Probability and Statistical Physics

in Two and More Dimensions

L

'k‘«'nj(u_;.iz_'l‘iu',;.gg DI the : _

Clay Mathematics 'InStiiz:ut__ _
| it )

= ¥ d P A eoge

and X1V Brazilian School of Probability

Bu 10S. -‘h razil

July 11-August ,2010

David Ellwood

Charles Newman
Vladas Sidoravicius
American Mathematical Society Wendelin Werner
Clay Mathematics Institute Editors



Probability and Statistical Physics

in Two and More Dimensions






Clay Mathematics Proceedings
Volume 15

Probability and Statistical Physics

in Two and More Dimensions

Proceedings of the

Clay Mathematics Institute Summer School
and XIV Brazilian School of Probability
Buzios, Brazil

July 11-August 7, 2010

David Ellwood
Charles Newman
Vladas Sidoravicius

Wendelin Werner
Editors

2

American Mathematical Society

Clay Mathematics Institute



2000 Mathematics Subject Classification. Primary 60-06, 60G60, 60K35, 60K37, 82B20,
82B27, 82B28, 82B41, 82B43, 82B44.

Cover image courtesy of Jason Miller.

Library of Congress Cataloging-in-Publication Data

Clay Mathematics Institute, Summer School (2010 : Armagao dos Buzios, Brazil)

Probability and statistical physics in two and more dimensions : Clay Mathematics Institute
Summer School and XIV Brazilian School of Probability, Buzios, Brazil, July 11-August 7, 2010 /
David Ellwood. .. [et al.], editors.

p. cm. — (Clay mathematics proceedings ; v. 15)

Includes bibliographical references.

ISBN 978-0-8218-6863-8 (alk. paper)

1. Probabilities—Congresses. 1. Ellwood, D. (David), 1966— II. Brazilian School of Proba-
bility (14th : 2010 : Armacao dos Buzios, Brazil) III. Title.

QC174.85.P76C53 2010
519.2—dc23
2012017930

Copying and reprinting. Material in this book may be reproduced by any means for edu-
cational and scientific purposes without fee or permission with the exception of reproduction by
services that collect fees for delivery of documents and provided that the customary acknowledg-
ment of the source is given. This consent does not extend to other kinds of copying for general
distribution, for advertising or promotional purposes, or for resale. Requests for permission for
commercial use of material should be addressed to the Acquisitions Department, American Math-
ematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can
also be made by e-mail to reprint-permission®@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In
such cases, requests for permission to use or reprint should be addressed directly to the author(s).
(Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of
each article.)

(© 2012 by the Clay Mathematics Institute. All rights reserved.
Published by the American Mathematical Society, Providence, RI,
for the Clay Mathematics Institute, Cambridge, MA.
Printed in the United States of America.

The Clay Mathematics Institute retains all rights
except those granted to the United States Government.
The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ans.org/
Visit the Clay Mathematics Institute home page at http://www.claymath.org/

10987654321 17 16 15 14 13 12



Contents

Preface

Schramm-Loewner Evolution and other Conformally Invariant Objects
VINCENT BEFFARA

Noise Sensitivity and Percolation
CHRISTOPHE GARBAN AND JEFFREY E. STEIF

Scaling Limits of Random Trees and Planar Maps
JEAN-FRANGOIS LE GALL AND GREGORY MIERMONT

Conformal Invariance of Lattice Models
Huco DUMINIL-COPIN AND STANISLAV SMIRNOV

Fractal and Multifractal Properties of Schramm-Loewner Evolution
GREGORY F. LAWLER

Lectures on Random Polymers
FRANCESCO CARAVENNA, FRANK DEN HOLLANDER AND
NicoLAS PETRELIS

Lectures on Self-Avoiding Walks

RoOLAND BAUERSCHMIDT, HUGO DUMINIL-COPIN, JESSE GOODMAN AND

GORDON SLADE

vii

49

155

213

277

319

395






Preface

The Clay Mathematics Institute 2010 Summer School, “Probability and Statis-
tical Physics in Two and More Dimensions” took place in Buzios, Brazil from July
11 to August 7. The final week was a joint event with the XIV Escola Brasileira
da Probabilidade.

In the past ten to fifteen years, various areas of probability theory related to
statistical physics, disordered systems and combinatorics have undergone intensive
development. A number of these developments deal with two-dimensional random
structures at their critical points, and provide new tools and ways of coping with
at least some of the limitations of Conformal Field Theory (CFT) that had been so
successfully developed in the theoretical physics community to understand phase
transitions of two-dimensional systems.

One of the new ideas that emerged in the mathematics community just before
the new millenium is the Stochastic Loewner Evolution (SLE), introduced by Oded
Schramm. This new approach is probabilistic in nature and focuses directly on
non-local structures that characterize a given system, such as cluster boundaries in
Ising, Potts and percolation models, or loops in the O(n) model. At criticality, these
become, in the continuum limit, random curves whose distributions can be uniquely
identified thanks to their conformal invariance and a certain Markovian property.
There is a one-parameter family of SLE’s indexed by a positive real number x, and
they appear to be the only possible candidates for the scaling limits of interfaces of
two-dimensional critical systems that are conformally invariant.

A complementary approach has been to understand and control discrete models
that exhibit discrete holomorphic features. These now include several important
models, such as critical percolation on the triangular lattice, the critical Ising model
and its related random cluster model, loop-erased random walks and double-dimer
models. Some of these results are very recent—or even ongoing—developments. They
make it possible to prove that indeed, these discrete models give rise to Schramm’s
SLE curves in the large-scale limit, and to provide a detailed description of various
aspects of their large-scale behavior.

Different questions correspond to the case where one considers these same mod-
els from statistical physics on certain natural planar graphs that are themselves
random (they are often called “planar maps”) - here conformality is not obvious
to formulate, but the combinatorics of the problems turn out to be more tractable.
This has led to spectacular recent progress, and the proof of several results in this
discrete approach to what is often referred to as “quantum gravity”. It is inter-
esting to note that another approach to quantum gravity builds on the Gaussian
Free Field, which is another conformally invariant continuous model, that has also

vii



viii PREFACE

been recently shown to be directly related to the SLE processes (and SLE(4) in
particular).

We thus believed it was a good time for a school that would provide a complete
picture of the current state of the art in these topics and discuss the relations
between them as well as other possible future directions.

The School offered three long Foundational Courses: Beffara’s course provided
an introduction to Schramm’s SLE processes and their properties. Garban and
Steif’s course gave an account of recent results concerning the scaling limit of per-
colation, and its relation to noise-sensitivity, and the course by Le Gall and Mier-
mont focused on the description of planar maps via tree-like structures and their
large-scale limits.

Five advanced mini-courses covered further topics on this theme: Smirnov fo-
cused on the conformal invariance of critical percolation and of the critical Ising
model, while Kenyon described the conformal invariance of another discrete model,
called the double-dimer model. Sheffield described aspects of the relation between
the Gaussian Free Field and SLE processes, while Lawler focused on finer studies of
the SLE processes themselves. Di Francesco provided an approach to the combina-
torial structures related to integrable systems. Courses by Slade (on self-avoiding
walks) and by den Hollander (on polymers) were presented during the final week,
jointly with the Brazilian School of Probability.

In addition to all these courses, research seminars organized by young partici-
pants and evening lectures by prominent senior researchers took place. Given the
enormous range of subjects covered during the School and the diversity of scientific
topics, it would be pointless to say more about the contents here, but we believe
that the high quality of the lectures is reflected in these pages.

Foundational Courses

e SLE and other conformally invariant objects, Vincent Beffara.

e Noise-sensitivity and percolation, Christophe Garban and Jeffrey Steif.

e Large random planar maps and their scaling limits, Jean-Francois Le Gall
and Grégory Miermont.

Mini-Courses

e Random geometry and Gaussian free field, Scott Sheffield.
Conformal invariance of lattice models, Stanislav Smirnov.
Integrable combinatorics, Philippe Di Francesco.

Fractal and multifractal properties of SLE, Gregory Lawler.
The double dimer model, Rick Kenyon.

Courses joint with XTIV Escola Brasileira da Probabilidade

e Random polymers, Frank den Hollander.
e Self-avoiding walks, Gordon Slade.

A School of such scale could not have happened without the generous support
of numerous sponsors and the efforts of many individuals. Besides CMI funding,
IMPA, CNPq (Brazil) and NSF-PIRE, were major contributors to the budget of the
school, we are grateful to all the other foundations who provided financial support.
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All sponsors are listed at
http://www.impa.br/opencms/pt/eventos/store_old/evento_1007

We would like to express our gratitude to Professors C. Camacho, C. Aragao
and J. Palis for their constant support and also our many thanks to the whole
administrative support teams of CMI (Amanda Battese and Katherine Brack) and
DAC of IMPA, especially DACs coordinator Suely Lima and Pedro Faro for their
personal efforts.

Last but not least, the editors would like to give special recognition to CMI’s
publications manager Vida Salahi for her work and dedication in managing the
editorial process of this volume.

David Alexandre Ellwood, Chuck Newman, Vladas Sidoravicius and
Wendelin Werner

April 2012
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2 VINCENT BEFFARA

FOREWORD

These notes are not meant as a reference manual, but rather as an introduction
combined with a kind of “user’s guide” to the existing bibliography. I plan to keep
them mostly self-contained in the sense that the reader will need no additional
information to understand the majority of the statements; but they contain essen-
tially no detailed proofs. In the case of very important results, I give indications
about the main ideas of the demonstration, but of course that is hardly sufficient
to a motivated student.

In each part, the most important section is therefore the extended bibliography
at the end. I chose to gather all bibliographical references there, and to omit them
from the main body of the text (in particular, the main results are only attributed
to their respective authors, not to a particular publication). The point is to make
reading through the text more natural; maybe it failed!

The notes were started while I was giving a graduate course in Lyon dur-
ing the spring preceding the school. As a result, they cover a certain quantity
of material in addition to what will was discussed in Buzios (mostly the parts
about random-cluster models and convergence to SLE, which correspond more to
Smirnov’s course). These can constitute indications towards further reading, or can
be ignored completely in a first reading.

For reference, here is a rough outline of the course schedule in Buzios; the
contents of the exercise sessions matched these. However, to avoid too much overlap
between these notes and the others from the school, and to make them more focused,
some of the material is not included here (for instance, the exercise sheet about
Brownian intersection exponents was left out).

Course 1: Percolation and Cardy’s formula.

Course 2: Loop-erased random walks and uniform spanning trees.
Course 3: Loewner chains in the radial case.

Course 4: Chordal Loewner chains, and definition of SLE.

Course 5: First properties of SLE.

Course 6: The locality property and SLEg.

Course 7: The restriction property, SLEg,3 and restriction measures.
Course 8: More exotic objects: CLE, loop soups, Gaussian fields. ..
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Part I . A FEW DISCRETE MODELS

Introduction

The goal of these lectures is to provide a self-contained introduction to SLE
and related objects, but some motivation is needed before introducing SLE as such;
S0 it seems natural to start with a quick review of a few two-dimensional discrete
models.

The focus of this part will be, for each model, to arrive at the question of
scaling limits as quickly as possible, and to justify conformal invariance where it is
known to hold in the limit. The proofs of actual convergence to SLE will of course
have to be postponed (see Part IIT) — but providing the key arguments is our main
objective here.

I.1. Lattice models

We start with what we want to call lattice models — even though that might
not exactly be the usual sense of that word. Essentially, given a (two-dimensional)
lattice embedded in the plane, a configuration is a map from the set of vertices
and/or edges of the lattice into a finite alphabet, and a probability measure on
the set of configurations is constructed by taking a thermodynamical limit from
measures in finite boxes derived from a Hamiltonian.

We choose to limit ourselves to a few representative models, namely percolation,
the Ising and Potts models, and the random-cluster model. The uniform spanning
tree (UST) is an important case because it was one of the first two-dimensional
models for which convergence to SLE was proved; we will briefly come back to it
in the next section in association with the loop-erased random-walk.

Besides, we will mostly be interested in models taken at their critical point, and
defined on specific lattices for which more is understood about their asymptotic
behavior (e.g., we limit our description of percolation to the case of site percolation
on the triangular lattice) — even though of course a lot is known in a more general
setting.

I.1.1. Percolation. The simplest lattice model to describe is Bernoulli per-
colation. Let p € (0,1) be a parameter; for each vertex of the triangular lattice
T, toss a coin and declare it to be open (resp. closed) with probability p (resp.
1 — p), independently of the others. Denote by P, the corresponding probability
measure on the set of configurations (it is simply a product measure). One can
see a configuration as a random subgraph of the underlying lattice, obtained by
keeping the open vertices and all the edges connecting two open vertices.

1.1.1.1. Basic features of the model. The question of interest is that of the
connectivity structure of this subgraph. Let

0(p) =P, [0 <> o]

be the probability that the origin belongs to an infinite connected component, or
cluster (i.e., that it is “connected to infinity”). It is easy to show that the function
0 is non-decreasing, and using a simple counting argument (known as a Peierls
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argument), that for p small enough, 6(p) is equal to 0 and (1 — p) is positive; in
other words, defining

pe = inf {p: 0(p) > 0} =sup{p: O(p) =0},

one has 0 < p. < 1. The value p. is called the critical point of the model. Its value
depends on the choice of the underlying lattice; in the case of the triangular lattice,
by duality arguments it is equal to 1/2.
The behavior of the system changes drastically across the critical point:
e If p < p., then almost surely all connected components are finite; more-
over, they have finite expected volume, and the connection probabilities
exhibit exponential decay: There exists L(p) < oo such that, for every z,
y €22
P,z <y < C e ly==ll/L(@).
e If p > p., then almost surely there exists a unique infinite cluster and it has
asymptotic density 6(p); but exponential decay still occurs for connectivity
through finite clusters: There exists L(p) < oo such that for all z, y € Z2,

P,z <> y;x «» 00] < C e llv==l/L).

e If p = p., there is no infinite cluster (i.e., 8(p.) = 0) yet there is no finite
characteristic length in the system; the two-point function has a power-law
behavior, in the sense that for some ¢ > 0 and for all z, y € Z2,

cly—z|V <Pz oyl <ty -2~

.
N g

.‘

FIGURE 1. Critical site-percolation on a rectangular region of the
triangular lattice (the state of a vertex is represented by the color
of the corresponding face of the dual lattice).
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The last statement is an instance of what is known as Russo-Seymour-Welsh
theory, or RSW for short: essentially, the largest cluster within a large box of a
given size has a diameter of the same order as the size of the box, and it crosses it
horizontally with a positive probability, uniformly in the actual size of the box.

To be more specific, if R is a rectangle aligned with the axes of the lattice,
denote by LR(R) the probability that, within (the intersection between Z2 and)
R, there is a path of open edges connecting its two vertical sides. Then, RSW
states that for every A > 0, there exists n(\) € (0,1) such that, for every n large
enough,

(1) n(A) < Pp [LR([0, An] x [0,n])] <1 —n(A).

This can easily be used as a black box, but figuring out the proof is a good way to
get intuition on the model, so we include it here in the form of an exercise.

EXERCISE 1.1.1 (Proof of the RSW bounds). (1) Since we are working in
the triangular lattice, it makes more sense to first prove (1) for parallel-
ograms aligned with the lattice; it is easy to see why this is sufficient. In
this whole exercise, we will thus use two lattice directions as coordinate
azes, so that for instance what is denoted as [0,n]? is in fact a rhombus.
What is the probability that there exists a horizontal crossing of [0,n]??

(2) Assume [0,n)* is crossed from left to right and set T' to be the lowest
horizontal crossing. Let v be a deterministic path from left to right, prove
that {T" = ~} is measurable with respect to the o-algebra spanned by the
sites below v and the sites of v. When conditioning on {I' = ~}, what
can be said about the law of sites above y?

(3) Consider the shape in the following figure and assume that the left rectan-
gle [0,n]? is crossed horizontally. Can you bound from below the probability
that the lowest crossing T' is connected to the bold part by a black path?
Hint: condition on {I" = +} and consider the reflected path o(y) with
respect to the line y = n + %

(4) Deduce that the probability of crossing the rectangle [0,2n] x [0,n] hori-
zontally is bounded away from 0 when n goes to infinity.

(5) a) Let p > 1. Deduce that the probability to cross the rectangle [0, pn] X
[0,n] horizontally is (uniformly in n) bounded away from 0;

b) Prove that the probability of a black circuit surrounding the origin
in the annulus [—2n,2n)?\ [-n,n]? remains bounded away from 0 when n
goes to infinity;

¢) Show that almost surely there is no infinite cluster at p = %;

d) What can be said about P(0 < OA,,)?

e) (difficult) Ezplain a strategy to prove that p. = 3.

A natural question is then the following: Does the crossing probability above
actually converge as n — oo? In fact, that question is still open in the general
case, and in particular in the case of bond-percolation on the square lattice Z2, and
it is not quite clear how many new ideas would be needed to prove convergence.
But, conjecturally, the limit does exist and does not depend on the choice of the
underlying lattice, provided that it has enough symmetry — this is part of what is
known as universality.

[.1.1.2. The Cardy-Smirnov formula. We now turn to the main result which
we want to present in this section. In the case of site-percolation on the triangular
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lattice (which is the one we are considering here), in fact the above probability does
converge, and the limit is known explicitly. This was first conjectured by Cardy
using mathematically non-rigorous arguments, and later proved by Smirnov.
Before stating the main theorem, we need some additional notation. Let 2 be a
smooth, simply connected, bounded domain in the complex plane, and let a, b, c and
d be four points on 92, in this order if the boundary is oriented counterclockwise.
Let 6 > 0, and consider the triangular lattice scaled by a factor of §, which we
will denote by Hs; let Ps(£2, a, b, ¢, d) be the probability that, within percolation on
QN ?Hs, there is an open path connecting the arc ab to the arc cd of the boundary.!

THEOREM 1.1.1 (Cardy, Smirnov). There exists a function f defined on the
collection of all 5-tuples formed of a simply connected domain with four marked
boundary points, satisfying the following:

(1) Asd — 0, Ps(Q,a,b,c,d) converges to f(,a,b,c,d);
(2) f is conformally invariant, in the following sense: If Q and Q' are two
simply connected domains and if ® maps Q conformally to ', then

f(Q,a,b,¢,d) = f(Q, ®(a), D(b), ®(c), (d));
(3) If T is an equilateral triangle, and if a, b and ¢ are its vertices, then

_ ledl
f(Tva'aba c, d) - \ab|

(which, together with the conformal invariance, characterizes f uniquely).

A complete proof of this theorem can be found in several places, so it does
not make much sense to produce yet another one here; instead, we briefly describe
the main steps of Smirnov’s general strategy in some detail. The same overall
approach (though obviously with a few modifications) will be applied to other
models below; the main point each time will be to find the correct observable, i.e.
a quantity derived from the discrete model and which is computable enough that
its asymptotic behavior can be obtained (and is non-trivial).

Step 1: Definition of the observable. Let 2 be as above, and let z be a vertex
of the dual lattice H (or equivalently, a face of the triangular lattice); denote by
E¢(z) the event that there is a simple path of open vertices joining two points on
the boundary of Q and separating a and z on one side and b and ¢ on the other
side, and by HZ(z) the probability of EZ(z). Define H? and H§ accordingly. Notice
that if we choose z = d, we get exactly the crossing probability:

736(97 a, b7 C, d) = Hg(d)

In fact, we will compute the limit of H§ as § — 0 in the whole domain; the existence
of f will follow directly.

Step 2: Tightness of the observable. Let 2z and 2’ be two points within the
domain, and let A be an annulus contained in 2 and surrounding both z and z’.
If A contains an open circuit, then either both of the events Ef(z) and Ef(z’)
occur, or neither of them does. The existence of such circuits in disjoint annuli are
independent events, and if one fixes the modulus of the annuli, their probability is
bounded below by RSW estimates (1). Besides, the number of such disjoint annuli

1Technically, this definition would require constructing a discrete approximation of the do-
main; we choose to skip over such considerations here, and refer the avid reader to the literature
for more detail.
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which can be fit around {z, 2’} is of order —log|z’ — z|. This implies a bound of
the form

|H5 (2) — Hi (2)] < C'l2" = 2|°

for some C, ¢ > 0 depending only on the domain 2, but not on §. In other words,
the functions Hy are uniformly Holder with the same exponent and the same norm;
and this implies, by the Arzela-Ascoli theorem, that they form a relatively compact
family of continuous maps from 2 to [0, 1]. In particular, one can always choose a
sequence (J;) going to 0 along which H{ (as well as Hf;’k and Hf ) converges to
some continuous function h?® (resp. h’, h¢) defined on Q. Proving convergence of
(H§) then amounts to proving the uniqueness of such a sub-sequential limit, i.e.,
all that remains to be done is to identify the function A®.

FIGURE 2. The exploration of a critical percolation interface in
the upper-half plane.

Step 3: The exploration process. One key tool which we will need in what
follows is an algorithmic way to measure features of percolation interfaces. In any
simply connected planar domain different from the whole plane, split the boundary
into two subsets, and assign “artificial” boundary conditions to be open on the first
one and closed on the second one. From each contact point between the two, this
creates an interface between open and closed vertices of the lattice, and one can
follow it by looking at each site one after the other along the interface, turning
left or right according to its color. This is easier drawn than formally described;
see Figure 2. The outcome of the construction is a lattice path, known as the
exploration process of the interface. We will use it in the next step, and again when
we speak about the scaling limit of geometric objects (the percolation exploration
process, as the lattice mesh goes to 0, converges to the trace of SLEg).
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Step 4: Local behavior of the observable. This is essentially the only place in
the proof where one uses the fact that the underlying model is site-percolation on
a triangulation. Let z be a vertex of Hj, and let 21, 25 and 23 denote its three
neighbors, ordered counterclockwise; define P¢(z,z1) to be the probability that
E§(z1) occurs, but Ef(z) does not. This is equivalent to the existence of three
disjoint paths in Hg, each joining one of the vertices of the triangle around z to
one of the three boundary arcs delimited by a, b and ¢, and of appropriate states
(two open, one closed — draw a picture!). The core of Smirnov’s proof is then a
wonderful relation between these quantities; namely:

Pi(z,21) = Pg’(z7 z9) = P§(z, z3).

The argument is very simple, but not easy to write down formally; it goes as follows:
Assuming the existence of three arms as above, it is possible to discover two of them
by exploring the percolation configuration starting from ¢ (say), and always staying
on the interface between open and closed vertices. The exploration path reaches z
if and only if two of the above arms exist; besides, it gives us no information about
the state of the vertices which are not along it, because the underlying measure is a
product measure. The key remark is then the color-swapping argument: changing
the state of each of the vertices in the unexplored portion of 2 does not change
the probability of the configuration (because we work at p = p. = 1/2); but it does
change the state of the third arm from open to closed. Swapping the colors of all
the vertices in Q (which still does not change probabilities) one then arrives at a
configuration with three arms of the appropriate colors, but where the role of a
(resp. z1) is now taken by b (resp. z2).

Step 5: Holomorphicity in the scaling limit. Now, we need to exhibit a holo-
morphic function built out of A%, h® and h¢; following the symmetry of order 3 in
the setup, it is natural to define

Hs(2) = Hj(2) + TH}(2) + T° H(2)

and h = h® 4+ 7h® + 72h¢ accordingly, where 7 = €>*"/3. To prove that h is
holomorphic, it is enough to show that, along every smooth curve + contained in

Q, one has
}1{ h(z)dz =0
¥

(by Morera’s theorem); and to show that, it is enough to pick a sequence of suitable
discretizations of v and estimate the integral using Hgs, and to show that the discrete
estimate vanishes as § goes to 0. It is always possible to approach « by a discrete
path s = (29,29, .. .,zié = z3) on H} in such a way that Ls = (9(6*1), and one
then has

Ls—1 26 26
%h(z)dz -y (7)) +2H5( 1) ) o)

j=0
with ¢ > 0 by the previous tightness estimate. One can then apply a discrete analog
of Green’s formula to make discrete derivatives of Hs appear, and write these in
terms of Py, P§ and Pj: after elementary calculus, one gets

]{ h(z)dz = iéf Z [Pi(2,2') + TP (2,2') + T°P§(2,2))] (¢ — 2) + O(5°),

zrz!
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where the sum extends to all pairs of nearest neighbors in the interior of v. Applying
Smirnov’s identity to write everything in terms of P§' only then leads to

\/g 2

f h(z)dz = ZT {sz(z, 2') ZTj(Zj — z)] + O(6°)
v z~z! j=0

(where the z; are the neighbors of z, numbered counterclockwise in such a way that

z9 = 2'). Tt is then easy to see that the inner sum is identically equal to 0 (because

it is always proportional to 1 + 72 + 7).

Step 6: Boundary conditions and identification. The same computation as
above can be performed starting with S5 = Hg + H? + H§, and the conclusion
is the same: The (sub-sequential) limit s :== h® 4+ h® + h¢ is holomorphic as well.
But because it is real-valued, this leads to the conclusion that it is constant, equal
to 1 by looking at the point z = a. This means that the triple (h%, h®, h¢) can
be seen as the barycentric coordinates of h(z) relative to the points 1, 7 and 72,
respectively, meaning that & maps 2 to the interior of the corresponding equilat-
eral triangle 7. Since it sends boundary to boundary in a one-to-one way (the
variations of A% on the boundary are easy to determine), it has to be conformal,
and so it has to be the unique conformal map from 2 to 7 mapping a (resp. b, ¢)
to 1 (resp. 7, 72). Because the sub-sequential limit is thus identified uniquely, one
obtains convergence of (Hy) itself to h, and it is not difficult to conclude the proof.

This concludes the few features of percolation which we will need in the follow-
ing parts; we will come back to it (and say a little bit more about the exploration
process) in Part III. For now, the relevant piece of information to remember is that,
at criticality, the scaling limit of percolation (in any reasonable sense) is non-trivial
and exhibits conformal invariance.

1.1.2. The random-cluster model. Percolation is very easy to describe,
because the states of the vertices are independent of each other; but it is not
very physically realistic. We now focus our attention on the random-cluster model
(sometimes also referred to as FK-percolation or simply the FK model, for the
names of its inventors, Fortuin and Kasteleyn). It is a dependent variant of bond
percolation. We choose to keep this section shorter than it could be; the interested
reader will find all the details in the notes for Smirnov’s course at the same summer
school [38].

1.1.2.1. Definitions and first properties. Let G = (V, E) be a finite graph, and
let ¢ € [1,+00) and p € (0,1) be two parameters. The random-cluster measure on
G is defined on the set of subgraphs of GG, seen as subsets of E, by

o(w) (1 — p)elw) gk(w)
p p q
Pp,q,G[{W}] = ( )

Zp.q,G

where o(w) is the number of open edges in w, ¢(w) the number of closed edges,
and k(w) the number of connected components of the subgraph (counting isolated
vertices). The partition function Z, 4 is chosen so as to make the measure a
probability measure. Notice that the case ¢ = 1 is exactly that of a product
measure, in other words it is Bernoulli bond-percolation on G.

The definition in the case of an infinite graph needs a little more care — of
course defining the measure as above makes little sense since the terms o(w), ¢(w)
and k(w) would typically be infinite (as well as the partition function). The first

)
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step is to define boundary conditions, which in this case amounts to introducing
additional edges whose state is fixed (either open or closed); if £ denotes such a
choice, then sz’ q.c denotes the corresponding measure. Notice that the only effect
¢ has is in the counting of connected components within G.

Now consider the square lattice, and a sequence of increasing boxes A, =
[—n,n]?. We will consider two types of boundary conditions for the random-cluster
model on A,,: free (i.e., £ is empty) and wired (i.e., all the vertices on the boundary
of A,, are assumed to be connected). We denote these boundary conditions by f and
w, respectively. A third boundary condition is known as the Dobrushin boundary
condition, and consists in wiring the vertices of one boundary arc of the box (with
prescribed endpoints) together while leaving the rest of the boundary free.

If ¢ > 1, the model exhibits positive correlations (in the form of the FKG
inequality). This implies that, if n < N, the restriction of the wired (resp. free)
measure on Ay to A, is stochastically smaller (resp. larger) than the corresponding
measure defined on A,, directly. As n goes to infinity, this allows for the definition
of infinite-volume measures as monotonic limits of both sequences, which we will
denote by Py’ and PI{ P

For fixed ¢ and either free or wired boundary conditions, these two measure
families are stochastically ordered in p; this implies the existence of a critical point
pe(q) (the same in both cases, as it turns out) such that, as in the case of Bernoulli
percolation, there is a.s. no infinite cluster (resp. a unique infinite cluster) if p < p,
(vesp. p > pe).

It has long been conjectured, and was recently proved [5], that for every ¢ > 1,

_ V4
C1+g

This comes from the following duality construction. Let for now G be a graph
embedded into the 2-sphere, and let G* be its dual graph. To any configuration
w of the random-cluster model on G, one can associate a configuration w* on G*
by declaring a dual bond to be open if and only if the corresponding primal bond
is closed (see figure 3). As it turns out, if w is distributed as P, 4 ¢, then w* is
distributed as Py« 4+ g=, i.e. it is a random-cluster model configuration, with

(2) Pe(q)

p*  1-p
il
I-p D

¢"=q and

It is easy to see that there is a unique value pgq of p satisfying psq = (psa)*, and it
is then natural to expect that p. = psq, leading to the value above.

EXERCISE 1.1.2. Prove the duality statement.

Answer: Use Euler’s formula to relate the number of open and closed bonds in the primal and
the dual configurations with their numbers of faces and clusters. It helps to rewrite the weight of

a configuration as
2\ )
I-p

and to notice that o(w) + o(w*) does not depend on the configuration.
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F1GURE 3. Duality between random-cluster configurations.

1.1.2.2. The para-fermionic observable. As before, we want to introduce an
observable defined from the discrete model and giving us enough information to
determine asymptotic properties in the scaling limit. From now on, let Q be a
smooth, simply connected domain in the complex plane, with two marked points
a and b on its boundary. Let Gs be the graph obtained as the intersection of €
with §Z2 for some mesh § > 0; we will consider the random-cluster model with
parameters ¢ > 1 and p = psq(q) on G, with Dobrushin boundary conditions,
wired on the (positively oriented) arc ab — and we will denote the corresponding
measure simply by P (or later by Ps when we insist on the scaling behavior as
0 — 0).

As in the case of percolation, we briefly describe the main steps in Smirnov’s
proof of conformal invariance. A big difference is that the statement of convergence
needs more notation, so we will have to postpone it a little bit.

Step 1: The loop representation. In addition to the graph Gs and its dual G7,
we need a third one known as the medial graph and denoted by Gf; it is defined
as follows. The vertices of the medial graph are in bijection with the bonds of
either G5 or G} (which are in bijection), and one can think of them as being at
the intersection of each primal bond with its dual; there is an edge between two
vertices of G§ if and only if the two corresponding primal edges share an endpoint
and the two corresponding dual edges do as well.

One can encode a random-cluster configuration on Gy using the medial graph,
by following the boundary of each of its clusters (or equivalently, each of the clusters
of the dual configuration). This leads to a covering of all the bonds of G§ by a family
of edge-disjoint paths, one joining a to b (which we will call the interface and denote
by 7), and the others being loops. If [(w) denotes the number of loops obtained
this way, it is possible to rewrite the probability of a configuration w as

xo(w) (\/a)l(w)

P{w}] = - with 2z := P
z,q

(1-pVva

Since we work at the self-dual point, in fact we have x = 1 and the weight of
a configuration is written as a function of only the number of loops in its loop
representation.

EXERCISE 1.1.3. Prove the equivalence of the random-cluster representation and
the loop representation.

Answer: It works exactly the same way as the previous exercise, use Euler’s formula in the
natural way and it will work.
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FIGURE 4. The loop representation of a random-cluster configu-
ration, and the possible orientations of the interface v around a
vertex.

Step 2: Definition of the para-fermionic observable. Let e be an edge of the
medial graph. We would like to be able to compute the probability that the interface
passes through e; unfortunately, this seems to be out of reach of current methods,
so we need an alternative. Assume that v does go through e. Then, it is possible
to follow it from a to the midpoint of e, and to follow the variation of the angle of
the tangent vector along the way: it increases (resp. decreases) by m/2 whenever 7
turns left (resp. right). The winding of the curve at e is the value one gets when
reaching e; it is in (7/2)Z and we denote it by W (e). If v does not pass through e,
define W (e) to be an arbitrary value, as it will not be relevant.

The para-fermionic observable is then defined as

Fs(e) =FE e*wW(e)]leeW} where o satisfies sin % = \/76

Notice the difference here between the cases ¢ < 4 (when o is real) and ¢ > 4 (when
it is pure imaginary); we will come back to this distinction shortly. The parameter
o is known as the spin of the model. Morally, the main convergence result is that,
at the self-dual point, §~7 Fs converges (to an explicit limit) as § — 0; but giving a
precise sense to that statement requires a little more preparation.

Step 3: Local behavior of the observable. Let w be a configuration, and let e
again be an edge of the medial lattice. We will denote by Fs(e,w) the contribution
of w to the observable, so that Fs(e) = > Fs(e,w). Besides, let £ be a bond of the
primal lattice which is incident to e. There is a natural involution on the set of
configurations given by changing the state of the bond ¢ without changing anything
else — denote this involution by sg. It is easy to see how Fs(e,w) and Fj(e, sp(w))
differ: If both are non-zero, then the winding term is the same and their ratio is
therefore either x,/q or x/,/q according to whether opening £ creates or destroys a
loop.

Notice that the medial lattice can be oriented in a natural way, by declaring
that its faces corresponding to dual vertices are oriented positively. The definitions
above ensure that v always follows the orientation of the bonds it uses. We will
use the notation e — ¢ (resp. £ — e) to mean that the bond e is oriented towards
(resp. away from) its intersection with £. The above observations imply that, for
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a a
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FIGURE 5. One pair of configurations contributing to (3).

every ¢ in the primal lattice and every = > 0,

(3) Z [Fé(e,w) + Fjs(e, Sz(w))] =

e—L

eo’fri/Q Tz

1+ reoTi/2

Z [Fs(e,w) + Fs(e, se(w))].

The prefactor on the right-hand side is a complex number of modulus 1 if ¢ < 4; it
is real and positive if ¢ > 4; and in both cases, it is equal to 1 if and only if z =1
— in other words, exactly at the self-dual point. Summing the previous relation

over w, we get
o'7rz/2 Tz
ZFS( 1+x6(r7rz/2 ZF‘;

e—{
and in particular, at the self-dual point, this relatlon boils down to the flow condi-

tion:
Z Fg(e) = Z F5(€)

e—{ e—/l
This is the basis from which all the rest of the proof is built up: we now need to
interpret this relation as the vanishing of a divergence, and in turn as the (discrete)
holomorphicity of a well-chosen function.

1.1.2.3. Interlude. Here we have to stop for a moment. All the preceding rea-
soning is perfectly general, and the intuition behind it is rather clear. However, a
worrisome remark is that we get one linear relation per bond of the primal lattice,
but one unknown (the value of Fj) per bond of the medial lattice, of which there
are twice as many. That means that these relations cannot possibly characterize
Fs uniquely, and indicates that something more is needed; and in fact, the proof of
conformal invariance is indeed not known in all generality.

The first “easy” case is that of ¢ > 4. Here the observable is real-valued, and
therefore lends itself to more analytic techniques, mostly inequalities. This is quite
fruitful if one aims for the value of the critical point, and indeed in that case one
can show that p. = psq using only elementary calculus. The use of inequalities is
not optimal though, as it is not precise enough to derive any information at the
critical point — much less to prove conformal invariance.

The second “easy” case is that of ¢ = 2, for which ¢ = 1/2. Recall that
always traverses edges in their positive direction; this means that W (e) is known in
advance up to a multiple of 2. In turn, this means that the argument of e?”"V(€)
is known up to an integer multiple of m; in other words, for every (oriented) edge
e, the observable Fs(e) takes its value on a line in the complex plane depending
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only on the direction of e (essentially, viewing e as a complex number, Fs(e)/+/e
is a real number). The previous obstruction can then be bypassed: while we get
a (complex) linear relation per primal bond, we only need to determine a real
unknown per medial bond, which is the same quantity of information. This is
morally why a complete derivation of conformal invariance is known only in that
particular case, to which we restrict ourselves from now on.

1.1.2.4. The rest of the proof when g =2 and x = 1.

Step 4: The integrated observable. We would like to prove that §—'/2Fs con-
verges and be done with it. However, this is not very realistic, in particular because
the argument of Fj oscillates wildly (with a period of one lattice mesh). A solution
to that is to consider an integrated version of it, or rather of its square. There is (up
to an additive constant) a unique function Hs, defined on the vertices of both the
primal and dual lattices, satisfying the following condition: Whenever W (resp. B)
is a vertex of the primal (resp. dual) lattice, and they are adjacent and separated
by the bond ey g of the primal lattice, then

Hs(B) — H;(W) = |Fs(ews)|.

In some sense, one can think of Hs; as a discrete integral of |Fs|?; proving its
existence is a matter of checking that the sum of the prescribed increments around
a vertex of the medial lattice vanishes; and this in turn is a direct consequence (via
the Pythagorean theorem) of the flow condition, noticing that the values of Fis(e)
for e — £ (resp. £ — e) are always orthogonal. Besides, it is easy to check that Hg
is constant along both boundary arcs of the domain, and that its discontinuity at
a (and hence also at b) is exactly equal to 1 — because the interface has to pass
through a with no winding. From now on, we will thus assume that Hj is equal to
0 (resp. 1) on the arc ab (resp. ba).

Now, H;s has two natural restrictions, Hj" to the primal vertices and Hf;’ to
the dual ones. These two restrictions have nice properties: Hj’ is superharmonic
(its discrete Laplacian is non-positive) while H? is subharmonic (its Laplacian is
non-negative). Besides, assuming that Fj is small, they differ by very little, so that
any sub-sequential scaling limit of Hs has to be harmonic — in fact, has to be the
unique harmonic function h with boundary values 0 on ab and 1 on ba. That is
already a non-empty statement, but extracting useful information from Hy is not
easy ...

EXERCISE 1.1.4. Prove that H§’ is indeed superharmonic.

Answer: This actually takes some doing (the last, very tedious 4 pages of Smirnov’s article [37]),
but it is completely elementary. Simply expand the discrete Laplacian in terms of Fj, and use the
flow relation repeatedly to eliminate terms (it allows one to express each value of Fj in terms of
its values at 3 neighboring edges, but projecting on lines brings this down to 2).

Step 5: Tying up the loose ends. The above arguments are rather convincing,
but a lot is missing which would not fit comfortably in these notes. Following the
scheme of the percolation argument, the main ingredient is relative compactness
in the shape of uniform continuity; here, it follows from classical results about the
Ising model (essentially, from the fact that the phase transition is of second order,
or equivalently that the magnetization of the critical 2D Ising model vanishes) and
it does imply the convergence of Hgs, as § — 0, to h as defined above.

Then, one needs to come back down from Hs to Fjs, which involves taking a
derivative (the same way Hs was obtained by integration). Notice in passing that
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|F5|? is an increment of Hs, so it is expected to be of the same order as the lattice
spacing, and thus Fj itself should be — and, indeed, is — of order v/§, and related
to the square root of the gradient of Hs. The objection we raised before about the
argument of Fy still stands; we need to make the following adjustments.

Each vertex of the medial graph has four corners (one per adjacent face); by
“rounding up” v at each of its turns, it is possible to naturally extend Fs to all such
corners, with a winding at a corner defined to be the midpoint between that on the
incident edge and that of the exiting one. Then, define F§ on each medial vertex to
be the sum of F over all adjacent corners. Fy is now a bona fide complex-valued
function, and in fact Fj5 can be recovered from it by appropriate projections.

We are now poised to state the main convergence result. Let ® be a conformal
map from € to the horizontal strip R x (0, 1), mapping a to —oo and b to +o00. Such
a map is unique up to a horizontal translation, which will not matter here since we
will look at derivatives anyway; notice that h is simply the imaginary part of ®.

THEOREM 1.1.2 (Smirnov). As § — 0, and uniformly on compact subsets of €,
STV2FS - V29
In particular, the scaling limit of Fy is conformally invariant.

I.1.3. The Ising model. The Ising model might be the best known and most
studied model of statistical mechanics; it is amenable to the same kind of study as
the random-cluster model, through the use of a similar observable. The two-point
function of the Ising model, which encodes the spin-spin correlations, is closely
related to the connection probability for the ¢ = 2 random-cluster model, through
the Edwards-Sokal coupling: starting from a random-cluster configuration with
parameter p, color each cluster black or white independently of the others with
probability 1/2; this leads to a dependent coloring of the vertices of the lattice,
which is distributed according to the Ising model with inverse temperature § =
—log(1 —p).

The observable is a little different, because the spin interfaces are not com-
pletely well-defined as simple loops (think for instance about the case of a checker-
board configuration); this is the main reason why the construction is more specific.
The interested reader will find a detailed description in the notes for the mini-course
of Stanislav Smirnov in the same school [38].

I.2. Path models

Maybe the simplest model for which conformal invariance is well understood is
that of the simple random walk on a periodic lattice, say Z2. Indeed, as the mesh
of the lattice goes to 0, the random walk path converges in distribution to that of
a Brownian motion, and this in turn is conformally invariant.

More precisely, let  be a (bounded, smooth, simply connected) domain of the
complex plane, and let z € Q; let (B;) be a standard planar Brownian motion
started from z, 7 be its hitting time of the boundary of €. Besides, let ® be a
conformal map from {2 onto a simply connected domain €', and let (W;) be a
Brownian motion started from ®(z) and o its hitting time of 9.

It is not true that (W) and (®(B;)) have the same distribution in general,
because their time parameterizations will be different, but in terms of the path
considered as a subset of the plane, they do; the following statement is another
instance of conformal invariance:
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THEOREM 1.2.1 (P. Lévy). The random compact sets {®(By) : t € [0, 7]} and
{Ws:s€10,0]} have the same distribution.

A consequence of this and the study of SLE processes will be (among others)
a very detailed description of the Brownian frontier, i.e. of the boundary of the
connected component of infinity in the complement of Bjy ;. However, the frontier
is not visited by the Brownian path in chronological order, and that makes the direct
use of planar Brownian motion problematic; it seems that things would be simpler
if the random curve had no double point, and correspondingly if the underlying
discrete path were self-avoiding.

The most natural way to generate a self-avoiding path in a discretized simply
connected domain, from an inside point z to the boundary, would be to notice that
there are finitely many such paths and to define a probability measure on the set of
paths (morally, uniform given the length of the path). This leads to the definition
of the self-avoiding walk, but unfortunately not much is known about its scaling
limit, so we turn our attention to a different object which is a bit more difficult to
define but much easier to study.

I1.2.1. Loop-erased random walk. Let again () be a simply connected do-
main in the plane, and let § > 0; let Q5 be an appropriate discretization of Q by
072 (say, the largest component of their intersection), and let z5 be a vertex in €.
In addition, let (X,,) be a discrete-time random walk on 6Z?2, starting from 25, and
let

T =1inf{n: X, ¢ Qs}
its exit time from Qs. The loop-erasure LE(X) is defined, as the name indicates,
by removing the loops from (X,,) as they are created. Formally, define the (n;)
inductively by letting ng = 0 and, as long as n; < 7,

nitp =max{n <7: X, =X, } + 1.

Then, LE(X); = X,,,.

Clearly, the loop-erasure of a discrete path is a self-avoiding path, as the same
vertex cannot appear twice in LE(X); when as above X is a simple random walk,
LE(X) is known as the loop-erased random walk (from zs to s in Q5). If bis a
boundary point of {25, one can condition X to leave {25 at b and the loop-erasure

of that conditioned random walk is called the loop-erased random walk from a to
b in Q(s.

The profound link between the loop-erased random walk and the simple random
walk itself will be instrumental in the study of its asymptotic properties as ¢ goes
to 0. For instance, the distribution of the exit point of a simple random walk or
an unconditioned loop-erased walk is the same (it is the discrete harmonic measure
from z5).

The counterpart of RSW for loop-erased walks (in the sense that it is one of
the basic building blocks in proofs of convergence) will be a statement that LE(X)
does not “almost close a loop” — so that in particular, if it does have a scaling
limit, the limit will be supported on simple curves. We defer the exact statement to
a later section, but essentially what happens is the following: for LE(X) to form a
fjord, without closing it, X itself needs to approach its past path and then proceed
to the boundary of the domain without actually closing the loop (as this would
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FIGURE 6. A loop-erased random walk.

vanish in LE(X)); the escape itself is very unlikely to happen as a consequence of
Beurling’s estimate.

We finish this definition of the loop-erased random walk with a statement of
the domain Markov property. Let again {2 be a simply connected domain in the
plane, discretized as Qs = QN 6Z2, and let a € §Z? be an interior point of 2 and
b € §Z? be a boundary point (i.e., a point outside Q with at least one neighbor
inside Q). Consider a loop-erased random walk path v from a to b in 2, and label it
backwards as (i)o<i<e(y) Where £(7y) is the number of steps in 7, and where vo = b
and vy (y) = a.

This defines a sequence of discrete domains Q; = (2N Z?) \ {v; : j < i}, and
by definition, v is a loop-erased random walk from a to vy in €29. The statement of
the domain Markov property is then the following: for every k > 0, the conditional
distribution of (v;);>r given (v;)i<k is the same as that of a loop-erased random
walk from a to 44 in Q. In other words, the decreasing sequence of domains ()
can be seen as a Markov chain.

One way of proving the Markov property is, for a given path ~, to write the
probability that a loop-erased random walk from a to b follows ~ in terms of a
product of Green functions and transition probabilities. The outcome of the proof is
an alternative description of the backwards loop-erased random walk as a Laplacian
walk, which is a growth process defined in terms of harmonic functions.

Fix k£ > 0, and assume that the first k steps of v do not contain a. Let fi be
the unique function which is harmonic on Qj, equal to 0 outside 2, except at g
where it is equal to 1. There is a finite, non-empty family {z1, ..., z¢} of neighbors
of . at which f; is positive, which are exactly the possible locations for 41, and
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one has

o B fr(zi)
P [ve+1 = zi|v0,- -7k = fe(z) + -+ fulze)

In words, the growth distribution of v is proportional to the value of f; at the
neighbors of 7. Yet another restatement of the same fact is that backwards loop-
erased random walk is the same as “DLA conditioned not to branch.” [Do not take
this statement as a hope that a given branch in the DLA tree would look like a
loop-erased walk; this is not true at all, unfortunately.]

I.2.2. Uniform spanning trees and Wilson’s algorithm. Let G = (V, E)
be a finite graph; let vg be a vertex of G (the “boundary” of the graph). A spanning
tree of G is a connected subgraph of G containing all its vertices and no loop (a
subgraph with all the vertices and no loop is called a spanning forest, and a tree
is a connected forest). The set of spanning trees of G is finite; a uniform spanning
tree is a random tree with the uniform distribution on that set.

Given a vertex v # vy, we now have two ways of constructing a random self-
avoiding path from v to vgy:

e The loop-erased random walk in G from v to vy (defined exactly as in the
case of the square lattice above);
e The (unique) branch of a uniform spanning tree joining v to vs.

As it turns out, these two random paths have the same distribution. In particular,
because in the second definition the roles of v and vy are symmetric, we get an
extremely non-obvious feature of loop-erased random walks: the time-reversal of
the loop-erased walk from v to vy is exactly the loop-erased walk from vy to v. This
is instrumental in the proof of convergence of the loop-erased walk to SLEs in the
scaling limit.

As an aside, loop-erased walks provide a very efficient method for sampling a
uniform spanning tree, which is due to David Wilson. Essentially: pick a point vy,
and run a loop-erased walk «; from it to vg; then, pick a vertex vo which is not on
~1 (if there is such a vertex) and run a loop-erased walk 2 from v to 7y;; proceed
until all the vertices of V' are exhausted, each time building a loop-erased walk from
a vertex to the union of all the previous walks. When the construction stops, one
is facing a random spanning tree of G; and as it happens, the distribution of this
tree is that of a uniform spanning tree.

1.2.3. The self-avoiding walk. Another, perhaps more natural probability
measure supported on self-avoiding paths in a lattice is simply the uniform measure
on paths of a given length. More specifically, let 2,, be the set of n-step nearest-
neighbor, self-avoiding path in Z2, starting at the origin, and let P, be the uniform
measure on {),: we are interested in the behavior of a path sampled according to
P,,, asymptotically as n — co. The measure P, is known as the self-avoiding walk
of length n.

Obviously the first question coming to mind is that of the cardinality of £2,.
By a simple sub-multiplicativity argument, there exists a constant p € [2, 3] known
as the connectivity constant of the lattice such that

1
—log Q| — log pu
n
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FIGURE 7. A self-avoiding walk.

(which we will denote in short by |2,| ~ p™). In fact, the behavior of |€,| is
conjecturally given by

|Qn| ~ Cpnn? ™!
for some exponent v which, in two dimensions, is expected to be equal to

43

LT
The value of p depends on the chosen lattice, and is not expected to take
a particularly relevant value in most cases; it is only known in the case of the
hexagonal lattice, for which it is equal to (2 + \/5)1/ 2 — we refer the reader to
the notes for the course of Gordon Slade in this same volume for a proof of this
fact. The value of v however is expected to be universal and depend only on the

dimension.

Now, let w = (wy, - . .,wn) be a self-avoiding path distributed according to P,.
We are still interested in scaling limits as n — oo, and for that the second relevant
piece of information would be the appropriate scaling to apply to w. One way
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to determine it is to look at the law of ||w,||; conjecturally, there exists a scaling
exponent v € (0,1) such that

E [HwnHQ} ~n?.

Again, the value of v is expected to be universal and depend only on the
dimension. It is known in high dimension that v = 1/2, meaning that the self-
avoiding walk is diffusive in that case and behaves like the simple random walk;
this is the main focus of the course of Gordon Slade in the same summer school, so
we simply again refer the reader to the corresponding notes. In the two-dimensional

case, it is believed that
3

Z%
we will come back to this after we talk about convergence to SLE.

UV =

In the case of the self-avoiding walk (as we will see later also happens for
percolation), there is a natural way to bypass the question of the relevant scaling
and still be able to define a natural limit as the lattice mesh vanishes. Let U be
a bounded, simply connected domain in the complex plane, with smooth (enough)
boundary, and let @ and b be two points on 9U. For every 6 > 0, let Us = 6Z°NU
and let as and bs be approximations of a and b in the same connected component
of Us; let Q(;U be the set of self-avoiding paths from a;s to bs in Us.

Since the elements of ng have various lengths, it is not that natural to consider
the uniform measure on it. Instead, let x > 0 and define a measure ug, s on QY by
letting

U (foW)y =2 =
M) = 5
where ¢(w) denotes the length of w and Z g 5 is a normalizing constant (the partition
function in physical parlance). Then, as 6 — 0, one expects the asymptotic behavior
of a walk w distributed according to u;{ s to strongly depend on the value of . More
precisely, letting x. := 1/u where y is the connective constant of the lattice?:

o If x < x., then w converges in distribution to a deterministic measure
supported on the shortest path joining a to b in U; its fluctuations around
the limiting path are Gaussian and of order §'/2, and the scaling limit of w
after the corresponding rescaling in the transverse direction is a Brownian
bridge.

e If x > z., then the scaling limit of w is a random space-filling curve in
U, which is conjectured to be be the same as the scaling limit of the
exploration path of the uniform spanning tree in U (i.e., SLEg for those
reading ahead).

e If x = x., then the scaling limit is believed to be a non-trivial random
curve from a to b in U, and to be conformally invariant. It is known that
if this is the case, then the scaling limit is SLEg,3, and the previously
mentioned conjectures about the values of v and ~+ hold.

One key remark about the measures defined above is the following. Let U’ C U
be another simply connected domain of the plane, such that a and b are on U’ as

21t is unfortunate that every second object in this section seems to be called p, but each of
these notations seems to be classical ... hopefully this is not too confusing for the reader.
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well. One can define two probability measures on Qg]l in a natural way: the first
one is pg)/é, and the other one is the restriction of Ng,(s to Qg]/ C QY renormalized
to be a probability measure. It is very easy to check that those two measures are
in fact exactly identical; we will say that the self-avoiding walk has the (discrete)
restriction property, and we morally expect the scaling limit to exhibit something
similar.

We will see in the last part that there is exactly one conformally invariant mea-
sure supported on simple curves which has the restriction property, namely SLEg3;
meaning that, if the self-avoiding walk converges to a conformally invariant random
simple curve, it has to be SLEg,3. In other words, as in the case of percolation, we
can predict the value of the parameter x for the scaling limit. Note however that
an actual proof of convergence might not use this fact at all (as again is the case
for percolation).

I.3. Bibliographical notes

Section I.1.1. A very complete review of percolation theory is Grimmett’s book
[13]; it contains everything mentioned in these notes except for Cardy’s formula.
Its bibliography section is far more complete than I could hope to gather here, so I
will just list a few key papers. An alternative, which is a bit hard to find but well
worth reading, is the book of Kesten [18]. For more recent progress and conformal
invariance (and more exercises), one can e.g. consult the lecture notes for Werner’s
lectures [41].

Besides the anecdotal quotation from [43], the first proper introduction of
percolation as a mathematical model is the article of Broadbent and Hammersley
[10]. Exponential decay (up to the critical point) was derived in a very general
setting by Menshikov [27]. The first derivation of the value of a critical parameter
was obtained (for bond-percolation on the square lattice) by Kesten [17]; RSW
estimates were obtained independently by Russo [31] and by Seymour and Welsh
[33].

Cardy’s formula was first conjectured by — well, Cardy [12], and then proved
on the triangular lattice by Smirnov [35]. A slightly simplified exposition of the
proof (which is the one we followed here) can be found in [3], and a very (very!)
detailed one in the book of Bollobas and Riordan [9].

Section 1.1.2. Here again, the reader is advised to refer to the book of Grim-
mett [14] (and references therein) for a general introduction to random-cluster
models, including most of the results which are mentioned in this section. The
proof of conformal invariance for the ¢ = 2 critical random-cluster model was first
obtained by Smirnov [37]; the approach we follow here is very close to the origi-
nal, but some notation is borrowed from [6] (and technically, the notation Fy is
only used here). All the details can be found in the notes for Smirnov’s course in
Buzios [38].

The equality p. = psq is related to the so-called Kramers-Wannier duality [19];
while still open in the general case, it is known to hold in the case ¢ = 1 (where
it is exactly Kesten’s result on the percolation critical point in [17]); in the case
q = 2 (where it is related to the derivation of the critical temperature of the two-
dimensional Ising model by Onsager [28] — see also [6]); and in the general case
as proved in [5].
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Section 1.2.1. For the contents of this section, and an introduction (possibly the
best introduction), one can have a look at Schramm’s original paper on LERWs and
USTs [32]. Wilson’s article [42] complements it nicely; and for more quantitative
results, parts of the paper by Lawler, Schramm and Werner [25] can be read without
any prior knowledge of SLE.

Section 1.2.3. As was apparent in the text, we strongly recommend that the
interested reader have a look at the notes for the lectures of Gordon Slade, in this
same volume; it contains all we could possibly mention here and more.

Part IT . SCHRAMM-LOEWNER EVOLUTION

Introduction

The previous part introduced a few discrete models, and for each of them we
saw that, in the scaling limit as the lattice mesh goes to zero, a particular observable
converges to a conformally invariant limit. It is natural to hope that convergence
will actually occur in a much stronger sense, and in particular that the interfaces of
the discrete model will have a continuous counterpart described as random curves
in a planar domain.

Schramm’s insight was to realize that, under mild (and reasonable) assumptions
in addition to conformal invariance, the limit has to be distributed as one of a
one-parameter family of measures on curves, which he named Stochastic Loewner
Evolutions. They are now universally known as Schramm-Loewner Evolutions. The
aim of this part is to define these random curves and give a few of their fundamental
properties.

I1.1. Definition of SLE

I1.1.1. Loewner evolution in the half-plane. Let H denote the open upper
half-plane, seen as a subset of the complex plane, and (for now) let v : [0, 00) — H
be a continuous, simple curve. In keeping with probabilistic tradition, we will
denote the position of v at time ¢ by 7; instead of (t); besides, we will assume that
~ satisfies the following conditions:

* 7 =0;
e For every ¢ > 0, ¢ € H (or in other words, v; ¢ R);
e |y = o0 ast — oo.

The results we will state in this section are actually valid in much more generality,
but the intuition is not fundamentally different in the general case.

Let H; := H\~|o, be the complement of the path up to time ¢. Our assumptions
ensure that H; is a simply connected domain, and therefore Riemann’s mapping
theorem can be applied to show that there exists a conformal map

gt Ht — H
(we refer the reader to Appendix IV for a refresher on complex analysis, if needed).
The map ¢; is uniquely determined if one imposes the hydrodynamic normalization,
which amounts to fixing the following asymptotic behavior at infinity:

a(z) =2+ 20 O(Z—12> .

z
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With this notation, it is not hard to prove that a is a strictly increasing, con-
tinuous function; it need not go to infinity with ¢, but we will add this as an as-
sumption on the curve. The function a can therefore be used to define a “natural”
time parametrization of the curve: up to reparametrization, it is always possible to
ensure that a(t) = 2¢ for all ¢ > 0. From now on, we shall assume that - is indeed
parametrized that way.

EXERCISE I1.1.1. Prove the statements made so far in the section, and in par-
ticular prove that a is indeed continuous and strictly increasing. Give an example
of a curve going to infinity, but for which a is bounded.

Answer: It is enough to show that a(t) is strictly positive for every ¢t > 0 — look at what happens

under composition. One can then use Schwarz’ Lemma to conclude. a will remain bounded if ~
remains close enough to the real line.

The normalizations of g and ¢ are chosen in such a way that the behavior of
g:(2) as a function of ¢ is then easy to describe:

THEOREM II.1.1 (Loewner). There exists a continuous function 3 : [0,00) — R
such that, for everyt > 0 and every z € Hy,

2
0cg:(2) 9i(2) = B
This differential equation is known as Loewner’s equation (in the half-plane).
The gain is substantial: We were able to encode the whole geometry of v, up
to reparametrization, in terms of a single real-valued function. Indeed, it is not
difficult to show that the construction up to now is essentially reversible: Given (3,
one can solve Loewner’s equation to recover (g;), and hence (H;) and (7y;) as well®.

I1.1.2. Chordal SLE. Consider, say, critical site-percolation on the trian-
gular lattice in the upper half-plane, with boundary conditions open to the right
of the origin and close to the left — this corresponds to the case in Section I1.1.1
with one of the boundary points at infinity. This creates an interface starting from
the origin, which is the path of the exploration process and satisfies the previous
hypotheses on the curve 7.

Now, assume that, as the lattice mesh goes to 0, the exploration curve converges
in distribution to a (still random) curve in the upper half-plane. This scaling limit
can then be encoded into a real-valued process [ using Loewner’s equation; of
course, S will be random as well. The question is now whether we can use the
results of the previous part to identify .

Let R > 0, and stop the exploration process at the first time 7 when it reaches
the circle of radius R centered at 0. Conditionally on its path so far, the next steps
are exactly the exploration process of percolation in a new domain H,,, namely
the unbounded connected component of the complement of the current path: this
is known as the domain Markov property.*

Cardy’s formula being conformally invariant, it is natural to expect that the
scaling limit of the exploration process would be as well, or in other words, that

3Wc11, some care is needed here: It is not true that one can plug any function 3 into Loewner’s
equation and obtain a Jordan curve v out of it. It is true if 8 is Holder with exponent 1/2 and
small enough norm, but a sharp condition is not known. Obviously everything works out fine if 3
comes from the above construction in the first place!

4The counterpart in statistical physics would be the DLR conditions for Gibbsian fields.
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the path after time 7 would be distributed as the conformal image of the path in
H by a map sending H to the appropriate domain.

We almost have such a map at our disposal, from Loewner’s equation: The map
gr, sSends H,,, to H, so its inverse map looks like what we are looking for. The only
difference is that g, (v-) is equal to 5., instead of 0. Taking this into account, we
get the following property (assuming of course the existence of the scaling limit):
The image of (v)¢>r, by g-, — B, has the same distribution as (y:):>0.

Besides, all information coming from the path up to time 75 is forgotten in this
map: Only the shape of H,, is relevant (because such is the case at the discrete
level), and the dependence on that shape vanishes by conformal invariance. The
image of (V¢)i>rp bY grr — Bry is independent of (v;)o<i<rr-

It remains to investigate what these two properties translate to in terms of the
process (B;). First, notice that the coefficient in 1/z in the asymptotic expansion
at infinity which we are using is additive under composition. Letting s,¢ > 0, the
previous reasoning, applied at time ¢, leads to the following:

Gi+s = B+ Gs o (gt — B)s

where equality holds in distribution and where § is an independent copy of g; the
addition of §; takes care of the normalization at infinity.
Differentiating in s and using Loewner’s equation, this leads to

Bt-‘rs = 6:‘, + st

where again equality holds in distribution and 3 is an independent copy of 5. The
process (3:):>0 has independent and stationary increments.

Besides, the distribution of 7 is certainly invariant under vertical reflection
(because this holds at the discrete level), so 8 and —f have the same distribution.
So, we arrive at the following characterization: Under the hypotheses of con-
formal invariance and domain Markov property, there exist a constant
k > 0 and a standard Brownian motion (B;) such that

(Bt)t=0 = (VEBL)t=o0-

I1.1.3. Radial SLE. We just say a few words here about the case of radial
Loewner chains, since not much needs to be changed from the chordal setup. Here,
we are given a continuous, Jordan curve v in the unit disk D, satisfying v = 1,
v # 0 for all t > 0 and v, — 0 as t — 0. In other words, the reference domain is
not the upper half-plane with two marked boundary points, but the unit disk with
one marked boundary point and one marked interior point.

Let D; be the complement of vjg; in the unit disk; notice that 0 is in the
interior of Dy, so there exists a conformal map ¢; from D, onto D fixing 0; this map
is unique if one requires in addition that ¢;(0) € Ry, which we will do from now
on.

The natural parametrization of the curve still needs to be additive under com-
position of conformal maps; here, the only choice (up to a multiplicative constant)
is the logarithm of ¢;(0): up to reparametrization, we can ensure that for every
t >0, g;(0) = e'. With this choice, we have the following:
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FIGURE 8. A chordal SLE process with parameter k = 2. (The
driving Brownian motion is stopped at time 1, which explains the
smooth “tail” of the curve.)

THEOREM I1.1.2 (Loewner). There exists a continuous function 6 : [0,00) — R
such that, for everyt > 0 and every z € Dy,

et (2
Drge(2) = ewtt—ztgz;gt(z)'

This is known as Loewner’s equation in the disk.

Everything we just saw in the chordal case extends to the radial case. In
particular, if the curve is related to a conformally invariant model (say, if it is the
scaling limit of the loop-erased random walk), then under the same hypothesis of
domain Markov property, one gets that there must exist « > 0 such that

(00)iz0 = (VEB)iz0
(where again (B;) is a standard real-valued Brownian motion). Solving Loewner’s
equation in the disk with such a driving function defines radial SLE,.
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Remark. The local behavior of this equation around the singularity at z = €%
involves a numerator of norm 2; it is the same 2 as in Loewner’s equation in the
upper half-plane, in the sense that the local behavior of the solution for the same
value of k will then be the same on both sides.

II.1.4. SLE in other domains. We end the definition of the various kinds of
SLE processes by a remark on the general case of simply connected domains. If 2
is such a domain and if a and b are two boundary points, then there is a conformal
map ¢ from 2 to H sending a to 0 and b to oo; chordal SLE, from a to b in Q is
simply the pullback of chordal SLE, in H through ®. One potential obstruction is
that ® is not uniquely defined; however, this is harmless because all such conformal
maps are scalings of each other, and chordal SLE is scale-invariant.

The radial case is treated in a similar, and actually easier way: given a boundary
point a and an interior point ¢ in €, there is a unique conformal map ¥ from €2 to
the unit disk mapping a to 1 and ¢ to 0. Radial SLE, from a to ¢ in € is simply
defined as the pullback of radial SLE, in the disk through W.

I1.2. First properties of SLE

I1.2.1. Geometry. The first, very non-trivial question arising about SLE is
whether it actually fits the above derivation, which more specifically means whether
the curve 7 exists. In the case of regular enough driving functions, namely Holder
with exponent 1/2 and small enough norm, Marshall and Rohde [26] proved that
it does, but it is possible to construct counterexamples.

It turns out to indeed be the case, up to one notable change. Recall that one
can always solve Loewner’s equation to obtain g, : H\ K; — H where K; is the
(relatively compact) set of points in the upper half-plane from which the solution
blows up before time ¢. Then:

THEOREM II.2.1 (Rohde-Schramm, Lawler-Schramm-Werner). For every k >
0, SLE,; is generated by a curve, in the following sense: there exists a (random)
continuous curve v in the closure of the upper half-plane H, called the SLE trace,
such that, for everyt >0, H\ K; and H\ )94 have the same unbounded connected
component.

What this really means is that K; can be obtained starting up from o4 and
then filling up every bounded “bubble” it forms, if there is any; technically, the
proof in the article by Rohde and Schramm [30] covers all cases but one, namely
k = 8, for which the existence of the trace is only known as a consequence of the
convergence of the UST contour to SLEs.

Given the existence of the trace, it is natural to ask whether K itself is a curve
or not. Whether this happens depends on the value of «:

THEOREM I1.2.2 (Rohde-Schramm). The topology of the SLE trace undergoes
two transitions:

o If k < 4, then v is almost surely a simple curve, and besides v, € H for
every t > 0;

o [f4 <k <8, then~y does have double points, and vjos) & K¢; B

o [f8 < K, then v is almost surely a space-filling curve, i.e. Y[ oc) = H.
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FIGURE 9. A chordal SLE with parameter x = 6.

PRrROOF. The proof of this theorem involves the first use of SLE in computa-
tions. Let us start with the transition across k = 4. Let x > 0, and trace the
evolution of z under the (chordal) SLE flow by defining

Yy = gi(x) — Be.
From Loewner’s equation, one gets
2 2dt
dY? =0 dt —dpy = ———dt —df; = — — VkdB;.
f 1 9¢ () Bt 7@ — B Bt Ve VEdB,
Up to a linear time change, this is exactly a Bessel process of dimension 1+4/k. In

particular, it will hit the origin (meaning that x is swallowed by the curve in finite
time) if and only it the dimension of the process is less than 2, if and only if x > 4.
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The transition across £ = 8 is a bit more problematic, and involves estimates
for the probability of hitting a ball inside the domain, proving that this probability
is equal to 1 if and only if kK > 8; we leave that as an exercise, which can be skipped
on first reading. O

EXERCISE I1.2.1 (Conformal radius, space-filling SLE and Hausdorff dimen-
sion). We consider chordal SLE(k) in the upper half-plane for k > 0. As usual, g;
is the conformal map from H; to H with hydrodynamic renormalization. Define

gi(2) = M for all z e H.
9i(2) — g1(20)
(1) Let zg € H. Prove that there exist constants 0 < ¢1,co < 00 such that
c1d[20,7[0,1)] < 13i(20)] 7" < cad[20,7[0,1)]

for any t < 7(20).
(2) a) Assume that t < 7(zp). Explain how one could derive the following
equality — we do not ask for the (straightforward yet messy) computation.

Btgt(j;)(gt(z) - 1~)
(1= Be)(ge(2) — Be) ,

Orgi(2) = ay ¥

where

5 _ Be—gt(20)

B, = and 2(B — 1)*

ay = ———.
B — 91(z0) (9:(20) — 9¢(20))%57
Check that B, € D and a; > 0 for every t < 7(20).
b) We introduce the time-change s == fot aydu. Show that hs = gy(s)
satisfies a ‘radial Loewner-like’ equation with ‘driving process’ cs where

eXp(ias) = Bt(s)-
¢) By differentiating (with respect to z) the previous equation at zo,
show that

2h’s(20)
1- Bs .
Deduce that |} (z0)| = |hg(20)|e™* when s < s(7(z0)).
(3) Ezplain how one could prove (we do not ask for the computation)

dshiy(20) =

—4
cot(af /2)dt.

af =z and daf = \/kdB; + r

(4) To which event for the diffusion o does {t(s) = 7(z0)} correspond? Show
that d(zp,7v[0,0)) < e~ where S is the survival time of the diffusion .

(5) Prove that the SLE(k) is dense whenever k > 8. We assume that it is
generated by a transient continuous curve. Prove that it is space-filling.

(6) What can be said about the Hausdorff dimension of SLE(k) when x < 8¢

Much more can be said about the topological and metric properties of v and
the related boundary behavior of the maps g¢;; they are the topic of G. Lawler’s
mini-course in this summer school, so we don’t dwell on it much further, simply
ending on the following result:

THEOREM I1.2.3 (Beffara). For every k € [0,8], the Hausdorff dimension of
the SLE trace is almost surely equal to 1+ k/8.
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I1.2.2. Probability. We now turn to uses of SLE in computing the probabil-
ities of various events which are of particular interest in the framework of scaling
limits of discrete models; we focus on two kinds of estimates, for crossings and
for arm events. Before doing that, though, we first mention two special proper-
ties which were already mentioned in a discrete setting, for percolation and the
self-avoiding walk respectively.

I1.2.2.1. Locality and the restriction property. Let A be a non-empty relatively
compact subset of H, at a positive distance from the origin, and with simply con-
nected complement in H — such a set is called a hull in the SLE literature, though
the reason for the choice of this term is not clear. We are in the presence of two
simply connected domains, the upper half-plane H and a subdomain H\ A; we wish
to compare SLE in these two domains.

Let (K;) be an SLE,; in H, and let ~ be its trace; let (R't) be an SLE,; in H\ A,
and let 4 be its trace. Let 7 (resp. 7) be the first hitting time of A by (K;) (resp.
by (K;)) — for now, assume that x > 4 so that both of these stopping times are
a.s. finite.

THEOREM I1.2.4 (Locality property of SLEg). In the case k = 6, with the
previous notation, the two random sets

K,_ = U K, and Ks_ = U K,
t<r t<F
have the same distribution.

In other words, as long as v does not touch the boundary of the domain, it
does not “know” whether it is growing within H or H \ A, hence the name of this
property. Notice that the exploration process of percolation (see section I.1.1 of the
previous part) satisfies the same property at the discrete level; this is one way to
predict that its scaling limit has to be SLEg. One interesting corollary of locality
is the following:

COROLLARY II.2.1. Let Q be a simply connected domain in the plane, and let
a, b and c be three points on 0N). Then, until their first hitting time of the boundary
arc be, an SLEg in Q from a to b and an SLEg in Q from a to ¢ have (up to
time-change) the same distribution.

So, not only does SLEg not know in which domain it is growing, it does not
know where it is going to either. This allows for language shortcuts such as “SLEg
in  from a to the arc b¢” which will be useful very soon.

With the same notation as above, assume now that k < 4, so that in particular
K a.s. never hits A and K avoids it with positive probability. This provides us
with two probability distributions on simple curves in the complement of A in the
upper half-plane: 4 on one hand, and on the other hand, v conditioned not to hit
A, which we will (temporarily) denote by 4.

THEOREM I1.2.5 (Restriction property of SLEg/3). In the case k = 8/3, with
the previous notation, the two random sets

Koo ={%:t>0} and K. :={%:t>0}

have the same distribution; the curves ¥ and 4 themselves have the same distribution
as well, up to appropriate time-change.
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We mentioned already that the self-avoiding walk measure has the same prop-
erty at the discrete level; that is one reason to predict that it converges to SLE(8/3)
in the scaling limit. However, this presumes the existence of a scaling limit and its
conformal invariance, which in that case remain mostly mysterious.

11.2.2.2. Interlude: restriction measures. As an aside to the main text, we now
give a short description of another family of measures on random sets which have
strong links to SLE. Let K be a closed, connected subset of H U {0}, containing
0, and having its complement in H consisting of exactly two (open) connected
components, both unbounded, one having R, on its boundary and the other, R_.
For the duration of this interlude, let us call such a set a nice set.

Let A be a compact subset of H; we will say that A is a hull if the distance
d(0, A) is positive and if H \ A is simply connected. If A is a hull, we will denote
by ¥, the unique conformal map from H \ A to H sending 0 to 0, co to oo and
such that ¥(z)/z tends to 1 at infinity. (Notice that this is not exactly the same
normalization as that of g; in the case of SLE; they differ by a real constant term.)
If Ais a hull, K a nice set and if K N A = @, then ¥ 4(K) is again a nice set.

Now, let P be a probability measure supported on nice sets. We say that P is
a restriction measure if the following happens: if K is distributed according to K,
then so is AK for every A > 0, and moreover, for every hull A, conditionally on the
event K N A = &, the nice set ¥ 4(K) is also distributed according to P.

We already saw that the whole trace of SLEg,3 is an example of such a restric-
tion measure; in fact, there is a very simple structure theorem:

THEOREM I1.2.6. Let P be a restriction measure: there exists a real a > 5/8
such that, if K is distributed according to P, then for every hull A,

P[KNA=g]=U,(0)"

Moreover, for every real > 5/8, there is a unique restriction measure Py satisfying
the previous relation for every hull A. The only restriction measure supported on
simple curves is Py /g, which corresponds to SLEg /3.

There is another one of these restriction measures which is easy to describe
and has to do with planar Brownian motion; essentially it is “Brownian motion in
the half-plane, conditioned not to touch the boundary”, or a variation of a planar
Brownian excursion.

The easiest description is as follows: Let € > 0, R > 0 and let B be Brownian
motion started at ie, conditioned to reach imaginary part R before hitting the real
axis; by the gambler’s ruin estimate, the probability of the conditioning event is
e/R. Let K. g be the path of that Brownian motion, up to the hitting time of
imaginary part R. It is not difficult to prove that as € goes to 0 and R to infinity,
K, r converges in distribution to a random locally compact set K which intersects
the real axis exactly at the origin. For short, while in this interlude we will refer to
K as a Brownian excursion.

Mapping the picture through W4 as € goes to 0 and R to infinity sends ic to a
point close to i€P’(A) while it leaves the horizontal line iR + R close to invariant
(because W4 is normalized to be close to a horizontal translation near infinity).
From this remark, conformal invariance of the Brownian path, and the gambler’s
ruin estimate, one directly obtains the fact that K is in fact distributed as the
restriction measure P;.
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One final remark is in order. Let a; and as both be real numbers at least equal
to 5/8; let K7 and K be independent and distributed as P,, and P,,, respectively.
Typically, the union K7 U K> is not a nice set, but there is a well-defined minimal
nice set, say K1 @ K3, containing both of them (one can think of it as being obtained
from their union by “filling its holes”, so we will call it the filled union of K; and
K5). By independence, it is obvious that K7 @ K> is distributed as P, +q,-

This has a very interesting consequence: since 8 times 5/8 is equal to 5, the
filled union of 8 independent realizations of SLEg,3 has the same distribution as the
filled union of 5 independent Brownian excursions. In particular, the boundaries of
those two sets have the same distribution. On the other hand, the boundary of the
first one looks locally like the boundary of one of them, i.e. like an SLEg,3, while the
boundary of the second one looks like that of a single Brownian excursion, which is
th same as the Brownian frontier. This is one possible way to prove Mandelbrot’s
conjecture that the Brownian frontier has dimension 4/3.

11.2.2.3. Crossing probabilities and Cardy’s formula. The initial motivation be-
hind the definition of SLE was the conformal invariance of some scaling limits; here
we looked particularly at percolation through Cardy’s formula. We still have to
identify the value of x though, and crossing probabilities are a natural way to do it:
one can compute them in terms of £ and match the result with Smirnov’s theorem.?

THEOREM I1.2.7. Let k > 4, a < 0 < ¢, and let E, . be the event that the SLE,
trace visits [c,+00) before (—oo,a]. Then,
—a r du
P[Ea’c]_F<C—a> wher@ F(I):[) m

This is equal to the Cardy-Smirnov result in the case kK = 6.

PROOF. The proof follows essentially the same lines as in the exercise on Bessel
processes, but it is rather instructive, so we still give a very rough outline here for
the benefit of the serious reader willing to do the computation. Let A; = g:(a),
Cy = gi(c) and

—A
g, = 0= A
Cy — Ay
From It6’s formula, it is straightforward to obtain
47 — VKdBy 2dt 1 1
TGO -A (G —-A2\Z 1-2)°
which after the time-change ds = dt/(C; — A;)?, Zs = Z; leads to
- . 1 1
dZS = K]dBS + 21 =— — = .
\/_ (Zs 1- Zs )

Finding F' now amounts to writing that the drift term of F'(Z3) should vanish, thus
leading to the following differential equation:

ZF"(:C) + (3 _— ) F'(z) = 0.

r 1—=x

Proceeding from this is left as an exercise. ]

5Historically, the first tool used to predict which value of the parameter k corresponds to
which model was to derive estimates for the winding numbers of the SLE curves as a function
of k; this has the advantage of being more general, but if one is only interested in the case of
percolation, crossing probabilities give a shorter route.
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11.2.2.4. Arm events and critical exponents. We now turn to radial SLE in the
disk. For the remaining of the section, fix £ > 4 (as the estimates we are going to
consider would be trivial in the case k < 4). We will compute the one-arm and
two-arm exponents of radial SLE,; the names should become clear as soon as one
sees the SLE trace as an exploration process ...

For € > 0, let 7. be the first time the radial SLE, trace visits the circle of radius
¢ around 0. Besides, let T' be the first time ¢t when K; contains the whole unit circle.
In addition, let U be the first time ¢ when 7}, contains both a clockwise and a
counterclockwise loop separating 0 from the unit circle; note that almost surely
0<T < U <o0.

THEOREM I1.2.8. As e — 0, the one-arm probability scales like

2
(COIIN . Kk —16
Plr. < U] =& o0 with A\ = T
the two-arm probability (or non-disconnection probability ) behaves like
Plr. <T) =0 with AP = Z2 1

The case k = 6 is of particular interest for us because of its ties to critical
percolation: from these SLE estimates, one gets that the one-arm exponent of 2D
percolation is 5/48 and that the two-arm exponent is equal to 1/4.

The proof is presented in detail in the form of an exercise (in the case kK = 6,
but this is nothing special here); the overall idea is the same as that of the proof
of Cardy’s formula, i.e. to derive a PDE from Loewner’s equation, to identify
boundary conditions, and to exhibit a positive eigenfunction.

EXERCISE I1.2.2 (Disconnection exponent for SLEg). Let « € (0,27) and let
H(z,t) be the event that one radial SLE(6) starting from 1 does not disconnect e
from O before time t. The goal of this exercise is to show that there exists ¢ > 0
universal such that

e

LS

T\ i t Tl

(sin 5) * <P[H(z,t)] < ce % (sin 5) 5.

(1) Let ¢; be the driving process of the SLE (it is /6 times a standard Brown-
ian motion). Why can one define a real valued process Y such that
g1(e®) = G exp(iY}®) and Y& = x for every t < 7(e'®) (1(2) is the discon-
necting time)? Show that

dY;® = V6dB; + cotg(Y,*/2)dt.

Hint. Recall that the argument is the imaginary part of the logarithm.
Moreover, what is Im [0 log g, (") ]?

(2) Let 7, :=inf{t > 0:Y" € {0,27}}, prove that P[H(x,t)] = P[r* > {].

(3) Assume that f(x,t) == P[H(z,t)] is smooth on (0,2m)x[0,00) (the general
theory of diffusion processes guarantees that), show that

3f" + cot(z/2)f' = O.f
and that lim,_,o+ f(x,t) =lim,_ - f(x,t) =0 and f(z,0) = 1.
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(4) Define F(x,t) := B[y (y,4)(sin Y—T)%] and show that
ot Tr\l
F(z,t) =€ 4(sin 2)3

Hint. We can assume that the solutions of the PDE are determined by
boundary conditions.
(5) Conclude the proof.

EXERCISE 11.2.3 (Disconnection exponent IT). Let x € (0,27) and let J(t) be
the event that one radial SLE(6) starting from 1 does not close any counterclockwise
loop before time t. Let O} be the part of 0K, \ OU lying on the left of the endpoint
Y. We set Y, to be the arc-length of g,(d}).

(1) Find an SDE which is satisfied by Y and express P[J(t)] in terms of the
survival time of Y.

(2) Find a PDE which is satisfied by the function h(zx,t) fo x,t+ s)ds
where f(x,t) = P27 ¢ Y[0,t]|Yo = z). What are the boundary condi-
tions? Hint. One can use a relation with discrete models in order to prove
that h(z,t) — h(0,t) = o(z); this relation can be assumed to hold.

(3) Ezplain how one could prove that there exist 0 < ¢1,co < 00 such that

016_% < P[j(t)} < 026_%.

(4) Show that the probability of a radial SLE(6) starting from 1 does not close

any counterclockwise loop before touching the circle of radius e is of order
5/48
g°/%e,

I1.3. Bibliographical notes

It is still difficult to find a self-contained reference on SLE processes. Lawler’s
book [20] is a good start, and contains both the basics of stochastic calculus and
complex analysis. Werner’s Saint-Flour lecture notes [40] assume more preliminary
knowledge.

Of course, it is always a good idea to have a look at the articles themselves. The
very first paper where SLE was introduced by Schramm, together with the reasoning
at the beginning of the part, is about loop-erased walks [32]; a reference for the
complex-analytic statements on Loewner chains is the book of Pommerenke [29].

One can then consult the whole series of articles by Lawler, Schramm and
Werner [21, 22, 23, 24|, as well as the (very technical) article of Rohde and
Schramm [30] for the existence of the trace. The Hausdorff dimension of the trace
is derived in [2, 4].

Part IIT . CONVERGENCE TO SLE

In this part, we gather two things: first, information about convergence of
discrete objects to SLE in the scaling limit, i.e., a description of the method of
proof and its application in a few cases; and second, uses of convergence to get
estimates about the discrete models themselves, mainly in the form of the values
of some critical exponents.
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ITI1.1. Convergence: the general argument

We already have a few convergence results for observables of discrete models;
let us focus for now on percolation and Cardy’s formula. The question is whether
the convergence of crossing probabilities is enough to obtain the convergence of
the exploration process to the trace of an SLE (in that case, SLEg because of the
locality property, or by matching the crossing probabilities). As it turns out, this
is not an easy question; it seems that this information in itself is not quite enough
to conclude.®

Moreover, in other cases such as the random-cluster model, the information
contained in the observable is not directly of a geometric nature, and it is not clear
at first how to extract geometry from it.

ITI.1.1. First attempt, percolation. The most natural approach (which is
briefly described by Smirnov in [35, 36] and can indeed be applied in full rigor in
the case of percolation) is the following. Let € > 0 and let § € (0,¢); look at critical
site-percolation on the triangular lattice of mesh size §, in the upper-half plane.
Fix boundary conditions to be open to the right of the origin and closed to the left,
and let 4% be the corresponding exploration curve; let 7 be its first exit time of the
disk of radius ¢ around 0.

The distribution of 7°(7), asymptotically as § — 0, is precisely given in terms
of Cardy’s formula in a half-disk. Indeed, for fixed §, the probability that v° exits
the disk to the left of a point 2 € HNC(0, ¢) is exactly the probability that there is
an open crossing of the half-disk between the boundary intervals (0, ) and (z, —¢),
which we know converges to an explicit limit as § — 0 by Theorem I.1.1.

In fact, this distribution is also the same, through the locality property and
the computation of SLE crossing probabilities, as that of the exit point of the half-
disk by an SLEg process. This means that morally, at the scale € and as § — 0,
the beginning of an SLE¢ and that of a percolation exploration process look “very
similar.”

There is a more specific statement about SLEg which we will not in fact need
later but which is very nice anyway. Let Q be a simply connected domain in the
plane, and let a, b and ¢ be three points (in that order) on 9Q. From the locality
property, we know that we can define an SLEg from a to the boundary arc bc, until
it touches that boundary arc; let K be its shape just before it touches. [Technically,
recall that this SLE is defined as SLEg from a to either b or ¢, and that these two
processes agree until v disconnects b from ¢, which happens exactly when the trace
hits be.]

The set K is a relatively compact subset of €; its complement in €2 has two
connected components, one containing b on its boundary and the other, c¢. Now,
let A be a hull in  (i.e., in this case, a relatively compact subset of Q which
does not disconnect a from bc). It is easy to compute the probability that K does
not intersect A: indeed, again by the locality property, it is exactly equal to the
probability that SLEg from a to bc\ A in \ A touches be before it touches 9A.

61t might be enough if one can derive relative compactness from it directly; see for in-
stance [15], [16] and possibly [34] (after reading the rest of this section) for current progress in
this direction.
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FiGURE 10. The same exploration curve of critical percolation as
before, with a smaller lattice mesh.

This last probability can be expressed in terms of crossing probabilities within
Q\ 4; on the other hand, by a Donsker-class type argument, the data of the non-
intersection probabilities P[KNA = @] for all hulls A characterizes the distribution
of the set K itself. In other words: morally, the shape of SLEg “as seen from the
outside” is characterized by its crossing probabilities.

Now, Theorem I.1.1 gives us convergence of percolation crossing probabilities
to those of SLEg, and this implies the convergence of the exploration process itself
to the SLE process — still seen from the outside. In particular, the outer shape of
a large percolation cluster can be described by the boundary of an SLEg. All this
however says very little about the convergence of the exploration process seen as a
curve.

Coming back to our proof attempt: at the time when they both exit the ball of
radius € around the origin, the exploration process of percolation at mesh § and the
trace of SLEg look very similar. In addition to that, they both satisfy the domain
Markov property; if z; denotes the hitting point of the circle of radius € by either
of them, and K the (filled) shape at the hitting time 71, then the distribution of
the process after time 71 is the same as the initial process started from z; in the
domain H \ Kj.

One can then look at the hitting time 75 of the circle of radius & around zi:
the two processes will “live” in very similar domains, so their outer shape Ko will
still be very similar at time 7. Inductively, one can then couple a percolation
exploration with an SLEg process through a chain of disks of radius €.

Letting ¢ — 0, on the SLE side this gives the whole information about the
trace of the process, so it should be possible to leverage the construction into a
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proof of pathwise convergence. Unfortunately, the main piece missing from the
puzzle here is an estimate of the speed of convergence in Theorem I.1.1, meaning
that at each step of the process there is an error term which we cannot estimate
(and the errors accumulate as the construction proceeds); moreover, even if one
manages to produce a fully formal proof, it would rely too strongly on the locality
property to be of any more general use. We need another idea.

I11.1.2. Proving convergence using an observable. Let us consider the
exploration process of percolation a bit more. One way to represent it graphically
is to see percolation itself as a random coloring of the faces of the hexagonal lattice,
in which case the exploration curve can be seen as a collection of edges of the
hexagonal lattice separating hexagons of different colors. In other words, it can be
seen as a piecewise linear curve 4% in the upper half-plane.

Being a curve in the half-plane, it is amenable to the previous general construc-
tion of Loewner chains, which gives it a natural continuous time-parametrization,
a family of conformal maps (g?), and encodes it into a real-valued driving process,
say (39 )i>0 where again § is the mesh of the lattice. Since 79 is piecewise linear,
B? is piecewise smooth.

Morally, Loewner chains should depend continuously on their driving functions.
This means that a natural notion of convergence of v° to an SLEg is the convergence
of 3% to a Brownian motion of appropriate variance as § — 0. This is a good plan
of attack, for two reasons:

e Proving convergence in distribution of a sequence of real-valued processes
is a classical problem, and there are several well-known techniques to
choose from,;

e Convergence at the level of the driving processes does not seem at first
sufficient to obtain pathwise convergence, but what is missing is an a
priori estimate of interface regularity, similar to the Aizenman-Burchard
precompactness criterion [1]; and in fact, in most cases such regularity can
indeed be extracted from convergence (though we won’t say more about
this here — see [34] for details).

So now we need a tool to prove convergence of the “discrete driving process” to
the appropriate Brownian motion as § — 0. Here is a general framework; the actual
implementation will depend on the model. For all n > 0, let I'? be the discrete
exploration up to its n-th step and let H® := H\ I'?: let 70 be the corresponding
time-parameter, so that gfa maps Hg conformally back to H.

Let z be a point in thenupper half-plane, and let A‘; be the event that v° passes
to the left of z — to fix ideas; the observable of choice can vary from model to
model, but the general argument will be the same in all cases. Let X be the
conditional probability of A%, given T',,. The key remark is that the sequence (X?)
is a martingale; it converges almost surely, and its limit is either 0 or 1 according
to whether v° passes to the left or to the right of z.

The main assumption we will make is that we know how to compute the limit

p(2) = lim P[A?] = lim X7,

that the function ¢ is smooth, and that we have conformal invariance (in the same
sense as in Theorem I1.1.1). Notice that, for percolation, this is not exactly the kind
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of probability that Theorem I.1.1 gives, but it is close enough to present the gist of
the argument.

Because of the domain Markov property of the exploration process, Xfl is the
probability that the exploration curve defined in the domain H, passes to the left
of z; by conformal invariance, this is (close to) the probability that the exploration
in the initial domain passes to the left of gfg (z) — Bfg . In other terms, morally

Xn = (92 (2) = Bs).

Now let € be small, and let N be the first time at which either 79 is larger than
2, or |B%| is larger than €; let o := 7%. If § is taken small enough, o cannot be
much larger than 2, and |3%| cannot be much larger than & (only the N-th step
of the exploration process needs to be accounted for). Since o is small, Loewner’s
equation gives
20

§
90(2)22_7

so that, by the previous paragraph,
20
Xj{,znp(z—ﬁg——)

(the first “small” term (2 being of order ¢, and the second one 207/z of order £2).
Because X is a martingale, this boils down to

Ble(s-8-2)| 2 eta)

The point here is that, since we know ¢ explicitly, we can power-expand it
around z inside the expectation and then match the two sides of the relation. This
will provide a relation between the powers of 52, those of ¢, and explicit functions
of z coming from the appropriate derivatives of . This is not enough to identify
the driving process, but one can always write the same relation for various values
of z, and this typically leads to a pair of equations of the form

B3] 0

E[(B3)? — ko] 0
(where k is a constant coming out of the computation, which will be the parameter
of the SLE in the scaling limit, and where of course the symbol '~ means that

equality holds up to error terms, which have to be controlled along all the previous
steps).

R

The last step of the proof involves what is known as Skorokhod embedding.
The basic statement is the following: given a square-integrable random variable Z
such that E[Z] = 0, there exists a standard Brownian motion (B;) and a stopping
time T such that Br has the same distribution as Z, and satisfying the equality
E[T] = E[Z?). Applying this to 82 above, we find that we can write it (still up to
error terms) as B, where E[T}] = E[o].

It remains to iterate the process. Once the discrete interface is explored up to
capacity o, what remains is a random discrete domain Hjs\, in which the exploration
can be extended, thus extending 4° from time o = o} to some oy > o; by the very
same argument as above, we get

{ BB, 5] = 0
E[(Boy — B3,)% — k(02 —01)] =
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and iteratively, we can construct an increasing sequence (o) of stopping times and
the corresponding sequence (T}) through repeated use of Skorokhod embedding.
The increments (Tx4+1 — 1)) are essentially independent and identically dis-
tributed, because of the domain Markov property of the underlying discrete model,
thus a law of large numbers applies, stating that T} is approximately equal to its
expectation. Combining this with the previous remark, we arrive at the fact that

1
o = Bio,,

where again B is a standard Brownian motion.

In other words, provided that § is small, the discrete driving process is very
close to being a Brownian motion with variance parameter x; and as § — 0, the
error terms will vanish and we get

(89) =, (Bro)

One final remark is in order. What we just did in the case of an observable
depending on a point z within the domain does not in fact depend directly on the
existence of z; only the martingale (X?) is relevant. Of course, if (X2) is not defined
in terms of z, the function ¢ will have to be replaced accordingly, and we will see
an example of this below in the case of the UST contour. Nevertheless, the core of
the argument is the same in all cases.

Notice how conformal invariance of the scaling limit, and statements of conver-
gence in other domains, come “for free” with the rest of the argument as soon as
the scaling limit for ¢ is itself conformally invariant: since SLE in another domain
is defined via conformal mappings anyway, the discrete driving process itself drives
an SLE in the upper half-plane, and all that is needed in addition of the above
argument is a composition by the conformal map from the domain to H.

II1.2. The proof of convergence in a few cases

What remains to be done now is to apply the above strategy to a few actual
models. This amounts to two things to do for each model: find an appropriate
observable (which is what the reader will find below); and refine driving process
convergence into pathwise convergence (which, being of a much more technical
nature, will be kept out of these notes and can be found in the literature).

II1.2.1. The UST Peano curve. The simplest case to state is that of the
uniform spanning tree in the upper half-plane, on a square lattice of mesh 4, with
wired boundary conditions to the right of the origin and free boundary conditions to
the left. The dual of that tree is a uniform spanning tree with reversed boundary
conditions (wired on the left and free on the right); and the curve v’ winding
between the two is known as the UST Peano curve, or UST contour curve. It is a
simple exercise to check that the curve 4° satisfies the domain Markov property.

Let z € HNJZ? and let € R, ; let A% be the event that the branch of the UST
containing z lands on the real axis somewhere on the interval [0, 1], and let ¢s(2)
be the probability of this event. The key remark is the following: from Wilson’s
algorithm, ps(z) is exactly equal to the (discrete) harmonic measure of the interval
[0,1] in H seen from z, with reflecting boundary conditions on the negative real
axis; or equivalently, to the harmonic measure of the interval [0, 1] in the slit plane
(CNd6z?) \ Ry, seen from 2.
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This converges to the continuous counterpart of that harmonic measure, which
is easily computable: if z = re??,

L1/2

p5(2) = ¢(2) = wing, ([0, 1)) =wi  ([-1,1])

1 (-1 |z] — 1 1 r—1
—a <21m\/5> = (2ﬁsin(9/2))
where the determination of cot™! is taken in the interval (0, 7). Because harmonic
measure (or equivalently, planar Brownian motion up to time-reparametrization)
is conformally invariant, so is ¢, in the sense that if we defined the UST in an-
other domain, with 3 boundary intervals as above, the scaling limit of the hitting
probability would be conjugated to ¢ by the appropriate conformal map.

EXERCISE II1.2.1. Show the convergence of ps to ¢ and prove the formulas
giving the value of ¢(z) as a function of z.

Answer: The convergence can be obtained by coupling a discrete with a planar Brownian motion
and writing the continuous harmonic measure in terms of hitting probabilities. To prove the
formula, it is enough to show that the function as given takes values between 0 and 1, and
satisfies appropriate boundary conditions: equal to 1 on [0, 1], 0 on [1, +00) with vanishing normal
derivatives along (—o0, 0).

Now, all that remains to do to show convergence of the driving process to a
Brownian motion is to apply the strategy described above; one gets x = 8 from the
computation, so the UST contour curve converges (in the driving-process topology)
to SLEg in the scaling limit.

111.2.2. The loop-erased random walk. The case of the loop-erased ran-
dom walk is a little bit more involved. First of all, convergence will be to radial
SLE rather than chordal as in the case of the UST contour curve — though this is a
minor point, as the scheme of the proof is exactly the same in both cases. Hence, we
will work primarily with the loop-erased walk from the origin to 1 in the unit disk U;
let T' be the path of a simple random walk from 0 to 1 in UN§Z? (i.e., conditioned
to exit the domain at 1); let v be the loop-erasure of its time-reversal. As in the first
part, this defines a decreasing sequence of domains Q,, == (UNJ§Z2)\ {v; : i < n};
besides, v turns out to have exactly the same distribution as the time-reversal of
the loop-erasure of T' (though of course they differ in general).

Fix v € UN §Z2, neither too close to the boundary nor to the origin (say for
instance d(0,v) € [1/3,2/3]), and let Z be the number of visits of v by I" before it
exits U; this will replace the event defining the observable in the previous section:
X% == E[Z|0,...,7n). As above, the key is to write the fact that (X?2) is a
martingale, or in other words that

E[X;] = EIXg] (= E[Z]),

and to estimate both sides to the appropriate precision. Notice that F[Z] is nothing
but a Green function.

Conditionally on (v;);<s, let n; be the first hitting time of v; by I' and let I/
be the portion of I' between times n; and n;_1; let Z; be the number of visits of
v by TY. The key argument is then that the distribution of I up to time n; is the
same as that of a simple random walk conditioned to exit §2; through ~;, so that
one can write Z as the sum of the Z; plus the number of visits to v before time ny,
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and this last term has the same distribution as that of the version of Z as defined
in Qg.

Now, the structure of I'' is simple: it is a finite sequence of random walk
excursions in ) based at -1, followed by a jump from - to ~y. This enables
the computation of the expectation of Z; in terms of (discrete) Green functions
and hitting probabilities within the domain 2. Asymptotically as the lattice mesh
goes to 0, the behavior of those is well understood (if technical to obtain to the
right precision); all the limiting quantities as 6 — 0 are conformally invariant and
explicit.

Since we want to focus here on the heuristics of the proof, we refer the more
serious readers to the initial article of Lawler, Schramm and Werner [25] for the
full details of the proof.

I11.2.3. Percolation. In the case of percolation, we again have convergence
of a discrete observable (the crossing probability of a conformal rectangle) to an
explicit scaling limit, so the general framework of the proof is still the same.

Here, the natural way to set up the computation is the following: let d < 0 < b,
and let Ag 4 be the event that the critical percolation exploration curve in the upper-
half plane, started at the origin, touches the half-line [b, 400) before the half-line
(—o00,d] (so, instead of depending on the location of one point in 2, it depends on
the location of two points on its boundary). The limit of P[Ag’d] as § — 0 can be
computed from Theorem I.1.1, and is conformally invariant.

I11.2.4. The Ising model. The observable in this case is given by the para-
fermionic observable introduced in the previous part, and the general scheme of the
proof is once again the same; one key difference is that the observable as defined
initially goes to 0 with the lattice mesh (as 51/2)7 so it has to be normalized ac-
cordingly. The reader can find all the details in the notes of Smirnov’s course on
that very topic at the same school.

II1.3. One application of convergence: critical exponents

We saw that the disconnection exponent for radial SLEg is equal to 1/4. This
has a natural counterpart (and generalization) in terms of critical site-percolation
on the triangular lattice:

THEOREM II1.3.1 (Arm exponents for critical percolation). Consider critical
site-percolation on the triangular lattice in the plane; recall that A, is the intersec-
tion of the lattice with the ball of radius n. As n — oo,

P[0 ¢ OA,) ~ n~%/48,

Besides, let k > 1, fix a sequence of k colors 0 = (0;)1<i<k and let Ay (n) be the
event that there exist, between the circle of radius k and that of radius n, k disjoint
paths (v;) (in that order), such that all the vertices along ~y; are of color o;. As
n — 0o,
k*—1
12
The exponents oy are called polychromatic k-arm exponents; notice that the
non-disconnection exponent of SLEg corresponds to ay. The value of ay does not
depend on the precise sequence of colors o, as long as both colors are present. The
main reason for this already appeared in the proof of the Cardy-Smirnov formula

PlAks(n)] = n~% where «ay =
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(see section 1.1.1.2 in Part I): conditioned on the existence of 2 arms of different
colors, it is possible to discover those two arms using the exploration process — this
actually provides an algorithm to find the leftmost white arm and the rightmost
black arm, say. The exploration process depends only on the states of the vertices
between those two arms, so one can swap the state of all non-explored vertices, and
this gives a correspondence between the events Ay ,(n) and Ay 5(n) where k — 2
colors differ between o and 6. Variations of the argument allow to relate any two
sequences of colors, as long as the exploration process is available, i.e. as soon as
both colors are present.

In fact, it can be shown that the situation is indeed similar but with different
exponents in the monochromatic case (see [8]):

THEOREM II1.3.2 (Monochromatic arm exponents for percolation). Consider
critical site-percolation on the triangular lattice in the plane; let k > 1, and let
By.(n) be the event that there exist, between the circle of radius k and that of radius
n, k disjoint open paths. As n — oo,

P[Bi(n)] =n~%  for some ay, € (g, Qpy1)-

The values of the exponents & are not known for £ > 1. The case of as is of
particular interest; that exponent is known as the backbone exponent in the physics
literature, and its value is very close to 17/48 (see [7]). Whether that is its actual
value remains open.

As we did before, we present the proof of Theorem II1.3.1 in the form of two
exercises (one for the one-arm exponent, and one for the others).

EXERCISE I11.3.1 (One-arm exponent for percolation). Consider critical site
percolation on the triangular lattice; we want to prove that

P(0 <+ OA,,) = n~ 35T
where ON,, is the boundary of the box of size n. We assume that the result of
exercise 3 is known.

(1) Let w(r,R) be the probability that there exists a path between OA, and
OAR. Show that there exists a constant ¢ > 0 uniform in r and R such
that

en(ry,ro)m(re,r3) < w(r1,r3) < w(ry,ro)mw(re, rs).

Hint. For the left side of the inequality, use RSW.

(2) Consider percolation on a finite subgraph of the triangular lattice with
circular shape. FExplain how to define a natural exploration process at a
discrete level. Towards which process should it converge (we do not ask
for a proof!!)?

(3) What is the event associated to {OA, +» OAR} for the exploration process?
Show that there exist 0 < ¢1,co < 00 such that for every R,

01R74_58 < m(n,nR) < 02R74_58

when n is large enough.
(4) Conclude the proof.

EXERCISE I11.3.2 (Universal exponents). Let o be a finite sequence of colors
(B for black, W for white). We associate to n >0 and o = {o1,...,0k} the event
Ay (n) that there exist paths 1, ...,y such that:
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e 7, has color o;

e v; connects the origin to the boundary of [—n,n)*. When k > 2, we require
only that the paths connect [—k, k]? to the boundary of [—n,n]?.

® V1,...,7 can be found in counterclockwise order.

]2

We define the same event in the upper half-plane (which we denote by AZ(n)). In
this case, the paths must be found in counterclockwise order, starting from the right.

(1) a) Prove that P(A%y,(n)) = £ for some universal constant c. Hint. Use
the RSW theorem to construct a point in {0} x [-n/2,n/2] which is
connected to the boundary of the box by two arms of distinct colors.

b) Assume A% (n) holds. We require that the site on the left of 0 is
white and that it is the start of the white path, and the site on the right
is black and is the start of the black path. Show that one can explore the
interface between the black and the white paths without exploring any other
site;

¢) Let B(n) be the event that there exist a white path connected to the
left side of [-n,n] x [0,n] and a black path connected to the right side.
Show that there exists a universal ¢y > 0 such that

P(ABw (n)) < eiP(B(n));

d) Deduce that there exists ca > 0 such that
C2
P4 (n) < 2.
What was proved?
(2) Prove that the exponent for BW BWW in the plane is 2.
(3) (difficult) Prove that the exponent for BW BW in the plane is smaller
than 2.

IT1.4. Bibliographical notes

Section III.1. The argument outlined in the beginning of the section is that
initially described by Smirnov [35, 36], and more details, including the necessary
technicalities involved in the proof of convergence of the exploration process to the
trace of SLEg, are in the article of Camia and Newman [11]. The general method
is fully described in a paper by Lawler, Schramm and Werner [25], applied in the
cases of the LERW and the UST Peano curve.

Section III.2. In addition to the previously mentioned articles, we simply refer
the reader to the notes for Smirnov’s Buzios course [38] again.

Section III.3. The polychromatic percolation exponents were obtained from
SLE by Werner and Smirnov [39]; the existence of the monochromatic ones was
proved in [8].

Part IV.. MATHEMATICAL TOOLBOX

We gather in this section a few exercises from the sessions in Buzios, which
provide some mathematical background for the main body of these notes. Somehow
every result proved here is classical in some mathematical communities, but which
community depends on the result — SLE itself being at the interface between
probability and complex analysis.
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IV.1. Probabilistic tools

IV.1.1. Stochastic calculus and It6’s formula. In this section, B is a
standard one-dimensional Brownian motion. Let (F;) be the filtration associated
to the Brownian motion, i.e. F; = o(Bs,s < t). The process (M;) is a martingale
(with respect to Fy) if for each s < ¢, E[|My|] < oo and E[M|F,] = M.

EXERCISE IV.1.1 (integration with respect to Brownian motion).

(1)

We call H a simple process if it is of the form
HS = chl[tj—lvtj)(s)
j=1

where (t;) is increasing and C; is Fy,_, -measurable;

a) For a (random) process H = Cl, ), where C is F,-measurable,
find a natural candidate for the integral of H against Brownian motion
B, in other words, what could fooo H,dBs be? How could the notion of
integral be extended to any simple process?

b) We assume that the integral has been constructed as above. For
any simple process H, check that

oo
0

</0stst>2 :/ E[H?]ds.

Let L2 the set of square integrable adapted processes (i.e., processes (Hy)
satisfying fooo E[H?]ds < o). Explain how to extend the definition of
integral to L2.
For a bounded adapted process H, we define fg H,dB, as fooo H,1,)dB.
Show that M; = fot HdBy is an Fi-martingale. Hint: Check it in the case
of simple processes first. ** Show that it is a continuous process.
Remark: Note that for any bounded adapted process a, fot asds s
straightforward to define. It is also possible to check that Hy = f(f asdBs+
fot osds is a martingale if and only if 0 = 0.
a) Let Hy be a bounded continuous adapted process andt > 0. Considering
subdivisions 0 =t} < --- < t) =t with max(t}, | —t) — 0, show that

E

n—1 ¢

52
ZHtf’(Bt?H - Bt;”) —>/ H.dBs.
i=1 0

b) Let H be a bounded continuous adapted process and t > 0. Con-
sidering subdivisions 0 =t} < --- <t =t with max(t}',, —t}') — 0, show
that
n—1 t

9 L?
> Hip(Buy,, = Bi)® = / Hds.
i=1 0
Hint: Recall that B? — ¢ is a martingale.

¢) Prove Ité’s formula: For any a,o bounded adapted processes and
t>0, we setY; = fg asdBg + fg osds. Let ¢ : R — R be a function twice
continuously derivable; then

o) = o)+ [ 0B+ [ [0 0o+ 5o 0)ad] s
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Remark: In order to write the equality

t t
Hy==x —|—/ asdBg +/ osds
0 0

n a concise way, we often write
HO =z and dHt = atdBt + O'tdt.
IV.1.2. An application: Bessel processes.

EXERCISE IV.1.2. Let d > 0. We assume without proof that there exists a
unique process, denoted X7, which solves the following stochastic differential equa-

tion:
dX? =dB +Edt Xi==x
t T QXgJ ’ 0

up to time T, = inf{t : X7 = 0}. This process is called a d-dimensional Bessel
process. For integer values of d, this process is the norm of a d-dimensional vector
with independent Brownian entries. Let 0 < a < x < b < oo, T the first exit time
of the set [a,b], and p(x) = P(XZ = a).

(1) Show that (X[ ;) is a martingale with respect to Finr.

(2) a) Assume @ is twice continuously differentiable. Using Ité’s formula,

deduce that

1, d—1 ,
5% () + 5 Y'(x)=0, a<uz<b,
and compute p when d > 2,
b) When d > 0, compute P(X* = a). What can you deduce?
(3) (difficult) Using Ité’s formula, show that ¥ (xz,t) = Py(T > t) is the solu-
tion of a partial differential equation. Deduce an estimate for Py(1 > t)
when t goes to infinity.

IV.2. Complex analytic tools
IV.2.1. Conformal maps.

EXERCISE IV.2.1 (Around the Riemann mapping theorem). Recall the state-
ment of the RMT: Let D and D' be two simply connected domains included in C
and different from C, there exists a conformal map (i.e. a bijection differentiable
in the complex variable) between D and D’.

(1) Find a conformal map between the following domains:
e from Rx]0, [ to H = {z,Im(z) > 0};
o from the disk D = {z,|z| < 1} to H;
o from H\ [0,4r] to H;
e fromD to C\ (—oo,—1];
e from Sc = (R x (0,2))\ ((i —o00,i— €] U[i +¢,i+00)) to H
e from H to an equilateral triangle.
(2) a) Show that there is no conformal map from D(0,1) to C. It confirms
that the assumption D # C is necessary.
b) Let D be a simply connected domain and f be a conformal map;
why is f(D) simply connected?
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(3) What are the conformal maps from D(0,1) into D(0,1)? Hint. One
can guess what they are and make sure none is omitted using Schwarz’s
Lemma. Deduce that there are three (real) degrees of freedom in the choice
of a conformal map between two domains in the following sense:

e one can fir the image of one point on the boundary and the image of
one point inside the domain;

e one can fix the image of one point inside the domain and the direction
of the derivative;

e one can fix the image of three points on the boundary (keeping the
order).

EXERCISE IV.2.2 (Estimates for conformal maps).

(1) Schwarz’ Lemma: Let f be a continuous map from D to D such that
f(0) = 0 and f is holomorphic inside D. Show that |f(z)| < |z|. Hint.
Think about the maximum principle. Study the case where |f'(0)| = 1.

(2) Koebe’s 1/4-theorem: Let

S = {f : D — C, analytic, one-to-one with f(0) =0 and f'(0) =1}
a) (Area theorem) Let f € S and K = C\{1/z,z € f(D)}, prove that

area(K) = m [1 - Z n|bn|2]

n=1

where 1/f(1/2) =z +bo+ 3,5 bu . Note that it implies [by| < 1.
b) Prove that if f = z+ azz+ -+ is in S, then |az| < 2. Hint:
construct a function h € S such that h(z) = z+ %23+ --- and conclude.
¢) Deduce Koebe’s 1/4-theorem: if f € S, then B(0,3) C f(D).
d) Suppose f : D — D' is a conformal transformation with f(z) = 2’.
Then
1d(z',0D") d(z',0D’)
4 d(z,0D) d(z,0D)

IV.2.2. Interaction with Brownian motion.

<) <4

EXERCISE IV.2.3 (Conformal invariance of Brownian motion). Consider B a

Brownian motion in the plane, and for a domain U, 7y == inf{t > 0: B; ¢ U} the
exit time of U. A conformal map is a bijective biholomorphic map. In this exercise,
we prove the following theorem:

THEOREM IV.2.1. Let z € U, and let f : U — V be conformal. The law of

{f(By),t < 1y} is the same as the law of the trace of a Brownian motion in' V' from
f(z) to the boundary.

Let B be an independent Brownian motion in the plane; introduce the time

changes

Cs ::/ |f'(By)|Pdu and o :=inf{s >0: (s > t}.
0

Define

We = f(Blow Amv)) + B(t) = B(Cloe Aul), >0

It is sufficient to prove that W is a Brownian motion.

(1) What does the previous construction boil down to?
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(2)
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Show that W is continuous. Let G be the o-algebra generated by the set
{Wy,u < s}. Show that W is a (Gs)-Brownian motion if and only if

E[ eXWo | W, = £(2) } :exp< %|)\|2(t—s)+ A f(2) )

for every z € U. The quantity (u,v) corresponds to the usual scalar prod-
uct between two complexr numbers. In order to simplify, we prove the
statement only for s = 0. Consider a conformal map f from U to f(U).
Assume first that f and f' are uniformly bounded.

a) Show that for every z € U,

E[ M W(0) = /(2) |

~ . [exp ( JNE(—Clow A m) + 0SBl Am) )]

where P, is the law of a Brownian motion starting at z.
b) Prove that for every z € U,

AeMF(2) — |>\|2|f/(z)‘26</\,f(2)>.

¢) Using the two-dimensional Ito formula (see below), show that

M, — exp @Mt (s Ar)] + O F(B(s A m>>>>

is a bounded martingale and conclude.
Where did we use the assumption that f and f’ are uniformly bounded?
How could one get rid of the assumption on f and f'?
What is the probability that a Brownian motion starting at € exits the
domain D\ [—1,0] through oD ¥
a) Ezxplain how one could define the Brownian motion in a simply con-
nected domain D between two boundary points a and b. We denote by
IPEBD]\)/{I ) this measure;

b) Sketch a proof of the following conformal invariance property: let
(D, a,b) be a simply connected domain and f a conformal map; then

BM _ mBM .
FoPmay) = PGD), 1)1 )

¢) Make explicit a construction when D =H, a =0 and b = co;
d) Let K be a compact set such that H = H\ K is a simply connected
domain containing 0 (the set H is called a hull). Prove that

]}Dg_ﬂ%po) (B stays inside H) = ¢’ (0)

where @y is the map from H to H that maps 0 to 0 and with g (z) ~ z
when z goes to infinity.

THEOREM IV.2.2 (Itd’s formula in dimension 2). Let B = B 4+iB(?)
be a two-dimensional Brownian motion. Let ¥ be an increasing continuous
adapted process and

t t
X, = / aMdBO 1 / o®dB®.
0 0
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Let f: C xRy — R be a smooth function; then

2 t
FX0 B0 = f(X0:Z0) + 3 [ 07X, Ba)alPdBg)
i=170

(1]

¢ 2 t
+ [ aseazas 5> [ Bz ) s
0 i=170
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Overview

The goal of this set of lectures is to combine two seemingly unrelated topics:

e The study of Boolean functions, a field particularly active in computer
science
e Some models in statistical physics, mostly percolation

The link between these two fields can be loosely explained as follows: a percolation
configuration is built out of a collection of i.i.d. “bits” which determines whether
the corresponding edges, sites, or blocks are present or absent. In that respect, any
event concerning percolation can be seen as a Boolean function whose inputs are
precisely these “bits”.

Over the last 20 years, mainly thanks to the computer science community, a
very rich structure has emerged concerning the properties of Boolean functions.
The first part of this course will be devoted to a description of some of the main
achievements in this field.

In some sense one can say, although this is an exaggeration, that computer
scientists are mostly interested in the stability or robustness of Boolean functions.
As we will see later in this course, the Boolean functions which “encode” large
scale properties of critical percolation will turn out to be very sensitive to small
perturbations. This phenomenon corresponds to what we will call noise sensitiv-
ity. Hence, the Boolean functions one wishes to describe here are in some sense
orthogonal to the Boolean functions one encounters, ideally, in computer science.
Remarkably, it turns out that the tools developed by the computer science commu-
nity to capture the properties and stability of Boolean functions are also suitable
for the study of noise sensitive functions. This is why it is worth us first spending
some time on the general properties of Boolean functions.

One of the main tools needed to understand properties of Boolean functions is
Fourier analysis on the hypercube. Noise sensitivity will correspond to our Boolean
function being of “high frequency” while stability will correspond to our Boolean
function being of “low frequency”. We will apply these ideas to some other models
from statistical mechanics as well; namely, first passage percolation and dynamical
percolation.

Some of the different topics here can be found (in a more condensed form) in
[Gar10].
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NOISE SENSITIVITY AND PERCOLATION

Some standard notations

In the following table, f(n) and g(n) are any sequences of positive real numbers.

there exists some constant C' > 0 such that

F(n) = g(n) o<W oovnsa
g(n)

there exists some constant C' > 0 such that
f(n) <0(g(n)) f(n) <Cg(n), ¥n>1

there exists some constant C' > 0 such that
f(n) = Q(g(n)) f(n)>Cg(n), ¥n>1

£(n) = o(g(n)) tim L0 g

n=oe g(n)

~—




Part I. Boolean functions and key concepts
1. Boolean functions

DEFINITION I.1. A Boolean function is a function from the hypercube ), :=
{=1,1}" into either {—1,1} or {0,1}.

Q,, will be endowed with the uniform measure P = P* = (%5,1 + %61)‘3" and
E will denote the corresponding expectation. At various times, £2,, will be endowed
with the general product measure P, = P = ((1—p)d_1 +pd1)®" but in such cases
the p will be explicit. [E, will then denote the corresponding expectations.

An element of §2,, will be denoted by either w or w,, and its n bits by z1,...,z,
so that w = (z1,...,%,).

Depending on the context, concerning the range, it might be more pleasant to
work with one of {—1,1} or {0, 1} rather than the other and at some specific places
in these lectures, we will even relax the Boolean constraint (i.e. taking only two
possible values). In these cases (which will be clearly mentioned), we will consider
instead real-valued functions f : 2, — R.

A Boolean function f is canonically identified with a subset Ay of Q, via
Ay ={w: f(w) =1}

REMARK I.1. Often, Boolean functions are defined on {0, 1}" rather than ,, =
{=1,1}". This does not make any fundamental difference at all but, as we will see
later, the choice of {—1,1}" turns out to be more convenient when one wishes to
apply Fourier analysis on the hypercube.

2. Some Examples

We begin with a few examples of Boolean functions. Others will appear
throughout this part.

ExaMPLE 1 (Dictatorship).
DICT, (z1,...,2z,) := 21
The first bit determines what the outcome is.

ExaMPLE 2 (Parity).
n
PAR,, (z1,...,2p) := Hxl
i=1

This Boolean function tells whether the number of —1’s is even or odd.

These two examples are in some sense trivial, but they are good to keep in
mind since in many cases they turn out to be the “extreme cases” for properties
concerning Boolean functions.

The next rather simple Boolean function is of interest in social choice theory.

EXAMPLE 3 (Majority function). Let n be odd and define
MAJ, (z1,...,2y,) := sign(z x;) .
i=1

Following are two further examples which will also arise in our discussions.
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EXAMPLE 4 (Iterated 3-Majority function). Let n = 3* for some integer k.
The bits are indexed by the leaves of a rooted 3-ary tree (so the root has degree 3,
the leaves have degree 1 and all others have degree 4) with depth k. One iteratively
applies the previous example (with n = 3) to obtain values at the vertices at level
k—1, then level k—2, etc. until the root is assigned a value. The root’s value is then
the output of f. For example when k£ = 2, f(—1,1,1;1,—1,—-1;-1,1,—1) = —1.
The recursive structure of this Boolean function will enable explicit computations
for various properties of interest.

ExAMPLE 5 (Clique containment). If r = (}) for some integer n, then Q, can
be identified with the set of labelled graphs on n vertices. (z; is 1 iff the ith edge is
present.) Recall that a clique of size k of a graph G = (V| E) is a complete graph
on k vertices embedded in G.

Now for any 1 < k < (’2’) =r,let CLIQZ be the indicator function of the event
that the random graph G, defined by w € €Q,. contains a clique of size k. Choosing
k = k, so that this Boolean function is non-degenerate turns out to be a rather
delicate issue. The interesting regime is near k, ~ 2logy(n). See the exercises for
this “tuning” of k = k,,. It turns out that for most values of n, the Boolean function
CLIQfL is degenerate (i.e. has small variance) for all values of k. However, there is
a sequence of n for which there is some k = k,, for which CLIQ’:L is nondegerate.

3. Pivotality and Influence

This section contains our first fundamental concepts. We will abbreviate
{1,...,n} by [n].

DEFINITION 1.2. Given a Boolean function f from €, into either {—1,1} or
{0,1} and a variable i € [n], we say that i is pivotal for f for w if {f(w) # f(w®)}
where w' is w but flipped in the ith coordinate. Note that this event is measurable
with respect to {x;} 2.

DEFINITION 1.3. The pivotal set, P, for f is the random set of [n] given by

P(w) = Ps(w) :={i € [n] : i is pwotal for f for w}.

In words, it is the (random) set of bits with the property that if you flip the

bit, then the function output changes.

DEFINITION 1.4. The influence of the ith bit, 1;(f), is defined by
L;(f) :=P( i is pwotal for f ) =P>i € P).
Let also the influence vector, Inf(f), be the collection of all the influences: i.e.
{L(f)}iemn)-

In words, the influence of the ith bit, I;(f), is the probability that, on flipping
this bit, the function output changes.

DEFINITION L.5. The total influence, I(f), is defined by

I(f) = ZL-(f) = [Inf(f)[lx (=E(P])).

It would now be instructive to go and compute these quantities for examples
1-3. See the exercises.

Later, we will need the last two concepts in the context when our probability
measure is [P, instead. We give the corresponding definitions.
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DEFINITION L.6. The influence vector at level p, {I7(f)}ic[n), is defined by
I2(f) :=P,( i is pivotal for f ) =P,(i € P).
DEFINITION 1.7. The total influence at level p, I?(f), is defined by

(1) i= Y L) (= EylP)).

It turns out that the total influence has a geometric-combinatorial interpreta-
tion as the size of the so-called edge-boundary of the corresponding subset of the
hypercube. See the exercises.

REMARK I.2. Aside from its natural definition as well as its geometric in-
terpretation as measuring the edge-boundary of the corresponding subset of the
hypercube (see the exercises), the notion of total influence arises very naturally
when one studies sharp thresholds for monotone functions (to be defined in Part
IIT). Roughly speaking, as we will see in detail in Part ITI, for a monotone event A,
one has that dP, [A] /dp is the total influence at level p (this is the Margulis-Russo
formula). This tells us that the speed at which one changes from the event A “al-
most surely” not occurring to the case where it “almost surely” does occur is very
sudden if the Boolean function happens to have a large total influence.

4. The Kahn, Kalai, Linial Theorem

This section addresses the following question. Does there always exist some
variable ¢ with (reasonably) large influence? In other words, for large n, what is
the smallest value (as we vary over Boolean functions) that the largest influence
(as we vary over the different variables) can take on?

Since for the constant function all influences are 0, and the function which is
1 only if all the bits are 1 has all influences 1/2"~!, clearly one wants to deal with
functions which are reasonably balanced (meaning having variances not so close to
0) or alternatively, obtain lower bounds on the maximal influence in terms of the
variance of the Boolean function.

The first result in this direction is the following result. A sketch of the proof is
given in the exercises.

THEOREM 1.1 (Discrete Poincaré). If f is a Boolean function mapping €, into
{—1,1}, then

Var(f) < STL(f).
It follows that there exists some i such that

Li(f) = Var(f)/n.

This gives a first answer to our question. For reasonably balanced functions,
there is some variable whose influence is at least of order 1/n. Can we find a better
“universal” lower bound on the maximal influence? Note that for Example 3 all
the influences are of order 1/y/n (and the variance is 1). In terms of our question,
this universal lower bound one is looking for should lie somewhere between 1/n
and 1/y/n. The following celebrated result improves by a logarithmic factor on the
above Q(1/n) bound.
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THEOREM 1.2 ([KKL88]). There ezists a universal ¢ > 0 such that if f is a
Boolean function mapping €, into {0,1}, then there exists some i such that

L(f) > cVar(f)(logn) /n.

What is remarkable about this theorem is that this “logarithmic” lower bound
on the maximal influence turns out to be sharp! This is shown by the following
example by Ben-Or and Linial.

EXAMPLE 6 (Tribes). Partition [n] into subsequent blocks of length log,(n) —
log, (logy(n)) with perhaps some leftover debris. Define f = f, to be 1 if there
exists at least one block which contains all 1’s, and 0 otherwise.

It turns out that one can check that the sequence of variances stays bounded
away from 0 and that all the influences (including of course those belonging to the
debris which are equal to 0) are smaller than ¢(logn)/n for some ¢ < co. See the
exercises for this. Hence the above theorem is indeed sharp.

Our next result tells us that if all the influences are “small”, then the total
influence is large.

THEOREM 1.3 ([KKL88|). There exists a ¢ > 0 such that if f is a Boolean
function mapping Q, into {0,1} and 6 := max; L;(f) then

I(f) > ¢ Var(f)log(1/9).

Or equivalently,
1

Mnf(f)lo”

One can in fact talk about the influence of a set of variables rather than the
influence of a single variable.

[Mnf(f)]lx = ¢ Var(f) log

DEFINITION L1.8. Given S C [n], the influence of S, Is(f), is defined by
Is(f) :=P( f is not determined by the bits in S€).

It is easy to see that when S is a single bit, this corresponds to our previous
definition. The following is also proved in [KKL88]. We will not indicate the proof
of this result in these lecture notes.

THEOREM 1.4 ([KKL88|). Given a sequence f, of Boolean functions mapping
Q, into {0,1} such that 0 < inf, E,(f) < sup, E,(f) < 1 and any sequence a,
going to oo arbitrarily slowly, then there exists a sequence of sets S, C [n] such
that |S,| < apn/logn and Ig, (fn) = 1 as n — oo.

Theorems 1.2 and 1.3 will be proved in Part V.

5. Noise sensitivity and noise stability

This subsection introduces our second set of fundamental concepts.

Let w be uniformly chosen from €2,, and let w. be w but with each bit indepen-
dently “rerandomized” with probability e. This means that each bit, independently
of everything else, rechooses whether it is 1 or —1, each with probability 1/2. Note
that w. then has the same distribution as w.

The following definition is central for these lecture notes. Let m, be an in-
creasing sequence of integers and let f, : Q,, — {+1} or {0,1}.
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DEFINITION 1.9. The sequence {f,} is noise sensitive if for every e > 0,
(L) 1 E[fu (@) fa(we)] ~ Elfu (@) = 0.

Since f, just takes 2 values, this says that the random variables f,(w) and
fn(we) are asymptotically independent for € > 0 fixed and n large. We will see
later that (I.1) holds for one value of € € (0, 1) if and only if it holds for all such e.
The following notion captures the opposite situation where the two events above
are close to being the same event if € is small, uniformly in n.

DEFINITION 1.10. The sequence {f,} is noise stable if
lim sup P(fn(w) # fa(we)) = 0.

It is an easy exercise to check that a sequence {f,,} is both noise sensitive and
noise stable if and only it is degenerate in the sense that the sequence of variances
{Var(f,)} goes to 0. Note also that a sequence of Boolean functions could be
neither noise sensitive nor noise stable (see the exercises).

It is also an easy exercise to check that Example 1 (dictator) is noise stable and
Example 2 (parity) is noise sensitive. We will see later, when Fourier analysis is
brought into the picture, that these examples are the two opposite extreme cases.
For the other examples, it turns out that Example 3 (Majority) is noise stable,
while Examples 4-6 are all noise sensitive. See the exercises. In fact, there is
a deep theorem (see [MOO10]) which says in some sense that, among all low
influence Boolean functions, Example 3 (Majority) is the stablest.

In Figure 1.1, we give a slightly impressionistic view of what “noise sensitivity”
is.

6. Benjamini, Kalai and Schramm noise sensitivity Theorem

The following is the main theorem concerning noise sensitivity.

THEOREM L5 ([BKS99]). If
nglzhgn)? =0,
k

then {fn} is noise sensitive.

REMARK 1.3. The converse is clearly false as shown by Example 2. However,
it turns out that the converse is true for so-called monotone functions (see the
next part for the definition of this) as we will see in Part IV.

This theorem will allow us to conclude noise sensitivity of many of the examples
we have introduced in this first part. See the exercises. This theorem will also be
proved in Part V.

7. Percolation crossings: our final and most important example

We have saved our most important example to the end. This set of notes would
not be being written if it were not for this example and for the results that have
been proved for it.

Let us consider percolation on Z? at the critical point p.(Z%) = 1/2. (See
Part II for a fast review on the model.) At this critical point, there is no infinite
cluster, but somehow clusters are ‘large’ (there are clusters at all scales). This can
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FIGURE I.1. Let us consider the following “ezperiment”: take a
bounded domain in the plane, say a rectangle, and consider a mea-
surable subset A of this domain. What would be an analogue of
the above definitions of being noise sensitive or noise stable in this
case? Start by sampling a point z uniformly in the domain ac-
cording to Lebesgue measure. Then let us apply some noise to this
position x so that we end up with a new position .. One can
think of many natural “noising” procedures here. For example, let
. be a uniform point in the ball of radius € around x, conditioned
to remain in the domain. (This is not quite perfect yet since this
procedure does not exactly preserve Lebesgue measure, but let’s
not worry about this.) The natural analogue of the above defini-
tions is to ask whether 14(z) and 14(z.) are decorrelated or not.

Question: According to this analogy, discuss the stability versus
sensitivity of the sets A sketched in pictures (a) to (d) ? Note
that in order to match with definitions 1.9 and I.10, one should
consider sequences of subsets {A,,} instead, since noise sensitivity
is an asymptotic notion.

59

be seen using duality or with the RSW Theorem II.1. In order to understand the
geometry of the critical picture, the following large-scale observables turn out to be
very useful: Let €2 be a piecewise smooth domain with two disjoint open arcs 0
and Jo on its boundary 9€2. For each n > 1, we consider the scaled domain nf2. Let
A, be the event that there is an open path in w from nd; to nds which stays inside
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nf). Such events are called crossing events. They are naturally associated with
Boolean functions whose entries are indexed by the set of edges inside n{) (there
are O(n?) such variables).

For simplicity, let us consider the particular case of rectangle crossings:

EXAMPLE 7 (Percolation crossings).

‘ ‘ Let a,b > 0 and let us consider

4‘ the rectangle [0,a - n] x [0,b - n].
b-n ’_‘

The left to right crossing event
if there is a left-

corresponds to the Boolean func-
j fo(w) == right crossing

tion f, : {—1,1}°M"" - {0,1}
a-n 0  otherwise

defined as follows:

[

We will later prove that this sequence of Boolean functions {f,,} is noise sen-
sitive. This means that if a percolation configuration w ~ P, _; /5 is given to us,
one cannot predict anything about the large scale clusters of the slightly perturbed
percolation configuration w, (where only an e-fraction of the edges have been re-
sampled).

REMARK I[.4. The same statement holds for the above more general crossing
events (i.e. in (nf), ndi,nds)).

Exercise sheet of Part 1

EXERCISE 1.1. Determine the pivotal set, the influence vector and the total
influence for Examples 1-3.

EXERCISE [.2. Determine the influence vector for Example 4 and Example 6.

EXERCISE 1.3. Show that in Example 6 the variances stay bounded away from
0. If the blocks are taken to be of size log, n instead, show that the influences would
all be of order 1/n. Why does this not contradict the KKL Theorem?

EXERCISE 1.4. ,, has a graph structure where two elements are neighbors if
they differ in exactly one location. The edge boundary of a subset A C €,
denoted by dg(A), is the set of edges where exactly one of the endpoints is in A.

Show that for any Boolean function, I(f) = [0g(Af)|/2" 1.

EXERCISE 1.5. Prove Theorem I.1. This is a type of Poincaré inequality. Hint:
use the fact that Var(f) can be written 2P|[f(w) # f(@)], where w,& are indepen-
dent and try to “interpolate” from w to w.

EXERCISE 1.6. Show that Example 3 (Majority) is noise stable.

EXERCISE 1.7. Prove that Example 4 (iterated 3-majority) is noise sensitive
directly without relying on Theorem I.5. Hint: use the recursive structure of this
example in order to show that the criterion of noise sensitivity is satisfied.

EXERCISE 1.8. Prove that Example 6 (tribes) is noise sensitive directly without
using Theorem I.5. Here there is no recursive structure, so a more “probabilistic”
argument is needed.
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PROBLEM 1.9. Recall Example 5 (clique containment).

(a) Prove that when k, = o(n'/?), CLIQF" is asymptotically noise sensitive.
Hint: start by obtaining an upper bound on the influences (which are
identical for each edge) using Exercise I.4. Conclude by using Theorem
L.5.

(b) Open exercise: Find a more direct proof of this fact (in the spirit of exercise
1.8) which would avoid using Theorem L.5.

As pointed out after Example 5, for most values of k = k,,, the Boolean func-
tion CLIQZ’"‘ becomes degenerate. The purpose of the rest of this problem is to
determine what the interesting regime is where CLIQQ" has a chance of being
non-degenerate (i.e. variance bounded away from 0). The rest of this exercise is
somewhat tangential to the course.

(c) 1<k (g) = r, what is the expected number of cliques in G, w € €,
?

(d) Explain why there should be at most one choice of k = k,, such that the
variance of CLIQ’:L" remains bounded away from 0 ? (No rigorous proof
required.) Describe this choice of k,,. Check that it is indeed in the regime
2logy(n).

(e) Note retrospectively that in fact, for any choice of k = ky, CLIQZ” is
noise sensitive.

EXERCISE 1.10. Deduce from Theorem I.5 that both Example 4 (iterated 3-
majority) and Example 6 (tribes) are noise sensitive.

ExERCISE 1.11. Give a sequence of Boolean functions which is neither noise
sensitive nor noise stable.

EXERCISE 1.12. In the sense of Definition 1.8, show that for the majority func-
tion and for fixed €, any set of size n'/?*¢ has influence approaching 1 while any
set of size n'/2~¢ has influence approaching 0.

PrOBLEM 1.13. Do you think a “generic” Boolean function would be stable
or sensitive? Justify your intuition. Show that if f,, was a “randomly” chosen
function, then a.s. {f,,} is noise sensitive.



Part II. Percolation in a nutshell

In order to make these lecture notes as self-contained as possible, we review
various aspects of the percolation model and give a short summary of the main
useful results.

For a complete account of percolation, see [Gri99] and for a study of the
2-dimensional case, which we are concentrating on here, see the lecture notes
[Wer07].

1. The model

Let us briefly start by introducing the model itself.

We will be concerned mainly with two-dimensional percolation and we will
focus on two lattices: Z? and the triangular lattice T. (All the results stated for Z?
in these lecture notes are also valid for percolations on “reasonable” 2-d translation
invariant graphs for which the RSW Theorem (see the next section) is known to
hold at the corresponding critical point.)

Let us describe the model on the graph Z? which has Z? as its vertex set
and edges between vertices having Euclidean distance 1. Let E? denote the set of
edges of the graph Z2. For any p € [0,1] we define a random subgraph of Z? as
follows: independently for each edge e € E?, we keep this edge with probability p
and remove it with probability 1 — p. Equivalently, this corresponds to defining a
random configuration w € {—1, 1}“22 where, independently for each edge e € E2, we
declare the edge to be open (w(e) = 1) with probability p or closed (w(e) = —1) with
probability 1 — p. The law of the so-defined random subgraph (or configuration) is
denoted by P,,.

Percolation is defined similarly on the triangular grid T, except that on this
lattice we will instead consider site percolation (i.e. here we keep each site with
probability p). The sites are the points Z + €'™/37Z so that neighboring sites have
distance one from each other in the complex plane.

2. Russo-Seymour-Welsh

We will often rely on the following celebrated result known as the RSW The-
orem.

THEOREM IL.1 (RSW). (see [Gri99]) For percolation on Z? at p = 1/2, one
has the following property concerning the crossing events. Let a,b > 0. There exists
a constant ¢ = c(a,b) > 0, such that for any n > 1, if A,, denotes the event that
there is a left to right crossing in the rectangle ([0,a-n] x [0,b-n]) N Z2, then

C<]P)1/2|:An} <l-c.

In other words, this says that the Boolean functions f, defined in Example 7 of
Part I are non-degenerate.

The same result holds also in the case of site-percolation on T (also at p = 1/2).
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F1cure II.1. Pictures (by Oded Schramm) representing two per-
colation configurations respectively on T and on Z? (both at
p = 1/2). The sites of the triangular grid are represented by
hexagons.

The parameter p = 1/2 plays a very spe-

cial role for the two models under consid- ll |: P | | | |

eration. Indeed, there is a natural way
to associate to each percolation configu- | |
ration w, ~ P, a dual configuration wy- |_|

on the so-called dual graph. In the case J— | I —L

T
L

of Z?2, its dual graph can be realized as
Z? + (%, 3). In the case of the triangular [—

lattice, T* = T. The figure on the right |
illustrates this duality for percolation on | :I_
Z2. Tt is easy to see that in both cases

p* = 1—p. Hence, at p = 1/2, our two | | |— I:I |:

models happen to be self-dual.
This duality has the following very important consequence. For a domain in T

with two specified boundary arcs, there is a ’left-right’ crossing of white hexagons
if and only if there is no 'top-bottom’ crossing of black hexagons.

3. Phase transition

In percolation theory, one is interested in large scale connectivity properties of
the random configuration w = w,. In particular, as one raises the level p above a
certain critical parameter p.(Z?), an infinite cluster (almost surely) emerges. This
corresponds to the well-known phase transition of percolation. By a famous theorem

of Kesten this transition takes place at p.(Z?) = % On the triangular grid, one
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also has p.(T) = 1/2. The event {0 <2~ co} denotes the event that there exists a
self-avoiding path from 0 to oo consisting of open edges.

This phase transition can be measured with 4 bz (p)
the density function 0z:(p) = P,(0 >
o0) which encodes important properties of
the large scale connectivities of the random
configuration w: it corresponds to the den-
sity averaged over the space Z2 of the (al-
most surely unique) infinite cluster. The
shape of the function 672 is pictured on the p
right (notice the infinite derivative at p.). 1/2

\J

4. Conformal invariance at criticality and SLE processes

It has been conjectured for a long time that percolation should be asymptoti-
cally conformally invariant at the critical point. This should be understood in the
same way as the fact that a Brownian motion (ignoring its time-parametrization)
is a conformally invariant probabilistic object. One way to picture this conformal
invariance is as follows: consider the ‘largest’ cluster Cs surrounding 0 in §Z2 N D
and such that Cs N 9D = (). Now consider some other simply connected domain €
containing 0. Let Cs be the largest cluster surrounding 0 in a critical configuration
in 672N Q and such that C5 NN = (). Now let ¢ be the conformal map from D to
Q such that ¢(0) = 0 and ¢/(0) > 0. Even though the random sets ¢(C5) and Cs
do not lie on the same lattice, the conformal invariance principle claims that when
0 = o(1), these two random clusters are very close in law.

Over the last decade, two major breakthroughs have enabled a much better
understanding of the critical regime of percolation:

e The invention of the SLE processes by Oded Schramm([Sch00]).
e The proof of conformal invariance on T by Stanislav Smirnov ([Smi01]).

The simplest precise statement concerning conformal invariance is the following.
Let 2 be a bounded simply connected domain of the plane and let A, B, C' and D be
4 points on the boundary of ) in clockwise order. Scale the hexagonal lattice T' by
1/n and perform critical percolation on this scaled lattice. Let P(Q, A, B, C, D, n)
denote the probability that in the 1/n scaled hexagonal lattice there is an open path
of hexagons in €2 going from the boundary of Q2 between A and B to the boundary
of Q between C' and D.

THEOREM I1.2. (Smirnov, [SmiO1])
(i) For all Q and A, B,C and D as above,
P(Q, A, B,C,D,00) := lim P(Q, A, B,C,D,n)

n—oo

exists and is conformally invariant in the sense that if [ is a conformal mapping,
then P(Qv A,B,C,D,0) = P(f(Q)7 f(A)a f(B), f(C), f(D)a 00).

(i) If Q is an equilateral triangle (with side lengths 1), A, B and C' the three corner
points and D on the line between C and A having distance x from C, then the
above limiting probability is x. (Observe, by conformal invariance, that this gives
the limiting probability for all domains and 4 points.)
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The first half was conjectured by M. Aizenman while J. Cardy conjectured the
limit for the case of rectangles using the four corners. In this case, the formula is
quite complicated involving hypergeometric functions but Lennart Carleson real-
ized that this is then equivalent to the simpler formula given above in the case of
triangles.

Note that, on Z? at p. = 1/2, proving the conformal invariance is still a chal-
lenging open problem.

We will not define the SLE processes in these notes. See the lecture notes by
Vincent Beffara and references therein. The illustration below explains how SLE
curves arise naturally in the percolation picture.

This celebrated picture (by
Oded Schramm) represents
an exploration path on
the triangular lattice. This
exploration path,  which
turns right when encoun-
tering black hexagons and
left when encountering white
ones, asymptotically con-
verges towards SLEg (as the
mesh size goes to 0).

5. Critical exponents

The proof of conformal invariance combined with the detailed information given
by the SLEg process enables one to obtain very precise information on the critical
and near-critical behavior of site percolation on T. For instance, it is known that
on the triangular lattice the density function O1(p) has the following behavior near

pe=1/2:
0(p) = (p—1/2)%/36+o0)

when p — 1/2+ (see [Wer07]).

In the rest of these lectures, we will often rely on three types of percolation
events: namely the one-arm, two-arm and four-arm events. They are defined as
follows: for any radius R > 1, let AL be the event that the site 0 is connected to
distance R by some open path (one-arm). Next, let A% be the event that there are
two “arms” of different colors from the site 0 (which itself can be of either color)
to distance R away. Finally, let A% be the event that there are four “arms” of
alternating color from the site 0 (which itself can be of either color) to distance R
away (i.e. there are four connected paths, two open, two closed from 0 to radius R
and the closed paths lie between the open paths). See Figure I1.2 for a realization
of two of these events.

It was proved in [LSWO02] that the probability of the one-arm event decays as
follows:

P[Ag] == a1(R) = R—asto(1)
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FI1GURE 11.2. A realization of the one-arm event is pictured on the
top; the four-arm event is pictured on the bottom.

For the two-arms and four-arms events, it was proved by Smirnov and Werner in
[SWO01] that these probabilities decay as follows:

P[A%] := as(R) = R~ +oW)

and )
P[A}] == au(R) = R-i+°W),

REMARK II.1. Note the o(1) terms in the above statements (which means
of course goes to zero as R — 00). Its presence reveals that the above critical
exponents are known so far only up to ‘logarithmic’ corrections. It is conjectured
that there are no such ‘logarithmic’ corrections, but at the moment one has to deal
with their possible existence. More specifically, it is believed that for the one-arm
event,
a1(R) =< R
where =< means that the ratio of the two sides is bounded away from 0 and oo
uniformly in R; similarly for the other arm events.

0



NOISE SENSITIVITY AND PERCOLATION 67

The four exponents we encountered concerning r, ay, as and ay (i.e. %, 4%,

i and %) are known as critical exponents.

The four-arm event is clearly of particular relevance to us in these lectures.
Indeed, if a point z is in the ‘bulk’ of a domain (n€), nd;,nds), the event that this
point is pivotal for the Left-Right crossing event A,, is intimately related to the

four-arm event. See Part VI for more details.
6. Quasi-multiplicativity

Finally, let us end this overview by a type of scale invariance property of these
arm events. More precisely, it is often convenient to “divide” these arm events
into different scales. For this purpose, we introduce ay(r, R) (with » < R) to be
the probability that the four-arm event holds from radius r to radius R (a;(r, R),
as(r, R) and as(r, R) are defined analogously). By independence on disjoint sets, it
is clear that if 7y < ro < r3 then one has a4(r1,73) < ay(r1,r2) ag(ra,r3). A very
useful property known as quasi-multiplicativity claims that up to constants,
these two expressions are the same (this makes the division into several scales
practical). This property can be stated as follows.

PRrROPOSITION I1.3 (quasi-multiplicativity, [Kes87]). For any r1 < rq <rs,
one has (both for Z* and T percolations)

ay(r1,7m3) < aq(ri,r2) aa(ra, r3) -
See [Wer07, Nol09, SS10b] for more details. Note also that the same prop-
erty holds for the one-arm event. However, this is much easier to prove: it is an easy
consequence of the RSW Theorem I1.1 and the so-called FKG inequality which says

that increasing events are positively correlated. The reader might consider doing
this as an exercise.



Part III. Sharp thresholds and the critical point
for 2-d percolation
1. Monotone functions and the Margulis-Russo formula

The class of so-called monotone functions plays a very central role in this sub-
ject.

DEFINITION III.1. A function f is monotone if x <y (meaning z; < y; for
each i) implies that f(x) < f(y). An event is monotone if its indicator function is
monotone.

Recall that when the underlying variables are independent with 1 having prob-
ability p, we let P, and E,, denote probabilities and expectations.

It is fairly obvious that for f monotone, E,(f) should be increasing in p. The
Margulis-Russo formula gives us an explicit formula for this (nonnegative) deriva-
tive.

THEOREM III.1. Let A be an increasing event in §,. Then

(B, (A)/dp = S T(A)

Proof. Let us allow each variable z; to have its own parameter p; and let P, .,
and E,, ., be the corresponding probability measure and expectation. It suffices
to show that

O(B(py,...on) (A))/Ops = T (4)
where the definition of this latter term is clear. WLOG, take ¢ = 1. Now

Ppropn(A) = Py p, (AN{1 € Pa}) + Py, p, (AN{1 € Pa}).

The event in the first term is measurable with respect to the other variables and
hence the first term does not depend on p; while the second term is

P1Pp,. p. ({1 € Pa})
since AN{1 € P} is the event {z1 =1} N {1 € P4} O

2. KKL away from the uniform measure case

Recall now Theorem 1.2. For sharp threshold results, one needs lower bounds
on the total influence not just at the special parameter 1/2 but at all p.

The following are the two main results concerning the KKL result for general
p that we will want to have at our disposal. The proofs of these theorems will be
outlined in the exercises in Part V.

THEOREM II1.2 ([BKK™92]). There exists a universal ¢ > 0 such that for any
Boolean function f mapping €, into {0,1} and, for any p, there exists some i such
that

I7(f) > ¢Var,(f)(logn)/n

THEOREM II1.3 (BKK™92]). There exists a universal ¢ > 0 such that for any
Boolean function f mapping Q,, into {0,1} and for any p,

IP(f) > cVar,(f)log(1/6,)
where §, := max; I (f).

68
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3. Sharp thresholds in general : the Friedgut-Kalai Theorem

THEOREM IIL.4 ([FK96]). There exists a ¢c; < 0o such that for any monotone
event A on n variables where all the influences are the same, if P, (A) > ¢, then

IPlerq lolgo(gl{l(2e)) (A) >1—e.

REMARK III.1. This says that for fixed e, the probability of A moves from
below € to above 1 — € in an interval of p of length of order at most 1/logn. The
assumption of equal influences holds for example if the event is invariant under
some transitive action, which is often the case. For example, it holds for Example 4
(iterated 3-majority) as well as for any graph property in the context of the random
graphs G(n, p).

Proof. Theorem III.2 and all the influences being the same tell us that
IP(A) > cmin{P,(A),1 —P,(A)}logn
for some ¢ > 0. Hence Theorem III.1 yields
d(10g(B,(A)))/dp > clogn

if P,(A) < 1/2. Letting px := p; + locgl(jg/iﬁ), an easy computation (using the
fundamental theorem of calculus) yields

log (P (A)) > log(1/2).

Next, if P,(A) > 1/2, then
d(log(1 —Pp(A)))/dp < —clogn
from which another application of the fundamental theorem yields
log(1 — Py (A)) < —log(1/e)

log(1/2¢)
clog(n)

where p™* := p* + . Letting ¢; = 2/c gives the result. |

1

4. The critical point for percolation for Z? and T is 5

THEOREM IIL.5 ([Kes80]).

pc(ZQ) =p.(T) =

Proof. We first show that 6(1/2) = 0. Let Ann(¢) := [—3¢,3¢]\[—¢, {] and C} be
the event that there is a circuit in Ann(4%)+1/2 in the dual lattice around the origin
consisting of closed edges. The C}’s are independent and RSW and FKG show that
for some ¢ > 0, Py /2(Cx) > c for all k. This gives that Py (Cy infinitely often) = 1
and hence 6(1/2) = 0.

The next key step is a finite size criterion which implies percolation and which
is interesting in itself. We outline its proof afterwards.

N

ProPOSITION IIL.6. (Finite size criterion) Let J,, be the event that there is a
crossing of a 2n x (n — 2) box. For any p, if there exists an n such that

then a.s. there exists an infinite cluster.
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Assume now that p, = 1/2 + 6 with § > 0. Let I = [1/2,1/2+ 6/2]. Since
0(1/2+46/2) = 0, it is easy to see that the maximum influence over all variables
and over all p € I goes to 0 with n since being pivotal implies the existence of an
open path from a neighbor of the given edge to distance n/2 away. Next, by RSW,
inf,, Py /2(Jn) > 0. If for all n, Py /545/2(Jn) < .98, then Theorems III.1 and II1.3
would allow us to conclude that the derivative of P,(.J,,) goes to oo uniformly on I
as n — 00, giving a contradiction. Hence Py /945/2(Jn) > .98 for some n implying,
by Proposition II1.6, that 0(1/2 4 6/2) > 0, a contradiction. O

Outline of proof of Proposition III.6.

The first step is to show that for any p and for any € < .02, if P,(J,) > 1 — ¢,
then Pp,(J2,) > 1 —€/2. The idea is that by FKG and “glueing” one can show that
one can cross a 4n x (n—2) box with probability at least 1 —5¢ and hence one obtains
that P, (J2,) > 1 — €/2 since, for this event to fail, it must fail in both the top and
bottom halves of the box. It follows that if we place down a sequence of (possibly
rotated and translated) boxes of sizes 2"*1 x 2" anywhere, then with probability
1, all but finitely many are crossed. Finally, one can place these boxes down in an
intelligent way such that crossing all but finitely many of them necessarily entails
the existence of an infinite cluster (see Figure I11.1). O

~

FiGcure III.1

5. Further discussion

The Margulis-Russo formula is due independently to Margulis [Mar74] and
Russo [Rus81].

The idea to use the results from KKL to show that p. = 1/2 is due to Bollobds
and Riordan (see [BRO06]). It was understood much earlier that obtaining a sharp
threshold was the key step. Kesten (see [Kes80]) showed the necessary sharp
threshold by obtaining a lower bound on the expected number of pivotals in a
hands on fashion. Russo (see [Rus82]) had developed an earlier weaker, more
qualitative, version of KKL and showed how it also sufficed to show that p. = 1/2.



NOISE SENSITIVITY AND PERCOLATION 71

Exercise sheet of Part 111

EXERCISE III.1. Develop an alternative proof of the Margulis-Russo formula
using classical couplings.

EXERCISE II1.2. Study, as best as you can, what the “threshold windows” are
(i.e. where and how long does it take to go from a probability of order e to a
probability of order 1 — ¢) in the following examples:

(a) for DICT,,

(b) for MAJ,

(c) for the tribes example

(d) for the iterated majority example.

Do not rely on [KKL88] type of results, but instead do hands-on computations
specific to each case.

EXERCISE I11.3. Write out the details of the proof of Proposition III.6.

ProBLEM I11.4 (What is the “sharpest” monotone event ?). Show that among
all monotone Boolean functions on €2,,, MAJ,, is the one with largest total influence
(at p=1/2).

Hint: Use the Margulis-Russo formula.

EXERCISE II1.5. A consequence of Problem III.4 is that the total influence at
p = 1/2 of any monotone function is at most O(y/n). A similar argument shows
that for any p, there is a constant C), so that the total influence at level p of any
monotone function is at most Cj/n. Prove nonetheless that there exists ¢ > 0 such
for for any n, there exists a monotone function f = f,, and a p = p,, so that the
total influence of f at level p is at least cn.

ExERCISE IIL.6. Find a monotone function f : Q,, — {0, 1} such that d(E,(f))/dp
is very large at p = 1/2, but nevertheless there is no sharp threshold for f (this
means that a large total influence at some value of p is not in general a sufficient
condition for sharp threshold).



Part IV. Fourier analysis of Boolean functions
(first facts)

1. Discrete Fourier analysis and the energy spectrum

It turns out that in order to understand and analyze the concepts previously
introduced, which are in some sense purely probabilistic, a critical tool is Fourier
analysis on the hypercube.

Recall that we consider our Boolean functions as functions from the hyper-
cube €, := {=1,1}" into {—1,1} or {0, 1} where Q,, is endowed with the uniform
measure P = P" = (16_1 + 16,)®"™.

In order to apply Fourier analysis, the natural setup is to enlarge our discrete
space of Boolean functions and to consider instead the larger space L?({—1,1}")
of real-valued functions on €2,, endowed with the inner product:

(f,9) = Z 27" f(xry ey xn)g(@n, oy )

T1yeeym
= E[fg] forall f,g € LA (),

where E denotes expectation with respect to the uniform measure PP on §2,,.
For any subset S C {1,2...,n}, let xg be the function on {—1,1}" defined for
any = (z1,...,T,) by

(IV.1) xs(z) := H X .

ies
(So xg = 1.) It is straightforward (check this!) to see that this family of 2" functions
forms an orthonormal basis of L?({—1,1}"). Thus, any function f on €, (and a
fortiori any Boolean function f) can be decomposed as

F= > fSxs

SC{1,...,n}

where {f(5)} scn] are the so-called Fourier coefficients of f. They are also some-
times called the Fourier-Walsh coefficients of f and they satisfy

£(S) == (f,xs) = E[fxs].

Note that f(@) is the average E[f]. As in classical Fourier analysis, if f is some
Boolean function, its Fourier(-Walsh) coefficients provide information on the “reg-
ularity” of f. We will sometimes use the term spectrum when referring to the set
of Fourier coefficients.

Of course one may find many other orthonormal bases for L?({—1,1}"), but
there are many situations for which this particular set of functions {xs}scq1,....n}
arises naturally. First of all there is a well-known theory of Fourier analysis on
groups, a theory which is particularly simple and elegant on Abelian groups (thus
including our special case of {—1,1}", but also R/Z, R and so on). For Abelian
groups, what turns out to be relevant for doing harmonic analysis is the set G of
characters of G (i.e. the group homomorphisms from G to C*). In our case of G =
{—1,1}", the characters are precisely our functions yg indexed by S C {1,...,n}
since they satisfy xs(z-y) = xs(x)xs(y). This background is not however needed
and we won’t talk in these terms.
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These functions also arise naturally if one performs simple random walk on
the hypercube (equipped with the Hamming graph structure), since they are the
eigenfunctions of the corresponding Markov chain (heat kernel) on {—1,1}". Last
but not least, we will see later in this part that the basis {xs} turns out to be
particularly well adapted to our study of noise sensitivity.

We introduce one more concept here without motivation; it will be very well
motivated later on in the chapter.

DEFINITION IV.1. For any real-valued function f : Q,, — R, the energy spec-
trum E; is defined by

Ep(m):= Y f(S)? Vme{l,...,n}.

|S|=m

2. Examples

First note that, from the Fourier point of view, Dictator and Parity have simple
representations since they are x1 and x|, respectively. Each of the two correspond-
ing energy spectra are trivially concentrated on 1 point, namely 1 and n.

For Example 3, the Majority function, Bernasconi explicitly computed the
Fourier coefficients and when n goes to infinity, one ends up with the following
asymptotic formula for the energy spectrum:

EMAJn(m) = Z RT.A\J”(S)Q =
|S|=m

#(E) +O(m/n) if misodd,
2
0 if m is even.
(The reader may think about why the “even” coefficients are 0.) See [O’DO03|
for a nice overview and references therein concerning the spectral behavior of the
majority function.

A —
Z\S\:m MAJ71(S)2

e e __m
3 95 n

F1GURE IV.1. Shape of the energy spectrum for the Majority function

Picture IV.1 represents the shape of the energy spectrum of MAJ,,: its spec-
trum is concentrated on low frequencies, which is typical of stable functions.
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3. Noise sensitivity and stability in terms of the energy spectrum

In this section, we describe the concepts of noise sensitivity and noise stability
in terms of the energy spectrum.

The first step is to note that, given any real-valued function f : Q, — R,
the correlation between f(w) and f(w.) is nicely expressed in terms of the Fourier
coeflicients of f as follows:

E[f(@)fwd)] = Q:f&X& )Q:f&X&%»]
Zf S)’Elxs(w) xs(we)]
Zf IS\

Moreover, we immediately obtain

(IV.2)

(IV.3) Cov(f(w Z Ef(m)(1—¢)™

Note that either of the last two expressions tell us that Cov(f(w), f(w.)) is
nonnegative and decreasing in €. Also, we see that the “level of noise sensitivity”
of a Boolean function is naturally encoded in its energy spectrum. It is now an an
easy exercise to prove the following proposition.

ProposITION IV.1 ([BKS99]). A sequence of Boolean functions
o {=1,1}" — {0, 1} is noise sensitive if and only if, for any k > 1,

k k

Y D [a8)P =) Ep(m) — 0.
m=1 \S’|:m m=1

Moreover, (I.1) holding does not depend on the value of € € (0,1) chosen.

There is a similar spectral description of noise stability which, given (IV.2), is
an easy exercise.

ProOPOSITION IV.2 ([BKS99]). A sequence of Boolean functions
n o {—1,1}™ — {0,1} is noise stable if and only if, for any € > 0, there exists k
such that for all n,

o0 o0
D 2 fal9)P= ) B (m) <e
m=k |S|=m m=k
So, as argued in the introduction, a function of “high frequency” will be sensi-
tive to noise while a function of “low frequency” will be stable.
4. Link between the spectrum and influence
In this section, we relate the notion of influence with that of the spectrum.

ProrosiTION IV.3. If f: Q, — {0,1}, then for all k,

W) =4 f(5)

S:kes
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and
I(f) =4 _|S|f(5)*.
s
Proof. If f: 0, — R, we introduce the functions
Q, — R
Vif: { v o fw) - flonw) for all k € [n],

where o}, acts on €2, by flipping the &' bit (thus V. f corresponds to a discrete
derivative along the k*® bit).
Observe that

Vif@) =Y f(9)xsw) = xs(oxw))] = > 2f(5) xs(w),
SC{L,....n} SC{1,....n},keS

from which it follows that for any S C [n],

(IV.4) ﬁc(s) - { gf(S) gt}]iefwfse

Clearly, if f maps into {0, 1}, then I.(f) := ||V« f|l1 and since Vi f takes values
in {—1,0,1} in this case, we have ||Vif|l1 = ||V f||3. Applying Parseval to Vi f
and using (IV.4), one obtains the first statement of the proposition. The second is
obtained by summing over k£ and exchanging the order of summation. (I

REMARK IV.1. If f maps into {—1, 1} instead, then one can easily check that
L.(f) = ZS:kES f(8)? and I(f) = D5 1S|£(S)2.

5. Monotone functions and their spectrum

It turns out that for monotone functions, there is an alternative useful spectral
description of the influences.

ProposITION IV 4. If f: Q, — {0,1} is monotone, then for all k

L.(f) = 2f({k})

If f maps into {—1,1} instead, then one has that L(f) = f({k}). (Observe that
Parity shows that the assumption of monotonicity is needed here; note also that the
proof shows that the weaker result with = replaced by > holds in general.)

Proof. We prove only the first statement; the second is proved in the same way.

FURY = E[fxm] =E[FxmIngey] +E[fxp Iner)]
It is easily seen that the first term is 0 (independent of whether f is monotone or
not) and the second term is # due to monotonicity. ]

REMARK IV.2. This tells us that, for monotone functions mapping into {—1, 1},
the sum in Theorem 1.5 is exactly the total weight of the level 1 Fourier coefficients,
that is, the energy spectrum at 1, Ey(1). (If we map into {0,1} instead, there is
simply an extra irrelevant factor of 4.) So Theorem 1.5 and Propositions IV.1 and
IV.4 imply that for monotone functions, if the energy spectrum at 1 goes to 0, then
this is true for any fixed level. In addition, Propositions IV.1 (with k£ = 1) and IV .4
easily imply that for monotone functions the converse of Theorem 1.5 holds.
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Another application of Proposition IV.4 gives a general upper bound for the
total influence for monotone functions.

ProrosiTION IV.5. If f: Q, — {—1,1} or {0,1} is monotone, then
I(f) < V/n.

Proof. If the image is {—1,1}, then by Proposition IV.4, we have
(/)= L) =) (k).
k=1 k=1
By the Cauchy-Schwarz inequality, this is at most (Y7, f2({k}))/2\/n. By Par-
seval’s formula, the first term is at most 1 and we are done. If the image is {0, 1},
the above proof can easily be modified or one can deduce it from the first case since
the total influence of the corresponding +1-valued function is the same. O

REMARK IV.3. The above result with some universal ¢ on the right hand side
follows (for odd n) from an earlier exercise showing that Majority has the largest
influence together with the known influences for Majority. However, the above
argument yields a more direct proof of the \/n bound.

Exercise sheet of Part IV

EXERCISE IV.1. Prove the discrete Poincaré inequality, Theorem 1.1, using the
spectrum.

EXERCISE 1V.2. Compute the Fourier coefficients for the indicator function
that there are all 1’s.

EXERCISE IV.3. Show that all even size Fourier coefficients for the Majority
function are 0. Can you extend this result to a broader class of Boolean functions?

EXERCISE IV.4. For the Majority function MAJ,,, find the limit (as the num-
ber of voters n goes to infinity) of the following quantity (total weight of the level-3
Fourier coefficients)

Emas, (3) = > MAJ,(S)*.
|S|=3

EXERCISE IV.5. Let f, be a sequence of Boolean functions which is noise
sensitive and g,, be a sequence of Boolean functions which is noise stable. Show
that f,, and g, are asymptotically uncorrelated.

EXERCISE IV.6 (Another equivalent definition of noise sensitivity). Assume
that {A,} is a noise sensitive sequence. (This of course means that the indicator
functions of these events is a noise sensitive sequence.)

(a) Show for each € > 0, we have that P[we €A, | w} — P[An] approaches 0
in probability.
Hint: use the Fourier representation.

(b) Can you show the above implication without using the Fourier represen-
tation?

(c) Discuss if this implication is surprising.

(d) Show that the condition in part (a) implies that the sequence is noise
sensitive directly without the Fourier representation.
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EXERCISE IV.7. How does the spectrum of a generic Boolean function look?
Use this to give an alternative answer to the question asked in problem 1.13 of Part
L.

EXERCISE IV.8. (Open exercise). For Boolean functions, can one have ANY
(reasonable) shape of the energy spectrum or are there restrictions?

For the next exercises, we introduce the following functional which measures
the stability of Boolean functions. For any Boolean function f : ,, — {—1,1}, let

Syt e P[f(w) £ f(wd)] .
Obviously, the smaller Sy is, the more stable f is.

EXERCISE IV.9. Express the functional S¢ in terms of the Fourier expansion
of f.

By a balanced Boolean function we mean one which takes its two possible
values each with probability 1/2.

EXERCISE 1V.10. Among balanced Boolean functions, does there exist some
function f* which is “stablest” in the sense that for any balanced Boolean function
f and any € > 0,

S+ (€) <Sy(e)?
If yes, describe the set of these extremal functions and prove that these are the only
ones.

PRrROBLEM IV.11. In this problem, we wish to understand the asymptotic shape
of the energy spectrum for MAJ,,.

(a) Show that for all € > 0,

1 arcsin(l —¢)  arccos(l —e)
2 T N T
Hint: The relevant limit is easily expressed as the probability that a cer-
tain 2-dimensional Gaussian variable (with a particular correlation struc-
ture) falls in a certain area of the plane. One can write down the corre-
sponding density function and this probability as an explicit integral but
this integral does not seem so easy to evaluate. However, this Gaussian
probability can be computed directly by representing the joint distribution
in terms of two independent Gaussians.

Note that the above limit immediately implies that for f,, = MAJ,,

T E(fa() () = 22U,

™

lim SMAJn (6) =
n— 00

(b) Deduce from (a) and the Taylor expansion for arcsin(z) the limiting value,
as n — 00 of Emay, (k) = 3 512k MAJ,,(S)? for all k > 1. Check that

the answer is consistent with the values obtained earlier for k¥ = 1 and
k = 3 (Exercise IV 4).



Part V. Hypercontractivity and its applications

In this lecture, we will prove the main theorems about influences stated in Part
I. As we will see, these proofs rely on techniques imported from harmonic analysis,
in particular hypercontractivity. As we will see later in this part and in Part VII,
these types of proofs extend to other contexts which will be of interest to us: noise
sensitivity and sub-Gaussian fluctuations.

1. Heuristics of proofs

All the subsequent proofs which will be based on hypercontractivity will have
more or less the same flavor. Let us now explain in the particular case of Theorem
1.2 what the overall scheme of the proof is.

Recall that we want to prove that there exists a universal constant ¢ > 0 such

that for any function f : Q,, — {0,1}, one of its variables has influence at least

clognVar(f) )
n

Let f be a Boolean function. Suppose all its influences I(f) are “small”
(this would need to be made quantitative). This means that Vj f must have small
support. Using the intuition coming from the Weyl-Heisenberg uncertainty, V/k\f
should then be quite spread out in the sense that most of its spectral mass should
be concentrated on high frequencies.

This intuition, which is still vague at this point, says that having small influ-
ences pushes the spectrum of Vi f towards high frequencies. Now, summing up as
we did in Section 4 of Part IV, but restricting ourselves only to frequencies S of
size smaller than some large (well-chosen) 1 < M < n, one easily obtains

o ofe)r <4 Y IsIf9)?

0<|S|<M 0<|S|<M

SN Vess)?

k 0<|S|<M

<t YIS

(V.1) = I/,

where, in the third line, we used the informal statement that V/\kf should be sup-
ported on high frequencies if f has small influences. Now recall (or observe) that

> F(8)? = Var(f).

|S]>0

Therefore, in the above equation (V.1), if we are in the case where a positive fraction
of the Fourier mass of f is concentrated below M, then (V.1) says that I(f) is much
larger than Var(f). In particular, at least one of the influences has to be “large”.
If, on the other hand, we are in the case where most of the spectral mass of f is
supported on frequencies of size higher than M, then we also obtain that I(f) is
large by using the formula:

I(f) =4 ISIf(5)°.
S

78
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REMARK V.1. Note that these heuristics suggest that there is a subtle balance
between ), Ip(f) = I(f) and sup, I(f). Namely, if influences are all small (i.e.
Il - oo is small), then their sum on the other hand has to be “large”. The right
balance is exactly quantified by Theorem I.3.

Of course it now remains to convert the above sketch into a proof. The main
difficulty in the above program is to obtain quantitative spectral information on
functions with values in {—1,0,1} knowing that they have small support. This
is done ([KKL88]) using techniques imported from harmonic analysis, namely
hypercontractivity.

2. About hypercontractivity

First, let us state what hypercontractivity corresponds to. Let (K;);>0 be the
heat kernel on R™. Hypercontractivity is a statement which quantifies how functions
are regularized under the heat flow. The statement, which goes back to a number
of authors, can be simply stated as follows:

THEOREM V.1 (Hypercontractivity). Consider R™ with standard Gaussian mea-
sure. If 1 < q < 2, there is some t = t(q) > 0 (which does not depend on the
dimension n) such that for any f € L1(R™),

1K flla < [1F1q -

The dependence t = t(q) is explicit but will not concern us in the Gaussian
case. Hypercontractivity is thus a regularization statement: if one starts with some
initial “rough” LY function f outside of L? and waits long enough (¢(¢)) under the
heat flow, then we end up being in L? with a good control on its L? norm.

This concept has an interesting history as is nicely explained in O’Donnell’s
lecture notes (see [O’D]). It was originally invented by Nelson in [Nel66] where
he needed regularization estimates on Free fields (which are the building blocks of
quantum field theory) in order to apply these in “constructive field theory”. It
was then generalized by Gross in his elaboration of logarithmic Sobolev inequalities
([Gro75]), which is an important tool in analysis. Hypercontractivity is intimately
related to these Log-Sobolev inequalities and thus has many applications in the
theory of Semigroups, mixing of Markov chains and other topics.

We now state the result in the case which concerns us, namely the hypercube.
For any p € [0, 1], let T, be the following noise operator on the set of functions
on the hypercube: recall from Part I that if w € Q,,, we denote by w. an e-noised
configuration of w. For any f: 2, — R, we define T, f : w E[f(wl,p) | w]. This
noise operator acts in a very simple way on the Fourier coefficients, as the reader
can check:

T, f=Y f(S)xs—= Y pf(S) xs-
s s
We have the following analogue of Theorem V.1.
THEOREM V.2 (Bonami-Gross-Beckner). For any f : Q, — R and any p €
[0,1],
ITpfll2 < [1fll14p2 -
The analogy with the classical result V.1 is clear: the heat flow is replaced here

by the random walk on the hypercube. You can find the proof of Theorem V.2 in
the appendix attached to the present part.
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REMARK V.2. The term hypercontractive refers here to the fact that one has
an operator which maps L? into L? (¢ < 2), which is a contraction.

Before going into the detailed proof of Theorem 1.2, let us see why Theorem
V.2 provides us with the type of spectral information we need. In the above sketch,
we assumed that all influences were small. This can be written as

L.(f) = IViflli = |Vefll3 < 1,

for any k € [n]. Now if one applies the hypercontractive estimate to these functions
V. f for some fixed 0 < p < 1, we obtain that

(V.2) 1Ty (V)2 < IVkf e = VRS < (1V5S 2

where, for the equality, we used once again that Vi f € {—1,0,1}. After squaring,
this gives on the Fourier side,

> PEIVI()? < Y Vi (S)°.
S S

This shows (under the assumption that I(f) is small) that the spectrum of Vi f
is indeed mostly concentrated on high frequencies.

REMARK V.3. We point out that Theorem V.2 in fact tells us that any function
with small support has its frequencies concentrated on large sets as follows. It is
easy to see that given any p < 2, if a function h on a probability space has very
small support, then its L, norm is much smaller than its Ly norm. Using Theorem
V.2, we would then have for such a function that

1T (M)ll2 < [[hllypz < [Rl2,
yielding that

> pH8In(8)2 < > h(8)?
S S

which can only occur if i has its frequencies concentrated on large sets. From this
point of view, one also sees that under the small influence assumption, one did not
actually need the third term in (V.2) in the above outline.

3. Proof of the KKL Theorems on the influences of Boolean functions

We will start by proving Theorem 1.2, and then Theorem 1.3. In fact, it turns
out that one can recover Theorem 1.2 directly from Theorem I.3; see the exercises.
Nevertheless, since the proof of Theorem 1.2 is slightly simpler, we start with this
one.

3.1. Proof of Theorem I.2. Let f : Q, — {0,1}. Recall that we want to
show that there is some k € [n] such that

logn
(V3) L(f) = eVan(f) =22
for some universal constant ¢ > 0.
We divide the analysis into the following two cases.
Case 1:
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Suppose that there is some k € [n] such that I(f) > n=3/4 Var(f). Then the
bound V.3 is clearly satisfied for a small enough ¢ > 0.
Case 2:

Now, if f does not belong to the first case, this means that for all k& € [n],

(V.4) Li(f) = IViflI3 < Var(f)n=3/*.

Following the above heuristics, we will show that under this assumption, most
of the Fourier spectrum of f is supported on high frequencies. Let M > 1, whose
value will be chosen later. We wish to bound from above the bottom part (up to
M) of the Fourier spectrum of f.

f9)2 < > I814(9)?
1<|S|<M 1<[S|<M
< 22V N7 (1/2)21918)f(5)?
[S|>1

1
_ Z22M§jHTl/z(ka)H%,
k

(see Section 4 of Part IV). Now by applying hypercontractivity (Theorem V.2)
with p = 1/2 to the above sum, we obtain

P 1
fS2 < 12 IVeS )4
k

1<|S|<M
< 22M Zlk(f)s/s
k
< 22MnVar(f)8/5n%3'%
< 22Mp-1/5 Var(f),

where we used the assumption V.4 and the obvious fact that Var(f)8/°® < Var(f)
(recall Var(f) <1 since f is Boolean). Now with M := |55 log, n], this gives

S ) < a5 Var(f) = 010 Var(f)
1<|S|< 55 logy n

This shows that under our above assumption, most of the Fourier spectrum is
concentrated above Q(logn). We are now ready to conclude:
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Eklk( ) 4Z|S\21|S|f(5)2

I =
Sup k(f) > -
1 N
> (Y I8lA(S)]
|S|>M
M .
> —[ > f(9)7]
|S|>M
M .
= Ty~ Y 797
1<[S|<M
M
> ;Var(f) [1 — nfl/m]
1
> o Var(f)=or,
n
with ¢; = 201 5(1—27 1/10) | By combining with the constant given in case 1, this
completes the proof. O

REMARK V.4. We did not try here to optimize the proof in order to find the
best possible universal constant ¢ > 0. Note though, that even without optimizing
at all, the constant we obtain is not that bad.

3.2. Proof of Theorem I.3. We now proceed to the proof of the stronger
result, Theorem I.3, which states that there is a universal constant ¢ > 0 such that
for any f:Q, — {0,1},

1
[N = e ()il = e Var(F) log g

The strategy is very similar. Let f : Q, — {0,1} and let 0 := || Inf(f)]e =
sup, It (f). Assume for the moment that 6 < 1/1000. As in the above proof, we
start by bounding the bottom part of the spectrum up to some integer M (whose
value will be fixed later). Exactly in the same way as above, one has

Y. f9? < 2MY L)
k

1<|S|<M

IA

22M53/5 ZIk(f) _ 22M53/5 I(f) )
Now,

var(f) = 3 f(9)? A Z 151 £(5)?

|S|>1 1<[S|<M |S|>M

1
[22M6%° + ] 1(f).

IA

IN
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Choose M := 35 10g,(§) — 3 1og,log, (). Since § < 1/1000, it is easy to check
that M > 15 log,(1/6) which leads us to

1 10

Var(f) < log,(1/6) + log,(1/0) 1(7)
(V.5)
which gives
I(f) = |Inf(f)]1 > Ttgz Var(f)log m .

This gives us the result for § < 1/1000.
Next the discrete Poincaré inequality, which says that I(f) > Var(f), tells us
that the claim is true for § > 1/1000 if we take ¢ to be 1/log1000. Since this is

larger than we obtain the result with the constant ¢ = O

1 1
11log2’ 11log2”

4. KKL away from the uniform measure

In Part III (on sharp thresholds), we needed an extension of the above KKL
Theorems to the p-biased measures P, = (pd; + (1 — p)d_1)®™. These extensions
are respectively Theorems I11.2 and III.3.

A first natural idea in order to extend the above proofs would be to extend
the hypercontractive estimate (Theorem V.2) to these p-biased measures P,. This
extension of Bonami-Gross-Beckner is possible, but it turns out that the control it
gives gets worse near the edges (p close to 0 or 1). This is problematic since both
in Theorems I11.2 and I11.3, we need bounds which are uniform in p € [0, 1].

Hence, one needs a different approach to extend the KKL Theorems. A nice
approach was provided in [BKK 92|, where they prove the following general the-
orem.

THEOREM V.3 ([BKK™192]). There exists a universal ¢ > 0 such that for any
measurable function f:[0,1]" — {0,1}, there exists a variable k such that

Li(f) = ¢ Var(f)

Here the ‘continuous’ hypercube is endowed with the uniform (Lebesgue) measure
and for any k € [n], Ix(f) denotes the probability that f is not almost-surely con-
stant on the fiber given by (;)ixk.

In other words,

I.(f) = P[Var(f(xl,...,xn) ’ i1 # k‘) > O] .

It is clear how to obtain Theorem III.2 from the above theorem. If p € [0, 1]
and f:Q,, — {0, 1}, consider f, : [0,1]" — {0, 1} defined by

fp(wla e ,J;n) = f((lwi<p - 11121))1‘6[71]) .

Friedgut noticed in [Fri04] that one can recover Theorem V.3 from Theorem
IIT1.2. The first idea is to use a symmetrization argument in such a way that the
problem reduces to the case of monotone functions. Then, the main idea is the
approximate the uniform measure on [0, 1] by the dyadic random variable

logn

Moy +1
Xar o (@1, zan) € {1,131 = > ’”2 2 ™.

m=1
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One can then approximate f : [0,1]™ — {0, 1} by the Boolean function far defined
on {—1,1}M>n by

fM(x%,...,x}\z[,...,x'f,...,a:?/[) = (X, XN

Still (as mentioned in the above heuristics) this proof requires two technical
steps: a monotonization procedure and an “approximation” step (going from f to
fM). Since in our applications to sharp thresholds we used Theorems III.2 and
II1.3 only in the case of monotone functions, for the sake of simplicity we will not
present the monotonization procedure in these notes.

Furthermore, it turns out that for our specific needs (the applications in Part
III), we do not need to deal with the approximation part either. The reason is that
for any Boolean function f, the function p — If (f) is continuous. Hence it is enough
to obtain uniform bounds on I} (f) for dyadic values of p (i.e. p € {m2=}N[0,1]).

See the exercises for the proof of Theorems II1.2 and II1.3 when f is assumed
to be monotone (problem V.4).

REMARK V.5. We mentioned above that generalizing hypercontractivity would
not allow us to obtain uniform bounds (with p taking any value in [0, 1]) on the
influences. It should be noted though that Talagrand obtained ([Tal94]) results
similar to Theorems III.2 and II1.3 by somehow generalizing hypercontractivity, but
along a different line. Finally, let us point out that both Talagrand ([Tal94]) and
Friedgut and Kalai ([FK96]) obtain sharper versions of Theorems II1.2 and III1.3
where the constant ¢ = ¢, in fact improves (i.e. blows up) near the edges.

5. The noise sensitivity theorem

In this section, we prove the milestone Theorem 1.5 from [BKS99|. Before
recalling what the statement is, let us define the following functional on Boolean
functions. For any f: €, — {0,1}, let

H(f) =Y Lu(f)* = [[Inf(f)]3 -
k

Recall the Benjamini-Kalai-Schramm Theorem.

THEOREM V.4 ([BKS99]). Consider a sequence of Boolean functions f, :
Qy, — {0,1}. If

H(f) =3 L) =0
k=1

as n — oo, then {fn}n is noise sensitive.

We will in fact prove this theorem under a stronger condition, namely that
H(f,) < (m,)~ for some exponent § > 0. Without this assumption of “polynomial
decay” on H(f,), the proof is more technical and relies on estimates obtained by
Talagrand. See the remark at the end of this proof. For our application to the noise
sensitivity of percolation (see Part VI), this stronger assumption will be satisfied
and hence we stick to this simpler case in these notes.

The assumption of polynomial decay in fact enables us to prove the following
more quantitative result.
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ProprosITION V.5 ([BKS99]). For any § > 0, there exists a constant M =
M(6) > 0 such that if fr, : Qm, — {0,1} is any sequence of Boolean functions
satisfying

H(f,) < (mn)757
then

> fn(9)? = 0.

1<[S|<M log (m.,)

Using Proposition IV.1, this proposition obviously implies Theorem 1.5 when
H(f,) decays as assumed. Furthermore, this gives a quantitative “logarithmic”
control on the noise sensitivity of such functions.

Proof. The strategy will be very similar to the one used in the KKL Theorems

(even though the goal is very different). The main difference here is that the

regularization term p used in the hypercontractive estimate must be chosen in a

more delicate way than in the proofs of KKL results (where we simply took p = 1/2).
Let M > 0 be a constant whose value will be chosen later.

> Fa(8)? < 4 > |S1fn(S)?

1<|S|<M log(my,) 1<|S|<M log(my,)

=Y Y Vs

K 1<|S|<M log(m.,)

< S ()M T (V) 2

2
P
1 og(m
< Z(E)M]g( IV kfallf 4 o
k

by Theorem V.2.
2/(1+p7)

Now, since f,, is Boolean, one has ||V fy|l14p2 = [ Vi full3 , hence

Z fa(S)? < p2Mloe(ma) Z ||kan||‘21/(1+p )

0<|S|<M log(my,) k
p—21VI log(my,) Z Ik(fn)2/(1+p2)
k

1
< pM 1og(mn)(mn)p2/(1+p2) (Z Ik(fn)Q) Le? (by Holder)
k
_ p—2M10g(mn)(mn)p2/(1+p2) H(fn)ﬁ
S p—2M IOg(mn)(mn)%;g .

Now by choosing p € (0, 1) close enough to 0, and then by choosing M = M ()
small enough, we obtain the desired logarithmic noise sensitivity. O

We now give some indications of the proof of Theorem 1.5 in the general case.

Recall that Theorem 1.5 is true independently of the speed of convergence of
H(f.) = >, Ix(fsn)?. The proof of this general result is a bit more involved than
the one we gave here. The main lemma is as follows:
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LeMMA V.6 ([BKS99]). There exist absolute constants Cy, such that for any
monotone Boolean function [ and for any k > 2, one has

> £(8)? < CRH(f) (—log H(f))* .

|S|=k

This lemma “mimics” a result from Talagrand’s [Tal96]. Indeed, Proposition
2.3 in [Tal96] can be translated as follows: for any monotone Boolean function f,
its level-2 Fourier weight (i.e. > 5 _ £(S)?) is bounded by O(1)H(f) log(1/H(f)).
Lemma V.6 obviously implies Theorem 1.5 in the monotone case, while the general
case can be deduced by a monotonization procedure. It is worth pointing out that
hypercontractivity is used in the proof of this lemma.

6. Appendix: proof of hypercontractivity

The purpose of this appendix is to show that we are not using a giant “hammer”
but rather that this needed inequality arising from Fourier analysis is understand-
able from first principles. In fact, historically, the proof by Gross of the Gaussian
case first looked at the case of the hypercube and so we have the tools to obtain
the Gaussian case should we want to. Before starting the proof, observe that for
p =0 (where 0° is defined to be 1), this simply reduces to | [ f| < [|f].

Proof of Theorem V.2.

6.1. Tensorization. In this first section, we show that it is sufficient, via a
tensorization procedure, that the result holds for n = 1 in order for us to be able
to conclude by induction the result for all n.

The key step of the argument is the following lemma.

LEMMA V.7. Let ¢ > p > 1, (Q1, 1), (Qa, u2) be two finite probability spaces,
K; : Q; x Q; = R and assume that fori=1,2

1T (O gm0 < 1,000
where T;(f)(x) := [ f(y)Ki(2,y)dpi(y). Then
171 @ To(F) Ly ((@1p1) x (Q2p2)) < FI L (921 100) % (Q2,112))
where Ty @ To(f)(w1,22) = [ o, FW1,y2) K1 (21, y1) K2 (22, y2)dp (y1) X dpa(ye)-

Proof. One first needs to recall Minkowski’s inequality for integrals, which states

that, for g > 0 and r € [1,00), we have
1/r
< [([stwaraw)  aw.

(f ([ stenarts)) anco))

(Note that when v consists of 2 point masses each of size 1, then this reduces to
the usual Minkowski inequality.)

One can think of T} acting on functions of both variables by leaving the second
variable untouched and analogously for T5. It is then easy to check that 71 ® Ts =
Ty o T5. By thinking of x5 as fixed, our assumption on 7} yields

(/Ql |T2(f)|pdﬂ1(x1)) " dpa(w2).

1/r

q
(177 ® T2(f)||Lq((91,u1)x(927”2)) = /512
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(It might be helpful here to think of T5(f)(x1,2z2) as a function ¢g*2(x1) where xo
is fixed).
Applying Minkowski’s integral inequality to |T»(f)|? with r = ¢/p, this in turn

is at most
[/91 (/92 |T2(f)qdﬂ2(ff2))p/q dﬂl(%)]

Fixing now the x; variable and applying our assumption on 75 gives that this is at
q .
most Hf”Lp((Ql,m)X(Qz,uz))’ as desired. O

q/p

The next key observation, easily obtained by expanding and interchanging of
summation, is that our operator 7, acting on functions on €2, corresponds to an
operator of the type dealt with in the previous lemma with K(z,y) being

> p¥xs(@)xs(y).

SC{1,...,n}

In addition, it is easily checked that the function K for the €, is simply an n-fold
product of the function for the n = 1 case.

Assuming the result for the case n = 1, Lemma V.7 and the above observations
allows us to conclude by induction the result for all n.

6.2. The n =1 case. We now establish the case n = 1. We abbreviate T}, by
T.

Since f(z) = (f(=1)+f(1))/2+(f(1) = f(=1))/2 @, we have T f(z) = (f(=1)+

F(1))/24p(f(1)~F(~1))/2 . Denoting (£(~1)+£(1))/2 by a and (f(1)—f(~1))/2
by b, it suffices to show that for all ¢ and b, we have

@+ b|*+" + |a — b|+0°
2
Using p € [0, 1], the case a = 0 is immediate. For the case, a # 0, it is clear we

(CL2 +p2b2) 14-p? )/2

can assume a > 0. Dividing both sides by a”p2 we need to show that

1+ g+ 4 [1 =yt
y
2

(V.6) (1+ pPy?)I+00/2 <

for all y and clearly it suffices to assume y > 0.
We first do the case that y € [0,1). By the generalized Binomial formula, the
right hand side of (V.6) is

1 1 1 o (1 + p?
s[5 S e - (50
k=0 k=0
For the left hand side of (V.6), we first note the following. For 0 < A < 1, a
simple calculation shows that the function g(z) = (14 z)* — 1 — Az has a negative
derivative on [0, 00) and hence g(x) < 0 on [0, 00).
This yields that the left hand side of (V.6) is at most

1 2
1+< +2P>p2y2

which is precisely the first two terms of the right hand side of (V.6). On the other
hand, the binomial coefficients appearing in the other terms are nonnegative, since
in the numerator there are an even number of terms with the first two terms being
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positive and all the other terms being negative. This verifies the desired inequality
for y € [0,1).

The case y = 1 for (V.6) follows by continuity.

For y > 1, we let z = 1/y and note, by multiplying both sides of (V.6) by 21407
we need to show
B | S i
< 2 .

Now, expanding (1 — 22)(1 — p?), one sees that z? + p? < 1+ 22p? and hence
the desired inequality follows precisely from (V.6) for the case y € (0,1) already
proved. This completes the n = 1 case and thereby the proof. O

(V?) (22 +p2)(1+p2)/2

Exercise sheet of Part V
EXERCISE V.1. Find a direct proof that Theorem 1.3 implies Theorem 1.2.

EXERCISE V.2. Is it true that the smaller the influences are, the more noise
sensitive the function is?

EXERCISE V.3. Prove that Theorem V.3 indeed implies Theorem III.2.
Hint: use the natural projection.

PrROBLEM V.4. In this problem, we prove Theorems II1.2 and III.3 for the
monotone case.

(1) Show that Theorem II1.3 implies III.2 and hence one needs to prove only
Theorem II1.3 (This is the basically the same as Exercise V.1).

(2) Show that it suffices to prove the result when p = k/2¢ for integers k and
L.

(3) Let I1: {0,1}¢ — {0,1/2¢, ..., (2 =1)/2¢} by T(21,. .., 20) = S i, /2"
Observe that if 2 is uniform, then II(z) is uniform on its range and that
P(Il(z) > i/2%) = (2* —14)/2".

(4) Define g : {0,1}* — {0,1} by g(z1,...,2¢) := I{riz)>1-p}- Note that
P(g(z) =1) =p.

(5) Define f:{0,1}" — {0,1} by

f(x},...,x%,x%,...,x%,...,x?,...,x?) =

flg(xt, .. xp), gz, .. xd), . .. glah,. .. x})).
Observe that f (defined on ({0, 1}, 71 /2)) and f (defined on

({0,1}", 7)) have the same distribution and hence the same variance.

6) Show (or observe) that I, (f) < IZ(f) for each r = 1,...,n and j =
( 7]) s
1,...,¢. Deduce from Theorem 1.3 that

D T (f) = cVar(f) log(1/5,)
rJ
where 4, := max; I (f) where ¢ comes from Theorem 1.3.
(7) (Key step). Show that for each r =1,...,nand j =1,...,¢,

Lo (D) <T(H/27
(8) Combine parts 6 and 7 to complete the proof.



Part VI. First evidence of noise sensitivity of
percolation

In this lecture, our goal is to collect some of the facts and theorems we have
seen so far in order to conclude that percolation crossings are indeed noise sensitive.
Recall from the “BKS” Theorem (Theorem 1.5) that it is enough for this purpose
to prove that influences are “small” in the sense that >, I;(f,)? goes to zero.

In the first section, we will deal with a careful study of influences in the case
of percolation crossings on the triangular lattice. Then, we will treat the case of
Z2, where conformal invariance is not known. Finally, we will speculate to what
“extent” percolation is noise sensitive.

This whole part should be considered somewhat of a “pause” in our program,
where we take the time to summarize what we have achieved so far in our un-
derstanding of the noise sensitivity of percolation, and what remains to be done if
one wishes to prove things such as the existence of exceptional times in dynamical
percolation.

1. Bounds on influences for crossing events in critical percolation on
the triangular lattice

1.1. Setup. Fix a,b > 0, let us consider some rectangle [0,a - n] x [0,b - n],
and let R,, be the set of of hexagons in T which intersect [0,a - n] x [0,b-n]. Let
fn be the event that there is a left to right crossing event in R,,. (This is the
same event as in Example 7 in Part I, but with Z? replaced by T). By the RSW
Theorem II.1, we know that {f,,} is non-degenerate. Conformal invariance tells us
that IE[ fn] = P[fn = 1} converges as n — 0o. The limit is given by the so-called
Cardy’s formula.

In order to prove that this sequence of Boolean functions { f,,} is noise sensitive,
we wish to study its influence vector Inf(f,) and we would like to prove that
H(f,) = |Inf(f,)||3 = Y. Ix(fn)? decays polynomially fast towards 0. (Recall that
in these notes, we gave a complete proof of Theorem I.5 only in the case where
H(f,) decreases as an inverse polynomial of the number of variables.)

1.2. Study of the set of influences. Let x be a site (i.e. a hexagon) in the
rectangle R,,. One needs to understand

L.(fn) := P[x is pivotal for f,]

It is easy but crucial to note that if = is
at distance d from the boundary of R,,
in order for x to be pivotal, the four-arm
event described in Part IT (see Figure 11.2)
has to be satisfied in the ball B(z,d) of
radius d around the hexagon x. See the
figure on the right.

89
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In particular, this implies (still under the assumption that dist(z,dR,,) = d)
that

Iw(fn) < Oé4(d) = d—%+o(1) ,

where a4(d) denotes the probability of the four-arm event up to distance d. See
Part II. The statement

044(R) — R75/4+0(1)
implies that for any € > 0, there exists a constant C' = C¢, such that for all R > 1,
as(R) < C R™%/4+¢

The above bound gives us a very good control on the influences of the points
in the bulk of the domain (i.e. the points far from the boundary). Indeed, for any
fixed & > 0, let A® be the set of hexagons in R,, which are at distance at least dn
from OR,,. Most of the points in R,, (except a proportion O(8) of these) lie in A?,
and for any such point x € A2, one has by the above argument

VI.1 I < au(on) < C (5n)~5/4+e < O§—5/4y—5/4+e
( ) :c(fn) = 4( ) = ( ) =~

Therefore, the contribution of these points to H(f,) = >, I;(f,)? is bounded
by O(n?)(Co=5/4n=5/4+€)2 = O(§=5/2n=1/242¢). As n — oo, this goes to zero
polynomially fast. Since this estimate concerns “almost” all points in R,,, it seems
we are close to proving the BKS criterion.

1.3. Influence of the boundary. Still, in order to complete the above anal-
ysis, one has to estimate what the influence of the points near the boundary is. The
main difficulty here is that if = is close to the boundary, the probability for = to be
pivotal is not related any longer to the above four-arm event. Think of the above
figure when d gets very small compared to n. One has to distinguish two cases:

e r is close to a corner. This will correspond to a two-arm event in a
quarter-plane.

e 1 is close to an edge. This involves the three-arm event in the half-plane
H.

Before detailing how to estimate the influence of points near the boundary, let
us start by giving the necessary background on the involved critical exponents.

The two-arm and three-arm events in H. For these particular events, it turns
out that the critical exponents are known to be universal: they are two of the
very few critical exponents which are known also on the square lattice Z2. The
derivations of these types of exponents do not rely on SLE technology but are
“elementary”. Therefore, in this discussion, we will consider both lattices T and
72,
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The three-arm event in H corre-
sponds to the event that there
are three arms (two open arms
and one ‘closed’” arm in the dual)
going from 0 to distance R and
such that they remain in the up-
per half-plane. See the figure
for a self-explanatory definition.
The two-arm event corresponds
to just having one open and one
closed arm.

Let aj (R) and ai (R) denote the probabilities of these events. As in Part II,
let of (7, R) and af (r, R) be the natural extensions to the annulus case (i.e. the
probability that these events are satisfied in the annulus between radii 7 and R in
the upper half-plane).

We will rely on the following result, which goes back as far as we know to M.
Aizenman. See [Wer07] for a proof of this result.

T or 72 R

PROPOSITION VI.1. Both on the triangular lattice T and on Z?, one has that
ag (r,R) = (r/R)
and
ag (r,R) < (r/R)*.

Note that, in these special cases, there are no o(1) correction terms in the exponent.
The probabilities are in this case known up to constants.

The two-arm event in the quarter-plane. In this case, the corresponding expo-

nent is unfortunately not known on Z?2, so we will need to do some work here in the
next section, where we will prove noise sensitivity of percolation crossings on Z?2.

The two-arm event in a corner corresponds to
the event illustrated on the following picture.
We will use the following proposition:

PROPOSITION V1.2 ([SWO1)). If af T(R) de-
notes the probability of this event, then

o (1) = B2
and with the obvious notations
o R) = (r/ R0,

/

Now, back to our study of influences, we are in good shape (at least for the
triangular lattice) since the two critical exponents arising from the boundary effects
are larger than the bulk exponent 5/4. This means that it is less likely for a point
near the boundary to be pivotal than for a point in the bulk. Therefore in some
sense the boundary helps us here.
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More formally, summarizing the above facts, for any € > 0, there is a constant
C = C'(e) such that for any 1 <r < R,

(V12) max{as(r, B), of (. B), of *(r, R)} < C(r/R)E .

Now, if z is some hexagon in R, let ng be the distance to the closest edge of
OR,, and let g be the point on IR, such that dist(x,zg) = ng. Next, let ny > ng
be the distance from xq to the closest corner and let x; be this closest corner. It
is easy to see that for z to be pivotal for f,, the following events all have to be
satisfied:

e The four-arm event in the ball of radius ng around z.

e The H-three-arm event in the annulus centered at xq of radii 2ng and n;.

e The corner-two-arm event in the annulus centered at x; of radii 2n; and
n.

By independence on disjoint sets, one thus concludes that

L(fa) < aa(no)ag (2ng,n1)az ™ (2n1,7n)
< O(l)n_5/4+€.
1.4. Noise sensitivity of crossing events. This uniform bound on the in-
fluences over the whole domain R,, enables us to conclude that the BKS criterion
is indeed verified. Indeed,

(VL.3) H(f,) = Z Iz(fn)2 < an(n—5/4+s)2 _ Op Ve

rER,

where C' = C(a, b, €) is a universal constant. By taking e < 1/4, this gives us the
desired polynomial decay on H(f,,), which by Proposition V.5) implies

THEOREM VI.3 ([BKS99]). The sequence of percolation crossing events { fy}
on T s noise sensitive.

We will give some other consequences (for example, to sharp thresholds) of the
above analysis on the influences of the crossing events in a later section.

2. The case of Z? percolation

Let R,, denote similarly the Z? rectangle closest to [0,a - n] x [0,b- n] and let
fn be the corresponding left-right crossing event (so here this corresponds exactly
to example 7). Here one has to face two main difficulties:

e The main one is that due to the missing ingredient of conformal invari-
ance, one does not have at our disposal the value of the four-arm critical
exponent (which is of course believed to be 5/4). In fact, even the exis-
tence of a critical exponent is an open problem.

e The second difficulty (also due to the lack of conformal invariance) is that
it is now slightly harder to deal with boundary issues. Indeed, one can
still use the above bounds on ag' which are universal, but the exponent 2

for af * is not known for Z2. So this requires some more analysis.

Let us start by taking care of the boundary effects.
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2.1. Handling the boundary effect. What we need to do in order to carry
through the above analysis for Z? is to obtain a reasonable estimate on a;r *. For-
tunately, the following bound, which follows immediately from Proposition VI.1, is
sufficient.

(VI1.4) aft(r,R) < 0(1)% .

Now let e be an edge in R,,. We wish to bound from above I.(f,). We will use
the same notation as in the case of the triangular lattice: recall the definitions of
ng, Tg, N1, x1 there.

We obtain in the same way

(VL5) I.(fn) < as(no) ai (2ne,n1) a3 T (2n1,n) .

At this point, we need another universal exponent, which goes back also to M.
Aizenman:

THEOREM VI.4 (M. Aizenman, see [Wer07]). Let as(r, R) denote the proba-
bility that there are 5 arms (with four of them being of ‘alternate colors’). Then
there are some universal constants c,C > 0 such that both for T and Z?, one has
foralll <r <R,

(%) <as(r,R) < C(=)°.

R R
This result allows us to get a lower bound on ay4(r, R). Indeed, it is clear that
(VL.6) as(r,R) > as(r,R) > Q(1)ad (1, R) .

In fact, one can obtain the following better lower bound on ay(r, R) which we
will need later.

LEMMA VL.5. There exists some € > 0 and some constant ¢ > 0 such that for
any 1 <r <R,
ay(r,R) = c(r/R)**.

Proof. There are several ways to see why this holds, none of them being either
very hard or very easy. One of them is to use Reimer’s inequality (see [Gri99))
which in this case would imply that

(VL7) as(r, R) < ai(r, R)au(r, R) .
The RSW Theorem II.1 can be used to show that
ai(r,R) < (r/R)*

for some positive a. By Theorem VI.4, we are done. [See [[GPS10], Section 2.2 as
well as the appendix] for more on these bounds.] O

Combining (VI.5) with (VI.6), one obtains
L(fn) < O(l)a4(n0)a4(2n0,nl)a;+(2n1,n)
nq
O(L)aa(n1) —=,

IN

where in the last inequality we used quasi-multiplicativity (Proposition I1.3) as well
as the bound given by (VI.4).
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-

Recall that we want an upper

bound on H(f,) = Y. I.(f,)? In

this sum over edges e € Ry, let us b
divide the set of edges into dyadic n
annuli centered around the 4 cor-

ners as in the next picture.

2k+1

7

Notice that there are O(1)22* edges in an annulus of radius 2¥. This enables
us to bound H(f,) as follows:
log, n+0(1)

S LU < o) Y 2H(aehD)]

e€R, k=1

1
0(1) — > 2ty (2.
k<log, n+0O(1)

IN

IN

(VL8)

It now remains to obtain a good upper bound on ay(R), for all R > 1.

2.2. An upper bound on the four-arm event in Z2. This turns out to
be a rather non-trivial problem. Recall that we obtained an easy lower bound on
oy using a5 (and Lemma VL5 strengthens this lower bound). For an upper bound,
completely different ideas are required. On Z2, the following estimate is available
for the four-arm event.

PROPOSITION VL.6. For critical percolation on Z2, there exists constants €, C' >
0 such that for any R > 1, one has

ai(1,R) < c(%)m.

Before discussing where such an estimate comes from, let us see that it indeed
implies a polynomial decay for H(f,,).
Recall equation (VI.8). Plugging in the above estimate, this gives us

1
Z Ie(fn)2 < O(].) = Z 94k (Qk)—Z—Qe
e€R, k<log, n+0O(1)
1 2—2¢ —2e
< O(l)ﬁn =0(1)n=°,
which implies the desired polynomial decay and thus the fact that {f,} is noise
sensitive by Proposition V.5).

Let us now discuss different approaches which enable one to prove Proposition
VL.6.

(a) Kesten proved implicitly this estimate in his celebrated paper [Kes87].
His main motivation for such an estimate was to obtain bounds on the
corresponding critical exponent which governs the so-called critical length.
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(b) In [BKS99], in order to prove noise sensitivity of percolation using their

criterion on H(f,,), the authors referred to [Kes87], but they also gave a
completely different approach which also yields this estimate.
Their alternative approach is very nice: finding an upper bound for ay(R)
is related to finding an upper bound for the influences for crossings of an
R x R box. For this, they noticed the following nice phenomenon: if a
monotone function f happens to be very little correlated with Majority,
then its influences have to be small. The proof of this phenomenon uses
for the first time in this context the concept of “randomized algorithms”.
For more on this approach, see Part VIII, which is devoted to these types
of ideas.

(¢) In [SS10b], the concept of randomized algorithms is used in a more pow-
erful way. See again Part VIII. In this part, we provide a proof of this
estimate in Proposition VIIL.8.

REMARK VI.1. It turns out that that a multi-scale version of Proposition VI.6

1+e€
stating that ay(r, R) < C (%) is also true. However, none of the three arguments

given above seem to prove this stronger version. A proof of this stronger version is
given in the appendix of [SS10a]. Since this multi-scale version is not needed until
Part X, we stated here only the weaker version.

3. Some other consequences of our study of influences

In the previous sections, we handled the boundary effects in order to check that
H(f,) indeed decays polynomially fast. Let us list some related results implied by
this analysis.

3.1. Energy spectrum of f,. We start by a straightforward observation:
since the f,, are monotone, we have by Proposition IV.4 that

Faltz)) = 3L(A),

for any site = (or edge ¢€) in R,,. Therefore, the bounds we obtained on H( f,;) imply
the following control on the first layer of the energy spectrum of the crossing events

{fn}.
COROLLARY VI.7. Let {f,} be the crossing events of the rectangles R,,.
e If we are on the triangular lattice T, then we have the bound
By, (1) = Y Ja(S) <n V24,
15]=1
e On the square lattice 72, we end up with the weaker estimate
By, (1) <Cn™,
for some ¢,C > 0.
3.2. Sharp threshold of percolation. The above analysis gave an upper
bound on Y, I;(f,)?. As we have seen in the first parts, the total influence I(f,) =
> Ii(fn) is also a very interesting quantity. Recall that, by Russo’s formula, this

is the quantity which shows “how sharp” the threshold is for p — P,[f, = 1].
The above analysis allows us to prove the following.
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PROPOSITION VI.8. Both on T and Z?, one has
I(fn) = n2a4(n) .
In particular, this shows that on T that
I(fn) < p3/4to()

REMARK VI.2. Since f, is defined on {—1, 1}0("2), note that the Majority
function defined on the same hypercube has a much sharper threshold than the
percolation crossings f,,.

Proof. We first derive an upper bound on the total influence. In the same vein
(i.e., using dyadic annuli and quasi-multiplicativity) as we derived (VI.8) and with
the same notation one has

I(fn) = ZIe(fn)

IA

>~ 0(Maa(n) ™
0(1)1 > 2%ay(2k).

n
k<log, n+0O(1)

IN

Now, and this is the main step here, using quasi-multiplicativity one has ay(2F) <
O(1)=240)_ which gives us

ay(2F,n)?
as(n ; 1
I(fn) < 0O(1) 475) > 23km
k<log, n+0(1) e
2
< 0(1)a4(n) Z QSk;LTk since ay(r, R) > as(r, R) < (r/R) ™2

k<log, n+0O(1)

< O(l)nay(n) Z ok

k<log, n+O(1)
< O(1)n*ay(n)

as desired.

For the lower bound on the total influence, we proceed as follows. One obtains
a lower bound by just summing over the influences of points whose distance to the
boundary is at least n/4. It would suffice if we knew that for such edges or hexagons,
the influence is at least a constant times ay(n). This is in fact known to be true.
It is not very involved and is part of the folklore results in percolation. However,
it still would lead us too far from our topic. The needed technique is known under
the name of separation of arms and is closely related to the statement of quasi-
multiplicativity. See [Wer07] for more details. O

4. Quantitative noise sensitivity

In this part, we have proved that the sequence of crossing events { f,,} is noise
sensitive. This can be roughly translated as follows: for any fixed level of noise € > 0,
as n — oo, the large scale clusters of w in the window [0,7n])? are asymptotically
independent of the large clusters of w..
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REMARK VI.3. Note that this picture is correct, but in order to make it rig-
orous, this would require some work, since so far we only worked with left-right
crossing events. The non-trivial step here is to prove that in some sense, in the
scaling limit n — oo, any macroscopic property concerning percolation (e.g., di-
ameter of clusters) is measurable with respect to the o-algebra generated by the
crossing events. This is a rather subtle problem since we need to make precise what
kind of information we keep in what we call the “scaling limit” of percolation (or
subsequential scaling limits in the case of Z?2). An example of something which is
not present in the scaling limit is whether one has more open sites than closed ones
since by noise sensitivity we know that this is asymptotically uncorrelated with
crossing events. We will not need to discuss these notions of scaling limits more in
these lecture notes, since the focus is mainly on the discrete model itself including
the model of dynamical percolation which is presented at the end of these lecture
notes.

At this stage, a natural question to ask is to what extent the percolation picture
is sensitive to noise. In other words, can we let the noise € = €, go to zero with
the “size of the system” n, and yet keep this independence of large scale structures
between w and w,, 7 If yes, can we give quantitative estimates on how fast the
noise € = €, may go to zero? One can state this question more precisely as follows.

QUESTION VI.1. If {f.} denote our left-right crossing events, for which se-
quences of noise-levels {€,} do we have

nlgr;o Cov[fn(w), fn(we,)] =07

The purpose of this section is to briefly discuss this question based on the
results we have obtained so far.

4.1. Link with the energy spectrum of {f,}. It is an exercise to show
that Question VI.1 is essentially equivalent to the following one.

QUESTION VI.2. For which sequences {k,} going to infinity do we have

kn
ZEfn(m): Z fn(S)2 — 07
m=1

n— o0
1<[5|<hn

Recall that we have already obtained some relevant information on this ques-
tion. Indeed, we have proved in this part that H(f,) = >, I,(f,)? decays polyno-
mially fast towards 0 (both on Z? and T). Therefore Proposition V.5 tells us that
for some constant ¢ > 0, one has for both T and Z? that

(VL9) S (8?2 —o0.

1<|S|<clogn
Therefore, back to our original question VI.1, this gives us the following quanti-
tative statement: if the noise €, satisfies ¢, > @, then f,(w) and f,(we,) are
asymptotically independent.

4.2. Noise stability regime. Of course, one cannot be too demanding on
the rate of decay of {,}. For example if ¢, < -, then in the window [0, n]?, with
high probability, the configurations w and w,,, are identical. This brings us to the

next natural question concerning the noise stability regime of crossing events.
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QUESTION VL.3. Let {f,} be our sequence of crossing events. For which se-
quences {e,} do we have

Pfa(w) # fa(we,)] — 07

— 00

It is an exercise to show that this question is essentially equivalent to the
following one.
For which sequences {k, } do we have

S fal8)? =07
|S|>kn

Using the estimates of the present part, one can give the following non-trivial
bound on the noise stability regime of {f,}.

PROPOSITION V1.9. Both on Z? and T, if

1
= O(n2a4(n)) ’
then
]P)[fn(w) # fn(wen)] njgo 0

On the triangular grid, using the critical exponent, this gives us a bound of n™>
on the noise stability regime of percolation.

/4

Proof. Let {¢,} be a sequence satisfying the above assumption. There are O(n?)
bits concerned. For simplicity, assume that there are exactly n? bits. Let us order
these in some arbitrary way: {x1,..., 2,2} (or on Z2, {e1,...,e,2}).

Let w = wg = (x1,...,2,2) be sampled according to the uniform measure.
Recall that the noised configuration w,, is produced as follows: for each i € [n?],
resample the bit z; with probability €,, independently of everything else, obtaining
the bit y;. (In particular y; # x; with probability €, /2).

Now for each i € [n?] define the intermediate configuration

Wi 1= (yla s Yin il - 7l'n2)
Notice that for each i € [n?], w; is also sampled according to the uniform
measure and one has for each i € {1,...,n%} that

Pl fu(wi-1) # fa(wi)] = (€a/2) To,(fu) -

Summing over all 7, one obtains

P[fn(w) # fn(wen)] = P[fn(wo) # fn(wnz)]

n?-1
< Z P[fn(wi) # fn(WiJrl)]
i=0
= En/2 Z x; fn
= (en/2)1(fn)
< €,0(1)n*as(n) by Proposition VL8,

which concludes the proof.
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4.3. Where does the spectral mass lies? Proposition VI.9 (together with
Exercise I1X.2 in Part IX) implies that the Fourier coefficients of {f,} satisfy

(VL.10) ST s — 0.
|S|>n2as(n)

From Lemma VL5, we know that even on Z2, na4(n) is larger than n¢ for
some exponent € > 0. Combining the estimates on the spectrum that we achieved
so far (equations (VI.9) and (VI.10)), we see that in order to localize the spectral
mass of {f,}, there is still a missing gap. See Figure VI.1.

b By (k) = Sismk [a(S)?
Where is
the Spec-
tral mas

ffn?

k
i p>

clogn n3/4+o(1)

Ficgure VI.1. This picture summarizes our present knowledge
of the energy spectrum of {f,} on the triangular lattice T.
Much remains to be understood to know where, in the range
[Q(logn),n3/4+°M)] the spectral mass lies. This question will be
analyzed in the following parts.

For our later applications to the model of dynamical percolation (in the last part
of these lecture notes), a better understanding of the noise sensitivity of percolation
than the “logarithmic” control we achieved so far will be needed.

Exercise sheet of Part VI

Instead of being the usual exercise sheet, this page will be devoted to a single
Problem whose goal will be to do “hands-on” computations of the first layers of
the energy spectrum of the percolation crossing events f,,. Recall from Proposition
IV.1 that a sequence of Boolean functions {f,} is noise sensitive if and only if for
any fixed k > 1,

k k
Yo D Ful9?=) Ep(m) — 0.
m=1 |S|=m m=1

In the present part, we obtained (using Proposition IV.4) that this is indeed the
case for k = 1. The purpose here is to check by simple combinatorial arguments
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(without relying on hypercontractivity) that it is still the case for ¥ = 2 and to
convince ourselves that it works for all layers k& > 3.

To start with, we will simplify our task by working on the torus Z2/nZ?. This
has the very nice advantage that there are no boundary issues here.

Energy spectrum of crossing events on the torus (study of the first lay-
ers.)

Let T}, be either the square grid torus Z2?/nZ? or the triangular grid torus
T/nT. Let f,, be the indicator of the event that there is an open circuit along the
first coordinate of T,.

(1) Using RSW, prove that there is a constant ¢ > 0 such that for all n > 1,
cglP[fnzl] <1l-c.
(In other words, {f,} is non-degenerate.)

(2) Show that for all edges e (or sites z) in T,

n
L(fn) < 0‘4(5) :
(3) Check that the BKS criterion (about H(f,)) is satisfied. Therefore {f,}

is noise-sensitive

From now on, one would like to forget about the BKS Theorem and
try to do some hands-on computations in order to get a feeling why most
frequencies should be large.

(4) Show that if z,y are two sites of T,, (or similarly if e, e’ are two edges of
T,), then

If({z,y})| < 2P[  and y are pivotal points] .

Does this result hold for general Boolean functions?
(5) Show that if d := |x — y|, then

S
~
\)
—
(V)

]P’[ z and y are pivotal points } <O0(1) o

(Hint: use Proposition I1.3.)
(6) On the square lattice Z2, by carefully summing over all edges e, e’ €
T, x T, show that

B (2)= Y Fa(8)* < O(1)n,

|S]=2

for some exponent € > 0.
Hint: you might decompose the sum in a dyadic way (as we did many
times in the present section) depending on the mutual distance d(e,e’).
(7) On the triangular grid, what exponent does it give for the decay of Ey, (2)?
Compare with the decay we found in Corollary VI.7 about the decay of
the first layer Ey (1) (i.e. k = 1). See also Lemma V.6 in this regard.
Discuss this.
(8) For T, what do you expect for higher (fixed) values of k7 (IL.e. for Ey, (k),
k> 3)?
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(9) (Quite hard) Try to obtain a nonrigorous combinatorial argument similar
to the one above in the particular case k& = 2, that for any fixed layer
k>1,

Ef”(k‘) — 0.

n— o0
This would give us an alternative proof of noise sensitivity of percolation
(at least in the case of the torus T},) not relying on Theorem I.5.
Observe that one can do similar things for rectangles but then one has to deal
with boundary issues.



Part VII. Anomalous fluctuations

In this lecture, our goal is to extend the technology we used to prove the KKL
Theorems on influences and the BKS Theorem on noise sensitivity to a slightly
different context: the study of fluctuations in first passage percolation.

1. The model of first passage percolation

Let us first explain what the model is. Let 0 < a < b be two positive numbers.
We define a random metric on the graph Z%, d > 2 as follows. Independently
for each edge e € E¢, fix its length 7. to be a with probability 1/2 and b with
probability 1/2. This is represented by a uniform configuration w € {—1, 1}Ed.

This procedure induces a well-defined (random) metric dist,, on Z? in the usual
fashion. For any vertices z,y € Z<, let

disty (z,y) == inf {Z Te, (w)} .
paths v = {e1,...,ex}
connecting x — y

REMARK VIIL.1. In greater generality, the lengths of the edges are i.i.d. non-
negative random variables, but here, following [BKS03], we will restrict ourselves
to the above uniform distribution on {a, b} to simplify the exposition; see [BROS8|
for an extension to more general laws.

One of the main goals in first passage percolation is to understand the large-
scale properties of this random metric space. For example, for any 7' > 1, one may
consider the (random) ball

B,(z,T) :={y € 7% disty, (z,y) < T}.

To understand the name first passage percolation, one can think of this model
as follows. Imagine that water is pumped in at vertex z, and that for each edge e, it
takes T.(w) units of time for the water to travel across the edge e. Then, B, (z,T)
represents the region of space that has been wetted by time T

H

e 6 6 6 06 06 06 0 0 o
e 6 6 6 06 06 06 0 0|0
cojle @ ¢ ¢ ¢ ¢ © 0 |O
cO|le @ @ ©¢ ¢ ¢ ¢/ O O
O O O|®e @ ¢/O O O O

O O OO0 OO OO0 O O
O O O O|l®e@® @¢/fO O O O
O O|jl®e @ ¢ 6 ¢ ¢ O O
cojle @ ¢ ¢ ¢ ¢ © 0 |O
e 6 6 6 06 06 06 0 0|0
cojle @ ¢ ¢ ¢ ¢ © 0 |O
e 6 6 6 X 06 0 0 O

Ficure VII.1. A sample of a wetted region at time T, i.e.
B, (z,T), in first passage percolation.

102
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An application of subadditivity shows that the renormalized ball %BW(O,T)
converges as T' — oo towards a deterministic shape which can in certain cases be
computed explicitly. This is a kind of “geometric law of large numbers”. Whence
the natural question:

QUESTION VIIL.1. Describe the fluctuations of B, (0,T) around its asymptotic
deterministic shape.

This question has received tremendous interest in the last 15 years or so. It is
widely believed that these fluctuations should be in some sense “universal”. More
precisely, the behavior of B, (0,T) around its limiting shape should not depend on
the “microscopic” particularities of the model such as the law on the edges lengths
but only on the dimension d of the underlying graph. The shape itself depends on
the other hand of course on the microscopic parameters, in the same way as the
critical point depends on the graph in percolation.

In the two-dimensional case, using very beautiful combinatorial bijections with
random matrices, certain cases of directed last passage percolation (where the law
on the edges is taken to be geometric or exponential) have been understood very
deeply. For example, it is known (see [Joh00]) that the fluctuations of the ball of
radius n (i.e. the points whose last passage times are below n) around n times its
asymptotic deterministic shape are of order n'/3 and the law of these fluctuations
properly renormalized follows the Tracy-Widom distribution. Very interestingly,
the fluctuations of the largest eigenvalue of GUE ensembles also follow this distri-
bution.

2. State of the art

Returning to our initial model of (non-directed) first passage percolation, it is
thus conjectured that, for dimension d = 2, fluctuations are of order n'/? following
a Tracy-Widom Law. Still, the current state of understanding of this model is far
from this conjecture.

Kesten first proved that the fluctuations of the ball of radius n are at most
V/n (this did not yet exclude a possible Gaussian behavior with Gaussian scal-
ing). Benjamini, Kalai and Schramm then strengthened this result by showing
that the fluctuations are sub-Gaussian. This is still far from the conjectured n'/3-
fluctuations, but their approach has the great advantage of being very general; in
particular their result holds in any dimension d > 2.

Let us now state their main theorem concerning the fluctuations of the metric
dist.

THEOREM VIL.1 ([BKSO03]). For all a,b,d, there exists an absolute constant
C = C(a,b,d) such that in 72,

[v]

dist <
Var(dist,, (0,v)) < Clog|v|

for any v € Z4, |v| > 2.

To keep things simple in these notes, we will only prove the analogous statement
on the torus where one has more symmetries and invariance to play with.
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3. The case of the torus

Let T¢ be the d-dimensional torus (Z/mZ)?. As in the above lattice model,
independently for each edge of T , we choose its length to be either a or b equally
likely. We are interested here in the smallest length among all closed paths ~
“winding” around the torus along the first coordinate Z/mZ (i.e. those paths 7
which when projected onto the first coordinate have winding number one). In
[BKSO03], this is called the shortest circumference. For any configuration w €

{a,b}F (T%.) | this shortest circumference is denoted by Circ,, (w).

(Z/mZ)?

FiGure VII.2. The shortest geodesic along the first coordinate
for the random metric dist,, on (Z/mZ)?2.

THEOREM VIL.2 ([BKSO03]). There is a constant C = C(a,b) (which does not
depend on the dimension d), such that

m
i < .
var(Circ,, (w)) < Clog -

REMARK VIL.2. A similar analysis as the one carried out below works in greater
generality: if G = (V, E) is some finite connected graph endowed with a random
metric d,, with w € {a,b}®F, then one can obtain bounds on the fluctuations of
the random diameter D = D,, of (G,d,). See [BKS03, Theorem 2] for a precise
statement in this more general context.

Proof.

For any edge e, let us consider the gradient along the edge e: V.Circ,,. These
gradient functions have values in [—(b — a),b — a]. By dividing our distances by
the constant factor b — a, we can even assume without loss of generality that our
gradient functions have values in [—1,1]. Doing so, we end up being in a setup
similar to the one we had in Part V. The influence of an edge e corresponds here
to I.(Circ,,) = ]P’[VeCircm (w) # 0]. We will prove later on that Circ,, has very
small influences. In other words, we will show that the above gradient functions
have small support, and hypercontractivity will imply the desired bound.

We have thus reduced the problem to the following general framework. Consider
a real-valued function f : {—1,1}" — R, such that for any variable k, Vi f € [—1, 1].
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We are interested in Var(f) and we want to show that if “influences are small” then
Var(f) is small. Tt is easy to check that the variance can be written

Var(f =1 Z Z ka

E 0£SC| n]

If all the variables have very small influence, then, as previously, Vi f should be of
high frequency. Heuristically, this should then imply that

Var(f) < 30D Vif(S)?

Kk S#0

Zlk(f)
k

This intuition is quantified by the following lemma on the link between the
fluctuations of a real-valued function f on €, and its influence vector.

LEMMA VIL3. Let f : Q, — R be a (real-valued) function such that each of
its discrete derivatives Vi f, k € [n] have their values in [—1,1]. Assume that the
influences of f are small in the sense that there exists some a > 0 such that for
any k€ {1,...,n}, I(f) <n~. Then there is some constant C = C(«) such that

Var(f lgnZI

REMARK VIL3. If f is Boolean, then this follows from Theorem 1.3 with C'(a) =
¢/a with ¢ universal.

The proof of this lemma is postponed to the next section. In the meantime,
let us show that in our special case of first passage percolation on the torus, the
assumption on small influences is indeed verified. Since the edge lengths are in
{a,b}, the smallest contour Circ,,(w) in T¢, around the first coordinate lies some-
where in [am, bm]. Hence, if v is a geodesic (a path in the torus with the required
winding number) satisfying length(y) = Circ,, (w), then 7 uses at most gm edges.
There might be several different geodesics minimizing the circumference. Let us
choose randomly one of these in an “invariant” way and call it 4. For any edge
e € E(T4), if, by changing the length of e, the circumference increases, then e
has to be contained in any geodesic v, and in particular in 4. This implies that
P[V.Circ,,(w) > 0] < P[e € ]. By symmetry we obtain that

L. (Circp,) = P[VCircy, (w) # 0] < 2P[e € 7]

Now using the symmetries both of the torus T¢, and of our observable Circ,,,
if 4 is chosen in an appropriate invariant way (uniformly among all geodesics for
instance), then it is clear that all the “vertical” edges (meaning those edges which,
when projected onto the first coordinate, project onto a single vertex) have the same
probability to lie in 4. The same is true for the “horizontal” edges. In particular

we have that
Y. Pleed] <E[Al] < -m.

“vertical” edges e

SRS

Since there are at least order m? vertical edges, the influence of each of these is
bounded by O(1)m!'~?. The same is true for the horizontal edges. All together
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this gives the desired assumption needed in Lemma VIL.3. Applying this lemma,
we indeed obtain that

m
Var(Circ,, (w)) < O(1
(Cire(w)) < O
where the constant does not depend on the dimension d; the dimension in fact helps
us here, since it makes the influences smaller. O

REMARK VIL.4. At this point, we know that for any edge e, I.(Circ,,) =
O(;%7). Hence, at least in the case of the torus, one easily deduces from Poincaré’s
inequality the theorem by Kesten which says that Var(Circ,,) = O(m).

4. Upper bounds on fluctuations in the spirit of KKL
In this section, we prove Lemma VII.3.

Proof. Similarly as in the proofs of Part V, the proof relies on implementing
hypercontractivity in the right way. We have that for any ¢,

var(f) = —ZZ |S\ka

kS0
1 — o
SESIND DI R o) Aty
k 0<|S|<clogn k

where the O(1) term depends on the choice of c.

Hence it is enough to bound the contribution of small frequencies, 0 < |S| <
clogn, for some constant ¢ which will be chosen later. As previously we have for
any p € (0,1) and using hypercontractivity,

SO TS? < p S LR

k 0<|S|<clogn k

p—ZClogn Z HkaH%-i-p‘

< —2010gnZI 2/ 14p2%)

IN

1-p2
< P_201°gn(51zp Li(f)) v+ ZIk(f)
k
< p2clogny” ZIk f) by our assumption .

(VIL1)

Now fixing any p € (0,1), and then choosing the constant ¢ depending on p
and «, the lemma follows. By optimizing on the choice of p, one could get better
constants if one wants. |

5. Further discussion

Some words on the proof of Theorem VII.1

The main difficulty here is that the quantity of interest, f(w) := dist,(0,v),
is no longer invariant under a large class of graph automorphisms. This lack of
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symmetry makes the study of influences more difficult. For example, edges near
the endpoints 0 or v have very high influence (of order one). To gain some more
symmetry, the authors in [BKS03] rely on a very nice “averaging” procedure. We
refer to this paper for more details.

Known lower bounds on the fluctuations

We discussed mainly here ways to obtain upper bounds on the fluctuations of
the shapes in first passage percolation. It is worth pointing out that some non-
trivial lower bounds on the fluctuations are known for Z?. See [PP94, NP95].

REMARK VIL5. We end by mentioning that the proof given in [BKS03] was
based on an inequality by Talagrand. The proof given here avoids this inequality.

Exercise sheet of Part VII

PrROBLEM VII.1. Let n > 1 and d > 2. Consider the random metric on the
torus Z¢/nZ? as described in this part. For any k > 1, let A* be the event that the
shortest “horizontal” circuit is < k. If d > 3, show that for any choice of k,, = k(n),
the family of events A% is noise sensitive. (Note that the situation here is similar
to the Problem 1.9 in Part I.) Finally, discuss the two-dimensional case, d = 2
(non-rigorously).

EXERCISE VII.2. Show that Lemma VIIL.3 is false if I(f) is taken to be the
square of the L? norm of Vj, f rather than the probability of its support (i.e. find
a counterexample).



Part VIII. Randomized algorithms and noise
sensitivity

In this part, we explain how the notion of revealment for so-called random-
ized algorithms can in some cases yield direct information concerning the energy
spectrum which may allow not only noise sensitivity results but even quantitative
noise sensitivity results.

1. BKS and randomized algorithms

In the previous part, we explained how Theorem 1.5 together with bounds on the
pivotal exponent for percolation yields noise sensitivity for percolation crossings.
However, in [BKS99], a different approach was in fact used for showing noise
sensitivity which, while still using Theorem 1.5, did not use these bounds on the
critical exponent. In that approach, one sees the first appearance of randomized
algorithms. In a nutshell, the authors showed that (1) if a monotone function is
very uncorrelated with all majority functions, then it is noise sensitive (in a precise
quantitative sense) and (2) percolation crossings are very uncorrelated with all
majority functions. The latter is shown by constructing a certain algorithm which,
due to the RSW Theorem I1.1, looks at very few bits but still looks at enough bits
in order to be able to determine the output of the function.

2. The revealment theorem

An algorithm for a Boolean function f is an algorithm A which queries (asks
the values of) the bits one by one, where the decision of which bit to ask can be
based on the values of the bits previously queried, and stops once f is determined
(being determined means that f takes the same value no matter how the remaining
bits are set).

A randomized algorithm for a Boolean function f is the same as above but
auxiliary randomness may also be used to decide the next value queried (including
for the first bit). [In computer science, the term randomized decision tree would be
used for our notion of randomized algorithm, but we will not use this terminology.]

The following definition of revealment will be crucial. Given a randomized
algorithm A for a Boolean function f, we let J4 denote the random set of bits
queried by A. (Note that this set depends both on the randomness corresponding
to the choice of w and the randomness inherent in running the algorithm, which
are of course taken to be independent.)

DEeFINITION VIII.1. The revealment of a randomized algorithm A for a
Boolean function f, denoted by 4, is defined by

0p = maX]P’(i € JA).

i€[n]
The revealment of a Boolean function f, denoted by 0, is defined by
0f = 1%f da
where the infimum is taken over all randomized algorithms A for f.

This section presents a connection between noise sensitivity and randomized
algorithms. It will be used later to yield an alternative proof of noise sensitivity for
percolation crossings which is not based upon Theorem 1.5 (or Proposition V.5).

108
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Two other advantages of the algorithmic approach of the present section over that
mentioned in the previous section (besides the fact that it does not rest on Theorem
1.5) is that it applies to nonmonotone functions and yields a more “quantitative”
version of noise sensitivity.
We have only defined algorithms, randomized algorithms and revealment for
Boolean functions but the definitions immediately extend to functions f : Q, — R.
The main theorem of this section is the following.

THEOREM VIIL1 ([SS10b)). For any function f : Q, — R and for each k =
1,2,..., we have that

(VIIL1) Ejk)= Y [ <k|fIP

where || f|| denotes the L? norm of f with respect to the uniform probability measure
on §2 and d¢ is the revealment of f.

Before giving the proof, we make some comments to help the reader see what is
happening and suggest why a result like this might be true. Our original function
is a sum of monomials with coefficients given by the Fourier coefficients. Each
time a bit is revealed by the algorithm, we obtain a new Boolean function obtained
by just substituting in the value of the bit we obtained into the corresponding
variable. On the algebraic side, those monomials which contain this bit go down
by 1 in degree while the other monomials are unchanged. There might however
be cancellation in the process which is what we hope for since when the algorithm
stops, all the monomials (except the constant) must have been killed. The way
cancellation occurs is illustrated as follows. The Boolean function at some stage
might contain (1/3)zox4xs + (1/3)x2x4 and then the bit x5 might be revealed and
take the value —1. When we substitute this value into the variable, the two terms
cancel and disappear, thereby bringing us 1 step closer to a constant (and hence
determined) function.

As far as why the result might be true, the intuition, very roughly speaking, is
as follows. The theorem says that for a Boolean function we cannot, for example,
have § = 1/1000 and ), f({i})? = 1/2. If the level 1 monomials of the function
were

a1W1 + AW + - -+ 4 ApWn,
then it is clear that after the algorithm is over, then with high probability, the sum
of the squares of the coefficients of the terms which have not been reduced to a
constant is still reasonably large. Therefore, since the function at the end of the
algorithm is constant, these remaining terms must necessarily have been cancelled
by higher degree monomials which, after running the algorithm, have been “reduced
to” degree 1 monomials. If, for the sake of this heuristic argument, we assume
that each bit is revealed independently, then the probability that a degree k > 2
monomial is brought down to a degree 1 monomial (which is necessary for it to
help to cancel the degree 1 terms described above) is at most 6*~! and hence the
expected sum of the squares of the coefficients from the degree & > 2 monomials
which are brought down to degree 1 is at most 6*~!. The total such sum for levels

2 to n is then at most
n
> okt <26
k=2
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which won’t be enough to cancel the (originally) degree 1 monomials which re-

mained degree 1 after running the algorithm if § is much less than ", f{i})2 A
similar heuristic works for the other levels.

Proof. In the following, we let Q denote the probability space that includes the
randomness in the input bits of f and the randomness used to run the algorithm
(which we assume to be independent) and we let E denote the corresponding expec-
tation. Without loss of generality, elements of {2 can be represented as @ = (w, 7)
where w are the random bits and 7 represents the randomness necessary to run the
algorithm.

Now, fix k > 1. Let

= 3 i) xslw),  we
\

The left hand side of (VIIL1) is equal to ||g||*.

Let J C [n] be the random set of all bits examined by the algorithm. Let
A denote the minimal o-field for which J is measurable and every w;, i € J,
is measurable; this can be viewed as the relevant information gathered by the
algorithm. For any function h : @ — R, let by : Q@ — R denote the random
function obtained by substituting the values of the bits in .J. More precisely, if
@ = (w,7) and W' € Q, then hy(@)(w') is h(w”) where w” is w on J(@) and is
W' on [n]\J(@). In this way, h; is a random variable on Q taking values in the
set of mappings from ) to R and it is immediate that this random variable is A-
measurable. When the algorithm terminates, the unexamined bits in €2 are unbiased
and hence E[h|A] = [ h;(= h;(0)) where [ is defined, as usual, to be integration
with respect to uniform measure on Q. It follows that E[h] = E[[ h,].

Similarly, for all h,

(VIIL2) IR = E[h?] = E[/ h?‘,} = E[||hs]].
Since the algorithm determines f, it is A measurable, and we have
loll> =Elg f) = E[E[g /| A]] =E[rE[g] 4]].
Since E[g|A] = §,(0), Cauchy-Schwarz therefore gives

(VIIL3) lgll* < VE[gs (0)2][I£1]-

We now apply Parseval to the (random) function g;: this gives (for any & =
(w,7) €Q),

302 = g2 — 3 5s(5)

|S|>0
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Taking the expectation over w € Q, this leads to

E[3,(0)?] Ellgsl5] = D E[4.(5)]

|S|>0
lglls = > E[3,(5)*] by (VIIL2)
|S|>0
. a2 R 9 since g is supported
o S|Zk 5(8) SZO]E[gJ(S) } { on level-k coefficients
= >

A2 A 5 by restricting to
= ;kE[g(S) —91(5) } { level-k coefficients

Now, since g; is built randomly from ¢ by fixing the variables in J = J(©),
and since g by definition does not have frequencies larger than k, it is clear that
for any S with |S| = k we have

sy = { 491 00

Therefore, we obtain

B[] 7115 =E[3,0)%] < > a(S)*P[SNJ#0] <|lgll5k0.
|S|=k

Combining with (VIIIL.3) completes the proof. |

Proposition IV.1 and Theorem VIII.1 immediately imply the following corollary.

COROLLARY VIIL.2. If the revealments satisfy

lim é¢ =0,

n—roo

then {fn} is noise sensitive.

In the exercises, one is asked to show that certain sequences of Boolean functions
are noise sensitive by applying the above corollary.

3. An application to noise sensitivity of percolation

In this section, we apply Corollary VIII.2 to prove noise sensitivity of per-
colation crossings. The following result gives the necessary assumption that the
revealments approach 0.

THEOREM VIIL.3 ([SS10b]). Let f = f, be the indicator function for the event
that critical site percolation on the triangular grid contains a left to right crossing
of our n x n box. Then 6y, < n~1/4+0(1) e n — oo,

For critical bond percolation on the square grid, this holds with 1/4 replaced by
some positive constant a > 0.

Outline of Proof. We outline the argument only for the triangular lattice; the
argument for the square lattice is similar. We first give a first attempt at a good
algorithm. We consider from Part II the exploration path or interface from the
bottom right of the square to the top left used to detect a left right crossing.
This (deterministic) algorithm simply asks the bits that it needs to know in order
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to continue the interface. Observe that if a bit is queried, it is necessarily the
case that there is both a black and white path from next to the hexagon to the
boundary. It follows, from the exponent of 1/4 for the two-arm event in Part II,
that, for hexagons far from the boundary, the probability that they are revealed
is at most R~1/4t°(1) ag desired. However, one cannot conclude that points near
the boundary have small revealment and of course the right bottom point is always
revealed.

The way that we modify the above algorithm so that all points have small
revealment is as follows. We first choose a point z at random from the middle third
of the right side. We then run two algorithms, the first one which checks whether
there is a left right path from the right side above x to the left side and the second
one which checks whether there is a left right path from the right side below x to
the left side. The first part is done by looking at an interface from x to the top left
corner as above. The second part is done by looking at an interface from x to the
bottom left corner as above (but where the colors on the two sides of the interface
need to be swapped.)

It can then be shown with a little work (but no new conceptual ideas) that this
modified algorithm has the desired revealment of at most R~'/4t°(1) as desired.
One of the things that one needs to use in this analysis is the so-called one-arm
half-plane exponent, which has a known value of 1/3. See [SS10b] for details. O

- o *%

3.1. First quantitative noise sensitivity result. In this subsection, we
give our first “polynomial bound” on the noise sensitivity of percolation. This is an
important step in our understanding of quantitative noise sensitivity of percolation
initiated in Part VI.

Recall that in the definition of noise sensitivity, € is held fixed. However, as we
have seen in Part VI, it is of interest to ask if the correlations can still go to 0 when
€ = €, goes to 0 with n but not so fast. The techniques of the present part imply
the following result.

THEOREM VIIL4 ([SS10b]). Let {f,} be as in Theorem VIIL.3. Then, for the
triangular lattice, for all v < 1/8,

On the square lattice, there exists some v > 0 with the above property.

Proof. We prove only the first statement; the square lattice case is handled simi-
larly. First, (IV.3) gives us that every n and ~,

(VIIL5) E{fo (@) fn(@i/n0)] = Elfa@)]? =Y Ep, (k)(1 = 1/n7)*.
k=1
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Note that there are order n? terms in the sum. Fix v < 1/8. Choose € > 0 so that
v+ ¢ < 1/8. For large n, we have that &, < 1/n'/47¢. The right hand side of
(VIIL5) is at most

nYte/2

Z k/n1/4,€ + (1 . 1/n,y)nw+e/2
k=1

by breaking up the sum at n?T¢/2 and applying Theorems VIIL.1 and VIIL3 to
bound the Ey, (k) terms in the first part. The second term clearly goes to 0 while
the first part also goes to 0 by the way e was chosen. |

Observe that the proof of Theorem VIIL.4 immediately yields the following
general result.

COROLLARY VIIL5. Let {f,} be a sequence of Boolean functions on m,, bits
with §(fn) < O(1)/n? for all n. Then for all v < 3/2, we have that

(VIIL6) i E[f, (w) fu(wi /)] — Elfa(w)]* = 0.

4. Lower bounds on revealments

One of the goals of the present section is to show that one cannot hope to reach
the conjectured 3/4-sensitivity exponent with Theorem VIIL.1. Theorem VIII.4
told us that we obtain asymptotic decorrelation if the noise is 1/n for v < 1/8.
Note that this differs from the conjectured “critical exponent” of 3/4 by a factor of
6. In this section, we investigate the degree to which the 1/8 could potentially be
improved and in the discussion, we will bring up an interesting open problem. We
will also derive an interesting general theorem giving a nontrivial lower bound on
the revealment for monotone functions. We start with the following definition.

DEFINITION VIIL.2. Given a randomized algorithm A for a Boolean function
f, let C(A) (the cost of A) be the expected number of queries that the algorithm
A makes. Let C(f) (the cost of f) be the infimum of C(A) over all randomized
algorithms A for f.

REMARK VIIL.1. (i). It is easy to see that C(f) is unchanged if we take the
infimum over deterministic algorithms.
(ii). Clearly nda > C(A) and hence nd; > C(f).
(iii). C(f) is at least the total influence I(f) since for any algorithm A and any 1,
the event that ¢ is pivotal necessarily implies that the bit ¢ is queried by A.

The following result due to O’Donnell and Servedio ([OS07])is an essential
improvement on the third part of the last remark.

THEOREM VIIL.6. Let f be a monotone Boolean function mapping §2, into
{=1,1}. Then C(f) > I(f)? and hence 6; > I(f)?/n.

Proof. Fix any randomized algorithm A for f. Let J = J4 be the random set of
bits queried by A. We then have

I(f) = E[Z fwwi] = E[f(w) Zwil{ieJ}] < \/E[f(w)z}\/E[(Zwil{ieJ})Q]

where the first equality uses monotonicity (recall Proposition IV.4) and then the
Cauchy-Schwarz inequality is used. We now bound the first term by 1. For the
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second moment inside the second square root, the sum of the diagonal terms yields
E[|.J]] while the cross terms are all 0 since for i # j, Elw;I{;c nw;ljesy] = 0 as can
be seen by breaking up the sum depending on whether i or j is queried first. This
yields the result. |

Returning to our event f, of percolation crossings, since the sum of the influ-
ences is n?/4T°(1) Theorem VIIL6 tells us that §;, > n~'/2t°() Tt follows from
the method of proof in Theorem VIII.4 that Theorem VIII.1 cannot improve the
result of Theorem VIIIL.4 past v = 1/4 which is still a factor of 3 from the critical
value 3/4. Of course, one could investigate the degree to which Theorem VIII.1
itself could be improved.

Theorem VIIL.3 tells us that there are algorithms A,, for f,, such that C'(A4,,) <
n7/4t°() On the other hand, Theorem VIIL6 tell us that it is necessarily the case
that C(A) > nb/4te(),

Open Question: Find the smallest o such that there are algorithms A,, for f,, with
C(A,) <n?. (We know o € [6/4,7/4].)

We mention another inequality relating revealment with influences which is a
consequence of the results in [OSSS05].

THEOREM VIIL7. Let f be a Boolean function mapping 2y, into {—1,1}. Then
6y = Var(f)/(nmax; I;(f))

Tt is interesting to compare Theorems VIIL.6 and VIIL.7. Assuming Var(f) is
of order 1, and all the influences are of order 1/n®, then it is easy to check that
Theorem VIIL.6 gives a better bound when o < 2/3 and Theorem VIIL.7 gives a
better bound when « > 2/3. For crossings of percolation, where « should be 5/8,
it is better to use Theorem VIII.6 rather than VIIL.7.

Finally, there are a number of interesting results concerning revealment ob-
tained in the paper [BSWO05]. Four results are as follows.

1. If f is reasonably balanced on n bits, then the revealment is at least of order
1/nt/2.

2. There is a reasonably balanced function on n bits whose revealment is at most
O(1)(logn)/n'/2.

3. If f is reasonably balanced on n bits and is monotone, then the revealment is at
least of order 1/n'/3.

4. There is a reasonably balanced monotone function on n bits whose revealment
is at most O(1)(logn)/n'/3.

We finally end this section by giving one more reference which gives an interest-
ing connection between percolation, algorithms and game theory; see [PSSWO07].

5. An application to a critical exponent

In this section, we show how Theorem VIII.1 or in fact Theorem VIII.6 can be
used to show that the four-arm exponent is strictly larger than 1; recall that with
SLE technology, this can be shown for the triangular lattice.

PROPOSITION VIILS. Both on the triangular lattice T and on Z?, there exists
€0 > 0 such that

as(R) < 1/RYteo
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We will assume the separation of arms result mentioned earlier in Part VI which
says that for the event fg, the influence of any variable further than distance R/10
from the boundary, a set of variables that we will denote by B for bulk, is < a4 (R).

Proof. Theorems VIII.3 and VIII.1 imply that for some a > 0,
> fr({i})? < 1/R*.
Next, using the separation of arms as explained above, we have

(VIIL7) R*a3(R) <0(1)> T2
i€B
Proposition IV.4 then yields
R*af(R) < O(1/R")
and the result follows. |

Observe that Theorem VIIL.6 could also be used as follows. Theorem VIII.3
implies that C'(fr) < R*~% for some a > 0 and then Theorem VIIL6 yields I( fz)? <
R?74,

Exactly as in (VIIL.7), one has, again using separation of arms, that

(VIILS) R*ay(R) < 0(1) > I; < O()I(fr).
i€B
Altogether this gives us
R*2(R) < O(1)R*™°,
again yielding the result.

We finally mention that it is not so strange that either of Theorems VIII.1
or VIIL.6 can be used here since, as the reader can easily verify, for the case of
monotone functions all of whose variables have the same influence, the case k = 1
in Theorem VIII.1 is equivalent to Theorem VIIL.6.

REMARK VIII.2. We now mention that the proof for the multi-scale version of
Proposition VI.6 is an extension of the approach of O’Donnell and Servedio above.

6. Does noise sensitivity imply low revealment?

As far as these lectures are concerned, this subsection will not connect to any-
thing that follows and hence can be viewed as tangential.

It is natural to ask if the converse of Corollary VIII.2 might be true. A moment’s
thought reveals that example 2, Parity, provides a counterexample. However, it is
more interesting perhaps that there is a monotone counterexample to the converse
which is provided by example 5, Clique containment.

ProprosiTION VIIL9. Clique containment provides an example showing that
the converse of Corollary VIII.2 is false for monotone functions.
Outline of Proof. We first explain more precisely the size of the clique that we
are looking for. Given n and k, let f(n,k) := (2)2_(9, which is just the expected
number of cliques of size k in a random graph. When k is around 2log,(n), it
is easy to check that f(n,k + 1)/f(n,k) is o(1) as n — oo. For such k, clearly
if f(n,k) is small, then with high probability there is no k-clique while it can be
shown, via a second moment type argument, that if f(n, k) is large, then with high
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probability there is a k-clique. One now takes k,, to be around 2log,(n) such that
f(n,kn) >1and f(n,k, +1) < 1. Since f(n,k+1)/f(n,k) is o(1), it follows with
some thought from the above that the clique number is concentrated on at most 2
points. Furthermore, if f(n,k,) is very large and f(n, k, + 1) very small, then it is
concentrated on one point. Again, see [AS00] for details.

Finally, we denote the event that the random graph on n vertices contains a
clique of size k, by A,. We have already seen in one of the exercises that this
example is noise sensitive. We will only consider a sequence of n’s so that A, is
nondegenerate in the sense that the probabilities of this sequence stay bounded
away from 0 and 1. An interesting point is that there is such a sequence. Again,
see [ASO00] for this. To show that the revealments do not go to 0, it suffices to
show that the sequence of costs (see Definition VIIL.2 and the remarks afterwards)
is Q(n?). We prove something stronger but, to do this, we must first give a few
more definitions.

DEFINITION VIIL.3. For a given Boolean function f, a witness for w is any
subset W of the variables such that the elements of w in W determine f in the
sense that for every w' which agrees with w on W, we have that f(w) = f(w'). The
witness size of w, denoted w(w), is the size of the smallest witness for w. The
expected witness size, denoted by w(f), is E(w(w)).

Observe that, for any Boolean function f, the bits revealed by any algorithm
A for f and for any w is always a witness for w. It easily follows that the cost C(f)
satisfies C'(f) > w(f). Therefore, in order to prove the proposition, it suffices to
show that

(VIIL9) w(fa) = Qn?).

REMARK VIIL3. (i). The above also implies that with a fixed uniform proba-
bility, w(w) is Q(n?).
(ii). Of course when f, is 1, there is always a (small) witness of size (kZ”) < n and
so the large average witness size comes from when f, is —1.
(iil). However, it is not deterministically true that when f,, is —1, w(w) is necessar-
ily of size Q(n?). For example, for w = —1 (corresponding to the empty graph), the
witness size is o(n?) as is easily checked. Clearly the empty graph has the smallest
witness size among w with f,, = —1.

LEMMA VIIL10. Let E, be the event that all sets of vertices of size at least
97n contains Cy, —3. Then lim, - P(E,) = 1.

Proof. This follows, after some work, from the Janson inequalities. See [AS00]
for details concerning these inequalities. O

LEMMA VIIL11. Let U be any collection of at most n?/1000 edges in C,. Then
there exist distinct vi,v2,v3 such that no edge in U goes between any v; and v; and

(VIII.10) |{e € U : e is an edge between {vi,va,v3} and {v1,v2,v3}°} < n/50.

Proof. We use the probabilistic method where we choose {v1,v2,v3} to be a
uniformly chosen 3-set. It is immediate that the probability that the first condition
fails is at most 3|U|/(%) < 1/100. Letting Y be the number of edges in the set
appearing in (VIIL.10) and Y’ be the number of U edges touching vy, it is easy to
see that

E(Y) < 3E(Y') = 6|U|/n < n/100
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where the equality follows from the fact that, for any graph, the number of edges
is half the total degree. By Markov’s inequality, the probability of the event in
(VIII.10) holds with probably at least 1/2. This shows that the random 3-set
{v1, va,v3} satisfies the two stated conditions with positive probability and hence
such a 3-set exists. |

By Lemma VIII.10, we have P(AS N E,) > ¢ > 0 for all large n. To prove the
theorem, it therefore suffices to show that if A N E,, occurs, there is no witness of
size smaller than n?/1000. Assume U to be any set of edges of size smaller than
n?/1000. Choose {v1,vs,v3} from Lemma VIIL.11. By the second condition in this
lemma, there exists a set S of size at least .97n which is disjoint from {vq, ve,v3}
which has no U-edge to {v1,vs,v3}. Since E, occurs, S contains a Cj, _3, whose
vertices we denote by T'. Since there are no U-edges between T and {v,vq,v3} or
within {v1,v9,v3} (by the first condition in Lemma VIIL.11) and T is the complete
graph, U cannot be a witness since A¢ occured. O

The key step in the proof of Proposition VIIL9 is (VIIL.9). This is stated
without proof in [FKWO02]; however, E. Friedgut provided us with the above proof.

Exercise sheet of Part VIII
EXERCISE VIII.1. Compute the revealment for Majority function on 3 bits.

EXERCISE VIII.2. Use Corollary VIII.2 to show that Examples 4 and 6, Iterated
3-Majority function and tribes, are noise sensitive.

ExeRrcISE VIII.3. For transitive monotone functions, is there a relationship
between revealment and the minimal cost over all algorithms?

EXERCISE VIII.4. Show that for transitive monotone functions, Theorem VIII.6
yields the same result as Theorem VIII.1 does for the case k = 1.

EXERCISE VIIL.5. What can you say about the sequence of revealments for the
Iterated 3-Majority function? [It can be shown that the sequence of revealments
decays like 1/n” for some o but it is an open question what o is.]

EXERCISE VIIL.6. You are given a sequence of Boolean functions and told that
it is not noise sensitive using noise €,, = 1/n'/>. What, if anything, can you conclude
about the sequence of revealments 6,7

ExXERCISE VIIL.7. Note that a consequence of Corollary VIII.2 and the last
line in Remark IV.2 is that if {f,,} is a sequence of monotone functions, then, if the
revealments of {f,} go to 0, the sums of the squared influences approach 0. Show
that this implication is false without the monotonicity assumption.



Part IX. The spectral sample

It turns out that it is very useful to view the Fourier coefficients of a Boolean
function as a random subset of the input bits where the “weight” or “probability”
of a subset is its squared Fourier coefficient. It is our understanding that it was
Gil Kalai who suggested that thinking of the spectrum as a random set could shed
some light on the types of questions we are looking at here. The following is the
crucial definition in this part.

1. Definition of the spectral sample

DEFINITION IX.1. Given a Boolean function f : €, — {£1} or {0,1}, we let
the spectral measure Q = Q of f be the measure on subsets {1,...,n} given by

Q(8) := f(S)% S c{1,...,n}.
We let Sy = 7 denote a subset of {1,...,n} chosen according to this mea-

sure and call this the spectral sample. We let Q also denote the corresponding
expectation (even when Q is not a probability measure).

By Parseval, the total mass of the so-defined spectral measure is
> [9?P=E[f].
Sc{1,...,n}

This makes the following definition natural.

DEFINITION IX.2. Given a Boolean function f : Q, — {£1} or {0,1}, we let
the spectral probability measure P = P; of f be the probability measure on
subsets of {1,...,n} given by

P1(5) = gy

Since I@’f s just Qf up to a renormalization factor, the spectral sample ./ = ./
will denote as well a random subset of [n] sampled according to Py. We let Ef =E
denote its corresponding expectation.

, ScA{l,....,n}.

REMARK IX.1.
(i) Note that if f maps into {41}, then, by Parseval’s formula, Q; = P;
while if it maps into {0,1}, Q # will be a subprobability measure.
(ii) Observe that if (f,), is a sequence of non-degenerate Boolean functions
into {0,1}, then P, = Qy, .
(iii) There is no statistical relationship between w and .#f as they are defined
on different probability spaces. The spectral sample will just be a conve-
nient point of view in order to understand the questions we are studying.

Some of the formulas and results we have previously derived in these notes
have very simple formulations in terms of the spectral sample. For example, it is
immediate to check that (IV.2) simply becomes

(IX.1) E[f(w)f(we)] = Qr[(1 — )]
(IX.2) E[f(w) f(we)] — E[f(w)]* = Qf[(1 — &)/ ).

118
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Next, in terms of the spectral sample, Propositions IV.1 and IV.2 simply be-
come the following proposition.

ProrosITION IX.1. If {f.} is a sequence of Boolean functions mapping into
{£1}, then we have the following.
1. {fn} is noise sensitive if and only if |}, | — oo in probability on the set
{7, # 0}
2. {fn} is noise stable if and only if the random variables {|.%},

} are tight.

There is also a nice relationship between the pivotal set P and the spectral
sample. The following result, which is simply Proposition IV.3 (see also the remark
after this proposition), tells us that the two random sets P and .# have the same
1-dimensional marginals.

PRroOPOSITION IX.2. If f is a Boolean function mapping into {+1}, then for all
i € [n] we have that
P(i € P) = Qi € .¥)
and hence E(|P]) = Q(.7]).

(This proposition is stated with Q instead of P since if f maps into {0,1}
instead, then the reader can check that the above holds with an extra factor of 4
on the right hand side while if P were used instead, then this would not be true for
any constant.) Even though .7 and P have the same “l-dimensional” marginals,
it is not however true that these two random sets have the same distribution. For
example, it is easily checked that for M AJ3, these two distributions are different.
Interestingly, as we will see in the next section, . and P also always have the same
“2-dimensional” marginals. This will prove useful when applying second moment
method arguments.

Before ending this section, let us give an alternative proof of Proposition VI.9
using this point of view of thinking of . as a random set.

Alternative proof of Proposition VI.9 The statement of the proposition when
converted to the spectrum states (see the exercises in this part if this is not clear)
that for any a,, — oo,

lim P(|.%,| > a,n®as(n)) = 0.

n—oo
However this immediately follows from Markov’s inequality using Propositions VI.8
and IX.2. O

2. A way to sample the spectral sample in a sub-domain

In this section, we describe a method of “sampling” the spectral measure re-
stricted to a subset of the bits. As an application of this, we show that . and
P in fact have the same 2-dimensional marginals, namely that for all i and j,
P(i,j € P) = Q(i,j € .7).

In order to first get a little intuition about the spectral measure, we start with
an easy proposition.

PRroPOSITION IX.3 ([GPS10]). For a Boolean function f and A C {1,2,...,n},
we have R
Q(; € A) = E[|E(f|4)[]

where conditioning on A means condiltioning on the bits in A.
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Proof. Noting that E(xgs|A) is xg if S C A and 0 otherwise, we obtain by expand-

ing that
E(fl4) = f(s
SCA
Now apply Parseval’s formula. O

If we have a subset A C {1,2,...,n}, how do we “sample” from AN .77 A
nice way to proceed is as follows: choose a random configuration outside of A, then
look at the induced function on A and sample from the induced function’s spectral
measure. The following proposition justifies in precise terms this way of sampling.
Its proof is just an extension of the proof of Proposition IX.3.

ProprosITION IX.4 ([GPS10]). Fiz a Boolean function f on Q,. For A C
{1,2,...,n} and y € {£1}*, that is a configuration on A°, let gy be the function
defined on {£1}4 obtained by using f but fizing the configuration to be y outside
of A. Then for any S C A, we have

QN A =5)=EQ(S, = 5)] =E[g(5)].

Proof. Using the first line of the proof of Proposition I1X.3, it is easy to check that
for any S C A, we have that

E[fxs|Fa = Y FSUS)xs.
S'CAe
This gives

[[fXS!FAc] Z FSUSY =QLFNA=S]

which is precisely the claim. |

REMARK IX.2. Observe that Proposition IX.3 is a special case of Proposition
IX.4 when S is taken to be () and A is replaced by A°.

The following corollary was first observed by Gil Kalai.

COROLLARY IX.5 ([GPS10]). If f is a Boolean function mapping into {£1},
then for all i and j, R
P(i,j € P) = Q(i,j € 7).
(The comment immediately following Proposition IX.2 holds here as well.)
Proof. Although it has already been established that P and .# have the same 1-

dimensional marginals, we first show how Proposition IX.4 can be used to establish
this. This latter proposition yields, with A = S = {i}, that

Qi € ) = Q( N {i} = {i}) = Elg; ({i})]-

Note that g, is +w; if i is pivotal and constant if ¢ is not pivotal. Hence the last
term is P(i € P).

For the 2-dimensional marginals, one first checks this by hand when n = 2. For
general n, taking A = S = {i,j} in Proposition IX.4, we have

Qi j € 7) =P N {i,j} = {i,j}) = Elgy({i. j})]-

For fixed y, the n = 2 case tells us that g2({i,j}) = P(i,j € Py, ). Finally, a little
thought shows that E[P(i, j € Py, )] = P(i,j € P), completing the proof. O
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3. Nontrivial spectrum near the upper bound for percolation

We now return to our central event of percolation crossings of the rectangle
R,, where f, denotes this event. At this point, we know that for Z?2, (most of)
the spectrum lies between n (for some ¢y > 0) and n2ay(n) while for T it sits
between n'/8+0(1) and n3/4t°() In this section, we show that there is a nontrivial
amount of spectrum near the upper bound n?ay(n). For T, in terms of quantitative
noise sensitivity, this tells us that if our noise sequence ¢, is equal to 1 /ng/ 4-0
for fixed § > 0, then in the limit, the two variables f(w) and f(we,) are not
perfectly correlated; i.e., there is some degree of independence. (See the exercises
for understanding such arguments.) However, we cannot conclude that there is
full independence since we don’t know that “all” of the spectrum is near n3/4to(1)

(yet!).

THEOREM IX.6 ([GPS10]). Consider our percolation crossing functions { fy}
(with values into {+1}) of the rectangles R,, for Z* or T. There exists ¢ > 0 such
that for all n,

]f”“&”n\ > cn’au(n)] > c

The key lemma for proving this is the following second moment bound on the
number of pivotals which we prove afterwards. It has a similar flavor to Exercise 6
in Part VI.

LEmMA IX.7 ([GPS10]). Consider our percolation crossing functions {fn}
above and let R be the box concentric with R, with half the radius. If X, =
[P, N R, | is the cardinality of the set of pivotal points in R.,, then there erists a
constant C' such that for all n we have that

E[|X,[%] < CE[|X,[]*.

Proof of Theorem IX.6. Since P,, and .¥,, have the same 1 and 2-dimensional
marginals, it follows fairly straightforward from Lemma IX.7 that we also have that
for all n

P[|.#, N R,[2] < CP[l.#, N R,|]".
Recall now the Paley-Zygmund inequality which states that if Z > 0, then for all
0 € (0,1),
LE[Z]
E[Z?]
The two above inequalities (with Z = |., N R, | and § = 1/2) imply that for all n,

E[.7, N R.|
2

P(Z > 0E[Z]) > (1 6)

]] Z .

4C
Now, by Proposition IX.2, one has that IEU&”R N R, || = E[X,]. Furthermore
(a trivial modification of) Proposition VL8 yields E[X,] =< n?a4(n) which thus
completes the proof. O

Pl N R,| >

‘We are now left with

Proof of Lemma IX.7. As indicated at the end of the proof of Theorem 1X.6,
we have that E(X,,) < n?a4(n). Next, for z,y € R!,, a picture shows that

P(z,y € Pp) < ai(le — yl/2)aa(2lz — yl,n/2)
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since we need to have the four-arm event around x to distance |z — y|/2, the same
for y, and the four-arm event in the annulus centered at (z + y)/2 from distance
2|z — y| to distance n/2 and finally these three events are independent. This is by
quasi-multiplicity at most

O(1)ai(n)/au(lz = yl,n)
and hence

1

as(jz —yl,n)’

E[|X,*) < O(1)af(n) Y

@y

Since, for a given x, there are at most O(1)2% y’s with |z — y| € [2¥,2F"1], using
quasi-multiplicity, the above sum is at most

logy (n) 92k

O(1)n*a2(n) Z o)

k=0
Using
1
ay(r, R)
(this is the fact that the four-arm exponent is strictly less than 2), the sum becomes
at most

< (R/r)*~

log, (1)
O(1)n*~ca3(n) Z ke,
k=0
Since the last sum is at most O(1)n¢, we are done. O

In terms of the consequences for quantitative noise sensitivity, Theorem IX.6 implies
the following corollary; see the exercises for similar implications. We state this only
for the triangular lattice. An analogous result holds for Z2.

COROLLARY IX.8. For T, there exists ¢ > 0 so that if €, = 1/(n?a4(n)), then
for all n,

P(fn(w) # frlwe,)) = c.

Note, importantly, this does not say that f,(w) and f,(w.,) become asymptoti-
cally uncorrelated, only that they are not asymptotically completely correlated. To
ensure that they are asymptotically uncorrelated is significantly more difficult and
requires showing that “all” of the spectrum is near n3/4. This much more difficult
task is the subject of the next part.

Exercise sheet of Part IX

EXERCISE IX.1. Let {f,} be an arbitrary sequence of Boolean functions map-
ping into {41} with corresponding spectral samples {.7},}.
(i). Show that P[0 < |#,] < A,] — 0 implies that E[(1 — e,)""I 15 4] — 0 if
€nA, — 0.
(ii). Show that ]]:':[(1 — €)1y 44] — 0 implies that [@’[0 <|Fl < A,] = 0if
enA, = O(1).
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EXERCISE IX.2. Let {f,} be an arbitrary sequence of Boolean functions map-
ping into {41} with corresponding spectral samples {.7},}.
(i). Show that P[f(w) # f(we,)] = 0and A€, = Q(1) imply that P[|.7,| > A4, ] —
0

(11) Show that I@[|Yn| > A,] — 0and A6, = o(1) imply that P[f(w) # f(we,)] —
0.

EXERCISE IX.3. Prove Corollary IX.8.

EXERCISE I1X.4. For the iterated 3-Majority sequence, recall that the total
influence is n® where o = 1 — log2/log3. Show that for e, = 1/n%, P(f,(w) #
fn(we,)) does not tend to 0.

EXERCISE IX.5. Assume that {f,,} is a sequence of monotone Boolean functions
on n bits with total influence equal to n'/2 up to constants. Show that the sequence
cannot be noise sensitive. Is it necessarily noise stable as the Majority function is?

EXERCISE IX.6. Assume that { f,,} is a sequence of monotone Boolean functions
with mean 0 on n bits. Show that one cannot have noise sensitivity when using
noise level €, = 1/n'/2,

EXERCISE IX.7. Show that P and . have the same 2-dimensional marginals
using only Proposition IX.3 rather than Proposition IX.4.
Hint: It suffices to show that P({i,j} NP =0) = Q({i,j} N =0).

EXERCISE IX.8. (Challenging problem) Do you expect that exercise I1X.5 is
sharp, meaning that, if 1/2 is replaced by o < 1/2, then one can find noise sensitive
examples?



Part X. Sharp noise sensitivity of percolation

We will explain in this part the main ideas of the proof in [GPS10] that most
of the “spectral mass” lies near n?ay(n) ~ n?/4+°(1). This proof being rather long
and involved, the content of this part will be far from a formal proof. Rather it
should be considered as a (hopefully convincing) heuristic explanation of the main
results, and possibly for the interested readers as a “reading guide” for the paper
[GPS10].

Very briefly speaking, the idea behind the proof is to identify properties of the
geometry of ./, which are reminiscent of a self-similar fractal structure. Ideally,
7, would behave like a spatial branching tree (or in other words a fractal perco-
lation process), where distinct branches evolve independently of each other. This
is conjecturally the case, but it turns out that it is very hard to control the depen-
dency structure within .%, . In [GPS10], only a tiny hint of spatial independence
within ., is proved. One of the main difficulties of the proof is to overcome the
fact that one has very little independence to play with.

A substantial part of this part focuses on the much simpler case of fractal
percolation. Indeed, this process can be seen as the simplest toy model for the
spectral sample ., . Explaining the simplified proof adapted to this setting already
enables us to convey some of the main ideas for handling .7, .

1. State of the art and main statement

See Figure X.1 where we summarize what we have learned so far about the
spectral sample .7, of a left to right crossing event f,.

From this table, we see that the main question now is to prove that all the
spectral mass indeed diverges at speed n2ay4(n) which is n3/4t0() for the triangular
lattice. This is the content of the following theorem.

THEOREM X.1 ([GPS10]).

. < 2
hyILILSo%pP[O < |5, | < An*ay(n)] . 0.

On the triangular lattice T, the rate of decay in A is known explicitly. Namely:

THEOREM X.2 ([GPS10]). On the triangular grid T, the lower tail of |}, |
satisfies
li P[0 < |#,] < AE[l.7, = N3
imsup P[0 < .77, | <AE[L77,[])] =
This result deals with what one might call the “macroscopic” lower tail, i.e.
with quantities which asymptotically are still of order E[|an|] (since A remains
fixed in the above limsup). It turns out that in our later study of dynamical
percolation in Part XI, we will need a sharp control on the full lower tail. This is
the content of the following stronger theorem:

THEOREM X.3 ([GPS10]). On Z? and on the triangular grid T, for all 1 <
r <mn, one has
2

<rfay(r)] < n—oz4(r, n)?.

IAP)[O < |’5ﬂf‘n 2

On the triangular grid, this translates into

ol

]fD[O < |Zp | < ul ~nTTub

124
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on the square lattice Z2 on the triangular lattice T

The spectral
mass There is a positive ex-

diverges at | ponent € > 0, s.t. The same holds for all € <

polynomial ]f"[() <|Ff, | <n] =0 1/8
speed
Lower tail es- | On both lattices, Theorem VIII.1 enables to obtain
timates (non-sharp) lower tail estimates
A positive

fraction of . .
There is some universal

P 3/4+0(1)
tlz:spselcizm ¢> 05, ICP’[|Yf| >cn | >
2
“where it ]P’[\an >cn a4(n)] > c
should”
A B (k)= _ An S)?
1. (k) = 2ys1=k fu(S) At least
A smaller a  postive
"'l.aump’ ?f bos fraction of
May be sum- itive . Spectral the spec-
marized by mass ¢ tral  mass
the following lies here
picture
N —

’LI/S n3/-’£+0(1)

FIGURE X.1. A summary of some of the results obtained so far for ., .

where we write &= to avoid relying on o(1) terms in the exponents.

2. Overall strategy

In the above theorems, it is clear that we are mostly interested in the cardinality
of ... However, our strategy will consist in understanding as much as we can
about the typical geometry of the random set ., sampled according to the spectral
probability measure P f

As we have seen so far, the random set .%%, shares many properties with the
set of pivotal points Py, . A first possibility would be that they are asymptotically
similar. After all, noise sensitivity is intimately related with pivotal points, so
it is not unreasonable to hope for such a behavior. This scenario would be very
convenient for us since the geometry of Py, is now well understood (at least on T)
thanks to the SLE processes. In particular, in the case of Py, , one can “explore”
Py, in a Markovian way by relying on exploration processes. Unfortunately, based
on very convincing heuristics, it is conjectured that the scaling limits of +.%, and
%an are singular random compact sets of the square. See Figure X.2 for a quick
overview of the similarities and differences between these two random sets.
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The conclusion of this table is that they indeed share many properties, but one
cannot deduce lower tail estimates on |}, | out of lower tail estimates on [Py, |.
Also, even worse, we will not be allowed to rely on spatial Markov properties for
T

Pivotal set Py, Spectral set .7,
First moment -
E[[Py.] T B[]
Second moment E[|P;, 2] 1 IE“ 7]

Higher moments

; al 1 iffer !
(k> 3) In general, they differ !

Easy (and fast) using two explo-
ration paths: The spectral sample 7, is

much harder to sample.

Methods for sam-
pling these ran-

dom sets In fact, the only known way

to proceed is to compute the
weights f,(S)%, one at a time

Distant regions in Py behave

i more or less independently of
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FI1GURE X.2. Similarities and differences between .#, and Py, .

However, even though Py, and ./, differ in many ways, they share at least
one essential property: a seemingly self-similar fractal behavior. The main strategy
in [GPS10] to control the lower-tail behavior of |.#, | is to prove that in some very
weak sense, ./, behaves like the simplest model among self-similar fractal processes
in [0,n)%: i.e. a super-critical spatial Galton-Watson tree embedded in [0, n]?, also
called a fractal percolation process. The lower tail of this very simple toy model will
be investigated in detail in the next section with a technique which will be suitable
for ., . The main difficulty which arises in this program is the lack of knowledge of
the independency structure within %, . In other words, when we try to compare
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4, with a fractal percolation process, the self-similarity already requires some
work, but the hardest part is to deal with the fact that distinct “branches” (or
rather their analogues) are not known to behave even slightly independently of
each other. We will discuss these issues in Section 4 but will not give a complete
proof.

3. Toy model: the case of fractal percolation

As we explained above, our main strategy is to exploit the fact that ., has
a certain self-similar fractal structure. Along this section, we will consider the
simplest case of such a self-similar fractal object: namely fractal percolation, and
we will detail in this simple setting what our later strategy will be. Deliberately,
this strategy will not be optimal in this simplified case. In particular, we will
not rely on the martingale techniques that one can use with fractal percolation or
Galton-Watson trees, since such methods would not be available for our spectral
sample .7, .

3.1. Definition of the model and first properties. To make the analogy
with 7, easier let

n:=2" h>1,
and let’s fix a parameter p € (0,1).

Now, fractal percolation on [0,n]? is defined inductively as follows: divide
[0,2"]2 into 4 squares and retain each of them independently with probability p.
Let 7! be the union of the retained 2"~ '-squares. The second-level tree 7?2 is ob-
tained by reiterating the same procedure independently for each 2"~ !-square in 7.
Continuing in the same fashion all the way to the squares of unit size, one obtains
T, = T := T" which is a random subset of [0,n]?. See [LyP11] for more on the
definition of fractal percolation. See also Figure X.3 for an example of 77°.

REMARK X.1. We thus introduced two different notations for the same random
set (Tn—on = T"). The reason for this is that on the one hand the notation 7,
defined on [0,n]? = [0,2"]? makes the analogy with .#, (also defined on [0,n]?)
easier, while on the other hand inductive proofs will be more convenient with the
notation 7.

In order to have a supercritical Galton-Watson tree, one has to choose p €
(1/4,1). Furthermore, one can easily check the following easy proposition.

PRrROPOSITION X.4. Let p € (1/4,1). Then

E[W;l” _ n2ph _ n2-i—10g2177
and
E[|7."] < OWE[T.]°.

In particular, by the second moment method (e.g. the Paley-Zygmund inequal-
ity), with positive probability, T,, is of order n*+1°82P,

Let

a:=2+logyp.
This parameter « corresponds to the “fractal dimension” of 7,. To make

the analogy with ./, even clearer, one could choose p in such a way that o =
2+ log, p = 3/4, but we will not need to.
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FIGURE X.3. A realization of a fractal percolation Tgs = T°

The above proposition implies that on the event 7, # (), with positive condi-
tional probability |7, is large (of order n®). This is the exact analogue of Theorem
IX.6 for the spectral sample .7, .

Let us first analyze what would be the analogue of Theorem X.1 in the case of
our toy model 7,,. We have the following.

ProprosiTiON X.5.

limsupP[0 < |T,] < An®)] — 0.
n— 00 A—0
REMARK X.2. If one could rely on martingale techniques, then this proposition

is a corollary of standard results. Indeed, as is well-known

_ 1T

~ (4p)

is a positive martingale. Therefore it converges, as n — oo, to a non-negative ran-
dom variable W > 0. Furthermore, the conditions of the Kesten-Stigum Theorem

are fulfilled (see for example Section 5.1 in [LyP11]) and therefore W is positive
on the event that there is no extinction. This implies the above proposition.

Mii

As we claimed above, we will intentionally follow a more hands-on approach
in this section which will be more suitable to the random set .y, which we have
in mind. Furthermore this approach will have the great advantage to provide the
following much more precise result, which is the analogue of Theorem X.3 for 7,,.

ProposITION X.6. For any 1 <r <n,
P[O < |7;z| < ra] = (%)logz 1/H’

where p is an explicit constant in (0,1) computed in Exercise X.2.
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How does
c(n ] 0<
<u OR?
[Tn| < u)
look ? =

More Entropy ( in Vol?)
but costs more to
maintain these 3

“islands” alive.

Less Entropy (in Vol') but
only one island to maintain
alive.

FicUure X.4. Entropy v.s. Clustering effect

3.2. Strategy and heuristics. Letting u < n®, we wish to estimate
P[0 < |T,| < u]. Even though we are only interested in the size of T,,, we will try
to estimate this quantity by understanding the geometry of the conditional set:

T = £(T,

0<|7;|<u).

The first natural question to ask is whether this conditional random set is
typically localized or not. See Figure X.4.

Intuitively, it is quite clear that the set 7, conditioned to be very small will
tend to be localized. So it is the picture on the right in Figure X.4 which is more
likely. This would deserve a proof of course, but we will come back to this later.
The fact that it should look more and more localized tells us that as one shrinks u,
this should make our conditional ’ﬁlu more and more singular with respect to the
unconditional one. But how much localization should we see? This is again fairly
easy to answer, at least on the intuitive level. Indeed, 7," should tend to localize
until it reaches a certain mesoscopic scale r such that 1 < r < n. One can compute
how much it costs to maintain a single branch (or O(1) branches) alive until scale
r, but once this is achieved, one should let the system evolve in a “natural” way.
In particular, once the tree survives all the way to a mesoscopic square of size r,
it will (by the second moment method) produce Q(r®) leaves there with positive
probability.

To summarize, typically 771“ will maintain O(1) many branches alive at scale
1 <« r < n, and then it will let the branching structure evolve in a basically
unconditional way. The intermediate scale r is chosen so that r® =< u.

DEFINITION X.1. If1 < r < n = 2" 4s such that r = 21,0 < [ < h, let
T(ry denote the set of branches that were still alive at scale r = 2L in the iterative
construction of T,. In other words, Ty = T and T, C UTy- This random
set T(ry will be the analogue of the “r-smoothing” 7,y of the spectral sample 75,
defined later in Definition X.2.
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Returning to our problem, the above heuristics say that one expects to have
for any 1 < u < n®.

P[0 < |Tn| < u] < P[0 < |T(y| < O(1)]

where r is a dyadic integer chosen such that 7 < u. Or in other words, we expect
that

(X.1) P[0 < |7l < 7] < P[|T)| = 1]

In the next subsection, we briefly explain how this heuristic can be implemented
into a proof in the case of the tree 7, in a way which will be suitable to the study
of 7%, . We will only skim through the main ideas for this tree case.

3.3. Setup of a proof for 7,. Motivated by the above heuristics, we divide
our system into two scales: above and below the mesoscopic scale . One can write
the lower tail event as follows (let 1 < r < n):

(X.2) P[0 < |Tn| < 7] =Y P[] = k] P[0 < [Ta| <7 | |T(n| = K] .

k>1

It is not hard to estimate the second term P[0 < |T,,| < r® | [T(,)| = k]. Indeed,
in this term we are conditioning on having exactly k branches alive at scale r.
Independently of where they are, “below” r, these k branches evolve independently
of each other. Furthermore, by the second moment method, there is a universal
constant ¢ > 0 such that each of them exceeds the fatal amount of r* leaves with
probability at least ¢ (note that in the opposite direction, each branch could also
go extinct with positive probability). This implies that

PO < |To] <7 | [T = k] < (1 —0)*.

REMARK X.3. Note that one makes heavy use of the independence structure
within 7, here. This aspect is much more nontrivial for the spectral sample .7, .
Fortunately it turns out, and this is a key fact, that in [GPS10] one can prove a
weak independence statement which in some sense makes it possible to follow this
route.

We are left with the following upper bound:
(X.3) P[0 < [Tal <7°] <Y P[|Tin| = k] (1 —o)F.
k>1

In order to prove our goal of (X.1), by exploiting the exponential decay given
by (1—¢)* (which followed from independence), it is enough to prove the following
bound on the mesoscopic behavior of T

LEMMA X.7. There is a sub-exponential function k — g(k) such that for all
1<r<n,
Pmﬁrﬂ = k] < g(k)PU,T(rﬂ = 1] :

Notice as we did in Definition X.1 that since 7,y has the same law as Tht,
this is a purely Galton-Watson tree type of question.
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The big advantage of our strategy so far is that initially we were looking for
a sharp control on IF’[O <|Tnl < u] and now, using this “two-scales” argument, it
only remains to prove a crude upper bound on the lower tail of |7(,)|. By scale
invariance this is nothing else than obtaining a crude upper bound on the lower tail
of |T,|. Hence this division into two scales greatly simplified our task.

3.4. Sub-exponential estimate on the lower-tail (Lemma X.7). The
first step towards proving and understanding Lemma X.7 is to understand the term
P[|7(s)| = 1]. From now on, it will be easier to work with the “dyadic” notations
instead, i.e. with 7% = T5: (see remark X.1). With these notations, the first step
is equivalent to understanding the probabilities p; := P[|Ti\ = 1]. This aspect of
the problem is very specific to the case of Galton-Watson trees and gives very little
insight into the later study of the spectrum .#% . Therefore we postpone the details
to Exercise X.2. The conclusion of this (straightforward) exercise is that p; behaves
as ¢ — oo like

pi~ep
for an explicit exponent p € (0,1) (see Exercise X.2). In particular, in order to

prove Proposition X.6, it is now enough to find a sub-exponential function k — g(k)
such that for any 7,k > 1,

(X.4) P[] = K] < g(k)
More precisely, we will prove the following lemma.

LEMMA X.8. Let g(k) := 29°83:%2) where 0 is a fized constant to be chosen
later. Then for all i,k > 1, one has

(X.5) BT = k] < g(k)u'.

We provide the proof of this lemma here, since it can be seen as a “toy proof”
of the corresponding sub-exponential estimate needed for the r-smoothed spectral
samples .7, stated in the coming Theorem X.13. The proof of this latter theorem
shares some similarities with the proof below but is much more technical since in
the case of #{,.y one has to deal with a more complex structure than the branching
structure of a Galton-Watson tree.

Proof. We proceed by double induction. Let k > 2 be fixed and assume that
equation (X.5) is already satisfied for all pair (¢, £’) such that ¥’ < k. Based on this
assumption, let us prove by induction on ¢ that all pairs (i, k) satisfy equation (X.5)
as well.

First of all, if 4 is small enough, this is obvious by the definition of g(k). Let

J = Jy :=sup{i >1: g(k)u' > 10}.

Then, it is clear that equation (X.5) is satisfied for all (7, k) with ¢ < J,. Now
let @ > Jg.

If 77 is such that [T?] =k > 1, let L = L(T") > 0 be the largest integer such
that 7" intersects only one square of size 2%, This means that below scale 2=,
the tree 7 splits into at least 2 live branches in distinct dyadic squares of size
2i=L=1 Let d € {2,3,4} be the number of such live branches. By decomposing on
the value of L, and using the above assumption, we get
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P|IT = k] <P[L(T?) > i— Ji]+

e -0y (e X Il

where g is the probability that our Galton-Watson tree goes extinct.

Let us first estimate what P[L(Ti) > m] is for m > 0. If m > 1, this means
that among the 22™ dyadic squares of size 2'~™, only one will remain alive all the
way to scale 1. Yet, it might be that some other such squares are still alive at scale
2/=™ but will go extinct by the time they reach scale 1. Let p,,;, be the probability
that the process 7% which lives in [0,2™%?)2, is entirely contained in a dyadic
square of size 2°. With such notations, one has

P[L(T") > m] = pmi—m -

Furthermore, if i = m, one has p; o = p; ~ cu’. It is not hard to prove (see
Exercise X.2) the following lemma.

LEMMA X.9. For any value of m,b > 0, one has
Pm,b S Nm
In particular, one has a universal upper bound in b > 0.

It follows from the lemma that P[L(7T") =] <P[L(T") > ] < p! and

(X.6) PIL(TY) >i— J| < p'~7k
(X.7) < 110 g(k) i’ by the definition of Jj .

This gives us that for some constant C'

p i, 4
BT = k] < g +C >t D (! > [Totk)
o= (kj)i<j<a ’
kj = 1,30k
4 i—Jk
= +Cpty > [Tok).
d=2 1:0 j
(Fj)i<j<d
ki > 1,5k

Let us deal with the d = 2 sum (the contributions coming from d > 2 being
even smaller). By concavity of k — @log3(k + 2), one obtains that for any (ky, k)
such that ky +ko = k: g(k1)g(ka) < g(k/2)%. Since there are at most k? such pairs,
this gives us the following bound on the d = 2 sum.
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1—Jg 1—Jg
> (! > [Tok) <> w'k?g(k/2)
=0 (j)1<j< ’ 0

ki > 1,5k =k

IN

1 Jr 1.2 2
1 H g( / )

IN

107 K g(0k/2)? (k) "

by definition of Jj.

Now, some easy analysis implies that if one chooses the constant 6 > 0 large
enough, then for any k& > 2, one has C’lOﬁk2 9(k/2)% (ng(k)) ™' < {5g(k). Alto-
gether (and taking into consideration the d > 2 contributions), this implies that

PIT'| = k] < zg(k)u’ < g(k)u',
as desired. O

(S0 ]

REMARK X.4. Recall the initial question from Figure X.4 which asked whether
the clustering effect wins over the entropy effect or not. This question enabled us
to motivate the setup of the proof but in the end, we did not specifically address
it. Notice that the above proof in fact solves the problem (see Exercise X.3).

4. Back to the spectrum: an exposition of the proof

4.1. Heuristic explanation. Let us now apply the strategy we developed for
T, to the case of the spectral sample .4, . Our goal is to prove Theorem X.3 (of
which Theorems X.1 and X.2 are straightforward corollaries). Let ., C [0,n]? be
our spectral sample. We have seen (Theorem IX.6) that with positive probability
|-, | < n2a4(n). For all 1 < u < n®ay(n), we wish to understand the probability
I@’[O < |#s.| < u]. Following the notations we used for Ty, let 5’)7: be the spectral
sample conditioned on the event {0 < |7}, | < u}.

Question: How does 5’}: typically look?

To answer this question, one has to understand whether ,5”}“ tends to be lo-
calized or not. Recall from Figure X.4 the illustration of the competition between
entropy and clustering effects in the case of 7,,. The same figure applies to the spec-
tral sample ., . We will later state a clustering lemma (Lemma X.14) which
will strongly support the localized behavior described in the next proposition.

Therefore we are guessing that our conditional set . flu will tend to localize into
O(1) many squares of a certain scale r and will have a “normal” size within these
r-squares. It remains to understand what this mesoscopic scale r as a function of
u is.

By “scale invariance”, one expects that if .7, is conditioned to live in a square
of size r, then |.#, | will be of order 72ay(r) with positive conditional probability.
More precisely, the following lemma will be proved in Problem X.6.
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LEMMA X.10. There is a universal ¢ € (0,1) such that for any n and for any
r-square B C [n/4,3n/4)* in the “bulk” of [0,n]?, one has
o1 178l
(X8) P[WG(C,l/C)|yfn7é® andeﬂCB] > c.
In fact this lemma holds uniformly in the position of the r-square B inside
[0, 7], but we will not discuss this here.

What this lemma tells us is that for any 1 < u < n?ay4(n), if one chooses r = r,,
in such a way that r2a4(r) < u, then we expect to have the following estimate:

I@’[O < || <u] < I@’[Yf intersects O(1) r-square in [0, n)?]
= I@’[yfn intersects a single r-square in [0,n]?]

At this point, let us introduce a concept which will be very helpful in what
follows.

DEFINITION X.2 (“r-smoothing”). Let 1 <r < n. Consider the domain [0,n]?
and divide it into a grid of squares of edge-length r. (If 1 < r < n, one can view
this grid as a mesoscopic grid).

If n is not divisible by r, write n = mr + q and consider the grid of r-squares
covering [0, (m + 1)r]%.

Now, for each subset S C [0,n]?, define Sy to be the set of r x r squares in
the above grid which intersect S. In particular |S¢.| will correspond to the number
of such r-squares which intersect S. With a slight abuse of notation, Sy will
sometimes also denote the actual subset of [0,n]? consisting of the union of these
r-squares.

One can view the application S — S,y as an r-smoothing since all the details
below the scale r are lost.

REMARK X.5. Note that in Definition X.1, we relied on a slightly different
notion of “r-smoothing” since in that case, 7,y could also include r-branches which
might go extinct by the time they reached scale one. The advantage of this choice
was that there was an exact scale-invariance from 7 to 7(,) while in the case of
s, » there is no such exact scale-invariance from .%" to .%,,.

With these notations, the above discussion leads us to believe that the following
proposition should hold.

ProrOSITION X.11. For all 1 < r < n, one has
P[O < |yfn| < 7“20[4(7“)} = an [|f5ﬂ(r)| = 1} .

Before explaining the setup used in [GPS10] to prove such a result, let us check
that it indeed implies Theorem X.3. By neglecting the boundary issues, one has

(X9 Py [ Sl =1] = > B[, #0 and 7, C B].
r-squares

B C [n/4,3n/4)?

There are O(’Tl—j) such B squares, and for each of these, one can check (see Exercise
X.5) that

]f”[yfn # 0 and .75, C B] < ay(r,n)?.
Therefore, Proposition X.11 indeed implies Theorem X.3.
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4.2. Setup and organization of the proof of Proposition X.11. To start
with, assume we knew that disjoint regions in the spectral sample ., behave
more or less independently of each other in the following (vague) sense. For any
k > 1 and any mesoscopic scale 1 < r < n, if one conditions on 5”(,,) to be
equal to By U---U By, for k disjoint r-squares, then the conditional law of .7 B,
should be “similar” to an independent product of E[j" B; ‘ S NB; # @],i €
{1,...,k}. Similarly as in the tree case (where the analogous property for 7, was
an exact independence factorization), and assuming that the above comparison with
an independent product could be made quantitative, this would potentially imply
the following upper bound for a certain absolute constant ¢ > 0:

(X.10) P[0 < .75,

<rfay(r)] < Z I@’U,S”(T)\ =k (1-¢)F.

k>1

This means that even if one managed to obtain a good control on the depen-
dency structure within ., (in the above sense), one would still need to have a
good estimate on I@’[|<§ﬂ(r)| = k‘] in order to deduce Proposition X.11. This part
of the program is achieved in [GPS10] without requiring any information on the
dependency structure of ., . More precisely, the following result is proved:

THEOREM X.12 ([GPS10]). There is a sub-exponential function g — g(k),
such that for any 1 <r <n and any k > 1,

P[S| = K] < gB) P[50 =1].
The proof of this result will be described briefly in the next subsection.

One can now describe how the proof of Theorem X.3 is organized in [GPS10].
It is divided into three main parts:

(1) The first part deals with proving the multi-scale sub-exponential bound
on the lower-tail of |.#,)| given by Theorem X.12.

(2) The second part consists in proving as much as we can on the dependency
structure of ./, . Unfortunately here, it seems to be very challenging
to achieve a good understanding of all the “independence” that should
be present within . . The only hint of independence which was finally
proved in [GPS10] is a very weak one (see subsection 4.4). In particular,
it is too weak to readily imply a bound like (X.10).

(3) Since disjoint regions of the spectral sample .7}, are not known to be-
have independently of each other, the third part of the proof consists in
adapting the setup we used for the tree (where distinct branches evolve
exactly independently of each other) into a setup where the weak hint of
independence obtained in the second part of the program turns out to be
enough to imply the bound given by (X.10) for an appropriate absolute
constant ¢ > 0. This final part of the proof will be discussed in subsection
4.5.

The next three subsections will be devoted to each of these 3 parts of the
program.

4.3. Some words about the sub-exponential bound on the lower tail
of #;). In this subsection, we turn our attention to the proof of the first part of
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the program, i.e. on Theorem X.12. In fact, as in the case of T, the following more
explicit statement is proved in [GPS10].

THEOREM X.13 ([GPS10]). There exists an absolute constant 6 > 0 such that
forany 1 <r<n and any k > 1,

P[] = k] < 200083042 Pl )| = 1.

REMARK X.6. Note that the theorems from [BKS99] on the noise sensitivity of
percolation are all particular cases (r = 1) of this intermediate result in [GPS10].

The main idea in the proof of this theorem is in some sense to assign a tree
structure to each possible set .#(,). The advantage of working with a tree structure
is that it is easier to work with inductive arguments. In fact, once a mapping
Sy = “tree structure” has been designed, the proof proceeds similarly as in the
case of 7(,) by double induction on the depth of the tree as well as on k& > 1. Of
course, this mapping is a delicate affair: it has to be designed in an “efficient” way
so that it can compete against entropy effects caused by the exponential growth of
the number of tree structures.

We will not give the details of how to define such a mapping, but let us describe
informally how it works. More specifically than a tree structure, we will in fact
assign an annulus structure to each set 5’(”.

DEFINITION X.3. Let A be a finite collection of disjoint (topological) annuli in
the plane. We call this an annulus structure. Furthermore, we will say that a
set S C R? is compatible with A (or vice versa) if it is contained in R? \ |JA
and intersects the inner disk of each annulus in A. Note that it is allowed that one
annulus is “inside” of another annulus.

The mapping procedure in [GPS10] assigns to each .7(,y an annulus structure
A C [0,n]* in such a way that it is compatible with .#{,). See Figure X.5 for
an example. Again, we will not describe this procedure nor discuss the obvious
boundary issues which arise here, but let us state a crucial property satisfied by
annulus structures.

LEMMA X.14 (clustering Lemma). If A is an annulus structure contained
in [0,n]2, then

]@’[QV(T) is compatible with .A} < H ay(A)?,
AcA

where ay(A) denotes the probability of having a four-arm event in the annulus A.

REMARK X.7. To deal with boundary issues, one would also need to incorporate
within our annulus structures half-annuli centered on the boundaries as well as
quarter disks centered at the corners of [0, n]?.

Let us briefly comment on this lemma.

e First of all, its proof is an elegant combination of linear algebra and per-
colation. It is a short and relatively elementary argument. See Lemma
4.3 in [GPS10].

e It is very powerful in dealing with the possible non-injectivity of the map-
ping S,y — A. Indeed, while describing the setup above, one might have
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FiGURE X.5. An example of an annulus structure A :=
{A;, Ay, A3} compatible with a spectral sample .77, .

objected that if the mapping were not injective enough, then the cardinal-
ity of the “fibers” above each annulus structure would have to be taken
into account as well. Fortunately, the above lemma reads as follows: for
any fixed annulus structure A,

Z I@’[LV(T)} < I@’[&”(r) is compatible with A] < H a4(A)2.
iy iy A AcA

e Another essential feature of this lemma is that it quantifies very efficiently
the fact that the clustering effect wins over the entropy effect in the sense
of Figure X.4. The mechanism responsible for this is that the probability
of the four-arm event squared has an exponent (equal to 5/2 on T) larger
than the volume exponent equal to 2. To illustrate this, let us analyze the
situation when k = 2 (still neglecting boundary issues). The probability
that the spectrum .7, intersects two and only two r-squares at macro-
scopic distance Q(n) from each other can be easily estimated using the
lemma. Indeed, in such a case, .,y would be compatible with an annulus
structure consisting of two annuli, each being approximately of the type
A(r,n). There are O(f—j) X O(:‘—j) such possible annulus structures. Using
the lemma each of them costs (on T) (£)>+°(1). An easy exercise shows
that this is much smaller than ]f"“ﬁrﬂ = 2|. In other words, if |7, is
conditioned to be small, it tends to be localized. Also, the way that the
lemma is stated makes it very convenient to work with higher values of k.

The details of the proof of Theorem X.13 can be found in [GPS10]. The
double induction there is in some sense very close to the one we carried out in
detail in subsection 3.4 in the case of the tree; this is the reason why we included
this latter proof. For those who might read the proof in [GPS10], there is a notion
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of overcrowded cluster defined there; it exactly corresponds in the case of the tree
to stopping the analysis above scale Ji instead of going all the way to scale 1 (note
that without stopping at this scale Jj, the double induction in subsection 3.4 would
have failed).

4.4. Some words on the weak independence property proved in
[GPS10]. This part of the program is in some sense the main one. To introduce
it, let us start by a naive but tempting strategy. What the first part of the program
(Theorem X.13) tells us is that for any mesoscopic scale 1 < r < n, if ., is non-
empty, it is very unlikely that it will intersect few squares of size r. In other words, it
is very unlikely that |.#{,| will be small. Let By, ..., By, denote the set of O(n?/r?)
r-squares which tile [0, n]?. One might try the following scanning procedure: explore
the spectral sample ., inside the squares B; one at a time. More precisely, before
starting the scanning procedure, we consider our spectral sample .7, as a random
subset of [0,7n]? about which we do not know anything yet. Then, at step one, we
reveal .|, . This gives us some partial information about .}, . What we still have
to explore is a random set of [0,n)? \ B; which follows the law of a spectral sample
conditioned on what was seen in B; and we keep going in this way. By Theorem
X.13, many of these squares will be non-empty. Now, it is not hard to prove the
following lemma (using similar methods as in Problem X.6).

LEMMA X.15. There is a universal constant ¢ > 0 such that for any r-square
B in the bulk [n/4,3n/4]%, one has

If”“j’f N B| > cr?aqy(r) | S, N B # @] > c.

This lemma in fact holds uniformly in the position of B inside [0, n]?.
If one could prove the following (much) stronger result: there exists a universal
constant ¢ > 0 such that uniformly on the sets S C [0,n]? \ B one has

(X.11) I@’[\Yf NB| > criay(r) | S, NB# 0 and Sp. = 5] >c,

then it would not be hard to make the above scanning strategy work together with
Theorem X.13 in order to obtain Theorem X.3. (Note that such a result would
indeed give a strong hint of independence within ., .) However, as we discussed
before, the current understanding of the independence within .#, is far from giving
such a statement. Instead, the following result is proved in [GPS10]. We provide
here a slightly simplified version.

THEOREM X.16 ([GPS10]). There exists a uniform constant ¢ > 0 such that
for any set W C [0,n]? and any r-square B such that BNW = (), one has

]f”“yfn NB| > criay(r) | Z, NB#0 and S5, "W =0] > c.

Note that this theorem in some sense interpolates between part of Lemma X.10
and Lemma X.15 which correspond respectively to the special cases W = B¢ and
W = 0. Yet it looks very weak compared to the expected (X.11) which is stated
uniformly on the behavior of .}, outside of B.

Assuming this weak hint of independence (Theorem X.16), it seems we are in
bad shape if we try to apply the above scanning procedure. Indeed, we face the
following two obstacles:
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(1) The first obstacle is that one would keep a good control only as far as
one would not see any “spectrum”. Namely, while revealing .#|p, one at
a time, the first time one finds a square B; such that .7|p, # (), one would
be forced to stop the scanning procedure there. In particular, if the size
of the spectrum in this first non-trivial square does not exceed 72ay(r),
then we cannot conclude anything.

(2) The second obstacle is that, besides the conditioning . N W = (), our
estimate is also conditioned on the event that . N B # (). In particular,
in the above “naive” scanning strategy where squares are revealed in a
sequential way, at each step one would have to update the probability
that ¥ N B; 11 # 0 based on what was discovered so far.

It is the purpose of the third part of the program to adapt the above scan-
ning strategy to these constraints. Before describing this third part in the next
subsection, let us say a few words on how to prove Theorem X.16.

A crucial step in the proof of this theorem is to understand the following “one-
point function” for any x € B at distance at least r/3 from the boundary:

Plz € ., and 5, NW = 0].

A very useful observation is to rewrite this one-point function in terms of an explicit
coupling of two iid percolation configurations. It works as follows: let (w1,w2) be
a coupling of two i.i.d. percolations on [0,n]? which are such that

w); =wy on W¢
w1, Wws are independent on W

One can check that the one-point function we are interested in is related to this
coupling in the following simple way:

]f”[x € 7, and .5, NW = 0] = P[z is pivotal for wy and wo] .

REMARK X.8. You may check this identity in the special cases where W = ()
or W = {z}°.

Thanks to this observation, the proof of Theorem X.16 proceeds by analyzing
this W-coupling. See [GPS10] for the complete details.

4.5. Adapting the setup to the weak hint of independence. As we
discussed in the previous subsection, one faces two main obstacles if, on the basis
of the weak independence given by Theorem X.16, one tries to apply the naive
sequential scanning procedure described earlier.

Let us start with the first obstacle. Assume that we scan the domain [0,n]?
in a sequential way, i.e., we choose an increasing family of subsets (W;);>1 =
({w1,...,wi})i>1. At each step, we reveal what .#|(,,.,} is, conditioned on what
was discovered so far (i.e., conditioned on .#,). From the weak independence
Theorem X.16, it is clear that if we want this strategy to have any chance to be
successful, we have to choose (W;);>1 in such a way that (., N W;);>1 will remain
empty for some time (so that we can continue to rely on our weak independence
result); of course this cannot remain empty forever, so the game is to choose the
increasing family (W;);>1 in such a way that the first time %/, N {w;} will hap-
pen to be non-empty, it should give a strong indication that .7, is large in the
r-neighborhood of wy.
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As we have seen, revealing the entire mesoscopic boxes B; one at a time is
not a successful idea. Here is a much better idea (which is not yet the right one
due to the second obstacle, but we are getting close): in each r-square B;, instead
of revealing all the bits, let us reveal only a very small proportion J, of them.
Lemma X.15 tells us that if . N B; # (), then each point = € B; has probability of
order ay(r) to be in ., . Therefore if we choose d, < (r?ay4(r))~!, then with high
probability, by revealing only a proportion §,. of the points in B;, we will “miss” the
spectral sample .}, . Hence, we have to choose 8, > (r2a4(r))~!. In fact choosing
d =< (r?ay4(r)) ! is exactly the right balance. Indeed, we know from Theorem X.13
that many r-squares B; will be touched by the spectral sample; now, in this more
sophisticated scanning procedure, if the first such square encountered happens to
contain few points (i.e. < r2ay(r)), then with the previous scanning strategy, we
would “lose”, but with the present one, due to our choice of J,., most likely we will
keep /¢, N W; = () so that we can continue further on until we reach a “good”
square (i.e. a square containing of order 72ay(r) points).

Now, Theorems X.13 and X.16 together tell us that with high probability, one
will eventually reach such a good square. Indeed, suppose the m first r-squares
touched by the spectral sample happened to contain few points; then, most likely,
if W, is the set of bits revealed so far, by our choice of 6, we will still have
S N W, = 0. This allows us to still rely on Theorem X.16, which basically tells
us that there is a positive conditional probability for the next one to be a “good”
square (we are neglecting the second obstacle here). This says that the probability
to visit m consecutive bad squares seems to decrease exponentially fast. Since m
is typically very large (by Theorem X.13), we conclude that, with high probability,
we will finally reach good squares. In the first good square encountered, by our
choice of §,., there is now a positive probability to reveal a bit present in .%, . In
this case, the sequential scanning will have to stop, since we will not be able to use
our weak independence result anymore, but this is not a big issue: indeed, assume
you have some random set S C B. If by revealing each bit only with probability
d,, you end up finding a point in S, most likely your set S is at least Q(r?ay(r))
large. This is exactly the size we are looking for in Theorem X.3.

Now, only the second obstacle remains. It can be rephrased as follows: assume
you applied the above strategy in By, ..., By, (i.e. you revealed each point in B;, i €
{1,...,h} only with probability d,) and that you did not find any spectrum yet. In
other words, if W; denotes the set of points visited so far, then .r, NW; = (). Now
if B4y is the next r-square to be scanned (still in a “dilute” way with intensity
0,), we seem to be in good shape since we know how to control the conditioning
S, "W = (). However, if we want to rely on the uniform control given by Theorem
X.16, we also need to further condition on ., N Bp11 # (). In other words, we
need to control the following conditional expectation:

I@’[yfnﬂBh+17é®|yfnﬂWl:®].

It is quite involved to estimate such quantities. Fortunately, by changing our se-
quential scanning procedure into a slightly more “abstract” procedure, one can
avoid dealing with such terms. More precisely, within each r-square B, we will still
reveal only a d, proportion of the bits (so that the first obstacle is still taken care
of), but instead of operating in a sequential way (i.e. scanning Bj, then By and
so on), we will gain a lot by considering the combination of Theorem X.13 and
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Theorem X.16 in a more abstract fashion. Namely, the following large deviation
lemma from [GPS10] captures exactly what we need in our present situation.

Lemma X.17 ([GPS10]). Let X;,Y; € {0,1}, ¢ € {1,...,m} be random vari-
ables such that for each i Y; < X; a.s. IfVJ C [m] and Vi € [m]\ J, we have

(X.12) PY;=1|Y;=0,VjeJ] >cP[X;=1]Y; =0,Vj e J],
then if X :==>Y X; and Y :=>_Y;, one has that
P[Y =0 |X >0 <c'E[e” ¥ | X >0].

Recall that By, ..., B, denotes the set of r-squares which tile [0, n]?. For each
i € [m], let X; := 1ynp,2p and Y; := 1onp,nwxg, where W is an independent
uniform random subset of [0,1]? of intensity d,. Note that our set of bits (X;,Y;)
are functions of the random set ., plus some additional randomness (provided by
the random dilute set W).

This lemma enables us to combine our two main results, Theorems X.16 and
X.13, in a very nice way: By our choice of the intensity d,,, Theorem X.16, exactly
states that the assumption (X.12) is satisfied for a certain constant ¢ > 0. Lemma
X.17 then implies that

P[Y=0]X >0 <c'E[e“/9¥ | X >0].

Now, notice that X =3 X; exactly corresponds to || while the event {X > 0}
corresponds to {.%, # 0} and the event {Y = 0} corresponds to {.f, N W = 0}.
Therefore Theorem X.13 leads us to

P[yfn nNW=>0,.7, # @] < C_lE[e_(C/e)‘y“)l L F @]
< VY B[] = K]l

k>1
<! (Z 2910g§(k+2)e—(c/e)k)>]fp[|$r)‘ _ 1}
k>1
2
A n
(X.13) < CO)P[|S ] =1] = r—2a4(r, n)?.

This shows that on the event that ., # 0, it is very unlikely that we do not
detect the spectral sample on the §,-dilute set W. This is enough for us to conclude
using the following identity:

1

P75, W= | 74] = (1= 87 = (1= ot

)Zial

Indeed, by averaging this identity we obtain
P75, nW=0.5, #0] =E[P[7, 0W =0 | #3,] 15, 2]

E[(l_ 2 :
Q

)I«an

I'1
r2ay(r) ‘yf"#@]

> QP[0 < [, | < rPay(r)],

which, combined with (X.13) yields the desired upper bound in Theorem X.3. See
Problem X.7 for the lower bound.
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5. The radial case

The next part will focus on the existence of exceptional times in the model of
dynamical percolatlon A main tool in the study of these exceptional times is the
spectral measure Qg,, where g is the Boolean function gp := {1, 1}O(R) 5 {0,1}
defined to be the indicator function of the one-arm event {0 +— 9B(0, R)}. Note
that by definition, gg is such that ||ggr||3 = a1 (R).

In [GPS10], the following “sharp” theorem on the lower tail of ., is proved.

THEOREM X.18 ([GPS10]). Let gr be the one-arm event in B(0, R). Then for
any 1 <r < R, one has
aq (R)2

ai(r)

(X.14) Qg [0 < | Fyn| < r2au(r)] =

The proof of this theorem is in many ways similar to the chordal case (Theorem
X.3). An essential difference is that the “clustering v.s. entropy” mechanism is
very different in this case. Indeed in the chordal left to right case, when % is
conditioned to be very small, the proof of Theorem X.3 shows that typically /%,
localizes in some r-square whose location is “uniform” in the domain [0,n]?. In
the radial case, the situation is very different: .7, conditioned to be very small
will in fact tend to localize in the r-square centered at the origin. This means that
the analysis of the mesoscopic behavior (i.e. the analogue of Theorem X.13) has
to be adapted to the radial case. In particular, in the definition of an annulus
structure, the annuli containing the origin play a distinguished role. See [GPS10]
for complete details.

Exercise sheet of Part X
EXERCISE X.1. Prove Proposition X.4.

EXERCISE X.2. Consider the fractal percolation process 7%, ¢ > 1 introduced
in this part. (Recall that 7T5: = T%). Recall that in Section 3, it was important
to estimate the quantity IP’UT"\ = 1}. This is one of the purposes of the present
exercise.

(a) Let p; := P[|T?| =1]. By recursion, show that there is a constant ¢ €

(0,1) so that, as i — oo

pi~cpt
where 11 := 4p(1 — p + pq)® and ¢ is the probability of extinction for the
Galton-Watson tree correponding to (7%);>1.

(b) Using the generating function s — f(s)(= E(s number of offsprlng) of
this Galton-Watson tree, and by studying the behavior of its i-th iterates
@, prove the same result with p := f’(¢). Check that it gives the same
formula.

(c) Recall the definition of p,,; from Section 3. Let p,,  be the probability
that exactly 1 person at generation m survives forever. Prove that

Pm.oo = (1 —q)u™
for the same exponent p. Prove Lemma X.9. Finally, prove that
limp— o0 Pm,b = Pm,co-



NOISE SENSITIVITY AND PERCOLATION 143

EXERCISE X.3. Extract from the proof of Lemma X.8 the answer to the ques-
tion asked in Figure X.4.

EXERCISE X.4. Prove that
Theorem X.3 = Theorem X.2 = Theorem X.1

EXERCISE X.5. Consider an r-square B C [n/4,3n/4]? in the “bulk” of [0, n]?.
(a) Prove using Proposition IX.3 that

P}, # 0 and 7, C B] < au(r,n)?
(b) Check that the clustering Lemma X.14 is consistent with this estimate.

PrROBLEM X.6. The purpose of this exercise is to prove Lemma X.10.

(a) Using Proposition I1X.3, prove that for any = € B at distance r/3 from
the boundary,

Plz € 7}, and 7, N B¢ = 0] < as(r)aa(r,n)?.

(b) Recover the same result using Proposition IX.4 instead.

(¢) Conclude using Exercise X.5 that E[|.;, N B| | ., # 0 and ., C B] =<
r2ay(r), where B C B is the set of points z € B at distance at least /3
from the boundary. R

(d) Study the second-moment E[|.;, N B|* | ., # () and .y, C B].

(e) Deduce Lemma X.10.

PROBLEM X.7. Most of this part was devoted to the explanation of the proof
of Theorem X.3. Note that we in fact only discussed how to prove the upper bound.
This is because the lower bound is much easier to prove and this is the purpose of
this problem.

(a) Deduce from Lemma X.10 and Exercise X.5(a) that the lower bound on
I@)[O < |#f.| < r?ay(r)] given in Theorem X.3 is correct. Le., show that
there exists a constant ¢ > 0 such that

2
P[0 < |, | < rPau(r)] > c%a4(7’, n)?.

(b) (Hard) In the same fashion, prove the lower bound part of Theorem X.18.



Part XI. Applications to dynamical percolation

In this section, we present a very natural model where percolation undergoes
a time-evolution: this is the model of dynamical percolation described below.
The study of the “dynamical” behavior of percolation as opposed to its “static”
behavior turns out to be very rich: interesting phenomena arise especially at the
phase transition point. We will see that in some sense, dynamical planar percolation
at criticality is a very unstable or chaotic process. In order to understand this
instability, sensitivity of percolation (and therefore its Fourier analysis) will play a
key role. In fact, the original motivation for the paper [BKS99] on noise sensitivity
was to solve a particular problem in the subject of dynamical percolation. [Ste09]
provides a recent survey on the subject of dynamical percolation.

We mention that one can read all but the last section of the present part without
having read Part X.

1. The model of dynamical percolation

This model was introduced by Héggstrom, Peres and Steif [HPS97] inspired
by a question that Paul Malliavin asked at a lecture at the Mittag-Leffler Institute
in 1995. This model was invented independently by Itai Benjamini.

In the general version of this model as it was introduced, given an arbitrary
graph G and a parameter p, the edges of G switch back and forth according to
independent 2-state continuous time Markov chains where closed switches to open
at rate p and open switches to closed at rate 1 — p. Clearly, the product measure
with density p, denoted by m, in this part, is the unique stationary distribution
for this Markov process. The general question studied in dynamical percolation
is whether, when we start with the stationary distribution 7, there exist atypical
times at which the percolation structure looks markedly different than that at a
fixed time. In almost all cases, the term “markedly different” refers to the existence
or nonexistence of an infinite connected component. Dynamical percolation on site
percolation models, which includes our most important case of the hexagonal lattice,
is defined analogously.

We very briefly summarize a few early results in the area. It was shown in
[HPS97] that below criticality, there are no times at which there is an infinite
cluster and above criticality, there is an infinite cluster at all times. See the ex-
ercises. In [HPS97], examples of graphs which do not percolate at criticality but
for which there exist exceptional times where percolation occurs were given. (Also
given were examples of graphs which do percolate at criticality but for which there
exist exceptional times where percolation does not occur.) A fairly refined analysis
of the case of so-called spherically symmetric trees was given. See the exercises for
some of these.

Given the above results, it is natural to ask what happens on the standard
graphs that we work with. Recall that for Z2, we have seen that there is no
percolation at criticality. It turns out that it is also known (see below) that for
d > 19, there is no percolation at criticality for Z?. It is a major open question to
prove that this is also the case for intermediate dimensions; the consensus is that
this should be the case.

144
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2. What’s going on in high dimensions: Z%,d > 197

For the high dimensional case, Z¢,d > 19, it was shown in [HPS97] that there
are no exceptional times of percolation at criticality.

TueoreM XI.1 ([HPS97]). For the integer lattice Z¢ with d > 19, dynamical
critical percolation has no exceptional times of percolation.

The key reason for this is a highly nontrivial result due to work of Hara and
Slade ([HS94)), using earlier work of Barsky and Aizenman ([BA91)), that says
that if 6(p) is the probability that the origin percolates when the parameter is p,
then for p > p,

(XI.1) 0(p) = O(p — pe) -

(This implies in particular that there is no percolation at criticality.) In fact,
this is the only thing which is used in the proof and hence the result holds whenever
the percolation function satisfies this “finite derivative condition” at the critical
point.

Outline of Proof. By countable additivity, it suffices to show that there are no
times at which the origin percolates during [0, 1]. We use a first moment argument.
We break the time interval [0, 1] into m intervals each of length 1/m. If we fix one of
these intervals, the set of edges which are open at some time during this interval is
i.i.d. with density about p.+ 1/m. Hence the probability that the origin percolates
with respect to these set of edges is by (XI.1) at most O(1/m). It follows that if
N, is the number of intervals where this occurs, then E[N,,] is at most O(1). It is
not hard to check that N < liminf,, N,,, where N is the cardinality of the set of
times during [0, 1] at which the origin percolates. Fatou’s Lemma now yields that
E(N) < oo and hence there are at most finitely many exceptional times during [0, 1]
at which the origin percolates. To go from here to having no exceptional times can
either be done by using some rather abstract Markov process theory or by a more
hands on approach as was done in [HPS97] and which we refer to for details. O

REMARK XI.1. It is known that (XI.1) holds for any homogeneous tree (see
[Gri99] for the binary tree case) and hence there are no exceptional times of per-
colation in this case also.

REMARK XI.2. It is was proved by Kesten and Zhang [KZ87], that (XI.1) fails
for Z? and hence the proof method above to show that there are no exceptional
times fails. This infinite derivative in this case might suggest that there are in fact
exceptional times for critical dynamical percolation on Z?2, an important question
left open in [HPS97].

3. d =2 and BKS

One of the questions posed in [HPS97] was whether there are exceptional times
of percolation for Z?2. It was this question which was one of the main motivations
for the paper [BKS99]. While they did not prove the existence of exceptional times
of percolation, they did obtain the following very interesting result which has a very
similar flavor.
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THEOREM XI1.2 ([BKS99]). Consider an R x R box on which we run critical
dynamical percolation. Let Sg be the number of times during [0,1] at which the
configuration changes from having a percolation crossing to not having one. Then

Sk — 00 in probability as R — oo.

Noise sensitivity of percolation as well as the above theorem tells us that certain
large scale connectivity properties decorrelate very quickly. This suggests that in
some vague sense wt “changes” very quickly as time goes on and hence there might
be some chance that an infinite cluster appears since we are given many “chances”.

In the next section, we begin our study of exceptional times for Z? and the

hexagonal lattice.

4. The second moment method and the spectrum

In this section, we reduce the question of exceptional times to a “second moment
method” computation which in turn reduces to questions concerning the spectral
behavior for specific Boolean functions involving percolation. Since p = 1/2, our
dynamics can be equivalently defined by having each edge or hexagon be reran-
domized at rate 1.

The key random variable which one needs to look at is

1
0

where 0 <25 R is of course the event that at time ¢ there is an open path from
the origin to distance R away. Note that the above integral is simply the Lebesgue
measure of the set of times in [0, 1] at which this occurs.

We want to apply the second moment method here. We isolate the easy part of
the argument so that the reader who is not familiar with this method understands
it in a more general context. However, the reader should keep in mind that the
difficult part is always to prove the needed bound on the second moments which in
this case is (XI.2).

PRroOPOSITION X1.3. If there exists a constant C' such that for all R
(X1.2) E(X%) < CE(XR)?,
then a.s. there are exceptional times of percolation.

Proof. For any nonnegative random variable Y, the Cauchy-Schwarz inequality
applied to Y Iy~ yields

P(Y > 0) > E(Y)?/E(Y?).
Hence by (XI.2), we have that for all R,
P(Xp>0)>1/C
and hence by countable additivity (as we have a decreasing sequence of events)
P(Ng{Xgr > 0}) > 1/C.

Had the set of times that a fixed edge is on been a closed set, then the above
would have yielded by compactness that there is an exceptional time of percolation
with probability at least 1/C. However, this is not a closed set. On the other
hand, this point is very easily fixed by modifying the process so that the times each
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edge is on is a closed set and observing that a.s. no new times of percolation are
introduced by this modification. The details are left to the reader. Once we have
an exceptional time with positive probability, ergodicity immediately implies that
this occurs a.s. O

The first moment of Xp is, due to Fubini’s Theorem, simply the probability of
our one-arm event, namely a;(R). The second moment of Xy is easily seen to be

(XL3)
1 1
—IE(/O/O o Lo o, s dlt) // 042 R)ds dt

which is, by time invariance, at most
1
(XI.4) / P(0 <2 R,0 <% R)ds.
0

The key observation now, which brings us back to noise sensitivity, is that
the integrand P(0 <2 R,0 <% R) is precisely E[fr(w)fr(w.)] where fg is the
indicator of the event that there is an open path from the origin to distance R
away and € = 1 — e~ * since looking at our process at two different times is exactly
looking at a configuration and a noisy version.

What we have seen in this subsection is that proving the existence of exceptional
times comes down to proving a second moment estimate and furthermore that the
integrand in this second moment estimate concerns noise sensitivity, something for
which we have already developed a fair number of tools to handle.

5. Proof of existence of exceptional times for the hexagonal lattice via
randomized algorithms

In [SS10b], exceptional times were shown to exist for the hexagonal lattice; this
was the first transitive graph for which such a result was obtained. However, the
methods in this paper did not allow the authors to prove that Z2 had exceptional
times.

THEOREM XI.4 ([SS10b]). For dynamical percolation on the hexagonal lattice
T at the critical point p. = 1/2, there exist almost surely exceptional timest € [0, 00)
such that wy has an infinite cluster.

Proof. As we noted in the previous section, two different times of our model can be
viewed as “noising” where the probability that a hexagon is rerandomized within ¢
units of time is 1 — e~*. Hence, by (IV.2), we have that

(XL5) P02 R, 0“5 R =E[fa]"+ > fr(S)?exp(~tS])

#£SCB(0,R)

where B(0, R) are the set of hexagons involved in the event fr. We see in this
expression that for small times t, the frequencies contributing in the correlation
between {0 <% R} and {0 <2~ R} are of “small” size |S| < 1/t. Therefore, in
order to detect the existence of exceptional times, one needs to achleve good control
on the lower tail of the Fourier spectrum of fg.

The approach of this section is to find an algorithm minimizing the revealment
as much as possible and to apply Theorem VIII.1. However there is a difficulty here,
since our algorithm might have to look near the origin, in which case it is difficult to
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keep the revealment small. There are other reasons for a potential problem. If R is
very large and ¢ very small, then if one conditions on the event {0 &2 R}, since few
sites are updated, the open path in wg from 0 to distance R will still be preserved
in w; at least up to some distance L(t) (further away, large scale connections start
to decorrelate). In some sense the geometry associated to the event {0 «+ R} is
“frozen” on a certain scale between time 0 and time ¢. Therefore, it is natural to
divide our correlation analysis into two scales: the ball of radius r = r(¢) and the
annulus from r(¢) to R. Obviously the “frozen radius” r = r(t) increases as t — 0.
We therefore proceed as follows instead. For any r, we have

P[0+ R, 0«5 R] < P[0 r]P[r < R, 7 <5 R]
(X1.6) < o (r)Elfpr(wo) fr.r(wr)],

where f,. g is the indicator function of the event, denoted by r <5 R, that there
is an open path from distance r away to distance R away. Now, as above, we have

(XL.7) E[fr.r(wo) frr(wr)] SE[frr]” + > exp(—tk) Y frr(S)%

k=1 |S|=F

The Boolean function f,. r somehow avoids the singularity at the origin, and it
is possible to find algorithms for this function with small revealments. In any case,
letting § = 0, g be the revealment of f g, it follows from Theorem VIII.1 and the
fact that ), kexp(—tk) < O(1)/t? that

(X1.8) E[fT,R(wo)fnR(wt)] < ai(r, R)* + O(1)day(r, R) /1.

The following proposition gives a bound on §. We will sketch why it is true
afterwards.

ProposITION X1.5 ([SS10b]). Let 2 <r < R. Then
(XL.9) 6r.r < O(1)as(r, R) az(r).

Putting together (XI.6), (XI.8), Proposition XI.5 and using quasi-multiplicativity
of ay yields

w Wy R 2
P02 R, 045 &) < o()) 2B (1 22())
aq(r) t2
This is true for all r and t. If we choose r = 7(t) = (1/t)® and ignore o(1) terms
in the critical exponents (which can easily be handled rigorously), we obtain, using
the explicit values for the one and two-arm critical exponents, that

(XL.10) P[0 <% R, 0 <*% R] < O(1)t"/%ay(R)*.

Now, since fol t=5/6dt < oo, by integrating the above correlation bound over

the unit interval, one obtains that IE[XI%] < CE [X R]Z for some constant C' as
desired. 0

Outline of proof of Proposition XI.5.

We use an algorithm that mimics the one we used for percolation crossings except
the present setup is “radial”. As in the chordal case, we randomize the starting
point of our exploration process by choosing a site uniformly on the ‘circle’ of radius
R. Then, we explore the picture with an exploration path ~ directed towards the
origin; this means that as in the case of crossings, when the interface encounters
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an open (resp. closed) site, it turns say to the left (resp. right), the only difference
being that when the exploration path closes a loop around the origin, it continues
its exploration inside the connected component of the origin. (It is known that
this discrete curve converges towards radial SLEg on T, when the mesh goes to
zero.) It turns out that the so-defined exploration path gives all the information we
need. Indeed, if the exploration path closes a clockwise loop around the origin, this
means that there is a closed circuit around the origin making f, r equal to zero.
On the other hand, if the exploration path does not close any clockwise loop until
it reaches radius r, it means that f, r = 1. Hence, we run the exploration path
until either it closes a clockwise loop or it reaches radius r. This is our algorithm.
Neglecting boundary issues (points near radius r or R), if « is a point at distance
u from 0, with 2r < u < R/2, in order for z to be examined by the algorithm, it
is needed that there is an open path from 2u to R and the two-arm event holds
in the ball centered at u with radius u/2. Hence for |z| = u, Pz € J] is at most
O(1)az(u)aq (u, R). Due to the explicit values of the one and two-arm exponents,
this expression is decreasing in u. Hence, ignoring the boundary, the revealment is
at most O(1)aa(r)ay(r, R). See [SS10b] for more details. O

We now assume that the reader is familiar with the notion of Hausdorff dimen-
sion. We let £ C [0, oo] denote the (random) set of these exceptional times at which
percolation occurs. It is an immediate consequence of Fubini’s Theorem that £ has
Lebesgue measure zero and hence we should look at its Hausdorff dimension if we
want to measure its “size”. The first result is the following.

THEOREM XI.6 ([SS10b]). The Hausdorff dimension of £ is an almost sure
constant in [1/6,31/36].

It was conjectured there that the dimension of the set of exceptional times is
a.s. 31/36.

Outline of Proof. The fact that the dimension is an almost sure constant follows
from easy 0-1 Laws. The lower bounds are obtained by placing a random measure
on & with finite so-called a—energies for any o < 1/6 and using a result called
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Frostman’s Theorem. (This is a standard technique once one has good control of the
correlation structure.) Basically, the 1/6 comes from the fact that for any o < 1/6,
one can multiply the integrand in fol t=%/64dt by (1/t)* and still be integrable. It
is the amount of “room to spare” you have. If one could obtain better estimates
on the correlations, one could thereby improve the lower bounds on the dimension.
The upper bound is obtained via a first moment argument similar to the proof of
Theorem XI.1 but now using (II.1). O

Before moving on to our final method of dealing with the spectrum, let us
consider what we might have lost in the above argument. Using the above argument,
we optimized things by taking r(t) = (1/t)®. However, at time ¢ compared to time
0, we have noise which is about ¢. Since we now know the exact noise sensitivity
exponent, in order to obtain decorrelation, the noise level should be at least about
the negative 3/4th power of the radius of the region we are looking at. So, events
in our annulus should decorrelate if 7(t) >> (1/t)*/3. This suggests there might be
potential for improvement. Note we used an inner radius which is 6 times larger
than potentially necessary (8 = 6 x 4/3). This 6 is the same 6 by which the result
in Theorem VIIL.4 differed by the true exponent (3/4 = 6 x 1/8) and the same 6
explaining the gap in Theorem XI.6 (1 —1/6) = 6 x (1—31/36). This last difference
is also seen by comparing the exponents in (XI.10) and the last term in (XI.11)
below.

6. Proof of existence of exceptional times via the geometric approach
of the spectrum

Recall that our third approach for proving the noise sensitivity of percolation
crossings was based on a geometrical analysis of the spectrum, viewing the spectrum
as a random set. This approach yielded the exact noise sensitivity exponent for
percolation crossings for the hexagonal lattice. This approach can also be used
here as we will now explain. Two big advantages of this approach are that it
succeeded in proving the existence of exceptional times for percolation crossings on
7?2, something which [SS10b] was not able to do, as well as obtaining the exact
Hausdorff dimension for the set of exceptional times, namely the upper bound of
31/36 in the previous result.

THEOREM XL.7 ([GPS10]). For the triangular lattice, the Hausdorff dimension
of € is almost surely 31/36.

Proof. As explained in the previous section, it suffices to lower the 5/6 in (XI.10)
to 5/36. (Note that (XI.10) was really only obtained for numbers strictly larger
than 5/6, with the O(1) depending on this number; the same will be true for the
5/36.)
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2 3/4

Let s(r) be the inverse of the map r — ray(r) ~ r
s(r) := r%/3. Using Theorem X.18, we obtain the following:

E[fr(wo)fr(w)] = Y exp(~t[S])fr(S)*
S

=YY exp(—tIS)fa(S)?

k=1S:|S|€[(k—1)/t,k/t)

So more or less,

< Zexp Q[|F1n| < k/t]
ox (R)2
= Z PR o)
< Zexp 4/3><5/48
(XI.11) < 0(1)0[1(3)2(;)5/36.

This completes the proof. (Of course, there are o(1) terms in these exponents which
we are ignoring.) a

We have done a lot of the work for proving that there are exceptional times
also on Z2.

THEOREM XL.8 ([GPS10]). For dynamical percolation on Z* at the critical
point p. = 1/2, there exist almost surely exceptional times t € [0,00) such that wy
has an infinite cluster.

Proof. s(r) is defined as it was before but now we cannot say that s(r) is about
r4/3. However, we can say that for some fixed § > 0, we have that for all r,

(X1.12) s(ry >r°
From the previous proof, we still have
E[fr(wo) fr(w:)] 1
(XI.13) exp(—
a1 (R)? Z ar(s(k/t)

Exactly as in the proof of Theorem XI.47 we need to show that the right hand
side is integrable near 0 in order to carry out the second moment argument.
Quasi-multiplicativity can be used to show that

(XI.14) a1 (s(1/t)) < k9Way (s(k/t)).

(Note that if things behaved exactly as power laws, this would be clear.)
Therefore the above sum is at most

XL15 kom <o) ——
(X1.15) Zexp G = Yasam

V. Beffara has shown that there exists €y > 0 such that for all r,
(X1.16) ay (r)ay(r) > reo?

Note that Theorem VI.4 and (VI.7) tell us that the left hand side is larger than
Q(1)r=2. The above tells us that we get an (important) extra power of 7 in (VL.7).
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It follows that
_ 1
a1(s(1/t))

(XI.12) tells us that the last factor is at most ¢7 for some n > 0 and hence the
relevant integral converges as desired. The rest of the argument is the same. O

(XL17) < au(s(1/1))s(1/t)2~% = (1/)s(1/t)"°.

One can also consider exceptional times for other events, such as for example
times at which there is an infinite cluster in the upper half-plane or times at which
there are two infinite clusters in the whole plane, and consider the corresponding
Hausdorff dimension. A number of results of this type, which are not sharp, are
given in [SS10b] while various sharp results are given in [GPS10].

Exercise sheet of Part XI

EXERCISE XI.1. Prove that on any graph below criticality, there are no times
at which there is an infinite cluster while above criticality, there is an infinite cluster
at all times.

EXERCISE XI.2. Consider critical dynamical percolation on a general graph
satisfying 6(p.) = 0. Show that a.s. {t : w; percolates } has Lebesgue measure 0.

EXERCISE XI.3. (Somewhat hard). A spherically symmetric tree is one where
all vertices at a given level have the same number of children, although this number
may depend on the given level. Let T;, be the number of vertices at the nth level.
Show that there is percolation at p if

1
Do <

n

Hint: Let X,, be the number of vertices in the nth level which are connected
to the root. Apply the second moment method to the sequence of X,,’s.

The convergence of the sum is also necessary for percolation but this is harder
and you are not asked to show this. This theorem is due to Russell Lyons.

EXERCISE XL.4. Show that if T}, is n?2" up to multiplicative constants, then
the critical value of the graph is 1/2 and we percolate at the critical value. (This
yields a graph which percolates at the critical value.)

EXERCISE XL.5. (Quite a bit harder). Consider dynamical percolation on a
spherically symmetric tree. Show that there for the parameter p, there are excep-
tional times at which percolation occurs if

1
zn: —np*”Tn < oQ.

Hint: Find an appropriate random variable X, to which the second moment method
can be applied.

EXERCISE XI1.6. Find a spherically symmetric tree which does not percolate at
criticality but for which there are exceptional times at which percolation occurs.
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1. Introduction

The main goal of these lectures is to present some of the recent progress in
the asymptotics for large random planar maps. Recall that a planar map is simply
a graph drawn on the two-dimensional sphere and viewed up to direct homeo-
morphisms of the sphere. The faces of the map are the connected components of
the complement of edges, or in other words the regions of the sphere delimited
by the graph. Special cases of planar maps are triangulations, respectively quad-
rangulations, respectively p-angulations, where each face is adjacent to exactly 3,
respectively 4, respectively p, edges (see Section 4 for more precise definitions).

Planar maps play an important role in several areas of mathematics and physics.
They have been studied extensively in combinatorics since the pioneering work
of Tutte (see in particular [51]), which was motivated by the famous four-color
theorem. Graphs drawn on surfaces also have important algebraic and geometric
applications; see the book [27]. In theoretical physics, the enumeration of planar
maps (and of maps on surfaces of higher genus) has strong connections with matrix
models, as shown by the work of 't Hooft [24] and Brézin et al [10]. More recently,
graphs on surfaces have been used in physics as discrete models of random geometry
in the so-called two-dimensional quantum gravity; see in particular the book [3]
(a different mathematical approach to quantum gravity using the Gaussian free
field appears in the work of Duplantier and Sheffield [16]). A nice account of the
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connections between planar maps and the statistical physics of random surfaces can
be found in Bouttier’s thesis [7]. From the probabilistic perspective, a planar map
can be viewed as a discretization of a surface, and finding a continuous limit for
large planar maps chosen at random in a suitable class should lead to an interesting
model of a “Brownian surface”. This is of course analogous to the well-known fact
that Brownian motion appears as the scaling limit of long discrete random paths. In
a way similar to the convergence of rescaled random walks to Brownian motion, one
expects that the scaling limit of large random planar maps is universal in the sense
that it should not depend on the details of the discrete model one is considering.
These ideas appeared in the pioneering paper of Chassaing and Schaeffer [12] and in
the subsequent work of Markert and Mokkadem [37] in the case of quadrangulations,
and a little later in Schramm [48], who gave a precise form to the question of the
existence of a scaling limit for large random triangulations of the sphere.

To formulate the latter question, consider a random planar map M, which
is uniformly distributed over a certain class of planar maps (for instance, trian-
gulations, or quadrangulations) with n faces. Equip the vertex set V(M,) with
the graph distance dg,. It has been known for some time that the diameter of
the resulting metric space is of order n'/* when n is large (see [12] for the case
of quadrangulations). One then expects that the rescaled random metric spaces
(V(M,),n"'/4d,,) will converge in distribution as n tends to infinity towards a
certain random metric space, which should be the same, up to trivial scaling fac-
tors, independently of the class of planar maps we started from. For the previous
convergence to make sense, we need to say what it means for a sequence of met-
ric spaces to converge. To this end we use the notion of the Gromov-Hausdorff
distance, as it was suggested in [48]. Roughly speaking (see Section 2 for a more
precise definition) a sequence (E,,) of compact metric spaces converges to a limiting
space E, if it is possible to embed isometrically all spaces E,, and E, in the same
“big” metric space E, in such a way that the Hausdorff distance between FE, and
FE tends to 0 as n — oo.

The preceding question of the existence of the scaling limit of large random
planar maps is still open, but there has been significant progress in this direction,
and our aim is to present some of the results that have been obtained in recent
years.

Much of the recent progress in the understanding of asymptotic properties of
large random planar maps was made possible by the use of bijections between
different classes of planar maps and certain labeled trees. In the particular case of
quadrangulations, such bijections were discovered by Cori and Vauquelin [14] and
later popularized by Schaeffer [47] (see also Chassaing and Schaeffer [12]). The
Cori-Vauquelin-Schaeffer bijection was extended to much more general planar maps
by Bouttier, Di Francesco and Guitter [9]. In the case of bipartite planar maps, this
extension takes a particularly simple form, which explains why some of the recent
work [36, 31, 32] concentrates on the bipartite case. The reason why the bijections
between maps and trees are interesting is the fact that properties of large (labeled)
trees are often much easier to understand than those of large graphs. Indeed, it has
been known for a long time and in particular since the work of Aldous [1, 2] that
one can often describe the asymptotic properties of large random trees in terms of
“continuous trees” whose prototype is the so-called CRT or Brownian continuum
random tree. In the case of trees with labels, the relevant scaling limit for most of
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FIGURE 1. Two planar quadrangulations, with respectively 2500
and 20000 vertices. These pictures represent the quadrangulations
as graphs, and do not take account of the embedding in the sphere.
Simulations by J.-F. Marckert.
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the discrete models of interest is the CRT equipped with Brownian labels, which
can conveniently be constructed and studied via the path-valued process called the
Brownian snake (see e.g. [28]).

A key feature of the bijections between planar maps and labeled trees is the
fact that, up to an appropriate translation, labels on the tree correspond to dis-
tances in the map from a distinguished vertex that plays a special role. Therefore,
the known results about scaling limits of labeled trees immediately give much in-
formation about asymptotics of distances from this distinguished vertex. This idea
was exploited by Chassaing and Schaeffer [12] in the case of quadrangulations and
then by Marckert and Miermont [36] (for bipartite planar maps) and Miermont
[38] (for general planar maps). In view of deriving the Gromov-Hausdorff con-
vergence of rescaled planar maps, it is however not sufficient to control distances
from a distinguished vertex. Still, a simple argument gives an effective bound on
the distance between two arbitrary vertices in terms of quantities depending only
on the labels on the tree, or equivalently on the distances from the distinguished
vertex (see Proposition 5.9(i) below). This bound was used in [31] to show via
a compactness argument that the scaling limit of rescaled uniformly distributed
2p-angulations with n faces exists along suitable subsequences. Furthermore, this
scaling limit is a quotient space of the CRT for an equivalence relation defined in
terms of Brownian labels on the CRT: Roughly speaking, two vertices of the CRT
need to be identified if they have the same label and if, when travelling from one
vertex to the other one along the contour of the CRT, one only encounters vertices
with larger label. The results of [31] are not completely satisfactory, because they
require the extraction of suitable subsequences. The reason why this is necessary
is the fact that the distance on the limiting space (that is, on the quotient of the
CRT we have just described) has not been fully identified, even though lower and
upper bounds are available. Still we call Brownian map any random metric space
that arises as the scaling limit of uniformly distributed 2p-angulations with n faces.
This terminology is borrowed from Marckert and Mokkadem [37], who studied a
weaker form of the convergence of rescaled random quadrangulations. Although the
distribution of the Brownian map has not been fully characterized, it is possible to
derive many properties of this random object (these properties will be common to
any of the limiting random metric spaces that can arise in the scaling limit). In
particular, it has been shown that the Brownian map has dimension 4 [31] and that
it is homeomorphic to the 2-sphere [34, 39]. The latter fact is maybe not surprising
since we started from larger and larger graphs drawn on the sphere: Still it implies
that large random planar maps will have no “bottlenecks”, meaning cycles whose
length is small in comparison with the diameter of the graph but such that both
connected components of the complement of the cycle have a macroscopic size.

In the subsequent sections, we discuss most of the preceding results in detail.
We restrict our attention to the case of quadrangulations, because the bijections
with trees are simpler in that case: The labeled trees corresponding to quadrangu-
lations are just plane trees (rooted ordered trees) equipped with integer labels, such
that the label of the root is 0 and the label can change by at most 1 in absolute
value along each edge of the tree.

The first three sections below are devoted to asymptotics for random (labeled)
trees, in view of our applications to random planar maps. In Section 1, we discuss
asymptotics for uniformly distributed plane trees with n edges. We give a detailed
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proof of the fact that the suitably rescaled contour function of these discrete trees
converges in distribution to the normalized Brownian excursion (this is a special
case of the results of [2]). To this end, we first recall the basic facts of excursion
theory that we need. In Section 2, we show that the convergence of rescaled con-
tour functions can be restated as a convergence in the Gromov-Hausdorff sense of
the trees viewed as random metric spaces for the graph distance. The limiting
space is then the CRT, which we define precisely as the random real tree coded
by a normalized Brownian excursion. Section 2 also contains basic facts about the
Gromov-Hausdorff distance, and in particular its definition in terms of correspon-
dences. In Section 3, we consider labeled trees and we give a detailed proof of
the fact that rescaled labeled trees converge (in a suitable sense) towards the CRT
equipped with Brownian labels.

The last four sections are devoted to planar maps and their scaling limits.
Section 4 presents the combinatorial facts about planar maps that we need. In
particular, we describe the Cori-Vauquelin-Schaeffer bijection between (rooted and
pointed) quadrangulations and labeled trees. We also explain how labels on the tree
give access to distances from the distinguished vertex in the map, and provide useful
upper and lower bounds for other distances. In Section 5, we give the compactness
argument that makes it possible to get sequential limits for rescaled uniformly
distributed quadrangulations with n faces, in the Gromov-Hausdorff sense. The
identification of the limit (or Brownian map) as a quotient space of the CRT for
the equivalence relation described above is explained in Section 6. In that section,
we are not able to give the full details of the proofs, but we try to present the main
ideas. As a simple consequence of some of the estimates needed in the identification
of the Brownian map, we also compute its Hausdorff dimension. Finally, Section 7
is devoted to the homeomorphism theorem. We follow the approach of [39], which
consists in establishing the absence of “bottlenecks” in the Brownian map before
proving via a theorem of Whyburn that this space is homeomorphic to the sphere.

To conclude this introduction, let us mention that, even though the key problem
of the uniqueness of the Brownian map remains unsolved, many properties of this
space have been investigated successfully. Often these results give insight into the
properties of large planar maps. This is in particular the case for the results of
[32], which give a complete description of all geodesics connecting an arbitrary
point of the Brownian map to the distinguished point. Related results have been
obtained in the paper [40], which deals with maps on surfaces of arbitrary genus.
Very recently, the homeomorphism theorem of [34] has been extended by Bettinelli
[5] to higher genus. As a final remark, one expects that the Brownian map should
be the scaling limit for all random planar maps subject to some bound on the
maximal degree of faces. One may ask what happens for random planar maps such
that the distribution of the degree of a typical face has a heavy tail: This problem
is discussed in [33], where it is shown that this case leads to different scaling limits.

2. Discrete trees and convergence towards the Brownian excursion

2.1. Plane trees. We will be interested in (finite) rooted ordered trees, which
are called plane trees in combinatorics (see e.g. [50]). We set N = {1,2,...} and
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by convention N° = {@}. We introduce the set

U= [j N™.
n=0

An element of U/ is thus a sequence u = (u',...,u") of elements of N, and we

set |u| = n, so that |u| represents the “generation” of u. If u = (ul,...,u")
and v = (vl,...,v%) belong to U, we write uv = (u',...,u* vl,... v%) for the
concatenation of v and v. In particular u& = Qu = u.

The mapping 7 : U\{D} — U is defined by 7((ul,...,u")) = (u},..., u"1)

(m(u) is the “parent” of u).
A plane tree 7 is a finite subset of U such that:

(i) zer.
(i) wer\{o} = 7m(u) €.
(iii) For every u € 7, there exists an integer k,(7) > 0 such that, for every
jeN, ujerifand only if 1 < j < k(1)

The number k, (7) is interpreted as the “number of children” of w in 7.

We denote by A the set of all plane trees. In what follows, we see each vertex of
the tree 7 as an individual of a population whose 7 is the family tree. By definition,
the size || of 7 is the number of edges of 7, |7| = #7 — 1. For every integer k > 0,
we put

A,={reA:|r| =k}

EXERCISE 2.1. Verify that the cardinality of Ay is the k-th Catalan number

1 (2K
A, = Caty = —— .
Ay = Caty k—i—l(k)

A plane tree can be coded by its Dyck path or contour function. Suppose
that the tree is embedded in the half-plane in such a way that edges have length
one. Informally, we imagine the motion of a particle that starts at time ¢ = 0 from
the root of the tree and then explores the tree from the left to the right, moving
continuously along the edges at unit speed (in the way explained by the arrows of
Fig.2), until all edges have been explored and the particle has come back to the
root. Since it is clear that each edge will be crossed twice in this evolution, the total
time needed to explore the tree is 2|7|. The value C(s) of the contour function at
time s € [0,2|7|] is the distance (on the tree) between the position of the particle
at time s and the root. By convention C(s) = 0 if s > 2|r|. Fig.2 explains the
construction of the contour function better than a formal definition.

Let k > 0 be an integer. A Dyck path of length 2k is a sequence (zg, 21, 2, . - .,
x9r) of nonnegative integers such that x¢g = x9r = 0, and |z; — ;-1 = 1 for every
i =1,...,2k. Clearly, if 7 is a plane tree of size k, and (C(s))s>0 is its contour
function, the sequence (C(0),C(1),...,C(2k)) is a Dyck path of length 2k. More
precisely, we have the following easy result.

PROPOSITION 2.2. The mapping 7 — (C(0),C(1),...,C(2k)) is a bijection
from Ay onto the set of all Dyck paths of length 2k.
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C(s)

123 2|7"
FIGURE 2. A tree and its contour function

2.2. Galton-Watson trees. Let p be a critical or subcritical offspring dis-
tribution. This means that u is a probability measure on Z such that

i ku(k) < 1.
k=0

We exclude the trivial case where p(1) = 1.

To define Galton-Watson trees, we let (K,,u € U) be a collection of indepen-
dent random variables with law p, indexed by the set /. Denote by 6 the random
subset of U defined by

0={u=(u...,u") el v < K, ui-1y for every 1 < j <n}.
PROPOSITION 2.3. 6 is a.s. a tree. Moreover, if
Zy, =#{u€b: |ul =n},
(Zn,n > 0) is a Galton-Watson process with offspring distribution p and initial
value Zy = 1.
REMARK 2.4. Clearly k,(0) = K, for every u € 6.

The tree 0, or any random tree with the same distribution, will be called a
Galton-Watson tree with offspring distribution y, or in short a p-Galton-Watson
tree. We also write I, for the distribution of § on the space A.

We leave the easy proof of the proposition to the reader. The finiteness of the
tree 6 comes from the fact that the Galton-Watson process with offspring distribu-
tion p becomes extinct a.s., so that Z,, = 0 for n large.

If 7 is a tree and 1 < j < kg(7), we write Tj7 for the tree 7 shifted at j:
Tir={uel:juerT}
Note that T;7 is a tree.
Then II,, may be characterized by the following two properties (see e.g. [44]
for more general statements):
(i) Ou(ke =j) = p(j), J € Zy.
(ii) For every j > 1 with p(j) > 0, the shifted trees Ti7,...,T;T are in-
dependent under the conditional probability II,(dr | kg = j) and their
conditional distribution is II,,.
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Property (ii) is often called the branching property of the Galton-Watson tree.
We now give an explicit formula for II,,.

PROPOSITION 2.5. For every 7 € A,

I, (r) = [T wlka(r)).

UET

Proor. We can easily check that

{0 =7} = ({Ky = ku(7)},
ueT
so that
M (1) = PO =7) =[] P(Ku = ku(7)) = [] nku(7)).
ueT ueT
O

We will be interested in the particular case when pu = pug is the (critical) geo-
metric offspring distribution, ug(k) = 27%~! for every k € Z,. In that case, the
proposition gives

HMO(T) - 272'7-'71

(note that ), .. kyu(7) = |7| for every 7 € A).

In particular II,,,(7) only depends on |7|. As a consequence, for every integer
k > 0, the conditional probability distribution II, (- | |7| = k) is just the uniform
probability measure on Aj. This fact will be important later.

2.3. The contour function in the geometric case. In general, the Dyck
path of a Galton-Watson tree does not have a “nice” probabilistic structure (see
however Section 1 of [29]). In this section we restrict our attention to the case
when p = pg is the critical geometric offspring distribution.

First recall that (S,),>0 is a simple random walk on Z (started from 0) if it
can be written as
where X;,X5,... are i.i.d. random variables with distribution P(X,, = 1) =
P(X,=-1)=1.

Set T'=inf{n > 0: S, = —1} < 0o a.s. The random finite path

(So,51,.-+,57-1)

(or any random path with the same distribution) is called an excursion of simple
random walk. Obviously this random path is a random Dyck path of length 7' — 1.

PROPOSITION 2.6. Let 6 be a pg-Galton-Watson tree. Then the Dyck path of
0 is an excursion of simple random walk.

PRrROOF. Since plane trees are in one-to-one correspondence with Dyck paths
(Proposition 2.2), the statement of the proposition is equivalent to saying that
the random plane tree 6 coded by an excursion of simple random walk is a pg-
Galton-Watson tree. To see this, introduce the upcrossing times of the random
walk S from 0 to 1:

Up=inf{n>0:5,=1}, Vi =inf{n > Uy : S, =0}
and by induction, for every j > 1,
Ujpr =inf{n >V, : S, =1}, V41 =inf{n > Uj;1 : S, = 0}.
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Let K = sup{j : U; < T} (sup@ = 0). From the relation between a plane tree
and its associated Dyck path, one easily sees that kz(f) = K, and that for every
i=1,..., K, the Dyck path associated with the subtree T;0 is the path w;, with

wi(n) =S, smyavi-1y =1 ,0<n <V, -U; =1

A simple application of the Markov property now shows that K is distributed
according to pg and that conditionally on K = k, the paths wq,...,w; are k
independent excursions of simple random walk. The characterization of II,, by
properties (i) and (ii) listed before Proposition 2.5 now shows that 6 is a pp-Galton-
Watson-tree. O

2.4. Brownian excursions. Our goal is to prove that the (suitably rescaled)
contour function of a tree uniformly distributed over Ay converges in distribution
as k — oo towards a normalized Brownian excursion. We first need to recall some
basic facts about Brownian excursions.

We consider a standard linear Brownian motion B = (B;);>0 starting from the
origin. The process 8; = |B;| is called reflected Brownian motion. We denote by
(L?)¢>0 the local time process of B (or of 3) at level 0, which can be defined by
the approximation

Lo—hm—/ dsli_. 4(B —hm—/ ds 10.¢1(Bs),

e—0 2¢

for every t > 0, a.s.
Then (L?);>0 is a continuous increasing process, and the set of increase points
of the function ¢t — LY coincides with the set

of all zeros of 5. Consequently, if we introduce the right-continuous inverse of the
local time process,

=inf{t >0: L) > ¢}, forevery { >0,

we have
Z={o¢:0>0}U{oy_ : L€ D}

where D denotes the countable set of all discontinuity times of the mapping ¢ — oy.

The connected components of the open set Ry\Z are called the excursion
intervals of B away from 0. The preceding discussion shows that, with probability
one, the excursion intervals of § away from 0 are exactly the intervals (o,_, ay) for
¢ € D. Then, for every ¢ € D, we define the excursion e, = (e¢(t)):>0 associated
with the interval (o,—,0¢) by setting

_J Bop_ 4t if0<t<op—op
ee(t)_{o ift>op—o0p_.
We view ey as an element of the excursion space E, which is defined by
E={ec CR4,R;):e(0) =0 and ((e) :=sup{s>0:¢e(s) >0}€(0,00)},

where sup @ = 0 by convention. Note that we require ((e) > 0, so that the zero
function does not belong to E. The space F is equipped with the metric d defined
by

d(e,e') = sup|e(t) — €'(t)| + [¢(e) — ¢(€)]

t>0
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and with the associated Borel o-field. Notice that {(ey) = oy — oy— for every £ € D.
The following theorem is the basic result of excursion theory in our particular
setting.

THEOREM 2.7. The point measure

Z 5([782)(ds de)

LeD

1s a Poisson measure on Ry x E, with intensity
2ds ® n(de)
where n(de) is a o-finite measure on E.

The measure n(de) is called the Itd measure of positive excursions of linear
Brownian motion, or simply the It6 excursion measure (our measure n corresponds
to the measure ny in Chapter XII of [46]). The next corollary follows from standard
properties of Poisson measures.

COROLLARY 2.8. Let A be a measurable subset of E such that 0 < n(A) < oo,
and let Ty = inf{l € D : e, € A}. Then, T is exponentially distributed with
parameter n(A), and the distribution of er, is the conditional measure

n(-NA)

n(-|4) = "o

Moreover, Ty and er, are independent.

This corollary can be used to calculate various distributions under the Ito6
excursion measure. The distribution of the height and the length of the excursion
are given as follows: For every € > 0,

(maxet) > ) = 5
n|( maxe ) =—
tES{ 2e

and
1

n(¢(e) > ¢) Jor
The It6 excursion measure enjoys the following scaling property. For every A > 0,
define a mapping ® : E — E by setting ®,(e)(t) = vV Ae(t/)), for every e € E
and t > 0. Then we have ®(n) = vAn.

This scaling property is useful when defining conditional versions of the It
excursion measure. We discuss the conditioning of n(de) with respect to the length
¢(e). There exists a unique collection (n(,),s > 0) of probability measures on E
such that the following properties hold:

(i) For every s > 0, n(4)(¢ = s) = 1.
(ii) For every A > 0 and s > 0, we have ®)(n(,)) = n(yy).

(iii) For every measurable subset A of E,

& ds
n(A) = n (A ——.
W= [ o5
We may and will write n¢,y = n(-|{ = s). The measure n;;) = n(-[¢ = 1) is
called the law of the normalized Brownian excursion.



SCALING LIMITS OF RANDOM TREES AND PLANAR MAPS 165

There are many different descriptions of the It6 excursion measure: See in
particular [46, Chapter XII]. We state the following proposition, which emphasizes
the Markovian properties of n. For every ¢ > 0 and = > 0, we set

Note that the function ¢ — ¢;(z) is the density of the first hitting time of = by B.
For t > 0 and z,y € R, we also let

_ 1 (y —=)°
pt(l', y) - \/% exp(_ 2% )

be the usual Brownian transition density.

PRrROPOSITION 2.9. The It6 excursion measure n is the only o-finite measure
on E that satisfies the following two properties:

(i) For everyt >0, and every f € C(R4,Ry),

n(f(e(t) Ligor)) = / " o) (o) da

(ii) Let t > 0. Under the conditional probability measure n(- | { > t), the
process (e(t 4+ 1))r>0 is Markov with the transition kernels of Brownian
motion stopped upon hitting 0.

This proposition can be used to establish absolute continuity properties of the
conditional measures n(,) with respect to n. For every ¢t > 0, let F; denote the
o-field on E generated by the mappings r +— e(r), for 0 < r <¢. Then, if 0 < ¢t < 1,
the measure n ;) is absolutely continuous with respect to n on the o-field 73, with
Radon-Nikodym density

dny) (e) = 2\/%Q1—t(e(t))'

dn |7,

This formula provides a simple derivation of the finite-dimensional marginals under
n(;), noting that the finite-dimensional marginals under n are easily obtained from
Proposition 2.9. More precisely, for every integer p > 1, and every choice of 0 <
t1 <ty < -+ < t, < 1, we get that the distribution of (e(t1),...,e(t,)) under
n()(de) has density

(1) 227 g, (1) p:g—tl (w1, x2) prg_tz (w2, 3) - - 'p:,,—tl (xp—la xp) q1—t, (xp)
where
pi(@,y) = pe(z,y) —pe(z, —y) >0, z,y >0
is the transition density of Brownian motion killed when it hits 0. As a side remark,

formula (1) shows that the law of (e(t))o<¢<1 under n(yy is invariant under time-
reversal.

2.5. Convergence of contour functions to the Brownian excursion.
The following theorem can be viewed as a special case of the results in Aldous [2].
The space of all continuous functions from [0, 1] into Ry is denoted by C([0, 1], Ry),
and is equipped with the topology of uniform convergence.
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THEOREM 2.10. For every integer k > 1, let 0y be a random tree that is uni-
formly distributed over Ay, and let (Cy(t))i>0 be its contour function. Then

d
Cr(2k t))0<t<1 k%o (er)o<i<1

1
(7
where e is distributed according to ngy (i.e. e is a normalized Brownian excursion)
and the convergence holds in the sense of weak convergence of the laws on the space

C([Oa 1]’R+)'

PRrROOF. We already noticed that II, (- | |7| = k) coincides with the uniform distri-
bution over Aj. By combining this with Proposition 2.6, we get that (Cj(0), Ck(1),
..., Cr(2k)) is distributed as an excursion of simple random walk conditioned to
have length 2k. Recall our notation (S,,),>¢ for simple random walk on Z starting
from 0, and T = inf{n > 0: S,, = —1}. To get the desired result, we need to verify
that the law of

L S
(F578k) e,

under P(- | T' = 2k + 1) converges to n(;y as k — oo. This result can be seen as
a conditional version of Donsker’s theorem (see Kaigh [26] for similar statements).
We will provide a detailed proof, because this result plays a major role in what
follows, and because some of the ingredients of the proof will be needed again in
Section 3 below. As usual, the proof is divided into two parts: We first check the
convergence of finite-dimensional marginals, and then establish the tightness of the
sequence of laws.

Finite-dimensional marginals. We first consider one-dimensional marginals. So we
fix t € (0,1), and we will verify that

2) le%@P(SLthJ = [2V2k] or Lx\/ﬂHl‘T:zkH)
= 4\/%%(58) qi—¢(x),

uniformly when z varies over a compact subset of (0,00). Comparing with the case
p =1 of formula (1), we see that the law of (2k) /284y, under P(- | T = 2k + 1)
converges to the law of e(t) under n()(de) (we even get a local version of this
convergence).

In order to prove (2), we will use two lemmas. The first one is a very special
case of classical local limit theorems (see e.g. Chapter 2 of Spitzer [49]).

LEMMA 2.11. For every € > 0,

\/EP(SL,LSJ = |zv/n] or |zv/n] + 1) — 2ps(0,x)’ =0.

lim supsup
N—=00 zcR s>e
In our special situation, the result of the lemma is easily obtained by direct
calculations using the explicit form of the law of S,, and Stirling’s formula.
The next lemma is (a special case of) a famous formula of Kemperman (see
e.g. [45] Chapter 6). For every integer ¢ € Z, we use P, for a probability measure
under which the simple random walk S starts from £.

LEMMA 2.12. For every ¢ € Z and every integer n > 1,

+1
Pg(T = n) = T Pg(Sn = —1).
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PRrOOF. It is easy to see that
1
Pg(T = n) = 5Pg(5n,1 =0,T>n-— 1)

On the other hand,
Py(S,-1=0,T>n—-1)

PE(Snfl
Py(Sn—1 = 0) — Pg(Sn,1 =-2,T<n-1)
PZ(Sn—l = 0) - PZ(Sn—l = _2)7

where the second equality is a simple application of the reflection principle. So we
have

)= Py(Sp_1 =0, T <n—1)

T =) = 3 (P81 = 0) — PilS, 1 = -2))
and an elementary calculation shows that this is equivalent to the statement of the
lemma. (]
Let us turn to the proof of (2). We first write for ¢ € {1,...,2k} and ¢ € Z,
P{S;=0n{T =2k +1})
P(T=2k+1) ’
By an application of the Markov property of S,
PSS, =0n{T =2k+1}) =P(S; =0T > i) P(T =2k +1—1).

Furthermore, a simple time-reversal argument (we leave the details to the reader)
shows that

P(S;=0|T=2k+1)=

P(Sz =0T > Z) = 2Pg(T2i+ 1)
Summarizing, we have obtained

3) P(Si= 0| T=2k+1) = LT =i+ VAT =2k+1-10)

P(T =2k + 1)
22K+ 1)(04+1)? P(Siy1 = —1)Py(Sapt1-i = —1)
i+ 1)(2k+1—1) P(Sopy1 = —1)

using Lemma 2.12 in the second equality.
We apply this identity with ¢ = |2kt] and £ = |2V2k] or £ = |aV2k] + 1.
Using Lemma 2.11, we have first

202k + 1) (|zV2k] +1)2 1 ~ 22
] T Dk 1= ) < Pl =) ~ 2V2m (62"

and, using Lemma 2.11 once again,
P, var) (Sizkey+1 = 1) P, ag ) (Sak41— 26 = —1)
+ Plovara Skt = =1 P vag) 11 (241 28] = —1)
~ 2k~ (0, 2)p14(0, ).
Putting these estimates together, and noting that ¢.(z) = (z/t)p+(0, z), we arrive
at (2).
Higher order marginals can be treated in a similar way. Let us sketch the

argument in the case of two-dimensional marginals. We observe that, if 0 < i <
j <2k and if ¢,m € Z, we have, by the same arguments as above,

P(Sizﬁ,szm,T:%:—l—l)
= 2P(T=i+1)PyS;_ s =m,T > j—i) Pu(T = k+1—j).
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Only the middle term Py(S;_; = m,T > j—1) requires a different treatment than in
the case of one-dimensional marginals. However, by an application of the reflection
principle, one has

Pg(Sj_i = m,T > ] — Z) = Pg(Sj_i = m) — P((Sj_i = —m — 2).
Hence, using Lemma 2.11, we easily obtain that for z,y >0 and 0 < s <t < 1,
Povar) (Sizet)—12ks) = [WV2E]) + P, ag) 41 (S2ke )~ 20s) = [YV2K])
~ (2k) 2 pi_ (2, ),
and the result for two-dimensional marginals follows in a straightforward way.

Tightness. We start with some combinatorial considerations. We fix k& > 1. Let
(xo,1,...,22;)be a Dyck path with length 2k, and let ¢ € {0,1,...,2k — 1}. We
set, for every j € {0,1,...,2k},
W oy o i
TSI T2 e e "
with the notation i ®j =it +jifi+j <2k, andi®j=i+j—-2kifi+j>2k It
is elementary to see that (xéz), xgz), e ,x(;k)) is again a Dyck path with length 2k.
Moreover, the mapping ®; : (zo, z1,...,T2x) — (xéz),xgz), ce xézk)) is a bijection
from the set of all Dyck paths with length 2k onto itself. To see this, one may
check that the composition ®5;,_; o ®; is the identity mapping. This property is
easily verified by viewing ®; as a mapping defined on plane trees with 2k edges
(using Proposition 2.2): The plane tree corresponding to the image under ®; of the
Dyck path associated with a tree 7 is the “same” tree 7 re-rooted at the corner
corresponding to the i-th step of the contour exploration of 7. From this observation
it is obvious that the composition ®o;_; o ®; leads us back to the original plane
tree.
To simplify notation, we set for every i,5 € {0,1,...,2k},
Cp' = min_ Cy(n).
KT injengiv) k()
The preceding discussion then gives the identity in distribution

(4) (Cu +Cutiwd) —264"°) 2 (Culiozsean

LEMMA 2.13. For every integer p > 1, there exists a constant K, such that, for
every k > 1 and every i € {0,1,...,2k},

E[Cr(i)*] < K, iP.
Assuming that the lemma holds, the proof of tightness is easily completed.
Using the identity (4), we get for 0 < i < j < 2k,
E[(Cr(j) = Cr(@)] < E(Crl(i) + Cu(f) — 26,7)]
— EICW( - )™
< K@ —o)P
It readily follows that the bound
2kt) — Cr(2k
E[ (Ck:( ) — Ci(2ks)
V2k

)Qp} < K, (t—s).
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holds at least if s and ¢ are of the form s = i/2k, t = j/2k, with 0 < i < j < 2k.
Since the function C}, is 1-Lipschitz, a simple argument shows that the same bound
holds (possibly with a different constant K,) whenever 0 < s < ¢ < 1. This gives
the desired tightness, but we still have to prove the lemma.

Proof of Lemma 2.13. Clearly, we may restrict our attention to the case 1 < ¢ <k
(note that (Cy(2k — i))o<i<2r has the same distribution as (Ck(7))o<i<2r). Recall
that Cy(i) has the same distribution as S; under P(- | T = 2k + 1). By formula
(3), we have thus, for every integer ¢ > 0,
2(2]{7 + 1)([-1— 1)2 P[(Slurl = —1)Pg(52k+1,i = —1)
C+1)(2k+1-19) P(S2p+1=—1)
From Lemma 2.11 (and our assumption i < k), we can find two positive constants
co and cp such that

P(Sgri1 = —1) > ¢o(2k) 72 | Py(Sapi1-s = —1) < e1(2k) Y2
It then follows that

P(Cr(i) = £) =

0+ 1)?
P(Ck(z) = f) < 461(60)71 % Pg(SH_l = —1)
_ 1 (041)? S
= 4dey(eo) STl P(Siz1=10+1).
Consequently,
E[Cy(i)*] = ) (7 P(Ci(i) = 1)
£=0
4 13
£=0
4ei ()t
< 1L (51007,

However, it is well known and easy to prove that E[(Si11)*'*?] < K] (i + 1)P*!,
with some constant K, independent of i. This completes the proof of the lemma
and of Theorem 2.10. O

Extensions and variants of Theorem 2.10 can be found in [2], [17] and [18]. To
illustrate the power of this theorem, let us give a typical application. The height
H(7) of a plane tree 7 is the maximal generation of a vertex of 7.

COROLLARY 2.14. Let 0y be uniformly distributed over Ay. Then

1 (d)
\/ﬁH(ek) v ogiz1

Since ) )
—_H(0)) = (—==Cri2r)
var 1) = geis (g kD)
the result of the corollary is immediate from Theorem 2.10.
The limiting distribution in Corollary 2.14 is known in the form of a series: For
every z > 0,

o0
P( ) =23 @k - 1) 2k2?).
[nax e > ,;1 x ) exp(—2k“z*)
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See Chung [13].

3. Real trees and the Gromov-Hausdorff convergence

Our main goal in this section is to interpret the convergence of contour functions
in Theorem 2.10 as a convergence of discrete random trees towards a “continuous
random tree” which is coded by the Brownian excursion in the same sense as a
plane tree is coded by its contour function. We need to introduce a suitable notion
of a continuous tree, and then to explain in which sense the convergence takes place.

3.1. Real trees. We start with a formal definition. In these notes, we con-
sider only compact real trees, and so we include this compactness property in the
definition.

DEFINITION 3.1. A compact metric space (T,d) is a real tree if the following
two properties hold for every a,b € T.

(i) There is a unique isometric map fop from [0,d(a,b)] into T such that
fa,b(o) =a and fa,b(d(av b)) =b.

(ii) If q is a continuous injective map from [0,1] into T, such that q(0) = a
and q(1) = b, we have

q([0,1]) = fa,u([0, d(a, b)]).

A rooted real tree is a real tree (T,d) with a distinguished vertex p = p(T)
called the root. In what follows, real trees will always be rooted, even if this is not
mentioned explicitly.

Informally, one should think of a (compact) real tree as a connected union of
line segments in the plane with no loops. Asssume for simplicity that there are
finitely many segments in the union. Then, for any two points a and b in the tree,
there is a unique path going from a to b in the tree, which is the concatentation
of finitely many line segments. The distance between a and b is then the length of
this path.

Let us consider a rooted real tree (7,d). The range of the mapping f,; in (i)
is denoted by [[a,b] (this is the “line segment” between a and b in the tree). In
particular, [[p,a] is the path going from the root to a, which we will interpret as
the ancestral line of vertex a. More precisely, we can define a partial order on the
tree by setting a < b (a is an ancestor of b) if and only if a € [[p, b].

If a,b € T, there is a unique ¢ € T such that [[p,a] N [p,d] = [p, c]]. We write
c =a A b and call ¢ the most recent common ancestor to a and b.

By definition, the multiplicity of a vertex a € 7 is the number of connected
components of T\{a}. Vertices of 7 which have multiplicity 1 are called leaves.

3.2. Coding real trees. In this subsection, we describe a method for con-
structing real trees, which is well-suited to our forthcoming applications to random
trees. This method is nothing but a continuous analog of the coding of discrete
trees by contour functions.

We consider a (deterministic) continuous function g : [0, 1] — [0, 00) such that
g(0) = g(1) = 0. To avoid trivialities, we will also assume that g is not identically
zero. For every s,t € [0, 1], we set

mg(s,t) = inf  g(r),
re[sAt,sVi]
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g(r)

pg ()
mg(tw| 2oLt (6) Ay ()
mg(s,t) | p& Pg(s) Apg(t)
T P =pg(0)
Ficure 3. Coding a tree by a continuous function
and

dg(s,t) = g(s) + g(t) — 2my(s,t).
Clearly dy(s,t) = d,4(t,s) and it is also easy to verify the triangle inequality

dg(s,u) <dg(s,t)+dgy(t,u)

for every s,t,u € [0,1]. We then introduce the equivalence relation s ~ ¢t iff
dy(s,t) = 0 (or equivalently iff g(s) = g(t) = mgy(s,t)). Let T, be the quotient
space
Tg=10,1]/ ~.

Obviously the function d, induces a distance on 7,4, and we keep the notation d,,
for this distance. We denote by p, : [0,1] — 7, the canonical projection. Clearly
pg is continuous (when [0, 1] is equipped with the Euclidean metric and 7, with the
metric dg), and the metric space (7, d,) is thus compact.

THEOREM 3.1. The metric space (Ty4,dg) is a real tree. We will view (T4, dg)
as a rooted tree with root p = py(0) = py(1).

REMARK 3.2. It is also possible to prove that any (rooted) real tree can be
represented in the form Ty. We will leave this as an exercise for the reader.

To get an intuitive understanding of Theorem 3.1, the reader should have a look
at Fig.3. This figure shows how to construct a simple subtree of 7,, namely the
“reduced tree” consisting of the union of the ancestral lines in 7, of three vertices
Pg(8), pg(t), pg(u) corresponding to three (given) times s, ¢, u € [0,1]. This reduced
tree is the union of the five bold line segments that are constructed from the graph
of g in the way explained on the left part of the figure. Notice that the lengths of
the horizontal dotted lines play no role in the construction, and that the reduced
tree should be viewed as pictured on the right part of Fig.3. The ancestral line of
Pg(s) (resp. pg(t),pg(u)) is a line segment of length g(s) (resp. g¢(t),g(u)). The
ancestral lines of py(s) and py(t) share a common part, which has length mg(s,t)
(the line segment at the bottom in the left or the right part of Fig.3), and of course
a similar property holds for the ancestral lines of p,(s) and py(u), or of py(t) and
Ppg(u).

The following re-rooting lemma, which is of independent interest, is a useful
ingredient of the proof of Theorem 3.1 (a discrete version of this lemma already
appeared at the beginning of the proof of tightness in Theorem 2.10).
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LEMMA 3.3. Let sg € [0,1). For any real v > 0, denote the fractional part of r

byT=r—|r]. Set
g'(s) = g(s0) + g(50 + 5) — 2my(s0, 50 + 5),

for every s € [0,1]. Then, the function g’ is continuous and satisfies g'(0) = ¢'(1) =
0, so that we can define Ty . Furthermore, for every s,t € [0,1], we have
(5) dy (5,1) = dy (56 F 5,50 FF)
and there exists a unique isometry R from Ty onto Ty such that, for every s € [0,1],
(6) R(pg (s)) = pg(s0 + ).

Assuming that Theorem 3.1 is proved, we see that 7y coincides with the real
tree T, re-rooted at py(sg). Thus the lemma tells us which function codes the tree
T4 re-rooted at an arbitrary vertex.

Proof. It is immediately checked that ¢’ satisfies the same assumptions as g, so
that we can make sense of 7y. Then the key step is to verify the relation (5).
Consider first the case where s,t € [0,1 — sg). Then two possibilities may occur.

If my(so+ 8,80 +1) > my(so, S0+ s), then my(so, so + 1) = my(so, 80 + ) =
mg(so, S0 + t) for every r € [s,¢], and so

my (s,t) = g(so) + mg(so + s, 0 +t) — 2my(s0, S0 + 5).
It follows that
dg (s,t) = g'(s) +9'(t) — 2my (s,1)
= g(s0 +5) — 2mgy(s0, s0 + ) + g(s0 +¢)
—2myg(s0, S0 +t) — 2(mgy(so + s, 50 + t) — 2my(so, So + $))
= g(s0 + ) + g(so + t) — 2mg(so + s, 50 + t)
=dgy(so+s,50+1).

If mg(so + 8,80 +t) < mg(so,s0 + ), then the minimum in the definition
of my (s,t) is attained at 71 defined as the first r € [s,t] such that g(so +r) =
mg(so, 50 + ) (because for r € [ry,t] we will have g(sg + ) — 2mg(so, s0 + 1) >
—myg (S0, So + 1) > —mgy(so, So + r1)). Therefore,

mg(s,t) = g(so) — mg(so, s0 + s),
and

dg/(s’ t)

9(s0 + s) = 2mg(s0, 50 + ) + g(s0 + 1)
—2myg (S0, So +t) + 2mgy(so, so + )
= dy(so+s,s0+1).
The other cases are treated in a similar way and are left to the reader.
By (5), if s,t € [0,1] are such that dg (s,t) = 0, then dg(so + 5,50 +¢) = 0 so
that py(so+s) = pg(so+t). Noting that Ty = pg([0,1]), we can define R in a

unique way by the relation (6). From (5), R is an isometry, and it is also immediate
that R takes 7, onto 7. O

Thanks to the lemma, the fact that 7, verifies property (i) in the definition of
a real tree is obtained from the particular case when a = p and b = p,(s) for some
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s € [0,1]. In that case however, the isometric mapping f, is easily constructed by
setting

fou(t) =pg(sup{r <s:g(r)=1t}), forevery 0 <t <g(s)=d4(p,b).

The remaining part of the argument is straightforward: See Section 2 in [19].

REMARK 3.4. A short proof of Theorem 3.1 using the characterization of real
trees via the so-called four-point condition can be found in [20].

The following simple observation will be useful in Section 7: If s,¢t € [0,1],
the line segment [[p,y(s),py(t)] in the tree 7, coincides with the collection of the
vertices py(r), for all » € [0,1] such that either g(r) = my(r,s) > my(s,t) or
g(r) = mgy(r,t) > mgy(s,t). This easily follows from the construction of the distance
d,.

3.3. The Gromov-Hausdorff convergence. In order to make sense of the
convergence of discrete trees towards real trees, we will use the Gromov-Hausdorff
distance between compact metric spaces, which has been introduced by Gromov
(see e.g. [22]) in view of geometric applications.

If (E,9) is a metric space, the notation dpqus(K, K’) stands for the usual
Hausdorff metric between compact subsets of E :

Staus(K,K") =inf{e >0: K C U.(K') and K’ C U.(K)},

where U (K) :={z € E: §(z,K) < e}.
A pointed metric space is just a pair consisting of a metric space E and a
distinguished point p of E. We often write E instead of (E, p) to simplify notation.
Then, if (E1, p1) and (Es, p2) are two pointed compact metric spaces, we define
the distance dgp (F1, E2) by

dan(Er, Ez) = inf{0naus(p1(E1), p2(E2)) V 0(p1(p1), p2(p2))}

where the infimum is over all possible choices of the metric space (E, ) and the
isometric embeddings ¢ : 1 — E and 5 : F; — E of F; and Es into F.

Two pointed compact metric spaces E; and F, are called equivalent if there
is an isometry that maps F; onto E5 and preserves the distinguished points. Ob-
viously dgpu(E1, F2) only depends on the equivalence classes of E; and Es. We
denote by K the space of all equivalence classes of pointed compact metric spaces.

THEOREM 3.5. dgy defines a metric on the set K. Furthermore the metric
space (K, dgp) is separable and complete.

A proof of the fact that dgm is a metric on the set K can be found in [11,
Theorem 7.3.30]. This proof is in fact concerned with the non-pointed case, but the
argument is easily adapted to our setting. The separability of the space (K, dgg)
follows from the fact that finite metric spaces are dense in K. Finally the complete-
ness of (K,dgg) can be obtained as a consequence of the compactness theorem in
[11, Theorem 7.4.15].

In our applications, it will be important to have the following alternative def-
inition of dgy. First recall that if (E1,d;) and (Es,ds) are two compact metric
spaces, a correspondence between E; and Fs is a subset R of Fy X E5 such that
for every x1 € E; there exists at least one o € Fy such that (z1,22) € R and con-
versely for every yo € Ey there exists at least one y; € E; such that (y1,y2) € R.
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The distortion of the correspondence R is defined by
dis(R) = sup{|di(z1,y1) — d2(w2,y2)| : (x1,72), (y1,92) € R}

PROPOSITION 3.6. Let (F1,p1) and (Ea,p2) be two pointed compact metric

spaces. Then,

1
7 dgg(FEq, Ey) = = inf dis(R),
@) cH(E1 ) =5 oo o pmer TR

where C(Ey, Eq) denotes the set of all correspondences between E1 and Es.

See [11, Theorem 7.3.25] for a proof of this proposition in the non-pointed case,
which is easily adapted.

The following consequence of Proposition 3.6 will be very useful. Notice that
a rooted real tree can be viewed as a pointed compact metric space, whose distin-
guished point is the root.

COROLLARY 3.7. Let g and g’ be two continuous functions from [0,1] into Ry,
such that g(0) = g(1) = ¢’(0) = ¢’(1) = 0. Then,
dan(Tg, Ty) < 2]lg = d'll,
where ||g — g'l| = supyeqo,719(t) — g'(t)| is the supremum norm of g —g'.
Proof. We rely on formula (7). We can construct a correspondence between 7,
and Ty by setting
R ={(a,d’) : 3t € [0,1] such that a = py(t) and a’ = p,y (t)}.
Note that (p,p’) € R, if p = py(0), resp. p’ = py(0), is the root of Ty, resp. the
root of 7. In order to bound the distortion of R, let (a,a’) € R and (b,b') € R.
By the definition of R we can find s,¢ > 0 such that py(s) = a, py(s) = o’ and
pg(t) = b, py(t) = b'. Now recall that
dy(av b) = g(S) + g(t) - 2m9(57t)7
dg’ (a/v b,) = g/(S) + g/(t) - 2mg/(5a t)a
so that
|d9(a7 b) - dg’ (a/7 b/)l < 4”9 - g,H'
Thus we have dis(R) < 4]|g — ¢'|| and the desired result follows from (7). O

3.4. Convergence towards the CRT. Asin subsection 2.5, we use the nota-
tion e for a normalized Brownian excursion. We view @ = (&;)o<i<1 as a (random)
continuous function over the interval [0, 1], which satisfies the same assumptions as
the function g in subsection 3.2.

DEFINITION 3.2. The Brownian continuum random tree, also called the CRT,
is the random real tree Te coded by the normalized Brownian excursion.

The CRT 7, is thus a random variable taking values in the set K. Note that
the measurability of this random variable follows from Corollary 3.7.

REMARK 3.8. Aldous [1],[2] uses a different method to define the CRT. The
preceding definition then corresponds to Corollary 22 in [2]. Note that our normal-
ization differs by an unimportant scaling factor 2 from the one in Aldous’ papers:
The CRT there is the tree Toe instead of Te.
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We will now restate Theorem 2.10 as a convergence in distribution of discrete
random trees towards the CRT in the space (K, dgp).

THEOREM 3.9. For every k > 1, let 0y be uniformly distributed over Ay, and
equip 0y with the usual graph distance dg,.. Then
(O, (26) " 2dy) % (Tz, d)
k—o0
in the sense of convergence in distribution for random wvariables with values in
(K, dGH) .

PROOF. As in Theorem 2.10, let C; be the contour function of 6, and define a
rescaled version of C} by setting

Cilt) = (2k)/2Cr(2k )

for every ¢ € [0,1]. Note that the function Cj, is continuous and nonnegative over
[0,1] and vanishes at 0 and at 1. Therefore we can define the real tree ’Tak.

Now observe that this real tree is very closely related to the (rescaled) discrete
tree 0. Indeed 75 is (isometric to) a finite union of line segments of length

(2k)~'/2 in the plane, with genealogical structure prescribed by 6y, in the way
suggested in the left part of Fig.2. From this observation, and the definition of the
Gromov-Hausdorff distance, we easily get

(8) dGH((Qk, (2k)12d,,), (7'5k,d5k)) < (2k) 12,
On the other hand, by combining Theorem 2.10 and Corollary 3.7, we have
(d)
(Ték ’ dék) kjo (7:33 de)'
The statement of Theorem 3.9 now follows from the latter convergence and (8). O

REMARK 3.10. Theorem 8.9 contains in fact less information than Theorem
2.10, because the lexicographical ordering that is inherent to the motion of a plane
tree (and also to the coding of real trees by functions) disappears when we look at
a plane tree as a metric space. Still, Theorem 3.9 is important from the conceptual
viewpoint: It is crucial to think of the CRT as a continuous limit of rescaled discrete
random trees.

There are analogs of Theorem 3.9 for other classes of combinatorial trees. For
instance, if 7, is distributed uniformly among all rooted Cayley trees with n vertices,
then (7,, (4n)~'/2d,,) converges in distribution to the CRT 7, in the space K.
Similarly, discrete random trees that are uniformly distributed over binary trees
with 2k edges converge in distribution (modulo a suitable rescaling) towards the
CRT. All these results can be derived from a general statement of convergence of
conditioned Galton-Watson trees due to Aldous [2] (see also [29]). A recent work
of Haas and Miermont [23] provides further extensions of Theorem 3.9 to Pdlya
trees (unordered rooted trees).

4. Labeled trees and the Brownian snake

4.1. Labeled trees. In view of forthcoming applications to random planar
maps, we now introduce labeled trees. A labeled tree is a pair (7, (£(v))yer) that
consists of a plane tree 7 (see subsection 2.1) and a collection (£(v)),e- of integer
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labels assigned to the vertices of 7 — in our formalism for plane trees, the tree 7
coincides with the set of all its vertices. We assume that labels satisfy the following
three properties:

(i) for every v € 7, £L(v) € Z ;
(i) ¢(2) =0
(iii) for every v € T\{@}, £(v) — l(7(v)) =1,0, or — 1,
where we recall that m(v) denotes the parent of v. Condition (iii) just means that
when crossing an edge of 7 the label can change by at most 1 in absolute value.
The motivation for introducing labeled trees comes from the fact that (rooted
and pointed) planar quadrangulations can be coded by such trees (see Section 4
below). Our goal in the present section is to derive asymptotics for large labeled
trees chosen uniformly at random, in the same way as Theorem 2.10, or Theorem
3.9, provides asymptotics for large plane trees. For every integer k > 0, we denote
by T the set of all labeled trees with k£ edges. It is immediate that

ATy = 3 A, = (2’“)

Ck+1\k

simply because for each edge of the tree there are three possible choices for the
label increment along this edge.

Let (7, (£(v))yer) be a labeled tree with k edges. As we saw in subsection 2.1,
the plane tree 7 is coded by its contour function (Ct)s>o. We can similarly encode
the labels by another function (V;)¢>o, which is defined as follows. If we explore
the tree 7 by following its contour, in the way suggested by the arrows of Fig.2, we
visit successively all vertices of 7 (vertices that are not leaves are visited more than
once). Write vg = @, v1, v, ..., = & for the successive vertices visited in this
exploration. For instance, in the particular example of Fig.1 we have

vg =D, v1 = 1,v9 = (1,1),@3:1,1)4 = (1a2)705: (1a2a1)7v6: (132),“-

The finite sequence vy, v1, v, . .., v9; will be called the contour exploration of the
vertices of 7.

Notice that C; = |v;], for every ¢ = 0,1, ..., 2k, by the definition of the contour
function. We similarly set

Vi =4l(v;) forevery i=0,1,...,2k.

To complete this definition, we set V; = 0 for t > 2k and, for every i = 1,...,2k,
we define V; for ¢ € (i — 1,4) by using linear interpolation. We will call (V;)¢>o the
“label contour function” of the labeled tree (7, (¢(v))yer) Clearly (7, (£(v))ver) i8
determined by the pair (C, V;)i>0-

Our goal is now to describe the scaling limit of this pair when the labeled tree
(1, ((v))ver) is chosen uniformly at random in Ty and k — co. As an immediate
consequence of Theorem 2.10 (and the fact that the number of possible labelings
is the same for every plane tree with k edges), the scaling limit of (Cy);>¢ is the
normalized Brownian excursion. To describe the scaling limit of (V;);>¢ we need to
introduce the Brownian snake.

4.2. The snake driven by a deterministic function. Consider a continu-
ous function g : [0, 1] — Ry such that g(0) = g(1) = 0 (as in subsection 3.2). We
also assume that ¢ is Holder continuous: There exist two positive constants K and
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v such that, for every s,t € [0, 1],
lg(s) —g(t)| < K'|s —t[".
As in subsection 3.2, we also set, for every s,t € [0, 1],

f)= mi .
my(s,t) TG[SHAntgvﬂg(r)

LEMMA 4.1. The function (mgy(s,t))s e0,1] i nonnegative definite in the sense

that, for every integer n > 1, for every si,...,s, € [0,1] and every A1,..., A\, € R,
we have
n n
Z Z )\1)\j mg(si, Sj) Z 0.
i=1j=1

Proor. Fix s1,...,s, € [0,1], and let ¢ > 0. For 4,5 € {1,...,n}, put i =~ j if
mg(si,s;) > t. Then =~ is an equivalence relation on {i : g(s;) > ¢t} C {1,...,n}.
By summing over the different classes of this equivalence relation, we get that

n

n 2
Z Z /\i/\jl{tgmg(Si,Sj)} = Z (Z /\i) = 0.

i=1 j=1 C class of ~ ieC
Now integrate with respect to dt to get the desired result. O

By Lemma 4.1 and a standard application of the Kolmogorov extension theo-
rem, there exists a centered Gaussian process (Z7)e[o,1] whose covariance is

BlZ{Z{] = my(s,1)

for every s,t € [0,1]. Consequently we have

B((z¢ - Z})") = B2+ El(Z])*] - 2B(Z{Z]]
= 9(s) +9(t) = 2my(s, 1)
< 2K |s—t|7,

where the last bound follows from our Holder continuity assumption on g (this
calculation also shows that E[(Z¢ — Z7)?] = d,(s,t), in the notation of subsection
3.2). From the previous bound and an application of the Kolmogorov continuity
criterion, the process (Z¢).c(0,1) has a modification with continuous sample paths.
This leads us to the following definition.

DEFINITION 4.1. The snake driven by the function g is the centered Gaussian
process (Z9)sefo,1] with continuous sample paths and covariance

E(ZZ]] = mgy(s,t), s,te]0,1].

Notice that we have in particular Z§ = Z{ = 0. More generally, for every
t € [0,1], Z7 is normal with mean 0 and variance g(t).

REMARK 4.2. Recall from subsection 3.2 the definition of the equivalence rela-
tion ~ associated with g: s ~ t iff dy(s,t) = 0. Since we have E[(ZI — Z})?] =
dy(s,t), a simple argument shows that almost surely for every s,t € [0,1], the con-
dition s ~ t implies that Z9 = Z. In other words we may view Z9 as a process
indezed by the quotient [0, 1] /~, that is by the tree T,. Indeed, it is then very natu-
ral to interpret Z9 as Brownian motion indexed by the tree Ty: In the particular case
when Ty is a finite union of segments (which holds if g is piecewise monotone), Z9
can be constructed by running independent Brownian motions along the branches of
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Ty. It is however more convenient to view Z9 as a process indexed by [0,1] because
later the function g (and thus the tree Ty) will be random and we avoid considering
a random process indexed by a random set.

4.3. Convergence towards the Brownian snake. Let & be as previously
a normalized Brownian excursion. By standard properties of Brownian paths, the
function ¢ — e; is a.s. Holder continuous (with exponent % — ¢ for any € > 0),
and so we can apply the construction of the previous subsection to (almost) every
realization of e.

In other words, we can construct a pair (e¢, Z;)¢jo,1) of continuous random
processes, whose distribution is characterized by the following two properties:

(i) e is a normalized Brownian excursion;
(ii) conditionally given e, Z is distributed as the snake driven by e.

The process Z will be called the Brownian snake (driven by e). This terminol-
ogy is a little different from the usual one: Usually, the Brownian snake is viewed as
a path-valued process (see e.g. [28]) and Z; would correspond only to the terminal
point of the value at time ¢ of this path-valued process.

We can now answer the question raised at the end of subsection 4.1. The
following theorem is due to Chassaing and Schaeffer [12]. More general results can
be found in [25].

THEOREM 4.3. For every integer k > 1, let (O, (€*(v))yes,) be distributed
uniformly over the set Ty of all labeled trees with k edges. Let (Ci(t))i>o0 and
(Vi (t))e>0 be respectively the contour function and the label contour function of the
labeled tree (O, (¥ (v))yes, ). Then,

1 9\ 1/4 (d)
(\/@Ck(% 28 (S_k) Vi (2k t))te[O,l] e (€0 Zt)iepo.)

where the convergence holds in the sense of weak convergence of the laws on the
space C([0,1],R2).

PROOF. From Theorem 2.10 and the Skorokhod representation theorem, we may
assume without loss of generality that
(9) sup |(2k)7YV2C(2kt) — e] 2 0.
0<t<1 k—o00
We first discuss the convergence of finite-dimensional marginals: We prove that
for every choice of 0 <1 <ty <--- <t, <1, we have
9 ()

. 1/4
(\/ﬁ k(2kt;), <8_k) Vk(2kti))1§i§p — (e, Zt, )1<i<p-

Since for every i € {1,...,n},
|Cr(2kt;) — Cr([2kt; )] <1, |Vi(2kt;) — Vi(|2kt;])] <1

we may replace 2kt; by its integer part |2kt;| in (10).

Consider the case p = 1. We may assume that 0 < t; < 1, because otherwise
the result is trivial. It is immediate that conditionally on 6, the label incre-
ments (% (v) — €% (7(v)), v € 0, \{0}, are independent and uniformly distributed over
{-1,0,1}. Consequently, we may write

(10)

Cr(|2kt1])

(Cul2kta ), Ve(12k0])) © (Crll2kta]), Y i)

i=1



SCALING LIMITS OF RANDOM TREES AND PLANAR MAPS 179

where the variables 71,72, . . . are independent and uniformly distributed over {—1, 0,
1}, and are also independent of the trees 6. By the central limit theorem,

R (5)N

where N is a standard normal variable. Thus if we set for A € R,

D(n,\) = [exp( Zmﬂ

we have ®(n, \) — exp(—A?/3) as n — co.
Then, for every A, X' € R, we get by conditioning on 6

X Ci(|2kt1])

A
Nerate
_ Efexp (iﬁckuzktm) X B(Cu((2k0)),X)]

— Elexp(idey, )] x exp(—\?/3)

k—oco

E {exp (z Cr(|2kt1])

using the (almost sure) convergence of (2k)~/2Cy(|2kt1]) towards e;, > 0. In
other words we have obtained the joint convergence in distribution

Cr([2kt1])
ap  (GlD ] > ) D (e 2/3)2N),

V2k T \/Cr([2kt1]) i=1 e

where the normal variable N is independent of e.
From the preceding observations, we have

(S0 5) ")
Cr([2k 1/2 ¢ Cp(| 2kt ] )\ 1/2 Cr([2kt1])

and from (11) we get

Cr([2kt1]) 79 \1/4 (d),
(LD (815 3k) % e v
(d)

This gives (10) in the case p = 1, since by construction it holds that (e, Z;,) =

(etl’ \/EN)

Let us discuss the case p = 2 of (10). We fix ¢; and t3 with 0 < #; < t5 < 1.
Recall the notation

Cp' = min Cy(n i,j€{0,1,...,2k
k inj<n<iv) k( )a 7.7 { 9 ) }
introduced in Section 1. Write v§ = @, vF, ..., vlgk = ¢ for the contour exploration

of vertices of ), (see the end of subsection 4.1). Then we know that

Cr([2kt1]) = |U’f2ktlj |, Cr([2kts]) = |U]f2kt2j l
Vi([2kt1]) = Ek(UIkatlj)v Vie([2kt2]) = gk(”]fzktzj)a
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and furthermore C‘,E%MJ’L%M

is the generation in 6 of the last common ancestor
to ’UkatlJ and U’f%m. From the properties of labels on the tree 6, we now see that

conditionally on 6,

(Vie(|2Kt ]), Vie(| 2kt ) @

< | 2ktq |, |2k < | 2ktq |, |2kt
Gkl 2k Cr([2kty]) ol Cr([2kt2))

@ (X wr X w X owr > )

i:éﬁzktlj’Lth2J+1 i:é£2kt1j,t2kt2j+1

where the variables n;, 7}, n’ are independent and uniformly distributed over {—1, 0,

1}.

From (9), we have

((20)71/2C (12611 ]), (2K) /2l |2ktz ), (2k) /2 2]

E} (®t17 ©Cty, me(t1> t2))
k—o0

By arguing as in the case p = 1, we now deduce from (12) that

(oLl CBRD, (5 viaim. () " vittoin)

d
), (€1, 1, VMe(t1,t2) N + /ey, — me(ti, t2) N,

k—o0
\/m@(tl, tg) N + \/‘Btg — me(tl, tQ) N”)

where N, N, N are three independent standard normal variables, which are also
independent of e. The limiting distribution in the last display is easily identified
with that of (e, e, Z¢,, Zt,), and this gives the case p = 2 in (10). The general
case is proved by similar arguments and we leave details to the reader.

To complete the proof of Theorem 4.3, we need a tightness argument. The laws
of the processes

(\/%Ck(zk t))te[ovl]

are tight by Theorem 2.10, and so we need only verify the tightness of the processes

/
((%) 1 4Vk(2k t))te[O,l].

This is a consequence of the following lemma, which therefore completes the proof
of Theorem 4.3. O

LEMMA 4.4. For every integer p > 1, there exists a constant K, < oo such
that, for every k > 1 and every s,t € [0, 1],

E Vk(th) - Vk(QkS)
("
PROOF. Simple arguments show that we may restrict our attention to the case when
s=1/(2k), t = j/(2k), with 4,5 € {0,1,...,2k}. By using the same decomposition
as in (12), we have

4p
) ] < K|t — s|P.

(13) Vi(d) — V(i) = Mn
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where the random variables 7,, are independent and uniform over {—1,0,1} (and
independent of ) and
dgr(vk vk) = Ck (Z) + Ck (]) - 2éi)j

1Y)

is the graph distance in the tree 6 between vertices v* and vé?. From (13) and by
conditioning with respect to 0y, we get the existence of a constant K]'D such that
B[(Vi(i) = V(1)) "] < K E[(dgr (0], v]))*")-

So the lemma will be proved if we can verify the bound
(14) E[(Cy(i) + Ci(j) — 2C7)*"] < K7 |j —il?

with a constant K independent of k. By the identity (4), it is enough to prove
that this bound holds for ¢ = 0. However, the case i = 0 is exactly Lemma 2.13.
This completes the proof.

5. Planar maps

5.1. Definitions. A map is a combinatorial object, which can be best visual-
ized as a class of graphs embedded in a surface. In these lectures, we will exclusively
focus on the case of plane (or planar) maps, where the surface is the 2-dimensional
sphere S2.

Let us first formalize the notion of map. We will not enter into details, referring
the reader to the book by Mohar and Thomassen [42] for a very complete exposition.
Another useful reference, discussing in depth the different equivalent ways to define
maps (in particular through purely algebraic notions) is the book by Lando and
Zvonkin [27, Chapter 1].

An oriented edge in S? is a mapping e : [0, 1] — S? that is continuous, and such
that either e is injective, or the restriction of e to [0,1) is injective and e(0) = e(1).
In the latter case, e is also called a loop. An oriented edge will always be considered
up to reparametrization by a continuous increasing function from [0, 1] to [0, 1],
and we will always be interested in properties of edges that do not depend on a
particular parameterization. The origin and target of e are the points e~ = ¢(0)
and et = e(1). The reversal of e is the oriented edge € = ¢(1 —-). An edge is a pair
e = {e, e}, where e is an oriented edge. The interior of e is defined as e((0,1)).

An embedded graph in S? is a graph! G = (V, E) such that
V is a (finite) subset of S?

E is a (finite) set of edges in S?

the vertices incident to e = {e,e} € F are e ,e" € V

the interior of an edge e € E does not intersect V nor the edges of E
distinct from e

The support of an embedded graph G = (V, E) is
supp (G) =VU  |J  e((0.1)).

e={ee}lcF

A face of the embedding is a connected component of the set S? \ supp (G).

1all the graphs considered here are finite, and are multigraphs in which multiple edges and
loops are allowed



182 JEAN-FRANCOIS LE GALL AND GREGORY MIERMONT

FIGURE 4. Two planar maps, with 4 vertices and 3 faces of degrees
1,3,6 and 1,4,5 respectively

DEFINITION 5.1. A (planar) map is a connected embedded graph. Equivalently,
a map is an embedded graph whose faces are all homeomorphic to the Fuclidean
unit disk in R2.

Topologically, one would say that a map is the 1-skeleton of a CW-complex
decomposition of S2. We will denote maps using bold characters m,q, . ..

Let m = (V,E) be a map, and let F = {e € e : e € E} be the set of all
oriented edges of m. Since S? is oriented, it is possible to define, for every oriented
edge e € E, a unique face f. of m, located to the left of the edge e. We call f. the
face incident to e. Note that the edges incident to a given face form a closed curve
in S?, but not necessarily a Jordan curve (it can happen that f. = fz for some e).
The degree of a face f is defined as

deg(f) = #{c € E : f. = f}.
The oriented edges incident to a given face f, are arranged cyclically in counter-
clockwise order around the face in what we call the facial ordering. With every
oriented edge e, we can associate a corner incident to e, which is a small simply
connected neighborhood of e~ intersected with f.. Then the corners of two different
oriented edges do not intersect.
Of course, the degree of a vertex u € V is the usual graph-theoretical notion

deg(u) = #{e € E:e =u}.

Similarly as for faces, the outgoing edges from w are organized cyclically in coun-
terclockwise order around wu.

A rooted map is a pair (m,e) where m = (V,E) is a map and e € E is a
distinguished oriented edge, called the root. We often omit the mention of e in the
notation.

5.2. Euler’s formula. An important property of maps is the so-called Euler
formula. If m is a map, V(m), E(m), F(m) denote respectively the sets of all
vertices, edges and faces of m. Then,

(15) #V(m) — #E(m) + #F(m) = 2.

This is a relatively easy result in the case of interest (the planar case): One can
remove the edges of the graph one by one until a spanning tree t of the graph is
obtained, for which the result is trivial (it has one face, and #V (t) = #E(t) + 1).
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5.3. Isomorphism, automorphism and rooting. In the sequel, we will
always consider maps “up to deformation” in the following sense.

DEFINITION 5.2. The maps m,m’ on S? are isomorphic if there exists an
orientation-preserving homeomorphism h of S* onto itself, such that h induces a
graph isomorphism of m with m’.

The rooted maps (m, e) and (m’,e’) are isomorphic if m and m’ are isomorphic
through a homeomorphism h that maps e to €.

In the sequel, we will almost always identify two isomorphic maps m, m’. This
of course implies that the (non-embedded, combinatorial) graphs associated with
m, m’ are isomorphic, but this is stronger: For instance the two maps of Fig.4 are
not isomorphic, since a map isomorphism preserves the degrees of faces.

An automorphism of a map m is an isomorphism of m with itself. It should be
interpreted as a symmetry of the map. An important fact is the following.

PROPOSITION 5.1. An automorphism of m that fizes an oriented edge fixes all
the oriented edges.

Loosely speaking, the only automorphism of a rooted map is the identity. This
explains why rooting is an important tool in the combinatorial study of maps, as
it “kills the symmetries”. The idea of the proof of the previous statement is to see
that if e is fixed by the automorphism, then all the edges incident to e~ should also
be fixed (since an automorphism preserves the orientation). One can thus progress
in the graph (by connectedness) and show that all the edges are fixed.

In a rooted map, the face f. incident to the root edge e is often called the
external face, or root face. The other faces are called internal. The vertex e~ is
called the root vertex.

From now on, unless otherwise specified, all maps will be rooted.

We end this presentation by introducing the notion of graph distance in a map
m. A chain of length k > 1 is a sequence e(y), ..., e of oriented edges in FE (m),

such that ez;) = €t for 1 < i < k—1, and we say that the chain links the vertices
€@y and 6&)' We also allow, for every vertex u € V(m), a chain with length
0, starting and ending at u. The graph distance dm(u,v) between two vertices

u,v € V(m) is the minimal k such that there exists a chain with length k linking u
and v. A chain with minimal length between two vertices is called a geodesic chain.

5.4. The Cori-Vauquelin-Schaeffer bijection. Via the identification of
maps up to isomorphisms the set of all maps becomes a countable set. For in-
stance, the set M, of all rooted maps with n edges is a finite set: The 2n oriented
edges should be organized around a finite family of polygons (the faces of the map),
and the number of ways to associate the boundary edges of these polygons is finite.
A natural question to ask is “what is the cardinality of M,,7”.

Tutte answered this question (and many other counting problems for maps),
motivated in part by the 4-color problem. He developed a powerful method, the
“quadratic method”, to solve the apparently ill-defined equations for the generating
functions of maps. For recent developments in this direction, see the article by
Bousquet-Mélou and Jehanne [6]. The method, however, is a kind of “black box”
which solves such counting problems without giving much extra information about
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the structure of maps. One obtains

#M,, = nLHS"Catn,
where Cat,, = %_H(Qs) is the n-th Catalan number. We also mention the huge
literature on the enumeration of maps using matrix integrals, initiating in [24, 10],
which is particularly popular in the physics literature. See [27, Chapter 4] for an
introduction to this approach.

Motivated by the very simple form of the formula enumerating M,,, Cori and
Vauquelin [14] gave in 1981 a bijective approach to this formula. These approaches
reached their full power with the work of Schaeffer starting in his 1998 thesis [47].
We now describe the bijective approach in the case of quadrangulations.

5.4.1. Quadrangulations. A map q is a quadrangulation if all its faces are of
degree 4. We let Q,, be the set of all (rooted) quadrangulations with n faces.
Quadrangulations are a very natural family of maps to consider, in virtue of the
fact that there exists a “trivial” bijection between M, and Q,, which can be
described as follows.

Let m be a map with n edges, and imagine that the vertices of m are colored
in black. We then create a new map by adding inside each face of m a white
vertex, and joining this white vertex to every corner of the face f it belongs to,
by non-intersecting edges inside the face f. In doing so, notice that some black
vertices may be joined to the same white vertex with several edges. Lastly, we
erase the interiors of the edges of the map m. We end up with a map q, which
is a plane quadrangulation with n faces, each face containing exactly one edge of
the initial map. We adopt a rooting convention, for instance, we root g at the first
edge coming after e in counterclockwise order around e~ , where e is the root of m.

Notice that q also comes with a bicoloration of its vertices in black and white, in
which two adjacent vertices have different colors. This says that q is bipartite, and
as a matter of fact, every (planar!) quadrangulation is bipartite. So this coloring
is superfluous: One can recover it by declaring that the black vertices are those at
even distance from the root vertex of q, and the white vertices are those at odd
distance from the root vertex.

Conversely, starting from a rooted quadrangulation q, we can recover a bipartite
coloration as above, by declaring that the vertices at even distance from the root
edge are black. Then, we draw the diagonal linking the two black corners incident
to every face of q. Finally, we remove the interior of the edges of q and root the
resulting map m at the first outgoing diagonal from e~ in clockwise order from
the root edge e of q. One checks that this is indeed a left- and right-inverse of
the previous mapping from M,, to Q,,. See Fig.5 below for an illustration of these
bijections.

For the record, we state the following useful fact.

PROPOSITION 5.2. A (planar) map is bipartite if and only if its faces all have
even degree.

5.4.2. The CVS bijection. Recall that Q,, is the set of all rooted quadrangula-
tions with n faces. A simple application of Euler’s formula shows that any element
of Q,, has 2n edges (4n oriented edges, 4 for each face) and n + 2 vertices.

Let T,, be the set of all labeled trees with n edges, as defined in Section 3. If
(1, (l(uw))uer) € Ty, then 7 is a plane tree with n edges, and ¢ : 7 — Z is a label
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FIGURE 5. The so-called “trivial” bijection

function on 7, such that (&) = 0 and
[(u) — b(m(u))| <1, for every v € 7\ {@}.

In order to avoid trivialities, we now assume that n > 1. It will be convenient
here to view a plane tree 7 as a planar map, by embedding it in S?, and rooting
it at the edge going from @ to the vertex 1. Let @ = vg,v1,...,v2, = @ be the
contour exploration of the vertices of the tree 7 (see the end of subsection 4.1). For
i1€{0,1,...,2n—1}, we let e; be the oriented edge from v; to v;11, and extend the
sequences (v;) and (e;) to infinite sequences by 2n-periodicity. With each oriented
edge e;, we can associate a corner around e; , as explained in subsection 4.1. In
the remaining part of Section 4, we will often identify the oriented edge e; with
the associated corner, and we adopt the notation £(e;) = {(e; ). In particular, note
that £(e;) = V;,0 < i < 2n is the label contour sequence as defined in Section 3.

For every ¢ > 0, we define the successor of i by

s(i) =inf{j >1i:4(e;) = £(e;) — 1},

with the convention that inf ) = oo. Note that s(i) = oo if and only if £(e;) equals
min{¢(v) : v € 7}. This is a simple consequence of the fact that the integer-valued
sequence ({(e;),7 > 0) can decrease only by taking unit steps.

Consider a point v, in S? that does not belong to the support of 7, and denote
by es a corner around vy, i.e. a small neighborhood of v, with v, excluded, not
intersecting the corners e;,7 > 0. By convention, we set

l(vy) = l(eso) = min{f(u) :u € 7} — 1.
For every ¢ > 0, the successor of the corner e; is then defined by
s(es) = esiy -

The CVS construction consists in drawing, for every i € {0,1,...,2n — 1}, an
arc, which is an edge from the corner e; to the corner s(e;) inside S \ ({v.} U
supp (7)). See Fig.6 for an illustration of the CVS construction.

LEMMA 5.3. It is possible to draw the arcs in such a way that the graph with
vertez-set T U {v.} and edge-set consisting of the edges of T and the arcs is an
embedded graph.
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F1GURE 6. Hlustration of the Cori-Vauquelin-Schaeffer bijection,
in the case ¢ = 1. For instance, ez is the successor of ey, es the
successor of ey, and so on.

PROOF. Since T is a tree, we can see it as a map with a unique face S?\supp (7). The
latter can in turn be seen as an open polygon, bounded by the edges eg, 1, ..., €21
in counterclockwise order. Hence, the result will follow if we can show that the
arcs do not cross, i.e. that it is not possible to find pairwise distinct corners
e e eB) M) that arise in this order in the cyclic order induced by the contour
exploration, and such that e®® = s(e)) and e = s(e(?).

If this were the case, then we would have £(e®) > ¢(eM)), as otherwise the
successor of e(*) would be between ") and e(?). Similarly, £(e®®) > £(e(®). But
by definition, £(e(®) = £(eM)) — 1, giving £(e®) > £(e®) 4+ 1 > £(e?) + 1, which
is a contradiction. O

We call q the graph with vertex-set V(7) U {v.} and edge-set formed by the
arcs, now excluding the (interiors of the) edges of .

LEMMA 5.4. The embedded graph q is a quadrangulation with n faces.

Proo¥F. First we check that q is connected, and hence is a map. But this is obvious
since the consecutive successors of any given corner e, given by e, s(e), s(s(e)), .. .,
form a finite sequence ending at e.,. Hence, every vertex in q can be joined by a
chain to v,, and the graph is connected.

To check that q is a quadrangulation, let us consider an edge of 7, corresponding
to two oriented edges e,e. Let us first assume that £(e™) = £(e”) — 1. Then, the
successor of e is incident to e™ and the preceding construction gives an arc starting
from e~ (more precisely from the corner associated with e¢) and ending at e*.
Next, let ¢’ be the corner following € in the contour exploration around 7. Then
L(e') =t(e”) = L(e) + 1, giving that s(€) = s(s(e’)). Indeed, s(€’) is the first corner
coming after e’ in contour order and with label ¢(e’) — 1 = £(e) — 1, while s(s(e’))
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-2 v s(@) = s(s(e)

N

Ficure 7. Illustration of the proof of Lemma 5.4. In this figure,
I={(e)

is the first corner coming after e’ with label £(e) — 2. Therefore, it has to be the
first corner coming after €, with label £(e) — 2 = £(€) — 1.

We deduce that the arcs joining the corners e to s(e), resp. € to s(€), resp. e’
to s(e’), resp. s(e’) to s(s(e’)) = s(€), form a quadrangle, that contains the edge
{e, €}, and no other edge of 7.

If £(eT) = £(e™) + 1, the situation is the same by interchanging the roles of e
and e.

The only case that remains is when f(e™) = f(e”). In this case, if ¢/ and
e’ are the corners following e and € respectively in the contour exploration of
T, then l(e) = £(¢/) = €(e) = L(e"), so that s(e) = s(e’) on the one hand and
s(€) = s(e”) on the other hand. We deduce that the edge {e, e} is the diagonal of
a quadrangle formed by the arcs linking e to s(e), €’ to s(e’) = s(e), € to s(€) and
e’ to s(e”) = s(e). The different cases are summed up in Fig.7.

Now, notice that q has 2n edges (one per corner of 7) and n + 2 vertices, so it
must have n faces by Euler’s formula. So all the faces must be of the form described
above. This completes the proof. O

Note that the quadrangulation q has a distinguished vertex v,, but for now it
is not a rooted quadrangulation. To fix this root, we will need an extra parameter
e € {—1,1}. If e = 1 we let the root edge of q be the arc linking ey with s(eg), and
oriented from s(eg) from eg. If e = —1, the root edge is this same arc, but oriented
from eq to s(ep).

In this way, we have defined a mapping ®, from T,, x {—1,1} to the set Q? of
pairs (q,vy), where q € Q,, and v, € V(q). We call such pairs pointed quadrangu-
lations.

THEOREM 5.5. For every n > 1, the mapping ® is a bijection from T, x{—1,1}
onto Qp .

We omit the proof of this result. See Chassaing and Schaeffer [12, Theorem 4].
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COROLLARY 5.6. We have the following formula for every n > 1:

2
M, = #Q, = ——3"

PROOF. We first notice that #Q?f = (n + 2)#Q,, since every quadrangulation
q € Q, has n + 2 vertices, each of which induces a distinct element of Qf,. On the
other hand, it is obvious that

#T, x{-1,1} =2-3"#A,, =2-3"Cat, .
The result follows from Theorem 5.5. O

The probabilistic counterpart of this can be stated as follows.

COROLLARY 5.7. Let @, be a uniform random element in Q,,, and conditionally
given Q,, let v, be chosen uniformly at random in V(Q,). On the other hand, let 6,
be chosen uniformly at random in 'T,,, and let € be independent of 6,, and uniformly
distributed in {—1,1}. Then ®(0,,€) has the same distribution as (Qn, V).

The proof is obvious, since the probability that (@, v.) equals some particular
(a,v) € Q) equals (n+2)#Q,) " = (#Qg) L.

5.4.3. Interpretation of the labels. The CVS bijection will be of crucial impor-
tance to us when we will deal with metric properties of random elements of Q,,
because the labels on q that are inherited from a labeled tree through the CVS
construction turn out to measure certain distances in q. Recall that the set 7 is
identified with V(q) \ {v«} if (7,¢) and q are associated through the CVS bijec-
tion (the choice of € is irrelevant here). Hence, the function ¢ is also a function on
V(q)\{v«}, and we extend it by letting, as previously, £(v,) = min{l(u) : v € 7} —1.
For simplicity, we write

min ¢ = min{l(u) : u € 7}.
PROPOSITION 5.8. For every v € V(q), we have

(16) dg(v,v.) =£4(v) —minl + 1,
where dg is the graph distance on q.
PRrROOF. Let v € V(q) \ {vs} = 7, and let e be a corner (in 7) incident to v. Then
the chain of arcs

e— se) = s%(e) = ... = e
is a chain of length ¢(e) — l(esy) = f(v) — £(vs) between v and v.. Therefore,
dg(v,v.) < L(v) — £(v,). On the other hand, if v = vg,v1,...,vq = v, are the
consecutive vertices of any chain linking v to v., then since |[¢(e) — ¢(s(e))| = 1
by definition for any corner e and since the edges of q all connect a corner to its
successor, we get

d
d="10(v:) = L(vim1)| = [E(vo) — E(va)| = €(v) = £(v.),
i=1
as desired. 0O
Remark. The preceding proof also shows that the chain of arcs e — s(e) —
52(€) — ... = es is a geodesic chain linking e~ to v,. Such a geodesic chain, or

more generally a chain of the form e — s(e) — s%(e) — ... — s¥(e), will be called
a successor geodesic chain.
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The triangle inequality for dq (or the second part of the proof) gives the useful
bound

(17) dg(u,v) = [€(u) = L(v)],

This bound will be improved in the next subsection.
As a consequence of the proposition, we obtain for instance that the
of spheres” around v, can be interpreted in terms of ¢: for every k > 0,

HveV(q):dg(v,vs) =k} ={ueT:l(u) —minl+1=Fk}|.

5.4.4. Two useful bounds. The general philosophy in the forthcoming study of
random planar maps is then the following: Information about labels in a random
labeled tree, which follows from the results of subsection 3.3 if this tree is uniformly
distributed over T,,, allows one to obtain information about distances in the as-
sociated quadrangulation. One major problem with this approach is that exact
information will only be available for distances to a distinguished vertex v,. There
is no simple expression for the distances between two vertices distinct from v, in
terms of the labels in the tree. However, more advanced properties of the CVS
bijection allow to get useful bounds on these distances. Recall that eg, e, es,... is
the contour sequence of corners (or oriented edges) around a tree 7 € A,,, start-
ing from the root (see the beginning of subsection 5.4.2). We view (e;,i > 0) as
cyclically ordered, and for any two corners e, e’ of 7, we let [e, e’] be the set of all
corners encountered when starting from e, following the cyclic contour order, and
stopping when visiting e’.

“yolume

PROPOSITION 5.9. Let ((7,£),¢€) be an element in T,, x {—1,1}, and (q,v.) =
O(((7,0),€)). Let u,v be two vertices in V(q) \ {vs}, and let e, e’ be two corners of
T such that e~ = u, (') =w.

(i) There holds that
dg(u,v) < l(u)+£(v) —2 min L(e")+2,

6”6[6,6/]
(ii) There holds that

dg(u,v) > l(u) +4(v) —2 min {(w),
we[[u,v]]
where [Ju,v] is the set of all vertices lying on the geodesic path from u to v in the
tree T.

PROOF. For simplicity, let m = ming. ¢ e £(e”). Let e” be the first corner in [e, €]
such that £(e¢””) = m. The corner s*(e), whenever it is well defined (i.e. whenever
dg(e™,v.) > k), is called the k-th successor of e. Then e’ is the (¢(e) — m)-th
successor of e. Moreover, by definition, s(e¢’’) does not belong to [e, €'] since it has
lesser label than e”, and necessarily, s(e”) is also the (£(e’) — m + 1)-st successor
of ¢’. Hence, the successor geodesic chain e — s(e) — s?(e) — -+ — s(e”) from
u=-e" to s(e”)T, concatenated with the similar geodesic chain from v to s(e”)" is
a path of length
(u) +£(v) —2m + 2,

and the distance dq(u,v) is less than or equal to this quantity. This proves (i).

Let us prove (ii). Let w € [u,v] be such that {(w) = min{f(w’) : w’ € [u,v]}.
If w = u or w = v then the statement follows trivially from (17). So we exclude
this case. We can then write 7 as the union 7 = 71 U7y of two connected subgraphs
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of 7 such that 7 N7 = {w}, 71 contains u but not v and 75 contains v but not wu.
There may be several such decompositions, so we just choose one. We consider a
geodesic path v from u to v in q. If v, belongs to this path, then this means that
dg(u,v) = dg(ve,u) + dg(vs,v) and the desired lower bound immediately follows
from (16). So we may assume that v, does not belong to . From our choice of 71
and 72, we can then find two corners e(;) and e, of 7 such that e(_l) belongs to 7y
and 6(2) belongs to 79, 6(1) and 6(2 are consecutive points on v, and the corners
e(1) and e(o) are connected by an edge of q. From the latter property, we must
have e(2) = s(e(1)) or ey = s(e(2)). Consider only the first case for definiteness
(the other one is treated in a similar fashion). Since the contour exploration of
vertices of 7 must visit w between any visit of u = e(_l) and any visit of v = e(_Q), the
definition of the successor ensures that £(w) > £(e(2)) (with equality only possible

ifw= 6(2)). Then, using (17) once again, we have
dg(u,v) = dq(u,ep,)) +dqg(eg,),v)
> l(u) = Lep)) + L(v) — Leg)
> l(u) + L(v) — 2¢(w),
giving the desired result. O

6. Basic convergence results for uniform quadrangulations

For the remaining part of this course, our main goal will be to study the scaling
limits of random planar quadrangulations chosen according to the uniform proba-
bility measure on Q,. Thanks to Corollary 5.7, the CVS bijection and the study
of scaling limits of random labeled trees will turn out to be useful tools to study
this problem. Ultimately, the question we would like to address is to study the con-
vergence in distribution of an appropriately rescaled version of the random metric
space (V(Qy),dg, ), in the sense of the Gromov-Hausdorff topology.

One of the motivations for this problem comes from physics, and we refer
the interested reader to [3] for an extensive discussion. In the past 15 years or so,
physicists have been starting to view random maps as possible discrete models for a
continuum model of random surfaces (called the Euclidean 2-dimensional quantum
gravity model), which is still ill-defined from a mathematical point of view. We
thus want to investigate whether the scaling limit of @,, exists in the above sense,
and does define a certain random surface. One can also ask the natural question
of whether this limiting random surface is universal, in the sense that it also arises
as the scaling limit of many different models of random maps, for instance, maps
chosen uniformly at random in the set of all p-angulations with n faces:

M?P = {m : deg(f) = p for every f € F(m),#F(m) =n}, p>3.

Indeed, most of the results that we will describe in the sequel do have analogs in
this more general setting [36, 38, 41, 31|, thanks to nice generalizations of the
CVS bijection that are due to Bouttier, Di Francesco and Guitter [9].

This is of course analogous to the celebrated Donsker Theorem, according to
which Brownian motion is the universal scaling limit of discrete random walks, as
well as to the fact that the Brownian CRT is the scaling limit of many different
models of random trees (see the remarks at the end of subsection 3.4).
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6.1. Radius and profile. We will first address a simpler question than the
one raised above, which is to determine by what factor we should rescale the distance
dg, in order to get an interesting scaling limit as n — oo.

Let q € Q,, be a rooted planar quadrangulation, and v be a vertex of q. As
before, let dq denote the graph distance on the vertex set of q. We define the radius
of q seen from v as

R(q7 U) = uren\?(};) dq(uv v),

and the profile of q seen from v as the sequence
Iy (k) = Card{u € V(q) : dq(u,v) = k}, k>0

which measures the ‘volumes’ of the spheres centered at v in the graph metric. The
profile can be seen as a measure on Z, with total volume n + 2. Our first limit
theorem is the following.

THEOREM 6.1. Let Q,, be uniformly distributed over Q,,, and conditionally on
Qn, let v, be chosen uniformly among the n + 2 vertices of Q. Let also (e, Z) be
as in subsection 4.3.

(i) We have

9\'/* (d) .
— R(Qn,vx) — supZ —inf Z .
&n n— oo
(1) If vis is another vertex chosen uniformly in V(Q,) and independent of v,
1/4
<%) dq, (Ui, Vsx) n%o sup Z .

(iii) Finally, the following convergence in distribution holds for the weak topol-

ogy on probability measures on Ry :
Ig, .. ((82/9"*) (@

— T,

where L is the occupation measure of Z above its infimum, defined as follows: For
every non-negative, measurable g : Ry — R,

<I,g>:/0 dt g(Z; — inf Z) .

The points (i) and (iii) are due to Chassaing and Schaeffer [12], and (ii) is
due to Le Gall [30], although these references state these properties in a slightly
different context, namely, in the case where v, is the root vertex rather than a
uniformly chosen vertex. This indicates that as n — oo, the root vertex plays no
particular role. Some information about the limiting distributions in (i) and (ii)
can be found in Delmas [15].

Property (ii) identifies the so-called 2-point function of the Brownian map. An
important generalization of this result has been obtained by Bouttier and Guitter
[8], who were able to compute the 3-point function, namely the joint asymptotic
distribution of the mutual distances between three vertices chosen uniformly at
random in V(Q,).

PRrOOF. Let ((T}, Ly),€) be a uniform random element in T,, x {—1,1}. Then by
Corollary 5.7 we may assume that (Qn,v.) equals ®(((Ty, Ln),€)), where @ is the
CVS bijection.
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Let C, and V,, be respectively the contour function and the label contour
function of (T),,L,) (cf. subsections 2.1 and 4.1), and let u?,0 < i < 2n be the
contour exploration of vertices of T, as defined in subsection 4.1 (so that C, () =
|ui’| and V3, (i) = Ln (ui')).

By Proposition 5.8, the radius of @,, viewed from v, then equals

R(Qn,vs«) =max L, —minL,, + 1 = maxV,, —minV,, + 1.

Property (i) immediately follows from this equality and Theorem 4.3.

As for (ii), we first observe that we may slightly change the hypothesis on the
distribution of v,,. It clearly suffices to prove the desired convergence when v, is
replaced by a vertex that is uniformly chosen among the n vertices of @,, that are
distinct from both v, and the vertex @ of T,, (recall that V(Q,) \ {vi} = V(T},)).

Now, for s € [0,2n), we let (s) = [s] if C), has slope +1 immediately after s,
and (s) = |s] otherwise. Then, if u € Ty, we have uf,, = u if and only if u # @
and s is a time when the contour exploration around 7, explores either of the two
oriented edges between u and its parent 7(u). Therefore, for every u € T, \ {2},
the Lebesgue measure of {s € [0,2n) : u,, = u} equals 2. Consequently, if U is a
uniform random variable in [0, 1), independent of (T, L,,), then Wy 18 uniform
in T, \{@}. Hence, it suffices to prove the desired result with uf,, ;;y instead of v,..

Since |s — (s)| < 1, Theorem 4.3 entails that

8ny~1/4 . Sn\-1/4 .
(@) dq, (ve, ulgnry) = (3) (Ln (ufnpy) — min Ly, +1)
—1/4
- (%”) (Vo ((20U)) — min V,, + 1),

converges in distribution to Zy —inf Z (here U is also assumed to be independent of
(e,Z)). The fact that Zy —inf Z has the same distribution as sup Z, or equivalently
as —inf Z, can be derived from the invariance of the CRT under uniform re-rooting,
see e.g. [35]. This completes the proof of (ii).

Finally, for (iii) we just note that, for every bounded continuous ¢g : Ry — R,

: -1
n+2 kgza I, v. (k) g(((8n/9) /4k)
- n-1|-2 Z g((8n/9)71/4dQn(v*7U))

VEQR
= E..]g((8n/9)"Y4dg, (vs,vex))]

n—oQ

1
= / dt g(Z; —inf Z) ,
0

where F,, and Fy means that we take the expectation only with respect to vy,
and U in the corresponding expressions (these are conditional expectations given
(Qn,vs) and (e, Z) respectively). In the penultimate step, we used the convergence
established in the course of the proof of (ii). O

6.2. Convergence as metric spaces. We would like to be able to under-
stand the full scaling limit picture for random maps, in a similar way as it was done
for trees, where we showed, using Theorem 2.10, that the distances in discrete trees,
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once rescaled by v/2n, converge to the distances in the CRT (7, d,). We thus ask
if there is an analog of the CRT that arises as the limit of the properly rescaled
metric spaces (@, dg, ). In view of Theorem 6.1, the correct normalization for the
distance should be n'/4,

Assume that (T}, L) is uniformly distributed over T,, let € be uniform in
{—1,1} and independent of (T, L,), and let @,, be the random uniform quadran-
gulation with n faces and with a uniformly chosen vertex v,, which is obtained
from ((T,, Ly,), €) via the CVS bijection. We now follow Le Gall [31]%. Recall our
notation wug, uf, ..., us, for the contour exploration of the vertices of T,,, and recall
that in the CVS bijection these vertices are also viewed as elements of V(Q,,)\ {v«}.
Define a pseudo-metric on {0,...,2n} by letting d,(i,j) = dq, (v}, u}). A major
problem comes from the fact that dy(i,7) cannot be expressed as a simple func-
tional of (C,,V,,). The only distances that we are able to handle in an easy way
are distances to vy, through the following rewriting of (16):

(18) dg, (v, uj’) =Vo(i) —minV,, + 1.
We also define, for 4,5 € {0,1,...,2n},
0 . . . . . _ . .
d9(1.) = Vali) + Va(7) — 2ma ( min Vi (k). min V. (k) +2.

Here, if j < i, the condition i < k < j means that k € {i,i+1,...,2n}U{0,1,...,5}
and similarly for the condition j < k <1 ifi < j.

As a consequence of Proposition 5.9(i), we have the bound d,, < d¥.

We now extend the function d,, to [0,2n]? by letting

dn(s,t) = ([s] = s)([t] = t)dn(ls], [£]) + ([s] = )(t = [£])dn([s], [t])
(19) +(s = [sD([t] = t)dn([s], [£]) + (s = Ls])(t = [£])dn([s], [£])
recalling that |s] = sup{k € Z, : k < s} and [s] = [s] + 1. The function d* is
extended to [0,2n]? by the obvious similar formula.

It is easy to check that d,, thus extended is continuous on [0,2n]? and satisfies
the triangle inequality (although this is not the case for d”), and that the bound
d,, < d° still holds. We define a rescaled version of these functions by letting

9

s (&

We define similarly the functions D9 on [0, 1]2. Then, as a consequence of Theorem
4.3, we have

1/4
) dn(2ns, 2nt) , 0<s,t<1.

(d)

(20) (Do(5,1),0 <5, <1) = (D%(s5,1),0<5,¢ <1),
n—roo
for the uniform topology on C([0,1]?,R), where by definition
(21) DO(s,t) = Zy+ Z; — 2max( mln Z», min Z, )
s<r< t<r<s

where if ¢ < s the condition s < r <t means that r € [s, 1] U [0, ¢].
We can now state

2At this point, it should be noted that [31, 34, 32] consider another version of Schaeffer’s
bijection, where no distinguished vertex vs« has to be considered. This results in considering pairs
(Tn, Lyn) in which L, is conditioned to be positive. The scaling limits of such pairs are still
tractable, and in fact, are simple functionals of (e, Z), as shown in [35, 30]. So there will be some
differences from our exposition, but these turn out to be unimportant.
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PROPOSITION 6.2. The family of laws of (D,(s,t),0 < s,t < 1), as n wvaries,
is relatively compact for the weak topology on probability measures on C([0,1]2,R).

PROOF. Let s,t,5',t € [0,1]. Then by a simple use of the triangle inequality, and
the fact that D,, < D9,

|Dn(s,t) — Dn(s/,t/)| < Dy (s, 5/) + Dn(t,t/) < Dg(s, s/) + Dg(t,t/) )

which allows one to estimate the modulus of continuity at a fixed § > 0:

(22) sup |Dy(s,t) — Dy(s', )| <2 sup D(s,s).
|s—s'|<8 [s—s'|<é
[t~/ <5

However, the convergence in distribution (20) entails that for every e > 0,

n—co |s—s'|<6 |s—s'|<5

lim sup P < sup DV(s,s") > 5) <P < sup DO(s,s’) > 5) ,

and the latter quantity goes to 0 when § — 0 (for any fixed value of € > 0) by the
continuity of D° and the fact that D°(s,s) = 0. Hence, taking > 0 and letting
e = ¢, = 27%, we can choose § = d, (tacitly depending also on 7) such that

sup P sup DY(s,s')>27% | <n27F, kE>1,
n>1 |s—s’|<éy

entailing

[s—s"|<dp

P ﬂ{ sup Dg(s,s’)SQ_k} >1-n,
k>1

for all n > 1. Together with (22), this shows that with probability at least 1 — 7,
the function D,, belongs to the set of all functions f from [0, 1]? into R such that
f£(0,0) =0 and, for every k > 1,
sup | f(s,t) — f(s', ) < 27F.

|s—s'| <3y,

[t—t"|<dy
The latter set is compact by the Arzela-Ascoli theorem. The conclusion then follows
from Prokhorov’s theorem. (]

At this point, we are allowed to say that the random distance functions D,
admit a limit in distribution, up to taking n — oo along a subsequence:

(23) (D(5,1),0 < 5,6 < 1) D% (D(s,4),0 < s,t < 1)

for the uniform topology on C([0,1]2,R). In fact, we are going to need a little more
than the convergence of D,,. From the relative compactness of the components, we
see that the closure of the collection of laws of the triplets

(2n)~1C(2n4), (9/80) 4V, (20), Dy), n>1

is compact in the space of all probability measures on C([0,1],R)? x C([0,1]2, R).
Therefore, it is possible to choose a subsequence (ny,k > 1) so that this triplet
converges in distribution to a limit, which is denoted by (e, Z, D) (from Theorem
4.3, this is of course consistent with the preceding notation). The joint convergence
to the triplet (e, Z, D) gives a coupling of D, D° such that D < D°, since D,, < D%
for every n.
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Define a random equivalence relation on [0, 1] by letting s ~ ¢ if D(s,t) = 0.
We let M = [0,1]/ = be the associated quotient space, endowed with the quotient
distance, which we still denote by D. The canonical projection [0,1] — M is
denoted by p.

Finally, let s, € [0,1] be such that Z,, = inf Z. It can be proved that s, is
unique a.s., see [37] or [35], and we will admit this fact (although it is not really
needed for the next statement). We set p. = p(s.). We can now state the main
result of this section.

THEOREM 6.3. The random pointed metric space (M, D, p.) is the limit in dis-
tribution of the spaces (V(Q), (9/8n)Y4dg., ,v.), for the Gromov-Hausdorff topol-
ogy, along the subsequence (ng,k > 1). Moreover, we have a.s. for every x € M
and s € [0,1] such that p(s) = z,

D(ps,x) = D(84,8) = Zs —inf Z..

Note that, in the discrete model, a point at which the minimal label in T, is
attained lies at distance 1 from v,. Therefore, the point p, should be seen as the
continuous analog of the distinguished vertex v,. The last identity in the statement
of the theorem is then of course the continuous analog of (16) and (18).

PROOF. For the purposes of this proof, it is useful to assume, using the Skorokhod
representation theorem, that the convergence

((2n)~Y/2C,,(2n°), (9/8n) 4V, (2n:), D) — (e, Z, D)

holds a.s. along the subsequence (ng). In what follows we restrict our attention to
values of n in this sequence.

For every n, let i) be any index in {0,1,...,2n} such that V,,(i'”) = min V.
Then for every v € V(Qy,), it holds that

|dQn (’U*v U) —dq, (uzn) ) ’U)| <1

because dq,, (v«, u’,,) = 1 (v« and u'},,, are linked by an arc in the CVS bijection).
Moreover, since (8n/9)~/4V,,(2n-) converges to Z uniformly on [0, 1], and since we

know? that Z attains its overall infimum at a unique point s,, it is easy to obtain
that ign)/Qn converges as n — 0o towards s..
For every integer n, we construct a correspondence R, between V(Q,) and
M,,, by putting:
hd (U*7P*) €ERn;
. (u’f%sJ ,P(s)) € Ry, for every s € [0,1].
We then verify that the distortion of R,, (with respect to the metrics (9/8n)'/4dg,
on V(Q,) and D on M) converges to 0 a.s. as n — co. We first observe that

Sl[z)pl] |(9/8n)1/4dQn (U*’ uT_lZnsj) - D(p*7 p(s))|
se|0,

< (9/8n)"* + e 1(9/8n)*dq, (ultn), ulsns)) = D(pes P(5))]
s€|0, *

= (9/8n)* + sup |D,n(i™ /2n,|2ns]/2n) — D(s., s)],
s€[0,1]

3We could also perform the proof without using this fact, but it makes things a little easier
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which tends to 0 as n — oo, by the a.s. uniform convergence of D, to D, and the
fact that i,(kn) /2n converges to s,. Similarly, we have

s 1(9/8n)"*dq,, (ulys) ufane)) — D(D(5), B(L)]
s,te|0,

= sup |D,(|2ns]/2n,|2nt]/2n) — D(s,t)]|
s,t€[0,1]
which tends to 0 as n — co. We conclude that the distortion of R,, converges to 0
a.s. and that the pointed metric spaces (V(Qy), (9/8n)"1/4dg, ,v.) also converge
a.s. to (M, D, p,) in the Gromov-Hausdorff topology.
Let us prove the last statement of the theorem. Using once again the uniform
convergence of D,, to D, we obtain that for every s € [0, 1],

D(ss,s) = lim Dn(i,(kn)/Qn, [2ns]/2n)
n—oo
. 8n\ ~1/4 .
= nlglgo <?> dQn (v*vu\_QnsJ)
= (30 adlzns)) — min v+ 1)
= [lim {3 (Va(|2ns min V,,
= Z,—inf Z,
as desired. g

It is tempting to call (M, D) the “Brownian map”, or the “Brownian continuum
map”, by analogy with the fact that the “Brownian continuum random tree” is the
scaling limit of uniformly distributed plane trees with n edges. However, the choice
of the subsequence in Theorem 6.3 poses a problem of uniqueness of the limit. As
we see in the previous statement, only the distances to p. are a priori defined as
simple functionals of the process Z. Distances between other points in M seem to
be harder to handle. The following conjecture is however very appealing.

CONJECTURE 6.1. The spaces (V(Q,,),n""/*dg,) converge in distribution, for
the Gromov-Hausdorff topology.

Marckert and Mokkadem [37] and Le Gall [31] give a natural candidate for the
limit (called the Brownian map in [37]) but until now the convergence result in the
above conjecture has not been proved.

7. Identifying the Brownian map

7.1. The Brownian map as a quotient of the CRT. In the previous
section, we wrote the scaling limit of rescaled random quadrangulations (along a
suitable subsequence) as a quotient space M = [0,1]/ &~ where the equivalence
relation ~ is defined by s & t iff D(s,t) = 0. In this section, we provide a more
explicit description of this quotient.

Recall the notation of the previous section. In particular, ((7},, L), €) is uni-
formly distributed over T,, x {—1,1}, and (@, v.) is the pointed quadrangula-
tion that is the image of ((T},, L), €) under the CVS bijection. For every n > 1,
ug, ul, ..., ub, is the contour exploration of the vertices of T),. Thus, C,, (k) = |u}]
and V,,(k) = Ly (u}}) for 0 < k < 2n.
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As in the proof of Theorem 6.3, we may assume that, along the sequence (ny)
we have the almost sure convergence

(24) ((2n)7/2Cp(2ns), (9/80) V. (2n5), Do (5,1)) s 1e10,1)
n:go (®S7 Zs, D(S, t))s,te[o,l]

uniformly over [0,1]2. Recall from the proof of Theorem 6.3 that this implies the
almost sure convergence

9\ 1/4
(v@w.(5) " da.) =2 (M.D)

in the Gromov-Hausdorfl sense, along the sequence (ny).

As in Section 2 above, introduce the random equivalence relation ~ on [0, 1]
by

s~etiffeg=e;= min e,
sAt<r<svVt

and recall that the CRT 7, is defined as the quotient space [0, 1]/~ equipped with
the distance ds.

LEMMA 7.1. We have almost surely for every s,t € [0,1],
s~et=D(s,t) =0 (&s~t).

PROOF. We can use the convergence of the first components in (24) to see that if
s ~e t and s < t we can find integers i, < j, such that i,,/2n — s, j,/2n — t,
and, for every sufficiently large n (belonging to the sequence (ng)),

Culin) =Culi) = i, Col8)
Then, from the definition of the contour function, we must have u;’ = uy and thus
dp(in, jn) = 0. Using the convergence (24) again, we conclude that D(s,t) = 0.

Consequence. Recall that pe : [0,1] — 7T, denotes the canonical projection.
Then D(s,t) only depends on pe(s) and pe(t). We can therefore put for every
a, be 7;37

D(a,b) = D(s,t)

where s, resp. t, is an arbitrary representative of a, resp. of b, in [0,1]. Then D is
(again) a pseudo-distance on T,. With a slight abuse of notation we keep writing
a =~ biff D(a,b) =0, for a,b € T,. Then the Brownian map M can be written as

M=[0,1)/~="Ts/~

where the first equality was the definition of M and the second one corresponds
to the fact that there is an obvious canonical isometry between the two quotient
spaces.

One may wonder why it is more interesting to write the Brownian map M as
a quotient space of the CRT T, rather than as a quotient space of [0,1]. The point
is that it will be possible to give a simple intuitive description of =~ viewed as an
equivalence relation on 7T,. This is indeed the main goal of the next section.
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7.2. Identifying the equivalence relation ~. We noticed in subsection 4.2
that the process Z (the Brownian snake driven by @) can be viewed as indexed by
Te. This will be important in what follows: For a € T, we will write Z, = Z; for
any choice of ¢ such that a = pe(t). We also set a. = pe(s«): ax is thus the unique
vertex of T such that

Z,. = min Z,.
a€Te

We first need to define intervals on the tree 7. For simplicity we consider only
leaves of Te. Recall that a point a of Ts is a leaf if 7¢\{a} is connected. Equivalently
a vertex a distinct from the root p is a leaf if and only p;!(a) is a singleton. Note
in particular that a, is a leaf of 7.

Let a and b be two (distinct) leaves of Tg, and let s and ¢ be the unique elements
of [0,1) such that pe(s) = a and pe(t) = b. Assume that s < ¢ for definiteness. We
then set

[a, 8] = pe([s,t])

[b, a] = pe([t, 1] U0, s]).
It is easy to verify that [a,b] N [b,a] = [a, b] is the line segment between a and b in
Te.

THEOREM 7.2. Almost surely, for every distinct a,b € Tg,

a,b are leaves of T and
ax=b <

Zg = Zp = max (mince[a’b] Ze, MiN ey q] Zc)

REMARK 7.3. We know that the minimum of Z over Te is attained at the
unique vertez a.. If a and b are (distinct) leaves of Te\{a.}, exactly one of the two
intervals [a,b] and [b,a] contains the verter a.. Obviously the minimum of Z over
this interval is equal to Z,, and thus cannot be equal to Z, or Zy,.

The proof of the implication < in the theorem is easy. Suppose that a = pe(s)
and b = pe(t) with s < ¢ (for definiteness). If

Loy =y = max( min Z., min ZC>
c€la,b] c€[b,a]

this means that

Js=1J; = max( min Z,., min Zr).
r€(s,t] re(t,1]U[0,s]
The last identity is equivalent to saying that D°(s,t) = 0, and since D < D° we
have also D(s,t) = 0, or equivalently a = b.
Unfortunately, the proof of the converse implication is much harder, and we
will only give some key ideas of the proof, referring to [31] for additional details.
We start with a preliminary lemma. We denote by vol(-) the mass measure on
Te, which is simply the image of the Lebesgue measure on [0, 1] under the projection
Pe ¢ [0,1] — Ts.

LEMMA 7.4. Almost surely, for every § € (0,1), there exists a (random) con-
stant Cs(w) such that, for every r > 0 and every a € Ta,

vol({b € Tp : D(a,b) <7}) < Csri=°,
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We omit the proof of this lemma. The first ingredient of the proof is a “re-
rooting invariance property” of random planar maps, which makes it possible to
reduce the proof to the case a = a.. In that case we can use the formula D(a.,b) =
Z, —min Z and explicit moment calculations for the Brownian snake (see Corollary
6.2 in [32] for a detailed proof).

Let us come to the proof of the implication = in Theorem 7.2. For simplicity we
consider only the case when a and b are leaves of 7, (it would be necessary to show
also that the equivalence class of any vertex of 7. that is not a leaf is a singleton
— this essentially follows from Lemma 2.2 in [31]). We let s,t € [0, 1] be such that
a = pe(s) and b = pe(t), and assume for definiteness that 0 < s, < s <t <1.

We assume that a =~ b, and our goal is to prove that

Z, = Zy = min Zo.
c€la,b]

We already know that Z, = Zj, because
Zy —min Z = D(a,a) = D(as,b) = Z, — min Z.
First step. We first establish that

(25) Zo=2Zpy= min_ Z..

c€[la;0]
To see this, we go back to the discrete picture. We can find a,,b, € T,, such that
a, — a and b, — b as n — oo (strictly speaking these convergences make no
sense: What we mean is that a,, = u’ , b, = uj, with in/2n — sand j,/2n — t).

in?

Then the condition D(a,b) = 0 implies that
(26) n~Y4dg, (an,by) — 0.

Recall, from Proposition 5.9, the notation [[a,,b,] for the set of vertices lying
on the geodesic path from a,, to b, in the tree T;,. By Proposition 5.9(ii), we have
dg, (an,bn) > Ly(ay) + Ly (by,) — 2 [I[nirz : L,(c).

cE|lan,bn

We multiply both sides of this inequality by n~/* and let n tend to oo, using (26).

Modulo some technical details that we omit (essentially one needs to check that
any vertex of 7, belonging to [[a,b]] is of the form pe(r), where r = lim k,, /2n and
the integers k,, are such that uy belongs to [[an,b,])), we get that

Zo+ Zy—2 min Z.<0
c€fla,b]

from which (25) immediately follows.

Second step. We argue by contradiction, assuming that

min 7. < Zg = Zp.
c€la,b)

Let v, be a discrete geodesic from a,, to b, in the quadrangulation @Q,, (here we
view a,, and b, as vertices of the quadrangulation @),,, and this geodesic is of course
different from the geodesic from a, to b, in the tree T;,). From (26) the maximal
distance between a,, (or b,) and a vertex visited by v, is o(n'/*) as n — co. As a
consequence, using the triangle inequality and (16), we have

sup | Ly (u) — Ln(an)| = 0(n1/4)
UEYn
as n — 0o.
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To simplify the presentation of the argument, we assume that, for infinitely
many values of n, the geodesic path =, from a, to b, stays in the lexicographical
interval [a,, b,]. This lexicographical interval is defined, analogously to the contin-
uous setting, as the set of all vertices visited by the contour exploration sequence
(ul)o<i<on between its last visit of a,, and its first visit of b,,. Note that the preced-
ing assumption may not hold, and so the real argument is slightly more complicated
than what follows.

We use the previous assumption to prove the following claim. If x € [a,b],
we denote by ¢gp(x) the last ancestor of = that belongs to [[a,b] (the condition
x € [a,b] ensures that the ancestral line [[p,z] intersects [[a,d]]). Alternatively,
¢a,p(x) is the point of [[a, b]] at minimal de-distance of = in the tree 7e.

Claim. Let € > 0. For every ¢ € [a, b] such that

Z.< Z,+e
Zy > Zo +¢/2 Va € [[@a(c), ]

we have D(a,c) < e.

The claim eventually leads to the desired contradiction: Using the first step
of the proof (which ensures that Z. > Z, for ¢ € [a,b]]) and the properties of the
Brownian snake, one can check that, under the condition

min Z. < Z, = Zy,

c€la,b]
the volume of the set of all vertices ¢ that satisfy the assumptions of the claim is
bounded below by a (random) positive constant times €2, at least for sufficiently
small € > 0 (see Lemma 2.4 in [31] for a closely related statement). The desired
contradiction follows since Lemma 7.4 implies that, for every d € (0, 1),

vol({c: D(a,c) <e}) < Cse*~2.

To complete this sketch, we explain why the claim holds. Again, we need to go
back to the discrete setting. We consider a vertex u € [an, by] such that

(i) Ln(u) < Ly(an) +en'/*;
(i) Lo(v) > Lofan) + 504, o€ of,, (u).u]

where ¢, (u) is the last ancestor of u in the tree T}, that belongs to [[ay, by].

Condition (ii) guarantees that the vertex u lies “between” [a,,b,] and the
geodesic y,: If this were not the case, the geodesic -, would contain a point in
[#% 4, (u),ul), which is impossible by (ii) (we already noticed that the label of a
vertex of the geodesic 7, must be Ly, (a,) + o(n'/4).

Consider the geodesic path from u to v, in @, that is obtained from the suc-
cessor geodesic chain e — s(e) — s(e) — --- starting from any corner e of u in
T,. Since arcs in the CVS bijection do not cross edges of the tree and since we
know that the vertex u lies in the area between [ay,,by,]] and the geodesic v, the
geodesic we have just constructed cannot “cross” [[ay, b,]| and so it must intersect
Yn at a vertex w. This vertex w is such that

L, (u) — Lp(w) = dg, (u,w).
Since w belongs to 7y, we have dg, (w,a,) = o(n'/*), and therefore

Ln(u) = Ly(an) = dg, (u, an) + o(n'/%).
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Tn by

Qnp

tree T},

%)

FIGURE 8. Illustration of the proof: The geodesic path -, from a,,
to by, is represented by the thick curves. The thin curves correspond
to the beginning of the successor geodesic chain starting from wu.
This chain does not cross the line segment [[a,,b,]] and thus has
to meet the path -, at some point w.

By (i), we now get
dg, (u,a,) < en'’/* + o(n'/?).

We have thus obtained a discrete analog of the claim. To get the continuous version
as stated above, we just need to do a careful passage to the limit n — oco. |

7.3. Hausdorff dimension. The limit in distribution (along a suitable sub-
sequence) in Theorem 6.3 can be written as (7¢/ ~, D), and the space T¢/ =~ is
completely identified: Roughly speaking two vertices a and b of the CRT 7, are
identified if and only if they have the same label Z, = Z;, and if one can go from
a to b following the “contour” of the tree 7, and visiting only vertices with larger
label. In order to prove Conjecture 6.1, it would be necessary to characterize the
distance D. Much is known about D (in particular Theorem 6.1 characterizes the
distribution of the profile of distances from the distinguished point p., and one can
show that this profile has the same distribution if one replaces p, by a “typical”
point of M). Still the characterization of D remains an open problem.

Nevertheless, one can show that the “Brownian map” (75/ =, D), that is, any of
the random metric spaces that can arise as the limit in Theorem 6.3, has Hausdorff
dimension 4 and is homeomorphic to the 2-sphere. This was proved in [31] and
[34]. The remainder of these notes will be devoted to the proof of these two results.
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THEOREM 7.5. Almost surely, the space (M, D) has Hausdorff dimension 4.

The lower bound is an easy consequence of Lemma 7.4. Recall that vol is the
image measure of Lebesgue measure on [0, 1] under p,. We let Vol be the induced
measure on (M, D), that is, the image of Lebesgue measure on [0,1] under the
projection p : [0,1] = M. Then Lemma 7.4 implies that a.s., for every ¢ € (0,1),
and every x € M, it holds that

lim sup w =0,
rl0 r
where Bp(z,7) = {y € M : D(z,y) < r} is the open ball centered at z with radius
r. This last fact, combined with standard density theorems for Hausdorff measures,
implies that a.s. the Hausdorff dimension of (M, D) is greater than or equal to 4—4,
for every d € (0,1).
For the upper bound, we rely on the following easy lemma.

LEMMA 7.6. Almost surely, for every a € (0,1/4), the label process Z is Holder
continuous with exponent o.

PrOOF. This is obtained by the classical Kolmogorov continuity criterion, and
moment estimates for Z. Let s,t be such that 0 < s < t < 1, and recall that
conditionally given e, Z; — Z; is a Gaussian random variable with variance dq(s, t).
Consequently, for every p > 0, there exists C,, € (0, 00) such that

E|Zs — Zi[P |e] = Cpdo(s, t)P/?,
and since e is a.s. Holder continuous with exponent 2a, we deduce the existence of
a (random) C,, € (0, 00) such that

El|Zs — Zi|P | e] < C;|s — P,
The desired Holder continuity property then follows from an application of the

classical Kolmogorov lemma. O

From this, we deduce that the projection p : [0,1] — M is a.s. Holder continu-
ous with index a € (0,1/4) as well. Indeed, using the fact that D < D°, where D°
is defined in (21), we get

D(p(s),p(t)) = D(s;1)
< Z.+Z,—2 inf Z,
sAt<u<sVt
< 2 sw  |Z,-Z)
sAt<u,v<sVt
" «
< Cp|s_t| )

for some C}/ € (0,00). The fact that the Hausdorff dimension of (M, D) is bounded
above by 1/« is then a classical consequence of this last property. This completes
the proof of the theorem.

8. The homeomorphism theorem

THEOREM 8.1. Almost-surely, the Brownian map (M, D) is homeomorphic to
the 2-sphere S2.
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This result was first obtained by Le Gall and Paulin [34], by arguing directly
on the quotient space M = T,/ a. More precisely, Le Gall and Paulin observe that
the equivalence relations ~, and =~ may be viewed as equivalence relations on the
sphere S2. Upon showing that the associated classes are closed, arcwise connected,
and have connected complements, one can then apply a theorem due to Moore [43],
showing that under these hypotheses, the quotient S?/ & is itself homeomorphic to
S2. Here, we will adopt a different approach, introduced in Miermont [39], which
relies more on the discrete approximations described in these notes. The idea is
roughly as follows: Even though the property of being homeomorphic to S? is not
preserved under Gromov-Hausdorff convergence, this preservation can be deduced
under an additional property, called reqular convergence, introduced by Whyburn.
This property says heuristically that the spaces under consideration do not have
small bottlenecks, i.e. cycles of vanishing diameters that separate the spaces into
two macroscopic components.

In this section, when dealing with elements of the space K of isometry classes
of pointed compact metric spaces, we will often omit to mention the distinguished
point, as its role is less crucial than it was in Sections 6 and 7.

8.1. Geodesic spaces and regular convergence. A metric space (X, d) is
said to be a geodesic metric space if for every x,y € X, there exists an isometry
f:[0,d(z,y)] = X such that f(0) = and f(d(z,y)) = y. Any such f is called a
geodesic path between x and y. For instance, real trees are geodesic metric spaces
by Definition 3.1. The set Kge, of isometry classes of (rooted) compact geodesic
metric spaces is closed in (K, dgpy), as shown in [11].

DEFINITION 8.1. Let ((X,,d,),n > 1) be a sequence of compact geodesic metric
spaces, converging to (X,d) in (K,dgg). We say that the convergence is regular if
for every e > 0, one can find § > 0 and N € N such that, for every n > N, every
closed path v in X,, with diameter at most § is homotopic to 0 in its e-neighborhood.

For instance, let Y, be the complement in the unit sphere S?> C R? of the
open 1/n-neighborhood of the North pole, and endow Y,, with the intrinsic distance
induced from the usual Euclidean metric on R? (so that the distance between x,y €
Y, is the minimal length of a path from x to y in Y},). Let X, be obtained by gluing
two (disjoint) copies of Y;, along their boundaries, and endow it with the natural
intrinsic distance. Then X, converges in the Gromov-Hausdorff sense to a bouquet
of two spheres, i.e. two (disjoint) copies of S? whose North poles have been identified.
However, the convergence is not regular, because the path  that consists in the
boundary of (either copy of) Y,, viewed as a subset of X,, has vanishing diameter
as n — oo, but is not homotopic to 0 in its e-neighborhood for any € € (0,1) and
for any n. Indeed, such an e-neighborhood is a cylinder, around which v makes one
turn.

THEOREM 8.2. Let ((X,,d,),n > 1) be a sequence of Kgeo that converges
reqularly to a limit (X, d) that is not reduced to a point. If (X,,d,) is homeomorphic
to S% for every n > 1, then so is (X,d).

This theorem is an easy reformulation of a result of Whyburn in the context
of Gromov-Hausdorff convergence; see the paper by Begle [4]. In the latter, it is
assumed that every X, should be a compact subset of a compact metric space (Z, §),
independent of n, and that X,, converges in the Hausdorff sense to X. This transfers
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to our setting, because, if (X,,,d,) converges to (X,d) in the Gromov-Hausdorff
sense, then one can find a compact metric space (Z,4) containing isometric copies
X/,n>1and X' of X,,,n > 1 and X, such that X, converges in the Hausdorff
sense to X', see for instance [21, Lemma A.1]. In [4], it is also assumed in the
definition of regular convergence that for every € > 0, there exist § > 0 and N € N
such that, for every n > N, any two points of X,, that lie at distance < § are in a
connected subset of X,, of diameter < . This condition is tautologically satisfied
for geodesic metric spaces, which is the reason why we work in this context.

8.2. Quadrangulations seen as geodesic spaces. Theorem 8.2 gives a nat-
ural method to prove Theorem 8.1, using the convergence of quadrangulations to the
Brownian map, as stated in Theorem 6.3. However, the finite space (V(Qx),dg,,)
is certainly not a geodesic space, nor homeomorphic to the 2-sphere. Hence, we
have to modify a little these spaces so that they satisfy the hypotheses of Theorem
8.2. We will achieve this by constructing a particular* graphical representation of
q.

Let (Xy,dy), f € F(q) be disjoint copies of the emptied unit cube “with bottom
removed”

C=100,12\ ((0,1)2 x [0,1))

endowed with the intrinsic metric dy inherited from the Euclidean metric (the
distance between two points of X is the minimal Euclidean length of a path
in X;). Obviously each (Xy,dy) is a geodesic metric space homeomorphic to
a closed disk of R%. We will write elements of X in the form (s,¢,7)s, where
(s,t,r) € C and the subscript f is used to differentiate points of the different
spaces Xy. The boundary 0X; is then the collection of all points (s,t,r)s for
(s.t,r) € ([0,1]*\ (0,1)%) x {0}

Let f € F(q) and let e1,eq,e3,e4 be the four oriented edges incident to f
enumerated in a way consistent with the counterclockwise order on the boundary
(here the labeling of these edges is chosen arbitrarily among the 4 possible labelings
preserving the cyclic order). We then define

Ce, (t) = (£,0,0); , 0<t<1
Cey(t) = (1,£,0); , 0<t<1
ces(t) = (1 t1m , 0<t<1
c(®)=(0,1-1,0); ,  0<t<L.

In this way, for every oriented edge e of the map q, we have defined a path c, which
goes along one of the four edges of the square 0X ¢, where f is the face located to
the left of e.
We define an equivalence relation = on the disjoint union Hycp(q) Xy, as the
coarsest equivalence relation such that, for every oriented edge e of q, and every
€ [0,1], we have c.(t) = cz(1 — t). By identifying points of the same equivalence
class, we glue the oriented sides of the squares 0Xy pairwise, in a way that is
consistent with the map structure. More precisely, the topological quotient S,
Hycp(q)Xy/ = is a surface which has a 2-dimensional cell complex structure, whose

4The way we do this is by no means canonical. For instance, the emptied cubes Xy used to
fill the faces of q below could be replaced by unit squares for the I! metric. However, our choice
avoids the existence of too many geodesic paths between vertices of the map in the surface where
it is embedded.



SCALING LIMITS OF RANDOM TREES AND PLANAR MAPS 205

1-skeleton &g := I fcp(q)0Xy/ = is a representative of the map q, with faces (2-
cells) Xy \ 0Xy. In particular, Sy is homeomorphic to S? by [42, Lemma 3.1.4].
With an oriented edge e of q one associates an edge of the graph drawing £y in
Sq, more simply called an edge of Sy, made of the equivalence classes of points in
ce([0,1]) (or ce([0,1])). We also let V4 be the 0-skeleton of this complex, i.e. the
vertices of the graph — these are the equivalent classes of the corners of the squares
0Xy. We call them the vertices of Sq for simplicity.

We next endow the disjoint union ;¢ pq)X s with the largest pseudo-metric
Dy that is compatible with dy, f € F(q) and with =, in the sense that Dg(z,y) <
ds(z,y) for x,y € Xy, and Dg(x,y) = 0 for z = y. Therefore, the function
Dq : Upepq) Xy X fepq) Xy — Ry is compatible with the equivalence relation =,
and its quotient mapping defines a pseudo-metric on the quotient space Sq, which
is still denoted by Dg.

PROPOSITION 8.3. The space (Sq, Dq) is a geodesic metric space homeomorphic
to S*. Moreover, the space (Vq, Dq) is isometric to (V(q),dq), and any geodesic
path in Sq between two elements of Vg is a concatenation of edges of Sq. Last,

dau((V(a), dq)a (SOU Dq)) <3.

Proor. We first check that Dy is a true metric on Sg, i.e. that it separates points.
To see this, we use the fact [11, Theorem 3.1.27] that Dq admits the constructive
expression:

Dy(a,b)

—inf{Zd(mi,yi):n>0,x0—a,yn =b,y; = Tir1 for0<i<n—1},
i=0

where we have set d(z,y) = dy(x,y) if z,y € X for some f, and d(z,y) = oo other-
wise. It follows that, for a € X \0X; and b # a, Dg(a,b) > min(d(a, b), ds(a, X))
> 0, so a and b are separated.

To verify that Dg is a a true metric on Sy, it remains to treat the case where
a € 0Xy,be 00Xy for some f, f' € F(q). The crucial observation is that a shortest
path in X; between two points of Xy is entirely contained in 0X;. It is then a
simple exercise to check that if a, b are in distinct equivalence classes, the distance
Dgy(a,b) will be larger than the length of some fixed non-trivial path with values
in £&. More precisely, if (the equivalence classes of) a,b belong to the same edge
of Sq, then we can find representatives a’,b" in the same X; and we will have
Dq(a,b) > dg(a’,"). If the equivalence class of a is not a vertex of Sq but that
of b is, then Dg(a,b) is at least equal to the distance of a € Xy to the closest
corner of the square 0X ;. Finally, if the (distinct) equivalence classes of a,b are
both vertices, then Dq(a,b) > 1. One deduces that Dg is a true distance on Sq,
which makes it a geodesic metric space by [11, Corollary 3.1.24]. Since Sq is a
compact topological space, the metric Dq induces the quotient topology on Sy by
[11, Exercise 3.1.14], hence (Sy, Dq) is homeomorphic to S?.

From the observations in the last paragraph, a shortest path between vertices
of §q takes values in £q. Since an edge of Sy is easily checked to have length 1 for
the distance Dg, such a shortest path will have the same length as a geodesic path
for the (combinatorial) graph distance between the two vertices. Hence (Vq, Dq) is
indeed isometric to (V(q),dq). The last statement follows immediately from this
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and the fact that diam (Xy,ds) < 3, entailing that Vg is 3-dense in (Sq, Dg), i.e.
its 3-neighborhood in (Sq, Dq) equals Sq. O

In view of the proposition, we can view Dq as an extension to Sq of the graph
distance dq on V(q). For this reason, we will denote Dq by dq from now on, which
should not set any ambiguity.

8.3. Proof of the homeomorphism theorem. We now work in the setting
of the beginning of subsection 7.1. Recall that the uniform pointed quadrangulation
(Qn,vs) is encoded by a uniform random element (T,,L,) of T, via the CVS
bijection (the parameter e € {—1,1} will play no role here), and that C,, and V,,
are the contour and label processes of (T, L,). We assume that the amost sure
convergence (24) holds uniformly on [0, 1]2, along the sequence (ny), which is fixed.
In what follows, all convergences as n — oo hold along this sequence, or along some
further subsequence.

We can also assume that (V(Qy),dg, ) is actually the (isometric) space (Vq,,,
dg, ), i.e. the subspace of vertices of the space (Sq,,dg, ) constructed in the pre-
vious subsection. Recalling from subsection 5.4.2 that, in the CVS bijection, each
edge of the tree T, lies in exactly one face of @,,, we may and will assume that T,
is also embedded in the surface Sg,,, in such a way that the set of its vertices is
Vo, \ {vs}, where v, € V(Q,,) is identified with its counterpart in Vg, , and that
each edge of T;, lies entirely in the corresponding face of Sg, via the CVS bijection.

We will rely on the following lemma. Let Sk(7:) be the complement of the set
of leaves in the CRT 7. Equivalently, Sk(75) is the set of all points a € 7, such
that 7¢ \ {a} is disconnected, and it also coincides with the set of all a € T, that
can be written a = pe(s) = pe(s’) for some 0 < s < s’ < 1. The set Sk(7¢) is called
the skeleton of T,.

LEMMA 8.4. The following property is true with probability 1. Let a € Sk(Ts),
and let s € (0,1) be such that a = pe(s). Then for every e > 0, there exists
t e (s,(s+¢e) A1) such that Zy < Zs.

This lemma is a consequence of [34, Lemma 3.2] (see also [31, Lemma 2.2]
for a slightly weaker statement). The proof relies on a precise study of the label
function Z, and we refer the interested reader to [34]. Note that this result (and
the analogous statement derived by time-reversal) implies that a.s., if a € Sk(7e),
then in each component of 7¢ \ {a}, one can find points b that are arbitrarily close
to a and such that Z, < Z,.

LEMMA 8.5. Almost surely, for everye > 0, there exists § € (0,¢) such that, for
n large enough, any simple loop v, made of edges of Sg, , with diameter < n'/4¢,
splits Sg,, in two Jordan domains, one of which has diameter < n'/4c.

PROOF. We argue by contradiction. Assume that, with positive probability, along
some (random) subsequence of (n) there exist simple loops 7, made of edges of
So, , with diameters o(n'/%) as n — oo, such that the two Jordan domains bounded
by 7, are of diameters > n'/4e, where £ > 0 is some fixed constant. From now on
we argue on this event. By abuse of notation we will sometimes identify the chain
v, with the set of vertices it visits, or with the union of its edges, in a way that
should be clear from the context.

By the Jordan curve theorem, the path v, splits Sg, into two Jordan domains,
which we denote by D,, and D). Since the diameters of both these domains are at
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least n'/4¢, and since every point in Sq,, is at distance at most 3 from some vertex,
we can find vertices y,, and g/, belonging to D,, and D/, respectively, and which
lie at distance at least n'/*c/4 from ~,. Since V(Q,) = T, U {v,}, we can always
assume that y,, and y/, are distinct from v,. Now, consider the geodesic path from
Yn to yl, in Ty, and let x,, be the first vertex of this path that belongs to 7.

In the contour exploration around T, the vertex x,, is visited at least once in
the interval between y, and y,,, and another time in the interval between g/, and
Yn- More precisely, let j, and j;, be such that y,, = u? ,y;, = uj, , and assume first
that j, < j;, for infinitely many n. For such n, we can find integers i,, € (jn, j.,)
and 4;, € (0, jn) U (jp,,2n) such that x, = uy = uj . Up to further extraction, we
may and will assume that !

in in / Jn Jn /
(27) 5y 5 5y S oy 2n—>t,
for some s, s',t,t' € [0,1] such that ¢t < s <t and ¢’ € [0,¢] U [t,1]. Since

dQ,, (Tn,yn) Ndq, (Tn,yp) = n1/45/4,

we deduce from (24) that D(s,t), D(s',t), D(s,t'), D(s',t') > 0, and in particular,
s,s',t,t" are all distinct. Since u} = uy , we conclude that s ~e s’, so that
Pe(s) € Sk(Te). One obtains the same conclusion by a similar argument if j,, > j/,
for every n large. We let @ = pe(s) and y = po(t). Note that y # x because
D(s,t) > 0 (recall Lemma 7.1).

Since x € Sk(7g), by Theorem 7.2 we deduce that D(a.,z) = D(s.,s) >
0, where a. = pe(s«) is as before the a.s. unique leaf of 7, where Z attains its
minimum. In particular, we obtain by (18), (24) and the fact that diam (v,) =
o(n'/*) that

liminfn=*dg, (ve,v,) = liminf n~Y4dg (v.,2,) > 0.

n—oo n—oo
Therefore, for n large enough, v, does not belong to ~,, and for definiteness, we
will assume that for such n, D,, is the component of Sg,, \ v, that does not contain
Vs

Now, we let L7 = L, —min L,,+1, and in the rest of this proof, we call L} (v) =
dg,, (vs,v) the label of the vertez v in Q. Let 1, = dg,, (v, Vn) = minye,, L} (v) be
the minimal distance from v, to a point visited by ~,,. Note that, for every vertex
v € Dy, the property L} (v) > I, holds, since any geodesic chain from v, to v in
@, has to cross v,.

Recalling that the vertex z,, was chosen so that the simple path in 7T}, from z,,
to vy, lies entirely in D,,, we conclude that the labels of vertices on this path are all
greater than or equal to [,. By passing to the limit, one concludes that for every
¢ in the path [[z,y] in Ts, there holds that Z. > Z,. Since the process Z evolves
like Brownian motion along line segments of the tree 7Ts, we deduce that for every
¢ € [z,y] close enough to z, we have in fact Z, > Z,. From the interpretation
of line segments in 7 in terms of the coding function e (see the end of subsection
3.2), we can find 5 € (0,1) such that pe(5) = x, and such that, for every u > 3
sufficiently close to 3, the intersection of [z, pe(u)]] with [[z,y] will be of the form
[z, pe(r)] for some r € (5,u]. By Lemma 8.4, and the fact that Z. > Z, for every
¢ € [[z,y] close enough to x, we can find u > § encoding a point a = pe(u) and
some 7 > 0 such that Z, < Z, — (9/8)'/*n, and such that [[z,a] N [z,y] = [, 0]
for some b # x such that Z, > Z, + (9/8)"/n.
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FIGURE 9. Illustration of the proof. The surface Sg, is depicted
as a sphere with a bottleneck circled by 7, (thick line). The dashed
lines represent paths of T}, that are useful in the proof: One enters
the component D,,, and the other goes out after entering, identi-
fying in the limit a point of the skeleton with another.

We then go back once again to the discrete approximations of the Brownian
map, by considering k,, such that k,, /2n converges to u. From the fact that Z, < Z,,
we deduce that the vertex a,, = uj; has label L} (ay) < I, for every n large enough.
Indeed, the convergence (24) and the fact that diam (v,) = o(n'/*) imply that
(9/8n)'/41,, — Z, — inf Z. Consequently, the point a, does not belong to D,,.
Moreover, the path in 7}, from a, to x, meets the path from z,, to y, at a point
b, such that L} (b,) > 1, + nn'/*. The path from a, to b, has to cross the loop
vn at some vertex, and we let a, be the first such vertex. By letting n — oo one
last time, we find a vertex o’ € T, which in the appropriate sense is the limit of a/,
as n — oo, such that [Ja’, z]] meets [z, y] at b. In particular, a’ # x. But since a/,
and x,, are both on v, we deduce that D(a’,z) = 0. This contradicts Theorem 7.2
because x is not a leaf of 75. This contradiction completes the proof of the lemma.
O

We claim that Lemma 8.5 suffices to verify that the convergence of (V(Q,),
(9/8n)/4dg, ) to (M, D) is regular, and hence to conclude by Theorem 8.2 that the
limit (M, D) is a topological sphere. To see this, we first choose € < diam (M)/3
to avoid trivialities. Let 7, be a loop in Sg, with diameter < n'/45. Consider the
union of the closures of faces of Sg, that are visited by <,. The boundary of this
union is a collection £ of pairwise disjoint simple loops made of edges of Sg, . If
x,y belong to the preceding union of faces, the fact that a face of Sg, has diameter
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less than 3 implies that there exist points 2’ and 3’ of 7, at distance at most 3 from
x and y respectively. Therefore, the diameters of the loops in £ all are < n'/46+6.

By the Jordan Curve Theorem, each of these loops splits Sg,, into two simply
connected components. By definition, one of these two components contains -,
entirely. By Lemma 8.5, one of the two components has diameter < n'/*c. If we
show that the last two properties hold simultaneously for one of the two compo-
nents associated with (at least) one of the loops in £, then obviously ~, will be
homotopic to 0 in its e-neighborhood in (Sg, ,n~'/*dg, ). So assume the contrary:
The component not containing ~, associated with every loop of L is of diameter
< n'/*c. If this holds, then any point in Sg,, must be at distance at most n'/%e+3
from some point in 7,. Take x,y such that dg, (z,y) = diam (Sg, ). Then there
exist points 2’ and ¥’ in 7,, at distance at most n'/*c + 3 respectively from z and v,
and we conclude that dg, (z',y') > diam (Sg, ) — 6 — 2n!/%e > n'/4§ > diam (v,,)
for n large enough by our choice of €. This contradiction completes the proof.

Note added in proof. The uniqueness problem for the Brownian map has been
solved in two very recent papers of the authors: See the preprints arxiv:1104.1606
and arxiv:1105.4842. Consequently, Conjecture 6.1 is now a theorem, and analogs
of this result hold for more general random planar maps such as triangulations.
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1. Introduction

The celebrated Lenz-Ising model is one of the simplest models of statistical physics
exhibiting an order-disorder transition. It was introduced by Lenz in [Len20] as an
attempt to explain Curie’s temperature for ferromagnets. In the model, iron is modeled
as a collection of atoms with fixed positions on a crystalline lattice. Each atom has a
magnetic spin, pointing in one of two possible directions. We will set the spin to be equal
to 1 or —1. Each configuration of spins has an intrinsic energy, which takes into account
the fact that neighboring sites prefer to be aligned (meaning that they have the same
spin), exactly like magnets tend to attract or repel each other. Fix a box A c Z? of size
n. Let o € {~1,1}" be a configuration of spins 1 or —1. The energy of the configuration
o is given by the Hamiltonian

Er(o) = - Z O30y

where  ~ y means that = and y are neighbors in A. The energy is, up to an additive
constant, twice the number of disagreeing neighbors. Following a fundamental principle
of physics, the spin-configuration is sampled proportionally to its Boltzmann weight: at
an inverse-temperature 3, the probability 5, of a configuration o satisfies

o~BEA(0)
ppa(o) = Zon
where
Zgp = Z o BEA(5)
Ge{-1,1}A

is the so-called partition function defined in such a way that the sum of the weights over
all possible configurations equals 1. Above a certain critical inverse-temperature .,
the model has a spontaneous magnetization while below . does not (this phenomenon
will be described in more detail in the next section). When S, lies strictly between 0
and oo, the Ising model is said to undergo a phase transition between an ordered and
a disordered phase. The fundamental question is to study the phase transition between
the two regimes.

Lenz’s student Ising proved the absence of phase transition in dimension one (mean-
ing B, = o0) in his PhD thesis [Isi25|, wrongly conjecturing the same picture in
higher dimensions. This belief was widely shared, and motivated Heisenberg to in-
troduce his famous model [Hei28|. However, some years later Peierls [Pei36] used
estimates on the length of interfaces between spin clusters to disprove the conjecture,
showing a phase transition in the two-dimensional case. Later, Kramers and Wannier
[KW41la, KW41b] derived nonrigorously the value of the critical temperature.
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FI1GURE 1. Ising configurations at < 3., at 5 = 3., and 3 > 3. respectively.

In 1944, Onsager [Ons44| computed the partition function of the model, followed
by further computations with Kaufman, see [KO50] for instance!. In the physical
approach to statistical models, the computation of the partition function is the first
step towards a deep understanding of the model, enabling for instance the computation
of the free energy. The formula provided by Onsager led to an explosion in the number of
results on the 2D Ising model (papers published on the Ising model can now be counted
in the thousands). Among the most noteworthy results, Yang derived rigorously the
spontaneous magnetization [Yan52] (the result was derived nonrigorously by Onsager
himself). McCoy and Wu [MWT73] computed many important quantities of the Ising
model, including several critical exponents, culminating with the derivation of two-point
correlations between sites (0,0) and (n,n) in the whole plane. See the more recent book
of Palmer for an exposition of these and other results [Pal07].

The computation of the partition function was accomplished later by several other
methods and the model became the most prominent example of an exactly solvable
model. The most classical techniques include the transfer-matrices technique devel-
oped by Lieb and Baxter [Lie67, Bax89|, the Pfaffian method, initiated by Fisher
and Kasteleyn, using a connection with dimer models [Fis66, Kas61|, and the com-
binatorial approach to the Ising model, initiated by Kac and Ward [KW52] and then
developed by Sherman [She60] and Vdovichenko [Vdo65]; see also the more recent
[DZM*99, Cim10|.

Despite the number of results that can be obtained using the partition function,
the impossibility of computing it explicitly enough in finite volume made the geomet-
ric study of the model very hard to perform while using the classical methods. The
lack of understanding of the geometric nature of the model remained mathematically
unsatistying for years.

The arrival of the renormalization group formalism (see [Fis98] for a histori-
cal exposition) led to a better physical and geometrical understanding, albeit mostly
non-rigorous. It suggests that the block-spin renormalization transformation (coarse-
graining, e.g. replacing a block of neighboring sites by one site having a spin equal to
the dominant spin in the block) corresponds to appropriately changing the scale and the

1This result represented a shock for the community: it was the first mathematical evidence that
the mean-field behavior was inaccurate in low dimensions.
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temperature of the model. The Kramers-Wannier critical point then arises as the fixed
point of the renormalization transformations. In particular, under simple rescaling the
Ising model at the critical temperature should converge to a scaling limit, a continuous
version of the originally discrete Ising model, corresponding to a quantum field the-
ory. This leads to the idea of universality: the Ising models on different regular lattices
or even more general planar graphs belong to the same renormalization space, with a
unique critical point, and so at criticality the scaling limit and the scaling dimensions
of the Ising model should always be the same (it should be independent of the lattice
whereas the critical temperature depends on it).

Being unique, the scaling limit at the critical point must satisfy translation, rota-
tion and scale invariance, which allows one to deduce some information about correla-
tions [PP66, Kad66]. In seminal papers [BPZ84b, BPZ84a], Belavin, Polyakov and
Zamolodchikov suggested a much stronger invariance of the model. Since the scaling-
limit quantum field theory is a local field, it should be invariant by any map which is
locally a composition of translation, rotation and homothety. Thus it becomes natural
to postulate full conformal invariance (under all conformal transformations? of subre-
gions). This prediction generated an explosion of activity in conformal field theory,
allowing nonrigorous explanations of many phenomena; see [ISZ88| for a collection of
the original papers of the subject.

To summarize, Conformal Field Theory asserts that the Ising model admits a scaling
limit at criticality, and that this scaling limit is a conformally invariant object. From
a mathematical perspective, this notion of conformal invariance of a model is ill-posed,
since the meaning of scaling limit is not even clear. The following solution to this
problem can be implemented: the scaling limit of the model could simply retain the
information given by interfaces only. There is no reason why all the information of a
model should be encoded into information on interfaces, yet one can hope that most of
the relevant quantities can be recovered from it. The advantage of this approach is that
there exists a mathematical setting for families of continuous curves.

In the Ising model, there is a canonical way to isolate macroscopic interfaces. Con-
sider a simply-connected domain ) with two points @ and b on the boundary and ap-
proximate it by a discrete graph €5 c 6Z2. The boundary of Qs determines two arcs
Oap and O, and we can fix the spins to be +1 on the arc d,, and —1 on the arc Op,
(this is called Dobrushin boundary conditions). In this case, there exists an interface3
separating +1 and —1 going from a to b and the prediction of Conformal Field Theory
then translates into the following predictions for models: interfaces in )5 converge when
d goes to 0 to a random continuous non-selfcrossing curve (g , ) between a and b in Q
which is conformally invariant in the following way:

For any (2,a,b) and any conformal map v : Q - C, the random curve 1 o Y(Q,a.b)
has the same law as Yy (Q),v(a),b(b))-

In 1999, Schramm proposed a natural candidate for the possible conformally invari-
ant families of continuous non-selfcrossing curves. He noticed that interfaces of models
further satisfy the domain Markov property, which, together with the assumption of con-
formal invariance, determine the possible families of curves. In [Sch00], he introduced
the Schramm-Loewner Evolution (SLE for short): for s > 0, the SLE(k) is the ran-
dom Loewner Evolution with driving process \/kB¢, where (By) is a standard Brownian
motion (see Beffara’s course in this volume). In our case, it implies that the random
continuous curve (g ) described previously should be an SLE.

2i.e. one-to-one holomorphic maps.

3In fact the interface is not unique. In order to solve this issue, consider the closest interface to

Oab-
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FIGURE 2. An interface between + and — in the Ising model.

Proving convergence of interfaces to an SLE is fundamental. Indeed, SLE processes
are now well-understood and their path properties can be related to fractal properties
of the critical phase. Critical exponents can then be deduced from these properties via
the so-called scaling relations. These notes provide an (almost) self-contained proof of
convergence to SLE for the two-dimensional Ising model and its random-cluster repre-
sentation the FK-Ising model (see Section 3 for a formal definition).

Main result 1 (Theorem 2.10) The law of interfaces of the critical Ising model converges
in the scaling limit to a conformally invariant limit described by the Schramm-Loewner
Evolution of parameter k = 3.

Main result 2 (Theorem 3.13) The law of interfaces of the critical FK-Ising model
converges in the scaling limit to a conformally invariant limit described by the Schramm-
Loewner Evolution of parameter k = 16/3.

Even though we now have a mathematical framework for conformal invariance, it
remains difficult to prove convergence of interfaces to SLEs. Observe that working with
interfaces offers a further simplification: properties of these interfaces should also be
conformally invariant. Therefore, one could simply look at a discrete observable of the
model and try to prove that it converges in the scaling limit to a conformally covariant
object. Of course, it is not clear that this observable would tell us anything about critical
exponents, yet it already represents a significant step toward conformal invariance.

In 1994, Langlands, Pouliot and Saint-Aubin [LPSA94| published a number of
numerical values in favor of conformal invariance (in the scaling limit) of crossing prob-
abilities in the percolation model. More precisely, they checked that, taking different
topological rectangles, the probability Cs(Q, A, B,C, D) of having a path of adjacent
open edges from AB to C'D converges when § goes to 0 towards a limit which is the
same for (Q,A,B,C,D) and (', A", B’,C",D’) if they are images of each other by a
conformal map. The paper [LPSA94]|, while only numerical, attracted many mathe-
maticians to the domain. The same year, Cardy [Car92| proposed an explicit formula for
the limit of percolation crossing probabilities. In 2001, Smirnov proved Cardy’s formula
rigorously for critical site percolation on the triangular lattice [Smi01], hence rigorously
providing a concrete example of a conformally invariant property of the model. A some-
what incredible consequence of this theorem is that the mechanism can be reversed:
even though Cardy’s formula seems much weaker than convergence to SLE, they are
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actually equivalent. In other words, conformal covariance of one well-chosen observable
of the model can be sufficient to prove conformal invariance of interfaces.

It is also possible to find an observable with this property in the Ising case (see
Definition 2.9). This observable, called the fermionic observable, is defined in terms
of the so-called high temperature expansion of the Ising model. Specific combinatorial
properties of the Ising model translate into local relations for the fermionic observable.
In particular, the observable can be proved to converge when taking the scaling limit.
This convergence result (Theorem 2.11) is the main step in the proof of conformal
invariance. Similarly, a fermionic observable can be defined in the FK-Ising case, and
its convergence implies the convergence of interfaces.

Archetypical examples of conformally covariant objects are holomorphic solutions
to boundary value problems such as Dirichlet or Riemann problems. It becomes natural
to expect that discrete observables which are conformally covariant in the scaling limit
are naturally preharmonic or preholomorphic functions, i.e. relevant discretizations of
harmonic and holomorphic functions. Therefore, the proofs of conformal invariance har-
ness discrete complex analysis in a substantial way. The use of discrete holomorphicity
appeared first in the case of dimers [Ken00] and has been extended to several statistical
physics models since then. Other than being interesting in themselves, preholomorphic
functions have found several applications in geometry, analysis, combinatorics, and prob-
ability. We refer the interested reader to the expositions by Lovasz [Lov04], Stephenson
[Ste05], Mercat [Mer01], Bobenko and Suris [BS08]. Let us finish by mentioning that
the previous discussion sheds a new light on both approaches described above: combina-
torial properties of the discrete Ising model allow us to prove the convergence of discrete
observables to conformally covariant objects. In other words, exact integrability and
Conformal Field Theory are connected via the proof of the conformal invariance of the
Ising model.
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1.1. Organization of the notes. Section 2 presents the necessary background on
the spin Ising model. In the first subsection, we recall general facts on the Ising model.
In the second subsection, we introduce the low and high temperature expansions, as
well as Kramers-Wannier duality. In the last subsection, we use the high-temperature
expansion in spin Dobrushin domains to define the spin fermionic observable. Via the
Kramers-Wannier duality, we explain how it relates to interfaces of the Ising model at
criticality and we state the conformal invariance result for Ising.

Section 3 introduces the FK-Ising model. We start by defining general FK per-
colation models and we discuss planar duality. Then, we explain the Edwards-Sokal
coupling, an important tool relating the spin Ising and FK-Ising models. Finally, we
introduce the loop representation of the FK-Ising model in FK Dobrushin domains. It
allows us to define the FK fermionic observable and to state the conformal invariance
result for the FK-Ising model.
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Section 4 is a brief survey of discrete complex analysis. We first deal with prehar-
monic functions and a few of their elementary properties. These properties will be used
in Section 6. In the second subsection, we present a brief historic of preholomorphic
functions. The third subsection is the most important, it contains the definition and
several properties of s-holomorphic (or spin-holomorphic) functions. This notion is cru-
cial in the proof of conformal invariance: the fermionic observables will be proved to
be s-holomorphic, a fact which implies their convergence in the scaling limit. We also
include a brief discussion on complex analysis on general graphs.

Section 5 is devoted to the convergence of the fermionic observables. First, we show
that the FK fermionic observable is s-holomorphic and that it converges in the scaling
limit. Second, we deal with the spin fermionic observable. We prove its s-holomorphicity
and sketch the proof of its convergence.

Section 6 shows how to harness the convergence of fermionic observables in order
to prove conformal invariance of interfaces in the spin and FK-Ising models. It mostly
relies on tightness results and certain properties of Loewner chains.

Section 7 is intended to present several other applications of the fermionic ob-
servables. In particular, we provide an elementary derivation of the critical inverse-
temperature.

Section 8 contains a discussion on generalizations of this approach to lattice models.
It includes a subsection on the Ising model on general planar graphs. It also gathers
conjectures regarding models more general than the Ising model.

1.2. Notations.

1.2.1. Primal, dual and medial graphs. We mostly consider the (rotated) square
lattice L with vertex set ¢/™/*Z? and edges between nearest neighbors. An edge with
end-points = and y will be denoted by [zy]. If there exists an edge e such that e = [xy],
we write x ~ y. Finite graphs G will always be subgraphs of L and will be called primal
graphs. The boundary of GG, denoted by dG, will be the set of sites of G with fewer
than four neighbors in G.

The dual graph G* of a planar graph G is defined as follows: sites of G* correspond
to faces of G (for convenience, the infinite face will not correspond to a dual site), edges
of G* connect sites corresponding to two adjacent faces of G. The dual lattice of L is
denoted by LL*.

The medial lattice IL° is the graph with vertex set being the centers of edges of L,
and edges connecting nearest vertices, see Fig. 6. The medial graph G° is the subgraph
of L° composed of all the vertices of L® corresponding to edges of G. Note that L° is
a rotated and rescaled (by a factor 1/3/2) version of L, and that it is the usual square
lattice. We will often use the connection between the faces of L® and the sites of L and
L*. We say that a face of the medial lattice is black if it corresponds to a vertex of L,
and white otherwise. Edges of IL® are oriented counterclockwise around black faces.

1.2.2. Approzimations of domains. We will be interested in finer and finer graphs
approximating continuous domains. For § > 0, the square lattice /20l of mesh-size
V26 will be denoted by Ls. The definitions of dual and medial lattices extend to this
context. Note that the medial lattice .§ has mesh-size 4.

For a simply connected domain €) in the plane, we set 25 = Q@ nLs. The edges
connecting sites of (s are those included in 2. The graph s should be thought of as
a discretization of Q (we avoid technicalities concerning the regularity of the domain).
More generally, when no continuous domain 2 is specified, 25 stands for a finite simply
connected (meaning that the complement is connected) subgraph of Ls.

We will be considering sequences of functions on 25 for § going to 0. In order to
make functions live in the same space, we implicitly perform the following operation:
for a function f on s, we choose for each square a diagonal and extend the function to
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Q in a piecewise linear way on every triangle (any reasonable way would do). Since no
confusion will be possible, we denote the extension by f as well.

1.2.3. Distances and convergence. Points in the plane will be denoted by their com-
plex coordinates, Re(z) and Im(z) will be the real and imaginary parts of z respectively.
The norm will be the usual complex modulus |-|. Unless otherwise stated, distances
between points (even if they belong to a graph) are distances in the plane. The distance
between a point z and a closed set F' is defined by

(1.1) d(z,F) = inf |z —y|.
yel

Convergence of random parametrized curves (say with time-parameter in [0,1]) is in
the sense of the weak topology inherited from the following distance on curves:
(1.2) d(v1,72) = inf sup |y (u) - (e(w))]

uel0,1

where the infimum is taken over all reparametrizations (i.e. strictly increasing continu-
ous functions ¢:[0,1] = [0, 1] with ¢(0) =0 and ¢(1) = 1).

2. Two-dimensional Ising model

2.1. Boundary conditions, infinite-volume measures and phase transition.
The (spin) Ising model can be defined on any graph. However, we will restrict ourselves
to the (rotated) square lattice. Let G be a finite subgraph of L, and b e {1, +1}9¢.
The Ising model with boundary conditions b is a random assignment of spins {-1,+1}
(or simply —/+) to vertices of G such that o, = b, on G, where o, denotes the spin at
site x. The partition function of the model is denoted by

ﬁz%%]

(2.1) ZZ,G = exp[
ce{-1,1}G: o=b on OG z~y

where [ is the inverse-temperature of the model and the second summation is over all
pairs of neighboring sites x,y in G. The probability of a configuration ¢ is then equal
to

(2.2) W) = e [6 > ozoy].
8,G z~y

Equivalently, one can define the Ising model without boundary conditions, also
called free boundary conditions (it is the one defined in the introduction). The measure
with free boundary conditions is denoted by ugﬂ.

We will not offer a complete exposition on the Ising model and we rather focus on
crucial properties. The following result belongs to the folklore (see [FKGT1| for the
original paper). An event is called increasing if it is preserved by switching some spins
from — to +.

THEOREM 2.1 (Positive association at every temperature). The Ising model on a
finite graph G at temperature B > 0 satisfies the following properties:
e FKG inequality: For any boundary conditions b and any increasing events
A? B7
b b b
(2.3) ppc(AnB) > g o(A)ug o(B).

o Comparison between boundary conditions: For boundary conditions by <
by (meaning that spins + in by are also + in by) and an increasing event A,

(2.4) 1o (A) < 7 (A).



CONFORMAL INVARIANCE OF LATTICE MODELS 221

If (2.4) is satisfied for every increasing event, we say that ,u%ZG stochastically dom-

inates ,uZlG (denoted by u%lG < “?32(;)' Two boundary conditions are extremal for the
stochastic ordering: the measure with all + (resp. all —) boundary conditions, denoted
by wj o (resp. pg o) is the largest (resp. smallest).

Theorem 2.1 enables us to define infinite-volume measures as follows. Consider the
nested sequence of boxes A, = [-n,n]?>. For any N > 0 and any increasing event A
depending only on spins in Ay, the sequence (p5 5 (A))nan is decreasing®. The limit,
denoted by u;(A), can be defined and verified to be independent on N.

In this way, pj is defined for increasing events depending on a finite number of
sites. It can be further extended to a probability measure on the o-algebra spanned
by cylindrical events (events measurable in terms of a finite number of spins). The
resulting measure, denoted by u;g, is called the infinite-volume Ising model with +
boundary conditions.

Observe that one could construct (a priori) different infinite-volume measures, for
instance with — boundary conditions (the corresponding measure is denoted by u[}) If
infinite-volume measures are defined from a property of compatibility with finite volume
measures, then ME and pg are extremal among infinite-volume measures of parameter
(. In particular, if ,ug = g, there exists a unique infinite volume measure.

The Ising model in infinite-volume exhibits a phase transition at some critical
inverse-temperature [.:

THEOREM 2.2. Let f3. = %ln(l +1/2). The magnetization psloo] at the origin is
strictly positive for B> B. and equal to 0 when B < ..

In other words, when /3 > (3., there is long range memory, the phase is ordered. When
B < Be, the phase is called disordered. The existence of a critical temperature separating
the ordered from the disordered phase is a relatively easy fact [Pei36] (although at
the time it was quite unexpected). Its computation is more difficult. It was identified
without proof by Kramers and Wannier [KW41a, KW41b]| using the duality between
low and high temperature expansions of the Ising model (see the argument in the next
section). The first rigorous derivation is due to Yang [Yan52]. He uses Onsager’s
exact formula for the (infinite-volume) partition function to compute the spontaneous
magnetization of the model. This quantity provides one criterion for localizing the
critical point. The first probabilistic computation of the critical inverse-temperature is
due to Aizenman, Barsky and Fernandez [ABF87|. In Subsection 7.1, we present a
short alternative proof of Theorem 2.2, using the fermionic observable.

The critical inverse-temperature has also an interpretation in terms of infinite-
volume measures (these measures are called Gibbs measures). For 8 < 5. there exists a
unique Gibbs measure, while for g > (. there exist several. The classification of Gibbs
measures in the ordered phase is interesting: in dimension two, any infinite-volume
measure is a convex combination of pjs and 5 (see [Aiz80, Hig81]| or the recent proof
[CV10]). This result is no longer true in higher dimension: non-translational-invariant
Gibbs measures can be constructed using 3D Dobrushin domains [Dob72].

When 3 > 3, spin-correlations pj[oo0,] do not go to 0 when z goes to infinity.
There is long range memory. At (., spin-correlations decay to 0 following a power law
[Ons44]:

wh [o00s] = |2/
when z — co. When 8 < ., spin-correlations decay exponentially fast in |z|. More
precisely, we will show the following result first due to [MW73]:

4Indeed, for any configuration of spins in dA,, being smaller than all +, the restriction of [,LE J—

to A, is stochastically dominated by u}; A
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THEOREM 2.3. For 3 < ., and a = ¢'™*(z +iy) € C,

(a) = i~ Inpu3[o007,01] = @ axcsinh(sz) + y aresinh(sy)

Tﬂ a)= 'n,l—{Iolo " HILLB an[na] = I arcsin ST Yy arcsmni| sy

where [na] is the site of L closest to na, and s solves the equation

V1 + 5222 +/1+ s2y2 = sinh(28) + (sinh(283)) " .

The quantity 75(z) is called the correlation length in direction z. When getting
closer to the critical point, the correlation length goes to infinity and becomes isotropic
(it does not depend on the direction, thus giving a glimpse of rotational invariance at
criticality):

THEOREM 2.4 (see e.g. [Mes06]|). For z € C, the correlation length satisfies the
following equality

(2.5) tim 2y,
BB (Be =)

2.2. Low and high temperature expansions of the Ising model. The low
temperature expansion of the Ising model is a graphical representation on the dual lattice.
Fix a spin configuration o for the Ising model on G with + boundary conditions. The
collection of contours of a spin configuration o is the set of interfaces (edges of the dual
graph) separating + and — clusters. In a collection of contours, an even number of dual
edges automatically emanates from each dual vertex. Reciprocally, any family of dual
edges with an even number of edges emanating from each dual vertex is the collection
of contours of exactly one spin configuration (since we fix + boundary conditions).

The interesting feature of the low temperature expansion is that properties of the
Ising model can be restated in terms of this graphical representation. We only give the
example of the partition function on G but other quantities can be computed similarly.
Let Eg+ be the set of possible collections of contours, and let |w| be the number of edges
of a collection of contours w, then

(26) ZE,G — eﬁ# edges in G* Z (6_2[3)|w‘ )

weEgx

The high temperature expansion of the Ising model is a graphical representation on
the primal lattice itself. It is not a geometric representation since one cannot map a spin
configuration o to a subset of configurations in the graphical representation, but rather
a convenient way to represent correlations between spins using statistics of contours. It
is based on the following identity:

(2.7) 729 = cosh(B) + 0,0, sinh(B) = cosh(B) [1 + tanh(8)o,0,]

PROPOSITION 2.5. Let G be a finite graph and a, b be two sites of G. At inverse-
temperature B> 0,

(28) Z[J; o 2# vertices G COSh(B)# edges in G Z tanh(ﬁ)lw‘
’ wEfG
Y eéq (a,p) tanh(B)!
2.9 ,uf 0a0p| = A ,
29) s.6loun] Ywes; tanh(B)!

where Eg (resp. Ec(a,b)) is the set of families of edges of G such that an even number
of edges emanates from each vertex (resp. except at a and b, where an odd number of
edges emanates).

The notation £g coincides with the definition £+ in the low temperature expansion
for the dual lattice.
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Proof. Let us start with the partition function (2.8). Let E be the set of edges of
G. We know

f
Z&G

> I e

o [wyleE

cosh(B)# ¢dees ™ &GS TT [1+tanh(B)o,0,]

o [zyleE

cosh(3)# cdees in & > tanh(3)“! [T ocuoy

o wcE e=[zylew

cosh(p3)# cdees in & > tanh ()l o II w0y

wcE o e=[zylew

where we used (2.7) in the second equality. Notice that Y, [Te-[zyJew 00y equals

27 vertices G if  §s in £g, and 0 otherwise, hence proving (2.8).

Fix a,b € G. By definition,
Y, oqope PH @) Y, oaope PH@)
-BH(o - f ’
de BH(o) ZB,G
where H(o) = -=%,.;0:05. The second identity boils down to proving that the right
hand terms of (2.9) and (2.10) are equal, i.e.

(211) Za_ao_be—ﬁH(a) _ 2# vertices G COSh(ﬁ)# edges in G Z tanh(ﬁ)l“’l
o weEq(a,b)

(2.10) ph gloaos] =

The first lines of the computation for the partition function are the same, and we end
up with

ZaaabefﬁH(”) = cosh(B)* edges in & Z tanh(ﬂ)‘w‘ Z a0 H 050y
o wcE o e=[zylew

= o# vertices G COSh(ﬁ)# edges in G Z tanh(ﬁ)lwl
weEq(a,b)

since ¥, 040 [le[zy]ew 020y €quals 7 vertices G if , ¢ £c(a,b), and 0 otherwise. i

The set £ is the set of collections of loops on G when forgetting the way we draw
loops (since some elements of Eg, like a figure eight, can be decomposed into loops in
several ways), while £g(a,b) is the set of collections of loops on G together with one
curve from a to b.

PROPOSITION 2.6 (Kramers-Wannier duality). Let 8> 0 and define 5* € (0,00) such
that tanh(B8*) = ™28, then for every graph G,
(2.12) o # vertices G* COSh(ﬁ*) # edges in G* ZE,G _ (6’8)# edges in G* Z[J; o

Proof. When writing the contour of connected components for the Ising model with
+ boundary conditions, the only edges of L* used are those of G*. Indeed, edges between
boundary sites cannot be present since boundary spins are +. Thus, the right and left-
hand side terms of (2.12) both correspond to the sum on Eg- of (e72%)%l or equivalently
of tanh(f*)l, implying the equality (see Fig. 3). O

We are now in a position to present the argument of Kramers and Wannier. Physi-
cists expect the partition function to exhibit only one singularity, localized at the critical
point. If 87 # B., there would be at least two singularities, at 3. and 3, thanks to the
previous relation between partition functions at these two temperatures. Thus, 3. must
equal 8%, which implies 3. = %ln(l ++/2). Of course, the assumption that there is a
unique singularity is hard to justify.
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FIGURE 3. The possible collections of contours for + boundary condi-
tions in the low-temperature expansion do not contain edges between
boundary sites of G. Therefore, they correspond to collections of con-
tours in Eg+, which are exactly the collection of contours involved in
the high-temperature expansion of the Ising model on G* with free
boundary conditions.

EXERCISE 2.7. Extend the low and high temperature expansions to free and + bound-
ary conditions respectively. Extend the high-temperature expansion to n-point spin cor-
relations.

EXERCISE 2.8 (Peierls argument). Use the low and high temperature expansions to
show that B € (0,00), and that correlations between spins decay exponentially fast when
[ is small enough.

2.3. Spin-Dobrushin domain, fermionic observable and results on the
Ising model. In this section we discuss the scaling limit of a single interface between
+ and — at criticality. We introduce the fundamental notions of Dobrushin domains and
the so-called fermionic observable.

Let (£2,a,b) be a simply connected domain with two marked points on the boundary.
Let Qf be the medial graph of €5 composed of all the vertices of L§ bordering a black
face associated to (s, see Fig 4. This definition is non-standard since we include medial
vertices not associated to edges of Q5. Let a5 and bs be two vertices of 0§25 close to a
and b. We further require that bs is the southeast corner of a black face. We call the
triplet (25, as,bs) a spin-Dobrushin domain.

Let z5 € 25. Mimicking the high-temperature expansion of the Ising model on s,
let €(ag,25) be the set of collections of contours drawn on 5 composed of loops and
one interface from as to zg, see Fig. 4. For a loop configuration w, v(w) denotes the
unique curve from as to zs turning always left when there is an ambiguity. With these
notations, we can define the spin-Ising fermionic observable.

DEFINITION 2.9. On a spin Dobrushin domain (25, as,bs), the spin-Ising fermionic
observable at z5 € Q0§ is defined by

Y et (as.25) e—%iWw(m(as,Zr:)(\/i_ 1)IWI
Zwef)(aa.b&) eiéiwﬂw)(ad’bé)(\/i - 1)'“' 7

where the winding W (as, zs5) is the (signed) total rotation in radians of the curve
between as and zg.

Foy 05,05 (25) =

The complex modulus of the denominator of the fermionic observable is connected
to the partition function of a conditioned critical Ising model. Indeed, fix b5 € 095.
Even though & (as,bs) is not exactly a high-temperature expansion (since there are two
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FIGURE 4. An example of collection of contours in £(as,z5) on the
lattice Q.

® ® ® ®

FIGURE 5. A high temperature expansion of an Ising model on the
primal lattice together with the corresponding configuration on the dual
lattice. The constraint that as is connected to bs corresponds to the
partition function of the Ising model with +/- boundary conditions on
the domain.

half-edges starting from as and bs respectively), it is in bijection with the set £(a,b).
Therefore, (2.11) can be used to relate the denominator of the fermionic observable
to the partition function of the Ising model on the primal graph with free boundary
conditions conditioned on the fact that a and b have the same spin. Let us mention that
the numerator of the observable also has an interpretation in terms of disorder operators
of the critical Ising model.
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The weights of edges are critical (since /2 — 1 = ¢72¢). Therefore, the Kramers-
Wannier duality has an enlightening interpretation here. The high-temperature expan-
sion can be thought of as the low-temperature expansion of an Ising model on the dual
graph, where the dual graph is constructed by adding one layer of dual vertices around
0G, see Fig. 5. Now, the existence of a curve between as and by is equivalent to the
existence of an interface between pluses and minuses in this new Ising model. Therefore,
it corresponds to a model with Dobrushin boundary conditions on the dual graph. This
fact is not surprising since the dual boundary conditions of the free boundary conditions
conditioned on o, = 0, are the Dobrushin ones.

From now on, the Ising model on a spin Dobrushin domain is the critical Ising model
on €25 with Dobrushin boundary conditions. The previous paragraph suggests a connec-
tion between the fermionic observable and the interface in this model. In fact, Section 6
will show that the fermionic observable is crucial in the proof that the unique interface
vs going from a5 to bs between the + component connected to the arc 07, and the -
component connected to d;, (preserve the convention that the interface turns left every
time there is a choice) is conformally invariant in the scaling limit. Figures 1 (center
picture) and 2 show two interfaces in domains with Dobrushin boundary conditions.

THEOREM 2.10. Let (2,a,b) be a simply connected domain with two marked points
on the boundary. Let s be the interface of the critical Ising model with Dobrushin
boundary conditions on the spin Dobrushin domain (Qf,as,bs). Then (v5)s-0 converges
weakly as 0 - 0 to the (chordal) Schramm-Loewner Evolution with parameter k = 3.

The proof of Theorem 2.10 follows the program below, see Section 6:

e Prove that the family of interfaces (7s)sso is tight.

e Prove that M = FQo 500,175 (£) b5 (z5) is a martingale for the discrete curve
Vs

e Prove that these martingales are converging when § goes to 0. This provides us
with a continuous martingale (M7); for any sub-sequential limit of the family
(75)550-

e Use the martingales (M), to identify the possible sub-sequential limits. Ac-
tually, we will prove that the (chordal) Schramm-Loewner Evolution with pa-
rameter k = 3 is the only possible limit, thus proving the convergence.

The third step (convergence of the observable) will be crucial for the success of this
program. We state it as a theorem on its own. The connection with the other steps will
be explained in detail in Section 6.

THEOREM 2.11 ([CS09]). Let Q be a simply connected domain and a,b two marked
points on its boundary, assuming that the boundary is smooth in a neighborhood of b.
We have that

v'()
¢’ (b)

uniformly on every compact subset of ), where 1 is any conformal map from Q to the
upper half-plane H, mapping a to co and b to 0.

(2.13) Fosasbs () — when § - 0

The fermionic observable is a powerful tool to prove conformal invariance, yet it
is also interesting in itself. Being defined in terms of the high-temperature expansion
of the Ising model, it expresses directly quantities of the model. For instance, we will
explain in Section 6 how a more general convergence result for the observable enables
us to compute the energy density.
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THEOREM 2.12 ([HS10]). Let Q be a simply connected domain and a € Q. If es =
[wy] denotes the edge of Q2N IZ? closest to a, then the following equality holds:

20 o),

where ,ugom 18 the Ising measure at criticality and ¢, is the unique conformal map from
Q to the disk D sending a to 0 and such that ¢!,(a) > 0.

“gc,sznam [oz0y] =

3. Two-dimensional FK-Ising model

In this section, another graphical representation of the Ising model, called the FK-
Ising model, is presented in detail. Its properties will be used to describe properties of
the Ising model in the following sections.

3.1. FK percolation. We refer to [Gri06] for a complete study on FK percolation
(invented by Fortuin and Kasteleyn [FKT72]). A configuration w on G is a random
subgraph of G, composed of the same sites and a subset of its edges. The edges belonging
to w are called open, the others closed. Two sites = and y are said to be connected
(denoted by x <« y), if there is an open path — a path composed of open edges —
connecting them. The maximal connected components are called clusters.

Boundary conditions & are given by a partition of 9G. Let o(w) (resp. ¢(w)) denote
the number of open (resp. closed) edges of w and k(w,§) the number of connected
components of the graph obtained from w by identifying (or wiring) the vertices in £
that belong to the same class of £.

The FK percolation (Z)f)’q’c on a finite graph G with parameters p € [0,1], and
q € (0,00) and boundary conditions ¢ is defined by

o(w) (1 = p)elw) gh(w,€)
(3.1) 8 go(w) = T
p:4,G

for any subgraph w of G, where Z G isa normalizing constant called the partition
functwn for the FK percolation. Here and in the following, we drop the dependence on
¢ in k(w,§).
The FK percolations with parameter ¢ < 1 and g > 1 behave very differently. For
now, we restrict ourselves to the second case. When ¢ > 1, the FK percolation is positively
correlated: an event is called increasing if it is preserved by addition of open edges.

THEOREM 3.1. For q¢ > 1 and p € [0,1], the FK percolation on G satisfies the
following two properties:

o FKG tnequality: For any boundary conditions £ and any increasing events
A7 B?

(3.2) ¢ c(ANB) 2 ¢S (A)e  o(B).

o Comparison between boundary conditions: for any & refinement of ¢
and any increasing event A,

(3.3) o0 o(A) 2 ¢ L(A).

The previous result is very similar to Theorem 2.1. As in the Ising model case, one
can define a notion of stochastic domination. Two boundary conditions play a special
role in the study of FK percolation: the wired boundary conditions, denoted by £ =1,
are specified by the fact that all the vertices on the boundary are pairwise connected.
The free boundary conditions, denoted by & = 0, are specified by the absence of wirings
between boundary sites. The free and wired boundary conditions are extremal among
all boundary conditions for stochastic ordering.
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Infinite-volume measures can be defined as limits of measures on nested boxes. In
particular, we set qﬁzlhq for the infinite-volume measure with wired boundary conditions
and ¢27q for the infinite-volume measure with free boundary conditions. Like the Ising
model, the model exhibits a phase transition in the infinite-volume limit.

THEOREM 3.2. For any q > 1, there exists p.(q) € (0,1) such that for any infinite
volume measure ¢, 4,

o if p<pc(q), there is almost surely no infinite cluster under ¢y, 4,
o if p>pc(q), there is almost surely a unique infinite cluster under ¢y, 4.

Note that ¢ = 1 is simply bond percolation. In this case, the existence of a phase
transition is a well-known fact. The existence of a critical point in the general case ¢ > 1
is not much harder to prove: a coupling between two measures ¢,, , ¢ and ¢, , ¢ can
be constructed in such a way that ¢,, ¢ stochastically dominates ¢,, ¢ if p1 > p2
(this coupling is not as straightforward as in the percolation case, see e.g. [Gri06]).
The determination of the critical value is a much harder task.

A natural notion of duality also exists for the FK percolation on the square lattice
(and more generally on any planar graph). We present duality in the simplest case of
wired boundary conditions. Construct a model on G* by declaring any edge of the dual
graph to be open (resp. closed) if the corresponding edge of the primal graph is closed
(resp. open) for the initial FK percolation model.

PROPOSITION 3.3. The dual model of the FK percolation with parameters (p,q)
with wired boundary conditions is the FK percolation with parameters (p*,q) and free
boundary conditions on G*, where

. s __(-p)
(3.4) P =p"(p,q) 0-p)a+p

Proof. Note that the state of edges between two sites of G is not relevant when
boundary conditions are wired. Indeed, sites on the boundary are connected via bound-
ary conditions anyway, so that the state of each boundary edge does not alter the
connectivity properties of the subgraph, and is independent of other edges. For this
reason, forget about edges between boundary sites and consider only inner edges (which
correspond to edges of G*): o(w) and ¢(w) then denote the number of open and closed
inner edges.

Set e* for the dual edge of G* associated to the (inner) edge e. From the definition of
the dual configuration w* of w, we have o(w*) = a—o(w) where a is the number of edges
in G* and o(w™*) is the number of open dual edges. Moreover, connected components of
w* correspond exactly to faces of w, so that f(w) = k(w*), where f(w) is the number of
faces (counting the infinite face). Using Euler’s formula

# edges + # connected components + 1 = #sites + # faces,
which is valid for any planar graph, we obtain, with s being the number of sites in G,

E(w) = s-1+f(w)-o(w) = s—1+k(w")—a+o(w").
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The probability of w* is equal to the probability of w under ¢%;,p, g b€
1

¢é,p,q(w) - 1—p0(w)(1_p)0(w)qk(w)
G.p,q
1_ a

S Gl D YRR\ OIS
ZG,p,q

1-p)® . . .
( - p) [p/(l _p)]a—o(w )qs—l—a+k(w )+o(w™)

G.p,q
a, s—1-a
pq * * *
= e -p)/p)" D = 4L e (W)
G.p.q
since ¢(1 -p)/p=p*/(1-p*), which is exactly the statement. m]

It is then natural to define the self-dual point psq = psq¢(q) solving the equation
Dig = Psd, Which gives
\/q

1+ \/a

Note that, mimicking the Kramers-Wannier argument, one can give a simple heuristic
justification in favor of p.(q) = psa(q). Recently, the computation of p.(q) was performed
for every g > 1:

DPsd = psd(q) =

THEOREM 3.4 ([BDC10]|). The critical parameter p.(q) of the FK percolation on
the square lattice equals psa(q) = /q/(1 +/q) for every ¢ > 1.

EXERCISE 3.5. Describe the dual of a FK percolation with parameters (p,q) and free
boundary conditions. What is the dual model of the FK percolation in infinite-volume
with wired boundary conditions?

EXERCISE 3.6 (Zhang’s argument for FK percolation, [Gri06]). Consider the FK
percolation with parameters ¢ > 1 and p = psq(q). We suppose known the fact that infinite
clusters are unique, and that the probability that there is an infinite cluster is 0 or 1.

Assume that there is a.s. an infinite cluster for the measure (bgmq.

1) Let € < 1/100. Show that there exists n > 0 such that the ¢2M,q—pr0bability that
the infinite cluster touches [-n,n)? is larger than 1 —¢c. Using the FKG inequality for
decreasing events (one can check that the FKG inequality holds for decreasing events as
well), show that the ¢2sd7q—pmbability that the infinite cluster touches {n} x[-n,n] from
the outside of [-n,n]? is larger than 1 —et.

2) Using the uniqueness of the infinite cluster and the fact that the probability that
there exists an infinite cluster equals 0 or 1 (can you prove these facts?), show that a.s.
there is no infinite cluster for the FK percolation with free boundary conditions at the
self-dual point.

3) Is the previous result necessarily true for the FK percolation with wired boundary
conditions at the self-dual point? What can be said about p.(q)?

EXERCISE 3.7. Prove Euler’s formula.

3.2. FK-Ising model and Edwards-Sokal coupling. The Ising model can be
coupled to the FK percolation with cluster-weight ¢ = 2 [ES88]. For this reason, the ¢ = 2
FK percolation model will be called the FK-Ising model. We now present this coupling,
called the Edwards-Sokal coupling, along with some consequences for the Ising model.

Let G be a finite graph and let w be a configuration of open and closed edges on G.
A spin configuration ¢ can be constructed on the graph G by assigning independently
to each cluster of w a + or — spin with probability 1/2 (note that all the sites of a cluster
receive the same spin).
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PROPOSITION 3.8. Let p € (0,1) and G a finite graph. If the configuration w is
distributed according to a FK measure with parameters (p,2) and free boundary condi-
tions, then the spin configuration o is distributed according to an Ising measure with
inverse-temperature [3 = —% In(1-p) and free boundary conditions.

Proof. Consider a finite graph G, let p € (0,1). Consider a measure P on pairs (w, o),
where w is a FK configuration with free boundary conditions and ¢ is the corresponding
random spin configuration, constructed as explained above. Then, for (w, o), we have:

1 o(w c(w w - w 1 o(w c\w
P[(w,0)] = 3 PP (1 = p)e@)gh(w)  g=k(w) - = P (1= p)e@),

p,2,G p,2,G

Now, we construct another measure P on pairs of percolation configurations and spin
configurations as follows. Let ¢ be a spin configuration distributed according to an Ising
model with inverse-temperature 3 satisfying ¢=2# = 1 — p and free boundary conditions.
We deduce @ from & by closing all edges between neighboring sites with different spins,
and by independently opening with probability p edges between neighboring sites with
same spins. Then, for any (@, 5),

e e=267(@) po(@) (1 - p)a-o(@)-r(7) B p°@) (1 - p)e@

Pl(@,5)] - a St

Zﬂ,p Zﬁ,p

where a is the number of edges of G and r(&) the number of edges between sites with
different spins.

Note that the two previous measures are in fact defined on the same set of compatible
pairs of configurations: if o has been obtained from w, then w can be obtained from o
via the second procedure described above, and the same is true in the reverse direction
for w and &. Therefore, P = P and the marginals of P are the FK percolation with
parameters (p,2) and the Ising model at inverse-temperature 3, which is the claim. ©

The coupling gives a randomized procedure to obtain a spin-Ising configuration
from a FK-Ising configuration (it suffices to assign random spins). The proof of Propo-
sition 3.8 provides a randomized procedure to obtain a FK-Ising configuration from a
spin-Ising configuration.

If one considers wired boundary conditions for the FK percolation, the Edwards-
Sokal coupling provides us with an Ising configuration with + boundary conditions (or
—, the two cases being symmetric). We do not enter into details, since the generalization
is straightforward.

An important consequence of the Edwards-Sokal coupling is the relation between
Ising correlations and FK connectivity properties. Indeed, two sites which are connected
in the FK percolation configuration must have the same spin, while sites which are not
have independent spins. This implies:

COROLLARY 3.9. Forpe (0,1), G a finite graph and (3 = —%ln(l -p), we obtain

0
whalowoy] = hacle <y,
tpalos] = ¢;1;,2,G($ < 0G).

In particular, 3. = —% In[1-p.(2)].

Proof. We leave the proof as an exercise. O

The uniqueness of Ising infinite-volume measures was discussed in the previous sec-
tion. The same question can be asked in the case of the FK-Ising model. First, it can be
proved that ¢11)72 and qﬁgg are extremal among all infinite-volume measures. Therefore,

it is sufficient to prove that qﬁ}lﬂ = ¢>2,2 to prove uniqueness. Second, the absence of
an infinite cluster for ¢>11),2 can be shown to imply the uniqueness of the infinite-volume
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measure. Using the equality p. = psq, the measure is necessarily unique whenever p < pgq
since gb}ﬂ has no infinite cluster. Planar duality shows that the only value of p for which

uniqueness could eventually fail is the (critical) self-dual point /2/(1 ++/2). It turns
out that even for this value, there exists a unique infinite volume measure. Since this
fact will play a role in the proof of conformal invariance, we now sketch an elementary
proof due to W. Werner (the complete proof can be found in [Wer09]).

PROPOSITION 3.10. There exists a unique infinite-volume FK-Ising measure with
parameter p. = \/2/(1 +/2) and there is almost surely no infinite cluster under this
measure. Correspondingly, there exists a unique infinite-volume spin Ising measure at

Be-

Proof. As described above, it is sufficient to prove that cf)gsuh2 = ¢11)5d’2. First note
that there is no infinite cluster for qﬁgs .2 thanks to Exercise 3.6. Via the Edwards-Sokal
coupling, the infinite-volume Ising measure with free boundary conditions, denoted by
ugc, can be constructed by coloring clusters of the measure 47525 .2+ Since there is no
infinite cluster, this measure is obviously symmetric by global exchange of +/-. In
particular, the argument of Exercise 3.6 can be applied to prove that there are neither
+ nor — infinite clusters. Therefore, fixing a box, there exists a + star-connected circuit
surrounding the box with probability one (two vertices & and y are said to be star-
connected if y is one of the eight closest neighbors to ).

One can then argue that the configuration inside the box stochastically dominates
the Ising configuration for the infinite-volume measure with + boundary conditions
(roughly speaking, the circuit of spin + behaves like + boundary conditions). We deduce
that ugc restricted to the box (in fact to any box) stochastically dominates s, - This
implies that ,ugc > “Ec' Since the other inequality is obvious, ,ugc and u;;c are equal.

0
Psd;2

at criticality. Moreover, pg = ugc = MZ; and there is a unique infinite-volume Ising
measure at criticality. O

Via Edwards-Sokal’s coupling again, ¢ = %135 .2 and there is no infinite cluster

REMARK 3.11. More generally, the FK percolation with integer parameter q > 2
can be coupled with Potts models. Many properties of Potts models are derived using
FK percolation, since we have the FKG inequality at our disposal, while there is no
equivalent of the spin-Ising FKG inequality for Potts models.

3.3. Loop representation of the FK-Ising model and fermionic observable.
Let (Q,a,b) be a simply connected domain with two marked points on the boundary.
Let Qs be an approximation of €2, and let d,, and 0y, denote the counterclockwise arcs
in the boundary 0€s joining a to b (resp. b to a). We consider a FK-Ising measure
with wired boundary conditions on 0, — all the edges are pairwise connected — and
free boundary conditions on the arc d,,. These boundary conditions are called the
Dobrushin boundary conditions. We denote by qb?z’:m the associated FK-Ising measure
with parameter p.

The dual boundary arc 0y, is the set of sites of Qf adjacent to 0y, while the dual
boundary arc 0}, is the set of sites of L3 \ 5 adjacent to 0y, see Fig. 6. A FK-Dobrushin
domain (825, as,bs) is given by

e a medial graph 5 defined as the set of medial vertices associated to edges of
s and to dual edges of 07,
e medial sites as,bs € {25 between arcs 0y, an Jy,, see Fig. 6 again,
with the additional condition that bs is the southeast corner of a black face belonging
to the domain.
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FIGURE 6. A domain Q5 with Dobrushin boundary conditions: the
vertices of the primal graph are black, the vertices of the dual graph 3
are white, and between them lies the medial graph Qf. The arcs Oy,
and 0}, are the two outermost arcs. Moreover, arcs d;, and J,; are the
arcs bordering 0, and 9}, from the inside. The arcs 9, and O, (resp.
O, and 0;,) are drawn in solid lines (resp. dashed lines)

REMARK 3.12. Note that the definition of Q1§ is not the same as in Section 1.2.1
since we added medial vertices associated to dual edges of 0%,. We chose this definition
to make sites of the dual and the primal lattices play symmetric roles. The condition that
bs is the south corner of a black face belonging to the domain is a technical condition.

Let (95,as,bs) be a FK-Dobrushin domain. For any FK-Ising configuration with
Dobrushin boundary conditions on 25, we construct a loop configuration on € as
follows: The interfaces between the primal clusters and the dual clusters (i.e clusters in
the dual model) form a family of loops together with a path from as to bs. The loops are
drawn as shown in Figure 7 following the edges of the medial lattice. The orientation
of the medial lattice naturally gives an orientation to the loops, so that we are working
with a model of oriented loops on the medial lattice.

The curve from as to bs is called the exploration path and denoted by v = v(w).
It is the interface between the open cluster connected to 0, and the dual-open cluster
connected to 0},. As in the Ising model case, one can study its scaling limit when the
mesh size goes to 0:
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FIGURE 7. A FK percolation configuration in the Dobrushin domain
(Qs,as,bs), together with the corresponding interfaces on the medial
lattice: the loops are grey, and the exploration path v from as to bs is
black. Note that the exploration path is the interface between the open
cluster connected to the wired arc and the dual-open cluster connected
to the white faces of the free arc.

THEOREM 3.13 (Conformal invariance of the FK-Ising model, [KS10, CDHKS12]).
Let Q be a simply connected domain with two marked points a,b on the boundary.
Let 5 be the interface of the critical FK-Ising with Dobrushin boundary conditions on
(Qs,as,b5). Then the law of s converges weakly, when 6 — 0, to the chordal Schramm-
Loewner Evolution with k = 16/3.

As in the Ising model case, the proof of this theorem also involves a discrete observ-
able, which converges to a conformally invariant object. We define it now.

DEFINITION 3.14. The edge FK fermionic observable is defined on edges of Qf by
(3.5)

. 14
FQg,aé,ba,p(e) = E?’Z"a’zj [ez ‘Ww(esbé)lee’y]

where W, (e, bs) denotes the winding between the center of e and bs.
The vertex FK fermionic observable is defined on vertices of 25 \ 0§25 by
1
(3.6) Fos asbs,p(V) = 3 ezv F3 as.bs.p(€)

where the sum is over the four medial edges having v as an endpoint.
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When we consider the observable at criticality (which will be almost always the
case), we drop the dependence on p in the notation. More generally, if (£2,a,b) is fixed,
we simply denote the observable on (€23, as, bs, psa) by Fs.

The quantity Fs(e) is a complexified version of the probability that e belongs to
the exploration path. The complex weight makes the link between Fj5 and probabilistic
properties less explicit. Nevertheless, the vertex fermionic observable Fys converges when
0 goes to 0O:

THEOREM 3.15. [SmilOa] Let (Q,a,b) be a simply connected domain with two
marked points on the boundary. Let Fs be the vertex fermionic observable in (€23, as, bs).
Then, we have

1

(3.7) V7

Fs() - V¢'(-) whend -0

uniformly on any compact subset of ), where ¢ is any conformal map from Q to the
strip R x (0,1) mapping a to —co and b to co.

As in the case of the spin Ising model, this statement is the heart of the proof of
conformal invariance. Yet, the observable itself can be helpful for the understanding of
other properties of the FK-Ising model. For instance, it enables us to prove a statement
equivalent to the celebrated Russo-Seymour-Welsh Theorem for percolation. This result
will be central for the proof of compactness of exploration paths (an important step in
the proof of Theorems 2.10 and 3.13).

THEOREM 3.16 (RSW-type crossing bounds, [DCHN10]). There exists a constant
¢ >0 such that for any rectangle R of size 4n x n, one has

(3.8) qﬁgsd,g,R(there exists an open path from left to right) > c.

Before ending this section, we present a simple yet crucial result: we show that it
is possible to compute rather explicitly the distribution of the loop representation. In
particular, at criticality, the weight of a loop configuration depends only on the number
of loops.

PROPOSITION 3.17. Let p € (0,1) and let (23, as,bs) be a FK Dobrushin domain,

then for any configuration w,

a 1 o\w l(w)
(3.9) Oy (W) = - a"V2

where x = p/[v/2(1-p)], £(w) is the number of loops in the loop configuration associated
to w, o(w) is the number of open edges, and Z is the normalization constant.

Proof. Recall that

a 1 o(w w
day (@) = Zlp/(1-p) 2.

as,bs bs,as
Qs.p Q5 .p*

(in this sense, Dobrushin boundary conditions are self-dual). With w* being the dual

Using arguments similar to Proposition 3.3, the dual of ¢ can be proved to be ¢
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configuration of w, we find
G W) = \Jet@) ot @)
Qs.p Qs.p Q3,p*
1 o(w) = k(w) o(w") = k(w")
= 70D V2 (L) V2
o(w)
1 p(1-p*) o(w*)+o(w) k(w)+k(w*)
_ V=) V2
Vzz* N (1=p)p*
o(w)+o(w™)
V2y/p*[(1-p*) o) /5 HEHR)1
N ZZ*

where the definition of p* was used to prove that ’(71(1;])”;2 = 22, Note that {(w) =
k(w) +k(w*) -1 and

77
V2y/p*[(1-p*)

does not depend on the configuration (the sum o(w) + o(w*) being equal to the total
number of edges). Altogether, this implies the claim. O

7 =

o(w)+o(w*)

4. Discrete complex analysis on graphs

Complex analysis is the study of harmonic and holomorphic functions in complex
domains. In this section, we shall discuss how to discretize harmonic and holomorphic
functions, and what are the properties of these discretizations.

There are many ways to introduce discrete structures on graphs which can be de-
veloped in parallel to the usual complex analysis. We need to consider scaling limits (as
the mesh of the lattice tends to zero), so we want to deal with discrete structures which
converge to the continuous complex analysis as finer and finer graphs are taken.

4.1. Preharmonic functions.

4.1.1. Definition and connection with random walks. Introduce the (non-normalized)
discretization of the Laplacian operator A := i(@im + Biy) in the case of the square
lattice Ls. For welLs and f:Ls — C, define

Mt = 73 () - f(w).

The definition extends to rescaled square lattices in a straightforward way (for instance
to IL§).

DEFINITION 4.1. A function h: Qs — C is preharmonic (resp. pre-superharmonic,
pre-subharmonic) if Ash(z) =0 (resp. <0, 20) for every x € Qs.

One fundamental tool in the study of preharmonic functions is the classical relation
between preharmonic functions and simple random walks:

Let (X,,) be a simple random walk killed at the first time it exits Qgs; then h is
preharmonic on Qs if and only if (h(X,)) is a martingale.

Using this fact, one can prove that harmonic functions are determined by their value
on d9Qs, that they satisfy Harnack’s principle, etc. We refer to [Law91] for a deeper
study on preharmonic functions and their link to random walks. Also note that the set
of preharmonic functions is a complex vector space. As in the continuum, it is easy to
see that preharmonic functions satisfy the maximum and minimum principles.
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4.1.2. Derivative estimates and compactness criteria. For general functions, a con-
trol on the gradient provides regularity estimates on the function itself. It is a well-known
fact that harmonic functions satisfy the reverse property: controlling the function al-
lows us to control the gradient. The following lemma shows that the same is true for
preharmonic functions.

PROPOSITION 4.2. There exists C' > 0 such that, for any preharmonic function
h: Qs - C and any two neighboring sites x,y € Qs,

SUp..eq, |1(2))

(4.1) () ~h(y)| s O e

Proof. Let x,y € Q5. The preharmonicity of h translates to the fact that h(X,,) is
a martingale (where X, is a simple random walk killed at the first time it exits Qs).
Therefore, for z,y two neighboring sites of (25, we have

(4.2) h(@) - h(y) = E[h(X,) = h(Y,)]

where under E, X and Y are two simple random walks starting respectively at x and
y, and 7, 7’ are any stopping times. Let 2r = d(z,Q°) > 0, so that U = a2 + [-r,r]? is
included in Qg. Fix 7 and 7’ to be the hitting times of OUs and consider the following
coupling of X and Y (one has complete freedom in the choice of the joint law in (4.2)):
(X,) is a simple random walk and Y,, is constructed as follows,

o if Xy =y, then Y, = X,,;1 for n>0,

e if X1 #y, thenY, = 0(X,1), where o is the orthogonal symmetry with respect
to the perpendicular bisector ¢ of [ X1,y], whenever X,,;1 does not reach £. As
soon as it does, set Y,, = X,,;1.

It is easy to check that Y is also a simple random walk. Moreover, we have

|h($) - h(y)| < IE[lh(‘X‘r) - h’(YT’)

Ix,.v, ] < 2( sup |h(z)|) P(X, #Y,)
2edUs

Using the definition of the coupling, the probability on the right is known: it is equal
to the probability that X does not touch ¢ before exiting the ball and is smaller than
07’5 (with C" a universal constant), since Uy is of radius r/§ for the graph distance. We
deduce that

|h(2) = h(y)]| < 2( sup |h(z)|) g(S <2 (sup h(z)|) g&
2edUs r 2eQs r

Recall that functions on 25 are implicitly extended to 2.

PROPOSITION 4.3. A family (hs)sso of preharmonic functions on the graphs Qs is
precompact for the uniform topology on compact subsets of Q0 if one of the following
properties holds:

(1) (hs)sso is uniformly bounded on any compact subset of €2,
or

(2) for any compact subset K of 1, there exists M = M(K) >0 such that for any
6>0,

62 > |hs(@)]> < M.

fL‘EK(;
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Proof. Let us prove that the proposition holds under the first hypothesis and then
that the second hypothesis implies the first one.

We are faced with a family of continuous maps hs : Q@ - C and we aim to apply
the Arzela-Ascoli theorem. It is sufficient to prove that the functions hs are uniformly
Lipschitz on any compact subset since they are uniformly bounded on any compact
subset of . Let K be a compact subset of 2. Proposition 4.2 shows that |hs(z)—hs(y)]| <
CKd for any two neighbors z,y € K5, where

SUDss0 SUPzequd(z, i)<r/2 [P6 ()]

d(K,Qe) ’
implying that |hs(z) - hs(y)| < 2Ck|x - y| for any z,y € K5 (not necessarily neighbors).
The Arzela-Ascoli theorem concludes the proof.

Now assume that the second hypothesis holds, and let us prove that (hs)sso is
bounded on any compact subset of Q. Take K c £ compact, let 2r = d(K,Q¢) > 0 and
consider x € K. Using the second hypothesis, there exists k := k(x) such that 55 <k < %
and

(4.3) 5 ¥ |hs(y)l* < 2M]r,
yedUys

Cx = C

where Uys = = + [-0k, 6k]? is the box of size k (for the graph distance) around z and
M = M(y +[-r,r]?). Exercise 4.4 implies
(4.4) hs(z) = 3 hs(y)Hu, (2,y)

yedUgs

for every x € Usy. Using the Cauchy-Schwarz inequality, we find

hé(m)2 = ( Z hé(y)HUk,é (w,y))

y€dUps

1
< (6- > |h5(y)|2)(g' > HUM(%ZJ)2) < 2M/r-C
yedUs yedUys

where C' is a uniform constant. The last inequality used Exercise 4.5 to affirm that
Hy,,(x,y) < C§ for some C = C(r) > 0. i

EXERCISE 4.4. The discrete harmonic measure Hq, (-, y) of y € 02 is the unique
harmonic function on Qs N\ 0Qs vanishing on the boundary 0, except at y, where it
equals 1. Equivalently, Hq,(x,y) is the probability that a simple random walk starting
from x exits Qs \ 00 through y. Show that for any harmonic function h: Qs - C,

ho= 3 h(y)Ho,(y).
yedQs

EXERCISE 4.5. Prove that there exists C' > 0 such that Hg,(0,y) < C¢ for every
§>0 and y € 0Qs, where Q = [-1,1]%.

4.1.3. Discrete Dirichlet problem and convergence in the scaling limit. Preharmonic
functions on square lattices of smaller and smaller mesh size were studied in a number of
papers in the early twentieth century (see e.g. [PW23, Bou26, Lus26]), culminating
in the seminal work of Courant, Friedrichs and Lewy. It was shown in [CFL28]| that
solutions to the Dirichlet problem for a discretization of an elliptic operator converge to
the solution of the analogous continuous problem as the mesh of the lattice tends to zero.
A first interesting fact is that the limit of preharmonic functions is indeed harmonic.

PROPOSITION 4.6. Any limit of a sequence of preharmonic functions on s converg-
ing uniformly on any compact subset of § is harmonic in Q.
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Proof. Let (hs) be a sequence of preharmonic functions on Qs converging to h.
Via Propositions 4.2 and 4.3, (%[h(s(- +0) — hs])ss0 is precompact. Since d,h is the
only possible sub-sequential limit of the sequence, (ﬁ[h(s(- +0) - hs])ss0 converges
(indeed its discrete primitive converges to h). Similarly, one can prove convergence of
discrete derivatives of any order. In particular, 0 = #Aghé converges to i[(’)mh+8yyh].
Therefore, h is harmonic. O

In particular, preharmonic functions with a given boundary value problem converge
in the scaling limit to a harmonic function with the same boundary value problem in a
rather strong sense, including convergence of all partial derivatives. The finest result of
convergence of discrete Dirichlet problems to the continuous ones will not be necessary
in our setting and we state the minimal required result:

THEOREM 4.7. Let Q be a simply connected domain with two marked points a and
b on the boundary, and f a bounded continuous function on the boundary of Q. Let
fs : 005 — C be a sequence of uniformly bounded functions converging uniformly away
from a and b to f. Let hs be the unique preharmonic map on Qs such that (hs)pa, = fs-
Then

hs — h when § -0

uniformly on compact subsets of §), where h is the unique harmonic function on €,
continuous on Q, satisfying hjpq = f.

Proof. Since (fs5)ss0 is uniformly bounded by some constant M, the minimum and
maximum principles imply that (hs)sso is bounded by M. Therefore, the family (hs) is
precompact (Proposition 4.3). Let hbea sub-sequential limit. Necessarily, h is harmonic
inside the domain (Proposition 4.6) and bounded. To prove that h = h, it suffices to
show that h can be continuously extended to the boundary by f.

Let 2 € 92\ {a,b} and £ > 0. There exists R > 0 such that for 6 small enough,

|fs(z") = fs(z)| <e for every 2’ € 902N Q(z, R),
where Q(z, R) = x + [-R, R]%. For r < R and y € Q(x,r), we have
hs(y) = fs(o) = Ey[fs(X7) = fs(x)]

for X a random walk starting at y, and 7 its hitting time of the boundary. Decomposing
between walks exiting the domain inside Q(x, R) and others, we find

hs(y) = fs(x)] < & + 2MPy[X- ¢ Q(z, R)]
Exercise 4.8 guarantees that P,[ X ¢ Q(z,R)] < (r/R)® for some independent constant
« > 0. Taking r = R(g/2M)"* and letting & go to 0, we obtain |h(y) - f(z)| < 2¢ for
every y € Q(x,r). m]

EXERCISE 4.8. Show that there exists a >0 such that for any 1> r>¢§ >0 and any
curve v inside D :={z:|z| <1} from C ={z:|z| =1} to {z:|z| =}, the probability for a
random walk on Ds starting at 0 to exit (D~~y)s through C is smaller than r*. To prove
this, one can show that in any annulus {z: x < |z| < 2z}, the random walk trajectory has
a uniformly positive probability to close a loop around the origin.

4.1.4. Discrete Green functions. This paragraph concludes the section by mention-
ing the important example of discrete Green functions. For y € Q5 \ 085, let Go, (-, y)
be the discrete Green function in the domain 5 with singularity at y, i.e. the unique
function on Qs such that

e its Laplacian on Q4 \ Qs equals 0 except at y, where it equals 1,
e (G, (-,y) vanishes on the boundary 9.
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The quantity -G, (z,y) is the number of visits at = of a random walk started at y and
stopped at the first time it reaches the boundary. Equivalently, it is also the number of
visits at y of a random walk started at x stopped at the first time it reaches the boundary.
Green functions are very convenient, in particular because of the Riesz representation
formula for (not necessarily harmonic) functions:

PROPOSITION 4.9 (Riesz representation formula). Let f : Qs - C be a function
vanishing on 0Qs. We have

f = Z Aﬁf(y)GQ5('7y)'

yeQs
Proof. Note that f -, .o, Asf(y)Ga, (-, y) is harmonic and vanishes on the bound-
ary. Hence, it equals 0 everywhere. O

Finally, a regularity estimate on discrete Green functions will be needed. This
proposition is slightly technical. In the following, aQs = [~a,a]®> nLs and Vv, f(x) =
(f(z+0) - f(2), f(x+id) - f(x)).

PROPOSITION 4.10. There exists C' >0 such that for any § >0 and y € 9Qs,

> VaGog,(z.y)| < C8 3 Gog,(z,y).
z€Qs zeQs

Proof. In the proof, C1,...,Cls denote universal constants. First assume y € 9Q5\3Qs.

Using random walks, one can easily show that there exists Cy > 0 such that
1
Cy
for every x,2" € 2Qs (this is a special application of Harnack’s principle). Using Propo-
sition 4.2, we deduce
Z |VIG9Q5 (xvy)| < Z C26 max G9Q5 (‘T:y) <1020 Z G9Q5 (m7y)
2eQs zeQs z€2Qs zeQs

which is the claim for y € 9Qs \ 3Qs.

Assume now that y € 3Q5. Using the fact that Gy, (z,y) is the number of visits of
z for a random walk starting at y (and stopped on the boundary), we find

3 Gog, (2,y) > C3/6°.
Qs

Therefore, it suffices to prove ¥, [VGoq; (7, y)| < C4/d. Let Gy, be the Green function
in the whole plane, ¢.e. the function with Laplacian equal to d, ,, normalized so that
G, (y,y) =0, and with sublinear growth. This function has been widely studied, it was
proved in [M'W40] that

1 - )
GL5(1U7Z/):;ln(|x(sy|)+05+0(x_y|)-

Now, Gr, (-, y) —Gog, (-, y) - % In (%) is harmonic and has bounded boundary conditions
on 09Qs. Therefore, Proposition 4.2 implies

2 | Va(GLy (2, 9) - Gog, (,9))] < Ced-1/6% = Cg/o.
z€Qs
Moreover, the asymptotic of G, (-, y) leads to
3 VG, (z,y)| < Cr/d.
T€Qs
Summing the two inequalities, the result follows readily. O

GQQS (x,y) < G9Q5 (mlvy) < ClG9Q5 (x,y)
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4.2. Preholomorphic functions.

4.2.1. Historical introduction. Preholomorphic functions appeared implicitly in Kirch-
hoff’s work [Kir47], in which a graph is modeled as an electric network. Assume every
edge of the graph is a unit resistor and for u ~ v, let F'(uv) be the current from u to v.
The first and the second Kirchhoff’s laws of electricity can be restated:

e the sum of currents flowing from a vertex is zero:
(4.5) > F(w) =0,

e the sum of the currents around any oriented closed contour 7 is zero:

(4.6) > F(uw) =0.
[uv]ey

Different resistances amount to putting weights into (4.5) and (4.6). The second
law is equivalent to saying that F' is given by the gradient of a potential function H,
and the first equivalent to H being preharmonic.

Besides the original work of Kirchhoff, the first notable application of preholomor-
phic functions is perhaps the famous article [BSST40]| of Brooks, Smith, Stone and
Tutte, where preholomorphic functions were used to construct tilings of rectangles by
squares.

Preholomorphic functions distinctively appeared for the first time in the papers
[Isa41, Isa52] of Isaacs, where he proposed two definitions (and called such functions
mono-diffric). Both definitions ask for a discrete version of the Cauchy-Riemann equa-
tions 0;o F' = i0,F or equivalently that the z-derivative is 0. In the first definition, the
equation that the function must sati