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Introduction

In 2006, Peter E. Newstead paid his first academic visit to North America after
the 1960s, and the occasion originated a number of workshops and conferences in his
honor. The editors of this volume, together with Montserrat Teixidor i Bigas, or-
ganized a Clay Mathematics Institute workshop, “Moduli spaces of vector bundles,
with a view toward coherent sheaves” (October 6-10, 2006). The experts convened
produced a vigorous confluence of so many different techniques and discussed such
deep connections that we felt a proceedings volume would be a valuable asset to
the community of mathematicians and physicists; when a participant was not avail-
able to write for this volume, state-of-the-art coverage of the topic was provided
through the generosity of an alternative expert.

Peter E. Newstead earned his Ph.D. from the University of Cambridge in 1966;
both John A. Todd and Michael F. Atiyah supervised his doctoral work. From the
beginning of his career, he was interested in topological properties of classification
spaces of vector bundles. Geometric Invariant Theory was re-invigorated around
that time by the refinement of concepts of (semi-)stability and projective models,
and Newstead contributed some of the more original and deeper constructions,
for example the projective models for rank-2 bundles of fixed determinant of odd
degree over a curve of genus two, a quadratic complex (obtained also, using a
different method, by M.S. Narasimhan with S. Ramanan), and a topological proof
for non-existence of universal bundles in certain cases. He played a prominent
role in the development of a major area by focusing on moduli of vector bundles
over an algebraic curve, was a main contributor to a Brill-Noether geography for
these spaces, and his topological results led him to make major contributions (cf.
[N1-2] and [KN]) to the description, by generators and relations, of the rational
cohomology algebra H∗(SUX(2, L)) for the moduli space SUX(2, L) of stable rank-
2 bundles over X with fixed determinant L, where X is a compact Riemann surface
of genus g ≥ 2, and L a line bundle of odd degree over X (the higher-rank case
was then settled in [EK]). The main concerns of his current work are coherent
systems on algebraic curves and Picard bundles. This bird’s-eye view of Newstead’s
work omits several topics, ranging from invariants of group action to algebraic
geometry over the reals, conic bundles and other special projective varieties defined
by quadrics, and compactifications of moduli spaces, and is merely intended to
serve as orientation for the readers of the present volume.

This volume of cutting-edge contributions provides a collection of problems and
methods that are greatly enriching our understanding of moduli spaces and their
applications. It should be accessible to non-experts, as well as further the interac-
tion among researchers specializing in various aspects of these spaces. Indeed, we

vii



viii INTRODUCTION

hope this volume will impress the reader with the diversity of ideas and techniques
that are brought together by the nature of these varieties.

In brief and non-technical terms, the volume covers the following areas. An
aspect of moduli spaces that recently emerged is the disparate set of dualities that
parallel the classical Hecke correspondence of number theory. In modern terms,
such a pairing of two variables (or two categories) is a Fourier-Mukai-Laumon trans-
form; implications go under the heading of geometric Langlands program, the area
of Kamnitzer’s article. Pareschi and Popa offer original techniques in the derived-
theoretic study of regularity and generic vanishing for coherent sheaves on abelian
varieties, with applications to the study of vector bundles, as well as that of lin-
ear series on irregular varieties. Also on the theme of moduli spaces, Aprodu and
Farkas on the one hand, Jeffrey on the other, provide techniques to analyze different
properties: respectively, applications of Koszul cohomology to the study of various
moduli spaces, and symplectic-geometric methods for intersection cohomology over
singular moduli spaces. Teixidor treats moduli spaces of vector bundles over re-
ducible curves, a delicate issue with promising applications to integrable systems.
Arcara and Bertram work torwards a concept of stability for bundles over surfaces
and conjecturally over threefolds. Using the Brauer group, Lieblich relates the
geometry of moduli spaces to the properties of certain non-commutative algebras
and to arithmetic local-to-global principles. Andersen and Gammelgaard’s paper
addresses a quantization of the moduli space: the fibration of the moduli space of
curves given by the moduli of bundles admits a projective connection whose as-
sociated operator generalizes the heat equation – it was defined independently by
N. Hitchin, and by S. Axelrod with S. Della Pietra and E. Witten. Finally, the
workshop’s guest of honor, Peter Newstead himself, offers a cutting-edge overview
of his current area of work, coherent systems over algebraic curves; may we salute
it as the Brill-Noether theory of the XXI century?

We hope you enjoy the book and find it as inspiring as we do.

David A. Ellwood, Cambridge

Emma Previato, Boston
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Hitchin’s Projectively Flat Connection, Toeplitz Operators
and the Asymptotic Expansion of TQFT Curve Operators

Jørgen Ellegaard Andersen and Niels Leth Gammelgaard

Abstract. In this paper, we will provide a review of the geometric construc-
tion, proposed by Witten, of the SU(n) quantum representations of the map-
ping class groups which are part of the Reshetikhin-Turaev TQFT for the
quantum group Uq(sl(n,C)). In particular, we recall the differential geometric
construction of Hitchin’s projectively flat connection in the bundle over
Teichmüller space obtained by push-forward of the determinant line bundle
over the moduli space of rank n, fixed determinant, semi-stable bundles fiber-
ing over Teichmüller space. We recall the relation between the Hitchin con-
nection and Toeplitz operators which was first used by the first named author
to prove the asymptotic faithfulness of the SU(n) quantum representations of
the mapping class groups. We further review the construction of the formal
Hitchin connection, and we discuss its relation to the full asymptotic expan-
sion of the curve operators of Topological Quantum Field Theory. We then
go on to identify the first terms in the formal parallel transport of the Hitchin
connection explicitly. This allows us to identify the first terms in the resulting
star product on functions on the moduli space. This is seen to agree with the
first term in the star-product on holonomy functions on these moduli spaces
defined by Andersen, Mattes and Reshetikhin.

1. Introduction

Witten constructed, via path integral techniques, a quantization of Chern-
Simons theory in 2 + 1 dimensions, and he argued in [Wi] that this produced a
TQFT, indexed by a compact simple Lie group and an integer level k. For the group

SU(n) and level k, let us denote this TQFT by Z
(n)
k . Witten argues in [Wi] that the

theory Z
(2)
k determines the Jones polynomial of a knot in S3. Combinatorially, this

theory was first constructed by Reshetikhin and Turaev, using the representation
theory of Uq(sl(n,C)) at q = e(2πi)/(k+n), in [RT1] and [RT2]. Subsequently, the

TQFT’s Z
(n)
k were constructed using skein theory by Blanchet, Habegger, Masbaum

and Vogel in [BHMV1], [BHMV2] and [B1].

The two-dimensional part of the TQFT Z
(n)
k is a modular functor with a certain

label set. For this TQFT, the label set Λ
(n)
k is a finite subset (depending on k)

of the set of finite dimensional irreducible representations of SU(n). We use the

2010 Mathematics Subject Classification. Primary 53D50; Secondary 47D35, 53D57, 57R56.
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2 JØRGEN ELLEGAARD ANDERSEN AND NIELS LETH GAMMELGAARD

usual labeling of irreducible representations by Young diagrams, so in particular

� ∈ Λ
(n)
k is the defining representation of SU(n). Let further λ

(d)
0 ∈ Λ

(n)
k be the

Young diagram consisting of d columns of length k. The label set is also equipped
with an involution, which is simply induced by taking the dual representation. The
trivial representation is a special element in the label set which is clearly preserved
by the involution.

Z
(n)
k :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Category of (ex-
tended) closed
oriented surfaces
with Λ

(n)
k -labeled

marked points with
projective tangent
vectors

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

→
{
Category of finite
dimensional vector
spaces over C

}

The three-dimensional part of Z
(n)
k is an association of a vector,

Z
(n)
k (M,L, λ) ∈ Z

(n)
k (∂M, ∂L, ∂λ),

to any compact, oriented, framed 3–manifold M together with an oriented, framed

link (L, ∂L) ⊆ (M,∂M) and a Λ
(n)
k -labeling λ : π0(L)→Λ

(n)
k .

λ1

λ2

λ+
2

λ2

This association has to satisfy the Atiyah-Segal-Witten TQFT axioms (see e.g.
[At], [Se] and [Wi]). For a more comprehensive presentation of the axioms, see
Turaev’s book [T].

The geometric construction of these TQFTs was proposed by Witten in [Wi]
where he derived, via the Hamiltonian approach to quantum Chern-Simons theory,
that the geometric quantization of the moduli spaces of flat connections should
give the two-dimensional part of the theory. Further, he proposed an alterna-
tive construction of the two-dimensional part of the theory via WZW-conformal
field theory. This theory has been studied intensively. In particular, the work of
Tsuchiya, Ueno and Yamada in [TUY] provided the major geometric constructions
and results needed. In [BK], their results were used to show that the category of
integrable highest weight modules of level k for the affine Lie algebra associated to
any simple Lie algebra is a modular tensor category. Further, in [BK], this result is
combined with the work of Kazhdan and Lusztig [KL] and the work of Finkelberg
[Fi] to argue that this category is isomorphic to the modular tensor category asso-
ciated to the corresponding quantum group, from which Reshetikhin and Turaev
constructed their TQFT. Unfortunately, these results do not allow one to conclude
the validity of the geometric constructions of the two-dimensional part of the TQFT
proposed by Witten. However, in joint work with Ueno, [AU1], [AU2], [AU3] and
[AU4], we have given a proof, based mainly on the results of [TUY], that the
TUY-construction of the WZW-conformal field theory, after twist by a fractional
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power of an abelian theory, satisfies all the axioms of a modular functor. Further-
more, we have proved that the full (2 + 1)-dimensional TQFT resulting from this
is isomorphic to the aforementioned one, constructed by BHMV via skein theory.
Combining this with the theorem of Laszlo [La1], which identifies (projectively)
the representations of the mapping class groups obtained from the geometric quan-
tization of the moduli space of flat connections with the ones obtained from the
TUY-constructions, one gets a proof of the validity of the construction proposed
by Witten in [Wi].

Part of this TQFT is the quantum SU(n) representations of the mapping class
groups. Namely, if Σ is a closed oriented surfaces of genus g, Γ is the mapping class
group of Σ, and p is a point on Σ, then the modular functor induces a representation

(1) Z
(n,d)
k : Γ → PAut

(
Z

(n)
k (Σ, p, λ

(d)
0 )

)
.

For a general label of p, we would need to choose a projective tangent vector
vp ∈ TpΣ/R+, and we would get a representation of the mapping class group of

(Σ, p, vp). But for the special labels λ
(d)
0 , the dependence on vp is trivial and in fact

we get a representation of Γ. Furthermore, the curve operators are also part of any

TQFT: For γ ⊆ Σ−{p} an oriented simple closed curve and any λ ∈ Λ
(n)
k , we have

the operators

(2) Z
(n,d)
k (γ, λ) : Z

(n)
k (Σ, p, λ

(d)
0 ) → Z

(n)
k (Σ, p, λ

(d)
0 ),

defined as

Z
(n,d)
k (γ, λ) = Z

(n,d)
k (Σ× I, γ × {1

2
}
∐

{p} × I, {λ, λ(d)
0 }).

λ

γ

λ
(d)
0

The curve operators are natural under the action of the mapping class group,
meaning that the following diagram,

Z
(n)
k (Σ, p, λ

(d)
0 )

Z
(n,d)
k (γ,λ)−−−−−−−→ Z

(n)
k (Σ, p, λ

(d)
0 )

Z
(n,d)
k (φ)

⏐
⏐
�

⏐
⏐
�Z

(n,d)
k (φ)

Z
(n)
k (Σ, p, λ

(d)
0 )

Z
(n,d)
k (φ(γ),λ)−−−−−−−−−→ Z

(n)
k (Σ, p, λ

(d)
0 ),

is commutative for all φ ∈ Γ and all labeled simple closed curves (γ, λ) ⊂ Σ− {p}.
For the curve operators, we can derive an explicit formula using factorization:

Let Σ′ be the surface obtained from cutting Σ along γ and identifying the two
boundary components to two points, say {p+, p−}. Here p+ is the point corre-

sponding to the “left” side of γ. For any label μ ∈ Λ
(n)
k , we get a labeling of the

ordered points (p+, p−) by the ordered pair of labels (μ, μ†).

Since Z
(n)
k is also a modular functor, one can factor the space Z

(n)
k (Σ, p, λ

(d)
0 )

as a direct sum, ‘along’ γ, over Λ
(n)
k . That is, we get an isomorphism
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(3) Z
(n)
k (Σ, p, λ

(d)
0 ) ∼=

⊕

μ∈Λ
(n)
k

Z(k)(Σ′, p+, p−, p, μ, μ
†, λ

(d)
0 ).

Strictly speaking, we need a base point on γ to induce tangent directions at p±.

However, the corresponding subspaces of Z(k)(Σ, p, λ
(d)
0 ) do not depend on the

choice of base point. The isomorphism (3) induces an isomorphism

End(Z(k)(Σ, p, λ
(d)
0 )) ∼=

⊕

μ∈Λ
(n)
k

End(Z(k)(Σ′, p+, p−, p, μ, μ
†, λ

(d)
0 )),

which also induces a direct sum decomposition of End(Z(k)(Σ, p, λ
(d)
0 )), independent

of the base point.
The TQFT axioms imply that the curve operator Z(k)(γ, λ) is diagonal with

respect to this direct sum decomposition along γ. One has the formula

Z(k)(γ, λ) =
⊕

μ∈Λ
(n)
k

Sλ,μ(S0,μ)
−1 Id

Z(k)(Σ′,p+,p−,p,μ,μ†,λ
(d)
0 )

.

Here Sλ,μ is the S-matrix1 of the theory Z
(n)
k . See e.g. [B1] for a derivation of this

formula.
Let us now briefly recall the geometric construction of the representations Z

(n,d)
k

of the mapping class group, as proposed by Witten, using geometric quantization
of moduli spaces.

We assume from now on that the genus of the closed oriented surface Σ is at
least two. Let M be the moduli space of flat SU(n) connections on Σ − p with
holonomy around p equal to exp(2πid/n) Id ∈ SU(n). When (n, d) are coprime, the
moduli space is smooth. In all cases, the smooth part of the moduli space has a
natural symplectic structure ω. There is a natural smooth symplectic action of the
mapping class group Γ of Σ on M . Moreover, there is a unique prequantum line
bundle (L,∇, (·, ·)) over (M,ω). The Teichmüller space T of complex structures
on Σ naturally, and Γ-equivariantly, parametrizes Kähler structures on (M,ω).
For σ ∈ T , we denote by Mσ the manifold (M,ω) with its corresponding Kähler
structure. The complex structure on Mσ and the connection ∇ in L induce the
structure of a holomorphic line bundle on L. This holomorphic line bundle is simply
the determinant line bundle over the moduli space, and it is an ample generator of
the Picard group [DN].

By applying geometric quantization to the moduli space M , one gets, for any
positive integer k, a certain finite rank bundle over Teichmüller space T which
we will call the Verlinde bundle Vk at level k. The fiber of this bundle over a
point σ ∈ T is Vk,σ = H0(Mσ,Lk). We observe that there is a natural Hermitian
structure 〈·, ·〉 on H0(Mσ,Lk) by restricting the L2-inner product on global L2

sections of Lk to H0(Mσ,Lk).
The main result pertaining to this bundle is:

Theorem 1 (Axelrod, Della Pietra and Witten; Hitchin). The projectivization

of the bundle Vk supports a natural flat Γ-invariant connection ∇̂.

1The S-matrix is determined by the isomorphism that a modular functor induces from two
different ways of glueing an annulus to obtain a torus. For its definition, see e.g. [MS], [Se], [Wa]
or [BK] and references therein. It is also discussed in [AU3].



HITCHIN’S CONNECTION, TOEPLITZ OPERATORS AND CURVE OPERATORS 5

This is a result proved independently by Axelrod, Della Pietra and Witten
[ADW] and by Hitchin [H]. In section 2, we review our differential geometric

construction of the connection ∇̂ in the general setting discussed in [A6]. We
obtain as a corollary that the connection constructed by Axelrod, Della Pietra and
Witten projectively agrees with Hitchin’s.

Definition 1. We denote by Z
(n,d)
k the representation

Z
(n,d)
k : Γ → PAut

(
Z

(n)
k (Σ, p, λ

(d)
0 )

)
,

obtained from the action of the mapping class group on the covariant constant
sections of P(Vk) over T .

The projectively flat connection ∇̂ induces a flat connection ∇̂e in End(Vk). Let
End0(Vk) be the subbundle consisting of traceless endomorphisms. The connection

∇̂e also induces a connection in End0(Vk), which is invariant under the action of Γ.
In [A3], we proved

Theorem 2 (Andersen). Assume that n and d are coprime or that (n, d) =
(2, 0) when g = 2. Then, we have that

∞⋂

k=1

ker(Z
(n,d)
k ) =

{
{1, H} g = 2, n = 2 and d = 0

{1} otherwise,

where H is the hyperelliptic involution.

The main ingredient in the proof of this Theorem is the Toeplitz operators
associated to smooth functions on M . For each f ∈ C∞(M) and each point σ ∈ T ,
we have the Toeplitz operator,

T
(k)
f,σ : H0(Mσ,Lk

σ)→H0(Mσ,Lk
σ),

which is given by

T
(k)
f,σ = π(k)

σ (fs)

for all s ∈ H0(Mσ,Lk
σ). Here π

(k)
σ is the orthogonal projection onto H0(Mσ,Lk

σ)
induced from the L2-inner product on C∞(M,Lk). We get a smooth section of
End(V(k)),

T
(k)
f ∈ C∞(T ,End(V(k))),

by letting T
(k)
f (σ) = T

(k)
f,σ (see [A3]). See section 3 for further discussion of the

Toeplitz operators and their connection to deformation quantization.

The sections T
(k)
f of End(V(k)) over T are not covariant constant with respect to

Hitchin’s connection ∇̂e. However, they are asymptotically so as k goes to infinity.
This will be made precise when we discuss the formal Hitchin connection below.

As a further application of TQFT and the theory of Toeplitz operators together
with the theory of coherent states, we recall the first author’s solution to a problem
in geometric group theory, which has been around for quite some time (see e.g.
Problem (7.2) in Chapter 7, “A short list of open questions”, of [BHV]): In [A8],
Andersen proved that

Theorem 3 (Andersen). The mapping class group of a closed oriented surface,
of genus at least two, does not have Kazhdan’s property (T).
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Returning to the geometric construction of the Reshetikhin-Turaev TQFT,
let us recall the geometric construction of the curve operators. First of all, the
decomposition (3) is geometrically obtained as follows (see [A7] for the details):

One considers a one parameter family of complex structures σt ∈ T , t ∈ R+,
such that the corresponding family in the moduli space of curves converges in the
Mumford-Deligne boundary to a nodal curve, which topologically corresponds to
shrinking γ to a point. By the results of [A1], the corresponding sequence of
complex structures on the moduli space M converges to a non-negative polariza-
tion on M whose isotropic foliation is spanned by the Hamiltonian vector fields
associated to the holonomy functions of γ. The main result of [A7] is that the
covariant constant sections of V(k) along the family σt converge to distributions
supported on the Bohr-Sommerfeld leaves of the limiting non-negative polarization
as t goes to infinity. The direct sum of the geometric quantization of the level k
Bohr-Sommerfeld levels of this non-negative polarization is precisely the left-hand
side of (3). A sewing construction, inspired by conformal field theory (see [TUY]),
is then applied to show that the resulting linear map from the right-hand side of
(3) to the left-hand side is an isomorphism. This is described in detail in [A7].

In [A7], we further prove the following important asymptotic result. Let hγ,λ ∈
C∞(M) be the holonomy function obtained by taking the trace in the representation
λ of the holonomy around γ.

Theorem 4 (Andersen). For any one-dimensional oriented submanifold γ and
any labeling λ of the components of γ, we have that

lim
k→∞

‖Z(n,d)
k (γ, λ)− T

(k)
hγ,λ

‖ = 0.

Let us here give the main idea behind the proof of Theorem 4 and refer to [A7]
for the details. One considers the explicit expression for the S-matrix, as given in
formula (13.8.9) in Kac’s book [Kac],

(4) Sλ,μ/S0,μ = λ(e−2πi μ̌+ρ̌
k+n ),

where ρ is half the sum of the positive roots and ν̌ (ν any element of Λ) is the
unique element of the Cartan subalgebra of the Lie algebra of SU(n) which is dual
to ν with respect to the Cartan-Killing form (·, ·).

From the expression (4), one sees that under the isomorphism μ̌ �→ μ, the
expression Sλ,μ/S0,μ makes sense for any μ̌ in the Cartan subalgebra of the Lie
algebra of SU(n). Furthermore, one finds that the values of this sequence of func-
tions (depending on k) are asymptotic to the set of values of the holonomy function
hγ,λ at the level k Bohr-Sommerfeld sets of the limiting non-negative polarizations
discussed above (see [A1]). From this, one can deduce Theorem 4. See again [A7]
for details.

Let us now consider the general setting treated in [A6]. Thus, we consider,
as opposed to only considering the moduli spaces, a general prequantizable sym-
plectic manifold (M,ω) with a prequantum line bundle (L, (·, ·),∇). We assume
that T is a complex manifold which holomorphically and rigidly (see Definition 5)
parameterizes Kähler structures on (M,ω). Then, the following theorem, proved in
[A6], establishes the existence of the Hitchin connection under a mild cohomological
condition.

Theorem 5 (Andersen). Suppose that I is a rigid family of Kähler structures
on the compact, prequantizable symplectic manifold (M,ω) which satisfies that there
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exists an n ∈ Z such that the first Chern class of (M,ω) is n[ ω
2π ] ∈ H2(M,Z)

and H1(M,R) = 0. Then, the Hitchin connection ∇̂ in the trivial bundle H(k) =
T × C∞(M,Lk) preserves the subbundle H(k) with fibers H0(Mσ,Lk). It is given
by

∇̂V = ∇̂t
V +

1

4k + 2n

{
ΔG(V ) + 2∇G(V )dF + 4kV ′[F ]

}
,

where ∇̂t is the trivial connection in H(k), and V is any smooth vector field on T .

In section 4, we study the formal Hitchin connection which was introduced in
[A6]. Let D(M) be the space of smooth differential operators on M acting on
smooth functions on M . Let Ch be the trivial C∞

h (M)-bundle over T .

Definition 2. A formal connection D is a connection in Ch over T of the
form

DV f = V [f ] + D̃(V )(f),

where D̃ is a smooth one-form on T with values in Dh(M) = D(M)[[h]], f is any
smooth section of Ch, V is any smooth vector field on T and V [f ] is the derivative
of f in the direction of V .

Thus, a formal connection is given by a formal series of differential operators

D̃(V ) =

∞∑

l=0

D̃(l)(V )hl.

From Hitchin’s connection in H(k), we get an induced connection ∇̂e in the
endomorphism bundle End(H(k)). As previously mentioned, the Teoplitz operators

are not covariant constant sections with respect to ∇̂e, but asymptotically in k they
are. This follows from the properties of the formal Hitchin connection, which is the
formal connection D defined through the following theorem (proved in [A6]).

Theorem 6. (Andersen) There is a unique formal connection D which satisfies
that

(5) ∇̂e
V T

(k)
f ∼ T

(k)
(DV f)(1/(k+n/2))

for all smooth sections f of Ch and all smooth vector fields on T . Moreover,

D̃ = 0 mod h.

Here ∼ means the following: For all L ∈ Z+ we have that
∥
∥
∥
∥
∥
∇̂e

V T
(k)
f −

(

T
(k)
V [f ] +

L∑

l=1

T
(k)

D̃
(l)
V f

1

(k + n/2)l

)∥
∥
∥
∥
∥
= O(k−(L+1)),

uniformly over compact subsets of T , for all smooth maps f : T →C∞(M).

Now fix an f ∈ C∞(M) which does not depend on σ ∈ T , and notice how the

fact that D̃ = 0 mod h implies that
∥
∥
∥∇̂e

V T
(k)
f

∥
∥
∥ = O(k−1).

This expresses the fact that the Toeplitz operators are asymptotically flat with
respect to the Hitchin connection.

We define a mapping class group equivariant formal trivialization of D as fol-
lows.
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Definition 3. A formal trivialization of a formal connection D is a smooth
map P : T →Dh(M) which modulo h is the identity, for all σ ∈ T , and which
satisfies

DV (P (f)) = 0,

for all vector fields V on T and all f ∈ C∞
h (M). Such a formal trivialization is

mapping class group equivariant if P (φ(σ)) = φ∗P (σ) for all σ ∈ T and φ ∈ Γ.

Since the only mapping class group invariant functions on the moduli space are
the constant ones (see [Go1]), we see that, in the case where M is the moduli space,
such a P , if it exists, must be unique up to multiplication by a formal constant.

Clearly, if D is not flat, such a formal trivialization cannot exist even locally
on T . However, if D is flat and its zero-order term is just given by the trivial
connection in Ch, then a local formal trivialization exists, as proved in [A6].

Furthermore, it is proved in [A6] that flatness of the formal Hitchin connection
is implied by projective flatness of the Hitchin connection. As was proved by
Hitchin in [H], and stated above in Theorem 1, this is the case when M is the
moduli space. Furthermore, the existence of a formal trivialization implies the
existence of a unique (up to formal scale) mapping class group equivariant formal
trivialization, provided that H1

Γ(T , D(M)) = 0. The first steps towards proving
that this cohomology group vanishes have been taken in [AV1, AV2, AV3, Vi].
In this paper, we prove that

Theorem 7. The mapping class group equivariant formal trivialization of the
formal Hitchin connection exists to first order, and we have the following explicit
formula for the first order term of P ;

P (1)
σ (f) =

1

4
Δσ(f) + i∇X′′

F
(f),

where X ′′
F denotes the (0,1)-part of the Hamiltonian vector field for the Ricci po-

tential.

For the proof of the theorem, see section 4. We will make the following conjec-
ture.

Conjecture 1. The mapping class group equivariant formal trivialization of
the formal Hitchin connection exists, and for any one-dimensional oriented sub-
manifold γ and any labeling λ of the components of γ, we have the full asymptotic
expansion

Z
(n,d)
k (γ, λ) ∼ T

(k)
P (hγ,λ)

,

which means that for all L and all σ ∈ T , we have that

‖Z(n,d)
k (γ, λ)−

L∑

l=0

T
(k)

P
(l)
σ (hγ,λ)

1

(k + n/2)l
‖ = O(kL+1).

It is very likely that the techniques used in [A7] to prove Theorem 4 can be
used to prove this conjecture.

When we combine this conjecture with the asymptotics of the product of two
Toeplitz operators (see Theorem 11), we get the full asymptotic expansion of the
product of two curve operators:

Z
(n,d)
k (γ1, λ1)Z

(n,d)
k (γ2, λ2) ∼ T

(k)

P (hγ1,λ1
)�̃BT

σ P (hγ2,λ2
)
,
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where �̃BT
σ is very closely related to the Berezin-Toeplitz star product for the Kähler

manifold (Mσ, ω), as first defined in [BMS]. See section 3 for further details re-
garding this.

Suppose that we have a mapping class group equivariant formal trivialization
P of the formal Hitchin connection D. We can then define a new smooth family of
star products parametrized by T as follows:

f �σ g = P−1
σ (Pσ(f)�̃

BT
σ Pσ(g))

for all f, g ∈ C∞(M) and all σ ∈ T . Using the fact that P is a trivialization, it
is not hard to prove that �σ is independent of σ, and we simply denote it �. The
following theorem is proved in section 4.

Theorem 8. if The star product � has the form

f � g = fg − i

2
{f, g}h+O(h2).

We observe that this formula for the first-order term of � agrees with the first-
order term of the star product constructed by Andersen, Mattes and Reshetikhin
in [AMR2], when we apply the formula in Theorem 8 to two holonomy functions
hγ1,λ1

and hγ2,λ2
:

hγ1,λ1
� hγ2,λ2

= hγ1γ2,λ1∪λ2
− i

2
h{γ1,γ2},λ1∪λ2

+O(h2).

We recall that {γ1, γ2} is the Goldman bracket (see [Go2]) of the two simple closed
curves γ1 and γ2.

A similar result was obtained for the abelian case, i.e. in the case where M is
the moduli space of flat U(1)-connections, by the first author in [A2], where the
agreement between the star product defined in differential geometric terms and the
star product of Andersen, Mattes and Reshetikhin was proved to all orders. We
conjecture that the two star products also agree2 in the non-abelian case.

We also remark that the constructions presented here seems to explicitly real-
ized, to first order, some of the constructions contemplated by Gukov and Witten
in [GW] in the part concerned with Chern-Simons theory.

We would finally also like to recall that the first named author has shown
that the Nielsen-Thurston classification of mapping classes is determined by the
Reshetikhin-Turaev TQFTs. We refer to [A5] for the full details of this.

Warm thanks are due to the editor of this volume for her persistent encourage-
ments towards the completion of this contribution.

2. The Hitchin connection

In this section, we review our construction of the Hitchin connection using the
global differential geometric setting of [A6]. This approach is close in spirit to
Axelrod, Della Pietra and Witten’s in [ADW], however we do not use any infinite
dimensional gauge theory. In fact, the setting is more general than the gauge
theory setting in which Hitchin in [H] constructed his original connection. But
when applied to the gauge theory situation, we get the corollary that Hitchin’s
connection agrees with Axelrod, Della Pietra and Witten’s.

2By agree we don’t just mean agree up to equivalence, but that the two star products of any
two functions exactly agree.
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Hence, we start in the general setting and let (M,ω) be any compact symplectic
manifold.

Definition 4. A prequantum line bundle (L, (·, ·),∇) over the symplectic man-
ifold (M,ω) consist of a complex line bundle L with a Hermitian structure (·, ·) and
a compatible connection ∇ whose curvature is

F∇(X,Y ) = [∇X ,∇Y ]−∇[X,Y ] = −iω(X,Y ).

We say that the symplectic manifold (M,ω) is prequantizable if there exists a pre-
quantum line bundle over it.

Recall that the condition for the existence of a prequantum line bundle is
that [ ω

2π ] ∈ Im(H2(M,Z)→H2(M,R)). Furthermore, the inequivalent choices of

prequantum line bundles (if they exist) are parametrized by H1(M,U(1)) (see e.g.
[Wo]).

We shall assume that (M,ω) is prequantizable and fix a prequantum line bundle
(L, (·, ·),∇).

Assume that T is a smooth manifold which smoothly parametrizes Kähler struc-
tures on (M,ω). This means that we have a smooth3 map I : T →C∞(M,End(TM))
such that (M,ω, Iσ) is a Kähler manifold for each σ ∈ T .

We will use the notation Mσ for the complex manifold (M, Iσ). For each σ ∈ T ,
we use Iσ to split the complexified tangent bundle TMC into the holomorphic and
the anti-holomorphic parts. These we denote by

Tσ = E(Iσ, i) = Im(Id−iIσ)

and
T̄σ = E(Iσ,−i) = Im(Id+iIσ)

respectively.
The real Kähler metric gσ on (Mσ, ω), extended complex linearly to TMC, is

by definition

gσ(X,Y ) = ω(X, IσY ),(6)

where X,Y ∈ C∞(M,TMC).
The divergence of a vector field X is the unique function δ(X) determined by

LXωm = δ(X)ωm.(7)

It can be calculated by the formula δ(X) = Λd(iXω), where Λ denotes contraction
with the Kähler form. Even though the divergence only depends on the volume,
which is independent of particular Kähler structure, it can be expressed in terms
of the Levi-Civita connection on Mσ by δ(X) = Tr∇σX.

Inspired by this expression, we define the divergence of a symmetric bivector
field B ∈ C∞(M,S2(TMC)) by

δσ(B) = Tr∇σB.

Notice that the divergence on bivector fields does depend on the point σ ∈ T .

3Here a smooth map from T to C∞(M,W ), for any smooth vector bundle W over M , means
a smooth section of π∗

M (W ) over T ×M , where πM is the projection onto M . Likewise, a smooth
p-form on T with values in C∞(M,W ) is, by definition, a smooth section of π∗

T Λp(T )⊗ π∗
M (W )

over T × M . We will also encounter the situation where we have a bundle W̃ over T × M and
then we will talk about a smooth p-form on T with values in C∞(M, W̃σ) and mean a smooth

section of π∗
T Λp(T )⊗ W̃ over T ×M .
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Suppose V is a vector field on T . Then, we can differentiate I along V and
we denote this derivative by V [I] : T →C∞(M,End(TMC)). Differentiating the
equation I2 = − Id, we see that V [I] anti-commutes with I. Hence, we get that

V [I]σ ∈ C∞(M, (T ∗
σ ⊗ T̄σ)⊕ (T̄ ∗

σ ⊗ Tσ))

for each σ ∈ T . Let

V [I]σ = V [I]′σ + V [I]′′σ

be the corresponding decomposition such that V [I]′σ ∈ C∞(M, T̄ ∗
σ⊗Tσ) and V [I]′′σ ∈

C∞(M,T ∗
σ ⊗ T̄σ).

Now we will further assume that T is a complex manifold and that I is a
holomorphic map from T to the space of all complex structures on M . Concretely,
this means that

V ′[I]σ = V [I]′σ
and

V ′′[I]σ = V [I]′′σ

for all σ ∈ T , where V ′ means the (1, 0)-part of V and V ′′ means the (0, 1)-part of
V over T .

Let us define G̃(V ) ∈ C∞(M,TMC ⊗ TMC) by

V [I] = G̃(V )ω,

and define G(V ) ∈ C∞(M,Tσ ⊗ Tσ) such that

G̃(V ) = G(V ) +G(V )

for all real vector fields V on T . We see that G̃ and G are one-forms on T with
values in C∞(M,TMC⊗TMC) and C∞(M,Tσ⊗Tσ), respectively. We observe that

V ′[I] = G(V )ω,

and G(V ) = G(V ′).
Using the relation (6), one checks that

G̃(V ) = −V [g−1],

where g−1 ∈ C∞(M,S2(TM)) is the symmetric bivector field obtained by raising

both indices on the metric tensor. Clearly, this implies that G̃ takes values in
C∞(M,S2(TMC)) and therefore that G takes values in C∞(M,S2(Tσ)).

On Lk, we have the smooth family of ∂̄-operators ∇0,1 defined at σ ∈ T by

∇0,1
σ =

1

2
(1 + iIσ)∇.

For every σ ∈ T , we consider the finite-dimensional subspace of C∞(M,Lk) given
by

H(k)
σ = H0(Mσ,Lk) = {s ∈ C∞(M,Lk)|∇0,1

σ s = 0}.
Let ∇̂t denote the trivial connection in the trivial bundle H(k) = T × C∞(M,Lk),
and let D(M,Lk) denote the vector space of differential operators on C∞(M,Lk).
For any smooth one-form u on T with values in D(M,Lk), we have a connection

∇̂ in H(k) given by

∇̂V = ∇̂t
V − u(V )

for any vector field V on T .
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Lemma 1. The connection ∇̂ in H(k) preserves the subspaces H
(k)
σ ⊂ C∞(M,Lk),

for all σ ∈ T , if and only if

(8)
i

2
V [I]∇1,0s+∇0,1u(V )s = 0

for all vector fields V on T and all smooth sections s of H(k).

This result is not surprising. See [A6] for a proof this lemma. Observe that,

if this condition holds, we can conclude that the collection of subspaces H
(k)
σ ⊂

C∞(M,Lk), for all σ ∈ T , form a subbundle H(k) of H(k).
We observe that u(V ′′) = 0 solves (8) along the anti-holomorphic directions on

T since

V ′′[I]∇1,0s = 0.

In other words, the (0, 1)-part of the trivial connection ∇̂t induces a ∂̄-operator on
H(k) and hence makes it a holomorphic vector bundle over T .

This is of course not in general the situation in the (1, 0) direction. Let us now
consider a particular u and prove that it solves (8) under certain conditions.

On the Kähler manifold (Mσ, ω), we have the Kähler metric and we have the
Levi-Civita connection ∇ in Tσ. We also have the Ricci potential Fσ ∈ C∞

0 (M,R).
Here

C∞
0 (M,R) =

{

f ∈ C∞(M,R) |
∫

M

fωm = 0

}

,

and the Ricci potential is the element of Fσ ∈ C∞
0 (M,R) which satisfies

Ricσ = RicHσ +2i∂σ∂̄σFσ,

where Ricσ ∈ Ω1,1(Mσ) is the Ricci form and RicHσ is its harmonic part. We see
that we get in this way a smooth function F : T →C∞

0 (M,R).
For any symmetric bivector field B ∈ C∞(M,S2(TM)) we get a linear bundle

map

B : T ∗M →TM

given by contraction. In particular, for a smooth function f on M , we get a vector
field Bdf ∈ C∞(M,TM).

We define the operator

ΔB : C∞(M,Lk)
∇→ C∞(M,T ∗M ⊗ Lk)

B⊗Id→ C∞(M,TM ⊗ Lk)
∇σ⊗Id+ Id⊗∇→ C∞(M,T ∗M ⊗ TM ⊗ Lk)

Tr→ C∞(M,Lk).

Let’s give a more concise formula for this operator. Define the operator

∇2
X,Y = ∇X∇Y −∇∇XY ,

which is tensorial and symmetric in the vector fields X and Y . Thus, it can be
evaluated on a symmetric bivector field and we have

ΔB = ∇2
B +∇δ(B).

Putting these constructions together, we consider, for some n ∈ Z such that
2k + n �= 0, the operator

(9) u(V ) =
1

k + n/2
o(V )− V ′[F ],
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where

(10) o(V ) = −1

4
(ΔG(V ) + 2∇G(V )dF − 2nV ′[F ]).

The connection associated to this u is denoted by ∇̂, and we call it the Hitchin
connection in H(k).

Definition 5. We say that the complex family I of Kähler structures on (M,ω)
is rigid if

∂̄σ(G(V )σ) = 0

for all vector fields V on T and all points σ ∈ T .

We will assume our holomorphic family I is rigid.

Theorem 9 (Andersen). Suppose that I is a rigid family of Kähler structures
on the compact, prequantizable symplectic manifold (M,ω) which satisfies that there
exists an n ∈ Z such that the first Chern class of (M,ω) is n[ ω

2π ] ∈ H2(M,Z) and

H1(M,R) = 0. Then u given by (9) and (10) satisfies (8), for all k such that
2k + n �= 0.

Hence, the Hitchin connection ∇̂ preserves the subbundle H(k) under the stated
conditions. Theorem 9 is established in [A6] through the following three lemmas.

Lemma 2. Assume that the first Chern class of (M,ω) is n[ ω
2π ] ∈ H2(M,Z).

For any σ ∈ T and for any G ∈ H0(Mσ, S
2(Tσ)), we have the following formula:

∇0,1
σ (ΔG(s) + 2∇GdFσ

(s)) = −i(2k + n)ωG∇(s) + 2ik(GdFσ)ω + ikδσ(G)ω)s,

for all s ∈ H0(Mσ,Lk).

Lemma 3. We have the following relation:

4i∂̄σ(V
′[F ]σ) = 2(G(V )dF )σω + δσ(G(V ))σω,

provided that H1(M,R) = 0.

Lemma 4. For any smooth vector field V on T , we have that

(11) 2(V ′[Ric])1,1 = ∂(δ(G(V ))ω).

Let us here recall how Lemma 3 is derived from Lemma 4. By the definition of
the Ricci potential

Ric = RicH +2id∂̄F,

where RicH = nω by the assumption c1(M,ω) = n[ ω
2π ]. Hence

V ′[Ric] = −dV ′[I]dF + 2id∂̄V ′[F ],

and therefore

4i∂∂̄V ′[F ] = 2(V ′[Ric])1,1 + 2∂V ′[I]dF.

From the above, we conclude that

(2(G(V )dF )ω + δ(G(V ))ω − 4i∂̄V ′[F ])σ ∈ Ω0,1
σ (M)

is a ∂σ-closed one-form on M . From Lemma 2, it follows that it is also ∂̄σ-closed,
whence it must be a closed one-form. Since we assume that H1(M,R) = 0, we see
that it must be exact. But then it in fact vanishes since it is of type (0, 1) on Mσ.
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From the above we conclude that

u(V ) =
1

k + n/2
o(V )− V ′[F ] = − 1

4k + 2n

{
ΔG(V ) + 2∇G(V )dF + 4kV ′[F ]

}

solves (8). Thus we have established Theorem 9 and hence Theorem 5.
In [AGL] we use half-forms and the metaplectic correction to prove the exis-

tence of a Hitchin connection in the context of half-form quantization. The assump-
tion that the first Chern class of (M,ω) is n[ ω

2π ] ∈ H2(M,Z) is then just replaced
by the vanishing of the second Stiefel-Whitney class of M (see [AGL] for more
details).

Suppose Γ is a group which acts by bundle automorphisms of L over M pre-
serving both the Hermitian structure and the connection in L. Then there is an
induced action of Γ on (M,ω). We will further assume that Γ acts on T and that
I is Γ-equivariant. In this case we immediately get the following invariance.

Lemma 5. The natural induced action of Γ on H(k) preserves the subbundle
H(k) and the Hitchin connection.

We are actually interested in the induced connection ∇̂e in the endomorphism
bundle End(H(k)). Suppose Φ is a section of End(H(k)). Then for all sections s of
H(k) and all vector fields V on T , we have that

(∇̂e
V Φ)(s) = ∇̂V Φ(s)− Φ(∇̂V (s)).

Assume now that we have extended Φ to a section of Hom(H(k), H(k)) over T .
Then

(12) ∇̂e
V Φ = ∇̂e,t

V Φ+ [Φ, u(V )],

where ∇̂e,t is the trivial connection in the trivial bundle End(H(k)) over T .

3. Toeplitz operators and Berezin-Toeplitz deformation quantization

We shall in this section discuss the Toeplitz operators and their asymptotics as
the level k goes to infinity. The properties we need can all be derived from the funda-
mental work of Boutet de Monvel and Sjöstrand. In [BdMS], they did a microlocal
analysis of the Szegő projection which can be applied to the asymptotic analysis in
the situation at hand, as was done by Boutet de Monvel and Guillemin in [BdMG]
(in fact in a much more general situation than the one we consider here) and others
following them. In particular, the applications developed by Schlichenmaier and
further by Karabegov and Schlichenmaier to the study of Toeplitz operators in the
geometric quantization setting is what will interest us here. Let us first describe
the basic setting.

For each f ∈ C∞(M), we consider the prequantum operator, namely the dif-

ferential operator M
(k)
f : C∞(M,Lk)→C∞(M,Lk) given by

M
(k)
f (s) = fs

for all s ∈ H0(M,Lk).
These operators act on C∞(M,Lk) and therefore also on the bundle H(k);

however, they do not preserve the subbundle H(k). In order to turn these operators
into operators which act on H(k) we need to consider the Hilbert space structure.
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Integrating the inner product of two sections against the volume form associated
to the symplectic form gives the pre-Hilbert space structure on C∞(M,Lk)

〈s1, s2〉 =
1

m!

∫

M

(s1, s2)ω
m.

We think of this as a pre-Hilbert space structure on the trivial bundle H(k), which
of course is compatible with the trivial connection in this bundle. This pre-Hilbert
space structure induces a Hermitian structure 〈·, ·〉 on the finite rank subbundle
H(k) of H(k). The Hermitian structure 〈·, ·〉 on H(k) also induces the operator
norm ‖ · ‖ on End(H(k)).

Since H
(k)
σ is a finite-dimensional subspace of C∞(M,Lk) = H(k)

σ and therefore

closed, we have the orthogonal projection π
(k)
σ : H(k)

σ →H
(k)
σ . SinceH(k) is a smooth

subbundle of H(k), the projections π
(k)
σ form a smooth map π(k) from T to the space

of bounded operators on the L2-completion of C∞(M,Lk). The easiest way to see
this is to consider a local frame (s1, . . . , sRankH(k)) of H(k). Let hij = 〈si, sj〉, and
let h−1

ij be the inverse matrix of hij . Then

(13) π(k)
σ (s) =

∑

i,j

〈s, (si)σ〉(h−1
ij )σ(sj)σ.

From these projections, we can construct the Toeplitz operators associated to

any smooth function f ∈ C∞(M). They are the operators T
(k)
f,σ : H(k)

σ →H
(k)
σ

defined by

T
(k)
f,σ (s) = π(k)

σ (fs)

for any element s in H(k)
σ and any point σ ∈ T . We observe that the Toeplitz

operators are smooth sections T
(k)
f of the bundle Hom(H(k), H(k)) and restrict to

smooth sections of End(H(k)).

Remark 1. Similarly, for any pseudo-differential operator A on M with coef-
ficients in Lk (which may even depend on σ ∈ T ), we can consider the associated
Toeplitz operator π(k)A and think of it as a section of Hom(H(k), H(k)). How-
ever, whenever we consider asymptotic expansions of such or consider their oper-
ator norms, we implicitly restrict them to H(k) and consider them as sections of
End(H(k)) or equivalently assume that they have been precomposed with π(k).

Suppose that we have a smooth section X ∈ C∞(M,Tσ) of the holomorphic
tangent bundle of Mσ. We then claim that the operator π(k)∇X is a zero-order
Toeplitz operator. Supposing that s1 ∈ C∞(M,Lk) and s2 ∈ H0(Mσ,Lk), we have
that

X(s1, s2) = (∇Xs1, s2).

Now, calculating the Lie derivative along X of (s1, s2)ω
m and using the above, one

obtains after integration that

〈∇Xs1, s2〉 = −〈δ(X)s1, s2〉,
Thus

(14) π(k)∇X = −T
(k)
δ(X),

as operators from C∞(M,Lk) to H0(M,Lk).
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Iterating (14), we find for all X1, X2 ∈ C∞(M,Tσ) that

(15) π(k)∇X1
∇X2

= T
(k)
δ(X2)δ(X1)+X2[δ(X1)]

,

again as operators from C∞(M,Lk) to H0(Mσ,Lk).
We calculate the adjoint of ∇X for any complex vector field X ∈ C∞(M,TMC).

For s1, s2 ∈ C∞(M,Lk), we have that

X̄(s1, s2) = (∇X̄s1, s2) + (s1,∇Xs2).

Computing the Lie derivative along X̄ of (s1, s2)ω
m and integrating, we get that

〈∇X̄s1, s2〉+ 〈(∇X)∗s1, s2〉 = −〈δ(X̄)s1, s2〉.
Hence, we see that

(∇X)∗ = −∇X̄ − δ(X̄)(16)

as operators on C∞(M,Lk). In particular, if X ∈ C∞(M,Tσ) is a section of the
holomorphic tangent bundle, we see that

(17) π(k)(∇X)∗π(k) = −T
(k)

δ(X̄)
|H0(Mσ,Lk),

again as operators on H0(Mσ,Lk).
The product of two Toeplitz operators associated to two smooth functions will

in general not again be the Toeplitz operator associated to a smooth function. But,
by the results of Schlichenmaier [Sch], there is an asymptotic expansion of the
product in terms of such Toeplitz operators on a compact Kähler manifold.

Theorem 10 (Schlichenmaier). For any pair of smooth functions f1, f2 ∈
C∞(M), we have an asymptotic expansion

T
(k)
f1,σ

T
(k)
f2,σ

∼
∞∑

l=0

T
(k)

c
(l)
σ (f1,f2),σ

k−l,

where c
(l)
σ (f1, f2) ∈ C∞(M) are uniquely determined since ∼ means the following:

For all L ∈ Z+ we have that

‖T (k)
f1,σ

T
(k)
f2,σ

−
L∑

l=0

T
(k)

c
(l)
σ (f1,f2),σ

k−l‖ = O(k−(L+1))

uniformly over compact subsets of T . Moreover, c
(0)
σ (f1, f2) = f1f2.

Remark 2. It will be useful for us to define new coefficients c̃
(l)
σ (f, g) ∈ C∞(M)

which correspond to the expansion of the product in 1/(k + n/2) (where n is some
fixed integer):

T
(k)
f1,σ

T
(k)
f2,σ

∼
∞∑

l=0

T
(k)

c̃
(l)
σ (f1,f2),σ

(k + n/2)−l.

For future reference, we note that the first three coefficients are given by c̃
(0)
σ (f1, f2) =

c
(0)
σ (f1, f2), c̃

(1)
σ (f1, f2) = c

(1)
σ (f1, f2) and c̃

(2)
σ (f1, f2) = c

(2)
σ (f1, f2) +

n
2 c

(1)
σ (f1, f2).

Theorem 10 is proved in [Sch] where it is also proved that the formal generating

series for the c
(l)
σ (f1, f2)’s gives a formal deformation quantization of the symplectic

manifold (M,ω).
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We recall the definition of a formal deformation quantization. Introduce the
space of formal functions C∞

h (M) = C∞(M)[[h]] as the space of formal power series
in the variable h with coefficients in C∞(M). Let Ch = C[[h]] denote the formal
constants.

Definition 6. A deformation quantization of (M,ω) is an associative product
� on C∞

h (M) which respects the Ch-module structure. For f, g ∈ C∞(M), it is
defined as

f � g =
∞∑

l=0

c(l)(f, g)hl,

through a sequence of bilinear operators

c(l) : C∞(M)⊗ C∞(M)→C∞(M),

which must satisfy

c(0)(f, g) = fg and c(1)(f, g)− c(1)(g, f) = −i{f, g}.

The deformation quantization is said to be differential if the operators c(l) are bidif-
ferential operators. Considering the symplectic action of Γ on (M,ω), we say that
a star product is Γ-invariant if

γ∗(f � g) = γ∗(f) � γ∗(g)

for all f, g ∈ C∞(M) and all γ ∈ Γ.

Theorem 11 (Karabegov & Schlichenmaier). The product �BT
σ given by

f �BT
σ g =

∞∑

l=0

c(l)σ (f, g)hl,

where f, g ∈ C∞(M) and c
(l)
σ (f, g) are determined by Theorem 10, is a differentiable

deformation quantization of (M,ω).

Definition 7. The Berezin-Toeplitz deformation quantization of the compact
Kähler manifold (Mσ, ω) is the product �BT

σ .

Remark 3. Let Γσ be the σ-stabilizer subgroup of Γ. For any element γ ∈ Γσ,
we have that

γ∗(T
(k)
f,σ ) = T

(k)
γ∗f,σ.

This implies the invariance of �BT
σ under the σ-stabilizer Γσ.

Remark 4. Using the coefficients from Remark 2, we define a new star product
by

f�̃BT
σ g =

∞∑

l=0

c̃(l)σ (f, g)hl.

Then

f�̃BT
σ g =

(
(f ◦ φ−1) �BT

σ (g ◦ φ−1)
)
◦ φ

for all f, g ∈ C∞
h (M), where φ(h) = 2h

2+nh .
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4. The formal Hitchin connection

In this section, we study the the formal Hitchin connection. We assume the con-
ditions on (M,ω) and I of Theorem 9, thus providing us with a Hitchin connection

∇̂ in H(k) over T and the associated connection ∇̂e in End(H(k)).
Recall from the introduction the definition of a formal connection in the trivial

bundle of formal functions. Theorem 6 establishes the existence of a unique formal
Hitchin connection, expressing asymptotically the interplay between the Hitchin
connection and the Toeplitz operators.

We want to give an explicit formula for the formal Hitchin connection in terms
of the star product �̃BT . We recall that in the proof of Theorem 6, given in [A6],
it is shown that the formal Hitchin connection is given by

(18) D̃(V )(f) = −V [F ]f + V [F ]�̃BTf + h(E(V )(f)−H(V )�̃BTf),

where E is the one-form on T with values in D(M) such that

T
(k)
E(V )f = π(k)o(V )∗fπ(k) + π(k)fo(V )π(k),(19)

and H is the one-form on T with values in C∞(M) such that H(V ) = E(V )(1).
Thus, we must find an explicit expression for the operator E(V ).

The following lemmas will prove helpful.

Lemma 6. The adjoint of ΔB is given by

Δ∗
B = ΔB̄ ,

for any (complex) symmetric bivector field B ∈ C∞(M,S2(TMC)).

Proof. First, we write B =
∑R

r Xr ⊗ Yr. Then

ΔB =
R∑

r

∇Xr
∇Yr

+∇δ(Xr)Yr
.

Now, using (16), we get that

(∇Xr
∇Yr

)∗ = (∇Yr
)∗(∇Xr

)∗ = (∇Ȳr
+ δ(Ȳr)(∇X̄r

+ δ(X̄r))

= ∇Ȳr
∇X̄r

+∇Ȳr
δ(Xr) + δ(Ȳr)∇X̄r

+ δ(Ȳr)δ(X̄r),

and

(∇δ(Xr)Yr
)∗ = −∇δ(X̄)Ȳr

− δ(δ(X̄r)Ȳr)

= −δ(X̄r)∇Ȳr
− Ȳr[δ(X̄r)]− δ(X̄r)δ(Ȳr)

= −∇Ȳr
δ(X̄r)− δ(X̄r)δ(Ȳr),

so we conclude that

Δ∗
B =

R∑

r

∇Ȳr
∇X̄r

+ δ(Ȳr)∇X̄r
= ΔB̄,

since B is symmetric. �

Lemma 7. The operator ΔB satisfies

π(k)ΔBs = 0,

for any section s ∈ C∞(M,Lk) and any symmetric bivector field B.
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Proof. Again, we write B =
∑R

r Xr ⊗ Yr and recall from (15) that

π(k)∇Xr
∇Yr

s = π(k)(δ(Xr)δ(Yr) + Yr[δ(Xr)])s.

On the other hand, we have that

π(k)∇δ(Xr)Yr
s = −π(k)δ(δ(Xr)Yr)s = −π(k)(δ(Xr)δ(Yr) + Yr[δ(Xr)])s,

and it follows immediately that

π(k)ΔBs = π(k)
R∑

r

(∇Xr
∇Yr

+∇δ(Xr)Yr
)s = 0,

which proves the lemma. �

Finally, it will prove useful to observe that

δ(Bdf) = ΔB(f),(20)

for any function f and any bivector field B.
Now, the adjoint of o(V ) is given by

o(V )∗ = −1

4
(ΔḠ(V ) − 2∇Ḡ(V )dF − 2ΔḠ(V )(F )− 2nV ′′[F ]),

where we used (20). Furthermore, we observe that o(V )∗ differentiates in anti-
holomorphic directions only, which implies that

π(k)o(V )∗fπ(k) = π(k)o(V )∗(f)π(k)

= −1

4
π(k)(ΔḠ(V )(f)− 2∇Ḡ(V )dF (f)− 2ΔḠ(V )(F )f − 2nV ′′[F ]f)π(k).

This gives an explicit formula for the first term of (19).
To determine the second term of (19), we observe that

ΔG(V )fs = fΔG(V )s+ΔG(V )(f)s+ 2∇G(V )dfs.

Projecting both sides onto the holomorphic sections and applying Lemma 7 and
the formula (20), we get that

π(k)fΔG(V ) = −π(k)(ΔG(V )(f) + 2∇G(V )df ) = π(k)ΔG(V )(f).

Furthermore, observe that

π(k)f∇G(V )dF = π(k)(∇G(V )dF f −∇G(V )dF (f))

= −π(k)(∇G(V )dF (f) + ΔG(V )(F )f),

where we once again used (20) for the last equality. Thus, we get that

π(k)fo(V )π(k) = −1

4
π(k)(ΔG(V )(f)− 2∇G(V )dF (f)− 2ΔG(V )(F )f − 2nV ′[F ]f)π(k),

which gives an explicit formula for the second term of (19). Finally, we can conclude
that

E(V )(f) = −1

4
(ΔG̃(V )(f)− 2∇G̃(V )dF (f)− 2ΔG̃(V )(F )f − 2nV [F ]f),

satisfies (19) and hence (18). Also, we note that

H(V ) = E(V )(1) =
1

2
(ΔG̃(V )(F ) + nV [F ]).

Summarizing the above, we have proved the following
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Theorem 12. The formal Hitchin connection is given by

DV f = V [f ]− 1

4
hΔG̃(V )(f) +

1

2
h∇G̃(V )dF (f) + V [F ]�̃BTf − V [F ]f

− 1

2
h(ΔG̃(V )(F )�̃BTf + nV [F ]�̃BTf −ΔG̃(V )(F )f − nV [F ]f)

for any vector field V and any section f of Ch.

The next lemma is also proved in [A6], and it follows basically from the fact
that

∇̂e
V (T

(k)
f T (k)

g ) = ∇̂e
V (T

(k)
f )T (k)

g + T
(k)
f ∇̂e

V (T
(k)
g ).

We have

Lemma 8. The formal operator DV is a derivation for �̃BT
σ for each σ ∈ T , i.e.

DV (f�̃
BTg) = DV (f)�̃

BTg + f�̃BTDV (g)

for all f, g ∈ C∞(M).

If the Hitchin connection is projectively flat, then the induced connection in
the endomorphism bundle is flat and hence so is the formal Hitchin connection by
Proposition 3 of [A6].

Recall from Definition 3 in the introduction the definition of a formal trivial-
ization. As mentioned there, such a formal trivialization will not exist even locally
on T , if D is not flat. However, if D is flat, then we have the following result.

Proposition 1. Assume that D is flat and that D̃ = 0 mod h. Then locally
around any point in T there exists a formal trivialization. If H1(T ,R) = 0, then
there exists a formal trivialization defined globally on T . If further H1

Γ(T , D(M)) =
0, then we can construct P such that it is Γ-equivariant.

In this proposition,H1
Γ(T , D(M)) simply refers to the Γ-equivariant first de Rham

cohomology of T with coefficients in the real Γ-vector space D(M).
Now suppose we have a formal trivialization P of the formal Hitchin connection

D. We can then define a new smooth family of star products, parametrized by T ,
by

f �σ g = P−1
σ (Pσ(f)�̃

BT
σ Pσ(g))

for all f, g ∈ C∞(M) and all σ ∈ T . Using the fact that P is a trivialization, it is
not hard to prove the following:

Proposition 2. The star products �σ are independent of σ ∈ T .

Then, we have the following which is proved in [A6].

Theorem 13 (Andersen). Assume that the formal Hitchin connection D is flat
and

H1
Γ(T , D(M)) = 0,

then there is a Γ-invariant trivialization P of D and the star product

f � g = P−1
σ (Pσ(f)�̃

BT
σ Pσ(g))

is independent of σ ∈ T and Γ-invariant. If H1
Γ(T , C∞(M)) = 0 and the commu-

tant of Γ in D(M) is trivial, then a Γ-invariant differential star product on M is
unique.
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We calculate the first term of the equivariant formal trivialization of the formal
Hitchin connection. Let f be any function on M and suppose that P (f) =

∑
l f̃lh

l

is parallel with respect to the formal Hitchin connection. Thus, we have that

0 = DV P (f) = h(V [f̃1]−
1

4
ΔG̃(V )(f̃0) +

1

2
∇G̃(V )dF (f̃0) + c(1)(V [F ], f̃0)) +O(h2).

But f̃0 = f , and so we get in particular

0 = V [f̃1]−
1

4
ΔG̃(V )(f) +

1

2
∇G̃(V )dF (f) + c(1)(V [F ], f).(21)

By the results of [KS], �BT is a differential star product with separation of variables,
in the sense that it only differentiates in holomorphic directions in the first entry
and antiholomorphic directions in the second. As argued in [Kar], all such star
products have the same first order coefficient, namely

c(1)(f1, f2) = −g(∂f1, ∂̄f2) = i∇X′′
f1
(f2)(22)

for any functions f1, f2 ∈ C∞(M). From this, it is easily seen that

V [c(1)](f1, f2) =
1

2
df1G̃(V )df2 =

1

2
∇G̃(V )df1

f2.

Applying this to (21), we see that

V [f̃1] =
1

4
ΔG̃(V )(f)− V [c(1)(F, f)].(23)

But the variation of the Laplace-Beltrami operator is given by

V [Δ]f = V [δ(g−1df)] = δ(V [g−1]df) = −δ(G̃(V )df) = −ΔG̃(V )f,

and so we conclude that

V [f̃1] = −V [
1

4
Δf + c(1)(F, f)].

We have thus proved

Proposition 3. When it exists, the equivariant formal trivialization of the
formal Hitchin connection has the form

P = Id−h(
1

4
Δ + i∇X′′

F
) +O(h2).

Using this proposition, one easily calculates that

P (f1)�̃
BTP (f2) = f1f2 − h(

1

4
f1Δf2 +

1

4
f2Δf1 + i∇X′′

F
f1 + i∇X′′

F
f2)

+ hc(1)(f1, f2) +O(h2).

Finally, using the explicit formula (22) for c(1), we get that

P−1(P (f1)�̃
BTP (f2)) = f1f2 − hg(∂f1, ∂̄f2) +

1

2
hg(df1, df2) +O(h2)

= f1f2 − h
1

2
(g(∂f1, ∂̄f2)− g(∂̄f1, ∂f2)) +O(h2)

= f1f2 − ih
1

2
{f1, f2}+O(h2).

This proves Theorem 8.
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1. Introduction

One of the driving problems in the theory of algebraic curves in the past two
decades has been Green’s Conjecture on syzygies of canonical curves. Initially
formulated by M. Green [Gr84a], it is a deceptively simple vanishing statement

concerning Koszul cohomology groups of canonical bundles of curves: If C
|KC |−→ Pg−1

is a smooth canonically embedded curve of genus g and Ki,j(C,KC) are the Koszul
cohomology groups of the canonical bundle on C, Green’s Conjecture predicts the
equivalence

(1) Kp,2(C,KC) = 0 ⇐⇒ p < Cliff(C),

where Cliff(C) := min{deg(L)−2r(L) : L ∈ Pic(C), hi(C,L) ≥ 2, i = 0, 1} denotes
the Clifford index of C. The main attraction of Green’s Conjecture is that it links
the extrinsic geometry of C encapsulated in Cliff(C) and all the linear series grd on
C, to the intrinsic geometry (equations) of the canonical embedding. In particular,
quite remarkably, it shows that one can read the Clifford index of any curve off the
equations of its canonical embedding. Hence, in some sense, a curve has no other
interesting line bundle apart from the canonical bundle and its powers1.

One implication in (1), namely that Kp,2(C,KC) �= 0 for p ≥ Cliff(C), having
been immediately established in [GL84], see also Theorem 2.4 in this survey, the
converse, that is, the vanishing statement

Kp,2(C,KC) = 0 for p < Cliff(C),

attracted a great deal of effort and resisted proof despite an amazing number of at-
tempts and techniques devised to prove it, see [GL84], [Sch86], [Sch91], [Ein87],
[Ei92], [PR88], [Tei02], [V93]. The major breakthrough came around 2002 when
Voisin [V02], [V05], using specialization to curves on K3 surfaces, proved that
Green’s Conjecture holds for a general curve [C] ∈ Mg:
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Theorem 1.1. For a general curve [C] ∈ M2p+3 we have that Kp,2(C,KC) = 0.
For a general curve [C] ∈ M2p+4 we have that Kp,2(C,KC) = 0. It follows that
Green’s Conjecture holds for general curves of any genus.

Combining the results of Voisin with those of Hirschowitz and Ramanan [HR98],
one finds that Green’s Conjecture is true for every smooth curve [C] ∈ M2p+3 of
maximal gonality gon(C) = p+3. This turns out to be a remarkably strong result.
For instance, via a specialization argument, Green’s Conjecture for arbitrary curves
of maximal gonality implies Green’s Conjecture for general curves of genus g and
arbitrary gonality 2 ≤ d ≤ [g/2] + 2. One has the following more precise result, cf.
[Ap05], see Theorem 4.5 for a slightly different proof:

Theorem 1.2. We fix integers 2 ≤ d ≤ [g/2] + 1. For any smooth d-gonal
curve [C] ∈ Mg satisfying the condition

dim W 1
g−d+2(C) ≤ g − 2d+ 2,

we have that Kd−3,2(C,KC) = 0. In particular C satisfies Green’s Conjecture.

Dimension theorems from Brill-Noether theory due to Martens, Mumford, and
Keem, cf. [ACGH85], indicate precisely when the condition appearing in the
statement of Theorem 1.2 is verified. In particular, Theorem 1.2 proves Green’s
Conjecture for general d-gonal curves of genus g for any possible gonality 2 ≤
d ≤ [g/2] + 2 and offers an alternate, unitary proof of classical results of Noether,
Enriques-Babbage-Petri as well as of more recent results due to Schreyer and Voisin.
It also implies the following new result which can be viewed as a proof of statement
(1) for 6-gonal curves. We refer to Subsection 4.1 for details:

Theorem 1.3. For any curve C with Cliff(C) ≥ 4, we have K3,2(C,KC) = 0.
In particular, Green’s Conjecture holds for arbitrary 6-gonal curves.

Theorem 1.1 can also be applied to solve various related problems. For instance,
using precisely Theorem 1.1, the Green-Lazarsfeld Gonality Conjecture [GL86] was
verified for general d-gonal curves, for any 2 ≤ d ≤ (g+2)/2, cf. [ApV03], [Ap05].
In a few words, this conjecture states that the gonality of any curve can be read
off the Koszul cohomology with values in line bundles of large degree, such as the
powers of the canonical bundle. We shall review all these results in Subsection 4.2.

Apart from surveying the progress made on Green’s and the Gonality Con-
jectures, we discuss a number of new conjectures for syzygies of line bundles on
curves. Some of these conjectures have already appeared in print (e.g. the Prym-
Green Conjecture [FaL08], or the syzygy conjecture for special line bundles on
general curves [Fa06a]), whereas others like the Minimal Syzygy Conjecture are
new and have never been formulated before.

For instance we propose the following refinement of the Green-Lazarsfeld Go-
nality Conjecture [GL86]:

Conjecture 1.4. Let C be a general curve of genus g = 2d − 2 ≥ 6 and
η ∈ Pic0(C) a general line bundle. Then Kd−4,2(C,KC ⊗ η) = 0.

Conjecture 1.4 is the sharpest vanishing statement one can make for general
line bundles of degree 2g − 2 on a curve of genus g. Since

dim Kd−4,2(C,KC ⊗ η) = dim Kd−3,1(C,KC ⊗ η),
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it follows that the failure locus of Conjecture 1.4 is a virtual divisor in the universal
degree 0 Picard variety Pic

0
g → Mg. Thus it predicts that the non-vanishing locus

{[C, η] ∈ Pic
0
g : Kd−4,2(C,KC ⊗ η) �= 0}

is an ”honest” divisor on Pic
0
g. Conjecture 1.4 is also sharp in the sense that from

the Green-Lazarsfeld Non-Vanishing Theorem 2.8 it follows that

Kd−2,1(C,KC ⊗ η) �= 0.

Similarly, always Kd−3,2(C,KC ⊗ η) �= 0 for all [C, η] ∈ Pic
0
g. A yet stronger

conjecture is the following vanishing statement for l-roots of trivial bundles on
curves:

Conjecture 1.5. Let C be a general curve of genus g = 2d− 2 ≥ 6. Then for
every prime l and every line bundle η ∈ Pic0(C)− {OC} satisfying η⊗l = OC , we
have that Kd−4,2(C,KC ⊗ η) = 0.

In order to prove Conjecture 1.5 it suffices to exhibit a single pair [C, η] as above,
for which KC ⊗ η ∈ Pic2g−2(C) satisfies property (Nd−4). The case most studied
so far is that of level l = 2, when one recovers the Prym-Green Conjecture [FaL08]
which has been checked using Macaulay2 for g ≤ 14. The Prym-Green Conjecture
is a subtle statement which for small values of g is equivalent to the Prym-Torelli
Theorem, again see [FaL08]. Since the conditionKd−4,2(C,KC⊗η) �= 0 is divisorial
in moduli, Conjecture 1.5 is of great help in the study of the birational geometry
of the compactification Rg,l := Mg(BZl) of the moduli space Rg,l classifying pairs

[C, η], where [C] ∈ Mg and η ∈ Pic0(C) satisfies η⊗l = OC .

Concerning both Conjectures 1.4 and 1.5, it is an open problem to find an
analogue of the Clifford index of the curve, in the sense that the classical Green
Conjecture is not only a Koszul cohomology vanishing statement but also allows one
to read off the Clifford index from a non-vanishing statement for Kp,2(C,KC). It is
an interesting open question to find a Prym-Clifford index playing the same role as
the original Cliff(C) in (1) and to describe it in terms of the corresponding Prym
varieties: Is there a geometric characterization of those Prym varieties Pg([C, η]) ∈
Ag−1 corresponding to pairs [C, η] ∈ Rg with Kp,2(C,KC ⊗ η) �= 0?

Another recent development on syzygies of curves came from a completely
different direction, with the realization that loci in the moduli space Mg consisting
of curves having exceptional syzygies can be used effectively to answer questions
about the birational geometry of the moduli space Mg of stable curves of genus g,
cf. [FaPo05], [Fa06a], [Fa06b], in particular, to produce infinite series of effective
divisors onMg violating the Harris-Morrison Slope Conjecture [HaM90]. We recall

that the slope s(D) of an effective divisorD onMg is defined as the smallest rational

number a/b with a, b ≥ 0, such that the class aλ−b(δ0+· · ·+δ[g/2])−[D] ∈ Pic(Mg)
is an effective Q-combination of boundary divisors. The Slope Conjecture [HaM90]
predicts a lower bound for the slope of effective divisors on Mg,

s(Mg) := infD∈Eff(Mg)
s(D) ≥ 6 +

12

g + 1
,

with equality precisely when g + 1 is composite; the quantity 6 + 12/(g + 1) is
the slope of the Brill-Noether divisors on Mg, in case such divisors exist. A first
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counterexample to the Slope Conjecture was found in [FaPo05]: The locus

K10 := {[C] ∈ Mg : C lies on a K3 surface}

can be interpreted as being set-theoretically equal to the locus of curves [C] ∈ M10

carrying a linear series L ∈ W 4
12(C) such that the multiplication map

ν2(L) : Sym
2H0(C,L) → H0(C,L⊗2)

is not an isomorphism, or equivalently K0,2(C,L) �= 0. The main advantage of this
Koszul-theoretic description is that it provides a characterization of the K3 divisor
K10 in a way that makes no reference to K3 surfaces and can be easily generalized
to other genera. Using this characterization one shows that s(K10) = 7 < 78/11,
that is, K10 ∈ Eff(M10) is a counterexample to the Slope Conjecture.

Koszul cohomology provides an effective way of constructing cycles on Mg.
Under suitable numerical conditions, loci of the type

Zg,2 := {[C] ∈ Mg : ∃L ∈ W r
d (C) such that Kp,2(C,L) �= 0}

are virtual divisors on Mg, that is, degeneracy loci of morphisms between vector
bundles of the same rank over Mg. The problem of extending these vector bundes

over Mg and computing the virtual classes of the resulting degeneracy loci is in
general daunting, but has been solved successfully in the case ρ(g, r, d) = 0, cf.
[Fa06b]. Suitable vanishing statements of the Koszul cohomology for general curves
(e.g. Conjectures 1.4, 5.4) show that, when applicable, these virtual Koszul divisors
are actual divisors and they are quite useful in specific problems such as the Slope
Conjecture or showing that certain moduli spaces of curves (with or without level
structure) are of general type, see [Fa08], [FaL08]. A picturesque application of
the Koszul technique in the study of parameter spaces is the following result about
the birational type of the moduli space of Prym varieties Rg = Rg,2, see [FaL08]:

Theorem 1.6. The moduli space Rg is of general type for g ≥ 13 and g �= 15.

The proof of Theorem 1.6 depends on the parity of g. For g = 2d− 2, it boils
down to calculating the class of the compactification in Rg of the failure locus of
the Prym-Green Conjecture, that is, of the locus

{[C, η] ∈ R2d−2 : Kd−4,2(C,KC ⊗ η) �= 0}.

For odd g = 2d− 1, one computes the class of a ”mixed” Koszul cohomology locus
in Rg defined in terms of Koszul cohomology groups of KC with values in KC ⊗ η.

The outline of the paper is as follows. In Section 2 we review the definition
of Koszul cohomology as introduced by M. Green [Gr84a] and discuss basic facts.
In Section 3 we recall the construction of (virtual) Koszul cycles on Mg following
[Fa06a] and [Fa06b] and explain how their cohomology classes can be calculated.
In Section 4 we discuss a number of conjectures on syzygies of curves, starting
with Green’s Conjecture and the Gonality Conjecture and continuing with the
Prym-Green Conjecture. We end by proposing in Section 5 a strong version of the
Maximal Rank Conjecture.

Some results stated in [Ap04], [Ap05] are discussed here in greater detail.
Other results are new (see Theorems 4.9 and 4.16).
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2. Koszul cohomology

2.1. Syzygies. Let V be an n-dimensional complex vector space, S := S(V )
the symmetric algebra of V , and X ⊂ PV ∨ := Proj(S) a non-degenerate subvariety,
and denote by S(X) the homogeneous coordinate ring of X. To the embedding of
X in PV ∨, one associates the Hilbert function, defined by

hX(d) := dimC (S(X)d)

for any positive integer d. A remarkable property of hX is its polynomial behavior
for large values of d. It is a consequence of the existence of a graded minimal
resolution of the S-module S(X), which is an exact sequence

0 → Es → · · · → E2 → E1 → S → S(X) → 0

with

Ep =
⊕

j>p

S(−j)βpj(X).

The Hilbert function of X is then given by

(2) hX(d) =
∑

p,j

(−1)pβpj(X)

(
n+ d− j

n

)

,

where (
t
n

)

=
t(t− 1) · · · (t− n+ 1)

n !
, for any t ∈ R,

and note that the expression on the right-hand side is polynomial for large d. This
reasoning leads naturally to the definition of syzygies of X, which are the graded
components of the graded S-modules Ep. The integers

βpj(X) = dimCTor
j(S(X),C)p

are called the graded Betti numbers of X and determine completely the Hilbert
function, according to formula (2). Sometimes we also write bi,j(X) := βi,i+j(X).

One main difficulty in developing syzygy theory was to find effective geometric
methods for computing these invariants. In the eighties, M. Green and R. Lazars-
feld published a series of papers, [Gr84a], [Gr84b], [GL84], [GL86] that shed a
new light on syzygies. Contrary to the classical point of view, they look at integral
closures of the homogeneous coordinates rings, rather than at the rings themselves.
This approach, using intensively the language of Koszul cohomology, led to a num-
ber of beautiful geometrical results with numerous applications in classical algebraic
geometry as well as moduli theory.

2.2. Definition of Koszul cohomology. Throughout this paper, we follow
M. Green’s approach to Koszul cohomology [Gr84a]. The general setup is the
following. Suppose X is a complex projective variety, L ∈ Pic(X) a line bundle, F
is a coherent sheaf on X, and p, q ∈ Z. The canonical contraction map

p+1∧
H0(X,L)⊗H0(X,L)∨ →

p∧
H0(X,L),

acting on tensors as

(s0 ∧ · · · ∧ sp)⊗ σ 
→
p∑

i=0

(−1)iσ(si)(s0 ∧ · · · ∧ ŝi ∧ · · · ∧ sp),
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and the multiplication map

H0(X,L)⊗H0(X,F ⊗ Lq−1) → H0(X,F ⊗ Lq),

define together a map

p+1∧
H0(X,L)⊗H0(X,F ⊗ Lq−1) →

p∧
H0(X,L)⊗H0(X,F ⊗ Lq).

In this way, we obtain a complex (called the Koszul complex)

∧p+1H0(L)⊗H0(F⊗Lq−1) → ∧pH0(L)⊗H0(F⊗Lq) → ∧p−1H0(L)⊗H0(F⊗Lq+1),

whose cohomology at the middle term is denoted byKp,q(X,F , L). In the particular
case F ∼= OX , to ease the notation, one drops OX and writes directly Kp,q(X,L)
for Koszul cohomology.

Here are some samples of direct applications of Koszul cohomology:

Example 2.1. If L is ample, then L is normally generated if and only if
K0,q(X,L) = 0 for all q ≥ 2. This fact follows directly from the definition.

Example 2.2. If L is globally generated with H1(X,L) = 0, then

H1(X,OX) ∼= Kh0(L)−2,2(X,L)

see [ApN08]. In particular, the genus of a curve can be read off (vanishing of)
Koszul cohomology with values in non-special bundles. More generally, under suit-
able vanishing assumptions on L, all the groups Hi(X,OX) can be computed in a
similar way, and likewise Hi(X,F) for an arbitrary coherent sheaf F , cf. [ApN08].

Example 2.3. If L is very ample the Castelnuovo-Mumford regularity can be
recovered from Koszul cohomology. Specifically, if F is a coherent sheaf on X, then

regL(F) = min{m : Kp,m+1(X,F , L) = 0, for all p}.

As a general principle, any invariant that involves multiplication maps is pre-
sumably related to Koszul cohomology.

Very surprisingly, Koszul cohomology interacts much closer with the geometry
of the variety than might have been expected. This phenomenon was discovered by
Green and Lazarsfeld [Gr84a, Appendix]:

Theorem 2.4 (Green-Lazarsfeld). Suppose X is a smooth variety and consider
a decomposition L = L1 ⊗ L2 with h0(X,Li) = ri + 1 ≥ 2 for i ∈ {1, 2}. Then
Kr1+r2−1,1(X,L) �= 0.

In other words, non-trivial geometry implies non-trivial Koszul cohomology.
We shall discuss the case of curves, which is the most relevant, and then some
consequences in Section 4.

Many problems in the theory of syzygies involve vanishing/nonvanishing of
Koszul cohomology. One useful definition is the following.

Definition 2.5. An ample line bundle L on a projective variety is said to
satisfy the property (Np) if and only if Ki,q(X,L) = 0 for all i ≤ p and q ≥ 2.
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From the geometric viewpoint, the property (Np) means that L is normally
generated, the ideal of X in the corresponding embedding is generated by quadrics,
and all the syzygies up to order p are linear. In many cases, for example canonical
curves, or 2-regular varieties, the property (Np) reduces to the single condition
Kp,2(X,L) = 0, see e.g. [Ein87]. This phenomenon justifies the study of various
loci given by the nonvanishing of Kp,2, see Section 4.

2.3. Kernel bundles. The proofs of the facts discussed in examples 2.2 and
2.3 use the kernel bundles description which is due to Lazarsfeld [La89]: Consider
L a globally generated line bundle on the projective variety X, and set

ML := Ker
(
H0(X,L)⊗OX

ev−→ L
)
.

Note that ML is a vector bundle on X of rank h0(X,L)−1. For any coherent sheaf
F on X, and integers p ≥ 0, and q ∈ Z, we have a short exact sequence on X

0 → ∧p+1ML ⊗F ⊗ Lq−1 → ∧p+1H0(L)⊗F ⊗ Lq−1 → ∧pML ⊗F ⊗ Lq → 0.

Taking global sections, we remark that the Koszul differential factors through
the map

∧p+1H0(X,L)⊗H0(X,F ⊗ Lq−1) → H0(X,∧pML ⊗ F ⊗ Lq),

hence we have the following characterization of Koszul cohomology, [La89]:

Theorem 2.6 (Lazarsfeld). Notation as above. We have

Kp,q(X,F , L) ∼= coker
(
∧p+1H0(L)⊗H0(F ⊗ Lq−1) → H0(∧pML ⊗F ⊗ Lq)

)

∼= ker
(
H1(X,∧p+1ML ⊗F ⊗ Lq−1) → ∧p+1H0(L)⊗H1(F ⊗ Lq−1)

)
.

Theorem 2.6 has some nice direct consequences. The first one is a duality
theorem which was proved in [Gr84a].

Theorem 2.7. Let L be a globally generated line bundle on a smooth projective
variety X of dimension n. Set r := dim|L|. If

Hi(X,Lq−i) = Hi(X,Lq−i+1) = 0, i = 1, . . . , n− 1

then
Kp,q(X,L)∨ ∼= Kr−n−p,n+1−q(X,KX , L).

Another consequence of Theorem 2.6, stated implicitly in [Fa06b] without
proof, is the following:

Theorem 2.8. Let L be a non-special globally generated line bundle on a smooth
curve C of genus g ≥ 2. Set d = deg(L), r = h0(C,L)− 1, and consider 1 ≤ p ≤ r.
Then

dim Kp,1(C,L)− dim Kp−1,2(C,L) = p ·
(
d− g

p

)(
d+ 1− g

p+ 1
− d

d− g

)

.

In particular, if

p <
(d+ 1− g)(d− g)

d
− 1,

then Kp,1(C,L) �= 0, and if

(d+ 1− g)(d− g)

d
≤ p ≤ d− g,

then Kp−1,2(C,L) �= 0.
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Proof. Since we work with a spanned line bundle on a curve, Theorem 2.7
applies, hence we have

Kp,1(C,L) ∼= Kr−p−1,1(C,KC , L)
∨

and

Kp−1,2(C,L) ∼= Kr−p,0(C,KC , L)
∨.

Set, as usual, ML = Ker{H0(C,L) ⊗ OC → L}, and consider the Koszul
complex

(3) 0 → ∧r−pH0(C,L)⊗H0(C,KC) → H0(C,∧r−p−1ML ⊗KC ⊗ L) → 0.

Since L is non-special, Kr−p,0(C,KC , L) is isomorphic to the kernel of the dif-
ferential appearing in (3), hence the difference which we wish to compute coincides
with the Euler characteristic of the complex (3).

Next we determine h0(C,∧r−p−1ML ⊗ KC ⊗ L). Note that rk(ML) = r and
∧r−p−1ML ⊗L ∼= ∧p+1M∨

L . In particular, since H0(C,∧p+1ML) ∼= Kp+1,0(C,L) =
0, we obtain

h0(C,∧r−p−1ML ⊗KC ⊗ L) = −χ(C,∧p+1ML).

Observe that

deg(∧p+1ML) = deg(ML)

(
r − 1

p

)

= −d

(
r − 1

p

)

and

rk(∧p+1ML) =

(
r

p+ 1

)

From the Riemann-Roch Theorem it follows that

−χ(C,∧p+1ML) = d

(
r − 1

p

)

+ (g − 1)

(
r

p+ 1

)

and hence

dim Kp,1(C,L)− dim Kp−1,2(C,L) = d

(
r − 1

p

)

+ (g − 1)

(
r

p+ 1

)

− g

(
r + 1

p+ 1

)

.

The formula is obtained by replacing r by d− g. �

Remark 2.9. A full version of Theorem 2.8 for special line bundles can be
obtained in a similar manner by adding alternating sums of other groups Kp−i,i+1.
For example, if L⊗2 is non-special, then from the complex

0 → ∧r−p+1H0(C,L)⊗H0(C,KC ⊗ L−1) → ∧r−pH0(C,L)⊗H0(C,KC) →

→ H0(C,∧r−p−1ML ⊗KC ⊗ L) → 0

we obtain the following conclusion:

dim Kp,1(C,L)− dim Kp−1,2(C,L) + dim Kp−2,3(C,L) =

= d

(
r − 1

p

)

+ (g − 1)

(
r

p+ 1

)

− g

(
r + 1

p+ 1

)

+

(
r + 1

p

)

(r − d+ g).
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2.4. Hilbert schemes. Suppose X is a smooth variety, and consider L ∈
Pic(X). A novel description of the Koszul cohomology of X with values in L was
provided in [V02] via the Hilbert scheme of points on X.

Denote by X [n] the Hilbert scheme parameterizing zero-dimensional length n

subschemes ofX, letX
[n]
curv be the open subscheme parameterizing curvilinear length

n subschemes, and let
Ξn ⊂ X [n]

curv ×X

be the incidence subscheme with projection maps p : Ξn → X and q : Ξn → X
[n]
curv.

For a line bundle L on X, the sheaf L[n] := q∗p
∗L is locally free of rank n on X

[n]
curv,

and the fiber over ξ ∈ X
[n]
curv is isomorphic to H0(ξ, L⊗Oξ).

There is a natural map

H0(X,L)⊗O
X

[n]
curv

→ L[n],

acting on the fiber over ξ ∈ X
[n]
curv, by s 
→ s|ξ. In [V02] and [EGL] it is shown that,

by taking wedge powers and global sections, this map induces an isomorphism:

∧nH0(X,L) ∼= H0(X [n]
curv, det L

[n]).

Voisin proves that there is an injective map

H0(Ξp+1, det L
[p+1] � Lq−1) → ∧pH0(X,L)⊗H0(X,Lq)

whose image is isomorphic to the kernel of the Koszul differential. This eventually
leads to the following result:

Theorem 2.10 (Voisin [V02]). For all integers p and q, the Koszul cohomology
Kp,q(X,L) is isomorphic to the cokernel of the restriction map

H0(X [p+1]
curv ×X, det L[p+1] � Lq−1) → H0(Ξp+1, det L

[p+1] � Lq−1|Ξp+1
).

In particular,

Kp,1(X,L) ∼= coker(H0(X [p+1]
curv , det L[p+1])

q∗→ H0(Ξp+1, q
∗det L[p+1]|Ξp+1

)).

Remark 2.11. The group Kp,q(X,F , L) is obtained by replacing Lq−1 by F ⊗
Lq−1 in the statement of Theorem 2.10.

The main application of this approach is the proof of the generic Green Conjec-
ture [V02]; see Subsection 4.1 for a more detailed discussion on the subject. The
precise statement is the following.

Theorem 2.12 (Voisin [V02] and [V05]). Consider a smooth projective K3
surface S, such that Pic(S) is isomorphic to Z2, and is freely generated by L and
OS(Δ), where Δ is a smooth rational curve such that deg(L|Δ) = 2, and L is a very

ample line bundle with L2 = 2g − 2, g = 2k + 1. Then Kk+1,1

(
S,L ⊗OS(Δ)

)
= 0

and

(4) Kk,1(S,L) = 0.

Voisin’s result, apart from settling the Generic Green Conjecture, offers the
possibility (via the cohomological calculations carried out in [Fa06b], see also Sec-
tion 3), to give a much shorter proof of the Harris-Mumford Theorem [HM82] on
the Kodaira dimension of Mg in the case of odd genus. This proof does not use
intersection theory on the stack of admissible coverings at all and is considerably
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shorter than the original proof. This approach has been described in full detail in
[Fa08].

3. Geometric cycles on the moduli space

3.1. Brill-Noether cycles. We recall a few basic facts from Brill-Noether
theory; see [ACGH85] for a general reference.

For a smooth curve C and integers r, d ≥ 0 one considers the Brill-Noether
locus

W r
d (C) := {L ∈ Picd(C) : h0(C,L) ≥ r + 1}

as well as the variety of linear series of type grd on C, that is,

Gr
d(C) := {(L, V ) : L ∈ W r

d (C), V ∈ G(r + 1, H0(L))}.

The locus W r
d (C) is a deteminantal subvariety of Picd(C) of expected dimension

equal to the Brill-Noether number ρ(g, r, d) = g − (r + 1)(g − d+ r). According to
the Brill-Noether Theorem for a general curve [C] ∈ Mg, both W r

d (C) and Gr
d(C)

are irreducible varieties of dimension

dim W r
d (C) = dim Gr

d(C) = ρ(g, r, d).

In particular, W r
d (C) = ∅ when ρ(g, r, d) < 0. By imposing the condition that a

curve carry a linear series grd when ρ(g, r, d) < 0, one can define a whole range of
geometric subvarieties of Mg.

We introduce the Deligne-Mumford stack σ : Gr
d → Mg classifying pairs [C, l]

where [C] ∈ Mg and l = (L, V ) ∈ Gr
d(C) is a linear series grd, together with the

projection σ[C, l] := [C]. The stack Gr
d has a determinantal structure inside a

Grassmann bundle over the universal Picard stack Pic
d
g → Mg . In particular, each

irreducible component of Gr
d has dimension at least 3g−3+ρ(g, r, d), cf. [AC81b].

We define the Brill-Noether cycle

Mr
g,d := σ∗(G

r
d) = {[C] ∈ Mg : W r

d (C) �= ∅},
together with the substack structure induced from the determinantal structure of
Gr

d via the morphism σ. A result of Steffen [St98] guarantees that each irreducible
component of Mr

g,d has dimension at least 3g − 3 + ρ(g, r, d).

When ρ(g, r, d) = −1, Steffen’s result coupled with the Brill-Noether Theorem
implies that the cycle Mr

g,d is pure of codimension 1 inside Mg. One has the

following more precise statement due to Eisenbud and Harris [EH89]:

Theorem 3.1. For integers g, r and d such that ρ(g, r, d) = −1, the locus Mr
g,d

is an irreducible divisor on Mg. The class of its compactification Mr

g,d inside Mg

is given by the following formula:

Mr

g,d ≡ cg,d,r

⎛

⎝(g + 3)λ− g + 1

6
δ0 −

[g/2]∑

i=1

i(g − i)δi

⎞

⎠ ∈ Pic(Mg).

The constant cg,d,r has a clear intersection-theoretic interpretation using Schu-
bert calculus. Note that remarkably, the slope of all the Brill-Noether divisors on
Mg is independent of d and r and

s(Mr

g,d) = 6 +
12

g + 1
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for all r, d ≥ 1 satisfying ρ(g, r, d) = −1. For genera g such that g+1 is composite,
one has as many Brill-Noether divisors on Mg as ways of non-trivially factoring
g + 1. It is natural to raise the following:

Problem 3.2. Construct an explicit linear equivalence between various Brill-
Noether divisors Mr

g,d on Mg for different integers r, d ≥ 1 with ρ(g, r, d) = −1.

The simplest case is g = 11 when there exist two (distinct) Brill-Noether di-

visors M1

11,6 and M2

11,9 and s(M1

11,6) = s(M2

11,9) = 7. These divisors can be

understood in terms of Noether-Lefschetz divisors on the moduli space F11 of po-
larized K3 surfaces of degree 2g − 2 = 20. We recall that there exists a rational
P11-fibration

φ : M11 ��� F11, φ[C] := [S,OS(C)],

where S is the unique K3 surface containing C, see [M94]. Noting that M1
11,6 =

M5
11,14 it follows that

M1
11,6 = φ∗

|M11
(NL1),

where NL1 is the Noether-Lefschetz divisor on F11 of polarized K3 surfaces S with
Picard lattice Pic(S) = Z · [OS(1)]+Z · [C], where C2 = 20 and C · c1(OS(1)) = 14.
Similarly, by Riemann-Roch, we have an equality of divisors M2

11,9 = M3
11,11, and

then

M2
11,9 = φ∗

|M11
(NL2),

with NL2 being the Noether-Lefschetz divisor whose general point corresponds to
a quartic surface S ⊂ P3 with Pic(S) = Z · [OS(1)] + Z · [C], where C2 = 20
and C · c1(OS(1)) = 11. It is not clear whether NL1 and NL2 should be linearly
equivalent on F11.

The next interesting case is g = 23, see [Fa00]: The three (distinct) Brill-

Noether divisors M1

23,12, M
2

23,17 and M1

23,20 are multicanonical in the sense that
there exist explicitly known integersm,m1,m2,m3 ∈ Z>0 and an effective boundary

divisor E ≡
∑11

i=1 ciδi ∈ Pic(M23) such that

m1 · M
1

23,12 + E ≡ m2 · M
2

23,17 + E = m3 · M
3

23,20 + E ∈ |mKM23
|.

Question 3.3. For a genus g such that g + 1 is composite, is there a good
geometric description of the stable base locus

B
(
Mg, |M

r

g,d|
)
:=

⋂

n≥0

Bs(Mg, |nM
r

g,d|)

of the Brill-Noether linear system? It is clear that B(Mg, |M
r

g,d|) contains impor-

tant subvarieties of Mg like the hyperelliptic and trigonal locus, cf. [HaM90].

Of the higher codimension Brill-Noether cycles, the best understood are the
d-gonal loci

M1
g,2 ⊂ M1

g,3 ⊂ · · · ⊂ M1
g,d ⊂ · · · ⊂ Mg.

Each stratum M1
g,d is an irreducible variety of dimension 2g + 2d − 5. The go-

nality stratification of Mg, apart from being essential in the statement of Green’s
Conjecture, has often been used for cohomology calculations or for bounding the
cohomological dimension and the affine covering number of Mg.
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3.2. Koszul cycles. Koszul cohomology behaves like the usual cohomology
in many regards. Notably, it can be computed in families, see [BG85], or the book
[ApN08]:

Theorem 3.4. Let f : X → S be a flat family of projective varieties, parame-
terized by an integral scheme, L ∈ Pic(X/S) a line bundle and p, q ∈ Z. Then there
exists a coherent sheaf Kp,q(X/S,L) on X and a nonempty Zariski open subset
U ⊂ S such that for all s ∈ U one has that Kp,q(X/S,L)⊗ k(s) ∼= Kp,q(Xs, Ls).

In the statement above, the open set U is precisely determined by the condition
that all hi(Xs, Ls) are minimal.

By Theorem 3.4, Koszul cohomology can be used to construct effective deter-
minantal cycles on the moduli spaces of smooth curves. This works particularly
well for Koszul cohomology of canonical curves, as hi remain constant over the
whole moduli space. More generally, Koszul cycles can be defined over the relative
Picard stack over the moduli space. Under stronger assumptions, the canonically
defined determinantal structure can be given a better description. To this end, one
uses the description provided by Lazarsfeld kernel bundles.

In many cases, for example canonical curves, or 2-regular varieties, the prop-
erty (Np) reduces to the single condition Kp,2(X,L) = 0, see for instance [Ein87]
Proposition 3. This phenomenon justifies the study of various loci given by the
non-vanishing of Kp,2. Note however that extending this determinantal descrip-
tion over the boundary of the moduli stack (especially over the locus of reducible
stable curves) poses considerable technical difficulties, see [Fa06a], [Fa06b]. We
now describe a general set-up used to compute Koszul non-vanishing loci over a

partial compactification M̃g of the moduli space Mg inside Mg. As usual, if M is
a Deligne-Mumford stack, we denote by M its associated coarse moduli space.

We fix integers r, d ≥ 1, such that ρ(g, r, d) = 0 and denote by M0
g ⊂ Mg the

open substack classifying curves [C] ∈ Mg such that W r
d−1(C) = ∅ and W r+1

d (C) =
∅. Since ρ(g, r+1, d) ≤ −2 and ρ(g, r, d−1) = −r−1 ≤ −2, it follows from [EH89]
that codim(Mg −M0

g,Mg) ≥ 2. We further denote by Δ0
0 ⊂ Δ0 ⊂ Mg the locus

of nodal curves [Cyq := C/y ∼ q], where [C] ∈ Mg−1 is a curve that satisfies
the Brill-Noether Theorem and y, q ∈ C are arbitrary distinct points. Finally,
Δ0

1 ⊂ Δ1 ⊂ Mg denotes the open substack classifying curves [C ∪y E], where

[C] ∈ Mg−1 is Brill-Noether general, y ∈ C is an arbitrary point and [E, y] ∈ M1,1

is an arbitrary elliptic tail. Note that every Brill-Noether general curve [C] ∈ Mg−1

satisfies

W r
d−1(C) = ∅, W r+1

d (C) = ∅ and dim W r
d (C) = ρ(g − 1, r, d) = r.

We set M̃g := M0
g ∪Δ0

0 ∪Δ0
1 ⊂ Mg and we regard it as a partial compactification

of Mg. Then following [EH86] we consider the Deligne-Mumford stack

σ0 : G̃r
d → M̃g

classifying pairs [C, l] with [C] ∈ M̃g and l a limit linear series of type grd on C.
We remark that for any curve [C] ∈ M0

g ∪ Δ0
0 and L ∈ W r

d (C), we have that

h0(C,L) = r + 1 and that L is globally generated. Indeed, for a smooth curve
[C] ∈ M0

g it follows that W r+1
d (C) = ∅, so necessarily W r

d (C) = Gr
d(C). For a
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point [Cyq] ∈ Δ0
0 we have the identification

σ−1
0

[
Cyq

]
= {L ∈ W r

d (C) : h0(C,L⊗OC(−y − q)) = r},
where we note that since the normalization [C] ∈ Mg−1 is assumed to be Brill-

Noether general, any sheaf L ∈ σ−1
0 [Cyq] satisfies

h0(C,L⊗OC(−y)) = h0(C,L⊗OC(−q)) = r

and h0(C,L) = r+1. Furthermore, W
r

d(Cyq) = W r
d (Cyq), where the left-hand-side

denotes the closure of W r
d (Cyq) inside the variety Pic

d
(Cyq) of torsion-free sheaves

on Cyq. This follows because a non-locally free torsion-free sheaf in W
r

d(Cyq) −
W r

d (Cyq) is of the form ν∗(A), where A ∈ W r
d−1(C) and ν : C → Cyq is the

normalization map. But we know that W r
d−1(C) = ∅, because [C] ∈ Mg−1 satisfies

the Brill-Noether Theorem. The conclusion of this discussion is that σ : G̃r
d → M̃g

is proper. Since ρ(g, r, d) = 0, by general Brill-Noether theory there exists a unique
irreducible component of Gr

d which maps onto M0
g.

In [Fa06b], a universal Koszul non-vanishing locus over a partial compactifi-
cation of the moduli space of curves is introduced. Precisely, one constructs two

locally free sheaves A and B over G̃r
d such that for a point [C, l] corresponding to a

smooth curve [C] ∈ M0
g and a (necessarily complete and globally generated linear

series) l = (L,H0(C,L)) ∈ Gr
d(C) inducing a map C

|L|−→ Pr, we have the following
description of the fibres:

A(C,L) = H0
(
P
r,∧pMPr ⊗OPr(2)

)
and B(C,L) = H0

(
C,∧pML ⊗ L⊗2

)
.

There is a natural vector bundle morphism φ : A → B given by restriction. From
Grauert’s Theorem it follows that both A and B are vector bundles over Gr

d and
from Bott’s Theorem (in the case of A) and Riemann-Roch (in the case of B)
respectively, we compute their ranks

rank(A) = (p+ 1)

(
r + 2

p+ 2

)

and rank(B) =
(
r

p

)(
−pd

r
+ 2d+ 1− g

)
.

Note that ML is a stable vector bundle (again, one uses that [C] ∈ M0
g), hence

H1(C,∧pML ⊗L⊗2) = 0 and then rank(B) = χ(C,∧pML ⊗L⊗2) can be computed
from Riemann-Roch. We have the following result, cf. [Fa06b] Theorem 2.1:

Theorem 3.5. The cycle

Ug,p := {(C,L) ∈ G
r
d : Kp,2(C,L) �= 0},

is the degeneracy locus of the vector bundle map φ : A → B over Gr
d.

Under suitable numerical restrictions, when rank(A) = rank(B), the cycle con-
structed in Theorem 3.5 is a virtual divisor on Gr

d. This happens precisely when

r := 2s+ sp+ p, g := rs+ s and d := rs+ r.

for some p ≥ 0 and s ≥ 1. The first remarkable case occurs when s = 1. Set
g = 2p + 3, r = g − 1 = 2p + 2, and d = 2g − 2 = 4p + 4. Note that, since the
canonical bundle is the only g

g−1
2g−2 on a curve of genus g, the Brill-Noether stack is

isomorphic to Mg. The notable fact that the cycle in question is an actual divisor
follows directly from Voisin’s Theorem 2.12 and from Green’s Hyperplane Section
Theorem [V05].



38 M. APRODU AND G. FARKAS

Hence Zg,p := σ∗(Ug,p) is a virtual divisor on Mg whenever

g = s(2s+ sp+ p+ 1).

In the next section, we explain how to extend the morphism φ : A → B to a mor-

phism of locally free sheaves over the stack G̃r
d of limit linear series and reproduce

the class formula proved in [Fa06a] for the degeneracy locus of this morphism.

3.3. Divisors of small slope. In [Fa06a] it was shown that the determinan-
tal structure of Zg,p can be extended over Mg in such a way that whenever s ≥ 2,
the resulting virtual slope violates the Harris-Morrison Slope Conjecture. One has
the following general statement:

Theorem 3.6. If σ : G̃r
d → M̃g denotes the compactification of Gr

d given
by limit linear series, then there exists a natural extension of the vector bundle

morphism φ : A → B over G̃r
d such that Zg,p is the image of the degeneracy locus

of φ. The class of the pushforward to M̃g of the virtual degeneracy locus of φ is
given by

σ∗(c1(Gp,2 −Hp,2)) ≡ aλ− b0δ0 − b1δ1 − · · · − b[ g2 ]δ[
g
2 ]
,

where a, b0, . . . , b[ g2 ] are explicitly given coefficients such that b1 = 12b0 − a, bi ≥ b0
for 1 ≤ i ≤ [g/2] and

s
(
σ∗(c1(Gp,2 −Hp,2))

)
=

a

b0
= 6

f(s, p)

(p+ 2) sh(s, p)
, with

f(s, p) = (p4 + 24p2 + 8p3 + 32p+ 16)s7 + (p4 + 4p3 − 16p− 16)s6 − (p4 + 7p3 +
13p2 − 12)s5 − (p4 +2p3 + p2 +14p+24)s4 + (2p3 +2p2 − 6p− 4)s3 + (p3 +17p2 +

50p+ 41)s2 + (7p2 + 18p+ 9)s+ 2p+ 2

and

h(s, p) = (p3 + 6p2 + 12p+ 8)s6 + (p3 + 2p2 − 4p− 8)s5 − (p3 + 7p2 + 11p+ 2)s4 −
− (p3 − 5p)s3 + (4p2 + 5p+ 1)s2 + (p2 + 7p+ 11)s+ 4p+ 2.

Furthermore, we have that

6 <
a

b0
< 6 +

12

g + 1

whenever s ≥ 2. If the morphism φ is generically non-degenerate, then Zg,p is

a divisor on Mg which gives a counterexample to the Slope Conjecture for g =
s(2s+ sp+ p+ 1).

A few remarks are necessary. In the case s = 1 and g = 2p + 3, the vector

bundles A and B exist not only over a partial compactification of M̃g but can be
extended (at least) over the entire stack Mg ∪Δ0 in such a way that B(C, ωC) =
H0(C,∧pMωC

⊗ ω2
C) for any [C] ∈ Mg ∪Δ0. Theorem 3.6 reads in this case, see

also [Fa08] Theorem 5.7:

(5) [Z2p+3,p]
virt = c1(B−A) =

1

p+ 2

(
2p

p

)(
6(p+3)λ−(p+2)δ0−6(p+1)δ1−· · ·

)
,

in particular s([Z2p+3,p]
virt) = 6 + 12/(g + 1).

Particularly interesting is the case p = 0 when the condition K0,2(C,L) = 0 for
[C,L] ∈ Gr

d, is equivalent to the multiplication map

ν2(L) : Sym
2H0(C,L) → H0(C,L⊗2)
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not being an isomorphism. Note that ν2(L) is a linear map between vector spaces of
the same dimension and Zg,0 is the failure locus of the Maximal Rank Conjecture:

Corollary 3.7. For g = s(2s+1), r = 2s, d = 2s(s+1) the slope of the virtual
class of the locus of those [C] ∈ Mg for which there exists L ∈ W r

d (C) such that

the embedded curve C
|L|
↪→ Pr sits on a quadric hypersurface is equal to

s(Zs(2s+1),0) =
3(16s7 − 16s6 + 12s5 − 24s4 − 4s3 + 41s2 + 9s+ 2)

s(8s6 − 8s5 − 2s4 + s2 + 11s+ 2)
.

4. Conjectures on Koszul cohomology of curves

4.1. Green’s Conjecture. In what follows, we consider (C,KC) a smooth
canonical curve of genus g ≥ 2. In this case, the Duality Theorem 2.7 applies, and
the distribution of the numbers bp,q := dim Kp,q(C,KC) organized in a table (the
Betti table) is the following:

⎡

⎢
⎢
⎣

b0,0 0 0 . . . 0 0
0 b1,1 b2,1 . . . bg−3,1 bg−2,1

b0,2 b1,2 b2,2 . . . bg−3,2 0
0 0 0 . . . 0 bg−2,3

⎤

⎥
⎥
⎦

The Betti table is symmetric with respect to its center, that is, bi,j = bg−2−i,3−j

and all the other entries not marked here are zero.
Trying to apply the Non-Vanishing Theorem 2.4 to the canonical bundle KC ,

we obtain one condition and one quantity. The condition comes from the hypothesis
that for a decomposition KC = L1⊗(KC⊗L∨

1 ), Theorem 2.4 is applicable whenever

(6) r1 + 1 := h0(C,L1) ≥ 2 and r2 + 1 := h1(C,L1) ≥ 2.

A line bundle L1 satisfying (6) is said to contribute to the Clifford index of C.
The quantity that appears in Theorem 2.4 is the Clifford index itself. More

precisely
r1 + r2 − 1 = g − Cliff(L1)− 2,

where
Cliff(L1) := deg(L1)− 2h0(L1) + 2.

Clifford’s Theorem [ACGH85] says that Cliff(L1) ≥ 0, and Cliff(L1) > 0 unless
L1 is a g12. Following [GL86] we define the Clifford index of C as the quantity

Cliff(C) := min{Cliff(L1) : L1 contributes to the Clifford index of C}.
In general, the Clifford index will be computed by minimal pencils. Specifically,

a general d-gonal curve [C] ∈ M1
g,d (recall that the gonality strata are irreducible)

will have Cliff(C) = d−2. However, this equality is not valid for all curves, that is,
there exist curves [C] ∈ Mg with Cliff(C) < gon(C)−2, basic examples being plane
curves, or exceptional curves on K3 surfaces. Even in these exotic cases, Coppens
and Martens [CM91] established the precise relation Cliff(C) = gon(C)− 3.

Theorem 2.4 implies the following non-vanishing,

Kg−Cliff(C)−2,1(C,KC) �= 0,

and Green’s Conjecture predicts optimality of Theorem 2.4 for canonical curves:

Conjecture 4.1. For any curve [C] ∈ Mg we have the vanishing Kp,1(C,KC) =
0 for all p ≥ g − Cliff(C)− 1.
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In the statement of Green’s Conjecture, it suffices to prove the vanishing of
Kg−Cliff(C)−1,1(C,KC) or, by duality, that KCliff(C)−1,2(C,KC) = 0.

We shall analyze some basic cases:

Example 4.2. Looking at the group K0,2(C,KC), Green’s Conjecture predicts
that it is zero for all non-hyperelliptic curves. Or, the vanishing of K0,2(C,KC) is
equivalent to the projective normality of the canonical curve. This is precisely the
content of the classical Max Noether Theorem [ACGH85], p. 117.

Example 4.3. For a non-hyperelliptic curve, we know that K1,2(C,KC) =
0 if and only if the canonical curve C ⊂ Pg−1 is cut out by quadrics. Green’s
Conjecture predicts that K1,2(C,KC) = 0 unless the curve is hyperelliptic, trigonal
or a smooth plane quintic. This is precisely the Enriques-Babbage-Petri Theorem,
see [ACGH85], p. 124.

Thus Conjecture 4.1 appears as a sweeping generalization of two famous classi-
cal theorems. Apart from these classical results, strong evidence has been found for
Green’s Conjecture (and one should immediately add that not a shred of evidence
has been found suggesting that the conjecture might fail even for a single curve
[C] ∈ Mg). For instance, the conjecture is true for general curves in any gonality
stratum M1

g,d, see [Ap05], [Tei02] and [V02]. The proof of this fact relies on semi-

continuity. Since M1
g,d is irreducible, it suffices to find one example of a d-gonal

curve that satisfies the conjecture, for any 2 ≤ d ≤ (g+2)/2; here we also need the
fact mentioned above, that the Clifford index of a general d-gonal curve is d − 2.
The most important and challenging case, solved by Voisin [V05], was the case of
curves of odd genus g = 2d− 1 and maximal gonality d+ 1. Following Hirschowitz
and Ramanan [HR98] one can compare the Brill-Noether divisor M1

g,d of curves

with a g1d and the virtual divisor of curves [C] ∈ Mg with Kd−1,1(C,KC) �= 0. The
non-vanishing Theorem 2.4 gives a set-theoretic inclusion M1

g,d ⊂ Zg,d−2. Now, we

compare the class [Zg,d−2]
virt ∈ Pic(Mg) of the virtual divisor Zg,d−2 to the class

[M1
g,d] computed in [HM82]. One finds the following relation

[Zg,d−2]
virt = (d− 1)[M1

g,d] ∈ Pic(Mg)

cf. [HR98]; Theorem 3.6 in the particular case s = 1 provides an extension of this
equality to a partial compactification of Mg. Green’s Conjecture for general curves
of odd genus [V05] implies that Zg,d−2 is a genuine divisor on Mg. Since a general
curve [C] ∈ M1

g,d satisfies

dim Kd−1,1(C,KC) ≥ d− 1,

cf. [HR98], one finds the set-theoretic equality M1
g,d = Zg,d−2. In particular we

obtain the following strong characterization of curves of odd genus and maximal
gonality:

Theorem 4.4 (Hirschowitz-Ramanan, Voisin). If C is a smooth curve of genus
g = 2d− 1 ≥ 7, then Kd−1,1(C,KC) �= 0 if and only if C carries a g1d.

Voisin proved Theorem 2.12, using Hilbert scheme techniques, then she applied
Green’s Hyperplane Section Theorem [Gr84a] to obtain the desired example of a
curve [C] ∈ Mg satisfying Green’s Conjecture.

Starting from Theorem 4.4, all the other generic d-gonal cases are obtained in
the following refined form, see [Ap05]:



KOSZUL COHOMOLOGY AND APPLICATIONS TO MODULI 41

Theorem 4.5. We fix integers g and d ≥ 2 such that 2 ≤ d ≤ [g/2] + 1. For
any smooth curve [C] ∈ Mg satisfying the condition

(7) dim W 1
g−d+2(C) ≤ g − 2d+ 2 = ρ(g, 1, g − d+ 2),

we have that Kg−d+1,1(C,KC) = 0. In particular, C satisfies Green’s Conjecture.

Note that the condition d ≤ [g/2]+1 excludes the case already covered by The-
orem 4.4. The proof of Theorem 4.5 relies on constructing a singular stable curve

[C ′] ∈ M2g+3−2d of maximal gonality g + 3 − d (that is, [C ′] /∈ M1

2g+3−d,g+2−d),
starting from any smooth curve [C] ∈ Mg satisfying (7). The curve C ′ is obtained
from C by gluing together g+3−2d pairs of general points of C, and then applying
an analogue of Theorem 4.4 for singular stable curves, [Ap05], see Section 4.2. The
version in question is the following, cf. [Ap05] Proposition 7. The proof we give
here is however slightly different:

Theorem 4.6. For any nodal curve [C ′] ∈ Mg′ ∪ Δ0, with g′ = 2d′ − 1 ≥ 7

such that Kd′−1,1(C
′, ωC′) �= 0, it follows that [C ′] ∈ M1

g′,d′ .

Proof. By duality, we obtain the following equality of cycles on M̃g′ :

{[C ′] : Kd′−1,1(C
′, ωC′) �= 0} = {[C ′] : Kd′−2,2(C

′, ωC′) �= 0} =: Zg′,d′−2.

Theorem 3.6 shows that this locus is a virtual divisor on M̃g′ whose class is

given by formula (5) and Theorem 2.12 implies that Zg′,d′−2 is actually a divisor.

Comparing its class against the class of the Hurwitz divisor M1

g′,d′ [HM82], we
find that

Zg′,d′−2 ≡ (d′ − 1)M1

g′,d′ ∈ Pic(M̃g′).

Note that this is a stronger statement than [HR98] Proposition 3.1, being an

equality of codimension 1 cycles on the compactified moduli space M̃g′ , rather
than on Mg′ . The desired statement follows immediately since for any curve [C ′] ∈
M1

g′,d′ one has dim Kd′−1,1(C
′, ωC′) ≥ d′ − 1, hence the degeneracy locus Zg′,d′−2

contains M1

g′,d′ with multiplicity at least d′ − 1. �

We return to the discussion on Theorem 4.5 (the proof will be resumed in the
next subsection). By duality, the vanishing in the statement above can be rephrased
as

Kd−3,2(C,KC) = 0.

The condition (7) is equivalent to a string of inequalities

dim W 1
d+n(C) ≤ n

for all 0 ≤ n ≤ g − 2d + 2, in particular gon(C) ≥ d. This condition is satisfied
for a general d-gonal curve, cf. [Ap05]. More generally, if [C] ∈ M1

g,d is a general
d-gonal curve then any irreducible component

Z �= W 1
d (C) +Wn−d(C)

of W 1
n(C) has dimension ρ(g, 1, n). In particular, for ρ(g, 1, n) < 0 it follows that

W 1
n(C) = W 1

d (C) + Wn−d(C) which of course implies (7). For g = 2d − 2, the
inequality (7) becomes necessarily an equality and it reads: the curve C carries
finitely many g1d’s of minimal degree.
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We make some comments regarding condition (7). Let us suppose that C
is non-hyperelliptic and d ≥ 3. From Martens’ Theorem [ACGH85] p.191, it
follows that dim W 1

g−d+2(C) ≤ g − d− 1. Condition (7) requires the better bound
g − 2d + 2 ≤ g − d − 1. However, for d = 3, the two bounds are the same, and
Theorem 4.5 shows that K0,0(C,KC) = 0, for any non-hyperelliptic curve, which
is Max Noether’s Theorem, see also Example 4.2. Applying Mumford’s Theorem
[ACGH85] p.193, we obtain the better bound dim W 1

g−d+2(C) ≤ g − d − 2 for
d ≥ 4, unless the curve is trigonal, a smooth plane quintic or a double covering of
an elliptic curve. Therefore, if C is not one of the three types listed above, then
K1,2(C,KC) = 0, and we recover the Enriques-Babbage-Petri Theorem, see also
Example 4.3 (note, however, the exception made for bielliptic curves).

Keem has improved the dimension bounds for W 1
g−d+2(C). For d ≥ 5 and C

a curve that has neither a g14 nor is a smooth plane sextic, one has the inequality
dim W 1

g−d+2(C) ≤ g − d − 3, cf. [Ke90] Theorems 2.1 and 2.3. Consequently,
Theorem 4.5 implies the following result which is a complete solution to Green’s
Conjecture for 5-gonal curves:

Theorem 4.7 (Voisin [V88], Schreyer [Sch91]). If K2,2(C,KC) �= 0, then C
is hyperelliptic, trigonal, tetragonal or a smooth plane sextic, that is, Cliff(C) ≤ 2.

Geometrically, the vanishing of K2,2(C,KC) is equivalent to the ideal of the
canonical curve being generated by quadrics, and the minimal relations among the
generators being linear.

Theorem 3.1 from [Ke90] gives the next bound dim W 1
g−d+2(C) ≤ g−d−4, for

d ≥ 6 and C with gon(C) ≥ 6 which does not admit a covering of degree two or three
on another curve, and which is not a plane curve. The following improvement of
Theorem 4.7 is then obtained directly from Theorem 4.5 and [Ap05] Theorem 3.1:

Theorem 4.8. If g ≥ 12 and K3,2(C,KC) �= 0, then C is one of the following:
hyperelliptic, trigonal, tetragonal, pentagonal, double cover of an genus 3 curve,
triple cover of an elliptic curve, smooth plane septic. In other words, if Cliff(C) ≥ 4
then K3,2(C,KC) = 0.

Theorem 4.8 represents the solution to Green’s Conjecture for hexagonal curves.
Likewise, Theorem 4.5 can be used together with the Brill-Noether theory to prove
Green’s Conjecture for any gonality d and large genus. The idea is to apply Cop-
pens’ results [Co83].

Theorem 4.9. If g ≥ 10 and d ≥ 5 are two integers such that g > (d−2)(2d−7),
and C is any d-gonal curve of genus g which does not admit any morphism of degree
less than d onto another smooth curve, then Cliff(C) = d−2 and Green’s Conjecture
is verified for C, i.e. Kg−d+1,1(C,KC) = 0.

The statement of Conjecture 4.1 (meant as a vanishing result), is empty for
hyperelliptic curves is, hence the interesting cases begin with d ≥ 3.

It remains to verify Green’s Conjecture for curves which do not verify (7). One
result in this direction was proved in [ApP06].

Theorem 4.10. Let S be a K3 surface with Pic(S) = Z · H ⊕ Z · �, with H
very ample, H2 = 2r − 2 ≥ 4, and H · � = 1. Then any smooth curve in the linear
system |2H + �| verifies Green’s conjecture.
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Smooth curves in the linear system |2H + �| count among the few known ex-
amples of curves whose Clifford index is not computed by pencils, i.e. Cliff(C) =
gon(C)−3, [ELMS89] (other obvious examples are plane curves, for which Green’s
Conjecture was verified before, cf. [Lo89]). Such curves are the most special ones
in the moduli space of curves from the point of view of the Clifford dimension.
Hence, this case may be considered as opposite to that of a general curve of fixed
gonality. Note that these curves carry a one-parameter family of pencils of minimal
degree, hence the condition (7) is not satisfied.

4.2. The Gonality Conjecture. The Green-Lazarsfeld Gonality Conjecture
[GL86] predicts that the gonality of a curve can be read off the Koszul cohomology
with values in any sufficiently positive line bundle.

Conjecture 4.11 (Green-Lazarsfeld). Let C be a smooth curve of gonality d,
and L a sufficiently positive line bundle on C. Then

Kh0(L)−d,1(C,L) = 0.

Theorem 2.8 applied to L written as a sum of a minimal pencil and the residual
bundle yields

Kh0(L)−d−1,1(C,L) �= 0.

Note that if L is sufficiently positive, then the Green-Lazarsfeld Nonvanishing
Theorem is optimal when applied for a decomposition where one factor is a pencil.
Indeed, consider any decomposition L = L1 ⊗ L2 with r1 = h0(C,L1) − 1 ≥ 2,
and r2 = h0(C,L2) − 1 ≥ 2. Since L is sufficiently positive, the linear system
|K⊗2

C ⊗ L∨| is empty, and finiteness of the addition map of divisors shows that at
least one of the two linear systems |KC ⊗ L∨

i | is empty. Suppose |KC ⊗ L∨
2 | = ∅,

choose a point x ∈ C−Bs(|L1|) and consider a new decomposition L = L′
1⊗L′

2, with
L′
1 = L1⊗OC(−x), and L′

2 = L2⊗OC(x). Denoting as usual r′i = h0(C,L′
i)−1, we

find that r′1+ r′2−1 = r1+ r2−1, whereas r′1 = r1−1, and L′
2 is again non-special.

We can apply an inductive argument until r1 becomes 1. Hence the Gonality
Conjecture predicts the optimality of the Green-Lazarsfeld Nonvanishing Theorem.
However, one major disadvantage of this statement is that “sufficiently positive” is
not a precise condition. It was proved in [Ap02] that by adding effective divisors
to bundles that verify the Gonality Conjecture we obtain again bundles that verify
the conjecture. Hence, in order to find a precise statement for Conjecture 4.11 one
has to study the edge cases.

In most generic cases (general curves in gonality strata, to be more precise),
the Gonality Conjecture can be verified for line bundles of degree 2g, see [ApV03]
and [Ap05]. The test bundles are obtained by adding two generic points to the
canonical bundle.

Theorem 4.12 ([Ap05]). For any d-gonal curve [C] ∈ Mg with d ≤ [g/2] + 2
which satisfies the condition (7), and for general points x, y ∈ C, we have that
Kg−d+1,1

(
C,KC ⊗OC(x+ y)

)
= 0.

The case not covered by Theorem 4.12 is slightly different. A general curve
C of odd genus carries infinitely many minimal pencils, hence a bundle of type
KC⊗OC(x+y) can never verify the vanishing predicted by the Gonality Conjecture.
Indeed, for any two points x and y there exists a minimal pencil L1 such that
H0(C,L1(−x− y)) �= 0, and we apply Theorem 2.4. However, adding three points
to the canonical bundle solves the problem, cf. [Ap04], [Ap05].
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Theorem 4.13. For any curve [C] ∈ M2d−1 of maximal gonality gon(C) = d+
1 and for general points x, y, z ∈ C, we have that Kd,1

(
C,KC ⊗OC(x+y+z)

)
= 0.

The proofs of Theorems 4.5, 4.12 and 4.13 are all based on the same idea. We
start with a smooth curve C and construct a stable curve of higher genus out of
it, in such a way that the Koszul cohomology does not change. Then we apply a
version of Theorem 4.4 for singular curves.

Proof of Theorems 4.5 and 4.12. We start with [C] ∈ Mg satisfying the condition
(7). We claim that if we choose δ := g + 3 − 2d pairs of general points xi, yi ∈ C
for 1 ≤ i ≤ δ, then the resulting stable curve

[
C ′ :=

C

x1 ∼ y1, . . . , xδ ∼ yδ

]
∈ M2g+3−2d

is a curve of maximal gonality, that is, g + 3 − d. Indeed, otherwise [C ′] ∈
M1

2g+3−2d,g+2−d and this implies that there exists a degree g + 2 − d admissible

covering f : C̃ → R from a nodal curve C̃ that is semi-stably equivalent to C ′, onto
a genus 0 curve R. The curve C is a subcurve of C̃ and if deg(f|C) = n ≤ g+2−d,

then it follows that f|C induces a pencil g1n such that f|C(xi) = f|C(yi) for 1 ≤ i ≤ δ.

Since the points xi, yi ∈ C are general, this implies that dim W 1
n(C)+δ ≥ 2δ, which

contradicts (7).
To conclude, apply Theorem 4.6 and use the following inclusions, [V02],

[ApV03]:

Kg−d+1,1(C,KC) ⊂ Kg−d+1,1(C,KC(x+ y)) ⊂ Kg−d+1,1(C
′, ωC′).

�
Remark 4.14. The proofs of Theorems 4.5, 4.6 and 4.12 indicate an interesting

phenomenon, completely independent of Voisin’s proof of the generic Green Con-
jecture. They show that Green’s Conjecture for general curves of genus g = 2d− 1
and maximal gonality d+ 1 is equivalent to the Gonality Conjecture for bundles of
type KC ⊗ OC(x + y) for general pointed curves [C, x, y] ∈ M2d−2,2. We refer to
[Ap02] and [ApV03] for further implications between the two conjectures, in both
directions.

Proof of Theorem 4.13. For C as in the hypothesis, and for general points x, y, z ∈
C, we construct a stable curve [C ′] ∈ M2d+1 by adding a smooth rational compo-
nent passing through the points x, y and z. Using admissible covers one can show,
as in the proofs of Theorems 4.5 and 4.12, that C ′ is of maximal gonality, that is
d + 2. From Theorem 4.6, we obtain Kd,1(C

′, ωC′) = 0. The conclusion follows
from the observation that Kd,1(C,KC ⊗OC(x+ y + z)) ∼= Kd,1(C

′, ωC′). �
It is natural to ask the following:

Question 4.15. For a curve C and points x, y ∈ C, can one give explicit
conditions on Koszul cohomology ensuring that x + y is contained in a fiber of a
minimal pencil?

We prove here the following result, which can be considered as a precise version
of the Gonality Conjecture for generic curves.

Theorem 4.16. Let [C] ∈ M2d−2, and x, y ∈ C arbitrarily chosen distinct
points. Then Kd−1,1(C,KC ⊗OC(x+y)) �= 0 if and only if there exists A ∈ W 1

d (C)
such that h0(C,A⊗OC(−x− y)) �= 0.
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Proof. Suppose there exists A ∈ W 1
d (C) such that h0(C,A(−x − y)) �= 0.

Theorem 2.8 applied to the decomposition KC ⊗ OC(x + y) = A ⊗ B, with B =
KC(x+y)⊗A∨ produces nontrivial classes in the group Kd−1,1(C,KC⊗OC(x+y)).

For the converse, we consider C ′, the stable curve obtained from C by gluing
together the points x and y and denote by ν : C → C ′ the normalization morphism.
Clearly [C ′] ∈ M2d−1. We observe that

Kd−1,1(C,KC ⊗OC(x+ y)) ∼= Kd−1,1(C
′, ωC′).

From Theorem 4.6, it follows that [C ′] ∈ M1

2d−1,d, hence there exists a map

f : C̃
d:1−→ R

from a curve C̃ semistably equivalent to C ′ onto a rational nodal curve R. The

curve C is a subcurve of C̃ and f|C provides the desired pencil. �
As mentioned above, the lower possible bound for explicit examples of line

bundles that verify the Gonality Conjecture found so far was 2g. One can raise the
question whether this bound is optimal or not and the sharpest statement one can
make is Conjecture 1.4 discussed in the introduction of this paper.

5. The Strong Maximal Rank Conjecture

Based mainly on work carried out in [Fa06a] and [Fa06b] we propose a con-
jecture predicting the resolution of an embedded curve with general moduli. This
statement unifies two apparently unrelated deep results in the theory of algebraic
curves: The Maximal Rank Conjecture which predicts the number of hypersurfaces
of each degree containing a general embedded curve C ⊂ P

r and Green’s Conjecture
on syzygies of canonical curves.

We begin by recalling the statement of the classical Maximal Rank Conjecture.
The modern formulation of this conjecture is due to Harris [H82] p. 79, even
though it appears that traces of a similar statement can be found in the work of
Max Noether. We fix integers g, r and d such that ρ(g, r, d) ≥ 0 and denote by
Id,g,r the unique component of the Hilbert scheme Hilbd,g,r of curves C ⊂ Pr with
Hilbert polynomial hC(t) = dt + 1 − g containing curves with general moduli. In
other words, the variety Id,g,r is characterized by the following properties:
(1) The general point [C ↪→ Pr] ∈ Id,g,r corresponds to a smooth curve C ⊂ Pr

with deg(C) = d and g(C) = g.
(2) The moduli map m : Id,g,r ��� Mg, m([C ↪→ Pr]) := [C] is dominant.

Conjecture 5.1. (Maximal Rank Conjecture) A general embedded smooth
curve [C ↪→ Pr] ∈ Id,g,r is of maximal rank, that is, for all integers n ≥ 1 the
restriction maps

νn(C) : H0(Pr,OPr(n)) → H0(C,OC(n))

are of maximal rank, that is, either injective or surjective.

Thus if a curve C ⊂ P
r lies on a hypersurface of degree d, then either hyper-

surfaces of degree d cut out the complete linear series |OC(d)| on the curve, or else
C is special in its Hilbert scheme. Since C can be assumed to be a Petri general
curve, it follows that H1(C,OC(n)) = 0 for n ≥ 2, so h0(C,OC(n)) = nd + 1 − g
and Conjecture 5.1 amounts to knowing the Hilbert function of C ⊂ Pr, that is,
the value of h0(Pr, IC/Pr (n)) for all n.
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Example 5.2. We consider the locus of curves C ⊂ P3 with deg(C) = 6 and
g(C) = 3 that lie on a quadric surface, that is, ν2(C) fails to be an isomorphism.
Such curves must be of type (2, 4) on the quadric, in particular, they are hyperellip-
tic. This is a divisorial condition on I6,3,3, that is, for a general [C ↪→ P3] ∈ I6,3,3

the map ν2(C) is an isomorphism.

Conjecture 5.1 makes sense of course for any component of Id,g,r but is known
to fail outside the Brill-Noether range, see [H82]. The Maximal Rank Conjecture
is known to hold in the non-special range, that is when d ≥ g + r, due to work
of Ballico and Ellia relying on the méthode d’Horace of Hirschowitz, see [BE87].
Voisin has also proved cases of the conjecture when h1(C,OC(1)) = 2, cf. [V92].
Finally, Conjecture 5.1 is also known in the case ρ(g, r, d) = 0 when it has serious
implications for the birational geometry of Mg. This case can be reduced to the
case when dim SymnH0(C,OC(1)) = dim H0(C,OC(n)), that is,

(
n+ r

n

)

= nd+ 1− g,

when Conjecture 5.1 amounts to constructing one smooth curve [C ↪→ Pr] ∈ Id,g,r

such that H0(Pr, IC/Pr(n)) = 0. In this situation, the failure locus of Conjecture
5.1 is precisely the virtual divisor Zg,0 on Mg whose geometry has been discussed
in Section 3, Corollary 3.7. The most interesting case (at least from the point of
view of slope calculations) is that of n = 2. One has the following result [Fa06b]
Theorem 1.5:

Theorem 5.3. For each s ≥ 1 we fix integers

g = s(2s+ 1), r = 2s and d = 2s(s+ 1),

hence ρ(g, r, d) = 0. The locus

Zg,0 := {[C] ∈ Mg : ∃L ∈ W r
d (C) such that ν2(L) : Sym

2H0(C,L)
�

→ H0(C,L⊗2)}
is an effective divisor on Mg. In particular, a general curve [C] ∈ Mg satisfies the
Maximal Rank Conjecture with respect to all linear series L ∈ W r

d (C).

For s = 1 we have the equality Z3,0 = M1
3,2, and we recover the hyperelliptic

locus on M3. The next case, s = 2 and g = 10, has been treated in detail in
[FaPo05]. One has a scheme-theoretic equality Z10,0 = 42 · K10 on M10, where
42 = #(W 4

12(C)) is the number of minimal pencils g16 = KC(−g412) on a general
curve [C] ∈ M10. Thus a curve [C] ∈ M10 fails the Maximal Rank Conjecture for
a linear series L ∈ W 4

12(C) if and only if it fails it for all the 42 linear series g412!
This incarnation of the K3 divisor K10 is instrumental in being able to compute
the class of K10 on M10, cf. [FaPo05].

In view of Theorem 5.3 it makes sense to propose a much stronger form of
Conjecture 5.1, replacing the generality assumption of [C ↪→ Pr] ∈ Id,g,r by a
generality assumption of [C] ∈ Mg with respect to moduli and asking for the
maximal rank of the curve with respect to all linear series grd.

We fix positive integers g, r, d such that g − d+ r ≥ 0 and satisfying

0 ≤ ρ(g, r, d) < r − 2.

We also fix a general curve [C] ∈ Mg. The numerical assumptions imply that
all the linear series l ∈ Gr

d(C) are complete (the inequality ρ(g, r + 1, d) < 0 is
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satisfied), as well as very ample. For each (necessarily complete) linear series l =
(L,H0(C,L)) ∈ Gr

d(C) and integer n ≥ 2, we denote by

νn(L) : Sym
nH0(C,L) → H0(C,L⊗n)

the multiplication map of global sections. We then choose a Poincaré line bundle
on C × Picd(C) and construct two vector bundles En and Fn over Gr

d(C) with

rank(En) =
(
r+n
n

)
and rank(Fn) = h0(C,L⊗n) = nd+1− g, together with a bundle

morphism φn : En → Fn, such that for L ∈ Gr
d(C) we have that

En(L) = SymnH0(C,L) and Fn(L) = H0(C,L⊗n)

and νn(L) is the map given by multiplication of global sections.

Conjecture 5.4. (Strong Maximal Rank Conjecture) We fix integers g, r, d ≥
1 and n ≥ 2 as above. For a general curve [C] ∈ Mg, the determinantal variety

Σr
n,g,d(C) := {L ∈ Gr

d(C) : νn(L) is not of maximal rank}
has expected dimension, that is,

dim Σr
n,g,d(C) = ρ(g, r, d)− 1− |rank(En)− rank(Fn)|,

where by convention, negative dimension means that Σr
n,g,d(C) is empty.

For instance, in the case ρ(g, r, d) < nd+2− g−
(
r+n
n

)
, the conjecture predicts

that for a general [C] ∈ Mg we have that Σr
n,g,d(C) = ∅, that is,

H0(Pr, IC/Pr(n)) = 0

for every embedding C
|L|
↪→ Pr given by L ∈ Gr

d(C).
When ρ(g, r, d) = 0 (and in particular whenever r ≤ 3), using a standard

monodromy argument showing the uniqueness the component Id,g,r, the Strong
Maximal Rank Conjecture is equivalent to Conjecture 5.1, and it states that νn(L)

is of maximal rank for a general [C
L
↪→ P

r] ∈ Id,g,r.
For ρ(g, r, d) ≥ 1 however, Conjecture 5.4 seems to be a more difficult question

than Conjecture 5.1 because one requires a way of seeing all linear series L ∈ Gr
d(C)

at once.

Remark 5.5. The bound ρ(g, r, d) < r − 2 in the statement of Conjecture 5.4
implies that all linear series L ∈ Gr

d(C) on a general curve C, are very ample.

Remark 5.6. We discuss Conjecture 5.4 when r = 4 and ρ(g, r, d) = 1. The
conjecture is trivially true for g = 1. The first interesting case is g = 6 and d = 9.
For a general curve [C] ∈ M6 we observe that there is an isomorphism C ∼= W 4

9 (C)
given by C � x 
→ KC ⊗ OC(−x). Since rank(E2) = 15 and rank(F2) = 13,
Conjecture 5.4 predicts that,

ν2(KC(−x)) : Sym2H0
(
C,KC ⊗OC(−x)

)
� H0

(
C,K⊗2

C ⊗OC(−2x)
)
,

for all x ∈ C, which is true (use the Base-Point-Free Pencil Trick).
The next case is g = 11, d = 13, when the conjecture predicts that the map

ν2(L) : Sym
2H0(C,L) → H0(C,L⊗2)

is injective for all L ∈ W 4
13(C). This follows (non-trivially) from [M94]. Another

case that we checked is r = 5, g = 14 and d = 17, when ρ(14, 5, 17) = 2.
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Proposition 5.7. The Strong Maximal Rank Conjecture holds for general non-
special curves, that is, when r = d− g.

Proof. This is an immediate application of a theorem of Mumford’s stating
that for any line bundle L ∈ Picd(C) with d ≥ 2g + 1, the map ν2(L) is surjective,
see e.g. [GL86]. The condition ρ(g, r, d) < r − 2 forces in the case r = d − g the

inequality d ≥ 2g + 3. Since the expected dimension of Σd−g
n,g,d(C) is negative, the

conjecture predicts that Σd−g
n,g,d(C) = ∅. This is confirmed by Mumford’s result. �

5.1. The Minimal Syzygy Conjecture. Interpolating between Green’s Con-
jecture for generic curves (viewed as a vanishing statement) and the Maximal Rank
Conjecture, it is natural to expect that the Koszul cohomology groups of line bun-
dles on a general curve [C] ∈ Mg should be subject to the vanishing suggested by
the determinantal description provided by Theorem 3.5. For simplicity we restrict
ourselves to the case ρ(g, r, d) = 0:

Conjecture 5.8. We fix integers r, s ≥ 1 and set d := rs+ r and g := rs+ s,
hence ρ(g, r, d) = 0. For a general curve [C] ∈ Mg and for every integer

0 ≤ p ≤ r − 2s

s+ 1

we have the vanishing Kp,2(C,L) = 0, for every linear series L ∈ W r
d (C).

As pointed out in Theorem 3.5, in the limiting case p = r−2s
s+1 ∈ Z, Conjecture

5.8 would imply that the failure locus

Zg,p := {[C] ∈ Mg : ∃L ∈ W r
d (C) such that Kp,2(C,L) �= ∅}

is an effective divisor on Mg whose closure Zg,p violates the Slope Conjecture.
Conjecture 5.8 generalizes Green’s Conjecture for generic curves: When s = 1,

it reads like Kp,2(C,KC) = 0 for g ≥ 2p+3, which is precisely the main result from
[V05]. Next, in the case p = 0, Conjecture 5.8 specializes to Theorem 5.3. The
conjecture is also known to hold when s = 2 and g ≤ 22 (cf. [Fa06a] Theorems 2.7
and 2.10).
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Reider’s Theorem and Thaddeus Pairs Revisited

Daniele Arcara and Aaron Bertram

1. Introduction

Let X be a smooth projective variety over C of dimension n equipped with an
ample line bundle L and a subscheme Z ⊂ X of length d. Serre duality provides a
natural isomorphism of vector spaces (for each i = 0, ..., n)

(∗) Exti(L⊗ IZ ,OX) ∼= Hn−i(X,KX ⊗ L⊗ IZ)∨

Thaddeus pairs and Reider’s theorem concern the cases i = 1 and n = 1, 2.
In these cases one associates a rank two torsion-free coherent sheaf Eε to each
extension class ε ∈ Ext1(L⊗ IZ ,OX) via the short exact sequence

(∗∗) ε : 0 → OX → Eε → L⊗ IZ → 0

and the Mumford stability (or instability) of Eε allows one to distinguish among
extension classes. The ultimate aim of this paper is to show how a new notion of
Bridgeland stability can similarly be used to distinguish among higher extension
classes, leading to a natural higher-dimensional generalization of Thaddeus pairs
as well as the setup for a higher-dimensional Reider’s theorem.

Reider’s theorem gives numerical conditions on an ample line bundle L on a
surface S that guarantee the vanishing of the vector spaces H1(S,KS ⊗ L ⊗ IZ)
which in turn implies the base-point-freeness (the d = 1 case) and very ampleness
(the d = 2 case) of the adjoint line bundle KS ⊗ L.

In the first part of this note we will revisit Reider’s Theorem in the context
of Bridgeland stability conditions. Reider’s approach, following Mumford, uses the
Bogomolov inequality for Mumford-stable coherent sheaves on a surface to argue
(under suitable numerical conditions on L) that no exact sequence (∗∗) can produce
a Mumford stable sheaf Eε, and then uses the Hodge Index Theorem to argue that
all the exact sequences (∗∗) that produce non-stable sheaves must split. Thus one
concludes that Ext1(L⊗ IZ ,OS) = 0 and H1(S,KS ⊗ L⊗ IZ) = 0, as desired.

Here, we will regard an extension class in (∗∗) as a morphism ε : L⊗IZ → OS [1]
to the shift of OS in one of a family of tilts As (0 < s < 1) of the abelian category of
coherent sheaves on X within the bounded derived category D(X) of complexes of
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coherent sheaves on X. Reider’s argument for a surface S is essentially equivalent
to ruling out non-trivial extensions by determining that:

• ε is neither injective nor surjective and

• if neither injective nor surjective, then ε = 0 (using Hodge Index).

This way of looking at Reider’s argument allows for some minor improvements,
but more importantly leads to the notion of Bridgeland stablility conditions, which
are stability conditions, not on coherent sheaves, but rather on objects of As.

In [AB], it was shown that the Bogomolov Inequality and Hodge Index The-
orem imply the existence of such stability conditions on arbitrary smooth projec-
tive surfaces S (generalizing Bridgeland’s stability conditions for K-trivial surfaces
[Bri08]). Using these stability conditions, we investigate the stability of objects of
the form L⊗ IZ and OS [1] with a view toward reinterpreting the vanishing

Hom(L⊗ IZ ,OS [1]) = 0

as a consequence of an inequality μ(L⊗IZ) > μ(OS [1]) of Bridgeland slopes. Since
this is evidently a stronger condition than just the vanishing of the Hom, it is
unsurprising that it should require stronger numerical conditions. This reasoning
easily generalizes to the case where OS is replaced by I∨

W , the derived dual of the
ideal sheaf of a finite length subscheme W ⊂ S.

The Bridgeland stability of the objects L ⊗ IZ and I∨
W [1] is central to a new

generalization of Thaddeus pairs from curves to surfaces. A Thaddeus pair on a
curve C is an extension of the form:

ε : 0 → I∨
W → Eε → L⊗ IZ → 0

where L is a line bundle and Z,W ⊂ C are effective divisors. Normally we would
write this

ε : 0 → OC(W ) → Eε → L(−Z) → 0

since finite length subschemes of a curve are effective Cartier divisors. The generic
such extension determines a Mumford-stable vector bundle Eε on C whenever

deg(L(−Z)) > deg(OC(W )) (and C �= P
1)

or, equivalently, whenever the Mumford slope of L(−Z) exceeds that of OC(W )
(both line bundles are trivially Mumford-stable). Moreover, the Mumford-unstable
vector bundles arising in this way are easily described in terms of the secant varieties
to the image of C under the natural linear series map:

φ : C → P(H0(C,KC ⊗ L(−Z −W ))∨) ∼= P(Ext1(L(−Z),OC(W )))

since an unstable vector bundle Eε can only be destabilized by a sub-line bundle
L(−Z ′) ⊂ L(−Z) that lifts to a sub-bundle of Eε:

L(−Z ′)
↙ ↓

(†) 0 → OC(W ) → Eε → L(−Z) → 0

In the second part of this paper, we note that Thaddeus pairs naturally gener-
alize to surfaces as extensions of the form

ε : 0 → I∨
W [1] → E•

ε → L⊗ IZ → 0
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in the categories As under appropriate Bridgeland stability conditions for which
both L ⊗ IZ and I∨

W [1] are Bridgeland stable and their Bridgeland slopes satisfy
μ(L⊗ IZ) > μ(I∨

W [1]). Note that E•
ε is never a coherent sheaf.

This is a very satisfying generalization of Thaddeus pairs since

Ext1As
(L⊗ IZ , I∨

W [1]) ∼= H0(S,KS ⊗ L⊗ IZ ⊗ IW )∨

by Serre duality. In this case, however, there are subobjects

K ⊂ L⊗ IZ
not of the form L ⊗ IZ′ that may destabilize E•

ε , as in (†). These subobjects are
necessarily coherent sheaves, but may be of higher rank than one, and therefore
not subsheaves of L⊗ IZ in the usual sense. This leads to a much richer geometry
for the locus of “unstable” extensions than in the curve case.

We will finally discuss the moduli problem for families of Bridgeland stable
objects with the particular invariants

[E] = [L⊗ IZ ] + [I∨
W [1]] = [L⊗ IZ ]− [I∨

W ]

in the Grothendieck group (or cohomology ring) of S, and finish by describing
wall-crossing phenomena of (some of) these moduli spaces in the K-trivial case,
following [AB].

This line of reasoning suggests a natural question for threefolds X. Namely,
might it be possible to prove a Reider theorem for L and Z ⊂ X by ruling out
non-trivial extensions of the form

ε : 0 → OX [1] → E•
ε → L⊗ IZ → 0

in some tilt As of the category of coherent sheaves on X via a version of the
Bogomolov Inequality and Hodge Index Theorem for objects of As on threefolds?

We do not know versions of these results that would allow a direct application of
Reider’s method of proof, but this seems a potentially fruitful direction for further
research, and ought to be related to the current active search for examples of
Bridgeland stability conditions on complex projective threefolds.

Acknowledgment: The authors would like to thank the referee for his patience
and for many valuable suggestions.

2. The Original Reider

Fix an ample divisor H on a smooth projective variety X over C of dimension
n. A non-zero torsion-free coherent sheaf E on X has Mumford slope

μH(E) =
c1(E) ·Hn−1

rk(E)Hn

and E is H-Mumford-stable if μH(K) < μH(E) for all non-zero subsheaves K ⊂ E
with the property that Q = E/K is supported in codimension ≤ 1.

Bogomolov Inequality: Suppose E is anH-Mumford-stable torsion-free coherent
sheaf on X and n ≥ 2. Then

ch2(E) ·Hn−2 ≤ c21(E) ·Hn−2

2rk(E)
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(in case X = S is a surface, the conclusion is independent of the choice of H).

Application 2.1: For an ample line bundle L = OS(H) on a smooth projective
surface S and a finite subscheme Z ⊂ S, consider ε ∈ Ext1(L⊗IZ ,OS) and suppose

ε : 0 → OS → E → L⊗ IZ → 0

yields an H-Mumford-stable sheaf E. Then H2 = c21(L) ≤ 4d.

Proof: If E is H-Mumford stable, then by the Bogomolov inequality,

ch2(E) =
c21(L)

2
− d ≤ c21(E)

4
=

c21(L)

4
.

Hodge Index Theorem: Let D be an arbitrary divisor on X. Then
(
D2 ·Hn−2

)
(Hn) ≤ (D ·Hn−1)2

and equality holds if and only if there exists a (rational) number k with the property
that (D ·Hn−2) · E = (kHn−1) · E for all divisors E.

Application 2.2: For S,H = c1(L) and Z as in Application 2.1, suppose an
extension class ε ∈ Ext1(L⊗ IZ ,OS),

ε : 0 → OS → E → L⊗ IZ → 0

yields a sheaf E that is not H-Mumford-stable. Then either ε = 0 or else there is
an effective curve C ⊂ S such that:

(a) C · c1(L) ≤
1

2
c21(L) and (b) C · c1(L) ≤ C2 + d

and it follows that −d < C2 ≤ d. Moreover,

(c) c21(L) > 4d ⇒ C2 < d and (d) c21(L) > (d+ 1)2 ⇒ C2 ≤ 0.

Proof: By definition of (non)-stability, there is a rank-one subsheaf K ⊂ E
such that c1(K)·c1(L) ≥ 1

2c1(E)·c1(L) = 1
2c

2
1(L). We may assume that the quotient

Q = E/K is torsion-free, replacing Q by Q/Qtors and K by the kernel of the map
E → Q/Qtors if necessary (which can only increase c1(K) · c1(L)). It follows that
the induced map K → L⊗ IZ is non-zero and either K splits the sequence, or else
K ⊂ L ⊗ IZ is a proper subsheaf. In the latter case, K = L(−C) ⊗ IW for some
effective curve C and zero-dimensional W ⊂ S, and (a) now follows immediately.

The inequality (b) is seen by computing the second Chern character of E in
two different ways. The quotient Q has the form OS(C) ⊗ IV for some V ⊂ S,
necessarily of dimension zero since c1(K) + c1(Q) = c1(L), and in particular

ch2(E) =
c21(L)

2
− d =

(c1(L)− C)2

2
− l(W ) +

C2

2
− l(V ) ≤ c21(L)

2
+C2 −C · c1(L)

which gives (b).

Next, applying Hodge Index and (a) and (b) give

C2c21(L) ≤ (C · c1(L))2 ≤ 1

2
c21(L)

(
C2 + d

)

from which we conclude that C2 ≤ d. That C2 > −d follows immediately from (b)
and the fact that L is ample. Finally, suppose C2 = d− k for 0 ≤ k < d and apply
Hodge Index and (b) to conclude that:

(d− k)c21(L) ≤ (C · c1(L))2 ≤ (2d− k)2.
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In particular, c21(L) ≤ 4d+ k2

d−k and then (the contrapositives of) (c) and (d) follow
from the cases k = 0 and k ≤ d− 1, respectively.

All of this gives as an immediate corollary a basic version of

Reider’s Theorem: If L is an ample line bundle on a smooth projective surface
S such that c21(L) > (d+ 1)2 and C · c1(L) > C2 + d for all effective divisors C on
S satisfying C2 ≤ 0, then “KS + L separates length d subschemes of S,” i.e.

H1(S,KS ⊗ L⊗ IZ) = 0

for all subschemes Z ⊂ S of length d (or less).

Corollary (Fujita’s Conjecture for Surfaces): If L is an ample line bundle on
a smooth projective surface S, then KS + (d+ 2)L separates length d subschemes.

Note: For other versions of Reider’s theorem, see e.g. [Laz97].

3. Reider Revisited

A torsion-free coherent sheaf E is H-Mumford semi-stable (for X and H as in
§2) if

μH(K) ≤ μH(E)

for all subsheaves K ⊆ E (where μH is the Mumford slope from §2). A Mumford
H-semi-stable sheaf E has a Jordan-Hölder filtration

F1 ⊂ F2 ⊂ · · · ⊂ FM = E,

where the Fi+1/Fi are Mumford H-stable sheaves all of the same slope μH(E).
Although the filtration is not unique, in general, the associated graded coherent
sheaf ⊕Fi = AssH(E) is uniquely determined by the semi-stable sheaf E (and H).

The Mumford H-slope has the following additional crucial property:

Harder-Narasimhan Filtration: Every coherent sheaf E onX admits a uniquely
determined (finite) filtration by coherent subsheaves

0 ⊂ E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ EN = E such that

• E0 is the torsion subsheaf of E and

• Each Ei/Ei−1 is H-semi-stable of slope μi with μ1 > μ2 > · · · > μN .

Harder-Narasimhan filtrations for a fixed ample divisor class H give rise to a
family of “torsion pairs” in the category of coherent sheaves on X:

Definition: A pair (F , T ) of full subcategories of a fixed abelian category A is a
torsion pair if:

(a) For all objects T ∈ ob(T ) and F ∈ ob(F), Hom(T, F ) = 0.

(b) Each A ∈ ob(A) fits into a (unique) extension 0 → T → A → F → 0 for
some (unique up to isomorphism) objects T ∈ ob(T ) and F ∈ ob(F).

Application 3.1: For each real number s, let Ts and Fs be full subcategories of the
category A of coherent sheaves on X that are closed under extensions and which
are generated by, respectively:

Fs ⊃ {torsion-free H-stable sheaves of H-slope μ ≤ s}
Ts ⊃ {torsion-free H-stable sheaves of H-slope μ > s} ∪ {torsion sheaves}
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Then (Fs, Ts) is a torsion pair of A.

Proof: Part (a) of the definition follows from the fact that Hom(T, F ) = 0 if
T, F are H-stable and μH(T ) > μH(F ), together with the fact that Hom(T, F ) = 0
if T is torsion and F is torsion-free.

A coherent sheaf E is either torsion (hence in Ts for all s) or else let E(s) := Ei

be the largest subsheaf in the Harder-Narasimhan of E with the property that
μ(Ei/Ei−1) > s. Then 0 → E(s) → E → E/E(s) → 0 is the desired short exact
sequence for (b) of the definition.

Theorem (Happel-Reiten-Smalø) [HRS96]: Given a torsion pair (T ,F), then
there is a t-structure on the bounded derived category D(A) defined by:

ob(D≥0) = {E• ∈ ob(D) |H−1(E•) ∈ F ,Hi(E•) = 0 for i < −1}

ob(D≤0) = {E• ∈ ob(D) |H0(E•) ∈ T ,Hi(E•) = 0 for i > 0}
In particular, the heart of the t-structure:

A(F ,T ) := {E• | H−1(E•) ∈ F ,H0(E•) ∈ T ,Hi(E•) = 0 otherwise}
is an abelian category (referred to as the “tilt” of A with respect to (F , T )).

Notation: We will let As denote the tilt with respect to (Fs, Ts) (for fixed H).

In practical terms, the category As consists of:

• Extensions of torsion and H-stable sheaves T of slope > s

• Extensions of shifts F [1] of H-stable sheaves F of slope ≤ s

• Extensions of a sheaf T by a shifted sheaf F [1].

Extensions in As of coherent sheaves T1, T2 in T or shifts of coherent sheaves
F1[1], F2[1] in F are given by extension classes in Ext1A(T1, T2) or Ext1A(F1, F2),
which are first extension classes in the category of coherent sheaves.

However, an extension of a coherent sheaf T by a shift F [1] in As is quite
different. It is given by an element of Ext1As

(T, F [1]) by definition, but:

Ext1As
(T, F [1]) = Ext2OX

(T, F )

and this observation will allow us to associate objects of As to certain “higher”
extension classes of coherent sheaves in A just as coherent sheaves are associated
to first extension classes of coherent sheaves.

For a general introduction to derived categories, we find the reference [M] to
be quite useful. A quick introduction to some important notions is contained in
[AB]. For this paper, we will need to recall that the shift F [1] of a coherent sheaf
is the unique object of the derived category of coherent sheaves on X satisfying
H−1(F [1]) = F and Hi(F [1])) = 0 for i �= −1, that each short exact sequence:

0 → K• → E• → Q• → 0

of objects in each of the abelian categories As induces a long exact sequence

0 → H−1(K•) → H−1(E•) → H−1(Q•) →

→ H0(K•) → H0(E•) → H0(Q•) → 0
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of coherent sheaves on X, and finally that in the Grothendieck group K(D) of the
derived category, the class of each E• in each As satisfies

[E•] = [H0(E•)]− [H−1(E•)].

Next, recall that the rank is an integer-valued linear function

r : K(D) → Z

with the property that r([E]) ≥ 0 for all classes of coherent sheaves E.

Always fixing H, we may define an analogous rank function for each s ∈ R:

rs : K(D) → R; rs([E
•]) = c1(E

•) ·Hn−1 − s · r(E•)Hn

which by definition has the property that rs([E
•]) ≥ 0 for all objects E• of As

and in addition rs([T ]) > 0 for all coherent sheaves in Ts that are supported in
codimension ≤ 1. This rank is evidently rational-valued if s ∈ Q.

Now consider the objects OX [1] and L ⊗ IZ of As for 0 ≤ s < 1 (H = c1(L))
where Z ⊂ X is any closed subscheme supported in codimension ≥ 2.

Sub-objects of OX [1] in As:

An exact sequence 0 → K• → OX [1] → Q• → 0 of objects of As (for any
s ≥ 0) induces a long exact sequence of cohomology sheaves:

0 → H−1(K•) → OX → H−1(Q•)
δ→ H0(K•) → 0

Since H−1(Q•) is torsion-free and δ is not a (non-zero) isomorphism, then either:

(i) H−1(K•) = OX , Q• = 0, δ = 0 and K• = OX [1],

(ii) H−1(K•) = 0, δ = 0 and Q• = OX [1], or else

(iii) H−1(K•) = 0 and δ �= 0. Then H0(K•) has no torsion subsheaf supported
in codimension two (since it would lift to a torsion subsheaf of H−1(Q•)). Moreover,
Q• = H−1(Q•) is the shift Q[1] of a non-zero torsion-free sheaf Q that satisfies:

0 ≤ rs(Q[1]) = −c1(Q) ·Hn−1 + s · r(Q)Hn < rs(OX [1]) = sHn

hence in particular the (ordinary) rank r(Q) > 1, and:

s

(

1− 1

r(Q)

)

< μH(Q) ≤ s.

Moreover, if E is a stable coherent sheaf appearing in the associate graded of a
semi-stable coherent sheaf in the Harder-Narasimhan filtration of Q, then the same
inequality holds for μH(E) (because the rs rank is additive).

Sub-objects of L⊗ IZ in As:

An exact sequence: 0 → K ′• → L ⊗ IZ → Q′• → 0 in As (for any s < 1)
induces a long exact sequence of cohomology sheaves

0 → H−1(Q′•) → H0(K ′•) → L⊗ IZ → H0(Q′•) → 0

from which it follows that K ′ := H0(K ′•) is a torsion-free sheaf, and either:

(i′) K ′ = 0 and Q′• = L⊗ IZ ,
(ii′) r(K ′) = 1, so that K ′ = L ⊗ IZ′ and Q′• = H0(Q′•) ∼= L ⊗ (IZ/IZ′) for

some closed subscheme Z ′ containing (and possibly equal to) Z, or else

(iii′) r(K ′) > 1 and H−1(Q′•) �= 0.
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In cases (ii′) and (iii′), we have the inequality:

s < μH(K ′) ≤ s+
(1− s)

r(K ′)

and the same inequality when K ′ is replaced by any E′ appearing in the associated
graded of a semi-stable coherent sheaf in the Harder-Narasimhan filtration of K ′.

Corollary 3.2: The alternatives for a non-zero homomorphism

f ∈ HomAs
(L⊗ IZ ,OX [1]) = Ext1OX

(L⊗ IZ ,OX) for some fixed 0 < s < 1

are as follows:

(a) f is injective, with quotient Q• = Q[1],

0 → L⊗ IZ
f→ OX [1] → Q[1] → 0,

which in particular implies that 1/2 = μH(Q) ≤ s and, more generally, that each
stable E in the Harder-Narasimhan filtration of Q has Mumford-slope μH(E) ≤ s.

(b) f is surjective, with kernel (K ′)• = K ′,

0 → K ′ → L⊗ IZ
f→ OX [1] → 0,

which in particular implies that 1/2 = μH(K ′) > s and, more generally, that each
stable E′ in the Harder-Narasimhan filtration ofK ′ has Mumford-slope μH(E′) > s.

(c) f is neither injective nor surjective, inducing a long exact sequence

0 → L(−D)⊗ IW → L⊗ IZ
f→ OX [1] → (OX(D)⊗ IV )[1] → 0

for some effective divisor D satisfying D ·Hn−1 ≤ sHn and D ·Hn−1 < (1− s)Hn,
as well as subschemes V,W ⊂ X supported in codim ≥ 2.

Proof: Immediate from the considerations above.

Example: At s = 1/2, we nearly get the same dichotomy as in §2. Here

f is injective in A1/2 ⇔ E is H-semistable

where E is the rank two sheaf of slope μH(E) = 1
2 defined by the extension class

determined by f . If E is H-semistable, then E[1] is an object of A1/2, and the
sequence of (a) is the tilt of the extension. Conversely, if f is injective in A1/2, then

E = Q in (a) and is H-semi-stable since non-semistable sheaves of slope 1
2 do not

belong to F 1
2
. If f is surjective, then E = K ′ in (b), but this yields a contradiction

(so f cannot be surjective), and if f is neither surjective nor injective, then E is an
extension of OX(D)⊗IV by L(−D)⊗IW in (c) which is visibly not H-semistable.

Next, recall that the ordinary degree is an integer-valued linear function

d : K(D) → Z; d([E]) = c1(E) ·Hn−1

(depending upon H) with the property that for all coherent sheaves E,

r(E) = 0 ⇒
(
d(E) ≥ 0 and d(E) = 0 ⇔ E is supported in codim ≥ 2

)
.

There is an analogous two-parameter family of degree functions (s ∈ R, t > 0),

d(s,t) : K(D) → R; d(s,t)([E
•]) =

ch2(E
•) ·Hn−2 − sc1(E

•) ·Hn−1 +

(
s2 − t2

2

)

r(E•)Hn
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(i.e. there is a ray of degree functions parametrized by t for each rank rs).

Note that if E• is an object of As and rs([E
•]) = 0, then H0(E•) is a torsion

sheaf supported in codimension ≥ 2, H−1(E•) is an H-semistable coherent sheaf
with μH(H−1(E•)) = s, and the “cohomology” sequence:

0 → H−1(E•)[1] → E• → H0(E•) → 0

exhibits E• as an extension in As of a torsion sheaf by the shifted semistable sheaf.

Proposition 3.3: Suppose rs([E
•]) = 0 for an object E• of As. Then for all t > 0,

d(s,t)([E
•]) ≥ 0 and d(s,t)([E

•]) = 0 ⇔ E• is a sheaf, supported in codim ≥ 3.

Proof: Because d(s,t) is linear, it suffices to prove the Proposition for torsion
sheaves T supported in codimension ≥ 2 and for shifts F [1] of H-stable torsion-free
sheaves of slope s. In the former case

d(s,t)(T ) = ch2(T ) ·Hn−2 ≥ 0 with equality ⇔ T is supported in codim ≥ 3.

In the latter case

d(s,t)(F [1]) = −ch2(F ) ·Hn−2 + sc1(F ) ·Hn−1 −
(
s2 − t2

2

)

r(F )Hn

and μH(F ) = s implies (c1(F ) − sr(F )H) ·Hn−1 = 0, which in turn implies that
(c1(F ) − sr(F )H)2Hn−2 ≤ 0 by the Hodge Index Theorem. It follows from the
Bogomolov inequality that

d(s,t)(F [1]) ≥ −
(
c21(F )

2r(F )

)

·Hn−2+ sc1(F ) ·Hn−1−
(
s2

2

)

r(F )Hn+

(
t2

2

)

r(F )Hn

= −
(

1

2r(F )

)

(c1(F )− sr(F )H)2 ·Hn−2 +

(
t2

2

)

r(F )Hn > 0. �

Corollary 3.4: If X = S is a surface, then the complex linear function

Zs+it := (−d(s,t) + itrs) : K(D) → C; s ∈ R, t > 0, i2 = −1

has the property that Zs+it(E
•) �= 0 for all nonzero objects E• of As, and:

0 < arg(Zs+it(E
•)) ≤ 1 (where arg(reiπρ) = ρ)

i.e. Zs+it takes values in the (extended) upper half plane.

In higher dimensions, the Corollary holds modulo coherent sheaves supported
in codimension ≥ 3, just as the ordinary H-degree and rank lead to the same
conclusion modulo torsion sheaves supported in codimension ≥ 2.

Remark: The “central charge” Zs+it has the form

Zs+it(E) = −d(s,t)(E) + itrs(E) = −
∫

S

e−(s+it)Hch(E)Hn−2,

which is a much more compact (and important) formulation.

Corollary 3.5: Each “slope” function

μ := μs+it =
d(s,t)

trs
= −Re(Zs+it)

Im(Zs+it)
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has the usual properties of a slope function on the objects of As. That is, given an
exact sequence of objects of As:

0 → K• → E• → Q• → 0

then μ(K•) < μ(E•) ⇔ μ(E•) < μ(Q•) and μ(K•) = μ(E•) ⇔ μ(E•) = μ(Q•).

Also, when we make the usual

Definition: E• is μ-stable if μ(K•) < μ(E•) whenever K• ⊂ E• and the quotient
has nonzero central charge (i.e. is not a torsion sheaf supported in codim ≥ 3),

then Hom(E•, F •) = 0 whenever E•, F • are μ-stable and μ(E•) > μ(F •).

Proof (of the Corollary): Simple arithmetic.

Example: In dimension n ≥ 2

μs+it(OX [1]) =
t2 − s2

2st
and μs+it(L⊗ IZ) =

(1− s)2 − t2 − 2d
Hn

2t(1− s)

where d = [Z] ∩Hn−2 is the (codimension two) degree of the subscheme Z ⊂ X.
Thus μs+it(L⊗ IZ) > μs+it(OX [1]) if and only if

t2 +

(

s−
(
1

2
− d

Hn

))2

<

(
1

2
− d

Hn

)2

and t > 0.

This describes a nonempty subset (interior of a semicircle) of R2 if Hn > 2d.

Proposition 3.6: For all smooth projective varieties X of dimension ≥ 2 (and L)

(a) OX [1] is a μs+it-stable object of As for all s ≥ 0 and t > 0.

(b) L is a μs+it-stable object of As for all s < 1 and t > 0.

Proof: (a) Suppose 0 �= K• ⊂ OX [1], and let E be an H-stable torsion-free
sheaf in the associated graded of Q, where Q[1] is the quotient object. Recall that
0 < μH(E) ≤ s. The Proposition follows once we show μs+it(OX [1]) < μs+it(E[1])
for all E with these properties. We compute

μs+it(E[1]) =
−2ch2(E)Hn−2 + 2sc1(E)Hn−1 −

(
s2 − t2

)
r(E)Hn

2t(−c1(E)Hn−1 + sr(E)Hn)

and we conclude (using the computation of μs+it(OX [1]) above) that

μs+it(OX [1]) > μs+it(E[1]) ⇔ (s2 + t2)c1(E)Hn−1 > (2s)ch2(E)Hn−2.

But by the Bogomolov Inequality

(2s)ch2(E)Hn−2 ≤ s(c21(E)Hn−2)/r(E),

and by the Hodge Index Theorem and the inequality c1(E) ·Hn−1 ≤ sr(E)Hn,

sc21(E)Hn−2/r(E) ≤ s2c1(E)Hn−1

The desired inequality follows from the fact that t > 0 and c1(E) ·Hn−1 > 0.

The proof of (b) proceeds similarly. Suppose 0 �= (K ′)• ⊂ L in As, and let E′ be
an H-stable coherent sheaf in the Harder-Narasimhan filtration of K ′ = H0(K ′•).
Then s < μH(E′) < 1, and we need to prove that μs+it(E

′) < μs+it(L). This
follows as in (a) from the Bogomolov Inequality and Hodge Index Theorem. �
Corollary 3.7 (Special case of Kodaira vanishing): If dimX = n > 1, then

Hn−1(X,KX + L) = 0.
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Proof: Within the semicircle {(s, t) | t2 +
(
s− 1

2

)2
< 1

4 and t > 0} the in-
equality μs+it(L) > μs+it(OX [1]) holds. But L and OX [1] are always μs+it-stable,
hence

0 = HomAs
(L,OX [1]) ∼= Ext1OX

(L,OX) ∼= Hn−1(X,KX + L)∨

�
Remark: The Bogomolov Inequality and Hodge Index Theorem are trivially true
in dimension one. However, the computation of μs+it(L) is different in dimension
one, and indeed in that case the inequality μs+it(L) > μs+it(OX [1]) never holds
(and evidently the corollary is false in dimension one)!

Restrict attention to X = S a surface for the rest of this section, and consider

I∨
W [1],

the shifted derived dual of the ideal sheaf of a subscheme W ⊂ S of length d. Since

H−1(I∨
W [1]) = OS and H0(I∨

W [1]) is a torsion sheaf, supported on W ,

it follows that I∨
W [1] is in As for all s ≥ 0.

Every quotient object I∨
W [1] → Q• in As satisfies:

• H0(Q•) is supported in codimension two (on the scheme W , in fact).

• Let Q = H−1(Q•) (a torsion-free sheaf). Then every H-stable term E in the
Harder-Narasimhan filtration of Q satisfies:

0 ≤ rs(E[1]) = −c1H + rsH2 < rs(I∨
W [1]) = sH2,

where r = r(E) and c1 = c1(E) (the second inequality follows because the rs-rank
of the kernel of I∨

W [1] → Q• in As is positive). Therefore,

(r − 1)sH2 < c1H ≤ rsH2.

Proposition 3.8: For subschemes Z,W ⊂ S of the same length d (andH = c1(L)):

(a) If H2 > 8d, then μs+it(L⊗IZ) > μs+it(I∨
W [1]) for all (s, t) in the semicircle

C(d,H2) :=

{

(s, t) | t2 +
(

s− 1

2

)2

<
1

4
− 2d

H2
and t > 0

}

centered at the point (1/2, 0) (and the semicircle is nonempty!).

(b) If H2 > 8d and I∨
W [1] or L ⊗ IZ is not stable at (s, t) = ( 12 ,

√
1
4 − 2d

H2 ),

then there is a divisor D on S and an integer r > 0 such that

r − 1

2
H2 < D ·H ≤ r

2
H2, and

D

r
·H <

D2

r2
+ 2d.

Proof: Part (a) is immediate from

μs+it(L⊗ IZ) =
(1− s)2 − t2 − 2d

H2

2(1− s)t
and μs+it(I∨

W [1]) =
t2 − s2 + 2d

H2

2st
.

We prove part (b) for I∨
W [1] (the proof for L⊗ IZ is analogous).

Let I∨
W [1] → Q• be a surjective map in the category As and let Q = H−1(Q•).

Since H0(Q•) is torsion, supported on W , it follows that μs+it(Q[1]) ≤ μs+it(Q
•)

with equality if and only if H0(Q•) = 0.
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Thus if I∨
W [1] is not μs+it-stable, then μs+it(I∨

W [1]) ≥ μs+it(Q[1]) for some
torsion-free sheaf Q satisfying (r − 1)sH2 < c1(Q) ·H ≤ rsH2, and moreover, the
same set of inequalities hold for (at least) one of the stable torsion-free sheaves
E appearing in the Harder-Narasimhan filtration of Q. We let D = c1(E) and
r = rk(E). Then μs+it(I∨

W [1]) ≥ μs+it(E[1]) if and only if

(t2 + s2)(D ·H) ≤ (2s)ch2(E) +
2d

H2
(rsH2 −D ·H)

and by the Bogomolov inequality, (2s)ch2(E) ≤ sD2

r . Setting (s, t) = ( 12 ,
√

1
4 − 2d

H2 ),

we obtain the desired inequalities. �
Corollary 3.9: (a) If L = OS(H) is ample on S and satisfies H2 > (2d+ 1)2 and

H1(S,KS ⊗ L⊗ IW ⊗ IZ) �= 0

for a pair Z,W ⊂ S of length d subschemes, then there is a divisor D on S satisfying
D2 ≤ 0 and 0 < D ·H ≤ D2 + 2d.

(b) (Fujita-type result) If L is an ample line bundle on S, then

H1(S,KS ⊗ L⊗(2d+2) ⊗ IW ⊗ IZ) = 0

for all subschemes Z,W ⊂ S of length d (or less).

Proof: Part (b) immediately follows from (a). By Serre duality,

H1(S,KS ⊗ L⊗ IW ⊗ IZ) ∼= HomA 1
2

(L⊗ IZ , I∨
W [1])∨.

Since (2d+ 1)2 ≥ 8d+ 1 for d ≥ 1, the non-vanishing of H1 and Proposition 3.8(a)

imply that either L ⊗ IZ or I∨
W [1] must not be stable at ( 12 ,

√
1
4 − 2d

H2 ), and by

Proposition 3.8(b) there is a divisor D and integer r ≥ 1 such that the Q-divisor
C = D/r satisfies

(1− 1

r
)
H2

2
< C ·H ≤ H2

2
and C ·H ≤ C2 + 2d

(similar to Application 2.2). The result now follows as in Application 2.2 once we
prove that C2 ≥ 1 whenever r > 1.1 To this end, note:

(i) r ≥ 3 ⇒ C2 + 2d ≥ C ·H > H2

3 > 8d+1
3 ⇒ C2 > 2d+1

3 ≥ 1.

(ii) r = 2 ⇒ C2 + 2d ≥ C ·H > H2

4 > 2d+ 1
4 ⇒ H2

4 ≥ 2d+ 1
2 , C ·H ≥ 2d+ 1,

and C2 ≥ 1, since C is of the form D/2 for an “honest” divisor D.

Thus either C2 ≤ 0, in which case r = 1 and C = D is an “honest” divisor, or
else C2 ≥ 1. Furthermore, by the Hodge index theorem,

C2H2 ≤ (C ·H)2 ≤ H2

2

(
C2 + 2d

)
⇒ C2 ≤ 2d

and if C2 = κ for 1 ≤ κ ≤ 2d, then κ2H2 ≤ (C ·H)2 ≤ (κ+2d)2 andH2 ≤
(
1 + 2d

κ

)2
.

This is a decreasing function, giving usH2 ≤ (2d+1)2, contradictingH2 > (2d+1)2.

Remark: This variation resembles other variations of Reider’s theorem, e.g. [Lan99],
though the authors do not see how to directly obtain this result from the others.

1The authors thank Valery Alexeev for pointing out the embarrassing omission of this step
in the original version of the paper.
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In a special case, Proposition 3.8 can be made even stronger, as noted in [AB].

Proposition 3.10: If Pic(S) = Z, generated by c1(L) = H, then the two objects
L⊗ IZ and I∨

W [1] are μ( 1
2 ,t)

-stable for all t > 0 and any degree of Z (and W ).

Proof: Again we do this for I∨
W [1], the proof for L ⊗ IZ being analogous.

Consider again the condition on every subbundle E ⊂ Q, where Q = H−1(Q•), and
Q• is a quotient object of I∨

W [1]:

(r(E)− 1)(
1

2
)H2 < c1(E) ·H ≤ r(E)(

1

2
)H2

Since c1(E) = kH is an integer multiple of H, by assumption, it follows imme-
diately that Q is itself of even rank and H-stable, satisfying c1(Q) = (r(Q)/2)H.
But in that case, Q[1] has “Bridgeland rank” r 1

2
(Q[1]) = 0, hence has maximal

phase (infinite slope), and thus cannot destabilize I∨
W [1]. �

Remark: The Proposition is not generally true for pairs (s, t) when s �= 1
2 .

Corollary 3.11: If Pic(S) = ZH and H2 > 8d, then

H1(S,KS ⊗ L⊗ IW ⊗ IZ) = 0

for all pairs of subschemes Z,W ⊂ S of length d.

4. Thaddeus Pairs Revisited

Suppose S is a surface with ample line bundle L = OS(H) and that Pic(S) =
ZH. Consider the objects of As (0 < s < 1) appearing as extensions

ε : 0 → OS [1] → E•
ε → L → 0

parametrized by

ε ∈ Ext1As
(L,OS[1]) = Ext2OS

(L,OS) ∼= H0(S,KS ⊗ L)∨

As we saw in Proposition 3.6 and the preceding calculation, OS [1] and L are
both μs+it stable for all (s, t). Moreover, μs+it(OS [1]) < μs+it(L) inside the semi-
circle

C :=

{

(s, t) | t2 +
(

s− 1

2

)2

<
1

4
and t > 0

}

Remark: Here and earlier, we are using the notion of stability a little bit loosely.
The correct definition, given by Bridgeland [Bri08], requires the existence of finite-
length Harder-Narasimhan filtrations for all objects of As. This is straightforward
to prove when (s, t) are both rational numbers (following Bridgeland), but much
more subtle in the irrational case. For the purposes of this paper, the rational
values will suffice.

We investigate the dependence of the μ 1
2+it-stability of E•

ε upon the extension

class ε for 1
2 + it inside the semicircle S. If E•

ε is μ 1
2+it-unstable, destabilized by

K• ⊂ E•
ε ; then:

(i) K• = H0(K•) =: K is a coherent sheaf with μ 1
2+it(K) > 0.

(ii) K is H-stable of odd rank r and c1(K) = ((r + 1)/2)H.

(iii) The induced map K → L is injective (in the category A 1
2
).
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Thus as in the curve case, E•
ε can only be destabilized by lifting subobjects

K ⊂ L (in the category A 1
2
) of positive μ 1

2+it-slope to subobjects of E•
ε :

K
↙ ↓

(†) 0 → OS [1] → E•
ε → L → 0

That is, the unstable objects E•
ε correspond to extensions in the kernel of the map

Ext2OS
(L,OS) → Ext2OS

(K,OS)

for some mapping of coherent sheaves K → L with K satisfying (i) and (ii).

Proof (of (i)-(iii)): The d( 1
2 ,t)

-degree of E•
ε is

ch2(E
•
ε )−

c1 ·H
2

+
( 14 − t2)

2
rH2 = 0

since ch2(E
•
ε ) = H2/2, c1 = H and r = 0. Thus the slope (equivalently, the degree)

of any destabilizing K• ⊂ E•
ε is positive, by definition. Moreover the “ranks”

r 1
2
(OS [1]) = r 1

2
(L) =

H2

2

are the minimal possible (as in the curve case) without being zero; hence, as in the

curve case, K• ⊂ E•
ε must also have minimal “rank” r 1

2
(K•) = H2

2 (if it had the

next smallest “rank” H2 = r 1
2
(E•

ε ), it would fail to destabilize). The presentation

of E•
ε gives H−1(E•

ε ) = OS and H0(E•
ε ) = L, hence if we let Q• = E•

ε /K
•, then

0 → H−1(K•) → OS → H−1(Q•) → H0(K•) → L → H0(Q•) → 0

and, as usual, either H−1(K•) = 0 or H−1(K•) = OS . The latter is impossible,
since in that case the rank consideration would give K• = OS [1], which doesn’t
destabilize for ( 12 , t) ∈ C. Thus K• = K is a coherent sheaf. This gives (i).

Next, the condition that r 1
2
(K) be minimal implies that there can only be one

term in the Harder-Narasimhan filtration of K (i.e. K is H-stable), and that

r 1
2
(K) = c1(K)H − r(K)H2

2
=

H2

2
.

Since c1(K) = kH for some k, this gives (ii).

Finally, (iii) follows again from the minimal rank condition since any kernel of
the induced map to L would be a torsion-free sheaf, of positive r 1

2
-rank. �

Suppose now that K satisfies (i) and (ii). By the Bogomolov inequality,

d( 1
2 ,t)

(K) ≤ 1

2r

(
c1(K)− r

2
H

)2

− rt2H2

2
=

H2

2r

(
1

4
− r2t2

)

so in particular, t ≤ 1
2r , or in other words, we have shown:

Proposition 4.1: Given a positive integer r0, if t >
1

2r0
and if μ 1

2+it(K) < 0 for

all K ⊂ L (in A 1
2
) of odd ordinary rank r ≤ r0, then E•

ε is μ 1
2+it-stable.
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Special Case: Suppose t > 1
6 . Because H = c1(L) generates Pic(S) it follows that

the only rank one subobjects K ⊂ L in A 1
2
are the subsheaves L ⊗ IZ for Z ⊂ S

of finite length. Thus E•
ε only fails to be μ 1

2+it-stable if both

d( 1
2 ,t)

(L⊗ IZ) =
1

2

(
1

4
− t2

)

H2 − d ≥ 0

(

⇔ t2 ≤ 1

4
− 2d

H2

)

and ε ∈ ker(Ext2(L,OS) → Ext2(L ⊗ IZ ,OS)), so that L ⊗ IZ ⊂ L lifts to a
subobject of E•

ε . As in the curve case, it can be shown using Serre duality that the
image of such a (non-zero) extension in the projective space

P(H0(S,K ⊗ L)∨)

is a point of the secant (d−1)-plane spanned by Z ⊂ S under the linear series map:

φK+L : S −− > P(H0(S,K ⊗ L)∨).

By Corollary 3.11, this inequality on t guarantees H1(S,KS⊗L⊗IW ⊗IZ)∨ = 0
for all subschemes Z,W ⊂ S of length d, hence in particular, the (d − 1)-secant
planes spanned by Z ⊂ S are well-defined.

Thus there are “critical points” or “walls” at t =
√

1
4 − 2d

H2 > 1
6 , i.e. d < 2H2

9

on the line s = 1
2 , where the objects E•

ε corresponding to points of the secant
variety (

Secd−1(S)− Secd−2(S)
)
⊂ P(H0(S,K ⊗ L)∨),

change from μ-stable to μ-unstable as t crosses the wall.

Moduli. The Chern class invariants of each E•
ε are:

ch2 =
H2

2
, c1 = H, r = 0

Thus it is natural to ask for the set of all μ 1
2+it-stable objects with these invariants,

and further to ask whether they have (projective) moduli that are closely related
(by flips or flops) as t crosses over a critical point. In one case, this is clear:

Proposition 4.2: For t > 1
2 , the μ 1

2+it-stable objects with Chern class invariants

above are precisely the (Simpson)-stable coherent sheaves with these invariants, i.e.
sheaves of pure dimension one and rank one on curves in the linear series |H|.

Proof: Suppose E• has the given invariants and is not a coherent sheaf. Then
the cohomology sequence

0 → H−1(E•)[1] → E• → H0(E•) → 0

destabilizes E• for t > 1
2 for the following reason. Let E = H−1(E•). If c1(E) =

kH, then k ≤ r
2 is required in order that E[1] ∈ A 1

2
. Moreover, since r 1

2
(E•) = H2

and H0(E•) has positive (ordinary) rank, hence also positive r 1
2
-rank, it follows

that either r 1
2
(E[1]) = 0 or r 1

2
(E[1]) = H2

2 . But r 1
2
(E[1]) = 0 implies E[1] has

maximal (infinite) slope, and then E• is unstable (for all t). It follows similarly

that if r 1
2
(E[1]) = H2

2 , then E• is unstable for all t unless E is H-stable, of rank

r = 2k + 1. In that case, by the Bogomolov inequality,

d( 1
2 ,t)

(E[1]) = −ch2(E) +
c1(E)H

2
−

( 14 − t2)rH2

2
≥ H2

2

(

t2r − 1

4r

)
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and this is positive if t > 1
2 . �

In fact, at t = 1
2 only H−1(E•) = OS (the rank one case, moreover matching

the Bogomolov bound) would fail to destabilize a non-sheaf E•, and conversely,
among the coherent sheaves T with these invariants, only those fitting into an
exact sequence (of objects of A 1

2
)

0 → L → T → OS [1] → 0

become unstable as t crosses 1
2 , and they are replaced by the “Thaddeus” extensions

0 → OS [1] → E• → L → 0.

The moduli of Simpson-stable coherent sheaves

MS

(

0, H,
H2

2

)

is known to be projective by a geometric invariant theory construction [Sim94]. It
is the moduli of μ 1

2+it-stable objects of A 1
2
for t > 1

2 . The wall crossing at t = 1
2

removes

P(Ext1(OS [1], L)) = P(H0(S,L)) ⊂ MS

(

0, H,
H2

2

)

and replaces it with P(H0(S,KS+L)∨) in what we conjecture to be a new projective
birational model. In the case KS = 0, the Simpson moduli spaces are holomorphic
symplectic varieties, this new birational model is a Mukai flop of the moduli of
stable sheaves, and the further wall crossings (up to t = 1

6 , when rank three bundles
appear) all replace extensions of the form

0 → L⊗ IZ → (T or E•) → I∨
W [1] → 0

with

0 → I∨
W [1] → E• → L⊗ IZ → 0.

This is achieved globally by Mukai flops, replacing projective bundles over the
product Hilbd(S)×Hilbd(S) of Hilbert schemes with their dual bundles,

P(H0(S,L⊗ IW ⊗ IZ)) ↔ P(H0(S,L⊗ IW ⊗ IZ)∨)
This was constructed in detail in [AB].

General questions regarding moduli of Bridgeland-stable objects remain fairly
wide open, however. Toda [Tod08] has shown that when S is a K3 surface, then
the Bridgeland semistable objects of fixed numerical class are represented by an
Artin stack of finite type. One expects the isomorphism classes of Bridgeland-
stable objects, at least in special cases as above, to be represented by a proper
scheme when (s, t) is not on a “wall.” However:

Question 1: When are the isomorphism classes of Bridgeland-stable objects of
fixed numerical type represented by a (quasi)-projective scheme of finite type?

Question 2: Conversely, is there an example where the isomorphism classes are
represented by a proper algebraic space which is not a projective scheme? (The
examples produced in [AB] are proper algebraic spaces. It is unknown whether
they are projective.)

For each t < 1
2 , we make the following provisional
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Definition: The space of t-stable Thaddeus pairs (given S and ample L) is the
proper transform of the projective space of extensions P(Ext1(L,OS [1])) under the
natural rational embedding in the moduli space of (isomorphism classes of) μ 1

2+it-

stable objects with invariants (0, H,H2/2).

Remark: Note that for t < 1
6 , this will contain objects that have no analogue in

the curve case, corresponding to destabilizing Mumford-stable torsion-free sheaves
K of higher odd rank r and first Chern class c1(K) = r+1

2 H.

Question 3. Can stable Thaddeus pairs, as a function of t (inside the moduli of
μ 1

2+it-stable objects of the same numerical class) be defined as a moduli problem?

If so, what are its properties? Is it projective? Smooth? What happens as t ↓ 0?

5. Reider in Dimension Three? Let X be a smooth projective threefold, with
Pic(X) = Z ·H and H = c1(L) for an ample line bundle L. Consider

ε : 0 → OX [1] → E•
ε → L⊗ IZ → 0

for subschemes Z ⊂ X of finite length d, taken within the tilted category A 1
2
.

Question 4: Are there bounds d0 and t0 such that all objects E•
ε formed in this

way are μ 1
2+it-unstable when d > d0 and t < t0? If so, does this follow from a more

general Bogomolov-type codimension three inequality for the numerical invariants
of μ-stable objects?

As we have already discussed in the surface case, a destabilizing subobject of
an unstable such E•

ε would be exhibited by lifting

K
↙ ↓

(†) 0 → OS [1] → E•
ε → L⊗ IZ → 0

where K ⊂ L ⊗ IZ is a subobject in A 1
2
. By requiring Pic(X) = Z, we guarantee

that L(−D) does not belong to A 1
2
for any effective divisor D, and thus that K

does not factor through any L(−D). The two cases to consider are therefore

• K = L⊗ IC where C ⊂ X is a curve, and

• K is an H-stable torsion-free sheaf of odd rank r > 1 and c1(K) = r+1
2 H.

Question 5: Assuming Question 4, are there examples of threefolds where the
bounds of Question 4 are satisfied (hence all E• are μ-unstable), but for which
there nevertheless exist non-zero extensions?

And the last question is whether the two cases above can be numerically elimi-
nated (by some form of the Hodge Index Theorem) for non-zero extensions, leading
to a proof of a form of Fujita’s conjecture for threefolds.
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Intersection Pairings in Singular Moduli Spaces of Bundles

Lisa Jeffrey

Abstract. This article summarizes results from [13] about intersection the-
ory of moduli spaces of holomorphic bundles on Riemann surfaces, together
with background material on partial desingularisation and intersection coho-
mology.

1. Introduction

Let M(n, d) be the moduli space of bundles of rank n and degree d with fixed
determinant on a Riemann surface Σ of genus g ≥ 2. We do not assume n and d are
coprime, so this space may be singular. The space M(n, d) may also be described
as the space of representations of a central extension of the fundamental group of
a Riemann surface Σ into SU(n) (where the generator of the center is sent to the
element e2πid/nI, where I is the identity matrix) modulo the action of SU(n) by
conjugation. From this point of view the singularities of the space are determined
by the stabilizers of the conjugation action. For example M(2, 0) is the space of
conjugacy classes of representations of the fundamental group of a surface Σ into
SU(2). The most singular points are those that send the entire fundamental group
to the center of SU(2) (the identity matrix and minus the identity matrix); at these
points the stabilizer is all of SU(2). The other singular stratum is the set of those
points where the stabilizer is conjugate to U(1): these are the representations which
send the entire fundamental group to a subgroup conjugate to U(1).

We shall study intersection pairings in M(n, d) using

• the ordinary cohomology of the partial desingularization M̃(n, d) (see Sec-
tions 2 and 3)

• intersection homology (see Sections 4 and 6)

We note (see [19] and [20] for the details) that M(n, d) is obtained as a geometric
invariant theory (GIT) quotient of a finite dimensional variety R(n, d) equipped
with a holomorphic action of SL(p) for

p = d− n(g − 1).
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We blow up the loci with the highest dimensional stabilizers, so the action of SL(p)
extends to the blowup of R(n, d). After blowing up, the dimension of the highest
dimensional stabilizer has been reduced. We repeat this process to finally reach a

space where all the stabilizers are finite so the quotient M̃(n, d) is an orbifold. This
procedure (partial desingularization) is described in [18]. We use the notation of
[24], where the GIT quotient of a manifold M with an action of a reductive group
G is defined as Mss/G, where Mss is the set of semistable points. The set of stable
points is denoted by Ms. For the definition of ‘stable’ and ‘semistable’ we refer the
reader to [24].

Note that rather than using the description of M(n, d) as a GIT quotient of
R(n, d) by SL(p), we often use the description of it as a symplectic quotient of the
“extended moduli space” M ext [8] by a symplectic action of SU(n). The extended
moduli space is a finite dimensional space with a symplectic structure on an open
dense set with a Hamiltonian action of SU(n) for which the symplectic quotient is
M(n, d). An infinite dimensional construction of the extended moduli space can be
given [8] as the symplectic quotient of the space of all connections on a 2-manifold
by the based gauge group. The extended moduli space can be written as the fiber
product

M ext μ−−−−→ Lie(K)
⏐
⏐
�

⏐
⏐
�exp

K2g Φ−−−−→ K
Here K = SU(n) and Φ is the map

Φ(k1, . . . , k2g) =

g∏

j=1

k2j−1k2jk
−1
2j−1k

−1
2j ,

while exp is the exponential map. An open dense set of M ext is smooth and is
equipped with a symplectic structure, for which μ is the moment map for the
action of K. In algebraic geometry the closest analogue is Seshadri’s moduli space
of bundles with level structure [25]; see also the monograph by Huybrechts and
Lehn [7].

2. Partial desingularization

Let μ : M → k∗ be the moment map for a Hamiltonian action of a compact Lie
group K (with maximal torus T ) on a symplectic manifold M . The Lie algebra of
K is denoted by k. If the symplectic quotient μ−1(0)/K is singular, there is a way
to blow up M (by reverse induction on the dimension of the stabilizer) for which

the partial desingularization M̃ inherits a Hamiltonian K action with moment map

μ̃ : M̃ → k∗ and its symplectic quotient μ̃−1(0)/K is an orbifold. The details are
given in [18].

The partial desingularization construction may be applied to the extended mod-
uli space M ext (see for example Section 8 of [13]). The classes in H∗

K(M ext) pull

back to H∗
K(M̃ ext).

In this article all cohomology groups are assumed to be with complex co-

efficients unless specified otherwise. We introduce the map κK,0
˜M

: H∗
K(M̃) →

H∗(μ̃−1(0)/K) (the Kirwan map), which is the composition of the restriction map
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from H∗
K(M̃) to H∗

K(μ̃−1(0)) with the isomorphism

H∗
K(μ̃−1(0)) ∼= H∗(μ̃−1(0)/K).

The latter isomorphism is valid because K acts locally freely on μ̃−1(0). There is a

similar map κT,c
M : H∗

T (M) → H∗(μ−1
T (c)/T ) where μT is the moment map for the

action of the maximal torus T and c is an element in the Lie algebra of the maximal
torus which is a regular value for μT . The class D is the class in H∗

T (pt) given by
the product of the positive roots – its image under the Kirwan map is the Poincaré
dual of K/T , so it enables us to replace integration over μ̃−1(0)/K by 1/n! times
integration over μ̃−1(0)/T .

Throughout this article, if X is a topological space we shall use the notation
∫

X
to mean pairing with the fundamental class of X. Let α, β ∈ H∗

K(M̃ ext). With
the above notation,

(1)

∫

μ̃−1(0)/T

κ(αβD) = A+B

where

A =

∫

μ̃−1(ε)/T

κ(αβD)

and

B =

(∫

μ̃−1(0)/T

κ(αβD)−
∫

μ̃−1(ε)/T

κ(αβD)

)

.

Here we have chosen a small regular value ε of μ̃. The term A is evaluated by
studying “wall crossings”, components of the fixed point set of a subtorus T ′ ⊂ T
which intersect μ−1(0). This first term is evaluated using the results of Guillemin,
Kalkman and Martin (see Theorem 6.1). The term B is the same as the pairing
for nonsingular symplectic manifolds (see [9]).

3. Partial desingularization of M(2, 0)

In this section we give the results of the partial desingularization for M(2, 0).
These were computed in Section 8 of [13], where detailed proofs may be found.
In this section only, we use the notation M(2, 0) to refer to the moduli space of
semistable bundles of rank 2 and degree 0 without fixing the determinant, since this
was the case treated in Section 8 of [13] and this was the notation used there. Let
M ext be the extended moduli space with the group U(2) on which K = SU(2) acts
by conjugation. Let T be the maximal torus of K.

From (1) we have (see ([13], (8.2)) that

(2) κK,0
˜Mext

(
ηeω̄

)
[M̃(2, 0)] = −1

2

∫

μ−1
T (ε)/T

κT,ε
Mext

(
ηeω̄D2

)

−1

2

(∫

μ̃−1
T (0)/T

κT,0
˜Mext

(
ηeω̄D2

)
−
∫

μ̃−1
T (ε)/T

κT,ε
˜Mext

(
ηω̄D2

)
)

.

Here Y is the generator of H∗
T (pt) and ω̄ is ω̄(Y ) = ω̃ + μTY , the equivariantly

closed extension of the symplectic form ω̃ on M̃ . The element η is a class in

H∗
K(M̃ ext). The expression eω̄ denotes the formal sum

∑∞
m=0 ω̄

m/m!, where only
a finite number of terms have nonzero contributions because all the manifolds are
finite dimensional. The notation is as in Section 2. Here μT and μ̃T are moment
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maps for the T -action on M ext and its partial desingularization M̃ ext. The first
term of (2) can be computed using periodicity, as in [11] (see Section 6 below).

To compute the final term, we need to examine the walls crossed in passing
from 0 to ε in t∗ = R. The components of the fixed point set that are relevant for

us are those that meet the exceptional divisors in M̃ ext.
We first describe the wall crossing term from the first blow-up. See Section 8.1

of [13]. To form M̃ ext from M ext, we first blow up along the set Δ consisting of
the points with stabilizer K = SU(2); this set is (S1)2g, where S1 represents the
center of U(2).

The component with positive moment map of the T -fixed point set in the
exceptional divisor is the projectivization

P

(

TJac ⊗ R

(
0 1
0 0

))

∼= PTJac
∼= P

g−1 × Jac.

of the tangent bundle TJac of the Jacobian Jac ∼= (S1)2g. The normal bundle to
this component of the fixed point set is

(3) OPg−1(−1)⊕
[

TJac ⊗ R

(
1 0
0 −1

)

⊗OPg−1(1)

]

⊕
[

TJac ⊗ R

(
0 0
1 0

)

×OPg−1(1)

]

.

Here the 2 × 2 matrices are elements of the Lie algebra of GL(2,C). The first
summand is normal to the exceptional divisor and the last two are normal in the
exceptional divisor.

The torus T (the maximal torus of K) acts on the three summands of (3) with
weights 2,−2,−4 respectively. As TJac is trivial, the equivariant Euler class of the
normal bundle to Jac is

(−y + 2Y )(y − 2Y )g(y − 4Y )g

where y := c1(OPg−1(1)) is the generator of H∗(Pg−1) and Y ∈ H2
T (pt) is the

generator of H∗
T (pt).

The wall crossing term from the first blow-up in the partial desingularization
process is

W = −1

2

∫

Pg−1×Jac

ResY=0
ηeω̄|ΔD2

(−y + 2Y )(y − 2Y )g(y − 4Y )g

= − 1

23g

∫

Jac

Resy=0ResY=0
ηeω̄|Δ

ygY 2g−1
(1− y

2Y
)
−g−1

(1− y

4Y
)−g.

This implies that the classes a2, b
j
2, f2 (in the notation of [13]) restrict to Y 2,

Y dj and −2γ respectively, where the cohomology of Jac is generated by classes
dj ∈ H1(Jac) (j = 1, . . . , 2g) and we define γ =

∑g
j=1 d

jdj+g. Therefore, we can

explicitly compute the restriction of ηeω̄ to Δ in terms of Y and dj .
The last expression above is nonzero only when

ηeω̄|Δ ∈ H∗
T (Δ) = H∗

T (Jac)
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is a constant multiple of the product of Y 3g−3 and the fundamental class γg

g! of Δ,

in which case the wall crossing term is computed as follows:

W = − 1

23g

∫

Δ

Resy=0ResY=0

γg

g!Y
3g−3

ygY 2g−1
(1− y

2Y
)−g−1(1− y

4Y
)−g

(4) = − 1

23g
Resy=0ResY=0

Y g−2

yg
(1− y

2Y
)−g−1(1− y

4Y
)−g

= − 1

23g
Coeffyg−1Y −g+1(1− y

2Y
)−g−1(1− y

4Y
)−g

= − 1

23g
Coefftg−1(1− t

2
)−g−1(1− t

4
)−g.

Here, t is a variable used to define a power series (t represents y/Y ) and Coefftg−1

denotes the coefficient of tg−1 in the power series.
The next step in this program is to compute the wall-crossing term for the

second blowup. Let Γ denote the set of points in M ext fixed by the action of

T , and let Γ̂ be the proper transform after the first blow-up. To get the partial

desingularization we blow up along GΓ̂ for G = KC. The details are given in [13],
Section 8.2.

4. Intersection cohomology

Intersection cohomology shares some properties with the ordinary cohomology
of smooth manifolds, notably

• The Lefschetz hyperplane theorem: If X is a complex projective algebraic
variety of complex dimension n and H is a general hyperplane section,
the inclusion map IHi(X ∩H) → IHi(X) is an isomorphism for i < n−1
and a surjection for i = n− 1.

• The hard Lefschetz theorem: the map ω : IHi(X) → IHi+2(X) (mul-
tiplication by the Kähler form) is injective for i < n and surjective for
i > n− 2. This implies ωi : IHn−i(X) → IHn+i(X) is an isomorphism.

• Poincaré duality: The cup product map

IHj(X)⊗ IH2n−j(X) → R

is a perfect pairing if dimRX = 2n.

Intersection homology has the pairing given by Poincaré duality, but in general it
does not have a ring structure. Intersection cohomology was originally defined by
Goresky and MacPherson [3, 4]. A reference is the book [22] by Kirwan and Woolf.

5. Results of Y.-H. Kiem on equivariant cohomology and intersection
homology

Definition 5.1. Let G be a connected reductive group and let its maximal
compact subgroup be K, so G = KC. Let G act linearly on a complex vector space
A. A point β ∈ A will be defined to be in the set B if β is the closest point to 0 in
the convex hull of some subset of weights of the action of the maximal torus.

(A point β ∈ B parametrizes a stratum Sβ of the gradient flow of the Yang-Mills
functional |μ|2 on PA, where μ is the moment map for the action of K.) For each
β ∈ B, n(β) is defined as the number of weights α such that 〈α, β〉 < 〈β, β〉.
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Definition 5.2. [15] In the notation of Definition 5.2, the action of G on A
is linearly balanced if for all β ∈ B,

2n(β) ≥ 1

2
dimA.

Here, if H is the identity component of Stab(p) for a point

p ∈ Z := μ−1(0),

we define Wp as the complement of the H fixed point set Ŵp

H
in the symplectic

slice [26]

Ŵp := (Tp(G · p))ω/Tp(G · p),
(where V ω is the symplectic annihilator of V ) so that the symplectic slice Ŵp de-

composes as Ŵp = Ŵp

H
⊕Wp.

For example, a linear action of G = C∗ on a vector space is linearly balanced if the
number of positive weights equals the number of negative weights.

Definition 5.3. ([15], Definition 4.2) The action of G on a Hamiltonian space
U (with moment map μ : U → g∗ and Z := μ−1(0)) is balanced if

• For all p ∈ Z the action of the identity component H of the stabilizer of
G acting on Wp is linearly balanced

• For a subgroup K ⊂ H which also appears as the identity component of
the stabilizer of a point in Z, the NK ∩H/K action on the K fixed point
subspace Wk

p is also linearly balanced, where k is the Lie algebra of K.

Here NK is the normalizer of K, and the space Wp was introduced in
Definition 5.2.

If G is a reductive group acting on M , then the Kirwan map is defined as the
composition ([13], (2.2))

(5) κM : H∗
G(M) → H∗

G(M̃) → H∗(M̃//G) → IH∗(M//G).

The map κM in (5) is surjective. This map is the composition of the restriction
map from H∗

K(M) to H∗
K(Mss) and a surjection κss

M : H∗
K(Mss) → IH∗(M//G)

(see [21], Theorem 2.5). The proofs of these assertions are given in [21], [17] and
[27]. The final map in the composition (5) exists (and is surjective) because the
intersection cohomology IH∗(M//G) is a direct summand of the cohomology of the

partial resolution of singularities H∗(M̃//G). Here M̃ is the partial desingulariza-
tion of M , which was discussed in Section 2 above– see [18]. The second map in

the composition (5) is the usual Kirwan map for the orbifold M̃ so it is surjective.

Theorem 5.4. ([14], Section 7) If the action of G is balanced then there is a
vector subspace VM of H∗

G(M
ss) such that

κss
M : VM → IH∗(M//G)

is a bijection.

Remark 1: If σ1, σ2 ∈ VM are of complementary degrees, i.e. the sum of their
degrees equals the real dimension of M//G, then also σ1∪σ2 ∈ VM . In fact we have
the following
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Theorem 5.5. ([12] Theorem 14) If σ1 and σ2 are both in VM and have com-
plementary degrees (as in Remark 1) then

σ1 ∪ σ2 = τ 〈σ1, σ2〉
where τ is the top degree class in VM and 〈·, ·〉 is the pairing in intersection coho-
mology.

This result shows that the pairing in intersection cohomology is given by the cup
product in equivariant cohomology.

There is a weaker condition than Definition 5.3, called a weakly balanced action
[14], under which Theorems 5.4 and 5.5 hold true. As mentioned in the Introduc-
tion, the space M(n, d) is the GIT quotient by SL(p) (for p = d − n(g − 1)) of a
smooth quasi-projective variety R(n, d)ss (the semistable points of R(n, d)). See
[19] and [20].

Theorem 5.6. ([16], Proposition 7.4) The SL(p) action on R(n, d)ss is weakly
balanced.

Remark 2: ([15]) In the case of M(n, d), the space VM is characterized by decom-
posing the equivariant cohomology of components of the fixed point set of subtori
and taking only those terms where the factor involving the equivariant cohomology
of a point has degree less than a specific upper bound. The details are given in
[15], (4.2) and [14], Section 7. More precisely

(6) VM = {ξ ∈ H∗
G(M

ss) : ΦH(ξ) ∈ H∗
NH

0 /H(YH)⊗H<nH

H (pt) ∀H}

Here H ⊂ G is the identity component of the stabilizer of points in Z = μ−1(0) for
μ the moment map for a G action on a Hamiltonian space U , and YH is the subset
of points in Z fixed by H. Also, nH = 1

2 dim(Wp//H) for a point p ∈ Z whose
stabilizer has H as its identity component. (Here Wp was defined in Definition 5.2.)
The group NH

0 is the identity component of the normalizer NH of H. The map

ΦH : H∗
G(Z) → H∗

G(GYH) → H∗
NH (YH)

is the map defined in [15] (4.1) associated to the composition of the obvious map

G×NH YH → GYH

with the inclusion GYH → Z.
Remark 3: If K = SU(2), the K equivariant cohomology of the open subset

U = μ−1(B) ⊂ M ext

of M ext (where B is a G-invariant open ball containing 0) is given in [16] (Theorem
1, “Structure Theorem”), see also [15], Theorem 5.3. If the action of K had been
locally free (which is of course not the case) this equivariant cohomology would be
isomorphic to the ordinary cohomology of Hom(π,K)/K.

(7) H∗
SU(2)(U) ∼=

g⊕

l=0

Priml ⊗Q[α, β, ξ]/Ig−l.

Here α, β, ξ are generators of degrees 2, 4, 6 in integral cohomology. The ideals In
are generated by three elements cn+1, cn+2, cn+3 satisfying the recursion relation

(8) ncn = αcn−1 + (n− 2)βcn−2 + 2γcn−3
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where c0 = 1, c1 = α, c2 = α2/2. Here γ = −2
∑g

i=1 ψiψi+g and ξ = αβ + 2γ (see
[16] p. 254), where the ψi are cohomology classes of degree 3. Finally Priml is
defined on [16] p. 255 before Lemma 1: it is the primitive part of the l-th exterior
power ∧l(ψ1, . . . , ψ2g) with respect to the action of the symplectic group Sp(g).

Theorem 5.7. ([15], Corollary 5.4) Let α and β be as in Remark 3. (For
details see the first and second paragraphs of [15], Section 5). Then αiβj ∈ VU only
if j < g − 1.

6. Results on intersection cohomology of M(n, d)

Assume α, β ∈ H∗
G(M) and their restrictions to Mss are in VM . Then if αβ is

represented by a top-degree form η compactly supported in the stable part M(n, d)s

of M(n, d), Theorem 5.5 tells us that the pairing 〈κ(α), κ(β)〉 is given by
∫

M(n,d)s
η.

Martin’s theorem [23] asserts that if μ is the moment map for the action of
SU(n) on M where M(n, d) is the symplectic quotient of M by SU(n), then

(9)

∫

M(n,d)s
κK,0
M (αβ) =

1

n!

∫

μ−1(0)s/T

κT,0
M (αβD)

where D is the element of equivariant cohomology represented by the product of all
the positive roots (for some choice of positive roots) or the Poincaré dual of μ−1(0)
in μ−1

T (0).
Let ε ∈ t be a regular value of μ close to 0. There is a surjective map

μ−1(ε)/T → μ−1(0)/T which is a diffeomorphism on μ−1(0)s/T (this map is defined
using the gradient flow of |μ|2). So we find that

∫

μ−1(0)s/T

κT,0
M (αβD) =

∫

μ−1(ε)s/T

κT,ε
M (αβD).

The right hand side can be evaluated using the methods of [11]. Specifically, we
have

(10)
1

n!

∫

μ−1(ε)s/T

κT,ε
M (ηeω̄D) = Res

(∑

F

e〈μ(F ),X〉
∫

F

ηeωD2

eF

)
.

Here F are the components of the fixed point set of the action of T and eF is the
equivariant Euler class of the normal bundle to F for a variable X in t.

The map Res from H∗
T (M) to C is defined as follows.1 If βj ∈ t∗ are weights

of T , and β̄ = {β1, . . . , βn}, define hβ̄ : t → C by

(11) hβ̄(X) =
1

∏
j βj(X)

.

According to the Duistermaat-Heckman theorem [2], if M is a compact smooth
manifold equipped with a Hamiltonian group action with moment map μ the inte-
gral

∫

M
eω+μX (or ”Duistermaat-Heckman oscillatory integral” – see [1]) is a linear

combination of such functions hβ̄ . This integral is a smooth function of X and
has a Fourier transform, although the individual hβ̄ are singular at 0. Nonetheless

1This map has been referred to as a “residue map” only because it can be written in terms
of residues of meromorphic functions at 0 – see [10], Proposition 3.2. This description is most
obvious in the case T = U(1), as in the example of the rotation action of the circle on S2 presented
below.
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in [6] Guillemin, Lerman and Sternberg showed how to make sense of the Fourier
transform of the hβ̄ so that the appropriate linear combination of these Fourier
transforms is the pushforward of Liouville measure under the moment map (the
Fourier transform of the Duistermaat-Heckman oscillatory integral). They define
the Fourier transform Fhβ̄(·) to be the pushforward of Lebesgue measure from Cn

to t∗ under the map (y1, . . . , yn) �→
∑

j βjyj ; in other words Fhβ̄(ξ) is the volume
of the set

{(y1, . . . , yn) ∈ C
n |

∑

j

βjyj = ξ}.

We determine the signs of the βj by choosing a polarization: we choose some cone
Λ ⊂ t for which none of the βj vanish anywhere on Λ, and change the signs of the
βj so that all βj(X) > 0 for any X ∈ Λ. Then the residue is defined as the value
at ξ = 0 of the Fourier transform of a certain class of meromorphic functions on
t⊗ C: if f is such a function, then

Res(f) =
(
Ff

)
(0).

For more details on the residue see Section 3 of [10].
For example, if S2 is acted on by T = S1 by rotation around the vertical axis,

there are two fixed points F+ and F− (the north and south poles). The moment
map is the height function and the values at the fixed points are μ(F±) = ±1. We
find that the function in (10) is

h(X) =
eX − e−X

X
= 2

sinh(X)

X
.

This function does have a Fourier transform (it is smooth at X = 0). According
to Guillemin-Lerman-Sternberg [6], we should write h as h(X) = h+(X)− h−(X)
where

h±(X) = e±X/X.

According to the recipe in [6], we should define

Fh+(ξ) = H(ξ − 1)

and

Fh−(ξ) = H(ξ + 1),

where H is the Heaviside function (the characteristic function of the positive real
line). Then we find that the Fourier transform of h is the characteristic function of
the interval from −1 to +1, as one would expect since this interval is the image of
S2 under the moment map.

Theorem 6.1. (Guillemin-Kalkman [5]; Martin [23]) If a and b are regular
values for the moment map μ of a circle action and a < b, then (defining the

corresponding Kirwan maps κT,a
M and κT,b

M ) we have

∫

μ−1(a)/T

κT,a
M (ηeω̄)−

∫

μ−1(b)/T

κT,b
M (ηeω̄) =

∑

F | a<μ(F )<b

Res

∫

F

eμ(F )Xηeω

eF (X)

where Res is as defined above. Here F are the components of the fixed point set of
the circle action.
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Remark 6.2. In the situation of Section 1 (for K = SU(n) acting on the
extended moduli space M ext) it is possible to show that μ−1(a) is diffeomorphic to
μ−1(a+ 1). This is the ‘periodicity’ alluded to in (2). So Theorem 6.1 gives

∫

μ−1(a)/T

κT,a
M (ηeω̄) =

∑

F | a<μ(F )<a+1

Res
eμ(F )Xη(X)

eF (X)(1− eX)
.
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The Beilinson-Drinfeld Grassmannian and Symplectic Knot
Homology

Joel Kamnitzer

Abstract. Seidel-Smith and Manolescu constructed knot homology theories
using symplectic fibrations whose total spaces were certain varieties of matri-
ces. These knot homology theories were associated to SL(n) and tensor prod-
ucts of the standard and dual representations. In this paper, we place their
geometric setups in a natural, general framework. For any complex reductive
group and any sequence of minuscule dominant weights, we construct a fibra-
tion of affine varieties over a configuration space. The middle cohomology of
these varieties is isomorphic to the space of invariants in the corresponding ten-
sor product of representations. Our construction uses the Beilinson-Drinfeld
Grassmannian and the geometric Satake correspondence.

1. Introduction

Let G be a complex reductive group. For any n-tuple λ = (λ1, . . . , λn) of
dominant weights of G, consider the space of invariants 0V

λ := (V λ1 ⊗· · ·⊗V λn)G.
This representation carries an action of the symmetric group by permuting the
tensor factors. More precisely, the group which acts is the stabilizer Σλ of λ under
the action of the symmetric group Σn (so that if all λi are equal, then Σλ = Σn).

These representations of symmetric groups are of interest from the point of
view of knot invariants. Via quantum groups and R-matrices, these representations
can be deformed to representations of braid groups. This construction leads to knot
invariants, such as the Jones polynomial. Roughly speaking, the invariant of a knot
K is the trace of a braid (in such a representation) whose closure is K.

Khovanov [K] has proposed categorifying these representations. This means
finding a triangulated category 0Dλ, with an action of an appropriate braid group,
such that the Grothendieck group of 0Dλ is isomorphic to 0V

λ with the above ac-
tion of Σλ. From these categorifications, Khovanov explained how to obtain more
refined knot invariants by computing an appropriate categorical “trace”. (Actu-
ally Khovanov has proposed categorifying the braid group representations coming
from quantum groups. However, in this paper, we will just focus on categorifying
the symmetric group representations. Restricting to the categorification of these
symmetric group representations is sufficient to get non-trivial braid group repre-
sentations and knot invariants.)
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c© 2011 Joel Kamnitzer

81



82 JOEL KAMNITZER

The construction of these categorifications has thus far proceeded in a rather
“ad-hoc” manner in different special cases, most notably when G = SL2 or SLm.

One approach was taken by Seidel-Smith [SS] and then extended by Manolescu
[M]. They considered the cases when G = SL2 [SS] or G = SLm [M] and where
λ = (ω1, . . . , ω1, ωm−1, . . . , ωm−1), a tensor product of standard and dual represen-
tations. In this case, they constructed a symplectic fibration S → Cn

reg/Σλ. Here S
is a certain variety of nm× nm matrices. They proved that there is a well-defined
(up to Hamiltonian isotopy) action of the braid group π1(C

n
reg/Σλ) on Lagrangian

submanifolds in a fixed fibre. The braid group acts by parallel transport through
the fibration.

The Lagrangians are objects in the derived Fukaya category. So philosophically,
this means that they constructed an action of the braid group on the derived Fukaya
category and this category can be considered as 0Dλ (recently, this perspective has
been pursued by Reza Rezazadegan [R]). As supporting evidence, the middle
cohomology of a fibre is isomorphic to 0V

λ as a representation of Σλ (see [M,
section 3.1]).

The purpose of this paper is to place the geometric setup of Seidel-Smith and
Manolescu in a more general and more natural framework. For any complex re-
ductive group G and any sequence of minuscule dominant weights λ, we construct
a fibration of smooth complex affine varieties (and hence symplectic manifolds)

0Gr
λ
Confλ

→ Confλ, where Confλ = P1n
reg/Σλ is a coloured configuration space of

points on P1.

The family 0Gr
λ
Confλ

→ Confλ is a type of Beilinson-Drinfeld Grassmannian

[BD]. It is a moduli space of Hecke modifications of the trivial principal G∨-
bundle P0 on P1, where G∨ denotes the Langlands dual group. The fibre over a
point x = [x1, . . . , xn] is defined by

0Grλx =
{
(P,φ) : P is a principal G∨-bundle on P

1,

φ : P0|X�{x1,...,xn} → P |X�{x1,...,xn} is an isomorphism,

φ is of Hecke type λi at xi, for each i,

and P is isomorphic to the trivial bundle.
}

We prove the following facts about this fibration.

(i) The action (by monodromy) of π1(Confλ) on the cohomology of a fi-
bre factors through the group Σλ. Moreover there is a Σλ equivariant

isomorphism Hmid(0Grλx)
∼= 0V

λ (Proposition 2.8).
(ii) When two points come together in the base corresponding to dual weights,

there is a local statement entirely analogous to lemmas in [M] and [SS]
(Lemma 3.2).

(iii) In the case when G = SLm and (λ1, . . . , λn) = (1, . . . , 1,m−1, . . . ,m−1),
then the portion of the fibration lying over points in C is isomorphic to
the fibration studied by Manolescu, which in turn reduces to the fibration
studied by Seidel-Smith when m = 2 (Theorem 4.1).

We prove statement (i) in section 2 as a consequence of the geometric Satake
correspondence of Mirković-Vilonen [MVi]. In section 3, we prove statement (ii)
as a consquence of the factorization property of the Beilinson-Drinfeld Grassman-
nian. It is interesting to see how this key technical lemma of [M] and [SS] follows
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extremely naturally and easily in this setting. In section 4, we prove statement (iii)
following ideas of Mirković-Vybornov [MVy] and Ngo [N].

In a future work, we hope to use this setup to define an action of the braid
group on the Fukaya category of the fibres (categorifying the action of Σλ on the
middle cohomology) and then to construct homological knot invariants, following
the approach of Seidel-Smith and Manolescu.

There is a close connection between this paper and the algebraic geometry
approach to knot homology pursued jointly with Sabin Cautis in [CK]. We expect
that the two constructions are related by hyperKähler rotation. The hyperKähler
structure of the varieties 0Grλx is described by Kapustin-Witten in sections 10.2 and
10.3 of [KM].

Acknowledgements. Despite its short length, producing this paper required
consultations with many mathematicians. In particular, I would like to thank De-
nis Auroux, Roman Bezrukavnikov, Alexander Braverman, Sabin Cautis, Edward
Frenkel, Dennis Gaitsgory, Reimundo Heluani, Anton Kapustin, Ciprian Manolescu,
Carl Mautner, Paul Seidel, Ivan Smith, Constantin Teleman, Edward Witten,
Christopher Woodward, and Xinwen Zhu for helpful discussions. During the course
of this work, I was supported by a fellowship from the American Institute of Math-
ematics and by an NSERC Discovery Grant.

2. The fibration

We begin by reviewing different versions of the Beilinson-Drinfeld Grassman-
nian and exploring their properties using the geometric Satake correspondence.
These varieties were introduced by Beilinson-Drinfeld in [BD].

2.1. The affine Grassmannian. Let G be a complex reductive group and
let G∨ be its Langlands dual group. Let Λ denote the set of weights of G, which
is the same as the set of coweights of G∨. Let Λ+ denote the subset of dominant
weights.

Let K = C((t)) and O = C[[t]]. The affine Grassmannian Gr of G∨ is defined
as G∨(K)/G∨(O). The G∨(O) orbits on Gr are labelled by dominant weights of G.

We write Grλ for the G∨(O) orbit through tλ, for λ ∈ Λ+. Let L0 = t0 denote the
identity coset in Gr. These orbits are closed in Gr (and hence projective) if and

only if λ is a minuscule weight. More generally, we have that Grλ =
⋃

μ≤λ Grμ,
where μ ≤ λ means that μ is a dominant weight and λ − μ is a sum of positive

roots. The smooth locus of Grλ is exactly Grλ. In particular, Grλ is smooth iff λ
is minuscule.

Similarly, the G∨(K) orbits on Gr × Gr are also labelled by Λ+ and we write

L1
λ−→ L2 if (L1, L2) is in the same orbit as (L0, t

λ).
Let λ = (λ1, . . . , λk) be a k-tuple of dominant weights of G. Then we define

the local convolution Grassmannian as

G̃r
λ
= {(L1, . . . , Lk) ∈ Grk : L0

λ1−→ L1
λ2−→ · · · λk−1−→ Lk−1

λk−→ Lk}

There is a map mλ : G̃r
λ
→ Gr with (L1, . . . , Lk) �→ Lk. The image of mλ is

Grλ1+···+λk .
The following result follows from the geometric Satake correspondence [MVi].
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Theorem 2.1. Assume that all λi are minuscule. There are canonical isomor-
phisms

(i) H∗(Grλ) ∼= Vλ,

(ii) H∗(G̃r
λ
) ∼= Vλ1

⊗ · · · ⊗ Vλn
, and

(iii) Htop(m−1
λ (L0)) ∼= (Vλ1

⊗ · · · ⊗ Vλn
)G.

Moreover, the isomorphisms in (ii), (iii) are compatible in the sense that the dia-
gram

H∗(G̃r
λ
)

∼−−−−→ Vλ1
⊗ · · · ⊗ Vλn

⏐
⏐
�

⏐
⏐
�

Htop(m−1
λ (L0))

∼−−−−→ (Vλ1
⊗ · · · ⊗ Vλn

)G

commutes, where the left vertical map comes from the inclusion m−1
λ (L0) → G̃r

λ
.

Proof. The geometric Satake correspodence gives us an equivalence of tensor
categories between the category ofG∨(O) equivariant perverse sheaves on Gr (called
the spherical Hecke category) and the category of representations of G, compatible
with the fibre functors to the category of vector spaces [MVi, Theorem 7.3]. The
fibre functor on the spherical Hecke category is derived global sections.

This equivalence takes CGrλ [dimGrλ] to Vλ when λ is minuscule. This im-
mediately gives us (i). Also from the definition of the tensor product on the
spherical Hecke category [MVi, Section 4], we see that the equivalence takes

(mλ)∗C
˜Gr

λ [dim G̃r
λ
] to Vλ1

⊗ · · · ⊗ Vλn
. This gives us (ii) and (iii). The com-

patibility statement is clear by construction. �

2.2. The notion of Hecke type. Let us now fix a smooth curve X. Later
we will take X = P

1.
For any x ∈ X, and any open set U ⊂ X containing x, we define

GrU,x :=
{
(P, φ) : P is a principal G∨-bundle on U

and φ : P0|U�x → P |U�x is an isomorphism
}
.

here and below, P0 denotes the trivial G∨-bundle on U .
Picking a coordinate at x gives an isomorphism GrU,x

∼= Gr. The isomorphism

is well-defined up to the action of Aut(O) on Gr. Since Grλ is Aut(O) invariant, we

may consider the locus GrλU,x obtained as the preimage of Grλ under any isomor-

phism. An element (P, φ) ∈ GrλU,x is said to have Hecke type λ. Note that G∨(U)
acts on GrU,x preserving its stratification into Hecke types.

We need to generalize our notion of Hecke type. Again fix x ∈ X and suppose
we have two G∨-bundles (P1, P2) on X and an isomorphism φ between them over
X � x. Let us pick an open neighbourhood U of x on which P1 trivializes and pick
a trivialization of P1 on this neighbourhood. This gives us a point L = (P2|U , φ′) ∈
GrU,x, where φ′ : P0|U�x → P2|U�x is the composition of this trivialization and φ.
We say that φ has Hecke type λ at x if L has Hecke type λ.

Changing the trivialization of P1 on U will change L by the action of G∨(U)
and hence will not change its Hecke type. Also, changing the open set U also does
not change λ, as can be seen by shrinking the open set U . Hence the Hecke type
of φ is independent of the choices made in its definition.
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For X = P1, there is an alternate characterization of Hecke type. First, we
should note that if P is a principal G-bundle on P1, then we can consider its
topological type which will be an element of π1(G

∨) = Λ/Q, where Q denotes
the coroot lattice of G∨. Using this notion, we have the following result, due to
Finkelberg-Mirković [FM, Prop 10.2].

Proposition 2.2. Let x,X = P1, φ, P1, P2 be as above. φ has Hecke type ≤ λ
at x if and only if

(i) for all irreps Vβ of G∨, the map φ induces the inclusions

V P1

β (−〈β, λ〉x) ⊂ V P2

β ⊂ V P1

β (〈β, λ〉x)

(here V P
β denotes the associated vector bundle P ×G∨ Vβ) and

(ii) the topological types of P2 and P1 differ by [λ] ∈ π1(G
∨) = Λ/Q.

(Note that the second condition here is vacuous when G∨ is simply connected.
Also, note that a similar characterization works for any complete curve. On the
other hand, it is not clear to the author what to do with the second condition when
considering open curves.)

2.3. The global convolution Grassmannian. Now fix λ = (λ1, . . . , λn) an
n-tuple of dominant minuscule weights of G. We now consider the global convolu-
tion Grassmannian, which is the variety

G̃r
λ

Xn := {((x1, . . . , xn), (P1, . . . , Pn), (φ1, . . . , φn)) : xi ∈ X,

Pi is a principal G∨-bundle on X,

φi : Pi−1|X�xi
→ Pi|X�xi

is an isomorphism of Hecke type λi at xi.}

We have the projection p̃ : G̃r
λ

Xn → Xn. For any subset A ⊂ Xn, let G̃r
λ

A = p̃−1(A)
be the preimage of A under this map.

Consider the following two loci in Xn: the locus of regular points Xn
reg :=

{(x1, . . . , xn) : xi �= xj} and the small diagonal X = {(x, . . . , x)} ⊂ Xn. The
fibres of p̃ over regular points in Xn

reg := {(x1, . . . , xn) : xi �= xj} are isomorphic

to Grλ1 × · · · × Grλn . The fibres over points on the small diagonal are the local
convolution products Grλ1×̃ . . . ×̃Grλn .

A proof of the following result can be found in the proof of Lemma 6.1 of
[MVi].

Proposition 2.3. The pushforwards Rkp̃∗C
˜Gr

λ

Xn
are constant sheaves.

2.4. The global singular Grassmannian. Now, we can introduce the sin-
gular version of the above space. We define the global singular Grassmannian to
be

Gr
λ
Xn :=

{(
(x1, . . . , xn), P, φ

)
: xi ∈ X,P is a principal G∨-bundle on X,

φ : P0|X�{x1,...,xn} → P |X�{x1,...,xn} is an isomorphism

and for each x ∈ X, φ has Hecke type ≤
∑

i : xi=x

λi at x
}

Again this is a family over Xn.

Proposition 2.4. The fibres of this family are described as follows.



86 JOEL KAMNITZER

(i) The fibres over regular points are still Grλ1 ×· · ·×Grλn . In fact G̃r
λ

Xn
reg

∼=
Gr

λ
Xn

reg
.

(ii) The fibres over points on the small diagonal are the (usually singular)

varieties Grλ1+···+λn .

There is an obvious map G̃r
λ

Xn → Gr
λ
Xn . This map is 1-1 over the locus in

Gr
λ
Xn which sits over Xn

reg and coincides with the map mλ on a fibre over a point
in the small diagonal in Xn.

The biggest subgroup of Σn which acts on Gr
λ
Xn is denoted Σλ. More precisely,

Σλ is the stabilizer of λ inside Σn (so if all λi are equal, then Σλ = Σn and if all λi

are different, then Σλ = {1}).
The quotient of Xn by Σλ is denoted by Xλ. Since all λi are minuscule,

distinct λi are linearly independent. Hence we can identify Xλ with the space of
“Λ+-coloured divisors” of total weight

∑
λi, i.e. functions D : X → Λ+ such that∑

x∈P1 D(x) =
∑

i λi.

The quotient of Gr
λ
Xn by Σλ is denoted by Gr

λ

Xλ and we can describe its points
as follows.

Gr
λ

Xλ :=
{
(D,P, φ) : D ∈ Xλ, P is a principal G∨-bundle on X,

φ : P0|P1�supp(D) → P |P1�supp(D) is an isomorphism

and for each x ∈ X, φ has Hecke type ≤ D(x) at x
}

Let Confλ := Xn
reg/Σλ. We have the smooth family Gr

λ
Confλ

→ Confλ and the

following Cartesian square:

(1)

G̃r
λ

Xn
reg

−−−−→ Gr
λ
Confλ

p̃

⏐
⏐
�

⏐
⏐
�p

Xn
reg −−−−→ Confλ

We can consider the monodromy action of π1(Confλ) on the cohomology of
fibres in the family p. There is a short exact sequence of groups

1 → π1(X
n
reg) → π1(Confλ) → Σλ → 1.

Since the pushforwards Rkp̃∗C
˜Gr

λ

Xn
are constant by Proposition 2.3, the mon-

odromy action of π1(X
n
reg) on the cohomology of the fibres of p̃ is trivial. So,

because of the Cartesian square (1), this means that the monodromy action of
π1(Confλ) factors through Σλ. Moreover the following fact is true.

Proposition 2.5. Assume that all λi are minuscule and let x ∈ Confλ. There

is an isomorphism H∗(Grλx)
∼= Vλ1

⊗ · · · ⊗ Vλn
, compatible with the actions of Σλ

on both sides (by monodromy and by permuting tensor factors).

Proof. The isomorphism comes from using Proposition 2.5, Proposition 2.4,
and Theorem 2.1. The compatibility with the actions of Σλ is an immediate conse-
quence of the construction of the commutativity constraint for the spherical Hecke
category (see [MVi, Section 5]). �
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2.5. The open global convolution/singular Grassmannian. So far we
have dealt with arbitrary curves X. Now we specialize to X = P1.

Let λ be such that λ1 + · · · + λn is in the root lattice of G. This condition is
necessary for (Vλ1

⊗ · · · ⊗ Vλn
)G to be non-empty.

We introduce the open subvariety 0G̃r
λ

P1n of G̃r
λ

P1n , which consists of the locus
where we impose the constraint that Pn is isomorphic to the trivial G∨-bundle
on P1. This subvariety would be empty if we did not impose the above condition
that λ1 + · · · + λn is in the root lattice. We call this the open global convolution
Grassmannian.

The significance of this open subvariety is given by the following result.

Proposition 2.6. (i) For any y ∈ P1, 0G̃r
λ

(y,...,y) retracts onto the half-

dimensional locus m−1
λ (L0).

(ii) There is an isomorphism Hmid(0G̃r
λ

(y,...,y))
∼= (Vλ1

⊗ · · · ⊗ Vλn
)G.

Proof. Assume that y = 0 ∈ P
1. We can identify G̃r

λ

(y,...,y) with the convolu-

tion product Grλ1×̃ · · · ×̃Grλn . A point L in Gr corresponds to a trivial G∨-bundle
on P

1 if and only if L is in the G[z−1]-orbit of L0, which we denote by 0Gr. So

0G̃r
λ

(y,...,y) is identified with m−1
λ (0Gr).

The open subset 0Gr of the affine Grassmannian retracts onto L0 via the loop
rotation action of the group C

× (see for example [MVi, Section 2]). This action
extends to the convolution product and retractsm−1

λ (0Gr) ontom−1
λ (L0) as desired.

We have dimm−1
λ (L0) = 1

2 dimm−1
λ (0Gr) because the map mλ is semismall

(see the proof of Lemma 4.4 in [MVi]).
Hence we have

Hmid(0G̃r
λ

(y,...,y))
∼= Htop(m−1

λ (L0)) ∼= (Vλ1
⊗ · · · ⊗ Vλn

)G

where the last isomorphism follows from Theorem 2.1.(iii). �

Analogously, we also define 0Gr
λ
P1n and 0Gr

λ

P1λ , the open global singular Grass-
mannian. So

0Gr
λ

P1λ = {(D,P, φ) ∈ Gr
λ

P1λ : P is isomorphic to the trivial bundle }
We have a Cartesian square identical to (1):

(2)

0G̃r
λ

P1n
reg

−−−−→ 0Gr
λ
Confλ

p̃

⏐
⏐
�

⏐
⏐
�p

P1n
reg −−−−→ Confλ

Proposition 2.7. The pushforwards Rkp̃∗C
0
˜Gr

λ

P1n
are constant sheaves on P1n.

We would like to thank Alexander Braverman for suggesting the following proof.

Proof. Since P1n is simply connected, it suffices to show that the push for-
wards are locally constant. Since the category of locally constant sheaves is an

abelian category, it suffices to find a stratification Yμ of 0G̃r
λ

P1n such that each

Rkp̃∗CYμ
is locally constant.
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Recall that isomorphism classes of G∨-bundles on P1 are given by dominant
weights μ of G (this is because every G∨-bundle on P1 admits a reduction to T∨).
Hence for μ = (μ1, . . . , μn = 0), we define

Yμ := {(P1, . . . , Pn) ∈ 0G̃r
λ

P1n : Pi has isomorphism type μi for i = 1, . . . , n}.

The family Yμ → P1n is trivial and thus the pushforwards Rkp̃∗CYμ
are constant

sheaves. Hence the result follows. �

By similar reasoning as in the paragraph before Proposition 2.5, we can use
Proposition 2.7 to see that the monodromy action of π1(Confλ) on the cohomology

of the fibres of p : 0Gr
λ
Confλ

→ Confλ factors through Σλ. We obtain the follow-

ing description of the monodromy action on the middle homology of the fibres of

0Gr
λ
Confλ

.

Proposition 2.8. Let x ∈ P
1n
reg. There is an isomorphism Hmid(0Grλx)

∼=
(Vλ1

⊗ · · · ⊗ Vλn
)G, which is compatible with the actions of Σλ on both sides.

Proof. Using Proposition 2.7 and Proposition 2.6, we obtain the isomorphism

Hmid(0Grλx) = Hmid(0G̃r
λ

x)
∼= Hmid(0G̃r

λ

(y,...,y))

where y ∈ P
1.

By the last statement of Proposition 2.1 we obtain a commutative square

H∗(Grλx)
∼−−−−→ Vλ1

⊗ · · · ⊗ Vλn
⏐
⏐
�

⏐
⏐
�

Hmid(0Grλx)
∼−−−−→ (Vλ1

⊗ · · · ⊗ Vλn
)G

By Proposition 2.5, the top horizontal arrow is Σλ equivariant. The right vertical
arrow is clearly Σλ equivariant and the left vertical arrow is clearly π1(Confλ)
equivariant. Hence we conclude that the bottom horizontal arrow is Σλ equivariant
as desired. �

Remark 2.9. For μ a dominant weight of G, we can also define the subvariety

μGr
λ

P1λ consisting of those tuples (D,P, φ) such that P has isomorphism class μ.

These varieties will be related to Hom(Vμ, Vλ1
⊗ · · · ⊗ Vλn

).

Remark 2.10. It would be interesting to generalize the construction of 0Gr
λ
P1n

by replacing P1 by arbitrary smooth curves X. To do so, one needs to impose
a condition on a bundle P . The two natural choices are P is trivial and P is
semistable. Imposing that P is trivial would give us too small a space and imposing
that P is semistable seems to give too big a space (I believe we lose the fact that
the fibres are affine).

3. Semilocal geometry

The purpose of this section is to establish the behaviour of our fibration when
two points come together. The basic tool is the factorization property of the Grass-
mannians. We begin by stating this property, which is due to Beilinson-Drinfeld.
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Theorem 3.1. [BD, section 5.3.10] Let X be any smooth curve. Let J1, J2 be
a disjoint decomposition of (1, . . . , n). Let U denote the set of points [x1, . . . , xn]
in Xλ such that xj1 �= xj2 if j1 ∈ J1 and j2 ∈ J2. Then there is an isomorphism

Gr
λ
U
∼= (Gr

λ1

XJ1
×Gr

λ2

XJ2
)|U

where λi consists of those λj with j ∈ Ji. This isomorphism is compatible with the
two projections to U .

Note that we have already implicitly used a special case of this Theorem in
Proposition 2.4.(i).

3.1. Semilocal geometry in the global singular Grassmannian. For
λ ∈ X+, let λ∨ = −w0(λ), where w0 is the long element of the Weyl group.

Equivalently, we have V λ∨
= (V λ)∨.

Let us assume that μ = λi = λ∨
i+1. Consider x = [x1, . . . , xn] ∈ P1λ with

y = xi = xi+1 and xj �= xk otherwise. By the factorization property of the

Grassmannians, we have that Grλx
∼= Gr

di(λ)
di(x)

×Gr
(μ,μ∨)
(y,y) where di deletes the i and

i+ 1 entries of a list.

The variety Gr
(μ,μ∨)
(y,y) is isomorphic to Grμ+μ∨

. It is singular with a stratum for

each ν such that Vν appears in Vμ ⊗ V ∨
μ . In particular, we have a distinguished

point which corresponds to the trivial bundle with trivial isomorphism. This gives

a copy of Gr
di(λ)
di(x)

embedded in Grλx as the locus of (D,P, φ) where the isomorphism

φ extends over y (equivalently, has Hecke type 0 at y).

3.2. Semilocal geometry in the open singular Grassmannian. Now, let
us pass to the open singular Grassmannian (the main object of study). The singular

fibre 0Grλx does not factor as a product in this case. However, we do have a copy of

0Gr
di(λ)
di(x)

embedded in 0Grλx as the locus of (D,P, φ) where φ extends over y. More

generally we have the following “semilocal geometry” which matches Lemma 3.5 of
[M] and Lemma 21 of [SS].

Let r be chosen such that r ≤ |xj − y| for all j. Let B ⊂ P1λ be a disc
corresponding to the points of the form [x1, . . . , y− u, y+ u, . . . , xn], where |u| < r

and let B′ ⊂ (P1)(μ,μ
∨) be the points of the form [y − u, y + u], for |u| < r.

Lemma 3.2. There exists an open neighbourhood of 0Gr
di(λ)
di(x)

in 0Gr
λ
B and an

isomorphism ψ of this neighbourhood with a neighbourhood of 0Gr
di(λ)
di(x)

in 0Gr
di(λ)
di(x)

×

0Gr
(μ,μ∨)
B′ such that the following diagram commutes

0Gr
λ
B

ψ−−−−→ 0Gr
di(λ)
di(x)

× 0Gr
(μ,μ∨)
B′

⏐
⏐
�

⏐
⏐
�

B
∼−−−−→ B′

In [SS] and [M], the corresponding Lemma is used to construct a Lagrangian

M ′ in 0Grλx from a Lagrangian M in 0Gr
di(λ)
di(x)

via a relative vanishing cycle construc-

tion (see [M, section 4.4]). In these cases the Lagrangian M ′ was diffeomorphic to
Pm−1 ×M . In our case, we expect that a similar construction will exist with Pm−1
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replaced by m−1
(μ,μ∨)(L0) = Grμ, which is a cominuscule partial flag variety for the

group G∨.
This construction can be interpreted as a functor from the derived Fukaya

category of 0Gr
di(λ)
di(x)

to that of 0Grλx (see [R]). This functor should categorify the
map

0V
di(λ) = (V λ1 ⊗ · · · ⊗ V λn)G → (V λ1 ⊗ · · · ⊗ V μ ⊗ V μ∨ ⊗ · · · ⊗ V λn)G = 0V

λ.

Proof. By the factorization property, we have, as above, an isomorphism

ψ : Gr
λ
B
∼= Gr

di(λ)
di(x)

×Gr
(μ,μ∨)
B′ .

Now, we let V ⊂ Gr
λ
B be defined as the intersection of 0Gr

λ
B with ψ−1

(
0Gr

di(λ)
di(x)

×

0Gr
(λ,λ∨)
B′

)
. By construction V is a neighbourhood of 0Gr

di(λ)
di(x)

on each side. The

restriction of ψ to V fulfills the hypotheses. �

4. Comparison with resolution of slices

4.1. Slices and their resolutions. Fix a positive integer N = mk. We will
study slices inside glN .

Consider the nilpotent matrix Em,k which consists of k−1 copies of the m×m
identity matrix arranged below the diagonal.

⎛

⎜
⎜
⎝

0 0 0 0
I 0 0 0
0 I 0 0
0 0 I 0

⎞

⎟
⎟
⎠

This is the matrix for the linear operator z acting on C[z]m/zkC[z]m with respect
to the usual basis e1, . . . , em, ze1, . . . , z

k−1em.
Let Fm,k be the matrix completing it to a Jacobson-Morozov triple. Let

Sm,k = Em,k + ker(·Fm,k). So Sm,k is the set of block matrices consisting of
identity matrices below the diagonal and arbitrary matrices on the right column.
In particular, it is an affine space.

⎛

⎜
⎜
⎝

0 0 0 ∗
I 0 0 ∗
0 I 0 ∗
0 0 I ∗

⎞

⎟
⎟
⎠

Here each block is of size m×m.
Let π = (π1, . . . , πn) a sequence of integers with 1 ≤ πi ≤ m − 1 and π1 +

· · · + πn = N . We can consider the partial flag variety Fπ of type π (that means
that the jumps are given by π). We now define the partial Grothendieck resolution

g̃l
π

N ⊂ Fπ × glN by

g̃l
π

N := {(Y,W•) : YWi ⊂ Wi and Y acts as a scalar on Wi/Wi−1}.
By recording the scalars with which Y acts on each successive quotient, we obtain

a morphism g̃l
π

N → Cn.

Of course there is also a morphism g̃l
π

N → glN . Let S̃π
m,k denote the preimage

of Sm,k inside g̃l
π

N .
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Let glπN denote the image of g̃l
π

N inside glN . It consists of those matrices such
that π refines their partition of eigenvalues. In particular any matrix in gl

π
N has at

most n distinct eigenvalues.
Let Σπ denote the stabilizer of π in Σn and let Cπ := Cn/Σπ. Let S

π
m,k denote

the following variety:

Sπ
m,k :=

{
(Y, [x1, . . . , xn]) : Y ∈ Sm,k ∩ gl

π
N , [x1, . . . , xn] ∈ C

π

and {x1}∪π1 ∪ · · · ∪ {xn}∪πn are the eigenvalues of Y
}

4.2. Examples and relation with [M], [SS]. Consider the case m = 2.

This forces π = (1, . . . , 1) and n = N . So g̃l
π

N = g̃lN is the ordinary Grothendieck
resolution. This places no restriction on the matrices, so gl

π
N = glN . Also Σπ = Σn

and so Cπ = Cn/Σn. We also see that Sπ
m,k = Sm,k. This is precisely the slice

considered by Seidel-Smith which maps down to the space of eigenvalues Cn/Σn.
Now, consider the case m arbitrary and π = (1, . . . , 1,m− 1, . . . ,m− 1) where

there are k 1s and k m-1s. Then Σπ = Σk × Σk and C
π = C

2k/Σk × Σk is the
space of collections of “thin” and “thick” eigenvalues, to use the terminology of
Manolescu. The regular locus is the bipartite configuration space BConfk studied
by Manolescu. The fibres of Sπ

m,k → BConfk is the fibration studied by Manolescu.
Manolescu also develops the geometry in the same general framework that we

do. To continue the comparison of terminology, our π is his π, our g̃l
π

N is his gπ,
our glπN is his gπ, our Σπ is his W π, our Cn is his hπ = Cs−1, our Cπ is his hπ/Wπ.
We are unable to reconcile his map gπ → hπ/Wπ. We don’t believe that such a
map exists and that is why we constructed the more complicated Sπ

m,k.

4.3. Comparison theorem. Now we take G = SLm, so G∨ = PGLm. We
have the usual labelling ω1, . . . , ωm−1 of minuscule weights for SLm.

Let λ = (λ1, . . . , λn) be such that λ1 + · · ·+ λn is in the root lattice and each
λi is minuscule. For each i, let πi ∈ {1, . . . ,m − 1} be such that λi = ωπi

. Then,
N := π1 + · · · + πn is divisible by m (so that λ1 + · · · + λn is in the root lattice),
so N = mk for some positive integer k. Note that Σλ = Σπ and Cλ = Cπ (here Cλ

denotes the subvariety of P1λ where all points are in C).
The following result is due to Mirković-Vybornov [MVy, Theorem 5.3] and

Ngo [N, Lemma 2.3.1].

Theorem 4.1. There exist isomorphisms 0G̃r
λ

Cn
∼= S̃π

m,k and 0Gr
λ
Cλ

∼= Sπ
m,k

which are compatible with the following two squares:

0G̃r
λ

Cn −−−−→ 0Gr
λ
Cλ

⏐
⏐
�

⏐
⏐
�

Cn −−−−→ Cλ

S̃π
m,k −−−−→ Sπ

m,k
⏐
⏐
�

⏐
⏐
�

Cn −−−−→ Cπ

Though the theorem has already been proved by Ngo and Mirković-Vybornov,
we provide a sketch proof for the convenience of the reader.
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Proof. We will show that both 0G̃r
λ

Cn and S̃π
m,k are isomorphic to the following

space.

0Lλ :=
{
L0 = C[z]m ⊃ L1 ⊃ · · · ⊃ Ln : Li are free C[z] submodules of rank m,

dim(Li−1/Li) = πi, z acts by a scalar on Li−1/Li, and

[e1], . . . [em], [ze1], . . . [zem], . . . , [zk−1e1], . . . , [z
k−1em]

is a basis for C[z]m/Ln

}

First, suppose P1, P2 are two principal PGLm-bundles on P
1 and φ is an iso-

morphism between them away from a point x �= ∞ of Hecke type ωj . Then there
exist rank m vector bundles V1, V2 representing P1, P2 such that L2 := Γ(C, V2) ⊂
L1 := Γ(C, V1) and dim(L1/L2) = j. Moreover, we see that (z − x)L1 ⊂ L2. (This
is the PGLm version of Proposition 2.2.)

This allows us to define an isomorphism G̃r
λ

Cn → Lλ, where Lλ is just like 0Lλ

except without the last condition.
Hence it suffices to show that if a vector bundle V on P1 has space of sections

L = Γ(C, V ) ⊂ C[z]m, then [e1], . . . , [z
k−1em] is a basis if and only if V ∼= O(k)⊕m

(this latter condition implies that P(V ) is trivial and in this case it is in fact
equivalent to it).

To prove this claim, let us define an isomorphism V → O(k)⊕m. To do so
it suffices to define an isomorphism ψ of C[z]-modules ψ : L → zkC[z]⊕m which
extends over P1. Let B be the set {e1, . . . , zk−1em}. For each i define pi to be the
unique element of Span(B) such that pi − zkei ∈ L (such a pi exists by the “basis
for quotient” assumption). Note that {zke1 − p1, . . . , z

kem − pm} forms a basis
for L as a free C[z]-module. Now, we define ψ to take zkei − pi to zkei. Since it
takes one basis to another, ψ is a isomorphism of C[z]-modules. Finally, a simple
calculation shows that ψ extends to a isomorphism over P1.

Thus, we have proven that 0G̃r
λ

Cn is isomorphic to 0Lλ. So it remains to

construct the isomorphism between 0Lλ and S̃π
m,k.

Given (L0, . . . , Ln) ∈ Lλ, we consider the linear operator Y defined as the
action of z on the quotient L0/Ln. Since we have a preferred basis for L0/Ln,
we may identify L0/Ln with CN . The sequence Ln/Ln, Ln−1/Ln, . . . , L0/Ln gives
us a flag W• of type π in C

N such that Y preserves each subspace and acts as

a scalar on each quotient. Thus (Y,W•) is a point in g̃l
π

N . Moreover, we see that
Y [ziej ] = [zi+1ej ] for each 0 ≤ i ≤ k−2 and all j. Thus Y ∈ Sm,k as desired. (Note
that the condition that Ln = zkC[z]m is equivalent to the condition Y = Em,k.)

Hence (Y,W•) lies in S̃π
m,k. An inverse map can easily be constructed by an explicit

formula (see [MVy, section 4.5]). �

5. Affine nature of the fibres

As a final step, we would like to prove the following result.

Proposition 5.1. Let x ∈ P
1n
reg. Then 0Grλx is an affine variety.

We do not know a truly satisfactory proof of this result. Here is a slightly ad
hoc approach which uses the results of the previous section.

Proof. We begin with the case of G∨ = PSLm. We may assume that x =
(x1, . . . , xn) ∈ Cn

reg, since the fibre does not depend on x. Then by Theorem 4.1,
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0Grλx is the variety of matrices in Sm,k whose set of eigenvalues is {x1}∪π1 ∪ · · · ∪
{xn}∪πn . Since Sm,k is an affine space and imposing this set of eigenvalues is

a closed condition, we see that 0Grλx is an affine variety. The varieties 0Grλx for
G∨ = GLm are the same as those for G∨ = PSLm, so this establishes that case
too.

Now suppose that G∨ is arbitrary. Pick a faithful representation ρ : G∨ → GLm

which takes the maximal torus T of G∨ into the maximal torus Tm. This gives us

a map ρ : BunG∨(P1) → BunGLm
(P1) and a closed embedding ρ : Gr

λ
G∨,x →

Gr
ρ(λ)
GLm,x (here ρ(λ) denotes the result of transforming λ into a tuple of dominant

coweights for GLm via the map T → Tm). By Lemma 5.2 below, we see that

ρ−1(0Gr
ρ(λ)
GLm,x) = 0Gr

λ
G∨,x and hence 0Gr

λ
G∨,x is a closed subvariety of 0Gr

ρ(λ)
GLm,x

and hence is affine. �

Lemma 5.2. Let ρ : G∨ → GLm be as above. Let P be a principal G∨-bundle
on P1. Then P is trivial if and only if ρ(P ) is trivial.

Proof. By Grothendieck’s theorem, everyG∨-bundle on P1 admits a reduction
to T . Hence our bundle P comes from a T -bundle P ′. Note that P is trivial iff
P ′ is trivial. We may first turn P ′ into a Tm-bundle ρT (P

′) and then into the
GLm-bundle ρ(P ).

Now, T -bundles are determined by maps X(T ) → Z. The bundle ρT (P
′) is

determined by the transformed map X(Tm) → X(T ) → Z. Since T → Tm is an
embedding, X(Tm) → X(T ) is onto.

Hence we deduce

P is trivial ⇐⇒ P ′ is trivial ⇐⇒ the map X(T ) → Z is zero

⇐⇒ the map X(Tm) → X(T ) → Z is zero

⇐⇒ ρT (P
′) is trivial ⇐⇒ ρ(P ) is trivial.

�
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Introduction

The goal of this paper is to introduce the reader to recent work on some
basic arithmetic questions about moduli spaces of vector bundles on curves. In
particular, we will focus on the correspondence between rational-point prob-
lems on (étale) forms of such moduli spaces and classical problems on the
Brauer groups of function fields. This might be thought of as a non-abelian
refinement of the following result of Artin and Tate (which we state in a spe-
cial case).

Fix a global field K with scheme of integers S. (If charK > 0, we assume
that S is proper so that it is unique.) Let f : X → S be a proper flat morphism
of relative dimension 1 with a section D ⊂ X and smooth generic fiber Xη. Let
Br∞(X) denote the kernel of the restriction map Br(X) →

∏
ν|∞ Br(X ⊗Kν),

i.e., the Brauer classes which are trivial at the fibers over the Archimedean
places. (If charK > 0 or K is totally imaginary, Br∞(X) = Br(X).)

THEOREM (Artin-Tate). There is a natural isomorphism

Br∞(X)
∼→ X1(SpecK, Jac(Xη)).

From a modern point of view, this isomorphism arises by sending a μn-
gerbe X → X to the relative moduli space of invertible twisted sheaves of
degree 0. (We have provided a brief review of gerbes, moduli of twisted sheaves,
and the Brauer group in the form of an appendix.) Our goal will be to study
the properties of higher-rank moduli of twisted sheaves. Each moduli space
carries an adelic point (i.e., is in the analogue of the Tate-Shafarevich group),
but most of the moduli spaces are geometrically rational (or at least rationally
connected) with trivial Brauer-Manin obstruction, so that the Hasse principle
is conjectured to hold. This yields connections between information about the
complexity of Brauer classes on arithmetic surfaces and conjectures on the
Hasse principle for geometrically rational varieties.

As the majority of work on moduli spaces of vector bundles on curves is
done in a geometric context, we give in Section 1 a somewhat unconventional
introduction to the study of forms of moduli. This is done primarily to fix
notation and introduce some basic constructions. We also use this section to
introduce a central idea: forms of the moduli problem naturally give forms of
the stack and not merely of the coarse moduli space, and the relation between
these forms captures cohomological information which ultimately is crucial for
making the arithmetic connections. In this geometric section, we use this phi-
losophy to prove a silly “non-abelian Torelli theorem”.

Starting with Section 2 we turn our attention to arithmetic problems. In
particular, after asking some basic questions in Section 2, we link a standard
conjecture on the Hasse principle for 0-cycles of degree 1 (Conjecture 1.5(a) of
[4]) to recent conjectures on the period-index problem in Section 3. We also
recast some well-known results due to Lang and de Jong on the Brauer group
in terms of rational points on moduli spaces of twisted sheaves. This serves to
create a tight link between the Hasse principle and the period-index problem
for unramified Brauer classes on arithmetic surfaces. In particular, we get the
following refinement of the Artin-Tate isomorphism.

Let X → X be a μn-gerbe which is trivial on geometric fibers of f and
over infinite places, and let α ∈ Br∞(X) denote its associated Brauer class. As
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explained in Proposition 1.6, the stack MX /S(n,O(D)) of flat families of sta-
ble X -twisted sheaves of rank n and determinant O(D) is a form of the stack
MX/S(n,O(D)) of (non-twisted) stable sheaves with the same discrete invari-
ants. We write MX /S(n,O(D)) for the coarse moduli space of MX /S(n,O(D))
and MXK/K(n,O(DK)) for its generic fiber over S.

THEOREM (L). The class α satisfies per(α) = ind(α) if and only if the Hasse
principle for 0-cycles of degree 1 holds for the smooth projective geometrically
rational K-scheme MXK/K(n,O(DK)).

Since Pic(MXK/K(n,O(DK))) = Z, the condition of the theorem is equiva-
lent to the statement that the Brauer-Manin obstruction is the only obstruc-
tion to the Hasse principle for this particular variety. Just as the element of
X1(SpecK,Xη) measures non-triviality of α, here the success (or failure) of the
Hasse principle for MXK/K(n,O(D)) measures the complexity of the division
algebra over K(X) with Brauer class α. As an example for the reader unfamil-
iar with the period and index (reviewed in the appendix), this says that if the
Brauer-Manin obstruction is the only one for 0-cycles of degree 1 on geometri-
cally rational varieties then any class of order 2 in Br∞(X) must be the class
associated to a generalized quaternion algebra (a, b) over K(X).

When charK = p > 0, one can prove that any α ∈ Br(X) whose period is
relatively prime to p satisfies per(α) = ind(α) (see [20]). The proof uses the
geometry of moduli spaces of twisted sheaves on surfaces over finite fields, and
therefore contributes nothing to our understanding of the mixed-characteristic
situation.

In Sections 4 and 5 we start to consider how one might generalize the
Theorem to the case of ramified Brauer classes. Things here are significantly
more complicated – for example, we know that there are ramified classes whose
period and index are unequal. A nice collection of such examples is provided in
[15] in the form of biquaternion algebras over Q(t) with Faddeev index 4 such
that for all places ν of Q the restriction to Qν(t) has index 2. Can we view such
algebras as giving a violation of some sort of Hasse principle? As we discuss
in Section 5, there is a canonical rational-point problem associated to such an
algebra, but it fails to produce a counterexample to the Hasse principle because
it lacks a local point at some place! In other words, while these algebras seem
to violate some sort of “Hasse principle,” the canonically associated moduli
problems actually have local obstructions. This phenomenon is intriguing and
demands further investigation.
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Notation and assumptions

As in the introduction, given an arithmetic surface X → S with S the
scheme of integers of K, we will write Br∞(X) for the subgroup of Br(X) of
classes whose restriction to X ⊗Kν is trivial for all Archimedean places of K.
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We assume familiarity with the theory of algebraic stacks, as explained in
[16]. Given a stack X , we will denote the inertia stack by

I (X ) := X ×Δ,X ×X ,Δ X ;

this is the fiber product of the diagonal with itself, and represents the sheaf
of groups which assigns to any object its automorphisms. The notation related
to moduli is explained in the Appendix. While gerbes, twisted sheaves, and
the Brauer group are briefly reviewed in the Appendix, the reader completely
unfamiliar with them will probably benefit from consulting [10, 18, 20]

Most of the material described here is derived from the more extensive
treatments in [19, 20]. We have thus felt free to merely sketch proofs. The
material of Sections 4 and 5 is new, but is not in its final form. Again, we have
not spelled out all of the details; they will appear once a more satisfactory
understanding of the phenomena described there has been reached.

1. Forms of moduli and an isotrivial Torelli theorem

Let C/K be a curve over a field with a K-rational point p and L an in-
vertible sheaf on C. The central objects of study in this paper will be forms
of the moduli stack MC/K(r, L) of stable vector bundles on C of rank r and
determinant L. In this section we give a geometric introduction to the exis-
tence and study of these forms. It turns out that the most interesting forms
of MC/K(r, L) are those which arise from μr-gerbes C → C. The reader un-
familiar with gerbes should think of these as stacky forms of C; the curve C
itself corresponds to the trivial gerbe Bμr×C. As a warm-up for the rest of the
paper, we give an amusing Torelli-type theorem for such stacky forms of C.

We begin by discussing forms of the coarse space MC(r, L). From a geomet-
ric point of view, forms of a variety are simply isotrivial families.

DEFINITION 1.1. Given an algebraically closed field k, a morphism of k-
schemes f : X → Y is isotrivial if there is a faithfully flat morphism g : Z → Y ,
a k-scheme W , and isomorphism X ×Y Z

∼→ W × Z.

Isotrivial families arise naturally from geometry, as the following example
shows.

EXAMPLE 1.2. Suppose Cε is an infinitesimal deformation of C over k[ε]
and Lε and L′

ε are two infinitesimal deformations of L. We claim that the mod-
uli spaces MCε/k[ε](r, Lε) and MCε/k[ε](r, L

′
ε) are isomorphic. To see this, note

that L′
ε ⊗L−1

ε is an infinitesimal deformation of OC and is thus an rth power
in Pic(Cε). Twisting by an rth root gives an isomorphism of moduli problems.
This obviously generalizes to deformations of C over Artinian local k-algebras
A. As a consequence, if R is a complete local k-algebra with maximal ideal m
and residue field k and L is an invertible sheaf of degree d on C ⊗R with re-
duction L over the residue field, we see that MC ⊗R/R(r,L) ∼= MC/k(r, L)⊗R.
Indeed, since MC ⊗R/R(r,L) and MC/k(r, L) are proper, the Grothendieck exis-
tence theorem shows that the natural map

IsomR(MC ⊗R/R(r,L),MC/k(r, L)⊗R) →
lim←− IsomRn

(MC ⊗Rn/Rn
(r,LRn

),MC/k(r, L)⊗Rn)
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is an isomorphism, where Rn := R/mn+1. Since the identity map over the
residue field lifts to each infinitesimal level, we conclude that there is an iso-
morphism over R.

Now, given r and d as above, let MC(r, d) denote the moduli space of all
stable vector bundles of rank r and degree d. The determinant defines a mor-
phism det : MC(r, d) → PicdC/k. By the argument of the previous paragraph,
all of the fibers of det are mutually isomorphic. This is a basic example of an
isotrivial family which arises naturally from geometry.

How can we classify isotrivial families? The classification is familiar from
descent theory. Let us illustrate how this works using Example 1.2. To simplify
notation, let M denote the moduli space MC(r, L) for some fixed L ∈ PicdC/k, and
write X = C × PicdC/k. Consider the PicdC/k-scheme

T = IsomPicd
C/k

(M(r, d),M × PicdC/k);

this is a left torsor under the scheme of automorphisms Aut(M). We now make
one simplifying assumption which will tie the geometry to algebraic construc-
tions we will do later.

HYPOTHESIS 1.3. Suppose that the curve C has trivial automorphism
group, and that both r and d are odd.

The purpose of Hypothesis 1.3 is to ensure that the automorphism group
of MC(r, L) is given entirely by the natural image of PicC [r] in Aut(M) under
the map sending an invertible sheaf N ∈ PicC [r] to the automorphism given by
twisting by N (see [13]).

Given Hypothesis 1.3, the torsor T corresponds to a class

α ∈ H1(PicdC/k,R
1pr2∗μr),

where pr2 is the second projection of the product C × PicdC/k. The cohomology
class thus arising belongs to a convergent in the Leray spectral sequence for
μr with respect to the morphism pr2 : C × PicdC/k → PicdC/k. In fact, the Leray
spectral sequence gives a surjection

H2(C × PicdC/k,μr) → H1(PicdC/k,R
1pr2∗μr).

(This is surjective because the edge map H3(PicdC/k,μr) → H3(C × PicdC/k,μr)

is split by any k-point p ∈ C.) There is a Chern class map

Pic(C × PicdC/k) → H2(C × PicdC/k,μr)

arising in the usual way from the Kummer sequence.
Since C has a k-point, there is a tautological sheaf L on C × PicdC/k.

CLAIM 1.4. The class α is the image of L ⊗L−1 under the composition of
the above maps, where L is the invertible sheaf corresponding to the base point
parameterizing M .

To prove this claim, we give a geometric interpretation of the maps

(1) Pic(C × PicdC/k) → H2(C × PicdC/k,μr)

and

(2) H2(C × PicdC/k,μr) → H1(PicdC/k,PicC/k[r]).
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To interpret (1): given an invertible sheaf N on C×Picd /C/k, we get a μr-
gerbe [N ]1/r over X. This is a stack, i.e., a moduli problem, which in this case
is very explicit. Given an X-scheme T → X, an object of [N ]1/r is given by a
pair (Λ, ψ) with Λ an invertible sheaf on T and ψ : Λ⊗ r → N an isomorphism.

To interpret (2): given a μr-gerbe X → X, we can consider the pushfor-
ward stack pr2 X → PicdC/k.

CLAIM 1.5. With the above notation, given a morphism f : X → Y the stack
f∗X is an f∗μr-gerbe over a R1f∗μr-pseudotorsor. If X ×Y U is a neutral gerbe
over X ×Y U for some étale surjection U → Y , the sheafification of f∗X is an
étale torsor.

SKETCH OF PROOF. By definition, an object of f∗X over a Y -scheme S →
Y is an object of X over S ×Y X. It immediately follows that f∗X is a gerbe
banded by f∗μr. Let the sheafification of f∗X be denoted Θ → Y . Twisting by
torsors gives an action R1f∗μr × Θ → Θ. One checks that this makes Θ into
a pseudotorsor; the hypothesis of the last sentence of the claim transparently
makes Θ have local sections in the étale topology, and therefore a torsor. �

Sending X to the sheafification of pr2 X gives an interpretation of (2).

PROOF OF CLAIM 1.4. Let X → X be the μr-gerbe [L ⊗L−1]1/r defined
above, and let Θ denote the sheafification of X (as a PicdC/k-stack). Tensor
product defines a morphism of PicdC/k-stacks

pr2∗X × M (r, L)Picd
C/k

→ M (r, d),

where M is used in place of M to denote the stack instead of the coarse moduli
space. Passing to sheafifications yields a map

Θ×M(r, L) → M(r, d)

which is compatible with the natural R1pr2∗μr-actions. By adjunction, this
gives a Pic(C)[r]-equivariant map

Θ → Isom(M(r, L),M(r, d)),

yielding the desired result. �
This analysis of Example 1.2 fits into a general picture. Let f : C → S be

a proper smooth relative curve of genus g ≥ 2. Suppose C → C is a μr-gerbe
whose associated cohomology class [C ] ∈ H2(C,μr) is trivial on all geometric
fibers of f .

PROPOSITION 1.6. There is an étale surjection U → S and an isomorphism
of stacks τ : MCU/U (r, L)

∼→ MCU/U (r, L).

In other words, the stack of stable C -twisted sheaves of rank r determinant
L is a form of the stack of stable sheaves on C of rank r and determinant L. (As
the reader will note from the proof, it is essential that the cohomology class be
trivial on geometric fibers for this to be true.)

SKETCH OF PROOF. The proper and smooth base change theorems and the
compatibility of the formation of étale cohomology with limits show that there
is an étale surjection U → S such that [C ]U = 0. Thus, it suffices to show
that if [C ] = 0 (in other words, if C ∼= Bμr,C ) then there is an isomorphism
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MC/S(r, L)
∼→ MC/S(r, L). Under this assumption, there is an invertible C -

sheaf χ such that χ⊗ r is isomorphic to O. Tensoring with χ−1 gives the isomor-
phism in question. �

The isomorphism τ of Proposition 1.6 yields a coarse isomorphism τ :
MCU/U (r, L)

∼→ MCU/U (r, L), so that MC/S(r, L) is a form of MC/S(r, L). Just as
above, we can give the cohomology class corresponding to this form (by descent
theory): it is precisely the image of [C ] under the edge map ε : H2(C,μr) →
H1(S,R1f∗μr) in the Leray spectral sequence. There is one mildly interesting
consequence of this fact. Since ε has (in general) a kernel, we see that the
coarse moduli space MC/S(r, L) does not (in general) characterize the “curve”
C . In other words, it appears that there is no “stacky Torelli theorem”. It is
perhaps illuminating to give an example of the failure.

LEMMA 1.7. If f : X → S is a proper morphism with geometrically con-
nected fibers such that PicX/S = Z, then the natural pullback map H2(S,μr) →
H2(X,μr) is injective.

PROOF. The Leray spectral sequence shows that the kernel of the map is
the image of H0(S,R1f∗μr) = H1(X,PicX/S [r]) = 0. �

EXAMPLE 1.8. If C = C × S for a μr-gerbe S → S, then (for example,
by the above Leray spectral sequence calculation) there is an isomorphism b :
MC/S(r, L)

∼→ MC/S(r, L). However, the stacks MC/S(r, L) and MC/S(r, L) are
not isomorphic unless S is isomorphic to Bμr,S . In fact, viewing (via b) both of
these stacks as μr-gerbes over MC/S(r, L), we have an equation

[MC/S(r, L)]− [MC/S(r, L)] = [SMC/S(r,L)]

as described in [14]. By Lemma 1.7, we see that [S ] = 0 if and only if
[SMC/S(r,L)] = 0, as desired.

On the other hand, if we keep track of the stacky structure, we have the fol-
lowing silly “Torelli” theorem. Let f : C → S be a proper smooth relative curve
of genus g ≥ 2 with a section whose geometric generic fiber has no nontrivial
automorphisms. Suppose L is an invertible sheaf on C of degree d on each geo-
metric fiber of f and r is a positive integer relatively prime to d such that rd
is odd. Given stacks X and Y with inclusions μr ↪→ I (X ) and μr ↪→ I (Y ),
the notation X ∼=r Y will mean that there is an isomorphism ι : X

∼→ Y such
that the composition ι∗μr

∼→ μr → I (X ) → ι∗I (Y ) is the pullback under ι of
the given inclusion μr → I (Y ). We will call such an isomorphism “μr-linear”.

THEOREM 1.9 (Isotrivial Torelli). With the above notation, if C1 and C2

are μr-gerbes on C whose restrictions to geometric fibers of f are trivial, then
C1

∼=r C2 if and only if MC1/S(r, L)
∼=r MC2/S(r, L).

PROOF. The assumption that f has a section leads (via pullback and the
relative cohomology class of the section) to a natural splitting

H2(C,μr) = H2(S,μr)⊕H1(S,R1f∗μr)⊕H0(S,R2f∗μr)

such that the first two summands correspond to classes which are trivial on
geometric fibers of f . As discussed above, the image of [Ci] in H1(S,R1f∗μr) is
the class associated to MCi/S(r, L). If MC1/S(r, L) is isomorphic to MC2/S(r, L)
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(say, by an isomorphism ϕ) then certainly the same is true for the coarse mod-
uli spaces (isomorphic via ϕ), from which we conclude that [C1] and [C2] have
the same image in H1(S,R1f∗μr). Thus, there exists some μr-gerbe S → S
such that [C1]− [C2] = [S ]|C in H2(C,μr). Using Giraud’s theory [10, §IV.2.4],
it follows that we can write C1 = C2 ∧ SC . In this situation, there is a
canonical isomorphism b : MC1/S(r, L)

∼→ MC2/S(r, L) with the property that
[MC1/S(r, L)]− b∗[MC2/S(r, L)] = [S ]MC1/S(r,L) in H2(MC1/S(r, L),μr).

By Hypothesis 1.3, any automorphism of MC1/S(r, L) lifts to a (μr-linear)
automorphism of MC1/S(r, L). Applying this to b ◦ ϕ−1, we see that b lifts to an
isomorphism MC1/S(r, L)

∼→ MC2/S(r, L). We thus conclude that SMC1/S(r,L) is
a trivial gerbe. By Lemma 1.7, we see that [S ] = 0, so C1 and C2 are isomorphic
μr-gerbes. �

2. Some arithmetic questions about Brauer groups and rational
points on varieties over global fields

Let C/k be a curve over a field. In this section we describe how the forms
arising in the preceding section are related to basic questions about the arith-
metic of function fields. The linkage is provided by an interpretation of the
group H2(C,μr). The inclusion μr → Gm yields classes in H2(C,Gm), which is
equal to the Brauer group of C. The reader is referred to the appendix for a
review of basic facts about the Brauer group of a scheme.

Given a field K, there are several questions about the arithmetic properties
of K in which the Brauer group plays a central role.

(1) The period-index problem: given α ∈ Br(K), what is the minimal g
such that ind(α) | per(α)g?

(2) The index-reduction problem: given a field extension L/K and a class
α ∈ Br(K), how can we characterize the number ind(α)/ ind(α|L)?

(3) The Brauer-Manin obstruction to the Hasse principle: is the Brauer-
Manin obstruction the only obstruction to the existence of 0-cycles of
degree 1?

In this paper we will focus on questions (1) and (3). Question (2) also has close
ties to the geometry of moduli spaces; we refer the reader to [14] for details.

As the third question is the most technical, let us briefly review what it
means. Suppose K is a global field with adèle ring A and X is a proper ge-
ometrically connected K-scheme. For example, X could be a smooth quadric
hypersurface. For smooth quadric hypersurfaces, a classical theorem of Hasse
and Minkowski says that X(K) �= ∅ if and only if X(Kν) �= ∅ for all places
ν of K (including the infinite ones). This principle is usually referred to as
the “Hasse principle”. A natural question which arises from this theorem is
whether or not this principle holds for an arbitrary variety. This turns out
not to be the case [24], but there is often an explanation for the failure of this
principle arising from a cohomological obstruction discovered by Manin [21].
To describe this obstruction, a few minor technical remarks are in order.

Since A is a K-algebra, we can consider the adelic points X(A). Restriction
gives a map X(A) →

∏
ν X(Kν). In fact, this map is a bijection. (To prove this,

one can use a regular proper model of X over the scheme of integers of K to
reduce to the case in which X is affine, where this follows from the universal
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property of the product.) From this point of view, the Hasse principle says
that X(A) �= ∅ if and only if X(K) �= ∅. Moreover, the K-algebra structure
on A gives a map X(K) → X(A). Manin’s idea is to produce a pairing whose
“kernel” contains the image of X(K) in X(A). The pairing arises as follows:
restriction gives a map

Br(X)×X(A) → Br(A) → Q/Z,

where the last map comes from the usual local invariants of class field theory.
The standard reciprocity law implies that the Brauer group of K is in the left
kernel of this pairing, yielding an invariant map

X(A) → Hom(Br(X)/Br(K),Q/Z).

Write X(A)Br(X) for the “kernel” of this map (i.e., the elements sent to the
map 0 : Br(X)/Br(K) → Q/Z). The same reciprocity law shows that X(K) is
contained in X(A)Br(X). In particular, if X(A)Br(X) = ∅ then X(K) = ∅. The
obvious question concerning this pairing is the following.

QUESTION 2.1. If X(A)Br(X) �= ∅ then is K(K) �= ∅?

As suspected from the beginning, the answer turns out to be “no,” but there
was no counterexample until Skorobogatov discovered a bielliptic surface with
no rational points and vanishing Brauer-Manin obstruction [25]. There is a
refinement of this question due to Colliot-Thélène that is still the subject of
much current research. (Cf. Conjecture 1.5(a) of [4] and Conjecture 2.4 of [5].)

CONJECTURE 2.2. If X(A)Br(X) �= ∅ then there is a 0-cycle of degree 1 (over
K) on X.

We will call this property “the Hasse principle for 0-cycles”. A famous the-
orem of Saito affirms Conjecture 2.2 when X is a curve, under the assumption
that the Tate-Shafarevich group of the curve is finite (the original is [23], with
another account of this result in [5]); the general case is still wide open. Ac-
cording to Colliot-Thélène, it is not known if Skorobogatov’s negative answer
to Question 2.1 has a 0-cycle of degree 1. One of our primary goals in this paper
will be to link certain cases of Conjecture 2.2 to the period-index problem for
function fields of arithmetic surfaces.

There is one case of Conjecture 2.2 which will come up below.

CONJECTURE 2.3. If X is smooth and geometrically rational and
Pic(X ⊗K) is isomorphic to Z then the Hasse principle holds (for 0-cycles) for
X.

PROOF THAT CONJECTURE 2.3 FOLLOWS FROM CONJECTURE 2.2. By
[11], we know Br(X ⊗K) = 0, since X is smooth and geometrically rational.
The Leray spectral sequence for Gm then shows that Br(X)/Br(K) = H1(K,Z),
and the latter group is trivial (since the first cohomology of a finite group acting
trivially on Z is trivial, and the Galois cohomology is a colimit of such). Thus,
X(A) = X(A)Br(X). �

The statement of Conjecture 2.3 is meant to include both the strong form
(classical Hasse principle) and weak form (Hasse principle for 0-cycles). We
will discuss two different relationships between Conjecture 2.3 and the period-
index problem; one will relate to the strong form, while one will relate to the
weak form.
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3. Moduli spaces of stable twisted sheaves on curves and
period-index theorems

In this section, we start to explain the connections among the various prob-
lems described in the preceding section. In particular, we will use classical the-
orems about rational points on various kinds of varieties over various C1-fields
to solve moduli problems encoding period-index problems. Then we will prove
the Theorem from the Introduction.

To begin, we give another result which is a transparent translation of a
simple spectral sequence argument.

THEOREM 3.1. If C is a proper curve over a finite field Fq then Br(C) = 0.

SKETCH OF PROOF. An exercise in deformation theory (see Section A.2) re-
duces the theorem to the case in which C is smooth. Let C → C be a μn-gerbe.
Consider the stack MC/Fq

(1, 0) parameterizing invertible C -twisted sheaves
of degree 0. Just as in the classical case, MC/Fq

(1, 0) is a Gm-gerbe over a
Jac(C)-torsor T . By Lang’s theorem, T has a rational point p. By Wedder-
burn’s theorem, p lifts to an object of the stack, giving an invertible C -twisted
sheaf. As described in the appendix, this invertible twisted sheaf trivializes
the Brauer class associated to [C ]. Since C was an arbitrary μn-gerbe, this
shows that the Brauer group of C is trivial. �

Next, we will sketch a proof of the following theorem.

THEOREM 3.2 (de Jong). Let X be a surface over an algebraically closed
field k. For all α ∈ Br(k(X)), we have per(α) = ind(α).

Unlike Theorem 3.1, this is not merely a geometric realization of a stan-
dard cohomological argument. There are various proofs of this result – de
Jong’s original proof [7], a proof due to de Jong and Starr [9], and the one we
present (found with details in [20]). They each ultimately rest on deformation
theory and the definition of a suitable moduli problem. The latter two both re-
duce the result to the existence of a section for a rationally connected fibration
over a curve and use the Graber-Harris-Starr theorem.

SKETCH OF PROOF. We assume that char k = 0 for the sake of simplicity;
the reader will find a reduction to this case in [20]. We proceed in steps. We
will write n for the period of α.

(1) Blowing up in the base locus of a very ample pencil of divisors (one of
which contains the ramification divisor of α) on X, we may assume that there
is a fibration X → P1 with a section such that the ramification of α is entirely
contained in a fiber and the generic fiber is smooth of genus g ≥ 2. Let C/k(t)
be the generic fiber; this is a proper smooth curve of genus g ≥ 2 with a rational
point p, and α lies in Br(C).

(2) Choose a μn-gerbe C → C such that [C ] = α ∈ Br(C) and [C ⊗ k(t)] =
0 ∈ H2(C,μn). (We can do this because C has a rational point.)

(3) Consider the modular μn-gerbe MC/k(t)(n,O(p)) → MC/k(t)(n,O(p)). As
discussed in Section 1, there is an isomorphism

MC/k(t)(n,O(p))⊗k(t)
∼→ M

C ⊗ k(t)/k(t)
(n,O(p)),
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and we know that the latter (hence, the former) is unirational (in fact, ratio-
nal), and thus rationally connected.

(4) The Graber-Harris-Starr theorem implies that there is a rational point
q ∈ MC/k(t)(n,O(p))(k(t)).

(5) Tsen’s theorem implies that q lifts to an object V : a locally free C -
twisted sheaf of rank n.

(6) The algebra End(V )|η is a central division algebra of degree n with
Brauer class α, thus proving that the index of α divides n. Since we already
know the converse divisibility relation, we are done. �

REMARK 3.3. The reader will note that we use the Graber-Harris-Starr
theorem in two places in the proof: once to find a rational point on the coarse
moduli space, and once (in the guise of Tsen’s theorem) to lift that rational
point to an object of the stack. While classical algebraic geometry only “sees”
the former, the difference between fine and coarse moduli problems necessi-
tates the latter.

If we start with an arithmetic surface instead of a surface over an alge-
braically closed field, things get more complicated. (For example, it is no longer
true that the period and index are always equal if the class is allowed to ram-
ify.) For the rest of this section, we will discuss unramified classes. In Section
5 below, we will discuss certain ramified classes. In both cases, we will tie the
period-index problem to Conjecture 2.3.

Let K be a global field, S the scheme integers of K, and C → S a proper
relative curve with a section and smooth generic fiber. (When char(K) > 0, the
scheme of integers is assumed to be proper over the prime field; this ensures
that it is unique.)

THEOREM 3.4. If Conjecture 2.3 is true, then any α ∈ Br∞(C) satisfies
per(α) = ind(α).

PROOF. Write n = per(α). Since C → S has a section, we can choose a
μn-gerbe C → C such that [C ⊗K] = 0 ∈ H2(C ⊗K,μn). By class field theory,
the restriction of α to the point p ∈ C(K) is trivial.

Consider the stack χ : MCK/K(n,O(p)) → MCK/K(n,O(p)). We claim that
to prove the theorem it suffices to show that for every place ν of K, the cat-
egory MCK/K(n,O(p))Kν

is nonempty. Indeed, the map χ is a μn-gerbe; let
β ∈ Br(MCK/K(n,O(p)) be the associated Brauer class. Since MCK/K(n,O(p))
is geometrically rational with Picard group Z [12] and has a point over every
completion of K, we know that the pullback map Br(K) → Br(MCK/K(n,O(p))
is an isomorphism. Thus, β is the pullback of a class over K. The fact that
each MCK/K(n,O(p))Kν

is non-empty implies that βKν
= 0; class field theory

again shows that β = 0. But then any rational point of MCK/K(n,O(p)) lifts to
an object of MCK/K(n,O(p)).

Let us assume we have found a collection of local objects as in the previous
paragraph. The assumption that Conjecture 2.3 holds yields a 0-cycle of degree
1 on the coarse space MCK/K(n,O(p)), which lifts to the stack, producing a
complex P • of locally free CK-twisted sheaves such that rkP • = n. Indeed,
if there is a C ⊗L-twisted sheaf of rank n for some finite algebra L/K then
pushing forward along C ⊗L → C gives a C ⊗K-twisted sheaf of rank [L : K]n.
A 0-cycle of degree 1 yields two algebras L1/K and L2/K such that [L1 : K] −
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[L2 : K] = 1 and MC ⊗Li/Li
(n,O(p))Li

�= ∅. There result two C ⊗K-twisted
sheaves V1 and V2 such that rkV1 − rkV2 = n, whence we can let P • be the
complex with V1 in degree 0 and V2 in degree 1 (and the trivial differential).
Since the category of coherent twisted sheaves over the generic point of C is
semisimple (it is just the category of finite modules over a division ring), it
follows that there is a Cη-twisted sheaf of rank n, whence per(α) = ind(α), as
desired.

So it remains to produce local objects of MCK/K(n,O(p))Kν
for all places

ν. If ν is Archimedean, then [C ⊗Kν ] = 0 ∈ H2(C ⊗Kν ,μn) by assumption,
so that stable C ⊗Kν-twisted sheaves are equivalent (upon twisting down by
an invertible C ⊗Kν-twisted sheaf) to stable sheaves on C ⊗Kν . Since moduli
spaces of stable vector bundles with fixed invariants have rational points over
every infinite field, we find a local object.

Now assume that ν is finite, and let R be the valuation ring of Kν , with
finite residue field F . By Theorem 3.1 and the assumption that [C ⊗F ] = 0 ∈
H2(C⊗F ,μn) we know that [C ⊗F ] = 0 ∈ H2(C ⊗F,μn). It follows as in the
previous paragraph that it suffices to show the existence of a stable sheaf on
C ⊗F of determinant O(p) and rank n. Consider the stack MC ⊗F/F (n,O(p)) →
MC ⊗F/F (n,O(p)). Just as above, the space MC ⊗F/F (n,O(p)) is a smooth pro-
jective rationally connected variety. By Esnault’s theorem [6], it has a rational
point. Since MC ⊗F/F (n,O(p)) → MC ⊗F/F (n,O(p)) is a μn-gerbe and F is fi-
nite, the moduli point lifts to an object, giving rise to a stable C ⊗F -twisted
sheaf V of rank n and determinant O(p)). Since MC/S(n,O(p)) is smooth over
S, the sheaf V deforms to a family over R, whose generic fiber gives the desired
local object. �

4. Parabolic bundles on P1

In this section, we review some basic elements of the moduli theory of
parabolic bundles of rank 2 on the projective line. We will focus on the case of
interest to us and describe it in stack-theoretic language. We refer the reader
to [2] for a general comparison between the classical and stacky descriptions
of parabolic bundles.

Let D = p1 + · · ·+ pr ⊂ P1 be a reduced divisor, and let π : P → P1 be the
stack given by extracting square roots of the points of D as in [3]. The stack has
r non-trivial residual gerbes ξ1, . . . , ξr, each isomorphic to Bμ2 over its field of
moduli (i.e., the residue field of pi). Recall that the category of quasi-coherent
sheaves on Bμ2 is naturally equivalent to the category of representations of
μ2. Given a sheaf F on Bμ2, we will call the representation arising by this
equivalence the associated representation of F .

DEFINITION 4.1. A locally free sheaf V on P is regular if, for each i =
1, . . . , r, the associated representation of the restriction V |ξi is a direct sum of
copies of the regular representation.

DEFINITION 4.2. Let {ai ≤ bi}ri=1 be elements of {0, 1/2}. A parabolic
bundle V∗ of rank N with parabolic weights {ai ≤ bi} is a pair (W,F ), where
W is a locally free sheaf of rank 2 and F ⊂ WD is a subbundle. The parabolic
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degree of V∗ is

pardeg(V∗) = degW +
∑

i

ai(rkW − rkFpi
) + bi(rkFpi

)

We will only consider parabolic bundles with weights in {0, 1/2} in this
paper. More general weights in [0, 1) are often useful. The stack-theoretic
interpretation of this more general situation is slightly more complicated; it is
explained clearly in [2].

In [26], Vistoli defined a Chow theory for Deligne-Mumford stacks and
showed that pushforward defines an isomorphism A(P)⊗Q

∼→ A(P1)⊗Q of
Chow rings. In particular, any invertible sheaf L on P has a degree, degL ∈ Q.
One can make a more ad hoc definition of the degree of an invertible sheaf L on
P in the following way. The sheaf L⊗ 2 is the pullback of a unique invertible
sheaf M on P1, and we can define degP L = 1

2 degP1 M . Thus, for example,
degO(ξi) = [κi : k]/2, where κi is the field of moduli of ξi (the residue field of
pi).

The following is a special case of a much more general result. The reader
is referred to (e.g.) [2] for the generalities.

PROPOSITION 4.3. There is an equivalence of categories between locally
free sheaves V on P and parabolic sheaves V∗ on P1 with parabolic divisor
D and parabolic weights contained in {0, 1/2}. Moreover, we have degP V =
pardeg(V∗).

PROOF. Given V , define V∗ as follows: the underlying sheaf W of V∗ is
π∗V . To define the subbundle F ⊂ WD, consider the inclusion V (−

∑
ξi) ⊂ V .

Pushing forward by π yields a subsheaf W ′ ⊂ W , and we let F be the image of
the induced map W ′

D → WD.
We leave it to the reader as an amusing exercise to check that 1) this de-

fines an equivalence of categories, and 2) this equivalence respects degrees, as
claimed. �

DEFINITION 4.4. Given a non-zero locally free sheaf V on P, the slope of
V is

μ(V ) =
deg V

rkV
.

The sheaf V on P is stable if for all locally split proper subsheaves W ⊂ V we
have μ(W ) < μ(V ).

The stability condition of Definition 4.4 is identical to the classical notion
for sheaves on a proper smooth curve. The reader familiar with the classical
definition of stability for parabolic bundles can easily check (using Proposition
4.3) that a sheaf V on P is stable if and only if the associated parabolic bundle
V∗ is stable in the parabolic sense. One can check (by the standard methods)
that stable parabolic bundles form an Artin stack of finite type over k. The
stack of stable parabolic bundles of rank n with fixed determinant is a μn-
gerbe over an algebraic space.

NOTATION 4.5. Given L ∈ Pic(P), let M ∗
P/k(n, L) denote the stack of reg-

ular locally free sheaves on P of rank r and determinant L, and let M∗
P/k(n, L)

denote the coarse space.
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PROPOSITION 4.6. If M ∗
P/k(n, L) is non-empty then it is geometrically uni-

rational and geometrically integral. Moreover, the stack M ∗
P/k(2,O(

∑
ξi)) is

non-empty if r > 3.

PROOF. Basic deformation theory shows that M ∗
P/k(n, L) is smooth. Thus,

to show that it is integral, it suffices to show that it is connected. We will do
this by showing that it is unirational (i.e., finding a surjection onto M ∗

P/k(n, L)

from an open subset of a projective space. This is a standard trick using a
space of extensions. (There are in fact two versions, one using finite cokernels
and one using invertible cokernels. We show the reader the former, as it is
useful in situations where the latter does not apply and the latter seems to be
more easily available in the literature.)

Let V be a parabolic sheaf of rank n and determinant L. Since M ∗
P/k(n, L)

is of finite type, there exists a positive integer N such that for every parabolic
sheaf of rank n and determinant L, a general map V → W (N) is injective
with cokernel Q supported on a reduced divisor E in P \ {ξ1, . . . , ξr} such that
E ∈ |O(nN)|. Let U ⊂ |O(nN)| be the open subset parametrizing divisors
supported in P \ {ξ1, . . . , ξr}, and let E ⊂ P × U be the universal divisor.
The sheaf R1(pr2)∗RHom(OE , pr

∗
1 V ) is locally free on U , and gives rise to a

geometric vector bundle B → U and an extension

0 → VP×B → W → QP×B → 0

such that every extension 0 → V → W (N) → Q → 0 as above arises is a
fiber over B. Passing to the open subscheme B◦ over which the extension W
is locally free with stable fibers yields a surjective map B◦ → M ∗

P/k(n, L) from
an open subset of a projective space, proving that M ∗

P/k(n, L) is geometrically
integral and unirational.

To prove that M ∗
P/k(n, L) is nonempty is significantly more subtle. The

proof is similar to a result of Biswas [1] for parabolic bundles with parabolic
degree 0, but including it here would take us too far afield. �

5. Forms of parabolic moduli via split ramification

5.1. Some generalities. In this section we show how to produce forms
of the stack of parabolic bundles on P1 from Brauer classes over k(t). For
the sake of simplicity, we restrict our attention to classes in Br(k(t))[2] and
parabolic bundles of rank 2. A generalization to higher period/rank should be
relatively straightforward.

Let α ∈ Br(k(t))[2] be a Brauer class. Suppose D = p1 + · · · + pr is the
ramification divisor of α, and let P → P1 be the stacky branched cover as
in Section 4. By Corollary C.2, α extends to a class α′ ∈ Br(P)[2]. Suppose
C → P is a μ2-gerbe representing α′ such that [C ⊗ k] = 0 ∈ H2(P ⊗ k,μ2).
(For a proof that C is itself an algebraic stack, the reader is referred to [19].
We cannot always ensure that the cohomology class of [C ⊗ k] is trivial; we
make that as a simplifying assumption. More general cases can be analyzed
by similar methods.)

DEFINITION 5.1.1. A regular C -twisted sheaf is a locally free C -twisted
sheaf V such that for each i = 1, . . . , r, the restriction VC×P1Specκi

has the form
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L ⊗ ρ⊕m for some integer m > 0, where L is an invertible C ⊗κi-twisted sheaf
and ρ is the sheaf on Bμ2 associated to the regular representation of μ2.

Just as in Definition 4.4 and Definition A.1.2, we can define stable regular
C -twisted sheaves.

NOTATION 5.1.2. Let M ∗
C/k(n, L) denote the stack of stable regular C -

twisted sheaves of rank n and determinant L, and M∗
C/k(n, L) its coarse moduli

space (sheafification).

PROPOSITION 5.1.3. For any section σ of C ⊗ k → P ⊗ k there is an isomor-
phism M ∗

C/k(n, L)⊗ k
∼→ M ∗

P/k(n, L).

PROOF. We may assume that k = k. The section σ corresponds to an in-
vertible C -twisted sheaf L such that L ⊗ 2 = OC . Twisting by L defines the
isomorphism. (Note that the regularity condition implies that n must be even
for either space to be nonempty.) �

In other words, the stack M ∗
C/k(n, L) (resp. the quasi-projective coarse

moduli space M∗
C/k(n, L)) is a form of M ∗

P/k(n, L) (resp. M∗
P/k(n, L)).

COROLLARY 5.1.4. The space M∗
C/k(n, L) is geometrically (separably) uni-

rational when it is nonempty.

One can use a generalization of Corollary 5.1.4 to higher genus curves and
arbitrary period to give another proof of Theorem 3.2 without having to push
the ramification into a fiber, by simply taking any pencil and using the generic
points of the ramification divisor (and a point of the base locus) to define the
parabolic divisor. (This is not substantively different from the proof we give
here.) The main interest for us, however, will be for arithmetic surfaces of
mixed characteristic.

5.2. An extended example. Let α ∈ Br(Q(t))[2] be a class whose ramifi-
cation divisor D ⊂ P1

Z is non-empty with simple normal crossings. Let P →
P1

Q be the stacky cover branched over D to order 2 as in the first paragraph of
Section 4 above. Let C → P be a μ2-gerbe with Brauer class α; if the degree
[D⊗Q : Q] is odd, one can ensure that C such that [C ⊗Q] ∈ H2(P ⊗Q,μ2)
has the form [Λ]1/2 for some invertible sheaf Λ ∈ Pic(P ⊗Q) of half-integral
degree.

DEFINITION 5.2.1. Given a field extension L/K and a Brauer class α ∈
Br(L), the Faddeev index of α is minβ∈Br(K) ind(α+ βL).

PROPOSITION 5.2.2. The class α has Faddeev index 2 if and only if the
space M∗

C/Q(2, L)ss has a Q-rational point for some invertible sheaf L. If the
degree [D⊗Q : Q] is odd, we need only quantify over L of half-integral degree
and look for points in the stable locus M∗

C/Q(2, L).

The point of Proposition 5.2.2 is that the computation of the Faddeev index
is reduced to the existence of a rational point on one of a sequence of geometri-
cally rational smooth (projective if [D⊗Q : Q] is odd) geometrically connected
varieties over Q.
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PROOF. First, suppose that P : SpecQ → M∗
C/Q(2, L) is a rational point.

Pulling back MC/Q(2, L) → MC/Q(2, L) along P yields a class β = −[S ] ∈
Br(Q)[2]. Just as in [14], we see that

MC∧SP/Q(2, L) → MC∧S /Q(2, L) = MC/Q(2, L)

is split over P , whence there is a C ∧ S -twisted sheaf of rank 2. This shows
that α − β has index 2 and thus that α has Faddeev index dividing 2. Since α
is ramified, it cannot have Faddeev index 1.

Now suppose that α has Faddeev index 2, so that there is some S → SpecQ
such that there is locally free C ∧ S -twisted sheaf of rank 2. Since there is a
canonical isomorphism MC∧S /Q(2, L) = MC/Q(2, L), upon replacing C by C ∧
S we may assume that α has period 2, and is thus represented by a quaternion
algebra [(a, b)] ∈ Br(Q(t)). To prove the result, it suffices to show that in this
case there is a regular C -twisted sheaf of rank 2.

By Proposition A.2.3(1), it suffices to prove this for C ⊗ ÔP1,D. Thus, we
are reduced to the following: let R be a complete discrete valuation ring with
residual characteristic 0 and (a, b) a quaternion algebra over the fraction field
K(R). Suppose (a, b) is ramified, and let C → R2 be a μ2-gerbe with Brauer
class [(a, b)]. Then there is a regular C -twisted sheaf of rank 2. To prove this,
note that the bilinearity and skew-symmetry of the symbol allows us to assume
that b is a uniformizer for R and a has valuation at most 1. We will define a μ2-
equivariant Azumaya algebra A in the restriction of (a, b) to R′ = R[

√
b] such

that the induced representation of μ2 on the fiber A over the closed point of R′

is ρ⊕2; it then follows that any twisted sheaf V on R2 such that End(V ) = A is
regular by a simple geometric computation over the residue field.

Let x and y be the standard generators for (a, b), so that x2 = a and y2 = b,
and write a = ubε with u ∈ R× and ε ∈ {0, 1}. Let x̃ = x/

√
b
ε

and ỹ = y/
√
b;

we have x̃2 = u and ỹ2 = 1, which means that x̃ and ỹ generate an Azumaya
algebra with generic fiber (a, b)⊗K(R)(

√
b). A basis for A as a free R′ module

is given by 1, x̃, ỹ, x̃ỹ; this also happens to be an eigenbasis for the action of
μ2. Let χ1 denote the non-trivial character of μ2 and χ0 the trivial character.
The eigensheaf decomposition of A corresponding to the basis can be written
as χ0 ⊕ χ1 ⊕ χε ⊕ χ1+ε, where the last sum is taken modulo 2. For either value
of ε this is isomorphic to ρ⊕2, as desired.

Gluing the local models (as in Proposition A.2.3(1)) produces a regular C -
twisted sheaf V of rank 2. Since α is non-trivial, we see that this sheaf must be
stable, hence geometrically semistable (in fact, geometrically polystable [14]).
If [D⊗Q : Q] is odd, then V is semistable with coprime rank and degree, hence
geometrically stable. �

Proposition 5.2.2 has an amusing consequence. The starting point is the
following (somewhat useful) lemma. Fix a place ν of Q.

LEMMA 5.2.3. If there is an object of M ∗
C/Q(2, L)ssQν

then there is an object
of M ∗

C/Q(2, L)Qν
.

PROOF. Let V be a regular semistable C ⊗Qν-twisted sheaf of rank 2 and
determinant L, and let Y be an algebraization of a versal deformation space of
V . Since deformations of vector bundles on curves are unobstructed, we know
that Y is smooth over Qν . On the other hand, we also know that the field Qν
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has the property that any smooth variety with a rational point has a Zariski-
dense set of rational points. Finally, we know that the locus of geometrically
stable C ⊗Qν-twisted sheaves is open and dense in Y . The result follows. �

In [15], the authors produce examples of biquaternion algebras A over Q(t)
of Faddeev index 4 such that for all places ν of Q the algebra A⊗Qν(t) has in-
dex 2. They describe this as the failure of a sort of “Hasse principle”. However,
a careful examination of their examples shows that in fact there is a local ob-
struction: for each class of such algebras they write down, there is always a
place ν over which there is no regular C ⊗Qν-twisted sheaf! (Moreover, the
proofs that their examples work use this local failure in an essential way, al-
though the authors do not phrase things this way.) Why doesn’t this contradict
Proposition 5.2.2? Because for the place ν where things fail, one of the original
ramification sections ends up in the locus where the algebra A⊗Qν is unram-
ified, and now the condition that the sheaf be regular around the stacky point
over that section is non-trivial!

Let us give an explicit example. In Proposition 4.3 of [15], the authors
show that the biquaternion algebra A = (17, t)⊗(13, (t−1)(t−11)) has Faddeev
index 4 while for all places ν of Q the algebra A⊗Qν has index 2. Consider
A17 = A⊗Q17; since 13 is a square in Q17, we have that A17 = (17, t) as
Q17-algebras. Elementary calculations show that (17, 1) = 0 ∈ Br(Q17) and
(17, 11) �= 0 ∈ Br(Q17). It follows that any Q17(t)-algebra Faddeev-equivalent
to A17 has the property that precisely one of its specializations at 1 and 11 will
be nontrivial.

LEMMA 5.2.4. Given a field F and a nontrivial Brauer class γ ∈ Br(F )[2],
let G → Bμ2 × SpecF be a μ2-gerbe representing the pullback of γ in Br(Bμ2 ×
SpecF ). There is no regular G -twisted sheaf of rank 2.

PROOF. The inertia stack of G is isomorphic to μ2 × μ2, where the first
factor comes from the gerbe structure and the second factor comes from the
inertia of Bμ2. Given a G -twisted sheaf F , the eigendecomposition of F with
respect to the action of the second factor gives rise to G -twisted subsheaves of
F . Since G has period 2, if rkF = 2 there can be no proper twisted subsheaves.

�

COROLLARY 5.2.5. In the example above, all of the sets M∗
C/Q(2, L)(Q17)

are empty.

PROOF. Suppose Q ∈ M∗
C/Q(2, L)(Q17). As above, after replacing A17 by

a Faddeev-equivalent algebra, we can lift Q to an object of M ∗
C/Q(2, L)Q17

. In
other words, there would be a regular (stable!) C ⊗Q17-twisted sheaf of rank
2. But this contradicts Lemma 5.2.4 and the remarks immediately preceding
it. �

Combining Proposition 5.2.2 and Corollary 5.2.5, we see that the failure
of the “Hasse principle” to which the authors of [15] refer in relation to the
algebra A is in fact a failure of the existence of a local point in the associated
moduli problem! This is in great contrast to the unramified case, which we saw
above was directly related to the Hasse principle. It is somewhat disappointing
that the examples we actually have of classes over arithmetic surfaces whose
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period and index are distinct cannot be directly related to the Hasse principle
(except insofar as both sets under consideration are empty!).

There is one mildly interesting question which arises out of this failure.

PROPOSITION 5.2.6. If Conjecture 2.3 is true then any element
α ∈ Br(Q(t))[2] such that

(1) the ramification of α is a simple normal crossings divisor D = D1 +
· · ·+Dr in P1

Z which is a union of fibers and an odd number of sections
of P1

Z → SpecZ,
(2) for every crossing point p ∈ Di ∩ Dj , both ramification extensions are

either split, non-split, or ramified at p, and
(3) all points d of D ×P1

Z
P1

R which are not ramification divisors of αR(t)

give rise to the same element (αR(t))d ∈ Br(R)

satisfies per(α) = ind(α).

The second condition of the proposition is almost equivalent to the state-
ment that the restriction of α to Qν(t) has no hot points (in the sense of Salt-
man) on P1

Zν
; it is not quite equivalent because Saltman’s hot points are all

required to lie on intersections of ramification divisors, while some of the ram-
ification divisors of α may no longer be in the ramification divisor of αQν(t).
The proof of Proposition 5.2.6 uses Proposition A.2.3 (2) as a starting point for
a deformation problem. It is similar in spirit to the proof of Theorem 3.4 and
will be omitted.

6. A list of questions

We record several questions arising from the preceding discussion. Let C
be a curve over a field k.

(1) Are there biquaternion algebras in Br∞(Q(t)) of Faddeev index 4 with
non-hot secondary ramification (in the sense of Proposition 5.2.6)? For
example, let p be a prime congruent to 1 modulo 3 · 4 · 7 · 13 · 17 and
congruent to 2 modulo 5. What is the Faddeev index of the algebra
(p, t)⊗(13, 15(t− 1)(t+ 13))?

(2) What is the Brauer-Manin obstruction for M∗
P/k(2, L)? If algebras as

in the first question exist, is the resulting failure of the Hasse princi-
ple explained by the Brauer-Manin obstruction?

(3) Let C → C be a μn-gerbe. What is the index of the Brauer class
MC/k(n,O) → MC/k(n,O)? If C has a rational point, this index must
divide n. More generally, it must divide n ind(C). Is this sharp?

(4) Does every fiber of MC/k(n, L) → PicdC/k over a rational point contain
a rational point? This is (indirectly) related to the index-reduction
problem. It is not too hard to see that if the rational point of PicdC/k

comes from an invertible sheaf then there is always a rational point
in the fiber.

(5) Suppose k is a global field. Let C → S be a regular proper model of
C. Is there a class α ∈ Br∞(C) such that per(α) �= ind(α)? When
k has positive characteristic and the period of α is invertible in k,
this is impossible [20]. The existence of such a class would disprove
Conjecture 2.3 (even the strong form).
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Appendix A. Gerbes, twisted sheaves, and their moduli

In this appendix, we remind the reader of the basic facts about twisted
sheaves, their moduli, and their applications to the Brauer group. For more
comprehensive references, the reader can consult [18, 20]. The basic setup
will be the following: let X → X → S be a μn-gerbe on a proper flat morphism
of finite presentation. We assume n is invertible on S. At various points in this
appendix, we will impose conditions on the morphism.

We first recall what it means for X → X to be a μn-gerbe.

DEFINITION A.1. A μn-gerbe is an S-stack Y along with an isomorphism
μn,Y → I (Y ). We say that Y is a μn-gerbe on Y if there is a morphism
Y → Y such that the natural map Sh(Y ) → Y is an isomorphism, where
Sh(Y ) denotes the sheafification of Y on the big étale site of S.

Because X is a μn-gerbe, any quasi-coherent sheaf F on X admits a de-
composition F = F0 ⊕ · · · ⊕ Fn−1 into eigensheaves, where the natural (left)
action of the stabilizer on Fi is via the ith power map.

DEFINITION A.2. An X -twisted sheaf is a sheaf F of OX -modules such
that the natural left action (induced by inertia) μn ×F → F is equal to scalar
multiplication.

A.1. Moduli. It is a standard fact (see, for example, [17]) that the stack of
flat families of quasi-coherent X -twisted sheaves of finite presentation is an
algebraic stack locally of finite presentation over S. For the purposes of this
paper, we will focus on only a single case, where we will consider stability of
twisted sheaves. From now on, we assume that S = Spec k with k a field, and
X is a proper smooth curve over k.

To define stability, we need a notion of degree for invertible X -twisted
sheaves. For the sake of simplicity, we give an ad hoc definition. Given an
invertible X -twisted sheaf L, we note that L⊗n is the pullback of a unique
invertible sheaf L′ on X. We can thus define degL to be 1

n degL′. With this
definition, we can define the degree of a locally free X -twisted sheaf V as
deg V = deg detV . With this notion of degree, we can define stability.

DEFINITION A.1.1. The slope of a non-zero locally free X -twisted sheaf V
is

μ(V ) =
deg V

rkV
.

DEFINITION A.1.2. A locally free X -twisted sheaf V is stable if for all
proper locally split subsheaves W ⊂ V we have

μ(W ) < μ(V ).

The sheaf is semistable of for all proper locally split subsheaves W ⊂ V we
have

μ(W ) ≤ μ(V ).

By “locally split” we mean that there is a faithfully flat map Z → X such
that there is a retraction of the inclusion WZ ⊂ VZ . (I.e., W is locally a direct
summand of V .) As in the classical case, the stack of stable sheaves is a Gm-
gerbe over an algebraic space. If in addition we fix a determinant, then the
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resulting stack is a μr-gerbe over an algebraic space, where r is the rank of the
sheaves in question.

NOTATION A.1.3. Given an invertible sheaf L on X, the stack of stable
(resp. semistable) X -twisted sheaves of rank n and determinant L will be de-
noted by MX /k(n, L) (resp. MX /k(n, L)

ss). The coarse moduli space (which in
the stable case is also the sheafification) will be denoted by MX /k(n, L) (resp.
MX /k(n, L)

ss).
Given an integer d, the stack of stable X -twisted sheaves of rank n and

degree d will be denoted by MX /k(n, d), and its coarse moduli space will be
denoted by MX /k(n, d).

As mentioned above, MX /k(n, d) → MX /k(n, d) is a Gm-gerbe; similarly,
MX /k(n, L) → MX /k(n, L) is a μn-gerbe. In fact, the stack MX /k(n, L) is the
stack theoretic fiber of the determinant morphism MX /k(n, d) → PicdX/k over
the morphism Spec k → PicdX/k corresponding to L. The comparison results
described in Section 1, combined with classical results on the stack of stable
sheaves on a curve, show that MX /k(n, d) is of finite type over k; if we assume
that the class X is zero in H2(X ⊗ k,μn) we know that MX /k(n, d) is quasi-
proper (i.e., satisfies the existence part of the valuative criterion of properness)
whenever n and d are relatively prime.

A.2. Deformation theory. As O-modules on a ringed topos (the étale
topos of X ), X -twisted sheaves are susceptible to the usual deformation the-
ory of Illusie. The following theorem summarizes the consequences of this fact.
Suppose S = SpecA is affine, I → Ã → A is a small extension (so that the ker-
nel I is an A-module), X/Ã is flat, X → X is a μn-gerbe with n invertible in A,
and F is an A-flat family of quasi-coherent X ⊗

˜A A-twisted sheaves of finite
presentation.

THEOREM A.2.1. There is an element o ⊂ Ext2(F ,FA⊗ I) such that

(1) o = 0 if and only if there is an Ã-flat quasi-coherent X -twisted sheaf
F̃ and an isomorphism F̃ ⊗

˜AA
∼→ F ;

(2) if such an extension exists, the set of such extensions is a torsor under
Ext1(F ,F ⊗ I);

(3) given one such extension, the group of automorphisms of F̃ which re-
duce to the identity on F is identified with Hom(F ,F ⊗ I).

COROLLARY A.2.2. If X/S is a relative curve, then the stack of locally free
X -twisted sheaves is smooth over S.

Deformation theory can also be used to construct global objects from local
data. The key technical tool is the following; see [19] for a more detailed proof
and further references.

PROPOSITION A.2.3. Let P be a separated tame Artin stack of finite type
over k which is pure of dimension 1. Let P be the coarse moduli space of P
and let C → P be a μn-gerbe. Suppose P is regular away from the (finitely
many) closed residual gerbes ξ1, . . . , ξr. Suppose the map Pic(P) →

∏
Pic(ξi)

has kernel generated by the image of Pic(P ) under pullback.
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(1) Given locally free Cξi -twisted sheaves Vi of rank m, i = 1, . . . , r, and
locally free Cη-twisted sheaf Vη of rank m, there is a locally free C -
twisted sheaf W of rank m such that Wη

∼= Vη and Wξi
∼= Vi.

(2) Suppose that k is finite, P ∼= P1, P → P is generically a μn-gerbe,
and the ramification extension R → P of C (see Proposition C.4 below)
is geometrically connected. Given an invertible sheaf L ∈ Pic(P), if
there are Cξi -twisted sheaves Vi of rank m such that detVi

∼= Lξi and
a Cη-twisted sheaf Vη of rank m, then there is a locally free C -twisted
sheaf V of rank m such that detV ∼= L.

PROOF. Let P be the coarse moduli space of P, and let pi ∈ P be the
image of ξi. Let η̂i denote the localization of Spec Ôpi

at the set of maximal (i.e.,
generic) points. Let O(1) be an ample invertible sheaf on P .

To prove the first item, note that the stack Cξi is tame, as its inertia group
is an extension of a reductive group by a μn. Thus, the infinitesimal deforma-
tions of each Vi are unobstructed. Since C is proper over P , the Grothendieck
existence theorem implies that for each i there is a C ×Spec ÔP,pi

-twisted sheaf
Ṽi of rank m whose restriction to Cξi is Vi. On the other hand, since the scheme
of generic points of P is 0-dimensional, we know that for each i there is an iso-
morphism (Ṽi)η̂i

∼= (Vη)η̂i
. (See [19] for a similar situation, with more details.)

The basic descent result of [22] shows that we can glue the Ṽi to Vη to produce
W , as desired.

To prove the second item, choose any W as in the first part, and let L′ =
detW . This is an invertible sheaf which is isomorphic to L in a neighborhood of
each ξi, and therefore (by hypothesis) there is an invertible sheaf M on P such
that L⊗(L′)−1 ∼= MP . Twisting W by a suitable (negative!) power of O(1),
we may assume that M is ample of arbitrarily large degree. By the Lang-Weil
estimates and hypothesis that P ∼= P1, there is a point q ∈ R whose image p
in P is an element of |M |. Making an elementary transformation of W along p
(over which the Brauer class associated to C is trivial) produces a locally free
C -twisted sheaf with the desired properties. �

Appendix B. Basic facts on the Brauer group

In this appendix, we review a few basic facts about the Brauer group of a
scheme. We freely use the technology of twisted sheaves, as introduced in the
previous appendix. Let Z be a quasi-compact separated scheme and Z → Z a
Gm-gerbe. We start with a (somewhat idiosyncratic) definition of the Brauer
group of Z.

DEFINITION B.1. The cohomology class [Z ] ∈ H2(Z,Gm) is said to belong
to the Brauer group of Z if there is a non-zero locally free Z -twisted sheaf of
finite rank.

LEMMA B.2. The Brauer group of Z is a group.

PROOF. Given two Gm-gerbes Z1 → Z and Z2 → Z which belong to the
Brauer group of Z, let Vi be a locally free Zi-twisted sheaf. Then V1 ⊗V2 is a
locally free Z1 ∧ Z2-twisted sheaf, where Z1 ∧ Z2 is the Gm-gerbe considered
in [10, 14], which represents the cohomology class [Z1] + [Z2]. The neutral
element in the group is represented by the trivial gerbe BGm × Z → Z. �
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We thus find a distinguished subgroup Br(Z) ⊂ H2(Z,Gm) containing those
classes which belong to the Brauer group of Z. What are the properties of this
group?

PROPOSITION B.3. The group Br(Z) has the following properties.
(1) An element [Z ] is trivial in Br(Z) if and only if there is an invertible

Z -twisted sheaf.
(2) Br(Z) is a torsion abelian group.
(3) (Gabber) If Z admits an ample invertible sheaf, then the inclusion

Br(Z) ⊂ H2(Z,Gm)tors is an isomorphism.

SKETCH OF PROOF. If L is an invertible Z -twisted sheaf, then we can
define a morphism of Gm-gerbes BGm → Z by sending an invertible sheaf
L to the invertible Z -twisted sheaf L⊗L . Since any Gm-gerbe admitting a
morphism of Gm-gerbes from BGm is trivial, we see that Z is trivial [10].

Now suppose that Z is an arbitrary element of Br(Z), and let V be a locally
free Z -twisted sheaf of rank r. Writing Zr for the gerbe corresponding to
r[Z ], one can show that the sheaf detV is an invertible Zr-twisted sheaf, thus
showing that r[Z ] = 0, as desired.

The last part of the proposition is due to Gabber; a different proof has been
written down by de Jong [8]. �

Given a Gm-gerbe Z → Z and a locally free Z -twisted sheaf V , the OZ -
algebra End(V ) is acted upon trivially by the inertia stack of Z , and thus is
the pullback of a unique sheaf of algebras A on Z. The algebras A which arise
in this manner are precisely the Azumaya algebras: étale forms of Mr(OZ)
(for positive integers r). Moreover, starting with an Azumaya algebra, we can
produce a Gm-gerbe by solving the moduli problem of trivializing the algebra
(i.e., making it isomorphic to a matrix algebra). Further details about this
correspondence may be found in [10, §V.4].

When Z = SpecK for some field K, an Azumaya algebra is precisely a
central simple algebra over K, and thus we recover the classical Brauer group
of the field. Note that in this case if Z → Z is a Gm-gerbe, any nonzero
coherent Z -twisted sheaf is locally free. Moreover, we know that Z ⊗K is iso-
morphic to BGm ⊗K, and therefore that there is an invertible Z ⊗K-twisted
sheaf. Pushing forward to Z , we see that there is a nontrivial quasi-coherent
Z -twisted sheaf Q. Since Z is Noetherian, Q is a colimit of coherent Z -
twisted subsheaves. This shows that Z belongs to the Brauer group of Z. We
have just given a geometric proof of the classical Galois cohomological result
Br(K) = H2(SpecK,Gm).

Now assume that Z is integral and Noetherian with generic point η, and
let Z → Z in arbitrary Gm-gerbe. By the preceding, there is a coherent Z -
twisted sheaf of positive rank.

DEFINITION B.4. The index of [Z ], written ind([Z ]), is the minimal
nonzero rank of a coherent Z -twisted sheaf, and the period of [Z ], written
per([Z ]), is the order of [Z ]η in H2(η,Gm).

We have written Definition B.4 so that it only pertains to generic properties
of Z and Z. One can imagine more general definitions (e.g., using locally free
Z -twisted sheaves; when Z is regular of dimension 1 or 2, the basic properties
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of reflexive sheaves tell us that the natural global definition will actually equal
the generic definition. When Z = SpecK, it is easy to say what the index of a
Brauer class α is: α parameterizes a unique central division algebra over K,
whose dimension over K is n2 for some positive integer n. The index of α is
then n.

The basic fact governing the period and index is the following.

PROPOSITION B.5. For any α ∈ Br(K), there is a positive integer h such
that per(α) | ind(α) and ind(α) | per(α)h.

The proof of Proposition B.5 is an exercise in Galois cohomology; the reader
is referred to (for example) [20, Lemma 2.1.1.3]. One immediate consequence
of Proposition B.5 is the question: how can we understand h? For example,
does h depend only on K (in the sense that there is a value of h which works
for all α ∈ Br(K))? If so, what properties of K are being measured by h? And
so on. Much work has gone into this problem; for a summary of our current
expectation the reader is referred to [20].

Appendix C. Ramification of Brauer classes

In this section, we recall the basic facts about the ramification theory of
Brauer classes. We also describe how to split ramification by a stack. To begin
with, we consider the case X = SpecR with R a complete discrete valuation
ring with valuation v. Fix a uniformizer t of R; let K and κ denote the fraction
field and residue field of R, respectively. Write j : SpecK → SpecR for the
natural inclusion. Throughout, we only consider Brauer classes α ∈ Br(K) of
period relatively prime to char(κ); we write Br(K)′ for the subgroup of classes
satisfying this condition.

The theory of divisors yields an exact sequence of étale sheaves on SpecR,

0 → Gm → j∗Gm → Z(t) → 0,

which yields a map

H2(SpecR, j∗Gm) → H2(SpecR,Z(t)) = H2(κ,Z) = H1(κ,Q/Z).

Since any a ∈ Br(K)′ has an unramified splitting field, the Leray spectral
sequence for Gm on j shows that H2(SpecR, j∗Gm)′ = Br(K)′ (where the ′

denotes classes with orders invertible in R). Putting this together yields the
ramification sequence

0 → Br(R)′ → Br(K)′ → H1(κ,Q/Z).

The last group in the sequence parameterizes cyclic extensions of the residue
field κ. Suppose for the sake of simplicity that κ contains a primitive nth root
of unity. The ramification of a cyclic algebra (a, b) is given by the extension of
κ generated by the nth root of (−1)v(a)v(b)av(b)/bv(a). In particular, given any
element u ∈ κ∗, the algebra (u, t) has ramification extension κ(u1/n), where
u is any lift of u in R∗. With our assumption about roots of unity, any cyclic
extension of degree n is given by extracting roots of some u. This has the
following two useful consequences. Given a positive integer n, let Rn → SpecR
denote the stack of nth roots of the closed point of SpecR, as in [3].

PROPOSITION C.1. Assume that κ contains a primitive nth root of unity ζ.
Fix an element α ∈ Br(K)[n].
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(1) There exists u ∈ R∗ and α′ ∈ Br(R) such that α = α′ + (u, t) ∈ Br(K).
(2) There exists β ∈ Br(Rn) whose image in Br(K) under the restriction

map is α.

PROOF. The first item follows immediately from the paragraph preceding
this proposition: we can find u such that (u, t) has the same ramification as
α, and subtracting this class yields an element of Br(R). To prove the second
item, it follows in the first that it suffices to prove it for the class (u, t). Recall
that Rn is the stacky quotient of SpecR[t1/n] by the natural action of μn; to
extend (u, t) to Rn, it suffices to find a μn-equivariant Azumaya algebra in
(u, t)K(t1/n). Recall that (u, t) is generated by x and y such that xn = u, yn = t,
and xy = ζyx. Letting ỹ = y/t1/n, the natural action of μn on t1/n yields an
equivariant Azumaya algebra in (u, t)K(t1/u), as desired. �

The following corollary is an example of how one applies Proposition C.1 in
a global setting. More general results are true, using various purity theorems.

COROLLARY C.2. Let C be a proper regular curve over a field k which
contains a primitive nth root of unity for some n invertible in k. Suppose
α ∈ Br(k(C))[n] is ramified at p1, . . . , pr, and let C → C be a stack of nth roots of
p1 + · · ·+ pr. There is an element α′ ∈ Br(C )[n] whose restriction to the generic
point is α.

PROOF. Let A be a central simple algebra over k(C) with Brauer class
α. For any point q ∈ C, we know (at the very least) that there is a positive
integer m and an Azumaya algebra over the localization Cq which is contained
in Mm(A). Suppose U ⊂ C is an open substack over which there is an Azumaya
algebra B with generic Brauer class α. Given a closed point q ∈ C \ U , we
can choose some m such that there is an Azumaya algebra B′ over Ĉq whose
restriction to the generic point η̂ of Ĉq is isomorphic to Mm(B)η̂. Since we know
that U ×C Ĉq = η̂, we can glue B′ to Mm(B) as in the proof of Proposition A.2.3
(using [22]) to produce an Azumaya algebra over U ∪ {q}. Since C \ U is finite,
we can find some m such that Mm(A) extends to an Azumaya algebra over C ,
as desired. �

The following is a more complicated corollary of Proposition C.1, using pu-
rity of the Brauer group on a surface. We omit the proof.

COROLLARY C.3. Let X be a connected regular Noetherian scheme pure of
dimension 2 with function field K. Suppose U ⊂ X is the complement of a
simple normal crossings divisor D = D1+ · · ·+Dr and α ∈ Br(U)[n] is a Brauer
class such that n is invertible in κ(Di) for i = 1, . . . , r. If X → X is the root
construction of order n over each Di then there is a class α̃ ∈ Br(X ) such that
α̃U = α.

We end this discussion with an intrinsic characterization of the ramifica-
tion extension as a moduli space.

PROPOSITION C.4. Let X be a scheme on which n is invertible such that
Γ(X,O) contains a primitive nth root of unity. Suppose π : X → X is a μn-
gerbe. Given a further μn-gerbe Y → X , the relative Picard stack τPicY /X of
invertible Y -twisted sheaves is a Gm-gerbe over a Z/nZ-torsor T . Moreover, the
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Brauer class of Y in H2(X ,Gm) is the pullback of a class from X if and only if
T is trivial.

PROOF. Standard methods show that τPicY /X is a Gm-gerbe over a flat
algebraic space of finite presentation P → X. Since the relative Picard space
PicX /X is isomorphic to the constant group scheme Z/nZ, tensoring with in-
vertible sheaves on X gives an action

Z/nZ× P → P.

To check that this makes B a torsor, it suffices (by the obvious functoriality
of the construction) to treat the case in which X is the spectrum of an alge-
braically closed field k. In this case, Br(X ) = 0; choosing an invertible Y -
twisted sheaf L, we see that all invertible Y -twisted sheaves M of the form
L⊗Λ, where Λ is invertible sheaf on X . This gives the desired result. �

Starting with a complete discrete valuation ring R with fraction field K,
an element α ∈ Br(K) gives rise to two cyclic extensions of the residue field
κ of R: the classical ramification extension and the moduli space produced in
Proposition C.4. In fact, these two extensions are isomorphic. We will use this
fact, but we omit the details.
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This survey covers the theory of moduli spaces of α-stable coherent systems
on a smooth projective curve C of genus g ≥ 2. (The cases g = 0 and g = 1
are special cases, for which we refer to [30, 31, 32, 33].) I have concentrated on
the issues of emptiness and non-emptiness of the moduli spaces. Other questions
concerning irreducibility, smoothness, singularities, etc., and the relationship with

2010 Mathematics Subject Classification. Primary 14H60; Secondary 14H51.
Key words and phrases. Algebraic curve, vector bundle, coherent system, Brill-Noether locus,

stability, moduli space.
This survey is a much extended version of a lecture given at the Clay workshop held in

Cambridge, Massachusetts, Oct 6–10, 2006. The survey began life earlier than that as a set of
notes on a series of three lectures given in Liverpool in August 2005 at a meeting of the research
group VBAC (Vector Bundles on Algebraic Curves) which formed part of the activity of the Marie
Curie Training Site LIMITS. My thanks are due to the Clay Mathematics Institute for supporting
me as a Senior Scholar and to the European Commission for its support of LIMITS (Contract No.
HPMT-CT-2001-00277). My thanks are due also to Cristian González-Mart́ınez, who wrote the
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Brill-Noether theory are mentioned where relevant but play a subsidiary rôle. In the
bibliography, I have tried to include a full list of all relevant papers which contain
results on coherent systems on algebraic curves. In general, I have not included
papers concerned solely with Brill-Noether theory except where they are needed
for reference, but I have included some which have clear relevance for coherent
systems but have not been fully developed in this context. For another survey of
coherent systems, concentrating on structural results and including an! appendix
on the cases g = 0 and g = 1, see [13]; for a survey of higher rank Brill-Noether
theory, see [27].

We work throughout over an algebraically closed field of characteristic 0. Many
results are undoubtedly valid in finite characteristic, but we omit this possibility
here since most of the basic papers on coherent systems assume characteristic 0.
As stated above, we assume that C is a smooth projective curve of genus g ≥ 2.
We denote by K the canonical bundle on C.

1. Definitions

Coherent systems are simply the analogues for higher rank of classical linear
systems.

Definition 1.1. A coherent system on C of type (n, d, k) is a pair (E, V ) where
E is a vector bundle of rank n and degree d over C and V is a linear subspace of
dimension k of H0(E). A coherent subsystem of (E, V ) is a pair (F,W ), where F is
a subbundle of E and W ⊆ V ∩H0(F ). We say that (E, V ) is generated (generically
generated) if the canonical homomorphism V ⊗ O → E is surjective (has torsion
cokernel).

Stability of coherent systems is defined with respect to a real parameter α. We
define the α-slope μα(E, V ) of a coherent system (E, V ) by

μα(E, V ) :=
d

n
+ α

k

n
.

Definition 1.2. (E, V ) is α-stable (α-semistable) if, for every proper coherent
subsystem (F,W ) of (E, V ),

μα(F,W ) < (≤) μα(E, V ).

Every α-semistable coherent system (E, V ) admits a Jordan-Hölder filtration

0 = (E0, V0) ⊂ (E1, V1) ⊂ · · · ⊂ (Em, Vm) = (E, V )

such that all (Ej , Vj) have the same α-slope and all the quotients
(Ej , Vj)/(Ej−1, Vj−1) are defined and α-stable. The associated graded object

m⊕

1

(Ej , Vj)/(Ej−1, Vj−1)

is determined by (E, V ) and denoted by gr(E, V ). Two α-semistable coherent
systems (E, V ), (E′, V ′) are said to be S-equivalent if

gr(E, V ) ∼= gr(E′, V ′).

There exists a moduli space G(α;n, d, k) for α- stable coherent systems of type
(n, d, k) [29, 36, 43, 17]; this is a quasi-projective scheme and has a natural comple-

tion to a projective scheme G̃(α;n, d, k), whose points correspond to S-equivalence
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classes of α-semistable coherent systems of type (n, d, k). In particular, we have

G(α;n, d, 0) = M(n, d) and G̃(α;n, d, 0) = M̃(n, d), where M(n, d) (M̃(n, d)) is the
usual moduli space of stable bundles (S-equivalence classes of semistable bundles).

We define also the Brill-Noether loci

B(n, d, k) := {E ∈ M(n, d) : h0(E) ≥ k}
and

B̃(n, d, k) := {[E] ∈ M̃(n, d) : h0(grE) ≥ k},
where, for any semistable bundle E, [E] denotes the S-equivalence class of E and
grE is the graded object associated to E.

For k ≥ 1, we must have α > 0 for the existence of α-stable coherent systems
(for α ≤ 0, (E, 0) contradicts the α-stability of (E, V )). Given this, the moduli
space G(α; 1, d, k) is independent of α and we denote it by G(1, d, k); it coincides

with the classical variety of linear series Gk−1
d .

So suppose n ≥ 2 and k ≥ 1.

Lemma 1.3. If G(α;n, d, k) �= ∅ then

(1) α > 0, d > 0, α(n− k) < d.

Proof. Let (E, V ) ∈ G(α;n, d, k) with n ≥ 2, k ≥ 1. As already remarked,
(E, 0) contradicts α-stability for α ≤ 0. If (E, V ) is generically generated, then
certainly d ≥ 0 with equality if and only if (E, V ) ∼= (On, H0(On)), which is not
α-stable for n ≥ 2. Otherwise, the subsystem (F, V ), where F is the subbundle
of E generically generated by V , contradicts stability for d ≤ 0. Finally, let W
be a 1-dimensional subspace of V and let L be the line subbundle of E generically
generated by W . Then (L,W ) contradicts α-stability if k < n and α(n−k) ≥ d. �

The range of permissible values of α is divided up by a finite set of critical
values

0 = α0 < α1 < · · · < αL <

{
d

n−k where k < n

∞ where k ≥ n,

and α-stability of (E, V ) cannot change within an interval (αi, αi+1) (see [17]). For
α ∈ (αi, αi+1), we write Gi(n, d, k) := G(α;n, d, k). For k ≥ n and α > αL we write
GL(n, d, k) := G(α;n, d, k), with a similar definition for k < n and αL < α < d

n−k .

The semistable moduli spaces G̃i(n, d, k) are defined similarly.

Lemma 1.4. We have a morphism G̃0(n, d, k) → B̃(n, d, k), whose image
contains B(n, d, k). In fact, for any coherent system (E, V ),

• E stable ⇒ (E, V ) ∈ G0(n, d, k)
• (E, V ) ∈ G0(n, d, k) ⇒ E semistable.

Proof. This follows easily from the definition of α-stability. �

Definition 1.5. The Brill-Noether number β(n, d, k) is defined by

β(n, d, k) := n2(g − 1) + 1− k(k − d+ n(g − 1)).

This is completely analogous to the classical case (n = 1) and is significant for
two reasons. In the first place, we have

Lemma 1.6. ([28, Corollaire 3.14]; [17, Corollary 3.6]) Every irreducible com-
ponent of G(α;n, d, k) has dimension ≥ β(n, d, k).
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The second reason concerns the local structure of the moduli spaces.

Definition 1.7. Let (E, V ) be a coherent system. The Petri map of (E, V ) is
the linear map

V ⊗H0(E∗ ⊗K) −→ H0(EndE ⊗K)

given by multiplication of sections.

Lemma 1.8. ([17, Proposition 3.10]) Let (E, V ) ∈ G(α;n, d, k). The following
conditions are equivalent:

• G(α;n, d, k) is smooth of dimension β(n, d, k) at (E, V )
• the Petri map of (E, V ) is injective.

Definition 1.9. The curve C is called a Petri curve if the Petri map of
(L,H0(L)) is injective for every line bundle L.

It is a standard result of classical Brill-Noether theory that the general curve
of any genus is a Petri curve [25, 35].

2. The Existence Problem

Among the possible questions one can ask about the existence of α-stable co-
herent systems are the following.

(i) Given n, d, k, α satisfying (1), is G(α;n, d, k) �= ∅?
(ii) Given n, d, k, does there exist (E, V ) which is α-stable for all α satisfying

(1)?
(iii) Given n, d, k, does there exist (E, V ) with E stable which is α-stable for

all α satisfying (1)?

We can restate (ii) and (iii) in a nice way by defining

U(n, d, k) := {(E, V ) ∈ GL(n, d, k) | E is stable}
and

Us(n, d, k) := {(E, V ) | (E, V ) is α-stable for α > 0, α(n− k) < d}.
Then (ii) and (iii) become

(ii)′ Given n, d, k with d > 0, is Us(n, d, k) �= ∅?
(iii)′ Given n, d, k with d > 0, is U(n, d, k) �= ∅?
The “obvious” conjecture is that the answers are affirmative if and only if

β(n, d, k) ≥ 0. However, this is false in both directions; see, for example, Remarks
4.2 and 8.4. A basic result, for which a complete proof has only been given very
recently, is

Theorem 2.1. For any fixed n, k, U(n, d, k) �= ∅ for all sufficiently large d.

Proof. For k ≤ n, see [16, 18]. For k > n, see [3] and [49]. �
Now write

d0 = d0(n, k) := min{d : G(α;n, d, k) �= ∅ for some α satisfying (1)}.
The following would be an “ideal” result.

Model Theorem. For fixed n, k with n ≥ 2, k ≥ 1,

(a) G(α;n, d, k) �= ∅ if and only if α > 0, (n− k)α < d and d ≥ d0
(b) B(n, d, k) �= ∅ if and only if d ≥ d0
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(c) if d ≥ d0, U(n, d, k) �= ∅.

Note that (c) is stronger than (a) and (b) combined.
One may also ask whether, for given n, d, there is an upper bound on k for

which G(α;n, d, k) �= ∅. In fact the existence of an upper bound on h0(E) for any
(E, V ) ∈ G(α;n, d, k) (possibly depending on α) is used in the proof of existence of
the moduli spaces (see, for example [29]). An explicit such bound is given in [17,
Lemmas 10.2 and 10.3]. The more restricted question of an upper bound on k has
now been solved by the following generalization of Clifford’s Theorem.

Theorem 2.2. ([34]) Let (E, V ) be a coherent system of type (n, d, k) with
k > 0 which is α-semistable for some α > 0. Then

k ≤
{

d
2 + n if 0 ≤ d ≤ 2gn

d+ n(1− g) if d ≥ 2gn.

3. Methods

We now describe some of the methods which can be used for tackling the
existence problem.

• Degeneration Methods. These have been used very successfully by M. Teix-
idor i Bigas [46, 47, 49] (see section 8).

• Extensions 0 → E1 → E → E2 → 0. For k < n, a special case, used in
[16, 18], is

0 → Ok → E → E2 → 0.

The method is not so useful when V �⊆ H0(E1) because there is a prob-
lem of lifting sections of E2 to E. A more promising approach is to use
extensions of coherent systems

0 → (E1, V1) → (E, V ) → (E2, V2) → 0,

which are classified by Ext1((E2, V2), (E1, V1)). This approach was pio-
neered in [17] and has been used successfully in several papers [19, 12,
32].

• Syzygies and projective embeddings. Given a generated coherent system
(E, V ) of type (n, d, k) with k > n, one can construct a morphism C →
Grass(k−n, k). One can also use the sections of detE to get a morphism
from C to a projective space. The relationship between these morphisms
can be used to settle existence problems (see section 7 and [26]).

• Elementary transformations. Consider an exact sequence

0 → E → E′ → T → 0,

where T is a torsion sheaf. If (E, V ) is a coherent system, then so is
(E′, V ). This method has been used to construct α-stable coherent sys-
tems for low (even negative) values of β(n, d, k) (see sections 6, 7 and
8).

• Flips. Flips were pioneered by M. Thaddeus [50] and introduced in this
context in [17]. They are given by extensions of coherent systems and can
allow results for one value of α to be transmitted to another value.
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• Dual Span. This was originally introduced by D. C. Butler [24] and has
been used very successfully in the case k = n + 1 (see section 6). The
idea is as follows. Let (E, V ) be a coherent system. We define a new
coherent system D(E, V ) = (DV (E), V ′), where DV (E)∗ is the kernel of
the evaluation map V ⊗O → E and V ′ is the image of V ∗ in H0(DV (E)).
In the case where (E, V ) is generated and H0(E∗) = 0, we have dual exact
sequences

0 → DV (E)∗ → V ⊗O → E → 0

and

0 → E∗ → V ∗ ⊗O → DV (E) → 0

and D(D(E, V )) = (E, V ), so this is a true duality operation. The main
point here is that the stability properties of D(E, V ) are closely related
to those of (E, V ) [17, section 5.4].

• Covering Spaces. Suppose that f : Y → C is a covering (maybe ramified).
If (E, V ) is a coherent system on Y , then (f∗E, V ) is a coherent system
on C. One can for example take E to be a line bundle. The rank of f∗E
is then equal to the degree of the covering and degE is easy to compute.
The problem is to prove α-stability. Preliminary work suggests that this
may be interesting, but to get really good results one needs to take into
account the fact that Y is not a general curve and may possess line bundles
with more than the expected number of independent sections.

• Homological methods. In classical Brill-Noether theory, homological meth-
ods have been very successful in proving non-emptiness of Brill-Noether
loci; essentially one views the loci as degeneration loci and uses the Por-
teous formula [1, II (4.2) and VII (4.4)]. It is not trivial to generalize
this to higher rank Brill-Noether loci because of non-compactness of the
moduli space of stable bundles (when gcd(n, d) �= 1) but more particu-
larly because the cohomology is much more complicated. There is some
unpublished work in a special case by Seongsuk Park [42] (see also section
9). Once one knows that B(n, d, k) �= ∅, one gets also G0(n, d, k) �= ∅ by
Lemma 1.4.

• Gauge theory. This has been used for constructing the moduli spaces of
coherent systems [14, 15], but not (so far as I know) for proving they are
non-empty.

4. 0 < k ≤ n

In this case the existence problem is completely solved and there are some
results on irreducibility and smoothness.

Theorem 4.1. ([18, Theorem 3.3]) Suppose 0 < k ≤ n. Then G(α;n, d, k) �= ∅
if and only if (1) holds and in addition

(2) k ≤ n+
1

g
(d− n), (n, d, k) �= (n, n, n).

Moreover, if (2) holds and d > 0, then U(n, d, k) �= ∅ and is smooth and irreducible.

Indication of proof. It is known [17, Theorems 5.4 and 5.6] thatGL(n, d, k)
�= ∅ under the stated conditions. Moreover GL(n, d, k) is smooth and irreducible
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and every element has the form

0 → Ok → E → F → 0 (k < n),

0 → On → E → T → 0 (k = n),

with F semistable, T torsion. Necessity of (2) is proved in [18, Corollary 2.5 and
Lemma 2.10] and [17, Remark 5.7]. In both cases, given (2) and d > 0, the general
E of this form is stable; this is a consequence of [38, Théorème A.5] (see also
[21, 22, 37]). �

Remark 4.2. Conditions (2) are strictly stronger than β(n, d, k) ≥ 0.

Corollary 4.3. Model Theorem holds with

d0 =

{
max{1, n− g(n− k)} (k < n)

n+ 1 (k = n).

5. 0 < d ≤ 2n

In this case the existence problem is completely solved over any curve and all
non-empty moduli spaces are irreducible.

Theorem 5.1. ([19, Theorem 5.4]) Suppose g ≥ 3 and C is not hyperelliptic.
If 0 < d ≤ 2n, then G(α;n, d, k) �= ∅ if and only if either (1) and (2) hold or
(n, d, k) = (g − 1, 2g − 2, g). Whenever it is non-empty, G(α;n, d, k) is irreducible.
Moreover U(n, d, k) �= ∅ and is smooth.

Indication of proof. The necessity of the conditions for 0 < d < 2n follows
from [37]. For d = 2n, further calculations are necessary. For k ≤ n, the sufficiency
of (1) and (2) has already been proved in Theorem 4.1. For k > n, one requires the
results of [21, 37, 39] and a lemma stating that under these conditions B(n, d, k) �=
∅ ⇒ U(n, d, k) �= ∅. For (n, d, k) = (g−1, 2g−2, g) we take (E, V ) = D(K,H0(K))
(see section 6). �

Remark 5.2. For C hyperelliptic, the theorem remains true for 0 < d < 2n,
but some modification is needed for d = 2n [19, Theorem 5.5].

The reference [19] includes an example to show that these nice results do not
extend beyond d = 2n.

Example 5.3. ([19, section 7]) Let (E, V ) be a coherent system of type (n, d, k)
with

(3) n+
1

g
(d− n) < k <

ng

g − 1
.

Then (E, V ) is not α-semistable for large α. Moreover, if C is non-hyperelliptic
and 3 ≤ r ≤ g− 1, there exists (E, V ) of type (rg− r+1, 2rg− 2r+3, rg+1) with
E stable, and (3) holds in this case.

6. k = n+ 1

In this case the existence problem is almost completely solved when C is a Petri
curve, which we assume until further notice. Full details are contained in [12].

We use the dual span construction for (L, V ), where L is a line bundle of degree
d > 0, (L, V ) is generated and dimV = n+ 1.
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Lemma 6.1. ([17, Corollary 5.10]) D(L, V ) is α-stable for large α.

Proof. Let (F,W ) be a coherent subsystem of D(L, V ) with rkF < n. Since
D(L, V ) is generated and H0(DV (L)

∗) = 0, it follows that DV (L)/F is non-trivial
and that it is generated by the image of V ∗ in H0(DV (L)/F ). This implies that
this image has dimension ≥ n − rkF + 1. So dimW

rkF ≤ 1 < n+1
n which implies the

result. �

Theorem 6.2. GL(n, d, n+ 1) is birational to G(1, d, n+ 1) = Gn
d .

Proof. Note that β(n, d, n + 1) = β(1, d, n + 1) = dim(G(1, d, n+ 1)). Now,
do a parameter count to show that non-generated (L, V ) and (E, V ∗) contribute
< β(n, d, n+1) to the dimension (see the proof of [17, Theorem 5.11] for details). �

Corollary 6.3. GL(n, d, n+1) �= ∅ if and only if β(n, d, n+1) ≥ 0, i.e. if and
only if

(4) d ≥ g + n−
[ g

n+ 1

]
.

Proof. This follows from classical Brill-Noether theory, since C is Petri. �
Theorem 6.4. ([20, Theorem 2]) If (4) holds and d ≤ g + n, then

Us(n, d, n+ 1) �= ∅.
Moreover, except for g = n = 2, d = 4, U(n, d, n+ 1) �= ∅

Proof. If (4) holds and d ≤ g + n, there exists a line bundle L of degree d
with h0(L) = n + 1, so we can take V = H0(L) for such L, and suppose that V
generates L. By Lemma 6.1, D(L, V ) is α-stable for large α, while by [24, Theorem
2] (see also [20, Proposition 4.1]), DL(V ) is stable for general L. The result for
g = n = 2, d = 4 is contained in [20, Proposition 4.1]. �

Theorem 6.5. ([20, Theorem 2]) If G(α;n, d, n+1) �= ∅ for some α, then (4)
holds.

Indication of proof. One can show that, for d ≤ g + n,

G(α;n, d, n+ 1) = GL(n, d, n+ 1)

for all α > 0. Now use Corollary 6.3. �

Corollary 6.6. d0(n, n+ 1) = g + n−
[

g
n+1

]
.

Theorem 6.7. ([20, Theorem 3]) If g ≥ n2 − 1, then Model Theorem holds.

Theorem 6.8. ([12, Theorems 7.1, 7.2, 7.3]) Model Theorem holds for n =
2, 3, 4 and g ≥ 3.

For g = 2, Model Theorem does not quite hold; the result is as follows.

Theorem 6.9. ([12, Theorem 8.2]) Let X be a curve of genus 2. Then d0 =
n+ 2 and

• Us(n, d, n+ 1) �= ∅ if and only if d ≥ d0
• U(n, d, n+ 1) �= ∅ if and only if d ≥ d0, d �= 2n.

The proofs of these theorems depend on combining several techniques including
those of [20], extensions of coherent systems and the following result.
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Proposition 6.10. Suppose that d ≥ d1, where

d1 :=

⎧
⎪⎪⎨

⎪⎪⎩

n(g+3)
2 + 1 if g is odd

n(g+4)
2 + 1 if g is even and n > g!

( g
2 )!(

g
2+1)!

n(g+2)
2 + 1 if g is even and n ≤ g!

( g
2 )!(

g
2+1)!

.

Then U(n, d, n+ 1) �= ∅.
Proof. This is proved using elementary transformations (for details see [12,

Proposition 6.6]). The restriction on n in the third formula is required because we
need to have n non-isomorphic line bundles Li of degree

d1−1
n with h0(Li) = 2. For

the number of such line bundles in this case, see [1, V (1.2)]. �
Remark 6.11. Although Model Theorem is not established in all cases, one can

say that U(n, d, n+1) is always smooth and is irreducible of dimension β(n, d, n+1)
whenever it is non-empty and β(n, d, n+ 1) > 0 [12, Remark 6.2].

Now let us replace the Petri condition by the condition that C be general (in
some unspecified sense). Teixidor’s result (see Theorem 8.1) takes the following
form when k = n+ 1.

Theorem 6.12. Suppose that C is a general curve of genus g and that d ≥ d′1,
where

d′1 =

{
n(g+1)

2 + 1 if g is odd
n(g+2)

2 + 1 if g is even.

Then U(n, d, n+ 1) �= ∅.
Using this, we can prove

Theorem 6.13. Suppose that C is a general curve of genus 3. Then Model
Theorem holds.

Proof. The methods of [12] are sufficient to prove (for any Petri curve of
genus 3) that U(n, d, n+ 1) �= ∅ if d ≥ d0 and d �= 2n+ 2 (see [12, Theorem 8.3]).
The exceptional case is covered by Theorem 6.12. �

Remark 6.14. Suppose now that C is any smooth curve of genus g. Since
gcd(n, d, n+ 1) = 1, a specialization argument shows that, if G(α;n, d, n+ 1) �= ∅
on a general curve and α is not a critical value, then G(α;n, d, n+ 1) �= ∅ on C. A
priori, this does not imply that U(n, d, n+1) �= ∅, but Ballico [6] has used Teixidor’s
result to show that, when d ≥ d′1, we have U

s(n, d, n+1) �= ∅. If gcd(n, d) = 1, this
gives U(n, d, n+ 1) �= ∅.

7. n = 2, k = 4

This is the first case in which we do not know the value of d0 even on a general
curve. Let us define

(5) d2 :=

{
g + 3 if g is even
g + 4 if g is odd.

Note that β(2, d, 4) = 4d − 4g − 11, so β(2, g + 3, 4) = 1 and g + 3 is the smallest
value of d for which β(2, d, 4) ≥ 0. Moreover, on a Petri curve, d2−1

2 is the smallest

degree for which there exists a line bundle L with h0(L) ≥ 2.
Teixidor has proved the following result by degeneration methods.
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Theorem 7.1. [46] Let C be a general curve of genus g ≥ 3. If d ≥ d2, then
U(2, d, 4) �= ∅.

By completely different methods, we can prove the following stronger result
(further details will appear in [26]).

Theorem 7.2. Let C be a Petri curve of genus g ≥ 3. Then

(i) U(2, d, 4) �= ∅ for d ≥ d2,
(ii) if d < d2 − 1 and (E, V ) is α-semistable of type (2, d, 4) for some α, then

(E, V ) ∈ U(2, d, 4). Moreover, U(2, d′, 4) �= ∅ for d ≤ d′ ≤ d2 − 1,
(iii) G(α; 2, d, 4) = ∅ for all α for d < min{ 4g

5 + 4, d2 − 1}.

Proof. (i) Consider

0 → L1 ⊕ L2 → E → T → 0,

where the Li are line bundles with deg(Li) =
d2−1

2 , h0(Li) = 2, L1 �∼= L2 and T is a
torsion sheaf of length d−d2+1. By classical Brill-Noether theory, such line bundles
always exist on a Petri curve. By [38, Théorème A.5], the general such E is stable.
Now, it is easy to show that (E, V ) ∈ U(2, d, 4) where V = H0(L1)⊕H0(L2).

(ii) Let (F,W ) be a coherent subsystem of (E, V ) with rkF = 1, whereW = V ∩
H0(F ). Suppose E is not stable and choose F with degF ≥ d

2 . Then deg(E/F ) ≤
d
2 < d2−1

2 . Hence, by classical Brill-Noether theory, h0(E/F ) ≤ 1, so dimW ≥ 3.
This contradicts α-semistability for all α.

So E is stable. Now, for any (F,W ), degF < d
2 , so h0(F ) ≤ 1, hence dimW ≤

1. So

μα(F,W ) <
d

2
+ α <

d+ 4α

2
,

for all α > 0, so (E, V ) ∈ U(2, d, 4).
For the last part, we proceed by induction; we need to prove that, if d < d2−1,

then

U(2, d, 4) �= ∅ ⇒ U(2, d+ 1, 4) �= ∅.
So suppose (E, V ) ∈ U(2, d, 4) and consider an elementary transformation

0 → E → E′ → T → 0,

where T is a torsion sheaf of length 1. Then (E′, V ) ∈ U(2, d+ 1, 4) if and only if
E′ is stable. It is easy to see that E′ is semistable. If E′ is strictly semistable, then
it possesses a line subbundle L of degree d+1

2 . Since E is stable, L ∩ E must have

degree d−1
2 and so, by classical Brill-Noether theory, dim(H0(L) ∩ V ) ≤ 1. Hence

h0(E/L) ≥ 3, which is a contradiction since deg(E/L) = d+1
2 ≤ d2−1

2 .

(iii) If (E, V ) ∈ G(α; 2, d, 4) with d < min{ 4g
5 + 4, d2 − 1}, we have (E, V ) ∈

U(2, d, 4) by (ii). It is easy to check that (E, V ) is generically generated and the
proof of (ii) shows that the subsheaf E′ of E generated by V is stable. We have an
exact sequence

0 → DV (E
′)∗ → V ⊗O → E′ → 0,

which induces two further exact sequences

(6) 0 → N → ∧2V ⊗O → detE′ → 0

and

(7) 0 → (detE′)∗ → N → E′ ⊗DV (E
′)∗ → 0.
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Now DV (E
′) is stable of the same slope as E′, so, by (7),

h0(N) ≤ h0(E′ ⊗DV (E
′)∗) ≤ 1.

So h0(detE′) ≥ 5 by (6). Hence, by classical Brill-Noether theory,

degE ≥ degE′ ≥ 4g

5
+ 4.

�

Corollary 7.3. If 4g
5 + 4 > d2 − 1, then d0 = d2. If 4g

5 + 4 ≤ d2 − 1, then
4g
5 + 4 ≤ d0 ≤ d2. Moreover, in all cases, Model Theorem holds.

Proof. The second part follows immediately from the theorem. If 4g
5 + 4 >

d2 − 1, then certainly d2 − 1 ≤ d0 ≤ d2. In fact, if (E, V ) ∈ G(α; 2, d2 − 1, 4), the
argument used to prove part (iii) of the theorem shows that degE ≥ 4g

5 +4, which
is a contradiction.

Model Theorem is now clear except possibly when d0 = d2 − 1. But in this
case, there exists (E, V ) ∈ G(α; 2, d2 − 1, 4) for some α. If E is not stable, then,
in the proof of part (ii) of the theorem, we obtain h0(E/F ) ≤ 2, so dimW ≥
2, contradicting α-stability. The rest of the proof works to show that (E, V ) ∈
U(2, d2 − 1, 4). �

Remark 7.4. Theorems 7.1 and 7.2(i) and the first statement of Corollary 7.3
fail for g = 2. In this case d2 = 5 and the proof of Theorem 7.2(i) fails because
there is only one line bundle L of degree 2 with h0(L) = 1. Moreover it follows from
Riemann-Roch that any stable bundle E of rank 2 and degree 5 has h0(E) = 3 and
one can easily deduce that G(α; 2, 5, 4) = ∅ for all α > 0. In fact d0 = 6 and Model
Theorem holds (see statement (3) preceding Lemma 6.6 in [20]).

We finish this section with an example

Example 7.5. If 4 ≤ g ≤ 8 and g is even, Corollary 7.3 gives d0 = d2 = g+3.
Suppose now that g = 10. Then 4g

5 + 4 = 12 = g + 2 = d2 − 1, so d0 = 12 or 13.
Suppose (E, V ) ∈ G(α; 2, 12, 4). The argument in the proof of Theorem 7.2

(ii)/(iii) shows that E′ and D(E′) are stable and h0(detE′) ≥ 5. By classical
Brill-Noether theory, degE′ ≥ 12, so E′ = E. Also h0(detE) = 5.

Write L = detE. We can choose a 3-dimensional subspace W of H0(L) such
that there is an exact sequence

0 → E∗ → W ⊗O → L → 0,

which induces

0 → H0(L⊗ E∗) → W ⊗H0(L)
ψ→ H0(L⊗2) → 0.

Now L⊗ E∗ ∼= E, so h0(L⊗ E∗) ≥ 4. Hence dimKerψ ≥ 4, from which it follows
that the linear map

(8) S2(H0(L)) → H0(L⊗2)

is not injective. Both of the spaces in (8) have dimension 15, so (8) is not surjective.
On the other hand, Voisin has proved that, for general C, (8) is surjective [51]. So,
for general C, G(α; 2, 12, 4) = ∅ and d0 = 13.

If (8) is not surjective, the sections of L determine an embedding C ↪→ P4

whose image lies on the quadric q whose equation generates the kernel of (8).
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If q has rank 5, it is easy to check that (E, V ) exists. This situation does in
fact arise for certain Petri curves lying on K3 surfaces (see [51]), so there exist
Petri curves for which d0 = 12. If q has rank 4, it is possible that (E, V ) is strictly
α-semistable for all α > 0, so we can make no deduction about d0. The quadric q
cannot have rank < 4.

Further details of this example will appear in [26].

8. k ≥ n+ 2

The situation in section 7 is typical of that for k ≥ n+2, except that in general
we know even less. Until recently, no reasonable bound for d0 had been established.
This has now been rectified by Teixidor, who has obtained a bound for general C
by degeneration methods. We state her result in a slightly adapted version.

Theorem 8.1. ([49]) Let C be a general curve of genus g ≥ 2. If k > n, then
U(n, d, k) �= ∅ for d ≥ d3, where

(9) d3 :=

⎧
⎨

⎩

k + n(g − 1)− n
[

g−1
[k/n]

]
+ 1 if n | k

k + n(g − 1)− n
[

g−1
[k/n]+1

]
if n � | k.

Moreover U(n, d, k) has a component of dimension β(n, d, k).

It should be noted that this is not best possible; in particular, when n = 2,
k = 4, it is weaker than Theorem 7.1. Also, Teixidor states her result in terms of
non-emptiness of all G(α;n, d, k), but her proof gives the stronger statement that
U(n, d, k) �= ∅. For other formulations of (9), see [44, 38], where the corresponding
result for Brill-Noether loci is proved.

For an arbitrary smooth curve, we have the following theorem of Ballico [6],
obtained from Theorem 8.1 by a specialization argument.

Theorem 8.2. Let C be a smooth curve of genus g and k > n. If gcd(n, d, k) =
1 and d ≥ d3, then Us(n, d, k) �= ∅. If moreover gcd(n, d) = 1, then U(n, d, k) �= ∅.

When n | k, we can prove the following theorem without any coprimality as-
sumptions by using the methods of [38].

Theorem 8.3. Let C be a smooth curve of genus g ≥ 2. If k > n, n | k,
then U(n, d, k) �= ∅ for d ≥ d3. If in addition C is Petri and k′ := k

n | g, then
U(n, d, k) �= ∅ for d ≥ d3 − n, provided that

n ≤ n′ := g!
k′−1∏

i=0

i!
(
i+ g

k′

)
!
.

Proof. Note that d3 − 1 is divisible by n and β
(
1, d3−1

n , k
n

)
> 0. Hence, by

classical Brill-Noether theory, we can find n non-isomorphic line bundles Li with
degLi =

d3−1
n and h0(Li) ≥ k

n . Choose subspaces Vi of H
0(Li) of dimension k

n and
consider an exact sequence

(10) 0 → L1 ⊕ · · · ⊕ Ln → E → T → 0,

where T is a torsion sheaf of length d− d3 + 1 > 0. Let V :=
⊕

H0(Li) ⊆ H0(E).
Then (L1 ⊕ · · · ⊕Ln, V ) is α-semistable for all α > 0. If E is stable, it follows that
(E, V ) ∈ U(n, d, k). On the other hand, the general E given by (10) is stable by
[38, Théorème A.5]. The first result follows.
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Now suppose k′ | g. Then
[
g−1
k′

]
= ng

k − 1. Let

d′ :=
d3 − 1

n
− 1 = k′ + g − 1− g

k′

and β(1, d′, k′)=0. So, again by classical Brill-Noether theory, there exist line bun-
dles Li with degLi = d′ and h0(Li) ≥ k′, and, if C is Petri, there are precisely n′

such line bundles up to isomorphism [1, V (1.2)]. The proof now goes through as
before. �

Remark 8.4. It is worth noting that, when n | k and k′ | g,

β(n, d3 − n, k) = k − n2 + 1,

so one can have U(n, d, k) �= ∅, even on a Petri curve, with negative Brill-Noether
number.

For a lower bound on d0, we have the following result of Brambila-Paz.

Theorem 8.5. ([20, Theorem 1]) Let C be a Petri curve of genus g. Suppose
k > n and β(n, d, n+ 1) < 0. Then G(α;n, d, k) = ∅ for all α > 0.

Combining Theorems 8.1 and 8.5, we obtain that, on a general curve,

n+ g −
[

g

n+ 1

]

≤ d0(n, k) ≤ d3.

9. n = 2, detE = K

In this section we consider coherent systems (E, V ) with rkE = 2, detE ∼= K.
These have not to my knowledge been studied in their own right, but the corre-
sponding problem for Brill-Noether loci has attracted quite a lot of attention and
this has some implications for coherent systems. In what follows, we consistently
denote the corresponding spaces by B(2,K, k), G(α; 2,K, k) etc.

The first point to note is that some definitions have to be changed. There is
a canonical skew-symmetric isomorphism between E and E∗ ⊗ K. As a result of
this, the Petri map has to be replaced by the symmetrized Petri map

(11) S2H0(E) → H0(S2E).

This map governs the infinitesimal behaviour of B(2,K, k). Moreover, the Brill-
Noether number giving the expected dimension of B(2,K, k) and G(α; 2,K, k) must
be replaced by

β(2,K, k) := 3g − 3− k(k + 1)

2
.

All components of B(2,K, k) have dimension ≥ β(2,K, k). The intriguing thing is
that often β(2,K, k) > β(2, 2g− 2, k), so that the expected dimension of B(2,K, k)
is greater than that of B(2, 2g − 2, k), although the latter contains the former!

These Brill-Noether loci were studied some time ago by Bertram and Feinberg
[9] and by Mukai [41], who independently proposed the following conjecture.

Conjecture. Let C be a general curve of genus g. Then B(2,K, k) is non-
empty if and only if β(2,K, k) ≥ 0.
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This was verified by Bertram and Feinberg and Mukai for low values of g. Of
course, if B(2,K, k) �= ∅, then G0(2,K, k) �= ∅, but we cannot make deductions
about U(2,K, k) without further information.

Some of these results have been extended and there are also some general
existence results due to Teixidor.

Theorem 9.1. ([45]) Let C be a general curve of genus g. If either k = 2k1
and g ≥ k21 (k1 > 2), g ≥ 5 (k1 = 2), g ≥ 3 (k1 = 1) or k = 2k1 + 1 and
g ≥ k21 + k1 +1, then B(2,K, k) �= ∅ and has a component of dimension β(2,K, k).

Corollary 9.2. Under the conditions of Theorem 9.1, G0(2,K, k) �= ∅.
The most significant result to date is also due to Teixidor.

Theorem 9.3. ([48]) Let C be a general curve of genus g. Then the sym-
metrized Petri map (11) is injective for every semistable bundle E.

Corollary 9.4. Let C be a general curve of genus g. If β(2,K, k) < 0, then
G0(2,K, k) = ∅.

To prove the conjecture, it is therefore sufficient to extend Theorem 9.1 to all
cases where β(2,K, k) ≥ 0. Progress on this has been made recently by Seongsuk
Park using homological methods [42].

Remark 9.5. Theorem 9.3 and Corollary 9.4 fail for certain Petri curves lying
on K3 surfaces. In fact, based on work of Mukai, Voisin [51, Théorème 0.1] observed
that on these curves B

(
2,K, g2 + 2

)
�= ∅ for any even g. However, for g even, g ≥ 10,

the Brill-Noether number β
(
2,K, g2 + 2

)
< 0.

10. Special curves

The results of sections 3 and 4 are valid for arbitrary smooth curves. On the
other hand, while some of the results of the remaining sections (dealing with the
case k > n) are valid on arbitrary smooth curves, most of them hold on general
curves. Indeed, if k > n, the value of d0 certainly depends on the geometry of C
and not just on g. This is of course no different from what happens for n = 1, but
it is already clear that the distinctions in higher rank are more subtle than those
for the classical case (see, for instance, Example 7.5 and Remark 9.5).

There is as yet little work in the literature concerning coherent systems on
special curves; here by special we mean a curve for which the moduli spaces of
coherent systems exhibit behaviour different from that on a general curve. So far
as I am aware, the only papers relating specifically to special curves are those of
Ballico on bielliptic curves [2] and Brambila-Paz and Ortega on curves with specified
Clifford index [23]. In the latter paper, the authors define positive numbers

du = du(n, g, γ) :=

{
n+ g − 1 + g−1

n−1 if γ ≥ g − n

2n+ γ + γ
n−1 if γ < g − n

and

d� = d�(n, g, γ) :=

{
n+ g − 1 if γ ≥ g − n
2n+ γ if γ < g − n

and prove, among other things, the following three results.

Theorem 10.1. ([23, Theorem 1.2]) Let C be a curve of genus g and Clifford
index γ and suppose k > n. Then d0(n, k) ≥ d�.
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Theorem 10.2. ([23, Theorem 4.1]) Let C be a curve of genus g and Clifford
index γ and suppose that there exists a generated coherent system (G,W ) of type
(m, d, n+m) with H0(G∗) = 0 and d� ≤ d < du. Then U(n, d, n+m) �= ∅.

Corollary 10.3. ([23, Corollary 5.1]) Let C be a smooth plane curve of degree
d ≥ 5. Then d0(2, 3) = d�(2, g, γ) = d and U(2, d, 3) �= ∅.

In the corollary, one may note that the value of d0 here is much smaller than
the value for a general curve of the same genus given by Corollary 6.6. The paper
[23] includes also examples where d0(n, n+ 1) = g − 1.

11. Singular curves

The construction of moduli spaces for coherent systems can be generalized to
arbitrary curves (see [29]). Of course, Teixidor’s work depends on constructing
coherent systems on reducible curves and in particular the concept of limit linear
series (see [44, 45, 46, 47, 48, 49] and Teixidor’s article in this volume), but apart
from this there has been little work on coherent systems on singular curves. There
is some work of Ballico proving the existence of α-stable coherent systems for large
d [4, 5] and a paper of Ballico and Prantil for C a singular curve of genus 1 [8].

The situation for nodal curves has now changed due to work of Bhosle, who
has generalized results of [21] and [17]. We refer to [10, 11] for details.

12. Open Problems

There are many open problems in the theory of moduli spaces of coherent
systems on algebraic curves. As in the main part of this article, we restrict attention
here to problems of emptiness and non-emptiness. The basic outstanding problems
can be formulated as follows.

Problem 12.1. Given C and (n, k) with n ≥ 2, k ≥ 1, determine the value of
d0(n, k) (the minimum value of d for which G(α;n, d, k) �= ∅ for some α > 0).

Problem 12.2. Given C and (n, k), prove or disprove Model Theorem. If the
theorem fails to hold, Theorem 2.1 implies that there are finitely many values of
d ≥ d0(n, k) for which U(n, d, k) = ∅. For each such d, find the range of α (possibly
empty) for which G(α;n, d, k) �= ∅. Note that we already have a solution for this
problem when g = 2 and k = n + 1; in this case (a) is true but not (b) or (c)
(Theorem 6.9). In Example 5.3, (a) fails but (b) may possibly be true.

Problem 12.3. For fixed genus g and fixed (n, d), we know that there exists
a bound, independent of α, on h0(E) for E to be an α-semistable coherent system.
The bound given by [17, Lemmas 10.2 and 10.3] looks weak. Find a better (even
best possible) bound. An answer to this would be useful in estimating codimensions
of flip loci.

We now turn to some more specific problems, which we state for a general
curve, although versions for special curves could also be produced.

Problem 12.4. A conjecture of D. C. Butler [24, Conjecture 2] can be stated
in the following form.

Conjecture. (Butler’s Conjecture) Let C be a general curve of genus g ≥ 3
and let (E, V ) be a general generated coherent system in G0(m, d, n+m). Then the
dual span D(E, V ) belongs to G0(n, d, n+m).
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(Since G0(m, d, n+m) can be reducible, one needs to be careful over the mean-
ing of the word “general” here.) There are many possible versions of this conjec-
ture. For example, if one replaces G0 by GL, then the conjecture holds for all
(E, V ) ∈ GL(m, d, n + m) if gcd(m,n) = 1 and, even in the non-coprime case,
a slightly weaker version holds [17, section 5.4]. We seem, however, to be some
distance from proving the general conjecture.

Problem 12.5. A slightly stronger version of Butler’s conjecture is

Conjecture. (Butler’s Conjecture (strong form)) Let C be a general
curve of genus g ≥ 3 and let (E, V ) be a general generated coherent system in
G0(m, d, n+m). Then DV (E) is stable.

When m = 1 and C is Petri, this conjecture holds for V = H0(E) (see [24,
Theorem 2] and [20, Proposition 4.1]). For general V , it is equivalent in this case
to

Conjecture. Let C be a Petri curve of genus g ≥ 3. If β(n, d, n+1) ≥ 0, then
U(n, d, n+ 1) �= ∅.

(For the proof of this equivalence, see [12, Conjecture 9.5 and Proposition 9.6].)
This result narrowly fails for g = 2 and d = 2n (see Theorem 6.9), but is proved
in many cases in section 6. For some further results on the strong form of Butler’s
Conjecture when m = 1, see [40].

Problem 12.6. Let C be a general curve of genus g ≥ 3. Calculate d0(2, 4).
For the current state of information on this problem, see section 7, especially Corol-
lary 7.3.

Problem 12.7. Let C be a general curve of genus g. Extend the results of
section 9 to G(α; 2,K, k) for arbitrary α > 0 and hence to U(2,K, k).

Problem 12.8. Related to Problem 12.7, we can state an extended version of
the conjecture of Bertram/Feinberg/Mukai.

Conjecture. Let C be a general curve of genus g. Then

• β(2,K, k) < 0 ⇒ G(α; 2,K, k) = ∅ for all α > 0
• β(2,K, k) ≥ 0 ⇒ U(2,K, k) �= ∅ for all α > 0.

For the current state of information on this problem, see section 9.

Turning now to special curves, we give two problems.

Problem 12.9. Solve the basic problems for hyperelliptic curves. For Brill-
Noether loci, a strong result is known [22, section 6]. One could try to generalize
this to coherent systems.

Problem 12.10. There are several possible notions of higher rank Clifford
indices. Determine what values these indices can take and what effect they have
on the geometry of the moduli spaces of coherent systems. What other invariants
can be introduced (generalizing gonality, Clifford dimension, ...)?

We finish with two problems on a topic not touched on in this survey.

Problem 12.11. The moduli spaces can be constructed in finite characteristic
(see [29]). Solve the basic problems in this case and compare (or contrast) them
with those for characteristic 0. Much of the basic theory should be unchanged, but
detailed structure of the moduli spaces might well be different.
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Problem 12.12. Obtain results for coherent systems on curves defined over
finite fields. This would allow the possibility of computing zeta-functions and hence
obtaining cohomological information in the characteristic 0 case.
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1. Introduction

In previous work we have introduced the notion of M -regularity for coherent
sheaves on abelian varieties ([PP1], [PP2]). This is useful because M -regular
sheaves enjoy strong generation properties, in such a way that M -regularity on
abelian varieties presents close analogies with the classical notion of Castelnuovo-
Mumford regularity on projective spaces. Later we studied objects in the derived
category of a smooth projective variety subject to Generic Vanishing conditions
(GV -objects for short, [PP4]). The main ingredients are Fourier-Mukai transforms
and the systematic use of homological and commutative algebra techniques. It
turns out that, from the general perspective, M -regularity is a natural strenght-
ening of a Generic Vanishing condition. In this paper we describe in detail the
relationship between the two notions in the case of abelian varieties, and deduce
new basic properties of bothM -regular and GV -sheaves. We also collect a few extra
applications of the generation properties of M -regular sheaves, mostly announced
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but not contained in [PP1] and [PP2]. This second part of the paper is based on
our earlier preprint [PP6].

We start in §2 by recalling some basic definitions and results from [PP4] on
GV -conditions, restricted to the context of the present paper (coherent sheaves on
abelian varieties). The rest of the section is devoted to the relationship betweenGV -
sheaves and M -regular sheaves. More precisely, we prove a criterion, Proposition
2.8, characterizing the latter among the former: M -regular sheaves are those GV -
sheaves F for which the Fourier-Mukai transform of the Grothendieck-dual object
RΔF is a torsion-free sheaf. (This will be extended to higher regularity conditions,
or strong Generic Vanishing conditions, in our upcoming work [PP5].)

We apply this relationship in §3 to the basic problem of the behavior of coho-
mological support loci under tensor products. We first prove that tensor products
of GV -sheaves are again GV when one of the factors is locally free, and then use this
and the torsion-freeness characterization to deduce a similar result for M -regular
sheaves. The question of the behavior of M -regularity under tensor products had
been posed to us by A. Beauville as well. It is worth mentioning that Theorem 3.2
does not seem to follow by any more standard methods.

In the other direction, in §4 we prove a result on GV -sheaves based on results
on M -regularity. Specifically, we show that GV -sheaves on abelian varieties are nef.
We deduce this from a theorem of Debarre [De2], stating that M -regular sheaves
are ample, and the results in §2. This is especially interesting for the well-known
problem of semipositivity: higher direct images of dualizing sheaves via maps to
abelian varieties are known to be GV (cf. [Hac], [PP3]).

In §5 we survey generation properties of M -regular sheaves. This section is
mostly expository, but the presentation of some known results, as Theorem 5.1(a) ⇒
(b) (which was proved in [PP1]), is new and more natural with respect to the
Generic Vanishing perspective, providing also the new implication (b) ⇒ (a). In
combination with well-known results of Green-Lazarsfeld and Ein-Lazarsfeld, we
deduce some basic generation properties of the canonical bundle on a variety of
maximal Albanese dimension, used in the following section.

The second part of the paper contains miscellaneous applications of the gen-
eration properties enjoyed by M -regular sheaves on abelian varieties, extracted
or reworked from our older preprint [PP6]. In §6 we give effective results for
pluricanonical maps on irregular varieties of general type and maximal Albanese
dimension via M -regularity for direct images of canonical bundles, extending work
in [PP1] §5. In particular we show, with a rather quick argument, that on a smooth
projective variety Y of general type, maximal Albanese dimension, and whose Al-
banese image is not ruled by subtori, the pluricanonical series |3KY | is very ample
outside the exceptional locus of the Albanese map (Theorem 6.1). This is a slight
strengthening, but also under a slightly stronger hypothesis, of a result of Chen
and Hacon ([CH], Theorem 4.4), both statements being generalizations of the fact
that the tricanonical bundle is very ample for curves of genus at least 2.

In §7.1 we look at bounding the Seshadri constant measuring the local positivity
of an ample line bundle. There is already extensive literature on this in the case of
abelian varieties (cf. [La1], [Nak], [Ba1], [Ba2], [De1] and also [La2] for further
references). Here we explain how the Seshadri constant of a polarization L on an
abelian variety is bounded below by an asymptotic version – and in particular by
the usual – M -regularity index of the line bundle L, defined in [PP2] (cf. Theorem
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7.4). Combining this with various bounds for Seshadri constants proved in [La1],
we obtain bounds for M -regularity indices which are not apparent otherwise.

In §7.2 we shift our attention towards a cohomological study of Picard bundles,
vector bundles on Jacobians of curves closely related to Brill-Noether theory (cf.
[La2] 6.3.C and 7.2.C for a general introduction). We combine Fourier-Mukai
techniques with the use of the Eagon-Northcott resolution for special determinantal
varieties in order to compute their regularity, as well as that of their relatively
small tensor powers (cf. Theorem 7.15). This vanishing theorem has practical
applications. In particular we recover in a more direct fashion the main results of
[PP1] §4 on the equations of the Wd’s in Jacobians, and on vanishing for pull-backs
of pluritheta line bundles to symmetric products.

By work of Mukai and others ([Muk3], [Muk4], [Muk1], [Um] and [Or]) it has
emerged that on abelian varieties the class of vector bundles most closely resembling
semistable vector bundles on curves and line bundles on abelian varieties is that
of semihomogeneous vector bundles. In §7.3 we show that there exist numerical
criteria for their geometric properties like global or normal generation, based on
their Theta regularity. More generally, we give a result on the surjectivity of the
multiplication map on global sections for two such vector bundles (cf. Theorem
7.30). Basic examples are the projective normality of ample line bundles on any
abelian variety, and the normal generation of the Verlinde bundles on the Jacobian
of a curve, coming from moduli spaces of vector bundles on that curve.
Acknowledgements. We would like to thank Rob Lazarsfeld for having intro-
duced us to some of these topics and for interesting suggestions. We also thank
Christopher Hacon for discussions, and Olivier Debarre for pointing out a mistake
in §7.2. We are grateful to the referee for a careful reading and very useful sug-
gestions. Finally, the second author thanks the organizers of the Clay Workshop,
Emma Previato and Montserrat Teixidor i Bigas, for providing a few very nice days
of mathematical interaction.

2. GV -sheaves and M-regular sheaves on abelian varieties

GV -sheaves. We recall definitions and results from [PP4] on Generic Vanishing
conditions (GV for short). In relationship to the treatment of [PP4] we confine
ourselves to a more limited setting, with respect to the following three aspects:
(a) we consider only coherent sheaves (rather than complexes) subject to generic
vanishing conditions; (b) we consider only the simplest such condition, i.e. GV0,
henceforth denoted GV ; (c) we work only on abelian varieties, with the classical
Fourier-Mukai functor associated to the Poincaré line bundle onX×Pic0(X) (rather
than arbitrary integral transforms).

Let X be an abelian variety of dimension g over an algebraically closed field,

X̂ = Pic0(X), P a normalized Poincaré bundle on X×X̂, and RŜ : D(X) → D(X̂)

the standard Fourier-Mukai functor given by RŜ(F) = Rp
̂A∗(p

∗
AF⊗P ). We denote

by RS : D(X̂) → D(X) the functor in the other direction defined analogously. For
a coherent sheaf F on X, we will consider for each i ≥ 0 its i-th cohomological
support locus

V i(F) := {α ∈ X̂ | hi(X,F ⊗ α) > 0}.
By base-change, the support of RiŜF is contained in V i(F).
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Proposition/Definition 2.1 (GV -sheaf, [PP4]). Given a coherent sheaf F
on X, the following conditions are equivalent:

(a) codim Supp(RiŜF) ≥ i for all i > 0.
(b) codim V i(F) ≥ i for all i > 0.
If one of the above conditions is satisfied, F is called a GV -sheaf. (The proof of
the equivalence is a standard base-change argument – cf. [PP4] Lemma 3.6.)

Notation/Terminology 2.2. (a) (IT0-sheaf). The simplest examples ofGV -
sheaves are those such that V i(F) = ∅ for every i > 0. In this case F is said to

satisfy the Index Theorem with index 0 (IT0 for short). If F is IT0 then RŜF =

R0ŜF , which is a locally free sheaf.
(b) (Weak Index Theorem). Let G be an object in D(X) and k ∈ Z. G is said to

satisfy the Weak Index Theorem with index k (WITk for short), if RiŜG = 0 for

i �= k. In this case we denote Ĝ = RkŜG. Hence RŜG = Ĝ[−k].

(c) The same terminology and notation holds for sheaves on X̂, or more generally

objects in D(X̂), by considering the functor RS.

We now state a basic result from [PP4] only in the special case of abelian
varieties considered in this paper. In this case, with the exception of the implications
from (1) to the other parts, it was in fact proved earlier by Hacon [Hac]. We denote
RΔF := RHom(F ,OX).

Theorem 2.3. Let X be an abelian variety of dimension g and F a coherent
sheaf on X. Then the following are equivalent:
(1) F is a GV -sheaf.

(2) For any sufficiently positive ample line bundle A on X̂,

Hi(F ⊗ Â−1) = 0, for all i > 0.

(3) RΔF satisfies WITg.

Proof. This is Corollary 3.10 of [PP4], with the slight difference that con-
ditions (1), (2) and (3) are all stated with respect to the Poincaré line bundle P ,
while condition (3) of Corollary 3.10 of loc. cit. holds with respect to P∨. This
can be done since, on abelian varieties, the Poincaré bundle satisfies the symmetry
relation P∨ ∼= ((−1X) × 1

̂X)∗P . Therefore Grothendieck duality (cf. Lemma 2.5

below) gives that the Fourier-Mukai functor defined by P∨ on X × X̂ is the same

as (−1X)∗ ◦RŜ. We can also assume without loss of generality that the ample line

bundle A on X̂ considered below is symmetric. �

Remark 2.4. The above Theorem holds in much greater generality ([PP4],
Corollary 3.10). Moreover, in [PP5] we will show that the equivalence between
(1) and (3) holds in a local setting as well. Condition (2) is a Kodaira-Kawamata-
Viehweg-type vanishing criterion. This is because, up to an étale cover of X, the

vector bundle Â−1 is a direct sum of copies of an ample line bundle (cf. [Hac], and
also [PP4] and the proof of Theorem 4.1 in the sequel).

Lemma 2.5 ([Muk1] 3.8). The Fourier-Mukai and duality functors satisfy the
exchange formula:

RΔ ◦RŜ ∼= (−1
̂X)∗ ◦RŜ ◦RΔ[g].



REGULARITY AND GENERIC VANISHING ON ABELIAN VARIETIES 145

A useful immediate consequence of the equivalence of (a) and (c) of Theorem
2.3, together with Lemma 2.5, is the following (cf. [PP4], Remark 3.11.):

Corollary 2.6. If F is a GV -sheaf on X then

RiŜF ∼= Exti(R̂ΔF ,O
̂X).

M-regular sheaves and their characterization. We now recall theM -regularity
condition, which is simply a stronger (by one) generic vanishing condition, and re-
late it to the notion of GV -sheaf. The reason for the different terminology is that
the notion of M -regularity was discovered – in connection with many geometric
applications – before fully appreciating its relationship with generic vanishing the-
orems (see [PP1], [PP2], [PP3]).

Proposition/Definition 2.7. Let F be a coherent sheaf on an abelian variety
X. The following conditions are equivalent:

(a) codim Supp(RiŜF) > i for all i > 0.
(b) codim V i(F)i for all i > 0.
If one of the above conditions is satisfied, F is called an M -regular sheaf.

The proof is identical to that of Proposition/Definition 2.1. By definition, every
M -regular sheaf is a GV -sheaf. Non-regular GV -sheaves are those whose support
loci have dimension as big as possible. As shown by the next result, as a consequence
of the Auslander-Buchsbaum theorem, this is equivalent to the presence of torsion
in the Fourier transform of the Grothendieck dual object.

Proposition 2.8. Let X be an abelian variety of dimension g, and let F be a
GV -sheaf on X. The following conditions are equivalent:
(1) F is M-regular.

(2) R̂ΔF = RŜ(RΔF)[g] is a torsion-free sheaf.1

Proof. By Corollary 2.6, F is M -regular if and only if for each i > 0

codim Supp(Exti(R̂ΔF ,O
̂X)) > i.

The theorem is then a consequence of the following commutative algebra fact, which
is surely known to the experts. �

Lemma 2.9. Let G be a coherent sheaf on a smooth variety X. Then G is
torsion-free if and only if codim Supp(Exti(G,OX)) > i for all i > 0.

Proof. If G is torsion-free then it is a subsheaf of a locally free sheaf E . From
the exact sequence

0 −→ G → E −→ E/G −→ 0

it follows that, for i > 0, Exti(G,O
̂X) ∼= Exti+1(E/G,O

̂X). But then a well-known
consequence of the Auslander-Buchsbaum Theorem applied to E/G implies that

codim Supp(Exti(G,O
̂X)) > i, for all i > 0.

Conversely, since X is smooth, the functor RHom( · ,OX) is an involution on
D(X). Thus there is a spectral sequence

Eij
2 := Exti

(
(Extj(G,OX),OX

)
⇒ Hi−j = Hi−jG =

{
G if i = j

0 otherwise
.

1Note that it is a sheaf by Theorem 2.3.
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If codim Supp(Exti(G,OX)) > i for all i > 0, then Exti
(
Extj(G,OX),OX

)
= 0

for all i, j such that j > 0 and i − j ≤ 0, so the only Eii
∞ term which might be

non-zero is E00
∞ . But the differentials coming into E00

p are always zero, so we get a
sequence of inclusions

F = H0 = E00
∞ ⊂ · · · ⊂ E00

3 ⊂ E00
2 .

The extremes give precisely the injectivity of the natural map G → G∗∗. Hence G
is torsion-free. �

Remark 2.10. It is worth noting that in the previous proof, the fact that we
are working on an abelian variety is of no importance. In fact, an extension of
Proposition 2.8 holds in the generality of [PP4], and even in a local setting, as it
will be shown in [PP5].

3. Tensor products of GV and M-regular sheaves

We now address the issue of preservation of bounds on the codimension of
support loci under tensor products. Our main result in this direction is (2) of
Theorem 3.2 below, namely that the tensor product of two M -regular sheaves on
an abelian variety is M -regular, provided that one of them is locally free. Note
that the same result holds for Castelnuovo-Mumford regularity on projective spaces
([La2], Proposition 1.8.9). We do not know whether the same holds if one removes
the local freeness condition on E (in the case of Castelnuovo-Mumford regularity it
does not).

Unlike the previous section, the proof of the result is quite specific to abelian
varieties. One of the essential ingredients is Mukai’s main inversion result (cf.

[Muk1], Theorem 2.2), which states that the functor RŜ is an equivalence of
derived categories and, more precisely,

(1) RS ◦RŜ ∼= (−1A)
∗[−g] and RŜ ◦RS ∼= (−1

̂A)
∗[−g].

Besides this, the argument uses the characterization of M -regularity among GV -
sheaves given by Proposition 2.8.

Proposition 3.1. Let F be a GV -sheaf and H a locally free sheaf satisfying
IT0 on an abelian variety X. Then F ⊗H satisfies IT0.

Proof. Consider any α ∈ Pic0(X). Note that H ⊗ α also satisfies IT0, so

RŜ(H ⊗ α) = R0Ŝ(H ⊗ α) is a vector bundle Nα on X̂. By Mukai’s inversion
theorem (1) Nα satisfies WITg with respect toRS and H⊗α ∼= RS((−1X)∗Nα)[g].
Consequently for all i we have

(2) Hi(X,F ⊗H ⊗ α) ∼= Hi(X,F ⊗RS((−1
̂X)∗Nα)[g]).

But a basic exchange formula for integral transforms ([PP4], Lemma 2.1) states,
in the present context, that

(3) Hi(X,F ⊗RS((−1
̂X)∗Nα)[g]) ∼= Hi(Y,RŜF⊗(−1

̂X)∗Nα[g]).

Putting (2) and (3) together, we get that
(4)

Hi(X,F ⊗H ⊗ α) ∼= Hi(Y,RŜF⊗(−1
̂X)∗Nα[g]) = Hg+i(Y,RŜF⊗(−1

̂X)∗Nα).
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The hypercohomology groups on the right hand side are computed by the spectral
sequence

Ejk
2 := Hj(Y,RkSF ⊗ (−1

̂X)∗Nα[g]) ⇒ Hj+k(Y,RŜF⊗(−1
̂X)∗Nα[g]).

Since F is GV , we have the vanishing of Hj(Y,RkSF⊗(−1
̂X)∗Nα[g]) for j+k > g,

and from this it follows that the hypercohomology groups in (4) are zero for i >
0. �

Theorem 3.2. Let X be an abelian variety, and F and E two coherent sheaves
on X, with E locally free.
(1) If F and E are GV -sheaves, then F ⊗ E is a GV -sheaf.
(2) If F and E are M -regular, then F ⊗ E is M -regular.

Proof. (1) Let A be a sufficiently ample line bundle on X̂. By Proposition

3.1 E ⊗ Â−1 satisfies IT0, and then (F ⊗ E)⊗ Â−1 satisfies IT0 as well. Applying
Theorem 2.3(2), we deduce that F ⊗ E is GV .
(2) Both F and E are GV , so (1) implies that F⊗E is also aGV . We use Proposition

2.8. This implies to begin with that RŜ(RΔF) and RŜ(RΔE) ∼= RŜ(E∨) are
torsion-free sheaves (we harmlessly forget about what degree they live in). Going

backwards, it also implies that we are done if we show that RŜ(RΔ(F ⊗ E)) is
torsion-free. But note that

RŜ(RΔ(F ⊗ E)) ∼= RŜ(RΔF ⊗ E∨) ∼= RŜ(RΔF)∗RŜ(E∨)

where ∗ denotes the (derived) Pontrjagin product of sheaves on abelian varieties,
and the last isomorphism is the exchange of Pontrjagin and tensor products under
the Fourier-Mukai functor (cf. [Muk1] (3.7)). Note that this derived Pontrjagin
product is in fact an honest Pontrjagin product, as we know that all the objects
above are sheaves. Recall that by definition the Pontrjagin product of two sheaves

G and H is simply G ∗ H := m∗(p
∗
1G ⊗ p∗2H), where m : X̂ × X̂ → X̂ is the group

law on X̂. Since m is a surjective morphism, if G and H are torsion-free, then so is
p∗1G ⊗ p∗2H and its push-forward G ∗ H. �

Remark 3.3. As mentioned in §2, Generic Vanishing conditions can be natu-
rally defined for objects in the derived category, rather than sheaves (see [PP4]).
In this more general setting, (1) of Theorem 3.2 holds for F⊗G, where F is any
GV -object and E any GV -sheaf, while (2) holds for F any M -regular object and E
any M -regular locally free sheaf. The proof is the same.

4. Nefness of GV -sheaves

Debarre has shown in [De2] that every M -regular sheaf on an abelian variety is
ample. We deduce from this and Theorem 2.3 thatGV -sheaves satisfy the analogous
weak positivity.

Theorem 4.1. Every GV -sheaf on an abelian variety is nef.

Proof. Step 1. We first reduce to the case when the abelian variety X is

principally polarized. For this, consider A any ample line bundle on X̂. By Theorem
2.3 we know that the GV -condition is equivalent to the vanishing

Hi(F ⊗ Â−m) = 0, for all i > 0, and all m � 0.
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But A is the pullback ψ̂∗L of a principal polarization L via an isogeny ψ̂ : X̂ → Ŷ
(cf. [LB] Proposition 4.1.2). We then have

0 = Hi(F ⊗ Â−m) ∼= Hi(F ⊗ ̂(ψ̂∗(L−m))) ∼= Hi(F ⊗ ψ∗L̂−m) ∼= Hi(ψ∗F ⊗ L̂−m).

Here ψ denotes the dual isogeny. (The only thing that needs an explanation is the
next to last isomorphism, which is the commutation of the Fourier-Mukai functor
with isogenies, [Muk1] 3.4.) But this implies that ψ∗F is also GV , and since
nefness is preserved by isogenies this completes the reduction step.
Step 2. Assume now that X is principally polarized by Θ (and we use the same

notation for a principal polarization on X̂, via the standard identification). For any

m ≥ 1 we have that O(−mΘ) satisfies ITg on X̂, with g = dimX. Hence ̂O(−mΘ)

is locally free and satisfies IT0 on X, so the same is in fact true for ̂O(−mΘ)⊗ α
for any α ∈ Pic0(X). By Proposition 3.1 we get

Hi(F ⊗ ̂O(−mΘ)⊗ α) = 0, for all i > 0, all α ∈ Pic0(X) and all m � 0.

If we denote by φm : X → X multiplication by m, i.e. the isogeny induced by mΘ,
then this implies that

Hi(φ∗
mF ⊗O(mΘ)⊗ β) = 0, for all i > 0 and all β ∈ Pic0(X)

as φ∗
m

̂O(−mΘ) ∼=
⊕

O(mΘ) by [Muk1] Proposition 3.11(1). This means that
the sheaf φ∗

mF ⊗ O(mΘ) satisfies IT0 on X, so in particular it is M -regular. By
Debarre’s result [De2] Corollary 3.2, it is then ample.

But φm is a finite cover, and φ∗
mΘ ≡ m2Θ. The statement above is then same

as saying that, in the terminology of [La2] §6.2, the Q-twisted2 sheaf F < 1
m ·Θ >

on X is ample, since φ∗
m(F < 1

m · Θ >) is an honest ample sheaf. As m goes to
∞, we see that F is a limit of ample Q-twisted sheaves, and so it is nef by [La2]
Proposition 6.2.11. �

Combining the result above with the fact that higher direct images of canonical
bundles are GV (cf. [PP3] Theorem 5.9), we obtain the following result, one well-
known instance of which is that the canonical bundle of any smooth subvariety of
an abelian variety is nef.

Corollary 4.2. Let X be a smooth projective variety and a : Y → X a (not
necessarily surjective) morphism to an abelian variety. Then Rja∗ωY is a nef sheaf
on X for all j.

One example of an immediate application of Corollary is to integrate a result of
Peternell-Sommese in the general picture. For a finite surjective morphism f : Y →
X, we denote by Ef the dual of the kernel of the (split) trace map f∗OY → OX ,
so that

f∗OY
∼= OX ⊕ E∨

f .

(Cf. the Introduction to [De2] for a discussion of the significance of this vector
bundle in the topological study of coverings.)

Corollary 4.3 ([PS], Theorem 1.17). Let a : Y → X be a finite surjective
morphism of smooth projective varieties, with X an abelian variety. Then the vector
bundle Ea is nef.

2Note that the twist is indeed only up to numerical equivalence.
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Proof. By duality we have a∗ωY
∼= OX ⊕Ea. Thus Ea is a quotient of a∗ωY ,

so by Corollary 4.2 it is nef. �

5. Generation properties of M-regular sheaves on abelian varieties

The interest in the notion of M -regularity comes from the fact that M -regular
sheaves on abelian varieties have strong generation properties. In this respect,
M -regularity on abelian varieties parallels the notion of Castelnuovo-Mumford reg-
ularity on projective spaces (cf. the survey [PP3]). In this section we survey the
basic results about generation properties of M -regular sheaves. The presentation
is somewhat new, since the proof of the basic result (the implication (a) ⇒ (b)
of Theorem 5.1 below) makes use of the relationship between M -regularity and
GV -sheaves (Proposition 2.8). The argument in this setting turns out to be more
natural, and provides as a byproduct the reverse implication (b) ⇒ (a), which is
new.
Another characterization of M-regularity. M -regular sheaves on abelian va-
rieties are characterized as follows:

Theorem 5.1. ([PP1], Theorem 2.5) Let F be a GV -sheaf on an abelian va-
riety X of dimension g. Then the following conditions are equivalent:
(a) F is M -regular.
(b) For every locally free sheaf H on X satisfying IT0, and for every non-empty

Zariski open set U ⊂ X̂, the sum of multiplication maps of global sections

MU :
⊕

α∈U

H0(X,F ⊗ α−1)⊗H0(X,H ⊗ α)
⊕mα−→ H0(X,F ⊗H)

is surjective.

Proof. Since F is a GV -sheaf, by Theorem 2.3 the transform of RΔF is a

sheaf in degree g, i.e. RŜ(RΔF) = R̂ΔF [−g]. If H is a coherent sheaf satisfying

IT0 then RŜH = Ĥ, a locally free sheaf in degree 0. It turns out that the following
natural map is an isomorphism

(5) Extg(H,RΔF)
∼−→ Hom(Ĥ, R̂ΔF).

This simply follows from Mukai’s Theorem (1), which yields that

Extg(H,RΔF ) = HomD(X)(H,RΔF [g]) ∼= HomD( ̂X)(Ĥ, R̂ΔF) = Hom(Ĥ, R̂ΔF).

Proof of (a) ⇒ (b). Since R̂ΔF is torsion-free by Proposition 2.8, the evaluation
map at the fibres

(6) Hom(Ĥ, R̂ΔF) →
∏

α∈U

Hom(Ĥ, R̂ΔF)⊗O
̂X,α

k(α)

is injective for all open sets U ⊂ Pic0(X). Therefore, composing with the isomor-
phism (5), we get an injection

(7) Extg(H,RΔF ) →
∏

α∈U

Hom(Ĥ, R̂ΔF)⊗O
̂X,α

k(α).

By base-change for the top direct image of the complex RΔF and Serre duality,
this is the dual map of the map in (b), which is therefore surjective.

Proof of (b) ⇒ (a). Let A be an ample symmetric line bundle on X̂. From Mukai’s

Theorem (1), it follows that A−1 = ĤA, where HA is a locally free sheaf on X
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satisfying IT0 and such that ĤA = A−1. We have that (b) is equivalent to the
injectivity of (7). We now take H = HA in both (5) and (7). The facts that (5)
is an isomorphism and that (7) is injective yield the injectivity, for all open sets
U ⊂ Pic0(X), of the evaluation map at fibers

H0(R̂ΔF ⊗A)
evU−→

∏

α∈U

(R̂ΔF ⊗A)⊗O
̂X,α

k(α).

Letting A be sufficiently positive so that R̂ΔF ⊗ A is globally generated, this is

equivalent to the torsion-freeness of R̂ΔF3 and hence, by Proposition 2.8, to the
M -regularity of F . �
Continuous global generation and global generation. Recall first the follow-
ing:

Definition 5.2 ([PP1], Definition 2.10). Let Y be a variety equipped with a
morphism a : Y → X to an abelian variety X.
(a) A sheaf F on Y is continuously globally generated with respect to a if the sum
of evaluation maps

EvU :
⊕

α∈U

H0(F ⊗ a∗α)⊗ a∗α−1 −→ F

is surjective for every non-empty open subset U ⊂ Pic0(X).
(b) More generally, let T be a proper subvariety of Y . The sheaf F is said to be
continuously globally generated with respect to a away from T if Supp(Coker EvU ) ⊂
T for every non-empty open subset U ⊂ Pic0(X).
(c) When a is the Albanese morphism, we will suppress a from the terminology,
speaking of continuously globally generated (resp. continuously globally generated
away from T ) sheaves.

In Theorem 5.1, taking H to be a sufficiently positive line bundle on X easily
yields (cf [PP1], Proposition 2.13):

Corollary 5.3. An M -regular sheaf on X is continuously globally generated.

The relationship between continuous global generation and global generation comes
from:

Proposition 5.4 ([PP1], Proposition 2.12). (a) In the setting of Definition
5, let F (resp. A) be a coherent sheaf on Y (resp. a line bundle, possibly supported
on a subvariety Z of Y ), both continuously globally generated. Then F ⊗ A⊗ a∗α
is globally generated for all α ∈ Pic0(X).
(b) More generally, let F and A as above. Assume that F is continuously globally
generated away from T and that A is continuously globally generated away from W .
Then F ⊗A⊗ a∗α is globally generated away from T ∪W for all α ∈ Pic0(X).

The proposition is proved via the classical method of reducible sections, i.e.
those sections of the form sα · t−α, where sα (resp. t−α) belongs to H0(F ⊗ a∗α)
(resp. H0(A⊗ a∗α−1)).

Generation properties on varieties of maximal Albanese dimension via
Generic Vanishing. The above results give effective generation criteria once

3Note that the kernel of evU generates a torsion subsheaf of R̂ΔF ⊗ A whose support is
contained in the complement of U .
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one has effective Generic Vanishing criteria ensuring that the dimension of each
cohomological support locus is not too big. The main example of such a criterion
is the Green-Lazarsfeld Generic Vanishing Theorem for the canonical line bundle
of an irregular variety, proved in [GL1] and further refined in [GL2] using the
deformation theory of cohomology groups.4 For the purposes of this paper, it is
enough to state the Generic Vanishing Theorem in the case of varieties Y ofmaximal
Albanese dimension, i.e. such that the Albanese map a : Y → Alb(Y ) is generically
finite onto its image. More generally, we consider a morphism a : Y → X to an
abelian variety X. Then, as in §1 one can consider the cohomological support loci
V i
a (ωY ) = {α ∈ Pic0(X) | hi(ωY ⊗ a∗α) > 0 }. (In case a is the Albanese map we

will suppress a from the notation.)
The result of Green-Lazarsfeld (see also [EL] Remark 1.6) states that, if the

morphism a is generically finite, then

codim V i
a (ωY ) ≥ i for all i > 0.

Moreover, in [GL2] it is proved that the V i
a (ωY ) are unions of translates of subtori.

Finally, an argument of Ein-Lazarsfeld [EL] yields that, if there exists an i > 0
such that codim V i

a (ωY ) = i, then the image of a is ruled by subtori of X. All of
this implies the following typical application of the concept of M -regularity.

Proposition 5.5. Assume that dimY = dim a(Y ) and that a(Y ) is not ruled
by tori. Let Z be the exceptional locus of a, i.e. the inverse image via a of the locus
of points in a(Y ) having non-finite fiber. Then:
(i) a∗ωY is an M-regular sheaf on X.
(ii) a∗ωY is continuously globally generated.
(iii) ωY is continuously globally generated away from Z.

(iv) For all k ≥ 2, ω⊗k
Y ⊗a∗α is globally generated away from Z for any α ∈ Pic0(X).

Proof. By Grauert-Riemenschneider vanishing, Ria∗ωY = 0 for all i �= 0.
By the Projection Formula we get V i

a (ωY ) = V i(a∗ωY ). Combined with the Ein-
Lazarsfeld result, (i) follows. Part (ii) follows from Corollary 5.3. For (iii) note that,
as with global generation (and by a similar argument), continuous global generation
is preserved by finite maps: if a is finite and a∗F is continuously globally generated,
then F is continuously globally generated. (iv) for k = 2 follows from (iii) and
Proposition 5.4. For arbitrary k ≥ 2 it follows in the same way by induction (note
that if a sheaf F is such that F ⊗ a∗α is globally generated away from Z for every
α ∈ Pic0(X), then it is continuously globally generated away from Z). �

6. Pluricanonical maps of irregular varieties of maximal Albanese
dimension

One of the most elementary results about projective embeddings is that every
curve of general type can be embedded in projective space by the tricanonical line
bundle. This is sharp for curves of genus two. It turns out that this result can
be generalized to arbitrary dimension, namely to varieties of maximal Albanese
dimension. In fact, using Vanishing and Generic Vanishing Theorems and the
Fourier-Mukai transform, Chen and Hacon proved that for every smooth complex

4More recently, Hacon [Hac] has given a different proof, based on the Fourier-Mukai trans-
form and Kodaira Vanishing. Building in part on Hacon’s ideas, several extensions of this result
are given in [PP4].
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variety of general type and maximal Albanese dimension Y such that χ(ωY ) > 0,
the tricanonical line bundle ω⊗3

Y gives a birational map (cf. [CH], Theorem 4.4).
The main point of this section is that the concept of M -regularity (combined of
course with vanishing results) provides a quick and conceptually simple proof of on
one hand a slightly more explicit version of the Chen-Hacon Theorem, but on the
other hand under a slightly more restrictive hypothesis. We show the following:

Theorem 6.1. Let Y be a smooth projective complex variety of general type
and maximal Albanese dimension. If the Albanese image of Y is not ruled by tori,
then ω⊗3

Y is very ample away from the exceptional locus of the Albanese map.

Here the exceptional locus of the Albanese map a : Y → Alb(Y ) is Z = a−1(T ),
where T is the locus of points in Alb(Y ) over which the fiber of a has positive
dimension.

Remark 6.2. A word about the hypothesis of the Chen-Hacon Theorem and
of Theorem 6.1 is in order. As a consequence of the Green-Lazarsfeld Generic
Vanishing Theorem (end of §5), it follows that χ(ωY ) ≥ 0 for every variety Y
of maximal Albanese dimension. Moreover, Ein-Lazarsfeld [EL] prove that for Y
of maximal Albanese dimension, if χ(ωY ) = 0, then a(Y ) is ruled by subtori of
Alb(Y ). In dimension ≥ 3 there exist examples of varieties of general type and
maximal Albanese dimension with χ(ωY ) = 0 (cf. loc. cit.).

In the course of the proof we will invoke J (Y, ‖ L ‖), the asymptotic multiplier
ideal sheaf associated to a complete linear series |L| (cf. [La2] §11). One knows
that, given a line bundle L of non-negative Iitaka dimension,

(8) H0(Y, L⊗ J (‖ L ‖)) = H0(Y, L),

i.e. the zero locus of J (‖ L ‖) is contained in the base locus of |L| ([La2], Propo-
sition 11.2.10). Another basic property we will use is that, for every k,

(9) J (‖ L⊗(k+1) ‖) ⊆ J (‖ L⊗k ‖).
(Cf. [La2], Theorem 11.1.8.) A first standard result is

Lemma 6.3. Let Y be a smooth projective complex variety of general type.
Then:
(a) h0(ω⊗m

Y ⊗ α) is constant for all α ∈ Pic0(Y ) and for all m > 1.

(b) The zero locus of J (‖ ω
⊗(m−1)
Y ‖) is contained in the base locus of ω⊗m

Y ⊗ α,

for all α ∈ Pic0(Y ).

Proof. Since bigness is a numerical property, all line bundles ωY ⊗ α are
big, for α ∈ Pic0(Y ). By Nadel Vanishing for asymptotic multiplier ideals ([La2],
Theorem 11.2.12)

Hi(Y, ω⊗m
Y ⊗ β ⊗ J (‖ (ωY ⊗ α)⊗(m−1) ‖)) = 0

for all i > 0 and all α, β ∈ Pic0(X). Therefore, by the invariance of the Euler
characteristic,

h0(Y, ω⊗m
Y ⊗ β ⊗ J (‖ (ωY ⊗ α)⊗(m−1) ‖)) = constant = λα

for all β ∈ Pic0(Y ). Now

h0(Y, ω⊗m
Y ⊗ β ⊗ J (‖ (ωY ⊗ α)⊗(m−1) ‖)) ≤ h0(Y, ωm

Y ⊗ β)
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for all β ∈ Pic0(X) and, because of (8) and (9), equality holds for β = αm. By
semicontinuity it follows that h0(Y, ω⊗m

Y ⊗ β) = λα for all β contained in a Zariski

open set Uα of Pic0(X) which contains αm. Since this is true for all α, the statement
follows. Part (b) follows from the previous argument. �

Lemma 6.4. Let Y be a smooth projective complex variety of general type and
maximal Albanese dimension, such that its Albanese image is not ruled by tori. Let
Z be the exceptional locus of its Albanese map. Then, for every α ∈ Pic0(Y ):
(a) the zero-locus of J (‖ ωY ⊗ α ‖) is contained (set-theoretically) in Z.
(b) ω⊗2

Y ⊗ α⊗ J (‖ ωY ‖) is globally generated away from Z.

Proof. (a) By (8) and (9) the zero locus of J (‖ ω ⊗ α ‖) is contained in the
base locus of ω⊗2⊗α2. By Proposition 5.5, the base locus of ω⊗2⊗α2 is contained
Z. (b) Again by Proposition 5.5, the base locus of ω⊗2 ⊗ α is contained in Z. By
Lemma 6.3(b), the zero locus of J (‖ ωY ‖) is contained in Z. �

Proof. (of Theorem 6.1) As above, let a : Y → Alb(Y ) be the Albanese map
and let Z be the exceptional locus of a. As in the proof of Prop. 5.5, the Ein-
Lazarsfeld result at the end of §3 (see also Remark 6.2), the hypothesis implies
that a∗ωY is M -regular, so ωY is continuously globally generated away from Z. We
make the following:
Claim. For every y ∈ Y − Z, the sheaf a∗(Iy ⊗ ω⊗2

Y ⊗ J (‖ ωY ‖)) is M -regular.
We first see how the Claim implies Theorem 6.1. The statement of the Theorem is
equivalent to the fact that, for any y ∈ Y−Z, the sheaf Iy⊗ω⊗3

Y is globally generated

away from Z. By Corollary 5.3, the Claim yields that a∗(Iy ⊗ ω⊗2
Y ⊗ J (‖ ωY ‖))

is continuously globally generated. Therefore Iy ⊗ω⊗2
Y ⊗J (‖ ωY ‖) is continuously

globally generated away from Z. Hence, by Proposition 5.4, Iy ⊗ ω⊗3
Y ⊗J (‖ ωY ‖)

is globally generated away from Z. Since the zero locus of J (‖ ωY ‖) is contained
in Z (by Lemma 6.4)(a)), the Theorem follows from the Claim.
Proof of the Claim. We consider the standard exact sequence
(10)

0 → Iy ⊗ ω⊗2
Y ⊗ α⊗J (‖ ωY ‖) → ω⊗2

Y ⊗ α⊗J (‖ ωY ‖) → (ω⊗2
Y ⊗ α⊗ J (‖ ωY ‖))|y → 0.

(Note that y does not lie in the zero locus of J (‖ ωY ‖).) By Nadel Vanishing for
asymptotic multiplier ideals, Hi(Y, ω⊗2

Y ⊗ α ⊗ J (‖ ωY ‖)) = 0 for all i > 0 and

α ∈ Pic0(Y ). Since, by Lemma 6.4, y is not in the base locus of ω⊗2
Y ⊗α⊗J (‖ ωY ‖),

taking cohomology in (10) it follows that

(11) Hi(Y, Iy ⊗ ω⊗2
Y ⊗ α⊗ J (‖ ωY ‖)) = 0

for all i > 0 and α ∈ Pic0(X) as well. Since y does not belong to the exceptional
locus of a, the map a∗(ω

2
Y ⊗ J (‖ ωY ‖)) → a∗((ω

2
Y ⊗ J (‖ ωY ‖))|y) is surjec-

tive. On the other hand, since a is generically finite, by a well-known extension of
Grauert-Riemenschneider vanishing, Ria∗(ω

⊗2
Y ⊗J (‖ ωY ‖)) vanishes for all i > 0.5

Therefore (10) implies also that for all i > 0

(12) Ria∗(Iy ⊗ ω⊗2
Y ⊗ J (‖ ωY ‖)) = 0.

Combining (11) and (12) one gets, by the projection formula, that the sheaf a∗(Iy⊗
ω⊗2
Y ⊗ J (‖ ωY ‖)) is IT0 on X, hence M -regular. �

5The proof of this is identical to that of the usual Grauert-Riemenschneider vanishing theorem
in [La2] §4.3.B, replacing Kawamata-Viehweg vanishing with Nadel vanishing.
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Remark 6.5. It follows from the proof that ω⊗3
Y ⊗ α is very ample away from

Z for all α ∈ Pic0(Y ) as well.

Remark 6.6 (The Chen-Hacon Theorem). The reader might wonder why,
according to the above quoted theorem of Chen-Hacon, the tricanonical bundle
of varieties of general type and maximal Albanese dimension is birational (but
not necessarily very ample outside the Albanese exceptional locus) even under the
weaker assumption that χ(ωY ) is positive, which does not ensure the continuous
global generation of a∗ωY . The point is that, according to Generic Vanishing, if
the Albanese dimension is maximal, then χ(ωY ) > 0 implies h0(ωY ⊗α) > 0 for all
α ∈ Pic0(Y ). Hence, even if ωY is not necessarily continuously globally generated
away from the exceptional locus of the Albanese map, the following condition holds:
for general y ∈ Y , there is a Zariski open set Uy ⊂ Pic0(Y ) such that y is not a base
point of ωY ⊗ α for all α ∈ Uy. Using the same argument as in Proposition 5.4 –

based on reducible sections – it follows that such y is not a base point of ω⊗2
Y ⊗α for

all α ∈ Pic0(Y ). Then the Chen-Hacon Theorem follows by an argument analogous
to that of Theorem 6.1.

To complete the picture, it remains to analyze the case of varieties Y of maximal
Albanese dimension and χ(ωY ) = 0. Chen and Hacon prove that if the Albanese
dimension is maximal, then ω⊗6

Y is always birational (and ω⊗6
Y ⊗ α as well). The

same result can be made slightly more precise as follows, extending also results in
[PP1] §5:

Theorem 6.7. If Y is a smooth projective complex variety of maximal Al-
banese dimension then, for all α ∈ Pic0(Y ), ω⊗6

Y ⊗ α is very ample away from the
exceptional locus of the Albanese map. Moreover, if L a big line bundle on Y , then
(ωY ⊗ L)⊗3 ⊗ α gives a birational map.

The proof is similar to that of Theorem 6.1, and left to the interested reader.
For example, for the first part the point is that, by Nadel Vanishing for asymptotic
multiplier ideals, Hi(Y, ω⊗2

Y ⊗ α ⊗ J (‖ ωY ‖)) = 0 for all α ∈ Pic0(Y ). Hence, by

the same argument using Grauert-Riemenschneider vanishing, a∗(ω
⊗2
Y ⊗J (‖ ωY ‖))

is M -regular.
Finally, we remark that in [CH], Chen-Hacon also prove effective birationality

results for pluricanonical maps of irregular varieties of arbitrary Albanese dimension
(as a function of the minimal power for which the corresponding pluricanonical map
on the general Albanese fiber is birational). It is likely that the methods above apply
to this context as well.

7. Further applications of M-regularity

7.1. M-regularity indices and Seshadri constants. Here we express a
natural relationship between Seshadri constants of ample line bundles on abelian
varieties and the M -regularity indices of those line bundles as defined in [PP2].
This result is a theoretical improvement of the lower bound for Seshadri constants
proved in [Nak]. In the opposite direction, combined with the results of [La1], it
provides bounds for controlling M -regularity. For a general overview of Seshadri
constants, in particular the statements used below, one can consult [La2] Ch.I §5.
Note only that one way to interpret the Seshadri constant of a line bundle L at a
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point x is

(13) ε(L, x) = sup
n

s(Ln, x)

n
,

where for a line bundle A we denote by s(A, x) the largest number s ≥ 0 such that
A separates s-jets at x. On abelian varieties this is independent of the chosen point,
and we denote ε(L) = ε(L, x) for any x ∈ X.

We start by recalling the basic definition from [PP2] and by also looking at
a slight variation. We will denote by X an abelian variety of dimension g over an
algebraically closed field and by L an ample line bundle on X. Given x ∈ X, we
denote by mx ⊂ OX its ideal sheaf.

Definition 7.1. The M -regularity index of L is defined as

m(L) := max{l | L⊗mk1
x1

⊗ · · · ⊗mkp
xp

is M−regular for all distinct

x1, . . . , xp ∈ X with Σki = l}.

Definition 7.2. We also define a related invariant, associated to just one given
point x ∈ X:

p(L, x) := max{l | L⊗ml
x is M−regular}.

The definition does not depend on x because of the homogeneity of X, so we will
denote this invariant simply by p(L).

Our main interest will be in the asymptotic versions of these indices, which
turn out to be related to the Seshadri constant associated to L.

Definition 7.3. The asymptotic M -regularity index of L and its punctual
counterpart are defined as

ρ(L) := sup
n

m(Ln)

n
and ρ′(L) := sup

n

p(Ln)

n
.

The main result of this section is:

Theorem 7.4. We have the following inequalities:

ε(L) = ρ′(L) ≥ ρ(L) ≥ 1.

In particular ε(L) ≥ max{m(L), 1}.

This improves a result of Nakamaye (cf. [Nak] and the references therein).
Nakamaye also shows that ε(L) = 1 for some line bundle L if and only if X is the
product of an elliptic curve with another abelian variety. As explained in [PP2]
§3, the value of m(L) is reflected in the geometry of the map to projective space
given by L. Here is a basic example:

Example 7.5. If L is very ample – or more generally gives a birational mor-
phism outside a codimension 2 subset – then m(L) ≥ 2, so by the Theorem above
ε(L) ≥ 2. Note that on an arbitrary smooth projective variety very ampleness
implies in general only that ε(L, x) ≥ 1 at each point.

The proof of Theorem 7.4 is a simple application Corollary 5.3 and Proposition
5.4, via the results of [PP2] §3. We use the relationship with the notions of k-jet
ampleness and separation of jets. Recall the following:
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Definition 7.6. A line bundle L is called k-jet ample, k ≥ 0, if the restriction
map

H0(L) −→ H0(L⊗OX/mk1
x1

⊗ · · · ⊗mkp
xp
)

is surjective for any distinct points x1, . . . , xp on X such that
∑

ki = k + 1. Note
that if L is k-jet ample, then it separates k-jets at every point.

Proposition 7.7 ([PP2] Theorem 3.8 and Proposition 3.5). (i) Ln is
(n+m(L)− 2)-jet ample, so in particular s(Ln, x) ≥ n+m(L)− 2.
(ii) If L is k-jet ample, then m(L) ≥ k + 1.

Given (13), this points in the direction of local positivity. To establish the
connection with the asymptotic invariants above we also need the following:

Lemma 7.8. For any n ≥ 1 and any x ∈ X we have s(Ln+1, x) ≥ m(Ln).

Proof. This follows immediately from Corollary 5.3 and Proposition 5.4: if

Ln⊗mk1
x1
⊗· · ·⊗m

kp
xp isM -regular, then Ln+1⊗mk1

x1
⊗· · ·⊗m

kp
xp is globally generated,

and so by [PP2] Lemma 3.3, Ln+1 is m(L)-jet ample. �

Proof. (of Theorem 7.4.) Note first that for every p ≥ 1 we have

(14) m(Ln) ≥ m(L) + n− 1,

which follows immediately from the two parts of Proposition 7.7. In particular
m(Ln) is always at least n− 1, and so ρ(L) ≥ 1. Putting together the definitions,
(14) and Lemma 7.8, we obtain the main inequality ε(L) ≥ ρ(L). Finally, the
asymptotic punctual index computes precisely the Seshadri constant. Indeed, by
completely similar arguments as above, we have that for any ample line bundle L
and any p ≥ 1 one has

p(Ln) ≥ s(Ln, x) and s(Ln+1, x) ≥ p(Ln, x).

The statement then follows from the definition. �

Remark 7.9. What the proof above shows is that one can give an interpretation
for ρ(L) similar to that for ε(L) in terms of separation of jets. In fact ρ(L) is
precisely the “asymptotic jet ampleness” of L, namely:

ρ(L) = sup
n

a(Ln)

n
,

where a(M) is the largest integer k for which a line bundle M is k-jet ample.

Question 7.10. Do we always have ε(L) = ρ(L)? Can one give independent
lower bounds for ρ(L) or ρ′(L) (which would then bound Seshadri constants from
below)?

In the other direction, there are numerous bounds on Seshadri constants, which
in turn give bounds for the M -regularity indices that (at least to us) are not obvious
from the definition. All of the results in [La2] Ch.I §5 give some sort of bound.
Let’s just give a couple of examples:

Corollary 7.11. If (J(C),Θ) is a principally polarized Jacobian, then m(nΘ)
≤ √

g ·n. On an arbitrary abelian variety, for any principal polarization Θ we have

m(nΘ) ≤ (g!)
1
g · n.
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Proof. It is shown in [La1] that ε(Θ) ≤ √
g. We then apply Theorem 7.4. For

the other bound we use the usual elementary upper bound for Seshadri constants,

namely ε(Θ) ≤ (g!)
1
g . �

Corollary 7.12. If (A,Θ) is a very general PPAV, then there exists at least

one n such that p(nΘ) ≥ 2
1
g

4 (g!)
1
g · n.

Proof. Here we use the lower bound given in [La1] via a result of Buser-
Sarnak. �

There exist more specific results on ε(Θ) for Jacobians (cf. [De1], Theorem 7),
each giving a corresponding result for m(nΘ). We can ask however:

Question 7.13. Can we calculate m(nΘ) individually on Jacobians, at least
for small n, in terms of the geometry of the curve?

Example 7.14 (Elliptic curves). As a simple example, the above question has
a clear answer for elliptic curves. We know that on an elliptic curve E a line bundle
L is M -regular if and only if deg(L) ≥ 1, i.e. if and only if L is ample. From the
definition of M -regularity we see then that if deg(L) = d > 0, then m(L) = d− 1.
This implies that on an elliptic curve m(nΘ) = n − 1 for all n ≥ 1. This is
misleading in higher genus however; in the simplest case we have the following
general statement: If (X,Θ) is an irreducible principally polarized abelian variety
of dimension at least 2, then m(2Θ) ≥ 2. This is an immediate consequence of the
properties of the Kummer map. The linear series |2Θ| induces a 2 : 1 map of X

onto its image in P2g−1, with injective differential. Thus the cohomological support
locus for O(2Θ)⊗mx ⊗my consists of a finite number of points, while the one for
O(2Θ)⊗m2

x is empty.

7.2. Regularity of Picard bundles and vanishing on symmetric prod-
ucts. In this subsection we study the regularity of Picard bundles over the Jacobian
of a curve, twisted by positive multiples of the theta divisor. Some applications to
the degrees of equations cutting out special subvarieties of Jacobians are drawn in
the second part. Let C be a smooth curve of genus g ≥ 2, and denote by J(C) the
Jacobian of C. The objects we are interested in are the Picard bundles on J(C):
a line bundle L on C of degree n ≥ 2g − 1 – seen as a sheaf on J(C) via an Abel-
Jacobi embedding of C into J(C) – satisfies IT0, and the Fourier-Mukai transform

EL = L̂ is called an n-th Picard bundle . When possible, we omit the dependence
on L and write simply E. Note that any other such n-th Picard bundle EM , with
M ∈ Picn(C), is a translate of EL. The line bundle L induces an identification
between J(C) and Picn(C), so that the projectivization of E – seen as a vector
bundle over Picn(C) – is the symmetric product Cn (cf. [ACGH] Ch.VII §2).

The following Proposition is the main cohomological result needed for the proof
of Theorem 7.18. It is worth noting that Picard bundles are known to be negative
(i.e. with ample dual bundle), so vanishing theorems are not automatic. For
simplicity we prove only a non-effective result, as the value of n does not affect
the applications, but cf. Remark 7.17.

Proposition 7.15. If n � 0, for every 1 ≤ k ≤ g − 1 the vector bundle
⊗kE ⊗O(Θ) satisfies IT0.
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Proof.
6 The first step in the proof is to record the following description of

tensor powers of Picard bundles as Fourier-Mukai transforms.

Lemma 7.16. For any k ≥ 1, let πk : Ck → J(C) be a desymmetrized Abel-
Jacobi mapping and let L be a line bundle on C of degree n � 0 on C. Then
πk∗(L � · · · � L) satisfies IT0, and

(πk∗(L � · · · � L))̂= ⊗kE,

where E is the n-th Picard bundle of C.

Proof. The first assertion is clear. Concerning the second assertion note that,
by definition, πk∗(L� · · ·�L) is the Pontrjagin product L ∗ · · · ∗L. Moreover, this
is the same as the entire derived Pontrjagin product, as

Riπk∗(L � · · · � L) = 0 for all i > 0

by relative Serre vanishing. But then by the exchange of derived Pontrjagin and
tensor product under the Fourier-Mukai transform ([Muk1] (3.7)), it follows that

(L ∗ · · · ∗ L)̂∼= L̂⊗ · · · ⊗ L̂ = ⊗kE. �

Continuing with the proof of the Proposition, we will loosely use the notation
Θ for any translate of the canonical theta divisor. The statement then becomes
equivalent to the vanishing

hi(⊗kE ⊗O(Θ)) = 0, ∀ i > 0, ∀ 1 ≤ k ≤ g − 1.

To prove this we use the Fourier-Mukai transform. The first point is that Lemma
7.16, combined with Grothendieck duality (Lemma 2.5 above), tells us precisely that
⊗kE satisfies WITg and, by Mukai’s inversion theorem (1) its Fourier transform is

⊗̂kE = (−1J)
∗πk∗(L � · · · � L).

Using once again the fact that the Fourier-Mukai transform is an equivalence, we
have the following sequence of isomorphisms:

Hi(⊗kE ⊗O(Θ)) ∼= Exti(O(−Θ),⊗kE) ∼= Exti(Ô(−Θ), ⊗̂kE)

∼= Exti(O(Θ), (−1J)
∗πk∗(L � · · · � L)) ∼= Hi((−1J)

∗πk∗(L � · · · � L)⊗O(−Θ)).

(Here we are using the fact that both O(−Θ) and ⊗kE satisfy WITg and that

Ô(−Θ) = O(Θ).)
As we are loosely writing Θ for any translate, multiplication by −1 does not

influence the vanishing, so the result follows if we show:

Hi(πk∗(L � · · · � L)⊗O(−Θ)) = 0, ∀ i > 0.

But we have seen in the proof of Lemma 7.16 that Riπk∗(L� · · ·�L) = 0 for i > 0,
so from Leray and the Projection Formula we get that it is enough to have

Hi(Ck, (L � · · · � L)⊗ π∗
kO(−Θ)) = 0, ∀ i > 0.

This follows again from Serre vanishing. �

6We are grateful to Olivier Debarre for pointing out a numerical mistake in the statement,
in a previous version of this paper.
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Remark 7.17. Note that the proof above works identically if one replaces O(Θ)
by any vector bundle satisfying IT0. On the other hand, in the particular case of
O(Θ), with more work one can show that the effective bound n > 4g−4 suffices for
Proposition 7.15 to hold. For this one first needs to apply the theorem on formal
functions to show the effective vanishing of Riπk∗(L � · · · � L) = 0 (under very
mild positivity for L) similarly to [Ei] Theorem 2.7 or [Pol] Lemma 3.3(b). Then
one uses the well-known fact that

π∗
kO(Θ) ∼= ((ωC ⊗A−1) � · · · � (ωC ⊗A−1))⊗O(−Δ),

where Δ is the union of all the diagonal divisors in Ck (themselves symmetric
products) and A is a line bundle of degree g−k−1, from which the effective bound
for the vanishing of the groups at the end of the proof of the Proposition follows
by chasing cohomology via inductive restriction to diagonals.

An interesting consequence of the vanishing result for Picard bundles proved
above is a new – and in some sense more classical – way to deduce Theorem 4.1
of [PP1] on the M-regularity of twists of ideal sheaves IWd

on the Jacobian J(C).
This theorem has a number of applications to the equations of the Wd’s inside J(C),
and also to vanishing results for pull-backs of theta divisors to symmetric products.
For this circle of ideas we refer the reader to [PP1] §4. For any 1 ≤ d ≤ g − 1,
g ≥ 3, consider ud : Cd −→ J(C) to be an Abel-Jacobi mapping of the symmetric
product (depending on the choice of a line bundle of degree d on C), and denote
by Wd the image of ud in J(C).

Theorem 7.18. For every 1 ≤ d ≤ g − 1, IWd
(2Θ) satisfies IT0.

Proof. We have to prove that

hi(IWd
⊗O(2Θ)⊗ α) = 0, ∀ i > 0, ∀ α ∈ Pic0(J(C)).

In the rest of the proof, by Θ we will understand generically any translate of the
canonical theta divisor, and so α will disappear from the notation.

It is well known that Wd has a natural determinantal structure, and its ideal
is resolved by an Eagon-Northcott complex. We will chase the vanishing along this
complex. This setup is precisely the one used by Fulton and Lazarsfeld in order
to prove for example the existence theorem in Brill-Noether theory – for explicit
details on this cf. [ACGH] Ch.VII §2. Concretely, Wd is the ”highest” degeneracy
locus of a map of vector bundles

γ : E −→ F,

where rkF = m and rkE = n = m + d − g + 1, with m >> 0 arbitrary. The
bundles E and F are well understood: E is the n-th Picard bundle of C, discussed
above, and F is a direct sum of topologically trivial line bundles. (For simplicity
we are again moving the whole construction on J(C) via the choice of a line bundle
of degree n.) In other words, Wd is scheme theoretically the locus where the dual
map

γ∗ : F ∗ −→ E∗

fails to be surjective. This locus is resolved by an Eagon-Northcott complex (cf.
[Ke1]) of the form

0 → ∧mF ∗ ⊗ Sm−nE ⊗ detE → · · · → ∧n+1F ∗ ⊗ E ⊗ detE → ∧nF ∗ → IWd
→ 0.
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As it is known that the determinant of E is nothing but O(−Θ), and since F is a
direct sum of topologically trivial line bundles, the statement of the theorem follows
by chopping this into short exact sequences, as long as we prove

hi(SkE ⊗O(Θ)) = 0, ∀ i > 0, ∀ 1 ≤ k ≤ m− n = g − d− 1.

Since we are in characteristic zero, SkE is naturally a direct summand in ⊗kE, and
so it is sufficient to prove that

hi(⊗kE ⊗O(Θ)) = 0, ∀ i > 0, ∀ 1 ≤ k ≤ g − d− 1.

But this follows from Proposition 7.15. �
Remark 7.19. Using [PP1] Proposition 2.9, it follows that IWd

(kΘ) satisfies
IT0 for all k ≥ 2.

Remark 7.20. It is conjectured, based on a connection with minimal cohomol-
ogy classes (cf. [PP7] for a discussion), that the only nondegenerate subvarieties
Y of a principally polarized abelian variety (A,Θ) such that IY (2Θ) satisfies IT0

are precisely the Wd’s above, in Jacobians, and the Fano surface of lines in the
intermediate Jacobian of the cubic threefold.

Question 7.21. What is the minimal k such that IW r
d
(kΘ) is M -regular, for

r and d arbitrary?

We describe below one case in which the answer can already be given, namely
that of the singular locus of the Riemann theta divisor on a non-hyperelliptic Jaco-
bian. It should be noted that in this case we do not have that IW 1

g−1
(2Θ) satisfies

IT0 any longer (but rather IW 1
g−1

(3Θ) does, by the same [PP1] Proposition 2.9).

Proposition 7.22. IW 1
g−1

(2Θ) is M -regular.

Proof. It follows from the results of [vGI] that

hi(IW 1
g−1

⊗O(2Θ)⊗α) =

{
0 for i ≥ g − 2, ∀α ∈ Pic0(J(C))

0 for 0 < i < g − 2, ∀α ∈ Pic0(J(C)) such that α �= OJ(C).

For the reader’s convenience, let us briefly recall the relevant points from Section
7 of [vGI]. We denote for simplicity, via translation, Θ = Wg−1 (so that W 1

g−1 =
Sing(Θ)). In the first place, from the exact sequence

0 → O(2Θ)⊗ α⊗O(−Θ) → IW 1
g−1

(2Θ)⊗ α → IW 1
g−1/Θ

(2Θ)⊗ α → 0

it follows that

hi(J(C), IW 1
g−1

(2Θ)⊗ α) = hi(Θ, IW 1
g−1/Θ

(2Θ)⊗ α) for i > 0.

Hence one is reduced to a computation on Θ. It is a standard fact (see e.g. [vGI],
7.2) that, via the Abel-Jacobi map u = ug−1 : Cg−1 → Θ ⊂ J(C),

hi(Θ, IW 1
g−1/Θ

(2Θ)⊗ α) = hi(Cg−1, L
⊗2 ⊗ β ⊗ IZ),

where Z = u−1(W 1
g−1), L = u∗OX(Θ) and β = u∗α. We now use the standard

exact sequence ([ACGH], p.258):

0 → TCg−1

du→ H1(C,OC)⊗OCg−1
→ L⊗ IZ → 0.

Tensoring with L⊗ β, we see that it is sufficient to prove that

Hi(Cg−1, TCg−1
⊗ L⊗ β) = 0, ∀i ≥ 2, ∀β �= OCg−1

.



REGULARITY AND GENERIC VANISHING ON ABELIAN VARIETIES 161

To this end we use the well known fact (cf. loc. cit.) that

TCg−1
∼= p∗OD(D)

where D ⊂ Cg−1 × C is the universal divisor and p is the projection onto the first
factor. As p|D is finite, the degeneration of the Leray spectral sequence and the
projection formula ensure that

hi(Cg−1, TCg−1
⊗ L⊗ β) = hi(D,OD(D)⊗ p∗(L⊗ β)),

which are zero for i ≥ 2 and β non-trivial by [vGI], Lemma 7.24. �
7.3. Numerical study of semihomogeneous vector bundles. An idea

that originated in work of Mukai is that on abelian varieties the class of vector
bundles to which the theory of line bundles should generalize naturally is that of
semihomogeneous bundles (cf. [Muk1], [Muk3], [Muk4]). These vector bundles
are semistable, behave nicely under isogenies and Fourier transforms, and have a
Mumford type theta group theory as in the case of line bundles (cf. [Um]). The pur-
pose of this section is to show that this analogy can be extended to include effective
global generation and normal generation statements dictated by specific numerical
invariants measuring positivity. Recall that normal generation is Mumford’s termi-
nology for the surjectivity of the multiplication map H0(E)⊗H0(E) → H0(E⊗2).

In order to set up a criterion for normal generation, it is useful to introduce the
following notion, which parallels the notion of Castelnuovo-Mumford regularity.

Definition 7.23. A coherent sheaf F on a polarized abelian variety (X,Θ) is
called m-Θ-regular if F((m− 1)Θ) is M -regular.

The relationship with normal generation comes from (3) of the following “abelian”
Castelnuovo-Mumford Lemma. Note that (1) is Corollary 5.3 plus Proposition 5.4.

Theorem 7.24 ([PP1], Theorem 6.3). Let F be a 0-Θ-regular coherent sheaf
on X. Then:
(1) F is globally generated.
(2) F is m-Θ-regular for any m ≥ 1.
(3) The multiplication map

H0(F(Θ))⊗H0(O(kΘ)) −→ H0(F((k + 1)Θ))

is surjective for any k ≥ 2.

Basics on semihomogeneous bundles. LetX be an abelian variety of dimension
g over an algebraically closed field. As a general convention, for a numerical class
α we will use the notation α > 0 to express the fact that α is ample. If the class is
represented by an effective divisor, then the condition of being ample is equivalent
to αg > 0. For a line bundle L on X, we denote by φL the isogeny defined by L:

φL : X −→ Pic0(X) ∼= X̂
x � t∗xL⊗ L−1.

Definition 7.25. ([Muk3]) A vector bundle E on X is called semihomoge-
neous if for every x ∈ X, t∗xE

∼= E ⊗ α, for some α ∈ Pic0(X).

Mukai shows in [Muk3] §6 that the semihomogeneous bundles are Gieseker
semistable (while the simple ones – i.e. with no nontrivial automorphisms – are in
fact stable). Moreover, any semihomogeneous bundle has a Jordan-Hölder filtration
in a strong sense.
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Proposition 7.26. ([Muk3] Proposition 6.18) Let E be a semihomogeneous

bundle on X, and let δ be the equivalence class of det(E)
rk(E) in NS(X) ⊗Z Q. Then

there exist simple semihomogeneous bundles F1, · · · , Fn whose corresponding class
is the same δ, and semihomogeneous bundles E1, · · · , En, satisfying:

• E ∼=
⊕n

i=1 Ei.

• Each Ei has a filtration whose factors are all isomorphic to Fi.

Since the positivity of E is carried through to the factors of a Jordan-Hölder
filtration as in the Proposition above, standard inductive arguments allow us to
immediately reduce the study below to the case of simple semihomogeneous bundles,
which we do freely in what follows.

Lemma 7.27. Let E be a simple semihomogeneous bundle of rank r on X.
(1) ([Muk3], Proposition 7.3) There exists an isogeny π : Y → X and a line bundle
M on Y such that π∗E ∼=

⊕

r
M .

(2) ([Muk3], Theorem 5.8(iv)) There exists an isogeny φ : Z → X and a line
bundle L on Z such that φ∗L = E.

Lemma 7.28. Let E be a nondegenerate (i.e. χ(E) �= 0) simple semihomoge-
neous bundle on X. Then exactly one cohomology group Hi(E) is nonzero, i.e. E
satisfies the Index Theorem.

Proof. This follows immediately from the similar property of the line bundle
L in Lemma 7.27(2). �

Lemma 7.29. A semihomogeneous bundle E is m-Θ-regular if and only if
E((m− 1)Θ) satisfies IT0.

Proof. The more general fact that an M -regular semihomogeneous bundle
satisfies IT0 follows quickly from Lemma 7.27(1) above. More precisely, the line
bundle M in its statement is forced to be ample since it has a twist with global
sections and positive Euler characteristic. �
A numerical criterion for normal generation. The main result of this section
is that the normal generation of a semihomogeneous vector bundle is dictated by an
explicit numerical criterion. We assume throughout that all the semihomogeneous
vector bundles involved satisfy the minimal positivity condition, namely that they
are 0-Θ-regular, which in particular is a criterion for global generation by Theorem
7.24. We will in fact prove a criterion which guarantees the surjectivity of multi-
plication maps for two arbitrary semihomogeneous bundles. This could be seen as
an analogue of Butler’s theorem [Bu] for semistable bundles on curves.

Theorem 7.30. Let E and F be semihomogeneous bundles on (X,Θ), both
0-Θ-regular. Then the multiplication maps

H0(E)⊗H0(t∗xF ) −→ H0(E ⊗ t∗xF )

are surjective for all x ∈ X if the following holds:

1

rF
· c1(F (−Θ)) +

1

r′E
· φ∗

Θc1(Ê(−Θ)) > 0,

where rF := rk(F ) and r′E := rk(Ê(−Θ)). (Recall that φΘ is the isogeny induced
by Θ.)
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Remark 7.31. Although most conveniently written in terms of the Fourier-
Mukai transform, the statement of the theorem is indeed a numerical condition
intrinsic to E (and F ), since by [Muk2] Corollary 1.18 one has:

c1(Ê(−Θ)) = −PD2g−2(chg−1(E(−Θ))),

where PD denotes the Poincaré duality map

PD2g−2 : H2g−2(J(X),Z) → H2(J(X),Z),

and chg−1 the (g − 1)-st component of the Chern character. Note also that

rk(Ê(−Θ)) = h0(E(−Θ)) =
1

rg−1
· c1(E(−Θ))g

g!

by Lemma 7.29 and [Muk1] Corollary 2.8.

We can assume E and F to be simple by the considerations in §2, and we will
do so in what follows. We begin with a few technical results. In the first place,
it is useful to consider the skew Pontrjagin product, a slight variation of the usual
Pontrjagin product (see [Pa] §1). Namely, given two sheaves E and G on X, one
defines

E∗̂G := d∗(p
∗
1(E)⊗ p∗2(G)),

where p1 and p2 are the projections from X×X to the two factors and d : X×X →
X is the difference map.

Lemma 7.32. For all i ≥ 0 we have:

hi((E∗̂F )⊗OX(−Θ)) = hi((E∗̂OX(−Θ))⊗ F ).

Proof. This follows from Lemma 3.2 in [Pa] if we prove the following vanish-
ings:

(1) hi(t∗xE ⊗ F ) = 0, ∀i > 0, ∀x ∈ X.
(2) hi(t∗xE ⊗OX(−Θ)) = 0, ∀i > 0, ∀x ∈ X.

We treat them separately:

(1) By Lemma 7.27(1) we know that there exist isogenies πE : YE → X
and πF : YF → X, and line bundles M on YE and N on YF , such that
π∗
EE

∼= ⊕
rE
M and π∗

FF
∼= ⊕

rF
N . Now on the fiber product YE ×X YF , the

pull-back of t∗xE⊗F is a direct sum of line bundles numerically equivalent
to p∗1M ⊗ p∗2N . This line bundle is ample and has sections, and so no
higher cohomology by the Index Theorem. Consequently the same must
be true for t∗xE ⊗ F .

(2) Since E is semihomogeneous, we have t∗xE
∼= E⊗α for some α ∈ Pic0(X),

and so

hi(t∗xE ⊗OX(−Θ)) = hi(E ⊗OX(−Θ)⊗ α) = 0,

since E(−Θ) satisfies IT0.

�

Let us assume from now on for simplicity that the polarization Θ is symmetric.
This makes the proofs less technical, but the general case is completely similar since
everything depends (via suitable isogenies) only on numerical equivalence classes.
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Proposition 7.33. Under the hypotheses above, the multiplication maps

H0(E)⊗H0(t∗xF ) −→ H0(E ⊗ t∗xF )

are surjective for all x ∈ X if we have the following vanishing:

hi(φ∗
Θ((−1X)∗E ⊗OX(−Θ))̂⊗ F (−Θ)) = 0, ∀i > 0.

Proof. By [Pa] Theorem 3.1, all the multiplication maps in the statement are
surjective if the skew-Pontrjagin product E∗̂F is globally generated, so in particular
if (E∗̂F ) is 0-Θ-regular. On the other hand, by Lemma 7.32, we can check this 0-
regularity by checking the vanishing of hi((E∗̂OX(−Θ))⊗ F ). To this end, we use
Mukai’s general Lemma 3.10 in [Muk1] to see that

E∗̂OX(−Θ) ∼= φ∗
Θ((−1X)∗E ⊗OX(−Θ))̂⊗O(−Θ).

This implies the statement. �
We are now in a position to prove Theorem 7.30: we only need to understand the

numerical assumptions under which the cohomological requirement in Proposition
7.33 is satisfied.

Proof. (of Theorem 7.30.) We first apply Lemma 7.27(1) to

G := φ∗
Θ

̂(−1X)∗E(−Θ) and H := F (−Θ): there exist isogenies πG : YG → X and
πH : YH → X, and line bundles M on YG and N on YH , such that π∗

GG
∼= ⊕

rG
M

and π∗
HH ∼= ⊕

rH
N . Consider the fiber product Z := YG ×X YH , with projections

pG and pH . Denote by p : Z → X the natural composition. By pulling everything
back to Z, we see that

p∗(G⊗H) ∼=
⊕

rG·rF
(p∗1M ⊗ p∗2N).

This implies that our desired vanishing Hi(G⊗H) = 0 (cf. Proposition 7.33) holds
as long as

Hi(p∗GM ⊗ p∗HN) = 0, ∀i > 0.

Now c1(p
∗
GM) = p∗Gc1(M) = 1

rG
p∗c1(G) and similarly c1(p

∗
HN) = p∗Hc1(N) =

1
rH

p∗c1(G). Finally we get

c1(p
∗
GM ⊗ p∗HN) = p∗(

1

rG
· c1(G) +

1

rH
· c1(H)).

Thus all we need to have is that the class
1

rG
· c1(G) +

1

rH
· c1(H)

be ample, and this is clearly equivalent to the statement of the theorem. �
(−1)-Θ-regular vector bundles. It can be easily seen that Theorem 7.30 implies
that a (−1)-Θ-regular semihomogeneous bundle is normally generated. Under this
regularity hypothesis we have however a much more general statement, which works
for every vector bundle on a polarized abelian variety.

Theorem 7.34. For (−1)-Θ-regular vector bundles E and F on X, the multi-
plication map

H0(E)⊗H0(F ) → H0(E ⊗ F )

is surjective.
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Proof. We use an argument exploited in [PP1], inspired by techniques intro-
duced by Kempf. Let us consider the diagram

⊕
ξ∈U H0(E(−2Θ)⊗ Pξ)⊗H0(2Θ⊗ P∨

ξ )⊗H0(F ) ��

��

H0(E)⊗H0(F )

��⊕
ξ∈U H0(E(−2Θ)⊗ Pξ)⊗H0(F (2Θ)⊗ P∨

ξ ) �� H0(E ⊗ F )

Under the given hypotheses, the bottom horizontal arrow is onto by the general
Theorem 5.1. On the other hand, the abelian Castelnuovo-Mumford Lemma The-
orem 7.24 ensures that each one of the components of the vertical map on the left
is surjective. Thus the composition is surjective, which gives the surjectivity of the
vertical map on the right. �

Corollary 7.35. Every (−1)-Θ-regular vector bundle is normally generated.

Examples. There are two basic classes of examples of (−1)-Θ-regular bundles,
and both turn out to be semihomogeneous. They correspond to the properties of
linear series on abelian varieties and on moduli spaces of vector bundles on curves,
respectively.

Example 7.36. (Projective normality of line bundles.) For every ample
divisor Θ on X, the line bundle L = OX(mΘ) is (−1)-Θ-regular for m ≥ 3. Thus
we recover the classical fact that OX(mΘ) is projectively normal for m ≥ 3.

Example 7.37. (Verlinde bundles.) Let UC(r, 0) be the moduli space of
rank r and degree 0 semistable vector bundles on a a smooth projective curve C of
genus g ≥ 2. This comes with a natural determinant map det : UC(r, 0) → J(C),
where J(C) is the Jacobian of C. To a generalized theta divisor ΘN on UC(r, 0)
(depending on the choice of a line bundle N ∈ Picg−1(C)) one associates for any
k ≥ 1 the (r, k)-Verlinde bundle on J(C), defined by Er,k := det∗O(kΘN ) (cf.
[Po]). It is shown in loc. cit. that the numerical properties of Er,k are essential in
understanding the linear series |kΘN | on UC(r, 0). It is noted there that Er,k are
polystable and semihomogeneous.

A basic property of these vector bundles is the fact that r∗JEr,k
∼= ⊕OJ (krΘN ),

where rJ denotes multiplication by r on J(C) (cf. [Po] Lemma 2.3). Noting that
the pull-back r∗JOJ (ΘN ) is numerically equivalent to O(r2ΘN ), we obtain that Er,k

is 0-Θ-regular iff k ≥ r + 1, and (−1)-Θ-regular iff k ≥ 2r + 1. This implies by
the statements above that Er,k is globally generated for k ≥ r + 1 and normally
generated for k ≥ 2r + 1. These are precisely the results [Po] Proposition 5.2 and
Theorem 5.9(a), the second obtained there by ad hoc (though related) methods.
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Vector Bundles on Reducible Curves and Applications

Montserrat Teixidor i Bigas

1. Introduction

Let C be a projective, irreducible, non-singular curve of given genus g ≥ 2
defined over an algebraically closed field. Let E be a vector bundle on C. The
slope of E is defined as

μ(E) =
degE

rankE
A vector bundle E is said to be semistable (resp. stable) if and only if for every
subbundle F of E, μ(F ) ≤ (resp. <)μ(E). The set of all stable bundles of a given
rank r and degree d on C form a moduli space U(r, d). If r and d are coprime,
the condition for semistability is the same as the condition for stability and U(r, d)
is projective. If r and d are not coprime, this is no longer the case. A projective
moduli space can be obtained, though, by considering semistable vector bundles
modulo a suitable equivalence relation.

If C is a singular curve, the results above are not true. The moduli space
of stable bundles U(r, d) is no longer projective even when r and d are relatively
prime. Newstead (see [N]) gave a compactification for a fixed irreducible curve
by considering torsion-free sheaves instead of just vector bundles on the curve.
This was later generalized by Seshadri ([Se]) to include reducible curves and by
Pandariphande ([P]) when the curve moves in the moduli space of a fixed genus.

A different approach was taken by Gieseker in the case of an irreducible nodal
curve for r = 2 by considering vector bundles on various semistable models of the
given curve. His methods were extended in [X] to the case of a reducible curve (and
r = 2) and then by Schmitt [Sc2] to any rank and curves moving in the moduli
space.

In the case of rank one, many results about non-singular curves and their linear
series have been proved by degenerating to singular curves. This requires knowing
what is the equivalent in the singular case of a linear series. For a reducible curve
of compact type, the theory of limit linear series from [EH1] gave an excellent
solution. In order to do something similar in higher rank, one needs to extend the
concept of limit linear series to rank greater than one. At the same time, one must
deal with the stability condition.

2010 Mathematics Subject Classification. Primary 14H60; Secondary 14C20.
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In this paper, we present some scattered results about the moduli spaces of
(semi) stable vector bundles on reducible nodal curves, the concept of generalized
limit linear series and some of their applications. On neither of these themes does
the paper try to be comprehensive. Its main purpose is to present a few examples
of some techniques that have proved useful in the resolution of problems related to
vector bundles with the hope that they will become more widely used.

2. Moduli spaces of slope-stable torsion-free sheaves

Seshadri in [Se] gave the following compactification(s) of a moduli space of
vector bundles on a reducible curve. While his construction is more general, we
shall concentrate on the nodal case.

Let C be a nodal curve with components Ci. When the curve is reducible, the
notion of torsion-free sheaf mentioned in the introduction for irreducible curves can
be generalized to the concept of depth one sheaves. A sheaf E on C is said to be
of depth one if any torsion section vanishes identically on some component of C.

For an irreducible curve, the concept of stability could have been formulated
equivalently by the condition that for every subbundle F of E,

χ(F )

rank(F )
≤ (<)

χ(E)

rank(E)

where χ denotes the Euler-Poincaré characteristic. On a reducible curve, even if E
has constant rank, there will be subsheaves of E with different ranks on the various
components. Therefore, in order to generalize the definition above, one needs to
make clear how to count the relative rank of every component. This is done in the
following way:

A polarization of C is the choice of rational weights

wi, 0 < wi < 1,
∑

wi = 1.

A depth one sheaf E of rank n on C is said to be (semi)stable for the given polar-
ization if for every subsheaf F of E with rank ri on the component Ci,

χ(G)
∑

wiri
(≤) <

χ(E)

r
.

We will refer to the number
∑

wiri as the w-rank of F . There is then a moduli
space parameterizing (equivalence classes of semi)stable torsion-free sheaves on C.

The moduli space of torsion-free sheaves on a nodal reducible curve is itself
reducible. The description of its components was given in [T2] for curves of compact
type (that is, curves whose Jacobian is compact or whose dual graph has no non-
trivial cycles) and in [T3] for arbitrary nodal curves. If each component of the curve
has genus at least one, the number of components of the moduli space depends only
on the rank and the dual graph of the curve rather than the genus of the various
components of C. For example, if the curve is of compact type with M components
all of genus at least one, then the moduli space of vector bundles of rank r on C
has rM−1 components.

More generally, consider any nodal curve C. Assume that C is the fiber of a
one-dimensional family π : C → S. Fix a vector bundle E on C so that the restriction
to every fiber of π is of degree d. The multidegree (di) is the collection of degrees of
the restriction of this vector bundle to the components Ci of C. If we tensor E by a
line bundle E = OC(

∑
aiCi), the numbers di will be modified by multiples of r and
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the total degree d will remain invariant. For example, if C has only two components
glued at one point, the degree on one of the components can be increased by an
arbitrary multiple of r while the degree on the other component will decrease by
subtracting the same multiple of r. Let us say that two multidegrees are equivalent
if they can be obtained from one another by such a transformation. Then, the set of
components of the moduli space corresponds one to one with the set of equivalence
classes of multidegrees by this equivalence relation.

We provide a sketch of proof of this fact in the case of a curve C with two
components C1, C2 and a single node obtained by identifying Q ∈ C1 with P ∈ C2

(for the more general statements and proofs see [T3]):

2.1. Proposition Let C be the nodal curve of genus g obtained by identifying
Q ∈ C1 with P ∈ C2, where C1, C2 are two non-singular curves of genus at least
one. Then the moduli space of torsion-free sheaves on C semistable with respect
to a generic polarization is connected and has r irreducible components each of
dimension r2(g − 1) + 1.

Proof. Assume that E is a vector bundle stable by a generic polarization
w1, w2. Consider the subsheaf F of E consisting of the sections of E that vanish
identically on the second component C2. Then, χ(F ) = χ(E|C1

) − r while the
w-rank of F is w1r. The stability condition gives

χ(E|C1
)− r

w1r
=

χ(F )

w1r
≤ χ(E)

r

Hence, χ(E|C1
) ≤ w1χ(E) + r. Reversing the role of C1, C2 and using that χ(E) =

χ(E|C1
) + χ(E|C2

)− r, w1 + w2 = 1, one obtains

(∗) w1χ(E) ≤ χ(E|C1
) ≤ w1χ(E) + r.

If w1 is generic, w1χ(E) is not an integer and there are therefore r possible
values of χ(E|C1

) that satisfy (∗). Moreover (see (cf. [T2], [T3] ) if (∗) is satisfied
and E|C1

, E|C2
are semistable then the vector bundle E is also semistable. If in

addition, at least one of the vector bundles E|C1
, E|C2

is stable, then so is E. In
fact it suffices if they are both semistable and no destabilizing subsheaf of E|C1

glues with a destabilizing subsheaf of E|C2
for E to be stable.

The moduli space of semistable vector bundles of a given rank and degree on
each of the curves C1, C2 is irreducible of dimension r2(g1 − 1) + 1, r2(g2 − 1) + 1
with g1 ≥ 1, g2 ≥ 1 the genera of the corresponding curves. Once E|C1

, E|C2
have

been fixed, a vector bundle on C is determined by giving a projective isomorphism
of the fibers (E|C1

)Q ∼= (E|C2
)P . Fix a degree for E1 satisfying (*). As the degree

of E is fixed, this determines the degree for E|C2
. One gets a variety of dimension

r2(g1 − 1) + 1 + r2(g2 − 1) + 1 + r2 − 1 = r2(g − 1) + 1.

This is the dimension of the moduli space of vector bundles on C. We obtain in this
way an open set of one of the components of the moduli space of vector bundles on
C. The closure of this component may contain some points corresponding to vector
bundles that are stable on C but whose restriction to each of the components
is not necessarily semistable. Moreover, the different components of the moduli
space are not disjoint, the points of intersection correspond to torsion-free sheaves
that are not locally free at the nodes. For example, in the situation above, the
components corresponding to deg(E|C1

) = d1, deg(E|C2
) = d− d1 and deg(E′

|C1
) =
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d1− 1, deg(E′
|C2

) = d−d1+1 have an intersection whose generic point is a torsion-

free sheaf F such that deg(F|C1
) = d1 − 1, deg(F|C2

) = d− d1 and the fiber at the

node N is of the form (ON )r−1 ⊕MN with MN the maximal ideal at the node.
On an elliptic curve, there are no stable vector bundles of rank r and degree

d when r, d are not coprime. Assume that C1 is an elliptic curve and that d1 =
deg(E|C1

) gives a solution to (∗) (or a suitable set of relations deduced from the
graph of the nodal curve). Write h for the greatest common divisor of r, d1. Then,
the generic point in the component corresponding to this value d1 is a vector bundle
whose restriction to C1 is a direct sum of h vector bundles of rank r

h and degree d1

h .
Note that this still gives the right dimension to the component of the moduli space
of vector bundles on C: while there is an h-dimensional space of these restrictions
of vector bundles to C1 there is also an h-dimensional set of automorphisms of these
restrictions acting on the set that identify isomorphic bundles. �

As it was mentioned before, the stability of a vector bundle for a given polar-
ization on a reducible curve does not imply that the restriction of this bundle to
each component is stable. But these restrictions cannot be too unstable either. As
an example we present the following:

2.2. Proposition Let C be a nodal curve with an irreducible component C̄
intersecting the rest of the curve in α nodes. Let E be a vector bundle on C that is
stable by a generic polarization. Assume that the restriction of E to C̄ is the direct
sum of r line bundles L1 ⊕ · · · ⊕ Lr. Then, | degLi − degLj | ≤ α− 1.

Proof. Consider the subsheaf F of E that vanishes on all components of C−C̄
and that restricts to C̄ to the sheaf of sections of L1 that vanish at the nodes. Then
χ(F ) = χ(L1) − k while the weighted rank rank(F ) = w̄. The stability condition
then gives

χ(L1)− α ≤ w̄
χ(E)

r
.

Consider the subsheaf F ′
i of E that restricts to C̄ to the sheaf of sections of

L2 ⊕ · · · ⊕ Lr and on all components of C − C̄ restricts to the sections of E that
glue with the above on C̄. Then χ(F ′) = χ(E) − χ(L1) while the weighted rank
rank(F ′) = (r − 1)w̄ + r(1− w̄) = r − w̄. The stability condition then gives

χ(E)− χ(L1)

r − w̄
≤ χ(E)

r
.

One obtains

w̄
χ(E)

r
≤ χ(L1) ≤ w̄

χ(E)

r
+ α

As w̄ is generic, w̄χ(E)
r is not an integer. As the above equation is valid for all Li,

not just L1, the result follows. �

While the choice of a polarization can be arbitrary, there is a natural one that
can be defined as follows: For a given semistable curve C, define di as the degree of
the canonical sheaf of C restricted to the component Ci. The canonical polarization
has weights

wi =
di

2g − 2

Pandharipande showed in [P] that there is a moduli space of torsion-free sheaves
over the moduli space of stable curves if one considers the canonical polarization.
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3. Hilbert compactification of the moduli space and its relationship
with the slope-stable moduli space

Gieseker took the following approach towards compactifying the moduli space
of vector bundles on a nodal curve. There is an isomorphism between moduli spaces
of vector bundles U(r, d) ∼= U(r, d + kr) given by tensoring with a line bundle of
degree k. Hence, one can assume that d is sufficiently large. In this situation, on a
non-singular curve, a stable vector bundle is globally generated, hence it induces a
map from the curve to the Grassmannian.

Start now the other way around. Consider the Hilbert scheme of curves in
Gr(H0(E), r) of suitable Hilbert polynomial. Take the connected component of
points corresponding to immersions of a given nodal curve and consider its closure.
The restriction to the curve of the universal bundle on the Grassmannian gives a
vector bundle on the curve. In order to obtain a moduli space for vector bundles,
one should first restrict to the points that are stable under the action of the linear
group and then take quotient by this action.

This provides a natural compactification of the locus of vector bundles. Its
main advantage is that all the points of this space correspond to vector bundles on
a curve, namely the restriction of the universal bundle on the Grassmannian. Its
main drawback is that the curve is not fixed. Other curves may appear that differ
from the given nodal curve in adding a few rational components between the nodes
of the original nodal curve. As this is precisely what happens with limit liner series
(see next section), this seems a suitable model to use in this case.

Several extensions of Gieseker’s results to higher rank were given by Nagaraj-
Seshadri [NS1], [NS2] and Kausz [K] using different methods. Caporaso ([C])
gave a compactification of the Hilbert stable set of curves over M̄g when r = 1.
Finally, Schmitt (see [Sc2]) extended Gieseker’s construction not only to higher
rank but also to the whole moduli space of semistable curves in M̄g.

The two compactifications of Seshadri and Gieseker-Schmitt are in fact closely
related: for a non-singular curve, slope stability and Hilbert stability are equivalent.
This was first proved for rank 2 by Gieseker and Morrison in [GM] (see also [T4]
for a different proof). For general rank, one of the implications was proved in [T5]
and the equivalence in [Sc1].

On reducible curves, Hilbert stability implies that the distribution of degrees
on the various components is the same as that allowed by slope stability in the case
of the canonical weights (that is conditions similar to those in (∗) in the proof of
2.1 are satisfied). Similarly, the restriction to the various components cannot be
too unstable, so conditions as those stated in 2.2 are also satisfied. For instance,
rational components on Hilbert stable curves must have at least two nodes and
in this case the restriction of the vector bundles to the components is of the form
O⊕j ⊕O(1)⊕r−j.

4. Limit linear series

Assume that we have a family of curves π : C → S such that Ct is non-singular
for t 	= t0 while the special fiber Ct0 is a curve of compact type (that is, a curve
whose Jacobian is compact or whose dual graph has no cycles).

We want to consider a linear series for vector bundles on C −Ct0 and we would
like to describe the limit of this object on Ct0 .
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A linear series for vector bundles on C − Ct0 will be given by a vector bundle
E on C − Ct0 such that the restriction to each fiber has a preassigned rank r and
degree d together with a family of spaces of sections given by a locally free subsheaf
V of rank k of π∗(E).

Up to making a few base changes and blow-ups (that may add a few rational
components to the central fiber), we can assume that the vector bundle and locally-
free subsheaf can be extended to the whole family.

On the central fiber, one obtains then a limit linear series in the sense of [T1]
section 2, that can be defined as follows:

4.1. Definition. Limit linear series A limit linear series of rank r, degree d
and dimension k on a curve of compact type with M components consists of data
(I), (II) below for which data (III), (IV) exist satisfying conditions (a)-(c).

(I) For every component Ci, a vector bundle Ei of rank r and degree di and a
k-dimensional space of sections Vi of Ei.

(II) For every node obtained by gluing Q ∈ Ci with P ∈ Cj an isomorphism of
the projectivisation of the fibers (Ei)Q and (Ej)P

(III) A positive integer a
(IV) For every node obtained by gluing Q ∈ Ci and P ∈ Cj, bases s

t
Q,i, s

t
P,j , t =

1...k of the vector spaces Vi and Vj

Subject to the conditions

(a) (
∑M

i=1 di)− r(M − 1)a = d
(b) At the nodes, the sections glue with each other through the isomorphism

in II and the orders of vanishing at Pj , Qi of corresponding sections of the chosen
basis satisfy ordP s

t
P,j + ordQs

t
Q,i ≥ a

(c) Sections of the vector bundles Ei(−aQ) are completely determined by their
value at the nodes.

This is a generalization of the concept of limit linear series for line bundles. In
the line bundle case, a = d = degEi for all i. Hence, (III) is irrelevant and so is
the projective isomorphism in (II) as the fibers are one-dimensional. Conditions
(a), (c) and the first part of (b) are automatically satisfied and one only needs to
impose the second part of (b).

Let us check that the limit of a linear series on a non-singular curve is actually a
limit linear series. Given a family of curves π : C → S as above, fix a vector bundle
on the generic fiber and extend it (after some base change and normalizations) to a
vector bundle on the central fiber. This limit vector bundle on the central fiber is
not unique. We could modify it by, for example, tensoring the bundle on the whole
curve C with a line bundle with support on the central fiber. This would leave the
vector bundle on the generic curve unchanged but would modify the vector bundle
on the reducible curve (by adding to the restriction to each component a linear
combination of the nodes). In this way, for each component Ci, one can choose (in
many different ways) a version Ei of the limit vector bundle such that the sections
of Ei|Cj

, i 	= j are trivial. In particular, this implies that Vi restricts to a space of
sections of dimension k on the component Ci. Taking Ei = Ei|Ci

, Vi = Vi|Ci
, one

obtains data in (I) satisfying condition (c).
We want to see how to choose the data above in order to obtain the integer a

in (III).
Order the components of C so that C1 has only one node and C1 ∪ · · · ∪ Ci is

connected. From the connectivity, Ci intersects some Cj(i), j(i) < i and from the
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fact that the curve is of compact type, this j(i) is uniquely determined. Let C ′
i be

the connected component of C−Ci containing Cj(i). The restriction of Ej(i)(−bC ′
i)

to any component of C other than Ci, Cj(i) is identical to the restriction of Ej(i)
to that component. The restriction to Ci (resp Cj(i)) is changed by tensoring with
OCi

(bPi) (resp OCj(i)
(−bQj(i))) if Pi, Qj(i) are the two points that get identified to

form the node. Hence, in order to satisfy the conditions in the previous paragraph,
we can take Ei = Ej(i)(−biC

′
i) for some integer bi. As the curve has only a finite

number of components, we may assume the bi to be all identical. We denote this
number by a.

It is easy to check then that condition (a) is satisfied.
As Ei = Ej(−aC ′

i) the gluing defining Ei|C determine those of Ej|C . Hence, the
isomorphisms in (II) are well determined and the first part of b) is satisfied.

Let us check the second part of (b). If Ci, Cj , j < i intersect, then j = j(i) (in
the notations above). Hence Ei = Ej(−aC ′

i). Let s be a section of Vj|C . Assume
that s vanishes on C ′

i with multiplicity α (and therefore vanishes at the point P of
intersection with C ′

i with order at least α). Let t0 be a local equation for C. Then
(ta−α

0 )s is a non-trivial section of Ej(−aC ′
i) = Ei. Hence it gives rise to a section

on Vi that vanishes to order at least a− α on P .
Given a vector bundle E stable by some polarization, the vector bundles Ei

that give rise to the limit linear series are no longer stable by this polarisation, as
the distribution of degrees among the components gets changed. But conditions
of ”quasistability” are preserved, that is, conditions that say that the restriciton
of the vector bundle to each component is not far from being stable (analogous to
2.2). This fact is very important in applications as it restricts the possibilities for
these vector bundles.

5. Subbundles of a vector bundle

Let E be a vector bundle of rank r and degree d. Let E′ be a subsheaf of E of
fixed rank r′. Up to increasing the degree of E′, we can assume that the quotient
is again a vector bundle. Hence, we have an exact sequence

(∗∗) 0 → E′ → E → E′′ → 0

Define

sr′(E) = r′d− rmax{deg(E′)}
where E′ varies among all subsheaves of E of rank r′. If E is stable, then sr′(E) ≥ 0.

If E′, E′′ are fixed, the set of vector bundles that fit in an exact sequence as
(∗∗) is parameterized by H1(C, (E′′)∗ ⊗ E′). If there exists a stable E fitting in
one of these exact sequences, then H0(C, (E′′)∗ ⊗ E′) = 0, otherwise there would
be a non-trivial map E′′ → E′ and therefore a non-trivial endomorphism of E
contradicting stability. This implies that h1(C, (E′′)∗ ⊗ E′) is constant.

Let E′, E′′ vary

E′ ∈ U(r′, d′), E′′ ∈ U(r − r′, d− d′).

Then, the set of stable E varies in a space of dimension

(r′)2(g−1)+1+(r− r′)2(g− 1)+1+ r′(d−d′)− (r− r′)d′+ r′(r− r′)(g−1)−1 =

= r2(g − 1) + 1 + r′d− rd′ − r′(r − r′)(g − 1)

The following result was conjectured by Lange in [L]
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5.1. Theorem If r′d− rd′ − r′(r− r′)(g− 1) ≥ 0, the generic vector bundle in
U(r, d) has subbundles of rank r′ and degree d′. For 0 ≤ r′d−rd′ ≤ r′(r−r′)(g−1),
the set of vector bundles with such a subbundle is an irreducible set of the moduli
space of codimension r′(r − r′)(g − 1)− (r′d− rd′).

The rank two case was proved by Lange in [L] . Several special cases were
obtained (see[BL] and the references there).

The result was proved for the generic curve in [T7] and then in its full generality
in [RT].

The main point of any proof of the result is to show that there exist extensions
as in (∗) with a stable E and for r′d − rd′ < r′(r − r′)(g − 1) that such an E has
only a finite number of subbundles of the given rank and degree.

Reducible curves were used in [T6], [T7], [T8]. We will sketch below the main
points of the proof when r = 2, r′ = 1, d = 1. In order to prove the result for
the generic curve, it suffices to show it for a special curve. Take g elliptic curves
C1, ..., Cg with marked points Pi, Qi on them and identify Qi with Pi+1 to form a
nodal curve of arithmetic genus g. Consider the component of the moduli space of
vector bundles on this curve with distribution of degrees one on the first component
and zero on the remaining ones. For a generic point on this component, E1 is an
indecomposable vector bundle of degree one while the remaining Ei are direct sums
of two line bundles.

The largest degree of a line subbundle of E1 is zero. In fact, every line subbundle
of degree zero on C1 can be immersed in E1. For a particular choice of such a
subbundle, we can assume that it glues at Q1 with a fixed direction. On the
remaining components, the degree of the largest subbundle is zero and there are
precisely two subbundles of this degree inside each Ei. On the other hand, every
line bundle of degree −1 on Ci can be immersed in Ci by a two-dimensional family
of maps. Given a fixed direction at both Pi and Qi, one can find a subbundle of Ei

of degree −1 that glues with these two directions at the nodes.
In order to obtain a line subbundle on the total curve, we must choose line

subbundles of each of the components that glue with each other. If all the gluing
are generic, the choice that gives the largest degree will be as follows: Take a
subbundle of degree zero of E1 that glues with one of the two subbundles of degree
zero of E2. Choose a subbundle of degree zero on each of the components Ci for
even i. Choose a subbundle of degree −1 on the components Ci for odd i that glues
with the chosen subbundles in adjacent components. The degree of the subbundle
obtained in this way is d′ = − g−2

2 if this number is an integer and d′ = − g−1
2

otherwise.
In order to obtain subbundles of higher degree, take the gluing in the last k

components so that line subbundles of degree zero glue with each other and glue
with the chosen subbundle in the previous g − k components. One then obtains
a subbundle of degree d′ = − g−k−2

2 (again if this number is an integer). In this
case, the gluing depends on three rather than four parameters at the last k nodes.
Hence, the codimension of the set is k = g + 2d′ − 2 as expected.

6. Some applications to Brill-Noether Theory

A Brill-Noether subvariety Bk
r,d of the stable set in U(r, d) is a subset of U(r, d)

whose points correspond to stable bundles having at least k independent sections
(often denoted by W k−1

r,d ). Brill-Noether varieties can be locally represented as
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determinantal varieties. This implies that, when non-empty, the dimension of Bk
r,d

at any point is at least the so called Brill-Noether number

ρkr,d = dimU(r, d)− h0(E)h1(E) = r2(g − 1) + 1− k(k − d+ r(g − 1))

with expected equality. Moreover, Bk+1
r,d is contained in the singular locus, again

with expected equality. It is not true that the above expectations actually occur for
all meaningful values of r, d, k. For an account of the state of the art in Brill-Noether
Theory see [GT].

Using limit linear series, one can prove the following:

6.1. Theorem (see [T1], [T9]) Let C be a generic non-singular curve of genus
g ≥ 2. Let d, r, k be positive integers with k > r. Write

d = rd1 + d2, k = rk1 + k2, d2 < r, k2 < r

and all di, ki non-negative integers. Assume that one of the following conditions
is satisfied

(1)g − (k1 + 1)(g − d1 + k1 − 1) ≥ 1, d2 ≥ k2 	= 0

(2)g − k1(g − d1 + k1 − 1) > 1, k2 = 0

(3)g − (k1 + 1)(g − d1 + k1) ≥ 1, d2 < k2.

Then the set Bk
r,d of rank r degree d and with k sections on C is non-empty and

has (at least) one component of the expected dimension ρ.

Given a family of curves
C → T

construct the Brill-Noether locus for the family

Bk
r,d = {(t, E)|t ∈ T, E ∈ Bk

r,d(Ct)}.
The dimension of this scheme at any point is at least dimT + ρkr,d. Assume

that we can find a point (t0, E0) such that the dimension at the point (t0, E0) of
the fiber of Bk

r,d over t0 dim(Bk
r,d(Ct0))E0

= ρkn,d. Then dimBk
r,d ≤ ρkr,d+dimT and

therefore we have equality. The dimension of the generic fiber of the projection
Bk
r,d → T is at most the dimension of the fiber over t0, namely ρkr,d. But it cannot

be any smaller, as the fiber over a point t ∈ T is Bk
r,d(Ct) which has dimension at

least ρkn,d at any point. Hence, there is equality which is the result we are looking
for.

As the particular curve Ct0 , we take g elliptic curves C1, ..., Cg with marked
points Pi, Qi on them and identify Qi with Pi+1 to form a node. Then, one needs
to prove that there is a component of the set of limit linear series on the curve of
dimension exactly ρ with the generic point corresponding to a stable bundle.

Let us sketch how one could proceed in the particular case g = 5, k = 4, d = 9
(and hence ρ = 5).

On the curve C1, take the vector bundle to be a generic indecomposable vector
bundle of degree nine. On the curve C2 take O(P2 + 3Q2) ⊕ O(2P2 + 2Q2). On
the curve C3, take O(P3 + 3Q3)

⊕2. On the curve C4, take O(3P4 +Q4)
⊕2. On the

curve C5, take the direct sum of two generic line bundles of degree four.
The sections and gluing at the nodes are taken as follows: there is a unique

section s1 of E1 that vanishes at Q1 with order four. Take as space of sections
the space that contains s1, two sections that vanish at Q1 to order three and one
section that vanishes to order two.
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On C2, glue O(2P2+2Q2) with the direction of s1. Take a section that vanishes
at P2 to order three, the section that vanishes at P2 to order one and at Q2 to order
three, one section that vanishes at P2 to order one and at Q2 to order two and the
section that vanishes at P2 to order two and at Q2 to order two.

On C3, take generic gluing. Take two sections that vanish at P3 with order one
and at Q3 to order three and two sections that vanish at P3 to order two and at
Q3 to order one.

On C4, take generic gluing. Take two sections that vanish at P4 to order one
and at Q4 to order two and two sections that vanish at P4 to order three and at
Q4 to order one.

On C5, take generic gluing. Take two sections that vanish at P5 to order two
and two sections that vanish at P5 to order three.

In this way, each section on Ci glues at Qi with a section on Ci+1 so that the
sum of the orders of vanishing is four. Note also that we have been using sections
of our vector bundles that vanish as much as possible between the two nodes. So
it is not possible to obtain a limit linear series of dimension larger than four with
these vector bundles.

Let us count the dimension of the family so obtained. The vector bundle E1

varies in a one-dimensional family and has a one-dimensional family of endomor-
phisms. The vector bundles E2, E3, E4 are completely determined and have a
family of endomorphisms of dimensions two, four and four respectively while E5

varies in a two-dimensional family and has a two-dimensional family of endomor-
phisms. The resulting vector bundle is stable as the restriction to each component
is semistable and the first one is actually stable (see section 2). Therefore it has a
one-dimensional family of automorphisms. The gluings at each of the nodes vary in
a four-dimensional family except for the first one that varies in a three-dimensional
family. Therefore the total dimension of the family is

1 + 0 + 0 + 0 + 2− (1 + 2 + 4 + 4 + 4 + 2) + 1 + (3 + 4 + 4 + 4) = 5 = ρ.

If we try to deform the vector bundle by either taking more general restrictions
to some component curves or more general gluing at some nodes, the limit linear
series does not extend to this deformation. Hence, the point we describe is a general
point in the set of limit linear series. Therefore, the result is proved.

One of the main questions for classical Brill-Noether Theory (that is in the case
r = 1) comes from the infinitesimal study of Bk

r,d. The tangent space to U(r, d)
can be identified with the set of infinitesimal deformations of the vector bundle E
which is parameterized by H1(C,E⊗E∗) ∼= H0(C,K⊗E∗⊗E). The tangent space
to Bk

r,d inside the tangent space to U(r, d) can be identified with the orthogonal to
the image of the Petri map

PV : H0(C,E)⊗H0(C,K ⊗ E∗) → H0(C,K ⊗ E ⊗ E∗).

If this map is injective for a given E, then Bk
r,d is non-singular of the right dimension

at E. Hence, in order to prove that the expected results hold, it would be sufficient
to prove the injectivity of this map for all possible E on say, a generic curve. This
is true in rank one ([G1]). Unfortunately, for rank greater than one, the map is
not injective in general. There is one case though in which one has an analogous
result.
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Assume that E is a vector bundle of rank two and canonical determinant. Let
U(2,K) be the moduli space of stable rank two vector bundles with determinant
the canonical sheaf. Consider the set

Bk
2,K = {E ∈ U(2,K)|h0(C,E) ≥ k}

Then Bk
2,K can be given a natural scheme structure. Its expected dimension is

(see [GT], [T10])

dimU(2,K)−
(
k + 1

2

)

The tangent space to Bk
2,K at a point E is naturally identified with the orthog-

onal to the image of the symmetric Petri map

S2(H0(C,E)) → H0(C, S2(E))

6.2. Theorem (cf. [T10]) Let C be a generic curve of genus g defined over an
algebraically closed field of characteristic different from two. Let E be a semistable
vector bundle on C of rank two with canonical determinant. Then, the canonical
Petri map

S2H0(C,E) → H0(S2E)

is injective.

The proof of this fact is in many ways similar to the proof of the injectivity
of the classical Petri map in [EH2] with the (considerable) added complication
brought in by higher rank.
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