connections and 1-forms in section 6
essentially only uses the multiplication in an algebra, these definitions carry over
to operator algebras. We define

Ω1(B) := ker(B⊗̃B → B).
Connections are defined as in the algebraic setting: A Ck-connection in a Ck-
module E over a Ck-algebra B is a connection

∇ : Ek → Ek⊗̃Bk
Ω1(Bk),

which is completely bounded for the present operator space topologies. Since our
modules carry inner products, we now require the extra condition of being a ∗-
connection. This means there is another connection

∇∗ : Ek → Ek⊗̃Bk
Ω1(Bk),

such that

〈e1,∇(e2)〉 − 〈∇∗(e1), e2〉 = d〈e1, e2〉.
As usual, a ∗-connection is Hermitian when ∇ = ∇∗, i.e.

〈e1,∇(e2)〉 − 〈∇(e1), e2〉 = d〈e1, e2〉.

We call two Ck-modules E ,F topologically isomorphic if there exists an invertible
adjointable operator g : Ek → F k. Such g extends to a topological isomorphism
between Ei and F i for all i ≤ k.

Theorem 12.33 ([21]). Let B be a Ck-algebra, E � B a Ck-module, and
(F , T ) a transverse Ck KK-cycle for (B,C). If ∇ : Ek → Ek⊗̃Bk

Ω1(Bk) is a
Hermitian connection, then the operator

1⊗∇ T : Ek ⊗DomT → Ek⊗̃Bk
F k,

is essentially selfadjoint and regular in Ek⊗̃Bk
F k. Morever, the graphs

G((1⊗∇ T )i) ⊂ Ek

are topologically isomorphic to Ek⊗̃Bk
G(Ti), for i ≤ k.

The operator 1 ⊗∇ T is symmetric because ∇ is Hermitian. Note that in this
theorem the transversality property enters to make sure that each G(Ti) is a left
Bk-module for i ≤ k. Also, it should be noted that the isomorphism G(1⊗∇T )i) →
Ei⊗̃G(Ti) is the identity in the first coordinate. As such it gives a description of
the domain of the operator (1⊗∇ T )i, see [21] for details. Transverse smoothness
of connections is defined straightforwardly, again in an inductive way.
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Definition 12.34. A connection ∇ : Ek → Ek⊗̃Bk
Ω1(Bk) on a Ck-cycle

(E , D) is said to be a transverse Ck-connection if [D, θi(∇)] extends to a com-
pletely bounded operator G(Di) → G(Di)⊗̃Bi

Ω1(Bi) for all i ≤ k. Equivalently,
if

(ad(D))n(∇)(D ± i)−n+1, (D ± i)−n+1(ad(D))n(∇),

extend to completely bounded operators Ek → Ek⊗̃Bk
Ω1(Bk), for n ≤ k.

Note that a transverse Ck connection induces connections θi(∇) : G(Di) →
G(Di)⊗̃Bk

Ω1(Bk) for all i ≤ k. These connections are not Hermitian for the inner
product on G(Di), but they are ∗-connections.

Definition 12.35. Let A,B be Ck-algebras. A geometric correspondence is
a Ck-cycle with connection. That is, it is a triple (E , D,∇), where E is a Ck-
bimodule, D a Ck operator, and ∇ a transverse Ck-connection.

13. The product construction

Geometric correspondences can be composed according to the algebraic pro-
cedure described in Proposition 6.9. The smoothness conditions imposed on the
cycles make sure that this algebraic procedure preserves all the desired analytic
properties. In particular, the smoothness conditions themselves are preserved.

Theorem 13.36 ([21]). Let A,B,C be Ck-algebras, with k ≥ 1, and (E , S,∇),
(F , T,∇′) Ck-cycles with connection. Then

(E⊗̃BF , S ⊗ 1 + 1⊗∇ T, 1⊗∇ ∇′),

is a Ck-cycle with connection. It represents the Kasparov product of (E , S) and
(F , T ).

Remark 13.37. The condition k ≥ 1 is needed to guarantee that the operator
S ⊗ 1 + 1 ⊗∇ T is selfadjoint. Commutator conditions are direct. A result of
Kucerovsky [19] on unbounded Kasparov products then gives the last assertion.

We can view geometric correspondences as morphisms of spectral triples. A
morphism between Ck spectral triples (A,H , D) and (B,H ′, T ) is a Ck-bimodule
with connection (E , S,∇) such that the spectral triple

(A,E⊗̃BH ′, S ⊗ 1 + 1⊗∇ T ),

is Ck unitarily isomorphic to (A,H , D). There is a category of spectral triples for
each degree of smoothness. If we denote the category of k-smooth spectral triples
by Ψk, then Theorem 13.36 says that the bounded transform

b : (E , D,∇) 
→ [(E , D(1 +D2)−
1
2 )],

is a functor Ψk → KK.
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Deformations of the Canonical Spectral Triples

R. Trinchero

Abstract. Deformations of the canonical spectral triples over the n−dimen-
sional torus are considered. These deformations have a discrete dimension
spectrum consisting of non-integer values less than n. The differential algebra
corresponding to these spectral triples is studied. No junk forms appear for
non-vanishing deformation parameter. The action of a scalar field in these
spaces is considered, leading to non-trivial extra structure compared to the
integer dimensional cases, which does not involve a loss of covariance.

1. Introduction

The dimension of a space is a basic concept of particular relevance both in
nature and in mathematics. Non-commutative geometry[1][2, 3, 4] provides a gen-
eralization of classical geometry. In particular, it includes a definition of dimension
that allows for complex non-integer values[5]. A motivation for this definition and
a series of very interesting examples of geometries with non-integer dimensions has
been given in relation to the study of fractal sets in this geometrical setting([1],[6]
and references therein).

The motivation for this work comes from a different subject. In the realm
of quantum field theory(QFT), the widely employed dimensional regularization
technique[7] provides a hint that non-integer dimensional spaces could be of rele-
vance there. This technique is employed in QFT as a means to regularize divergent
integrals appearing in perturbation theory, being preferred in the regularization of
gauge theories since it preserves gauge invariance. The technique essentially con-
sists in considering the analytical continuation in the number of dimensions for the
area of a d-dimensional sphere, a quantity that appears in the calculation of the
above-mentioned integrals. The general question to be addressed in this work is
whether a suitable well-defined differential geometry can be found that makes sense
for non-integer dimensions and reduces to the canonical one for the integer case1.
In the affirmative case the natural question to ask is, what does a field theory de-
fined in such a space look like?. More precisely, the idea is to take a field theory
defined purely in geometrical terms and repeat the construction in the deformed

Key words and phrases. Non-integer dimensions, non-commutative geometry, dimensional
regularization.
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1A preliminary study of this question in the 1-dimensional case appears in [8]
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case. The output of that procedure is by no means obvious since, as will be seen in
subsequent sections, the differential algebra is qualitatively different between the
integer and non-integer cases and such a change reflects directly in the action of the
field theory. For the case of the field theory of a scalar field considered in section
6, the resulting theory is of a novel type. This theory, in spite of reflecting its
non-commutative origin, does not involve a breakdown of covariance, as happens
in the so-called non-commutative field theories[9].

The salient features and results of this work are summarized as follows,
• Spectral triples are considered that differ from the canonical ones in the

choice of the Dirac operator.
• The dimension spectrum of these triples consists of a discrete set of real

values less than the dimension of the canonical triple.
• The differential of a zero form is not a multiplicative operator.
• There are no junk forms for a non-zero deformation parameter.
• The action of a scalar field contains derivatives of any order and involves

an integration over the cosphere.
• In spite of the "non-commutativity" of the differential algebra, there is no

loss of covariance involved in the field theory mentioned above.
This paper is organized as follows. Section 2 describes the spectral triple to be
considered. In section 3 the corresponding dimension spectrum is computed. The
differential of a 0-form is considered in section 4. Section 5 deals with junk forms.
Section 6 considers the calculation of the action for a complex scalar field. In
addition an Appendix is included which contains the calculation of the Wodzicki
residue involved in the definition of the above-mentioned action.

2. The Dirac operator

The differential algebra derived from the canonical spectral triple involving
functions over a manifold M reduces to the usual exterior differential algebra over
M . The spectral triples to be considered in this work differ from the canonical ones
only in the choice of the Dirac operator. More precisely, the triples (A,H, Dα) are
considered, where,

• A is the commutative C∗-algebra of smooth functions over the n-dimen-
sional torus Tn n ∈ N.

• H is the Hilbert space of square integrable sections of a spinor bundle over
Tn.

• Dα : H → H is a self-adjoint linear operator to be defined below.
The usual Dirac operator over an n-dimensional torus Tn is given by,

D = iγ · ∂ = iγμ∂μ , γμ = γ†
μ , γμγν + γνγμ = 2δμν , μ, ν = 1, · · · , n

this operator is not positive definite. Indeed since,

D2 = −Δ = −∂μ∂μ

denoting by λ ≥ 0 an eigenvalue of D2, then ±
√
λ will be eigenvalues of D.

In this work the usual Dirac operator will be replaced by Dα given below. One
of the motivations for this choice is to obtain a dimension spectrum with non-integer
real values. This could be done in many ways, for example, by choosing,

Da = D|D2|−
(1−a)

2 , a ∈ R, 1 > a > 0
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this operator leads to a dimension spectrum2 which consists in a single value given
by z = n

a . However, it is not well-behaved in the infrared. In order to improve
its infrared properties and have the same behavior in the ultraviolet, the following
operator will be considered in this work,

Dα = D(1 +D2)−α, α > 0

the power appearing in this last equation being defined by,

(2.1) (1 +D2)−α =
1

Γ(α)

∫ ∞

0

dτ τα−1e−τ(1+D2)

Thus the Dirac operator to be considered is,

Dα =
1

Γ(α)

∫ ∞

0

dτ τα−1D(τ ) , D(τ ) = e−τ(1+D2)D

this operator is self-adjoint in H, with compact resolvent, and such that the dif-
ferential of any a ∈ A is bounded. This last condition is ensured by the choice
α ≥ 0, as can be readily shown using the expression for the differential of section 4.
Therefore, the triple fulfills all the properties required for it to be a spectral triple.

3. Dimension spectrum

The definition of dimension spectrum of a spectral triple is briefly reviewed.

Definition 1. [Connes-Moscovici] Discrete dimension spectrum. A spectral
triple (A,H, D) has discrete dimension spectrum Sd if Sd ⊂ C is discrete and for
any element b in the algebra3 B the function,

(3.3) ζDb (z) = Tr[π(b) |D|−z]

extends holomorphically to C/Sd.
The interpretation of these poles is that each of them gives the dimension of a

certain piece of the whole space.

In order to apply this definition to the spectral triples considered in this work,
it is useful to note that,

|Dα|−z = |D|−z(1 + |D|2)αz = |D|−z
∞∑
k=0

(
αz
k

)
|D|2(αz−k)

=
∞∑
k=0

(
αz
k

)
|D|2((α− 1

2 )z−k)(3.4)

2See the next section for the definition of dimension spectrum[5].
3The definition of the algebra B is the following. Let δ denote the derivation δ : L(H) → L(H)

defined by,

(3.1) δ(T ) = [|D|, T ] , T ∈ L(H)

The algebra B is generated by the elements,

(3.2) δn(π(a)), a ⊂ A, n ≥ 0 (δ0(π(a)) = π(a))
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where Newton’s binomial formula has been employed. From the definitions above
it is clear that,

(3.5) ζDα

b (z) =
∞∑
k=0

(
αz
k

)
ζDb (2(k − (α− 1

2
)z))

where the binomial coefficients are given by,(
αz
k

)
=

αz(αz − 1) · · · (αz − k + 1)

k!
,

(
αz
0

)
= 1

The zeta functions appearing in the r.h.s. of (3.5) are the ones corresponding to
the canonical spectral triple. Thus, since for the canonical spectral triples the
corresponding zeta functions have a single simple pole at its argument equal to n,
then ζDα

b (z) has simple poles at,

z =
n− 2k

1− 2α
, k = 0, 1, 2, · · ·

these values of z are therefore the dimension spectrum of the spectral triple con-
sidered in this work.

4. The differential

The differential of a 0-form f is given by,

df = [Dα, f ] =
1

Γ(α)

∫ ∞

0

dτ τα−1df(τ )(4.1)

df(τ ) = [D(τ ), f ] .D(τ ) = U(τ )D ,U(τ ) = e−τ(1+D2)(4.2)

thus when applied to an element φ of H, df(τ ) is given by,

df(τ )φ = [D(τ ), f ] φ = U(τ )[(Df)φ+ fDφ]− f U(τ )Dφ

= [U(τ )(Df) + [U(τ )f − f U(τ )]D]φ

= U(τ ) [(Df) + [f − U(−τ )f U(τ )]D]φ(4.3)

the second term in the parenthesis of the r.h.s. can be expressed as,

(4.4) eτ(1+D2)f(x) e−τ(1+D2) = f(x− 2τ∂)

this can be easily derived using an analogy with quantum mechanics. This is done
noting that e−τ(1+D2) is, up to a constant, the imaginary time evolution operator
for a free particle of mass m = 1/2 . Thus,

df(τ ) = U(τ ) [(Df)− [f(x)− f(x− 2τ∂)]D]

integrating the second line in (4.3) as in (4.1) leads to,

df = (1 +D2)−α(Df) + [(1 +D2)−αf − f(1 +D2)−α]iγ · ∂

which clearly shows that when α → 0, df → iγ · ∂f , which is the corresponding
expression in the canonical case. It is worth remarking that, as the last equations
indicate, this differential is a non-multiplicative operator for any value of α �= 0. As
the next section shows, this fact plays an important role in the issue of junk forms.
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5. Junk Forms

In this section it is shown that there are no junk forms for a non-zero defor-
mation parameter. To show this it is noted that a generic 1-form can be written
as,

ω(1) =
∑
I,J

αJIfJdfI

where the summation is over a complete basis B = {fI} for A and the αIJ are
numerical coefficients. Replacing (4.1) in the last equation leads to,

(5.1) ω(1) =
1

Γ(α)

∫ ∞

0

dτ τα−1
∑
I,J

αJIfJ [U(τ )(DfI) + (U(τ )fI − fI U(τ ))D]

Junk 2-forms ω(2)are such that they can be written as the differential of a vanishing
1-form, i.e.,

ω(2) = dω(1) , ω(1) = 0

thus the general expression for a vanishing 1-form is sought. From eq.(5.1) this
leads to the operatorial equation,

0 =
1

Γ(α)

∫ ∞

0

dτ τα−1
∑
I,J

αJIfJ [U(τ )(DfI) + (U(τ )fI − fI U(τ ))D]

this equation when applied to a constant spinor leads to,

(5.2) 0 =
∑
I,J

αJIfJ DfI

which is the same relation that appears for the α = 0 case. The general solution is
given by,

(5.3) ω(1) =
∑
I,J

βJIfJ (2fIdfI − d(f2
I ))

for arbitrary numerical coefficients βJI . Using (4.3) gives,

d(f2
I ) =

1

Γ(α)

∫ ∞

0

dτ τα−1d(f2
I )(τ ) , d(f2

I )(τ )

= U(τ )2fI(DfI)− [U(τ ), f2
I ]D

2fIdfI =
1

Γ(α)

∫ ∞

0

dτ τα−1d(f2
I )(τ ) , 2fIdfI(τ )

= 2fI {U(τ )(DfI)− [U(τ ), fI ]D}
thus,

2fIdfI − d(f2
I )(τ ) = [U(τ ), f2

I ]D − 2fI [U(τ ), fI ]D − 2[U(τ ), fI ](DfI)

Applying equation (5.3) to a constant spinor ψ0 shows that in that case only the
last term in the previous equation contributes, therefore the equation ω(1) = 0 leads
to,

0 =
1

Γ(α)

∫ ∞

0

dτ τα−1
∑
I,J

βJIfJ [U(τ ), fI ](DfI)ψ0

the linear independence of the basis B = {fJ} implying that,

(5.4) 0 =
1

Γ(α)

∫ ∞

0

dτ τα−1
∑
I

βJI [U(τ ), fI ](DfI)ψ0 , ∀J
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Next the expansion of the quantity [U(τ ), fI ](DfI) in the basis B is considered,
i.e.,

[U(τ ), fI ](DfI) =
∑
K

αI
K(τ ) fK

the coefficients αI
K being given by,

αI
K(τ ) =

∫
x

f∗
K [U(τ ), fI ](DfI)

At this stage it is convenient to use the Fourier basis fI = eiI·x , I ∈ Zn, which are
eigenstates of D2. Noting that,

eiI·(x−2τ∂) = eiI·xe−i2τI·∂eτI·I

leads to,

αI
K(τ ) =

∫
x

e−iK·x(eiI·(x−2τ∂) − 1)U(τ )(DeiI·x)

=

∫
x

e−iK·x(eiI·(x−2τ∂) − 1)eiI·xe−τ(1+I2)(−γ · I)

= δ(K − 2I)C(τ, I)(5.5)

where the matrix C(τ, I) is given by,

C(τ, I) = (e−3τI2 − 1)e−τ(1+I2)(−γ · I)
replacing in (5.4) leads to,

0 =
1

Γ(α)

∫ ∞

0

dτ τα−1
∑
I,K

βJIα
I
K(τ ) fKψ0 , ∀j

which taking into account the linear independence of the basis B and replacing
(5.5), implies that,

0 =
1

Γ(α)

∫ ∞

0

dτ τα−1βJIC(τ, I) , ∀ I, J

= βJI

[
(1 + 4I2)α − (1 + I2)α

]
(−γ · I)

which is solved by,
βIJ = 0 , ∀ J, I �= 0

The case β0J �= 0 is trivial since anyhow in that case ω(1) = 0.

6. The scalar field

In this section the part of this space corresponding to the highest pole will be
considered, i.e. for d = n

1−2α . The action for a free scalar field propagating in this
space is taken to be,

S =
1

2
< dφ, dφ >

where φ is a 0-form and the norm in the space of forms is given by4,

< ω, ω > = trω[ωω
†|Dα|−d](6.1)

thus,
S = −trω[dφdφ

∗|Dα|−d]

4See for example ref.[3]
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where it was used that dφ† = −dφ∗ and trω denotes the Diximier trace. In the
evaluation of this trace it is important to note that replacing d = n

1−2α in (3.4)
leads to,

(6.2) |Dα|−d = |Dα|−
n

1−2α =
∞∑
k=0

(
αn

1−2α

k

)
|D|−n−2k

Therefore S is given by,

S =
∞∑
k=0

(
αn

1−2α

k

)
Sk

Sk = −trω[dφ(τ )dφ(τ
′)∗|D|−n−2k]

Noting that,

dφ = [UαD,φ(x)], Uα = (1 +D2)−α

dφ∗ = [UαD,φ∗(x)]

leads to,
Sk = trω

{
[UαD,φ][DUα, φ

∗]|D|−n−2k
}

Thus, replacing the expression obtained in the appendix for Sk leads to,

(6.3) S = −2[
n
2 ]VSn−1

n(2π)n

∫
Tn

φ(D2 +
αn

1− 2α
)(1 +D2)−2αφ∗

where Vsn−1 = 2πn/2/Γ(n/2) is the area of the n−1-dimensional sphere. It is worth
noting that in spite of starting with an action involving no mass term, the fact of
working on a non-integer dimensional space effectively generates such a term as
shown by (6.3), with a coefficient that vanishes in the integer case(α = 0). In that
case (6.3) reduces to the usual action of a massless complex scalar field, i.e.,

Scan = lim
α→0

S =
2[

n
2 ]Vsn−1

(2π)n

∫
Tn

(
1

2
∂μφ(x)∂μφ

∗(x)

)

It is remarked that the approach presented in this work differs significantly
from the so-called non-commutative field theory[9]. No non-commutativity of the
coordinates is assumed. On the contrary, non-commutativity enters at the level of
the differential algebra through the deformed choice of the Dirac operator. This
difference implies that this non-commutativity does not spoil the covariance of
suitably chosen field theories on these spaces. From the point of view of physics
this feature, together with its eventual connection with dimensional regularization,
are believed to be of interest and justify further research on these theories.

Appendix : Evaluation of the Diximiers trace

As shown in the previous section the actions to be evaluated are,

Sk = trω
{
[UαD,φ][DUα, φ

∗]|D|−n−2k
}

, Uα = (1 +D2)−α

= trω
{(

2φDUαφ
∗UαD − φφ∗(UαD)2 − φ(UαD)2φ∗) |D|−n−2k

}
= trω {Ak}

these Diximier traces will be evaluated using their expression as Wodzicki residues,

Sk =
1

n(2π)n

∫
S∗Tn

tr σAk
−n(x, ξ)
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where σAk
−n(x, ξ) denotes the term of order −n of the symbol of the operator Ak ,

(x, ξ) denote coordinates on the unit co-sphere on the cotangent bundle of Tn, so
that

∫
S∗Tn =

∫
x

∫
ξ
dΩn−1where dΩn−1 is the volume element of the sphere Sn−1.

The trace is taken over the spin space and the symbol is defined by,

σAk(x, ξ) = e−ix·ξAk eix·ξ

so that,

σAk(x, ξ) = ( 2e−ix·ξφDUαφ
∗eix·ξ(−γ · ξ)(1 + |ξ|2)−α

− φφ∗(1 + |ξ|2)−α|ξ|2 − φ(DUα)
2φ∗ ) |ξ|−n−2k

using that,
e−ix·ξDUαe

ix·ξ = (D − γ · ξ)(1 + (D − γ · ξ)2)−α

ignoring terms that vanish when integrating over |ξ| = 1 and evaluating the trace,
leads to,

trσAk(x, ξ) = 2[
n
2 ]
(
2φ(1 + (D − ξ)2)−αφ∗(1 + |ξ|2)−α|ξ|−n−2k+2

−φφ∗(1 + |ξ|2)−2α|ξ|−n−2k+2

−φ[D2 + ξ2](1 + (D − ξ)2)−2αφ∗|ξ|−n−2k
)

for α �= 0 the first two terms do not contribute to the term of order −n of the
symbol because they include the factor,

(1 + |ξ|2)−α =
∞∑
k=0

(
−α
k

)
|ξ|−2(α+k)

which decreases the order of the corresponding terms by at least −2α. The last
term gives two non-vanishing contributions. One coming from the term D2 inside
the square bracket, which contributes to the term of order −n of the symbol only
when k = 0. And the other from the ξ2 inside the square bracket, which contributes
to the term of order −n of the symbol only when k = 1. Thus,

σA0
−n(x, 1) = −φD2(1 +D2)−2αφ∗

σA1
−n(x, 1) = −φ(1 +D2)−2αφ∗

and,

S0 = −2[
n
2 ]VSn−1

n(2π)n

∫
Tn

φD2(1 +D2)−2αφ∗

S1 = −2[
n
2 ]VSn−1

n(2π)n
αn

1− 2α

∫
Tn

φ(1 +D2)−2αφ∗

leading to,

S = −2[
n
2 ]VSn−1

n(2π)n

∫
Tn

φ(D2 +
αn

1− 2α
)(1 +D2)−2αφ∗

where VSn−1 denotes the area of the sphere Sn−1 given by,

VSn−1 =

∫
dΩn−1 =

2π
n
2

Γ(n2 )
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Introduction

Many papers have been devoted recently to twisted K-theory as originally
defined in [15] and [29]. See for instance the references [2], [23] and the very
accessible paper [30]. We offer here a more direct approach based on the notion of
“twisted vector bundles”. This is not an entirely new idea, since we find it in [4],
[6], [7], [8] and [9] for instance, under different names and from various viewpoints.
However, a careful look at this notion shows that we may interpret such bundles
as modules over suitable algebra bundles. More precisely, the category of twisted
vector bundles is equivalent to the category of vector bundles which are modules
over algebra bundles with fibre End(V ), where V is a finite dimensional vector
space. This notion was first explored in [15] in order to define twisted K-theory.
In the same vein, twisted Hilbert bundles may be used to define extended twisted
K-groups, following [14] and [29].

More generally, we also analyse the notion of “twisted principal bundles” with
structural group G. Under favourable circumstances, we show that the associated
category is equivalent to the category of locally trivial fibrations, with an action
of a bundle of groups with fibre G, which is simply transitive on each fibre. Such

2010 Mathematics Subject Classification. Primary 19L50; Secondary 19L20.

c© 2012 Max Karoubi
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bundles are classically called “torsors” in the literature. When the bundle of groups
is trivial, we recover the usual notion of principal G-bundle.

As is well known, twisted K-theory is a graded group, indexed essentially by
the third cohomology1 of the base space X, namely H3(X;Z). The twisted vector
bundles we define in this paper are also indexed by elements of the same group up
to isomorphism. Roughly speaking, twisted K-theory appears as the Grothendieck
group of the category of twisted vector bundles. This provides a geometric de-
scription of this theory, very close in spirit to Steenrod’s definition of coordinate
bundles [31]. The more subtle notion of graded twisted K-theory, indexed by

H1(X;Z/2)×H3(X;Z), may also be analyzed in this framework.
The usual operations on vector bundles (exterior powers, Adams operations,...)

are easily extended to twisted vector bundles, in a way parallel to the operations
defined in [2]. We have also added a section on cup-products, in order to show that
the various ways to define them coincide up to isomorphism. This is essentially
relevant in the last section of the paper, where we define an analog of the Chern
character.

In this section, we define connections on twisted vector bundles in the finite
and infinite dimensional cases, very much in the spirit of [26, pg. 78], [6], [22,
Chapitre 1], in a quite elementary way. It is also described in [4] and [11] with
a different method. From this analog of Chern-Weil theory, we deduce a “Chern
character” from twisted K-theory to twisted cohomology. This character is defined
in a much more elaborate way in [3], [8], [27] and [32] in the general framework
of the “Connes-Karoubi Chern character” [12], [22], except in [3]. In the paper
of Atiyah and Segal [3], classical topology tools are used to show that the twisted
Chern character is essentially unique. Therefore, it coincides with the character
defined by our elementary approach in this paper.

Finally, in a detailed appendix divided into three subsections, we study care-
fully the relation between Čech cohomology with coefficients in S1 and de Rham
cohomology. We also discuss more deeply multiplicative structures and the functo-
rial aspects of twisted K-theory and of the Chern character.

Aknowledgments. We thank very much A. Carey, A. Gorokhovsky, J. Rosen-
berg, and especially L Breen, C. Schochet and Bai-Ling Wang for their very relevant
comments on preliminary versions of this paper.

1. Twisted principal bundles

Let G be a topological group and let U =(Ui), i ∈ I, be an open covering
of a topological space X. The Čech cohomology set H1(U ;G) is well known (see
[31], [18] for instance). One starts with “non-abelian” 1-cocycles g, i.e. a set of
continuous maps (also called “transition functions”)

gji : Ui ∩ Uj −→ G,

such that gkj · gji = gki on Ui ∩ Uj ∩ Uk. Two cocycles g and h are equivalent if
there are continuous maps

ui : Ui −→ G,

1More precisely, it is indexed by 3-cocycles. Two cohomologous cocycles give twisted K-
groups which are isomorphic (non-canonically). This technical point is discussed in Appendix
8.3.
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such that

uj · gji = hji · ui.(1.1)

The set of equivalence classes is denoted by H1(U ;G). A covering V =(Vs), s ∈
S, is a refinement of U if there is a map τ : S −→ I such that Vs ⊂ Uτ(s). We then
have a “restriction map”

Rτ : H1(U ;G) −→ H1(V ;G),

assigning to the g′s the functions k = τ∗(g) defined by

ks,r = gτ(s),τ(r).

It is shown in [18, pg. 48] for instance that the map Rτ is in fact independent of
the choice of τ. We then define

H1(X;G) = Colim
U

H1(U ;G),

where U runs over the “set” of coverings of X.

Now let Z be a subgroup of the centre of G and let λ = (λkji) be a completely
normalized 2-cocycle of U with values in Z. This normalization condition on the
cocycle means that λ = 1 if two of the three indices k, j, i are equal and that

λσ(k)σ(j)σ(i) = (λkji)
ε(σ),

where σ is a permutation of the indices (k, j, i), with signature ε(σ).

Remark 1.1. One can prove (see [21] for instance) that a Čech cocycle in
any dimension is cohomologous to a completely normalized one. Moreover, if every
open subset of X is paracompact, any cohomology class may be represented by a
completely normalized Čech cocycle.

A λ-twisted 1-cocycle (simply called twisted cocycle if λ is implicit) is then
given by transition functions g = (gji) as above, such that

gii = 1, gji = (gij)
−1

and
gkj · gji = gki · λkji

on Ui ∩Uj ∩Uk. If we compute the product glk · gkj · gji in two different ways using
associativity, we indeed find that λ should be a 2-cocycle. On the other hand, one
can easily show that the function gij ·gjk ·gki is invariant under a cyclic permutation
of the indices and is changed to its inverse if we permute i and k. Since we have
λkjk = 1, the cocycle λ should be completely normalized.

Two twisted cocycles g and h are equivalent if there are continuous maps ui :
Ui −→ G, such that we have a condition analogous to the above:

uj · gji = hji · ui (1.1)

We define the twisted (non-abelian) cohomology H1
λ(U ;G) as the set of equivalence

classes.

Proposition 1.2. Let μ be a 2-cocycle cohomologous to λ, i.e. such that we
have the relation

μkji = λkji · ηji · η−1
ki · ηkj ,

for some η = (ηji) with ηji = (ηij)
−1 and ηii = 1. Then the map

Θ : H1
λ(U ;G) −→ H1

μ(U ;G),
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sending (g) to the twisted cocycle (g′) given by g′ji = gji · ηji, is an isomorphism.

Proof. If we compute g′kj · g′ji we indeed find

g′kj · g′ji = g′ki · λkji · ηkj · ηji · (ηki)−1 = g′ki · μkji.

This shows that the map Θ is well defined. The inverse map is of course given by
the correspondence (g′ji) �−→ (g′ji · η−1

ji ). �

From the previous considerations one may define the following category. The
objects are λ-twisted bundles on a covering U , the morphisms between (gji) and
(hji) being continuous maps (ui), with the compatibility condition (1.1). In this
category the covering U is fixed together with the 2-cocycle λ.

However, this category is too rigid for our purposes, since we want to consider
covering refinements. The covering V = (Vs), s ∈ S, is a refinement of U = (Ui), i ∈
I if there is a map τ : S −→ I such that Vs ⊂ Uτ(s).This map τ induces a morphism

Θτ : H1
λ(U ;G) −→ H1

μ(V ;G)

which is not necessarily an isomorphism. Starting with a twisted cocycle (gji), its
image by Θτ is the cocycle (hsr) given by the formula

hsr = gτ(s)τ(r).

The 2-cocycle associated to h is

μtsr = gτ(t)τ(s) · gτ(s)τ(r) · gτ(r)τ(t) = λτ(t)τ(s)τ(r).

Proposition 1.3. Let τ and τ ′ be two maps from S to I such that Vs ⊂ Uτ(s)

and Vs ⊂ Uτ ′(s) and let x be an element of the set H1
λ(U ;G). Then Θτ (x) and

Θτ ′(x) are related through an isomorphism

H1
μ(V ;G) ∼= H1

μ′(V ;G),

made explicit in the proof below. This isomorphism does not depend on x and
depends only on τ, τ ′ and the 2-cocycle λ.

Proof. Let h′ be the following transition functions:

h′
sr = gτ ′(s)τ ′(r).

We may write
h′
sr = gτ ′(s)τ(s) · hsr · gτ(r)τ ′(r) · σsr,

where
σsr = λτ ′(s)τ(r)τ(s) · λτ ′(s)τ ′(r)τ(r).

Since we have hrs = (hsr)
−1, hrr = 1 and the same properties for h′, it follows that

σrs = (σsr)
−1 and σrr = 1. Therefore, 1) the twisted 1-cocycles (hsr) and (hsr),

where
hsr = gτ ′(s)τ(s) · hsr · gτ(r)τ ′(r),

are isomorphic in the category of twisted bundles over V with the same twist. 2)
the twisted bundles defined by the 1-cocycles (hsr) and (h′

sr) are also isomorphic
through the isomorphism

H1
μ(V ;G) ∼= H1

μ′(V ;G)

defined in the previous proposition. We note that μ′ is the following 2-cocycle with
values in Z:

μ′
tsr = hts · hsr.hrt = hts · hsr · hrt · σts · σsr · σrt = μtsr · σts · σsr · σrt,
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which is of course cohomologous to μ. It remains to show that the isomorphism

H1
μ(V ;G) ∼= H1

μ′(V ;G)

only depends on τ and τ ′ and not on the specific element x. The previous identity
indeed shows that the 2-cocycles μ and μ′ are cohomologous through the completely
normalized 1-cochain σ which is a function of λ only. �

Remark 1.4. Although we don’t need it in the proof, this computation showing
that μ and μ′ are cohomologous is based on the existence of a twisted 1-cocycle
(gji) associated to a 2-completely normalised cocycle λ. Unfortunately, this is not
true in general. However, when X has the homotopy type of a CW-complex, we
may also argue as follows in greater generality. First we may assume that X is
pathwise connected, so that we can choose a base point on X. Now let PX be the
path space of X and let

π : PX → X

be the canonical map associating to a path starting at the base point its end point.
In order to check that σts · σsr · σrt = μ′

tsr · (μtsr)
−1, we consider the covering of

PX defined by the pullback π∗(U) of the covering U of X. Since the nerve of π∗(U)
is contractible, there is a completely normalized 1-cochain g, with values in the
subgroup Z of G, such that λtsr is the associated twist, i.e. its coboundary. This
enables us to perform the previous computations on PX (with g as our 1-twisted
cocycle) and hence on X, since the pullback of functions from X to PX by the map
π is injective.

2. Relation with torsors

There is another interpretation of twisted principal bundles in some favourable
circumstances and which is more familiar. For this, we observe that G acts on itself
by inner automorphisms and that the kernel of the map

G → Aut(G)

is the centre of G. We now assume that the map

G → G/Z

is a locally trivial fibration. In the applications we have in mind, G is a Lie group
or a Banach Lie group and it is well known that this condition is fulfilled if Z is a
closed subgroup of the centre.

On the other hand, we notice that if P is a twisted principal bundle associated
to a covering U with transition functions gji, we may define a bundle of groups
AUT(P ) with fiber G as follows. Its transition functions are defined over Ui ∩ Uj

by

g �−→ gji · g · (gji)−1 = gji · g · gij .

Proposition 2.1. Let G̃ be a bundle of groups with fibre G and with structural
group G/Z, acting by inner automorphisms on G. Then, if the covering U = (Ui)

is fine enough, there is a twisted principal bundle P such that G̃ is isomorphic to
the bundle of groups AUT(P ) defined above.
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Proof. The bundle of groups G̃ is given by transition functions

γji : Ui ∩ Uj → G/Z,

where

γii = Id and γij = (γji)
−1.

According to our assumptions, the fibration G → G/Z is locally trivial. Therefore,
if the covering U is fine enough, we can find continuous functions

gji : Ui ∩ Uj → G

such that the class of gji is γji, and moreover gii = Id, gij = (gji)
−1. From these

identities, it follows that the following continuous function defined on Ui ∩Uj ∩Uk:

λkji = gkj · gji · gik,
is a completely normalized 2-cocycle with values in Z. Therefore, it defines a twisted
principal bundle P with transition functions (gji). Moreover, according to the pre-

vious considerations, the bundle of groups G̃ is canonically isomorphic to AUT(P ),
with transition functions

u �−→ gji(u) = gji · u · gij .
�

This proposition enables us to relate the category of twisted principal bundles
to more classical mathematical objects. We notice that if P and Q are twisted
principal bundles with transition functions gji and hji respectively (with the same
twist λ), we can define a locally trivial bundle ISO(P,Q) with fibre G, the transition
functions being automorphisms of the underlying space G defined by

u �−→ hji · u · gij = θji(u).

Since we have gkj ·gji ·gik = hkj ·hji ·hik = λkji, the 1-cocycle condition is satisfied
for the bundle ISO(P,Q), i.e. we have the relation

θkj · θji = θki.

In particular, if P = Q, we get the previous bundle of groups AUT(P ).

Moreover, there is a bundle map

ISO(P,Q)×AUT(P ) → ISO(P,Q).

It is defined by

(u, v) �−→ u ◦ v,
or by (ui, vi) �→ ui ◦ vi in local coordinates. Therefore, the bundle ISO(P,Q)
inherits a right fibrewise AUT(P )-action which is simply transitive on each fibre.
In classical terminology2, the bundle ISO(P,Q) is a “torsor” over the bundle of
groups AUT(P ), acting on the right.

2It is not the purpose of this paper to develop the theory of torsors. Roughly speaking, this
notion is a generalization of the definition of a principal bundle P . Instead of having a topological

group G acting on P as usual, we have a bundle of groups ˜G acting fiberwise on P in a way which

is simply transitive on each fiber. In our situation, the structural group of ˜G is G/Z, acting on G
by inner automorphisms.
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Theorem 2.2. Let G̃ be a bundle of groups with fibre G and structural group
G/Z acting on G by inner automorphisms. We assume the existence of a covering

U = (Ui) such that G̃ may be written as AUT(P ), where P is a λ-twisted principal

bundle. Then, any torsor M over G̃ may be written as ISO(P,Q), where Q is a
λ-twisted principal bundle. More precisely, the correspondence Q �−→ ISO(P,Q)
induces an equivalence between the category of λ-twisted principal bundles and the

category of G̃-torsors.

Proof. Let γji be the transition functions of M with fibre G and let gji be
the transition functions of P. Then the transition functions of AUT(P ) are given
by gji(u) = gji · u · gij . Now we claim that the transition functions of M should be
of type

γji(u) = hji · u · gij ,
for some continuous functions hji. In order to prove this, we use the action of G̃ on
the right by writing

γji(u) = γji(1 · u) = γji(1) · gji(u) = γji(1) · gji.u · gij .
We then put hji = γji(1) · gji. The fact that γkj · γji = γki implies the identity

hkj · hji · u · gij · gjk = hki · u · gik.
Since gij · gjk = gik · λijk, this implies that hkj · hji = hki · (λijk)

−1 = hki · λkji;
therefore the (hji) are the transition functions of a λ-twisted principal bundle. We

have to check the coherence of the action of G̃ on the right, i.e. the identity

γji(u · v) = γji(u) · gji(v).
This follows from the simple calculation in local coordinates

γji(u · v) = hji · (u · v) · gij = (hji · u · gij) · (gji · v · gij) = γji(u) · gji(v).
The previous computations show that we can define a functor backwards from the

category of G̃-torsors to the category of λ-twisted principal bundles. It remains to
prove that the map

Hom(Q,Q′) → Hom(ISO(P,Q), ISO(P,Q′))

is an isomorphism. For this, we analyse the morphisms

ISO(P,Q) → ISO(P,Q′)

which are compatible with the structure of AUT(P )-torsor. Such a morphism

ISO(P,Q) → ISO(P,Q′)

is given in local coordinates by the formula

Φ : u �−→ βi · u · αi,

where (αi) (resp. (βi)) is associated to AUT(P ) (resp. ISO(Q,Q′)). We notice the
formula

h′
ji · βi · u · αi · gij = βj · hji · u · gij · αj ,

where h′
ji are the coordinate functions ofQ

′. In the same way, an element of AUT(P )
is given in local coordinates by

Υ : g �−→ g · αi.

Therefore, the equation
Φ(u · g) = Φ(u) ·Υ(g)
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may be written
βi · (u · g) · αi = (βi · u · αi) · (g · αi),

which is only possible if αi = 1. �

Remark 2.3. An analog of this theorem in the framework of vector bundles
will be proved in the next section (Theorem 3.5).

3. Twisted vector bundles

One of the main aims of this paper is the theory of “twisted” vector bundles3.
We essentially studied it in Section 1, with the structural group G = GLn(C).
However, to keep track of the linear structure and because we want the “fibres” not
to have the same dimension on each connected component of X, we slightly change
the general definition as follows.

We start as before with a covering U = (Ui), i ∈ I, together with a finite
dimensional vector space Ei “over” Ui. Another piece of information is a completely
normalized 2-cocycle λkji with values in C∗. A λ-twisted vector bundle E on X is
then defined by transition functions

gji : Ui ∩ Uj → Iso(Ei, Ej),

such that

gii = 1, gji = (gij)
−1

and
gkj · gji = gki · λkji,

as in the previous section. There is however a slight change for the definition of
morphisms from a twisted vector bundle E to another one F, with the same twist
λ. They are defined as continuous maps

ui : Ui → Hom(Ei, Fi),

such that
uj · gji = hji · ui.

The point is that we no longer require the ui to be isomorphisms.
More generally, let E be a λ-twisted vector bundle on a covering U with tran-

sition functions (gji) and let F be a μ-twisted vector bundle on the same covering
with transition functions (hji). We define a λ−1 ·μ-twisted vector bundle in the fol-
lowing way: over each Ui we take as “fibre” Hom(Ei, Fi) and as transition functions
the isomorphisms

Hom(Ei, Fi) → Hom(Ej , Fj),

defined by
θji : fi �−→ hji ◦ fi ◦ gij = fj .

We denote this twisted vector bundle by HOM(E,F ). An interesting case is when E
and F are associated to the same 2-cocycle λ. Then HOM(E,F ) is a genuine vector
bundle associated to the vector space of morphisms Hom(E,F ) by the following
proposition.

3For simplicity’s sake, we shall only consider complex vector bundles. The theory for real or
quaternionic vector bundles follows the same pattern. More generally, we may also consider vector
bundles with fibres finitely generated projective modules over a Banach algebra. This remark will
be useful in the next section for A-bundles.
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Proposition 3.1. Let E and F be two λ-twisted vector bundles. Then the vec-
tor space of morphisms from E to F, i.e. Hom(E,F ), may be canonically identified
with the vector space of sections of the vector bundle HOM(E,F ).

Proof. A section of this vector bundle is defined by elements fi of Hom(Ei, Fi)
such that

θji(fi) = fj .

This relation is translated as

hji ◦ fi = fj ◦ gji,
which is exactly the definition of morphisms from E to F. �

An interesting case of the previous proposition is when E = F, so that
HOM(E,E) = END(E) is an algebra bundle A. The following theorem relates
algebra bundles to twisted vector bundles.

Theorem 3.2. Any algebra bundle A with fibre End(V ), where V is a finite
dimensional vector space of positive dimension, is isomorphic to some END(E),
where E is a twisted vector bundle on a suitably fine covering of X.

Proof. Let V = Cn. According to the Skolem-Noether Theorem, the struc-
tural group of A is PGLn(C) = GLn(C)/C

×, where PGLn(C) acts on Mn(C) by
inner automorphisms. We may describe this bundle A by transition functions

γji : Ui ∩ Uj → PGLn(C),

for a suitable covering U = (Ui) of X. Without loss of generality, we may assume
that γii = 1 and that γji = (γij)

−1. On the other hand, the principal fibration

GLn(C) → PGLn(C)

admits local continuous sections. Therefore, if we choose the covering U = (Ui) fine
enough, we can lift these γji to continuous functions

gji : Ui ∩ Uj → GLn(C).

Moreover, we may choose the gji such that gii = 1, gij = (gji)
−1. Therefore, we

have the identity gkj · gji = gki · λkji, where

λkji : Ui ∩ Uj ∩ Uk → C×

is de facto a completely normalized 2-cocycle. If E is the twisted vector bundle
associated to the gji we see that the algebra bundle END(E) has transition functions
which are

f �−→ gji ◦ f ◦ (gji)−1,

i.e. the inner automorphisms associated to the gji. �
Remark 3.3. We shall assume from now on that the coverings U we are con-

sidering are “good”. This means that U has a finite number of elements and that
all possible intersections of elements of U are either empty or contractible. This is
always possible if X is for instance a compact manifold [5], [25]. In the previous
theorem, we are then able to replace the words “suitably fine” by “good” since the
fibration

GLn(C) → PGLn(C)

has the homotopy lifting property. In this case, we also have

H∗(X) ∼= H∗(N(U)),K(X) ∼= K(N(U)),
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etc., where N(U) is the nerve of the covering U . Note that its geometric realization
has the homotopy type of X.

Remark 3.4. For most spaces we are considering, good coverings are cofinal:
any open covering has a good refinement. This is the case for finite polyedra and,
more geometrically, for compact riemannian manifolds with open geodesic coverings
[5].

The previous considerations also show that the cohomology class in

H2(X;C∗) ∼= H3(X;Z)

associated to a twisted vector bundle is a torsion class (assuming that the covering
is good as in Remark 3.3). To prove this, we consider the commutative diagram

1 → μn → U(n) → PU(n) → 1
↓ ↓ ↓

1 → C∗ → GLn(C) → PGLn(C) → 1

The non-abelian cohomologies H1(X; PU(n)) and H1(X; PGLn(C)) are isomorphic
and the coboundary map

H1(X; PU(n)) ∼= H1(X; PGLn(C)) → H2(X;C×) ∼= H3(X;Z)

factors through H2(X;μn) (also see Appendix 8.1). Therefore the cocycle (λkji)
defines a torsion class inH3(X;Z). It is a theorem of Serre [17] that such an element
comes from an algebra bundle such as we have described. Later on, we shall show
how we can recover the full cohomology group H3(X;Z) from algebra bundles of
infinite dimension, as it was observed by Rosenberg [29].

The following theorem is important for our dictionary relating twisted vector
bundles to modules over suitable algebra bundles.

Theorem 3.5. Let A be an algebra bundle which may be written as END(E),
where E is a twisted vector bundle associated to a covering U , transition functions
gji and a completely normalized 2-cocycle λ with values in C∗. Let Eλ(U) be the
category of λ-twisted vector bundles and EA(U) be the category of finite dimensional
vector bundles trivialized by the covering U , which are right A-modules. Then the
functor

ψ : Eλ(U) → EA(U)
defined by

F �→ HOM(E,F )

is an equivalence of categories.

Proof. We first notice that if M,N and P are finite dimensional vector spaces
with M 
= 0 and if Λ = End(M), the obvious map

Hom(N,P ) → HomΛ(Hom(M,N),Hom(M,P ))

is an isomorphism. Since N is a direct summand of some Mr, it is enough to check
the statement for N = M, in which case it is obvious. This functorial isomorphism
at the level of vector spaces may be translated into the framework of twisted vector
bundles by the isomorphism

Hom(F,G)
∼=−→ HomA(HOM(E,F ),HOM(E,G)).
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This shows that the functor Ψ is fully faithful. On the other hand, we have a
canonical isomorphism of vector spaces

Hom(M,N)⊗A M → N,

defined by (f, x) �−→ f(x) which can also be translated into the framework of
twisted vector bundles. This shows that if we start with a bundle L which is a
right A-module, where A is some END(E), we can associate to it a twisted vector
bundle F by the formula

F = L⊗A E = Ψ′(L).

Since HOM(E,F )⊗A E is canonically isomorphic to F, ψ′ induces a functor going
backwards

ψ′ : EA(U) → Eλ(U).
Finally, there is an obvious isomorphism

L → HOM(E,L⊗A E) = Ψ(Ψ′(L))

This shows that the functor Ψ is essentially surjective. �

This module interpretation enables us to prove the following Theorem.

Theorem 3.6. Let U = (Ui), i ∈ I, be a good covering of X as in Remark 3.3
and let V = (Vs), s ∈ S, be a refinement of U which is also good. Then for any
τ : S → I such that Vs ⊂ Uτ(s), the associated restriction map

Rτ : H1
λ(U ;GLn(C)) → H1

τ∗(λ)(V ;GLn(C))

is a bijection.

Proof. Since U is good, for any completely normalized cocycle λ, one can
find a twisted vector bundle E of rank m on U and V , such that A = END(E)
is a bundle of algebras associated to λ. According to the previous equivalence of
categories, the sets H1

λ(U ;GLn(C)) and H1
τ∗(λ)(V ;GLn(C)) are in bijective corre-

spondence with the set of A-modules which are locally of type Hom(Cm,Cn). With
this identification, the restriction map R is just an automorphism of this set. �

Remark 3.7. We may prove the homotopy invariance of the category of twisted
vector bundles thanks to this dictionary (at least if X is compact): a twisted vector
bundle may be interpreted as a bundle of A-modules, or as a finitely generated
projective module over the Banach algebra Λ = Γ(X,A) of continuous sections of
A. It is easy to show that modules over Λ [0, 1] can be extended from Λ (see e.g.
[24]).

4. Twisted K-theory

Let U be a good covering (Remark 3.3) of a spaceX and let λkji be a completely
normalized 2-cocycle with values in C∗. We consider the category of twisted vector
bundles associated to U and to the cocycle λ. This is clearly an additive category
which is moreover pseudo-abelian (every projection operator has a kernel). We
denote by Kλ(U) its Grothendieck group, which is also the K-group of the category
of A-modules over X, where A= END(E), as explained at the end of the previous
section. Since this definition is independent of U up to a non-canonical isomorphism
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(see Appendix 8.3), we shall also call it Kλ(X): this is the classical definition of
(ungraded) twisted K-theory as detailed in many references, e.g. [15], [2], [23].

In this situation, the cocycle λ has a cohomology class [λ] in the torsion sub-
group of

H2(X;C∗) ∼= H3(X;Z).

as we saw in Section 2. When [λ] is not necessarily a torsion class, we should
consider “twisted Hilbert bundles” which are defined in the same way as twisted
vector bundles but with a fibre which is an infinite dimensional Hilbert space4 H. It
is also more convenient to use the unitary group U(H) instead of the general linear
group as our basic structural group. In other words, the (gji) in Sections 1 and 2
are now elements of U(H). The 2-cocycle (λkji) takes its values in the topological
group S1.

From the fibration
S1 → U(H) → PU(H)

and the contractibility of U(H) (Kuiper’s theorem), we see that PU(H) is a model
of the Eilenberg-Mac Lane space K(Z, 3). On the other hand, since PU(H) acts
on L(H) = End(H) by inner automorphisms, we deduce that any 2-cocycle λ =
(λkji) defines an algebra bundle Lλ with fibre L(H) which is well defined up to
isomorphism. Therefore, as in the finite dimensional case, we have the following
theorem.

Theorem 4.1. Let Lλ be the bundle of algebras with fibre L(H) associated to
the cocycle λ. Then, if the covering U is good as in Remark 3.3, Lλ may be written
as END(E), where E is a λ-twisted Hilbert bundle.

Proof. We just copy the proof of Theorem 3.2 in the infinite dimensional case.
In a more precise way, the structural group of Lλ is PU(H) = U(H)/S1 acting on
L(H) by inner automorphisms. Therefore, we may describe the principal bundle
by transition functions

γji : Ui ∩ Uj → PU(H)

for a good covering U = (Ui) of X and we have γii = 1, γji = (γij)
−1. Since the

principal fibration
π : U(H) → PU(H)

is locally trivial and the Ui∩Uj are contractible (if non-empty), there are continuous
maps

gji : Ui ∩ Uj → U(H),

such that π ◦ gji = γji. The proof now ends as the proof of Theorem 3.2. �
Theorem 4.2. Let Lλ be the algebra bundle END(E), where E is a λ-twisted

Hilbert bundle on a covering U . Let Eλ(U) be the category of λ-twisted Hilbert bun-
dles with fibre H and, finally, let ELλ(U) be the category of bundles which are right
Lλ-modules5, trivialized over the elements of U . Then, the functor

Ψ : Eλ(U) → ELλ(U),
defined by the formula

F �−→ HOM(E,F ).

4For simplicity’s sake, we assume H to be separable, i.e. isomorphic to the classical l2 space.
5More precisely, we assume that locally the module is isomorphic to L(H), with its standard

L(H)-module structure.
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is an equivalence of categories.

Proof. It is also completely analogous to the proof of Theorem 3.5. In a more
precise way, instead of considering all finite dimensional vector spaces, we take
Hilbert spaces M,N,P, etc. of the same cardinality, i.e. isomorphic to the classical
l2-space. For instance, the isomorphism used in the proof of Theorem 3.5

Hom(F,G)
∼=−→ HomA(HOM(E,F ),HOM(E,G))

is a consequence of the fact that it is true at the level of Hilbert spaces since
Hom(M,N) is isomorphic to End(M) = L(H). The proof of the theorem again
ends as in the case of finite dimensional vector spaces. �

For [λ] ∈ H3(X;Z) = H1(X; PU(H)) which is not necessarily a torsion class,
we may define the associated twisted K-theory in many ways. The first definition is
due to Rosenberg [29]: the class [λ] is represented up to isomorphism by a principal
bundle P with structural group PU(H). Since PU(H) is acting on the ideal of
compact operators K in L = L(H) by inner automorphisms, we get an associated
bundle Kλ of C*-algebras. The twisted K-theory is then the usual K-theory of the
algebra of sections of Kλ. An equivalent way to define Kλ is to consider a twisted
Hilbert bundle E associated to the cocycle λ (it is unique up to isomorphism).
Then, Kλ is the subalgebra of sections of the bundle Lλ = END(E) which belong
to K(H) over each open set of U .

One unpleasant aspect of this definition is the non-existence of a unit element
in Kλ, which makes its K-theory slightly complicated to handle. However, we may
replace K by the subalgebra A of L × L consisting of couples of operators (f, g)
such that f−g ∈ K. The group PU(H) is acting on A, so that we may also twist the
algebra A by λ in order to get an algebra bundle Aλ. The obvious exact sequence
of C*-algebras

0 → K → A → L → 0

induces an exact sequence of algebra bundles

0 → Kλ → Aλ → Lλ → 0.

Here and elsewhere, using a variation of the Serre-Swan theorem, we shall often use
the same terminology for an algebra bundle and its associated algebra of continuous
sections. In particular theK-theory ofAλ is canonically isomorphic to theK-theory
of Kλ since Lλ is a flabby algebra6 (in particular its K-groups are trivial).

A comment is in order to make our previous definition more functorial: the
λ-twisted K-theory is defined precisely as the K-theory of bundles with fibres A-
modules which are finitely generated and projective but twisted by the cocycle λ.
How this depends only on the cohomology class [λ] is discussed in Appendix 8.3.
Our Section 3 on twisted vector bundles may now be rewritten by replacing the
field of complex numbers C by the C*-algebra A and the finite dimensional bundles
by “A-bundles” as above. Theorem 3.5 adapted to this situation shows that the
category of λ-twisted A-bundles is equivalent to the category of Aλ-modules if
the covering U of X is good. This shows in particular that the theory of twisted
A-bundles is homotopically invariant (at least if X is compact).

6A Banach algebraA is called flabby if there is a topologicalA-bimoduleM which is projective
of finite type as a right module, such that M ⊕A is isomorphic to M. This is equivalent to saying
that the Banach category C = P(A) is ”flabby”: there is a linear continuous functor τ from C to
itself such that τ ⊕ IdC is isomorphic to τ.
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One has to point out a main difference between C-modules and A-modules: a
priori, the fibres of A-bundles are not necessarily free7. However, since K(A) is
canonically isomorphic to Z, each A-bundle E induces a locally constant function
(called the “rank”)

Rk : X → Z,

obtained by applying the K-functor to each fibre. This correspondence defines a
group map

Ch(0) : K(Aλ) → H0(X;Z).

In Section 7 we shall see how to define “higher Chern characters” Ch(m), starting
from this elementary step.

In the spirit of Section 1, we may also consider twisted principal G-bundles,
where G is the group of invertible elements in the algebra A. We note that the
elements of G are couples of invertible operators (g, h) in a Hilbert space such that
g − h is compact. We get elements in the centre by considering g = h ∈ C∗.
More accurately, one should replace A by the subalgebra End(P ), where P is a
finitely generated projective A-module which is the fibre of the bundles we are
considering (assuming the base is connected; otherwise the fibre P may vary).
Then G is not exactly A∗ but the subgroup Aut(P ) of A∗. This point of view will
be exploited in Section 7 for the definition of the Chern character, whose target is
twisted cohomology.

Finally, there is a third definition of twisted K-theory in terms of Fredholm
operators, following the ideas in [1], [19] and [15]. We consider the set of homotopy
classes of triples

(E0, E1, D),

where E0 and E1 are λ-twisted Hilbert bundles on a good covering U and D is a
family of Fredholm operators8 from E0 to E1. With the operation induced by the
direct sum of triples, we get a group denoted by Kλ(U). We note that Kλ(U) is
a module over K(U). Here K(U) is a shorthand notation for the usual K-theory
of the nerve of U . If U is good as in Remark 3.3, this group is isomorphic to the
classical topological K-group K(X).

In order to prove that this last definition is consistent with the previous ones,
we consider the Banach category of λ-twisted Hilbert bundles. It is equivalent to
the category of bundles of Lλ-modules, where Lλ is the algebra bundle above with
fibre L(H) twisted by λ. Let Lλ/Kλ be the quotient bundle with fibre the Calkin
algebra L(H)/K(H).

Lemma 4.3. Let D be the class of D as a morphism between the associated
Lλ/Kλ-modules. Then two triples (E0, E1, D) and (E′

0, E
′
1, D

′) are homotopic if

and only if the associated triples (E0, E1, D) and (E′
0, E

′
1, D

′
) are homotopic.

Proof. In general, let us denote also by M the class of M as an Lλ/Kλ-
module. We have a continuous map

F(E0, E1) → Iso(E0, E1),

7However, we shall show in Section 7 that the fibres are free modules if the restriction of the
cohomology class of λ to every connected component of X is of infinite order.

8We note that HOM(E,F ) is an ordinary bundle with fibre Hom(H,H) = L(H). The space of
Fredholm operators ”from E to F” is the subspace of sections of HOM(E, F ) which are Fredholm
over each point of X.
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where the notation F stands for continuous families of Fredholm maps. According
to a classical theorem on Banach spaces, this map admits a continuous section.
Therefore, we get a trivial fibration with contractible fibre which is the Banach
space of sections of the bundle Kλ. The proposition follows immediately. �

The philosophy of the lemma is that our third definition of twisted K-theory
is equivalent to the Grothendieck group of the Banach functor

ϕ : P ′(Lλ) → P ′(Lλ/Kλ),

as defined in [24, Section II]. Here the category P ′(Lλ) (resp. P ′(Lλ/Kλ)) is equiv-
alent to the category of free modules over Lλ (resp. Lλ/Kλ). Since K0(P ′(Lλ)) = 0,
this Grothendieck group is canonically isomorphic to K0(Kλ) which is precisely our
first definition since, as already mentioned, Kλ is the algebra bundle with fibre
K(H) associated to the cocycle λ.

Remark 4.4. Instead of the Grothendieck group of the functor ϕ, we could as
well consider the groupK1(Lλ/Kλ) which is isomorphic toK(ϕ), since Lλ is a flabby
ring. We shall use this equivalent description of twisted K-theory in Appendix 8.2.

Remark 4.5. If λ is of finite order, the Fredholm definition of twisted K-theory
is detailed in [15, pg. 18]. If λ = 1, we recover the theorem of Atiyah and Jänich
[1], [19], in a slightly weaker form.

As is shown in [15] and [23], there is a Z/2-graded version of twisted K-theory.
This version is needed for the Thom isomorphism in the general case of an arbitrary
real vector bundle V (which is not necessarily oriented). It is also needed for the
Poincaré pairing applied to arbitrary manifolds. We shall concentrate on the case
of non-torsion classes [λ] in the third cohomology group of X. The case when [λ]
is a torsion class in H3(X;Z) has been extensively studied in [15].

The essential idea is to replace the previous structural group U(H) by the group
Γ(H) of matrices in U(H ⊕H) of type(

g1 0
0 g2

)

or (
0 h1

h2 0

)
.

The point here is that Γ(H) acts by inner automorphisms on L(H⊕H) with a degree
shift which is either 0 or 1, the first copy of H being of degree 0 and the second
one of degree 1. As in the previous Section, we may give a Z/2-graded module
interpretation of twisted Hilbert bundles modelled on Γ(H). If E is such a graded
twisted Hilbert bundle, A = END(E) is a bundle of graded algebras with fibre
L(H ⊕H). Conversely, for any bundle of graded algebras A with fibre L(H ⊕H),
there is a twisted Hilbert bundle E with structural group Γ(H) such that A is
isomorphic to END(E). According to [15], [23] and our previous computations,
these graded algebras are classified by the following cohomology group:

H1(X;Z/2)×H3(X;Z),

with a twisted addition rule, as explained in [15, p. 10]. The first invariant in
H1(X;Z/2) is induced by the map

Γ(H) → Z/2,
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which describes the type of matrices in Γ(H) (diagonal or antidiagonal). The second
invariant is defined as before for the underlying ungraded twisted Hilbert bundle.

If we consider the graded tensor product of the twisted Hilbert bundle E by
the Clifford algebra C0,1 = C [x] /(x2 − 1), we get another type of structural group
we might call Γ1(H) which is simply U(H)×U(H). The elements of degree 0 are of
type (g, g), while the ones of degree 1 are of type (g,−g). Algebraically, this reflects
the fact that over the complex numbers there are two types of Z/2-graded Azumaya
algebra, up to graded Morita equivalence, which are C and C×C. For simplicity’s
sake, in the following discussion, we shall restrict ourselves to the first case which is
the group Γ(H) above. We note however that, for real graded vector bundles, there
are eight types of graded algebras (up to graded Morita equivalence) to consider
instead of two, as noticed in [15]. They correspond to the Clifford algebras C0,n

for n = 0, 1, ..., 7, over the real numbers.
If E and F are two graded twisted Hilbert bundles of structural group Γ(H),

a morphism (gi) is of degree 0 (resp. 1) if it is represented locally by a matrix of
type (

ui 0
0 vi

)
resp.

(
0 ui

vi 0

)
.

From the previous category equivalences and the definitions in [23], we deduce the
following theorem.

Theorem 4.6. Let λ be a graded twist defined by two cocycles, with classes in
H1(X;Z/2) and H3(X;Z) respectively. We consider the set of homotopy classes
of couples (E,∇), where E is a λ-twisted graded Hilbert bundle and ∇ a family of
self-adjoint Fredholm operators on E which are of degree one. With the operation
given by the direct sum of couples, the group obtained is isomorphic to the λ-twisted
graded K-theory defined in [23].

Remark 4.7. One should point out that there is a variant of this Fredholm
definition of twisted K-theory on a base X which is locally compact: the family of
Fredholm operators ∇ must be an isomorphism outside a compact set (see e.g. [1]
or [24]). This remark will be important for the definition of the Thom isomorphism
in Section 6.

Remark 4.8. Whatever definition of graded or ungraded twisted K-theory we
choose, the group we obtain, denoted by Kλ(X) in all cases, may be “derived”. One
nice way to see this is to notice that we are considering a K-group of special Banach
algebras (or Z/2-graded Banach algebras, see [23]), for instance A = Kλ. We then
defineK−n

λ (X) asKn(A). By Bott periodicity for complex Banach algebras, we have

K−n
λ (X) ∼= K−n−2

λ (X). According to general theorems on K-theory, one shows that

K−n
λ (X) ∼= Coker(Kλ(X) → Kπ∗λ(X × Sn)),

where π : X × Sn → X is the canonical projection. We note here that the smash
product X∧Sn cannot be used to define K−n

λ (X), since there is no associated twist
in the cohomology of X ∧ Sn in general.

As a consequence, we may apply Mayer-Vietoris arguments to the direct sum
Kλ(X)⊕K−1

λ (X), as for the K-theory of general Banach algebras.
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5. Multiplicative structures

Since we have defined twistedK-theory in three ways (at least in the non-graded
case), we should investigate the possible multiplicative structure from these different
viewpoints and show that they coincide up to isomorphism. These multiplicative
structures were also investigated in a more general framework in [20].

The end result is a “cup-product”

Kλ(X)×Kμ(X) → Kλμ(X),

where λ and μ are two 2-cocycles9 with values in S1. Since Kλ(X) is the K-theory
of the Banach algebra Kλ in general, it is enough to define a continuous bilinear
pairing between nonunital Banach algebras

ϕ : Kλ ×Kμ → Kλμ,

such that ϕ(aa′, bb′) = ϕ(a, b)ϕ(a′, b′). The implication that such a ϕ induces a
pairing between K-groups is not completely obvious and relies on excision in K-
theory.

To define the pairing ϕ, we observe that if Eλ is a twisted Hilbert bundle with
twist λ and Fμ another one with twist μ, then E⊗̂F is a twisted Hilbert bundle

with twist λμ. Here, the fibres of Eλ⊗̂Fμ are the Hilbert tensor product of the
fibres of E and F respectively (we implicitly identify the Hilbert tensor product
of H ⊗ H with H since it is infinite dimensional). Therefore, we have a pairing
between Banach bundles

END(Eλ)× END(Fμ) → END(Eλ⊗̂Fμ),

which is bilinear and continuous. If we take continuous sections, we deduce the
map ϕ required. We note that ϕ also induces a continuous ring map

Kλ⊗̂Kμ → Kλμ.

where the symbol ⊗̂ denotes the completed projective tensor product of Grothendieck.
However, this map is not an isomorphism.

This cup-product is much simpler to define if [λ] and [μ] are torsion classes in
the cohomology. According to Section 3, we may then assume that E and F are
finite dimensional twisted vector bundles. The cup-product is then the usual one10

K(A)×K(B) → K(A⊗B)

where A = END(Eλ) and B = END(Fμ) are bundles of finite dimensional algebras,
with matrix algebras as fibres.

Coming back to the general case, we now use our second definition of twistedK-
theory in order to get a cup-product between K-groups of unital rings. According
to Section 4, we have exact sequences of Banach algebras

0 → Kλ → Aλ → Lλ → 0

0 → Kμ → Aμ → Lμ → 0,

9See Appendix 8.3 for a possible pairing if we replace λ and μ by their cohomology classes
in H2(X;S1) ∼= H3(X;Z).

10As often, we underline the algebra of sections of the algebra bundles involved.
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Therefore, we deduce another exact sequence by taking completed projective tensor
products (since the previous exact sequences split as exact sequences of Banach
spaces):

0 → Kλ⊗̂Kμ → Aλ⊗̂Aμ → Dλ,μ → 0.

Here the Banach algebra Dλ,μ is the following fibre product

Dλ,μ → Aλ⊗̂Lμ

↓ ↓
Lλ⊗̂A → Lλ⊗̂Lμ

.

Since the algebras Lλ and Lμ are flabby, the algebra Dλ,μ has trivial K-groups. It
follows that the map

Kλ⊗̂Kμ → Aλ⊗̂Aμ

is a K-theory equivalence. Therefore, we may also define a cup-product

K(Aλ)×K(Aμ) → K(Aλμ),

as the following composition

K(Aλ)×K(Aμ) → K(Aλ⊗̂Aμ)
∼= K(Kλ⊗̂Kμ) → K(Kλμ)

∼= K(Aλμ).

We now come to the third definition of the cup-product in terms of Fredholm
operators. As is well known (see e.g. [1], [15] or [23]), one advantage of this
definition of twisted K-theory (for [λ] of finite or infinite order) is a handy descrip-
tion of the cup-product. In the ungraded case, it is more convenient still to view
E = E1 ⊕ E1 as a Z/2-graded twisted bundle and replace11 D : E0 → E1 by the
following operator ∇ which is self-adjoint and of degree 1:

∇ =

(
0 D∗

D 0

)
.

The cup-product of (E,∇) with another couple of the same type (E′,∇′) is simply
defined by the formula

(E,∇) � (E′,∇′) = (E⊗̂E′,∇⊗̂1 + 1⊗̂∇′).

Here the symbol ⊗̂ denotes the graded and Hilbert tensor product. We notice that
if E is associated to the twist λ, E′ to the twist λ′, the cup-product is associated
to the twist λ · λ′, a cocycle whose cohomology class is the sum of the two related
cohomology classes in H2(X;S1).

It is not completely obvious that this third definition of the cup-product is
equivalent to the previous one with the bundles Kλ or Aλ. In order to prove
this technical point, we use the results of Appendix 8.2 describing explicitly the
isomorphism between K(Kλ) and K1(Lλ/Kλ). In fact, any element of K1(Lλ/Kλ)
is the cup-product of an element u of K(Kλ) by a generator τ of

K1(L/K) ∼= Z.

This generator is classically defined by the shift (as a Fredholm operator). More-
over, we may assume that u is induced by a self-adjoint involution on M2((Kλ)

+),
where (Kλ)

+ is the algebra Kλ with a unit added. On the other hand, both K∗(Kλ)
and K1+∗(Lλ/Kλ) may be considered as (twisted) cohomology theories on X and
we have a pairing

K∗(Kλ)×K1(L/K) → K1+∗(Lλ/Kλ)

11More correctly, we should write D as a section of the bundle HOM(E0, E1).
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Therefore, the formula above for the cup-product with Fredholm operators has
to be compared with the previous one only when X is reduced to a point, a case
which is obvious.

This Fredholm multiplicative setting has the advantage that it may be extended
to the graded version of twisted K-theory by the same formula

(E,∇) � (E′,∇′) = (E⊗̂E′,∇⊗̂1 + 1⊗̂∇′).

If ([λ1] , [λ3]) and ([λ′
1] , [λ

′
3]) are the twists of E and E′ respectively, the twist of

E⊗̂E′ in cohomology is ([μ1] , [μ3]), where

[μ1] = [λ1] + [λ′
1]

and

[μ3] = [λ3] + [λ′
3] + β([λ1] · [λ′

1]).

Here β : H2(X;Z/2) → H3(X;Z) is the Bockstein homomorphism (compare with
[15, p. 10]). Thanks to the Thom isomorphism which is proved in [23] (see also the
next section and [10]), this graded cup-product is compatible with the ungraded
one defined on the Thom space of the orientation bundle determined by the graded
twist.

6. Thom isomorphism and operations in twisted K-theory

This Section is just a short rewriting of the sections 4 and 7 of [23], with the
point of view of twisted Hilbert bundles. It is added here for completeness’ sake.

In order to define the Thom isomorphism in twisted K-theory, as in [23] and
[10] with our new point of view, we need to consider twisted Hilbert bundles E
with a Clifford module structure. Such a structure is given by a finite dimensional
real vector bundle V on X, provided with a positive metric q and an action of V
on E, such that (v)2 = q(v) · 1. Now let λ be a graded twist, given by a covering
U = (Ui) together with a couple (λ1, λ3) consisting of a 1-cocycle with values in
Z/2 and a 2-cocycle with values in S1. We define the Grothendieck group KV

λ (X)
from the set of homotopy classes of couples

(E,∇),

as follows: E is a Z/2-graded twisted Hilbert bundle which is also a graded C(V )-
module, V acting by self-adjoint endomorphisms of degree 1. Moreover, the family
of Fredholm operators ∇ must satisfy the following properties

1) ∇ is self-adjoint and of degree 1, as in the previous section,
2) ∇ anticommutes with the elements v in V.
This group is not entirely new. Using our dictionary relating twisted Hilbert

bundles and module bundles, we described it in great detail in [23, § 4]. We should
also notice that this structure of C(V )-module may be integrated into the twist
λ: if w1 = w1(V ) and w2 = w2(V ) are the first two Stiefel-Whitney classes of V,
one has to replace λ by the sum of λ and C(V ) in the graded Brauer group (this
was one of the main motivations for the paper [15]). More precisely, the resulting
cohomology classes are

[λ1] + w1(V )

in degree one and

[λ3] + β([λ1] · w1) + β(w2)
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in degree 3.

Using our previous reference [23], we are now able to define the Thom isomor-
phism

t : KV
λ (X) → Kπ∗λ(V )

in simpler terms. If π denotes the projection V → X, and if (E,∇) defines an
element of the group KV

λ (X), we define t(E,∇) as the couple (π∗(E),∇′), where
∇′ is defined over a point v of V , with projection x, by the formula

∇′
v = v +∇x.

We recognize here the formula already given in [23]: we have just replaced module
bundles by twisted Hilbert bundles.

Operations on twisted K-theory have already been defined in many references
[15], [2], [23]. Twisted Hilbert bundles give a nice framework to redefine them.
For simplicity’s sake, we restrict ourselves to ungraded twisted K-groups.

If we start with an element (E,∇) defining an element of Kλ(X) as at the end
of Section 4, its kth power12

(E⊗̂k,∇⊗̂...⊗̂1 + · · ·+ 1⊗̂...⊗̂∇)

has an obvious action of the symmetric group Sk. We should notice that the twist
of the kth power is λk. According to Atiyah’s philosophy [1], the kth power defines
a map

Kλ(X) → Kλk(X)⊗Z R(Sk),

where R(Sk) denotes the complex representation ring of Sk. Therefore, any Z-
homomorphism

R(Sk) → Z

gives rise to an operation in twisted K-theory. In particular, the Grothendieck
exterior powers and the Adams operations may be defined in twisted K-theory,
using Atiyah’s method.

As an interesting Z-homomorphism from R(Sk) to Z, one may choose the map
which associates to a complex representation ρ the trace of ρ(ck), where ck is the
cycle (1, 2, ..., k), a trace which is in fact an integer. The resulting homomorphism

Kλ(X) → Kλk(X)

is quite explicit. It associates to F = (E,∇) the “Gauss sum”∑
(F ⊗̂k)n ⊗ ωn

in the group Kλk(X)⊗Z Ωk, where Ωk is the ring of k-cyclotomic integers. In this

sum, ω is a primitive kth root of unity. The element (F ⊗̂k)n is the eigenmodule

associated to the eigenvalue ωn of a generator of the cyclic group Ck acting on F ⊗̂k.
This sum belongs in fact to Kλk(X), as a subgroup of Kλk(X)⊗Ωk. As shown by
Atiyah [1], we get this way a nice alternative definition of the Adams operation Ψk.

12where the symbol ̂⊗ again denotes the graded Hilbert tensor product.
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Remark 6.1. If the class of λ in H3(X;Z) is of finite order, it is not necessary
to consider twisted Hilbert bundles and Fredholm operators. One just deals with
finite dimensional twisted vector bundles as in Section 3.

Remark 6.2. One should notice that operations are much more delicate to de-
fine in graded twisted K-theory, even for coefficients [λ] of finite order in H3(X;Z).
This was pointed out in [15] and recalled in [23]. Fredholm operators were already
introduced in [15] in order to deal with this problem, before subsequent works on
twisted K-theory.

7. Connections and the Chern homomorphism

Let us now assume that X is a manifold. The previous definitions make sense
in the differential category. The fact that we get the same K-groups is more or
less standard and relies on arguments going back to Steenrod [31]. As an illustra-
tive example, the Čech cohomologies H1(X; GLn(C)) and H1(X; PGLn(C)) may
be computed with differential cochains. Therefore the classification of topological
algebra bundles (with fibre Mn(C)) is the same in the differential category. This
general result is also true for module bundles and therefore for twisted K-theory,
if we choose differential 2-cocycles λ with values in S1 to parametrize the twisted
K-groups.

In the differential category, the definition of the Chern homomorphism between
twisted K-theory and “twisted cohomology” was given in many papers [3], [27],
[8], [32], [11], and [4]. Our method is more elementary and is based on the classical
definitions of Chern-Weil theory applied to twisted bundles13. We start with twisted
finite dimensional bundles which are easier to handle. However, as we shall see later
on, the same method may be applied to infinite dimensional bundles in the spirit
of Section 4.

Let E be a twisted vector bundle of rank14 n, defined on a covering U = (Ui)
by transition functions (gji), with the twisted cocycle condition

gki = gkj · gji · λkji,

as in Section 3. We assume that all functions are of class C∞, which does not change
the classification problem for twisted bundles as we have seen previously.

Definition 7.1. A connection Γ on E is given by (n × n)-matrices Γi of dif-
ferential 1-forms on Ui such that on Ui ∩ Uj we have the relation

Γi = g−1
ji · Γj · gji + g−1

ji · dgji + ωji.1.

Here ωji is a differential 1-form related to the λkji by the following relation:

ωji − ωki + ωkj = λ−1
kji · dλkji.

Moreover, from the relation above with the Γ′s, we deduce that ωij = −ωji. If
we take the differential of the previous relation, we also get

dωji − dωki + dωkj = 0.

13For the classical computations, we refer to the books [26, pg. 78] and [22] for instance.
14The rank may vary above different connected component of X.
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In the applications below, ω will be a differential form with values in iR, where15

i =
√
−1 (if the gji are unitary operators).

Example 7.2. (which shows the existence of such connections). Let (αk) be a
partition of unity associated to the covering U . We then consider the “barycentric
connection” defined by the formula

Γi =
∑
k

αk · g−1
ki · dgki.

Since gki = gkj · gji · λkji, we have the following expansion:

g−1
ki · dgki = g−1

ji · (g−1
kj · dgkj) · gji + g−1

ji · dgji + λ−1
kji · dλkji.

Therefore, on Ui ∩ Uj we have the expected identity

Γi = g−1
ji · Γj · gji + g−1

ji · dgji + ωji · 1,
where

ωji =
∑
k

αk · λ−1
kji · dλkji.

Remark 7.3. It is clear from the definition that the space of connections on
E is an affine space: if Γ and ∇ are two connections on E, for any real number t,
(1− t)Γ + t∇ is also a connection.

We have choosen a definition of a connection in terms of “local coordinates”.
However, we have to check how connections correspond when we change them. In
other terms, let (α) be an isomorphism from the coordinate bundle (h) to (g) as in
Section 1. According to Formula(1.1), we then have the relation

gji · αi = αj · hji

Associated to this morphism, we define the pullback α∗(Γ) of the connection (Γ)
as locally defined on the coordinate bundle (h) by the formula

∇i = α−1
i · Γi · αi + α−1

i · dαi

In order for this to make sense, we have to check the relation

∇i = h−1
ji · ∇j · hji + h−1

ji · dhji + ωji.1.

which is slightly tedious. We start from the formula

Γi = g−1
ji · Γj · gji + g−1

ji · dgji + ωji.1,

where we replace gji by αj · hji · α−1
i . We also replace dgji by

dgji = dαj · hji · α−1
i + αj · dhji · α−1

i − αj · hji · α−1
i · dαi · α−1

i .

We then get

∇i = α−1
i · (g−1

ji · Γj · gji + g−1
ji · dgji + ωji.1.) · αi + α−1

i · dαi

= α−1
i · (g−1

ji · Γj · gji) · αi

+α−1
i · g−1

ji · (dαj · hji · α−1
i + αj · dhji · α−1

i − αj · hji · α−1
i · dαi · α−1

i ) · αi

+ωji.1.

15The two different meanings of the symbol ”i” are clear from the context.
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= h−1
ji · (∇j − α−1

j · dαj) · hji

+h−1
ji · α−1

j · dαj · hji + h−1
ji · dhji − α−1

i · dαi + α−1
i · dαi + ωji.1.

= h−1
ji · ∇j · hji + h−1

ji · dhji + ωji.1,

which is the expected formula.
The “local curvatures” Ri associated to the Γi are given by the usual formula16

Ri = dΓi + (Γi)
2.

Unfortunately, the traces of these local curvatures do not agree on Ui ∩Uj , since a
simple computation as above leads to the relation

Ri = g−1
ji ·Rj · gji + dωji.1.

However, using a partition of unity (αi), as in the case of the barycentric connection,
we may define a family of “twisted curvatures” by the following formula, where
m = 1, 2, ...:

R(m) =
∑
i

αi · (Ri)
m.

We now define a family of “Chern characters” Ch(m)(E,Γ) as

Ch(m)(E,Γ) = Tr(R(m)).

We should notice that Ch(m)(E,Γ) belongs to the vector space of differential forms
with values in (i)mR, since the gkl are unitary matrices. By convention, we put

Ch(0)(E,Γ) = n.

The differential of Ch(1) is

d(Ch(1)(E,Γ)) =
∑
i

αi · Tr(dRi) +
∑
i

dαi · Tr(Ri).

It is well known (and easy to prove) that

Tr(dRi) = Tr(dΓi · Γi − Γi · dΓi) = 0.

On the other hand, the relation between Ri and Rj above leads to the following
identity between differential forms on Uj :∑

i

dαi · Tr(Ri) = (
∑
i

dαi · Tr(Rj)) + n
∑
i

dαi · dωji = n
∑
i

dαi · dωji.

The differential 3-form θj =
∑
k

dαk · dωjk is clearly closed on Uj . Moreover, on

Ui ∩ Uj we have

θj − θi =
∑
k

dαk · (dωjk − dωik) =
∑
k

dαk · dωji = 0,

according to the relation above between various dωji. Therefore, the {θi} define a
global differential 3-form θ on the manifold X with values in iR. This 3-cohomology
class is the opposite of the image of λ by the connecting homomorphism17:

H2(X;S1) → H3(X; 2πiZ),

16As in classical Chern-Weil theory, one may also write 1
2
[Γi,Γi] instead of (Γi)

2.
17See Appendix 8.1 for a proof of this statement..
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associated to the classical exact sequence of sheaves:

0 −→ 2πiZ −→ iR
exp−→S1 → 0,

followed by the map18

H3(X; 2πiZ) → H3(X; iRδ),

deduced from the inclusion Z ⊂ R
δ. Summarizing the above discussion, we get our

first relation
d(Ch(1)(E,Γ)) = n · θ.

Analogous computations can be made with R(2), R(3), etc.. For an arbitrary m,

d(Ch(m)(E,Γ)) =
∑
i

αi · Tr(d(Ri)
m) +

∑
i

dαi · Tr(Ri)
m.

Since Tr(d(Ri)
m) = 0 for the same reasons as above, we have

d(Ch(m)(E,Γ)) =
∑
i

dαi · Tr(Ri)
m.

On the other hand, from the relation

Tr(Ri)
m = Tr(Rj)

m +mTr(Rj)
m−1 · dωji,

we deduce the following identity between differential forms on Uj :

∑
i

dαi · Tr(Ri)
m =

∑
i

dαi · Tr(Rj)
m +

∑
i

m · dαi · Tr(Rj)
m−1 · .dωji

= m · Tr(Rj)
m−1 · θ.

Therefore, ∑
i

dαi · Tr(Ri)
m =

∑
j

αj

∑
i

dαi · Tr(Ri)
m

=
∑
j

m · αj · Tr(Rj)
m · θ = m · Ch(m−1)(E,Γ) · θ.

Summarizing again, we get the relation

d(Ch(m)(E,Γ)) = m · Ch(m−1)(E,Γ) · θ.
We now define the total Chern character of (E,Γ) with values in the even de Rham
forms19

Ω0(X)⊕ Ω2(X)⊕ ...⊕ Ω2m(X)⊕ ...

by the following formula:

Ch(E,Γ) = Ch(0)(E,Γ) + Ch(1)(E,Γ) +
1

2!
Ch(2)(E,Γ) + ...

+
1

m!
Ch(m)(E,Γ) + ...

We have chosen the coefficients in front of the Ch(m) such that Ch(E,Γ) is a cycle
in the even/odd de Rham complex (see footnote Nr 24) with the differential given
by D = d− .θ, where .θ is the map defined by the cup-product with θ.

In Appendix 8.3, we prove by classical considerations that this total Chern
character is well defined as a twisted cohomology class and does not depend on the

18Here Rδ denotes now the field R with the discrete topology.
19More precisely, Ω2k(X) is the vector space of 2k-differential forms with values in (i)kR.
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connection Γ and on the partition of unity. This remark is also valid in the infinite
dimensional case which will be studied later on.

For the time being, since we consider finite dimensional bundles, the class θ
in H3(X; iRδ) is reduced to 0. Therefore, by classical considerations on complexes
using exponentials of even forms [3], we see that the target of this special Chern
character reduces to the classical one. Moreover, we may also consider twisted
bundles over X×S1, which enables us to define a Chern character from odd twisted
K-groups to odd twisted cohomology. From standard Mayer-Vietoris arguments
and Bott periodicity, we deduce that the Chern character induces an isomorphism
between Kλ(X)⊗Z R and Heven(X;R).

We want to extend the previous considerations to the case when the cohomology
class [λ] is of infinite order. For this, we use the second definition of twisted K-
theory in terms of twisted principal bundles associated to the group G of couples
(g, h) such that g and h are invertible operators in L(H) with g − h compact.
However, in order to be able to take traces, we have to slightly modify this group
by assuming moreover that g − h is a trace class operator, i.e. belongs to L1.
By abuse of notation, we still call A the algebra20 of couples (g, h) ∈ L × L such
that g − h ∈ L1. Using the classical density theorem in topological K-theory [24,
pg. 109], it is easy to show that we get the same twisted K-theory as for g − h
compact. We may also choose the transition functions to be C∞, as we did in the
finite dimensional case.

The computations in the finite dimensional case may now be easily transposed
into this framework if we consider transition functions (gji, hji) in the group21

G = A∗ and take “supertraces” instead of traces. We just have to be careful since
the fibres of our bundles are not necessarily free22. Concretely, we define a rank
map

Rk = Ch(0) : Kλ(X) → H0(X;Z)

as follows: if E is a finitely generated projective module over Aλ, it is defined by
a family of two projection operators (p0, p1) in the algebra Aλ. Then the trace of
p0 − p1 is a locally constant integer, defining the rank function, since

K(A) ∼= K(K) ∼= K(C) = Z.

If we look at E as a twisted A-bundle over X with fibre P (which is a finitely
generated projective A-module), we may consider End(P ) as included in Mn(A) ∼=
A and restrict the supertrace defined on A to End(P ). For instance, the supertrace
of the identity on P is just the rank of P. By abuse of notations we shall identify
End(P ) and its image in A.

We now define a connection on E as a family of differential forms Γi = (Γ0
i ,Γ

1
i )

with values in End(P ) ⊂ A ⊂ L× L, such that Γ0
i − Γ1

i is a differential form with
values in L1, satisfying the same compatibility condition as above:

Γi = g−1
ji · Γj · gji + g−1

ji · dgji + ωji.1.

20The norm of an element (g, h) is the sum of the operator norm on g and the L1-norm on
g − h.

21More precisely, in the group Aut(P ) ⊂ G = A∗; see below.
22As we mentioned already in Section 4, the fibres should be free if λ does not define a torsion

class in the cohomology of each connected component of X; see below.
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We choose the transition functions gji = (g0ji, g
1
ji) to be in Aut(P ) rather than

GLn(C). Such connections exist, for instance the barycentric connection considered
in the finite dimensional case

Γi =
∑

αk · g−1
ki · dgki,

where (αk) is a partition of unity associated to the covering. The only difference
with the finite dimensional case is that n is replaced by Rk(E) = Ch(0)(E) and the

usual trace by the supertrace23. If we denote by str this supertrace, we have define:

Ch(E,Γ) = Ch(0)(E) +

dim(X)/2∑
m=1

1

m!
str(

∑
i

αi(Ri)
m),

where the Ri are the local curvatures as functions of the Γi defined above, and
where (αi) is a partition of unity associated to the given covering U .

The computations made before in the finite dimensional case show as well that
Ch(E,Γ) is a cocycle for the differentialD = d−.θ. As in the finite dimensional case,
standard homotopy arguments also show that the cohomology class of Ch(E,Γ) is
independent of the connection Γ and of the partition of unity (αi) (see Appendix
8.3 for the details).

Therefore, for any λ, the Chern character induces an isomorphism between
Kλ(X)⊗Z R and the twisted cohomology which is the cohomology of the even part
of the even/odd de Rham complex24 with the twisted differential D = d− .θ. It is
proved in [3], in a computation involving again the exponential of even forms, that
this twisted cohomology depends only on the class of θ in the cohomology group
H3(X; iR).

Summarizing the previous discussion, we get the following theorem:

Theorem 7.4. Let U be a good covering of X, λ be a completely normalized
2-cocycle with values in S1 associated to this covering. Let (αi) be a partition of
unity associated to this covering and let θ be the differential 3-form associated to
−λ, according to Appendix 8.1. Then the Chern character

Ch : Kλ(X) → Hev
θ (X;R)

from twisted K-theory to even twisted cohomology induces an isomorphism

Kλ(X)⊗Z R ∼= Hev
θ (X;R).

Remark 7.5. The functoriality of the Chern character is discussed in Appendix
8.3. Its multiplicative properties will be studied later (Theorem 7.2).

Remark 7.6. One may also normalize the Chern character by putting a factor
(1/2πi)r in front of Ch(r)(E,Γ) and replace θ by θ/2πi. Then we have to consider
the usual de Rham complex, contrarily to our convention in the footnote Nr 24.

If the space X is formal in the sense of rational homotopy theory [16], we may
replace the de Rham complex by its cohomology viewed as a graded vector space

23Note again that the supertrace of ”1” is the rank of P which is positive or negative.
24Note that Ω2k(X) and Ω2k+1(X) are the real vector spaces of differential forms of degree 2k

or 2k+1 with values in (i)kR. The differential is the usual one d on Ω2k(X) and id on Ω2k+1(X).
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(with the differential reduced to 0). In that case, the (even) twisted cohomology is
isomorphic to the even part of the cohomology of the complex[

⊕H2k(X; (i)kR)
]
⊕
[
⊕H2k+1(X; (i)kR)

]
,

with the differential given by the cup-product with the cohomology class of θ in
H3(X; iR). By a well known and deep theorem of Deligne, Griffiths, Morgan and
Sullivan [13], this computation is valid when X is a simply connected compact
Kähler manifold.

In the particular case when θ is not 0 in all the cohomology groups H3(Xr; iR),
where the Xr are the connected components of X, we see by a direct computation
that Ch(0)(E,Γ) is necessarily 0, which implies that the fibres of E should be freeA-
modules. This also implies that Ch(1)(E,Γ) is a closed differential form. Therefore,

for any λ, one can define the first Chern character25 Ch(1)(E,Γ) in the (non twisted)

cohomology group H2(X; iR). However, we need the twisted differential cycles for
the total Chern character of E.

Let now U = (Ui) and V = (Vj) be coverings of X and Y respectively. Let (αi)
(resp. (βj)) be a partition of unity associated to U (resp V). The products (αi ·βj)
define a partition of unity associated to the covering W = (Ui × Vj) of X × Y.

Theorem 7.7. Let E be a λ-twisted A-bundle on X and let F be a μ-twisted
A-bundle on Y. Here λ and μ are explicit Čech cocycles λtsr and μwvu with values
in S1, associated to the coverings U and V respectively. Let λ and μ be the closed
differential forms defined on each Ui × Vj by the formulas

λ =
∑
t,s

dαt · dαs · λ−1
tsi · dλtsi

μ =
∑
w,v

dβw · dβv · μ−1
wvj · dμwvj ,

as in Appendix 8.1. Then we have the commutative diagram26

Kλ(X)×Kμ(Y ) → Kλμ(X × Y )
↓ ↓

Hev
λ
(X)×Hev

μ (Y ) −→ Hev
λ+μ

(X × Y )

Proof. Let Γ = (Γi) (resp. ∇ = (∇j)) be a connection on E (resp. F ). Then
Δ = Γ ⊗ 1 + 1 ⊗ ∇ is a connection on E ⊗ F. Therefore, if RE (resp. RF ) is the
curvature associated to Γ (resp. ∇), then

RE⊗F = RE ⊗ 1 + 1⊗RF

is the curvature associated to Δ over each open subset Ui × Vj of X × Y. Using the
partition of unity (αi · βj) associated to the covering (Ui × Vj) and the binomial
identity, we find the relation

1

m!
Ch(m)(E ⊗ F,Δ) =

∑
p+q=m

1

p!q!
Ch(p)(E,Γ)Ch(q)(F,∇),

from which the theorem follows. �
25which is also a Chern class.
26According to the computations in Section 5, we map the K-theory of Aλ ̂⊗Aμ to the K-

theory of Aλμ. However, in these computations, one has to replace K by the ideal L1 of trace

class operators.
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Finally, we should add a few words concerning graded twisted K-theory which
is indexed essentially by elements

[λ̃] ∈ H1(X;Z/2)×H2(X;S1).

If we apply Theorem 4.4 of [23], this group (at least rationally) is isomorphic to
the ungraded twisted K-theory of Y , where Y is the Thom space of the orientation

real line bundle L. This L corresponds to the image of [λ̃] in H1(X;Z/2). In more
precise terms, the graded twisted K-group tensored with the field of real numbers
is isomorphic to the odd twisted relative cohomology group of the pair (P,X). Here
P = P(L⊕ 1) denotes the real projective bundle of L⊕ 1 (with fibre P 1 ∼= S1), and
the 3-dimensional cohomology twist is induced by the projection P → X from the
one on X. This (graded) twisted cohomology is different in general from the twisted

cohomology associated to the image of [λ̃] in H3(X; iR).This is not surprising since
the usual real cohomology of a manifold with a coefficient system in H1(X;Z/2)
also depends on this system.

Remark 7.8. If A is not a commutative Banach algebra, there is no internal
product

Kn(A)×Kp(A) → Kn+p(A)

in general. Therefore, it is remarkable that such a product exists for twisted K-
groups which are K∗(Kλ), where Kλ is a noncommutative Banach algebra..

8. Appendix

8.1. Relation between Čech cohomology with coefficients in S1 and
de Rham cohomology. This section does not claim any originality. It may be
easily deduced from the classical books [5], [25] for instance, the basic ideas going
back to André Weil. It is added for completeness’ sake and normalization purposes.

Our first task is to make more explicit the cohomology isomorphism

Hr(U)∼=Hr
dR(X),

where U is a good covering of X. The Čech and de Rham cohomologies are here
taken with coefficients in a real vector space of finite dimension V.

Let us denote by Ωr(X) the vector space of differential forms on X with values
in V and let (αi) be a partition of unity associated to the covering U . We define a
morphism27

fr : Cr(U ;V ) → Ωr(X)

in the following way. For r = 0, we send a cochain (ci) to the C∞ function

x �−→
∑

αi(x) · ci,

which we simply write
∑
i

αi · ci. For general r > 0, we send the r-cochain (ci0i1...ir )

to the sum ∑
(i0,...,ir)

αi0·dαi1 · ...dαir · ci0i1...ir .

We have to check that this correspondence is compatible with the coboundaries,
i.e. that

fr+1(∂c) = d(fr(c)).

27With V provided with the discrete topology.
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The cochain ∂c, which we call v, is defined by the usual formula

vi0i1...ir+1
=

r+1∑
m=0

(−1)mci0...îm...ir+1
.

Therefore,

fr+1(v) =
∑

(i0,...,ir+1)

αi0·dαi1 · ...dαir+1
·
r+1∑
m=0

(−1)mci0...îm...ir+1
.

In the previous sum, the terms corresponding to an index m > 0 are reduced to
0 since the sum of the corresponding dα is 0. The previous identity may then be
written

fr+1(v) =
∑

(i0,...,ir+1)

αi0·dαi1 · ...dαi+1
· ci1...ir+1

=
∑

(i1,...,ir+1)

dαi1 · ...dαir+1
· ci1...ir+1

,

which is d(fr(c)), if we reindex the components of this sum: notice that the ci1...im
are constant functions.

The maps (fr) define a morphism of complexes which is a quasi-isomorphism
over any intersection of the Ui since the covering U is good. Therefore, by a classical
Mayer-Vietoris argument, they induce an isomorphism between the Čech and de
Rham cohomologies.

We take a step further and now compare the Čech cohomology Hr−1(X : S1)
with Hr

dR(X) via a map

Hr−1(U ;S1) → Hr(U ;V ) ∼= Hr
dR(X).

This is the coboundary map associated to the exact sequence

0 → 2πiZ →iR
e→ S1 → 0,

where e is the exponential function and V the real vector space iR. If λi0i1..ir−1
∈

Zr−1(U ;S1), there is a cochain u = ui0i1..ir−1
such that e(u) = λ. The classical

definition of the coboundary map

Hr−1(U ;S1) → Hr(U ; 2πiZ)

is as follows. We first consider the coboundary of u in Cr(U), which we look as a
cocycle with values in 2πiZ, defined by

ci0i1...ir =

r∑
m=0

(1)mui0...îm...ir
.

According to the previous considerations, the associated de Rham class with values
in iR = V is defined by

ω =
∑

(i0,...,ir)

αi0·dαi1 · ...dαir · ci0...ir

=
∑

(i0,...,ir)

αi0·dαi1 · ...dαir·

r∑
m=0

(1)mui0...îm...ir
.
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Using the same argument as above, this sum may be written

ω =
∑

(i1,...,ir)

dαi1 · ...dαir · ui1...ir .

We notice that ω is a closed form since ci0i1...ir ∈ 2πiZ. On the other hand, it is
cohomologous up to the sign (−1)r to the form

θ =
∑

(i1,...,ir)

αi1 · dαi2 ...dαir · dui1i2...ir .

Using again the fact that ci0i1...ir ∈ 2iπZ, we see that θ is equal on Ui0 to the
following differential form∑

(i1,...,ir)

αi1dαi2 ...dαir · dui1i2...ir =
∑

(i2,...,ir)

dαi2 ...dαir · dui0i2...ir .

We observe that dui0i2...ir is the logarithmic differential of λi0i2...ir . Therefore, if
we change the indices and r to r + 1, we get the following theorem.

Theorem 8.1. Let λi0...ir be an r-cocycle on a good covering U with values in
S1 and let (αi) be a partition of unity associated to U . Then the closed de Rham
form ω of degree r + 1 with values in V = iR which is associated to λ by the
coboundary map28

Hr(U ;S1) → Hr+1(U ; 2πiZ) → Hr+1(U ; iR)
is given by the following formula on each open set Ui0 :

ω = (−1)r+1
∑

(i1,...,ir)

dαi1...dαr · (λi0...ir )
−1 · dλi0...ir .

Example 8.2. If we choose r = 2 as in our paper, those formulas may be
simply written as

ω =
∑
(i,j,k)

dαi · dαj · dαk · cijk

which is cohomologous to

−
∑

(i,j,k)

αi · dαj · dαk · dcijk.

On the other hand, for a fixed l, if we consider the sequence (l, i, j, k), and the fact
that

cijk − cljk + clik − clij ∈ 2iπZ,

we may replace dcijk by dcljk − dclik + dclij . Therefore, the restriction of ω to Ul

may be written as

ω = −
∑

(i,j,k)

αi · dαj · dαk · dcljk +
∑

(i,j,k)

αi · dαj · dαk · dclik

−
∑

(i,j,k)

αi · dαj · dαk · dclij .

= −
∑

(i,j,k)

αi · dαj · dαk · dcljk = −
∑
(j,k)

dαj · dαk · dcljk = −
∑
(j,k)

dαj · dαk · λ−1
ijkdλljk,

28Note that R is provided with the discrete topology.



TWISTED BUNDLES AND TWISTED K-THEORY 253

as a differential form on Ul. If we assume the cocycle λ completely normalized, we
find the explicit formula given in Section 7.

8.2. Some key isomorphisms between various definitions of twisted
K-groups. We want to make more explicit the isomorphisms between the various
definitions of twisted K-theory given in Section 4. This is especially relevant to the
proof of the multiplicativity of the Chern character in Section 7.

With the notations of Section 4, the most basic one is probably the following:

K(Kλ)
∼=−→ K1(Lλ/Kλ).

We recall that the first group K(Kλ) is the original definition of Rosenberg [29].
The second group may be interpreted as the Fredholm definition of twisted K-
theory as in [2] (or [15] if λ defines a torsion class in H3(X;Z)). More precisely,
if E is a λ-twisted Hilbert bundle and if F(E) is the space of Fredholm maps in
END(E), the map

F(E) → (Lλ/Kλ)
∗

is a locally trivial fibration with contractible fibres, as we pointed out in Section 4.
Therefore, we have the identifications

Kλ(X) ∼= K(Kλ)
∼= K1(Lλ/Kλ).

Theorem 8.3. Let τ be the generator of K1(L/K) ∼= Z, associated to the Fred-
holm operator given by the shift. Then the cup-product with τ induces an isomor-
phism

ϕ : K(Kλ)
∼=−→ K1(Lλ/Kλ).

Proof. In this statement, we implicitly identify the Hilbert tensor product
H ⊗H with H. If we forget the twisting, there is a well defined ring map

K ⊗ L/K → L/K.

For the same reasons, there is a ring map

Kλ⊗̂L/K →Lλ/Kλ.

When the base space X varies, the cup-product with the element τ induces a mor-
phism between the (twisted) K∗-theories associated to Kλ and Lλ/Kλ respectively
(with a shift for the second one). By a standard Mayer-Vietoris argument and Bott
periodicity, we reduce the theorem to the case when X is contractible, a case which
is obvious. �

Although we don’t really need it in this paper, it might be interesting to define
explicitly the backwards isomorphism:

ψ : K1(Lλ/Kλ)
∼=−→ K(Kλ)

∼= K(Aλ).

Such a map ψ is simply the connecting homomorphism in the Mayer-Vietoris exact
sequence in K-theory associated to the cartesian square

Aλ → Lλ

↓ ↓
Lλ → Bλ/Kλ

.
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In more detail: if α is an invertible element in the ring Lλ/Kλ, we consider the
2× 2 matrix (

α 0
0 α−1

)
.

By the Whitehead lemma (or analytic considerations: see below), this matrix may
be lifted as an invertible 2 × 2 matrix with coefficients in Lλ, say γ. Let ε be the
matrix defining the obvious grading

ε =

(
1 0
0 −1

)
.

Then the couple (ε, γ · ε · γ−1) defines an involution J on M2(Aλ)
∼= Aλ, hence a

finitely generated projective module over Aλ which is simply the image of (J+1)/2.
It is easy to show that the class in K(Aλ) is independent of the choice of the lifting
γ : this is the classical definition of the connecting homomorphism ψ (see e.g. [28]).

Instead of working with invertible elements α, we may as well consider families
of Fredholm maps D mapping to α, which are already in Lλ. Without loss of
generality, we may also assume α unitary which implies that a lifting of α−1 may
be choosen to be the adjoint D∗. We now write the identity(

D 0
0 D∗

)
=

(
0 D

−D∗ 0

)
·
(

0 −1
1 0

)
.

If we define ∇D as

∇D =

(
0 D

−D∗ 0

)

in general, we see that we may choose the element γ above to be exp(π∇D/2) ·∇−1.
Therefore,

γ · ε · γ−1 = exp(π∇D/2) · ∇−1.ε · ∇1 · exp(−π∇D/2)

= − exp(π∇D/2).ε · exp(−π∇D/2).

On the other hand, it is clear that ∇D and ε anticommute. Therefore, the previous
formula may be written as

γ · ε · γ−1 = exp(π∇D).ε.

The couple

J = (ε, exp(π∇D).ε)

defines the required element of K(Aλ). By construction, we see that J also defines
an element of the relative group associated to the augmentation map

(Kλ)
+ → C.

Here (Kλ)
+ is the ring Kλ with a unit added and the relative K-group is the usual

one:

K(Kλ) = Ker(K((Kλ)
+) → K(C) = Z)

which is canonically isomorphic to K(Aλ).
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8.3. Some functorial properties of twisted K-theory and of the Chern
character. In this paper, we have indexed twisted K-theory by completely nor-
malized 2-cocycles λ with values in S1. Of course, such a cocycle determines a
cohomology class [λ] in H2(X;S1) ∼= H3(X; 2πiZ) as we have seen in 8.1 and we
would like to index twisted K-theory by elements of this smaller group. There is
an obstruction to doing so, however, as we shall see. If we apply Proposition 1.2
to C-bundles (if [λ] is a torsion class) or to A-bundles in general, we see that if
μ is cohomologous to λ, the equivalence Θ in this last proposition, between the
categories of λ-twisted bundles and μ-twisted bundles, depends on the choice of a
cochain η such that

μkji = λkji · ηji · η−1
ki · ηkj .

If η′ is another choice, ηji.η
′−1
ji is a one-dimensional cocycle with values in S1.

Since a one-dimensional coboundary does not change λ, we see that the ambiguity
in the definition of the previous category equivalence lies in the cohomology group29

H1(U ;S1) ∼= H2(X; 2πiZ) ∼= H2(X;Z). In particular, the definition of twisted K-
theory with coefficients in H3(X;Z) has a well-defined meaning only if H2(X;Z) =
0.

This remark is also important for the definition of the product

Kλ(X)×Kμ(X) → Kλμ(X)

which is detailed in many ways in Section 5. The Hilbert bundle Eλ, defined at
the beginning of this section, depends on the cocycle λ. It depends on its coho-
mology class [λ] up to a non-canonical isomorphism as we have just seen (except if
H2(X;Z) = 0). Therefore, strictly speaking, we cannot define in a functorial way
a cup-product

K[λ](X)×K[μ](X) → K[λμ](X).

Another remark is the choice of a good covering in order to define twisted K-
theory via twisted bundles. There is also a functorial problem since many choices
are possible. One way to deal with this is to show that the categories of twisted
bundles associated to different coverings give the same twistedK-theory if we choose
two Čech cocycles which are cohomologous. This is again included in the contents
of Proposition 1.2. As we already pointed out, this identification is not canonical,
except if H2(X;Z) = 0.

Let us now turn our attention to the definition of the Chern character. If we
fix the good covering U , our definition depends heavily on the choice of a partition
of unity (αi). If (βi) is another choice, there is a homotopy between them which
is t �−→ (1 − t)αi + tβi. If λ is a completely normalized 2-cocycle with values in
S1, the associated closed differential forms θα and θβ are homotopic and therefore
cohomologous: they define the same class in H3(X; iR). However, it is not com-
pletely obvious that the associated twisted cohomologies Hev

θα
(X) and Hev

θβ
(X) are

isomorphic in a way compatible with the Chern character. One way to deal with
this problem is to consider λ-twisted bundles over X × [0, 1] with the partition of
unity given by (1−t)αi+tβi as above. We then have a commutative diagram where

29We assume the covering good as in 3.3.
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the horizontal arrows are isomorphisms

Kλ(X × {0}) ←− Kλ(X × [0, 1]) −→ Kλ(X × {1})
↓ ↓ ↓

Hev
θα
(X × {0}) ←− Hev

θ (X × [0, 1] −→ Hev
θβ
(X × {1}).

This diagram shows that the Chern character does not depend on the choice of
partition of unity up to canonical isomorphisms given by the horizontal arrows.

We cannot expect the Chern character to be functorial with respect to the
cohomology class of λ in H3(X;Z). However, it is “partially functorial” in the
following sense: if we choose a good refinement V = (Vs) of U = (Ui) as in Section
1, any restriction map of type

Θτ : Kλ(U) → Kμ(V)
(where Vs ⊂ Uτ(s)) is an isomorphism. This isomorphism is not unique and depends
on τ, as was pointed out in the proof of Proposition 1.3. If (βs) is a partition of
unity associated to the covering V and (αi) a partition of unity associated to the
covering U , the functions (αi · βs) define a partition of unity associated to U ∩ V
which is just a reindexing of the covering V . On the other hand, we may also
reindex U in such a way that the functions (αi · βs) define also a partition of unity
of U . Since the twisted cohomology is homotopically invariant, it follows that the
“restriction map”

Hev
λ
(X) → Hev

μ (X)

is also well defined and that the diagram

Kλ(U) → Kμ(V)
↓ ↓

Hev
λ
(X) → Hev

μ (X)

is commutative (with the notation of Theorem 7.2).
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tour will be not only to provide precise answers to these distinct questions but more-
over to explain what is the relation between the corresponding answers.

1. Higher algebraic K-theory

Algebraic K-theory goes back to Grothendieck’s work [20] on the Riemann-
Roch theorem. Given a commutative ring R (or more generally an algebraic vari-
ety), he introduced what is nowadays called the Grothendieck group K0(R) of R.
Later, in the sixties, Bass [2] defined K1(R) as the abelianization of the general
linear group GL(R). These two abelian groups, whose applications range from
arithmetic to surgery of manifolds, are very well understood from a conceptual
and computational point of view; see Weibel’s survey [57]. After Bass’ work, it
became clear that these groups should be part of a whole family of higher algebraic
K-theory groups. After several attempts made by several mathematicians, it was
Quillen who devised an elegant topological construction; see [39]. He introduced
what is nowadays called Quillen’s plus construction (−)+, by which we simplify
the fundamental group of a space without changing its (co-)homology groups. By
applying this construction to the classifying space BGL(R) (where simplification in
this case means abelianization), he defined the higher algebraic K-theory groups as

Kn(R) := πn(BGL(R)+ ×K0(R)) n ≥ 0 .

Since Quillen’s foundational work, higher algebraic K-theory has found extraordi-
nary applications in a wide range of research fields; consult [18]. However, Quillen’s
mechanism for manufacturing these higher algebraic K-theory groups remained
rather mysterious until today. Hence, the following question is of major impor-
tance:

Question A: How to conceptually characterize higher algebraic K-theory ?

2. Noncommutative algebraic geometry

Noncommutative algebraic geometry goes back to Bondal-Kapranov’s work [7,
8] on exceptional collections of coherent sheaves. Since then, Drinfeld, Kaledin,
Kontsevich, Orlov, Van den Bergh, and others, have made important advances; see
[9, 10, 16, 17, 25, 30, 31, 32, 33]. Let X be an algebraic variety. In order to
study it, we can proceed in two distinct directions.

In one direction, we can associate to X several (functorial) invariants like the
Grothendieck group (K0), the higher K-theory groups (K∗), the negative K-theory
groups (IK∗), the cyclic homology groups (HC∗) and all its variants (Hochschild,
periodic, negative, . . .), the topological cyclic homology groups (TC∗), etc. Each
one of these invariants encodes a particular arithmetic/geometric feature of the
algebraic variety X.

In the other direction, we can associate to X its derived category Dperf(X) of
perfect complexes of OX -modules. The importance of this triangulated category
relies on the fact that any correspondence between X and X ′ which induces an
equivalence between the derived categories Dperf(X) and Dperf(X

′) also induces an
isomorphism on all the above invariants. Hence, it is natural to ask if the above
invariants of X can be recovered directly from Dperf(X). This can be done in very
particular cases (e.g. the Grothendieck group) but not in full generality. The
reason is that when we pass from X to Dperf(X) we lose too much information
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concerning X. We should therefore “stop somewhere in the middle”. In order to
formalize this insight, Bondal and Kapranov introduced the following notion.

Definition 2.1. (Bondal-Kapranov [7, 8]) A differential graded (=dg) category
A, over a (fixed) base commutative ring k, is a category enriched over complexes of
k-modules (morphism sets A(x, y) are complexes) in such a way that composition
fulfills the Leibniz rule: d(f ◦g) = d(f)◦g+(−1)deg(f)f ◦d(g). A differential graded
(=dg) functor is a functor which preserves the differential graded structure; consult
Keller’s ICM adress [28] for further details. The category of (small) dg categories
(over k) is denoted by dgcat.

Associated to the algebraic variety X there is a natural dg category Ddg
perf(X)

which enhances1 the derived category Dperf(X), i.e. the latter category is obtained
from the former one by applying the 0th-cohomology group functor at each complex

of morphisms. By considering Ddg
perf(X) instead of Dperf(X) we solve many of the

(technical) problems inherent to triangulated categories like the non-functoriality
of the cone. More importantly, we are able to recover all the above invariants of X

directly out of Ddg
perf(X). This circle of ideas is depicted in the following diagram:

X
�

��

�

��

� Invariants �� K0(X),K∗(X), IK∗(X), HC∗(X), . . . , TC∗(X), . . .

Ddg
perf(X)
�

H0

��

�

��

Dperf(X)

��

� � 	 
 � � 
�
�
�
�
�
�

.

From the point of view of the invariants, there is absolutely no difference between

the algebraic variety X and the dg category Ddg
perf(X). This is the main idea behind

noncommutative algebraic geometry: given a dg category, we should consider it as
being the dg derived category of perfect complexes over a hypothetical noncommu-
tative space and try to do “algebraic geometry” directly on it. Citing Drinfeld [17],
noncommutative algebraic geometry can be defined as: “the study of dg categories
and their homological invariants ”.

Example 2.2. (Beilinson [3]) Suppose that X is the n dimensional projective
space Pn. Then, there is an equivalence of dg categories

Ddg
perf(P

n) � Ddg
perf(B) ,

where B is the algebra End(O(0) ⊕ O(1) ⊕ · · · ⊕ O(n))op. Note that the abelian
category of quasi-coherent sheaves on Pn is far from being the category of modules
over an algebra. Beilinson’s remarkable result show us that this situation changes
radically when we pass to the derived setting. Intuitively speaking, the n dimen-
sional projective space is an “affine object” in noncommutative algebraic geometry
since it is described by a single (noncommutative) algebra.

In the commutative world, Grothendieck envisioned a theory of motives as
a gateway between algebraic geometry and the assortment of the classical Weil

1Consult Lunts-Orlov [35] for the uniqueness of this enhancement.
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cohomology theories (de Rham, Betti, l-adic, crystalline, and others); consult the
monograph [23].

In the noncommutative world we can envision a similiar picture. The role of
the algebraic varieties and of the classical Weil cohomologies is played, respectively,
by the dg categories and the numerous (functorial) invariants2

(2.3) dgcat
K∗, IK∗, HC∗,...,TC∗,... �� Ab

The Grothendieckian idea of motives consists then on combing this skein of invari-
ants in order to isolate the truly fundamental one:

Ab

Ab

dgcat
U ��

K∗ ��
IK∗

��

HC∗

		

TC∗

		

Mot





��

��

��

Ab

Ab

The gateway category Mot, through which all invariants factor uniquely, should
then be called the category of noncommutative motives and the functor U the
universal invariant. Note that, in this yoga, the different invariants are simply
different representations of the motivic category Mot. In particular, any result
which holds in Mot holds everywhere. This beautiful circle of ideas leads us to the
following down-to-earth question:

Question B: Is there a well-defined category of noncommutative motives ?

3. Derived Morita equivalences

Note first that all the classical constructions which can be performed with
k-algebras can also be performed with dg categories; consult [28]. A dg functor
F : A → B is called a derived Morita equivalence if the induced restriction of scalars
functor D(B) ∼→ D(A) is an equivalence of (triangulated) categories. Thanks to the
work of Blumberg-Mandell, Keller, Schlichting, and Thomason-Trobaugh, all the
invariants (2.3) invert derived Morita equivalences; see [6, 29, 40, 53]. Intuitively
speaking, although defined at the “dg level”, these invariants only depend on the
underlying derived category. Hence, it is crucial to understand dg categories up to
derived Morita equivalence. The following result is central in this direction.

Theorem 3.1. ([42, 48]) The category dgcat carries a (cofibrantly generated)
Quillen model structure3 whose weak equivalences are the derived Morita equiva-
lences.

The homotopy category obtained is denoted by Hmo. Theorem 3.1 allows us
to study the purely algebraic setting of dg categories using ideas, techniques, and
insights of topological nature. Here are some examples:

2In order to simplify the (graphical) exposition, we have decided to forget the k-linear struc-
ture of the cyclic homology groups HC∗.

3An analogous model structure in the setting of spectral categories was developed in [45].
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Bondal-Kapranov’s pre-triangulated envelope. Using “one-sided twisted
complexes”, Bondal and Kapranov constructed in [7] a pre-triangulated envelope
Apre-tr of every dg category A. Intuitively speaking, their construction consists in
formally adding to A (de-)suspensions, cones, cones of morphisms between cones,
etc. Thanks to Theorem 3.1, this involved contribution can be conceptually char-
acterized as being simply a functorial fibrant resolution functor; see [42].

Drinfeld’s DG quotient. The most useful operation which can be performed
on triangulated categories is the passage to a Verdier quotient. Recently, through
a very elegant construction (reminiscent of the Dwyer-Kan localization), Drinfeld
[16] lifted this operation to the world of dg categories. Although very elegant, this
construction didn’t seem to satisfy any obvious universal property. Theorem 3.1
allowed us to complete this aspect of Drinfeld’s work by characterizing the dg
quotient as a homotopy cofiber construction; see [44].

Kontsevich’s saturated dg categories. Kontsevich understood precisely
how to express smoothness and properness in the noncommutative world.

Definition 3.2. (Kontsevich [30, 31]) A dg category A is called:
• smooth if it is perfect as a bimodule over itself;
• proper if its complexes of k-modules A(x, y) are perfect;
• saturated if it is smooth and proper.

Definition 3.2 is justified by the following fact: given a quasi-compact and

quasi-separated scheme X, the dg category Ddg
perf(X) is smooth and proper if and

only if X is smooth and proper in the sense of classical algebraic geometry. Other
examples of saturated dg categories appear in the study of Deligne-Mumford stacks,
quantum projective varieties, Landau-Ginzburg models, etc.

Now, note that the tensor product of k-algebras extends naturally to dg cat-
egories. By deriving it (with respect to derived Morita equivalences), we obtain
then a symmetric monoidal structure on Hmo. Making use of it, the saturated
dg categories can be conceptually characterized as being precisely the dualizable
(or rigid) objects in the symmetric monoidal category Hmo; see [12]. As in any
symmetric monoidal category, we can define the Euler characteristic of a dualizable
object. In topology, for instance, the Euler characteristic of a finite CW -complex
is the alternating sum of the number of cells. In Hmo, we have the following result.

Proposition 3.3. (Cisinski & Tabuada [12]) Let A be a saturated dg category.
Then its Euler characteristic χ(A) in Hmo is the Hochschild homology4 complex
HH(A) of A.

Proposition 3.3 illustrates the Grothendieckian idea of combing the skein of
invariants (2.3) “as far as possible” in order to understand, directly on Mot, their
conceptual nature. By simply inverting the class of derived Morita equivalences,
Hochschild homology can be conceptually understood as the Euler characteristic.

4More generally, the trace of an endomorphisms is given by Hochschild homology with
coefficients.



264 GONÇALO TABUADA

4. Noncommutative pure motives

In order to answer Question B we need to start by identifying the properties
common to all the invariants (2.3). In the previous section we have already observed
that they are derived Morita invariant, i.e. they send derived Morita equivalences
to isomorphisms. In this section, we identify another common property. An upper
triangular matrix M is given by

M :=

(
A X
0 B

)
,

where A and B are dg categories and X is an A-B-bimodule. The totalization |M |
of M is the dg category whose set of objects is the disjoint union of the sets of
objects of A and B, and whose morphisms are given by: A(x, y) if x, y ∈ A; B(x, y)
if x, y ∈ B; X(x, y) if x ∈ A and y ∈ B; 0 if x ∈ B and y ∈ A. Composition
is induced by the composition operation on A and B, and by the A-B-bimodule
structure of X. Note that we have two natural inclusion dg functors ιA : A → |M |
and ιB : B → |M |.

Definition 4.1. Let E : dgcat → A be a functor with values in an additive
category. We say that E is an additive invariant of dg categories if it is derived
Morita invariant and satisfies the following condition: for every upper triangular
matrix M , the inclusion dg functors ιA and ιB induce an isomorphism

E(A)⊕ E(B) ∼−→ E(|M |) .
It follows from the work of Blumberg-Mandell, Keller, Schlichting, and

Thomason-Trobaugh, that all the invariants (2.3) satisfy additivity, and hence are
additive invariants of dg categories; see [6, 29, 40, 53]. The universal additive
invariant of dg categories was constructed in [42]. It can be described5 as follows: let
Hmo0 be the category whose objects are the dg categories and whose morphisms are
given by HomHmo0(A,B) := K0rep(A,B), where rep(A,B) ⊂ D(Aop⊗LB) is the full
triangulated subcategory of those A-B-bimodules X such that X(a,−) ∈ Dperf(B)
for every object a ∈ A. Composition is induced by the tensor product of bimodules.
Note that we have a natural functor

UA : dgcat −→ Hmo0

which is the identity on objects and which maps a dg functor to the class (in the
Grothendieck group) of the naturally associated bimodule. The category Hmo0 is
additive and the functor UA is additive in the sense of Definition 4.1. Moreover, it
is characterized by the following universal property.

Theorem 4.2. ([42]) Given an additive category A, we have an induced equiv-
alence of categories

(UA)
∗ : Funadd(Hmo0,A)

∼−→ Funadditivity(dgcat,A) ,

where the left hand side denotes the category of additive functors and the right hand
side the category of additive invariants in the sense of Definition 4.1.

The additive category Hmo0 (and UA) is our first answer to Question B. A
second answer will be described in Section 5. Note that by Theorem 4.2, all the
invariants (2.3) factor uniquely through Hmo0. This motivic category has enabled
several (tangential) applications. Here are two examples:

5A similar construction in the setting of spectral categories was developed in [43].
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Example 4.3. (Chern characters) The Chern character maps are one of the
most important working tools in mathematics. Although they admit numerous
different constructions, they were not fully understood at the conceptual level.
Making use of the additive category Hmo0 and of Theorem 4.2 we have bridged this
gap by characterizing the Chern character maps, from the Grothendieck group to
the (negative) cyclic homology groups, in terms of simple universal properties; see
[47].

Example 4.4. (Fundamental theorem) The fundamental theorems in homo-
topy algebraicK-theory and periodic cyclic homology, proved respectively byWeibel
[56] and Kassel [26], are of major importance. Their proofs are not only very dif-
ferent but also quite involved. Making use of the additive category Hmo0 and of
Theorem 4.2, we have given a simple, unified and conceptual proof of these funda-
mental theorems; see [46].

Noncommutative Chow motives. By restricting himself to saturated dg
categories, which morally are the “noncommutative smooth projective varieties”,
Kontsevich introduced the following category.

Definition 4.5. (Kontsevich [30, 33]; [52]) Let F be a field of coefficients.
The category NChowF of noncommutative Chow motives (over the base ring k and
with coefficients in F ) is defined as follows: first consider the F -linearization Hmo0;F
of the additive category Hmo0. Then, pass to its idempotent completion Hmo�0;F .

Finally, take the idempotent complete full subcategory of Hmo�0;F generated by the
saturated dg categories.

The precise relation between the classical category of Chow motives and the
category of noncommutative Chow motives is the following: recall that the cate-
gory ChowQ of Chow motives (with rational coefficients) is Q-linear, additive and
symmetric monoidal. Moreover, it is endowed with an important ⊗-invertible ob-
ject, namely the Tate motive Q(1). The functor − ⊗ Q(1) is an automorphism
of ChowQ and so we can consider the associated orbit category Chow(k)Q/−⊗Q(1);
consult [52] for details. Informally speaking, Chow motives which differ from a
Tate twist become isomorphic in the orbit category.

Theorem 4.6. (Kontsevich [30, 33]; [52]) There exists a fully-faithful, Q-
linear, additive, and symmetric monoidal functor R making the diagram

(4.7) SmProjop
Ddg

perf(−)
��

M ��

dgcat

UA��
ChowQ

π
��

Hmo0

(−)�
Q��

ChowQ/−⊗Q(1)
R

�� NChowQ ⊂ Hmo�0;Q

commute (up to a natural isomorphism).

Intuitively speaking, Theorem 4.6 formalizes the conceptual idea that the com-
mutative world can be embedded into the noncommutative world after factorizing
out by the action of the Tate motive. The above diagram (4.7) opens new horizons
and opportunities of research by enabling the interchange of results, techniques,
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ideas, and insights between the commutative and the noncommutative world. This
yoga was developed in [52] in what regards Schur and Kimura finiteness, motivic
measures, and motivic zeta functions.

Noncommutative numerical motives. In order to formalize and solve
“counting problems”, such as counting the number of common points to two planar
curves in general position, the classical category of Chow motives is not appropriate
as it makes use of a very refined notion of equivalence. Motivated by these “counting
problems”, Grothendieck developed in the sixties the category NumF of numerical
motives; see [23]. Its noncommutative analogue can be described as follows: let A
and B be two saturated dg categories and X = [

∑
i aiXi] ∈ HomNChowF (A,B) and

Y = [
∑

j bjYj ] ∈ HomNChowF (B,A) two noncommutative correspondences. Their
intersection number is given by the formula

(4.8) 〈X · Y 〉 :=
∑
i,j,n

(−1)n ai ·bj ·rkHHn(A;Xi ⊗L

B Yj) ∈ F ,

where rkHHn(A;Xi⊗BYj) denotes the rank of the nth Hochschild homology group
of A with coefficients in the A-A-bimodule Xi ⊗L

B Yj . A noncommutative corre-
spondence X is numerically equivalent to zero if for every noncommutative cor-
respondence Y the intersection number 〈X · Y 〉 is zero. As proved in [36], these
correspondences form a ⊗-ideal of NChow(k)F , which we denote by N .

Definition 4.9. (Marcolli & Tabuada [36]) The category NNumF of noncom-
mutative numerical motives (over the base ring k and with coefficients in F ) is the
idempotent completion of the quotient category NChowF /N .

The relation between Chow motives and noncommutative motives described in
diagram (4.7) admits the following numerical analogue.

Theorem 4.10. (Marcolli & Tabuada [36]) There exists a fully faithful, Q-
linear, additive, and symmetric monoidal functor RN making the diagram

ChowQ

π
������

����
����

NumQ

π
��

ChowQ /−⊗Q(1)

����
����

�

R �� NChowQ

�����
���

��

NumQ /−⊗Q(1)
RN

�� NNumQ

commute (up to natural isomorphism).

Intuitively speaking, Theorem 4.10 formalizes the conceptual idea that
Hochschild homology is the correct way to express “counting” in the noncommuta-
tive world. In the commutative world, Grothendieck conjectured that the category
of numerical motives NumF was abelian semi-simple. Jannsen [24], thirty years
latter, proved this conjecture without the use of any of the standard conjectures.
Recently, we gave a further step forward by proving that Grothendieck’s conjecture
holds more broadly in the noncommutative world.

Theorem 4.11. (Marcolli & Tabuada [36]) Assume one of the following two
conditions:
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(i) The base ring k is local (or more generally that K0(k) = Z) and F is a k-
algebra; a large class of examples is given by taking k = Z and F an arbitrary
field.

(ii) The base ring k is a field extension of F ; a large class of examples is given by
taking F = Q and k a field of characteristic zero.

Then the category NNumF is abelian semi-simple. Moreover, if J is a ⊗-ideal in
NChowF for which the idempotent completion of the quotient category NChowF /J
is abelian semi-simple, then J agrees with N .

Roughly speaking, Theorem 4.11 shows that the unique way to obtain an
abelian semi-simple category out of NChowF is through the use of the above “count-
ing formula” (4.8), defined in terms of Hochschild homology. Among other applica-
tions, Theorem 4.11 allowed us to obtain an alternative proof of Jannsen’s result;
see [36].

Kontsevich’s noncommutative numerical motives. Making use of a well-
behaved bilinear form on the Grothendieck group of saturated dg categories, Kont-
sevich introduced in [30] a category NCNumF of noncommutative numerical mo-
tives. Via duality arguments, the authors proved the following agreement result.

Theorem 4.12. (Marcolli & Tabuada [37]) The categories NCNumF and NNumF

are equivalent.

By combining Theorem 4.12 with Theorem 4.11, we then conclude that NCNumF

is abelian semi-simple. Kontsevich conjectured this latter result in the particular
case where F = Q and k is of characteristic zero. We observe that Kontsevich’s
beautiful insight not only holds much more generally, but moreover it does not
require the assumption of any (polarization) conjecture.

5. Noncommutative mixed motives

Up to now, we have been considering invariants with values in additive cat-
egories. From now on we will consider “richer invariants”, taking values not in
additive categories but in “highly structured” triangulated categories. In order to
make this precise we will use the language of Grothendieck derivators, a formalism
which allows us to state and prove precise universal properties; the reader who is
unfamiliar with this language is invited to consult Appendix A at this point. Recall

from Drinfeld [16] that a sequence of dg functors A I→ B P→ C is called exact if the
induced sequence of derived categories D(A) → D(B) → D(C) is exact in the sense
of Verdier. For example, if X is quasi-compact and quasi-separated scheme, U ⊂ X
a quasi-compact open subscheme and Z := X\U the closed complement, then the
sequence of dg functors

Ddg
perf(X)Z −→ Ddg

perf(X) −→ Ddg
perf(U)

is exact; see Thomason-Trobaugh [53]. An exact sequence of dg functors is called
split-exact if there exist dg functors R : B → A and S : C → B, right adjoints to
I and P , respectively, such that R ◦ I � Id and P ◦ S � Id via the adjunction
morphisms; consult [41] for details.

Definition 5.1. Let E : HO(dgcat) → D be a filtered homotopy colimit pre-
serving morphism of derivators, from the derivator associated to the Quillen model
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structure of Theorem 3.1, to a strong triangulated derivator. We say that E is a
localizing invariant if it sends exact sequences to distinguished triangles

A −→ B −→ C �→ E(A) −→ E(B) −→ E(C) −→ E(A)[1]

in the base category D(e) of D. We say that E is an additive invariant if it sends
split exact sequences to direct sums

A �� B ����
C

�� �→ E(A)⊕ E(C) ∼→ E(B) .
Clearly, every localizing invariant is additive. Here are some classical examples.

Example 5.2. (Connective K-theory) As explained in [41], connective K-
theory gives rise to an additive invariant

K : HO(dgcat) −→ HO(Spt)

with values in the triangulated derivator associated to the (stable) Quillen model
category of spectra. Quillen’s higher K-theory groups K∗ can then be obtained
from this spectrum by taking stable homotopy groups. This invariant, although
additive, is not localizing. The following example corrects this default.

Example 5.3. (Nonconnective K-theory) As explained in [41], nonconnective
K-theory gives rise to a localizing invariant

IK : HO(dgcat) −→ HO(Spt) .

As in the previous example, Bass’ negative algebraic K-theory groups IK∗ can be
obtained from this spectrum by taking (negative) stable homotopy groups.

Example 5.4. (Mixed complex) Following Kassel [26], let Λ be the dg algebra
k[ε]/ε2 where ε is of degree −1 and d(ε) = 0. Under this notation, amixed complex is
simply a right dg Λ-module. As explained in [41], the mixed complex construction
gives rise to a localizing invariant

C : HO(dgcat) −→ HO(Λ-Mod)

with values in the triangulated derivator associated to the (stable) Quillen model
category of right dg Λ-modules. Cyclic homology and all its variants (Hochschild,
periodic, negative, . . .) can be obtained from this mixed complex construction by
simple procedures; see [26].

Example 5.5. (Topological cyclic homology) As explained by Blumberg and
Mandell in [6] (see also [50]), topological cyclic homology gives rise to a localizing
invariant

TC : HO(dgcat) −→ HO(Spt) .

The topological cyclic homology groups TC∗ can be obtained from this spectrum
by taking stable homotopy groups.

In order to simultaneously study all the above classical examples, the universal
additive and localizing invariants

Uadd
dg : HO(dgcat) −→ Motadddg U loc

dg : HO(dgcat) −→ Motlocdg

were constructed6 in [41]. They are characterized (in the 2-category of Grothendieck
derivators) by the following universal property.

6A similar approach in the setting of ∞-categories was developed by Blumberg, Gepner and
the author in [4]. Besides algebraic and geometric examples, the authors also studied topological
examples like A-theory.
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Theorem 5.6. ([41]) Given a strong triangulated derivator D, we have induced
equivalences of categories

(Uadd
dg )∗ : Hom!(Motadddg ,D)

∼−→ Homadd(HO(dgcat),D)

(U loc
dg )

∗ : Hom!(Motlocdg ,D)
∼−→ Homloc(HO(dgcat),D) ,

where the right-hand sides denote, respectively, the categories of additive and local-
izing invariants.

Remark 5.7. (Quillen model) The additive and the localizing motivator admit
natural Quillen models given in terms of a Bousfield localization of presheaves of
(symmetric) spectra; consult [41] for details.

Because of these universal properties, Motadddg is called the additive motivator,

Motlocdg the localizing motivator, Uadd
dg the universal additive invariant, U loc

dg the uni-

versal localizing invariant, Motadddg (e) the triangulated category of noncommutative

additive motives, and Motlocdg (e) the triangulated category of noncommutative local-
izing motives. Note that since localization implies additivity, we have a well-defined
(homotopy colimit preserving) morphism of derivators Motadddg → Motlocdg . The tri-

angulated category Motadddg (e) (and Motlocdg (e)) is our second answer to Question
B. Note that by Theorem 5.6, all the invariants of Examples 5.2-5.5 factor uniquely
through Motadddg (e). Since the composed functor

dgcat −→ Hmo
Uadd
dg (e)
−→ Motadddg (e)

is an additive invariant of dg categories in the sense of Definition 4.1, we obtain by
Theorem 4.2 an induced additive functor Hmo0 → Motadddg (e), which turns out to be
fully faithful. Intuitively speaking, our second answer to Question B contains the
first one. In other words, the world of noncommutative pure motives is contained
in the world of noncommutative mixed motives. As we will see in the next section,
the latter world is much richer than the former one.

In Example 2.2, we observed that the dg category Ddg
perf(P

n) is derived Morita

equivalent to the algebra End(O(0) ⊕ O(1) ⊕ · · · ⊕ O(n))op. By passing to the
triangulated category of noncommutative additive motives, we obtain the following
splitting:

Uadd
dg (Ddg

perf(P
n)) � Uadd

dg (k)⊕ · · · ⊕ Uadd
dg (k)︸ ︷︷ ︸

(n+1)-copies

.

The reason behind this phenomenon is a semi-orthogonal decomposition of the
triangulated category Dperf(X). Intuitively speaking, the noncommutative additive
motive of the nth projective space consists simply of n+ 1 “points”.

The motivic category Motadddg (e) has enabled several (tangential) applications,
Here is one illustrative example:

Example 5.8. (Farrell-Jones isomorphism conjectures) The Farrell-Jones iso-
morphism conjectures are important driving forces in current mathematical re-
search and imply well-known conjectures due to Bass, Borel, Kaplansky, Novikov;
see Lück-Reich’s survey in [18]. Given a group G, they predict the value of alge-
braic K- and L-theory of the group ring k[G] in terms of its values on the virtually
cyclic subgroups of G. In addition, the literature contains many variations on this
theme, obtained by replacing the K- and L-theory functors by other functors like
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Hochschild homology, topological cyclic homology, etc. During the last few decades
each one of these isomorphism conjectures has been proved for large classes of
groups using a variety of different methods. Making use of Theorem 5.6, Balmer
and the author organized this exuberant herd of conjectures by explicitly describing
the fundamental isomorphism conjecture; see [1]. It turns out that this fundamental
conjecture, which implies all the existing isomorphism conjectures on the market,
can be described solely in terms of algebraic K-theory. More precisely, it is a simple
“coefficient variant” of the classical Farrell-Jones conjecture in algebraic K-theory.

6. Co-representability

As in any triangulated derivator, the additive and localizing motivators are
canonically enriched over spectra. Let us denote by RHom(−,−) their spectra
of morphisms; see Appendix A. Connective algebraic K-theory is an example of
an additive invariant while nonconnective algebraic K-theory is an example of a
localizing invariant. Therefore, by Theorem 5.6, they descend to the additive and
localizing motivator, respectively. The following result show us that they become
co-representable by the noncommutative motive associated to the base ring.

Theorem 6.1. ([41]; Cisinski & Tab. [11]) Given a dg category A, we have
natural equivalences of spectra

RHom(Uadd
dg (k),Uadd

dg (A)) � K(A) RHom(U loc
dg (k),U loc

dg (A)) � IK(A) .

In the triangulated categories of noncommutative motives, we have natural isomor-
phisms of abelian groups

Hom(Uadd
dg (k),Uadd

dg (A)[−n]) � Kn(A) n ≥ 0

Hom(U loc
dg (k),U loc

dg (A)[−n]) � IKn(A) n ∈ Z .

Example 6.2. (Schemes) By taking A = Ddg
perf(X) in Theorem 6.1, with X a

quasi-compact and quasi-separated scheme, we recover the connective K(X) and
nonconnective IK(X) K-theory spectrum of X.

Remark 6.3. (Bivariant K-theory) Theorem 6.1 is in fact richer. In what con-
cerns the additive motivator, the base ring k can be replaced by any homotopically
finitely presented dg category B (the homotopical version of the classical notion of
finite presentation) andK(A) by the bivariantK-theory of B-A-bimodules. In what
concerns the localizing motivator, the base ring k can be replaced by any saturated
dg category B and IK(A) by the spectrum IK(Bop ⊗A); consult [11, 12, 41].

Remark 6.4. (Bivariant cyclic homology) Classical theories like bivariant cyclic
cohomology (and the associated Connes’ bilinear pairings) can also be expressed as
morphism sets in the category of noncommutative motives; see [51].

Theorem 6.1 is our answer toQuestion A. Note that while the right-hand sides
are, respectively, connective and nonconnective algebraic K-theory, the left-hand
sides are defined solely in terms of precise universal properties: algebraic K-theory
is never used (or even mentioned) in their construction. Hence, the equivalences
of Theorem 6.1 provide us with a conceptual characterization of higher algebraic
K-theory. To the best of the author’s knowledge, this is the first conceptual char-
acterization of algebraic K-theory since Quillen’s foundational work. We can even
take these equivalences as the very definition of higher algebraic K-theory. The
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precise relation between the answers to Questions A and B is by now clear.
Intuitively speaking, connective (resp. nonconnective) algebraic K-theory is the
additive (resp. localizing) invariant co-represented by the noncommutative motive
associated to the base ring, which as explained in the next section is simply the
⊗-unit object.

7. Symmetric monoidal structure

The tensor product of k-algebras extends naturally to dg categories, giving rise
to a symmetric monoidal structure on HO(dgcat). The ⊗-unit is the base ring k
(considered as a dg category). Making use of a derived version of Day’s convolution
product, the authors proved the following result.

Theorem 7.1. (Cisinski & Tabuada [12]) The additive and localizing motiva-
tors carry a canonical symmetric monoidal structure making the universal additive
and localizing invariants symmetric monoidal. Moreover, these symmetric monoidal
structures preserve homotopy colimits in each variable and are characterized by the
following universal property: given any strong triangulated derivator D, endowed
with a symmetric monoidal structure, we have induced equivalence of categories:

(Uadd
dg )∗ : Hom⊗

! (Motadddg ,D)
∼−→ Hom⊗

add(HO(dgcat),D)

(U loc
dg )

∗ : Hom⊗
! (Motlocdg ,D)

∼−→ Hom⊗
loc(HO(dgcat),D) .

Kontsevich’s noncommutative mixed motives. In [30, 33], Kontsevich
introduced a category KMM of noncommutative mixed motives (over the base ring
k). Roughly speaking, KMM is obtained by taking a formal idempotent comple-
tion of the triangulated envelope of the category of saturated dg categories (with
bivariant algebraic K-theory spectra as morphism sets). Making use Theorem 7.1,
the category KMM can be “realized” inside the triangulated category of noncom-
mutative motives.

Proposition 7.2. (Cisinski & Tabuada [12]) There is a natural fully faithful
embedding (enriched over spectra) of Kontsevich’s category KMM of noncommuta-

tive mixed motives into the triangulated category Motlocdg (e) of noncommutative lo-
calizing motives. The essential image is the thick triangulated subcategory spanned
by the noncommutative motives of saturated dg categories.

Remark 7.3. (Relation with Voevodsky’s motives) In the same vein as The-
orem 4.6, Voevodsky’s triangulated category DM of motives [54] relates to (an
A1-homotopy variant of) Kontsevich’s category KMM of noncommutative mixed
motives. The author and Cisinski are currently in the process of writing up this
result.

Products in algebraic K-theory. Let A and B be two dg categories. On
one hand, following Waldhausen [55], we have a classical algebraic K-theory pairing

K(A) ∧K(B) −→ K(A⊗ B) .(7.4)

On the other hand, by combining the co-representability Theorem 6.1 with Theo-
rem 7.1, we obtain another well-defined algebraic K-theory pairing

K(A) ∧K(B) −→ K(A⊗ B) .(7.5)

Theorem 7.6. ([49]) The pairings (7.4) and (7.5) agree up to homotopy; a
similar result holds for nonconnective K-theory.
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Example 7.7. (Commutative algebras) Let A = B = A, where A is a com-
mutative k-algebra. Then, by composing the pairing (7.5) with the multiplication
map

K(A⊗A) � RHom(Uadd
dg (k),Uadd

dg (A⊗A)) −→ RHom(Uadd
dg (k),Uadd

dg (A)) � K(A)

we recover inside Motadddg the algebraic K-theory pairing on K(A) constructed orig-
inally by Waldhausen. In particular, we recover the (graded commutative) multi-
plicative structure on K∗(A) constructed originally by Loday [34].

Example 7.8. (Schemes) When A = B = Ddg
perf(X), with X a quasi-compact

and quasi-separated k-scheme, an argument similar to the one of the above example
allows us to recover inside Motadddg the algebraic K-theory pairing on X constructed
originally by Thomason-Trobaugh [53].

Theorem 7.6 (and Examples 7.7-7.8) offers an elegant conceptual characteriza-
tion of the algebraic K-theory products. Intuitively speaking, while Theorem 6.1
shows us that connective algebraicK-theory is the additive invariant co-represented
by the ⊗-unit of Motadddg , Theorem 7.6 shows us that the classical algebraic K-theory
products are simply the operations naturally induced by the symmetric monoidal
structure on Motadddg .

8. Higher Chern characters

Higher algebraic K-theory is a very powerful and subtle invariant whose calcu-
lation is often out of reach. In order to capture some of its information, Connes-
Karoubi, Dennis, Goodwillie, Hood-Jones, Kassel, McCarthy, and others, con-
structed higher Chern characters towards simpler theories by making use of a variety
of highly involved techniques; see [14, 15, 19, 22, 27, 38].

Making use of the theory of noncommutative motives, these higher Chern char-
acters can be constructed, and conceptually characterized, in a simple and elegant
way; see [11, 12, 41, 49, 50]. Let us now illustrate this in a particular case:
choose your favorite additive invariant E with values in the derivator associated to
spectra. A classical example is given by connective algebraic K-theory. Thanks to
Theorem 5.6, we then obtain (homotopy colimit preserving) morphisms of deriva-
tors

K,E : Motadddg −→ HO(Spt)

such that K ◦ Uadd
dg = K and E ◦ Uadd

dg = E. Recall from Theorem 6.1 that

the functor K is co-represented by the noncommutative additive motive Uadd
dg (k).

Hence, the enriched Yoneda lemma furnishes us a natural equivalence of spectra
RNat(K,E) � E(k), where RNat denotes the spectrum of natural transformations.
Using Theorem 5.6 again, we obtain a natural equivalence RNat(K,E) � E(k). By
passing to the 0th-homotopy group, we conclude that there is a natural bijection
between the natural transformation (up to homotopy) from K to E and π0E(k).
In sum, the theory of noncommutative motives allows us to fully classify in simple
and elegant terms all possible natural transformation from connective K-theory to
any additive invariant; a similar result holds for nonconnective K-theory.

Example 8.1. (Chern character) Let E be the cyclic homology HC additive
functor (promoted to an invariant taking values in spectra). Then, we have the
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following identifications:

Nat(K,HC)
∼→ k � HC0(k) {Chern character} �→ 1 .

Example 8.1 provides a conceptual characterization of the Chern character as
being precisely the unit among all possible natural transformations. A similar
characterization of the cyclotomic trace map, in the setting of ∞-categories, was
recently developed by Blumberg, Gepner and the author in [5].

Appendix A. Grothendieck derivators

The original reference for the theory of derivators is Grothendieck’s manu-
script [21]. See also a short account by Cisinski and Neeman in [13]. Derivators
originate in the problem of higher homotopies in derived categories. For a triangu-
lated category T and for X a small category, it essentially never happens that the
diagram category Fun(X, T ) = T X remains triangulated; it already fails for the
category of arrows in T , that is, for X = (• → •). Now, very often, our triangu-
lated category T appears as the homotopy category T = Ho(M) of some Quillen
model M. In this case, we can consider the category Fun(X,M) of diagrams in
M, whose homotopy category Ho(Fun(X,M)) is often triangulated and provides
a reasonable approximation for Fun(X, T ). More importantly, one can let X vary.
This nebula of categories Ho(Fun(X,M)), indexed by small categories X, and the
various functors and natural transformations between them is what Grothendieck
formalized into the concept of derivator.

A derivator D consists of a strict contravariant 2-functor from the 2-category
of small categories to the 2-category of all categories

D : Catop −→ CAT,

subject to certain conditions; consult [13] for details. The essential example to
keep in mind is the derivator D = HO(M) associated to a (cofibrantly generated)
Quillen model category M and defined for every small category X by

HO(M)(X) = Ho(Fun(Xop,M)) .

We denote by e the 1-point category with one object and one identity morphism.
Heuristically, the category D(e) is the basic “derived” category under consideration
in the derivator D. For instance, if D = HO(M) then D(e) = Ho(M). Let us now
recall two slightly technical properties of derivators.

- A derivator D is called strong if for every finite free category X and every
small category Y , the natural functor D(X × Y ) −→ Fun(Xop,D(Y )) is full
and essentially surjective.

- A derivator D is called triangulated (or stable) if it is pointed and if every
global commutative square in D is cartesian exactly when it is cocartesian. A
source of examples is provided by the derivators HO(M) associated to stable
Quillen model categories M.

Recall from [13] that given any triangulated derivator D and small category X, the
category D(X) has a canonical triangulated structure. In particular, the category
D(e) is triangulated. Recall also from [11] that any triangulated derivator D is
canonically enriched over spectra, i.e. we have a well-defined morphism of derivators

RHom(−,−) : Dop × D −→ HO(Spt) .
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Finally, given derivators D and D′, we denote by Hom(D,D′) the category of all
morphisms of derivators and by Hom !(D,D

′) the category of morphisms of deriva-
tors which preserve arbitrary homotopy colimits.
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