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Preface

For over three decades Freydoon Shahidi has been making significant contribu-
tions to number theory, automorphic forms, and harmonic analysis. Shortly after
receiving his Ph.D. in 1975 from Johns Hopkins, under the direction of Joseph Sha-
lika, Shahidi laid out a program to address several open problems, as stated by
Langlands, by a novel method now known as the Langlands-Shahidi method. In
particular, Shahidi sought to exploit the Fourier coefficients of Eisenstein series and
their local analogs to establish cases of Langlands functoriality. Key to this idea
was the understanding of generic forms and their local components, from which he
developed the theory of local coefficients. Shahidi believed this theory, combined
with other methods (including converse theorems) could yield elusive examples of
functoriality, such as the symmetric power transfers for GL2 and functoriality from
classical groups to general linear groups. It was well known that establishing such
results would yield significant progress in number theory.

Through the first 10 years (or so) of this pursuit, Shahidi produced several
important results, and another 20 years of results of such stature would, alone, be
fitting of a 60th birthday conference and accompanying volume. However, the power
and stature of his results grew significantly and continues through (and beyond)
the publication of this volume. Simply put, in the last 15 to 20 years, Shahidi and
the Langlands-Shahidi method have helped produce a series of significant results.
Rather than a list, we will say that this record speaks for itself. That a number
of events within and outside of the Langlands-Shahidi method transpired simulta-
neously has, no doubt, changed the face of the Langlands program in significant
ways. That Shahidi’s approach is crucial to so much recent progress is a testament
to his persistence and perseverance. The influence of Shahidi’s work continues to
grow, and the breadth of the applications by Shahidi, his collaborators, and others
is undeniable.

One of Shahidi’s contributions that should not be overlooked is his service in
mentoring young mathematicians within his chosen field. To date, Shahidi has
produced eight Ph.D.’s and has at least six more in progress. In addition, he
has sponsored roughly 15 postdoctoral appointments at Purdue. Further, several
outstanding figures have noted his more informal, but just as crucial, role as a
mentor. The list of these mathematicians includes several major contributors to
the field, some of whom have contributed articles for this volume.

Freydoon Shahidi reached the age of 60 on June 19, 2007, and a conference
was held to commemorate this occasion July 29-August 3, 2007, at Purdue Uni-
versity, West Lafayette, Indiana. As Shahidi has been a member of the Mathe-
matics Department at Purdue since 1977 and has been designated by Purdue as a
Distinguished Professor of Mathematics, this seemed a fitting location for such a

vii



viii PREFACE

conference. Funding for this conference was provided by Purdue University’s Math-
ematics Department and College of Science, the National Science Foundation, The
Clay Mathematics Institute, The Institute for Mathematics and its Applications,
and the Number Theory Foundation. Over 100 mathematicians attended, and
there were 23 one-hour lectures. The conference focused on several aspects of the
Langlands program, including some exposition of Shahidi’s work, recent progress,
and future avenues of investigation. Far from being a retrospective, the conference
emphasized the vast array of significant problems ahead. All lecturers were invited
to contribute material for this volume. In addition, some important figures who
were unable to attend or deferred on speaking at the conference were invited to
submit articles as well. We hope this resulting volume will serve as a modest trib-
ute to Shahidi’s legacy to date, but should not be considered the final word on this
subject.

The editors wish to thank all of the authors for their willingness to contribute
manuscripts of such high quality in honor of our colleague. We also wish to thank
the anonymous referees for their conscientious reading of these manuscripts and
their helpful comments to authors which have improved the contents. We wish
to express our deep gratitude to Purdue University’s Mathematics Department
and College of Science, the National Science Foundation, The Clay Mathematics
Institute, The Institute for Mathematics and its Applications, and the Number
Theory Foundation, for their sponsorship of the conference. We also wish to thank
all of the conferees who made the conference so successful, and the staff of the
Mathematics Department at Purdue University, particularly Julie Morris, for their
help with organizational matters. We thank the Clay Mathematics Institute and
the American Mathematical Society for agreeing to publish this work, and a special
thanks goes to Vida Salahi for all her efforts in helping us through this process.
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Shahidi’s Work “On Certain L-functions”: A Short History
of Langlands-Shahidi Theory

Steve Gelbart

For Freydoon Shahidi, on his 60th birthday

Some History

The precursor of Langlands-Shahidi theory is Selberg’s earlier relation be-
tween real analytic Eisenstein series and the Riemann zeta function.

More precisely, let

E(z, s) =
1

2

∑ ys

|cz + d|2s , (c, d) = 1,

where (c, d) means the greatest common divisor of c and d. This is the simplest
real analytic Eisenstein series for SL(2,R). Its zeroth Fourier coefficient is

a0(y, s) =

∫ 1

0

E(z, s)dx = ys +M(s)y1−s

where

(1) M(s) =

√
πΓ(s− 1

2 )ζ(2s− 1)

Γ(s)ζ(2s)
;

its first Fourier coefficient is

(2) a1(y, s) =

∫ 1

0

E(z, s)exp(−2πix)dx =
2πsy

1
2Ks− 1

2
(2πy)

Γ(s)ζ(2s)

which implies what we want (see p. 46 of [Kub]). That is, the meromorphic contin-
uation of M(s) already gives the (in this case known) meromorphic continuability
of ζ(s), and the functional equation of E(z, s) gives the functional equation of ζ(s).

The generalization of these ideas would have to wait many more years, when
R.P.Langlands began to publish his miraculous conjectures.

Langlands (1967 Whittemore Lectures)
In January 1967, Langlands wrote his famous letter to Weil. It contains

precursors of most of the startling conjectures that today make up most of the
broad “Langlands Program”. In April 1967, Langlands delivered the Yale
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2 STEVE GELBART

Whittemore Lectures, wherein he investigated the (general) Eisenstein series of
type

(3) E(g, ϕ, s) =
∑

γ∈P�G

ϕs(γg)

with G a reductive group (more about the terminology below). Euler Products
[Lan1] is a monograph based on these lectures. In it, one finds the first (published)
version of a crucial and key concept – that of an L-group. It comes out of the
expression of the zeroth Fourier coefficient of the general E(g, ϕ, s), in a surprisingly
new way. Without going into too much detail, let’s try to explain why. Complete
details of everything can be found in many places; the basic source is [Lan2]. We
also refer to Bill Casselman’s paper “The L-Group” [Cas1] for a leisurely account
of these and other important computations.

Our Eisenstein series are induced from a representation π and a complex pa-
rameter s on the Levi component M of P . Here P = MU is a maximal parabolic,
δP its modulus function, � the fundamental weight corresponding to P , and K a
good maximal compact subgroup. Fix a minimal parabolic P0 = M0U0. Let TM

be the intersection of the maximal split torus of the center of M with the derived
group of G. Then TM � Gm (the multiplicative group) and we let AM be the
subgroup R+ imbedded in IF � TM (A). If π is a cuspidal automorphic repre-
sentation of M(A), we assume that the central character of π is trivial on AM ,
and consider π as a subspace of L2(AMM(F )\M(A)). Let Aπ

P denote the space
of automorphic forms ϕ on U(A)M(F )\G(A) such that for all k ∈ K the function

m �→ δP (m)−
1
2ϕ(mk) belongs to the space of π. The automorphic realization of

π gives rise to an identification of Aπ
P with (the K∞-finite part of) the induced

space I(π) = Ind
G(A)
P (A) π. Set ϕs(g) = ϕ(g)|�|s(g) for any ϕ ∈ Aπ

P , s ∈ C. (Here

� is the fundamental weight corresponding to P in the vector space spanned by
the rational characters of M and |�| is the continuation to G(A) of the function
|�|(m) =

∏
|�(mv)|v with m = (mv) inside M(A).) The map ϕ �→ ϕs identi-

fies I(π) (as a K-module) with any I(π, s) = IP (π, s) = Ind
G(A)
P (A) π|�|s. For any

ϕ ∈ Aπ
P , we consider its Eisenstein series (3) which converges for Re(s) � 0. It

defines an intertwining map from I(π, s) into the space of automorphic forms on
G(A). Let P be the parabolic opposite to P containing M and let P ′ = M ′U ′ be
the standard parabolic conjugate to P with M ′ ⊃ M0. Thus, if w0 is the longest
Weyl element, then M ′ = w0Mw−1

0 .
Langlands computed that the “zeroth Fourier coefficient”

EP ′(g, ϕ, s) =

∫
E(u′g, ϕ, s)ψ0(u

′)du′

should equal

εP,P ′ϕ(g) +M(s)(ϕ)(g),

where εP,P ′ = 1 if P ′ = P and 0 otherwise, and

M(s)(ϕ) =
∏
v∈S

Mv(πv, s)ϕv ×
m∏
j=1

LS(js, π, r̃j)

LS(1 + js, π, r̃j)
.

HereM(s) is the intertwining operator acting on the induced space I(π, s), the space
of Ind(π|�|s), and S is the finite set of primes v which includes the archimedean
and ramified places. LS(js, π, r̃j) is the Langlands L-function attached to S, π
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and the contragredient of the irreducible representation rj of the L-group LM on
the Lie algebra of LN . This formula reduces to (1) when G is SL(2), M is the
diagonal subgroup isomorphic to A∗, and S = ∞. The point is that the analytic
continuation of these E(g, ϕ, s) (which Langlands accomplished a few years earlier,
see [Lan2]) gives the meromorphic continuation of these Langlands L-functions.
This setup contains a list of (M,G) pairs, which includes:

(a) Rankin-Selberg L-functions for

M = GLn ×GLm, G = GLn+m

and
r(g1, g2)(xij) = g1(xij)g

−1
2 .

L-functions for these L(s, πn×πm, r) were studied later on by Jacquet, Piatetski-
Shapiro, Shalika, Shahidi, Mœglin-Waldspurger, etc.. More about these
soon.

(b) G is the exceptional group of type G2 and M is the group GL2. Also
r1 = Sym3 and r2 = det. This example Langlands called “particularly striking”.

Where do we stand (1975)?

As is well known, with [Lan1], and more generally [Lan3], Langlands changed
the course of modern number theory. On a smaller scale, for us the intimate rela-
tionship between general Eisenstein series and automorphic L-functions mapped out
a theory of the latter. In particular, the meromorphy of the functions L(s, π, rj)
already followed from analytically continuing the Eisenstein series.

But what about an exact functional equation? Is there a nice generalization
of (2) for first Fourier coefficients (as opposed to just zeroth Fourier coefficients)
in terms of L-functions which appear only in the denominator? And, more signifi-
cantly, what about the holomorphy of L(s, π, rj), or at least meromorphy with a
(prescribed) finite number of poles? (Think of Artin’s Conjecture.)

Shahidi enters the picture (1975- )

Freydoon came to the Institute for Advanced Study in the fall of 1975, right
after his doctoral studies under Joe Shalika. Shalika was sending Freydoon to learn
from the master – Robert Langlands. What Langlands suggested he study was
exactly the nonconstant Fourier coefficients of E(g, ϕ, s), along the lines predicted
in a letter to Godement. What resulted was the birth of “Langlands-Shahidi
theory”.

I first met Freydoon while he was still a graduate student of Shalika’s, and
feel honored to have had him as a friend ever since. Studying his work for over
30 years has been a rare treat. Indeed, very few mathematicians have worked
singlehandedly towards such a difficult yet simple goal: to prove that the L-
function L(s, π, r) has a finite number of poles and satisfies the functional equation
L(s, π, r) = ε(s, π, r)L(1− s, π, r̃). Amazingly, each successive paper of Freydoon’s
builds upon the ones that appeared before it, as we shall now see.



4 STEVE GELBART

Acknowledgment
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Ten Special Papers

We shall survey Freydoon’s program (of Langlands-Shahidi theory) by looking
at ten papers which we henceforth denote by numerals 1 through 10, putting a star
next to 4 of those as being particularly important.

1*. Functional Equation Satisfied by Certain L-functions, Composi-
tio Math., 1978, the predecessor of On Certain L-functions, Amer. J. Math,
1981. (See the backdrop of the Poster for Shahidi’s 60th Birthday Conference.)
These papers set the stage for (almost) all that follows: first for the GL2 L-
function L(s, π, Sym3) (see example (b) above), then for arbitrary Langlands-
Shahidi L(s, π, rj).

For our purposes, let ψ be a non-degenerate character of U0 and denote by ψM

its restriction to U0 ∩M (a maximal unipotent of M).

In what follows, Shahidi assumes that π is generic with respect to
ψM , i.e., π is globally generic. Then E(g, ϕ, s) will be ψ generic.

In this case, one can compute non-trivial Whittaker coefficients (“Fourier coeffi-
cients”) of the resulting Eisenstein series and relate them directly to the L-functions
L(s, π, rj) (without the appearance of quotients of them). More exactly, Shahidi
computes the ψ-th Fourier coefficient to satisfy

Eψ(e, ϕ, s) =
∏
v∈S

Wv(ev)
m∏
j=1

LS(1 + js, π, r̃j)
−1.

Here Wv(g) = λv(Iv(gv)ϕv), where λv denotes a ψ-Whittaker functional on the
space of Indπv|�|s. Using this, he obtains a crude functional equation for the
Langlands’s L-functions:

m∏
j=1

LS(js, π, rj) =
∏
v∈S

Cψv
(s, π̃v)

m∏
j=1

LS(1− js, π, r̃j),

where Cψv
(s, π̃v) is Shahidi’s (soon to be analyzed) local coefficient; it comes

directly from the local uniqueness of Whittaker models.
Let us give an outline of the proof. The first thing to do is to write the

expression Eψ(e, ϕ, s) as ∏
v∈S

Wv(ev)
∏
/∈S

Wv(ev).

To do this, we apply Bruhat’s decomposition. To make matters simpler, we consider
the case of G = SL(2). Here P = P0 = B = NU = P ′, π is a character χ, and
we have the familiar Whittaker functional defined on the space of Indχp|�|sp; on
pages 80-81 of [Ge-Sh], we showed precisely that

Eψ(e, ϕ, s) =
∏
v∈S

Wv(ev)L
S(1 + s, χ)−1.

In general, one can proceed the same way, since only the “longest” Weyl group
element will contribute non-trivially, and then the computation of W is precisely
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the subject matter of [C-Shal]: for v not in S,

Wv(ev) =

m∏
j=1

L(1 + js, πv, r̃j)
−1.

For the crude functional equation, one needs to apply some results due to Cassel-
man [Cas2] and Wallach [Wal] at the archimedean places (to show that W v

′s
can be chosen so that Wv(ev) �= 0 if v = ∞). Then one uses Shahidi’s theory of lo-
cal coefficients by applying intertwining integrals (Harish-Chandra, Silberger).
That is, one makes sense of a Whittaker functional λ′

v on the image of I(s, πv) by
Mv(s, πv) by using a formula similar to the one defining λv; then one proves (by
uniqueness of Whittaker functionals) that there is a complex function Cψv

(s, πv)
relating λv to λ′

v acting on Mv(πv, s). The functional equation for E(s) then gives
the (crude) functional equation for LS(s). Along the way, we have that the holo-
morphy of the local coefficients determines the irreducibility of certain induced rep-
resentations, and furthermore, that they can be used to normalize the intertwining
operators.

Remark 1. The simpler argument for

m∏
j=1

LS(js, π, rj) =
∏
v∈S

Cψv
(s, π̃v)

m∏
j=1

LS(1− js, π, r̃j).

for G = SL(2) is carried out on pages 81-82 of [Ge-Sh].

Remark 2. Recall from above that there exists ϕv such that Wv(ev) �= 0.
Consequently, the zeros of

∏m
j=1 L

S(1+ js, π, r̃j) are among the poles of E(e, ϕ, s).

From the fact that E(e, ϕ, s) is known to have no poles on the imaginary axis iR,
it follows that

m∏
j=1

LS(1 + ijt, π, r̃j) �= 0

for all t in R. In particular, for M = GL(n)×GL(m) and G = GL(n+m) (example
(a) of Langlands), and π and π′ cusp forms on GL(n,AF) and GL(m,AF), we get

L(1, π × π′) �= 0,

where the local L-functions at every place are the corresponding Artin factors (see
[Ha-Ta, Hen] and more of the discussions below).

2. Fourier Transforms of Intertwining Operators and Plancherel Mea-
sures for GL(n), Amer. J. Math, 1984.

Here is where Shahidi begins to work out some details of his general theory for
the well known case (M,G) = (GLn×GLm, GLn+m) over a local non-archimedean
field. This paper says mainly that (as Langlands had predicted) the local Shahidi
coefficient may be expressed in terms of the usual gamma factor computed by
Jacquet, Piatetski-Shapiro, and Shalika in [J-PS-S]. An important conse-
quence of this equality is a formula for the Plancherel measure attached to s and
π1 ⊗ π2 by Harish-Chandra (see [Harish] and [Sil] for an introductory general
theory). This formula was used by Bushnell-Kutzko-Henniart in [B-H-K]] to
express the conductor for the pair (M,G) in terms of types of representations.
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3. Local Coefficients as Artin Factors for Real Groups, Duke Math.
Journal, 1985.

The purpose of this paper is to prove the equality of local Shahidi coefficients
in the real case with their corresponding Artin factors of local class field theory.
The beautiful result reads as follows:

Cψ(s, π) = (∗)
∏
j=1

ε(js, rj · ϕπ, ψ)
L(1− js, r̃j · ϕπ)

L(js, rj · ϕπ)

where ψ = ψR, π is an irreducible admissible representation of M = MR, and
ϕπ : W → LM is the homomorphism attached to π by Langlands’ local class
field theory at infinity (cf. [Lan5]); the Artin factors are those which Langlands
attached to irreducible admissible representations. Since the statement is also true
when v is unramified, the main theorem of the 1981 paper establishes the functional
equation

m∏
j=1

L(js, π, rj) =
m∏
j=1

ε(js, π, rj)L(1− js, π, r̃j)

whenever ∞ is the only ramification of π; in particular, this is true for every cusp
form on SL(2,Z). To define the Cψ, one needs the analytic continuation of Whit-
taker functionals. Hence one needs the work of Jacquet’s thesis [Jac], Schiffmann
[Schi] and Wallach [Wal], Vogan [Vog], Kostant [Kos], etc. One also needs to
apply Knapp-Zuckernan [Kn-Zu] and Langlands [Lan5] to show that the local
coefficient is basically a product of Artin factors.

Remark

Around this time, about the middle of the 1980’s, Freydoon wrote several
interesting papers related to L(s, π, Symm) with Carlos Moreno (see, for example,
[Mo-Sh]). Shahidi also has a nice 1988 paper [Ke-Sh] with David Keys where
they (among other things) studied Artin L-functions in the case of unitary principle
series of a quasi-split p-adic group. These were about the only joint works Freydoon
did between the dates 1975-1995, i.e., although Shahidi would have liked to do more
work with others, the first 20 years he worked virtually alone. What came later
(that is, after 1995) will be discussed after paper 5*.

4. On the Ramanujan Conjecture and Finiteness of Poles for Certain
L-functions, Annals of Math., 1988.

First Freydoon completed the list of (M,G) pairs after Langlands; these in-
cluded:

(c) G = (E7 − 1), the derived group of M is SL2 × SL3 × SL4, and r1 the
tensor product representation (page 560 of paper 4);

(d) G = (E8 − 2), M = SL4 × SL5, and r1 the standard times exterior square
(page 561); and

(e) G = (F 4 − 2), with M given by α1, α2, α4 (page 563).

Then Freydoon established a uniform line (Re(s) = 2) of absolute convergence
for all his “certain” L-functions. This is proved using a crucial lemma: For almost
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every local component of a cuspidal generic representation, every unramified L-
function (obtained from this method) is holomorphic for Re(s) ≥ 1; in other words,

det(I − ri(Av)q
−s
v )−1

is holomorphic for Re(s) ≥ 1 (where Av ∈ LM is a semisimple element in the
conjugacy class of LM attached to πv).

To see how this is related to the Ramanujan-Petersson Conjecture (the up-
to–date subject matter of paper 10), take π to be a cuspidal representation of
PGL2(AF ), and at each unramified v, let Av = diag(αv, α

−1
v ) be the corresponding

conjugacy class in SL2(C); the conclusion is that

(4) qv
− 1

5 < |αv| < qv
1
5 .

Indeed, suppose we apply this “crucial lemma” in case (e) of (G,M) above. Let Π
be the Gelbart-Jacquet lift of π. (We may assume Π is a cuspidal representation
of PGL3(A) since Ramanujan-Petersson is known for monomial cusp forms.)
The exact sequence

0 → A → M → PGL3 × PGL2 → 0

(A is the split component of M) leads to a surjection

M → PGL3(A)× PGL2(A) → 0

(by page 36 of [Lan1]), and the cuspidal representation Π × π of PGL3(A) ×
PGL2(A) then defines a cuspidal representation ρ of M . Thus, among the factors
dividing L(s, ρ, r1)

−1 is

(1− α5
vq

−s
v )(1− α−5

v q−s
v ),

and by the “crucial lemma”, this must be non-zero for Re(s) ≥ 1, i.e., (4) holds!
In the last part of this paper, a first response to the functional equation

and entirety of these L-functions is addressed. However, the serious definitions
of L(s, π, rj) and ε(s, π, rj , ψF ) will wait until paper number 5*.

5*. A Proof of Langlands’ Conjecture on Plancherel measures; Com-
plementary Series for p-adic Groups. Annals of Math. 1990.

In this important paper, several long awaited results follow from a (detailed
and) non-trivial Theorem proving general results about the local Langlands root
numbers ε and L-functions L, namely, if they are equal to the corresponding Artin
factors, they are supposed to be “inductive”, and (for the local component of a
global cusp form) they must be the corresponding factor appearing in the functional
equation satisfied by the cusp form. A nice corollary of this is Langlands’ Conjecture
expressing the Plancherel measure in terms of these ε and L.

The above are far-reaching results generalizing the case (G,M) = [(GL(n+m),
GL(n) × GL(m))]; see paper number 2 and the work of Jacquet, Piatetski-
Shapiro, and Shalika [J-PS-S]. It also generalizes the theory of local coefficients
as Artin factors for real groups (paper number 3 above).

One of the main applications here is the desired functional equation of the L-
function of a generic (global) cusp form π: locally there exist gamma factors γ so
that L and ε factors can be defined at every place, and globally

L(s, π, ri) = ε(s, π, ri)L(1− s, π, r̃i).
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This is obviously a generalization of what is true for the third symmetric power
L-function for M = GL(2) inside G2; see the paper numbered 1.

To prove the individual functional equations, i.e., to get each L(s, π, ri) with
precise root numbers, we need to appeal to the following “induction” statement:
given 1 < i ≤ m, there exists a split group Gi over F , a maximal F -parabolic sub-
group Pi = MiNi and a cuspidal automorphic representation π′ of Mi = Mi(AF ),
unramified for every v /∈ S, such that if the adjoint action of LMi on

Lni decom-
poses as r′ = ⊗r′j , then

LS(s, π, ri) = LS(s, π′, r′1);

moreover m′ ≤ m.
Next, we need a generalization of paper number 3 to all places that have a

vector fixed by an Iwahori subgroup. This, together with a local-global argument,
can then be applied “inductively” as above. All in all, using theCrude Functional
Equation, we arrive at one of the main results of the paper:

Theorem. Given a local field F , groups G,P = MU , representations rj on
LM as before, and an irreducible admissible generic representation σ of M , there
exist complex functions γ(s, σ, ri, ψF ), 1 ≤ i ≤ m, such that

(1) whenever F is archimedean or σ has a vector fixed by an Iwahori subgroup,

γ(s, σ, ri, ψF ) = ε(s, ri · ϕ, ψF )L(1− s, r̃i · ϕ)/L(s, ri · ϕ);

(2) in general,

Cψ(s, σ) =

m∏
i=1

γ(s, σ, ri, ψF );

(3) γ(s, σ, ri, ψF ) is multiplicative under induction, and

(4) whenever σ becomes a local component of a globally generic cusp form, then
the γ’s become the local factors needed in their functional equations. Moreover,
(1), (3) and (4) determine the γ-factors uniquely.

Shahidi uses this Theorem to define L and ε factors for all irreducible ad-
missible generic representations. Let us just look at the case of tempered such
representations. For such representations, we define L(s, σ, rj) to be the inverse of
the normalized polynomial Pσ,j(q

−s) which is the numerator of γ(s, σ, rj , ψ). Part
(2) of the Theorem above implies

γ(s, σ, rj, ψF )L(s, σ, rj)/L(1− s, σ, r̃j)

is a monomial in q−s, which is denoted by ε(s, σ, rj , ψF ), the root number attached
to σ and rj . Thus,

γ(s, σ, rj , ψF ) = ε(s, σ, rj , ψF )L(1− s, σ, r̃j)/L(s, σ, rj).

For tempered σ it follows that L(s, σ, rj) is independent of ψ.
Back to the local theory, Shahidi derives Langlands’ Conjecture (for generic

representations) which concerns the normalization of local intertwining operators
by means of local Langlands root numbers and L-functions (this is expressed in
terms of Plancherel measures and some results from paper 3).

Finally, Freydoon obtains all the complementary series and special representa-
tions coming from (generic) supercuspidal representations of the Levi factors of
maximal parabolics.

To tackle Langlands’ Conjecture in general, i.e., for arbitrary π, Shahidi reduces
it to two natural conjectures in harmonic analysis: one is the basis for stabilization
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of the trace formula, the other is about stable distributions (the Conjecture on
genericity of tempered L-packets).

All in all, Shahidi’s paper is very powerful, and a fitting 1990 end to paper
number 1* – the functional equation of “all” automorphic L-functions is proved.
The outstanding work Shahidi did since then will be discussed in papers numbered
6 through 10.

Here we must mention, especially for the non-generic case, a host of other
names. For induced representations in the p-adic case, see Lapid, Muic, Tadic
[LMT], and Silberger [Sil], etc. For interactions with the trace formula, see
Arthur [Art], Ngo, Clozel (see, for example, [Clo]), Langlands [Lan3], and
Kottwitz-Shelstad [Ko-Sh].

Recently, following up on Shahidi’s work, Hiraga-Ichino-Ikeda [H-I-I] have
conjectured a generalization of Langlands’ Conjecture to formal degree and discrete
series representations, and they have checked that their Conjecture agrees with
Shahidi on GLn and other groups (via twisted endoscopy.....see below).

6. Twisted Endoscopy and Reducibility of Induced Representations
for p-adic Groups, Duke Math. Journal, 1992.

A major reason for studying (twisted) endoscopy is to detect representations
coming from the corresponding (twisted) endoscopic groups. The theory goes back
to Langlands and Shelstad [Lan-Sh] and is continued in [Ko-Sh]. Recall that
there are no interesting endoscopic groups for GL(n), but that symplectic groups
and special orthogonal groups appear as twisted endoscopic groups of GL(n).

Here Freydoon goes on to use the last paper to relate the poles of (local non-
normalized) intertwining operators to the parametrization problem via twisted en-
doscopy. A typical example is the following:

Theorem. Suppose G = Sp2n and σ is a fixed irreducible unitary self-dual
supercuspidal representation of M = GLn(F ). Then I(σ) is irreducible if and only
if L(s, σ,Λ2) has a pole (at s = 0) and if and only if σ comes by twisted endoscopic
transfer from SOn+1(F ).

Closely related works are his 2000 (Appendix with Shelstad [Shah1]) pa-
per and his 1998 paper with Casselmen [C-Shah]. In a number of papers with
Goldberg (cf. [Go-Sh]), Freydoon later extended the work of paper number 6 to
arbitrary parabolic subgroups of classical groups.

The last 10 years

Quite simply, Freydoon’s research has had a dramatic impact on Langlands
functoriality. We shall describe 4 principal papers under this heading, each car-
rying out a different role towards automorphic lifting.

7. With S. Gelbart, Boundedness of Automorphic L-functions in Ver-
tical Strips, Journal of the Amer. Math. Society, 2001.

8*. With J. Cogdell, H. Kim, and I. Piatetski-Shapiro, On Lifting from Clas-
sical Groups to GL2, Publ. Math. de l’IHES, 2001, along with Functoriality
for the Classical Groups, Publ. Math. de l’IHES, 2004.
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9*. With H. Kim, Functorial Products for GL2×GL3 and the Symmetric
Cube for GL2, Annals of Math., 2002.

10. With H.Kim, Cuspidality of Symmetric Powers with Applications,
Duke Math. Journal, 2002.

Before looking at papers 7 through 10, let’s see how far one got towards prov-
ing the analytic properties of, say L(s, π, Sym3), in about 1998. The functional
equation was known (in fact, from paper 1 for L(s, π, Sym3), but from paper 5*
for general Langlands-Shahidi L-functions). What about its entirety? For π gener-
ated by Ramanujan’s τ -function the L-function for the symmetric cube had already
been proved holomorphic by Moreno and Shahidi in 1976 [Mo-Sh]. But what
about general cusp forms? In around 1998 Kim and Shahidi made a breakthrough
in proving the (long awaited) holomorphicity of L(s, π, Sym3) [Ki-Sh1]. In par-
ticular, their method used the appearance of this function in the constant term of
Eisenstein series on G2, and some brand new results of Kim [Kim1] (more about
this later), Muic [Mui], and Ramakrishnan [Ram2]. This marked the begin-
ning of deeper analytic properties of L-functions like L(s, π, Sym3) being proved.
For example, given Cogdell and PS’s Converse Theorem, this meant showing that
twisting by forms of GL2(A) was nice. All these things, like proving L(s, π, Sym3)
was a standard GL4 L-function, had to wait for the exciting Princeton gathering
of Cogdell-Kim-PS and Shahidi in 1999.

More on the Background

Working in parallel to the theory of Langlands-Shahidi was the ongoing
project of Piatetski-Shapiro on L-functions.

Anyone working with PS, from 1976 onwards, knew that one of Piatetski’s
dreams was to complete the Converse Theorem from GL2 and GL3 to GLn, then
to use it to establish cases of functoriality.

On the other hand, also from 1976 onwards, Freydoon had been developing the
Langlands-Shahidi theory, especially for L(s, π, Sym3).

Everything came together in 1999 - 2000, when a special year at the IAS was
co-organized by Bombieri, Iwaniec, Langlands and Sarnak. Present at the
same place, Cogdell and PS took their most recent version of the recent Converse
Theorem and together with Kim and Shahidi saw how to apply it to several of
the L-functions obtained by the Langlands-Shahidi method.

The Work Done

More precisely, this work was the happy marriage of the language of Cogdell-
PS Converse Theorems (together with stability) with Langlands-Shahidi theory
(together with Kim’s observation), as we shall now see.

First, the purpose of paper 7 was to prove the boundedness in vertical strips of
finite width for all the (completed) Langlands-Shahidi L-functions that appear in
constant terms of Eisenstein series under a certain local assumption. In particular,
we prove the boundedness of a number of important L-functions, among them the
symmetric cube for GL2 and several Rankin-Selberg product L-functions, where the
local assumption was already proved. Our main theorem plays a fundamental role
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in establishing new and striking cases of functoriality such as for classical groups
to GLn and for L(s, π, Sym3) for GL2 (both to be discussed soon).

Gelbart, Lapid and Sarnak then found a simpler proof of this boundedness
on their way [Ge-La-Sa] to proving the stronger Conjecture stated in the Intro-
duction to paper 7. Both papers rely heavily on the work [Mül] of Müller on the
finiteness of order of Eisenstein series.

Next, we turn to papers 8 through 10. The papers numbered 8* prove global
functorial lifting for the split classical groups Gn = SO2n+1, SO2n, or Spn to an
appropriate general linear group GLN , for generic cuspidal representations. Let’s
explain the lifting for SO2n+1 alone (which we shall denote by H). We follow
fairly exactly the exposition given in [Cog] (see also Cogdell’s paper in these
Proceedings).

According to [C-PS2], the Converse Theorem for GLN states the following:
Let Π = ⊗Πv be an irreducible admissible representation of GLN (A) whose central
character is invariant under k∗ and whose L-function L(s,Π) is absolutely conver-
gent in some right half-plane. Let S be any finite set of finite places and η a
continuous character of A∗ mod k∗. Suppose also that for every τ ∈ TS(N) ⊗ η
(where TS(N) denotes any cuspidal representation of GLd(A), 1 ≤ d ≤ N − 2,
unramified at all v ∈ S) the twisted L-function L(s,Π× τ ) is nice, i.e.,

(1) L(s,Π× τ ) and L(s, Π̃× τ̃ ) extend to entire functions of s ∈ C,

(2) L(s,Π× τ ) and L(s, Π̃× τ̃ ) are bounded in vertical strips,

(3) L(s,Π× τ ) satisfies the functional equation L(s,Π× τ ) = ε(s,Π× τ )L(1−
s, Π̃× τ̃).

Then there exists an automorphic representation Π′ of GLN (A) such that Πv =

Π
′

v for all v /∈ S.

To prove a global functorial lifting from H to GL2n, a first step is to attach to
a globally generic cuspidal representation

π = ⊗πv

of H(A) a candidate lifting Π = ⊗Πv of GL2n(A). (Now N equals 2n.)

For v /∈ S (the finite set of finite places at which the local component πv is ram-
ified) and Πv the local Langlands lift of πv, let π

′
v be the irreducible representation

of GLm(kv) with m < 2n; then

L(s, πv × π′
v) = L(s,Πv × π′

v)

and

ε(s, πv × π′
v, ψv) = ε(s,Πv × π′

v, ψv).

Now what about v ∈ S? As for paper 5*, we have a local twisted γ-factor
γ(s, πv × π′

v, ψv) where π′
v is a generic representation of GLm(kv), m < 2n; it is

related to the local L and ε factors by

γ(s, πv × π′
v, ψv) =

ε(s, πv × π′
v, ψv)L(1− s, π̃v × π̃′

v)

L(s, πv × π′
v)

.

By “multiplicativity of γ-factors”, if π′
v = Ind(π′

1,v⊗π′
2,v) with π′

i,v a representation
of GLri , then

γ(s, πv × π′
v, ψv) = γ(s, πv × π′

1,v, ψv)γ(s, πv × π′
2,v, ψv).
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On the other hand, if π1,v and π2,v are two irreducible admissible representations
of H(kv), then by “stability of γ-factors”,

γ(s, π1,v × ηv, ψv) = γ(s, π2,v × ηv, ψv)

and

L(s, π1,v × ηv) = L(s, π2,v × ηv) = 1

for every sufficiently highly ramified character ηv (see [C-PS] for the original work
on “stability” by Cogdell and PS). As we shall soon see, this is enough to produce
a replacement for the local Langlands Conjecture at v ∈ S.

Recall that the local multiplicativity and stability results for GL2n(kv) are
known by Jacquet, Piatetski-Shapiro and Shalika. This allows for a comparison
of the stable forms for GL2n(kv) and H(kv) and establishes the following analogue
of a local Langlands lift for v ∈ S: let Πv denote any GL2n(kv) having trivial central
character, and π′

v a generic irreducible admissible representation of GLm(kv) with
m < 2n of the form π′

v = π′
0,v ⊗ ηv with π′

0,v unramified and ηv a fixed sufficiently
highly ramified character of k∗v ; then

L(s, πv × π′
v) = L(s,Π× π′

v)

and

ε(s, πv × π′
v, ψv) = ε(s,Πv × π′

v, ψv).

The end result is:

Proposition. For any fixed character η for which ηv is sufficiently ramified at
the places v ∈ S we have

L(s, π × π′) = L(s,Π× π′)

and

ε(s, π × π′) = ε(s,Π× π′).

for all π′ ∈ TS(2n− 1)⊗ η.

The next step is to control the analytic properties of this twisted L-function
L(s, π × π′), i.e., to prove that L(s, π × π′) is nice. The functional equations of
course have been established in paper 5*, and the boundedness in vertical strips in
7; however, for L(s, π × π′) to be entire for “sufficiently ramified” π′ now requires
Kim’s crucial observation: the relevant Eisenstein series, hence the L-function
L(s, π × π′), can have poles only if the representation π′ satisfies π′ = π̃′ ⊗ | det |t
for some t. Since this can never happen for sufficiently ramified π′, we have finally:

Proposition. Let π be a globally generic cuspidal representation of H(A). Let
S′ be a non-empty set of finite places and suppose that η is an idèle class character
such that at some place v of S′ we have both ηv and η2v ramified. Then the twisted

L-functions L(s, π × π′) are nice for all π′ ∈ TS′
(2n− 1)⊗ η.

Now [C-K-PS-S] is ready to prove that π has a global Langlands lift to
GL2n(A).

Theorem. There is a finite set of places S and an automorphic representation
Π′ of GL2n(A) such that for all v /∈ S we have that Π′

v is the local Langlands lift
of πv.
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Proof. Let π, S, and Π be as above. If S is non-empty, let S′ = S and if π is
unramified at all finite places take S′ = v0 to be any chosen finite place. Choose a
fixed idèle class character η which is suitably ramified for all v ∈ S such that both
the last two Propositions are valid. Then for all π′ ∈ TS′

(2n− 1)⊗ η we have

L(π × π′) = L(s,Π× π′), ε(s, π × π′) = ε(s,Π× π′)

and the L(s,Π× π′) are thus nice. Then by the Converse Theorem for GL2n, we

conclude that there is an automorphic representation Π′ = ⊗Π
′

v of GL2n(A) such

that Π
′

v = Πv is the local Langlands lift of πv for all v /∈ S′.

In short, this paper numbered 8* was a complete breakthrough.

Related Work of Others

Ginzburg, Rallis and Soudry had used their “descent technique” to char-
acterize the image of global functoriality for generic representations of the split
classical groups [G-R-S] (see also [Sou]); in particular, they show that the image
of functoriality consists of isobaric sums of certain self-dual cuspidal representations
of GLd(A) satisfying an appropriate L-function criterion.

In [Ji-So], Jiang and Soudry establish local Langlands reciprocity law, as-
sociating with each Langlands parameter of SO2n+1 an irreducible representation
of SO2n+1(F ) (F p-adic), preserving local twisted L and ε factors. Together with
this, they establish the local Langlands functorial lift from generic representations
of SO2n+1(F ) to irreducible representations of GL2n(F ). (Their main tool is the
theory of “local” descent.) The γ factors were also handled by Rallis-Soudry
[Ra-So], based on the doubling method of PS-Rallis [PS-Ra] and fine tuned by
Lapid-Rallis [La-Ra].

Shahidi and C-PS [C-PS-S1, C-PS-S2] come back to handle stability for
γ factors in the Rallis Volume and Jussieu Publication. An entirely different
approach is by Arthur ([Art]); he uses the trace formula to develop transfer for
the whole (not just generic) spectrum.

The Symmetric Cube Lift

In 9*, instead of working directly with L(s, π, Sym3), Kim and Shahidi prove
the stronger result that GL2×GL3 is itself functorial! Let’s see how that was done.

Keeping in mind the Converse Theorem of Cogdell-PS, Kim and Shahidi
study the L-functions L(s, π × (π′ ⊗ χ) × σ), where σ is a cusp form on GLr,
r = 1, 2, 3, 4. For example, for r = 4, Langlands-Shahidi is used with (G,M)
taken to be the case (c) of paper 4, namely (E7 − 1), with derived group of M
equal to SL2 × SL3 × SL4. Again, it is not a simple matter to prove that all
these properties of L(s, π × (π′ ⊗ χ) × σ) are satisfied: in fact, the full power and
subtlety of Shahidi’s theory (the content of papers 1 through 5) is used. By the now
familiar Cogdell-PS Converse Theorem, this L(s, π×(π′⊗χ)) equals the L-function
for GL(6). Actually, much more is used, including paper 7, and the idea again of
[Kim1]: Langlands’ inner product formula for Eisenstein series implies that all of
the automorphic L-functions appearing in the constant terms are entire if twisted
by a Grössencharakter which is sufficiently ramified at one place.

To argue for L(s, π, Sym3), let π′ = Ad(π) again denote the corresponding
automorphic representation of GL(3,AF ). For each v, finite or infinite, let πv � π′

v
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be the irreducible admissible representation of GL(6, Fv) attached to v through the
local Langlands correspondence by Harris-Taylor [Ha-Ta] and Henniart [Hen].
Then what Kim and Shahidi prove above is that π�π′ is an irreducible admissible
automorphic representation of GL(6,AF) and we argue as follows concerning its
isobaric character.

Let τ be a cuspidal representation of GL(2). Then (mostly by arguments of
Ramakrishnan [Ram1]), L(s,Ad(π) × π × σ) has a pole at s = 1 iff σ and
Ad(π) are self χ dual. The result is that π � Ad(π) has (GL(2)×GL(4)) isobaric
data. Since it is easy to see that for almost every place πv � Ad(πv) = Ad3(πv) �
πv, we conclude from the (generalized “multiplicity one”) classification theorem of
Jacquet-Shalika [Ja-Sh] that

π � Ad(π) = Ad3(π) � π,

exactly what we want.
We stress that the proof of the stronger result on GL2 × GL3 uses the obser-

vation of Kim, the boundedness discussed on paper 7, and techniques developed in
paper 5.

We must also mention Kim’s important paper Functoriality for the Ex-
terior Square of GL4 and the Symmetric Fourth of GL2 [Kim2], with its
interesting Corollaries for Ramanujan’s Conjecture. (We’ll get to that very soon
with our discussion of paper 10.) The paper of [As-Sh], which appeared in Duke
2006 proves Langlands (generic) functoriality for general spin groups.

Paper number 10: Symmetry versus Ramanujan

Here, for a number field F , Kim and Shahidi produce the best known result
on Ramanujan-Petersson: if πv is an unramified local component of a cuspidal
representation of GL(2), then

q−1/9
v < |αv|, |βv| < q1/9v .

This uses the meromorphy of Sym9 for GL2 which is proved using case (d) of the
(G,M) list.

When F = Q, a stronger estimate of 7/64 is available byKim-Sarnak [Ki-Sa];
it uses techniques of analytic number theory, as opposed to the estimates of 1/9
(which uses the same techniques as 1/5 did in 1988).

Concerning the failure of Ramanujan for groups other than GL(2), Howe and
PS found it to be false for Sp4 and U3 [Ho-PS]). Later, it was assumed to hold
for generic cuspidal representations of quasi-split reductive groups (see Shahidi
5*).

In [Lan4], Langlands [Lan4] suggests that Ramanujan should hold for cus-
pidal representations of quasi-split groups which functorially lift to isobaric rep-
resentations of GLN (A) (which is the case for globally generic representations of
classical groups Gn by C-K-PS-S). Thus, with either formulation, we would expect
Ramanujan to be true for Gn(A). The best general bounds towards Ramanujan for
GLN (AF) are those of Luo, Rudnick, and Sarnak [L-R-S], and via functoriality,
C-K-PS-S are able to link the RC for classical groups to the RC for GLN . There
is another approach to the problem due to Burger, Li and Sarnak [B-L-S]; this
involves the automorphic dual of a group.
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Where do we stand now (2008)?

Let’s look at two major themes of Langlands which are developed in Shahidi’s
work:

1) the analytic continuation and functional equation of the Langlands auto-
morphic L-functions L(s, π, r), and

2) the principle of functoriality for automorphic forms.

Concerning the first, Shahidi proved the analytic continuation and functional
equation for all L-functions L(s, π, rj) of Langlands-Shahidi type. (Further prop-
erties of L(s, π, rj) follow from his proof of a local conjecture on intertwining op-
erators now known in almost all cases; see [Shah1, Asg, C-Shah, Kim3].) As
regards arbitrary Langlands L-functions, our knowledge of automorphic represen-
tations is still too murky to ensure all the right methods to be followed. Certainly
the trace formula is a central tool, and Freydoon has touched on this in various
works not discussed here.

As for the second theme in Shahidi’s work, the proof of the principle of general
functoriality, we again know that this proof is far from complete. However, the
surprising successes that Freydoon has had in proving various instances of functori-
ality, along with his other advances in the theory of L-functions, will always stand
out for their depth and originality.
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GL(2) and GL(3), Ann. Sci. Éc. Norm. Sup. (4) 11 (1978), pp. 471-552.
[Ge-Sh] and F. Shahidi, Analytic Properties of Automorphic L-functions, Perspectives

in Mathematics, No. 6, Academic Press Inc., Boston, Mass. 1988.
[Ge-La-Sa] S. Gelbart, E. Lapid, and P. Sarnak, A New Method for Lower Bounds for L-series,

C.R. Math. Acad. Sci. Paris, 339 (2004), pp. 91-94; see also [Ge-La] S. Gelbart and
E. Lapid, Lower Bounds for L-functions at the Edge of the Critical Strip, Amer. J.
of Math., 128, Number 3 (2006), pp. 619-638.

[Go-Sh] D. Goldberg and F. Shahidi, On the Tempered Spectrum of Quasi-split Classical
Groups, II, Canadian J. of Math., 53 (2001), no. 2, pp. 244-277.

[G-R-S] D. Ginzburg, S. Rallis, and D. Soudry, On explicit lifts of cusp forms from GLm to
classical groups, Annals of Math., (2) 150 (1999), no. 3, pp. 807-866.

[Ha-Ta] M. Harris and R. Taylor, The Geometry and Cohomology of Some Simple Shimura
Varieties, Annals of Math. Studies 151, Princeton University Press, Princeton, 2001.

[Harish] Harish-Chandra, Automorphic Forms on Semisimple Lie Groups, Lecture Notes in
Mathematics, 62 (1968), Springer, Berlin-Heidelberg-New York.

[Hen] G. Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un
corps p-adique, Invent. Math. 139 (2000), pp.439-455.

[H-I-I] K. Hiraga, A. Ichino, and T. Ikeda, Formal Degrees and Adjoint γ− Factors, J. Amer.
Math. Soc. 21 (2008), no. 1, pp. 283-304.

[Ho-PS] R. Howe and I. Piatetski-Shapiro, A Counterexample to the “General Ramanujan
Conjecture” for (Quasi-) Split Groups, Proceedings of Symposia in Pure Mathematics,
Vol. 33 (1979), part 1, pp. 315-322.

[J-PS-S] H. Jacquet, I. Piatetski-Shapiro, J. Shalika, Rankin-Selberg Convolutions, Amer. J.
Math., 105 (1983), pp. 367-464.

[Jac] —H. Jacquet, Fonctions de Whittaker associées aux groupes de Chevalley, Bull. Soc.
Math. France, 95 (1967), pp.243-309.

[Ja-Sh] H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic
representations. I and II, J. Math. 103 (1981), no.3, pp.499-558, no.4, pp.777-815.

[Ji-So] D. Jiang and D. Soudry, The local converse theorem for SO(2n+1) and applications,
Ann. of Math. 157 (2003), pp.743-806; see also Generic representations and local
Langlands reciprocity law for p-adic SO2n+1), Contributions to Automorphic Forms,
Geometry and Number Theory (Shalikafest 2002) (H. Hilda, D. Ramakrishnan, and
F. Shahidi, eds.), Johns Hopkins University Press, Baltimore (2007).

[Ke-Sh] D. Keys and F. Shahidi, L-functions and Normalizations of Intertwining Operators,
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Sup. (4) 22 (1999), pp. 605-674.

[Mo-Sh] C. J. Moreno and F. Shahidi, The L-function L3(s,Δ) is entire, Invent. Math. 79
(1985), no. 2, pp. 247-251.

[Mui] G. Muic, The Unitary Dual of G2, Duke Math. J., 90 (1997), pp. 465-493.
[Mül] W. Müller, The trace class conjecture in the theory of automorphic forms, Ann. of

Math. 130 (1989), pp.473-529.
[PS-Ra] I. Piatetski-Shapiro and S. Rallis, L-functions for the Classical Groups, in “Explicit

Constructions of Automorphic L-functions”, Lecture Notes in Mathematics Volume
1254, Springer-Verlag, pp. 1-52.

[Ra-So] S. Rallis and D. Soudry, Stability and the local gamma factor arising from the double
method, Math. Ann. 333 (2005), no. 5. pp. 291-313.

[Ram1] D. Ramakrishman, On the Coefficients of Cusp Forms, Math. Res. Lett., 4 (1997),
pp. 295-307.

[Ram2] , Modularity of the Rankin-Selberg L-series, and Multiplicity one for SL2,
Annals of Math. 152 (2000), pp.45-111.

[Shah1] Shahidi, F., Poles of intertwining operators via endoscopy; with an Appendix by
Diana Shelstad, Compositio Math. 120 (2000), no. 3, pp. 291-325.
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This paper is dedicated to Freydoon Shahidi on the occasion of his sixtieth birthday.

Abstract. We report briefly on an endoscopic classification of representations
by focusing on one aspect of the problem, the question of embedded Hecke
eigenvalues.

1. The problem for G

By “eigenvalue”, we mean the family of unramified Hecke eigenvalues of an
automorphic representation. The question is whether there are any eigenvalues
for the discrete spectrum that are also eigenvalues for the continuous spectrum.
The answer for classical groups has to be part of any general classification of their
automorphic representations.

The continuous spectrum is to be understood narrowly in the sense of the spec-
tral theorem. It corresponds to representations in which the continuous induction
parameter is unitary. For example, the trivial one-dimensional automorphic repre-
sentation of the group SL(2) does not represent an embedded eigenvalue. This is
because it corresponds to a value of the one-dimensional induction parameter at a
nonunitary point in the complex domain. For general linear groups, the absence of
embedded eigenvalues has been known for some time. It is a consequence of the
classification of Jacquet-Shalika [JS] and Moeglin-Waldspurger [MW]. For other
classical groups, the problem leads to interesting combinatorial questions related
to the endoscopic comparison of trace formulas.

We shall consider the case that G is a (simple) quasisplit symplectic or special
orthogonal group over a number field F . Suppose for example that G is split and
of rank n. The continuous spectrum of maximal dimension is then parametrized by
n-tuples of (unitary) idele class characters. Is there any n-tuple whose unramified
Hecke eigenvalue family matches that of an automorphic representation π in the
discrete spectrum of G? The answer is no if π is required to have a global Whittaker
model. This follows from the work of Cogdell, Kim, Piatetskii-Shapiro and Shahidi
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[CKPS]. Any such π will automatically have a local Whittaker model at each
place. However, it is by no means clear that π must also have a global Whittaker
model. In fact, the general existence of global Whittaker models appears to be
dependent on some a priori classification of the full discrete spectrum of G.

Our discussion of the embedded eigenvalue problem can therefore be regarded
as a short introduction to the larger question of the endoscopic classification of
representations. It represents an attempt to isolate a manageable part of a broader
topic, which at the same time illustrates some of the basic techniques. These
techniques rest on a comparison of trace formulas on different groups.

2. A distribution and its stabilization

It is the discrete part of the trace formula that carries the information about
automorphic representations. This is by definition the linear form

(1) IGdisc(f) =
∑
M

|W (M)|−1
∑

w∈W (M)reg

| det(w − 1)|−1tr
(
MP (w)IP (f)

)
,

for a test function f ∈ C∞
c

(
G(A)

)
on G(A). We recall that M ranges over the finite

set of conjugacy classes of Levi subgroups of G, that

W (M) = NormG(AM )/M

is the Weyl group of M over F , and that W (M)reg is the set of elements w ∈ W (M)
such that the determinant of the associated linear operator

(w − 1) = (w − 1)aG
M

is nonzero. As usual,
IP (f) = IP (0, f), P ∈ P(M),

is the representation of G(A) on the Hilbert space

HP = L2
disc

(
NP (A)M(Q)A+

M,∞\G(A)
)

induced parabolically from the discrete spectrum of M , while

MP (w) : HP−→HP

is the global intertwining operator attached to w. Recall that

A+
M,∞ = (RF/QAM )(R)0

is a central subgroup of M(A) such that the quotient

M(F )A+
M,∞\M(A)

has finite invariant volume.
This is the core of the trace formula. It includes what one hopes ultimately to

understand, the automorphic discrete spectrum

HG = L2
disc

(
G(Q)\G(A)

)
of G. Indeed, the term with M = G is simply the trace of the right convolution
operator of f on this space. The summands for smallerM represent contributions of
Eisenstein series to the trace formula. They are boundary terms, which arise from
the truncation methods required to deal with the noncompactness of the quotient
G(Q)\G(A). The operators MP (w) are of special interest, being at the heart of the
theory of Eisenstein series. It was their study that led to the Langlands-Shahidi
method, and much recent progress in the theory of automorphic L-functions.
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With its classical ingredients, the expression for IGdisc(f) is remarkably simple.
There are of course other terms in the trace formula, some of which are quite
complex. We shall not discuss them here. Our purpose will be rather to see
what can be established for the spectral information in IGdisc(f), knowing that the
complementary terms have already been taken care of.

To have a chance of understanding the terms in the formula for IGdisc(f), we
really need something to compare them with. A solution of sorts is provided by the
stabilization of IGdisc(f). This is an innocuous looking expansion

(2) IGdisc(f) =
∑
G′

ι(G,G′)ŜG′

disc(f
G′
)

of IGdisc(f) into stable distributions SG′

disc on endoscopic groups G′, with coefficients
ι(G,G′) that are defined by simple formulas. The sum is actually over the isomor-
phism classes of elliptic endoscopic data G′ of G. For example, if G is the split

adjoint group SO(2n+ 1), the dual group Ĝ equals Sp(2n,C). We then have

Ĝ′ = Sp(2m,C)× Sp(2n− 2m,C)

and

G′ = SO(2m+ 1)× SO(2n− 2m+ 1).

In particular, the sum in (2) is parametrized in this case by integers that range
from 0 to the greatest integer in 1

2n.
The mapping

f −→ fG′
, f ∈ C∞

c

(
G(A)

)
,

in (2) is the Langlands-Shelstad transfer of functions. With Ngo’s recent proof of the
fundamental lemma [N], it is now known that this correspondence takes C∞

c

(
G(A)

)
to the space C∞

c

(
G′(A)

)
of test functions on G′(A), as originally conjectured by

Langlands. The general resolution of the problem is a culmination of work by many
people, including Langlands [L], Shelstad [S], Langlands-Shelstad [LS], Goresky-
Kottwitz-MacPherson [GKM], Waldspurger [W1], [W3], and Lauman-Ngo [LN],
as well as Ngo. We recall that it is a local question, which has to be formulated for
each completion Fv of F . It was first treated for archimedean v, in [S]. The fun-
damental lemma is required explicitly for the places v that are unramified (relative
to f), and implicitly as a hypothesis in the solution [W1] for general p-adic v.

The formula (2) was established in [A3], following partial results [L] and [K]
obtained earlier. It was predicated on a generalization of the fundamental lemma
that applies to unramified weighted orbital integrals. This has now been estab-
lished by Chaudouard and Laumon [CL], building on the techniques of Ngo. The
stabilization formula (2) is therefore unconditionally valid.

We note that the proof of (2) is indirect. It is a consequence of a stabilization
that must be established directly for all of the other terms in the trace formula. For
example, the papers [L] and [K] can be regarded as stabilizations of, respectively,
the regular elliptic and the singular elliptic terms. In general, the terms that are
complementary to those in IGdisc(f) each come with their own individual set of
problems, all of which must be taken care of. This accounts for the difficulty of the
proof of (2).

As we have said, the linear forms SG′

disc in (2) are stable distributions on the

groups G′(A). (The symbol Ŝ′ is understood to be the pullback of S′ to the space
of stable orbital integrals on C∞

c

(
G′(A)

)
, a space in which the correspondence
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f → fG′
takes values.) However, there is nothing in the formula (2) that tells us

anything concrete about these objects. We can regard (2) as simply an inductive
definition

SG
disc(f) = IGdisc(f)−

∑
G′ �=G

ι(G,G′)ŜG′

disc(f
G′
)

of a stable distribution on G(A) in terms of its analogues for groups G′ of smaller
dimension. It does tell us that the right hand side, defined inductively on the di-
mension of G in terms of the right side of (1), is stable in f . This is an interesting
fact, to be sure. But it is not something that by itself will give us concrete infor-
mation about the automorphic discrete spectrum of G. To use (2) effectively, we
must combine it with something further.

3. Its twisted analogue for GL(N)

The extra ingredient is the twisted trace formula for GL(N), and its corre-
sponding stablization. To describe what we need, we write

G̃ = GL(N)� θ,

for the standard outer automorphism

θ(x) = tx−1, x ∈ GL(N),

of GL(N). Then G̃ is the nonidentity component of the semidirect product

G̃+ = G̃0 � 〈θ〉 = GL(N)� (Z/2Z).

With this understanding, the twisted trace formula requires little change in
notation. Its discrete part can be written in a form

(1̃) IG̃disc(f̃) =
∑
M

|W̃ (M)|−1
∑

w∈˜W (M)reg

| det(w − 1)|−1tr
(
MP (w)IP (f̃)

)

that matches (1). In particular, M ranges over the set of conjugacy classes of

Levi subgroups in the connected group G̃0 = GL(N), and P represents a parabolic

subgroup of G̃0 with Levi component M . The only changes from (1) are that the

test function f̃ ∈ C∞
c

(
G̃(A)

)
and the Weyl set

W̃ (M) = Norm
˜G(M)/M

are taken relative to the component G̃, and that IP stands for a representation

induced from P to G̃+. As before, MP (w) is the global intertwining operator
attached to w. (See [CLL] and [A1].) The last step in the proof of the general
(invariant) twisted trace formula has been the archimedean twisted trace Paley-
Wiener theorem, established recently by Delorme and Mezo [DM].

The stabilization of IG̃disc(f̃) takes the form

(2̃) IG̃disc(f̃) =
∑
G

ι(G̃, G)S̃G
disc(f̃

G),

where the symbols SG
disc represent stable distributions defined inductively by (2),

and ι(G̃, G) are again explicit coefficients. The sum is over isomorphism classes of

elliptic twisted endoscopic data G for G̃. For example, if N = 2n + 1 is odd, the
component

G̃ = GL(2n+ 1)� θ
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has a “dual set”

Ĝ = GL(2n+ 1,C)� θ̂.

We then have

Ĝ = Sp(2m,C)× SO(2n− 2m+ 1,C)

and

G = SO(2m+ 1)× Sp(2n− 2m).

In general, a twisted endoscopic datum G entails a further choice, that of a suitable
L-embedding

ξG : LG −→ GL(N,C)

of the appropriate form of the L-group of G into GL(N,C). However, if we forget
this extra structure, we see in this case that G is just a group parametrized by an
integer that ranges from 0 to n.

The mapping

f̃ −→ f̃G, f̃ ∈ C∞
c

(
G̃(A)

)
,

in (2̃) is the Kottwitz-Langlands-Shelstad correspondence of functions. The long-

standing conjecture has been that it takes C∞
c

(
G̃(A)

)
to C∞

c

(
G(A)

)
. With the

recent work of Ngo [N] and Waldspurger [W1]–[W3], this conjecture has now been
resolved. The resulting transfer of functions becomes the fundamental starting
point for a general stabilization of the twisted trace formula.

The actual identity (2̃) is less firmly in place. The twisted generalization of
the weighted fundamental lemma does follow from the work of Chaudouard and
Laumon, and of Waldspurger. However, the techniques of [A3] have not been
established in the twisted case. Some of these techniques will no doubt carry over
without much change. However, there will be others that call for serious refinement,
and perhaps also new ideas. Still, there is again reason to be hopeful that a general
version of (2̃) can be established in the not too distant future. We shall assume its
stated version for GL(N) in what follows.

Taken together, the stabilizations (2) and (2̃) offer us the possibility of relating
automorphic representations of a classical group G with those of a twisted general

linear group G̃. As we have noted, the identity (2) represents an inductive definition
of a stable distribution on G(A) in terms of unknown spectral automorphic data
(1) for G. The identity (2̃) provides a relation among the distributions in terms of
known spectral automorphic data (1̃) for GL(N).

This is not to say that the subsequent analysis is without further difficulty.
It in fact contains many subtleties. For example, there is often more than one
unknown stable distribution SG

disc on the right hand side of the identity (2̃). The
problem is more serious in case N = 2n is even, where there are data G with dual
groups Sp(2n,C) and SO(2n,C) that are both distinct and simple. This particular
difficulty arises again and again in the analysis. Its constant presence requires a
sustained effort finally to overcome.

4. Makeshift parameters

The comparison of (2) and (2̃) requires a suitable description of the automorphic

discrete spectrum of the group G̃0 = GL(N). Let Ψ2(N) be the set of formal tensor
products

ψ = μ � ν, N = mn,
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where μ is a unitary cuspidal automorphic representation of GL(m) and ν is the
irreducible representation of the group SL(2,C) of dimension n. The cuspidal
representation μ comes with what we are calling an “eigenvalue”. This, we recall,
is the Hecke family

c(μ) =
{
cv(μ) = c(μv) : v �∈ S

}
of semisimple conjugacy classes inGL(m,C) attached to the unramified constituents
μv of v. To the tensor product ψ, we attach the “eigenvalue”

c(ψ) = c(μ)⊗ c(ν).

This is the family of semisimple conjugacy classes

cv(μ)⊗ ν

(
q

1
2
v 0

0 q
− 1

2
v

)
= cv(μ)q

n−1
2

v ⊕ · · · ⊕ cv(μ)q
−n−1

2
v , v �∈ S,

in GL(N,C). It follows from [JS] and [MW] that there is a bijection ψ → πψ

from Ψ2(N) onto the set of unitary automorphic representations πψ in the discrete
spectrum of GL(N) (taken modulo the center) such that

c(ψ) = c(πψ).

More generally, one can index representations in the broader automorphic spec-
trum by sums of elements in Ψ2(Ni). Let Ψ(N) be the set of formal direct sums

(3) ψ = �1ψ1 � · · · � �rψr,

for positive integers �i and distinct elements ψi = μi � νi in Ψ2(Ni), whose ranks
Ni = mini satisfy

N = �1N1 + · · ·+ �rNr = �1m1n1 + · · · �rmrnr.

For any ψ, we attach the “eigenvalue”

c(ψ) = �1c(ψ1)⊕ · · · ⊕ �rc(ψr),

of semisimple conjugacy classes

cv(ψ) = cv(ψ1)⊕ · · · ⊕ cv(ψ1)︸ ︷︷ ︸
�1

⊕ · · · ⊕ cv(ψr)⊕ · · · ⊕ cv(ψr)︸ ︷︷ ︸
�r

in GL(N,C). It then follows from Langlands’ theory of Eisenstein series that there
is a bijection ψ → πψ from Ψ(N) to the set of unitary representations πψ in the
full automorphic spectrum of GL(N) such that

c(ψ) = c(πψ).

The elements in Ψ(N) are to be regarded as makeshift parameters. They are
basically forced on us in the absence of the hypothetical automorphic Langlands
group LF . Recall that LF is supposed to be a locally compact group whose irre-
ducible, unitary, N -dimensional representations parametrize the unitary, cuspidal
automorphic representation of GL(N).

If we had the group LF at our disposal, we could identify elements in our set
Ψ(N) with (equivalence classes of) N -dimensional representations

ψ : LF × SL(2,C) −→ GL(N,C)

whose restrictions to LF are unitary. This interpretation plays a conjectural role
in the representation theory of the quasisplit group G. Regarding G as an elliptic
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twisted endoscopic datum for GL(N), and Ψ(N) as the set of N -dimensional repre-
sentations of LF ×SL(2,C), we would be able to introduce the subset of mappings
ψ in Ψ(N) that factor through the embedded L-group

ξG : LG −→ GL(N,C).

Any such ψ would then give rise to a complex reductive group, namely the central-
izer

Sψ = SG
ψ = Cent

(
Im(ψ), Ĝ

)
in Ĝ ⊂ LG of its image in LG. The finite quotient

(4) Sψ = Sψ/S
0
ψZ(Ĝ)ΓF , ΓF = Gal(F/F ),

of Sψ is expected to play a critical role in the automorphic representation theory
of G.

5. The groups Lψ

The first challenge is to define the centralizers Sψ and their quotients Sψ with-
out having the group LF . For any makeshift parameter ψ as in (3), we can certainly
form the contragredient parameter

ψ∨ = �1ψ
∨
1 � · · · � �rψ

∨
r

= �1(μ
∨
1 � ν1) � · · · � �r(μ

∨
r � νr).

The subset

Ψ̃(N) =
{
ψ ∈ Ψ(N) : ψ∨ = ψ

}
.

of self-dual parameters in Ψ(N) consists of those ψ for which the corresponding
automorphic representation πψ is θ-stable. The idea is to attach a makeshift group
Lψ to any ψ. The group Lψ will then be our substitute for LF . We shall formulate
it as an extension of the Galois group ΓF by a complex connected reductive group.

The main problem in the construction of Lψ is to deal with the basic case that

ψ = μ is cuspidal. Since ψ is assumed to lie in Ψ̃(N), μ equals μ∨. It therefore
represents a self dual cuspidal automorphic representation of GL(N). At this point
we have to rely on the following theorem.

Theorem 1. Suppose that μ is a self-dual, unitary, cuspidal automorphic rep-
resentation of GL(N). Then there is a unique elliptic, twisted endoscopic datum
G = Gμ for GL(N) that is simple, and such that

c(μ) = ξGμ

(
c(π)

)
,

for a cuspidal automorphic representation π of G(A).

The theorem asserts that there is exactly one G for which there is a cuspidal
“eigenvalue” that maps to the “eigenvalue” of μ in GL(N). Its proof is deep. In
working on the general classification, one assumes inductively that the theorem
holds for the proper self-dual components μi of a general parameter ψ. The reso-
lution of this (and other) induction hypotheses then comes only at the end of the
entire argument. However, we shall assume for the discussion here that the theorem
is valid without restriction. In the case that ψ = μ, this allows us to define

Lψ = LGμ.
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We then write ψ̃ for the L-homomorphism ξμ = ξGμ
of this group into GL(N,C).

Consider now an arbitrary parameter ψ ∈ Ψ̃(N) of the general form (3). Since ψ
is self-dual, the operation μ → μ∨ acts as an involution on the cuspidal components
μi of ψ. If i is an index with μ∨

i = μi, we introduce the group Gi = Gμi
provided

by the theorem, as well as the L-homomorphism

ξi = ξμi
: LGi −→ GL(mi,C).

If j parametrizes an orbit {μj , μ
∨
j } of order two, we set Gj = GL(mj), and we take

ξj :
L
(
GL(mj)

)
−→ GL(2mj ,C)

to be the homomorphism that is trivial on ΓF , and that restricts to the embedding

g −→
(
g 0
0 tg−1

)

of GL(mj ,C) into GL(2mj ,C). We define our general makeshift group Lψ to be
the fibre product

Lψ =
∏

k∈{i,j}

(
LGk−→ΓF

)

of these L-groups over ΓF . The various homomorphisms ξk can then be combined
in the natural way with the corresponding representations

νk : SL(2,C) −→ GL(nk,C)

to give a homomorphism

ψ̃ : Lψ × SL(2,C) −→ GL(N,C).

We regard ψ̃ as an equivalence class of N -dimensional representations of the group
Lψ × SL(2,C).

Suppose that G represents a simple twisted endoscopic datum for GL(N). We

define Ψ̃(G) to be the subset of parameters ψ ∈ Ψ̃(N) such that ψ̃ factors through

the image of LG in GL(N,C). For any ψ ∈ Ψ̃(G), we then have an L-embedding

ψ̃G : Lψ × SL(2,C) −→ LG

such that

ξG ◦ ψ̃G = ψ̃.

We are treating ψ̃ as an equivalence class of N -dimensional representations. This

means that ψ̃G is determined only up to the group AutG̃(G) of L-automorphisms
of LG induced by the stabilizer in GL(N,C) of its image. Nevertheless, we can still
write

Sψ = SG
ψ = Cent

(
Im(ψ̃G), Ĝ

)
and

Sψ = Sψ/S
0
ψZ(Ĝ)ΓF ,

where ψ̃G stands for some L-homomorphism in the associated AutG̃(G)-orbit. Since
Sψ is a finite abelian group (a 2-group actually), it is uniquely determined by ψ up
a unique isomorphism.

The parameters ψ ∈ Ψ̃(G), along with the groups Lψ and the associated cen-
tralizer groups Sψ and Sψ, were described in §30 of [A4]. They will be discussed
in greater detail in Chapter 1 of [A5]. The deeper properties of the hypothetical
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Langlands group LF probably mean that its existence will be one of the last theo-
rems to be proved in the subject. However, if LF does exist, its expected properties
imply that the family of AutG̃(G)-orbits of homomorphisms

LF × SL(2,C) −→ LG

is in natural bijection with the set Ψ̃(G) we have just defined. Moreover, this
bijection identifies the corresponding centralizers Sψ and their quotients Sψ. It is
also compatible with the localization

ψ −→ ψv

of parameters, something we will not discuss here.
This all means that our makeshift groups Lψ capture the information from LF

that is relevant to the endoscopic classification of representations of G. In other
words, the groups Lψ are as good as the Langlands group for the purposes at hand,
even though they vary with ψ. They are used in [A5] to formulate the classification
of automorphic representations of G.

6. The ψ-components of distributions

The next step is to isolate the ψ-components of the terms in the expansions (1),

(2), (1̃) and (2̃). Recall that a parameter ψ ∈ Ψ̃(N) comes with an “eigenvalue”
c(ψ). If D is a distribution that occurs in one of these expansions, its ψ-component
Dψ is a “ψ-eigendistribution”, relative to the convolution action of the unramified

Hecke algebra on the test function f (or f̃). We thus obtain two expansions

(1)ψ IGdisc,ψ(f) =
∑
M

|W (M)|−1
∑

w∈W (M)reg

| det(w − 1)|tr
(
MP,ψ(w)IP,ψ(f)

)

and

(2)ψ IGdisc,ψ(f) =
∑
G′

ι(G,G′)ŜG′

disc,ψ(f
G′
)

of the ψ-component IGdisc,ψ(f). Similarly, we obtain two expansions (1̃)ψ and (2̃)ψ

for the ψ-component IG̃disc,ψ(f̃) of IG̃disc(f̃). The problem is to compare explicitly
the terms in these two identities.

We are trying to describe these matters in the context of the embedded eigen-

value problem. According to general conjecture, a parameter ψ ∈ Ψ̃(G) would be
expected to contribute to the discrete spectrum of G if and only if the group

S̄ψ = Sψ/Z(Ĝ)ΓF

is finite. In other words, the component group

Sψ = π0(S̄ψ)

that is supposed to govern spectral multiplicities is actually equal to S̄ψ. If we apply
this inductively to a Levi subgroup M of G, we see that ψ contributes Eisenstein
series of rank k to the spectrum of G if and only if the rank of S̄ψ equals k. The
problem then is to show that if S̄ψ is not finite, it does not contribute to the
discrete spectrum of G. That is, there is no automorphic representation π of G in
the discrete spectrum with c(ψ) = c(π).

One has thus to show that if S̄ψ is infinite, the term in (1)ψ with M = G
vanishes. However, we know nothing about this term. We can say (by induction)
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that ψ contributes to the term corresponding to a unique proper M . We would first
try to express this term as concretely as possible. We would then want to express
the terms on the right hand side of (2)ψ in such a way that their sum could be
seen to cancel the term of M in (1)ψ. This would tell us that the term of G in
(1)ψ vanishes, as desired. But the distributions in (2)ψ are by no means explicit.
They consist of the stable linear form SG

disc,ψ(f), about which we know very little,

and its analogues for proper endoscopic groups G′, which are at least amenable to
induction. To deal with SG

disc,ψ(f), we have to compare the right hand side of (2)ψ

(as G varies) with the right hand side of (2̃)ψ. We would then have to compare

(2̃)ψ with the expression on the right hand side of (1̃)ψ, about which we do know
something (because it pertains to GL(N)).

7. Statement of theorems

It is a rather elaborate process. We shall describe the theorems that lead
to a resolution of the problem. Our statements of these theorems will have to
be somewhat impressionistic, since we will not take the time to describe all their
ingredients precisely. We refer the reader to the forthcoming volume [A5] for a full
account.

Theorem 2 (Stable Multiplicity Formula). Suppose that ψ ∈ Ψ̃(G). Then the
term in (2)ψ corresponding to G′ = G satisfies an explicit formula

SG
disc,ψ(f) = mψ|Sψ|−1σ(S̄0

ψ)εψ(sψ)f
G(ψ),

where mψ ∈ {1, 2} equals the number of Ĝ-orbits in the AutG̃(G)-orbit of embed-

dings ψ̃G, ε(sψ) = ±1 is a sign defined in terms of values at s = 1
2 of global ε-factors

attached to ψ, and σ(S̄0
ψ) is the number attached to the complex connected group

S̄0
ψ in Theorem 4 below.

The last term fG(ψ) in the formula is harder to construct. It represents the
pullback to G(A) of the twisted character

tr
(
πψ(f̃)

)
, f̃ ∈ C∞

c

(
G̃(A)

)
,

on GL(N,A). (We use the theory of Whittaker models for GL(N) to extend the
θ-stable representation πψ to the component

G̃(A) = GL(N,A)� θ

on which f̃ is defined.) The construction is essentially local. Since the criterion

of Theorem 1 that determines the subset Ψ̃(G) of Ψ̃(N) to which ψ belongs is
global, the definition of fG(ψ) requires effort. It is an important part of the proof
of Theorem 2.

The formula of Theorem 2 is easily specialized to the other summands in (2)ψ.

For any G′, it gives rise to a sum over the subset Ψ̃(G′, ψ) of parameters ψ′ ∈ Ψ̃(G′)
that map to ψ. The formulas so obtained can then be combined in the sum over
G′. The end result is an explicit expression for the right hand side of (2)ψ in terms
of the distributions

fG′
(ψ′), f ∈ C∞

c

(
G(A)

)
, ψ′ ∈ Ψ̃(G′, ψ),

and combinatorial data attached to the (nonconnected) complex reductive group
Sψ.
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Theorem 3. Suppose that ψ ∈ Ψ̃(G) contributes to the induced discrete spec-
trum of a proper Levi subgroup M of G, and that w lies in W (M)reg. Then there
is a natural formula for the corresponding distribution

tr
(
MP,ψ(w)IP,ψ(f)

)
in (1)ψ in terms of

(i) the distributions

fG′
(ψ′), ψ′ ∈ Ψ̃(G′, ψ),

(ii) the order of poles of global L-functions at s = 1, and
(iii) the values of global ε-factors at s = 1

2 .

In this case, we have not tried to state even a semblance of a formula. How-
ever, the resulting expression for the sum in (1)ψ will evidently have ingredients in
common with its counterpart for (2)ψ discussed above. It will also have two points
of distinction. In (1)ψ there will be only one vanishing summand (other than the
summand of G we are trying to show also vanishes). Furthermore, the summand
of M contains something interesting beyond the distribution above, the coefficient

| det(1− w)|−1.

One sees easily that the distribution of Theorem 3 vanishes unless w has a represen-

tative in the subgroup Sψ of Ĝ/Z(Ĝ)ΓF . We can therefore analyze the combinatorial
properties of the coefficients in the context of this group.

Suppose for a moment that S is any connected component of a general (non-
connected) complex, reductive algebraic group S+. Let T be a maximal torus in
the identity component S0 = (S+)0 of this group. We can then form the Weyl set

W = W (S) = NormS(T )/T,

induced by the conjugation action of elements in S on T . Let Wreg be the set of
elements w in W that are regular, in the sense that as a linear operator on the real
vector space

aT = Hom(X(T ),R),

the difference (1−w) is nonsingular. We define the sign ε0(w) = ±1 of an element
w ∈ W to be the parity of the number of positive roots of (S0, T ) mapped by w to
negative roots. Given these objects, we attach a real number

i(S) = |W |−1
∑

w∈Wreg

ε0(w)| det(w − 1)|−1

to S.
As is often customary, we write Ss for the centralizer in S0 of a semisimple ele-

ment s ∈ S. This is of course a complex reductive group, whose identity component
we denote by S0

s . We then introduce the subset

Sell =
{
s : |Z(S0

s )| < ∞
}
,

where Z(S1) denotes the center of any given complex connected group S1. The set
Orb(Sfin, S

0) of orbits in Sell under conjugation by S0 is finite.

Theorem 4. There are unique constants σ(S1), defined whenever S1 is a com-
plex connected reductive group, such that for any S the number

e(S) =
∑

s∈Orb(Sell,S0)

|π0(Ss)|−1σ(S0
s )
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equals i(S), and such that

σ(S1) = σ(S1/Z1)|Z1|−1,

for any central subgroup Z1 ⊂ Z(S1) of S1.

The numbers i(S) and e(S) of the theorem are elementary. However, they bear
an interesting formal resemblance to the deeper expansions on the right hand sides
of (1)ψ and (2)ψ respectively. In particular, the data in (2)ψ are vaguely endoscopic.
I have sometimes wondered whether Theorem 4 represents some kind of broader
theory of endoscopy for Weyl groups.

The proof of the theorem is also elementary. It was established in §8 of [A2]. We
have displayed the result prominently here because of the link it provides between
Theorems 2 and 3, or rather between the expressions for the right hand sides of (1)ψ
and (2)ψ that these theorems ultimately yield. We have discussed these expressions
in only the most fragmentary of terms. We add here only the following one-line
summary. If the summand of G in (1)ψ is put aside, the two expressions are seen
to match, up to coefficients that reduce respectively to the numbers i(S) and e(S)
attached to the components S of the group S̄ψ. Theorem 4 then tells us that the
right hand of (2)ψ equals the difference between the right side of (1)ψ and the
summand of G in (1)ψ. Since the left hand sides of (1)ψ and (2)ψ are equal, the

summand of G does vanish for any ψ ∈ Ψ̃(G) with S̄ψ infinite, as required. We
thus obtain the following theorem.

Theorem 5. The automorphic discrete spectrum of G has no embedded eigen-
values.

This is the result we set out to describe. As we have said, it is part of a general
classification of the automorphic representations of G. The reader will have to refer
to [A4, §30] and [A5] for a description of the classification. However, the theorems
discussed here are at the heart of its proof.
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[W2] , Endoscopie et changement de caractéristique, J. of the Inst. of Math. Jussieu

5 (2006), 423–525.
[W3] , L’endoscopie tordue n’est pas si tordue, Mem. Amer. Math. Soc. 908 (2008).

Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E1

E-mail address: arthur@math.toronto.edu





Clay Mathematics Proceedings
Volume 13, 2011

A Cuspidality Criterion for the Exterior Square Transfer of
Cusp Forms on GL(4)

Mahdi Asgari and A. Raghuram

Dedicated to Freydoon Shahidi on the occasion of his sixtieth birthday

Abstract. For a cuspidal automorphic representation Π of GL(4,A), H. Kim
proved that the exterior square transfer ∧2Π is nearly an isobaric automorphic
representation of GL(6,A). In this paper we characterize those representations
Π for which ∧2Π is cuspidal.

1. Introduction and statement of the main theorem

Let F be a number field whose adèle ring we denote by AF . Let G1 and G2 be
two connected reductive linear algebraic groups over F , with G2 quasi-split over F ,
and let LG1 and LG2 be the corresponding L-groups. Given an L-homomorphism
r : LG1 → LG2, Langlands principle of functoriality predicts the existence of a
transfer Π �→ r(Π) of the L-packet of an automorphic representation Π of G1(AF )
to an L-packet r(Π) of automorphic representations of G2(AF ). Now assume that
G2 is a general linear group. We note that an L-packet for a general linear group
is a singleton set. For applications of functoriality one needs to understand the
image and fibers of the correspondence Π �→ r(Π). In particular, it is necessary to
understand what conditions on Π ensure that the transfer r(Π) is cuspidal.

The main aim of this paper is to describe a cuspidality criterion for the transfer
of automorphic representations from GL(4,AF ) to GL(6,AF ) corresponding to the
exterior square map ∧2 : GL(4,C) → GL(6,C). Langlands functoriality in this case
is a deep theorem due to H. Kim [13].

Let Π = ⊗vΠv and Σ = ⊗vΣv be irreducible isobaric automorphic represen-
tations of GL(4,AF ) and GL(6,AF ), respectively. Assume that S is a finite set of
places of F , including all the archimedean ones, outside of which both of the rep-
resentations are unramified. We say Σ is an exterior square transfer of Π if for all
v �∈ S we have Σv = ∧2(Πv), i.e., the semi-simple conjugacy class in GL(6,C) deter-
mining Σv is generated by the image under ∧2 of the semi-simple conjugacy class in
GL(4,C) determining Πv. By the strong multiplicity one theorem (see Theorem 2.1
below) such a Σ would be unique. We will denote it by ∧2Π. The existence of ∧2Π
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was established by H. Kim [13, Theorem A]. Furthermore, he showed that if Πv

is not supercuspidal for the places v dividing 2 or 3, then the local component Πv

and (∧2Π)v are compatible via the local Langlands correspondence for GL(4, Fv)
and GL(6, Fv). The assumption at v|2, 3 was made because of complications posed
by supercuspidal representations, especially of GL(4, Fv). In any event, it has no
bearing on our result as we do not need the fact that the local components of ∧2Π
and Π are compatible via the local Langlands correspondence at all places. We now
state the main theorem of this article.

Theorem 1.1. Let F be a number field and let Π be a cuspidal automorphic
representation of GL(4,AF ). The following are equivalent:

(i) ∧2Π is not cuspidal.
(ii) Π is one of the following:

(a) π1 � π2, the transfer from GL(2,AF )×GL(2,AF ) to GL(4,AF ) via
the automorphic tensor product �. (This may also be viewed as the
transfer from split GSpin(4) to GL(4).)

(b) As(π), the Asai transfer of a dihedral cuspidal automorphic repre-
sentation π of GL(2,AE) where E/F is a quadratic extension. (This
may also be viewed as the transfer to GL(4) from the quasi-split non-
split GSpin∗(4) over F which splits over E.)

(c) The functorial transfer of a cuspidal representation π of GSp(4,AF )
associated with the natural embedding of the dual group GSp(4,C)
into GL(4,C). The representation π may be taken to be globally
generic.

(d) IFE(π), the automorphic induction of a cuspidal automorphic repre-
sentation π of GL(2,AE), where E/F is a quadratic extension.

(iii) Π satisfies one of the following:
(α) Π ∼= Π∨ ⊗χ for some Hecke character χ of F , and Π is not the Asai

transfer of a nondihedral cuspidal representation.
(β) Π ∼= Π⊗ χ for a nontrivial Hecke character χ of F .

We observe that the groups in (ii)(a)–(ii)(d) are some of the twisted endoscopic
groups for GL(4)×GL(1) which have the property that the image under ∧2 of the
connected component of their dual groups are contained in proper Levi subgroups
of GL(6,C). Recall from [2, §3.7] that the exterior square transfer we consider here
is a special case of the more general transfer from GSpin(2n) to GL(2n). One would
expect that the above theorem admits a generalization to that setting through the
theory of twisted endoscopy.

We now briefly sketch the proof of the theorem. It is easy to verify that
(ii) implies both (i) and (iii). In Section 3 we explicitly write down the isobaric
decomposition of ∧2Π for each of the cases (ii)(a)–(ii)(d). In order to check that
two isobaric representations are isomorphic we repeatedly use a strong multiplicity
one theorem, due to Jacquet and Shalika, recalled in Section 2.1.

The proof of (i) =⇒ (iii), described in Section 4, uses some details from the
Langlands–Shahidi machinery. We show in Proposition 4.1 that if Π is not essen-
tially self-dual, then ∧2Π cannot have a degree 1 or degree 3 isobaric summand.
In Proposition 4.2 we verify that if Π does not admit a nontrivial self-twist, then
∧2Π cannot have a degree 2 isobaric summand. For a cuspidal representation σ of
GL(m,AF ) consider the Langlands L-function L(s,Π×σ,∧2⊗ρm), where ρm is the
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standard representation of GL(m,C). These L-functions appear in the Langlands–
Shahidi machinery for a particular choice of Levi subgroup when the ambient group
is GSpin(2m+ 6). We use Kim [13, §3] to show that, under the above mentioned
hypothesis on Π, these (partial) L-functions are holomorphic at s = 1. The im-
plication then follows from a well-known result of Jacquet, Piatetski-Shapiro, and
Shalika recalled in Section 2.1. We summarize some of the preliminaries we need
from the Langlands–Shahidi machinery in Section 2.3.

Finally, the proof of (iii) =⇒ (ii) is given in Section 5. It relies on the so-
called ‘descent theory’ for classical groups. The version of descent theory for GSpin
groups that we need has now been announced by J. Hundley and E. Sayag [9]. As
a general reference for descent theory we refer to Soudry’s exposition [31].

In Sections 6.1 and 6.2 we present a few examples, some only conjectural, il-
lustrating the above theorem. In Section 6.3 we comment on possible intersections
among the cases in (ii). In Section 6.4 we ask whether it is possible to see the cusp-
idality criterion from the ‘Galois side’. The question can be made precise based on
the philosophy that there is a correspondence between automorphic representations
π of GL(n,AF ) and �-adic n-dimensional representations σ of the absolute Galois
group of F , or n-dimensional complex representations of the conjectural Langlands
group LF . Let us denote this correspondence by π �→ σ(π). Part of this philosophy
is that π is supposed to be cuspidal if and only if σ(π) is irreducible. We refer to Ra-
makrishnan [27] for the state of the art on this issue. In view of the above theorem
one can ask the following question. Let σ be a four-dimensional irreducible Galois
representation; what condition on σ will ensure that ∧2σ is irreducible? Upon pos-
ing this question in a talk at the Oklahoma Joint Automorphic Forms Seminar, A.
Kable came up with a very elegant theorem which reflects the equivalence of (i)
and (iii) in Theorem 1.1. We are grateful to him for allowing us to include his
theorem and its proof in Section 6.4. Recall that in (iii)(α) of Theorem 1.1 above,
we had to exclude the Asai transfer of a nondihedral cuspidal representation if Π is
essentially self-dual. On the Galois side, this is reflected in the fact that if a four-
dimensional irreducible representation σ is essentially self-dual of orthogonal type,
then for ∧2σ to be reducible the image of σ should lie in the connected component
of the identity in the algebraic group GO(4); see Theorem 6.5.

Cuspidality criteria are important not only for their intrinsic value in helping
us better understand a given instance of functoriality but also because they have
important arithmetic applications. D. Ramakrishnan and S. Wang [29] proved a
cuspidality criterion for the transfer from GL(2) ×GL(3) to GL(6) and used it to
construct new cuspidal cohomology classes for GL(6). We refer to [22] for a brief
survey of cohomological applications of Langlands functoriality. H. Kim and F.
Shahidi [18] proved a cuspidality criterion for the symmetric fourth transfer from
GL(2) to GL(5), which has been used in the study of special values of symmetric
power L-functions by the second author and F. Shahidi [23]. Such a potential
arithmetic application was indeed our original motivation to seek a cuspidality
criterion for the exterior square transfer.
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2. Some preliminaries

In this section we collect some results that we repeatedly use in later sections.
To begin, we recall a theorem due to Jacquet and Shalika concerning strong mul-
tiplicity one for isobaric automorphic representations. Then we recall an analytic
criterion in terms of Rankin–Selberg L-functions, due to Jacquet, Piatetski-Shapiro
and Shalika, that characterizes when two cuspidal automorphic representations are
equivalent. Next, we note that the natural transfer of automorphic representations
of a quasi-split non-split general spin group GSpin∗(4) to GL(4) is in fact the Asai
transfer. Finally, we recall some details from the Langlands–Shahidi machinery
that will be of use to us, particularly when the ambient group is GSpin(m) with
m = 8, 10 or 12.

2.1. Some results of Jacquet, Piatetski-Shapiro, and Shalika. The fol-
lowing strong multiplicity one theorem for isobaric representations is due to Jacquet
and Shalika [11, 12].

Theorem 2.1. Let π1 and π2 be two isobaric automorphic representations of
GL(n,AF ). Let S be a finite set of places of F , containing the archimedean places,
such that both π1 and π2 are unramified outside S. If π1,v

∼= π2,v for all v /∈ S,
then π1

∼= π2.

Another useful technical tool for us is the following theorem, due to Jacquet,
Piatetski-Shapiro and Shalika [10], concerning Rankin–Selberg L-functions.

Theorem 2.2. Let π1 (resp., π2) be a cuspidal automorphic representation
of GL(n1,AF ) (resp., GL(n2,AF )). Let S be a finite set of places containing the
archimedean places of F and the ramified places of π1 and π2. The partial Rankin–
Selberg L-function LS(s, π1 × π2) is holomorphic at s = 1 unless n1 = n2 and
π2

∼= π∨
1 , in which case it has a simple pole at s = 1.

2.2. The Asai transfer and the quasi-split non-split GSpin∗(4). Let
E/F be a quadratic extension of number fields and let Γ = ΓF denote the absolute
Galois group of F . In this section we let G denote the group GSpin∗(4), a quasi-split
non-split linear algebraic group over F , which is isomorphic to the split GSpin(4)
over E. The L-group of G can be written as LG = GSO(4,C) � Γ, where the
Galois action, which factors through Gal(E/F ), is described below. We note that
GSO(4,C) denotes the special orthogonal similitude group; one can identify it as a
quotient of GL(2,C)×GL(2,C) given by

GSO(4,C) = β(GL(2,C)×GL(2,C)),

where β is the map on the right of the exact sequence

1 −→ C∗ −→ GL(2,C)×GL(2,C)
β−→ GO(4,C).

For details see [26, §2]. Furthermore, the Γ-action on GSO(4,C) is as follows. If
γ ∈ Γ and g = β(g1, g2) with gi ∈ GL(2,C), then

γ · g =

{
β(g1, g2) if γ|E = 1,

β(g2, g1) if γ|E �= 1.
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We also need to recall the Asai transfer. Consider the group H = ResE/FGL(2)
as a group over F . Its L-group is given by

LH = (GL(2,C)×GL(2,C))� Γ,

with the Galois action given by

(2.3) γ · (g1, g2) =
{
(g1, g2) if γ|E = 1,

(g2, g1) if γ|E �= 1.

Let W be a 2-dimensional C-vector space, and let V = W ⊗W . After fixing a
basis for W , we identify GL(W ) with GL(2,C). Consider the map

(2.4) As : (GL(W )×GL(W ))� Γ −→ GL(V ) ∼= GL(4,C)

given, on pure tensors, by

As(g1, g2; γ)(ξ1 ⊗ ξ2) =

{
g1ξ1 ⊗ g2ξ2 if γ|E = 1,

g1ξ2 ⊗ g2ξ1 if γ|E �= 1,

for all ξi ∈ W and all gi ∈ GL(W ). It is straightforward to check that this map is
indeed a homomorphism. It is called the Asai (or ‘twisted tensor’) homomorphism.
(Alternatively, one could take the map satisfying As(g1, g2; γ)(ξ1 ⊗ ξ2) = −g1ξ2 ⊗
g2ξ1 when γ|E �= 1. This choice would lead to a quadratic twist of the above map.)

Further, let ι : LG −→ GL(V ) ∼= GL(4,C) be the map defined via

ι(β(g1, g2); γ)(ξ1 ⊗ ξ2) =

{
g1ξ1 ⊗ g2ξ2 if γ|E = 1,

g1ξ2 ⊗ g2ξ1 if γ|E �= 1.

Again, it is straightforward to check that this map is an L-homomorphism. It is
now clear that ι ◦ (β, id) = As. In other words, the following diagram commutes:

GL(2,C)×GL(2,C)� Γ

As
����

����
����

����
(β,id) �� GSO(4,C)� Γ

ι
�����

���
���

��

GL(4,C)

Assume that π is a cuspidal automorphic representation of GL(2,AE) and
let Π = As(π) be its Asai transfer to GL(4,AF ). (See Krishnamurthy [19] or
Ramakrishnan [26].) Then Π = ι(β(π)), where β(π) denotes the transfer of π to the
group GSpin∗(4,AF ), and ι(β(π)) denotes the transfer of β(π) from GSpin∗(4,AF )
to GL(4,AF ). The transfer corresponding to β exists for formal reasons and the
existence of the transfer corresponding to ι (for generic representations) is part of
a joint work of the first author with F. Shahidi [2, 3].

2.3. The Langlands–Shahidi L-functions. Let P = MN be a maximal
proper parabolic subgroup of a connected reductive quasi-split linear algebraic
group G, where M denotes a Levi subgroup and N denotes the unipotent radi-
cal of P . Let σ be a generic automorphic representation of M(AF ). Let r denote

the adjoint action of the complex Langlands dual group M̂ on the Lie algebra of
the dual of N . Write r = r1 ⊕ · · · ⊕ rm, where the ri’s denote the irreducible con-
stituents of r and the ordering is according to the eigenvalue of the adjoint action
as in, for example, [30, p.278]. The Langlands–Shahidi method then constructs the
L-functions L(s, σ, ri) for 1 ≤ i ≤ m.
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We need the following cases of the Langlands–Shahidi method. Let G =
GSpin(2n + 6) with n = 1, 2, 3, and consider a maximal parabolic subgroup of
G with Levi subgroup M = GL(n) × GSpin(6). (One could also work with split
spin groups as in [13, §3]; however, we find it more convenient to work with the
similitude version of the groups.) The algebraic group GSpin(6) is isomorphic to
a quotient of GL(1) × Spin(6) by a central subgroup A = {1, (−1, c)}, where c is
the nontrivial element in the center of Spin(6) of order 2; see [2, Proposition 2.2].
The algebraic group GL(4) is isomorphic to a quotient of GL(1)×SL(4) by a cyclic
central subgroup B of order 4. We identify Spin(6) with SL(4) such that B contains
A. This way we get a natural map, defined over F , from GSpin(6) to GL(4), which
in turn induces a map

(2.5) f : M −→ GL(n)×GL(4).

Let Π be an irreducible cuspidal representation of GL(4,AF ) and let σ be an
irreducible cuspidal automorphic representation of GL(n,AF ), n = 1, 2, 3. Choose
any irreducible constituent Σ of σ ⊗ Π|f(M(AF )) and let Σ also denote the corre-
sponding representation of M(AF ). The Langlands–Shahidi method then gives

(2.6) L(s,Σ, r1) = L(s, σ ⊗Π, ρn ⊗ ∧2ρ4),

where ρk denotes the standard representation of GL(k,C) and the L-function on
the right-hand side is a Langlands L-function; see [13, §3]. We record a general
fact that we need from the Langlands–Shahidi method.

Proposition 2.7. Let wG and wM denote the longest elements of the Weyl
group of G and M , respectively. Let w0 = wGwM . If w0(Σ) �∼= Σ, then L(s,Σ, r1)
is entire.

Proof. This is a standard fact in the Langlands–Shahidi method. For exam-
ple, see the proof of [13, Proposition 3.4]. �

In order to apply the above proposition one needs to know the action of w0 on
a representation of M(AF ).

Proposition 2.8. Let G = GSpin(2n + 6) with n a positive integer and let
σ ⊗ Π be a representation of M(AF ) as above. Moreover, let w0 be as above and
denote its image under the map (2.5) by w0 again. Then we have

w0(σ ⊗Π) =

{
σ∨ ⊗ (Π∨ ⊗ ωσ) if n is odd,

σ∨ ⊗ (Π⊗ ωσ) if n is even.

Here, ωσ denotes the central character of σ.

Proof. Recall that the nontrivial automorphism of the Dynkin diagram of
type Am corresponds to an outer automorphism of GL(m+1) and it conjugates an
irreducible representation to its dual representation. The proof of the proposition
will follow from a description of how w0 acts on the root system of type Dr.

We use the Bourbaki notation for the simple roots:

α1 = ε1 − ε2, . . . , αr−2 = εr−2 − εr−1, αr−1 = εr−1 − εr, αr = εr−1 + εr.

The Weyl group of G is isomorphic to {±1}r−1 � Sr which we identify with a
subgroup of signed r × r permutation matrices acting on Rr = Rε1 ⊕ · · · ⊕ Rεr.
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With this identification observe that

wG =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Ir if r is even,

(
−Ir−1

1

)
if r is odd.

Let r = n + 3 and let M be a maximal Levi subgroup of type An−1 × A3

in G = GSpin(2r). The simple roots in the A3-factor are αr−1, αr−2, αr. The
proposition follows by observing that

w0(αr−1) = wGwM (αr−1) = wG(−αr)

= wG(−εr−1 − εr) =

{
εr−1 + εr = αr if r is even,

εr−1 − εr = αr−1 if r is odd,

and

w0(αr) = wGwM (αr) = wG(−αr−1)

= wG(−εr−1 + εr) =

{
εr−1 − εr = αr−1 if r is even,

εr−1 + εr = αr if r is odd,

while

w0(αr−2) = wGwM (αr−2) = wG(−αr−2) = wG(−εr−2 − εr−1) = αr−2

in either case. Moreover, for 1 ≤ j ≤ n− 1 we have

w0(αj) = wGwM (αj) = wG(−αn−j) = wG(−εn−j + εn−j+1) = αn−j .

This means that w0 induces the nontrivial automorphism of the Dynkin diagram of
the An−1-factor of M , and on the A3-factor it induces the nontrivial automorphism
of the Dynkin diagram if and only if r is even.

Let m = m(g, h) be an arbitrary element in the Levi subgroup M identified
with GL(n)×GSpin(6), in G = GSpin(2n+6), where g ∈ GL(n) and h ∈ GSpin(6),
and let ν = ν(m) denote its similitude character value. Then

w0m(g, h)w−1
0 = m(tg

−1
ν(m), h∗),

where

h∗ =

{
th

−1
if r is even,

h if r is odd.

We conclude that

w0(σ ⊗Π)(m(g, h)) = (σ ⊗Π)(m(tg
−1

ν(m), h∗))

= σ(tg−1)Π(h∗)ωσ(ν(m))

= σ∨(g)Π∗(h)ωσ(ν(h))

= (σ∨ ⊗ (Π∗ ⊗ ωσ)) (m(g, h)),

where

Π∗ =

{
Π∨ if r is even,

Π if r is odd.

Note that r = n+ 3 is even if and only if n is odd. This completes the proof. �
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3. The proof of (ii)⇒(i)

We verify that for each of (ii)(a) through (ii)(d) the exterior square transfer
∧2Π is not cuspidal. Indeed, it is not difficult to write down the isobaric decompo-
sition for ∧2Π in each case.

3.1. (ii)(a)⇒(i).

Proposition 3.1. Let π1 and π2 be two cuspidal automorphic representations
of GL(2,AF ). Let π1 � π2 be the transfer to an automorphic representation of
GL(4,AF ), whose existence was established in [24]. For brevity, we let Π = π1 �π2

and ω = ωπ1
ωπ2

. We have

(a) ∧2(π1 � π2) =
(
Sym2(π1)⊗ ωπ2

)
�
(
Sym2(π2)⊗ ωπ1

)
.

(b) Assuming Langlands functoriality one should expect

Sym2(π1 � π2) =
(
Sym2(π1) � Sym2(π2)

)
� ωπ1

ωπ2
.

(c) The partial L-function LS(s,∧2(Π) ⊗ ω−1) is entire while the partial L-
function LS(s,Π, Sym2 ⊗ ω−1) has a pole at s = 1.

Proof. The proof of (a) and (b), using Theorem 2.1, is an easy calculation
using Satake parameters on both sides. More precisely, for a finite place v at which
both π1 and π2 are unramified we let π1,v and π2,v have Frobenius-Hecke eigenvalues
t1 = diag(a1, b1) and t2 = diag(a2, b2), respectively. Then

∧2(t1 ⊗ t2) =
(
diag(a21, a1b1, b

2
1) · a2b2

)
�
(
diag(a22, a2b2, b

2
2) · a1b1

)
and

Sym2(t1 ⊗ t2) =
(
diag(a21, a1b1, b

2
1)⊗ diag(a22, a2b2, b

2
2)
)

� (a1b1 · a2b2) .

Part (a) has also been observed by others; see [19, (7.27)] and [28, (2.6)], for
example. For (b) to make sense one has to assume the symmetric square transfer
from GL(4) to GL(10) and the automorphic tensor product from GL(3)×GL(3) to
GL(9), both particular instances of functoriality.

To prove (c), observe that Π∨ ∼= Π⊗ ω−1, which implies

LS(s,Π×Π∨) = LS(s,∧2(Π)⊗ ω−1)LS(s,Π, Sym2 ⊗ ω−1),

where S is a finite set of places including all the archimedean ones such that Π
is unramified outside of S. From (a) we have ∧2(Π) ⊗ ω−1 = Ad(π1) � Ad(π2).
(Here Ad(πi) = Sym2(πi)⊗ω−1

πi
.) If πi is not dihedral, then Ad(πi) is cuspidal (by

Gelbart-Jacquet [7]) and hence its partial L-function is entire. If πi is dihedral, say
πi = IFE (χ), then it is easy to see that Ad(πi) = ωE/F � IFE (χ′χ−1), where ωE/F

is the quadratic character of F associated to E by class field theory, and χ′ is the
nontrivial Gal(E/F )-conjugate of χ. Since πi is cuspidal, the inducing character χ
is Galois regular, i.e., χ′ �= χ, or equivalently χ′χ−1 is a nontrivial character, whence
LS(s,Ad(πi)) = LS(s, ωE/F )L

S(s, IFE (χ′χ−1)) is entire. (In particular, it does not

have a pole at s = 1.) Therefore LS(s,∧2(Π)⊗ω−1) = LS(s,Ad(π1))L
S(s,Ad(π2))

does not have a pole at s = 1. However, LS(s,Π×Π∨) has a pole at s = 1, which
implies that LS(s,Π, Sym2 ⊗ ω−1) has a pole at s = 1.

Note that (c), unlike (b), is unconditional and does not depend on assuming
unproven instances of functoriality. �
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3.2. (ii)(b)⇒(i).

Proposition 3.2. Let E/F be a quadratic extension. Let π be a cuspidal
automorphic representation of GL(2,AE) and let Π = As(π) be its Asai transfer.
Assume that Π is a cuspidal automorphic representation of GL(4,AF ). Then ∧2Π
is cuspidal if and only if π is not dihedral.

Proof. The proof depends on the following identity:

∧2(As(π)) = IEF (Sym
2π ⊗ ω′

π),

where ′ means the nontrivial Gal(E/F )-conjugate. (See [19, §7].) To begin, assume
that π is not dihedral. By [26, Theorem 1.4] we know that As(π) is cuspidal if and
only if π′ �∼= π ⊗ μ for any μ. If ∧2Π is not cuspidal, then

(
Sym2π ⊗ ω′

π

)′ ∼= Sym2π ⊗ ω′
π.

This implies that Sym2π′ ⊗ωπ
∼= Sym2π⊗ω′

π, i.e., Ad(π) ∼= Ad(π′). This, in turn,
implies that π′ ∼= π ⊗ μ (by [24, Theorem 4.1.2]), contradicting the fact that there
is no such twist. Hence ∧2Π is cuspidal.

Next, assume that π is dihedral. In this case Sym2(π) is not cuspidal, and
therefore, IEF (Sym

2π ⊗ ω′
π) cannot possibly be cuspidal. �

3.3. (ii)(c)⇒(i).

Proposition 3.3. Let Π be a cuspidal automorphic representation of GL(4,AF )
and assume that Π is a transfer from a cuspidal (generic) automorphic representa-
tion π of GSp(4,AF ). Then

∧2Π = r̃5(π) � ωπ,

where r̃5 is a degree 5 representation of GSp(4,C) defined below. In particular, ∧2Π
is not cuspidal.

Proof. We use Kim [14, p. 2793]. As observed there, one has

Sp(4,C)
ι
↪→ GL(4,C)

∧2

−→ GL(6,C)

and ∧2 ◦ ι = r5 ⊕ 11 decomposes into a direct sum of the trivial representation and
a five-dimensional representation r5. Similarly,

GSp(4,C)
ι̃
↪→ GL(4,C)

∧2

−→ GL(6,C)

and ∧2 ◦ ι̃ = r̃5 ⊕ ν, where ν is the similitude character of GSp(4,C) and r̃5 is a
five-dimensional representation of GSp(4,C). This implies the desired equality of
automorphic representations. �

Remark 3.4. Embedded in the above proof is the assertion that a cuspidal
(generic) automorphic representation π of GSp(4,AF ) admits a transfer to an au-
tomorphic representation r̃5(π) of GL5(AF ) corresponding to the representation
r̃5. This depends on the generic transfer from GSp(4) to GL(4) (see Asgari-Shahidi
[4]), and the exterior square transfer from GL(4) to GL(6) due to Kim [13].
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3.4. (ii)(d)⇒(i).

Proposition 3.5. If π is a cuspidal automorphic representation of GL(2,AE),
where E/F is a quadratic extension, and Π = IEF (π) is the automorphic induction
of π to an automorphic representation of GL(4,AF ), then ∧2Π is not cuspidal.

Proof. It is known that

∧2(IEF (π)) = As(π)⊗ ωE/F � IFE(ωπ),

where ωE/F is the quadratic Hecke character of F associated to E/F by class field
theory. See, for example, Kim [16, §3]. �

4. The proof of (i)⇒(iii)

It is equivalent to prove that, if Π is a cuspidal automorphic representation
of GL(4,AF ) which neither has a nontrivial self-twist nor is essentially self-dual,
then ∧2(Π) is cuspidal. Observe that if an isobaric automorphic representation ρ
of GL(6,AF ) is not cuspidal, then it must have an isobaric summand of degree 1, 2,
or 3, i.e., there exists a cuspidal representation σ of GL(n,AF ), with 1 ≤ n ≤ 3,
such that LS(s, ρ × σ) has a pole at s = 1. Again, S denotes a finite set of places
of F , including all the archimedean ones, such that all the representations involved
are unramified at places outside S. Now with Π as above, the cuspidality of ∧2Π
follows from the following two propositions.

Proposition 4.1. If Π �∼= Π∨ ⊗ χ for all χ, then LS(s,Π ⊗ σ,∧2 ⊗ ρ2) is
holomorphic at s = 1 for every cuspidal representation σ of GL(n,AF ), n = 1, 3.

Proof. Let Σ be as in (2.5). By Proposition 2.7, it is enough to show that
w0(Σ) �∼= Σ. If we have w0(Σ) ∼= Σ, then w0(σ ⊗ Π) ∼= σ ⊗ Π. On the other hand,
by Proposition 2.8 we have w0(σ ⊗ Π) ∼= σ∨ ⊗ (Π∨ ⊗ ωσ). In particular, we must
have Π ∼= Π∨ ⊗ ωσ contradicting the hypothesis. �

Proposition 4.2. If Π �∼= Π⊗χ for all nontrivial χ, then LS(s,Π⊗σ,∧2⊗ρ2)
is holomorphic at s = 1 for every cuspidal representation σ of GL(2,AF ).

Proof. The same argument as in the above proof works as long as ωσ �= 11
because by Proposition 2.8 we have w0(σ ⊗ Π) ∼= σ∨ ⊗ (Π ⊗ ωσ) �∼= σ ⊗ Π. This
means that if σ is a cuspidal representation of GL(2,AF ) with nontrivial central
character, then σ cannot occur as an isobaric summand of ∧2(Π).

Now suppose that σ is a cuspidal representation of GL(2,AF ) with trivial cen-
tral character and that σ is an isobaric summand of ∧2(Π). Then the representation
σ⊗ θ2 occurs in ∧2(Π⊗ θ) for any Hecke character θ. Note that Π⊗ θ also satisfies
the hypothesis that it has no nontrivial self-twists. Choose θ such that

ωσ⊗θ2 = ωσθ
4 = θ4 �= 11

to get a contradiction. �

5. The proof of (iii)⇒(ii)

We prove that if Π satisfies (iii)(β), then it is of the form (ii)(d), and if it
satisfies (iii)(α), then it is one of (ii)(a)–(c).
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5.1. (iii)(β) =⇒ (ii)(d). Assume that

(5.1) Π ∼= Π⊗ χ

for some nontrivial χ. Taking central characters we have χ4 = 11. If χ2 �= 11, then
we may replace χ with χ2 in (5.1), which means we may assume that the character
χ in (5.1) is quadratic. We want to show that Π is induced from a quadratic
extension. If Π is a representation of GL(2), then the analogous statement is a
well-known result due to Labesse-Langlands [20]. In our case it follows from the
work of Arthur-Clozel [1] and some L-function arguments as we explain below.

Lemma 5.2. Let Π be a cuspidal representation of GL(2n,AF ) satisfying Π ∼=
Π ⊗ χ for a nontrivial quadratic character χ. Then Π = IFE(π), where E/F is
the quadratic extension associated with χ and π is a cuspidal representation of
GL(n,AE).

Proof. We first claim that the base change ΠE is not cuspidal. To see this,
assume that it is cuspidal. For a finite set S of places of F and the corresponding
set T of places of E lying above those in S, as before, we have

LT (s,ΠE ×Π∨
E) = LS(s,Π×Π∨)LS(s,Π×Π∨ ⊗ χ)(5.3)

= LS(s,Π×Π∨)2.

For sufficiently large S, the left hand side of (5.3) has a simple pole at s = 1 while
the right hand side has a double pole at s = 1. This contradiction shows that ΠE is
not cuspidal. This means that ΠE = π1 �π2, where πi are cuspidal representations
of GL(n,AE). Further, π1 �∼= π2, because if they are equivalent, then

LS(s,Π×Π∨)2 = LT (s,ΠE ×Π∨
E) = LT (s, π1 × π∨

1 )
4,

but LS(s,Π×Π∨)2 has a double pole and LT (s, π1 × π∨
1 )

4 has a pole of order 4 at
s = 1.

Next, we claim that Π ∼= IFE(π1). To show this it is enough to prove that the
partial L-function LS(s, IFE(π1)×Π∨) has a simple pole at s = 1. This follows from

LS(s, IFE(π1)×Π∨) = LS(s, IFE(π1 ×Π∨
E))

= LT (s, π1 ×Π∨
E)

= LT (s, π1 × π∨
1 )L

T (s, π1 × π∨
2 ).

Since π2 �∼= π1 we know that LT (s, π1 × π∨
1 )L

T (s, π1 × π∨
2 ) has a simple pole at

s = 1. �

5.2. (iii)(α) =⇒ (ii)(a)–(c). Now assume that

(5.4) Π ∼= Π∨ ⊗ χ

for some χ. For a finite set S of places of F , as before, we have

LS(s,Π×Π∨) = LS(s,Π× (Π⊗ χ−1))

= LS(s, (Π×Π)⊗ χ−1)

= LS(s,Π,∧2 ⊗ χ−1)LS(s,Π, Sym2 ⊗ χ−1).

The last two L-functions are the standard twisted exterior square and twisted sym-
metric square L-functions of Π. If S is a sufficiently large set, then LS(s,Π× Π∨)
has a simple pole at s = 1. Therefore one and exactly one of the partial twisted
exterior or symmetric square L-functions has a simple pole at s = 1.
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First, assume that LS(s,Π,∧2 ⊗ χ−1) has a pole at s = 1. Then there exists a
cuspidal representation π, which may be taken to be globally generic, of GSp(4,AF )
such that Π is the functorial transfer of Π, i.e., Π is a representation as in (ii)(c).
This result has been known for a long time and, we believe, is originally due to
Jacquet, Piatetski-Shapiro, and Shalika. See Gan-Takeda [6] for a proof. It would
also follow from the more general method of “descent” as we explain below.

Next, assume that LS(s,Π, Sym2 ⊗ χ−1) has a pole at s = 1. Taking central
characters in (5.4) we have ωΠ = ω−1

Π χ4. In other words, μ = ωΠχ
−2 is a quadratic

character. If μ is trivial, then Π is a transfer from a cuspidal representation π
of GSpin(4), a split connected reductive group of type D4 whose derived group
is Spin(4). If μ is nontrivial, then Π is a functorial transfer from the quasi-split
non-split group GSpin∗(4) associated with the quadratic extension E/F attached
to μ. These facts can be proved using the “descent” method of Ginzburg-Rallis-
Soudry. If χ is trivial, then Π would be a transfer from a special orthogonal or
symplectic group. We refer to Ginzburg-Rallis-Soudry [8, Theorem A] and Soudry
[31, Theorem 4 and 12] for the proofs for classical groups, and Hundley-Sayag [9,
Corollary 3.2.1] for the case of GSpin groups.

With the above notation, if μ is trivial, then Π is as in (ii)(a), and if it is
nontrivial then Π is as in (ii)(b).

6. Examples and Complements

In this section we give a few examples of our main result. In some of them the
proposed representation Π of GL(4,AF ) is not yet proved to be automorphic, but it
is conjecturally so. We also comment on possible intersection among the four cases
in part (ii) of Theorem 1.1. Finally, we present a theorem due to A. Kable on when
the exterior square of an irreducible four-dimensional representation is reducible.

6.1. K. Martin’s G192. The matrices

a =

⎡
⎢⎢⎣
−1

−1
1

1

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣
−1

1
−1

1

⎤
⎥⎥⎦ ,

c =

⎡
⎢⎢⎣

−1
1

−i
−i

⎤
⎥⎥⎦ , d =

⎡
⎢⎢⎣

−1
−1

1
1

⎤
⎥⎥⎦

in GL(4,C) generate a group G192 of order 192. Let ρ be the four-dimensional
representation of the group G192 given by inclusion. Then ρ is an irreducible repre-
sentation. In [21] K. Martin showed that ρ is modular, i.e., there exists a (cuspidal)
automorphic representation Π(ρ) that corresponds to ρ.

Example 6.1. Let Π1 = Π(ρ). Then Π1 is a cuspidal automorphic represen-
tation of GL(4,AF ). Moreover, it is neither essentially self-dual nor does it have a
nontrivial self-twist. It is not on the list of possibilities of (ii). Furthermore, ∧2Π1

is cuspidal. In other words, Π1 is an example of a cuspidal representation which
does not satisfy any of (i)–(iii) of Theorem 1.1.



CUSPIDALITY CRITERION 45

Proof. First we check that ∧2(ρ) is an irreducible representation. To see
this consider the standard basis 〈e1, e2, e3, e4〉 for C4 and fix the ordered basis
〈w1, w2, . . . , w6〉 of C6 = ∧2C4 given by

w1 = e1 ⊗ e2 − e2 ⊗ e1, w2 = e1 ⊗ e3 − e3 ⊗ e1, w3 = e1 ⊗ e4 − e4 ⊗ e1,
w4 = e2 ⊗ e3 − e3 ⊗ e2, w5 = e2 ⊗ e4 − e4 ⊗ e2, w6 = e3 ⊗ e4 − e4 ⊗ e3.

Let A,B,C,D be the images of a, b, c, d under ∧2, respectively. Then, with respect
to the above basis, we have

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
−1

−1
−1

−1
1

⎤
⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1
1

−1
−1

1
−1

⎤
⎥⎥⎥⎥⎥⎥⎦
,

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1
−i

−i
i

i
1

⎤
⎥⎥⎥⎥⎥⎥⎦
, D =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1

−1
1

−1
1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

It is easy to check that if a 6 × 6 matrix X commutes with A,B, and C, then it
has to be of the form

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

a b
c

e f
−f e

d
−b a

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Further, if XD = DX, then a = c = d = e and b = f = 0, i.e., X is a scalar matrix.
Therefore, HomG192

(∧2ρ,∧2ρ) = C and, by Schur’s lemma, the representation ∧2ρ
is irreducible. This implies that ∧2Π1 is cuspidal. (This is because, if a complex
Galois representation σ is modular, i.e., corresponds to an automorphic represen-
tation π = π(σ), then σ is irreducible if and only if π is cuspidal. This fact follows
from L(s, σ ⊗ σ∨) = L(s, π × π∨); see Ramakrishnan [27, Introduction].) Martin
observes that ρ, and hence Π1, is not essentially self-dual. Clearly Π1 is not on the
list of possibilities in (ii) of the main theorem because if it were, then ∧2Π1 would
not be cuspidal (see Section 3). Hence Π1 does not satisfy any of the equivalent
statements of Theorem 1.1. �

In [21] Martin considers a four-dimensional irreducible representation ρ of the
absolute Galois group of Q whose image in PGL(4,C), denoted Ḡ, is an extension
of A4 by V4. In this situation Ḡ is either V4 � A4 or V4 · A4. In the former case ρ
is of GO(4)-type and Π = Π(ρ) is a transfer from GL(2,AF )×GL(2,AF ), which is
contained in our (ii)(a). The example of G192 is an instance of the latter situation.
In either case, Π(ρ) may also be thought of as being obtained by automorphic
induction across a non-normal quartic extension with no quadratic subextension.
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6.2. The standard representation of S5. Consider a tower of number fields
J̃/J/E/F . Here, E/F and J̃/J are quadratic extensions, J/E is an A5-extension,

J/F is an S5-extension, J̃/E is an SL(2,F5)-extension, and J̃/F is Galois. (Recall
that A5

∼= PSL(2,F5).) In what follows we identify A5, S5 and SL(2,F5) with these
Galois groups.

Let σ be the standard four-dimensional irreducible representation of S5,

σ : S5 −→ GL(4,C).

Here are some properties of σ:

(1) ∧2σ is a six-dimensional irreducible representation of S5 (see [5, §3.2]).
(2) σ|A5

is irreducible (because σ �∼= σ⊗ε, where ε is the sign character of S5).
(3) ∧2(σ|A5

) = (∧2σ)|A5
is reducible (because ∧2(σ) ∼= ∧2(σ) ⊗ ε), and its

irreducible constituents are both of degree 3.
(4) σ is self-dual (because the character of σ has integer values).
(5) σ|A5

= ρ1 ⊗ ρ2, where ρ1 and ρ2 are the two-dimensional irreducible
representations of SL(2,F5) (see [15, Lemma 5.1]).

We need some details about the ρi. Let ρ̃ be the unique (up to twists) cuspidal
representation of GL(2,F5) whose restriction to SL(2,F5) is reducible. In this case,
ρ̃|SL(2,F5) = ρ1⊕ρ2. If g ∈ GL(2,F5)−Z(F5)SL(2,F5), then ρg1 = ρ2. Here Z is the
center of GL(2). Conjugating SL(2,F5) by such an element g induces the nontrivial
outer automorphism of SL(2,F5) because, if it were an inner automorphism, then
we would have ρ1 ∼= ρ2, which contradicts the fact that the restriction from GL2 to
SL2 is multiplicity-free.

Let ρ denote either ρ1 or ρ2. In constructing examples (to illustrate our main
theorem), we make the following assumption: ρ is modular, i.e., there exists a
cuspidal automorphic representation π(ρ) of GL(2,AE) with ρ ↔ π(ρ). In this
situation, it is expected [17] that there exists an automorphic representation π(σ)
of GL(4,AF ) with π(σ) ↔ σ and π(σ) is the Asai transfer of π(ρ), i.e., π(σ) =
As (π(ρ)).

Example 6.2. Let Π2 = π(σ) = As(π(ρ)). Then Π2 is a cuspidal automorphic
representation of GL(4,AF ) which is self-dual. However, it is the Asai transfer of a
nondihedral cuspidal representation. Moreover, it has no nontrivial self-twists and
it is not on the list of possibilities in (ii). Furthermore, its exterior square transfer
∧2Π2 is cuspidal. In other words, Π2 is an example of a cuspidal representation
which does not satisfy any of (i)–(iii) of Theorem 1.1.

Proof. Since Π2 = π(σ) and σ is irreducible, we conclude that Π2 is cuspidal.
(Cuspidality of Π2 may also be seen by appealing to the cuspidality criterion for
the Asai transfer due to Ramakrishnan [26, Theorem 1.4].)

Next, we note that Π2 is self-dual and is the Asai transfer of a cuspidal repre-
sentation, namely π(ρ). Note that π(ρ) is not dihedral, as ρ is not induced from a
character of an index two subgroup because there is no such subgroup in SL(2,F5).
Also, Π2 has no nontrivial self-twists because σ has no nontrivial self-twists.

Finally, note that ∧2Π2 is cuspidal since ∧2Π2 = ∧2π(σ) = π(∧2σ) and ∧2σ is
an irreducible representation implying that π(∧2σ) is cuspidal. (See, for example,
Ramakrishnan [27, Introduction].) �

Example 6.3. Let Π3 = (Π2)E be the base change of Π2 to an automorphic
representation of GL(4,AE). Then Π3 is a cuspidal automorphic representation of
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GL(4,AE) which is self-dual and is not the Asai transfer of a nondihedral repre-
sentation. It is contained in (ii)(a) and its exterior square transfer ∧2Π3 is not
cuspidal. In other words, Π3 is an example of a cuspidal representation which
satisfies (i)–(iii) of Theorem 1.1.

Proof. To see cuspidality of Π3, as well as the fact that it is contained in
(ii)(a), note that

Π3 = (Π2)E = π(σ)E = π(σ|A5
) = π(ρ1 ⊗ ρ2) = π(ρ1) � π(ρ2).

Neither ρi is monomial since SL(2,F5) does not have an index two subgroup. Ap-
plying the cuspidality criterion for π(ρ1) � π(ρ2) due to Ramakrishnan [25, The-
orem 11.1], we see that Π3 is not cuspidal if and only if π(ρ1) ∼= π(ρ2) ⊗ μ for
some Hecke character μ of E. On the other hand, π(ρ2) ⊗ μ = π(ρ2 ⊗ μ), where
we identify the Hecke character μ with a character of the absolute Galois group
of E via global class field theory. Hence, we have π(ρ1) = π(ρ2 ⊗ μ). This im-
plies that ρ1 ∼= ρ2 ⊗ μ (since, for any two Galois representations τ1 and τ2, one
has π(τ1) ∼= π(τ2) if and only if τ1 ∼= τ2; one can see this by considering the
equality LS(s, π(τ1) × π(τ2)

∨) = LS(s, τ1 ⊗ τ∨2 )). Therefore, μ is a character of

Gal(J̃/E) = SL(2,F5), a perfect group, hence μ is trivial. Whence ρ1 = ρ2, which
contradicts the fact that they are inequivalent, as was observed earlier.

Next, observe that ∧2Π3 is not cuspidal because

∧2Π3 = ∧2(π(ρ1) � π(ρ2)) = (Sym2(π(ρ1))⊗ ωπ(ρ2))⊕ (Sym2(π(ρ2))⊗ ωπ(ρ1)),

which is of isobaric type (3, 3). (See Proposition 3.1.)
Finally, we observe that Π3 is self-dual because σ, and hence σ|A5

, is self-dual
and that Π3 could not be an Asai transfer of a nondihedral representation because
if it were, then ∧2(Π3) would be cuspidal by Proposition 3.2. �

6.3. On possible intersections between representations in (ii). The
purpose of this subsection is to show that the cases (ii)(a) through (ii)(d) are not
mutually exclusive.

Example 6.4. Let π = IFE(χ) be a cuspidal automorphic representation of
GL(2,AF ) which is automorphically induced from a Hecke character χ of E, where
E/F is a quadratic extension. Let τ be a nondihedral cuspidal automorphic rep-
resentation of GL(2,AF ). Let Π4 = π � τ . Then Π4 is a representation that is
common to (ii)(a), (ii)(c) and (ii)(d).

Proof. From Ramakrishnan’s cuspidality criterion [25, Theorem 11.1] we
know that Π4 is a cuspidal representation of GL(4,AF ). By construction, Π4 is
in (ii)(a).

We observe that

Π4 = IFE(χ) � τ = IFE(χ⊗ τE).

Since the induced representation IFE(χ⊗τE) is cuspidal, the inducing representation
χ⊗ τE is, a fortiori, cuspidal. Hence Π4 is in (ii)(d).

Now we claim that Π is also a transfer from a (generic) cuspidal representation
of GSp(4,AF ). To see this we recall the following well known identities:

Sym2(IFE(χ)) = IFE(χ
2) � χ|

A
×
F
,

∧2(IFE(χ)) = χ|
A

×
F
· ωE/F ,
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where ωE/F is the quadratic Hecke character of F associated to E/F by class field
theory. In particular, the central character of π is given by ωπ = χ|

A
×
F
·ωE/F . From

Proposition 3.1 we have

∧2(π � τ ) =
(
Sym2(π)⊗ ωτ

)
�
(
Sym2(τ )⊗ ωπ

)
.

For brevity write ω = ωπωτ . We deduce that

∧2(Π4) =
(
IFE(χ

2)⊗ ωτ

)
� ω ωE/F �

(
Sym2(τ )⊗ ωπ

)
.

Hence, the partial L-function LS(s,Π,∧2 ⊗ (ω ωE/F )
−1) has a pole at s = 1. Ap-

plying a recent result of Gan and Takeda [6] we conclude that Π is a transfer from
GSp(4), i.e., Π is in (ii)(c). �

6.4. A calculation on the Galois side. As mentioned in the introduction,
one may ask for an irreducibility criterion on the Galois side, i.e., for �-adic Ga-
lois representations or complex representations of the Langlands group LF , which
reflects the cuspidality criterion one is looking for. In this section we present such
a theorem due to A. Kable. We are grateful to him for the permission to include
this material here. Theorem 6.5 below is the analogue of the equivalence of (i) and
(iii) in Theorem 1.1. We begin by reviewing some preliminaries.

Let k be an algebraically closed field whose characteristic is not two and let V
be a four-dimensional k-vector space. Fix a nonzero element η ∈ ∧4V . There is a
nondegenerate symmetric bilinear form B on ∧2V defined by ω1 ∧ω2 = B(ω1, ω2)η
for all ω1, ω2 ∈ ∧2V . The bilinear space (∧2V,B) is isomorphic to the orthogonal
sum of three hyperbolic planes. Let GO(B) be the group of similitudes of B,
λ : GO(B) → k× the similitude character, and GSO(B) the subgroup of proper
similitudes. This subgroup consists of those T ∈ GO(B) such that det(T ) = λ(T )3,
and it coincides with the connected component of the identity in the algebraic
group GO(B). (In the literature, the group GSO(B) is also denoted by SGO(B)
or GO+(B).) We use similar notation also for the similitude groups of forms on V
itself. Let ρ : GL(V ) → GL(∧2V ) be the homomorphism ρ(S) = ∧2S.

Let G be a group and let σ be an irreducible representation of G on V . Recall
that σ is essentially self-dual if there is a character χ of G such that σ∨ ∼= χ ⊗ σ.
In this case, χ−1 is a subrepresentation of σ ⊗ σ. We say that σ has symplectic
type if χ−1 occurs in ∧2σ and orthogonal type if χ−1 occurs in Sym2σ. If σ is
essentially self-dual of orthogonal type, then there is a nonzero symmetric bilinear
form C on V such that G acts on V by similitudes of C. The kernel of C is a
G-invariant proper subspace of V and hence trivial. Thus, C is nondegenerate and
σ(G) ⊂ GO(C). If σ(G) ⊂ GSO(C), then we say that σ is of proper orthogonal
type; otherwise, we say that σ is of improper orthogonal type. Finally, we say that
σ has a nontrivial quadratic self-twist if there is a nontrivial {±1}-valued character
χ of G such that σ ∼= χ⊗ σ.

Theorem 6.5 (A. Kable). Let σ be an irreducible 4-dimensional representation
of a group G over an algebraically closed field whose characteristic is not two. Then
the following two conditions on σ are equivalent:

(1) ∧2σ is reducible.
(2) σ satisfies at least one of the following:

(a) is essentially self-dual of symplectic type,
(b) has a nontrivial quadratic self-twist, or
(c) is essentially self-dual of proper orthogonal type.
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Toward the proof of the above theorem, we begin with a lemma.

Lemma 6.6. The bilinear space (∧2V,B) has the following properties:

(1) The image of ρ is GSO(B).
(2) An isotropic line in ∧2V has the form ∧2Q, where Q < V is a uniquely

determined 2-dimensional subspace of V .
(3) An isotropic 3-space in ∧2V either has the form L ∧ V , where L < V is

a uniquely determined line, or the form ∧2U , where U < V is a uniquely
determined 3-space.

(4) Let W < ∧2V be a 3-space on which B is nondegenerate. Then there is a
nondegenerate symmetric bilinear form C on V such that

{g ∈ GL(V ) | ρ(g)(W ) = W} = GSO(C).

The form C is determined by W up to scalars. Every nondegenerate sym-
metric bilinear form on V occurs in this way for a suitable choice of W .

Proof. We omit the proofs of (1), (2), and (3), as they are easy exercises, and
briefly sketch the proof of (4). Let Q be the quadric hypersurface in P(∧2V ) con-
sisting of null vectors for B. By (2), we may identify Q with the Grassmannian of
lines in P(V ). Let W be a 3-dimensional subspace of ∧2V on which B is nondegen-
erate, and Y = P(W )∩Q be the smooth plane conic defined by B|W . Let T be the
subvariety of P(V ) obtained by taking the union of the lines in P(V ) corresponding
to points of Y . It is easily verified that T is a smooth quadric hypersurface, and
so there is a nondegenerate symmetric bilinear form C on V , unique up to scalars,
such that T has equation C(v, v) = 0. An element g ∈ GL(V ) preserves T together
with the ruling T → Y sending a line in T to the corresponding point of Y if and
only if g ∈ GSO(C). From the construction, the set of g with this property is the
same as the set of all g such that ρ(g)(W ) = W . The last claim in (4) follows from
the fact that GL(V ) acts transitively on the set of all nondegenerate symmetric
bilinear forms on V . �

Proposition 6.7. The representation (σ, V ) is essentially self-dual of symplec-
tic type if and only if ∧2V contains a G-invariant line.

Proof. This follows immediately from the definitions. �

Lemma 6.8. There is no G-invariant isotropic 3-space in ∧2V .

Proof. If there is such a 3-space, then, by Lemma 6.6, it is of the form L∧ V
or of the form ∧2U . Note that G-invariance of the 3-space combined with the
uniqueness statements in Lemma 6.6 imply that L or U is also G-invariant, which
contradicts irreducibility of σ. �

The proof of the following proposition would be substantially simpler if the
action of G on ∧2V were completely reducible. However, in the current generality,
this need not be true.

Proposition 6.9. Suppose that σ is not essentially self-dual of symplectic
type. Then σ has a nontrivial quadratic self-twist if and only if ∧2V contains a
G-invariant 2-space.

Proof. Suppose first that σ has a nontrivial quadratic self-twist, say by the
character χ. Let H be the kernel of χ and recall that, by Clifford theory, σ|H is
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the sum of two 2-dimensional subrepresentations. Let W < V be the H-invariant
2-space on which one of these subrepresentations is realized. Then it is easy to
see that the G-translates of ∧2W span a G-invariant 2-space in ∧2V . (The reader
should compare this with the proof of Proposition 3.5. Indeed, the 2-dimensional
G-invariant subspace is the induction to G of the determinant character of the
representation of H on W . Recall that if σ is a Galois representation that corre-
sponds to an automorphic representation π, then the determinant character of σ
corresponds to the central character of π.)

Now suppose that ∧2V contains a G-invariant 2-space P . The kernel of B|P is
G-invariant and thus is either {0} or P , for the first hypothesis implies that there
can be no G-invariant line in ∧2V . Suppose that the kernel is P . Then the 4-space
P⊥ contains P and the form B and the action of G pass down to P⊥/P . Suppose
that B has a nontrivial kernel in P⊥/P . This kernel cannot be all of P⊥/P , for
then P⊥ would be an isotropic 4-space in ∧2V . Thus the kernel must be a line in
P⊥/P and this kernel is necessarily G-invariant. The preimage of this line in P⊥ is
an isotropic G-invariant 3-space in ∧2V , contrary to Lemma 6.8. We conclude that
(P⊥/P,B) is a nondegenerate quadratic 2-space. Such a space is isomorphic to a
hyperbolic plane and hence contains exactly two isotropic lines. The action of G on
P⊥/P is by similitudes, hence it permutes these lines. Taking the preimage in P⊥,
we obtain two isotropic 3-spaces Λ1 and Λ2 in ∧2V that are permuted by G. By
Lemma 6.8, these isotropic G-spaces cannot be fixed by G and we conclude that the
stabilizer of each is a subgroup H of index two in G. By repeating the argument
of Lemma 6.8 with H in place of G, we conclude that there is either a line L < V
or a 3-space U < V that is H-invariant. By replacing σ by σ∨ if necessary, we
may assume that the former possibility holds. Let g0 ∈ G −H. Then the 2-space
L+ σ(g0)L is easily seen to be G-invariant, contrary to the irreducibility of σ and
σ∨. This contradiction finally allows us to conclude that the restriction of B to P
is nondegenerate.

We now repeat the argument of the previous paragraph with the space P in
place of the space P⊥/P . It yields an index two subgroup H of G and two isotropic
lines in ∧2V that are fixed by H. By Lemma 6.6, each of these lines has the form
∧2Q with Q < V a 2-space. By the uniqueness assertion from Lemma 6.6, each of
these 2-spaces is H-invariant. It now follows from Clifford theory that if χ is the
nontrivial {±1}-valued character on G whose kernel is H, then χ⊗ σ ∼= σ. Thus σ
has a nontrivial quadratic self-twist, as required. �

Proposition 6.10. Suppose that σ is neither essentially self-dual of symplectic
type nor has a nontrivial quadratic self-twist. Then σ is essentially self-dual of
proper orthogonal type if and only if ∧2V contains a G-invariant 3-space.

Proof. Let W < ∧2V be a G-invariant 3-space. By Lemma 6.8, W cannot
be isotropic. The group G acts on W by similitudes and so the kernel of B|W
is G-invariant. We have just observed that this kernel cannot be W and, by the
hypotheses and the preceding results, it cannot be of dimension 1 or 2. Thus the
restriction of B to W is nondegenerate. It follows from Lemma 6.6 that there is a
nondegenerate symmetric bilinear form C on V such that σ(G) ⊂ GSO(C). This
implies that σ is essentially self-dual of proper orthogonal type.

Now suppose that σ is essentially self-dual of proper orthogonal type, so that
there is a nondegenerate bilinear form C on V such that σ(G) ⊂ GSO(C). By
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Lemma 6.6, there is a 3-space W ⊂ ∧2V such that ρ(GSO(C)) preserves W . In
particular, W is G-invariant, and the reverse implication is proved. �

Proof of Theorem 6.5. We know that the representation ∧2σ is essentially
self-dual. Thus, if it has any proper nonzero G-invariant subspace, it necessarily has
such a subspace of dimension at most 3. The proof follows from Propositions 6.7,
6.9 and 6.10. �

6.5. Exception in (iii)(α). Using Theorem 6.5 it is possible to explain the
seemingly strange exception in (iii)(α) of Theorem 1.1. For this we first set up
some notation.

Let G be a group and let H be a subgroup of index two in G. If (τ,W ) is a
2-dimensional representation of H, then AsG/H(τ ), the Asai lift of τ , which is a
4-dimensional representation of G, is defined as follows. Fix g ∈ G−H. Define the
representation (τ ′,W ) of H via

τ ′(h) = τ (ghg−1).

We have a homomorphism

τ × τ ′ : H −→ GL(W )×GL(W ) ↪→ (GL(W )×GL(W ))� (G/H).

Here the action of G/H on (GL(W )×GL(W )) is as in (2.3), i.e, via switching
the two factors. We can extend the map τ × τ ′ from H to a map τ̃ from G to
(GL(W )×GL(W ))� (G/H) by setting τ̃(g) = (1W , τ (g2), γ), where γ denotes the
nontrivial element of G/H. In other words

τ̃(x) =

{
(τ (h), τ (ghg−1), 1) if x = h ∈ H,

(τ (h), τ (ghg), γ) if x = hg ∈ Hg.

It is easy to check that τ̃ is a homomorphism. We define AsG/H(τ ) = As ◦ τ̃ ,
where the map “As” is as in (2.4). This gives a representation of G on the space
V = W ⊗W . To summarize, we have the following commutative diagram:

H
τ×τ ′

��

��

(GL(W )×GL(W ))� (G/H)

As

��

G
AsG/H (τ)

��

τ̃

�������������������������������� GL(V )

Proposition 6.11. Assume that τ is an irreducible 2-dimensional representa-
tion of H and σ = AsG/H(τ ) is irreducible. Then τ has a nontrivial self-twist if
and only if σ has a nontrivial self-twist.

Proof. First, assume that τ has a nontrivial self-twist, i.e., there is a nontrivial
quadratic character χ of H and a nonzero T ∈ HomH(τ, τ ⊗ χ). Set K = ker(χ).
Since σ is irreducible, by [26, Theorem 1.4] we know that K is not normal in G.
Hence gKg−1 �= K. Let χ∗ be the character of G obtained via composing χ with
the transfer homomorphism from Gab to Hab. Observe that χ∗|H is nontrivial
because otherwise we would have χ∗(h) = χ(h)χ(ghg−1) = 1 for all h ∈ H, which
implies that K = gKg−1. Therefore, χ∗ is nontrivial. It is now easy to see that
T ⊗ T is a nonzero element of HomG(σ, σ ⊗ χ∗), i.e., σ has a nontrivial self-twist.
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Next, assume that σ has a nontrivial self-twist. This implies that σ ∼= IGM (ρ),
where M is a subgroup of index 2 in G and ρ is a 2-dimensional representation of
M . Hence, we have

AsG/H(τ ) ∼= IGM (ρ).

Take ∧2 of both sides and restrict back to H. The semisimplification of the left
hand side then gives

ResH(∧2(AsG/H(τ )))ss ∼= ∧2(ResH(AsG/H(τ )))ss
∼= ∧2(τ ⊗ τ ′)ss
∼=

(
(Sym2(τ )⊗ det(τ ′)

)
⊕
(
(Sym2(τ ′)⊗ det(τ )

)
,

i.e., a direct sum of two 3-dimensional representations of H. However, the right
hand side, by [16, §3], gives

ResH(∧2(IGM (ρ)))ss ∼= ResH(AsG/M (ρ)⊗ ωG/M )⊕ ResH(IGM (det(ρ))),

i.e., a direct sum of a 4-dimensional and a 2-dimensional representation. Therefore,
at least one of the two 3-dimensional representations on the left hand side should
be reducible. This implies that Sym2(τ ) should be a reducible representation.
Replacing τ by τ∨ if necessary, we may assume that there is a character χ occurring
as a quotient of Sym2(τ ). Hence,

τ ∼= τ∨ ⊗ χ ∼= (τ ⊗ det(τ )−1)⊗ χ ∼= τ ⊗ (χ det(τ )−1),

i.e., τ has a self-twist by χ det(τ )−1. We claim that χ det(τ )−1 is nontrivial, for
otherwise we would have

2 ≤ dim HomH(τ ⊗ τ, det(τ )) = dim HomH(τ, τ∨ ⊗ det(τ ))

= dim HomH(τ, τ ) = 1

which is a contradiction. �
The above proposition explains the strange exception in (iii)(α) of Theorem 1.1.

Assume that (τ,W ) is the parameter of a cuspidal representation π of GL(2) over
a quadratic extension E/F of number fields. Then σ = As(τ ) is the parameter
of Π = AsE/F (π). Assume that Π is cuspidal, i.e., σ is irreducible. Since τ is 2-
dimensional, there is a symplectic form S on W which τ preserves up to similitudes.
It is easy to see that σ preserves S ⊗ S on W ⊗ W up to similitudes. In fact, σ
is an essentially self-dual representation of improper orthogonal type. Further, by
the above proposition, we see that τ is dihedral if and only if σ has a nontrivial
(quadratic) self-twist. By Theorem 6.5, one concludes that ∧2σ is reducible if and
only if τ is dihedral.
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0.1. Let F be a non-Archimedean local field with finite residue field, and let
G be a connected, reductive F -group. That is, G is the group G(F ) of F -rational
points of a connected, reductive algebraic groupG defined over F , equipped with its
natural (locally profinite) topology inherited from F . This paper is concerned with
the complex representation theory of G. The aim is to give a framework in which
algebraic aspects of the smooth representation theory, expressed in the theory of
types, can be connected via explicit formulæ with analytic aspects of the unitary
representation theory, encapsulated in the Plancherel measure. In this introductory
essay, we assume the reader to have some facility with the basic concepts of the
two subjects involved, but more detail will be given in the body of the paper.

0.2. Let H(G) be the space of locally constant, compactly supported functions
f : G → C. We fix a Haar measure μ on G. We endow H(G) with the operation
(a, b) �→ a�b of μ-convolution, relative to which it becomes an associative C-algebra.
If (π, V ) is a smooth representation of G, a standard construction extends π to an
algebra homomorphism π : H(G) → EndC(V ). If e is an idempotent element of
H(G) and (π, V ) a smooth representation of G, the space π(e)V is a module over
the C-algebra eHe = e �H(G) � e. If Irre G denotes the set of isomorphism classes
of irreducible smooth representations (π, V ) for which π(e) �= 0, and if Irr(eHe) is
the set of isomorphism classes of simple eHe-modules, the map (π, V ) �→ π(e)V
induces a canonical bijection

(∗) Irre G
≈−−−−→ Irr(eHe).

The central part of this paper studies the analogue of this bijection for unitary
representations of G.
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0.3. So, let Ĝ denote the topological space of isomorphism classes of irre-
ducible, continuous, unitary representations of G on Hilbert spaces. This space

carries the Plancherel measure μ̂ dual to μ; the support of μ̂ is the reduced dual rĜ
of G.

We let e ∈ H(G) be idempotent and self-adjoint, relative to the canonical
(anti-linear) involution on H(G). The algebra eHe carries an involution inherited
from H and a related inner product. It thereby acquires the structure of a nor-
malized Hilbert algebra. Taking an appropriate completion, we obtain a C∗ algebra

rC
∗(eHe) containing eHe as a dense subalgebra. The dual of rC

∗(eHe), denoted

rĈ
∗
(eHe), is a topological space which can be identified with a subset of Irr(eHe).

It carries a canonical Borel measure μ̂eHe, with a definition analogous to that of
the Plancherel measure (see 3.2 below).

If (π, V ) ∈ Ĝ, we may again extend π to a homomorphism π : H(G) →
EndC(V ). Our first result is a direct C∗-analogue of the bijection (∗) above.

Theorem A. Let e ∈ H(G) be self-adjoint and idempotent. Define rĜ(e) to be the

set of (π, V ) ∈ rĜ for which π(e) �= 0.

(a) The set rĜ(e) is open in rĜ.

(b) If (π, V ) ∈ rĜ(e), there is a unique m̂e(V ) ∈ rĈ
∗
(eHe) isomorphic to

π(e)V as eHe-module. The map

m̂e : rĜ(e) −→ rĈ
∗
(eHe)

is a homeomorphism.

(c) If S is a Borel subset of rĜ(e), then

μ̂(S) = e(1G) μ̂eHe

(
m̂e(S)

)
.

0.4. The primary source for self-adjoint idempotents in H(G) is the represen-
tation theory of compact open subgroups of G: if K is a compact open subgroup
and ρ is an irreducible smooth representation of K, then ρ gives a self-adjoint idem-
potent eρ ∈ H(G) such that, for any smooth representation (π, V ) of G, the space

π(eρ)V is the ρ-isotypic subspace V ρ of V . Thus rĜ(eρ) is the set of (π, V ) ∈ rĜ

for which HomK(ρ, π) �= 0: it is easier to denote this set by rĜ(ρ).

Theorem A determines the structure of the topological space rĜ(ρ), along

with the measure μ̂| rĜ(ρ), purely in terms of the Hilbert algebra eρ � H(G) � eρ.
In practice, however, it is better to introduce a second stage. Let H(G, ρ) be the
convolution algebra of compactly supported ρ-spherical functions on G. One often
refers toH(G, ρ) as the ρ-spherical Hecke algebra of G. It carries a canonical Hilbert
algebra structure, with associated C∗-algebra rC

∗(G, ρ) and Plancherel measure

μ̂H(G,ρ) = μ̂ρ. Again, the C∗-algebra dual rĈ
∗
(G, ρ) is canonically identified with

a set of isomorphism classes of simple H(G, ρ)-modules.
If (π, V ) is a smooth or continuous unitary representation of G, the space

Vρ = HomK(ρ, π) carries the structure of H(G, ρ)-module. The algebras H(G, ρ),
eρ � H(G) � eρ are Morita equivalent (in the algebraic sense). This implies that
the C∗-algebras rC

∗(G, ρ), rC
∗(eρHeρ) are strongly Morita equivalent. Stitching

these facts together, we get:
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Theorem B. Let K be a compact open subgroup of G and ρ an irreducible smooth
representation of K. The map (π, V ) �→ Vρ induces a homeomorphism

m̂ρ : rĜ(ρ)
≈−−−−→ rĈ

∗
(G, ρ).

If S is a Borel subset of rĜ(ρ), then

μ̂(S) =
dim ρ

μ(K)
μ̂ρ

(
m̂ρ(S)

)
.

The sole dependence of Plancherel measure on an abstract algebraic structure
gives us a method of transferring information between groups. In its most direct
form, we get:

Corollary C. For i = 1, 2, let Gi be a connected reductive F -group, let Ki be a
compact open subgroup of Gi, and let ρi be an irreducible smooth representation of
Ki. Let μi be a Haar measure on Gi and let μ̂i be the corresponding Plancherel

measure on rĜi. Let

j : H(G1, ρ1)
≈−−−−→ H(G2, ρ2)

be an isomorphism of Hilbert algebras. The map j then induces a homeomorphism

ĵ : rĜ2(ρ2)
≈−−−−→ rĜ1(ρ1)

such that
μ1(K1)

dim ρ1
μ̂1

(
ĵ(S)

)
=

μ2(K2)

dim ρ2
μ̂2(S),

for any Borel subset S of rĜ2(ρ2).

0.5. Theorem A and Corollary C acquire interest from the fact that their hy-
potheses are often observed in concrete situations of some importance. To describe
these, we need to recall some algebraic structures. Let R(G) denote the category
of smooth (complex) representations of G. The theory of the Bernstein Centre [4]
gives a decomposition of R(G) as the direct product of a family of full subcategories

R(G) =
∏

s∈B(G)

Rs(G).

The index set B(G), sometimes called the Bernstein spectrum, consists of classes
of pairs (L, σ) in which L is an F -Levi subgroup of G and σ is an irreducible
cuspidal1 representation of L, modulo the relation of inertial equivalence (recalled

in 1.3 below). The decomposition of R(G) leads to a decomposition of rĜ. If (π, V )
is an irreducible unitary representation of G, the space V ∞ of G-smooth vectors

in V carries an irreducible smooth representation π∞ of G. We define rĜ(s) to be

the set of π ∈ rĜ for which π∞ ∈ Rs(G). We accordingly get a decomposition

rĜ =
⋃

s∈B(G)

rĜ(s)

in which the union is disjoint. We can place this structure within the context of
Theorem A via the following result, proved in 3.6 below.

1We use “cuspidal” as synonymous with the standard usages “supercuspidal”, “absolutely
cuspidal”. Experience with representations over fields of positive characteristic suggests that such
a simplification is called for.
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Proposition D. Let s ∈ B(G). There exists a self-adjoint idempotent es ∈ H(G)

such that rĜ(s) = rĜ(es).

The sets rĜ(s) are all therefore open, and closed, in rĜ, and the Plancherel

measure μ̂ is determined by its restrictions to the components rĜ(s).

0.6. Proposition D shows that, in principle at least, the analytic information
embedded in the Plancherel meaure is already detectable in the basic algebraic
structure of R(G). However, one has little information concerning the idempotent
es or the structure of the Hilbert algebra esHes unless one can invoke the theory
of types. The definition of s-type will be recalled later; here, it is sufficient to note
that, if an irreducible representation λ of a compact open subgroup J of G is an

s-type in G, then rĜ(λ) = rĜ(s).
The simplest example is that where G = GLn(F ). Here, any s ∈ B(G) admits

an s-type (J, λ). The Hecke algebra H(G, λ) is isomorphic to a tensor product of
affine Hecke algebras. Refining mildly the techniques of [11], [13], one sees that this
isomorphism is one of Hilbert algebras. The determination of Plancherel measure
for G is thus reduced to one basic case, that of representations with Iwahori-fixed
vector.

0.7. Explicit constructions of types, and the descriptions of their Hecke alge-
bras, are now known for many groups. If G is GLn(F ) or SLn(F ), s-types have
been constructed and their Hecke algebras calculated for all s ∈ B(G) [11], [12],
[14], [17], [18]. When G is an inner form of GLn or a classical group, the most
important kinds of type are covered in two series of papers culminating in [27] or
[29] respectively. The paper [6] contains a very useful technique for constructing
types in groups from types in Levi subgroups. For principal series representations
of split groups G, see [25]; for “level zero” representations of arbitrary G, see [22]
or [23] (and [21] for the Hecke algebras); for cuspidal representations of arbitrary
G (in large residual characteristic) see [31].

The determination of the Hecke algebra of a type (K, ρ) follows a fairly standard
pattern: one exhibits an explicit isomorphism of H(G, ρ) with a combinatorially
defined algebra, closely related to an affine Hecke algebra. It seems intrinsic to the
approach that the isomorphism may be normalized to preserve the Hilbert algebra
structure. We do not pursue any examples beyond GLn(F ), but this background
suggests that the methods of this paper will be widely applicable to computing
Plancherel measure.

0.8. This paper is a refreshed version of a preprint [10] which has been in
circulation for some ten years. Some of the ideas go back further, for example to the
influential [19]. Various editions of [10] have been cited several times, for example
in [1], [2], and its ideas have started to diffuse into the common consciousness.
Formal publication is therefore somewhat overdue.

1. Smooth representation theory

We review the basic concepts. Throughout, G = G(F ) is a connected reductive
F -group, as in the Introduction.
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1.1. For this subsection, however, it would be enough to assume only that G is
a unimodular, locally profinite group. In the spirit of fixing our notation, we recall
the elementary parts of the smooth representation theory of such a group G. The
reader may consult the first four sections of [8] for a complete account.

Let (π, V ) be a representation of G. Thus V is a complex vector space and π
is a group homomorphism G → AutC(V ). It is (algebraically) irreducible if V is
nonzero and admits no G-invariant subspace other than {0} and V .

If K is a compact open subgroup of G, we denote by V K the space of v ∈ V
such that π(k)v = v, k ∈ K. We recall that (π, V ) is called smooth if V is the
union of its subspaces V K , as K ranges over the compact open subgroups of G. It
is called admissible if it is smooth and V K has finite dimension, for all K.

If (π, V ) is a (not necessarily smooth) representation of G, we write

V ∞ =
⋃
K

V K ,

where, again, K ranges over all compact open subgroups of G. The set V ∞ is
indeed a subspace of V , and it is stable under π(G). We denote by π∞ the implied
homomorphism G → AutC(V

∞). Certainly, (π∞, V ∞) is a smooth representation
of G. We refer to the elements of V ∞ as the G-smooth vectors in V .

Let H(G) denote the space of functions G → C which are both locally constant
and compactly supported. Thus H(G) is spanned by the characteristic functions
of double cosets KgK, as K ranges over the compact open subgroups of G and g
over G. We fix a Haar measure μ on G and define

a � b(g) =

∫
G

a(x) b(x−1g) dμ(x),

{
a, b ∈ H(G),

g ∈ G.

The function a � b then lies in H(G). The binary operation �, called μ-convolution,
endows H(G) with the structure of associative C-algebra. When there is no fear of
confusion, we abbreviate H(G) = H and a � b = ab.

Let M be a left H-module; one says that M is nondegenerate2 if HM = M . If
(π, V ) is a smooth representation of G, one may extend the homomorphism π to
an algebra homomorphism π : H → EndC(V ) by setting

π(a)v =

∫
G

a(g) π(g) v dμ(g), a ∈ H, v ∈ V.

In this way, V becomes a nondegenerate H-module. The categories of smooth
representations of G and of nondegenerate H-modules are then effectively identical:
see [8] 4.2 for a full account.

1.2. We now make significant use of the fact that G = G(F ) is a connected
reductive F -group. The reader may consult [15], [4] or [5] for proofs of the results
recalled in this subsection. A fundamental property of such groups is:

(1.2.1) Any irreducible smooth representation of G is admissible.

Let (π, V ) be a smooth representation of G, and let (π̌, V̌ ) be the smooth dual of
(π, V ). By definition, π̌ denotes the natural action of G on the space V̌ = (V ∗)∞ of
G-smooth vectors in the linear dual space V ∗ = HomC(V,C) (carrying the obvious

2In the terminology of [8], M would be called a smooth module, but that usage is unhelpful
here.
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G-action). There is a canonical bilinear pairing V̌ ×V → C, denoted (v̌, v) �→ 〈v̌, v〉,
and satisfying

〈π̌(g)v̌, π(g)v〉 = 〈v̌, v〉,
for v̌ ∈ V̌ , v ∈ V , g ∈ G.

Suppose now that the smooth representation (π, V ) is irreducible. We say
(π, V ) is cuspidal if every function on G of the form

g �−→ 〈v̌, π(g)v〉, v̌ ∈ V̌ , v ∈ V,

is compactly supported modulo the centre of G.

1.3. We recall some ideas and results from [4]. Let G◦ denote the subgroup of
G generated by the compact subgroups of G. Certainly, G◦ is an open normal sub-
group of G, and one knows that G/G◦ is free abelian of finite rank. An unramified
quasicharacter of G is a homomorphism G → C× which is trivial on G◦. We write
X(G) for the group of unramified quasicharacters of G.

Let L be an F -Levi subgroup of G. That is to say, L = L(F ), where L is a
Levi component of a parabolic subgroup P of G, with both L and P defined over
F . In particular, L is a connected reductive F -group, and we can form the group
X(L).

We consider the set of pairs (L, σ) consisting of an F -Levi subgroup L of G and
an irreducible cuspidal representation σ of L: we call such a pair a cuspidal datum
in G. Two cuspidal data (Li, σi), i = 1, 2, are deemed inertially equivalent in G if
there exist g ∈ G and χ ∈ X(L2) such that L2 = Lg

1 = g−1L1g and σ2 is equivalent
to the representation σg

1⊗χ : x �→ χ(x)σ1(gxg
−1) of L2. We denote by B(G) the set

of inertial equivalence classes of cuspidal data in G: this is the Bernstein spectrum
mentioned in the Introduction. We denote by [L, σ]G the G-inertial equivalence
class of the cuspidal datum (L, σ) in G.

We recall one of the major building blocks of the theory. Let ι denote the
functor of normalized smooth induction.

(1.3.1) Let π be an irreducible smooth representation of G.

(1) There is a cuspidal datum (L, σ) in G and an F -parabolic subgroup P of
G, with Levi component L, such that π is equivalent to a subquotient of
ιGP σ.

(2) The datum (L, σ) is uniquely determined by π, up to G-conjugacy.

The result implies, in particular, that the inertial equivalence class [L, σ]G is
determined by π: it is called the inertial support of π.

LetR(G) denote the category of smooth representations of G, and let s ∈ B(G).
We define a full subcategory Rs(G) of R(G) by deeming that its object class shall
consist of all smooth representations π of G with the property that every irreducible
subquotient of π has inertial support s.

(1.3.2) The abelian category R(G) is the direct product of its subcategories Rs(G),
s ∈ B(G).

That is to say:

(1.3.3) Let (π, V ) be a smooth representation of G.

(1) The space V has a unique maximal G-subspace (πs, Vs) which is an object
of Rs(G).
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(2) The space V is the direct sum of its subspaces Vs, s ∈ B(G).
(3) If (π′, V ′) is a further smooth representation of G, then

HomG(V, V
′) =

∏
s∈B(G)

HomG(Vs, V
′
s).

Let IrrG denote the set of equivalence classes of irreducible smooth represen-
tations of G. For each s ∈ B(G), let Irrs G be the set of equivalence classes of
irreducible smooth representations of G with inertial support s. As an instance of
(1.3.3) we have

IrrG =
⋃

s∈B(G)

IrrsG,

the union being disjoint.

1.4. Let e ∈ H(G) be a nonzero idempotent. Thus e � H(G) � e = eHe is a
subalgebra of H with unit element e. Further, HeH is a subalgebra (and two-sided
ideal) of H.

Let (π, V ) be a smooth representation of G. The space π(e)V is an eHe-
module, on which e acts as the identity. The G-subspace Ve of V , generated by
π(e)V , is HeHV = HeV . By definition, Ve is a nondegenerate HeH-module, in
that HeHVe = Ve. Moreover, (Ve)e = Ve and eVe = eV .

Let Irre G denote the set of isomorphism classes of irreducible smooth repre-
sentations (π, V ) of G for which π(e) �= 0. Let Irr(eHe) be the set of isomorphism
classes of simple eHe-modules. Using the same argument as in [8] 4.3, we get:

(1.4.1) Let (π, V ) be an irreducible smooth representation of G.

(1) If π(e)V �= 0, then π(e)V is a simple eHe-module.
(2) The map (π, V ) �→ π(e)V induces a bijection

Irre G
≈−−−−→ Irr(eHe).

(3) Consequently, any simple eHe-module has finite complex dimension.

(Part (3) here follows from (1.2.1).)
More generally, let Re(G) denote the full subcategory of R(G) with object class

consisting of those representations (π, V ) for which V = Ve. We have a functor

me : Re(G) −→ eHe-Mod,

(π, V ) �−→ π(e)V.

One says that the idempotent e is special if me is an equivalence of categories
Re(G) ∼= eHe-Mod. Special idempotents relate to the considerations of 1.3 as
follows [13] 3.12.

(1.4.2) Let e ∈ H(G) be idempotent. The following conditions are equivalent:

(1) e is special;
(2) the category Re(G) is closed relative to the formation of G-subquotients;
(3) there is a finite subset S(e) of B(G) such that

Re(G) =
∏

s∈S(e)

Rs(G).
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There is a strong converse in [13] 3.13:

(1.4.3) Let s ∈ B(G). There exists a special idempotent e ∈ H such that S(e) =
{s}. In particular, the functor me induces an equivalence of categories Rs(G) ∼=
eHe-Mod.

We review the proof of this result (and mildly strengthen it) in 3.6 below.

1.5. A fruitful source of interesting idempotents is the representation theory
of the compact open subgroups of G.

Let K be a compact open subgroup of G, and let (ρ,W ) be an irreducible
smooth representation of K. The group K is profinite, whence dimW is finite. We
define a function eρ : G → C by

eρ(x) =
dimW

μ(K)
tr(ρ(x−1)),

if x ∈ K, and eρ(x) = 0 otherwise. Surely eρ ∈ H(G), and it is idempotent. If
(π, V ) is a smooth representation of G, then π(eρ)V is the sum V ρ of all irreducible
K-subspaces of V isomorphic to ρ. (See [8] 4.4 for these elementary facts.)

There is a slightly different algebra related to the irreducible representation
(ρ,W ) of K. Consider the space H(G, ρ) of compactly supported functions φ :
G → EndC(W̌ ) which satisfy

(1.5.1) φ(k1gk2) = ρ̌(k1)φ(g) ρ̌(k2),

for ki ∈ K and g ∈ G. This space carries an operation of μ-convolution, making it
into an associative C-algebra. The function eρ ∈ H(G, ρ), defined by

(1.5.2) eρ(x) =

{
μ(K)−1 ρ̌(x) if x ∈ K,

0 otherwise,

provides a unit element.
A function φ on G satisfying (1.5.1) is called ρ-spherical. Thus the elements

of H(G, ρ) are the compactly supported ρ-spherical functions on G. The algebra
H(G, ρ) is often called the ρ-spherical Hecke algebra of G.

1.6. With the same notation as in 1.5, the pair (K, ρ) is called a type in G if
the idempotent eρ is special. For s ∈ B(G), one says that (K, ρ) is an s-type in G
if it is a type and S(eρ) = {s}.

2. Unitary representations

We continue with the same connected, reductive F -group G, to give a sketch of
the standard theory of unitary representations and Plancherel measure. We follow
[16] and [30].

2.1. A unitary representation of G is a pair (π, V ), where V is a Hilbert space
and π is a homomorphism from G to the group of unitary operators on V , such
that the map

G× V −→ V,

(g, v) �−→ π(g)v,

is continuous. We say that (π, V ) is (topologically) irreducible if V is nonzero and
admits no proper, G-invariant, closed subspace.
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Starting from a unitary representation (π, V ), we can form the smooth repre-
sentation (π∞, V ∞), as in 1.1. A cornerstone of the theory is the following sequence
of results [3]:

(2.1.1) If (π, V ) is a topologically irreducible unitary representation of G, then

(1) the space V ∞ is nonzero;
(2) the smooth representation (π∞, V ∞) is irreducible and hence admissible.

In the opposite direction, let (π, V ) be an irreducible admissible representation
of G. One says that (π, V ) is pre-unitary if there is a positive definite Hermitian
form [ , ] on V satisfying

[π(g)v, π(g)w] = [v, w], g ∈ G, v, w ∈ V.

The irreducibility of V implies readily that such a Hermitian form is uniquely deter-
mined, up to positive scale. We may therefore unambiguously define the completion

Ṽ of V relative to the norm v �→ [v, v]
1
2 . This is a Hilbert space, carrying a unitary

representation π̃ of G.

(2.1.2) If (π, V ) is an irreducible, smooth pre-unitary representation of G, then

the unitary representation (π̃, Ṽ ) is topologically irreducible.

Let Irru G denote the set of isomorphism classes of irreducible, smooth, pre-

unitary representations of G. Let Ĝ denote the set of isomorphism classes of irre-
ducible unitary representations of G. The preceding discussion yields:

(2.1.3) The map (π, V ) �→ (π∞, V ∞) induces a bijection

Ĝ
≈−−−−→ Irru G.

2.2. We recall a standard construction: see [30] 14.2 for details.
If f : G → C is a function, we define another function f∗ : G → C by f∗(g) =

f(g−1), where the bar denotes complex conjugation.
As usual, let L1(G) denote the space of μ-measurable functions f : G → C such

that

‖f‖1 =

∫
G

|f(x)| dμ(x) < ∞.

The space L1(G) is stable under the operation f �→ f∗. It admits the binary
operation of μ-convolution (as in 1.1), relative to which it is an associative C-
algebra. We have the properties

(a � b)∗ = b∗ � a∗, ‖a � b‖1 � ‖a‖1 ‖b‖1, ‖a∗‖1 = ‖a‖1,

for a, b ∈ L1(G). Indeed, L1(G) is a Banach ∗-algebra in which H(G) is dense.
Let (π, V ) be a (not necessarily irreducible) unitary representation of G. For

a ∈ L1(G), we define a bounded linear operator π(a) on V by

π(a)v =

∫
G

a(x)π(x)v dμ(x), v ∈ V.

The map a �→ π(a) is a Banach ∗-representation of L1(G). The algebra B(V )
of bounded linear operators on V carries the canonical operator norm, which we
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denote x �→ ‖x‖B(V ). The norm a �→ ‖π(a)‖B(V ) on L1(G) then depends only on
the isomorphism class of (π, V ). One defines

‖a‖ = sup
(π,V )

‖π(a)‖B(V ), a ∈ L1(G),

where (π, V ) ranges over the set of isomorphism classes of unitary representations
of G. We then have ‖a‖ � ‖a‖1, while ‖a‖ = 0 if and only if a = 0. The C∗ algebra
C∗(G) of G is defined to be the completion of L1(G) relative to the norm a �→ ‖a‖.
The algebra structure of L1(G) and its involution extend to C∗(G). It is indeed a
C∗ algebra, containing H(G) as a dense subalgebra.

We recall that a representation, or ∗-representation, of a C∗ algebra C is an
algebra homomorphism π of C in the algebra B(H) of bounded linear operators
on a Hilbert space H, such that π(a∗) = π(a)∗. Any such representation is con-
tinuous. A nonzero representation of C is topologically irreducible (that is, has no
proper, C-invariant closed subspace) if and only if it is algebraically irreducible. A
representation (π,H) is called nondegenerate if π(C)H = H.

In parallel to 1.1, we have [30] 14.2.5:

(2.2.1) Let (π, V ) be a unitary representation of G. The map a �→ π(a), a ∈
L1(G), extends uniquely to a ∗-representation of C∗(G) on V . This representation
of C∗(G) is nondegenerate. Every nondegenerate representation of C∗(G) is of
this form, and this extension process induces an equivalence of categories between
unitary representations of G and nondegenerate representations of C∗(G).

The dual Ĉ∗(G) of C∗(G) is defined to be the set of isomorphism classes of
irreducible ∗-representations of C∗(G). The process described in (2.2.1) identifies

the unitary dual Ĝ of G with Ĉ∗(G). Each of these spaces carries a natural topology,

and the identification Ĉ∗(G) ∼= Ĝ is a homeomorphism. (These topologies, and the
relation between them, are discussed in [30] 14.6, 14.7. It is not necessary for us
to recall the details.)

2.3. Let (π, V ) be an irreducible unitary representation of G. Let a ∈ H(G).
There exists a compact open subgroup K of G such that a(kg) = a(g), for all g ∈ G
and k ∈ K. It follows that π(a)V ⊂ V K ⊂ V ∞, and (1.2.1), (2.1.1) together imply
that dimV K < ∞. The operator π(a) has finite-dimensional range, therefore,
whence its trace trπ(a) is defined. It follows that the image π(C∗(G)) is contained
in the algebra of compact operators on V . This says exactly that C∗(G) (or G) is
liminal (translated from [16]) or CCR, in the terminology of [30].

As a consequence, we have the following fundamental result [16] 18.8.1, [30]
14.11.2:

Plancherel Theorem. There is a unique positive Borel measure μ̂ on Ĝ such that

(2.3.1) f(1G) =

∫
̂G

trπ(f) dμ̂(π), f ∈ H(G).

The measure μ̂ is called the Plancherel measure on G, relative to μ.

Remarks.

(1) The formula (2.3.1) is initially valid for functions f = a∗ � a, a ∈ H(G).
The version we have given follows from standard manipulations.
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(2) The uniqueness of μ̂ follows as in [16] 18.8.2, on replacing L1(G)∩L2(G)
by H(G).

(3) The uniqueness property implies immediately the relation ĉμ = c−1μ̂,
c > 0.

2.4. We let G act by left translation on the space L2(G):

g : a �−→ λga, λga(x) = a(g−1x),

for a ∈ L2(G), g, x ∈ G. Thus (λ, L2(G)) is a unitary representation of G. The
corresponding action of H(G) (cf. 1.1) is given by

λ(f) a = f � a, f ∈ H(G), a ∈ L2(G).

As in 2.2, we view L2(G) as a representation of C∗(G) and set

(2.4.1) rC
∗(G) = λ(C∗(G)).

Thus rC
∗(G) is a C∗ algebra, known as the reduced C∗ algebra of G. Since H(G)

acts faithfully on L2(G), it is a dense subalgebra of rC
∗(G). We may equivalently

define rC
∗(G) as the completion of H relative to the operator norm given by its

canonical action on L2(G).

The definition (2.4.1) identifies the dual rĈ
∗(G) of rC

∗(G) with a closed sub-

set of Ĉ∗(G). Under the identification (2.2) of Ĉ∗(G) with Ĝ, the set rĈ
∗(G)

corresponds to a closed subset rĜ of Ĝ. The set rĜ is the reduced unitary dual of
G.

The support of the Plancherel measure μ̂ is precisely rĜ [16] 18.8.4. Conse-
quently:

(2.4.2) The Plancherel measure μ̂ is the unique positive Borel measure on rĜ such
that

f(1G) =

∫
r

̂G

trπ(f) dμ̂(π),

for all f ∈ H(G).

3. Idempotents and Hilbert algebras

In this section, we consider the analogue of (1.4.1) for unitary representations.
This requires an excursion into the basic theory of Hilbert algebras, as in [16].

3.1. We recall the basic definition.

Definition. A Hilbert algebra is a C-algebra A, with an anti-linear involution ∗
and carrying a positive definite Hermitian form [ , ] = [ , ]A, such that

(1) [x, y] = [y∗, x∗], x, y ∈ A;
(2) [xy, z] = [y, x∗z], x, y, z ∈ A;
(3) for every x ∈ A, the mapping y �→ xy of A into A is continuous with

respect to the topology induced by [ , ];
(4) the set of elements xy, x, y ∈ A, is dense in A.

Observe that condition (4) of the definition is automatically satisfied when A
has a unit. A Hilbert algebra A will be called normalized if it has a unit e and the
inner product satisfies [e, e] = 1.

Let A be a normalized Hilbert algebra, and let Ã be the Hilbert space obtained
by completing A with respect to [ , ]. The action of A on itself by left multiplication
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induces an injection of A into the C∗-algebra B(Ã) of bounded linear operators on

Ã. We denote by rC
∗(A) the closure of the image of A in B(Ã).

In particular, rC
∗(A) is a C∗ algebra, the dual of which we denote rĈ

∗(A).

3.2. Let A be a normalized Hilbert algebra, and let (π, V ) ∈ rĈ
∗
(A). The

irreducibility of V implies that the unit element e of A acts on V as the identity. If

rC
∗(A) is liminal, π(e) is a compact operator and has a trace. We deduce that V is

finite-dimensional. It follows that rC
∗(A) is liminal if and only if all its irreducible

representations have finite dimension.
Supposing this condition holds, let (π, V ) be an irreducible representation of

rC
∗(A). Since dimV is finite, any A-stable subspace is closed, and hence is

rC
∗(A)-stable. It follows that V is simple as algebraic rC

∗(A)-module, whence
π( rC

∗(A)) = EndC(V ). Since π(A) is dense in π( rC
∗(A)), we conclude that

π(A) = EndC(V ). This implies that V is simple as an A-module. Moreover,
any A-isomorphism between irreducible representations of rC

∗(A) is a rC
∗(A)-

isomorphism. We have proved:

Lemma. Let A be a normalized Hilbert algebra such that rC
∗(A) is liminal. Let

IrrA denote the set of isomorphism classes of irreducible (algebraic) representations

of A. The map (π, V ) �→ (π|A, V ) induces an injection rĈ
∗
(A) → IrrA.

Notation. If A is a normalized Hilbert algebra such that rC
∗(A) is liminal, then

rIrrA denotes the canonical image of rĈ
∗
(A) in IrrA.

In this situation, we have an analogue of the Plancherel Theorem:

Proposition. Let A be a normalized Hilbert algebra, with unit element e, such that

rC
∗(A) is liminal. There is then a unique positive Borel measure μ̂A on rĈ

∗(A)
such that

[a, e]A =

∫
r

̂C∗(A)

trπ(a) dμ̂A(π), a ∈ A.

Proof. By 17.2.1 of [16], the map (x, y) �→ [x, y]A extends to a maximal bi-trace
on rC

∗(A). Let f be the associated trace. We apply [16] 8.8.5 to obtain a positive

Borel measure μ̂A on the dual space rĈ
∗(A) with the property that

f(y∗y) =

∫
r

̂C∗(A)

trπ(y∗y) dμ̂A(π), y ∈ rC
∗(A).

By definition, f(b∗b) = [b, b]
1
2 , b ∈ A. Applying this in the cases b = a±e, b = a±i·e

and making the usual manipulations, we see that μ̂A has the required property. To
show that it is thereby uniquely determined, we argue exactly as in [16] 18.8.2,
replacing L1(G) ∩ L2(G) by A. �

We refer to this measure μ̂A as the Plancherel measure for A.

3.3. We return to the connected reductive F -group G. Let e ∈ H(G) be
idempotent, and assume that e is self-adjoint, that is, e∗ = e. The algebra eHe is
therefore stable under the standard involution x �→ x∗ on H. Imposing the inner
product

(3.3.1) [a, b] = e(1G)
−1 a∗ � b(1G), a, b ∈ eHe,
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eHe becomes a normalized Hilbert algebra. We may form the C∗ algebra rC
∗(eHe)

of eHe, as in 3.1.
The metric on eHe, given by the inner product, is equivalent to the restriction

of the L2-metric on H. So, in the notation of 3.1, the Hilbert space (eHe)∼ is the
closed subspace e �L2(G) � e of L2(G). The algebra norm on eHe is therefore given
by the operator norm from its natural action on e � L2(G) � e.

Remark. One can equally form a C∗ algebra by taking the closure of eHe in rC
∗(G):

the resulting algebra is e rC
∗(G)e. This is given by the norm on eHe coming from

its natural action on the closed subspace e � L2(G) of L2(G). Since eHe does not
annihilate the complement of e � L2(G) � e in e � L2(G), the norm on eHe defining
e rC

∗(G)e is not, a priori, the same as that defining rC
∗(eHe). We will, however,

show ((3.4.1), (3.5.3) below) that rC
∗(eHe) ∼= e rC

∗(G)e.

3.4. Let rC
∗(e,G) denote the closure of HeH in rC

∗(G). Thus rC
∗(e,G) is

a closed two-sided ideal in rC
∗(G) and a liminal C∗ algebra. Its dual rĈ

∗
(G, e) is

naturally identified with a subspace of rĈ
∗
(G). Observe that

(3.4.1) e rC
∗(e,G)e = e rC

∗(G)e,

since each side is a closed subalgebra of rC
∗(G) containing eHe = eHeHe as a

dense subalgebra.
Following [16] 2.11, we put

rĜ(e) = {π ∈ rĜ : π(e) �= 0}.

The set rĜ(e) is open in rĜ ([16] 3.2.1), and the canonical homeomorphism rĜ ∼=
rĈ

∗
(G) induces a homeomorphism

(3.4.2) rĜ(e) ∼= rĈ
∗
(e,G).

3.5. Let e ∈ H be a self-adjoint idempotent as before, and let (π, V ) ∈ rĜ(e).
The space π(e)V = π(e)V ∞ is therefore nonzero, it has finite dimension, and is an
irreducible eHe-module (1.4.1). We now give our central result.

Theorem. Let e be a self-adjoint, idempotent element of H(G).

(1) The algebra rC
∗(eHe) is liminal.

(2) The map (π, V ) �→ π(e)V induces a bijection rĜ(e) ∼= rIrr(eHe), and a
homeomorphism

(3.5.1) m̂e : rĜ(e)
≈−−−−→ rĈ

∗(eHe).

(3) If S is a Borel subset of rĜ(e), then

(3.5.2) μ̂(S) = e(1G) μ̂eHe

(
m̂e(S)

)
.

Preliminary remark. Take (π, V ) ∈ rĜ(e). Obviously, π(e)V is a module (in the al-
gebraic sense) over the C∗ algebra e rC

∗(G)e: indeed, it provides a ∗-representation
of e rC

∗(G)e. This algebra, however, is not directly accessible in the manner of eHe
or its associated C∗ algebra rC

∗(eHe). We therefore need to work indirectly, show-
ing en route that there is an isomorphism rC

∗(eHe) ∼= e rC
∗(G)e. Moreover, this

isomorphism can be chosen to extend the identity map on eHe, embedded canoni-
cally in either factor.
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Proof. We consider rC
∗(G) and its natural action on L2(G): recall that rC

∗(G) is
defined as the closure of the algebra H in B(L2(G)). The subspace e � L2(G) � e is
stable under the subalgebra e rC

∗(G)e. Thus e � L2(G) � e affords a representation
of e rC

∗(G)e. We denote by

η : e rC
∗(G)e −→ B(e � L2(G) � e)

the implied homomorphism. We identify B(e � L2(G) � e) with the subalgebra of
B(L2(G)) consisting of operators which annihilate the orthogonal complement of
e � L2(G) � e in L2(G).

Lemma. The homomorphism η : e rC
∗(G)e → B(e � L2(G) � e) is injective.

Proof. We continue to denote multiplication in rC
∗(G) by (x, y) �→ xy. On the

other hand, we denote the natural action of x ∈ B(L2(G)) on L2(G) by

x : y �−→ x · y, y ∈ L2(G).

We use the � notation when we wish to emphasize that one factor in the product
belongs to H(G).

Let a ∈ Ker η: in particular, a · e = 0. Since rC
∗(G) is the closure of H in

B(L2(G)), the left action of rC
∗(G) on L2(G) commutes with the right action of

H by convolution:

x · (y � f) = (x · y) � f, x ∈ rC
∗(G), f ∈ H, y ∈ L2(G).

Therefore

a · (e � f) = (a · e) � f = 0,

for all f ∈ H.
For b, f ∈ H, we have (b ·e)�f = b�e�f = (be)�f . By continuity, this relation

holds for b ∈ rC
∗(G). Above, therefore, we can rewrite (a · e) � f = (ae) · f and

so, by continuity, (ae) · f = 0 for all f ∈ L2(G). However, ae = a, so a · f = 0 for
f ∈ L2(G). As a ∈ rC

∗(G) ⊂ B(L2(G)), we deduce that a = 0, as required. �
We return to the Hilbert algebra eHe. As remarked in 3.3, rC

∗(eHe) is the
closure in B(e�L2(G)�e) of the image η(eHe) of eHe. The algebra η(e rC

∗(e,G)e) is
closed, being the image of a morphism of C∗ algebras. Therefore (recalling (3.4.1))

rC
∗(eHe) = η(e rC

∗(e,G)e).

The lemma thus implies that η induces a bijective, continuous homomorphism
e rC

∗(e,G)e → rC
∗(eHe) whence (cf. [30] 14.1.13):

Proposition. The map η induces an isomorphism

(3.5.3) e rC
∗(G)e = e rC

∗(e,G)e ∼= rC
∗(eHe)

of C∗ algebras, which is the identity on eHe (embedded canonically in each factor).

For (π, V ) ∈ rĜ(e), we may now view π(e)V as providing a representation
of rC

∗(eHe). As eHe-module, it is irreducible (1.4.1), so π(e)V determines an

element of rĈ
∗
(eHe).

Next, we observe that since HeH = HeHeH ⊂ rC
∗(e,G)e rC

∗(e,G), the ideal

rC
∗(e,G)e rC

∗(e,G) is dense in rC
∗(e,G). Thus e rC

∗(G)e = e rC
∗(e,G)e is a

“full corner” [7] in the algebra rC
∗(e,G). Appealing to [24] Example 6.7, the

C∗ algebras rC
∗(e,G), e rC

∗(e,G)e are strongly Morita equivalent. Moreover, on
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categories of representations, this equivalence is the functor (π, V ) �→ π(e)V . Con-
sequently, the map

(3.5.4)
m̂e : rĜ(e) −→ rĈ

∗
(eHe),

(π, V ) �−→ π(e)V,

is a homeomorphism.

In particular, every element of rĈ
∗
(eHe) arises as π(e)V , for some (π, V ) ∈

rĜ(e). As π(e)V = π(e)V ∞ = π∞(e)V ∞, it follows that dimπ(e)V < ∞. There-

fore every element of rĈ
∗
(eHe) has finite dimension, whence rC

∗(eHe) is liminal.
This proves part (1) of the theorem; part (2) follows from (3.5.4) and 3.2 Lemma.

As for part (3), let f ∈ eHe and let (π, V ) ∈ rĜ(e). For v ∈ π(e)V , v′ ∈
(π(e)V )⊥, we have

[v, π(f)v′] = [π(f∗)v, v′] = [π(e)π(f∗)v, v′] = 0.

It follows that π(f)v′ ∈ π(e)V ∩ (π(e)V )⊥, or π(f)v′ = 0. Therefore

trπ(f) = tr
(
π(f)|π(e)V

)
,

whence

e(1G) [f, e] = f(1G) =

∫
r

̂G(e)

trπ(f) dμ̂eHe(π).

The result now follows from 3.2 Proposition and part (2) of the theorem. �

3.6. We make a connection with the considerations of 1.4. Let s ∈ B(G), and

define rĜ(s) to be the set of π ∈ rĜ such that π∞ has inertial support s. We write
IrrsG for the set of isomorphism classes of irreducible representations in Rs(G),
and use the other notation of 1.3, 1.4.

Proposition. Let s ∈ B(G).

(1) There exists a self-adjoint special idempotent es ∈ H(G) with S(es) = {s}.
In particular, rĜ(s) = rĜ(es) �= ∅.

(2) The set rĜ(s) is open in rĜ and the map (π, V ) �→ π(es)V induces a
homeomorphism

rĜ(s) ∼= rĈ
∗(es �H � es

)
.

(3) The space rĜ is the disjoint union of the open sets rĜ(s), s ∈ B(G).

Proof. Assertion (2) follows from (1) and 3.5 Theorem, while (3) is implied by (1),
(2.1.3), and the remark in 3.4.

From (1.4.3), we know that there exists a special idempotent e such thatS(e) =
{s}. We review the construction of e in [13] 3.13 to show e is self-adjoint.

Let K be a compact open subgroup of G, and take the idempotent eK in H so
that μ(K)eK is the characteristic function of K. As in [13], we may choose K so
that eK is special and s ∈ S(eK). We let G act on H by left translation, and take
the corresponding decomposition

H =
⊕

t∈B(G)

Ht,

with Ht ∈ Rt(G). The spaces Ht are two-sided ideals of H with the consequence
that HtHu = 0 when t �= u, t, u ∈ B(G). We accordingly write eK = e+e′, with
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e ∈ Hs and e′ ∈
⊕

t
=s
Ht. The functions e, e′ are idempotent and ee′ = e′e = 0.

Moreover, Hs = HeH, e is special, and S(e) = {s}. In particular, IrrsG = Irre G.
We have to show that e is self-adjoint. If (π, V ) is an irreducible smooth

representation of G, let (π∗, V ∗) denote the complex conjugate of its smooth dual
(π̌, V̌ ). Likewise, if t ∈ B(G), t = [L, σ] say, we can define t∗ = [L, σ∗]. The class t
only determines the cuspidal representation σ up to twisting with some χ ∈ X(L),
so we may assume that σ is pre-unitary. This implies σ∗ ∼= σ, so t∗ = t, for all t.
That is, (IrrtG)∗ = IrrtG, for all t. Therefore

Irre∗ G = (IrreG)∗ = (IrrsG)∗ = Irrs G.

In particular, e∗ ∈ Hs and (e′)∗ ∈
⊕

t
=s
Ht. It follows that

e+e′ = eK = e∗K = e∗+(e′)∗,

whence e∗ = e, as required. �

4. The ρ-spherical algebras

Let K be a compact open subgroup of G, and let ρ : K → AutC(W ) be an
irreducible smooth representation of K. The representation ρ defines a self-adjoint
idempotent eρ ∈ H(G), as in 1.5. We henceforward abbreviate

rĜ(ρ) = rĜ(eρ).

We consider the ρ-spherical Hecke algebra H(G, ρ) introduced in 1.5, first showing
that it carries a canonical structure of Hilbert algebra. Taking a completion as in
3.1, we obtain a C∗ algebra rC

∗(G, ρ). The main result of this section compares the

duals rĜ(ρ) and rĈ
∗
(G, ρ) = ( rC

∗(G, ρ))∧, along with their Plancherel measures.

4.1. Let (ρ̌, W̌ ) be the contragredient of (ρ,W ). We write

Eρ = EndC(W̌ ).

We first define a canonical Hilbert algebra structure on Eρ. There is a K-invariant

scalar product [ , ]W on W̌ , uniquely determined up to a positive constant. The
algebra Eρ then carries the adjoint involution a �→ a∗ given by

[a∗v, w]W = [v, aw]W , a ∈ Eρ, v, w ∈ W̌ .

We define a scalar product [ , ] = [ , ]Eρ
on Eρ by

[a, b] =
tr(a∗b)

dimW
, a, b ∈ Eρ.

With this structure, Eρ is a normalized Hilbert algebra.
As in 1.5, let H(G, ρ) be the μ-convolution algebra of compactly supported

Eρ-valued functions h on G which satisfy

h(k1xk2) = ρ̌(k1)h(x)ρ̌(k2), x ∈ G, ki ∈ K.

This algebra H(G, ρ) has identity eρ (1.5.2). Further, it is a normalized Hilbert
algebra, relative to the involution h �→ h∗ defined by

h∗(x) =
(
h(x−1)

)∗
, h ∈ H(G, ρ), x ∈ G,

and scalar product

[h1, h2] =
μ(K)

dimW
tr
(
h∗
1 � h2(1G)

)
.
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We abbreviate rC
∗(G, ρ) = rC

∗(H(G, ρ)).

4.2. We denote by a �→ at the linear anti-isomorphism Eρ → Eρ̌ = EndC(W )
given by

〈atw, w̌〉 = 〈w, aw̌〉, w ∈ W, w̌ ∈ W̌ .

Here, 〈 , 〉 is the canonical bilinear pairing W × W̌ → C. Observe that ρ̌(k)t =
ρ(k−1), k ∈ K. We also use the notation x �→ xt for the inverse map Eρ̌ → Eρ.

This transposition operation gives rise to a linear anti-isomorphism of C-algebras

H(G, ρ) −→ H(G, ρ̌),

h �−→ ht,

where ht denotes the function g �→ h(g−1)t on G.

We consider the G-representation c-IndGK ρ compactly induced by ρ. The un-
derlying vector space consists of the compactly supported functions φ : G → W
such that

φ(kg) = ρ(k)φ(g), k ∈ K, g ∈ G,

and G acts by right translation.
We define a right action of H(G, ρ) on c-Ind ρ by

h : φ �−→ φh = ht � φ, φ ∈ c-Ind ρ, h ∈ H(G, ρ).

This action induces an algebra isomorphism (see, for example, [13] 2.5)

(4.2.1) H(G, ρ) ∼= EndG(c-Ind ρ).

Frobenius Reciprocity [8] 2.5 gives an isomorphism

HomG(c-Ind ρ, π) ∼= HomK(ρ, π),

for any smooth representation (π, V ) of G. Set Vρ = HomK(ρ, π). The right
action of H(G, ρ) on c-Ind ρ gives a left action on HomG(c-Ind ρ, π), and hence a
representation πρ of H(G, ρ) on the space Vρ.

Remark. Explicitly, the action of H(G, ρ) on Vρ is given by

(4.2.2) πρ(h)φ : w −→
∫
G

π(x)φ
(
(h(x))tw

)
dμ(x),

for φ ∈ Vρ, h ∈ H(G, ρ), w ∈ W .

4.3. Let (π, V ) be an irreducible unitary representation of G. We can again
form the space Vρ = HomK(ρ, π). Since the kernel of ρ is open in G, we have
Vρ = (V ∞)ρ, whence Vρ carries the structure of an H(G, ρ)-module. Moreover,

rĜ(ρ) = rĜ(eρ) = {(π, V ) ∈ rĜ : Vρ �= 0}.
We state our second result.

Theorem. Let K be a compact open subgroup of G and (ρ,W ) an irreducible
smooth representation of K.

(1) The algebra rC
∗(G, ρ) is liminal.

(2) Let (π, V ) ∈ rĜ(ρ). The space Vρ is nonzero and simple as H(G, ρ)-
module. The natural action of H(G, ρ) on Vρ extends uniquely to a repre-
sentation πρ of rC

∗(G, ρ).
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(3) The map (π, V ) �→ (πρ, Vρ) induces a homeomorphism

m̂ρ : rĜ(ρ)
≈−−−−→ rĈ

∗(G, ρ).

(4) If S is a Borel subset of rĜ(ρ), then

μ̂(S) =
dim ρ

μ(K)
μ̂ρ

(
m̂ρ(S)

)
,

where we abbreviate μ̂ρ = μ̂H(G,ρ).

The proof occupies the rest of the section. In outline, 3.5 gives rĜ(ρ) ∼=
rĈ

∗
(eρHeρ) and the relation between Plancherel measures μ̂| rĜ(ρ), μ̂eρHeρ . We

therefore need to clarify the relation between rĈ
∗
(eρHeρ) and rĈ

∗
(G, ρ).

4.4. As the first step, we consider the algebra

HW (G, ρ) = H(G, ρ)⊗C Eρ̌.

We may make HW (G, ρ) into a normalized Hilbert algebra by setting

(h⊗ a)∗ = h∗ ⊗ a∗,

and

[h⊗ a, h′ ⊗ a′] = [h, h′][a, a′],

for h, h′ ∈ H(G, ρ), a, a′ ∈ Eρ̌ (cf. [11] 5.6.16, 5.6.17).

Proposition. For h ∈ H(G, ρ), a ∈ Eρ̌, define a function f = f(h,a) on G by

f(x) = dim ρ · tr(h(x)at), x ∈ G.

The map (h, a) �→ f(h,a) induces an isomorphism of Hilbert algebras:

(4.4.1) Υ : HW (G, ρ)
≈−−−−→ eρH(G)eρ.

Proof. This is essentially Proposition 4.3.3 of [11]. All that needs to be checked
is that, for w ∈ W , w̌ ∈ W̌ , b ∈ Eρ, we have b ◦ (w ⊗ w̌)t = (w ⊗ bw̌)t, which is
immediate. This same observation, together with the fact that h(1G), h ∈ H(G, ρ),
is a scalar matrix, serves to verify that the scalar product given above is the one
defined in §4.3 of [11]. �

We write rC
∗
W (G, ρ) = rC

∗(HW (G, ρ)). Immediately we get:

Corollary.

(1) The map Υ extends to an isomorphism rC
∗
W (G, ρ) ∼= rC

∗(eρHeρ), which

induces a homeomorphism Υ̂ : rĈ
∗
W (G, ρ) ∼= rĈ

∗
(eρHeρ).

(2) The algebra rC
∗
W (G, ρ) is liminal.

(3) If S is a Borel subset of rĈ
∗
W (G, ρ), then

μ̂HW (G,ρ)(S) = μ̂eρHeρ(Υ̂ (S)).
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4.5. Let M be an H(G, ρ)-module; we define an HW (G, ρ)-module MW by
setting MW = M ⊗C W and letting HW (G, ρ) act in the obvious way. The map
M �→ MW then induces an equivalence of categories

(4.5.1) FW : H(G, ρ)-Mod
≈−−−−→ HW (G, ρ)-Mod.

Lemma. The functor FW induces a homeomorphism

F̂W : rĈ
∗(G, ρ)

≈−−−−→ rĈ
∗
W (G, ρ).

Proof. We note first that the natural embedding

HW (G, ρ) ∼= H(G, ρ)⊗C Eρ̌ −→ rC
∗(G, ρ)⊗C Eρ̌

extends to an isomorphism of C∗ algebras:

rC
∗
W (G, ρ) ∼= rC

∗(G, ρ)⊗C Eρ̌.

Thus we have

rĈ
∗
W (G, ρ) ∼= ( rC

∗(G, ρ)⊗C Eρ̌)
∧
.

The algebras rC
∗(G, ρ) and rC

∗(G, ρ)⊗CEρ̌ are strongly Morita equivalent, relative
to the “imprimitivity bimodule” rC

∗(G, ρ) ⊗ W . The corresponding homeomor-
phism of dual spaces is induced by H �→ HW = H ⊗W . �

We noted in 4.4 Corollary that the algebra rCW (G, ρ) is liminal. The last step
in the proof shows that rC

∗(G, ρ) is also liminal, as required for 4.3 Theorem (1).

Given a subset S of rĈ
∗(G, ρ), we denote by SW = F̂W (S) the set of equivalence

classes of representations HW ∈ rĈ
∗
W (G, ρ) for which H ∈ S.

Proposition. Write μ̂ρ = μ̂H(G,ρ), and let S be a Borel subset of rĈ
∗(G, ρ). We

then have

μ̂ρ(S) = dim ρ · μ̂HW (G,ρ)(SW ).

Proof. Let h ∈ H(G, ρ). We have

[h⊗ 1W ,1HW (G,ρ)]HW (G,ρ) = [h⊗ 1W , eρ ⊗ 1W ] = [h, eρ]H(G,ρ).

If, on the other hand, (π,H) is an irreducible representation of rC
∗(G, ρ) then

trπW (h⊗ 1W ) = dim ρ · trπ(h).

Therefore

[h, eρ]H(G,ρ) = dim ρ ·
∫

r
̂C∗
W (G,ρ)

trπ(h) dμ̂HW (G,ρ)(πW ).

Our result now follows from the uniqueness of the measure μ̂ρ given by 3.2 Propo-
sition. �
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4.6. We prove 4.3 Theorem. We abbreviate e = eρ and return to the category
Re(G) of 1.4. We have the functor

mρ = me : Re(G) −→ eHe-Mod,

(π, V ) �−→ π(e)V = V ρ,

and also a functor
mρ : Re(G) −→ H(G, ρ)-Mod,

(π, V ) �−→ (πρ, Vρ),

where πρ denotes the natural action of H(G, ρ) on Vρ. Using the notation (4.4.1),
(4.5.1), we appeal to [13] 2.13 to see that the functor mρ factors as

mρ = Υ∗ ◦ FW ◦mρ,

where Υ∗ : HW (G, ρ)-Mod → eρH(G)eρ-Mod is the equivalence of categories in-
duced by the algebra isomorphism Υ .

The functor mρ takes irreducible objects to irreducible objects (1.4.1). The
equivalences Υ∗, FW certainly share this property, so mρ also preserves irreducibil-
ity. If E denotes any of these functors, we write E0 for the induced bijection on sets
of isomorphism classes of irreducible objects. Thus

m0
ρ = Υ 0

∗ ◦ F0
W ◦m0

ρ : Irre G −→ Irr eHe.

Restricting to rĜ(ρ), viewed as a subset of Irre G (as in (2.1.3)), 3.5 Theorem (2)

shows that m0
ρ induces the homeomorphism m̂ρ : rĜ(ρ) ∼= rĈ

∗
(eHe). Similarly,

Υ 0
∗ gives the homeomorphism Υ̂ : rĈ

∗
W (G, ρ) ∼= rĈ

∗
(eHe) of 4.4 Proposition and

F0
W the homeomorphism F̂W : rĈ

∗
(G, ρ) ∼= rĈ

∗
W (G, ρ) of 4.5 Lemma. We deduce

that m0
ρ induces a homeomorphism m̂ρ : rĜ(ρ) ∼= rĈ

∗
(G, ρ). It then follows from

3.5 Theorem (3), 4.4 Proposition and 4.5 Proposition that, for any Borel subset S

of rĜ(ρ), we have

μ̂(S) =
eρ(1G)

dim ρ
μ̂ρ

(
m̂ρ(S)

)
.

However, eρ(1G) = (dim ρ)2/μ(K), which completes the proof of the theorem. �

5. Transfer theorem

We outline a framework within which the results above can be applied.

5.1. For i = 1, 2, let Gi be a connected reductive F -group, let Ki be a compact
open subgroup of Gi, and let ρi be an irreducible smooth representation of Ki. We
fix a Haar measure μi on Gi and denote by μ̂i the corresponding Plancherel measure

on rĜi.
We assume given an isomorphism of Hilbert algebras

(5.1.1) j : H(G1, ρ1)
≈−−−−→ H(G2, ρ2).

The map j then extends to an isomorphism rC
∗(G1, ρ1) ∼= rC

∗(G2, ρ2) of C∗

algebras, which we continue to denote j. It induces a homeomorphism

ĵ : rĈ
∗(G2, ρ2) −→ rĈ

∗(G1, ρ1),

(π,H) �−→ (π ◦ j,H).
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As before, we let rĜi(ρi) denote the set of (π,H) ∈ rĜi for which π(eρi
) �= 0.

Theorem 4.3 gives homeomorphisms

m̂ρi
: rĜi(ρi)

≈−−−−→ rĈ
∗
(Gi, ρi), i = 1, 2.

We define

(5.1.2) J = m̂−1
ρ1

◦ ĵ ◦ m̂ρ2
: rĜ2(ρ2) −→ rĜ1(ρ1).

As an immediate consequence of 4.3 Theorem, we get:

Corollary.

(1) The map J of (5.1.2) is a homeomorphism.

(2) If S is a Borel subset of rĜ2(ρ2), then

(5.1.3)
μ1(K1)

dim ρ1
μ̂1(J (S)) =

μ2(K2)

dim ρ2
μ̂2(S).

5.2. We record a simple result, useful when applying 5.1 Corollary.
We take Gi, ρi as in 5.1, and let H0(Gi, ρi) denote the space of functions

f ∈ H(Gi, ρi) for which f(1Gi
) = 0. Thus H0(Gi, ρi) is the orthogonal complement

in H(Gi, ρi) of the space Ceρi
spanned by the unit element eρi

of H(Gi, ρi).

Proposition. Let

k : H(G1, ρ1)
≈−−−−→ H(G2, ρ2)

be an isomorphism of C-algebras with involution. Suppose that

k(H0(G1, ρ1)) ⊂ H0(G2, ρ2).

The map k is then an isomorphism of Hilbert algebras.

Proof. Define a linear functional Λi on H0(Gi, ρi) by

Λi(x) = 〈x, eρi
〉, x ∈ H(Gi, ρi).

This is the unique linear functional on H(Gi, ρi) with kernel H0(Gi, ρi) such that
Λi(eρi

) = 1. We therefore have Λ1 = Λ2 ◦ k. However, the functional Λi satisfies

〈x, y〉 = Λi(x
∗y), x, y ∈ H(Gi, ρi),

whence the result follows. �

5.3. Example. A prime example of 5.1 Corollary is given by the Main The-
orem 5.6.6 of [11]. There, G = GLn(F ) and (J, λ) is a simple type in G. In
particular, (J, λ) is an s-type in G, where s = [L, σ]G is of the form

(5.3.1)
L = GLm(F )×GLm(F )× · · · ×GLm(F ),

σ = τ ⊗ τ ⊗ · · · ⊗ τ,

for a divisor m of n and an irreducible cuspidal representation τ of GLm(F ). Any
s ∈ B(G), of the form (5.3.1), admits an s-type which is also a simple type.

Consider the case of (5.3.1) in which m = 1 and τ is trivial. One then refers
to s as the trivial class in B(G). An s-type is provided by the trivial character 1I
of an Iwahori subgroup I of G. The corresponding Hecke algebra H(G, 1I) is an
affine Hecke algebra of type An−1, with parameter q (the cardinality of the residue
field of F ). The standard presentation ([11] (5.4.6)) shows that H(G, 1I) depends,
up to isomorphism of Hilbert algebras, only on n and q. We accordingly denote it
H(n, q).
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Returning to an arbitrary inertial class s of the form (5.3.1), Theorem 5.6.6 of
[11] gives a canonical family of algebra isomorphisms H(G, λ) ∼= H(e, qf ), for a pair
of integers e, f depending on s (or λ). Corollary 5.6.17 of [11] and 5.2 Proposition
above combine to show that, among this family, there are isomorphisms of Hilbert

algebras. Corollary 5.1 thus gives μ̂| rĜ(s) in terms of the basic case μ̂H(e,qf ). It

follows that μ̂| rĜ(s) is determined by the numerical invariants e, qf attached to s

via (J, λ).

5.4. We return to the general case of a connected reductive F -group G. Let
ZG be the centre of G and let Z be a closed subgroup of ZG such that ZG/Z is

compact. We fix a unitary character χ of Z, and consider the closed subset rĜχ of

rĜ consisting of classes of representations (π, V ) such that π(z)v = χ(z)v, z ∈ Z,
v ∈ V . This can be analyzed in exactly the same way, via pairs (K, ρ), where K is
open, containing Z such thatK/Z is compact, and ρ is an irreducible representation
of K such that ρ|Z is a multiple of χ. The formal degree calculations [11] 7.7.11,
[12] 8.2 follow exactly this course.

6. Split covers

There is a specific family of applications of 5.1 Corollary within the theory of
types. Greater generality is possible in the following arguments, but we concentrate
on the main case.

6.1. We recall, with necessary detail, a basic construction from [13] §6 et seq.
As before, let G be a connected reductive F -group. We fix an F -Levi subgroup

M of G and a parabolic subgroup P of G with Levi component M . Thus P = MN ,
where N is the unipotent radical of P . We let P be the M -opposite of P , so that
P = MN , where N is the unipotent radical of P .

We fix Haar measures μM , μG on M , G respectively. Let t ∈ B(M). We make
the following:

Hypotheses.

(1) There exists a t-type (KM , ρM ) in M .
(2) The pair (KM , ρM ) admits a G-cover (K, ρ).
(3) Every function φ ∈ H(G, ρ) has support contained in KMK.

Remark. A G-cover (K, ρ) of (KM , ρM ) satisfying hypothesis (3) is called a split
cover.

The definition of cover [13] 8.1 requires that K ∩M = KM and

K = K ∩N ·KM ·K ∩N.

Moreover, ρ|KM
∼= ρM , while Ker ρ contains both K ∩N and K ∩N .

We may write t = [L, σ]M , for a cuspidal datum (L, σ) in G with L ⊂ M . We
set

s = t
G = [L, σ]G ∈ B(G).

The pair (K, ρ) is an s-type in G [13] 8.3.
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6.2. Under the hypotheses of 6.1, there is a close relation between the Hecke al-
gebras H(M,ρM ), H(G, ρ). We may view ρM , ρ as sharing the same representation
space W . We first recall [13] 6.3:

Lemma 1. Let φ ∈ H(M,ρM ) have support KMmKM , for some m ∈ M .

(1) There exists a unique function Tφ ∈ H(G, ρ), with support KmK, such
that Tφ(m) = φ(m) (as elements of EndC(W̌ )).

(2) The map T : H(M,ρM ) → H(G, ρ) is an isomorphism of vector spaces.

Let m ∈ M ; one says that m is K-positive if

m(K ∩N)m−1 ⊂ K ∩N, and m(K ∩N)m−1 ⊃ K ∩N.

Part (ii) of [13] Theorem 7.2 yields:

Lemma 2. There is a unique algebra isomorphism t0 : H(M,ρM ) → H(G, ρ) such
that, if φ ∈ H(M,ρM ) has positive support, then t0φ = Tφ. Moreover,

supp t0θ = K · supp θ ·K,

for any θ ∈ H(M,ρM ).

Let δN denote the module of M (or P ) acting on N . That is, if μN is a Haar
measure on N and m ∈ M , then

δN (m) = μN (mSm−1)/μN (S),

for any measurable subset S of N .
For φ ∈ H(M,ρM ), define a function φ′ by

φ′ : x �−→ φ(x) δ
1/2
N (x), x ∈ M.

The map φ �→ φ′ is then an algebra automorphism of H(M,ρM ). Moreover:

Proposition. The map

j : H(M,ρM ) −→ H(G, ρ),

φ �−→ t0(φ
′)

is an isomorphism of Hilbert algebras.

Proof. The map j is certainly an isomorphism of algebras, and it satisfies

supp jφ = K · suppφ ·K,

for any φ ∈ H(M,ρM ). The proposition will therefore follow from 5.2 Proposi-
tion when we verify that j is a homomorphism of algebras with involution. That,
however, follows from [13] 7.4. �

6.3. Let us now abbreviate A = H(G, ρ), B = H(M,ρM ). We have equiva-
lences of categories

Rt(M) −→ B-Mod,

(σ,W ) �−→ WρM
,

Rs(G) −→ A-Mod,

(π, V ) �−→ Vρ.

The isomorphism j of 6.2 gives a functor, indeed an equivalence of categories,

j� : B-Mod −→ A-Mod,

X �−→ HomB(A, X).

This has the property [13] 8.4:
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Proposition. The diagram

Rt(M)
ιGP−−−−→ Rs(G)

≈
⏐⏐�

⏐⏐�≈

B-Mod −−−−→
j�

A-Mod

commutes.

Remarks. Assume for the moment only that (KM , ρM ) is a t-type admitting a
G-cover (K, ρ). There is then an algebra homomorphism j relative to which the
preceding Proposition remains valid. When (K, ρ) is a split cover of (KM , ρM )),
then j� and ιGP are equivalences of categories. Indeed, j� is an equivalence of cate-
gories if and only if (K, ρ) is a split cover of (KM , ρM ). A more general phenomenon
of this kind holds, without assuming the existence of types and covers. The group
NG(M) acts on B(M) by conjugation: let NG(t) denote the stabilizer of t for this
action. According to [26], the functor ιGP : Rt(M) → Rs(G) is an equivalence of
categories if and only if NG(t) = M .

We now translate to the context of unitary representations. Directly from 5.1
Corollary, we obtain:

Theorem. With the hypotheses of 6.1, there is a unique map I : rM̂(ρM ) → rĜ(ρ)
such that (

IV
)
ρ
= j�

(
VρM

)
= (ιGP π∞)ρ, (π, V ) ∈ rM̂(ρM ).

The map I is a homeomorphism and, if S is a Borel subset of rM̂(ρM ), then

μM (KM ) μ̂M (S) = μG(K) μ̂G(J S).

We remark that the map I here is the inverse of the map J given by 5.1. The
map J , in this situation, corresponds to taking the t-component of the normalized
Jacquet module at N .

6.4. Example. Take G = GLn(F ), let s = [L, σ]G ∈ B(G). Write sL =
[L, σ]L ∈ B(L). LetM be an F -Levi subgroup of G containing NG(sL) and minimal
for this property. Write sM = [L, σ]M ∈ B(M). In the obvious notation, we then
have NG(sM ) = M .

By the choice of M , there is an sM -type (K ′
M , ρ′M ) in M which is a tensor prod-

uct of simple types. The Plancherel measure μ̂M | rM̂(sM ) is therefore determined
as in 5.3.

The main construction in [14] shows:

(6.4.1) There is an open subgroup KM of K ′
M and a smooth representation ρM of

KM such that

(1) the representation of K ′
M induced by ρM is equivalent to ρ′M and

(2) the pair (KM , ρM ) admits a split G-cover (K, ρ).

In particular, (KM , ρM ) is an sM -type in M and (K, ρ) is an s-type in G.
Proposition 6.2 gives an isomorphism H(M,ρM ) ∼= H(G, ρ) of Hilbert algebras.
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The canonical algebra isomorphism H(M,ρM ) ∼= H(M,ρ′M ) of [11] (4.1.3) is an

isomorphism of Hilbert algebras, so μ̂G| rĜ(s) is given by μ̂M | rM̂(sM ) and 6.2.

6.5. Comment. Take integers n1, n2 � 1, set n = n1+n2, G = GLn(F ),
Gi = GLni

(F ), and let M denote the maximal Levi subgroup G1 × G2 of G. We
take an irreducible cuspidal representation πi of Gi and form the representation
σ = π1⊗π2 of M . For simplicity, let us assume that (in the case n1 = n2) the pairs
(Gi, πi) are inertially inequivalent. Setting sM = [M,σ]M , we have NG(sM ) = M .
We take types (KM , ρM ), (K, ρ) as in 6.4.

Let ψ be a nontrivial character of F . In [9], we calculated the conductor
f(π1 × π̌2, ψ) of the pair (π1, π̌2), in the sense of [20]. We followed the approach
of [28], which obtains the local constant ε(π1 × π̌2, s, ψ) by comparing a standard
intertwining operator with uniqueness of Whittaker model. Taking the composite of
two suitable operators, one obtains a scalar operator with eigenvalue q−f(π1×π̌2,ψ),
where q is the size of the residue field of F . We calculated this as the quotient
of volumes μG(K)/μM (KM ). As remarked in [28], this composite of intertwining
operators is indeed the quotient of Plancherel measures, as shown here directly.
Note, however, that in [9] there is a relation between the Haar measures μG, μM

dictated, in a subtle way, by the character ψ.
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[4] J.-N. Bernstein (rédigé par P. Deligne), Le “centre” de Bernstein, Représentations des
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Jacquet Modules and the Asymptotic Behaviour of Matrix
Coefficients

Bill Casselman

There is an intimate relationship between the asymptotic behaviour at infinity
of matrix coefficients of admissible representations of both real and p-adic reduc-
tive groups and the way in which these representations embed into representations
induced from parabolic subgroups. Weak versions of this were known for a long
time for real groups but, until work of Jacquet on p-adic groups around 1970, one
didn’t really understand very well what was going on. Starting with Jacquet’s ob-
servations, something now called the Jacquet module was constructed, first and
most easily for p-adic groups, and then, with somewhat more difficulty, for real
groups (see [Casselman: 1974] and [Casselman: 1979]). More or less by defini-
tion, the Jacquet module of a representation controls its embeddings into induced
representations, and following another hint by Jacquet it was established without
a lot of difficulty that algebraic properties of the Jacquet module also controlled
the asymptotic behaviour of matrix coefficients. What characterizes this best is
something called the canonical pairing between Jacquet modules associated to
a representation and its contragredient. It is not difficult to define the canonical
pairing abstractly and to relate it to matrix coefficients, but it is not so easy to
determine it in cases where one knows the Jacquet modules explicitly. The formula
of [Macdonald: 1971] for spherical functions is a particular example that has
been known for a long time, but I’m not aware that this has been generalized in
the literature in the way that I’ll do it. In this paper I’ll sketch very roughly how
things ought to go.

For p-adic groups, there exists also a relationship between the asymptotic be-
haviour of Whittaker functions and the Whittaker analogue of the Jacquet module.
The best known example here is the formula found in [Casselman-Shalika: 1980]
for unramified principal series. I think it likely that a similar relationship ex-
ists for real groups, and that it will explain to some extent the recent work of
[Hirano-Oda: 2007] on Whittaker functions for SL3(C). I’ll make a few com-
ments on this at the end of the paper.

The results discussed in this paper were originally commissioned, in a sense,
by Jim Arthur many years ago. He subsequently used them, at least the ones
concerned with real groups, in [Arthur: 1983], to prove the Paley-Wiener theorem.
His argument depended on Harish-Chandra’s Plancherel formula for real reductive
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groups but in fact, with a little thought and a few observations about Plancherel
measures, one can deduce that formula at the same time as following Jim’s proof.

There is one intriguing question raised by the results I sketch here. One trend
in representation theory over the past few years has been to replace analysis by alge-
braic geometry. This is particularly striking in the theory of unramified representa-
tions of p-adic groups, where sheaves replace functions, which are related to them by
Grothendieck’s dictionary. I have in mind the version of Macdonald’s formula as a
consequence of the ‘geometric’ Satake isomorphism of [Mirkovic-Vilonen: 2000],
for example. (There is an efficient survey of results about unramified represen-
tations in [Haines et al.2003].) What do these ideas have to say in the pres-
ence of ramification? Or about representations of real groups (which, according to
[Manin: 1991], ought to be considered infinitely ramified)?

As I have said, I shall give few details here. My principal purpose, rather, is to
exhibit plainly the astonishing parallels between the real and p-adic cases.

Throughout this paper, G will be a reductive group defined over a local field.
In addition:

P = a parabolic subgroup

N = NP = its unipotent radical

M = MP = a subgroup of P isomorphic to P/N

A = AP = maximal split torus in M

ΣP = eigencharacters of Adn
∣∣A

A−− =
{
a ∈ A

∣∣ |α(a)| ≤ 1 for all α ∈ ΣP

}
P = opposite of P (i.e. P ∩ P = M)

δP (p) = | detAdn(p)|
W = the Weyl group with respect to A .

Thus δP is the modulus character of P .

Part I: What happens for p-adic groups

1. Notation. Suppose k to be a p-adic field, G the k-rational points on an
unramified reductive group defined over k. In addition to basic notation:

A−−(ε) =
{
a ∈ A

∣∣ |α(a)| < ε for all α ∈ ΣP

}
K = Ko = what [Bruhat-Tits: 1966] call a ‘good’ maximal compact.

Thus G = PKo and if P is minimal we have the Cartan decomposition G =
KoA

−−Ko.
I write a →P 0 for a in AP if |α(a)| → 0 for all α in ΣP . Because of the Cartan

decomposition, this is one way points on G travel off to infinity. I’ll say that a is
near 0 if all of those same |α(a)| are small.

2. Admissible representations. In these notes a smooth representation
(π, V ) of G will be a representation of G on a complex vector space V with the
property that the subgroup of G fixing any v in V is open. It is admissible if in
addition the dimension of the subspace fixed by any open subgroup is finite.

The simplest examples are the principal series. If (σ, U) is an admissible rep-
resentation of M , hence of P , the normalized induced representation is the right
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regular representation of G on

Ind(σ |P,G) = {f ∈ C∞(G,U) | f(pg) = δ
1/2
P (p)σ(p)f(g)} .

If (π, V ) is an admissible representation of G, its Jacquet module VN is the
quotient of V by the linear span V (N) of the vectors v − π(n)v, the universal N -
trivial quotient of V . It is in a natural way a smooth representation of M , which
turns out in fact to be admissible (see [Casselman: 1974]). The normalized

Jacquet module πN is this twisted by δ
−1/2
P .

The point of the normalization of the Jacquet module is that Frobenius reci-
procity becomes

HomG

(
π, Ind(σ |P,G)

)
= HomM (πN , σ) .

3. Matrix coefficients. The contragredient (π̃, Ṽ ) of an admissible repre-
sentation (π, V ) is the subspace of smooth vectors in its linear dual. The matrix

coefficient associated to ṽ in Ṽ , v in V is the function

Φṽ,v(g) = 〈ṽ, π(g)v〉 .
The asymptotic behaviour of matrix coefficients at infinity on the p-adic group G
is fairly simple, at least qualitatively. Jacquet first observed that if v lies in V (N)
then 〈π(a)v, ṽ〉 = 0 for a near 0—i.e. if |α(a)| is small for all α in ΣP . This implied,
for example, that the matrix coefficients of a cuspidal representation had compact
support modulo the centre of G. A refinement of Jacquet’s observation is this:

There exists a unique pairing 〈ũ, u 〉can of ṼN and VN with this property:

for each ṽ, v with images ũ in ṼN , u in VN there exists ε > 0 such that

〈ṽ, π(a)v 〉 = δ
1/2
P (a)〈ũ, πN (a)u 〉can

for a in A−−(ε).

This canonical pairing induces an isomorphism of ṼN with the admissible dual
of VN . It has a geometric interpretation. For example, if G = SL2(Qp) and v is fixed
on the right by SL2(Zp), then the matrix coefficient becomes a function on certain
vertices of the Bruhat-Tits tree of G, and their asymptotic behaviour is related to
the embedding of π via boundary behaviour into a representation induced from P ,
a kind of complex line bundle over the copy of P1(Qp) that compactifies the tree.

4. Principal series. One can describe rather explicitly the Jacquet modules
of representations induced from parabolic subgroups. Can one then describe the
canonical pairing explicitly?

I’ll explain this problem by an example. Suppose P to be minimal and π to be
the principal series Ind(χ |P,G) with χ a generic character of M . Its contragredient
may be identified with

Ind(χ−1 |P,G)

where the pairing is

〈ϕ, f〉 =
∫
P\G

ϕ(x)f(x) dx =

∫
K

ϕ(k)f(k) dk .

Can we find an explicit formula for 〈ϕ,Raf〉 as a → 0?
Let me recall what we know about the Jacquet module in this situation. The

Bruhat decomposition tells us that G =
⊔

w∈W PwN , with PxN ⊆ PyN if x ≤ y in
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W . As explained in [Casselman: 1974], the space Ind(χ) is filtered by subspaces
Iw of f with support on the closure of PwN . Similarly G =

⊔
PwN , and Ind(χ−1)

is filtered by the opposite order on W . These two double coset decompositions are
transversal to one another. For each w in the Weyl group W we have a map

Ωw(f) =

∫
N∩wNw−1\N

f(w−1n) dn

well defined on Iw−1 . It extends generically (that is to say for generic χ) to all of
Ind(χ), and determines an M -covariant map from πN to Cwχ. All together, as long
as χ is generic, these induce an isomorphism of the (normalized) Jacquet module
πN with ⊕wχ. Similar functionals

Ω̃w(f) =

∫
N∩wNw−1\N

f(w−1n) dn

determine an isomorphism of π̃N with ⊕wχ−1.
The agreement of these formulas with the canonical pairing is clear—the two

Jacquet modules are dual, piece by piece, but the duality is only determined up to
scalar multiplication. We have therefore an asymptotic equality of the form

〈ϕ,Raf〉 =
∑
w

cw,χ δ
1/2
P (a)wχ(a) · Ω̃w(ϕ) Ωw(f)

for a near 0, with suitable constants cw,χ.
The problem we now pose is this: What are those constants?
There is a classical formula found in [Langlands: 1988] that gives the leading

term of the asymptotic behaviour for χ in a positive chamber. It involves an analytic
estimate of an integral. (I’ll present a simple case of Langlands’ calculation later
on, that of SL2(R).) The result stated here is a stronger and more precise version of
that result. What makes the new version possible is the apparently abstract result
relating asymptotic behaviour to Jacquet modules. One point is that we don’t have
to find the asymptotic behaviour of all matrix coefficients, just enough to cover all
the different components of the Jacquet modules. Another is that we just have to
look at one component at a time.

5. Integration. The question about the constants cw,χ is not quite precise,
because we have to be more careful about what the integrals mean. The first
point is that it is not functions on P\G that one integrates, but densities. These
may be identified with functions in Ind(δ1/2), but the identification depends on a
choice of measures, and is definitely not canonical. There are two integral formulas
commonly used to make the identification of densities with functions in Ind(δ1/2),
and I shall introduce a third.

The first formula depends on the factorization G = PK. The integral on
densities must be K-invariant, so we must have∫

P\G
f(x) dx = constant ·

∫
K

f(k) dk ,

where we take the total measure of K to be 1. Indeed, we can just define the
integral by this formula, with this choice (and the constant equal to 1).

Since PN is open in G and the integral must be N -invariant, we may also set∫
P\G

f(x) dx = constant ·
∫
N

f(n) dn .
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where now we can choose the measure on N so that K ∩ N has measure equal to
1. Understanding this second formula requires some work to show that the integral
always converges.

The two formulas can only differ by a scalar. So we have
∫
K

f(k) dk = μ

∫
N

f(n) dn

for some constant μ, easy enough to determine explicitly in all cases:

Let B be an Iwahori subgroup of K and w� in K represent the longest
element of the Weyl group. Then μ = meas(Bw�B)/meas(K).

This is because Bw�B is completely contained in the single Bruhat double coset
Pw�P .

Integration over N (or, in a mild variation, over w�N) is in many ways the more
natural choice. It is, for example, the one that arises in dealing with Tamagawa
measures (implicit in [Langlands: 1966]). But it has a serious problem, and
that is the question of convergence. Convergence shouldn’t really arise here. The
theory of admissible representations of p-adic groups is essentially algebraic, and
one should be able to work with an arbitrary coefficient field, for which analysis is
not in the toolbox. We would therefore like to modify the formula

∫
P\G

f(x) dx =

∫
N

f(n) dn .

so as to make all integrals into sums, and avoid all convergence considerations.
This is easy, and a very similar idea will reduce the analytical difficulties for

real groups to elementary calculus. Choosing representatives of W in K, we get
also measures and similar formulas on the translates PNw−1. The variety P\G is
covered by these open translates, and we can express

f =
∑
w

fw (support of fw on PNw−1)

as a sum of functions fw, each with compact support on one of them. Then
∫
P\G

f(x) dx =
∑
w

∫
N

fw(xw
−1) dx =

∑
w

∫
wNw−1

fw(w
−1x) dx .

All these integrals are now finite sums. This in turn gives explicit measures to

choose for evaluating Ωw and Ω̃w because if Nw = wNw−1 then

Nw = (Nw ∩N)(Nw ∩N) .

One can also choose measures on each one-dimensional unipotent root group com-
patibly with the action of w in K.

6. A sample calculation. To evaluate the canonical pairing, we may deal
with each summand of the Jacquet module by itself. We can therefore choose both
f and ϕ with support on PNw−1, in which case it is easy to see what the asymptotic
behaviour of 〈ϕ,Raf〉 is.
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For example, if f , ϕ have support on PN and a near 0 we have∫
N

f(na)ϕ(n) dn =

∫
N

f(a · a−1na)ϕ(n) dn

= δ
1/2
P (a)χ(a)

∫
N

f(a−1na)ϕ(n) dn

= δ
1/2
P (a)χ(a)f(1)

∫
N

ϕ(n) dn (if a is near 0)

= δ
1/2
P (a)χ(a) · Ω1(f) · Ω̃1(ϕ)

Similar calculations work for all principal series, and as this suggests the canonical
pairing turns out to be that with cχ,w = μ for all w.

The most general result of this sort is that if

π = Ind(σ |Q,G)

then the canonical pairing for the Jacquet module πNP
can be expressed explicitly

in terms of the canonical pairing for the Jacquet modules of σ and certain NP -
invariant functionals on π determined by integration over pieces of the Bruhat
filtration, together with analogues for P for π̃. This formula, an explicit formula
for the canonical pairing, is too elaborate to present here.

7. Range of equality. For what range of a does the ‘asymptotic’ equation
hold? The answer depends on the ramification of χ as well as on the particular f
and ϕ. The most important result is that if χ is unramified and both f and ϕ are
fixed by an Iwahori subgroup, then the equation is good on all of A−−. Macdonald’s
formula for the unramified spherical function is neither more nor less than the main
formula together with this observation about the Iwahori-fixed case.

8. Whittaker functions. Let P = MN be a Borel subgroup of a quasi-
split group G, and let ψ be a non-degenerate character of the maximal unipotent
subgroup N . One may define an analogue Vψ,N of the Jacquet module to be the
quotient of V by the span of all

(
π(n)− ψ(n)

)
v.

The Whittaker functional on V = Ind(σ |P,G) is effectively in the dual of this,
and is defined formally by

〈Wψ, f〉 =
∫
N

f(w�n)ψ
−1(n) dn .

and the Whittaker function as Wψ(g) = 〈Wψ, Rgf〉. Finding the asymptotic be-
haviour of Whittaker functions at infinity, or equivalently finding Wψ(a) for a → 0,
is similar to that of finding the asymptotic behaviour of matrix coefficients, with the
Whittaker functional Wψ replacing integration against ϕ. This is explained, maybe
a bit hurriedly, first of all in [Casselman-Shalika: 1980] and then in more detail
in [Casselman-Shahidi: 1998]. The approach given in that last paper was in
fact motivated by the approach to matrix coefficients that I have used here. There
exists in this situation a canonical map VN → Vψ,N

∼= C describing the asymptotic
behaviour, roughly because as a → 0 the value of ψ(ana−1) becomes 1, and each
component of this map is determined by the effect of the standard intertwining
operators Tw : Ind(χ) → Ind(wχ) on the Whittaker functional Wψ.
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Part II. Real groups

9. Introduction. Let nowG be the group of real points on a Zariski-connected
reductive group defined over R. In addition, let

K = a maximal compact subgroup

g, etc. = complex Lie algebra of G etc.

In the first part, the simple nature of Jacquet modules as well as the phenomenon
that ‘asymptotic’ expansions are asymptotic equalities made our task easy. For real
groups, there are both algebraic and analytical complications:

• the behaviour of matrix coefficients at infinity on G is truly asymptotic, ex-
pressed in terms of Taylor series;

• the Jacquet module is, as it consequently has to be, more complicated;
• there is no Bruhat filtration for the usual representation of (g,K) on the K-
finite principal series. Instead, one has to consider certain smooth representa-
tions of G itself, for example the C∞ principal series;

• there are now two Jacquet modules to be considered, one for K-finite, one for
smooth spaces.

You can get a rough idea of what happens in general by looking at the case
of harmonic functions on the unit disk D, a space on which SL2(R) acts (since
the Cayley transform z �→ (z − i)/(z + i) takes the upper half plane H to D).
There are two spaces of interest: (1) the finite sums of polynomials in z and their
conjugates, a representation of (g,K); (2) the space of harmonic functions which
extend smoothly to D, on which SL2(R) itself acts. In either case, the constant
functions are a stable subspace, and the quotient is the sum of two discrete series,
holomorphic and anti-holomorphic.

The group P fixes the point 1 (corresponding to ∞ on the upper half-plane),
and n acts trivially on the tangent space there. This means that if I is the ideal
of functions in the local ring O vanishing at 1, then n takes O to I, and in general
In to In+1. The asymptotic behaviour of a harmonic function at 1 is controlled by
its Taylor series. The space of all harmonic Taylor series at 1 is a representation
of P as well as the Lie algebra g. This space of formal power series is the correct
analogue of the Jacquet module here. One thing that is deceptive here is that the
K-finite harmonic functions are polynomials. This is unique to that case.

One feature seen here, a feature characteristic of real groups, is that the ana-
logue of the Jacquet module has a simpler relationship to the representation on C∞

functions than that on K-finite ones—the map from the first onto harmonic Taylor
series is actually surjective, while the second is not.

What I, and presumably everyone who works with both real and p-adic groups,
find so remarkable is that in spite of great differences in technique required to deal
with the two cases, the results themselves are uncannily parallel. It might incline
some to believe that there is some supernatural being at work in this business.

10. The real Jacquet module. If V is a finitely generated Harish-Chandra
module over (g,K) it is finitely generated as a module over U(n), and its contra-

gredient Ṽ is finitely generated over U(n). Its Jacquet module is the completion
V[n]—the projective limit of the quotients V/nkV—with respect to powers of n (in-
troduced in [Casselman: 1979]). It is obviously a representation of (p,K ∩ P )
and in fact one of P , even though V itself is not. Slightly more surprising is that it
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is a representation of all of g, although it is easy to verify. Not so surprising if you
think about the example of harmonic functions, where this completion ts the space
of harmonic Taylor series at 1 and the enveloping algebra U(g) acts by differential
operators.

This Jacquet module is easily related to homomorphisms via Frobenius reci-
procity from V to representations induced from finite-dimensional representations
of P , since it is universal with respect to n-nilpotent modules.

The projective limit is a kind of non-abelian formal power series construction.
As in the p-adic case:

10.1. Proposition. The functor V → V[n] is exact.
Since a similar question will arise later in different circumstances, I recall how

this goes. As proved in [McConnell: 1967], the Artin-Rees Lemma holds for the
augmentation ideal (n) of U(n). This is one example of the fact that much of the
theory of commutative Noetherian rings remains valid for U(n). If

0 → A → B → C → 0

is exact then we have a right exact sequence

· · · → A/nnA → B/nnB → C/nnC → 0 .

The left inclusion is not necessarily injective. But by Artin-Rees, there exists k ≥ 0
such that then A ∩ nnB ⊆ nn−kA for n � 0. Suppose (an) lies in the projective
limit of the quotients A/nnA with image 0 in B/nnB. Then for n large, an+k lies
in nnA, so an = 0. �

This argument will fail in later circumstances, but something close to it will
succeed. For the moment, let R be the ring U(n), I the ideal generated by n. The
long exact sequence above fits into

· · · → TorR1 (R/In, B) → TorR1 (R/In, C) → A/InA → B/InB → C/InC → 0 .

The following is equivalent to Artin-Rees.
10.2. Proposition. If C is a finitely generated module over U(n), then for

some k and n � 0, the canonical map from TorR1 (R/In, C) to TorR1 (R/In−k, C) is
identically 0.

Proof. Suppose

0 → E → F → C → 0

to be an exact sequence of finitely generated modules over U(n), where F is free.
Choose k so that E∩InF ⊆ In−kE for n � 0. Since Tor of a free module vanishes,
the proof follows from diagram chasing in:

0 → TorR1 (R/In, C) → E/InE → F/InF . . .
↓ ↓ ↓ ↓
0 → TorR1 (R/In−k, C) → E/In−kE → F/In−kF . . . �

10.3. Corollary. If

0 → A → B → C → 0

is an exact sequence of U(n) modules and C is finitely generated, then

0 → A[n] → B[n] → C[n] → 0

is also exact.
Exactness for real groups is thus much more sophisticated than it is for p-adic

ones. Still, that one can define a Jacquet module and that it again defines an
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exact functor seems almost miraculous. The one common feature in both cases is
the connection with geometry—here with compactifications of symmetric spaces,
in the other with compactifications of the building. But then the analogy between
symmetric spaces and buildings is another miracle.

11. Verma modules. The Jacquet modules for real groups are closely related
to the more familiar Verma modules.

Traditionally, a Verma module is a representation of g on a space

U(g)⊗U(p) V

where V is an irreducible finite-dimensional representation of p. Since any finite-
dimensional representation of p is necessarily annihilated by some power of n, every
vector in such a space is also annihilated by some power of n. I shall therefore
introduce a slightly more general notion with the same name—what I shall call a
Verma module is a compatible pair of representations of U(g) and P on a space V
which is finitely generated and has the property that every vector in V is annihilated
by some power of n. In other words, V is the union V [n] of its n-torsion subspaces
V (nn). The compatibility means that the representation of P agrees with that of
its Lie algebra p as a subalgebra of g.

Every Verma module is the quotient of one of the form U(g) ⊗U(p) V , where
V is a finite-dimensional representation of P . A Verma module will always have
finite length as a module over U(g), and will be annihilated by some ideal of Z(g)
of finite codimension.

How do Verma modules relate to Jacquet modules? If V is a Verma module,

its linear dual V̂ is the projective limit of the duals of its finite-dimensional n-stable
subspaces. In other words we know that V is the direct limit of finite-dimensional
subspaces:

V = lim
−→

V (nk)

which means that

V̂ = the projective limit of the duals of the V (nk) .

Furthermore, we have an exact sequence

0 → V (nk) → V → ( dual of nk)⊗ V

and we deduce the exact sequence

nk ⊗ V̂ → V̂ → dual of V (nk) → 0 .

so that V̂ is the projective limit of the finite-dimensional quotients V̂ /nkV̂ . It is a
finitely generated module over the completion U[n] of U(n) with respect to powers
of nn.

Conversely, the topological dual of this completion —i.e. the space of linear

functionals vanishing on some nkV̂—is the original Verma module. Thus, a natural
and straightforward duality exhibits a close relationship between Verma modules
and g-modules finitely generated over U[n]. In particular, the Jacquet module of

V is the linear dual of the space of n-torsion in the linear dual V̂ of V , which is a
Verma module in the sense defined above.

There is another duality relationship between Verma modules for P and those
for its opposite P . Something like this is to be expected in view of the duality
between Jacquet modules in the p-adic case, where N and N both occur in the
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description of asymptotic behaviour of matrix coefficients. It is easy to see that a
Verma module V is always finitely generated over U(n). It is in fact the submodule
of n-finite vectors in its completion V = V[n]. The continuous dual U of V is then in
turn a Verma module for p. If we now perform the same construction for U we get
V back again. So the categories of Verma modules for p and p are naturally dual
to each other. This is crucial, as we shall see, in understanding the relationship
between Jacquet modules and matrix coefficients.

12. Jacquet modules and matrix coefficients. Matrix coefficients satisfy
certain differential equations which have regular singularities at infinity on G. This
implies that we have a convergent expansion

〈ṽ, π(a)v〉 =
∑

ϕ∈Φ,n≥0

cϕ,n ϕ(a)αn(a)

where Φ is a finite collection of A-finite functions on A. If A ∼= R×, for example,
functions in Φ will be of the form |x|s logm |x|.

An analogue of Jacquet’s observation holds:

For v in nkV or ṽ in n
kṼ the coefficient cϕ,n vanishes for n < k.

This is easy to see for harmonic functions, since nk takes O to Ik.

In the limit we therefore get a pairing of V[n] with Ṽ[n] taking values in a space

of formal series. The pairing of V[n] with Ṽ[n] is best expressed in terms of the
duality explained in the previous section. If ṽ is annihilated by n then the series
associated to v and ṽ will be finite, hence defining an A-finite function. So we are
now in a situation much like that for p-adic groups. This A-finite function may be
evaluated at 1, and in this we we get a ‘canonical pairing’ between V[n] and the

n-torsion in Ṽ[n] ([Casselman: 1979]).
That the pairing is in some strong sense non-degenerate is highly non-trivial,

first proven in [Miličic̀ : 1977]. His argument was rather indirect. It will also be
a corollary of the computation of the canonical pairing for induced representations,
which is what this paper is all about.

13. Langlands’ calculation for SL2(R). The results for arbitrary reductive
groups are quite complicated, even to state (and remain so far unpublished). To
give you at least some idea of what goes on I’ll look just at the principal series of
SL2(R). But in order to offer some contrast to what is to come later, I’ll begin with
a ‘classical’ argument to be found in [Langlands: 1988], which is itself presumably
based on earlier results of Harish-Chandra.

Suppose that f lies in Ind∞(χ), ϕ in Ind∞(χ−1). The associated matrix coef-
ficient is

〈ϕ,Rgf〉 =
∫
P\G

ϕ(x)f(xg) dx .

In the rest of this paper, let

w =

[
0 −1
1 0

]
.

In the following result, let

at =

[
t 0
0 1/t

]
.
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13.1. Theorem. (Langlands) If χ(x) = |x|s with �(s) > 0 then

〈ϕ,Rat
f〉 ∼ δ1/2(at)χ

−1(at)ϕ(w)

∫
N

f(wn) dn

as t → 0.
This is an asymptotic equation, with the interpretation that the limit of

lim
t→0

〈ϕ,Rat
f〉

δ1/2(at)χ−1(at)
= ϕ(w)

∫
N

f(wn) dn .

It is well known (and we’ll see in a moment) that for �(s) > 0 the integral

Ωw(f) =

∫
N

f(wn) dn

is absolutely convergent and defines an N -invariant functional on Ind(χ).
Proof. We have

〈ϕ,Rat
f〉 =

∫
N

f(wna)ϕ(wn) dn

=

∫
N

f(watw
−1 · w · a−1

t nat)ϕ(wn) dn

= δ−1/2(at)χ
−1(at)

∫
N

f(w · a−1
t nat)ϕ(wn) dn

= δ−1/2(at)χ
−1(at)δ(at)

∫
N

f(wn)ϕ(w · atna−1
t ) dn

= δ1/2(at)χ
−1(at)

∫
N

f(wn)ϕ(w · atna−1
t ) dn .

We’ll be through if I show that

lim
t→0

∫
N

f(wn)ϕ(w · atna−1
t ) dn = ϕ(w) ·

∫
N

f(wn) dn .

First I recall the explicit Iwasawa factorization for SL2(R):[
a b
c d

]
=

[
1 (ac+ bd)/r2

0 1

] [
1/r 0
0 r

] [
d/r −c/r
c/r d/r

]

where r =
√
c2 + d2. Thus we can write

wn =

[
0 −1
1 0

] [
1 x
0 1

]
=

[
0 −1
1 x

]
= nx

[
(1 + x2)−1/2 0

0 (1 + x2)1/2

]
kx

where nx, kx are continuous functions of x.
As a consequence, the integral is∫

R

(x2 + 1)−(s+1)/2f(kx)
(
(t2x)2 + 1

)(s−1)/2
ϕ(kt2x) dx .

The integrand converges to

(x2 + 1)−(s+1)/2f(kx)ϕ(w)

as t → 0. According to the dominated convergence theorem (elementary in this
case, and justified in a moment) the integral converges to ϕ(w) · Ωw(f).

In later sections we’ll see a more precise description of the behaviour of matrix
coefficients at infinity on G.
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I include here a Lemma needed to apply the dominated convergence theorem,
a pleasant exercise in calculus.

13.2. Lemma. For all 0 ≤ |t| ≤ 1 and 0 < s the product

(x2 + 1)−(s+1)/2
(
(t2x)2 + 1

)(s−1)/2

lies between (x2 + 1)−(s+1)/2 and (x2 + 1)−1.
Proof. These are what you get for t = 0, t = 1, and the derivative with respect

to t is always of constant sign in between.
We shall see later that this result gives only the leading term in an infinite

asymptotic series.

14. The Bruhat filtration. Now let’s begin a new analysis, following the
p-adic case as closely as possible. We need first to say something about the Jacquet
module for principal series. Here, as in the p-adic case, this depends on the Bruhat
decomposition G = P

⊔
PwN .

Let V be Ind∞(χ). For f in this space let Ωf be the map from U(g) taking X
to Xf(1). This lies in a kind of infinitesimal principal series

V1 = HomU(p)(U(g),C
χδ

1/2
P

) .

In this way, we get a p-covariant map

Ω: f �−→ Ωf .

Let Vw be the subspace of functions in V vanishing of infinite order along P , which
are the closure in Ind∞(χ) of those functions with compact support on PwN . By
a theorem of E. Borel this fits into a short exact sequence

0 → Vw → V
Ω→ V1 → 0 .

I call this the Bruhat filtration of V .
It is important to realize—originally, it took me quite a while to fully absorb—

that:

There does not exist such a sequence for the K-finite principal series.

After all, the K-finite functions are analytic, and an analytic function cannot
vanish of infinite order anywhere. In other words, we do not have a good Bruhat
filtration for the representation of (g,K) on the K-finite principal series. In spite
of this, we do have however a filtration of the Jacquet module of the K-finite
principal series, because according to the main result of [Casselman: 1989], the
Jacquet modules of a K-finite principal series and its C∞ version are the same,
in a very strong sense. The way in which this is phrased in [Casselman: 1989]
is that any (g,K)-covariant homomorphism from one K-finite principal series to
another extends continuously to a map between the associated smooth principal
series (the phenomenon called in [Wallach: 1983] ‘automatic continuity’). These
two assertions are essentially equivalent because of Frobenius reciprocity. Another
miracle to put in the pot.

As before, I define the Jacquet module of any representation U of g to be the
projective limit of the quotients U/nkU . As in the p-adic case, the Bruhat filtration
of V gives rise to a filtration of its Jacquet module.
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14.1. Proposition. The exact sequence defining the Bruhat filtration gives
rise to an exact sequence of Jacquet modules

0 → (Vw)[n] → V[n] → (V1)[n] → 0 .

As we have seen, if the terms in the original exact sequence were finitely gener-
ated over U(n), this would be a consequence of the Artin-Rees Lemma. This would
still be true if they were finitely generated over U(n)[n]. However, I have proved a
variation of Artin-Rees which applies here, because of:

14.2. Lemma. The space V1 is the linear dual of the Verma module
U(g)⊗U(p) Cχ−1δ

1/2
P

.

This is straightforward to verify, and well known. In particular, the space
V1 is finitely generated over U(n)[n], and with the help of a few standard results
comparing Tor for U(n) and its completion, we can deduce the exactness we want.

�
Incidentally, in the case at hand we can prove everything directly. Again let

R = U(n), and let I be the ideal generated by n. If ν is a generator of n, the ring

R is just a polynomial algebra in ν. The group TorR1 (I
n, A) is the subspace of A

annihilated by In. The completion of R with respect to I is still a principal ideal
domain, and the torsion in V1 is finite-dimensional. In particular, there exists some
k ≥ 0 annihilating all its torsion. The canonical projection from TorR1 (R/In, V1) to

TorR1 (R/In−k, V1) may be identified with multiplication by νk, which annihilates
all torsion. This is a special case of what I called the variant of Artin-Rees.

One immediate corollary of the Lemma is this:
14.3. Corollary. The subspace nkV1 is closed in V1 of finite codimension.
In order to fully understand the Bruhat filtration of the Jacquet module, we

must figure out what (Vw)[n] is. The group N is isomorphic to the additive group R.
Its Schwartz space S(N) is defined by this identification. An application of the same
calculations we made for Langlands’ Theorem, using the Iwasawa decomposition,
tells us:

14.4. Proposition. The restriction of Vw to N is isomorphic to the Schwartz
space S(N).

This is a slight generalization of Schwartz’ identification of S(R) with the space
of those smooth functions on the projective line that vanish of infinite order at ∞
(which is in fact a special case).

14.5. Proposition. A function f in Vw lies in nkVw if and only if∫
N

P (n)f(n) dn = 0

for every polynomial P of degree < k.
This identifies the n-torsion in the dual of Vw. It is a simple exercise in calculus.
14.6. Corollary. The space nkVw is closed in Vw, and every quotient Vw/n

kVw

is free of rank one over U(n)/nkU(n).
This gives us:
14.7. Proposition. Each space nkV is closed in V and has finite codimension.
Proof. If U → V is a continuous map of Fréchet spaces with image of finite

codimension, then its image is closed. This is because if F is a finite-dimensional
complement, the associated map from U ⊕ F to V is continuous and surjective, so
that the induced map from

(
U/ ker(f)

)
⊕F is an isomorphism of topological vector
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spaces, by the open mapping theorem. The long exact sequence

· · · → Vw/n
kVw → V/nkV → V1/n

kV1 → 0

tells us that nkV has finite codimension, but it is also the image of a map from
⊗(k)n⊗ V to V . �

Now, let’s try to understand what we have on hand. Dual to the Bruhat
filtration of Ind(χ) by double cosets PwN is that of its contragredient Ind(χ−1) by
cosets PwN . Let the corresponding exact sequence be

0 → Ṽw → Ṽ → Ṽ1 → 0 ,

giving rise to

0 → (Ṽw)[n] → Ṽ[n] → (Ṽ1)[n] → 0 .

These two coset decompositions are transversal to one another–the coset PN is open
in G and contains P = PN , while PwN is open in G and contains PwN . Every
smooth function on PwN therefore determines a Taylor series along Pw = PwN ,
and in particular every polynomial P (n) on PwN determines one. As we have seen
these are all annihilated by some power of n, so it should not be too surprising to
see:

14.8. Proposition. As a module over g, the n-completion of Vw is isomorphic

to the n-completion of the continuous dual (Ṽw)[n].

Similarly for Ṽ1 and V1.
So now we find ourselves in exactly the same situation we saw in the p-adic

case—Bruhat filtrations of Ind(χ) and Ind(χ−1) with corresponding terms in the
associated graded spaces dual to one another. In the next section we shall see that
this duality matches with the asymptotic expansion of matrix coefficients.

Generically, the Bruhat filtration of Jacquet modules will split, but for isolated
values of χ it will not.

There is one final remark to make. Of course the K-finite principal series
V(K) embeds into the smooth one V , inducing a map of their Jacquet modules.
As I have already mentioned, it is a consequence of the ‘automatic continuity’
theorem in [Wallach: 1983] that this is an isomorphism. Thus, although there is
no Bruhat filtration of V(K), there is one of its Jacquet module. It’s a curious fact,
and presumably a fundamental one.

15. The explicit formula.
Let me recall where we are in the discussion. We want to calculate 〈ϕ,Raf〉

for ϕ in Ind∞(χ−1), f in Ind∞(χ). As with p-adic groups, since the asymptotic
expansion of matrix coefficients factors through Jacquet modules, but here I do not
see how to use that to simplify calculations. The problem is that we must look at
what happens for smooth functions.

I’ll look here at a principal series representation of SL2(R). Let

a =

[
t 0
0 1/t

]
.

Set χ(a) = |t|s as in the discussion of Langlands’ formula.
We express f in Ind(χ) and ϕ in Ind(χ−1) as sums of functions with support

on the open Bruhat double cosets:

f = fw + f1, ϕ = ϕw + ϕ1
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where ∗w has support on PwN , ∗1 on PN . We will see what happens to each term
in

〈ϕ,Raf〉 = 〈ϕ1, Raf1〉+ 〈ϕ1, Rafw〉+ 〈ϕw, Raf1〉+ 〈ϕw, Rafw〉
as t → 0.

I’ll look first at 〈ϕw, Rafw〉 because it offers an interesting comparison with the
verification of Langlands’ formula. To simplify notation I’ll set ϕ = ϕw, f = fw.
We get here as before that

〈ϕ,Raf〉 = δ1/2χ−1(a)

∫
N

f(wn)ϕ(w · ana−1) dn ,

We must look at the integral, also as before. But here things are somewhat sim-
pler analytically—the functions f(wn) and ϕ(wn) are both of compact support as
functions of n. Set

n =

[
1 x
0 0

]

and change both the variable n and the functions f(wn) and ϕ(w · ana−1) of n to
functions of x. So we are now considering the integral∫

R

f(x)ϕ(t2x) dx

where f and ϕ are both of compact support on R. You can see immediately and
roughly what is going to happen—as t → 0 ϕ(t2x) will be more or less determined
by its behaviour near 0, or in other words by its Taylor series at 0. We get formally∫

R

f(x)ϕ(t2x) dx =

∫
R

f(x)
∑
m≥0

t2m
xm

m!
ϕ(m)(0) dx

=
∑
m≥0

t2m
ϕ(m)(0)

m!

∫
R

xmf(x) dx .

Because f and ϕ have compact support, it is not hard to justify this as an asymp-
totic expansion.

We can find a more enlightening interpretation of this. Let

ν =

[
0 0
1 0

]

be a generator of n. In terms of our choice of coordinates in N the functional

Ω̃w,m : Ind(χ−1) → C, ϕ �→ Rνmf(w)

is the same as that taking it to ϕ(m)(0). It is annihilated by n
m. Let

Ωw,m : Ind(χ) → C, f �→
∫
N

xmf(wn) dn ,

which is a meromorphic function of χ. In these terms, the formula becomes

〈ϕ,Raf〉 ∼ δ1/2(a)χ−1(a)
( ∑

m≥0

Ω̃w,m(ϕ) Ωw,m(f)
)
.

Actually, this whole expansion can be deduced from the algebra of Verma modules,
if one knows just the leading term. The expansion expresses, essentially, the unique
pairing between generic terms in Jacquet module of the principal series. After
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all, generic Verma modules are irreducible, so the pairing is unique up to scalar
multiplication.

The term 〈ϕ1, Raf1〉 has a similar asymptotic expression in terms of the Jacquet

modules of V̂1 and V̂ , and the cross terms vanish asymptotically. Define functionals

Ω1,m Ω̃1,m as I did Ωw,m and Ω̃w,m In the end we get as asymptotic expansion a
sum of two infinite series

〈ϕ,Raf〉 ∼ δ1/2(a)χ−1(a)
( ∑

m≥0

Ω̃w,m(ϕ) Ωw,m(f)
)

+ δ1/2(a)χ(a)
( ∑

m≥0

Ω̃1,m(ϕ)Ω1,m(f)
)
.

There is one series for each component in the Bruhat filtration. This is therefore
the analogue for real groups of Macdonald’s formula for spherical functions on
SL2(Qp). Of course, Macdonald’s formula is an exact formula, but here we are
given an asymptotic expansion. But, in fact, K-finite matrix coefficients satisfy
an analytic ordinary differential equation, and the formula for them becomes one
involving convergent series valid everywhere except for a = I, where the differential
equation has a (regular) singularity.

Macdonald’s formula, incidentally, is proven along similar lines in
[Casselman: 2009].

16. Whittaker functions. Whittaker functions for real groups also satisfy
a differential equation with regular singularities along the walls α = 0 for simple
roots α (although irregular at infinity in other directions). Suppose ψ to be a
non-degenerate character of n. If V is a finitely generated (g,K)-module, then its

Kostant module (following [Kostant: 1978]) is the space V̂ [n,ψ] of nψ-torsion
in the continuous dual of its canonical G-representation—that is to say continuous
linear functionals annihilated by some power of the U(n)-ideal generated by the

x − ψ(x) for x in n. We have a map from V̂ [n,ψ] ⊗ V , taking W ⊗ v to the series
expansion of 〈W,π(a)v〉 at a = 0. How can we fit this into a scheme such as we
have seen above?

I have only a rough idea of what to propose. In the p-adic case we have a
canonical map from VN to Vψ,N . In the real case, both the Jacquet module and
the Kostant module are very different as modules over U(n), but have similar
structures as modules over n. A Kostant module is finitely generated over n, and

if U = V̂ [n,ψ] we get a map from the Jacquet module of V to the n-completion. An
explicit formula for the expansion of Whittaker functions on the smooth principal
series would then follow from a calculation of the scalars defined by intertwining
operators on Whittaker models. This would not be all that different, conceptually,
from what happens for p-adic groups.
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1. The purpose of this note is exclusively propagandistic. As we have shown in [8],
the principle in the title has remarkable consequences for the harmonic analysis of
(real or p–adic) semi–simple groups. Precisely, when H ⊂ G are two such groups,
this principle imposes very strong constraints

(i) on the representations of H weakly contained in an irreducible represen-
tation πG of G

(ii) on the representations of G weakly contained in indGHπH , where πH is an
irreducible representation of H.

(All the representations considered are unitary).

In both cases, the given representation πH (or πG) has to be assumed to belong
to the set of representations singled out by Arthur [2], and which should be the
constituents of the spaces of automorphic forms (for the action of the local, p–adic
group). The Burger–Sarnak principle ([5], [6]) states that these sets are preserved
by induction or restriction. Thus “ABS” stands for Arthur, Burger and Sarnak.
The rigidity argument, which implies the constraints, was introduced in [8], § 3. It
is strongest when we consider unramified representations of G, or H. It involves
a trick called the (p, q)–trick in [9].

When (ii) is applied to πH = 1IH= trivial representation, the induced represen-
tation is simply

L2(G/H)

and the ABS principle gives significant a priori information on its spectral decom-
position. It is not complete, because Arthur’s conjectures are not proven. However
approximations of the conjectures are known (and rather precise ones will be, for
classical groups, when Arthur’s program ([2], Ch. 30) is completed). It is quite pos-
sible that these approximations may be useful to determine the spectrum, much
like an argument of Bernstein [4] was successfully used by Delorme [10]. Meanw-
hile, the principle gives much (conjectural) a priori information which should be
useful. We have tried to illustrate, by examples, how it sheds light on some known
or unknown cases, in particular when (G,H) is a symmetric pair as in the work of
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Delorme and others. We will not describe the consequences of the ABS principle
in case (i) as this was done in [9], and made explicit by Lapid, Rogawski [13] and
Venkatesh [16].

2. Arthur’s formalism can be studied in Arthur [2], and has been described, in the
terms needed here, in [8], Ch. 3 and [9]. We refer the reader to these papers for
more details.

Assume for simplicity G, H split over a local field F (which may be real, p–

adic or a function field). If Ĝ is the dual group Arthur considers homomorphisms
(“Arthur parameters”)

where
ψ : W ′

F × SL(2,C) −→ Ĝ
W ′

F = the Weil group WF if F = R or C
W ′

F = WF × SL(2,C) if F is p–adic .

The restriction of ψ to WF is supposed to be tempered. Unramified parameters
are of the form

ψ : WF × SL(2,C) −→ Ĝ

(thus, trivial on the “first” SL(2) in the p–adic case), and unramified as maps

WF −→ Ĝ. In the real or complex case, this means that the parameters factor as
sums of unramified characters of R× or C×.

The type of ψ is the map SL(2,C) −→ Ĝ, which defines uniquely a unipotent

conjugacy class U in Ĝ. (Parameters are, of course, considered up to conjugacy).
These parameters are expected to parametrize representations of G = G(F ) occur-
ring in L2(G(k)\G(A)) where k is a global field of which F is a completion, and
A = Ak. There will be some ambiguity (ψ will determine a set Π(ψ) of representa-
tions, expected however to be finite) and some overlap (Π(ψ) and Π(ψ′) will not,

in general, be disjoint). Let us denote by U(Ĝ) the set of unipotent orbits in the
dual group.

To each ψ we associate a unipotent orbit U ∈ U(Ĝ), determined by ψ|SL(2,C).
(Recall that unipotent orbits correspond uniquely to maps

SL(2,C) −→ Ĝ by the Jacobson–Morozov theorem). In particular :
• U = {1} if the parameter ψ is tempered
• U is unipotent regular if ψ|SL(2,C) is the “maximal” representation SL(2,C) −→

Ĝ. In this case, ψ sends W ′
F into Z(Ĝ) (the center) and the associated packet Π(ψ)

is an Abelian character of G – the trivial representation if ψ = 1 on W ′
F .

Recall that a Langlands parameter is simply

ϕ : W ′
F −→ Ĝ

(with semi–simple image). It is expected to parametrize an L–packet Π(ϕ) of re-
presentations ; this is known for F = R or C, and for any F if G = GL(n). To an
Arthur parameter we associate a Langlands parameter

(2.1) ϕψ : w �−→ ψ

(
w,

(
|w|1/2

|w|−1/2

))
∈ Ĝ

where w ∈ W ′
F and |w| is simply |w1| if w = (w1, s) ∈ WF ×SL(2,C). (The absolute

value is given by the reciprocity map WF −→ F×). The L–packet Π(ϕψ) should be
a subset of Π(ψ).
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Suppose ψ is unramified. Then ϕψ defines, by the known Langlands functoria-
lity in the unramified case, a unique unramified representation π(ψ), with Hecke
matrix

t(π(ψ)) = ψ

(
Frob,

(
q1/2

q−1/2

))
∈ Ĝ ;

q is the cardinality of the residue field, and Frob ∈ Gal(k/k) a Frobenius element.
(In the Archimedean case, π(ψ) is defined by the homomorphism (2.1) : WF −→
F× −→ Ĝ and the Langlands parametrization). As in [8], [9] we will assume :

Assumption 2.1.— For ψ unramified, π(ψ) is the unique unramified element of
Π(ψ).

This is true for SL(n). For F real or complex, it should be included in the
results of [1]. For G classical (i.e., orthogonal or symplectic) it follows from the
results announced by Arthur in [3], with some ambiguity if G = SO(2n) (split).

Now return to the situation (ii) of § 1. We have assumed G, H split, but we
will allow ourselves to relax this condition in the examples. In the split case we
take models of G, H over Z and we have maximal compact subgroups G(oF ),
H(oF ) — in the p–adic case. (This was implicit in Assumption 2.1 : “unramified”
means unramified w.r. to G(oF )). We can consider the unramified part L2

nr(G/H)
of L2(G/H), i.e., the subspace generated under G by

L2(KG\G/H)

where KG = G(oF ). In the real case, KG is the maximal compact subgroup.
By the Burger–Sarnak principle for induction (due to Burger, Li and Sarnak

[5] ; and proved in [8], § 3) the support of this representation in Ĝ belongs to the
automorphic spectrum [5] and therefore, conjecturally, to the set of representations
parametrized by (unramified) Arthur parameters. In particular, to each constituent
(possibly continuous, of course) of L2

nr corresponds a unipotent orbit.

Principle 2.2.— The constituents of L2
nr are associated to a unique unipotent orbit

U = IndGH(UH,reg) ⊂ Ĝ.

Here UH,reg ⊂ Ĥ is the regular orbit, and the symbol IndGH will be explained
below.

Note that this is a rather strong contraint. For instance, if one tempered re-
presentation belongs to the support of L2

nr, this whole representation is tempered.
We sketch a “proof” assuming (the global variant of) Arthur’s conjectures.

(For more details see [9]). We can choose a global field k such that F , F ′ are two
completions of k, say kv and kw.

By Burger–Li–Sarnak (extended in [8], § 3 to the S–arithmetic case), the sup-
port of

ind
G(kv)×G(kw)
H(kv)×H(kw)1I = ind

G(kv)
H(kv

1I⊗ ind
G(kw)
H(kw)1I

is composed of automorphic representations. Assume πv ⊗ πw is irreducible in the
support. If they are unramified, they are associated to the same orbit. But this
applies to πv ⊗ πw and π′

v ⊗ πw. Thus, if πv and π′
v occur, they belong to the same

orbit. (This is the “p, q–trick”).
We note that in many cases the Principle is (approximately) true. For instance,

if G = SL(n), Arthur’s partition of the automorphic spectrum is a theorem, due
to Mœglin–Waldspurger and Luo, Rudnick and Sarnak [8], § 3. (It is not known
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that automorphic representations are of the form (2.1) with ψ|W ′
F

tempered, but
it is true modulo the “approximation to the Ramanujan Conjecture”. At any rate,
the orbit U is well–defined). Interpreted in this fashion, the Principle is a theorem
– with the proof given above. When Arthur’s results announced in [3], Chapter 30
are complete, this will apply to classical groups.

What happens if we induce another representation of H ? (Of course, this is
less interesting for the analysis on homogeneous spaces. . .). If πH is unramified, and
of Arthur’s type, consider

I = indGHπH , and Inr ⊂ I .

Principle 2.3.— The constituents of Inr are associated to a unique unipotent orbit
U := IndGH(UH) where UH is the orbit associated to πH .

In [9] we shew that these considerations, for restriction, gave a natural map

Res : U(Ĝ) −→ U(Ĥ) between unipotent orbits. Here we get an induction map

Ind : U(Ĥ) −→ U(Ĝ). It will have similar properties, e.g.

IndGH ◦ IndHH′ = IndGH′ .

However, one of the most interesting parts of [9], i.e. the multiplication

U(Ĝ)× U(Ĝ) −→ U(Ĝ)

associated to the diagonal embedding G ↪→ G × G, is here lacking : for H = G ⊂
G×G we should consider

indG×G
G (πG) .

If πG = 1IG – the “largest” representation from the spectral point of view – this
is tempered, thus

Ind(Ureg,G) = 1G×G (trivial orbit) .

By Lemma 1 of [16], this implies that the induced representation from any
unitary representation is tempered. Thus the “comultiplication” is trivial.

An explicit description of the (conjectural) map IndGH is unknown. For G =
GL(n) and H = M a Levi subgroup, the map has been computed by Lapid–

Rogawski [13] and [16]. In this case M̂ is a Levi subgroup of Ĝ.

For instance, assume M = GL(n1) × GL(n2) ⊂ G, so M̂ = GL(n1,C) ×
GL(n2,C) ⊂ Ĝ. A unipotent orbit in GL(n,C) is given by a partition

n = m1 + · · ·+mk ,

the trivial representation (minimal orbit) being associated to the partition n = n.
If (mi), (m

′
j) are partitions of n1 and n2, the orbit associated to

indGM (π),

where π is a representation of GL(n1)×GL(n2) of types (mi,m
′
j), has type

< mi + n1 − n , m′
j + n2 − n >n

where, for a set of integers ak (here indexed by {i}∪ {j}), the partition < ak >n is
obtained by keeping the integers ≥ 2 and completing by 1’s so as to get a partition
of n.

For instance, if π is trivial (so we are decomposing L2(G/M)) we get the type

< 2n1 − n , 2n2 − n >n
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which is tempered (equal to (1, 1, . . . , 1)) if n1 = n2 = n
2 . Similarly, if there are r

blocks we get < 2ni − n > which is the orbit {1} unless one of the ni’s is >
n
2 .

In particular this induction is not the Lusztig–Spaltenstein induction of orbits,
which sends the regular orbit (associated to the trivial representation) to the regular
orbit [14]. Note that if r = 2, G/M is a “reductive symmetric space” in the sense
of [10], [15], i.e., M is the set of fixed points of an involution.

What can we say about the whole spectrum of I = indGH(1IH) ? Assume we

have determined the orbit U ⊂ Ĝ in Principle 2.3. Thus we have a representation

SL(2,C) −→ Ĝ. (Of course there are unramified representations in I since there
are K–invariant functions on G/H). If we apply the (p, q)- trick again (taking πw

unramified) we see that :

Principle 2.4.— Any representation π in the support of L2(G/H) belongs to an
Arthur packet Π(ψ), of type U .

In terms of Langlands parameters, it is expected that Π(ψ) contains Π(ϕψ)
(Langlands packet) as well as other representations that are “smaller” from the
spectral point of view, that is, more tempered. If they belong to a Π(ϕψ′), for
instance, the unipotent orbit of ψ′ should be smaller. (I do not know if, for instance,
the orbit U(ψ′) should be in the closure of U(ψ)).

3. Queries and examples

We first recall that the arguments in section 2 assumed G split, or at least un-
ramified, at the local prime used to determine the type. If we consider, for instance,
a group over R that is not quasi-split, the spherical representations of G occurring
in L2(G/H) can be quite different, cf. Faraut [11] for SO(n, 1). They can probably
belong to different Arthur packets Π(ψ). This restriction should be borne in mind.
(I thank N. Bergeron for pointing this out to me.)

3.1. If H ⊂ G is the set of fixed points of an involution, L2(G/H) has been
decomposed for F archimedean by Delorme, and van den Ban and Schlichtkrull
[10], [15]. Moreover the Arthur packets are known [1]. It would be interesting to
check Principles 2.2 and 2.4 in this case.

3.2. We consider now a case which has been treated by P. Harinck [12]. Here
G is a real group, and she considers L2(G(C)/G(R)). She determined the spectral
decomposition – of course this is now a special case of the results of Delorme and
van den Ban and Schlichtkrull. In particular the spectrum is tempered.

From our point of view this result is obvious – assuming the conjectural argu-
ments, of course. For we can choose a real quadratic extension F/Q and a quadratic
extension E/F , complex at one Archimedean prime v of F and split at the other
real prime v′, and then a group G over F giving G by extension of scalars at the
prime v, and split at the prime v′. Call G′ the split form of G.

Then G(E∞) = G(C)×(G′(R)×G′(R)), with subgroup H = G(F∞) = G(R)×
G′(R), the embedding being the obvious one. The (v, v′)–trick says that the types of
L2(G(C)/G(R)), and of L2(G′(R)×G′(R)/G′(R)) – diagonal embedding – coincide.
But the second space has tempered support (Harish–Chandra) ; therefore so does
the first. (Cf. [16], § 3.7.)

In fact this last result also follows from these principles. Assume G is a group
over R. Choose F , G as before such that G(Fv) = G(R) and U = G(Fv′) is
compact. (There may be an obstruction to doing this ; if necessary use more primes
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v′). Then choose E/F as above, inverting the roles of v and v′. At the prime v,
we have L2(G(R)×G(R)/G(R)) ; at the prime v′, L2(G(C)/U) : by the spherical
theory this is tempered. In both cases, we have ensured that the group is split at
the controlling prime.

The argument of 3.2 will of course apply in the p–adic case. There is no need
to consider a quadratic extension :

Conjecture 3.1.— Assume E/F is a finite extension of local fields, and G a
group over F . Then

L2(G(E)/G(F ))

is tempered.

Indeed, the (p, q)- trick reduces us to L2(G(F )d/G(F )) (diagonal embedding),

isomorphic under G(F )d−1 (any (d − 1) factors) to
⊗d−1

L2(G(F ), and this is
tempered. This implies that the representation of G(F )d is tempered.

3.3. We now consider the case of symplectic groups, first over R. Assume
G = Sp(g), the symplectic group given by the alternating form of matrix

J =

(
−1g

1g

)
.

The centralizer of the matrix

I− =

(
1g

−1g

)
∈ G

is the maximal compact subgroup U(g), embedded in G by

A+ i B �−→
(

A B
−B A

)
(A+ i B ∈ U(g)) .

The centralizer of the matrix

I+ =

(
1g

1g

)
∈ GSp(g)

is GL(n,R) embedded in G by

C ∈ GL(n,R) �−→
(

A B
B A

)
, where

{
A−B = C
A+B =t C−1 .

It is a Levi subgroup for a maximal parabolic subgroup of G.
Assume that k is a real quadratic field and that ε ∈ k is an element that is

positive at one Archimedean prime ∞1 and negative at the other prime ∞2. Then(
1

−ε

)
(blocks of type n) belongs to GSp(g, k) ; its square is central, so it

defines an involution of Sp(g, k), with fixed points U(g) ⊂ Sp(g,R) at the prime
∞1 and GL(g,R) at the prime ∞2. Therefore we see – and this is confirmed by the
results in [10], [15] – that L2(G/M) is tempered for G = Sp(g,R) and M the Levi
subgroup of type GL(g).

If v is a finite prime of k, we can now use the “p, q”–trick (here “v,∞2”). So
we are naturally led to 1 :

1. This was pointed out by Akshay Venkatesh.
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Conjecture 3.2.— If F is a p–adic field,

L2(Sp(g, F )/GL(g, F )) is tempered .

The same argument will apply - at least for G quasi-split - when a Levi sub-
group of a maximal parabolic subgroup has a “form” – similarly to the previous
construction for Sp(g) – that is a maximal compact subgroup. For instance, it will
apply to the Levi subgroup M of a maximal parabolic subgroup of G/F such that
some form of G over R is Hermitian symmetric, the maximal compact subgroup
being M after some algebraic extension of the ground field k.

3.4. We conclude with more musings.

3.4.1. We refer to [9] for the similar questions concerning restriction. For
G ⊂ G×G (diagonal embedding), a very geometric construction of the restriction
map

Res : U(Ĝ)× U(Ĝ) −→ U(Ĝ)

(called product in [9]) was provided by Waldspurger [9] : Conjecture 4.2. Of course,
this is conjectural. In many cases his construction can be extended to

Res : U(Ĝ) −→ U(Ĥ)

for H ⊂ G. It would be interesting, of course, to obtain a conjectural, geometric
description of the induction map.

3.4.2. In the case of restriction, very strong constraints are given by the ex-
ponents of representations in the sense of Harish–Chandra and Casselman [9], § 4.
The behaviour of exponents is, in fact, encoded in Waldspurger’s geometric “pro-
jection”. How can one control the exponents of induced representations ? Of course,
partial answers are given by [13], [16].

3.4.3. We end this survey with, perhaps, the must interesting question. Assume
(G,H) is a symmetric pair (G/H is a “reductive” symmetric space, in the accepted
terminology). In the real case, a crucial element in Delorme’s determination of
L2(G/H) is an a priori estimate on the H–invariant distributions on a unitary
representation π of G. This is given by a theorem of Bernstein [4], which implies
that the distribution α on the space of π must be “w–tempered”, for a weight w
on G/H which is explicit ([7], Appendix C).

No doubt such a weight can be defined in the p–adic case ; Delorme and his
co–workers (Ph. Blanc, V. Sécherre) are making impressive progress. On the other

hand, from our point of view, we have the unipotent orbit UG = IndGH(Ureg
H ) –

of course, unknown in general, but which can actually be computed by the “p, q–
trick” and comparison with the known real case. There should be a natural relation
between the weight and the unipotent orbit.
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Orbital Integrals and Distributions

L. Clozel and J.-P. Labesse

A Freydoon Shahidi, en témoignage d’amitié

The aim of this note is to give a detailed proof of a generalization of a result in
[CL]. We take this opportunity to correct the statement and the proof of theorem
A.1.1 in [CL].

1. Twisted spaces and centralizers

When dealing with the twisted case we shall use the language of twisted spaces
instead of twisted orbital integrals; for the basic properties of twisted spaces we
refer the reader to [Lab3] sections I and II.

Consider a real connected reductive group G and θ an automorphism of G of
finite order defined over R. We identify G with the group of its complex points.
We introduce the twisted algebraic space

L = G� θ .

Recall that semisimple elements in L are elements that induce semisimple auto-
morphisms of G. Regular semisimple elements are the δ ∈ L whose connected
centralizer Gδ – i.e. the neutral connected component of the centralizer Gδ – is
a torus. For such an element the stable centralizer Iδ (in the sense of [Lab3] sec-
tion II.1) is an abelian group. More precisely Gδ is a torus whose centralizer is a
maximal torus T and

Iδ = Tδ

the centralizer of δ in T. Strongly regular elements are semisimple elements δ whose
centralizer Gδ is commutative; in such a case Iδ = Tδ = Gδ.

In the non-twisted case or in the base change situation Tδ is connected but
this is not the case in general. Nevertheless the possible non-connectivity is mild:
in fact the stable centralizer of a semi-simple element δ is quasi-connected (in the
sense of [Lab2]) and in particular

Iδ = I0δ .Zδ

where I0δ = Gδ is the neutral component of Iδ and Zδ is the centralizer of δ in the
center ZG of G. This is lemma II.1.4 of [Lab3].
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Lemma 1.1. Let δ be a regular semisimple element in L. Then Iδ = Itδ for
t ∈ Iδ small enough.

Proof: This follows from the above characterization of the stable centralizer for
regular elements.

�

2. Orbital integrals and measures

Let G (resp. L, etc.) be the set of real points of G (resp. L, etc.) and let K
be a maximal compact subgroup in G which is θ-invariant. Let g = k ⊕ p be the
corresponding Cartan decomposition of the Lie algebra g of G. We introduce the
twisted real spaces

L = G� θ and M = K � θ

We fix a Haar measure on G and on K. This defines invariant measures on L and
M . This gives us an isomorphism between the space of distributions and the space
of generalized functions on L.

Let μ be the measure supported on M and defined by the product of our
invariant measure and a smooth function χ on M . By abuse of notation we shall
again denote by μ the corresponding generalized function. For any smooth function
ϕ on L we have

μ(ϕ) =

∫
L

ϕ(x) dμ(x) =

∫
M

ϕ(m)χ(m) dm

Viewed as a distribution on L it has a wave front set W (μ) ⊂ T ∗(L) (cf. [Hör] and
[GS]) whose fiber Wδ(μ) above δ ∈ L is either the empty set or, if it is non-empty,
then δ belongs to M ⊂ L and the fiber is the set of non-zero cotangent vectors
ξ ∈ T ∗

δ (L) orthogonal to the tangent space of M at δ.
We shall make the following assumption:

Assumption 2.1. Any δ ∈ M regular semisimple in L has a stable centralizer
Iδ which is a compact abelian group contained in K.

When θ = 1 this is equivalent to the condition rank G = rank K and more
generally this is a generalization of Harish-Chandra’s condition that guarantees the
existence of L-discrete series (also called θ-discrete series).

Let δ ∈ L be a regular semisimple element. Denote by iδ the Lie algebra of Iδ.
If δ ∈ M and the assumption 2.1 is satisfied we introduce

JG(δ) = det(1−Ad (δ)|g/iδ)

and

JK(δ) = det(1−Ad (δ)|k/iδ)
We denote by dġ (resp. dk̇) the quotient measure on Iδ\G (resp. Iδ\K) for some
choice of a Haar measure on Iδ. The orbital integral of a smooth compactly sup-
ported function ϕ is defined by

Oδ(ϕ) =

∫
Iδ\G

ϕ(g−1δ g) dġ
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Theorem 2.2. Under assumption 2.1 the orbital integral Oδ(μ) of μ for δ is
well-defined and is given by

Oδ(μ) =
JK(δ1)

JG(δ1)

∫
Iδ\K

χ(k−1δ1k) dk̇

if δ has a conjugate δ1 in M . When χ is invariant by K-conjugacy we have simply

Oδ(μ) =
JK(δ1)

JG(δ1)
χ(δ1) vol(Iδ1\K)

The orbital integral vanishes otherwise.

Proof: Let ϕ be a smooth compactly supported function and let dx be the measure
on L defined by the Haar measure on G. The product is a smooth compactly
supported density. Let δ ∈ L be regular semisimple. The orbital integral of ϕ on
the orbit of δ can be seen as the integral of the generalized function σδ defined by
the orbit Sδ of δ against the smooth density ϕ(x)dx. We denote by W (σδ) its wave
front set. Now observe that W (σδ) is transverse to W (μ). By this we mean that
for any ξ1 ∈ W (μ) and any ξ2 ∈ W (σδ) above the same point one has

ξ1 + ξ2 �= 0 .

In fact if the intersection of the orbit Sδ with M is non-empty we may assume
δ ∈ M ; we shall show that the tangent spaces to the two submanifolds M and Sδ

at δ generate the full tangent space and hence their orthogonal spaces minus zero,
which are the wave front sets, are transverse. For δ ∈ M the tangent space to Sδ

at δ, is the right translation by δ of

sδ = (1−Ad (δ))g

and by assumption 2.1
iδ = ker(1−Ad (δ))

is contained in k. Since δ is semisimple we then have

g = iδ ⊕ sδ = k+ sδ .

Recall that a generalized function can be integrated against a compactly supported
distribution provided their wave front sets are transverse (see [Hör] Th. 8.2.10
or [GS] Chap. VI, Proposition 3.10, p.335). This shows that the orbital integral
Oδ(μ) makes sense. We now want to compute it. Let α be a smooth positive and
compactly supported function supported on a small neighbourhood of the identity
in G with integral 1. By convolution μ becomes a smooth density on L:

α ∗ μ(x) = fα(x)dx .

The above given references state that the product of distributions is continuous and
hence

(∗) Oδ(μ) = lim
α

∫
Iδ\G

fα(x
−1δ x) dẋ

when α converges to the Dirac measure at the origin in G. Let ϕ = ϕ0ψ be a
function on L that is the product of a smooth function ϕ0 invariant under conjugacy
and a function ψ smooth with compact support equal to 1 on a neighbourhood of
K. Provided the support of α is small enough, ψ = 1 on the support of fα. The
map

Iδ\G× Iδ → L : (x, t) �→ x−1tδ x
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is a local diffeomorphism near the identity in Iδ with Jacobian JG(tδ). Finally, if
δ is strongly regular and if t is restricted to a sufficiently small neighbourhood of
1 in Iδ, the map is one to one onto its image: in fact for t ∈ Iδ small enough tδ is
also strongly regular and the centralizer Gδ of a strongly regular element equals its
stable centralizer Iδ. Therefore, provided ϕ0 has a small enough support near the
orbit of δ, assumed for a while to be strongly regular,

∫
L

ϕ(x) fα(x) dx =

∫
Iδ

JG(tδ)ϕ0(tδ)

(∫
Iδ\G

fα(x
−1tδx) dx

)
dt .

But, similarly, ∫
L

ϕ(x) dμ(x) =

∫
M

ϕ(m)χ(m) dm =

∫
Iδ

JK(tδ)ϕ0(tδ)

(∫
Iδ\K

χ(k−1tδk) dk

)
dt .

Now return to formula (∗). It remains true for δ replaced by tδ with t sufficently
small in Iδ. Denote the corresponding generalized function by σtδ. Then fα (for
α converging to the Dirac measure at the origin) and σtδ (for varying t) are both
continuous (as follows from [Hör, Thm. 8.2.10] and [S, p. 110]), and since we are
integrating over a compact set in t we see that

lim
α

∫
Iδ

JG(tδ)ϕ0(tδ)Otδ(fα) dt =

∫
Iδ

JG(tδ)ϕ0(tδ) lim
α

Otδ(fα) dt

This implies

JG(δ) lim
α

∫
Iδ\G

fα(x
−1δx) dx = JK(δ)

∫
Iδ\K

χ(k−1tδk) dk

which proves the theorem for strongly regular elements. Now, using 1.1, we see
that t �→ Otδ is smooth for t small enough and by continuity the result extends to
all regular elements.

�

3. Lefschetz function

Let G+ = G � 〈θ〉, where 〈θ〉 denotes the finite group generated by θ. Let F
be a finite dimensional irreducible representation supposed θ-stable with a chosen
extension, again denoted by F , to the semidirect product G+. Consider π, an
admissible irreducible representation of G+; the Lefschetz number is by definition

Lef(π, F ) =
∑

(−1)i trace (θ | Hi(g, k;π ⊗ F ) .

Recall that Lef(π, F ) = 0 unless the restriction of π to G remains irrreducible
and λπ = λF̌ , where λπ and λF̌ denote the infinitesimal characters of π and F̌
respectively.

Following [Lab1], consider μF , the measure supported on M that gives the
Lefschetz number for F :

traceπ(μF ) = Lef(π, F ) .
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This measure is defined by the function on M

χF (δ) =
∑
i

(−1)i trace (δ | ∧i
p⊗ F ) = det(1− δ | p) traceF (δ)

and the normalized Haar measure on K.

Lemma 3.1. Either the measure μF is zero or the assumption 2.1 is satisfied.

Proof: Assume δ is regular. Then χF (δ) is zero whenever the Lie algebra iδ of
the centralizer of δ projects on p non-trivially. This shows that either the measure
μF is zero or the assumption 2.1 is satisfied at the level of Lie algebras: iδ ⊂ k.
But this implies that Iδ is a compact abelian group. Recall that the centralizer
of the compact torus I0δ in G is a maximal torus T and hence U = T ∩ K is a
maximal torus in K. Clearly T is stable by the Cartan involution; this implies that
its maximal compact subgroup is contained in K. In particular Iδ ⊂ K.

�

By definition Lefschetz functions are smooth compactly supported densities on
L such that for any representation π of G+ one has

traceπ(φF ) = Lef(π, F ) .

As shown in [Lab1] one obtains Lefschetz functions φF for F by regularization via
Arthur’s multipliers of the measure μF .

Lemma 3.2. Let α be an Arthur multiplier such that α̂(λF̌ ) = 1. The Lefschetz
function defined by μF and α,

φF = μF,α

depends continuously, as a distribution, on α and has limit μF , in the sense of
distributions, when α tends to the Dirac measure at the origin. Moreover its orbital
integrals are independent of α.

Proof: The value of φF against a test function ϕ is given by the integral over G
of the product of the functions φ′

F (x) = φF (x� θ) and ϕ′(x) = ϕ(x� θ); it can be
evaluated by the Plancherel formula∫

L

φF (y)ϕ(y) dy =

∫
G

φ′
F (x)ϕ

′(x) dx =

∫
Ĝ

trace (π(φ′
F )π(ϕ

′)∗) dπ

but since, by definition of φF ,

π(φ′
F ) = α̂(λπ)π(μ

′
F )

the continuity follows by dominated convergence. We can view φF as a function
on G+; as such its trace is non-zero only on the representations of G+ irreducible
under G; on such a representation its trace is

α̂(λπ) traceπ(μF ) .

This is non-zero only if λπ = λF̌ (by the cohomological property of μF ) and then
it equals traceπ(μF ). Hence, by the density theorem of Kottwitz and Rogawski
[KR], the orbital integrals of φF are independent of α. (Note that the assumptions
of [KR] are now satisfied, thanks to Delorme and Mezo [DM]).

�
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Proposition 3.3. Assume that the Lefschetz numbers are not identically zero.
The orbital integrals of a Lefschetz function are given for regular semisimple ele-
ments by ∫

Iδ\G
φF (x

−1δx) dx = vol(Iδ1\K) traceF (δ1)

if δ has a conjugate δ1 in M ; the orbital integral vanishes otherwise.

Proof: According to 3.2, its orbital integrals are independent of the regularization
via Arthur’s multipliers, and when the multiplier tends to the Dirac measure at the
origin the distribution defined by the Lefschetz function tends to μF . We have

χF (δ) =
JG(δ)

JK(δ)
traceF (δ)

Thanks to 3.1 we may appeal to 2.2 and we get

Oδ(μF ) = vol(Iδ\K) traceF (δ) .

Now the continuity of the product of distributions yields the proposition.
�

4. Erratum and complements to [CL]

We computed in [CL, theorem A.1.1] the semi-simple orbital integrals of Lef-
schetz functions when F is the trivial representation of G+. Moreover we assumed
that the stable centralizers were connected. The proof was hasty and the result
incorrect: there is a sign error in the formula given for singular elements. Here we
shall give the corrected statement, in its natural generality: we make no connect-
edness assumption and we allow arbitrary coefficients.

Recall that, for a quasi-connected reductive group I over R [Lab2] with maximal
compact subgroup KI

q(I) =
1

2
dim(I/KI)

is an integer when I has discrete series. In such a case we choose the Haar measure di
such that the formal degree of the discrete series with trivial infinitesimal character
is 1. Following section A.1 of [CL], this defines an Euler-Poincaré function (i.e. a
Lefschetz function for the trivial automorphism) on I which we denote by f I

ep. We
have

f I
ep(1) = (−1)q(I) d(I)

where d(I) is the order of the quotient WC/WR of the complex / real Weyl group
for a compact Cartan subgroup of I0. One can use Kottwitz signs [Kot] to express

(−1)q(I). Denote by I
0
the compact inner form of I0. Then

(−1)q(I) = e(I0)e(I
0
) .

We will write e(I) = e(I0) and e(I) = e(I
0
). We refer to [LBC,§ 2.7] for the

definition of the stable orbital integrals. Let T ⊂ K ⊂ G be a maximal compact
torus and let

d(G) = #ker[H1(R, T ) → H1(R, G)] .

If G has discrete series, this coincides with the previous definition.
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Theorem 4.1. Assume δ is semisimple with stable centralizer Iδ. Then

(i) Oδ(φF ) = 0

if Iδ does not have a discrete series;

(ii) Oδ(φF ) = e(Iδ)e(Iδ) d(Iδ) traceF (δ) = f Iδ
ep(1) traceF (δ)

if Iδ has discrete series and is endowed with the measure di. The stable orbital
integral of φF is given by

(iii) SOδ(φF ) = 0

if Iδ does not have discrete series;

(iv) SOδ(φF ) = e(Iδ) d(G) traceF (δ)

otherwise.

Proof: For δ regular in M we have seen in 3.3 that

Oδ(φF ) = traceF (δ)

where we use the normalized measure on the compact group Iδ. The descent argu-
ment in [CL, p. 122] can be copied; for t close to 1 in Iδ, δ being semi-simple and
tδ regular, we have

OIδ
t (f Iδ

ep) = 1

(for instance, by theorem 2.2 applied to Iδ, with a simple extension to the quasi-
connected case), whence

Otδ(φF ) = traceF (tδ) = OIδ
t (f Iδ

ep Θδ,F )

where

Θδ,F (t) = traceF (tδ)

is invariant on Iδ. We deduce that

Oδ(φF ) = f Iδ
ep(1)Θδ,F (1) .

The same argument applies to the stabilization, the rational character traceF being
invariant under conjugation by G. The vanishing statements follow similarly from
3.3.

�

Our theorem 4.1 above is essentially theorem A.1.1 in [CL]. But there are sign
errors in [CL]. First, on page 120 line 14 and 16 the sign e(Iδ) is omitted; this has
no bearing on the considerations preceding the theorem. However Kottwitz’s sign
e(Iδ) is again repeatedly omitted on page 122 line −8 and −6 and 123 line 6, which
introduces the sign mistakes in the final statement.

5. The unitary case

Finally we will give an explicit statement in the case of base change for unitary
groups, the case used in [CL]. Let H = U(p, q), G = GL(n,C) (n = p+ q) viewed
as a real Lie group and let θ be the automorphism of G whose group of fixed points
is H. Let E be an irreducible algebraic representation of the complex group G and
consider F = E ⊗ E, where G acts by

g(e1 ⊗ e2) = ge1 ⊗ θ(g)e2
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One can extend F to G+ by letting θ act by e1 ⊗ e2 �→ e2 ⊗ e1. For g ∈ G define
Ng = gθ(g). Then, for δ = g � θ ∈ L one has

δ2 = γ � 1 with γ = Ng

and

traceF (δ) = traceE(γ)

as follows from [Clo1]. Take K = U(n) ⊂ G; then δ ∈ M = K � θ is regular
semi-simple if and only if γ is regular semi-simple in K, and the stable centralizer
of δ is the connected component of the centralizer of γ in K.

Theorem 5.1. Let δ = g � θ be semi-simple with stable centralizer Iδ. Then:

(i) Oδ(φF ) = 0

if Iδ does not have a discrete series;

(ii) Oδ(φF ) = e(Iδ)e(Iδ) d(Iδ) traceE(γ)

if Iδ has discrete series and is endowed with the measure di. The stable orbital
integral of φF is given by

(iii) SOδ(φF ) = 0

if Iδ does not have discrete series

(iv) SOδ(φF ) = e(Iδ) d(G) traceE(γ)

otherwise. In this case
d(G) = 2n

This shows that the results of [CL], in particular the Theorem A.3.1, extend
with similar proof to the case of an arbitrary local system.

Acknowledgement. – We would like to thank Richard Taylor for pointing out
the inadequacy of our proof in [CL] of the main result of this note.
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réels, Ann. Sci. E.N.S. 4e série 15, (1982), pp. 45-115.
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Functoriality for the Quasisplit Classical Groups

J.W. Cogdell, I.I. Piatetski-Shapiro, and F. Shahidi

Functoriality is one of the most central questions in the theory of automorphic
forms and representations [3, 6, 31, 32]. Locally and globally, it is a manifesta-
tion of Langlands’ formulation of a non-abelian class field theory. Now known as
the Langlands correspondence, this formulation of class field theory can be viewed
as giving an arithmetic parametrization of local or automorphic representations
in terms of admissible homomorphisms of (an appropriate analogue) of the Weil-
Deligne group into the L-group. When this conjectural parametrization is combined
with natural homomorphisms of the L-groups it predicts a transfer or lifting of local
or automorphic representations of two reductive algebraic groups. As a purely au-
tomorphic expression of a global non-abelian class field theory, global functoriality
is inherently an arithmetic process.

Global functoriality from a quasisplit classical group G to GLN associated to
a natural map on the L-groups has been established in many cases. We recall the
main cases:

(i) For G a split classical group with the natural embedding of the L-groups,
this was established in [10] and [11].

(ii) For G a quasisplit unitary group with the L-homomorphism associated to
stable base change on the L-groups, this was established in [29],[26], and
[27].

(iii) For G a split general spin group, this was established in [5].

In this paper we consider simultaneously the cases of quasisplit classical groups G.
This includes all the cases mentioned in (i) and (ii) above as well as the new case
of the quasisplit even special orthogonal groups. Similar methods should work for
the quasisplit GSpin groups, and this will be pursued by Asgari and Shahidi as a
sequel to [5].

As with the previous results above, our method combines the Converse Theorem
for GLN with the Langlands-Shahidi method for controlling the L-functions of the
quasisplit classical groups. One of the crucial ingredients in this method is the
use of the “stability of local γ–factors” to finesse the lack of the Local Langlands
Conjecture at the ramified non-archimedean places. The advance that lets us now
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handle the quasisplit orthogonal groups is our general stability result in [14]. In
the past, the stability results were established on a case-by-case basis as needed.
The general stability result in [14] now lets us give a uniform treatment of all
quasisplit classical groups. As before, once we have established the existence of
functoriality for the quasisplit classical groups, the descent results of Ginzburg,
Rallis, and Soudry [16, 42] then give the complete characterization of the image
of functoriality in these cases.

This paper can be considered as a survey of past results, an exposition of how
to apply the general stability result of [14], and the first proof of global functoriality
for the quasisplit even orthogonal groups. We have included an appendix containing
specific calculations for the even quasisplit orthogonal groups. We will return to
local applications of these liftings in a subsequent paper.

Finally, we would like to thank the referee who helped us improve the readability
of the paper.

Dedication. The first two authors would like to take this opportunity to dedicate
their contributions to this paper to their friend and coauthor, Freydoon Shahidi.
The collaboration with Freydoon has been a high point in our careers and we feel
it is fitting for a paper reflecting this to appear in this volume in his honor.

1. Functoriality for quasisplit classical groups

Let k be a number field and let Ak be its ring of adeles. We fix a non-trivial
continuous additive character ψ of Ak which is trivial on the principal adeles k.
We will let Gn denote a quasisplit classical group of rank n defined over k. More
specifically, we will consider the following cases.

(i) Odd orthogonal groups. In this case Gn = SO2n+1, the split special or-
thogonal group in 2n + 1 variables defined over k, i.e., type Bn. The connected

component of the L-group of Gn is LG
0
n = Ĝn = Sp2n(C) while the L-group is the

direct product LGn = Sp2n(C)×Wk.

(ii) Even orthogonal groups. In this case either (a) Gn = SO2n, the split
special orthogonal group in 2n variables defined over k, type Dn, or (b) Gn = SO∗

2n

is the quasisplit special orthogonal group associated to a quadratic extension E/k,
i.e, type 2Dn. In either case, the connected component of the L-group of Gn is
LG

0
n = Ĝn = SO2n(C). In the split case (a), the L-group of the product LGn =

SO2n(C) × Wk, while in the quasisplit case (b), the L-group is the semi-direct
product LGn = SO2n(C) � Wk where the Weil group acts through the quotient
Wk/WE � Gal(E/k) which gives the Galois structure of SO∗

2n. We will need to
make this Galois action more explicit. Let O2n(C) denote the even orthogonal
group of size 2n. Then we have Gal(E/k) � O2n(C)/SO2n(C). Conjugation by
an element of O2n(C) of negative determinant gives an outer automorphism of
SO2n(C) corresponding to the diagram automorphism which exchanges the roots
αn and αn−1 in Bourbaki’s numbering [7] or the numbering in Shahidi [38]. So if
we let h′ ∈ O2n(C) be any element of negative determinant then for σ ∈ Gal(E/k)
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the non-trivial element of the Galois group the action of σ on LG
0
n is

σ(g) = (h′)−1gh′.

We will discuss this case in more detail below when we discuss the relevant L-
homomorphism and in the appendix (Section 7.1). (Note that when n = 4 except
for the SO∗

8 defined by a quadratic extension the other non-split quasisplit forms
of D4 are not considered to be classical groups.)

(iii) Symplectic groups. In this case Gn = Sp2n, the symplectic group in 2n
variables defined over k, type Cn. The connected component of the L-group of Gn

is LG
0
n = Ĝn = SO2n+1(C) and the L-group is the product LG = SO2n+1(C)×Wk.

(iv) Unitary groups. In this case either (a) Gn = U2n is the even quasisplit
unitary group defined with respect to a quadratic extension E/k or (b) Gn = U2n+1

is the odd quasisplit unitary group defined with respect to a quadratic extension
E/k. Both are of type 2An. In case (a) the connected component of the L-group

is LG
0
n = Ĝn = GL2n(C) and the L-group is the semi-direct product LGn =

GL2n(C)�Wk where the Weil group acts through the quotientWk/WE � Gal(E/k)
which gives the Galois structure of U2n. In case (b) the connected component of

the Langlands dual group is LG
0
n = GL2n+1(C) and the L-group is the semi-direct

product LGn = GL2n+1(C)�Wk where the Weil groups acts through the quotient
Wk/WE � Gal(E/k) which gives the Galois structure of U2n+1. We will need to
make precise the Galois action. Following [26, 27] we let

Jn =

⎛
⎝ 1

. .
.

1

⎞
⎠ and set J ′

n =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
Jn

−Jn

)
in case (a)

⎛
⎜⎝

Jn

1

−Jn

⎞
⎟⎠ in case (b)

so that Gn = U(J ′
n). Then if σ is the non-trivial element in Gal(E/k) then the

action of σ on LG
0
n is

σ(g) = (J ′
n)

−1tg−1J ′
n,

the outer automorphism of LGn conjugated by the form.

In each of these cases let δ1 denote the first fundamental representation, or
standard representation, of the connected component of the L-group. This is the

defining representation of Ĝn on the appropriate CN . As can be seen from the

description of LG
0
n above, in each case either N = 2n or N = 2n+1. Associated to

this representation is a natural embedding of LG
0
n into GLN (C) = LGL

0
N . There is

an associated standard representation of the L-group LGn on either CN or CN×CN

which gives rise to a natural L-homomorphism ι which we now describe.

In the case of the split classical groups, the standard representation of the L-
group is still on CN and is obtained by extending δ1 to be trivial on the Weil group.
This representation then determines an L-homomorphism ι : LGn ↪→ LGLN . By
Langlands’ principle of functoriality [3, 6, 9], associated to these L-homomorphisms
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there should be a transfer or lift of automorphic representations from Gn(Ak) to
GLN (Ak). These were the cases treated in [10, 11].

In the case of the quasisplit even orthogonal group, we extend the first fun-

damental representation of LG
0
to an embedding of the L-group in the natural

way, to obtain ι : LGn ↪→ LGLN . So in this case we again expect a transfer from
SO∗

2n(Ak) to GL2n(Ak). Let us elaborate on this embedding, since although well
known it is not all together straightforward. It is related to the theory of twisted
endoscopy and can be found in [1, 2, 4]. The first fundamental representation gives
an embedding of SO2n(C) ↪→ GLN (C) with N = 2n. In fact this extends to an
embedding of O2n(C) ↪→ GLN (C). We then choose an L-homomorphism

ξ : Wk → O2n(C)×Wk ⊂ GLN (C)×Wk

which induces the isomorphism

Wk/WE → Gal(E/k) � O2n(C)/SO2n(C)

that is, such that ξ factors through Wk/WE � Gal(E/k) and sends the non-trivial
Galois automorphism σ to an element of negative determinant in O2n(C) times σ.
Let us write this as ξ(w) = ξ′(w)×w with ξ′(w) ∈ O2n(C). Then in the construction
of LSO∗

2n = SO2n(C) � Wk the Weil group acts on SO2n(C) through conjugation
by ξ′(w). We now turn to the embedding of the L-group. If we represent elements
of LSO∗

2n as products h× w = (h× 1)(1× w) with h ∈ SO2n(C) and w ∈ Wk then
ι : SO2n(C)�Wk ↪→ GLN (C)×Wk is given by ι(h× 1) = h × 1 ∈ GLN (C)×Wk

and ι(1× w) = ξ(w) = ξ′(w)× w. One can find a more detailed description of the
embedding in the appendix (Section 7.1).

In the case of unitary groups we follow the description in [26, 27], to which
the reader can refer for more details. The standard representation of LGn is now

on CN × CN . The action of the connected component LG
0
n is by

[g × 1](v1, v2) = (gv1, σ(g)v2)

while the Weil group acts through the quotient Wk/WE � Gal(E/k) with the
non-trivial Galois element acting by

[1× σ](v1, v2) = (v2, v1).

It determines an embedding ι of LGn � LG
0
n�Wk into (GLN (C)×GLN (C))�Wk

given by ι(g × w) = (g × σ(g)) × w, where on the right hand side, Wk acts on
GLN (C) × GLN (C) through the quotient Wk/WE � Gal(E/k) with σ(g1 × g2) =
g2 × g1. The group (GLN (C)×GLN (C))�Wk defined in this way is the L-group
of the restriction of scalars ResE/kGLN . Hence the map on L-groups we consider

is that associated to stable base change ι : LGn ↪→ L(ResE/kGLN ).

To give a unified presentation of these functorialities, we let

HN =

{
GLN if Gn is orthogonal or symplectic

ResE/kGLN if Gn is unitary

where N = 2n or 2n+ 1 as described above. Then the functorialities that we will
establish are from Gn to HN given in the following table. The embedding ι of
L-groups is that described above.
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Gn ι : LGn ↪→ LHN HN

SO2n+1 Sp2n(C)×Wk ↪→ GL2n(C)×Wk GL2n

SO2n SO2n(C)×Wk ↪→ GL2n(C)×Wk GL2n

SO∗
2n SO2n(C)�Wk ↪→ GL2n(C)×Wk GL2n

Sp2n SO2n+1(C)×Wk ↪→ GL2n+1(C)×Wk GL2n+1

U2n GL2n(C)�Wk ↪→ (GL2n(C)×GL2n(C))�Wk ResE/kGL2n

U2n+1 GL2n+1(C)�Wk ↪→ (GL2n+1(C)×GL2n+1(C))�Wk ResE/kGL2n+1

By Langlands’ principle of functoriality, as explicated in [3, 6, 9], associated
to these L-homomorphisms there should be a transfer or lift of automorphic rep-
resentations from Gn(Ak) to HN (Ak). To be more precise, for each place v of k
we have the local versions of the L–groups, obtained by replacing the Weil group
Wk with the local Weil group Wkv

. The natural maps Wkv
→ Wk make the global

and local L-groups compatible. We will not distinguish between our local and
global L-groups notationally. Our global L-homomorphism ι then induces a local
L-homomorphism, which we will denote by ιv : LGn → LHN .

Let π = ⊗′πv be an irreducible automorphic representation of Gn(Ak). For v a
finite place of k where πv is unramified, and if necessary the local quadratic exten-
sion Ew/kv is also unramified, the unramified arithmetic Langlands classification
or the Satake classification [6, 35] implies that πv is parametrized by an unramified
admissible homomorphism φv : Wkv

→ LGn where Wkv
is the Weil group of kv.

By composing with ιv : LGn ↪→ LHN we have an unramified admissible homo-
morphism Φv = ιv ◦ φv : Wkv

−→ LHN and this defines an irreducible admissible
unramified representation Πv of HN (kv) [17, 18]. Then Πv is the local functorial
lift of πv. The process is outlined in the following local functoriality diagram.

LGn

ιv �� LHN

πv
� �� � �� Πv.

Wkv

φv

�����������������

Φv

�����������������

Similarly, if v is an archimedean place, then by the arithmetic Langlands classifi-
cation πv is determined by an admissible homomorphism φv : Wv −→ LGn where
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Wv is the local Weil group of kv [6, 30]. The composition ιv ◦ φv is an admissi-
ble homomorphism of Wv into LHN and hence determines a representation Πv of
Hn(kv) via the same diagram. This is again the local functorial lift of πv. Note
that in either case we have an equality of local L-functions

L(s,Πv) = L(s,Φv) = L(s, ιv ◦ φv) = L(s, πv, ιv)

as well as equalities for the associated ε–factors (if ψv is unramified as well at the
finite place in question).

An irreducible automorphic representation Π = ⊗′Πv of HN (Ak) is called
a functorial lift of π if for every archimedean place v and for almost all non-
archimedean places v for which πv is unramified we have that Πv is a local functorial
lift of πv. In particular this entails an equality of (partial) Langlands L-functions

LS(s,Π) =
∏
v/∈S

L(s,Πv) =
∏
v/∈S

L(s, πv, ιv) = LS(s, π, ι),

where S is the (finite) complement of the places where we know the local Langlands
classification, so the ramified places.

We will let Bn denote a Borel subgroup of Gn and let Un denote the unipotent
radical of Bn. The abelianization of Un is a direct sum of copies of k and we may
use ψ to define a non-degenerate character of Un(Ak) which is trivial on Un(k). By
abuse of notation we continue to call this character ψ.

Let π be an irreducible cuspidal representation of Gn(Ak). We say that π is
globally generic if there is a cusp form ϕ ∈ Vπ such that ϕ has a non-vanishing
ψ-Fourier coefficient along Un, i.e., such that∫

Un(k)\Un(Ak)

ϕ(ug)ψ−1(u) du �= 0.

Cuspidal automorphic representations of GLn are always globally generic in this
sense. For cuspidal automorphic representations of the classical groups this is a
condition. In general the notion of being globally generic may depend on the choice
of splitting of the group. However, as is shown in the Appendix to [11], given a π
which is globally generic with respect to some splitting there is always an “outer
twist” which is globally generic with respect to a fixed splitting. This outer twist
provides an abstract isomorphism between globally generic cuspidal representations
and will not effect the L- or ε-factors nor the notion of the functorial lift. Hence we
lose no generality in considering cuspidal representations that are globally generic
with respect to our fixed splitting.

The principal result that we will prove in this paper is the following.

Theorem 1.1. Let k be a number field and let π be an irreducible globally
generic cuspidal automorphic representation of a quasisplit classical group Gn(Ak)
as above. Then π has a functorial lift to HN (Ak) associated to the embedding ι of
L-groups above.

The low-dimensional cases of this theorem are already well understood. In the
split cases, they were discussed in [11]. Thus we will concentrate primarily on the
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cases where n ≥ 2, except for the quasisplit orthogonal groups where we restrict to
n ≥ 4.

2. The Converse Theorem

In order to effect the functorial lifting from Gn to HN we will use the Converse
Theorem for GLN [12, 13] as we did in [10, 11]. Let us fix a number field K and
a finite set S of finite places of K. For the case of Gn orthogonal or symplectic, the
target for functoriality is GLN (Ak) and we will need K = k. However, in the case
of unitary Gn, the target of functoriality is ResE/kGLN (Ak) � GLN (AE) and we
will need to apply the converse theorem for K = E.

For each integer m, let

A0(m) = {τ | τ is a cuspidal representation of GLm(AK)}
and

AS
0 (m) = {τ ∈ A0(m) | τv is unramified for all v ∈ S}.

We set

T (N − 1) =
N−1∐
m=1

A0(m) and T S(N − 1) =
N−1∐
m=1

AS
0 (m).

If η is a continuous character of K×\A×
K , let us set

T (S; η) = T S(N − 1)⊗ η = {τ = τ ′ ⊗ η : τ ′ ∈ T S(N − 1)}.

Theorem 2.1 (Converse Theorem). Let Π = ⊗′Πv be an irreducible admissible
representation of GLN (AK) whose central character ωΠ is invariant under K× and
whose L-function L(s,Π) =

∏
v L(s,Πv) is absolutely convergent in some right half-

plane. Let S be a finite set of finite places of K and let η be a continuous character
of K×\A×

K . Suppose that for every τ ∈ T (S; η) the L-function L(s,Π× τ ) is nice,
that is, it satisfies

(1) L(s,Π× τ ) and L(s, Π̃× τ̃) extend to entire functions of s ∈ C,

(2) L(s,Π× τ ) and L(s, Π̃× τ̃) are bounded in vertical strips, and
(3) L(s,Π× τ ) satisfies the functional equation

L(s,Π× τ ) = ε(s,Π× τ )L(1− s, Π̃× τ̃ ).

Then there exists an automorphic representation Π′ of GLN (AK) such that Πv � Π′
v

for almost all v. More precisely, Πv � Π′
v for all v /∈ S.

In the statement of the theorem, the twisted L- and ε-factors are defined by
the products

L(s,Π× τ ) =
∏
v

L(s,Πv × τv) ε(s,Π× τ ) =
∏
v

ε(s,Πv × τv, ψv)

of local factors as in [12, 10].
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To motivate the next few sections, let us describe how we will apply this theorem
to the problem of Langlands lifting from Gn to HN . We begin with our globally
generic cuspidal automorphic representation π = ⊗′πv of Gn(Ak).

If Gn is an orthogonal or symplectic group, then for each place v we need to
associate to πv an irreducible admissible representation Πv of HN (kv) = GLN (kv)
such that for every τ ∈ T (S; η) we have

L(s, πv ⊗ τv, ιv ⊗ ι′v) = L(s,Πv × τv)

ε(s, πv ⊗ τv, ιv ⊗ ι′v, ψv) = ε(s,Πv × τv, ψv)

where ι′ is the identity map on GLm(C), or more accurately from the L-group
LGLm = GLm(C) × Wk to GLm(C) given by projection on the first factor, and
similarly ι now represents the representation of LGn given by ι followed by the
projection onto the first factor of LH, or the connected component of the identity,
i.e., the associated map to GLN (C).

If Gn is a unitary group, then for each place v we need to associate to πv an
irreducible admissible representation Πv ofHN (kv) = GLN (Ev), where Ev = E⊗kv
is either an honest quadratic extension or the split quadratic algebra over kv, such
that for every τ ∈ T (S; η) we have

L(s, πv ⊗ τv, ιv ⊗ ι′v) = L(s,Πv × τv)

ε(s, πv ⊗ τv, ιv ⊗ ι′v, ψv) = ε(s,Πv × τv, ψv).

Now τv must be viewed as a representation of GLm(Ev), i.e., of ResE/kGLm(kv).
If Ev/kv is an honest quadratic extension, then Gn(kv) is an honest local unitary
group and HN (kv) � GLN (Ev). If v splits in E, so Ev � Ew1

⊕Ew2
with Ewi

� kv,
then Gn(kv) � GLN (kv) and HN (kv) � GLN (Ev) � GLN (kv)×GLN (kv). In this
case Πv = Π1,v ⊗ Π2,v, an outer tensor product, and similarly τv = τ1,v ⊗ τ2,v and
we have a product of two factors on each side. A more detailed description for this
case can be found in [26, 27].

For archimedean places v and those non-archimedean v where πv is unramified,
we take Πv to be the local functorial lift of πv described above. For those places
v where πv is ramified, we will finesse the lack of a local functorial lift using the
stability of γ–factors as described in Section 4 below. This will allow us to associate
to πv a representation Πv of HN (kv) at these places as well. The process involves
the choice of a highly ramified character ηv of H1(kv). If we then take Π = ⊗′Πv,
this is an irreducible representation of HN (Ak). With the choices above we will
have

L(s, π ⊗ τ, ι⊗ ι′) = L(s,Π× τ )

ε(s, π ⊗ τ, ι⊗ ι′) = ε(s,Π× τ )

for Re(s) >> 0 and all τ ∈ T (S; η) for a suitable fixed character η of H1(Ak). This
is our candidate lift. The theory of L-functions for Gn ×Hm, which we address in
the next section, will then guarantee that the twisted L-functions L(s, π⊗ τ, ι⊗ ι′)
are nice for all τ ∈ T (S; η). Then the L(s,Π×τ ) will also be nice and Π satisfies the
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hypotheses of the Converse Theorem. Hence there exists an irreducible automorphic
representation Π′ of HN (Ak) such that Πv � Π′

v for all archimedean v and almost
all finite v where πv is unramified. Hence Π′ is a functorial lift of π.

3. L-functions for Gn ×Hm

Let π be a globally generic cuspidal representation of Gn(Ak) and τ a cuspidal
representation of Hm(Ak), with m ≥ 1. We let ι and ι′ be the representations of
the L–groups defined in Sections 1 and 2 respectively. To effect our lifting, we must
control the analytic properties of the twisted L-functions L(s, π ⊗ τ, ι ⊗ ι′). This
we do by the method of Langlands and Shahidi, as we outline here.

The L-functions L(s, π ⊗ τ, ι ⊗ ι′) are the completed L-functions as defined
in [39] via the theory of Eisenstein series. If we let Mn,m denote Gn × Hm with
m ≥ 1, then this appears as the Levi factor of a maximal self-associate parabolic
subgroup Pn,m = Mn,mNn,m of Gn+m associated to the root αm as in [38]. The
representation ι⊗ ι′ then occurs in the adjoint action of LMn,m on the Lie algebra
Lnn,m as the representation r̃1 of [38]. Then these L-functions can be defined
and controlled by considering the induced representation I(s, π ⊗ τ ) described in
[38, 39] since π ⊗ τ is a cuspidal representation of Mn,m(Ak). The local factors
are then defined in [39] via the arithmetic Langlands classification for archimedean
places, through the Satake parameters for finite unramified places, as given by the
poles of the associated γ–factor (or local coefficient) if πv and τv are tempered,
by analytic extension if πv and τv are quasi-tempered, and via the representation
theoretic Langlands classification otherwise. Since it is only these representations
that we will be considering, we will abbreviate our notation by suppressing the
L–homomorphism, so for example

L(s, π × τ ) =
∏
v

L(s, πv × τv) =
∏
v

L(s, πv ⊗ τv, ιv ⊗ ι′v) = L(s, π ⊗ τ, ι⊗ ι′)

with similar conventions for the ε– and γ–factors.

The global theory of these twisted L-functions is now quite well understood.

Theorem 3.1. Let S be a non-empty set of finite places of k. Let K = k when
Gn is orthogonal or symplectic or K = E if Gn is a unitary group associated to
the quadratic extension E/k and continue to let S denote the corresponding set of
places of K. Let η be a character of K×\A×

K such that, for some v ∈ S, either the
square η2v is ramified if K = k, or if K = E then for the places w of E above v
we have both ηw and ηwηw are ramified. Then for all τ ∈ T (S; η) the L-function
L(s, π × τ ) is nice, that is,

(1) L(s, π × τ ) is an entire function of s,
(2) L(s, π × τ ) is bounded in vertical strips of finite width, and
(3) we have the functional equation

L(s, π × τ ) = ε(s, π × τ )L(1− s, π̃ × τ̃ ).
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Proof: (1) In all cases this follows from the more general Proposition 2.1 of [28].
Note that in view of the results of Muić [34] and of [8], the necessary result on
normalized intertwining operators, Assumption 1.1 of [28], usually referred to as
Assumption A [24], is valid in all cases as proved in [24, 25]. Note that this
is the only part of the theorem where the twisting by η is needed. The specific
ramification stated comes from [11] or [27].

(2) The boundedness in vertical strips of these L-functions is known in wide
generality, which includes the cases of interest to us. It follows from Corollary 4.5
of [15] and is valid for all τ ∈ T (N − 1), provided one removes neighborhoods of
the finite number of possible poles of the L-function.

(3) The functional equation is also known in wide generality and is a conse-
quence of Theorem 7.7 of [39]. It is again valid for all τ ∈ T (N − 1). �

4. Stability of γ-factors

This section is devoted to the formulation of the stability of the local γ-factors
for generic representations of the quasisplit groups under consideration. This result
is necessary for defining a suitable local lift at the non-archimedean places where
we do not have the local Langlands conjecture at our disposal.

For this section, let k denote a p-adic local field, that is, a non-archimedean
local field of characteristic zero. Let Gn now be a quasisplit classical group of the
types defined in Section 1, but now over k. These will correspond to the local
situations that arise in our global problem, with the exception of the global unitary
groups at a place which splits in the defining quadratic extension (see Remark 4.1
below).

4.1. Stability. Let π be a generic irreducible admissible representation of
Gn(k) and let η be a continuous character of H1(k) � k× (resp. E× in the local
unitary case). Let ψ be a fixed non-trivial additive character of k. Let γ(s, π×η, ψ)
be the associated γ-factor as defined in Theorem 3.5 of [39]. These are defined
inductively through the local coefficients Cψ(s, π ⊗ η) of the local induced repre-
sentations analogous to those given above. They are related to the local L- and
ε-factors by

γ(s, π × η, ψ) =
ε(s, π × η, ψ)L(1− s, π̃ × η−1)

L(s, π × η)
.

We begin by recalling the main result of [14], with a slight shift in notation for
consistency.

Theorem 4.1. Let G be a quasisplit connected reductive algebraic group over
k such that the Γ–diagram of GD is of either type Bn+1, Cn+1, Dn+1,

2An+1 or
2Dn+1(n + 1 ≥ 4). Let P = MN be a self–associate maximal parabolic subgroup
of G over k such that the unique simple root in N is the root α1 in Bourbaki’s
numbering [7]. Let π be an irreducible admissible generic representation of M(k).
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Then Cψ(s, π) is stable, that is, if ν is a character of K×, realized as a character
ν̃ of M(k) by

ν̃(m) = ν(det(Adn(m))),

then

Cψ(s, π1 ⊗ ν̃) = Cψ(s, π2 ⊗ ν̃)

for any two such representations π1 and π2 with the same central characters and
all sufficiently highly ramified ν. Here n is the Lie algebra of N(k).

Note that this covers the local quasisplit classical groups that are under consid-
eration here if we take G = Gn+1. The splitting field K is then k itself except in the
2An and 2Dn cases, where it is the associated quadratic extension E as in Section
1. According to the tables in Section 4 of [38], the Levi subgroups M in Theorem
4.1 are of the form M � H1 ×Gn. To use the stability result in the application to
functoriality we need the following elementary lemma.

Lemma 4.1. Let m ∈ M(k) and write m = a × m′ with a ∈ H1(k) and m′ ∈
Gn(k). Then det(Adn(m

′)) = 1, i.e.

det(Adn(m)) = det(Adn(a)).

Proof: An elementary matrix calculation shows that in the symplectic and spe-
cial orthogonal cases we have det(Adn(m

′)) = det(m′) = 1. In the unitary case,
det(Adn(m

′)) = NE/k det(m
′) = 1. �

Thus we see that in Theorem 4.1 the twisting character ν̃ of M(k) factors to a
character of the GL1 factor in M . We will call a character ν̃ of H1(k), suitable if
it arises from a character ν of K× via a composition of the embedding GL1 ↪→ M
followed by the character m �→ ν(det(Adn(m))) of M . Now Theorem 4.1 has the
following corollary.

Corollary 4.1.1. Let Gn be a quasisplit classical group over k as in Section 1,
so that it satisfies the hypotheses of Theorem 4.1. Let π1 and π2 be two irreducible
admissible representations of Gn(k) having the same central character. Then for
every sufficiently highly ramified suitable character ν̃ of H1(k) we have

γ(s, π1 × ν̃, ψ) = γ(s, π2 × ν̃, ψ).

Proof: Let Gn+1 be the quasisplit connected reductive algebraic group over k of
rank one larger such such that the parabolic subgroup P in Theorem 4.1 has Levi
subgroup M � H1 ×Gn. Then 1⊗ π1 and 1⊗ π2 determine irreducible admissible
representations of M(k) with the same central character. By Theorem 4.1 we know
that for every sufficiently highly ramified character ν ofK×, determining a character
ofM(k) by ν̃(m) = ν(det(Adn(m)), we have Cψ(s, (1⊗π1)⊗ν̃) = Cψ(s, (1⊗π2)⊗ν̃).
By our lemma ν̃ factors to only the H1 variable in M and (1 ⊗ πi) ⊗ ν̃ = ν̃ ⊗ πi

as representations of M(k). Then the statement of the corollary follows from the
definition of γ(s, πi × ν̃, ψ) given in [38]. �
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Remark 4.1. Theorem 4.1 and its corollary cover the possible local situations
that arise in our global problem except for the case of unitary groups at a place
that splits in the global quadratic extension. At these places, locally the hypotheses
of Theorem 4.1 are not satisfied since the parabolic subgroup P in question is no
longer maximal. In this case, Gn � GLN , H1 � GL1 ×GL1, and, remembering the
implicit L-homomorphism ι⊗ ι′, both sides are a pair of local GLN ×GL1 γ-factors.
In this case the stability result is due to Jacquet and Shalika [22]. However, as we
shall see, in our application we will not need stability in this situation since the
local Langlands correspondence is known for GLN .

4.2. Stability and parametrization. Let π be an irreducible admissible
representation of one of our local Gn. Assume that π is ramified, so we may not
know how to parametrize π by an admissible homomorphism of the Weil-Deligne
group W ′

k into LGn. We wish to replace π by a second representation π′ for which
we have an arithmetic Langlands parameter and for which we still have a modicum
of control over its L- and ε-factors.

We replace π with an induced representation having the same central character.
To this end, let Tn be the maximal torus of Gn, take a character λ of Tn, and
let I(λ) be the associated induced representation. By appropriate choice of λ we
can guarantee that π and I(λ) have the same central character and that I(λ) is
irreducible. Let φλ : Wk → LT be the Langlands parameter for λ so that the
composition φλ : Wk → LTn → LGn is the arithmetic Langlands parameter for
I(λ). We can take for π′ any of the so constructed I(λ). We fix one. By the
corollary above, for sufficiently highly ramified suitable ν̃, depending on π and our
choice of π′ = I(λ), we have

γ(s, π × ν̃, ψ) = γ(s, π′ × ν̃, ψ).

Once we have the stable γ–factor is expressed in terms of a principal series
representations that we can arithmetically parametrize, then we can express the
analytic γ–factor as one from arithmetic, the Artin γ–factor associated to the Galois
representation ι ◦ φλ.

Proposition 4.1. With notation as above,

γ(s, I(λ)× ν̃, ψ) = γ(s, (ι ◦ φλ)⊗ ν̃, ψ).

Proof: The embedding of L-groups ι : LGn ↪→ LHN is defined so that ι is the map
coming from the restriction of this adjoint action on Lnn+1 to Gn and similarly for
ι′ as a representation of H1. By our convention, γ(s, I(λ) × ν̃, ψ) is the γ-factor
associated to this representation of the L-group, i.e.,

γ(s, I(λ)× ν̃, ψ) = γ(s, I(λ)⊗ ν̃, ι⊗ ι′, ψ).

To relate this analytic γ-factor to that from the parametrization, we embed
Gn ↪→ Gn+1 as part of the Levi subgroup Mn+1 of the self-associate parabolic
subgroup Pn+1 = Mn+1Nn+1 ⊂ Gn+1 such that the unique simple root in Nn+1

is α1 as above. Using the product formula (or “cocycle relation”) for the local
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coefficients from Proposition 3.2.1 of [36], the local coefficient Cψ(s, I(λ)⊗ν̃) factors
into a product over the roots appearing in the adjoint representation of LTn+1 ⊂
LMn+1 on Lnn+1. Sections 2 and 3 of [23] give a computation of the contribution
of an individual root space to Cψ(s, I(λ) ⊗ ν̃) in terms of rank one Artin factors
coming from the co-roots composed with λ. The resulting expression (at s = 0)
is found in Proposition 3.4 of [23]. If one takes the expression for a general s and
then extracts the γ-factor from the local coefficient, one arrives at

γ(s, I(λ)⊗ ν̃, ι⊗ ι′, ψ) = γ(s, (ι ◦ φλ)⊗ ν̃, ψ).

This proves the proposition. �

5. The candidate lift

We now return to k denoting a number field. Let π = ⊗′πv be a globally generic
cuspidal representation of Gn(Ak). In this section we will construct our candidate
Π = ⊗′Πv for the functorial lift of π as an irreducible admissible representation of
GLN (Ak). We will construct Π by constructing each local component, or local lift,
Πv. There will be three cases: (i) the archimedean lift, (ii) the non-archimedean
unramified lift, and finally (iii) the non-archimedean ramified lift.

5.1. The archimedean lift. Let v be an archimedean place of k. By the
arithmetic Langlands classification [30, 6], πv is parametrized by an admissible
homomorphism φv : Wkv

→ LG0
n where Wkv

is the Weil group of kv. By composing
with ιv : LGn ↪→ LHN we have an admissible homomorphism Φv = ιv◦φv : Wkv

−→
LHN and this defines an irreducible admissible representation Πv of HN (kv). Then
Πv is the local functorial lift of πv. We take Πv as our local lift of πv. (See the
local functoriality diagram in Section 1.)

The local archimedean L– and ε–factors defined via the theory of Eisenstein
series we are using are the same as the Artin factors defined through the arithmetic
Langlands classification [37]. Since the embedding ιv : LGn ↪→ LHN is the standard
representation of the L–group of Gn(kv) then by the definition of the local L- and
ε–factors given in [6] we have

L(s, πv) = L(s, ιv ◦ φv) = L(s,Πv)

and

ε(s, πv, ψv) = ε(s, ιv ◦ φv, ψv) = ε(s,Πv, ψv)

where in both instances the middle factor is the local Artin-Weil L– and ε–factor
attached to representations of the Weil group as in [43].

If τv is an irreducible admissible representation of Hm(kv) then it is in turn
parametrized by an admissible homomorphism φ′

v : Wkv
−→ LHm. Then the tensor

product homomorphism (ιv ◦ φv) ⊗ (ι′v ◦ φ′
v) : Wkv

−→ LHmN is admissible and
again we have by definition

L(s, πv × τv) = L(s, (ιv ◦ φv)⊗ (ι′v ◦ φ′
v)) = L(s,Πv × τv)
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and

ε(s, πv × τv, ψv) = ε(s, (ιv ◦ φv)⊗ (ι′v ◦ φ′
v), ψv) = ε(s,Πv × τv, ψv).

This then gives the following matching of the twisted local L- and ε-factors.

Proposition 5.1. Let v be an archimedean place of k and let πv be an irre-
ducible admissible generic representation of Gn(kv), Πv its local functorial lift to
HN (kv), and τv an irreducible admissible generic representation of Hm(kv) with
m < N . Then

L(s, πv × τv) = L(s,Πv × τv) and ε(s, πv × τv, ψv) = ε(s,Πv × τv, ψv).

5.2. The non-archimedean unramified lift. Now let v be a place of k
which is non-archimedean and assume that πv is an unramified representation.
By the unramified arithmetic Langlands classification or the Satake classification
[6, 35], πv is parametrized by an unramified admissible homomorphism φv : Wkv

→
LG0

n where Wkv
is the Weil group of kv. By composing with ιv : LGn ↪→ LHN we

have an unramified admissible homomorphism Φv = ιv◦φv : Wkv
−→ LHN and this

defines an irreducible admissible unramified representation Πv of HN (kv) [17, 18].
Then Πv is again the local functorial lift of πv and we take it as our local lift.
(Again, see the local functoriality diagram in Section 1.)

We will again need to know that the twisted L- and ε-factors agree for πv and
Πv.

Proposition 5.2. Let v be a non-archimedean place of k and let πv be an
irreducible admissible generic unramified representation of Gn(kv). Let Πv be its
functorial local lift to HN (kv) as above, and τv an irreducible admissible generic
representation of Hm(kv) with m < N . Then

L(s, πv × τv) = L(s,Πv × τv) and ε(s, πv × τv, ψv) = ε(s,Πv × τv, ψv).

Proof: Since πv is unramified its parameter φv factors through an unramified ho-
momorphism into the maximal torus LTn ↪→ LGn. The composition ι ◦ φv = Φv

then has image in a torus LT
′
N ↪→ LHN , which necessarily splits, and Πv is the

corresponding unramified (isobaric) representation. Then the functoriality diagram
gives that L(s, πv, ιv) = L(s,Πv) and ε(s, πv, ιv, ψv) = ε(s,Πv, ψv) and both can be
expressed as products of one dimensional abelian Artin L-functions and ε–factors.
This is the multiplicativity of the local L- and ε–factors in this case. For twisting
by τv one appeals to the general multiplicativity of local factors from [19, 40] with
respect to the preceding data. This is done in detail for the split groups in [11] and
the calculation here is the same. �

5.3. The non-archimedean ramified lift. Now consider a non-archimedean
place v of k where the local component πv of π is ramified. Assume for now that
we are not in the situation where Gn is a unitary group associated to a quadratic
extension E/k in which the place v splits; we will return to this at the end of
the section. Now we do not have the local Langlands correspondence to give us a
natural local functorial lift. Instead we will use the results of Section 4.
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Given πv we choose an induced representation π′
v = I(λv) as in Section 4.1

which has the same central character as πv and which we do know how to pa-
rametrize. Let φλv

: Wkv
→ LTn → LGn be the associated parameter. By

composing with ιv : LGn ↪→ LHN we have an admissible homomorphism Φv =
ιv ◦ φλv

: Wkv
−→ LHN and this defines an irreducible admissible representation

Πv of HN (kv). We now use the local functoriality diagram in the following form:

LGn

ιv �� LHN

πv �→ π′
v = I(λv)

� �� � �� Πv.

Wkv

φλv

������������������

Φv

������������������

Then Πv is the local functorial lift of π′
v = I(λv). We take Πv as our local lift of

πv.

Now let ν̃v be a sufficiently ramified suitable character of H1(kv) as in Section
4. Then by Corollary 4.1.1 we know that

γ(s, πv × ν̃v, ψv) = γ(s, π′
v × ν̃v, ψv)

and by Proposition 4.1 we have

γ(s, π′
v × ν̃v, ψv) = γ(s, I(λv)× ν̃v, ψv) = γ(s, (ιv ◦ φλv

)⊗ ν̃v, ψv).

On the other hand, by the functoriality diagram above

γ(s, (ιv ◦ φλv
)⊗ ν̃v, ψv) = γ(s,Φv ⊗ ν̃v, ψv)

and the work of Harris-Taylor and Henniart establishing the local Langlands con-
jecture for GLn gives

γ(s,Φv ⊗ ν̃v, ψv) = γ(s,Πv × ν̃v, ψv).

Thus finally

γ(s, πv × ν̃v, ψv) = γ(s,Πv × ν̃v, ψv).

For sufficiently ramified ν̃ the local L-functions L(s, πv × ν̃v) and L(s,Πv × ν̃v)
both stabilize to 1 [41, 22] and so the stability of local γ-factors is essentially the
stability of local ε–factors.

Proposition 5.3. Let πv be an irreducible admissible generic representation of
Gn(kv) and let Πv be the irreducible admissible representation of HN (kv) as above.
Then for sufficiently ramified suitable characters ν̃ of H1(kv) we have

L(s, πv × ν̃v) = L(s,Πv × ν̃v) and ε(s, πv × ν̃v, ψv) = ε(s,Πv × ν̃v, ψv).

There is a natural extension of this to the class of representations of Hm(kv)
that we require for the application of the Converse Theorem given in the following
proposition.
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Proposition 5.4. Let v be a non-archimedean place of k. Let πv be an irre-
ducible admissible generic representation of Gn(kv) and let Πv be the irreducible
admissible representation of HN (kv) as above. Let τv be an irreducible admissible
generic representation of Hm(kv) with m < N of the form τv � τ0,v ⊗ ν̃v with τ0,v
unramified and ν̃v suitable and sufficiently ramified as above. Then

L(s, πv × τv) = L(s,Πv × τv) and ε(s, πv × τv, ψv) = ε(s,Πv × τv, ψv).

Proof: The proof of this proposition is by the use of multiplicativity of the local
factors with respect to the Hm-variable [40]. Since τ0,v is unramified and generic
we can write it as a full induced representation from characters [21]

τ0,v � Ind
Hm(kv)
B′

m(kv)
(χ1,v ⊗ · · · ⊗ χm,v)

with each χi,v unramified. If we let χi,v(x) = |x|biv and let μ(x) = |x|v, then we
may write τv as

τv � Ind
Hm(kv)
B′

m(kv)
(ν̃vμ

b1 ⊗ · · · ⊗ ν̃vμ
bm).

By the multiplicativity of the local factors [40] we find

L(s, πv × τv) =

m∏
i=1

L(s+ bi, πv × ν̃v)

and

ε(s, πv × τv, ψv) =
m∏
i=1

ε(s+ bi, πv × ν̃v, ψv).

On the other hand, by the same results of [19] we also have

L(s,Πv × τv) =

m∏
i=1

L(s+ bi,Πv × ν̃v)

and

ε(s,Πv × τv, ψv) =
m∏
i=1

ε(s+ bi,Πv × ν̃v, ψv).

By Proposition 5.3 above we see that after factoring the L- and ε–factors for
πv and Πv twisted by such τv the factors are term by term equal for ν̃v a suitable
sufficiently ramified character. This establishes the proposition. �

In the appendix (Section 7.2) we explicitly calculate the local lift of a principal
series representation for the case of Gn = SO∗

2n. For the other cases (at least in the
unramified situation) these explicit calculations are in [11] and [26, 27].

Now let us return to the situation where Gn is a unitary group associated to
a quadratic extension E/k in which the place v splits. Then Gn(kv) � GLN (kv)
and HN (kv) � GLN (kv) × GLN (kv). This situation is analyzed in the beginning
of Section 6 of [26]. The L-homomorphism is simply understood in this case. If
πv is an irreducible admissible representation of Gn(kv) then, ramified or not, we
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take the representation Πv of HN (kv) to be πv ⊗ π̃v. The twisting representation
τv it a representation of Hm(kv) � GLm(kv) × GLm(kv) and hence of the form
τv � τ1,v ⊗ τ2,v. Then we have

γ(s, πv ⊗ τv, ι⊗ ι′, ψv) = γ(s, πv × τ1,v, ψv)γ(s, π̃v × τ2,v, ψv) = γ(s,Πv × τv, ψv)

and

L(s, πv ⊗ τv, ι⊗ ι′) = L(s, πv × τ1,v)L(s, π̃v × τ2,v) = L(s,Πv × τv).

So we are in the same situation as in the unramified case, i.e., the stronger Propo-
sition 5.2 holds in this case.

5.4. The global candidate lift. Return now to the global situation. Let
π � ⊗′πv be a globally generic cuspidal representation of Gn(Ak). Let S be a finite
set of finite places such that for all non-archimedean places v /∈ S we have πv and
ψv are unramified (and if necessary the local extension Ew/kv unramified as well).
For each v /∈ S let Πv be the local functorial lift of πv as in Section 5.1 or 5.2.
For the places v ∈ S we take Πv to be the irreducible admissible representation of
HN (kv) obtained in Section 5.3. Then the restricted tensor product Π � ⊗′Πv is
an irreducible admissible representation of HN (Ak). It is self-dual except in the
case of unitary groups, where it is self-conjugate-dual. This is our candidate lift.

For each place v ∈ S choose a suitable sufficiently ramified character ηv = ν̃v of
H1(kv) so that Proposition 5.4 is valid. Let η be any idele class character of H1(Ak)
which has local component ηv at those v ∈ S. Then combining Propositions 5.1 –
5.4 we obtain the following result on our candidate lift.

Proposition 5.5. Let π be a globally generic cuspidal representation of Gn(Ak)
and let Π be the candidate lift constructed above as a representation of HN (Ak).
Then for every representation τ ∈ T (S; η) = T S(N − 1)⊗ η we have

L(s, π × τ ) = L(s,Π× τ ) and ε(s, π × τ ) = ε(s,Π× τ ).

6. Global functoriality

6.1. Functoriality. Let us now prove Theorem 1.1. The proof is the usual
one [11, 27], but it is short and we repeat it for completeness.

We begin with our globally generic cuspidal representation of Gn(Ak). De-
compose π � ⊗′πv into its local components and let S be a non-empty set of
non-archimedean places such that for all non-archimedean places v /∈ S we have
that πv and ψv (and if necessary Ew/kv) are unramified. Let Π � ⊗′Πv be the
irreducible admissible representation of HN (Ak) constructed in Section 5 as our
candidate lift. By construction Π is self-dual or self-conjugate-dual and is the lo-
cal functorial lift of π at all places v /∈ S. Choose η, an idele class character of
H1(Ak), such that its local components ηv are suitable and sufficiently ramified at
those v ∈ S so that Proposition 5.5 is valid. Furthermore, since we have taken S
non-empty, we may choose η so that for at least one place v0 ∈ S we have that ηv0
is sufficiently ramified so that Theorem 3.1 is also valid. Fix this character.
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We are now ready to apply the Converse Theorem to Π. Consider τ ∈ T (S; η).
By Proposition 5.5 we have that

L(s, π × τ ) = L(s,Π× τ ) and ε(s, π × τ ) = ε(s,Π× τ ).

On the other hand, by Theorem 3.1 we know that each L(s, π × τ ) and hence
L(s,Π × τ ) is nice. Thus Π satisfies the hypotheses of the Converse Theorem,
Theorem 2.1. Hence there is an automorphic representation Π′ � ⊗′Π′

v of HN (Ak)
such that Π′

v � Πv for all v /∈ S. But for v /∈ S, by construction Πv is the local
functorial lift of πv. Hence Π′ is a functorial lift of π as required in the statement
of Theorem 1.1. The lift is then uniquely determined, independent of the choice of
S and η, by the classification theorem of Jacquet and Shalika [20]. �

6.2. The image of functoriality. In this section we would like to record the
image of functoriality. Assuming the existence of functoriality, the global image has
been analyzed in the papers of Ginzburg, Rallis, and Soudry using their method
of descent [16, 42]. From their method of descent of automorphic representations
from HN (Ak) to the classical groups Gn(Ak) and its local analogue, Ginzburg,
Rallis, and Soudry were able to characterize the image of functoriality from generic
representations.

There is a central character condition that must be satisfied by the lift. For
each classical group we associate a quadratic idele class character of A×

k as follows.
If Gn is of type Bn, Cn, Dn, or

2An we simply take χ
Gn

to be the trivial character

1. If Gn is of type 2Dn, so a quasisplit even special orthogonal group SO∗
2n, then

the two-dimensional anisotropic kernel of the associated orthogonal space is given
by the norm form of a quadratic extension E/k; in this case we set χGn

= ηE/k the
quadratic character coming from class field theory.

The arithmetic part of their characterization relies on a certain L-function
L(s,Πi, R) for a HNi

having a pole at s = 1. The corresponding representation R
of the L-group depends on the Gn from which we are lifting. If the dual group LGn

is of orthogonal type, then R = Sym2, if it is of symplectic type then R = Λ2, and
in the unitary case it is either the Asai representation R = AsaiE/k for Gn = U2n+1

or the twist by the quadratic character ηE/k of the associated quadratic extension
R = AsaiE/k ⊗ ηE/k for Gn = U2n. For the definition of the Asai representation, if
it is not familiar, see [26, 27].

The image of the lifting then has the following characterization [42].

Theorem 6.1. Let π be a globally generic cuspidal representation of Gn(Ak).
Then any functorial lift of π to an automorphic representation Π of HN (Ak) is
self-dual (respectively self-conjugate-dual in the unitary case) with central character
ωΠ = χ

Gn
(resp. ωΠ|A× = χ

Gn
) and is of the form

Π = Ind(Π1 ⊗ · · · ⊗Πd) = Π1 � · · · � Πd,

where each Πi is a unitary self-dual (resp. self-conjugate-dual) cuspidal representa-
tion of HNi

(Ak) such that the partial L-function LT (s,Πi, R), with any sufficiently
large finite set of places T containing all archimedean places, has a pole at s = 1
and Πi �� Πj for i �= j. Moreover, any such Π is the functorial lift of some π.
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Let us make a few elementary observations on the distinguishing characteri-
zations of the various lifts. We summarize the image characterization data in the
following table:

Gn R χ
Gn

SO2n+1 Λ2 1

SO2n Sym2 1

SO∗
2n Sym2 ηE/k

Sp2n Sym2 1

U2n AsaiE/k ⊗ ηE/k 1

U2n+1 AsaiE/k 1

We first consider lifts from orthogonal and symplectic groups. Suppose for
simplicity that Π is a self-dual cuspidal representation of GLN (Ak). If N = 2n+ 1
is odd, then Π can only be a lift from Sp2n and will be iff LT (s,Π, Sym2) has a
pole at s = 1 and ωΠ is trivial. If N = 2n is even, then Π can only be a lift from
an orthogonal group. If LT (s,Π,Λ2) has a pole at s = 1 and ωΠ is trivial then
it is a lift from the split SO2n+1. On the other hand, if it is a lift from an even
orthogonal group, then necessarily LT (s,Π, Sym2) has a pole at s = 1. Since the
central character ωΠ is necessarily quadratic, this character will distinguish between
the various even orthogonal groups. If ωΠ is trivial, then Π is a lift from the split
SO2n while if ωΠ = ηE/k for some quadratic extension E/k, then Π is a lift from
the quasisplit SO∗

2n associated to this extension. (If Π is isobaric, one applies the
same conditions to the summands.)

We next consider lifts from unitary groups and we begin with a cuspidal repre-
sentation Π of GLN (Ak) for some number field k. If Π is to be a lift from a unitary
group UN , then we must have a quadratic sub-field k0 ⊂ k with non-trivial Galois

automorphism σ such that both ωΠ|
A

×
k0

= 1 and Π � Π̃σ. Then we can realize

GLN (Ak) = HN (Ak0
) with HN = Resk/k0

GLN . If N = 2n + 1 is odd, then for Π

to be a transfer from UN (Ak0
) we would need LT (s,Π,Asaik/k0

) to have a pole at
s = 1 and if N = 2n is even then for Π to be a transfer from U2n(Ak0

) we would
need LT (s,Π,Asaik/k0

⊗ ηk/k0
) to have a pole at s = 1.

From these descriptions, it is clear that there is no intersection between lifts
from different orthogonal groups nor between them and symplectic groups since the
Λ2 and Sym2 L-functions can never share poles. On the other hand, there seems to
be much room for overlap in the images from orthogonal/symplectic and unitary
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groups as well as potential overlap in the images from different unitary groups. It
would be interesting to understand these.

7. Appendix: Quasisplit orthogonal groups

In this section we present some explicit computation for the case of Gn = SO∗
2n.

While these are not necessary for what preceded, they can be quite helpful in
understanding this case.

7.1. The L-homomorphism. Let us start with some L-group generalities.
Let k be a local or global field and let Γk = Gal(k/k). Let G be a connected
reductive group over k. Let B be a Borel subgroup and T ⊂ B a Cartan subgroup.
Let Ψ0(G) = (X,Δ, X∨,Δ∨) be the based root datum for G associated to (B, T ).

Since Out(G) � Aut(Ψ0(G)) we have the short exact sequence of automor-
phisms

1 → Int(G) → Aut(G) → Aut(Ψ0(G)) → 1.

We fix a splitting of this sequence as follows. For each α ∈ Δ we fix xα ∈ Gα. Then

Aut(Ψ0(G)) � Aut(G,B, T, {xα})

realizes Aut(Ψ0(G)) as a subgroup of Aut(G).
The cocycle

[σ �→ f(fσ)−1] ∈ H1(Γk,Aut(G))

then lands in Aut(Ψ0(G)) and becomes a homomorphism

μG : Γk → Aut(Ψ0(G)).

We then have the dual action

μ∨
G : Gal(k/k) → Aut(Ψ0(G)∨) = Aut(Ψ0(Ĝ)).

In the case of SO∗
2n which splits over E, with (E : k) = 2, let Gal(E/k) = {1, σ}.

As before, we realize Aut(Ψ0(Ĝ)) � Aut(Ĝ, B̂, T̂ , {xα∨}). If τ ∈ σGal(k/E) then
μ∨
G(τ ) must send T to itself, each xα∨

i
to itself for 1 ≤ i ≤ n − 2, and interchange

xα∨
n−1

and xα∨
n
. In particular, it must send e∨n to −e∨n . So the element μ∨

G(τ ) can

be represented by an element [ŵ] representing a coset of T in the normalizer of T
in O2n(C). In fact

[ŵ] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1 (
0 1
1 0

)

1
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T.
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Let

ŵ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1 (
0 1
1 0

)

1
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

t̂

be an element of this coset that fixes the splitting {xα∨}. Then t̂ ∈ Z(Ĝ) =
Z(O2n(C)) = {±1}. Thus

ŵ = ±

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1 (
0 1
1 0

)

1
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

are the only possibilities for an element in O2n(C) representing μ∨
G(τ ) by conjuga-

tion. The choice of ± is irrelevant. So we set

ŵ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1 (
0 1
1 0

)

1
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then our embedding ι : SO2n(C)� Γk ↪→ GL2n(C)× Γk must send

(1, τ ) �→ (ŵ, τ ) if τ ∈ σGal(k/E)

while
(1, τ ) �→ (1, τ ) it τ ∈ Gal(k/E).

This follows from the fact that μ∨
G(τ )(g) = ŵgŵ−1 and

(1, τ )(g, 1) = (τ (g), τ ) = (μ∨
G(τ )(g), τ ) = (ŵgŵ−1, τ ).

In particular
(1, τ )(g, 1)(1, τ )−1 = (ŵgŵ−1, 1).

Note that by the matrix representation given for ŵ we are clearly fixing

T̂ = GL1(C)
n−1 × (GL1(C)×GL1(C))/C

×

the latter being the L-group of SO∗
2. Moreover note that ŵ basically represents

only one sign change (e∨n �→ −e∨n) and thus cannot be in the Weyl group of T̂ in
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SO2n(C). It represents the outer automorphism (the graph automorphism) of SO∗
2n

and (ŵ, τ ) gives the embedding of τ ∈ σGal(k/E) in GL2n(C)× Γk.

7.2. Computation of the local lift and its central character: SO∗
2n. In

the local lifts of Section 5, both the unramified lift and the ramified lift relied on
lifting a principal series representation of Gn to a representation of GL2n. We will
analyze this in a bit more detail here, computing the local lift in the quasisplit case
and the central character of the local lift in both cases.

Let k be a non-archimedean local field. Let T ′ ⊂ GL2n be the standard maximal
split torus. Let

ϕ : Wk → LT
′

and χ : T ′(k) → C×.

Write

ϕ((x,w)) = (ϕ0(x), w) with ϕ0 ∈ H1(k, T̂ ′).

Let ρ∨ ∈ X∗(T
′) = X∗(T̂ ′) be such that for x ∈ k

×
we have ρ∨(x) = diag(x, . . . , x) ∈

GL2n(k). Then χ(ρ∨(x)) = ωπ(x) if x ∈ k× and π = Ind(χ).
Suppose we are in the case of a split SO2n and ϕ = ι ◦ φ′ with ι : SO2n(C) ↪→

GL2n(C) and φ′ : Wk → LT . Then

χ(ρ∨(x)) = det(ϕ(x)) = det(ι(φ′(x))) = 1.

Now let us look at the non-split case SO∗
2n associated to the quadratic extension

E/k as above. In this case

T (k) = (k×)n−1 × E1 or T = Gn−1
m × SO∗

2.

Thus
LT = GL1(C)

n−1 × (GL1(C)×GL1(C))/C
×.

and

ϕ = ι ◦ φ′ : Wk → LT → LT̃
′

where T̃ ′(k) � (k×)n−2 × E× × (k×)n−2 is a torus of GL2n(k) with E× embedded

in GL2(k) as in Langlands-Labesse [33]. Let μ = (μ1, . . . , μn−1, χn), with μi ∈ k̂×

and χn ∈ Ê1, be a character of T (k). Then, by Hilbert’s Theorem 90, E×/k× � E1

through the map x �→ x/xσ. Thus we can extend χn to a character χ̃n of E×. We
can then consider the character

μ̃ = (μ1, . . . , μn−1, χ̃n, μ
−1
n−1, . . . , μ

−1
1 )

of T̃ ′(k).
To get a principal series on GL2n(k), χ̃n must factor through the norm map,

so write χ̃n = μn ◦ NE/k with μn ∈ k̂×. Since χ̃n is trivial on restriction to

k×, then μ2
n = 1. Since endoscopy then gives the Weil representation of GL2(k)

defined by IndWk

WE
χ̃n, it gives the principal series representation I(μnηE/k, μn) =

I(μnηE/k, μ
−1
n ), where ηE/k is the quadratic character of k× associated to the qua-

dratic extension E/k by local class field theory. So if the principal series represen-
tation I(μ) of SO∗

2n(k) transfers to a principal series representation Πv of GL2n(k),
it will be induced from the character

(μ1, . . . , μn−1, μnηE/k, μ
−1
n , μ−1

n−1, . . . , μ
−1
1 )

of T ′(k). Its central character is then simply ηE/k.



FUNCTORIALITY FOR THE QUASISPLIT CLASSICAL GROUPS 139

Even if χ̃n does not factor through the norm, the lift Πv will be the represen-
tation of GL2n(k) induced from

(μ1, . . . , μn−1, π(Ind
Wk

WE
χ̃n), μ

−1
n−1, . . . , μ

−1
1 )

and its central character is still ηE/k. In fact, the central character of π(IndWk

WE
χ̃n)

is the restriction of ηE/kχ̃n to k×, which is simply ηE/k. Note that now the transfer
is tempered, but not necessarily a principal series.
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Dedicated to Freydoon Shahidi

Abstract. We bound the first occurrence in the theta correspondence of irre-
ducible cuspidal automorphic representations σ of orthogonal groups, in terms
of their generalized Gelfand-Graev periods. We also obtain a local analog at
a finite place. As a result, we determine a range of holomorphy of LS(s, σ) in
the right half-plane in terms of the local generalized Gelfand-Graev models of
σ at one finite place.

1. Introduction

In [GJS09], we characterized the first occurrence of irreducible cuspidal au-
tomorphic representations of Om(A) under the theta correspondence to Mp2n(A),

where Mp2n(A) is either S̃p2n(A) (when m is odd) or Sp2n(A) (when m is even) in
terms of the existence of poles of certain Eisenstein series (Theorem 1.3, [GJS09]).
Here, A is the ring of adèles of a number field k. As a consequence, we determined
a range of holomorphy in the right half-plane for the standard partial L-functions
LS(s, σ) of irreducible cuspidal automorphic representations σ of Om(A) (Theorem
1.1 in [GJS09]). These results can be viewed as a natural extension to orthogonal
groups of the work of Kudla and Rallis on symplectic groups ([KR94]) and as a
completion to Mœglin’s work ([M97a] and [M97b]).

In this paper, we discuss the relations between the global or local theta corre-
spondence and the generalized Gelfand-Graev periods or models. As a consequence,
we determine a range of holomorphy in the right half-plane of the standard partial
L-functions LS(s, σ) in terms of local generalized Gelfand-Graev models supported
by a local component σv at one finite place v. A preliminary version of such a result
was given in [GJS09] (Theorem 1.7), and some related very interesting applications
were discussed in §7 of [GJS09].
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For an irreducible cuspidal automorphic representation (σ, Vσ) of Om(A), we
define in §2.2 ψt,α-Fourier coefficients of φσ ∈ Vσ in (2.14). The characters ψt,α

are parametrized by integers t and square classes α in k. Let r be the Witt index
of the quadratic space defining Om. We assume that r is positive, 1 ≤ t ≤ r, and
2t < m. Similarly, we define in (2.17) the notion of a ψt,α-functional in the local
setting. The main result of this paper can be formulated as follows.

Theorem 1.1 (Main). Let σ be an irreducible cuspidal automorphic represen-
tation of Om(A) and t as above.

1. If there exists one finite local place v of k such that the local component σv

of σ has a nonzero ψt,α-functional, then the partial L-function LS(s, σ) is
holomorphic for Re(s) > m

2 − t. In particular, if σ has a nonzero ψt,α-

Fourier coefficient, then the partial L-function LS(s, σ) is holomorphic for
Re(s) > m

2 − t.
2. Assume that σ has a nonzero ψt,α-Fourier coefficient. If either t < r− 1,

or t < r and α is represented by the quadratic form corresponding to the
anisotropic kernel of the quadratic space defining Om, then LS(s, σ) is
holomorphic for Re(s) > m

2 − t− 1.

Remark 1.2. Write m = m0 + 2r. When m0 = 1, Om is the split orthogonal
group in 2r + 1 variables. When t = r, ψt,α is a Whittaker character, and the
assertion of the first part of the main theorem is that LS(s, σ) is holomorphic when
Re(s) > 1

2 . This is Theorem 1.5 in [GJS09]. If t = r − 1, then σ has a nonzero
ψr−1,α-Fourier coefficient. This case was discussed in §7 of [GJS09].

When m0 = 0, Om is the split orthogonal group in 2r variables. If t = r − 1,
then ψr−1,α is a Whittaker character, and the assertion of the first part of the main
theorem is that LS(s, σ) is holomorphic when Re(s) > 1. This is Theorem 1.5 in
[GJS09].

We first prove in §4 that the nonvanishing of ψt,α-Fourier coefficients of σ
determines a range of the lowest occurrence LOψ(σ) (defined in §3.1) of ψ-theta
lifts of σ. Then we establish the corresponding local version of this global result.
This is done by an explicit calculation of the ψt,α-Fourier coefficient of theta lifts of
cuspidal automorphic representations from Mp2n(A) to Om(A), and an analogous
calculation in the local setting. At the first occurrence, we get a relation between
these ψt,α- Fourier coefficients (respectively, functionals in the local setting) and
Whittaker coefficients (resp. models), corresponding to ψ and α, on the symplectic
or metaplectic side. Finally, we use Theorem 1.1 in [GJS09]. Since we quote this
theorem several times in this paper, we state it here for convenience.

Theorem 1.3 (Theorem 1.1 in [GJS09]). Let σ be an irreducible cuspidal
automorphic representation of Om(A).

1. If LS(s, σ) has a pole at s0 = m
2 − j > 0, or if m is odd and LS(s, σ) does

not vanish at s = 1
2 , and we let j = 2[m2 ], then there is an automorphic

sign character ε of Om(A) such that the ψ-theta lift of σ ⊗ ε to Mp2j(A)
does not vanish, i.e. LOψ(σ) ≤ 2j.

2. If LOψ(σ) = 2j0 < m, then LS(s, σ) is holomorphic for Re(s) > m
2 − j0.

3. If LOψ(σ) = 2j0 ≥ m, then LS(s, σ) is holomorphic for Re(s) ≥ 1
2 .

The authors thank the referee for his comments and suggestions.
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2. The Generalized Gelfand-Graev Periods

Let k be a number field and A be the ring of adèles of k. Let (Xm, (·, ·)) be
a non-degenerate quadratic vector space over k of dimension m and Witt index r.
We assume that r ≥ 1. For any nonnegative integer a, we denote by

(2.1) Ha = �+a ⊕ �−a

the polarization of the 2a-dimensional quadratic k-vector space Ha, which is the
direct sum of a copies of the hyperbolic plane. Then Xm can be written as

(2.2) Xm := Xm0
⊥ (�+r ⊕ �−r ) = Xm0

⊥ Hr,

whereXm0
(m0 = m−2r) is them0-dimensional anisotropic quadratic vector space,

which is called the anisotropic kernel of Xm.
We may choose a basis for Xm

(2.3) {e1, · · · , er; ε1, · · · , εm0
; e−r, · · · , e−1}

such that

(ei, ej) =

{
1 if j = −i;

0 if j �= −i,

and (ei, εj) = 0 for all i ∈ {±1, · · · ,±r} and j ∈ {1, · · · ,m0}, where {e1, · · · , er}
is a basis for �+r , {e−r, · · · , e−1} is a basis for �−r and {ε1, · · · , εm0

} is a basis for
Xm0

.
Denote the Gram matrix of {ε1, · · · , εm0

} by Tm0
. Then the Gram matrix of

the basis (2.3) is

Tm =

⎛
⎝ ωr

Tm0

ωr

⎞
⎠ ,

where ωr is the r × r permutation matrix with 1 in its second main diagonal, i.e.
(ωr)i,j = δi,r+1−j .

For each t ∈ {1, 2, · · · , r}, we have the following partial polarization

(2.4) Xm = �+t ⊕Xm−2t ⊕ �−t

where �+t (resp. �−t ) is the totally isotropic subspace of dimension t of �+r (resp. �−r ),
generated by {e1, · · · , et} (resp. by {e−t, · · · , e−1}). We will write the elements of
Om as matrices according to (2.4) and (2.3). Denote by Tm−2t the Gram matrix of
the basis {et+1, · · · , er, ε1, · · · , εm0

, e−r, · · · , e−t−1} of Xm−2t;

Tm−2t =

⎛
⎝ ωr−t

T0

ωr−t

⎞
⎠ .

Assume that m − 2t ≥ 1. Let Qt = LtVt be the standard parabolic subgroup
of Om such that

(2.5) Lt = GLt
1 ×Om−2t ⊂ Om

and

(2.6) Vt = {v = v′(u, x, z) =

⎛
⎝u x∗ z

Im−2t x
u∗

⎞
⎠ ∈ Om},
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where u ∈ Ut, the maximal standard (upper-triangular) unipotent subgroup of GLt.
Denote the first column of x by x1. Then the vectors

(2.7) x1 = t(x1,1, · · · , xm−2t,1)

form a k-vector space which is isomorphic to Xm−2t. Consider the action of GL1×
Om−2t on Xm−2t by

(2.8) (a, h) ◦ x1 := ahx1.

By the Witt theorem, the space Xm−2t decomposes into the following disjoint union
of k-rational GL1 ×Om−2t-orbits:

(2.9) Xm−2t = {0} ∪ O0 ∪ (∪α∈k×/(k×)2Oα),

where O0 consists of all (nonzero) isotropic vectors in Xm−2t and Oα consists of
all vectors x1 in Xm−2t with (x1, x1) ≡ α mod (k×)2. It is clear that the disjoint
union ∪α∈k×/(k×)2Oα is k-stable.

2.1. Global periods. Let ψ be a nontrivial character of A/k. Take μα in Oα

and define a character ψt,α of Vt(A) as follows. For v = v′(u, x, z) ∈ Vt(A), we
define

(2.10) ψt,α(v) := ψ(u1,2 + · · ·+ ut−1,1t)ψ
−1((μα, x1)).

It is clear that the character ψt,α is trivial when restricted to Vt(k). Since the Levi

subgroup Lt = GLt
1 × Om−2t normalizes Vt, the group of k-rational points Lt(k)

also acts on the characters ψt,α, as α runs through a square class in k×. Consider
the following decomposition

(2.11) Xm−2t = (k · μα) ⊥ (k · μα)
⊥.

Since μα is anisotropic, the orthogonal complement (k · μα)
⊥ is a non-degenerate

quadratic k-vector space of dimension m− 2t− 1 with respect to the restriction of
the bilinear form (·, ·) on Xm. The stabilizer of ψt,α in Om−2t is

(2.12) Dt,α := O((k · μα)
⊥)

We want to calculate the Witt index of (k · μα)
⊥. Recall that m − 2t ≥ 1. If

t = r, then Xm−2t = Xm0
is anisotropic, and hence the Witt index of (k · μα)

⊥ is
zero. If t < r, then the Witt index of Xm−2t is r − t and we have

(2.13) Xm−2t = �+r−t ⊕Xm0
⊕ �−r−t.

If α is representable by Xm0
, then the Witt index of (k · μα)

⊥ is r − t. If α is not
representable by Xm0

, then the Witt index of (k · μα)
⊥ is r − t− 1.

For an automorphic form φ on Om(A), we define the ψt,α-Fourier coefficient of
ϕ by the following integral:

(2.14) Fψt,α(φ)(g) :=

∫
Vt(k)\Vt(A)

φ(vg)ψ−1
t,α(v)dv.

It is clear that the restriction of Fψt,α(φ) to Dt,α(A) is left Dt,α(k)-invariant. We
note that when Om is quasi-split, or split over k, and t = [m−1

2 ], then the ψt,α-
Fourier coefficient is a Whittaker-Fourier coefficient.
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Let φ′ be an automorphic form on Dt,α(A). Then we define the generalized
Gelfand-Graev period (or Bessel period) of φ of type (Dt,α, ψt,α, φ

′), or simply the
(Dt,α, ψt,α, φ)-period of φ, by the following integral:

(2.15) PDt,α;ψt,α
(φ, φ′) = PDt,α

(φ, φ′) :=

∫
Dt,α(k)\Dt,α(A)

Fψt,α(φ)(h)φ′(h)dh,

if the last integral converges. We refer to [GPSR97] for applications of such periods
to the theory of automorphic L-functions.

2.2. Local models. Let v be a finite local place of k and kv be the local field
of k at v. Let ψv be a nontrivial character of kv. We define the v-analogue of ψt,α

for Vt(kv) by

(2.16) ψt,α;v(v
′(u, x, z)) = ψv(u1,2 + · · ·+ ut−1,1t)ψ

−1((μα,v, x1))

where α ∈ k×v and μα,v ∈ Xm−2t(kv) is such that (μα,v, μα,v) = α. Let (σv, Vσv
) be

an irreducible admissible representation of Om(kv). We say that σv has a nontrivial
ψt,α;v-functional if the space

(2.17) HomVt(kv)(Vσv
, ψt,α;v)

is nonzero. It is clear that in case Om(kv) is quasi-split or split over kv, and
t = [m−1

2 ], then a ψt,α-functional is a Whittaker functional.
Let τv be an irreducible admissible representation of Dt,α(kv). Then τv⊗ψt,α;v

is a representation of the semi-direct product

(2.18) Jt,α(kv) = Dt,α(kv)� Vt(kv).

We say that σv has a nontrivial generalized Gelfand-Graev model (or Bessel model)
of type (Jt,α, τv ⊗ ψt,α;v), or a nontrivial (Jt,α, τv ⊗ ψt,α;v)-model if the space

(2.19) HomJt,α(kv)(Vσv
, τv ⊗ ψt,α;v)

is nonzero. In this case, take 0 �= �v ∈ HomJt,α(kv)(Vσv
, τv ⊗ ψt,α;v). Then the

corresponding (Jt,α, τv⊗ψt,α;v)-model is the space consisting of all functions of the
following type:

(2.20) Bψt,α;v
x (g) := �v(σv(g)(x)), g ∈ Om(kv)

when x runs through Vσv
.

3. Global and Local Theta Correspondences

In this section we recall the global and local theta correspondences for Om and
then study the global and local first occurrences of theta correspondences in terms
of the periods or models defined in the previous sections.

3.1. Global and local theta liftings. Let Sp2l be the symplectic group of k-
rank l. Then (Om, Sp2l) forms a reductive dual pair in Sp2lm in the sense of R. Howe

([H79]). We denote by Mp2l(A) the metaplectic double cover S̃p2l(A) of Sp2l(A) if
m = 2n+1 or the A-rational points Sp2l(A) of Sp2l if m = 2n. Similarly, we denote

by Mp2l(kv) the metaplectic double cover S̃p2l(kv) of Sp2l(kv) if m = 2n+1 or the
kv-rational points Sp2l(kv) of Sp2l if m = 2n. Details about Mp2l(kv) and Mp2l(A)
and their splitting properties can be found in many references. See, for instance,
[K94] or [JngS07b].
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For a non-trivial character ψ of A/k, there exists the Weil representation ωψ

of S̃p2lm(A), which is realized in the Schrödinger model S(Aml), where S(Aml) is
the space of C-valued Schwartz-Bruhat functions on Aml.

For ϕ ∈ S(Aml), we form the theta function

θψ,ϕ(x) :=
∑

ξ∈kml

ωψ(x)(ϕ)(ξ),

on S̃p2ml(A). This series is absolutely convergent and defines a function of moderate

growth on S̃p2ml(A). There is a natural homomorphism

Om(A)×Mp2l(A) → S̃p2ml(A)

with kernel C2 = {±1}, and the center of Om(A) diagonally embedded. We pull
the Weil representation ωψ back to Om(A) × Mp2l(A). This allows us to restrict
θψ,ϕ to Om(A)×Mp2l(A). See [JngS07b], for instance.

For an irreducible cuspidal automorphic representation (σ, Vσ) of Om(A), the
integral

(3.1) θ2lψ,m(h;φσ, ϕ) :=

∫
Om(k)\Om(A)

φσ(g)θψ−1,ϕ(g, h)dg

with φσ ∈ Vσ, defines an automorphic form on Mp2l(A). We denote by θ2lψ,m(σ)

the space generated by all θ2lψ,m(g;φσ, ϕ) as ϕ and φσ vary. This defines a gen-

uine automorphic representation of Mp2l(A), which we denote by θ2lψ,m(σ). We

call this representation the ψ-theta lifting of σ to Mp2l(A). Similarly, for a gen-
uine irreducible cuspidal automorphic representation (π̃, Vπ̃) of Mp2l(A), we get
the automorphic representation θmψ,2l(π̃) of Om(A). Its space is generated by the
automorphic forms

(3.2) θmψ,2l(g;φπ̃, ϕ) :=

∫
Mp2l(k)\Mp2l(A)

φπ̃(h)θψ,ϕ(g, h)dh

as ϕ and φπ̃ vary. We say that θmψ,2l(π̃) is the ψ-theta lifting of π̃ to Om(A). In this

paper, all representations of the metaplectic group (global or local) are assumed to
be genuine.

Recall that a basic problem in the theory of the theta correspondence is to
determine when the ψ-theta lifting θ2lψ,m(σ) is nonzero for a given irreducible cus-

pidal automorphic representation σ of Om(A) (similarly for θmψ,2l(π̃)). In [GJS09],

we introduced the notion of the lowest occurrence LOψ(σ) of σ, with respect to
all twists by automorphic sign characters of Om(A), in the tower Mp2l(A), via the
ψ-theta correspondence, namely

(3.3) LOψ(σ) := min
ε
{FOψ(σ ⊗ ε)},

where ε runs through all automorphic sign characters of Om(A). As the notation
suggests, FOψ(σ⊗ ε) denotes the first occurrence of σ⊗ ε in the tower Mp2l(A) via
the ψ-theta correspondence.

Next, we recall briefly from [MVW87] the local theta correspondence over the
local field kv, where v is a finite local place of k.

For a nontrivial character ψv of kv, let ωψv
be the Weil representation of the re-

ductive dual pair Om(kv)×Mp2l(kv) acting on the local Schrödinger model S(kml
v ),

where S(kml
v ) is the space of local kv-valued Schwartz-Bruhat functions on kml

v . A
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detailed discussion of the splitting of the double cover and the related cocycles can
be found in [JngS07b], for example. See [K94] for general reductive dual pairs.

Let (σv, Vσv
) ( (π̃v, Vπ̃v

), resp.) be an irreducible admissible representation of
Om(kv) ( Mp2l(kv), resp.). If

(3.4) HomOm(kv)×Mp2l(kv)(S(kml
v ), Vσv

⊗ Vπ̃v
) �= 0,

then we say that π̃v is a local ψv-theta lift of σv, and σv is a local ψv-theta lift of π̃v.
We do not assume that the local Howe duality conjecture holds for the case we are
discussing here. The local Howe duality conjecture was proved by J.-L. Waldspurger
[W90], when the residual characteristic of k is odd. In such a circumstance, the
local ψv-theta lift is the same as the local ψv-Howe lift. We refer to [MVW87] for
more detailed discussions.

We define the first occurrence for the local ψv-theta liftings based on (3.4).
More precisely, we say that the first occurrence of σv is FOψv

(σv) = 2l0 if

HomOm(kv)×Mp2l1
(kv)(S(kml1

v ), Vσv
⊗ Vπ̃v,l1

) = 0,

for all l1 < l0 and for all irreducible admissible representations π̃v,l1 of Mp2l1(kv),
but there exists at least one irreducible admissible representation π̃v,l0 of Mp2l0(kv)
such that

HomOm(kv)×Mp2l0
(kv)(S(kml0

v ), Vσv
⊗ Vπ̃v,l0

) �= 0.

By the local tower property of ([K96], for instance), if the first occurrence of σv is
FOψv

(σv) = 2l0, then for any l > l0, there always exists an irreducible admissible
representation π̃v,l of Mp2l(kv) such that the space

HomOm(kv)×Mp2l(kv)(S(kml
v ), Vσv

⊗ Vπ̃v,l
) �= 0.

We define the local lowest occurrence of σv by

LOψv
(σv) := min{FOψv

(σv),FOψv
(σv ⊗ det)}.

We mention here the conservation relation conjectured by Kudla and Rallis, namely
that FOψv

(σv) + FOψv
(σv ⊗ det) = m. See [KR05].

The local first occurrence for π̃v can be defined in the same way.

3.2. Vanishing of theta liftings. For an irreducible cuspidal automorphic
representation σ of Om(A), we are going to relate, by doing some explicit calcula-
tions, the nonvanishing of the ψt,α-Fourier coefficient on σ to the first occurrence
FOψ(σ) of σ.

Following [MW87], [M96] and [GRS03], we say that σ has ψt,α as a top
Fourier coefficient, for given t ∈ {1, 2, · · · , r} and α ∈ k× mod (k×)2, if there is
some φσ ∈ Vσ such that the ψt,α-Fourier coefficient Fψt,α(φσ) is not identically

zero, but the ψt′,α′ -Fourier coefficients Fψt′,α′ (φσ) are all identically zero, for all
φσ ∈ Vσ, α′ ∈ k× mod (k×)2, and t′ > t. Recall again that we assume that
m− 2t ≥ 1. Note that if r, the k-rank of Om, is zero, i.e. Om is k-anisotropic, then
σ has no such Fourier coefficients at all.

The first result in this paper is

Theorem 3.1. Let σ be an irreducible cuspidal automorphic representation of
Om(A). If σ has ψt,α as a top Fourier coefficient, for some t ∈ {1, 2, · · · , r},
with r = m−m0

2 ≥ 1, m − 2t ≥ 1, and some α ∈ k× mod (k×)2, then the lowest
occurrence of σ, LOψ(σ) is greater than or equal to 2t, i.e. for any automorphic
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sign character ε of Om(A), the first occurrence FOψ(σ⊗ ε) is greater than or equal
to 2t.

Note that when m0 ≤ 1 and t = [m−1
2 ], ψt,α is a Whittaker character. In

these cases the theorem is well known (at least the version with special orthogonal
groups). See [W80], for m = 3, [PSS87], for m = 5, [F95], for m odd, in general,
and [GRS97], for m even.

Here is an outline of the proof of Theorem 3.1. It suffices to show that for any
l < t, the ψ-theta lifting θ2lψ,m(σ ⊗ ε) is zero as an automorphic representation of

Mp2l(A), for all automorphic sign characters ε of Om(A).
If this is not the case, then by the Rallis tower property of theta liftings ([R84]),

there is an integer l < t and an automorphic sign character ε of Om(A) such that the
ψ-theta lifting θ2lψ,m(σ ⊗ ε) is nonzero and cuspidal. Clearly, σ ⊗ ε has a nontrivial

ψt,α-Fourier coefficient (and this is its top Fourier coefficient). Thus, we may assume
that ε is trivial, and hence that θ2lψ,m(σ) is nonzero and cuspidal.

By the main theorem of [M97b] and Theorem 1.2 of [JngS07b], the ψ-theta
lifting π̃2l := θ2lψ,m(σ) is a nonzero irreducible cuspidal automorphic representation

of Mp2l(A) and we have

(3.5) σ = θmψ,2l(π̃2l) = θmψ,2l(θ
2l
ψ,m(σ)).

We consider the following polarizations for Xm and W2l:

Xm = �+t ⊕Xm−2t ⊕ �−t ,(3.6)

W2l = Y +
l ⊕ Y −

l ,(3.7)

where W2l is the non-degenerate symplectic k-vector space defining Sp2l, and hence
Mp2l. We assume that Om acts from the left on Xm and Sp2l acts from the right
on W2l. We may take a canonical basis

(3.8) {f1, · · · , fl; f−l, · · · , f−1}

forW2l, such that Y +
l is generated by {f1, · · · , fl}, Y −

l is generated by {f−l, · · · , f−1},
and (fi, f−j)W2l

= δij .
We consider the Weil representation ωψ on the mixed Schrödinger model

(3.9) Sm⊗2l := S(�−t (A)⊗W2l(A)⊕Xm−2t(A)⊗ Y +
l (A)).

The Schwartz-Bruhat function ϕ in Sm⊗2l is written as

(3.10) ϕ(w1, · · · , wt; y1, · · · , ym−2t)

where wi ∈ W2l(A) and yj ∈ Y +
l (A) for i = 1, · · · , t and j = 1, · · · ,m− 2t.

By assumption, σ has a nonzero ψt,α-Fourier coefficient for t ≤ r and for some
α ∈ k× (see (2.14)), i.e.

(3.11) Fψt,α(φσ)(g) :=

∫
Vt(k)\Vt(A)

φσ(vg)ψ
−1
t,α(v)dv

is nonzero, for some φσ ∈ Vσ and some g ∈ Om(A). By (3.5), we may take φσ to
be

(3.12) φσ(g) =

∫
Mp2l(k)\Mp2l(A)

φπ̃(h)θψ,ϕ(g, h)dh
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for some φπ̃ ∈ Vπ̃. Then the ψt,α-Fourier coefficient Fψt,α(φσ) can be written as

Fψt,α(φσ)(e) =

∫
Vt(k)\Vt(A)

∫
Mp2l(k)\Mp2l(A)

φπ̃(h)θψ,ϕ(v, h)dhψ
−1
t,α(v)dv

=

∫
Mp2l(k)\Mp2l(A)

φπ̃(h)

∫
Vt(k)\Vt(A)

θψ,ϕ(v, h)ψ
−1
t,α(v)dvdh.

(3.13)

The switch of order of integrations is easily justified, since Vt(k)\Vt(A) is compact,
φπ̃ is rapidly decreasing and θψ,ϕ(v, h) is of moderate growth. The inner integral
is the ψt,α-Fourier coefficient of the theta function

(3.14) Fψt,α(θψ,ϕ(·, h)) :=
∫
Vt(k)\Vt(A)

θψ,ϕ(v, h)ψ
−1
t,α(v)dv

Then we have

Proposition 3.2. The ψt,α-Fourier coefficient of the theta function θψ,ϕ(g, h),
Fψt,α(θψ,ϕ(·, h)), is zero for all ϕ ∈ S(Aml), if l < t.

We postpone the proof of Proposition 3.2 to §4.1.
By Proposition 3.2, if l < t, the ψt,α-Fourier coefficient of the theta function

θψ,ϕ(g, h), Fψt,α(θψ,ϕ(·, h)), is zero for all ϕ ∈ S(Aml). It follows that the ψt,α-
Fourier coefficient Fψt,α(φσ) as in (3.11) is zero for all φσ ∈ Vσ. This contradicts
our assumption. This will prove Theorem 3.1.

By applying Theorem 3.1 above to Theorem 1.1 in [GJS09], we obtain

Corollary 3.3. Let σ be an irreducible cuspidal automorphic representation
of Om(A). If σ has ψt,α as a top Fourier coefficient, for some t ∈ {1, 2, · · · , r},
with r = m−m0

2 ≥ 1, m − 2t ≥ 1, and some α ∈ k× mod (k×)2, then the partial

L-function LS(s, σ) is holomorphic for Re(s) > m
2 − t.

4. Fourier Coefficients of Theta Functions

We shall prove Proposition 3.2 first and then develop its local version after-
wards.

4.1. Proof of Proposition 3.2. We shall use the notation in §3 for the calcu-
lation of the ψt,α-Fourier coefficient of the theta function θψ,ϕ(g, h) as in Proposition
3.2,

(4.1) Fψt,α(θψ,ϕ(·, h)) :=
∫
Vt(k)\Vt(A)

θψ,ϕ(v, h)ψ
−1
t,α(v)dv.

Let us rewrite the elements (2.6) in Vt in the form

v = v(u, x, z) =

⎛
⎝u x z

Im−2t x∗

u∗

⎞
⎠

The subgroup Zt = {v(z) = v(It, 0, z) ∈ Vt} is the center of Nt = {v(x, z) =
v(It, x, z) ∈ Vt}, and the subgroup Ut = {v(u) = v(u, 0, 0) ∈ Vt} normalizes Nt.
We may write the elements of Zt\Nt as v(x) = v(It, x, z)Zt, for any z, such that
v(It, x, z) ∈ Vt. Note that

ψt,α(v(It, x, z)) = ψ(xt · μα),
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where xt is the last row of x. We have

Fψt,α(θψ,ϕ(·, h)) =

∫
Ut(k)\Ut(A)

∫
Mt×(m−2t)(k)\Mt×(m−2t)(A)

·
∫
Zt(k)\Zt(A)

θψ,ϕ(v(z)v(x)v(u), h)ψ
−1
t,α(v(x)v(u))dzdxdu.(4.2)

By the definition of the mixed Schrödinger model as in (3.9) and (3.10), the
theta function θψ,ϕ(v(z)g, h) can be written as

(4.3)
∑

wi∈W2l(k),yj∈Y +
l (k)

ωψ(v(z)g, h)ϕ(w1, · · · , wt; y1, · · · , ym−2t).

We have the following formula for the action of ωψ(v(z), 1) on the mixed Schrödinger
model:

ωψ(v(z), 1)ϕ(w1, · · · , wt; y1, · · · , ym−2t)

= ϕ(w1, · · · , wt; y1, · · · , ym−2t)ψ(
1

2
tr(Gr(w1, · · · , wt)ωtz)),

where Gr(w1, · · · , wt) is the Gram matrix of (w1, · · · , wt) (see [K96], p. 37, and
also [JngS07b], p. 727).

Hence the dz-integration in (4.2) can be expressed as
∫
Zt(k)\Zt(A)

θψ,ϕ(v(z)g, h)dz =
∑
wi,yj

ωψ(g, h)ϕ(w1, · · · , wt; y1, · · · , ym−2t)

·
∫
Zt(k)\Zt(A)

ψ−1(
1

2
tr(Gr(w1, · · · , wt)ωtz))dz,

where the summation over wi, yj is the same as in (4.3). The order switch of integral
and sum is easily justified, since Zt(k)\Zt(A) is compact and the summation over
wi, yj is absolutely convergent. Note that

∫
Zt(k)\Zt(A)

ψ(
1

2
tr(Gr(w1, · · · , wt)ωtz))dz

must be zero unless the Gram matrix Gr(w1, · · · , wt) is zero, i.e. (wi, wj)W2l
=

0 for all i, j = 1, 2, · · · , t. This means that the subspace of W2l generated by
w1, w2, · · · , wt is totally isotropic. Since we assume that l < t, we deduce that
w1, w2, · · · , wt must be linearly dependent in W2l. When Gr(w1, · · · , wt) is zero,∫

Zt(k)\Zt(A)

ψ(
1

2
tr(Gr(w1, · · · , wt)ωtz))dz = 1

by the choice of the Haar measure on Zt(k)\Zt(A). Therefore we have

(4.4)

∫
Zt(k)\Zt(A)

θψ,ϕ(v(z)g, h)dz =
∑
wi,yj

ωψ(g, h)ϕ(w1, · · · , wt; y1, · · · , ym−2t)

where the summation is over all y1, · · · , ym−2t ∈ Y +
l (k), and all w1, · · · , wt ∈

W2l(k) with the property that w1, w2, · · · , wt generate a totally isotropic subspace of
W2l(k). Again, since dimk Spank(w1, · · · , wt) ≤ l < t, w1, · · · , wt are automatically
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linearly dependent. Hence we obtain

Fψt,α(θψ,ϕ(·, h)) =

∫
Ut(k)\Ut(A)

∫
Mt×(m−2t)(k)\Mt×(m−2t)(A)

∑
wi,yj

ωψ(v(x)v(u), h)

·ϕ(w1, · · · , wt; y1, · · · , ym−2t)ψ
−1
t,α(v(x)v(u))dxdu,(4.5)

with summation as above. Denote

d = dimk Spank(w1, · · · , wt),
Ed = Spank(w1, · · · , wt).

Then we can split the last integral as a sum over 0 ≤ d ≤ l, where in each
summand we compute the last integral with w1, · · · , wt ∈ Ed and Ed varies over all
d-dimensional totally isotropic subspaces of W2l. Let Pd be the standard parabolic
subgroup of Sp2l, which preserves the totally isotropic subspace Y −

d generated by

{f−d, · · · , f−1}. Then we may write Ed = Y −
d γ, where γ ∈ Pd(k)\Sp2l(k). Thus,

Fψt,α(θψ,ϕ(·, h)) =
l∑

d=0

∫
Ut(k)\Ut(A)

∫
Mt×(m−2t)(k)\Mt×(m−2t)(A)

∑
γ∈Pd(k)\Sp2l(k)∑

wi∈Y −
d

∑
yj∈Y +

l

ωψ(v(x)v(u), γh) · ϕ(w1, · · · , wt; y1, · · · , ym−2t)

·ψ−1
t,α(v(x)v(u))dxdu.(4.6)

Here, we used the automorphy of theta series. More explicitly, if we write in (4.5),
wi = viγ, where wi ∈ Ed and vi ∈ Y −

d , then

∑
yj∈Y +

l

ωψ(g, h) · ϕ(v1γ, · · · , vtγ; y1, · · · , ym−2t)

=
∑

yj∈Y +
l

ωψ(g, γh) · ϕ(v1, · · · , vt; y1, · · · , ym−2t).

The point is that the summation over yj ∈ Y +
l defines the theta series on Om−2t(A)×

Mp2l(A). To explain this, we may assume that g = 1, and that ϕ = ϕ1⊗ϕ2, where

ϕ(w1, · · · , wt; y1, · · · , ym−2t) = ϕ1(w1, · · · , wt)ϕ2(y1, · · · , ym−2t).

Then
∑

yj∈Y +
l

ωψ(1, h) · ϕ(w1, · · · , wt; y1, · · · , ym−2t) = ϕ1(w1h, · · · , wth)θψ,ϕ2
(1, h),

where θψ,ϕ2
is the corresponding theta series for Om−2t(A)×Mp2l(A). Let us use

now the action of v(x), which follows from the formulae of the Weil representation
on the mixed model. For w1, · · · , wt ∈ Y −

l and y1, · · · , ym−2t ∈ Y +
l ,

ωψ(v(x), 1) · ϕ(w1, · · · , wt; y1, · · · , ym−2t)

= ψ(
t∑

i=1

m−2t∑
j=1

xt+1−i,j(wi, yj))ϕ(w1, · · · , wt; y1, · · · , ym−2t).
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As before, we may switch the order of summations and the dx-integration and
get

Fψt,α(θψ,ϕ(·, h)) =

l∑
d=0

∫
Ut(k)\Ut(A)

∑
γ∈Pd(k)\Sp2l(k)

∑
Wα,d(k)

ωψ(v(u), γh) · ϕ(w1, · · · , wt; y1, · · · , ym−2t)ψ
−1
t,α(v(u))du,(4.7)

where Wα,d is the variety of all (w1, · · · , wt; y1, · · · , ym−2t), such that the wi lie in
Y −
d , the yj lie in Y +

l , (wi, yj) = 0, for all 2 ≤ i ≤ t, 1 ≤ j ≤ m− 2t, and similarly,

(w1, yj) = (μα)j .

Recall that μα is the (column) vector in Xm−2t(k), such that (μα, μα) = α,
which enters into the definition of ψt,α. The action of ωψ(v(u), 1) is linear on
�−t(A)⊗W2l(A) and trivial on Xm−2t(A)⊗ Y +

l (A). The precise form is

ωψ(v(u), 1) · ϕ(w1, · · · , wt; y1, · · · , ym−2t) = ϕ((w1, · · · , wt) · ωtuωt; y1, · · · , ym−2t).

Note that

(4.8) (w1, · · · , wt; y1, · · · , ym−2t) �→ ((w1, · · · , wt) · ωtuωt; y1, · · · , ym−2t)

defines a k-rational action of Ut on Wα,d. The Ut(k)-orbits in Wα,d(k) are given
by elements (w1, · · · , wt; y1, · · · , ym−2t) ∈ Wα,d(k), such that (w1, · · · , wt) is of the
following form

(4.9) (w1, · · · , 0, wi2 , 0, · · · , 0, wi3 , 0, · · · , 0, · · · , 0, wid , 0, · · · , 0),

where w1, wi1 , wi2 , · · · , wid are linearly independent elements in Y −
d . Note that by

definition of Wα,d, we must have d ≥ 1 and w1 �= 0. Denote by w′
(t:d) the element

in (4.9), and let w(t:d) = (w′
(t:d); y1, · · · , ym−2t). Denote its Ut(k)-orbit by Ow(t:d)

and its stabilizer in Ut, via the action (4.8), by Lw(t:d)
, i.e.

Lw(t:d)
:= {u ∈ Ut(k) | w′

(t:d) · ωtuωt = w′
(t:d)}.

Again, in (4.7), we may switch order of summations and the du-integration.
Then, the contribution of the Ut(k)-orbit Ow(t:d)

is

∫
Ut(k)\Ut(A)

∑
Ow(t:d)

ωψ(v(u), γh)ϕ(w1, · · · , wt; y1, · · · , ym−2t)ψ
−1
t,α(v(u))du

=

∫
Ut(k)\Ut(A)

∑
η∈Lw(t:d)(k)\Ut(k)

ωψ(v(ηu), γh)ϕ(w(t:d))ψ
−1
t,α(v(u))du

=

∫
Lw(t:d)

(k)\Ut(A)

ωψ(v(u), γh)ϕ(w(t:d))ψ
−1
t,α(v(u))du

=

∫
Lw(t:d)

(A)\Ut(A)

ωψ(v(u), γh)ϕ(w(t:d))ψ
−1
t,α(v(u))du

·
∫
Lw(t:d)

(k)\Lw(t:d)
(A)

ψ−1
t,α(v(a))da.(4.10)
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Hence, if the restriction of the character ψt,α to the stabilizer Lw(t:d)
(A) is nontrivial,

then we must have ∫
Lw(t:d)

(k)\Lw(t:d)
(A)

ψ−1
t,α(v(a))da = 0.

This implies that for such a Ut(k)-orbit Ow(t:d)
, we have

(4.11)∫
Ut(k)\Ut(A)

∑
Ow(t:d)

ωψ(v(u), γh)ϕ(w1, · · · , wt; y1, · · · , ym−2t)ψ
−1
t,α(v(u))du = 0.

Note again that in the orbit Ow(t:d)
, y1, · · · , ym−2t are fixed. Now for a Ut(k)-orbit

Ow(t:d)
with representative of the form (w′

(t:d); y1, · · · , ym−2t), where w′
(t:d) is as in

(4.9), since r ≤ l < t, it is easy to check that the stabilizer Lw(t:d)
contains at least

one simple root of GLt in Ut. Recall again, that in Wα,d, we must have w1 �= 0.
Hence we must have that the restriction of the character ψt,α to the stabilizer
Lw(t:d)

(A) is nontrivial. This proves Proposition 3.2.

4.2. Genericity of theta liftings. We are going to calculate the ψt,α-Fourier
coefficient Fψt,α(φσ) of φσ ∈ Vσ, as defined in (3.12) when l = t. In other words,
we will calculate explicitly the following integral:

(4.12) Fψt,α(φσ) =

∫
Mp2t(k)\Mp2t(A)

φπ̃(h)

∫
Vt(k)\Vt(A)

θψ,ϕ(v, h)ψ
−1
t,α(v)dvdh

for φσ ∈ Vσ and ϕ ∈ S(Amt). For this, we simply continue our calculation in §4.1,
with l = t. What we did shows that in (4.7) only d = t may contribute a nonzero
summand. Note also that for (w1, · · · , wt; y1, · · · , ym−2t) ∈ Wα,t(k), w1, · · · , wt

form a basis of Y −
t . Denote by S the unipotent radical of the Siegel parabolic

subgroup Pt. Then we may replace in (4.7) (l = t) the summation over γ ∈
Pt(k)\Sp2t(k) by the summation over γ ∈ S(k)\Sp2t(k), but now (w1, · · · , wt) =
(f−t, · · · , f−1) are fixed to be the standard basis of Y −

t . We get

Fψt,α(θψ,ϕ(·, h)) =

∫
Ut(k)\Ut(A)

∑
γ∈S(k)\Sp2t(k)

∑
Yα(k)

ωψ(v(u), γh)ϕ(f−t, · · · , f−1; y1, · · · , ym−2t)ψ
−1
t,α(v(u))du,(4.13)

where Yα is the set of all (y1, · · · , ym−2t), such that the yj lie in Y +
t , satisfy

(f−i, yj) = 0, for all 1 ≤ i < t and 1 ≤ j ≤ m− 2t, and similarly

(f−t, yj) = (μα)j .

This implies that Yα is a single point. Indeed, we must have yj = ajft, where
aj ∈ k, and

t(a1, · · · , am−2t) = μα.

In terms of our notation (3.9), (3.10), it is now more convenient to re-denote the
vector (a1ft, · · · , am−2tft) by μα ⊗ ft ∈ Xm−2t(k)⊗ Y +

t (k). We conclude that

Fψt,α(θψ,ϕ(·, h)) =
∑

γ∈S(k)\Sp2t(k)

∫
Ut(k)\Ut(A)

ωψ(v(u), γh) · ϕ(f−t, · · · , f−1;μα ⊗ ft)ψ
−1
t,α(v(u))du,(4.14)
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Substitute this in (3.13). We get

Fψt,α(φσ)(e) =

∫
S(k)\Mp2t(A)

φπ̃(h)

∫
Ut(k)\Ut(A)

ωψ(v(u), h) · ϕ(f−t, · · · , f−1;μα ⊗ ft)ψ
−1
t,α(v(u))dudh,(4.15)

In the mixed Schrödinger model (3.9), we have, for s =

(
It b

It

)
∈ S(A),

ωψ(1, s) · ϕ(f−t, · · · , f−1;μα ⊗ ft) = ψ(
1

2
αbt,1)ϕ(f−t, · · · , f−1;μα ⊗ ft).

Factoring integration in the last integral through S(A), we get

Fψt,α(φσ)(e) =

∫
S(A)\Mp2t(A)

∫
S(k)\S(A)

φπ̃(sh)ψ(
1

2
αst,t+1)ds

·
∫
Ut(k)\Ut(A)

ωψ(v(u), h) · ϕ(f−t, · · · , f−1;μα ⊗ ft)ψ
−1
t,α(v(u))dudh,(4.16)

Next, we have the following formula, for u ∈ Ut(A),

ωψ(u, 1) · ϕ(f−t, · · · , f−1;μα ⊗ ft) = ωψ(1, u
−1h)ϕ(f−t, · · · , f−1;μα ⊗ ft),

Then by changing the variable h �→ uh in the last integral, we get that

Fψt,α(φσ)(e) =

∫
S(A)\Mp2t(A)

ωψ(1, h) · ϕ(f−t, · · · , f−1;μα ⊗ ft)

·
∫
Ut(k)\Ut(A)

∫
S(k)\S(A)

φπ̃(suh)ψ(
1

2
αst,t+1)ψ

−1
t,α(u)dudsdh.(4.17)

It is clear that the semi-direct product Ut � S is the unipotent radical Rt of the
standard Borel subgroup of Sp2t and the product of the two characters ψt,α(u) and
ψ(− 1

2α · st,t+1) is a generic character ψRt,α of Rt. Hence the inner integrations ds

and du give a Whittaker-Fourier coefficient of φπ̃, which is denoted by WψRt,α

φπ̃
(h).

Hence Fψt,α(φσ)(e) is equal to

(4.18)

∫
S(A)\Mp2t(A)

ωψ(1, h)ϕ(f−t, · · · , f−1;μα ⊗ ft)W
ψRt,α

φπ̃
(h)dh.

We record the calculation above in the following proposition.

Proposition 4.1. Let π̃ be an irreducible cuspidal automorphic representation
of Mp2t(A). Let σ = θmψ,2t(π̃) be the theta lift of π̃ to Om(A). We assume that r ≥ t

and m > 2t. Let φσ be the element of Vσ given by (3.12), namely

φσ(g) =

∫
Mp2l(k)\Mp2l(A)

φπ̃(h)θψ,ϕ(g, h)dh.

Then the ψt,α- Fourier coefficient of σ is related to the ψRt,α-Whittaker -Fourier
coefficient of π̃ by

(4.19) Fψt,α(φσ)(e) =

∫
S(A)\Mp2t(A)

ωψ(1, h)ϕ(f−t, · · · , f−1;μα⊗ft)W
ψRt,α

φπ̃
(h)dh.

In particular, if π̃ is not generic, or if α is not represented by Xm−2t, then σ has
zero ψt,α-Fourier coefficients.

As a corollary, we get
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Proposition 4.2. Let σ be an irreducible cuspidal automorphic representation
of Om(A). Assume that σ has a nonzero ψt,α-Fourier coefficient (1 ≤ t ≤ r, m −
2t ≥ 1). Assume that the first occurrence of σ, FOψ(σ) is 2t. Let π̃ = θ2tψ,m(σ)

be the ψ-theta lift of σ to Mp2t(A). Then π̃ is globally generic, with respect to
the Whittaker character ψRt,α, as above. Moreover, the formula relating the ψt,α-
Fourier coefficient of σ and the ψRt,α-Whittaker-Fourier coefficient of π̃ is given
(in the above notation) by (4.19).

Conversely, start with an irreducible, cuspidal automorphic representation π̃ of
Mp2t(A), which is globally generic with respect to a character of the form ψRt,α,
where α ∈ k×. Assume that t ≤ r and 2t < m. We use the same notation pertaining
to Xm (Xm−2t, the symmetric non-degenerate matrices Tm−2t etc.). Since the
quadratic form defined by Tm0+2 is not anisotropic, α is represented by Tm0+2. Let
μα ∈ Xm0+2(k) be such that (μα, μα) = α, and consider the r.h.s. of (4.19), where
we take ωψ to be the Weil representation of the dual pair Om0+2+2t(A)×Mp2t(A).
It is easy to see that the r.h.s is not identically zero. By Proposition 4.1, we conclude
that the ψt,α-Fourier coefficient of the ψ theta lift of π̃ to Om0+2+2t(A) is nontrivial.
In particular, the ψ-theta lift of π̃ to Om0+2+2t(A) is nonzero. Now, let σ be an
irreducible cuspidal automorphic representation of Om(A), which has a nontrivial
ψt,α-Fourier coefficient. We already proved that FOψ(σ) ≥ 2t. If FOψ(σ) = 2t,
then, by what we just explained, we must have that r ≤ t+ 1. Thus, if we assume
that t < r − 1, then we get that FOψ(σ) ≥ 2t + 2, and hence, by Theorem 1.1 in
[GJS09], LS(s, σ) is holomorphic at Re(s) > m

2 − t− 1.
We can repeat the same considerations if α is represented by Tm0

. Let μα ∈
Xm0

(k) represent α. Now we repeat the same argument with Xm0
replacing Xm0+2

and obtain that if FOψ(σ) = 2t and π̃ is the ψ-theta lift of σ to Mp2t(A), then
since π̃ is globally ψRt,α-generic, it has a nontrivial ψ-theta lift to Om0+2t(A), and
we conclude that t ≥ r. Thus, if we assume, in this case, that t < r, then we get, as
before, that FOψ(σ) ≥ 2t+2, and that LS(s, σ) is holomorphic for Re(s) > m

2 −t−1.
Let us summarize this.

Theorem 4.3. Let σ be an irreducible cuspidal automorphic representation of
Om(A). Assume that σ has a nonzero ψt,α-Fourier coefficient (1 ≤ t ≤ r, m−2t ≥
1).

1. Assume that t < r−1. Then the partial L-function LS(s, σ) is holomorphic
for Re(s) > m

2 − t− 1.
2. Assume that α is represented by the quadratic form corresponding to Tm0

,
and that t < r. Then the partial L-function LS(s, σ) is holomorphic for
Re(s) > m

2 − t− 1.

5. Completion of the Proof of Theorem 1.1

The proof of Part (1) of Theorem 1.1 is completely analogous to the one in
§4.1. We will use the same notation as before, adapted to the local setting.

5.1. Local models and theta lifts. We determine the vanishing of local
theta lifts in terms of the local ψt,α-functional. Here is the result.

Theorem 5.1. Let F be a finite extension of the p-adic field Qp. Let σ be
an irreducible admissible representation of Om(F ). Assume that σ has a nonzero
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ψt,α-functional as defined in (2.17) for some t ≤ r, the Witt index of the quadratic
space Xm defining Om(F ). Then LOψ(σ) ≥ 2t.

This is the local analogue of Theorem 3.1. The proof uses the local version
of the global arguments used in the proof of Theorem 3.1 and is modeled after
the proof of Proposition 2.1, [JngS03] and of Theorem 4.2, [JngS07a]. Here is a
sketch.

It is enough to show that the local ψ-theta lift θ2lψ,m(σ) of σ to Mp2l(F ) is zero
for all l < t. Assume that this is not the case. Then there is a integer l < t such
that the ψ-theta lift θ2lψ,m(σ) of σ to Mp2l(F ) is nonzero. This means by (3.4) that

there is an irreducible admissible representation π̃ of Mp2l(F ) such that

(5.1) HomOm(F )×Mp2l(F )(ωψ, σ ⊗ π̃) �= 0

or equivalently,

(5.2) HomOm(F )(ωψ ⊗ π̃∨, σ) �= 0

where ωψ is the local Weil representation of Mp2lm(F ), restricted to the dual pair
(Om(F ),Mp2l(F )).

Following §3, we consider the analogous polarizations for Xm and W2l:

Xm = �+t ⊕Xm−2t ⊕ �−t ,(5.3)

W2l = Y +
l ⊕ Y −

l .(5.4)

We consider the local Weil representation ωψ on the mixed Schrödinger model

(5.5) Sm⊗2l := S(�−t ⊗W2l ⊕Xm−2t ⊗ Y +
l ).

Using similar bases as in §3, we write a local Schwartz-Bruhat function ϕ in Sm⊗2l

as

(5.6) ϕ(w1, · · · , wt; y1, · · · , ym−2t)

where wi ∈ W2l and yj ∈ Y +
l for i = 1, · · · , t and j = 1, · · · ,m− 2t.

By hypothesis, σ has a nonzero ψt,α-functional �, i.e. a nonzero element in

HomVt(F )(Vσ, ψt,α).

By (5.2), the functional � induces a nonzero functional β over Sm⊗2l ⊗ Vπ̃∨ , such
that

(5.7) β(ωψ(v, h)ϕ, ξ) = ψt,α(v)β(ϕ, ξ)

for v ∈ Vt(F ), h ∈ Mp2l(F ), ξ ∈ Vπ̃∨ , and ϕ is a function in the mixed model.
We consider the local version of the dz-integration as in (4.4), and obtain as in

[JngS03], p. 755, that for each fixed ξ, β is supported on

C0 = {(w1, · · · , wt; y1, · · · , ym−2t))|(wi, wj) = 0, ∀ 1 ≤ i, j ≤ t}.
Indeed, let i be the restriction map from S(W t

2l ⊕ (Y +
l )m−2t) to S(C0). It is

surjective. Let i∗ be the corresponding map on Jacquet modules with respect to Zt

and the trivial character. Then i∗ is an isomorphism, i.e.

JZt
(S(W t

2l ⊕ (Y +
l )m−2t)) ∼= JZt

(S(C0)).

Let C be the complement of C0 in W t
2l ⊕ (Y +

l )m−2t. Then it is easy to see that
JZt

(S(C)) ∼= 0 and JZt
(S(C0)) ∼= S(C0). We regard S(C0) as a module over

(Zt(F )\Vt(F ))×Mp2l(F ). Denote U ′
t(F ) = Zt(F )\Vt(F ). We identify U ′

t(F ) with
Ut(F )Mt×(m−2t)(F ) and regard ψt,α as a character of U ′

t(F ). Thus, we have to
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prove that JU ′
t(F ),ψt,α

(S(C0)) = 0, when l < t. Write C0 as the disjoint union, over
0 ≤ d ≤ l, of the varieties

Cd
0 = {(w1, · · · , wt; y1, · · · , ym−2t) ∈ C0 | dimF Span{w1, · · · , wt} = d}.

Then it is enough to prove that JU ′
t(F ),ψt,α

(S(Cd
0 )) = 0, for all 0 ≤ d ≤ l. We can

embed S(Cd
0 ) inside ind

U ′
t(F )×Mp2l(F )

U ′
t(F )×P̄d(F )

S(Cd,−
0 ), where

Cd,−
0 = {(w1, · · · , wt; y1, · · · , ym−2t) ∈ Cd

0 | w1, · · · , wd ∈ Y −
d },

and P̄d(F ) is the inverse image of Pd(F ) inside Mp2l(F ). Thus, we have an embed-
ding

JU ′
t(F ),ψt,α

(S(Cd
0 )) ↪→ ind

Mp2l(F )

P̄d(F )
JU ′

t(F ),ψt,α
(S(Cd,−

0 )),

and so it is enough to show that JU ′
t(F ),ψt,α

(S(Cd,−
0 )) = 0, when l < t. Using the

action ofMt×(m−2t)(F ) on S(Cd,−
0 ) through the formulae of the Weil representation,

we conclude, as above, and as in §4.1 that

JU ′
t(F ),ψt,α

(S(Cd,−
0 )) ∼= JUt(F ),ψt,α

(S(Wα,d)),

where Wα,d is defined exactly by the same relations as in the global case. Finally, it
remains to show that JUt(F ),ψt,α

(Ow(t:d)
) = 0, for every Ut(F )-orbit Ow(t:d)

of Wα,d

(same definition as in the global case). This follows, as in the global case, from the
fact that since d ≤ l < t, there is a simple root subgroup in Ut(F ), which lies in
the stabilizer of the representative wt:d. This proves Theorem 5.1.

5.2. Proof of part (1) of Theorem 1.1. Let σ be an irreducible cuspidal
automorphic representation of Om(A). Assume that there is a finite local place v
of the number field k such that the local v-component σv of σ has a nonzero local
ψt,α-functional. Then, by Theorem 5.1, the local ψ-theta lift of σv to Mp2l(kv) is
zero for all l < t. Hence the global ψ-theta lift of σ to Mp2l(A) must be zero for all
l < t. This property holds also for all twists of σ by automorphic sign characters,
since the twist of σv by any sign character also has a nonzero local ψt,α-functional.
Hence the lowest occurrence of σ in the global ψ-theta liftings, LOψ(σ), must be
greater than or equal to 2t. By Theorem 1.1 of [GJS09], the partial L-function
LS(s, σ) must be holomorphic for Re(s) > m

2 − t. This completes the proof of
Theorem 1.1.
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Introduction

One major facet of the Langlands program is the problem of connecting re-
sults on local harmonic analysis with the arithmetic of Artin L–functions. One
such connection should come through the determination of reducibility points of
induced representations via local Langlands L–functions. This was established (in
the generic case) by Shahidi [25]. Problems on reducibility of induced represen-
tations of groups over local fields are an important aspect of the global theory of
automorphic forms, and particularly crucial in the theory of Eisenstein series. The
Langlands-Shahidi method has been a powerful approach, and has yielded remark-
able results in the past decade. Here we consider the more modest problem of
describing the structure of induced representations of classical p-adic groups via
the local Langlands correspondence.

Knapp and Stein developed the theory of intertwining operators and R–groups
in the case of archimedean fields [21] and Silberger extended this theory to the case
of p-adic groups [27, 28]. The R-group gives a combinatorial description of the
intertwining algebra of parabolically induced representations. For the archimedean
case Shelstad [26] showed the R-group could be determined from the representa-
tion of the Weil-Deligne group parametrizing the inducing representation. In [1]
Arthur proposed a generalization of this result to arbitrary local fields, refining
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ideas proposed earlier by Langlands [22]. Keys determined R-groups for the prin-
cipal series of Chevalley groups, quasi-split unitary groups, and special unitary
groups, [18, 19, 20], and, in many cases, showed the isomorphism of the Knapp-
Stein R–group with the R–group proposed by Langlands, Shelstad, and Arthur.
The R-groups for reperesentations of classical groups parabolically induced from
arbitrary discrete series were determined in [9]. In [3] Ban and Zhang showed the
isomorphism of the Knapp-Stein and Arthur R–groups for all such representations
of SO2n+1(F ). Here, we study induced from unitary supercuspidal representations
of the classical groups SO2n+1(F ), Sp2n(F ) and SO2n(F ). In the case of a non-
Siegel maximal parabolic subgroup we impose the condition that the representation
of the Weil-Deligne group which parametrizes the inducing representation is irre-
ducible. We also must assume that the Rankin product L–functions defined by the
Langlands-Shahidi method [25] are Artin. We show, by direct computation, that
the Knapp-Stein and Arthur R–groups are isomorphic. Of course, in the case of
SO2n+1(F ) these results are covered by [3]; however, our proof is different. We also
show the isomorphism can be realized by the map from roots to coroots.

Let F be a nonarchimedean local field of characteristic zero, and suppose G
is a connected reductive group defined over F. Suppose P = MN is a proper
parabolic subgroup. We assume σ is an irreducible discrete series representation
of M = M(F ). The local Langlands conjecture predicts σ is a member of an L–
packet Πϕ(M) with parameter ϕ : W ′

F → LM, with W ′
F the Weil-Deligne group

of F and LM the L–group of M. Then composition with the inclusion LM ↪→ LG
gives a parameter for an L–packet Πϕ(G) of G = G(F ). The conjecture is ΠG(ϕ)

consists of the irreducible constituents of IndGP (σ
′) for σ′ ∈ Πϕ(M). Arthur defines

the R-group, Rϕ, attached to the packet Πϕ(M), and a subgroup Rϕ,σ . This is

accomplished by looking at the centralizer, Sϕ, of the image of ϕ in Ĝ = LG◦, and
identifying certain subgroups of the Weyl group of Sϕ. Let R(σ) be the Knapp–
Stein R–group attached to σ. Then, our main result is (under the assumptions we
imposed above) Rϕ,σ � R(σ).

In Section 1 we review the theory of intertwining operators, the Knapp-Stein
R-group, the Arthur R–group, and recall the computation of the Knapp-Stein R–
groups for the classical groups. In Section 2 we discuss the isomorphism of R(σ)
and Rϕ,σ in the case where M is a maximal proper Levi subgroup. In Section 3 we
discuss the case where M is a subgroup of the Siegel Levi subgroup, and in Section
4 we address the case where M is not a subgroup of the Siegel Levi subgroup.
Finally, in Section 5 we show the isomorphism can be realized by the map α �→ α∨

from roots to coroots.
The author thanks Jim Arthur for originally suggesting this problem many

years ago, and Dubravka Ban and Freydoon Shahidi for several encouraging and
informative conversations, as well as pointing out some carelessness in earlier ver-
sions. We wish to acknowledge several conversations with Alan Roche and thank
him for several suggestions. Finally, we thank the referee for pointing out several
inconsistencies in the preliminary version, significantly improving the exposition.

1. Preliminaries

Let F be a local nonarchimedean field of characteristic zero. We let G be a
quasi–split connected reductive group defined over F , and G = G(F ), and we use
similar notation for other groups defined over F. Fix a Borel subgroup B = TU of
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G,withT a maximal torus ofG andU the unipotent radical ofB. Let Φ = Φ(G,T)
be the roots of T in G, let Φ+ = Φ+(G,T) be the system of positive roots given by
B, and Δ the simple roots. For θ ⊂ Δ we denote by Aθ the corresponding subtorus
of T, namely

Aθ =

( ⋂
α∈θ

Kerα

)◦
.

Set Pθ = MθNθ to be the standard parabolic subgroup of G defined by θ. Then
Mθ = ZG(Aθ), and Nθ =

∏
α∈Φ+\Σ+(θ)

Uα, with Uα the root subgroup defined by

α. Here Σ+(θ) = Φ+ ∩ span
Z
θ. (See [6] for more details.) If θ is fixed, then we

denote the above groups by A = Aθ,P = Pθ,M = Mθ, and N = Nθ. As A is the
maximal spit torus in the center of M, we may denote it by AM.

We denote by a∗
C
the complexified dual of the real Lie algebra of A. If ν ∈ a∗

C

and σ is a discrete series representation of M , then we denote the parabolically
induced representation associated to P, σ, and ν by

I(ν, σ) = IndGP (σ ⊗ q〈ν,HP (·)〉).

The induction here is normalized induction, and the function HP is defined as
in [25]. We let iG,M (σ) = I(0, σ). Let w ∈ W (G,A) = NG(A)/M. We fix a
representative w̃ for w. Let A(ν, σ, w̃) : I(ν, σ) → I(wν,wσ) be the standard inter-
twining operator [21, 27, 28]. Harish–Chandra proved that there is a meromorphic
function μ(ν, σ, w̃) on a∗

C
so that

A(w̃ν, wσ, w̃−1)A(ν, σ, w̃) = μ(ν, σ, w̃)−2 Id .

Theorem 1.1. (Harish-Chandra [14]). Suppose P is a maximal proper para-
bolic subgroup of G. Then iG,M (σ) is reducible if and only if there is a non–trivial
element w of W (G,A), with wσ � σ, and μ(σ) = μ(0, σ, w) 	= 0.

If w̃0 represents the longest element of W (G,A), then we let μ(σ) = μ(0, σ, w̃0).
We call μ(σ) the Plancherel measure of σ. Note, Theorem 1.1 says, in the case
of a maximal proper Levi subgroup, μ(σ) = 0 if and only if wσ � σ and ν �→
A(ν, σ, w̃)f(g) has a pole at ν = 0, for some f ∈ I(ν, σ) and g ∈ G. (See [29] for
the details of this). We note the existence (or not) of a pole of the intertwining
operator does not depend on the choice of w̃.

For an arbitrary standard parabolic subgroup P = Pθ of G, we let Φ(P,A) be
the roots ofA in P. For α ∈ Φ(P,A), we define Mα = Mθ∪{α}, and N∗

α = N∩Mα.
Then P∗

α = MNα is a maximal proper parabolic subgroup of Mα. Thus, we have
a Plancherel measure μα(σ) attached to iMα,M (σ) as defined above. We denote
W (σ) = {w ∈ W (G,A)|wσ � σ}. We let Δ′ = {α ∈ Φ(P,A)|μα(σ) = 0}. For
α ∈ Φ(P,A) we let wα ∈ W (G,A) be the associated (relative) reflection. Let
W ′ = 〈wα|α ∈ Δ′〉. Note, Theorem 1.1 implies W ′ ⊆ W (σ). Let

R(σ) = {w ∈ W (σ)|wΔ′ = Δ′} = {w ∈ W (σ)|wα > 0 for all α ∈ Δ′}.
For w ∈ W (σ), one can define normalized intertwining operators A′(σ, w̃) :

iG,M (σ) → iG,M (σ), i.e., an element in C(σ) = EndG(iG,M (σ)). One can see [20]
for an explicit description of A′(σ,w). There is a two cocycle

η : R(σ)×R(σ) → C

so that A′(σ,w1)A′(σ,w2) = η(w1, w2)A′(σ,w1w2).
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Theorem 1.2. (Knapp–Stein, Silberger). The above groups satisfy the follow-
ing conditions:

(i): W ′ 	 W (σ);
(ii): R(σ) � W (σ)/W ′;
(iii): W (σ) = R(σ)�W ′.

Further, W ′ is the set of w ∈ W (σ), so that the normalized self intertwining
operators A′(σ,w) : iG,M (σ) �→ iG,M (σ) are scalar. �

Then the intertwining algebra C(σ) of iG,M (σ) is isomorphic to C[R(σ)]η, the
group algebra of R(σ) twisted by η. Thus, R(σ) (and its representation theory)
determines the structure of iG,M (σ). This can be made more explicit [2, 20].

Let WF be the Weil group of F and W ′
F = WF × SL2(C) the Weil-Deligne

group [30]. For a quasi-split connected reductive group G defined over F, we let Ĝ
be the complex algebraic group with root datum dual to that of G. The L-group
LG is given by LG = Ĝ � WF , where WF acts on Ĝ by the Galois action on the
root datum of Ĝ. (Note, when G is split, WF acts trivially on Ĝ, so the semidirect
product is, in fact, a direct product.) The local Langlands conjecture says, in part,
that the irreducible tempered representations of G = G(F ) are partitioned into
finite subsets (called L–packets), and there is a correspondence between L–packets
and admissible homomorphisms (as defined in [30]) ϕ : W ′

F → LG. We denote
the L-packet corresponding to ϕ by ΠG(ϕ), and may denote π ∈ ΠG(ϕ) by πϕ.
One fundamental property of this correspondence is the equality of Langlands L-
functions and Artin L–functions. That is, the conjecture asserts the correspondence
can be chosen such that, for any complex representation r : LG → GLm(C), we
have L(s, πϕ, r) = L(s, r ◦ ϕ), for any πϕ ∈ ΠG(ϕ).

The local Langlands correspondence also gives rise to a notion of R–group.
Suppose ϕ : W ′

F → LM is an admissible homomorphism parametrizing the L–packet∏
ϕ(M) containing σ. Since LM ↪→ LG, ϕ : WF → LG parametrizes an L–packet

Πϕ(G) of G, expected to be the set of irreducible components of iG,M (σ′) for
σ′ ∈

∏
ϕ(M). We write Sϕ = ZĜ(Imϕ), and S◦

ϕ for its connected component.

The quotient Sϕ = Sϕ/S
◦
ϕ should contain information on reducibility, as described

below.
Fix a maximal torus Tϕ in S◦

ϕ, and let W ◦
ϕ = W (S◦

ϕ, Tϕ) = NS◦
ϕ
(Tϕ)/ZS◦

ϕ
(Tϕ).

Similarly let Wϕ = W (Sϕ, Tϕ). Then we denote by Rϕ the group Wϕ/W
◦
ϕ. By du-

ality, one can identify Wϕ as the subgroup of W (G,AM ) for which wσ ∈
∏

ϕ(M).

Thus, there is a an identification Wϕ,σ = {w ∈ Wϕ|wσ � σ} � W (σ). We
let W ◦

ϕ,σ = W ◦
ϕ ∩ Wϕ,σ. Then we define Rϕ,σ = Wϕ,σ/W

◦
ϕ,σ. Arthur conjectures

Rϕ,σ � R(σ). We will prove this claim in many cases. Note, if G is split, we may

consider homomorphisms ϕ : W ′
F → M̂, since WF centralizes all of Ĝ. For our

computations, we only consider supercuspidal representations of M, and therefore
need only consider the image of the Weil group, WF . We use the notation Â = AM̂

for the split component of M̂.
We will recall the computation ofR–groups for the classical groupsG = G(n) =

SO2n+1, Sp2n, SO2n. This description can be made explicit, in that [9] shows
exactly which elements of W (σ) lie in R(σ).
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We fix forms for the groups G(n). Let

sn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
.

.
.

1
1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ GLn,

and

u2n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
.

.
.

−1
1

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ GL2n.

Then, for any n > 1,

SOn =
{
g ∈ SLn| tgsng = sn

}
,

and

Sp2n =
{
g ∈ GL2n| tgu2ng = u2n

}
.

We also use sn and u2n to denote the complex matrices with the same entries, and
fix these as our our forms for Ĝ. When computing the centralizers Sϕ we will often
find an isomorphism with a complex orthogonal (or special orthogonal) group of
some rank r. In each case we are studying, the orthogonal groups arising are split
forms, and we emphasize this by using the standard notation Or,r(C) or Or+1,r(C)
for the full orthogonal groups. In order to avoid confusion with other forms, we
also use this notation when we refer to the dual groups Ĝ. Fix T to be the maximal
torus of diagonal elements in G. Then

T = {diag{x1, x2, . . . , xn, x
−1
n , . . . , x−1

1 }|xi ∈ Gm}
if G = Sp2n, or SO2n, and

T = {diag{x1, . . . , xn, 1, x
−1
n , . . . , x−1

1 }|xi ∈ Gm}
if G = SO2n+1, with Gm the algebraic multiplicative group over F. We fix B to be
the Borel subgroup of upper triangular matrices in G. The root system Φ(G,T) is
of type Bn, Cn, or Dn and has simple roots

Δ = {e1 − e2, e2 − e3, . . . , en−1 − en, αn},
with αn = en, 2en, or en−1 + en, respectively. If θ ⊆ Δ, with αn 	∈ θ, then

(1.1) M = Mθ � GLn1
×GLn2

× . . .×GLnr
,

with n1 + n2 + · · ·+ nr = n. If, on the other hand αn ∈ θ, then

(1.2) M = Mθ = GLn1
×GLn2

× · · · ×GLnr
×G(m),

with n1 + · · · + nr + m = n. If we take G(0) = {I}, then we can include (1.1)
into (1.2). However, for many of our computations, we work with (1.1) and (1.2)
separately.

We now recall results of Shahidi.
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Theorem 1.3. (Shahidi [24]) Let G = Sp2n, G′ = SO2n+1, and G′′ = SO2n.
Consider M � GLn as the Siegel Levi subgroup of all these groups. We fix an
irreducible unitary supercuspidal representation of M . We denote the induced rep-
resentations as π = iG,M (σ), π′ = iG′,M (σ), and π′′ = iG′′,M (σ).

(i): If σ 	� σ̃, then π, π′, and π′′ are all irreducible.
(ii): If σ � σ̃ then precisely one of the two Langlands L–functions,

L(s, σ, Sym2) or L(s, σ,∧2) has a pole at s = 0. When n is even, and
L(s, σ, Sym2) has a pole at s = 0, then π′ is irreducible and π, π′′ are both
reducible. Again, if n is even ,and L(s, σ,∧2) has the pole, then π and π′′

are irreducible, while π′ is reducible. If n is odd, then L(s, σ,∧2) is always
holomorphic at s = 0, and thus L(s, Sym2, σ) has a pole at s = 0. In this
case π′ and π′′ are both irreducible, and π is reducible.

In terms of the parametrization, this can be viewed as follows. Let ϕ : WF →
GLn(C) � M̂ be a parameter for σ. We further, by composing with the obvious in-

jections, consider ϕ as a parameter with image in Ĝ = SOn+1,n(C), Ĝ
′ = Sp2n(C),

and Ĝ′′ = SOn,n(C), respectively. Since σ is supercuspidal, ϕ(WF ) is an irre-
ducible subgroup of GLn(C). If ϕ does not fix a non-degenerate bilinear form, then
L(s, Sym2 ϕ) and L(s,∧2ϕ) are both entire. If, on the other hand ϕ fixes a form,
then the type of the form determines which of these two Artin L–functions has a
pole. That is, L(s,∧2ϕ) has a pole if and only if ϕ fixes an alternating form, and
L(s, Sym2 ϕ) has a pole if and only if ϕ fixes a symmetric form. The first of these
means ϕ factors through Spn(C), i.e., n is even and ϕ is symplectic. In the second
case ϕ is orthogonal, i.e. ϕ factors through SOn(C). The connection of Shahidi’s
results with Artin L–functions is made explicit by Henniart.

Theorem 1.4. (Henniart [15]). If ϕ : WF → GLn(C) is a tempered parameter,
and σ = σϕ is the corresponding irreducible admissible representation of GLn(F ),

then L(s,∧2ϕ) = L(s, σ,∧2) and L(s, Sym2 ϕ) = L(s, σ, Sym2). In each of these
equalities, the left hand side is an Artin L–function, while the right hand side is the
Langlands L–function, as defined by Shahidi [25].

We can summarize the results of [9] as follows:

Theorem 1.5. Let G = G(n) = SO2n+1, Sp2n, or SO2n. Let M � GLn1
×

GLn2
×· · ·×GLnr

×G(m), with n1+ · · ·+nr+m = n. Let σ � σ1⊗σ2⊗· · ·⊗σr⊗τ
be an irreducible discrete series representation of M, with each σi an irreducible
discrete series representation of GLni

(F ) and τ one such of G(m). In the case of
SO2n, we assume n1, . . . , nt are even, while nt+1, . . . , nr are odd, and set

C0 =

⎛
⎜⎜⎝
Im−1

0 1
1 0

Im−1

⎞
⎟⎟⎠ ∈ O2m(F ) \ SO2m(F ).

(i): If G = SO2n+1, or Sp2n, then R(σ) � Zd
2, where d is the number of

equivalence classes among the σi for which iG(ni+mi),GLni
(F )×G(m)(σi⊗τ )

is reducible.
(ii): Suppose G = SO2n :

a): Suppose m = 0. Then R(σ) � Z
d1+d2−1
2 , where d1 is the number of equiv-

alence classes among σ1, . . . , σt such that iG(ni),GLni
(F )(σi) is reducible,
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and d2 is the number of equivalence classes among σt+1, . . . , σr for which
σ̃i � σi.

b): Suppose m > 0 and C0τ 	� τ. Then R(σ) � Z
d1+d2−1
2 , where d1 is the

number of equivalence classes among σ1, . . . , σt such that

iG(ni+m),GLni
(F )×G(m)(σi ⊗ τ )

is reducible, and d2 is the number of equivalence classes among σt+1, . . . , σr

for which σ̃i � σi.
c): Suppose m > 0 and C0τ � τ. Then R(σ) � Zd

2, where d is the number of
equivalence classes among the σi for which iG(ni+mi),GLni

(F )×G(m)(σi⊗τ )
is reducible. �

Of course these results can be phrased in terms of L–functions in the case
where the inducing representation is supercuspidal, using Theorems 1.3 or 1.4.
Furthermore, Theorems 1.3 and 1.4 have extensions to discrete series using Shahidi’s
multiplicativity principle and the work of Jacquet, Piatetskii-Shapiro, and Shalika
[16], as detailed in [24]. Thus, in fact, all of Theorem 1.5 can be phrased in terms
of L–functions.

2. Preliminary results on R–groups: The maximal case

We now give some preliminary results on the equality of R–groups on the
group and dual side. These results for maximal parabolic subgroups will be used
to compute Rϕ,σ in the general case. We begin with a well known result (see, for
example, [4]).

Lemma 2.1. If G = GLn, and M = GLm × GLk, then for any irreducible
parameter ϕ : WF → M̂ , we have Rϕ = {1} = R(σ). �

Recall for GLn(F ) it has long been known (see, for example [5]) every L–packet
is a singleton set. Thus, for the Siegel parabolic subgroup Rϕ,σ = Rϕ.

Lemma 2.2. Let G = Sp2n,G
′ = SO2n, or G′′ = SO2n+1, and M � GLn

the Siegel Levi subgroup of G,G′, or G′′. Suppose ϕ : W ′
F → GLn(C) is an ir-

reducible representation parametrizing an irreducible unitary supercuspidal repre-
sentation σ of M. Let R(σ), R′(σ), and R′′(σ) be the Knapp–Stein R–groups at-
tached to iG,M (σ), iG′,M (σ), and iG′′,M (σ), respectively. Let Rϕ, R

′
ϕ, and R′′

ϕ be
the Arthur R–groups attached to ϕ as a parameter for G,G′, and G′′, respectively.
Then R(σ) � Rϕ, R′(σ) � R′

ϕ, and R′′(σ) = R′′
ϕ.

Proof. We first consider G = Sp2n. Then Ĝ = SOn+1,n(C), and so

M̂ =

{⎛
⎝g 0 0
0 1 0
0 0 θ(g)

⎞
⎠
∣∣∣∣g ∈ GLn(C)

}
,

with θ(g) = sn
tg−1s−1

n . By abuse of notation we think of ϕ, an M–parameter, as

w �→

⎛
⎝ϕ(w)

1
θ(ϕ(w))

⎞
⎠ ,
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for a GLn(F ) parameter, also labeled ϕ. Consider elements of Sϕ in block matrix
form. Thus, if A ∈ Sϕ, write

A =

⎛
⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠

with A11, A13, A31, A33 ∈ Mn(C), A12, A32 ∈ Mn×1(C), A21, A23 ∈ M1×n(C), and
A22 ∈ C. Since ϕ is irreducible, we quickly see, for i = 1 or 3, Aii = λiIn for some
λi ∈ C. Also, A21 = A23 = 0, A12 = A32 = 0. Further A13, if it is non–zero, is an
equivalence between ϕ and θ ◦ ϕ, while A31 must be an equivalence in the other

direction. Thus, if ϕ 	� θϕ, we easily see Sϕ =

{⎛
⎝λI

1
λ−1I

⎞
⎠
∣∣∣∣λ ∈ C×

}
and

Rϕ = 1 = R(σ), by Theorem 1.3. Now suppose ϕ � θ ◦ ϕ. Then we fix B 	= 0
with B−1ϕB = θ ◦ ϕ. Then, by Schur’s Lemma, Bθ(B) = εI, and this implies
Bsn = εsn

tB. We denote Bsn = J , and see tJ = εJ , so ε = ±1, and Bsn is a
symmetric or symplectic form fixed by ϕ. Now, we set J ′ = sn

tB−1 = B−1J tB−1,
which is a form of the same type as J. Since A ∈ SOn+1,n(C), direct computation
shows

A =

⎛
⎝ λ11In 0 λ12B

0 w 0
λ21B

−1 0 λ22In

⎞
⎠

must satisfy λ11λ12(1 + ε)J = 0 = λ21λ22(1 + ε)J ′ and (λ12λ21ε+ λ11λ22)sn = sn.

So if ε = 1, then A �→
(
λ11 λ12

λ21 λ21

)
is an isomorphism with O1,1(C), while if ε = −1,

A �→
(
λ11 λ12

λ21 λ22

)
is an isomorphism with SL2(C). Thus,

Rϕ =

{
Z2 if ϕ is orthogonal;

1 otherwise.

Therefore, Rϕ � R(σ) by Theorem 1.3, as claimed. Note, if ϕ is orthogonal, the
non–trivial element of Rϕ is the standard (block) sign change, C, and thus under
the isomorphism

sα �→ sα∨ of W (G,A) with W (Ĝ, Â),

we have R(σ)→̃Rϕ. The computation for G = SO2n is similar. Here Ĝ =

SOn,n(C). Then M̂ =

{(
g 0
0 θ(g)

) ∣∣∣∣g ∈ GLn(C)

}
. We let A =

(
A11 A12

A21 A22

)
∈ Sϕ.

If n is even essentially the same calculation as in the case G = Sp2n shows

Sϕ �

⎧⎪⎨
⎪⎩
O1,1(C) if ϕ is orthogonal;

SL2(C) if ϕ is symplectic;

C× otherwise.

If n is odd and ϕ is orthogonal, then A =

(
λ11In λ12B
λ21B

−1 λ22In

)
∈ SOn,n(C) if and

only if

det

(
λ11 λ12

λ21 λ22

)
= 1.
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Thus, we have Sϕ � SO1,1(C) � C× in this case. Since ϕ cannot be symplectic, the
only other possibility is θ ◦ ϕ 	� ϕ, in which case Sϕ � C×, as before. Thus, when
n is odd, Rϕ = {1}. Then, by Theorems 1.3 and 1.4, R′

ϕ � R′(σ) as claimed, and
the remark about this isomorphism being implemented by α �→ α∨ is valid here as
well.

Finally, consider G′′ = SO2n+1. Then Ĝ = Sp2n(C). Setting

θ∗(g) = un
tg−1u−1

n ,

for g ∈ GLn(C), we have

M̂ =

{(
g 0
0 θ∗(g)

) ∣∣∣∣g ∈ GLn(C)

}
.

Now, again by abuse of notation, we consider ϕ as the map w �→
(
ϕ(w) 0
0 θ∗(ϕ(w))

)
.

Then, for A =

(
A11 A12

A21 A22

)
∈ Sϕ, we have Aii = λiIn. Further, A12, if it is non–

zero, is an equivalence ϕ � θ∗ ◦ ϕ. Similarly, A21, when non–zero, is an equiva-
lence in the opposite direction. Thus, as in the other cases, when ϕ 	� θ∗ϕ, we
have Sϕ � C×. Now suppose ϕ � θ∗ϕ, and fix B with B−1ϕB = θ∗ ◦ ϕ. Then
Bθ∗(B) = εI, and now set J = Bun = εut

nB. In this case tJ = −εJ and thus J is
a symplectic form if ϕ is orthogonal, and is symmetric if ϕ is symplectic. Now, the

requirement that A =

(
λ11In λ12B
λ21B

−1 λ22In

)
∈ Sp2n(C) gives

λ12λ11(1 + ε) = 0 = λ21λ22(1 + ε), and

λ11λ22 + ελ12λ22 = 1.

So in this case we have

Sϕ =

{
O1,1(C) if ϕ is symplectic;

SL2(C) if ϕ is orthogonal.

This gives R′′
ϕ
∼= R′′(σ), as claimed. �

Now we consider the case of non-Siegel maximal parabolic subgroups. Thus,
P = MN, with M � GLk × G(m), for some m + k = n, and m > 0. We let

ϕ = ϕ1 ⊕ ψ, with both ϕ1 : WF → GLk(C), and ψ : WF → Ĝ(m) irreducible. We
emphasize that this latter asumption is significant, as, in general, ψ need not be
irreducible, even for supercuspidal L–packets. We let σ = σϕ1

be the supercusp-
idal representation attached to ϕ1. We let

∏
ψ(G(m)) be the L–packet of G(m)

parametrized by ψ. We fix a member τ ∈
∏

ψ(G(m)). Then π = σ ⊗ τ is an

element of
∏

ϕ(M). When G = SO2n+1, the work of Jiang-Soudry [17] gives the

generic member of the L-packet
∏

ψ(G(m)). We expect that, based on the work of

Cogdell-Kim-Piatetski-Shapiro-Shahidi [8] these results will eventually be extended
to other classical groups. For the purposes of comparing the Arthur R–group with
the Knapp-Stein R–group, we make the following assumption throughout the rest
of this exposition.

Assumption A:We assume the local Langlands conjecture for Rankin product
L–functions. Thus, we assume the local correspondence ψ ↔ ΠG(m)(ψ) is estab-
lished. Further, we assume if σ is an irreducible supercuspidal representation of
GLk(F ) corresponding to ϕ1, as above, then L(s, ϕ1 ⊕ψ) = L(s, σ× τ ), where this
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latter is the local Rankin product L–function, as defined by Shahidi [25], for generic
representations τ. For non-generic representations we assume Shahidi’s conjecture,
every L–packet contains a generic element [25]. Thus, L(s, σ× τ ′) = L(s, σ× τ ) =

L(s, ϕ1 ⊕ ψ), for all τ, τ ′ ∈ Πψ(Ĝ(m)).
Note, in [12] the pole of the intertwining operator A(s, σ ⊗ τ ) is determined

in terms of the theory of twisted endoscopy. The normalization factor for the
intertwining operator is given by a product L(s, σ⊗τ )L(2s, σ, r2), with r2 = Sym2 ρk
or ∧2ρk. A reasonable assumption is that the pole of L(s, σ × τ ) is controlled by
a certain regular term appearing in the residue as described in [10, 12]. In [12]
it is shown, for G = SO2n+1, and with this assumption, L(s, σ × τ ) has a pole at
s = 0 if and only if σ is the local transfer of τ, i.e., σ is the local component of an
automorphic transfer [7, 8] to the general linear group of a cusp form on the special
orthogonal group, and the corresponding local component of the cusp form on the
special orthogonal group is τ. This result will be extended to the other classical
groups by work in progress of Asgari, Cogdell, and Shahidi.

We first consider the case where G = SO2n+1. Thus, G = SO2n+1(F ) and

Ĝ = Sp2n(C). Since

M̂ =

{⎛
⎝g

h
θ∗(g)

⎞
⎠
∣∣∣∣g ∈ GLk(C),
h ∈ Sp2m(C)

}
,

we see that

ϕ(w) =

⎛
⎝ϕ1(w)

ψ(w)
θ∗ϕ1(w)

⎞
⎠ ,

with θ∗ as in the proof of Lemma 2.2. If A ∈ Sϕ, and we write

A =

⎛
⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠ , with the block decomposition given by M̂. Then we have

A11ϕ1 = ϕ1A11, A12ψ = ϕ1A12, A13θ
∗ϕ1 = ϕ1A13,

A21ϕ1 = ψA21, A22ψ = ψA22, A23θ
∗ϕ1 = ψA23,

A31ϕ1 = θ∗ϕ1A31, A32ψ = θ∗ϕ1A32, and A33θ
∗ϕ1 = θ∗ϕ1A33.

Thus, Aii = λiI. Further as ϕ1 and ψ are both irreducible, each Aij , for i 	= j
is either zero or an equivalence. Note, since ψ : WF → Sp2n(C), ϕ1 � ψ only if
ϕ1 � θ∗ϕ1. Thus, if ϕ1 	� ψ then θ∗ϕ1 	� ψ and in this case A21 = A23 = 0, A12 =
A32 = 0, and with A22 = λ2I ∈ Sp2m(C) we have λ22 = ±1.

So, if ϕ1 	� θ∗ϕ1, then

Sϕ =

{⎛
⎝λ11Ik

I2m
λ−1
11 Ik

⎞
⎠
∣∣∣∣λ11 ∈ C×

}
� C×.

Now, if ϕ1 � θ∗ϕ1, but ϕ1 	� ψ, then A ∈ Sϕ implies A is of the form
⎛
⎝ λ11Ik 0 λ12B

0 ω(A)I2m 0
λ21B

−1 0 λ22Ik

⎞
⎠ .
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Note ω(A) = ±1, and in fact ω(A) = det

(
λ11Ik λ12B
λ21B λ22Ik

)
. Now, as in the Siegel

case, Bθ∗(B) = εI and J = Bun is a form fixed by ϕ1. Since
tJ = −εJ , we get

Sϕ �
{
SL2(C) if ϕ1 is orthogonal;

O1,1(C) if ϕ1 is symplectic.

Now suppose ϕ1 � ψ. Since ϕ is only given up to Ĝ–conjugacy, we may take
ϕ1 = ψ � θ∗ϕ1. We still take J = Bun, a form fixed by ϕ1. Since ϕ is symplectic,
ε = 1. Let 〈 , 〉 be the form on Ck = C2m = V1 given by 〈v, v′〉 = tvJv′. So
〈ϕ1(w)v, ϕ1(w)v

′〉 = 〈v, v′〉 for all w ∈ WF , v, v′ ∈ C×. Then C3k � V1 ⊗ C3.
There is then a unique orthogonal form 〈 , 〉′ on C3 so that 〈 , 〉 ⊗ 〈 , 〉′ is

the symplectic form on C3k giving rise to Ĝ. So, by the dual pair construction,
Sϕ � SO2,1(C). Note, in each case, Wϕ,π � Wϕ, for even if

∏
ψ(G(m)) is not a

singleton set, the Weyl group W (Ĝ, AM̂ ) acts trivially on the G(m) component τ.
With Assumption A, we have Rϕ � R(π), as predicted.

Suppose now that G = Sp2n. Then G = Sp2n(F ) and Ĝ = SOn+1,n(C). The
computations are essentially the same as above. Thus, if ϕ1 	� ψ we have

Sϕ �

⎧⎪⎨
⎪⎩
C× if ϕ1 	� θ ◦ ϕ1;

SL2(C) if ϕ1 is symplectic;

O1,1(C) if ϕ1 is orthogonal.

If ϕ1 � ψ, then ϕ1 is orthogonal, and k = 2m+ 1. We set 〈 , 〉 to be the form on
V1 = Ck given by 〈v, v′〉 = tvJv′. So, 〈ϕ1(w)v, ϕ1(w)v

′〉 = 〈v, v′〉. Here J = Bsn,
with Bϕ1 = θϕ1B. Choose 〈 , 〉′ on C3 so that the form on C3k = V1 ⊗ C3, given
by 〈 , 〉 ⊗ 〈 , 〉′. Then we see, again, Sϕ � SO2,1(C) in this case. Thus far we have
proved the following.

Lemma 2.3. If G = Sp2n or SO2n+1 and M � GLk × G(m), then, under
Assumption A, Rϕ,π � R(π) for any π ∈ Πϕ(M). �

Now suppose G = SO2n, so G = SO2n(F ) and Ĝ = SOn,n(C). Here we
consider 2 cases. Let c0 : SOm,m(C) → SOm,m(C) be the outer automorphism
given by conjugation by an element of Om,m(C). The two cases we consider are
c0ψ 	� ψ and c0ψ � ψ.

In the first case, the computations are essentially as before. If ϕ1 	� θϕ1 then
Sϕ � C× as before. If ϕ1 � θϕ1, but ϕ1 	� ψ, then

Sϕ �
{
SL2(C) if ϕ1 is symplectic;

O1,1(C) if ϕ1 is orthogonal.

Now suppose ϕ1 � ψ. Then we may take ϕ1 = ψ � θϕ∗
1. Let 〈 , 〉 be the orthogonal

form on V1 = Ck = C2m fixed by ϕ1, and consider V = C6m � V1 ⊗C3. Take 〈 , 〉′
to be a symmetric form on C3 so that 〈 , 〉 ⊗ 〈 , 〉′ is the ambient symmetric form.

Then dual pairs gives Sϕ � stabGL3(C)(〈 , 〉′) ∩ Ĝ � SO2,1(C) as before. Now
suppose c0ψ � ψ. The computations for ϕ1 	� θϕ1 are as before. So assume
ϕ1 � θϕ1. First assume that ϕ1 	� ψ. Then, in block form A ∈ Sϕ,

A =

⎛
⎝ λ11I 0 Bλ12

0 δ 0
B−1λ 0 λ22I

⎞
⎠ , with δψ � ψ.
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If k is even, then δ = ±1, so

Sϕ �
{
O1,1(C) if ϕ1 is orthogonal,

SL2(C) if ϕ1 is symplectic,

and further Wϕ = Wϕ,π. If k is odd, then δ = ±c0. Note, in this case, Sϕ
∼= O1,1(C)

and Wϕ
∼= Z2. However,

Wϕ,π
∼=
{
Z2 if cτ � τ,

1 if cτ 	� τ,

where c is the automorphism dual to c0. Now, if Wϕ,π = Z2, then as c 	∈ SOm,m(C),
W ◦

ϕ,π = {1}, and Rϕ,π � R(π), as predicted. Finally, suppose c0ψ � ψ and ϕ1 = ψ.
Then ϕ1 � θϕ1, and J = Bsk is our form fixed by ϕ1. Then the computation is, in
fact, the same as in the case c0ψ 	� ψ, and thus, Sϕ � SO2,1(C). Now comparison
with [9] shows we have the result we wish.

Proposition 2.4. If G = SO2n, and M = GLk×SO2m, then, under Assump-
tion A, for any π = σ ⊗ τ , supercuspidal, with the property that the parameter ψ
for τ is irreducible, we have Rϕ,π � R(π). �

3. The case of Levi factors contained in the Siegel

We now consider the case where M ↪→ GLn. Thus, let M � GLn1
× GLn2

×
· · · × GLnr

, with n1 + n2 + · · · + nr = n. In this case each L–packet Πϕ(M) is a

singleton, so Rϕ,σ = Rϕ. Then M̂ � GLn1
(C) × GLn2

(C) × · · · × GLnr
(C). We

consider ϕ = ϕ1 ⊕ ϕ2 ⊕ . . .⊕ ϕr, with each ϕi irreducible as in Section 2. We now
reduce to the simplest cases. First assume, if G = SO(2n), then each ni is even.

Recall, in all of these cases, W = W (Ĝ, AM̂ ) = 〈(ij)〉 � 〈Ci〉, where (ij) ∈ W if
and only if ni = nj , and Ci : gi �→ Θ(gi), where Θ(gi) = θ(gi) if G = Sp2n or
SO2n, and Θ(gi) = θ∗(gi) if G = SO2n+1 (where θ and θ∗ are as in Section 2). Let
w = sc ∈ W . We suppose w = (1 2 · · · j) and C acts only on the indices 1, 2, . . . , j.
We assume c = Ck1

Ck2
. . . Ck�

, and set Ω = {k1, k2, . . . , k
}. We write

wϕ =
r⊕

i=1

(wϕ)i.

If i > j, then (wϕ)i = ϕi. On the other hand if 1 ≤ i ≤ j, then

(wϕ)i =

{
ϕi−1 if i 	∈ Ω,

Θ ◦ ϕi−1 if i ∈ Ω,

where we must take i− 1 modulo j. Then

wϕ � Θγ1ϕ2 ⊕Θγ2ϕ3 ⊕ · · · ⊕Θγj−1ϕj ⊕Θγjϕ1 ⊕ ϕj+1 ⊕ · · · ⊕ ϕr,

with γi = 1 if i ∈ Ω, and γi = 0, otherwise. Thus, wϕ = ϕ if and only if

ϕ1 � Θγ1ϕ2 � Θγ1+γ2ϕ3 � · · · � Θγ1+...+γj−1ϕj � Θγ1+...+γjϕ1.

We may choose a conjugate of ϕ so that

ϕ = m1ϕ1 ⊕m′
1Θϕ1 ⊕m2ϕ2 ⊕m′

2Θϕ2 ⊕
· · · ⊕m
ϕ
 ⊕m′


Θϕ
,
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with ϕi 	� ϕj , and ϕi 	� Θϕj , for i 	= j. Let Mi = GL
mi+m′

i
ni , and Gi = G(mi+m′

i).

Consider Φi = miϕi ⊕m′
iϕ

′
i, as a parameter with image in Ĝi. Then

Sϕ =


∏
i=1

SΦi
, S◦

ϕ =


∏
i=1

S◦
Φi
, Wϕ =


∏
i=1

WΦi
,

and W ◦
ϕ =


∏
i=1

W ◦
Φi
. This is the same analysis as in §4 and §5 of [9]. Thus, we

reduce to the case n1 = n2 = · · · = nr, and

ϕi = Θγiϕ1 for i = 1, 2, 3, . . . , r.

Further, by conjugation we may assume ϕi = ϕ1 for i = 1, 2, . . . , r. The following
is due to Gross–Prasad when G = SO2n or SO2n+1, and we adopt their proof for
G = Sp2n. Note, this generalizes Lemma 2.2.

Proposition 3.1. Let G = SO2n+1, Sp2n, or SO2n. Let n = kr, and let
M � GLr

k. If G = SO2n, we assume k is even. Let σ1 be an irreducible unitary
supercuspidal representation of GLk(F ) and take σ = ⊗rσ1 as a representation of
M. Let ϕ = ⊕rϕ1 be the parameter associated to σ.

(a): If ϕ1 	� Θϕ1, then Sϕ � GLr(C).
(b): If G = SO2n+1, and ϕ1 � θ∗ϕ1, then

Sϕ �
{
Sp2r(C) if ϕ1 is orthogonal;

Or,r(C) if ϕ1 is symplectic.

(c): If G � SO2n, and ϕ1 � θϕ1, then

Sϕ �
{
Sp2r(C) if ϕ1 is symplectic;

Or,r(C) if ϕ1 is orthogonal.

(d): If G = Sp2n, and ϕ1 � θϕ1, then

Sϕ �
{
Sp2r(C) if ϕ is symplectic;

Or,r(C) if ϕ is orthogonal.

Proof. Due to Sections 6 and 7 of [13], we only need to address the case of
G = Sp2n. Let k = n1. First consider case (a). If g0 = (λij) ∈ GLr(C), we set

h(g0) =

⎛
⎜⎝
λ11Ik λ12Ik · · · λ1rIk

...
. . .

...
λr1Ik λr2Ik · · · λrrIk

⎞
⎟⎠ ∈ GLn(C). Then

Sϕ =

{⎛
⎝h(g0) 0 0

0 1 0
0 0 θ(h(g0))

⎞
⎠
∣∣∣∣g0 ∈ GLr(C)

}
� GLr(C).

For (d) we adopt the argument of [13]. Let V1 be the space of ϕ1. Then, identifying
V1 with V ∨

1 through the form fixed by ϕ1, we have V = V1⊗C2r⊗C× is the ambient

space for Ĝ. We let 〈 , 〉1, be the form fixed by ϕ1, and 〈 , 〉0 the standard orthogonal
form given by multiplication on C×. Then we can choose a (unique up to scalars)
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form 〈 , 〉′ on C2r so that 〈 , 〉 = 〈 , 〉1 ⊗ 〈 , 〉′ ⊗ 〈 , 〉0, is the form given by s2n+1.

Thus Sϕ = O(C2r, 〈 , 〉′) ∩ Ĝ

�
{
Sp2r(C) if ϕ1 is symplectic;

O2r(C) if ϕ1 is orthogonal.

�
Theorem 3.2. Let G = Sp2n, SO2n, or SO2n+1, and let M = GLn1

× . . . ×
GLnr

. If G = SO2n, we assume each ni is even. Let ϕ : W ′
F → M̂ be an irreducible

representation, and suppose ϕ = ϕ1 ⊕ ϕ2 ⊕ . . . ⊕ ϕr. Then Rϕ � R(σ), where ϕ
parametrizes σ.

Proof. As per the discussion preceding Proposition 3.1, it is enough to show
this in the case n1 = n2 = · · · = nr = k, for some k, and σ � ⊗rσ1. Let ϕ = ⊕rϕ1.
We take Tϕ to be the maximal torus of block diagonal elements in M̂ . Note, in
each case, Tϕ ⊂ Sϕ. Then Wϕ = W (Sϕ, Tϕ) � Sr � Zr

2, in the standard way. If
ϕ1 	� Θϕ1, then Wϕ = W ◦

ϕ by Prop. 3.1, and hence Rϕ = {1} = R(σ), by [9]. If ϕ1

is orthogonal, then

Wϕ =

{
W ◦

ϕ if G = SO2n+1;

W ◦
ϕ � Z2, if G = Sp2n.SO2n,

Therefore,

Rϕ �
{
Z2 if G = Sp2n, SO2n,

1 if G = SO2n+1,

and, again by [9] Rϕ � R(σ). If ϕ1 is symplectic, the argument is similar, with the
roles of the groups reversed. �

Now suppose G = SO2n, M = GLn1
× · · · ×GLnr

, and at least one ni is odd.
We may assume n1, n2, . . . , nt are even, and nt+1, nt+2, . . . , nr are odd. Consider
m1 = n1 + n2 + · · ·+ nt, m2 = nt+1 + · · ·+ nr. Set Gi = SO2mi

. We let

M1 = GLn1
× · · · ×GLnt

⊆ G1, and

M2 = GLnt+1
× · · · ×GLnr

⊆ G2.

Let ϕ = ϕ1 ⊕ · · · ⊕ ϕr, and define ψ1 : WF → M̂1 by ψ1 = ϕ1 ⊕ · · · ⊕ ϕt, and
ψ2 = ϕt+1⊕· · ·⊕ϕr. Let πi be the corresponding irreducible unitary supercuspidal

representation of Mi. Let Wi = W (Ĝi, AM̂i
).

Lemma 3.3. With notation as above;

(a): M̂ � M̂1 × M̂2;

(b): W (Ĝ, AM̂ ) = W1 ×W2;
(c): Sϕ = Sψ1

× Sψ2
;

(d): S◦
ϕ = S◦

ψ1
× S◦

ψ2
.

Proof. Parts (a) and (b) are obvious, and are also parts of lemma 5.1 of [9].
Part (d) will follow from (c). For (c), we consider an element A ∈ Sϕ as block
matrices relative to m1 +m2 = n, i.e.,

A =

⎛
⎜⎜⎝
A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

⎞
⎟⎟⎠ ,
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and each Aij =
(
λij
k


)
is scalar in the appropriate blocks. We note that A ∈ Sϕ

implies
A12ψ2 = ψ1A12, A13θψ2 = ψ1A13;
A21ψ1 = ψ2A21, A24θψ1 = ψ2A24;
A31ψ1 = θψ2A32, A34θψ1 = θψ2 A34;
A42 ψ2 = θψ1A42, A43θψ2 = θψ1A43.

Since each of the blocks for ψ1 is even, and those for ψ2 are odd, the above equations
show Aij = 0, for

(i, j) = (1, 2), (1, 3), (2, 1), (2, 4), (3, 1), (3, 4), (4, 2), (4.3).

Then

Sϕ =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
A11 0 0 A12

0 A22 A23 0
0 A32 A33 0

A41 0 0 A44

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

� Sψ1
× Sψ2

,

in the obvious way. �

Corollary 3.4. With the notation of Lemma 3.2, Rϕ � Rψ1
×Rψ2

. �

Since we have computed Rψ1
, we are reduced to the case M = M2, i.e.,

n1, n2, . . . , nr are all odd. Letting Sr act on the blocks of M , we have (ij) ∈
W (Ĝ, AM̂ ) if and only if ni = nj . Let W0 = 〈(ij)|ni = nj〉. We let C = 〈CiCi+1|i =
1, 2, . . . , r − 1〉 where Ci is the ith block sign change. Then we have

W = W (Ĝ, AM̂ ) = W0 � C � W0 � Zr−1
2 .

Consider ϕ = ϕ1 ⊕ ϕ2 ⊕ . . .⊕ ϕr. Note, since each ni is odd, θϕi � ϕi if and only
if ϕi is orthogonal.

We now, briefly, change notation so

M = GLm1
n1

×GLm2
n2

× . . .×GLmr
nr

, with

ϕ =
⊕
i

⊕miϕi,

with ni odd, and ϕ1, ϕ2, . . . , ϕt not orthogonal, while ϕt+1, ϕt+2, . . . ϕr are orthog-
onal. Further assume ϕi 	� ϕj for i 	= j.

Lemma 3.5. We let k1 = m1n1 + · · · + mtnt, k2 = mt+1nt+1 + · · · + mrnr;
Gi = SO2ki

, and Mi the obvious Levi subgroup of Gi, as in Lemma 3.3. Let
ϕ = Ψ1 ⊕Ψ2, with

Ψ1 =

t⊕
i=1

⊕miϕi, and

Ψ2 =

r⊕
i=t+1

⊕miϕi.

Then

Sϕ = SΨ1
× SΨ2

.

Proof. This is precisely the same argument as lemma 3.3(c), noting that
the appropriate blocks are now zero owing to ϕi being orthogonal if and only if
i ≥ t+ 1. �
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An easy block matrix computation shows

SΨ1
� GLm1

(C)× GLm2
(C)× · · · ×GLmt

(C).

Thus, we may assume each ϕi is orthogonal.

Proposition 3.6. Let G = SO2n, M = GLm1
n1

× · · · × GLmr
nr

, with each ni

odd. Suppose ϕ = ϕm1
1 ⊕ · · · ⊕ ϕmr

r with each ϕi orthogonal, and ϕi 	� ϕj , i 	= j.
Then Sϕ � S(Om1,m1

(C)× · · · × Omr,mr
(C)).

Proof. For each i fix an equivalence Bi of ϕi with θϕi, and take the form
〈 , 〉i on the space Vi of ϕi given by Bisni

. Then there is a unique, up to scalars,
choice of forms 〈 , 〉′i on Cmi for each i so that on C2mini the form 〈 , 〉 on the

ambient space of Ĝ = SOn,n(C) is
r⊗

i=1

〈 , 〉i ⊗ 〈 , 〉′i. Then each 〈 , 〉′i is orthogonal,
and by duality

Sϕ = (Om1,m1
(C)×Om2,m2

(C)× · · · ×Omr,mr
(C)) ∩ Ĝ

= S(Om1,m1
(C)×O2m2

(C)× · · · ×O2mr
(C)), as claimed.

�

Theorem 3.7. If G = SO2n+1, Sp2n, or SO2n, and M = GLn1
× GLn2

×
· · · × GLnr

, then for any irreducible ϕ : WF → M̂, we have , Rϕ � R(σ), with σ
parametrized by ϕ.

Proof. Combining Proposition 3.1(c), Theorem 3.2, Corollary 3.4, and Lemma
3.5, it is enough to prove the statement when each ni is odd and ϕi is orthogonal.
By Proposition 3.6, we have

Wϕ = W (Sϕ, Tϕ) =
r∏

i=1

Smi
� C,

where C � Zm1+···+mr−1
2 is as in Corollary 3.4. Further, since

S◦
ϕ = [S(Om1,m1

(C)× · · · ×Omr,mr
(C))]◦

= SOm1,m1
(C)× SOm2,m2

(C)× · · · × SOmr,mr
(C), we have

W (S◦
ϕ, Tϕ) �

r∏
i=1

(
Smi

� Z
mi−1

2

)
.

Thus, Rϕ � Wϕ/W
◦
ϕ � Zr−1

2 , and by Theorem 6.8 of [9], Rϕ � R(σ). �

4. The case of non-Siegel parabolic subgroups

We now turn to the case where

M ∼= GLn1
×GLn2

× · · · ×GLnr
×G(m), with

n1 + n2 + · · ·+ nr +m = n, and m > 0.
We fix ϕ = ϕ1 ⊕ ϕ2 ⊕ · · · ⊕ ϕr ⊕ ψ, with ϕi an (irreducible) parameter for

an irreducible unitary supercuspidal representation σi of GLni
, and ψ a parameter

for a supercuspidal L–packet {τ} of G(m). We make the assumption that ψ is
irreducible. We will first prove some results in general, but eventually we will need
to consider the case of G = SO2n separately. Recall here we are working under
Assumption A.
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By changing M and ϕ by conjugates, we may assume M � GLm1
n1

× GLm2
n2

×
· · · ×GLmt

nt
×G(m), and

σ � ⊗m1σ1

⊗
⊗m2σ2

⊗
· · ·
⊗

⊗mtσt ⊗ τ,

with σi 	� σj and σi 	� σ̃j for i 	= j. Thus, we may take

ϕ = ⊕m1ϕ1

⊕
⊕m2ϕ2

⊕
· · ·
⊕

⊕mtϕt ⊕ ψ,

with ϕi 	� ϕj , and ϕi 	� Θ◦ϕj , for i 	= j. For i = 1, 2, . . . , t, set Gi = G(nimi+m),
and Mi = GLmi

ni
×G(m), and consider Mi as a Levi subgroup of Gi. Denote by

Φi the parameter miϕi ⊕ ψ, and let πi = ⊗miσi ⊕ τ . Then πi is in the L–packet∏
Φi
(Mi). We denote Si = SΦi

, the Ĝi centralizer of Φi(WF ). Since Hom(ϕi, ψ) 	= 0
for at most one i, we may assume (by replacing the pair (M, σ) with a conjugate)
Hom(ϕi, ψ) = 0 for i = 1, 2, . . . , t− 1.

We fix

C0 =

⎛
⎜⎜⎝
Im−1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 Im−1

⎞
⎟⎟⎠ ∈ Om,m(C) \ SOm,m(C).

Lemma 4.1. We use the above notation.
(a) Suppose G = SO2n and C0 · ψ 	� ψ. Then

(i) Sϕ � S1/Z2 × S2/Z2 × · · · × St−1/Z2 × St;

(ii) S◦
ϕ � S◦

1 × S◦
2 × · · · × S◦

t−1 × S◦
t .

(b) Suppose G = SO2n and C0 · ψ � ψ. Then

(i) Sϕ � (S1/Z2 × Z2)× (S2/Z2 × Z2)× · · · × (St−1/Z2 × Z2)× St;

(ii) S◦
ϕ � S◦

1 × S◦
2 × · · · × S◦

t−1 × S◦
t .

(c) Suppose G = SO2n+1 or Sp2n, then

(i)Sϕ � S1 × S2 × · · · × St;

(ii)S◦
ϕ � S◦

1 × S◦
2 × · · · × S◦

t−1 × S◦
t .

Proof.
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(a) Let A ∈ Sϕ. Then, relative to the decomposition M̂ � GLn1
(C)m1 × · · · ×

GLnt
(C)mt × Ĝ(m), we have

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11 A12 . . . A1t A1 t+1 A1 t+2 . . . A1 2t+1

A21 A22 . . . A2t A2 t+1 A2 t+2 . . . A2 2t+1

...
. . . . . .

...
... . . . Att

...
... At+1 t+1 . . .

...
. . .

...

A2t+1 1 . . . . . . . . . A2t+1 2t+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For 1 ≤ i ≤ t, we set i′ = 2t + 2 − i. By our assumption that ϕi 	� ϕj , and
ϕi 	� Θϕj , for i 	= j, we see Aij = 0 for 1 ≤ i < j ≤ t, t+2 ≤ i < j ≤ 2t+1. Similarly,
Aij = 0 if 1 ≤ i ≤ t, t+2 ≤ j ≤ 2t+1, unless j = i′. or 1 ≤ j ≤ t, t+2 ≤ i ≤ 2t+1,
unless j = i′. Further, by our assumption on Hom(ϕi, ψ) for 1 ≤ i ≤ t, we have
Ai t+1 = 0 and At+1 i = 0 for i = 1, 2, . . . , t − 1, i = t + 3, . . . , 2t + 1. Finally, by
Schur’s Lemma, and our assumption that C0 · ψ 	� ψ, we see At+1 t+1 is scalar.
Thus,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11 0 0 . . . . . . 0 A11′

0 A22 0 . . . . . . A22′ 0
...

. . .
...

...
... Att At t+1 Att′

...
At+1 t ct+1 At+1 t′

0 . . . At′t At′ t+1 At′t′ 0 . . .
...

...
. . .

A1′1 0 . . . . . . 0 A1′1′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with ct+1 a scalar.
We also see that if 1 ≤ i ≤ t− 1, then

Si =

⎧⎨
⎩
⎛
⎝Aii 0 Aii′

0 ci 0
Ai′i 0 Ai′i′

⎞
⎠
⎫⎬
⎭ ,

with ci a scalar and the obvious block decomposition. But, as this element must
be in SOmini,mini

(C), we have ci = ±I2m. We let the elements of Si be denoted by
[Ai, ci]. We also have

St =

⎧⎨
⎩
⎛
⎝ Att At t+1 Att′

At+1 t ct+1 At+1 t′

At′t At′ t+1 At′t′

⎞
⎠
⎫⎬
⎭ ,

with ct a scalar, and we denote these elements by At. Consider the map η : S1 ×
S2 × · · · × St → Sϕ given by

η

((
t−1∏
i=1

[Ai, ci]

)
, At

)
=
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(4.1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11 0 0 . . . . . . 0 A11′

0 A22 0 . . . . . . A22′ 0
...

. . .
...

...
... At−1 t−1 0 At−1(t−1)′

...
0 At 0

0 . . . A(t−1)′ t−1 0 A(t−1)′(t−1)′ . . .
...

...
. . .

A1′1 0 . . . . . . 0 A1′1′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then η is a surjective homomorphism with kernel{(
t−1∏
i=1

[I, ci], I

)}
,

which gives (i). Part (ii) then follows immediately. This completes (a).
(b) The proof above need only be modified by replacing each ci with ciC

εi
0 ,

with εi ∈ {0, 1}. With this modification, the proof of (i) follows the same steps
as (a) and again (ii) is immediate. Finally (c) follows from simple block matrix
computations as in Section 3, taking into account each element of Wϕ acts trivially
on ψ. �

Continuing with the notation above, and that of the proof, we see that we may
take the maximal torus

(4.2) Tϕ = {diag {A11, A22 . . . , Att, Im′ , A′
tt, . . . , A

′
11}} ⊂ Sϕ,

with blocks of the form

Aii = diag {ai1Ini
, ai2Ini

, . . . , aimi
Ini

} ,
A′

ii = diag
{
a−1
imi

Ini
, a−1

imi−1Ini
, . . . , a−1

i1 Ini

}
= Θ(Aii),

with m′ = 2m or 2m + 1, as appropriate, and Θ as in Section 3. Also note we
may take the torus Ti = {diag {Aii, Im′ , A′

ii}} ⊂ Si, and so Tϕ � T1 × · · · × Tt. If
G = Sp2n, or SO2n+1, or if G = SO2m and each ni is even, then each element of
W (Sϕ, Tϕ) acts trivially on the middle G(m) block, and hence trivially on ψ. Thus
we have the following result.

Lemma 4.2. With the notation of the previous lemma, suppose G = Sp2n, or
SO2n+1, or G = SO2n and each ni is even. Then

(i) Wϕ
∼= WΦ1

×WΦ2
× · · · ×WΦt

;

(ii) Rϕ � RΦ1
×RΦ2

× · · · ×RΦt
;

(iii) Rϕ,σ � RΦ1,π1
×RΦ2,π2

× · · · ×RΦt,πt
.

�
We now restrict ourselves to the cases of Lemma 4.2, namely,G = Sp2n, SO2n+1,

or G = SO2n and each ni is even. Then, by Lemma 4.2, we may reduce to the case
where M � GLr

k × G(m), and σ =
⊗r

σ0 ⊗ τ . Assume ϕ0 and ψ are parameters
for σ0 and τ , respectively, and we continue to assume ψ is irreducible.
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Lemma 4.3. Suppose ϕ0 � Θϕ0, but ϕ0 	� ψ.

(i): If G = Sp2n, or SO2n, (with k even in the latter case), then

Sϕ =

{
Or,r(C) if ϕ0 is orthogonal;

Sp2r(C) if ϕ0 is symplectic.

(ii): If G = SO2n+1, then

Sϕ =

{
Or,r(C) if ϕ0 is symplectic;

Sp2r(C) if ϕ0 is orthogonal.

Proof. (i) Let V0 be the space of ϕ0 (so V0 � Ck). Let 〈 , 〉0 be the form
on V0 given by J0 = Bsk, with Bϕ0 � θϕ0, and sk as in Sections 2 and 3. Let
〈 , 〉ψ be the form on Cm′

fixed by ψ, with m′ = 2m + 1, or 2m, as appropriate.
Then there is a unique, up to scalars, non–degenerate form 〈 , 〉′ on C2r so that
〈 , 〉0 ⊗ 〈 , 〉′ ⊗ 〈 , 〉ψ is the form defined by s2n if G = SO2n, and and s2n+1, if

G = Sp2n. As this is the form which defines Ĝ we have Sϕ � Stab〈 , 〉′ ∩ Ĝ. In
each case we see that Sϕ

∼= Or,r(C) if ϕ0 is orthogonal, and Sϕ
∼= Sp2r(C) if ϕ0 is

symplectic. This completes (i). The proof of (ii) is similar, with J0 = Buk, and
noting J0 is orthogonal if ϕ0 is symplectic and vice-versa. �

Lemma 4.4. We continue with the assumption M � GLr
k × G(m), with the

additional assumption that k is even if G = SO2n. We also assume σ �
⊗r

σ0⊗ τ,
and ϕ0 and ψ are the parameters of σ0 and τ, respectively. (Of course we still

assume ψ is irreducible). If ϕ0 � ψ then Sϕ �
{
SOr+1,r(C) if k is odd,

Or+1,r(C) if k is even.

Proof. As in the proof of the last lemma, let V0 be the space of ϕ0. Since
ϕ0 � ψ we have V � V0 ⊗ C2r+1 is the ambient space for Ĝ. If 〈 , 〉0 is the form
fixed by ϕ0, then there is a unique, up to scalars, non–degenerate form 〈 , 〉′ on
C2r+1 so that 〈 , 〉 = 〈 , 〉0 ⊗ 〈 , 〉′ is the form defining Ĝ. Clearly 〈 , 〉′ must be

orthogonal, so by this dual pair construction Sϕ = Or+1,r ∩ Ĝ. The determinant
condition shows this intersection is SOr+1,r, if k is odd. However, when k is even,
this copy of Or+1,r(C) is a subgroup of G. Thus, Sϕ is as claimed. �

We note, in the last lemma, when k is even, the difference in NSϕ
(Tϕ) and

NS◦
ϕ
(Tϕ) can be realized as −I2r+1, which lies in ZSϕ

(Tϕ). Thus, regardless of the

parity of k, we have Wϕ � W ◦
ϕ, so Rϕ = {1}.

Theorem 4.5. Let M � GLr
k ×G(m), with the additional assumption that k

is even if G = SO2m. Assume σ is as in Lemmas 4.3 and 4.4.

(i): Rϕ � {1} if

{
ϕ0 � ψ, or

ϕ0 	� Θϕ0.

(ii): Rϕ � Z2 if

⎧⎪⎨
⎪⎩
G = Sp2n, ϕ0 is orthogonal, ϕ0 	� ψ;

G = SO2n+1, ϕ0 is symplectic, ϕ0 	� ψ; or

G = SO2n, k is even, ϕ0 is orthogonal, and ϕ0 	� ψ.

�
Since L(s, ϕ0⊕ψ) has a pole at s = 0 if and only if ϕ0 � ψ, this can be phrased

as follows. If ϕ0 	� Θϕ0, then Rϕ = {1}. On the other hand, if ϕ0 � Θϕ0, then
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Rϕ � Z2, unless the product L(s, ϕ0 ⊕ ψ)L(2s, r2 ◦ ϕ0) has a pole at s = 0. Here

r2 = Sym2 if G = SO2n+1, and is ∧2 otherwise. This is as expected.

Theorem 4.6. Suppose G = Sp2n, SO2n+1, or SO2n and M � GLn1
× · · · ×

GLnr
×G(m), with each ni even in the case G = SO2n. Assume ϕ : WF → M̂ is

an irreducible parameter for an irreducible unitary supercuspidal representation σ
of M. Under Assumption A, Rϕ,σ = Rϕ and Rϕ � R(σ).

Proof. That Rϕ = Rϕ,σ was already observed in these cases, owing to Wϕ

acting trivially on the summand ψ. The R-groups R(σ) were computed in [9], and
there the computation in these cases was reduced to the special cases of Theorem
4.5. Of course, if σ 	� σ̃, then R(σ) = {1}. Otherwise, if σ � σ̃, then R(σ) � Z2,
unless L(s, σ0 × τ )L(2s, σ0, r) has a pole at s = 0 [25, 10, 12]. Here r2 is Sym2 if
G = SO2n+1 and is ∧2, otherwise. Using Assumption A, Theorem 1.4, Theorem
4.5, and the remarks following Theorem 4.5, we have Rϕ � R(σ). �

Now let G = SO2n, so Ĝ = SOn,n(C). We suppose M � GLn1
×GLn2

× · · · ×
GLnr

× G(m), with m ≥ 1. We assume n1, n2, . . . , nt are odd, and nt+1, . . . , nr

are even. Let ϕ : WF → M̂, and we assume ϕ = ϕ1 ⊕ ϕ2 ⊕ · · · ⊕ ϕr ⊕ ψ. We
let G1 = G(n1 + n2 + · · · + nt + m), and G2 = G(nt+1 + · · · + nr + m). Let
M1 = GLn1

× GLn2
× · · · × GLnt

× G(m) � M′
1 × G(m), and M2 = GLnt+1

×
· · · ×GLnr

×G(m) = M′
2 ×G(m). We let Ψ1 : WF → M̂1 be given by

Ψ1 = ⊕t
i=1ϕi ⊕ ψ = Ψ′

1 ⊕ ψ,

and Ψ2 : WF → M̂2, be given by

Ψ2 = ⊕r
i=t+1ϕi ⊕ ψ = Ψ′

2 ⊕ ψ.

Denote the Weyl groups by Wi = W (Ĝi, AM̂i
). We also denote m1 = n1 + n2 +

· · ·+ nt, and m2 = nt+1 + · · ·+ nr.

Lemma 4.7. With he notation above we have the following identites:

(a): M̂ � M̂ ′
1 × M̂ ′

2 × SOm,m(C);

(b): W (Ĝ, AM̂ ) � W1 ×W2;
(c): Sϕ � (SΨ1

/Zε1
2 )× SΨ2

, with ε1 = 1, or 2;
(d): S◦

ϕ � S◦
Ψ1

× S◦
Ψ2

;
(e): Wϕ � WΨ1

×WΨ2
;

(f): W ◦
ϕ � W ◦

Ψ1
×W ◦

Ψ2
;

(g): Rϕ � RΨ1
×RΨ2

.

In part (c), ε1 = 1 if C0 · ψ 	� ψ, and ε1 = 2 if C0ψ � ψ.

Proof. As in Lemma 3.3, (a) and (b) are straightforward computations, and
the proofs are as in Lemma 5.10 of [9] We note (c) is a consequence of Lemma
4.1a(i) or b(i) and (d) is one of Lemma 4.1 a(ii) or b(ii). The last three parts now
follow immediately. �

By Theorem 4.6 we are now reduced to considering the case where G = SO2n

and each ni is odd. Let’s suppose, as beforeM � GLm1
n1

×GLm2
n2

×. . . GLmt
nt

×SO2m,

σ � ⊕m1σ1

⊕
⊕m2σ2

⊕
· · · ⊕mt σt ⊕ τ,
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and σi 	� σj , σ̃j , for i 	= j. Thus, take ϕ = ⊕m1ϕ1

⊕
· · · ⊕mt ϕt ⊕ ψ. Assume

σ1, σ2, . . . , σs are not orthogonal, and σs+1, . . . , σt are orthogonal. Then, using the
notation of (4.1), we see Aii′ = Ai′i = 0, for 1 ≤ i ≤ s. Further, for 1 ≤ i ≤ s,

Aii =

⎛
⎜⎜⎜⎜⎜⎝

a
(i)
11 Ini

a
(i)
12 Ini

. . . a
(i)
1mi

Ini

a
(i)
21 Ini

. . . . . . a
(i)
2mi

Ini

...
. . .

...

a
(i)
mi1

Ini
. . . . . . a

(i)
mimiIni

⎞
⎟⎟⎟⎟⎟⎠

,

with each a
(i)
jk ∈ C. Also note (again for 1 ≤ i ≤ s) Ai′i′ = Θ(Aii). As each ϕi and ψ

are irreducible, and each ni is odd, we have Hom(ϕi, ψ) = 0, for each i. Thus, again

using the notation of (4.1), we have At =

⎛
⎝Att 0 Att′

0 ±Cε0
0 0

At′t 0 At′t′

⎞
⎠ , and ε0 ∈ {0, 1}.

We have the possibility of ε0 = 1 only if C0 ·ψ � ψ. We now describe the centralizer
Sϕ.

Proposition 4.8. Let G = SO2n, M � GLm1
n1

× · · · × GLmt
nt

× G(m), with
each ni odd,

σ � ⊗m1σ1

⊗
⊗m2σ2

⊗
· · ·
⊗

⊗mtσt ⊗ τ,

and σi 	� σj , σi 	� σ̃j , for i 	= j. Take

ϕ = ⊕m1ϕ1

⊕
⊕m2ϕ2

⊕
· · ·
⊕

⊕mtϕt ⊕ ψ.

Assume σ1, σ2, . . . , σs are not orthogonal and σs+1, . . . , σt are orthogonal.
(a) If C0 · ψ 	� ψ, then

Sϕ � GLm1
(C)×GLm2

(C)× · · · ×GLms
(C)×

S
(
Oms+1,ms+1

(C)× · · · ×Omt,mt
(C)
)
× Z2;

(b) If C0 · ψ � ψ, then

Sϕ � GLm1
(C)×GLm2

(C)×· · ·×GLms
(C)×Oms+1,ms+1

(C)×· · ·×Omt,mt
(C)×Z2.

Proof. The proofs follow the reasoning used in earlier results and, in partic-
ular the argument of Proposition 3.6. For 1 ≤ i ≤ s, the map⎛
⎜⎜⎜⎜⎝

a
(i)
11 Ini

a
(i)
12 Ini

. . . a
(i)
1mi

Ini

a
(i)
21 Ini

. . . . . . a
(i)
2mi

Ini

...
...

a
(i)
mi1

Ini
. . . . . . a

(i)
mimiIni

⎞
⎟⎟⎟⎟⎠ �→

⎛
⎜⎜⎜⎜⎝

a
(i)
11 a

(i)
12 . . . a

(i)
1mi

a
(i)
21 . . . . . . a

(i)
2mi

...
...

a
(i)
mi1

. . . . . . a
(i)
mimi

⎞
⎟⎟⎟⎟⎠ ,

is an isomorphism of {(
Aii 0
0 Θ(Aii)

)}

with GLmi
(C). Also for these indices, let 〈 , 〉i be the form on C2mini given by

s2mini
. Let 〈 , 〉0 be the form on C2m given by s2m.

For each s+ 1 ≤ i ≤ t fix an equivalence Bi of ϕi with θϕi. Fix the form 〈 , 〉i
on the space Vi of ϕi given by Bisni

. Then there is a unique, up to scalars, choice

of forms, 〈 , 〉′i on Cmi for each i ≥ s + 1 so the form 〈 , 〉 on C2n is
r⊗

i=1

〈 , 〉i ⊗
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〈 , 〉′i
⊗

〈 , 〉0. Then each 〈 , 〉′i is orthogonal. We now, as in previous cases, use the
dual pair construction to identify Sϕ. For (a), since the middle 2m×2m block must
be ±I2m, we see, as in the case of Proposition 3.6, that the determinant condition
forces Sϕ to have the form claimed in (a). In case (b), we see the determinant forces
the choice of ε0, and gives Sϕ the form as claimed �

We now compute the R–group Rϕ,σ. We take the maximal torus Tϕ ⊂ Sϕ given
by (4.2).

Theorem 4.9. Let G = SO2n and M � GLm1
n1

× · · · × GLmt
nt

× SO2m, with
each ni odd. Assume σ � ⊗m1σ1

⊗
⊗m2

⊗
· · ·
⊗

⊗mtσt ⊗ τ is an irreducible su-
percuspidal representation of M. We assume σi 	� σj , and σi 	� σ̃j , for i 	= j. We
let ϕi be a parameter for σi, and ψ a (conjectural) parameter for τ. We assume ψ
is irreducible. Finally, assume σ1, σ2, . . . , σs are not orthogonal, while σs+1, . . . , σt

are orthogonal. Let d = t− s.
(a) If C0 · ψ 	� ψ, then Rϕ,σ � Zd−1

2 ;
(b) If C0 · ψ � ψ, then Rϕ,σ � Zd

2.

Proof. We first describe Wϕ = W (Sϕ, Tϕ), irrespective of whether C0ψ � ψ
or not. Let the permutation group St act on {1, 2, . . . , t}, and let W0 = 〈(ij)|ni =
nj〉. For each i, the permutation group Smi

acts on the mi blocks giving rise to σi.
Further, since m > 0, we have the subgroup of block sign changes in Wϕ is

C =
〈
CijC0

∣∣1 ≤ i ≤ t, 1 ≤ j ≤ mi

〉
,

where Cij is the block sign change on the j-th block of the blocks corresponding to
σi. Now, we have

Wϕ =

(
W0 ·

t∏
i=1

Smi

)
� C.

Let

C0 =
〈
CijCkl

∣∣s+ 1 ≤ i, k ≤ t, 1 ≤ j ≤ mi, 1 ≤ l ≤ mk

〉
,

and

C1 =
〈
CijC0

∣∣s+ 1 ≤ i ≤ t, 1 ≤ j ≤ mi

〉
,

We note, with our assumptions

Wϕ,σ =
t∏

i=1

Smi
� C0

if C0 · ψ 	� ψ, and

Wϕ,σ =

t∏
i=1

Smi
� C1

if C0 · ψ � ψ. Note C0 � Z
ms+1+m2+···+mt−1
2 , and C1 � Z

ms+1+···+mt

2 . Now

S◦
ϕ � GLm1

(C)× · · · ×GLms
(C)× SOms+1,ms+1

(C)× · · · × SOmt,mt
(C).

So in either case

W ◦
ϕ,σ �

s∏
i=1

Smi
×

t∏
i=s+1

(
Smi

� Zmi−1
2

)
.

Thus, in case (a) Rϕ,σ � Zd−1
2 , while in case (b), Rϕ,σ � Zd

2. �



182 DAVID GOLDBERG

Theorem 4.10. Let G = SO2n+1, Sp2n, or SO2n and M � GLn1
× GLn2

×
· · ·×GLnr

×SO2m, Assume σ � σ1⊗σ2⊗· · ·⊗σr⊗τ is an irreducible supercuspidal
representation of M. We let ϕi be a parameter for σi, and ψ a (conjectural) param-
eter for τ. We assume ψ is irreducible. Then, under Assumption A, R(σ) � Rϕ,σ.

Proof. From Theorem 4.6, we can reduce to the case covered by Theorem 4.9.
Then we only need compare the results of Sections 5 and 6 of [9] (See Theorem 1.5)
with those of Theorem 4.9. This comparison gives R(σ) � Rϕ,σ in each case. �

Remark 4.11. We believe the process of extending these results to the case
where ψ is reducible should follow from some combinatorics and the multiplicity one
results of Cogdell, Kim, Piatetski-Shapiro, and Shahidi [8]. Further extension to the
case where σi and τ are discrete series should be tractable using the classifications
of Zelevinsky [31] and Mœglin and Tadić [23]. We leave these considerations to
future work. We also emphasize, again, in the case of G = SO2n+1 our results are
subsumed by [3], and it seems possible an approach along the lines of that work may
be generalized.

5. Duality implements the isomorphism

We continue with the previous notation. So, ϕ : WF → M̂ ↪→ Ĝ, is a parameter
for an L–packet Πϕ(M), with σ ∈ Πϕ(M) an irreducible unitary supercuspidal
representation. We have shown that Rϕ,σ � R(σ), for all cases we have considered.
Now, we claim that this isomorphism can be realized by the dual map α �→ α∨

sending roots of G, to coroots of G, i.e., to roots of Ĝ.

Lemma 5.1. Let G = G(n) = Sp2n, SO2n, or SO2n+1, and M = GLn1
× . . .×

GLnr
×G(m). Then, for any M–parameter ϕ : WF → M̂ , we have Wϕ � W (σϕ),

and this map arises from the duality α → α∨.

Proof. By Lemma 2.2 of [3], Wϕ ⊂ W (Ĝ, AM̂ ). We abuse notation and iden-

tify W (G,AM ) and W (Ĝ, AM̂ ). Comparing the computations preceding Proposi-
tion 3.1, those preceding Lemmas 4.2, 4.7, Theorem 4.9, and those of [9], the lemma
is clear. �

In order to complete the goal of this section, it is enough to show that W ◦
ϕ
∼=

W ′ = W (Δ′). Recall Δ′ is the positive subroot system of Φ(P,A) generated by
those α > 0 with μα(σ) = 0. Thus, it is enough to show W ◦

ϕ = W (Δ′)∨. Since
|Wϕ/W

◦
ϕ| = |W (σ)/W ′|, it is enough to show the simple reflection sα∨ associated

with α∨ belongs to W ◦
ϕ for every α ∈ Δ′. We write

Φ(P,A) = {Ei ± Ej | 1 ≤ i < j ≤ r−1} ∪ {βi}ri=1 ,

where

βi =

⎧⎪⎨
⎪⎩
2Ei G = Sp2n,

Ei G = SO2n+1, and

E◦
i + E′

i, G = SO2n,

where these are the obvious elements, as described in [9]. Then

Φ(P̂ , Â) =
{
E∨

i ± E∨
j

}
∪ {β∨

i }

and β∨
i is E∨

i , 2E
∨
i , or E

∨0
i + E∨1

i , as above.
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Now if α∨ = E∨
i − E∨

j , then sα∨ = (ij) ∈ Wϕ if and only if ϕi � ϕj which
is equivalent to σi � σj , which happens if and only if sα ∈ W ′, by [4, 9]. Note,
by Lemma 2.1, s∨α ∈ W ◦

ϕ, as claimed. If α∨ = E∨
i + E∨

j , then the result holds by
conjugation.

Proposition 5.2. If α∨ = β∨
i , then s∨α ∈ W ◦

ϕ if and only if sα ∈ W ′.

Proof. We first assume m = 0. Suppose G = Sp2n. Then sα∨ = sβ∨
i
= Ci ∈

Wϕ if and only if ϕi � θϕi, and is equivalent to σi � σ̃i. Now, by the proof of
Lemma 2.2, and Hennniart’s theorem [15] (Theorem 1.4), sα∨ ∈ W ◦

ϕ if and only

ϕ is symplectic, i.e., if and only if L(s,∧2ϕi) = L(s, σi,∧2) has a pole at s = 0,
and this is equivalent to α ∈ Δ′ by Shahidi [24] (Theorem 1.3). If G = SO2n+1,
and α∨ = E∨

i , then, sα∨ is again Ci, and Ci ∈ Wϕ if and only if ϕi � θ∗ϕi.
Again, by Lemma 2.2, Ci ∈ W ◦

ϕ if and only if ϕ is orthogonal and this is equivalent

to L(s, Sym2 ϕi) = L(s, σi, Sym
2) having a pole (using Theorem 1.4 again) and

equivalent to μα(σ) = 0, i.e. to α ∈ Δ′ (Theorem 1.3). Finally, suppose G = SO2n.

Then β∨
i = E∨0

i + E∨′

i = eki−1
+ eki

for some ki (see [9]). Then

sα∨ =

{
Ci if ni is even,

1 if ni is odd.

Thus, we may assume ni is even. In this case, by Lemma 2.2, Ci ∈ Wϕ if and only
if ϕi � θϕi, which is equivalent to σi � σ̃i. We also see from the proof of Lemma
2.2 that Ci ∈ W ◦

ϕ if and only if ϕi is symplectic, which is equivalent to Ci ∈ W ′,
i.e., α ∈ Δ′ (Theorem 1.3).

Now assume m > 0. If G = SO2n+1, then Ĝ = Sp2n(C), and β∨
i = 2Ěi. In this

case sβ∨
i
= Ci. We see sβ∨

i
∈ Wϕ if and only if ϕi � θ∗ϕi. By the proof of Lemma

2.3 (which precedes its statement) we have Ci ∈ W ◦
ϕ only if ϕi is orthogonal, or

ϕi � ψ. This is equivalent to poles at s = 0 for L(2s, Sym2 ϕi) or L(s, ϕi ⊕ ψ).
We know L(2s, σ, Sym2) = L(2s, Sym2 ϕi) by Henniart [15]. Under Assumption A,
L(s, σi × τ ) = L(s, ϕi ⊕ ψ), and the latter has a pole if and only if ϕi � ψ. In [12]
it is shown L(s, σi × τ ) having a pole means σi comes from τ by twisted endoscopy
(cf. the discussion following Assumption A). Now we see Ci ∈ W ◦

ϕ,σ if and only if
β∨
i ∈ Δ′. If G = Sp2n, then β∨

i = E∨
i . Again, sβ∨

i
= Ci. Here Ci ∈ Wϕ,σ if and

only if ϕi � θϕi. By the above observation on L–functions, we see Ci ∈ W ◦
ϕ,σ if and

only if one of L(2s,∧2ϕi) or L(s, ϕi ⊕ ψ) has a pole at s = 0, i.e., ϕi is symplectic
or ϕi � ψ. By Theorems 1.3 and 1.4 we have sβ∨

i
∈ W ◦

ϕ,σ if and only if βi ∈ Δ′.
Finally, suppose G = SO2n. Then, βi = E◦

i + E′
i. Then Ci ∈ Wϕ,σ if and only if

either ϕi is symplectic or ϕi is orthogonal and ni s even. The discussion preceding
the proof of Lemma 2.4 shows Ci ∈ W ◦

ϕ,σ if and only if ϕi is symplectic or ϕi � ψ
(necessitating ni be even). Now, we again appeal to [15, 25, 24] to see sβ∨

i
∈ W ◦

ϕ,σ

if and only if βi ∈ Δ′. This completes the proof. �

We have now proved the following.

Theorem 5.3. Under the assumptions of Lemma 5.1, Assumption A, and the
assumption ψ is irreducible, W ◦

ϕ = [W (Δ′)]∨ = W ((Δ′)∨). Thus, the map sα �→
sα∨ induces an isomorphism R(σ) � Rϕ,σ . �
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Corollary 5.4. Suppose G = Sp2n, SO2n, or SO2n+1, and suppose M is a
Levi subgroup of G. Under the assumptions of Theorem 5.3 the sequence

1 → W ◦
ϕ → Wϕ → Rϕ → 1 splits,

Wϕ = Rϕ � W ◦
ϕ, and Rϕ = {w ∈ Wϕ|wΔ∨ = Δ∨} = {w ∈ Wϕ|wα∨ > 0 ∀α∨ ∈

Δ∨}.

Proof. This is a restatement of Theorems 3.7, and 4.10, along with Theorem
5.3 and the Knapp–Stein Theorem[27, 28] �
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In this paper, we describe a proof (more concise than the treatments in [PAF]
Chapter 8 and [H06]) of irreducibility of the modulo p Igusa tower over a (unitary)
Shimura variety. We study the decomposition group of the mixed characteristic
valuation associated to each irreducible component of the Igusa tower (so the ar-
gument is closer to [PAF] Chapter 8 than the purely characteristic p argument
in [H06]). The author hopes that the account here is easier to follow than the
technical but more general treatment in [H06] and [PAF].

There are at least two ways of showing irreducibility: (i) the use of the auto-
morphism group of the function field of the Shimura variety of characteristic 0 (cf.
[PAF] Sections 6.4.3 and 8.4.4), which uses characteristic 0 results to prove the
characteristic p assertion, and (ii) a purely characteristic p proof following a line
close to (i) (see [H06]). There are some other arguments (purely in characteristic
p) to prove the same result (covering different families of reductive groups giving
the Shimura variety) as sketched in [C1] for the Siegel modular variety.

Here is an axiomatic approach to prove irreducibility of an étale covering π :
I → S of a smooth irreducible variety S over the algebraic closure F of Fp. Write
π0(I) for the set of connected components of I. We start with the following two
axioms:
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(A1) A group G = M×G1 acts on I and S compatibly so that M ⊂ Aut(I/S),
G1 ⊂ Aut(S) and G1 acts trivially on π0(I).

(A2) M acts on each fiber of I/S transitively; so, M acts transitively on
π0(I).

Under (A1–2), we study the stabilizer subgroup Tx in G of a point x in a connected
component I◦ of I and try to prove the following conclusion:

(C) {Tx}x for a good choice of a collection of points x and G1 generate a dense
subgroup of G.

Once we reach the conclusion (C), by the transitivity (A2), we obtain I◦ = I getting
the irreducibility of I.

In the setting of Shimura variety Sh of PEL type (of level away from a given
finite set Σ of places), assuming that we have a smooth integral compactification of
Sh over a p-adic discrete valuation ring W (see [ACS] 6.4.1), we can easily verify
the axioms (A1–2) for the following reasons: compatibility of the action in (A1) and
and the transitivity in (A2) follow from the definition. In this case of a Shimura
variety, S is the ordinary locus of the modulo p Shimura variety Sh/F of level away

from a given finite set Σ of places including p and ∞. Then, for the adéle ring A(Σ)

away from Σ, G1 is the adéle group G(A(Σ)) for the semi-simple group G/Q (which
is the derived group of the starting reductive group in Shimura’s data), and M is
the Zp-points M(Zp) of the reductive part M of a parabolic subgroup of G. If we
choose Σ so that G(Q�) is generated by unipotent elements for all � �∈ Σ, G1 has
no nontrivial finite quotient group (because unipotent groups over a characteristic
0 field are uniquely divisible). For any finite subcovering I ′/S of I, G1 acts on the
finite set π0(I

′) through a finite quotient of G1; thus, the action is trivial, proving
(A1).

In the above discussion of how to verify (A1), a key ingredient is that G1

is large enough not to have finite (nontrivial) quotient. As we will do in this
paper, this is deduced from the existence of a smooth toroidal compactification (if
the Shimura variety is not projective) and a characteristic 0 determination of the
automorphism group of the Shimura variety. Alternatively, one can prove that G1

is large by showing that the �-adic monodromy homomorphism for primes � �= p has
large open image in G(A(Σ)). Indeed, C.-L. Chai [C] (in the symplectic case) has
deduced the open image result via group theory from the semi-simplicity theorem
of Grothendieck-Deligne of the �-adic representation. The method in [C] should
also work for � �∈ Σ (for an appropriate Σ) in our setting.

Let I◦/F be an irreducible component of I/F. We want to prove I◦ = π−1(S) = I

(irreducibility). Then Gal(I◦/S) ⊂ M, and ifM = Gal(I◦/S), we get I◦ = π−1(S).
Let D be the stabilizer of I◦ ∈ π0(I) in G. Pick a point x ∈ I (which can be a
generic point), and look at the stabilizer Tx ⊂ G of x. Since gx(x) ∈ I◦ (gx ∈ M) by
the transitivity of the action, we have gxTxg

−1
x ⊂ D. Then we show that M = G/G1

is generated topologically by {gxTxg
−1
x |x ∈ I}, which implies M = Gal(I◦/S) and

the conclusion (C).
In the setting of the Igusa tower of a Shimura variety, we can have at least

three choices of the points x ∈ I:

(∞) A cusp, assuming that the group G = ResF/QG0 for a quasi-split group
G0 over a number field F (acting on a tube domain). This is the proof
given for GSp(2n) in [DAV].
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(cm) A closed point x ∈ I(F) is fixed by a maximal torus Tx of G anisotropic at
∞; thus, gxTx(Z(p))g

−1
x ⊂ D for Z(p) = Q ∩ Zp). A well chosen finite set

of closed points X := {x} is enough to generate a dense subgroup of D by
{gxTx(Z(p))g

−1
x }x∈X . This is Ribet’s choice for Hilbert modular varieties

and is also taken in [H06]. If one uses a CM point (the so-called “hyper-
symmetric point”) carrying a product of copies of CM elliptic curves, often
one such point is sufficient (see Section 3.5);

(gn) Take a coordinate system T = (T1, . . . , Td) around x ∈ Sh(W ) with (x

mod p) ∈ I◦(F) (so that ÔSh,x
∼= W [[T1, . . . , Td]]) and take the valuation

vx(
∑
α

c(α, f)Tα) = Infα ordp(c(α, f)).

Then the decomposition group D of vx contains Tx (for all x ∈ I◦), and D
is the stabilizer of the generic point of I◦ containing x (this choice is taken
in [PAF] 8.4.4). The valuation vx corresponds to the generic point of I◦.
The point x can be a cusp as in (∞), and in the case of the modular curve
(see Section 1.3), the Hilbert-Siegel modular variety and U(n, n) Shimura
variety, the choice of the infinity cusp works as well (cf. [PAF] 6.4.3).

Actually there is (at least) one more choice. Igusa completed his tower over modular
curves adding super singular points and used such points to prove his irreducibility
theorem in the 1950s. Here we describe the method (gn), but the base point x we
use is the infinity cusp in the elliptic modular case and a hyper symmetric point in
the unitary case.

Fix a prime p and an algebraic closure F of Fp. We fix an algebraic closure Q

(resp. Qp) of Q (resp. Qp), respectively. We fix field embeddings ip : Q ↪→ Qp

and i∞ : Q ↪→ C. Throughout this paper, proofs of the results claimed are given
assuming p > 2 (just for simplicity; see [H06] for the treatment in the case p = 2).

1. Elliptic modular Igusa tower

As an introduction to the subject, we first describe the simplest case: the
modular curves by the method (gn).

1.1. Elliptic modular function fields. We consider a field K given by⋃
p�N Q(μN ) inside Q; so K

ip
↪→ Qp. Take a p-adic place P of K given by ip and write

W ⊂ K for the discrete valuation ring of P. We thus have a continuous embedding
ip : W ↪→ Qp, and for the maximal ideal m of W , F = W/m is an algebraic closure

of Fp. Put G = GL1(Zp) × SL2(A
(p∞)) and we embed diagonally Z(p)-points of

the standard diagonal torus M ⊂ SL(2) (of the upper triangular Borel subgroup
P =

{
( a ∗
0 a−1 )

∣∣a ∈ GL(1)
}
of SL(2)) into G so that

(
a 0
0 a−1

)
is sent to a ∈ GL1(Zp)

at p and
(
a 0
0 a−1

)
∈ SL2(Q�) at all primes � � p.

We consider the modular curve X(N)/Z[ 1
N ] for an integer N prime to p which

classifies pairs (E, φN)/A, where E is an elliptic over A and φN : (Z/NZ)2 ∼= A[N ] =
Ker(N : A → A) is an isomorphism of finite flat group schemes over A. The level
structure φN specifies a primitive root of unity ζN ∈ μN via the Weil pairing

ζN := 〈φN (1, 0), φN (0, 1)〉.
Thus X(N) has a scheme structure over Z[μN , 1

N ], but we may consider it defined

over Z[ 1N ], composing with the morphism Spec(Z[μN , 1
N ]) → Spec(Z[ 1N ]). If we
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consider level pm-structure φp of type Γ = Γ?(p
m) (? = 0, 1) given as follows: φp is

a subgroup isomorphic to μpm étale locally if Γ = Γ0(p
m) and φp : μpm ↪→ E[pm] (a

closed immersion of finite flat group schemes) if Γ = Γ1(p
m) (and Npm ≥ 4), we can

think of the fine moduli space X(N,Γ)/B over the base ring B/Z[ 1
N ] which classifies

triples (E, φN , φp)/A over B-algebras A. As the ring B, we take one of W , F or K.
As we observed, the open curves X(N) (resp. X(N,Γ)) can be regarded as schemes
over Spec(Z[ 1

N , μN ]) (resp. over Spec(Q[μN ])). For N prime to p, X(N)/Q[μN ] is
geometrically irreducible.

We can think of the p-integral Shimura curve

Sh/Z(p)
= lim←−

p�N

X(N)/Z(p)
,

and more generally over Q,

ShΓ/Q = lim←−
p�N

X(N,Γ)/Q

(regarding these schemes as Z(p)-schemes or Q-schemes). Let

X(N,Γ)/B = X(N,Γ)/Z[μN , 1
N ]×Z[μN ]B and X(N)/W = X(N)/Z[μN , 1

N ]×Z[μN , 1
N ]B.

The pro-schemes

XΓ/B = lim←−
N

X(N,Γ)/B for B = K and X
(p)
/W = lim←−

p�N

X(N)/W

give geometrically irreducible components of ShΓ/Q ×Q K and Sh
(p)
/Z(p)

×Z(p)
W (the

neutral components). If convenient, we write ShΓ1(p0)/Z(p)
for Sh/Z(p)

(abusing the

notation). By the interpretation of Deligne–Kottwitz, we have

(1.1) ShΓ(A) ∼=
{(E, η : (A(p∞))2 ∼= V (E), φp)/A}

prime-to-p isogenies
,

where A runs over Z(p)-algebras if Γ = Γ1(p
0) and B-algebras (B = F or Q) if

Γ = Γ?(p
m) with m > 0 (? = 0, 1), V (E) = A(p∞) ⊗ lim←−p�N

E[N ]. Thus (a, g) ∈ G
(a ∈ GL1(Zp) and g ∈ SL2(A

(p∞))) acts on ShΓ by

(E, η, φp) �→ (E, η ◦ g, φp ◦ a),
where a ∈ GL1(Zp) ∼= M(Zp). Write FΓ for the function field K(XΓ) and F(p)

for K(X(p)) (the arithmetic automorphic function fields). This action produces an
embedding

τ : G/{±1} ↪→ Aut(FΓ1(p∞)/K) = Aut(XΓ1(p∞)/K).

The action of τ (a, g) on the function field FΓ is on the left and has the fol-
lowing property (by Shimura; e.g., [IAT] Theorem 6.23 or [PAF] Theorem 4.14):
For a ∈ GL1(Z(p)) (corresponding to

(
a 0
0 a−1

)
in M(Z(p)) diagonally embedded in

SL2(A
(∞))), we have for f ∈ FΓ

(1.2) τ (a)(f)(z) = f(a−2z);

so, we have τ (α)(f) = f(α−1(z)) for α =
(
a 0
0 a−1

)
. This formula is valid for general

α ∈ GL2(Z(p)) if f ∈ F(p) (thus, our normalization is different form Shimura’s).
We define a valuation

vΓ(f) = inf
ξ
ordp(c(ξ, f))
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of modular functions f =
∑

ξ c(ξ, f)q
ξ ∈ FΓ. We write vm for vΓ if Γ = Γ1(p

m).

Thus the valuation v0 : F(p) → Z ∪ {∞} has a standard unramified extension
vΓ : FΓ � Z ∪ {∞}. Here are some easy facts:

Lemma 1.1. (1) If a ∈ GL1(Z(p)) ∼= M(Z(p)), then

c(ξ, τ (a)(f)) = c(a2ξ, f).

In particular, the diagonally embedded M(Z(p)) ⊂ G preserves the valua-
tion vΓ;

(2) The vertical divisor X
(p)
/F := X

(p)
/W ⊗W F of X

(p)
/W is a prime divisor (geo-

metrically irreducible) and gives rise to a unique valuation of F(p), whose
explicit form is given by the valuation v0.

Proof. The first assertion follows directly from (1.2). By the existence of a
smooth compactification of X(p) over W , Zariski’s connectedness theorem tells us

that X
(p)
/F = X(p) ×W F is irreducible. Thus the vertical Weil prime divisor X

(p)
/F

on the smooth arithmetic surface X
(p)
/W gives rise to a unique valuation. By the

irreducibility of X
(p)
/F , a W-integral modular form of level away from p vanishes on

the divisor X
(p)
/F if and only if its q-expansion vanishes modulo p. Thus the valuation

v0 is the one corresponding to the vertical prime divisor X
(p)
/F ⊂ X

(p)
/W . �

1.2. mod p connected components and the valuation vm. Let S be
the ordinary locus X(p)[ 1H ]/F for the Hasse invariant H. Then S is an irreducible
variety over F, because H is a global section of the ample modular line bundle

ω⊗(p−1) of the compactification of X
(p)
/F . Consider the valuation ring V of F(p) of

the valuation v0. Thus the residue field V/mV is the function field F(S) of S. Let
E/X(p) be the universal elliptic curve. Then we consider the Cartesian diagram for

EV = E×X(p) Spec(V ):

EV
↪→−−−−→ E⏐⏐�

⏐⏐�
Spec(V ) −−−−→

↪→
X(p).

Since any lift of a power of H is inverted in V , E
̂V = EV ×V V̂ is an ordinary abelian

scheme for the completed valuation ring V̂ = lim←−n
V/pnV . Thus we can think of

the functor I
̂V ,m = Isom

̂V (μpm ,E
̂V [p

m]) which assigns to each p-adic V̂ -algebra

R = lim←−n
R/pnR the set of closed immersions: μpm/R → E

̂V [p
m]/R defined over R.

Since E
̂V [p

m] has a well defined connected component over V̂ isomorphic to

μpm étale locally (V̂ is a henselian local ring), we have canonical isomorphisms of
formal schemes:

I
̂V ,m = Isom

̂V (μpm/̂V ,ÊV [p
m]◦)

(∗)∼= Isom
̂V ((Z/p

mZ)/̂V ,ÊV [p
m]ét)

(∗∗)∼= E
̂V [p

m]ét − E
̂V [p

m−1]ét,

where the identity (∗) is given by taking the inverse of the Cartier dual map and
(∗∗) is given by φ �→ φ(1) for 1 ∈ Z/pmZ and φ ∈ Isom

̂V ((Z/p
mZ)/̂V ,ÊV [p

m]ét).
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Thus I
̂V ,m/Spf(V̂ ) is étale finite. Note here E

̂V [p
m]◦ is isomorphic to μpn/̂V étale

locally. By the second expression, I
̂V ,m/Spf(V̂ ) is an étale finite covering over V̂ ,

and GL1(Zp) naturally acts on I
̂V ,m. Since I

̂V ,m is étale faithfully flat over Spf(V̂ ),

it is affine, and we may write I
̂V ,m = Spf(V̂m). Then V̂m is a semi-local normal

V̂ -algebra étale finite over V̂ ; so, it is a product of complete discrete valuation rings
whose maximal ideal is generated by the rational prime p. WriteW = lim←−n

W/pnW ,

and take a modular form E on X
(p)
/W lifting a positive power of the Hasse invariant

H. Let X̂(p) be a formal completion of X(p)[ 1E ]/W along S (the ordinary locus).

The p-adic formal scheme X̂(p) does not depend on the choice of the lift E. Then

we define a p-adic formal scheme X̂Γ/W = Isom
̂X(p)(μpn ,E) ∼= E[pm]ét − E[pm−1]ét

over X̂(p), which is étale finite over X̂(p). We may regard X̂Γ/W as the formal
completion of XΓ/W along XΓ/F. By definition, we have an open immersion

I
̂V ,m ↪→ X̂Γ1(pm)/W ×

̂X
(p)

/W
Spf(V̂ ),

and V̂m is the product of the completions of valuation rings of FΓ1(pm) unramified

over V . Thus Vm = V̂m ∩ FΓ1(pm) inside FΓ1(pm) ⊗V V̂ is a semi-local ring Vm with

V̂m = lim←−n
Vm/pnVm = Vm ⊗V V̂ .

We put IV,m = Spec(Vm) and XΓ/F = lim←−p�N
X(N,Γ)/F. Then

XΓ1(pm)/F = IsomS(μpm ,E[pm]◦) =: Im

gives rise to the Igusa tower I � · · · � Im � · · · � I1 � S over S. We may
regard the moduli scheme X(N,Γ)/F as a scheme over X(N)[ 1H ] (forgetting the
level p-structure). The set of generic points {ηI◦

m
∈ I◦m/F|I◦m/F ∈ π0(Im/F)} is in

bijection with π0(Im), and

V̂m ⊗Zp
F = Vm ⊗Z(p)

F =
∏

I◦
m∈π0(Im)

F(I◦m) (⇔ IV,m ⊗Z(p)
F =

⊔
I◦∈π0(Im)

{ηI◦
m
}).

By the definition of the action of (a, g) ∈ G:

(E, η(p), φp) �→ (E, η(p) ◦ g, φp ◦ a),

G := GL1(Zp) × SL2(A
(p∞)) acts on I

̂V ,m and hence on IV,m (m = 1, 2, . . . ,∞),

Spec(V ) (by Lemma 1.1 (2)), FΓ, Im, XΓ/F and XΓ/K. Thus we can form the étale
quotient IΓ0(pm) := IV,m/GL1(Z/p

mZ). Again we have IΓ0(pm) = Spec(VΓ0(pm)),
and VΓ0(pm) is a valuation ring finite flat over V sharing the same residue field.
Indeed, there is a unique connected subgroup of E (isomorphic to μpm étale locally)
if (E, φN)/A gives rise to a unique A-point of X(N,Γ0(p

m))/F. Thus for any m > 0,
S/F = lim←−p�N

X(N,Γ0(p
m))/F. This shows that the residue field of VΓ0(pm) is the

function field of S and that the quotient field of VΓ0(pm) is FΓ0(pm). Since Vm/V is
étale, we have

V̂Γ0(pm) = lim←−
m

VΓ0(pm)/p
mVΓ0(pm) = lim←−

m

V/pmV = V̂ ,

and Vm is étale finite over VΓ0(pm). This shows
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Lemma 1.2. We have the following one-to-one onto correspondences:{
v : FΓ1(pm) → Z

∣∣v|FΓ0(pm)
= vΓ0(pm) unramified over v0

}

↔ Max(Vm) ↔ π0(Im) ↔ {ηI◦
m
},

where v is a p-adic valuation of FΓ1(pm) unramified (of degree 1) over v0 and
Max(Vm) is the set of maximal ideals of Vm.

The correspondence is given by

v ↔ mv = {x ∈ Vm|v(x) > 0} ↔ I◦m with F(I◦m) = Vm/mv.

Lemma 1.3. The action of G1 := SL2(A
(p∞)) fixes vm = vΓ1(pm) and each

element of π0(Im).

Proof. Since FΓ1(pm)/FΓ0(pm) is a finite Galois extension, the set of extensions
of vΓ0(pm) to FΓ1(pm) is a finite set, and by the above lemma, it is in bijection

with π0(Im). Thus the action of SL2(A
(p∞)) on π0(Im) gives a finite permutation

representation of SL2(A
(p∞)). Since SL2(k) of any field k of characteristic 0 does

not have a nontrivial finite quotient group (because it is generated by divisible
unipotent subgroups), the action of SL2(A

(p∞)) fixes every irreducible component
of π0(Im). �

1.3. Proof of irreducibility of elliptic Igusa tower. Let v∞ = vΓ1(p∞),
and define

D =
{
x ∈ (GL1(Zp)× SL2(A

(p∞)))
∣∣v∞ ◦ τ (x) = v∞

}
.

Since M(Z(p)) and SL2(A
(p∞)) fixes v∞ (Lemmas 1.1 and 1.3) and the subgroup

(M(Z(p))SL2(A
(p∞))) is dense in G = GL1(Zp)× SL2(A

(p∞)), we conclude (C):

Theorem 1.4. We have D = G.

Let K(p) be a compact open subgroup of SL2(A
(p∞)) and K = K(p)×GL2(Zp).

Put XK = X(p)/K(p) (which is the level K modular curve). Let IK = I/K(p),
which is the Igusa tower over XK . Since I is irreducible by

Aut(I◦/S) = GL1(Zp) ∼= M(Zp) (the above theorem),

IK is irreducible. Thus we have reproved

Corollary 1.5 (Igusa). The Igusa tower IK over XK/F is irreducible for

K = GL2(Zp)×K(p) for each compact open subgroup K(p) of SL2(A
(p∞)).

2. Shimura varieties of unitary groups

We give an example S of smooth Shimura varieties for which irreducibility of
the full Igusa tower is false but one can study the irreducible components explicitly.
In other words, we construct a partial tower I◦/S for which the axioms (A1–2) can
be proved. Write W for the ring of Witt vectors of the algebraic closure F of Fp

and embed W inside Cp (the p-adic completion of Qp). Hereafter, we write W for

the valuation ring i−1
p (W ) and K for the field of fractions of W . The (additive)

valuation of W and W is written as ordp; so, ordp(p) = 1. As before, we prove
that S/W is irreducible and smooth and that the Igusa tower I/F is étale over S/F.
Then for each point x ∈ I(W), we take a coordinate system X1, . . . , Xd of I and
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define a valuation vx of the function field of I by vx(
∑

α c(α)Xα) = Infα ordp(c(α))
(Xα = Xα1

1 Xα2
2 · · ·Xαd

d ). For any automorphism σ of I/W fixing x, plainly vx ◦σ =
vx. Then we conclude the irreducibility by showing that the stabilizers {Tx}x∈I(W)

inside Aut(I/W) of x ∈ I(W) cover sufficiently many conjugacy classes of tori to
prove (A1–2). Actually, in the simple case we study, a well chosen single point
x0 ∈ I(W) is sufficient.

We first recall briefly the definition of unitary groups over an imaginary qua-
dratic field F and the construction of the Shimura variety for the unitary groups.
The main source of the information for this part is [PAF] Chapter 7. Then we
prove the irreducibility of the Igusa tower.

Suppose that the imaginary quadratic field F is sitting inside Q, and write
1 : F ↪→ Q for the identity embedding. Suppose for simplicity that the fixed prime
p is split in F and that the embedding 1 : F ↪→ Q composed with ip : Q ↪→ Qp

gives the standard p-adic place p of F . Write O for the integer ring of F .

2.1. Unitary groups. Write c for the generator of Gal(F/Q) (the complex
conjugation on F ). We fix a vector space V over F with c-Hermitian alternating
form 〈 , 〉 : V × V → Q. We assume we have an O-submodule L ⊂ V of finite type
such that

(L1) L⊗Z Q = V ;
(L2) 〈 , 〉 induces HomZp

(Lp,Zp) ∼= Lp, where Lp = L⊗Z Zp.

We fix an O-lattice L of V as above.
We identify V with the column vector space F r by fixing a basis of V over F .

Let C = EndF (V ) = Mr(F ). There exists an invertible matrix s ∈ Mr(F ) with
tsc = −s such that 〈v, w〉 = TrF/Q(

tvs ·wc), where TrF/Q is the trace map: F → Q.

On C, we have the involution ι given by xι = s−1txcs. Define algebraic groups
defined over Q by the following group functors from Q-algebras R to groups:

GU(R) =
{
x ∈ C ⊗Q R

∣∣xιx ∈ R×}
=

{
x ∈ C ⊗Q R

∣∣txcs · x = ν(x)s for ν(x) = xιx ∈ R×} ,

U(R) =
{
x ∈ GU(R)

∣∣xιx = 1
}
, SU(R) =

{
x ∈ U(R)

∣∣ det(x) = 1
}
,

(2.1)

where det(x) is the determinant of x as an F -linear automorphism of V . Then
SU is the derived group of GU and U . Let Z ⊂ GU be the center; so Z(R) =
(R ⊗Q F )× as a group functor. Since FR = F ⊗Q R = C with bc = b for complex

conjugation b �→ b, S =
√
−1s ∈ Mr(FR) = Mr(C) is a Hermitian matrix. Thus

U(R) is the unitary group of S. We have Homfield(F,C) = {1, c} for the identity
inclusion 1. Writing the signature of S as (m1,mc), we find U(R) ∼= Um1,mc

(R) ={
x ∈ GLr(C)

∣∣txIm1,mc
x = Im1,mc

}
for Im1,mc

=
(

1m1
0

0 −1mc

)
.

Example 2.1. For a Q-algebra R,

(1) if s =
(
0 −1
1 0

)
, then

(
a b
c d

)ι
=

(
d −b
−c a

)
and SU(R) = SL2(R),

GL2(R) =
{
x ∈ GU(R)

∣∣ det(x) = ν(x)
}
;

(2) GU(Q) = GL2(Q)Z(Q)× and GU(R) = GL2(R)Z(R).
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2.2. Abelian schemes of hermitian type. To put a complex structure on
the real vector space V∞ = V ⊗Q R, we use an R-algebra homomorphism h : C ↪→
C∞ = C ⊗Q R with h(z) = h(z)ι. We call such an algebra homomorphism an
ι-homomorphism. Then h(i)ι = −h(i) for i =

√
−1 and hence xρ = h(i)−1xιh(i) is

an involution of C∞.

Example 2.2. If s =
(
0 −1
1 0

)
, the morphism a + bi �→ h(a + bi) =

(
a −b
b a

)
∈

M2(R) ⊂ C∞ is an ι-homomorphism.

We suppose

(pos) The symmetric real bilinear form (v, w) �→ 〈v, h(i)w〉 on V∞ is positive defi-
nite.

It is easy to check that h in Example 2.2 satisfies (pos).
By (pos), we have 0 < (xv, xv) = (v, (xρx)v) for all 0 �= v ∈ V∞ and x ∈ C∞,

and hence xρx only has positive eigenvalues; therefore, ρ is a positive involution of
C (i.e., TrC/Q(x

ρx) > 0 unless x = 0).

Fix one such h := h0 : C → C∞, and define X (resp. X+) by the collection of
all conjugates of h0 under GU(R) (resp. under SU(R)). Any two homomorphisms
satisfying (pos) are conjugates under SU(R) (see [PAF] Lemma 7.3). Thus X+ =
SU(R)/C0 for the stabilizer C0 of h0 in SU(R) is connected and is a connected
component of X. On X, GU(R) acts by conjugation (from the left), and by (pos)
the stabilizer C0 ⊂ GU(R) of h0 is a maximal compact subgroup of GU(R) modulo
center.

Example 2.3. Assume that s =
(
0 −1
1 0

)
and take h0(a + bi) =

(
a −b
b a

)
. Since

h0(C
×) gives the stabilizer of i ∈ H = {z ∈ C| Im(z) > 0}, we have X+ ∼= H by

sending gh0g
−1 to g(i). We also have X ∼= H � H = (C− R) in the same way.

Since h : C → C∞ is an R-algebra homomorphism, we can split VC = V ⊗Q C

into the direct sum of eigenspaces VC = V1 ⊕ V2 so that h(z) acts on V1 (resp.
V2) through multiplication by z (resp. z); thereby, we get a complex vector space
structure on V∞ by the projection V∞ ∼= V1. Since h(C) ⊂ C∞, h(z) commutes
with the action of F ; so, Vj is stable under the action of FC = F ⊗Q C. We get the
representation ρ1 : F ↪→ EndC(V1). We define E to be the subfield of C fixed by
the open subgroup

{
σ ∈ Aut(C)

∣∣ρσ1 ∼= ρ1
}
. If h′(z) = g · h(z)g−1 for g ∈ GU(R),

h′ induces a similar decomposition VC = V ′
1 ⊕ V ′

2 , and g induces an F -linear
isomorphism between V1 and V ′

1 ; thus, E is independent of the choice of h′ in the
GU(R)-conjugacy class of h. This field E is called the reflex field of (GU,X) (and
is a canonical field of definition of our canonical models of the Shimura variety).

By the positivity (pos), the quotient complex torus V∞/L = V1/L has a Rie-
mann form induced by 〈·, ·〉. The theta functions with respect to the Hermitian form
〈·, ·〉 give rise to global sections of an ample line bundle (e.g., [ABV] Chapter I) on
V1/L and hence embed V1/L into a projective space over C. The embedded image
is the analytic space Ah(C) associated with an abelian variety Ah/C by Chow’s the-
orem (see [ABV] page 33). Multiplication by b ∈ O on V1/L induces an embedding

i : O ↪→ End(Ah/C) and i : F ↪→ EndQ(Ah/C) = End(Ah/C)⊗Z Q.
The representation ρ1 is given by the action of F on the Lie algebra Lie(Ah) =

V1 at the origin of Ah(C). Since Ah is projective, the field of definition of the
abelian variety Ah is a field of finite type over Q.
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The reflex fieldE is the field of rationality of the representation of F on Lie(Ah);
therefore, the field of definition of (Ah, ι) always contains this field E. It would then
be natural to expect that the moduli variety of triples (A, λ, ι) for an abelian variety
A with F -linear isomorphism Lie(A) ∼= V1 is defined over E.

Since the isomorphism class of ρ1 is determined by Tr(ρ1) (see [MFG] Propo-
sition 2.9), E is generated over Q by Tr(ρ1(b)) for all b ∈ F . Thus we have E = F
or Q and that E = Q implies m1 = mc, because Tr(ρ1(ξ)) = m1ξ+mcξ

c for ξ ∈ F .
We write OE for the integer ring of E. Let Z(p) = Zp ∩ Q, put O(p) = O ⊗Z Z(p),
OE,(p) = OE ⊗Z Z(p), and write V for the valuation ring W ∩ E ⊃ OE,(p) (V is
the localization of OE at p). More generally, for a finite set of places Σ, we write
ZΣ for the product of Z� over finite places � ∈ Σ, and we put Z(Σ) = Q ∩ ZΣ and
O(Σ) = O ⊗Z Z(Σ). The ring V has residue field Fp since p is split in E because
E ⊂ F .

2.3. Shimura variety for GU . We study the classification problem of quadru-
ples (A, λ, i, η(p))/R: A is a (projective) abelian scheme over a base R, tA =

Pic0A/R(A) is the dual abelian scheme of A, λ : A → tA is a prime-to-p polar-

ization (that is, an isogeny with degree prime to p fiber-by-fiber geometrically in-

duced from an ample divisor), i : O(p) ↪→ End
Z(p)

R (A) = EndR(A) ⊗Z Z(p) is a
Z(p)-algebra embedding (taking 1 to the identity of A) with λ ◦ i(αc) = ti(α) ◦ λ

for all α ∈ O, and η(p) is a level structure. Regarding tA as a left O-module by
O � b �→ ti(bc) ∈ End(tA), λ is F -linear. Hereafter we call λ F -linear in this sense.
The base scheme R is assumed to be a scheme over Spec(V).

We clarify the meaning of the level structure η(p). Fix a base (geometric)
point s ∈ R and write As for the fiber of A at s. We consider the Tate module
T (As) = lim←−N

A[N ](k(s)) and V (p)(As) = T (As) ⊗Z A(p∞), where N runs over

all positive integers ordered by divisibility. The prime-to-p level structure η(p) :
V (A(p∞)) = V ⊗Q A(p∞) ∼= V (p)(As) is an O-linear isomorphism. The duality
pairing eN : A[N ] × tA[N ] → μN composed with λ gives, after taking the limit
with respect to N , an alternating form (·, ·)λ : V (p)(As)× V (p)(As) → A(p∞)(1) :=
limp�N μN satisfying the following conditions:

(P1) (α(x), y)λ = (x, αc(y))λ for α ∈ End(A/B);
(P2) The pairing induces the self-duality: A[pn] ∼= Hom(A[pn], μpn) if N = pn.

We require that η(p) send the alternating form 〈·, ·〉 to (·, ·)λ up to multiple of
scalars in (A(p∞))×. This is possible, because A(p∞)(1) ∼= A(p∞) up to scalars in
(A(p∞))×. Then η(p) is required to be an isomorphism of skew Hermitian F -modules
with respect to the pairing 〈·, ·〉λ on V (p)(As).

The algebraic fundamental group π1(R, s) acts on V (p)(As) preserving the skew
Hermitian form 〈·, ·〉λ up to scalars in (A(p∞))× (because it preserves the Weil eN -
pairing; see [ABV] Section 20). Take a closed subgroup K(p) ⊂ GU(A(p∞)). We

write η(p) for the orbit η(p) ◦K(p). If σ ◦ η(p) = η(p) for all σ ∈ π1(R, s), we say the

level structure η(p) is defined over R. Even if we change the point s ∈ R, everything
will be conjugated by an isomorphism; therefore, the definition does not depend
on the choice of s as long as R is connected. For nonconnected R, we choose one
geometric point at each connected component.

A quadruple A/R = (A, λ, i, η(p)) is isomorphic to A′
/R = (A′, λ′, i′, η′

(p)
) if

we have an O-linear isogeny φ : A → A′ defined over R such that p � deg(φ),
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φ∗λ′ = tφ ◦ λ′ ◦ φ = νλ with ν ∈ Z×
(p)+, φ ◦ i ◦ φ−1 = i′, and η′

(p)
= φ ◦ η(p). Here

Z×
(p)+ is the collection of all positive elements in Z×

(p). Thus φ associates the prime-

to-p polarization class λ
′
= {νλ′|ν ∈ Z×

(p)+} of λ′ to the class λ of λ: φ∗λ
′
= λ. In

this case, we write A ≈ A′. We write A ∼= A′ if the isogeny is an isomorphism of
abelian schemes; that is, deg(φ) = 1.

We take the fibered category C = CF,V of the quadruples (A, λ, i, η(p))/R over
the category V-SCH of V-schemes and define

(2.2) HomC/R
((A, λ, i, η(p))/R, (A

′, λ′, i′, η′
(p)

)/R)

=

{
φ ∈ HomR(A,A′)⊗Z Z(p)

∣∣∣
tφ ◦ λ′ ◦ φ = νλ with 0 < ν ∈ Z×

(p)+,

φ ◦ i = i′ ◦ φ and η′
(p)

= φ ◦ η(p)

}
.

The representation ρ1 is well defined over V , since p splits in F ; thus, it is
well defined over OR for any V-scheme R. We consider the functor E(p) : V-
SCH → SETS given by

E(p)(R) =
{
A/R = (A, λ, i, η(p))/R

∣∣Lie(A) ∼= ρ1 over OR

}
/ ≈ .

Since A/R is a group scheme, its tangent space at the zero section has a Lie algebra
structure over OR. We write Lie(A) for this Lie algebra. Since A is smooth over
R, Lie(A) is a locally free OR-module of rank dimR A. In our case, for a given

quadruple A = (A, λ, i, η(p))/R, the Lie algebra Lie(A) of A over OR is an O(p)-
module via i. Since Lie(A) is locally free of rank dimR A over OR, we can think of
an isomorphism Lie(A) ∼= ρ1 of OR-representations of O(p). One can find in [PAF]
Chapter 7 a proof of the following theorem due to Shimura, Deligne and Kottwitz.

Theorem 2.1. The functor E(p) is representable by a quasi-projective smooth
pro-scheme Sh(p) over V. Letting g ∈ GU(A(p∞)) act on Sh(p) by η(p) �→ η(p)◦g, for
each compact open subgroup K ⊂ G(A(p∞)), the quotient scheme Sh

(p)
K = Sh(p)/K

exists as a quasi-projective scheme of finite type over V, and Sh(p) = lim←−K
Sh

(p)
K .

The Shimura variety Sh
(p)
K is projective over V if the Hermitian pairing 〈·, ·〉 is

anisotropic.

For a finite set of primes Σ containing p and ∞, we can think of the Shimura
variety away from Σ as follows. Write Σ = {p,∞} � Σ′. If Σ′ �= ∅, let GU(ZΣ′) =
{g ∈ GU(QΣ′)|gLΣ′ = LΣ′}, and put Sh(Σ) = Sh(p)/GU(ZΣ′). It is known that

Sh
(Σ)
/V is a smooth (quasi-projective) pro-scheme.

Recall the embedding ip : Q ↪→ Qp and the valuation ring W which is the pull-
back by ip of the p-adic integer ring of the maximal unramified extension of Qp. By

our choice, 1 : F ↪→ Q
ip
↪→ Qp induces the valuation ring V . Write K be the filed of

fraction ofW . Let Sh
(Σ)
/W = Sh(Σ)×Spec(V)Spec(W) and putW = lim←−n

W/pnW . By

the reduction map (see [ACS] Corollary 6.4.1.3), we have π0(Sh
(Σ)
/K ) ∼= π0(Sh

(Σ)
/F )

for Sh
(Σ)
/F = Sh

(Σ)
/W ×W F by Zariski’s connectedness theorem and the existence of

a smooth toroidal compactification of Sh
(p)
K/W , and SU(A(Σ)) leaves stable each

irreducible component in π0(Sh
(Σ)
/K ) because X+ is a quotient of SU(R). A proof of
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the existence of a smooth toroidal compactification of Sh
(p)
K/W can also be found in

[ACS] 6.4.1. Thus, by the existence of a smooth toroidal compactification of Sh
(Σ)
/W

(and Zariski’s connectedness theorem), we get

Proposition 2.2. Geometrically irreducible components of Sh
(Σ)
/K are generic

fibers of irreducible components of Sh
(Σ)
/W . Each irreducible component of Sh

(Σ)
/W has

irreducible special fiber over F, and the group SU(A(Σ)) leaves stable each irreducible

component of the Shimura variety Sh
(Σ)
/F = Sh

(Σ)
/W ×W F.

We can compute the stabilizer in GU(A(Σ)) of each point of π0(Sh
(Σ)
/F ) explicitly

([H06] Lemma 1.1).

3. Igusa tower over unitary Shimura variety

We first define the Igusa tower over the GU Shimura variety and prove that the
tower is not irreducible. Then we prove the irreducibility of the partial SU -tower.
Let G(Zp) = {g ∈ G(Qp)|gLp = Lp} for G = GU,U and SU . Let Σ be a finite set
of rational places including p and ∞.

3.1. Unitary group over Zp. Recall our simplifying assumption: p = pp

(p �= p) in O so that p is induced by ip. Since Op = Op ×Op = Zp ×Zp on which c
acts by interchanging the coordinates, (x, y)c = (y, x) and ξ ∈ O is sent to (ξ, ξc) ∈
Zp × Zp, we thus have GLr(Op) = GLr(Op) × GLr(Op) = GLr(Zp) × GLr(Zp).
Since xι = s−1txcs for the skew-hermitian matrix s = −tsc, if (x, y) ∈ U(Zp), we
have

(x−1, y−1) = (x, y)−1 = xι = (s, sc)−1(ty, tx)(s, sc) = (s−1tys, s−ctxsc)

and y = ts−1x−1ts. Thus, choosing a basis of Lp over Op, we have U(Zp) ∼= GLr(Zp)
by sending (x, y) ∈ U(Zp) to x ∈ GLr(Zp). Similarly, SU(Zp) ∼= SLr(Zp) and
GU(Zp) ∼= GLr(Zp)×GL1(Zp) by g = (x, y) �→ (xν(x, y)−1, ν(x, y)).

3.2. The Igusa tower. Let S/W = S
(Σ)
/W be an irreducible component of

the ordinary locus of Sh
(Σ)
/W . Thus S is the subscheme obtained from Sh

(Σ)
/W by

removing the closed subscheme of non-ordinary locus at the special fiber at p. By
〈·, ·〉, Lp is self-dual. Since Op = Op⊕Op, we have the corresponding decomposition
Lp = Lp ⊕ Lp.

Let A/S be the universal ordinary abelian scheme over S with its fiber Ax at
x ∈ S. Pick a base point x0 of S(W ) (W = lim←−n

W/pnW) with reduction x0 ∈ S(F)

modulo p. We fix an identification: Lp
∼= TpAx0

[p∞] for the p-adic Tate module

TpAx0
[p∞] of the Barsotti-Tate group Ax0

[p∞]. Then over the formal completion Ŝ
along the special fiber, we have the reduction map TpAx0

[p∞] → TpAx0
[p∞]ét. The

kernel of the reduction map gives rise to an Op-direct summand L1 ⊂ Lp. Since O
acts on the tangent space at 0 via the identity inclusion into Zp by multiplicity m1

and the tangent space of A[p]◦/x0
is equal to this eigenspace in the tangent space of

Ax0
, we find that L1 ⊗Op

Fp
∼= Fm1

p ; thus, L1
∼= Om1

p . Similarly, we define Lc ⊂ Lp

using the reduction map on p-torsion points of Ax0
. Then Lc

∼= Omc

p
. Note that

Lp/L1
∼= HomZp

(Lc,Zp) and Lp/Lc
∼= HomZp

(L1,Zp) by 〈·, ·〉. Let L = L1 ⊕Lc as
O-modules.
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We consider the functor In = I
(Σ)
n from the category of S/W -schemes R into

the category of sets taking R to the set of O-linear closed immersions of L⊗Zμpn/R

into A/R[p
n], where A/R = A ×S R. Since the two schemes L ⊗Z μpn and A[pn]

are finite flat over S, by the theory of Hilbert schemes, this functor is representable
by a scheme In. Then In/W classifies quintuples (A, i, λ, η(Σ), φp) for an O-linear
closed immersion φp : L ⊗Z μpn ↪→ A[pn].

The formal completion Ŝ along the special fiber S/F = S ×W F is a formal

W -scheme. The connected component A[pn]◦ of A[pn] is well defined over Ŝ, and

hence the formal completion În/W of In along its special fiber In/F = In ×W F can

be written as Isom
̂S(L ⊗Z μpn ,A[pn]◦). Then În/̂S is isomorphic to the scheme

Isom
̂S(L∨/pnL∨,A[pn]ét) étale finite over Ŝ, since by duality, φp : L ⊗Z μpn ∼=

A[pn]◦ gives rise to tφ−1
p : L∨/pnL∨ ∼= A[pn]ét for L∨ = Lp/L.

Let I/W = lim←−n
In/W . Its special fiber

I/W ×W F = lim←−
n

In/F

is called the Igusa tower over S/F. By the projection Lp � Lp, we have U(Zp) ∼=
GL(Lp) ∼= GLr(Zp). Consider the universal level structure φp : L ⊗ μp∞ ↪→ A[p∞]
over I. The group GU(Zp) acts on L. Let

P (Zp) =
{
g ∈ U(Zp) = GL(Lp)

∣∣gL1 = L1

}
.

Then, identifying GL(L1) = GLm1
(Zp) and GL(Lp/L1) = GLmc

(Zp), P (Zp) is a
parabolic subgroup of U(Zp) = GLr(Zp) of the following form,{(

a b
0 d

) ∣∣(a, d) ∈ GL(L1)×GL(L∨
c )
} ∼=

{(
a b
0 d

) ∣∣(a, d) ∈ GLm1
(Zp)×GLmc

(Zp)
}
.

Here the action of d ∈ GL(L∨
c ) on L∨

c = Lp/L1 is given by the matrix d and hence
it acts on Lc = Hom(Lp/L1,Zp) by the dual action (induced by 〈·, ·〉) written
as d−∗. Define M(Zp) = GL(L1) × GL(L∨

c ) for the reductive part of P . Put
M1(Zp) = M(Zp)∩SU(Zp). Then M(Zp) acts on each fiber of I transitively, since
I/S/F is an M(Zp)-torsor by the action

(φp, φp) ◦ (a, d) = (φp ◦ a, φp ◦ d−∗),

where the original action of d on Lp/L1 is dualized by the polarization pairing

〈·, ·〉λ : A[p∞]ét × lim←−
n

A[pn]◦ → μp∞ .

3.3. Reducibility and irreducibility. First, we may assume that S(C) is the

image of SU(A(Σ)) × X+ in Sh(Σ)(C) = GU(Q)\(GU(A(∞)) × X)/GU(ZΣ)Z(Q),
where ZΣ =

∏
�∈Σ−{∞} Z�, QΣ =

∏
�∈Σ−{∞} Q�, Z(Σ) = Q ∩ ZΣ in QΣ and

GU(ZΣ) = {x ∈ GU(QΣ)|xLΣ = LΣ} for LΣ = L⊗Z ZΣ.
On S, the universal level structure η(Σ) : V (A(Σ)) ∼= V (Σ)(A) induces the

trivialization of the étale A(Σ)-sheaf:

det(η(Σ)) : A(Σ) ∼=
r∧

F
A
(Σ)

V (A(Σ)) ∼=
r∧

F
A
(Σ)

V (Σ)(A).

For any prime � outside Σ, take a compact open subgroup K of GU(A(Σ)) such that

K = K� × K(�) with K� = {x ∈ GU(Z�)|xL� = L�} and such that Sh(Σ)/Sh
(Σ)
K
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(Sh
(Σ)
K = Sh(Σ)/K) is an étale covering. Then for the principal congruence sub-

groupK(�n) ⊂ K modulo �n, ShK(�n)/W is constructed as Isom
Sh

(Σ)
K

(L/�nL,AK [�n])

for the universal abelian scheme AK over Sh
(Σ)
K . Let SK be the image of S in Sh

(Σ)
K

and write again as x0 the image of x0 in SK . By this expression, the action of
π1(SK , x0) on the étale sheaf AK [�n]/SK

factors through the action of K�∩SU(Z�).

In particular, its action on
∧r

O�
AK [�n] factors through det : K� ∩ SU(Z�) → O×

�

which is the trivial character by the definition of SU . Thus
∧r

O�
AK [�n] is a constant

étale sheaf over SK/W . In other words, the action of GU(A(Σ)) on
∧r

F
A
(Σ)

V (A(Σ))

factors through the determinant map, it is trivial on SU(A(Σ)), and V (Σ)(A)
over the irreducible component S/W is constant; thus, the �-adic sheaf

∧r
O�

T�A
(T�A = lim←−n

A[�n]) is identical to
∧r

O�
T�Ax for the fiber of A at any closed point

x ∈ S(K).
For any exact sequence of free Zp-modules X1 ↪→ X � X2 with ranks r1, r

and r2 respectively, we have a natural direct summand
∧r1 X1 ⊗

∧r2 X2 in
∧r

X,
because the ambiguity of lifting x2 ∈ X2 to x ∈ X is killed by wedge product with∧r1 X1.

As for the fppf abelian sheaf
∧m1

Op
A[pn]◦

/̂S/W
over Ŝ/W , it is isomorphic to∧m1

Zp
(Op ⊗ μpn)m1 ; thus, its dual étale sheaf

∧m1

Op
A[pn]ét

/̂S/W
is constant over Ŝ/W .

Similarly
∧mc

Op
A[pn]ét

/̂S/W
is constant. Thus

E[pn] =

mc∧
Zp

A[pn]ét ⊗Zp

m1∧
Zp

A[pn]ét
/̂S

is isomorphic to the constant sheaf Z/pnZ over Ŝ/W . Thus we have a morphism

det : În/̂S = Isom
̂S(

L∨

pnL∨ ,A[pn]ét) → Isom(

mc∧ L∨
1

pnL∨
1

⊗Zp

m1∧ L∨
c

pnL∨
c

,E[pn])

∼= (Z/pnZ)×

over Ŝ taking tφ−1
p : L∨/pnL∨ ∼= A[pn]ét to

(
m1∧(

tφ−1
p |L∨

c /pnL∨
c

)
⊗

mc∧(
tφ−1

p |L∨
1 /pnL∨

1

))
.

Pick a generator

v ∈ lim←−
n

Isom(

mc∧ L∨
1

pnL∨
1

⊗Zp

m1∧ L∨
c

pnL∨
c

,E[pn])

over Zp, and define ISU
n = I

SU,(Σ)
n = det−1(vmod pn) and ISU = ISU,(Σ) =

lim←−n
I
SU,(Σ)
n . We claim

Theorem 3.1. For each finite set Σ of rational places containing p and ∞,

I
SU,(Σ)
n /S is a geometrically irreducible component of In/S.
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3.4. Proof. By construction, I
SU,(Σ)
n contains an irreducible component of

I
(Σ)
n/S . Thus we need to prove irreducibility of I

SU,(Σ)
n /S showing axioms (A1–2).

For a point x ∈ ISU,(Σ)(F), consider the formal completion Î
SU,(Σ)
x/W along x. Then

O
̂I
SU,(Σ)

x/W

∼= W [[X1, . . . , Xd]] for d = dimW S (⇔ Î
SU,(Σ)
x/W

∼= Spf(W [[X1, . . . , Xd]])).

Define the valuation vx : O
̂I
SU,(Σ)

x/W

→ Z ∪ {∞} as already mentioned:

vx(
∑
α

c(α)Xα) = Infα ordp(c(α))

where Xα = Xα1
1 Xα2

2 · · ·Xαd

d . Then the stalk OISU,(Σ),x ⊂ O
̂I
SU,(Σ)

x/W

inherits the

valuation vx and hence its function field F = K(ISU,(Σ)) gets the valuation vx. The
valuation vx is unramified over the function field FS(Σ) = K(S(Σ)). Let D (resp.
Tx) be the stabilizer of vx (resp. x) in M1(Zp)× SU(A(Σ)). Then Tx ⊂ D.

First take Σ to be Σ0 given by {p,∞} ∪ {�|SU is not quasi-split at �}. Then
SU(A(Σ)) does not have any finite quotient. In particular, SU(A(Σ)) fixes each
connected component of ISU

n , and SU(A(Σ)) ⊂ D. As will be seen in the following
section, we can find one base point x = x0 such that Tx0

has p-adically dense
image in M1(Zp) under the projection: SU(A(Σ)) × M1(Zp) → M1(Zp). Thus

Tx0
· SU(A(Σ)) is dense in SU(A(Σ)) × M1(Zp). Since D ⊃ Tx0

· SU(A(Σ)), D

contains SU(A(Σ)) × M1(Zp) and in particular contains M1(Zp). This shows the

irreducibility of ISU,(Σ).
If Σ0 as above is bigger than the minimal choice σ = {p,∞}, we note that

F(S(σ)) and F(ISU,(Σ0)) are linearly disjoint over F(S(Σ0)). Indeed, we have

F(S(σ)) ∩ F(ISU,(Σ0)) = F(S(Σ0))

by construction, and the two extensions are Galois extensions over F(S(Σ0)). The

quotient field K of the integral domain F(S(σ)) ⊗
F(S(Σ0)) F(I

SU,(Σ0)
n ) has degree

equal to the covering degree [I
SU,(σ)
n : S(σ)] and K is an intermediate field of

F(I
SU,(σ)
n )/F(S(σ)); therefore, K is the function field of the full Igusa tower I

SU,(σ)

n/S(σ) .

This shows that I
SU,(σ)

/S(σ) is still irreducible.

For an arbitrary Σ � σ, the natural projection ISU,(σ) → ISU,(Σ) is surjective
dominant; therefore, the irreducibility of ISU,(σ) implies the irreducibility of ISU,(Σ).

3.5. Finding the base point x0. Here is how to find the point x0 with p-
adically dense image in M1(Zp). For simplicity, we assume that p > 2. The unitary
group GU/Q depends only on the hermitian vector space V not the lattice L. The
unitary group GU/Z(p)

depends on the hermitian form on L(p) = L ⊗Z Z(p), and

Sh
(p)
/V only depends on GU/Z(p)

; thus, we may change the lattice L without changing

L(p). In particular, if necessary, replacing L keeping L(p) intact, we may assume
that the hermitian matrix s is diagonalizable over L (if p > 2).

Since g ∈ M(Zp) acts transitively on E[pn]− E[pn−1] ∼= (Z/pnZ)× by multipli-
cation by det(g), we can change the element

v ∈ lim←−
n

Isom(

mc∧ L∨
1

pnL∨
1

⊗Zp

m1∧ L∨
c

pnL∨
c

,E[pn])
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(appearing in the definition of ISU,(Σ0)) at our will. Thus, changing v if necessary,
we only need to find a hyper symmetric point x0 ∈ I(Σ0) with Tx0

SU(A(Σ0)) dense in
SU(A(Σ0))×M1(Zp). We may assume that m1mc �= 0. Diagonalize the hermitian
matrix s over L. By the self-duality of Lp, s has p-adic unit diagonal entries
s1, . . . , sr ∈ F and Im(sj) > 0 ⇔ j ≤ m1. Note that |sj |

√
−1 = ±sj has positive

imaginary part. Take an elliptic curve Ej/W with complex multiplication by F with

Riemann form given by F ×F � (v, w) �→ TrF/Q(v|sj |
√
−1wc). Since sj is a p-adic

unit, we may assume that Ej(C) ∼= C/aj for a lattice aj in F with aj,p = Op. We

identify EndQ(Ej) := End(Ej)⊗ZQ with F by sending ξ ∈ F to the multiplication

by ξ on C. Take A = E1 ⊕ E2 ⊕ · · · ⊕ Er. Embed F into EndQ(A) so that F →
EndQ(A) � EndQ(Ej) is 1 if and only if j ≤ m1 (thus, F → EndQ(A) � EndQ(Ej)
is complex conjugation c if and only if j > m1). By our construction, we have
an isomorphism H1(A(C),Z) ∼= L which takes the Riemann form on H1(A(C),Z)
to 〈·, ·〉 on L. The Hodge decomposition H1(A(C),C) = H−1,0 ⊕ H0,−1 gives the
decomposition V ⊗Q C = V1 ⊕ V2 and hence a point in hA ∈ X+.

Since p splits in F , Ej is ordinary; so hA ∈ X+ projects down to a point S(W).
We have

End
(Σ0)
O (A/F ) := EndO(A/F )⊗ Z(Σ0) = Mm1

(O(Σ0))×Mmc
(O(Σ0)).

Over the place p, Ej [p
∞]/W ∼= μp∞/W if and only if j ≤ m1. We may identify

TpEj [p
∞] ∼= Tp(aj,p ⊗ μp∞) = Zp(1) if j ≤ m1 and TpEj [p

∞] ∼= Tp(aj,p ⊗ μp∞) =
Zp(1) if j > m1. In this way we get φp : L ∼= TpA[p∞]◦. By duality, we get⎛
⎝m1⊕

j=1

aj,p

⎞
⎠⊕

⎛
⎝ r⊕

j=m1+1

aj,p

⎞
⎠

tφ−1
p∼=

⎛
⎝m1⊕

j=1

TpEj [p
∞]ét/W

⎞
⎠⊕

⎛
⎝ r⊕

j=m1+1

TpEj [p
∞]ét/W

⎞
⎠ .

Then we put ηp = φ⊕ tφ−1
p : Lp = L⊕L∨ ∼= TpA[p∞]◦⊕TpA[p∞]ét = TpA[p∞]. We

choose η(Σ0) of A defined over W so that (A, φp, η
(Σ0)) is over x0 ∈ I(F), and write

η = (ηp, η
(Σ0)). For each isogeny α ∈ End

(Σ0)
O (A/F ) preserving polarization up to

scalars and fixing the generator v ∈ lim←−n
Isom(

∧mc L∨
1

pnL∨
1
⊗Zp

∧m1 L∨
c

pnL∨
c
,E[pn]), we

can define ρ(Σ0)(α) ∈ SU(A(Σ0)) by α ◦ η(Σ0) = η(Σ0) ◦ρ(Σ0)(α) and ρp(α) ∈ M(Zp)

by α ◦ ηp = ηp ◦ ρp(α). Then we embed α in SU(A(Σ0)) × M(Zp) diagonally by

α �→ (ρ(Σ0)(α)× ρp(α)). Note that α ◦ v = v ⇔ ρp(α) ∈ M1(Zp). Since the abelian
scheme above ρ(α)(x0) is

(A, η ◦ ρ(α)) = (Im(α), α ◦ η)
α−1

∼= (A, η),

we find that ρ(α)(x0) = x0. By construction, the stabilizer of x0 ∈ I(Σ0)(F) contains
the image Im(ρ) whose projection to M1(Zp) is the p-adically dense subgroup

(GLm1
(O(Σ0))×GLmc

(O(Σ0))) ∩ SU(Q)

as desired.
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Abstract. We propose a new approach to the Gross-Prasad conjecture for
unitary groups. It is based on a relative trace formula. As evidence for the
soundness of this approach, we prove the infinitesimal form of the relevant
fundamental lemma in the case of unitary groups in three variables.
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1. Introduction

Consider a quadratic extension of number fields E/F . Let η be the corre-
sponding quadratic idèle-class character of F . Denote by σ the non-trivial element
of Gal(E/F ). We often write σ(z) = z and Nr(z) = zz. Let Un be a unitary
group in n variables and Un−1 a unitary group in (n− 1) variables. Suppose that
ι : Un−1 → Un is an embedding. In a precise way, let β be a Hermitian non-
degenerate form on an E vector space Vn and let en ∈ Vn be a vector such that
β(en, en) = 1. Let Vn−1 be the orthogonal complement of en. Then let Un be the
automorphism group of βn and let Un−1 be the automorphism group of β|Vn−1

.
Then ι is defined by the conditions ι(h)en = en and ι(h)v = hv for v ∈ Vn−1.

Let π be an automorphic cuspidal representation of Un and σ an automorphic
cuspidal representation of Un−1. For φπ in the space of π and φσ in the space of σ
set

(1) AU (φπ, φσ) :=

∫
Un−1(F )\Un−1(FA)

φπ(ι(h))φσ(h)dh .

Suppose that this bilinear form does not vanish identically. Let Π be the standard
base change of π to Gln(E) and let Σ be the standard base change of σ to Gln−1(E).
For simplicity, assume that Π and Σ are themselves cuspidal. The conjecture of
Gross-Prasad for orthogonal groups extends to the present set-up of unitary groups
and predicts that the central value of the L−function L(s,Π×Σ) does not vanish.
Cases of this conjecture have been proved by Jiang, Ginzburg and Rallis, at least
in the context of orthogonal groups ([16] and [17]). The conjecture has to be
made much more precise. One must ask to what extent the converse is true. One
must specify which forms of the unitary group and which elements of the packets
corresponding to Π and Σ are to be used in the formulation of the converse. Finally,
the relation between AU (or rather AUAU ) and the L−value should be made more
precise.

We will not discuss the general case, where there is no restriction on the repre-
sentations. We remark however that the case where σ is trivial or one-dimensional
is already very interesting even in the case n = 2 (See [11]) and n = 3 (See [19],
[20], [21], also [4], [5]).

In this note we propose an approach based on a relative trace formula. The
results of this note are quite modest. We only prove the infinitesimal form of the
fundamental lemma for the case n = 3. We do not claim that this implies the
fundamental lemma itself or the smooth matching of functions. We hope, however,
this will interest other mathematicians. In particular, we feel that the fundamental
lemma itself is an interesting problem.

We now describe in rough form the relative trace formula at hand. Let fn and
fn−1 be smooth functions of compact support on Un(FA) and Un−1(FA) respectively.
We introduce the distribution

(2) Aπ,σ(fn ⊗ fn−1) :=
∑

AU (π(fn)φπ, σ(fn−1)φσ)AU (φπ, φσ) ,

where the sum is over orthonormal bases for each representation.
Let ι : Gln−1 → Gln be the obvious embedding. For φΠ in the space of Π and

φΣ in the space of Σ, we define

(3) AG(φΠ, φΣ) :=

∫
Gln−1(E)\Gln−1(EA)

φΠ(ι(g))φΣ(g)dg
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Thus the bilinear form AG is non-zero if and only if L( 12 ,Π × Σ) �= 0. In fact we
understand completely the relation between the special value and the bilinear form
AG.

Say that n is odd. Let us also set

Pn(φΠ) =

∫
Gln(F )\Gln(FA)

φΠ(g0)dg0(4)

Pn−1(φΣ) =

∫
Gln−1(F )\Gln−1(FA)

η(det g0)φΣ(g0)dg0(5)

Strictly speaking, the first integral should be over the quotient of

{g ∈ Gln(FA) : | det g| = 1}
by Gln(F ). Similarly for the other integral. The study of the poles of the Asai
L−function and its integral representation (see [3] and [4], also [10]) predict that
Pn and Pn−1 are not identically 0. If n is even, then η must appear in the definition
of Pn and not appear in the definition of Pn−1. This will change somewhat the
following discussion but will lead to the same infinitesimal analog.

Let f ′
n and f ′

n−1 be smooth functions of compact support on Gln(EA) and
Gln−1(EA) respectively. Consider the distribution

(6) AΠ,Σ(f
′
n ⊗ f ′

n−1) :=∑
AG(Π(f ′

n)φΠ, σ(f
′
n−1)φΣ)Pn(φΠ)Pn−1(φΣ) ,

where the sum is over an orthonormal basis of the representations.
One should have an equality

(7) Aπ,σ(fn ⊗ fn−1) = AΠ,Σ(f
′
n ⊗ f ′

n−1) ,

for pairs (fn, fn−1) and (f ′
n, f

′
n−1) satisfying an appropriate condition of matching

orbital integrals. In turn, the equality should be used to understand the precise
relation between the L value and the bilinear form AU .

To continue, we associate to the function fn ⊗ fn−1 in the usual way a kernel
Kfn⊗fn−1

(g1 : g2, h1 : h2) on

(Un(FA)× Un−1(FA))× (Un(FA)× Un−1(FA)) .

The kernel is invariant on the left by the group of rational points. We consider the
(regularized) integral

(8)

∫
(Un−1(F )\Un−1(FA))

2
Kfn⊗fn−1

(ι(g2) : g2, ι(h2) : h2)dg2dh2 .

Likewise, we associate to the function f ′
n ⊗ f ′

n−1 a kernel
K ′

f ′
n⊗f ′

n−1
(g1 : g2, h1 : h2) on

(Gln(EA)×Gln−1(EA))× (Gln(EA)×Gln−1(EA))

and we consider the (regularized) integral

(9)

∫
K ′

f ′
n⊗f ′

n−1
(ι(g2) : g2, h1 : h2)dg2dh1η(deth2)dh2

where

g2 ∈ Gln−1(E)\Gln−1(EA) , h1 ∈ Gln(F )\Gln(FA) , h2 ∈ Gln−1(F )\Gln−1(FA) .
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The conditions of matching orbital integrals should guarantee that (8) and (9) are
equal. In turn this should imply (7).

In more detail, (8) is equal to∫ ∑
γ∈Un(F )

fn
(
ι(g2)

−1γ ι(h2)
) ∑
ξ∈Un−1(F )

fn−1

(
g−1
2 ξh2

)
)dg2dh2

or ∫ ∑
γ∈Un(F )

fn (ι(g2)γ ι(h2))
∑

ξ∈Un−1(F )

fn−1 (g2ξh2))dg2dh2 .

In the sum over γ we may replace γ by ι(ξ)γ. Then ι(g2ξ) appears. Now we combine
the sum over ξ and the integral over g2 ∈ Un−1(F )\Un−1(EA) into an integral for
g2 ∈ Un−1(EA) to get∫ ∑

γ

fn (ι(g2)γι(h2)) fn−1 (g2h2))dg2dh2 .

After a change of variables, this becomes∫ ∑
γ

fn
(
ι(g2)ι(h2)

−1γ ι(h2)
)
fn−1 (g2) dg2dh2 .

At this point, we introduce a new function fn,n−1 on Un(FA) defined by

(10) fn,n−1(g) :=

∫
Un−1(FA)

fn(ι(g2)g)fn−1(g2)dg2 .

Then we can rewrite the previous expression as∫
Un−1(F )\Un−1(FA)

∑
γ

fn,n−1

(
ι(h2)

−1γ ι(h2)
)
dh2 .

The group Un−1 operates on Un by conjugation:

γ �→ ι(h)−1γι(h)

For regular elements of Un(F ) the stabilizer is trivial. Thus, ignoring terms which
are not regular, the above expression can be rewritten

(11)
∑
γ

∫
Un−1(FA)

fn
(
ι(h)−1γι(h)

)
dh ,

where the sum is now over a set of representatives for the regular orbits of Un−1(F )
in Un(F ).

Likewise, we can write (9) in the form∫ ∑
γ∈Gln(E)

f ′
n(ι(g2)

−1γh1)
∑

ξ∈Gln−1(F )

f ′
n−1(g

−1
2 ξh2)η(deth2)dg2dh1dh2 .

The same kind of manipulation as before gives

=

∫ ∑
γ∈Gln(E)

f ′
n(ι(g2)γh1)f

′
n−1(g2h2)dg2dh1η(deth2)dh2

where now g2 is in Gln−1(EA). If we change variables, this becomes

=

∫ ∑
γ∈Gln(E)

f ′
n(ι(g2)ι(h2)

−1γh1)f
′
n−1(g2)dg2dh1η(deth2)dh2 .
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We introduce a new function f ′
n,n−1 on Gln(EA) defined by

f ′
n,n−1(g) :=

∫
Gln−1(EA)

f ′
n(ι(g2)g)f

′
n−1(g2)dg2 .

The above expression can be rewritten∫ ∑
γ∈Gln(E)

f ′
n,n−1(ι(h2)

−1γh1)dh1η(deth2)dh2 ,

where h1 is in Gln(F )\Gln(FA) and h2 is in Gln−1(F )\Gln−1(FA). We also write
this as

(12)

∫ ∑
γ∈Gln(E)/Gln(F )

(∫
f ′
n,n−1(ι(h2)

−1γh1)dh1

)
η(deth2)dh2

with h1 ∈ Gln(FA).
At this point we introduce the symmetric space Sn defined by the equation

ssσ = 1. Thus

(13) Sn(F ) := {s ∈ Gln(E) : ss = 1 .}
Let Φn,n−1 be the function on Sn(FA) defined by

Φn,n−1(gg
−1) =

∫
Gln(FA)

f ′
n,n−1(gh1)dh1 .

The expression (12) can be written as∫
Gln−1(FA)/Gln−1(F )

∑
ξ∈Sn(F )

Φn,n−1

[
ι(h2)

−1ξι(h2)
]
η(deth2)dh2 .

The group Gln(F ) operates on Sn(F ) by

s �→ ι(g)−1sι(g) .

Again, for regular elements of Sn(F ) the stabilizer underGln−1(F ) is trivial. Thus,
at the cost of ignoring non-regular elements, we get

(14)
∑
ξ

∫
Gln−1(FA)

Φn,n−1

(
ι(h)−1ξι(h)

)
η(deth)dh ,

where the sum is over a set of representatives for the regular orbits of Gln−1(F ) in
Sn(F ).

To carry through our trace formula we need to find a way to match regular
orbits of Un−1(F ) in Un(F ) with regular orbits of Gln−1(F ) in Sn(F ). We will
use the notation ξ → ξ′ for such a matching. The global condition of matching
orbital integrals is then∫

Un−1(FA)

fn,n−1(ι(h)
−1ξι(h))dh =

∫
Gln−1(FA)

Φn,n−1(ι(h)
−1ξ′ι(h))η(deth)dh

if ξ → ξ′. If ξ′ does not correspond to any ξ then∫
Φn,n−1(ι(h)

−1ξ′ι(h))η(deth)dh = 0 .
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A formula of this type is discussed in [7], [8], [9] for n = 2. Or rather, the results
of these papers could be modified to recover a trace formula of the above type.

As a first step, we consider the infinitesimal analog of the above trace formula.
Now n needs not be odd. We set Gn = M(n × n,E). We often drop the index n
if this does not create confusion. We let Un ⊂ Gn be the Lie algebra of the group
Un. Then Un−1 operates on Un by conjugation. Likewise, we consider the vector
space Sn tangent to Sn at the origin. This is the vector space of matrices X ∈ Gn

such that X +X = 0. Again the group Gln−1(F ) operates by conjugation on Sn.
The trace formula we have in mind is

(15)

∫
Un−1(F )\Un−1(FA)

∑
ξ∈Un(F )

f
(
ι(h)−1ξι(h)

)
dh =

∫
Gln−1(F )\Gln−1(FA)

∑
ξ′∈Sn(F )

Φ
(
ι(h)−1ξ′ι(h)

)
η(deth)dh ,

where f is a smooth function of compact support on Un(FA) and Φ a smooth
function of compact support on Sn(FA). Once more, the integrals on both sides
are not convergent and need to be regularized. The equality occurs if the functions
satisfy a certain matching orbital integral condition. We will define a notion of
strongly regular elements and a condition of matching of strongly regular elements
denoted by

ξ → ξ′ .

Then the global condition of matching between functions is as before: if ξ → ξ′

then ∫
Un−1(FA)

f
(
ι(h)ξι(h)−1

)
dh

=

∫
Gln−1(FA)

Φ
(
ι(h)ξ′ι(h)−1

)
η(deth)dh ;

if ξ′ does not correspond to a ξ then∫
Gln−1(FA)

Φ
(
ι(h)ξι(h)−1

)
η(deth)dh = 0 .

We now investigate in detail the matching of orbits announced above.

2. Orbits of Gln−1(E)

Let E be an arbitrary field. We first introduce a convenient definition. Let
Pn, Pn−1 be two polynomials of degree n and n − 1 respectively in E[X]. We will
say that they are strongly relatively prime if the following condition is satisfied.
There exists a sequence of polynomials Pi of degree i, n ≥ i ≥ 0, where Pn and
Pn−1 are the given polynomials, and the Pi are defined inductively by the relation

Pi+2 = QiPi+1 + Pi .

In particular, P0 is a non-zero constant. In other words, we demand that the Pn and
Pn−1 be relatively prime and the Euclidean algorithm which gives the (constant)
G.C.D. of Pn and Pn−1 have exactly n−1 steps. Of course the sequence, if it exists,
is unique. Moreover, for each i, the polynomials Pi+1, Pi are strongly relatively
prime.
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Let Vn be a vector space of dimension n over the field E. We often write Vn(E)
for Vn. We set G = HomE(Vn, Vn). Let en ∈ Vn and e∗n ∈ V ∗

n (dual vector space).
Assume 〈e∗n, en〉 �= 0. Let Vn−1 be the kernel of e∗n. Thus

Vn = Vn−1 ⊕ Een .

We define an embedding ι : Gl(Vn−1(E)) → Gl(Vn(E)) by

ι(g)vn−1 = gvn−1 for vn−1 ∈ Vn−1 ,

ι(g)en = en .

We let Gl(Vn(E)) act on V ∗
n on the right by

〈v∗g, v〉 = 〈v∗, gv〉 .
Then ι(Gl(Vn−1(E))) is the subgroup of Gl(Vn(E)) which fixes e∗n and en.

Suppose An ∈ G. We can represent An by a matrix(
An−1 en−1

e∗n−1 an

)
,

with An−1 ∈ Hom(Vn−1, Vn−1), en−1 ∈ Vn−1, e
∗
n−1 ∈ V ∗

n−1, an ∈ E. This means
that, for all vn−1 ∈ Vn−1(E),

An(vn−1) = An−1(vn−1) + 〈e∗n−1, vn−1〉en
and

An(en) = en−1 + anen .

In particular
An(en−1) = An−1(en−1) + 〈e∗n−1, en−1〉en .

The group Gl(Vn−1(E)) acts on G by

A �→ ι(g)Aι(g)−1 .

The operator ι(g)Aι(g)−1 is represented by the matrix(
gAn−1g

−1 gen−1

e∗n−1g
−1 an

)
.

Thus the scalar product 〈e∗n−1, en−1〉 is an invariant of this action. We often call
it the first invariant of this action. Moreover, if we replace en and e∗n by scalar
multiples, the spaces Vn−1, Een and the scalar product 〈e∗n−1, en−1〉 do not change.
We will say that An is strongly regular with respect to the pair (en, e

∗
n) (or

with respect to the pair (Vn−1, en)) if the polynomials

det(An − λ) and det(An−1 − λ)

are strongly relatively prime.
Now assume that An is strongly regular with respect to (en, e

∗
n). We have

det(An − λ) = (an − λ) det(An−1 − λ) +R(λ)

with R of degree n − 2. The leading term of R is −〈e∗n−1, en〉(−λ)n−2. Thus
〈e∗n−1, en〉 is non-zero. Thus we can write

Vn−1 = Vn−2 ⊕ Een−1

where Vn−2 is the kernel of e∗n−1 and represent An−1 by a matrix(
An−2 en−2

e∗n−2 an−1

)
,
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with An−2 ∈ Hom(Vn−2, Vn−2), en−2 ∈ Vn−2, e
∗
n−1 ∈ V ∗

n−2, an−1 ∈ E. As before,
this means that

An−1(vn−2) = An−2(vn−2) + 〈e∗n−2, vn−2〉en−1

An−1(en−1) = en−2 + an−1en−1 .

Choose a basis εi, 1 ≤ i ≤ n− 2, of Vn−2. Since 〈e∗n−1, εi〉 = 0 we have

An(εi) = An−1(εi) + 〈e∗n−1, εi〉en = An−1(εi) = An−2(εi) + 〈e∗n−2, εi〉en−1 .

On the other hand,

An(en−1) = en−2 + an−1en−1 + 〈e∗n−1, en−1〉en .
Thus the matrix of An with respect to the basis

(ε1, ε2, . . . , εn−2, en−1, en)

has the form

(16)

⎛
⎝ Mat(An−2) ∗n−2 0n−2

∗n−2 an−1 1
0n−2 〈e∗n−1, en−1〉en an

⎞
⎠

where Mat(An−2) is the matrix of An−2 with respect to the basis (ε1, ε2, . . . , εn−2).
The index n−2 indicates a column of size n−2 and the exponent n−2 a row of size
n−2. Likewise the matrix of An−1 with respect to the basis (ε1, ε2, . . . , εn−2, en−1)
has the form (

Mat(An−2) ∗n−2

∗n−2 an−1

)
.

It follows that

det(An − λ) = det(An−1 − λ)(an − λ)− 〈e∗n−1, en−1〉 det(An−2 − λ) .

Thus the polynomials det(An−1 − λ) and det(An−2 − λ) are strongly relatively
prime and the operator An−1 is strongly regular with respect to (en−1, e

∗
n−1). At

this point we proceed inductively. We construct a sequence of subspaces

V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ Vn

with dim(Vi) = i, vectors ei ∈ Vi, and linear forms e∗i ∈ V ∗
i such that Vi−1 is the

kernel of e∗i . The matrix of An with respect to the basis

(e1, e2, . . . , en−1, en)

is the tridiagonal matrix

(17)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 1 0 0 · · · 0 0 0 0
c1 a2 1 0 · · · 0 0 0 0
0 c2 a3 1 · · · 0 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · cn−3 an−2 1 0
0 0 0 0 · · · 0 cn−2 an−1 1
0 0 0 0 · · · 0 0 cn−1 an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where ci = 〈e∗i , ei〉 �= 0. We note the relations

det(Ai − λ) = det(Ai−1 − λ)− ci−1 det(Ai−2 − λ) , i ≥ 2 .
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Now suppoe

(e′1, e
′
2, . . . , e

′
n−1)

is a basis of Vn−1 and the matrix of An with respect to the basis

(e′1, e
′
2, . . . , e

′
n−1, en)

has the form⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a′1 1 0 0 · · · 0 0 0 0
c′1 a′2 1 0 · · · 0 0 0 0
0 c′2 a′3 1 · · · 0 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · c′n−3 a′n−2 1 0
0 0 0 0 · · · 0 c′n−2 a′n−1 1
0 0 0 0 · · · 0 0 c′n−1 a′n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, for i ≥ 1

Ane
′
i = e′i−1 + a′ie

′
i + ci−1ei+1

(where e′n = en, e−1 = 0 and e′n+1 = 0) Call A′
i the sub square matrix obtained by

deleting the last n− i rows and the last n− i columns. Then we have

det(A′
i − λ) = det(A′

i−1 − λ)− c′i−1 det(A
′
i−2 − λ) , i ≥ 2 .

Also

det(An − λ) = det(A′
n − λ) , det(An−1 − λ) = det(A′

n−1 − λ) .

It follows inductively that ai = a′i, cj = c′j , e
′
i = ei.

We have proved the following Proposition.

Proposition 1. If A is strongly regular with respect to the pair (Vn−1, en)
there is a unique basis

(e1, e2, . . . , en−1)

of Vn−1 such that the matrix of A with respect to the basis

(e1, e2, . . . , en−1, en)

has the form (17). In particular, the ai, 1 ≤ i ≤ n, and the cj, 1 ≤ j ≤ n− 1, are
uniquely determined.

Remark. If we demand that the matrix have the form⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a′1 b′1 0 0 · · · 0 0 0 0
c′1 a′2 b′2 0 · · · 0 0 0 0
0 c′2 a′3 b′3 · · · 0 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · c′n−3 a′n−2 b′n−2 0
0 0 0 0 · · · 0 c′n−2 a′n−1 b′n−1

0 0 0 0 · · · 0 0 c′n−1 a′n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with respect to a basis of the form

(e′1, e
′
2, . . . , e

′
n−1, en) ,

where (e′1, e
′
2, . . . , e

′
n−1) is a basis of Vn−1, then a′i = ai, 1 ≤ i ≤ n, b′jc

′
j = cj ,

1 ≤ i ≤ n− 1, and the e′i are scalar multiples of the ei.
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According to [1], an element An ∈ G is regular if the vectors

Ai
n−1en−1 , 0 ≤ i ≤ n− 2

are linearly independent and the linear forms

e∗iA
i
n−1 , 0 ≤ i ≤ n− 2

are linearly independent. This is equivalent to the condition that the stabilizer
of An in Gl(Vn(E)) be trivial and the orbit of An under Gl(Vn(E)) be Zariski
closed. A strongly regular element is regular. The above and forthcoming discus-
sion concerning strongly regular elements should apply to regular elements as well.
However, we have verified it is so only in the case n = 2, 3.

3. Orbits of Gln−1(F )

Now suppose that E is a quadratic extension of F . Let σ be the non trivial
element of the Galois-group of E/F .

Suppose that Vn is given an F form. For clarity we often write Vn(E) for Vn

and Vn(F ) for the F−form. We denote by v �→ vσ the corresponding action of σ
on Vn(E). Then Vn(F ) is the space of v ∈ Vn(E) such that vσ = v. We assume
eσn = en and V σ

n−1 = Vn−1. We have an action of σ on HonE(Vn, Vn) denoted by
A �→ Aσ and defined by

Aσ(v) = A(vσ)σ .

We denote by S the space of A ∈ HonE(Vn, Vn) such that

Aσ = −A .

The group Gl(Vn−1(F )) can be identified with the group of g ∈ Gl(Vn−1(E)) fixed
by σ. It operates on S.

We say that an element of Sn is strongly regular if it is strongly regular as an
element of HonE(Vn, Vn). We study the orbits of Gl(Vn(F )) in the set of strongly
regular elements of S.

We fix
√
τ such that E = F (

√
τ). If A is strongly regular, there is a unique

basis (e1, e2, . . . , en−1) of Vn(F ) such that the matrix of A with respect to the basis

(e1, e2, . . . , en−1, en)

has the form

(18)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
√
τ 0 0 · · · 0 0 0 0

c1√
τ

a2
√
τ 0 · · · 0 0 0 0

0 c2√
τ

a3
√
τ · · · 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · cn−3√

τ
an−2

√
τ 0

0 0 0 0 · · · 0 cn−2√
τ

an−1
√
τ

0 0 0 0 · · · 0 0 cn−1√
τ

an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then the ai and the cj are the invariants of A. Furthermore, ai ∈ F
√
τ and

cj ∈ F×. Two strongly regular elements A and A′ of Sn are conjugate under
Gl(Vn−1(F )) if and only they are conjugate under Gl(Vn−1(E)), or, equivalently,
if and only if they have the same invariants. Finally, given ai ∈ F

√
τ , 1 ≤ i ≤ n,

and cj ∈ F×, 1 ≤ j ≤ n − 1, there is a strongly regular element of Sn with those
invariants.



ON THE GROSS-PRASAD CONJECTURE FOR UNITARY GROUPS 215

4. Orbits of Un−1

Let Vn be a E−vector space of dimension n and β a non-degenerate Hermitian
form on Vn. Let en be an anisotropic vector, that is,

β(en, en) �= 0 .

Usually, we will scale β by demanding that β(en, en) = 1.
Let Vn−1 be the subspace orthogonal to en. Thus

Vn = Vn−1 ⊕ Een .

Let U(β) be the unitary group of β. Let θ be the restriction of β to Vn−1. and U(θ)
the unitary group of θ. Thus we have an injection ι : U(θ) → U(β). We have the ad-
joint action of U(β) on Lie(U(β)) and thus an action of U(θ) on Lie(U(β)). We have
an embedding of Lie(U(β)) into Hom(Vn, Vn). We say that an element of Lie(U(β))
is strongly regular if it is strongly regular as an element of HomE(Vn, Vn). As
before, to An ∈ HomE(Vn, Vn) we associate a matrix(

An−1 en−1

e∗n−1 an

)
.

The condition that An be in Lie(U(β)) is

An−1 ∈ Lie(U(θ)), an + an = 0

and

〈e∗n−1, v〉 = −β(v, en−1)

β(en, en)
,

for all v ∈ Vn−1. Thus the first invariant of the matrix is

〈e∗n, en〉 = −β(en−1, en−1)

β(en, en)
.

Assume that An is strongly regular. Then β(en−1, en−1) �= 0 and Vn−1 is an
orthogonal direct sum

Vn−1 = Vn−2 ⊕ Een−1 .

We can then repeat the process and obtain in this way an orthogonal basis

(e1, e2, . . . , en−1, en−1)

such that β(ei, ei) �= 0 and the matrix of An with respect to the basis

(e1, e2, . . . , en−1, en)

has the form (17). Moreover, it is the only orthogonal basis with this property. In
addition, for 1 ≤ i ≤ n− 1,

ci = − β(ei, ei)

β(ei+1, ei+1)
.

Finally, ai ∈ F
√
τ for 1 ≤ i ≤ n and cj ∈ F× for 1 ≤ j ≤ n − 1. Two strongly

regular elements of Lie(U(β)) are conjugate under U(θ) if and only if they are
conjugate under Gl(Vn−1), or, what amounts to the same thing, have the same
invariants.

From now on let us scale β by demanding that β(en, en) = 1. Then θ determine
β and we write β = θe.
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Given ai ∈ F
√
τ , 1 ≤ i ≤ n, cj ∈ F×, 1 ≤ j ≤ n− 1 there is a non degenerate

Hermitian form θ on Vn−1, a strongly regular element A of Lie(U(θe)) whose in-
variants are the ai and the cj . The isomorphism class of θ is uniquely determined
and for any choice of θ the conjugacy class of A under U(θ) is uniquely determined.

The determinant of θ is equal to

(−1)
(n−1)n

2 c1c
2
2 · · · cn−1

n−1 .

5. Comparison of the orbits, the fundamental lemma

We now consider an E−vector space Vn, a vector en �= 0, and a linear comple-
ment Vn−1 of en. We are also given an F−form of Vn or, what amounts to the same
thing, an action of σ on Vn. We assume that eσn = en and V σ

n−1 = Vn−1. For a Her-
mitian form θ on Vn−1 we denote by θe the Hermitian form on Vn such that Vn−1

and En are orthogonal, θe|Vn−1 = θ, θe(en, en) = 1. Then U(θ) ⊂ Gl(Vn−1(E))
and Gl(Vn−1(F )) ⊂ Gl(Vn−1(E)). Let ξ be a strongly regular element of Lie(U(θe))
and ξ′ a strongly regular element of S. We say that ξ′ matches ξ and we write

ξ → ξ′

if ξ and ξ′ have the same invariants, or, what amounts to the same thing, are
conjugate under Gl(Vn(E)). Every ξ matches a ξ′. The converse is not true.
However, given ξ′ there is a θ and a strongly regular element ξ of Lie(U(θe)) such
that ξ → ξ′. The form θ is unique, up to equivalence, and the element ξ is unique,
up to conjugation by U(θ).

For instance, suppose that E is a quadratic extension of F , a local, non-
Archimedean field. Up to equivalence, there are only two choices for θ. Let θ0
be a form whose determinant is a norm and θ1 a form whose determinant is not
a norm. Let ξ′ be a strongly regular element of S(F ) and ci, 1 ≤ i ≤ n − 1 the
corresponding invariants. If

(−1)
(n−1)n

2 c1c
2
2 · · · cn−1

n−1

is a norm then ξ′ matches an element Lie(U(θe0)). Otherwise it matches an element
of Lie(U(θe1)).

We have a conjecture of smooth matching. If Φ is a smooth function of
compact support on S(F ) and ξ′ is strongly regular, we define the orbital integral

ΩG(ξ
′,Φ) =

∫
Gl(Vn−1(F ))

Φ
(
ι(g)ξ′ι(g)−1

)
η(det g)dg .

Likewise, if fi, i = 0, 1, is a smooth function of compact support on Lie(U(θei )(F ),
ξi a strongly regular element, we define the orbital integral

ΩUi
(ξi, fi) =

∫
U(θe

i )(F )

fi(ι(g)ξiι(g)
−1)dg .

Conjecture 1 (Smooth matching). There is a factor τ (ξ′), defined for ξ′

strongly regular with the property. Given Φ, there is a pair (f0, f1), and conversely,
such that

ΩG(ξ
′,Φ) = τ (ξ′)ΩUi

(ξi, fi)

if ξi → ξ′.
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We have a conjectural fundamental lemma. Assume that E/F is an unram-
ified quadratic extension and the residual characteristic is odd. Thus −1 is a norm
in E. To be specific let us take Vn = En, Vn(F ) = Fn,

en =

⎛
⎜⎜⎜⎜⎝

0
0
∗
0
1

⎞
⎟⎟⎟⎟⎠ ,

Vn−1(E) � En−1 the space of column vectors whose last entry is 0. Finally, let θ0
be the form whose matrix is the identity matrix. Thus Lie(U(θe0)) is the space of
matrices A ∈ M(n× n,E) such that A+ tA = 0. On the other hand S(F ) is the
space of matrices A such that A+A = 0.

Let f0 (resp. Φ0) be the characteristic function of the matrices with integral
entries in Lie(U(θe0)) (resp. S(F )). Choose the Haar measures so that the standard
maximal compact subgroups have mass 1.

Conjecture 2 (fundamental lemma). Let ξ′ be a strongly regular element of
S(F ) and ai, cj the corresponding invariants. If

c1c
2
2 · · · cn−1

n−1

has even valuation, then

ΩG(ξ
′,Φ0) = τ (ξ′)ΩU0

(ξ, f0) ,

where ξ ∈ Lie(U(θe0)) matches ξ′ and τ (ξ′) = ±1. Otherwise

ΩG(ξ
′,Φ0) = 0 .

Before we proceed we remark that in the general setting the linear forms

An �→ Tr(An) , �→ Tr(An−1)

are invariant under Gl(Vn−1(E)). Thus in the above discussion and conjectures we
may replace G := Hom(Vn, Vn) by the space

g := {An : Tr(An) = 0 , Tr(An−1) = 0} .
Then Lie(U(θ0)

e) is replaced by

uθ0 := Lie(U(θe0)) ∩ g

and S by
s := S ∩ g .

6. Smooth matching and the fundamental Lemma for n = 2

Let E/F be an arbitrary quadratic extension. We choose τ such that E = F
√
τ .

For n = 2 we take V2 = E2 and V1 = E. Then

g =

{(
0 b
c 0

)
: b, c ∈ E

}
.

The only invariant is the determinant. There is no difference between between
regular and strongly regular. The above element is regular if and only if bc �= 0.

Similarly,

s =

{(
0 b′

c′ 0

)
: b′ + b′ = 0 , c′ + c′ = 0

}
.
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The matrix of β has the form (
θ 0
0 1

)

with θ ∈ F×. The isomorphism class of β depends on the class of θ modulo the
subgroup Nr(E

×) of norms. The corresponding vector space uθ(F ) is the space of
matrices of the form (

0 b

−bθ 0

)
.

Such an element is regular if b �= 0. The group U1(F ) = {t : tt = 1} operates by
conjugation. The action of t is given by:(

0 b

−bθ 0

)
�→
(

0 bt

−btθ 0

)
.

The only invariant of this action is the determinant. Two regular elements(
0 b1

−b1θ 0

)
,

(
0 b2

−b2θ 0

)

are in the same orbit if and only if b1b1 = b2b2. The only non-regular element is
the 0 matrix.

On the other hand s(F ) is the space of matrices of the form(
0 b

√
τ

c√
τ

0

)
, b, c ∈ F .

Such an element is regular if and only if bc �= 0. The group F× operates by
conjugation. The action of t ∈ F× is given by(

0 b
√
τ

c√
τ

0

)
�→
(

0 bt
√
τ

t−1c√
τ

0

)
.

The orbits of non-regular elements are the 0 matrix and the orbit of the following
elements: (

0
√
τ

0 0

)
,

(
0 0
1√
τ

0

)
.

The only invariant of this action is the determinant. Two regular elements(
0 b1

√
τ

c1√
τ

0

)
,

(
0 b2

√
τ

c2√
τ

0

)

are conjugate if and only if b1c1 = b2c2.
The correspondence between regular elements is as follows:(

0 b

−bθ 0

)
→
(

0 b′
√
τ

c′√
τ

0

)

if bbθ = −b′c′. Thus we have a bijection between the disjoint union of the regular
orbits of the spaces uθ(F ), θ ∈ E×/NrF

×), and the regular orbits in s(F ).
Now suppose that E/F is a local extension. Modulo the group of norms we

have two choices θ0 and θ1 for θ. For fi smooth of compact support on ui := uθi
the orbital integral evaluated on

ξi =

(
0 b

−θib 0

)
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has the form

ΩU (fi, ξi) =

∫
U1

fi

(
0 bu

−θibu 0

)
du .

The integral depends only on bb and can be written as

ΩU (fi,−θibb) .

For Φ smooth of compact support on ∫ the orbital integral evaluated on

ξ′ =

(
0 a

√
τ

1√
τ

0

)

takes the form

Ω(Φ, a) := ΩG(f, ξ
′) =

∫
F×

(
0 a

√
τt

1√
tτ

0

)
η(t)d×t .

We appeal to the following Lemma

Lemma 1. Let E/F be a quadratic extension of local fields and η the corre-
sponding quadratic character. Given a smooth function of compact support φ on
F 2, there are two smooth functions of compact support on F φ1, φ2 such that∫

φ(t−1, at)η(t)d×t = φ1(a) + η(a)φ2(a)

and

φ1(0) =

∫
φ(x, 0)η(x)d×x , φ2(0) =

∫
φ(0, x)η(x)d×x .

Conversely, given φ1, φ2 there is φ such that the above conditions are satisfied.

Here we recall that the local Tate integral∫
φ(x)η(x)|x|sd×x

converges absolutely for �s > 0 and extends to a meromorphic function of s which
is holomorphic at s = 0. The improper integral∫

φ(x)η(x)d×x

is the value at s = 0.
The lemma implies that

ΩG(Φ, a) = φ1(a) + η(a)φ2(a)

where φ1, φ2 are smooth functions of compact support on F . Then the condition
that the pair (f0, f1) matches Φ becomes

ΩU (fi,−bbθi) = φ1(−bbθi) + η(−θi)φ2(−bbθi) .

It is then clear that given Φ there is a matching pair (f0, f1) and conversely.
We pass to the fundamental lemma. We assume the fields are non-Archimedean,

the residual characteristic is odd, and the extension is unramified. We take τ to
be a unit. We also take θ0 = 1. On the other hand θ1 is any element with odd
valuation. Let f0 be the characteristic function of the integral elements of u0. Then,
with the previous notations,

Ω(f0,−bb) = Ω(f0, ξ0) = f0

(
0 b

−b 0

)
.
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This is zero unless |bb| ≤ 1 in which case it is 1. On the other hand, let Φ0 be the
characteristic function of the integrals elements of s. Then

ΩG(Φ0, a) =

∫
1≤|t|≤|a|−1

η(t)d×t .

This is zero unless |a| ≤ 1. Then it is zero unless a is a norm in which case it is
one.

Thus if ξ0 → ξ′, that is, a = −bb, we get

Ω(f0, ξ) = Ω(Φ0, ξ
′) .

Otherwise, we get

Ω(Φ0, ξ
′) = 0 .

The fundamental lemma is established.

7. The trace formula for n = 2

In general, it will be convenient to consider all pairs (Un, Un−1) simultaneously.
We illustrate this idea for the case n = 2. Let E/F be a quadratic extension of
number fields.

The trace formula we want to consider has the following shape:

(19)
∑

θ∈E×/NrE×)

∫
U1(F )\U1(FA)

∑
ξ∈Uθ(F )

fθ
(
ι(h)−1ξι(h)

)
dh =

∫
Gl2(F )\Gl2(FA)

∑
ξ′∈s(F )

Φ
(
ι(h)−1ξ′ι(h)

)
η(deth)dh .

The left hand side converges and is equal to

∑
θ

⎡
⎣fθ(0)Vol(U1(F )\U1(FA)) +

∑
β∈E×/NrE×)

∫
U1(FA)

fθ

(
0 tβ

−βtθ 0

)
dt

⎤
⎦ .

The right hand side must be interpreted as an improper integral. It is equal to∫
F×

Φ

(
0 t

√
τ

0 0

)
η(t)d×t+

∫
F×

A

Φ

(
0 0
t√
τ

0

)
η(t)d×t

+
∑

α∈F×

∫
Φ

(
0 αt

√
τ

1
t
√
τ

0

)
η(t)d×t .

For the first two terms, we recall that if φ is a Schwartz-Bruhat function on FA

then the global Tate integral ∫
φ(t)|t|sη(t)d×t

converges for �s > 1 and has analytic continuation to an entire function of s. The
improper integral ∫

φ(t)η(t)d×t

is the value of this function at s = 0. The remaining terms are absolutely conver-
gent.
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The matching condition is between a family (fθ) and a function Φ. The global
matching condition has the following form:∫

U1(FA)

fθ

(
0 tβ

−βtθ 0

)
dt =

∫
F×

A

Φ

(
0 αt

√
τ

1
t
√
τ

0

)
η(t)d×t

if −ββθ = α. At a place of F inert in E, the corresponding local matching condition
is described in the previous section. At a place which splits in E, it is elementary.
The local matching conditions imply∑

θ

fθ(0)Vol(U1(F )\U1(FA)) =

∫
F×

Φ

(
0 t

√
τ

0 0

)
η(t)d×t+

∫
F×

A

Φ

(
0 0
t√
τ

0

)
η(t)d×t .

We will not give the proof. It can be derived from [9].

8. Orbits of Gl2(E)

We take V3(E) = E3 (column vectors). We set

e3 =

⎛
⎝ 0

0
1

⎞
⎠ .

We identify V ∗
3 with the space of row vectors with 3 entries. We take e∗3 = (0, 0, 1).

Then V2(E) = E2 is the space of row vectors whose last component is 0. We denote
by G the space HomE(V3, V3) and by g the subspace of A such that Tr(A) = 0 and
Tr(A|V2) = 0. Thus g(E) is the space of 3× 3 matrices X with entries in E of the
form

X =

⎛
⎝ a b x1

c −a x2

y1 y2 0

⎞
⎠

The group Gl2(E) operates on g(E). We introduce several invariants of this action:

A1(X) = det

(
a b
c −a

)
,(20)

A2(X) = (y1, y2)

(
x1

x2

)
,(21)

B1(X) = detX .(22)

We denote by R(X) the resultant of the following polynomials in λ:

det

[(
a b
c −a

)
− λ

]
, − det[X − λ] .

It is also an invariant. More explicitly,

A1(X) = −a2 − bc(23)

A2(X) = x1y1 + x2y2(24)

B1(X) = (x1y1 − x2y2)a+ x1y2c+ x2y1b(25)

R(X) = A1(X)A2(X)2 +B1(X)2(26)
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Clearly, X is strongly regular if and only if A2(X) �= 0 and R(X) �= 0. If
X is strongly regular the invariants c1, c2 and a1, a2, a3 introduced earlier can be
computed in terms of the new invariants as follows:

c2 = A2(X)(27)

−c1c
2
2 = R(X)(28)

a1 = −B1(X)A−1
2 (X)(29)

a2 = −a1(30)

a3 = 0(31)

We also introduce

B2(X) :=
(
−x2 x1

)( a b
c −a

)(
x1

x2

)
(32)

B3(X) :=
(
y1 y2

)( a b
c −a

)(
−y2
y1

)
(33)

Explicitly,

B2(X) = −2x1x2a+ x2
1c− x2

2b

B3(X) = −2y1y2a+ y21b− y22c

We remark that if we replace

(
x1

x2

)
by h

(
x1

x2

)
with h ∈ Sl(2, F ) then (−x2, x1)

is replaced by (−x2, x1)h
−1. It follows that B2 is Sl2(E) invariant. Likewise for

B3.
We let g(E)′ be the set of X such that A2(X) �= 0 and g(E)s the set of

X ∈ g(E)′ such that R(X) �= 0. Thus g(E)s is the set of strongly regular elements.

Lemma 2. Every Sl2(E) orbit in g(E)′ contains a unique element of the form

X =

⎛
⎝ a b 0

c −a 1
0 t 0

⎞
⎠

and then A1(X) = −a2 − bc, A2(X) = t �= 0, B1(X) = −at, B2(X) = −b,
B3(X) = −t2c, R(X) = −t2bc. In particular, A2, B1, B2, B3 form a complete set
of invariants for the orbits of Sl2(E) in g(E)′.

Proof: If A2(X) �= 0 then a fortiori

(
x1

x2

)
�= 0. Since Sl2(F ) is transitive

on the space of non-zero vectors in F 2, we may as well assume

X =

⎛
⎝ a b 0

c −a 1
y1 y2 0

⎞
⎠

Then y2 = A2(X) �= 0. We now conjugate X by

ι

(
1 0

−y1

y2
1

)

and obtain a matrix like the one in the lemma. In Gl2(E) the stabilizer of the
column ( 01 ) and the row ( 0 t ) (where t �= 0) is the group

H =

{(
α 0
0 1

)
, α ∈ E×

}
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Thus the stabilizer in Sl2(E) of a matrix like the one in the lemma is indeed trivial.
The remaining assertions of the lemma are easy. �

Lemma 3. If X is in g(E)′ then X is strongly regular if and only if it is regular.

Proof: We may assume that

X =

⎛
⎝ a b 0

c −a 1
0 t 0

⎞
⎠ ,

with t �= 0. Then X is strongly regular if and only R(X) = −t2bc �= 0. On the
other hand, it is regular if and only if the column vectors(

0
1

)
,

(
b
−a

)

are linearly independent and the row vectors

(0, t), (ct,−ta)

are linearly independent. Then it is so if and only if b �= 0 and c �= 0. Our assertion
follows. �

Lemma 4. Every orbit of Gl2(E) in g(E)s contains a unique element of the
form

X =

⎛
⎝ a b 0

1 −a 1
0 t 0

⎞
⎠ ,

where b �= 0 and t �= 0. Then

A1(X) = −a2 − b

A2(X) = t

B1(X) = −at

R(X) = −bt2

If the invariants A1, A2, B1 take the same values on two matrices in g(E)s, then
they are in the same orbit of Gl2(E). Finally, given a1, a2, b1 in E with a2 �= 0
and a1a

2
2 + b21 �= 0 there is X ∈ g(E)s such that A1(X) = a1, A2(X) = a2 and

B1(X) = b1.

Proof: The first assertion follows from the general case, or more simply, from
the previous Lemma. Indeed, by the previous lemma, every orbit contains an
element of the form

X =

⎛
⎝ a b 0

c −a 1
0 t 0

⎞
⎠

and then −bct2 = R(X). Thus bc �= 0. Conjugating by

ι

(
c 0
0 1

)

we obtain an element of the required form. The stabilizer of this element in Gl2(E)
is trivial. The remaining assertions are obvious. �
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9. Orbits of Gl2(F )

Now we consider the orbits of Gl2(F ) in s. Of course, s =
√
τg(F ). We define

s′ = s ∩ g(E)′ and ss = s ∩ g(E)s. For Y ∈ g(F ), we have

A1(
√
τY ) = τA1(Y )

A2(
√
τY ) = τA2(Y )

B1(
√
τY ) = τ

√
τB1(Y ) .

Also

R(
√
τY ) = τ3R(Y ) .

Thus, on ss, the functions A1, A2 (with values in F ) together with the function B1

(with values in F
√
τ ) form a complete set of invariants for the action of Gl2(F ).

Conversely, given a1 ∈ F , a2 ∈ F× and b1 ∈ F
√
τ such that a1a

2
2 + b21 �= 0 there is

X ∈ ss with those numbers for invariants.

10. Orbits of the unitary group

We formulate the fundamental lemma in terms of the Hermitian matrix

θ0 =

(
0 1
1 0

)
,

rather than in terms of the Hermitian unit matrix. Then

θe0 =

⎛
⎝ 0 1 0

1 0 0
0 0 1

⎞
⎠ .

We let U2,1 be the unitary group for the Hermitian matrix θe0. Thus the Lie algebra
of U2,1 is the space U(F ) of matrices Ξ of the form

Ξ =

⎛
⎝ a b z1

c d z2
−z2 z1 e

⎞
⎠

with a+ d = 0, b ∈ F
√
τ , c ∈ F

√
τ , e ∈ F

√
τ . We let U1,1 be the unitary group for

the Hermitian matrix θ0. The corresponding Hermitian form is

Q(z1, z2) = z1z2 + z2z1

We embed U1,1 into U2,1 by

ι(u) =

(
u 0
0 1

)
.

We obtain an action of U1,1(F ) by conjugation. As before, we set u = U ∩ g. Thus
u is the space of matrices Ξ of the form

(34) Ξ =

⎛
⎝ a b z1

c −a z2
−z2 −z1 0

⎞
⎠ , a ∈ F, b ∈ F

√
τ , c ∈ F

√
τ .

Then

A1(Ξ) = −a2 − bc

A2(Ξ) = −Q(z1, z2)

B1(Ξ) = a(z1z2 − z2z1)− bz2z2 − cz1z1
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We set u′ = u ∩ g′ and us = u ∩ gs. We study directly the orbits of U1,1 on us.

Lemma 5. For t ∈ F× choose (z1,0, z2,0) such that Q(z1,0, z2,0) = −t. Any
orbit of SU1,1 in u′ on which A1 takes the value t contains a unique element of the
form ⎛

⎝ a b z1,0
c −a z2,0

−z2,0 −z1,0 0

⎞
⎠

Proof: Since SU1,1 acting on E2 is transitive on the sphere S−t = {v ∈
E2|Q(v) = −t} and each point of the sphere has a trivial stabilizer in SU1,1, our
assertion is trivial. �

Lemma 6. For t ∈ F× choose (z1,0, z2,0) such that Q(z1,0, z2,0) = −t. Any
orbit of U1,1 in us on which A1 takes the value t contains an element of the form

Ξ =

⎛
⎝ a b z1,0

c −a z2,0
−z2,0 −z1,0 0

⎞
⎠

The stabilizer in U1,1 of such an element is trivial. Moreover A1(Ξ) ∈ F , A2(Ξ) ∈
F , B1(Ξ) ∈ F

√
τ and −R(Ξ) is a non-zero norm. A1(Ξ), A2(Ξ), B1(Ξ) completely

determine the orbit of Ξ. Finally, if a1 ∈ F , a2 ∈ F and b1 ∈ F
√
τ are such that

a2 �= 0, a1a
2
2 + b21 �= 0 and −(a1a

2
2 + b21) is a norm, then there is Ξ in us such that

A1(Ξ) = a1, A2(Ξ) = a2 and B1(Ξ) = b1.

Proof: As before, the orbit in question contains at least one element of this
type, say Ξ0. To prove the remaining assertions we introduce the matrix

M =

(
−z1,0t

−1 z1,0
z2,0t

−1 z2,0

)
∈ Sl2(E) .

Then

tM

(
0 1
1 0

)
M =

(
t−1 0
0 −t

)
.

It follows that ι(M)−1U ι(M) is the Lie algebra of the unitary group for the Her-
mitian matrix ⎛

⎝ t−1 0 0
0 −t 0
0 0 1

⎞
⎠

Then ι(M)−1uι(M) becomes the space of matrices of the form
⎛
⎝ α β z1

βt−2 −α z2
−z1t

−1 z2t 0

⎞
⎠ , α ∈ F

√
τ .

and Ξ1 = ι(M)−1Ξ0ι(M) is a matrix of the form

Ξ1 =

⎛
⎝ α1 β1 0

β1t
−2 −α1 1
0 t 0

⎞
⎠ .
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We have

A1(Ξ0) = A1(Ξ1) = −α2
1 − β1β1t

−2

A2(Ξ0) = A2(Ξ1) = t

B1(Ξ0) = B1(Ξ1) = −α1t

R(Ξ0) = R(Ξ1) = −β1β1

The stabilizer H of the column ( 01 ) and the row ( 0 t ) in the group ι(M)−1U1,1ι(M)
is the group (

u 0
0 1

)
, u ∈ U1 .

Since Ξ1 is in g(E)s we have β1 �= 0. Thus the stabilizer of Ξ1 of Ξ1 in H or in
ι(M)−1U1,1ι(M) is trivial. If the invariants A1, A2, B1 take the same value on two
such elements Ξ1 and Ξ2 of ι(M)−1uι(M), then we have t1 = t2, α1 = α2 and
β1β1 = β2β2. Then β1 = β2u with u ∈ U1. Then Ξ1 and Ξ2 are conjugate by an
element of H. �

11. Comparison of orbits

In accordance with our general discussion, we match the orbit of Ξ ∈ us with
the orbit of X ∈ ss and we write Ξ → X if the matrices are conjugate by Gl2(E),
or, what amounts to the same thing, if they have the same invariants A1, A2, B1.
In particular, we have the following Proposition.

Proposition 2. Given X ∈ ss, there is a matrix Ξ in us which matches X if
and only if −R(X) is a (non-zero) norm.

12. The fundamental lemma for n = 3

We now let E/F be an unramified quadratic extension of non-Archimedean
fields. We assume the residual characteristic is not 2. We let fu be the charac-
teristic function of the matrices with integral entries in u and Φs be similarly the
characteristic function of the set of matrices with integral entries in s. For Ξ ∈ us

we set

(35) ΩU (Ξ) =

∫
U1,1

fu(uΞu
−1)du

Likewise, for X ∈ ss we set

(36) ΩG(X) =

∫
Gl2(F )

Φ0(gXg−1)η(det g)dg

The fundamental lemma asserts that if Ξ matches X then

(37) ΩU (Ξ) = τ (X)ΩG(X)

where τ (X) = ±1 is the transfer factor. If, on the contrary, X matches no Ξ then

ΩG(X) = 0 .

To prove the fundamental lemma we exploit the isomorphism between U1,1 and
Sl(2, F ). Now U1,1 is the product of the normal subgroup SU1,1 and the torus

T =

{
t =

(
z 0
0 z−1

)
, z ∈ E×

}
.
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with intersection

T ∩ SU1,1 =

{
t =

(
a 0
0 a−1

)
, a ∈ F×

}
.

Let T0 be the subgroup of t ∈ T with |z| = 1. Then U1,1 = SU1,1T0.
The function fu is invariant under T0. Thus, in fact,

ΩU (Ξ) =

∫
SU1,1

fu(uΞu
−1)du .

To establish the fundamental lemma we will use the isomorphism θ : SU1,1 →
Sl2(F ) defined by

(38) θ(g) =

( √
τ 0
0 1

)
g

( 1√
τ

0

0 1

)

and a compatible F−linear bijective map Θ : u → g(F ) defined as follows. If

Ξ =

⎛
⎝ α β z1

γ −α z2
−z2 −z1 0

⎞
⎠ , α ∈ F, β ∈

√
τF, γ ∈

√
τF

then

(39) Θ(Ξ) = X , X =

⎛
⎝ a b x1

c −a x2

y1 y2 0

⎞
⎠

where
a = α b = β

√
τ c = γ√

τ

x1 = z1+z1
2 y1 = z2+z2

2

x2 = z2−z2
2
√
τ

y2 = −
√
τ(z1−z1)

2

The inverse formulas for z1, z2 read

z1 = x1 −
y2√
τ
, z2 = y1 + x2

√
τ .

Note that (
a b
c −a

)
=

( √
τ 0
0 1

)(
α β
γ −α

)( 1√
τ

0

0 1

)
.

The linear bijection Θ has the following property of compatibility with the isomor-
phism θ:

Θ(ι(g)Ξι(g)−1) = ι(θ(g))Θ(Ξ)ι(θ(g))−1

for g ∈ SU(1, 1).
We can use Θ to define an action μ of T on g. It is defined by

Θ
(
ι(t)Ξι(t)−1

)
= μ(t) (Θ(Ξ)) .

Explicitly, if t = diag(z, z−1), z = p+
√
τ , then

μ(t)

⎡
⎣
⎛
⎝ a b x1

c −a x2

y1 y2 0

⎞
⎠
⎤
⎦ =

⎛
⎝

a bzz px1 − qy2
c(zz)−1 −a px2+qy1

p2−q2τ
py1+qτx2

p2−q2τ py2 − qτx1 0

⎞
⎠
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For t ∈ T ∩ SU1,1 = T ∩ Sl2(F ), μ(t) is the conjugation by ι(t). Again, T =
T0(T ∩ Sl2(F )).

We compare the invariants of Ξ and X = Θ(Ξ). From

−z2z1 − z1z2 = −2(x1y1 + x2y2)

and

α(z1z2 − z2z1)− βz2z2 − γz1z1 =

√
τ (2ax1x2 + bx2

2 − cx2
1) +

1√
τ
(2ay1y2 − by21 + cy22)

we get

A1(Ξ) = A1(Θ(Ξ))(40)

A2(Ξ) = −2A2(Θ(Ξ))(41)

B1(Ξ) = −
√
τB2(Θ(Ξ))− 1√

τ
B3(Θ(Ξ))(42)

Also

R(Ξ) = 4A1(X)A2(X)2 + τB2(X)2 +
1

τ
B3(X)2 + 2B2(X)B3(X) .

We let g̃(F ) be the image of us under Θ. Thus g̃(F ) is contained in g(F )′. The
functions A1, A2 and −

√
τB2 − 1√

τ
B3 form a complete set of invariants for the

action of Sl2(F ) and T0 on g̃.
We will let Φ0 be the characteristic function of the set of integers in g(F ). For

X ∈ g′ we set

(43) ΩSl2(X) =

∫
Sl2(F )

Φ0(ι(g)Xι(g)−1)dg .

Thus ΩU (Ξ) = ΩSl2(Θ(Ξ)).
We match the orbits of U2,1 in us with the orbits of Gl2(F ) in ss by matching

the invariants: for Ξ in us and Y ∈ g(F )s, Ξ → √
τY if

A1(Ξ) = A1(
√
τY )

A2(Ξ) = A2(
√
τY )

B1(Ξ) = B1(
√
τY )

This leads to the following relation in terms of X = Θ(Ξ) and Y :

A1(X) = τA1(Y )

−2A2(X) = τA2(Y )

−
√
τB2(X)− 1√

τ
B3(X) = τ

√
τB1(Y )

The last relation can be simplified:

−τB2(X)−B3(X) = τ2B1(Y )

To make this relation explicit, we may replace X ∈ g̃(F ) by a conjugate under
Sl2(F ) and thus assume

(44) X =

⎛
⎝ a1 b1 0

c1 −a1 1
0 t1 0

⎞
⎠
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The condition that X be in g̃(F ) reads

t1 �= 0 , τb21 +
t41c

2
1

τ
− 2b1c1t

2
1 − 4a21t

2
1 �= 0 .

The second condition can also be written as

(
√
τb1 −

t21c1√
τ
)2 − 4a21t

2
1 �= 0 .

As a matter of fact, assuming t1 �= 0, the second condition fails only if a1 = 0 and
τb1 = t21c1.

Likewise, we may assume:

(45) Y =

⎛
⎝ a b 0

c −a 1
0 t 0

⎞
⎠

Then

A1(Y ) = −a2 − bc

A2(Y ) = t

B1(Y ) = −ta

Moreover R(
√
Y ) = τ3R(Y ) = −bcτ3t2. This matrix is in g(F )s if and only if t �= 0

and bc �= 0. It matches some X if and only if −R(
√
Y ) is a norm. Since −τ is a

norm this is equivalent to −bc being a norm.
The condition of matching of orbits becomes: X → Y if

a21 + b1c1 = τ (a2 + bc)(46)

−2t1 = τt(47)

τb1 + t21c1 = −τ2ta(48)

In a precise way, this system of equations for (a1, b1, c1, t1) has a solution if and
only if −bc is a norm. If we write

(49) −τ2bc = y2 − τa21

then we can take a1 for the first entry of X, and then take t1 = − τt
2 ,

(50) b1 = − t

2
(y + τa) , c1 =

2

tτ
(y − τa) .

Note that a1 = 0 and τb1 = t21c1 would imply y = 0 and thus bc = 0. Thus X is
indeed in g̃(F ).

The fundamental lemma then takes the following form.

Theorem 1 (The fundamental lemma for n = 3). For Y ∈ g(F )s of the
form (45) define

(51) ΩGl2(Y ) =

∫
Gl2(F )

Φ0(gY g−1)η(det g)dg .

If −bc is not a norm then ΩGl2(Y ) = 0. If −bc is a norm, let (a1, b1, c1, t1) satisfy
the conditions (46) and let X be the element of g̃(F ) defined by (44). Then

ΩGl2(Y ) = η(c)ΩSl2(X)

We now prove the fundamental lemma.
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13. Orbital integrals for Sl2(F )

In this section we compute the orbital integral ΩSl2(X), where

(52) X =

⎛
⎝ a b 0

c −a 1
0 t 0

⎞
⎠ .

Suppose ΩSl2(X) �= 0. This implies that the orbit of X intersects the support of
Φ0, and we get that the invariants of X are integral. In particular a2+bc, t, at, b, t2c
are all integers.

We set

g = k

(
m 0
0 m−1

)(
1 u
0 1

)
, k ∈ Gl2(OF ) ,

dg = dk|m|2d×mdk

The integration over k is superfluous. Thus we get

ΩSl2(X) =

∫ ∫
Φ0

⎡
⎣
⎛
⎝ a+ cu m2(b− 2au− u2c) mu

cm−2 −a− cu m−1

0 tm 0

⎞
⎠
⎤
⎦ du|m|2d×m.

Lemma 7. The integral converges absolutely, provided t �= 0.

Proof: Indeed, the ranges of u and m are limited by

|u| ≤ |m|−1 , 1 ≤ |m| ≤ |t|−1 .

Thus the integral is less than the integral∫ ∫
|u|≤|m|−1,1≤|m|≤|t|−1

du|m|2d×m

=

∫
1≤|m|≤|t|−1

|m|d×m

which is finite. �

Explicitly, the integral is equal to∫ ∫
du|m|2d×m

over ⎧⎨
⎩

|a+ cu| ≤ 1 |u| ≤ |m|−1

|c| ≤ |m|2 1 ≤ |m| ≤ |t|−1

|b− 2au− u2c| ≤ |m|−2

We first compute the integral for c �= 0. We may change u to uc−1 to get

|c|−1

∫ ∫
du|m|2d×m

⎧⎨
⎩

|a+ u| ≤ 1 |u| ≤ |cm−1|
|c| ≤ |m|2 1 ≤ |m| ≤ |t|−1

|a2 + bc− (a+ u)2| ≤ |cm−2|
Since |a2 + bc| ≤ 1 and |cm−2| ≤ 1 we see that the condition |a + u| ≤ 1 is
superfluous. We may then change u to u− a to obtain

(53) ΩSl2(X) = |c|−1

∫ ∫
du|m|2d×m
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{
|u− a| ≤ |cm−1| |a2 + bc− u2| ≤ |cm−2|
|c| ≤ |m|2 1 ≤ |m| ≤ |t−1|

Before embarking on the computation, we prove a lemma which will show that the
orbital integral ΩGl2 converges absolutely.

Lemma 8. Let ω be a compact set of F×. Then, with the previous notations,
the relations A2(X) ∈ ω, R(X) ∈ ω and ΩSl2(X) �= 0 imply that c is in a compact
set of F×.

Proof: Indeed, both t and bc are then in compact sets of F×. If ΩSl2(X) �= 0
then there are m and u satisfying the above conditions. We have then |c| ≤ |t−2| so
that |c| is bounded above. If |bc| ≤ |cm−2| then, since |m−1| ≤ 1 we have |c| ≥ |bc|
and |c| is bounded below. If |cm−2| < |bc| then |a2 − u2| = |bc|. Now |a2 + bc| ≤ 1
so |a| is bounded above. Thus |u| is also bounded above. Hence |a+ u| is bounded
above by A say. Then |bc| ≤ A|a − u| ≤ |cm−1|A ≤ |c|A. Hence |c| ≥ |bc|A−1.
Thus |c| is bounded below, away from zero, in all cases. �

We have now to distinguish various cases depending on the square class of
−A1(X) = a2 + bc.

13.1. Some notations. To formulate the result of our computations in a
convenient way, we will introduce some notations.

For A ∈ F× we set

(54) μ(A) :=

∫
1≤|m|≤|A|

|m|d×m

Thus μ(A) = 0 if |A| < 1. Otherwise μ(A) = |A|−q−1

1−q−1 . In particular, if |A| = 1,

then μ(A) = 1. Note that the above integral can be written as a sum∑
1≤|m|≤|A|

|m|

where the sum is over powers of a uniformizer satisfying the required inequalities.
If A,B,C, . . . , are given then we set

(55) μ(A,B,C, . . . ) := μ(D) where |D| = inf (|A|, |B|, |C|, . . .)
We also define

μ(A : B) :=

∫
|B|≤|m|≤|A|

|m|d×m.

Thus μ(A : 1) = μ(A). We also define

μ(A,B,C, · · · : P,Q,R, . . .) = μ(D : S)

where |D| = inf (|A|, |B|, |C|, . . . ) while |S| = sup (|P |, |Q|, |R|, . . .). Then
μ(A,B,C · · · : D) = |D|μ(AD−1, BD−1, CD−1 . . . ) .

Clearly, if 1 ≤ |C| ≤ inf(|A|, |B|), then
(56) μ(A,B : C�−1) + μ(C) = μ(A,B) .

We will frequently use the following elementary lemma.

Lemma 9. The difference

μ(A,B,C)− μ(A�,B,C)

is 0 unless 1 ≤ |A| ≤ inf(|B|, |C|), in which case the difference is |A|.
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For A ∈ F× we set

(57) ν(A) :=

∫
1≤|m|≤|A|

d×m

Thus ν(A) = 0 if |A| < 1. Otherwise ν(A) = 1 − v(A). In particular, if |A| = 1,
then ν(A) = 1. If A,B,C, . . . , are given then we set

(58) ν(A,B,C, . . . ) = ν(D) , |D| = inf (|A|, |B|, |C|, . . .)
We also define

ν(A : B) =

∫
|B|≤|m|≤|A|

d×m

Thus ν(A : 1) = ν(A). We also define

ν(A,B,C, · · · : P,Q,R, . . .) = ν(D : S)

where

|D| = inf (|A|, |B|, |C|, . . . ) , |S| = sup (|P |, |Q|, |R|, . . .) .
Clearly,

(59) ν(A,B,C · · · : D) = ν(AD−1, BD−1, CD−1 . . . ) .

We will use frequently the following elementary lemma:

Lemma 10. The difference

ν(A,B,C)− ν(A�,B,C)

is zero unless 1 ≤ |A| ≤ inf(|B|, |C|) in which case it is 1.

If x ∈ F× is an element of even valuation, then we denote by v
√
x any element

of F× whose valuation is one-half the valuation of x. If x has odd valuation then
v
√
x� is defined but not v

√
x. With this convention, the condition

|a| ≤ |x2| ≤ |b|
is equivalent to

(60)

∣∣∣∣
{

v
√
a

v
√
a�−1

}∣∣∣∣ ≤ |x| ≤
∣∣∣∣
{

v
√
b

v
√
b�

}∣∣∣∣ .
If |a| ≤ |b| then

(61) |a| ≤
∣∣∣∣
{

v
√
ab

v
√
ab�

}∣∣∣∣ ≤
∣∣∣∣
{

v
√
ab

v
√
ab�−1

}∣∣∣∣ ≤ |b| .

13.2. Case where a2+bc is odd. Suppose first a2+bc has odd valuation, or,
as we shall say, is odd. Then there is a uniformizer � such that a2 + bc = δ2�. In
the range (53) for the integral the quadratic condition becomes |δ2�−u2| ≤ |cm−2|
and, in turn, this is equivalent to |δ2�| ≤ |cm−2| and |u2| ≤ |cm−2|. Thus the
integral is equal to

(62) |c|−1

∫ ∫
du|m|2d×m

over ⎧⎨
⎩

|u| ≤
∣∣∣∣
{

v
√
c

v
√
c�

}∣∣∣∣ |m−1| |u− a| ≤ |cm−1|
1 ≤ |m| ≤ |t−1| |c| ≤ |m2| ≤ |cδ−2�−1|
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If |c| ≤ 1 then the condition |c| ≤ |m2| is superfluous. Moreover

|c| ≤
∣∣∣∣
{

v
√
c

v
√
c�

}∣∣∣∣ .
Thus the two conditions on u can be rewritten

|u− a| ≤ |cm−1| , |a| ≤
∣∣∣∣
{

v
√
c

v
√
c�

}∣∣∣∣ |m−1|

The integral over u is then equal to |cm−1| and so we are left with

(63)

∫
|m|d×m

over the domain
1 ≤ |m|

|m| ≤ |t−1| , |m| ≤
∣∣∣∣
{

v
√
c

v
√
c�

}∣∣∣∣ |a−1| , |m| ≤
∣∣∣∣
{

v
√
c

v
√
c�−1

}∣∣∣∣ |δ−1| .

With the notation (55) we have, for |c| ≤ 1,

ΩSl2(X) = μ

(
t−1, δ−1

{
v
√
c

v
√
c�−1

}
, a−1

{
v
√
c

v
√
c�

})
.

We pass to the case |c| > 1. Then the condition |c| ≤ |m2| implies the condition
1 ≤ |m|. On the other hand, since∣∣∣∣

{
v
√
c

v
√
c�

}∣∣∣∣ ≤ |c| .

the conditions on u become

|u| ≤
∣∣∣∣

v
√
c

v
√
c�

∣∣∣∣ |m−1| , |a| ≤ cm−1| .

The integral over u is then equal to∣∣∣∣
v
√
c

v
√
c�

∣∣∣∣ |m−1|

and so we are left with

(64)

∣∣∣∣∣
1
v
√
c
1

v√
c
−1

∣∣∣∣∣
∫

|m|d×m

over ∣∣∣∣
v
√
c

v
√
c�−1

∣∣∣∣ ≤ |m|

|m| ≤ |ca−1| , |m| ≤ |t−1| , |m| ≤
∣∣∣∣

v
√
c

v
√
c�−1

∣∣∣∣ |δ−1|

We change m to

m

{
v
√
c

v
√
c�−1

}

and we get ∫
|m|d×m

over
1 ≤ |m|
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|m| ≤
∣∣∣∣

v
√
c

v
√
c�

∣∣∣∣ |a−1| , |m| ≤
∣∣∣∣∣

1
v
√
c
1

v√
c
−1

∣∣∣∣∣ |t−1| , |m| ≤ |δ−1|

Thus, for |c| > 1, we find

ΩSl2(X) = μ

(
t−1

{
1
v
√
c
1

v√
c
−1

}
, δ−1, a−1

{
v
√
c

v
√
c�

})

Proposition 3. In summary, if a2+bc = δ2�, (or more generally if a2+bc =
δ2�ε where ε is a unit and � a uniformizer), then

(65) ΩSl2(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ

(
t−1 , δ−1

{
v
√
c

v
√
c�−1

}
, a−1

{
v
√
c

v
√
c�

})
if |c| ≤ 1

μ

(
t−1

{
1
v
√
c
1

v√
c
−1

}
, δ−1 , a−1

{
v
√
c

v
√
c�

})
if |c| > 1

.

We note that if a = 0 the identity is to be interpreted as

ΩSl2(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ

(
t−1 , δ−1

{
v
√
c

v
√
c�−1

})
if |c| ≤ 1

μ

(
t−1

{
1
v
√
c
1

v√
c
−1

}
, δ−1

)
if |c| > 1

.

13.3. Case where a2 + bc is even but not a square. We now assume that
a2 + bc has even valuation but is not a square. Thus a2 + bc = δ2τ where τ is a
unit and a non-square. In the range for the integral (53) the quadratic condition
on u becomes |δ2τ − u2| ≤ |cm−2|. In turn this is equivalent to |δ2| ≤ |cm−2| and
|u2| ≤ |cm−2|. Thus the integral is equal to

(66) |c|−1

∫
du|m|2d×m

over ⎧⎨
⎩

|u| ≤
∣∣∣∣
{

v
√
c

v
√
c�

}∣∣∣∣ |m−1| |u− a| ≤ |cm−1|
1 ≤ |m| ≤ |t−1| |c| ≤ |m2| ≤ |cδ−2|

If |c| ≤ 1 then the condition |c| ≤ |m2| is superfluous. The conditions on u can
be rewritten

|u− a| ≤ |cm−1| , |a| ≤
∣∣∣∣
{{

v
√
c

v
√
c�

}}∣∣∣∣ |m−1|

After integrating over u we find

(67)

∫
|m|d×m

over

1 ≤ |m|

|m| ≤ |t−1| , |m| ≤
∣∣∣∣
{

v
√
c

v
√
c�

}∣∣∣∣ |a−1| , |m| ≤
∣∣∣∣
{

v
√
c

v
√
c�

}∣∣∣∣ |δ−1|

Thus, for |c| ≤ 1,

ΩSl2(X) = μ

(
t−1 , δ−1

{
v
√
c

v
√
c�

}
, a−1

{
v
√
c

v
√
c�

})
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If |c| > 1, then the condition 1 ≤ |m| is superfluous. On the other hand, the
conditions on u become

|u| ≤
∣∣∣∣
{

v
√
c

v
√
c�

}∣∣∣∣ |m−1| , |a| ≤ |cm−1|

After integrating over u we find
∣∣∣∣∣
{

1
v
√
c
1

v√
c
−1

}∣∣∣∣∣
∫

|m|d×m

over ∣∣∣∣
{

v
√
c

v
√
c�−1

}∣∣∣∣ ≤ |m|

|m| ≤ |t−1| , |m| ≤ |ca−1| , |m| ≤ |δ−1|
∣∣∣∣
{

v
√
c

v
√
c�

}∣∣∣∣
We change m to

m

{
v
√
c

v
√
c�−1

}

to get ∫
|m|d×m

over

1 ≤ |m|

|m| ≤ |a−1|
∣∣∣∣
{

v
√
c

v
√
c�

}∣∣∣∣ , |m| ≤ |δ−1|
∣∣∣∣
{

1
�

}∣∣∣∣ , |m| ≤ |t−1|
∣∣∣∣∣

1
v
√
c
1

v√
c
−1

∣∣∣∣∣
Thus, for |c| > 1 we get

ΩsL2
(X) = μ

(
t−1

{
1
v
√
c
1

v√
c
−1

}
, δ−1

{
1
�

}
, a−1

{
v
√
c

v
√
c�

})
.

We have proved the following Proposition.

Proposition 4. If a2+ bc = δ2τ where τ is a non-square unit and δ �= 0, then
(68)

ΩSl2(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ

(
t−1 , δ−1

{
v
√
c

v
√
c�

}
, a−1

{
v
√
c

v
√
c�

})
if |c| ≤ 1

μ

(
t−1

{
1
v
√
c
1

v√
c
−1

}
, δ−1

{
1
�

}
, a−1

{
v
√
c

v
√
c�

})
if |c| > 1

The meaning of the notations is that if c is even, then the formula is true with

the top element of each column

{
•
•

}
. On the contrary, if c is odd, then the

formula is true with the bottom element of each column

{
•
•

}
.
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13.4. Case where a2 + bc is a square and c �= 0. We now assume that
a2 + bc = δ2 with δ ∈ F× and c �= 0. Then a ± δ �= 0. In (53), the quadratic
condition on u becomes |δ2 − u2| ≤ |cm−2|. This condition is satisfied if and only
if one of the three following conditions is satisfied:

(69)
I |δ2| ≤ |cm−2| |u2| ≤ |cm−2|
II |cm−2| < |δ2| |u− δ| ≤ |cm−2δ−1|
III |cm−2| < |δ2| |u+ δ| ≤ |cm−2δ−1|

Accordingly, we write the integral as a sum of three terms ΩI
Sl2

, ΩII
Sl2

, ΩIII
Sl2

.

The term ΩI
Sl2

is given by the same expression as before, namely (68).

It clear that the term ΩIII
Sl2

is obtained from the term ΩII
Sl2

by exchanging δ and

−δ. Thus we have only to compute ΩII
Sl2

:

(70) ΩII
Sl2 = |c|−1

∫
|m|2d×m

over ⎧⎨
⎩

|u− a| ≤ |cm−1| |u− δ| ≤ |cm−2δ−1|
|cδ−2| < |m2| |c| ≤ |m2|
1 ≤ |m| |m| ≤ |t−1|

We remark that |a2 + bc| ≤ 1 implies |δ| ≤ 1 and so the condition |cδ−2| < |m2|
implies |c| ≤ |m2|. We further divide the domain of integration into two sub-
domains defined by |m| ≤ |δ−1| and |δ−1| < |m| respectively. The last condition
implies 1 ≤ |m|. Correspondingly, we write ΩII

Sl2
as the sum of two terms ΩII.1

Sl2
and

ΩII.2
Sl2

defined respectively by

(71) ΩII.1
Sl2 = |c|−1

∫
|m|2d×m

over ⎧⎨
⎩

|u− a| ≤ |cm−1| |u− δ| ≤ |cm−2δ−1|
|cδ−2| < |m2| 1 ≤ |m|
|m| ≤ |δ−1| |m| ≤ |t−1|

and

(72) ΩII.2
Sl2 = |c|−1

∫
|m|2d×m

over ⎧⎨
⎩

|u− a| ≤ |cm−1| |u− δ| ≤ |cm−2δ−1|
|cδ−2| < |m2| |δ−1| < |m|
|m| ≤ |t−1|

In ΩII.1
Sl2

the conditions on u are equivalent to

|u− a| ≤ |cm−1| , |a− δ| ≤ |cm−2δ−1|
The second condition can be written

|m| ≤
∣∣∣∣
{

δ−1 v
√
cδ(a− δ)−1

δ−1 v
√
cδ(a− δ)−1�

}∣∣∣∣ .
After integrating over u, we find:

(73) ΩII.1
Sl2 =

∫
|m|d×m
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over ⎧⎪⎪⎨
⎪⎪⎩

|m| ≤ |δ−1| |m| ≤ |t−1|
1 ≤ |m| |cδ−2| < |m|2

|m| ≤
∣∣∣∣
{

δ−1 v
√
cδ(a− δ)−1

δ−1 v
√
cδ(a− δ)−1�

}∣∣∣∣
If |cδ−2| < 1 then the condition |cδ−2| < |m2| is implied by 1 ≤ |m|. Thus we

find, for |cδ−2| < 1,

ΩII.1
Sl2 = μ

(
t−1, δ−1, δ−1

{
v
√
cδ(a− δ)−1

v
√
cδ(a− δ)−1�

})

If |cδ−2| ≥ 1 then the condition |cδ−2| < |m2| implies the condition 1 ≤ |m|.
On the other hand, the condition |cδ−2| < |m2| is equivalent to∣∣∣∣

{
δ−1�−1 v

√
c

δ−1 v
√
c�−1

}∣∣∣∣ ≤ |m| .

Thus we find, for |cδ−2| ≥ 1,

ΩII.1
Sl2 = μ

(
t−1 , δ−1 , δ−1

{
v
√
cδ(a− δ)−1

v
√
cδ(a− δ)−1�

}
:

{
δ−1�−1 v

√
c

δ−1 v
√
c�−1

})

We pass to the computation of ΩII.2
Sl2

. The conditions on u read

|u− δ| ≤ |cm−2δ−2| , |a− δ| ≤ |cm−1| .
Thus, after integrating over u, we find

(74) ΩII.2
Sl2 = |δ−1|

∫
d×m

over {
|δ−1| < |m| |cδ−2| < |m2|
|m| ≤ |t−1| |m| ≤ |c(a− δ)−1|

If |c| ≤ 1 then the condition |cδ−2| < |m2| is already implied by |δ−1| < |m|.
Thus we find that the domain of integration is

|δ−1�−1| ≤ |m| , |m| ≤ |t−1| , |m| ≤ |c(a− δ)−1| .
Thus, after a change of variables, we get

|δ−1|
∫

d×m

over
1 ≤ |m| , |m| ≤ δ�|t−1| , |m| ≤ |δ�c(a− δ)−1|

or
|δ−1|ν

(
cδ�(a− δ)−1, δ�t−1

)
.

If |c| > 1 then the relation |δ−1| < |m| is implied by |cδ−2| < |m2|. This
relation is equivalent to ∣∣∣∣

{
v
√
cδ−1�−1

v
√
c��−1δ−1

}∣∣∣∣ .
After a change of variables, we find, for |c| > 1,

(75) ΩII.2
Sl2 = |δ−1|ν

({
v
√
cδ(a− δ)−1�

v
√
c�δ(a− δ)−1

}
,

{
δ
t−1

v
√
c

δ
t−1

v
√
c


})
.

In summary, we have proved:
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Proposition 5. If a2 + bc = δ2 with δ �= 0 and c �= 0 then ΩSl2(X) is the sum
of
(76)

ΩI
Sl2(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ

(
t−1 , δ−1

{
v
√
c

v
√
c�

}
, a−1

{
v
√
c

v
√
c�

})
|c| ≤ 1

μ

(
t−1

{
1
v
√
c
1

v√
c
−1

}
, δ−1

{
1
�

}
, a−1

{
v
√
c

v
√
c�

})
|c| > 1

(77) ΩII.1
Sl2 =⎧⎪⎪⎨

⎪⎪⎩
μ

(
t−1, δ−1, δ−1

{
v
√
cδ(a− δ)−1

v
√
cδ(a− δ)−1�

})
|cδ−2| < 1

μ

(
t−1 , δ−1 , δ−1

{
v
√
cδ(a− δ)−1

v
√
cδ(a− δ)−1�

}
:

{
δ−1�−1 v

√
c

δ−1 v
√
c�−1

})
|cδ−2| ≥ 1

(78) ΩII.2
Sl2 =

⎧⎪⎨
⎪⎩

|δ−1|ν
(
cδ�(a− δ)−1, δ�t−1

)
|c| ≤ 1

|δ−1|ν
({

v
√
cδ(a− δ)−1�

v
√
c�δ(a− δ)−1

}
,

{
δ
t−1

v
√
c

δ
t−1

v
√
c


})
|c| > 1

plus the terms ΩIII.1
Sl2

and ΩIII.2
Sl2

obtained by changing δ into −δ.

We also note that if δ = 0 but c �= 0 then the conditions (69) become |u2| ≤
|cm−2| so that ΩSl2 = ΩI

Sl2
with |δ−1| = ∞. We record this as a Proposition.

Proposition 6. If a2 + bc = 0 but c �= 0 then

(79) ΩSl2(X) =

⎧⎪⎪⎨
⎪⎪⎩

μ

(
t−1 , a−1

{
v
√
c

v
√
c�

})
if |c| ≤ 1

μ

(
t−1

{
v
√
c−1

v
√
c−1�

}
, a−1

{
v
√
c

v
√
c�

})
if |c| > 1

In particular if a = 0, b = 0 but c �= 0 then

(80) ΩSl2(X) =

⎧⎨
⎩

μ
(
t−1
)

if |c| ≤ 1

μ

(
t−1

{
v
√
c−1

v
√
c−1�

})
if |c| > 1

13.5. Case where c = 0. We will need the corresponding result when c = 0
(and a = δ).

Proposition 7. If c = 0 then

ΩSl2(X) =

μ

(
t−1, a−1,

{
1
v√
b
1

v√
b
−1

})
+ |a−1|ν(at−1�, a2�b−1)

Proof:

ΩSl2(X) =

∫ ∫
du|m|2d×m

over

|u|,≤ |m−1| , | b
2a

− u| ≤ |m−2a−1|

1 ≤ |m| , |m| ≤ |t−1|
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Since A1(X) is an integer we have |a| ≤ 1.
We first consider the contribution of the terms for which |m| ≤ |a−1|. Then

the condition on u become

|u| ≤ |m−1| , | b
2a

| ≤ |m−2a−1| .

After integrating over u we find ∫
|m|d×m

over
1 ≤ |m| |m| ≤ |t−1| , |m2| ≤ |b−1|

that is,

μ

(
t−1, a−1,

{
1
v√
b
1

v√
b
−1

})
.

Next, we consider the contributions of the terms for which |a−1�−1| ≤ |m|.
Then the conditions on u become

|u| ≤ |m−2a−1| , | b
2a

| ≤ |m−1| .

After integrating over u we find

|a−1|
∫

d×m

over
1 ≤ |m| , |a−1�−1| ≤ |m| ,
|m| ≤ |t−1| , |m| ≤ |ab−1| .

However, |a| ≤ 1. Thus the condition 1 ≤ |m| is superfluous. Thus this is
ν(t−1, ab−1 : a−1�−1) = ν(at−1�, a2�b−1) .

The Proposition follows. �

14. Proof of the fundamental lemma for n = 3

We let

(81) Y =

⎛
⎝ a b 0

1 −a 1
0 t 0

⎞
⎠

with t �= 0 and b �= 0. Then

ΩGl2(Y ) =

∫
F×

ΩSl2

⎛
⎝ a bs−1 0

s −a 1
0 t 0

⎞
⎠ η(s)d×s

Since the integrand depends only on the absolute value of s, this integral can be
computed as a sum:

∑
s

ΩSl2

⎛
⎝ a bs−1 0

s −a 1
0 t 0

⎞
⎠ η(s) ,

where s is summed over the powers of a uniformizer �. It follows from lemma (8)
that the sum is finite, that is, the integral converges absolutely, provided Y is in
g(F )s. In the two next sections, we compute this integral and check Theorem (1).
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That is, if −b is not a norm we show that ΩGl2(Y ) = 0. Otherwise we solve the
equations (46), define X by (44) and check that

(82) ΩSl2(X) = ΩGl2(Y ) .

Before we proceed we remark that ΩGl2(Y ) �= 0 implies |A1(Y )| ≤ 1 and |A2(Y )| ≤
1. Likewise, if X is defined, ΩSl2(X) �= 0 implies |A1(X)| ≤ 1 and |A2(X)| ≤ 1.
Finally, if X is defined then |A1(X)| = |A1(Y )| and |A2(X)| = |A2(Y )|. Thus if
|A1(Y )| > 1 or |A2(Y )| > 1 our assertions are trivially true. Thus we may assume
|A1(Y )| ≤ 1 and |A2(Y )| ≤ 1, that is, |a2 + b| ≤ 1 and |t| ≤ 1.

As before, the discussion depends on the square class of a2 + b = −A1(Y ).

15. Proof of the fundamental Lemma: a2 + b is not a square

15.1. Case where a2 + b is odd. We consider the case where a2 + b =
−A1(Y ) is odd (that is, has odd valuation) and we write a2 + b = δ2� where �
is a uniformizer. The integral ΩGl2 is then the sum of two terms ΩA

Gl2
and ΩB

Gl2
corresponding to the contributions of |s| ≤ 1 and |s| > 1 respectively. If |s| ≤ 1 we
write s = r2 or s = r2� with |r| ≤ 1. Then

(83) ΩA
Gl2 =

∑
|r|≤1

[
μ(t−1, δ−1r, a−1r)− μ(t−1, δ−1r, a−1r�)

]
.

By Lemma 9, the expression ΩA
Gl2

is equal to
∑

|a−1r|
over

|r| ≤ 1 , 1 ≤ |a−1r| ≤ inf(|t−1|, |δ−1r|) .
This is zero unless |δ| ≤ |a|. If |δ| ≤ |a|, after changing r to ra, we find∑

1≤|r|≤inf(|a−1|,|t−1|)
|r| .

In other words, we find

(84) ΩA
Gl2

=

{
μ(a−1, t−1) if |δ| ≤ |a|
0 if |δ| > |a|

We pass to the contribution of |s| > 1. We write s = r2 or s = r2� with |r| > 1.
Then

(85) ΩB
Gl2 =

∑
1<|r|

[
μ(t−1r−1, δ−1, a−1r)− μ(t−1r−1, δ−1, a−1r�)

]
.

Applying lemma (9) we get ∑
|a−1r|

over

1 < |r| , 1 ≤ |a−1r| ≤ inf(|δ−1|, |t−1r−1|)
This is zero unless |δ| < |a|. If |δ| < |a|, after changing r to ra, we find that this is∑

|r|
over

sup(|a−1�−1|, 1) ≤ |r| , |r| ≤ |δ−1| , |r2| ≤ |t−1a−1|
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Thus we find

(86) ΩB
Gl2 =

⎧⎨
⎩

μ

(
δ−1,

{
v
√
t−1a−1

v
√
t−1a−1�

}
: 1, a−1�−1

)
if |δ| < |a|

0 if |δ| ≥ |a|
We can combine both results to obtain

Proposition 8. If a2 + b = δ2� then

ΩGl2(Y ) =

⎧⎨
⎩

μ

(
t−1, δ−1,

{
v
√
t−1a−1

v
√
t−1a−1�

})
if |δ| ≤ |a|

0 if |δ| > |a|

Proof: Clearly, our integral is 0 if |δ| > |a|. If |δ| = |a| then the integral
reduces to μ(t−1, δ−1). However,∣∣∣∣

{
v
√
t−1δ−1

v
√
t−1δ−1�

}∣∣∣∣
belongs to the interval determined by |t−1| and |δ−1| and so the integral can be
written in the stated form.

Assume now that |δ| < |a|. If |a| > 1 then μ(a−1, t−1) = 0 and |a−1�−1| ≤ 1.
Thus ΩA

Gl2
= 0 and ΩB

Gl2
reduces to

μ

(
δ−1,

{
v
√
t−1a−1

v
√
t−1a−1�

})
.

Since |t| ≤ 1 we have |at| > |t2| or

|t−1| >
∣∣∣∣
{

v
√
t−1a−1

v
√
t−1a−1�

}∣∣∣∣
so that the result can again being written in the required form.

Finally, assume |δ| < |a| ≤ 1. Then |a−1ω−1| > 1 and

ΩGl2 = μ

(
δ−1,

{
v
√
t−1a−1

v
√
t−1a−1�

}
: a−1�−1

)
+ μ(a−1, t−1) .

Suppose first |t| ≤ |a|. Then μ(a−1, t−1) = μ(a−1). Then |a−1�−1| ≤ |δ−1| and

|a−1| ≤
∣∣∣∣
{

v
√
t−1a−1

v
√
t−1a−1�

}∣∣∣∣
The sum for ΩGl2 is then by (56) equal to

μ

(
δ−1,

{
v
√
t−1a−1

v
√
t−1a−1�

})

Since ∣∣∣∣
{

v
√
t−1a−1

v
√
t−1a−1�

}∣∣∣∣ ≤ |t−1|

this can be written in the required form.
Suppose now |t| > |a|. Then μ(a−1, t−1) = μ(t−1). On the other hand,∣∣∣∣

{
v
√
t−1a−1

v
√
t−1a−1�

}∣∣∣∣ < |a−1�−1|
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so that ΩB
Gl2

vanishes. On the other hand, since |δ|−1 ≥ |t−1| and∣∣∣∣
{

v
√
t−1a−1

v
√
t−1a−1�

}∣∣∣∣ ≥ |t−1|

the expression given in the Proposition is indeed equal to μ(t−1). �.
We now check the fundamental lemma in the case at hand. If −b = a2− δ2� is

not a norm, then the valuation of b is odd and |δ| > |a|. Then ΩGl2(Y ) = 0. Now
suppose that −b is a norm, that is, |a| ≥ |δ|. Then −b is in fact a square. Thus we
may solve the equations of matching (46) in the following way. If |u| < 1 we denote
by

√
1 + u the square root of 1+u which is congruent to one modulo �OF . Recall

that τ is a non-square unit. Then we write

−τ2b = y2 , y = −τa
√
1− δ2a−2� ;

Then we take

a1 = 0 , b1 = − t

2
(y + τa) , c1 =

2

τt
(y − τa) , t1 = −τt

2
.

We then have a21 + b1c1 = τ (a2 + b) = δ2�τ . Thus a21 + b1c1 is odd. We have also
|c1| = |at−1| and |t1| = |t|. Let X be as in (44). We then have by Proposition 3,

ΩSl2(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ

(
t−1, δ−1

{
v
√
at−1

v
√
at−1�−1

})
if |a| ≤ |t|

μ

(
t−1

{
1

v√
at−1

1
v√
at−1
−1

}
, δ−1

)
if |a| > |t|

Suppose first that |a| ≤ |t|. Since |δ| ≤ |a| we easily get

|t−1| ≤
∣∣∣∣δ−1

{
v
√
at−1

v
√
at−1�−1

}∣∣∣∣
and so the expression for ΩSl2(X) reduces to μ(t−1). But the same is true of the
expression for ΩGl2(Y ).

Now suppose |a| > |t|. Then the expression for ΩSL2
(X) becomes

μ

({
v
√
t−1a−1

v
√
t−1a−1�

}
, δ−1

)
.

Since

|t−1| ≥
∣∣∣∣
{

v
√
t−1a−1

v
√
t−1a−1�

}∣∣∣∣
this is also the expression for ΩGl2(Y ) and we are done. �

15.2. Case where a2 + b is even and not a square. Suppose now that
a2 + b = δ2τ where τ is, as before, a non-square unit.

Proposition 9. Suppose a2 + b = δ2τ . Then ΩGl2(Y ) is the sum of

|δ−1|ν
(
δt−1, �δ2t−1a−1

)
and ⎧⎨

⎩
μ

(
δ−1 ,

{
v
√
t−1a−1

v
√
t−1a−1�

}
,

)
if |a| ≥ sup(|δ|, |t|)

μ(t−1, δ−1�) if |a| < sup(|δ|, |t|)
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Proof: We proceed as before and write ΩGl2(Y ) as the sum of ΩA
Gl2

and ΩB
Gl2

,
these being respectively the contributions of the terms corresponding to |s| ≤ 1
and |s| > 1. For |s| ≤ 1, we set aside the term |s| = 1 and we write s = r2�2 or
s = r2� with |r| ≤ 1. We find

ΩA
Gl2 = μ(t−1, δ−1, a−1)

+
∑
|r|≤1

[
μ(t−1, δ−1r�, a−1r�)− μ(t−1, δ−1r�, a−1r�)

]

= μ(t−1, δ−1, a−1)

For |s| > 1 we write s = r2 or s = r2� with |r| > 1. We find

(87) ΩB
Gl2 =

∑
|r|>1

[
μ(t−1r−1, δ−1, a−1r)− μ(t−1r−1, δ−1�, a−1r�)

]

If we add to this ΩA
Gl2

we find

ΩGl2 = μ(t−1, δ−1�, a−1�)(88)

+
∑
|r|≥1

[
μ(t−1r−1, δ−1, a−1r)− μ(t−1r−1, δ−1�, a−1r�)

]
(89)

Applying lemma (9), the second sum can be computed as

(90)
∑

inf
(
|δ−1|, |a−1r|

)
the sum over

|r| ≥ 1 , 1 ≤ inf
(
|δ−1|, |a−1r|

)
≤ |t−1r−1|

We first consider the contribution of the terms with |a−1r| ≤ |δ−1|:

(91)
∑

|a−1r|
over

1 ≤ |r| , |a| ≤ |r|
|r| ≤ |aδ−1| , |r2| ≤ |at−1|

If we change r to ra this becomes

(92) μ

(
δ−1,

{
v
√
t−1a−1

v
√
t−1a−1�

}
: 1, a−1

)

Next, we consider the contribution of the terms with |δ−1| < |a−1r|:∑
|δ−1|

over

1 ≤ |r| , |δ−1a| < |r|
|r| ≤ |δt−1|

After a change of variables, this can be written as

|δ−1|
∑

1

over

1 ≤ |r| ≤ inf
(
|δt−1|, |�δ2t−1a−1|

)
so that this is

|δ−1|ν
(
δt−1, �δ2t−1a−1

)
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In summary we have found that ΩGl2 is the sum of

μ(t−1, δ−1�, a−1�)(93)

μ

(
δ−1,

{
v
√
t−1a−1

v
√
t−1a−1�

}
: 1, a−1

)
(94)

|δ−1|ν
(
δt−1, �δ2t−1a−1

)
(95)

If |a| < |δ| then the second term is zero and the first can be written as
μ(t−1, δ−1�).

If |a| < |t| then

|a−1| >
∣∣∣∣
{

v
√
t−1a−1

v
√
t−1a−1�

}∣∣∣∣
so that the second term is 0 and the first can be again written as μ(t−1, δ−1�).

Now assume that |a| ≥ sup(|δ|, |t|). Then μ(t−1, δ−1�, a−1�) = μ(a−1�). If
|a| ≥ 1 then μ(a−1�) = 0 while the second term reduces to

μ

(
δ−1 ,

{
v
√
t−1a−1

v
√
t−1a−1�

})

and we obtain the Proposition. If |a| < 1 then the second term is in fact

μ

(
δ−1 ,

{
v
√
t−1a−1

v
√
t−1a−1�

}
: a−1

)
.

Adding μ(a−1�) to this and using (56) we obtain the Proposition. �

We now check the fundamental lemma for the case at hand. Of course −b =
a2 − δ2τ is a norm. Thus we may solve the conditions of matching (46) as follows:

a1 = δτ , c1 = 0 , b1 = −τta , t1 = −τt

2
.

Then a21 + b1c1 = a21 = δ21 where δ1 = δτ . Thus by section 6.3,

ΩSl2(X) =

μ

(
t−1, δ−1 ,

{
v
√
t−1a−1

v
√
t−1a−1�

})
+ |δ−1|ν(δt−1�, δ2t−1a−1�) .

If |a| ≥ sup(|δ|, |t|) then

|t−1| ≥
∣∣∣∣
{

v
√
t−1a−1

v
√
t−1a−1�

}∣∣∣∣ ,
|δ2t−1a−1�| ≤ |δt−1�| < |δt−1| .

Hence ΩSL2
is equal to

μ

(
δ−1 ,

{
v
√
t−1a−1

v
√
t−1a−1�

})
+ |δ−1|ν(δt−1, δ2t−1a−1�)

which is ΩGl2 in this case.
Now assume |a| < sup(|δ|, |t|). Suppose first that |t| ≤ |a| < |δ|. Then |δa−1| >

1, |δt−1| > 1 and |δ2| > |ta|. Thus

|δ−1| ≤
∣∣∣∣
{

v
√
t−1a−1

v
√
t−1a−1�

}∣∣∣∣ .
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Recall taht |δ| ≤ 1. Hence

ΩSl2 = μ(δ−1) + |δ−1|ν(δt−1�)

=
|δ−1| − q−1

1− q−1
+ |δ−1|(−v(δt−1))

while

ΩGl2 = μ(δ−1�) + |δ−1|ν(δt−1)

If |δ| < 1 then we find

ΩGl2 =
|δ−1|q−1 − q−1

1− q−1
+ |δ−1|(1− v(δt−1))

If |δ| = 1 then we find

ΩGl2 = 1− v(δt−1)

In any case the two expressions are indeed equal.
Now assume that |δ| ≤ |a| < |t|. Then

|t−1| ≤
∣∣∣∣
{

v
√
t−1a−1

v
√
t−1a−1�

}∣∣∣∣
and both orbital integrals are equal to

μ(t−1) + |δ−1|ν(δ2t−1a−1�) .

Finally assume |a| < |δ| and |a| < |t|. Then again

|t−1| ≤
∣∣∣∣
{

v
√
t−1a−1

v
√
t−1a−1�

}∣∣∣∣
and ΩSl2 is equal to

μ(t−1, δ−1) + |δ−1|ν(δt−1�)

while ΩGl2 is equal to

μ(t−1, δ−1�) + |δ−1|ν(δt−1) .

If 1 > |δ| > |t| then

ΩSl2 = μ(δ−1) + |δ−1|ν(δt−1�) =
|δ−1| − q−1

1− q−1
+ |δ−1|(−v(δt−1)

while

ΩGl2 = μ(δ−1�) + |δ−1|ν(δt−1) =
|δ−1|q−1 − q−1

1− q−1
+ |δ−1|(1− v(δt−1))

and those two expressions are indeed equal.
If 1 = |δ| > |t| then

ΩSl2 = μ(δ−1) + |δ−1|ν(δt−1�) = 1− v(t−1)

while

ΩGl2 = |δ−1|ν(δt−1) = 1− v(t−1)

and the two expressions are indeed equal.
Now suppose |δ| = |t|. Recall that |δ| ≤ 1. Then

ΩSl2 = μ(δ−1) =
|δ|−1 − q−1

1− q−1
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while

ΩGl2 = μ(δ−1�) + |δ|−1ν(1) =
|δ|−1q−1 − q−1

1− q−1
+ |δ|−1

and the two expressions are indeed equal.
If |δ| < |t| then both orbital integrals are equal to μ(t−1). So the fundamental

lemma has been completely checked in this case. �

16. Proof of the fundamental Lemma: a2 + b is a square

Finally we consider the case where a2 + b = δ2, δ �= 0. Recall that we compute
ΩGl2(Y ) as the sum

∑
s

ΩSl2

⎛
⎝ a bs−1 0

s −a 1
0 t 0

⎞
⎠ η(s)

and a2 + bs−1s = a2 + b = δ2. Recall that we have written the orbital integral
ΩSL2

as a sum of terms labeled ΩI
Sl2

, ΩII.1
Sl2

, ΩII.2
Sl2

, ΩIII.1
Sl2

, ΩIII.2
Sl2

respectively.

Correspondingly, we write ΩGl2(Y ) as the sum of terms labeled ΩI
Gl2

, ΩII.1
Gl2

and so
on. For instance,

ΩI
Gl2 =

∑
s

ΩI
Sl2

⎛
⎝ a bs−1 0

s −a 1
0 t 0

⎞
⎠ η(s) .

16.1. Computation of ΩI
Gl2

. The term ΩI
Gl2

can be computed as ΩGl2 in the

previous case (where a2 + b is even and not a square). We write it as a sum

(96) ΩI
Gl2 = ΩI.1

Gl2 +ΩI.2
Gl2

where

(97) ΩI.1
Gl2 =

⎧⎨
⎩

μ

(
δ−1 ,

{
v
√
t−1a−1

v
√
t−1a−1�

})
if |a| ≥ sup(|δ|, |t|)

μ(t−1, δ−1�) if |a| < sup(|δ|, |t|)
and

(98) ΩI.2
Gl2 = |δ−1|ν(δt−1, δ2t−1a−1�)

16.2. Computation of ΩII.1
Gl2

. After changing s into sδ2 we see that

ΩII.1
Gl2 =

∑
s

ΩII.1
Sl2

⎛
⎝ a bs−1δ−2 0

sδ2 −a 1
0 t 0

⎞
⎠ η(s)

and so, by Proposition 5, we get ΩII.1
Gl2

= ΩII.1.1
Gl2

+ΩII.1.2
Gl2

where

(99) ΩII.1.1
Gl2 =

∑
|s|<1

η(s)μ

(
t−1, δ−1,

{
v
√
sδ(a− δ)−1

v
√
sδ(a− δ)−1�

})

and

(100) ΩII.1.2
Gl2 =

∑
|s|≥1

η(s)μ

(
t−1, δ−1,

{
v
√
sδ(a− δ)−1

v
√
sδ(a− δ)−1�

}
:

{
�−1 v

√
s

v
√
s�−1

})
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Suppose first that δ(a − δ)−1 is even. For ΩII.1.1
Gl2

we write s = r2�2 or s = r2�
with |r| ≤ 1. We find, for |r| ≤ 1, each term

μ(t−1, δ−1, �r v
√
δ(a− δ)−1)

once with a + sign and once with a − sign. So we get zero. For ΩII.1.2
Gl2

we write

s = r2 or s = r2�−1 with |r| ≥ 1. We find, for |r| ≥ 1, each term

μ(t−1, δ−1, r v
√
δ(a− δ)−1) : �−1r)

one with a + sign and once with a − sign. So we get 0. Thus ΩII.1
Gl2

= 0 if δ(a−δ)−1

is even.
Now we assume δ(a− δ)−1 is odd. For ΩII.1.1

Gl2
we write s = r2 or s = r2� with

|r| ≤ 1. We have then added a term corresponding to s = r2 with |r| = 1 that we
must subtract. We find

−μ
(
t−1, δ−1, v

√
δ(a− δ)−1�

)
+

∑
|r|≤1

μ
(
t−1, δ−1, r v

√
δ(a− δ)−1�

)
−
∑
|r|≤1

μ
(
t−1, δ−1, r v

√
δ(a− δ)−1�

)

or

ΩII.1.1
Gl2 = −μ

(
t−1, δ−1, v

√
δ(a− δ)−1�

)
.

In particular, this is 0 unless |δ(a − δ)−1�| ≥ 1. For ΩII.1.2
Gl2

we write s = r2 or

s = r2�−1 with |r| ≥ 1. We find
∑
|r|≥1

(
μ
(
t−1, δ−1, r v

√
δ(a− δ)−1� : �−1r

)
−

μ
(
t−1, δ−1, r v

√
δ(a− δ)−1�−1 : �−1r

))

= |�−1|
∑
|r|≥1

|r|
(
μ
(
t−1r−1�, δ−1r−1�,� v

√
δ(a− δ)−1�

)
−

μ
(
t−1r−1�, δ−1r−1�, v

√
δ(a− δ)−1�

))
.

Once more we apply Lemma 9. We find that this is zero unless |δ(a− δ)−1�| ≥ 1.
Then this is equal to

= −|�−1|
∣∣∣ v
√
δ(a− δ)−1�

∣∣∣∑
r

|r|

where the sum is for

1 ≤ |r| , |r| ≤
∣∣∣∣∣

t−1�
v
√
δ(a− δ)−1�

∣∣∣∣∣ , |r| ≤
∣∣∣∣∣

δ−1�
v
√
δ(a− δ)−1�

∣∣∣∣∣
Thus

ΩII.1.2
Gl2 =

−|�−1|
∣∣∣ v
√
δ(a− δ)−1�

∣∣∣μ
(

t−1�
v
√
δ(a− δ)−1�

,
δ−1�

v
√
δ(a− δ)−1�

)
.
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Hence we find that ΩII.1
Gl2

is zero unless δ(a− δ)−1 is odd and |δ(a− δ)−1�| ≥ 1. It
is then given by

−|�−1|
∣∣∣ v
√
δ(a− δ)−1�

∣∣∣μ
(

t−1�
v
√

δ(a− δ)−1�
,

δ−1�
v
√
δ(a− δ)−1�

)

−μ
(
t−1, δ−1, v

√
δ(a− δ)−1�

)
.

We claim that this is −μ(t−1, δ−1). Indeed, this is clear if∣∣∣ v
√
δ(a− δ)−1�

∣∣∣ ≥ inf(|t−1|, |δ−1|)

because the first term is then 0 and the second term equal to −μ(t−1, δ−1). Now

assume that
∣∣∣ v
√
δ(a− δ)−1�

∣∣∣ < inf(|t−1|, |δ−1|). Recall |δ| ≤ 1 and |t| ≤ 1. To be

definite assume |t−1| ≤ |δ−1|. Then our sum is

−|�−1|
∣∣∣ v
√
δ(a− δ)−1�

∣∣∣μ
(

t−1�
v
√
δ(a− δ)−1�

)

−μ
(

v
√
δ(a− δ)−1�

)

=
q−1 − |t−1|
1− q−1

= −μ(t−1)

as was claimed. We have proved:

Proposition 10. ΩII.1
Gl2

(Y ) = 0 unless δ(a− δ)−1 is odd and |(a− δ)| ≤ |δ�|.
Then

ΩII.1
Gl2 (Y ) = −μ(t−1, δ−1) .

16.3. Computation of ΩII.2
Gl2

. As before

ΩII.2
Gl2 (Y ) =

∑
s

ΩII.2
Sl2

⎛
⎝ a bs−1 0

s −a 1
0 t 0

⎞
⎠ η(s)

and we denote by ΩII.2.1
Gl2

and ΩII.2.2
Gl2

the respective contributions of the terms |s| ≤ 1
and |s| > 1. Then

ΩII.2
Gl2 (Y ) = ΩII.2.1

Gl2 +ΩII.2.2
Gl2 .

We now appeal to Proposition 5. To compute ΩII.2.1
Gl2

we write s = r2 or s = r2�
with |r| ≤ 1. We find:

ΩII.2.1
Gl2 = |δ−1|

∑
|r|≤1

[
ν
(
r2�δ(a− δ)−1, δt−1�

)
− ν

(
r2�2δ(a− δ)−1, δt−1�

)]

By Lemma 10 this is

|δ−1|
∑

1

over

|r| ≤ 1 , 1 ≤ |r2�δ(a− δ)−1| ≤ |δt−1�| .
This is 0 unless |a − δ| ≤ |�δ| and |t�−1| ≤ |δ|. It can then be written as |δ−1|
times

ν

(
1,

{
v
√
(a− δ)t−1

v
√
(a− δ)t−1�

}
:

{
�−1 v

√
(a− δ)δ−1

v
√
�−1(a− δ)δ−1

})
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or

ν

⎛
⎜⎜⎜⎝
{

� v
√
(a− δ)−1δ

v
√
�(a− δ)−1δ

}
,

{
v
√
(a− δ)t−1

v
√
(a− δ)t−1�

}

{
�−1 v

√
(a− δ)δ−1

v
√
�−1(a− δ)δ−1

}

⎞
⎟⎟⎟⎠ .

This can be further simplified

(101) ΩII.2.1
Gl2

= |δ−1|×

ν

(
� v
√
δ(a− δ)−1,

{
�

v
√
δt−1

�
v
√
δt−1�

})
if δ(a− δ) is even

ν

(
v
√
�δ(a− δ)−1,

{
�

v
√
δt−1

v
√
δt−1�

})
if δ(a− δ) is odd

.

To compute ΩII.2.2
Gl2

we write s = r2 or s = r2� with |r| > 1. We find

ΩII.2.2
Gl2 = |δ−1|

∑
|r|>1

[
ν
(
�rδ(a− δ)−1, δr−1t−1�

)
− ν

(
�rδ(a− δ)−1, δr−1t−1

)]
.

By Lemma 10 this is

−|δ−1|
∑

1

over
|�−1| ≤ |r| , |�−1(a− δ)t−1| ≤ |r2| , |r| ≤ |δt−1| .

This is 0 unless
|a− δ| ≤ |δ2t−1�| , |t�−1| ≤ |δ|

and can then be written then as

−|δ−1|ν
(
δt−1 : �−1,

{
�−1 v

√
(a− δ)t−1

v
√
�−1(a− δ)t−1

})

or

(102) ΩII.2.2
Gl2 = −|δ−1|ν

(
�δt−1,

{
�δt−1 v

√
t(a− δ)−1

δt−1 v
√
�t(a− δ)−1

})

We can simplify our result:

Proposition 11. Suppose

|a− δ| ≤ |�δ| , |t�−1| ≤ |δ| .
Then

ΩII.2
Gl2 (Y ) = 2−1|δ−1|

⎧⎨
⎩v(δt−1) +

δt even δt odd
0 −1 δ(a− δ) even
0 1 δ(a− δ) odd

⎫⎬
⎭

Suppose
|δ| ≤ |a− δ| ≤ |�δ2t−1| , |t�−1| ≤ |δ| .

Then
ΩII.2

Gl2 (Y ) =

2−1|δ−1|

⎧⎨
⎩v
(
δt−1

)
− v

(
(a− δ)δ−1

)
+

δt even δt odd
0 −1 δ(a− δ) even
−1 0 δ(a− δ) odd

⎫⎬
⎭

In all other cases ΩII.2
Gl2

(Y ) = 0.
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Proof: In any case both ΩII.2.1
Gl2

(Y ) and ΩII.2.2
Gl2

(Y ) vanish unless |t�−1| ≤ |δ|.
So we assume that this is the case. Suppose |a− δ| ≤ |�δ|. Then ΩII.2.1

Gl2
(Y ) is non-

zero. Since |δt−1�| ≥ 1 we have also |a − δ| < |δ2t−1�| so ΩII.2.2
Gl2

(Y ) is non-zero
as well. We have then to consider 4 cases depending on the parity of (a− δ)δ and
tδ. Suppose for instance that both are even. Then ΩII.2

Gl2
(Y ) is |δ−1| times

ν
(
� v
√

δ(a− δ)−1, �
v
√
δt−1

)
− ν

(
�δt−1, �δt−1 v

√
t(a− δ)−1

)

If |a− δ| ≤ |t| then this is

ν
(
�

v
√
δt−1

)
− ν

(
�δt−1

)

=
(
1− v

(
�

v
√
δt−1

))
−
(
1− v

(
�δt−1

))

=
1

2
v(δt−1) .

If, on the contrary, |t| < |a− δ| then this is

ν
(
� v
√
δ(a− δ)−1

)
− ν

(
�δt−1 v

√
t(a− δ)−1

)

=
(
1− v

(
� v
√
δ(a− δ)−1

))
−
(
1− v

(
�δt−1 v

√
t(a− δ)−1

))

=
1

2
v(δt−1) .

The other cases are treated in a similar way and we have proved the first assertion
of the Proposition.

Now assume |δ| ≤ |a − δ|. Then ΩII.2.1
Gl2

= 0 and ΩII.2.2
Gl2

�= 0 if and only if

|a − δ| ≤ |δ2t−1�|. Note that these conditions imply |(a − δ)�| ≥ |t|. Assume
t(a− δ) even. Then ΩII.2.2

Gl2
is equal to |δ−1| times

−ν
(
�δt−1, �δt−1 v

√
t(a− δ)−1

)
.

Since |(a− δ)�| ≥ |t|, this is in fact

−ν
(
�δt−1 v

√
t(a− δ)−1

)
= v(δ)− 1

2
v(t)− 1

2
v(a− δ) .

Assume now t(a− δ) odd. Then ΩII.2.2
Gl2

is equal to |δ−1| times

−ν
(
�δt−1, δt−1 v

√
�t(a− δ)−1

)
.

Since |(a− δ)�| ≥ |t| this is

−ν
(
δt−1 v

√
�t(a− δ)−1

)
= v(δ)− 1

2
v(t)− 1

2
v(a− δ)− 1

2
.

Thus we have completely proved the Proposition. �

16.4. Case where −b is odd. We are now ready to compute ΩGl2 completely.

Proposition 12. If a2+ b is a square but −b is not a norm then ΩGl2(Y ) = 0.

Proof: Assume that −b is not a norm, that is, has odd valuation. Recall that
−b = (a+ δ)(a− δ). Thus a+ δ and a− δ have different parities. In particular they
have different absolute values. Thus, choosing the sign ± suitably, we must have
|a + δ| = |a| = |δ| and |a − δ| ≤ |�δ|. In particular (a − δ)δ is odd and (a + δ)δ
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even. At this point we recall that the terms ΩIII.1 and ΩIII.2 are obtained from
ΩII.1 and ΩII.2 by changing δ into −δ. If |a| = |δ| ≥ |t| then

ΩI.1
Gl2 = μ

(
δ−1,

{
v
√
δ−1t−1

v
√
δ−1t−1�

})
= μ(δ−1) .

If |a| = |δ| < |t| then
ΩI.1

Gl2 = μ(t−1, δ−1�) = μ(t−1) .

Thus, in any case,

ΩI.1
Gl2 = μ(t−1, δ−1) .

On the other hand,

ΩII.1
Gl2 = −μ(t−1, δ−1) , ΩIII.1

Gl2 = 0 .

Thus

ΩI.1
Gl2 +ΩII.1

Gl2 +ΩIII.1
Gl2 = 0 .

We study the remaining terms. We have

ΩI.2
Gl2 = |δ−1|ν(δt−1, δt−1�) = |δ−1|ν(δt−1�) = .

This is 0 unless |δ| ≥ |�−1t|. Similarly, the terms ΩII.2
Gl2

and ΩIII.2
Gl2

vanish unless

|δ| ≥ |�−1t|. Thus we may assume |δ| ≥ |�−1t|. Then

ΩI.2
Gl2 = −|δ−1|v(δt−1) .

Since |a− δ| ≤ |�δ| and (a− δ)δ is odd, we have

ΩII.2
Gl2

= 2−1|δ−1|
{
v(δt−1) +

δt even δt odd
0 1

}
.

On the other hand since |a+ δ| = |δ| and |δ| ≤ |δ2t−1�| we get

ΩIII.2
Gl2 = 2−1|δ−1|

{
v(δt−1) +

δt even δt odd
0 −1

}
.

Thus we do get

ΩI.2
Gl2 +ΩII.2

Gl2 +ΩIII.2
Gl2 = 0 .

This concludes the proof. �

16.5. Case where b is even. We compute ΩGl2(Y ) when a2 + b = δ2, δ �= 0
and b is even. Then a+ δ and a− δ have the same parity. The result is as follows:

Proposition 13. Suppose a2 + b = δ2, δ �= 0 and b is even. Then

(103) ΩGl2(Y ) = μ

(
t−1 ,

{
v
√
a−1t−1

v
√
a−1t−1�

})
if |t| ≥ |δ|

(104) ΩGl2(Y ) = μ

(
δ−1,

{
v
√
a−1t−1

v
√
a−1t−1�

})
− ε|δ−1| if |δ| > |t|

where

(105) ε =

{
1 if |a| ≤ |�δ2t−1| , (a± δ)t odd
0 otherwise
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Proof: First we claim that ΩII.1
Gl2

and ΩIII.1
Gl2

are both zero. Indeed, if ΩII.1
Gl2

�= 0
then |a−δ| ≤ |�δ| and (a−δ)δ is odd. Then (a+δ)δ is also odd. However |a+δ| = |δ|
and so we get a contradiction and ΩII.1

Gl2
= 0. Likewise ΩIII.1

Gl2
= 0. We compute the

other terms.
We first consider the case |δ| < |t|. Then the terms ΩI.2

Gl2
, ΩII.2

Gl2
, and ΩIII.2

Gl2
all

vanish. Thus

ΩGl2(Y ) = ΩI.1
GL2

.

We use the formula for ΩI.1
GL2

. If |a| ≥ |t| > |δ| we find

ΩGl2(Y ) = μ

(
δ−1,

{
v
√
a−1t−1

v
√
a−1t−1�

})
= μ

({
v
√
a−1t−1

v
√
a−1t−1�

})
.

If |t| > |a| then
ΩGl2(Y ) = μ(t−1, δ−1�) = μ(t−1)

Now assume |δ| = |t|. Then ΩII.2
Gl2

= ΩIII.2
Gl2

= 0. On the other hand,

ΩI.2
Gl2 = |δ−1|ν(1, δa−1�) .

This is zero unless |δ| > |a| in which case this is |δ−1|. Thus, if |a| ≥ |δ| = |t|, we
find

ΩGl2 = ΩI.1
Gl2 = μ

(
δ−1 ,

{
v
√
a−1t−1

v
√
a−1t−1�

})
= μ

(
t−1 ,

{
v
√
a−1t−1

v
√
a−1t−1�

})
.

If |a| < |δ| = |t|, then

ΩGl2 = ΩI.1
Gl2 +ΩI.2

Gl2 = μ(δ−1�) + |δ−1| = μ(δ−1)

Thus if |t| ≥ |δ| we find the first formula of the Proposition.
From now on, we assume |δ| > |t|. Then we find

ΩI.1
Gl2 =

⎧⎨
⎩

μ

(
δ−1 ,

{
v
√
a−1t−1

v
√
a−1t−1�

})
if |a| ≥ |δ|

μ(δ−1�) if |a| < |δ|

This can also be written

(106) ΩI.1
Gl2 = μ

(
δ−1 ,

{
v
√
a−1t−1

v
√
a−1t−1�

})
+

{
0 if |a| ≥ |δ|
−|δ−1| if |a| < |δ| .

Similarly,

ΩI.2
Gl2 =

{
|δ−1|ν(δ2t−1a−1�) if |a| ≥ |δ|
|δ−1|ν(δt−1) if |a| < |δ|

Adding up these results we find

ΩI
Gl2 = μ

(
δ−1 ,

{
v
√
a−1t−1

v
√
a−1t−1�

})
+

⎧⎨
⎩

0 if |a| ≥ |δ| , |a| ≥ |δ2t−1|
−|δ−1|v(δ2t−1a−1) if |a| ≥ |δ| , |a| ≤ |δ2t−1�|
−|δ−1|v(δt−1) if |a| < |δ|

.

We compute the remaining terms.
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Suppose |a| ≥ |δ|. Suppose first that |a + δ| = |δ − a| = |a| (or for short,
|δ ± a| = |a|). Of course, this is always the case if |a| > |δ|. Both ΩII.2

Gl2
and ΩIII.2

Gl2

are 0 unless |a| ≤ |�δ2t−1|; then they are equal and

ΩII.2
Gl2 +ΩIII.2

Gl2 = |δ−1|
{
v(δ2t−1a−1) +

(a± δ)t even (a± δ)t odd
0 −1

}
.

Now suppose |δ| = |a| but |δ±a| is not equal to |a| = |δ| for both choices of ±. Say
|δ−a| ≤ |�δ| and |δ+a| = |δ|. Both ΩII.2

Gl2
and ΩIII.2

Gl2
are non-zero. In addition we

remark that δ(δ ± a) have the same parity and are thus even. Thus we again fidn
the same result. Note that here |a| = |δ| ≤ |�δ2t−1|. We conclude that if |a| ≥ |δ|
then ΩII.2

Gl2
+ΩIII.2

Gl2
= 0 unless |a| ≤ |�δ2t−1|. Then

ΩII.2
Gl2 +ΩIII.2

Gl2 = |δ−1|
{
v(δ2t−1a−1) +

(a± δ)t even (a± δ)t odd
0 −1

}
.

Finally, suppose |a| < |δ|. Then |a± δ| = |δ| so (a± δ)δ is even and both ΩII.2
Gl2

and ΩIII.2
Gl2

are non-zero with the same value. Then

ΩII.2
Gl2 +ΩIII.2

Gl2 = |δ−1|
{
v(δt−1) +

(a± δ)t even (a± δ)t odd
0 −1

}
.

Summing up, we find the second formula of the Proposition.

16.6. Verification of ΩGl2(Y ) = ΩSl2(X). We verify the identity of the fun-
damental lemma when a2 + b = δ2, δ �= 0 and b is even. We solve the equations of
matching (46) as before. We write

−τ2b = y2 − τa21

and then we take

t1 = −τt

2
, c1 =

2

tτ
(y − τa) , b1 = − t

2
(y + τa) .

Then
a21 + b1c1 = τ (a2 + b) = τδ2 .

Thus a21 + b1c1 is even but not a square. We need to compute |c1|. We have

−τ2b = y2 − τa21 = τ2a2 − τ2δ2 .

Suppose |a| ≥ |δ|. If |a| = |δ| we choose δ in such a way that |δ − a| = |a|. We
have |b| = |a2 − δ2| ≤ |a|2. From −τ2b = y2 − τa21 we conclude that |y| ≤ |a| and
|a1| ≤ |a|. From

y2 − τ2a2 = τ (a21 − τδ2)

we conclude that
|(y − τa)(y + τa)| ≤ |a|2 .

Hence either |y − τa| = |a| or |y + τa| = |a|. Thus we can choose y in such a way
that |y − τa| = |a|. Then

|c1| = |at−1| = |(δ − a)t−1| .
Now suppose |δ| > |a|. Then |b| = |δ|2. From −τ2b = y2 − τa21 we conclude

that |y| ≤ |δ| and |a1| ≤ |δ|. Suppose |y| < |δ|. Then |a1| = |δ|. From y2 − τa21 =
τ2a2 − τ2δ2 we get

τ =

(
1− a2

δ2

)
τ2δ2

a21
+

y2

a21
.
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Thus τ is congruent to a square unit modulo�OF hence is a square, a contradiction.
Thus |y| = |δ| and we again find

|c1| = |δt−1| = |(δ − a)t−1| .

Now we can write down the formula for ΩSl2(X). It reads as follows.
If |(δ − a)t−1| ≤ 1,

ΩSl2(X) =

μ

(
t−1 , δ−1

{
v
√
(δ − a)t−1

v
√
(δ − a)t−1�

}
, a−1

{
v
√
(δ − a)t−1

v
√
(δ − a)t−1�

})
.

If |(δ − a)t−1| > 1,

ΩSl2(X) =

μ

⎛
⎝t−1

⎧⎨
⎩

1
v
√

(δ−a)t−1

1
v
√

(δ−a)t−1
−1

⎫⎬
⎭ , δ−1

{
1
�

}
, a−1

{
v
√
(δ − a)t−1

v
√
(δ − a)t−1�

}⎞
⎠

Suppose first that |a| ≥ |δ|. Recall that if |a| = |δ| then we choose δ in such a
way that |δ − a| = |a|. Thus |δ − a| = |a| in all cases. Then we find

ΩSl2(X) =

⎧⎪⎪⎨
⎪⎪⎩

μ

(
t−1 , δ−1

{
v
√
at−1

v
√
at−1�

}
,

{
v
√
a−1t−1

v
√
a−1t−1�

})
if |a| ≤ |t|

μ

(
δ−1

{
1
�

}
,

{
v
√
a−1t−1

v
√
a−1t−1�

})
if |t| < |a|

Consider first the case |a| ≤ |t| so that |δ| ≤ |a| ≤ |t|. This is

ΩSl2(X) = μ

(
t−1 ,

{
v
√
a−1t−1

v
√
a−1t−1�

})
= ΩGl2(Y ) .

Consider now the case |t| < |a|. If |δ| ≤ |t| this is

ΩSl2(X) = μ

({
v
√
a−1t−1

v
√
a−1t−1�

})
= ΩGl2(Y ) .

If |δ| > |t| then we have to distinguish two cases. If |a| > |�δ2t−1| we find

ΩSl2 = μ

({
v
√
a−1t−1

v
√
a−1t−1�

})
= μ

(
δ−1,

{
v
√
a−1t−1

v
√
a−1t−1�

})

which is again equal to ΩGl2 since ε = 0 in this case. If |a| ≤ |�δ2t−1| and at (or
equivalently (a− δ)t) is even we find

ΩSl2(X) = μ(δ−1) .

Since ε = 0 in this case, this is again ΩGl2 . If |a| ≤ |�δ2t−1| and at (or equivalently
(a− δ)t) is odd we find

ΩSl2(X) = μ(δ−1�) = μ(δ−1)− |δ−1| .

This is again equal to ΩGl2 , since ε = 1 in this case.
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We now discuss the case where |a| < |δ|. Then |a− δ| = |δ| and our expression
for ΩSl2 simplifies:

⎧⎪⎪⎨
⎪⎪⎩

μ

(
t−1 ,

{
v
√
δ−1t−1

v
√
δ−1t−1�

})
if |δ| ≤ |t|

μ

({
v
√
δ−1t−1

v
√
δ−1t−1�

}
, δ−1

{
1
�

}
, a−1

{
v
√
δt−1

v
√
δt−1�

})
if |t| < |δ|

This simplifies further as follows:

ΩSl2(X) =

⎧⎨
⎩

μ
(
t−1
)

if |δ| ≤ |t|
μ(δ−1) if |t| < |δ| , δt even
μ(δ−1�) if |t| < |δ| , δt odd

.

Likewise, the expression for ΩGl2(Y ) simplifies as follows:

ΩGl2(Y ) =

⎧⎨
⎩

μ
(
t−1
)

if |δ| ≤ |t|
μ(δ−1) if |t| < |δ| , (a± δ)t even
μ(δ−1)− |δ−1| if |t| < |δ| , (a± δt) odd

.

Again δt and (δ − a)t have the same parity and μ(δ−1�) = μ(δ−1) − |δ−1|. Thus
ΩSl2(X) = ΩGL2

(Y ) in all cases.

17. Proof of the fundamental Lemma: a2 + b = 0

It remains to treat the case where a2 + b = 0. THen −b = a2 is a norm. We
proceed as before. We write the integral for ΩGl2 as the sum of ΩA

GL2
and GB

Gl2
corresponding respectively to the contributions of |s| ≤ 1 and |s| > 1. We use
Proposition 6. For |s| ≤ 1 we write s = r2 or s = r2� with |r| ≤ 1. We obtain

ΩA
Gl2 =

∑
|r|≤1

(
μ(t−1, a−1r)− μ(t−1, a−1r�)

)

= μ(t−1, a−1) .

For |s| > 1 we write s = r2 or s = r2� with |r > |1. We find

ΩB
Gl2 =

∑
|r|>1

(
μ(t−1r−1, a−1r)− μ(t−1r−1, a−1r�)

)

Applying Lemma 9 we find that this is∑
|a−1r|

over

|�−1| ≤ |r| , |a| ≤ |r| , |r2| ≤ |at−1| .
This is

μ

({
v
√
a−1t−1

v
√
a−1t−1�

}
: a−1�−1, 1

)
.

If |a| ≤ |t| then μ(t−1, a−1) = μ(t−1) and μ

({
v
√
a−1t−1

v
√
a−1t−1�

}
: a−1�−1, 1

)
= 0.

If |a| ≥ |t| then μ(t−1, a−1) = μ(a−1). Moreover, if |a| ≤ 1 then

μ(a−1) + μ

({
v
√
a−1t−1

v
√
a−1t−1�

}
: a−1�−1, 1

)
= μ

({
v
√
a−1t−1

v
√
a−1t−1�

})
.



256 HERVÉ JACQUET AND STEPHEN RALLIS

If |a| > 1 then μ(a−1) = 0 and

μ

({
v
√
a−1t−1

v
√
a−1t−1�

}
: a−1�−1, 1

)
= μ

({
v
√
a−1t−1

v
√
a−1t−1�

})

Thus the above equality remains true. In summary,

ΩGl2(Y ) =

⎧⎨
⎩

μ(t−1) if |a| ≤ |t|

μ

({
v
√
a−1t−1

v
√
a−1t−1�

})
if |a| > |t|

On the other hand, the conditions of matching (46) can be solved with

a1 = 0 , b1 = 0 , c1 =
−4a

t
, t1 = −τt

2
.

For the corresponding element X we find

ΩSl2(X) =

⎧⎨
⎩

μ(t−1) if |a| ≤ |t|

μ

(
t−1

{
v
√
a−1t

v
√
a−1t�

})
if |a| > |t|

Clearly ΩSl2(X) = ΩGl2(Y ).
We have now completely proved the fundamental lemma for strongly regular

elements.

18. Other regular elements

Recall the definition of a regular element. A matrix X ∈ M(3×3, E) is regular
if writing X in the form (

A B
C d

)

the column vectors B,AB are linearly independent and the row vectors C,CA are
linearly independent. We have seen that if X is in g(E)′ then it is regular if and
only if it is strongly regular. We consider now the elements X which are regular but
not strongly regular. For such an element we have necessarily A2(X) = CB = 0.

Lemma 11. Any element X ∈ g(E) which is regular but not strongly regular is
conjugate under ιGl2(E) to a unique matrix of the form⎛

⎝ 0 b 0
c 0 1
1 0 0

⎞
⎠

with b �= 0. In addition

A1(X) = −bc

B1(X) = b

Proof: First B and C are not 0. After conjugation we may assume B = ( 01 ).
Since CB = 0 we have

C =
(
t 0

)
, t �= 0 .

Conjugating by a diagonal matrix in Gl2(E) we may assume t = 1. Thus we are
reduced to the case of a matrix of the form⎛

⎝ a b 0
c −a 1
1 0 0

⎞
⎠ .
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If we conjugate by the matrix ι

(
1 0
a
b 1

)
we arrive at a matrix of the prescribed

form. The other assertions are obvious. �.
Remark: Similarly, the element is conjugate to a unique matrix of the form

⎛
⎝ 0 b 0

c 0 1
−1 0 0

⎞
⎠ .

Any element X of s(F ) which is regular but not strongly regular is conjugate
under Gl2(F ) to a unique element of the form

ξ =

⎛
⎝ 0 b 0

c 0
√
τ√

τ 0 0

⎞
⎠

with b, c ∈ F
√
τ and b �= 0. Then

A1(X) = −bc

A2(X) = bτ

Two such elements are conjugate under Gl2(F ) if and only if they are conjugate
under Gl2(E).

Lemma 12. Any element X of u(F ) which is regular but not strongly regular
is conjugate under ιU1,1 to a unique element of the form

⎛
⎝ 0 b 0

c 0 1
−1 0 0

⎞
⎠ ,

with b, c ∈ F
√
τ and b �= 0. In addition

A1(X) = −bc

B1(X) = −b

Two such elements are conjugate under U1,1 if and only if they are conjugate under
Gl2(E).

Proof: Write

X =

⎛
⎝ a b z1

c −a z2
−z2 −z1 0

⎞
⎠ .

By assumption we have z2z1 + z1z2 = 0. Conjugating by a diagonal matrix in U1,1

we may assume z2 = 1. Then z1 + z1 = 0. Conjugating by the matrix

(
1 z1
0 1

)

we are reduced to the case where the matrix has the form⎛
⎝ a b 0

c −a 1
−1 0 0

⎞
⎠ .

We finish the proof as before. �
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We see now that any element ξ′ of s(F ) which is regular but not strongly regular
matches an element ξ of u(F ). Explicitly

ξ =

⎛
⎝ 0 b 0

c 0 1
−1 0 0

⎞
⎠

matches

ξ′ =

⎛
⎝ 0 b′ 0

c′ 0
√
τ√

τ 0 0

⎞
⎠

if and only

bc = b′c′ , −b = b′τ .

As before, we set

ΩU (ξ) =

∫
U

f0(ι(u)ξι(u)
−1)du

ΩGl2(ξ
′) =

∫
Gl2(F )

Φ0(ι(g)ξ
′ι(g)−1)η(det g)dg

The fundamental lemma asserts that if ξ → ξ′ then

ΩU (ξ) = τ (ξ′)ΩGl2(ξ
′) .

To prove the lemma we proceed as before. We set

X = Θ(ξ) , ξ′ =
√
τY .

Then

X =

⎛
⎝ 0 b1 0

c1 0 1
−1 0 0

⎞
⎠

with

b1 = b
√
τ , c1 =

c√
τ
.

On the other hand

Y =

⎛
⎝ 0 b2 0

c2 0 1
1 0 0

⎞
⎠

with

b2 =
b′√
τ
, c2 =

c′√
τ
.

Thus in terms of X and Y the matching conditions become

c2 = −c1τ , b2 = − b1
τ2

.

We have

|b1| = |b2| , |b2| = |c2| .
Moreover, if b1c1 (and thus b2c2) is even, then b1c1 is a square if and only if b2c2 is
not a square.
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Theorem 2 (Remaining case of the fundamental Lemma). If X and Y are as
above and

c2 = −c1τ , b2 = − b1
τ2

,

then

ΩSl2(X) = η(b2)ΩGl2(Y ) .

19. Orbital integrals for Sl2

We compute the orbital integral under SL2(F ) of

X =

⎛
⎝ 0 b 0

c 0 1
−1 0 0

⎞
⎠ ,

where b �= 0, c �= 0. We also write ΩSl2(X) = ΩSl2(b, c).
We have

ΩSl2(X) =

∫
Φ

⎛
⎝ −bu bm2 0

m−2(c− u2b) ub m−1

−m−1 0 0

⎞
⎠ du|m|−2d×m.

If the integral is non-zero then |b| ≤ 1 and |bc| ≤ 1. Explicitly, the domain of
integration is

1 ≤ |m| , |bu| ≤ 1 , |bm2| ≤ 1 ,

|bc− u2b2| ≤ |m2b| ≤ 1 .

Under the assumption |bc| ≤ 1 the condition |ub| ≤ 1 is superfluous. After a change
of variables, we can rewrite the integral as

|b|−1

∫
du|m|−2d×m

over

|bc− u2| ≤ |m2b| ≤ 1 , 1 ≤ |m| .
We divide the integral into the sum of the contribution Ω1

Sl2
(X) of |c| ≤ |m2| and

the contribution Ω2
Sl2

(X) of |m2| < |c|.
We have

Ω1
Sl2(X) = |b|−1

∫
du|m|−2d×m

over

|u2| ≤ |m2b| , sup(1, |c|) ≤ |m2| ≤ |b|−1 .

This integral can be computed as follows:

Ω1
Sl2(X) =

|b|−1/2−q−1

1−q−1 |c| ≤ 1 b even
|
−1b|−1/2−q−1

1−q−1 |c| ≤ 1 b odd
|
−1bc|−1/2−q−1

1−q−1 |c| > 1 bc odd
|bc|−1/2−q−1

1−q−1 |c| > 1 b even bc even
q−1|bc|−1/2−q−1

1−q−1 |c| > 1 b odd bc even



260 HERVÉ JACQUET AND STEPHEN RALLIS

For Ω2
Sl2

(X) we first compute the integral∫
|bc−u2|≤|m2b|

du .

It is 0 unless bc is a square and then it is equal to 2|bc|−1/2|bm2|. We thus have

Ω2
Sl2(X) = |bc|−1/22

∫
1≤|m2|<|c|

d×m.

This is 0 unless |c| > 1. Then it is equal to

Ω2
Sl2(X) = |bc|−1/2

{
c even −v(c)
c odd 1− v(c)

Adding our two results we arrive at the following Proposition.

Proposition 14. ΩSl2(b, c) is given by the following formula.

|b|−1/2−q−1

1−q−1 |c| ≤ 1 b even
|
−1b|−1/2−q−1

1−q−1 |c| ≤ 1 b odd
|
−1bc|−1/2−q−1

1−q−1 |c| > 1 bc odd
|bc|−1/2−q−1

1−q−1 |c| > 1 b even bc even non square
q−1|bc|−1/2−q−1

1−q−1 |c| > 1 b odd bc even non square
|bc|−1/2−q−1

1−q−1 − v(c)|bc|−1/2 |c| > 1 bc square

20. Orbital integrals for Gl2(F )

We let

Y =

⎛
⎝ 0 b 0

c 0 1
1 0 0

⎞
⎠ ,

and we write ΩGl2(Y ) = ΩGl2(b, c). We have

ΩGl2(Y ) =

∫
Gl2(F )

Φ(ι(g)Y ι(g)−1)η(det g)dg

Explicitly, this is

∫
Φ

⎛
⎝ −bαu bαm2 0

m−2(cα−1 − u2bα) bαu m−1

α−1m−1 0 0

⎞
⎠ η(α)d×αdu|m|−2d×m.

or ∫
η(α)d×αdu|m|−2d×m

over
|m−1| ≤ 1 , |α−1m−1| ≤ 1

|bαu| ≤ 1 , |bαm2| ≤ 1

|cb− u2b2α2| ≤ |m2bα| .
As before, if the integral is non-zero then |b| ≤ 1 and |bc| ≤ 1. Under these
assumptions the condition |bαu| ≤ 1 is superfluous. After a change of variables this
becomes

|b|−1

∫ ∫
η(α)|α|−1d×αdu|m|−2d×m
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over

1 ≤ |m|, |α|−1 ≤ |m| ,
|cb− u2| ≤ |m2bα| ≤ 1 .

After a new change of variables, we get

|b|−1

∫ ∫
η(α)|α|−1d×αdud×m

over

1 ≤ |m| ≤ |α| ≤ |b|−1 ,

|bc− u2| ≤ |αb| .
Now, if |α| ≥ 1 then ∫

1≤|m|≤|α|
d×m = 1− v(α) .

Thus we get

|b|−1

∫
η(α)|α|−1(1− v(α))d×αdu

over

1 ≤ |α| ≤ |b|−1 , |bc− u2| ≤ |αb|
or, after a new change of variables,

η(b)

∫
η(α)|α|−1(1− v(α) + v(b))d×αdu

over

|b| ≤ |α| ≤ 1 , |bc− u2| ≤ |α| ,
We divide the integral into the sum of the contribution Ω1

Gl(Y ) of |bc| ≤ |α| and
the contribution Ω2

Gl(Y ) of |bc| > |α|.
To compute Ω1

Gl(Y ) we may write α = ω2s or α = ω2s+1 with s ≥ 0 and sum
over s. We set A = b or A = bc in such a way that

|A| = sup(|b|, |bc|) .
We get

Ω1
Gl(ξ) =

η(b)
∑

s≥0,|A|≤|
2s|
(1− 2s+ v(b))qs

−η(b)
∑

s≥0,|A|≤|
2s+1|
(v(b)− 2s)qs .

If |A| = |�2r| the first sum is for 0 ≤ s ≤ r and the second sum is for 0 ≤ s ≤ r−1.
We find

η(b)

⎛
⎝ ∑

0≤s≤r

qs + (v(b)− 2r)qr

⎞
⎠ =

η(b)

(
|A|−1/2 − q−1

1− q−1
+ (v(b)− 2r)|A|−1/2

)
.

If |c| ≤ 1, then A = b, b is even, and we are left with

η(b)
|b−1|1/2 − q−1

1− q−1
.
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If |c| > 1 then A = bc, bc is even, and we are left with

η(b)

(
|bc|−1/2 − q−1

1− q−1
− v(c)|bc|−1/2

)
.

If |A| = |�2r+1| then both sums are for 0 ≤ s ≤ r. We are left with

η(b)(
∑

0≤s≤r

qs) = η(b)
|�|1/2|A|−1/2 − q−1

1− q−1
.

Now we compute Ω2
Gl(Y ). Now |b| ≤ |α| < |bc|. Thus in order to have a

non-zero result we need |c| > 1. The integral

∫
|bc−u2|≤|α|

du

is 0 unless bc is a square. Then it is equal to 2|α||bc|−1/2. Thus we find

2η(b)|bc|−1/2

∫
|b|≤|α|<|bc|

(1− v(α) + v(b))η(α)d×α

or

2|bc|−1/2

∫
1≤|α|<|c|

(1− v(α))η(α)d×α

= 2|bc|−1/2

∫
1≤|α|<|c|

η(α)d×α+ 2|bc|−1/2

∫
|c|−1<|α|≤1

v(α)η(α)d×α .

Let us write |c−1| = |�r| and use the formula

r−1∑
n=0

n(−1)n =
1

4
(−1 + (−1)r − 2(−1)rr) .

The first integral is 0 unless r is odd in which case it is 1. We find

ΩGl2(Y ) =

{
c even |bc|−1/2v(c)
c odd |bc|−1/2(1− v(c))

Adding our two results we arrive at the following Proposition.

Proposition 15. ΩGl2(b, c) is given by the following formula.

η(b) |b|
−1/2−q−1

1−q−1 |c| ≤ 1 b even

η(b) |

−1b|−1/2−q−1

1−q−1 |c| ≤ 1 b odd

η(b) |

−1bc|−1/2−q−1

1−q−1 |c| > 1 bc odd

η(b)
(

|bc|−1/2−q−1

1−q−1 − v(c)|bc|−1/2
)

|c| > 1 bc even non square

η(b) |bc|
−1/2−q−1

1−q−1 |c| > 1 b even bc square

η(b) q
−1|bc|−1/2−q−1

1−q−1 |c| > 1 b odd bc square
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21. Verifcation of ΩSl2(X) = η(b2)ΩGl2(Y )

Under our condition of matching we have

|b1| = |b2| , |c1| = |c2| .
In addition if b1c1 and b2c2 are even then b1c1 is a square if and only b2c2 is not a
square. By direct inspection we find

ΩSl2(b1, c1) = η(b2)ΩGl2(b2, c2) .

This concludes the proof of the fundamental Lemma.
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Abstract. Continuing our earlier paper, we make explicit the L-functions ob-
tained by the Langlands-Shahidi method for quasi-split groups. We also study
the conjecture of Shahidi regarding the holomorphy of the local L-functions,
and holomorphy of the normalized local intertwining operators for Re(s) ≥ 1

2
.

The recent result by Heiermann and Muić, which says that Shahidi’s conjec-
ture implies the standard module conjecture, settles several exceptional cases
left open earlier.
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Introduction

This paper is a continuation of [14]. As in [14], we make explicit the L-functions
obtained by the Langlands-Shahidi method [27] for quasi-split reductive groups.
Then we study Conjecture 7.1 of [27] (Shahidi’s conjecture) and Assumption (A)
(cf. Section 4).

More precisely, let G be a connected reductive quasi-split algebraic group, and
let M be a maximal Levi subgroup of G. If G is simply connected, then the derived
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group MD is also simply connected. This fact allows us to compute Levi groups
explicitly for simply connected exceptional groups. To compute L-functions for a
representation π of M(Fv), we follow the general theory of [25, 27] and use the
table of [25] for the quasi-split cases as we did for split cases in [14]. Of course,
we only deal with new cases not covered in [14]. For example, there is no Galois
action in Bn cases and so we do not obtain any new L-functions. Such cases will be
omitted unless we want to complement the preceding paper [14] (e.g., Section 2.6).
An interesting case is 2E6 − 3, where we obtain L-functions for HSpin−

8 (whose
derived group is Spin−

8 ). These L-functions agree with the L-functions of W.T. Gan
and J. Hundley that are obtained by the Rankin-Selberg integral [9] (See Remark
2.6 for details). After giving case-by-case explicit computations for L-functions we
study general spinor groups and their properties in Section 2.8. General spinor
groups such as GSpinm and HSpinm naturally appear as Levi subgroups of an
algebraic group G even if G is simply connected. For example, HSpin10 is a
maximal Levi subgroup of the simply connected split group Esc

6 . The result of
Section 2.8 will be used in Section 5.

We consider Conjecture 7.1 of [27] (Shahidi’s conjecture) in Section 3. Using
the machinery of multiplicativity of γ-factors and the corresponding multiplicativity
of L-functions we study Shahidi’s conjecture. Another key ingredient is the base
change developed by Langlands [21], Arthur and Clozel [2] which enables us to
use the local-global argument. With these theories in hand we can prove Shahidi’s
conjecture for quasi-split cases. The result is summarized in Theorem 3.5.

In Section 4 we study Assumption (A) which concerns holomorphy of the nor-
malized intertwining operators (defined in Section 1). The recent result by V.
Heiermann and G. Muić [10] says that Shahidi’s conjecture implies the standard
module conjecture. This new ingredient settles several exceptional cases left out in
[14]. More precisely, Assumption (A) holds for Bn − 1, Dn − 1, (xxx) in [20], and
(xxxii) in [20] (See Theorem 4.11 of [14]). Other recent progress on Langlands’
functoriality from classical groups to general linear groups by J. Cogdell, H. Kim,
I. Piatetski-Shapiro and F. Shahidi [11] provides a new ingredient for Assumption
(A) and settles (xviii),(xxii), and (xxiv) in [20] (See Theorem 4.11 of [14]). The
results concerning Assumption (A) are summarized in Theorem 4.7.

In Section 5, we correct several minor mistakes of [14] where the L-groups of
certain Levi subgroups of exceptional groups are incorrect. However, it does not
affect the computation of L-functions and the subsequent results of [14].

Finally, we make several remarks on the notation. In general we follow the
notation of [14]. For example, F denotes a field of characteristic zero, local or
global, which will be specified in each case, and G denotes F -points of an algebraic
group G. Since we use the Langlands-Shahidi method as a main tool, we also
use the standard notation from [27]. Hence, see [14] or [27] for any unexplained
notation. When we need to use both restricted and non-restricted roots for explicit
computations we use {α1, ..., αn} for the set of non-restricted simple roots and
{β1, ..., βm} for the set of restricted simple roots. For example, {β1, β2, β3, β4} is
the set of restricted simple roots for 2E6 while {α1, ..., α6} is the set of non-restricted
simple roots of E6, where α1 and α5 restrict to β1 and so on. We also need to keep
in mind that we use [30] for the non-restricted root systems of exceptional groups
rather than those of Bourbaki.
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1. Preliminaries

Let G be a connected reductive quasi-split algebraic group over a p-adic field
F of characteristic zero. Let A0 be the split component in the center of G. Let
π be a representation of G(F ). Then the central character of π is defined to be
ωπ(a) = π(a), a ∈ A0(F ). Hence we will talk about the central character only when
G has a split central torus.

For a positive reduced root β, let G̃β,D be the simply connected covering of
the derived group of the rank-one subgroup attached to β. There are only two

possibilities; either G̃β,D = ResE/FSL2 or SU(2, 1)E/F where E/F is a finite
separable extension in the first case and E/F is a quadratic extension defining
SU(2, 1)E/F in the second case.

Let P = MN be a maximal parabolic subgroup and let α be the unique simple
root in N so that P = Pθ, where θ = Δ−{α}. As in [27], let α̃ = 〈ρ, α〉−1ρ, where
ρ is half the sum of roots in N. The pairing 〈α, β∨〉 = 〈α, β〉 is defined as follows:

Let ψ̃+ be the set of non-restricted roots of T in U, restricting to ψ+. Here we
choose a Borel subgroup B of G over F , and let B = TU, where T is a maximal
torus and U is the unipotent radical of B. For α, β ∈ ψ+, we identify α, β with

roots of ψ̃+, and then set 〈α, β〉 = 2(α,β)
(β,β) .

Let π be an unramified representation of M = M(F ) and χ be the inducing
character of the torus. Denote by LM the L–group of M and let Ln be the Lie
algebra of the L–group of N. The adjoint action r of LM on Ln decomposes as
r = ⊕m

i=1ri, with ordering as in [27]. For each i, 1 ≤ i ≤ m, let L(s, π, ri) be the
local L–function defined in [27]. Let t̂ be the semi-simple conjugacy class in LM0

corresponding to π. Note the relationship

χ ◦ β∨(�) = β∨(t̂),

where β∨ on the right is considered as a root of LM0. Then we have

L(s, π, ri) =
∏

β>0,〈α̃,β〉=i

L(s, χ ◦ β∨)

where

L(s, χ ◦ β∨) =

{
LE(s, χ ◦ β∨) if G̃β,D = ResE/FSL2,

LE(s, χ ◦ β∨)LF (2s, ωE/F (χ ◦ β∨|F×)) if G̃β,D = SU(2, 1)E/F .

and ωE/F is defined as follows: Let E/F be an unramified quadratic extension of
p-adic fields and let �E, �F be uniformizers of E,F , resp. Then �E = �F , and
|�E|E = q−1

E , and |�F |F = q−1
F . Hence for any x ∈ E, |x|E = |NE/F (x)|F , and

F×/NE/F (E
×) has order 2. Let ωE/F be the character of F× defined by local class

field theory, i.e.,

ωE/F =

{
1 on NE/F (E

×),

−1 otherwise.

We identify s ∈ C with sα̃ ∈ a∗
C
and denote by

I(s, π) = I(sα̃, π) = IndGP π ⊗ exp(〈sα̃,HP (·)〉),
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the induced representation of π from P = P(F ) to G = G(F ). Let A(sα̃, π, w0) be
the standard intertwining operator from I(sα̃, π) to I(w0(sα̃), w0(π)). We define
the normalized intertwining operator N(s, π, w0) by the relation

A(s, π, w0) = r(s, π, w0)N(s, π, w0),

where

r(s, π, w0) =
m∏
i=1

L(is, π, ri)

L(1 + is, π, ri)ε(s, π, ri, ψv)
.

2. Local L-functions made explicit

In this section we make explicit the L-functions which appear in the constant
term of Eisenstein series. Using the table in Section 4 of [25] we look at it case by
case.

Let F be a number field and AF its ring of adeles. In each case we choose a
quasi-split reductive algebraic group G and then compute explicitly each maximal
Levi subgroup M and L(s, π, ri), i = 1, ...,m, for any (generic) cuspidal represen-
tation π of M(AF ).

Let χ be a character of M. We let πχ = π⊗χ be the representation of M(AF )
given by (π ⊗ χ)(m) = π(m)χ(m). In the following, we will consider the twisted
L-function only when it gives rise to a new L-function.

2.1. 2A2n−1 case. Let {α1, ..., α2n−1} be simple roots of type A2n−1. Let
β1 = 1

2 (α1 + α2n−1), ..., βn−1 = 1
2 (αn−1 + αn+1), βn = αn. Then Δ = {β1, ..., βn}

forms simple roots of type Cn.
More explicitly, we use the unitary group: Let E/F be a quadratic extension

of number fields and G = U(n, n) be the quasi-split unitary group in 2n variables
defined with respect to E/F . Let G = G(F ). It is given as follows: Let Jn be the
n× n matrix given by

Jn =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1

.
.

.
1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Let J ′
2n =

(
Jn

−Jn

)
. Then

U(n, n) =
{
g ∈ GL(2n)

∣∣ tḡJ ′
2ng = J ′

2n

}
,

where x 	−→ x̄ is the Galois automorphism of E/F . We note thatG(E) = GL2n(E).
When v splits in E, then G(Fv) = GL2n(Fv). The derived group of G is G′ =
SU(n, n) = U(n, n) ∩ SL(2n). The maximal Levi subgroups are of the form M =
ResE/FGLk ×U(l, l). When v splits, M(Fv) = diag(A,B, Jk

tA−1Jk) � GLk(Fv)×
GL2l(Fv)×GLk(Fv).

We need to deal also with similitude groups: Let

G̃ = GU(n, n) =
{
g ∈ GL(2n)

∣∣ tḡJ ′
2ng = xJ ′

2nfor some x = x̄
}
.

Then G̃(E) = GL(2n,E)× E×.
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Let Td be the maximal F -split torus consisting of diagonal elements in G.
Then

Td(F ) = Td =
{
t(λ1, ..., λn) = diag(λ1, ..., λn, λ

−1
n , ..., λ−1

1 )|λi ∈ F×} ,

The centralizer of Td in G is the maximal torus T of diagonal elements:

T(F ) = T =
{
t(λ1, ..., λn) = diag(λ1, ..., λn, λ̄

−1
n , ..., λ̄−1

1 |λi ∈ E×} .

Then the root system Φ(G,T) is of type A2n−1. But the restricted root system

Φ(G,Td) is of type Cn. Let Gal(E/F ) = {1, τ}. The maximal torus T̃ in G̃ is
given by

T̃ =
{
t(λ1, ..., λn, x) = diag(λ1, ..., λn, xλ̄

−1
n , ..., xλ̄−1

1

)
},

where x = x̄. We extend the coroots α∨ : F× 	−→ Td to α∨ : F× 	−→ T as
follows. For α = ei − ej , α

∨(λ) = t(1, ..., λ
i
, ..., λ

j

−1, ..., 1) ∈ T for 1 ≤ i < j ≤ n.

For α = ei + ej , α
∨(λ) = t(1, ..., λ

i
, ..., λ̄

j
, ..., 1), for 1 ≤ i < j ≤ n. For α = 2ei,

α∨(λ) = t(1, ..., λ
i
, ..., 1) for 1 ≤ i ≤ n. Here dots represent 1.

2.1.1. 2A2n−1 − 2. Let θ = Δ − {βn}. In this case, M = Mθ = ResE/FGLn.

Then LM = GLn(C) × GLn(C) � Gal(E/F ). Let rA be the Asai representation,
i.e.,

rA : LM −→ GLn2(C); rA(g1, g2, 1) = g1 ⊗ g2, rA(g1, g2, τ ) = g2 ⊗ g1.

Let σ = ⊗vσv be a cuspidal representation of M(AF ) = GLn(AE). Let M(Fv) =
GLn(Ev), where Ev = E ⊗ Fv; then

M(Fv) =

{
GLn(Ev) if v inert,

GLn(Ew1
)×GLn(Ew2

) if v splits, v = w1w2.

Let χ be a grössencharacter of E with restriction χ0 to F . Recall that χ0 corre-
sponds to the transfer from E to F of the character of the Weil group WE associated
to χ by class field theory. Let π = σ ⊗ χ. Suppose σv is unramified and Ev/Fv is
unramified. Then if v is inert, σv is an unramified representation of GLn(Ev), and
we denote it by σv = π(μ1, ..., μn), where μ1, ..., μn are unramified quasi-characters
of E×

v . If v splits, then σv = σw1
⊗ σw2

, where σwi
is an unramified representation

of GLn(Ewi
) for i = 1, 2. Then we see that m = 1, and

L(s, πv, r1) = L(s, σv, rA ⊗ χ0v)

=

{∏n
i=1 LFv

(s, χ0vμi|F×
v
)
∏

1≤i<j≤n LEv
(s, μiμjχv) if v is inert

L(s, σw1
× σw2

⊗ χ0v) if v splits,

where LFv
(s, χ0vμ1|F×

v
) is the local Hecke L-function over Fv, and

L(s, σw1
× σw2

⊗χ0v) is the local Rankin-Selberg L-function. Here L(s, σ, rA ⊗χ0)
is called the Asai L-function (twisted tensor L-function).

2.1.2. 2A2n−1 − 1. Let θ = Δ − {β1}. We separate this case, because it
gives the well-known standard L-function of the unitary group. In this case,
M = ResE/FGL1×U(n, n). Let Σ = χ⊗π be a cuspidal representation of M(AF ).
Let Σv be an unramified representation. If v splits, let w1w2 = v. Then πv is an
unramified representation of GL2n(Fv), and

L(s,Σv, r1) = L(s, χw1
⊗ πv)L(s, χw2

⊗ π̃v)

L(s,Σv, r2) = L(s, χw1
χw2

).
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If v is inert, we write πv as πv = πv(μ1, ..., μn), where μi’s are unramified quasi-
characters of E×

v . Then

L(s,Σv, r1) = L(s, χvμ
−1
1 ) · · ·L(s, χvμ

−1
n )L(s, χvμ̄1) · · ·L(s, χvμ̄n)

L(s,Σv, r2) = LFv
(s, χv|F×

v
).

Therefore, the global L-function is L(s,Σ, r2) = L(s, χ|
A

×
F
) (Hecke L-function).

When χ = 1, L(s,Σv, r1) is the standard L-function of U(n, n).
2.1.3. 2A2n−1 − 4. Let θ = Δ− {βk}, and k + l = n. In this case, M = Mθ =

ResE/FGLk×U(l, l). Let σ, τ be cuspidal representations of GLk(AE), U(l, l)(AF ),
resp. Let π = σ ⊗ τ be the cuspidal representation of M(AF ).

If v splits (v = w1w2), then τv is a representation of GL2l(Fv), and πv =
σw1

⊗τv⊗σw2
is a representation of GLk(Fv)×GL2l(Fv)×GLk(Fv) ⊂ GL2n(Fv). In

this case, we need to consider the normalizing factors attached to the non-maximal
parabolic subgroup:

L(s, πv, r1) = L(s, σw1
× τv)L(s, σw2

× τ̃v), L(s, πv, r2) = L(s, σw1
× σw2

).

If v is inert, let σv = π(μ1, ..., μk), τv = π(ν1, ..., νl), where μi, νj ’s are unrami-
fied quasi-characters of E×

v . Then

L(s, πv, r1) =

k∏
i=1

l∏
j=1

L(s, μiν
−1
j )L(s, μiν̄j), L(s, πv, r2) = L(s, rA(σv)).

In this case, we obtain the Rankin-Selberg L-function L(s, σ × τ ).

Remark 2.1. The lift from U(n, n) to GL2n/E (called the base change) is given
by π = ⊗vπv 	−→ Π = ⊗wΠw, where

Πw =

{
Πw = π(μ1, ..., μn, μ̄

−1
1 , ..., μ̄−1

n ) if v is inert and πv = π(μ1, ..., μn),

Πw1
= πv,Πw2

= π̃v if v splits and w1w2 = v.

Remark 2.2. We note the difference between split group and quasi-split group:
When G = Sp2n, M = GLn−1 × SL2, we obtain the L-function L(s, σ × Ad(τ )),
where σ, τ are cuspidal representations of GLn−1(F ), GL2(F ), resp. However, when
G = U(n, n), M = ResE/FGLn−1 × U(1, 1), even though θ = Δ − {βn−1} as an
F -root system, two L-functions show up in the constant term of the Eisenstein
series.

2.2. 2A2n case. Let {α1, ..., α2n} be simple roots of type A2n. Let β1 =
1
2 (α1 + α2n), ..., βn = 1

2 (αn + αn+1). Then Δ = {β1, ..., βn} forms simple roots of
type BCn. More explicitly, we use the unitary group G = U(n, n+ 1): It is given
by

U(n, n+ 1) =
{
g ∈ GL(2n+ 1)

∣∣ tḡJ ′
2ng = J ′

2n

}
,

where J ′
2n =

⎛
⎝ Jn

1
−Jn

⎞
⎠. We note that G(E) = GL(2n + 1, E). Let Td be

the maximal F -split torus consisting of diagonal elements in G. Then

Td(F ) = Td =
{
t(λ1, ..., λn, 1) = diag(λ1, ..., λn, 1, λ

−1
n , ..., λ−1

1 )|λi ∈ F×} ,
The centralizer of Td in G is the maximal torus T of diagonal elements:

T(F ) = T =
{
t(λ1, ..., λn, y) = diag(λ1, ..., λn, y, λ̄

−1
n , ..., λ̄−1

1 |λi ∈ E×, y ∈ E1
}
.
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Then the root system Φ(G,T) is of type A2n. But the root system Φ(G,Td) is of
type BCn. We extend the coroots β∨ : F× 	−→ Td to α∨ : F× 	−→ T as follows.
For β = ei − ej , β∨(λ) = t(1, ..., λ

i
, ..., λ

j

−1, ..., 1) ∈ T for 1 ≤ i < j ≤ n. For

α = ei + ej , β∨(λ) = t(1, ..., λ
i
, ..., λ̄

j
, ..., 1), for 1 ≤ i < j ≤ n. For α = 2ei,

β∨(λ) = t(1, ..., λ
i
, ..., 1, λ̄λ−1) for 1 ≤ i ≤ n. Here dots represent 1.

2.2.1. 2A2n−1. Let θ = Δ−{β1}. In this case, M = ResE/FGL1×U(n, n+1).
Let Σ = χ ⊗ π be a cuspidal representation of M(AF ). Let Σv be an unramified
representation. If v splits, let w1w2 = v. Then πv is an unramified representation
of GL2n+1(Fv) and

L(s,Σv, r1) = L(s, χw1
⊗ πv)L(s, χw2

⊗ π̃v),

L(s,Σv, r2) = L(s, χw1
χw2

).

If v is inert, πv can be written as πv = πv(μ1, ..., μn, ν), where μi’s are unramified
quasi-characters of E×

v and ν is a character of E1
v . It acts as

πv(μ1, ..., μn, ν)(t(λ1, ..., λn, y)) = μ1(λ1) · · ·μn(λn)ν(y(λ1 · · ·λn)(λ̄1 · · · λ̄n)
−1).

Then

L(s,Σv, r1) = L(s, χvμ
−1
1 ) · · ·L(s, χvμ

−1
n )L(s, χv)L(s, χvμ̄1) · · ·L(s, χvμ̄n),

L(s,Σv, r2) = LFv
(s, χv|F×

v
).

2.2.2. 2A2n − 3. Let θ = Δ − {βn}. Then M = ResE/FGLn × U(1) and
α̃ = e1+ · · ·+en− (en+2+ · · ·+e2n+1). Let Σ = π⊗χ be a cuspidal representation
of GLn(AE)× U(1,AF ).

If v splits (v = w1w2), let πv = πw1
⊗ πw2

, where πwi
is an unramified rep-

resentation of GLn(Ewi
) for i = 1, 2, and χv is a character of F×

v . Then m = 2
and

L(s,Σv, r1) = L(s, πw1
)L(s, πw2

), L(s,Σv, r2) = L(s, πw1
× πw2

).

If v is inert, πv is an unramified representation of GLn(Ev) and χv is a character
of E1

v , and we denote it by πv = π(μ1, ..., μn), where μ1, ..., μn are unramified quasi-
characters of E×

v . Then

L(s,Σv, r1) = L(s, πv), L(s,Σv, r2) = L(s, πv, rA ⊗ ωE/F ).

2.2.3. 2A2n − 4. Then M = ResE/FGLk × U(l, l + 1). Let π = σ ⊗ τ be a
cuspidal representation of M(AF ).

If v splits (v = w1w2), then τv is a representation of GL2l+1(Fv), and πv =
σw1

⊗τv⊗σw2
is a representation of GLk(Fv)×GL2l+1(Fv)×GLk(Fv) ⊂ GL2n(Fv).

In this case, we need to consider the normalizing factors attached to the non-
maximal parabolic subgroup:

L(s, πv, r1) = L(s, σw1
× τv)L(s, σw2

× τ̃v), L(s, πv, r2) = L(s, σw1
× σw2

).

If v is inert, let σv = π(μ1, ..., μk), τv = π(ν1, ..., νl, ν0), where μi, νj ’s are
unramified quasi-characters of E×

v and ν0 is a character of E1
v . Then

L(s, πv, r1) =

k∏
i=1

l∏
j=1

L(s, μiν
−1
j )L(s, μiν̄j)

k∏
i=1

L(s, μi),

L(s, πv, r2) = L(s, rA(σv)⊗ ωE/F ).
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In this case, we obtain the Rankin-Selberg L-function L(s, σ × τ ).

Remark 2.3. The lift from U(n, n+1) to GL2n+1/E (the base change) is given
by π = ⊗vπv 	−→ Π = ⊗wΠw, where

Πw =

{
Πw = π(μ1, ..., μn, 1, μ̄

−1
1 , ..., μ̄−1

n ) if v is inert and πv = π(μ1, ..., μn, ν),

Πw1
= πv,Πw2

= π̃v if v splits and w1w2 = v.

2.3. 2Dn case. Let G = Spin−
2n be a quasi-split spin group over a quadratic

extension E/F . It is a simply connected 2-fold covering group of the quasi-split
orthogonal group SO−

2n corresponding to a quadratic form of index n − 1 relative
to F but index n relative to E.Let {α1 = e1 − e2, ..., αn−2 = en−2 − en−1, αn−1 =
en−1 − en, αn = en−1 + en} be the non-restricted simple roots. Let β1 = α1 =
e1 − e2, ..., βn−2 = αn−2 = en−2 − en−1, βn−1 = 1

2 (αn−1 + αn) = en−1. Then
Δ = {β1, ..., βn−1} form simple roots of type Bn−1. Any element in the F -points
T(F ) of the maximal torus T can be written as

Hα1
(t1) · · ·Hαn−2

(tn−2)Hαn−1
(tn−1)Hαn

(t̄n−1),

where ti = t̄i for i = 1, ..., n− 2 and ti ∈ E×. On the other hand an element in the
F -points of the maximal F -split torus is

Hα1
(t1) · · ·Hαn−2

(tn−2)Hαn−1
(tn−1)Hαn

(tn−1),

where ti = t̄i for all i. There is, up to isomorphism, a unique non simply-connected,
non-adjoint group of type 2Dn, namely, SO−

2n.
We define GSpin−

2n to be the maximal Levi subgroup of Spin−
2n+2, which has

Spin−
2n as its derived group. More precisely, we add β0 = e0−e1 in the root system

and consider the Levi subgroup attached to θ = Δ− {β0}. Then

A = {Hα0
(t2)Hα1

(t2) · · ·Hαn−2
(t2)Hαn−1

(t)Hαn
(t)},

and

MD = Spin−
2n, A ∩MD = {Hαn−1

(t)Hαn
(t) : t2 = 1}.

We define

GSpin−
2n = (GL1 × Spin−

2n)/(A ∩MD).

Then LGSpin−
2n = GSO2n(C)�Gal(E/F ).

2.3.1. 2Dn − 1. Let θ = Δ − {βk}. Let P = MN. The derived group MD of
M is

MD = SLk × Spin−
2l,

where k + l = n. We identify A with GL1. We fix an identification of MD and
SLk × Spin2l under which the element Hα1

(t)Hα2
(t2) · · ·Hαk−1

(tk−1) goes to the

diagonal element diag(t, t, ..., t, t−(k−1)) of SLk, and

b(t) = Hαk+1
(t2) · · ·Hαn−2

(t2)Hαn−1
(t)Hαn

(t)

is the toral element in Spin2l. We define a map f̄ : A × MD −→ GL1 × GL1 ×
SLk × Spin2l by

f̄ : (a(t), x, y) 	−→
{
(t, t

k
2 , x, y) if k even,

(t2, tk, x, y) if k odd.
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Now, M � (GL1 × SLk × Spin2l)/S, where

S =

{
{(a(t), tIk, b(t

k
2 )) : tk = 1} if n even,

{(a(t), t2Ik, b(tk)) : t2k = 1} if n odd.

We obtain a map f : M −→ GLk ×GSpin2l so that

f(Hαk
(t)) = (diag(1, ..., 1, t), c(t)),

where c(t) is an element in GSpin2l.
Let π1, π2 be cuspidal representations of GLk(AF ), GSpin−(2l,AF ), resp. Let

π be a cuspidal representation ofM(AF ), induced by f and π1, π2. Then the central
character of π is

ωπ =

{
ω1ω

k
2
2 , if k even

ω2
1ω

k
2 . if k odd

If v splits, π2v is an unramified representation of GSpin2l(Fv). Hence by Dn−1
case in [14], L(s, πv, r1) = L(s, π1v × π2v), L(s, πv, r2) = L(s, π1v,∧2 ⊗ ω2v).

Suppose v is inert, and let t̂1 = diag(a1, ..., ak) ∈ GLk(C) = LGLk and
t̂2 = diag(b1, ..., bl, b

−1
l b0, ..., b

−1
1 b0) � σ ∈ GSO2l(C) � Gal(E/F ) be the Satake

parameters attached to π1v, π2v, resp. Here we note that

diag(b1, ..., bl, b
−1
l b0, ..., b

−1
1 b0) 	−→ b0

generates the character group of GSO2l and hence by Lemma 1.2 of [14], b0 =
ω2(�). Then

χ ◦Hα1
= a1a

−1
2 , . . . , χ ◦Hαk−1

= ak−1a
−1
k ,

χ ◦Hαk+1
= b1b

−1
2 , . . . , χ ◦Hαn−1

= bl−1b
−1
l , χ ◦Hαn

= bl−1blb
−1
0 ,

χ(a(t)) = ωπv
=

{
(a1 · · · ak)(b0)

k
2 , if k even

(a1 · · · ak)2(b0)k, if k odd
.

Since f(Hαk
(t)) = (diag(1, ..., 1, t), b(t)), we can see χ ◦Hαk

= akb
−1
1 b0. Hence, we

see that m = 2,

L(s, πv, r1) = L(s, π1v × π2v)

L(s, πv, r2) = L(s, π1v,∧2 ⊗ ω2v).

2.3.2. 2Dn−2. Let θ = Δ−{βn−2}. Then P = MN, and ρP = e1+ · · ·+en−2.
The connected component of the center of the torus is an F -split torus and is given
by

A =

{
{Hα1

(t)Hα2
(t2) · · ·Hαn−2

(tn−2)Hαn−1
(t

n−2
2 )Hαn

(t
n−2
2 )} if n even,

{Hα1
(t2)Hα2

(t4) · · ·Hαn−2
(t2(n−2))Hαn−1

(tn−2)Hαn
(tn−2)} if n odd.

Since G is simply connected, the derived group MD of M is simply connected.
Hence MD = SLn−2 × ResE/FSL2. There exists a map f : M −→ GLn−2 ×
ResE/FGL2. Let π1, π2 be cuspidal representations of GLn−2(AF ), GL2(AE), resp.
Let π be a cuspidal representation of M(AF ), given by f, π1, π2. Let πv be an
unramified representation and let χ be the inducing character. If v = w1w2 splits,
then it is Dn − 2 case. So

L(s, πv, r1) = L(s, π1v × π2w1
× π2w2

), L(s, πv, r2) = L(s, π1v,∧2 ⊗ ωπ2w1
ωπ2w2

).
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Suppose v is inert and let π1v = π(μ1, ..., μn−2), and π2v = π(ν1, ν2), where
μ1, ..., μn−2 are characters of F×

v and ν1, ν2 are characters of E×
v . Then

χ ◦Hα1
= μ1μ

−1
2 , . . . , χ ◦Hαn−3

= μn−3μ
−1
n−2

χ ◦Hαn−1
(t)Hαn

(t) = ν1ν
−1
2 (t2), χ(a(t)) = ω1(t)ω

n−3
2

2 (u).

From this, we see that χ ◦Hαn−2
= μn−2ν2|F×

v
. Hence m = 2 and

L(s, πv, r1) = L(s, π1v × rA(π2v)), L(s, πv, r2) = L(s, π1v,∧2 ⊗ (ωπ2v
)|F×

v
),

where rA(πv) = π(ν1|F×
v
, ν2|F×

v
, ((ν1ν2)|F×

v
)

1
2 , ωE/F ((ν1ν2)|F×

v
)

1
2 ).

Remark 2.4. This case is important because we get the Asai lift from cuspidal
representations of GL2/E to GL4/F in the following way. It corresponds to the
L-group homomorphism

rA : LResE/FGL2 = (GL2(C)×GL2(C))�Gal(E/F ) −→ GL(C2 ⊗ C2) = GL4(C),

r(g1, g2, 1) = g1 ⊗ g2, r(g1, g2, θ) = g2 ⊗ g1.

The details had been worked out by Krishnamurthy in his thesis [18]: Let π =
⊗wπw be a cuspidal representation of GL2(AE). Let πw = π(μ, ν) be an unramified
representation. Then the local lift of πw is given by

Πv =

{
π(μ|F×

v
, ν|F×

v
, ((μν)|F×

v
)

1
2 , ωE/F ((μν)|F×

v
)

1
2 ) if v is inert,

πw1
� πw2

if v = w1w2,

where ω = ωE/F . This is different from automorphic induction; Automorphic in-
duction also gives the lifting from cuspidal representations of GL2/E to GL4/F . It
corresponds to the L-group homomorphism

r : LResE/FGL2 = (GL2(C)×GL2(C))�Gal(E/F ) −→ GL(C2 ⊕ C2) = GL4(C),

r(g1, g2, 1) = g1 ⊕ g2, r(g1, g2, θ) = g2 ⊕ g1.

Let π = ⊗wπw be a cuspidal representation of GL2(AE). Let πw = π(μ, ν) be an
unramified representation, where the local lift of πw is given by

Πv = IFE (πv) =

{
π(μ|

1
2

F×
v
, ω(μ|F×

v
)

1
2 , ν|

1
2

F×
v
, ω(ν|F×

v
)

1
2 ) if v is inert,

πw1
� πw2

if v = w1w2.

Hence it satisfies the adjoint relation: for any representation σ of GL2(Fv),

L(s, σ × IFE (πv)) = L(s, σE × πv).

We also note that if π is a cuspidal representation of GL2(AF ) and πE is the
base change to E, then As(πE) = Sym2(π)⊕ (ωπωE/F ).

2.3.3. 2Dn − 3. Let θ = Δ− {βn−1}, and let P = MN. Then

A =

{
{Hα1

(t)Hα2
(t2) · · ·Hαn−2

(tn−2)Hαn−1
(t

n−1
2 )Hαn

(t
n−1
2 )} if n odd,

{Hα1
(t2)Hα2

(t4) · · ·Hαn−2
(t2(n−2))Hαn−1

(tn−1)Hαn
(tn−1)} if n even.

In this case, the derived group MD is simply connected, and hence MD =
SLn−2. We have a map f : M −→ GLn−2 × ResE/FGL1. Let σ be a cuspidal
representation of GLn−2(AF ), η a grössencharacter of E, and π be a cuspidal
representation of M(AF ), given by f and σ, η.
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If v splits, we need to consider the normalizing factor of the intertwining opera-
tor attached to the non-maximal parabolic subgroup Pθ, where θ = Δ−{en−1±en}.
Then

L(s, πv, r1) = L(s, σv⊗ηw1
)L(s, σv⊗ηw2

), L(s, πv, r2) = L(s, σv,∧2⊗ωσv
ηw1

ηw2
).

If v is inert, let πv be an unramified representation and let χ be the inducing
character. Let π1v = π(μ1, ..., μn−1), where μ1, ..., μn−1 are characters of F×

v . Then

χ ◦Hα1
= μ1μ

−1
2 , . . . , χ ◦Hαn−2

= μn−2μ
−1
n−1,

χ(a(t)) = ω1(t)η(t).

From this, we see that χ ◦Hαn−1
Hαn

= μn−1 ◦Nηv. Hence m = 2,

L(s, πv, r1) = L(s, πE,v ⊗ ηv), L(s, πv, r2) = L(s, πv,∧2 ⊗ ωσv
(ηv|F×

v
)),

where πE is the base change of π to E.
2.3.4. 2Dn − 4. Let θ = Δ− {βn−3}. We separate this case because this gives

a twisted exterior square lift from GU(2, 2)E/F to GL6/F corresponding to the

map ∧2
t : LGU(2, 2) = (GL4(C) × GL1(C)) � Gal(E/F ) −→ GL6(C). (See [15]

for the details.) For g ∈ GL4(C), λ ∈ GL1(C), we consider the six-dimensional
representation

∧2 : GL4(C)×GL1(C) −→ GL6(C)

given by (g, λ) 	−→ (∧2g)λ, where ∧2 is the usual exterior square. (We abuse
the notation by using ∧2 as 6-dimensional representations of both GL4(C) and

GL4(C) × GL1(C).) Let θ(g, λ) = (J ′
4
−1tg−1J ′

4, λdet(g)). Then there is a matrix
A ∈ GL6(C) such that

∧2(θ(g, λ)) = A−1 ∧2 (g, λ)A, ∀g ∈ GL4(C).

Now, we can extend ∧2 to LGU(2, 2) by mapping

(g, λ, 1) 	−→ ∧2(g)λ, and (1, 1, σ) 	−→ A.

Let P = Pθ = MN, and let A be the connected component of the center of M.
Then A(F ) = {a(t)| t ∈ F} where

a(t) =

{
Hα1(t) · · ·Hαn−3(t

n−3)Hαn−2(t
n−3)Hαn−1(t

n−3
2 )Hαn(t

n−3
2 ) if n odd,

Hα1(t
2) · · ·Hαn−3(t

2(n−3))Hαn−2(t
2(n−3))Hαn−1(t

n−3)Hαn(t
n−3) if n even.

We note that A is a 1-dimensional torus that splits over F . Since G is simply
connected, the derived group MD of M is simply connected, and hence

MD = SLn−3 × SU(2, 2).

Note that Spin−
6 � SU(2, 2). Furthermore,

A ∩MD(F ) = {Hα1
(t) · · ·Hαn−4

(tn−4)Hαn−1
(t

n−3
2 )Hαn

(t
n−3
2 )| tn−3 = 1},

if n odd, and

A ∩MD(F ) = {Hα1
(t2) · · ·Hαn−4

(t2(n−4))Hαn−1
(tn−3)Hαn

(tn−3)| t2(n−3) = 1},
if n even. We obtain an injection f : M −→ GLn−3×GU(2, 2) which is the identity
map when restricted to the derived group MD. Let π1, π2 be a cuspidal represen-
tation of GLn−3(AF ), GU(2, 2)(AF ), resp. Let π be a cuspidal representation of
M(AF ), induced by the map f and π1, π2. Let πv be an unramified representation.
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If v splits as (w1, w2) in E, then π2v is an unramified representation ofGL4(Fv)×
GL1(Fv). Write π2v = τv ⊗ χv. In this case,

L(s, πv, r1,v) = L(s, π1v ⊗ τv, ρn−3 ⊗ ∧2ρ4 ⊗ χv) = L(s, π1v × ∧2
t (π2v))

L(s, πv, r2,v) = L(s, π1v,∧2 ⊗ (ωτvχ
2
v)).

Here note that ωτvχ
2
v = (ωπ|A∗

F
)v = (ωπ)w1

(ωπ)w2
.

Suppose v is inert. Let π1v = π(μ1, ..., μn−3), and π2v = π(ν1, ν2, ν0), where
μ1, ..., μn−3, ν0 are characters of F×

v and ν1, ν2 are characters of E×
v . We compute

the local L-function for n odd. The “even” case is similar. Let πv be induced from
a character χ. Then

χ ◦Hα1
= μ1μ

−1
2 , . . . , χ ◦Hαn−4

= μn−4μ
−1
n−3, χ ◦Hαn−2

= ν2|F×
v
,

χ ◦Hαn−1
(�)Hαn

(�) = ν1ν
−1
2 (�), χ(a(�)) = ωσv

(�)ωπv
(�)

n−3
2 ,

where � is a uniformizing element in F×
v . From this, we see that χ ◦ Hαn−3

=
μn−3ν0, and

L(s, πv, r1,v) = L(s, π1v ⊗ π2v, ρn−3 ⊗ ∧2
t ) = L(s, π1v × ∧2

t (π2v))

L(s, πv, r2,v) = L(s, π1v,∧2 ⊗ (ωπ2v
|F×

v
)),

where ∧2
t (π2v) is the unramified representation of GL6(Fv) given by

∧2
t (π2v) = π(ν0(ν1ν2|F×

v
)
1
2 , ν0ωEv/Fv (ν1ν2|F×

v
)
1
2 , ν0(ν1|F×

v
), ν0(ν2|F×

v
), ν0(ν1ν2|F×

v
), ν0).

2.4. 3D4 case. Let E/F be a cubic Galois extension. Then there exists a
simply connected, absolutely simple quasi-split group G defined over F , which
splits over E, and whose non-restricted root system is of type D4. We also note
that the only other quasi-split group of type D4 is of adjoint type.

Let β1 = 1
3 (α1 + α3 + α4) = 1

3 (e1 − e2 + 2e3), β2 = α2 = e2 − e3. Then
Δ = {β1, β2} form simple roots of type G2. For a reference, we record positive
roots: Short roots are

β1, β1+β2 =
1

3
(e1−e3+e2−e4+e2+e4), 2β1+β2 =

1

3
(e1−e4+e1+e4+e2+e3).

Long roots are

β2, 3β1 + 2β2 = e1 + e2, 3β1 + β2 = e1 + e3.

Note that any element in the maximal torus in G(F ) can be written as
Hα1

(t1)Hα3
(t̄1)Hα4

(¯̄t1)Hα2
(t2), where t2 = t̄2 = ¯̄t2 and t1, t2 ∈ E∗. Here ¯ and

¯̄ denote the Galois conjugate of Gal(E/F ) corresponding to the graph automor-
phism. The element in the maximal F -split torus isHα1

(t1)Hα3
(t1)Hα4

(t1)Hα2
(t2),

where ti = t̄i = ¯̄ti for i = 1, 2.
2.4.1. 3D4 − 1. Let θ = Δ− {β2}. Then α̃ = e1 + e2

A = (
⋂
β∈θ

kerβ)0 = {Hα1
(t)Hα3

(t)Hα4
(t)Hα2

(t2)}.

Let P = Pθ = MN, where M is the centralizer of A. Since G is simply connected,
the derived group MD of M is simply connected, and hence

MD = ResE/FSL2.
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We obtain a map f : M −→ ResE/FGL2. Let σ be a cuspidal representation of
GL2(AE) and π be the cuspidal representation of M obtained by f and σ.

If v splits (v = w1w2w3), then by the result in [16], m = 2 and

L(s, πv, r1) = L(s, σw1
× σw2

× σw3
), L(s, πv, r2) = L(s, ω),

where ω = ωσw1
ωσw2

ωσw3
.

If v is inert, let σv = π(μ, ν), where μ, ν’s are characters of E×
v . Let χ be the

inducing character of the torus. Then

χ ◦Hα1
(t)Hα3

(t̄)Hα4
(¯̄t) = μν−1(t), χ(a(t)) = μν.

From this, we see that χ ◦Hα2
= ν|F×

v
. Hence m = 2 and

L(s, πv, r1)
−1 = (1− μ|F×

v
q−s
Fv

)(1− ν|F×
v
q−s
Fv

)(1− μν2q−s
Ev

)(1− μ2νq−s
Ev

),

L(s, πv, r2) = L(s, ωσv
|F×

v
).

2.4.2. 3D4 − 2. Let θ = Δ− {β1}. Then α̃ = 2e1 + e2 + e3.

A = (
⋂
β∈θ

kerβ)0 = {Hα1
(t2)Hα3

(t2)Hα4
(t2)Hα2

(t3)}.

Let P = Pθ = MN, where M is the centralizer of A. Since G is simply connected,
the derived group MD of M is simply connected, and hence

MD = SL2.

We obtain a map f : M −→ ResE/FGL1×GL2. Let σ be a cuspidal representation
of GL2(AF ) and η be a grössencharacter of E. Let π be a cuspidal representation
of M(AF ), obtained by f, σ, η.

If v splits (v = w1w2w3), then we need to consider the non-maximal parabolic
subgroup attached to θ = {α2} and normalizing factors attached to πv. In this
case,

A = {Hα1
(t1)Hα3

(t3)Hα4
(t4)Hα2

(t2)},
where t22 = t1t3t4. Let P = Pθ = MN. In this case,

χ ◦Hα2
= μν−1, χ(a(t1, t3, t4)) = ωσv

(t2)(ηw1
(t1)ηw2

(t3)ηw3
(t4))

2.

Then we have χ ◦Hα1
= νηw1

, χ ◦Hα3
= νηw2

, χ ◦Hα4
= νηw3

. Hence m = 3 and

L(s, πv, r1) = L(s, σv ⊗ ηw1
)L(s, σv ⊗ ηw2

)L(s, σv ⊗ ηw3
),

L(s, πv, r2) =
∏

1≤i≤3

L(s, ηwi
ηwj

ωσv
),

L(s, πv, r3) = L(s, σv ⊗ ω),

where ω = ωσv
ηw1

ηw2
ηw3

.
If v is inert, then

χ ◦Hα2
(t) = μν−1(t), χ(a(t)) = η2v(μν) ◦N.

From this, we see that χ ◦Hα1
Hα3

Hα4
= ηvν ◦N . Hence m = 3 and

L(s, πv, r1) = L(s, σE,v ⊗ ηv),

L(s, πv, r2) = L(s, ωσE,v
η2v), L(s, πv, r3) = L(s, σv ⊗ ω),

where ω = ωσv
ηv|F×

v
and σE,v is the base change of σv to Ev.
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2.5. 6D4 case. This is the case when E/F is not a Galois extension. This is
the non-Galois version of the case 3D4. The L-group is PSO8(C)� S3.

The cases 6D4−1 and 6D4−2 are essentially the same as those of 3D4−1 and
3D4 − 2, resp. The only difference is that we need to consider the case when v is
unramified, and v = w1w2, where Ew1

= Fv and Ew2
/Fv is a quadratic extension.

In this case, the local L-function is L(s, σv ⊗ ηv)L(s, σv ⊗ ηv) for πw1
⊗ πw2

.

Remark 2.5. Let π be a cuspidal representation of GL2/F , and let πE be a
base change to E. It exists whether E/F is Galois or not. But the L-functions
L(s, π, r1) in the cases of 3D4−1 and 6D4−1 are different. In the case of 3D4−1,
L(s, π, r1) = L(s, π×π×π). On the other hand, in the case of 6D4−1, L(s, π, r1) =
L(s, π × π × (π ⊗ χ)), where χ is the quadratic character attached to L/F . Here
K/F is the Galois closure of E/F and L/F is the unique quadratic intermediate
extension.

2.6. 2E6 case. Let G = 2E6 be the simply connected, absolutely simple,
quasi-split group of type E6. Let β1 = 1

2 (α1 + α5), β2 = 1
2 (α2 + α4), β3 = α3, β4 =

α6. Then Δ = {β1, β2, β3, β4} are simple roots of type F4. The Dynkin diagram is

β1 β2 β3 β4

For a reference, we record positive roots as follows: Short roots are

β1, β2, β1 + β2 =
1

2
(e1 − e3 + e4 − e6), β1 + β2 + β3 =

1

2
(e1 − e4 + e3 − e6),

β2 + β3 =
1

2
(e2 − e4 + e3 − e5), β1 + 2β2 + β3 =

1

2
(e1 − e5 + e2 − e6),

β1 + β2 + β3 + β4 =
1

2
(e1 + e5 + e6 + ε+ e3 + e4 + e5 + ε),

β1 + 2β2 + 2β3 + β4 =
1

2
(e2 + e3 + e5 + ε+ e1 + e3 + e6 + ε),

β1 + 3β2 + 2β3 + β4 =
1

2
(e2 + e3 + e4 + ε+ e1 + e2 + e6 + ε),

β1 + 2β2 + β3 + β4 =
1

2
(e2 + e4 + e5 + ε+ e1 + e4 + e6 + ε),

2β1 + 3β2 + 2β3 + β4 =
1

2
(e1 + e3 + e4 + ε+ e1 + e2 + e5 + ε),

β2 + β3 + β4 =
1

2
(e2 + e5 + e6 + ε+ e3 + e4 + e6 + ε),

and long roots are

β3, β4, β3 + β4 = e3 + e5 + e6 + ε, 2β2 + 2β3 + β4 = e2 + e3 + e6 + ε,

2β2 + β3 = e2 − e5, 2β1 + 2β2 + β3 = e1 − e6,

2β2 + β3 + β4 = e2 + e4 + e6 + ε, 2β1 + 2β2 + β3 + β4 = e1 + e4 + e5 + ε,

2β1 + 4β2 + 3β3 + β4 = e1 + e2 + e3 + ε, 2β1 + 4β2 + 3β3 + 2β4 = 2ε,

2β1 + 4β2 + 2β3 + β4 = e1 + e2 + e4 + ε, 2β1 + 2β2 + 2β3 + β4 = e1 + e3 + e5 + ε.

Note that any element in the F -points of a maximal torus T can be written as

Hα1
(t1)Hα5

(t̄1)Hα2
(t2)Hα4

(t̄2)Hα3
(t3)Hα6

(t4),
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where t3 = t̄3, t4 = t̄4 and ti ∈ E×, and an element in the F -points of the maximal
F -split torus is

Hα1
(t1)Hα5

(t1)Hα2
(t2)Hα4

(t2)Hα3
(t3)Hα6

(t4),

where ti = t̄i for i = 1, 2, 3, 4.
2.6.1. 2E6− 1. Let θ = Δ−{β3}. Then α̃ = 2(e1+ e2 + e3)+ e4 + e5 + e6 +3ε.

A = (
⋂
β∈θ

kerβ)0 = {Hα1
(t2)Hα5

(t2)Hα2
(t4)Hα4

(t4)Hα3
(t6)Hα6

(t3)}.

Let P = Pθ = MN, where M is the centralizer of A. Since G is simply connected,
the derived group MD of M is simply connected, and hence

MD = ResE/FSL3 × SL2.

And

A ∩MD = {Hα1
(t2)Hα5

(t2)Hα2
(t4)Hα4

(t4)Hα3
(t6)Hα6

(t3)|t6 = 1}.
Note that A ∩MD is finite.

We obtain a map f : M −→ ResE/FGL3 × GL2. Let π1, π2 be a cuspidal
representation of GL3(AE), GL2(AF ), resp. Let π be a cuspidal representation of
M(AF ), induced by the map f and π1, π2. Let πv be an unramified representation.
If v splits, then from E6 − 1 case in [14],

L(s, πv, r1) = L(s, π1w1
× π1w2

× π2v),

L(s, πv, r2) = L(s, (π̃1w1
⊗ ω)× π̃1w2

),

L(s, πv, r3) = L(s, π2v ⊗ ω),

where ω = ωπ1w1
ωπ1w2

ωπ2v
.

If v is inert, let π1v = π(μ1, μ2, μ3), where μi’s are unramified quasi-characters
of E×

v . Let π2v = π(ν1, ν2), where νj ’s are unramified quasi-characters of F×
v . Then

πv is induced from the character χ of the torus. We have

χ ◦Hα1
(t)Hα5

(t̄) = μ1μ
−1
2 (t), χ ◦Hα2

(t)Hα4
(t̄) = μ2μ

−1
3 (t)

χ ◦Hα6
= ν1ν

−1
2 , χ(a(u)) = ω1(u

2)ω2(u
3),

where u = ū. From this, we see that χ ◦ Hα3
= (μ3|F×

v
)ν2. Then by direct

computation, short roots {β1+β2+β3, β2+β3, β1+2β2+β3, β1+β2+β3+β4, β1+
2β2+β3+β4, β2+β3+β4} and long roots {β3, β3+β4, 2β2+β3+β4, 2β2+β3, 2β1+
2β2 + β3, 2β1 + 2β2 + β3 + β4} contribute to L(s, πv, r1) and so on. Hence

L(s, πv, r1) = L(s, rA(π1v)× π2v),

L(s, πv, r2) = L(s, rA(π̃1v)⊗ ω)

L(s, πv, r3) = L(s, π2v ⊗ ω)

where ω = ωπ1v
|F×

v
ωπ2v

, and rA(π1v) is the unramified representation of GL9(Fv),
given by

rA(π1v) = π(μ1|F×
v
, μ2|F×

v
, μ3|F×

v
, ((μ1μ2)|F×

v
)

1
2 , ((μ2μ3)|F×

v
)

1
2 , ((μ1μ3)|F×

v
)

1
2 ,

ω((μ1μ2)|F×
v
)

1
2 , ω((μ2μ3)|F×

v
)

1
2 , ω((μ1μ3)|F×

v
)

1
2 ).

where ω = ωEv/Fv
. It is the Asai lift of π1v from GL3(Ev) to GL9(Fv).
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2.6.2. 2E6−2. Let θ = Δ−{β2}. Then α̃ = 3(e1+e2)+2(e3+e4)+e5+e6+ε.

A = {Hα1
(t3)Hα5

(t3)Hα2
(t6)Hα4

(t6)Hα3
(t8)Hα6

(t4)}.

Let P = Pθ = MN. Since G is simply connected, the derived group MD of M is
simply connected, and hence

MD = ResE/FSL2 × SL3.

And

A ∩MD = {Hα1
(t3)Hα5

(t3)Hα2
(t6)Hα4

(t6)Hα3
(t8)Hα6

(t4)|t6 = 1}.

We obtain a map f : M −→ ResE/FGL2 ×GL3. Let π1, π2 be a cuspidal represen-
tation of GL2(AE), GL3(AF ), resp. Let π be a cuspidal representation of M(AF ),
induced by the map f and π1, π2. Let πv be an unramified representation.

If v splits, then we need to consider the non-maximal parabolic subgroup at-
tached to Δ−{α2, α4} and normalizing factors attached to π1w1

, π2v, π1w2
. In this

case,

A = {Hα1
(t1)Hα2

(t21)Hα3
(u4)Hα4

(t25)Hα5
(t5)Hα6

(u2)},
where t1t5 = u3. Let π1w1

= π(μ1, ν1), π1w2
= π(μ2, ν2), π2v = π(η1, η2, η3). Then

we have

χ ◦Hα1
= μ1ν

−1
1 , Hα5

= μ2ν
−1
2 , χ ◦Hα3

= η2η
−1
3 ,

χ ◦Hα6
= η1η

−1
2 , χ(a(t1, t2)) = ωπ1w1

(t1)ωπ1w2
(t2)ωπ2v

(u2).

Then we have χ ◦Hα2
= ν1η3, χ ◦Hα4

= ν2η3. Hence m = 4 and

L(s, πv, r1) = L(s, π1w1
× π2v)L(s, π1w2

× π2v),

L(s, πv, r2) = L(s, π1w1
× π1w2

× π̃2v ⊗ ωπ2v
),

L(s, πv, r3) = L(s, π1w1
⊗ ωπ1w2

ωπ2v
), L(s, π1w2

⊗ ωπ1w1
ωπ2v

),

L(s, πv, r4) = L(s, π2v ⊗ ω),

where ω = ωπ1w1
ωπ1w2

ωπ2v
.

If v is inert, let π1v = π(μ1, μ2), where μi’s are unramified quasi-characters of
E×

v . Let π2v = π(η1, η2, η3), where ηj ’s are unramified quasi-characters of F×
v , and

πv be induced from the character χ of the torus. We have

χ ◦Hα1
(t)Hα5

(t̄) = μ1μ
−1
2 (t), χ ◦Hα3

= η2η
−1
3

χ ◦Hα6
= η1η

−1
2 , χ(a(t)) = ω1(tt̄)ω2(u

3).

Then χ ◦Hα2
(t)Hα4

(t̄) = μ2(η3 ◦N) and

L(s, πv, r1) = L(s, π1v × π2,Ev
),

L(s, πv, r2) = L(s, rA(π1v)× π̃2v ⊗ ωπ2v
),

L(s, πv, r3) = L(s, π1v ⊗ ωπ1v
(ωπ2v

◦N)),

L(s, πv, r4) = L(s, π2v ⊗ (ωπ1v
|F×

v
)ωπ2v

).

where π2,Ev
is the base change of π2v to Ev and rA(π1v) is the Asai lift as in the

2E6 − 1 case.
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2.6.3. 2E6 − 3. Let θ = Δ− {β1}. Then α̃ = 2e1 + e2 + e3 + e4 + e5 + 2ε and

A = {Hα1
(t2)Hα5

(t2)Hα2
(t3)Hα4

(t3)Hα3
(t4)Hα6

(t2)}.
Let P = Pθ = MN. Since G is simply connected, the derived group MD of M is
simply connected, and hence

MD = Spin−
8 .

There is an F -rational map M −→ ResE/FGL1 ×HSpin−
8 . Let η be a

grössencharacter of E and σ be a cuspidal representation of HSpin−
8 (AF ). Let π

be a cuspidal representation of M(AF ), given by f, σ, η. Let πv be an unramified
representation and χ be the inducing character.

If v splits, then we need to consider the non-maximal parabolic subgroup at-
tached to Δ− {α1, α5} and normalizing factors attached to πv. In this case,

A = {Hα1
(u2)Hα5

(v2)Hα2
(u2v)Hα4

(uv2)Hα3
(u2v2)Hα6

(uv)}.
Hence we have a rational map M −→ GL1 × HSpin8 × GL1. Since LHSpin8 =
HSpin8(C), let φ : HSpin8(C) −→ GSO8(C) be the 2 to 1 map. We can write
φ(t̂|HSpin8(C)) = diag(b21, ..., b

2
4, b

2
0b

−2
4 , ..., b20b

−2
1 ) ∈ GSO8(C) and we have

χ ◦Hα2
= b23b

−2
4 , χ ◦Hα4

= b23b
2
4b

−2
0 , χ ◦Hα3

= b22b
−2
3 ,

χ ◦Hα6
= b21b

−2
2 , χ(a(u, v)) = ηw1

ηw2
b20.

Then we have χ ◦Hα1
= ηw1

b20(b1b2b3b
−1
4 )−1, χ ◦Hα5

= ηw2
b30(b1b2b3b4)

−1. Hence
m = 2 and

L(s, πv, r1)
−1 = (1− ηw2

b−1
0 (b1b2b3b4)q

−s
v )(1− ηw2

b30(b1b2b3b4)
−1q−s

v )

·
4∏

i=1

(1− ηw1
(b1b2b3b4)b

−2
i q−s

v )

4∏
i=1

(1− ηw1
b20(b1b2b3b4)

−1b2i q
−s
v )

·
∏

1≤i<j≤4

(1− ηw2
b0(b1b2b3b4)(bibj)

−2q−s
v ),

L(s, πv, r2)
−1 =

4∏
i=1

(1− ηw1
ηw2

b0b
2
i q

−s
v )(1− ηw1

ηw2
b0b

−2
i b20q

−s
v ),

where qv = qFv
.

Let v be inert. Using the map φ : HSpin8(C) −→ GSO8(C) we can write
φ(t̂|HSpin8(C)) = diag(b21, ..., b

2
4, b

2
0b

−2
4 , ..., b20b

−2
1 ) � τ , where τ is the nontrivial ele-

ment in Gal(E/F ), and we have

χ ◦Hα2
Hα4

= b43b
−2
0 , χ ◦Hα3

= b22b
−2
3 ,

χ ◦Hα6
= b21b

−2
2 , χ(a(t)) = η2vb

2
0.

Then χ ◦Hα1
Hα5

= ηvb
−2
1 b−2

2 b−2
3 b40. Hence m = 2 and

L(s, πv, r1)
−1 = (1− ηvb

4
0(b1b2b3)

−2q−2s
v )(1− ηvb

−2
0 (b1b2b3)

2q−2s
v )

·
3∏

i=1

(1− ηvb
2
0(b1b2b3)

−2b4i q
−2s
v )

3∏
i=1

(1− ηv(b1b2b3)
2b−4

i q−2s
v ),

L(s, πv, r2)
−1 = (1− (ηv|F×

v
)2b20q

−2s
v )

3∏
i=1

(1− ηv|F×
v
b2i q

−s
v )(1− ηv|F×

v
b−2
i b20q

−s
v ).
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Remark 2.6. Using the Rankin-Selberg integral, W.T. Gan and J. Hundley
obtained the L-functions for a cuspidal representation of quasi-split PSO8(AF ).
The L-functions of (i) and (ii) of Section 1.4 of [9] agree with the L-functions of
this paper. However, the L-function of the case (iii) of Section 1.4 of [9] (attached
to a cubic extension of F ) cannot be obtained by the Langlands-Shahidi method.

2.6.4. 2E6 − 4. Let θ = Δ− {β4}. Then α̃ = e1 + e2 + e3 + e4 + e5 + e6 + 2ε
and

A = {Hα1
(t)Hα5

(t)Hα2
(t2)Hα4

(t2)Hα3
(t3)Hα6

(t2)}.
Let P = MN. Since G is simply connected, the derived group MD of M is simply
connected, and hence

MD = SU(3, 3)

We obtain a map f : M −→ GL1 ×GU(3, 3).
Let π be a cuspidal representation of GU(3, 3)(AF ). Let πv be an unramified

representation. If v splits, then then πv is a representation of GL6(Fv) × F×
v ,

namely, πv = σv ⊗ ηv. In this case, by (x) case in [14], m = 2 and

L(s, πv, r1) = L(s, σv,∧3 ⊗ ηv), L(s, πv, r2) = L(s, ωvη
2
v).

If v is inert, let πv = π(μ1, μ2, μ3, η), where μi’s are characters of E
×
v and η is a

character of F×
v . The central character is ((μ1μ2μ3)|F×

v
)η2. Let χ be the inducing

character of the torus. Then

χ ◦Hα1
(t)Hα5

(t̄) = μ1μ
−1
2 (t), χ ◦Hα2

(t)Hα4
(t̄) = μ2μ

−1
3 (t),

χ ◦Hα3
= μ3|F×

v
, χ(a(t)) = ((μ1μ2μ3)|F×

v
)η2.

From this, we see that χ ◦Hα6
= η. Hence m = 2 and

L(s, πv, r1)
−1 = (1− ηq−1

v )(1− η(μ1μ2μ3|F×
v
)q−1

v )
3∏

i=1

(1− η(μi|F×
v
)q−1

v )

·
∏

1≤i<j≤3

(1− η(μiμj |F×
v
)q−1

v )
∏

1≤i<j≤3

(1± η(μiμj |F×
v
)

1
2 q−1

v )

·
3∏

i=1

(1± η(μ1μ2μ3|F×
v
)

1
2μi|F×

v
q−1
v ),

and L(s, πv, r2) = L(s, ((μ1μ2μ3)|F×
v
)η2). This gives the twisted exterior cube L-

function of U(3, 3).

2.7. Bn case. In [14], we only dealt with the Bn − 1 case. Here we deal with
the general case. Let G = Spin2n+1 be a split spin group as in [14]. We define
GSpin2n+1 to be the maximal Levi subgroup of Spin2n+3 which has Spin2n+1 as
the derived group. More precisely, we add α0 = e0 − e1 in the root system and
consider the Levi subgroup attached to θ = Δ− {α0}. Then

A = {Hα0
(t2)Hα1

(t2) · · ·Hαn−1
(t2)Hαn

(t) : t ∈ F
×},

and

MD = Spin2n+1, A ∩MD = {Hαn
(t) : t2 = 1}.

We define

GSpin2n+1 = (GL1 × Spin2n+1)/(A ∩MD).
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Note that the center of G is

Z(G) = {Hαn
(t) : t2 = 1}.

Since the center of GSpin2n+1 is connected, the derived group of LGSpin2n+1 is
simply connected, and is Sp2n(C). Therefore,

LGSpin2n+1 = GSp2n(C).
Let θ = Δ − {αk}. Let n = k + l. Let P = Pθ be the parabolic subgroup

attached to θ and let A be the connected component of the center of M. Then

A =

{
{Hα1(t) · · ·Hαk (t

k)Hαk+1(t
k) · · ·Hαn−1(t

k)Hαn(t
k
2 ) : t ∈ F

∗} if k even,

{Hα1(t
2) · · ·Hαk (t

2k)Hαk+1(t
2k) · · ·Hαn−2(t

2k)Hαn(t
k) : t ∈ F

∗} if k odd.

Since G is simply connected, the derived group MD of M is simply connected,
and hence M = SLk × Spin2l+1. Then

M = GL1 × SLk × Spin2l+1/(A ∩MD).

We can define a map f : M −→ GLk ×GSpin2l+1.
Let π1, π2 be cuspidal representations of GLk(AF ), GSpin2l+1(AF ) with the

central character ω1, ω2, resp. Let π be a cuspidal representation ofM(AF ), induced
by f and π1, π2. Then the central character of π is

ωπ =

{
ω1ω

k
2
2 , if k even

ω2
1ω

k
2 . if k odd.

Here LGSpin2n+1 = GSp2n(C). Let t̂1 = diag(a1, ..., ak) ∈ GLk(C) =
LGLk and

t̂2 = diag(b1, ..., bl, b
−1
l b0, ..., b

−1
1 b0) ∈ GSp2l(C) be the Satake parameters attached

to π1v, π2v, resp. Here we note that

diag(b1, ..., bl, b
−1
l b0, ..., b

−1
1 b0) 	−→ b0

generates the character group of GSp2n and hence by Lemma 1.2 of [14], b0 =
ω2(�). Then

χ ◦Hα1
= a1a

−1
2 , . . . , χ ◦Hαk−1

= ak−1a
−1
k ,

χ ◦Hαk+1
= b1b

−1
2 , . . . , χ ◦Hαn−1

= bl−1b
−1
l , χ ◦Hαn

= bl−1blb
−1
0 ,

χ(a(t)) = ωπv
=

{
(a1 · · · ak)(b0)

k
2 , if k even

(a1 · · · ak)2(b0)k, if k odd.

Since f(Hαk
(t)) = (diag(1, ..., 1, t), b(t)), we can see χ ◦Hαk

= akb
−1
1 b0. Hence, we

see that m = 2,

L(s, π, r1) = L(s, π1 × π2),

L(s, π, r2) = L(s, π1, Sym
2 ⊗ ω2).

Remark 2.7. By a low-dimensional accident, GSpin5 � GSp4. Using this
isomorphism, we obtain the spin L-function of cuspidal representations of GSp4
and also the degree 8 L-function of cuspidal representations of GL2×GSp4. These
L-functions have been studied extensively by the Rankin-Selberg method.
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2.8. Cn case. In order to demonstrate that we do not obtain any new L-
functions by considering similitude groups, we calculate L-functions forG = GSp2n;
The element of the torus is written as

t = t(u1, ..., un, u0) = diag(u1, ..., un, u
−1
n u0, ..., u

−1
1 u0).

Let ei(t) = ui for i = 0, ..., n. Then the simple roots are α1 = e1 − e2, ..., αn−1 =
en−1 − en, αn = 2en − e0. The corresponding coroots are

α∨
1 (u) = t(u, u−1, 1, ..., 1, 1), ..., α∨

n−1 = t(1, ..., 1, u, u−1, 1), α∨
n = t(1, ..., 1, u, 1).

Any character χ of T (Fv) is given by χ = χ(η1, ..., ηn, η0) so that

χ(η1, ..., ηn, η0)(t(u1, ..., un, u0)) = η1(u1) · · · ηn(un)η0(u0).

Let M = GLk × GSp2l, k + l = n. Then α̃ = e1 + · · · + ek − e0. Let π1, π2 be
cuspidal representations of GLk, GSp2l with the central characters ω1, ω2, resp. Let
π = π1 ⊗ π2. Let π1v = π(μ1, ..., μk), π2v = π(ν1, ...., νl, ν0). Then m = 2 and

L(s, πv, r1) = L(s, π1v × π′
2v),

L(s, πv, r2) = L(s, π1v,∧2),

except when k = 1. When k = 1, the second L-function does not occur. Here π′
2 is

any irreducible constituent of π2|Sp2n(A).

2.9. General spinor groups. We construct several maps between general
spinor groups and GSO2n. The center of Spin2n is {1, c, z, cz} where

c = Hαn−1
(−1)Hαn

(−1),

and

z =

{∏n−2
i=1 Hαi

((−1)i)Hαn−1
(−1) if n is even,∏n−2

i=1 Hαi
((−1)i)Hαn−1

(−
√
−1)Hαn

(
√
−1) if n is odd.

Following [14], we define HSpin2n to be

HSpin2n =
GL1 × Spin2n

{(1, 1), (
√
−1, z), (−1, c), (−

√
−1, zc)}

.

By the definition we see that there is a natural 2 to 1 map

GSpin2n → HSpin2n � GSpin2n

{(1, 1), (
√
−1, z)}

.

Note that

GSO2n =
GL1 × SO2n

{(1, 1), (−1, z)} � GL1 × Spin2n

{(1, 1), (−1, z), (1, c), (−1, zc)} .

The map GL1 × Spin2n → GL1 × Spin2n, (t, x) 	→ (t2, x) induces a 2 to 1 map
HSpin2n → GSO2n. The kernel of the homomorphism GSpin2n → GSO2n is easy
to compute, and so we have the following proposition.

Proposition 2.8. There are natural 2 to 1 maps GSpin2n → HSpin2n and
HSpin2n → GSO2n as described above. The composite of the two maps, GSpin2n →
GSO2n, is a 4 to 1 map and it has kernel {(1, 1), (1, c), (

√
−1, z), (

√
−1, cz)}.
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Remark 2.9. In the literature, GSpin2n is defined by Clifford algebras. It
is usually referred as Clifford group, e.g., see §20.2 of [8]. Namely, let V be a
vector space of dim 2n with a symmetric bilinear form Q. Then one can construct
Clifford algebras C(Q) and C+(Q). If V = W ⊕W ′, where dimW = dimW ′ = n,
then C+(Q) � End(∧evenW ) ⊕ End(∧oddW ). Let x 	→ x∗ be the anti-involution
such that (v1 · · · vr)∗ = (−1)rvr · · · v1 for v1, ..., vr ∈ V . Then GSpin(Q) = {x ∈
C+(Q)|xV x∗ ⊂ V }. Then using the fact that v · v = −v · v∗ = Q(v, v) for v ∈ V ,
we can see that the map ρ : GSpin(Q) −→ GSO(Q), ρ(x)(v) = x · v · x∗, is a
homomorphism. If Q is attached to the identity matrix, the kernel is

{±1,±
√
−1e1 · e2 · · · e2n−1 · e2n}.

Note that Spin(Q) = {x ∈ C+(Q)|xV x∗ ⊂ V, x · x∗ = 1}. The fact that this is
equivalent to our definition has been pointed out by S. Kudla.

3. Proof of a Conjecture of Shahidi

We recall Conjecture 7.1 of [27] which we call Shahidi’s conjecture:

Conjecture (Shahidi’s conjecture). Let π = ⊗vπv be a generic cuspidal rep-
resentation of M(AF ). If πv is tempered then each L(s, πv, ri) is holomorphic for
Re(s) > 0.

In many cases this conjecture is proved to be true. First of all, if Fv is an
archimedean local field, then Shahidi’s conjecture is true since the L-functions and
ε-factors are Artin factors. From now on we assume that Fv is nonarchimedean.
Casselman and Shahidi prove the conjecture for quasi-split classical groups in [7].
For simply connected groups of type Bn or Dn the conjecture is proved by Asgari
[3] in the split case and by the second named author [17] in the quasi-split case.
The first named author settled Shahidi’s conjecture for split exceptional groups
except for a few cases (cf. Theorem 3.16 of [14]).

We want to prove Shahidi’s conjecture for quasi-split groups. To prepare we
state several general results concerning the holomorphy of L-functions [27].

Proposition 3.1. Let πv be a generic tempered representation of M = M(Fv).

(1) If m = 1 then L(s, πv, r1) is holomorphic for Re(s) > 0.
(2) If m = 2 and L(s, πv, r2) =

∏
j(1 − αjq

−s)−1 for |αj | = 1, αj ∈ C, then

L(s, πv, r1) is holomorphic for Re(s) > 0. In particular, if r2 is one-
dimensional, then L(s, πv, r1) is holomorphic for Re(s) > 0.

The multiplicativity of γ-factors plays an important role in studying the holo-
morphy of L-functions and the properties of intertwining operators. The general
theory is explained in [26, 27] and we use the notation of [14] for consistency.

Proposition 3.2. Let πv be an irreducible admissible generic representation
of M = M(Fv) such that πv ⊂ IndMθNθ

(σ⊗1), where σ is an irreducible generic ad-
missible representation of Mθ = Mθ(F ). For each j ∈ Si, let γ(s, wj(σ), ri(j), ψ), 1 ≤
i ≤ m, be the corresponding γ-factors. Then

γ(s, πv, ri, ψ) =
∏
j∈Si

γ(s, wj(σ), ri(j), ψ).

Furthermore, if Shahidi’s conjecture is true for each L(s, wj(σ), ri(j)), then we have
the corresponding multiplicativity for L-functions.
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Let φv : WFv
× SL2(C) → LM be the parametrization of πv. Then there is a

corresponding multiplicativity for Artin γ-factors of φv as explained in page 280 of
[26]. Since Artin L-functions satisfy holomorphy we obtain the following result.

Proposition 3.3. Let πv and σ be as in Proposition 3.2, and suppose πv is
tempered. If each γ(s, wj(σ), ri(j), ψ) is an Artin factor then so are γ(s, πv, ri, ψ)
and L(s, πv, ri). In this case, L(s, πv, ri) is holomorphic for Re(s) > 0.

It is expected that γ(s, πv, ri, ψ) and L(s, πv, ri) are Artin factors for any tem-
pered representation πv. However, we do not know this yet except for a few
cases. For example, Shahidi proves that his L-functions are Artin L-functions for
GLn×GLm ⊂ GLn+m. It follows from Proposition 3.3 that Shahidi’s conjecture is
true for tempered representations of GLn(Fv)×GLm(Fv) ⊂ GLn+m(Fv). Using the
local-global argument and the base change we prove another case in the following
lemma.

Lemma 3.4. Let E/F be a quadratic extension of number fields. Fix a finite
place v of F , and suppose w is a unique place of E lying over v with [Ew : Fv] = 2.
Let σ be a tempered representation of GLn−1(Fv) and μ be a unitary character of
ResE/FGL1(Fv) = GL1(Ew) = E×

w so that σ ⊗ μ is a tempered representation of

M(Fv) = GLn−1(Fv) × ResE/FGL1(Fv)(⊂ GSpin−
2n(Fv) in 2Dn − 3 case). Then

L(s, σ⊗μ, r1) = L(s, σE,v⊗μ) is an Artin L-function, where σE,v is the base change
of σ.

Proof. By multiplicativity (cf. Proposition 3.2), it is enough to prove it for a
supercuspidal representation σ. Let π be a cuspidal representation of GLn−1(AF ),
and χ be a grössencharacter of E such that πv = σ, χw = μ and πv′ , χw′ are
unramified for all finite places v′ �= v of F and finite places w′ �= w of E. Let πE

be a cuspidal representation of GLn−1(AE) obtained by the base change of π (cf.
See I.6 and III.1-5 of [2]). Now we have functional equations

L(s, π ⊗ χ, r1) = ε(s, π ⊗ χ)L(1− s, π ⊗ χ, r1)

L(s, πE ⊗ χ) = ε(s, πE ⊗ χ)L(1− s, πE ⊗ χ)

Since L(s, πv′ ⊗ χv′ , r1) = L(s, (πE)v′ ⊗ χv′) for all v′ �= v (cf. Section 2.3.3), we
see that

γ(s, σ ⊗ μ, r1, ψ) = γ(s, σE,v ⊗ μ, ψ).

The fact that σE,v is tempered (Theorem 6.2, (a) in [2]) implies the corresponding
equation of L-functions

L(s, σ ⊗ μ, r1) = L(s, σE,v ⊗ μ)

and so the L-function is an Artin L-function. �

We now prove Shahidi’s conjecture by case-by-case analysis for a p-adic field
Fv. For simplicity of notation we drop the notation v. For example, we write F for
Fv and π for a tempered representation πv of M(Fv), and so F does not mean the
number field but a p-adic field. Furthermore, we assume that v is non-split since
the split cases are considered in [14].
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3.1. 2Dn case. Let G = GSpin−
2n, and let E/F be a quadratic extension over

which GSpin−
2n splits. This case is proved in [17] where a detailed proof was given

for 2Dn − 1 but the proof of 2Dn − 2 and 2Dn − 3 was sketchy there. So we treat
these two cases in detail. First, note that 2Dn − 3 case follows from Lemma 3.4
and Proposition 3.3.

Now we consider the 2Dn − 2 case. Let π1, π2 be tempered representations of
GLn−2(F ), GL2(E), respectively so that π = π1 ⊗ π2 is a tempered representation
of M(F ) = GLn−2(F ) × ResE/FGL2(F ). We may assume that π2 is a discrete

series. Then π2 is given as a unique subrepresentation of Ind(μ| |1/2E ⊗ μ| |−1/2
E ),

where μ is a character of GL1(E), and we have

γ(s, π1 ⊗ π2, r1, ψ) = γ(s+ 1, π1 ⊗ μ, r1, ψ)γ(s− 1, π1 ⊗ μ, r1, ψ).

The γ-factors on the right are Artin factors and so γ(s, π1 ⊗ π2, r1, ψ) is also an
Artin factor. Now holomorphy of L(s, π1 ⊗ π2, r1) for Re(s) > 0 follows from by
Proposition 3.3.

3.2. 3D4 case. Let E/F be a cubic extension over which Spin−
8 splits.

3.2.1. 3D4 − 1. Since r2 is one-dimensional we apply Proposition 3.1 (2).
3.2.2. 3D4 − 2. Let σ be a tempered representation of GL2(F ), and let η be a

character of GL1(E) = E×. Let π be a tempered representation of M(F ) obtained
from σ and η via the F -rational map f . The local-global argument (used in the
proof of Lemma 3.4) with L-function computation in 2.4.2 shows that

L(s, π, r1) = L(s, σE ⊗ η),

where σE is the base change of σ to E. Now we note that L(s, σE⊗η) is holomorphic
for Re(s) > 0.

3.3. 6D4. The proof is similar to that of 3D4.

3.4. 2E6 case. Let E/F be a quadratic extension over which 2E6 splits.
3.4.1. 2E6 − 1. Let π1, π2 be tempered representations of GL3(E),GL2(F ) re-

spectively. Let π be a tempered representation of M(F ) obtained from π1 and π2

via the F -rational map f . By multiplicativity (Proposition 3.2) we assume that π
is a discrete series. Since Shahidi’s conjecture is true for supercuspidal represen-
tations we may assume one of π1 or π2 is not supercuspidal. If π1 is given as a

unique square integrable subrepresentation of Ind(| |1/2E χ ⊗ χ ⊗ | |−1/2
E χ), where χ

is a character of GL1(E), and π2 is supercuspidal, then

γ(s, π, r1, ψ) =

2∏
i=0

γ(s+ i− 1, χ× π̃2, ψ)

2∏
i=0

γ(s+ i− 1, χ2 × π̃2, ψ)

After cancellation we see that the corresponding L-function is

L(s, π, r1) = L(s+ 1, χ× π̃2)L(s+ 1, χ2 × π̃2)

which is holomorphic for Re(s) > 0. If π1 ↪→ Ind(| |1/2E χ ⊗ χ ⊗ | |−1/2
E χ) and

π2 ↪→ Ind(| |1/2F μ⊗ | |−1/2
F μ), where μ is a character of GL1(F ), then

L(s, π, r1) = L(s+ 3/2, χ× μ−1)L(s+ 3/2, χ2 × μ−1)
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which is holomorphic for Re(s) > 0. Finally, if π1 is supercuspidal and π2 ↪→
Ind(| |1/2F μ⊗ | |−1/2

F μ), then

L(s, π, r1) = L(s+ 1/2, π1 × μ−1)

which is holomorphic for Re(s) > 0.
3.4.2. 2E6 − 2. Let π1, π2 be tempered representations of GL2(E),GL3(F ) re-

spectively. Let π be a tempered representation of M(F ) obtained from π1 and π2

via the F -rational map f . The local-global argument with unramified computation
in 2.6.2 shows that

L(s, π, r1) = L(s, π1 × π2,E),

where π2,E is the base change of π2 to E. The proof follows from the fact that
L(s, π1 × π2,E) is holomorphic for Re(s) > 0.

3.4.3. 2E6 − 3. Let σ be a tempered representation of HSpin−
8 (F ), and let η

be a character of GL1(E). Let π be a tempered representation of M(F ) obtained
from σ and η via the F -rational map f as in 2.6.3. We may assume that π is
a discrete series since any tempered representation is unitarily induced from a
discrete series representation. If σ is supercuspidal, then Shahidi’s conjecture is
true by Proposition 7.3 of [27].

If σ is a unique square integrable subrepresentation of Ind(| |eF ρ⊗ σ0), where ρ
is a unitary character of GL1(F ) and σ0 is a unitary supercuspidal representation
of HSpin−

6 (F ), then ρ � ρ̃ and 2e ∈ Z, e > 0 by Casselman’s square integrability
criterion [6]. Then

γ(s, π, r1, ψ) = γ(s+e, η×ρ̃, ψ)γ(s, η×ρ̃, ψ)γ(s−e, η×ρ̃, ψ)γ(s+e, ρ⊗(σ0⊗η), r1, ψ)

where r1 on the right is for 2D4−1. By Corollary 7.6 of [27], we see that e = 1/2, 1
and

γ(s+e, η×ρ̃, ψ)γ(s, η×ρ̃, ψ)γ(s−e, η×ρ̃, ψ) =

{L(2−s,η̃×ρ̃)
L(s+1,η×ρ) if e = 1
L(1−s,η̃×ρ̃)
L(s,η×ρ) · L( 3

2−s,η̃×ρ̃)

L(s+ 1
2 ,η×ρ)

if e = 1
2 .

From this observation we see that L(s, π, r1) is holomorphic for Re(s) > 0.
If σ is a unique square integrable subrepresentation of Ind(| det |eF ρ⊗σ0), where

ρ is a unitary supercuspidal representation of GL2(F ) and σ0 is a unitary supercus-
pidal representation of HSpin−

4 (F ), then ρ � ρ̃ and 2e ∈ Z by Casselman’s square
integrability criterion [6]. Then

γ(s, π, r1, ψ) = γ(s+ e, ρ⊗ (σ0 ⊗ η), r1, ψ)γ(s− e, ρ⊗ (σ0 ⊗ η), r1, ψ)

where r1 on the right is for 2D4−2. Note that γ(s± e, ρ⊗ (σ0⊗η), r1, ψ) are Artin
γ-factors (whose proof is similar to that of Lemma 3.4). Now apply Proposition
3.3.

If σ is a unique square integrable representation of Ind(| det |eF ρ⊗σ0), where ρ is
a unitary supercuspidal representation of GL3(F ) and σ0 is a unitary supercuspidal
representation of HSpin−

2 (F ), then ρ � ρ̃ and 2e ∈ Z by Casselman’s square
integrability criterion [6]. Then

γ(s, π, r1, ψ) = γ(s+ e, ρ⊗ (σ0 ⊗ η), r1, ψ)γ(s− e, ρ⊗ (σ0 ⊗ η), r1, ψ)

× γ(s+ e, ρ× η̃, ψ)γ(s− e, ρ× η̃, ψ)

where r1 on the right is for 2D4 − 3. The factors on the right are Artin factors
and so we get holomorphy of L-functions. The remaining cases can be handled
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similarly by applying multiplicativity in a suitable way and noting the factors are
Artin factors.

3.4.4. 2E6 − 4. Since r2 is one-dimensional we apply Proposition 3.1 (2).

Theorem 3.5. Let π be a generic tempered representation of M(F ). Then
L(s, π, r1) is homomorphic for Re(s) > 0 except possibly for the cases: E7−3, E8−
3, E8 − 4 and (xxviii) of [20].

4. Proof of Assumption (A)

We recall the following assertion which is called Assumption (A), e.g., [14].

Assumption (A). Let π = ⊗vπv be a generic cuspidal representation ofM(AF ).
Then the normalized intertwining operator N(s, πv, w0) is holomorphic and non-
zero for Re(s) ≥ 1

2 for every v.

The first named author has developed a quite general machinery of proving
Assumption (A) through several papers [12, 13, 14]. For the sake of completeness,
we recall several results in the following.

Proposition 4.1. Let πv be a tempered, generic representation of M(Fv) for
which Shahidi’s conjecture is true. Then N(s, πv, w0) is holomorphic and non-zero
for Re(s) ≥ 0.

Lemma 4.2. Let πv be a generic tempered representation of M(Fv) which is a
subrepresentation of I(Λ, ρ) where ρ is a supercuspidal representation. If 〈Λ, β∨〉 is
a half-integer for each positive root β, then N(s, πv, w0) is holomorphic and non-
zero for Re(s) > − 1

2m , where m is the number of irreducible constituents of the

adjoint action of LM on Ln as in Section 1.

Proposition 4.1 and Lemma 4.2 are direct generalizations of Lemma 4.2 and
Lemma 4.3 of [14] for quasi-split groups. In [14] the statements are given for split
groups, but the proofs are general and work for quasi-split groups, too.

In the special rank-one case of GLk × GLl ⊂ GLk+l, we have the following
well-known result (cf. Proposition I.10 of [24] or Lemma 2.10 of [13]):

Lemma 4.3. Let σ and τ be tempered representations of GLk(Fv) and GLl(Fv),
respectively. Then N(s, σ ⊗ τ, w0) is holomorphic and non-zero for Re(s) > −1.

The next result concerns non-vanishing of the normalized intertwining operator
N(s, πv, w0) which is now known as Zhang’s lemma (Lemma 1.7 of [13] or the proof
of Theorem 3 of [31]).

Lemma 4.4. Let π0 is an irreducible, generic tempered representation of M
and let I(Λ, π0) be the induced representation. Assume Shahidi’s conjecture for
each rank-one situation. If N(Λ, π0, w0) is holomorphic at Λ0 then it is nonzero at
Λ0.

In the study of the normalized intertwining operators it is important to know
when a representation is a fully induced representation. To be specific, let πv be
an irreducible admissible representation of M(Fv). By Langlands’ classification
theorem (Chapter IV, Theorem 4.11 and Chapter XI, Theorem 2.10 of [5]), there
exists Langlands’ data (P0,Λ0, π0) such that πv = J(Λ0, π0) where P0 = M0N0 is a
parabolic subgroup of M, Λ0 is a complex parameter in the positive Weyl chamber,
and π0 is a tempered representation of M0(Fv). In general, the Langlands’ quotient
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J(Λ0, π0) is a quotient of I(Λ0, π0). However, if πv is generic then it is expected
that J(Λ0, π0) = I(Λ0, π0).

Conjecture (Standard module conjecture). Let πv be a non-tempered repre-
sentation of M(Fv). If πv is generic, then there is a tempered representation π0 of
M0(Fv) and a complex parameter Λ0 in the positive Weyl chamber such that

πv = I(Λ0, π0) = Ind
M(Fv)
M0(Fv)

(
π0 ⊗ q

〈Λ0,H
M
P0

(·)〉
v

)
.

This conjecture is proved for many cases. For archimedean places, it is due to
Vogan [29]. For nonarchimedean cases, it is proved in [7] for supercuspidal repre-
sentations, and G. Muić settled many cases for classical groups [22, 23]. Recently,
V. Heiermann and G. Muić proved the following fundamental result [10].

Theorem 4.5. If the local coefficients Cψ(s, π, w0) attached to (M,π) (cf. [27])
are regular in the negative Weyl chamber, then the standard module conjecture is
true. In particular, Shahidi’s conjecture implies the standard module conjecture.

Next we recall that the analogue of Assumption (A) is true for Re(s) ≥ 1
provided that Shahidi’s conjecture is true (Proposition 4.9 of [14]). Another funda-
mental result concerning normalized intertwining operators is the cocycle relation
of intertwining operators (cf. [1, 27]). The following version is taken from Theorem
1 of [31].

Proposition 4.6. Let π be an irreducible admissible generic representation of
Mθ(Fv) where θ ⊂ Δ. If w1θ, w2w1θ ⊂ Δ, then

N(Λ, πv, w2w1) = N(w1Λ, w1πv, w2)N(Λ, πv, w1).

Now we assume that πv is generic and non-tempered. We will show that
N(s, πv, w0) is holomorphic and non-zero for Re(s) ≥ 1

2 under the following three
assumptions (i),(ii) and (iii) to be specified below:

(i) Shahidi’s conjecture and (hence) the standard module conjecture.
(ii) The assumption of Lemma 4.2 (half integer condition).

From now on we assume (i) and (ii). By the standard module conjecture, we may
write πv = I(Λ0, π0) for a generic tempered representation π0, and

I(s, πv) = I(sα̃+ Λ0, π0).

Then we have
N(s, πv, w0) = N(sα̃+ Λ, π0, w

′)|I(s,πv).

Thus it is enough to prove that N(sα̃ + Λ, π0, w
′) is holomorphic and non-zero

for Re(s) ≥ 1
2 . By Zhang’s lemma (Lemma 4.4), all we have to do is to prove

N(sα̃+Λ0, π0, w
′) is holomorphic for Re(s) ≥ 1

2 . By Proposition 4.6, we know that
N(sα̃ + Λ0, π0, w

′) is a product of rank-one operators whose complex parameters
are of the form 〈sα̃ + Λ0, β

∨〉 for positive roots β by identifying roots ψ(G,Aθ)
with roots ψ(G,A∅) where A∅ is the maximal split torus. Further we assume that

(iii)

{
Re(〈sα̃+ Λ0, β

∨〉) > −1 if the rank-one situation is GLk ×GLl ⊂ GLk+l

Re(〈sα̃+ Λ0, β
∨〉) > − 1

2m other rank-one situation

for all positive roots β. By Lemma 4.2 and 4.3, we see that N(sα̃+Λ0, π0, w
′) is a

product of rank-one operators, each of which is holomorphic for Re(s) ≥ 1
2 . This

completes the proof of Assumption (A) under the assumptions (i),(ii) and (iii).
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We shall prove Assumption (A) for 2An,
2Dn,

3D4 and 2E6. First, we note that
assumptions (i) and (ii) are fulfilled for these cases. In fact, we proved Shahidi’s
conjecture for these cases in Section 3, and (partial) classifications of tempered
(or square integrable) representations for GLn(F ),U(F ), GSpin2n(F ) (cf. [17, 19,
28]) imply assumption (ii). Therefore, the proof of assumption (iii) is the only
issue for these cases. For simplicity of notation, we drop the notation v of place
and write π for πv and F for Fv. In view of the discussion above, we may assume
that all the parameters are real, in particular, we assume that s is real. With this
notational convention we prove that N(s, π, w0) is holomorphic and non-zero for
s ≥ 1

2 by proving the assumption (iii).

4.1. Unitary groups. Let U be either U(n, n) or U(n, n+ 1), and let E/F
be the quadratic extension which defines the unitary group U. Denote by Δ =
{β1, ..., βn} the set of simple roots of U. Any Levi subgroup M of U is of the form

M � ResE/FGLn1
× · · · × ResE/FGLnk

×U′

where U′ is a unitary group of the same type of smaller rank.
According to [19], any generic unitary representation of π of U(F ) is of the

form

π = Ind| det |r1E σ1 ⊗ · · · ⊗ | det |rkE σk ⊗ τ

where 0 < rk ≤ · · · ≤ r1 < 1, σi are discrete series of GLni
(E) and τ is a generic

tempered representation of U′(F ). Then we may write

Λ0 = s1E1 + · · ·+ snEn

where 0 ≤ sn ≤ · · · ≤ s1 < 1. Here E1, ..., En is the standard basis for Rn so that
βi = Ei − Ei+1 for 1 ≤ i ≤ n− 1 and

βn =

{
2En if U = U(n, n),

En if U = U(n, n+ 1).

Hence we can argue and prove Assumption (A) in this case as we do for classical
groups. More precisely, if U = U(n, n) then the (restricted) root system is of
type Cn and thus the case is identical to that of Sp2n. If U = U(n, n + 1) then
the (restricted) root system is of type BCn and thus the case is similar to that of
SO2n+1 (cf. [13]).

4.2. Dn case. The root system of 2D2n is of type Bn−1 and so the proof of
Assumption (A) is similar to that of classical groups of type Bn−1 (cf. [13]).

For completeness, we include a proof for the 3D4 case which is similar to that
of type G2. In this case [E : F ] = 3, and we consider parameters with respect to
| |E .

4.2.1. 3D4 − 1. In this case,

α̃ = e1 + e2 = 3β1 + 2β2.

Let π be a representation of GL2(E) = ResE/FGL2(F ). Then we may write

Λ0 = rβ1, 0 ≤ r < 3
2 . The rank one situations are those for GLl(E) × GLk(E) ⊂

GLl+k(E) and the least value of 〈sα̃+ Λ0, β
∨〉 is s− r > −1 if s ≥ 1

2 .
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4.2.2. 3D4 − 2. In this case,

α̃ =
1

3
(e1 + e2) = 2β1 + β2.

Let π be a representation of GL2(F ). Then we may write Λ0 = rβ2, 0 ≤ r < 1
2 .

The rank one situations are those for GLl(E)×GLk(E) ⊂ GLl+k(E) and the least
value of 〈sα̃+ Λ0, β

∨〉 is s− 3r > −1 if s ≥ 1
2 .

4.3. 2E6 case. In this case [E : F ] = 2, and we consider parameters with
respect to | |E . Since the (restricted) root system 2E6 is of type F4, the proof of
Assumption (A) is similar to that of the split F4 case.

4.3.1. 2E6 − 1. In this case

α̃ = 2(e1 + e2 + e3) + e4 + e5 + e6 + 3ε = 4β1 + 8β2 + 6β3 + 3β4

Let π1 be a representation of GL3(E) and π2 a representation of GL2(F ). We write
Λ0 = r1β1 + r1β2 + r2β4, where 0 ≤ r1 < 1 and 0 ≤ r2 < 1

2 , and

sα̃+ Λ0 = (4s+ r1)β1 + (8s+ r2)β2 + 6sβ3 + (3s+ r2)β4.

The rank one operators are for GLl(E)×GLk(E) ⊂ GLl+k(E) and the least value
of 〈sα̃+ Λ0, β

∨〉 is s− (r1 + r2) > −1 if s ≥ 1
2 .

4.3.2. 2E6 − 2. In this case

α̃ = 3(e1 + e2) + 2(e3 + e4) + e5 + e6 + 3ε = 3β1 + 6β2 + 4β3 + 2β4

Let π1 be a representation of GL2(E) and π2 a representation of GL3(F ). We write
Λ0 = r1β1 + r2β3 + r2β4, where 0 ≤ r1 < 1 and 0 ≤ r2 < 1

2 , and

sα̃+ Λ0 = (3s+ r1)β1 + 6sβ2 + (4s+ r2)β3 + (2s+ r2)β4.

The rank one operators are for GLl(E)×GLk(E) ⊂ GLl+k(E) and the least value
of 〈sα̃+ Λ0, β

∨〉 is s− (r1 + r2) > −1 if s ≥ 1
2 .

4.3.3. 2E6 − 3. In this case

α̃ = 2e1 + e2 + e3 + e4 + e5 + 2ε = 2β1 + 3β2 + 2β3 + β4

Let π1 be a character of GL1(E) and π2 a representation ofHSpin−
8 (F ). Since there

is a mapGSpin−
8 → HSpin−

8 we may consider π2 as a representation ofGSpin−
2 (F ).

Let E0, E1, E2, E3 be the standard basis for R4 so that β2 = E1 − E2, β3 = E2 −
E3, β4 = E3 are the simple roots of GSpin−

8 . Using the standard module conjecture
for GSpin−

8 (and hence for HSpin−
8 ), we may write Λ0 = a1E1 + a2E2 + a3E3 =

a1β2 + (a1 + a2)β3 + (a1 + a2 + a3)β4, where 0 ≤ a3 ≤ a2 ≤ a1 < 1
2 . In terms of

βi’s,

sα̃+ Λ0 = 2sβ1 + (3s+ a1)β2 + (2s+ a1 + a2)β3 + (s+ a1 + a2 + a3)β4.

The least value of 〈sα̃+ Λ0, β
∨〉 is s− (a1 + a2 + a3) > −1 if s ≥ 1

2 .

4.3.4. 2E6 − 4. This case is dual to 2E6 − 3, and the argument is similar.
We summarize the progress of Assumption (A). Since we have the standard

module conjecture available for Bn − 1, Dn − 1, (xxx) in [20], and (xxxii) in [20],
we have Assumption (A) for these cases. On the other hand, the long-sought
functorial lift from classical groups to GLN is proved in [11]. This result pro-
vides the necessary ingredient in the proof of Assumption (A) for (xviii)(SO6 →
GL6),(xxii),(xxiv)(SO10 → GL10) which was not available at the time of [14]. In
conclusion, we have the following theorem.
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Theorem 4.7. Assumption (A) holds except possibly for the cases E7−3, (xxvi)
of [20], E8 − 3, E8 − 4, and (xxviii) of [20].

Remark 4.8. The difficulties of the unsettled cases of Assumption (A) lie in
the complicated nature of Levi subgroups in the exceptional group cases, and the lack
of the (partial) classifications of discrete representations of those Levi subgroups.
For example, in the cases of E7 − 3, E8 − 3, E8 − 4, and (xxviii) of [20], it is hard
to apply multiplicativity to prove Shahidi’s conjecture, which is a key ingredient of
Assumption (A) due to the complicated nature of Levi subgroups.

5. Correction to [14]

The calculations of the Langlands L-groups of certain Levi subgroups are in-
correct. Sections 2.5.4, 2.6.3, 2.6.6, 2.7.3 and 2.7.7 need revision. However, this
does not affect the results of the paper [14].

In Section 2.5.4, we have the maximal Levi subgroup M, denoted by HSpin10,
which corresponds to the simple root {α1} of the exceptional group of simply
connected type Esc

6 . The Langlands L-group LM is not GSpin10(C). In fact,
LM = M(C). To see this, let Ead

6 be the exceptional group of the adjoint type.
Then Ead

6 = Esc
6 /S, where S is the center of Esc

6 , and it has order 3. Note that
LEsc

6 = Ead
6 (C), and LM is the maximal Levi subgroup of Ead

6 (C). Since A ∩MD

has order 4, we can see that LM = M(C). Hence given a generic cuspidal rep-
resentation π of GSO10(AF ), we can consider it as a cuspidal representation of
HSpin10(AF ) via the 2 to 1 map HSpin10(AF ) → GSO10(AF ) of Proposition 2.8,
and obtain the degree 16 spin L-function in Section 2.5.4.

In Section 2.6.2 and 2.7.3, GSpin10(C) should be replaced by LHSpin10(C) =
HSpin10(C) and the map GSpin10 → GSO10 is not a 2 to 1 map but a 4 to 1 map
(cf. See Proposition 2.8). These corrections do not affect L-function computations
there.

In Section 2.6.6, LM is not GSpin12(C). Let Ead
7 be the exceptional group

of the adjoint type. Then Ead
7 = Esc

7 /S, where S is the center of Esc
7 , and it has

order 2. More explicitly, S = {Hα1
(t)Hα3

(t)Hα7
(t) : t2 = 1}. Let M′ � M/S.

Then LM = M′(C). The derived group of LM is HS(12,C) (the half-spin group
in Section 2.3.4). Let c = Hα5

(−1)Hα7
(−1), z = Hα1

(−1)Hα3
(−1)Hα5

(−1). Then
M = GL1×Spin12/{(1, 1), (−1, z)}. Hence we have a 2 to 1 map f : M −→ GSO12.
(cf. Proposition 2.8).

Let π′ = ⊗vπ
′
v be a generic cuspidal representation of GSO12(AF ). Let π′

v

be a spherical representation of GSO12(Fv) with the corresponding semi-simple

conjugacy class t̂ = e∗0(b
2
0)e

∗
1(b

2
1) · · · e∗6(b26) in T̂ (C), the torus in LGSO12(C) =

GSpin2n(C), where e∗i : GL1(C) → T̂ (C) are the standard cocharacters (cf. [4]).
Now let π be a cuspidal representation of M(AF ), induced by π′ and the 2 to 1
map f . The Satake parameter of πv is Lf(t̂) in LM . The rest of the calculations
are correct. Since LM is complicated, we are not able to write down explicitly
the L-functions of cuspidal representations of M(AF ) which do not come from
GSO12(AF ).

Finally, let Ead
8 be the exceptional group of the adjoint type. Then Ead

8 = Esc
8 .

So LEsc
8 = Esc

8 (C). Hence in this case, for any maximal Levi subgroup M, LM =
M(C). In particular, LM = M(C) = HSpin14(C) for M = HSpin14 in Section
2.7.7. The computation of L-functions remains true.
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19. G. Muić, E. Lapid and M. Tadić, On the generic unitary dual of quasisplit classical groups,
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Reflexions on Receiving the Shaw Prize

Robert P. Langlands

Abstract. As its title indicates this is the text for a lecture delivered in
Hong Kong in September, 2007 on the occasion of the receipt of the Shaw
Prize in Mathematics. It will be published together with an autobiographical
essay by the Shaw Foundation in the Shaw Prize Book, but for the sake of
wider circulation among specialists it is also reproduced here with the kind

permission of the Shaw Foundation. There is a good deal to be said for further
discussion of many of the points made in the text, but that will require a much
more mature understanding of the mathematical issues. I hope that, for the
moment, the lecture is of some value as it stands.

To receive the Shaw Prize is of course a great honor, but it was also an occasion
to discover, or to be reminded, that a number of mathematicians have a perception
of the development of the theory of automorphic forms over the last four decades
that differs from mine if not in a radical, certainly in an essential way. Some of
the differences are a result of misapprehensions that are a natural consequence
of the variety of the theory’s relations to fields practiced by mathematicians with
many different temperaments and training. With a little explanation these misap-
prehensions can be dissipated. The prize is an opportunity to do so. Others are
the result of conflicting methodological stances, mostly unrecognized and certainly
unresolved. Their resolution will certainly demand a deeper understanding of the
subject than is yet available. In this lecture I attempt to describe the current,
unresolved situation. My emphasis will be on my own stance, although my purpose
here is not to advocate but to explain it

My own views are best explained with reference to the accompanying diagram,
in which there are five circles of different sizes, the sizes reflecting nothing more
than the space the associated fields of mathematics occupy in my own mind. The
upper left-hand corner is the analytic theory of automorphic forms, a theory that
came into prominence in the fifties and sixties, as the legacy of mathematicians
like Erich Hecke, C. L. Siegel, Atle Selberg and, as it became more and more
appropriate to employ the language of infinite-dimensional representations, Harish-
Chandra. It is an analytic theory. In the mid-sixties, as a young mathematician
there were several serious questions that I tried to broach, not all in this area
and for most of them with little success. With two I was lucky, simultaneously
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and as a result of my own earlier work on the general theory of Eisenstein series,
basically the study of the spectra of specific commuting families of differential
operators on certain noncompact Riemannian manifolds. The spectra are highly
structured and their qualitative properties difficult to establish. To my surprise,
their study ultimately led to a conjectural response to two of the questions or
problems: the definition of a natural family of analytically – at least potentially –
tractable L-functions associated to automorphic forms and the possible structure of
a nonabelian class field theory. The second came immediately after the first, more
the result of inspiration than of effort.

Automorphic forms

Function fields
over finite fields

Complex curves

Galois 
representations

Grothendieckian
algebraic geometry,

Motives

I recall here that not long before, in the proceedings of a mathematical confer-
ence celebrating the second centenary of Princeton University in 1956, Artin had
suggested that such a theory might not exist, or at least might not contain any new
elements. So I may well have been the only one who was searching for it in the
1960’s.

The suggested answer took the form of a construction and a conjecture. The
basic object in the theory of automorphic forms is, today, an automorphic rep-
resentation of the adelic points G(AF ) of a reductive algebraic group G over the
algebraic number field F , all objects that need not be defined here ([1]). For many
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expository purposes, the representation can be replaced by an element of the func-
tion space on which it acts. If, in addition, the group is taken to be GL(2), and, for
simplicity, the adeles replaced by the real numbers, this element is often just a clas-
sical elliptic modular form. This simplification entails, however, a real possibility
of misunderstanding the import of the construction and the conjecture.

The first step in the construction is to attach to G a complex algebraic group
LG, or better LGK , usually referred to as the L-group. K is a sufficiently large
finite Galois extension of the ground field F , itself a finite-dimensional extension
of Q at the time of the group’s initial introduction. The L-group has a connected
component Ĝ of the same dimension as G and its group of connected components
comes with an isomorphism with Gal(K/F ). So there is an exact sequence

1 → Ĝ → LGK → Gal(K/F ) → 1.

The second step is to attach to each automorphic representation π and to each
finite-dimensional algebraic representation r of LG an L-function defined by an
Euler product, at first partial,

(1) LS(s, π, r) =
∏
v/∈S

L(s, πv, r).

The set S is a finite set of places of F containing all infinite places, and L(s, π, r)
has the form

1

det
(
I − r(A(πv))

Nm ps
v

) ,

where {Aπv
= Av(π)} is a conjugacy class in LGK attached to π or its local repre-

sentative πv. These products converge in a half-plane. Of course, the L-functions
introduced by Hecke, and more generally by H. Maaß, for GL(2) were the source
of the impulse to search for such general L-functions.

The definition of the L-functions (1) was inspired by the general theory of
Eisenstein series, for it was there that a substantial number of them emerged and
could be continued to the whole complex plane. The first problem that presents
itself is the continuation of all of them, not just as meromorphic functions but as
meromorphic functions with a very limited number of poles. If G is GL(n) and
r = r0 the standard representation of GL(n) it was pretty clear that this could be
done, using ideas already proposed, as I recall, in their first form by T. Tamagawa
([2]). The final theory was developed by Godement-Jacquet.

Artin’s proof of the analytic continuation of abelian Artin L-functions came
quickly to my mind and a conjecture simple to state presented itself immediately
with great force. Suppose H and G are two groups over F and φ is a homomor-
phism φ : LHK → LGK compatible with the projections onto the Galois group.
Then for any automorphic representation πH of H(AF ) there is an automorphic
representation πG = φ(πH) of G(AF ) such that {Av(πG)} = {φ(Av(πH))} for al-
most all v. The informed reader will notice that for simplicity all problems related
to L-packets have been passed over in silence.

It is immediately clear that this conjecture is already deep and pregnant with
consequence even for H = {1} and G = GL(n). For suppose ρ is a representation
of the Galois group Gal(K/F ) in GL(n,C). Then taking advantage of the freedom
in the choice of K – an inevitable consequence of the initial freedom in the choice
of G – we take LH = Gal(K/F ), LG = GL(n)×Gal(K/F ), φ(σ) = σ × ρ(σ), πH
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the unique one-dimensional representation of the trivial group H(AF ) = {1} and
πG = φ(πH), and conclude that

(2) L(s, ρ) = L(s, πH , ρ) = L(s, πG, r
′
0),

r′0 being the product of the standard representation of GL(n,C) with the trivial rep-
resentation of Gal(K/F ). As a consequence of (2) and the Tamagawa-Godement-
Jacquet theory for GL(n), L(s, ρ) can be extended to the entire complex plane.

The general conjecture that φ(πG) always exists I began after some time to call
functoriality. I was amazed by it at the time and remain so today. It has, I believe,
to be regarded as a striking historical fact that the solution – still itself in large
part conjectural, but no longer entirely – to the Artin conjecture (for the first of the
very few available cases, see [3]) appeared as part of a much larger conjecture with
implications of a much broader compass. To deny this context and this historical
origin by referring to the conjectured existence of the πG attached to ρ as in (2)
as the strong Artin conjecture seems to me wrong-headed. It lends an unmerited
legitimacy to clearly limited methods. The denial can charitably be ascribed to
ignorance and a fear of the analytic theory of automorphic forms.

For number theorists in the 1960’s and subsequent decades, Galois cohomology
and elliptic curves were much more intensively cultivated than algebraic number
theory as such. Legions of practitioners were produced in these domains for whom,
by and large, the analytic theory of automorphic forms, especially nonabelian har-
monic analysis, was anathema. The use by A. Wiles of some simple cases of func-
toriality that could be proven by such means in the proof of the Shimura-Taniyama
conjecture and therefore of Fermat’s theorem was at first simply overlooked ([4]).
Even now that it has been generally noticed, there is among many number theorists
a reluctance to accept the imbrication of number theory and other domains entailed
by a systematic reference to functoriality and nonabelian harmonic analysis and a
failure to recognize the possibilities that this offers.

Once the general conjecture was formulated, the first order of business was to
examine its simpler consequences and to verify in so far as possible that they could
be proved or were compatible with what was then known. There were also over
the years some accretions to the original conjecture. I would now be inclined to
add to the conjectured existence of φ(πH) just described a second one and to label
the two together functoriality. Functoriality as such applies to all automorphic
representations, even to those that, like most of the representations associated to
Maaß forms, probably have no strictly diophantine significance.1

There are some fine points concerning the second conjecture for which I would
hesitate to lay my hand in the fire and that I pass over in silence here, but I
describe it nonetheless because something like it has certainly to be proved in any
theory that aspires to completeness. To describe it, I have to assume a notion
adumbrated by Arthur ([5]) that would be a consequence of any complete theory
of the trace formula, namely the notion of Ramanujan type for an automorphic
representation π, essentially the type for which the Ramanujan conjecture would
be true. Functoriality offers of course the possibility of proving the Ramanujan
conjecture for these representations, which will be in the majority, and of disproving

1Peter Sarnak observed to me that this view is too narrow and referred me, in particular, to
the work of Cogdell, Piatetski-Shapiro and himself on the number of representations of integers
by ternary quadratic forms.
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it for the rest. If π is of Ramanujan type, the critical strip for L(s, π, r) will have
the same significance as for Dirichlet L-functions, thus lie between �s = 0 and
�s = 1. Moreover the order m(π, r) of the pole of L(s, π, r) at s = 1 will be greater
than or equal to 0. Call π thick if m(π, r) is always equal to the number of times
the trivial representation of LG is contained in r. The second conjecture is that
for any π = πG there always exists an H, a thick πH and a φ : LH → LG such
that πG = φ(πH). For a thick π the distribution of the conjugacy classes {Av(π)}
would, basically by definition, be given by the usual Weyl distribution on conjugacy
classes of LH.

So functoriality contains a very general form of the Sato-Tate conjecture. Here,
in contrast to any work on the Artin conjecture, the Sato-Tate conjecture was
formulated before functoriality. So there are historically sound reasons for singling
it out. Its early formulation is, like that of the Taniyama-Shimura conjecture,
no doubt a reflection of the strong early interest in elliptic curves and their zeta-
functions.

The two conjectures of functoriality are in themselves related to Artin’s con-
jecture, largely through their application to the trivial group H = {1}, but, as
formulated here, their purely arithmetic content is otherwise still limited. Not only
do they have a validity extending beyond those automorphic forms strictly related
to diophantine problems but also there is not yet in them any reference to diophan-
tine problems for varieties of dimension greater than zero, for example no reference
to the Taniyama-Shimura conjecture.

A good deal of work has been done on functoriality by F. Shahidi, I. Piatetski-
Shapiro, and others without any pretense that the methods would ever offer the
ultimate insights, but which, in my view, was nevertheless of great importance be-
cause it persuaded many analytic number theorists of the relevance of functoriality
to their problems ([6]). This is, in some sense, quite separate from any interest that
functoriality may have as a tool for more purely diophantine problems. The trace
formula was developed – in higher dimensions created – by J. Arthur and used as
a tool by him and many others in the treatment of specific cases of functoriality,
largely those accessible to endoscopy, especially twisted endoscopy. The book [7]
will be a valuable introduction to the results of many years of effort.

The techniques referred to in the field as endoscopy had, however, from the
beginning an obvious and important limitation. They could provide cases of func-
toriality that have been widely used and in quite different contexts, base change or
the Jacquet-Langlands correspondence in various guises, but functoriality in gen-
eral was not within their range. At the same time, there was a severe technical
difficulty that caused me, and others, to despair: the fundamental lemma. It was
a simply stated general combinatorial lemma and I expected that as such I would
be able to prove it with time. Matters turned out quite differently.

Endoscopy, a feature of nonabelian harmonic analysis on reductive groups over
local or global fields, arose implicitly in a number of contexts, in its twisted form
both implicitly in the early work of Saito-Shintani on what was later called base
change, and somewhat more explicitly in suggestions of – I believe – Jacquet for
functoriality from orthogonal groups or symplectic groups to GL(n). It arose for
me in the context of the trace formula and Shimura varieties.

Over the years a number of my students were introduced to the fundamental
lemma and its difficulties, especially, R. Kottwitz, J. Rogawski and T. Hales. Some
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went on, as is well known, to quite different things, but Kottwitz continued to
reflect not only on it, but also on Shimura varieties and the number-theoretical
difficulties attached to them and on applications of the trace formula. It was he, in
the beginning alone and then later together with M. Goresky and R. MacPherson,
who first had some genuine insight into the topological nature of the lemma.

In the hands of J-L. Waldspurger, G. Laumon and most recently B. C. Ngo,
the lemma and the associated problems took on quite different features. Notice
that, in the diagram under the large circle in the upper left-hand corner, there are
two slightly smaller circles, the size reflecting, as I observed, my own predilections.
These are theories that were inspired by the theory for automorphic forms over
number fields: first of automorphic forms over the second examples of global fields,
namely function fields over finite fields, and then in the very lowest circle over the
complex numbers. By the time we arrive at this third circle the theory has quite a
different flavor. Two names associated to the second circle are V. Drinfeld and L.
Lafforgue ([8]). There is a whole school, strongly influenced by Drinfeld and largely
a Russo-American school, associated to the third circle.

The fundamental lemma is a local lemma, over p-adic fields. The recognition
informing recent work is, first, that to prove it over a p-adic field it is enough to
prove it for the second type of local fields, fields of Laurent series over finite fields,
and secondly that to prove it over such fields it is best to work not with local
orbital integrals but with the corresponding global objects as they appear in the
trace formula. The first step is far from easy but was taken by Waldspurger in an
important paper; for the second we pass naturally from the first of the three circles
on the left of the diagram to the second.

Before passing to the third, I have to indulge in a good deal of somewhat
reckless speculation, but I am growing old and the need to correct false impressions
is growing more urgent. I may no longer have enough time to pursue any insight
slowly to the point of genuine understanding and conviction. So, in the face of
what seem to me the serious misunderstandings that have emerged, I must take my
chances and state my case without delay as clearly as I can. The reader is warned
that prudence is expected of him. He will have to take a great deal of what follows
with a grain of salt until he has reflected on it himself.

I have been troubled for years and often discouraged by my failure, indeed by
the general failure, to broach functoriality in any decisive way. Not so long ago, I
suggested a different approach to the question with which I began to amuse myself
([9],[10]) but it was all very tentative. At the same time, I resolved to learn more
in general about the various researches referred to often in a blanket way by the
catch phraseLanglands program, a phrase that can mean many things.

I also had occasion to listen to lectures of Ngo (supplemented by the report of
J-F.Dat ([11])) and to try to understand them. In particular, I had to attach for
myself some meaning to the notion of stack and algebraic stack. It was a revelation.
I discovered that I had been thinking for decades of orbital integrals in an incorrect
way. I had separated the local from a global part. With the notion of stack, with
the suppleness of the etale cohomology, the two parts are, over global fields of the
second kind, thus over function fields, to be fused and regarded as yielding the
number of points on a stack, a number that can be calculated cohomologically.
The problems encountered in [9],[10] suddenly appeared in an entirely new light. I
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shall try to explain this, although I am still dealing with concepts that I may have
misunderstood.

In [9] a tentative method for approaching functoriality by taking limits in var-
ious trace formulas over an appropriate sequence of functions was introduced. The
global field was taken to be Q, the group GL(2). The following difference, written
in a notation that is not quite the same as that of [9], was encountered

(3)

∑
p<X ln(p)θm(p)

Xm/2+1
− cmXm/2.

I define neither the constant cm nor the expression θm(p). The question of whether
the limit of this difference exists as X → ∞ was discussed, but inconclusively. In
[10], I passed to the rational function field over a finite field with q elements. Then
the sum (3) is replaced by

(4)

∑
deg p=n nθm(p)

qnm/2+n
− c′mqnm/2.

The limit is to be taken for a fixed m but with n → ∞ and the constant has
changed. There would be something similar for the function fields of curves of
positive genus. The divisor p is here prime.

We write (4) as

(5)

∑
deg p=n nθm(p)− c′mqmn+n

qnm/2+n
.

We need to show that this expression has a limit as n approaches infinity. The
first term of the numerator is a fused orbital integral, and thus can – I suppose –
be calculated cohomologically. Thus, the dimension of the associated stack being
mn+ n, it will be of the form

2(mn+n)∑
k=0

(−1)k
dk∑
j=1

γj,kq
k/2,

where |γj,k| = 1. The kth term is the contribution of the cohomology with compact
support in degree k, thus of the cohomology in degree 2(mn + n) − k. So what is
necessary is to show that after the cohomology in degree 0 or at least very small
degrees, which will just contribute the term c′mqmn+n, there is no cohomology in
positive dimension less than (approximately) the intermediate dimension mn + n
and that the dimension of the cohomology in all degrees can be bounded. Then
the cohomology in degrees around mn + n can contribute to the limit, and the
cohomology in higher degrees will contribute 0 because of the denominator.

All this looks far-fetched. It is suggested by a simple phenomenon, first de-
scribed to me by N. Katz, that is discussed in [10]. In the naive reflexions of that
paper, the stack is replaced by the moduli space of hyperelliptic curves of some
large genus, thus by the space of monic polynomials of a given degree with dis-
tinct roots. This space has cohomology over Q only in degrees 0 and 1. It is an
Eilenberg-MacLane space for a braid group, itself fairly closely related to congru-
ence subgroups. For congruence subgroups, the phenomenon of concentration of
cohomology in only a few dimensions, in particular those around the middle dimen-
sion, seems to have presented itself in other contexts ([12]), but all this is still very
new to me.
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I have, of course, passed rather glibly from function fields over finite fields to
ordinary topology. This is the passage from the second circle on the left to the
third. For vanishing theorems, this is perfectly natural because there are compar-
ison theorems between etale cohomology and other cohomologies or between etale
cohomology for a variety (or for stacks!) and its reductions. Moreover, it is quite
likely that as the theory over complex curves progresses, the stacks that appear for
orbital integrals when we are examining the trace formula over function fields over
finite fields will, as a variant of the stacks Heckeλ of E. Frenkel’s report on recent
advances [8], also appear there.

If so, a gratifying unity will appear. Functoriality, as in the first circle, is to
this point in this presentation largely analytic, the only link to algebraic number
theory being the Artin L-functions. In both geometric forms of the theory, the
reciprocity, both local and global, between Galois representations or representations
of the fundamental group on the one hand and, on the other, automorphic forms
for curves over finite fields, or D-modules and perverse sheaves over the complex
field, is the focus of attention. In these two cases, the functoriality is a consequence
of the reciprocity. Over number fields, functoriality is, as I have stressed, also
applicable to automorphic representations for which there is no reciprocal Galois
representation and there is no real sign that it can be deduced in any generality
except from the trace formula. The possibility that the topological study of the
varieties (or stacks) appearing in the purely geometric theory will be pertinent to
the trace formula is appealing.

There will be at least two major problems. The cohomology of braid groups
is difficult and not well understood. That of the stacks Heckeλ and their variants
may be even more challenging. In addition, even if this strategy works, it is limited
at first to global fields associated to curves over finite fields. On the other hand,
a well-defined technique with a well-defined structure that was successful for the
trace formula over function fields would certainly stimulate the search for related
techniques over number fields. It is apparent from [10] that the difficulties, even
for function fields, are related to the behaviour of class numbers, so that it is not
impossible that questions like those raised by the heuristics of Cohen-Lenstra ([13])
will be relevant when we turn to number fields. I expect, however, that for number
fields there will be very large, still unforeseeable difficulties that will make great
demands on the inventive powers of analytic number theorists.

We could continue down the circles on the left to the last of the three and exam-
ine its relation to various aspects of ordinary differential equations or to conformal
field theory, but that is not, so far as I know, where the misunderstandings lie. They
lie largely in a failure to appreciate the autonomous merit of functoriality, but also
in a misapprehension of its relation to motives and to Galois representations.

I myself am inclined to regard the Galois representations as instruments, and
the central relation between the left and the right sides of the diagram as the
diagonal arrow between automorphic forms and motives, not the horizontal and
vertical arrow passing through Galois representations. What the diagonal arrow
provides, as in the proof of Fermat’s last theorem, is passage from a context where
a given, critical assertion is difficult, even impossible, to one in which it is almost
transparent. It may, for example, not be possible to prove directly that there is no
free-standing elliptic curve with various constraints on its ramification, but when
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the curve or an isogenous curve is assumed to be contained in the jacobian of a
modular variety the same conclusion can be immediate.

Grothendieck appears to have been grievously disappointed when his cherished
notion of motives and the theorems needed to establish it turned out to be unneces-
sary for the proof of the last of the Weil conjectures. Perhaps he could have drawn
a different conclusion. As explained in N. Katz’s report ([14]), the last of the Weil
conjectures was proven, by Deligne, in essence on the basis of a profound under-
standing of the etale cohomology theory accompanied by an observation arising in
the theory of automorphic forms, namely that Ramanujan’s conjecture, in its orig-
inal or in its generalized forms, is an immediate consequence of functoriality and
the resulting knowledge of the analytic properties of the family of all L-functions
associated to the corresponding automorphic form or representation. In the context
of the Weil conjectures, there are only the Galois representations, where functori-
ality is almost formal, and so no need for unproved assertions, just for a complete
mastery of the etale cohomology theory. The conclusion to be drawn from this
might have been that the theory of motives will have to be founded simultaneously
with functoriality.

At the moment, I cannot make too much of this suggestion. There is, however,
one point to which I shall return. Reflections on Shimura varieties led to the
introduction of the Taniyama group ([15]). This Taniyama group was then shown
([16]) to be the motivic Galois group of a restricted family of motives, not in the
sense of Grothendieck but in a different sense, that defined by absolute Hodge cycles,
thus the family of motives of potentially CM -type. It is likely that the two senses
will be shown ultimately to coincide. Since the Taniyama group was shown at its
introduction to be closely related to automorphic forms on tori, this is a genuine
connection between automorphic forms and motives – or Galois representations –
whose interest should not be overlooked.

I had already observed that the Taniyama-Shimura conjecture, like the Sato-
Tate conjecture, preceded the introduction of functoriality for automorphic forms.
I myself only became aware of it after my letter to Weil, when he drew my attention
to his paper on the Hecke theory in which he mentions it. With this conjecture
and the large number of L-functions introduced in connection with functoriality at
hand, it was natural to suppose that they would account for all the L-functions
attached to algebraic varieties – in the sense associated in a general way to the pair
of names Hasse-Weil.

Given the Eichler-Shimura theory and the extensive researches of Shimura on
what I later referred to as Shimura varieties, these were the clear context in which
to test the supposition. As I already observed, there were difficulties associated
with endoscopy and therefore with the fundamental lemma. There were also – or
so it seemed to me at first until I was enlightened by Kottwitz – independent com-
binatorial obstacles. Finally there was a serious problem connected with the action
of the Galois group on abelian varieties over finite fields that was finally clarified
by Kottwitz and by Reimann-Zink ([17]). At the time (1992), the general funda-
mental lemma still missing, Kottwitz was able to develop a reasonably complete
theory only for a limited class of varieties ([18]), but these are in themselves of
considerable importance.
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We can now hope that, with the recent work of Laumon-Ngo, it can be es-
tablished in general that the L-functions attached to Shimura varieties are auto-
morphic. It is, however, not yet clear to me what pertinence this will ultimately
have for the general reciprocity between motives and that large but special class
of automorphic representations (sometimes called arithmetic) to which motives are
thought to correspond. The final structure of the arguments can hardly be certain
at this stage.

The proof of the Taniyama-Shimura conjecture, first for semi-stable curves by
Wiles (with the help of R. Taylor) and then in general, introduced an entirely new
element into the correspondence between automorphic representations π and Galois
representations σ or, if one immediately passes to the diagonal arrow, motives M .
Here there are many things with which I am completely unfamiliar and many more
that I barely understand. So we are leaving the domains in which I have any claim
whatsoever to authority. In particular, the theory of Galois representations as it
developed in the hands of, say, B. Mazur and J-M. Fontaine is a subject that is
not easily mastered and that I neglected in favor of other interests for too long a
time. This makes it difficult to understand not only the work of Taylor but also
the p-adic local reciprocity, which I am only beginning to learn.

Whether it is the horizontal arrow or the diagonal arrow from motives to au-
tomorphic forms that is being considered, there is also a necessity to establish an
independent stance. My own first impressions were described in my review ([19])
of Hida’s book ([20]). There is a seeding and there are deformations, apparently
of two kinds: the first are moves from a Ql representation to a Ql′ representation,
but for the same motive; the others simultaneous deformations of automorphic rep-
resentation and Galois representations. The change from l to l′ is some wondrous
phenomenon at the heart of the etale theory that I have not yet been able to inter-
nalize. There is nothing I can add at present to the comments of M. Harris and R.
Taylor on deformations of both kinds and on the p-adic local reciprocity that are
contained in the text supplementary to my review.

My view of the seeding is different from that of, say, Taylor, perhaps largely be-
cause I am so attached to functoriality, which has a wider scope than the arithmetic
automorphic representations alone. This attachment suggests to me that the best
seeding is that given by motives of potentially CM -type, a class that includes all
motives of dimension 0, thus all Artin representations. As I observed, for motives
of CM -type the correspondence can be established thanks to the Taniyama group
and its properties.

It is, on the other hand, almost an explicit demand of the approach described
here for establishing functoriality for function fields that motives whose cohomol-
ogy consists of arbitrary Galois representations with finite image can be isolated.
Something similar will have to be available for number fields, and at the moment
it is not clear to me where to look. So it is best to keep an open mind.

Recall what the correspondence is to associate to what. We are trying to
establish the isomorphism of two Tannakian categories, perhaps with a fibre functor.
That for automorphic forms will be defined by its group, which will necessarily
be over C. Apart from some obscurities and difficulties caused by centres that I
prefer to disregard at present, this will be essentially the product over all thick
πH of the groups LH. There is, of course, a restriction to elements with the same
image in Gal(K/F ) and an inverse limit over K. Notice that H is freely varying.
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Thus the analogue of a motive, better a motive with values in LG, corresponds
to a choice of a thick πH and a homomorphism φ : LH → LG. Motives are of
course defined quite differently and the associated group defined by a categorical
construction that still presents severe problems. There is also a fibre functor to be
introduced by an imbedding Q̄l → C. As a consequence the correspondence will be
M → {πH , φ : LH → GL(n)}. So the complete construction does not seem to be
possible without functoriality. This is a point on which to reflect!

The simplest example of the seeding provided by the Taniyama group is of
course that for the trivial group, thus for the trivial representation πH , H = {1}.
Supplemented by functoriality, this would mean that every motive of Artin type,
thus essentially every linear representation of Gal(F̄ /F ), would have its automor-
phic correspondent. It would mean as well that any base change was possible. It
would also mean, I suppose, that, when the relation between automorphic rep-
resentations of Ramanujan type and the remaining ones was taken into account,
induction to include various motives whose Galois representation is not irreducible
would be possible. This is the kind of information available to R. Taylor and his
collaborators in their recent papers, except that the base change and, in general, the
functoriality at hand are extremely limited, largely to solvable base change, some
form of the Jacquet-Langlands correspondence, and the functoriality provided by
the converse method.

So it is startling to me, initially even somewhat disturbing, that Taylor is able to
deduce from their results the Sato-Tate conjecture. This conjecture is, as observed,
just one case of a statement expected to be valid for all automorphic representations
(of Ramanujan type of course — but these are typical and all others are deduced
from them). Nevertheless, because it anticipated the general assertion and refers to
one of the simplest and most studied classes of diophantine objects, elliptic curves,
a proof of it, even if it turns out to be of limited import for the conjecture in general,
is of special interest. Taylor’s proof lies, in part, outside the strategy described in
this lecture for it does not work with automorphic forms alone and does not rely
solely on functoriality, but combines some special cases of functoriality already at
hand with deformation.

The strategy of the lecture, in spite of a large conjectural element, is coherent
and has a solid record of proved predictions. A major departure from it is at least
a methodological challenge. Moreover, that two different strategies will succeed
in such a highly structured subject seems to me unlikely. Perhaps that described
here is correct and hidden somewhere in the arguments of Taylor is a method
that, say, surmounts the analytic difficulties for number fields, about which I have
been able to suggest very little. Maybe a way will be found to handle with the
deformations not only other automorphic representations of arithmetic type but
even all automorphic representations; on the other hand the Sato-Tate conjecture,
even in its general form for all automorphic representations, may turn out to be
only a weak consequence of functoriality and not lead back to it. The relation
of the conjecture, in its original or in its general form, to functoriality appears,
on reflection, to be like that of the Chebotarev theorem to the Artin conjecture.
Although of importance in its own right, it is a weaker, more accessible assertion.

Until more insight into these questions is acquired, there will remain a serious
intellectual, or methodological, gap between my stance and that of Richard Taylor.
Although we have been yoked by the Shaw Prize, we are to some extent pulling in
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different directions. Perhaps that is not so bad. There is still a long way to go and
the road uncertain.2
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1. Introduction

Let G be a reductive group over a number field F , and let A be the ring of adeles
of F . The theory of Eisenstein series provides a description of the continuous spec-
trum of L2(G(F )\G(A)) in terms of the discrete spectrum of L2(M(F )\M(A)1) of
Levi subgroups M of G ([Lan76], [MW95]). The role of Eisenstein series is analo-
gous to the role of the exponential functions in the spectral theory of L2(R). Just as
in Fourier analysis, the Eisenstein series are not themselves in L2(G(F )\G(A)). In-
stead, one starts with a better-behaved class of functions (from an analytic point of
view) called pseudo-Eisenstein series, which are smooth and rapidly decreasing. The
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inner product of two pseudo-Eisenstein series is a formal computation ([Lan66])
and gives the coarse spectral decomposition of L2(G(F )\G(A)). The finer spectral
expansion is obtained by performing a shift of contour to the imaginary axis in the
expression for the inner product.

A useful variant of pseudo-Eisenstein series is the analytically cruder truncated
Eisenstein series, which show up in Langlands’ work. Langlands obtained a formula
for the inner product formula of truncated Eisenstein series. In the case of the upper
half-plane this is a consequence of what is known as the Maass-Selberg relations
(cf. [Iwa02]). The complete details of the proof of the formula in the higher
rank case were given by Arthur, who also defined the truncation operator for all
automorphic forms and studied its properties ([Art80]). The proof uses complex
analysis (residue calculus) in a rather mysterious way.

The truncation operator plays a crucial role in the development and the analysis
of the trace formula. In fact, Arthur had to consider the inner product of truncated
Eisenstein series which are induced from square-integrable, but not necessarily cus-
pidal, automorphic forms on the Levi subgroup. As it turns out, the main term in
the inner product is the one appearing in Langlands’ formula, but there are addi-
tional terms which tend to zero exponentially as the truncation parameter grows
[Art82c]. Arthur’s formula is derived from Langlands’ formula using the descrip-
tion of the discrete spectrum as residues of cuspidal Eisenstein series. It is a key
step in Arthur’s fine spectral expansion of the trace formula ([Art82a], [Art82b]).
(A more explicit version of the fine spectral expansion, building on Arthur’s work,
was recently obtained in [FLM09].)

In [JLR99] the notion of regularized periods was developed and used to study
periods of Eisenstein series in certain cases. (See also [LR03], [LR01].) As a by-
product, a new and simple proof of Langlands’ inner product formula was obtained
by reducing it to the vanishing of the regularized inner product of Eisenstein series,
which in turn, immediately follows for local reasons. The purpose of this note is
to extend this argument to the more general case considered by Arthur, namely
when the inducing data is not necessarily cuspidal. The proof is a little trickier
than in the cuspidal case, but hopefully it is still reasonably conceptual and short.
Perhaps more importantly, it is independent of Langlands’ description of the dis-
crete spectrum in terms of residues of cuspidal Eisenstein series.1 As a bonus, we
obtain “one-half” of Langlands’ spectral decomposition of L2(G(F )\G(A)) without
appealing to the description of the discrete spectrum. This raises the question of
whether the same can be done for the other half (exhaustion part) as well. While
we do not answer this question here we point out that its plausibility is suggested
by the existence of such an argument in the local case (cf. [Wal03]).

Another motivation is to generalize these results to the relative setup, for in-
stance, the one considered in [JLR99]. We hope to consider this in a subsequent
work.

Acknowledgement. I would like to thank Joseph Bernstein for useful discus-
sions and the referee for carefully reading this manuscript.

1Of course, the analytic properties of Eisenstein series are used, but they too can be proved
independently of the description above.
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2. Preliminaries

Throughout, G will be a reductive group over a number field F and A the ring
of adeles of F . We will freely use Arthur’s notation and conventions from [Art80].
In particular, we fix a maximal split torus T0 over F and let M0 = CG(T0) be a
minimal Levi subgroup defined over F and Ω = NG(T0)/M0 the Weyl group. We
also fix a maximal compact K of G(A) which is in good position with respect to
M0, a minimal parabolic subgroup P0 over F with Levi M0, a Siegel domain S in
G(A) and a height function ‖·‖ on G(A). Until further notice the letters P and Q
will be reserved for standard parabolic subgroups defined over F , and M = MP

will denote the Levi subgroup of P containing M0. The vector spaces aP , a
Q
P , the

sets ΔP , Δ̂P , R(TM , U), Ω(P,Q), the lattice LP , the characteristic functions τP ,
τ̂P , the decomposition

M(A) = M(A)1 ×AM ,

and the map

HP : G(A) → aP

are as in [ibid.]. We choose Haar measures on G(A), M(A), U(A) K and aP

compatibly with respect to the Iwasawa decomposition. By abuse of notation, we
will often denote by X the F -points of a variety X defined over F .

Denote by AG the space of automorphic forms on G\G(A). More generally,
for any P we denote by AP the space of automorphic forms on U(A)P\G(A). The
constant term map ϕ �→ ϕP from AG to AP is defined in the usual way. We
also denote by An

P the subspace of AP consisting of those ϕ such that ϕ(ag) =

δP (a)
1
2ϕ(g) for any a ∈ AM , and by A2

P the subspace of An
P of those ϕ such that

‖ϕ‖2P :=

∫
AMPU(A)\G(A)

|ϕ(g)|2 dg < ∞.

We can view A2
P as a dense subspace of Ind

G(A)
P (A) L

2
disc(AMM\M(A)), where

L2
disc(AMM\M(A)) is the direct sum of all irreducible subrepresentations of the

regular representation of M(A) on L2(AMM\M(A)).
Any ϕ ∈ AP can be uniquely written as

(1) ϕ(g) =
∑
i

e〈λi,HP (g)〉Qi(HP (g))ψi(g)

where λi ∈ a∗P,C are distinct, 0 �= Qi ∈ C[aP ] and 0 �= ψi ∈ An
P . We denote by

EP (ϕ) the multiset {λ1, . . . , λn} where λi appears degQi + 1 times. We also set
EP (ϕ) = EP (ϕP ) for ϕ ∈ A.

Given ϕ ∈ AP and λ ∈ a∗P,C let

ϕλ(g) = ϕ(g)e〈λ,HP (g)〉.

The Eisenstein series

EP (g, ϕ, λ) =
∑

γ∈P\G
ϕλ(γg)

converges for Reλ sufficiently regular in the positive Weyl chamber. Similarly, for
any Q = MQV and w ∈ Ω(P,Q) the intertwining operators

M(w, λ) : AP → AQ
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defined by

M(w, λ)ϕ(g) =

∫
(V (A)∩wU(A)w−1)\V (A)

ϕλ(w
−1vg) dv

converge for Reλ sufficiently regular in the positive Weyl chamber.

Working hypothesis. For any ϕ ∈ A2
P and λ0 ∈ a∗P,C there exist an open

neighborhood N of λ0 and integers n, m such that

[ ∏
α∈R(TM ,U)

〈λ− λ0, α
∨〉

]m
E(·, ϕ, λ)

is a holomorphic function from N to the Fréchet space of smooth functions on
G\G(A) such that the norms

sup
g∈S

|[R(X)f ](g)| ‖g‖−n, X ∈ U(gC),

are finite; similarly, for any Q and w ∈ Ω(P,Q)

[ ∏
α∈R(TM ,U)

〈λ− λ0, α
∨〉

]m
M(w, λ)ϕ

is a holomorphic function on N taking values in a finite-dimensional subspace of
A2

Q determined by the K- and z-types of ϕ. Moreover, we have functional equations

EQ(M(w, λ)ϕ,wλ) = E(ϕ, λ), ϕ ∈ A2
P , w ∈ Ω(P,Q)

M(w2, w1λ) ◦M(w1, λ) = M(w2w1, λ) w1 ∈ Ω(P,Q1), w2 ∈ Ω(Q1, Q2)

for λ ∈ a∗P,C.

As is well known, these results are a consequence of Langlands’ theory (cf.
[Lan76], [MW95], [Lap08]). However, they can also be proved independently
(for any ϕ ∈ AP ) by a method of Bernstein. Details will appear elsewhere.

The functional equations of the intertwining operators immediately imply that
for λ ∈ ia∗P , M(w, λ) is unitary, hence holomorphic, and therefore extends to a

unitary operator on Ind
G(A)
P (A) L

2
disc(AMM\M(A)). (Cf. [MW95, IV.3.12].) The

Eisenstein series are also holomorphic near the imaginary axis, but we will not
assume this a priori.

Arthur’s truncation operator is defined for any left G-invariant locally bounded
measurable functions ϕ by

ΛTϕ(g) =
∑
P0⊆P

(−1)dim a
G
P

∑
γ∈P\G

ϕP (γg)τ̂P (HP (γg)− T ).

More generally, for any P the relative truncation operator is defined for functions
on P\G(A) by

ΛT,Pϕ(g) =
∑

P0⊆Q⊆P

(−1)dim a
G
Q

∑
γ∈Q\P

ϕQ(γg)τ̂
P
Q (HQ(γg)− T ).

Note that ΛT,Pϕ = ΛT,PϕP .
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3. The main results

Our goal is to give an alternative proof for the following result of Arthur.

Theorem 1 ([Art82c]). Let ϕ ∈ A2
P , and ϕ′ ∈ A2

P ′ and let C be a cone
generated by dim aG0 elements in the positive Weyl chamber of aG0 . Then there
exists δ > 0 such that

(
ΛTEP (g, ϕ, λ),Λ

TEP ′(g, ϕ′, λ′)
)
G\G(A)1

=
∑
Q

∑
w∈Ω(P,Q)

∑
w′∈Ω(P ′,Q)

vol(aGQ/LQ)
e〈wλ+w′λ′,T〉 (M(w, λ)ϕ,M(w′, λ′)ϕ′)Q∏

α∈ΔQ

〈
wλ+ w′λ′, α∨

〉 +O(e−δ‖T‖)

for all (λ, λ′) ∈ i(aGP )
∗ × i(aGP ′)∗ and T ∈ C with ‖T‖ � 0. The implied constant is

independent of T and can be chosen uniformly for (λ, λ′) in a compact set.

We recall that if ϕ and ϕ′ are cuspidal then the asymptotic formula in Theorem
1 is exact for T sufficiently regular in the positive Weyl chamber ([Art80, §4]; cf.
[JLR99] for an alternative proof). In the general case, Arthur’s proof is rather
involved. However, it contains two relatively easy ingredients. The first is the
computation of the constant term of Eisenstein series in terms of the inducing data
– a global (but easier) analogue of the geometric Lemma of [BZ77]. The second is
the criterion of square-integrability in terms of the exponents ([MW95, I.4.11]).

In our approach we use these ingredients as well. However, to avoid some of
the more technical parts of [Art82c] we will adopt the method of proof of [JLR99]
utilizing the regularized inner products of automorphic forms. One can express the
inner product of truncated automorphic forms in terms of the regularized inner
products with respect to a Levi subgroup of the constant terms. In the cuspidal
case considered in [ibid.], this immediately reduces the Theorem to the vanishing of
the regularized inner product of Eisenstein series. In the general case, the vanishing
is still a key ingredient, but the reduction is more subtle. (See Remark 1 below.)

Since we do not assume a priori that the Eisenstein series are holomorphic on
the imaginary axis we will have to resort to the following expedient of Theorem 1.

Proposition 1. Let ϕ be a smooth map from i(aGP )
∗ to a finite-dimensional

subspace of A2
P ; similarly for ϕ′. Assume that EP (·, ϕ(λ), λ) is smooth on i(aGP )

∗;
similarly for EP ′(·, ϕ′(λ′), λ′). Let C be as in Theorem 1. Then there exists δ > 0
such that

(2)
(
ΛTEP (g, ϕ(λ), λ),Λ

TEP ′(g, ϕ′(λ′), λ′)
)
G\G(A)1

=
∑
Q

∑
w∈Ω(P,Q)

∑
w′∈Ω(P ′,Q)

vol(aGQ/LQ)
e〈wλ+w′λ′,T〉 (M(w, λ)ϕ(λ),M(w′, λ′)ϕ′(λ′))Q∏

α∈ΔQ

〈
wλ+ w′λ′, α∨

〉 +O(e−δ‖T‖)

for all (λ, λ′) ∈ i(aGP )
∗ × i(aGP ′)∗ and T ∈ C with ‖T‖ � 0. The implied constant is

independent of T and can be chosen uniformly for (λ, λ′) in a compact set.

Once again, the asymptotic formula is in fact an exact formula if ϕ(λ), ϕ′(λ′)
are cuspidal. Of course, Theorem 1 would follow from Proposition 1 once the
holomorphy of EP (·, ϕ, λ) on ia∗P is established.
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As a consequence of Proposition 1 we will compute the inner product of wave
packets of Eisenstein series. To formulate this, denote byWP the space of compactly
supported smooth functions on ia∗P taking values in a finite-dimensional subspace
of A2

P such that EP (·, ϕ(λ), λ) is smooth on ia∗P . (Ultimately, the last condition is
redundant.) Write

(3) ‖ϕ‖2∗ =

∫
ia∗

P

‖ϕ(λ)‖2P dλ.

For ϕ ∈ WP let

ΘP,ϕ(g) = Θϕ(g) =

∫
ia∗

P

EP (g, ϕ(λ), λ) dλ.

Proposition 2. For any ϕ ∈ WP ΘP,ϕ ∈ L2(G\G(A)). The inner product is
given by

(4) (ΘP,ϕ,ΘP,ϕ′)G\G(A) =

∫
ia∗

P

∑
w∈Ω(P,P ′)

(M(w, λ)ϕ(λ), ϕ′(wλ))P ′ dλ.

for any ϕ′ ∈ WP ′ .

Consider the Hilbert space L consisting of families of functions

FP : ia∗P → Ind
G(A)
P (A) L

2
disc(AMM\M(A)), P ⊇ P0

satisfying

‖(FP )P ‖2 :=
∑
P⊇P0

|P(MP )|−1 ‖FP ‖2∗ < ∞,

FP ′(wλ) = M(w, λ)FP (λ) for all w ∈ Ω(P, P ′), λ ∈ ia∗P .

The subspace L′ consisting of those families such that FP ∈ WP for all P is dense
in L. We conclude the following result which is “one-half” of Langlands’ L2 de-
composition.

Theorem 2 ([Lan76]; cf. [MW95]). The map

E : (FP )P⊇P0
�→

∑
P

|P(MP )|−1
ΘP,FP

, (FP ) ∈ L′

extends to an isometry from L to a subspace of L2(G\G(A)).

Of course, Langlands showed that E is onto as well. We will not discuss this
aspect here.

Proposition 2 will also be used to show the holomorphy of the Eisenstein series
on the imaginary axis, to conclude Theorem 1.

4. Polynomial exponential functions

Let V be a real vector space of dimension d. A function on V of the form

f(v) =
n∑

i=1

e〈λi,v〉Pi(v) Pi ∈ C[V ], λi ∈ V ∗
C
,

is called a polynomial exponential. Any polynomial exponential function is deter-
mined by its restriction to a non-empty open subset. The decomposition above is
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unique if the λi’s are distinct and Pi �= 0 for all i. We write E(f) for the multiset
{λ1, . . . , λn}, where each λi appears degPi + 1 times.

We denote the space of polynomial exponential functions by PEV . For any
multiset A of elements of V ∗

C
we define the subspace

PEV (A) = {f ∈ PEV : E(f) ⊆ A}.
One can characterize the polynomial exponential functions as follows. For

v ∈ V and λ ∈ V ∗
C

let Dv,λ be the (generalized) difference operator

Dv,λf(u) = f(u+ v)− e〈λ,v〉f(u).

Then f ∈ PEV ({λ1, . . . , λm}) if and only if

(5) Dvm,λm
◦ · · · ◦Dv1,λ1

f ≡ 0

for all v1, . . . , vm ∈ V . (It suffices to take v1, . . . , vm in a neighborhood of 0.)
Let Γ be a piecewise continuously differentiable Jordan curve contained in the

strip −π
2 ≤ Im z ≤ π

2 and let D be the bounded domain surrounded by Γ. Let
R > 0 and set

RD = {Rλ : λ ∈ D}.
For any integer k we define the continuous function

aΓ,Rk (λ1, . . . , λk;x) =
1

2πi

∫
Γ

eRzx dz∏k
l=1(e

z − eλl/R)
, λ1, . . . , λk ∈ RD, x ∈ R.

For any λ1, . . . , λk ∈ RD we have aΓ,Rk (λ1, . . . , λk; ·) ∈ PER({λ1, . . . , λk}). More-
over, for any compact subset C of RD we have

sup
λ1,...,λk∈C,x≥0

∣∣∣aΓ,Rk (λ1, . . . , λk;x)
∣∣∣ e−Rδx < ∞

where

δ = sup
γ∈Γ

Re γ.

For any integer m and λ1, . . . , λm ∈ RD let

bΓ,R0 (λ1, . . . , λm;x), . . . , bΓ,Rm−1(λ1, . . . , λm;x)

be the coefficients of the polynomial (in t)

m∑
k=1

aΓ,Rk (λ1, . . . , λk;x)

k−1∏
l=1

(t− eλl/R).

Once again, for all i = 0, . . . ,m− 1, bΓ,Ri (λ1, . . . , λm;x) is a continuous function on

(RD)k ×R, bΓ,Ri (λ1, . . . , λm; ·) ∈ PER({λ1, . . . , λm}), and for any compact set C of
RD we have

(6) sup
λ1,...,λm∈C,x≥0

∣∣∣bΓ,Ri (λ1, . . . , λm;x)
∣∣∣ e−Rδx < ∞.

Suppose that f ∈ PER({λ1, . . . , λm}) with λi ∈ RD, i = 1, . . . ,m. Then by
the argument of [MW95, Lemma I.4.2] (based on that of [Wal74, Lemma 6.3.1])
we have the following extrapolation formula:

(7) f(x) =
m∑

k=1

f(
k

R
)bΓ,Rk−1(λ1, . . . , λm;x) x ∈ R.
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For a subset A ⊆ V ∗
C

and an integer l ≥ 1 we write

PEV
≤l(A) = {f ∈ PEV : E(f) = {λ1, . . . , λm},m ≤ l, λi ∈ A for all i}.

(Note that this is not a subspace, or even a subset, of PEV (A).) We will need the

following closedness property of PEV
≤l(A).

Lemma 1. Suppose that A ⊆ V ∗
C

is compact and l ≥ 1 is an integer. Let fn be

a sequence in PEV
≤l(A) and U a non-empty open subset of V such that the limit

f(v) := lim
n→∞

fn(v) v ∈ U

exists pointwise. Then the limit exists for all v ∈ V and f ∈ PEV
≤l(A).

Proof. We can assume, upon translating fn, that U contains 0. Upon passing
to a subsequence, we can also assume that

E(fn) = {λ1(n), . . . , λm(n)}
where m ≤ l is independent of n and λi(n) converges (say to λi) for all i = 1, . . . , d.

Consider first the case V = R. Take Γ to be the unit circle. Choose R
sufficiently large so that A is contained in the open ball of radius R, and that
[0, d/R] ⊆ U . By (7) we have

fn(x) =

m∑
k=1

fn(
k

R
)bΓ,Rk−1(λ1(n), . . . , λm(n);x).

Passing to the limit, we obtain

f(x) = lim
n→∞

fn(x) =

m∑
k=1

f(
k

R
)bΓ,Rk−1(λ1, . . . , λm;x).

Thus, f ∈ PER({λ1, . . . , λm}).
Consider now the general case. By restricting fn to any line we infer that

f(v) = lim fn(v) exists for all v ∈ V . Using the criterion (5) for fn and passing to
the limit, we obtain once again that f ∈ PE({λ1, . . . , λm}). �

Suppose that C is a simplicial cone in V , generated by e1, . . . , ed. Let χC be the
characteristic function of C. We say that λ ∈ V ∗

C
is negative (resp. non-degenerate)

with respect to C if Re 〈λ, ei〉 < 0 (resp. 〈λ, ei〉 �= 0) for all i = 1, . . . , d.
The following Lemma is elementary, but it is basic to the regularization proce-

dure. See [JLR99] for more details.

Lemma 2. For any f ∈ PEV and u ∈ V the integral

IV (f, u, ω) =

∫
V

f(v)e〈ω,v〉χC(v − u) dv

converges provided that ω + λ is negative with respect to C for all λ ∈ E(f). As a
function of ω, IV (f, u, ω) admits meromorphic continuation to V ∗

C
with hyperplane

singularities contained in

〈ω + λ, ej〉 = 0 λ ∈ E(f), j = 1, . . . , d.

Outside the singular hyperplanes, IV (f, ·, ω) ∈ PEV (E(f) + ω).

The following Lemma will be used for the uniformity statement in Theorem 1.
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Lemma 3. Let A be a compact subset of V ∗ such that λ is negative with respect
to C for all λ ∈ A. Then there exists δ > 0 depending only on the set ReA such
that for any integer l ≥ 1, a neighborhood U of u ∈ V and a family of functions
F ⊆ PEV

≤l(A) such that

sup
f∈F

sup
v∈U

|f(v)| < ∞

we have

sup
f∈F

sup
v∈u+C

|f(v)| eδ‖v‖ < ∞.

Proof. As before, considering the translates of f ∈ F by u we can assume
that u = 0. We write E(f) = {λ1(f), . . . , λm(f)} for f ∈ F with m ≤ k. Without
loss of generality we can assume that m does not depend on f . Choose R so that
|〈λ, ej〉| < R for all λ ∈ A and that x1e1 + · · ·+ xded ∈ U if 0 ≤ xi ≤ m/R for all
i. By repeated application of (7) we can write

f(x1e1 + · · ·+ xded) =
m∑

k1,...,kd=1

f(
k1
R
e1 + · · ·+ kd

R
ed)

bΓ1,R
k1−1(〈λ1(f), e1〉 , . . . , 〈λm(f), e1〉 ;x1) · · · bΓd,R

kd−1(〈λ1(f), ed〉 , . . . , 〈λm(f), ed〉 ;xd)

where Γj is the boundary of the rectangle with vertices

γj
2R

± πi

2
,−1± πi

2
.

and γj = maxλ∈A Re 〈λ, ej〉 < 0. By (6) and our assumption we have

sup
f∈F

sup
x1,...,xd≥0

∣∣∣∣∣∣f(
d∑

j=1

xjej)

∣∣∣∣∣∣ e
− 1

2

∑d
j=1 γjxj < ∞

The lemma follows. �

5. The regularized integral

5.1. Definition and properties. The definition of the regularized integral
is based on the identity

(8) ϕ(g) =
∑
P

∑
γ∈P\G

ΛT,Pϕ(γg)τP (HP (g)− T ), g ∈ G(A)

([Art80, Lemma 1.5]) which is a formal consequence of Langlands’ combinatorial
Lemma

(9)
∑

P :R⊆P

(−1)dim a
G
P τPR τ̂P =

{
1 if R = G,

0 otherwise.

To define the regularized integral, consider

(10) IG(ϕ, T, ω) =
∑
P

∫
P\G(A)1

ΛT,Pϕ(g)e〈ω,HP (g)〉τP (HP (g)− T dg).

(We often suppress the superscript G if it is clear from the context.) This integral is
convergent for Reω sufficiently regular in the negative obtuse Weyl chamber a∗0,−,
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more precisely, when Re(ωP + EP (ϕ)− ρP ) ⊆ a∗P,− for all P , where

a∗P,− = {
∑

α∈ΔP

cαα : cα < 0 ∀α ∈ ΔP }.

IG(ϕ, T, ω) admits meromorphic continuation in ω with hyperplane singularities
along the finitely many hyperplanes

〈ω + λ− ρP , 

∨〉 = 0, P ⊇ P0, λ ∈ EP (ϕ), 
 ∈ Δ̂P .

In fact, if

ϕP (g) =
∑
i

e〈λi,HP (g)〉Qi(HP (g))ψi(g)

where Qi ∈ C[ap] and ψi ∈ An
P then

∫
P\G(A)1

ΛT,Pϕ(g)e〈ω,HP (g)〉τP (HP (g)− T ) dg

=
∑
i

∫
K

∫
M\M(A)1

ΛT,Mψi(mk)

∫
aG
P

e〈ω+λi−ρP ,X〉Qi(X)τP (X − T ) dX,

so we can appeal to Lemma 2. In particular, if the exponents of ϕ satisfy the
regularity conditions

〈λ− ρP , 

∨〉 �= 0 ∀P, λ ∈ EP (ϕ), 
 ∈ Δ̂P ,

(in which case we say that ϕ is ∗-integrable) then I(ϕ, T, 0) is well-defined. It was
shown in [JLR99] that in this case I(ϕ, T, 0) does not depend on T and is called
the regularized integral of ϕ, denoted by∫ ∗

G\G(A)1
ϕ(g) dg.

Recall that if in fact ϕ ∈ L1(G\G(A)) then for all λ ∈ EP (ϕ), Reλ−ρP ∈ a∗P,− (and

conversely – cf. [MW95, I.4.11] for an analogous statement). Therefore, in that
case, ω = 0 is in the range of convergence of (10) and by (8),

∫ ∗
G\G(A)1

ϕ(g) dg coin-

cides with the usual integral of ϕ. Another crucial fact proved in [JLR99] is that∫ ∗
G\G(A)1

is a G(Af )
1-invariant functional on the space of ∗-integrable automorphic

forms.
We can say a little bit more about I(ϕ, T, ω) if we take into account the following

Proposition. Henceforth T will always denote a sufficiently regular element in the
positive Weyl chamber of aG0 .

Proposition 3. For all ϕ ∈ A we have

T �→
∫
G\G(A)1

ΛTϕ(g) dg ∈ PEa
G
0

(⋃
P

(EP (ϕ)− ρP )

)
.

This is proved exactly as in [LR03, Proposition 8.4.1].

Corollary 1. For any ω in general position

I(ϕ, ·, ω) ∈ PEa
G
0

⎛
⎝⋃

P

⋃
Q⊆P

(EQ(ϕ) + ωP − ρQ)

⎞
⎠ .
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More generally, for ϕ ∈ AP and a simplicial cone C of aGP generated by v1, . . . , vd
where d = dim aGP we can define

IP (ϕ, χC, T, ω)

=
∑

P0⊆Q⊆P

∫
Q\G(A)1

ΛT,Qϕ(g)e〈ω,HQ(g)〉τPQ (HQ(g)− T )χC(HP (g)− T ).

Using the decomposition (1) this can be written as

∑
i

∫
K

IM (ψi(·k), T, ω) dk
∫
aG
P

e〈ω+λi−ρP ,X〉Qi(X)χC(X − T ) dX.

Once again, the integral converges for Reω in an appropriate cone and admits a
meromorphic continuation in ω ∈ a∗0,C with hyperplane singularities along

〈ω + λ− ρQ, 

∨〉 = 0, Q ⊆ P, 
 ∈ Δ̂P

Q, λ ∈ EQ(ϕ)
〈ω + λ− ρP , vi〉 = 0, i = 1, . . . , d, λ ∈ EP (ϕ).

Outside the singular hyperplanes,

IP (ϕ, χC , ·, ω) ∈ PEa
G
0

⎛
⎝ ⋃

R⊆Q⊆P

(ωQ + ER(ϕ)− ρR)

⎞
⎠ .

In particular, if IP is holomorphic at ω = 0 we denote the value by
∫ ∗

P\G(A)1
ϕ(g)χC(HP (g)− T ) dg.

If ϕ(g)χC(HP (g)− T ) belongs to L1(P\G(A)1) which happens precisely when

(1) ReλP − ρPQ ∈ (aPQ)
∗
− for all Q ⊆ P and λ ∈ EQ(ϕ), and

(2) λ− ρP is negative with respect to C for all λ ∈ EP (ϕ),
then the integral defining I(ϕ, T, ω) is convergent at ω = 0 and

∫ ∗

P\G(A)1
ϕ(g)χC(HP (g)− T ) dg =

∫
P\G(A)1

ϕ(g)χC(HP (g)− T ) dg.

Lemma 4. We have the following equality of meromorphic functions

∑
P

(−1)dim a
G
P IP (ϕP , τ̂P , T, ω) =

∫
G\G(A)1

ΛTϕ(g) dg.

In particular, the left-hand side does not depend on ω.

Proof. When Reω is sufficiently regular in the negative Weyl chamber of a∗0
the left-hand side is

∑
P

∑
R:R⊆P

(−1)dim a
G
P

∫
R\G(A)1

ΛT,Rϕ(g) e〈ω,HR(g)〉τPR (H(g)−T )τ̂P (H(g)−T ) dg.

Interchanging the sum, and using the relation (9), we get the required statement.
�
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5.2. Inner product. ([JLR99]). In a similar vein we define, for any ϕ, ψ ∈ A

IG(ϕ, ψ, T, ω) =
∑
P

∫
P\G(A)1

ΛT,Pϕ(g)ΛT,Pψ(g)e〈ω,HP (g)〉τP (HP (g)− T ) dg.

This integral converges if

Re(ω + EP (ϕ) + EP (ψ)) ⊆ a∗P,−

for all P . Moreover, I(ϕ, ψ, T, ω) admits meromorphic continuation in ω with hy-
perplane singularities along

〈ω + λ+ μ,
∨〉 = 0, P ⊇ P0, λ ∈ EP (ϕ), μ ∈ EP (ψ), 
 ∈ Δ̂P .

Outside the singular hyperplanes

T �→ I(ϕ, ψ, T, ω) ∈ PEa
G
0

⎛
⎝ ⋃

Q⊆P

(EQ(ϕ) + EQ(ψ) + ωP )

⎞
⎠ .

If I(ϕ, ψ, T, ω) is holomorphic near ω = 0 then∫ ∗

G\G(A)1
ϕ(g)ψ(g) dg := I(ϕ, ψ, T, 0)

is independent of T . In particular, this is the case if ϕ and ψ are square-integrable,
and in this case, ∫ ∗

G\G(A)1
ϕ(g)ψ(g) dg =

∫
G\G(A)1

ϕ(g)ψ(g) dg.

This follows from the decomposition (8) and the fact that
∫
P\G(A)1

ΛT,Pϕ(g)ψ(g)τP (HP (g)− T ) dg =

∫
P\G(A)1

ΛT,Pϕ(g)ΛT,PψP (g)τP (HP (g)− T ) dg.

The sesquilinear form
∫ ∗
G\G(A)1

is G(Af )
1-invariant (whenever defined).

More generally for any P , a simplicial cone C of aGP and ϕ ∈ AP one defines

IP (ϕ, ψ, χC, T, ω)

=
∑
Q⊆P

∫
Q\G(A)1

ΛT,Qϕ(g)ΛT,Qψ(g)e〈ω,HQ(g)〉τPQ (HQ(g)− T )χC(HP (g)− T ) dg

and ∫ ∗

P\G(A)1
ϕ(g)ψ(g)χC(HP (g)− T ) dg = IP (ϕ, ψ, χC, T, 0),

the latter, provided that

(1) for any Q ⊆ P and any λ ∈ EQ(ϕ) and μ ∈ EQ(ψ), λ+μ is non-degenerate

with respect to the Weyl chamber of aQP , and,
(2) for any λ ∈ EP (ϕ) and μ ∈ EP (ψ), λ + μ is non-degenerate with respect

to C
As before, we have
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Lemma 5. (1) For any ϕ, ψ ∈ AG we have

∑
P⊆G

(−1)dim a
G
P IP (ϕP (g), ψP (g), τ̂P , T, ω) =

∫
G(F )\G(A)1

ΛTϕ(g)ΛTψ(g) dg.

(2) For any ϕ, ψ ∈ AP we have

IP (ϕ, ψ, χC, ·, ω) ∈ PEa
G
0

⎛
⎝ ⋃

R⊆Q⊆P

(ωQ + ER(ϕ) + ER(ψ))

⎞
⎠

outside the singular hyperplanes.

This first part is proved exactly as Lemma 4 using (8), (9) and the fact that
ΛT is a projection. The second part follows from the fact that for any ϕ, ψ ∈ A

(11) T �→
∫
G\G(A)1

ΛTϕ(g)ΛTψ(g) dg ∈ PEa
G
0

(⋃
P

(EP (ϕ) + EP (ψ))
)

(cf. [LR03, Proposition 8.4.1]).

Remark 1. The relation∫
G\G(A)1

ΛTϕ(g)ΛTψ(g) dg =
∑
P

(−1)dim a
G
P

∫ ∗

P\G(A)1
ϕP (g)ψP (g)τ̂P (HP (g)−T ) dg

holds if each term on the right-hand side is well-defined. Unfortunately, this is
not necessarily the case if ϕ, ψ are square-integrable. For example, if we write
the positive roots for the group G = G2 as α (long), β (short), α + β, α + 2β,
α + 3β, 2α + 3β, then G admits a square-integrable automorphic form ϕ with
EP0

(ϕ) = {γ1 = −α − β, γ2 = −α − 2β} ([Lan76], [MW95, Appendix III]). Since
〈γ2, β∨〉 = 0 the term ∫ ∗

P\G(A)1
|ϕP (g)|2 τ̂P (HP (g)− T ) dg

is not defined for the maximal parabolic subgroup P such that ΔP
0 = {β}. This is

why we have to introduce the parameter ω and it explains why the proof in the
non-cuspidal case is more subtle.

6. Regularized inner products of Eisenstein series

For any P,Q let QΩP be the set of elements of Ω which are left-Ω(MQ) and right-
Ω(MP ) reduced. This is a set of representatives for Q\G/P . For any w ∈ QΩP the
group MP ∩w−1MQw is the Levi subgroup of a parabolic subgroup Pw contained in
P , and MQ ∩wMPw

−1 is the Levi subgroup of a parabolic subgroup Qw contained
in Q. We have w ∈ Ω(Pw, Qw). Denote by Ω(P ;Q) the subset of QΩP consisting
of those w such that Pw = P , that is, wMPw

−1 ⊆ MQ. Recall also that we set

Ω(P,Q) = {w ∈ QΩP : wMPw
−1 = MQ} = Ω(P ;Q) ∩ Ω(Q;P )−1.

Proposition 4. For any ϕ ∈ AP the constant term of EP (·, ϕ, g) along Q is
given (at least for Reλ sufficiently regular in the positive Weyl chamber) by∑

w∈QΩP

EQ
Qw

(·,M(w, λ)ϕPw
, wλ).
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This is a straightforward generalization of the computation of [MW95, II.1.7].
The main difference is that unlike in [loc. cit.] we don’t assume that ϕ is cuspidal,
so that we get a contribution from all w ∈ QΩP , and not merely from w ∈ Ω(P ;Q).

It is also easy to see that the constant term of the summand

EQ
Qw

(·,M(w, λ)ϕPw
, wλ)

along a parabolic subgroup R ⊆ Q is given by∑
s∈ι−1

Q,R(w)

ER
Rs

(·,M(s, λ)ϕPs
, sλ)

where ιQ,R : RΩP → QΩP corresponds to the canonical map R\G/P → Q\G/P .
Note that

ιQ,R(Ω(P ;R)) ⊆ Ω(P ;Q).

We will write the constant term of EP (ϕ, λ) along Q as

(12) MQ(·, ϕ, λ) + EQ(·, ϕ, λ)
where

MQ(·, ϕ, λ) =
∑

w∈Ω(P ;Q)

EQ
Qw

(·,M(w, λ)ϕ,wλ).

(If ϕ is cuspidal then EQ ≡ 0.) Thus,

EQ(EQ(ϕ, λ)) ⊆
⋃

w∈QΩP \Ω(P ;Q)

[w(EPw
(ϕ) + λ)]Q

and more generally for any R ⊆ Q

(13) ER(EQ(ϕ, λ)) ⊆
⋃

w∈ι−1
Q,R(QΩP \Ω(P ;Q))

[w(EPw
(ϕ) + λ)]R .

Recall that
ι−1
Q,R(QΩP \ Ω(P ;Q)) ⊆ RΩP \ Ω(P ;R).

By analytic continuation (13) continues to hold whenever EP (·, ϕ, λ) andM(w, λ)ϕ,
w ∈ Ω(P ;Q) are regular.

Lemma 6. Let ϕ ∈ A2
P , w ∈ QΩP , μ ∈ EPw

(ϕ) and 
 ∈ Δ̂Qw
. Then,

Re 〈wμ,
∨〉 ≤ 0 with equality if and only if 
∨ ∈ waP . In particular, if Rewμ = 0
then w ∈ Ω(P ;Q).

Proof. (Cf. [Art82c, p. 61–62].) Clearly, 〈wμ,
∨〉 = 0 if 
∨ ∈ waP since
μ ∈ (aP0 )

∗
C
. By [MW95, I.4.11] we have

μ =
∑

α∈ΔP
Pw

cαα

with Re cα < 0 for all α. Thus,

wμ =
∑

α∈ΔP
Pw

cαwα.

The wα’s are positive roots of aQw
. Therefore 〈wα,
∨〉 ≥ 0 for all 
 ∈ Δ̂Qw

. It
follows that Re 〈wμ,
∨〉 ≤ 0. If equality holds then necessarily 〈wα,
∨〉 = 0 for
all α ∈ ΔP

Pw
. Then w−1
∨ ∈ aPw

is orthogonal to (aPPw
)∗. Therefore w−1
∨ ∈ aP

as required.
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If Rewμ = 0 then by the above Δ̂Q ⊆ waP . Thus, aQ ⊆ waP , which means
that MQ ⊇ wMw−1. �

Corollary 2. Let ϕ ∈ A2
P . There exists a constant k such that for any

λ ∈ a∗P,C outside the singular hyperplanes of E(·, λ) and the intertwining operators,
and all R ⊆ Q ⊆ G,

ER(MQ(ϕ, λ)) ∪ ER(EQ(ϕ, λ))

is of size ≤ k (as a multiset) and is contained in a ball of radius ‖λ‖+ k around 0
in a∗Q,C. Moreover, ⋃

λ∈ia∗
P

Re ER(MQ(ϕ, λ))

and ⋃
λ∈ia∗

P

Re ER(EQ(ϕ, λ))

are finite subsets of the closure of a∗R,−. The second set does not contain 0.

We can also infer another crucial property.

Proposition 5. Let ϕ ∈ A2
P , ϕ′ ∈ A2

P ′ and suppose that either P or P ′ is
proper. Then for λ ∈ (aGP )

∗
C
, λ′ ∈ (aGP ′)∗

C
in general position we have∫ ∗

G\G(A)1
EP (g, ϕ, λ)EP ′(g, ϕ′, λ′) dg = 0.

Proof. We can assume that ϕ(·g) (resp. ϕ′(·g)) belongs to an irreducible sub-
space π (resp. π′) of L2(AMM\M(A)) (resp. L2(AM ′M ′\M ′(A))). The regularized
integral, if defined, gives a G(Af )

1-invariant sesquilinear form on IndP (A)(π, λ) ×
IndP ′(A)(π

′, λ′). However, such a form does not exist (even locally) for λ, λ′ in
general position unless P = P ′ = G. It therefore remains to show that∫ ∗

G\G(A)1
EP (g, ϕ, λ)EP ′(g, ϕ′, λ′) dg

is well-defined for λ, λ′ in general position. Let Λ ∈ EQ(EP (·, ϕ, λ)) and Λ′ ∈
EQ(EP ′(·, ϕ′, λ′)). Then there exist w ∈ QΩP , w

′ ∈ QΩP ′ , μ ∈ EPw
(ϕ) and μ′ ∈

EP ′
w′ (ϕ

′) such that Λ = (wλ+ μ)Q and Λ′ = (w′λ′ + μ′)Q. Suppose that 
 ∈ Δ̂Q.

Then
〈
Λ + Λ′, 
∨〉 is a non-constant affine functional of (λ, λ′) ∈ a∗P,C×a∗P ′,C unless


∨ ∈ waP0 ∩ w′aP
′

0 , in which case,

Re
〈
Λ + Λ′, 
∨〉 = Re 〈wμ,
∨〉+ 〈w′μ,
∨〉 < 0

by Lemma 6. In any case Λ+Λ′ is non-degenerate with respect to the Weyl chamber
of aQ for λ, λ′ in general position. �

7. Proof of Proposition 1

We are now ready to prove Proposition 1, our makeshift for Theorem 1. Denote
by J(T ) the left-hand side of (2) and by M(T ) the main term on the right-hand
side of (2). Also, let R(T ) = J(T ) − M(T ). For the moment, we suppress the
dependence on λ, λ′ (as well as ϕ, ϕ′) from the notation. By (11) and Corollary 2
we have Re E(J(T )) ⊆ a∗0,−. Since E(M(T )) ⊆ ia∗0 we also have Re E(R(T )) ⊆ a∗0,−.
To prove (2) we have to show that

Re E(R(T )) ⊆ a∗0,− \ {0}.
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Using the first part of Lemma 5 and the decomposition (12) for the constant
term of Eisenstein series, we can write

J(T ) = J1(T, ω) + J2(T, ω)

for ω in general position, where

J1(T, ω) =
∑
Q

(−1)dim a
G
QIQ(MQ(ϕ(λ), λ),MQ(ϕ

′(λ′), λ′), τ̂Q, T, ω)

and

J2(T, ω) =
∑
Q

(−1)dim a
G
Q [IQ(EQ(ϕ(λ), λ),MQ(ϕ

′(λ′), λ′), τ̂Q, T, ω)+

IQ(MQ(ϕ(λ), λ),EQ(ϕ
′(λ′), λ′), τ̂Q, T, ω)+

IQ(EQ(ϕ(λ), λ),EQ(ϕ
′(λ′), λ′), τ̂Q, T, ω)] .

Assume that ω ∈ ia∗0 is in general position.
It follows from Corollary 2 and the second part of Lemma 5 that there exists a

finite set 0 /∈ A ⊆ a∗0,− and an integer l, both independent of λ, λ′ and ω such that

(14) J2(T, ω) ∈ PEa
G
0

≤l (A+B‖ω‖+‖λ‖+‖λ′‖+l(ia
∗
0))

where Ba(ia
∗
0) denotes the ball of radius a around 0 in ia∗0.

Assume first that (λ, λ′) is in general position. The term J1(T, ω) is the sum
over Q, w ∈ Ω(P ;Q) and w′ ∈ Ω(P ′;Q), of

∫
K

IMQ(EQ
Qw

(·k,M(w, λ)ϕ(λ), wλ), EQ
Qw′ (·k,M(w′, λ′)ϕ′(λ′), w′λ′), T, ω) dk

× vol(aGQ/LQ)
e〈wλ+w′λ′+ω,TQ〉∏

α∈ΔQ

〈
wλ+ w′λ′ + ω, α∨

〉 .

By Proposition 5 this is 0 at ω = 0 unless w ∈ Ω(P,Q) and w′ ∈ Ω(P ′, Q) in which
case the value at ω = 0 is equal to

vol(aGQ/LQ)
e〈wλ+w′λ′,T〉 (M(w, λ)ϕ(λ),M(w′, λ′)ϕ′(λ′))Q∏

α∈ΔQ

〈
wλ+ w′λ′, α∨

〉 .

Thus, J1(T, ω) is holomorphic at ω = 0 and J1(T, 0) = M(T ). Let ωn be a sequence
of ia∗0 which converges to 0 and which lies outside the singular hyperplanes of
J1(T, ω) and J2(T, ω). Then

R(T ) = J(T )−M(T ) = J2(T, 0) = lim
n→∞

J2(T, ωn).

Applying Lemma 1 for fn = J2(T, ωn) and using (14) we conclude that

R(T ) ∈ PEa
G
0

≤l (A+B‖λ‖+‖λ′‖+l(ia
∗
0)).

This gives the relation (2) for λ, λ′ in general position.
To prove (2) for arbitrary λ, λ′ choose a sequence (λn, λ

′
n) in general position

which converges for (λ, λ′). We will emphasize the dependence on J(T ), M(T ) and
R(T ) on λ λ′ by writing J(λ, λ′, T ), M(λ, λ′, T ) and R(λ, λ′, T ) respectively. By
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the argument of [Art82b, top of p. 1299] (see also §8 below) M(λ, λ′, T ) is smooth
for (λ, λ′) ∈ i(aGP )

∗ × i(aGP ′)∗.2 Thus,

lim
n→∞

M(λn, λ
′
n, T ) = M(λ, λ′, T ).

On the other hand, by the properties of the truncation operator, we also have

lim
n→∞

J(λn, λ
′
n, T ) = J(λ, λ′, T ).

We infer that

R(λ, λ′, T ) = lim
n→∞

R(λn, λ
′
n, T ).

Since we know that

R(λn, λ
′
n, T ) ∈ PEa

G
0

≤l (A+B‖λn‖+‖λ′
n‖+l(ia

∗
0))

we infer once again from Lemma 1 that

R(λ, λ′, T ) ∈ PEa
G
0

≤l (A+B‖λ‖+‖λ′‖+l(ia
∗
0))

which implies (2).
The uniformity of the error term follows from Lemma 3 applied to the family

R(λ, λ′, T ) where λ, λ′ range over a compact set of i(aGP )
∗ × i(aGP ′)∗.

This concludes the proof of Proposition 1.

More preparations. Recall that ultimately we want to prove Theorem 1.
What remains to be shown is the holomorphy of the Eisenstein series on the imag-
inary axis. This will be done in the next section using Proposition 2 (which also
implies Theorem 2). To that end we need some variations on a theme of Arthur.
We recall the notion of (G,M)-families and switch to the notation of [Art82b],
which we will freely use without further comment.

We start with the following elementary Lemma. Let V be a Euclidean space
and denote by S(V ) the Fréchet space of Schwartz functions on V .

Lemma 7. Let H be the hyperplane in V defined by 0 �= λ ∈ V ∗. Then the map
f �→ f/ 〈λ, ·〉 defines a continuous linear map

{f ∈ S(V ) : f |H≡ 0} → S(V ).

Proof. The statement immediately reduces to the case V = R, in which case
it follows from the formula

f(x)

x
=

∫ 1

0

f ′(tx) dt

valid for any smooth function f with f(0) = 0. �

Corollary 3. Suppose that (cQ(λ))Q∈P(M) is a (G,M)-family and cQ ∈
S(ia∗P ). Then cM ∈ S(ia∗P ). Moreover cM is a continuous linear map from the

space of (G,M)-families (a closed subspace of S(ia∗P )P(M)) to S(ia∗P ).

2This is based only on the holomorphy of the intertwining operators, and not on the results
of [Art82c].
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Proof. Let

Θ(λ) =
∏

α∈R(TM ,U)

〈λ, α∨〉 .

Then

cM =

∑
Q∈P(M) cQ(λ)

Θ(λ)
θQ(λ)

Θ(λ)
.

Since θQ|Θ for all Q ∈ P(M), the numerator is a continuous function of (cQ)Q
and by [Art81, Lemma 6.2] it vanishes on the root hyperplanes. Therefore by
repeatedly applying the Lemma for each root, we obtain the result. �

The (G,M)-family (cQ(T ;λ))Q∈P(M) is defined in [Art82b, §2] as

cQ(T ;λ) = e〈λ,YQ(T )〉

where YQ(T ) are certain affine transformations in T defined (for any Q ∈ F(M))
in [ibid.]. Fix a cone C as in Theorem 1. A simple fact which is an immediate
consequence of the definition is that there exists c > 0 such that for any Q ∈ F(M)
and α ∈ ΔQ we have

(15) 〈α, YQ(T )〉 ≥ c‖T‖
for all T ∈ C.

The following is essentially contained in [ibid., §4]. For completeness we give a
proof.

Lemma 8. For any n there exists a continuous seminorm μn on the space of
Schwartz functions on ia∗P such that for any (G,M)-family dQ(λ) consisting of
Schwartz functions and T ∈ C we have∣∣∣∣∣∣

∫
i(aG

P )∗

∑
Q∈P(M)

cQ(T ;λ)dQ(λ)

θQ(λ)
dλ− dP (0)

∣∣∣∣∣∣ ≤ (1 + ‖T‖)−n
∑

Q∈P(M)

μn(dQ).

Proof. We use the product formula of [Art88, §7] to write the integrand as∑
Q1,Q2

α(Q1, Q2)c
Q1

M (T ;λ)dQ2

M (λ)

where the sum is over pairs Q1, Q2 ∈ F(M) such that aQ1

P + a
Q2

P = aGP and a
Q1

P ∩
a
Q2

P = 0, and α(Q1, Q2) are certain constants, which we do not need to care about
except that

α(G,Q) =

{
1 Q = P,

0 otherwise.

By [Art82b, (3.1)]

cQ1

M (T ;μ) =

∫
YQ1

(T )+a
Q1
P

χQ1

M (T,H)e〈μ,H〉 dH

where χQ1

M (T, ·) is the characteristic function in aP of the convex hull of the set

YQ1

M (T ). Thus,∫
i(aG

P )∗
cQ1

M (T ;λ)dQ2

M (λ) dλ =

∫
YQ1

(T )+a
Q1
P

χQ1

M (T,H)φQ2
(H) dH
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where

φQ2
(H) =

∫
i(aG

P )∗
e〈μ,H〉dQ2

M (μ) dμ.

Suppose first that Q1 �= G and let α ∈ ΔQ1
. We have 〈α,H〉 = 〈α, YQ1

(T )〉 for all
H ∈ YQ1

(T ) + a
Q1

P . It follows from (15) that there exists a constant C such that

1 + ‖T‖ ≤ C(1 + ‖H‖) for all H ∈ YQ1
(T ) + a

Q1

P . Thus, for any n∣∣∣∣∣
∫
i(aG

P )∗
cQ1

M (T ;λ)dQ2

M (λ)

∣∣∣∣∣ dλ ≤ cn,Q2
(1 + ‖T‖)−n

∫
YQ1

(T )+a
Q1
P

χQ1

M (T,H) dH

where

cn,Q2
= sup

X∈aG
P

(C(1 + ‖X‖))n |φQ2
(X)| .

Since
∫
YQ1

(T )+a
Q1
P

χQ1

M (T,H) dH is polynomial in T we obtain

(16)

∣∣∣∣∣
∫
i(aG

P )∗
cQ1

M (T ;λ)dQ2

M (λ)

∣∣∣∣∣ ≤ cn′,Q2
(1 + ‖T‖)−n

for appropriate n′. By Corollary 3 cn,Q2
is a continuous seminorm on the space of

(G,M)-families.
On the other hand, the contribution from Q1 = G is∫
aG
P

χM (T,H)φP (H) dH =

∫
aG
P

φP (H) dH +

∫
aG
P

(1− χM (T,H))φP (H) dH.

Since

φP (H) =

∫
i(aG

P )∗
e〈μ,H〉dP (μ) dμ,

and there exists C > 0 such that χM (T,H) = 1 unless 1 + ‖T‖ ≤ C(1 + ‖H‖), we
get

(17)

∣∣∣∣∣
∫
aG
P

χM (T,H)φP (H) dH − dP (0)

∣∣∣∣∣ ≤ cn,P (1 + ‖T‖)−n.

Combining (16) and (17) we get the Lemma. �

We also need another simple property of the truncation operator.

Lemma 9. Suppose that F is a function of uniform moderate growth on G\G(A).
Then F ∈ L2(G\G(A)) if and only if (ΛTF, F )G\G(A) converges as T → ∞ in C,
in which case it converges to ‖F‖2.

Proof. Recall that (ΛTF, F ) = ‖ΛTF‖2 ≤ ‖F‖2 ([Art80, §1]). By [Lap06,
Lemma 6.2] there exists a constant c such that ΛTF (g) = F (g) for all g ∈ ST

where

ST = {g ∈ S : 〈
,H0(g)− T 〉 < c for all 
 ∈ Δ̂0}.
It follows that

‖ΛTF‖2 ≥ ‖F |XT
‖2

where XT is the image of ST in G\G(A). The Lemma now follows from Lebesgue’s
monotone convergence theorem. �
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8. Proof of Theorems 1 and 2

Next we prove Proposition 2, which immediately implies Theorem 2. We fix a
cone C as in Theorem 1. By Lemma 9 it suffices to show that the inner product

(ΛTΘP,ϕ,Λ
TΘP ′,ϕ′)G\G(A)

converges to the right-hand side of (4) as T → ∞ in C. Using Fourier transform
on aG and the properties of the truncation operator ([Art80]) we write this inner
product as∫
a∗
G

∫
i(aG

P )∗

∫
i(aG

P ′ )
∗

(
ΛTEP (·, ϕ(λ+ μ), λ),ΛTEP ′(·, ϕ′(λ′ + μ), λ′)

)
G\G(A)1

dλ′ dλ dμ.

By Proposition 1 the limit of this expression as T → ∞ in C is equal to the limit of

(18)

∫
a∗
G

∫
i(aG

P )∗

∫
i(aG

P ′ )
∗

∑
Q

∑
w∈Ω(P,Q)

∑
w′∈Ω(P ′,Q)

vol(aGQ/LQ)

e〈wλ+w′λ′,T〉 (M(w, λ)ϕ(λ+ μ),M(w′, λ′)ϕ′(λ′ + μ))Q∏
α∈ΔQ

〈
wλ+ w′λ′, α∨

〉 dλ′ dλ dμ.

We have to show that this limit exists and is equal to the right-hand side of (4). This
is clear if P and P ′ are not associate, in which case both sides are 0. Otherwise, by
choosing w ∈ Ω(P, P ′) and changing ϕ′ to M(w, λ)ϕ′(wλ) we can assume without
loss of generality that P ′ = P . Following [Art82b, §§1-2] we recast the integrand
in terms of (G,M)-families by writing it as the sum over s ∈ Ω(P, P ) of

∑
Q∈P(M)

cQ(T ; Λ)dQ(λ; Λ)

θQ(Λ)

where Λ = sλ′ − λ, cQ(T ; Λ) is as in the previous section and

dQ(λ; Λ) =
(
ϕ(λ+ μ),MQ|P (λ)

−1MQ|P (s, s
−1(λ+ Λ))ϕ′(s−1(λ+ Λ) + μ)

)
P
.

By Lemma 8 the inner integral in (18) approaches∑
s∈Ω(P,P )

(
ϕ(λ+ μ),M(s, s−1λ)ϕ′(s−1λ+ μ)

)
P

as T → ∞ in C uniformly in λ and μ. Thus, the limit of (18) exists and is equal to∫
a∗
G

∫
i(aG

P )∗

∑
s∈Ω(P,P )

(
ϕ(λ+ μ),M(s, s−1λ)ϕ′(s−1λ+ μ)

)
P

dλ dμ.

This is equal to the right-hand side of (4) by adjointness and change of variable.
This concludes the proof of Proposition 2.

Finally, we explain how to derive from Proposition 2 the holomorphy of the
Eisenstein series on the imaginary axis, which is needed to infer Theorem 1. The
prototype of the argument is the fact that a meromorphic function f on Cn with
singularities along hyperplanes of the form 〈λ, v − v0〉 = 0, λ ∈ Rn, v0 ∈ Cn,
and whose restriction to Rn is in L2(Rn), must be holomorphic near Rn. Indeed,
otherwise there exist v0, λ ∈ Rn and an integer k ≥ 1 such that

〈λ, v − v0〉k f(v)
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is holomorphic and non-zero near v0. Thus, |f(v)| grows at least like |〈λ, v − v0〉|−1

near v0, and the latter in not square-integrable on any neighborhood of v0 in Rn.
Note that the conclusion is not true for arbitrary meromorphic functions as

shown by the example

f(z1, . . . , zn) =
1

ez
2
1+···+z2

n(z21 + · · ·+ z2n)
, n ≥ 5.

For the case at hand, we first sharpen Proposition 2 as follows.

Lemma 10. Suppose that ϕ is a bounded measurable function from ia∗P into a
finite-dimensional space V of A2

P . Suppose that ϕ is supported in a compact set C
on which EP (ψ, ·) is regular for all ψ ∈ V . Similarly for ϕ′. Then Proposition 2
holds for ϕ, ϕ′. In particular, we have

(19) ‖Θϕ‖2L2(G\G(A)) ≤ |Ω| ‖ϕ‖2∗
where ‖ϕ‖∗ is as in (3).

Proof. It is enough to consider the case ϕ′ = ϕ. Let ϕn be a sequence in WP

such that

(1) ϕn take values in V ;
(2) ϕn are uniformly bounded;
(3) ϕn are supported inside a fixed, compact neighborhood of C on which

EP (ψ, ·) is regular for all ψ ∈ V .
(4) ϕn → ϕ with respect to ‖·‖∗.

We will show that

(20) Θϕn
→ Θϕ in L2(G\G(A)).

Taking the limit in the identity (4) for ϕn we will obtain the Lemma. To show
(20) observe that, once again by (4), Θϕn

is a Cauchy sequence in L2(G\G(A)) and
therefore it has a limit F . On the other hand, Θϕn

converges pointwise to Θϕ by
Lebesgue’s dominated convergence Theorem. Thus F = Θϕ. �

Proposition 6. For any ϕ ∈ A2
P the Eisenstein series EP (·, ϕ, λ) is holomor-

phic for λ ∈ ia∗P .

Proof. Suppose on the contrary that for some ϕ0 ∈ A2
P (say, with ‖ϕ0‖ = 1)

EP (·, ϕ0, λ) is not holomorphic near ia∗P . Then there exists λ0 ∈ ia∗P , r > 0,
α ∈ R(TM , U) and an integer k ≥ 1 such that

E∗(·, λ) := l(λ)kEP (·, ϕ0, λ)

is holomorphic on ‖λ− λ0‖ < 2r and non-zero at λ0 where l(λ) = 〈λ− λ0, α
∨〉.

Fix x0 ∈ G(A) such that E∗(x0, λ0) �= 0. For any η > 0 define

ϕ(λ) =

{
E(x0, ϕ0, λ)ϕ0 λ ∈ Aη

0 otherwise

where

Aη = {λ ∈ ia∗P : ‖λ− λ0‖ < r and |l(λ)| > η}.
We have

Θϕ(x0) = ‖ϕ‖2∗ =

∫
Aη

|E∗(x0, λ)|2

|l(λ)|2k
dλ.
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It follows that

c1η
1−2k < Θϕ(x0) = ‖ϕ‖2∗ < c2η

1−2k

with c1 > 0 where we will denote by ci constants which are independent of η (and
later on of ε). Using (19) we obtain,

‖Θϕ‖L2(G\G(A)) ≤ c3η
1
2−k.

For any ε > 0 let Nε be a compact neighborhood of x0 so that

|E∗(x, λ)− E∗(x0, λ)| < ε

for all x ∈ Nε and ‖λ− λ0‖ < r. Then for any x ∈ Nε

|Θϕ(x)−Θϕ(x0)| ≤ ε

∫
Aη

|l(λ)|−2k dλ < c4εη
1−2k.

All in all,

c1η
1−2k vol(Nε) < ‖Θϕ(x0)‖L1(Nε) ≤ ‖Θϕ‖L1(Nε) + ‖Θϕ −Θϕ(x0)‖L1(Nε) ≤

vol(Nε)
1
2 ‖Θϕ‖L2(Nε) + c4εη

1−2k vol(Nε) ≤ c3 vol(Nε)
1
2 η

1
2−k + c4εη

1−2k vol(Nε).

Taking ε = c1/2c4 we obtain

η1−2k ≤ c5η
1
2−k

with c5 independent of η. This is impossible if η is sufficiently small. �
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Multiplicité 1 dans les paquets d’Arthur aux places p-adiques

C. Mœglin

En l’honneur de Freydoon Shahidi, pour son 60e anniversaire

Résumé. The main goal of this paper is to summarize the construction of
Arthur’s packet of representations and to finish the proofs of the fact that each
representation occurs with multiplicity at most 1 in such a packet. This will
complete the work of [21] and [28]. More precise results are in the unpublished

paper [22].

Table des matières

1. Introduction 333
2. Notations 337
3. Le cas des groupes métaplectiques 350
4. Construction générale 355
5. Transfert 366
6. Paquets d’Arthur pour les groupes métaplectiques 369
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1. Introduction

Le but de cet article est de résumer les grandes lignes qui permettent de montrer
que les paquets d’Arthur locaux, aux places p-adiques n’ont pas de multiplicité. Ceci
part comme hypothèse générale que l’on connâıt l’existence de paquets de séries
discrètes pour les groupes considérés via des formules de transfert de caractères,
transfert endoscopique et transfert endoscopiques tordus et que l’on sait que ces
paquets de séries discrètes ont multiplicité 1. Ces résultats sont annoncés au moins
dans certains cas par Arthur (cf. en particulier le dernier chapitre de [3]) et les
exposés faits par Arthur mais au moment où on écrit ces lignes, le texte définitif
d’Arthur n’est pas disponible, nos résultats sont donc conditionnels.
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On ne récrit pas les démonstrations techniques déjà disponibles sous forme de
publications [28], [21] mais on ajoute la démonstration de l’irréductibilité dans la
définition même des représentations dans le cas général (cf. 4.1.2, 4.2) qui n’était
pas incluse dans ces publications ; c’est nécessaire pour avoir la multiplicité 1. On
essaie aussi de considérer tous les groupes pour lesquels nos méthodes s’appliquent ;
aux groupes classiques usuels, on ajoute les groupes GSpin (en suivant les idées
d’Arthur [5]) et on aborde aussi le cas des groupes métaplectiques ; on prouve ici
la classification des séries discrètes des groupes métaplectiques en s’appuyant sur
celles des groupes orthogonaux ; on doit supposer que la caractéristique résiduelle
est différente de 2 pour ce résultat et on donne une description des paquets généraux
en prenant une définition ad hoc à l’aide de la correspondance de Howe. Pour les
groupes métaplectiques, nous n’écrivons pas de propriétés de transfert.

Décrivons un peu plus précisément l’article. Ici F est un corps p-adique. Sha-
hidi et ses collaborateurs, en particulier Goldberg, Kim et Asgari ont montré
comment les résultats d’Harish-Chandra sur les opérateurs d’entrelacement per-
mettent de comprendre les fonctions L attachées à des représentations cuspidales
génériques de certains groupes M , M étant vu comme sous-groupes de Levi de
groupes H, la représentation du L-groupe de M donnant lieu à la fonction L est
alors celle qui s’obtient naturellement dans la dualité de Langlands à l’aide du
parabolique dual dans LH et de l’action de LM dans l’algèbre de Lie du radical
unipotent de ce parabolique. Shahidi en interprétant les résultats d’Harish-Chandra
a déduit de ces observations des résultats importants sur les points de réductibilité
des induites de cuspidales : exprimons les sur l’exemple le plus simple. Ici G =
SO(2n+ 1, F ), la forme déployée, σ est une représentation cuspidale générique de
G et ρ est une représentation cuspidale unitaire d’un groupe linéaire GL(dρ, F ). On
voit GL(dρ, F )×G comme un sous-groupe de Levi de H = SO(2(n+dρ)+1, F ) et
on considère les induites de la représentation ρ| |s⊗σ où s ∈ R≥0, notées simplement
ρ| |s × σ. D’après les résultats d’Harish-Chandra une telle induite est irréductible
pour tout s réel si ρ �� ρ∗ c’est la condition dite improprement de ”ramification”
ou encore il faut qu’un élément du groupe de Weyl de H stabilise la représentation
ρ⊗σ. De plus Silberger a montré que si la condition de ”ramification” est satisfaite
alors il existe exactement un réel sρ,σ positif ou nul tel que l’induite ρ| |sρ,σ ×σ soit
réductible. Shahidi a alors démontré que sρ,σ = 0, 1/2 ou 1 et le fait que sρ,σ soit
entier ou demi-entier ne dépend que de ρ et non de σ. En effet, d’après Shahidi,
sρ,σ = 1/2 si et seulement si la fonction L(ρ, Sym2, s) a un pôle en s = 0. On peut
maintenant généraliser ces résultats en enlevant l’hypothèse que σ est générique
mais cela se fait au prix de l’utilisation de lemmes fondamentaux et de la formule
des traces simplifiée (la simplification permet uniquement d’éviter les lemmes fonda-
mentaux pondérés). Ceci est expliqué par les travaux d’Arthur (cf. par exemple [4]
et [6]). La meilleure façon d’expliquer la situation pour le G fixé ici est de considérer
les homomorphismes ψ de WF ×SL(2,C) dans Sp(2n,C), pris évidemment à conju-
gaison près, dont le centralisateur dans Sp(2n,C) est un groupe fini. A un tel ψ,
Arthur associe (cf [6]) un ensemble sans multiplicité de séries discrtètes (ensemble
noté Π(ψ)) tel que la somme des traces,

∑
π∈Π(ψ) trπ se calcule en fonction de la

trace de la représentation tempérée de GL(2n, F ) associée par la correspondance
de Langlands locale à Ψ ; plus exactement cette représentation πGL(ψ) est inva-
riante par l’automorphisme extérieur de GL(2n, F ), noté θG et on prolonge cette
représentation en une représentation du produit semi-direct de GL(2n, F )×{1, θ} ;
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ici on appelle θG l’automorphisme h �→ J(tg−1)J−1 où J est tel que θG conserve
un épinglage. Et alors, Arthur montre que pour un bon choix de ce prolongement,
le choix qui est tel que θG induise une action triviale sur le modèle de Whittaker
usuel, et pour tout g ∈ G semi-simple suffisamment régulier∑

π∈Π(ψ)

trπ(g) = δ(g, θ, hg)tr π
GL(ψ)(hgθG), (∗)

où g est hg sont simplement reliés par le fait que les valeurs propres de g différentes
de 1 sont celles de hgθG(hg) et où δ(g, θ, hg) est un facteur de transfert géométrique
qui vaut identiquement 1 dans un certain nombre de cas en particulier dans le cas
que nous considérons ici. En d’autres termes, G est un groupe endoscopique de
GL(n).θG et πGL(ψ) est un transfert de

∑
π∈Π(ψ) π pour l’endoscopie tordue ; si

G est un groupe endoscopique principal, les facteurs de transfert valent identique-
ment 1. Ce résultat d’Arthur n’est pas encore complètement rédigé mais Arthur
a largement expliqué sa démonstration. Le transfert commute à 2 opérations clé,
l’induction et la restriction (ceci se trouve déjà dans les travaux de Shelstad dans le
cas de l’endoscopie ordinaire, cf. aussi [28] 4.2.1 pour la restriction). On a donc des
renseignements sur les modules de Jacquet des éléments de Π(ψ) en fonction des
modules de Jacquet de πGL(ψ) on le reprend en 2.3 ci-dessous. Ainsi si on revient
à ρ, σ ci-dessus sans supposer que σ est générique, on vérifie que si sρ,σ > 0 alors
l’induite ρ| |−sρ,σ × σ contient une sous-représentation qui est une série discrète
irréductible ; cette série discrète appartient à un paquet paramétré par un mor-
phisme noté ψ et le sρ,σ se calcule à l’aide du module de Jacquet de πGL(ψ) et
on retrouve alors les résultats de Shahidi, la fonction L qui intervient est main-
tenant L(Lρ, Sym2, s) où Lρ est la représentation de WF qui correspond à ρ par
la correspondance de Langlands ; dans tout l’article on notera Lρ tout simplement
ρ. Henniart a montré dans un cadre très général que ces fonctions L cöıncident
et on a donc bien une généralisation du résultat de Shahidi. A partir de là on a
une connaissance très précise des représentations intervenant dans Π(ψ) et ceci est
rappelé en 2.3.

On vient d’expliquer comment (*) permet de comprendre les points de réductibi-
lité des induites de cuspidales mais pour établir la classification des séries discrètes,
Arthur utilise toutes les propriétés de l’endoscopie. Jusqu’ici on avait supposé le
groupe considéré quasi-déployé ; c’est l’endoscopie ordinaire qui permet de traiter
aussi les groupes non quasi-déployés, en utilisant le transfert stable vers la forme
quasi-déployée. Pour traiter les groupes métaplectiques, on utilise la correspon-
dance de Howe donc on n’a plus de formule de caractères ; on suppose alors que la
caractéristique résiduelle est différente de 2.

Pour les applications à la formule des traces le point est de généraliser (*) à
tout morphisme ψ de WF × SL(2,C) × SL(2,C) dans Sp(2n,C) en modifiant les
signes du membres de gauche. Pour un tel ψ Arthur sait démontrer l’existence du
paquet de représentations Π(ψ) tel que (*) soit satisfait mais avec éventuellement
des coefficients dans le membre de gauche qui sont, à un signe près qu’Arthur sait
calculer, des entiers ; on ne sait pas encore avec quelle généralité Arthur écrira
ses résultats. Dans cet article on résume les points qui permettent de prouver
que les coefficients sont ±1 dès qu’on le sait pour les paquets de séries discrètes
(nos méthodes ne permettent nullement de le démontrer pour les paquets de séries
discrètes). La démonstration est technique et elle s’appuie sur 2 types de résultats ;
d’une part du côté des groupes linéaires, pour ψ général il faut écrire la θG-trace
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de πGL(ψ) dans le groupe de Grothendieck de façon à pouvoir calculer de quelle
représentation elle est un transfert (ceci est fait dans [28]). De façon analogue, on a
une formule pour le groupe classique considéré dans le groupe de Grothendieck qui
ne nécessite d’ailleurs pas que le groupe soit quasi-déployé. Le point est alors de
décrire cette formule comme combinaison linéaire avec coefficient ±1 (explicites) de
traces de représentations irréductibles ; ceci est fait dans [21]. En fait la méthode
est un peu plus fine, pour chaque caractère, ε, du centralisateur de ψ, on définit
dans le groupe de Grothendieck de G une représentation π(ψ, ε) et on montre que
cette représentation est une somme sans multiplicité de représentations irréductibles
(donc à coefficient 1) puis on prouve qu’une bonne combinaison linéaire avec des
coefficients ±1 de ces représentations π(ψ, ε) a pour transfert la θ-trace de πGL(ψ).
La description des représentations est complètement explicite sous l’hypothèse que
la restriction de ψ àWF×ΔSL(2,C) est sans multiplicité, où ΔSL(2,C) est la diagonale
de SL(2,C) ; dans ce cas, on a une paramétrisation précise des représentations dans
Π(ψ). On passe au cas général sans perdre la multiplicité 1 (cf 4.2 ci-dessous) mais
en perdant de la précision sur la paramétrisation ; dans cet article on donne une
démonstration complète de l’irréductibilité de certaines induites (la démonstration
se trouve dans une prépublication [22] qui restera prépublication, vue sa techni-
cité) de façon à ce que toutes les étapes de la preuve soient disponibles sous forme
de publication. Quand on travaille dans le groupe classique, on a exactement la
même combinatoire que le groupe soit quasi-déployé ou non ; la différence porte sur
la restriction du caractère ε (ci-dessus) au centre du groupe dual ; dans le cas de
GSpin ce n’est pas exactement le groupe dual, ceci est expliqué en toute généralité
par Arthur en [4] et repris ici dans le cas particulier considéré ; par exemple si
G = GSpin(2n + 1, F ) la composante neutre du groupe dual est Gsp(2n,C) mais
les centralisateurs sont calculés dans Sp(2n,C) et c’est le centre de Sp(2n,C) qui
distingue la forme déployée de celle qui ne l’est pas.

Les groupes pour lesquels les méthodes développées ci-dessous fonctionnent bien
sont les groupes classiques et leurs variantes ; c’est-à-dire ce sont les groupes qui
peuvent être mis en famille indexée par le rang, {G(n);n ∈ N} ici n est le rang du
groupe, tel que les classes de conjugaison des sous-groupes de Levi deG(n) pour tout
n sont indexés par les multiensembles {n0; (n1, · · · , n�)}, où n = n0+n1+ · · ·+n�,
n0 ≥ 0 et les ni pour i ∈ [1, 	] sont définis à l’ordre près, le sous-groupe de Levi étant
isomorphe à ×i∈[1,�]GL(ni)×G(n0) où G(n0) est le groupe de même type que G(n)
mais de rang n0 ; ceci n’est pas suffisant, on veut aussi que la composante neutre du
L groupe de G ait une représentation naturelle injective dans un groupe linéaire de
rang 2n ou 2n+ 1, c’est-à-dire que l’on exclut encore les groupes G = Gsp ou GO.
On obtient finalement les groupes classiques usuels sans supposer nécessairement
qu’ils sont quasi-déployés, ce qui sous entend qu’il faut considérer O(2n, F ) et non
SO(2n, F ) (pour ces groupes il faut tenir compte du discriminant de la forme et
de l’invariant de Hasse dans les paramétrisations ; ceci est amplement écrit dans la
littérature, par exemple [17] et on ne revient pas là-dessus) ; les groupes unitaires
sont aussi acceptables et les groupes GSpin(2m+ 1, F ) (les deux formes, déployée
ou non déployée) ; ceci est remarqué dans [7] et repris dans [8], [14]. Le groupe
dual à considérer est alors GSp(2m,C) que l’on considère en suivant Arthur (cf [5])
comme un sous-groupe de GL(2m,C)×GL(1,C). On peut aussi traiter une variante
non connexe de GSpin(2m,F ) avec comme groupe dual GO(2m,C) encore inclus
dans GL(2m,C) × GL(1,C). Il faut préciser ici que nous n’avons pas fait toutes
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les vérifications nécessaires pour les groupes orthogonaux paires et leurs variantes
GSpin(2n, F ) ; la difficulté vient de la non connexité. Pour les représentations,
il suffit d’appliquer la théorie de Mackey et la difficulté est dans le cas tempéré
et non dans le passage du cas tempéré au cas général. Il y a aussi une difficulté
avec les facteurs de transfert, ces facteurs de transfert n’apparaissent pas pour les
autres groupes qui sont des groupes endoscopiques principaux mais viennent pour
les groupes orthogonaux pairs et la non connexité du groupe n’améliore pas leur
définition (je ne sais même pas si elle existe) ; là aussi la difficulté est pour les
représentations tempérées et je préfère attendre les résultats précis annoncés par
Arthur pour utiliser son yoga et faire les vérifications. Le groupe métaplectique
rentre aussi dans ce shéma, au moins si p �= 2 à la différence de taille près que
l’on n’a pas d’analogue de (*) ; on remplace cette caractérisation des paquets par
la correspondance de Howe. Ce sont des idées dûes, me semble-t-il, à Adams et
exploitées dans ses travaux en particulier communs avec Barbasch et Trapa et dans
les travaux de Renard et Trappa, au moins dans le cas des groupes archimédiens.
Pour donner la forme d’un paquet d’Arthur général de Mp(2n, F ), on a en plus
l’hypothèse que le caractère d’une représentation est localement L1, je ne sais pas
si cela est démontré dans la littérature ; cette hypothèse vient du fait que [26] 4.II.
2 n’est pas algébrique. On caractérise un paquet d’Arthur par son image dans la
correspondance de Howe pour la paire Mp(2n, F ), O(2n+2N+1, F ) pour N grand
en demandant que cette image soit l’ensemble des représentations de O(2n+2N +
1, F ) dont la restriction à SO(2n+ 2N + 1, F ) soit dans le paquet d’Arthur prédit
par Adams et qui interviennent dans cette correspondance de Howe.

2. Notations

F est un corps p-adique, n est toujours un entier, G est l’un des groupes sui-
vants, quasi-déployé ou non : Sp(2n, F ), SO(2n+1, F ), O(2n, F ),GSpin(2n+1, F ),
GSpinnc(2n, F ) (cf ci-dessous pour la définition), Mp(2n, F ) (notation abusive,
puisque le groupe n’est pas le groupe des points sur F d’un groupe algébrique). On
pose respectivement suivant les cas G∗ le groupe complexe SO(2n+1,C), Sp(2n,C),
O(2n,C), GSp(2n,C), GO(2n,C). On considère la représentation naturelle de G∗

dans le GL évident sauf dans le cas GSp et GO où on considère la représentation
naturelle dans GL(2n,C)×GL(1) comme expliquée ci-dessous (on suit Arthur). On
note θG, ou θ l’automorphisme extérieur de GL qui respecte un épinglage dans tous
les cas sauf quand G est un groupe GSpin où l’automorphisme est décrit ci-dessous.

On considère aussi des morphismes ψ de WF × SL(2,C) × SL(2,C) dans G∗

vu grâce à la représentation de G∗ décrite comme une représentation de WF ×
SL(2,C) × SL(2,C). On suppose toujours que cette représentation est unitaire,
continue au sens habituel sur WF algébrique sur les copies de SL(2,C). On décom-
pose alors cette représentation en sous-représentations irréductibles et on note
Jord(ψ) l’ensemble de ces sous-représentations irréductibles comptées avec mul-
tiplicité ; dans le cas des groupes GSpin, on a en plus un caractère de WF noté νψ ;
on l’oublie en général des notations. Un élément de Jord(ψ) est donc un triplet
(ρ, a, b) où ρ est une représentation irréductible unitaire de WF et a, b sont des
entiers déterminant des représentations irréductibles de SL(2,C), représentation
irréductible que l’on écrira parfois ρ⊗ [a]⊗ [b].

On considérera aussi le centralisateur de ψ, il est à prendre dans G∗ sauf dans le
cas des groupes G = GSpin où on le prend dans Sp(2n,C) ou dans GO(2n,C). On
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considérera ensuite des caractères de ce centralisateur ; dans tous les cas sauf celui
des groupes métaplectiques, ces caractères ont pour restrictions au centre de G∗

le caractère trivial si et seulement si G est quasi-déployé. Dans le cas des groupes
métaplectiques, il n’y a pas de condition sur la restriction des caractères au centre
de G∗ ici Sp(2n,C). Il est facile d’identifier un caractère du centralisateur de ψ à
une application de Jord(ψ) dans ±1, où Jord(ψ) est ici vu comme un ensemble
sans multiplicité, application qui vaut +1 sur tous les triplets (ρ, a, b) tel que la
représentation ρ ⊗ [a] ⊗ [b] n’est pas à valeurs dans un groupe de même type que
G∗ ; plus précisément si (ρ, a, b) n’a pas la bonne parité (cf. 4.1)

La notation ρ qui revient dans tout cet article, signifie indifféremment une
représentation irréductible unitaire de WF ou une représentation cuspidale unitaire
irréductible de GL(dρ, F ) (ce qui définit dρ).

On a essayé d’éviter le maximum de technicité dans cet article, mais on a
par endroit besoin de la notation bien commode Jacρ| |xπ ; elle signifie que π est
une représentation lisse de longueur finie de G, x est un nombre réel (en général
un demi-entier), ρ est comme ci-dessus et Jacρ| |xπ est l’élément du groupe de
Grothendieck du groupe G′ de même type que G mais de rang dρ plus petit tel
que le module de Jacquet de π pour le parabolique de Levi GL(dρ, F ) × G′ soit

de la forme

(
ρ| |x ⊗ Jacρ| |xπ

)
⊕

(
⊕σ′,σ′′σ′ ⊗ σ′′

)
, où σ′, σ′′ décrive un ensemble

de représentations irréductibles de GL(dρ, F ) et G′ respectivement telles que σ′ ne
soit pas isomorphe à ρ| |x. On peut composer ces applications Jacρ| |x en faisant
attention à la notation

Jacρ| |y ◦ Jacρ| |xπ =: Jacρ| |x,ρ| |yπ.

Soit ψ comme ci-dessus ; on note πGL(ψ) la représentation du GL convenable
isomorphe à l’induite ×(ρ,a,b)∈Jord(ψ)Speh(St(ρ, a), b), où St signifie Steinberg et

Speh(St(ρ, a), b) est l’unique quotient irréductible de l’induite St(ρ, a)| |(b−1)/2 ×
· · · × St(ρ, a)| |−(b−1)/2. Pour donner la définition de πGL(ψ), il suffit bien évidem-
ment d’avoir une représentation de WF × SL(2,C)× SL(2,C) (il n’est pas utile de
savoir qu’elle est à valeurs dans G∗ ; on utilisera par endroit cette généralisation.

Convention pour les ψ tempérés
Quand ψ est trivial sur la 2e copie de SL(2,C), tout (ρ, a, b) ∈ Jord(ψ) est tel

que b = 1 et on remplace donc les triplets par des couples.

2.1. Les groupes GSpin. On suit ici [7] et [8] : Spin(2m + 1, F ) est le
revêtement d’ordre 2 de SO(2m + 1, F ) non trivial ; ce qui suppose que l’on a
fixé une forme orthogonale non nécessairement sans noyau anisotrope de dimen-
sion 2n+ 1. Ce groupe a un centre isomorphe à Z/2Z (cf. [7] proposition 2.2). On
note c l’élément non trivial de ce centre et on considère GSpin(2m + 1, F ) :=
GL(1, F ) × Spin(2m + 1, F )/{(1, 1), (−1, c)} (cf. [7] def. 2.3). On définit aussi
Spin(2m,F ) comme le revêtement d’ordre 2 non trivial de la forme quasidéployée
de SO(2m,F ) ; l’automorphisme extérieur de SO(2m,F ) se relève en un auto-
morphisme , aut, de Spin(2m,F ). Le centre de Spin(2m,F ) est un groupe à 4
éléments et son sous-groupe formé par les éléments invariants sous aut est d’ordre
2 ; c’est le sous-groupe {1, c} avec les notations de [7] proposition 2.2. On note
Spinnc(2m,F ) le produit semi-direct de Spin(2m,F ) avec {1, aut} et on pose en-
core GSpinnc(2m,F ) le quotient GL(1, F )×Spinnc(2m,F )/{(1, 1), (−1, c)}. Toute
représentation irréductible d’un de ces groupes a un caractère central. On supposera
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toujours que ce caractère central est unitaire. Si π est la représentation considérée,
on note νπ la restriction du caractère central de π au facteur GL(1, F ) qui apparâıt
ci-dessus. D’après [7] 2.7, les sous-groupes de Levi des groupes GSpin(2m+ 1, F )
déployés sont de la forme

GL(n1, F )× · · · ×GL(n�, F )×GSpin(2(m− n1 − · · · − n�) + 1, F );

son argument (qui utilise le L-groupe comme décrit ci-dessous) montre aussi que la
composante connexe du centre de GSpin(2m+ 1, F ) s’identifie à celle de

GSpin(2(m− n1 − · · · − n�) + 1, F ).

Le cas de GSpin(2m,F ) déployé est fait dans [14] page 545. Kim y calcule ef-
fectivement les sous-groupes à un paramètre et montre ainsi qu’un sous-groupe
parabolique maximal de GSpin(2m,F ) est de la forme GL(1)×GL(1)× SL(k)×
Spin(2(m− k))/S où k ≤ m et le premier GL(1) est celui qui sert à définir GSpin
et le 2e est le tore déployé maximal dans le centre du sous-groupe de Levi de Spin
obtenu par intersection ; ce sont des arguments sur les groupes dérivés puisque l’on
sait que le groupe dérivé doit être simplement connexe ; le groupe S se calcule à
l’aide des coracines et Kim montre qu’en plus de l’élément {−1, 1, 1, c}, il contient,
si k est pair

{(1, t, tIdk, 1); tk/2 = 1} ∪ {(−1, t, tId, c); tk/2 = −1}.
Si k est impair, ce groupe vaut {(1, t, t2Idk, 1); tk = 1} ∪ {−1, t, t2Idk, c); t

k = −1}.
En tant que groupe algébrique ce Levi est isomorphe naturellement à GL(k) ×
GSpin(2(m− k)). Avec cette présentation, il est clair que ceci reste vrai si GSpin
n’est pas quasidéployé et que ceci s’étend aussi à GSpinnc(2n).

Le groupe dual est Gsp(2m,C) pour GSpin(2m + 1, F ) et GO(2m,C) pour
GSpinnc(2m,F ). En suivant [5] on voit ces groupes comme des sous-groupes de
GL(2m,C) × GL(1,C) par le plongement g �→ (g, λg) où λg est le scalaire tel
que tgJGg = λgJG où JG est la matrice antidiagonale avec des 1 dans le 2e cas
et la matrice antidiagonale mais avec des −1 comme entrées non nulles sur les m
premières colonnes et des 1 pour les m dernières.

A la suite de [5] on note θG∗ l’automorphisme de GL(2m,C)×GL(1,C) défini
par θG∗(g, λ) = J(tg−1)J−1λ, λ). On considère les homomorphismes de WF ×
SL(2,C) × SL(2,C) dans GL(2m,C) × GL(1,C) dont la classe de conjugaison
est θG∗ invariante. La projection sur le facteur GL(1,C) définit un caractère de
WF , noté ωψ ; on considère ωψ comme un caractère de WF × SL(2,C) trivial sur
SL(2,C). La projection sur le facteur GL(2m,C) définit une représentation, ψGL

de dimension 2m de WF × SL(2,C) × SL(2,C). On suppose toujours que cette
représentation est semi-simple de restriction à WF bornée. Supposons que la classe
de conjugaison de ψ soit θG∗ -invariante ; cette hypothèse se traduit exactement par
le fait que ψGL,∗ ⊗ ωψ � ψGL. On supposera toujours que ωψ est un caractère
unitaire. En [5], Arthur a classifié les classes de conjugaison d’homomorphisme ψ.
Dualement l’automorphisme θG de GL(2m,G) × GL(1, F ) à considèrer et l’auto-
morphisme θG(g, x) = J(tg−1))J−1, det(g)x) (cf. [5]) page 66.

2.2. Le groupe métaplectique et la filtration de Kudla. Ici on suppose
que p �= 2, p étant la caractéristique résiduelle du corps de base. On peut com-
prendre les représentations irréductibles du groupe métaplectique en utilisant la
représentation métaplectique et tous les groupes orthogonaux d’une forme de di-
mension impaire ; comme on le verra ci-dessous, il est justifié de considérer Sp(2n,C)
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comme groupe dual. C’est-à-dire que l’on considérera des homomorphismes de
WF × SL(2,C)× SL(2,C) dans Sp(2n,C).

On aura besoin des résultats suivants sur la représentation métaplectique, es-
sentiellement dûs à Kudla dans sa thèse ([15]). On fixe 2 tours de Witt d’espaces
orthogonaux de dimension impaire, l’une correspondant aux formes orthogonales
de noyau anisotrope de dimension 1 et l’autre à celles ayant un noyau anisotrope de
dimension 3 ; on suppose que les discriminants valent 1 pour tous ces espaces. La
première tour est formé d’espaces orthogonaux d’invariant de Hasse 1 et la deuxième
d’espaces orthogonaux d’invariant de Hasse −1. Les objets associés dans ce qui suit
via l’une ou l’autre des tours seront notés avec un indice ζ = ± représentant l’in-
variant de Hasse attaché à la tour. On fixe le groupe métaplectique Mp(2n, F )
et on a donc 2 familles de représentations métaplectiques donnant des correspon-
dances de Howe. Soit π une représentation cuspidale de Mp(2n, F ) ; on note π̃ζ

la première occurrence de π dans ces représentations ; Kudla a démontré que π̃ζ

est une représentation cuspidale. Notons mζ l’entier impair tel que π̃ζ est une
représentation de O(mζ , F ). On sait d’après les travaux de Kudla et de Rallis ([16],
theorem 3.8) que l’on a

(m+ − 1) + (m− − 1) ≥ 4n+ 2.

Une conjecture de Kudla est que cette inégalité est une égalité et l’égalité est
démontré par Kudla et Rallis dans un certain nombre de cas qui incluent le cas
où π est cuspidale ([16], theorem 3.9). On a une inégalité symétrique : on fixe m
et l’invariant de Hasse ζ et on regarde la tour de Witt quand n varie. Soit π̃ une
représentation cuspidale de O(m,F )ζ et on note n(π̃) la première occurrence de π̃.
Pour sign le caractère signe de O(m,F )ζ, on définit de même n(π̃ ⊗ sign) et on a
n(π̃) + n(π̃ ⊗ sign) ≥ 2(m− 1) + 2.

Le résultat clé dû à Kudla que nous utiliserons est le suivant. Pour n comme
ci-dessus, m un entier impair ζ un signe qui donne l’invariant de Hasse d’une forme
orthogonale de dimension m et de déterminant 1, on note Ωn,m,ζ la représentation
métaplectique pour la paire Mp(2n, F ), O(m,F )ζ. Pour d ≤ n, Kudla a calculé les
modules de Jacquet de cette représentation pour le parabolique maximal isomorphe
à GL(d, F )×Mp(2(n−d), F ) de Mp(2n, F ) ; il a décrit une filtration à 2 termes de
ce module de Jacquet, le quotient est isomorphe à Ωn−d,m,ζ est le sous-module est

isomorphe à ind
O(m,F )ζ
Q ωd,d ⊗Ωn−d,m−2d,ζ où Q est un parabolique de O(m,F ) de

Levi isomorphe à GL(d, F )×O(m−2d, F ) (ce terme n’existe pas si Q n’existe pas),
ωd,d est à torsion près essentiellement la représentation régulière gauche et droite de
GL(d, F )×GL(d, F ) où le premier GL(d, F ) est dans Mp(2n, F ) et le deuxième est
un facteur de Q. Le groupe GL(d, F ) sous-groupe de Mp(2n, F ) opère sur Ωn−d,m,ζ

par le caractère |det|−(n−(m−1)/2−1/2). Soit n′,m′ et π′⊗ π̃′ un quotient irréductible
de Ωn′,m′,ζ et on suppose qu’il existe une représentation cuspidale irréductible ρ′

d’un groupe GL(dρ′ , F ) et une représentation irréductible σ′ de Mp(2(n− dρ′), F )
tel que π′ soit un sous-module de l’induite ρ′×σ′. En utilisant la filtration ci-dessus
et quelques dualités, on vérifie que 2 cas sont possibles : soit ρ′ = | |−(n−(m−1)/2−1/2

et σ′⊗ π̃′ est un quotient de Ωn−dρ′ ,m,ζ soit il existe une représentation irréductible

σ̃′ telle que σ⊗ σ̃′ soit un quotient de Ωn′−dρ′ ,m
′−2dρ′ ,ζ et π̃′ est un sous-module de

l’induite ρ′ × σ̃′ ; pour ce que l’on fait, le problème des torsions n’est pas grave, ce
qui compte est la valeur du caractère exceptionnel et celle là est facile à calculer.
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Kudla a aussi établi une filtration symétrique en échangeant les rôles des
groupes métaplectiques et orthogonaux ; le caractère exceptionnel est alors −((m−
1)/2− n− 1/2). On applique ce résultat de la façon suivante :

soit ρ une représentation cuspidale unitaire d’un GL(dρ, F ) et x ∈ R. On
considère les correspondances pour Mp(2n + 2dρ, F ) avec les tours de Witt déjà
décrites. On fixe un quotient irréductible de l’induite π′ de ρ| |x×π. On suppose que
soit ρ n’est pas le caractère trivial soit x n’est pas un demi-entier non entier. Ainsi
π′, par la filtration de Kudla, est un quotient de la représentation métaplectique
Ωn+dρ,mζ+dρ,ζ . Et il existe une représentation irréductible π̃′ de O(mζ + 2dρ, F )ζ
telle que π̃′ soit l’image de π′ dans la correspondance définie par Ωn+dρ,mζ+2dρ,ζ .
On sait alors que π̃′ est un sous-quotient de l’induite ρ| |x × π̃ζ (cf. [34]). De plus,
par la filtration de Kudla, Jacρ| |−x π̃′ �= 0 puisque ceci est vrai pour π et donc
π̃′ est un quotient de l’induite ρ| |x × π̃ ; on vérifie symétriquement l’implication
réciproque ; on a donc

Jacρ| |−xπ′ �= 0 ⇔ Jacρ| |−x π̃′ �= 0.

Si l’une des induites est irréductible, on a aussi Jacρ| |xπ
′ �= 0 et Jacρ| |x π̃

′ �= 0 et
les 2 induites sont irréductibles si x �= 0. Si x = 0, les induites ρ× π et ρ× π̃ sont
semi-simples et tout sous-module irréductible de l’une a pour image un sous-module
irréductible de l’autre. On sait que pour le groupe orthogonal, une telle induite est
sans multiplicité mais on ne le sait pas pour le groupe métaplectique puisque cela fait
partie des résultats d’Harish-Chandra. Supposons donc que ρ× π soit de la forme
σ ⊕ σ ; dans ce cas nécessairement ρ × π̃ est irréductible. Le module de Jacquet
de ρ × π est lui semi-simple de longueur 2. Mais alors l’induite déjà considérée

ind
O(m,F )ζ
Q ωd,d ⊗ Ωn,mζ ,ζ a 2 homomorphismes linérairement indépendants dans(

ind
O(mζ+2dρ,F )
Q ρ × π̃

)
⊗ π surjectifs par irréductibilité. Comme le module de

Jacquet de ρ × π̃ a un unique quotient irréductible, par réciprocité de Frobenius,
cela donne 2 homomorphismes linéairement indépendants de Ωn,mζ ,ζ sur π⊗π̃. Ceci
est exclu et on a donc montré :

Lemme 2.2.1. si ρ n’est pas la représentation triviale ou si x n’est pas un
demi-entier non entier, on a l’équivalence pour ζ fixé, ρ| |x × π est irréductible si
et seulement si ρ| |x × π̃ζ est irréductible.

Supposons maintenant que ρ est le caractère trivial et que x est un demi-entier
non entier ; on fixe encore un sous-quotient irréductible π′ de l’induite | |x×π. Pour
ζ fixé, la première occurrence de π′ est soit mζ soit mζ+2 ; le premier cas se produit
exactement quand x = x0 := −(n+1−(mζ−1)/2−1/2) comme on le voit en utilisant
la filtration ci-dessus pour la représentation Ωn+1,mζ ,ζ . Supposons donc d’abord que
x = −(n − (mζ − 1)/2 + 1/2) ; alors π′ est l’image de π̃ζ dans la correspondance
Ωn+1,mζ ,ζ et on sait (cela se vérifie avec la filtration) que le module de Jacquet de π′

est réduit à un terme. Ainsi l’induite | |n−(mζ−1)/2+1/2 × π est réductible. On pose
x1 := (n− (mζ −1)/2−1/2) ; on remarque que x1 = −((mζ +2−1)/2−n−1/2) et
symétriquement, on démontre que l’induite | |x1 × π̃ζ est réductible. Par le résultat
de Silberger ([33]), on sait que les induites | |x× π̃ζ sont irréductibles pour tout réel
x différent de ±x1. On veut en déduire que les induites | |x × π sont irréductibles
pour tout x �= ±x0. Pour x �= ±x0,±x1, le résultat est clair avec la filtration : π′

à pour image toute l’induite | |x × π̃ζ par irréductibilité. En utilisant la filtration
symétrique de celle décrite on voit que le module de Jacquet de π′ a 2 termes et
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l’induite est donc irréductible. Supposons donc que x = x1. On vérifie alors que le
sous-module irréductible de l’induite ρ| |x1 × π̃ζ a sa première occurrence dans la
correspondance Ωn,mζ+2,ζ et a donc son image dans la correspondance Ωn+1,mζ+2,ζ

qui est un sous-quotient de l’induite | |x0 ×π ; on peut le voir en considérant d’abord
la filtration de Kudla pour le parabolique GL(1)×O(mζ, F )ζ de O(mζ+2, F )ζ puis
en appliquant encore la filtration telle que décrite au quotient Ωn+1,mζ ,ζ . Donc tout
sous-quotient irréductible π′ de l’induite | |x1 × π correspond à un sous-quotient de
l’induite | |x1×π̃ζ qui n’est pas le sous-module. Il n’y a plus qu’un choix et l’existence
de la correspondance de Howe assure alors l’irréductibilité de l’induite | |x1 × π.

Remarquons que l’on a donc étendu le résultat de Silberger au cas des groupes
métaplectiques et même un peu plus :

Lemme 2.2.2. soit π une représentation cuspidale irréductible de Mp(2n, F ) et
soit ρ une représentation cuspidale unitaire d’un groupe GL(dρ, F ). Si ρ n’est pas
autoduale pour tout réel x l’induite ρ| |x × π est irréductible. Si ρ est autoduale il
existe exactement une valeur de x ∈ R≥0 tel que ρ| |x × π soit réductible ; notons
xρ,π cette valeur de x et notons pour ζ = ±, π̃ζ la première occurrence de π. On
a xρ,π = xρ,π̃ζ

pour toute représentation ρ autoduale sauf la représentation triviale
pour laquelle on a x1,π = |n− (mζ −1)/2+1/2| ; en particulier x1,π est demi-entier
non entier.

2.3. Blocs de Jordan et classification des représentations cuspidales.
On rappelle la définition bien commode ; soit π une série discrète irréductible d’un
groupeG ; on note Jord(π) l’ensemble des couples (ρ, a) formés d’une représentation
cuspidale irréductible unitaire ρ d’un groupe GL(dρ, F ) et d’un entier a ≥ 1 tel que
l’induite St(ρ, a)× π soit irréductible alors qu’il existe un entier a′ de même parité
que a tel que l’induite St(ρ, a′)×π soit réductible ; St signifie ”Steinberg”. Ce n’est
pas la définition originale de [19] car on évite ici le recours aux fonctions L. L’in-
terprétation en termes de fonctions L découle des résultats d’Arthur, précisément,
on va montrer qu’avec cette définition, on retrouve la classification de Langlands
telle que montrée par Arthur.

Via la correspondance de Langlands, on identifie une représentation cuspidale
irréductible, ρ, d’un groupe GL(dρ, F ) à un morphisme, encore noté ρ, de WF dans
GL(dρ,C). On pose nπ :=

∑
(ρ,a)∈Jord(π) a dρ, l’infini si Jord(π) n’était pas fini (cf.

[18] où la finitude est démontrée a priori pour au moins certains de nos groupes). A
un tel ensemble Jord(π), on associe un morphisme semi-simple ψπ deWF×SL(2,C)
dans GL(nπ,C) dont la décomposition en sous-représentations irréductibles est
précisément

∑
(ρ,a)∈Jord(π) ρ⊗[a] où [a] est la représentation irréductible de SL(2,C)

de dimension a. Soit (ρ, a) ∈ Jord(π) et fixons a′ de même parité que a tel que l’in-
duite St(ρ, a′)× π soit réductible. Si G n’est pas un groupe métaplectique, on sait
grâce aux travaux d’Harish-Chandra qu’il existe un élément du groupe de Weyl de G
qui stabilise le sous-groupe de Levi GL(a dρ, F )×G et la représentation St(ρ, a′)⊗π
de ce sous-groupe de Levi. On vérifie que cela entrâıne que ρ � ρ∗ si G n’est pas
un groupe GSpin. Si G est un groupe GSpin, le centre de G a pour composante
neutre le groupe GL(1, F ) qui apparâıt naturellement dans la construction et ce
groupe agit par un caractère νπ ; la condition est alors ρ � ρ∗ ⊗ νπ. Dans les 2 cas
la représentation ρ est nécessairement unitaire car l’on a supposé que π est unitaire.

On note m∗(G) la dimension de la représentation naturelle du G∗ (la compo-
sante neutre du L-groupe de G). Soit ψ un morphisme semi-simple deWF×SL(2,C)
dans GL(m∗(G),C) ou, si G = GSpin(m,F ), GL(m∗(G),C) × C∗. On peut alors
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définir πGL(ψ) la représentation de GL(m∗(G), F ) (ou de GL(m∗(G), F )×F ∗) qui
correspond à ψ via la correspondance de Langlands locale. On a déjà défini θG et
θG∗ . On suppose que la classe de conjugaison de ψ est invariante sous θG∗ ; on pro-
longe alors πGL(ψ) au produit semi-direct de GL(m∗(G), F ) (ou GL(m∗(G), F )×
F ∗)avec {1, θG}. On suppose ici que G est quasidéployé et n’est pas le groupe
métaplectique et on dit qu’une série discrtèe π de G est dans Π(ψ) s’il existe une
combinaison linéaire de traces de série discrète contenant de façon non triviale la
trace de π dont le transfert à GL(m∗(G), F ) (ou GL(m∗(G), F )×F ∗) est la θG trace
de πGL(ψ). Pour simplifier on admet ici que si ψ est comme ci-dessus, la θG-trace
de πGL(ψ) ne vit que sur un groupe endoscopique du produit semi-direct ci-dessus ;
c’est annoncé par Arthur. En combinant l’article [2] et l’argument général de [24]
on montre alors aisément qu’il existe au moins un morphisme ψ tel que π ∈ Π(ψ)
mais ceci fait aussi partie des annonces faites par Arthur. On admet aussi que les
paquets de séries discrètes sont sans multiplicité c’est-à-dire que la somme (sans
multiplicité) des traces des représentations dans Π(ψ) est une distribution stable
dont le transfert à GL(m∗

G, F ).θG est la θ-trace de πGL(ψ) ; cela ne sert que pour
avoir la multiplicité 1 pour tout paquet d’Arthur.

Le théorème ci-dessous fait le lien entre l’approche de [19] et [25] et celle
évidemment plus efficace d’Arthur. Ce qui importe pour nous est que l’on a ainsi
un calcul des points de réductibilité des induites de cuspidales dont on a besoin
pour décrire les représentations. De plus, la définition des blocs de Jordan est une
traduction des propriétés de certaines fonctions μ de Harish-Chandra et le résultat
ci-dessous montre, comme on s’y attendait, que ces propriétés sont des invariants
des paquets de Langlands de séries discrètes.

Théorème 2.3.1. Soit G un groupe classique quasi-déployé ce qui inclut GSpin
et exclut les groupes métaplectiques et soit π une série discrète de G. Alors π ∈
Π(ψ) si et seulement si ψ est conjugué de ψπ, ce qui sous-entend que nπ vaut
nécessairement m∗(G).

Remarque
Soit π une représentation cuspidale de G et ρ une représentation cuspidale d’un

GL telle que ρ � ρ∗⊗νπ (cf. 2.1). On note xρ,π le réel positif ou nul tel que l’induite
ρ| |xρ,π × π soit réductible. Alors Jord(π) est l’ensemble des couples (ρ′, a′) tel que
xρ′,π > 1/2 est un demi-entier et a ≤ 2xρ′,π avec a ≡ 2xρ′,π′ . Ceci est démontré dans
[18] pour les groupes classiques usuels par des méthodes complètement élémentaires
de théorie des représentations, qui se généralisent donc sans problème à tous les
groupes que nous considérons ici. Cela donne une caractérisation facile du paquet
contenant une représentation cuspidale en termes de points de réductibilité des
induites.

Venons en aux preuves. Dans ce qui suit on suppose que le groupe G n’est pas
le groupe métaplectique, on traitera ce groupe ultérieurement.

On suppose d’abord que π est une représentation cuspidale irréductible de G.
On fixe ψ un morphisme θG∗ invariant. On décompose ψ en sous représentations

irréductibles, c’est-à-dire un ensemble de couples (ρ, a) et on a la condition que
ρ∗ � ρ ⊗ νψ où νψ est trivial si G �= GSpin et s’identifie (via la théorie du corps
de classes) au caractère de WF décrit en 2.1 sinon. Fixons a priori ρ vérifiant
ρ∗ � ρ⊗ νψ et on note aρ,ψ le plus grand entier tel que (ρ, aρ,ψ) intervient dans ψ
et si cet entier n’existe pas on pose aρ,ψ = 0 si le morphisme ψ⊕ ρ⊗ σ2 définit une



344 C. MŒGLIN

représentation du produit semi-direct de GL(m∗(G) + 2dρ, F ) avec {1, θG} dont
la θG-trace est un transfert d’une distribution stable à support des séries discrètes
d’un groupe de même type que G et aρ,ψ = −1 dans le cas restant. On pose
alors xρ,ψ := (aρ,ψ + 1)/2. On appelle Jord(ψ) l’ensemble des sous-représentations
irréductibles incluses dans ψ, c’est un ensemble que l’on identifie à un ensemble de
couple (ρ, a) où ρ a la propriété d’invariance ci-dessus et a est un entier strictement
positif.

On suppose que π ∈ Π(ψ). Dans le cas de G = GSpin, on a νψ = νπ.
On fixe ρ et on montre d’abord que si xρ,ψ ≥ 1/2 alors xρ,ψ = xρ,π ; en ef-

fet, on considère le morphisme, ψ+
ρ , analogue à ψ mais où on a remplacé la sous-

représentation associée à (ρ, aρ,ψ) par la sous-représentation associée à (ρ, aρ,ψ+2).
On réalise πGL(ψ+

ρ ) comme l’unique sous-module irréductible de l’induite ρ| |xρ,ψ ×
πGL(ψ) × ρ| |−xρ,ψ qui se prolonge aux actions de θG (au moins pour des bons
choix qui n’importent pas). On écrit la θG-trace de π

GL(ψ+
ρ ) comme transfert et on

calcule les modules de Jacquet qui viennent de la réciprocité de Frobenius pour l’in-
clusion ci-dessus (cf. [28] 4.2.1) ; on montre ainsi que nécessairement la trace d’un
sous-quotient de l’induite ρ| |xρ,ψ × π intervient pour calculer ce transfert et que ce
sous-quotient est nécessairement un sous-module de ρ| |xρ,ψ × π mais n’est pas un
sous-module de ρ| |−xρ,ψ × π car son module de Jacquet ne peut contenir le terme
ρ| |−xρ,ψ ⊗ π (par positivité). Cela prouve la réductibilité de l’induite ρ| |xρ,ψ × π
et l’égalité xρ,ψ = xρ,π pour cette représentation ρ. Ceci entrâıne que Jord(ψ) est
un sous-ensemble de Jord(π). Supposons momentanément que G soit un groupe
orthogonal ou symplectique ; dans ce cas, on peut utiliser l’inégalité de [18]∑

(ρ,a)∈Jord(π)

a dρ ≤ m∗
G. (1)

Comme ψ définit une représentation de dimension m∗
G, on a aussi avec ce que l’on

vient de démontrer :

m∗
G =

∑
(ρ,a)∈Jord(ψ)

a dρ ≥
∑

(ρ,a)∈Jord(π)

a dρ.

On a donc l’égalité de Jord(ψ) et de Jord(π). Si G = GSpin ou est un groupe
unitaire, l’inégalité (1) n’a pas été démontrée même si les méthodes employées s’y
prêteraient sans doute. Vus les résultats d’Arthur, on peut retrouver cette inégalité
différemment, ce sont les arguments développés dans [24] en particulier 5.3, qui eux
sont tout à fait généraux quand on sait a priori que toute série discrète appartient
à un paquet dont on sait transférer la trace à un groupe linéaire tordu par un
automorphisme extérieur : on montre que l’induite suivante :

×(ρ,a)∈Jord(π)ρ| |(a+1)/2 × π,

où les (ρ, a) sont ordonnés tels que (ρ, a′) arrive plus à gauche que (ρ, a) si a′ < a,
contient une série discrète π++ comme sous-module irréductible et que Jord(π++) =
∪(ρ,a)∈Jord(π)(ρ, a + 2). On met π++ dans un paquet Π(ψ++) pour un bon choix

de morphisme ψ++. Et on calcule les modules de Jacquet de πGL(ψ++) comme
transfert convenable. On montre en particulier facilement que Jord(ψ++) contient
Jord(π++) ; en écrivant que ψ++ est une représentation de dimension

m∗
G + 2

∑
(ρ,a)∈Jord(π)

dρ
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on obtient alors l’inégalité (1).
On a donc démontré le théorème dans le cas des représentations cuspidales.

Pour l’étendre à toutes les séries discrètes, on introduit la notion de support cuspidal
étendu ; soit π une représentation irréductible de G de caractère central unitaire.
On choisit un sous-groupe de Levi de G et une représentation cuspidale, σ, tels que
π soit un sous-quotient de l’induite de σ ; on écrit σ sous la forme ⊗i∈[1,�]σi⊗πcusp

en utilisant un isomorphisme du Levi comme produit de 	-groupes linéaires (pour
	 convenable) avec un groupe de même type que G. Pour tout i ∈ [1, 	], on définit
θGσi comme étant σ∗

i si G n’est pas un groupe GSpin et σ∗
i ⊗ νπ si G = GSpin, où

νπ est le caractère par lequel GL(1, F ), vu comme composante neutre du centre de
GSpin agit sur π. On définit le support cuspidal étendu de πcusp comme la collection
des représentations ∪(ρ,a)∈Jord(πcusp

∪x∈[−(a−1)/2,(a−1)/2] ρ| |x et le support cuspidal
étendu de π comme l’union du support cuspidal étendu de πcusp avec la collection
∪i∈[1,�]σi ∪i∈[1,�] θGσi. On note Suppcusp,e(π) l’ensemble ainsi défini ; cet ensemble
est considéré non ordonné mais avec multiplicité. On montre par des méthodes de
théorie des représentations que si π est une série discrète,

Suppcusp,eπ = ∪(ρ,a)∈Jord(π) ∪x∈[−(a−1)/2,(a−1)/2] ρ| |x.

Cela force une propriété très particulière de l’ensemble Suppcusp,e(π) on peut l’écrire
comme union de segments symétriques en l’origine. De plus le résultat du théorème
se transforme simplement en l’assertion que pour toute série discrète π si π ∈
Π(ψ) pour ψ convenable, alors Suppcusp,eπ est le support cuspidal usuel de la
représentation πGL(ψ). On a donc démontré cette assertion pour πcusp et on la
déduit pour π en prenant des modules de Jacquet dans l’identité qui donne la θG
trace de πGL(ψ) comme transfert d’une combinaison linéaire de trace de séries
discrètes incluant celle de π ; c’est la démonstration faite dans [24] qui est totale-
ment générale. On a ainsi le théorème 1 pour toutes les séries discrètes.

2.4. Le cas des groupes non quasi-déployés.

Théorème 2.4.1. Le théorème de 2.3 est aussi vrai pour les groupes algébriques
classiques non quasi-déployés.

On suppose ici que G n’est pas quasi-déployé et on note Gdep la forme intérieure
quasi-déployée de G. Pour définir les paquets, on utilise le transfert stable entre G
et Gdep. On fixe ψ comme précédemment, en particulier avec Jord(ψ) sans multipli-
cité. Et on définit le paquet Πdep(ψ) pour le groupe Gdep. On transfert la distribu-
tion stable

∑
π∈Πdep(ψ) trπ en une distribution stable sur G qui est une somme fini

de caractère de représentations elliptiques de G (d’après [28]) avec des coefficients a
priori dans C∗. On note alors Π(ψ) l’ensemble des représentations qui interviennent
dans cette combinaison linéaire. On montre encore que toute série discrète π de G
est dans un paquet de la forme Π(ψ) et qu’alors Jord(π) = Jord(ψ) pour un tel
paquet (cf. [23]).

On montre aussi que tout élément de Π(ψ) est une série discrète : si π est une
représentation elliptique sans être une série discrète, il existe des couples (ρi, ai)
pour i ∈ [1, 	] et une série discrète π′ tels que π soit une combinaison linéaire de
sous-modules irréductibles de l’induite ×i∈[1,�]St(ρi, ai) × π′. On pose Jord(π) =
Jord(π′)∪i∈[1,�] (ρi, ai)∪i∈[1,�] (ρi, ai) ; c’est donc un ensemble avec multiplicité. Et
étant donné ce que l’on a déjà démontré pour les séries discrètes, on a certainement
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l’égalité : ∑
(ρ,a)∈Jord(π)

a dρ = m∗
G.

On va montrer encore que Jord(π) = Jord(ψ) ce qui donnera une contradiction.
Pour cela, on utilise le morphisme ψ+ qui consiste à changer tous les (ρ, a) de
Jord(ψ) en (ρ, a + 2) et on considère Πdep(ψ+). On écrit pour des bons coef-
ficients

∑
π+

απ+
trπ+(h) comme transfert de

∑
πdep,+∈Π(ψ+) trπdep,+. On calcule

encore
∑

π+∈Πdep(ψ+) ◦(ρ,a)∈Jord(ψ)Jacρ| |(a+1)/2πdep,+ où on ordonne Jord(ψ) pour

que (ρ, a) soit plus à gauche que (ρ, a′) si a < a′. On trouve nécessairement la
distribution stable associée à Ψ et donc pour tout π ∈ Π(ψ) il existe au moins une
représentation π+ ∈ Π(ψ+) tel que le module de Jacquet

◦(ρ,a)∈Jord(ψ)Jacρ| |(a+1)/2π+

contienne π. Mais on sait parfaitement calculé ces modules de Jacquet puisque
l’on sait que π+ est une combinaison linéaire de représentations tempérées. Et cela
montre que nécessairement pour tout (ρ, a) ∈ Jord(ψ), on a aussi (ρ, a) ∈ Jord(π).
Mais par définition de Jord(ψ), on a l’égalité∑

(ρ,a)∈Jord(ψ)

a dρ = m∗
G.

En comparant avec la même égalité pour Jord(π) cela force Jord(π) = Jord(ψ).

2.5. Classification des séries discrètes. Ici encore, on exclut les groupes
métaplectiques. On a donc déjà rééxpliqué comment Arthur associe un morphisme
deWF ×SL(2,C) dans G∗ à toute série discrète π ; notons ψ ce morphisme. De plus,
supposons que G ne soit pas un groupe GSpin ; en utilisant les propriété de transfert
endoscopique, Arthur associe à π un caractère du groupe CentrG∗ψ trivial sur le
centre ZG∗ exactement quandG est quasidéployé ; même si ce n’est écrit que pour les
groupes quasi-déployé, il est facile de l’étendre au cas non quasidéployé en utilisant
la stabilisation de [28] avec la modification de [4] pour l’action des automorphismes
sur les données endoscopiques. Si G est un groupe GSpin(m) les mêmes résultats
restent vrais à condition d’utiliser le centralisateur de π dans Sp(m − 1,C) ou
O(m,C) suivant que m est pair ou impair et non dans Gsp(m− 1,C) ou GO(m,C)
et on tire cela de [4] qui explique la situation en général. Dans le cas quasi-déployé et
au moins pour les groupes considérés ici, il n’y a pas de différence mais la différence
apparâıt dans le cas non quasidéployé ; l’application de restriction de l’ensemble des
caractères du centralisateur de ψ dans G∗ au sous-groupe qui est le centralisateur
de ψ dans Sp ou O est surjective sur l’ensemble des caractères de ce sous-groupe
trivial sur le centre du groupe. On note επ ce caractère.

On rappelle juste ici une propriété de ce caractère επ. Nous avions aussi défini
en [19] pour toute série discrète un sous-groupe du groupe ci-dessus et un caractère
de ce sous-groupe : à tout élément (ρ, a) de Jord(ψ) est associé canoniquement un
élément du centralisteur dans G∗ de ψ que l’on note zρ,a ; c’est l’élément qui agit
par −1 sur l’espace de la représentation associé à ρ, a et par 1 ”ailleurs”. Notre
sous-groupe est engendré par les éléments zρ,a pour (ρ, a) ∈ Jord(ψ) avec a pair et
par les éléments zρ,azρ,a′ pour (ρ, a), (ρ, a′) ∈ Jord(ψ) (le même ρ) sans hypothèse
de parité sur a, a′. Cette définition avait été faite avec des propriétés de modules de
Jacquet et on a vérifié aisément (cf. [24] 8.4.3) qu’elle cöıncidait avec la restriction
de επ défini par Arthur à notre sous-groupe. C’est comme cela que l’on obtient
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la propriété suivante : soit (ρ, a), (ρ, a′) ∈ Jord(ψ) le même ρ tel que a′ < a et
il n’existe pas b ∈]a′, a[ avec (ρ, b) ∈ Jord(ψ) ; on dit alors que (ρ, a) et (ρ, a′)
sont consécutifs. Alors επ(zρ,azρ,a′) = 1 si et seulement si π est un sous-module

d’une représentation induite de la forme ρ| |(a−1)/2 × · · · × ρ| |(a′+1)/2 × σ, où σ
est convenable. Si (ρ, a) ∈ Jord(ψ) avec a pair on a la même interprétation pour
επ(zρ,a) = 1 en faisant a′ = 0 ci-dessus. On note temporairement aρ,min le plus
petit entier tel que (ρ, aρ,min) ∈ Jord(ψ) si cet entier existe.

On dit que le caractère ε du centralisateur de ψ dans G∗ ou sa variante si
G = GSpin(m) est alterné si pour (ρ, a), (ρ, a′) consécutifs, επ(zρ,azρ,a′) = −1 et
si pour tout (ρ, aρ,min) ∈ Jord(ψ) tel que aρ,min soit pair, επ(zρ,aρ,min

) = −1. On
a déjà défini la notion Jord(π) ou Jord(ψ) est sans trou (rappelons : si (ρ, a) est
dans l’ensemble avec a > 2 alors (ρ, a−2) est aussi dans l’ensemble). Pour avoir un
théorème plus joli et éviter de devoir faire intervenir explicitement la condition sur
la restriction au centre, quand G est défini via l’utilisation d’une forme orthogonale,
on note pour ζ = ±, Gζ le groupe pour la forme orthogonale de même discriminant
et d’invariant de Hasse ζ. On note alors G l’union de G+ et G−. Dans le cas où
la forme orthogonale est de dimension paire, dans ses résultats annoncés, Arthur
montre aussi que le discrimant de la forme orthogonale est relié au déterminant des
morphismes ψ|WF

qui interviennent via la théorie du corps de classes. Ceci inter-
vient de façon cruciale et naturelle quand on caractérise les groupes orthogonaux
O(2n, F ) (ou GSpin(2n, F )) comme groupe endoscopique mais cela n’intervient pas
explicitement ici et on l’oublie donc des énoncés pour les alléger.

Ceci amène à la classification des représentations cuspidales de G sous la forme
suivante :

Théorème 2.5.1. La classification de Langlands des séries discrètes de G,
telle qu’établie par Arthur, induit une bijection entre l’ensemble des représentations
cuspidales de G (à isomorphisme près) et l’ensemble des couples ψ, ε tel que Jord(ψ)
est sans trou et ε est alterné ; la bijection, π �→ (ψ, ε) est définie par le fait que
Jord(ψ) = Jord(π) et ε = επ.

Il résulte de ce qui précède que si π est cuspidal Jord(π) est sans trou et
επ est alterné ; comme Jord(ψ) = Jord(π) si π ∈ Π(ψ), on a un des sens du
théorème. Réciproquement, soit ψ, ε tel que Jord(ψ) soit sans trou et ε soit al-
terné. On sait par les travaux d’Arthur, comme expliqué dans les paragraphes
précédents, qu’il existe une série discrète π de G tel que Jord(π) = Jord(ψ) et
επ = ε. Il faut montrer que π est cuspidal. Mais si π n’est pas cuspidal, il existe une
représentation cuspidale unitaire irréductible ρ′ d’un groupe linéaire et un réel posi-
tif (nécessairement) ainsi qu’une représentation irréductible σ tel que π soit un sous-
module de l’induite ρ′| |x × σ. On a démontré (cf. [19]) qu’il existe nécessairement
(ρ, a) ∈ Jord(ψ) tel que ρ′ � ρ et x = (a − 1)/2 et c’est élémentaire : on montre
que nécessairement σ est tempérée, on peut étendre la définition de Jord(π) aux
représentation tempérée (cela a été fait ci-dessus) donc définir Jord(σ) ; on étend
aussi le résultat qui calcule Suppcusp,e(σ) en fonction de Jord(σ) ; en particulier
Suppcusp,e(σ) est aussi une réunion de segments symétriques en 0. Il est clair que
Suppcusp,e(π) = Suppcusp,e(σ) ∪ ρ′| |x ∪ θG(ρ

′)| |−x ; si on rajoute à des segments
symétriques en 0, 2 éléments et que le résultat est encore une union de segments
symétriques en 0, nécessairement ρ′ � θGρ

′ et les éléments s’ajoutent aux extrêmité
d’un segment de Suppcusp,e(σ), éventuellement le segment vide si x = 1/2. Cela
donne l’assertion.
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Remarque
Le théorème ne détermine pas complètement la bijection ; Arthur la précise

en utilisant toutes les propriétés de l’endoscopie. Il y a des choix à faire mais qui
semble-t-il reviennent à utiliser les modèles de Whittaker pour les représentations
des groupes GL. Il apparâıt que quand tous les résultats d’Arthur seront dispo-
nibles, on devrait pouvoir donner une classification précise à la Shahidi de la façon
suivante : soit donc π une représentation cuspidale et ψπ le morphisme qui lui est
associé simplement par Jord(π) = Jord(ψπ). Soit (ρ, a) un couple formé d’une
représentation cuspidale unitaire d’un groupe linéaire et a un entier. On regarde
l’opérateur d’entrelacement standard défini méromorphiquement pour s ∈ C :

M(ρ, a, π, s) := St(ρ, a)| |s × π → θG(St(ρ, a))| |−s × π.

Il faut normaliser cet opérateur d’entrelacement en utilisant uniquement (ρ, a) et
ψπ (et non π ∈ Π(ψπ). Pour faire simple, on pourrait dire que l’on prend la nor-
malisation de Langlands-Shahidi pour l’unique représentation ayant un modèle de
Whittaker dans Π(ψ) quand une telle représentation existe. Une autre façon de
faire est d’utiliser les fonctions L et les facteurs ε de la représentation πGL(ψ) ; on
prend la formule conjecturale de Langlands-Shahidi pour le groupe G mais on rem-
place les fonctions L et ε par leur expression en terme de πGL(ψπ) conformément
à la fonctorialité de Langlands ; on note r(ρ, a, ψ, s) cette fonction méromorphe ;
explicitement pour chaque groupe, s’introduit une représentation rG d’un GL : si
G = Sp(2n, F ), rG est la représentation Sym2, si G est un groupe orthogonal rG
est la représentation ∧2 si G est un groupe GSpin c’est la représentation de [14] et
si G est un groupe unitaire, U(n) rG est soit la fonction L d’Asai soit un twist de
cette fonction suivant la parité de n (cf. [11]) et on a, si G est quasi-déployé,

r(ρ, a, ψ, s) =

×(ρ′,b′)∈Jord(ψ)ε(St(ρ, a)× St(ρ′, b′), s)−1 L(St(ρ, a)× St(ρ′, b′), s)

L(St(ρ, a)× St(ρ′, b′), 1 + s)

×ε(St(ρ, a), rG, 2s)
−1 L(St(ρ, a), rG, 2s)

L(St(ρ, a), rG, 1 + 2s)

et dans le cas non quasi déployé, il faut sans doute rajouter des facteurs abéliens. Ce
que l’on veut et qui pour le moment n’est qu’une conjecture : on poseN(ρ, a, ψ, s) :=
r(ρ, a, ψ, s)M(ρ, a, π, s) et on veut, pour les couples ρ, a tel que St(ρ, a) � St(ρ, a)∗⊗
νπ la formule de produit N(ρ, a, ψ,−s) ◦ N(ρ, a, ψ, s) = 1. Supposons alors que
(ρ, a) ∈ Jord(ψ) et on veut alors que le caractère ε associé à π soit tel que ε(ρ, a)
soit le scalaire par lequel N(ρ, a, ψ, 0) agit sur l’induite irréductible St(ρ, a)× π.

Ceci est lié aux résultats sur l’endoscopie annoncés par Arthur et pourrait
même en résulter directement. En effet une telle assertion est en fait le calcul de la
distribution caractère ∑

π∈Π(ψ)

trN(ρ, a, ψ, 0)St(ρ, a)× π)

comme transfert. Si (ρ, a) n’a pas la bonne parité c’est-à-dire si St(ρ, a) ne provient
pas par endoscopie d’un groupe de même type que G, cette distribution doit être
stable et sinon elle doit être un transfert endoscopique à partir d’un groupe endosco-
pique ; ici le groupe à considérer est un groupe de même type que G mais de rang
a dρ plus grand et le groupe endoscopique est la forme quasidéployée du groupe
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ayant pour L-groupe G∗(a dρ,C) × G∗(a dρ + m∗
G,C). Et un tel calcul, doit, me

semble-t-il, intervenir nécessairement dans la comparaison des formules de traces.
La fonction r(ρ, a, ψ, s) est essentiellement le facteur de normalisation pour l’entre-
lacement :

St(ρ, a)| |s × πGL(ψ)× St(ρ, a)| |−s,

la seule différence vient de la fontion L(St(ρ, a)× St(ρ, a), 2s) (et le facteur ε cor-
respondant) qui intervient dans le cas du groupe GL et se factorise en

L(St(ρ, a), rG, 2s)L(St(ρ, a), r
′
G, 2s)

pour r′G une représentation convenable de GL(a dρ,C) ; pour le groupe G, on ne
garde que le premier facteur, le 2e facteur a un pôle en s = 0 et il faut donc de
toute façon l’enlever ; dans le cas du groupe linéaire ce pôle compense un pôle de
l’opérateur d’entrelacement standard puisque l’induite est irréductible alors que
l’opérateur d’entrelacement standard n’a pas de pôle pour le groupe classique, l’in-
duite étant réductible.

L’intérêt de cette description est qu’elle ne fait pas intervenir les facteurs de
transfert et les choix sont clairs.

2.6. Paquets élémentaires, 1e version . Pour traiter les groupes métaplec-
tiques, on utilise les groupes orthogonaux en se plaçant dans le domaine de petit
rang, c’est-à-dire que le groupe orthogonal considéré est de rang beaucoup plus
grand que le groupe métaplectique considéré ; cette notion est dûe à R. Howe et
dans ce cas Adams a conjecturé le calcul de la correspondance de Howe. Suivant ces
conjectures, on sait que l’image d’une série discrète ne reste pas une série discrète
mais est dans un paquet d’Arthur simple. On décrit ici un peu plus généralement
les paquets qui vont intervenir et on reviendra en 4.2 sur la construction générale.

Ici on fixe un morphisme ψ deWF×SL(2,C)×SL(2,C) dans G∗, on décompose
ce morphisme en sous-représentations irréductibles indexées par des triplets (ρ, a, b)
∈ Jord(ψ) et on suppose que tous ces triplets ont la propriété que inf(a, b) = 1.
Ce cas a été traité complètement en [20] et on reprend ici quelques propriétés. On
se limite ici au cas où la restriction de ψ à WF fois la diagonale de SL(2,C) ×
SL(2,C) est sans multiplicité. On a construit en [20] un paquet de représentations
associées à ψ ; ce paquet est paramétré par les caractères du centralisateur de ψ
avec la bonne restriction au centre de G∗ et le bon déterminant de ψ|WF

; on note
π(ψ, ε) la représentation correspondant au caractère ε. On aura besoin des propriétés
suivantes (qui sont celles qui permettent de construire par récurrence ces paquets
de représentations) :

1e propriété : soit (ρ, a, b), (ρ, a′, b′) 2 triplets distincts tels que inf(a, b) =
inf(a′, b′) = 1 et pour tout triplet (ρ, a′′, b′′) ∈ Jord(ψ)

sup(a′′, b′′) /∈ [sup(a, b), sup(a′, b′)];

on suppose que (a − b)(a′ − b′) ≥ 0 et que sup(a, b) > sup(a′, b′) et on note ζ le
signe de a−b. On note ψ′ le morphisme qui se déduit de ψ en ajoutant les 2 triplets
et on suppose que ψ′ se factorise par un groupe de même type que G∗. On note
〈ρ| |ζ(sup(a,b)−1)/2, · · · , ρ| |−ζ(sup(a′,b′)−1)/2〉 l’unique sous-représentation irréductible
de l’induite, pour un GL convenable

ρ| |ζ(sup(a,b)−1)/2 × · · · × ρ| |−ζ(sup(a′,b′)−1)/2.
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Soit π(ψ, ε) une représentation du paquet associé à ψ ; alors l’induite

〈ρ| |ζ(sup(a,b)−1)/2, · · · , ρ| |−ζ(sup(a′,b′)−1)/2〉 × π

a exactement 2 sous-modules irréductibles ; ces 2 sous-modules sont dans le paquet
associé à ψ′ et sont les représentations π(ψ′, ε′) où ε′ est un prolongement de ε au
centralisateur de ψ′ vérifiant ε′(ρ, a, b) = ε′(ρ, a′, b′).

2e propriété : soit π une représentation du paquet associé à ψ. Soit x un réel
et ρ une représentation cuspidal unitaire d’un groupe GL(dρ, F ). On ne peut avoir
Jacρ| |xπ �= 0 que s’il existe (ρ, a, b) ∈ Jord(ψ) avec 2|x| + 1 = sup(a, b) et x(a −
b) > 0 (en particulier nécessairement x > 0). Réciproquement si cette condition
est satisfaite et si Jord(ψ) ne contient pas de triplet (ρ, a′, b′) avec sup(a′, b′) =
sup(a, b)− 2 alors Jacρ| |xπ �= 0.

Une variante de cette propriété est la suivante : soit (ρ, a, b) ∈ Jord(ψ) ; on
note (ρ, a′, b′) un triplet tel que sup(a′, b′) = sup(a, b) + 2, inf(a′, b′) = 1 et (a′ −
b′)(a − b) ≥ 0. On note ζ le signe de a′ − b′ et on note ψ′ le morphisme qui se
déduit de ψ en remplaçant (ρ, a, b) par (ρ, a′, b′). On suppose encore que pour tout
(ρ, a′′, b′′) ∈ Jord(ψ), sup(a′′, b′′) �= sup(a′, b′) ou encore que la restriction de ψ′ à
WF fois la diagonale de SL(2,C)× SL(2,C) est sans multiplicité. Soit π(ψ, ε) une

représentation dans le paquet associé à ψ, alors l’induite ρ| |ζ(sup(a′,b′)−1)/2×π(ψ, ε)
a un unique sous-module irréductible et ce sous-module irréductible appartient au
paquet associé à ψ′ ; de plus il est associé au caractère ε (vu naturellement comme
une application de Jord(ψ′) � Jord(ψ) dans ±1).

3e propriété : on suppose que Jord(ψ) contient, pour 	 un entier convenable,
des éléments (ρ, a1, 1), · · · , (ρ, a�, 1) avec a1 ≤ 2 et tels que pour tout i ∈ [1, 	],
ai = a1 + 2(i − 1). On note ψ′ le morphisme obtenu à partir de ψ en changeant
chaque triplet (ρ, ai, 1) en (ρ, 1, ai). Soit π = π(ψ, ε) une représentation du paquet
associé à ψ correspondant au caractère ε. Alors, π est dans le paquet associé à
ψ′ si et seulement si pour tout i ∈ [1, 	], ε(ρ, ai, 1) = η(−1)i−1, où η = ±1 est
indépendant de i et vaut nécessairement −1 si a1 = 2.

En [20], on a développé cette construction et montré qu’elle est équivalente à
une construction plus adaptée au calcul du transfert, construction que l’on rappel-
lera en 4.1 ci-dessous.

3. Le cas des groupes métaplectiques

Le but de ce paragraphe est d’étendre la classification de Langlands aux séries
discrètes des groupes métaplectiques. On ne veut utiliser que la notion de module de
Jacquet et de réciprocité de Frobenius pour les groupes métaplectiques. On définit
les séries discrètes par leurs propriétés sur les modules de Jacquet ; les exposants
doivent être dans la chambre de Weyl obtuse positive ouverte ; on a quand même
besoin de savoir qu’une représentation ayant cette propriété est unitaire (sinon les
démonstrations sont autrement plus compliquées) ; on l’admet donc ici. Si on rem-
place la chambre de Weyl obtuse ouverte par fermée, on obtient les représentations
dites tempérées. Le lemme combinatoire de Bernstein-Zelevinsky qui permet de cal-
culer les modules de Jacquet d’une induite s’applique et on vérifie sans problème
que l’induite d’une représentation tempérée, a tous ses sous-quotients qui sont des
représentations tempérées. L’hypothèse d’unitarité entrâıne qu’une telle induite est
semi-simple.
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3.1. Propriété des blocs de Jordan d’une série discrète du groupe
métaplectique. Soit π une série discrète de Mp(2n, F ) ; on a déjà défini Jord(π) ;
on définit aussi JordL(π) comme l’ensemble des couples (ρ, a) où ρ est une représen-
tation cuspidale irréductible autoduale d’un groupe linéaire et a est un entier pair
exactement quand L(ρ, Sym2, s) a un pôle en s = 0 et tel que l’induite St(ρ, a) soit
irréductible ; la différence avec Jord(π) et que l’on remplace le fait que la parité de
a est déterminée par une propriété de fonction L et non par le fait qu’il existe un
entier a′ de même parité que a tel que l’induite St(ρ, a′) × π soit réductible. On
montrera que Jord(π) = JordL(π) mais ce n’est pas immédiat.

On fixe un ensemble J de couples (ρ, a) comme ci-dessus avec ρ � ρ∗ et a
pair exactement quand L(ρ, Sym2, s) a un pôle en s = 0. On note DJ l’ensemble
des séries discrètes, π, des groupes métaplectiques Mp(2n′, F ) où n′ peut varier
mais telles que JordL(π) = {J }. A priori D pourrait être un ensemble infini. On
fixe N un entier pair grand et on note, mN := 1 + N +

∑
(ρ,a)∈J a dρ et on note

EJ ,N , l’ensemble des représentations de O(mN , F ) dont la restriction à SO(m,F )
est dans le paquet non tempéré associé à l’ensemble des triplets {(ρ, a, 1); (ρ, a) ∈
J ∪ (1, 1, N)}. On sait que pour N grand, (exactement pour tout N strictement
supérieur à tout a tel que (1, a) ∈ J ) le cardinal de EJ ,N est exactement 2× 2|J | ;
le premier 2 vient du fait que l’on considère des représentations de O(mN , F ) et
non SO(mN , F ). On va montrer alors l’assertion :

Proposition 3.1.1. On fixe n. Soit π ∈ DJ une représentation de Mp(2n, F ).
Pour tout N grand, notion relative à n, l’image de π dans la correspondance de
Howe Mp(2n, F ), O(mN , F ) est un élément de EJ ,N . De plus 2n =

∑
(ρ,a)∈J a dρ

et JordL(π) = Jord(π).

On démontre d’abord l’assertion sous l’hypothèse que π est cuspidale.
On note π̃ la première occurrence de π dans la tour de Witt des espaces orthogo-

naux impairs de noyau anisotrope de dimension 1 et de discriminant 1. On reprend
2.2 ; on connâıt le demi-entier x1,π̃ tel que l’induite | |x1,π̃×π̃ soit réductible, il s’écrit
sous la forme (amax,π̃ + 1)/2 où amax est le plus petit entier pair éventuellement 0
tel que si (1, a) ∈ Jord(π̃), amax ≥ a. On a donc montré, avec les notations de loc.
cit. :

x1 = (n− (mπ̃ − 1)/2− 1/2) = ±(amax,π̃ + 1)/2.

On a aussi montré une égalité symétrique en remplaçant π̃ par π

x0 = (−n+ (mπ̃ − 1)/2− 1/2) = ±(amax,π + 1)/2.

De plus pour tout ρ non la représentation triviale (ρ, a) ∈ Jord(π) si et seulement
si (ρ, a) ∈ Jord(π̃).

Supposons d’abord que (mπ̃ − 1)/2− n > 0. On a alors

amax,π̃ = (mπ̃ − 1)− 2n; amax,π = (mπ̃ − 1)− 2n− 2.

On rappelle que Jord(π̃) et Jord(π) sont sans trou ; on passe donc de Jord(π̃) à
Jord(π) en enlevant simplement le couple (ρ, amax,π̃). En particulier Jord(π) ⊂
JordL(π) car Jord(π̃) est formé de couple (ρ, a) avec la parité de a déterminé par
les pôles des fonctions L de la représentation ρ vu comme représentation de WF

et donc de la fonction L de ρ vue comme représentation d’un GL d’après [13].
Réciproquement soit (ρ, a) ∈ JordL(π) ; la seule possibilité pour que (ρ, a) ne soit
pas dans Jord(π) est que pour tout a′ de même parité que a l’induite St(ρ, a′)× π
soit irréductible. On suppose d’abord que ρ n’est pas la représentation triviale ;
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on sait qu’il existe a′ comme ci-dessus tel que St(ρ, a′) × π̃ soit réductible ; on
regarde l’image des 2 sous-représentations irréductibles de St(ρ, a′) × π̃ dans la
correspondance de Howe pour cette fois la tour de Witt d’espaces symplectiques.
On vérifie que chacune de ces représentations a une image qui est un sous-module
de St(ρ, a′) × π ; cela force la réductibilité de cette induite. On suppose mainte-
nant que ρ est la représentation triviale ; ici on sait que si (ρ, a) ∈ JordL(π), a
est nécessairement paire et on a alors vu ci-dessus que l’induite St(ρ, a) × π est
irréductible, pour a pair, exactement quand a ≤ (2x1,π − 1)/2 ; c’est-à-dire aussi
(ρ, a) ∈ Jord(π).

On vient donc de montrer que pour les représentations cuspidales π des groupes
métaplectiques, on a Jord(π) = JordL(π).

On montre maintenant que pour N grand (avec les notations de l’énoncé)
l’image de π est dans EN ; c’est une retraduction des résultats de Kudla. On sait a
priori que l’image de π, π̃N est un sous-quotient de l’induite :

×x∈[−(N−1)/2,n−(mπ̃−1)/2−1/2]| |x × π̃.

On sait aussi, avec la filtration de Kudla que Jacxπ̃N = 0 pour tout x �= −(N −
1)/2 ; on note 〈| |−(N−1)/2, · · · , | |n−(mπ̃−1)/2−1/2〉 l’unique sous-module irréductible
de l’induite, pour le GL convenable, ×x∈[−(N−1)/2,n−(mπ̃−1)/2−1/2]| |x et π̃N est
donc un sous-module irréductible de l’induite

〈| |−(N−1)/2, · · · , | |n−(mπ̃−1)/2−1/2〉 × π̃.

On distingue 2 cas ; le 1e cas est celui où n ≤ (mπ̃ − 1)/2 dans ce cas, l’induite
ci-dessus a un unique sous-module irréductible car (1, (mπ̃ − 1) − 2n) est dans
Jord(π̃) et pour tout (1, a) ∈ Jord(π̃), nécessairement a ≤ (mπ̃ − 1)− 2n. Ce sous-
module irréductible est un élément de EJ ,N (variante de la 2e propriété de 2.6).
Dans le cas où n > (mπ̃ − 1)/2, l’induite écrite a 2 sous-modules irréductibles car
si (1, a) ∈ Jord(π̃) on a a ≤ 2n− (mπ̃ − 1)− 2) ; (cf. 1e propriété de 2.6) ces 2 sous-
modules irréductibles sont les 2 représentations associées au morphisme élémentaire
ψN tel que Jord(ψN ) = {(ρ, a, b)} tels que pour tout ρ non la représentation triviale,
b = 1 et (ρ, a) ∈ Jord(π) et pour ρ la représentation triviale, on a soit, b = 1 et
a est un entier pair vérifiant a < amax,π, soit a = 1 et b = 2n − (mπ̃ − 1) ou
b = N ; une de ces 2 représentations exactement est dans EJ ,N celle qui vérifie
Jac| |−n+(mπ̃−1)/2+1/2 = 0. Or la filtration de Kudla dit que c’est π̃N qui a cette

propriété (cf. 3e propriété de 2.6). Cela termine la preuve de l’assertion.
On démontre le théorème par récurrence sur n. Pour n = 0, il n’y a rien à

démontrer car il n’y a pas de représentation du côté du groupe métaplectique. On
fixe donc n tel que l’énoncé soit vrai pour tout n′ < n et soit J un ensemble
de couples (ρ, a) comme dans l’énoncé. Soit π une série discrète irréductible de
Mp(2n, F ) telle que Jord(π) = J . On fixe ρ et x tel que Jacρ| |xπ �= 0 ; x est
nécessairement un demi-entier, (parceque c’est vrai pour les cuspidales) strictement
positif (parce que π est une série discrète). Par réciprocité de Frobenius on écrit π
comme sous-module d’une induite de la forme ρ| |x × σ pour σ une représentation
irréductible convenable. Un calcul complétement élémentaire (cf. [19] 2.1) montre
que soit σ est une série discrète soit il existe une série discrète σ′ et une inclusion
de σ dans l’induite :

〈ρ| |x−1, · · · , ρ| |−(x−1)〉 × σ′.

On fixe un tel couple ρ, x en supposant x minimum et on fixe alors σ′ convenant ;
on suppose que l’on est dans le 2e cas qui est le cas le plus difficile ; nécessairement
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x > 1/2 et π est donc un sous-module irréductible de l’induite :

〈ρ| |x, · · · , ρ| |−(x−1)〉 × σ′. (1)

On pose J ′ := Jord(σ′). Pour tout N grand, on définit EJ ′,N ′ . Par récurrence,
on sait que l’image de σ′ dans la correspondance de Howe pour N grand est un
élément, noté σ̃′

N dans EJ ′,N . Pour les mêmes valeurs de N , on note π̃N l’image de
π dans la correspondance de Howe et on vérifie en utilisant la filtration de Kudla
que π̃N est un sous-module irréductible de l’induite :

〈ρ| |x, · · · , ρ| |−(x−1)〉 × σ̃′
N . (2)

On considère d’abord le cas où soit ρ n’est pas autoduale soit 2x + 1 n’a pas la
bonne parité ; dans ce cas, l’induite (2) a un unique sous-module irréductible qui
n’est pas une série discrète. Il vérifie nécessairement Jacρ| |x−1 π̃N �= 0. On en déduit
avec la filtration de Kudla que Jacρ| |x−1π �= 0 ce qui contredit la minimalité de x.

On suppose donc maintenant que ρ est autoduale et que 2x + 1 a la bonne
parité.

On sait décrire les sous-modules irréductibles de (2) (cf. 1e propriété de 2.6) ;
ce sont des représentations qui sont associées au morphisme élémentaire ψN tel que
(ρ′, a′, b′) ∈ Jord(ψN ) si et seulement si soit b′ = 1 et (ρ, a′) ∈ J ′, soit ρ′ = 1, a′ =
1, b′ = N soit ρ′ = ρ, b′ = 1 et a′ = 2x+1 ou 2x−1. Le point est donc de démontrer
que J = J ′∪{(ρ, 2x+1), (ρ, 2x−1)}. On suppose d’abord que (ρ, 2x−1) ∈ J ′ ; on
sait alors que π̃N est un sous-module d’une induite de la forme St(ρ, 2x−1)×σ′′ pour
σ′′ convenable et vérifie donc Jacρ| |x−1 π̃N �= 0. On aurait alors aussi Jacρ| |x−1π �= 0
ce qui contredirait la minimalité de x. Ainsi (ρ, 2x − 1) /∈ J ′. On montre aussi
que (ρ, 2x + 1) /∈ J ′ ; sinon, π̃N serait un sous-module irréductible de l’induite
St(ρ, 2x) × π′′ pour π′′ convenable et on aurait Jacρ| |x−1,··· ,ρ| |−(x−1) π̃N �= 0. Cela
entrâıne une assertion de non nullité du même type pour π mais ceci contredit le fait
que π est une série discrète. Il reste à montrer que J = J ′∪{(ρ, 2x+1), (ρ, 2x−1)}.
On vérifie d’abord que pour ζ = ±1, l’induite St(ρ, 2x + ζ) × π est irréductible ;
supposons qu’il n’en soit pas ainsi et que l’induite est réductible. Par unitarité,
cette induite est semi-simple et soit π1 l’un de ses sous-modules irréductible. On
vérifie que Jacρ| |x+(ζ−1)/2,··· ,| |−x−(ζ−1)/2St(ρ, 2x + ζ) × π est isomorphe à 2 copies
de π. Cela prouve d’une part que la longueur de l’induite est 2 et d’autre part
que Hom(π1, St(ρ, 2x + ζ) × π) est de dimension 1, par réciprocité de Frobenius.
Ainsi les 2 sous-représentations de l’induite sont non isomorphes. Les images de
ces 2 sous-représentations par la correspondance de Howe, sont pour N grand des
sous-modules irréductibles de l’induite St(ρ, 2x + ζ) × π̃N . Il faut donc que cette
induite soit réductible ce qui n’est pas le cas puisque (ρ, 2x+ ζ, 1) intervient dans
la décomposition en sous-représentation irréductible du morphisme associé à π̃N .
Il faut encore démontrer qu’il existe a′ de même parité que 2x+ 1 tel que l’induite
St(ρ, a′) × π soit réductible. Par récurrence on sait que Jord(σ′) = JordL(σ′) et
d’après la condition de parité déjà montrée on sait que pour a′ grand St(ρ, a′)× σ′

est réductible. Or

St(ρ, a′)× 〈ρ| |x, · · · , ρ| |−(x−1)〉 × σ′ � 〈ρ| |x, · · · , ρ| |−(x−1)〉 × St(ρ, a′)× σ′

a 4 sous-modules irréductibles. Un calcul de module de Jacquet montre alors que
St(ρ, a′) × π ne peut être irréductible. On vient donc de montrer que l’image de
π est un élément de EJ ,N ; on a aussi l’égalité 2n =

∑
(ρ,a)∈J a dρ en appliquant

l’hypothèse de récurrence à σ′ en tenant compte de l’inclusion (1). Il faut encore
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montrer que J = JordL(π) puisque l’on vient de démontrer que J = Jord(π).
Puisque J intervient dans la décomposition en sous-représentations irréductibles
du morphisme associé à π̃N , on a certainement Jord(π) = J ⊂ JordL(π). Soit
(ρ, a) ∈ JordL(π) ; on sait donc que l’induite St(ρ, a)× π est irréductible et que la
parité de a dépend des pôles de la fonction L(ρ, Sym2, s) en s = 0 ; on utilise le
même argument que ci-dessus pour montrer que pour a′ grand de même parité que
a, l’induite St(ρ, a′)× π est réductible.

Cela termine la preuve de la récurrence.

3.2. Caractère associé à une série discrète de Mp(2n, F ). Soit donc π
une série discrète de Mp(2n, F ) ; on lui a associé Jord(π) et on lui associe une
application, επ, de Jord(π) dans ±1 en utilisant son image par la correspondance
de Howe π̃N définie pour N grand ; cette application qui s’identifie à un caractère
du centralisateur de ψ pourra définir soit le caractère trivial soit le caractère non
trivial par restriction au centre de Sp(2n,C). En effet on a vu que π̃N ∈ EJord(π),N ;
à la restriction de π̃N est associée une application de Jord(π) ∪ (1, 1, N) dans ±1,
notée επ,N ; on vérifie aisément que cette définition ne dépend pas du choix de N
grand. On note simplement επ la restriction de επ,N à Jord(π). Remarquons que si
π̃N et π̃′

N sont les images de 2 séries discrètes distincts π et π′ alors nécessairement
π̃N �� π̃N ⊗ sign et l’application qui à π associe Jord(π), επ est donc injective. On
veut montrer que son image est exactement l’ensemble des couple J , ε où J est
un ensemble de couples (ρ, a) sans multiplicité avec la condition sur la parité de a
(a est pair si et seulement si L(ρ, Sym2, s) a un pôle en s = 0) et la condition de
dimension

2n =
∑
(ρ,a)

a dρ

et ε est une application de Jord(π) dans {±1}.
On fixe J un ensemble de couples (ρ, a) comme ci-dessus et ε une application

de J dans {±1}. On traite d’abord le cas cuspidal c’est-à-dire le cas où J est sans
trou et où ε est alterné et on distingue encore 2 cas. On suppose d’abord que J ne
contient aucun élément (ρ, a) avec ρ la représentation triviale. On note alors

ζ = ×(ρ,a)∈J ε(ρ, a).

On sait que l’on peut associer à J , ε une représentation cuspidale de SO(m,F )ζ,
où m = 2n+1, notée π̃0 telle que Jord(π̃0) = J et επ̃0

= ε. On note π̃i pour i = 1, 2
les extensions de π̃0 à O(m,F )ζ. Et pour i = 1, 2 et N grand, on note πi,N l’image
de π̃i dans la correspondance de Howe Mp(2n + N,F ), O(m,F )ζ. En utilisant la
filtration de Kudla et le fait que π̃i est cuspidale, on voit que la première occurrence
de π̃i est pour N = 2 ou N = 0. Montrons d’abord par l’absurde qu’au moins pour
une valeur de i, N = 0. Supposons donc que pour i = 1, 2, la première occurrence
de π̃i est pour N = 2 ; ceci est équivalent à dire que Jac| |−1/2πi,2 = 0. Ainsi πi,2

est une représentation cuspidale. On calcule l’image de πi,2 dans la correspondance
Mp(2n+2, F ), O(m+2N ′, F )ζ pour N ′ grand. On vérifie que l’image est un sous-
module irréductible, π̃i,N ′ de l’induite :

〈| |−N ′+1/2, · · · , | |1/2〉 × πi.

De plus, le fait que Jac| |−1/2πi,2 = 0 entrâıne la même assertion pour π̃i,N ′ à cause
de la filtration de Kudla. Ainsi π̃1,N ′ = π̃2,N ′ ⊗ sign et cela contredit l’inégalité
fondamentale de 2.2. Ainsi pour au moins une valeur de i, N = 0. Pour vérifier
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que πi := πi,0, pour cette valeur de i convient, on calcule encore l’image de πi

dans la correspondance Mp(2n, F ), O(m + 2N ′, F )ζ et on trouve un sous-module
irréductible de l’induite

〈| |−N ′−1/2, · · · , | |−1/2〉 × π̃i.

Et il résulte des définitions que ε est l’application associée à πi.
On suppose maintenant que J contient des blocs du type (1, a) et on note a1,

l’entier a maximum avec cette propriété. On note alors J ′ l’ensemble J auquel
on a enlevé (1, a1) ainsi J ′ contient (1, b) pour b pair strictement inférieur à a1.
On pose ici ζ := ×(ρ,a)∈J ′ε(ρ, a) et on note pour i = 1, 2, π̃i les représentations
cuspidales de O(m′, F )ζ correspondant à J ′ et à ε′ la restriction de ε à J ′ ; ici
m′ = 2n+1−2a1. On a déjà calculé la première occurrence des représentations π̃i ;
d’après l’inégalité fondamentale de 2.2, on sait que pour au moins une valeur de i
cette première occurrence se fait pour 2ni > m′. Fixons un tel i et notons πi l’image
de π̃i ; on sait que c’est une représentation cuspidale tel que Jord(πi) s’obtient en
ajoutant un couple (1, b) avec b = a1 − 2 + 2 = a1. Ainsi πi est une représentation
de Mp(2n, F ) et on vérifie comme ci-dessus qu’elle convient.

On ne fait plus d’hypothèse sur J et ε et on démontre maintenant l’existence
de la représentation π associée à J , ε par récurrence sur n. On suppose d’abord
que ε n’est pas alterné ; on fixe (ρ, a), (ρ, a′) consecutifs tels que ε(ρ, a) = ε(ρ, a′).
On note J ′ l’ensemble J auquel on a enlevé (ρ, a) et (ρ, a′). On note π′ la série
discrète de Mp(2n′, F ) (n′ convenable) correspondant à J ′ et à la restriction de
ε à J ′. On suppose que a > a′. D’après les propriétés de Jord(π′), on sait que
l’induite St(ρ, a′)×π′ est réductible et elle a donc 2 sous-modules irréductibles non
isomorphes (calcul de modules de Jacquet et réciprocité de Frobenius, argument
déjà employé). Puis on vérifie que l’induite

〈ρ| |(a−1)/2, · · · , ρ| |−(a′−1)/2〉 × π′

a 2 sous-représentations irréductibles que l’on note πi pour i = 1, 2 ; ces représenta-
tions sont non isomorphes car elles ont des modules de Jacquet non isomorphes.
Le point est de démontrer que pour i = 1, 2, πi est une série discrète et qu’elle
correspond à J et une application εi ayant même restriction à J ′ que ε et vérifiant
εi(ρ, a) = εi(ρ, a

′).
On utilise π̃i,N l’image de πi dans la correspondance avec O(2n+ 1 + 2N,F ) ;

on a montré que π̃i,N est dans EJ ,N et les propriétés des modules de Jacquet de πi

se lisent sur ceux de π̃i,N . On obtient alors l’assertion.
Il reste à voir le cas où J a des trous, c’est-à-dire où il existe (ρ, a) ∈ J avec

a > 2 et (ρ, a−2) /∈ J . On appelle ici J ′ l’ensemble qui se déduit de J en remplaçant
(ρ, a) par (ρ, a− 2) et on note ε′ l’application qui se déduit naturellement de ε. On
admet l’existence de π′ une série discrète de Mp(2n− 2dρ, F ) correspondant à J ′

et ε′ et on considère l’induite ρ| |(a−1)/2 × π′. On vérifie qu’elle a un unique sous-
module irréductible que l’on note π et il faut vérifier que π est une série discrète et
que π est associé à J et ε ; cela se fait comme ci-dessus.

Cela termine la preuve.

4. Construction générale

Onon On pose ζG∗ = +1 si G∗ est un groupe (de similitudes) orthogonal et −1
sinon. On fixe un morphisme ψ deWF×SL(2,C)×SL(2,C) dans G∗ ; on décompose
ψ en sous-représentations irréductibles, ψ = ⊕(ρ,a,b)∈Jord(ψ)ρ ⊗ [a] ⊗ [b]. On tient
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évidemment compte des multiplicités éventuelles de Jord(ψ), ce qui suppose que
ρ ⊗ [a] ⊗ [b] est considéré avec le sous-espace dans lequel cette représentation est
réalisée. Supposons que θG∗ laisse stable la classe d’isomorphie de ρ⊗ [a]⊗ [b] ; on
peut alors construire une forme bilinéaire symétrique ou orthogonale telle que la
représentation de WF ⊗SL(2,C)⊗SL(2,C) laisse stable cette forme éventuellement
à homothétie près ; on note ζρ,a,b = +1 si cette forme est orthogonale et −1 sinon.
Pour G non un groupe de type GSpin, on dit que (ρ, a, b) a bonne parité si la classe
d’isomorphie de cette représentation est stable par θG∗ et si ζρ,a,b = ζG∗ ; le cas des
groupes GSpin est un peu différent et expliqué dans [5] ; il faut fixé νψ, c’est-à-dire
que l’on fixe un caractère de WF et que l’on regarde les morphismes ψ à valeurs
dans G∗ qui dans l’inclusion dans GL(m∗

G,C) × GL(1,C) se projette sur νψ dans
le facteur GL(1,C).

On décompose ψ = ψmp ⊕ ψbp en la somme de ses sous représentations ayant
bonne parité, ce qui donne ψbp et la somme des autres représentations, c’est-à-dire la
somme de celles qui ne sont pas θG∗ -invariante (à isomorphisme près) et de celles qui
ont mauvaise parité. De l’algèbre linéaire élémentaire montre que l’on peut trouver
une sous-représentation, ψ1/2,mp de ψmp telle que ψmp = ψ1/2,mp ⊕ θG∗(ψ1/2,mp).
De plus, l’ensemble des éléments zρ,a,b définis ci-dessus engendre le groupe des
composantes du centralisateur de ψ dans G∗ ; on peut donc ainsi identifier le groupe
des composantes du commutant de ψbp (dans un groupe convenable) à celui de ψ.

Supposons défini un ensemble de représentations π ∈ Π(ψbp) et pour chacune
de ces représentations un caractère du groupe des composantes du centralisateur
de ψbp, noté επ, tel que le caractère

∑
π∈Π(ψbp)

επ(ψbp)trπ

soit stable et se transfère en la trace tordue de πGL(ψbp) pour un bon choix d’action
de θG, où επ(ψbp) est le produit des επ(zρ,a,b)

b+1 quand (ρ, a, b) parcourt Jord(ψbp)
en tenant compte des multiplicités ; ce signe est la valeur du caractètre επ sur l’image
par ψbp de l’élément non trivial du centre de la 2e copie de SL(2,C).

On sait que πGL(ψ) est l’induite πGL(ψ1/2,mp) × πGL(ψbp) × θG(π
GL
1/2,mp) et

toute action de θ sur πGL(ψbp) se prolonge donc canoniquement à πGL(ψ). De plus
pour le prolongement de l’action utilisée pour calculer le transfert ci-dessus, on a
aussi que

∑
π∈Π(ψbp)

επ(ψbp)π
GL(ψ1/2,mp) × π a pour transfert la trace tordue de

πGL(ψ).

Il y a donc 2 points à démontrer : d’une part construire Π(ψbp) et d’autre part
démontrer que pour tout π ∈ Π(ψbp) l’induite πGL(ψ1/2,mp)× π est irréductible.

4.1. Construction dans le cas de bonne parité . La construction donnée
ici est une variante de celle donnée dans [21]. Son avantage et qu’il est plus facile
de définir l’action de θ sur πGL(ψ) pour laquelle on a l’égalité de transfert.

4.1.1. Le cas de restriction discrète à la diagonale. On suppose ici que la res-
triction de ψ à WF fois la diagonale de SL(2,C)× SL(2,C) est sans multiplicité ;
c’est ce que l’on appelle le cas de restriction discrète à la diagonale, ce cas a été traité
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en [21] et cela signifie en termes concrets que pour tout (ρ, a, b), (ρ, a′, b′) ∈ Jord(ψ),
les segments [|a− b|+ 1, a+ b− 1] et [|a′ − b′|, a′ + b′ − 1] sont disjoints.

On reprend alors les constructions de [21] ; on fixe un couple (t, η) d’applications
de Jord(ψ) dans Z≥0 × {±1} soumis aux conditions suivantes pour tout (ρ, a, b) ∈
Jord(ψ) :

t(ρ, a, b) ∈ [0, inf(a, b)/2] ∩ Z,

et si inf(a, b)/2 ∈ Z et que t(ρ, a, b) = inf(a, b)/2 alors η(ρ, a, b) = +.
A un tel couple on associe une application, εt,η, de Jord(ψ) dans ±1 en posant :

∀(ρ, a, b) ∈ Jord(ψ), εt,η(ρ, a, b) = η(ρ, a, b)inf(a,b)(−1)[inf(a,b)/2]+t(ρ,a,b).

On pose encore εt,η(ψ) :=
∏

(ρ,a,b)∈Jord(ψ) εt,η(ρ, a, b)
b+1.

Le but des constructions est d’associer à un tel couple une représentation
irréductible, π(ψ, t, η) de G de telle sorte que la distribution

∑
t,η

εt,η(ψ)π(ψ, t, η),

soit stable et se transfère en la θ-trace de πGL(ψ) (pour un choix d’action de θ à
préciser), où l’on ne somme que sur les couples t, η tels que εt,η ait sa restriction au

centre de G∗ déterminé par G.
Cette construction se fait par récurrence où la récurrence porte sur

	(ψ) :=
∑

(ρ,a,b)∈Jord(ψ)

inf((a, b)− 1).

On traite donc d’abord le cas où 	(ψ) = 0.
Soit ρ une représentation cuspidale unitaire et x un demi-entier ; on suppose

que ρ � θGρ. Pour P un sous-groupe parabolique de Levi M de G, on écrit M
comme un produit de facteurs GL et un groupe GM de même type que G mais
de rang en général plus petit. Soit σ une représentation irréductible de P triviale
sur le radical unipotent de P et vue comme une représentation de M ; on écrit σ
comme produit tensoriel σGL × σ0 où σ0 est une représentation de GM et σGL une
représentation des facteursGL. On pose projρ,<xσ = 0 si le support cuspidal de σGL

contient des termes qui ne sont pas de la forme ρ| |y avec |y| < x et projρ,<xσ = σ
sinon. On prolonge linéairement cette application au groupe de Grothendieck des
représentations lisses de longueur finie de P triviales sur le radical unipotent de P .

On a défini en [20] invρ,<x, une application dans le groupe de Grothendieck de
G, en posant :

invρ,<x(π) :=
∑
P

(−1)rgP indGP res
G
P (π),

où P parcourt l’ensemble des sous-groupes paraboliques standard de G. On peut
définir de façon identique invρ,≤x en remplaçant l’inégalité stricte par une inégalité
large.

On considère πtemp(ψ, η) comme étant la série discrète associée à la restriction,
ψtemp de ψ à WF fois la diagonale de SL(2,C)×SL(2,C) et au caractère η, puisque
Jord(ψtemp) s’identifie très facilement à Jord(ψ) : ces 2 morphismes ont même
restriction à WF fois la diagonale de SL(2,C).

On pose

σηπ(ψ, η) := ◦(ρ,a,b)∈Jord(ψ);b>ainvρ,<(b−1)/2invρ,≤(b−1)/2π(ψtemp, η),
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où ση = ±1 est tel que π(ψ, η) est une représentation et non son opposée. Bien sûr

il faut démontrer l’existence d’un tel signe, c’est fait en [20] où l’on montre en plus
qu’avec cette définition, π(ψ, η) est irréductible. On reviendra sur la question du
signe plus bas. On avait une description plus constructive en 2.6 et [20] montre que
les 2 définitions sont équivalentes.

On suppose maintenant que 	(ψ) > 0 et on construit π(ψ, t, η) par récurrence.
On fixe (ρ, a, b) avec inf(a, b) > 1 ; il est en fait facile de vérifier que les constructions
ci-dessous sont indépendantes de ce choix (et c’est expliqué en [21]). On pose encore
ζ le signe de a− b en prenant ζ = + si a = b.

1e cas : t(ρ, a, b) > 0 ; on pose ψ′ le morphisme qui se déduit de ψ en changeant
(ρ, a, b) en (ρ, a, b−2) si b ≤ a et (ρ, a−2, b) si b > a ; il correspond à un groupe,G′ de
même type que G mais de rang plus petit. On vérifie que ψ′ est encore de restriction
discrète à WF fois la diagonale de SL(2,C) × SL(2,C) ; on considère t′, η′ qui se
déduisent de façon naturelle de t, η sauf que l’on pose t′(ρ, a, b−2) (ou t′(ρ, a−2, b))
= t(ρ, a, b) − 1. Il est facile de voir que εt′,η a la bonne restriction au centre de

l’analogue pourG′ deG∗ si c’est le cas pour εt,η. On suppose donc défini, π(ψ′, t′, η′).

On a besoin de savoir que l’induite : 〈ρ| |(a−b)/2, · · · , ρ| |−ζ((a+b)/2−1)〉 × π(ψ′, t′, η′)
a un unique sous-module irréductible et on pose alors π(ψ, t, η) cet unique sous-
module irréductible, c’est-à-dire :

π(ψ, t, η) ↪→ 〈ρ| |(a−b)/2, · · · , ρ| |−ζ((a+b)/2−1)〉 × π(ψ′, t′, η′).

L’unicité du sous-module irréductible se montre en démontrant par récurrence des
propriétés des modules de Jacquet des représentations ainsi construites ; on renvoie
à [21].

2e cas : t(ρ, a, b) = 0. On note ψ′ le morphisme qui se déduit de ψ en remplaçant
(ρ, a, b) par la somme portant sur les entiers c ∈ [|a − b| + 1, a + b − 1] de même
parité que a + b − 1 des représentations associées à (ρ, c, 1) si ζ = + et (ρ, 1, c) si
ζ = −. On définit t′, η′ sur Jord(ψ) − {(ρ, a, b)} en restreignant t et η et on pose

t′(ρ, c, 1) (ou (ρ, 1, c)) = 0, η′(ρ, c, 1) (ou (ρ, 1, c)) = η(ρ, a, b)(−1)(c−|a−b|−1)/2 pour
tout c comme ci-dessus. On vérifie que

∏
c εt′,η′(ρ, c, 1) (ou (ρ, 1, c)) vaut

ηinf(a,b)(−1)[inf(a,b)/2];

ainsi εt,η et εt′,η′ ont même restriction au centre de G∗. De plus 	(ψ′) = 	(ψ) −
inf(a, b) + 1 < 	(ψ) et on pose alors simplement

π(ψ, t, η) = π(ψ′, t′, η′).

Et Π(ψ) est exactement l’ensemble des représentations π(ψ, t, η). Ceci sera justifié
en 5. Toutes ces représentations sont non isomorphes entre elles, une fois ψ fixé.

4.1.2. Le cas général de bonne parité. On suppose ici que ψ = ψbp ; on se
ramène au cas de restriction discrète à la diagonale de la façon suivante. Pour
tout (ρ, a, b) ∈ Jord(ψ), on défini ζρ,a,b = +1 si a ≥ b et −1 sinon. On dit qu’un
morphisme ψ� pour un groupe de même type que G mais de rang éventuellement
plus grand domine fortement ψ s’il existe une application de Jord(ψ) vu comme
ensemble avec multiplicité dans Z≥0 notée T tel que l’on ait l’égalité d’ensemble
avec multiplicité Jord(ψ�) =

{(ρ, a+ (1 + ζρ,a,b)T (ρ, a, b), b+ (1− ζρ,a,b)T (ρ, a, b)); (ρ, a, b) ∈ Jord(ψ)}.
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En clair on augmente de 2T (ρ, a, b) le plus grand des 2 entiers a, b et on laisse l’autre
inchangé. Précisons que l’écriture prête à confusion car on voit dans Jord(ψ) plu-
sieurs copies d’un même élément (ρ, a, b) (cela dépend des multiplicités) et que
T est défini sur chacune de ces copies indépendamment. On demande de plus
que T vérifie la condition suivante : soient (ρ, a, b), (ρ, a′, b′) ∈ Jord(ψ) (la même
représentation ρ) tels que ζρ,a,b = ζρ,a′,b′ . Si |a− b| > |a′ − b′| ou |(a− b)| = |a′ − b′|
et ζρ,a,b = −; ζρ,a′,b′ = + alors soit T (ρ, a, b) � T (ρ, a′, b′).

Plus généralement, on met un ordre total sur Jord(ψ) tel que (ρ, a, b) >Jord(ψ)

(ρ, a′, b′) si |(a − b)/2| > |(a′ − b′)/2| ou si l’on a égalité mais ζρ,a,b = − =
−ζρ,a′,b′ ; le reste n’a pas d’importance. On fixe (ρ0, a0, b0) ∈ Jord(ψ) et on dit que
ψ>,(ρ0,a0,b0 domine ψ si l’on a T (ρ, a, b) � T (ρ, a′, b′) pour tout (ρ, a, b) >Jord(ψ)

(ρ, a′, b′) ≥Jord(ψ) (ρ0, a0, b0 et Tρ,a,b = 0 pour tout (ρ, a, b) ≤Jord(ψ) (ρ, a0, b0).
Grâce à l’hypothèse que ψbp = ψ, il existe des morphismes ψ� dominant for-

tement ψ et de restriction discrète à la diagonale ; on en fixe un c’est-à-dire une
fonction T de Jord(ψ) dans les entiers avec les hypothèses écrites ci-dessus pour
qu’il n’y ait pas de confusion, on suppose (ce qui est loisible) que T (ρ1, a1, b1) = 0
pour (ρ1, a1, b1) le plus petit élément de Jord(ψ) ; on peut donc voir ψ� comme
ψ>,ρ1,a1,b1 . On sait donc définir Π(ψ>,ρ1,a1,b1) pour un tel morphisme et on va
obtenir Π(ψ) en prenant des modules de Jacquet convenables.

Pour cela, pour (ρ, a, b) ∈ Jord(ψ) et T fixé comme ci-dessus, on pose

Δ(ρ, a, b, T (ρ, a, b) :=

(a− b)/2 + ζρ,a,bT (ρ, a, b) · · · ζ(ρ, a, b)((a+ b)/2− 1 + T (ρ, a, b))
...

...
...

(a− b)/2 + ζρ,a,b · · · ζρ,a,b(a+ b)/2

.

C’est-à-dire que si ζρ,a,b = +, les lignes sont des segments croissants (de gauche à
droite) et les colonnes des segments décroissants (de haut en bas) et que si ζρ,a,b =
− les croissances sont inverses. On voit Δ(ρ, a, b, T (ρ, a, b) comme un ensemble
totalement ordonné (on commence en haut à gauche puis on prend l’ordre de la
lecture française). A une telle collection de segments, Zelevinsky a associé une
représentation irréductible, notons la Z(ρ, a, b, T ρ,a,b) comme unique sous-module
d’une certaine induite associé au segment soit formés par les lignes soit pas les
colonnes le résultat est le même.

On fixe (ρ0, a0, b0) ∈ Jord(ψ) et on suppose défini Π(ψ>,ρ0,a0,b0). On note
(ρ, a, b) l’élément de Jord(ψ), s’il existe, minimal parmi ceux qui sont plus grands
que (ρ0, a0, b0) ; s’il n’existe pas, on a fini et sinon on définit Π(ψ>,ρ,a,b) de la façon
suivante : on pose B = |(a−b)/2|, A = (a+b)/2−1 et Π(ψ>,ρ,a,b) est par définition
l’ensemble des représentations (a priori virtuelle)

π′ := ◦i∈[1,Tρ,a,b]
Jacζ(B+i),··· ,ζ(A+i)π

quand π parcourt Π(ψ>,ρ0,a0,b0 . On va montrer que pour π comme précédemment
π′ est nulle ou irréductible et que π est uniquement déterminé par π′ si π′ est non
nul. Pour cela on montre les lemmes suivants :

Lemme 4.1.1. Soit ψ′ un morphisme tel que Π(ψ′) ait déjà été défini avec les
propriétés ci-dessus. Soit x ∈ R et soit π′ ∈ Π(ψ′). Soit m un entier positif. On
a Jacx,··· ,xπ = 0 où x intervient m fois sauf s’il existe au moins m élément de
Jord(ψ′) de la forme (ρ, a′, b′) avec x = (a′ − b′)/2.
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Ce lemme a été démontré en [21] 5.2 et est donc vrai pour les morphismes
ψ� et les représentations qui leur sont associées. On admet donc le éléments de
Π(ψ>,ρ0,a0,b0) et on le démontre pour les éléments de Π(ψ>,ρ,a,b) avec les notations
qui précédent l’énoncé ; on démontrera au passage que π′ tel que défini ci-dessus
est nul ou irréductible. On pose ρ = ρ0 ; on démontre la propriété par récurrence
décroissante sur i ∈ [1, Tρ,a,b], cela revient à remplacer ψ>,ρ,a,b par un morphisme
qui s’en déduit en remplaçant (ρ, a, b) par (ρ, a + 2i − 2, b) ou (ρ, a, b + 2i − 2)
suivant que a ≥ b ou a < b. On peut donc supposer que Tρ,a,b = 1 en ayant perdu
l’hypothèse que Tρ,a,b est très grand. On note ψ> le morphisme relatif à π ; on
remplace (ρ, a, b) par (ρ,A,B, ζ) en posant B = |(a − b)|, A = (a + b)/2 − 1 et ζ
le signe de (a − b) si a − b �= 0 et + sinon. On sait donc que l’on obtient ψ′ en
remplaçant dans Jord(ψ>) l’élément (ρ,A+1, B+1, ζ) par (ρ,A,B, ζ). Etant donné
l’ordre mis sur Jord(ψ) on sait encore que pour tout (ρ, a′, b′, ζ ′) ∈ Jord(ψ>), on a
soit |(a′ − b′)| ≤ B soit (a′ − b′)/2 � A. On a donc défini, a priori dans le groupe
de Grothendieck, π′ par

π′ = Jacζ(B+1),··· ,ζ(A+1)π.

On suppose que π′ �= 0 et on fixe une représentation irréductible σ tel que par
réciprocité de Frobenius, on a une inclusion

π ↪→ ρ| |ζ(B+1) × · · · × ρ| |ζ(A+1) × σ. (1)

En appliquant le lemme à π, on sait que Jacxπ = 0 pour tout

x ∈]ζ(B + 1), ζ(A+ 1)],

l’inclusion ci-dessus ce factorise donc nécessairement par l’unique sous-module ir-
réductible pour le GL convenable de l’induite ρ| |ζ(B+1) × · · · × ρ| |ζ(A+1). Ce sous-
module est noté 〈ρ| |ζ(B+1), · · · , ρ| |ζ(A+1)〉. C’est une représentation de Steinberg
tordue si ζ = − et une représentation de Speh (tordue) si ζ = +. On montre que
σ satisfait au lemme. On prend x et m comme dans l’énoncé et on suppose que
Jacx,··· ,xσ �= 0 où x intervient m fois. Par réciprocité de Frobenius, il existe une
représentation σ′ et une inclusion

σ ↪→ ρ| |x × · · · × ρ| |x × σ′. (2)

En reporte (2) dans (1). On considère d’abord le cas où x �= ζB et x �= ζ(A + 2).
Dans ce cas l’induite

〈ρ| |ζ(B+1), · · · , ρ| |ζ(A+1)〉 × ρ| |x × · · · × ρ| |x

est irréductible et on a aussi Jacx,··· ,xπ �= 0 où x intervient m fois si x �= ζ(B + 1)
et m + 1 fois si x = ζ(B + 1) ; le résultat pour σ se déduit donc du résultat pour
π. On suppose maintenant que x = ζB ; dans ce cas on note τ un sous-quotient
irréductible de l’induite 〈ρ| |ζ(B+1), · · · , ρ| |ζ(A+1)〉 × ρ| |x et on vérifie que τ × ρ| |x
est irréductible. On a donc Jacx,··· ,xπ �= 0 mais pour uniquement m− 1 copies de
x ; le lemme pour π, x et m− 1 donne le lemme pour σ, x et m puisque (ρ,A,B, ζ)
est dans Jord(ψ′) sans être dans Jord(ψ>). Pour x = ζ(A + 2) on veut montrer
que Jacxσ = 0 ; on suppose donc que m = 1. On sait que Jacxπ = 0 donc on sait
que si Jacxσ �= 0, on sait que (1) et (2) vont nécessairement se factoriser par :

π ↪→ 〈ρ| |ζ(B+1), · · · , ρ| |ζ(A+2)〉 × σ′.

Si B+1 est grand par rapport aux |(a′ − b′)/2| avec (ρ, a′, b′) ∈ Jord(ψ<) vérifiant
|(a′ − b′)/2| ≤ B, on déduit directement de la construction dans le cas discret que
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Jacζ(B+1),··· ,ζ(B+2)π = 0. Si on n’a pas cette hypothèse on sait que π a été construit
par module de Jacquet par la procédure qui précède l’énonce. Plus précisément, on
considère l’induite

〈ρ| |ζ(B+2), · · · , ρ| |ζ(A+2)〉 × π.

Elle contient un unique sous-module irréductible et c’est d’après la définition de π
une représentation dans le paquet associé à un morphisme qui se déduit de ψ> en
remplaçant (ρ,A+1, B+1, ζ) par (ρ,A+2, B+2, ζ). On note π′′ cette représentation
et on peut appliquer le lemme à π′′ et on a donc

π′′ ↪→ 〈ρ| |ζ(B+2), · · · , ρ| |ζ(A+2)〉 × 〈ρ| |ζ(B+1), · · · , ρ| |ζ(A+2)〉 × σ′.

Mais on peut échanger les 2 premiers facteurs par irréductibilité et on obtient donc
Jacζ(B+1)π

′′ = 0 ; ceci contredit le lemme pour π′′, x = ζ(B + 1) et m = 1. D’où
la nullité cherchée. On revient maintenant à (1) pour calculer Jacζ(B+1),··· ,ζ(A+1)π.
On applique ce module de Jacquet au terme de droite de (1) ; on sait maintenant
que Jacxσ = 0 pour tout x ∈ [ζ(B+1), ζ(A+1)]. Ainsi les formules de Bernstein et
Zelevinsky montrent que le résultat est σ, d’où nécessairement π′ = σ. On a donc
démontré le lemme.

Lemme 4.1.2. On note Π(ψ>,ρ,a,b) l’ensemble des éléments de la forme

◦i∈[1,Tρ,a,b]
Jacζ(B+i),··· ,ζ(A+i)π

en supprimant ceux qui sont nuls. Cet ensemble est sans multiplicité

Les paquets sont sans multiplicités si la restriction de ψ à WF fois la diagonale
de SL(2,C) est sans multiplicité d’après [21]. On démontre donc le lemme par la
récurrence qui suit la construction. On reprend la preuve précédente et on fait une
récurrence sur i comme dans cette preuve. On considère donc π1, π2 distincts dans
le paquet associé à ψ> (avec les notations de cette preuve) et on pose pour i = 1, 2,
π′
i = Jacζ(B+1),··· ,ζ(A+1)πi. On sait que ce sont des représentations irréductibles ou

nulles et le point est de démontrer que si elles sont toutes 2 non nulles, elles sont
distincts. Mais on a démontrer l’inclusion pour i = 1, 2 tel que π′

i �= 0 :

πi ↪→ 〈ρ| |ζ(B+1), · · · , ρ| |ζ(A+1)〉 × π′
i,

et que le membre de droite n’a qu’un unique sous-module irréductible. L’assertion
est alors claire.

On peut résumer les résultat dans un lemme : pour tout choix de t�, η� définis

sur Jord(ψ�

Lemme 4.1.3. La représentation

π(ψ, t�, η�) := ◦(ρ,a,b)JacΔ(ρ,a,b,T (ρ,a,b)π(ψ�, t�, η�)

est soit nulle soit irréductible, où les (ρ, a, b) sont pris dans l’ordre croissant (le plus
grand est le plus à gauche avec les inversions usuelles dans les compositions d’ap-
plications). On note Π(ψ) l’ensemble des représentations π(ψ, t�, η�) qui sont non

nulles ; cet ensemble est sans multiplicité, c’est-à-dire que toutes les représentations
ainsi définies sont non isomorphes.

On peut améliorer ce lemme en précisant certains cas où la représentation
obtenue est nulle et paramétrer les représentations de Π(ψ) uniquement avec les
couples t, η défini sur Jord(ψ) vu comme ensemble sans mulitplicité. On renvoie à
[21] pour lénoncé et [22] pour la preuve. Le plus intéressant dans ce raffinement
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est que εt�,η�
est une application de Jord(ψ) dans {±1} où Jord(ψ) est main-

tenant vu sans multiplicité si π(ψ, t�, η�) est non nul. On utilise cette propriété

pour simplifier l’écriture. Mais pour le résultat de multiplicité 1 dans les paquets
d’Arthur, ce raffinement n’est pas utile.

La paramétrisation qui vient de nos constructions dépend très fortement du
choix que l’on a fait pour ordonner Jord(ψ) ; en fait tout ordre total sur Jord(ψ)
vérifiant la simple condition

(ρ, a, b) >Jord(ψ) (ρ, a
′, b′) si (a− b)(a′ − b′) ≥ 0,

|a− b| > |a′ − b′| et a+ b > a′ + b′

convient pour obtenir le lemme ; on obtient heureusement globalement le même en-
semble de représentations mais la paramétrisation n’est pas la même ; pour démon-
trer que l’on a le même paquet de représentation on utilise l’interprétation de Π(ψ)
en termes de transfert, c’est tout à fait non trivial et on reviendra sur ces questions
dans un autre article.

4.2. Le cas général. Ici on suppose que ψ = ψmp ⊕ψbp et que ψmp n’est pas
trivial. On a alors défini π1/2,mp et on pose pour t et η comme ci-dessus

π(ψ, t, η) = πGL(ψ1/2,mp)× π(ψbp, t, η).

Il est démontré en [22] que cette induite est irréductible. En loc. cit., on fait la
preuve sans supposer que π(ψbp, t, η) est unitaire. On donne ici la démonstration de
l’irréductibilité en supposant que π(ψbp, t, η) est unitaire. Cette hypothèse est tout
à fait raisonable puisqu’il résulte des résultats d’Arthur qu’une telle représentation
est nécessairement composante locale d’une forme automorphe de carré intégrable ;
d’où l’unitarité. Pour simplifier l’écriture, on pose π := π(ψbp, t, η) et on note νπ le
caractère central de π si G est de la forme GSpin et νπ le caractère trivial sinon.

On doit donc démontrer que l’induite πGL(ψ1/2,mp)× π(ψbp, t, η) a un unique

sous-module irréductible. On rappelle que πGL(ψ1/2,mp) est une induite irréductible
de la forme

×(ρ,a,b)∈Jord(ψ1/2,mp)Speh(St(ρ, a), b).

On démontre l’irréductibilité cherchée par récurrence sur |Jord(ψ1/2,mp)|. Suppo-
sons d’abord qu’il existe (ρ, a, b) ∈ Jord(ψ1/2,mp) tel que ρ �� ρ∗⊗νπ ; on fixe un tel
ρ et on écrit ψ′

1/2,mp le morphisme qui se déduit de ψ1/2,mp en enlevant toutes les

représentations correspondant aux triplets (ρ, a, b) pour la représentation ρ fixé ; on
suppose aussi (ce qui est loisible) que Jord(ψ1/2,mp) ne contient aucun terme de la
forme (ρ∗ ⊗ νπ, a

′, b′). Ainsi on a

πGL(ψ1/2,mp)× π � ×(a,b);(ρ,a,b)∈Jord(ψ1/2,mp)Speh(St(ρ, a), b)× πGL(ψ′
1/2,mp)× π.

On montre que le module de Jacquet de cette induite contient le terme(
πGL(ψ1/2,mp)× π � ×(a,b);(ρ,a,b)∈Jord(ψ1/2,mp)Speh(St(ρ, a), b)

)
⊗

(
πGL(ψ′

1/2,mp)× π

)
(∗)

et que c’est le seul terme de la forme σ ⊗ π′ pour une représentation σ du groupe

GL(
∑

(a,b);(ρ,a,b)∈Jord(ψ1/2,mp)

abdρ, F )
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dont le support cuspidal est formée de représentation de la forme ρ| |t avec

t− (a− b)/2 ∈ Z;

ce sont les formules combinatoires de Bernstein-Zelevinsky et évidemment le fait
que ρ �� ρ∗ ⊗ νπ. Par récurrence, on sait que la représentation πGL(ψ′

1/2,mp) × π

est irréductible et la réciprocité de Frobenius dit que toute sous-représentation
irréductible de l’induite πGL(ψ1/2,mp)× π contient dans son module de Jacquet la
représentation (*) comme quotient. Comme le foncteur de Jacquet est un foncteur
exact, il y a donc au plus une sous-représentation irréductible.

On suppose donc maintenant que pour tout (ρ, a, b) ∈ Jord(ψ1/2,mp), on a
ρ � ρ∗ ⊗ νπ.

On se ramène aisément au cas où ψbp est de restriction discrète à la diagonale
puisque les Jac définis pour passer du cas de restriction discrète à la diagonale
au cas général commutent à l’induction par des représentations Speh(St(ρ, a), b)
si (ρ, a, b) n’est pas de bonne parité. On se ramène aussi aisément (en suivant les
définitions) au cas où t ≡ 0 ce qui permet de supposer que 	(ψbp) = 0, c’est-à-dire
que ψbp est un morphisme élémentaire. Puis on se ramène encore au cas où ψbp

est tempéré : l’argument consiste à définir plus précisément projρ,<x pour x un
demi-entier en ne gardant que les supports cuspidaux des représentations des GL
de la forme ρ| |z avec |z| < x et z − x ∈ Z. Alors l’application que l’on a définie
pour passer de ψtemp,bp à ψbp commute alors à l’induction par πGL(ψ1/2,mp) et elle
conserve l’irréductibilité éventuelle. L’intérêt de ces réductions est de traiter le cas
où πGL(1/2,mp) est tempéré, qui est en fait le cas le plus difficile.

On suppose donc d’abord que ψ1/2,mp est tempéré. On sait donc que b = 1
pour tout (ρ, a, b) ∈ Jord(ψ1/2,mp) (c’est l’hypothèse tempéré) et que π est une
série discrète ; on sait aussi que (ρ, a) /∈ Jord(π) parce qu’il n’existe pas a′ de même
parité que a avec St(ρ, a′)×π réductible mais on a donc que l’induite St(ρ, a)×π est
irréductible. L’irréductibilité de l’induite ×(ρ,a,b)∈Jord(ψ1/2,mp)St(ρ, a)×π se montre
alors en utilisant la théorie d’Harish-Chandra ; l’irréductibilité se voit sur les pôles
des opérateurs d’entrelacement standard ; or ces opérateurs se factorisent et font
nécessairement intervenir un opérateur d’entrelacement standard

St(ρ, a)| |s × π → St(ρ, a)| |−s × π

qui a un pôle en s = 0. D’où l’irréductibilité annoncée.
On suppose maintenant que πGL(ψ1/2,mp) n’est pas une représentation tempé-

rée. On introduit la notation suivante ; soit (ρ, a) comme précédemment et soit
t, t′ des demi-entiers tels que t′ − t + 1 ∈ Z>0 ; on note Q(St(ρ, a), t′, t) l’unique

sous-module irréductible de l’induite St(ρ, a)| |t′ × · · · × St(ρ, a)| |t induite pour un
groupe GL convenable. Pour (ρ, a, b) ∈ Jord(ψ1/2,mp), on pose δb = δ′b = −1/2 si b
est pair et δb = −1, δ′b = 0 si b est impair. On considère l’induite

×(ρ,a,b)∈Jord(ψ1/2,mp);b>1

(
Q(St(ρ, a),−(b− 1)/2, δb)×Q(St(ρ, a),−(b− 1)/2, δ′b)

)

×(ρ,a,b)∈Jord(ψ1/2,mp);b=1St(ρ, a)× π,

où on ordonne les (ρ, a, b) qui interviennent de telle sorte que si (ρ, a, b) et (ρ, a′, b′)
interviennent alors si b > b′, (ρ, a, b) est plus à gauche. L’intérêt est alors que
l’induite Q(St(ρ, a),−(b − 1)/2, δ′b) × Q(St(ρ, a),−(b′ − 1)/2, δb′) est irréductible
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(d’après [27]1.6.3). On vérifie alors que l’induite est une sous-représentation de
l’induite

×(ρ,a,b)∈Jord(ψ1/2,mp);b>1

(
Q(St(ρ, a),−(b− 1)/2, δb)×Q(St(ρ, a),−(b− 1)/2, δb)

)

×(ρ,a,b)∈Jord(ψ1/2,mp);b≡1[2]St(ρ, a)× π. (2)

Ici il n’y a plus besoin de mettre d’ordre sur Jord(ψ1/2,mp) grâce aux propriétés
d’irréductibilité prouvées en loc. cit..

On vérifie que cette induite a un unique sous-module irréductible ; c’est un
calcul de module de Jacquet, disons que l’on peut utiliser la théorie du quotient de
Langlands si π est tempérée ce que l’on a le droit de supposer.

On note Lang(ψ1/2,mp, π) ce sous-module irréductible ; il intervient en plus avec
multiplicité 1 comme sous-quotient de l’induite. Avant de continuer, on remarque
que Lang(ψ1/2,mp, π) est certainement un sous-quotient de l’induite πGL(ψ1/2,mp)×
π ; c’est un calcul de module de Jacquet qui le prouve. Comme la représentation
πGL(ψ1/2,mp)×π est unitaire, l’irréductibilité cherchée est donc équivalente à l’exis-

tence d’une inclusion de πGL(ψ1/2,mp)× π dans l’induite (2).
Il y a malheureusement quelques difficultés techniques pour démontrer ce résul-

tat dans le cas où il existe (ρ, a, b) ∈ Jord(ψ1/2,mp) avec b impair. On traitera
ci-dessous le cas où Jord(ψ1/2,mp) contient exactement un élément (ρ, a, b) avec
b > 1 et ici on se ramène par récurrence à ce cas ; la récurrence porte donc sur
le cardinal de l’ensemble (ρ′, a′, b′) ∈ Jord(ψ1/2,mp) tel que b′ > 1. Fixons (ρ, a, b)
avec b > 1 ; on note ψ′

1/2,mp le morphisme qui se déduit de ψ1/2,mp en enlevant la

représentation associée à (ρ, a, b) et on suppose que Jord(ψ′
1/2,mp) contient aussi

un élément (ρ′, a′, b′) avec b′ > 1. Quitte à échanger ces 2 triplets, on suppose que
b ≥ b′. Par hypothèse de récurrence, on sait que πGL(ψ′

1/2,mp)× π est irréductible

donc réduit à Lang(ψ′
1/2,mp, π) ; on note ψ′′

1/2,mp le morphisme qui se déduit de

ψ′
1/2,mp en enlevant (ρ′, a′, b′) mais en rajoutant si b′ est impair (ρ′, a′, 1). Donc on

a des inclusions :

πGL(ψ1/2,mp)×π ↪→ Q(St(ρ, a),−(b−1)/2, (b−1)/2)×Q(St(ρ′, a′),−(b′−1)/2, δb′)

×Q(St(ρ′, a′),−(b′ − 1)/2, δb′)× πGL(ψ′′
1/2,mp)× π

� Q(St(ρ′, a′),−(b′ − 1)/2, δb′)×Q(St(ρ′, a′),−(b′ − 1)/2, δb′)×
Q(St(ρ, a),−(b− 1)/2, (b− 1)/2)× πGL(ψ′′

1/2,mp)× π.

Par récurrence, on sait que la représentation induite

Q(St(ρ, a),−(b− 1)/2, (b− 1)/2)× πGL(ψ′′
1/2,mp)× π

est irréductible réduite au ”bon” sous-quotient de Langlands. On peut donc pro-
longer les morphismes ci-dessus en une inclusion

↪→ Q(St(ρ′, a′),−(b′ − 1)/2, δb′)×Q(St(ρ′, a′),−(b′ − 1)/2, δb′)

×Q(St(ρ, a),−(b− 1)/2, δb)×Q(St(ρ, a),−(b− 1)/2, δb)

×πGL(ψ′′
1/2,mp)× St(ρ, a)× π,

où le facteur St(ρ, a) n’intervient que si b est impair. Il est alors facile de continuer
pour trouver une inclusion de πGL(ψ1/2,mp)×π dans l’induite (2). Cela réduit donc

la preuve de l’irréductibilité de l’induite πGL(ψ1/2,mp)×π au cas où Jord(ψ1/2,mp)
ne contient qu’un élément (ρ, a, b) avec b > 1. On a le droit d’utiliser l’involution
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d’Iwahori-Matsumoto généralisée ([9], [29]) ; cette involution change π mais π reste
dans un paquet associé à un morphisme ψ′

bp qui s’obtient simplement en échangeant

les 2 copies de SL(2,C). Et elle change ψ1/2,mp en échangeant les triplets (ρ, a, b)
en (ρ, b, a) puisqu’ici c’est l’involution de Zelevinsky. On se ramène ainsi à des cas
très particuliers de ψ1/2,mp : pour tout (ρ, a, b) ∈ Jord(ψ1/2,mp) on a a = b = 1
sauf soit pour exactement 1 triplet de la forme (ρ, a, b) avec inf(a, b) > 1 soit pour
exactement 2 triplets l’un étant de la forme (ρ, 1, b) et l’autre de la forme (ρ′, a′, 1) ;
dans le 2e cas, on écrit a′ = a et on suppose dans les 2 cas que a ≥ b (on s’y ramène
éventuellement avec l’involution d’Iwahori-Matsumoto généralisée).

Maintenant, on fait en plus une récurrence sur |Jord(ψ1/2,mp)|. On suppose
donc pour initialiser la récurrence que Jord(ψ1/2,mp) n’a qu’un élément (ρ, a, b) avec
a ≥ b > 1. On démontre d’abord que pour tout demi-entier x tel que x− (b− 1)/2
soit dans Z l’induite :

St(ρ, a)| |x × π (3)

est irréductible. Le cas x = 0 (qui n’est possible que si b est impair) a déjà été
traité. On suppose donc que x > 0 et on remarque que l’induite (3) a un unique
quotient irréductible qui est auss l’unique sous-module irréductible de l’induite
St(ρ, a)| |−x×π. De plus cette représentation irréductible intervient avec multiplicité
1 comme sous-quotient de l’induite. Il suffit donc de démontrer que l’opérateur
d’entrelacement standard :

St(ρ, a)| |x × π → St(ρ, a)| |−x × π

est un isomorphisme. Montrons cela : on inclut π dans une induite de la forme
×(ρ′,z′)ρ| |z

′ × πcusp où (ρ′, z′) parcourt un ensemble avec multiplicité formé d’une
représentation cuspidale unitaire ρ′ et d’un demi-entier z′ et où πcusp est une
représentation cuspidale. Le point est que si (ρ′, z′) apparâıt et si ρ′ � ρ ou ρ∗,
z′ − t �= ±1 pour tout t ∈ [(a− 1)/2,−(a− 1)/2] + x pour des questions de parité.
De plus St(ρ, a)| |x × πcusp est aussi irréductible : les points de réductibilité des in-
duites de la forme ρ| |s×πcusp pour s demi-entier sont aussi tels que s− t /∈ Z pour
tout t comme ci-dessus. On a alors facilement l’isomorphisme annoncée puisque
l’opérateur d’entrelacement standard est la restriction d’un produit d’opérateur
du même type qui correspondent aux induites que l’on vient de décrire. On écrit
maintenant (ici on n’utilise pas le fait que a ≥ b)

Q(St(ρ, a),−(b− 1)/2, (b− 1)/2)× π ↪→

Q(St(ρ, a),−(b− 1)/2, (b− 3)/2)× St(ρ, a)| |(b−1)/2 × π

� Q(St(ρ, a),−(b− 1)/2, (b− 3)/2)× St(ρ, a)| |−(b−1)/2 × π

� St(ρ, a)| |−(b−1)/2 ×Q(St(ρ, a),−(b− 1)/2, (b− 3)/2)× π.

Si b = 2 ou 3 on a terminé. Sinon, on recommence en utilisant l’inclusion

Q(St(ρ, a),−(b− 1)/2, (b− 3)/2) ↪→

Q(St(ρ, a),−(b− 1)/2, (b− 5)/2)× St(ρ, a)| |(b−3)/2.

Finalement on trouve l’inclusion Q(St(ρ, a),−(b− 1)/2, (b− 1)/2)× π ↪→
×x∈[−(b−1)/2,δb]St(ρ, a)| |x ×Q(St(ρ, a),−(b− 1)/2, δb)× St(ρ, a)× π,

où le dernier St(ρ, a) n’intervient que si b est impair. On vérifie encore que la
dernière induite à un unique sous-module irréductible et on conclut ainsi.
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On peut alors traiter l’un des cas restants : on suppose que |Jord(ψ1/2,mp)| a
plus d’un élément et contient (ρ, a, b) avec a ≥ b > 1. Ainsi il existe des triplets de
la forme (ρ′, 1, 1) dnas Jord(ψ1/2,mp) et on en fixe 1. On note π′

1/2,mp le morphisme

qui se déduit de ψ1/2,mp en enlevant (ρ′, 1, 1) et (ρ, a, b). On a

πGL(ψ1/2,mp)× π = ρ′ ×Q(St(ρ, a),−(b− 1)/2, (b− 1)/2)× π(ψ′
1/2,mp)× π.

Par récurrence, on sait que l’induite Q(St(ρ, a),−(b−1)/2, (b−1)/2)×π(ψ′
1/2,mp)×π

est irréductible, on peut donc continuer les égalités par une inclusion dans l’induite

ρ′×Q(St(ρ, a),−(b−1)/2, δb)×Q(St(ρ, a),−(b−1)/2, δb)×π(ψ′
1/2,mp)×St(ρ, a)×π,

où le terme St(ρ, a) n’intervient que si b est impair.
Comme a ≥ b, l’induite ρ′ × Q(St(ρ, a),−(b − 1)/2, δb) est irréductible (c’est

très facile, toute induite ρ′ × St(ρ, a)| |x est irréductible si x ∈ [−(b − 1)/2, δb] car
le segment [(a− 1)/2+ x,−(a− 1)/2+ x] contient 0). On obtient alors l’inclusion :

πGL(ψ1/2,mp)× π ↪→

Q(St(ρ, a),−(b−1)/2, δb)×Q(St(ρ, a),−(b−1)/2, δb)×ρ′×π(ψ′
1/2,mp)×St(ρ, a)×π,

et cette induite n’a qu’un unique sous-module irréductible Lang(ψ1/2,mp, π). Cela
termine ce cas.

On suppose maintenant que Jord(ψ1/2,mp) contient un terme (ρ, 1, b) et un
terme (ρ′, a, 1 avec a ≥ b et éventuellement d’autres termes de la forme (ρ′′, 1, 1)
que l’on regroupe en un morphisme noté ψ′

1/2,mp. On procède exactement comme

ci-dessus :

πGL(ψ1/2,mp)× π = St(ρ′, a)×Q(ρ,−(b− 1)/2, (b− 1)/2)× πGL(ψ′
1/2,mp)× π

↪→ St(ρ′, a)×Q(ρ,−(b− 1)/2, δb)×Q(ρ,−(b− 1)/2, δb)× πGL(ψ′
1/2,mp)× ρ× π,

où ρ n’intervient que si b est impair. Ici encore le fait que a ≥ b assure que pour
tout x ∈ [−(b− 1)/2, δb] l’induite St(ρ′, a)× ρ| |x est irréductible et on continue

� Q(ρ,−(b− 1)/2, δb)×Q(ρ,−(b− 1)/2, δb)× St(ρ′, a)× πGL(ψ′
1/2,mp)× ρ× π.

On conclut comme ci-dessus.

5. Transfert

Fixons ψ ; on considère la représentation πGL(ψ). Cette représentation a sa
classe d’isomorphie qui est stable sous l’action de θG. On définit alors une ac-
tion de θG sur cette représentation de la façon suivante : on écrit πGL(ψ) comme
unique quotient irréductible d’une représentation induite de tempérée modulo le
centre, c’est-à-dire comme quotient de Langlands. On vérifie alors qu’il existe une
représentation σ d’un produit de groupe linéaire et une représentation tempérée
σ0 d’un seul groupe linéaire telle que πGL(ψ) soit l’unique quotient irréductible de
l’induite σ×σ0× θG(σ) et que σ0 a sa classe d’isomorphie qui est θG invariante (on
donne ci-dessous σ et σ0 ; ce n’est pas exactement la situation du quotient de Lan-
glands mais on peut s’y ramener et l’action de θ ne dépend pas de cette variante).
Comme σ0 est une représentation tempérée d’un groupe linéaire, elle a un modèle
de Whittaker par rapport à une fonctionnelle θG invariante ; on normalise l’action
de θG sur σ0 en demandant que θG agisse trivialement sur l’espace de Whittaker.
Ensuite on prolonge canoniquement cette action de θG à l’induite σ × σ0 × θGσ et
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par passage au quotient, on en déduit une action sur πGL(ψ). On écrit explicitement
σ et σ0 sous la forme :

σ0 = ×(ρ,a,b)∈Jord(ψbp);b≡1[2]St(ρ, a)

σ = πGL(ψ1/2,mp)××(ρ,a,b)∈Jord(ψbp;b≡0[2] ×c∈[(b−1)/2,1/2] St(ρ, a)| |c

×(ρ,a,b)∈Jord(ψbp);b≡1[2] ×c∈[(b−1)/2,1] St(ρ, a)| |c.
Cette action de θG est la normalisation de Whittaker (cf. [28] paragraphe 5)

On fixe ψ et on reprend les notations des paragraphes précédents qui donnent
une paramétrisation de Π(ψ). En particulier, pour tout choix de t, η, on a le ca-
ractère du centralisateur de ψ défini par :

εt,η(ρ, a, b) = η(ρ, a, b)inf(a,b)(−1)[inf(a,b)/2]+t(ρ,a,b).

Pour tout (ρ, a, b) ∈ Jord(ψ), on pose, en suivant [28] 5.6 (où il y a une légère
faute de frappe rectifié ici ”ou a − b = b′ − a′ et non a − b = a′ − b′ comme écrit
malencontreusement dans la 1e définition mais rectifié au bas de la page de loc. cit.
dans la 2e définition),

ZW,(ρ,a,b) := {(ρ, a′, b′); inf(a, a′) ≡ inf(b, b′) ≡ 1[2]; sup(a, a′) ≡ sup(b, b′) ≡ 0[2];

a+ a′ < b+ b′ ou a− b = b′ − a′ �= 0 et (a− b)(a+ b− a′ − b′) < 0}.
On définit alors le caractère εW,ψ en posant pour tout (ρ, a, b) ∈ Jord(ψ) :

εW,ψ(ρ, a, b) = (−1)|ZW,ρ,a,b|.

On note zψ l’image par ψ de l’élément non trivial du centre de la 2e copie de
SL(2,C) ; c’est un élément du centralisateur de ψ et on a :

Théorème 5.0.1. La distribution

εW,ψ(zψ)
∑

t�,η�

εt,η(zψ)trπ(ψ, t�, η�)

est stable et a pour transfert la trace tordue de πGL(ψ) pour l’action de θ que l’on
vient de définir.

Ce théorème est prouvé dans [28] 4.7.1, et 5.7.1.
On va redonner les très grandes lignes de la preuve du transfert ”au signe près”,

c’est-à-dire sans préciser l’action de θ sur πGL(ψ) ; le calcul du signe est un calcul
de facteur de normalisation d’opérateurs d’entrelacement que l’on ne refait pas ici.

Si le transfert est prouvé pour ψbp, il est immédiat qu’il est vrai pour ψ. On
considère maintenant le cas où ψ est de restriction discrète à la diagonale

On fixe une application ε de Jord(ψ) dans ±1 de restriction à ZG∗ fixée par G
et on pose

π(ψ, ε) =
∑

t,η;ε=εt,η

π(ψ, t, η).

C’est cette représentation π(ψ, ε) qui se calcule bien dans le groupe de Grothendieck
des représentations de G permettant de prouver le théorème.

Supposons d’abord que ψ est élémentaire, dans ce cas ε s’identifie à η et il n’y
a qu’un terme dans la somme. La définition même de εt,η(ψ)π(ψ, ε) est alors une

formule dans le groupe de Grothendieck qui met en jeu des induites de restriction de
la série discrète πtemp(ψ, η). On a montré que la même formule valait pour πGL(ψ)
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dans ce cas en [28] 3.1.2 et 3.2.2 et on en a déduit en loc. cit. paragraphe 4 le
transfert cherché.

Supposons maintenant que ψ n’est pas élémentaire ; on fixe (ρ, a, b) avec l’hy-
pothèse que inf(a, b) > 1. Pour simplifier l’écriture, on suppose que a > b ; si a ≤ b,
il faut échanger les rôles de a et b. On pose ε0 := ε(ρ, a, b) et on note ψ′ le mor-
phisme qui se déduit de ψ en enlevant le bloc (ρ, a, b). On note aussi ε′ la restriction
de ε à Jord(ψ′). En [21], on a montré la formule : π(ψ, ε) =∑

c∈](a−b)/2,(a+b)/2[

〈ρ| |−c, · · · , ρ| |−(a+b)/2+1 > ×Jacρ| |(a−b)/2+2,··· ,ρ| |cπ
(
(ψ′, ε′)

⊕((ρ, a+ 2, b− 2), ε0))
)

⊕η=±1(−1)[b/2]ηbεb+1
0 π

(
(ψ′, ε′)⊕ ((ρ, a+ 1, b− 1), η)⊕ ((ρ, a− b+ 1, 1), ε0η)

)
,

où la première somme n’intervient pas si b = 2 et ε0 = + et où, par exemple (ψ′, ε′)⊕
((ρ, a+ 1, b− 1), η)⊕ ((ρ, a− b+ 1, 1), ε0η) signifie que l’on regarde le morphisme,

ψ̃, qui se déduit de ψ′ en ajoutant les représentations associées à (ρ, a+1, b− 1) et

à (ρ, a− b+1, 1) et que l’on considère l’application de Jord(ψ̃) dans ±1 qui vaut ε′

sur Jord(ψ′) et vaut η sur (ρ, a+1, b− 1) et ε0η sur (ρ, a− b+1, 1). Cette formule
n’est pas simple à montrer ; la preuve se fait en utilisant les modules de Jacquet.

On pose ε(ψ) = ×(ρ,a,b)∈Jord(ψ)ε(ρ, a, b)
b+1. On remarque que cela vaut εt,η(zψ)

avec les notations précédentes. Toujours avec ces notations, on a clairement ε(ψ) =

ε′(ψ′)εb−2+1
0 . On pose ψ′′ := ψ′ ⊕ (ρ, a + 2, b − 2) et ε′′ le prolongement de ε′ qui

vaut ε0 sur (ρ, a+ 2, b− 2) ; ici le groupe, G′′, correspondant est de rang plus petit
que celui de G (la différence est 2dρ(a− b+2)) mais de même type et la restriction
de ε′′ au centre du groupe dual de G′′ est la bonne. On note ψ′′′

η le morphisme
ψ′ ⊕ (ρ, a + 1, b − 1) ⊕ (ρ, a − b + 1, 1) ; il est relatif au groupe G. Si a < b le
morphisme est ψ′ ⊕ (ρ, a− 1, b+1)⊕ (ρ, 1, |a− b|+1) et pour η = ±, on note ε′′′η le
prolongement de ε′ qui vaut η sur (ρ, a± 1, b∓ 1) et ηε0 sur le 2e bloc ajouté. On
calcule ε′′′η (ψ′′′) en séparant les cas.

1e cas : a ≥ b :

ηbεb+1
0 ε(ψ) = ηbεb+1

0 ε′(ψ′)εb+1
0 = ηbε′(ψ′) = ε′′′η (ψ′′′).

2e cas : a < b ; le signe dans la somme est (−1)[a/2]ηaεa+1
0 et on a :

ηaεa+1
0 ε(ψ) = ηaεa+1

0 ε′(ψ′)εb+1
0 .

ε′′′η = ε′(ψ′)ηb(ε0η)
b−a = ε′(ψ′)ηaεb+a

0

et donc encore l’égalité de ces 2 expressions. Quand on va sommer sur η, on remplace
ε′′′η par ε′′′ en imposant la restriction à Jord(ψ′) mais en fait on sommera aussi sur
cette restriction ; la restriction de ε′′′ au centre de G∗ est bien celle fixé par G. Ainsi
on obtient, en posant ζρ,a,b = + si a ≥ b et − sinon :

∑
ε ε(ψ)π(ψ, ε) =∑

ε′′

∑
c∈](b−a)/2,−ζρ,a,b(a+b)/2[

ε′′(ψ′′)

〈ρ| |(a−b)/2, · · · , ρ| |c〉 × Jacζρ,a,b(ρ| |(a−b)/2+2,··· ,ρ| |cπ(ψ
′′, ε′′)

⊕(−1)[inf(a,b)/2]
∑
ε′′′

ε′′′(ψ′′′)π(ψ′′′, ε′′′).
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En [28] 2.3.1, on a montré une formule du même type pour πGL(ψ) en suivant
l’action de θ et on a montré comment le théorème se déduit de la comparaison de
ces formules en [28] paragraphe 4.

On passe du cas de restriction discrète à la diagonale au cas général, en pre-
nant des modules de Jacquet partiel et ceci n’altère pas le théorème ; on remarque
d’ailleurs que le signe qui vient naturellement devant π(ψ, t�, η�) est précisément

εt�,η�
(ψ�. Et si on ne s’intéresse qu’à la multiplicité 1 (la question du signe étant

réglé par d’autres méthodes) on n’a pas besoin de savoir que εt�,η�
s’identifie à un

caractère du centralisateur de ψ.
Dans tout ce qui précède, on a utiliser uniquement le caractère εt,η ; la raison

en est que localement la normalisation de l’action de θ sur πGL(ψ) n’est pas la plus
naturelle et on a utilisé une normalisation ad hoc qui donne un transfert avec ces
signes. Pour passer à la normalisation deWhittaker, on a comparé les normalisations
en [28] paragraphe 5.

6. Paquets d’Arthur pour les groupes métaplectiques

On ne veut pas utiliser le fait que les représentations dans les paquets d’Arthur
sont unitaires ce qui compliquent les démonstrations. On va admettre la propriété
suivante : le caractère d’une représentation irréductible de Mp(2n, F ) est une fonc-
tion localement L1.

Dans le cas des groupes métaplectiques, on n’a pas de transfert disponible pour
le moment. Pour ψ un morphisme de WF × SL(2,C) × SL(2,C) à valeurs dans
Sp(2n,C) ayant les propriétés de tout ce travail, on peut associer un paquet de
représentations de Mp(2n, F ) en généralisant les formules de 4.1 et 4.2. Pour tout
N grand, on note ψN le morphisme qui se déduit de ψ en ajoutant la représentation
1×1× [2N ] de WF ×SL(2,C)×SL(2,C) trivial sur les 2 premiers facteurs et étant
la représentation irréductible de dimension 2N sur la 2e copie de SL(2,C) (on
reprend évidemment ici une idée d’Adams). On a alors, sous l’hypothèse faite sur
le caractère d’une représentation irréductible de Mp(2n, F ) :

Théorème 6.0.2. Les représentations de Π(ψ) sont irréductibles et ce sont
exactement les représentations irréductibles de Mp(2n, F ) qui pour tout N grand
ont une image par la correspondance de Howe appartenant au paquet de représenta-
tions de O(2n+2N+1, F ) dont la restriction à SO(2n+2N+1, F ) est un élément
du paquet associé à ψN .

On commence par traiter le cas où ψ = ψbp. On utilise la filtration de Kudla
pour montrer que le théorème est vrai s’il est vrai dans le cas où la restriction de ψ à
WF fois la diagonale de SL(2,C) est sans multiplicité. Ensuite on a une description
explicite des représentations et on montre le théorème par récurrence en utilisant
la filtration de Kudla comme pour la classification des séries discrètes.

On passe ensuite au cas où ψmp n’est pas trivial ; la difficulté ici est qu’il n’est
pas raisonable d’admettre l’unitarité des représentations dans le paquet associé à
ψbp. Le point clé est de démontrer l’irréductibilité de l’induite πGL(ψ1/2,mp) × π
pour toute représentation π dans le paquet associé à ψbp. On se ramène au cas
où π est tempérée : passer du cas élémentaire au cas tempéré se fait avec une
application qui bien que n’étant défini que sur le groupe de Grothendieck conserve
l’irréductibilité des représentations que l’on considère (au signe près). Passer du
cas de restriction discrète à la diagonale au cas élémentaire se fait par récurrence
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sur
∑

(ρ,a,b)∈Jord(ψbp)
(inf(a, b)− 1) ; la représentation π est associé à des données

t et η. Si t est identiquement nul, on est directement ramené au cas élémentaire et
sinon on sait qu’il existe une représentation π′ de même nature que π tel que π soit
l’unique sous-module irréductible de l’induite St(ρ, a)| |−(b−1)/2 × π′ si a ≥ b et de
l’induite Speh(ρ, b)| |(a−1)/2 × π′ si b > a. On considère le cas où b > a pour alléger
l’écriture ; l’induite Speh(ρ, b)| |(a−1)/2 × πGL(ψ1/2,mp) pour le GL convenable est
irréductible. Ainsi on a une inclusion :

πGL(ψ1/2,mp)× π ↪→ Sp(ρ, b)| |(a−1)/2 × πGL(ψ1/2,mp)× π′.

Soit σ un sous module irréductible du membre de gauche. Par récurrence, on sait
que l’induite πGL(ψ1/2,mp) × π′ est irréductible. Par réciprocité de Frobenius, on

voit que le module de Jacquet de σ contient la représentation Sp(ρ, b)| |(a−1)/2 ⊗
πGL(ψ1/2,mp)× π′ comme quotient irréductible ; donc en particulier

Jacρ| |(a−b)/2,··· ,ρ| |(a+b)/2−1σ �= 0

et cöıncide avec πGL(ψ1/2,mp) × π′. Mais par les formules standard, ceci vaut en-

core Jacρ| |(a−b)/2,··· ,ρ| |(a+b)/2−1πGL(ψ1/2,mp)×π ; en particulier l’induite a un unique
sous-module irréductible et ce sous-module irréductible intervient avec multipli-
cité 1 comme sous-quotient de l’induite. Par irréductibilité πGL(ψ1/2,mp) × π′ �
πGL(ψ1/2,mp)

∗ × π′. Ainsi σ est aussi l’unique sous-module irréductible de l’in-

duite πGL(ψ1/2,mp)
∗ × π ; on a donc fini si π est unitaire. Sinon, soit τ un quotient

irréductible de l’induite πGL(ψ1/2,mp)×π. On introduit δ un élément de Gsp(2n, F )
de norme symplectique −1 ; on suppose qu’il est dans le sous-groupe de Levi de
Sp(2n, F ) image de celui que l’on utilise dans Mp(2n, F ) pour induire. On sait
avec [26] 4.II.2 que τ∗ est isomorphe à l’image de τ sous l’action de δ. Par dualité
τ∗ est un sous-module irréductible de l’induite πGL(ψ1/2,mp)

∗ × π∗. Ainsi

τ δ ↪→ πGL(ψ1/2,mp)× πδ.

En faisant agir δ, on obtient l’inclusion de τ dans l’induite πGL(ψ1/2,mp)
∗×π. Ainsi

τ est isomorphe à σ et comme σ intervient avec multiplicité 1 comme sous-quotient
de l’induite πGL(ψ1/2,mp)× π, cette induite est nécessairement irréductible. On est
donc ramené au cas où π est tempérée et ici on a déjà admis qu’une représentation
tempérée de Mp(2n, F ) est unitaire. Ainsi l’induite πGL(ψ1/2,mp) × π est semi-
simple. Pour N grand, on note π̃N l’image de π pour la correspondance de Howe,
Mp(2nπ, F ), O(2nπ+2N+1, F ), où nπ est défini par π. Et en utilisant la filtration de
Kudla comme en 2.2, on montre que la longueur de la représentation πGL(ψ1/2,mp)×
π est inférieure ou égale à celle de l’induite πGL(ψ1/2,mp) × π̃N , c’est-à-dire est
irréductible d’après 4.2. Cela termine la preuve.

7. Paquet de Langlands à l’intérieur d’un paquet d’Arthur

On fixe ψ. On note i2 le morphisme de WF dans le tore de la 2e copie de

SL(2,C), w ∈ WF �→
( |w|1/2 0

0 |w|−1/2

)
. D’après Arthur, le paquet associé à ψ

doit contenir tout le paquet de Langlands associé au morphisme ψL obtenue en
restreignant ψ à WF ×SL(2,C) où WF s’envoie dans WF ×SL(2,C)×SL(2,C) par
l’identité fois i2 et SL(2,C) s’identifie à la première copie de SL(2,C). Décrivons
les représentations dans ce paquet de Langlands, cela sera utilisé dans la preuve
et c’est utile pour d’autres démonstrations. On note ψ0,L la sous-représentation de
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WF × SL(2,C) dans ψL correspondant au poids 0 de WF c’est-à-dire celle où WF

agit de façon unitaire ; en d’autres termes la décomposition en sous-représentations
irréductibles de ψ0,L correspond à l’ensemble des (ρ, a, 1) pour lesquels il existe
b impair avec (ρ, a, b) ∈ Jord(ψ) et la multiplicité d’un (ρ, a, 1) est exactement
le nombre d’entiers b impairs avec (ρ, a, b) ∈ Jord(ψ). On reprend des notations
déjà introduites, pour tout entier b, on pose δb = −1 si b est impair et δb =
−1/2 si b est pair et pour (ρ, a, b) ∈ Jord(ψ), pour (ρ, a, b) ∈ Jord(ψ), on note
Q(St(ρ, a),−(b − 1)/2, δb) l’unique sous-module irréductible pour le GL conve-
nable de l’induite St(ρ, a)| |−(b−1)/2 × · · ·St(ρ, a)| |δb . On vérifie que pour toute
représentation irréductible π0 appartenant au paquet tempéré Π(ψ0,L) l’induite

×(ρ,a,b)∈Jord(ψ)Q(St(ρ, a),−(b− 1)/2, δb)× π0

a un unique sous-module irréductible. On le note π0,L et l’ensemble des π0,L quand
π0 varie est exactement l’ensemble des représentations dans le paquet de Langlands
défini ci-dessus.

Proposition 7.0.3. Le paquet de Langlands associé à ψL est inclus dans le
paquet d’Arthur.

On fixe ψ et on raisonne par récurrence sur b[ψ] :=
∑

(ρ,a,b)∈Jord(ψ)(b− 1). Si

b[ψ] = 0, le paquet associé à ψ est tempéré et cöıncide avec le paquet de Langlands.
Le résultat est alors évident. On suppose donc que b[ψ] > 0. En utilisant 4.2, on se
ramène aisément au cas où ψ = ψbp : le paquet d’Arthur associé à ψ est formé des
représentations irréductibles πGL(ψ1/2,mp)× π′ où π′ parcourt le paquet associé à
ψbp. Et ceci est aussi vrai pour le paquet de Langlands par la même référence.

On suppose donc que ψ = ψbp et on suppose d’abord qu’il existe (ρ, a, b) ∈
Jord(ψ) tel que a < b. On fixe un tel triplet (ρ, a, b) ∈ Jord(ψ) tel que b − a est
maximum et si ce maximum est atteint par plusieurs triplets on suppose alors que
a + b est maximum parmi ces triplets et on note m0 la multiplicité dans Jord(ψ)
d’un triplet atteignant ces maximums. On calcule alors

Jacθρ| |(a−b)/2,··· ,−(a+b)/2+1 ◦ · · · ◦ Jacθρ| |(a−b)/2,··· ,−(a+b)/2+1π
GL(ψ) (1)

où on effectue m0 fois cette opération. On note ψ′ le morphisme qui se déduit de
ψ en remplaçant (ρ, a, b) par (ρ, a, b − 2) pour toutes les occurrences de (ρ, a, b).
Un calcul qui utilise uniquement le lemme combinatoire de Bernstein Zelevinsky
pour calculer les modules de Jacquet d’une induite montre que le résultat vaut
exactement m0! fois π

GL(ψ′). De plus ce résultat est le transfert de

Jacρ| |(a−b)/2,··· ,−(a+b)/2+1 ◦ · · · ◦ Jacθρ| |(a−b)/2,··· ,−(a+b)/2+1

∑
π∈Π(ψ)

εππ

où επ est un signe convenable. Ainsi pour tout π′ ∈ Π(ψ′), il existe au moins une
représentation π ∈ Π(ψ) tel que π′ soit une composante de

Jacρ| |(a−b)/2,··· ,−(a+b)/2+1 ◦ · · · ◦ Jacθρ| |(a−b)/2,··· ,−(a+b)/2+1π

On rappelle que Jacρ| |xπ = 0 si x < (a − b)/2 ; ainsi on montre qu’il existe
nécessairement une représentation irréductible σ d’un groupe de même type que
G mais de rang plus petit et une inclusion

π ↪→ St(ρ, a)| |−(b−1)/2 × · · · × St(ρ, a)| |−(b−1)/2 × σ, (2)
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où il y a m0 copies de St(ρ, a)| |−(b−1)/2. Et en calculant les modules de Jacquet on
vérifie que nécessairement σ � π′. Ainsi on a une inclusion

π ↪→ St(ρ, a)| |−(b−1)/2 × · · · × St(ρ, a)| |−(b−1)/2 × π′. (3)

Par récurrence on sait que Π(ψ′) contient le paquet de Langlands associé à ψ′
L. Sup-

posons maintenant que π′ soit un des éléments du paquet de Langlands associé à ψ′
L.

Soit (ρ′, a′, b′) un triplet de Jord(ψ′), on reprend les notations de 4.2, c’est-à-dire
que l’on note δb′ = −1/2 ou −1 suivant que b′ est pair ou impair et Q(ρ′, a′, b′) est le

sous-module de Langlands de l’induite St(ρ′, a′)| |−(b′−1)/2 × · · · × St(ρ′, a′)| |δb′ ; la
notation est différente de celle introduite avant l’énoncé mais plus simple. On note
aussi ψimp qui se déduit de ψ′ (ou ψ, cela revient au même) en changeant les triplets
(ρ′, a′, b′) avec b′ impair en (ρ′, a′, 1) et en supprimant les triplets (ρ′, a′, b′) avec b′

pair. Donc par hypothèse, il existe un caractère η du centralisateur de ψ′
imp dans

le groupe convenable tel que π′ soit l’unique sous-module irréductible de l’induite :

×(ρ′,a′,b′)∈Jord(ψ′)Q(ρ′, a′, b′)× π(ψ′
imp, η).

L’ordre dans lequel on prend les éléments de Jord(ψ′) est indifférent, on suppose
donc que le plus à gauche est (ρ, a, b− 2). Ainsi, on a l’inclusion

π ↪→
(
St(ρ, a)| |−(b−1)/2 ×Q(ρ, a, b− 2)

)
×(ρ′,a′,b′)∈Jord(ψ′)−{(ρ,a,b)} (ψ

′
imp, η).

Par irréductibilité de π, on peut remplacer la parenthèse par un sous-quotient
irréductible de l’induite écrite à l’intérieur ; mais comme Jacρ| |xπ = 0 si x ∈
](a− b)/2,−(a+ b)/2+1] par minimalité de (a− b)/2, le seul sous-quotient possible
est Q(ρ, a, b). On a ainsi démontré que π est dans le paquet de Langlands associé à
ψ. On a donc démontré la proposition dans ce cas.

Supposons maintenant que pour tout (ρ, a, b) ∈ Jord(ψ), on ait a ≥ b. On
fixe encore (ρ, a, b) tel que b > 1 et a − b est minimum avec cette propriété ; si
plusieurs triplets de Jord(ψ) vérifient ces conditions on fixe encore a+ b maximum
et on note m0 la multiplicité dans Jord(ψ) d’un triplet satisfaisant ces conditions
d’extrêmums. On calcule encore (1) ; ici il peut y avoir (ρ, a′, b′) ∈ Jord(ψ) avec
b′ = 1 et (a′ − 1)/2 ≤ (a− b)/2 mais on a alors sûrement

−(b+ a)/2 + 1 = −b+ 1 + (b− a)/2 < (b− a)/2 ≤ −(a′ − 1)/2

et cela assure encore que (1) vaut πGL(ψ′) avec la même définition de ψ′ que
ci-dessus. Ensuite, on prouve encore (2) ; ici il faut utiliser le fait que l’on ne
peut avoir Jacρ| |x,··· ,ρ| |−(a+b)/2+1π �= 0 que si x ≥ (a − b)/2. Ensuite, on a (3)
facilement et on conclut comme dans le cas précédent mais en utilisant ici que
Jacρ| |x,··· ,ρ| |−(a+b)/2+1π �= 0 est impossible si x < (a− b)/2.

Cette démonstration ne calcule pas les paramètres des représentations dans le
paquet de Langlands.
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baki, 674, 1986-1987, Nov 86

[35] Waldspurger, J.-L., La formule de Plancherel pour les groupes p-adiques, d’après Harish-
Chandra JIMJ, 2, 2003, pp. 235-333

[36] Waldspurger J.-L., Le groupe GLN tordu, sur un corps p-adique ,1e partie Duke Math.
Journal, 137, 2007, pp. 185-234

[37] Waldspurger J.-L., Le groupe GLN tordu, sur un corps p-adique ,2e partie Duke Math.
Journal, 137, 2007, pp. 235-336

[38] Zelevinsky A. V., Induced Representations of Reductive p-adic groups II Ann de l’ENS, 13,
1980, pp. 165-210
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Introduction

This paper is our attempt to understand the work of Barbasch and Moy
[BbMo2] on unramified unitary dual for split classical p–adic groups from a dif-
ferent point of view.

The classification of irreducible unitary representations of reductive groups over
local fields is a fundamental problem of harmonic analysis with various possible ap-
plications, like those in number theory and the theory of automorphic forms. The
class of unramified unitary representations is especially important in the aforemen-
tioned applications. These representations occur in the following set-up that we fix
in this paper. Let F be a non–Archimedean local field of arbitrary characteristic
and O is its ring of integers. When we work with the classical groups we are obliged
to require that the characteristic of F is different from 2. Let G be the group of
F–points of an F–split reductive group G. An irreducible (complex) representation
π of G is unramified if it has a vector fixed under G(O). The set of equivalence
classes Irrunr(G) of unramified irreducible representations of G is usually described
by the Satake classification (see [Cr]). This classification is essentially the Lang-
lands classification for those representations. We write Irru,unr(G) ⊂ Irrunr(G) for
the subset consisting of unramified unitarizable representations. We equip that set
with the topology of uniform convergence of matrix coefficients on compact subsets
([F], [Di]; see also [T1], [T6]). A good understanding of unramified unitarizable
representations is fundamental for the theory of automorphic forms since almost all
components of cuspidal and residual automorphic representations are unramified
and unitarizable. By a good understanding we mean the following:

(1) To have an explicit classification of unramified unitary duals with explicit
parameters and with Satake parameters easily computed from them.
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The converse to (1) is not trivial and it is important. More precisely, from the point
of view of the theory of automorphic forms, it would be important to have a way to
decide from Satake parameters if a representation is unitarizable. Even for general
linear groups we need a simple algorithm. This leads to the following:

(2) To have an effective way (an algorithm) for testing unitarity of an arbitrary
unramified representation in Irrunr(G) given by its Satake parameter.

(3) To understand the topology in terms of the classification, especially of
isolated points in Irru,unr(G), which are exactly the isolated points in the
whole unitary dual which are unramified representations. This would be
particularly interesting to understand from the point of view of automor-
phic spectra.

If G = GL(n), then those tasks and much more were accomplished in the
works of the second–named author ([T4], [T5]; see also [T2], [T3]) more than
twenty years ago. In Section 4 of the present paper we give a simple solution due
to the second named author to those problems based entirely on [Ze], without use
of a result of Bernstein on irreducibility of unitary parabolic induction proved in
[Be2] and used in the earlier proof of the classification (see Theorem 4-1.)

In this paper we give the solutions to problems (1)–(3) in the case of the split
classical groups G = Sn where Sn is one of the groups Sp(2n, F ), SO(2n + 1, F ),
O(2n, F ) (see Section 1 for the precise description of the groups). Regarding (3), we
have an explicit description of isolated points, and (2) gives an algorithm for getting
limit points for a given sequence in the dual. Further, the algorithm from (2) gives
parameters in (1) in the case of unitarizability (the other direction is obvious).

This paper is the end of a long effort ([M4], [M6]). The approach to problem
(1) is motivated and inspired by the earlier work [LMT], in creation of which ideas
of E. Lapid played an important role (see also [T12] which is a special case of
[LMT]). On a formal level, the formulation of the solution (see Theorem 0-8) to
problem (1) is ”dual” to that of the one in [LMT], but in our unramified case it
has a much more satisfying formulation. This is not surprising since we are dealing
with very explicit representations. On the other hand, the proofs are more involved.
For example, the proof of the unitarity of the basic “building blocks” (see Theorem
0-4 below) requires complicated arguments with the poles of degenerate Eisenstein
series (see [M6]). The problems (2) and (3) have not yet been considered for split
classical groups. A characteristic of our approach is that at no point in the proofs
does the explicit internal structure of representations play a role. This is the reason
that this can be considered as an external approach to the unramified unitary duals
(of classical groups), which is a kind of a continuation of such approaches in [T3],
[T2], [LMT], etc.

We expect that our approach has a natural Archimedean version similar to the
way that [LMT] covers both the non-Archimedean and Archimedean cases, or the
way the earlier paper [T3] has a corresponding Archimedean version [T2], with the
same description of unitary duals for general linear groups and proofs along the
same lines.

Now we describe our results. They are stated in Section 5 in more detail than
here. After becoming acquainted with the basic notation in Section 1, the reader
may proceed directly to read Section 5.
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In the introduction, we use classical notation for induced representations. In
the rest of the paper we shall use notation adapted to the case of general linear
and classical groups, which very often substantially simplifies arguments in proofs.
A part of the exposition below makes perfect sense also for Archimedean fields (we
shall comment on this later).

We fix the absolute value | | of F which satisfies d(ax) = |a|dx. Let χ be an
unramified character of F× and l ∈ Z>0. Then we consider the following induced
representation of GL(l, F ):

Ind
GL(l,F )
P∅

(| |
l−1
2 χ⊗ | |

l−1
2 −1χ⊗ · · · ⊗ | |−

l−1
2 χ)

which has a character χ ◦ det as the unique irreducible quotient. We denote this
character by:

〈[− l − 1

2
,
l − 1

2
](χ)〉.

We introduce Langlands dual groups as follows:

G = Sn = SO(2n+ 1, F ) Ĝ(C) = Sp(2n,C) ⊂ GL(N,C);N = 2n

G = Sn = O(2n, F ) Ĝ(C) = O(2n,C) ⊂ GL(N,C);N = 2n

G = Sn = Sp(2n, F ) Ĝ(C) = SO(2n+ 1,C) ⊂ GL(N,C);N = 2n+ 1.

The local functorial lift σGL(N,F ) of σ ∈ Irrunr(Sn) to GL(N,F ) is always
defined and it is an unramified representation. (See (10-1) in Section 10 for the
precise description.) It is an easy exercise to check that the map σ �→ σGL(N,F ) is
injective. This lift plays the key role in the solutions to problems (2) and (3).

In order to describe Irru,unr(Sn) we need to introduce more notation. Let sgnu

be the unique unramified character of order two of F× and let 1F× be the trivial
character of F×. Let χ ∈ {1F× , sgnu}. Then we define αχ as follows:

if Sn = O(2n, F ), then αχ = 0

if Sn = SO(2n+ 1, F ), then αχ =
1

2
if Sn = Sp(2n, F ), then αsgnu

= 0 and α1F× = 1.

We refer to Remark 5-3 for an explanation of this definition in terms of rank–one
reducibility.

A pair (m,χ), where m ∈ Z>0 and χ is an unramified unitary character of F×,
is called a Jordan block. The following definition can be found in [M4] (see also
Definition 5-4 in Section 5):

Definition 0-1. Let n > 0. We denote by Jordsn(n) the collection of all the
sets Jord, which consist of Jordan blocks, such that the following hold:
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χ ∈ {1F× , sgnu} and m− (2αχ + 1) ∈ 2Z for all (m,χ) ∈ Jord

∑
(m,χ)∈Jord

m =

{
2n if Sn = SO(2n+ 1, F ) or Sn = O(2n, F );

2n+ 1 if Sn = Sp(2n, F ),

and, additionally, if αχ = 0, then card {k; (k, χ) ∈ Jord} ∈ 2Z.

Let Jord ∈ Jordsn(n). Then, for χ ∈ {1F× , sgnu}, we let

Jordχ = {k; (k, χ) ∈ Jord}.

We let

Jord′χ =

{
Jord(χ); card(Jordχ) is even;

Jord(χ) ∪ {−2αχ + 1}; card(Jordχ) is odd.

We write elements of Jord′χ in the following way (the case l1F× = 0 or lsgnu
= 0 is

not excluded): {
for χ = 1F× as a1 < a2 < · · · < a2l1

F×

for χ = sgnu as b1 < b2 < · · · < b2lsgnu
.

Next, we associate to Jord ∈ Jordsn(n) the unramified representation σ(Jord)
of Sn defined as the unique irreducible unramified subquotient of the representation
parabolically induced from the representation(

⊗
l1

F×
i=1 〈[−a2i − 1

2
,
a2i−1 − 1

2
](1F× )〉

)
⊗
(
⊗lsgnu

j=1 〈[−b2j − 1

2
,
b2j−1 − 1

2
](sgnu)〉

)
.

Recall that irreducible tempered (resp., square integrable) representations of a
reductive group can be characterized as satisfying certain inequalities (resp., strict
inequalities). In [M4], the first author defines negative (resp., strongly negative)
irreducible representations as those which satisfy the reverse inequalities (resp.,
strict inequalities). An unramified representation is strongly negative if its Aubert
dual is in the discrete series. See [M4] for more details. We have the following
result (see [M4]; Theorem 5-8 in Section 5 of this paper):

Theorem 0-2. Let n ∈ Z>0. The map Jord �→ σ(Jord) defines a one–to–
one correspondence between the set Jordsn(n) and the set of all strongly negative
unramified representations of Sn.

The inverse mapping to Jord �→ σ(Jord) will be denoted by σ �→ Jord(σ). Let
us note that the set Jordsn(n) also parameterizes the generic irreducible square
integrable representations with Iwahori fixed vector.

An unramified representation is negative if its Aubert dual is tempered. Neg-
ative representations are classified in terms of strongly negative as follows ([M4];
Theorem 5-10 in Section 5 of this paper):

Theorem 0-3. Let σneg ∈ Irrunr(Sn) be a negative representation. Then there
exists a sequence of pairs (l1, χ1), . . . , (lk, χk) (li ∈ Z≥1, χi is an unramified unitary
character of F×), unique up to a permutation and taking inverses of characters, and
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a unique strongly negative representation σsn such that σneg is a subrepresentation
of the parabolically induced representation

IndSn

(
〈[− l1 − 1

2
,
l1 − 1

2
](χ1)〉 ⊗ · · · ⊗ 〈[− lk − 1

2
,
lk − 1

2
](χk)〉 ⊗ σsn

)
.

Conversely, for a sequence of pairs (l1, χ1), . . . , (lk, χk) (li ∈ Z>0, χi an unramified
unitary character of F×) and a strongly negative representation σsn, the unique
irreducible unramified subquotient of

IndSn

(
〈[− l1 − 1

2
,
l1 − 1

2
](χ1)〉 ⊗ · · · ⊗ 〈[− lk − 1

2
,
lk − 1

2
](χk)〉 ⊗ σsn

)

is negative and it is a subrepresentation.

We let Jord(σneg) be the multiset

Jord(σsn) +

k∑
i=1

{(li, χi), (li, χ
−1
i )}

(multisets are sets where multiplicities are allowed).

The proofs of Theorems 0-2 and 0-3 given in [M4] are obtained with Jacquet
modules techniques enabling the results to hold for F of any characteristic different
from two.

The key result for this paper is the following result of the first author (see [M6];
see Theorem 5-11):

Theorem 0-4. Every negative representation is unitarizable. Every strongly
negative representation is a local component of a global representation appearing in
the residual spectrum of a split classical group defined over a global field.

The unitarizability of negative representations was obtained earlier by D. Bar-
basch and A. Moy. It follows from their unitarity criterion in [BbMo] and [BbMo1],
which says that unitarizability can already be detected on Iwahori fixed vectors.

The following theorem is a consequence of the above results:

Theorem 0-5. Let σ ∈ Irrunr(Sn) be a negative representation. Then its lift
to GL(N,F ) is given by

σGL(N,F ) � ×(l,χ)∈Jord(σ) 〈[− l − 1

2
,
l − 1

2
](χ)〉.

Moreover, its Arthur parameter WF × SL(2,C)× SL(2,C) → Ĝ(C) ⊂ GL(N,C) is
given by:

⊕(l,χ)∈Jord(σ) χ⊗ V1 ⊗ Vl,

where Vl is the unique algebraic representation of SL(2,C) of dimension l.

In order to describe the whole of Irru,unr(Sn), we need to introduce more no-
tation. We write Munr(Sn) for the set of pairs (e, σneg), where:
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• e is a (perhaps empty) multiset consisting of a finite number of triples
(l, χ, α) where l ∈ Z>0, χ is an unramified unitary character of F×, and
α ∈ R>0.

• σneg ∈ Irr Snneg
(this defines nneg) is negative satisfying

n =
∑
(l,χ)

l · card e(l, χ) + nneg.

For l ∈ Z>0 and an unramified unitary character χ of F×, we denote by e(l, χ) the
submultiset of e consisting of all positive real numbers α (counted with multiplicity)
such that (l, χ, α) ∈ e.

We attach σ ∈ Irrunr(Sn) to (e, σneg) in a canonical way. By definition, σ is the
unique irreducible unramified subquotient of the following induced representation:

(0-6) IndSn

((
⊗(l,χ,α)∈e 〈[− l − 1

2
,
l − 1

2
](| |αχ)〉

)
⊗ σneg

)
.

We remark that the definition of σ does not depend on the choice of ordering of
elements in e.

In order to obtain unitary representations, we impose further conditions on e
in the following definition (see Definition 5-13):

Definition 0-7. Let Mu,unr(Sn) be the subset of Munr(Sn) consisting of the
pairs (e, σneg) satisfying the following conditions:

(1) If χ 
∈ {1F× , sgnu}, then e(l, χ) = e(l, χ−1) and 0 < α < 1
2 for all

α ∈ e(l, χ).
(2) If χ ∈ {1F× , sgnu} and l − (2αχ + 1) 
∈ 2Z, then 0 < α < 1

2 for all
α ∈ e(l, χ).

(3) If χ ∈ {1F× , sgnu} and l − (2αχ + 1) ∈ 2Z, then 0 < α < 1 for all
α ∈ e(l, χ). Moreover, if we write the exponents that belong to e(l, χ) as
follows:

0 < α1 ≤ · · · ≤ αu ≤ 1

2
< β1 ≤ · · · ≤ βv < 1.

(We allow u = 0 or v = 0.) Then we must have the following:
(a) If (l, χ) 
∈ Jord(σneg), then u+ v is even.
(b) If u > 1, then αu−1 
= 1

2 .
(c) If v ≥ 2, then β1 < · · · < βv.
(d) αi 
∈ {1− β1, . . . , 1− βv} for all i.
(e) If v ≥ 1, then the number of indices i such that αi ∈]1 − β1,

1
2 ] is

even.
(f) If v ≥ 2, then the number of indices i such that αi ∈]1−βj+1, 1−βj [

is odd.

The main result of the paper is the following explicit description of Irru,unr(Sn)
(see Theorem 5-14):
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Theorem 0-8. Let (e, σneg) ∈ Mu,unr(Sn). Then

IndSn

((
⊗(l,χ,α)∈e 〈[− l − 1

2
,
l − 1

2
](| |αχ)〉

)
⊗ σneg

)

is irreducible. Moreover, the map

(e, σneg) �−→ IndSn

((
⊗(l,χ,α)∈e 〈[− l − 1

2
,
l − 1

2
](| |αχ)〉

)
⊗ σneg

)

is a one–to–one correspondence between Mu,unr(Sn) and Irru,unr(Sn).

This result is proved in Sections 7, 8, and 9. The preparation for the proof is
done in the first two of these three sections. In Section 2, where we recall (from
[T8]) some general principles for proving unitarity and non–unitarity, we also prove
a new criterion for non–unitarity (see (RP) in Section 2). In Section 6 we describe
all necessary reducibility facts explicitly (most of them are already established in
[M4]).

Theorem 0-8 clearly solves problem (1) for the split classical groups. In Section
10 we describe a simple algorithm that has:
INPUT: an arbitrary irreducible unramified representation σ ∈ Irrunr(Sn) given by
its Satake parameter.
OUTPUT: tests the unitarity of σ and at the same time constructs the correspond-
ing pair (e, σneg) if σ is unitary.

The algorithm is based on the observation that, for a unitarizable σ, the Zelevin-
sky data (see [Ze]; or Theorem 1-7 here) of the lift σGL(N,F ) is easy to describe
from the datum (e, σneg) of σ. (See Lemma 10-7.) This solves problem (2) stated
above. We observe that this problem is almost trivial for GL(n, F ). (See Theorem
4-1.)

The algorithm is very simple, and one can go almost directly to the algorithm
in Section 10, to check if some irreducible unramified representation given in terms
of Satake parameters is unitarizable (Definition 5-13 is relevant for the algorithm).
In Section 12 we give examples of the use of this algorithm. The algorithm has
ten steps, some of them quite easy, but usually only a few of them enter the test
(see Section 12). It would be fairly easy to write a computer program, possible
to handle classical groups of ranks exceeding tens of thousands, for determining
unitarizability in terms of Satake parameters.

Finally, we come to problem (3). In Section 3 we show that Irru,unr(Sn) is
naturally homeomorphic to a compact subset of the complex manifold consisting
of all Satake parameters for Sn (see Theorem 3-5 and Theorem 3-7). The results
of this section almost directly follow from [T6]. In Section 11 we determine the
isolated points in Irru,unr(Sn). To describe the result, we introduce more notation.
Let σ ∈ Irru,unr(Sn) be a strongly negative representation. Let χ ∈ {1F× , sgnu}.
Then we write Jord(σ)χ for the set of l such that (l, χ) ∈ Jord(σ). If a ∈ Jord(σ)χ
is not the minimum, then we write a− for the greatest b ∈ Jord(σ)χ such that b < a.
We have the following:

a− a− is even (whenever a− is defined).
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Now, we are ready to state the main result of Section 11. It is the following theorem
(see Theorem 11-3):

Theorem 0-9. A representation σ ∈ Irru,unr(Sn) is isolated if and only if σ
is strongly negative, and for every χ ∈ {1F× , sgnu} such that Jord(σ)χ 
= ∅ the
following holds:

(1) a− a− ≥ 4, for all a ∈ Jord(σ)χ whenever a− is defined.
(2) If Jordχ 
= {1}, then min Jordχ \ {1} ≥ 4.

(We do not claim that 1 ∈ Jordχ in (2). If 1 
∈ Jordχ, then (2) claims that
min Jordχ ≥ 4.)

Since Irru,unr(Sn) is an open subset of Irru(Sn), the above theorem also clas-
sifies the isolated representations in the whole unitary dual Irru(Sn), which are
unramified.

As an example, let S1 = Sp(2, F ) = SL(2, F ). Then the trivial representation
1SL(2,F ) is strongly negative and Jord(1SL(2,F )) = {(3,1F×)}. As is well–known, it
is not isolated and this theorem confirms that. Let n ≥ 2 and let Sn = Sp(2n, F ).
Then the trivial representation 1Sp(2n,F ) is strongly negative and Jord(1Sp(2n,F )) =
{(2n+1,1F×)}. Clearly, 1Sp(2n,F ) is isolated (as is well–known from [K]). We may
consider the degenerate case n = 0. Then Sp(0, F ) is the trivial group and 1Sp(0,F )

is its trivial representation. It is reasonable to call such representation strongly
negative and let Jord(1Sp(0,F )) = {(1,1F×)}. Apart from that case, one always has
Jordχ 
= {1}.

Similarly, if we let Sn = SO(2n + 1, F ) (n > 0), then 1SO(2n+1,F ) is strongly
negative. We have Jord(1SO(2n+1,F )) = {(2n,1F×)}. As is well–known, it is not
isolated for n = 1 and this theorem confirms that. It is isolated for n ≥ 2 (as is
well–known from [K]).

We close this introduction with several comments. First recall that in [BbMo2],
D. Barbasch and A. Moy address the first of the three problems that we consider
in our paper. Their related paper [BbMo] contains some very deep fundamental
results on unitarizability, like the fact that the Iwahori-Matsumoto involution pre-
serves unitarity in the Iwahori fixed vector case. Their Hecke algebra methods are
opposite to our methods. Their approach is based on a careful study of the internal
structure of representations on Iwahori fixed vectors, based on the Kazhdan-Lusztig
theory [KLu]. Their main result –Theorem A on page 23 of [BbMo2]– states that
a parameter of any irreducible unitarizable unramified representation of a classical
group is a “complementary series from an induced from a tempered representation
tensored with a GL-complementary series”. In other words, that it comes from a
complementary series starting with a representation induced by a negative repre-
sentation (from Theorem 0-4) tensored with a GL-complementary series. They do
not determine parameters explicitly (they observe that “the parameters are hard
to describe explicitly”; see page 23 of their paper). They get the unitarizability
of negative representations by local (Hecke algebra) methods, but do not relate
them to the automorphic spectrum like Theorem 0-4 does. Summing up without
going into the details, the description in [BbMo2] partially covers Theorem 0-8.
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There are complementary series in a number of cases, but their paper does not give
the full picture: the explicit parameterization of the unramified unitary duals. In
[Bb] there is also a description of the unramified unitary dual (see the very begin-
ning of that paper for more precise description of the contents of that paper). On
http:/www.liegroups.org there is an implementation of an algorithm for unitarity
based on an earlier version of Barbasch’s paper [Bb] (one can find more information
regarding this on that site).

Our quite different approach gives explicit parameters of different type, and
these explicit parameters have a relatively simple combinatorial description. We
observe that all that we need for describing unitary duals are one-dimensional
unramified unitary characters of general linear groups, parabolic induction, and
taking irreducible unramified subquotients.

Let us note that except for motivations coming directly from the theory of
automorphic forms, like applications to analytic properties of L-functions, etc., a
motivation for us to get explicit classification of unramified unitary duals was to
be able to answer question (2) (which would definitely be important also for the
study of automorphic forms), and to classify isolated points in (3) (which can be
significant in the study of automorphic spectra).

Recall that in two important cases where the unitarizability is understood (the
case of general linear groups and the case of generic representations of quasi-split
classical groups), the classification theorem is uniform for the Archimedean case
as well as for the non-Archimedean case (see [T3], [T2] and [LMT]). Moreover,
the proofs are essentially the same (not only analogous). Therefore, it is natural
to expect this to be the case for unramified unitarizable representations of classical
split groups. Having this in mind, we shall comment briefly on the Archimedean
case. Assume F = R or F = C. Let | | be the ordinary absolute value (resp.,
square of it) if F = R (resp., F = C), i.e., the modulus character of F (like in the
non-Archimedean case). If we fix some suitable maximal compact subgroup K of
Sn, then we may consider K–spherical representations, and call them unramified.
Then the above constructions and statements make sense. More precisely, define
Jordsn(n) using only 1F× (i.e., all unramified characters χ of F× which satisfy
χ = χ−1). Call representations from {σ(Jord); Jord ∈ Jordsn} strongly negative
(define σ(Jord) in the same way as in the non-Archimedean case). Define nega-
tive representations as those which arise as irreducible unramified subrepresenta-
tions of representations displayed in Theorem 0-3. Then Theorem 0-4 follows from
[M6] (where is found the uniform proof for the non-Archimedean and Archimedean
cases). Now, it is natural to ask if Theorem 0-8 is also true in that set–up. We
have not been able to check that using the results of [Bb]. But there are a number
of facts which suggest this. The first is Theorem 0-4. Second is that a number of
arguments in the proof of Theorem 0-8 make sense in the Archimedean case (as
in [LMT]). The complex case shows a particular similarity (consult [T12]). We
expect that the approach of this paper will be extended to the Archimedean case.
We also expect that Theorem 0-9 describing isolated representations holds in the
Archimedean case, with a similar proof. We plan to address the Archimedean case
in the future.

At the end, let us note that one possible strategy to get the answer to (1) (but
not to (2) and (3)) would be to try to get Theorem 0-8 from the classification in
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[LMT], using the Barbasch-Moy fundamental result that the Iwahori-Matsumoto
involution preserves unitarity in the Iwahori fixed vector case (the proof of which
is based on the Kazhdan-Lusztig theory [KLu]). This much less direct approach
would still leave a number of questions to be solved. Furthermore, we expect that
the approach that we present in our paper has a much greater chance for gener-
alization than the one that we just discussed above as was the case for general
linear groups, where the classification of unramified irreducible unitary represen-
tations was first obtained using the Zelevinsky classification, which very soon led
to the classification of general irreducible unitary representations in terms of the
Zelevinsky, as well as the Langlands, classification.

The first named author would like to thank D. Ban for explaining to him the
results of [Bn]. The second named author is thankful to D. Renard and A. Moy for
discussions on the topics related (directly or indirectly) to this paper. We would
like to thank J. Schwermer for several invitations to the Schroedinger Institute for
Mathematical Physics in Vienna, where various versions of the paper were written.
We would also like to thank the referee, who read the paper very carefully, corrected
a number of errors, and helped improve the style of presentation.

1. Preliminary Results

Let Z, R, and C be the ring of rational integers, the field of real numbers, and
the field of complex numbers, respectively.

Let F be a non–Archimedean field of characteristic different from 2. We write
O for the maximal compact subring of F . Let p be the unique maximal ideal in
O. Let � be a fixed generator of p and let q be the number of elements in the
corresponding residue field of O. We write ν for the normalized absolute value of
F . Let χ be a character of F×. We can uniquely write χ = νe(χ)χu where χu is a
unitary character and e(χ) ∈ R.

Let G be an l–group (see [BeZ]). We will consider smooth representations
of G on complex vector spaces. We simply call them representations. If σ is a
representation of G, then we write Vσ for its space. Its contragredient represen-
tation is denoted by σ̃ and the corresponding non–degenerate canonical pairing
by 〈 , 〉 : Vσ̃ × Vσ → C. If σ1 and σ2 are representations of G, then we write
HomG(σ1, σ2) for the space of all G–intertwining maps σ1 → σ2. We say that σ1

and σ2 are equivalent, σ1 � σ2, if there is a bijective ϕ ∈ HomG(σ1, σ2). Let Irr(G)
be the set of equivalence classes of irreducible admissible representations of G. Let
R(G) be the Grothendieck group of the categoryMadm.fin.leng.(G) of all admissible
representations of finite length of G. If σ is an object of Madm.fin.leng.(G), then
we write s.s.(σ) for its semi–simplification in R(G). Frequently, in computations
we simply write σ instead of s.s.(σ). If G is the trivial group, then we write its
unique irreducible representation as 1.

Next, we fix the notation for the general linear group GL(n, F ). Let In be
the identity matrix in GL(n, F ). Let tg be the transposed matrix of g ∈ GL(n, F ).
The transposed matrix of g ∈ GL(n, F ) with respect to the second diagonal will be
denoted by τg. If χ is a character of F× and π is a representation of GL(n, F ), then
the representation (χ ◦ det)⊗ π of GL(n, F ) will be written as χπ.

We fix the minimal parabolic subgroup PGLn
min of GL(n, F ) consisting of all upper

triangular matrices in GL(n, F ). A standard parabolic subgroup P of GL(n, F )
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is a parabolic subgroup containing PGLn

min . There is a one–to–one correspondence
between the set of all ordered partitions α of n, α = (n1, . . . , nk) (ni ∈ Z>0), and
the set of standard parabolic subgroups of GL(n, F ), attaching to a partition α the
parabolic subgroup Pα consisting of all block–upper triangular matrices:

p = (pij)1≤i,j≤k, pij is an ni × nj matrix, pij = 0 (i > j).

The parabolic subgroup Pα admits a Levi decomposition Pα = MαNα, where

Mα = {diag(g1, . . . , gk); gi ∈ GL(ni, F ) (1 ≤ i ≤ k)}
Nα = {p ∈ Pα; pii = Ini

(1 ≤ i ≤ k)}.

Let πi be a representation of GL(ni, F ) (1 ≤ i ≤ k). Then we consider π1⊗· · ·⊗πk

as a representation of Mα as usual:

π1 ⊗ · · · ⊗ πk(diag(g1, . . . , gk)) = π1(g1)⊗ · · · ⊗ πk(gk),

and extend it trivially across Nα to the representation of Pα denoted by the same
letter. Then we form (normalized) induction, written as follows (see [BeZ1], [Ze]):

π1 × · · · × πk = in,α(π1 ⊗ · · · ⊗ πk) := Ind
GL(n,F )
Pα

(π1 ⊗ · · · ⊗ πk)

In this way we obtain the functor

Madm.fin.leng.(Mα)
in,α−−→ Madm.fin.leng.(GL(n, F ))

and a group homomorphism R(Mα)
in,α−−→ R(GL(n, F )). Next, if π is a repre-

sentation of GL(n, F ), then we form the normalized Jacquet module rα,n(π) of
π (see [BeZ1]). It is a representation of Mα. In this way we obtain a functor

Madm.fin.leng.(GL(n, F ))
rα,n−−−→ Madm.fin.leng.(Mα) and a group homomorphism

R(GL(n, F ))
rα,n−−−→ R(Mα). The functors in,α and rα,n are related by Frobenius

reciprocity:

HomGL(n,F )(π, in,α(π1 ⊗ · · · ⊗ πk)) � HomMα
(rα,n(π), π1 ⊗ · · · ⊗ πk).

We list some additional basic properties of induction:

π1 × (π2 × π3) � (π1 × π2)× π3,

π1 × π2 and π2 × π1 have the same composition series,

if π1 × π2 is irreducible, then π1 × π2 � π2 × π1,

χ(π1 × π2) � (χπ1)× (χπ2), for a character χ of F×,

π̃1 × π2 � π̃1 × π̃2.

We take GL(0, F ) to be the trivial group (we consider formally the unique element of
this group as a 0×0 matrix and the determinant map GL(0, F ) → F×). We extend
× formally as follows: π × 1 = 1× π := π for every representation π of GL(n, F ).
The listed properties hold in this extended setting. We also let r(0),0(1) = 1.

Now, we fix the basic notation for the split classical groups. Let

Jn =

⎡
⎢⎢⎣
00 . . . 01
00 . . . 10
:
10 . . . 0

⎤
⎥⎥⎦ ∈ GL(n, F ).



386 GORAN MUIĆ AND MARKO TADIĆ

The symplectic group (of rank n ≥ 1) is defined as follows:

Sp(2n, F ) =

{
g ∈ GL(2n, F ); g ·

[
0 Jn

−Jn 0

]
·tg =

[
0 Jn

−Jn 0

]}
.

Next, the split orthogonal groups special odd-orthogonal groups (both of rank
n ≥ 1) are defined by

SO(n, F ) =
{
g ∈ SL(n, F ); g · Jn ·tg = Jn

}
O(n, F ) =

{
g ∈ GL(n, F ); g · Jn ·tg = Jn

}
We take Sp(0, F ), SO(0, F ),O(0, F ) to be the trivial groups (we consider their
unique element formally as a 0×0 matrix). In the sequel, we fix one of the following
three series of groups:

Sn = Sp(2n, F ), n ≥ 0

Sn = O(2n, F ), n ≥ 0

Sn = SO(2n+ 1, F ), n ≥ 0.

Let n > 0. Then the minimal parabolic subgroup PSn

min of Sn consisting of all upper
triangular matrices is fixed. A standard parabolic subgroup P of Sn is a parabolic
subgroup containing PSn

min. There is a one–to–one correspondence between the set
of all finite sequences of positive integers of total mass ≤ n and the set of standard
parabolic subgroups of Sn defined as follows. For α = (m1, . . . ,mk) of total mass

m :=
∑l

i=1 mi ≤ n, we let

PSn
α :=

{
P(m1,...,mk, 2(n−m), mk,mk−1,...,m1) ∩ Sn; Sn = Sp(2n, F ), O(2n, F )

P(m1,...,mk, 2(n−m)+1, mk,mk−1,...,m1) ∩ Sn; Sn = SO(2n+ 1, F ).

(The middle term 2(n − m) is omitted if m = n.) The parabolic subgroup PSn
α

admits a Levi decomposition Pα = MSn
α NSn

α , where

MSn
α = {diag(g1, . . . , gk, g, τg−1

k , . . . ,τg−1
1 ); gi ∈ GL(mi, F ) (1 ≤ i ≤ k), g ∈ Sn−m}

NSn
α = {p ∈Sn

α ; pii = Ini
∀i}

Let πi be a representation of GL(ni, F ) (1 ≤ i ≤ k). Let σ be a representation of
Sn−m. Then we consider π1 ⊗ · · · ⊗ πk ⊗ σ as a representation of MSn

α as usual:

π1 ⊗ · · · ⊗ πk ⊗ σ(diag(g1, . . . , gk, g,
τg−1
k , . . . ,τg−1

1 )) = π1(g1)⊗ · · · ⊗ πk(gk)⊗ σ(g),

and extend it trivially across NSn
α to the representation of PSn

α denoted by the same
letter. Then we form (normalized) induction written as follows (see [T9]):

π1 × · · · × πk � σ = In,α(π1 ⊗ · · · ⊗ πk ⊗ σ) := IndSn

PSn
α

(π1 ⊗ · · · ⊗ πk ⊗ σ)

In this way we obtain a functor Madm.fin.leng.(M
Sn
α )

In,α−−−→ Madm.fin.leng.(Sn)

and a group homomorphism R(MSn
α )

In,α−−−→ R(Sn). Next, if π is a representa-
tion of Sn, then we form the normalized Jacquet module Jacqα,n(π) of π. It is a

representation of MSn
α . In this way obtain a functor Madm.fin.leng.(Sn)

Jacqα,n−−−−−→
Madm.fin.leng.(M

Sn
α ) and a group homomorphism R(Sn)

Jacqα,n−−−−−→ R(MSn
α ). Here

Frobenius reciprocity implies

HomSn
(π, In,α(π1 ⊗ · · · ⊗ πk ⊗ σ)) � HomMSn

α
(Jacqα,n(π), π1 ⊗ · · · ⊗ πk ⊗ σ).
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Further

π1 � (π2 � σ) � (π1 × π2)� σ,

π̃ � σ � π̃ � σ̃

π � σ and π̃ � σ have the same composition series,

if π � σ is irreducible, then π � σ � π̃ � σ.

We remark that the third listed property follows, for example, from the general
result ([BeDeK], Lemma 5.4), but in our case there is a proof that is simpler and
based on the following result of Waldspurger (see [MœViW]):

σ̃ � σ, Sn = SO(2n+ 1, F ), O(2n, F )

σ̃ � σx, Sn = Sp(2n, F ),

where x ∈ GL(2n, F ) satisfies x ·
[

0 Jn
−Jn 0

]
·tx = (−1)

[
0 Jn

−Jn 0

]
, and σx(g) =

σ(x−1gx), g ∈ Sn. Now, the stated property is obvious for Sn = SO(2n+1, F ) and
O(2n, F ). Let Sn = Sp(2n, F ). Then

(π � σ)y � π � σx,

where y = diag(Im, x, Im) (π is a representation of GL(m,F )). If π � σ̃ =
∑

mρρ

is a decomposition into irreducible representations in R(Sn), then π̃ � σ̃ =
∑

mρρ̃,
and, by a result of Waldspurger, we have the following:

(1-1) π � σ = π � σ̃x = (π � σ̃)y =
∑

mρρ
y =

∑
mρρ̃ = π̃ � σ̃ = π̃ � σ.

In this paper we work mostly with unramified representations. Let n ≥ 1. If G
is one of the groups GL(n, F ), Sp(2n, F ), O(2n, F ), or SO(2n+ 1, F ), then we let
K be its maximal compact subgroup of the form GL(n,O), Sp(2n,O), O(2n,O),
or SO(2n + 1,O), respectively. We say that σ ∈ Irr(G) is unramified if it has a
non–zero vector invariant under K. Unramified representations of G are classified
using the Satake classification.

To explain the Satake classification, we let Pmin = MminNmin be the minimal
parabolic subgroup of G as described above:

Mmin = {diag(x1, . . . , xn)}; G = GL(n, F )

Mmin = {diag(x1, . . . , xn, x
−1
n , . . . , x−1

1 )}; G = Sp(2n, F ),O(2n, F )

Mmin = {diag(x1, . . . , xn, 1, x
−1
n , . . . , x−1

1 )}; G = SO(2n+ 1, F ).

LetW = NG(Mmin)/Mmin be the Weyl group of G. It acts on Mmin by conjugation:
w · m = wmw−1, w ∈ W , m ∈ Mmin. This action extends to an action on the
characters χ of Mmin in the usual way: w(χ)(m) = χ(w−1mw), w ∈ W , m ∈ Mmin.

Explicitly, using the above description of Mmin, we fix the isomorphism Mmin �
(F×)n (considering only the first n coordinates). If G = GL(n, F ), then W acts on
Mmin as the group of permutations of n letters. If G is one of the groups Sp(2n, F ),
O(2n, F ), or SO(2n + 1, F ), then W acts on Mmin as a group generated by the
group of permutations of n letters and the following transformation:

(x1, x2, . . . , xn) �→ (x−1
1 , x2, . . . , xn).

We have the following classification result (see [Cr]; [R] for O(2n, F )):
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Theorem 1-2. (i) Let χ1, . . . , χn be a sequence of unramified characters of F×.

Then the induced representation IndGPmin
(χ1⊗· · ·⊗χn) contains a unique unramified

irreducible subquotient, denoted by σG(χ1, . . . , χn).
(ii) Assume that χ1, . . . , χn and χ′

1, . . . , χ
′
n are two sequences of unramified cha–

racters of F×. Then σG(χ1, . . . , χn) � σG(χ′
1, . . . , χ

′
n) if and only if there is w ∈ W

such that χ′
1 ⊗ · · · ⊗ χ′

n = w(χ1 ⊗ · · · ⊗ χn). In other words, if and only if there is
a permutation α of {1, 2, ..., n} letters and a sequence ε1, . . . , εn ∈ {±1} such that
χ′
i = χεi

α(i), i = 1, . . . , n. (ε1 = 1, . . . , εn = 1 for G = GL(n, F ).)

(iii) Assume that σ ∈ Irr(G) is an unramified representation. Then there exists a
sequence (χ1, . . . , χn) of unramified characters of F× such that σ � σG(χ1, . . . , χn).
Every such sequence we call a supercuspidal support of σ.

We let Irrunr(G) be the set of equivalence classes of irreducible unramified
representations of G. We consider the trivial representation of the trivial group to
be unramified. We let

(1-3)

{
Irrunr(GL) = ∪n≥0Irr

unr(GL(n, F ))

Irrunr(S) = ∪n≥0Irr
unr(Sn).

There is another more precise classification of the elements of Irrunr(GL) that
we describe (see [Ze]).

In order to write down the Zelevinsky classification we introduce some notation.
Let χ be an unramified character of F×, and let n1, n2 ∈ R, n2 − n1 ∈ Z≥0. We
denote by

[νn1χ, νn2χ] or [n1, n2]
(χ)

the set {νn1χ, νn1+1χ, . . . , νn2χ}, and call it a segment of unramified characters. To
such a segment Δ = [νn1χ, νn2χ], Zelevinsky has attached a representation which
is the unique irreducible subrepresentation of νn1χ × νn1+1χ × · · · × νn2χ. This
representation is the character

(1-4) ν(n1+n2)/2χ 1GL(n2−n1+1,F ).

We find it convenient to write it as follows:

(1-5) 〈Δ〉 or 〈[n1, n2]
(χ)〉.

We let

(1-6) e(Δ) = e([n1, n2]
(χ)) = (n1 + n2)/2 + e(χ).

Related to Theorem 1-2, we see

〈Δ〉 = 〈[n1, n2]
(χ)〉 = σGL(n1+n2+1,F )(νn1χ, νn1+1χ, . . . , νn2χ).

The segments Δ1 and Δ2 of unramified characters are called linked if and only
Δ1 ∪Δ2 is a segment but Δ1 
⊂ Δ2 and Δ2 
⊂ Δ1. We consider the empty set as a
segment of unramified characters. It is not linked to any other segment. We let

〈∅〉 = 1 ∈ Irr GL(0, F ).

Now, we give the Zelevinsky classification.

Theorem 1-7. (i) Let Δ1, . . . ,Δk be a sequence of segments of unramified
characters. Then 〈Δ1〉 × · · · × 〈Δk〉 is reducible if and only there are indices i, j,
such that the segments Δi and Δj are linked. Moreover, if 〈Δ1〉 × · · · × 〈Δk〉 is
irreducible, then it belongs to Irrunr(GL).



UNRAMIFIED UNITARY DUALS FOR SPLIT CLASSICAL p–ADIC GROUPS 389

(ii) Conversely, if σ ∈ Irrunr(GL), then there is, up to a permutation, a unique
sequence of segments of unramified characters Δ1, . . . ,Δk such that σ � 〈Δ1〉 ×
· · · × 〈Δk〉.

A similar classification exists in the case of the classical groups (see [M4]). We
recall it in Sections 5 and 6. We end this section with the following remark:

Remark 1-8. It follows from Theorem 1-2 (ii) that every unramified repre-
sentation σ ∈ Irrunr(S) is self–dual. Also, if π ∈ Irrunr(GL), then there exists a
unique unramified irreducible subquotient, say σ1 of π � σ. The representation σ1

is self–dual, and it is also a subquotient of π̃ � σ. (See the basic properties for the
induction for the split classical groups listed above.)

2. Some General Results on Unitarizability

Let G be a connected reductive p–adic group or O(2n, F ) (n ≥ 0). We recall
that the contragredient representation π of G is denoted by π̃. We write π̄ for the
complex conjugate representation of the representation π. We remind the reader
that this means the following: In the representation space Vπ we change the mul-
tiplication to α.newv := ᾱ.oldv, α ∈ C, v ∈ Vπ. In this way we obtain Vπ̄. We let
π̄(g)v = π(g)v, g ∈ G, v ∈ Vπ̄ = Vπ. It is easy to see the following:

¯̃π � ˜̄π.
The Hermitian contragredient of the representation of π is defined as follows:

π+ := ¯̃π.

Let P = MN be a parabolic subgroup of G. We have the following:

(H-IC) IndGP (σ)
+ � IndGP (σ

+).

A representation π ∈ Irr(G) is said to be Hermitian if there is a non–degenerate
G–invariant Hermitian form 〈 , 〉 on Vπ. This means the following:

〈αv + βw, u〉 = α〈v, u〉+ β〈w, u〉(2-1)

〈v, w〉 = 〈w, v〉(2-2)

〈π(g)v, π(g)v〉 = 〈v, w〉,(2-3)

〈v, w〉 = 0, ∀w ∈ Vπ, implies v = 0.(2-4)

Since π is irreducible, the Hermitian form 〈 , 〉 is unique up to a non–zero real scalar.
Let Irr+(G) be the set of equivalence classes of irreducible Hermitian representations
of G. Since we work with unramified representations, we let

(2-5)

{
Irr+,unr(GL) = ∪n≥0Irr

+,unr(GL(n, F ))

Irr+,unr(S) = ∪n≥0Irr
+,unr(Sn).

We list the following basic properties of Hermitian representations:

(H-Irr) If π ∈ Irr(G), then π ∈ Irr+(G) if and only if π � π+

(H-Ind) Let P = MN be a parabolic subgroup of G. Let σ ∈ Irr+(M). Then there

is a non–trivial G–invariant Hermitian form on IndGP (σ). In particular, if

IndGP (σ) is irreducible, then it is Hermitian.
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In addition, a Hermitian representation π ∈ Irr(G) is said to be unitarizable if the
form 〈 , 〉 is definite. Let Irru(G) be the set of equivalence classes of irreducible
unitarizable representations of G. We have the following:

Irru(G) ⊂ Irr+(G) ⊂ Irr(G).

In this paper we classify unramified unitarizable representations (see (1-3))

(2-6)

{
Irru,unr(GL) = ∪n≥0Irr

u,unr(GL(n, F ))

Irru,unr(S) = ∪n≥0Irr
u,unr(Sn).

Now, we recall some principles used in the construction and classification of
unitarizable unramified representations. Some of them are already well–known (see
[T8]), but some of them are new (see (NU-RP)). Below, P = MN denotes a
parabolic subgroup of G and σ an irreducible representation of M .

(UI) Unitary parabolic induction: the unitarizability of σ implies that the

parabolically induced representation IndGP (σ) is unitarizable.
(UR) Unitary parabolic reduction: if σ is a Hermitian representation such

that the parabolically induced representation IndGP (σ) is irreducible and
unitarizable, then σ is an (irreducible) unitarizable representation.

(D) Deformation (or complementary series): let X be a connected set

of characters of M such that each representation IndGP (χσ), χ ∈ X, is
Hermitian and irreducible. Now, if IndGP (χ0σ) is unitarizable for some

χ0 ∈ X, then the whole family IndGP (χσ), χ ∈ X, consists of unitarizable
representations.

(ED) Ends of deformations: suppose that Y is a set of characters of M , and
X a dense subset of Y satisfying (D); then each irreducible subquotient

of any IndGP (χσ), χ ∈ Y , is unitarizable.

Sometimes we get important irreducible unitarizable representations in the fol-
lowing way. Let Z denote the center of G. Let k be a global field, Pk the set
of places of k, kv the completion of k at the place v, Ak the ring of adèles of
k, ω a unitary character of Z(Ak) and L2(ω,G(k)\G(Ak)) the representation of
G(Ak) � ⊗v∈Pk

G(kv) by right translations on the space of square integrable func-
tions on G(Ak) which transform under the action of Z(Ak) according to ω. Suppose
that π is an irreducible representation of G = G(F ).

(RS) Residual automorphic spectrum factors: if F � kv for some global field
k and v ∈ Pk, and there exists an irreducible (non-cuspidal) subrepresen-
tation Π of L2(ω,G(Ak)) such that π is isomorphic to a (corresponding)
tensor factor of Π, then π is unitarizable.

It is evident that π as above is unitarizable. But this construction is technically
much more complicated than the above four. It requires computation of residues
of Eisenstein series.

The last principle is not necessary to use for the classification of Irru,unr(GL),
but we use it in [M6] in order to prove the unitarity of “basic building blocks” of
Irru,unr(S). (See Theorem 5-11 in Section 5.)

In addition, the following simple remark is useful for proving non–unitarity.
Obviously, the Cauchy-Schwarz inequality implies that matrix coefficients of unita-
rizable representations are bounded. Now, (D) directly implies the following:
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Remark 2-7. (unbounded matrix coefficients) Let X be a connected set

of characters of M such that each representation IndGP (χσ), χ ∈ X, is Hermitian

and irreducible and that IndGP (χ0σ) has an unbounded matrix coefficient for some

χ0 ∈ X. Then all IndGP (χσ), χ ∈ X, are non–unitarizable.

In addition, we use the following two criteria for proving non–unitarity. The
criteria are very technical. In a special case they were already applied in [LMT].
We present them here in a more general form. Let P = MN be a maximal parabolic
subgroup ofG. Assume that the Weyl groupW (M) = NG(M)/M has two elements.
(It always has one or two elements.) We write w0 for a representative of the nontriv-
ial element in W (M). Assume that σ ∈ Irr(M) is an irreducible unitarizable repre-
sentation such that w0(σ) � σ. Then there is a standard normalized intertwining

operator (at least in the cases that we need) N(δsPσ) : Ind
G
P (δ

s
Pσ) → IndGP (δ

−s
P σ).

We have the following:

(N-1) N(δsPσ)N(δ−s
P σ) = id

(N-2) N(δsPσ) is Hermitian, and therefore holomorphic, for s ∈
√
−1R.

Let 〈 , 〉σ be an M–invariant definite Hermitian form on Vσ. Then

(2-8) 〈f1, f2〉s =
∫
K

〈f1(k), N(δsPσ)f2(k)〉σdk

is a Hermitian form on IndGP (δ
s
Pπ). It is non–degenerate whenever IndGP (δ

s
Pσ) is

irreducible and N(δsPσ) is holomorphic. Now, we make the following two assump-
tions:

(A-1) If IndGP (δ
s
Pσ) is reducible at s = 0, then N(σ) is non–trivial.

(A-2) If IndGP (δ
s
Pσ) is irreducible at s = 0, let s1 > 0 be the first point of

reducibility (this must exist because of Remark 2-7). We assume that
N(δsPσ) is holomorphic and non–trivial for s ∈]0, s1]. (Then (N-1) implies
that N(δ−s

P σ) is holomorphic for s ∈]0, s1[). We assume that N(δ−s
P σ)

has a pole at s = s1 of odd order.

If (A-1) holds, then (N-1) implies that IndGP (σ) is a direct sum of two non–trivial
(perhaps reducible) representations on which N(σ) acts as −id and id, respectively.

Now, since IndGP (δ
s
Pσ) is irreducible and N(δsPσ) is holomorphic for s > 0, s close

to 0, we conclude that 〈 , 〉s is not definite. Hence IndGP (δ
s
Pσ) is not unitarizable

for s > 0, s close to 0.
If (A-2) holds, then we write k for the order of the pole of N(δ−s

P σ) at s = s1.

We realize the family of representations IndGP (δ
s
Pσ) (s ∈ C) in the compact picture,

say with space X. Let f ∈ X be such that

Fs := (s− s1)
kN(δ−s

P σ)f is holomorphic and non–zero at s = s1.

We see that Fs is real analytic near s1. Let h ∈ X. Using (N-1), we compute:

〈h, Fs〉s =
∫
K

〈h(k), N(δsPπ)Fs(k)〉σdk

= (s− s′)k
∫
K

〈h(k), f(k)〉σdk.
(2-9)

Now, we apply some elementary results from linear algebra (see ([Vo], Theorem 3.2,
Proposition 3.3)) to our situation. First, we may assume that f belongs to some
fixed K–isotypic component, say E, of X. Since X is an admissible representation
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ofK, we see that dimE < ∞. We consider the restriction of the family of Hermitian
forms 〈 , 〉s to E. We write this restriction as ( , )t, where t = s− s1. Let

E = E0 ⊃ E1 ⊃ · · · ⊃ EN = {0}

be the filtration of E defined as follows. The space En is the space of vectors e ∈ E
for which there is a neighborhood U of 0 and a (real) analytic function fe : U −→ E
satisfying

(i) fe(0) = e
(ii) ∀e′ ∈ E the function s �−→ (fe(s), e

′)t vanishes at 0 to order at least n.

Let F = Fs1 . Since t �−→ Ft+s1 is a real analytic function from a neighborhood U
of 0 into E, (2-9) implies that F ∈ Ek. Moreover, since also f ∈ E, we see that
(2-9) applied to f = h implies that F 
∈ Ek+1. We conclude

(2-10) Ek/Ek+1 
= 0.

Next, we define a Hermitian form ( , )n on En by the formula

(e, e′)n = lim
t−→0

1

tn
(fe(s), fe′(s))s.

(It is easy to see that this definition is independent of the choices of fe and fe′ .)
The radical of the form ( , )n is exactly En+1. We write (pn, qn) for the signature
on En/En+1. It is proved in ([Vo], Proposition 3.3) that for t small positive, ( , )t
has signature

(
∑
n

pn,
∑
n

qn)

and for t small negative

(
∑

n even

pn +
∑
n odd

qn,
∑
n odd

pn +
∑

n even

qn).

Now, we are ready to show the the non–unitarity of IndGP (δ
s
Pσ) for s − s1 small

positive. It is enough to show that the Hermitian form 〈 , 〉s is not definite.
Without loss of generality we may assume that 〈 , 〉s (s ∈]0, s1[) is positive

definite. Then it is positive definite on IndGP (δ
s1
P σ)/ kerN(δ

(s1)
P σ). Thus, if there is

unitarity immediately after s1, then the form 〈 , 〉s is positive definite for s > s1
close to s1. In particular, ( , )t is positive definite for t > 0 close to 0. Hence

∑
n

qn =
∑
n odd

pn +
∑

n even

qn = 0.

Since k is odd, we see that

pk = qk = 0.

This contradicts (2-10). We have proved the following non–unitarity criteria:

(RP) Let P = MN be a self-dual maximal parabolic subgroup of G. We write
w0 for the representative of the nontrivial element in W (M). Assume
that σ ∈ Irr(M) is an irreducible unitarizable representation such that
w0(σ) � σ. Then we have the following:

(i) If (A-1) holds (i.e., IndG
P (σ) is reducible and N(σ) is non–trivial),

then IndGP (δ
s
Pσ) is not unitarizable for s > 0, s close to 0.
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(ii) If (A-2) holds (i.e., IndGP (δ
s
Pσ) is irreducible at s = 0, s1 > 0 is the

first reducibility point, N(δsPσ) is holomorphic and non–trivial for
s ∈]0, s1] and N(δ−s

P σ) has a pole at s = s1 of odd order), then

IndGP (δ
s
Pσ) is not unitarizable for s > s1, s close to s1.

3. The Topology of the Unramified Dual

Let G be a connected reductive p–adic group or O(2n, F ) (n ≥ 0). The topology
on the non–unitary dual Irr(G) is given by the uniform convergence of matrix
coefficients on compact sets ([T1], [T6]; see also [F], [Di]). Then Irru(G) is closed
subset in Irr(G). We supply Irru(G) with the relative topology.

Now, we assume that G is one of the groups GL(n, F ), O(2n, F ), SO(2n+1, F )
or Sp(2n, F ). LetK be the maximal compact subgroup introduced in the paragraph
before Theorem 1-2. TheWeyl groupW ofG acts naturally on the analytic manifold
Dn = (C×)n. The space of W–orbits DW

n has the structure of an analytic manifold.
The manifold Dn parameterizes unramified principal series of G as follows:

IndGPmin
(χ1 ⊗ · · · ⊗ χn) → (χ1(�), . . . , χn(�)).

The manifold DW
n parameterizes unramified principal series of G. Let IrrI(G) be

the set of equivalence classes of irreducible representations σ of G for which there
exists a representation in unramified principal series, say IndGPmin

(χ1⊗· · ·⊗χn), such

that σ is an irreducible subquotient of IndGPmin
(χ1⊗· · ·⊗χn). The principal series is

determined, up to association, uniquely by this condition. We have a well–defined
map

(3-1) ϕG : IrrI(G) → DW
n

defined by

ϕG(σ) = W–orbit of a n–tuple (χ1(�), . . . , χn(�)).

We call ϕG(σ) the infinitesimal character of σ. The fibers of ϕG are finite. Its
restriction to Irrunr(G) induces a bijection ϕG : Irrunr(G) → DW

n ,

(3-2) ϕG(σ
G(χ1, . . . , χn)) = W–orbit of the n–tuple (χ1(�), . . . , χn(�)).

Now, we recall some results from [T6].

Lemma 3-3. Suppose that G is connected (later we discuss the case of O(2n, F )).

Then the set IrrI(G) is a connected component of Irr(G). Therefore it is open and
closed there. The map ϕG given by (3-1) is continuous and closed.

Next, ([T6], Lemma 5.8) implies the following:

Lemma 3-4. Suppose that G is connected. Then Irrunr(G) is an open subset of

IrrI(G).

We have the following description of the topology on Irrunr(G):

Theorem 3-5. Suppose that G is connected. Then the map (3-2) is a homeo-
morphism.

Proof. As it is continuous and bijective, it is enough to show that it is closed.
So, let Z be a closed set in Irrunr(G). We must show that ϕG(Z) is closed. In
order to prove that, let Cl(ϕG(Z)) be its closure. We must show that Cl(ϕG(Z)) =
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ϕG(Z). Let x ∈ Cl(ϕG(Z)). Then there exists a sequence (xm)m≥1 in ϕG(Z) such
that limm xn = x. (We remark that DW

n is a complex analytic manifold.) We write

xm = W–orbit of the n–tuple (sm,1, . . . , sm,n) ∈ Dn (m ≥ 1);

x = W–orbit of the n–tuple (s1, . . . , sn) ∈ Dn.

After passing to a subsequence and making the appropriate identification, we may
assume limm sm,i = si for i = 1, . . . , n. We may take unramified characters χm,i

and χ1, . . . , χn, m ≥ 1, i = 1, . . . , n, such that χm,i(�) = sm,i and χi(�) = si.
Clearly, we have the following:

ϕG(σ
G(χm,1, . . . , χm,n)) = xm (m ≥ 1);

ϕG(σ
G(χ1, . . . , χn)) = x.

Now, Proposition 5.2 of [T6] tells us that, passing to a subsequence, we may as-
sume that the characters of σG(χm,1, . . . , χm,n) converge pointwise, and that there

are irreducible subquotients σ1, . . . , σl of Ind
G
Pmin

(χ1⊗· · ·⊗χn) and k1, . . . , kl ∈ Z>0

such that the pointwise limit is a character of
∑l

i=1 kiσi. Since the representa-
tions σG(χm,1, . . . , χm,n) are unramified, among the representations σ1, . . . , σl is
σG(χ1, . . . , χn). Therefore, one of the equivalent descriptions of the topology in
[T6] implies σG(χ1, . . . , χn) ∈ Z. Hence x = ϕG(σ

G(χ1, . . . , χn)) ∈ ϕG(Z). This
shows that ϕG(Z) is closed. �

Remark 3-6. Suppose that G is connected. Then the set Irru,unr(G) is a closed
subset of Irrunr(G) (see [T6]). Therefore, it can be identified via ϕG with a closed
subset of DW

n .

In this paper we shall need only the topology of the unitary dual. The following
theorem describes it.

Theorem 3-7. Let G be one of the groups GL(n, F ), O(2n, F ), SO(2n+ 1, F )
or Sp(2n, F ). Then map (3-2) restricts to a homeomorphism

(3-8) ϕG : Irru,unr(G) → DW
n

of Irru,unr(G) onto a compact (closed) subset of DW
n .

Proof. If G is connected, then ϕG is a homeomorphism onto the image by
Theorem 3-5. The image is compact by Theorem 3.1 of [T1] (this is also Theorem
2.5 of [T6]).

Now we briefly explain the proof in the case of G = O(2n, F ) (below, some-
times we do not distinguish between elements in DG

n and the W -orbits that they
determine; one can easily complete the details). The compactness for the case of
SO(2n, F ) implies that the image of ϕG has compact closure. Further, the topol-
ogy can be described by characters (see [Mi]). Suppose that we have a convergent
sequence ψm → ψ in DW

n , such that the sequence ψm is contained in the image of
ϕG. Suppose that ψm corresponds to unramified characters ψ′

m, and ψ to ψ′. Let
πm be such that ϕG(πm) = ψm. Now, ([T6], Proposition 5.2) says that we can pass
to a subsequence such that characters of πm converge pointwise to the character
of a subquotient π of the representation induced by ψ′. It is obvious that π has
an irreducible unramified subquotient, say π′. Clearly, ϕG(π

′) = ψ. Now, [T7]
implies that all irreducible subquotients are unitarizable. So, π′ is unitarizable.
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This implies that ψ is in the image of ϕG. Thus, the image is closed. Denote the
image by X.

Let Y ⊂ X, and let ψ be a point in the closure of Y . Take a sequence ψm

in Y converging to ψ. Let the ψm correspond to unramified characters ψ′
m, and

ψ to ψ′. Take πm such that ϕG(πm) = ψm. This means that πm ∈ ϕ−1
G (Y ). As

above we can pass to a subsequence such that characters of πm converge pointwise
to the character of a subquotient π of the representation induced by ψ′. Further, π
has an irreducible unramified subquotient π′ with ϕG(π

′) = ψ and π′ unitarizable.
The description of the topology by characters implies that π′ is a limit of the
sequence πm. This implies that π′ is in the closure of ϕ−1

G (Y ). This implies that

ϕ−1
G : X → Irru,unr(G) is continuous.

Now, let S ⊂ Irrunr,u(G). Take π ∈ Irrunr,u(G) from the closure of S. Then
we can find a sequence πm ∈ S converging to π. Let πm and π be subquotients of
representations induced by unramified characters ψm and ψ, respectively. Since X
is compact, we can pass to a subsequence such that ψm converges (to some ψ0).
Next, arguing as above, we can pass to a subsequence of πm such that all limits are
subquotients of the representation induced by ψ0. Now, the linear independence
of characters of irreducible representations implies that ψ = ψ0. Let ψ

′
m, ψ′ ∈ DW

n

correspond to ψm, ψ, respectively. Observe that ψ′
m = ϕG(πm) ∈ ϕG(S), ϕG(π) =

ψ′. Therefore, ϕG(π) is in the closure of ϕG(S). This ends the proof of continuity
of ϕG. The proof of the theorem is now complete. �

4. The Unramified Unitary Dual of GL(n, F )

The second named author classified unramified unitarizable representations
Irru,unr(GL) in [T4]. The proof was based on Theorem 1-7 and a result of Bernstein
on irreducibility of unitary parabolic induction proved in [Be2]. In this section we
give the classification of Irru,unr(GL) without using the result of Bernstein. The
main result of this section is the following theorem:

Theorem 4-1. (i) Let φ1, . . . , φa, ψ1, . . . , ψb ∈ Irrunr(GL) be a sequence of
unramified unitary characters (one–dimensional unramified representations). Let
α1, . . . , αb ∈ ]0, 1

2 [ be a sequence of real numbers. (The possibility a = 0 or b = 0 is
not excluded here.) Then

(4-2) φ1 × · · · × φa × (να1ψ1 × ν−α1ψ1)× · · · × (ναbψb × ν−αbψb) ∈ Irru,unr(GL).

(ii) Let π ∈ Irru,unr(GL). Then there exist φ1, . . . , φa, ψ1, . . . , ψb, α1, . . . , αb as in
(i) such that π is isomorphic to the induced representation given by (4-2). Each
sequence φ1, . . . , φa and (ψ1, α1), . . . , (ψb, αb) is uniquely determined by π up to a
permutation.

Proof. Applying (H-IC) and (H-Irr), we see that a representation given by (4-
2) is Hermitian. Next, fixing φ1, . . . , φa, ψ1, . . . , ψb and letting 0 ≤ α1, . . . , αb < 1/2
vary, the representations in (4-2) form a continuous family of irreducible Hermitian
representations with a unitarizable representation in it (namely, the one attached
to α1 = · · · = αb = 0). Thus, by (D), they are all unitarizable. The uniqueness in
(ii) follows from the Zelevinsky classification (see Theorem 1-7).

Let π ∈ Irru,unr(GL). It remains to prove that π can be written in the form of
(4-2). First, being unramified, the Zelevinsky classification (see Theorem 1-7) im-
plies that π is fully–induced from (not necessarily unitary) characters in Irrunr(GL).
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Now, since π ∈ Irr+,unr(GL), using (H-IC), (H-Irr), and (H-Ind), we obtain

(4-3) π � φ1 × · · · × φa × (να1ψ1 × ν−α1ψ1)× · · · × (ναbψb × ν−αbψb),

where everything is as in (i) except that we have only α1, . . . , αb > 0. To prove the
theorem, we need to prove that αi < 1/2, i = 1, . . . , b.

First, as all representations φ1, . . . , φa, ν
α1ψ1×ν−α1ψ1, . . . , ν

αbψb×ν−αbψb are
Hermitian and π is unitarizable, we conclude that φ1⊗· · ·⊗φa⊗(να1ψ1×ν−α1ψ1)⊗
· · · ⊗ (ναbψb × ν−αbψb) is unitarizable (see (UR)). In particular,

(4-4) να1ψ1 × ν−α1ψ1, . . . , ναbψb × ν−αbψb are unitarizable representations.

Suppose that some αi ≥ 1/2 for some i. Let α = αi and ψ = ψi. We can write
ψ = 〈[−x, x](χ)〉, where χ is a unitary unramified character of F× and x ∈ Z≥0

(see (1-4) and (1-5)). We let

(4-5) πβ,x = νβψ×ν−βψ = 〈[−x+β, x+β](χ)〉×〈[−x−β, x−β](χ)〉, where β ∈ R.

Note that

(4-6) if πβ,x is irreducible, then πβ,x ∈ Irr+(GL)

(4-7) πβ,x is reducible if and only if[−x+β, x+β](χ), [−x−β, x−β](χ) are linked.

Now, we consider the two cases.
First, we assume that α− x > 1/2. Then (4-4), (4-6) and (4-7) imply that the

continuous family of representations πβ,x (β ≥ α) is irreducible, Hermitian and, at
β = α, unitarizable. Therefore it is unitarizable everywhere. But this contradicts
Remark 2-7 since for large enough β, πβ,x has unbounded matrix coefficients. (See
[T1], [T6].)

Therefore α − x ≤ 1/2. Now, using the definition (4-6) and (4-7), the irre-
ducibility of πα,x implies

(4-8) α 
∈ (1/2)Z.

Next, there exists k ∈ Z>0 such that∣∣∣∣ (−x+ α− k) + (x+ α− 1)

2

∣∣∣∣ = |α− k/2− 1/2| < 1/2

(there are exactly two such k’s). Now, the representation

πα−(k+1)/2,x+(k−1)/2 = 〈[−x+ α− k, x+ α− 1](χ)〉 × 〈[−x− α+ 1, x− α+ k](χ)〉

is irreducible and unitarizable by (i). Hence

(4-9) π := πα,x × πα−(k+1)/2,x+(k−1)/2

is a unitarizable representation. Next, (4-8) implies that
(4-10)
a− b 
∈ Z, where a (resp., b) belongs to the first (resp., the last) two sequences:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−x+ α, . . . , x+ α,

−x+ α− k, . . . , x+ α− 1,

−x− α, . . . , x− α,

−x− α+ 1, . . . , x− α+ k.
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In particular, this and [Ze] imply

〈[−x− α, x− α](χ)〉 × 〈[−x+ α− k, x+ α− 1](χ)〉 �
〈[−x+ α− k, x+ α− 1](χ)〉 × 〈[−x− α, x− α](χ)〉.

Hence, π = πα,x × πα−(k+1)/2,x+(k−1)/2 is isomorphic to

(4-11)
(
〈[−x+ α, x+ α](χ)〉 × 〈[−x+ α− k, x+ α− 1](χ)〉

)
×(

〈[−x− α, x− α](χ)〉 × 〈[−x− α+ 1, x− α+ k](χ)〉
)
.

Since, by the Zelevinsky classification, the induced representations in both paren-
theses in (4-11) reduce, we conclude that π has at least four irreducible subrepre-
sentations. Since, by definition,

(4-12) π � 〈[−x+ α, x+ α](χ)〉 × 〈[−x− α, x− α](χ)〉×
〈[−x+ α− k, x+ α− 1](χ)〉 × 〈[−x− α+ 1, x− α+ k](χ)〉,

Frobenius reciprocity implies that the multiplicity of

τ := 〈[−x+ α, x+ α](χ)〉 × 〈[−x− α, x− α](χ)〉⊗
〈[−x+ α− k, x+ α− 1](χ)〉 × 〈[−x− α+ 1, x− α+ k](χ)〉,

in the Jacquet module

r(4x+2,4x+2k), 8x+2k+2(π)

must be at least four. This contradicts (the following) Lemma 4-13, and proves the
theorem. �

It remains to prove the following lemma:

Lemma 4-13. The multiplicity of τ in r(4x+2,4x+2k), 8x+2k+2(π) is exactly two.

Proof. We begin by introducing some notation. If ρ is an admissible repre-
sentation of GL(n, F ), then we let

m∗(ρ) = 1⊗ ρ+

n−1∑
i=1

r(i,n−i), n(π) + ρ⊗ 1

in (⊕n≥0R(GL(n, F )))⊗ (⊕n≥0R(GL(n, F ))). By [Ze], m∗ is multiplicative:

m∗(ρ1 × ρ2) = m∗(ρ1)×m∗(ρ2).

Also, we recall (see [Ze])

m∗(〈[a, b](χ)〉) =
b∑

k=a−1

〈[a, k](χ)〉 ⊗ 〈[k + 1, b](χ)〉.

Combining this with the expression for π given by (4-12), we compute m∗(π) as
follows:

∑
〈[−x+α, k1]

(χ)〉×〈[−x−α, k2]
(χ)〉×〈[−x+α−k, k3]

(χ)〉×〈[−x−α+1, k4]
(χ)〉⊗

〈[k1+1 x+α](χ)〉×〈[k2+1, x−α](χ)〉×〈[k3+1, x+α−1](χ)〉×〈[k4+1, x−α+k](χ)〉
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where the summation runs over⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−x+ α− 1 ≤ k1 ≤ x+ α

−x− α− 1 ≤ k2 ≤ x− α

−x+ α− k − 1 ≤ k3 ≤ x+ α− 1

−x− α ≤ k4 ≤ x− α+ k.

Now, we determine the multiplicity of τ in that expression. First, we find all
possible terms where it occurs. Applying (4-10), we see that k1 = x + α and
k3 = −x + α − k − 1. The expression for τ shows that k3 ≥ −x − α. There are
two cases. First, if k3 = −x− α, then the expression for τ shows that k4 = x− α.
The term contains τ with multiplicity one since it is the tensor product of two
induced representations where τ is the unique unramified irreducible subquotient.
If k3 > −x− α, then k4 = −x− α. Hence, the expression for τ shows k3 = x− α.
The resulting term is τ itself. �

Now, we turn our attention to the topological structure of Irru,unr(GL(n, F )).
The topology of the unitary dual of GL(n, F ) is described in [T5]. Here we recall
a simple description in the unramified case which follows directly from the general
and simple Theorem 3-5.

Let X be a subset of the unramified unitary dual of GL(n, F ). We describe its
closure Cl(X). We consider all sequences in X of the form:

π(k) � φ
(k)
1 × · · · × φ(k)

a × (να
(k)
1 ψ

(k)
1 × ν−α

(k)
1 ψ

(k)
1 )× · · · × (να

(k)
b ψ

(k)
b × ν−α

(k)
b ψ

(k)
b )

where φ
(k)
i (resp., ψ

(k)
j ) is a convergent sequence (in the obvious natural topology)

of unramified unitary characters of a fixed general linear group, converging to some

φi (resp., ψj), and 0 < α
(k)
j < 1/2 converges to 0 ≤ αj ≤ 1/2 (the possibility a = 0

or b = 0 is not excluded). Let

(4-14) π � φ1 × · · · × φa × (να1ψ1 × ν−α1ψ1)× · · · × (ναbψb × ν−αbψb).

This representation might be reducible, but its unique irreducible unramified sub-
quotient π# is unitarizable. Then Cl(X) is exactly the set all possible such π#.
The representation π# can be described in the form given by Theorem 4-1 (i) as
follows. If αj = 1/2, for some j in (4-14), we write ψj = χj1GL(hj ,F ), where χj

is an unramified unitary character of F×, and in (4-14) change ναjψj × ν−αjψj =

ν1/2χj1GL(hj ,F ) × ν−1/2χj1GL(hj ,F ) to χj1GL(hj+1,F ) × χj1GL(hj−1,F ).

5. The Unramified Unitary Dual Irru,unr(S)

In this section we state the result on the classification of the unitary unramified
dual Irru,unr(S). We begin by recalling some results of [M4].

Definition 5-1. Let sgnu be the unique unramified character of order two of
F×. Let 1F× be the trivial character of F×.

We remark that sgnu(�) = −1.
The following definition is crucial for us:
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Definition 5-2. Let χ ∈ {1F× , sgnu}. Then we define αχ as follows:

if Sn = O(2n, F ) (n ≥ 0), then αχ = 0

if Sn = SO(2n+ 1, F ) (n ≥ 0), then αχ =
1

2
if Sn = Sp(2n, F ) (n ≥ 0), then αsgnu

= 0 and α1F× = 1.

Next, we recall the following well–known result that explains Definition 5-2:

Remark 5-3. For an unramified unitary character χ of F× and s ∈ R, we
have the following:

(i) νsχ � 1 (a representation of S1; see Section 1 for the notation), and
ν−sχ−1�1 have the same composition series (and therefore νsχ�1 reduces
if and only if ν−sχ−1 � 1 reduces).

(ii) νsχ� 1 is irreducible if χ 
∈ {1F× , sgnu}.
(iii) Suppose χ ∈ {1F× , sgnu}. Then νsχ� 1 reduces if and only if s = ±αχ.

A pair (m,χ), where m ∈ Z>0 and χ is an unramified unitary character of F×

is called a Jordan block.

Definition 5-4. Let n > 0. We write Jordsn(n) for the collection of all sets
Jord of Jordan blocks such that the following holds:

χ ∈ {1F× , sgnu} and m− (2αχ + 1) ∈ 2Z for all (m,χ) ∈ Jord

∑
(m,χ)∈Jord

m =

{
2n if Sn = SO(2n+ 1, F ) or Sn = O(2n, F );

2n+ 1 if Sn = Sp(2n, F ),

and, additionally, if αχ = 0, then card {k; (k, χ) ∈ Jord} ∈ 2Z.

Remark 5-5. Let (m,χ) ∈ Jord ∈ Jordsn(n) be a Jordan block. Then m is
even if we are dealing with odd-orthogonal groups, and odd otherwise (i.e., if we are
dealing with even-orthogonal or symplectic groups).

Let Jord ∈ Jordsn(n). Then, for χ ∈ {1F× , sgnu}, we let

Jordχ = {k; (k, χ) ∈ Jord}.
We let

Jord′χ =

{
Jord(χ); card(Jordχ) is even;

Jord(χ) ∪ {−2αχ + 1}; card(Jordχ) is odd.

We write Jord′χ according to the character χ (the case l1F× = 0 or lsgnu
= 0 is not

excluded):

(5-6)

{
χ = 1F× : a1 < a2 < · · · < a2l1

F×

χ = sgnu : b1 < b2 < · · · < b2lsgnu

(here ai, bj ∈ 1 + 2Z≥0 if Sn = Sp(2n, F ) or Sn = O(2n, F ), and ai, bj ∈ 2Z>0 if
Sn = SO(2n+ 1, F )).

Next, we associate to Jord ∈ Jordsn(n), the unramified representation σ(Jord)
of Sn defined as the unique irreducible unramified subquotient of the induced rep-
resentation
(5-7)(
×

l1
F×

i=1 〈[−a2i − 1

2
,
a2i−1 − 1

2
](1F× )〉

)
×
(
×lsgnu

j=1 〈[−b2j − 1

2
,
b2j−1 − 1

2
](sgnu)〉

)
�1.
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In fact, σ(Jord) is a subrepresentation of the induced representation in (5-7).

We have the following result (see [M4]):

Theorem 5-8. Let n ∈ Z>0. The map Jord �→ σ(Jord) defines a one–to–
one correspondence between the set Jordsn(n) and the set of all strongly negative
unramified representations of Sn. (An unramified representation is strongly negative
if its Aubert dual is in the discrete series.)

The inverse mapping to Jord �→ σ(Jord) is denoted by σ �→ Jord(σ).

For technical reasons, we consider the trivial representation of the trivial group
S0 to be strongly negative. We associate the set of Jordan blocks (depending on
the tower Sn (n ≥ 0)) as follows

(5-9) Jord(1) =

{
{(1,1F×)}; if Sn = Sp(2n, F ) (n ≥ 0),

∅; otherwise.

If we let Jordsn(0) = {Jord(1)} and 1 = σ(Jord), Jord ∈ Jordsn(0), then Theorem
5-8 holds for n = 0. (We remark that Definition 5-4 and (5-7) hold for Jord ∈
Jordsn(0).)

An unramified representation is negative if its Aubert dual is tempered. Neg-
ative representations are classified in terms of strongly negative ones as follows:

Theorem 5-10. Let σneg ∈ Irrunr(S) be a negative representation. Then there
exists a sequence of pairs (l1, χ1), . . . , (lk, χk) (li ∈ Z≥1, χi an unramified unitary
character of F×), unique up to a permutation and taking inverses of characters,
and unique strongly negative representation σsn such that

σneg ↪→ 〈[− l1 − 1

2
,
l1 − 1

2
](χ1)〉 × · · · × 〈[− lk − 1

2
,
lk − 1

2
](χk)〉� σsn.

Conversely, for a sequence of the pairs (l1, χ1), . . . , (lk, χk) (li ∈ Z>0, χi is an
unramified unitary character of F×) and a strongly negative representation σsn,
the unique irreducible unramified subquotient of

〈[− l1 − 1

2
,
l1 − 1

2
](χ1)〉 × · · · × 〈[− lk − 1

2
,
lk − 1

2
](χk)〉� σsn

is negative and it is a subrepresentation.

For the irreducible negative unramified representation σneg ∈ Irrunr(S) given
by the above Theorem 5-10, one defines Jord(σneg) to be the multiset

Jord(σsn) +
k∑

i=1

{(li, χi), (li, χ
−1
i )}

(multisets are sets where multiplicities are allowed). For a unitary unramified char-
acter χ of F×, we let Jord(σneg)χ be the multiset consisting of all l (counted with
multiplicity) such that (l, χ) ∈ Jord(σneg).

Now, we turn our attention to Irru,unr(S). First, we have the following partic-
ular case of ([M6]):

Theorem 5-11. Let σ ∈ Irrunr(S) be a negative representation. Then σ is
unitarizable.
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In order to describe the whole Irru,unr(S) we need to introduce more notation.
We write Munr(S) for the set of pairs (e, σneg), where e is a (perhaps empty)
multiset consisting of a finite number of triples (l, χ, α) where l ∈ Z>0, χ is an
unramified unitary character of F×, and α ∈ R>0. For l ∈ Z>0 and an unramified
unitary character χ of F×, we let e(l, χ) to be the submultiset of e consisting of
all positive real numbers α (counted with multiplicity) such that (l, χ, α) ∈ e. We
have the following:

e =
∑
(l,χ)

∑
α∈e(l,χ)

{(l, χ, α)}.

We define the map n : Munr(S) → Z as follows:

n(e, σneg) =
∑
(l,χ)

l · card e(l, χ) + nneg

where nneg is defined by σneg ∈ Irr Snneg
.

We attach σ ∈ Irrunr(S) to (e, σneg) in a canonical way. By definition, σ is the
unique irreducible unramified subquotient of the following induced representation:

(5-12)

(
×(l,χ,α)∈e 〈[− l − 1

2
,
l − 1

2
](ν

αχ)〉
)
� σneg.

It is a representation of Sn(e,σneg).
We remark that the definition of σ does not depend on the choice of ordering of

characters in (5-12). Next, the results of [M4] (see Lemma 6-2 in Section 6) imply
that the constructed map Munr(S) → Irrunr(S) is surjective but not injective.

In order to obtain unitary representations, we impose further conditions on e
in the following definition:

Definition 5-13. Let Mu,unr(S) be the subset of Munr(S) consisting of the
pairs (e, σneg) satisfying the following conditions:

(1) If χ 
∈ {1F× , sgnu}, then e(l, χ) = e(l, χ−1) and 0 < α < 1
2 for all

α ∈ e(l, χ).
(2) If χ ∈ {1F× , sgnu} and l − (2αχ + 1) 
∈ 2Z, then 0 < α < 1

2 for all
α ∈ e(l, χ).

(3) If χ ∈ {1F× , sgnu} and l − (2αχ + 1) ∈ 2Z, then 0 < α < 1 for all
α ∈ e(l, χ). Moreover, if we write the exponents that belong to e(l, χ) as
follows:

0 < α1 ≤ · · · ≤ αu ≤ 1

2
< β1 ≤ · · · ≤ βv < 1.

(We allow u = 0 or v = 0.) Then we also require the following:
(a) If (l, χ) 
∈ Jord(σneg), then u+ v is even.
(b) If u > 1, then αu−1 
= 1

2 .
(c) If v ≥ 2, then β1 < · · · < βv.
(d) αi 
∈ {1− β1, . . . , 1− βv} for all i.
(e) If v ≥ 1, then the number of indices i such that αi ∈]1 − β1,

1
2 ] is

even.
(f) If v ≥ 2, then the number of indices i such that αi ∈]1−βj+1, 1−βj [

is odd.
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We advise the reader to construct some pairs (e, σneg) ∈ Mu,unr(S). This
should be done in the following way. One first chooses an arbitrary σneg. Then one
adds multisets e(l, χ) to e following (1)–(3) and (a)–(g), in that order.

The following theorem gives an explicit classification (with explicit parameters)
of unramified unitary duals of classical groups Sn, i.e., of Irr

u,unr(S). The proof of
the classification theorem is in Sections 7, 8, and 9. At no point in the proof does
the explicit internal structure of representations play a role. This is the reason that
this can be considered as an external approach to the unramified unitary duals (of
classical groups), along the lines of such approaches in [T3], [T2], [LMT], etc.

Theorem 5-14. Let n ∈ Z≥0. We write Mu,unr(Sn) for the set of all (e, σneg) ∈
Mu,unr(S) such that n(e, σneg) = n. Then, for (e, σneg) ∈ Mu,unr(Sn), the induced
representation (5-12) is an irreducible unramified representation of Sn. Moreover,
the map (e, σneg) �−→ ×(l,χ,α)∈e 〈[− l−1

2 , l−1
2 ](ν

αχ)〉 � σneg is a one–to–one corre-
spondence between Mu,unr(Sn) and Irru,unr(Sn).

This result, along with Theorem 5-11, was partly obtained by Barbasch and
Moy (see [Bb], [BbMo], [BbMo1], [BbMo2]). See the introduction for more
explanation.

Remark 5-15. We separate the conditions of Definition 5-13 into three groups:

Irreducibility conditions: (b), (d) in (3).
Hermiticity condition: (1).
Unitarizability conditions: (2) and (a), (c), (e), (f) in (3), and also the
condition 0 < α < 1 in (3).

6. Some Technical Results

In this section we recall some results from [M4] and prove some results about
reducibility and subquotients of certain induced representations needed in the proof
of Theorem 5-14. The reader should skip this section at the first reading. We begin
with the following lemma:

Lemma 6-1. Let (e, σneg) ∈ Munr(S). Then the induced representation (5-12)
is reducible if and only if one of the following holds:

(1) there exist (l, χ, α), (l′, χ′, α′) ∈ e such that the segments [− l−1
2 , l−1

2 ](ν
αχ)

and [− l′−1
2 , l′−1

2 ](ν
α′

χ′) are linked

(2) there exist (l, χ, α), (l′, χ′, α′) ∈ e such that the segments [− l−1
2 , l−1

2 ](ν
αχ)

and [− l′−1
2 , l′−1

2 ](ν
−α′

χ′) are linked

(3) there exist (l, χ, α) ∈ e such that 〈[− l−1
2 , l−1

2 ](ν
αχ)〉� σneg reduces

Further, let (l, χ, α) ∈ e and consider the following statements:

(4) there exists (l′, χ′) ∈ Jord(σneg) such that the segments 〈[− l−1
2 , l−1

2 ](ν
αχ)〉

and 〈[− l′−1
2 , l′−1

2 ](χ
′)〉 are linked

(5) χ ∈ {1F× , sgnu} and l − (2|α− αχ|+ 1) ∈ 2Z≥0

Then we have the following:

• If χ = 1F× , αχ = 1, card Jord(σneg)1F× is odd, and − l−1
2 + α = 1, then

the induced representation in (3) is reducible if and only if (4) holds.



UNRAMIFIED UNITARY DUALS FOR SPLIT CLASSICAL p–ADIC GROUPS 403

• Otherwise, the induced representation in (3) is reducible if and only if (4)
or (5) holds.

Proof. First, ([M4], Lemma 4.8) implies that the induced representation (5-
12) is reducible if and only if (1) or (2) holds or 〈[− l−1

2 , l−1
2 ](ν

αχ)〉�σneg is reducible.

We will describe the reducibility of 〈[− l−1
2 , l−1

2 ](ν
αχ)〉�σneg, and this will conclude

the proof. We write σneg as in Theorem 5-10. Then ([M4], Corollary 4.2) implies

that 〈[− l−1
2 , l−1

2 ](ν
αχ)〉� σneg reduces if and only if one of the following holds:

(a) [− l−1
2 , l−1

2 ](ν
αχ) is linked with [− li−1

2 , li−1
2 ](χi) for some i

(b) [− l−1
2 , l−1

2 ](ν
αχ) is linked with [− li−1

2 , li−1
2 ](χ

−1
i ) for some i

(c) 〈[− l−1
2 , l−1

2 ](ν
αχ)〉� σsn reduces.

Using ([M4], Lemma 5.6), we see that (c) holds if and only if χ ∈ {1F× , sgnu},
l + 2α− (2αχ + 1) ∈ 2Z and one of the following holds:

(d) card Jord(σsn)χ is even.

(d-1) there exists (l′, χ′) ∈ Jord(σsn) such that 〈[− l−1
2 , l−1

2 ](ν
αχ)〉 and

〈[− l′−1
2 , l′−1

2 ](χ
′)〉 are linked

(d-2) 〈[− l−1
2 , l−1

2 ](ν
αχ)〉�1 reduces (which is equivalent to χ ∈ {1F× , sgnu}

and l − (2|α− αχ|+ 1) ∈ 2Z≥0 by ([M4], Lemma 5.6 (i)).

(e) card Jord(σsn)χ is odd; αχ = 1/2, or αχ = 1 and − l−1
2 + α 
= 1. Let

lmin = min Jord(σsn)χ.

(e-1) there exists l′ ∈ Jord(σsn)− {lmin} such that 〈[− l−1
2 , e−1

2 ](ν
αχ)〉 and

〈[− l′−1
2 , l′−1

2 ](χ)〉 are linked

(e-2) 〈[− l−1
2 , l−1

2 ](ν
αχ)〉 and 〈[αχ,

lmin−1
2 ](χ)〉 are linked

(e-3) 〈[− l−1
2 , l−1

2 ](ν
αχ)〉 and 〈[− lmin−1

2 ,−αχ]
(χ)〉 are linked

(e-4) 〈[− l−1
2 , l−1

2 ](ν
αχ)〉�1 reduces (which is equivalent to χ ∈ {1F× , sgnu}

and l − (2|α− αχ|+ 1) ∈ 2Z≥0 by ([M4], Lemma 5.6 (i))

(f) card Jord(σsn)χ is odd; αχ = 1 and − l−1
2 + α = 1. Then χ = 1F× . Let

lmin = min Jord(σsn)1F× .

(f-1) there exists l′ ∈ Jord(σsn)1F×−{lmin} such that 〈[− l−1
2 , l−1

2 ](ν
α1F× )〉

and 〈[− l′−1
2 , l′−1

2 ](1F× )〉 are linked

(f-2) 〈[− l−1
2 , l−1

2 ](ν
α1F× )〉 and 〈[1, lmin−1

2 ](1F× )〉 are linked

(f-3) 〈[− l−1
2 , l−1

2 ](ν
α1F× )〉 and 〈[− lmin−1

2 ,−1](1F× )〉 are linked
(f-4) l > lmin.

It is easy to check that (e-2), (e-3) or (e-4) holds if and only if one of the
following holds:

(e’-2) 〈[− l−1
2 , l−1

2 ](ν
αχ)〉 and 〈[− lmin−1

2 , lmin−1
2 ](χ)〉 are linked

(e’-4) 〈[− l−1
2 , l−1

2 ](ν
αχ)〉� 1 reduces.

It is easy to check that (f-2), (f-3) or (f-4) holds if and only if the following
holds:

(f’-2) 〈[− l−1
2 , l−1

2 ](ν
α1F× )〉 and 〈[− lmin−1

2 , lmin−1
2 ](1F× )〉 are linked.

Clearly, this analysis completes the proof of the lemma. �

The next lemma will play a crucial role in determining surjectivity of the map
in Theorem 5-14 (see [M4], Theorem 4.3):
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Lemma 6-2. Let σ ∈ Irrunr(S). Then there exists a unique (e, σneg) ∈ Munr(S)
such that σ is isomorphic to the induced representation given by (5-12).

Next, we determine when the representation σ ∈ Irrunr(S), given by Lemma
6-2, is Hermitian. We compute using (H-IC) and Theorem 5-11:

σ+ �
(
×(l,χ,α)∈e 〈[− l − 1

2
,
l − 1

2
](ν

αχ)〉� σneg

)+

� ×(l,χ,α)∈e

(
〈[− l − 1

2
,
l − 1

2
](ν

αχ)〉
)+

� (σneg)
+

� ×(l,χ) ×α∈e(l,χ) 〈[−
l − 1

2
,
l − 1

2
](ν

−αχ)〉� σneg

� ×(l,χ) ×α∈e(l,χ) 〈[−
l − 1

2
,
l − 1

2
](ν

αχ−1)〉� σneg.

(6-3)

(The last isomorphism follows from the fact that every representation in Irrunr(S)
is self-dual. See Remark 1-8.) Therefore, (H-Irr), (6-3), and

σ � ×(l,χ) ×α∈e(χ,l) 〈[−
l − 1

2
,
l − 1

2
](ν

αχ)〉� σneg

imply the following result:

Lemma 6-4. Let σ ∈ Irrunr(S) be given by Lemma 6-2. Then σ ∈ Irr+,unr(S) if
and only if e(l, χ) = e(l, χ−1) for all l ∈ Z≥1 and all unitary unramified characters
χ of F×.

Lemma 6-5. Let σneg ∈ Irrunr(S) be a negative representation. Let χ be a

unitary unramified character of F× and l ∈ Z≥1. Then 〈[− l−1
2 , l−1

2 ](χ)〉 � σneg is
reducible if and only if χ ∈ {1F× , sgnu}, l−(2αχ+1) ∈ 2Z and (l, χ) 
∈ Jord(σneg).

If 〈[− l−1
2 , l−1

2 ](χ)〉�σneg is reducible, then it is the direct sum of two non–equivalent
representations (one of them is negative).

Proof. The proof of this result is standard and in the dual picture well–known
(see [MœT]). We indicate the steps to explain why the result holds for local fields
F of all characteristics. First, we apply Aubert’s involution, extended to orthogo-
nal groups by C. Jantzen [Jn], to reduce to the tempered case. Then we use the
results of Goldberg [G] 1, extended to orthogonal groups using simple Mackey ma-
chinery (see [LMT], Section 2), and some general algebraic considerations based
on them (see [LMT], Lemma 2.2 and Corollary 2.3), to reduce the claim to the
case when the image σ̂neg of σneg under Aubert’s involution is in the discrete se-
ries. As σneg and σ̂neg have the same supercuspidal support which is explicitly
known by Theorem 5-8, we can easily compute the Plancherel measure attached
to the induced representation χSteinbergGL(l,F ) � σ̂neg (which has the same re-

ducibility as 〈[− l−1
2 , l−1

2 ](χ)〉� σneg). The computation of the Plancherel measure
is done by using the factorization (see [W]) and reduction to the split rank–one
case. Now, we use the usual theory developed by Harish–Chandra to decompose
χSteinbergGL(l,F ) � σ̂neg.

1Goldberg stated his results in the characteristic zero, but this assumption is not necessary.
In fact, all fundamental results of Harish–Chandra used there follow from [W2] as was explained
to the first named author by V. Heiermann.
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Finally, assume that 〈[− l−1
2 , l−1

2 ](χ)〉�σneg is reducible. Then 〈[− l−1
2 , l−1

2 ](χ)〉�
σ̂neg is a direct sum of two non–equivalent tempered representations (see [LMT],

Lemma 2.2 and Corollary 2.3). Hence the composition series of 〈[− l−1
2 , l−1

2 ](χ)〉�
σneg of two non–equivalent irreducible representations. Hence the last claim of the
lemma follows from Theorems 5-10 and 5-11. �

Next, we prove the following lemma:

Lemma 6-6. Let χ ∈ {1F× , sgnu} and let l ∈ Z≥1 such that l − (2αχ + 1)
is not an even integer. Let σneg be a negative representation. Then the induced

representation 〈[− l−1
2 , l−1

2 ](ν
αχ)〉�σneg, where α ∈ R>0, reduces at α = 1/2 and its

unique unramified irreducible subquotient σ′
neg is a negative representation. Further,

we have the following:

Jord(σ′
neg) = Jord(σneg) + {(l − 1, χ), (l + 1, χ)}

(If l = 1, then we omit (l − 1, χ).)

Proof. First, Lemma 6-1 implies that 〈[− l−1
2 , l−1

2 ](ν
αχ)〉 � σneg is reducible

at α = 1/2. We need to show that the unique unramified irreducible subquo-
tient there is negative. First, applying Theorem 5-10, we find a sequence of pairs
(l1, χ1), . . . , (lk, χk) (li ∈ Z>0, χi is an unramified unitary character of F×), unique
up to a permutation and taking inverses of characters, and the unique strongly
negative representation σsn such that

(6-7) σneg ↪→ 〈[− l1 − 1

2
,
l1 − 1

2
](χ1)〉 × · · · × 〈[− lk − 1

2
,
lk − 1

2
](χk)〉� σsn

and

(6-8) Jord(σneg) = Jord(σsn) +

k∑
i=1

{(li, χi), (li, χ
−1
i )}.

Now, using Theorem 5-8 and the explicit description of strongly negative represen-
tations (see (5-6) and (5-7)), it is easy to check the following:

• If (l − 1, χ), (l + 1, χ) 
∈ Jord(σsn), then there is a strongly negative rep-
resentation σ′

sn such that Jord(σ′
sn) = Jord(σsn) + {(l − 1, χ), (l + 1, χ)}.

We let σ′′
neg = σ′

sn.
• If (l − 1, χ) ∈ Jord(σsn), (l + 1, χ) 
∈ Jord(σsn), then there is a unique
strongly negative representation σ′

sn such that

Jord(σ′
sn) = Jord(σsn)− {(l − 1, χ)}+ {(l + 1, χ)}.

Let σ′′
neg be the unique irreducible unramified subrepresentation of

〈[− l−2
2 , l−2

2 ](χ)〉� σsn. Then

Jord(σ′′
neg) = Jord(σ′

sn) + 2 · {(l − 1, χ)}.
• If (l − 1, χ) 
∈ Jord(σsn), (l + 1, χ) ∈ Jord(σsn), then there is a unique
strongly negative representation σ′

sn such that

Jord(σ′
sn) = Jord(σsn) + {(l − 1, χ)} − {(l + 1, χ)}.

Let σ′′
neg be the unique irreducible unramified subrepresentation of

〈[− l
2 ,

l
2 ]

(χ)〉� σ′
sn. Then

Jord(σ′′
neg) = Jord(σ′

sn) + 2 · {(l + 1, χ)}.
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• If (l−1, χ), (l+1, χ) ∈ Jord(σsn), then there is a unique strongly negative
representation σ′

sn such that

Jord(σ′
sn) = Jord(σsn)− {(l − 1, χ), (l+ 1, χ)}.

Let σ′′
neg be the unique irreducible unramified subrepresentation of

〈[− l−2
2 , l−2

2 ](χ)〉 × 〈[− l
2 ,

l
2 ]

(χ)〉� σ′
sn. Then

Jord(σ′′
neg) = Jord(σ′

sn) + 2 · {(l − 1, χ), (l+ 1, χ)}.

Now, the unique irreducible unramified subquotient of 〈[− l−1
2 , l−1

2 ](ν
1
2 χ)〉�σsn

is σ′′
neg, which is described above. Combining this with (6-7) and (6-8), we find that

the unique irreducible unramified subquotient σ′
neg of 〈[− l−1

2 , l−1
2 ](ν

1
2 χ)〉�σneg is a

subrepresentation of 〈[− l1−1
2 , l1−1

2 ](χ1)〉× · · ·× 〈[− lk−1
2 , lk−1

2 ](χk)〉�σ′′
neg. Clearly,

it is negative and Jord(σ′
neg) = Jord(σneg) + {(l − 1, χ), (l+ 1, χ)}. �

We end this section by proving the following lemma:

Lemma 6-9. Assume that χ, χ′ are unitary unramified characters of F×, l, l′ ∈
Z≥1, and α, α′ ∈ R>0. Then we have the following:

(i) If α ∈]0, 1[ and α′ ∈]0, 12 ], then the segments 〈[− l−1
2 , l−1

2 ](ν
αχ)〉 and

〈[− l′−1
2 , l′−1

2 ](ν
−α′

χ′)〉 are linked if and only if α+ α′ = 1, χ′ = χ, l′ = l.

(ii) If α, α′ ∈]0, 1[, then 〈[− l−1
2 , l−1

2 ](ν
αχ)〉 and 〈[− l′−1

2 , l′−1
2 ](ν

α′
χ′)〉 are not

linked.
(iii) If α, α′ ∈] 12 , 1[, then 〈[− l−1

2 , l−1
2 ](ν

αχ)〉 and 〈[− l′−1
2 , l′−1

2 ](ν
−α′

χ′)〉 are linked
if and only if α+ α′ = 3/2, χ′ = χ, and l′ = l ± 1.

(iv) If α ∈]1, 3
2 [ and α′ ∈]0, 1

2 [, then the segments 〈[− l−1
2 , l−1

2 ](ν
αχ)〉 and

〈[− l′−1
2 , l′−1

2 ](ν
−α′

χ′)〉 are linked if and only if α + α′ = 3/2, χ′ = χ, and
l′ = l ± 1.

(v) If α ∈]1, 3
2 [ and α′ ∈]0, 1

2 [, then the segments 〈[− l−1
2 , l−1

2 ](ν
αχ)〉 and

〈[− l′−1
2 , l′−1

2 ](ν
α′

χ′)〉 are linked if and only if α = 1 + α′, χ′ = χ, and
l′ = l.

Proof. We prove (i). The segments are linked if and only if χ′ = χ, and there
exist m,m′ ∈ Z≥1 such that

(6-10)

{
l′−1
2 − α′ = −m+ l−1

2 + α ≥ − l−1
2 + α− 1

− l′−1
2 − α′ = −m′ − l−1

2 + α.

Adding the equalities, we obtain (m + m′)/2 = α + α′. Since α + α′ ∈]0, 3
2 [, we

obtain α+ α′ = 1 and m = m′ = 1. This proves one direction in (i). The opposite
direction is obvious. We prove (ii). We may assume α′ ≤ α. If the segments are
linked, then χ′ = χ, and there exist m,m′ ∈ Z≥1 such that

(6-11)

{
l′−1
2 + α′ = −m+ l−1

2 + α ≥ − l−1
2 + α− 1

− l′−1
2 + α′ = −m′ − l−1

2 + α.

Adding the equalities, we obtain α = (m+m′)/2+α′ ≥ 1. This is a contradiction.
We prove (iii). If the segments are linked, then χ′ = χ, and there exist m,m′ ∈ Z≥1

such that (6-10) holds. Adding the equalities in (6-10), we obtain (m + m′)/2 =
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α + α′. Since α + α′ ∈]1, 2[, we obtain α + α′ = 3
2 , and m = 1,m′ = 2 or

m = 2,m′ = 1. If m = 1,m′ = 2, then l′ = l + 1. Otherwise, l′ = l − 1. The
converse is obvious. The proof of (iv) is similar to that of (iii). We prove (v).
Adding the equalities in (6-11), we obtain α = (m +m′)/2 + α′. Since α ∈]1, 3

2 [,

α′ ∈]0, 1
2 [, and (m+m′)/2 ∈ 1

2Z, we find m = m′ = 1 and α = 1 + α′.
�

7. A Result on Non–Unitarity

In this section we use analytic techniques from [M6] to prove the non–unitarity
of certain representations. The non–trivial part is an application of (RP) (see
Section 2). The proof of the surjectivity of the map from Theorem 5-14 given in
Section 9 depends critically on that result. We advise the reader to skip this section
on the first reading.

The main result is the following theorem:

Theorem 7-1. Let χ ∈ {1F× , sgnu} and let l ∈ Z≥1. Let σneg be a negative

representation. Then the induced representation 〈[− l−1
2 , l−1

2 ](ν
αχ)〉 � σneg is not

unitarizable in the following two cases:

• for α ∈]0, 1[ if l − (2αχ + 1) ∈ 2Z and (l, χ) 
∈ Jord(σneg)
• for α ∈] 12 , 1[ if l − (2αχ + 1) 
∈ 2Z

The remainder of this section is devoted to the proof of Theorem 7-1. We
freely use the notation and results of [M6]. We consider a continuous family of
representations:

σs = 〈[− l − 1

2
,
l − 1

2
](ν

sχ)〉� σneg (s ∈ C)

of Sn. LetK be the maximal compact subgroup of Sn fixed in Section 1. Restricting
to K, we may realize all representations σs on the same space X.

Let w0 be the non–trivial element of the Weyl group W (M), where M is
the Levi subgroup of the standard maximal parabolic subgroup P = MN of
Sn such that 〈[− l−1

2 , l−1
2 ](ν

sχ)〉 ⊗ σneg is a representation of M . Hence σs =

IndSn

P (〈[− l−1
2 , l−1

2 ](ν
sχ)〉 ⊗ σneg). We fix (and denote by the same letter) the rep-

resentative of w0 as explained in ([M6], Section 2). Next, let N(s, w0) be the
standard normalized intertwining operator

N(s, w0) : σs → σ−s

as explained in ([M6], Section 2) (see also [Sh2]). The geometric construction is
given in [M7]. We consider it realized in the compact picture. We list its basic
properties.

(norm-1) N(s, w0) 
= 0 since it takes a suitable normalized K–invariant vector 0 
=
f0 ∈ X onto itself.

(norm-2) N(s, w0)N(−s, w0) = N(−s, w0)N(s, w0) = idX
(norm-3) N(s, w0) is Hermitian for s ∈

√
−1R, and therefore holomorphic there.

Now, we begin the proof of Theorem 7-1. We consider the family of Hermitian
forms introduced in (2-8). We remark that σ0 reduces if and only if l−(2αχ+1) ∈ 2Z
and (l, χ) 
∈ Jord(σneg) (see Lemma 6-5) while σs is irreducible for s ∈]0, 1[−{ 1

2}
by Lemma 6-1. Next, σ1/2 is reducible if and only if l − (2αχ + 1) 
∈ 2Z.
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Assume that l− (2αχ +1) ∈ 2Z and (l, χ) 
∈ Jord(σneg). Then, by Lemma 6-5,
σ0 is a direct sum of two irreducible representations. Then, using standard prop-
erties of normalized intertwining operators, we reduce the proof of non-triviality
of N(0, w0) to the case when σneg is strongly negative. Then we may apply [Bn].
Therefore, N(0, w0) acts on one of the representations as +id while on the other
it acts as −id. Therefore the Hermitian form defined by (2-8) is not definite for
s ∈]0, 1[, proving the first claim.

Assume that l − (2αχ + 1) 
∈ 2Z. We apply our general principle (RP) (see
Section 2) to prove the second claim. We must check its assumption. We prove the
following result which completes the proof of Theorem 7-1:

Lemma 7-2. Maintaining the above assumptions, N(s, w0) is holomorphic and
N(−s, w0) has a simple pole at s = 1/2.

First, let π be the unique irreducible subrepresentation of σ1/2 (which is equiv-
alent to the unique irreducible quotient of σ−1/2) (see [M6]). By the classification
of irreducible unramified representations [M6] and Lemma 6-6, π is not unramified.
Therefore, we have the following:

(7-3) N(−s, w−1
0 ) has a pole at s = 1/2.

From this point, the argument is standard and it follows the lines of the proof of
([M6], Lemma 3.5). First, we reduce to the case where σneg is strongly negative.
Applying Theorem 5-10, we can find l′ ∈ Z≥1, a unitary unramified character χ′,
and a negative representation σ′

neg such that

σneg ↪→ 〈[− l′ − 1

2
,
l′ − 1

2
](χ

′)〉� σ′
neg.

This implies the following commutative diagram (all involved intertwining operators
are standard normalized operators; is is an embedding depending holomorphically
on s):

σs
is−−−−→ 〈[− l−1

2 , l−1
2 ](ν

sχ)〉 × 〈[− l′−1
2 , l

′−1
2 ](χ

′)〉� σ′
neg

N1(s)

⏐⏐�
〈[− l′−1

2 , l′−1
2 ](χ

′)〉 × 〈[− l−1
2 , l−1

2 ](ν
sχ)〉� σ′

neg

N(s,w0)

⏐⏐� N2(s)

⏐⏐�
〈[− l′−1

2 , l′−1
2 ](χ

′)〉 × 〈[− l−1
2 , l−1

2 ](ν
−sχ)〉� σ′

neg

N3(s)

⏐⏐�
σ−s

i−s−−−−→ 〈[− l−1
2 , l−1

2 ](ν
−sχ)〉 × 〈[− l′−1

2 , l
′−1
2 ](χ

′)〉� σ′
neg.

At s = ±1/2, 〈[− l−1
2 , l−1

2 ](ν
±sχ)〉 × 〈[− l′−1

2 , l′−1
2 ](χ

′) is irreducible, and therefore
N1(s) and N3(s) are holomorphic (by the clear analogies of (norm-1) and (norm-
2) for them). This proves the first step of the reduction; we assume that σneg is
strongly negative. To avoid any confusion we write σsn instead of σneg.
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Next, we consider the following diagram:

(7-4)

σs
is−−−−→ 〈[− l−2

2 , l−2
2 ](ν

s− 1
2 χ)〉 × ν

l−1
2 +sχ� σsn

N1(s)

⏐⏐�
〈[− l−2

2 , l−2
2 ](ν

s− 1
2 χ)〉 × ν−

l−1
2 −sχ� σsn

N(s,w0)

⏐⏐� N2(s)

⏐⏐�
ν−

l−1
2 −sχ× 〈[− l−2

2 , l−2
2 ](ν

s− 1
2 χ)〉� σsn

N3(s)

⏐⏐�
σ−s

i−s−−−−→ ν−
l−1
2 −sχ× 〈[− l−2

2 , l−2
2 ](ν

−s+1
2 χ)〉� σsn.

(If l = 1, then N2(s) and N3(s) are not present.)
Now, as in the proof of ([M6], Lemma 3.5) (or adapting the argument for the

normalized intertwining operator (7-8) below), it follows that N1(s) is holomorphic
at s = 1/2. Next, N2(s) is holomorphic at s = 1/2 since we have the following
diagram (js is an embedding depending holomorphically on s):

(7-5)

〈[− l−2
2 , l−2

2 ](ν
s− 1

2 χ)〉 × ν−
l−1
2 −sχ

js−−−−→ Ind(s)

N2(s)

⏐⏐� N4(s)

⏐⏐�
ν−

l−1
2 −sχ× 〈[− l−2

2 , l−2
2 ](ν

s− 1
2 χ)〉 j−s−−−−→ Ind1(s),

where {
Ind(s) = ν−

l−1
2 +sχ× · · · × ν

l−1
2 −1+sχ× ν−

l−1
2 −sχ

Ind1(s) = ν−
l−1
2 −sχ× ν−

l−1
2 +sχ× · · · × ν

l−1
2 −1+sχ,

and the normalized operatorN4(s) is a composition of normalized operators induced
from the rank–one operators:

Qi(s) : ν
− l−1

2 +s+iχ× ν−
l−1
2 −sχ → ν−

l−1
2 −sχ× ν−

l−1
2 +s+iχ,

where i = 0, . . . l−2. The normalized intertwining operators Qi(s) are holomorphic
at s = 1/2 by the basic property of the normalization (see for example ([M6],
Theorem 2.1)). Finally, by the analogue of (norm-3), N3(s) is holomorphic. This
proves that N(s, w0) is holomorphic at s = 1/2 (see (7-4)). It remains to prove
that N(−s, w0) has a simple pole at s = 1/2. To accomplish this we reverse
the vertical arrows in (7-4) and change s into −s in the arguments of all Ni(·)
and N(·, w0). We remind the reader that N2(−s) and N3(−s) are present if and
only if l > 1. We assume l > 1. Now, arguing as above, we see that N3(−s) is
holomorphic. Similarly, arguing as in (7-5), we see thatN2(−s) has at most a simple
pole at s = 1/2. The pole must be present since, by [Ze], the unique irreducible

quotient of ν−
l
2χ × 〈[− l−2

2 , l−2
2 ](χ)〉 is the unique irreducible subrepresentation of

〈[− l−2
2 , l−2

2 ](χ)〉 × ν−
l
2χ and it is different than 〈[− l

2 ,
l
2 − 1](χ)〉. Thus, we obtain

(7-6) N2(−s) has a simple pole at s = 1/2.

We investigate the influence of that pole on the image of N3(−1/2). Then the
discussion above shows that N3(−1/2) is not an isomorphism if and only if
〈[− l−2

2 , l−2
2 ](χ)〉�σsn reduces. Applying Lemma 6-5 and our assumption l−(2αχ+1)
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is not an even integer, we see that if l > 1, then N3(−1/2) is not an isomorphism
if and only if (l − 1, χ) 
∈ Jord(σsn). In particular, if N3(−1/2) is an isomorphism
(hence, a scalar multiple of the identity), then the image of σ−1/2 under i−1/2 is the
same as its image under N3(−1/2)i−1/2; N2(−1/2) is holomorphic on that image.
Thus, we summarize the discussion as follows:

(7-7)
If l > 1 and (l − 1, χ) ∈ Jord(σsn), then N2(−s)N3(−s)i−s is

holomorphic at s = 1/2.

Next, we consider

(7-8) N1(−s) : ν−
l−1
2 −sχ� σsn → ν

l−1
2 +sχ� σsn

at s = 1/2. First, we have the following:

(7-9) if ν
l
2χ� σsn is irreducible, then N1(−s) is holomorphic at s = 1/2.

We describe the reducibility of ν
l
2χ� σsn using Lemma 6-1:

(red-1) Assume l > 1. Then ν
l
2χ � σsn is reducible if and only if (l − 1, χ) ∈

Jord(σsn).
(red-2) Assume l = 1. Then the assumption l− (2αχ +1) 
∈ 2Z implies αχ = 1/2.

In this case we have the reducibility.

We analyze N1(−s) at s = 1/2. First, we apply Theorem 5-8 and (5-7) to
obtain:

(7-10) σsn ↪→

×
l1

F×
i=1 〈[−a2i − 1

2
,
a2i−1 − 1

2
](1F× )〉 ×lsgnu

j=1 〈[−b2j − 1

2
,
b2j−1 − 1

2
](sgnu)〉� 1.

Hence we can write the following commutative diagram (where the vertical arrows
are normalized intertwining operators; js is an embedding depending holomorphi-
cally on s):

ν−
l−1
2 −sχ� σsn

j−s−−−−→ ν−
l−1
2 −sχ� Ind

N1(−s)

⏐⏐� N ′
1(s)

⏐⏐�
ν

l−1
2 +sχ� σsn

js−−−−→ ν
l−1
2 +sχ� Ind,

where

Ind = ×
l1

F×
i=1 〈[−a2i − 1

2
,
a2i−1 − 1

2
](1F× )〉 ×lsgnu

j=1 〈[−b2j − 1

2
,
b2j−1 − 1

2
](sgnu)〉� 1.

Next, the normalized operator N ′
1(s) can be factorized into the product of the

following normalized operators:

ν−
l−1
2 −sχ× 〈[−a2i − 1

2
,
a2i−1 − 1

2
](1F× )〉

Qi,1
F×−−−−−→

〈[−a2i − 1

2
,
a2i−1 − 1

2
](1F× )〉 × ν−

l−1
2 −sχ,

ν−
l−1
2 −sχ× 〈[−b2i − 1

2
,
b2i−1 − 1

2
](sgnu)〉

Qi,sgnu−−−−−→

〈[−b2i − 1

2
,
b2i−1 − 1

2
](sgnu)〉 × ν−

l−1
2 −sχ,
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ν−
l−1
2 −sχ� 1

P (s)−−−→ ν
l−1
2 +sχ� 1,

〈[−a2i − 1

2
,
a2i−1 − 1

2
](1F× )〉 × ν

l−1
2 +sχ

Ri,1
F×−−−−−→

ν
l−1
2 +sχ× 〈[−a2i − 1

2
,
a2i−1 − 1

2
](1F× )〉,

and

〈[−b2i − 1

2
,
b2i−1 − 1

2
](sgnu)〉 × ν

l−1
2 +sχ

Ri,sgnu−−−−−→

ν
l−1
2 +sχ× 〈[−b2i − 1

2
,
b2i−1 − 1

2
](sgnu)〉

We analyze them at s = −1/2. First, if l = 1, then all of them except P (s) are
holomorphic. By the rank–one theory P (s) has a simple pole at s = −1/2. This
proves that N(−s, w0) has a simple pole in this case. We assume l > 1. Now, if
(l− 1, χ) 
∈ Jord(σsn), then (red-1) and (7-9) imply that N1(−s) is holomorphic at
s = −1/2; combining (7-3) and (7-6), N(−s, w0) has a simple pole at s = −1/2.
¿From now on, we assume (l − 1, χ) ∈ Jord(σsn). Then we need to prove that
N1(−s) has at most a simple pole at s = 1/2 since then (7-3) and (7-7) imply
N(−s, w0) has a simple pole at s = −1/2.

Assume that l > 2 or l = 2 and αχ 
= 1. Then Qi,1F× (s) (resp., Qi,sgnu
(s)) has

at most a simple pole at s = −1/2 if and only if χ = 1F× (resp., χ = sgnu) (noting
(l−1, χ) ∈ Jord(σsn)). If this is so, Ri,1F× (s) and Ri,sgnu

(s) are ismorphisms (hence
holomorphic) at s = −1/2. The converse statement is also true. Thus, the contri-
bution of all the normalized operators Qi,1F× (s), Qi,sgnu

(s), Ri,1F× (s), Ri,1F× (s) is
just at a simple pole at s = −1/2. Further, since l > 2 or l = 2 and αχ 
= 1, R(s)
is holomorphic at s = −1/2. This proves that N(−s, w0) has a simple pole at s =
−1/2 in this case. Finally, we assume l = 2 and αχ = 1. Then Sn = Sp(2n, F ) and
card Jord(σsn)1F× is odd (see Definition 5-4). Applying (5-6), we obtain a1 = −1 <

0 < a2 < · · · . Since (1,1F×) ∈ Jord(σsn), a2 = 1. Thus, 〈[−a2−1
2 , a1−1

2 ](1F× )〉 =
〈[0,−1](1F× )〉 is empty. In particular, Q1,1F× (s) and R1,1F× (s) are not present.
Thus, all normalized operators Qi,1F× (s), Qi,sgnu

(s), Ri,1F× (s), Ri,sgnu
(s) are holo-

morphic at s = −1/2. Since R(s) has a simple pole at s = −1/2, the proof is
complete.

8. The Injectivity of Mu,unr(Sn) → Irru,unr(Sn)

In this section we show the map Mu,unr(Sn) → Irru,unr(Sn) given by

(e, σneg) �−→ ×(l,χ,α)∈e 〈[− l − 1

2
,
l − 1

2
](ν

αχ)〉� σneg

(see Theorem 5-14) is well–defined and injective. Lemmas 8-1 and 8-2 show that
the map is well-defined; injectivity then follows.

Lemma 8-1. Let (e, σneg) ∈ Mu,unr(S). Then the induced representation(
×(l,χ,α)∈e 〈[− l−1

2 , l−1
2 ](ν

αχ)〉
)
� σneg is irreducible.

Proof. This follows from Lemma 6-1 and Lemma 6-9 (i), (ii) and (iii). �
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Lemma 8-2. Let (e, σneg) ∈ Mu,unr(S). Then the induced representation(
×(l,χ,α)∈e 〈[− l−1

2 , l−1
2 ](ν

αχ)〉
)
� σneg is unitarizable (and irreducible).

Proof. We let σ be that induced (irreducible) representation. We prove the
unitarity of σ by induction on m := card e. If m = 0, then e = ∅. Therefore
σ = σneg is unitarizable by Theorem 5-11. Assume that the claim is true for all
(e′, σ′

neg) ∈ Mu,unr(S) with card e′ < m. Now, we proceed according to Definition
5-13 (1)–(3) as follows.

(Def − 1) Assume that there exists χ 
∈ {1F× , sgnu} and l ∈ Z≥1 such
that e(l, χ) 
= ∅. Then we pick some α ∈ e(l, χ). Applying Definition 5-13 (1),
α ∈ e(l, χ−1). We let e′ = e − {(l, χ, α), (l, χ−1, α)}. Then it is easy to see that
(e′, σneg) ∈ Mu,unr(S) . Since card e′ < card e =: m, we apply the inductive
assumption to obtain the unitarity of σ′ defined by

σ′ = ×(l′,χ′,α′)∈e′ 〈[− l′ − 1

2
,
l′ − 1

2
](ν

α′
χ′)〉� σneg.

Next, we have

σ � 〈[− l − 1

2
,
l − 1

2
](ν

αχ)〉 × 〈[− l − 1

2
,
l − 1

2
](ν

αχ−1) � σ′

�
(
〈[− l − 1

2
,
l − 1

2
](ν

αχ)〉 × 〈[− l − 1

2
,
l − 1

2
](ν

−αχ)〉
)
� σ′.

Since, by Definition 5-13 (1), α ∈]0, 1
2 [, the unitarity of σ follows from Theorem

4-1 and (UI).
(Def − 2) Assume that there exists χ ∈ {1F× , sgnu} and l ∈ Z≥1, such

that l − (2αχ + 1) 
∈ 2Z and e(l, χ) 
= ∅. Then we pick some α ∈ e(l, χ). We
let e′ = e − {(l, χ, α)}. Then it is obvious that (e′, σneg) ∈ Mu,unr(S). Since
card e′ < card e =: m, we apply the inductive assumption to obtain the unitarity

of σ′ defined by σ′ = ×(l′,χ′,α′)∈e′ 〈[− l′−1
2 , l′−1

2 ](ν
α′

χ′)〉 � σneg. We claim that

〈[− l−1
2 , l−1

2 ](χ)〉 � σ′ is irreducible. Namely, since l − (2αχ + 1) 
∈ 2Z, Lemma 6-5

implies that 〈[− l−1
2 , l−1

2 ](χ)〉�σneg is irreducible. Clearly, this representation is neg-
ative and we denote it by σ′

neg. Using this it is easy to show (e′, σ′
neg) ∈ Mu,unr(S).

Next, the attached induced representation

×(l′,χ′,α′)∈e′ 〈[− l′ − 1

2
,
l′ − 1

2
](ν

α′
χ′)〉� σ′

neg �

×(l′,χ′,α′)∈e′ 〈[− l′ − 1

2
,
l′ − 1

2
](ν

α′
χ′)〉�

(
〈[− l − 1

2
,
l − 1

2
](χ)〉� σneg

)
�

〈[− l − 1

2
,
l − 1

2
](χ)〉 ×

(
×(l′,χ′,α′)∈e′ 〈[− l′ − 1

2
,
l′ − 1

2
](ν

α′
χ′)〉� σneg

)
�

〈[− l − 1

2
,
l − 1

2
](χ)〉� σ′

is irreducible by Lemma 8-1. Similarly, using induction in stages, Lemma 6-1 implies
the irreducibility of σs = 〈[− l−1

2 , l−1
2 ](ν

sχ)〉�σ′ for s ∈]0, 1
2 [. Now, (D) implies the

unitarity of σs. Since σ � σα, we have proved its unitarity.
(Def − 3) Assume that there exists χ ∈ {1F× , sgnu} and l ∈ Z≥1, such that

l − (2αχ + 1) ∈ 2Z and e(l, χ) 
= ∅. We use the notation introduced in Definition
5-13 (3). If there are indices i1 
= i2 such that αi1 and αi2 both belong to one of the
segments ]1− β1,

1
2 ], ]0, 1− βv[, or ]1− βj+1, 1− βj [ (for some j) or simply if v = 0
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but u ≥ 2 (so we can arbitrarily pick the two different indices i1 
= i2), then we
let e′ = e− {(l, χ, αi1), (l, χ, αi2)}. Then it is obvious that (e′, σneg) ∈ Mu,unr(S).
Since card e′ < card e =: m, we apply the inductive assumption to obtain the

unitarity of σ′ defined by σ′ = ×(l′,χ′,α′)∈e′ 〈[− l′−1
2 , l

′−1
2 ](ν

α′
χ′)〉� σneg. It is easy

to see that we can write σ as follows:

σ � 〈[− l − 1

2
,
l − 1

2
](ν

αi1χ)〉 × 〈[− l − 1

2
,
l − 1

2
](ν

αi2χ) � σ′

�
(
〈[− l − 1

2
,
l − 1

2
](ν

αi1χ)〉 × 〈[− l − 1

2
,
l − 1

2
](ν

−αi2χ)〉
)
� σ′.

The inductive assumption applied to σ′ and Lemma 6-4 implies that σ is Hermitian.
Now, since

(8-3)

(
〈[− l − 1

2
,
l − 1

2
](ν

αi2χ)〉 × 〈[− l − 1

2
,
l − 1

2
](ν

−αi2χ)〉
)
� σ′

is unitarizable by (UI) (applying αi2 ∈]0, 1
2 [ and Theorem 4-1), the way we have

chosen αi1 and αi2 enables us to deform the first exponent αi2 (see (8-3)) to αi1

proving the unitarity of σ by (D). Thus, if v = 0, we may assume that u ∈ {0, 1}.
If v = 0, u = 1, then u + v = 1 is odd. Hence (l, χ) ∈ Jord(σneg) (see Definition

5-13 (3) (a)). Therefore, by Lemma 6-1, 〈[− l−1
2 , l−1

2 ](χ)〉� σneg is irreducible, and
we proceed as in the case (Def-2) with α = α1.

Now, we assume v = 1. Then, by our reduction, we may assume that ]1−β1,
1
2 ]

does not contain any αi, while ]0, 1 − β1[ contains all. Therefore we may assume
u ∈ {0, 1}. If u = 0, then u+v = 1 is odd. Hence (l, χ) ∈ Jord(σneg) (see Definition

5-13 (3) (a)). Therefore, by Lemma 6-1, 〈[− l−1
2 , l−1

2 ](χ)〉� σneg is irreducible, and
we proceed as in the case (Def − 2) with α = β1. If u = v = 1, then we need to
prove the unitarity of

σ � 〈[− l − 1

2
,
l − 1

2
](ν

α1χ)〉 × 〈[− l − 1

2
,
l − 1

2
](ν

β1χ)〉� σ′,

where σ′ is attached to (e′, σneg) with

e′ = e− {(l, χ, α1), (l, χ, β1)}.
(Clearly, by induction, σ′ is unitarizable.) We start from the following family of
induced representations:

σs := 〈[− l − 1

2
,
l − 1

2
](ν

α1χ)〉 × 〈[− l − 1

2
,
l − 1

2
](ν

sχ)〉� σ′ �

〈[− l − 1

2
,
l − 1

2
](ν

α1χ)〉 × 〈[− l − 1

2
,
l − 1

2
](ν

−sχ)〉� σ′,

where s ∈ [α1, 1 − α1[. Lemma 8-1 implies that every representation σs (for
s ∈ [α1, 1 − α1[) is irreducible. Since it is unitarizable for s = α1 by the above
isomorphism and Theorem 4-1, (D) implies the unitarizability of σs for every
s ∈ [α1, 1− α1[. Since β1 ∈ [α1, 1− α1[, we see that σ = σβ1

is unitarizable.
Finally, we assume v ≥ 2. Then, by our reduction, we may assume that the

interval ]1 − β1,
1
2 ] does not contain any αi while ]1 − β2, 1 − β1[ must contain a

unique αi. Hence u ≥ 1 and αu ∈]1−β2, 1−β1[. We need to prove the unitarity of

σ � 〈[− l − 1

2
,
l − 1

2
](ν

αuχ)〉 × 〈[− l − 1

2
,
l − 1

2
](ν

β1χ)〉� σ′,
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where σ′ is attached to (e′, σneg) with

e′ = e− {(l, χ, αu), (l, χ, β1)}.
(Clearly, by induction, σ′ is unitarizable.) We start from the following family of
induced representations:

σs := 〈[− l − 1

2
,
l − 1

2
](ν

α1χ)〉 × 〈[− l − 1

2
,
l − 1

2
](ν

sχ)〉� σ′ �

〈[− l − 1

2
,
l − 1

2
](ν

αuχ)〉 × 〈[− l − 1

2
,
l − 1

2
](ν

−sχ)〉� σ′,

where s ∈ [αu, 1 − αu[. Lemma 8-1 implies that every representation σs (for
s ∈ [αu, 1 − αu[) is irreducible. Since it is unitarizable for s = αu by the above
isomorphism and Theorem 4-1, (D) implies the unitarizability of σs for every
s ∈ [αu, 1 − αu[. Since β1 ∈ [αu, 1 − αu[, we see that σ = σβ1

is unitarizable.
This completes the proof of the lemma. �

9. The Surjectivity of Mu,unr(Sn) → Irru,unr(Sn)

In this section we prove the surjectivity of the map Mu,unr(Sn) → Irru,unr(Sn)
given by (e, σneg) �−→ ×(l,χ,α)∈e 〈[− l−1

2 , l−1
2 ](ν

αχ)〉 � σneg. This completes the
proof of Theorem 5-14.

The proof will be done by induction on n. If n = 0 then Mu,unr(Sn) = {(∅,1)},
Irru,unr(Sn) = {1}, and above map is just (∅,1) �−→ 1. Therefore, the theorem
is obvious in this case. Assume the surjectivity of the maps for all non–negative
integers < n. Then we prove the surjectivity of the map for n. More precisely, for

(9-1) σ ∈ Irru,unr(Sn)

we need to produce the datum (e, σneg) ∈ Mu,unr(Sn) such that

(9-2) σ � ×(l,χ,α)∈e 〈[− l − 1

2
,
l − 1

2
](ν

αχ)〉� σneg.

First, by Lemma 6-2, there is a unique

(e, σneg) ∈ Munr(Sn)

such that (9-2) holds. Therefore it remains to prove the following theorem:

Theorem 9-3. (e, σneg) ∈ Mu,unr(Sn) (that is, (e, σneg) satisfies Definition
5-13).

The proof of this result (that is, the proof of the inductive step) will occupy
the remainder of this section. It is done by (another) induction on m = card e,
(e, σneg) ∈ Mu,unr(Sn). If m = 0, then the representation is σ � σneg, and, clearly,
(∅, σneg) satisfies Definition 5-13. Next, we state the following useful observation
that will be used several times in the proof below:

Remark 9-4. Lemma 6-1 and (D) imply that “being in complementary series”
is an “open condition”. This means, for every (l, χ, α) ∈ e we may choose ε having

small absolute value such that ×(l,χ,α)∈e〈[− l−1
2 , l−1

2 ](ν
α+εχ)〉 � σneg is irreducible

and unitarizable, and α+ ε 
∈ (1/2)Z, (α+ ε)± (α′ + ε′) 
∈ (1/2)Z for all (l, χ, α) 
=
(l′, χ′, α′) ∈ e. We refer to this perturbation of exponents as bringing σ into general
position.

The appropriate definition is the following:
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Definition 9-5. We say that σ is in general position if α 
∈ (1/2)Z, α± α′ 
∈
(1/2)Z for all (l, χ, α) 
= (l′, χ′, α′) ∈ e.

The first step in the proof is easy:

Lemma 9-6. If there exist χ 
∈ {1F× , sgnu} and l ∈ Z≥1 such that e(l, χ) 
= ∅,
then (e, σneg) ∈ Mu,unr(Sn).

Proof. By our assumption, σ is unitarizable. Therefore, σ is Hermitian.
Now, Lemma 6-4 implies e(l′, χ′) = e(l′, (χ′)−1) for χ′ 
∈ {1F× , sgnu} and l′ ∈
Z≥1. If e(l, χ) 
= ∅, then let α ∈ e(l, χ). Then α ∈ e(l, χ−1). We let e′ =
e − {(l, χ, α), (l, χ−1, α)}. Then (e′, σneg) ∈ Munr(Sn). Let σ′ be the irreducible
unramified representation attached to (e′, σneg). By definition, it is an irreducible

subquotient of ×(l′,χ′,α′)∈e′〈[− l′−1
2 , l′−1

2 ](ν
α′

χ′)〉 � σneg. As we can permute the
characters in (9-2), we may write

σ � 〈[− l − 1

2
,
l − 1

2
](ν

αχ)〉 × 〈[− l − 1

2
,
l − 1

2
](ν

αχ−1)〉

×(l′,χ′,α′)∈e′ 〈[− l′ − 1

2
,
l′ − 1

2
](ν

α′
χ′)〉� σneg.

This shows that

(9-7) σ′ � ×(l′,χ′,α′)∈e′ 〈[− l′ − 1

2
,
l′ − 1

2
](ν

α′
χ′)〉� σneg

and

(9-8) σ � 〈[− l − 1

2
,
l − 1

2
](ν

αχ)〉 × 〈[− l − 1

2
,
l − 1

2
](ν

αχ−1)〉� σ′.

Since σ is Hermitian, Lemma 6-4, the definition of e′ and (9-7) imply that σ′ is also
Hermitian. Next, the isomorphism (9-8) implies

σ � 〈[− l − 1

2
,
l − 1

2
](ν

αχ)〉 × 〈[− l − 1

2
,
l − 1

2
](ν

−αχ)〉� σ′.

Therefore, σ is fully–induced from the tensor product of two irreducible Hermit-

ian representations: 〈[− l−1
2 , l−1

2 ](ν
αχ)〉 × 〈[− l−1

2 , l−1
2 ](ν

−αχ)〉 and σ′. Since σ is

unitarizable, (UR) implies that 〈[− l−1
2 , l−1

2 ](ν
αχ)〉 × 〈[− l−1

2 , l−1
2 ](ν

−αχ)〉 and σ′ are
unitarizable. By induction, this means that (e′, σneg) ∈ Mu,unr(Sn′), where n′ < n
is defined by σ′ ∈ Irrunr(Sn′). Now, by induction, we have the following:

(9-9) (e′, σneg) ∈ Mu,unr(Sn′).

Also, since 〈[− l−1
2 , l−1

2 ](ν
αχ)〉 × 〈[− l−1

2 , l−1
2 ](ν

−αχ)〉 is irreducible and unitarizable,

Theorem 4-1 implies that α ∈]−1
2 , 1

2 [. Since by definition of (e, σneg) we have α > 0,

we obtain 0 < α < 1
2 . Now, since e′ = e− {(l, χ, α), (l, χ−1, α)} and (9-9) holds, it

is easy to check that (e, σneg) ∈ Mu,unr(Sn) (see Definition 5-13). �

In the remainder of the proof of Theorem 9-3, Lemma 9-6 enables us to assume
that χ ∈ {1F× , sgnu} whenever e(l, χ) 
= ∅ for some l. (See Definition 5-13 (1).)
Next, we prove the following lemma:
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Lemma 9-10. Assume that there exist χ ∈ {1F× , sgnu} and l ∈ Z≥1 such that
e(l, χ) contains α and β, α ≤ β (if α = β, then we assume α is contained with
multiplicity at least two) such that the following hold:

(1) ]α, β[ ∩ 1
2Z = ∅

(2) there is no γ ∈]α, β[ such that [− l−1
2 , l−1

2 ](ν
±γχ) is linked with a segment

[− l′−1
2 , l′−1

2 ](ν
α′

χ′) for (l′, χ′, α′) ∈ e.

Then α, β ∈]0, 12 [, and (e, σneg) ∈ Mu,unr(Sn).

Proof. We consider the following family of induced representations:

(9-11) 〈[− l − 1

2
,
l − 1

2
](ν

γχ)〉 × 〈[− l − 1

2
,
l − 1

2
](ν

βχ)〉×

×(l′,χ′,α′)∈e−{(l,χ,α), (l,χ,β)} 〈[− l′ − 1

2
,
l′ − 1

2
](ν

α′
χ′)〉� σneg,

where γ ∈ [α, β]. We prove the irreducibility of the induced representation in (9-
11). First, applying Lemma 6-1 (see the beginning of the proof of Lemma 6-1) we
list necessary and sufficient conditions for irreducibility:

(i) for (l1, χ1, α1), (l2, χ2, α2) ∈ {(l, χ, γ)} + e − {(l, χ, α)}, the segments

[− l1−1
2 , l1−1

2 ](ν
±α1χ1) and [− l2−1

2 , l2−1
2 ](ν

α2χ2) are not linked
(ii) for (l′, χ′, α′) ∈ {(l, χ, γ)} + e − {(l, χ, α)}, the induced representation

〈[− l′−1
2 , l′−1

2 ](ν
α′

χ′)〉� σneg is irreducible.

Now, since for γ = α the induced representation is isomorphic to σ, it is
irreducible. Thus, (i) and (ii) hold for γ = α. Combining this with (2) shows
that (i) holds for any γ ∈ [α, β]. If γ = β, (ii) is obviously satisfied, proving the
irreducibility for γ = β. Let γ ∈]α, β[. Then (1) implies γ 
∈ 1

2Z. Hence, Lemma

6-1 implies that 〈[− l−1
2 , l−1

2 ](ν
γχ)〉 � σneg is irreducible. Thus, (ii) always holds.

Thus, the induced representation (9-11) is irreducible for all γ ∈ [α, β].
Since we assume χ′ ∈ {1F× , sgnu} when e(l′, χ′) 
= ∅ for some l′, the family

of representations (9-11) is Hermitian (see Lemma 6-4). Finally, it is unitarizable
for γ = α (since it is isomorphic to σ), and therefore for all γ ∈ [α, β] (see (D)). In
particular, it is irreducible and unitarizable for γ = β. Since in that case we can
write (9-11) as follows:

〈[− l − 1

2
,
l − 1

2
](ν

βχ)〉 × 〈[− l − 1

2
,
l − 1

2
](ν

−βχ)〉

×(l′,χ′,α′)∈e−{(l,χ,α), (l,χ,β)} 〈[−
l′ − 1

2
,
l′ − 1

2
](ν

α′
χ′)〉� σneg,

we conclude that the following two induced representations are irreducible and
Hermitian:

(9-12)

{
〈[− l−1

2 , l−1
2 ](ν

βχ)〉 × 〈[− l−1
2 , l−1

2 ](ν
−βχ)〉

×(l′,χ′,α′)∈e−{(l,χ,α), (l,χ,β)} 〈[− l′−1
2 , l′−1

2 ](ν
α′

χ′)〉� σneg.

Therefore they are unitarizable by (UR). Now, Theorem 4-1 implies β ∈]0, 1
2 [.

Since 0 < α ≤ β. We conclude α ∈]0, 1
2 [. Now, since α, β ∈]0, 12 [ and the other

representation in 9-12 is unitarizable, we conclude by induction that (e, σneg) ∈
Mu,unr(Sn). (Lemma 6-1 needs to be applied for the irreducibility conditions.) �
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Lemma 9-13. Assume that there exist χ ∈ {1F× , sgnu} and l ∈ Z≥1 such that
e(l, χ) contains α ∈]0, 12 [ satisfying the following:

there is no β ∈]0, α[ such that [− l−1
2 , l−1

2 ](ν
±βχ) is linked with a segment

[− l′−1
2 , l′−1

2 ](ν
α′

χ′) for (l′, χ′, α′) ∈ e.

If χ′ 
= χ or l′ 
= l, then e(l′, χ′) satisfies Definition 5-13 (2) and (3).

Proof. Wemay assume that σ is in general position. We consider the following
family of induced representations:

(9-14) 〈[− l − 1

2
,
l − 1

2
](ν

βχ)〉 ×(l′,χ′,α′)∈e−{(l,χ,α)} 〈[−
l′ − 1

2
,
l′ − 1

2
](ν

α′
χ′)〉� σneg,

where β ∈]0, α]. As in the proof of Lemma 9-10, we conclude the irreducibility of
the induced representation given by (9-14).

Next, since we assume χ′ ∈ {1F× , sgnu} when e(l′, χ′) 
= ∅ for some l′, the
family of representations (9-14) is Hermitian (see Lemma 6-4). Finally, it is unita-
rizable for β = α (since it is isomorphic to σ), and therefore for all β ∈]0, α] (see
(D)). Applying (ED), we conclude that all irreducible subquotients of

(9-15) 〈[− l − 1

2
,
l − 1

2
](χ)〉 ×(l′,χ′,α′)∈e−{(l,χ,α)} 〈[−

l′ − 1

2
,
l′ − 1

2
](ν

α′
χ′)〉� σneg

are unitarizable. In particular, its unique irreducible unramified subquotient is uni-
tarizable. We determine this subquotient. First, let σ′

neg be the unique irreducible

unramified subquotient of 〈[− l−1
2 , l−1

2 ](χ) � σneg. Since σneg is unitarizable (see
Theorem 5-11), we see that

(9-16) σ′
neg ↪→ 〈[− l − 1

2
,
l − 1

2
](χ)〉� σneg.

Now, the classification of negative representations (see Theorem 5-10) implies that
σ′
neg is negative. and

(9-17) Jord(σ′
neg) = Jord(σneg) + {2 · (l, χ)}.

Next, since σ is in general position, we easily see that the induced representation

×(l′,χ′,α′)∈e−{(l,χ,α)}〈[−
l′ − 1

2
,
l′ − 1

2
](ν

α′
χ′)〉� σ′

neg

is irreducible; it is the unique irreducible unramified subquotient of (9-15). Since
it is unitarizable and card(e− {(l, χ, α)}) < card e, by induction we conclude that

(9-18) (e− {(l, χ, α)}, σ′
neg) ∈ Mu,unr(Sn)

Since χ′ 
= χ or l′ 
= l, we see e(l′, χ′) ⊂ e − {(l, χ, α)}. Thus, (9-18) implies
that e(l′, χ′) satisfies Definition 5-13 (2) and (3). �

We record the following corollary to the proof of Lemma 9-13:

Corollary 9-19. Assume that there exist χ ∈ {1F× , sgnu} and l ∈ Z≥1 such
that e(l, χ) contains α ∈]0, 1

2 [ satisfying the following:

there is no β ∈]0, α[ such that [− l−1
2 , l−1

2 ](ν
±βχ) is linked with a segment

[− l′−1
2 , l′−1

2 ](ν
α′

χ′) for (l′, χ′, α′) ∈ e.
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We define σ′
neg using (9-16) (or, equivalently, using (9-17)). Then

(e− {(l, χ, α)}, σ′
neg) ∈ Mu,unr(Sn).

Proof. The claim follows from (9-18). �

Similarly we prove the following result:

Lemma 9-20. Assume that there exist χ ∈ {1F× , sgnu} and l ∈ Z≥1 such that
l − (2αχ + 1) 
∈ 2Z and e(l, χ) contains α ∈]0, 12 [ satisfying the following:

there is no β ∈]α, 1
2 [ such that [− l−1

2 , l−1
2 ](ν

±βχ) is linked with a segment

[− l′−1
2 , l′−1

2 ](ν
α′

χ′) for (l′, χ′, α′) ∈ e.

We define σ′
neg using Lemma 6-6. Then (e− {(l, χ, α)}, σ′

neg) ∈ Mu,unr(Sn).

The next step is a technical result used several times in the proof below.

Lemma 9-21. Assume that σ is in general position. Then, for every submul-
tiset e0 of e, there exists a multiset e1, consisting of triples of the form (l, χ, α)
(χ ∈ {1F× , sgnu}, l ∈ Z≥1, α ∈ ]0, 1

2 [), such that the induced representation

×(l,χ,α)∈e0+e1
〈[− l−1

2 , l−1
2 ](ν

αχ)〉�σneg is an irreducible unitarizable representation
of Sn. Moreover, we may choose e1 such that card( e− e0) ≤ card e1, and if all
(l, χ, α) ∈ e− e0 have the same χ = χ0, then all (l, χ, α) ∈ e1 satisfy χ = χ0.

Proof. If e0 = e, then there is nothing to be proved; we may take e1 = ∅.
Therefore, we may assume e0 
= e. If for all (l, χ, α) ∈ e − e0 we have α ∈ ]0, 1

2 [,
we are done; we may take e1 = e − e0. Therefore, let (l, χ, α) ∈ e − e0 such that
α ≥ 1

2 . Since σ is in general position, we must have α 
∈ 1
2Z. Then there is a unique

k ∈ Z≥1 such that α ∈ ]k2 ,
k+1
2 [. Then k+1

2 − α ∈ ]0, 1
2 [, and the following induced

representation is in a GL–complementary series (see Theorem 4-1):
(9-22)

π = 〈[− l + k − 2

2
,
l + k − 2

2
](ν

−α+k+1
2 χ)〉 × 〈[− l + k − 2

2
,
l + k − 2

2
](ν

α− k+1
2 χ)〉.

Therefore, the representation π � σ is unitarizable, but reducible. We determine
its unique irreducible unramified subquotient. Since

〈[− l + k − 2

2
,
l + k − 2

2
](ν

α− k+1
2 χ)〉 × 〈[− l − 1

2
,
l − 1

2
](ν

αχ)〉

= 〈[α− l − 1

2
− k, α +

l − 1

2
− 1](χ)〉 × 〈[α− l − 1

2
, α+

l − 1

2
](χ)〉,

and α 
∈ 1
2Z, Zelevinsky theory implies that the unique irreducible unramified

subquotient of

〈[− l + k − 2

2
,
l + k − 2

2
](ν

−α+k+1
2 χ)〉 × 〈[− l + k − 2

2
,
l + k − 2

2
](ν

α− k+1
2 χ)〉×

〈[− l − 1

2
,
l − 1

2
](ν

αχ)〉
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is exactly

〈[− l + k − 2

2
,
l + k − 2

2
](ν

−α+k+1
2 χ)〉 × 〈[α− l − 1

2
− k, α+

l − 1

2
](χ)〉×

〈[α− l − 1

2
, α+

l − 1

2
− 1](χ)〉,

or written differently,

〈[− l + k − 2

2
,
l + k − 2

2
](ν

−α+k+1
2 χ)〉×

〈[− l + k − 1

2
,
l + k − 1

2
](ν

α− k
2 χ)〉 × 〈[−(l − 2)

2
,
(l − 2)

2
](ν

α− 1
2 χ)〉.

(We remark that the segment [−(l−2)
2 , (l−2)

2 ](ν
α− 1

2 χ) is empty if l = 1, and should
be omitted.) Since σ is in general position, and the segments⎧⎨

⎩
[− l+k−2

2 , l+k−2
2 ](ν

α− k+1
2 χ), [− l+k−1

2 , l+k−1
2 ](ν

α− k
2 χ)

[− l+k−2
2 , l+k−2

2 ](ν
α− k+1

2 χ), [−(l−2)
2 , (l−2)

2 ](ν
α− 1

2 χ)

are not linked, Lemma 6-1 implies that the unique irreducible unramified subquo-
tient of π � σ is

(9-23) 〈[− l + k − 2

2
,
l + k − 2

2
](ν

−α+ k+1
2 χ)〉 × 〈[− l + k − 1

2
,
l + k − 1

2
](ν

α− k
2 χ)〉×

〈[−(l − 2)

2
,
(l − 2)

2
](ν

α− 1
2 χ)〉×(l′,χ′,α′)∈e−{(l,χ,α)} 〈[− l′ − 1

2
,
l′ − 1

2
](ν

α′
χ′)〉�σneg.

Now, since −α+ k+1
2 , α− k

2 ∈ ]0, 1
2 [, and α− 1

2 < α, we may iterate this procedure
until we obtain what we want. �

Next, we prove the following lemma:

Lemma 9-24. Assume that σ is in general position. Assume that there exist
l1, k1 ∈ Z≥1, such that e(l1,1F×) 
= ∅ and e(k1, sgnu) 
= ∅. Then (e, σneg) ∈
Mu,unr(Sn).

Proof. Let χ0 ∈ {1F× , sgnu} and l0 ∈ Z≥1. We need to show that the
exponents from e(l0, χ0) satisfy Definition 5-13 (2) or (3). By the assumption of
the lemma, we may find χ′ ∈ {1F× , sgnu} and l′ ∈ Z≥1 such that χ′ 
= χ0 and
e(l′, χ′) 
= ∅. Letting e0 =

∑
l′0
e(l′0, χ0) in Lemma 9-21, we may assume that

α < 1/2 for all (l, χ, α) ∈ e − e0. Now, we take some (l, χ), χ 
= χ0, such that
e(l, χ) 
= ∅. If card e(l, χ) > 1, then we apply Lemma 9-10 to complete the proof
of the lemma. Otherwise, we use Lemma 9-13. �

In the remainder of the proof we assume that there is a unique χ ∈ {1F× , sgnu}
such that if e(l′, χ′) 
= ∅, then χ′ = χ. We prove the following lemma:

Lemma 9-25. Assume that σ is in general position. Assume that e(1, χ) 
= ∅.
Then, if α > 1, for some α ∈ e(1, χ), then

(9-26) k − (2αχ + 1) ∈ 2Z,

where k ∈ Z≥2 is defined by α ∈]k2 ,
k+1
2 [.



420 GORAN MUIĆ AND MARKO TADIĆ

Proof. Applying Lemma 9-21, we may assume that every (l′, χ, α′) ∈ e −
{(1, χ, α)} satisfies α′ ∈]0, 12 [. We let (l′, χ, α′) ∈ e− {(1, χ, α)}. Then the segment

[− l′−1
2 , l′−1

2 ](ν
α′

χ) is linked with the segment {ναχ} if and only if α = l′−1
2 +α′+1.

Since α ∈]k2 ,
k+1
2 [ and α′ ∈]0, 1

2 [, we see that this is equivalent to l′ = k − 1 and

α′ = α − k/2. Similarly, [− l′−1
2 , l′−1

2 ](ν
−α′

χ) is linked with the segment {ναχ} if

and only if l′ = k and α′ = k+1
2 − α. Therefore, since the induced representation

(9-2) is irreducible, we see that for (l′, χ, α′) ∈ e− {(1, χ, α)} we must have

(l′, α′) 
= (k − 1, α− k

2
), (k,

k + 1

2
− α).

We remark that the segments [− l′−1
2 , l′−1

2 ](ν
x′

χ) and [− l′′−1
2 , l

′′−1
2 ](ν

±x′′
χ), where

x′, x′′ ∈]0, 12 [, are never linked.
Those observations enable us to assume that there are no triples (l′, χ, α′) ∈

e− {(1, χ, α)} such that one of the following holds:
⎧⎪⎨
⎪⎩
l′ 
∈ {k − 1, k}
l′ = k − 1 and α′ < α− k

2

l′ = k and α′ < k+1
2 − α

applying Corollary 9-19 several times.
Next, applying Lemma 9-10, we may assume that e − {(1, χ, α)} contains at

most two elements (each with multiplicity at most one) which are necessarily of the
form {

(k − 1, χ, β), where β ∈]α− k
2 ,

1
2 [;

(k, χ, γ), where γ ∈]k+1
2 − α, 1

2 [.

Thus, we may assume the following:

(9-27) e = {(1, χ, α), nβ · (k − 1, χ, β), nγ · (k, χ, γ)}.

(Here nβ, nγ ∈ {0, 1} are the multiplicities.)
Now, proceed as follows: We use the complementary series (l = 1 in our case)

(9-28) π = 〈[− l + k − 3

2
,
l + k − 3

2
](ν

−α+k
2 χ)〉 × 〈[− l + k − 3

2
,
l + k − 3

2
](ν

α− k
2 χ)〉,

and repeat the steps of the proof of Lemma 9-21 from the point (9-22) up to (9-
23) where instead of (9-23) we obtain a new irreducible unitarizable unramified
representation σ′ which is isomorphic to (l = 1 in our case)

(9-29) 〈[− l + k − 3

2
,
l + k − 3

2
](ν

α− k
2 χ)〉 × 〈[− l + k − 2

2
,
l + k − 2

2
](ν

α− k−1
2 χ)〉×

〈[−(l − 2)

2
,
(l − 2)

2
](ν

α− 1
2 χ)〉×(l′,χ′,α′)∈e−{(l,χ,α)} 〈[− l′ − 1

2
,
l′ − 1

2
](ν

α′
χ′)〉�σneg.

Thus, σ′ is attached to (e′, σneg) where

e′ = {(k − 1, χ, α− k

2
), (k, χ, α− k − 1

2
), nβ · (k − 1, χ, β), nγ · (k, χ, γ)}.

We remark that α− k−1
2 ∈] 12 , 1[.
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Now, using Corollary 9-19 and Lemma 6-9 (i), (ii), we obtain a new unitarizable
unramified representation σ′′ attached to (e′′, σ′

neg) where

e′′ = {(k, χ, α− k − 1

2
), nβ · (k − 1, χ, β), nγ · (k, χ, γ)}

and

Jord(σ′
neg) = Jord(σneg) + 2 · {(k − 1, χ)}.

Therefore, either by the inductive assumption (that is, in the case nβ > 0 or nγ > 0)
or by Theorem 7-1 (if nβ = nγ = 0) we obtain (9-26). �

Lemma 9-30. Assume that σ is in general position. Assume that e(1, χ) 
= ∅.
Then α < 3/2 for α ∈ e(1, χ).

Proof. Assume to the contrary that there exists α ∈ e(1, χ) such that α ≥ 3
2 .

Then since σ is in general position, there exists k ∈ Z≥3 such that α ∈]k2 ,
k+1
2 [.

Then Lemma 9-25 implies that

(9-31) k − (2αχ + 1) ∈ 2Z.

Next, applying Lemma 9-21, we may assume that every (l′, χ, α′) ∈ e−{(1, χ, α)}
satisfies α′ ∈]0, 12 [. Equipped with this, we may assume the reduction (9-27).

We would like to “move” α from ]k2 ,
k+1
2 [ into ]k−1

2 , k
2 [. We have two cases.

First, we assume that there exists ε > 0 such that the induced representation

νxχ× 〈[−k − 2

2
,
k − 2

2
](ν

yχ)〉 × 〈[−k − 1

2
,
k − 1

2
](ν

zχ)〉� σneg

is irreducible and unitarizable for x ∈ [k2 − ε, α], y ∈]α− k
2 ,

1
2 + ε[, and

z ∈]k+1
2 −α, 1

2+ε[. We explain this assumption. The irreducibility is an easy conse-
quence of Lemma 6-9, and the unitarity follows from (D) since at (x, y, z) = (α, β, γ)
is unitarizable, except that reducibility might occur for x = k

2 (y, z are arbitrary).

Now, the induced representation ναχ × 〈[−k−2
2 , k−2

2 ](ν
βχ)〉 × 〈[−k−1

2 , k−1
2 ](ν

γχ)〉 �
σneg is irreducible and unitarizable for some α ∈]k−1

2 , k
2 [. Since k − 1 ≥ 2, then

Lemma 9-25 shows that k − 1 − (2αχ + 1) ∈ 2Z. This is a contradiction since we
already have k − (2αχ + 1) ∈ 2Z. (See (9-31).)

If we have reducibility at x = k
2 for some y and z, then Lemma 6-1 and

k − (2αχ + 1) ∈ 2Z would imply that (k − 1, χ) ∈ Jord(σneg). Then, applying
Lemma 6-5, since k − 1 − (2αχ + 1) 
∈ 2Z, (k − 1, χ) appears at least twice in
Jord(σneg), and there exists a negative representation σ′

neg such that

σneg � 〈[−k − 2

2
,
k − 2

2
](χ)〉� σ′

neg.

Then σ is of the form

ναχ× 〈[−k − 2

2
,
k − 2

2
](ν

βχ)〉 × 〈[−k − 1

2
,
k − 1

2
](ν

γχ)〉� σneg �

� 〈[−k − 2

2
,
k − 2

2
](χ)〉×

(
ναχ× 〈[−k − 2

2
,
k − 2

2
](ν

βχ)〉 × 〈[−k − 1

2
,
k − 1

2
](ν

γχ)〉� σ′
neg

)
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Now, applying (UR) we obtain the unitarity of

ναχ× 〈[−k − 2

2
,
k − 2

2
](ν

βχ)〉 × 〈[−k − 1

2
,
k − 1

2
](ν

γχ)〉� σ′
neg

and this contradicts the general inductive assumption. �

Lemma 9-32. Let l ∈ Z≥1 such that e(l, χ) 
= ∅. Then, if l − (2αχ + 1) 
∈ 2Z
(resp., l − (2αχ + 1) ∈ 2Z), then α < 1/2 (resp., α < 1) for α ∈ e(l, χ).

Proof. We may assume that σ is in general position. (See Remark 9-4.)
Assume that the claim is not true for α ∈ e(l, χ). Applying Lemma 9-21, we may
assume that every (l′, χ, α′) ∈ e− {(l, χ, α)} satisfies α′ ∈]0, 1

2 [.
Now, we proceed as in the proof of Lemma 9-21 (that is, we imitate that proof

“multiplying” σ by π given by (9-22) and repeating the steps done there to obtain
(9-23)), keep replacing (l, χ, α) by (l − 1, χ, α − 1/2) while l ≥ 2. (This keeps all
other exponents in ]0, 1

2 [.) As a result, we may assume that one of the following
holds:

(a) l − (2αχ + 1) 
∈ 2Z and α ∈] 12 , 1[
(b) l − (2αχ + 1) 
∈ 2Z and α ∈]1, 32 [
(c) l = 1 and there exists k ∈ Z≥2 such that α ∈]k2 ,

k+1
2 [.

Next, Lemma 9-30 implies that k = 2 in (c). Now, we reduce that case to
the previous two. Since k − (2αχ + 1) ∈ 2Z for k = 2 (see (9-26)), we see that
l− (2αχ + 1) 
∈ 2Z for l = 1. Hence this is just the case (b). It remains to consider
the cases (a) and (b). The case (a) is easy. We apply Corollary 9-19 several times
in order to reduce to the case e = {(l, χ, α)}. Then we apply Theorem 7-1 to obtain
a contradiction. We consider the case (b). Arguing as in the proof of Lemma 9-25,
we may assume the following:

e = {(l, χ, α), nβ · (l − 1, χ, β), nγ · (l + 1, χ, γ)}.
where β ∈]α− 1, 1

2 [ and γ ∈] 32 −α, 1
2 [. (Here nβ, nγ ∈ {0, 1} are the multiplicities.)

Now, we “move” α into ] 12 , 1[ arguing as in the last part of the proof of Lemma
9-30 reducing (b) to (a). In more detail, there exists ε > 0 such that the induced
representation

〈[− l − 1

2
,
l − 1

2
](ν

xχ)〉 × 〈[− l − 2

2
,
l − 2

2
](ν

yχ)〉 × 〈[− l

2
,
l

2
](ν

zχ)〉� σneg

is irreducible and unitarizable for x ∈ [1−ε, α], y ∈]α−1, 1
2+ε[, and z ∈] 32−α, 12+ε[.

Hence 〈[− l−1
2 , l−1

2 ](ν
αχ)〉× 〈[− l−2

2 , l−2
2 ](ν

βχ)〉× 〈[− l
2 ,

l
2 ]

(νγχ)〉� σneg is unitarizable

for some (new) α ∈] 12 , 1[ where β and γ are less than but close to 1
2 . We are now

in case (a). �

Let us summarize what we have done so far. We have reduced the proof that
(e, σneg) ∈ Munr(Sn) attached to σ ∈ Irru,unr(Sn) (see (9-1)) satisfies Definition
5-13 to the following. We may assume that there is a unique χ ∈ {1F× , sgnu} such
that if e(l′, χ′) 
= ∅, then χ′ = χ. Looking at Definition 5-13 and since Lemma 9-32
holds, we may apply Lemma 6-9 and (several times) Corollary 9-19 to assume that
there is also a unique l such that if e(l′, χ) 
= ∅, then l = l′. Now, if l−(2αχ+1) 
∈ 2Z,
we see that (e, σneg) ∈ Munr(Sn) satisfies Definition 5-13 (applying Lemma 9-32),
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and Theorem 9-3 is proved. Thus, it remains to consider the case l−(2αχ+1) ∈ 2Z.
We need to check Definition 5-13 (3). First, Lemma 9-32 implies 0 < α < 1 for all
α ∈ e(l, χ). Then we write this multiset as in Definition 5-13 (3). Hence (9-2) can
be written as follows:

(9-33) σ � ×u
i=1〈[−

l − 1

2
,
l − 1

2
](ν

αiχ) ×v
j=1 〈[−

l − 1

2
,
l − 1

2
](ν

βjχ)〉� σneg.

Now, we check (a)–(f) in Definition 5-13 (3). First, since the induced representation
(9-33) is irreducible, (b) and (d) hold. (See Lemma 6-9.) Next, Lemma 9-10 implies
(c). It remains to prove (a), (e), and (f).

Now, if there exist indices i1 
= i2 such that αi1 , αi1 ∈]1 − β1,
1
2 ] or αi1 , αi1 ∈

]1−βj+1, 1−βj [ for some j, then we apply Lemma 9-10 and we are done. Otherwise,
we may assume that the number of indices i such that αi ∈]1− β1,

1
2 ] (resp.,

αi ∈]1− βj+1, 1− βj [ for some fixed j) is 0 or 1. We must show that this number
is one for ]1− βj+1, 1− βj [ for every j, and zero for ]1− β1,

1
2 ].

If we can find j such that the number is zero for ]1 − βj+1, 1 − βj [, then we
apply Lemma 9-10 to deform βj into βj+1, and obtain βj , βj+1 < 1

2 , which is a

contradiction. If on the other hand ]1 − β1,
1
2 ] contains a unique αi, then we may

deform it to β1 and Lemma 9-10 would imply β1 < 1
2 , which is a contradiction.

This proves (e) and (f).
In the same reduction (that is, no αi’s in ]1 − βj+1, 1 − βj [ for every j, and

there is a unique αi in ]1− β1,
1
2 ]) we prove (a).

If v > 0, we may also assume that the number of indices i such that αi ∈
]0, 1− βv[ is either 0 or 1. We must show if (l, χ) 
∈ Jord(σneg), then u+ v is even.
We accomplish this as follows.

First, if v = 0 (that is, no βi’s), then then there is no i such that αi ∈]0, 1−βv[
and the claim follows from from Theorem 7-1 (u = v = 0 here). Next, we assume
v ≥ 1.

We reduce this case to the case v = 0 as follows. We apply the complementary
series (9-22) with α = β1 and k = 1. We obtain a new unitary representation σ1

attached to (e1, σneg), where

e1 = e− {(l, χ, β1)}+ {(l, χ, 1− β1), (l+ 1, χ, β1 −
1

2
), (l − 1, χ, β1 −

1

2
)}.

We apply Lemma 6-9 and Corollary 9-19 to obtain a new unitary representation σ′

attached to (e′, σ′
neg), where{
e′ = e1 − {(l + 1, χ, β1 − 1

2 ), (l − 1, χ, β1 − 1
2 )}

Jord(σ′
neg) = Jord(σneg) + {(l − 1, χ), (l + 1, χ}.

Clearly, (l, χ) 
∈ Jord(σ′
neg). Then by induction, we have u′ + v′ is even. Since

v′ = v − 1 and u′ = u − 1, we obtain the claim. This proves that all conditions
(a)–(f) hold. This completes the proof of Theorem 5-14, and therefore the proof of
the surjectivity of the map in Theorem 5-14.

10. Functoriality, Satake Parameters and an Algorithm for Testing
Unitarity

In this section we present an algorithm that describes an effective and easy way
of testing unitarity of an unramified representation given by its Satake parameter
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(see Theorem 1-2). We introduce the Langlands dual groups as follows:

G = Sn = SO(2n+ 1, F ) Ĝ(C) = Sp(2n,C) ⊂ GL(N,C);N = 2n

G = Sn = O(2n, F ) Ĝ(C) = O(2n,C) ⊂ GL(N,C);N = 2n

G = Sn = Sp(2n, F ) Ĝ(C) = SO(2n+ 1,C) ⊂ GL(N,C);N = 2n+ 1.

Assume that (χ1, . . . , χn) is a sequence of unramified characters of F×. Then
the induced representation

χ1 × · · · × χn � 1 = IndGPmin
(χ1 ⊗ · · · ⊗ χn)

contains the unique unramified irreducible subquotient,

σG := σG(χ1, . . . , χn).

(See Theorem 1-2.) Its Langlands lift to GL(N,F ) is an unramified representation
given by

(10-1) σGL(N,F ) := σGL(N,F )(χ1, . . . , χn, χ
−1
1 , . . . , χ−1

n , �),

where

� =

{
should be omitted if G = O(2n, F ), SO(2n+ 1, F )

1F× if G = Sp(2n, F ).

In particular, the lift is an irreducible subquotient of

(10-2) χ1 × · · · × χn × χ−1
1 × · · · × χ−1

n × �.

Obviously, we have the following:

(10-3) σGL(N,F ) is self–dual: σ̃GL(N,F ) � σGL(N,F ),

and

(10-4) σGL(N,F ) has a trivial central character.

Since σGL(N,F ) is an irreducible subquotient of (10-2), its description in the
Zelevinsky classification can be obtain by the well–known process of ”linking” (see
[Ze]):

(10-5) σGL(N,F ) � 〈Δ1〉 × · · · × 〈Δk〉,

where Δ1, . . . ,Δk is up to a permutation, the unique sequence of segments of un-
ramified characters characterized by the following two conditions:

• There is an equality of the multisets:

Δ1 + · · ·+Δk = {χ1, . . . , χn, χ
−1
1 , . . . , χ−1

n , �}.

• There are no indices i, j, such that the segments Δi and Δj are linked.

The expression (10-5) is easy to find for an unitary representation σG, and this
is the basis for our algorithm. Assume that σG is unitarizable. Then we apply
Theorem 5-14 to find (e, σneg) ∈ Mu,unr(S) such that

(10-6) σG �
(
×(l,χ,α)∈e 〈[− l − 1

2
,
l − 1

2
](ν

αχ)〉
)
� σneg.

We have the following lemma:
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Lemma 10-7. Assume that σG is unitarizable and given by (10-6). Then the
representation σGL(N,F ) is isomorphic to the following induced representation:

×(l,χ,α)∈e; α�= 1
2

〈[− l − 1

2
,
l − 1

2
](ν

αχ)〉 × 〈[− l − 1

2
,
l − 1

2
](ν

−αχ−1)〉

×(l,χ,α)∈e; α= 1
2
〈[− l − 2

2
,
l − 2

2
](χ)〉 (we omit the segment if l = 1)

×(l,χ,α)∈e; α= 1
2
〈[− l

2
,
l

2
](χ)〉

×(l,χ)∈Jord(σneg) 〈[−
l − 1

2
,
l − 1

2
](χ)〉

Proof. Since (e, σneg) satisfies Definition 5-13, the claim easily follows from
Lemma 6-1. (To compute the lift of σneg one applies Theorems 5-8 and 5-10; if
σneg = 1 ∈ Irr S0 we apply the definition (5-9).) We leave the simple verification
to the reader. The reader should realize that the lemma does not hold if σG is not
unitarizable. �

Now, we present the following:

Algorithm for testing the unitarity of σG(χ1, . . . , χn).
It has the following steps:

(1) Introduce the multiset {χ1, . . . , χn, χ
−1
1 , . . . , χ−1

n , �}.
(2) Among the characters in (1), perform the (maximal) linking, to get the

multisegment {Δ1, . . . ,Δk} which satisfies:
– There is an equality of the multisets:

Δ1 + · · ·+Δk = {χ1, . . . , χn, χ
−1
1 , . . . , χ−1

n , �}.
– There are no indices i, j, such that the segments Δi and Δj are

linked. 2

We begin our second stage of the algorithm (where we apply Lemma 10-7). We
recursively construct the multisets Jord and e that must be Jord(σneg) and e for
σG(χ1, . . . , χn) if this representation is unitarizable. We start with Jord = ∅, e = ∅
and the multiset η = {Δ1, . . . ,Δk}, and modify them recursively. We execute the
algorithm until η = ∅.

It is easy to show that η̃ = η.

(3) Denote by ηnsd,unit the multiset of all Δ ∈ η; Δ = [− l−1
2 , l−1

2 ](ν
αχ) (where

as usual l ∈ Z≥1, χ is an unitary unramified character of F×, and α ∈ R)
such that χ 
∈ {1F× , sgnu} and α = 0. Add to Jord the multiset of all
(l, χ) when Δ runs over ηnsd,unit, replace η by η − ηnsd,unit, and keep e
unchanged. It is easy to see that for Δ from ηnsd,unit, the segments Δ

and Δ̃ shows up in ηnsd,unit (and η)) with the same multiplicity.

2The multisegment {Δ1, . . . ,Δk} is the result of the following simple algorithm: Let Δ1 =

{χ1}, . . . ,Δn = {χn},Δn+1 = {χ−1
1 }, . . . ,Δ2n = {χ−1

n },ΔN = {�} and k = N be the starting
sequence Δ1, . . . ,Δk of the segments. Repeat the following recursive step until it is not possible:
find two indices i < j such that Δi and Δj are linked and replace

{

Δi ↔ Δi ∪Δj

Δj ↔ Δi ∩Δj (omit this segment if the intersection is empty)
.
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(4) Denote by ηnsd,+ the multiset of all Δ ∈ η; Δ = [− l−1
2 , l−1

2 ](ν
αχ) such that

χ 
∈ {1F× , sgnu} and α > 0. If some α ≥ 1/2, then the algorithm stops
and the representation is not unitarizable. Further, if ηnsd,+ 
= η̄nsd,+
(this is a Hermitian condition, which is equivalent to e(l, χ) 
= e(l, χ−1) for
some χ and l as above), then the algorithm stops and the representation
is not unitarizable. If neither of these happen, then add to e the multiset
of all (l, χ, α) when Δ runs over ηnsd,+, replace η by η − ηnsd,+ − η̃nsd,+,
and keep Jord unchanged.

(5) Denote by ηsd,{ 1
2},+ the multiset of all Δ ∈ η; Δ = [− l−1

2 , l−1
2 ](ν

αχ) such

that χ ∈ {1F× , sgnu}, l−(2αχ+1) 
∈ 2Z and α > 0. If some α ≥ 1/2 (in
which case α > 1/2), then the algorithm stops and the representation
is not unitarizable. If not, then add to e the multiset of all (l, χ, α) when
Δ runs over ηsd,{ 1

2},+, replace η by η−ηsd,{ 1
2},+− η̃sd,{ 1

2},+, and keep Jord

unchanged.
(6) Denote by ηsd,{0,1},+ the multiset of all Δ ∈ η; Δ = [− l−1

2 , l−1
2 ](ν

αχ)

such that χ ∈ {1F× , sgnu}, l − (2αχ + 1) ∈ 2Z and α > 0. Observe
that we cannot have α = 1/2 (in η we do not have linked segments). If
some α ≥ 1, then the algorithm stops and the representation is not
unitarizable. If not (i.e., if all α < 1), then for all (l, χ) coming from Δ’s in
ηsd,{0,1},+, check if the multiset e(l, χ) of all α such that 〈[− l−1

2 , l−1
2 ](ν

αχ)〉
is in ηsd,{0,1},+ satisfies condition (c) of (3) in Definition 5-13 (observe that
condition (d) of (3) in Definition 5-13 is satisfied, since η̃ = η and in η we
do not have linked segments). If all these conditions are not satisfied,
then the algorithm stops and the representation is not unitarizable. If
not, then add to e the multiset of all (l, χ, α) when Δ runs over ηsd,{0,1},+,
replace η by η − ηsd,{0,1},+ − η̃sd,{0,1},+, and keep Jord unchanged.

(7) Denote by ηsd,unit,red the multiset of all Δ ∈ η; Δ = [− l−1
2 , l−1

2 ](ν
αχ)

such that χ ∈ {1F× , sgnu}, α = 0 and l − (2αχ + 1) ∈ 2Z. 3 Add to
Jord the multiset of all (l, χ) when Δ runs over ηsd,unit,red, replace η by
η − ηsd,unit,red, and keep e unchanged.

(8) Take Δ ∈ η; Δ = [− l−1
2 , l−1

2 ](ν
αχ) with the largest possible l (as usual,

l ∈ Z≥1, χ is an unitary unramified character of F×, and α ∈ R). Then
α = 0, χ ∈ {1F× , sgnu} and l − (2αχ + 1) 
∈ 2Z. Form the multiset ηΔ
consisting of all Ψ ∈ η such that Ψ = Δ.
(i) If card ηΔ is even, say 2m, we replace Jord by Jord + 2m{(l, χ)},

remove ηΔ from η and keep e unchanged.
(ii) If card ηΔ is odd, say 2m + 1, then we perform the following steps

(see the second line in the displayed formula in Lemma (10-7)):
(a) If l = 1, then the algorithm stops and the representation

σG(χ1, . . . , χn) is not unitarizable.
(b) If l = 2, then we replace e by e + {(1, χ, 12 )}, Jord by Jord +

2m{(l, χ)} and η by η − ηΔ.
(c) If l ≥ 3, then we let η[− l−3

2 , l−3
2 ](χ) to be the sub–multiset of

η corresponding to Ψ = [− l−3
2 , l−3

2 ](χ). If card η[− l−3
2 , l−3

2 ](χ)

is even, then the algorithm stops and the representation

3Fix χ ∈ {1F× , sgnu}. One sees directly using (10-4) that the sum of multiplicities of all

Δ = [− l−1
2

, l−1
2

](χ) in ηsd,unit,red is even.



UNRAMIFIED UNITARY DUALS FOR SPLIT CLASSICAL p–ADIC GROUPS 427

σG(χ1, . . . , χn) is not unitary. If it is odd, say 2m′ + 1, we
replace e by e + {(l − 1, χ, 12 )}, Jord by Jord + 2m{(l, χ)} +
2m′{(l − 2)} and η by η − ηΔ − ηΨ.

(9) If η = ∅, we go to the following step. Otherwise, we go back to the Step 8.
The above procedure provides that (b) in (3) of Definition 5-13 is satisfied.

(10) One easily sees that there exists σneg such that Jord(σneg) = Jord (we
can construct the representation σneg attached to Jord following the steps
described in Section 5 (see Theorems 5-8 and 5-10), but we can finish
the algorithm without constructing σneg). Check if, for all (l, χ) from
steps (6) and (8), the corresponding multiset e(l, χ) satisfies conditions
(a), (e) and (f) of (3) in Definition 5-13 with respect to the Jord that we
have obtained. If not, σG(χ1, . . . , χn) is not unitarizable. Otherwise,
σG(χ1, . . . , χn) is unitarizable.

This terminates the algorithm.
Observe that in the case of unitarizability of σG(χ1, . . . , χn), the multisets e

and Jord that we have obtained at the end of algorithm determine the parameters
(e, σ(Jord)) of σG(χ1, . . . , χn) from Theorem 5-14.

11. Isolated Points in Irru,unr(Sn)

We equip Irru,unr(Sn) with the topology described in Section 3. In this section
we determine all isolated representations in Irru,unr(Sn). It is based on our classifi-
cation result Theorem 5-14 as well as the description of topology given by Theorem
3-7. In more detail, since Irru,unr(Sn) is a closed subset of Irrunr(Sn), it is homeo-
morphic (via ϕSn

) to a closed subset of a complex manifold having a countable base
of the topology. Therefore, we have the following trivially: σ ∈ Irru,unr(Sn) is not
an isolated point if and only if there is a sequence (σm)m∈Z>0

in Irrunr(Sn) \ {σ}
such that

(11-1) lim
m

σm = σ (equivalently, lim
m

ϕSn
(σm) = ϕSn

(σ)).

We begin with the following lemma:

Lemma 11-2. Assume that σ ∈ Irru,unr(Sn) is isolated. Then it must be
strongly negative.

Proof. Let (e, σneg) ∈ Mu,unr(Sn) such that

σ � ×(l,χ,α)∈e 〈[− l − 1

2
,
l − 1

2
](ν

αχ)〉� σneg.

If σ is not strongly negative, then either e 
= ∅, or e = ∅ and σ � σneg is negative
but not strongly negative.

If e 
= ∅, then pick some (l0, χ0, α0) ∈ e. Applying Theorem 5-14 and Definition
5-13, we choose ε > 0 small enough and a sequence (αm)m∈Z>0

contained in

]α0 − ε, α0 + ε[\{α0} converging to α0 such that (e(m), σneg) ∈ Mu,unr(Sn), where

e(m) = e− {(l0, χ0, α0)}+ {(l0, χ0, αm)} for all m ∈ Z>0.

Now, we define a sequence of unramified unitary representations (σm)m∈Z>0
∈

Irru,unr(Sn) by σm � ×(l(m),χ(m),α(m))∈e(m)〈[− l(m)−1
2 , l(m)−1

2 ](ν
α(m)

χ(m))〉�σneg. Ob-

viously, σm 
� σ for all m and limm ϕSn
(σm) = ϕSn

(σ). Hence σ is not isolated.
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If σ is a negative but not strongly negative representation, then there exists
l ∈ Z>0, an unramified unitary character χ of F×, and a negative representation
σ′
neg such that σ ↪→ 〈[− l−1

2 , l−1
2 ](χ)〉 � σ′

neg. Now, χ(�) is a complex number
of absolute value one. We choose a sequence (αm)m∈Z>0

of complex numbers of
absolute value one converging to χ(�) such that αm 
= χ(�) for all m. Then we
define a sequence (χm)m∈Z>0

of unramified unitary characters of F× by χm(�) =
αm and a sequence of unramified (unitary) negative representations (σm)m∈Z>0

in

Irru,unr(Sn) by σm ↪→ 〈[− l−1
2 , l−1

2 ](χm)〉 � σ′
neg. Obviously, σm 
� σ for all m and

limm ϕSn
(σm) = ϕSn

(σ). Hence σ is not isolated. �

Now, we assume that σ is strongly negative. We write Jord = Jord(σ) for the
set of its Jordan blocks (See Theorem 5-8 and the notation introduced before that
theorem.) If χ ∈ {1F× , sgnu} and a ∈ Jordχ which is not the minimum, then we
write a− for the greatest b ∈ Jordχ such that b < a. We have

a− a− is even (whenever a− is defined).

This follows from the fact that a− (2αχ+1) ∈ 2Z for all a ∈ Jordχ. (See Definition
5-4.)

The main result of this section is the following theorem:

Theorem 11-3. Let n > 0. Then σ ∈ Irru,unr(Sn) is isolated if and only if
σ is strongly negative, and for every χ ∈ {1F× , sgnu} such that Jordχ 
= ∅, the
following holds:

(1) a− a− ≥ 4, for all a ∈ Jordχ whenever a− is defined.
(2) If Jordχ 
= {1}, then min Jordχ \ {1} ≥ 4.

We do not claim that 1 ∈ Jordχ in (2). If 1 
∈ Jordχ, then (2) claims that
min Jordχ ≥ 4.

We start the proof of Theorem 11-3 with the following lemma:

Lemma 11-4. Assume that σ ∈ Irru,unr(Sn) is strongly negative and isolated.
Assume that Jordχ 
= ∅ for some χ ∈ {1F× , sgnu}. Then a − a− ≥ 4 for all
a ∈ Jordχ whenever a− is defined.

Proof. Assume that there exists χ ∈ {1F× , sgnu} such that Jordχ 
= ∅ and
there is a gap in Jordχ of 2, say a−a− = 2 for a, a− ∈ Jordχ. Then the construction
of strongly negative representations (see the text before Theorem 5-8) shows that

Jord′ := Jord− {(a−, χ), (a, χ)}

is a set of Jordan blocks for some strongly negative representation σ′ ∈ Irru,unr(Sn′)
(See Definition 5-4.) Moreover, Theorem 5-8 and Remark 1-8 imply that σ is a
subquotient of

(11-5) 〈[−a− 1

2
,
a− − 1

2
](χ)〉� σ′ = 〈[− l − 1

2
,
l − 1

2
](ν

1
2 χ)〉� σ′, l = a− + 1.

Now, we look at the family of induced representations 〈[− l−1
2 , l−1

2 ](ν
sχ) � σ′ (s ∈

[0, 12 ]). Since l−(2αχ+1) = a−+1−(2αχ+1) 
∈ 2Z, Lemma 6-5 implies reducibility

at s = 0. Therefore we have unitarity and irreducibility for s ∈ [0, 1
2 [. At s = 1/2

we have reducibility, and σ appears as a subquotient (see (11-5)). Hence σ cannot
be isolated, arguing as in the proof of Lemma 11-2. �
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Lemma 11-6. Assume that σ ∈ Irru,unr(Sn) is strongly negative and isolated.
Assume that Jordχ \ {1} 
= ∅ for χ ∈ {1F× , sgnu}. Then min Jordχ \ {1} ≥ 4.

Proof. We consider several cases.
First, we assume that αχ = 1 (hence, χ = 1F× and Sn = Sp(2n, F ); see

Lemma 5-2) and 1 ∈ Jordχ. Then the claim follows from the previous lemma.
Assume that αχ = 1 and 1 
∈ Jordχ. Then the elements of Jordχ are odd integers
(since a − (2αχ + 1) ∈ 2Z). We need to show 3 
∈ Jordχ. Assume that 3 ∈ Jordχ.
Then we define a strongly negative representation σ′ using

Jord′ := Jord− {(3, χ)}+ {(1, χ)}.

Since in this case Sn = Sp(2n, F ), Definition 5-4 implies that card Jordχ is odd.
Hence, by Theorem 5-8 and Remark 1-8, we obtain that σ is an irreducible subquo-
tient of νχ�σ′. Now, we consider the family of representations νsχ�σ′ (s ∈ [0, 1]).
Lemma 6-5 implies the irreducibility at s = 0 (since (1, χ) ∈ Jord′). Lemma 6-1
implies its irreducibility for s ∈]0, 1[. Hence σ is not isolated.

Assume αχ = 0. Then card Jordχ is even by the very last property stated
in Definition 5-4. Now, if 1 ∈ Jordχ, then 3 
∈ Jordχ by the previous lemma. If
1 
∈ Jordχ, then we need to show that 3 
∈ Jordχ. To prove this, assume to the
contrary that 1 
∈ Jordχ and 3 ∈ Jordχ. Then we can arrive at the contradiction as
in the case αχ = 1 and 1 
∈ Jordχ above.

Assume αχ = 1
2 . Then, by Definition 5-4, Sn = SO(2n + 1, F ) and Jordχ

consists of even integers. In this case we need to show 2 
∈ Jordχ. Assume that
2 ∈ Jordχ. Then we define a strongly negative representation σ′ using

Jord′ := Jord− {(2, χ)}.

Then, by Theorem 5-8 and Remark 1-8, we obtain that σ is an irreducible sub-
quotient of ν1/2χ � σ′. Now, we consider the family of representations νsχ � σ′

(s ∈ [0, 1]). Lemma 6-5 implies the irreducibility at s = 0 . Lemma 6-1 implies its
irreducibility for s ∈]0, 12 [. Hence σ is not isolated. �

Lemmas 11-4 and 11-6 prove that the conditions imposed upon σ in Theorem
11-3 are necessary. We need to show that they are sufficient. We start by con-
structing for an arbitrary sequence in Irru,unr(Sn) a convergent subsequence. Let
(σm)m∈Z>0

be a sequence in Irru,unr(Sn). The classification of unramified unitariz-
able representations (see Theorem 5-14) implies that there exists a unique sequence

(e(m), σ
(m)
neg ) ∈ Mu,unr(Sn), m ∈ Z>0, such that

σm � ×(l(m),χ(m),α(m))∈e(m) 〈[− l(m) − 1

2
,
l(m) − 1

2
](ν

α(m)
χ(m))〉� σ(m)

neg .

Since σm is a representation of Sn, we have
∑

(l(m),χ(m),α(m))∈e(m)

l(m) ≤ n

for all m ∈ Z>0. Therefore, if we choose some enumeration writing elements of
every e(m) as a sequence:

e(m) . . . (l
(m)
1 , χ

(m)
1 , α

(m)
1 ), . . . , (l

(m)

a(m) , χ
(m)

a(m) , α
(m)

a(m)),
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then, passing to a subsequence, we may assume that the following is independent
of m: {

a(m) = a

l
(m)
i = li, i = 1, . . . , a.

Next, the complex absolute value of χ
(m)
i (�) is equal to 1. Hence, passing to

subsequences we may assume that every sequence (χ
(m)
i (�))m∈Z>0

, i = 1, . . . , a,
converges. We define a sequence of unramified unitary characters χ1, . . . , χa of F×

by

lim
m

χ
(m)
i (�) = χi(�).

Since every sequence (α
(m)
i ) is bounded (see Definition 5-13), we see that we may

assume that it converges:

lim
m

α
(m)
i = αi.

Next, we apply Theorem 5-10 to the sequence (σ
(m)
neg )m∈Z>0

. For every m, we

find a sequence of the pairs (k
(m)
1 , μ

(m)
1 ), . . . , (k

(m)

b(m) , μ
(m)

b(m)) (ki ∈ Z≥1, μ
(m)
i is an

unramified unitary character of F×), and a strongly negative representation σ
(m)
sn

such that

σ(m)
neg ↪→ 〈[−k

(m)
1 − 1

2
,
k
(m)
1 − 1

2
](μ

(m)
1 )〉×· · ·×〈[−

k
(m)

b(m) − 1

2
,
k
(m)

b(m) − 1

2
]
(μ

(m)

b(m)
)〉�σ(m)

sn .

As above, passing to a subsequence, we may assume that the following is indepen-
dent of m: {

b(m) = b

k
(m)
i = ki, i = 1, . . . , a.

Hence, we may define a sequence of unramified unitary characters μ1, . . . , μb of F
×

by

lim
m

μ
(m)
i (�) = μi(�).

Next, since there are only finitely many strictly negative representations in

∪0≤m≤nIrr
u,unr(Sm),

we may assume that

σ(m)
sn = σsn

is independent of m. We write σsn in the form σSb(λ1, . . . , λb) (see Theorem 1-2).
Now, we have that ϕSn

(σm) is the W–orbit of the n tuple

(q−
l1−1

2 −α
(m)
1 χ

(m)
1 (�), q−

l1−1
2 +1−α

(m)
1 χ

(m)
1 (�), . . . , q

l1−1
2 −α

(m)
1 χ

(m)
1 (�),

. . . ,

q−
la−1

2 −α(m)
a χ(m)

a (�), q−
la−1

2 +1−α(m)
a χ(m)

a (�), . . . , q
la−1

2 −α(m)
a χ(m)

a (�),

q−
k1−1

2 μ
(m)
1 (�), q−

k1−1
2 +1μ

(m)
1 (�), . . . , q

k1−1
2 μ

(m)
1 (�),

. . . ,

q−
kb−1

2 μ
(m)
b (�), q−

kb−1

2 +1μ
(m)
b (�), . . . , q

kb−1

2 μ
(m)
b (�),

λ1(�), . . . , λb(�)).



UNRAMIFIED UNITARY DUALS FOR SPLIT CLASSICAL p–ADIC GROUPS 431

Clearly, the sequence (ϕSn
(σm)) converges to the W–orbit of the n tuple

(q−
l1−1

2 −α1χ1(�), q−
l1−1

2 +1−α1χ1(�), . . . , q
l1−1

2 −α1χ1(�),

. . . ,

q−
la−1

2 −αaχa(�), q−
la−1

2 +1−αaχa(�), . . . , q
la−1

2 −αaχa(�),

q−
k1−1

2 μ1(�), q−
k1−1

2 +1μ1(�), . . . , q
k1−1

2 μ1(�),

. . . ,

q−
kb−1

2 μb(�), q−
kb−1

2 +1μb(�), . . . , q
kb−1

2 μb(�),

λ1(�), . . . , λb(�)).

The corresponding representation σ ∈ Irrunr(Sn) is unitary (since ϕSn
(Irru,unr(Sn))

is a closed subset of DW
n ; see Theorem 3-7), and clearly the unique irreducible

unramified subquotient of

(11-7) ×a
i=1 〈[− li − 1

2
,
li − 1

2
](ν

αiχi)〉 ×b
i=1 〈[−ki − 1

2
,
ki − 1

2
](μi)〉� σsn.

We summarize the assumptions on the sequence:

σm � ×a
i=1 〈[− li − 1

2
,
li − 1

2
](ν

α
(m)
i χ

(m)
i )〉� σ(m)

neg ,

e(m) = {(li, χ(m)
i , α

(m)
i ), ; i = 1, . . . , a}, (e(m), σ(m)

neg ) ∈ Mu,unr(Sn)

σ(m)
neg ↪→ ×b

i=1 〈[−ki − 1

2
,
ki − 1

2
](μ

(m)
i )〉� σsn.

lim
m

χ
(m)
i (�) = χi(�), lim

m
μ
(m)
i (�) = μi(�), lim

m
α
(m)
i = αi.

(11-8)

Now, in order to complete the proof of Theorem 11-3, we need to prove the
following lemma:

Lemma 11-9. Assume that σ ∈ Irru,unr(Sn) is strongly negative such that (1)
and (2) of Theorem 11-3 hold. Then for every sequence (σm)m∈Z>0

, satisfying (11-
8), such that ϕSn

(σm) → ϕSn
(σ), there exists m0 such that σm = σsn for m ≥ m0.

Proof. Assume that (σm)m∈Z>0
is a sequence that satisfies (11-8). Assume

that ϕSn
(σm) → ϕSn

(σ) but there is no m0 such that σm = σsn for m ≥ m0. Then
passing to a subsequence we may assume that a + b > 0 for all m > 0. ( a and b
are defined in (11-8).) We show that this is not possible.

Put G = Sn. We begin by computing the Langlands lift τ := σGL(N,F ) of σ to
GL(N,F ). (See (10-1) for the definition of the lift and the first displayed formula
in Section 10 for the definition of the number N .) We can compute the lift in two
ways. First, since by our assumption σ is strongly negative, we have the following:

(11-10) τ � ×(l,χ)∈Jord(σ)〈[−
l − 1

2
,
l − 1

2
](χ)〉.
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Also, since σ is the limit of the sequence (σm)m∈Z>0
, it is an irreducible subquotient

of the induced representation given by (11-7). Therefore, we obtain the following:

τ is the unique unramified irreducible subquotient of

×a
i=1〈[−

li − 1

2
,
li − 1

2
](ν

αiχi)〉 ×b
i=1 〈[−

ki − 1

2
,
ki − 1

2
](μi)〉×

×(l′,χ′)∈Jord(σsn)〈[−
l′ − 1

2
,
l′ − 1

2
](χ

′)〉×

×a
i=1〈[−

li − 1

2
,
li − 1

2
](ν

−αiχ−1
i )〉 ×b

j=1 〈[−
ki − 1

2
,
ki − 1

2
](μ

−1
i )〉.

(11-11)

Now, since only χ ∈ {1F× , sgnu} appears in (11-10), we see that

χ1, . . . , χa, μ1, . . . , μb ∈ {1F× , sgnu}.

Likewise, we have α1, . . . , αa ∈ 1
2Z. Since limm α

(m)
i = αi and α

(m)
i ∈]0, 1[ (see

Definition 5-13), we see that

if a > 0, then α1, . . . , αa ∈ {0, 1
2
, 1}, χ1, . . . , χa ∈ {1F× , sgnu}

if b > 0, then μ1, . . . , μb ∈ {1F× , sgnu}.
(11-12)

Using this we analyse (11-11). First, we observe that the unique irreducible un-
ramified subquotient of

〈[− li − 1

2
,
li − 1

2
](ν

αiχi)〉 × 〈[− li − 1

2
,
li − 1

2
](ν

−αiχ−1
i )〉,

for αi =
1
2 is

〈[− li
2
,
li
2
](χi)〉 × 〈[− li − 2

2
,
li − 2

2
](χi)〉.

Next, we observe that the unique irreducible unramified subquotient of

〈[− li − 1

2
,
li − 1

2
](ν

αiχi)〉 × 〈[− li − 1

2
,
li − 1

2
](ν

−αiχ−1
i )〉,

for αi = 1 is {
〈[− li+1

2 , li+1
2 ](χi)〉 × 〈[− li−3

2 , li−3
2 ](χi)〉; li ≥ 2

νχi × ν−1χi; li = 1.

Therefore, (11-11) implies that τ is an irreducible subquotient of

×i, αi=0 〈[−
li − 1

2
,
li − 1

2
](χi)〉 × 〈[− li − 1

2
,
li − 1

2
](χi)〉×

×i, αi=
1
2
〈[− li

2
,
li
2
](χi)〉 × 〈[− li − 2

2
,
li − 2

2
](χi)〉×

×i, αi=1, li≥2 〈[−
li + 1

2
,
li + 1

2
](χi)〉 × 〈[− li − 3

2
,
li − 3

2
](χi)〉×

×b
i=1 〈[−

ki − 1

2
,
ki − 1

2
](μi)〉 × 〈[−ki − 1

2
,
ki − 1

2
](μi)〉

×(l′,χ′)∈Jord(σsn) 〈[−
l′ − 1

2
,
l′ − 1

2
](χ

′)〉×

×i, αi=1, li=1 νχi × ν−1χi.

(11-13)
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We show that there is no i such that αi = 1 and li = 1. If this is not the case, then
(11-10) and (11-13) imply that (3, χi) ∈ Jord(σ) for some i such that αi = 1 and
li = 1. This contradicts (2) of Theorem 11-3. Now, we have that τ is isomorphic to

×i, αi=0 〈[−
li − 1

2
,
li − 1

2
](χi)〉 × 〈[− li − 1

2
,
li − 1

2
](χi)〉×

×i, αi=
1
2
〈[− li

2
,
li
2
](χi)〉 × 〈[− li − 2

2
,
li − 2

2
](χi)〉×

×i, αi=1, li≥2 〈[−
li + 1

2
,
li + 1

2
](χi)〉 × 〈[− li − 3

2
,
li − 3

2
](χi)〉×

×b
i=1 〈[−

ki − 1

2
,
ki − 1

2
](μi)〉 × 〈[−ki − 1

2
,
ki − 1

2
](μi)〉

×(l′,χ′)∈Jord(σsn) 〈[−
l′ − 1

2
,
l′ − 1

2
](χ

′)〉.

(11-14)

Since Jord(σ) is a set (see Theorem 5-8), we see that (11-10) and (11-14) imply
that b = 0 and there is no i such that αi = 0. Thus, we see that τ is isomorphic to

×i, αi=
1
2
〈[− li

2
,
li
2
](χi)〉 × 〈[− li − 2

2
,
li − 2

2
](χi)〉×

×i, αi=1, li≥2 〈[−
li + 1

2
,
li + 1

2
](χi)〉 × 〈[− li − 3

2
,
li − 3

2
](χi)〉×

×(l′,χ′)∈Jord(σsn) 〈[−
l′ − 1

2
,
l′ − 1

2
](χ

′)〉.

If there is an i such that αi =
1
2 , then (li+1, χi) ∈ Jord(σ) and (li−1, χi) ∈ Jord(σ)

(li ≥ 2). Now, if li = 1, then (2, χi) ∈ Jord(σ). This contradicts (2) of Theorem
11-3. On the other hand, if li ≥ 2, then (li ± 1, χi) ∈ Jord(σ). Clearly, if we put
a = li + 1, then a− = li − 1. Hence a − a− = 2. This contradicts (1) of Theorem
11-3. Thus, we see that τ is isomorphic to

(11-15) ×i, αi=1, li≥2 〈[−
li + 1

2
,
li + 1

2
](χi)〉 × 〈[− li − 3

2
,
li − 3

2
](χi)〉×

×(l′,χ′)∈Jord(σsn) 〈[−
l′ − 1

2
,
l′ − 1

2
](χ

′)〉.

To complete the proof we need to show that there is no i such that αi = 1 and
li ≥ 2. Assume that this is not the case. Let us fix some i0 such that αi0 = 1 and
li0 ≥ 2. Then, (11-15) implies that

(11-16) (li0 + 2, χi0) ∈ Jord(σ)

and

σm � ×i, αi=1, li≥2〈[−
li − 1

2
,
li − 1

2
](ν

α
(m)
i χ

(m)
i )〉� σsn, for all m > 0.

Since limm α
(m)
i = αi = 1, we may assume that α

(m)
i ∈ ] 12 , 1[. Then, since σm

is unitary, Theorem 5-14 implies that e(m)(li0 , χ
(m)
i0

) satisfies Definition 5-13 (3).

In particular, χ
(m)
i0

(�) = −1. Now, limm χ
(m)
i0

(�) = χi0(�) implies that we have

χ
(m)
i0

= χi0 for all m > 0. Next, according to Definition 5-13 (3) (a) (applied to any
σm) we have the two cases.
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Assume (li0 , χ
(m)
i0

) ∈ Jord(σsn). Then (11-15) implies that (li0 , χi0) ∈ Jord(σ).
If we put a = li0 + 2 and apply (11-16), then we obtain that a− = li0 . This
contradicts (1) of Theorem 11-3.

Assume (li0 , χ
(m)
i0

) 
∈ Jord(σsn). Then, according to Definition 5-13 (3) (a)

(applied to any σm), there must exist i 
= i0 such that li = li0 , χi = χi0 = χ
(m)
i0

=

χ
(m)
i , and α

(m)
i ∈ e(m)(li0 , χ

(m)
i0

). Hence li = li0 , χi = χi0 , and αi = αi0 = 1.
Then (11-15) and (11-16) imply that (li0 + 2, χi0) appears twice in Jord(σ). This
contradicts the fact that Jord(σ) is a set. (See Theorem 5-8.) �

12. Examples

In this section we give examples of our algorithm presented in Section 10. We
use the notation introduced there. In particular, when we speak about steps we
mean the steps of the algorithm in Section 10. We begin by the following remark:

Remark 12-1. Suppose we consider a representation

(12-2) σ = σG(χ1, . . . , χn).

Let χ be a unitary (unramified) character such that χ = χu
i for some index i.

Consider the subsequence ϕ1, . . . , ϕm of χ1, . . . , χn formed by χi for which χu
i ∈

{χ, χ−1}, and the representation

(12-3) σG(ϕ1, . . . , ϕm).

From the classification theorem (see Theorem 5-14 and Definition 5-13) it is clear
that if (12-2) is unitarizable, then (12-3) is unitarizable. The converse also holds:
if (12-3) is unitarizable for all χ as above, then (12-2) is unitarizable.

Therefore, it is enough to understand how the algorithm works in the case that
all χu

i belong to one {χ, χ−1}. We consider below only such examples.

A. First consider the easy case: χ 
= χ−1, i.e., χ 
∈ {1F× , sgnu}. In this group
of examples we always assume that G is not a symplectic group. (If one adds the
segment {1F×} in the multiset η, then one would obtain examples for symplectic
groups.)

12.1. Example. Look at σ = σG(χ, νχ). Now, steps 1 and 2 give

η = {[0, 1](χ), [−1, 0](χ
−1)} = {[−1

2
,
1

2
](

1
2χ), [−1

2
,
1

2
](−

1
2χ

−1)}.

Step 3 is not executed here. In step 4, ηnsd,+ = {[− 1
2 ,

1
2 ]

( 1
2χ)}. Since 1/2 ≥ 1/2, σ

is not unitarizable.

12.2. Example. Look at σ = σG(χ, νχ, νχ−1). Now, steps 1 and 2 give

η = {[−1, 1](χ), [−1, 1](χ
−1)}.

In step 3 we have Jord = {(3, χ) (3, χ−1)}, ηnsd,unit = {[−1, 1](χ), [−1, 1](χ
−1)}, and

the new η is η − ηnsd,unit. The steps 4–8 are not executed for the new η (since it
is empty). Step 9 sends us directly to step 10. Step 10 implies that σ is negative
(therefore unitarizable) with Jord(σ) = {(3, χ) (3, χ−1)} (and e = ∅).
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12.3. Example. Look at σ = σG(ν−1/4χ, ν3/4χ). Now, steps 1 and 2 give

η = {[−1/4, 3/4](χ), [−3/4, 1/4](χ
−1)} = {[−1

2
,
1

2
](

1
4χ), [−1

2
,
1

2
](−

1
4χ

−1)}.

Step 3 is not executed. In step 4 we have ηnsd,+ = {[− 1
2 ,

1
2 ]

( 1
4χ)} Now, we have a

non-unitarizability since the Hermitian condition is not satisfied: ηnsd,+ 
= η̄nsd,+.
(The exponents are < 1/2.)

B. Now, consider the case χ = χ−1. This means χ ∈ {1F× , sgnu}. We shall
deal with χ through the constant αχ ∈ {0, 1

2 , 1} defined in Definition 5-2. We

write every χi (uniquely) in the form νe(χi)χ where e(χi) ∈ R, and instead of
assigning σ = σG(χ1, . . . , χn), we assign the sequence of exponents e(χ1), . . . , e(χn).
(Repeated exponents as in the sequence 1, 1, 1, 2, 2, 3 shall be written as follows:

1(3), 2(2), 3.) In what follows [a, b] means [a, b](χ) = [− b−a
2 , b−a

2 ](ν
a+b
2 χ). We shall

start with simple examples.

12.4. Example. We consider the exponents 1, 2. Let αχ = 1/2. Then σ is a
representation of SO(5, F ). Now, step 2 gives η = {[−2,−1], [1, 2]}. Now, step 6 is
relevant and it implies [1, 2] ∈ ηsd,{0,1},+. Since

1+2
2 ≥ 1, σ is not unitarizable.

12.5. Example. We consider the exponents 1, 2. Let αχ = 0. Now, step 2
gives η = {[−2,−1], [1, 2], . . .}. (In addition to the displayed segments, one needs
to include {1F×} if G = Sp(4, F ); in which case χ = sgnu.) Now, step 5 is relevant
and it implies [1, 2] ∈ ηsd, 12 ,+. Since

1+2
2 ≥ 1/2, σ is not unitarizable.

12.6. Example. We consider the exponents 1, 2. Consider αχ = 1. (Then
σ is a representation of Sp(4, F ) and χ = 1F× ; see Definition 5-2). Step 2 gives
η = {[−2, 2]}. Since (5− 1)/2 = 2 and 5− (2αχ+1) = 2 ∈ 2Z, step 7 is relevant. It
implies Jord = {(5,1F×)}. We remove [−2, 2] from η and proceed further to step
9. Step 9 takes us to step 10. Step 10 shows that σ is (strongly) negative.

12.7. Example. We consider the exponents 1/2, 3/2. We assume that σ is a
representation of O(4, F ). Then αχ = 0. Now step 2 gives η = {[−3/2, 3/2]}. Since
(4 − 1) = 3/2 and 4 − (2αχ + 1) = 3 
∈ 2Z, we proceed to step 8. Since 4 ≥ 3, we
see that σ is not unitarizable by (c) of (ii) in step 8.

12.8. Example. We consider the exponents 1/2, 3/2. Consider αχ = 1/2.
Then σ is a representation of SO(5, F ). Again step 2 gives η = {[−3/2, 3/2]}. Since
(4− 1) = 3/2 and 4− (2αχ +1) = 2 ∈ 2Z, we proceed to step 7. We remove [−2, 2]
from η and proceed further to step 9. Step 9 takes us to step 10. Step 10 shows
that σ is (strongly) negative.

12.9. Example. We consider the exponents 1/2, 3/2. Consider αχ = 1. Then
σ is a representation of Sp(4, F ) and χ = 1F× . Step 2 gives η = {[−3/2, 3/2], [0, 0]}.
Step 7 will put (1,1F×) in Jord, but we get non-unitarizability from (c) of (ii) in
step 8 (applied to Δ = [−3/2, 3/2]).

Now come some slightly more complicated examples.
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12.10. Example. We consider the exponents 0(4), 1(5), 2(3), 3. Then n = 4 +
5+3+1 = 13. We assume that σ is a representation of O(26, F ) or SO(27, F ). We
perform step 2

characters of σGL η

− 3,−2(3),−1(5), 0(8), 1(5), 2(3), 3 ∅
− 2(2),−1(4), 0(7), 1(4), 2(2) [−3, 3]

− 2,−1(3), 0(6), 1(3), 2 [−3, 3], [−2, 2]

− 1(2), 0(5), 1(2) [−3, 3], 2 · [−2, 2]

− 1, 0(4), 1 [−3, 3], 2 · [−2, 2], [−1, 1]

0(3) [−3, 3], 2 · [−2, 2], 2 · [−1, 1]

∅ [−3, 3], 2 · [−2, 2], 2 · [−1, 1], 3 · [0, 0].
Consider first αχ = 0. Then σ is a representation of O(26, F ). Now, step 7

gives Jord = {(7, χ), 2 · (5, χ), 2 · (3, χ), (1, χ)} and e = ∅. We proceed to step 10.
The representation σ is a negative representation attached to Jord.

Now consider reducibility at αχ = 1/2. Then σ is a representation of SO(27, F ).
Now, step 8 is relevant. In the first iteration of step 8 the largest possible l is
l = 2 · 3 + 1 = 7 and the corresponding Δ is Δ = [−3, 3]. We apply (ii) (c), to see
that σ is not unitarizable.

12.11. Example. Consider the exponents 0(6), 1(8), 2(3), 3(2), 4. Let n = 6 +
8+3+2+1 = 20. Assume that σ is a representation of SO(41, F ). Then αχ = 1/2.
As in the previous example, step 2 gives

η = {[−4, 4], [−3, 3], [−2, 2], 5 · [−1, 1], 4 · [0, 0]}.
Applying step 8 (ii) (c) twice and step 8 (i) twice, we obtain

e = {(8, χ, 1/2), (4, χ, 1/2)}, Jord = {4 · [−1, 1], 4 · [0, 0]}.
We proceed directly to step 10. We obtain unitarizability.

12.12. Example. Consider the exponents 1/4, 4/6 and 5/6. Let n = 1+ 1+
1 = 3. Assume that σ is a representation of Sp(6, F ). Let χ = 1F× . Then αχ = 1.
Step 2 gives the multiset

η = {[−1/4,−1/4], [−4/6,−4/6], [−5/6,−5/6], [0, 0], [1/4, 1/4], [4/6, 4/6], [5/6, 5/6]}.
Now, step 6 implies

e = {(1, χ, 1/4), (1, χ, 4/6), (1, χ, 5/6)}.
Next, step 7 implies Jord = {(1, χ)}. Step 10 implies unitarizability.
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(2004), 49-54.

[Bn] D. Ban, Linear indepedence of intertwining operators, J. Algebra 271 (2004), 749-767.



UNRAMIFIED UNITARY DUALS FOR SPLIT CLASSICAL p–ADIC GROUPS 437

[Bb] D. Barbasch, The unitary spherical spectrum for split classical groups, J. Inst. Math.
Jussieu 9 (2010), 265–356.

[BbMo] D. Barbasch, A. Moy, A unitary criterion for p-adic groups, Invent. Math. 98 (1989),
19-37.

[BbMo1] D. Barbasch, A. Moy, Reduction to real infinitensimal character in affine Hecke alge-
bras, J. Amer. Math. Soc. 6, (1993), 611-635.

[BbMo2] D. Barbasch, A. Moy, Unitary spherical spectrum for p-adic classical groups. Repre-

sentations of Lie groups, Lie algebras and their quantum analogues, Acta Appl. Math.
44 (1996), no. 1-2, 3–37.

[Bu] D. Baruch, A proof of Kirillov’s conjecture, Ann. of Math. (2) 158 (2003), no. 1,
207–252.

[BeDeK] J. Bernstein, P. Deligne, D. Kazhdan, Trace Paley-Wiener theorem for reductive p-adic
groups, J. Analyse Math. 47 (1986), 180-192.
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[M6] G. Muić, On Certain Classes of Unitary Representations for Split Classical Groups,

Canad. J. Math. 59 (2007), 148–185.
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Parametrization of Tame Supercuspidal Representations
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This paper is dedicated to Freydoon Shahidi on the occasion of his 60th birthday.

Abstract. Let G be a connected reductive p-adic group that splits over a
tamely ramified extension. We describe a parametrization of the equivalence
classes of tame supercuspidal representations of G which is valid subject to
mild hypotheses. Certain of these equivalence classes are parametrized by
G-conjugates of quasicharacters of elliptic maximal tori in G. We adapt the
parametrization to obtain a parametrization of the equivalence classes of self-
contragredient tame supercuspidal representations. Finally, we discuss how
some features of the parametrization are reflected in properties of the charac-
ters of the representations.

1. Introduction

Let F be a nonarchimedean local field, and let G be a connected reductive
F -group. Throughout this paper, we assume that G splits over a tamely ramified
extension of F . Under this assumption, the results of [Y] give a construction of irre-
ducible supercuspidal representations of the group G = G(F ) of F -rational points
of G. We will refer to these representations as tame supercuspidal representations.
In general, there exist supercuspidal representations of G that are not tame (see, for
example, [BK] and [S]). However, as shown in [K], if G satisfies some additional
tameness hypotheses, then all irreducible supercuspidal representations of G are
tame.

The construction of [Y] begins with the definition of collections of data which in
this paper we refer to as (reduced) cuspidal G-data (see Section 8). Yu associates a
family of irreducible supercuspidal representations of G to each cuspidal G-datum.
He proves that all of the representations in each such family belong to the same
equivalence class, thereby obtaining a map from the set of cuspidal G-data to the
set of equivalence classes of supercuspidal representations of G. This map is not
one-to-one, and the problem of determining criteria that detect when two distinct
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G-data give rise to the same equivalence class of representations is not addressed
in [Y].

In [HM], Hakim and the author define an equivalence relation on the set of
cuspidal G-data and, subject to certain hypotheses (concerning the behaviour of
quasicharacters of twisted Levi subgroups of G), we prove that two cuspidal G-
data are equivalent if and only if the corresponding equivalence classes of tame
supercuspidal representations coincide. In this paper, we describe (see Theorem 9.1)
a parametrization of the (equivalence classes of) tame supercuspidal representations
which is obtained from the equivalence relation on cuspidal G-data.

A cuspidal G-datum comprises several parts. One part is an irreducible depth
zero supercuspidal representation π′ of G′ = G′(F ), where G′ is an elliptic tamely
ramified twisted Levi subgroup of G. Other parts of the G-datum include a tamely

ramified twisted Levi sequence �G in G, having the property that the first group

in the sequence is G′, along with a sequence �φ of quasicharacters of the F -rational

points of the various groups occurring in �G. These quasicharacters are required to
satisfy several conditions which we do not specify here. The reader may refer to
Definition 8.2 for more information about the conditions on the quasicharacters in
�φ and other ingredients of a cuspidal G-datum. We may define a quasicharacter φ

of G′ by taking the product of the restrictions to G′ of the quasicharacters in �φ.
Thus, to each cuspidal G-datum, we associate a triple of the form (G′, π′, φ), where
G′ and π′ are as above, and φ is a quasicharacter of G′. As discussed below, when
G′ �= G, some quasicharacters of G′ do not occur in triples that are associated to
cuspidal G-data.

We define an equivalence relation on the set of triples (G′, π′, φ), where φ is
an arbitrary quasicharacter of G′, and G′ is a (not necessarily elliptic) twisted

Levi subgroup of G, by declaring that if Ġ = g−1G′g for some g ∈ G, and the
representations π′φ and g(π̇φ̇) are equivalent representations of G′, then (Ġ, π̇, φ̇)
is G-equivalent to (G′, π′, φ). (Here the element g is conjugating the representation

π̇φ̇ of Ġ to a representation g(π̇φ̇) of G′ - see Section 2.) The equivalence relation on
cuspidalG-data is defined in such a way that the triples associated to the elements of
an equivalence class of cuspidal G-data comprise one G-equivalence class of triples.
Therefore, results of [HM] (stated in Theorem 8.7) tell us that the equivalence
classes of tame supercuspidal representations of G correspond to the G-equivalence
classes of triples that are associated to cuspidal G-data.

Because of the properties of cuspidal G-data, the quasicharacters φ that occur
in triples which are associated to cuspidal G-data must have specific properties.
In particular, each such quasicharacter φ must be G-factorizable in the sense of
Definitions 5.1 and 5.3 and G-regular on G′

0+ in the sense of Definition 6.1. In this
case, φ can be factorized in different ways. However, as shown in Proposition 5.4,
any two factorizations are related in a specific manner. As indicated in Lemma 8.9,
each of these factorizations can be used, along with π′, to produce a cuspidal G-
datum that maps to the triple (G′, π′, φ).

If the equivalence class of a tame supercuspidal representation corresponds to
the equivalence class of a triple where G′ = T is a maximal torus in G, we say that
the representation is toral. In this case, T is elliptic, that is, T is compact modulo
the centre of G. As stated in Corollary 9.4, the toral supercuspidal representations
of G, up to equivalence, G can be parametrized by pairs (T, φ), up to G-conjugacy,
where T runs over the conjugacy classes of tamely ramified elliptic maximal tori
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in G, and φ varies over the set of G-factorizable quasicharacters of T that are
G-regular on T0+ .

In the first part of Section 10 (see Proposition 10.8 and Corollary 10.10), using
the theory of Deligne-Lusztig representations of finite groups of Lie type, we de-
scribe a parametrization of some classes of depth zero supercuspidal representations
in terms of orbits of certain depth zero quasicharacters of elliptic maximal tori. In
the second part of the section (see Theorem 10.13), we apply Corollary 10.10 and
Theorem 9.1 to parametrize some more equivalence classes of tame supercuspidals
in terms of orbits of certain quasicharacters of tamely ramified elliptic maximal
tori. Except when G is a general linear group, these classes of tame supercuspidal
representations do not exhaust the classes of tame supercuspidal representations.

When F has characteristic zero, Howe ([H]) parametrized the equivalence
classes of tame supercuspidal representations of general linear groups in terms
of equivalence classes of F -admissible quasicharacters of multiplicative groups of
tamely ramified extensions of F . Howe’s parametrization may be viewed as a cor-
respondence between the equivalence classes of tame supercuspidal representations
of general linear groups and the conjugacy classes of particular kinds of quasichar-
acters of elliptic maximal tori. In Section 11, we describe the relation between
Howe’s parametrization and the parametrization of Theorem 9.1 (as it applies to
general linear groups).

As shown in Section 12, the equivalence classes of self-contragredient tame
supercuspidal representations are parametrized by equivalence classes that contain
triples of a particular form. If π is self-contragredient, then either π has depth zero,
or π corresponds to a triple (G′, π′, φ) having the following property: there exists g ∈
G such that g normalizes G′, g /∈ G′, g2 ∈ G′, gφ = φ−1, and gπ′ is equivalent to the
contragredient of π′. If π is a self-contragredient toral supercuspidal representation,
then the pair (T, φ) of Corollary 9.4 may be chosen so that gφ = φ−1 for some g
such that g normalizes T and g2 ∈ T .

Suppose that (G′, π′, φ) is a triple whose equivalence class parametrizes the
equivalence class of a tame supercuspidal representation π. In Section 13, we discuss
results that use properties of φ to describe aspects of the behaviour of the character
Θπ of π. We also discuss some cases in which properties of Θπ may be obtained
from properties of π′.

The author thanks the referee for detailed comments on the paper.

2. Basic notation

Let F be a nonarchimedean local field, with residue field f. In order to be able
to apply some results from [HM] and [Y], we assume that the characteristic of f is
odd. We normalize the valuation ν on F so that ν(F×) = Z. Let G be a connected
reductive group defined over F , and let g be the Lie algebra of G. The notation
G = G(F ) and g = g(F ) will be used to denote the F -rational points of G and g,
respectively.

Let B(G) = B(G, F ) be the (extended) Bruhat-Tits building of G. As in
[MP1], we can associate to any point x in B(G) a parahoric subgroup Gx,0 of G
and a filtration {Gx,r | r ∈ R, r ≥ 0 } of the parahoric, together with a filtration
{ gx,r | r ∈ R } of the Lie algebra g. We remark that the indexing of these filtrations
depends on the choice of valuation ν. With our choice of valuation ν, if � is a prime
element in F , we have �gx,r = gx,r+1 for all x ∈ B(G), and all r ∈ R. If r ∈ R and
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x ∈ B(G), set gx,r+ =
⋃

s>r gx,s and, if r ≥ 0, Gx,r+ =
⋃

s>r Gx,s. If r ≥ 0, let
Gr =

⋃
x∈B(G) Gx,r and Gr+ =

⋃
x∈B(G) Gx,r+ .

Moy and Prasad also define lattices { g∗x,r | r ∈ R } in the dual g∗ of g, as
follows:

g∗x,r = {X∗ ∈ g∗ | X∗(gx,(−r)+) ⊂ p },
where p is the maximal ideal in the ring of integers of F . Set g∗x,r+ =

⋃
s>r g∗x,s.

From this point onward, we assume that G splits over a tamely ramified exten-
sion of F . The centre of G will be denoted by Z and its Lie algebra by z. Whenever
convenient, we identify the dual z∗ of z = z(F ) with the subspace of g∗ consisting of
those elements that are invariant under the co-adjoint action Ad∗ of G on g∗. There
are filtrations on z and z∗ which have the property that, if r ∈ R, then zr = z∩gx,r,
and z∗r = z∗∩ g∗x,r, for any point x ∈ B(G). Set zr+ = z∩ gx,r+ and z∗r+ = z∗∩ g∗x,r+ .

If x ∈ B(G), r ∈ R, r > 0, and s = r/2, we have an isomorphism

e = ex,r : gx,s+/gx,r+ → Gx,s+/Gx,r+

of abelian groups (see Lemma 1.3 and Corollary 2.4 of [Y]).
Let Λ be a character of F that is nontrivial on the ring of integers of F and

trivial on the maximal ideal p.

Definition 2.1. If r > 0, s = r/2, x ∈ B(G), and S is a subgroup of Gx,s+ that
contains Gx,r+ , let s be the lattice in gx,s+ such that s ⊃ gx,r+ and e(s/gx,r+) =
S/Gx,r+ . An element X∗ ∈ g∗x,−r defines a character of S/Gx,r+ , hence of S, as
follows:

e(Y + gx,r+) 	→ Λ(X∗(Y )), Y ∈ s.

We say that the element X∗ of g∗x,−r realizes this character of S.

If H is a subgroup of G and g ∈ G, let gH = gHg−1. If τ is a representation
of H, we define a representation gτ of gH by setting gτ (g0) = τ (g−1g0g), g0 ∈ gH.
We denote the normalizer of H in G by NG(H).

We will use the notation τ1 
 τ2 to indicate equivalence of two representations
τ1 and τ2 of H. If τ and χ are representations of H and χ is one-dimensional, we
will use the notation τχ for the twist of τ by χ: (τχ)(h) = χ(h)τ (h), h ∈ H.

If K is an open subgroup of G that contains Z, the quotient K/Z is compact,
and ρ is an irreducible smooth representation ofK, the representation of G obtained
via compact induction from ρ will be denoted by IndG

Kρ.

3. Twisted Levi subgroups and Levi sequences

Definition 3.1. Suppose that G′ is an E-Levi F -subgroup of G for some finite
extension E of F . Such a group will be called a twisted Levi subgroup of G.

If we can choose E to be tamely ramified over F , then we say that G′ is tamely
ramified. If the centre Z′ of G′ has the property that Z′/Z is F -anistropic, we say
that G′ is elliptic.

If G′ is a twisted Levi subgroup of G, we will refer to the group G′ = G′(F ) as
a twisted Levi subgroup of G. We will refer to G′ as elliptic whenever G′ is elliptic.

Note that the elliptic twisted Levi subgroups of G are the twisted Levi sub-
groups that do not lie in proper F -Levi subgroups of G. Suppose that E is a finite
tamely ramified extension of F and G′ is the stabilizer in G of a semisimple ele-
ment in g that lies in the F -rational points of the Lie algebra of an F -torus that
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splits over E. As shown in Lemma 2.4 of [K], G′ is a tamely ramified twisted Levi
subgroup of G.

Let G′ be a tamely ramified twisted Levi subgroup of G. Let g′ and z′ be the
Lie algebras of G′ and Z′, respectively. Following the same notational conventions
as for G and g, let g′ = g′(F ), z′ = z′(F ), and Z ′ = Z′(F ). There is a natural
family of embeddings of the building B(G′) of G′ into B(G). Although there is not
a canonical way to distinguish one member of the family, all of the embeddings
have the same image. Identifying x ∈ B(G′) with its image under any of these
embeddings, we have G′

x,r = Gx,r ∩G′ for r > 0 and g′x,r = gx,r ∩g′ for r ∈ R, with

analogous equalities when r is replaced by r+. If we identify g′ ∗ with the Ad∗ Z ′-
fixed elements in g∗, we have g′ ∗x,r = gx,r ∩ g′ ∗, and similarly when r+ replaces
r.

Definition 3.2. A sequence �G = (G0, . . . ,Gd) of connected reductive F -
subgroups of G is a twisted Levi sequence in G if

G0 � G1 � · · · � Gd = G

and there exists a finite extension E of F such that G0⊗E splits over E and Gi⊗E
is a Levi subgroup (that is, an E-Levi subgroup) of G ⊗ E for 0 ≤ i ≤ d. If E

can be chosen to be chosen to be tamely ramified over F , we say that �G is tamely
ramified.

4. Quasicharacters

We refer to a smooth one-dimensional representation of a totally disconnected
group as a quasicharacter of the group. The notation 1 will be used for the trivial
character.

Recall from Section 2.6 of [HM] that the depth of a quasicharacter φ of G (that
is, the Moy-Prasad depth of φ as a smooth irreducible representation of G) can be
characterized as follows:

Definition 4.1. The depth of a quasicharacter φ of G is the smallest nonneg-
ative real number r that satisfies any of the following equivalent conditions:

(1) φ |Gx,r+ ≡ 1 for some x ∈ B(G),
(2) φ |Gx,r+ ≡ 1 for all x ∈ B(G),
(3) φ |Gr+ ≡ 1.

Hypothesis C(G). Let φ be a quasicharacter of G of positive depth r. If
x ∈ B(G), then φ |Gx,(r/2)+ is realized by an element of z∗−r.

We are not assuming Hypothesis C(G) at this point. Later in the paper, in
order to apply results of [HM], we will need to assume Hypothesis C(G′) for various
tamely ramified twisted Levi subgroups G′ of G. We remark that Hypothesis C(G)
holds when G is a general linear group (see Lemma 2.50 of [HM]).

For some results, we will only need the following weaker hypothesis.

Hypothesis C(G)w. Let φ be a quasicharacter of G of positive depth r. If
x ∈ B(G), then φ |Gx,r is realized by an element of z∗−r.

Lemma 4.2. (Lemma 2.51 of [HM]) Let φ be a quasicharacter of G of positive
depth r. Let x, y ∈ B(G). Suppose that Γx, Γy ∈ z∗−r realize φ |Gx,r and φ |Gy,r,
respectively. Then Γx − Γy ∈ z∗(−r)+.
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Throughout the rest of this section, we assume that G′ is a tamely ramified
twisted Levi subgroup of G. In some situations, we will need to assume the above
hypothesis for twisted Levi subgroups of G that contain G′.

Hypothesis C(G′
)
+
w. Hypothesis C(Ġ)w holds for all twisted Levi subgroups

Ġ of G that contain G′.

Let z′ be the Lie algebra of the centre of G′, and let z′ ∗ be the dual of z′.

Definition 4.3. Let Γ ∈ z′ ∗−r. We say that Γ is G-generic of depth −r if it is
G-generic of depth r in the sense of [Y].

The reason for our convention regarding depth is as follows. After the publi-
cation of [Y], the notion of depth for nonnilpotent elements of Lie algebras (which
has an obvious analogue for elements of the duals of Lie algebras) was defined in
[AD1]. Relative to the latter notion of depth, an element Γ as in Definition 4.3
has depth −r, because Γ ∈ z′ ∗−r \ z′ ∗(−r)+ .

The key property of G-generic elements that we will use is stated in Lemma 4.4.
This is Lemma 5.16 of [HM]. The proof of the lemma uses Lemma 8.3 of [Y] and
does not require the hypotheses assumed in [HM]. Under weak hypotheses, as in
[AR], the lemma can be obtained from Proposition 7.5 of [AR] (see Lemmas 2.2.4
and 2.3.6 of [KM1]).

Lemma 4.4. Let t ∈ R, and let Γ ∈ z′ ∗t be a G-generic element of depth t. Then

G′ = { g ∈ G | Ad∗(g)(Γ + g
′ ∗
t+) ∩ (Γ + g

′ ∗
t+) �= ∅ }.

Definition 4.5. Let x ∈ B(G′). A quasicharacter φ of G′ which is of positive
depth r is said to be G-generic relative to x if φ |G′

x,r is realized by a G-generic
element Γ ∈ z′ ∗ of depth −r.

As shown in Lemma 4.7, whenever Hypothesis C(G′)w is satisfied, then gener-
icity is independent of the point x. (See also Remark 9.1 of [Y].)

Lemma 4.6. (Lemma 5.18 of [HM]) Let (G′,G�,G) and (G′,G�,G) be tamely
ramified twisted Levi sequences in G. Let φ� and φ� be quasicharacters of G� and
G�, respectively. Let x�, x� ∈ B(G′). Suppose that φ� and φ� are G-generic of
depth r relative to x� and x�, respectively. If φ� and φ� agree on G′

x�,r ∩G′
x�,r

, then

G� = G�.

Lemma 4.7. Suppose that Hypothesis C(G′)w holds. Let φ be a quasicharacter
of G′ of positive depth r. Let x, y ∈ B(G′).

(1) An element Γ ∈ z′ ∗−r realizes φ |G′
x,r if and only if Γ also realizes φ |G′

y,r.
(2) The quasicharacter φ is G-generic relative to x if and only if φ is G-generic

relative to y.

Proof. First, let Γ ∈ z′ ∗−r, and assume that Γ realizes φ |G′
x,r. Accord-

ing to Hypothesis C(G′)w, there exists Γ′ ∈ z′ ∗−r that realizes φ |G′
y,r. Apply-

ing Lemma 4.2, we see that Γ − Γ′ ∈ z′ ∗(−r)+ . Since z′ ∗(−r)+ ⊂ g′ ∗y,(−r)+ , we have

Γ ∈ Γ′ + g′ ∗y,(−r)+ . Thus Γ realizes φ |G′
y,r.

Part (2) is a consequence of part (1). �
Definition 4.8. Suppose that Hypothesis C(G′)w holds. We say that a qua-

sicharacter φ of G′ of positive depth is G-generic if φ is G-generic relative to some
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(equivalently every) x ∈ B(G′). If Γ ∈ z′ ∗−r realizes φ |G′
x,r for all x ∈ B(G′), we say

that Γ realizes φ on G′
r.

Lemma 4.9. Assume that Hypothesis C(G)w holds. Suppose that G′ �= G. Let
χ be a quasicharacter of G and let r ∈ R be such that r > 0.

(1) The depth of χ |G′ is equal to the depth of χ.
(2) If Γ ∈ z′ ∗−r is G-generic of depth −r, then Γ + z∗−r consists of G-generic

elements of depth −r.
(3) Suppose that φ is a quasicharacter of G′ of depth r and φ is G-generic

relative to some x ∈ B(G′). If χ has depth at most r, then φ(χ |G′) has
depth r and is G-generic relative to x.

(4) Suppose that φ and x are as above. Then φ |G′
x,r cannot be of the form

χ̇ |G′
x,r for any quasicharacter χ̇ of G.

Proof. Let s be the depth of χ. Let x ∈ B(G′). If s > 0, since Hypoth-
esis C(G)w holds, there exists Γχ ∈ z∗−s that realizes χ |Gx,s. It follows from
Lemma 2.52 of [HM] that χ |G′ has depth s. If s = 0, then χ |Gx,0+ ≡ 1 and
G′

x,0+ = G′ ∩Gx,0+ , so we have χ |G′
x,0+ ≡ 1. This implies that the depth of χ |G′

is 0.
The second part is Lemma 4.21 of [HM].
For the third part, since φ is G-generic relative to x ∈ B(G′), there exists an

element Γ ∈ z′ ∗−r that is G-generic of depth −r and realizes φ |G′
x,r. If s < r, then

φχ |G′
x,r = φ |G′

x,r and part (3) follows in this case because the property of being
G-generic of depth r relative to x depends only on the values of the quasicharacter
on G′

x,r. If r = s, let Γχ be as above. Then Γ + Γχ belongs to Γ + z∗−r and realizes
φχ |G′

x,r. According to part (2), Γ + Γχ is G-generic of depth −r. Thus φ(χ |G′)
is G-generic relative to x (and has depth r).

For the last part, suppose that χ̇ is a quasicharacter of G such that χ̇ |G′
x,r =

φ |G′
x,r. Note that, according to part (1), χ̇ has depth r. Applying part (3) to

φ(χ̇−1 |G′), we find that φ(χ̇−1 |G′) has depth r and therefore cannot be trivial on
G′

x,r. This contradicts our starting assumption. �

5. Factorizations of quasicharacters

As in the previous section, we assume that G′ is a tamely ramified twisted Levi
subgroup of G.

Definition 5.1. Let x ∈ B(G′). A quasicharacter φ of G′ is G-factorizable rel-

ative to x if there exist a tamely ramified twisted Levi sequence �G = (G0, . . . ,Gd =
G) and quasicharacters φ0, . . . , φd of G0, . . . , Gd, respectively, such that

(F1) G′ is a tamely ramified twisted Levi subgroup of G0.

(F2) φ |G′
0+ =

∏d
i=0(φi |G′

0+).
(F3) If d ≥ 1, then 0 < r0 < · · · < rd−1, where ri is the depth of φi, 0 ≤ i ≤

d− 1.
(F4) The quasicharacter φi of G

i is Gi+1-generic relative to x for 0 ≤ i ≤ d−1.
(F5) If d ≥ 1 and φd is nontrivial, then the depth rd of φd satisfies rd > rd−1.

If φ is G-factorizable relative to x, we set �φ = (φ0, . . . , φd) and we refer to (�G, �φ)
as a G-factorization of φ relative to x.
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Remark 5.2. Suppose that x ∈ B(G′) and there exists a factorization (�G, �φ)

of φ relative to x having the property that G0 = G′. Let χ = φ (
∏d

i=0 φ
−1
i |G0).

Condition (F2) says that χ has depth zero. Hence χφ0 |G0
r0 = φ0 |G0

r0 . If d >

0, then, because φ0 is G1-generic of depth r0 relative to x and this property is
determined by the restriction φ0 |G0

r0 = χφ0 |G0
r0 , we have that χφ0 |G0 is G1-

generic of depth r0 relative to x. Therefore, we may replace φ0 with χφ0 to produce
a factorization of φ for which the equality of Condition (F2) extends to G′ = G0.

If Hypothesis C(G′)+w holds, and x and y belong to B(G′), then Lemma 4.7(2)

tells us that a G-factorization (�G, �φ) of φ relative to x is a G-factorization of φ
relative to y, so the property of being G-factorizable is independent of the choice
of element in B(G′).

Definition 5.3. Assume that Hypothesis C(G′)+w holds. We say that a qua-
sicharacter φ of G′ is G-factorizable or factorizable if φ is G-factorizable relative to

some (equivalently every) x ∈ B(G′). A G-factorization (�G, �φ) of φ relative to a
point x ∈ B(G′) may also just be called a G-factorization or factorization of φ.

Suppose that Hypothesis C(G′)+w holds and (�G, �φ) is a factorization of a qua-
sicharacter φ of G′. Then, as described below, we can modify the quasicharacters

that appear in �φ to produce another G-factorization of φ. Lemma 5.4 shows that

all G-factorizations of φ can be obtained from (�G, �φ) in this way.

If d = 0, choose a quasicharacter φ̇0 of G such that φ̇0 |G′
0+ = φ0 |G′

0+ . If d > 0

and φd is trivial, set φ̇d = φd. If d > 0 and φd is nontrivial, choose a quasicharacter
φ̇d of G that agrees with φd on Gr+d−1

. If d − 1 > 0, choose a quasicharacter φ̇d−1

of Gd−1 such that

φ̇d−1 |Gd−1

r+d−2

= φd−1φdφ̇
−1
d |Gd−1

r+d−2

.

Continuing in this manner, choose quasicharacters φ̇d−2, φ̇d−3, . . . , φ̇1 of Gd−2,
Gd−3, . . . , G1, respectively, such that

φ̇i |Gi
r+i−1

= φi

d∏
j=i+1

φj φ̇
−1
j |Gi

r+i−1

for 1 ≤ i ≤ d− 1.

Finally, choose a quasicharacter φ̇0 of G0 such that

φ̇0 |G0
0+ = φ0

d∏
j=1

φj φ̇
−1
j |G0

0+ .

For 0 ≤ i ≤ d− 1, set

χi+1 =

d∏
j=i+1

φj φ̇
−1
j |Gi+1.

By construction, χi+1 has depth at most ri. For convenience of notation, set

r−1 = 0. Note that φ̇i |Gi
r+i−1

= φiχi+1 |Gi
r+i−1

. An application of Lemma 4.9(3)

shows that φ̇i is Gi+1-generic of depth ri. Let �̇φ = (φ̇0, . . . , φ̇d). Then (�G, �̇φ) is a
factorization of φ.
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Proposition 5.4. Assume that Hypothesis C(G′)+w holds. Suppose that (�G, �φ)

is a factorization of a quasicharacter φ of G′. If ( �̇G,
�̇φ) is another factorization of

φ, where �̇G = (Ġ0, . . . , Ġ� = G) and
�̇φ = (φ̇0, . . . , φ̇�), then

(1) d = 
, and Ġi = Gi, 0 ≤ i ≤ d.

(2) If ṙi is the depth of φ̇i, and 0 ≤ i ≤ d−1, then ṙi = ri. The quasicharacter

φ̇d is nontrivial if and only if φd is nontrivial, and in that case, the depth
ṙd of φ̇d equals rd.

(3) Set r−1 = 0. Then
∏d

j=i φj |Gi
r+i−1

=
∏d

j=i φ̇j |Gi
r+i−1

for 0 ≤ i ≤ d.

Proof. If φ |G′
0+ ≡ 1, then, by Definition 5.1(F5), each factorization of φ has

the form �G = (G) and �φ = (φ0), where φ0 is a quasicharacter of G of depth zero,
so clearly the proposition holds in this case. Therefore we assume that φ |G′

0+ is
nontrivial.
Case 1: Suppose that d = 0. Then �G = (G0) = (G) and �φ = (φ0), where φ0

is a quasicharacter of G such that φ0 |G′
0+ = φ |G′

0+ . Suppose that 
 > 0. Then

φ̇�−1 is a G-generic quasicharacter of Ġ�−1 of depth ṙ�−1. Set s = ṙ�−1. It follows

from Condition (F2) that φ0 |G′
s = φ̇�−1φ̇� |G′

s. Thus φ−1
0 φ̇�−1φ̇� |G′

s is trivial.

Applying Lemma 4.9(1), we have that the quasicharacter φ̇�−1(φ̇�φ
−1
0 | Ġ�−1) of

Ġ�−1 has depth less than s. But this implies φ̇�−1 | Ġ�−1
s = φ−1

0 φ̇� | Ġ�−1
s . According

to Lemma 4.9(4), this cannot happen, because φ̇�−1 has depth s and is G-generic.
Thus our assumption that 
 > 0 is false. Upon reversing the roles of d and 
, we
conclude that d = 0 if and only if 
 = 0. In this case, 
 = d = 0 and Ġ0 = G = G0,
and φ̇0 is a quasicharacter of G that agrees with φ on G′

0+ . Thus the depths

of the quasicharacters φ0 |G′, φ̇0 |G′ and φ are equal (as the restrictions of these

quasicharacters to G′
0+ coincide). Now Lemma 4.9(1) implies that φ0 and φ̇0 have

the same depth. Thus the proposition holds when d = 0.
Case 2: Assume that d > 0. The results above tell us that 
 > 0. Let u be the
depth of φd−1 and let s be the depth of φ̇�−1.

Suppose that u > s. From Definition 5.1(F3) and Lemma 4.9(1), we have that
u is greater than the depth of φi |G′ for 0 ≤ i ≤ d− 2. Similarly, as u > s, we find

that u is greater than the depth of φ̇i |G′ for 0 ≤ i ≤ 
− 1. This implies that

φ̇� |G′
u = φ |G′

u = φd−1φd |G′
u.

It now follows from Lemma 4.9(1) that the depth of φd−1(φdφ̇
−1
� |Gd−1) is less than

u. Hence φd−1 |Gd−1
u = φdφ̇

−1
� |Gd−1

u . However, an application of Lemma 4.9(4)
leads to a contradiction, as φd−1 has depth u and is G-generic. Thus u > s is
impossible. Reversing the roles of u and s, we find that s > u is also impossible.

We have shown that s = u. Note that

φ |G′
s+ = φd |G′

s+ = φ̇� |G′
s+ .

Thus the depth of φdφ̇
−1
� |G′ is at most s. An application of Lemma 4.9(1) gives

φd |Gs+ = φ̇� |Gs+ .

Note that this implies that the depth of φd is equal to the depth of φ̇�. Since
the depth of φ−1

d φ̇� is at most s, we may apply Lemma 4.9(3) to conclude that

φ̇�−1(φ̇�φ
−1
d | Ġ�−1) is G-generic of depth s.
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Next, observe that φd−1 |G′
s = φ̇�−1(φ̇�φ

−1
d ) |G′

s. If G
′ �= Ġ�−1 and G′ �= Gd−1,

then Lemma 4.6 implies that Ġ�−1 = Gd−1. If G′ = Ġ�−1 and G′ �= Gd−1, then we
have that the G-generic quasicharacter φ̇�−1 of G

′, of depth s, agrees on G′
s with the

quasicharacter φd−1(φdφ̇
−1
� |Gd−1) of Gd−1. By Lemma 4.9(4), this is impossible.

A similar argument gives a contradiction if G′ �= Ġ�−1 and G′ = Gd−1. Thus we
conclude that Gd−1 = Ġ�−1.

We have shown that (when d > 0) the depths of φd and φ̇� are equal. Fur-

thermore, Ġ�−1 = Gd−1 and the depths of φ̇�−1, φ̇�−1(φ̇�φ
−1
d |Gd−1) and φd−1

are equal. As we have proved the proposition in the case d = 0, we may ar-
gue by induction on d. The sequence (G0, . . . ,Gd−1) (in Gd−1) and the se-
quence of quasicharacters (φ0, . . . , φd−1) constitute a Gd−1-factorization of the
quasicharacter φ(φ−1

d |G′). We obtain another Gd−1-factorization of φ(φ−1
d |G′)

from the twisted Levi sequence (Ġ0, . . . , Ġ�−1 = Gd−1) together with the sequence

(φ̇0, . . . , φ̇�−2, φ̇�−1(φ̇�φ
−1
d |Gd−1)). By induction, we conclude that d − 1 = 
 − 1,

Ġi = Gi for 0 ≤ i ≤ d− 1, the depth ṙi of φ̇i equals ri for 0 ≤ i ≤ d− 2, and

d−1∏
j=i

φ̇j |Gi
r+i−1

=

⎛
⎝d−1∏

j=i

φ̇j |Gi
r+i−1

⎞
⎠ φ̇�φ

−1
d |Gi

r+i−1

, 0 ≤ i ≤ d− 1.

This is clearly equivalent to the last part of the statement of the proposition, except
for the case i = d. The latter case is implied by the equality of depths of φ̇d−1,

φ̇�−1(φ̇�φ
−1
d |Gd−1) and φ̇�−1 (which was shown above). �

Lemma 5.5. Assume that Hypothesis C(G′)+w holds. Let φ be a G-factorizable

quasicharacter of G′ and let (�G, �φ) be a factorization of φ (with notation as in

Definition 5.1). Let φ̇ be a quasicharacter of a twisted Levi subgroup Ġ of G such

that G′ ⊂ Ġ. If φ̇ |G′
r0 = φ |G′

r0 , then Ġ ⊂ G0.

Proof. If d = 0, then G0 = G, so there is nothing to show. Assume that d ≥ 1.

Suppose that φd is nontrivial. Then (�G, (φ0, . . . , φd−1,1)) is a G-factorization of the

quasicharacter φ(φ−1
d |G′), and φφ−1

d |G′
r0 = φ̇φ−1

d |G′
r0 . Therefore, after replacing

φ by φ(φ−1
d |G′) and φ̇ by φ̇(φ−1

d | Ġ), we may (and do) assume that φd is trivial.

Note that φ |G′
rd−1

= φd−1 |G′
rd−1

= φ̇ |G′
rd−1

. According to Lemma 4.9(1),

φd−1 |G′ has depth rd−1. Thus φ̇ |G′ also has depth rd−1. Applying Lemma 4.9(1)

again, we have that the depth of φ̇ is rd−1. Let ż be the Lie algebra of the centre

of Ġ. As we have assumed Hypothesis C(Ġ)w, there exists Γ̇ ∈ ż
∗
−rd−1

that realizes

φ̇ | Ġrd−1
. Let Γd−1 ∈ z

d−1 ∗
−rd−1

be a G-generic element of depth −rd−1 that realizes

φd−1 |Gd−1
rd−1

. Because φd−1 and φ̇ agree on G′
rd−1

, we have by Lemma 4.2 that

Γ̇ ∈ Γd−1 + z′ ∗(−rd−1)+
. Since z′ ∗(−rd−1)+

⊂ g
d−1 ∗
(−rd−1)+

and Ad∗(g)Γ̇ = Γ̇ for all g ∈ Ġ,

it follows that

Ad∗(g)(Γd−1 + g
d−1 ∗
(−rd−1)+

) ∩ (Γd−1 + g
d−1 ∗
(−rd−1)+

) �= ∅ ∀ g ∈ Ġ.

According to Lemma 4.4, Ġ ⊂ Gd−1. If d = 1, this completes the proof.
Suppose that d > 1. Let φ′ = φ(φ−1

d−1 |G′). Note that the twisted Levi se-

quence (G0, . . . ,Gd−1), together with the sequence (φ0, . . . , φd−2,1), is a Gd−1-

factorization of φ′. Let φ̇′ = φ̇(φ−1
d−1 |G′). Then φ′ |G′

r0 = φ̇′ |G′
r0 . By induction,

this equality implies that Ġ ⊂ G0. �
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The following lemma will be used in the proof of Theorem 12.1.

Lemma 5.6. Assume that Hypothesis C(G′)+w holds. Let φ be a G-factorizable
quasicharacter of G′. Suppose that there exists g ∈ NG(G

′) such that φ |G′
0+ =

gφ |G′
0+ . Let (�G, �φ) be a G-factorization of φ, with �G = (G0, . . . ,Gd). Then

g ∈ G0.

Remark 5.7. Note that it follows from Proposition 5.4 that G0 is independent
of the choice of factorization of φ.

Proof. As there is nothing to show if d = 0, we assume that d ≥ 1. Let
�φ = (φ0, . . . , φd). Observe that ((gG0, . . . , gGd = G), (gφ0, . . . ,

gφd = φd)) is also a
G-factorization of φ. Applying Proposition 5.4, we have gGj = Gj , 0 ≤ j ≤ d, and

d∏
j=i

φj |Gi
r+i−1

=
d∏

j=i

gφj |Gi
r+i−1

, 0 ≤ i ≤ d.

(Recall that r−1 = 0.) In particular, as φd = gφd and rd−1 > ri for 0 ≤ i < d− 1,

we have φd−1 |Gd−1
rd−1

= gφd−1 |Gd−1
rd−1

. Let Γd−1 ∈ z
d−1 ∗
−rd−1

be a G-generic element

that realizes φd−1 |Gd−1
rd−1

. Then the equality above implies (by Lemma 4.2) that

Γd−1−Ad∗(g−1)Γd−1 ∈ z
d−1 ∗
(−rd−1)+

. In particular, Ad∗(g−1)Γd−1 ∈ Γd−1+g
d−1 ∗
(−rd−1)+

.

According to Lemma 4.4, this implies that g ∈ Gd−1. If d = 1 this completes the
proof.

Suppose that d > 1. Let φ′ = φ(φ−1
d |G′). The sequence (G0, . . . ,Gd−1),

along with the sequence (φ0, . . . , φd−2, φd−1), is a Gd−1-factorization of φ′. Using
gφd = φd we find that φ′ |G′

0+ = gφ′ |G′
0+ . By induction, we have g ∈ G0. �

The next lemma shows that under certain conditions all quasicharacters of a
group are factorizable.

Lemma 5.8. Let G′ be a proper tamely ramified twisted Levi subgroup of G.
Assume that Hypothesis C(G′)+w holds. Suppose that the following conditions hold
for every twisted Levi subgroup H of G that contains G′.

(1) Suppose that r > 0 and Γ ∈ zH ∗
−r \ zH ∗

(−r)+, where zH is the centre of h. For

x ∈ B(H), the character of Hx,r realized by Γ is trivial on Hx,r ∩ Hder,
where Hder is the derived group of the topological group H.

(2) If r > 0, Γ′ ∈ z′ ∗−r \ z′ ∗(−r)+ and (Γ′ + z′ ∗(−r)+) ∩ zH ∗ = ∅, then there

exist a twisted Levi subgroup Ġ of H, containing G′, and an element
Γ̇ ∈ ż

∗ ∩ (Γ′ + z′(−r)+) that is H-generic of depth −r, where ż is the Lie

algebra of the centre of Ġ.

Then every quasicharacter of G′ is G-factorizable.

Remark 5.9. As shown in Section 4 of [AR], in some cases, it is possible to
identify Lie algebras and their duals in a way that is compatible with the Moy-
Prasad filtrations. In those cases, Proposition 5.4 of [AR] gives information about
groups for which conditions as in part (2) of the lemma are known to hold. We also
remark that the hypotheses assumed in Section 3.4 of [K] are sufficient to guarantee
factorizability of quasicharacters.

Proof. Let φ be a quasicharacter of G′. If φ has depth zero, then ((G), (φ)) is
a factorization of φ (see the beginning of the proof of Proposition 5.4). Therefore we
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assume that φ has positive depth r. Since we have assumed that Hypothesis C(G′)w
holds, there exists Γ ∈ z′ ∗−r \ z′ ∗(−r)+ that realizes φ on G′

r. If (Γ + z′ ∗(−r)+) ∩ z∗ is

nonempty, then, after replacing Γ by a z′ ∗(−r)+-translate, if necessary, we may assume

that Γ ∈ z∗−r. Let x ∈ B(G). By assumption (1), the character φΓ of Gx,r that is
realized by Γ is trivial on Gx,r∩Gder. This allows us to transfer φΓ to a character of
the group Gx,rGder/Gder 
 Gx,r/(Gx,r∩Gder). Since Gx,r is compact, we have that
Gx,rGder/Gder is a closed subgroup of the locally compact abelian group G/Gder,
so there exists an extension of φΓ to G/Gder. Pulling this extension back to G, we
obtain a quasicharacter χ1 of G that agrees with φΓ on Gx,r (hence has depth r).

Now φχ−1
1 |G′ has depth less than r (according to Lemma 4.9(1)). If φχ−1

1 |G′ has
positive depth and can be realized by an element of z∗ (of the appropriate depth),
we may repeat the above process to obtain a quasicharacter χ2 of G such that
φ((χ1χ2)

−1 |G′) has depth less than the depth of φχ−1
1 |G′.

The set of depths of quasicharacters is discrete, so it follows from the discussion
above that there exists a quasicharacter χ of G (which is trivial if the original coset
Γ + z′ ∗(−r)+ does not intersect z∗) such that either φ(χ−1 |G′) has depth zero, or

φ(χ−1 |G′) has positive depth s ≤ r, and, for x ∈ B(G′), its restriction to G′
x,s is

realized by an element Γ′ ∈ z′ ∗−s such that Γ′ + z′ ∗(−s)+ does not intersect z∗. In the

first case, we set �G = (G) and �φ = (χ) to obtain a G-factorization of φ.
In the second case, according to the second condition of the lemma (taking

H = G and replacing r by s), there exist a twisted Levi subgroup Ġ of G, containing

G′, and an element Γ̇ ∈ ż
∗ ∩ (Γ′ + z′ ∗(−s)+) that is G-generic of depth −s. Let

y ∈ B(Ġ). Condition (1) guarantees that the character of Ġy,s realized by Γ̇ is

trivial on Ġy,s ∩ Ġder. Arguing as in the first paragraph of the proof, we find that

there exists an extension χ̇1 of this character of Ġy,s to Ġ. Note that the depth

of the quasicharacter φ(χ−1 |G′)(χ̇−1
1 |G′) is less than s. Now proceed recursively

with Ġ in place of G. �

6. Regular quasicharacters

Let G′ be a proper twisted Levi subgroup of G.

Definition 6.1. Suppose that φ is a quasicharacter of G′ and S is a subset
of G′ containing an open neighbourhood of some point in G. We say that φ is
G-regular on S whenever φ |S is not the restriction to S of a quasicharacter of a

twisted Levi subgroup Ġ of G such that G′ � Ġ.

Remark 6.2. If r > 0, G-regularity of φ on G′
r is equivalent to G-regularity of

φ on G′
x,r, for any x ∈ B(G′). Indeed, if φ is not regular on G′

x,r, then φ |G′
x,r =

φ̇ |G′
x,r for a quasicharacter φ̇ of a twisted Levi subgroup Ġ of G such that G′ � Ġ.

This implies that φφ̇−1 |G′ has depth strictly less than r, and thus φφ̇−1 |G′
r ≡ 1

(see Definition 4.1) so φ is not regular on G′
r.

Lemma 6.3. Assume that Hypothesis C(G′)+w holds. Let φ be a G-factorizable

quasicharacter of G′. Assume that the depth of φ is positive. Let (�G, �φ) be a G-

factorization of φ with �G = (G0, . . . ,G) and �φ = (φ0, . . . , φd). Let r0 be the depth
of φ0. Then φ is G-regular on G′

r0 if and only if G0 = G′.

Proof. Because the depth of φ is positive and φ is G-factorizable, it follows
from Definition 5.1(F2,F3) that r0 > 0. If G0 �= G′, then Condition (F2) in
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Definition 5.1 implies that φ is is not G-regular on G′
0+ , as

∏d
j=0(φj |G0) is a

quasicharacter of G0 that agrees with φ on G′
0+ . Since G0+ ⊃ G′

r0 , it follows that
φ is not G-regular on G′

r0 .

Suppose that G0 = G′. It follows from Lemma 5.5 that if φ̇ is a quasicharacter
of a twisted Levi subgroup Ġ of G such that G′ ⊂ Ġ and φ |G′

r0 = φ̇ |G′
r0 , then

Ġ = G′. �
Remark 6.4. Suppose that Hypotheses C(G)w and C(G′)w hold. Let φ be a

G-generic quasicharacter of G′ of positive depth r. Then φ is G-regular on G′
r. To

see this, set �G = (G′,G) and �φ = (φ,1). Since φ is G-generic, we have that (�G, �φ)
is a G-factorization of φ. Applying Lemma 6.3, we see that φ is G-regular on G′

r.

Corollary 6.5. Let notation and assumptions be as in Lemma 6.3. Then φ
is G-regular on G′

0+ if and only if G0 = G′.

Proof. IfG0 �= G′, then, as observed in the first part of the proof of Lemma 6.3,
condition Condition (F2) in Definition 5.1 implies that φ is is not G-regular on G′

0+ .
If G0 = G′, then an application of Lemma 6.3 gives that φ is G-regular on G′

r0 .
It then follows from the definition of G-regular and the fact that G′

r0 ⊂ G′
0+ that

φ is G-regular on G′
0+ . �

7. Depth zero supercuspidal representations

In this section, we state key results concerning depth zero irreducible su-
percuspidal representations of connected reductive p-adic groups. Theorem 7.1,
Proposition 7.3 and Proposition 7.4 are Proposition 6.8, Proposition 6.6 and The-
orem 6.11(2), respectively, of [MP2]. Some of these results were also proved by
Morris, in Proposition 1.4, Proposition 2.1 and Corollary 3.5 of [Mo4].

Theorem 7.1. Let π be a depth zero irreducible supercuspidal representation of
G. Then π is equal to the representation IndGKρ obtained via (compact) induction
from an irreducible smooth representation ρ of K, where

(1) There exists a maximal parahoric subgroup Gx,0 of G such that K =
NG(Gx,0),

(2) ρ |Gx,0+ is a multiple of the trivial representation of Gx,0+ ,
(3) ρ |Gx,0 contains a representation of Gx,0 that factors to an irreducible

cuspidal representation of Gx,0/Gx,0+ .

Remark 7.2. Let f be the residue class field of F . The group Gx,0/Gx,0+ is
the f-rational points of a connected reductive f-group, so the notion of cuspidal
representation makes sense. Because Gx,0 is a parahoric subgroup of G, the group
NG(Gx,0) is compact modulo the centre of G. Hence ρ is finite-dimensional.

Proposition 7.3. Let K be the normalizer of a maximal parhahoric subgroup
Gx,0 of G. Let ρ be an irreducible representation of K that satisfies conditions (2)

and (3) of Theorem 7.1 and let π = IndGKρ. Then π is a depth zero irreducible
supercuspidal representation of G.

Proposition 7.4. Let K = NG(Gx,0) and ρ be as in Theorem 7.1. Suppose

that K̇ = NG(Gy,0) for some y ∈ B(G), ρ̇ is an irreducible smooth representation

of K̇ such that ρ̇ |Gy,0+ is a multiple of the trivial representation of Gy,0+ , and

IndG
K̇
ρ̇ 
 IndGKρ. Then there exists g ∈ G such that Gx,0 = gGy,0 and ρ 
 gρ̇.
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8. G-equivalence and cuspidal generic G-data

We begin this section with the definition of an equivalence relation that will be
used in the parametrization of tame supercuspidal representations. Next we recall
the definition of a cuspidal G-datum, and state the theorem from [HM] which gives
criteria for equivalence of tame supercuspidal representations in terms of conditions
on the cuspidal G-data used to produce the representations. Finally, we verify some
properties of quasicharacters that occur in various triples which are associated to
cuspidal G-data.

Suppose that G′ and Ġ are twisted Levi subgroups of G, π′ and π̇ are depth
zero irreducible supercuspidal representations of G′ and Ġ, and φ and φ̇ are qua-
sicharacters of G′ and Ġ, respectively.

Definition 8.1. We say that the triples (G′, π′, φ) and (Ġ, π̇, φ̇) areG-equivalent
whenever there exists a g ∈ G such that

G′ = gĠ and π′φ 
 g(π̇φ̇).

It is clear that G-equivalence is an equivalence relation. Note that the definition
does not assume that G′ is tamely ramified or elliptic, nor that φ is G-regular or G-
factorizable. However, if (G′, π′, φ) and (Ġ, π̇, φ̇) are G-equivalent, thenG′ is tamely

ramified (respectively, elliptic) if and only if Ġ is tamely ramified (respectively,

elliptic). Furthermore, when G′ and Ġ are tamely ramified, then φ is G-regular on

G′
0+ (respectively, G-factorizable) if and only if φ̇ is G-regular on Ġ0+ (respectively,

G-factorizable).
We now recall the definition of a cuspidal G-datum. The definition is due to

Yu, although the adjective cuspidal is not used in [Y].

Definition 8.2. A (reduced) cuspidal G-datum is a triple Ψ = (�G, π′, �φ) that
satifies the following conditions:

(1) �G = (G0, . . . ,Gd = G) is a tamely ramified twisted Levi sequence in G,
and G0 is elliptic in G.

(2) π′ is an irreducible supercuspidal representation of G0 of depth zero.

(3) �φ = (φ0, . . . , φd), where φi is a quasicharacter of Gi, 0 ≤ i ≤ d. Let
x ∈ B(G0) be such that G0

x,0 is a maximal parahoric subgroup of G0 and

π′ is induced from a representation ρ of NG0(G0
x,0) whose restriction to

G0
x,0+ is a multiple of the trivial representation (see Theorem 7.1). If

d > 0, then, for 0 ≤ i ≤ d − 1, φi is Gi+1-generic of depth ri relative to
x, with 0 < r0 < · · · < rd−1. If φd is nontrivial, then the depth rd of φd

satisfies rd > rd−1 if d > 0, and rd ≥ 0 otherwise.

Remark 8.3. Let Ψ = (�G, π′, �φ) be a cuspidal G-datum. Let x and ρ be as
in item (3) above. In [HM], we referred to the triple Ψ as a reduced cuspidal

G-datum, and called the 4-tuple (�G, x, ρ, �φ) an extended cuspidal G-datum. Yu’s
construction associates an irreducible supercuspidal representation of G to each
extended cuspidal G-datum. Yu shows that all of the extended cuspidal G-data
arising from a given reduced cuspidal G-datum give rise to equivalent supercuspidal
representations. Thus we have a map from the set of reduced cuspidal G-data onto
the set of equivalence classes of tame supercuspidal representations of G.

Definition 8.4. If Ψ = (�G, π′, �φ) is a cuspidal G-datum, and φ =
∏d

i=0 φi |G0,
we say that the triple (G0, π′, φ) is associated to Ψ.
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Remark 8.5. In [A2], Adler constructed some supercuspidal representations of
connected reductive p-adic groups that split over tamely ramified extensions. These
representations correspond to cuspidal G-data of the form Ψ = ((G′),1, (φ)), where
G′ is a tamely ramified twisted Levi subgroup that is compact modulo the centre
of G, and φ is a G-generic quasicharacter of G′ of positive depth. Note that the
triple associated to Ψ by Definition 8.4 is (G′,1, φ).

Remark 8.6. Let π be a tame supercuspidal representation associated, via Yu’s

construction, to a cuspidal G-datum (�G, π′, �φ). Let notation be as in Definition 8.2.

Let φ =
∏d

i=0 φi |G0. If d = 0, then the depth of π is equal to the depth rd of
φd = φ. If d > 0, that is, if G0 �= G, then the depth of π is equal to max(rd−1, rd),
which, by Definition 8.2(3), is positive. Assuming that Hypothesis C(G)w holds, it
follows from Lemma 4.9(1) that the depth of φ is also equal to max(rd−1, rd).

The following theorem (from Chapter 6 of [HM]) gives criteria that determine
explicitly when two cuspidal G-data give rise to the same equivalence class of tame
supercuspidal representations.

Theorem 8.7. Suppose that Ψ = (�G, π′, �φ) and Ψ̇ = ( �̇G, π̇′,
�̇
φ) are cuspidal

G-data such that Hypothesis C(G′) holds for all twisted Levi subgroups G′ occur-

ring in �G and �̇G. Then the supercuspidal representations of G obtained (via Yu’s

construction) from Ψ and Ψ̇ belong to the same equivalence class if and only if the

triples associated to Ψ and Ψ̇ in the sense of Definition 8.4 are equivalent in the
sense of Definition 8.1.

Next we verify that whenever Hypothesis C(G′)w holds for all elliptic tamely
ramified twisted Levi subgroups G′ of G, we can identify all of the triples of the
form (G′, π′, φ) that are associated to cuspidal G-data (and therefore to tame su-
percuspidal representations) in terms of properties of φ. As shown below, if a
quasicharacter φ of G′ is G-factorizable, and G-regular on G′

0+ , and π′ is an irre-
ducible supercuspidal representation of G′ of depth zero, then each factorization of
φ gives rise to a cuspidal G-datum to which the triple (G′, π′, φ) is associated.

Lemma 8.8. Let Ψ = (�G, π′, �φ) be a cuspidal G-datum, with �G = (G0, . . . ,Gd =

G) and �φ = (φ0, . . . , φd). Let φ =
∏d

i=0 φi |G0. Let x ∈ B(G0) be as in Def-

inition 8.2(3). Then (�G, �φ) is a G-factorization of φ relative to x. If Hypothe-
sis C(G0)+w holds, then φ is G-regular on G0

0+ .

Proof. It is immediate from Definitions 8.2(3) and 5.1 that (�G, �φ) is a G-
factorization of φ relative to x.

Assume that Hypothesis C(G0)+w holds. Then Lemma 4.7 tells us that the
genericity condition on φi, 0 ≤ i ≤ d− 1, is independent of the choice of x in Defi-

nition 8.2(3). Thus (�G, �φ) is a factorization of φ. We may now apply Corollary 6.5
to conclude that φ is G-regular on G0

0+ . �

Lemma 8.9. Suppose that G′ is an elliptic tamely ramified twisted Levi subgroup
of G. Assume that Hypothesis C(G′)+w holds. Let φ be a G-factorizable quasichar-

acter of G′ that is G-regular on G′
0+ . Let (�G, �φ) be a G-factorization of φ. Then

G′ = G0. If π′ is an irreducible depth zero supercuspidal representation of G′, then

Ψ = (�G, π′, �φ) is a cuspidal G-datum to which (G′, π′, φ) is associated.
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Proof. Because we are assuming Hypothesis C(G′)+w , we may apply Corol-

lary 6.5 to conclude that, because (�G, �φ) is a factorization of φ, regularity of φ on
G′

0+ forces G′ = G0.
According to Theorem 7.1, there exists x ∈ B(G0) such that G0

x,0 is a maximal

parahoric subgroup of G0 and π′ is induced from a representation of NG0(G0
x,0)

whose restriction to G0
x,0+ is a multiple of the trivial representation. Since G′ =

G0 ⊂ Gi for 0 ≤ i ≤ d − 1 and Hypothesis C(Gi)w holds, φi is Gi+1-generic
(in particular, relative to x). It is now clear that the conditions in Definition 8.2
hold. �

9. The parametrization

Throughout this section, we assume that Hypothesis C(G′) holds for all elliptic
tamely ramified twisted Levi subgroups G′ of G. Note that this assumption guar-
antees that Hypothesis C(G′)+w also holds for all elliptic tamely ramified twisted
Levi subgroups G′ of G.

Recall that in Definition 8.1, we defined an equivalence relation on the set of
triples of the form (G′, π′, φ), where G′ is a tamely ramified twisted Levi subgroup
of G, π′ is a depth zero irreducible supercuspidal representation of G′, and φ is a
quasicharacter of G′.

Theorem 9.1. The equivalence classes of irreducible tame supercuspidal rep-
resentations correspond bijectively to the equivalence classes of triples (G′, π′, φ) as
above such that G′ is elliptic, and φ is G-factorizable and G-regular on G′

0+ .

Proof. Let π and π̇ be tame supercuspidal representations of G. Let Ψ and Ψ̇
be cuspidal G-data that give rise, via Yu’s construction, to (the equivalence classes

of) π and π̇, respectively. Let Σ := (G0, π′, φ) and Σ̇ := (Ġ0, π̇′, φ̇) be the triples

associated to Ψ and Ψ̇ in the sense of Definition 8.4. According to Lemma 8.8, φ
and φ̇ are G-factorizable, and G-regular on G0

0+ and Ġ0
0+ , respectively. Note that

Theorem 8.7 tells us that π and π̇ are equivalent if and only if the two triples Σ
and Σ̇ are equivalent in the sense of Definition 8.1.

To complete the proof, we observe that Lemma 8.9 guarantees that any triple
(G′, π′, φ) having the properties indicated in the statement of the theorem is asso-
ciated to some cuspidal G-datum. �

Suppose that T is an elliptic maximal F -torus in G that splits over a tamely
ramified extension of F . ThenT is an elliptic tamely ramified twisted Levi subgroup
of G. We will refer to T = T(F ) as a tamely ramified elliptic maximal torus in G.

Definition 9.2. If the equivalence class of a tame supercuspidal representation
π of G corresponds to the equivalence class of a triple (G′, π′, φ), where G′ is a
tamely ramified elliptic maximal torus in G, we say that π is toral.

Suppose that T is a tamely ramified elliptic maximal torus in G. The set of
depth zero supercuspidal representations of T is just the set of depth zero qua-
sicharacters of T . If π′ is a depth zero quasicharacter of T and φ is a quasicharacter
of T , then the G-equivalence class of (T, π′, φ) consists of triples (Ṫ , π̇′, φ̇) such that

T = gṪ for some g ∈ G, and π′φ = g(π̇′φ̇). Furthermore, since π′ has depth zero,
φ is G-regular on T0+ (respectively, G-factorizable) if and only if π′φ is G-regular
on T0+ (respectively, G-factorizable).
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Definition 9.3. Suppose that T and Ṫ are maximal F -tori in G, φ is a
quasicharacter of T = T(F ), and φ̇ is a quasicharacter of Ṫ = Ṫ(F ). We say that

(T, φ) and (Ṫ , φ̇) are G-equivalent if there exists g ∈ G such that T = gṪ and

φ = gφ̇.

Sometimes we will refer to the G-equivalence class of a pair (T, φ) as the G-
orbit of (T, φ). The toral supercuspidal representations of G can be parametrized
as follows:

Corollary 9.4. The equivalence classes of toral supercuspidal representations
of G correspond bijectively to the equivalence classes of pairs (T, φ), where T is a
tamely ramified elliptic maximal torus in G and φ is a G-factorizable quasicharacter
of T that is G-regular on T0+ .

Proof. In view of Theorem 8.7 and the comments preceding Definition 9.3,
it suffices to show that if π and π̇ are toral supercuspidal representations whose
equivalence classes correspond to triples (T, π′, φ) and (Ṫ , π̇′, φ̇), then these triples

are G-equivalent if and only if the pairs (T, π′φ) and (Ṫ , π̇′φ̇) are G-equivalent in
the sense of Definition 9.3. This is immediate from the definitions. �

10. Supercuspidal representations and quasicharacters of elliptic
maximal tori

In Definition 9.3, we defined a notion of G-equivalence on the set of pairs (T, φ),
where T is a maximal F -torus in G and φ is a quasicharacter of T = T(F ). The
equivalence classes of toral supercuspidal representations are parametrized by G-
orbits of pairs (T, φ), where T is a tamely ramified elliptic maximal torus in G,
and φ is a quasicharacter of T that has the properties indicated in Corollary 9.4.
In this section, we show that some other equivalence classes of tame supercuspidal
representations can be parametrized by G-equivalence classes of pairs (T, φ) where
T is a tamely ramified elliptic maximal torus in G and φ is a quasicharacter of T
that has certain properties.

In the first part of the section (see Definition 10.1), we define a set SG
0 consisting

of pairs (T, φ) where T is a particular kind of tamely ramified elliptic maximal torus
in G and φ is a depth zero quasicharacter of T that satisfies some conditions. To
each pair (T, φ) we associate a depth zero irreducible supercuspidal representation
π(T,φ) that is induced from (an extension of) the inflation of a cuspidal Deligne-
Lusztig representation of a reductive group over the residue field of F . Then (see
Proposition 10.8 and Corollary 10.10), we verify that the equivalence classes of the
representations π(T,φ) are parametrized by the G-equivalence classes of the pairs

(T, φ) in SG
0 .

In the second part of the section, we describe some tame supercuspidal rep-
resentations whose construction involves both a depth zero part and a positive
depth part and we show, in Theorem 10.13, that the equivalence classes of such
representations are parametrized by G-equivalence classes of certain kinds of pairs
(T, φ).

In Section 11, we discuss tame supercuspidal representations of general linear
groups. The Howe parametrization of the equivalence classes of these representa-
tions is a parametrization in terms of certain G-equivalence classes of pairs (T, φ).

Recall that f is the residue field of F . Let T be a maximal f-torus in a connected
reductive f-group G, and let θ be a character of T (f). In [DL], Deligne and Lusztig
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defined a class function RG
T ,θ on G(f). When θ is in general position, RG

T ,θ is, up to

sign, the character of an irreducible representation of G(f), which we will refer to
as a Deligne-Lusztig representation. This representation is cuspidal whenever T is
elliptic. Note that, according to Lemma 2.4.1 of [D3], G always contains an elliptic
maximal f-torus.

If x ∈ B(G), let Gx be the connected reductive f-group denoted by G
red

F in
Section 3.5 of [T] for which Gx(f) 
 Gx,0/Gx,0+ . Suppose that T is an elliptic
maximal torus in Gx. As shown in §2.4 of [D3]. there exists an elliptic maximal
torus T in G such that T ⊂ NG(Gx,0) and the image of T ∩Gx,0 in Gx(f) is equal
to T (f). Although T is not unique, it follows from Lemma 2.2.2 of [D3] that any
two choices of T are conjugate by an element of Gx,0+ .

Recall that Z denotes the centre of G.

Definition 10.1. Let SG
0 be the set of pairs (T, φ) such that

(1) T is a tamely ramified elliptic maximal torus in G that normalizes a
maximal parahoric Gx,0 of G, and the image of T ∩ Gx,0 in Gx(f) is the
f-rational points of an elliptic maximal f-torus T in Gx.

(2) φ is a depth zero quasicharacter of T such that φ |T ∩ Gx,0 factors to a
character θ of T (f) that is in general position.

(3) The representation ρ of K := NG(Gx,0) constructed as follows is irre-
ducible. Let ρ0 be the inflation to Gx,0 of the representation of Gx(f)

whose character is equal to ±RGx

T ,θ and let ρ1 be the (unique) extension

of ρ0 to ZGx,0 such that if z ∈ Z ∩Gx,0, ρ1(z) is equal to φ(z) times the

identity operator on the space of ρ0. Let ρ = IndKZGx,0
ρ1.

Remark 10.2. Let Zx(f) be the image of Z ∩ Gx,0 in Gx(f). Since Zx(f) is a
subgroup of the centre of Gx(f), Zx(f) is a subgroup of T (f). The restricition of the

class function ±RGx

T ,θ to Zx(f) is equal to the restriction of θ to Zx(f) multiplied

by the degree of the representation ρ0. Therefore it follows from Definition 10.1(2)
that, for z ∈ Z ∩ Gx,0, ρ0(z) is equal to φ(z) times the identity operator on the
space of ρ0. Hence the extension ρ1 of Definition 10.1(3) is well-defined.

Remark 10.3. In general, there can exist pairs (T, φ) for which the first two
conditions of Definition 10.1 hold, but the third condition is not satisfied. For
example, if G = GSp4(F ), there exist pairs (T, φ) that satisfy Definition 10.1(1)
and (2), with Gx,0 a nonspecial maximal parahoric subgroup of G (that is, the
image of x in the reduced building of G is not a special vertex). Note that the
index of ZGx,0 in K is equal to 2 in this example. It is easy to see that there are

some choices of (T, φ) for which the representation ρ = IndKZGx,0
ρ1 is reducible.

The details are left to the reader.

Definition 10.4. Let (T, φ) ∈ SG
0 . Set π(T,φ) := IndGKρ.

According to Proposition 7.3, π(T,φ) is a depth zero irreducible supercuspidal
representation of G. Note that if we replace ρ0 by an equivalent representation ρ′0
of Gx,0 and carry out the same construction as in Definition 10.1(3), using ρ′0 in
place of ρ0 and using the quasicharacter φ |Z to extend ρ′0 to a representation ρ′1
of ZGx,0, we have that ρ′1 is equivalent to ρ1. It follows that the representation

IndGZGx,0
ρ′1 is equivalent to IndGZGx,0

ρ1 = π(T,φ).

Lemma 10.5. Let (T, φ) ∈ SG
0 . Then T = Z(T ∩Gx,0).
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Proof. Let γ ∈ T . Since T is elliptic, γ fixes the image of x in the reduced
building of G, so conjugation by γ−1 induces an f-automorphism cγ−1 of Gx. It
follows from properties of the Deligne-Lusztig construction that

RGx

cγ−1 (T ),θ◦cγ ◦ cγ−1 = RGx

T ,θ.

Combining this with the fact that the restriction of cγ to T is the identity, we

see that RGx

T ,θ ◦ cγ−1 = RGx

T ,θ. It follows that γρ0 is equivalent to ρ0. Because
γρ1(zk1) = φZ(z)

γρ0(k1) for all z ∈ Z and k1 ∈ Gx,0, we see that
γρ1 is equivalent to

ρ1. Irreduciblity of ρ then implies that γ ∈ ZGx,0, because (by Mackey theory) kρ1
cannot be equivalent to ρ1 if k ∈ K and k /∈ ZGx,0. We conclude that T ⊂ ZGx,0.
That is, T = Z(T ∩Gx,0). �

The next lemma tells us that if (T, φ) ∈ SG
0 , then the equivalence class of π(T,φ)

is determined by Gx,0, T , θ and φ |Z.

Lemma 10.6. Let (T, φ), (Ṫ , φ̇) ∈ SG
0 . Let x, T , θ, and ẋ, Ṫ , θ̇, respectively, be

as in Definition 10.1, relative to the pair (T, φ) and the pair (Ṫ , φ̇). If Gx,0 = Gẋ,0,

Ṫ = T , θ̇ = θ, and φ |Z = φ̇ |Z, then

(1) π(Ṫ ,φ̇) 
 π(T,φ).

(2) There exists k ∈ Gx,0+ such that Ṫ = kT and φ̇ = kφ.

(3) (Ṫ , φ̇) is G-equivalent to (T, φ) in the sense of Definition 9.3.

Proof. Let ρ and ρ̇ be the representations of K = NG(Gx,0) = NG(Gẋ,0)

that are associated, as in Definition 10.1(3), to (T, φ) and (Ṫ , φ̇), respectively. For
part (1), note that the assumptions of the lemma guarantee that ρ 
 ρ̇.

As mentioned in comments preceding Definition 10.1, since Gx,0 = Gẋ,0 and

T = Ṫ , according to a result of DeBacker(Lemma 2.2.2 of [D3]), there exists k ∈
Gx,0+ such that Ṫ = kT . Note that, because k ∈ Gx,0+

kφ is the inflation of θ

to Ṫ ∩ Gx,0 and kφZ ∩ Gx,0 = φ |Gx,0. Combining this information, Lemma 10.5

(applied to Ṫ ), and the assumptions θ = θ̇ and φ |Z = φ̇ |Z, we have that φ̇ =
kφ. This proves part (2) of the lemma. Part (3) is an immediate consequence of
part (2). �

Lemma 10.7. Let g ∈ G and let (T, φ) ∈ SG
0 . Set Ṫ = gT and φ̇ = gφ. Then

(Ṫ , φ̇) ∈ SG
0 and π(Ṫ ,φ̇) 
 π(T,φ).

Proof. Because Ṫ /Z is compact and x ∈ B(T ), the torus Ṫ determines the
maximal parahoric subgroup gGx,0 = Ggx,0 in the sense thatGy,0 = Ggx,0 for all y ∈
B(Ṫ ). There exists an elliptic maximal f-torus Ṫ in Ggx having the property that

Ṫ (f) is the image of Ṫ ∩Ggx,0 in Ggx(f) (see Section 3.5 of [T]). Thus condition (1)

of Definition 10.1 is satisfied for (Ṫ , φ̇).

The restriction φ̇ | Ṫ ∩ Ggx,0 factors to a character θ̇ of Ṫ (f). Conjugation by
g factors to an f-isomorphism cg between Gx and Ggx. Because θ is in general

position, Ṫ = cg(T ) and θ̇ = θ ◦ c−1
g , we have that the character θ̇ is in general

position. Hence condition (2) of Definition 10.1 is satisfied for (Ṫ , φ̇).
Let ρ̇0 be the representation of Ggx,0 that is the inflation of the representation

of Ggx(f) whose character is ±R
Ggx

Ṫ ,θ̇
. The relation R

Ggx

Ṫ ,θ̇
◦ cg = RGx

T ,θ implies that

ρ̇0 
 gρ0. Note that φ̇ |Z = gφ |Z = φ |Z. Since the same quasicharacter is
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used to extend the equivalent representations ρ̇0 and gρ0 to representations ρ̇1 and
gρ1 of ZGgx,0, we have ρ̇1 
 gρ1. Set ρ̇ = Ind

gK
ZGgx,0

ρ̇1. Then ρ̇ 
 gρ. Thus
the irreducibility of ρ implies that ρ̇ is irreducible. This completes the verification
that condition (3) of Definition 10.1 is satisfied by ρ̇. Let π̇ = π(Ṫ ,φ̇) = IndGgK ρ̇.

The equivalence of ρ̇ and gρ implies equivalence of π̇ and IndGgK
gρ, and the latter

representation is equivalent to π(T,φ) = IndGKρ. �

Proposition 10.8. Let (T, φ), (Ṫ , φ̇) ∈ SG
0 . Then π(T,φ) 
 π(Ṫ ,φ̇) if and only

if (T, φ) and (Ṫ , φ̇) are G-equivalent in the sense of Definition 9.3.

Proof. One direction of the proposition is proved in Lemma 10.7. For the
other direction, assume that π(T,φ) and π(Ṫ ,φ̇) are equivalent representations. We

use the notations x, T , θ, K, ρ0, etc., and ẋ, K̇, ρ̇, etc., for the objects appearing
in Definition 10.1 as it applies to (T, φ) and (Ṫ , φ̇), respectively. According to

Proposition 7.4, there exists g ∈ G such that gK̇ = K and g ρ̇ 
 ρ. After replacing
(Ṫ , φ̇) by the G-equivalent pair (gṪ , gφ̇), we may assume that Ṫ = T , K̇ = K,

ρ̇ 
 ρ, and Gẋ,0 = Gx,0. Note that we now also have T = Ṫ . It follows from the
equivalence of ρ and ρ̇ that

φ̇ |Z = φ |Z and ±RGx

T ,θ̇
= ±RGx

T ,θ.

By results of [DL] concerning equivalence of Deligne-Lusztig representations, the
second equality above implies that there exists h ∈ Gx(f) that normalizes T (f) and

satisfies θ = hθ̇. Choose k ∈ Gx,0 whose image in Gx(f) is equal to h. Then the

image of kṪ = kT in Gx is equal to T (f) and kφ̇ | kT ∩Gx,0 is the inflation of hθ̇ = θ.

Also, kφ̇ |Z = φ |Z. We may now apply Lemma 10.6(3) to the pairs (T, φ) and

(kṪ , kφ̇) to conclude that they are G-equivalent in the sense of Definition 9.3. �

Definition 10.9. Let AG
0,cusp := {π(T,φ) | (T, φ) ∈ SG

0 }.

The following is an immediate consequence of Definition 10.9 and Proposi-
tion 10.8.

Corollary 10.10. The equivalence classes of representations in AG
0,cusp cor-

respond bijectively to the G-equivalence classes of pairs (T, φ) in SG
0 .

As discussed in Section 11, if G = GLn(F ), the set AG
0,cusp contains all of the

depth zero supercuspidal representations of G.
The paper [DR] of DeBacker and Reeder gives an explicit construction of some

depth zero supercuspidal L-packets for pure inner forms of unramified p-adic groups.
The representations in these L-packets belong to AG

0,cusp. However, there can exist

representations in AG
0,cusp which do not lie in these L-packets. For example, using

notation from earlier in the section, if G = Sp4(F ) and Gx,0 is a nonspecial maximal
parahoric subgroup of G, thenK = Gx,0 and there are some choices of pairs (T, φ) ∈
SG
0 such that π(T,φ) does not lie in any of the L-packets constructed in [DR].

Roughly speaking, this happens because the regularity conditions imposed on the
parameters that determine the L-packets in [DR] can correspond to a condition
on the character θ that determines ρ0 which is stronger than the general position
condition. The notation here is as in Definition 10.1.

Let G′ be a proper elliptic tamely ramified twisted Levi subgroup of G.
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Definition 10.11. Let RG
G′ be the set of equivalence classes of tame super-

cuspidal representations of G that are parametrized, via Theorem 9.1, by the G-
equivalence classes of triples of the form (G′, π′, χ), where π′ ∈ AG′

0,cusp and χ is a
G-factorizable quasicharacter of G′ that is G-regular on G′

0+ .

Definition 10.12. Let T G
G′ be the set of G-equivalence classes (in the sense

of Definition 9.3) of pairs of the form (T, φ′χT ), where (T, φ′) ∈ SG′

0 , χ is a G-
factorizable quasicharacter of G′ that is G-regular on G′

0+ , and χT = χ |T .
Theorem 10.13. Suppose that an equivalence class π of representations in RG

G′

is parametrized by the G-equivalence class of a triple (G′, π′, χ). Let (T, φ′) ∈ SG′

0

be a pair whose G′-equivalence class, in the sense of Definition 9.3, parametrizes
the equivalence class of π′, via Corollary 10.10. Let χT = χ |T and let F(π) be
the G-equivalence class of the pair (T, φ′χT ). Then F is a well defined bijection
between RG

G′ and T G
G′ .

Proof. Let (G′, π̇′, χ̇) be another triple whoseG-equivalence class parametrizes

an equivalence class in RG
G′ . Let (Ṫ , φ̇′) ∈ SG′

0 be a pair whose G′-equivalence
class parametrizes the equivalence class of π̇′. It follows from Theorem 9.1 that to
prove the theorem, it suffices to show that the G-equivalence classes of the triples
(G′, π′, χ) and (G′, π̇′, χ̇) are the same if and only if the G-equivalence classes of

the pairs (T, φ′χT ) and (Ṫ , φ̇′χ̇Ṫ ) are the same.
Suppose that the G-equivalence classes of (G′, π′, χ) and (G′, π̇′, χ̇) are the

same. Then, according to Definition 8.1, there exists g ∈ NG(G
′) such that g(π′χ) 


π̇′χ̇. Observe that gπ′, and hence also the equivalent representation π̇′χ̇ gχ−1,
belongs to AG′

0,cusp. The associated equivalence class of representations of G′ is
parametrized, via Corollary 10.10, by the G′-equivalence class of the pair (gT, gφ′)

and also by the G′-equivalence class of the pair (Ṫ , φ̇(χ̇ gχ−1)Ṫ ). This implies (see

Definition 9.3) that the G′-equivalence classes of (gT, g(φ′χT )) and (Ṫ , φ̇′χ̇Ṫ ) are

the same. Hence the G-equivalence classes of the pairs (T, φ′χT ) and (Ṫ , φ̇χ̇Ṫ ) are
the same.

Next, assume that the G-equivalence classes of (gT, g(φ′χT )) and (Ṫ , φ̇′χ̇Ṫ ) are

the same. Then there exists g ∈ G such that gT = Ṫ and g(φ′χT ) = φ̇′χ̇Ṫ . Because

both φ′ and φ̇′ have depth zero, we have that gχ | Ṫ0+ = χ̇ | Ṫ0+ . If T = G′, then

Ṫ = gT = gG′, so, since Ṫ ⊂ G′, we have that T = G′ if and only if Ṫ = G′, and
in this case g ∈ NG(G

′).

In this paragraph, we assume that Ṫ �= G′. Because Ṫ is a tamely ramified
twisted Levi subgroup of G′, we may apply Lemma 4.9(1) to conclude that the
depths of gχ and χ̇ are equal. Since χ̇ is G-regular on G′

0+ , the depth of χ̇ is

positive. Note that (Ṫ = gT, gG′,G) and (Ṫ,G′,G) are tamely ramified twisted
Levi sequences in G. If χ̇ and χ (hence gχ) are G-generic, then we may apply

Lemma 4.6 to conclude that the equality gχ | Ṫ0+ = χ̇ | Ṫ0+ implies that gG′ = G.
In general, gχ and χ̇ are not G-generic. However, we may use the fact that χ and
χ̇ are G-factorizable and G-regular on G′

0+ , together with an inductive argument,

applying Lemma 4.6 at various stages, to conclude that the equality gχ | Ṫ0+ =

χ̇ | Ṫ0+ implies gG′ = G′, that is g ∈ NG(G
′). The details are omitted.

We have shown that whenever (T, φ′χT ) and (Ṫ , φ̇′χ̇Ṫ ) are G-equivalent in the

sense of Definition 9.3, there exists g ∈ NG(G
′) such that gT = Ṫ and g(φ′χT ) =

φ̇′χ̇Ṫ . We may rewrite this as gφ′ = φ̇′(χ̇ gχ−1)Ṫ . The representation π̇′(χ̇ gχ−1)
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belongs to the equivalence class of representations in AG′

0,cusp that corresponds, via

Corollary 10.10, to the G′-equivalence class of the pair (Ṫ , φ̇′(χ̇ gχ−1)Ṫ ). Because
this is the same as the G′-equivalence class of the pair (gT, gφ′), which parametrizes
the equivalence class of gπ′, we have π̇′(χ̇ gχ−1) 
 gπ′. That is, π̇′χ̇ 
 g(π′χ). Hence
the triples (G′, π′, χ) and (G′, π̇′, χ̇) are G-equivalent in the sense of Definition 8.1.

�

11. Tame supercuspidal representations of general linear groups

Throughout this section only, we assume that n is an integer such that n ≥ 2
and G = GLn is the general linear group of rank n. We begin with a discussion of
depth zero supercuspidal representations of general linear groups. Following that,
we make some comments about the connections between the Howe parametrization
of tame supercuspidal representations of general linear groups, Yu’s construction
as it applies to general linear groups, and the parametrization of Theorem 9.1.

Let o be the ring of integers in F . The group GLn(o) is a maximal para-
horic subgroup of G and its pro-unipotent radical GLn(o)

u consists of the elements
g ∈ G such that the entries of g − 1 lie in the maximal ideal p. The quotient
GLn(o)/GLn(o)

u is isomorphic to GLn(f). Choose an elliptic maximal torus T
in G such that T = T(F ) normalizes GLn(o) and the image of T ∩ GLn(o) in
GLn(f) is the f-points of an elliptic maximal torus T in GLn. The normalizer of
GLn(o) in G is equal to ZGLn(o), and T = Z(T ∩GLn(o)), where Z is the centre
of G. Let φ be a quasicharacter of T such that φ |T ∩ GLn(o) is the inflation
of a character θ of T (f) that is in general position. Let ρ be a representation of
ZGLn(o) such that ρ |GLn(o) is the inflation of a representation of GLn(f) whose
character is ±RG

T ,θ and ρ(z) is equal to φ(z) times the identity operator for z ∈ Z.

Then (T, φ) ∈ SG
0 , where SG

0 is as in Definition 10.1, and the compactly induced

representation π(T,φ) := IndGZGLn(o)ρ is an irreducible depth zero supercuspidal rep-

resentation of G. Up to conjugacy, GLn(o) is the only maximal parahoric subgroup
of G. Furthermore, GLn(f) contains one conjugacy class of elliptic maximal tori,
and all irreducible cuspidal representations of GLn(f) are Deligne-Lusztig represen-
tations. Consequently, it follows from Theorem 7.1 that a depth zero irreducible
supercuspidal representation of G is equivalent to π(T,φ), where T is as above and φ
is a depth zero quasicharacter of T such that φ |T ∩GLn(o) factors to a character
in general position. Applying Corollary 10.10, we see that the equivalence classes of
irreducible depth zero supercuspidal representations correspond bijectively to the
set of G-equivalence classes that contain such a pair (T, φ). We remark that T is
isomorphic to the multiplicative group E× of an unramified degree n extension of
F , and a depth zero quasicharacter φ of T factors to a character in general position
if and only if the character of E× corresponding to φ under any isomorphism of T
and E× is not fixed by any nontrivial element of the Galois group of E over F .

As shown by Moy ([M]), when F has characteristic zero and the residual charac-
teristic p of F is prime to n, the equivalence classes of supercuspidal representations
of GLn(F ) are parametrized, via Howe’s construction ([H]), by equivalence classes
of F -admissible quasicharacters of multiplicative groups of tamely ramified degree
n extensions of F . For the rest of this section, we assume that the characteristic of
F is zero. When p divides n, Howe’s construction parametrizes only the equivalence
classes of tame supercuspidal representations of GLn(F ). We remark that there is
a bijective correspondence between the conjugacy classes of tamely ramified elliptic
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maximal tori in GLn(F ) and the isomorphism classes of degree n tamely ramified
extensions of F . The Howe correspondence is actually a bijective correspondence
between the equivalence classes of tame supercuspidal representations of GLn(F )
and the GLn(F )-orbits of pairs (T, φ) where T is a tamely ramified elliptic maximal
torus in GLn(F ) and φ is a quasicharacter of T that is F -admissible in the sense
of Howe.

The relation between cuspidal G-data and triples (G′, π′, φ), in our general set-
ting, is analogous to the relation between Howe factorizations and F -admissible
quasicharacters, in the setting of general linear groups and division algebras. In
Section 3.5 of [HM], Hakim and the author describe how to pass back and forth
between cuspidal G-data and Howe factorizations of F -admissible quasicharacters.
This is done in such a way that the equivalence class of tame supercuspidal represen-
tations arising from a cuspidal G-datum coincides with the equivalence class arising
from the F -admissible quasicharacter whose Howe factorization is associated to the
cuspidal G-datum. Lemmas 8.8 and 8.9 of this paper show how to relate cuspidal
G-data to the triples whose G-orbits parametrize the equivalence classes of tame
supercuspidal representations (as in Theorem 9.1). Combining these lemmas with
information from Section 3.5 of [HM] yields a bijective correspondence between
the equivalence classes of F -admissible quasicharacters of multiplicative groups of
tamely ramified degree n extensions of F and the G-orbits of triples that param-
etrize tame supercuspidal representations of G. This correspondence is described
below.

Let (G′, π′, φ) be a triple whose G-equivalence class parametrizes an equiva-
lence class of tame supercuspidal representations of G, via the correspondence of
Theorem 9.1. First we consider the case when G′ is a torus. In this case, G′ is
isomorphic to E× for some degree n tamely ramified extension E of F , and, via this
isomorphism, we identify π′ and φ with quasicharacters of E×. Let ϕ = π′φ. Then
ϕ is an F -admissible quasicharacter of E× whose equivalence class corresponds to
the G-orbit of the triple (G′, π′, φ). The associated equivalence class of tame super-
cuspidal representations is toral and is also parametrized by the G-orbit of (G′, ϕ),
via Corollary 9.4.

Suppose that G′ is not a torus. Then G′ is isomorphic to GLm(E′), where m
is a proper divisor of n and E′ is a tamely ramified extension of F of degree n/m.
According to the earlier discussion of depth zero supercuspidal representations of
general linear groups, the equivalence class of π′ corresponds to the G′-orbit of a
pair (T, φ′), where T is an elliptic maximal torus in G′ that is isomorphic to the
multiplicative group E× of an unramified degree m extension E of E′ and φ′ is a
depth zero quasicharacter of T such that φ′ is not fixed by any nontrivial element
in the Galois group of E over E′. There exists a quasicharacter χ of E× such that
φ = χ ◦ detG′ , where detG′ is the determinant on G′. Let NE/E′ be the norm map

from E× to E′ ×. Then φ |E× = χ ◦ NE/E′ . Let ϕ = φ′(χ ◦ NE/E′). Then ϕ is
F -admissible and the equivalence class of ϕ corresponds, via the results of Howe
and Moy and Theorem 9.1, to the G-equivalence class of (G′, π′, φ).

To see how the correspondence works in the reverse direction, let E be a tamely
ramified degree n extension of F and let ϕ be an F -admissible quasicharacter of
E×. Let pE be the maximal ideal in the ring of integers of E.
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Suppose that there exist an extension E′ of F and a quasicharacter ϕ′ of E′×

such that E′ � E and

ϕ | 1 + pE = ϕ′ ◦NE/E′ | 1 + pE .

It follows from admissibility of ϕ that E is unramified over E′. We choose E′ and ϕ′

so that the degree of E over E′ is as large as possible. Choose an elliptic maximal
torus T of G such that T 
 E×. Let G′ be the centralizer in G of the subgroup of T
corresponding to E′× and letm be the degree of E over E′. ThenG′ is isomorphic to
GLm(E′) and G′ is an elliptic tamely ramified twisted Levi subgroup of G. Define
φ(g) = ϕ′(detG′(g)) for g ∈ G′. It is not difficult to show that φ is G-factorizable
and φ is G-regular on G′

0+ . Also, the quasicharacter ϕ(ϕ′ −1 ◦ NE/E′) of E× has
depth zero and is not fixed by any nontrivial element of the Galois group of E over
E′. By definition of G′, the image T of E× in G lies in G′ and T is a tamely ramified
elliptic maximal torus in G′. The G′-orbit of (T, ϕ(ϕ′−1 ◦NE/E′ )) parametrizes an
equivalence class of depth zero supercuspidal representations of G′. Let π′ be a
representation in this class. The G-orbit of the triple (G′, π′, φ) corresponds to the
equivalence class of the F -admissible quasicharacter ϕ.

Next, we assume that there do not exist E′ and ϕ′ as in the previous paragraph.
As above, we choose an elliptic maximal torus T of G such that T 
 E×. We can
check that ϕ is G-factorizable and is G-regular on T0+ 
 1 + pE . The trivial
representation 1 of T is a depth zero supercuspidal representation of T . The G-
orbit of the triple (T,1, ϕ) corresponds to the equivalence class of the F -admissible
quasicharacter ϕ.

12. Self-contragredient tame supercuspidal representations

If π is a smooth representation ofG, we use the notation π̃ for the contragredient
representation. We say that π is self-contragredient if π is equivalent to π̃. If θ is
an involution of G, that is, θ is an automorphism of G of order two that is defined
over F , let Gθ be the subgroup of G consisting of those points in G that are fixed
by θ. We say that a smooth representation π of G is θ-distinguished if there exists
a nonzero Gθ-invariant linear form on the space of π. For certain G and θ, the
irreducible smooth θ-distinguished representations π of G have the property that
π and π̃ ◦ θ are equivalent. (For a discussion of this kind of phenomenon, see [Ha],
particularly Lemma 3.) Note that if θ is inner, that is, θ is given by conjugation
by an element of G whose square lies in the centre of G, this property amounts
to self-contragredience of π. For example, let n be an integer such that n ≥ 2,
and let k be an integer such that 1 ≤ k ≤ n − 1. Consider the involution θ of
GLn(F ) given by conjugation by a diagonal matrix whose first k diagonal entries
are equal to 1 and whose remaining diagonal entries are equal to −1. As shown by
Jacquet and Rallis in [JR], any irreducible smooth representation of GLn(F ) that
is θ-distinguished must be self-contragredient.

The results of [HM], as they apply to the case where θ is an inner involution
of G and π is a θ-distinguished tame supercuspidal representation of G, can be
used to show that π and π̃ share many properties. For certain θ-distinguished toral
supercuspidal representations, this implies self-contragredience.

The following theorem gives a parametrization of the self-contragredient tame
supercuspidal representations of G. The proof of the theorem appears later in this
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section. We continue to assume that Hypothesis C(G′) holds for all tamely ramified
twisted Levi subgroups G′ of G.

Theorem 12.1. The correspondence of Theorem 9.1 restricts to a bijective
correspondence between the equivalence classes of self-contragredient tame super-
cuspidal representations of G and the G-equivalence classes that contain triples of
the form (G′, π′, φ) where one of the following holds:

(1) G′ = G, φ is trivial, and π′ is self-contragredient.
(2) G′ �= G and there exists g ∈ NG(G

′) such that g2 ∈ G′, gφ = φ−1 and
π′ 
 gπ̃′.

When (2) holds, g /∈ G′. Furthermore, if K ′ is the normalizer of a maximal para-
horic subgroup of G′ and ρ is an irreducible smooth representation of K ′ such that

π′ = IndG
′

K′ρ (as in Theorem 7.1), the element g may be chosen so that g ∈ NG(K
′)

and ρ 
 g ρ̃.

Remark 12.2. Let π be a self-contragredient tame supercuspidal representa-
tion whose equivalence class is parametrized by the G-orbit of a triple (G′, π′, φ) as
in Theorem 12.1. Recall (see Remark 8.6) that the depth of π is equal to the depth
of φ. It follows that

(1) The G-equivalence classes containing triples as in Theorem 12.1(1) param-
etrize the equivalence classes of self-contragredient depth zero irreducible
supercuspidal representations of G.

(2) The G-equivalence classes containing triples as in Theorem 12.1(2) param-
etrize the equivalence classes of self-contragredient positive depth tame
supercuspidal representations of G.

In the toral case, the above theorem reduces (using Corollary 9.4) to the fol-
lowing (which is analogous to results obtained by Adler ([A1]), which describe
self-contragredient supercuspidal representations of general linear groups):

Corollary 12.3. The correspondence of Corollary 9.4 restricts to a bijective
correspondence between the equivalence classes of self-contragredient toral supercus-
pidal representations of G and the equivalence classes which contain a pair (T, φ)
having the property that there exists g ∈ NG(T ) such that g2 ∈ T and gφ = φ−1.

The following lemma will be used in the proof of Theorem 12.1.

Lemma 12.4. Let φ be a quasicharacter of a twisted Levi subgroup G′ of G.
Suppose that g ∈ NG(G

′) satisfies g2 ∈ G′ and φ |G′
0+ = gφ−1 |G′

0+ . Then there

exists a quasicharacter φ̇ of G′ such that φ̇ = gφ̇−1 and φ̇ |G′
0+ = φ |G′

0+ .

Proof. Let G′
der be the derived group of the topological group G′. Let G =

G′/G′
der. Let H be the image of the set {hg−1hg | h ∈ G′ } in G. Because g

normalizes G′, H is a subgroup of G. Let G+ be the image of G′
0+ in G. It follows

from results of [D2] that G′
0+ ⊂ G′

x,0+G
′
der for any x ∈ B(G′). Thus G+ is also the

image of G′
x,0+ in G for any x ∈ B(G′). Because H is a closed subgroup of G and

G+ is a compact subgroup of G, it follows that HG+ is a closed subgroup of the
locally compact abelian group G.

Let x ∈ B(G′). The restriction φ |G′
x,0+ factors to a character χ of G+. Suppose

that k ∈ G′
x,0+ and k ∈ hg−1hgG′

der for some h ∈ G′. Then, using that g2 ∈ G′

and φ is a quasicharacter of G′ (so is trivial on G′
der), we have

φ(g−1kg) = φ(g−1hg · g−2hg2) = φ(h)φ(g−1hg) = φ(k).
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However, since k and g−1kg both belong to G′
0+ , and (by assumption) φ and gφ−1

agree on G′
0+ , we have φ(k) = φ(g−1kg)−1. Therefore φ(k)2 = 1. Since φ(k)p

n

=

φ(kp
n

) tends to 1 as n tends to infinity and we have assumed that the residual
characteristic of F is odd, this implies φ(k) = 1. Thus χ | H∩G+ is trivial. Therefore
we may extend χ to a character of HG+ by making it trivial on the subgroup H.
Next, we use the fact that HG+ is a closed subgroup of the locally compact abelian
group G. This guarantees the existence of an extension of χ to a quasicharacter of
G.

Let φ̇ be a quasicharacter of G′ that is inflated from an extension of χ to
G. The fact that χ is trivial on H means that φ̇ = gφ̇−1. The fact that, by
construction φ |G′

x,0+ and φ̇ |G′
x,0+ both factor to χ | G+ guarantees that they agree

on G′
x,0+ , which implies, as a result of properties of depths of quasicharacters (see

Definition 4.1), that φ̇ and φ agree on G′
0+ . �

Proof. (Theorem 12.1) Let (G′, π′, φ) be a triple as in Theorem 9.1, and let
π be an element of the corresponding equivalence class of supercuspidal represen-
tations of G. It follows from Theorem 4.25 of [HM] that the equivalence class of
π̃ corresponds to the equivalence class of the triple (G′, π̃′, φ−1). Assume that π
is self-contragredient. By Theorem 8.7, the triples (G′, π′, φ) and (G′, π̃′, φ−1) are
equivalent in the sense of Definition 8.1. Therefore there exists g ∈ NG(G

′) such
that π′φ 
 g(π̃′φ−1).

Suppose that G′ = G. Note that the triple (G, π′, φ) is associated, via Defi-
nition 8.4, to the cuspidal G-datum Ψ := ((G), π′, (φ)), which gives rise, via Yu’s
construction, to the supercuspidal representation π = π′φ. The relations at the end
of the previous paragraph imply that π′φ is self-contragredient. In particular, since
the depth of π′ is zero, we have φ |G0+ = φ−1 |G0+ . That is, φ

2 |G0+ ≡ 1. Since we
have assumed that the residual characteristic of F is odd, this forces φ |G0+ ≡ 1.
Thus π = π′φ is a depth zero self-contragredient irreducible supercuspidal represen-
tation of G. The triples (G, π′, φ) and (G, π′φ,1) are G-equivalent, and the latter
triple has the required form.

Next, suppose that G′ �= G. Let g be as above. Since π′ has depth zero, we
see that φ |G′

0+ = gφ−1 |G′
0+ . After conjugating by g once more, we find that

φ |G′
0+ = g2

φ |G′
0+ . Because φ |G′

0+ is G-regular and G-factorizable, we may apply
Lemma 5.6 and Corollary 6.5 to deduce that g2 ∈ G′. According to Lemma 12.4,
there exists a quasicharacter φ̇ of G′ such that φ and φ̇ agree on G′

0+ and φ̇ = gφ̇−1.

Let π̇ = π′(φφ̇−1). Note that π̇ has depth zero and

π̇ 
 g(π̃′φ−1)φ̇−1 = g(π̃′φ−1φ̇) = g ˜̇π.
Therefore the triple (G′, π̇, φ̇), which is G-equivalent to (G′, π′, φ), and hence, by
Theorem 9.1, corresponds to the equivalence class of π, has the properties described
in part (2) of the statement of the theorem. Note that if g ∈ G′, then φ̇ = φ̇−1.

Since p is assumed to be odd, this implies that φ̇ |G′
0+ is trivial. This contradicts

the fact that φ, hence also φ̇, is G-regular on G′
0+ . Therefore g /∈ G′.

Let K ′ and ρ and g be as in the statement of the theorem, with IndG
′

K′ρ equiv-

alent to gIndG
′

K′ ρ̃. As the latter representation is equivalent to IndG
′

gK′
gρ̃, an appli-

cation of Proposition 7.4 yields the existence of h ∈ G′ such that hg ∈ NG(K
′) and

ρ 
 hgρ̃. Upon replacing g by hg, we obtain the desired result. �
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Remark 12.5. Let G′, g, and φ be as in statement (2) of Theorem 12.1.

Let (�G, �φ) be a G-factorization of φ. Set g �G = (gG0, . . . , gGd) and g�φ−1 =

(gφ−1
1 , . . . , gφ−1

d ). Because gφ−1 = φ, the pair (g �G, g�φ−1) is another factoriza-
tion of φ. Applying Proposition 5.4, we find that gGi = Gi for 0 ≤ i ≤ d. It is
possible to show, using arguments similar to those used in the proof of Lemma 12.4,

that there exists some factorization (�G, �φ) that satisfies φi =
gφ−1

i for 0 ≤ i ≤ d.

13. Characters of tame supercuspidal representations

Suppose that π is a tame supercuspidal representation of G whose equivalence
class is parametrized, via Theorem 9.1, by a triple (G′, π′, φ). In this section, we
discuss results that indicate how properties of such a triple influence the asymptotic
behaviour of the character of π.

Before turning to a discussion of characters, we make some comments about
Fourier transforms of orbital integrals. Let C∞

c (g) and C∞
c (g∗) be the spaces of

complex-valued, locally constant, compactly supported functions on g and g∗, re-
spectively. Recall that we have fixed a character Λ of F that is nontrivial on the
ring of integers of F and trivial on the maximal ideal p. If f ∈ C∞

c (g), the Fourier

transform f̂ of f belongs to C∞
c (g∗) and is defined by:

f̂(X∗) =

∫
g
Λ(X∗(Y )) f(Y ) dY, X∗ ∈ g∗,

where dY is a Haar measure on g. If O is a co-adjoint orbit in g∗, and the orbital
integral μO converges, then the Fourier transform of the orbital integral μO is the
distribution μ̂O on g defined by

μ̂O(f) = μO(f̂), f ∈ C∞
c (g).

This distribution is represented by a locally integrable function, also denoted by
μ̂O, on g. This function is locally constant on the set greg of regular elements in g.

Let B be an F -valued, nondegenerate, G-invariant, symmetric bilinear form on
g. We may use B to identify g∗ with g. The linear functional that is identified with
a point X ∈ g is defined by Y 	→ B(X,Y ), Y ∈ g. Because this identification is
G-equivariant, it can be used to identify co-adjoint orbits in g∗ with adjoint orbits
in g. In addition, we can identify Fourier transforms of functions in C∞

c (g) with
functions in C∞

c (g). When orbital integrals converge, these identifications allow
us to talk about Fourier transforms of orbital integrals relative to adjoint orbits
in g, rather than co-adjoint orbits in g∗. Such identifications are made in [KM1],
[KM2], [M1] and [M2], but not in [AD2].

As shown in Proposition 4.1 of [AR], under some explicitly stated mild con-
ditions the form B can be chosen in such a way that, under the associated iden-
tification of g with g∗, the lattices gx,r and g∗x,r correspond, for all x ∈ B(G) and
r ∈ R. We remark that the hypotheses assumed in [KM1], [KM2], [M1] and [M2]
guarantee that the conditions in Proposition 4.1 of [AR] are satisfied.

If F has characteristic zero, or, as shown in Section 3 of [Mo1], if F has
characteristic p and p is sufficiently good for G, then the set of nilpotent orbits in
g (or in g∗) is finite. If Hypothesis 3.4.3 of [D1] is satisfied for G, then nilpotent
orbital integrals in g (or in g∗) converge. Throughout this section, we will assume
that, for all subgroups H of G that arise as identity components of stabilizers of
semisimple elements of g or of g∗, F and H satisfy hypotheses which guarantee that
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the set of nilpotent H-orbits in h (or in h
∗) is finite, and also that the associated

nilpotent orbital integrals converge. With these assumptions, the set of G-orbits in
g (or in g∗) whose closures contain the orbit of a fixed semisimple element is finite.
In addition, all orbital integrals converge.

In what follows, if O is a coadjoint orbit or an adjoint orbit that is identified
with a coadjoint orbit (as discussed above), the notation μ̂O will be used for the
function representing the Fourier transform of the orbital integral μO.

We say that an element of g (or of g∗) is elliptic if its stabilizer in G is compact
modulo Z. The adjoint (or co-adjoint) orbit of an elliptic element will be referred
to as an elliptic orbit.

Let Θπ be the character of an irreducible supercuspidal representation π, and
let d(π) be the formal degree of π. Certain supercuspidal representations have the
property that on some neighbourhood of zero in g intersected with the regular set
greg, Θπ ◦ exp is equal to d(π) times the Fourier transform of an elliptic orbital
integral. That is, there exists an elliptic orbit Oπ such that

(13.1) Θπ(expX) = d(π) μ̂Oπ
(X), X ∈ Vπ ∩ g

reg,

where Vπ is an open neighbourhood of zero in g, and exp is the exponential map,
or some reasonable substitute, such as a truncated exponential map. As shown
in [M1], when F has characteristic zero and the residual characteristic p of F is
greater than n, all supercuspidal representations of GLn(F ) exhibit this property.
The associated orbits consist of regular elements: this is a property of elliptic
GLn(F )-orbits.

The results of [M2] show that characters of some of the supercuspidal repre-
sentations of classical groups constructed by Morris ([Mo2], [Mo3]) also display
this kind of behaviour.

More recently, Adler and DeBacker ([AD2]) have shown that, for supercuspidal
representations π of GLn(F ), when p > n, the relation (13.1) holds for Vπ = gρ(π)+ ,

where ρ(π) is the depth of π. They also show that (13.1) holds on Vπ = gρ(π)+

for the supercuspidal representations reductive p-adic groups constructed in Adler
([A2]), but here the orbit Oπ does not necessarily consist of regular elements.

The results of [KM1] and [KM2] describe the asymptotic behaviour of char-
acters of irreducible admissible (not necessarily supercuspidal) representations that
contain particular kinds of K-types. Here we discuss the results of [KM2] as they
apply to tame supercuspidal representations. These results are proved subject to
some hypotheses (see Section 3.2 of [KM2]), including the assumption that F
has characteristic zero, which guarantee that the conditions in Proposition 4.1 of
[AR] hold. They also imply that Hypothesis C(G′) holds for every tamely ramified
twisted Levi subgroup G′ of G. Therefore, under the hypotheses of [KM2], the
equivalence classes of tame supercuspidal representations are parametrized as in
Theorem 9.1. Let π be a tame supercuspidal representation of G whose equivalence
class is parametrized by the G-equivalence class of a triple (G′, π′, φ), where G′ is

a proper tamely ramified elliptic twisted Levi subgroup of G. Let (�G, �φ) be a G-
factorization of φ. Let x ∈ B(G′). For 0 ≤ i ≤ d− 1, let Γi ∈ zi ∗ be a Gi+1-generic
element of depth −ri that realizes φi on Gi

x,s+i
, where si = ri/2. In this situation,

we are identifying gi and gi ∗, so we identify Γi with an element of zi, which we will
also denote by Γi. If φd is trivial, set Γd = 0. Otherwise, let Γd ∈ z be an element
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that realizes φd |Gx,(rd/2)+ . Set Γ =
∑d

i=0 Γd. Note that, since G0 = G′, we have
Γ ∈ z′ and CG(Γ) = G′ ([KM2]).

Note that if π is toral then G′ is an elliptic maximal torus, so G′/Z is always
compact in the toral case. For the moment, suppose thatG′/Z is compact. Then the
element Γ is elliptic. Also, g′ does not contain any nontrivial nilpotent elements.
This means that OΓ is the only orbit whose closure contains Γ. According to
Theorem 4.4.1 of [KM2], the relation (13.1) holds, up to a positive scalar multiple,
with Oπ = OΓ and Vπ = gs+d−1

. (We remark that, once we have this sort of relation,

it is a simple matter to verify that the scalar is 1, as long as the the measure on
OΓ is compatible with the one used to compute d(π).)

As shown in [KM2], in cases where where G′/Z is not compact, the stabilizer
of Γ in G is still equal to G′. By contrast with the case where G′/Z is compact,
in this case OΓ lies in the closure of other orbits. Let O(Γ) be the (finite) set of
AdG-orbits in g whose closures contain OΓ. According to Theorem 4.4.1 of [KM2],
there exist complex numbers cO(π), indexed by the orbits O ∈ O(Γ), such that

Θπ(expX) =
∑

O∈O(Γ)

cO(π)μ̂O(X), X ∈ gs+d−1
∩ g

reg.

We expect that, under weaker hypotheses than those assumed in [KM2], the above
equality would still hold, but only on the smaller domain gρ(π)+ .

When G′/Z is noncompact, in some special cases, for example, cases such as
the ones discussed in the following paragraph, a relation like (13.1) holds, but we
do not expect that in general. The methods and results of [KM2] (as they apply
to a tame supercuspidal representation whose equivalence class is parametrized
by a triple (G′, π′, φ)) do not depend in any way on properties of the depth zero
supercuspidal representation π′ of G′.

Let T be a tamely ramified elliptic maximal torus in G′ that normalizes a
maximal parahoric subgroup G′

x,0 of G′ and is such that the image of T ∩ G′
x,0

in G′
x,0/G

′
x,0+ is the group of f-rational points of a maximal elliptic torus. Let

φ′ be a depth zero quasicharacter of T whose restriction to T ∩ Gx,0 factors to a
character θ of (T ∩ Gx,0)/(T ∩ Gx,0+) that is in general position. Suppose that

π′ is associated to ±RG′

T ,θ, as in Sections 7 and 10. Then it may be possible to
use properties of cuspidal Deligne-Lusztig representations to produce an element
Γ′ in the Lie algebra of T such that a relation like (13.1) holds for Θπ′ , with Oπ′

equal to the G′-orbit of Γ′. In this case, we may have the relation (13.1) for Θπ,
with Oπ = OΓ′+Γ and, possibly, Vπ = gρ(π)+ . This is what happens for general

linear groups and for some of the representations studied in [M2] (where Vπ is not
specified explicitly).

When G′/Z is noncompact and π′ does not arise via the Deligne-Lusztig con-
struction, then we do not expect a relation like (13.1) to hold for Θπ. In some
cases, it is possible to obtain a more general relation that involves finitely many
Fourier transforms of orbital integrals (where the set of orbits appearing does not
coincide with the set of orbits whose closures contain a fixed semisimple orbit).
In some cases, the orbits appearing in such relations are regular and semisimple.
The results of Cunningham ([C]) describe this kind of relation for depth zero su-
percuspidal representations of 4 × 4 symplectic groups. The aim of ongoing work
of DeBacker and Kazhdan, beginning with the preprint [DK], is to obtain such
relations for depth zero supercuspidal representations.
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Some recent results show that data that parametrize tame supercuspidal rep-
resentations can be used to describe properties of their characters on domains that
are not necessarily close to the identity.

For example, DeBacker and Reeder show that expressions for characters of
cuspidal Deligne-Lusztig representations of reductive groups over finite fields in
terms of combinations of Green functions can be used to produce expressions for
the characters of the depth zero supercuspidal representations studied in [DR].
Near the identity, the expression looks like (13.1). However, on some domains
away from the identity element, expressions for characters as linear combinations
(usually involving more than one term) of Fourier transforms of orbital integrals
are obtained.

A recent paper of Adler and Spice ([AS]) computes character values for those
tame supercuspidal representations that are parametrized by triples (G′, π′, φ) hav-

ing the property that factorizations of φ involve twisted Levi sequences �G for which
Gi/Z is compact for 0 ≤ i ≤ d− 1. The formulas obtained in [AS] involve expres-
sions that are linear combinations of Fourier transforms of orbital integrals, where
the orbits that appear are defined in terms of the data that parametrize the repre-
sentations.
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On the Sato-Tate Conjecture, II

V. Kumar Murty

To Freydoon Shahidi on his 60th birthday

Abstract. We formulate and investigate a weak form of the Sato-Tate con-
jecture. By replacing the normal use of the Ikehara-Wiener Tauberian theorem
with a result of Heilbronn and Landau, we show that if all symmetric power

L-functions are analytic at s = 1, then the weak Sato-Tate conjecture holds.

1. Introduction

The Sato-Tate conjecture describes the distribution of the “angles of Frobe-
nius”. We consider the L-function of an elliptic curve over Q

L(s) = P (s)
∏(

1− πpp
−s

)−1 (
1− πpp

−s
)−1

.

Here, the product is over primes p that do not divide the conductor of the curve
and P (s) is an Euler product supported only at the primes dividing the conductor.
Also,

πp = p1/2eiθp

with 0 ≤ θp ≤ π. Let us write

αp = eiθp

and

βp = e−iθp .

Let I be an interval in [0, π]. The conjecture of Sato-Tate [11] asserts that if the
elliptic curve does not have complex multiplication, then

(1) #{p ≤ x : θp ∈ I} ∼
(∫

I

2

π
(sin2 θ)dθ

)
π(x)

where π(x) denotes the number of primes p ≤ x. (In the case that the curve has
complex multiplication, the θp are almost equidistributed in [0, π] apart from a
‘skewing’ that occurs at π/2. See [4] for a precise statement.)
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functions.
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The conjecture implies the following apparently more general statement: let f
be an integrable function on the unit circle. Then

(2) lim
x→∞

1

π(x)

∑
p≤x

f(θp) =

∫ π

0

2

π
(sin2 θ)f(θ)dθ.

Important progress on (1) has been made in recent work of Taylor, Clozel, Harris
and Shepherd-Barron. (See the exposé of Carayol [1].) In particular, they are able
to prove the conjecture if the elliptic curve has a prime of semistable reduction.

The conjecture can be formulated more generally for any normalized holomor-
phic cusp form for a congruence subgroup that is an eigenfunction for the Hecke
operators and which does not have complex multiplication (in the sense of Ribet).
This general version of the conjecture is still open.

In our discussion below, we shall be working with a normalized eigenfunction
f of the Hecke operators for the group Γ0(N) of weight k ≥ 2. We assume that
f does not have complex multiplication. In this case, for a prime p that does not
divide N , we have πp = p(k−1)/2eiθp with 0 ≤ θp ≤ π and the Sato-Tate conjecture
asserts that (1) holds.

In this paper, we discuss the following weaker statement.

Conjecture 1.1. For I an interval in [0, π], we have

(3) lim
x→∞

1

log x

∑
p≤x
θp∈I

log p

p
=

∫
I

2

π
(sin2 θ)dθ.

Let us call this the weak Sato-Tate conjecture.

It is clear that the Sato-Tate conjecture implies the weak Sato-Tate conjecture.
Indeed, applying (1) and using partial summation, we see that the weak Sato-Tate
conjecture follows. We do not expect the reverse implication as the situation is a
little similar to the case of the distribution of prime numbers. The estimate

∑
p≤x

log p

p
= (1 + o(1)) log x

can be derived in a few lines from the Chebyshev bound π(x) = O(x/ log x), while
the proof of the prime number theorem is somewhat more complicated.

We note that the weak Sato-Tate conjecture implies the following estimate.
Given an interval I of positive measure, and any ε > 0, we have

(4) #{p ≤ x : θp ∈ I} �I x1−ε

where the implied constant depends on I. Indeed, applying (3) to x and x1−ε, we
find that ∑

x1−ε≤p≤x
θp∈I

log p

p
� log x.
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Since each term in the sum is O((log x)/x1−ε), (4) follows. If instead of (3), we
have the stronger statement

(5)
1

log x

∑
p≤x
θp∈I

log p

p
=

∫
I

2

π
(sin2 θ)dθ + O

(
1

log x

)

then we would be able to deduce the bound

(6) #{p ≤ x : θp ∈ I} �I π(x).

The main result of this paper is to show that the weak Sato-Tate conjecture is
a consequence of the holomorphy at s = 1 of a collection of L-functions. Denote by
Mr(s) the r-th symmetric power L-function. It is given by an Euler product whose
factor at a prime that does not divide N is

(
1−

αr
p

ps

)−1
(
1−

αr−1
p βp

ps

)−1

· · ·
(
1−

βr
p

ps

)−1

.

The indexing is such that M0(s) = ζ(s), and M1(s) = L(s − k−1
2 ). In [4], it was

shown that if all Mr have an analytic continuation to �(s) ≥ 1, then the Sato-Tate
conjecture holds. In this note, we shall show that if all Mr(s) are analytic at the
point s = 1, then the weak Sato-Tate conjecture holds.

In [5], R. Murty used information on the analytic continuation of a finite num-
ber of the Mr to deduce oscillation theorems for the numbers {an}, where

L(s) =

∞∑
n=1

an
ns

.

We show that the hypotheses of some of those theorems can be replaced by weaker
ones, and in particular, analytic continuation of the Mr can be replaced with holo-
morphy at s = 1.

The analytic continuation of the symmetric power L-functions has been, and is
being, studied by many authors. The work of Shimura and Gelbart-Jacquet gave
the analytic properties of M2(s). The work of Shahidi [10] established the analytic
continuation of M3(s) under a certain non-vanishing hypothesis. More recent work
of Kim and Shahidi [3] showed that Mr(s) is regular for �(s) ≥ 1 and m ≤ 9 with
the possible exception that M9(s) may have a pole at s = 1. (See the article by R.
Murty [6] for a discussion of this and other related work.)

Acknowledgements. It is a pleasure to thank Sanoli Gun, Ram Murty and the
referee for helpful comments on an earlier version. It is also a pleasure to dedicate
this paper in friendship to Freydoon Shahidi on the occasion of his sixtieth birthday.

2. A lemma

We prove the following result. It is a variant of [4], Lemma 3.2.

Lemma 2.1. Let f(s) be a function satisfying the following hypotheses:
(a) f is holomorphic in σ > 1 and non-zero there;
(b) f is holomorphic in the disc |s − 1| < c except for a pole of order e ≥ 0 at

s = 1;
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(c) log f(s) can be written as a Dirichlet series
∑∞

n=1 bn/n
s with bn ≥ 0 for

σ > 1.
Then in the disc |s−1| < c/2(e+2), any zero of f with σ = 1 has order ≤ e/2.

Proof. Consider the disc |s − 1| < c/2(e + 2). Let 1 + it0 be a zero of f of
order k and in this disc. Suppose that k > e/2. We wish to derive a contradiction.
Set b = [e/2] + 1, that is, the smallest integer larger than e/2. In particular, k ≥ b.

Consider the function

g(s) = f(s)2b+1
2b∏
j=1

f(s+ ijt0)
2(2b+1−j).

Clearly g is holomorphic for σ > 1. Moreover, as

|2bt0| < 2bc/2(e+ 2) ≤ c/2

we see that g is holomorphic in |s − 1| < c/2. It vanishes to at least first order at
s = 1, as

4b2 − (2b+ 1)e ≥ 4b2 − (2b+ 1)(2b− 1) = 1.

But for σ > 1,

log g(s) =
∑
n≥1

bnn
−s

⎛
⎝2b+ 1 +

2b∑
j=1

2(2b+ 1− j)n−ijto

⎞
⎠ .

Let φn = t0 log n. Then for σ > 1,

� log g(σ) = log |g(σ)| =
∑
n≥1

bnn
−σ

⎛
⎝2b+ 1 +

2b∑
j=1

2(2b+ 1− j) cos(jφn)

⎞
⎠ .

Now, we have the identity

(7) 2b+ 1 +
2b∑
j=1

2(2b+ 1− j) cos(jθ) =

⎛
⎝1 + 2

b∑
j=1

cos jθ

⎞
⎠

2

≥ 0.

Hence, log |g(σ)| ≥ 0 for σ > 1 and so |g(σ)| ≥ 1. This contradicts g having a zero
at s = 1. This proves the lemma.

Remark. We have not attempted to find the largest disc in which one can assert
the conclusion of the Lemma.

3. Non-vanishing of the Symmetric power L-functions

Suppose we know that all Mr for r > 0 are analytic at s = 1. We will use the
Lemma of the previous section to deduce that there is a small neighbourhood of
s = 1 in which no Mr vanishes.

Theorem 3.1. Suppose that each Mr (for 0 < r ≤ 2m) can be analytically
continued to a disc |s − 1| < c. Then, no Mr (r ≤ m) vanishes at a point 1 + it
with |t| < c/8.
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Proof. For r ≤ m, consider the function

Gr = M0M2 · · · M2r.

Then Gr has at most a simple pole at s = 1 and no other pole in the disc |s−1| < c.
Moreover, we have

logMj(s) =
∑
n,p

(
sin(j + 1)nθp

sinnθp

)
1

npns

and using the identity (see [5], p. 435)

r∑
j=0

sin(2j + 1)θ

sin θ
=

(
sin(r + 1)θ

sin θ

)2

,

we see that logGr(s) is a Dirichlet series with non-negative coefficients. Thus,
Lemma 2.1 implies that it does not vanish at any point 1 + it with |t| < c/6. This
proves that no Mr, with r ≤ m and even, can have a zero at a point 1 + it with
|t| < c/6 unless t = 0.

Next, consider

Hr = (M0M1 · · ·M2r−1)
2M2r.

Again, Hr is analytic in |s − 1| < c except possibly for a pole of order ≤ 2 at
s = 1. Moreover, logHr(s) is a Dirichlet series with non-negative coefficients. This
is because of (7) and

logHr(s) =
∑
n,p

⎛
⎝(2r + 1) +

2r∑
j=1

2(2r + 1− j) cos jnθp

⎞
⎠ 1

npns
.

Thus, Lemma 2.1 implies that any zero 1 + it of Hr with |t| < c/8 is at most of
order 1. This means that none of M1, . . . ,M2r−1 can have a zero at s = 1+ it, with
0 < |t| < c/8.

Finally, we have to deal with possible zeros at s = 1. If both Mj and Mk

(with j �= k) have zeros at s = 1, then Hr would have a double zero there (for any
r > j, k) contradicting the result established in the previous paragraph. For the
same reason, no Mj can have a double zero at s = 1. This means that there is at
most one j0 such that Mj0 vanishes at s = 1. If such a j0 exists, then Mj0 has a
simple zero at s = 1.

It is well-known that M1 and M2 are analytic at s = 1 and do not vanish there.
Thus, we may suppose that j0 ≥ 3. Choose any even 
 with 0 < 
 < j0 and consider
the quantity (

1 +
sin(
+ 1)θ

sin θ
+

sin(j0 + 1)θ

sin θ

)2

.

We expand this and use the fact that for a ≥ b, we have

sin(a+ 1)θ

sin θ
· sin(b+ 1)θ

sin θ
=

b∑
k=0

sin(a+ b− 2k + 1)θ

sin θ
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to express the entire quantity as a linear combination of terms of the form sin jθ/ sin θ
for various values of j. Hence, if we set

g(s) = M0M
2
� M

2
j0

(
�∏

a=0

M2a

)(
j0∏
b=0

M2b

)(
�∏

k=0

M2
j0+�−2k

)

then

log g(s) =
∑ 1

npns

(
1 +

sin(
+ 1)(nθp)

sin(nθp)
+

sin(j0 + 1)(nθp)

sin(nθp)

)2

and so has non-negative coefficients. As it converges for �(s) > 1, it follows that
for σ > 1, we have log |g(σ)| ≥ 0 and in particular, g cannot vanish at s = 1. But
examining the product defining g, we see that the only terms that can contribute
either a zero or pole are M0 and Mj0 and that M0 occurs to the third power. As
j0 ≥ 3, and we have chosen 
 to be even, it is easy to see that Mj0 occurs to at
least the fourth power. Thus g vanishes at s = 1 and this is a contradiction. This
completes the proof of the theorem.

4. Application of a result of Heilbronn and Landau

Heilbronn and Landau prove the following result [2]. Suppose that the Dirichlet
series

f(s) =
∞∑

n=1

ann
−s

converges for σ > 1 and that an ≥ 0. Assume that

f(s)− 1

s− 1

is regular at s = 1. Then

A(x) =
∑
n≤x

an
n

= log x + O(1).

We shall use the above result to prove the following bound.

Theorem 4.1. Suppose that all Mr (r > 0) are holomorphic at s = 1. Then,
for r > 0, we have the estimate

(8)
∑
p≤x

sin(r + 1)θp
sin θp

· log p
p

= Or(1)

where the notation indicates that the implied constant may depend on r.

Remark. Notice that we do not need to assume holomorphy in a fixed disc.

Proof. We shall prove it for even values of r first. For this purpose, we again
use the function

G(s) = Gr(s) = M0M2 · · ·M2r.

As observed in the proof of Theorem 3.1, this is a Dirichlet series with the property
that logG(s) has non-negative coefficients. Moreover, G(s) has a simple pole at
s = 1, and the hypothesis that each Mi is holomorphic at s = 1 means that there
is some disc |s − 1| < cr on which all the M2,M4, · · · ,M2r are holomorphic. By
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Theorem 3.1, there is a smaller disc |s − 1| < c′r (say) in which none of the Mi

vanish. This implies that −G′/G(s) has a simple pole at s = 1 and that

−G′

G
(s) − 1

s− 1

is analytic in this disc. Noting that

−G′

G
(s) = −M ′

0

M0
(s) −

r∑
j=1

M ′
2j

M2j
(s)

and applying the theorem of Heilbronn and Landau, we see that

r∑
j=0

∑
pn≤x

sin(2j + 1)θp
sin θp

· log p
pn

= log x + Or(1).

Noting that the contribution of prime powers to the left hand side is bounded and
that ∑

p≤x

log p

p
= log x + O(1),

we get inductively that (8) holds.

For odd values of r, we use the function

G(s) = (M0M1 · · ·M2r−1)
2M2r.

Again, we apply the Heilbronn-Landau theorem to −G′/G(s) and proceed by in-
duction. This proves that (8) holds for all values of r > 0.

Corollary 4.1. With the hypothesis as in Theorem (4.1), we have for r �= 0, 2,

∑
p≤x

exp(irθp) ·
log p

p
= Or(1).

For r = 0, 2, we have

∑
p≤x

exp(irθp) ·
log p

p
= (−1)r/2 log x + Or(1).

This is proved by induction on r using Theorem (4.1).

Let us set

cm = lim
x→∞

1

log x

∑
p≤x

exp (imθp) ·
log p

p
.

Thus, Corollary 4.1 asserts that

(9) c0 = 1, c2 = −1, cm = 0 (m �= 0, 2).
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5. The Weak Sato-Tate conjecture

To deduce the weak Sato-Tate conjecture, we use a variant of a result ([7],
Theorem 8) of R. Murty and Sinha. By Weyl’s criterion, a sequence of points
xn ∈ [0, π] is equidistributed (with respect to the usual measure) provided for every
m > 0, we have

κm = lim
V→∞

1

V

∑
n≤V

exp(imxn) = 0.

When this condition holds, we have for any interval I ⊂ [0, π],

lim
V→∞

1

V
#{n ≤ V : xn ∈ I} = 
(I)

where 
(I) denotes the length of I (equivalently, the measure of I). A classical
result of Erdös and Turán gives an effective version of this in the sense that an
estimate for ∣∣∣∣ 1V #{n ≤ V : xn ∈ I} − 
(I)

∣∣∣∣
is derived in terms of finitely many of the sums∑

n≤V

exp(imxn).

In [7], Theorem 8, this result is generalized to the case that the xn are equidis-
tributed with respect to a measure other than the usual one. In this case, the κm

may be non-zero and the density function is given by

F (x) =

∞∑
m=−∞

κm exp{−imx}.

Thus,

lim
V→∞

1

V
#{n ≤ V : xn ∈ I} =

∫
I

F (x)dx.

The condition
∞∑

m=−∞
|κm| < ∞

is imposed to ensure absolute convergence of the series defining F . We need a
slightly generalized version of their result to take into account the weight (log p)/p
in the sums.

Proposition 5.1. Let I = [a, b] ⊂ [0, π] be an interval. Consider the quantity

E(x) =

∣∣∣∣∣∣∣
1

log x

∑
p≤x
θp∈I

log p

p
−

∫
I

2

π
(sin2 θ)dθ

∣∣∣∣∣∣∣
.

Then, for any positive integer M , we have

E(x) � 1

M
+

∑
1≤|m|≤M

(
1

M+1 +min(b− a, 1
|m| )

)

×
∣∣∣ 1
log x

∑
p≤x exp(imθp)

log p
p − cm

∣∣∣
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with the cm defined by (9).

Proof. This essentially follows along the lines of a very similar result in [7] and
so we shall outline the argument. In [7], Section 3, the M -th order Beurling-Selberg
trigonometric polynomials S±

M relative to the interval I = [a, b] are introduced.
They have the property that

S−
M ≤ χI ≤ S+

M

where χI denotes the characteristic function of the interval I. Moreover, their
Fourier coefficients satisfy

(10) |Ŝ±
M (n)− χ̂I(n)| ≤ 1

M + 1
.

Moreover, the Fourier coefficients of χI itself satisfy

(11) |χ̂I(n)| ≤ min

(
b− a,

1

|n|

)
.

Finally, we have

(12) ||S±
M − χI ||L1 ≤ 1

M + 1
.

Now, let xn be a sequence of points in [0, π] and let g ≥ 0 be a piecewise continuous
function on R and define

dm = lim
V→∞

∑
n≤V exp(imxn)g(n)∑

n≤V g(n)
.

Define the density function

F (t) =
∑
m

dm exp (−imt)

and denote by μ the measure F (t)dt. We want to estimate
∑
n≤x

χI(xn)g(n)

and we will do so by estimating
∑
n≤x

S±
M (xn)g(n).

The following estimate enables us to separate S±
M and the function g.

Lemma 5.1. We have∣∣∣∣∣∣
∑
n≤V

S±
M (xn)g(n) −

(∫ π

0

S±
M (t)dμ

)⎛
⎝∑

n≤V

g(n)

⎞
⎠
∣∣∣∣∣∣

≤
∑

1≤|m|≤M

∣∣∣Ŝ±
M (m)

∣∣∣
∣∣∣∣∣∣
∑
n≤V

exp (imxn)g(n) − dm
∑
n≤V

g(n)

∣∣∣∣∣∣ .
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Proof. Since the Fourier coefficients S±
M (m) vanish for |m| > M , we have

(13)
∑
n≤V

S±
M (xn)g(n) =

∑
n≤V

∑
|m|≤M

Ŝ±
M (m) exp(imxn)g(n).

Rearranging the double sum, we see that this is equal to

=
∑

|m|≤M

Ŝ±
M (m)

⎧⎨
⎩

∑
n≤V

exp(imxn)g(n)

⎫⎬
⎭

=
∑

|m|≤M

Ŝ±
M (m)

⎧⎨
⎩

∑
n≤V

exp(imxn)g(n)− dm
∑
n≤V

g(n)

⎫⎬
⎭

+

⎛
⎝∑

n≤V

g(n)

⎞
⎠

⎛
⎝ ∑

|m|≤V

Ŝ±
M (m)dm

⎞
⎠ .

Now,

∑
|m|≤M

Ŝ±
M (m)dm =

∑
m

dm

∫ π

0

S±
M (t) exp(−imt)dt

=

∫ π

0

S±
M (t)

(∑
m

dm exp(−imt)

)
dt

=

∫ π

0

S±
M (t)dμ.

Putting these together, we deduce that

∑
n≤V

S±
M (xn)g(n) −

(∫ π

0

S±
M (t)dμ

)⎛
⎝∑

n≤V

g(n)

⎞
⎠

=
∑

1≤|m|≤M

Ŝ±
M (m)

⎛
⎝∑

n≤V

exp(imxn)g(n)− dm
∑
n≤V

g(n)

⎞
⎠ .

The Lemma follows from this.

Using the estimate (12), we see that

(14)

∫ π

0

S±
M (t)dμ = μ(I) + O(

1

M
).

Now using (10) and (11), we deduce that

(15) |Ŝ±
M (m)| ≤ 1

M + 1
+ min

(
b− a,

1

|m|

)
.

Now, we apply Lemma 5.1 with the function

g(n) =

{
(log p)/p if n = p is prime

0 if n is not prime.
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Using the above estimates (14) and (15), dividing through by∑
n≤V

g(n) ∼ log V

and using (9), the Proposition 5.1 follows.

Now we are ready to prove the main result.

Theorem 5.1. Suppose that all Mr (r > 0) are holomorphic at s = 1. Then
the weak Sato-Tate conjecture holds.

Proof. Let ε > 0 and choose M = [1/ε]. Using Corollary 4.1, and Proposition
5.1, we see that

E(x) � ε +
c(ε) log(1/ε)

log x
.

Now taking x → ∞, the result follows.

6. Variants and Consequences

We can ask what can be deduced if we only know that a finite number of the
Mr are holomorphic in a disc about s = 1. The following variant of [5], Lemma 2
follows by the same method as in [5] by using Theorem 5.1.

Theorem 6.1. Suppose that Mr is analytic in a disc |s − 1| < c for all r ≤
2m+ 2. Then, as x → ∞, and for r ≤ m+ 1,

∑
p≤x

(2 cos θp)
2r log p

p
=

1

r + 1

(
2r

r

)
(1 + o(1)) log x.

For r ≤ m, ∑
p≤x

(2 cos θp)
2r+1 log p

p
= o(log x).

Using this, we can deduce the following result which is a strengthening of [5],
Theorem 4.

Theorem 6.2. Suppose that Mr is analytic at s = 1 for all r ≤ 2m+ 2. Then
each of the following statements holds for a set of primes p of positive density:

(i) For any δ > 0,

−δ < 2 cos θp <
2

δ(m+ 2)

(ii) for any ε > 0,

|2 cos θp| >
√

4m+ 2

m+ 2
− ε

(iii) for any ε > 0,
2 cos θp > βm − ε

where

βm =

{
1

4(m+ 2)

(
2m+ 2

m+ 1

)} 1
2m+1

.

We omit the proof as it follows along the same lines as in [5].
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Dinakar Ramakrishnan

To Freydoon Shahidi, on the occasion of his sixtieth birthday
Tavalodet Mubarak!

Abstract. For any number field F , call a cusp form π = π∞⊗πf on GL(2)/F

special icosahedral, or just s-icosahedral for short, if π is not solvable polyhe-
dral, and for a suitable “conjugate” cusp form π′ on GL(2)/F , sym3(π) is
isomorphic to sym3(π′), and the symmetric fifth power L-series of π equals
the Rankin-Selberg L-function L(s, sym2(π′) × π) (up to a finite number of
Euler factors). Then the point of this Note is to obtain the following result:

Let π be s-icosahedral (of trivial central character). Then πf is algebraic
without local components of Steinberg type, π∞ is of Galois type, and πv is
tempered everywhere. Moreover, if π′ is also of trivial central character, it is
s-icosahedral, and the field of rationality Q(πf ) (of πf ) is K := Q[

√
5], with

π′
f being the Galois conjugate of πf under the non-trivial automorphism of

K.
There is an analogue in the case of non-trivial central character ω, with

the conclusion that πf is algebraic when ω is, and when ω has finite order,
Q(πf ) is contained in a cyclotomic field.

1. Introduction

Let us begin with some motivation and consider a continuous irreducible repre-
sentation ρ with trivial determinant of the absolute Galois group GF (of a number
field F ) into GL(2,C) which is icosahedral, i.e., whose image in PGL(2,C) is the

alternating group A5. Then it is well known that ρ is rational over K = Q[
√
5],

but not equivalent to its Galois conjugate ρ′ under the non-trivial automorphism of
K. Moreover, one has (see [Kim2], [Wan], for example): (i) sym3(ρ) � sym3(ρ′),
and (ii) sym5(ρ) � sym2(ρ′) ⊗ ρ. These two are the signature properties of such
representations, and they lend themselves to natural automorphic analogues.

Let π be a cuspidal automorphic representation of GL(2,AF ) with central
character ω. For every m ≥ 1 one has its symmetric m-th power L-function
L(s, π; symm), which is an Euler product over the places v of F , with the v-factors

2010 Mathematics Subject Classification. Primary: 11F70; Secondary: 11F80, 22E55.
Partly supported by the NSF grant DMS-0701089.

c© 2011 Dinakar Ramakrishnan
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(for finite unramified v of norm qv) being given by

Lv(s, π; sym
m) =

m∏
j=0

(1− αj
vβ

m−j
v qv

−s)−1,

where the unordered pair {αv, βv} defines the diagonal conjugacy class in GL2(C)
attached to πv. Even at a ramified (resp. archimedean) place v, one has by the
local Langlands correspondence a 2-dimensional representation σv of the extended
Weil group WFv

× SL(2,C) (resp. of the Weil group WFv
), and the v-factor of

the symmetric m-th power L-function is associated to symm(σv). A special case
of the principle of functoriality of Langlands asserts that there is, for each m, an
(isobaric) automorphic representation symm(π) of GL(m + 1,A) whose standard
(degree m+1) L-function L(s, symm(π)) agrees, at least at the primes not dividing
N , with L(s, π; symm). This was known to be true for m = 2 long ago by the work
of Gelbart and Jacquet ([GJ]), and more recently for m = 3, 4 by the deep works
of Shahidi and Kim ([KS2, Kim1, KS1]). Write A2j(π) for sym2j(π)⊗ω−j when
the latter is automorphic; it is also customary to denote A2(π) by Ad(π). We will
say that π is solvable polyhedral if symm(π) is Eisensteinian for some m ≤ 4.

Suppose π′ is another cusp form on GL(2)/F , say of the same central character
as π, such that sym2(π) � sym2(π′). Then one knows ([Ram1]) that π and π′

must be abelian twists of each other. One could ask if the same conclusion holds if
sym3(π) is isomorphic to sym3(π′). The answer is in the negative in that case, and a
counterexample would be furnished by a π associated to a 2-dimensional icosahedral
Galois representation ρ (of trivial determinant), i.e., with its image in PGL(2,C)
being isomorphic to the alternating group A5. Indeed, as remarked above, ρ would
be defined over Q[

√
5] and π′ would be associated to the Galois conjugate ρ′ of

ρ (under a + b
√
5 �→ a − b

√
5). However, the even Galois representations are not

(at all) known to be modular. Nevertheless, cusp forms of such icosahedral type
are of great interest to study, for themselves and for understanding the fibres of
the symmetric cube transfer. What we do is give a definition of an s-icosahedral
cusp form which does not depend on any conjecture, and which is robust enough to
furnish consequences which one would usually know only when there is an associated
Galois representation.

Let us call a cusp form π on GL(2)/F (of central character ω) s-icosahedral if
we have

(sI-1) π is not solvable polyhedral;
(sI-2) sym3(π) � sym3(π′), for a cusp form π′ on GL(2)/F ; and
(sI-3) the following identity of L-functions holds (outside a finite set S of places

of F containing the archimedean and ramified places):

LS(s, π; sym5) = LS(s,Ad(π′)× π ⊗ ω2),

with π′ as in (sI-2).

Observe that if (π, π′) are associated as above, then (π, π′ ⊗ ν) will also be
associated if ν is a cubic character, but this ambiguity can be eliminated by re-
quiring that the ratio of the central characters ω, ω′, of π, π′ respectively, is not
cubic. Note also that the property of being s-icosahedral is invariant under twist-
ing π �→ π ⊗ χ by idèle class characters χ, with π′ �→ π′ ⊗ χ, in particular under
taking contragredients π �→ π∨ = π ⊗ ω−1.
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Given cusp forms π1, π2 on GL(n1)/F , GL(n2)/F respectively, one has good
analytic properties ([Sha2, Sha1, JPSS, JS]) of the associated Rankin-Selberg
L-function L(s, π1 × π2). When (n1, n2) = (2, 2) ([Ram1]) and (n1, n2) = (3, 2)
([KS2]), one also knows the existence of an isobaric automorphic form π1 � π2 on
GL(n1n2). Thus the hypothesis (sI-3) implies that sym5(π) is modular; in fact,
Ad(π′) � π ⊗ ω2 represents it at every finite place (and at infinity), as seen by the
standard stability results due to Shahidi and others (see section 2 below).

What we want to do in this Note is to look at the situation where one does
not know of the existence of a corresponding Galois representation ρ, like when
π is a suitable Maass form on GL(2)/Q, and see what arithmetic properties one
can still deduce unconditionally. However, it is a Catch 22 situation because it is
not easy, either by the trace formula or by other means, to construct such Maass
forms of Laplacian eigenvalue 1/4 except by starting with a Galois representation.
Nevertheless, here is what we prove:

Theorem A Let F be a number field and π = π∞ ⊗ πf a cuspidal automorphic
representation of GL2(AF ) with algebraic central character ω. Suppose π is s-
icosahedral, i.e., satisfies (sI-1), (sI-2) and (sI-3) relative to a cusp form π′ on
GL(2)/F of central character ω′. Then we have the following:

(a) πf is algebraic with no local components of Steinberg type
(b) If ω is of finite order, πf is rational over a cyclotomic extension of Q,

and π∞ is of Galois type
(c) π is tempered, i.e., satisfies the Ramanujan hypothesis.
(d) If ω = ω′ = 1, we have:

(1) πf is rational over Q[
√
5], but not over Q;

(ii) π′ is unique, with π′
f being the Galois conjugate of πf under the non-

trivial automorphism τ of Q[
√
5]; and

(iii) π′ is also s-icosahedral and of Galois type.

Concerning (b), let us recall that π∞ is said to be of Galois type if at every
archimedean place v, the associated 2-dimensional representation σv of the Weil
group WFv

is trivial upon restriction to C∗.
One writes Q(πf ) for the field of rationality of πf ([Clo], [Wal]). We will use

the algebraic parametrization at any v which is equivariant for the action of Aut C
on the two sides of the local Langlands correspondence ([Hen2]. In particular, for
v unramified, it corresponds to the Tate parametrization of [Clo], which was intro-
duced so as not to worry about spurious square-roots of qv = Nv; the normalization
is unitary in [Wal].

In [Ram2], we introduced a notion of quasi-icosahedrality, based on a condi-
tional assumption that certain symmetric powers of π are automorphic. More pre-
cisely, an irreducible cuspidal automorphic representation π of GL(2,AF ) is called
quasi-icosahedral iff we have

(i) symm(π) is automorphic for every m ≤ 6;
(ii) symm(π) is cuspidal for every m ≤ 4; and
(iii) sym6(π) is not cuspidal.

The key result of [Ram2] (see part (b) of Theorem A′ of section 2) is that, for every
such quasi-icosahedral π, there exists another cusp form π′ of GL(2)/F such that
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the symmetric fifth power of such a quasi-icosahedral cusp form π is necessarily a
character twist of the functorial product Ad(π′) � π. From this we obtain

Proposition B Let π be an s-icosahedral cusp form on GL(2)/F of central char-
acter ω. Assume that sym6(π) is automorphic. Then π is quasi-icosahedral.

It will be left to the astute reader to figure out the conditions on a quasi-
icosahedral π which will make it s-icosahedral. We do not pursue this any further
here because we want to stay in the unconditional realm here.

Sometimes in Mathematics, when one makes a right prediction and puts it in a
workable framework, the proof is not hard to find; Theorem A here is an instance
of that and the proof mostly requires just bookkeeping. Nevertheless, we hope that
the conclusion is of some interest. It should be mentioned that given the definition,
it is not surprising that an s-icosahedral π is algebraic, but what is nice is that
when ω = 1, π is even rational over Q(

√
5).

Finally, one can easily construct non-singleton fibres of the symmetric cube
transfer by taking, for any cusp form π on GL(2), the collection {π ⊗ χ |χ3 = 1}.
(By [KS1], sym3(π) will be cuspidal iff π is not dihedral or tetrahedral.) These
fibres are not terribly interesting, however, especially compared to the icosahedral
ones.

We thank the referee for helpful comments, and the NSF for continued support
through the grant DMS-0701089.

This article is dedicated to Freydoon Shahidi, from whom I have learnt a lot
about automorphic L-functions and the Langlands-Shahidi method, and who has
been a longtime friend and in effect a baradar e bozorgtar.

2. The symmetric cube constraint

Let F be a number field with adèle ring AF . For each place v, denote by Fv

the corresponding local completion of F , and for v finite, by Ov the ring of integers
of Fv with uniformizer �v of norm qv. Throughout this article, ω (resp. ω′) denote
the central character of a cusp form π (resp. π′ on GL(2)/F .

We will use, without mention, the notations and conventions of [Ram2], espe-
cially section 1 therein.

The symmetric cube condition (sI-2) (see Introduction) imposes strong con-
straints on how the local components πv and π′

v are related at all v. We spell these
out at the unramified v in the second part of the Lemma below, and show that, not
surprisingly, when the central character ω is algebraic, πv and π′

v are algebraically
related. The first part show the effect of π satisfying both (sI-1) and (sI-2) on its
“mirror” π′.

Lemma 2.1 Let π be a cusp form on GL(2)/F which is s-icosahedral relative to
π′. Then

(A) π′ satisfies (sI-j) for j = 1, 2, and moreover,

(ω′)3 = ω3.

In particular, ω′ is algebraic iff ω is.
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(B) Let v be any finite place where π, π′ are unramified, and denote by {a, b}
with b = wa−1 (resp. {c, d} with d = w′c−1) the unordered pair of complex
numbers associated to πv (resp. π′

v), where w = ωv(�), w′ = ω′
v(�).

Write

w = zw′, with z3 = 1.

Then one of the following cases occurs (up to interchanging
a and b):
(1) {c, d} = {za, zb}; Ad(πv) � Ad(π′

v)
(2) {c, d} = {μza, μ−1zb}, μ4 = 1, a2 = μw; Ad(πv) � Ad(π′

v)
(3) {c, d} = {ζza, ζ−1zb}, ζ5 = 1, a2 = ζw
In particular, when ω is algebraic, πv and π′

v are both algebraic in cases
(2) and (3). Moreover, if ω has finite order, Q(πv) is contained, in these
cases, in a finite abelian extension K of Q, independent of v, containing
Q(ω).

Remark 2.2 In section 3 we will show, by also appealing to (sI-3), which is not
used in Lemma 2.1, that (i) πv is algebraic in all cases, and (ii) a4 = 1 in case (2)
of part (B) above, if w = 1. It is perhaps useful to note that if (sI-3) is not satisfied
by π, one may take F = Q and π′ to be a cubic twist of π, and such a π is expected
to be transcendental if it is generated, for example, by a Maass form ϕ of weight 0
relative to a congruence subgroup of SL(2,Z) acting on the upper half plane with
Laplacian eigenvalue λ > 1/4.

Proof of Lemma 2.1 (A) The fact that π and π′ have isomorphic symmetric

cubes implies immediately that ω′6 = ω6, which is not sufficient for us. We will first
show that π′ is not solvable polyhedral. First, since π is not solvable polyhedral,
symj(π) is cuspidal for j ≤ 4 (cf. [KS1]). By (sI-2), sym3(π′) is also cuspidal.
Suppose sym4(π′) is not cuspidal. Then, by the criterion of Kim and Shahidi
([KS1]), sym3(π′) must be monomial, which forces it to admit a non-trivial self-
twist by a quadratic character ν, say. Then by (sI-2), sym3(π) also admits a
self-twist by ν, implying that sym4(π) is not cuspidal, contradicting (sI-1). Hence
π′ satisfies both (sI-j) for j ≤ 2.

Next we appeal to Kim’s theorem ([Kim1]) giving the automorphy in GL(6)/F
of the exterior square Λ2(Π) of any cusp form Π on GL(4)/F . Applying this with
Π = sym3(η) for a cusp form η on GL(2)/F with central character ν, we obtain the
(well known) isobaric decomposition

(2.3) Λ2(sym3(η)) =
(
sym4(η)⊗ ν

)
� ν3.

To prove this, we first note that by [Kim1], the L-functions agree at almost all
places, and then appeal to the strong multiplicity one theorem for global isobaric
representations, due to Jacquet and Shalika ([JS]). Now applying this to η = π, π′,
we get by (sI-2), the following equivalence of isobaric sums:

(2.4)
(
sym4(π)⊗ ω

)
� ω3 =

(
sym4(π′)⊗ ω′) � ω′3.

Since sym4(π) and sym4(π′) are both cuspidal, we are forced to have

(ω′)3 = ω3,

as claimed.
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(B) Preserving the notations used in part (B) of the Lemma, and noting that

b = wa−1, d = w′c−1,

we get by (sI-2), the equality of sets:

(2.5) {a3, a2b, ab2, b3} = {c3, c2d, cd2, d3}.
Clearly,
(2.6)

a2b = wa, ab2 = w2a−1, b3 = w3a−3 and c2d = w′c, cd2 = w′2c−1, d3 = w′3c−3.

Note that, since w′ = z2w, we have

(2.7) c = αa =⇒ d = w′α−1a−1 = z2α−1b,

and

(2.8) c = βb =⇒ d = w′β−1b−1 = z2β−1a.

A priori, a3 has four possibilities to satisfy (2.5). However, by interchanging c
and d, we are reduced to considering only two main cases:

Case I: a3 = c3

In this case, since ω′3 = ω3 and w′ = z2w, (2.5) and (2.6) yield, after dividing
by w,

(2.9) {a, wa−1} = {−z2c, zwc−1}.
If a = −z2c, then c = za and d = zb (by (2.7)), putting us in the situation (1).
Since we have

{c, d} = {a, b} · z,
πv is (at most) a cubic twist of π′

v; it follows that Ad(πv) and Ad(π′
v) are isomorphic.

So we may assume a = zwc−1. Then we get (using (2.8))

(2.10) c = zwa−1 = zb, and d = za,

again landing us in (1).

Case II: a3 = w′c

In this case, c = w′−1
a3, and we obtain from (2.5) and (2.6),

(2.11) {wa,w2a−1} = {w−3a9, w6a−9}.
If wa = w6a−9, then a10 = w5, so that

(2.12) a2 = ζw, with ζ5 = 1.

Hence a3 = ζwa, and so

(2.13) c = w′−1
ζwa = ζza.

It follows that

(2.14) d = w′c−1 = (z2w)ζ−1z−1a−1 = ζzb.

Thus we are in situation (3).

It is left to consider when wa = w−3a9. In this case, a8 = w4, so that

(2.15) a2 = μw, with μ4 = 1.
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Hence a3 = μwa, and arguing as above, we deduce

(2.16) c = μza, and d = μ−1zb.

This puts us in situation (2).
We still need to show that Ad(πv) � Ad(π′

v) in this case as well. To this end,
note that since a2 = μw and c = μza,

(2.17) c = (a2w−1)za = w−1za3.

On the other hand, raising c = μza to the fourth power, we get, since μ4 = 1,

(2.18) c4 = za4 = za(a3) = za(wz−1c),

which in turn yields

(2.19) c3 = wza.

Furthermore,
c2 = w−2z2a6 = w−2z(za4)a2 = w−2zc4a2,

implying

(2.20) c−2 = w−2za2, and c2 = w2z2a−2.

The unramified representation Ad(πv) is described by the unordered triple

(2.21) {ab−1, 1, a−1b} = {w−1a2, 1, wa−2}.
Similarly, Ad(π′

v) is given by the unordered triple

{cd−1, 1, c−1d} = {zw−1c2, 1, z−1wc−2},
which, by (2.20), is the same as

(2.22) {wa−2, 1, w−1a2}.
The assertion follows.

�

3. The nicety of sym5(π) for π s-icosahedral

As mentioned in the Introduction, the condition (s-I3) implies that for an s-
icosahedral π of central character ω, the automorphic representation Ad(π′)�π⊗ω2

of GL6(AF ), whose existence is given by [KS2], represents sym5(π) at all places
outside a finite set S of places containing the archimedean and ramified places. In
fact we have the following strengthening:

Proposition 3.1 Let π be an s-icosahedral cusp form on GL(2)/F with central
character ω.

(a) At every finite place v,

(3.2) L(s, πv; sym
5) = L(s,Ad(π′

v) � πv ⊗ ω2
v)

and

(3.3) ε(s, πv; sym
5) = ε(s,Ad(π′

v) � πv ⊗ ω2
v)

(b) If Σ∞ denotes the set of archimedean places of F , we have

(3.4) L(s, π∞; sym5) = L(s,Ad(π′
∞) � π∞ ⊗ ω2

∞),

where π∞ (resp. π′
∞) denotes ⊗v∈Σ∞πv (resp. ⊗v∈Σ∞π′

v).
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(c) If π, π′ are not dihedral twists of each other, i.e., if their symmetric squares
are not twist equivalent, then sym5(π), defined to be Ad(π′) � π ⊗ ω2, is
cuspidal, and hence L(s, π; sym5) is entire in this case.

Remark Of course we are dealing with a very special class of cusp forms π here.
For the status of results in the general case (which is much more complicated), see
[Sha2], [Sha3] and [KS1].

Proof. At any place v, we have the well known factorization (using Clebsch-
Gordan):

(3.5) L(s, sym4(πv)× πv) = L(s, π; sym5)L(s, sym3(πv)⊗ ωv).

Similarly for the ε-factors, making use of the local Langlands conjecture for GL(n),
now known by the works of Harris-Taylor [HT] and Henniart [Hen1]. So it holds
for the γ-factors as well. We claim that one has, for a sufficiently ramified character
νv of F ∗

v ,

(3.6) L(s, π; sym5 ⊗ νv) = 1.

Indeed, by the standard stability results for the Rankin-Selberg L-functions, we
may choose a highly ramified character νv such that both L(s, sym4(πv)× πv ⊗ νv)
and L(s, sym3(πv)⊗ωvνv) are both 1. One way to see this is to use the fact that the
local Langlands correspondence preserves the L-functions of pairs, and make use of
the well known result on the Galois side. The claim now follows, thanks to (3.5).
We can deduce analogously the same statement for the γ-factors and ε-factors. For
a representation theoretic proof of the stability of γ-factors (which yields what we
want for the ε-factors because stability holds for the L-factors), see for example
[CPSS], where a general situation is treated.

Consider the global L-functions L1(s) := L(s, sym4(π)× π) and

(3.7) L2(s) := L(s,Ad(π′) � π ⊗ ω2)L(s, sym3(π)⊗ ω).

They both have functional equations and analytic continuations, and moreover,
thanks to (s-I3) and (3.5), they are the same local factors out side a finite set of
places containing Σ∞ and the ramified finite places. First choose a global character
ν such that at each finite place in S, νv is sufficiently ramified so that the νv twists
of L1,v(s) and L2,v(s) are both 1; we can do this by the (standard) argument above.
Comparing functional equations, and using the fact that the archimedean factors
of Lj(s), j = 1, 2, have no poles to the right of 
(s) > 1

2 , we get

L1,∞(s) = L2,∞(s),

which furnishes (3.4).
Now pick any finite place v in S and choose a ν such that for every u ∈ S, u �= v,

νu is sufficiently ramified. Comparing the functional equations again, we get (3.2);
here we use the invertibility of the ε-factors and the shape of the local factors, as
well as the very weak Ramanujan at v which separates the poles of Lj,v(s) from
its dual. After that we may, in the same way, deduce (3.3) as well. We have now
proved parts (a) and (b) of the Proposition.

Part (c) of the Proposition follows easily from the general cuspidality criterion
([RW]) for the Kim-Shahidi functorial transfer from GL(2) ×GL(3) to GL(6). In
fact, already by Theorem 1.2 of [Wan], given that π is not solvable polyhedral,
which is our hypothesis, the only way Ad(π′)� π⊗ω2 can fail to be cuspidal is for
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sym2(π) and sym2(π′) to be twists of each other by a character. But this has been
ruled out by the hypothesis, and we are done. �

4. Proof of part (a) of Theorem A

Let π be as in Theorem A, attached to (π′, ν), with ω algebraic. We will show
the following:
(4.1)

(i) At each place v, πv is algebraic.
(ii) The global representation πf is rational over a finite extension of Q (con-

taining Q(ω).

To deduce (ii) from (i), we need to show in addition that Q(πv) has degree
bounded independent of the place v.

4.1. When πv and π′
v are unramified. Let v be a finite place where πv and

π′
v are unramified. Preserving the notations of section 1, let us recall that the only

case where we do not yet know the algebraicity of πv is case (1) of Lemma 2.1, part
(B). We treat this case now, making use of (sI-3).

Lemma 4.1.1 Let v be a finite place where πv is unramified. Suppose we have
Ad(πv)) � Ad(π′

v), which is satisfied in cases (1), (2) of Lemma 2.1, part (B).
Then (sI-3) implies that one of the following identities holds:

a2 = w, a4 = w2, a6 = w3.

In particular, πv is algebraic if ωv is algebraic. Moreover, if w = 1, then am = 1
with m ∈ {4, 6}.
Remark 4.1.2 The reason for also including here the case (2) of Lemma 2.1, part
(B), is the following. We knew earlier that in this case, a2 = μw, with μ4 = 1,
so that when w = 1, a4 = ±1. But now, using Lemma 4.1.1 in addition, we rule
out the (potentially troublesome) possibility a4 = −1 (when w = 1), which will be
important to us later.

Proof of Lemma 4.1.1. Since Ad(π′
v) is by assumption (in this Lemma)

isomorphic to Ad(πv), it is described by the triple {w−1a2, 1, wa−2}. So Ad(π′
v)⊗ω2

v

is associated to {wa2, w2, w3a−2}. Thus Ad(π′
v)⊗ πv ⊗ ω2

v is given by the sextuple

{wa3, w2a, w2a, w3a−1, w3a−1, w4a−3}.
On the other hand, sym5(πv) is attached to the sextuple

{a5, wa3, w2a, w3a−1, w4a−3, w5a−5}.
Comparing these two tuples, we get

{wa3, w2a, w3a−1, w4a−3} = {a5, wa3, w4a−3, w5a−5}.
Looking at the possibilities for w2a, we see that either a4 = w2 (which subsumes
both the possibilities w2a = a5 and w2a = w4a−3), or a2 = w (when w2a = wa3),
or a6 = w3 (when w2a = w5a−5).

�
Thanks to the Lemma, we see that at all the unramified places v, Q(πv) is

contained in a finite solvable extension of Q(ω), with its degree over Q(ω) bounded
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independent of v (see Lemma 2.1 for cases (2) through (4). And since ω is by
hypothesis (of Theorem A) algebraic, i.e., of type A0, Q(ω) is a number field; in
fact it is a CM field or totally real. Consequently, we have proved the following:

Lemma 4.1.3 Let π be as in Theorem A, and let S be the union of the archimedean
places and the finite places where πv is ramified. Let πS denote (as usual) the
restricted tensor product of the local components πv as v runs over all the places
outside S. Then πS is algebraic, rational over a finite extension K of Q(ω). In
fact, K is contained in a compositum of cyclotomic and Kummer extensions over
Q(ω).

4.2. Proof of non-occurrence of πv of Steinberg type. Suppose πv is a
special representation. Then there is a character λ of F ∗

v such that the associated
2-dimensional representation σv of the extended Weil group W ′

Fv
= WFv

×SL(2,C)
is of the form λ⊗st where st denotes the standard representation of SL(2,C). From
(sI-2), it follows that π′

v is also necessarily special, with its associated 2-dimensional
representation σ′

v of W ′
Fv

being of the form λ′ ⊗ st. Then Ad(π′
v) has parameter

Ad(σ′
v) � 1⊗ sym2(st), so that Ad(π′

v)⊗ πv ⊗ ω2 has the parameter

(4.2.1) λ3 ⊗
(
sym3(st)⊕ st

)
.

On the other hand, sym5(πv) has the parameter

(4.2.2) λ5 ⊗ sym5(st).

But the representations (4.2.1) and (4.2.2) cannot be isomorphic, contradicting
(sI-3). Thus πv cannot be of Steinberg type. �

4.3. When πv is unramified, but π′
v is ramified. Thanks to (sI-2) and

(sI-3), sym3(π′
v) and Ad(π′

v) must both be unramified in this case. Suppose π′
v is

a principal series representation. So we may write

π′
v � μ1 � μ2, ω

′ = μ1μ2,

with μ3
1, μ

3
2, μ

2
1μ2, μ1μ

2
2, μ1μ

−1
2 unramified. Then μ1 and μ2 must themselves be

unramified, forcing π′
v to be in the unramified principal series.

The only remaining possibility is for π′
v to be a supercuspidal representation

with (irreducible) parameter σv = IndFv

E (χ), for a character χ of the multiplicative
group of a quadratic extension E of Fv. If θ denotes the non-trivial automorphism
of E/Fv, then recall that the irreducibility of σv implies that χ ◦ θ �= χ. We have

sym2(σv) � IndFv

E (χ2)⊕ χ0,

where χ0 is the restriction of χ to F ∗
v . The determinant of σv, which corresponds

to ω′
v, is then χ0ν, where ν is the quadratic character of WFv

corresponding to
E/Fv. Since Ad(π′

v) = sym2(σv) ⊗ (χ0ν)
−1 is unramified, we must have ν, i.e.,

E/Fv, unramified, and
χ2 ◦ θ = χ2,

which implies

χ = λ(μ ◦NE/Fv
), with λ2 = 1, (λ ◦ θ) �= λ,

with μ a character of F ∗
v . Then χ0 = λ0μ

2 and

Ad(σv) � λ0 ⊕ λ0ν ⊕ ν.
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Moreover, λ0 must be unramified as well. If λ0 = 1, then Ad(σv) contains the
trivial representation 1, and therefore

dimC

(
HomWFv

(1,End(σv)
)
= 2,

since End(σv) � Ad(σv)⊕1. This contradicts, by Schur’s Lemma, the irreducibility
of σv. So we must have λ0 �= 1. But then, as λ0 is an unramified quadratic character,
it must coincide with ν, making λ0ν = 1. Again, we get 1 ⊂ Ad(σv), leading to a
contradiction.

So we conclude that π′
v must be unramified when πv is.

4.4. When πv is ramified. Suppose πv is a ramified principal series repre-
sentation attached to the characters μ1, μ2 of F ∗

v , with ωv = μ1μ2. Then π′
v is also

necessarily a ramified principal series representation, attached to characters μ′
1, μ

′
2,

with ω′
v = μ′

1μ
′
2. The criteria (sI-1) and (sI-2) give conditions relating various

powers of these characters and of νv. The situation is similar to the unramified
case, and we conclude algebraicity as before. Again, Q(πv) is a finite extension of
Kummer type over Q(ω).

It remains to consider the case when πv is supercuspidal, in which case the
constraints force π′

v to also be supercuspidal. It is well known that a supercuspi-
dal representation with algebraic central character ωv is algebraic, in fact rational
over Q(ωv). Indeed, as mentioned in the Introduction, we are using the algebraic
parametrization ([Hen2]), which is equivariant for the action of Aut(C). So it
suffices to verify this for the parameter σv of πv. Since we are over a local field,
the image Gv of σv is necessarily solvable, and in particular, the image of Gv in
PGL(2,C) must be dihedral, tetrahedral, or octahedral. The assertion about ratio-
nality follows from the known results on the irreducible representations of coverings
of D2n, A4 and S4.

So we have now proved part (a) of Theorem A. �

5. Proof of part (b) of Theorem A

Here we are assuming that ω is of finite order. Then so is ω′, and the arguments
of sections 1 and 2 imply immediately thatQ(πf ) is a cyclotomic field. To be precise,
this is clear outside places v where πv is not square-integrable, and the assertion in
the supercuspidal case holds because it is rational over Q(ω), which is cyclotomic.

We need to show that at any archimedean place v, πv is of Galois type. Let σv,
resp. σ′

v, denote the 2-dimensional representation of the Weil group WFv
associated

to πv, resp. π
′
v. First suppose that the restriction of σv to C∗ is a one-dimensional

twist of (z/|z|)m ⊕ (z/|z|)−m with m > 0; this happens when either v is real and
πv is a discrete series representation (of lowest weight m), or v is complex and πv

is the base change of a discrete series representation of GL(2, FR). In either case,
(sI-2) implies that πv is also of the same form. But then we see that the restriction
to C∗ of the parameter of Ad(π′

v)⊗ πv is a one-dimensional twist of(
(z/|z|)2m ⊕ 1⊕ (z/|z|)−2m

)
⊗

(
(z/|z|)m ⊕ (z/|z|)−m

)
,

which is

(z/|z|)3m ⊕ (z/|z|)m ⊕ ((z/|z|)m ⊕ (z/|z|)−m ⊕ (z/|z|)−m ⊕ (z/|z|)−3m.
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Since m �= 0, this representation cannot possibly be a one-dimensional twist of the
restriction to C∗ of sym5(σv), which is evidently multiplicity-free. Note that we
would have no contradiction if we had allowed m = 0, which corresponds to the
Galois type situation.

Thus we may assume, by the classification of unitary representations, that πv

is a unitary character twist of a spherical representation σ0
v = μ1⊗μ2, where μ1, μ2

are unramified characters of F ∗
v . Then, since ωv has finite order by assumption, the

restriction of σ0
v to C∗ is necessarily of the form | · |s ⊕ | · |−s. Applying (sI-2), we

see that the restriction of σ′
v to C∗ will also need to be a unitary character twist

of σ0
v|C∗ . Then (Ad(σ′

v)⊗ σv) |C∗ cannot, unlike sym5(σv)|C∗ , contain a unitary
character twist of | · |5s, unless s = 0. So we get a contradiction to (sI-3) if s �= 0.
Hence s must be zero, and since ωv has finite order, σv is a finite order twist of a
σ0
v whose restriction to C∗ is 1⊕ 1. In other words, πv is of Galois type.

�

6. Temperedness of π

It suffices to prove temperedness at each place v. When v is archimedean,
we have already shown that πv is even of Galois type, so we may assume that v
is finite. Suppose πv is a principal series representation with parameter σv. If
πv is non-tempered, i.e., violates the Ramanujan hypothesis, we must have, since
π∨
v � πv,

σv � λv ⊗
(
| · |t ⊕ | · |−s

)
, with λ2

v = ωv, t ∈ R∗
+.

As ωv has finite order, λv does as well. As in the archimedean spherical case, (sI-2)
implies that the parameter of π′

v is necessarily of the form

σ′
v � λ′

v ⊗
(
| · |t ⊕ | · |−s

)
, with λ′

v
2
= ω′

v, t ∈ R∗
+,

for the same t; here we have used the fact that νv has finite order. It follows (since
t > 0) that

Hom
(
| · |5t,Ad(σ′

v)⊗ σv ⊗ ω2
v

)
= 0,

while

Hom
(
| · |5t, sym5(σv)

)
�= 0.

This contradicts (sI-3) and so t must be zero. In other words, πv must be tempered.
Finally, as is well known, if πv is a discrete series representation with unitary

central character, it is necessarily tempered.
This proves part (c) of Theorem A.

�

7. Proof of part (d) of Theorem A

Proposition 7.1 Let π, π′ be as in Theorem A, with ω = ω′ = 1. Then at any finite
place v, πv is either a unitary principal series or a supercuspidal representation,
with π′

v of the same type, and furthermore,

Q(πv) ⊂ Q[
√
5].

More precisely, we have

(a) When πv, π
′
v are in the unitary principal series,
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(ai) Q(πv) = Q, if Ad(πv) � Ad(π′
v);

(aii) Q(πv) = Q[
√
5], if Ad(πv) �� Ad(π′

v).
(b) When πv is supercuspidal, Q(πv) = Q.

Corollary 7.2 Let π, π′ be as above (in Proposition 7.1). Then we have Q(πf ) ⊂
Q[

√
5], and moreover,

Q(πf ) = Q[
√
5] ⇔ π �� π′.

Proposition 7.1 =⇒ Corollary 7.2:

Since Q(πf ) is the compositum of all the Q(πv) as v runs over finite places (cf.
[Clo], Prop. 3.1, for example), we have

(7.2) Q(πf ) ⊂ Q[
√
5].

First suppose Ad(πf ) �� Ad(π′
f ). Then at some finite place u, say, Ad(πu) and

Ad(π′
u) need to be non-isomorphic, forcing, by (aii) of Prop. 7.1,

Q(πf ) = Q(πu) = Q[
√
5].

On the other hand, if Ad(πf ) and Ad(π′
f ) are isomorphic, their local compo-

nents are isomorphic as well, and (ai) of Prop. 7.1 then implies that

Q(πf ) = Q.

Now we claim that for our π, π′,

(7.3) Ad(πf ) � Ad(π′
f ) =⇒ πf � π′

f .

Indeed, by the multiplicity one theorem for SL(2) (cf. [Ram1]), we have

(7.4) π′
f � πf ⊗ νf ,

for some idèle class character ν of F . Since ω = ω′ = 1, we must have

ν2 = 1.

Anyhow, (7.4) implies
sym3(π′

f ) � sym3(πf )⊗ ν3f ,

Since π and π′ have, by (sI-2), isomorphic symmetric cubes, we must then have

ν3 = 1,

or else, sym3(π) will need to admit a non-trivial self-twist, which is not possible as
π is not solvable polyhedral. So it follows that ν = 1, proving the claim.

This also finishes the proof of the Corollary assuming Prop. 7.1.
�

Proof of Proposition 7.1

Since we are assuming here that ω = ω′ = 1, we first claim that at the places
v where πv is supercuspidal, Q(πv) is just Q. Indeed, as we are using the algebraic
parametrization, we can transfer the problem to the field of rationality of the as-
sociated irreducible 2-dimensional representation σv of WFv

. This is a known fact,
and we briefly sketch an argument. Let θ be an automorphism of C. It suffices to
check that ε(s, πθ

v ⊗χθ) equals ε(s, σθ
v ⊗χθ), for all characters χ; we are identifying,

by class field theory, the characters χ of F ∗
v with the corresponding ones of WFv

.
(We will also identify the central character ωv with det(σv).) If we look at the
root number W (σv ⊗ χ) = ε(1/2, σv ⊗ χ), then the ratio W (σθ

v ⊗ χθ)/W (ωτ
v ⊗ χθ)
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equals (W (σv ⊗ χ)/W (ωv ⊗ χ))τ . An analogous property holds on the GL(2) side,
as seen by the integral representation of the local zeta functions, using the Whit-
taker model, which is compatible with the θ-action ([Wal]. The conductors also
correspond, and one gets the Galois equivariance of πv �→ σv. Next, note that we
may write σv as an unramified abelian twist of an irreducible 2-dimensional repre-
sentation of Gal(F v/Fv) which will have solvable, finite image. As we saw at the
end of section 3, such a σv is rational over Q(ωv). Hence the claim.

Moreover, we know that πv will not be of Steinberg type, nor non-tempered.
So let us focus on the finite places v where πv is in the unitary principal series.

First let v be an unramified place for π. Then w = w′ = z = δ = 1 by
hypothesis, and combining Lemma 2.1 with Proposition 4.1.1, we get the following:

Lemma 7.5 When πv, π
′
v are unramified with ωv = ω′

v = 1, one of the following
happens (up to exchanging a with b = a−1 and c with d = c−1):

(i) am = 1, for m ∈ {4, 6}, and c = ±a; Ad(πv) � Ad(π′
v)

(ii) c = a3, a = c−3, a10 = 1; Ad(πv) �� Ad(π′
v)

In the first case, Ad(π′
v) and Ad(πv) are isomorphic, and Q(πv) is contained

in either Q(ζ4) or Q(ζ6), where by ζn we mean a primitive n-th root of unity in C.
In case (ii), it is clear that Q(πv) is contained in Q(ζ10). On the other hand, since
πv is selfdual, the trace and determinant of the conjugacy class of πv are both real,
and so πf is rational over the real subfield of Q(ζn) for appropriate n. In other
words, when πv, π

′
v are unramified with trivial central character,

Q(πv) = Q when Ad(πv) � Ad(π′
v),

and

Q(πv) = Q(
√
5) when Ad(πv) �� Ad(π′

v),

It remains to consider the case when πv is a ramified, tempered principal series
representation with ωv = 1. Then its parameter decomposes as

σv � μ⊕ μ−1,

for a ramified character μ of F ∗
v . We have, thanks to the algebraic normalization

of parameters,

Q(πv) = Q(μ)+,

where the right hand side is the totally real subfield of the cyclotomic field Q(μ).
Again, the reason is that Q(πv) is a priori contained in Q(μ), and the selfduality
of πv makes it rational over the real subfield.

When πv is such a ramified principal series representation, π′
v is also forced to

be of similar type, thanks to (sI-2), with parameter σ′
v = μ′ ⊕ μ′−1. Furthermore,

we need to have

μ3 ⊕ μ⊕ μ−1 ⊕ μ−3 � μ′3 ⊕ μ′ ⊕ μ′−1 ⊕ μ′−3

This implies that either πv � π′
v or, up to interchanging the roles of μ′ and μ′−1

,
μ′ = μ3. In the former case, arguing as in the unramified case above, we deduce
that either μ4 = 1 or μ6 = 1. So Q(πv) = Q in this case. So we may assume that
μ′ = μ3. Then (sI-3) yields

μ5 ⊕ μ3 ⊕ μ⊕ μ−1 ⊕ μ−3 ⊕ μ−5 �
(
μ6 ⊕ 1⊕ μ−6

)
⊗

(
μ⊕ μ−1

)
.
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Hence

μ3 ⊕ μ−3 � μ7 ⊕ μ−7.

In other words, we have

μ4 = 1 or μ10 = 1.

Thus Q(μ) is generated over Q by an m-th root of unity ζm with m ∈ {4, 10}.
Consequently, since Q(ζ4)

+ = Q and Q(ζ10)
+ = Q(

√
5),

Q(πv) = Q(ζ4)
+ = Q or Q(πv) = Q(

√
5).

This finishes the proof of Proposition 7.1.
�

Let τ be the non-trivial automorphism of Q(
√
5). At each finite v, let πτ

v denote

the τ -conjugate representation of πv, which makes sense because Q(πv) ⊂ Q(
√
5).

Similarly, let πτ
f denote the τ -conjugate of πf . Then πτ

f is an admissible irreducible,
generic representation because πf has those properties. However, it is not at all
clear if πτ

f is automorphic. In the present case, we can deduce the following:

Proposition 7.6 Let π be an s-icosahedral cusp form (with trivial central charac-
ter) on GL(2)/F relative to π′, also of trivial central character. Then we have

(i) π′ is unique, satisfying

πτ
f � π′

f .

(ii) πf is not rational over Q.

Proof. We will first prove (ii) by contradiction. Suppose πf is rational over
Q. Then by Corollary 7.2, we must have π′

f � πf . Hence

sym2(π′
f )⊗ πf � sym3(πf ) � πf .

This means that (by (sI-3),

L(s, πf ; sym
5) = L(s, sym3(πf ))L(s, πf)

On the other hand, by Clebsch-Gordan,

L(s, sym4(πf )× πf ) = L(s, πf ; sym
5)L(s, sym3(πf ))

So

L(s, sym4(πf )× πf ) = L(s, sym3(πf ))
2L(s, πf ).

This leads to the identity

L(s, sym4(πf )× (πf � πf )) = L(s, sym3(πf )× πf )L(s, πf � πf ).

The rightmost L-function has a pole at s = 1 since π is selfdual, and one knows by
Shahidi that L(s, sym3(πf ) × πf ) does not vanish at s = 1. It then forces the left
hand side L-function to have a pole at s = 1. But this can’t be, because sym4(π)
is, thanks to the condition (sI-1), a cusp form on GL(5)/F (see [KS1]) and π � π
is an automorphic form on GL(4)/F . This contradiction proves that πf cannot be
rational over Q.

To deduce (i), it suffices to prove, locally at each finite place v, that

π′
v � πτ

v .

Let v be a finite place where πv is in the principal series with parameter σv =
μ ⊕ μ−1, where μ may or may not be ramified. Then π′

v will also be of the same
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form, say with parameter σ′
v = μ′ ⊕ μ′−1

. Thanks to (sI-2), we must have, up to

permuting μ′ and μ′−1
,

μ′ = μm, where m ∈ {1, 3}.
When μ′ = μ, π′

v � πv, and as we have seen above, μm = 1 with m ∈ {4, 6},
implying that Q(πv) = Q. So let us assume that μ′ = μ3. Then (again as above)
μ4 = 1 or μ10 = 1. In the former case, we get π′

v � πv, while in the latter case,
either μ2 = 1, again implying π′

v � πv, or else, μ
10 = 1, but μ2 �= 1. Let τ̃ be the

automorphism of M := Q(ζ10) given by ζ10 �→ ζ310. The totally real subfield of M

is K = Q(
√
5) and τ̃ restricts to the non-trivial automorphism τ of K. It follows

that

π′
v � πτ

v ,

which holds at every principal series place v. In fact it holds at every finite place
because at the supercuspidal places, Q(πv) = Q due to πv having trivial central
character. Consequently, π′

v � πτ
v at each finite place v. Moreover, π′ is unique by

the strong multiplicity one theorem.
This proves Proposition 7.6.

�
We claim that π′ is s-icosahedral with (π′)′ � π. Indeed, (sI-2) is a reflexive

condition, and it also proves that π′ is not dihedral or tetrahedral. We get (sI-
3) (for π′) by applying τ (to the (sI-3) for π) and making use of π′

f being πτ
f .

Furthermore, suppose sym4(π′) is Eisensteinian. Then by [KS1], sym3(π′) must
admit a quadratic self-twist. Then so must sym3(π) by (sI-2), resulting in the
non-cuspidality of sym4(π). But this contradicts (sI-1), and the claim follows.

Finally, since π′ is s-icosahedral, it also follows, by the reasoning we employed
for π, that π′ is also of Galois type at infinity.

This proves part (d) of Theorem A.
�

Remark 7.7 It should be noted that as π is of Galois type at infinity with trivial
central character, it cannot correspond, for F totally real, to a holomorphic Hilbert
modular form. So there is no reason at all, given the state of our current knowledge,
to assert that its Galois conjugate πτ should be modular (though it is expected).
However, in our special case, it is automorphic because it happens to be isomorphic
to the shadow cusp form π′.
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Abstract. Let G be a reductive algebraic group defined over Q and fix a
maximal compact subgroup K of G(R). A compact subgroup KA = KKf ⊂
G(A) defines a locally symmetric space S(Kf ) = G(Q)\G(A)/KKfAG. We
consider the “residual Eisenstein cohomology” of S(Kf ). Its classes can be
represented by harmonic differential forms on S(Kf ), which are the residues
of Eisenstein forms. Then we construct pseudo Eisenstein forms representing
nontrivial cohomology classes with compact support in the Poincaré dual of
the “residual Eisenstein cohomology”. We use these classes to prove that Sp4
defines a nontrivial modular symbol in S(Kf ) for G =GL4. We also sketch
the connection with the formula for the volume of a locally symmetric space.

I. Introduction

Let G be a semisimple algebraic group defined over Q and let Γ be a torsion-
free arithmetic subgroup of G = G(R), K a maximal compact subgroup of G,
and X∞ = G/K the symmetric space. Denote by Γ\X∞ the associated locally
symmetric space.

The de Rham cohomology H∗(Γ\X∞,C) is isomorphic to the relative Lie alge-
bra cohomology

H∗(g,K,A(Γ\G)),

where A(Γ\G) is the space of automorphic forms [9] and g = Lie(G). Consider the
(g,K)–module Acusp(Γ\G) of cusp forms. By a result of A.Borel [4] there is an
injection

H∗(g,K,Acusp(Γ\G)) ↪→ H∗(g,K,A(Γ\G))

and its image is called the cuspidal cohomology of Γ.

In this paper we assume that Γ\G is not compact (mod center) and consider
the “residual cohomology”

H∗
res(g,K,A(Γ\G))
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which is defined as follows: Consider the (g,K)–module of the residual automorphic
functions Ares(Γ\G). The inclusion

Jres : Ares(Γ\G) ↪→ A(Γ\G)

defines a map

J∗
res : H

∗(g,K,Ares(Γ\G)) → H∗(g,K,A(Γ\G)),

which is not injective. Its image is denoted by H∗
res(g,K,A(Γ\G)).

The residual cohomology H0
res(g,K,A(Γ\G)) is always nontrivial since the con-

stant function representing the trivial representation is in the residual spectrum and
represents a cohomology class in degree 0. Determining J∗

res(H
∗(g,K,C)) is equiv-

alent to determining the nontrivial cohomology classes which are represented by
invariant differential forms. This was solved by J.Franke in [10].

In general for irreducible unitary representations Aq in the residual spectrum
J∗
res(H

∗(g,K,Aq)) is unknown. In this paper we show

Theorem I.1. Suppose that Aq is a representation in the residual spectrum
and let rq be the lowest degree so that

Hrq(g,K,Aq) �= 0.

Suppose that P = MAN is a parabolic subgroup of G, π a tempered irreducible
representation of M and that I(P, π, ν) is a principal series representation with
Langlands subquotient Aq. Suppose that we have a residual Eisenstein intertwining
operator

Eres : I(P, π, ν) → Aq ⊂ Ares(Γ\G).

Then

Jrq
res(H

rq(g,K,Aq))

is a nontrivial class in

Hrq
res(g,K,A(Γ\G)).

For all presently known subrepresentations of the residual spectrum the as-
sumptions of the theorem are satisfied, but since not all representations π in the
cuspidal spectrum are tempered, these assumptions might not be always satisfied.

Denoting the cohomology with compact support by H∗
c (Γ\X∞,C) and using

Poincaré duality and the ideas and techniques introduced in [25] we deduce

Theorem I.2. Under the assumptions of the theorem

HdimX∞−rq
c (Γ\X∞,C) �= 0.

The nontrivial classes in H
dimX∞−rq
c (Γ\X∞,C) are represented by differential

forms E(ω̃q,μo
) with compact support given as pseudo Eisenstein forms in section

IV.

We use these results to describe some residual cohomology classes of S(Kf ) =
GLn(Q)\GLn(A)/K KfAG, (see also 5.6 in [11]) . Here A are the adéles of Q, AG

the connected component of the identity of the scalar matrices and Kf is an open
compact subgroup of the finite adéles Af .
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Theorem I.3. Suppose that G = GLn and that n = rm. Then for Kf small
enough

Hj(S(Kf),C) �= 0

if

(1) r and m even and j = r(r+1)m
4 + r2m(m+2)

2

(2) r even and m odd and j = r(r+1)(m−1)
4 + r2(m−1)(1+m)

2 ,

(3) m=2 and j = r(r + 1)/2.

The second part of the paper is concerned with applications of theorem I.2 to
modular symbols and to a formula for the volume of a symmetric space.

Suppose that H ⊂ G is a Q–rational reductive subgroup so that K ∩ H is
maximal compact in H := H(R). Then the inclusion

H → G

induces an inclusion

XH,∞ := H/H ∩K → X∞ = G/K

and hence it induces a proper map

j : Γ ∩XH,∞\XH,∞ → Γ\X∞.

Assume that Γ\X∞ is not compact and that Γ∩H\XH,∞ is an oriented noncompact
manifold. If a closed d–form ω represents

[ω] ∈ Hd
c (Γ\X∞,C), d = dimXH,∞

then ∫
Γ∩H\XH,∞

j∗ω

is defined. This means that the integral over Γ ∩H\XH,∞ determines a map

[XΓ∩H\H ] : Hd
c (Γ\X∞,C) → C,

which is called themodular symbol attached toH. Using Poincaré duality we identify
the modular symbol [XΓ∩H\H ] with an element in H∗(Γ\X∞,C). If we can find a
class [ω] ∈ H∗

c (Γ\X∞,C) such that [XΓ∩H\H ]([ω]) �= 0 then [XΓ∩H\H ] is a non-
trivial modular symbol.

Ash, Ginzburg and Rallis list 6 families of pairs (G,H) and show that the
restriction of [XH ] to the cuspidal cohomology is zero. One of these pairs is G =
GL2n and H = Sp2n, n ≤ 2.

We consider generalized modular symbols corresponding to H = Sp4 in GL4

in theorem VI.3. and detect a non-trivial modular symbol by use of a pseudo
Eisenstein series.

Theorem I.4. Suppose that G = GL4 and H is a symplectic group compatible
with the choice of the maximal compact subgroup K ⊂ GL4(R). For Kf small
enough

[H(Q)\H(A)/(K ∩H(R))(Kf ∩H(Af ))]

is a nontrivial modular symbol in H3(G(Q)\G(A)/AGKKf ,C).
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In the arithmetic of modular curves and automorphic forms modular symbols
provide a link between geometry and arithmetic. “Period integrals” of Eisenstein
classes or cuspidal cohomology classes over compact modular symbols have been
used by G.Harder to obtain information about special values of L-functions [15],
[16]. We conjecture that the value of the modular symbol on this residual coho-
mology class is related to special values of Rankin convolutions of cusp forms.

In the last section we sketch the connection of our techniques with the formula
for the volume of a locally symmetric space due to Langlands [21]. In the proof
of theorem I.2 we have used a formula for the integral over a product of a pseudo
Eisenstein form with an Eisenstein form. We show how this formula is related to
the computation of the Tamagawa number τ (G) of G. We sketch this only in the
simplest case, i.e. if G/Q is split and simply connected.

The results of this article will be used in a sequel to this paper to construct
other nontrivial modular symbols.

The outline of the paper is as follows. We first introduce the notation and then
we relate the (g,K)-cohomology of principal series representations to the (g,K)–
cohomology of their unitary Langlands subrepresentations. We exhibit in section
III. nontrivial “residual” cohomology classes of S(Kf ) and their harmonic represen-
tatives. In the next section we discuss the example GLn. In section V. we construct
a family of differential forms with compact support which represent classes in the
Poincaré dual of the residual cohomology classes constructed in the previous sec-
tion. In section VI. we apply these techniques to show that Sp4 defines a nontrivial
modular symbol in S(Kf ) for G = GL4. We sketch in the last section the connec-
tion of our techniques with the well known formula for the volume of S(Kf ) for a
maximal compact subgroup Kf .

II. Representations with nontrivial (g0,K)–cohomology

In this section we first introduce the notation. Then we prove some results
relating the (g,K)-cohomology of principal series representations and their unitary
Langlands subrepresentations. The results and techniques of this section are purely
representation theoretic. They will be used in the later sections in the context of
representations in the residual spectrum.

2.1 Let G be a reductive algebraic group over Q, G = G(R), K a maximal compact
subgroup of G, AG be a maximal Q–split torus in the center of G and let AG be
the connected component of AG(R). This defines the symmetric space

X∞ = G/K ·AG.

For a rational subgroup H of G the Lie algebra ofH will be denoted by h and we
put hC = h⊗C. Let g0 be the Lie algebra of the real points of the intersection of the
kernels of all rational characters of G. Then g/aG 	 g0. The Cartan decomposition
is denoted by g0 = k⊕ p. Let θ be the corresponding Cartan involution.

We fix a minimal parabolic subgroup P0 of G. Parabolic subgroups and their
decompositions are denoted by P = LN = MAPN. We denote the positive roots
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of (aP /aG, g0) defined by the parabolic subgroup P by Σ+
P and define

ρP := 1/2
∑

β∈Σ+
P

β.

For a Cartan subalgebra hC of gC and positive roots compatible with the choice
of P0 we denote by ρG half the sum of the positive roots of (hC, gC).

2.2 We consider a standard representation

I(P, πL, μ0) = indGMAPNπL ⊗ eμ0+ρp ⊗ 1

with nontrivial (g,K)–cohomology

H∗(g0,K, I(P, πL, μ0)) �= 0.

Recall that μ0 is the differential of a character of A and that πL is tempered.
We assume that P = MAPN is a standard parabolic subgroup and that �(μ0) ∈
a∗P is in the interior of the dominant Weyl chamber with respect to Σ+

P , so that
there is a unique maximal nontrivial subrepresentation U(P, πL, μ0) and Langlands
subquotient

L(P, πL, μ0) := I(P, πL, μ0)/U(P, πL, μ0)

(section IV in [7]). Furthermore we assume in this section that the Langlands
subquotient L(P, πL, μ0)) is unitary and that A0

G acts trivially.

This implies that the hermitian dual I(P, π̄∗
L,−μ0) of the representation

I(P, πL, μ0)) is isomorphic to I(P, πw0

L , w0(μ0)) for an element w0 �= 1 with w2
0 = 1

of the Weyl group WP = Norm(AP )/Cent(AP ) of the parabolic subgroup P [30].
Here π∗ is the contragredient representation of π. Note that πL unitary implies
that π̄∗

L is isomorphic to πL.

Since I(P, πL, μ0) has nontrivial (g,K)– cohomology the infinitesimal char-
acters of I(P, πL, μ0) and I(P, π̄∗

L,−μ0) are equal to ρG. Using the formulas in
Borel-Wallach [3.3 in [7]] we conclude that there exists s in the Weyl group W of
(hC, gC) so that

μ0 = −(s ρG)|aP

and there exists a finite dimensional irreducible representation Es of M so that

H l(s)+q(g0,K, I(P, πL, μ0)) =

= (H∗(m0,KM , πL ⊗ Es)⊗ ∧∗(aP /aG)
∗)q

= ⊕r+k=qH
r(m0,KM , πL ⊗ Es)⊗ ∧k(aP /aG)

∗

where l(s) is the length of s and KM = K ∩M . In particular the highest weight of
Es is (s(ρG)− ρG)|m.

Notation: For later reference we denote the lowest degree i for which

Hi(g0,K, I(P, πL, μ0)) �= 0

by e(P, πL, μ0). If no confusion is possible we drop the subscript L.

Poincaré duality implies that the (g,K)–cohomology of I(P, π̄∗
L,−(μ0)) is non-

zero and isomorphic as a vector space to

H∗(m0,KM , π̄∗
L ⊗ Ē∗

s )⊗ ∧(aP /aG)∗.
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where E∗
s is the contragredient representation to Es.

2.3 We obtain a representative of the one-dimensional space
He(P,π,μ)(g0,K, I(P, π, μ)) as follows:

Recall that p is the −1 eigenspace of the Cartan involution θ. Let ωN be a
harmonic form representing the lowest weight of the m-module Es, let ωM be the
highest weight vector of a representation in

∧∗
(p∩m) and v a highest weight vector

in the lowest KM–type of πL. Then v ⊗ ωN ⊗ ω∗
M represents a nontrivial map in

HomM∩K(∧∗(p ∩m), πL ⊗ Es) = H∗(m0,KM , πL ⊗ Es).

Let
ψ : n → p defined by X → X − θ(X).

Then ω∗
M ∧ ψ(ωN ) is the lowest weight vector of a representation of K. This rep-

resentation of K is a K-type of I(P, π, μ) and thus it defines a nontrivial element

in HomK(
∧e(P,π,μ0) p, I(P, π, μ)). It represents the nontrivial (g,K)–cohomology

class in degree e(P, π, μ0).
For more details see [27] or [13]

2.4 For a connected semisimple Lie group with a maximal compact subgroupK the
unitary (g,K)–modules with nontrivial (g,K)–cohomology have been constructed
and classified by Parthasarathy, Vogan and Zuckerman [31]. They are parametrized
by equivalence classes of θ–stable parabolic subalgebras q of gC and are denoted by
Aq. For a more general description for disconnected groups G see [20].

By 2.2 there exists an intertwining operator

M(P, πL, μ0, w) : I(P, πL, μ0) → I(P, π̄L,−μ0).

Since all unitary representations with infinitesimal character ρG have non-trivial
(g,K)–cohomology there exists a θ–stable parabolic subalgebra q and the unique
irreducible subrepresentation L(P, π̄L, μ0) of I(P, π̄L,−μ0) is isomorphic to a rep-
resentation Aq for a θ–stable parabolic q of g0 ⊗ C [26]. Here we extend the
(g0,K)–module Aq to a (g,K)–module by aG acting trivially on Aq.

If q = lq ⊕ nq is the Levi decomposition of q we define
rq = dim nq ∩ p. Then

Hi(g0,K,Aq) = 0 if i < rq

= C if i = rq

Furthermore, since Aq is unitary and irreducible

H∗(g0,K,Aq) = HomK(∧∗p, Aq).

Denote by tK the intersection of a fundamental θ–stable Cartan subalgebra of
g contained in l with k.. The minimal K–type Fq of Aq has highest weight λq, the
sum of the weights of tK on nq ∩ p. See [31].

Proposition II.1. Suppose that Aq is the Langlands subrepresentation of
I(P, π̄L,−μ0). Then

He(P,π,−μ0)(g0,K,Aq) �= 0.

Furthermore the inclusion of Aq into I(P, π̄L,−μ0) defines an injective map of

He(P,π,−μ0)(g0,K,Aq) into He(P,π,−μ0)(g0,K, I(P, π̄L,−μ0)).
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Proof: The formulas on page 82 of [31] show that a K–type of ∧e(P,π,−μ0)p which
represents the nontrivial class in

HomK(∧e(P,π,−μ0)p, I(P, π̄L,−μ0))

has extremal weight λq and hence is equal to the K–type Fq, which also occurs in
the subrepresentation Aq. This K–type has multiplicity one in I(P, πL,−μ0) and
hence the map HomK(Fq, I(P, π̄L,−μ0)) factors over Aq. �

To prove that

Hi(g0,K,Aq) = 0 if i < e(P, π,−μ0)

= C if i = e(P, π,−μ0)

i.e. that rq = e(P, π,−μ0) we review some results from exterior algebra. See
Chapter I in [8].

Let V be a finite dimensional vector space. A subring I of ∧∗(V ∗) is an ideal if
a.) α ∈ I implies α ∧ β ∈ I for all β ∈ ∧∗(V ∗)
b.) α ∈ I implies that all its homogeneous components in ∧∗(V ∗) are contained in
I.

Given an ideal I of ∧∗(V ∗) its retracting space is the smallest subspace W ∗ ⊂
V ∗ so that I is generated as an ideal by a set S of elements of ∧∗(W ∗), i.e. an
element of I is a sum of elements of the form σ ∧ α with σ ∈ S and α ∈ ∧∗(V ∗).

Let W ∗ ⊂ V ∗ be a subspace of dimension r and let IW be the ideal generated
by ∧∗(W ∗). Then by 1.3 of [8] W ∗ is also the retracting space of IW .

Theorem II.2. Suppose that Aq is the Langlands subrepresentation of the stan-
dard representation I(P, π̄L,−μ0). Then

rq = e(P, π,−μ0).

Proof: Let P 0 be the kernel of the absolute values of the rational characters of
P. Since the symmetric space X∞ has a covering AP × P 0/KM we have a vector
space decomposition

p = aP ⊕ pm ⊕ ψ(n),

where m = k ∩ m ⊕ pm is the corresponding Cartan decomposition of m. Consider
the subspace aP ⊂ p and the ideal I(aP ) of ∧∗(p) generated by aP . Note that the
ideal I(aP ) is a U(m)-invariant subspace of ∧∗(p).

The differential forms representing the nontrivial (g0,K)–cohomology classes
of I(P, π̄L,−μ0) have representatives in HomK(∧∗p, I(P, π̄L,−μ0)) and are deter-
mined by their values on the K–isotypic components of ∧∗(p). Consider the sub-
representation Fq of ∧∗(p) in degree e(P, π,−μ0). We showed that this representa-
tion determines an nontrivial (g0,K)–cohomology class of I(P, π̄L,−μ0) in degree
e(P, π,−μ0).

Considering a realization of I(P, π̄L,−μ0) in the functions on G we consider
I(P, π̄L,−μ0)⊗∧∗p∗ as differential forms on X. The formula in 2.3 shows together
with the results in [13], [27] that we can find a harmonic representative of the
nontrivial cohomology class of I(P, π̄L,−μ0) in degree e(P, π,−μ0). This represen-
tative is not in I(P, π̄L,−μ0) ⊗ I(aP )

∗ and none of its homogeneous components
are in I(P, π̄L,−μ0)⊗ I(aP )

∗.
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Since Aq is unitary and irreducible

H∗(g0,K,Aq) = HomK(∧∗p, Aq).

Now Fq is the only subrepresentation of ∧∗p which is also a K–type of Aq [31].
Write q = lq ⊕ nq for the Levi decomposition. D.Vogan and G.Zuckerman show in
[31] that the highest weight vectors of the subrepresentations Fq ⊂ ∧∗(p) are of
the form ωL ∧ Vrq where ωL is an L–invariant differential form in ∧∗(p ∩ lq) and
Vrq is the representation with highest weight 2ρ(nq ∩p). These forms are harmonic
representatives of the cohomology classes.

Using that Aq ↪→ I(P, π̄L,−μ0) we can conclude that these forms are also
harmonic forms on X and in degree e(P, π,−μ0) there is also a harmonic form
representing a nontrivial class of I(P, π̄L,−μ0).

Now AP is the maximal R–split torus in Lq [31], and so the only harmonic
representative for the nontrivial (g0,K)–cohomology classes of Aq which may not
have a homogeneous component in I(a∗P ) is in degree rq.

Thus the previous proposition implies that rq = e(P, π,−μ0). �

III. Residual Eisenstein classes

In this section residual Eisenstein forms and classes are introduced. The main
reference for Eisenstein series and their residues is the book by C.Mœglin and Wald-
spurger [23]. We also freely use their terminology.

3.1 Let Af ⊂ A be the finite adéles of the adéle ring A over Q. We give G(Af )
the topology induced by the topology of Af and define the global symmetric space
X = X∞×G(Af ). Then G(Q) acts onX and we obtain the adélic locally symmetric
space S = G(Q)\X. For a compact open subgroup Kf of G(Af ) we consider the
locally symmetric space

S(Kf ) = G(Q)\X/Kf .

We fix a minimal parabolic subgroup P0 of G defined over Q and a Levi sub-
group L0 of P0 also defined over Q.

3.2 Let P be a standard parabolic subgroup of G defined over Q with Levi
decomposition P = UPLP and let AP be the connected component of the maximally
split torus in the center of LP := LP (R). Following Arthur we define the height
function

HP : LP (A) → AP .

The kernel of HP is denoted by L1(A) . We write P1(A) = UP (A)L1
P (A).

A parameter μ ∈ a∗P defines character χμ of LP (A) by

χμ(lA) = eμ(log HP (lA)), lA ∈ LP (A).

Let Σ+
P be the roots of AP on UP = UP (R) and ρP half the sum of the positive

roots. If no confusion is possible we omit the subscript P.

Suppose that G� is a reductive subgroup of G. Recall that an irreducible
unitary representation πA of a reductive group G�(A) is called automorphic if it
occurs discretely in L2(G�(Q)�(A), ξ) for a character ξ which is trivial on AG�(Q)
and AG� .

We now fix a unitary character ξ of AG(A) which is trivial on AG(Q) and AG.
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Let π
L(A) =

∏
v πv be an irreducible unitary automorphic representation of

L(A) on Vπ which transforms under AG(A) by ξ. We define using normalized
induction a representation

I(P, π
L(A), μ) = ind

G(A)
P(A)χμ+ρP

⊗ π
L(A) =

=
∏
ν

ind
G(Qν)
P(Qν)

(χμ+ρP
)ν ⊗ π

L(Qν)

This representation acts on the space of functions f on G(A) with values in Vπ

which satisfy

f(zAuAlAgA) = ξ(zA)π
L(A)(lA)χμ+ρP

(lA)f(gA).

Here lA ∈ L(A), uA ∈ U(A), gA ∈ G(A), zA ∈ AG(A).

The automorphic representation

π
L(A) =

∏
ν

π
L(Qν) = πL

∏
p

π
L(Qp)

is in the cuspidal spectrum of

L(Q)AP\L(A)/KKf ∩ L(A)

if its factor πL at the infinite places is tempered [32]. We will therefore assume this
for the rest of the article.

3.3 Assume now as in the previous section that �(μ) is in the dominant Weyl
chamber with respect to Σ+

P . Let W (L) be the set of elements w in the Weyl group
of G of minimal length modulo the Weyl group of L, and such that wLw−1 is also a
standard Levi of G [23]. For every w in W (L) there exists an intertwining operator

M(π
L(A), μ, w) : I(P, πL(A), μ) → I(P, πw

L(A), w(μ)).

Choosing an isomorphism

Aw : Vπ → Vπw = Vπ

we identify it with an intertwining operator MA(π
L(A), μ, w), which has for �(μ)

large an Euler product

MA(π
L(A), μ, w) =

∏
ν

M(π
L(Qν), μ, w).

(see II.1.9 in [23] for details).
There exists a meromorphic function m(π

L(Qν), μ, w) so that the local inter-
twining operator

M(π
L(Qν), μ, w) = m(π

L(Qν), μ, w)M(π
L(Qν), μ, w)

is holomorphic and nonzero for μ in the dominant Weyl chamber. See [1]. There
is also a meromorphic function m(π

L(A), μ, w), which for large dominant μ is the
product of the local factors, so that

M(π
L(A), μ, w) = m(π

L(A), μ, w)MA(π
L(A), μ, w)

is holomorphic and nonzero for μ in the dominant Weyl chamber.

We say that the operator M(π
L(A), μ, w) has a pole of order r at μ0 if the

function m(π
L(A), μ, w0) has a zero at μ = μ0 of order r.
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We fix the level Kf and are interested in automorphic forms on
G(Q)\G(A)/AGKf . Thus from now on we consider representations I(P, π

L(Af ), μ)

with a Kf -invariant vector, i.e. I(P, πL(Af ), μ)
Kf �= 0.

3.4 By our assumptions the representation π
L(A) is a subrepresentation of the

cuspidal spectrum of L(Q)AL\L(A); hence we consider I(P, π
L(A), μ) as realized in

the functions on P(Q)U(A)\G(A). A form

ηπL(A),μ ∈ ∧ip∗ ⊗K I(P, π
L(A), μ)

Kf ∼= HomK(∧ip, I(P, π
L(A), μ))

Kf

defines a differential form on P(Q)U(A)\G(A)/KKf . For �(μ) large and dominant
we define following [13] the Eisenstein differential form

E(ηπL(A),μ) =
∑

g−1∈P(Q)\G(Q)

g∗ηπL(A),μ

on S(Kf ).

The constant term E(ηπL(A),μ)
P of the form E(ηπL(A),μ) with respect to the

parabolic subgroup P = LU is equal to

E(ηπL(A),μ)
P =

∑
w∈W (L)

M(π
L(A), μ, w)ηπL(A),μ

=
∑

w∈W (L)

m(π
L(A), μ, w)

−1M(π
L(A), μ, w)ηπL(A),μ.

Recall that W (L) is the set of elements w in the Weyl group of G of minimal length
modulo the Weyl group of L, and such that wLw−1 is also a standard Levi of G
[23]. Furthermore

M(π
L(A), μ, w)ηπL(A),μ ∈ ∧ip∗ ⊗K M(π

L(A), μ, w)I(P, πL(A), μ)
Kf .

If the constant term E(ηπL(A),μ)
P has a pole of order dim(aP ) for μ = μ0

dominant, then so does the Eisenstein form E(ηπL(A),μ) [23]. We write E(ηresπL(A),μ0
)

for the residue at μ = μ0 and call this a residual Eisenstein form. The form

E(ηresπL(A),μ0
)

is square integrable.
Let w0 be the Weyl group element considered in 2.2. If the constant term

E(ηπL(A),μ)
P has a pole of order dim(aP ) for μ = μ0 dominant, thenM(πL(A), μ, w0)

has a pole at μ = μ0 of order dim(aP ) [23]. The image of M(πL(QA), μ0, w0) is
a unitary representation which is isomorphic to a representation in the residual
spectrum.

The constant term of the residual Eisenstein form E(ηresπL(A),μ0
) determines its

growth at infinity. Since a residual Eisenstein form is square integrable, it is decay-
ing at infinity and its constant term E(ηresπL(A),μ0

)P has only the term

m(π
L(A), μ0, w0)

−1M(π
L(A), μ0, w0)ηπL(A),μ0

for w0 ∈ W (L) as introduced in 2.2.

3.5 If in addition

H∗(g0,K, I(P, π
L(A), μ0)) �= 0
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then the factor I(P, πL, μ0) of I(P, π
L(A), μ0) at the infinite place satisfies the as-

sumptions of the previous section and we conclude that in degree rq = e(P, π,−μ0)
the form

E(ηresπL(A),μ0
) ∈ HomK(∧rqp, L2

res(G(Q)AG\G(A)))Aq

where L2
res(G(Q)AG\G(A))Aq

is the isotypic component of type Aq , i.e.

L2
res(G(Q)AG\G(A))Aq

= Hom(g,K)(Aq, L
2
res(G(Q)AG\G(A))⊗Aq).

The standard principal series representations I(P, πL, μ0) and
I(P, π̄L,−μ0) have Aq as Langlands subquotient, respectively subrepresentation,
and they have both the same K–types. Thus we have a nonzero closed form

ηq ∈ ∧rqp⊗K I(P, π
L(A), μ0)

defined by the subrepresentation of ∧rqp with highest weight

2ρ(nq ∩ pC) =
∑

β∈Σ(nq∩pC)

β,

where nq is the nilradical of the θ–stable parabolic subalgebra q.

The constant Fourier coefficient E(ηresq )P is a nonzero multiple of
M(π

L(A), μ0, w0)ηq. We have the exact sequence

0 → Im(M(π
L(A), μ0, w0)) → I(P, π

L(A),−μ0)

→ I(P, π
L(A),−μ0)/Im(M(π

L(A), μ0, w0)) → 0

and by 2.2 it induces in degree rq the isomorphism

Hrq(g,K, Im(M(π
L(A), μ0, w0))) = Hrq(g,K, I(P, π

L(A),−μ0)).

Hence

[M(π
L(A), μ,w0)ηq]

defines a nontrivial class inHe(P,π,−μ0)(g0,K, I(P, π
L(A),−μ0)) and so does [E(ηresq )P ].

3.6 To prove that there are nontrivial residual Eisenstein classes [E(ηresΠL(A),μ0
)] in

degree rq we follow the ideas of [13] and [27] and consider the restriction of a form
to a face

e(P,Kf ) = P(Q)\G(A)/K KfAP

of the boundary of the Borel-Serre compactification. See [6] for details on the
Borel-Serre compactification.

The cohomology of the face e(P,Kf ) is isomorphic to

ind
G(Af )

P(Af )
H∗(L(Q)\L(A)/K

L(A)AP , H
∗(n,C))

where K
L(A) = (K ∩ L)(KAf

∩ L(Af )) = KL K
L(Af ). We have

H∗
cusp(L(Q)\L(A)/K

L(A)AP , H
∗(n,C))

⊂ H∗(L(Q)\L(A)/K
L(A)AP , H

∗(n,C))

and
H∗

cusp(L(Q)\L(A)/K
L(A)AP , H

∗(n,C))

is equal to the direct sum of

Hom
L(A)(ΠL(A), L

2
cusp(L(Q)\L(A)/K

L(A)AP )⊗HomKL
(∧∗pm,ΠL(A)⊗H∗(n,C))),
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where pm = p ∩m.

Since π
L(A) is a cuspidal representation, [E(ηresq )P ] defines by

section II a nontrivial class in

ind
G(Af )

P(Af )
H∗(m,KM , π

L(A) ⊗H∗(n,C))⊗ ∧0
aP .

But H∗(m,KM , π
L(A) ⊗H∗(n,C))⊗ ∧0aP can be considered as a subspace of

H∗
cusp(L(Q)\L(A)/K

L(A)AP , H
∗(n,C)).

Hence [E(ηresq )P ] can be considered as a class in H∗
cusp(e(P,Kf )).

In [13] it is proved that computing the restriction of an Eisenstein form to
the face e(P,Kf ) corresponds to taking the constant Fourier coefficient. Thus we
proved

Theorem III.1. Under our assumptions [E(ηresq )] is a nontrivial cohomology
class of S(Kf ) in degree e(P, π,−μ0) = rq.

IV. An example: Residual cohomology classes for GLn

Let A be the adéles of Q. We use the description of the residual spectrum of
the general linear group by C. Mœglin and J.L.Waldspurger and the nonvanishing
results of the cuspidal cohomology of [6] to prove nonvanishing results for the
residual cohomology of the general linear group.

4.1 In [3] it is proved that there are cuspidal representations πA of GLn(A) which
are invariant under the Cartan involution, i.e. are self-dual and which satisfy

H∗(g0,K, πA ⊗ Fλ) �= 0

for a finite dimensional representation Fλ with highest weight λ provided that
〈λ, α〉 ∈ 2N+. If n = 2 it is known from the classical theory of automorphic forms
that for all finite dimensional representations Fλ of GL2(R) there exist cuspidal
automorphic representations with

H∗(g0,K, πA ⊗ Fλ) �= 0.

C. Mœglin and J.L. Waldspurger proved that the representations in the resid-
ual spectrum of GLn(Q)AG\GLn(A) are obtained as follows [24]: A partition
(m,m, . . . ,m) of n = r m defines a parabolic subgroup Pm. Then

Lm(A) =
∏

GLm(A).

Let πA,m be a representation in the cuspidal spectrum of
GLm(Q)AGm

\GLm(A). Consider the standard representation

I(Pm,
∏

πA,m, μ) = ind
GLn(A)
Pm(A) χμ+ρP

⊗
∏

πA,m

for μ dominant with respect to ΣPm
. If 〈α, μ0〉 = 1 for all simple roots of in

ΣP0
the representation I(Pm,

∏
πA,m, μ0) is reducible and its Langlands quotient

L(Pm,
∏

πA,m, μ0) is in the residual spectrum. Then L(P1,
∏

πA,1, μ0) is one-
dimensional and L(P2,

∏
πA,2, μ0) is a Speh representation discussed in [28].

4.2 Now suppose that I(Pm,
∏

π∞,m, μ0) has nontrivial (g,K)-cohomology. Then
I(Pm,

∏
π∞,m, μ0) has infinitesimal character ρ. This determines the infinitesimal



PSEUDO EISENSTEIN FORMS III 513

character of π∞,m [7]. Since π∞,m is tempered there exists exactly one representa-
tion of GL(m,R) with this property. A computation shows that if r is even then
the infinitesimal character of π∞,m satisfies the condition of [3] and hence there
exists a cuspidal representation πA,m with π∞,m as factor at the infinite place. If
m = 2 then such representations exist for all r.

Theorem IV.1. Suppose that r or m is even. Then there are representations
L(Pm,

∏
πA,m, μ0) with nontrivial (g,K)-cohomology in the residual spectrum.

4.3 Since representations are tempered and hence induced, a straightforward
computation shows

Lemma IV.2. Suppose that

L(Pm,
∏

πA,m, μ0) = L(Pm,
∏

π∞,m, μ0)L(Pm,
∏

πAf ,m, μ0))

is in the residual spectrum and that

H∗(g0,K, L(Pm,
∏

π∞,m, μ0)) �= 0.

If m is even, the Langlands subquotient L(Pm,
∏

πm, μ0) is unitarily induced from
a parabolic subgroup P2r and Speh representations on each factor of L(A). If m
is odd then it is unitarily induced from a parabolic for a partition (2r, 2r, . . . , 2r, r)
On each of the factors of the Levi subgroup isomorphic to GL2r we induce from a
Speh representation and from the trivial representation on the factor isomorphic to
GLr.

Using the formula 4.2.1 in [28] we conclude

Lemma IV.3. We keep the assumptions of the previous lemma. If m is even
then

Hi(g0,K, L(Pm,
∏

π∞,m, μ0)) = C if i =
r(r − 1)m

4
+

r2m(m+ 1)

2

= 0 if i <
r(r − 1)m

4
+

r2m(m+ 1)

2
.

If m is odd then

Hi(g0,K, L(Pm,
∏

π∞,m, μ0)) =

= C if i =
r(r + 1)(m− 1)

4
+

r2(m− 1)(1 +m)

2

= 0 if i <
r(r + 1)(m− 1)

4
+

r2(m− 1)(1 +m)

2
.

Now II.2 implies

Theorem IV.4. Suppose that G = GLn and that n = rm. Then for Kf small
enough

Hj(S(Kf),C) �= 0

if
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(1) r and m even and j = r(r+1)m
4 + r2m(m+2)

2

(2) r even and m odd and j = r(r+1)(m−1)
4 + r2(m−1)(1+m)

2 ,

(3) m=2 and j = r(r + 1)/2.

Remark: All the residual cohomology classes in this theorem are in degrees below
(1/2) dim X∞.

V. Some classes with compact support

If Kf is small enough S(Kf ) is orientable. We fix an orientation and have
Poincaré duality, i.e. a nondegenerate pairing of H∗(S(Kf ),C) and H∗

c (S(Kf),C).
In this section we first recall the construction of closed pseudo Eisenstein forms
with compact support [25]. Then we compute the integral of their cup product
with residual Eisenstein forms to show, that the residual Eisenstein forms represent
non-trivial classes in H∗

c (S(Kf),C).

5.1 Suppose that ρ : G → End(V ) is a finite dimensional representation of
G. Choose an admissible scalar product on g. The corresponding volume form is
denoted by

dx ∈ Ωd(X,C), d = dim X∞.

Fix an admissible inner product on V (II.2 in [7].) Then there is a hermitian scalar
product 〈 〉 on ∧i(g0/k)

∗⊗V where the superscript indicates the dual space, There

is an induced pointwise scalar product on Ωi(X, Ṽ ) and on Ωi(S(Kf ), Ṽ ) and we
obtain a map

A : Ωi(X, Ṽ )× Ωd−i(X, Ṽ ∗) → Ωd(X,C)

where V ∗ is the contragredient representation of V. Let V̄ ∗ be the complex conju-
gate. Then there is a map

∗ : Ωi(X, Ṽ ) → Ωi(X, ˜̄V ∗)

characterized by the equation

A(ω1, ∗ω2) = 〈ω1, ω2〉dx

for ω1, ω2 ∈ Ωi(X, Ṽ ) and similarly for forms on S(Kf ) and on
P(Q)\X/KKf .

5.2 Suppose that π
L(A) is a cuspidal representation with π

Kf∩L(Af )

L(A) �= 0 and that

H∗(m0,K ∩ L, π
L(A) ⊗ FL) �= 0

for an irreducible finite dimensional representation FL. Let rπ be the lowest degree
in which the (m,K ∩L)–cohomology of π

L(A) is non-trivial. Consider a non-trivial
cohomology class [ωπ] in degree rπL

. Since π
L(A) is a cuspidal representation with

a Kf ∩ L(Af )–fixed vector we consider ωπ as a differential form representing a
nontrivial class in

ind
G(Af )

P(Af )
Hrπ

cusp(L(Q)\L(A)/AL (KKf ∩ L(A)), FL).
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We fix an admissible inner product on FL and a volume form dxL. Then ∗ωπ is a
differential form with compact support representing a class in

ind
G(Af )

P(Af )
HdL−rπ

cusp (L(Q)\L(A)/AL (KKf ∩ L(A)), F̄L
∗
)

dual to it with respect to Poincaré duality. Here dL is the dimension of the sym-
metric space of L.

On the other hand, following I.1.4 and I.7.1 in [7] we can use representation
theory to define the Poincaré dual

∗repωπ ∈ ind
G(Af )

P(Af )
HdL−rπ(m0,K ∩ L, π̄∗

L(A) ⊗ F̄ ∗
L)

of the form

ωπ ∈ ind
G(Af )

P(Af )
Hrπ (m0,K∞ ∩ L, πL(A) ⊗ FL).

Since πL(A) is a unitary representation, π̄∗
L(A)

∼= πL(A) and thus we have F̄L
∗ ∼= FL.

The Poincaré dual of a cuspidal class is again a cuspidal class and the results in
section II of [7] show that [∗repωπ] and [∗ωπ] represent the same cohomology class
in

ind
G(Af )

P(Af )
HdL−rπ

cusp (L(Q)\L(A)/AL(KKf ∩ L(A)), FL).

5.3 We write AP = AGAL where aL ⊂ g0. Let ωA be a differential form of
compact support on AL in the top degree so that

0 �= [ωA] ∈ Hdim AL
c (AL)

and normalized so that
∫
AL

ωA = 1.

We use the notation and assumptions of section III. Suppose that [E(ηresq )] is
a nontrivial cohomology class of S(Kf ) in degree

e(P, π,−μ0) = rq .

Then rq = rπ + rN and there exists an irreducible cuspidal representation π
L(A)

and a finite dimensional subrepresentation FL ⊂ HrN (n,C) of L so that

Hrπ (m0,K ∩ L, π
L(A) ⊗ FL) �= 0.

We write ωπ for a closed and coclosed form so that

[ωπ] ∈ ind
G(Af )

P(Af )
Hrπ (m0,K∞ ∩ L, π

L(A) ⊗ FL),

represents the same class as E(ηresq )P .

Note that we have Poincaré duality on H∗(n,C). So we consider F
∼−→ F̄ ∗ ⊂

Hdim (n)−rN (n,C). Then

[∗repωπ] ∈ ind
G(Af )

P(Af )
HdL−rπ(m0,K ∩ L, π

L(A) ⊗Hdim n−rN (n,C))

can be considered as a form in degree dL − rπ + dim n− rN .
We consider ∗ωπ as a form on the face e(P,Kf ) of the Borel–Serre boundary

on S(Kf ) and use the natural identification

P(Q)\X/KKf
∼−→ e(P,Kf )×AP .

Then

ω̃π,μ := ∗ωπ ∧ χμ−ρP
ωA
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is a closed form with compact support on P(Q)\X/KKf and we get a compactly
supported Eisenstein form

E(ω̃π,μ) =
∑

γ∈G(Q)/P(Q)

γ∗ω̃π,μ.

For more detail of this construction see [25].

Theorem V.1. The pseudo Eisenstein E(ω̃π,μ0
) series represents a non-trivial

cohomology class with compact support such that∫
G(Q)\(G(A)

E(ω̃π,μ0
) ∧ resμ=μ0

E(ηq, μ) �= 0 .

Proof: We have

∫
G(Q)AG\G(A)

E(ω̃π,μ0
) ∧ resμ=μ0

E(ηq, μ)

=

∫
P(Q)AG\G(A)

ω̃π,μ0
∧ resμ=μ0

E(ηq, μ)

=

∫
P(Q)N(A)AG\G(A)

ω̃π,μ0
∧ resμ=μ0

E(ηρ, μ0)
P

= vol(KKf )

∫
AP /AG

∫
L(Q)L(A)/AP

∗ωπ ∧ ωπχμ0−ρP
χρP−μ0

ωA

= vol(KKf )

∫
L(A)∩KKf

||ωπ||2(x)dx �= 0 .

Hence the second claim holds and by Stokes’ theorem E(ω̃π,μ0
) cannot be the

boundary of a compactly supported form. q.e.d.

Corollary V.2. E(ω̃π,μ0
) represents a nontrivial cohomology class in the L2-

cohomology of S(Kf ).

Proof: The form E(ω̃q,μ0
) is square integrable. Therefore we can interpret our

formulas in L2-cohomology. �

The pseudo Eisenstein form E(ωq,μ0
) is a differential form with compact sup-

port. So we can use the methods of Langlands (as written up in the Mœglin-
Waldspurger) to compute its “Fourier ” expansion in the L2– spectrum and in par-
ticular its projection on the residual cohomology HomK(∧n−rqp, L2

res(G(Q)AG\G(A))).
This idea will be pursued in the following sections.

VI. A symplectic modular symbol

Suppose that G = GL4. We prove in the section that for Kf small enough the
symplectic group defines a non-trivial modular symbol for S(Kf ).
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6.1 Let G = GL4 over Q and let θ : g → (gt)−1. Define the skew-symmetric
matrix

J =

(
0 I
−I 0

)

and let H be the symplectic subgroup of G defined as the fixed points of the invo-
lution

σ : g → −J (gt)−1 J.

Since σθ = θσ the involution θ also defines a Cartan involution on H for the
maximal compact subgroup H ∩K.

We fix a Borel subgroup B consisting of the upper triangular matrices.

6.2 Let q = l ⊕ n be the θ-stable parabolic subalgebra in gl4(C) defined by J .
Then the centralizer L of J in GL4(R) is isomorphic to GL(2,C). Furthermore
pC = (n ∩ pC)⊕ (pC ∩ hC). [31]

We also denote by Aq the unitary representation of the cohomologically induced
Harish-Chandra module Aq. It is a subrepresentation of L2(H\G). [29]

The abelian subgroup

AP =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

a1 0 0 0
0 a2 0 0
0 0 a−1

1 0
0 0 0 a−1

2

⎞
⎟⎟⎠ , a1, a2 ∈ R∗

⎫⎪⎪⎬
⎪⎪⎭

is a maximally split torus in H. Let P be a rational standard maximal parabolic
subgroup of G with Levi factor L of GL2×GL2. For Kf small enough there exists a
representation Π

L(A) in the cuspidal spectrum of L2(L(Q)AP\L(A)/L(Af ) ∩Kf )
which has a discrete series representation at the infinite place with infinitesimal
character 2ρ. The Eisenstein intertwining operator

E(P, π
L(A), μ) : I(P, πL(A), μ) → C∞(G(Q)\G(A)/AG (KKf ))

has a pole for μ0 = 1
2ρP . The image of the residual intertwining operator for

μ0 = 1
2ρP is a representation

ΠA = ΠA(π
L(A), μ0) =

∏
v

Πv = Π∞ΠAf

with Π∞ = Aq with rq = 3. The representation ΠA is isomorphic to a subrepre-
sentation of the residual spectrum of L2(G(Q)\G(A)/AGKf ). For details see [28].

By theorem III.1 the representation ΠA defines for Kf small enough a residual
cohomology class [E(ηresq )] in degree rq= 3. We have (see V.2 )

0 �= [E(ω̃q,μ0
)] ∈ H6

c (S(Kf ),C).

Following [29] we let 0 �= ωH ∈ ∧dim h∩p(h ∩ p)∗. Then ∗ωH ∈ ∧dimn∩pp∗

defines a differential form on S(Kf ). Assuming that Kf is small enough and we
have a compatible orientation on SH(Kf ∩H(Af ) we identify

E(ω̃q,μ0
) ∧ ∗ωH

with a function Eq �= 0 on S(Kf ). There exists a measure dhA on SH(Kf ∩H(Af ))
induced by a left invariant measure on H(A)/(KKf ∩H(A)) so that
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Lemma VI.1. Under our assumptions∫
SH(Kf∩H(Af ))

∗E(ηresq ) =

∫
SH(Kf∩H(Af ))

Eq(hA)dhA.

Proof: This follows from the arguments on page 5.6 in [29]. �

6.3 The representations in the discrete spectrum of L2(G(Q)\G(A)/AG) with
nontrivial (g,K)–cohomology are [28] :

(1) tempered and in the cuspidal spectrum; they have nontrivial (g0,K)–
cohomology in degrees 4 and 5,

(2) the trivial representation 1 in the residual spectrum; it has non-trivial
(g,K)–cohomology in degree 1, 4, 5 and 9,

(3) the representations ΠA in the residual spectrum described in 6.2; they
have nontrivial (g,K)–cohomology in degree 3 and 6.

The L2–cohomology H∗
L2(S(KF ),C) is infinite in degree 4 and 5 [5], but finite

in degree 1, 3, 6 and 9. In degree 3 it is represented by residual harmonic forms
E(ηresq ) ∈ HomK(∧3p,ΠA) for representations ΠA.

By the previous lemma and the results of Jacquet and Rallis for Kf small
enough [18]

ISH(Kf∩H(Af )) : ω →
∫
SH(Kf∩H(Af ))

ω

defines a map

ISH(Kf∩H(Af )) : HomK(∧6p, L2
dis(G(Q)\G(A)/AGKf )) → C.

Let ΩπA
be a smooth form with compact support representing the same L2–

cohomology class as ∗E(ηresq ). Then

∗E(ηresq )− ΩπA
= dη.

The integral
∫
SH(Kf∩H(Af ))

dη is finite.

Let dH be the differential on SH(Kf ∩H(Af )). An easy check shows that for
h ∈ SH(Kf ∩H(Af ))

dη(h) ∧ ∗ωH(h) = dHη(h) ∧ ∗ωH(h).

Thus by the L2–Stokes theorem for complete manifolds [12]∫
SH(Kf∩H(Af ))

dω = 0.

Thus we proved

Proposition VI.2. For Kf small enough the map

ISH(Kf∩H(Af )) : ω →
∫
SH(Kf∩H(Af ))

ω

defines a modular symbol

[ISH(Kf∩H(Af ))] ∈ H3(S(Kf ),C).
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Theorem VI.3. Suppose that G = GL(4) and H is a symplectic group compati-
ble with the choice of the maximal compact subgroup
K ⊂ GL(4,R). There exists a Kf so that

[ISH(Kf∩H(Af ))]

is not zero.

Proof: The linear functional

f →
∫
SH(Kf∩H(Af ))

f(hA)dhA

is not zero on the K–finite functions f by the work of Jacquet and Rallis in the
residual spectrum [18]. Let Eq be the function defined in VI.1. By the previous
considerations we may assume that this function is in L2

res(G(Q)\G(A/AGKf ).
There exists a g0 ∈ G(Q) near the identity so that∫

SH(Kf∩H(Af ))

Eq(g0hA)dhA �= 0.

Here we integrate over the orbit of g0 under H(A). Since the rational elements are
dense in G we may assume that g0 is rational. There is a subgroup Kg0,f of finite
index in both Kf and its g0 conjugate so that [SH(Kg0,f ∩H(Af ))](Eq) �= 0 �

VII. On the volume of S(Kf )

In the proof of theorem V.1 we have used a formula for the integral of a wedge
product of a pseudo Eisenstein form with an Eisenstein form. We show how this
formula is related to the computation of the Tamagawa number τ (G) of G. We
sketch this only in the simplest case, i.e. if G/Q is split and simply connected.

7.1. Preliminaries. Let G/Q be a split semisimple connected and simply con-
nected algebraic group with Q–Lie algebra g. We fix a system R of roots, a system
R+ ⊂ R of positive roots and a Chevalley basis {Xα, Hi}, i = 1, . . . , l, α ∈ R, of g in
standard notation. Then the Hi are a Q–basis of the Q–Lie algebra of a split torus
T of G which is contained in a Borel group B of G and B has unipotent radical N,
where the Q–Lie algebra of N has basis {Xα}α∈R+ . The Chevalley basis determines
an invariant differential form of highest degree and hence invariant measures ωG

ν on
G(Qν) for all places v of Q. Then the restricted tensor product

ωG :=
⊗̂

v
ωv

is an invariant measure on G(A). The measure ωG induces a measure dg on
G(Q)\G(A) and by definition the Tamagawa number τ (G) is defined as

τ (G) =

∫
G(Q)\G(A)

dg.

For all this see [21].

Let p be a prime. Since G/Q is a Chevalley group G(Zp) =: Kp makes sense.
Put K∞ = K and let K ⊂ G(R) be a maximal compact subgroup of G(R). For all
places v of Q put Nv := N(Qv), Tv = T(Qv), and Gv = G(Qv). Then we have the
Iwasawa decomposition Gv = NvTvKv.
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Put

ρv(tv) = | det Ad(tv)|nv
|1/2v .

Here | |v is the normalized absolute value on Qv , nv the Qv–Lie-algebra of Nv and
Ad(tv) is the adjoint action of tv ∈ Tv on nv. Put |ρ|(t) =

∏
v ρv(tv) for t ∈ T(A).

For v �= ∞ let ωT
v be the measure on Tv given by the {Hi} with normalization

volωv
(T(Zv)) = 1 . If v = ∞ let ωT

v be the measure determined by the {Hi}. Then
the restricted product

ωT =
⊗̂

v
ωT
v

is a measure on T(A). We choose on N(A) the measure ωN = ⊗vω
N
v , where the

measures ωN
v are determined by the {Xα}α∈R

+ . Then we have for the finite places

ωG
v = ρ−2

v ωN
v ⊗ ωT

v ⊗ ωK
v ,

where ωK
v is the measure on Kv given by restriction of ωG

v . We choose a measure
ωK
∞ on K∞ such that this formula also holds for v = ∞ . To simplify the notation

we write for ϕ ∈ Cc(G(A) as usual∫
G(A)

ϕ(g)dωG(g) =:

∫
G(A)

ϕ(g)dg

=

∫
N(A)

∫
T(A)

∫
KKf

ϕ(ntk)|ρ|−2(t)dndtdk.

The measure dn induces a measure of mass 1, also denoted by dn, on the quotient
N(Q)\N(A). The measure dt induces a measure, again denoted by dt, on the
quotient T(Q)\T(A).

7.2. Let ϕ : T(Q)\T(A) −→ R be a continuous compactly supported function
which is right (KKf ) ∩ T(A)–invariant such that∫

T(Q)\T(A)

ϕ(t)|ρ|−2(t)dt = 1.

Since

T(Q)\T(A)/(KKf) ∩ T(A)
∼−→ N(A)B(Q)\G(A)/KKf

we view ϕ as left N(A)B(Q)–invariant and right KKf–invariant function on G(A).
Then the pseudo-Eisenstein series

E(ϕ)(g) :=
∑

γ∈B(Q)\G(Q)

ϕ(γg), g ∈ G(A) ,

is a compactly supported function on G(Q)\G(A). We use 7.1 and get∫
G(Q)\G(A)

E(ϕ)(g)dg = vol(KKf ).

where dg also denotes the induced measure on G(Q)\G(A). So if 1 denotes the
constant function,

(vol(KKf )/τ (G)) · 1
is the projection of E(ϕ) on the constant function in the L2-spectral decomposition.

We can also interpret this integral as the integral of a wedge product of a
residual Eisenstein form in degree 0 with a pseudo Eisenstein form in degree d =
dimX∞.
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7.3 To determine another formula for projection of the function E(ϕ) onto the
trivial representation we use Fourier analysis on the torus. Let λ : T(Q)\T(A) −→
C∗ be a continuous character and put

ϕ̂λ(g) =

∫
T(Q)\T(A)

|ρ|−1(t)λ−1(t)ϕ(tg)dt .

The function ϕ̂λ is N(A)B(Q)–left invariant and KKf–right invariant. Moreover

ϕ̂λ(t) = λ(t)|ρ|(t)ϕ̂λ(1)

and

ϕ̂|ρ|(1) = 1

by our choice of ϕ.

As usual we put

E(ϕ, λ)(g) :=
∑

γ∈B(Q)\G(Q)

ϕ̂λ(γg).

It is well known that this Eisenstein series is convergent if Re(λ) is sufficiently big.
This holds in particular for λ = |ρ|s and 1 < s ∈ R . We have

∫
N(Q)\N(A)

E(ϕ, λ)(ng)dn =
∑
w∈W

M(w, λ)ϕ̂λ(g),

where

M(ω, λ)ϕ̂λ(g) =

∫
N(Q)\N(A)

ϕ̂λ(wng)dn.

It is well known that E(ϕ, λ) has a meromorphic continuation in λ with a residue
of order � at λ = |ρ| , which is denoted by resλ=|ρ|E(ϕ, λ) . Moreover this residue is
a multiple c of the constant function 1 on G(Q)\G(A) . To obtain an exact formula
for c and to calculate the residue it suffices to consider the one-dimensional problem
λs = |ρ|s, 1 < s ∈ R . We use

(M(w, |ρ|s)ϕ̂|ρ|s)(t) = |ρ|(t)|wρ|s(t)(M(w, |ρ|s)ϕ̂|ρ|s)(1), t ∈ T(A).

It is well known that that for s > 1, (M(w, |ρ|s)ϕ̂|ρ|s)(1) can be calculated as a
product of local contributions using the results of Gindikin-Karpelevič for all places
v of Q . We get

ress=1(M(w0, |ρ|)s)ϕ̂|ρ|s)(1) = vol(KKf ).

Hence
ress=1E(ϕ, |ρ|s) = vol(KKf )1,

where 1 is the constant function on G(Q)\G(A) .
We use the notation given in the proof of V.1 and deduce that

M(π
L(A),μ0, ω0)ηq = vol(KKf )1.

So integrating the projection of E(ϕ) on the constant function we get
vol(KKf )τ (G). On the other hand in 7.2 we showed that this integral is vol(KKf ).
Hence

τ (G) = 1.

This is due to Langlands [21].
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In a sequel to this paper we will use similar techniques to compute the integrals
defined by other residual modular symbols.
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Introduction

Let GQp
:= Gal(Qp/Qp) denote the absolute Galois group of the field Qp of

p-adic numbers. If � is any prime number different from p then the local Lang-
lands philosophy predicts a close relation between finite dimensional �-adic repre-
sentations of GQp

and the (infinite dimensional) smooth representation theory in
characteristic zero of reductive groups over Qp. In recent years it has become in-
creasingly clear that most probably some kind of extension of this correspondence
to the case � = p exists. On the Galois side the theory of p-adic representations
of GQp

has reached maturity through the work of Colmez, Faltings, Fontaine, and
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others. On the reductive group side the foundations of a theory of continuous
representations in p-adic locally convex vector spaces have been laid in the work
of Schneider/Teitelbaum and others. Nevertheless a precise conjectural framework
how these two sides correspond to each other is still missing.

It is all the more remarkable that despite a missing general picture Colmez
recently has managed to establish such a correspondence for the group GL2(Qp).
His starting point is Fontaine’s theorem ([Fon]) that the category of p-adic Galois
representations is naturally equivalent to the category of (finitely generated) etale
(ϕ,Γ)-modules. Moreover, this equivalence arises from an analogous equivalence
over any of the finite rings Z/pmZ. The concept of a (ϕ,Γ)-module is a purely
(semi)linear algebra notion. It is best viewed as being part of the module theory
of the multiplicative monoid of p-adic integers Z•

p := Zp \ {0} over a certain big
coefficient ring ΛF (Zp). This monoid can be identified with the submonoid in
GL2(Qp) of dominant diagonal matrices (modulo the center). In addition, the
coefficient ring ΛF (Zp) can be understood in terms of the unipotent radical of the
standard Borel subgroup P in GL2(Qp). In fact, Colmez establishes in [Co1] and
[Co2] a functorial relationship between smooth torsion P -representations and etale
(ϕ,Γ)-modules.

This paper constitutes an attempt to understand the smooth representation
theory with Zp-torsion coefficients of a Borel subgroup in a general reductive group
in terms of new objects which we call generalized (ϕ,Γ)-modules. We place our-
selves in the context of a Qp-split connected reductive group over Qp (whose center
we usually assume, for technical simplicity, to be connected), and we fix a Borel
subgroup P = TN of its group G of Qp-rational points with split torus T and
unipotent radical N . We also fix an appropriate compact open subgroup N0 ⊆ N
which in turn gives rise to the “dominant” submonoid T+ := {t ∈ T : tN0t

−1 ⊆ N0}
in T . On the one side we consider the abelian category Mo−tor(P ) of all smooth P -
representations in o-torsion modules where o is the ring of integers in a fixed finite
extension K/Qp. On the other side we note that the monoid T+ acts, by functorial-
ity, on the completed group ring Λ(N0) := o[[N0]]. A first step towards generalizing
(ϕ,Γ)-modules would be to consider Λ(N0)-modules with an additional semilinear
T+-action. But technically it is preferable to introduce the monoid P+ := N0T+, a
corresponding monoid ring Λ(P+) which is an overring of Λ(N0), and to work with
the category M(Λ(P+)) of all (left unital) Λ(P+)-modules instead. Such a module
M will be called etale if every t ∈ T+ acts, informally speaking, with slope zero on
M . We show in section 1 that the etale Λ(P+)-modules form an abelian category
Met(Λ(P+)).

In sections 2 to 4 we construct a universal δ-functor V �−→ Di(V ) for i ≥
0 from the category Mo−tor(P ) into the category Met(Λ(P+)). The idea is to
consider inside a representation V in Mo−tor(P ) all P+-subrepresentations which
still generate V , to pass to their Pontrjagin duals as modules over Λ(N0), and to
form the inductive limit denoted by D(V ). But the result is a Λ(N0)-module which
carries an additional action of the inverse monoid T−1

+ and not the monoid T+ which
we want. Somewhat as a miracle it turns out (section 3) that for any compactly
induced V this T−1

+ -action has a natural right inverse T+-action which does lead to
a Λ(P+)-module structure on D(V ). In section 4 we then use a functorial resolution
by compactly induced representations to produce our δ-functor Di(V ).
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With the help of a Whittaker type functional � on N we pass in section 5
from the category Met(Λ(P+)) to the category Met(Λ(S�)) for the “standard”
monoid S� in GL2(Qp). We point out that our standard monoid S� corresponds to
Fontaine’s original definition of (ϕ,Γ)-modules in which Γ ∼= Zp. Colmez instead
works mostly with a Γ ∼= Z×

p . Both points of view are equivalent; but the former,
in our context, has less technical complications.

In section 6 we construct, in a totally elementary way, a functor from the
category Met(Λ(P+)) back into the category of all P -representations. Its precise
relationship to the functor D0(V ) remains unknown at this point.

In section 7 we show that our δ-functors are independent, up to a natural
isomorphism, of the choices made for N0 and �.

An object in the category Met(Λ(S�)), even if finitely generated, is not yet
a (ϕ,Γ)-module in the sense of Fontaine. The reason is that the base ring for
the latter is not Λ(Zp) but a certain p-adically completed localization ΛF (Zp) of
Λ(Zp). In section 8 we therefore take up the technically rather involved task to
construct in a general framework a topological localization which when applied in
section 9 to the ring Λ(P+) will lead to a ring Λ�(P�) and the corresponding abelian
category Met(Λ�(P�)) of etale Λ�(P�)-modules which we view as a generalization
of Fontaine’s etale (ϕ,Γ)-modules. This construction relies in a crucial way on
the interpretation in [SV2] of certain microlocalized completed group rings as skew
Laurent series rings. By base extension our δ-functor Di(V ) gives rise to a δ-functor
Di

�(V ) into the category Met(Λ�(P�)). In section 10 we show that our specializa-
tion technique along � extends to the ring Λ�(P�) finally leading to a δ-functor
Di

ΛF (S�)
(V ) into the category of not necessarily finitely generated (ϕ,Γ)-modules à

la Fontaine. The question of finite generation remains the fundamental open ques-
tion in this paper. We give an initial sufficient criterion, though, in Remark 11.4.
We expect that for V in a suitable category of smooth o-torsion representations of
G the etale (ϕ,Γ)-modules Di

ΛF (S�)
(V ) indeed are finitely generated and therefore

correspond to p-adic Galois representations.
As explained in section 11 Colmez’ functor for the group G = GL2(Qp) (origi-

nally defined on the smooth o-torsion representations of G which are admissible, of
finite length, and have a central character) coincides with our functor D0

ΛF (S�)
(V ).

In the final section 12 we discuss the example of principal series representations.
The first author thanks the IHES as well as Columbia University, where parts

of this paper were written, for their hospitality and financial support. The second
author, for the same reasons, thanks the Radcliffe Institute and the Mathematics
Department at Harvard University.

It is a pleasure to dedicate this article to Freydoon Shahidi. His influence on
the theory of automorphic representations has been fundamental. We admire his
generosity in sharing mathematical ideas, and we feel extremely lucky to have him
as a wonderful friend for almost 30 years.

0. Notations and conventions

We denote by | | the absolute value of the field Qp. Let G be the group of
Qp-rational points of a Qp-split connected reductive group over Qp. We fix a Borel
subgroup P = TN in G with maximal split torus T and unipotent radical N . Let
Φ+ denote, as usual, the set of roots of T positive with respect to P and let Δ ⊆ Φ+

be the subset of simple roots. For any α ∈ Φ+ we have the root subgroup Nα ⊆ N .
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We recall that N =
∏

α∈Φ+ Nα (set-theoretically) for any total ordering of Φ+.
Let T0 ⊆ T be the maximal compact subgroup. We fix a compact open subgroup
N0 ⊆ N which is totally decomposed, i.e., such that N0 =

∏
α(N0 ∩ Nα) for any

total ordering of Φ+. Then P0 := T0N0 is a group. We introduce the submonoid
T+ ⊆ T of all t ∈ T such that tN0t

−1 ⊆ N0, or equivalently, such that |α(t)| ≤ 1
for any α ∈ Δ. Obviously

P+ := N0T+ = P0T+P0

then is a submonoid of P .
We also fix a finite extension K/Qp with ring of integers o, prime element π,

and residue class field k. By a representation we always will mean a linear action of
the respective group (or monoid) in a torsion o-module V . It is called smooth if the
stabilizer of each element in V is open in the group. It is called finitely generated if
there are finitely many elements in V such that the smallest submodule of V which
contains all translates by the group (or monoid) of these elements is V itself.

We recall that Pontrjagin duality V �−→ V ∗ := Homo(V,K/o) sets up an anti-
equivalence between the category of all torsion o-modules and the category of all
compact linear-topological o-modules. In particular, the functor V �−→ V ∗ is exact
on torsion o-modules.

For any compact open subgroup G0 ⊆ G let Λ(G0) := o[[G0]], resp. Ω(G0) :=
k[[G0]] = Λ(G0)/πΛ(G0), denote the completed group ring of the profinite group
G0 over o, resp. over k. Any smooth G0-representation V is the filtered union of its
finite subrepresentations. Its Pontrjagin dual V ∗ therefore is a (compact) module
over Λ(G0) (always considered as a left Λ(G0)-module through the inversion map
on G0).

1. Λ(P+)-modules

The monoid P+ acts by conjugation upon itself. Let N (P+) denote the set
of all “open left-normal subgroups” of P+, i. e., all open normal subgroups Q ⊆
P0 which satisfy bQb−1 ⊆ Q for any b ∈ P+. This is a fundamental system of
open neighbourhoods of the unit element in P+. For each Q ∈ N (P+) we may
form the factor monoid Q\P+ as well as the corresponding monoid ring o[Q\P+].
The conjugation action of P+ passes to Q\P+ and hence to an action on the ring
o[Q\P+]. In the projective limit we obtain the unital o-algebra

Λ̃(P+) := lim←−
Q

o[Q\P+]

together with an action of P+ on it. The obvious map

Λ(P0)⊗o[P0] o[P+] −→ Λ̃(P+)

is injective and its image is a subring Λ(P+) of Λ̃(P+) which is invariant under the
P+-action. We will write φb : Λ(P+) −→ Λ(P+) for the ring endomorphism given by
the action of the element b ∈ P+. If b ∈ P0 then we obviously have φb(λ) = bλb−1

for any λ ∈ Λ(P+). For any φb-invariant subring Λ ⊆ Λ(P+) we denote by Λ⊗Λ,b −
the base change functor for left Λ-modules along the ring homomorphism φb. Let
Θ ⊆ T+ be a subset of representatives for the cosets in T+/T0. Then, as a left
Λ(P0)-module, we have

(1) Λ(P+) =
⊕
t′∈Θ

Λ(P0)t
′ .



A FUNCTOR FROM SMOOTH o-TORSION REPRESENTATIONS TO (ϕ,Γ)-MODULES 529

Lemma 1.1. For any b = n0t ∈ P+ = N0T+ the ring endomorphism φb is
injective and makes Λ(P+) a free right module of rank [N0 : bN0b

−1] = [N0 : tN0t
−1]

over itself; the map

Λ(N0)⊗Λ(N0),b Λ(P+)
∼=−−→ Λ(P+)

ν ⊗ λ �−→ νφb(λ)

is an isomorphism.

Proof. We have tP0t
−1 = tN0t

−1T0 and hence the disjoint decomposition

P0 =
⋃

n∈N0/tN0t−1

n(tP0t
−1) .

Conjugation by n0 gives

P0 = n0P0n
−1
0 =

⋃
n∈N0/tN0t−1

n0nn
−1
0 (bP0b

−1) =
⋃

n∈N0/bN0b−1

n(bP0b
−1) .

It follows that

Λ(P+) = n0Λ(P+)n
−1
0 =

⊕
t′∈Θ

Λ(P0)n0t
′n−1

0

=
⊕
t′∈Θ

⊕
n∈N0/bN0b−1

nΛ(bP0b
−1)bt′b−1

=
⊕

n∈N0/bN0b−1

n im(φb) .

�

Let M(Λ(P+)) be the abelian category of all left (unital) Λ(P+)-modules and
D(Λ(P+)) the corresponding derived category.

Definition 1.2. A left unital Λ(P+)-module M is called etale if, for any b ∈
P+, the Λ(P+)-linear map

Λ(P+)⊗Λ(P+),b M
∼=−−→ M

λ⊗ x �−→ λbx

is bijective.

Obviously the condition in the above definition is automatically satisfied for
any b ∈ P0 and therefore needs to be checked only for every t′ ∈ Θ. In fact, because
of Lemma 1.1 a Λ(P+)-module M is etale if and only if

Λ(N0)⊗Λ(N0),t′ M
∼=−−→ M

λ⊗ x �−→ λt′x

is bijective for any t′ ∈ Θ. Let Met(Λ(P+)) denote the full subcategory of all etale
Λ(P+)-modules in M(Λ(P+)).

Proposition 1.3. The subcategory Met(Λ(P+)) of M(Λ(P+)) is closed under
the formation of kernels, cokernels, extensions and arbitrary inductive and projec-
tive limits; in particular, Met(Λ(P+)) is an abelian category.

Proof. This is a straightforward consequence of Lemma 1.1. �
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In general the subcategory Met(Λ(P+)) of M(Λ(P+)) is not closed under the
passage to submodules.

It also follows that the full subcategory Det(Λ(P+)) of all those complexes in
D(Λ(P+)) whose cohomology modules are etale is a triangulated subcategory.

In a completely symmetric way we have the ring Λ̃(P−1
+ ) for the monoid P−1

+ .

The map b �−→ b−1 induces an anti-isomorphism of rings Λ̃(P+)
∼=−−→ Λ̃(P−1

+ ).
We also will need the following straightforward variants of everything above.

Let T� ⊆ T+ be any submonoid and put P� := N0T�. We then have the subring

Λ(P�) := Λ(P� ∩ P0)⊗o[P�∩P0] o[P�] ⊆ Λ(P+)

as well as the abelian categories M(Λ(P�)) and Met(Λ(P�)) together with the
forgetful functors

M(Λ(P+)) −→ M(Λ(P�)) and Met(Λ(P+)) −→ Met(Λ(P�)) .

For the latter observe that by Lemma 1.1 the map

Λ(P�)⊗Λ(P�),b Λ(P+)
∼=−−→ Λ(P+)

μ⊗ λ �−→ μφb(λ) ,

for any b ∈ P�, is an isomorphism.
Of particular interest is the case of the group GL2(Qp) and its Borel subgroup

of lower triangular matrices P2(Qp). The “standard monoid” in P2(Qp)+ is

S� :=
{ (

1 0
a b

)
: a ∈ Zp, b ∈ (1 + pε(p)Zp)p

N0
}
.

with ε(2) := 2 and ε(p) := 1 for odd p. In S� we have the subgroups

S0 :=
{ (

1 0
a 1

)
: a ∈ Zp

}
and Γ :=

{ (
1 0
0 b

)
: b ∈ 1 + pε(p)Zp

} ∼= Zp

and the element ϕ :=
(
1 0
0 p

)
. The ring Λ(S�) = Λ(S0Γ)[ϕ;φϕ] is a skew polynomial

ring over Λ(S0Γ). Later on we will see that these data are very closely related to
Fontaine’s notion of a (ϕ,Γ)-module.

2. P+-subrepresentations

Fix a smooth P -representation V . An o-submodule M ⊆ V will be called
generating if V = PM .

Lemma 2.1. For any P+-subrepresentation M of V the following assertions are
equivalent:

i. M is generating;
ii. for any v ∈ V there is a t ∈ T+ such that tv ∈ M .

Proof. It is trivial that ii. implies i. Let M therefore be generating and let
v ∈ V be any vector. We then find elements n1, . . . , nr ∈ N , t1, . . . , tr ∈ T , and
v1, . . . , vr ∈ M such that

v =

r∑
i=1

nitivi .

We choose a t ∈ T+ such that

tniti = (tnit
−1)(tti) ∈ N0T+

for any 1 ≤ i ≤ r. We obtain tv ∈ M . �
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Lemma 2.2. Let M0,M1 ⊆ V be two generating P+-subrepresentations; then
M0 ∩M1 is a generating P+-subrepresentation as well.

Proof. Clearly M0∩M1 is P+-invariant. We check the assertion ii. in Lemma
2.1. Let v ∈ V be any vector. Since Mi is generating we find a ti ∈ T+ such that
tiv ∈ Mi. Then t1t2v = t2t1v ∈ M1 ∩M2. �

We let P+(V ) denote the set of all generating P+-subrepresentations of V . The
above lemma says that the set P+(V ) is decreasingly filtered with respect to the
partial order given by inclusion.

Lemma 2.3. For any map f : V1 −→ V2 of smooth P -representations and any
M ∈ P+(V2) we have f−1(M) ∈ P+(V1).

Proof. Obviously f−1(M) is P+-invariant. Using again Lemma 2.1 let v ∈ V1

be any vector. Since M is generating we find a t ∈ T+ such that tf(v) = f(tv) ∈ M .
Hence tv ∈ f−1(M). �

From P+(V ) we obtain by dualizing the filtered inductive system {M∗}M∈P+(V )

of (left) Λ̃(P−1
+ )-modules. We define

D(V ) := lim−→
M∈P+(V )

M∗

as a Λ̃(P−1
+ )-module. We note that D(V ) actually is a quotient of V ∗ because the

restriction maps in the filtered inductive system are surjective:

D(V ) = V ∗/{x ∈ V ∗ : x|M = 0 for some M ∈ P+(V )}.
It follows from Lemma 2.3 that D(V ) is contravariantly functorial in V . Moreover,
since g−1(M) ∩ f−1(M) ⊆ (g + f)−1(M) for any two maps g, f : V1 −→ V2 this
functor D is additive.

Remark 2.4. Let f : V1 −→ V2 be a map of smooth P -representations; we
have:

i. If f is injective then D(f) is surjective;
ii. if f is surjective then D(f) is injective.

Proof. i. In fact in the commutative diagram of restriction maps

V ∗
2

��

f∗
�� V ∗

1

��
D(V2)

D(f) �� D(V1)

all four maps are surjective.
ii. This is immediate from the fact that for any M ∈ P+(V1) we have, by the

surjectivity of the map f , that f(M) ∈ P+(V2). �
Lemma 2.5. Let 0 −→ V1 −→ V2 −→ V3 −→ 0 be a short exact sequence of

smooth P -representations. Suppose that the following holds:

(2) For any M1 ∈ P+(V1) we find M2 ∈ P+(V2) such that M2 ∩ V1 ⊆ M1.

Then the sequence 0 −→ D(V3) −→ D(V2) −→ D(V1) −→ 0 is exact.

Proof. Straightforward. �
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Example: (The Steinberg representation)
The group P = NT acts on N by (nt)(n′) := ntn′t−1. Consider the induced action
of P on the vector space VSt := C∞

c (N) of k-valued locally constant functions with
compact support on N . It is straightforward to see that the subspace C∞(N0) of
locally constant functions on N0 is generating and P+-invariant (cf. [Vi2] Lemme
4).

Lemma 2.6. Any generating P+-subrepresentation M ⊆ VSt contains C
∞(N0).

Proof. By Lemma 2.1 we find a t ∈ T+ such that t charN0
= chartN0t−1 ∈ M

where char? denotes the characteristic function of a compact open subgroup ? ⊆ N .
But tN0t

−1 ⊆ N0 easily implies that C∞(N0) = N0T+ · k chartN0t−1 . �
It follows that D(VSt) = Λ(N0)/πΛ(N0).

3. The case of a compactly induced representation

We now analyze in detail the following kind of P -representations. Let V0 be a
smooth P0-representation and form the compact induction V := indPP0

(V0). This is
the o-module

indPP0
(V0) := all compactly supported functions ψ : P −→ V0 such that

ψ(bb0) = b−1
0 ψ(b) for any b ∈ P, b0 ∈ P0

with the group P acting by left translations. As a piece of notation we denote,
for any right P0-invariant subset X ⊆ P , by indXP0

(V0) the o-submodule in V of all
those functions with support in X. Clearly the map

indP0

P0
(V0)

∼=−−→ V0

ψ �−→ ψ(1)

is a P0-equivariant isomorphism. By abuse of notation, we let any v ∈ V0 denote
at the same time the function in the left hand side corresponding to it. For any
s ∈ T+ we have the subset P+s = N0T+sP0 in P so that we may introduce the
P+-subrepresentation

Ms := Ms(V0) := ind
P+s
P0

(V0)

of V . Containing sV0 any Ms generates V as a P -representation. Hence Ms ∈
P+(V ). If V0 is finite then for the same reason Ms is finitely generated as a P+-
representation. We have Ms′ ⊆ Ms whenever s′ ∈ T+s. Hence these subrepresen-
tations are decreasingly filtered.

We also define, for each t ∈ T+, the P0-subrepresentation

M(t) := M(t)(V0) := indN0tP0

P0
(V0) .

Since P+ is the disjoint union

P+ = N0T+P0 =
⋃

t∈T+/T0

N0tP0 .

we have the P0-invariant decomposition

Ms =
⊕

t∈(T+s)/T0

M(t) .

Lemma 3.1. Suppose that V0 is finite; for any generating P+-subrepresentation
M ⊆ V there is an s ∈ T+ such that Ms ⊆ M .
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Proof. Since M is generating we find finitely many elements b1, . . . , br ∈ P
such that

V0 ⊆
r∑

i=1

biM .

Choose an s ∈ T+ such that sbi ∈ P+ for any 1 ≤ i ≤ r. Then

Ms = P+sV0 ⊆
r∑

i=1

P+sbiM ⊆ M .

�

For general V0 we introduce the set Sub(V0), resp. Fin(V0), of all, resp. all
finite, P0-subrepresentations of V0. Both are partially ordered by inclusion. On
the other hand, the monoid T+/T0 is preordered by t′T0 ≤ tT0 if t′ ∈ T+t. Let
σ : T+/T0 −→ Sub(V0) be any order reversing map which satisfies

(3)
⋃

t∈T+/T0

σ(t) = V0 .

We form the subspace

Mσ := Mσ(V0) :=
⊕

t∈T+/T0

M(t)(σ(t))

of V = indPP0
(V0).

Lemma 3.2. i. Mσ ∈ P+(V ).
ii. Given any M ∈ P+(V ) there is a σ as above such that Mσ ⊆ M .

Proof. i. Given any U0 in Sub(V0) the subspace M(t)(U0) is P0-invariant and
satisfies

t′M(t)(U0) ⊆ M(t′t)(U0) for any t′ ∈ T+ .

It follows that

t′
(
M(t)(σ(t))

)
⊆ M(t′t)(σ(t)) ⊆ M(t′t)(σ(t′t))

since σ is order reversing. Hence Mσ is P+-invariant. Again since σ is order
reversing we have

Mσ ⊇ Ms(σ(s)) for any s ∈ T+ .

It follows that PMσ ⊇ indPP0
(σ(s)) for any s ∈ T+ and hence, as a consequence of

the condition (3), that

PMσ ⊇
∑
s∈T+

indPP0
(σ(s)) = indPP0

(
∑
s∈T+

σ(s)) = indPP0
(V0) .

ii. It follows from Lemma 2.3 that, for any U0 ∈ Fin(V0), the P+-subrepresentation

M ∩ indPP0
(U0) is generating in indPP0

(U0). Using Lemma 3.1 we find an s(U0) ∈ T+
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such that Ms(U0)(U0) ⊆ M . Hence M contains
∑

U0∈Fin(V0)

Ms(U0)(U0) =
∑

U0∈Fin(V0)

⊕
t∈T+s(U0)/T0

M(t)(U0)

=
⊕

t∈T+/T0

∑
U0∈Fin(V0)
t∈T+s(U0)

M(t)(U0)

=
⊕

t∈T+/T0

M(t)
( ∑
U0∈Fin(V0)
t∈T+s(U0)

U0

)
.

We therefore set

σ(t) :=
∑

U0∈Fin(V0),t∈T+s(U0)

U0 .

The union of all σ(t) contains the union of all U0 ∈ Fin(V0) and consequently is
equal to V0. �

The dual of indPP0
(V0) can be described explicitly as follows. Let

IndPP0
(V ∗

0 ) := all functions Φ : P −→ V ∗
0 such that

Φ(bb0) = b−1
0 Φ(b)

for any b ∈ P, b0 ∈ P0

with the group P acting by left translations. The map

IndPP0
(V ∗

0 )
∼=−−→ indPP0

(V0)
∗

Φ �−→
[
ψ �→

∑
b∈P/P0

Φ(b)(ψ(b))
]

is a P -equivariant o-linear isomorphism. Under this isomorphism the orthogonal
complement M⊥

σ of Mσ in indPP0
(V0)

∗ corresponds to the P−1
+ -invariant subspace

Jσ := Jσ(V0) := {Φ ∈ IndPP0
(V ∗

0 ) : Φ(N0t) ⊆ σ(t)⊥ for any t ∈ T+}

of IndPP0
(V ∗

0 ). We therefore obtain a natural isomorphism

D(indPP0
(V0)) ∼= IndPP0

(V ∗
0 )/

⋃
σ

Jσ

of Λ̃(P−1
+ )-modules. On the other hand there is the P0-invariant decomposition

IndPP0
(V ∗

0 ) = J+ ⊕ J−

with

J± := J±(V0) := {Φ ∈ IndPP0
(V ∗

0 ) : Φ|
( {

P \ P+

P+

)
= 0} .

We write Φ = Φ+ + Φ− for the corresponding decomposition of any function Φ ∈
IndPP0

(V ∗
0 ) into functions Φ± ∈ J±. The subspace J+ in IndPP0

(V ∗
0 ) is P+-invariant.

Since obviously J− ⊆ Jσ for any σ the natural map

(4) J+ −→ IndPP0
(V ∗

0 )/
⋃
σ

Jσ
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is surjective. For any order reversing map σ : T+/T0 −→ Sub(V0) satisfying (3)
and any s ∈ T+ we define the new map

σs : T+/T0 −→ Sub(V0)

t �−→
{
σ(s−1t) if t ∈ T+s,

{0} otherwise

which again is order reversing and satisfies (3). We have Jσ ⊆ Jσs
.

Lemma 3.3. i. We have s(J+ ∩Jσ) ⊆ J+ ∩Jσs
for any σ satisfying (3)

and any s ∈ T+ .
ii. J+ ∩

⋃
σ Jσ is P+-invariant.

Proof. i. Let Φ ∈ J+∩Jσ. We have to show that sΦ lies in Jσs
. Let n0 ∈ N0

and t ∈ T+. We have

(sΦ)(n0t) = Φ(s−1n0t) = Φ((s−1n0s)(s
−1t)) .

If s−1n0t �∈ P+ then

(sΦ)(n0t) = Φ(s−1n0t) = 0 ∈ σs(t)
⊥ .

If s−1n0t ∈ P+ then s−1n0s ∈ N0 and s−1t ∈ T+ so that

(sΦ)(n0t) ∈ Φ(N0(s
−1t)) ⊆ σ(s−1t)⊥ = σs(t)

⊥ .

ii. This is an immediate consequence of i. �

By (4) we have the Λ(P0)-equivariant isomorphism

J+/J+ ∩
⋃
σ

Jσ
∼=−−→ IndPP0

(V ∗
0 )/

⋃
σ

Jσ ∼= D(indPP0
(V0)) .

The right hand side in fact carries a Λ̃(P−1
+ )-action whereas the left hand side, by

the lemma, has a Λ(P+)-action. By transport of structure we view this latter action

also on D(indPP0
(V0)). If we represent an element x ∈ D(indPP0

(V0)) by a function

Φ ∈ J+ then tΦ ∈ J+ represents tx for any t ∈ T+. Since t−1(tΦ) = Φ we see that,

for any t ∈ T+, the operator t−1 on D(indPP0
(V0)) is a distinguished left inverse of

the operator t.

Proposition 3.4. For any map f : indPP0
(U0) −→ indPP0

(V0) of compactly

induced smooth P -representations the map D(f) : D(indPP0
(V0)) −→ D(indPP0

(U0))
is a map of Λ(P+)-modules.

Proof. By Lemma 2.3 and Lemma 3.2.ii we find an order reversing map σ :
T+/T0 −→ Sub(U0) satisfying (3) such that

(5) f(Mσ(U0)) ⊆ M1(V0) .

Dually we then have

f∗(J−(V0)) ⊆ Jσ(U0) .
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Therefore, if s ∈ T+ is any element, all maps in the diagram

J+(V0)

∼=
��

s �� J+(V0)

∼=
��

IndPP0
(V ∗

0 )/J
−(V0)

f∗

��

IndPP0
(V ∗

0 )/J
−(V0)

f∗

��
IndPP0

(U∗
0 )/Jσ(U0) IndPP0

(U∗
0 )/Jσs

(U0)

J+(U0)/J
+(U0) ∩ Jσ(U0)

s ��

∼=

��

J+(U0)/J
+(U0) ∩ Jσs

(U0)

∼=

��

are well defined. It suffices to show that this diagram is commutative. But to do
this we first have to observe another consequence of (5). Suppose that a function

ψ ∈ indPP0
(U0) is supported on NT+ \ P+ and such that ψ(Nt′) ⊆ σ(t′) for any

t′ ∈ T+. Let R be a set of representatives for the cosets in N/N0 which contains
the unit element 1. Because of the disjoint decomposition

NT+ =
⋃
n∈R

nN0T+

we may write ψ as a finite sum

ψ = n1ψn1
+ . . .+ nrψnr

with n1, . . . , nr ∈ R \ {1} and ψni
∈ Mσ(U0).

It follows from (5) that

f(ψ) =
∑
i

nif(ψni
) ∈

∑
i

nif(Mσ(U0)) ⊆
∑
i

niM1(V0)

and hence is supported on P \ P+. Passing to orthogonal complements we obtain
that

(6) f∗(Φ)((N \N0)t
′) ⊆ σ(t′)⊥ for any t′ ∈ T+ and any Φ ∈ J+(V0).

To now check the commutativity of the diagram we let Φ ∈ J+(V0). Since
J− ⊆ Jσ its image under the composed map in the left column is f∗(Φ)+. Hence
we have to prove that

s(f∗(Φ)+)− f∗(sΦ)+ = s(f∗(Φ)+)− (sf∗(Φ))+ ∈ Jσs
(U0)

or, equivalently, that

s(f∗(Φ)+)(n0t)− (sf∗(Φ))+(n0t) ∈ σ(s−1t)⊥ for any n0 ∈ N0 and t ∈ T+s

holds true. If t = t′s we have

s(f∗(Φ)+)(n0t)− (sf∗(Φ))+(n0t) = f∗(Φ)+(s−1n0st
′)− f∗(Φ)(s−1n0st

′)

=

{
−f∗(Φ)(s−1n0st

′) if s−1n0s �∈ N0,

0 otherwise.

This reduces us to showing that

f∗(Φ)(s−1n0st
′) ∈ σ(t′)⊥ for any n0 ∈ N0 \ sN0s

−1 and t′ ∈ T+

which we already did in (6). �
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Proposition 3.5. The Λ(P+)-module D(indPP0
(V0)) is etale.

Proof. Similarly as with indXP0
we will use IndXP0

(.), for any right P0-invariant

subset X ⊆ P , to denote the submodule of all functions Φ ∈ IndPP0
(.) with support

in X.
We have to show that, for any s ∈ T+, the map

Λ(P+)⊗Λ(P+),s (J
+/J+ ∩

⋃
σ

Jσ)
∼=−−→ J+/J+ ∩

⋃
σ

Jσ

λ⊗ x �−→ λsx

is bijective. Let n1, . . . , nr ∈ N0 be representatives for the cosets in N0/sN0s
−1.

By Lemma 1.1 the above map may be viewed as the map

(J+/J+ ∩
⋃
σ

Jσ)
r −→ J+/J+ ∩

⋃
σ

Jσ

(x1, . . . , xr) �−→
r∑

i=1

nisxi .

Lemma 3.3.i then reduces us to showing that, for each σ, the map

(J+/J+ ∩ Jσ)
r −→ J+/J+ ∩ Jσs

(x1, . . . , xr) �−→
r∑

i=1

nisxi

is bijective. But we have the N0-equivariant decompositions

J+/J+ ∩ Jσ =
∏

t∈T+/T0

IndN0tP0

P0
((V0/σ(t))

∗)

and
J+/J+ ∩ Jσs

=
∏

t∈T+/T0

IndN0stP0

P0
((V0/σ(t))

∗)

which are respected by the action of s. It finally comes down therefore to the
bijectivity of the map

(IndN0tP0

P0
(.))r −→ IndN0stP0

P0
(.)

(Φ1, . . . ,Φr) �−→
r∑

i=1

nisΦi

which is straightforward from the disjoint union

N0stP0 =
r⋃

i=1

ni(sN0s
−1)stP0 =

r⋃
i=1

nisN0tP0 .

�
Sometimes it is technically useful to notice that M1(V0)

∗ is through transport
of structure along the isomorphism

J+(V0)
∼=−−→ IndPP0

(V ∗
0 )/J

−(V0) ∼= M1(V0)
∗

a Λ(P+)-module. It is not etale, though, but of course also carries a Λ̃(P−1
+ )-

action providing distinguished left inverses. The natural surjection M1(V0)
∗ �

D(indPP0
(V0)) respects all these structures.
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4. The basic cohomological functor

Let Mo−tor(P ) denote the abelian category of all smooth P -representations.
Any V in Mo−tor(P ) comes with the canonical epimorphism

ρV : indPP0
(V ) −→ V

ψ �−→
∑

b∈P/P0

bψ(b)

in Mo−tor(P ). This leads to the canonical resolution

I•(V ) : . . . −→ In+1(V )
ρn−−→ In(V )

ρn−1−−−−→ . . .
ρ0−−→ I0(V )

in Mo−tor(P ) inductively defined by I0(V ) := indPP0
(V ), ρ−1 := ρV ,

In+1(V ) := indPP0
(ker ρn−1), and ρn := ρker ρn−1

for n ≥ 0

such that

I•(V )
	−−→
ρV

V

is a quasi-isomorphism.
As usual, let C≥0(Met(Λ(P+))) denote the category of cohomological com-

plexes in nonnegative degrees in Met(Λ(P+)). We have the contravariant functor

RD : Mo−tor(P ) −→ C≥0(Met(Λ(P+)))

V �−→ D(I•(V )) .

We put

Di(V ) := hi(D(I•(V )))

for i ≥ 0. By Remark 2.4.ii there is a natural injection D(V ) ↪→ D0(V ) but which
in general is not bijective.

Lemma 4.1. The functor V0 �−→ D(indPP0
(V0)) on Mo−tor(P0) is exact.

Proof. Clearly the functor V0 �−→ indPP0
(V0) is exact. It therefore is sufficient

to check the hypothesis (2) in Lemma 2.5 for any inclusion indPP0
(V ′

0) ⊆ indPP0
(V0)

coming from a pair V ′
0 ⊆ V0 of smooth P0-representations. In view of Lemma

3.2 we give ourselves a order reversing map σ′ : T+/T0 −→ Sub(V ′
0) satisfying⋃

t∈T+/T0
σ′(t) = V ′

0 . We also pick a strictly dominant element s0 ∈ T+, which

means that |α(s0)| < 1 for any α ∈ Δ. We note that the subset {sm0 : m ≥ 0} is
cofinal in the preordered set T+. Using Zorn’s lemma we find inductively, for any
m ≥ 0, a subrepresentation σ(sm0 ) ∈ Sub(V0) which is maximal with respect to the
properties that

σ(sm0 ) ∩ V ′
0 = σ′(sm0 ) and σ(sm0 ) ⊇ σ(sm−1

0 )

(where σ(s−1
0 ) := {0}). We now define the order reversing function σ : T+/T0 −→

Sub(V0) by

σ(t) := σ(sm0 ) if t ∈ sm0 T+ \ sm+1
0 T+ .

In order to check that

(7)
⋃

t∈T+/T0

σ(t) =
⋃
m≥0

σ(sm0 ) = V0
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holds true we consider any U0 ∈ Fin(V0). For any n ≥ m we have the obvious
commutative diagram

[σ(sm0 ) + U0] ∩ V ′
0/σ

′(sm0 )

��

� � �� σ(sm0 ) + U0/σ(s
m
0 )

��

U0/U0 ∩ σ(sm0 )

��

∼=��

[σ(sn0 ) + U0] ∩ V ′
0/σ

′(sn0 )
� � �� σ(sn0 ) + U0/σ(s

n
0 ) U0/U0 ∩ σ(sn0 )

∼=��

in which the left horizontal arrows are injective. In particular all members of
the diagram are finite. By the finiteness of U0 the increasing sequence of subspaces
U0∩σ(sm0 ) has to stabilize. This means that the right vertical arrow in the diagram
is bijective for sufficiently big m. On the other hand, since

⋃
m≥0 σ

′(sm0 ) = V ′
0 , the

left vertical arrow in the diagram is the zero map whenever the difference n−m is
sufficiently big. It follows that [σ(sm0 ) + U0] ∩ V ′

0 = σ′(sm0 ) for big m which, by the
maximality property of σ(sm0 ), means that U0 ⊆ σ(sm0 ). This establishes (7). By
construction we have

Mσ(V0) ∩ indPP0
(V ′

0) = Mσ′(V ′
0) .

�
Lemma 4.2. For any short exact sequence 0 −→ V1 −→ V2 −→ V3 −→ 0 in

Mo−tor(P ) we have the long exact sequence

0 −→ D0(V3) −→ D0(V2) −→ D0(V1) −→ D1(V3) −→ . . .

−→ Di(V3) −→ Di(V2) −→ Di(V1) −→ . . .

in Met(Λ(P+)).

Proof. We apply the functor D to the short exact sequence of resolutions

0 −→ I•(V1) −→ I•(V2) −→ I•(V3) −→ 0

and obtain the sequence of complexes

0 −→ D(I•(V3)) −→ D(I•(V2)) −→ D(I•(V1)) −→ 0

in C≥0(Met(Λ(P+))). It is exact by Lemma 4.1. The associated long exact coho-
mology sequence is the asserted sequence. �

Lemma 4.3. Any compactly induced smooth P -representation V = indPP0
(V0)

satisfies D0(V ) = D(V ) and Di(V ) = 0 for i ≥ 1.

Proof. In this case we have two more P -equivariant maps besides ρV . These
are

εV : indPP0
(V ) −→ indPP0

(V0) = V

ψ �−→ εV (ψ)(b) := ψ(b)(1)

and

σV : V = indPP0
(V0) −→ indPP0

(V )

ψ �−→ σV (ψ)(b)(c) :=

{
ψ(bc) if c ∈ P0,

0 otherwise.

It is straightforward to check that

ρV ◦ σV = idV = εV ◦ σV .
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It follows that

indPP0
(V ) = im(σV )⊕ ker(εV ) = im(σV )⊕ ker(ρV ) .

In particular, we have ker(ρV ) ∼= ker(εV ). But ker(εV ) = indPP0
(ind

P\Po

P0
(V0)) is

compactly induced. Proceeding inductively we obtain that each ker ρn−1 is com-
pactly induced and is a direct summand of In(V ). It easily follows that D(I•(V ))
is an exact resolution of D(V ). �

We see that the δ-functor V �−→ Di(V ) is coeffacable and hence universal.

Corollary 4.4. Let . . . −→ indPP0
(Vn) −→ . . . −→ indPP0

(V0) −→ V −→ 0 be

any exact sequence in Mo−tor(P ); we then have Di(V ) ∼= hi(D(indPP0
(V•))) for any

i ≥ 0.

By the usual procedure the functor RD extends to an exact contravariant
functor

RD : D−(Mo−tor(P )) −→ D+(Met(Λ(P+)))

V • �−→ TotD(I•(V •)) .

from the bounded above derived category D−(Mo−tor(P )) of the abelian cate-
gory Mo−tor(P ) into the bounded below derived category D+(Met(Λ(P+))) of the
abelian category Met(Λ(P+)).

5. Towards (ϕ,Γ)-modules

At this point we fix once and for all, as part of an épinglage for the group G,

isomorphisms of algebraic groups ια : Nα

∼=−→ Qp, for α ∈ Δ, such that

ια(tnt
−1) = α(t)ια(n) for any n ∈ Nα, t ∈ T .

Using that
∏

α∈Δ Nα naturally is a quotient of N/[N,N ] we then introduce the
homomorphism of groups

� :=
∑
α∈Δ

ια : N −→ Qp .

It induces a (continuous) epimorphism of (compact) rings Λ(N0) −→ Λ(�(N0)) ∼=
Λ(Zp), also denoted by �. It is convenient to normalize the ια in such a way that

ια(N0 ∩Nα) = Zp for any α ∈ Δ

holds true. We then, in particular, have �(N0) = Zp.
To avoid technicalities we assume from now on that the center of the group

G is connected. Then the quotient X∗(T )/ ⊕α∈Δ Zα is free. Hence we find a
cocharacter ξ ∈ X∗(T ) such that α ◦ ξ = idGm

for any α ∈ Δ. It is injective and
uniquely determined up to a central cocharacter. We once and for all fix such a ξ.
It satisfies

ξ(Zp \ {0}) ⊆ T+

and

(8) �(ξ(a)nξ(a−1)) = a�(n) for any a ∈ Q×
p , n ∈ N .

Put

T� := ξ((1 + pε(p)Zp)p
N0) ∼= (1 + pε(p)Zp)p

N0 and P� := N0T� .
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It follows from (8) that

P� = N0T� −→ S�

n0t �−→
(

1 0
�(n0) ξ−1(t)

)

is an epimorphism of monoids. If we define

N1 := ker(N0
�−→ Zp)

then, in fact, we have the isomorphism

N1\P�

∼=−−→ S� .

It follows that

Λ(S�) = o⊗Λ(N1) Λ(P�)

holds true at least as bimodules. Hence we have a natural isomorphism

Λ(S�)⊗Λ(P�) M
∼= o⊗Λ(N1) M

for any M in M(Λ(P�)). But Λ(P�) is free as a left Λ(N0ξ(1+pε(p)Zp))-module by

(1). Furthermore, Λ(N0ξ(1 + pε(p)Zp)) is flat as a left Λ(N1)-module (cf. the proof
of Lemma 5.5 in [OV]). This implies that any flat and, in particular, any projective
left Λ(P�)-module is flat as a Λ(N1)-module. By using Λ(P�)-projective resolutions
the above natural isomorphism therefore extends to natural isomorphisms

Tor
Λ(P�)
i (Λ(S�),M) ∼= Tor

Λ(N1)
i (o,M)

for any i ≥ 0 and any M in M(Λ(P�)). Since N1 is pro-p and torsionfree the ring
Λ(N1) is noetherian of finite global dimension by [Neu]. It follows that there is an
integer d(N1) ≥ 0 such that

Tor
Λ(P�)
i (Λ(S�),M) = 0 for any i > d(N1)

and any M in M(Λ(P�)). From this we conclude by a standard argument (cf. [Har]
I.5.3) that the total derived tensor product

Λ(S�)⊗L

Λ(P�)
: D(Λ(P�)) −→ D(Λ(S�))

is well defined on the whole derived category and respects the bounded below
derived categories

Λ(S�)⊗L

Λ(P�)
: D+(Λ(P�)) −→ D+(Λ(S�)) .

Moreover, suppose that M is an etale Λ(P�)-module. We observe that any projec-
tive Λ(P�)-module necessarily is etale. Let F• −→ M be a projective resolution of
M . Then F• is a complex of etale Λ(P�)-modules and, similarly, Λ(S�) ⊗Λ(P�) F•
is a complex of etale Λ(S�)-modules. Hence, as a consequence of Prop. 1.3,

Tor
Λ(P�)
i (Λ(S�),M) = hi(Λ(S�)⊗Λ(P�) F•) for any i ≥ 0

is an etale Λ(S�)-module. In other words, the total derived tensor product restricts
to a functor

Λ(S�)⊗L

Λ(P�)
: D+

et(Λ(P�)) −→ D+
et(Λ(S�)) .

between the bounded below derived categories with etale cohomology modules.
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Altogether we obtain the composed functor

RDΛ(S�) : D
−(Mo−tor(P ))

RD−−−→ D+
et(Λ(P+))

forget−−−→ D+
et(Λ(P�))

Λ(S�)⊗L

Λ(P�)−−−−−−−−→ D+
et(Λ(S�)) .

It gives rise on Mo−tor(P ) to the δ-functor

Di
Λ(S�)

(V ) := hi(RDΛ(S�)(V )) for i ≥ 0

into etale Λ(S�)-modules.

6. A functor in the reverse direction

As noted in section 1 the conjugation action of T+ on P+ induces an action of
T+ by (continuous injective) ring endomorphisms φt on Λ(P+).

On the other hand it is not difficult to see that, for each t ∈ T+, there is a unique
surjective continuous linear (but not multiplicative) map ψt : Λ(P+) −→ Λ(P+)
which on group elements b ∈ P+ satisfies

ψt(b) =

{
t−1bt if b ∈ tP+t

−1,

0 otherwise.

By continuity it suffices to check the following formulas on group elements where
they are straightforward:

i. ψt ◦ φt = idΛ(P+) for any t ∈ T+.

ii. ψt = φ−1
t for t ∈ T0.

iii. ψt1 ◦ ψt2 = ψt1t2 for any t1, t2 ∈ T+.
iv. ψt(λφt(μ)) = ψt(λ)μ and ψt(φt(λ)μ) = λψt(μ) for any t ∈ T+ and λ, μ ∈

Λ(P+).

Let D be any etale Λ(P+)-module. Using the identity iv. above we may
introduce, for any t ∈ T+, the composed map

ψt : D
∼=←−− Λ⊗Λ,t D −→ D

λtx ←→ λ⊗ x �−→ ψt(λ)x .

It satisfies:

v. ψt ◦ t = idD for any t ∈ T+.
vi. ψt = t−1 for t ∈ T0.
vii. ψt1 ◦ ψt2 = ψt1t2 for any t1, t2 ∈ T+.
viii. ψt(φt(λ)x) = λψt(x) for any λ ∈ Λ(P+) and x ∈ D.

The last is a consequence of the identity iv. above. Moreover, D carries the P−1
+ -

action defined by

bx := ψt(n0x) for b = t−1n0 ∈ P−1
+ = T−1

+ N0 and x ∈ D.

Remark 6.1. If D = Di(V ) for some representation V in Mo−tor(P ) then the
operator ψt coincides with the action of t−1 on D given by the construction of the
δ-functor Di.

Proof. By the construction of the δ-functor it suffices to establish the asser-
tion for any D = D(indPP0

(V0)). We have to show that

t−1(λty) = ψt(λ)y
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holds true for any λ ∈ Λ(P+) and any y ∈ D. But D is a quotient of M1(V0)
∗ where

M1(V0) = ind
P+

P0
(V0). So we are further reduced to checking the above relation for

y ∈ M1(V0)
∗. But M1(V0)

∗ is a compact Λ(P+)-module. By continuity we therefore
need to establish only the relation

t−1(nty) = ψt(n)y

for any n ∈ N0 and any y ∈ M1(V0)
∗. If n = tn′t−1 for some n′ ∈ N0 then the right

hand side is n′y. Using that t−1 is a left inverse of t as an operator on M1(V0)
∗ we

compute t−1(nty) = t−1(tn′t−1ty) = t−1(tn′y) = n′y. If n �∈ tN0t
−1 then the right

hand side is equal to zero. Evaluating the left hand side in a function ψ ∈ M1 is
the same as evaluating y in the function ψ̃ where

(9) ψ̃(b) :=

{
ψ(t−1ntb) if b ∈ P+,

0 if b ∈ P \ P+.

Since t−1nt �∈ N0 the set t−1ntP+ is disjoint from P+ on which ψ is supported.

Hence ψ̃ = 0. �
Generalizing notation introduced by Colmez we now define the o-module

ψ−∞(D) := {(xt)t ∈
∏
t∈T+

D : ψt1(xt1t2) = xt2 for any t1, t2 ∈ T+} .

The monoid T+ acts o-linearly on ψ−∞(D) by

t′ · (xt)t := (xt′t)t for t′ ∈ T+.

In fact, acting by t′ has the inverse

(xt)t �−→ (ψt′(xt))t .

Hence T+ acts by automorphisms. Observing that any element in T is a quotient
of two elements in T+ it therefore follows that this T+-action extends uniquely to
an action of the full torus T on ψ−∞(D).

On the other hand N0 acts o-linearly on ψ−∞(D) by

n · (xt)t := (φt(n)xt)t for n ∈ N0.

To see this we compute

ψt1(φt1t2(n)xt1t2) = ψt1(φt1(φt2(n))xt1t2)

= φt2(n)ψt1(xt1t2)

= φt2(n)xt2

and

n′ · (n · (xt)t) = n′ · (φt(n)xt)t = (φt(n
′)φt(n)xt)t

= (φt(n
′n)xt)t

= (n′n) · (xt)t .

These two actions are compatible in the sense that, for t′ ∈ T+ and n ∈ N0, we
have

t′ · (n · (xt)t) = t′ · (φt(n)xt)t = (φt′t(n)xt′t)t

= (φt(t
′nt′−1)xt′t)t = (t′nt′−1) · (xt′t)t

= (t′nt′−1) · (t′ · (xt)t) .
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In a next intermediate step we claim that for arbitrary t′ ∈ T and n ∈ N0 but such
that t′nt′−1 ∈ N0 we have

t′ · n · (t′)−1 · ξ = (t′nt′−1) · ξ for any ξ ∈ ψ−∞(D).

Write t′ = t1t
−1
2 with t1, t2 ∈ T+. Using the previous formula we compute

(t′nt′−1) · ξ = (t2)
−1 · t2 · (t−1

2 t1nt
−1
1 t2) · ξ

= (t2)
−1 · (t1nt−1

1 ) · t2 · ξ
= (t2)

−1 · (t1nt−1
1 ) · t1 · (t1)−1 · t2 · ξ

= (t2)
−1 · t1 · n · (t1)−1 · t2 · ξ

= t′ · n · (t′)−1 · ξ .

Let now n ∈ N be completely arbitrary. We choose a t′ ∈ T+ such that t′nt′−1 ∈ N0

and define

n · ξ := (t′)−1 · (t′nt′−1) · t′ · ξ for any ξ ∈ ψ−∞(D).

By the intermediate computation this definition is independent of the choice of t′

and hence extends the N0-action to an o-linear action of N on ψ−∞(D). In fact,
by construction, this N -action and the previous T -action combine into a P -action
on ψ−∞(D).

Everything above is natural. Hence we have constructed a covariant functor
ψ−∞ from the category of etale Λ(P+)-modules into the category of P -representa-
tions (in arbitrary o-modules). This functor can be viewed as a form of induction.
Let

IndPP+
(D) := all functions F : P −→ D such that

F (bb+) = b−1
+ F (b)

for any b ∈ P, b+ ∈ P+

with the group P acting by left translations. Using, as above, that P = T−1
+ P+

one checks that

IndPP+
(D)

∼=−−→ ψ−∞(D)

F �−→ (F (t−1))t

is a P -equivariant isomorphism.

Lemma 6.2. The functor ψ−∞ is exact.

Proof. We pick an element s ∈ T+ which is strictly dominant, i. e., which
satisfies |α(s)| < 1 for any α ∈ Φ+. The subset {sm}m∈N is cofinal in the preordered
set T+. Hence ψ−∞(D), for any D in Met(Λ(P+)), is the projective limit of the
sequence

. . .
ψs−−→ D

ψs−−→ . . .
ψs−−→ D .

Since ψs is surjective the exactness follows immediately. �

Let V be any representation in Mo−tor(P ). There is the natural P−1
+ -equiva-

riant map

ãV : V ∗ � D(V ) ↪→ D0(V ) .
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By Remark 6.1 we have

ψ−∞(D0(V )) := {(xt)t ∈
∏
t∈T+

D0(V ) : t−1
1 xt1t2 = xt2 for any t1, t2 ∈ T+} .

Hence the map ãV lifts to a natural transformation

aV : V ∗ −→ ψ−∞(D0(V ))

x �−→ (ãV (tx))t .

of functors on Mo−tor(P ).

Lemma 6.3. The map aV is P -equivariant.

Proof. The T -equivariance only needs to be checked on elements t′ ∈ T−1
+ .

Using Remark 6.1 we compute

aV (t
′x) = (ãV (tt

′x))t = (t′ãV (tx))t = t′ · (ãV (tx))t = t′ · aV (x) .

Knowing T -equivariance already we need to check N -equivariance only for n ∈ N0.
We compute

aV (nx) = (ãV (tnx))t = (ãV (tnt
−1tx))t = (φt(n)ãV (tx))t = n · (ãV (tx))t

= n · aV (x) .

�

Remark 6.4. Suppose that, for some M ∈ P+(V ), the composed natural map
M∗ → D(V ) → D0(V ) is bijective; then the map aV is an isomorphism.

Proof. Because of Remark 6.1 we have to show that the map

V ∗ −→ {(xt)t ∈
∏
t∈T+

M∗ : t−1
1 xt1t2 = xt2 for any t1, t2 ∈ T+}

x �−→ ((tx)|M)t

is bijective. This is equivalent to the map

V ∗ −→ {(yt)t ∈
∏
t∈T+

(t−1M)∗ : yt1t2 |t−1
2 M = yt2 for any t1, t2 ∈ T+}

x �−→ (x|t−1M)t

being bijective which is obvious since we have V =
⋃

t∈T+
t−1M . �

7. Dependence on N0 and �

In this section we will investigate the question in which way our δ-functor Di

depends on the initial choice of the compact open subgroup N0. We therefore make
our notation more precise and write D(N0;V ) and Di(N0;V ) instead of D(V )
and Di(V ), respectively. Let N ′

0 ⊆ N be another choice of a totally decomposed
compact open subgroup. Since then N0 ∩ N ′

0 is totally decomposed and compact
open as well it suffices to treat the case

N0 ⊆ N ′
0
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which we assume from now on throughout this section. Let P ′
0 := T0N

′
0 and P ′

+ :=
N ′

0T+. The natural embedding of rings Λ(P+) ↪→ Λ(P ′
+) makes Λ(P ′

+) a right
Λ(P+)-module which, as a consequence of the decomposition

P ′
+ =

⋃
n∈N ′

0/N0

nP+ ,

is free of rank equal to the index [N ′
0 : N0]. We therefore have the exact base

extension functor

Λ(P ′
+)⊗Λ(P+) . : M(Λ(P+)) −→ M(Λ(P ′

+)) .

It is straightforward to check that this functor respects etale modules. Our goal is
to establish the following result.

Proposition 7.1. There is a natural isomorphism of δ-functors

Λ(P ′
+)⊗Λ(P+) D

i(N0; .) ∼= Di(N ′
0; .) .

on Mo−tor(P ).

Proof. The argument is formally similar to the proof of Prop. 3.5. Let V0

be any smooth P0-representation and V := indPP0
(V0) the compactly induced P -

representation. Then V ′
0 := ind

P ′
0

P0
(V0) is a smooth P ′

0-representation and, by the
transitivity of induction, we have

V = indPP0
(V0) = indPP ′

0
(V ′

0) .

On the dual side we correspondingly (and more precisely) have the isomorphisms

IndPP ′
0
(ind

P ′
0

P0
(V ∗

0 ))

��

IndPP0
(V ∗

0 )

I ����������

J �����
����

��

IndPP ′
0
((V ′

0)
∗)

where

I(Φ)(b)(b′0) := Φ(bb′0)

for b ∈ P , b′0 ∈ P ′
0 and

J (Φ)(b)(ψ) :=
∑

b′0∈P ′
0/P0

Φ(bb′0)(ψ(b
′
0)) =

∑
n′∈N ′

0/N0

Φ(bn′)(ψ(n′))

for b ∈ P , ψ ∈ V ′
0 . Clearly, for any right P ′

0-invariant subset X ⊆ P the map J
restricts to a bijection

(10) IndXP0
(V ∗

0 )
∼=−−→ IndXP ′

0
((V ′

0)
∗) .

In particular,

J+(V0) = Ind
P+

P0
(V ∗

0 ) ⊆ Ind
P ′

+

P0
(V ∗

0 )
∼=−−→
J

Ind
P ′

+

P ′
0
((V ′

0)
∗) = J+(V ′

0) .

Notations like J±(V0), Sub(V0), and Jσ(V0) depend on V0 as a representation for
a specific subgroup (here P0) of P . In order not to make the notation too heavy
we agree in this proof to the abuse that when writing J±(V ′

0) etc. we refer to the
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subgroup P ′
0. We now consider any order reversing map σ : T+/T0 −→ Sub(V0)

satisfying (3) and define the map

ind(σ) : T+/T0 −→ Sub(V ′
0)

t −→ ind
P ′

0

P0
(σ(t))

which again is order reversing and satisfies (3). Using that any Φ ∈ J+(V0)∩Jσ(V0)
satisfies Φ(N ′

0t) ⊆ σ(t)⊥ for any t ∈ T+ one easily checks that

J
(
J+(V0) ∩ Jσ(V0)

)
⊆ J+(V ′

0) ∩ Jind(σ)(V
′
0)

holds true. Hence the map

Λ(P ′
+) ⊗

Λ(P+)

(
J+(V0)/(J

+(V0) ∩
⋃
σ

Jσ(V0))
)
→ J+(V ′

0)/(J
+(V ′

0) ∩
⋃
σ

Jind(σ)(V
′
0))

λ⊗ x �→ λJ (x)

(11)

is well defined. To check that it is bijective we let n1, . . . , nr ∈ N ′
0 be representatives

for the cosets in N ′
0/N0. Then the above map may be viewed as the map(

J+(V0)/(J
+(V0) ∩

⋃
σ

Jσ(V0))
)r −→ J+(V ′

0)/(J
+(V ′

0) ∩
⋃
σ

Jind(σ)(V
′
0))

(x1, . . . , xr) �−→
r∑

i=1

niJ (xi) .

Of course it suffices to show that, for each σ, the map(
J+(V0)/(J

+(V0) ∩ Jσ(V0))
)r −→ J+(V ′

0)/(J
+(V ′

0) ∩ Jind(σ)(V
′
0))

(x1, . . . , xr) �−→
r∑

i=1

niJ (xi)

is bijective. But we have the decompositions

J+(V0)/(J
+(V0) ∩ Jσ(V0)) =

∏
t∈T+/T0

IndN0tP0

P0
((V0/σ(t))

∗)

and

J+(V ′
0)/(J

+(V ′
0) ∩ Jind(σ)(V

′
0)) =

∏
t∈T+/T0

Ind
N ′

0tP
′
0

P ′
0

((V ′
0/ ind(σ)(t))

∗)

which are respected by J . Using (10) it therefore comes down to the bijectivity of

(IndN0tP0

P0
(.))r −→ Ind

N ′
0tP

′
0

P0
(.)

(Φ1, . . . ,Φr) �−→
r∑

i=1

niΦi

which is straightforward from the disjoint union

N ′
0tP

′
0 =

r⋃
i=1

niN0tP0 .

This establishes the bijectivity of (11). In order to read (11) as an isomorphism

(12) Λ(P ′
+)⊗Λ(P+) D(N0;V )

∼=−−→ D(N ′
0;V )
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it remains to check that the Mind(σ)(V
′
0) with varying σ are cofinal among all

generating P ′
+-subrepresentationsM of V . ButM then a fortiori is a generating P+-

subrepresentation of V . By Lemma 3.2.ii we therefore find a σ such that Mσ(V0) ⊆
M . It follows that Mind(σ)(V

′
0) = P ′

+Mσ(V0) ⊆ M .
Next we have to convince ourselves that the isomorphism (12) is natural in

maps f : indPP0
(U0) −→ indPP0

(V0) of compactly induced representations. Put

U ′
0 := ind

P ′
0

P0
(U0). Viewing f as a map indPP0

(U ′
0) −→ indPP0

(V ′
0) means to consider

jV0
◦ f ◦ j−1

U0
where

jV0
: indPP0

(V0)
∼=−−→ indPP0

(V ′
0)

is the transitivity isomorphism such that (j∗V0
)−1 = J (and correspondingly for

jU0
). We therefore have to check the commutativity of the diagram

J+(V0)/(J
+(V0) ∩

⋃
σ Jσ(V0))

∼=
��

J �� J+(V ′
0)/(J

+(V ′
0) ∩

⋃
σ Jind(σ)(V

′
0))

∼=
��

IndPP0
(V ∗

0 )/
⋃

σ Jσ(V0)

D(N0;f)

��

IndPP ′
0
((V ′

0)
∗)/

⋃
σ Jind(σ)(V

′
0)

D(N ′
0;j◦f◦j−1)

��
IndPP0

(U∗
0 )/

⋃
τ Jτ (U0) IndPP ′

0
((U ′

0)
∗)/

⋃
τ Jind(τ)(U

′
0)

J+(U0)/(J
+(U0) ∩

⋃
τ Jτ (U0))

J ��

∼=

��

J+(U ′
0)/(J

+(U ′
0) ∩

⋃
τ Jind(τ)(U

′
0))

∼=

��

or equivalently that

J ((f∗(Φ))+)− ((j ◦ f ◦ j−1)∗(J (Φ)))+ = J ((f∗(Φ))+)− (J (f∗(Φ)))+

lies in
⋃

τ Jind(τ)(U
′
0) for any Φ ∈ J+(V0). But we know from (6) that we find in

fact a single map τ : T+/T0 −→ Sub(U0) such that

(13) f∗(Φ)((N \N0)t) ⊆ τ (t)⊥

for any t ∈ T+ and any Φ ∈ J+(V0). We claim that J ((f∗(Φ))+)− (J (f∗(Φ)))+ ⊆
Jind(τ)(U

′
0) which amounts to

J
(
(f∗(Φ))+ − f∗(Φ)

)
(n′

0t) ∈ ind
P ′

0

P0
(τ (t))⊥

for any n′
0 ∈ N ′

0 and t ∈ T+. Let ψ ∈ ind
P ′

0

P0
(τ (t)). We compute

J
(
(f∗(Φ))+ − f∗(Φ)

)
(n′

0t)(ψ) =
∑

n′∈N ′
0/N0

(
(f∗(Φ))+ − f∗(Φ)

)
(n′

0tn
′)(ψ(n′))

We always have n′
0tn

′ ∈ N ′
0t. If even n′

0tn
′ ∈ N0t then in the corresponding

summand the two terms coincide so that their difference is zero. Otherwise we
have (f∗(Φ))+(n′

0tn
′) = 0 and f∗(Φ)(n′

0tn
′) ∈ τ (t)⊥ by (13). So the value of the

corresponding difference on ψ(n′) again is zero. This establishes the claim and
hence the naturality of the isomorphism (12).

Finally we consider a general representation V in Mo−tor(P ) and the corre-
sponding resolution I•(P0;V ) from section 4 by representations compactly induced
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from P0. There is an obvious natural homomorphism of resolutions

I•(P0;V )

��

�� I•(P ′
0;V )

��
V

id �� V.

Since by the above discussion I•(P0;V ) can also be viewed as a resolution of V
by representations compactly induced from P ′

0 Cor. 4.4 implies that this homomor-
phism induces isomorphisms

hi(D(N ′
0; I•(P0;V )))

∼=−−→ Di(N ′
0;V ) .

On the other hand, by the above discussion the natural map

Λ(P ′
+)⊗Λ(P+) D(N0; I•(P0;V ))

∼−−→ D(N ′
0; I•(P0;V ))

is an isomorphism. Together with the exactness of the functor Λ(P ′
+)⊗Λ(P+) this

implies our assertion. �
Corollary 7.2. For any t ∈ T there is a natural isomorphism of δ-functors

Λ(tP+t
−1)⊗Λ(P+),t D

i(N0; .) ∼= Di(tN0t
−1; .)

on Mo−tor(P ).

Proof. First we assume that t ∈ T+. We then have

Λ(tP+t
−1)⊗Λ(P+),t D

i(N0; .)

∼= Λ(tP+t
−1)⊗Λ(P+),t

(
Λ(P+)⊗Λ(tP+t−1) D

i(tN0t
−1; .)

)
= Λ(tP+t

−1)⊗Λ(tP+t−1),t D
i(tN0t

−1; .)

∼= Di(tN0t
−1; .) .

Here the first isomorphism comes from Prop. 7.1 and the last one is the fact that
the Λ(tP+t

−1)-modules Di(tN0t
−1; .) are etale. Now let t ∈ T be arbitrary and

write t = t1t
−1
2 with ti ∈ T+. The above isomorphism for the group t−1

2 N0t2 and
the elements t1 and t2 gives

Λ(tP+t
−1)⊗Λ(t−1

2 P+t2),t1
Di(t−1

2 N0t2; .) ∼= Di(tN0t
−1; .)

and
Λ(P+)⊗Λ(t−1

2 P+t2),t2
Di(t−1

2 N0t2; .) ∼= Di(N0; .) ,

respectively. In combination we obtain

Di(tN0t
−1; .) ∼= Λ(tP+t

−1)⊗Λ(t−1
2 P+t2),t1

Di(t−1
2 N0t2; .)

= Λ(tP+t
−1)⊗Λ(P+),t Λ(P+)⊗Λ(t−1

2 P+t2),t2
Di(t−1

2 N0t2; .)

∼= Λ(tP+t
−1)⊗Λ(P+),t D

i(N0; .) .

�
As another consequence of the above results we can justify our specific choice of

the homomorphism � : N −→ Qp in section 5. The unipotent factor group N/[N,N ]
is naturally a Qp-vector space. A homomorphism �′ : N −→ Qp is called generic
if it induces a linear map N/[N,N ] −→ Qp satisfying �′|Nα �= 0 for any α ∈ Δ.
We have N/[N,N ] =

∏
α∈Δ Nα (cf. [BT] Prop. 4.7.(iii) and Remark 4.11). Hence

the épinglage (ια)α provides an isomorphism between N/[N,N ] and the standard
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vector space Q
|Δ|
p . A generic homomorphism then corresponds to an element in

the dual vector space (Q
|Δ|
p )∗ all of whose (standard) coordinates are nonzero. On

the other hand, by our assumption that the center C of G is connected, the simple
roots α ∈ Δ form a basis of the character group X∗(T/C). This implies that the
homomorphism

∏
α∈Δ α : T −→ (Q∗

p)
|Δ| is surjective. It follows that the action of

T on N/[N,N ] corresponds to the standard action of (Q∗
p)

|Δ| on Q
|Δ|
p . The subset

of vectors with nonzero coordinates is a single orbit for this action. This proves
that for any generic homomorphism �′ : N −→ Qp we find a t ∈ T such that
�′(.) = �(t.t−1).

Since �′(N0) will not be equal to Zp in general we introduce the monoid

S�′ :=
{(

1 0
a b

)
: a ∈ �′(N0), b ∈ (1 + pε(p)Zp)p

N0
}
.

We then have the epimorphism of monoids

�′ : P� = N0T� −→ S�′

n0t �−→
(

1 0
�′(n0) ξ−1(t)

)

as well as the corresponding ring homomorphism �′ : Λ(P�) −→ Λ(S�′), which, for
simplicity, we denote all by the same symbol �′.

Corollary 7.3. Let �′, �′′ : N −→ Qp be any two generic homomorphisms
such that �′(N0) ⊆ �′′(N0); then there are isomorphisms

Tor
Λ(P�)
i (Λ(S�′′), D

j(N0;V )) ∼= Λ(S�′′)⊗Λ(S�′)
Tor

Λ(P�)
i (Λ(S�′), D

j(N0;V ))

for i, j ≥ 0 which are natural in V in Mo−tor(P ).

Proof. By our above discussion we find a t ∈ T such that �′ = �′′(t.t−1).
Suppose first that t ∈ T+. Having in mind the commutative diagram of rings

Λ(P�)

�′

��

φt

∼=
�� Λ(tP�t

−1)

�′′

��

⊆ �� Λ(P�)

�′′�����
���

���
�

Λ(S�′)
⊆ �� Λ(S�′′)

we then compute

Λ(S�′′)⊗Λ(S�′)
Tor

Λ(P�),�
′

i (Λ(S�′), D
j(N0;V ))

= Tor
Λ(P�),�

′

i (Λ(S�′′), D
j(N0;V ))

= Tor
Λ(tP�t

−1),�′′

i (Λ(S�′′),Λ(tP�t
−1)⊗Λ(P�),t D

j(N0;V ))

∼= Tor
Λ(tP�t

−1),�′′

i (Λ(S�′′), D
j(tN0t

−1;V ))

= Tor
Λ(P�),�

′′

i (Λ(S�′′),Λ(P�)⊗Λ(tP�t−1) D
j(tN0t

−1;V ))

= Tor
Λ(P�),�

′′

i (Λ(S�′′),Λ(P+)⊗Λ(tP+t−1) D
j(tN0t

−1;V ))

∼= Tor
Λ(P�),�

′′

i (Λ(S�′′), D
j(N0;V )) .

Here the two isomorphisms come from Cor. 7.2 and Prop. 7.1, respectively. Also, for
greater clarity we have inserted superscripts �′ and �′′ to indicate that the respective
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Tor-functor is formed with respect to the corresponding ring homomorphism. A
general element t ∈ T can be written t = t1t

−1
2 with ti ∈ T+. Our claim then follows

easily by using the above isomorphisms consecutively for the pairs (�′′(t1.t
−1
1 ), �′) =

(�′(t2.t
−1
2 ), �′) and (�′′(t1.t

−1
1 ), �′′). �

8. Some topological localizations

This section is devoted to the construction of certain topological localizations
of completed group rings which are needed later on. It is entirely technical and
should be skipped at first reading.

Let H0 be a compact p-adic Lie group. In this case the ring Λ(H0) is well known
to be noetherian. In addition we suppose given a closed normal subgroup H1 ⊆ H0

such that the factor group H0/H1 is isomorphic to the additive group of p-adic
integers Zp. First of all we recall from [SV1] that Λ(H0) can be viewed as a skew
power series ring Λ(H1)[[t0;σ0, δ0]] over Λ(H1). For this one picks a topological
generator γ0 of a subgroup of H0 which maps isomorphically onto H0/H1. One
defines t0 := γ0 − 1, the ring automorphism σ0 of Λ(H1) by σ0(λ) := γ0λγ

−1
0 ,

and the σ0-derivation δ0 := σ0 − id. As a consequence of [SV1] Lemma 1.6 the
σ0-derivation δ0 is topologically nilpotent (and hence σ0-nilpotent). Of course,
Λ(H0/H1) is a commutative formal power series ring in one variable over o.

From now on we also assume that H0 is a pro-p-group without element of order
p. Then Λ(H0) and Λ(H1) are integral domains ([Neu]) which are strict-local1 with
residue field k. Let m(H0) and m(H1) denote the respective maximal ideals. The
ideal

J := J(H0, H1) := ker
(
Λ(H0) −→ Λ(H0/H1) −→ Λ(H0/H1)/πΛ(H0/H1)

)
is equal to J = m(H1)Λ(H0) = Λ(H0)m(H1). According to [CFKSV] Thm.
2.4 and Prop. 2.6 (and bottom of p. 203) the multiplicatively closed subset S :=
S(H0, H1) := Λ(H0)\J of Λ(H0) satisfies the (left and right) Ore condition. Hence
the localization Λ(H0)S of Λ(H0) with respect to S exists. It is a strict-local inte-
gral domain with maximal ideal JΛ(H0)S = m(H1)Λ(H0)S and residue field equal
to the field of fractions of Ω(H0/H1) (which is isomorphic to a Laurent series field
in one variable over k). We now define ΛH1

(H0) to be the m(H1)-adic completion of
Λ(H0)S . Of course, this again is a strict-local ring whose maximal ideal we denote
by mH1

(H0). We have mH1
(H0) = JΛH1

(H0) = m(H1)ΛH1
(H0). In [SV2] Thm.

4.7 (and Lemma 4.2(ii)) it is shown that ΛH1
(H0) is a noetherian pseudocompact

ring which can be viewed as an (infinite) skew Laurent series ring in the variable
t0 over Λ(H1) and which is flat over Λ(H0)S (and hence Λ(H0)). Later on we need
the following technical fact.

Lemma 8.1. For any m ≥ 0 and any s ∈ S(H0, H1) there is an l ≥ 0 such that

m(H0)
l ⊆

(
Λ(H0)m(H1)

m +m(H0)
ms

)
∩

(
m(H1)

mΛ(H0) + sm(H0)
m

)
.

Proof. Since the topology of the noetherian ring Λ(H0) is the m(H0)-adic one
it suffices to show that the left ideal Λ(H0)m(H1)

m +m(H0)
ms and the right ideal

m(H1)
mΛ(H0) + sm(H0)

m both are open in Λ(H0). By symmetry we only discuss
the former. By [CFKSV] Prop. 2.6 the Λ(H1)-module Λ(H0)/Λ(H0)s is finitely
generated. Then also Λ(H0)/m(H0)

ms is finitely generated over Λ(H1). It follows
that Λ(H0)/

(
Λ(H0)m(H1)

m +m(H0)
ms

)
is finitely generated over Λ(H1)/m(H1)

m

1A local ring is called strict-local if its quotient by the maximal ideal is a skew field.
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and hence is finite. The closed left ideal Λ(H0)m(H1)
m +m(H0)

ms therefore must
be open. �

In this section we will consider a triple H1 ⊆ H0 ⊆ H of pro-p p-adic Lie groups
without elements of order p where H1 and H0 are closed normal subgroups of H
and both factor groups H0/H1 and H/H0 are isomorphic to Zp. We then have the
inclusions of rings

Λ(H)

ΛH1
(H0) Λ(H0)S(H0,H1)

⊇�� Λ(H0).
⊇��

⊆

��

We do not know whether S(H0, H1) also is an Ore set in the bigger ring Λ(H). Our
goal is to construct, under the additional assumption thatH is a semidirect product
H ∼= H1�(H/H1), a topological ring which contains the bimodule ΛH1

(H0)⊗Λ(H0)

Λ(H) as a dense subgroup.
We pick a topological generator γ of a subgroup ofH which maps isomorphically

onto H/H0, and we define t := γ − 1, σ(λ) := γλγ−1 for λ ∈ Λ(H0), and δ :=
σ − idΛ(H0). Then Λ(H) = Λ(H0)[[t;σ, δ]]. Since H1 is normal in H the ring
automorphism σ of Λ(H0) respects the ideals m(H1) and J(H0, H1) and the Ore set
S(H0, H1). Hence σ extends first to a ring automorphism of Λ(H0)S(H0,H1) and then
further to a ring automorphism of the completion ΛH1

(H0) which we also denote
by σ. Correspondingly δ extends to the σ-derivation δ := σ − idΛH1

(H0). Recall

from the above that ΛH1
(H0) is pseudocompact and noetherian. In particular,

the pseudocompact topology is the mH1
(H0)-adic one. Hence σ necessarily is a

topological automorphism of ΛH1
(H0) and δ is continuous. But unfortunately δ is

not topologically nilpotent on ΛH1
(H0) for the pseudocompact topology. So the

formalism of [SV1] §1 (in particular Remark 1.1.i) to construct the skew power
series ring ΛH1

(H0)[[t;σ, δ]] does not apply formally.
But there is the following coarser topology on ΛH1

(H0), introduced and called
the weak topology in [SV2] §1.2. It is given by the fundamental system of open
zero neighbourhoods

Bm := mH1
(H0)

m +m(H0)
m

for m ≥ 0. Since each Bm is a
(
Λ(H0),Λ(H0)

)
-sub-bimodule of ΛH1

(H0) this
certainly makes ΛH1

(H0) an additive topological group. We obviously have

BkBl ⊆ Bmin(k,l) .

Lemma 8.2. i. The weak topology is a ring topology.
ii. The weak topology on ΛH1

(H0) induces the compact topology on the sub-
ring Λ(H0).

iii.
⋂

m Bm = {0}.
iv. The weak topology is complete.
v. Each mH1

(H0)
m, for m ≥ 0, is closed for the weak topology.

vi. σ is a topological automorphism for the weak topology.

Proof. i. It remains to show that for any m ≥ 0 and any μ ∈ ΛH1
(H0) there

is an l ≥ 0 such that μBl ∪ Blμ ⊆ Bm. The other one being analogous we only
show the inclusion μBl ⊆ Bm. We may write

μ = μ′ + s−1λ with μ′ ∈ mH1
(H0)

m, s ∈ S(H0, H1), and λ ∈ Λ(H0).



A FUNCTOR FROM SMOOTH o-TORSION REPRESENTATIONS TO (ϕ,Γ)-MODULES 553

According to Lemma 8.1 we find an l ≥ m such that m(H0)
l ⊆ m(H1)

mΛ(H0) +
sm(H0)

m. It follows that

s−1m(H0)
l ⊆ mH1

(H0)
m +m(H0)

m .

Altogether we obtain

μBl ⊆ mH1
(H0)

l + μm(H0)
l ⊆ mH1

(H0)
m + s−1m(H0)

l ⊆ Bm .

ii., iii., and iv. According to [SV2] Lemma 4.3.i we may identify ΛH1
(H0) as a

(left) Λ(H1)-module with

{(λj)j ∈
∏
j∈Z

Λ(H1) : lim
j→−∞

λj = 0}

in such a way that

mH1
(H0)

m = {(λj)j ∈
∏
j∈Z

m(H1)
m : lim

j→−∞
λj = 0},

Λ(H0) =
∏
j≥0

Λ(H1), and

m(H1)
mΛ(H0) =

∏
j≥0

m(H1)
m

(loc. cit. Lemma 1.12 and Prop. 2.26.i). We easily read off from this that

(14) mH1
(H0)

m ∩ Λ(H0) = m(H1)
mΛ(H0) ⊆ m(H0)

m

and that ⋂
m≥0

(
mH1

(H0)
m + Λ(H0)

)
= Λ(H0) .

We deduce from the former equation that

Bm ∩ Λ(H0) =
(
mH1

(H0)
m ∩ Λ(H0)

)
+m(H0)

m = m(H0)
m

which is ii. Together with the latter equation we get⋂
m≥0

Bm =
⋂
m≥0

Bm ∩ Λ(H0) =
⋂
m≥0

m(H0)
m = {0}

hence iii. As a Λ(H1)-module we have

ΛH1
(H0) = Λ−

H1
(H0)⊕ Λ(H0)

where, with the above identification,

Λ−
H1

(H0) := {(λj)j ∈
∏
j<0

Λ(H1) : lim
j→−∞

λj = 0}

and
Bm =

(
mH1

(H0)
m ∩ Λ−

H1
(H0)

)
⊕m(H0)

m .

This means that the weak topology is the direct sum topology of the subspace
topology on Λ−

H1
(H0) induced by the pseudocompact topology on ΛH1

(H0) on the
one hand and the compact topology on Λ(H0) on the other hand. The latter clearly
is complete and the former as well once we show that Λ−

H1
(H0) is closed in ΛH1

(H0)
with respect to the pseudocompact topology. But one easily checks that the maps

ΛH1
(H0) −→ Λ(H1)

(λj)j �−→ λj0 ,
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for any j0 ∈ Z, are continuous for the pseudocompact topologies, and Λ−
H1

(H0) is
the simultaneous kernel of these maps for j0 ≥ 0.

v. Using the above descriptions we have⋂
l≥0

(mH1
(H0)

m +Bl) =
⋂
l≥m

(mH1
(H0)

m +m(H0)
l)

=
(
mH1

(H0)
m ∩ Λ−

H1
(H0)

)
⊕

⋂
l≥m

(
(mH1

(H0)
m ∩ Λ(H0)) +m(H0)

l
)

=
(
mH1

(H0)
m ∩ Λ−

H1
(H0)

)
⊕

⋂
l≥m

(
m(H1)

mΛ(H0) +m(H0)
l
)
.

But as a finitely generated ideal m(H1)
mΛ(H0) is closed in the compact ring Λ(H0).

This implies that ⋂
l≥m

(
m(H1)

mΛ(H0) +m(H0)
l
)
= m(H1)

mΛ(H0)

and hence that ⋂
l≥0

(mH1
(H0)

m +Bl) = mH1
(H0)

m .

vi. This is obvious. �
With σ, of course, also δ is continuous for the weak topology. We are able to

say more when the group H is a semidirect product H ∼= H1 � (H/H1). In this
case we may pick the above elements γ ∈ H and γ0 ∈ H0 in such a way that we
have

γγ0γ
−1 = γx

0 for some x ∈ 1 + pZp.

Lemma 8.3. Suppose that H ∼= H1 � (H/H1) is a semidirect product; for any
i ≥ 1 we have:

i. δm+i(t−i
0 ) ∈ Bm for any m ≥ 1;

ii. tit0 ∈ t0m(H)i.

Proof. Inside Λ(H0) we have the subring o[[t0]]. Let n denote the maximal
ideal of this latter ring. It is generated by π and t0. Since o[[t0]]/n = k we must
have δ(o[[t0]]) ⊆ n. We compute

σ(t0) = γ(γ0 − 1)γ−1 = γx
0 − 1 = (t0 + 1)x − 1 =

∑
j≥1

(
x

j

)
tj0

and see that
σ(t0) ∈ xt0 + o[[t0]]t

2
0 = xt0(1 + o[[t0]]t0) .

This implies first of all that

δ(t0) ∈ (x− 1)t0 + o[[t0]]t
2
0 ⊆

(
πo+ o[[t0]]t0

)
t0 = nt0 ⊆ n

2 ,

hence δ(n) ⊆ n2, and then inductively

(15) δ(nj) ⊆ nj+1 for any j ≥ 0.

Because of 1 + o[[t0]]t0 ⊆ o[[t0]]
× it also implies that

σ(t−1
0 ) ∈ x−1t−1

0 (1 + o[[t0]]t0) = x−1t−1
0 + o[[t0]] .

It follows inductively that

σ(t−i
0 ) ∈ x−it−i

0 + o[[t0]]t
−(i−1)
0
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and hence that

δ(t−i
0 ) ∈ πot−i

0 + o[[t0]]t
−(i−1)
0 = nt−i

0 .

Using (15) we deduce by another induction that

δj(t−i
0 ) ∈ n

jt−i
0 =

j∑
l=0

πltj−l−i
0 o[[t0]] for any j ≥ 1.

In this last sum the summands for l ≥ m lie in mH1
(H0)

m. On the other hand, for
l < m and j ≥ m + i we have j − l − i ≥ 0 and l + (j − l − i) ≥ m. Hence the
corresponding summand in this case lies in m(H0)

m. This proves the first assertion.
For the second assertion it suffices, by induction, to consider the case i = 1.

We compute

tt0 = σ(t0)t+ δ(t0) ∈ t0o[[t0]]
×t+ t0n ⊆ t0m(H) .

�

Proposition 8.4. Suppose that H ∼= H1 � (H/H1) is a semidirect product;
then δ is locally topologically nilpotent, i. e., for any μ ∈ ΛH1

(H0) and any m ≥ 1
there is a k ≥ 1 such that δl(μ) ∈ Bm for any l ≥ k.

Proof. We fix m. We know from [SV2] Prop. 1.2 and Remark 1.11 that

Θ := {tj0}j≥0 is an Ore set in Λ(H0)/m(H1)
mΛ(H0) and that

ΛH1
(H0)/mH1

(H0)
m =

(
Λ(H0)/m(H1)

mΛ(H0)
)
Θ

is the corresponding localization. Hence any element μ ∈ ΛH1
(H0) can be written,

modulo mH1
(H0)

m, in the form

μ = μit
−i
0 + μi−1t

−(i−1)
0 + . . .+ μ1t

−1
0 + μ0

for some i ≥ 0, μ1, . . . , μi ∈ Λ(H1), and μ0 ∈ Λ(H0). Since mH1
(H0)

m is δ-
invariant and since δ is topologically nilpotent on Λ(H0) ([SV1] Lemma 1.6) it
therefore suffices to consider elements μ of the form

μ = μ1t
−i
0 for some i ≥ 1 and μ1 ∈ Λ(H1).

As δ is a σ-derivation and Λ(H1) is σ-invariant one easily verifies by induction that

δl(Λ(H1)t
−i
0 ) ⊆

l∑
j=0

δl−j(Λ(H1))δ
j(t−i

0 ) for any l ≥ 1.

Again since δ is topologically nilpotent on Λ(H0) and hence on Λ(H1) we have
δl−j(Λ(H1)) ⊆ m(H1)

m and hence δl−j(Λ(H1))δ
j(t−i

0 ) ⊆ Bm whenever l − j is

sufficiently big. This reduces us finally to the case μ = t−i
0 for any i ≥ 1 which we

have dealt with in Lemma 8.3.i. �

It will be convenient for us to write elements in the countable direct product∏
i≥0 ΛH1

(H0), viewed as a left ΛH1
(H0)-module, as formal power series

∑
i≥0

μit
i with μi ∈ ΛH1

(H0).

The ring we want to construct will be a certain submodule of this direct product.
For its definition we first have to recall the notion of boundedness in topological
rings as well as some of its elementary properties.
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Definition 8.5. Let R be a Hausdorff topological ring; a subset A ⊆ R is called
bounded if for any neighbourhood of zero U ′ ⊆ R there is another neighbourhood of
zero U ⊆ R such that U ·A ∪A · U ⊆ U ′ (where X · Y := {xy : x ∈ X, y ∈ Y }).

Remark 8.6. Let A,A1, and A2 be subsets of a Hausdorff topological ring R;
we then have:

i. If A is bounded then any subset A1 ⊆ A also is bounded;
ii. with A1 and A2 also A1 ∪A2, A1 +A2, and A1 ·A2 are bounded;
iii. any compact A (in particular, any finite A) is bounded;
iv. if A is bounded then also its closure A is bounded;
v. suppose that R has a fundamental system of neighbourhoods of zero con-

sisting of additive subgroups; then with A also the additive subgroup gen-
erated by A is bounded;

vi. any convergent sequence in R forms a bounded subset.

Proof. i. and v. are obvious. vi. is easy. See [War] Thm. 12.3 for iii. and
Cor. 12.5 for ii. and iv. �

Lemma 8.7. Let A ⊆ ΛH1
(H0) be a bounded subset (for the weak topology);

then the smallest σ-invariant additive subgroup containing A is bounded as well
(and is δ-invariant).

Proof. Using the fact that σ(Bm) = Bm one easily checks that
⋃

j≥0 σ
j(A) is

bounded. Now apply Remark 8.6.v. �

Lemma 8.8. For any subset A ⊆ ΛH1
(H0) the following conditions are equiva-

lent:

i. A is bounded;
ii. for any m ≥ 1 there is an l ≥ 1 such that tl0A ⊆ mH1

(H0)
m + Λ(H0);

iii. for any m ≥ 1 there is an l ≥ 1 such that Atl0 ⊆ mH1
(H0)

m + Λ(H0).

Proof. By definition the set A is bounded if and only if for any m ≥ 1 there
is an l ≥ m such that

Bl ·A ∪A ·Bl ⊆ Bm .

Since mH1
(H0)

l is a (two-sided) ideal in ΛH1
(H0) this inclusion is equivalent to the

inclusion

m(H0)
l ·A ∪A ·m(H0)

l ⊆ Bm

and then also to the inclusion

m(H0)
l ·A ∪A ·m(H0)

l ⊆ mH1
(H0)

m + Λ(H0)

(for a possibly different l). The latter trivially implies that

(16) tl0A ∪Atl0 ⊆ mH1
(H0)

m + Λ(H0) .

Suppose, vice versa, that (16) holds true for some l (depending on m) which we
then may assume to satisfy l ≥ m. By Lemma 8.1 applied to s := tl0 we find an
l′ ≥ 0 such that

m(H0)
l′ ⊆

(
J(H0, H1)

l + Λ(H0)t
l
0

)
∩

(
J(H0, H1)

l + tl0Λ(H0)
)
.

It easily follows that

m(H0)
l′ ·A ∪A ·m(H0)

l′ ⊆ mH1
(H0)

m + Λ(H0) .
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It remains to show that the conditions ii. and iii. are equivalent. In fact, we fix m.
As recalled earlier we know from [SV2] Remark 1.11 that

ΛH1
(H0)/mH1

(H0)
m =

(
Λ(H1)/m(H1)

m
)
((t0;σ0, δ0))

is a skew Laurent series (with finite negative parts) ring where σ0 and δ0 denote
the maps on the coefficients induced by σ0 and δ0, respectively. The condition
tl0A ⊆ mH1

(H0)
m +Λ(H0) therefore means that the image in ΛH1

(H0)/mH1
(H0)

m

of each element in A can be written in the form∑
i≥−l

ti0ri with ri ∈ Λ(H1)/m(H1)
m .

But δ0 is nilpotent on Λ(H1)/m(H1)
m, say δ

N+1

0 = 0. The formula (1.4) in [SV2]
then shows an identity of the form∑

i≥−l

ti0ri =
∑

j≥−l−N

r′jt
j
0

whatever the coefficients ri are. It therefore follows that Atl+N
0 ⊆ mH1

(H0)
m +

Λ(H0). In the other direction the argument works in the same way (cf. (1.3) in
[SV2]). �

Remark 8.9. The proof of Lemma 8.8 in particular shows that a subset A ⊆
ΛH1

(H0) is bounded if and only if it is left bounded if and only if it is right bounded.

Corollary 8.10. Suppose that H ∼= H1 � (H/H1) is a semidirect product;
for any bounded subset A ⊆ ΛH1

(H0) and any m ≥ 1 there is a k ≥ 1 such that
δk(A) ⊆ Bm.

Proof. By Lemma 8.8 we find, for any m ≥ 1, an i ≥ 1 such that

A ⊆ Λ(H1)t
−i
0 + . . .+ Λ(H1)t

−1
0 + Λ(H0) +mH1

(H0)
m .

From here on the argument proceeds as in the proof of Prop. 8.4. �

We now define

ΛH0,H1
(H) := {

∑
i≥0

μit
i : {μi}i is bounded in ΛH1

(H0)} .

By Remark 8.6.ii/iii this is a ΛH1
(H0)-submodule of the direct product. We view

ΛH1
(H0) as being contained in ΛH0,H1

(H) through μ �→ μ+ 0t+ 0t2 + . . . On the
other hand viewing Λ(H) = Λ(H0)[[t;σ, δ]] as a skew power series ring in t and
noting that Λ(H0) is compact and therefore, by Lemma 8.2.ii and Remark 8.6.iii,
bounded in ΛH1

(H0) we see that the ring Λ(H) in an obvious way is contained in
ΛH0,H1

(H) as well. More generally, by Remark 8.6.ii the map

ΛH1
(H0)⊗Λ(H0) Λ(H) −→ ΛH0,H1

(H)

λ⊗ (
∑
i≥0

μit
i) �−→

∑
i≥0

λμit
i(17)

is well defined.

Remark 8.11. The above map (17) is injective.
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Proof. Suppose that the element
∑r

k=0 λk ⊗ (
∑

i≥0 μk,it
i) lies in the kernel

of (17). This means that

r∑
k=0

λkμk,i = 0 for any i ≥ 0.

LetX denote the right Λ(H0)-submodule of Λ(H0)
r generated by the vectors (μk,i)k

for i ≥ 0. Since Λ(H0) is noetherian this module X is finitely generated. Hence we
find vectors (ν1,k)k, . . . , (νs,k)k ∈ X and elements c1,i, . . . , cs,i ∈ Λ(H0) for i ≥ 0
such that

(μk,i)k = (ν1,k)kc1,i + . . .+ (νs,k)kcs,i for any i ≥ 0.

Of course we have
r∑

k=0

λkν1,k = . . . =
r∑

k=0

λkνs,k = 0 .

We now compute

r∑
k=0

λk ⊗ (
∑
i≥0

μk,it
i) =

r∑
k=0

λk ⊗
∑
i≥0

(ν1,kc1,i + . . .+ νs,kcs,i)t
i

=
r∑

k=0

s∑
l=0

λk ⊗ νl,k(
∑
i≥0

cl,it
i)

=

s∑
l=0

(

r∑
k=0

λkνl,k)⊗ (
∑
i≥0

cl,it
i)

= 0 .

�

On ΛH0,H1
(H) we have the descending filtration

FmΛH0,H1
(H) := {

∑
i≥0

μit
i ∈ ΛH0,H1

(H) : {μi}i ⊆ mH1
(H0)

m} for m ≥ 0

by ΛH1
(H0)-submodules. By taking this filtration as a fundamental system of open

zero neighbourhoods we obtain the strong topology on ΛH0,H1
(H). The fact that

mH1
(H0)

mΛH0,H1
(H) ⊆ FmΛH0,H1

(H) implies that ΛH0,H1
(H) with the strong

topology is a (left) topological module over ΛH1
(H0) with its pseudocompact topol-

ogy.

Lemma 8.12. i. ΛH0,H1
(H) is Hausdorff and complete in the strong to-

pology.
ii. mH1

(H0)
mΛH0,H1

(H), for any m ≥ 0, is dense in FmΛH0,H1
(H) for the

strong topology.
iii. ΛH1

(H0)⊗Λ(H0) Λ(H) is dense in ΛH0,H1
(H) for the strong topology.

iv. For any m ≥ 0 the natural map

(
ΛH1

(H0)/mH1
(H0)

m
)
⊗Λ(H0) Λ(H)

∼=−−→ ΛH0,H1
(H)/FmΛH0,H1

(H)

is an isomorphism.
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Proof. i. We have

ΛH0,H1
(H) ⊆ lim←−

m

(
ΛH0,H1

(H)/FmΛH0,H1
(H)

)

⊆ lim←−
m

( ∏
i≥0

ΛH1
(H0)/

∏
i≥0

mH1
(H0)

m
)

=
∏
i≥0

lim←−
m

(
ΛH1

(H0)/mH1
(H0)

m
)

=
∏
i≥0

ΛH1
(H0)

Therefore it suffices to show that⋂
m≥0

(
ΛH0,H1

(H) +
∏
i≥0

mH1
(H0)

m
)
= ΛH0,H1

(H) .

Let
∑

i≥0 μit
i be a power series contained in the left hand side, and let k ≥ 0.

By assumption we find a power series
∑

i≥0 νit
i ∈ ΛH0,H1

(H) such that μi − νi ∈
mH1

(H0)
k ⊆ Bk for any i ≥ 0. There is an l ≥ k such that Bl · {νi}i ⊆ Bk. It

follows that

Bl · {μi}i ⊆ Bl · {μi − νi}i +Bl · {νi}i ⊆ Bk .

Hence {μi}i is left bounded and therefore bounded by Remark 8.9.
ii. and iii. Let λ =

∑
i≥0 λit

i ∈ FmΛH0,H1
(H), and let m′ ≥ m. By Lemma

8.8.ii we find an l ≥ 1 and elements μi ∈ Λ(H0) such that

λi − t−l
0 μi ∈ mH1

(H0)
m′

for any i ≥ 0.

We put μ :=
∑

i≥0 μit
i ∈ Λ(H) and obtain λ−t−l

0 μ ∈ Fm′
ΛH0,H1

(H). In particular,

we have t−l
0 μ ∈ FmΛH0,H1

(H) and hence

μ ∈ FmΛH0,H1
(H) ∩ Λ(H) = m(H1)

mΛ(H)

where the right hand identity comes from (14) in the proof of Lemma 8.2. We

see that λ, modulo Fm′
ΛH0,H1

(H), is congruent to t−l
0 μ ∈ mH1

(H0)
mΛ(H). This

proves both assertions.
iv. Surjectivity is immediate from iii., and the injectivity is a computation

totally analogous to the one in the proof of Remark 8.11. �

Obviously, the skew polynomial ring ΛH1
(H0)[t;σ, δ] is contained as a ΛH1

(H0)-
submodule in ΛH0,H1

(H). The multiplication in this skew polynomial ring is given
by the formula

(18) (
∑
i≥0

λit
i)(

∑
j≥0

μjt
j) =

∑
l≥0

( l∑
k=0

∑
i≥k

(
i

k

)
λiδ

i−k(σk(μl−k))
)
tl .

Proposition 8.13. Suppose that H ∼= H1 � (H/H1) is a semidirect product;
then the formula (18) defines (via convergence of the sums on the right hand side
for the weak topology on ΛH1

(H0)) a multiplication map on ΛH0,H1
(H) making the

latter into a ring in which the FmΛH0,H1
(H) are two-sided ideals.

Proof. We begin by checking that the coefficients on the right hand side of
(18) are well defined in ΛH1

(H0) whenever the two factors on the left hand side lie
in ΛH0,H1

(H). Because of Lemma 8.2.iv it suffices to show that, for any bounded
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sequence {ν1, ν2, . . .} ⊆ ΛH1
(H0) and any singleton ν ∈ ΛH1

(H0), the sequence
ν1δ(ν), ν2δ

2(ν), ν3δ
3(ν), . . . tends to zero with respect to the weak topology. Given

any neighbourhood of zero Bm we find, by boundedness, some m′ ≥ 0 such that⋃
k≥0 νkBm′ ⊆ Bm. But according to Prop. 8.4 we have δk(ν) ∈ Bm′ for any

sufficiently big k. It follows that νkδ
k(ν) ∈ Bm for any sufficiently big k.

That with {λi}i and {μj}j also the sequence of coefficients on the right hand
side of (18) is bounded is a straightforward consequence of Lemma 8.7 and Remark
8.6.ii/iv/v.

The resulting multiplication map

· : ΛH0,H1
(H)× ΛH0,H1

(H) −→ ΛH0,H1
(H)

clearly is bi-additive. Since the mH1
(H0)

m are σ- and hence δ-invariant (two-sided)
ideals in ΛH1

(H0) which are closed with respect to the weak topology by Lemma
8.2.v we easily see that this multiplication satisfies

FmΛH0,H1
(H) · ΛH0,H1

(H) ∪ ΛH0,H1
(H) · FmΛH0,H1

(H) ⊆ FmΛH0,H1
(H)

for any m ≥ 0. It remains to establish the associativity of this multiplication. Let
λ =

∑
i λit

i, μ =
∑

j μjt
j , and ν =

∑
k νkt

k be three elements in ΛH0,H1
(H). We

have

α := λ · μ =
∑
m

αmtm with αm :=

m∑
a=0

∑
b

(
b

a

)
λbδ

b−a(σa(μm−a))

β := μ · ν =
∑
n

βnt
n with βn :=

n∑
c=0

∑
f

(
f

c

)
μfδ

f−c(σc(νn−c))

and

(λ · μ) · ν = α · ν =
∑
l

( l∑
e=0

∑
f

(
f

e

)
αf δ

f−e(σe(νl−e))
)
tl

λ · (μ · ν) = λ · β =
∑
l

( l∑
g=0

∑
b

(
b

g

)
λbδ

b−g(σg(βl−g))
)
tl.

Hence we have to show the identity

(19)

l∑
e=0

∑
f

(
f

e

)
αf δ

f−e(σe(νl−e)) =

l∑
g=0

∑
b

(
b

g

)
λbδ

b−g(σg(βl−g))

for any l ≥ 0. We first compute the right hand side. By inserting the definition of
βn and using that σ and hence also δ are continuous for the weak topology (Lemma
8.2.vi) we obtain

l∑
g=0

∑
b

(
b

g

)
λb

l−g∑
c=0

∑
f

(
f

c

)
δb−g(σg(μfδ

f−c(σc(νl−g−c))))

=
∑
b

λb

∑
f

l∑
g=0

l−g∑
c=0

(
b

g

)(
f

c

)
δb−g(σg(μf )δ

f−c(σg+c(νl−(g+c))))

=
∑
b

λb

∑
f

l∑
g=0

l∑
e=g

(
b

g

)(
f

e− g

)
δb−g(σg(μf )δ

f−e+g(σe(νl−e))).
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where in the last identity we have substituted e for g + c. By applying the general
Leibniz type rule for the σ-derivation δ which, since σ and δ commute, reads

δr(ab) =

r∑
s=0

(
r

s

)
δr−s(σs(a))δs(b)

we continue computing

=
∑
b

λb

∑
f

l∑
g=0

l∑
e=g

(
b

g

)(
f

e− g

) b−g∑
s=0

(
b− g

s

)
δb−g−s(σg+s(μf ))δ

f−e+g+s(σe(νl−e))

=
∑
b

λb

∑
f

l∑
g=0

b∑
a=g

l∑
e=g

(
b

g

)(
f

e− g

)(
b− g

a− g

)
δb−a(σa(μf ))δ

f−e+a(σe(νl−e))

=
∑
b

λb

∑
f

b∑
a=0

l∑
e=0

[min(a,e)∑
g=0

(
b

g

)(
f

e− g

)(
b− g

a− g

)]
δb−a(σa(μf ))δ

f−e+a(σe(νl−e))

where in the middle identity we have substituted a for g+s. One easily checks that

min(a,e)∑
g=0

(
b

g

)(
f

e− g

)(
b− g

a− g

)
=

(
b

a

) e∑
g=0

(
a

g

)(
f

e− g

)
=

(
b

a

)(
f + a

e

)
.

Hence the right side of (19) is equal to

∑
b

λb

∑
f

b∑
a=0

l∑
e=0

(
b

a

)(
f + a

e

)
δb−a(σa(μf ))δ

f+a−e(σe(νl−e)) .

Next we argue that in this latter multi-sum the summations over b and over f can
be interchanged. For this we first check that, for any given m ≥ 0, all but finitely
many of the elements

xb,f :=

b∑
a=0

l∑
e=0

(
b

a

)(
f + a

e

)
δb−a(σa(μf ))δ

f+a−e(σe(νl−e))

(recall that l is arbitrary but fixed) lie in Bm. By Lemma 8.7 the set

A := {δb−a(σa(μf ))}a,b,f ∪ {δf+a−e(σe(νl−e))}a,e,f .

is bounded. Hence we find an m′ ≥ 0 such that

A ·Bm′ ∪Bm′ ·A ⊆ Bm .

By Prop. 8.4 there is an N1 ≥ 0 such that δf+a−e(σe(νl−e)) ∈ Bm′ whenever
f + a ≥ N1. By Cor. 8.10 there is an N2 ≥ 0 such that δb−a(σa(μf )) ∈ Bm′

whenever b− a ≥ N2. We conclude that

δb−a(σa(μf ))δ
f+a−e(σe(νl−e)) ∈ Bm

provided f + a ≥ N1 or b − a ≥ N2. Since f + a < N1 and b − a < N2 together
imply f + b < N1 +N2 we finally see that xb,f ∈ Bm for b+ f ≥ N1 +N2.

Since {λb}b is bounded the family {λbxb,f}b,f also has the property that, for
any given m ≥ 0, all but finitely many of its elements lie in Bm. It follows that the



562 PETER SCHNEIDER AND MARIE-FRANCE VIGNERAS

right hand side of (19) is equal to

∑
f

∑
b

b∑
a=0

l∑
e=0

(
b

a

)(
f + a

e

)
λbδ

b−a(σa(μf ))δ
f+a−e(σe(νl−e))

=
∑
f

∑
b

f∑
a=0

l∑
e=0

(
b

a

)(
f

e

)
λbδ

b−a(σa(μf−a))δ
f−e(σe(νl−e))

=

l∑
e=0

∑
f

(
f

e

)( f∑
a=0

∑
b

(
b

a

)
λbδ

b−a(σa(μf−a))
)
δf−e(σe(νl−e))

=
l∑

e=0

∑
f

(
f

e

)
αf δ

f−e(σe(νl−e))

which is the left hand side of (19). �

For the remainder of this section we assume that H ∼= H1 � (H/H1) is a
semidirect product. In the proof of Prop. 8.4 we had recalled already from [SV2]

that Θ = {tj0}j≥0 is an Ore set in Λ(H0)/m(H1)
mΛ(H0), for any m ≥ 1 with

ΛH1
(H0)/mH1

(H0)
m =

(
Λ(H0)/m(H1)

mΛ(H0)
)
Θ
.

Lemma 8.14. The set Θ consists of regular elements and satisfies the (left and
right) Ore condition in Λ(H)/m(H1)

mΛ(H) for any m ≥ 1.

Proof. According to Lemma 8.3.ii we have tit0 = t0νi with νi ∈ m(H)i. We
fix an m ≥ 1, and we let λ =

∑
i≥0 t

iλi ∈ Λ(H) with λi ∈ Λ(H0) be an arbitrary

element. By the “right” version of [SV2] Lemma 1.1.ii there exist an M ≥ 0 and
μi ∈ Λ(H0) such that

λit
M
0 ≡ t0μi mod m(H1)

mΛ(H0)

for any i ≥ 0. We obtain

λtM0 =
∑
i≥0

tiλit
M
0 ≡

∑
i≥0

tit0μi = t0(
∑
i≥0

νiμi) mod m(H1)
mΛ(H)

where μ :=
∑

i≥0 νiμi ∈ Λ(H) is well defined because of νi ∈ m(H)i; note that

m(H1)
mΛ(H) = Λ(H)m(H1)

m. By a straightforward induction we deduce from
this that for any j ≥ 1 and any λ ∈ Λ(H) we find a μ ∈ Λ(H) such that

λtMj
0 ≡ tj0μ mod m(H1)

mΛ(H) .

This in particular gives the asserted right Ore condition.
For right regularity we write an arbitrary element λ ∈ Λ(H) as λ =

∑
i≥0 λit

i

with λi =
∑

k≥0 t
k
0μi,k ∈ Λ(H0) and μi,k ∈ Λ(H1). If tj0λ ∈ m(H1)

mΛ(H) then

tj0λi =
∑

k≥0 t
j+k
0 μi,k ∈ m(H1)

mΛ(H0) = Λ(H0)m(H1)
m for any i ≥ 0, hence

μi,k ∈ m(H1)
m for any i, k ≥ 0, and therefore λ ∈ m(H1)

mΛ(H).
The left Ore condition and left regularity follow by analogous arguments. �

We have the obvious injective ring homomorphisms

Λ(H0)/m(H1)
mΛ(H0) ↪→ Λ(H)/m(H1)

mΛ(H) ↪→ ΛH0,H1
(H)/FmΛH0,H1

(H)
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where the injectivity of the right hand map is a consequence of (14). By the
universal property of localization they extend to injective ring homomorphisms(

Λ(H0)/m(H1)
mΛ(H0)

)
Θ
↪→

(
Λ(H)/m(H1)

mΛ(H)
)
Θ

↪→ ΛH0,H1
(H)/FmΛH0,H1

(H) .

Proposition 8.15. We have as rings:

i.
(
Λ(H)/m(H1)

mΛ(H)
)
Θ
= ΛH0,H1

(H)/FmΛH0,H1
(H);

ii. ΛH0,H1
(H) = lim←−m

(
Λ(H)/m(H1)

mΛ(H)
)
Θ
;

iii. The ring ΛH0,H1
(H) is, up to isomorphism, independent of the choice of

the variables t0 and t.

Proof. i. Because of(
Λ(H)/m(H1)

mΛ(H)
)
Θ

=
(
Λ(H0)/m(H1)

mΛ(H0)⊗Λ(H0) Λ(H)
)
Θ

=
(
Λ(H0)/m(H1)

mΛ(H0)
)
Θ

⊗
Λ(H0)/m(H1)mΛ(H0)

(
Λ(H0)/m(H1)

mΛ(H0) ⊗
Λ(H0)

Λ(H)
)

=
(
Λ(H0)/m(H1)

mΛ(H0)
)
Θ
⊗Λ(H0) Λ(H)

= ΛH1
(H0)/mH1

(H0)
m ⊗Λ(H0) Λ(H)

this follows from Lemma 8.12.iv.
ii. As ΛH0,H1

(H) = lim←−m
ΛH0,H1

(H)/FmΛH0,H1
(H) by Lemma 8.12.i this is a

consequence of i.
iii. Because of ii. it suffices to show that

(
Λ(H)/m(H1)

mΛ(H)
)
Θ
is independent

of the choice of t0. Let Θ̃ := {t̃0
j}j≥0 for some other choice. We have(

Λ(H0)/m(H1)
mΛ(H0)

)
Θ
= ΛH1

(H0)/mH1
(H0)

m =
(
Λ(H0)/m(H1)

mΛ(H0)
)

˜Θ
.

Hence t̃0 and t0 are units in
(
Λ(H)/m(H1)

mΛ(H)
)
Θ
and

(
Λ(H)/m(H1)

mΛ(H)
)

˜Θ
,

respectively. This implies(
Λ(H)/m(H1)

mΛ(H)
)
Θ
=

(
Λ(H)/m(H1)

mΛ(H)
)

˜Θ
.

�

It follows from Prop. 8.15 that any element μ ∈ ΛH0,H1
(H) can be written in

the form μ =
∑

i≥0 t
iμi with {μi}i ⊆ ΛH1

(H0) a bounded subset.

We want to define and investigate a “weak” topology on the ring ΛH0,H1
(H)

which actually will be more important than the strong topology. To motivate the
definition we point out that as a consequence of Lemma 8.8 we have

(20) ΛH0,H1
(H) =

⋃
j≥0

FmΛH0,H1
(H) + t−j

0 Λ(H) for any m ≥ 0.

An additive subgroup C ⊆ ΛH0,H1
(H) will be called open for the weak topology if

– FmΛH0,H1
(H) ⊆ C for some m ≥ 0 and

– for any j ≥ 0 there is an �(j) ≥ 0 such that C ⊇ t−j
0 m(H)�(j).

Correspondingly the weak topology on ΛH0,H1
(H) is defined to be the topology for

which the additive subgroups

Cm,� := FmΛH0,H1
(H) +

∑
j≥0

t−j
0 m(H)�(j) ,
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with m ≥ 0 and � : N0 −→ N0 any function, form a fundamental system of open
zero neighbourhoods. This certainly makes ΛH0,H1

(H) into an additive topological
group. But one easily checks that multiplication by tk0 , for any k ∈ Z, is a topological
automorphism.

Remark 8.16. The weak topology on ΛH0,H1
(H) is independent of the choice

of the variable t0.

Proof. For the purposes of this proof we write Cm,�(t0) := Cm,�. Let t̃0 be
another choice of variable. For any j ≥ 0 there is an i(j,m) ≥ 0 such that

t̃0
−j ∈ mH1

(H0)
m + t

−i(j,m)
0 Λ(H0) .

We define a new function �̃ : N0 −→ N0 by �̃(j) := �(i(j,m)) and obtain Cm,˜�(t̃0) ⊆
Cm,�(t0). Hence, by symmetry, the two neighbourhood bases {Cm,�(t̃0)}m,� and
{Cm,�(t0)}m,� define the same topology. �

Lemma 8.17. Given any m′ ≥ m ≥ 0 there is a function � such that for any
λ =

∑
i≥0 λit

i ∈ Cm,� we have

λi ∈ mH1
(H0)

m +m(H0)
m′ ⊆ Bm for any 0 ≤ i ≤ m′.

Proof. Applying Lemma 8.1 to m′ and the element s = tj0, for any j ≥ 0, we
find an �′(j) ≥ 0 such that

m(H0)
�′(j) ⊆ m(H1)

m′
Λ(H0) + tj0m(H0)

m′ ⊆ mH1
(H0)

m′
+ tj0m(H0)

m′

and hence

t−j
0 m(H0)

�′(j) ⊆ mH1
(H0)

m′
+m(H0)

m′ ⊆ mH1
(H0)

m +m(H0)
m′

.

Since the m(H)-adic topology on Λ(H) = Λ(H0)[[t;σ, δ]] ∼=
∏

i≥0 Λ(H0) coincides

with the direct product topology (cf. [SV1] §1) we then may pick �(j) ≥ 0 in such
a way that

m(H)�(j) ⊆ (

m′∑
i=0

m(H0)
�′(j)ti) + Λ(H)tm

′+1 .

Suppose now that λ =
∑

i≥0 λit
i ∈ Cm,�. Then λi, for any 0 ≤ i ≤ m′, lies in

mH1
(H0)

m +
∑
j≥0

t−j
0 m(H0)

�′(j) ⊆ mH1
(H0)

m +m(H0)
m′

.

�

Proposition 8.18. i. The weak topology of ΛH0,H1
(H) induces on the

subrings ΛH1
(H0) and Λ(H) the weak and compact topology, respectively.

ii. FmΛH0,H1
(H), for any m ≥ 0, is closed in ΛH0,H1

(H) for the weak topol-
ogy.

iii. ΛH0,H1
(H) is Hausdorff and complete in the weak topology.

Proof. i. We obviously have Bmax(m,�(0)) ⊆ Cm,�. On the other hand, if for a
given m ≥ 0 we choose the function � as in the above Lemma 8.17 then we obtain

Cm,� ∩ ΛH1
(H0) ⊆ Bm .
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To determine the topology induced on Λ(H) we note that obviously m(H)�(0) ⊆
Cm,�. On the other hand, given any m ≥ 0, we find, by the direct product topology
argument, an m′ ≥ 0 such that

(
m′∑
i=0

m(H0)
m′

ti) + Λ(H)tm
′+1 ⊆ m(H)m .

We consider now any λ =
∑

i≥0 λit
i ∈ Cm′,� ∩Λ(H) where the function � is chosen

as in Lemma 8.17 for the pair (m′,m′). Then λi, for any 0 ≤ i ≤ m′, lies in
(
mH1

(H0)
m′

+m(H0)
m′) ∩Λ(H0) =

(
mH1

(H0)
m′ ∩Λ(H0)

)
+m(H0)

m′
= m(H0)

m′

where the last identity uses the fact (cf. formula (14) in the proof of Lemma 8.2)
that

mH1
(H0)

m′ ∩ Λ(H0) = m(H1)
m′

Λ(H0) ⊆ m(H0)
m′

.

By the choice of m′ this means that λ ∈ m(H)m.
ii. We choose for any m′ ≥ m a function �m′,m as in Lemma 8.17. Any

λ =
∑

i≥0 λit
i ∈

⋂
m′≥m Cm,�m′,m satisfies

λi ∈
⋂

m′≥0

(
mH1

(H0)
m +m(H0)

m′)
for any i ≥ 0.

But we know from Lemma 8.2.v that this intersection is equal to mH1
(H0)

m. It
follows that ⋂

�

Cm,� = FmΛH0,H1
(H) .

iii. That the weak topology is Hausdorff follows from ii. and Lemma 8.12.i.

To establish the completeness let (λ(α))α∈Ξ with λ(α) =
∑

i≥0 λ
(α)
i ti be a Cauchy

net in ΛH0,H1
(H) for the weak topology. Lemma 8.17 immediately implies that

each (λ
(α)
i )α∈Ξ, for i ≥ 0, is a Cauchy net for the weak topology in ΛH1

(H0). The
latter is complete by Lemma 8.2.iv. Hence each of these Cauchy nets has a limit
λi ∈ ΛH1

(H0). We will show that λ :=
∑

i≥0 λit
i lies in ΛH0,H1

(H) and is the limit,

for the weak topology, of the original Cauchy net (λ(α))α∈Ξ.
As a piece of notation we let L denote the set of all functions � : N0 −→ N0. It

is partially ordered by �1 ≤ �2 if �1(j) ≤ �2(j) for any j ≥ 0.
In a first step we will establish, for each m ≥ 0, the existence of a j(m) ≥ 0

such that for any function � the subset

Ξ(m, �) := {α ∈ Ξ : λ(α) ∈ Cm,� + t
−j(m)
0 Λ(H)}

is cofinal in Ξ. Fixing m there otherwise is, for any k ≥ 0, a function �k and an
index αk ∈ Ξ such that

λ(α) �∈ Cm,�k + t−k
0 Λ(H) for all α ≥ αk.

We certainly may assume that �0 ≤ �1 ≤ �2 ≤ . . . We now define a new function �
by �(j) := �j(j). For k ≤ j we have �(j) = �j(j) ≥ �k(j) and hence

t−j
0 m(H)�(j) ⊆ t−j

0 m(H)�k(j) ⊆ Cm,�k .

For k ≥ j we have

t−j
0 m(H)�(j) ⊆ t−j

0 Λ(H) ⊆ t−k
0 Λ(H) .
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It follows that

Cm,� + t−k
0 Λ(H) ⊆ Cm,�k + t−k

0 Λ(H) for any k ≥ 0.

In particular, for any k ≥ 0, we obtain

λ(α) �∈ Cm,� + t−k
0 Λ(H) for all α ≥ αk.

Now we choose an index β ∈ Ξ such that

λ(β1) − λ(β2) ∈ Cm,� for any β1, β2 ≥ β.

We also choose, by (20), the integer k large enough so that λ(β) ∈ Cm,�+ t−k
0 Λ(H).

Then
λ(α) ∈ Cm,� + t−k

0 Λ(H) for all α ≥ β.

Since Ξ is directed this is a contradiction.
In the next step we show that λ ∈ ΛH0,H1

(H). We have

λ
(α)
0 , . . . , λ

(α)
m′ ∈ mH1

(H0)
m + t

−j(m)
0 Λ(H0) for any α ∈ Ξ(m, �m′,m).

Since mH1
(H0)

m + t
−j(m)
0 Λ(H0) is closed in ΛH1

(H0) for the weak topology by
Lemma 8.2 the cofinality of Ξ(m, �m′,m) implies that

λ0, . . . , λm′ ∈ mH1
(H0)

m + t
−j(m)
0 Λ(H0) .

But m′ was arbitrary. We therefore obtain

{λi}i≥0 ⊆ mH1
(H0)

m + t
−j(m)
0 Λ(H0) for any m ≥ 0.

This means, by Lemma 8.8, that {λi}i≥0 is bounded and hence that λ ∈ ΛH0,H1
(H).

For the time being we fix an m ≥ 0. The product set Ξ × L is a directed
partially ordered set by (α, �) ≥ (β, �′) if α ≥ β and � ≥ �′. We construct a net

{ν(α,�)}(α,�)∈Ξ×L in t
−j(m)
0 Λ(H) in the following way. By cofinality we may pick an

index α′ ≥ α in Ξ(m, �). We then find a ν(α,�) =
∑

i≥0 ν
(α,�)
i ti ∈ t

−j(m)
0 Λ(H) such

that λ(α′)−ν(α,�) ∈ Cm,�. Let us check that the net {ν(α,�)i }(α,�)∈Ξ×L, for any i ≥ 0,
converges to λi in the quotient ΛH1

(H0)/mH1
(H0)

m. Given any m′ ≥ max(m, i)
we choose an α ∈ Ξ such that

λ
(β)
i − λi ∈ Bm′ ⊆ mH1

(H0)
m +m(H0)

m′
for any β ≥ α.

By construction we find, for any (β, �) ≥ (α, �m′,m), an index β′ ≥ β such that

λ(β′) − ν(β,�) ∈ Cm,� ⊆ Cm,�m′,m .

In particular, by Lemma 8.17, we have

λ
(β′)
i − ν

(β,�)
i ∈ mH1

(H0)
m +m(H0)

m′
.

It follows that

ν
(β,�)
i − λi = (λ

(β′)
i − λi)− (λ

(β′)
i − ν

(β,�)
i ) ∈ mH1

(H0)
m +m(H0)

m′

for any (β, �) ≥ (α, �m′,m).
Now we observe that the weak topology induces, by i., on the quotient(

t
−j(m)
0 Λ(H) + FmΛH0,H1

(H)
)
/FmΛH0,H1

(H) ∼=
∏
i≥0

t
−j(m)
0 Λ(H0)/m(H1)

mΛ(H0)

the (compact) direct product topology. It follows that the net {ν(α,�)}(α,�)∈Ξ×L

converges to λ for the weak topology in the quotient ΛH0,H1
(H)/FmΛH0,H1

(H).
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Next we claim that with {ν(α,�)}(α,�)∈Ξ×L also (λ(α))α∈Ξ converges to λ in the
quotient ΛH0,H1

(H)/FmΛH0,H1
(H). Given any function �0 we choose an (α, �1) ∈

Ξ× L such that

ν(β,�) − λ ∈ Cm,�0 for any (β, �) ≥ (α, �1)

and

λ(β1) − λ(β2) ∈ Cm,�0 for any β1, β2 ≥ α.

We put �2 := max(�0, �1) and pick the α′ ≥ α such that

λ(α′) − ν(α,�2) ∈ Cm,�2 .

Then

λ(β) − λ = (λ(β) − λ(α′)) + (λ(α′) − ν(α,�2)) + (ν(α,�2) − λ)

∈ Cm,�0 + Cm,�2 + Cm,�0 ⊆ Cm,�0

for any β ≥ α.
We now have shown that our original Cauchy net (λ(α))α∈Ξ converges to λ

for the weak topology in the quotient ΛH0,H1
(H)/FmΛH0,H1

(H) for any m ≥ 0.
It is clear from the explicit definition of the weak topology that this means that
(λ(α))α∈Ξ converges to λ in ΛH0,H1

(H). �

Behind the above proof is the general principle that a (countable) strict induc-
tive limit of complete topological abelian groups again is complete. But the notion
of an inductive limit for topological algebraic structures is not entirely straightfor-
ward in the sense that it has the tendency to depend on the precise category one
is working in. Since we did not want to get into a discussion of these questions we
preferred to explicitly work out the argument in our case.

Lemma 8.19. Suppose that H ∼= H1 � (H/H1) is a semidirect product; for any
m, k ≥ 0 there are N(m) ≥ 0 and l(k), l′(k) ≥ 0 such that we have:

i. m(H0)
l(k)t−1

0 ⊆ mH1
(H0)

m + t
−1−N(m)
0 m(H0)

k;

ii. m(H)l
′(k) · t−1

0 ⊆ FmΛH0,H1
(H) + t

−1−N(m)
0 m(H)k.

Proof. Since δ0 is topologically nilpotent we find an N(m) ≥ 0 such that

δ
N(m)+1
0 (Λ(H1)) ⊆ m(H1)

m. i. Let k ≥ 1. The m(H0)-adic topology on Λ(H0) =
Λ(H1)[[t0;σ0, δ0]] ∼=

∏
i≥0 Λ(H1) coincides with the direct product topology. Hence

m(H1)
k +m(H0)

k−1t0 is open which means that it contains some m(H0)
l(k). We in

fact consider any λ = ν + μt0 with ν ∈ m(H1)
k and μ ∈ m(H0)

k−1. Using formula
(1.5) in [SV2] we obtain

λt−1
0 = νt−1

0 + μ =
( ∑
i≤−1

ti0σ0δ
−i−1
0 (ν)

)
+ μ .



568 PETER SCHNEIDER AND MARIE-FRANCE VIGNERAS

Due to the choice of N(m) the right hand side is contained in

( −1∑
i=−1−N(m)

ti0σ0δ
−i−1
0 (ν)

)
+ μ+mH1

(H0)
m

⊆
( −1∑
i=−1−N(m)

ti0m(H1)
k
)
+m(H0)

k−1 +mH1
(H0)

m

= t
−1−N(m)
0

(
(

N(m)∑
i=0

ti0m(H1)
k) + t

1+N(m)
0 m(H0)

k−1
)
+mH1

(H0)
m

⊆ t
−1−N(m)
0 m(H0)

k +mH1
(H0)

m .

In the case k = 0 the same computation actually gives

Λ(H0)t
−1
0 ⊆ t

−1−N(m)
0 Λ(H0) +mH1

(H0)
m .

ii. We now have to use, for Λ(H), the direct product topology argument twice.
First we observe that there is a k′ ≥ 0 such that

k′∑
l=0

m(H0)
k′
tl + Λ(H)tk

′+1 ⊆ m(H)k .

We then have available the integer l(k′) form the first assertion. Secondly we note
that

l(k′)+k′∑
i=0

m(H0)
l(k′)+k′−iti + Λ(H)tl(k

′)+k′+1

is open in Λ(H) and hence contains some m(H)l
′(k). We actually will show that

( l(k′)+k′∑
i=0

m(H0)
l(k′)+k′−iti + Λ(H)tl(k

′)+k′+1
)
· t−1

0

⊆ FmΛH0,H1
(H) + t

−1−N(m)
0

( k′∑
l=0

m(H0)
k′
tl + Λ(H)tk

′+1
)

holds true. We therefore consider any

λ =
∑
i≥0

λit
i with λi ∈ m(H0)

l(k′)+k′−i for 0 ≤ i ≤ l(k′) + k′.

By construction we have

λ · t−1
0 =

∑
l≥0

( ∑
i≥l

(
i

l

)
λiδ

i−l(σl(t−1
0 ))

)
tl ,

and we claim that the coefficients on the right hand side lie in m(H0)
l(k′)t−1

0 , resp.
Λ(H0)t

−1
0 , for 0 ≤ l ≤ l(k′), resp. l > l(k′). We know from the proof of Lemma 8.3

that
δi−l(t−1

0 ) ∈ n
i−lt−1

0 ,

where n denotes the maximal ideal in o[[t0]], and that σ(t−1
0 ) ⊆ o[[t0]]t

−1
0 . We

deduce that

δi−l(σl(t−1
0 )) = σl(δi−l(t−1

0 )) ⊆ σl(ni−lt−1
0 ) ⊆ ni−lt−1

0 .
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For any l ≤ i we therefore always have λiδ
i−l(σl(t−1

0 )) ∈ Λ(H0)t
−1
0 . If in addition

l ≤ k′ then

λiδ
i−l(σl(t−1

0 )) ∈ m(H0)
l(k′)+k′−i

n
i−lt−1

0 ⊆ m(H0)
l(k′)+k′−lt−1

0 ⊆ m(H0)
l(k′)t−1

0

for l ≤ i ≤ l(k′) + k′ and

λiδ
i−l(σl(t−1

0 )) ∈ m(H0)
i−lt−1

0 ⊆ m(H0)
l(k′)+k′−lt−1

0 ⊆ m(H0)
l(k′)t−1

0 .

for i > l(k′) + k′. Since any m(H0)
jt−1

0 is compact and hence closed for the weak
topology this establishes our claim, i. e., we have

λ · t−1
0 =

∑
l≥0

μlt
−1
0 tl with μl ∈ m(H0)

l(k′) for 0 ≤ l ≤ k′ and ∈ Λ(H0) for l > k′.

Applying now the first assertion we obtain that

μlt
−1
0 ∈ t

−1−N(m)
0

{
m(H0)

k′

Λ(H0)

}
+mH1

(H0)
m

{
if 0 ≤ l ≤ k′,

if l > k′.

This means that

λ · t−1
0 ∈ FmΛH0,H1

(H) + t
−1−N(m)
0

( k′∑
l=0

m(H0)
k′
tl + Λ(H)tk

′+1
)
.

�

Proposition 8.20. Suppose that H ∼= H1 � (H/H1) is a semidirect product;
the multiplication map in the ring ΛH0,H1

(H) is separately continuous for the weak
topology.

Proof. We first consider the left multiplication by some λ ∈ ΛH0,H1
(H). For

any m ≥ 0 and j ≥ 0 we find, by applying Lemma 8.8 to the set A of coefficients
of λ · t−j

0 , a k(λ,m, j) ≥ 0 such that

λ · t−j
0 ⊆ FmΛH0,H1

(H) + t
−k(λ,m,j)
0 Λ(H) .

Hence

λ · (FmΛH0,H1
(H) + t−j

0 m(H)k) ⊆ FmΛH0,H1
(H) + λ · t−j

0 m(H)k

⊆ FmΛH0,H1
(H) + t

−k(λ,m,j)
0 m(H)k

for any k ≥ 0. Suppose given now any open Cm,�. If we define a new function �′

by �′(j) := �(k(λ,m, j)) then

λ · Cm,�′ ⊆ Cm,� .

The argument for the right multiplication by λ is similar but in addition is
crucially based on Lemma 8.19.ii. Let l′′ := l′ ◦ . . . ◦ l′ denote the k(λ,m, 0)-fold
iteration of the function l′ in that lemma. By a correspondingly iterated application
of that lemma we obtain

(FmΛH0,H1
(H) + t−j

0 m(H)l
′′(k)) · λ

⊆
(
FmΛH0,H1

(H) + t−j
0 m(H)l

′′(k)
)
·
(
FmΛH0,H1

(H) + t
−k(λ,m,0)
0 Λ(H)

)
⊆ FmΛH0,H1

(H) + t−j
0 m(H)l

′′(k) · t−k(λ,m,0)
0 Λ(H)

⊆ FmΛH0,H1
(H) + t

−j−k(λ,m,0)(1+N(m))
0 m(H)k
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for any k ≥ 0. If we this time, given any function �, define a new function �′ by

�′(j) := l′′(�(j + k(λ,m, 0)(1 +N(m))))

then we have

Cm,�′ · λ ⊆ Cm,� .

�

Under our standing assumption that H ∼= H1 � (H/H1) we now have the
commutative diagram of rings

(21) ΛH0,H1
(H) Λ(H)

⊇��

ΛH1
(H0)

⊆

��

Λ(H0)
⊇��

⊆

��

where, in addition, all maps are topological inclusions for the weak, resp. compact,
topologies on the rings in the left, resp. right, column.

Proposition 8.21. Suppose that H ∼= H1 � (H/H1) is a semidirect product;
we then have:

i. ΛH0,H1
(H) is (left and right) noetherian;

ii. ΛH0,H1
(H) is flat as a left as well as right ΛH1

(H0)-module;
iii. ΛH0,H1

(H) is flat as a left as well as right Λ(H)-module.

Proof. Step 1: Let H ′
1 ⊆ H1 be an open subgroup which is normal in H. We

put

H ′
0 := < H ′

1, γ0 > and H ′ := < H ′
1, γ0, γ > .

Then H ′ is an open subgroup of H such that H ′ ∼= H ′
1 � (H/H1). Obviously

Λ(H1) is free of rank [H1 : H ′
1] as a left or right Λ(H ′

1)-module. Each of the
rings A := Λ(H0),Λ(H),ΛH1

(H0), or ΛH0,H1
(H) contains the corresponding ring

A′ := Λ(H ′
0),Λ(H

′),ΛH′
1
(H ′

0), or ΛH′
0,H

′
1
(H ′). We claim that in each case

A = Λ(H1)⊗Λ(H′
1)
A′ = A′ ⊗Λ(H′

1)
Λ(H1)

holds true. For A = Λ(H0) and A = Λ(H) this follows immediately from their
descriptions

Λ(H0) = {
∑
i≥0

μit
i
0 : μi ∈ Λ(H1)} = {

∑
i≥0

ti0μi : μi ∈ Λ(H1)}

and

Λ(H) = {
∑
i≥0

λit
i : λi ∈ Λ(H0)} = {

∑
i≥0

tiλi : λi ∈ Λ(H0)}

in terms of skew power series. Similarly, using that

ΛH1
(H0) = {

∑
i∈Z

μit
i
0 : μi ∈ Λ(H1), lim

i→−∞
μi = 0}

= {
∑
i∈Z

ti0μi : μi ∈ Λ(H1), lim
i→−∞

μi = 0}
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together with the fact that on Λ(H1) the m(H1)-adic and the m(H ′
1)Λ(H1)-adic

topology coincide the claim is clear for the ring A = ΛH1
(H0) as well. Finally, for

the ring A = ΛH0,H1
(H) we use Prop. 8.15 and obtain

ΛH′
0,H

′
1
(H ′)⊗Λ(H′

1)
Λ(H1) =

(
lim←−

(
Λ(H ′)/m(H ′

1)
mΛ(H ′)

)
Θ

)
⊗Λ(H′

1)
Λ(H1)

= lim←−
((
Λ(H ′)/m(H ′

1)
mΛ(H ′)

)
Θ
⊗Λ(H′

1)
Λ(H1)

)
= lim←−

(
Λ(H ′)/m(H ′

1)
mΛ(H ′)⊗Λ(H′

1)
Λ(H1)

)
Θ

= lim←−
(
Λ(H)/m(H ′

1)
mΛ(H)

)
Θ

= lim←−
(
Λ(H)/m(H1)

mΛ(H)
)
Θ

= ΛH0,H1
(H)

where the second, resp. the second last, identity is due to the fact that Λ(H1) is
free over Λ(H ′

1) of rank [H1 : H ′
1], resp. to the cofinality of {m(H1)

m}m≥1 and
{m(H ′

1)
mΛ(H1)}m≥1. The symmetric identity follows in the same way. This es-

tablishes our claim and shows that in order to prove our assertion we may replace,
whenever convenient, the triple H1 ⊆ H0 ⊆ H by the triple H ′

1 ⊆ H ′
0 ⊆ H ′.

Step 2: The above commutative diagram of rings (21) in fact is a diagram of
filtered rings with complete and separated filtrations defined by the two-sided ideals

FmΛ(H0) := m(H1)
mΛ(H0), FmΛ(H) := m(H1)

mΛ(H),

FmΛH1
(H0) := mH1

(H0)
m = m(H1)

mΛH1
(H0),

and FmΛH0,H1
(H) as before. We obtain a corresponding commutative diagram of

graded rings

(22) gr• ΛH0,H1
(H) gr• Λ(H)��

gr• ΛH1
(H0)

��

gr• Λ(H0).��

��

By the way, all four maps in this diagram again are injective (cf. (14) and [SV2]
Lemma 1.12.i). By [LvO] Prop.s II.1.2.1 and II.1.2.3 our assertions follow from:

iv. All four graded rings in the diagram (22) are left and right noetherian;
v. gr• ΛH0,H1

(H) is flat as a left and as a right gr• ΛH1
(H0)-module;

vi. gr• ΛH0,H1
(H) is flat as a left and as a right gr• Λ(H)-module.

Ad v.: As a consequence of Lemma 8.12.iv and of the flatness of Λ(H) over Λ(H0)
we have

gr• ΛH1
(H0) ⊗Λ(H0)/m(H1)Λ(H0) Λ(H)/m(H1)Λ(H)

∼=−−→ gr• ΛH0,H1
(H) .

The same flatness then implies, by base extension, that gr• ΛH0,H1
(H) is flat as a

left gr• ΛH1
(H0)-module. Using Prop. 8.15.i one sees that one also has

Λ(H)/m(H1)Λ(H) ⊗Λ(H0)/m(H1)Λ(H0) gr• ΛH1
(H0)

∼=−−→ gr• ΛH0,H1
(H)

which implies the asserted flatness as a right module.
Ad vi.: Because of [SV2] lemma 1.12.ii we have

FmΛ(H) = {
∑
i≥0

tiνi ∈ Λ(H) : νi ∈ m(H1)
mΛ(H0)}
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and
m(H1)

mΛ(H0) = {
∑
i≥0

αit
i
0 ∈ Λ(H0) : αi ∈ m(H1)

m}.

It follows first of all that the set Θ = {tj0}j≥0 is mapped, by the symbol map,
injectively into gr0 Λ(H). We therefore will not distinguish, in the notation, between
the elements in Θ and their symbols. Secondly, let ν =

∑
i≥0 t

iνi ∈ Λ(H) and

assume that νtj0 ∈ FmΛ(H) for some j ≥ 0. Then νit
j
0 ∈ m(H1)

mΛ(H0) and hence
νi ∈ m(H1)

mΛ(H0) for any i ≥ 0. We conclude that ν ∈ FmΛ(H). It follows
that the elements in Θ are left regular in gr0 Λ(H). In particular, Θ as a subset
of gr• Λ(H) is multiplicatively closed. Right regularity follows by a symmetric
argument. We consider now any element a = λ0 + . . . + λr ∈ gr• Λ(H) with
λj = λj + F j+1Λ(H) ∈ grj Λ(H). By Lemma 8.14 we find, after choosing some
m > r, an integer M > 0 and elements μ0, . . . , μr ∈ Λ(H) such that

tM0 λj ≡ μjt0 mod FmΛ(H) for any 0 ≤ j ≤ r.

The regularity of t0 then implies that μj ∈ F jΛ(H) and that

tM0 λj = μjt0 with μj := μj + F j+1Λ(H) ∈ grj Λ(H).

By setting b := μ0 + . . .+ μr we obtain

tM0 a = bt0 in gr• Λ(H).

This means that Θ ⊆ gr• Λ(H) satisfies the left Ore condition. Again the right
Ore condition holds as well by a symmetric argument. Since t0 is invertible in
gr• ΛH0,H1

(H) the injective homomorphism gr• Λ(H) −→ gr• ΛH0,H1
(H) extends

to an injective ring homomorphism(
gr• Λ(H)

)
Θ
−→ gr• ΛH0,H1

(H) .

As a straightforward consequence of Prop. 8.15.i it also is surjective and hence is
an isomorphism. As a localization in Θ the ring gr• ΛH0,H1

(H) of course is (left
and right) flat over gr• Λ(H).

Step 3: For this proof we do not need to establish the assertion iv. in full
generality. Because of Step 1 it in fact suffices to do this after replacing the given
triple H1 ⊆ H0 ⊆ H by an appropriate “smaller” one. By [Wil] Prop. 8.5.2 there

is an open normal subgroup H̃ ⊆ H which is extra-powerful. Then H ′
1 := H1∩H̃ is

extra-powerful, too, since H̃/H ′
1 is torsionfree. Hence it suffices to prove iv. under

the additional assumption that H1 is extra-powerful.
We have seen that gr• ΛH0,H1

(H) is a localization of gr• Λ(H). By exactly
analogous arguments gr• ΛH1

(H0) is a localization of gr• Λ(H0). Since being noe-
therian is preserved by localization (cf. [MCR] Prop. 2.1.16.iii) we therefore need
only to consider the rings gr• Λ(H) and gr• Λ(H0). They contain the graded ring
gr• Λ(H1) for the filtration FmΛ(H1) := m(H1)

m. Using [SV2] Lemma 1.12.i one
checks that

gr• Λ(H) = gr• Λ(H1)⊗k Ω(H/H1) = Ω(H/H1)⊗k gr
• Λ(H1)

and
gr• Λ(H0) = gr• Λ(H1)⊗k Ω(H0/H1) = Ω(H0/H1)⊗k gr• Λ(H1)

hold true (at least as bimodules). We see, first of all, that if H ′ ⊆ H is an open
subgroup containing H1 then gr• Λ(H) and gr• Λ(H0) are finitely generated free
modules over gr• Λ(H ′) and gr• Λ(H0 ∩H ′), respectively. Due to [DDMS] Lemma
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3.4 and Cor. 8.34 there is an open normal subgroup N ⊆ H1 such that each element
of N is a p-th power in H1. Since, by the above observation, we may replace H
by any appropriate open H ′ ⊇ H1 it suffices to consider the special case where
conjugation by γ0 and by γ both induce the identity on H1/N . This implies that
the commutators [γ0, h] and [γ, h], for any h ∈ H1, are p-th powers in H1. The
computation in the proof of [SV2] Lemma 4.3.ii then shows that the two factors
gr• Λ(H1) and Ω(H/H1) in the above tensor product representation of gr• Λ(H)
centralize each other.

At this point we make use of our additional assumption that H1 is extra-
powerful. Then gr• Λ(H1) is a finitely generated commutative k-algebra by [SV2]
Lemma 4.3.iii. It follows that gr• Λ(H), resp. gr• Λ(H0), is an almost normalizing
extension of the noetherian ring Ω(H/H1), resp. Ω(H0/H1), and hence is noetherian
by [MCR] Thm. 1.6.14. �

Consider any finitely generated ΛH1
(H0)-module M . We choose a presentation

of M as a quotient ΛH1
(H0)

n � M of a finitely generated free ΛH1
(H0)-module.

On ΛH1
(H0)

n we have the product topology of the weak topology on each factor
ΛH1

(H0), and then on M we consider the corresponding quotient topology. The
latter is easily shown to be independent of the particular presentation of M used
and to make M into a topological ΛH1

(H0)-module. It will be called the weak
topology on M .

Lemma 8.22. For any finitely generated ΛH1
(H0)-module M we have:

i. Every submodule L ⊆ M is closed for the weak topology;
ii. M is is complete and Hausdorff in its weak topology.

Proof. i. By the definition of the weak topology we only need to consider the
case M = ΛH1

(H0)
n. Note that in this case M is a ΛH1

(H0)-bimodule so that we
may multiply by any ring element from the right. We recall that the ring ΛH1

(H0)
is noetherian and pseudocompact. Hence M is a finitely generated pseudocompact
ΛH1

(H0)-module. The general theory of pseudocompact rings then tells us that
L is (finitely generated and hence) closed for the pseudocompact topology. As a
consequence we have by [Gab] IV.3 Prop. 11 that

L =
⋂
m≥0

(L+mH1
(H0)

mM) .

Note that mH1
(H0)

mM is closed in M by Lemma 8.2.v. Let now {xi}i∈N be a
sequence in L which converges to some x in M . It suffices to show that x ∈
L+mH1

(H0)
mM for any m ≥ 0. We fix some m ≥ 0. By Remark 8.6.vi and Lemma

8.8 we find an l ≥ 0 such that all xit
l
0 as well as xtl0 lie in Λ(H0)

n +mH1
(H0)

mM .
Hence modulo mH1

(H0)
mM the sequence {xit

l
0}i lies in(

(Ltl0 +mH1
(H0)

mM)/mH1
(H0)

mM
)
∩

(
(Λ(H0)

n +mH1
(H0)

mM)/mH1
(H0)

mM
)

and converges to xtl0 in (Λ(H0)
n+mH1

(H0)
mM)/mH1

(H0)
mM with respect to the

topology induced by the weak topology. By Lemma 8.2.ii this topology coincides
with the natural compact topology on the latter as a finitely generated module over
the noetherian compact ring Λ(H0). The former is a (necessarily finitely generated)
Λ(H0)-submodule of the latter and as such has to be closed. This shows that xtl0
lies in Ltl0 +mH1

(H0)
mM and hence that x ∈ L+mH1

(H0)
mM .
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ii. The assertion i. immediately implies that M is Hausdorff for the weak topol-
ogy. By construction the weak topology on ΛH1

(H0)
n has a countable fundamental

system of open neighbourhoods of zero. Hence it is metrizable (cf. [War] Thm.
6.12). It also is complete by Lemma 8.2.iv. In this situation any factor group of
ΛH1

(H0)
n by a closed subgroup, so in particular M by i., is complete as well (cf.

[War] Thm. 6.12). �
Remark 8.23. Let M be a complete Hausdorff linear-topological o-module; any

continuous (left) H-action on M extends uniquely to a continuous (left) Λ(H)-
module structure on M .

Proof. [Laz] Thm. II.2.2.6. �
Let Γ ⊆ H denote the closed subgroup topologically generated by our choice of

γ; in particular, Γ
∼=−→ H/H0

∼= Zp. Since H1 is normal in H the conjugation action
of Γ on H0 induces an action of Γ on the ring ΛH1

(H0). We let σγ′ denote the ring
automorphism corresponding to γ′ ∈ Γ.

Remark 8.24. i. The σ·-action of Γ on ΛH1
(H0) is continuous for the

weak topology.
ii. We have σγ′(λ) = γ′ · λ · γ′−1 for any γ′ ∈ Γ and λ ∈ ΛH1

(H0) (where ·
denotes the multiplication in the ring ΛH0,H1

(H).

Proof. i. The Γ-action respects the rings Λ(H0) ⊇ Λ(H1) and hence their
unique maximal ideals. It follows immediately that

σγ′(Bm) = Bm for any γ′ ∈ Γ and any m ≥ 0.

For the asserted continuity it therefore remains to show that for any μ ∈ ΛH1
(H0)

and any m ≥ 0 there is an open subgroup Γ′ ⊆ Γ such that

σγ′(μ) ∈ μ+Bm for any γ′ ∈ Γ′.

Since this relation only depends on μ modulo Bm we may assume that μ is of the
form μ = t−l

0 ν for some l ≥ 0 and some ν ∈ Λ(H0). We fix an m′ ≥ m such that

t−l
0 Bm′ ⊆ Bm. First of all, contemplating the diagram

Γ× Λ(H0)

(γ,μ) �→(γ,μ,γ−1)

��

σ· �� Λ(H0)

⊆
��

Λ(H)× Λ(H0)× Λ(H)
product�� Λ(H)

we see that the σ·-action on Λ(H0) is continuous. Hence there is an open subgroup
Γ1 ⊆ Γ such that

σγ′(ν) ∈ ν +m(H0)
m′ ⊆ ν +Bm′ for any γ′ ∈ Γ1.

Secondly we have to revisit the computation in Lemma 8.3. We recall that n

denotes the maximal ideal of the subring o[[t0]] in Λ(H0). Define the continuous
homomorphism e : Γ −→ 1 + pZp by

γ′γ0γ
′−1 = γ

e(γ′)
0

and put Γ2 := e−1(1 + pm+l+1Zp). We have

σγ′(t0) = e(γ′)t0 +
∑
j≥2

(
e(γ′)

j

)
tj0 .
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If vp denotes the p-adic valuation then, for j ≥ 2 and y ∈ Zp, one has (cf. [Sch]
Prop. 47.4)

vp(

(
y

j

)
) ≥ vp(y − 1)− j .

It follows that for γ′ ∈ Γ2 we have

σγ′(t0) = e(γ′)t0
(
1 +

∑
j≥2

e(γ′)−1

(
e(γ′)

j

)
tj−1
0

)

∈ e(γ′)t0
(
1 +

∑
j≥2

(πo)m+l+1−jtj−1
0

)

⊆ e(γ′)t0
(
1 +

l+1∑
j=2

(πo)mtj−1
0 + n

mtl0
)

⊆ e(γ′)t0
(
1 + (πo)mo[[t0]] + nmtl0

)
,

hence

σγ′(tl0) ∈ e(γ′)ltl0
(
1 + (πo)mo[[t0]] + nmtl0

)
,

and therefore

σγ′(t−l
0 ) ∈ e(γ′)−lt−l

0

(
1 + (πo)mo[[t0]] + n

mtl0
)

⊆ e(γ′)−lt−l
0 +mH1

(H0)
m +m(H0)

m

⊆ e(γ′)−lt−l
0 +Bm = t−l

0 + (e(γ′)−l − 1)t−l
0 +Bm

= t−l
0 +Bm .

Together we obtain

σγ′(t−l
0 ν) ∈ (t−l

0 +Bm)(ν +Bm′) ⊆ t−l
0 ν + t−l

0 Bm′ +Bm +BmBm′ ⊆ t−l
0 ν +Bm

for any γ′ ∈ Γ′ := Γ1 ∩ Γ2.
ii. Since

ΛH0,H1
(H) = lim←−

m

(
ΛH0,H1

(H)/FmΛH0,H1
(H)

)

we may do the comparison modulo FmΛH0,H1
(H). By (20) we therefore may

assume that λ = t−j
0 μ for some j ≥ 0 and some μ ∈ Λ(H). At this point we

emphasize that, for any fixed γ′, we assert the equality of two ring automorphisms.
Hence we are reduced to showing that the assertion holds true in the two cases
λ = t0 and λ = μ. The first case, of course, is subsumed by the second one. But
for λ ∈ Λ(H) our assertion is clear since the multiplication · restricts to the usual
multiplication in Λ(H). �

Definition 8.25. A (ΛH1
(H0),Γ) -module is a finitely generated left ΛH1

(H0)-
module with a σ·-linear left Γ-action which is continuous for the weak topology.

Let us consider a (left) ΛH0,H1
(H)-module M such that

– M is finitely generated over ΛH1
(H0) and

– the module multiplication ΛH0,H1
(H)×M −→ M is separately continuous

for the weak topologies.
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By applying Prop. 8.18.i to a commutative diagram

ΛH0,H1
(H)n

		 		��
���

���

M

ΛH1
(H0)

n

⊆

��



 

���������

of presentations of M the latter requirement implies that the weak topology on M
coincides with the quotient topology derived from some presentation ΛH0,H1

(H)n �
M . As another consequence of Prop. 8.18.i the compact ring Λ(H) acts separately
continuously on M . Since both, Λ(H) and M , are complete metrizable abelian
groups by Lemma 8.2 this action, in fact, has to be continuous ([CF] Thm. 2).
In particular, by further restriction we obtain a continuous Γ-action on M . It is
σ·-linear by Remark 8.24.ii. We see that M is a (ΛH1

(H0),Γ)-module. By Lemma
8.12.ii the (left) ideal mH1

(H0)
mΛH0,H1

(H) is dense in FmΛH0,H1
(H) for the strong

and hence the weak topology. On the other hand mH1
(H0)

mM is closed in M by
Lemma 8.22.i. We point out that therefore M has the additional property that

FmΛH0,H1
(H) ·M = mH1

(H0)
mM for any m ≥ 0.

Vice versa, let us start now with a (ΛH1
(H0),Γ)-module M . By Lemma 8.2.ii

the compact ring Λ(H0) and hence the group H0 act continuously on M . Therefore
H = H0 � Γ acts continuously on M . Because of Lemma 8.22.ii we may apply
Remark 8.23 and see that the Λ(H0)-action extends to a continuous action of Λ(H)
on M . We want to see that the actions of ΛH1

(H0) and Λ(H) on M , which we
have so far, combine and further extend to a separately continuous action of the
ring ΛH0,H1

(H). For this it is useful to first make the following observation. Being
finitely generated over the noetherian pseudocompact ring ΛH1

(H0) the module M
is pseudocompact for the mH1

(H0)-adic topology. It therefore follows from [Gab]
IV.3 Prop. 10 that the natural map

(23) M
∼=−−→ lim←−

m

M/mH1
(H0)

mM

is an isomorphism of ΛH1
(H0)-modules. The σ·-action, of course, respects the

maximal ideal mH1
(H0). Hence σ·-linearity implies that Γ respects the submodules

mH1
(H0)

mM . In particular, (23) is an isomorphism of (ΛH1
(H0),Γ)-modules.

In order to construct an action by ΛH0,H1
(H) on M we therefore may assume,

provided we do this in a functorial way, that

(24) mH1
(H0)

mM = 0 for some m ≥ 0.

Let now λ ∈ ΛH0,H1
(H). By (20) we may write λ = μ+ t−j

0 ν for appropriate j ≥ 0,
μ ∈ FmΛH0,H1

(H), and ν ∈ Λ(H). We define

λ · x := t−j
0 (νx) for any x ∈ M .

In order to see that this is well defined let λ = μ′+t−j′

0 ν′ be another such decompo-

sition. We may assume that j ≥ j′. Then t−j
0 (ν−tj−j′

0 ν′) = μ′−μ ∈ FmΛH0,H1
(H)

and hence ν− tj−j′

0 ν′ ∈ FmΛH0,H1
(H)∩Λ(H) = m(H1)

mΛ(H) where the last iden-
tity comes from (14) in the proof of Lemma 8.2. Because of (24) it follows that
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(ν − tj−j′

0 ν′)x = 0 and consequently that

t−j
0 (νx) = t−j

0 ((tj−j′

0 ν′)x) = t−j
0 (tj−j′

0 (ν′x)) = t−j′

0 (ν′x) .

One easily deduces from this computation that our definition also is independent of
the choice of a specific m in (24). It is straightforward to check that the resulting
map

· : ΛH0,H1
(H)×M −→ M

is o-bilinear and functorial in M (at least as long as M satisfies (24)).

Lemma 8.26. Assuming (24) the map · is associative.

Proof. Step 1: Let λ, λ′ ∈ ΛH0,H1
(H) and x ∈ M be any elements. We have

to show that
λ · (λ′ · x) = (λ · λ′) · x

holds true. Choose j ≥ 0 and ν, ν′ ∈ Λ(H) such that

λ− t−j
0 ν, λ′ − t−j

0 ν′ ∈ FmΛH0,H1
(H) .

Then
λ · λ′ − (t−j

0 ν) · (t−j
0 ν′) ∈ FmΛH0,H1

(H) .

Hence the above identity amounts to

(25) t−j
0 (ν(t−j

0 (ν′x))) = ((t−j
0 ν) · (t−j

0 ν′)) · x .

Step 2: We claim that both sides of (25) depend continuously on ν, ν′ ∈ Λ(H).
For the left hand side this is an immediate consequence of the continuity of the
ΛH1

(H0)- and Λ(H)-actions on M . To see this on the right hand side we must
rewrite it. By Lemma 8.19.ii there are integers N = N(m, j) ≥ 0 and l = l(j) ≥ 0
such that

tl0Λ(H) · t−j
0 ⊆ m(H)l · t−j

0 ⊆ FmΛH0,H1
(H) + t−N

0 Λ(H) .

Moreover, the same lemma says that the resulting map

m(H)l −→ Λ(H)/m(H1)
mΛ(H)

ν �−→ ν̃ +m(H1)
mΛ(H) where ν · t−j

0 − t−N
0 ν̃ ∈ FmΛH0,H1

(H)

is continuous. It follows that

((t−j
0 ν) · (t−j

0 ν′)) · x = t−j−l−N
0 (((̃tl0ν)ν

′)x) ,

and that the right hand side is continuous in ν and ν′.
Step 3: The elements in H span a dense o-submodule of Λ(H). By the continu-

ity property established in Step 2 it therefore suffices to prove the identity (25) for
group elements ν = h and ν ′ = h′. Write h = h0γ1 and h′ = h′

0γ2 with h0, h
′
0 ∈ H0

and γ1, γ2 ∈ Γ. Then (25) becomes a special case of the identity

α(γ1(β(γ2x))) = (α · γ1 · β · γ2) · x for any α, β ∈ ΛH1
(H0).

Using the σ·-linearity of the Γ-action the left hand side is equal to

α(σγ1
(β)(γ1(γ2x))) = ασγ1

(β)((γ1γ2)x) = (ασγ1
(β)) · ((γ1γ2) · x) .

Using the Remark 8.24.ii the right hand side is equal to

(α · γ1 · β · γ−1
1 · γ1 · γ2) · x = (ασγ1

(β) · γ1γ2) · x .

This reduces us to the special case of associativity dealt with in the subsequent last
step.
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Step 4: For μ ∈ ΛH1
(H0) and ν ∈ Λ(H) we have

(μ · ν) · x = μ · (ν · x) .
Write μ = μ′ + t−l

0 ν′ for appropriate l ≥ 0, μ′ ∈ mH1
(H0)

m, and ν′ ∈ Λ(H0). Then

μ · ν = μ′ · ν + t−l
0 ν′ν with μ′ · ν ∈ FmΛH0,H1

(H) and ν′ν ∈ Λ(H). Hence

(μ · ν) · x = t−l
0 ((ν′ν)x) = t−l

0 (ν′(νx)) = (t−l
0 ν′)(νx) = μ · (ν · x) .

�

By using (23) our construction extends to arbitrary (ΛH1
(H0),Γ)-modules M

in an obvious way. We leave it to the reader to check that this construction is
functorial. We have achieved in this way a fully faithful embedding of the category
of (ΛH1

(H0),Γ)-modules into the category of ΛH0,H1
(H)-modules. (Of course, we

always keep supposing that H ∼= H1� (H/H1) is a semidirect product.) The image
of this embedding is characterized by the next proposition.

Remark 8.27. The map (23) is a topological isomorphism (with the right hand
side given the projective limit topology of the weak topologies).

Proof. Since mH1
(H0) is an ideal in ΛH1

(H0) any open neighbourhood of zero
in M contains some mH1

(H0)
mM . �

Proposition 8.28. For any (ΛH1
(H0),Γ)-module M the corresponding action

of ΛH0,H1
(H) on M is separately continuous for the weak topologies.

Proof. By the Remark 8.27 we again may assume that M satisfies (24). Then
the multiplication by any λ ∈ ΛH0,H1

(H) is the composite of the multiplication by

some ν ∈ Λ(H) and the multiplication by some t−j
0 ∈ ΛH1

(H0) both of which are
already known to be continuous. On the other hand let x ∈ M be a fixed element.
The o-linear map

ρx : ΛH0,H1
(H) −→ M

λ �−→ λ · x
whose continuity remains to be seen, by construction, vanishes on FmΛH0,H1

(H).
Let U ⊆ M be any open neighbourhood of zero which we may assume to be an
additive subgroup. For any j ≥ 0 there is an open neighbourhood of zero Uj ⊆ M

such that t−j
0 Uj ⊆ U . Moreover, since ρx|Λ(H) is continuous we find an �(j) ≥ 0

such that ρx(m(H)�(j)) ⊆ Uj . It follows that

ρx(t
−j
0 m(H)�(j)) = t−j

0 ρx(m(H)�(j)) ⊆ t−j
0 Uj ⊆ U

and hence that ρx(Cm,�) ⊆ U .
�

9. Generalized (ϕ,Γ)-modules

It cannot be expected that the modules Di(V ) have good properties in general.
To improve the situation we propose to pass to a specific topological localization.
To do so we will apply the construction of the previous section to the situation
introduced at the beginning of section 5. Specifically we put H1 := N1 ⊆ H0 := N0.
As γ0 we choose any element in N0 ∩Nα for some α ∈ Δ such that �(γ0) = 1. We
also put Γ := ξ(1 + pε(p)Zp), let γ be any topological generator of Γ, and define
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H := N0Γ. The semidirect product condition needed for most of the previous
section is satisfied and we have available the diagram of rings

Λ�(N0Γ) := ΛN0,N1
(N0Γ) Λ(N0Γ)

⊇��

Λ�(N0) := ΛN1
(N0)

⊆

��

Λ(N0).
⊇��

⊆

��

The σ·-action of Γ on Λ�(N0) extends the Γ-action on Λ(N0) denoted by φ· in
section 1. Remark 8.24.ii says that these Γ-actions are induced by the conjugation
by Γ on Λ�(N0Γ).

We want to go one step further. The group N0Γ is the group part of the
monoid P� = N0Γϕ

N0 where ϕ := ξ(p). Correspondingly we have the inclusion of
rings Λ(N0Γ) ⊆ Λ(P�). More precisely, if we let σϕ denote the (injective but not
surjective) continuous ring endomorphism of Λ(N0Γ) induced by the conjugation
by ϕ on N0Γ then Λ(P�) = Λ(N0Γ)[ϕ;σϕ] is the skew polynomial ring over Λ(N0Γ)
with respect to σϕ. We note that σϕ fixes the subring Λ(Γ) which means that in
Λ(P�) the two variables t and ϕ commute. The endomorphism σϕ respects the
subrings Λ(N1) ⊆ Λ(N0) and their maximal ideals and, since it still is injective on
Ω(N0/N1), also the Ore set S := S(N0, N1). It therefore extends to a ring endo-
morphism first of the localization Λ(N0)S and then of its m(N1)-adic completion
Λ�(N0), still denoted by σϕ. Since ϕ and γ commute in T� the endomorphism σϕ

commutes with σ = σγ and δ = σ − id. We visibly have σϕ(Bm) ⊆ Bm for any
m ≥ 0 which implies that σϕ is continuous for the weak topology on Λ�(N0).

Lemma 9.1. i. σϕ(t0) = (t0 + 1)p − 1.
ii. t0 = uσϕ(t0) for some unit u in Λ{1}(N0 ∩Nα) ⊆ Λ�(N0).
iii. σϕ respects bounded subsets for the weak topology on Λ�(N0).

Proof. i. This follows immediately from our choice of γ0 and the fact that
α ◦ ξ = idGm

.
ii. The ring Λ{1}(N0 ∩ Nα) is a commutative local ring with maximal ideal

generated by π. By i. we have σϕ(t0) = t0v where v :=
∑p

i=1

(
p
i

)
ti−1
0 = p + . . . +

tp−1
0 ∈ o[t0] does not lie in this maximal ideal. Hence its inverse u := v−1 exists.

iii. Let A ⊆ Λ�(N0) be any bounded subset. For a given m ≥ 0 let l ≥ 0 be
such that tl0A ⊆ mN1

(N0)
m + Λ(N0) (cf. Lemma 8.8). Applying σϕ and using ii.

we obtain

tl0σϕ(A) = ulσϕ(t
l
0A) ⊆ mN1

(N0)
m + ulΛ(N0) .

If we choose k ≥ 0 such that tk0u ∈ πmΛ{1}(N0 ∩Nα) + o[[t0]] then t
(k+1)l
0 σϕ(A) ⊆

mN1
(N0)

m + Λ(N0). It now follows from Lemma 8.8 that σϕ(A) is bounded.
�

We therefore may define the map

σϕ : Λ�(N0Γ) −→ Λ�(N0Γ)∑
i≥0

μit
i �−→

∑
i≥0

σϕ(μi)t
i .

It is immediate from (18), the continuity of σϕ on Λ�(N0), and its commutation
with σ and δ that this extended σϕ in fact is an endomorphism of the ring Λ�(N0Γ).
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Remark 9.2. The endomorphism σϕ is continuous for the strong as well as
the weak topology on Λ�(N0Γ).

Proof. The case of the strong topology is obvious since σϕ respects the filtra-
tion FmΛ�(N0Γ). The case of the weak topology is a straightforward consequence
of the following computation based on Lemma 9.1.ii. Again let k ≥ 0 be such that
tk0u ∈ πmΛ{1}(N0 ∩Nα) + o[[t0]]. For any j, l ≥ 0 we then have

σϕ(t
−j
0 m(N0Γ)

l) ⊆ σϕ(t0)
−j

m(N0Γ)
l

= t−j
0 uj

m(N0Γ)
l

= t
−j(1+k)
0 tkj0 uj

m(N0Γ)
l

⊆ t
−j(1+k)
0 (πmΛ{1}(N0 ∩Nα) + o[[t0]])m(N0Γ)

l

⊆ FmΛ�(N0Γ) + t
−j(1+k)
0 m(N0Γ)

l

�
This allows us to form the skew polynomial ring

Λ�(P�) := Λ�(N0Γ)[ϕ;σϕ] .

As a bimodule it satisfies

(26) Λ�(P�) = Λ�(N0Γ)⊗Λ(N0Γ) Λ(P�) .

Our basic diagram for the following now is

Λ�(P�) Λ(P�)
⊇��

Λ�(N0)

⊆

��

Λ(N0).
⊇��

⊆

��

Definition 9.3. A (Λ�(N0),Γ, ϕ)-module M is a (Λ�(N0),Γ)-module with an
additional σϕ-linear endomorphism ϕM which commutes with the Γ-action.

We point out that, as σϕ is continuous on Λ�(N0), the σϕ-linear endomorphism
ϕM of a (Λ�(N0),Γ, ϕ)-module M , which by definition is finitely generated over
Λ�(N0), automatically is continuous for the weak topology on the module M .

In Lemma 8.26 we have seen that the (Λ�(N0),Γ)-modules form a full subcat-
egory of all Λ�(N0Γ)-modules.

Lemma 9.4. Let M be a (Λ�(N0),Γ, ϕ)-module viewed as a Λ�(N0Γ)-module;
the endomorphism ϕM is σϕ-linear with respect to the Λ�(N0Γ)-action.

Proof. We may assume that mN1
(N0)

mM = 0 for some m ≥ 0. By the
definition of the Λ�(N0Γ)-module structure we then have to show the identity

ϕM ((t−j
0 ν) · x) = σϕ(t

−j
0 ν) · ϕM (x)

for any j ≥ 0, ν ∈ Λ(N0Γ), and x ∈ M . As a consequence of Prop. 8.28, Remark
9.2, and the continuity of ϕM both sides of this identity depend continuously on
ν. Hence it suffices to consider any ν of the form ν = ν0 + ν1t + . . . + νkt

k with
νi ∈ Λ(N0). By assumption ϕM is σϕ-linear with respect to scalars in Λ�(N0).
This, in fact, reduces us to the identity

ϕM (t · x) = σϕ(t) · ϕM (x) for any x ∈ M .
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On the left hand side ϕM commutes with the Γ-action by assumption. On the right
hand side we have σϕ(t) = t. Hence both sides are equal to t · ϕM (x). �

This lemma implies that by letting ϕ ∈ Λ(P�) act as ϕM on a (Λ�(N0),Γ, ϕ)-
module M we obtain a Λ�(P�)-module. In this way the (Λ�(N0),Γ, ϕ)-modules form
a full subcategory of all Λ�(P�)-modules.

We recall from section 1 that a Λ(P�)-module M is etale if the Λ(P�)-linear
map

Λ(P�)⊗Λ(P�),σϕ
M

∼=−−→ M

μ⊗ x �−→ μϕx

is an isomorphism. We observe that the endomorphisms σϕ of Λ�(N0Γ) and of
Λ(P�) both come by restriction from the ring endomorphism

σϕ : Λ�(P�) = Λ�(N0Γ)[ϕ;σϕ] −→ Λ�(P�) = Λ�(N0Γ)[ϕ;σϕ]∑
k≥0

λkϕ
k −→

∑
k≥0

σϕ(λk)ϕ
k .

This suggests the following definition.

Definition 9.5. A Λ�(P�)-module M is called etale if the Λ�(P�)-linear map

Λ�(P�)⊗Λ�(P�),σϕ
M

∼=−−→ M

μ⊗ x �−→ μϕx

is an isomorphism.

Proposition 9.6. The endomorphism σϕ of Λ�(P�) is injective and makes
Λ�(P�) a free right module of rank [N0 : ϕN0ϕ

−1] over itself; the map

Λ�(N0)⊗Λ�(N0),σϕ
Λ�(P�)

∼=−−→ Λ�(P�)

ν ⊗ μ �−→ νσϕ(μ)

is an isomorphism.

Proof. Preliminary observation: In the general situation of section 8 let H ′
0 ⊆

H0 be an open subgroup and put H ′
1 := H1 ∩H ′

0. We then have of course Λ(H ′
0) ⊆

Λ(H0) and J(H ′
0, H

′
1) ⊆ J(H0, H1). But since Ω(H ′

0/H
′
1) ⊆ Ω(H0/H1) we also

have S(H ′
0, H

′
1) ⊆ S(H0, H1). By localization and completion we therefore obtain

a natural ring homomorphism ΛH′
1
(H ′

0) −→ ΛH1
(H0) which gives rise to a natural

homomorphism of bimodules

Λ(H0)⊗Λ(H′
0)
ΛH′

1
(H ′

0) −→ ΛH1
(H0) .

Step 1: We claim that the natural map

Λ(N0)⊗Λ(ϕN0ϕ−1) ΛϕN1ϕ−1(ϕN0ϕ
−1)

∼=−−→ ΛN1
(N0) = Λ�(N0)

is bijective. (Note that ϕN1ϕ
−1 = N1 ∩ ϕN0ϕ

−1.) We choose an open subgroup
N ′

0 ⊆ ϕN0ϕ
−1 ⊆ N0 which is normal in N0. We now apply (a symmetric ver-

sion of) [SV2] Prop. 4.5 to the pairs N ′
0 � ϕN0ϕ

−1 and N ′
0 � N0 obtaining the

isomorphisms

Λ(ϕN0ϕ
−1)⊗Λ(N ′

0)
ΛN1∩N ′

0
(N ′

0)
∼=−−→ ΛN1∩ϕN0ϕ−1(ϕN0ϕ

−1)
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and

Λ(N0)⊗Λ(N ′
0)
ΛN1∩N ′

0
(N ′

0)
∼=−−→ ΛN1

(N0) .

The combination of the two gives our claim. In addition we know that the ring
ΛϕN1ϕ−1(ϕN0ϕ

−1) is flat as a (left) Λ(ϕN0ϕ
−1)-module. It follows that the natural

ring homomorphism

ΛϕN1ϕ−1(ϕN0ϕ
−1) = Λ(ϕN0ϕ

−1)⊗Λ(ϕN0ϕ−1) ΛϕN1ϕ−1(ϕN0ϕ
−1)

−→ Λ(N0)⊗Λ(ϕN0ϕ−1) ΛϕN1ϕ−1(ϕN0ϕ
−1) = Λ�(N0)

is injective. In an obvious reformulation we have shown so far that the ring endo-
morphism σϕ of Λ�(N0) is injective and that the bimodule map

Λ(N0)⊗Λ(N0),σϕ
Λ�(N0)

∼=−−→ Λ�(N0)

ν ⊗ μ �−→ νσϕ(μ)

is bijective.
Step 2: We let r := [N0 : ϕN0ϕ

−1] and we fix representatives n1, . . . , nr ∈ N0

for the cosets in N0/ϕN0ϕ
−1. In the previous step we have seen that the map

I : Λ�(N0)
r ∼=−−→ Λ�(N0)

(μ(1), . . . μ(r)) �−→ n1σϕ(μ
(1)) + . . .+ nrσϕ(μ

(r))

is bijective. We claim that I also is a homeomorphism for the weak topology, resp.
the direct product of the weak topologies, on the right, resp. left, hand side. To see
this we pick an open subgroup N ′ ⊆ ϕN1ϕ

−1 which is normal in N0. In particular,
N ′ is normal in ϕN0ϕ

−1. It then follows from [SV2] Lemma 4.4 that in Λ�(N0),
resp. in ΛϕN1ϕ−1(ϕN0ϕ

−1) the mN1
(N0)-adic and the m(N ′)Λ�(N0)-adic filtrations,

resp. the mϕN1ϕ−1(ϕN0ϕ
−1)-adic and the m(N ′)Λ�(ϕN0ϕ

−1)-adic filtrations, are
equivalent. In fact, this means that in Λ�(N0) all three filtrations, the mN1

(N0)-adic
one, the m(N ′)Λ�(N0)-adic one, and the m(ϕ−1N ′ϕ)Λ�(N0)-adic one are equivalent.

Visibly under the map I the product filtration
(
m(ϕ−1N ′ϕ)mΛ�(N0)

)r
on the left

hand side corresponds to the filtration

n1m(N ′)mσϕ(Λ�(N0)) + . . .+ nrm(N ′)mσϕ(Λ�(N0)) =

m(N ′)m
(
n1σϕ(Λ�(N0)) + . . .+ nrσϕ(Λ�(N0))

)
= m(N ′)mΛ�(N0) .

on the right hand side. It remains to observe that the restriction of the map I to

Λ(N0)
r

∼=−−→ Λ(N0) is a homeomorphism by compactness.
Step 3: It follows immediately from the first step that both, the ring endomor-

phism σϕ of Λ�(N0Γ) as well as the bimodule map

Λ(N0)⊗Λ(N0),σϕ
Λ�(N0Γ) −→ Λ�(N0Γ)

ν ⊗ μ = ν ⊗
∑
i≥0

μit
i �−→ νσϕ(μ) =

∑
i≥0

νσϕ(μi)t
i ,(27)

are injective. To establish the surjectivity of the latter map let λ =
∑

i≥0 λit
i ∈

Λ�(N0Γ) be any element. According to the first step there are, for any i ≥ 0,

uniquely determined elements μ
(1)
i , . . . , μ

(r)
i ∈ Λ�(N0) such that

λi = n1σϕ(μ
(1)
i ) + . . .+ nrσϕ(μ

(r)
i ) .
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We claim that, for each 1 ≤ k ≤ r, the subset {μ(k)
i }i≥0 ⊆ Λ�(N0) is bounded

for the weak topology. Let m′ ≥ 0. By the second step we find an m′′ ≥ 0
such that I(Br

m′) ⊇ Bm′′ . The boundedness of the set {λi}i≥0 implies the exis-
tence of an m ≥ 0 such that λiBm ⊆ Bm′′ for any i ≥ 0. For any ν ∈ Bm we

then obtain I
(
(μ

(1)
i ν, . . . , μ

(r)
i ν)

)
= λiσϕ(ν) ∈ λiσϕ(Bm) ⊆ λiBm ⊆ Bm′′ , hence

μ
(1)
i ν, . . . , μ

(r)
i ν ∈ Bm′ , and therefore

μ
(k)
i Bm ⊆ Bm′ for any i ≥ 0 and 1 ≤ k ≤ r.

It follows that the elements μ(k) :=
∑

i≥0 μ
(k)
i tk are well defined in Λ�(N0Γ) and

that we have

λ = n1σϕ(μ
(1)) + . . .+ nrσϕ(μ

(r)) .

This proves the surjectivity and hence bijectivity of (27).
Step 4: The injectivity of σϕ on Λ�(P�) is a trivial consequence of the injectivity

of σϕ on Λ�(N0Γ) established in the third step. The isomorphisms (26) and (27)
combine into the isomorphisms

Λ(N0)⊗Λ(N0),σϕ
Λ�(P�)

∼=−−→ Λ�(P�) and Λ�(N0)⊗Λ�(N0),σϕ
Λ�(P�)

∼=−−→ Λ�(P�) .

�

Corollary 9.7. Let M be a (Λ�(N0),Γ, ϕ)-module; viewed as a Λ�(P�)-module
M is etale if and only if the map

Λ�(N0)⊗Λ�(N0),σϕ
M

∼=−−→ M

ν ⊗ x �−→ νϕM (x)

is bijective.

Proof. By Prop. 9.6 we have

Λ�(P�)⊗Λ�(P�),σϕ
M = Λ�(N0)⊗Λ�(N0),σϕ

Λ�(P�)⊗Λ�(P�)M = Λ�(N0)⊗Λ�(N0),σϕ
M .

�

Let M(Λ�(P�)) be the abelian category of (left unital) Λ�(P�)-modules and
D+(Λ�(P�)) the corresponding bounded below derived category. Let Met(Λ�(P�))
denote the full subcategory in M(Λ�(P�)) of etale modules and D+

et(Λ�(P�)) the
full subcategory in D+(Λ�(P�)) of all complexes whose cohomology modules are
etale.

Corollary 9.8. i. The subcategory Met(Λ�(P�)) of M(Λ�(P�)) is clo-
sed under the formation of kernels, cokernels, extensions and arbitrary
inductive and projective limits; in particular, Met(Λ�(P�)) is an abelian
category.

ii. D+
et(Λ�(P�)) is a triangulated subcategory of D+(Λ�(P�)).

The base change functor for modules, which by Prop. 8.21.iii and (26) is exact,
obviously restricts to an exact functor

Λ�(P�)⊗Λ(P�) : Met(Λ(P�)) −→ Met(Λ�(P�)) .

and then extends to the functor

Λ�(P�)⊗Λ(P�) : D
+
et(Λ(P�)) −→ D+

et(Λ�(P�)) .
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between derived categories. We introduce the composed functor

RD� : D
−(Mo−tor(P ))

RD−−−→ D+
et(Λ(P+))

forget−−−→ D+
et(Λ(P�))

Λ�(P�)⊗Λ(P�)−−−−−−−−−→ D+
et(Λ�(P�)) .

as well as the δ-functor

Di
�(V ) := hi(RD�(V )) = Λ�(P�)⊗Λ(P�) D

i(V ) for i ≥ 0

from Mo−tor(P ) into etale Λ�(P�)-modules. The fundamental open question in
this context is for which representations V in Mo−tor(P ) the etale module D0

� (V )
(or even any Di

�(V )) is a (Λ�(N0),Γ, ϕ)-module.
A first result in this direction can be obtained by generalizing to our noncom-

mutative setting the arguments in [Eme].

Proposition 9.9. Let V be an admissible representation in Mo−tor(G); sup-
pose that for some M ∈ P+(V ) there is an exact sequence of P+-representations of
the form

. . . −→ ind
P+

P0
(Vn) −→ . . . −→ ind

P+

P0
(V0) −→ M −→ 0

with Vn finite for any n ≥ 0; then M∗ and hence D(V ) are finitely generated
Λ(N0)-modules, and P+(V ) contains a unique minimal element.

Proof. Step 1: At first we let M ∈ P+(V ) be arbitrary. Since D(V ) is a
quotient of M∗ and since Λ(N0) is noetherian it suffices to show that the com-
pact Λ(N0)-module M∗ is finitely generated. By the topological Nakayama lemma
([BH]) this reduces to the finiteness of M∗/m(N0)M

∗. The latter is the Pontrja-
gin dual of the group H0(N0,M

π=0) of N0-invariants in the k-vector space Mπ=0

consisting of all elements in M which are annihilated by π. We therefore will show
that H0(N0,M

π=0) is finite.
The N0-invariants H0(N0, V ) in V do not form a P+-subrepresentation. But

the monoid T+ acts on H0(N0, V ) via the so called Hecke action which is defined
by

t · v :=
∑

n∈N0/tN0t−1

ntv for t ∈ T+ and v ∈ V .

Since for T0 the Hecke action coincides with the group action we see that the
Hecke action extends to a Λ(P+)-module structure. By [Em] Thm. 3.2.3(1) the
admissibility of V implies that H0(N0, V ) is a union of Hecke invariant finitely
generated o-submodules. It follows thatH0(N0,M

π=0) is a union of Hecke invariant
finite k-vector spaces. Hence H0(N0,M

π=0) is finite if and only if it is finitely
generated as a Λ(P+)-module (for the Hecke action).

Step 2: Next we apply duality to H0(N0,M
π=0). First of all we observe that

H0(N0,M
π=0) = HomΛ(N0)(k,M) .

Let d denote the dimension of the p-adic Lie group N0. The ring Λ(N0) is a regular
local noetherian integral domain of global dimension d + 1 ([Neu]). We therefore
have, for any finitely generated Λ(N0)-module X, the natural duality isomorphism

Ext∗Λ(N0)
(X, .) = Tor

Λ(N0)
d+1−∗(DΛ(N0)(X), .)

between functors on the category of all (left) Λ(N0)-modules where the dualizing
complex

DΛ(N0)(X) := RHomΛ(N0)(X,Λ(N0))
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is placed in degrees −(d + 1) up to 0. On the other hand N0 is a Poincaré group
([Laz] Thm. V.2.5.8). Therefore ([NSW] Cor. 5.4.15(ii)) the dualizing complex
DΛ(N0)(k) in fact is quasi-isomorphic to the trivial module k placed in degree zero.

(We note that the character χ : N0 −→ Z×
p which describes the action of N0 on

the dualizing module I ∼= Qp/Zp has values in 1 + pZp so that Ip=0 is a trivial
N0-module.) It follows that the duality isomorphism specializes to

Ext∗Λ(N0)(k, .) = Tor
Λ(N0)
d+1−∗(k, .) ,

and we obtain in particular that

(28) H0(N0,M
π=0) = Tor

Λ(N0)
d+1 (k,M)

for any M ∈ P+(V ).
Step 3: In this step we identify the Hecke action on the right hand side of (28).

We begin with a completely general observation. Let H0 be any profinite group
and H1 ⊆ H0 any open subgroup. Then

HomΛ(H1)(Λ(H0),Λ(H1))
∼=−−→ Λ(H0)

f �−→
∑

g∈H0/H1

gf(g−1)

is an isomorphism of left Λ(H0)-modules. Hence

HomΛ(H1)(Λ(H0), Y ) = HomΛ(H1)(Λ(H0),Λ(H1))⊗Λ(H1) Y
∼= Λ(H0)⊗Λ(H1) Y

for any left Λ(H1)-module Y . It follows that the exact scalar extension functor
Λ(H0)⊗Λ(H1) . preserves injective modules and is right adjoint to the scalar restric-
tion functor. We consequently have the adjunction isomorphism

HomΛ(H1)(X,Y )
∼=−−→ HomΛ(H0)(X,Λ(H0)⊗Λ(H1) Y )

f �−→
[
x �−→

∑
g∈H0/H1

g ⊗ f(g−1x)
](29)

for any Λ(H0)-module X and any Λ(H1)-module Y . More generally, by using an
injective resolution of Y , we obtain

RHomΛ(H1)(X,Y ) ∼= RHomΛ(H0)(X,Λ(H0)⊗Λ(H1) Y ) .

For X = Λ(H0) one checks by a straightforward computation that the isomorphism
(29) is compatible with the above duality isomorphism. For purely formal reasons
the same then holds true for any X which is finitely generated and projective over
Λ(H0) and hence over Λ(H1).

Let t ∈ T+. We apply the above discussion to the groups H0 := N0 and
H1 := tN0t

−1 and obtain the commutative diagram of isomorphisms

Ext∗Λ(tN0t−1)(X,Y )

∼=

��

∼= �� TorΛ(tN0t
−1)

d+1−∗ (DΛ(tN0t−1)(X), Y )

∼=
��

Ext∗Λ(N0)
(X,Λ(N0)⊗Λ(tN0t−1) Y )

∼= �� TorΛ(N0)
d+1−∗(DΛ(N0)(X),Λ(N0)⊗Λ(tN0t−1) Y )

for any finitely generated Λ(N0)-module X and any Λ(tN0t
−1)-module Y where

the horizontal, resp. perpendicular, arrows come from duality, resp. adjunction. In
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the special case X = k we may rewrite this as a commutative diagram of isomor-
phisms

Ext∗Λ(N0)(k, Y )

∼=
��

∼= �� TorΛ(N0)
d+1−∗(k, Y )

∼=
��

Ext∗Λ(N0)(k,Λ(N0)⊗Λ(N0),t Y )
∼= �� TorΛ(N0)

d+1−∗(k,Λ(N0)⊗Λ(N0),t Y )

for any Λ(N0)-module Y .
We now suppose that Y is a Λ(P+)-module. We then have the Λ(N0)-equiva-

riant map

Λ(N0)⊗Λ(N0),t Y −→ Y

λ⊗ y �−→ λty .
(30)

Hence the naturality of the duality isomorphism together with the above commu-
tative diagram gives rise to the commutative diagram

Ext∗Λ(N0)(k, Y )

��

∼= �� TorΛ(N0)
d+1−∗(k, Y )

��
Ext∗Λ(N0)(k, Y )

∼= �� TorΛ(N0)
d+1−∗(k, Y )

where the vertical arrows are induced by (30). We see that the duality isomorphism
respects the natural Λ(P+)-actions on both sides. Moreover, using (29) one easily
checks that under the identification H0(N0,M

π=0) = HomΛ(N0)(k,M) the Hecke
action on the left hand side corresponds to the natural Λ(P+)-action on the right
hand side.

Step 4: It remains to show that under the assumption imposed on M in our

assertion Tor
Λ(N0)
d+1 (k,M) is finitely generated over Λ(P+) (for the natural action).

In fact, since N0 of course acts trivially on TorΛ(N0)
∗ (k,M), it is the factor ring

Λ(P+)/m(N0)Λ(P+) by the two-sided ideal m(N0)Λ(P+) which really acts. This
factor ring is isomorphic to the ring Ω(T+) which is formally constructed in exactly
the same way as Λ(P+) but starting from the monoid rings over k of the factor
monoids of T+. In fact, in this situation we simply have

Ω(T+) = Ω(T0)[T+/T0]

which obviously is a commutative ring. Moreover, since the factor monoid T+/T0 is
finitely generated the ring Ω(T+) is a finitely generated algebra over the noetherian
ring Ω(T0) and therefore is noetherian.

We now compute TorΛ(N0)
∗ (k,M) as a Λ(T+)-module in the following way. Let

. . . −→
⊕
In

Λ(P+) −→ . . . −→
⊕
I0

Λ(P+) −→ M −→ 0

be any resolution of M by free Λ(P+)-modules. Since Λ(P+) is free as a left Λ(P0)-
module and Λ(P0) is flat over Λ(N0) this in particular is a resolution of M by flat
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Λ(N0)-modules. Hence

TorΛ(N0)
∗ (k,M) = h∗

(
k ⊗Λ(N0)

( ⊕
I•

Λ(P+)
))

= h∗
(⊕

I•

Λ(P+)/m(N0)Λ(P+)
)

= h∗
( ⊕

I•

Ω(T+)
)
.

It follows that if the index set Id+1 is finite then, since Ω(T+) is noetherian,

Tor
Λ(N0)
d+1 (k,M) is a finitely generated Ω(T+)-module. Therefore it suffices to show

that our assumption on M guarantees the existence of a resolution of M by finitely
generated free Λ(P+)-modules. A double complex argument further reduces us to

showing that each representation ind
P+

P0
(V ) with finite V has a resolution by finitely

generated free Λ(P+)-modules. But, Λ(P0) being noetherian, V certainly has a res-
olution by finitely generated free Λ(P0)-modules. We only have to apply the exact

functor ind
P+

P0
(.) = Λ(P+)⊗Λ(P0) − to this latter resolution. �

Having Lemma 8.12.iv in mind it also seems interesting to investigate the “com-
pleted” base change functor which sends M to

lim←−
m

((
Λ�(N0Γ)/F

mΛ�(N0Γ)
)
⊗Λ(N0Γ) M

)

= lim←−
m

((
Λ�(N0Γ)/F

mΛ�(N0Γ)
)
⊗Λ(N0Γ)

(
M/m(N1)

mM
))

= lim←−
m

((
Λ�(N0)/mN1

(N0)
m

)
⊗Λ(N0) M

)
.

Unfortunately it has no apparent exactness properties.
We finish this section by showing that by an appropriate choice of the subgroup

N0 one can improve the properties of the ring Λ�(N0).

Proposition 9.10. i. If the pro-p group N0 satisfies [N0, N0] ⊆ Np2

0

then Λ�(N0) is an integral domain.
ii. Let

ια(N0 ∩Nα) = pn(α)Zp for any α ∈ Φ+

and suppose that the function n : Φ+ −→ Z satisfies n(iα+ jβ) < in(α)+
jn(β)− 1 for any α, β ∈ Φ+ and i, j > 0 such that iα+ jβ ∈ Φ+; we then

have [N0, N0] ⊆ Np2

0 .

Proof. i. Pro-p groups satisfying the commutator condition in our assertion
are called extra-powerful in the literature. Since N0/N1 is torsionfree the subgroup
N1 is extra-powerful as well. Since even N0 is torsionfree and since N0 and N1 are
topologically finitely generated we know from [DDMS] Thm. 4.5 that N0 and N1

are uniform pro-p groups. It suffices to show that the graded ring gr• Λ�(N0) for the
m(N1)-adic filtration is an integral domain. It is known (cf. [Ven] Thm. 3.22) that
for a uniform and extra-powerful N1 the graded ring gr• Λ(N1) for the m(N1)-adic
filtration is a polynomial ring in finitely many variables over k and hence is an
integral domain. On the other hand in our situation [SV2] Lemma 4.3(ii) and (iii)
hold and say that the assumptions in [SV2] Prop. 1.15 are satisfied the proof of
which then tells us that gr• Λ�(N0) is a subring of the commutative Laurent series
ring (gr• Λ(N1))((t0)). With gr• Λ(N1) also (gr• Λ(N1))((t0)) is an integral domain.
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ii. Since N0 is topologically finitely generated it suffices, by [DDMS] §3.1, to
show that [N0, N0] is contained in the subgroup of N0 generated by the p2-powers
(every element in this subgroup then in fact is a p2-power). It further suffices to
consider the commutators [N0 ∩Nα, N0 ∩Nβ ] for any α, β ∈ Φ+. By the standard
commutation rules in N together with our assumption on n we obtain

[N0 ∩Nα, N0 ∩Nβ ] = [ι−1
α (pn(α)Zp), ι

−1
β (pn(β)Zp)]

⊆
∏
i,j>0

iα+jβ∈Φ

ι−1
iα+jβ(p

in(α)+jn(β)Zp)

⊆
∏
i,j>0

iα+jβ∈Φ

ι−1
iα+jβ(p

2+n(iα+jβ)Zp)

=
∏
i,j>0

iα+jβ∈Φ

(N0 ∩Niα+jβ)
p2

(where some order in the product is fixed). �

10. (ϕ,Γ)-modules

Everything in the preceding two sections applies in particular to the standard
monoid S� from section 1. (To be precise apply it to P = P2(Qp) and

�(

(
1 0
a 1

)
) := a and ξ(b) :=

(
1 0
0 b

)
).

It is more convenient to use an independent notation in this case. We put

ΛF (S0) := Λ{1}(S0), ΛF (S0Γ) := ΛS0,{1}(S0Γ), and ΛF (S�) := ΛF (S0Γ)[[ϕ;σϕ]] .

We have Λ(S0) = o[[t0]], and

ΛF (S0) = {
∑
j∈Z

ajt
j
0 : aj ∈ o and lim

j→−∞
aj = 0}

is the π-adic completion of the localization of o[[t0]] in the multiplicative subset
o[[t0]]\πo[[t0]]; it is a complete discrete valuation ring with residue field k((t0)). The
element

(
1 0
0 b

)
∈ Γ acts on ΛF (S0) by sending t0 to (t0+1)b−1. The endomorphism

σϕ sends t0 to (t0+1)p−1. We see that an etale (ΛF (S0),Γ, ϕ)-module in our sense
is exactly the same as an etale (ϕ,Γ)-module in the sense of Fontaine ([Fon]).

We have the exact base change functor

ΛF (S�)⊗Λ(S�) : Met(Λ(S�)) −→ Met(ΛF (S�)) .

as well as the functor

ΛF (S�)⊗Λ(S�) : D
+
et(Λ(S�)) −→ D+

et(ΛF (S�)) .

between derived categories.

Remark 10.1. For any Λ(S�)-module M such that πmM = 0 for some m ≥ 0
we have

ΛF (S�)⊗Λ(S�) M = ΛF (S0)⊗Λ(S0) M .

Proof. This follows from (26) and Lemma 8.12.iv using the fact that in the
present situation we have FmΛF (S0Γ) = πmΛF (S0Γ). �
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By composition we obtain the functor

RDΛF (S�) := ΛF (S�)⊗L

Λ(P�)
RD

= ΛF (S�)⊗Λ(S�) RDΛ(S�) : D
−(Mo−tor(P )) −→ D+

et(ΛF (S�)).

The corresponding δ-functor on Mo−tor(P ) is

Di
ΛF (S�)

(V ) := hi(RDΛF (S�)(V )) = ΛF (S�)⊗Λ(S�) D
i
Λ(S�)

(V ) for i ≥ 0.

By the universal properties of localization and adic completion the homomor-
phism � : Λ(N0) −→ Λ(S0) from section 5 extends naturally to a surjective ho-
momorphism of pseudocompact rings � : Λ�(N0) −→ Λ�(S0) (in terms of Laurent
series it is given by applying the augmentation map Λ(N1) −→ o to the coefficients).
One easily checks that the weak topology on Λ�(S0) is the quotient topology with
respect to the map � of the weak topology on Λ�(N0). Using our boundedness
criterion Lemma 8.8 one sees that � further extends to the surjective map

� : Λ�(N0Γ) −→ ΛF (S0Γ)∑
i≥0

μit
i �−→

∑
i≥0

�(μi)t
i .

Since, as a consequence of (8), the original map � respects σ and δ this extended
map � in fact is a ring homomorphism. Again it is easy to check that this extension
still is strict for the weak topologies. But � also respects σϕ (again by (8)). So we
finally obtain the surjective ring homomorphism

� : Λ�(P�) −→ ΛF (S�)∑
k≥0

λkϕ
k �−→

∑
k≥0

�(λk)ϕ
k .

This allows us to introduce the right exact base change functor

ΛF (S�)⊗Λ�(P�) : M(Λ�(P�)) −→ M(ΛF (S�))

as well as its left derived functor

ΛF (S�)⊗L

Λ�(P�)
: D(Λ�(P�)) −→ D(ΛF (S�))

between the corresponding unbounded derived categories ([KS] Thm. 14.4.3). We
recall that to compute the latter for a complex M• in D(Λ�(P�)) one chooses a

homotopically projective resolution P • ∼−→ M• and one has

ΛF (S�)⊗L

Λ�(P�)
M• � ΛF (S�)⊗Λ�(P�) P

• .

Obviously the former functor restricts to

ΛF (S�)⊗Λ�(P�) : Met(Λ�(P�)) −→ Met(ΛF (S�)) .

As far as the derived functor is concerned let Det(Λ�(P�)) and Det(ΛF (S�)) denote
the respective full triangulated subcategories of complexes with etale cohomology
modules. Let M• be a complex in Det(Λ�(P�)). As a consequence of Prop. 9.6 the
natural map

Λ�(P�)⊗Λ�(P�),σϕ
M• 	−−→ M•

then is a quasi-isomorphism. By functoriality we obtain the isomorphisms

h•(ΛF (S�)⊗L

Λ�(P�)

(
Λ�(P�)⊗Λ�(P�),σϕ

M•)) ∼= h•(ΛF (S�)⊗L

Λ�(P�)
M•) .



590 PETER SCHNEIDER AND MARIE-FRANCE VIGNERAS

To further compute the left hand term we fix a homotopically projective resolution
P • ∼−→ M•. Since any base change has the restriction functor as an exact right
adjoint

Λ�(P�)⊗Λ�(P�),σϕ
P • ∼−→ Λ�(P�)⊗Λ�(P�),σϕ

M•

is a homotopically projective resolution as well. We compute

h•(ΛF (S�)⊗L

Λ�(P�)

(
Λ�(P�)⊗Λ�(P�),σϕ

M•))
= h•(ΛF (S�)⊗Λ�(P�)

(
Λ�(P�)⊗Λ�(P�),σϕ

P •))
= h•(ΛF (S�)⊗Λ�(P�),σϕ

P •)
= h•(ΛF (S�)⊗ΛF (S�),σϕ

(
ΛF (S�)⊗Λ�(P�) P

•))
= ΛF (S�)⊗ΛF (S�),σϕ

h•(ΛF (S�)⊗Λ�(P�) P
•)

= ΛF (S�)⊗ΛF (S�),σϕ
h•(ΛF (S�)⊗L

Λ�(P�)
M•)

where the second to last identity uses Prop. 9.6. It follows that ΛF (S�)⊗L

Λ�(P�)
M•

lies in Det(ΛF (S�)).
The following commutative diagram displays all the functors we have con-

structed:

D−(Mo−tor(P ))

RD 		��
���

���
���

�

RD�

��

RDΛ(S�)

��

RDΛF (S�)





D+
et(Λ(P+))

forget ����
���

���
���

D+
et(Λ(P�))

��

�� D+
et(Λ(S�))

��
D+

et(Λ�(P�))
���

����
���

��

D+
et(ΛF (S�))

⊆
��

Det(ΛF (S�))

The unnamed arrows are the respective (derived) base change functors. For the
commutativity of the corresponding box of base changes see [KS] Prop. 14.4.7 (and
Ex. 13.3.9).

Lemma 10.2. For any Λ(P�)-module M such that πmM = 0 for some m ≥ 0
we have

Tor
Λ(P�)
i (ΛF (S�),M) = ΛF (S0)⊗Λ(S0) Tor

Λ(N0)
i (Λ(S0),M) for any i ≥ 0.

Proof. Since ΛF (S0Γ) is flat over Λ(S0Γ), Λ(P�) is flat over Λ(N0Γ), and

ΛF (S�) = ΛF (S0Γ)⊗Λ(S0Γ) Λ(S�) as well as Λ(S�) = Λ(S0Γ)⊗Λ(N0Γ) Λ(P�)

we have

Tor
Λ(P�)
i (ΛF (S�),M) = ΛF (S0Γ)⊗Λ(S0Γ) Tor

Λ(N0Γ)
i (Λ(S0Γ),M) .



A FUNCTOR FROM SMOOTH o-TORSION REPRESENTATIONS TO (ϕ,Γ)-MODULES 591

With M each Tor
Λ(N0Γ)
i (Λ(S0Γ),M) is annihilated by πm. Hence we may apply

Lemma 8.12.iv (cf. also Remark 10.1) to the right hand side and obtain

ΛF (S0Γ)⊗Λ(S0Γ) Tor
Λ(N0Γ)
i (Λ(S0Γ),M) = ΛF (S0)⊗Λ(S0) Tor

Λ(N0Γ)
i (Λ(S0Γ),M) .

Finally we note that Λ(N0Γ) is flat over Λ(N0) and that

Λ(S0Γ) = Λ(S0)⊗Λ(N0) Λ(N0Γ)

which imply

Tor
Λ(N0Γ)
i (Λ(S0Γ),M) = Tor

Λ(N0)
i (Λ(S0),M) .

�

For finitely generated compactly induced representations the functor RDΛF (S�)

has an interesting stability property. Let V = indPP0
(V0) with a finite V0. Using the

notations from section 3 we have

D(V ) = lim−→
s∈T+

M∗
s ,

as Λ̃(P−1
+ )-modules, by Lemma 3.1. As noted before, via the identification

J+(V0)
∼=−−→ IndPP0

(V ∗
0 )/J

−(V0) = M1(V
∗
0 )

the Pontrjagin dual of M1(V0) = ind
P+

P0
(V0) is a Λ(P+)-module, and the natural

map

M1(V0)
∗ −→ D(V )

is a map of Λ(P+)-modules both of which are annihilated by some power of π.

Proposition 10.3. For any representation compactly induced from a finite V0

the map

ΛF (S�)⊗L

Λ(P�)
M1(V0)

∗ 	−−→ ΛF (S�)⊗L

Λ(P�)
D(indPP0

(V0))

is a quasi-isomorphism.

Proof. The assertion is that the maps

Tor
Λ(P�)
i (ΛF (S�),M1(V0)

∗)
∼=−−→ Tor

Λ(P�)
i (ΛF (S�), D(V ))

are isomorphisms. By Lemma 10.2 we are reduced to showing that

ΛF (S0)⊗Λ(S0)Tor
Λ(N0)
i (Λ(S0),M1(V0)

∗)
∼=−−→ ΛF (S0)⊗Λ(S0)Tor

Λ(N0)
i (Λ(S0), D(V ))

are isomorphisms. But Tor-functors commute with inductive limits. Hence it suf-
fices to show that the maps

ΛF (S0)⊗Λ(S0) Tor
Λ(N0)
i (Λ(S0),M1(V0)

∗)
∼=−−→ ΛF (S0)⊗Λ(S0) Tor

Λ(N0)
i (Λ(S0),Ms(V0)

∗)

are isomorphisms, or equivalently, that

ΛF (S0)⊗Λ(S0) Tor
Λ(N0)
i (Λ(S0), (M1(V0)/Ms(V0))

∗) = 0

for any s ∈ T+ and any i ≥ 0. But as an N0-representation we have

(31) M1(V0)/Ms(V0) =
⊕

t∈(T+−T+s)/T0

M(t)(V0) .
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For each direct summand there is the N0-equivariant isomorphism

M(t)(V0) = indN0tP0

P0
(V0)

∼=−−→ indN0

tN0t−1(t∗V0)

ψ �−→ φ(n0) := ψ(n0t) ,

and so

M(t)(V0)
∗ ∼= indN0

tN0t−1(t∗V0)
∗ = Λ(N0)⊗Λ(tN0t−1)(t∗V0)

∗ = Λ(N0)⊗Λ(tN0t−1)t∗V
∗
0 .

Since the tensor product with a finitely generated module over a noetherian ring
commutes with arbitrary direct products we obtain

Tor
Λ(N0)
i (Λ(S0), (M1(V0)/Ms(V0))

∗)

∼=
∏

t∈(T+−T+s)/T0

Tor
Λ(N0)
i (Λ(S0),Λ(N0)⊗Λ(tN0t−1) t∗V

∗
0 ) .

Since in the commutative diagram of rings

Λ(tN0t
−1)

⊆
��

�� Λ(tN0t
−1N1/N1)

⊆
��

Λ(N0) �� Λ(S0)

the vertical maps make the lower ring a free module of finite rank over the upper
ring each term in the right hand direct product, as a Λ(S0)-module, can be rewritten
as

Tor
Λ(N0)
i (Λ(S0),Λ(N0)⊗Λ(tN0t−1) t∗V

∗
0 )

= Λ(S0)⊗Λ(tN0t−1N1/N1) Tor
Λ(tN0t

−1)
i (Λ(tN0t

−1N1/N1), t∗V
∗
0 )

= Λ(S0)⊗Λ(tN0t−1N1/N1) t∗ Tor
Λ(N0)
i (Λ(N0t

−1N1t/t
−1N1t), V

∗
0 )

= Λ(S0)⊗Λ(tN0t−1N1/N1) t∗ Tor
Λ(N0)
i (Λ(N0/N0 ∩ t−1N1t), V

∗
0 )

= t∗
(
Λ(t−1N0t/t

−1N1t)⊗Λ(N0/N0∩t−1N1t) Tor
Λ(N0)
i (Λ(N0/N0 ∩ t−1N1t), V

∗
0 )

)
.

To go further we divide up the index set T+ − T+s into finitely many subsets Ts,α

indexed by the simple roots α ∈ Δ by defining

Ts,α := {t ∈ T+ : |α(t)| > |α(s)|}.

Since t �∈ T+ if and only if |α(t)| > 1 for some α ∈ Δ it is clear that

T+ − T+s =
⋃
α∈Δ

Ts,α .

We claim that, for any given α ∈ Δ, we find an open subgroup N ′′
α ⊆ N0 ∩ Nα

which, through the injective projection map N ′′
α ↪→ N0/N0 ∩ t−1N1t, acts trivially

on Tor
Λ(N0)
i (Λ(N0/N0 ∩ t−1N1t), V

∗
0 ) for any t ∈ T+.

To establish this claim we let Nc
0 :=

∏
β∈Φ+\Δ N0 ∩ Nβ . It follows from the

standard commutator relations in N (cf. [BT] Prop. 4.7.(iii) and Remark 4.11) that
N0/N

c
0 is commutative. Moreover, Nc

0 ⊆ N0 ∩ t−1N1t for any t ∈ T+, and we have
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the spectral sequence

Tor
Λ(N0/N

c
0 )

i

(
Λ(N0/N0 ∩ t−1N1t),Tor

Λ(N0)
j (Λ(N0/N

c
0 ), V

∗
0 )

)
=⇒ Tor

Λ(N0)
i+j (Λ(N0/N0 ∩ t−1N1t), V

∗
0 ) .

We first investigate the o-modules Tor
Λ(N0)
j (Λ(N0/N

c
0 ), V

∗
0 ) under the action of

Nα,0 := N0 ∩ Nα. First of all, the ring Λ(N0) having finite global dimension
([Neu]) at most finitely many of them can be nonzero. Secondly, since V ∗

0 is finite
they are killed by some power of π. Since Λ(N0/N

c
0 ) = o⊗Λ(Nc

0 )
Λ(N0) and Λ(N0)

is flat over Λ(Nc
0 ) (cf. the proof of Lemma 5.5 in [OV]) we have

Tor
Λ(N0)
j (Λ(N0/N

c
0 ), V

∗
0 )

∼= Tor
Λ(Nc

0 )
j (o, V ∗

0 )

as o-modules. Using a resolution

. . . −→ Λ(Nc
0 )

mj −→ . . . −→ Λ(Nc
0 )

m0 −→ V ∗
0 −→ 0

by finitely generated free modules over the noetherian ring Λ(Nc
0 ) we compute

Tor
Λ(Nc

0 )
j (o, V ∗

0 ) = hj(o⊗Λ(Nc
0 )

Λ(Nc
0 )

m•)

= hj(o
m•)

which shows that these groups are finitely generated over o. Altogether we see that

the o-modules Tor
Λ(N0)
j (Λ(N0/N

c
0 ), V

∗
0 ) in fact are finite and therefore are fixed by

some open subgroup N ′′
α ⊆ Nα,0. The ring Λ(N0/N0 ∩ t−1N1t) being commutative

we conclude that all terms in the above spectral sequence are fixed by N ′′
α which,

in particular, establishes our claim.
We deduce from this claim that

Tor
Λ(N0)
i (Λ(S0),Λ(N0)⊗Λ(tN0t−1) t∗V

∗
0 )

= t∗
(
Λ(t−1N0t/t

−1N1t)⊗Λ(N0/N0∩t−1N1t) Tor
Λ(N0)
i (Λ(N0/N0 ∩ t−1N1t), V

∗
0 )

)
,

for any t ∈ T+, is fixed by tN ′′
αt

−1. But

N ′
α :=

⋂
t∈Ts,α

tN ′′
αt

−1

still is open in Nα,0. We pick an element γα ∈ S0 which is the image of a topological
generator of N ′

α, and we finally obtain that the Λ(S0)-module∏
t∈Ts,α/T0

Tor
Λ(N0)
i (Λ(S0),Λ(N0)⊗Λ(tN0t−1) t∗V

∗
0 )

is killed by γα − 1, which in particular implies that its base change to ΛF (S0)
vanishes. Forming the finite direct sum over the α ∈ Δ then gives the vanishing of

ΛF (S0)⊗Λ(S0) Tor
Λ(N0)
i (Λ(S0), (M1(V0)/Ms(V0))

∗). �

11. The case GL2(Qp)

Throughout this section we let G be the group GL2(Qp), and we make our
choices of P = P2(Qp), . . . as at the end of section 1. This case is particularly
simple since we obviously have

Di
ΛF (S�)

(V ) = ΛF (S�)⊗Λ(S�) D
i(V ) for any i ≥ 0 and any V in Mo−tor(P ).
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Proposition 11.1. If V in Mo−tor(P ) is finitely generated then the map

ΛF (S0)⊗Λ(S0) M
∗ ∼=−−→ ΛF (S0)⊗Λ(S0) D(V ) = ΛF (S�)⊗Λ(S�) D(V )

is an isomorphism for any sufficiently small M in P+(V ).

Proof. We write V as a quotient

indPP0
(V0)

f−−→ V −→ 0

of a representation compactly induced from a finite V0. Let M := f(M1(V0)) ∈
P(V ), and consider any M ′ ∈ P(V ) which is contained in M . Then f induces an
isomorphism

M1(V0)/f
−1(M ′) ∩M1(V0)

∼=−−→ M/M ′ .

We pick an s ∈ T+ such that Ms(V0) ⊆ f−1(M ′). By the proof of Prop. 10.3 we

have ΛF (S0)⊗Λ(S0)

(
M1(V0)/Ms(V0)

)∗
= 0 and a fortiori ΛF (S0)⊗Λ(S0)(M/M ′)∗ =

ΛF (S0)⊗Λ(S0)

(
M1(V0)/f

−1(M ′) ∩M1(V0)
)∗

= 0 which implies that

ΛF (S0)⊗Λ(S0) M
∗ ∼=−−→ ΛF (S0)⊗Λ(S0) M

′∗

is an isomorphism. Since the tensor product commutes with inductive limits the
assertion follows. For the additional identity in the assertion we recall Remark
10.1. �

A representation V in Mo−tor(P ) is called finitely presented if there is an exact
sequence in Mo−tor(P ) of the form

indPP0
(U1)

ρ−−→ indPP0
(U0) −→ V −→ 0

with finite U0 and U1. According to Cor. 4.4 we then have the exact sequence of
(etale) Λ(S�)-modules

0 −→ D0(V ) −→ D(indPP0
(U0))

D(ρ)−−−−→ D(indPP0
(U1)) .

Using Propositions 10.3 and 11.1 (rather their proofs) we see that D0
ΛF (S�)

(V ) can

be computed as the kernel

(32) D0
ΛF (S�)

(V ) = ΛF (S0)⊗Λ(S0) ker
(
Ms(U0)

∗ ρ∗

−−→ Ms′(U1)
∗)

for any s, s′ ∈ T+ such that ρ(Ms′(U1)) ⊆ Ms(U0)).

Lemma 11.2. For any finite subset X ⊆ P and any sufficiently big n ≥ 0 we
have

P+ϕ
2nX ⊆ P+ϕ

n and (P \ P+)X ⊆ P \ P+ϕ
n .

Proof. We choose n big enough so that ϕnX ∩ ϕnX−1 ⊆ P+ holds true.
Then, of course, P+ϕ

2nX ⊆ P+ϕ
nP+ = P+ϕ

n. Moreover, if b ∈ P \ P+ satisfies
bx = b+ϕ

n for some x ∈ X and b+ ∈ P+ then b = b+ϕ
nx−1 ∈ P+ which is a

contradiction. �

Proposition 11.3. If V in Mo−tor(P ) is finitely presented then the map

ΛF (S0)⊗Λ(S0) D(V )
∼=−−→ ΛF (S0)⊗Λ(S0) D

0(V ) = D0
ΛF (S�)

(V )

is an isomorphism.
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Proof. Consider any finite presentation

indPP0
(U1)

ρ−−→ indPP0
(U0)

f−−→ V −→ 0

of V . By (32) we have

ΛF (S0)⊗Λ(S0) D
0(V ) = ΛF (S0)⊗Λ(S0) ker

(
Mϕn(U0)

∗ ρ∗

−−→ Mϕm(U1)
∗)

for any m,n ≥ 0 such that ρ(Mϕm(U1)) ⊆ Mϕn(U0)). We now choose n big enough
so that M := f(Mϕn(U0)) ⊆ V satisfies Prop. 11.1 so that we obtain (also using
the flatness of ΛF (S0) over Λ(S0)) the exact sequence

0 → ΛF (S0) ⊗
Λ(S0)

D(V ) → ΛF (S0) ⊗
Λ(S0)

Mϕn(U0)
∗ → ΛF (S0) ⊗

Λ(S0)
ρ−1(Mϕn(U0))

∗.

We see that to prove our assertion it is sufficient to establish that

ΛF (S0)⊗Λ(S0)

(
ρ−1(Mϕn(U0))/Mϕm(U1)

)∗
= 0

vanishes for appropriate choices of m,n. There is a finite subset X ⊆ P such that
ρ(U1) ⊆ XU0. Hence by possibly enlarging m,n we may, according to Lemma 11.2,
assume that

P+ϕ
mX ⊆ P+ϕ

n and (P \ P+)X ⊆ P \ P+ϕ
n

holds true. It follows that in the decompositions

indPP0
(U1) = ind

P\P+

P0
(U1)⊕ ind

P+\P+ϕm

P0
(U1)⊕Mϕm(U1)

and

indPP0
(U0) = ind

P\P+ϕn

P0
(U0)⊕Mϕn(U0)

the homomorphism ρ respects the first and the last summands. We deduce from
this that ρ−1(Mϕn(U0))/Mϕm(U1) is isomorphic to a subrepresentation of the P+-

representation ind
P+\P+ϕm

P0
(U1). Hence we are further reduced to proving that

ΛF (S0)⊗Λ(S0) ind
P+\P+ϕm

P0
(U1)

∗ = 0 .

But this we have done already in the proof of Prop. 10.3 (cf. (31)). �

Remark 11.4. For a general split group G arguments as above show that for
any finitely presented V in Mo−tor(P ) the map

ΛF (S0)⊗Λ(N0) D(V ) −→ ΛF (S0)⊗Λ(N0) D
0(V )

at least is surjective. It therefore follows from Prop. 9.9 that for general G and any
admissible V in Mo−tor(G) the following holds: If for some M ∈ P+(V ) there is
an exact sequence of P+-representations of the form

. . . −→ ind
P+

P0
(Vn) −→ . . . −→ ind

P+

P0
(V0) −→ M −→ 0

with Vn finite for any n ≥ 0 then V is finitely presented for P and the ΛF (S0)-
module ΛF (S0)⊗Λ(N0) D

0(V ) is finitely generated.

Corollary 11.5. Let (0 −→)V1 −→ V2 −→ V3 −→ 0 be an exact sequence in
Mo−tor(P ); if V3 is finitely presented then the sequence

0 −→ ΛF (S0) ⊗
Λ(S0)

D(V3) −→ ΛF (S0) ⊗
Λ(S0)

D(V2) −→ ΛF (S0) ⊗
Λ(S0)

D(V1)(−→ 0)

is exact.
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Proof. We contemplate the commutative diagram

0

��

0

��

0

��
0 �� ΛF (S0)⊗Λ(S0) D(V3)

∼=
��

�� ΛF (S0)⊗Λ(S0) D(V2)

��

�� ΛF (S0)⊗Λ(S0) D(V1)

��
0 �� ΛF (S0)⊗Λ(S0) D

0(V3) �� ΛF (S0)⊗Λ(S0) D
0(V2) �� ΛF (S0)⊗Λ(S0) D

0(V1)

in which the lower row is exact by construction, the columns are exact by Remark
2.4.ii, and the upper row is a complex which is exact at the left spot again by
Remark 2.4.ii (always using in addition the flatness of ΛF (S0) over Λ(S0)). But
by our assumption and Prop. 11.3 the left vertical map is an isomorphism. In this
situation an easy diagram chase shows that the upper row has to be exact as well.
For the additional zero we use Remark 2.4.i. �

Corollary 11.6. Let V1 −→ V2 −→ V3 be an exact sequence in Mo−tor(P );
we have:

i. If V1 is finitely generated and V2 is finitely presented then the sequence

ΛF (S0)⊗Λ(S0) D(V3) −→ ΛF (S0)⊗Λ(S0) D(V2) −→ ΛF (S0)⊗Λ(S0) D(V1)

is exact;
ii. if all three representations V1, V2, and V3 are finitely presented then the

sequence

D0
ΛF (S�)

(V3) −→ D0
ΛF (S�)

(V2) −→ D0
ΛF (S�)

(V1)

is exact.

Proof. i. Let V ′
3 := im(V2 −→ V3). We leave it to the reader to check that

the quotient of a finitely presented representation by a finitely generated subrepre-
sentation is finitely presented. Hence we may apply the previous corollary to the
exact sequence V1 −→ V2 −→ V ′

3 −→ 0. In addition we observe the Remark 2.4.i.
ii. This is an immediate consequence of i. and Prop. 11.3. �

Colmez in [Co1] investigates particularly nice finite presentations of a modified
form. To review his result let, at first, V be an arbitrary finitely generated smooth
G-representation which has a central character. We note right away that, as a
consequence of the Iwasawa decomposition, V then also is finitely generated as a
P -representation. Let Z denote the center of G, put G0 := GL2(Zp), and recall
the notation ϕ =

(
1 0
0 p

)
. Let G1 denote the normalizer of G0 ∩ ϕ−1G0ϕ in G. It

contains (G0∩ϕ−1G0ϕ)Z with index two and with
(
0 p
1 0

)
representing the nontrivial

coset. We pick a finite G0Z-subrepresentation U0 ⊆ V which generates V so that
we obtain a surjection

indGG0Z(U0)
f−−→ V −→ 0 .

One checks that U0 ∩ ϕU0 is ϕG1ϕ
−1-invariant ([Co1] Lemma 2.6). To avoid

confusion we denote, in this section, the natural inclusion U0 ↪→ indGG0Z(U0) by
v �→ ṽ. The finite o-submodule

U1 := {ϕ̃−1v − ϕ−1ṽ : v ∈ U0 ∩ ϕU0}
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of indGG0Z(U0) lies in the kernel of f and is G1-invariant. Hence we obtain a complex

(33) indGG1
(U1)

ρ−→ indGG0Z(U0)
f−−→ V −→ 0

in Mo−tor(G). Colmez calls (33) a standard presentation of V provided that it is
exact. We emphasize that the center Z acts on all three terms of this sequence
through the same central character.

Theorem 11.7. (Colmez) For any smooth G-representation V which is admis-
sible and of finite length and which has a central character U0 can be chosen in such
a way that

(34) 0 −→ indGG1
(U1)

ρ−→ indGG0Z(U0)
f−−→ V −→ 0

is a short exact sequence.

Proof. [Co1] Thm. 3.1 and Lemma 2.8 (compare also [Oll] and [Vi3] for
modulo p representations). �

By using the Iwasawa decompositions G = PG0 = PG1 as well as G0Z ∩ P =
G1Z ∩ P = P0Z we may rewrite (34) as

(35) 0 −→ indPP0Z(U1)
ρ−→ indPP0Z(U0)

f−−→ V −→ 0 .

We have

P0Z = P0 × ζZ with ζ :=
( p 0
0 p

)
.

Let MG−good(P ) denote the full subcategory of Mo−tor(P ) whose objects
are all V which arise by restriction from an admissible finite length smooth G-
representation which has a central character.

Lemma 11.8. For any smooth P0Z-representation U0 we have

i. Di(indPP0Z(U0)) = 0 for any i ≥ 1;

ii. if ζ acts as a scalar on U0 then D0(indPP0Z(U0)) = D(indPP0Z(U0)).

Proof. We view

0 −→ o[ζZ]
(ζ−1)·−−−−→ o[ζZ]

ζ �→1−−−−→ o −→ 0

as a short exact sequence of smooth (but not o-torsion) P0Z-representations with
P0Z acting through its projection onto ζZ. It splits as a sequence of o-modules.
With respect to the diagonal action

0 −→ U0 ⊗o o[ζ
Z]

ρ0−−→ U0 ⊗o o[ζ
Z] −→ U0 −→ 0 ,

where ρ0 := id⊗(ζ − 1), therefore is a short exact sequence of smooth (and o-
torsion) P0Z-representations. It gives rise to the short exact sequence of smooth
P -representations

(36) 0 −→ indPP0Z(U0⊗oo[ζ
Z])

ind(ρ0)−−−−→ indPP0Z(U0⊗oo[ζ
Z]) −→ indPP0Z(U0) −→ 0 .

But the map

indP0Z
P0

(U0)
∼=−−→ U0 ⊗o o[ζ

Z]

ψ �−→
∑
n∈Z

ζn(ψ(ζn))⊗ ζn
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is a P0Z-equivariant isomorphism. Inserting this into (36) and using the transitivity
of compact induction we arrive at an exact sequence of smooth P -representations
of the form

0 −→ indPP0
(U0) −→ indPP0

(U0) −→ indPP0Z(U0) −→ 0 .

Applying Cor. 4.4 and Lemma 2.4.i to it gives the first assertion.
To establish the second assertion it suffices to check the condition (2) in Lemma

2.5 for the short exact sequence (36). We first make some general observations. Let
V0 be any smooth P0Z-representation on which ζ acts as a scalar. Since P+ ⊇ P0Z

the P+-subrepresentations of ind
P
P0Z(V0) defined by

M ′
s(V0) := ind

P+s
P0Z

(V0) for any s ∈ T+

and

M ′
σ(V0) := ⊕t∈T+/T0Z indN0tP0Z

P0Z
(σ(t))

for any order reversing map σ : T+/T0Z −→ Sub(V0) (note that by our assumption
any element in Sub(V0) automatically is a P0Z-subrepresentation) satisfying (3)
make perfect sense. It is easily checked that analogs of Lemma 3.1 and Lemma 3.2
hold true. Given this background the verification of (2) for (36) proceeds in exactly
the same way as the proof of Lemma 4.1. �

Remark 11.9. Any V in an exact sequence indPP0Z(U1) −→ indPP0Z(U0) −→
V −→ 0 with finite U0 and U1 is of finite presentation.

Proof. In the proof of Lemma 11.8 we have seen that indPP0Z(U0) is of finite
presentation. Hence V being the quotient of a finitely presented representation by
a finitely generated subrepresentation is finitely presented as well. �

Proposition 11.10. i. For any V in MG−good(P ) we have Di(V ) = 0
for any i ≥ 1.

ii. The functor D0 restricted to MG−good(P ) is exact.

Proof. ii. is an immediate consequence of i. Lemma 11.8 says that we can
use (35) to compute the δ-functor Di on V . Hence

Di(V ) = hi(D(indPP0Z(U0))
D(ρ)−−−→ D(indPP0Z(U1)) −→ 0 −→ . . .) .

By Remark 2.4.i the map D(ρ) is surjective. It follows that Di(V ) = 0 for i ≥ 1. �

In view of Remark 10.1 and our discussion of etale (ΛF (S0),Γ, ϕ)-modules
in section 9 our functor D0

ΛF (S�)
= ΛF (S�) ⊗Λ(S�) D

0 restricted to MG−good(P )

coincides with the functor constructed by Colmez in [Co1].

Proposition 11.11. For every representation V in MG−good(P ) the set P+(V )
has a (unique) minimal element M0; in particular, we have D(V ) = M∗

0 .

Proof. According to [Co1] Lemma 4.25 there is an M ∈ P+(V ) such that
the map M∗ −→ ΛF (S0)⊗Λ(S0) D(V ) and a fortiori the map M∗ −→ D(V ) have a
finite kernel. Let now M ′ ⊆ M be some other element in P+(V ). Then

ker(M∗ −→ M ′∗) ⊆ ker(M∗ −→ D(V )) .

Hence the finite groups ker(M∗ −→ M ′∗) for decreasing M ′ must stabilize. It
follows that M ′∗ and M ′ stabilize. �
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12. Subquotients of principal series

Let χ : P −→ k× be a locally constant character and

IndGP (χ) := {F ∈ C∞(G) : F (gb) = χ(b)−1F (g) for any g ∈ G, b ∈ P}

the corresponding principal series representation of G (by left translation). We
recall that, for any topological space X we let C∞(X), resp. C∞

c (X), denote the
k-vector space of all k-valued locally constant, resp. locally constant with compact
support, functions on X. As a matter of further notation we write

IndXP (χ) := {F ∈ IndGP (χ) : F |(G \X) = 0}

for any open right P -invariant subset X ⊆ G. Furthermore, we fix a representative
ẇ in the normalizer N(T ) of T in G of every element w in the Weyl group W :=
N(T )/T .

As a P -representation IndG
P (χ) is best understood by using the Bruhat decom-

position G =
⋃

w∈W PwP . Choosing once and for all a total order on W refining

the Bruhat order we obtain the P -invariant filtration {IndPwP
P (χ)}w∈W of IndGP (χ).

Its bottom term is IndPw0P
P (χ), corresponding to the Steinberg representation of G,

where w0 denotes the longest element inW . Each filtration step is, via F �−→ F (·ẇ),
isomorphic to V (w, χ) := C∞

c (N/Nw), where Nw := N ∩ ẇNẇ−1, with N acting
by left translation and T acting by

(tφ)(n) := χ(w−1tw)φ(t−1nt) .

In particular, V (w, χ) is a character twist of V (w, 1). In V (w, χ) we have the
generating P+-subrepresentation M(w, χ) := C∞(N0/Nw,0) where Nw,0 := N0 ∩
ẇNẇ−1.

Proposition 12.1. M(w, χ) is the (unique) minimal element in P+(V (w, χ));
in particular, we have D(V (w, χ)) = M(w, χ)∗ = Λ(N0)⊗Λ(Nw,0) k.

Proof. This is the same argument as for Lemma 2.6 (cf. [Vi2] Lemma 4). �

Since Nw0w,0

∼=−→ N0/Nw,0 one can write D(V (w, χ)) = Ω(Nw0w,0); but this
does not reflect the Λ(N0)-action very well.

Proposition 12.2. ΛF (S0)⊗Λ(N0) D(V (w, χ)) = 0 when w �= w0 and is equal
to ΛF (S0)⊗o k when w = w0.

Proof. The case w = w0 being clear let w �= w0. Then (cf. [MS] Lemma 4.1)
there is a simple root α such that Nα ⊆ N ∩ ẇNẇ−1. It follows that S0, being the
image of Nα,0, acts trivially on

Λ(S0)⊗Λ(N0) D(V (w, χ)) = Λ(S0)⊗Λ(Nw,0) k

(compare the end of the proof of Prop. 10.3). �

Both propositions remain true (with the same proofs) when the coefficient ring
is o/πmo, for some m ≥ 1, instead of k.
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Université de Paris 7, Institut de Mathematiques de Jussieu, 175 rue du Chevaleret,

Paris 75013, France

E-mail address: vigneras@math.jussieu.fr





Clay Mathematics Proceedings
Volume 13, 2011

Motivic Galois Groups and L-Groups
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Dedicated to Professor Freydoon Shahidi on the occasion of his 60th birthday

Abstract. Given a pure motive, we formulate a conjecture which predicts the
existence of an automorphic representation of a group related to the Hodge
group, corresponding to the motive. To describe an expected automorphic
representation on a small group, we discuss the existence of a splitting field of
the canonical cohomology class attached to a motivic λ-adic representation.

Introduction

Let E and F be number fields. Let M be a pure motive of weight w over F
with coefficients in E. Take an embedding E ↪→ C. The problem to be considered
in this paper is:

Problem. Find a connected reductive algebraic group G over F , an irreducible
automorphic representation π = ⊗vπv of G(FA) and a representation r of the L-
group LG such that L(M, s) = L(s, π, r).

Around 1964, Shimura conjectured that every elliptic curve over Q is modular.
This conjecture was striking at that time and the beginning of the entire business
related to the problem (cf. Lang [La], Shimura [Sh4], note on [64e]). In the gen-
eral case, Langlands made deep and extensive studies in the 1970’s culminating
in the introduction of the automorphic Langlands group ([Lan1]). The conjecture
was formulated as a relation between the motivic Galois group and the automor-
phic Langlands group. As a recent important paper on this formalism, we should
mention Arthur [A2].

The answer (G, π, r) to our problem is not unique in general. In the late 1970’s,
there was a consensus of specialists that π exists on GL(d), where d is the rank of
M . Clozel ([Cl]]) discussed this GL-conjecture in great detail. In this paper, we
will concentrate on finding G as small as possible, for which we can formulate a
natural solution of the problem. Then the other answers could be derived by the
functoriality principle.

2010 Mathematics Subject Classification. Primary 11F70, Secondary 11S37.
Key words and phrases. Motive, Automorphic representation.
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The importance of finding a small G can be seen by the following classical
example. Let E be an elliptic curve defined over Q with complex multiplication by
an imaginary quadratic field K. Then there exists a Hecke character ψ of K×

A such
that L(s, ψ) is equal to the zeta function of E . Let T = RK/Q(Gm) be a non-split

torus over Q. We have T (QA) = K×
A and ψ can be regarded as an automorphic

representation of T (QA) ⊂ GL(2,QA).
Now we are going to explain our ideas. Let λ be a finite place of E. Then we

have a λ-adic representation ρλ attached to M :

ρλ : Gal(F/F ) −→ GL(d,Eλ).

Let H be the Zariski closure of the image and let H0 be its identity component. A
basic conjecture (Conjecture 4.1), which we assume throughout the paper, is:

The algebraic group H is defined over E and does not depend on λ. Moreover
H0 = Hg(M) where Hg(M) is the Hodge group of M (cf. §1, §4).

This conjecture implies that H0 is reductive. Let K be the finite Galois exten-
sion of F such that

(1) H0 ∩ ρλ(Gal(F/F )) = ρλ(Gal(F/K)), Gal(F/K) ⊃ Ker(ρλ).

Take an embedding Eλ ↪→ C. Then we have an exact sequence

(2) 1 −−−−→ H0(C) −−−−→ H(C) −−−−→ Gal(K/F ) −−−−→ 1.

From (2), we obtain a homomorphism

μH0 : Gal(K/F ) −→ Aut(R0(H
0)) ∼= Aut(H0)/Inn(H0).

Here R0(H
0) denotes the based root datum of H0. Now we can find a connected

reductive algebraic group G defined over F such that (i) G is quasi-split over F ,
(ii) LG0 = H0(C), (iii) μG = μH0 . Here LG0 is the connected L-group of G;
we regard μH0 as a homomorphism of Gal(F/F ) into Aut(R0(H

0)) and μG is the
homomorphism of Gal(F/F ) into Aut(R0(

LG0)) (cf. §3).
We expect that an automorphic representation π which corresponds toM exists

on G(FA), except for anomalous cases which can occur only when w = 0. To
examine this problem, we naturally compare H0(C) with the L-group of G and
will find an interesting arithmetical problem. The L-group is defined as the semi-
direct product of LG0 = H0(C) and Gal(F/F ) with respect to μG. However there
are examples for which (2) does not split. Looking more closely, we find that
in the equivalence class of factor sets obtained from (2), there exists a canonical
factor set fZ taking values in the center Z(H0(C)) of H0(C). In other words,
fZ defines a canonical cohomology class in H2(Gal(K/F ), Z(H0(C))) (cf. §5). If
there exists a finite extension L of K which is normal over F such that fZ splits
after the inflation to Gal(L/F ), we call L a splitting field. If such an L exists, we
define a finite version of the L-group by LG = LG0 � Gal(L/F ). Then we have a
homomorphism LG −→ H(C). This homomorphism is canonical up to the action
of H1(Gal(L/F ), Z(H0(C))). We define r : LG −→ GL(d,C) as the composite
of this homomorphism with the inclusion map H(C) ↪→ GL(d,C). For a place v
of F , there exists a local parameter ψv : W ′

Fv
(C) −→ H(C), where W ′

Fv
is the

Weil–Deligne group scheme. We can show that ψv lifts to the Langlands parameter
φv : W ′

Fv
(C) −→ LG, which should give the L-packet to which the local component

πv belongs (§5, Main Conjecture).
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In the text, we take a reductive algebraic group H̃ defined over E such that

H ⊂ H̃ ⊂ GL(d). We call the case H̃ = H minimal. Similarly to the minimal

case, we obtain a quasi-split group G̃ defined over F and a canonical cohomology

class in H2(Gal(K̃/F ), Z(H̃0(C))). (Here K̃ is defined by (1) with H̃0 in place
of H0.) Assuming the existence of a splitting field of this cohomology class, we
formulate the Main Conjecture so that it predicts the existence of an automorphic

representation of G̃(FA) corresponding to M . The minimal case and the general
case are connected by the functoriality principle. 1

In the latter half of this paper, we discuss the problem in the minimal case.
Since it is rather technical, we summarize the main features. We assume that ρλ is
absolutely irreducible and that w �= 0.

1. By Clifford’s theorem, either ρλ|Gal(F/K) is isotypic or there exists a
field F � K ′ ⊂ K and a λ-adic representation τλ of Gal(F/K ′) such that ρλ ∼=
Ind

Gal(F/F )

Gal(F/K′)
τλ. In the isotypic case, Z(H0(C)) is connected and the splitting field

exists by Tate’s theorem. In the alternative case, we can reduce the problem to τλ.
By this procedure, we can predict an automorphic representation corresponding to
M on a slightly “bigger”group than GA. (See the discussion at the end of section
5.)

2. The existence of the splitting field can be reduced to the case where

ρλ ∼= Ind
Gal(F/F )

Gal(F/K)
τλ with K normal over F (cf. §6). For every σ ∈ Gal(K/F ),

a symmetry operator P (σ) acts on H0(C) as an automorphism. For this assertion
we need the Hodge conjecture. A main result of this paper (Theorem 5.6) as-
serts that a splitting field exists under the hypothesis (Hypothesis 8.2) that P (σ),
σ ∈ Gal(K/F ) stabilize a splitting datum for H0. We note that the existence of a
splitting field of the factor set defined by (2) is proved under the Hodge conjecture.

3. The hypothesis explained above may not be completely convincing. In
section 9, we show that assuming the local splitting of fZ , we can still predict an
automorphic representation on GA corresponding toM . We show the local splitting
at unramified places v of F assuming the semisimplicity of ρλ(Φv), where Φv is a
Frobenius element.

Now let us explain the organization of this paper. In section 1, we will discuss
the Hodge group of an E-rational Hodge structure. Since the coefficient field E
is not taken into account in the available literature, we will prove the relevant
results in appendix I. In section 2, we will review a result of Deligne [D1] on λ-adic
representations of local Galois groups. In section 3, we will review L-groups and L-
packets briefly. In section 4, we will explain the basic conjecture on ρλ and the local
parameter ψv. In section 5, we will formulate the main conjecture assuming the
existence of a splitting field. The existence of a splitting field in the minimal case
will be proved under a hypothesis in section 6 to section 8. Section 6 is preliminary.
In section 7, we will prove the existence of a splitting field when H0 is a torus.
We will treat the general case in section 8. In section 9, we will discuss the local
splitting of fZ . In section 10, we will briefly discuss the use of a z-extension to our
problem, which was suggested by the referee. Appendix II contains three results
related to the descent of the field of definition. First we will show the existence of

1We think that though the minimal case is naturally interesting, the cases where the ˜H’s are
connected are more basic for practical applications and as the targets for the attempts to give
proofs.
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a quasi-split G as above. The second result is the following. Let A be an abelian
variety defined over F with sufficiently many complex multiplications. I showed
([Y2]) that there exists a finite Galois extension K of F and a representation ρ of
the Weil group WF,K such that the zeta function of A is equal to L(s, ρ,WF,K).
Then I asked whether there exists an A for which ρ is not equivalent to a direct
sum of monomial representations. We will give an affirmative answer. The third
result is an example for which (2) does not split.

The author would like to thank Professor D. Blasius for interesting discussions
concerning the topics dealt with in this paper. He thanks Dr. K. Hiraga for useful
discussions on L-packets and on A-packets.

It is my pleasure to dedicate this paper to my respected friend Freydoon
Shahidi.

Notation. For a group scheme G over a commutative ring R and an R-algebra
S, G(S) denotes the group of S-valued points of G. In particular, if G is an algebraic
group defined over a field F and K is a field containing F , G(K) denotes the group
of K-rational points of G. The identity component of G is denoted by G0 and
the center of G is denoted by Z(G). For a group G and g ∈ G, i(g) denotes the
inner automorphism i(g)(x) = gxg−1 of G. By Aut(G) and Inn(G), we denote the
automorphism group and the inner automorphism group of G respectively. When
G is an algebraic group, Aut(G) and Inn(G) denote the corresponding groups in the
category of algebraic groups. For a field F and its separable extension K of finite
degree, RK/F denotes the restriction of scalars functor of Weil. For an algebraic

number field F of finite degree, FA and F×
A denote the adele ring and the idele

group of F respectively. For a ∈ F×
A , a∞ denotes the infinite part of a. We denote

by Fab the maximal abelian extension of F in an algebraic closure of F . Let K be a
Galois extension of F of finite degree. The relative Weil group for K/F is denoted
by WK/F or by WF,K .

1. The Hodge group

Let V be a finite dimensional vector space over Q. Let w be an integer. A
decomposition

(1.1) V ⊗Q C = ⊕p+q=wV
p,q , V p,q = V q,p,

V p,q being a C-subspace of V ⊗Q C, is called a Q-rational Hodge structure of
weight w on V . Let S = RC/R(Gm); S is a torus defined over R and we have

S(K) = (C⊗RK)× for an R-algebra K. There exists a morphism h : S −→ GL(V )
of algebraic groups defined over R such that

(1.2) h(z)vp,q = z−pz̄−qvp,q , vp,q ∈ V p,q, z ∈ C× = S(R).

Definition 1.1. The Hodge group Hg(V ) is the smallest algebraic subgroup
defined over Q of GL(V ) which contains the image of h. 2

Proposition 1.2. ([D3], Proposition 3.6.) Hg(V ) is connected. If the Hodge
structure is polarizable, then Hg(V ) is reductive.

2Strictly speaking, Hg(V, h) is the proper notation. We use Hg(V ) for simplicity. The
condition means that (∗)Hg(V )(C) ⊃ h(S(C)). We can show easily that if Hg(V )(C) ⊃ h(S(R)),
then (∗) holds.
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Let E be an algebraic number field of finite degree. We will generalize the
notion of the Hodge group for an E-rational Hodge structure. Let V be a finite
dimensional vector space over E. When we regard V as a vector space over Q, we
denote it by V . A decomposition

(1.3) V ⊗Q C = ⊕p+q=wV
p,q , V p,q = V q,p,

V p,q being an E⊗QC-submodule of V ⊗QC, is called an E-rational Hodge structure
of weight w.

Define h : S −→ GL(V ) using the underlying Q-rational Hodge structure V .
Since h is E-linear, we have

Im(h) ⊂ GL(V )(E ⊗Q C) ⊂ GL(V )(C).

Definition 1.3. The Hodge group Hg(V ) is the smallest algebraic subgroup
defined over E of GL(V ) such that the group of (E ⊗Q C)-valued points contains
Im(h).

Let RE/Q be the restriction of scalars functor of Weil. Let

H ⊂ RE/Q(GL(V )) ⊂ GL(V )

be an algebraic subgroup defined over Q of RE/Q(GL(V )). We call the small-
est algebraic subgroup G defined over E of GL(V ) such that RE/Q(G) ⊃ H the
E-envelope of H. We see easily that if H is connected, then its E-envelope is
connected.

Proposition 1.4. Hg(V ) is the E-envelope of Hg(V ).

Proof. We have

Im(h) = h(S(C)) ⊂ Hg(V )(C) ⊂ RE/Q(GL(V ))(C).

Since
RE/Q(G)(C) = G(E ⊗Q C),

for an algebraic group defined over E, the assertion follows. �
Proposition 1.5. Hg(V ) is connected. If V is polarizable, then it is reductive.

The proof will be given in Appendix I. In fact, we will prove that if H is
reductive, then its E-envelope is reductive.

Remark 1.6. We have

h(S(C)) ⊂ GL(V )(E ⊗Q C) =
∏

σ∈JE

(σGL(V ))(C).

Here JE denotes the set of all isomorphisms of E into C; σGL(V ) denotes the
conjugate of GL(V ) by σ, which is an algebraic group defined over σ(E). Regard
E as a subfield of C and take the embedding id : E ↪→ C. Then we see that Hg(V )
is the closure of the projection of h(S(R)) to the id-component with respect to the
E-Zariski topology.

We are going to consider the Mumford-Tate group for an E-rational Hodge
structure V . Let E(1) be the E-rational Hodge structure of weight −2 of rank 1.

Define h′ : S −→ GL(E(1)) as above and put h̃ = (h, h′) : S −→ GL(V )×GL(E(1)).
We have

h̃(S(C)) ⊂ GL(E ⊗Q C)×Gm(E ⊗Q C).

Here we consider Gm as an algebraic group defined over E.
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Definition 1.7. The Mumford-Tate group MT(V ) is the smallest algebraic
subgroup defined over E of GL(V )×Gm such that the group of (E ⊗Q C)-valued

points contains Im(h̃).

By this definition, it is clear that Hg(V ) is the projection of MT(V ) to the first
component GL(V ). Now we consider a tensor space

T = V ⊗l ⊗E V̌ ⊗m ⊗E E(p)

for 0 ≤ l,m ∈ Z, p ∈ Z. Here V̌ denotes the dual Hodge structure to V . We have
an E-rational Hodge structure on T . We define the action of GL(V )×Gm on T as
follows: GL(V ) acts on V ⊗l ⊗E V̌ ⊗m canonically and on E(p) trivially; Gm acts
on V ⊗l ⊗E V̌ ⊗m trivially and on E(p) by u · v = u−pv, u ∈ Gm, v ∈ E(p).

Proposition 1.8. Let G be the subgroup of GL(V )×Gm which fixes all tensors
of type (0, 0) for every tensor space T as above. We assume that V is polarizable.
Then we have MT(V ) = G.

Proof. It is clear that: t ∈ T is of type (0, 0) ⇐⇒ t is fixed by h̃(S(R)). Since

MT(V )(E ⊗Q C) ⊃ h̃(S(R)), if t is fixed by MT(V ), then it is of type (0, 0). The
converse assertion holds since the similar fact to Remark 1.6 holds for MT(V ).

Now G is the group which fixes all tensors fixed by MT(V ). Since MT(V ) is
the E-envelope of MT(V ), it is reductive (cf. Appendix I). Applying the criterion
[D3], Proposition 3.1, (c), we conclude that G = MT(V ). �

Example 1.9. Let A be an n-dimensional abelian variety defined over C. Then
H1(A,Q) defines a Q-rational Hodge structure of weight 1 and H1(A,Q) defines a
Q-rational Hodge structure of weight −1. They are dual each other and the Hodge
groups attached to them are isomorphic. We put Hg(A) = Hg(H1(A,Q)). If ψ is
a polarization of A, then we have Hg(A) ⊂ GSp(V, ψ).

Assume that End(A) = Z. If n ≤ 2 or n is odd, we have Hg(A) = GSp(V, ψ).
When n = 4, there is an example due to Mumford [Mu2] such that Hg(A) �

GSp(V, ψ).
Assume that A has sufficiently many complex multiplications and is of type

(K,Φ), where K is a CM-field of degree 2n and Φ is a CM-type of K (cf. Shimura
[S2], §17, §18). Let (K ′,Φ′) be the reflex of (K,Φ). There is a morphism between
algebraic tori: detΦ′ : RK′/Q(Gm) −→ RK/Q(Gm). Then

Hg(A) ∼= Image(detΦ′) ⊂ RK/Q(Gm).

If K is an imaginary quadratic field, we have Hg(A) ∼= RK/Q(Gm). If we consider
H1(A,Q) as a K-rational Hodge structure, its Hodge group is isomorphic to Gm.

Example 1.10. Let E1, . . ., En be elliptic curves defined over a number field
F without complex multiplication. We assume that Ei and Ej are not isogenous

over Q for i �= j. Then it is known that (Serre [Se2], p. 183)

Hg(E1 × · · · × En) ∼= {(g1, . . . , gn) ∈ GL(2)n | det g1 = · · · = det gn}.

2. λ-adic representations

A homomorphism of the Weil-Deligne group naturally corresponds to a λ-adic
representation of the local Galois group. In this section, we will review briefly this
correspondence. For details, we refer the reader to [D1].
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Let F be a non-archimedean local field of characteristic 0. Let p be the residual
characteristic of F and q be the cardinality of the residue field. Let I ⊂ Gal(F/F )
be the inertia group. We take a geometric Frobenius element Φ ∈ Gal(F/F ). The
local Weil group WF is

WF = I � 〈Φ〉 ⊂ Gal(F/F ).

The topology of WF is defined by taking a fundamental system of neighbourhoods
of the identity of I as that of WF . For g ∈ WF , we write g = Φni(g) with n ∈ Z,
i(g) ∈ I and put ‖g‖ = q−n. Let

W ′
F = Ga � WF

be the Weil–Deligne group scheme. For a commutative ring R in which p is invert-
ible, the group of R-valued points is

W ′
F (R) = R � WF

and the group law is given by

(x1, g1)(x2, g2) = (x1 + ‖g1‖x2, g1g2), x1, x2 ∈ R, g1, g2 ∈ WF .

Let P ⊂ I be the wild ramification group. We have I/P ∼=
∏

l �=p Zl. Let tl : I → Zl

be the canonical projection.
Now let 
 �= p be a prime number and let Eλ be a field such that [Eλ : Q�] < ∞.

Let V be a finite dimensional vector space over Eλ. Let

ρ : WF −→ GL(V )

be a continuous representation. Here the topology of GL(V ) is the λ-adic topology.
A theorem of Grothendieck states that there exists an open subgroup I0 of I and
a nilpotent element N ∈ End(V ) such that

ρ(h) = exp(tl(h)N), h ∈ I0.

Since t�(ghg
−1) = ‖g‖t�(h), g ∈ WF , h ∈ I, we have

(2.1) ρ(g)Nρ(g)−1 = ‖g‖N, g ∈ WF .

Put

ρ′(g) = ρ(g) exp(−tl(i(g))N), g ∈ WF .

Then we can show that ρ′ is a homomorphism of WF into GL(V ). Since ρ′ is trivial
on I0, ρ

′ is continuous with respect to the discrete topology of GL(V ). Then we
can define a representation σ′ of W ′

F (Eλ) into GL(V ) by

σ′((x, g)) = exp(xN)ρ(g) exp(−tl(i(g))N), (x, g) ∈ W ′
F (Eλ).

Let

ρ(Φ) = ρ(Φ)ssu

be the Jordan decomposition of ρ(Φ), with ρ(Φ)ss semisimple, u unipotent. Then
u commutes with N and with all ρ(g), g ∈ WF . Put

ρ′ss(Φnh) = ρ′(Φnh)u−n, n ∈ Z, h ∈ I.

We see that ρ′ss is a representation of WF into GL(V ). We define a representation
σ′ss of W ′

F (Eλ) into GL(V ) by

σ′ss((x,Φnh)) = exp(xN)ρ′(Φnh)u−n, (x,Φnh) ∈ W ′
F (Eλ), n ∈ Z, h ∈ I.



610 HIROYUKI YOSHIDA

We call σ′ss the Φ-semisimplification of σ′. Its equivalence class does not depend
on the choice of Φ. An element (x,Φnh) ∈ W ′

F (Eλ) is called semisimple if n �= 0 or
if n = 0, x = 0. If (x,Φnh) is semisimple, we see that σ′ss((x,Φnh)) is semisimple.

Thus we have the procedure

ρ −→ ρ′ −→ ρ′ss −→ σ′ss

to construct a Φ-semisimple representation σ′ss of W ′
F (Eλ) from a given λ-adic

representation ρ : WF → GL(V ). We note the following. Let H be a (possibly
non-connected) algebraic group defined over Eλ. Let ρ : WF → H(Eλ) be a contin-
uous homomorphism. The same procedure yields the continuous homomorphism
σ′ss : W ′

F (Eλ) → H(Eλ) with the discrete topology on H(Eλ), since the Jordan
decomposition can be done inside H(Eλ). Let ι : Eλ ↪→ C be an isomorphism.
Then we have a representation φ : W ′

F (C) → H(C). This is the local parameter
attached to the λ-adic representation ρ, which will be used in §5.

3. L-groups and L-packets

In this section, we will review briefly the notion of L-groups and L-packets. We
refer the reader to Borel [Bo2]. See Arthur [A3], Vogan [V] for advanced treatments
of L-packets.

Let F be a field of characteristic 0. Let G be a connected reductive algebraic
group defined over F . Consider G as a group defined over F and take a maximal
torus T and a Borel subgroup B which contains T . Then we obtain a based root
datum:

R0(G) = (X∗(T ),Δ, X∗(T ), Δ̌).

Here X∗(T ) is the character group of T and Δ is the set of simple roots; X∗(T )
is the group of cocharacters of T and Δ̌ is the set of simple coroots. For α ∈ Δ,
take an element uα �= 1 from the root subgroup Uα corresponding to α. We call
(B, T, {uα}α∈Δ) a splitting datum for G. Then we have

Aut(R0(G)) ∼= Aut(G,B, T, {uα}α∈Δ).

Here the right-hand side denotes the group of automorphisms of G which leave B,
T and the set of uα, α ∈ Δ stable; by the action of Gal(F/F ) on B and T , we
obtain a homomorphism

μG : Gal(F/F ) −→ Aut(R0(G)).

Take a connected reductive algebraic group LG0 over C such that

R0(
LG0) = (X∗(T ), Δ̌, X∗(T ),Δ)

and form a semi-direct product:

LG = LG0 � Gal(F/F ).

Here, choosing a splitting datum (LB0, LT 0, {ǔα}α∈Δ̌) for
LG0, we have

Aut(LG0, LB0, LT 0, {ǔα}α∈Δ̌) ∼= Aut(R0(
LG0)) ∼= Aut(R0(G)),

and Gal(F/F ) acts on LG0 through μG.
3

3In [Bo2], the L-group defined by specifying the choice of {ǔα}α∈Δ is called admissible. In
general, the L-group is defined without specifying the choice of {ǔα}α∈Δ. Then μG is well defined
up to an inner automorphism by an element of LT 0.
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Now assume that F is a local field. If F is non-archimedean, put W ′
F = W ′

F (C).
If F is archimedean, put W ′

F = WF and regard every element as semisimple.

Definition 3.1. A homomorphism φ : W ′
F −→ LG is called a Langlands

parameter if the diagram

W ′
F

φ−−−−→ LG⏐⏐�
⏐⏐�

Gal(F/F ) Gal(F/F )

is commutative and the following conditions hold:
(i) φ is continuous, Ga is mapped to unipotent elements of LG0, and φ sends

semisimple elements to semisimple elements.
(ii) If the image of φ is contained in a parabolic subgroup P of LG, P is relevant.

If G is quasi-split, then the condition (ii) is automatically satisfied. (For the
definition of relevance, see [Bo1], p. 32.) We say that two Langlands parameters are
equivalent if one is tranformed to the other by an inner automorphism of LG0. Let
Φ(G/F ) = Φ(G) be the set of equivalence classes of the Langlands parameters. Let
Π(G(F )) be the set of equivalence classes of irreducible admissible representations
of G(F ).

Conjecture 3.2. (Langlands) For every φ ∈ Φ(G), there exists a finite subset
Πφ = Πφ(G(F )) of Π(G(F )) which partitions Π(G(F )):

Π(G(F )) = �φ∈Φ(G)Πφ.

We call Πφ the L-packet associated to φ. The representations in Πφ are ex-
pected to have the same property with respect to the L-function and the ε-factor
(L-indistinguishable). Moreover Πφ must satisfy a number of properties which are
included in the conjecture. We list some of them.

(A) Πφ contains a discrete series representation ⇐⇒ Πφ consists of discrete
series representations ⇐⇒ φ(W ′

F ) is not contained in any proper Levi subgroup of
LG.

(B) Assume that φ(Ga) = {1}. Then Πφ contains a tempered representation
⇐⇒ Πφ consists of tempered representations ⇐⇒ φ(WF ) is bounded.

We also note that there is a law which gives the central character of represen-
tations in Πφ in terms of φ.

When F = C, R, Langlands [Lan3] proved the conjecture. When G = GL(n)
and F is non-archimedean, the result of Harris-Taylor-Henniart establishes Conjec-
ture 3.2. For G = GL(n), Πφ is a singleton. In general, the structure of Πφ can be
very complicated. See [A3]. The existence of Πφ remains conjectural in general.

4. Local parameters attached to a motive

Let E and F be number fields. Let M be a motive over F with coefficients in E.
Let d be the rank of M . We assume that M is of pure weight w and is polarizable.
Take an isomorphism F ↪→ C. On the Betti realization HB(M) ∼= Ed, we have an
E-rational Hodge structure of weight w. Put V = HB(M), Hg(M) = Hg(V ). By
Proposition 1.5, Hg(M) is a connected reductive algebraic group defined over E.
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For a finite place λ of E, we have the λ-adic realization Hλ(M) and the λ-adic
representation

ρλ : Gal(F/F ) −→ GL(Hλ(M)) ∼= GL(d,Eλ).

Let 
 be a prime number. When we forget the coefficient field E, we have the 
-adic
realization H�(M) and the 
-adic representation

σ� : Gal(F/F ) −→ GL(H�(M)) ∼= GL(gd,Q�),

where g = [E : Q]. There is the relation

(4.1) H�(M) = ⊕λ|� Hλ(M), σ�
∼= ⊕λ|� ρλ.

By the comparison isomorphism, we have

V ⊗Q Q�
∼= H�(M), V ⊗E Eλ

∼= Hλ(M).

Conjecture 4.1. There exists an algebraic group H defined over E, which
does not depend on λ, such that H0 = Hg(M) and such that Im(ρλ) is Zariski
dense in H. If E = Q, then Im(ρλ) is open in H(Eλ).

Remark 4.2. Conjecture 4.1 tacitly assumes that Hg(M) does not depend
on the choice of an embedding F ↪→ C. As far as the author knows, this fact is
established for abelian varieties (by the theory of absolute Hodge cycles, [D3]) but
not in general. We also note that semisimplicity of ρλ follows from Conjecture 4.1.

Remark 4.3. When E = Q, a weaker form of Conjecture 4.1 is given in
[Mu1] together with the definition of the special Mumford–Tate group. In [Se1],
Conjecture 4.1 is stated also assuming E = Q. The author could not find a reference
for general E.

Let us clarify the relation of the conjecture for the case E = Q and for the case

of general E. Let H be the Zariski closure of Im(σl) and let H̃ be the E-envelope
of H. Then we have

Im(σl) = Im(⊕λ|l ρλ) ⊂ H(Ql) ⊂ RE/Q(H̃)(Ql) =
∏
λ|l

H̃(Eλ).

Hence we obtain

(4.2) Im(ρλ) ⊂ H̃(Eλ).

On the other hand, let H be the closure of Im(ρλ) (⊂ GL(V )(Eλ)) with respect
to the E-Zariski topology. In other words, H is the smallest algebraic subgroup

defined over E of GL(V ) such that H(Eλ) ⊃ Im(ρλ). By (4.2), we have H ⊂ H̃.
Assume that H is independent of λ. Then we have

Im(σl) = Im(⊕λ|l ρλ) ⊂
∏
λ|�

H(Eλ) = RE/Q(H)(Q�).

Hence we have H ⊂ RE/Q(H). By the minimality of H̃, we have H̃ ⊂ H. Therefore

we obtain H̃ = H. Thus we have proved the following proposition.

Proposition 4.4. Assume Conjecture 4.1 for the case E = Q and let H be
the Zariski closure of Im(σl). Let H be the closure of Im(ρλ) with respect to the
E-Zariski topology. Assume that H is independent of λ. Then H is equal to the
E-envelope of H.
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In Proposition 4.4, we note that H0 is the E-envelope of H0. In view of Propo-
sition 1.4, Proposition 4.4 states that Conjecture 4.1 for general E follows from the
case E = Q under the independence assumption of H.

Assuming Conjecture 4.1, we are going to construct a homomorphism

ψv : W ′
Fv

−→ H(C)

for every place v of F .
Let v be non-archimedean. Take a finite place λ of E which is prime to v. By

restriction, we have a λ-adic representation

ρλ,v : Gal(Fv/Fv) −→ H(Eλ).

Take an embedding Eλ ↪→ C. By the procedure of §2, we obtain a representation

ψv = σ′ss
λ,v : W ′

Fv
(C) −→ H(C),

which sends semisimple elements to semisimple elements.

Remark 4.5. The equivalence class of ψv may depend on the choice of λ. If M
is attached to the cohomology of a projective smooth algebraic variety X defined
over F , the independence is known when either X is an abelian variety or X has
good reduction at v.

Let v be archimedean. Take an embedding E ↪→ C. We have a homomorphism

h : S(R) = C× −→ H(C)

attached to the Hodge structure on HB(M).
If v is imaginary, then WC = C×. We take ψv = h.
Suppose that v is real. We have the non-split exact sequence

1 −→ C× −→ WR −→ Gal(C/R) −→ 1.

We can realize WR inside H×, the group of nonzero Hamilton quaternions, as

WR = 〈C×, j〉, j2 = −1, jzj−1 = z̄, z ∈ C×.

Put τ ′ = ρλ(c) ∈ H(Eλ) ⊂ H(C), where c ∈ Gal(F v/Fv) ∼= Gal(C/R) is the
complex conjugation. Then we can show that

τ ′h(z) = h(z̄)τ ′, z ∈ S(R) = C×.

If w = 0, we put τ = τ ′. If w �= 0, then the scalars C× is contained in the center
Z of H(C). Taking t ∈ Z such that t2 = h(−1) = (−1)w, we put τ = τ ′t. Now τ
satisfies

τ2 = h(−1), τh(z) = h(z̄)τ, z ∈ S(R).

Therefore we can define a representation ψv of WR into H(C) by

ψv|C× = h, ψv(j) = τ.



614 HIROYUKI YOSHIDA

5. Main Conjecture

As in the previous section, we consider the λ-adic representation

ρλ : Gal(F/F ) −→ GL(Hλ(M))

attached to a motive M . We assume Conjecture 4.1. Put V = HB(M). We fix an
embedding Eλ ↪→ C. There exists the unique finite Galois extension K of F such
that the diagram
(R)
1 −−−−→ ρλ(Gal(F/K)) −−−−→ ρλ(Gal(F/F )) −−−−→ Gal(K/F ) −−−−→ 1⏐⏐�

⏐⏐�
∥∥∥

1 −−−−→ H0(C) −−−−→ H(C) −−−−→ Gal(K/F ) −−−−→ 1

is commutative. Here H0 = Hg(M), the vertical arrows are inclusion maps and
both rows are exact. In fact, K is uniquely determined by the condition

(5.1) H0(C) ∩ ρλ(Gal(F/F )) = ρλ(Gal(F/K)), Gal(F/K) ⊃ Ker(ρλ).

More generally let H̃ be a reductive algebraic group defined over E such that

H ⊂ H̃ ⊂ GL(V ). We have H0 ⊂ H̃0. Let K̃ be the finite Galois extension of F
determined by

(5.1′) H̃0(C) ∩ ρλ(Gal(F/F )) = ρλ(Gal(F/K̃)), Gal(F/K̃) ⊃ Ker(ρλ).

We have K̃ ⊂ K. Similarly to (R), we have a commutative diagram
(R′)

1 −−−−→ ρλ(Gal(F/K̃)) −−−−→ ρλ(Gal(F/F )) −−−−→ Gal(K̃/F ) −−−−→ 1⏐⏐�
⏐⏐�

∥∥∥
1 −−−−→ H̃0(C) −−−−→ H̃(C) −−−−→ Gal(K̃/F ) −−−−→ 1

We call the situation where H̃ = H the minimal case.
The exact sequence in the second row of (R′) defines a homomorphism

Gal(K̃/F ) −→ Aut(H̃0)/Inn(H̃0).

We have a split exact sequence

1 −→ Inn(H̃0) −→ Aut(H̃0) −→ Aut(R0(H̃
0)) −→ 1.

Here

R0(H̃
0) = (X∗(T ),Δ, X∗(T ), Δ̌).

is a based root datum. Thus we have a homomorphism

μ
˜H0 : Gal(K̃/F ) −→ Aut(R0(H̃

0)).

Proposition 5.1. Let M be a connected reductive algebraic group defined over
C. Let μ be a homomorphism of Gal(F/F ) into Aut(R0(M)). Then there exists a
connected reductive algebraic group G defined over F such that
(i) G is quasi-split over F . (ii) LG0 = M(C). (iii) μG = μ.
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A proof will be given in Appendix II. Let G̃ be the quasi-split group defined

over F given by Proposition 5.1 by taking M = H̃0, μ = μ
˜H0 . We are going to

compare LG̃ with the group extension

(5.2) 1 −−−−→ H̃0(C) −−−−→ H̃(C) −−−−→ Gal(K̃/F ) −−−−→ 1

in the second row of (R′). For this purpose, let us recall a few basic facts on factor
sets.

Let

1 −−−−→ N −−−−→ G
π−−−−→ F −−−−→ 1

be an exact sequence of groups. For σ ∈ F , we choose σ̃ ∈ G so that π(σ̃) = σ.
Then, for σ, τ ∈ F , we have

f(σ, τ )σ̃τ = σ̃τ̃

with f(σ, τ ) ∈ N . We define a(σ) ∈ Aut(N) by

a(σ)n = σ̃nσ̃−1, n ∈ N.

Then we have

(5.3) i(f(σ, τ ))a(στ ) = a(σ)a(τ ),

(5.4) f(σ, τ )f(στ, ρ) = (a(σ)f(τ, ρ))f(σ, τρ).

Here i(f(σ, τ )) is the inner automorphism of N defined by f(σ, τ ). The datum
{a(σ) ∈ Aut(N)}, {f(σ, τ ) ∈ N}, or simply {a(σ), f(σ, τ )}, is called a factor set of
F taking values in N .

We say two factor sets are equivalent if there exists {ασ ∈ N}σ∈F such that

(5.5) a′(σ) = i(ασ)a(σ),

(5.6) f ′(σ, τ ) = ασ(a(σ)ατ )f(σ, τ )α
−1
στ .

The transformation {a, f} −→ {a′, f ′} is caused when we change σ̃ to ασσ̃. When
a factor set is given, we can define a group law on N × F by

(5.7) (n1, σ)(n2, τ ) = (n1(a(σ)n2)f(σ, τ ), στ ).

This group structure determines factor sets in the equivalence class of the given
one.

Let ϕ : F̃ −→ F be a group homomorphism. Then {a(ϕ(σ)), f(ϕ(σ), ϕ(τ ))} is

a factor set of F̃ taking values in N . We call this process the inflation by ϕ. We
say a factor set splits if it is equivalent to a factor set with f(σ, τ ) = 1 for all σ, τ .
This is the case if and only if G is isomorphic to the semi-direct product of N with
F : G = N � F .

When N is abelian, N is a left F -module by the action a of F on N , and (5.4)
is the 2-cocycle condition on f . Two factor sets are equivalent if and only if they
are cohomologous.

The following lemma will be used to lift the local parameter ψv defined in §4
to the Langlands parameter.

Lemma 5.2. Let N and F be groups. Let {a(σ) ∈ Aut(N)}, {f(σ, τ ) ∈ N} be
a factor set of F taking values in N . Let G be the group whose underlying set is

N × F and whose group law is defined by (5.7). Let F̃ be a group and ϕ : F̃ −→ F

be a homomorphism. Let G̃ be the group whose underlying set is N × F̃ and whose
group law is defined by (5.7) using the inflated factor set. Define a homomorphism
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p : G̃ −→ G by p((n, σ)) = (n, ϕ(σ)), and a homomorphism π : G −→ F by

π((n, σ)) = σ. Define a homomorphism π̃ : G̃ −→ F̃ similarly. Let G be a group

and ψ : G −→ G be a homomorphism. Put q = π ◦ ψ. If q̃ : G −→ F̃ is a

homomorphism satisfying ϕ◦ q̃ = q, then there exists a homomorphism ψ̃ : G −→ G̃

such that p ◦ ψ̃ = ψ. Moreover such a ψ̃ is unique if we impose the condition

π̃ ◦ ψ̃ = q̃.

Proof. Write

ψ(g) = (n(g), q(g)), n(g) ∈ N, q(g) ∈ F, g ∈ G.

The condition that ψ is a homomorphism is given by

(5.8) (n(g1)(a(q(g1))n(g2))f(q(g1), q(g2)), q(g1)q(g2)) = (n(g1g2), q(g1g2))

for g1, g2 ∈ G. Put

ψ̃(g) = (n(g), q̃(g)), g ∈ G.

Then, using (5.8), we can verify immediately that ψ̃ is a homomorphism. Since

p(ψ̃(g)) = (n(g), ϕ(q̃(g))) = (n(g), q(g)),

we have p ◦ ψ̃ = ψ. It is clear that π̃ ◦ ψ̃ = q̃. The uniqueness assertion can be
verified easily. This completes the proof. �

Now let us compare LG̃ with H̃(C). Let {ã(σ), f̃(σ, τ )} be a factor set of

Gal(K̃/F ) taking values in H̃0(C) defined by the exact sequence (5.2). Explicitly

it is given as follows. For σ ∈ Gal(K̃/F ), take σ̃ ∈ Gal(F/F ) so that σ̃|K̃ = σ.
Then we have

(5.9) ã(σ)h = ρλ(σ̃)hρλ(σ̃)
−1, h ∈ H̃0(C),

(5.10) f̃(σ, τ ) = ρλ(σ̃τ̃(σ̃τ)
−1).

The exact sequence

(5.11) 1 −−−−→ Inn(H̃0) −−−−→ Aut(H̃0)
π−−−−→ Out(H̃0) −−−−→ 1

splits. Let T be a maximal torus and B be a Borel subgroup containing T . The
splitting of (5.11) is given by (cf. §3)

Out(H̃0) ∼= Aut(R0(H̃
0)) ∼= Aut(H̃0, B, T, {uα}α∈Δ).

Let
s : Out(H̃0) −→ Aut(H̃0)

be a homomorphism such that π◦s = id. Take σ ∈ Gal(K̃/F ). Since π(s(π(ã(σ)))) =

π(ã(σ)), there exists ασ ∈ H̃0(C) such that

(5.12) s(π(ã(σ))) = i(ασ)ã(σ).

Now we consider an equivalent factor set to {ã(σ), f̃(σ, τ )}.
(5.13) ãZ(σ) = i(ασ)ã(σ),

(5.14) f̃Z(σ, τ ) = ασ(ã(σ)ατ )f̃(σ, τ )α
−1
στ .

As (5.12) shows, the mapping Gal(K̃/F ) � σ −→ ãZ(σ) ∈ Aut(H̃0(C)) is a ho-

momorphism. By (5.3), we see that i(f̃Z(σ, τ )) = 1. This implies that f̃Z(σ, τ ) ∈
Z(H̃0(C)). Thus we obtain a cohomology class of f̃Z in H2(Gal(K̃/F ), Z(H̃0(C)))
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from (5.2). It does not depend on the choices of σ̃, ασ and the section s, which we
will verify below.

1◦. Suppose that we change σ̃ to uσσ̃ with uσ ∈ Gal(F/K̃). Then we see easily

that {ãZ(σ)|Z(H̃0(C)), f̃Z(σ, τ )} does not change.

2◦. Suppose that we change ασ to zσασ with zσ ∈ Z(H̃0(C)). Then ãZ(σ)

does not change and f̃Z(σ, τ ) changes to

f̃Z(σ, τ )zσ(ãZ(σ)zτ )z
−1
στ .

Thus the cohomology class of f̃Z in H2(Gal(K̃/F ), Z(H̃0(C))) does not change.
3◦. Suppose that we change s to another section s′ which comes from another

splitting datum:

Out(H̃0) ∼= Aut(R0(H̃
0)) ∼= Aut(H̃0, B′, T ′, {u′

α}α∈Δ).

Since B′ = i(h)B, T ′ = i(h)T , u′
α = i(h)uα with h ∈ H̃0(C), we have s′(x) =

i(h)s(x)i(h)−1, x ∈ Out(H̃0). Put i(h)i(ασ)ã(σ)i(h)
−1 = i(α′

σ)ã(σ) with α′
σ ∈

H̃0(C). Then we have α′
σρλ(σ̃) = zσhασρλ(σ̃)h

−1 with zσ ∈ Z(H̃0(C)). An easy

calculation shows that ãZ(σ) changes to i(h)ãZ(σ)i(h)
−1 and f̃Z changes as in 2◦.

Thus the action of ãZ(σ) on Z(H̃0(C)) and the cohomology class of f̃Z(σ, τ ) do
not change.

Therefore the cohomology class of f̃Z in H2(Gal(K̃/F ), Z(H̃0(C))) is uniquely
determined by (5.2). In the minimal case, it depends only on ρλ. We fix a splitting

datum for H̃0 and a section s. Since we have

μ
˜G(σ) = μ

˜H0(σ) = π(ã(σ)), σ ∈ Gal(K̃/F ),

Gal(K̃/F ) acts on LG̃0 = H̃0(C) by s(π(ã(σ))) = ãZ(σ).

Suppose that f̃Z splits, i.e., the cohomology class of f̃Z inH2(Gal(K̃/F ), Z(H̃0(C)))

is trivial. Then, for LG̃ = LG̃0�Gal(K̃/F ), we have LG̃ ∼= H̃(C) by (ii) and (iii) of
Proposition 5.1. In this case, the local parameter ψv gives the Langlands parameter

for LG̃ and it is not difficult to formulate the main conjecture. However f̃Z does
not split in general, as will be shown in Appendix II.

Definition 5.3. Let {ãZ(σ), f̃Z(σ, τ )} be as above. A finite Galois extension

L of F containing K̃ is called a splitting field for f̃Z if the cohomology class of

f̃Z in H2(Gal(L/F ), Z(H̃0(C))) becomes trivial after inflation to Gal(L/F ) by the

canonical map Gal(L/F ) −→ Gal(K̃/F ). In the minimal case H̃ = H, a splitting

field for f̃Z is called a splitting field for ρλ.

Theorem 5.4. Assume that Z(H̃0(C)) is connected and that the action of

ãZ(σ) on it is trivial for every σ ∈ Gal(K̃/F ). Then a splitting field for f̃Z exists.

Proof. Since H̃0 is reductive, the identity component of the center is a torus.

By the assumption Z(H̃0(C)) is isomorphic to (C×)r. Hence we may regard

f̃Z(σ, τ ) as a 2-cocycle of Gal(K̃/F ) taking values in (C×)r. By a theorem of
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Tate ([Se2], Theorem 4), we obtain 4

(5.15) H2(Gal(F/F ), (C×)r) = 1.

Therefore a splitting field exists. This completes the proof. �
It is worth recording the following theorem, though we will not use it in this

paper. The proof is identical to the above consideration. (In view of Langlands’
result, this theorem also holds for non-archimedean local fields and function fields
of one variable over a finite field, without assuming the triviality of the action of
a(σ) on the center.)

Theorem 5.5. Let F be a number field and K be a finite Galois extension.
Let G be a connected reductive group over C. Let {a(σ), f(σ, τ )} be a factor set
of Gal(K/F ) taking values in G(C). We assume that the center of G is connected
and that a(σ), σ ∈ Gal(K/F ) are automorphisms of G as an algebraic group acting
trivially on the center. Then there exists a finite Galois extension L ⊃ K of F
such that the factor set inflated to Gal(L/F ) by the canonical map Gal(L/F ) −→
Gal(K/F ) splits.

We note that the center of H0 is not necessarily connected: For the case of
Example 1.10, the center of the Hodge group has 2n−1 connected components. A
main result of this paper, which concerns the minimal case, is:

Theorem 5.6. We assume Hypothesis 8.2 in section 8. Then a splitting field
for ρλ exists if ρλ is absolutely irreducible and w �= 0.

The proof will be completed in §8. Here we note the following Lemma.

Lemma 5.7. Let K be a number field and τλ : Gal(K/K) −→ GL(m,Eλ) be
a λ-adic representation. Let C be the Zariski closure of Im(τλ). Assume that C
contains infinitely many scalar matrices. If τλ is absolutely irreducible, then the
center of C is isomorphic to Gm.

Proof. The center of C commutes with every element of Im(τλ). By Schur’s
lemma, the center of C consists of scalar matrices. Therefore, by the assumption,
the center of C must be isomorphic to Gm. �

Remark 5.8. Assume that τλ is obtained from a motive M over K with coeffi-
cients in E. If w �= 0, Conjecture 4.1 implies that the center of C contains infinitely
many scalar matrices. (cf. [Se1], 2.3 for an unconditional result of Deligne.)

Let L be a splitting field for f̃Z . Put

LG̃ = LG̃0 � Gal(L/F ).

Then (5.2) is embedded into a commutative diagram

(5.16)

1 −−−−→ LG̃0 −−−−→ LG̃ −−−−→ Gal(L/F ) −−−−→ 1∥∥∥
⏐⏐�

⏐⏐�
1 −−−−→ H̃0(C) −−−−→ H̃(C) −−−−→ Gal(K̃/F ) −−−−→ 1.

4Langlands ([Lan2], Lemma 4) proved that a 2-cocycle of Gal(K/F ) taking values in a torus
over C splits after the inflation to the relative Weil group WL/F , where L is a finite Galois
extension of F containing K. His result holds also for local fields and function fields of one
variable over a finite field. It is not difficult to derive Tate’s theorem, which concerns the case
with trivial action, from Langlands’ result.
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We define a homomorphism r of LG̃ into GL(HB(M))(C) as the composite of the

homomorphism LG̃ −→ H̃(C) in (5.16) and the canonical injection. By Lemma 5.2,

the mapping ψv : W ′
Fv

−→ H̃(C) can be lifted to the mapping φv : W ′
Fv

−→ LG̃ so
that the following diagram is commutative:

(5.17)

W ′
Fv

φv−−−−→ LG̃∥∥∥
⏐⏐�

W ′
Fv

ψv−−−−→ H̃(C).

We see that φv sends semisimple elements to semisimple elements and that Ga

is mapped to unipotent elements contained in LG̃0. In view of the latter part of
Lemma 5.2, we see that it is a Langlands parameter. Now we can formulate the
main conjecture.

Main Conjecture. Assume that ρλ is absolutely irreducible and that a

splitting field L for f̃Z exists. Take a quasi-split connected reductive algebraic group

G̃ defined over F and define r and φv as above. Then there exists an irreducible

automorphic representation π = ⊗vπv of G̃(FA) such that L(s, π, r) = L(M, s).
Moreover
(i) πv belongs to the L-packet Πφv

(G̃/Fv).
(ii) π is cuspidal.
(iii) π is essentially unitary and tempered. In other words, there exists a morphism

ν : G̃ −→ Gm defined over F and a quasicharacter χ of F×
A such that π ⊗ (χ ◦ ν)

is unitary and tempered.

Remark 5.9. The homomorphism LG̃ −→ H̃(C) depends on the splitting of

the 2-cocycle inflated from f̃Z . In other words, H1(Gal(L/F ), Z(H̃0(C))) acts on
the equivalence class of r. If we change the splitting and r, then φv will change;
however L(s, πv, rv) does not change.

Remark 5.10. The π on G̃(FA) corresponding to M is not unique in general.
To know which π will appear in the tempered spectrum, we need the (conjectural)
multiplicity formula due to Labesse-Langlands-Kottwitz ([LL], [K]). To deduce more

precise information, we need to know the structure of the L-packet Πφv
(G̃(Fv)).

Non-tempered π will appear if we consider a mixed motive.

Remark 5.11. The main conjectures for H (the minimal case) and H̃ are
related by the functoriality principle. More precisely an L-homomorphism f :
LG −→ LG̃ is given as follows. The cocycle f̃Z for H is denoted by fZ . Let

L be a common splitting field for fZ and f̃Z . Set LG = LG0 � Gal(L/F ), LG̃ =
LG̃0�Gal(L/F ). Let ϕ (resp. ϕ̃) be the canonical map of Gal(L/F ) onto Gal(K/F )

(resp. Gal(K̃/F )). Let π be the canonical map of Gal(K/F ) onto Gal(K̃/F ). Let

fZ(ϕ(σ), ϕ(τ )) = βσ(aZ(ϕ(σ))βτ )β
−1
στ , σ, τ ∈ Gal(L/F ), β∗ ∈ Z(H0(C)),

f̃Z(ϕ̃(σ), ϕ̃(τ )) = β̃σ(ãZ(ϕ̃(σ))β̃τ )β̃
−1
στ , σ, τ ∈ Gal(L/F ), β̃∗ ∈ Z(H̃0(C))
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be splittings. The element ασ defined by (5.12) for H̃ is denoted by α̃σ. Then

(5.18)
f((h, σ)) = (hβ−1

σ αϕ(σ)ρλ(ϕ̃(σ))ρλ(π̃(σ))
−1α̃−1

π(σ)β̃σ, σ),

h ∈ H0(C), σ ∈ Gal(L/F ).

The predicted automorphic representations of G(FA) and of G̃(FA) are in functorial
correspondence under the L-homomorphism f . The same remark applies for the

relation between H1 and H̃, where H ⊂ H1 ⊂ H̃.

Remark 5.12. Let WL/F be the relative Weil group, where L is a finite Galois

extension of F which contains K̃. By the canonical map WL/F −→ Gal(K̃/F ), we

can inflate f̃Z to the 2-cocycle of WL/F taking values in Z(H̃0(C)). By the result

of Langlands cited above, this cocycle splits for a sufficiently large L if Z(H̃0(C))

is connected. Therefore, for the Weil form of the L-group LG̃ = H̃0(C) � WL/F ,

we can formulate the main conjecture in the similar manner, whenever Z(H̃0(C))
is connected.

We can interpret Remark 5.11 as showing that the minimal case is most chal-
lenging. After the next section, we will discuss the existence of a splitting field in
the minimal case. We end this section by the observation that a slightly weaker
formulation than the main conjecture is possible for the minimal case using only
Theorem 5.4 (and not using the existence of the splitting field).

Assume that ρλ is absolutely irreducible and w �= 0. Suppose that ρλ|Gal(F/K)
is isotypic. By Lemma 5.7 and Remark 5.8, the center of H0 is connected. (We
clearly see that a(σ) acts on the center trivially.) Hence the splitting field exists by
Theorem 5.4.

Next assume that ρλ|Gal(F/K) is not isotypic. By Clifford’s theorem, there
exists a field F � K ′ ⊂ K and a λ-adic representation

τλ : Gal(F/K ′) −→ GL(W )

such that ρλ ∼= Ind
Gal(F/F )

Gal(F/K′)
τλ. Here W denotes a finite dimensional vector space

over Eλ. (In terms of motives, this case corresponds to the following situation:

There exists a motive M̃ over K ′ with coefficients in E such that M = RK′/F (M̃)

and τλ is the λ-adic representation associated to M̃ .) Let H be the Zariski closure
of Im(τλ). Since the Zariski closure of τλ(Gal(F/K)) is a homomorphic image
of H0, we have τλ(Gal(F/K)) ⊂ H0(C). By the proof of Clifford’s theorem, we
see that τλ|Gal(F/K) is isotypic. Therefore the center of H0 is isomorphic to
Gm, and a splitting field for τλ exists by Theorem 5.4. By the Main Conjecture,

there exist a connected reductive algebraic group G̃ defined over K ′, an irreducible

automorphic representation π̃ of G̃(K ′
A) and a representation r̃ of LG̃ such that

L(M̃, s) = L(M, s) = L(s, π̃, r̃). Put G′ = RK′/F (G̃). The L-group of G′ is the

induced group of LG̃ (cf. [Bo2], p. 35). Since G′(FA) = G̃(K ′
A), we can find an

irreducible automorphic representation π′ of G′(FA) and a representation r′ of LG′

such that L(M, s) = L(s, π′, r′). The Langlands parameter to which π′ corresponds
can be described explicitly, though we omit the details. In this way, the problem is
“almost solved”. However the group G′ is slightly “bigger” than G. In this sense,
this construction is unsatisfactory.
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Let us consider an example. Let A be an elliptic curve defined over K ′ without
complex multiplication. We assume that α(A) is not isogenous to β(A) for two
different embeddings α and β of K ′ into C. We consider the motive H1(RK′/F (A)).
Then we have G′ = RK′/F (GL(2)). On the other hand, by Example 1.10, we

have H0(C) = {(g1, . . . , gn) ∈ GL(2,C)n | det g1 = · · · = det gn}, where n =
[K ′ : F ]. Put G1 = GL(2)n/Z, Z = {z1 · 12, . . . , zn · 12 | z1 · · · zn = 1} and
consider G1 as an algebraic group defined over K ′. Since the dual group to H0 is
G1 over C, we see that G = RK′/F (G1) by considering the action of Gal(F/F ).
There is a canonical surjective central homomorphism G′ −→ G. An automorphic
representation corresponding to M exists on GL(2,K ′

A) = G′(FA) by a standard
conjecture. Since this representation has trivial central character, the corresponding
representation exists on G1(K

′
A) = G(FA). We see that a splitting field for fZ (in

the minimal case) exists because Lemma 8.1 holds unconditionally and (8.10) holds
in this case.

6. Preliminary considerations on splitting fields

Let ρλ be the λ-adic representation attached to a motive M . To show the
existence of a splitting field for ρλ, we may enlarge the coefficient field E. Hereafter
we assume that H0 splits over E. It is convenient to consider {a(σ), f(σ, τ )} as a
factor set taking values in H0(Eλ).

Take the finite Galois extension K of F so that

(6.1) H0(Eλ) ∩ ρλ(Gal(F/F )) = ρλ(Gal(F/K)), Gal(F/K) ⊃ Ker(ρλ).

The field K is the same as that defined by (5.1). We have the exact sequence

(6.2) 1 −−−−→ H0(Eλ) −−−−→ H(Eλ) −−−−→ Gal(K/F ) −−−−→ 1.

For σ ∈ Gal(K/F ), take σ̃ ∈ Gal(F/F ) so that σ̃|K = σ. Then a factor set of
Gal(K/F ) attached to the exact sequence (6.2) is

(6.3) a(σ)h = ρλ(σ̃)hρλ(σ̃)
−1, h ∈ H0(Eλ),

(6.4) f(σ, τ ) = ρλ(σ̃τ̃(σ̃τ)
−1).

The exact sequence

1 −−−−→ Inn(H0) −−−−→ Aut(H0)
π−−−−→ Out(H0) −−−−→ 1

splits. Take a splitting datum (B, T, {uα}α∈Δ) for H
0 and let

s : Out(H0) −→ Aut(H0)

be the corresponding section. Take ασ ∈ H0(Eλ) so that

(6.5) s(π(a(σ))) = i(ασ)a(σ).

Define an equivalent factor set to {a(σ), f(σ, τ} by

(6.6) aZ(σ) = i(ασ)a(σ),

(6.7) fZ(σ, τ ) = ασ(a(σ)ατ )f(σ, τ )α
−1
στ .

Then fZ(σ, τ ) is a 2-cocycle of Gal(K/F ) taking values in Z(H0(Eλ)).
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Lemma 6.1. Let L be a finite Galois extension of F which contains K. Let
ϕ : Gal(L/F ) −→ Gal(K/F ) be the canonical map. For σ ∈ Gal(L/F ), take
σ̄ ∈ Gal(F/F ) so that σ̄|L = σ. Put

(6.8) ā(σ)h = ρλ(σ̄)hρλ(σ̄)
−1, h ∈ H0(Eλ),

(6.9) f̄(σ, τ ) = ρλ(σ̄τ̄(στ)
−1).

Then {ā(σ), f̄(σ, τ )} is a factor set of Gal(L/F ) taking values in H0(Eλ) which
is equivalent to the factor set obtained from {a(σ), f(σ, τ )} by inflation by ϕ. For
σ ∈ Gal(L/F ), take βσ ∈ H0(Eλ) so that

s(π(ā(σ))) = i(βσ)ā(σ)

and put

(6.10) āZ(σ) = i(βσ)ā(σ),

(6.11) f̄Z(σ, τ ) = βσ(a(σ)βτ )f̄(σ, τ )β
−1
στ .

Then the cohomology class of f̄Z in H2(Gal(L/F ), Z(H0(Eλ))) coincides with the
class obtained from fZ by inflation by ϕ.

Proof. For σ ∈ Gal(L/F ), put

ϕ̃(σ) = uσσ̄, uσ ∈ Gal(F/K), βσ = αϕ(σ)ρλ(uσ).

With this choice of βσ, define aZ and fZ by (6.10) and (6.11). It suffices to show

āZ(σ) = aZ(ϕ(σ)), σ ∈ Gal(L/F ),

f̄Z(σ, τ ) = fZ(ϕ(σ), ϕ(τ )), σ, τ ∈ Gal(L/F ).

We have

āZ(σ) = i(αϕ(σ)ρλ(uσ))ā(σ) = i(αϕ(σ))a(ϕ(σ)) = aZ(ϕ(σ)),

fZ(σ, τ ) = αϕ(σ)ρλ(uσ)ρλ(σ̄)αϕ(τ)ρλ(uτ )ρλ(σ̄)
−1ρλ(σ̄τ̄ (στ)

−1)ρλ(uστ )
−1α−1

ϕ(στ)

=αϕ(σ)ρλ(ϕ̃(σ))αϕ(τ)ρλ(ϕ̃(τ ))ρλ(ϕ̃(στ ))
−1α−1

ϕ(στ)

=αϕ(σ)(ρλ(ϕ̃(σ))αϕ(τ)ρλ(ϕ̃(σ))
−1)ρλ(ϕ̃(σ)ϕ̃(τ )ϕ̃(στ )

−1)α−1
ϕ(στ) = fZ(ϕ(σ), ϕ(τ )).

Hence the assertion follows. �

Lemma 6.2. Let ηiλ, 1 ≤ i ≤ m be λ-adic representations of Gal(F/F ) attached
to motives Mi over F with coefficients in E. Put τλ = ⊕m

i=1η
i
λ. If τλ has a splitting

field, then every ηiλ, 1 ≤ i ≤ m has a splitting field.

Proof. Let Hi be the Zariski closure of Im(ηiλ), 1 ≤ i ≤ m and let H be the
Zariski closure of τλ. Clearly we see that

H ⊂ H1 ×H2 × · · · ×Hm, H0 ⊂ H0
1 ×H0

2 × · · · ×H0
m

and that the projection map pi : H −→ Hi is a surjective homomorphism satisfying
pi(H

0) = H0
i , pi(Z(H0)) ⊂ Z(H0

i ). Let Ki be the finite Galois extension of F
determined by

H0
i (Eλ) ∩ ηiλ(Gal(F/F )) = ηiλ(Gal(F/Ki)), Gal(F/Ki) ⊃ Ker(ηiλ).
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Let L be a splitting field for τλ. We may assume that L contains Ki, 1 ≤ i ≤ m.
For σ ∈ Gal(L/F ), take σ̄ ∈ Gal(F/F ) so that σ̄|L = σ. We define a factor set
{aZ(σ), fZ(σ, τ )} taking values in Z(H0(Eλ)) as in Lemma 6.1:

a(σ)h = τλ(σ̄)hτλ(σ̄)
−1, h ∈ H0(Eλ), f(σ, τ ) = τλ(σ̄τ̄ (στ)

−1),

s(π(a(σ))) = i(βσ)a(σ),

aZ(σ) = i(βσ)a(σ), fZ(σ, τ ) = βσ(a(σ)βτ )f(σ, τ )β
−1
στ .

We also define a factor set {aZ,i(σ), fZ,i(σ, τ )} taking values in Z(H0
i (Eλ)) by

ai(σ)h = ηiλ(σ̄)hη
i
λ(σ̄)

−1, h ∈ H0
i (Eλ), fi(σ, τ ) = ηiλ(σ̄τ̄ (στ)

−1),

si(πi(ai(σ))) = i(βσ,i)ai(σ),

aZ,i(σ) = i(βσ,i)ai(σ), fZ,i(σ, τ ) = βσ,i(ai(σ)βτ,i)fi(σ, τ )β
−1
στ,i.

Let (B, T, {uα}α∈Δ) be a splitting datum for H0. Let U be the unipotent radical
of B. The homomorphic images Bi = pi(B), Ui = pi(U), Ti = pi(T ) are a Borel
subgroup, the unipotent radical of Bi and a maximal torus of Hi. Let Σ+ (resp.
Σ+

i ) be the set of positive roots defined by (B, T ) (resp. (Bi, Ti)). Let β ∈ Σ+ and
let Uβ ⊂ U be the corresponding root subgroup. Assume that pi(Uβ) �= {1}. Since
pi(Uβ) ∼= Ga and is normalized by Ti, we have pi(Uβ) = U i

α for some α ∈ Σ+
i , where

U i
α is the root subgroup corresponding to α. Then we find easily that β = α ◦ pi.

Conversely, given α ∈ Σ+
i , examining root subgroups contained in p−1

i (U i
α)∩U , we

see that there exists β ∈ Σ+ such that pi(Uβ) = U i
α. Thus we have shown that

pi(Uβ) �= {1} if and only if β = pi ◦ α for some α ∈ Σ+
i . In this case, pi(Uβ) = U i

α;
moreover β is simple if α is simple. Let Δi ⊂ Σ+

i be the set of simple roots.
For α ∈ Δi, we put ui

α = pi(uβ), β = α ◦ pi. Then i(pi(βσ))ai(σ) stabilizes the
splitting datum (Bi, Ti, {ui

α}α∈Δi
). Therefore we may take βσ,i = pi(βσ). Then it

is immediate to see that

aZ,i(σ)(pi(h)) = pi(aZ(σ)h), h ∈ H0, fZ,i(σ, τ ) = pi(fZ(σ, τ )).

This completes the proof. �

Remark 6.3. The converse to Lemma 6.2 could well be true but seems to be
difficult to prove.

Let K be a finite Galois extension of F such that

(6.12) ρλ(Gal(F/K)) ⊂ H0(Eλ), Gal(F/K) ⊃ Ker(ρλ).

By Lemma 6.1, we see that to show the existence of a splitting field, it is enough
to consider the 2-cocycle fZ(σ, τ ) defined by (6.3)–(6.7). Hereafter, we denote by
K a field satisfying (6.12) without assuming (6.1).

Let τλ : Gal(F/K) −→ GL(W ) be a λ-adic representation, where W is a finite

dimensional vector space over Eλ. Put ρλ = Ind
Gal(F/F )

Gal(F/K)
τλ. We assume that τλ is

associated to a motive M̃ over K with coefficients in E. Let M = RK/F (M̃). Then
ρλ is associated to the motive M . By Lemma 6.2, the problem of the existence of
a splitting field can be reduced to this situation. Also by Lemma 6.2, enlarging K
if necessary, we may assume that K is normal over F , the Zariski closure of Im(τλ)
is connected and that the condition (6.12) is satisfied. Let H be the Zariski closure
of Im(ρλ) as before and let H be the Zariski closure of Im(τλ). By Conjecture 4.1,
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we have H = Hg(M), H = Hg(M̃). In §7, we will deal with the case where τλ is
one dimensional. The general case will be treated in §8.

7. The existence of splitting fields in abelian case

Let K be an algebraic number field. Let χ be a Hecke character of K×
A of

conductor f. Let If denote the group consisting of all fractional ideals prime to
f. Let χ∗ be a homomorphism of If into C× associated to χ. We assume that χ∗
satisfies

(7.1) χ∗((a)) =
∏

σ∈JK

σ(a)l(σ), a ≡ 1 mod ×f, a � 0.

Here JK denotes the set of all isomorphisms of K into C and l(σ) ∈ Z; mod ×f
denotes the multiplicative congruence modulo f; a � 0 means that a is totally
positive. Let E be the finite algebraic number field generated by χ∗(a), a ∈ If. Let
λ be a finite place of E and let 
 be the prime number lying below λ. As was shown
by Weil, there exists a λ-adic representation χλ of Gal(Kab/K) into E×

λ associated
to χ. They are related by
(7.2)

χ(a) = χλ([a]) if a ∈ K×
A satisfies a∞ = 1 and av = 1 whenever v divides 
.

Here [a] ∈ Gal(Kab/K) denotes the canonical image of a. We may consider χλ

as a λ-adic representation of Gal(K/K). Now assume that K is normal over an
algebraic number field F and consider the induced representation

ρλ = Ind
Gal(F/F )

Gal(F/K)
χλ.

In the notation of §6, τλ = χλ. We are going to prove that ρλ has a splitting field
using the 
-adic method.

Put

G = Gal(K/F ), n = [K : F ] = |G|.
Since we are assuming that the weight w of M is not zero, χ is of infinite order (cf.
Remark 7.3). Then we have

H = Gm, H0 ⊂ (Gm)n.

Here we consider Gm as an algebraic group defined over E. Put T = H0. Let
X∗((Gm)n) ∼= Zn be the character group of (Gm)n. We write an element of
X∗((Gm)n) as (xα)α∈G, xα ∈ Z. Let Y be the subgroup of X∗((Gm)n) which
annihilates T . For α ∈ G, we choose α̃ ∈ Gal(F/F ) so that α̃|K = α. We put

χα
λ(x) = χλ((α̃)

−1xα̃), x ∈ Gal(F/K), χα(x) = χ(α−1(x)), x ∈ K×
A.

Then χα and χα
λ are related by (7.2). Since

ρλ|Gal(F/K) ∼= ⊕α∈Gχ
α
λ ,

(yα)α∈G ∈ Zn belongs to Y if and only if

(7.3)
∏
α∈G

(χα
∗ )

yα = 1.

By

χα
∗ ((a)) = χ∗((α

−1(a))) =
∏

σ∈JK

σ(a)l(σα), a ≡ 1 mod ×
f, a � 0,
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we obtain

(7.4)
∑
α∈G

yαl(σα) = 0 for all σ ∈ JK

from (7.3). Since H0 is the Zariski closure of Gal(F/L) for any finite extension L of
K, we see that (7.4) is the necessary and sufficient condition for (yα)α∈G ∈ Y . As
X∗((Gm)n)/Y is torsion-free, we see that T is a split torus defined over E, whose
character group is isomorphic to Zn/Y .

Now we regard ρλ as a λ-adic representation of Gal(Kab/F ). For σ ∈ G, we
take σ̃ ∈ Gal(Kab/F ) so that σ̃|K = σ. The factor set attached to ρλ is given by

a(σ)h = ρλ(σ̃)hρλ(σ̃)
−1, h ∈ T (Eλ),

f(σ, τ ) = ρλ(σ̃τ̃(σ̃τ)
−1) = ⊕α∈Gχ

α
λ(σ̃τ̃(σ̃τ)

−1).

Since H0 is commutative, we have aZ(σ) = a(σ), fZ(σ, τ ) = f(σ, τ ). We put

ξ(σ, τ ) = σ̃τ̃(σ̃τ)−1.

Then ξ is a 2-cocycle and the cohomology class of ξ is in H2(G,Gal(Kab/K)). We
see easily that

⊕α∈Gχ
α
λ : Gal(Kab/K) −→ T (Eλ)

is a G-homomorphism and that f is the image of ξ under this mapping. Let
CK = K×

A/K× be the idele class group of K and let DK be the identity component
of CK . We have Gal(Kab/K) ∼= CK/DK . Since H2r+1(G, DK) = 1 (cf. Artin-Tate
[AT], p. 91–92), the canonical map H2(G, CK) −→ H2(G, CK/DK) is surjective.
Let η ∈ H2(G, CK) denote the fundamental class, i.e., the canonical generator
of H2(G, CK) ∼= Z/nZ. The cohomology class of ξ is the image of η under the
canonical map.

Let T be the maximal compact subgroup of T (Eλ). Since

(7.5) f(σ, τ ) = ⊕α∈Gχ
α
λ(ξ(σ, τ )),

the order of the cohomology class of f in H2(G, T ) divides n. Now take λ so that l
does not divide n. We replace K by its finite extension L so that ρλ(Gal(F/L)) is
contained in the maximal pro-
-subgroup L of T . Since this is the inflation process
by Lemma 6.1, the order of the cohomology class of f in H2(Gal(L/F ), T ) still
divides n. 5 Now the triviality of the cohomology class of f follows from the next
Lemma.

Lemma 7.1. Let G be a finite group. Let T be a G-module and L be a G-
submodule of T . We assume that T is a profinite group with continuous action of
G, L is a pro-
-group and that L is open in T . Suppose that c ∈ H2(G, T ) is given.
Let m be the order of c. If c is in the image of H2(G,L) under the canonical map
H2(G,L) −→ H2(G, T ) and m is not divisible by 
, then c = 1.

Proof. Take a decreasing sequence {Ti}∞i=1 of open subgroups of T so that
∩∞
i=1Ti = {1} and such that T = lim

←−
T /Ti. Replacing Ti by ∩σ∈GσTi, we may

assume that Ti is a G-submodule of T . Put Li = L ∩ Ti. Then Li is an open
subgroup of L and L/Li is a finite 
-group. Let ci be the image of c under the

5More concretely we see the following. Let aK : K×
A −→ Gal(Kab/K) be the canonical

morphism. Then (7.5) can be written as f(σ, τ) = ⊕α∈Gχα
λ(aK(η(σ, τ))). If we replace K by L, f

changes to ⊕α∈Gχα
λ(aK(NL/K(η̃(σ, τ)))), where η̃ is the fundamental class of H2(Gal(L/F ), CL).
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canonical map H2(G, T ) −→ H2(G, T /Ti). Let f be a 2-cocycle which represents
c.

We assert that there exists a positive integer N such that ci is of order m if
i ≥ N . If this assertion is false, there exists m′ < m such that ci is of order m

′ for
infinitely many i. For such an i, there exists ai(σ) ∈ T , σ ∈ G such that

f(σ, τ )m
′ ≡ ai(σ)(σai(τ ))ai(στ )

−1 mod Ti, σ, τ ∈ G.

Take simultaneously convergent subsequences of ai(σ) for all σ ∈ G and let a(σ) ∈ T
be the limit. Then we have

f(σ, τ )m
′
= a(σ)(σa(τ ))a(στ )−1 σ, τ ∈ G.

This is a contradiction and the existence of N is established.
Let i ≥ N . By the assumption, we see that ci is in the image of the canonical

map H2(G,L/Li) −→ H2(G, T /Ti). Since H2(G,L/Li) is an 
-group, we must
have m = 1. This completes the proof. �

Remark 7.2. Assume that K is a CM-field. Then there exists a motive M(χ)
over K with coefficients in E attached to χ. The rank of M(χ) is 1 and the
weight w of M(χ) is l(σ) + l(σc) which is independent of σ ∈ JK , where c is the
complex conjugation (cf. Blasius [Bl]). For ρλ, the associated motive is M =
RK/F (M(χ)). Regard l as a Z-valued function on Gal(Q/Q) which is left invariant

under Gal(Q/E) and right invariant under Gal(Q/K). We regard Q as a subfield
of C. Take τ : K ↪→ Q and t ∈ Gal(Q/Q) such that t|K = τ . Consider E as a
subfield of C. Then for the rank 1 E-module HB(M(χα)), we have

HB(M(χα))⊗E,id C = H l(tα),w−l(tα), HB(M)⊗E,id C = ⊕α∈G H l(tα),w−l(tα).

Here we use the same letter α also for its extension to Gal(Q/Q). Using (7.4), we
see that the Hodge group Hg(M) is independent of τ and is equal to T .

Let K be an arbitrary algebraic number field and let χ be an algebraic Hecke
character satisfying (7.1). Then there exists a CM-subfield K0 of K, an algebraic
Hecke character χ0 of K0 and a character of finite order ψ of K×

A such that χ =
χ0 ◦ NK/K0

× ψ. The motive attached to χ is given by M(χ0)K ⊗ M(ψ), where
M(χ0)K is the motive M(χ0) considered as a motive over K and M(ψ) denotes
the Artin motive attached to ψ.

8. The existence of splitting fields in general case

We consider the situation in the last paragraph of §6. Thus ρλ = Ind
Gal(F/F )

Gal(F/K)
τλ

for a λ-adic representation τλ : Gal(F/K) −→ GL(W ). We put

G = Gal(K/F ), n = [K : F ].

We realize ρλ as follows. For α ∈ G, we prepare a vector space αW , which is
isomorphic to W , and put V = ⊕α∈GαW . For α ∈ G, we choose α̃ ∈ Gal(F/F ) so
that α̃|K = α. Then we have

Gal(F/F ) = �α∈G α̃Gal(F/K).

For σ ∈ Gal(F/F ) and α ∈ G, we put

σα̃ = β̃αhα, βα ∈ G, hα ∈ Gal(F/K).
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Then we define ρλ(σ) ∈ GL(V ) by

(8.1) ρλ(σ)(⊕α∈G α · vα) = ⊕α∈G βα · τλ((β̃α)
−1σα̃)vα.

Here we label a vector of αW as α · vα, vα ∈ W . The right-hand side means the

vector whose βα-component is τλ((β̃α)
−1σα̃)vα. If σ ∈ Gal(F/K), we have

(8.2) ρλ(σ)(⊕α∈G α · vα) = ⊕α∈G α · τλ((α̃)−1σα̃)vα, σ ∈ Gal(F/K).

For α ∈ G, we define a λ-adic representation ταλ of Gal(F/K) by

ταλ (σ) = τλ((α̃)
−1σα̃), σ ∈ Gal(F/K).

By (8.1), we have ρλ|Gal(F/K) ∼= ⊕α∈G ταλ . Note that K is normal over F as in
§6.

As was explained in §6, we may and do assume that H = H0. Then we clearly
see that

(8.3) H0 ⊂ HG = Hn

and that the projection of H0 to every direct factor of Hn is surjective. Hence we
have

(8.4) Z(H0) = Z(H)n ∩H0.

Note that H0 as a subgroup of Hn may depend on the choice of {α̃}.
We write an element d ∈

∏
α∈G

H = HG as d = [dα]α∈G, dα ∈ H. This

notation applies more generally for an element of GL(W )G. For σ ∈ G, we define
a permutation matrix P (σ) ∈ GL(V ) by

P (σ)(⊕α∈G α · vα) = ⊕α∈G σα · vα.
Then we can verify easily that

(8.5) P (σ)dP (σ)−1 = [dσ−1α]α∈G, d = [dα]α∈G ∈ GL(W )(C)G.

By (8.1), we have

ρλ(σ̃)
−1(⊕α∈G α · vα) = ⊕α∈G σ−1α · τλ((σ̃−1α)−1σ̃−1α̃)vα, σ ∈ G.

Put

(8.6) Dσ = [τλ((σ̃−1α)−1σ̃−1α̃)]α∈G ∈ H
G ⊂ GL(W )(Eλ)

G.

Then we have

(8.7) P (σ) = Dσρλ(σ̃), σ ∈ G.

By abuse of notation, we denote the map x −→ P (σ)xP (σ)−1 (resp. x −→
DσxD

−1
σ ), x ∈ GL(W )G by i(P (σ)) (resp. i(Dσ)). Though the following Lemma

is intuitively convincing, a proof is highly non-trivial.

Lemma 8.1. We assume the Hodge conjecture. Then i(P (σ)) ∈ Aut(H0) for
some choice of {α̃}, α ∈ G.

Proof. If our lemma holds for a direct sum of representations, then it clearly
holds for every direct summand. Hence we may assume that E = Q (cf. (4.1)).
Furthermore, since every motive is a direct summand of H∗(X)(q), we may assume

that M̃ = H∗(X)(q), M = H∗(RK/F (X))(q). Here X is a projective smooth
algebraic variety defined over K and (q) denotes the Tate twist. Let U be the E-
rational Hodge structure attached toM . For α ∈ G, let Vα be the E-rational Hodge
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structure attached to α(M̃). Since M = ⊕α∈Gα(M̃) over K, we have U = ⊕α∈GVα.
By the comparison isomorphism, we have

U ⊗E Eλ
∼= Hλ(M) = ⊕α∈GHλ(α(M)).

The representation ρλ of Gal(F/F ) is realized on Hλ(M) as above for some choice
of {α̃}. We have

U⊗l ⊗E Ǔ⊗m ⊗E E(p) =

(
⊕∑

lα=l,
∑

mα=m

(
⊗α∈G V ⊗lα

α ⊗E V̌ ⊗mα
α

))
⊗E E(p).

A tensor of type (0, 0) of the left-hand side can be written as the sum of tensors of
type (0, 0) of direct factors on the right-hand side. Hence g ∈ MT(U) if and only if
g fixes every tensor of type (0, 0) for all tensor spaces of the form

(8.8)

(
⊗α∈G V ⊗lα

α ⊗E V̌ ⊗mα
α

)
⊗E E(p).

The cycle maps to the tensor space of (8.8) and to

(Hλ(α(M))⊗lα ⊗Hλ(α(M̌))⊗mα)(p)

are compatible with the comparison isomorphism. Let t be a tensor of type (0, 0)
in the tensor space (8.8). Let σ ∈ G. By the Hodge conjecture, t corresponds to an

algebraic cycle c on ⊗α∈Gα(M̃)⊗lα ⊗α(
ˇ̃
M)⊗mα . We may assume that c is rational

over K. Then we have a tensor σ(t) which corresponds to an algebraic cycle on

⊗α∈Gσα(M̃)⊗lα ⊗ σα(
ˇ̃
M)⊗mα . Write t in the form

t =
∑
i

⊗α∈G(⊗lα
j=1uα,j,i)⊗(⊗mα

j=1vα,j,i)⊗w, uα,j,i ∈ Vα, vα,j,i ∈ V̌α, w ∈ E(p).

Then we have

σ(t) =
∑
i

⊗α∈G(⊗lσα
j=1uσα,j,i)⊗ (⊗mσα

j=1 vσα,j,i)⊗ w.

In view of (8.3), we write an element of H0 as (xα)α∈G. Put x′ = (xσα)α∈G.
There exists u ∈ Gm such that (x, u) ∈ MT(U), which is equivalent to xt = u−pt.
Then we have x′σ(t) = u−pσ(t). Since t is an arbitrary tensor of type (0, 0), we
obtain x′ ∈ H0. This completes the proof. �

Hereafter we fix such a choice of {α̃}, α ∈ G assured by Lemma 8.1.

Hypothesis 8.2. The automorphisms i(P (σ)), σ ∈ G stabilize a splitting da-
tum of H0.

For symmetry reasons, this hypothesis seems plausible. However, the author
is unable to prove it even assuming the Hodge conjecture. 6 We can prove
it or dispense with it in several cases. To see this, let (B, T, {uδ}δ∈Δ) be a
splitting datum of H0. Regard H0 ⊂ HG and let pα : H0 −→ H be the pro-
jection map to the α component, α ∈ G. Since pα is surjective, we see that
(pα(B), pα(T ), {pα(uδ)}δ∈Δ) is a splitting datum for H, in the same way as in
Lemma 6.2. Here we take only such δ which satisfies pα(uδ) �= 1. Put S =

6The subgroup of H0 preserving the flag defined by the Hodge filtration can be parabolic. If
this is so, it will provide a clue.
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(B, T, {uδ}δ∈Δ), Sα = (pα(B), pα(T ), {pα(uδ)}δ∈Δ) for simplicity. By (8.5), we
have

i(P (σ))(Sα)α∈G = (Sσ−1α)α∈G.

For α ∈ G, take γα ∈ H so that i(γα)Sα = S1. We see that γα is unique
modulo Z(H). Put γ = [γα]α∈G. Then we find i(P (σ)γP (σ)−1)(Sσ−1α)α∈G =
(S1, S1, . . . , S1) and therefore

i(γ−1(P (σ)γP (σ)−1))i(P (σ))(Sα)α∈G = (Sα)α∈G.

For g ∈ G, put σg = P (σ)gP (σ)−1. The above formula shows that

(8.9) i(γ−1(σγ))i(P (σ))S = S for every σ ∈ G.

Suppose that

(8.10) Hn = Δ(H)Z(H)nH0.

Here Δ denotes the diagonal embedding of H into Hn. Then there exists a γ′ ∈ H0

which satisfies (8.9) with γ′ in place of γ. In this case, we see that i(P (σ)) stabilizes
the splitting datum i(γ′)S of H0 and Hypothesis 8.2 holds true.

In general, let s : Out(H0) −→ Aut(H0) be the section defined by a splitting
datum S. Let π : Aut(H0) −→ Out(H0) be the canonical homomorphism. We
can find βσ ∈ H0 such that i(βσ)i(P (σ)) = s(π(i(P (σ))). This is equivalent to
i(βσ)i(P (σ))S = S. Hence by (8.9), we get βσ = zσγ

−1(σγ) with zσ ∈ Z(H)n.
Then we see that zσ(P (σ)zτP (σ)−1)z−1

στ defines a 2-cocycle of G taking values
in Z(H0). Hypothesis 8.2 implies that the cohomology class of this cocycle is
trivial. Essentially needed in the last step of the argument given below is that this
cohomology class has a splitting field.

Let K be an algebraic extension of Q� of finite degree. Let G be a connected
semisimple algebraic group defined over K. We assume that G splits over K. Then
we have the split exact sequence

(8.11) 1 −→ Inn(G(K)) ∩AutK(G) −→ AutK(G) −→ Out(G) −→ 1.

Here AutK(G) denotes the group of automorphisms of G as an algebraic group, the
automorphisms being defined over K. Let Aut(G(K)) be the automorphism group
of the (
-adic) topological group G(K). We consider AutK(G) ⊂ Aut(G(K)). The
group of inner automorphisms by the elements in G(K) is denoted by Inn(G(K)).
For ϕ ∈ Aut(G(K)), we define a continuous map ψϕ from G(K) to G(K) by

ψϕ(x) = x−1ϕ(x), x ∈ G(K).

For a compact subset C of G(K) and an open subset U whose closure is compact,
we put

W (C,U) = {ϕ ∈ Aut(G(K)) | ψϕ(C) ⊂ U}.

Proposition 8.3. There exists a compact subset C and an open compact sub-
group U of G(K) such that AutK(G) ∩W (C,U) ⊂ Inn(G(K)) ∩AutK(G)

Proof. First we assume that G is of adjoint type. Then we have Inn(G(K))∩
AutK(G) = Inn(G(K)). Here Inn(G(K)) denotes the group of inner automorphisms
by the elements in G(K).

Let T be a maximal split torus and B be a Borel subgroup containing T . Let
Ψ0(G) be the based root datum of G. We have

Out(G) ∼= Ψ0(G) ∼= Aut(G,B, T, {uα}α∈Δ).



630 HIROYUKI YOSHIDA

For (8.11), we take the section s : Out(G) −→ AutK(G), which is obtained from
this isomorphism. We may assume that the elements in the images of the section
are rational over K. Take σ ∈ Out(G) and put τ = s(σ).

Suppose that i(g)τ ∈ W (C,U). Then we have y−1gτ (y)g−1 ∈ U for every
y ∈ C. Put x = τ (y). Then, i(g)τ ∈ W (C,U) is equivalent to the fact that, for
every x ∈ τ (C), there exists u = u(x) ∈ U such that gxg−1 = τ−1(x)u. We write
C for τ (C) and τ for τ−1. Then the condition can be written as

(8.12) gxg−1 = τ (x)u(x), u(x) ∈ U for every x ∈ C.

Let O be the ring of integers of K. Let K be the subgroup of G(K) generated
by uα(t), α ∈ Σ, t ∈ O and α̌(t), t ∈ O×. Here Σ is the set of all roots and
α̌ ∈ X∗(T ) is a coroot; {uα(t)} denotes the root subgroup corresponding to α.
Then K is a maximal compact subgroup of G(K). Since τ stabilizes uα(t), t ∈ O
and τ (α̌(t)) = (τ α̌)(t), we have

(8.13) τ (K) = K.

We can find a decreasing sequence {Un} of open compact subgroups so that

U0 = K, Un � K, ∩∞
n=1Un = {1}.

First suppose that the condition (8.12) holds for C = K, U = Un, g = gn. Then
we have gKg−1 = K. Put

T+ = {t ∈ T (K) | α(t) ∈ O for every positive root α}.
Then we have a Cartan decomposition (cf. Steinberg [St1], Theorem 21)

G(K) = KT+K.

If t ∈ T (K) normalizes K, we have α(t) ∈ O for every root α, since tuα(x)t
−1 =

uα(α(t)x). This implies α(t) ∈ O for every α ∈ X∗(T ). By [St1], Lemma 49, we
have t ∈ K. Thus we have shown that the normalizer of K in G(K) is K itself. In
particular g ∈ K. The condition (8.12) can be written as

gnxg
−1
n ≡ τ (x) mod Un, x ∈ K.

Suppose that the assertion of our proposition is false. Then this equation must
hold for infinitely many n for some τ /∈ Inn(G(K)), since Out(G) is a finite group.
Take a convergent subsequence of {gn} and let g ∈ K be its limit. Then we have

gxg−1 = τ (x), x ∈ K.

Put τ ′ = i(g−1)τ . We have τ ′|K = id. Since T ∩K is Zariski dense in T and τ ′ is
an algebraic automorphism, we have τ ′|T = id. By the Cartan decomposition, we
obtain τ ′ = id. This is a contradiction and completes the proof in the case where
G is of adjoint type.

In the general case, let ψ : G −→ G, G = G/Z(G) be the central isogeny.
Define a maximal compact subgroup KG (resp. K) of G(K) (resp. G(K)) as above.
Then ψ(KG) ⊂ K. We see that the normalizer of ψ(KG) in G(K) is K and that
a Cartan decomposition with respect to ψ(KG) holds. Let τ ∈ AutK(G). Then τ
induces an automorphism τ̄ ∈ AutK(G). Applying the argument above to G and
W = ψ(KG), we may assume that there exists ḡ ∈ G(K) such that τ̄(x) = ḡxḡ−1,
x ∈ G(K). Take g ∈ G(K) so that ψ(g) = ḡ. Then we have τ (x) = z(x)gxg−1,
x ∈ G(K), z(x) ∈ Z(G). Since x �→ z(x) ∈ Z(G) is continuous with respect to the
Zariski topology, we have z(x) = 1. This completes the proof. �
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Remark 8.4. We can make Aut(G(K)) a Hausdorff topological group by as-
signingW (C,U)∩W (C,U)−1 as the fundamental system of open neighbourhoods of
the identity. Then, by Proposition 8.3, we see that the projection map AutK(G) −→
Out(G) in (8.11) is continuous with the discrete topology on Out(G) and the in-
duced topology on AutK(G).

We consider the motive ∧d̃M̃ where d̃ is the rank of M̃ . As a rank 1 motive
over K, it is associated to an algebraic Hecke character χ of K×

A. As in §7, we
consider the λ-adic representation χλ attached to χ and the torus T associated

to the induced representation Ind
Gal(F/F )

Gal(F/K)
χλ. We have a morphism of algebraic

groups defined over E:

(8.14) δ : H0 � (xα)α∈G −→ (detxα)α∈G ∈ T.

First we replace Eλ by its finite extension so that the 2-cocycle fZ takes values
in Z(H0(Eλ)). We see that mapping the factor set f of (6.4) by δ, we obtain a
2-cocycle of G taking values in T (Eλ). When we change f to an equivalent factor
set, the cohomology class of δ(f) in H2(G, T (Eλ)) does not change. Let 
 be the

prime lying below λ. We choose λ so that 
 is prime to d̃[K : F ] and to the order
of the outer automorphism group of the derived group of H0. As shown in §7,
the cocycle δ(f) has a splitting field. We enlarge K so that δ(f) splits. This

procedure corresponds to the following operation. We consider M̃ as the motive

over the enlarged field K and reset M = RK/F (M̃). Then enlarge K again so that

τλ(Gal(F/K)) is contained in a pro-
-group.
Let T ′ ⊂ T (Eλ) be the maximal compact subgroup of T (Eλ). If δ(f) takes

values in T ′, then δ(f) splits in H2(G, T ′) (cf. §7). Replacing Eλ by a finite
extension, we may assume that for every t′ ∈ T ′, there exists t ∈ Z(H0(Eλ))
satisfying δ(t) = t′. (Here T ′ denotes the group before the replacement of Eλ.)
Let T be the maximal compact subgroup of Z(H0(Eλ)). Then t as above can be
taken from T . Suppose that a factor set f takes values in T . Then we see that the

cohomology class of f d̃ is trivial in H2(G, T ).

Lemma 8.5. We have i(Dσ) ∈ Inn(H0).

Proof. By Lemma 8.1 and (8.7), we have i(Dσ) ∈ Aut(H0). Let D(H0) be
the derived group and C be the connected center of H0. We have H0 = C ·D(H0)
over Eλ. Hence, by (8.4), it suffices to show that i(Dσ) gives an inner automor-
phism of D(H0). We consider the canonical homomorphism π : AutEλ

(D(H0)) −→
Out(D(H0)) as in (8.11). Since Dσ belongs to a pro-
-subgroup of H(Eλ)

n (cf.
(8.6)), Dlq

σ converges to the identity element when q tends to infinity, with respect
to the λ-adic topology of H(Eλ)

n. By Proposition 8.3, there exists 0 < q ∈ Z
such that π(Dlq

σ ) = 1. Since 
 does not divide the order of Out(D(H0)), we have
π(Dσ) = 1. This completes the proof. �

Lemma 8.6. Replacing Eλ by a finite extension, we have zσDσ = ασ with
zσ ∈ Z(H(Eλ))

n, ασ ∈ H0(Eλ). Moreover we can take zσ from a pro-
-subgroup of
Z(H(Eλ))

n.

Proof. By Lemma 8.5, there exists ασ ∈ H0(Eλ) such that i(Dσ) = i(ασ),
enlarging Eλ if necessary. Since the projection of H0 to every ith factor (cf. (8.3))
is surjective, we see that there exists zσ ∈ Z(H(Eλ))

n such that zσDσ = ασ. Our
task is to show the latter assertion.
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Put D = Dσ. We consider the condition that xD ∈ H0 for x = (yα · 1d̃)α∈G.
This is the case if and only if (xD, u) ∈ MT(U) for some u ∈ Gm. (Here U =
⊕α∈GVα in the notation of the proof of Lemma 8.1.) For a tensor t of type (0, 0)
in the tensor space (8.8), we have

(8.15)
∏
α∈G

y(lα−mα)
α u−pDt = t.

Since this equation holds for some yα ∈ E×
λ , we have Dt = c(t)t with c(t) ∈ E×

λ .

Then we see that c(t) belongs to a pro-
-subgroup of O×
Eλ

.
To verify (xD, u) ∈ MT(U), it suffices to check the condition (8.15) for finitely

many tensors t. The equations (8.15) for these tensors can be written in the form

(8.16)

N∏
j=1

y
aij

j = ci, 1 ≤ i ≤ m.

Here aij ∈ Z and ci belongs to a pro-
-subgroup of O×
Eλ

. To complete the proof,
we need the next sublemma.

Sublemma 8.7. Let O be the ring of integers of Eλ. Regard (8.16) as simul-
taneous equations with respect to yj , 1 ≤ j ≤ N . If (8.16) has a solution yj ∈ Eλ,
1 ≤ j ≤ N , then it has a solution yj ∈ O×, 1 ≤ j ≤ N .

Proof. Put A = (aij) ∈ M(m,N,Z). We can find U = (uij) ∈ GL(m,Z) and
V = (vij) ∈ GL(N,Z) so that

UAV =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · er 0 · · · 0
0 · · · 0 0 · · · 0
...

...
...

. . .

0 · · · 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 0 < ei ∈ Z.

Put

c′i =
m∏

k=1

cuik

k , 1 ≤ i ≤ m yj =
N∏

k=1

z
vjk
k , 1 ≤ j ≤ N.

Then (8.16) is transformed to equivalent equations:

(8.17) zeii = c′i, 1 ≤ i ≤ r, 1 = c′i, r < i ≤ N.

By the assumption c′i = 1, r < i ≤ N holds. Hence (8.17) has a solution zi ∈ O×,
1 ≤ i ≤ r, zi = 1, r < i ≤ N , which gives a desired solution yj , 1 ≤ j ≤ N . �

By the sublemma, replacing Eλ by its finite extension, we can find a solution
yj ∈ O×

Eλ
, 1 ≤ j ≤ N of (8.16). Taking the projection to the pro-
-part of O×

Eλ
, we

obtain a solution yj , 1 ≤ j ≤ N lying in the pro-
-part of O×
Eλ

. This completes the
proof of Lemma 8.6. �

Let T be the maximal compact subgroup of Z(H0(Eλ)) and let L be the pro-
-
part of T . Let T ∗ be the maximal compact subgroup of Z(H(Eλ))

n and let L∗ be
the pro-
-part of T ∗. We have T = T ∗∩H0(Eλ), L = L∗∩H0(Eλ). By Hypothesis
8.2, we may assume s(π(a(σ))) = i(P (σ)), σ ∈ G for a suitable section s. By (8.7),
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we have a(σ) = i(Dσ)
−1i(P (σ)). By Lemma 8.6, we can take zσ ∈ L∗ so that

zσDσ ∈ H0(Eλ). Then we have

s(π(a(σ))) = i(zσDσ)a(σ),

fZ(σ, τ ) = zσDσ(a(σ)(zτDτ ))f(σ, τ )(zστDστ )
−1.

Using zσDσ = zσP (σ)ρλ(σ̃)
−1 and (6.4), we obtain

aZ(σ) = i(P (σ)),

fZ(σ, τ ) = zσ(P (σ)zτP (σ)−1)z−1
στ .

The last formula shows that fZ is a 2-cocycle of G taking values in L. Now the split-
ting of fZ in H2(G, T ) follows from Lemma 7.1. This completes the proof of Theo-
rem 5.6. �

Example 8.8. Let us show that a splitting field does not necessarily exist for
the case w = 0. Let f ∈ Sk(Γ0(N), χ) be a primitive cusp form of weight k.
Let E be the number field generated by the eigenvalues of Hecke operators for f .
Associated to f , there exists a motive Mf over Q with coefficients in E; Mf is of
weight k − 1 and of rank 2. We assume that: (i) f is not a CM-form. (ii) k is
odd. (iii) χ is primitive of conductor N and takes values in {±1}. By a result of
Ribet, Im(ρλ) is Zariski dense in GL(2). We put M = Mf ((k − 1)/2). Then M is
of weight 0 and we find that the exact sequence (5.2) takes the following form:
(8.18)

1 −−−−→ H0(C) = SL(2)(C) −−−−→ H(C) −−−−→ Gal(K/Q) −−−−→ 1.

Here K is the imaginary quadratic field which corresponds to χ. This extension
obviously splits. Let us calculate the cocycle fZ following the procedure of §5,
(5.12)–(5.14) with H̃ = H. Let σ be the generator of Gal(K/Q). We choose

σ̃ ∈ Gal(Q/Q) so that σ̃|K = σ and take 1̃ = 1. Then we have

a(1) = 1, a(σ) = i(ρλ(σ̃)),

f(1, 1) = f(1, σ) = f(σ, 1) = 12, f(σ, σ) = ρλ(σ̃)
2.

Since Out(SL(2,C)) = {1}, the section s is the trivial mapping. For τ ∈ Gal(K/Q),
we must take ατ ∈ SL(2,C) so that i(ατ )a(τ ) = 1. By (5.13), we have aZ(τ ) = 1,
τ ∈ Gal(K/Q). We may take α1 = 1. Then we have

fZ(1, 1) = fZ(1, σ) = fZ(σ, 1) = 12, fZ(σ, σ) = (ασρλ(σ̃))
2.

Since i(ασ)a(σ) = 1, we can write ασρλ(σ̃) = zσ12 with zσ ∈ C×. By det ρλ(σ̃) =
−1, we get z2σ = −1. Thus we find that we may take fZ(α, β) = f ′(α, β) · 12, where

f ′(1, 1) = f ′(1, σ) = f ′(σ, 1) = 1, f ′(σ, σ) = −1.

We can show easily that the cohomology class of f ′ in H2(Gal(K/Q), {±1}) does
not have a splitting field, using the fact that there does not exist a quartic cyclic
extension L of Q which contains K.
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9. Local splittings

We use the notation of §6. Let fZ be the 2-cocycle attached to ρλ defined by
(6.3)–(6.7). In this section, we will show that assuming the local splitting of fZ ,
we can still formulate an analogue of the main conjecture on GA. Here G is the

quasi-split group over F defined in §5 (with H̃ = H).
We fix an embedding Eλ ↪→ C. Let V be the representation space of ρλ;

V is considered as a vector space over C. We regard H(C) as the group whose
underlying set is H0(C)×Gal(K/F ) and whose group law is defined by

(9.1)
(h1, σ)(h2, τ ) =(h1(aZ(σ)h2)fZ(σ, τ ), στ ),

h1, h2 ∈ H0(C), σ, τ ∈ Gal(K/F ).

Let r1 : H(C) ↪→ GL(V ) be the inclusion map. Then we can write

(9.2) r1((h, σ)) = r0(h)Aσ,

where r0 : H0(C) ↪→ GL(V ) is the inclusion map and Aσ = ασρλ(σ̃) ∈ H(C).
Let ϕ : Gal(F/F ) −→ Gal(K/F ) be the canonical map and put ãZ(σ) = aZ(ϕ(σ)),

f̃Z(σ, τ ) = fZ(ϕ(σ), ϕ(τ )). Let H̃(C) be the group whose underlying set is H0(C)×
Gal(F/F ) and whose group law is defined by

(h1, σ)(h2, τ ) = (h1(ãZ(σ)h2)f̃Z(σ, τ ), στ ), h1, h2 ∈ H0(C), σ, τ ∈ Gal(F/F ).

We define LG as the semi-direct product H0(C) � Gal(F/F ). The group law
is defined by

(9.3) (h1, σ)(h2, τ ) = (h1(ãZ(σ)h2), στ ).

Let T be a torus contained in GL(V ) which is stable under the action of aZ(σ),
σ ∈ Gal(K/F ). We assume that T contains Z(H0(C)), T centralizes H0(C) and
that

(9.4) H1(Gal(F/F ), T (C)) = H2(Gal(F/F ), T (C)) = 1.

Here cohomology groups are defined using continuous cochains. We define a sub-
group H(C) of GL(V ) by

H(C) = T (C)H0(C) � Gal(F/F ).

We have LG ⊂ H(C). Let

(9.5) f̃Z(σ, τ ) = tσ(ãZ(σ)tτ )t
−1
στ , tσ ∈ T (C)

be a splitting of f̃Z in T (C). Then we can define an injective homomorphism

ι : H̃(C) −→ H(C) by

(9.6) ι((h, σ)) = (htσ, σ), h ∈ H0(C), σ ∈ Gal(F/F ).

We can define a homomorphism r∗ of H(C) into GL(V ) by the formula 7

(9.7) r∗((h, σ)) = r0(h)t
−1
σ Aσ, h ∈ T (C)H0(C), σ ∈ Gal(F/F ).

Here we use the same letter r0 for the inclusion map T (C)H0(C) ↪→ GL(V ). Let
ι∗ : LG ↪→ H(C) be the inclusion map. We define a homomorphism of LG into
GL(V ) by r = r∗ ◦ ι∗.

7We normalize the cocycle fZ so that fZ(1, σ) = fZ(σ, 1) = 1, σ ∈ Gal(K/F ).
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Now let v be a place of F . We assume that f̃Z splits locally at v, that is,

(9.8) f̃Z(σ, τ ) = uσ(ãZ(τ )uτ )u
−1
στ , uσ ∈ Z(H0(C)), σ, τ ∈ Gal(Fv/Fv).

Here {uσ} is a continuous 1-cochain. This condition is equivalent to that
fZ |Gal(Kw/Fv) has a splitting field, where w is a place of K lying above v. We
can construct a Langlands parameter φv : W ′

Fv
−→ LG from ψv as follows. Let

ψv : W ′
Fv

−→ H(C) be the local parameter defined in §4 and put

ψv(g) = (ψ0
v(g), π(g)), g ∈ W ′

Fv
.

Here π(g) denotes the projection of g to Gal(K/F ) and ψ0
v(g) ∈ H0(C). By Lemma

5.2, ψv can be lifted to a homomorphism ψ̃v : W ′
Fv

−→ H̃(C) by the formula

ψ̃v(g) = (ψ0
v(g), ḡ), g ∈ W ′

Fv
.

Here ḡ denotes the projection of g to Gal(Fv/Fv). Then we can define the Langlands
parameter by the formula

(9.9) φv(g) = (ψ0
v(g)uḡ, ḡ), g ∈ W ′

Fv
.

Calculating using definitions, we have, for g ∈ W ′
Fv
,

(r1 ◦ ψv)(g) = r0(ψ
0
v(g))Aḡ,

(r ◦ φv)(g) = r0(ψv(g))uḡt
−1
ḡ Aḡ.

By the condition (9.4), there exists t ∈ T (C) such that

uσt
−1
σ = t−1(ãZ(σ)t), σ ∈ Gal(Fv/Fv).

Then we find

t(r0(ψv(g))uḡt
−1
ḡ Aḡ)t

−1 = r0(ψ
0
v(g))Aḡ

and obtain

(9.10) r1 ◦ ψv
∼= r ◦ φv.

We devote the remaining part of this section to the proof of the local splitting
in the simplest case. Let w be a place of K lying over v. We consider the restriction
of fZ to Gal(Kw/Fv). We assume that v is a finite place, Kw is unramified over Fv

and that ρλ is unramified at v. Let Φv ∈ Gal(F v/Fv) be a Frobenius element. We
put x = ρλ(Φv) ∈ H and we assume that x is semisimple. (This semisimplicity is
a widely believed conjecture.)

Put f = fv = [Kw : Fv] and let σ be the restriction of Φv to Kw. Then
Gal(Kw/Fv) is the cyclic group of order f generated by σ. We have xf ∈ H0. Let
i(x) denote the automorphism of H0 defined by i(x)h = xhx−1. By a theorem
of Steinberg ([St2], Theorem 7.5), there exists a Borel subgroup B of H0 and a
maximal torus T ⊂ B which is stabilized by i(x). Let D be the Zariski closure of
{xfk | k ∈ Z}. Since D is diagonarizable, we have D = T1 × F , where T1 = D0 is
a torus and F is a finite group. Replacing Kw by an unramified extension, we may
assume that F = {1}. Then T1 normalizes T . Since NH0(T )/T is finite, we see
that T1 ⊂ T . Take {uα} so that (B, T, {uα}α∈Δ) is a splitting datum of H0. Let
π : Aut(H0) −→ Out(H0) be the canonical homomorphism and s be the section
defined by the splitting datum. Now take ασ ∈ H0(C) which satisfies (6.5), i.e.,

(9.11) s(π(i(x))) = i(ασ)i(x).
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Since i(x) stabilizes (B, T ), we have ασ ∈ T (C). Put t(σ) = ασ. By (6.7), we have

fZ(σ
i, σj) = t(σi)(i(x)it(σj))t(σi+j)−1f(σi, σj).

Taking σ̃i = Φi
v, 0 ≤ i < f , we get, for 0 ≤ i, j < f ,

f(σi, σj) =

{
1 if i+ j < f,

xf if i+ j ≥ f.

We may take

t(σi) = t(σ)(xt(σ)x−1) · · · (xi−1t(σ)x−(i−1)) = (t(σ)x)ix−i.

Then we find, for 0 ≤ i, j < f ,

fZ(σ
i, σj) =

{
1 if i+ j < f,

(t(σ)x)f if i+ j ≥ f.

We have (t(σ)x)f ∈ Z(H0(C)). We can write Z(H0(C)) = C ×F ′, where C is the
connected center and F ′ is a finite group. Replacing Kw by a suitable unramified
extension, we may assume that (t(σ)x)f ∈ C. By a result of Langlands ([Lan2],
Lemma 4), we conclude that fZ |Gal(Kw/Fv) has a splitting field.

Let S be a set of places of F . We call ρλ has the local splitting property outside
S if fZ splits locally at v /∈ S and if there exists T satisfying (9.4). Then the obvious
analogue of Lemma 6.2 holds and we are reduced to the case where ρλ is the induced
representation as in the beginning of §8. In that case, we may take T = Z(H)n

since this group is the induced module from the trivial one and cohomologically
trivial. (Thus (9.4) holds.) The discussion of this section can be summarized by
the following theorem.

Theorem 9.1. Let S′ be the set of finite places v of F such that ρλ is unramified
at v, v is unramified in K and that the image of the Frobenius element is semisimple.
Let S be the complement of S′. Then fZ has the local splitting property outside S.

10. Further discussions

To reduce problems appearing in fuctoriality conjectures to the case where
the L-group has connected center, Langlands ([Lan2]) introduced the notion of a
z-extension. Let us recall the situation briefly. Let G be a connected reductive
group over F . For simplicity, we assume that G is quasi-split. Then Langlands

constructed a connected reductive quasi-split group G̃ defined over F such that G̃

is a central extension of G over F and such that the center of LG̃0 is connected.
Moreover the maps G̃(F ) −→ G(F ), G̃(FA) −→ G(FA) are surjective, and the map

G̃(Fv) −→ G(Fv) is surjective for every place v of F .
We can use this devise for an individual case in section 5, eliminating the

problem of the splitting field at the cost of enlarging the group. If G̃ happens to

coincide with the group G̃ obtained from H̃ in section 5, it poses a subtle question.

Using theWeil form of the L-group, f̃Z has a splitting field. Suppose that fZ has
a splitting field. Then the Main conjecture predicts automorphic representations π

and π̃ on G(FA) and on G̃(FA) respectively. Here G is the quasi-split group in the
minimal case. As in section 5, we have explicit Langlands parameters corresponding

to π and π̃. Let Z be the kernel of the central homomorphism G̃ −→ G. Then the
central character of π̃ must be trivial on Z(FA). The author has not verified that
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this is always the case. In the situation of Example 8.8, H0 = SL(2), H̃ = GL(2),

G = PGL(2), G̃ = GL(2). The central character of π̃ is not trivial on Z(QA),
which is consistent with the fact that fZ does not have a splitting field. Another
simple case is the example discussed at the end of section 5, in which the central
character is trivial.

We include the following Proposition to supplement the discussions in section 5.

Proposition 10.1. Suppose that we are in the minimal case. If K is a cyclic
extension of F , ρλ is absolutely irreducible and w �= 0, then the cohomology group
H2(Gal(K/F ), Z(H0(C))) is trivial.

Proof. Since Gal(K/F ) is cyclic, we have

H2(Gal(K/F ), Z(H0(C))) ∼= Z(H0(C))Gal(K/F )/N(Z(H0(C))).

Here Z(H0(C))Gal(K/F ) denotes the Gal(K/F )-invariant submodule of Z(H0(C))
and N is the norm map. By the definition of the action of Gal(K/F ), we see
that Z(H0(C))Gal(K/F ) ⊂ Z(H(C)). By Lemma 5.7 and Remark 5.8, we have
Z(H(C)) ∼= C× consists of scalar matrices and Z(H0(C)) contains all scalar matri-
ces. The triviality of the cohomology group in question follows immediately from
these facts. �

Appendix I

Let k be a field of characteristic 0 and K be an algebraic extension of k of finite
degree. Let V be a finite dimensional vector space over K. When we regard V as
a vector space over k, we denote it by V . Let RK/k be the restriction of scalars
functor of Weil. We have RK/k(GL(V )) ⊂ GL(V ).

Definition AI.1. Let H be an algebraic subgroup of RK/k(GL(V )) defined
over k. The K-envelope of H is the smallest algebraic subgroup G defined over K
of GL(V ) such that RK/k(G) ⊃ H.

Since the identity component G0 is defined over K and RK/k(G
0) is the identity

component of RK/k(G), we see that if H is connected, then its K-envelope is
connected.

For a Lie algebra g over K, let RK/k(g) denote g considered as a Lie algebra
over k. Then we have the relation

(AI.1) Lie(RK/k(G)) = RK/k(Lie(G))

for an algebraic group G defined over K. We can prove this relation, for example,
using the description of RK/k given in [Y3], §1.10.

We can formally extend the concept of K-envelope to Lie algebras.

Definition AI.2. Let h be a Lie subalgebra of RK/k(gl(V )) defined over k.
The K-envelope of h is the smallest Lie subalgebra g defined over K of gl(V ) such
that RK/k(g) ⊃ h.

It is easy to see that the K-envelope of h is the K-linear span of h. It is well
known that h is semisimple (resp. reductive) if and only if h⊗kK is semisimple (resp.
reductive) (cf. [Bou], §6, n◦10). Since there exists a surjective homomorphism from
h⊗k K to the K-envelope of h, we obtain:
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Proposition AI.3. Let h be a Lie subalgebra defined over k of RK/k(gl(V )).
If h is semisimple (resp. reductive), then the K-envelope of h is semisimple (resp.
reductive).

The purpose of this Appendix is to prove:

Proposition AI. 4. Let H be an algebraic subgroup defined over k of
RK/k(GL(V )). We assume that H is connected. If H is semisimple (resp. reduc-
tive), then the K-envelope of H is semisimple (resp. reductive).

For the proof, we need some preparations. Let g be a Lie subalgebra of gl(V ).
We call g algebraic if g = Lie(G) for a connected algebraic subgroup G defined over
K of GL(V ). The smallest algebraic Lie subalgebra of gl(V ) which contains g is
called the algebraic envelope of g (cf. Chevalley, [Ch], Chapitre II, §14).

Proposition AI.5. Let G be a connected algebraic subgroup defined over K
of GL(V ). Let R(G) be the radical of G. Then the radical of Lie(G) is equal to
Lie(R(G)).

Proof. Put g = Lie(G) and let r be the radical of g. Since Lie(R(G)) is a
solvable ideal of g, we have Lie(R(G)) ⊂ r. The point is to show the opposite
inclusion. First let us show that r is algebraic. Let r′ be the algebraic envelope of r.
Take a connected algebraic group R′ ⊂ GL(V ) defined over K so that Lie(R′) = r′.
We obviously have r′ ⊂ g, R′ ⊂ G. Let g ∈ G. Since Ad(g)r′ = Lie(gR′g−1) is
algebraic and contains Ad(g)r = r, we have

(AI.2) Ad(g)r′ = r
′, g ∈ G.

By (AI.2), we see that R′ is a normal subgroup of G. Hence r′ is an ideal of g. By
[Ch], II, Théorème 13, [r′, r′] = [r, r]. Hence r′ is solvable. Therefore r = r′ and
r is algebraic. Since r is a solvable ideal, we see that R′ is a connected solvable
normal subgroup. Therefore we have R′ ⊂ R(G), r ⊂ Lie(R(G)). This completes
the proof. �

Corollary 1. If G is reductive, then Lie(G) is reductive.

In fact, R(G) is a torus if G is reductive. By Proposition AI.5, the radical of
Lie(G) is commutative. We note that the converse is false as the example G =
SL(2)×Ga shows.

Corollary 2. G is semisimple if and only if Lie(G) is semisimple.

In fact, we have

G is semisimple ⇐⇒ R(G) = {1} ⇐⇒ Lie(R(G)) = {0}
⇐⇒The radical of Lie(G) = {0} ⇐⇒ Lie(G) is semisimple.

Remark. Proposition AI.5 and its Corollaries must be well known to specialists.
In fact, Corollary 2 is given as Theorem 13.5 in Humphreys [H]. For the other
statements, the author could not find appropriate references.

Proof of Proposition AI.4. Let G be the K-envelope of H and put

g = Lie(G), h = Lie(H).

Let g0 be the K-envelope of h. By (AI.1), we have g ⊃ g0.
First assume that H is semisimple. By Corollary 2 to Proposition AI.5, h is

semisimple. Hence g0 is semisimple by Proposition AI.3. By [Ch], II, Théorème 15,



MOTIVIC GALOIS GROUPS AND L-GROUPS 639

g0 is algebraic. Hence there exists a connected semisimple algebraic subgroup G0

defined over K of G such that Lie(G0) = g0. By (AI.1), we have

Lie(RK/k(G0)) = RK/k(g0) ⊃ h.

Therefore RK/k(G0) ⊃ H and we obtain G = G0. This proves our assertion in the
semisimple case.

Next assume that H is reductive. By Corollary 1 to Proposition AI.5, h is
reductive. By Proposition AI.3, g0 is reductive. Hence we have

g0 = s0 × c0.

Here s0 is a simisimple subalgebra and c0 is an abelian subalgebra. Let c ⊂ gl(V )
be the algebraic envelope of c0. By [Ch], II, Théorème 13, c is abelian. We have
s0× c ⊂ gl(V ). By [Ch], Théorème 14, s0× c is algebraic. There exists a connected
algebraic subgroup G′ defined over K of GL(V ) such that Lie(G′) = s0 × c. By
(AI.1), we have

Lie(RK/k(G
′)) = RK/k(s0 × c) ⊃ h.

Hence RK/k(G
′) ⊃ H. This implies G′ ⊃ G. Thus we obtain

s0 × c ⊃ Lie(G) = g ⊃ s0 × c0.

From this relation, we see that z(g) = c, Lie(G) = Lie(G′), G = G′. Here z(g)
denotes the center of g. In particular, we have shown that g is reductive.

Now write
g = s× c,

where s is semisimple and c is abelian. Let R(G) be the radical of G. By Proposition
AI.4, we have Lie(R(G)) = c. Since c = Lie(Z(G)0), we obtain R(G) = Z(G)0. By
[Bo1], p. 86, Theorem 4.7, we have

R(G) = R(G)s ×R(G)u.

Here R(G)s (resp. R(G)u) denotes the algebraic subgroup of R(G) consisting of
semisimple (resp. unipotent) elements. Put cs = Lie(R(G)s). Since Z(H)0 ⊂
RK/k(Z(G)0) = RK/k(R(G)), we have Z(H)0 ⊂ RK/k(R(G)s). Hence z(h) ⊂
RK/k(cs). Now take a connected algebraic subgroup G′′ of G so that Lie(G′′) =
s× cs. Then R(G′′) = R(G)s, so G′′ is reductive. We have

Lie(RK/k(G
′′)) = RK/k(s× cs) ⊃ RK/k(s)z(h).

Since RK/k(s) contains the semisimple part of h, we get

Lie(RK/k(G
′′)) ⊃ h, RK/k(G

′′) ⊃ H.

Therefore we obtain G = G′′. This completes the proof. �

Appendix II

In this appendix, we will prove a few results related to the descent of the field
of definition and a representation. In this appendix, we will use the right action of
Galois groups.

Let F be a field and K be a Galois extension of F of finite degree. Let X be an
algebraic variety defined over K. We assume that X is quasi-projective. Suppose
that for every σ ∈ Gal(K/F ), there is given an isomorphism fσ : X −→ Xσ defined
over K such that the descent condition

(AII.1) fστ = fτ
σfτ
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is satisfied. Then a well known theorem of Weil ([W2]) tells that there exists an
algebraic variety X0 defined over F and an isomorphism g : X0 −→ X defined over
K such that

(AII.2) fσ = gσ ◦ g−1.

Take x ∈ X0 and put y = g(x). Then, for σ ∈ Gal(F/F ), we have

yσ = gσ(xσ) = (fσ|K ◦ g)(xσ).

Hence we obtain

(AII.3) xσ = g−1f−1
σ|K(g(x)σ).

First we will give:

Proof of Proposition 5.1. We take a connected reductive algebraic group
G defined over F so that it splits over F and such that the based root datum

R0(G) = (X∗(T ),Δ, X∗(T ), Δ̌).

is the dual to R0(M). Here T is the maximal F -split torus of G. Let B ⊃ T be a
Borel subgroup defined over F of G. Then we have

Aut(R0(G)) ∼= Aut(G,B, T, {uα}α∈Δ) ⊂ Aut(G).

For ν ∈ Aut(G,B, T, {uα}α∈Δ), we have

ν(B) = B, ν(T ) = T, α(ν−1(t)) = ν(α)(t), t ∈ T.

Choose uα so that uα ∈ G(F ). It is known that ν is defined over F (cf. [SGA3],
Exposé XXIV, Théorème 1.3).

We may assume that μ is a homomorphism

μ : Gal(K/F ) −→ Aut(G,B, T, {uα}α∈Δ)

for a finite Galois extension K of F . For σ ∈ Gal(K/F ), we put fσ = μ(σ)−1.
Since fσ is defined over F , the relation fστ = fσfτ is a descent condition. Hence
there exists an algebraic group G0 defined over F and an isomorphism g : G0 −→ G
defined over K such that fσ = gσ ◦ g−1. We have LG0

0
∼= LG0 ∼= M(C). We define

a Borel subgroup and a maximal torus of G0 by

B0 = g−1(B), T0 = g−1(T ).

For σ ∈ Gal(K/F ), we have

Bσ
0 = (gσ)−1(Bσ) = g−1f−1

σ (B) = g−1μ(σ)(B) = g−1(B) = B0.

Hence B0 is defined over F , i.e., G0 is quasi-split over F . Similarly we see that T0

is defined over F . For α ∈ Δ, we define a character α0 : T0 −→ Gm by the formula

α0(t) = α(g(t)), t ∈ T0.

Put u0
α0

= g−1(uα), α ∈ Δ. Then, for σ ∈ Gal(K/F ), we have

ασ
0 (t

σ) = α0(t)
σ = (α(g(t)))σ = α(gσ(tσ)) = α(μ(σ)−1g(tσ))

=(μ(σ)α)(g(tσ)) = (μ(σ)α0)(t
σ),

(u0
α0
)σ = (g−1(uα))

σ = (gσ)−1(uα) = g−1μ(σ)(uα) = g−1(uμ(σ)α).

Therefore we obtain ασ
0 = μ(σ)α0, μG0

= μ. This completes the proof of Proposi-
tion 5.1.
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Next we assume that X is an abelian variety of dimension d. We are going
to describe the 
-adic representation of Gal(F/F ) attached to X0 using the 
-adic
representation of Gal(F/K) attached to X and the descent data {fσ}. We fix an
isomorphism

ι0 : T�(X0) ∼= Q2d
� ,

where T�(X0) denotes the Tate module of X0. We regard an element of Q2d
� as a

row vector. Let

g∗ : T�(X0) ∼= T�(X)

be the isomorphism obtained from g. Put

Gal(K/F ) = {σ1, σ2, . . . , σn}, σ1 = id.

We use the same letter σi for its extension to an element of Gal(F/F ). For 1 ≤ i ≤
n, we choose an isomorphism ισi

: T�(X
σi) ∼= Q2d

� so that

(AII.4) ισi
((g∗(x))

σi) = ι0(x), x ∈ T�(X0)

holds. We put

(AII.5) ισ1
(xτ ) = ισ1

(x)ρ(τ ), x ∈ T�(X), τ ∈ Gal(F/K)

with ρ(τ ) ∈ GL(2d,Q�); ρ is the 
-adic representation of Gal(F/K) attached to X.
Define f∗

σi
∈ GL(2d,Q�) by

(AII.6) ισ1
(f−1

σi
(x)) = ισi

(x)f∗
σi
, x ∈ T�(X

σi).

Now take σ ∈ Gal(F/F ) and put σ = τσi, τ ∈ Gal(F/K). Then for x ∈ T�(X0),
we have, using (AII.3), (AII.4), (AII.6), (AII.4), (AII.5) in this order, that

ι0(x
σ) = ι0(g

−1
∗ f−1

σi
(g∗(x)

σ)) = ισ1
(f−1

σi
(g∗(x)

σ)) = ισi
(g∗(x)

τσi)f∗
σi

= ισ1
(g∗(x)

τ )f∗
σi

= ισ1
(g∗(x))ρ(τ )f

∗
σi
.

Hence we obtain

(AII.7) ι0(x
σ) = ι0(x)ρ(τ )f

∗
σi
, x ∈ T�(X0).

This formula shows that the 
-adic representation of Gal(F/F ) attached to X0 is
given by

σ = τσi −→ ρ(τ )f∗
σi
.

Now we assume that X is defined over F from the beginning. Thus X0 is an
F -form of X. Since ρ extends to an 
-adic representation of Gal(F/F ), (AII.5) can
be written as

(AII.5′) ισ1
(xτ ) = ισ1

(x)ρ(τ ), x ∈ T�(X), τ ∈ Gal(F/F ).

Since Xσi = X, we can write (AII.6) as

(AII.6′) ισ1
(f−1

σi
(x)) = ισ1

(x)f∗
σ1
, x ∈ T�(X).

Now take σ ∈ Gal(F/F ) and x ∈ T�(X0). We put f∗
σ|K = f∗

σi
if σ|K = σi.

Calculating similarly to the above, we obtain

ι0(x
σ) = ι0(g

−1
∗ f−1

σ|K(g∗(x)
σ)) = ισ1

(f−1
σ|K(g∗(x)

σ)) = ισ1
(g∗(x)

σ)f∗
σ|K

= ισ1
(g∗(x))ρ(σ)f

∗
σ|K ,

(AII.7′) ι0(x
σ) = ι0(x)ρ(σ)f

∗
σ|K , x ∈ T�(X0).
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This formula shows that the 
-adic representation of Gal(F/F ) attached to X0 is
given by

(AII.8) σ −→ ρ(σ)f∗
σ|K .

From the descent condition fστ |K = fτ
σ|Kfτ |K , we can derive the relatiom

(AII.9) f∗
στ |K = ρ(τ )−1f∗

σ|Kρ(τ )f∗
τ |K , σ, τ ∈ Gal(F/F ).

Using (AII.9), we can verify that (AII.8) defines a representation of Gal(F/F ).
Let A be an abelian variety defined over F and m be a positive integer. Put

X = Am, d0 = dimA, d = md0 = dimX. Let

ρ : Gal(F/F ) −→ GL(2d0,Q�)

be the 
-adic representation attached to A. Let ρX be the 
-adic representation
attached to X. Then we have

ρX = ρ⊕ ρ⊕ · · · ⊕ ρ (m times).

Let K be a finite Galois extension of F and let η : Gal(K/F ) −→ GL(m,Z) be a
representation. For σ ∈ Gal(K/F ), we define an isomorphism fσ : X −→ X by

fσ((x1, . . . , xm)) = (x1, . . . , xm)η(σ)−1.

Then fσ is defined over F and satisfies the descent condition fστ = fσfτ .

Proposition AII.1. Let X0 be the F -form of X defined by fσ. Then the 
-
adic representation attached to X0 is equivalent to ρ ⊗ η. Here we regard η as a
representation of Gal(F/F ) by the canonical map Gal(F/F ) −→ Gal(K/F ).

Proof. We take an isomorphism ιA : T�(A) ∼= Q2d0

� and put

ισ1
= ιA ⊕ · · · ⊕ ιA : T�(X) = T�(A)m ∼= Q2d

� .

Then, for (x1, . . . , xm) ∈ T�(A), we have

ισ1
(f−1

σi
(x1, . . . , xm)) = ισ1

((x1, . . . , xm))f∗
σi

= (ιA(x1), . . . , ιA(xm))f∗
σi

= ισ1
((x1, . . . , xm)η(σi)) = (ιA(x1), . . . , ιA(xm))(12d0

⊗ η(σi)).

Hence we have f∗
σ|K = 12d0

⊗ η(σ). The assertion follows from (AII.8). �

We say that an abelian variety A has sufficiently many complex multiplications
if End(A) ⊗ Q contains a commutative semisimple algebra of dimension 2 dimA.
Assume furthermore that A is defined over a number field F . Let ζ(s, A/F ) be
the one dimensional part of the zeta function of A. Then the author showed ([Y2])
that there exists a representation ρ : WF,K −→ GL(2n,C) such that ζ(s, A/F ) =
L(s, ρ,WF,K). Here n = dimA, K is a finite Galois extension of F and WF,K is the
relative Weil group. We are going to show that there exists an A for which ρ is not
equivalent to a direct sum of monomial representations, solving a question raised
in [Y2], p. 99. We note the following: Put X = Am and construct the F -form
X0 of X as above. Then X0 is an abelian variety with sufficiently many complex
multiplications. By Proposition AII.1, we have

(AII.10) ζ(s,X0/F ) = L(s, ρ⊗ η,WF,K).

Let F be an imaginary quadratic field and E be an elliptic curve defined over
F such that End(E)⊗Q ∼= F . Then we have ([Sh1], Theorem 7.43, [Sh2], 19.11)

ζ(s, E/F ) = L(s, ψ)L(s, ψ).
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Here ψ is a Hecke character of F×
A . Now take a finite Galois extension K of F and

a representation

η : Gal(K/F ) −→ GL(m,Z)

so that η is irreducible and non-monomial when regarded as a representation to
GL(m,C). (For example, take K so that Gal(K/F ) ∼= Sn, n ≥ 5. There exists
an irreducible non-monomial representation η of Sn since it is not solvable; η is
realizable over Q. We see that η stabilizes a lattice in Qm, m = dim η.) We regard
ψ (resp. η) as a representation of WF,K by the transfer homomorphism (resp. the
projection) WF,K −→ F×

A (resp. WF,K −→ Gal(K/F )). Let X0 be the F -form of
Em constructed using the descent data defined by η. By (AII.10), we have

(AII.11) ζ(s,X0/F ) = L(s, (ψ ⊗ η)⊕ (ψ ⊗ η),WF,K).

Proposition AII.2. The representation (ψ ⊗ η) ⊕ (ψ ⊗ η) of WF,K is not
equivalent to a direct sum of monomial representations.

Proof. Assume that

(ψ ⊗ η)⊕ (ψ ⊗ η) ∼= ⊕n
i=1Ind

WF,L

WFi,L
ωi.

Here Fi is an extension of F of finite degree and ωi is a Hecke character of (Fi)
×
A;

L is a finite Galois extension of F which contains Fi, 1 ≤ i ≤ n and K; ωi is
regarded as a character of WFi,L by the transfer homomorphism WFi,L −→ (Fi)

×
A;

the representation on the left-hand side is regarded as the representation of WF,L

by the canonical homomorphism WF,L −→ WF,K . By the irreducibility of ψ ⊗ η

and ψ ⊗ η, we have

Ind
WF,L

WF1,L
ω1

∼= ψ ⊗ η or ψ ⊗ η or (ψ ⊗ η)⊕ (ψ ⊗ η).

First we assume that
Ind

WF,L

WF1,L
ω1

∼= ψ ⊗ η.

Then we have

(AII.12) (Ind
WF,L

WF1,L
ω1)⊗ ψ−1 = Ind

WF,L

WF1,L
(ω1 ⊗ (ψ ◦NF1/F )

−1) ∼= η.

Now we consider the commutative diagram

(AII.13)

1 −−−−→ L×
A/L× −−−−→ WF1,L −−−−→ Gal(L/F1) −−−−→ 1∥∥∥

⏐⏐�
⏐⏐�

1 −−−−→ L×
A/L× −−−−→ WF,L −−−−→ Gal(L/F ) −−−−→ 1.

Here the vertical arrows are inclusion maps. Put π = Ind
WF,L

WF1,L
(ω1⊗(ψ◦NF1/F )

−1).

The restriction of π to L×
A/L× is trivial by (AII.12). By the Frobenius reciprocity,

we have
ω1 ⊗ (ψ ◦NF1/F )

−1|(L×
A/L×) = 1.

Let ω′
1 denote the character of Gal(L/F1) determined by ω1 ⊗ (ψ ◦NF1/F )

−1. By
(AII.12), we have

Ind
Gal(L/F )
Gal(L/F1)

ω′
1
∼= η.

Since the right-hand side factors through the map Gal(L/F ) −→ Gal(K/F ), we
see that F1 ⊂ K and that ω′

1 is invariant under Gal(L/K). Hence it determines a

character ω′′
1 of Gal(K/F1). Then we have Ind

Gal(K/F )
Gal(K/F1)

ω′′
1
∼= η. This contradicts
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our assumption that η is not monomial. The case Ind
WF,L

WF1,L
ω1

∼= ψ ⊗ η can be

treated similarly.
Next we consider the case

Ind
WF,L

WF1,L
ω1

∼= (ψ ⊗ η)⊕ (ψ ⊗ η).

We have

(AII.14) Ind
WF,L

WF1,L
(ω1 ⊗ (ψ ◦NF1/F )

−1) ∼= η ⊕ (ψ−1ψ ⊗ η).

Let ω∗
1 be the restriction of ω1 ⊗ (ψ ◦ NF1/F )

−1 to L×
A/L× in (AII.13). Since the

transfer map WF1,L −→ (F1)
×
A induces the norm map NL/F1

on L×
A/L×, we have

ω∗
1 = (ω1 ⊗ (ψ ◦NF1/F )

−1) ◦NL/F1
.

By the formula of induced characters, we see that the restriction of

Ind
WF,L

WF1,L
(ω1 ⊗ (ψ ◦NF1/F )

−1) to L×
A/L× is equal to

⊕
x∈Gal(L/F )/Gal(L/F1)

ω∗
1(x

−1gx), g ∈ L×
A/L×.

Since η is trivial on L×
A/L×, ω∗

1(x
−1gx) is trivial for some x ∈ Gal(L/F ). This

implies that ω∗
1 |L×

A/L× is trivial. But on the right-hand side of (AII.14), the

restriction of ψ−1ψ ⊗ η to L×
A/L× is equal to (ψ−1ψ) ◦NL/F , which is not trivial.

This is a contradiction and completes the proof. �

Next we are going to construct an example in which the exact sequence

(5.2) 1 −−−−→ H0(C) −−−−→ H(C) −−−−→ Gal(K/F ) −−−−→ 1

does not split (H̃ = H). Let F be a number field which contains a CM-field. Take
an algebraic Hecke character χ of F×

A of infinite order as in §7. Take a finite Galois
extension K of F . Then take a finite Galois extension L of K so that L ⊂ Kab and
that L is normal over F . Take an irreducible representation

η : Gal(L/F ) −→ GL(m,C).

We assume that η is faithful. We take an algebraic number field of finite degree E
so that E contains χ(a) when a ∈ F×

A satisfies a∞ = 1 and such that η (changing
to an equivalent one) is realized over E. Let λ be a finite place of E. Then, as
explained in §7, we have a λ-adic representation

χλ : Gal(Fab/F ) −→ E×
λ

associated to χ. We regard η as a representation of Gal(L/F ) into GL(m,Eλ). We
put

ρ = χ⊗ η, ρλ = χλ ⊗ η.

We can regard ρ as a representation of WF,K into GL(m,C) and ρλ as a represen-
tation

ρλ : Gal(Kab/F ) −→ GL(m,Eλ).

We regard ρλ also as a representation of Gal(F/F ) into GL(m,Eλ). For this ρλ,
we have

H0(C) = C× · 1m ∼= C×,

since χ is of infinite order. We assume that:

(AII.15) The center of Gal(L/F ) is Gal(L/K).
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Then the condition (5.1) is satisfied since η is faithful. We have an exact sequence

(AII.16) 1 −−−−→ C× −−−−→ H(C) −−−−→ Gal(K/F ) −−−−→ 1.

Our task is to find an example for which (AII.16) does not split. As in §5, the
factor set defining (AII.16) is given as follows. Fix an embedding Eλ ↪→ C. For
σ ∈ Gal(K/F ), take σ̃ ∈ Gal(Kab/F ) so that σ̃|K = σ. Put

ρλ(σ̃τ̃(σ̃τ)
−1) = f(σ, τ ) · 1m, ηλ(σ̃τ̃(σ̃τ)

−1) = f ′(σ, τ ) · 1m.

Then {f(σ, τ )} is the factor set attached to (AII.16). We note that Gal(K/F ) acts
trivially on C×. Thus f(σ, τ ) defines a cohomology class ξ ∈ H2(Gal(K/F ),C×).
We have

f(σ, τ ) = f ′(σ, τ )χλ(σ̃)χλ(τ̃)χλ(σ̃τ)
−1.

Hence f ′(σ, τ ) defines the same cohomology class ξ.

Proposition AII.3. In addition to (AII.15), assume that the commutator
group [Gal(K/F ),Gal(K/F )] is equal to Gal(K/F ) and that the exact sequence

(∗) 1 −−−−→ Gal(L/K) −−−−→ Gal(L/F ) −−−−→ Gal(K/F ) −−−−→ 1

does not split. Then ξ �= 1.

Proof. By (AII.15), there exists a faithful character ω of Gal(L/K) such that
η(g) = ω(g) · 1m, g ∈ Gal(L/K). Then we have

f ′(σ, τ ) = ω(σ̃τ̃ (σ̃τ)−1).

Here we regard σ̃ as an element of Gal(L/F ) such that σ̃|K = σ. Since ω is faithful,
we have Gal(L/K) ∼= Z/nZ for an integer n ≥ 2 and ω(Gal(L/K)) = μn. Here μn

is the group consisting of all nth roots of unity. Let ξ′ ∈ H2(Gal(K/F ), μn) be the
cohomology class defined by f ′(σ, τ ). Since (∗) does not split, we have ξ′ �= 1. The
cohomology class ξ is the image of ξ′ under the canonical map

ϕ : H2(Gal(K/F ), μn) −→ H2(Gal(K/F ),C×).

By our assumption, H1(Gal(K/F ),C×/μn) = 1. Hence ϕ is injective. This com-
pletes the proof. �

As a concrete example, take F and L so that Gal(L/F ) ∼= SL(2,Z/5Z). (Take
an elliptic curve defined over Q so that the field L generated by the 5-division
points satisfies Gal(L/Q) ∼= GL(2,Z/5Z). Then let F be the subfield of L which
is generated over Q by a primitive fifth root of unity.) Let K be the subfield of L

corresponding to

{
±
(
1 0
0 1

)}
. We have Gal(K/F ) ∼= A5. We see that (AII.15)

and the conditions of Proposition AII.3 are satisfied. Let η be an irreducible 2-
dimensional representation of SL(2,Z/5Z). Then η is faithful. This gives an explicit
example for which (AII.16) does not split.
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This volume constitutes the proceedings of  a conference, “On Certain 
L-functions”, held July 23–27, 2007 at Purdue University, West Lafayette, 
Indiana. The conference was organized in honor of  the 60th birthday of  
Freydoon Shahidi, widely recognized as having made groundbreaking con-
tributions to the Langlands program.

The articles in this volume represent a snapshot of  the state of  the field from 
several viewpoints. Contributions illuminate various areas of  the study of  
geometric, analytic, and number theoretic aspects of  automorphic forms 
and their L-functions, and both local and global theory are addressed.

Topics discussed in the articles include Langlands functoriality, the Rankin–
Selberg method, the Langlands–Shahidi method, motivic Galois groups, 
Shimura varieties, orbital integrals, representations of  p -adic groups, 
Plancherel formula and its consequences, the Gross–Prasad conjecture, and 
more. The volume also includes an expository article on Shahidi’s contribu-
tions to the field, which serves as an introduction to the subject.

Experts will find this book a useful reference, and beginning researchers will 
be able to use it to survey major results in the Langlands program.


