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Preface

For over three decades Freydoon Shahidi has been making significant contribu-
tions to number theory, automorphic forms, and harmonic analysis. Shortly after
receiving his Ph.D. in 1975 from Johns Hopkins, under the direction of Joseph Sha-
lika, Shahidi laid out a program to address several open problems, as stated by
Langlands, by a novel method now known as the Langlands-Shahidi method. In
particular, Shahidi sought to exploit the Fourier coefficients of Eisenstein series and
their local analogs to establish cases of Langlands functoriality. Key to this idea
was the understanding of generic forms and their local components, from which he
developed the theory of local coefficients. Shahidi believed this theory, combined
with other methods (including converse theorems) could yield elusive examples of
functoriality, such as the symmetric power transfers for G L, and functoriality from
classical groups to general linear groups. It was well known that establishing such
results would yield significant progress in number theory.

Through the first 10 years (or so) of this pursuit, Shahidi produced several
important results, and another 20 years of results of such stature would, alone, be
fitting of a 60th birthday conference and accompanying volume. However, the power
and stature of his results grew significantly and continues through (and beyond)
the publication of this volume. Simply put, in the last 15 to 20 years, Shahidi and
the Langlands-Shahidi method have helped produce a series of significant results.
Rather than a list, we will say that this record speaks for itself. That a number
of events within and outside of the Langlands-Shahidi method transpired simulta-
neously has, no doubt, changed the face of the Langlands program in significant
ways. That Shahidi’s approach is crucial to so much recent progress is a testament
to his persistence and perseverance. The influence of Shahidi’s work continues to
grow, and the breadth of the applications by Shahidi, his collaborators, and others
is undeniable.

One of Shahidi’s contributions that should not be overlooked is his service in
mentoring young mathematicians within his chosen field. To date, Shahidi has
produced eight Ph.D.’s and has at least six more in progress. In addition, he
has sponsored roughly 15 postdoctoral appointments at Purdue. Further, several
outstanding figures have noted his more informal, but just as crucial, role as a
mentor. The list of these mathematicians includes several major contributors to
the field, some of whom have contributed articles for this volume.

Freydoon Shahidi reached the age of 60 on June 19, 2007, and a conference
was held to commemorate this occasion July 29-August 3, 2007, at Purdue Uni-
versity, West Lafayette, Indiana. As Shahidi has been a member of the Mathe-
matics Department at Purdue since 1977 and has been designated by Purdue as a
Distinguished Professor of Mathematics, this seemed a fitting location for such a

vii
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conference. Funding for this conference was provided by Purdue University’s Math-
ematics Department and College of Science, the National Science Foundation, The
Clay Mathematics Institute, The Institute for Mathematics and its Applications,
and the Number Theory Foundation. Over 100 mathematicians attended, and
there were 23 one-hour lectures. The conference focused on several aspects of the
Langlands program, including some exposition of Shahidi’s work, recent progress,
and future avenues of investigation. Far from being a retrospective, the conference
emphasized the vast array of significant problems ahead. All lecturers were invited
to contribute material for this volume. In addition, some important figures who
were unable to attend or deferred on speaking at the conference were invited to
submit articles as well. We hope this resulting volume will serve as a modest trib-
ute to Shahidi’s legacy to date, but should not be considered the final word on this
subject.

The editors wish to thank all of the authors for their willingness to contribute
manuscripts of such high quality in honor of our colleague. We also wish to thank
the anonymous referees for their conscientious reading of these manuscripts and
their helpful comments to authors which have improved the contents. We wish
to express our deep gratitude to Purdue University’s Mathematics Department
and College of Science, the National Science Foundation, The Clay Mathematics
Institute, The Institute for Mathematics and its Applications, and the Number
Theory Foundation, for their sponsorship of the conference. We also wish to thank
all of the conferees who made the conference so successful, and the staff of the
Mathematics Department at Purdue University, particularly Julie Morris, for their
help with organizational matters. We thank the Clay Mathematics Institute and
the American Mathematical Society for agreeing to publish this work, and a special
thanks goes to Vida Salahi for all her efforts in helping us through this process.
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Shahidi’s Work “On Certain L-functions”: A Short History
of Langlands-Shahidi Theory

Steve Gelbart

For Freydoon Shahidi, on his 60th birthday

Some History

The precursor of Langlands-Shahidi theory is Selberg’s earlier relation be-
tween real analytic Eisenstein series and the Riemann zeta function.
More precisely, let

1 y®
(2, 5) 2 |z + d|?s” (e d) ’

where (¢, d) means the greatest common divisor of ¢ and d. This is the simplest
real analytic Eisenstein series for SL(2,R). Its zeroth Fourier coefficient is

1
ao(y, s) = / E(zs)dz = y* + M(s)y'™*
0

where
_ V/Al(s — 5)¢(2s — 1)
(1) M(s) = - (S)Z‘C ) :
its first Fourier coefficient is
1 coyh .

which implies what we want (see p. 46 of [Kub]). That is, the meromorphic contin-
uation of M (s) already gives the (in this case known) meromorphic continuability
of {(s), and the functional equation of F(z, s) gives the functional equation of ((s).

The generalization of these ideas would have to wait many more years, when
R.P.Langlands began to publish his miraculous conjectures.

Langlands (1967 Whittemore Lectures)

In January 1967, Langlands wrote his famous letter to Weil. It contains
precursors of most of the startling conjectures that today make up most of the
broad “Langlands Program”. In April 1967, Langlands delivered the Yale

2010 Mathematics Subject Classification. Primary 11F66 ; Secondary 11F70, 22E55.
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2 STEVE GELBART

Whittemore Lectures, wherein he investigated the (general) Eisenstein series of
type

(3) E(g.0:8)= > ¢s(19)

YyEPNG

with G a reductive group (more about the terminology below). Fuler Products
[Lan1] is a monograph based on these lectures. In it, one finds the first (published)
version of a crucial and key concept — that of an L-group. It comes out of the
expression of the zeroth Fourier coefficient of the general E(g, ¢, s), in a surprisingly
new way. Without going into too much detail, let’s try to explain why. Complete
details of everything can be found in many places; the basic source is [Lan2]. We
also refer to Bill Casselman’s paper “The L-Group” [Casl] for a leisurely account
of these and other important computations.

Our Eisenstein series are induced from a representation 7 and a complex pa-
rameter s on the Levi component M of P. Here P = MU is a maximal parabolic,
dp its modulus function, w the fundamental weight corresponding to P, and K a
good maximal compact subgroup. Fix a minimal parabolic Py = MyUy. Let Ty,
be the intersection of the maximal split torus of the center of M with the derived
group of G. Then Ty ~ Gy, (the multiplicative group) and we let Ay be the
subgroup R4 imbedded in Ir ~ Tj/(A). If 7 is a cuspidal automorphic repre-
sentation of M(A), we assume that the central character of 7 is trivial on Ay,
and consider 7 as a subspace of L?(Ay M(F)\M(A)). Let AT denote the space
of automorphic forms ¢ on U(A)M (F)\G(A) such that for all k¥ € K the function
m — 6p(m)~2p(mk) belongs to the space of m. The automorphic realization of

7 gives rise to an identification of A% with (the K-finite part of) the induced

space I(m) = Ind EA; 7. Set ¢s(g) = v(g)|w|®(g) for any ¢ € A%, s € C. (Here

w is the fundamental weight corresponding to P in the vector space spanned by
the rational characters of M and |w] is the continuation to G(A) of the function
|w|(m) = []|@(my)|, with m = (m,) inside M(A).) The map ¢ — ¢, identi-
fies I(m) (as a K-module) with any I(m,s) = Ip(m,s) = Indggig w|w|®. For any
¢ € AT, we consider its Eisenstein series (3) which converges for Re(s) > 0. It
defines an intertwining map from I(7,s) into the space of automorphic forms on
G(A). Let P be the parabolic opposite to P containing M and let P’ = M'U’ be
the standard parabolic conjugate to P with M’ D> My. Thus, if wq is the longest
Weyl element, then M’ = woMuwg *.

Langlands computed that the

Epi(g,¢,s) = /E(U’g,sﬁ,S)wo(u’)du

“

zeroth Fourier coeflicient”

should equal
ep,prp(g) + M(s)(¢)(9),
where ep pr = 1 if P = P and 0 otherwise, and

S(js, m,75)
M 'U? 'U><
vlgq (70, )¢ Hle—F]Sﬂ'T’])

Here M (s) is the intertwining operator acting on the induced space I (7, s), the space
of Ind(w|w|®), and S is the finite set of primes v which includes the archimedean
and ramified places. L°(js, m,7;) is the Langlands L-function attached to S, =
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and the contragredient of the irreducible representation r; of the L-group LM on
the Lie algebra of “N. This formula reduces to (1) when G is SL(2), M is the
diagonal subgroup isomorphic to A*, and S = co. The point is that the analytic
continuation of these F(g, ¢, s) (which Langlands accomplished a few years earlier,
see [Lan2]) gives the meromorphic continuation of these Langlands L-functions.
This setup contains a list of (M,G) pairs, which includes:

(a) Rankin-Selberg L-functions for

M =GL, X GLy,, G=GLuim
and
r(g1,92) (wi3) = g1 (wi5)95 -

L-functions for these L(s, m, X 7, r) were studied later on by Jacquet, Piatetski-
Shapiro, Shalika, Shahidi, Maeglin-Waldspurger, etc.. More about these
soon.

(b) G is the exceptional group of type Go and M is the group GLs. Also
r1 = Sym?® and ro = det. This example Langlands called “particularly striking”.

Where do we stand (1975)7

As is well known, with [Lanl], and more generally [Lan3], Langlands changed
the course of modern number theory. On a smaller scale, for us the intimate rela-
tionship between general Eisenstein series and automorphic L-functions mapped out
a theory of the latter. In particular, the meromorphy of the functions L(s,m,r;)
already followed from analytically continuing the Eisenstein series.

But what about an exact functional equation? Is there a nice generalization
of (2) for first Fourier coefficients (as opposed to just zeroth Fourier coefficients)
in terms of L-functions which appear only in the denominator? And, more signifi-
cantly, what about the holomorphy of L(s,n,r;), or at least meromorphy with a
(prescribed) finite number of poles? (Think of Artin’s Conjecture.)

Shahidi enters the picture (1975- )

Freydoon came to the Institute for Advanced Study in the fall of 1975, right
after his doctoral studies under Joe Shalika. Shalika was sending Freydoon to learn
from the master — Robert Langlands. What Langlands suggested he study was
exactly the nonconstant Fourier coefficients of E(g, ¢, s), along the lines predicted
in a letter to Godement. What resulted was the birth of “Langlands-Shahidi
theory”.

I first met Freydoon while he was still a graduate student of Shalika’s, and
feel honored to have had him as a friend ever since. Studying his work for over
30 years has been a rare treat. Indeed, very few mathematicians have worked
singlehandedly towards such a difficult yet simple goal: to prove that the L-
function L(s, 7, r) has a finite number of poles and satisfies the functional equation
L(s,m,r) =e(s,m r)L(1 — s, 7, 7). Amazingly, each successive paper of Freydoon’s
builds upon the ones that appeared before it, as we shall now see.
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Acknowledgment

I thank Jim Cogdell for a large amount of help with this survey.
Ten Special Papers

We shall survey Freydoon’s program (of Langlands-Shahidi theory) by looking
at ten papers which we henceforth denote by numerals 1 through 10, putting a star
next to 4 of those as being particularly important.

1*. Functional Equation Satisfied by Certain L-functions, Composi-
tio Math., 1978, the predecessor of On Certain L-functions, Amer. J. Math,
1981. (See the backdrop of the Poster for Shahidi’s 60th Birthday Conference.)
These papers set the stage for (almost) all that follows: first for the GLy L-
function L(s,m, Sym?) (see example (b) above), then for arbitrary Langlands-
Shahidi L(s, m,r;).

For our purposes, let 1 be a non-degenerate character of Uy and denote by ¥s
its restriction to Up N M (a maximal unipotent of M).

In what follows, Shahidi assumes that 7 is generic with respect to
Y, 1.e., m is globally generic. Then E(g, ¢, s) will be ¢ generic.

In this case, one can compute non-trivial Whittaker coefficients (“Fourier coeffi-
cients”) of the resulting Eisenstein series and relate them directly to the L-functions
L(s,m,r;) (without the appearance of quotients of them). More exactly, Shahidi
computes the i-th Fourier coefficient to satisfy

Y(e,p,s HW (ew) Hle—i—jswrj)l

veES

Here W,(g) = A(Lu(gv)pw), where A\, denotes a i-Whittaker functional on the
space of Ind 7,|w|®. Using this, he obtains a crude functional equation for the
Langlands’s L-functions:

[T 25Gs,mr) = T G5, (s 70) [T 251 = s, m, 7)),
J=1 veES j=1
where C7 (s,7,) is Shahidi’s (soon to be analyzed) local coefficient; it comes

directly from the local uniqueness of Whittaker models.
Let us give an outline of the proof. The first thing to do is to write the

expression EY (e, ¢, s) as

H W (e H Wo(ey).

veS
To do this, we apply Bruhat’s decomposmon. To make matters simpler, we consider
the case of G = SL(2). Here P = Py = B = NU = P’, 7 is a character x, and
we have the familiar Whittaker functional defined on the space of Ind x,|w@|;; on
pages 80-81 of [Ge-Sh], we showed precisely that

EY(e, p,s) HW eo) Lo (145, %)L
veS

In general, one can proceed the same way, since only the “longest” Weyl group
element will contribute non-trivially, and then the computation of W is precisely
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the subject matter of [C-Shal]: for v not in S,

m

Wy(en) = [ LU+ s, w0, 7)) 7"

Jj=1

For the crude functional equation, one needs to apply some results due to Cassel-
man [Cas2] and Wallach [Wal] at the archimedean places (to show that W,’s
can be chosen so that W, (e,) # 0 if v = 00). Then one uses Shahidi’s theory of lo-
cal coefficients by applying intertwining integrals (Harish-Chandra, Silberger).
That is, one makes sense of a Whittaker functional X, on the image of I(s, ,) by
M, (s, m,) by using a formula similar to the one defining A,; then one proves (by
uniqueness of Whittaker functionals) that there is a complex function Cy, (s, T,)
relating A\, to A\, acting on M, (m,,s). The functional equation for E(s) then gives
the (crude) functional equation for L°(s). Along the way, we have that the holo-
morphy of the local coefficients determines the irreducibility of certain induced rep-
resentations, and furthermore, that they can be used to normalize the intertwining
operators.

Remark 1. The simpler argument for

[T L5Gs mr) =TI Cy (s.70) [T L1 — js,m, 7).
j=1

veS j=1

for G = SL(2) is carried out on pages 81-82 of [Ge-Sh].

Remark 2. Recall from above that there exists ¢, such that W,(e,) # 0.
Consequently, the zeros of H;nzl L3(1+ js, m,7;) are among the poles of E(e, ¢, s).
From the fact that E(e, p, s) is known to have no poles on the imaginary axis iR,
it follows that

m

[T L8 +ijt, m,75) #0

j=1
for all ¢ in R. In particular, for M = GL(n) x GL(m) and G = GL(n+m) (example
(a) of Langlands), and 7 and 7’ cusp forms on GL(n, Ax) and GL(m, Ar), we get

L(1l,7m x7') #0,

where the local L-functions at every place are the corresponding Artin factors (see
[Ha-Ta, Hen] and more of the discussions below).

2. Fourier Transforms of Intertwining Operators and Plancherel Mea-
sures for GL(n), Amer. J. Math, 1984.

Here is where Shahidi begins to work out some details of his general theory for
the well known case (M, G) = (GL,, X GLy,, GLy ) over a local non-archimedean
field. This paper says mainly that (as Langlands had predicted) the local Shahidi
coefficient may be expressed in terms of the usual gamma factor computed by
Jacquet, Piatetski-Shapiro, and Shalika in [J-PS-S]. An important conse-
quence of this equality is a formula for the Plancherel measure attached to s and
7m1 ® mo by Harish-Chandra (see [Harish] and [Sil] for an introductory general
theory). This formula was used by Bushnell-Kutzko-Henniart in [B-H-K]] to
express the conductor for the pair (M, G) in terms of types of representations.
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3. Local Coefficients as Artin Factors for Real Groups, Duke Math.
Journal, 1985.

The purpose of this paper is to prove the equality of local Shahidi coefficients
in the real case with their corresponding Artin factors of local class field theory.
The beautiful result reads as follows:

L(1— js,7; - on
Colem = () 1L esors - o) (L(jsjijr-]sﬂﬁ )

j=1
where ¥ = YR, 7 is an irreducible admissible representation of M = Mg, and
©r : W — M is the homomorphism attached to m by Langlands’ local class
field theory at infinity (cf. [Lan5]); the Artin factors are those which Langlands
attached to irreducible admissible representations. Since the statement is also true
when v is unramified, the main theorem of the 1981 paper establishes the functional
equation

m m
HL(jS,TF,T‘j) = H G(jS,ﬂ',T‘j)L(l _j577ra7:j)
j=1 j=1

whenever oo is the only ramification of 7; in particular, this is true for every cusp
form on SL(2,Z). To define the Cy, one needs the analytic continuation of Whit-
taker functionals. Hence one needs the work of Jacquet’s thesis [Jac], Schiffmann
[Schi] and Wallach [Wal], Vogan [Vog], Kostant [Kos], etc. One also needs to
apply Knapp-Zuckernan [Kn-Zu] and Langlands [Lan5] to show that the local
coefficient is basically a product of Artin factors.

Remark

Around this time, about the middle of the 1980’s, Freydoon wrote several
interesting papers related to L(s, 7, Sym™) with Carlos Moreno (see, for example,
[Mo-Sh]). Shahidi also has a nice 1988 paper [Ke-Sh| with David Keys where
they (among other things) studied Artin L-functions in the case of unitary principle
series of a quasi-split p-adic group. These were about the only joint works Freydoon
did between the dates 1975-1995, i.e., although Shahidi would have liked to do more
work with others, the first 20 years he worked virtually alone. What came later
(that is, after 1995) will be discussed after paper 5*.

4. On the Ramanujan Conjecture and Finiteness of Poles for Certain
L-functions, Annals of Math., 1988.

First Freydoon completed the list of (M, G) pairs after Langlands; these in-
cluded:

(¢) G = (E7 — 1), the derived group of M is SLy x SLs x SL4, and ry the
tensor product representation (page 560 of paper 4);

(d) G=(Es—2), M = SLy x SLs, and r; the standard times exterior square
(page 561); and

(e) G = (F4—2), with M given by aq, ag, ay (page 563).

Then Freydoon established a uniform line (Re(s) = 2) of absolute convergence
for all his “certain” L-functions. This is proved using a crucial lemma: For almost
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every local component of a cuspidal generic representation, every unramified L-
function (obtained from this method) is holomorphic for Re(s) > 1; in other words,

det (I — 1"1(141])%75)71

is holomorphic for Re(s) > 1 (where A, € LM is a semisimple element in the
conjugacy class of “M attached to 7).

To see how this is related to the Ramanujan-Petersson Conjecture (the up-
to—date subject matter of paper 10), take 7 to be a cuspidal representation of
PGLy(AF), and at each unramified v, let A, = diag(a,,a;!) be the corresponding
conjugacy class in SLy(C); the conclusion is that

_1 1
(4) Qv °® <|av|<Q1}5~

Indeed, suppose we apply this “crucial lemma” in case (e) of (G,M) above. Let II
be the Gelbart-Jacquet lift of 7. (We may assume II is a cuspidal representation
of PGL3(A) since Ramanujan-Petersson is known for monomial cusp forms.)
The exact sequence

0—+A—M— PGL3 x PGLy — 0
(A is the split component of M) leads to a surjection
M — PGL3(A) x PGL2(A) = 0

(by page 36 of [Lanl]), and the cuspidal representation II x m of PGL3(A) x
PGLy(A) then defines a cuspidal representation p of M. Thus, among the factors
dividing L(s, p, 1)~ is
(1-afg, )1 - ;% "),

and by the “crucial lemma”, this must be non-zero for Re(s) > 1, i.e., (4) holds!

In the last part of this paper, a first response to the functional equation
and entirety of these L-functions is addressed. However, the serious definitions
of L(s,m,r;) and €(s,m, r;,r) will wait until paper number 5*.

5%. A Proof of Langlands’ Conjecture on Plancherel measures; Com-
plementary Series for p-adic Groups. Annals of Math. 1990.

In this important paper, several long awaited results follow from a (detailed
and) non-trivial Theorem proving general results about the local Langlands root
numbers € and L-functions L, namely, if they are equal to the corresponding Artin
factors, they are supposed to be “inductive”, and (for the local component of a
global cusp form) they must be the corresponding factor appearing in the functional
equation satisfied by the cusp form. A nice corollary of this is Langlands’ Conjecture
expressing the Plancherel measure in terms of these € and L.

The above are far-reaching results generalizing the case (G, M) = [(GL(n+m),
GL(n) x GL(m))]; see paper number 2 and the work of Jacquet, Piatetski-
Shapiro, and Shalika [J-PS-S]. It also generalizes the theory of local coefficients
as Artin factors for real groups (paper number 3 above).

One of the main applications here is the desired functional equation of the L-
function of a generic (global) cusp form 7: locally there exist gamma factors v so
that L and e factors can be defined at every place, and globally

L(s,m,r;) = €e(s,m,r;)L(1 — s, m,7;).
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This is obviously a generalization of what is true for the third symmetric power
L-function for M = GL(2) inside G2; see the paper numbered 1.

To prove the individual functional equations, i.e., to get each L(s,w,r;) with
precise root numbers, we need to appeal to the following “induction” statement:
given 1 < i < m, there exists a split group G; over F, a maximal F-parabolic sub-
group P; = M;N; and a cuspidal automorphic representation 7’ of M; = M;(AF),
unramified for every v ¢ S, such that if the adjoint action of ©M; on ¥n; decom-
poses as 1’ = @17, then

L3(s,m, 1) = L (5,7, 1));
moreover m’ < m.

Next, we need a generalization of paper number 3 to all places that have a
vector fixed by an Iwahori subgroup. This, together with a local-global argument,
can then be applied “inductively” as above. All in all, using the Crude Functional
Equation, we arrive at one of the main results of the paper:

Theorem. Given a local field F, groups G, P = MU, representations r; on
LM as before, and an irreducible admissible generic representation o of M, there
exist complex functions y(s, o, r;,¥r),1 < i < m, such that

(1) whenever F' is archimedean or ¢ has a vector fixed by an Iwahori subgroup,

V(S,Ua Ti7wF) = 6(57Ti 2 ¢F)L(1 - Svfi . QO)/L(SJ",L . @)7

(2) in general,

m
Cy(s,0) = HV(&U,WJ/)F);
i=1
(3) v(s, 0,74, ¢ r) is multiplicative under induction, and
(4) whenever o becomes a local component of a globally generic cusp form, then
the ~«’s become the local factors needed in their functional equations. Moreover,
(1), (3) and (4) determine the ~-factors uniquely.

Shahidi uses this Theorem to define L and e factors for all irreducible ad-
missible generic representations. Let us just look at the case of tempered such
representations. For such representations, we define L(s,o,7;) to be the inverse of
the normalized polynomial P, ;(¢~*) which is the numerator of y(s, o, r;,v). Part
(2) of the Theorem above implies

7(55 0,75, ¢F)L(Sa a, Tj)/L(l - 5,0’,77]')

is a monomial in ¢~*, which is denoted by (s, o,7;,%r), the root number attached
to o and r;. Thus,

7(87 a,Tj, 1Z)F) = 6(87 a,Tj, 1Z)F)L(]- - 5,0, FJ)/L(S’ g, Tj)'
For tempered o it follows that L(s, o,r;) is independent of .

Back to the local theory, Shahidi derives Langlands’ Conjecture (for generic
representations) which concerns the normalization of local intertwining operators
by means of local Langlands root numbers and L-functions (this is expressed in
terms of Plancherel measures and some results from paper 3).

Finally, Freydoon obtains all the complementary series and special representa-
tions coming from (generic) supercuspidal representations of the Levi factors of
maximal parabolics.

To tackle Langlands’ Conjecture in general, i.e., for arbitrary 7, Shahidi reduces
it to two natural conjectures in harmonic analysis: one is the basis for stabilization
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of the trace formula, the other is about stable distributions (the Conjecture on
genericity of tempered L-packets).

All in all, Shahidi’s paper is very powerful, and a fitting 1990 end to paper
number 1* — the functional equation of “all” automorphic L-functions is proved.
The outstanding work Shahidi did since then will be discussed in papers numbered
6 through 10.

Here we must mention, especially for the non-generic case, a host of other
names. For induced representations in the p-adic case, see Lapid, Muic, Tadic
[LMT], and Silberger [Sil], etc. For interactions with the trace formula, see
Arthur [Art], Ngo, Clozel (see, for example, [Clo]), Langlands [Lan3|, and
Kottwitz-Shelstad [Ko-Sh].

Recently, following up on Shahidi’s work, Hiraga-Ichino-Ikeda [H-I-I] have
conjectured a generalization of Langlands’ Conjecture to formal degree and discrete
series representations, and they have checked that their Conjecture agrees with
Shahidi on GL,, and other groups (via twisted endoscopy.....see below).

6. Twisted Endoscopy and Reducibility of Induced Representations
for p-adic Groups, Duke Math. Journal, 1992.

A major reason for studying (twisted) endoscopy is to detect representations
coming from the corresponding (twisted) endoscopic groups. The theory goes back
to Langlands and Shelstad [Lan-Sh] and is continued in [Ko-Sh]. Recall that
there are no interesting endoscopic groups for GL(n), but that symplectic groups
and special orthogonal groups appear as twisted endoscopic groups of GL(n).

Here Freydoon goes on to use the last paper to relate the poles of (local non-
normalized) intertwining operators to the parametrization problem via twisted en-
doscopy. A typical example is the following:

Theorem. Suppose G = Sps, and o is a fixed irreducible unitary self-dual
supercuspidal representation of M = GL,(F'). Then I(o) is irreducible if and only
if L(s, 0, A?) has a pole (at s = 0) and if and only if o comes by twisted endoscopic
transfer from SO, 1(F).

Closely related works are his 2000 (Appendix with Shelstad [Shahl]) pa-
per and his 1998 paper with Casselmen [C-Shah]. In a number of papers with
Goldberg (cf. [Go-Sh]), Freydoon later extended the work of paper number 6 to
arbitrary parabolic subgroups of classical groups.

The last 10 years

Quite simply, Freydoon’s research has had a dramatic impact on Langlands
functoriality. We shall describe 4 principal papers under this heading, each car-
rying out a different role towards automorphic lifting.

7. With S. Gelbart, Boundedness of Automorphic L-functions in Ver-
tical Strips, Journal of the Amer. Math. Society, 2001.

8*. With J. Cogdell, H. Kim, and I. Piatetski-Shapiro, On Lifting from Clas-
sical Groups to GLs, Publ. Math. de 'THES, 2001, along with Functoriality
for the Classical Groups, Publ. Math. de 'THES, 2004.
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9*. With H. Kim, Functorial Products for GL; x GL3 and the Symmetric
Cube for GGLs, Annals of Math., 2002.

10. With H.Kim, Cuspidality of Symmetric Powers with Applications,
Duke Math. Journal, 2002.

Before looking at papers 7 through 10, let’s see how far one got towards prov-
ing the analytic properties of, say L(s,m, Sym?), in about 1998. The functional
equation was known (in fact, from paper 1 for L(s,m, Sym?), but from paper 5*
for general Langlands-Shahidi L-functions). What about its entirety? For 7 gener-
ated by Ramanujan’s 7-function the L-function for the symmetric cube had already
been proved holomorphic by Moreno and Shahidi in 1976 [Mo-Sh]. But what
about general cusp forms? In around 1998 Kim and Shahidi made a breakthrough
in proving the (long awaited) holomorphicity of L(s, 7, Sym3) [Ki-Sh1]. In par-
ticular, their method used the appearance of this function in the constant term of
Eisenstein series on Ga, and some brand new results of Kim [Kim1] (more about
this later), Muic [Mui], and Ramakrishnan [Ram2]. This marked the begin-
ning of deeper analytic properties of L-functions like L(s, 7, Sym?3) being proved.
For example, given Cogdell and PS’s Converse Theorem, this meant showing that
twisting by forms of GLo(A) was nice. All these things, like proving L(s, w, Sym?)
was a standard GL4 L-function, had to wait for the exciting Princeton gathering
of Cogdell-Kim-PS and Shahidi in 1999.

More on the Background

Working in parallel to the theory of Langlands-Shahidi was the ongoing
project of Piatetski-Shapiro on L-functions.

Anyone working with PS, from 1976 onwards, knew that one of Piatetski’s
dreams was to complete the Converse Theorem from GL2 and GL3 to GLy,, then
to use it to establish cases of functoriality.

On the other hand, also from 1976 onwards, Freydoon had been developing the
Langlands-Shahidi theory, especially for L(s, m, Sym?).

Everything came together in 1999 - 2000, when a special year at the IAS was
co-organized by Bombieri, Iwaniec, Langlands and Sarnak. Present at the
same place, Cogdell and PS took their most recent version of the recent Converse
Theorem and together with Kim and Shahidi saw how to apply it to several of
the L-functions obtained by the Langlands-Shahidi method.

The Work Done

More precisely, this work was the happy marriage of the language of Cogdell-
PS Converse Theorems (together with stability) with Langlands-Shahidi theory
(together with Kim’s observation), as we shall now see.

First, the purpose of paper 7 was to prove the boundedness in vertical strips of
finite width for all the (completed) Langlands-Shahidi L-functions that appear in
constant terms of Eisenstein series under a certain local assumption. In particular,
we prove the boundedness of a number of important L-functions, among them the
symmetric cube for G L and several Rankin-Selberg product L-functions, where the
local assumption was already proved. Our main theorem plays a fundamental role
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in establishing new and striking cases of functoriality such as for classical groups
to GL,, and for L(s,m, Sym3) for GLy (both to be discussed soon).

Gelbart, Lapid and Sarnak then found a simpler proof of this boundedness
on their way [Ge-La-Sa] to proving the stronger Conjecture stated in the Intro-
duction to paper 7. Both papers rely heavily on the work [Miil] of Miiller on the
finiteness of order of Eisenstein series.

Next, we turn to papers 8 through 10. The papers numbered 8* prove global
functorial lifting for the split classical groups G,, = SO2y,+1, SOy, or Sp, to an
appropriate general linear group G Ly, for generic cuspidal representations. Let’s
explain the lifting for SOy, 1 alone (which we shall denote by H). We follow
fairly exactly the exposition given in [Cog] (see also Cogdell’s paper in these
Proceedings).

According to [C-PS2], the Converse Theorem for GLy states the following:
Let IT = ®II, be an irreducible admissible representation of GLy(A) whose central
character is invariant under k* and whose L-function L(s,II) is absolutely conver-
gent in some right half-plane. Let S be any finite set of finite places and 7 a
continuous character of A* mod k*. Suppose also that for every 7 € T°(N) @ n
(where T°(N) denotes any cuspidal representation of GLg(A),1 < d < N — 2,
unramified at all v € S) the twisted L-function L(s,II x 7) is nice, i.e.,

(1) L(s, T x 7) and L(s,II x 7) extend to entire functions of s € C,
(2) L(s, 11 x 7) and L(s, I x 7) are bounded in vertical strips,
(3) L(s, IT x 7) satisfies the functional equation L(s,II x 7) = e(s, Il x 7)L(1 —
s, 1T x 7).
Then there exists an automorphic representation II" of GLx(A) such that II, =
IT, for all v ¢ S.

To prove a global functorial lifting from H to G Ls,, a first step is to attach to

a globally generic cuspidal representation
T = Qmy,
of H(A) a candidate lifting IT = ®II, of GL2,(A). (Now N equals 2n.)

For v ¢ S (the finite set of finite places at which the local component 7, is ram-
ified) and II, the local Langlands lift of m,, let ) be the irreducible representation
of GLy, (k) with m < 2n; then

L(s,m, x 7)) = L(s, 1L, x 7))
and
(s, my X T by) = €(s, I, X 7, 1y).
Now what about v € S? As for paper 5%, we have a local twisted -factor

(8,7, X m,1,) where 7, is a generic representation of GL,,(ky), m < 2n; it is
related to the local L and e factors by

€(s,my X 7L, 1y ) L(1 — 8,7 X 1)
v X /7 v) = - L.
’Y(S) U 7Tv /IZ} ) L(57 ﬂ_U X ﬂ';})

By “multiplicativity of y-factors”, if ), = Ind(n} , ®m} ,) with 7]  a representation
of GL,,, then

'7(577% X 7T;;>'(/}v) = '7(577% X Wi,vﬂl}v)’}’(syﬂv X Wé,vﬂ/}v)-
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On the other hand, if 71 , and 75, are two irreducible admissible representations
of H(k,), then by “stability of ~-factors”,

V(8 T10 X 1y o) = V(S T20 X 10, o)
and
L(s,m14 X My) = L(s,m2, X 1) =1
for every sufficiently highly ramified character 7, (see [C-PS] for the original work

on “stability” by Cogdell and PS). As we shall soon see, this is enough to produce
a replacement for the local Langlands Conjecture at v € S.

Recall that the local multiplicativity and stability results for GLa,(k,) are
known by Jacquet, Piatetski-Shapiro and Shalika. This allows for a comparison
of the stable forms for GLa,(k,) and H(k,) and establishes the following analogue
of a local Langlands lift for v € S: let II,, denote any G Lo, (k,) having trivial central
character, and 7}, a generic irreducible admissible representation of G L., (k,) with
m < 2n of the form 7, = 7 , ®n, with 7, unramified and 7, a fixed sufficiently
highly ramified character of k; then

L(s,my x m,) = L(s,1I x 7,)
and
(s, my X 7 by) = €(s, I, X 7, 1y).
The end result is:

Proposition. For any fixed character n for which 7, is sufficiently ramified at
the places v € S we have

L(s,mx 7)) = L(s,IT x 7")
and

e(s,mx ') =¢(s, I x 7).
for all 7’ € T9(2n — 1) @ 7.

The next step is to control the analytic properties of this twisted L-function
L(s,m x ©'), i.e., to prove that L(s,m x ©’) is nice. The functional equations of
course have been established in paper 5%, and the boundedness in vertical strips in
7; however, for L(s,7m x 7') to be entire for “sufficiently ramified” 7’ now requires
Kim’s crucial observation: the relevant Eisenstein series, hence the L-function
L(s,m x 7'), can have poles only if the representation 7’ satisfies 7’ = @’ ® | det |*
for some t. Since this can never happen for sufficiently ramified 7', we have finally:

Proposition. Let 7 be a globally generic cuspidal representation of H(A). Let
S’ be a non-empty set of finite places and suppose that 7 is an idele class character
such that at some place v of S’ we have both 7, and n? ramified. Then the twisted
L-functions L(s,m x 7') are nice for all 7’ € TS (2n — 1) @ 1.

Now [C-K-PS-S]| is ready to prove that m has a global Langlands lift to
GLo,(A).

Theorem. There is a finite set of places S and an automorphic representation
I of GL3,(A) such that for all v ¢ S we have that II is the local Langlands lift

of 7,.
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Proof. Let w, S, and II be as above. If S is non-empty, let S’ = S and if 7 is
unramified at all finite places take S’ = vy to be any chosen finite place. Choose a
fixed idele class character n which is suitably ramified for all v € S such that both
the last two Propositions are valid. Then for all n’ € TS'(Qn — 1) ® n we have

L(m x ') = L(s, I x 7'),e(s,m x ') = €(s, 1L x 7')

and the L(s,II x 7') are thus nice. Then by the Converse Theorem for GLa,, we
conclude that there is an automorphic representation II' = ®H; of GLy,(A) such
that H;] =11, is the local Langlands lift of 7, for all v ¢ S".

In short, this paper numbered 8* was a complete breakthrough.
Related Work of Others

Ginzburg, Rallis and Soudry had used their “descent technique” to char-
acterize the image of global functoriality for generic representations of the split
classical groups [G-R-S] (see also [Sou)); in particular, they show that the image
of functoriality consists of isobaric sums of certain self-dual cuspidal representations
of GL4(A) satisfying an appropriate L-function criterion.

In [Ji-So|, Jiang and Soudry establish local Langlands reciprocity law, as-
sociating with each Langlands parameter of SO, 11 an irreducible representation
of SO2,11(F) (F p-adic), preserving local twisted L and e factors. Together with
this, they establish the local Langlands functorial lift from generic representations
of SO2p,41(F) to irreducible representations of G L, (F). (Their main tool is the
theory of “local” descent.) The ~ factors were also handled by Rallis-Soudry
[Ra-So], based on the doubling method of PS-Rallis [PS-Ra] and fine tuned by
Lapid-Rallis [La-Ral].

Shahidi and C-PS [C-PS-S1, C-PS-S2] come back to handle stability for
~ factors in the Rallis Volume and Jussieu Publication. An entirely different
approach is by Arthur ([Art]); he uses the trace formula to develop transfer for
the whole (not just generic) spectrum.

The Symmetric Cube Lift

In 9%, instead of working directly with L(s, 7, Sym?), Kim and Shahidi prove
the stronger result that GLs x G L3 is itself functorial! Let’s see how that was done.

Keeping in mind the Converse Theorem of Cogdell-PS, Kim and Shahidi
study the L-functions L(s,7m x (7' ® x) X o), where o is a cusp form on GL,,
r = 1,2,3,4. For example, for r = 4, Langlands-Shahidi is used with (G, M)
taken to be the case (c) of paper 4, namely (E; — 1), with derived group of M
equal to SLy x SL3 x SLy. Again, it is not a simple matter to prove that all
these properties of L(s,m x (7' ® x) X o) are satisfied: in fact, the full power and
subtlety of Shahidi’s theory (the content of papers 1 through 5) is used. By the now
familiar Cogdell-PS Converse Theorem, this L(s, 7 x (7' ®x)) equals the L-function
for GL(6). Actually, much more is used, including paper 7, and the idea again of
[Kim1]: Langlands’ inner product formula for Eisenstein series implies that all of
the automorphic L-functions appearing in the constant terms are entire if twisted
by a Grossencharakter which is sufficiently ramified at one place.

To argue for L(s,m, Sym?), let 7’ = Ad(w) again denote the corresponding
automorphic representation of GL(3, Ar). For each v, finite or infinite, let 7, X 7/,



14 STEVE GELBART

be the irreducible admissible representation of GL(6, F,,) attached to v through the
local Langlands correspondence by Harris-Taylor [Ha-Ta] and Henniart [Hen].
Then what Kim and Shahidi prove above is that 71X 7’ is an irreducible admissible
automorphic representation of GL(6, Ar) and we argue as follows concerning its
isobaric character.

Let 7 be a cuspidal representation of GL(2). Then (mostly by arguments of
Ramakrishnan [Raml]), L(s,Ad(n) x m x o) has a pole at s = 1 iff o and
Ad(r) are self x dual. The result is that 7 X Ad(7) has (GL(2) x GL(4)) isobaric
data. Since it is easy to see that for almost every place m, K Ad(m,) = Ad?’(ﬂ'v) 8]
7y, we conclude from the (generalized “multiplicity one”) classification theorem of
Jacquet-Shalika [Ja-Sh]| that

X Ad(r) = Ad*(7) B,

exactly what we want.

We stress that the proof of the stronger result on GLy X G L3 uses the obser-
vation of Kim, the boundedness discussed on paper 7, and techniques developed in
paper 5.

We must also mention Kim’s important paper Functoriality for the Ex-
terior Square of GL,; and the Symmetric Fourth of GL, [Kim2], with its
interesting Corollaries for Ramanujan’s Conjecture. (We’ll get to that very soon
with our discussion of paper 10.) The paper of [As-Sh], which appeared in Duke
2006 proves Langlands (generic) functoriality for general spin groups.

Paper number 10: Symmetry versus Ramanujan

Here, for a number field F', Kim and Shahidi produce the best known result
on Ramanujan-Petersson: if 7, is an unramified local component of a cuspidal
representation of GL(2), then

q;1/9 < |av‘7 ‘5v| < Q11)/9'

This uses the meromorphy of Sym® for G L, which is proved using case (d) of the
(G, M) list.

When F' = Q, a stronger estimate of 7/64 is available by Kim-Sarnak [Ki-Sa];
it uses techniques of analytic number theory, as opposed to the estimates of 1/9
(which uses the same techniques as 1/5 did in 1988).

Concerning the failure of Ramanujan for groups other than GL(2), Howe and
PS found it to be false for Spy, and Us [Ho-PS]). Later, it was assumed to hold
for generic cuspidal representations of quasi-split reductive groups (see Shahidi
5%).

In [Lan4], Langlands [Lan4] suggests that Ramanujan should hold for cus-
pidal representations of quasi-split groups which functorially lift to isobaric rep-
resentations of GLy(A) (which is the case for globally generic representations of
classical groups G,, by C-K-PS-S). Thus, with either formulation, we would expect
Ramanujan to be true for G,,(A). The best general bounds towards Ramanujan for
GLy(Ag) are those of Luo, Rudnick, and Sarnak [L-R-S], and via functoriality,
C-K-PS-S are able to link the RC for classical groups to the RC for GLy. There
is another approach to the problem due to Burger, Li and Sarnak [B-L-S]; this
involves the automorphic dual of a group.
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Where do we stand now (2008)7

Let’s look at two major themes of Langlands which are developed in Shahidi’s
work:

1) the analytic continuation and functional equation of the Langlands auto-
morphic L-functions L(s,w,r), and

2) the principle of functoriality for automorphic forms.

Concerning the first, Shahidi proved the analytic continuation and functional
equation for all L-functions L(s,7,r;) of Langlands-Shahidi type. (Further prop-
erties of L(s,m,r;) follow from his proof of a local conjecture on intertwining op-
erators now known in almost all cases; see [Shahl, Asg, C-Shah, Kim3].) As
regards arbitrary Langlands L-functions, our knowledge of automorphic represen-
tations is still too murky to ensure all the right methods to be followed. Certainly
the trace formula is a central tool, and Freydoon has touched on this in various
works not discussed here.

As for the second theme in Shahidi’s work, the proof of the principle of general
functoriality, we again know that this proof is far from complete. However, the
surprising successes that Freydoon has had in proving various instances of functori-
ality, along with his other advances in the theory of L-functions, will always stand
out for their depth and originality.
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ABSTRACT. We report briefly on an endoscopic classification of representations
by focusing on one aspect of the problem, the question of embedded Hecke
eigenvalues.

1. The problem for G

By “eigenvalue”, we mean the family of unramified Hecke eigenvalues of an
automorphic representation. The question is whether there are any eigenvalues
for the discrete spectrum that are also eigenvalues for the continuous spectrum.
The answer for classical groups has to be part of any general classification of their
automorphic representations.

The continuous spectrum is to be understood narrowly in the sense of the spec-
tral theorem. It corresponds to representations in which the continuous induction
parameter is unitary. For example, the trivial one-dimensional automorphic repre-
sentation of the group SL(2) does not represent an embedded eigenvalue. This is
because it corresponds to a value of the one-dimensional induction parameter at a
nonunitary point in the complex domain. For general linear groups, the absence of
embedded eigenvalues has been known for some time. It is a consequence of the
classification of Jacquet-Shalika [JS] and Moeglin-Waldspurger [MW]. For other
classical groups, the problem leads to interesting combinatorial questions related
to the endoscopic comparison of trace formulas.

We shall consider the case that G is a (simple) quasisplit symplectic or special
orthogonal group over a number field F'. Suppose for example that G is split and
of rank n. The continuous spectrum of maximal dimension is then parametrized by
n-tuples of (unitary) idele class characters. Is there any n-tuple whose unramified
Hecke eigenvalue family matches that of an automorphic representation 7 in the
discrete spectrum of G?7 The answer is no if 7 is required to have a global Whittaker
model. This follows from the work of Cogdell, Kim, Piatetskii-Shapiro and Shahidi
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[CKPS|. Any such 7 will automatically have a local Whittaker model at each
place. However, it is by no means clear that m must also have a global Whittaker
model. In fact, the general existence of global Whittaker models appears to be
dependent on some a priori classification of the full discrete spectrum of G.

Our discussion of the embedded eigenvalue problem can therefore be regarded
as a short introduction to the larger question of the endoscopic classification of
representations. It represents an attempt to isolate a manageable part of a broader
topic, which at the same time illustrates some of the basic techniques. These
techniques rest on a comparison of trace formulas on different groups.

2. A distribution and its stabilization

It is the discrete part of the trace formula that carries the information about
automorphic representations. This is by definition the linear form

(1) 1§ (N =D wanTt Y0 [ det(w = 1) te(Mp(w)Zp(f)),
M WEW (M )reg
for a test function f € C°(G(A)) on G(A). We recall that M ranges over the finite
set of conjugacy classes of Levi subgroups of G, that
W (M) = Normg(An ) /M
is the Weyl group of M over F', and that W (M ),.g is the set of elements w € W (M)
such that the determinant of the associated linear operator
(w—1) = (w—1)ye
is nonzero. As usual,
Zp(f) = Zr(0, f), P eP(M),
is the representation of G(A) on the Hilbert space
Hp = L (Np(A)M(Q) A}, \G(4))
induced parabolically from the discrete spectrum of M, while
M p(w) : 'Hp—ﬂ'[ P
is the global intertwining operator attached to w. Recall that
Al oo = (Br/oAn)(R)"
is a central subgroup of M (A) such that the quotient
M(F)AG; \M(A)

has finite invariant volume.

This is the core of the trace formula. It includes what one hopes ultimately to
understand, the automorphic discrete spectrum

He = L (GQ\G(A))

of G. Indeed, the term with M = G is simply the trace of the right convolution
operator of f on this space. The summands for smaller M represent contributions of
FEisenstein series to the trace formula. They are boundary terms, which arise from
the truncation methods required to deal with the noncompactness of the quotient
G(Q)\G(A). The operators Mp(w) are of special interest, being at the heart of the
theory of Eisenstein series. It was their study that led to the Langlands-Shahidi
method, and much recent progress in the theory of automorphic L-functions.
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With its classical ingredients, the expression for I, gsc( f) is remarkably simple.
There are of course other terms in the trace formula, some of which are quite
complex. We shall not discuss them here. Our purpose will be rather to see
what can be established for the spectral information in I, (f), knowing that the
complementary terms have already been taken care of.

To have a chance of understanding the terms in the formula for I$, (f), we
really need something to compare them with. A solution of sorts is provided by the
stabilization of I (f). This is an innocuous looking expansion

disc
(2) I§ec() =D (G, GNSGe(FD)
G/
of I§ .(f) into stable distributions Sg;c on endoscopic groups G’, with coefficients

t(G,G") that are defined by simple formulas. The sum is actually over the isomor-
phism classes of elliptic endoscopic data G’ of G. For example, if G is the split
adjoint group SO(2n + 1), the dual group G equals Sp(2n,C). We then have

G' = Sp(2m,C) x Sp(2n — 2m, C)

and
G'=S0(2m+1) x SO(2n —2m + 1).
In particular, the sum in (2) is parametrized in this case by integers that range
from 0 to the greatest integer in %n
The mapping

f— 1, € Cx(GA)),
in (2) is the Langlands-Shelstad transfer of functions. With Ngo’s recent proof of the
fundamental lemma [NJ, it is now known that this correspondence takes C2°(G(A))
to the space C2°(G'(A)) of test functions on G'(A), as originally conjectured by
Langlands. The general resolution of the problem is a culmination of work by many
people, including Langlands [L], Shelstad [S], Langlands-Shelstad [LS], Goresky-
Kottwitz-MacPherson [GKM], Waldspurger [W1], [W3], and Lauman-Ngo [LN],
as well as Ngo. We recall that it is a local question, which has to be formulated for
each completion F, of F. It was first treated for archimedean v, in [S]. The fun-
damental lemma is required explicitly for the places v that are unramified (relative
to f), and implicitly as a hypothesis in the solution [W1] for general p-adic v.

The formula (2) was established in [A3], following partial results [L] and [K]
obtained earlier. It was predicated on a generalization of the fundamental lemma
that applies to unramified weighted orbital integrals. This has now been estab-
lished by Chaudouard and Laumon [CL], building on the techniques of Ngo. The
stabilization formula (2) is therefore unconditionally valid.

We note that the proof of (2) is indirect. It is a consequence of a stabilization
that must be established directly for all of the other terms in the trace formula. For
example, the papers [L] and [K] can be regarded as stabilizations of, respectively,
the regular elliptic and the singular elliptic terms. In general, the terms that are
complementary to those in I§,.(f) each come with their own individual set of
problems, all of which must be taken care of. This accounts for the difficulty of the
proof of (2).

As we have said, the linear forms Sg;c in (2) are stable distributions on the
groups G'(A). (The symbol S’ is understood to be the pullback of S’ to the space
of stable orbital integrals on CS°(G'(A)), a space in which the correspondence
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f — F¢ takes values.) However, there is nothing in the formula (2) that tells us
anything concrete about these objects. We can regard (2) as simply an inductive

definition . )

Sgsc(f) = I(gsc(f) - Z L(Gv G/)Sdisc(fG )

G'£aG

of a stable distribution on G(A) in terms of its analogues for groups G’ of smaller
dimension. It does tell us that the right hand side, defined inductively on the di-
mension of G in terms of the right side of (1), is stable in f. This is an interesting
fact, to be sure. But it is not something that by itself will give us concrete infor-
mation about the automorphic discrete spectrum of G. To use (2) effectively, we
must combine it with something further.

3. Its twisted analogue for GL(N)

The extra ingredient is the twisted trace formula for GL(N), and its corre-
sponding stablization. To describe what we need, we write

G =GL(N) x 0,
for the standard outer automorphism
O(x) = 'zt x € GL(N),
of GL(N). Then G is the nonidentity component of the semidirect product
G =G° % () = GL(N) x (Z/27Z).

With this understanding, the twisted trace formula requires little change in
notation. Its discrete part can be written in a form

@) 16H=SIWOn" 3 Jdet(w — 1) tr(Mp(w)Zn())

M WGW(M)rcg
that matches (1). In particular, M ranges over the set of conjugacy classes of
Levi subgroups in the connected group G° = GL(N), and P represents a parabolic
subgroup of GO with Levi component M. The only changes from (1) are that the
test function f € C2° (G(A)) and the Weyl set

W (M) = Normg(M)/M

are taken relative to the component C~¥, and that Zp stands for a representation
induced from P to G*. As before, Mp(w) is the global intertwining operator
attached to w. (See [CLL] and [A1].) The last step in the proof of the general
(invariant) twisted trace formula has been the archimedean twisted trace Paley-
Wiener theorem, established recently by Delorme and Mezo [DM].

The stabilization of IS (f) takes the form

disc
(2) I§o (/) = D (G, G)SE,e(FO),
G
where the symbols S, represent stable distributions defined inductively by (2),

and L(é, G) are again explicit coefficients. The sum is over isomorphism classes of
elliptic twisted endoscopic data G for GG. For example, if N = 2n 4+ 1 is odd, the
component

G=GL(2n+1)%0
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has a “dual set”

G=GL(2n+1,C) x 0.
We then have

G = Sp(2m,C) x SO(2n — 2m +1,C)
and
G =S50(2m+1) x Sp(2n — 2m).

In general, a twisted endoscopic datum G entails a further choice, that of a suitable
L-embedding

¢q: G — GL(N,C)

of the appropriate form of the L-group of G into GL(N, C). However, if we forget
this extra structure, we see in this case that G is just a group parametrized by an
integer that ranges from 0 to n.
The mapping

f—re feCx(Ga),
in (2) is the Kottwitz-Langlands-Shelstad correspondence of functions. The long-
standing conjecture has been that it takes Cg° (é(A)) to C2°(G(A)). With the
recent work of Ngo [N] and Waldspurger [W1]-[W3], this conjecture has now been
resolved. The resulting transfer of functions becomes the fundamental starting
point for a general stabilization of the twisted trace formula.

The actual identity (2) is less firmly in place. The twisted generalization of
the weighted fundamental lemma does follow from the work of Chaudouard and
Laumon, and of Waldspurger. However, the techniques of [A3] have not been
established in the twisted case. Some of these techniques will no doubt carry over
without much change. However, there will be others that call for serious refinement,
and perhaps also new ideas. Still, there is again reason to be hopeful that a general
version of (2) can be established in the not too distant future. We shall assume its
stated version for GL(NN) in what follows.

Taken together, the stabilizations (2) and (2) offer us the possibility of relating
automorphic representations of a classical group G with those of a twisted general
linear group G. As we have noted, the identity (2) represents an inductive definition
of a stable distribution on G(A) in terms of unknown spectral automorphic data
(1) for G. The identity (2) provides a relation among the distributions in terms of
known spectral automorphic data (1) for GL(N).

This is not to say that the subsequent analysis is without further difficulty.
It in fact contains many subtleties. For example, there is often more than one
unknown stable distribution S$_, on the right hand side of the identity (2). The
problem is more serious in case N = 2n is even, where there are data G with dual
groups Sp(2n,C) and SO(2n,C) that are both distinct and simple. This particular
difficulty arises again and again in the analysis. Its constant presence requires a
sustained effort finally to overcome.

4. Makeshift parameters

The comparison of (2) and (2) requires a suitable description of the automorphic
discrete spectrum of the group G° = GL(N). Let U5(N) be the set of formal tensor
products

Pv=pXuy, N =mn,
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where 4 is a unitary cuspidal automorphic representation of GL(m) and v is the
irreducible representation of the group SL(2,C) of dimension n. The cuspidal
representation p comes with what we are calling an “eigenvalue”. This, we recall,
is the Hecke family

c(p) = {Cv(ﬂ) =c(i): vE S}
of semisimple conjugacy classes in GL(m, C) attached to the unramified constituents
1y of v. To the tensor product ¥, we attach the “eigenvalue”

c(¢) = c(p) © ¢(v).
This is the family of semisimple conjugacy classes

_n—1

3 _
0 n—1
cv(u)‘g’”(qv ) =co(Wq? & Dep(p)ge 7, v ¢S,

0 q°

in GL(N,C). It follows from [JS] and [MW] that there is a bijection @ — my
from W5 (N) onto the set of unitary automorphic representations my, in the discrete
spectrum of GL(N) (taken modulo the center) such that

() = c(my).
More generally, one can index representations in the broader automorphic spec-
trum by sums of elements in Uy(N;). Let ¥(N) be the set of formal direct sums

(3) '(/)Zzl'(/)l EE"'Hﬂgrwrv
for positive integers ¢; and distinct elements ¢; = p; X v; in Wo(V;), whose ranks
N; = m;n; satisfy

N=0Ni+- - +L.N, =lyming + -, m,n,.

For any 1, we attach the “eigenvalue”

c(¥) = bic(thr) ® - - ® Lre(y),

of semisimple conjugacy classes

Cv('l/}) = Cv('lpl) SB) "‘@CU(¢1) DD Cv(djr) SB) "‘@CU(¢T)
4y £y

in GL(N,C). It then follows from Langlands’ theory of Eisenstein series that there
is a bijection ¢ — my from ¥(N) to the set of unitary representations m, in the
full automorphic spectrum of GL(N) such that

() = c(my).

The elements in W(NN) are to be regarded as makeshift parameters. They are
basically forced on us in the absence of the hypothetical automorphic Langlands
group Lp. Recall that Lp is supposed to be a locally compact group whose irre-
ducible, unitary, N-dimensional representations parametrize the unitary, cuspidal
automorphic representation of GL(N).

If we had the group L at our disposal, we could identify elements in our set
U(N) with (equivalence classes of) N-dimensional representations

¢: Lp x SL(2,C) — GL(N,C)

whose restrictions to Lr are unitary. This interpretation plays a conjectural role
in the representation theory of the quasisplit group G. Regarding G as an elliptic
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twisted endoscopic datum for GL(N), and ¥(N) as the set of N-dimensional repre-
sentations of Lr x SL(2,C), we would be able to introduce the subset of mappings
¥ in U(N) that factor through the embedded L-group

¢o: G — GL(N,C).

Any such 1 would then give rise to a complex reductive group, namely the central-
izer

Sy = S5 = Cent(Im(v), @)
in G C LG of its image in “G. The finite quotient

(4) Sy = Sy/S92(G)'r, Ty = Gal(F/F),

of Sy is expected to play a critical role in the automorphic representation theory
of G.

5. The groups L.,

The first challenge is to define the centralizers Sy and their quotients Sy, with-
out having the group L. For any makeshift parameter ¢ as in (3), we can certainly
form the contragredient parameter

Y =0y BBy
=0 (py o) B B (un) K.

The subset B
U(N)={¢ e ¥(N): ¥ =1}

of self-dual parameters in W(N) consists of those ¢ for which the corresponding
automorphic representation my, is f-stable. The idea is to attach a makeshift group
Ly to any 1. The group Ly will then be our substitute for Lr. We shall formulate
it as an extension of the Galois group I'r by a complex connected reductive group.

The main problem in the construction of Ly is to deal with the basic case that
1 = p is cuspidal. Since 1 is assumed to lie in E/(N)7 i equals pV. Tt therefore
represents a self dual cuspidal automorphic representation of GL(N). At this point
we have to rely on the following theorem.

THEOREM 1. Suppose that p is a self-dual, unitary, cuspidal automorphic rep-
resentation of GL(N). Then there is a unique elliptic, twisted endoscopic datum
G =G, for GL(N) that is simple, and such that

c(p) = &g, (e(m)),

for a cuspidal automorphic representation m of G(A).

The theorem asserts that there is exactly one G for which there is a cuspidal
“eigenvalue” that maps to the “eigenvalue” of p in GL(N). Its proof is deep. In
working on the general classification, one assumes inductively that the theorem
holds for the proper self-dual components p; of a general parameter ¥. The reso-
lution of this (and other) induction hypotheses then comes only at the end of the
entire argument. However, we shall assume for the discussion here that the theorem
is valid without restriction. In the case that ) = u, this allows us to define

Ly,="G,.
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We then write {/; for the L-homomorphism &, = {g,, of this group into GL(N,C).

Consider now an arbitrary parameter ¢ € U(N) of the general form (3). Since
is self-dual, the operation u — "V acts as an involution on the cuspidal components
pi of ¥. If i is an index with p = p;, we introduce the group G; = G,,, provided
by the theorem, as well as the L-homomorphism

fi = fﬂi : LGZ‘ — GL(TI’L“(C)
If j parametrizes an orbit {15, 17 } of order two, we set G; = GL(m;), and we take
fj : L(GL(T)’LJ)) — GL(QmJ,(C)

to be the homomorphism that is trivial on I'p, and that restricts to the embedding

g 0
g — (0 tg—l)

of GL(m;,C) into GL(2m;,C). We define our general makeshift group £, to be
the fibre product
,Cw = H (LGk —)FF)
ke{i,j}
of these L-groups over I'r. The various homomorphisms &, can then be combined
in the natural way with the corresponding representations

v : SL(2,C) — GL(ny,C)
to give a homomorphism
¢: Ly x SL(2,C) — GL(N,C).

We regard 1; as an equivalence class of N-dimensional representations of the group
[:w X SL(Q, (C)

Suppose that G represents a simple twisted endoscopic datum for GL(N). We
define U(G) to be the subset of parameters 1 € W(N) such that ¢ factors through
the image of “G in GL(N,C). For any ¢ € ¥(G), we then have an L-embedding

Yo Ly x SL(2,C) — L@
such that N B
§aovg =1,
We are treating 1Z as an equivalence class of N-dimensional representations. This
means that 12(; is determined only up to the group Auts(G) of L-automorphisms
of LG induced by the stabilizer in GL(N, C) of its image. Nevertheless, we can still
write
Sy = S’g = Cent (Im(z’/;(;), é)
and
Sy = Sy/S32(G)'T,
where 9 stands for some L-homomorphism in the associated Auts(G)-orbit. Since
Sy is a finite abelian group (a 2-group actually), it is uniquely determined by 1 up
a unique isomorphism.
The parameters ¢ € \T/(G), along with the groups £, and the associated cen-

tralizer groups Sy and Sy, were described in §30 of [A4]. They will be discussed
in greater detail in Chapter 1 of [A5]. The deeper properties of the hypothetical
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Langlands group Lp probably mean that its existence will be one of the last theo-
rems to be proved in the subject. However, if Ly does exist, its expected properties
imply that the family of Auts(G)-orbits of homomorphisms

Lr x SL(2,C) — L@

is in natural bijection with the set W(G) we have just defined. Moreover, this
bijection identifies the corresponding centralizers Sy and their quotients Sy. It is
also compatible with the localization

Y — Yy
of parameters, something we will not discuss here.

This all means that our makeshift groups £, capture the information from Lp
that is relevant to the endoscopic classification of representations of G. In other
words, the groups £, are as good as the Langlands group for the purposes at hand,
even though they vary with ¢. They are used in [A5] to formulate the classification
of automorphic representations of G.

6. The @-components of distributions

The next step is to isolate the 1-components of the terms in the expansions (1),
(2), (1) and (2). Recall that a parameter 1) € W(N) comes with an “cigenvalue”
c(y). If D is a distribution that occurs in one of these expansions, its 1)-component
D, is a “i-eigendistribution”, relative to the convolution action of the unramified

Hecke algebra on the test function f (or f). We thus obtain two expansions

Wy LN =D W™ Y7 [ det(w = 1)lte(Mpy (w)Zpu(f))
M

wEW(M)reg

and

(2)y ISy () =D UG .G)S8Ges(f9)
=

of the ¢-component Igsqw(f). Similarly, we obtain two expansions (1) and (2)y

for the 1-component I gsc,w (f) of I gsc(f). The problem is to compare explicitly
the terms in these two identities.

We are trying to describe these matters in the context of the embedded eigen-
value problem. According to general conjecture, a parameter ¥ € \T/(G) would be
expected to contribute to the discrete spectrum of G if and only if the group

Sy =84/2(G)'r

is finite. In other words, the component group

Sy = mo(Sy)
that is supposed to govern spectral multiplicities is actually equal to gw. If we apply
this inductively to a Levi subgroup M of G, we see that 1 contributes Eisenstein
series of rank k to the spectrum of G if and only if the rank of Sy equals k. The
problem then is to show that if Sy is not finite, it does not contribute to the
discrete spectrum of GG. That is, there is no automorphic representation m of G in
the discrete spectrum with ¢(v) = ¢(n).

One has thus to show that if Sy is infinite, the term in (1), with M = G
vanishes. However, we know nothing about this term. We can say (by induction)
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that i contributes to the term corresponding to a unique proper M. We would first
try to express this term as concretely as possible. We would then want to express
the terms on the right hand side of (2), in such a way that their sum could be
seen to cancel the term of M in (1)y. This would tell us that the term of G in
(1) vanishes, as desired. But the distributions in (2), are by no means explicit.
They consist of the stable linear form S(?isc,w( f), about which we know very little,
and its analogues for proper endoscopic groups G’, which are at least amenable to
induction. To deal with S’(ﬁscw (f), we have to compare the right hand side of (2),
(as G varies) with the right hand side of (2),,. We would then have to compare
(2),, with the expression on the right hand side of (1),,, about which we do know
something (because it pertains to GL(N)).

7. Statement of theorems

It is a rather elaborate process. We shall describe the theorems that lead
to a resolution of the problem. Our statements of these theorems will have to
be somewhat impressionistic, since we will not take the time to describe all their
ingredients precisely. We refer the reader to the forthcoming volume [A5] for a full
account.

THEOREM 2 (Stable Multiplicity Formula). Suppose that ¢ € \T!(G) Then the
term in (2)y corresponding to G' = G satisfies an explicit formula

S () = my|Syl " o (S)ey (sy) f9 (),
where my, € {1,2} equals the number of G-orbits in the Auts (G)-orbit of embed-
dings Ya, €(sy) = %1 is a sign defined in terms of values at s = % of global e-factors

attached to v, and U(S’g) is the number attached to the complexr connected group
52} in Theorem / below.

The last term f%(¢)) in the formula is harder to construct. It represents the
pullback to G(A) of the twisted character

tr(my (), fece(Gn)),
on GL(N,A). (We use the theory of Whittaker models for GL(N) to extend the
f-stable representation my to the component

G(A) = GL(N,A) % 0

on which f is defined.) The construction is essentially local. Since the criterion
of Theorem 1 that determines the subset U(G) of ¥(N) to which ¢ belongs is
global, the definition of f&(v) requires effort. It is an important part of the proof
of Theorem 2.

The formula of Theorem 2 is easily specialized to the other summands in (2),.
For any G, it gives rise to a sum over the subset W(G’, 1)) of parameters ¢/ € ¥(G")
that map to ¢. The formulas so obtained can then be combined in the sum over
G’. The end result is an explicit expression for the right hand side of (2), in terms
of the distributions

< W), feCx(GA), ¥ e U(G, ),
and combinatorial data attached to the (nonconnected) complex reductive group
S,
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THEOREM 3. Suppose that i € \T/(G) contributes to the induced discrete spec-
trum of a proper Levi subgroup M of G, and that w lies in W (M )yeg. Then there
s a natural formula for the corresponding distribution

tr(Mpy (w)Zpy(f))
in (1)y in terms of
(i) the distributions
14w, v e V(G ),
(ii) the order of poles of global L—functiolns at s =1, and

(iii) the values of global e-factors at s = 3.

In this case, we have not tried to state even a semblance of a formula. How-
ever, the resulting expression for the sum in (1), will evidently have ingredients in
common with its counterpart for (2), discussed above. It will also have two points
of distinction. In (1), there will be only one vanishing summand (other than the
summand of G we are trying to show also vanishes). Furthermore, the summand
of M contains something interesting beyond the distribution above, the coefficient

| det(1 —w)| ™.
One sees easily that the distribution of Theorem 3 vanishes unless w has a represen-
tative in the subgroup Sy, of G/Z(G)'F. We can therefore analyze the combinatorial
properties of the coefficients in the context of this group.

Suppose for a moment that S is any connected component of a general (non-
connected) complex, reductive algebraic group S*. Let T' be a maximal torus in
the identity component S° = (S+)° of this group. We can then form the Weyl set

W =W (S) = Normg(T)/T,
induced by the conjugation action of elements in S on 7. Let W;e, be the set of
elements w in W that are regular, in the sense that as a linear operator on the real
vector space
ar = Hom(X (T),R),
the difference (1 —w) is nonsingular. We define the sign °(w) = £1 of an element
w € W to be the parity of the number of positive roots of (S°, T') mapped by w to
negative roots. Given these objects, we attach a real number
i(S) =Wt Y (w)|det(w - 1)
WEWreg

to S.

As is often customary, we write S for the centralizer in S° of a semisimple ele-

ment s € S. This is of course a complex reductive group, whose identity component
we denote by S%. We then introduce the subset

Scll = {S : |Z(Sg)| < OO},
where Z(S1) denotes the center of any given complex connected group S;. The set

Orb(Sgn, S°) of orbits in Se; under conjugation by S is finite.

THEOREM 4. There are unique constants o(S1), defined whenever Sy is a com-
plex connected reductive group, such that for any S the number

e(S) = > |m(S) e (SY)

s€Orb(Sen,S?)
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equals i(S), and such that
a(S1) = o(S1/2)| 21|,
for any central subgroup Zy C Z(Sy) of Si.

The numbers i(S) and e(.S) of the theorem are elementary. However, they bear
an interesting formal resemblance to the deeper expansions on the right hand sides
of (1) and (2), respectively. In particular, the data in (2), are vaguely endoscopic.
I have sometimes wondered whether Theorem 4 represents some kind of broader
theory of endoscopy for Weyl groups.

The proof of the theorem is also elementary. It was established in §8 of [A2]. We
have displayed the result prominently here because of the link it provides between
Theorems 2 and 3, or rather between the expressions for the right hand sides of (1)
and (2), that these theorems ultimately yield. We have discussed these expressions
in only the most fragmentary of terms. We add here only the following one-line
summary. If the summand of G in (1), is put aside, the two expressions are seen
to match, up to coefficients that reduce respectively to the numbers i(S) and e(S)
attached to the components S of the group 5’1/,. Theorem 4 then tells us that the
right hand of (2), equals the difference between the right side of (1), and the
summand of G in (1),. Since the left hand sides of (1), and (2), are equal, the
summand of G does vanish for any ¢ € \T/(G) with Sy infinite, as required. We
thus obtain the following theorem.

THEOREM b. The automorphic discrete spectrum of G has no embedded eigen-
values.

This is the result we set out to describe. As we have said, it is part of a general
classification of the automorphic representations of G. The reader will have to refer
to [A4, §30] and [A5] for a description of the classification. However, the theorems
discussed here are at the heart of its proof.
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ABSTRACT. For a cuspidal automorphic representation II of GL(4, A), H. Kim
proved that the exterior square transfer A%II is nearly an isobaric automorphic
representation of GL(6, A). In this paper we characterize those representations
II for which A2II is cuspidal.

1. Introduction and statement of the main theorem

Let F' be a number field whose adele ring we denote by Ap. Let G; and G4 be
two connected reductive linear algebraic groups over F', with G5 quasi-split over F,
and let “G and “G5 be the corresponding L-groups. Given an L-homomorphism
r : “'G; = Gy, Langlands principle of functoriality predicts the existence of a
transfer IT — r(II) of the L-packet of an automorphic representation II of G1(Ap)
to an L-packet r(II) of automorphic representations of Go(Ar). Now assume that
G is a general linear group. We note that an L-packet for a general linear group
is a singleton set. For applications of functoriality one needs to understand the
image and fibers of the correspondence II — r(II). In particular, it is necessary to
understand what conditions on II ensure that the transfer (II) is cuspidal.

The main aim of this paper is to describe a cuspidality criterion for the transfer
of automorphic representations from GL(4,Ar) to GL(6, Ar) corresponding to the
exterior square map A? : GL(4,C) — GL(6, C). Langlands functoriality in this case
is a deep theorem due to H. Kim [13].

Let II = ®,II, and ¥ = ®,%, be irreducible isobaric automorphic represen-
tations of GL(4,Ar) and GL(6, Ar), respectively. Assume that S is a finite set of
places of F, including all the archimedean ones, outside of which both of the rep-
resentations are unramified. We say ¥ is an exterior square transfer of II if for all
v ¢ S we have X, = A2(Il,), i.e., the semi-simple conjugacy class in GL(6, C) deter-
mining ¥, is generated by the image under A2 of the semi-simple conjugacy class in
GL(4,C) determining II,. By the strong multiplicity one theorem (see Theorem 2.1
below) such a ¥ would be unique. We will denote it by A%Il. The existence of A?II
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was established by H. Kim [13, Theorem A]. Furthermore, he showed that if II,
is not supercuspidal for the places v dividing 2 or 3, then the local component II,
and (A%II), are compatible via the local Langlands correspondence for GL(4, F,)
and GL(6, F,,). The assumption at v|2,3 was made because of complications posed
by supercuspidal representations, especially of GL(4, F,). In any event, it has no
bearing on our result as we do not need the fact that the local components of A?II
and II are compatible via the local Langlands correspondence at all places. We now
state the main theorem of this article.

THEOREM 1.1. Let F be a number field and let 11 be a cuspidal automorphic
representation of GL(4,Ar). The following are equivalent:

(i) A is not cuspidal.
(ii) II is one of the following:

(a) m K mq, the transfer from GL(2,Ap) x GL(2,Ar) to GL(4,Ar) via
the automorphic tensor product X. (This may also be viewed as the
transfer from split GSpin(4) to GL(4).)

(b) As(w), the Asai transfer of a dihedral cuspidal automorphic repre-
sentation ™ of GL(2, Ag) where E/F is a quadratic extension. (This
may also be viewed as the transfer to GL(4) from the quasi-split non-
split GSpin*(4) over F which splits over E.)

(¢) The functorial transfer of a cuspidal representation = of GSp(4, Ar)
associated with the natural embedding of the dual group GSp(4,C)
into GL(4,C). The representation ™ may be taken to be globally
generic.

(d) I&(m), the automorphic induction of a cuspidal automorphic repre-
sentation © of GL(2,Ag), where E/F is a quadratic extension.

(iii) II satisfies one of the following:

(o) I =TIV ® x for some Hecke character x of F, and I is not the Asai
transfer of a nondihedral cuspidal representation.

(8) M ® x for a nontrivial Hecke character x of F.

We observe that the groups in (ii)(a)—(ii)(d) are some of the twisted endoscopic
groups for GL(4) x GL(1) which have the property that the image under A? of the
connected component of their dual groups are contained in proper Levi subgroups
of GL(6,C). Recall from [2, §3.7] that the exterior square transfer we consider here
is a special case of the more general transfer from GSpin(2n) to GL(2n). One would
expect that the above theorem admits a generalization to that setting through the
theory of twisted endoscopy.

We now briefly sketch the proof of the theorem. It is easy to verify that
(ii) implies both (i) and (iii). In Section 3 we explicitly write down the isobaric
decomposition of A?II for each of the cases (ii)(a)-(ii)(d). In order to check that
two isobaric representations are isomorphic we repeatedly use a strong multiplicity
one theorem, due to Jacquet and Shalika, recalled in Section 2.1.

The proof of (i) = (iii), described in Section 4, uses some details from the
Langlands—Shahidi machinery. We show in Proposition 4.1 that if II is not essen-
tially self-dual, then A2II cannot have a degree 1 or degree 3 isobaric summand.
In Proposition 4.2 we verify that if II does not admit a nontrivial self-twist, then
A?II cannot have a degree 2 isobaric summand. For a cuspidal representation o of
GL(m, AF) consider the Langlands L-function L(s,IIx o, A2® p,, ), where p,, is the
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standard representation of GL(m,C). These L-functions appear in the Langlands—
Shahidi machinery for a particular choice of Levi subgroup when the ambient group
is GSpin(2m + 6). We use Kim [13, §3] to show that, under the above mentioned
hypothesis on II, these (partial) L-functions are holomorphic at s = 1. The im-
plication then follows from a well-known result of Jacquet, Piatetski-Shapiro, and
Shalika recalled in Section 2.1. We summarize some of the preliminaries we need
from the Langlands—Shahidi machinery in Section 2.3.

Finally, the proof of (iii) = (ii) is given in Section 5. It relies on the so-
called ‘descent theory’ for classical groups. The version of descent theory for GSpin
groups that we need has now been announced by J. Hundley and E. Sayag [9]. As
a general reference for descent theory we refer to Soudry’s exposition [31].

In Sections 6.1 and 6.2 we present a few examples, some only conjectural, il-
lustrating the above theorem. In Section 6.3 we comment on possible intersections
among the cases in (ii). In Section 6.4 we ask whether it is possible to see the cusp-
idality criterion from the ‘Galois side’. The question can be made precise based on
the philosophy that there is a correspondence between automorphic representations
7 of GL(n,Ar) and ¢-adic n-dimensional representations o of the absolute Galois
group of F', or n-dimensional complex representations of the conjectural Langlands
group L. Let us denote this correspondence by 7 +— o (). Part of this philosophy
is that 7 is supposed to be cuspidal if and only if o () is irreducible. We refer to Ra-
makrishnan [27] for the state of the art on this issue. In view of the above theorem
one can ask the following question. Let o be a four-dimensional irreducible Galois
representation; what condition on o will ensure that A%¢ is irreducible? Upon pos-
ing this question in a talk at the Oklahoma Joint Automorphic Forms Seminar, A.
Kable came up with a very elegant theorem which reflects the equivalence of (i)
and (iii) in Theorem 1.1. We are grateful to him for allowing us to include his
theorem and its proof in Section 6.4. Recall that in (iii)(«) of Theorem 1.1 above,
we had to exclude the Asai transfer of a nondihedral cuspidal representation if IT is
essentially self-dual. On the Galois side, this is reflected in the fact that if a four-
dimensional irreducible representation o is essentially self-dual of orthogonal type,
then for A% to be reducible the image of o should lie in the connected component
of the identity in the algebraic group GO(4); see Theorem 6.5.

Cuspidality criteria are important not only for their intrinsic value in helping
us better understand a given instance of functoriality but also because they have
important arithmetic applications. D. Ramakrishnan and S. Wang [29] proved a
cuspidality criterion for the transfer from GL(2) x GL(3) to GL(6) and used it to
construct new cuspidal cohomology classes for GL(6). We refer to [22] for a brief
survey of cohomological applications of Langlands functoriality. H. Kim and F.
Shahidi [18] proved a cuspidality criterion for the symmetric fourth transfer from
GL(2) to GL(5), which has been used in the study of special values of symmetric
power L-functions by the second author and F. Shahidi [23]. Such a potential
arithmetic application was indeed our original motivation to seek a cuspidality
criterion for the exterior square transfer.

We thank H. Kim, A. Kable, J.-P. Labesse, F. Shahidi, and R. Zierau for helpful
discussions and comments. We also thank the referee for helpful comments. The
first author is partially supported by an Alexander von Humboldt Research Fel-
lowship and NSA Young Investigator grant H98230-09-1-0049. The second author
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is partially supported by an ASR+1 grant from the College of Arts and Science of
Oklahoma State University and NSF grant DMS-0856113.

2. Some preliminaries

In this section we collect some results that we repeatedly use in later sections.
To begin, we recall a theorem due to Jacquet and Shalika concerning strong mul-
tiplicity one for isobaric automorphic representations. Then we recall an analytic
criterion in terms of Rankin—Selberg L-functions, due to Jacquet, Piatetski-Shapiro
and Shalika, that characterizes when two cuspidal automorphic representations are
equivalent. Next, we note that the natural transfer of automorphic representations
of a quasi-split non-split general spin group GSpin*(4) to GL(4) is in fact the Asai
transfer. Finally, we recall some details from the Langlands—Shahidi machinery
that will be of use to us, particularly when the ambient group is GSpin(m) with
m = 8,10 or 12.

2.1. Some results of Jacquet, Piatetski-Shapiro, and Shalika. The fol-
lowing strong multiplicity one theorem for isobaric representations is due to Jacquet
and Shalika [11, 12].

THEOREM 2.1. Let w1 and my be two isobaric automorphic representations of
GL(n,Ap). Let S be a finite set of places of F', containing the archimedean places,
such that both w1 and m are unramified outside S. If w1, = ma, for allv ¢ S,
then m = mo.

Another useful technical tool for us is the following theorem, due to Jacquet,
Piatetski-Shapiro and Shalika [10], concerning Rankin-Selberg L-functions.

THEOREM 2.2. Let m (resp., m2) be a cuspidal automorphic representation
of GL(n1,AF) (resp., GL(n2,Ar)). Let S be a finite set of places containing the
archimedean places of F' and the ramified places of w1 and ma. The partial Rankin—
Selberg L-function L°(s, 7, x my) is holomorphic at s = 1 unless ny = no and
o &y, in which case it has a simple pole at s = 1.

2.2. The Asai transfer and the quasi-split non-split GSpin*(4). Let
E/F be a quadratic extension of number fields and let I' = I'» denote the absolute
Galois group of F. In this section we let G denote the group GSpin*(4), a quasi-split
non-split linear algebraic group over F', which is isomorphic to the split GSpin(4)
over E. The L-group of G can be written as “G = GSO(4,C) x T, where the
Galois action, which factors through Gal(E/F), is described below. We note that
GSO(4,C) denotes the special orthogonal similitude group; one can identify it as a
quotient of GL(2,C) x GL(2,C) given by

GSO(4,C) = B(GL(2,C) x GL(2,C)),
where 3 is the map on the right of the exact sequence
1 — C* — GL(2,C) x GL(2,C) 25 o4, C).
For details see [26, §2]. Furthermore, the I'-action on GSO(4,C) is as follows. If
v €T and g = B(g1, g2) with g; € GL(2,C), then
g =1 Blong) ialp=1,
B(g2, 1) ifv|E#1.
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We also need to recall the Asai transfer. Consider the group H = Resg,rGL(2)
as a group over F'. Its L-group is given by

EH = (GL(2,C) x GL(2,C)) x T,
with the Galois action given by

(91792) if 7|E = 17
2.3 “(91,92) = .
(2.3) 7+ (91, 92) {(92,91) iy 1.

Let W be a 2-dimensional C-vector space, and let V =W ® W. After fixing a
basis for W, we identify GL(W) with GL(2,C). Consider the map
(2.4) As: (GL(W) x GL(W)) x T' — GL(V) =2 GL(4,C)

iv
iven, on pure tensors, b

9161 @ g2 if y|p =1,
91§&2 ® g2&1 if Y| # 1,

for all &, € W and all g; € GL(W). It is straightforward to check that this map is

indeed a homomorphism. It is called the Asai (or ‘twisted tensor’) homomorphism.

(Alternatively, one could take the map satisfying As(g1, g2;7)(1 ® &) = —g1&2 ®

9261 when ~|g # 1. This choice would lead to a quadratic twist of the above map.)
Further, let ¢ : G — GL(V) = GL(4,C) be the map defined via

As(g1,92;7) (61 @ &) = {

9161 ® 9262 if y|p =1,
9162 ® 9261 if | # L.

Again, it is straightforward to check that this map is an L-homomorphism. It is
now clear that ¢ o (8,id) = As. In other words, the following diagram commutes:

L(B(g1,92);7)(§1 @ &2) = {

GL(2,C) x GL(2,C) x T (Bid) ——— GSO(4,C) x T’

As L
GL(4,C)

Assume that 7 is a cuspidal automorphic representation of GL(2,Ag) and
let II = As(m) be its Asai transfer to GL(4,Ar). (See Krishnamurthy [19] or
Ramakrishnan [26].) Then II = +(5(n)), where 3(7) denotes the transfer of 7 to the
group GSpin* (4, Ar), and +(8()) denotes the transfer of f(m) from GSpin*(4, Ar)
to GL(4,AF). The transfer corresponding to § exists for formal reasons and the
existence of the transfer corresponding to ¢ (for generic representations) is part of
a joint work of the first author with F. Shahidi [2, 3].

2.3. The Langlands—Shahidi L-functions. Let P = M N be a maximal
proper parabolic subgroup of a connected reductive quasi-split linear algebraic
group G, where M denotes a Levi subgroup and N denotes the unipotent radi-
cal of P. Let o be a generic automorphic representation of M(Ar). Let r denote
the adjoint action of the complex Langlands dual group M on the Lie algebra of
the dual of N. Write r =r; ® - - - @ 1y, where the r;’s denote the irreducible con-
stituents of r and the ordering is according to the eigenvalue of the adjoint action
as in, for example, [30, p.278]. The Langlands—Shahidi method then constructs the
L-functions L(s,o,r;) for 1 <i < m.
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We need the following cases of the Langlands—Shahidi method. Let G =
GSpin(2n + 6) with n = 1,2,3, and consider a maximal parabolic subgroup of
G with Levi subgroup M = GL(n) x GSpin(6). (One could also work with split
spin groups as in [13, §3]; however, we find it more convenient to work with the
similitude version of the groups.) The algebraic group GSpin(6) is isomorphic to
a quotient of GL(1) x Spin(6) by a central subgroup A = {1,(—1,¢)}, where c is
the nontrivial element in the center of Spin(6) of order 2; see [2, Proposition 2.2].
The algebraic group GL(4) is isomorphic to a quotient of GL(1) x SL(4) by a cyclic
central subgroup B of order 4. We identify Spin(6) with SL(4) such that B contains
A. This way we get a natural map, defined over F', from GSpin(6) to GL(4), which
in turn induces a map

(2.5) f:M — GL(n) x GL(4).

Let II be an irreducible cuspidal representation of GL(4,Ar) and let o be an
irreducible cuspidal automorphic representation of GL(n,Ar), n = 1,2,3. Choose
any irreducible constituent ¥ of o ® II|f(ar(a,)) and let ¥ also denote the corre-
sponding representation of M (Ar). The Langlands—Shahidi method then gives

(2.6) L(s,%,r1) = L(s,0 @11, p, @ A*py),

where pj, denotes the standard representation of GL(k,C) and the L-function on
the right-hand side is a Langlands L-function; see [13, §3]. We record a general
fact that we need from the Langlands—Shahidi method.

PROPOSITION 2.7. Let wg and wyy; denote the longest elements of the Weyl
group of G and M, respectively. Let wy = wgwpr. If wo(X) # X, then L(s,X,71)
18 entire.

Proor. This is a standard fact in the Langlands—Shahidi method. For exam-
ple, see the proof of [13, Proposition 3.4]. O

In order to apply the above proposition one needs to know the action of wg on
a representation of M (Ap).

PROPOSITION 2.8. Let G = GSpin(2n + 6) with n a positive integer and let
o Q11 be a representation of M(Ar) as above. Moreover, let wy be as above and
denote its image under the map (2.5) by wo again. Then we have

oV @ (IIY Quw,) ifn is odd,
oV @ (MR w,) if n is even.

wo(o @II) = {

Here, w, denotes the central character of o.

PROOF. Recall that the nontrivial automorphism of the Dynkin diagram of
type A, corresponds to an outer automorphism of GL(m + 1) and it conjugates an
irreducible representation to its dual representation. The proof of the proposition
will follow from a description of how wq acts on the root system of type D,..

We use the Bourbaki notation for the simple roots:

Q] =€ —€2,...,0p_2=€_2 = €_1,0p_1 = €_] — €,0 = €1 T €.

The Weyl group of G is isomorphic to {#1}""! x &, which we identify with a
subgroup of signed r X r permutation matrices acting on R” = Re; & - - - @ Re,.
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With this identification observe that

-1, if r is even,

wag = I
<_ rl 1) if r is odd.

Let r = n+ 3 and let M be a maximal Levi subgroup of type A,_1 x As
in G = GSpin(2r). The simple roots in the As-factor are a,_1, .2, a,. The
proposition follows by observing that

wo(ar—1) = wgwum(a,_1) =wa(—a,)

= ’U)G(—G»,‘,l - er) = {

€r_1+ € = if r is even,

€1 — € = a,_1 if risodd,

and
wolar) = wewy(ay) = we(—ar1)
€r—1 — € = Qp_1 if 7 is even,
= w. —€r_ + € =
olmerire) {67«—1 teé =ap if r is odd,
while

wO(ar—Q) - wGwM(ar—Z) - wG(_ar—Z) - wG(_er—Q - 67"—1) = Qr_2

in either case. Moreover, for 1 < j <n — 1 we have
wo(a;) = wewn () = wg(—an—j) = wa(—€n—j + €n—jt1) = An—;.

This means that wqy induces the nontrivial automorphism of the Dynkin diagram of
the A,,_1-factor of M, and on the As-factor it induces the nontrivial automorphism
of the Dynkin diagram if and only if r is even.

Let m = m(g,h) be an arbitrary element in the Levi subgroup M identified
with GL(n) x GSpin(6), in G = GSpin(2n+6), where g € GL(n) and h € GSpin(6),
and let ¥ = v(m) denote its similitude character value. Then

L=m('g" v(m),h"),

wom(g, h)wy

where
B = th™! if r is even,
R if 7 is odd.

We conclude that
wo(o @ IM)(m(g, h)) = (e @M)(m('g v(m),h"))
o(tg™ (A" )wy (v(m))
o " (9)I* (h)wo (v(h))
= (0 ® (I ®w,)) (m(g, h)),

-1

where
o — Y if 7 is even,
| if s odd.
Note that » = n + 3 is even if and only if n is odd. This completes the proof. [
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3. The proof of (ii)=-(i)

We verify that for each of (ii)(a) through (ii)(d) the exterior square transfer
AZII is not cuspidal. Indeed, it is not difficult to write down the isobaric decompo-
sition for A2II in each case.

3.1. (ii)(a)=(i).

PROPOSITION 3.1. Let w1 and 7o be two cuspidal automorphic representations
of GL(2,Ar). Let m X 7y be the transfer to an automorphic representation of
GL(4,Ar), whose existence was established in [24]. For brevity, we let II = m Ky
and w = Wy, Wx,. We have

(a) A2(m Rmy) = (Sym2(7r1) ® wy, ) H (Sym2(7r2) ® wr, ) -
(b) Assuming Langlands functoriality one should expect

Sym?(m; K y) = (Symz(m) X Sym? (772)) B Wi, Wiy

(c) The partial L-function L°(s,A*(Il) @ w™1) is entire while the partial L-
function LS (s,11,Sym? ® w™') has a pole at s = 1.

PRrROOF. The proof of (a) and (b), using Theorem 2.1, is an easy calculation
using Satake parameters on both sides. More precisely, for a finite place v at which
both 71 and 7 are unramified we let 7 , and w2, have Frobenius-Hecke eigenvalues
t; = diag(a,b1) and t2 = diag(as, ba), respectively. Then

N*(t1 ® t2) = (diag(ai, a1by, b]) - agbo) B (diag(a3, azbs, b3) - a1by)
and
Sme(tl ®ta) = (diag(a%,albl, b%) ® diag(a%, asbs, bg)) B (a1b1 - agbs) .

Part (a) has also been observed by others; see [19, (7.27)] and [28, (2.6)], for
example. For (b) to make sense one has to assume the symmetric square transfer
from GL(4) to GL(10) and the automorphic tensor product from GL(3) x GL(3) to
GL(9), both particular instances of functoriality.

To prove (c), observe that IIV = IT ® w~!, which implies

L3(s,TT x V) = L% (s, A*(TT) @ w™ 1) L5 (s, T, Sym? @ w™1),

where S is a finite set of places including all the archimedean ones such that II
is unramified outside of S. From (a) we have A?(II) ® w™! = Ad(m) B Ad(72).
(Here Ad(m;) = Sym?(m;) ®@wy ) If m; is not dihedral, then Ad(;) is cuspidal (by
Gelbart-Jacquet [7]) and hence its partial L-function is entire. If 7; is dihedral, say
m; = If (x), then it is easy to see that Ad(m;) = wg/r B I5(X'x™1), where wg/p
is the quadratic character of F' associated to E by class field theory, and x’ is the
nontrivial Gal(E/F)-conjugate of x. Since m; is cuspidal, the inducing character y
is Galois regular, i.e., X" # X, or equivalently x'x ! is a nontrivial character, whence
L5(s,Ad(m;)) = L5(s,wp ) L5 (s, IE(X'x ")) is entire. (In particular, it does not
have a pole at s = 1.) Therefore L (s, A2(Il) @w ™) = L5 (s, Ad(m1)) L (s, Ad(72))
does not have a pole at s = 1. However, LS(S, IT x IIV) has a pole at s = 1, which
implies that L5 (s, II, Sym? ® w™') has a pole at s = 1.

Note that (c), unlike (b), is unconditional and does not depend on assuming
unproven instances of functoriality. O
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3.2. (ii) (b)=(i).

PROPOSITION 3.2. Let E/F be a quadratic extension. Let m be a cuspidal
automorphic representation of GL(2,Ag) and let II = As(w) be its Asai transfer.
Assume that 11 is a cuspidal automorphic representation of GL(4,Ar). Then N%I1
18 cuspidal if and only if © is not dihedral.

PrOOF. The proof depends on the following identity:
A2 (As(m)) = IE(Sym?*r @ ),

where ' means the nontrivial Gal(E/F)-conjugate. (See [19, §7].) To begin, assume
that 7 is not dihedral. By [26, Theorem 1.4] we know that As(7) is cuspidal if and
only if 7’ 2 7 ® u for any p. If A%II is not cuspidal, then

(Sym®7 ® w;)l >~ Sym?*71 @ w,.

This implies that Sym?n’ ® w, = Sym?7 @ W, i.e., Ad(r) = Ad(«’). This, in turn,
implies that 7’ = 7 ® p (by [24, Theorem 4.1.2]), contradicting the fact that there
is no such twist. Hence A?II is cuspidal.

Next, assume that 7 is dihedral. In this case Symz(ﬂ) is not cuspidal, and
therefore, I%(Sym®n ® w’) cannot possibly be cuspidal. O

3.3. (ii)(c)=(i).

PROPOSITION 3.3. LetII be a cuspidal automorphic representation of GL(4, Ar)
and assume that Il is a transfer from a cuspidal (generic) automorphic representa-
tion m of GSp(4,Ar). Then

AT = 75 () B wy,

where 75 is a degree 5 representation of GSp(4, C) defined below. In particular, A*I1
is not cuspidal.

PROOF. We use Kim [14, p. 2793]. As observed there, one has

Sp(4,C) <% GL(4,C) 25 GL(6,C)

and A% o1 = r5 ® 1l decomposes into a direct sum of the trivial representation and
a five-dimensional representation r5. Similarly,

GSp(4,C) <5 GL(4,C) 255 GL(6,C)

and A% o7 = 75 @ v, where v is the similitude character of GSp(4,C) and 75 is a
five-dimensional representation of GSp(4,C). This implies the desired equality of
automorphic representations. (Il

REMARK 3.4. Embedded in the above proof is the assertion that a cuspidal
(generic) automorphic representation m of GSp(4, Ar) admits a transfer to an au-
tomorphic representation 75(mw) of GL5(Ap) corresponding to the representation
75. This depends on the generic transfer from GSp(4) to GL(4) (see Asgari-Shahidi
[4]), and the exterior square transfer from GL(4) to GL(6) due to Kim [13].
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3.4. (ii)(d)= ().

PROPOSITION 3.5. If 7 is a cuspidal automorphic representation of GL(2,Ag),
where E/F is a quadratic extension, and I1 = 1£(r) is the automorphic induction
of m to an automorphic representation of GL(4, Ar), then A*I1 is not cuspidal.

PROOF. It is known that
N (IE(m)) = As(m) ®@wg/r B I5(ws),

where wg, p is the quadratic Hecke character of F' associated to E/F by class field
theory. See, for example, Kim [16, §3]. O

4. The proof of (i)=-(iii)

It is equivalent to prove that, if IT is a cuspidal automorphic representation
of GL(4, Ar) which neither has a nontrivial self-twist nor is essentially self-dual,
then A?(II) is cuspidal. Observe that if an isobaric automorphic representation p
of GL(6, Ar) is not cuspidal, then it must have an isobaric summand of degree 1, 2,
or 3, i.e., there exists a cuspidal representation o of GL(n,Ar), with 1 < n < 3,
such that L°(s,p x o) has a pole at s = 1. Again, S denotes a finite set of places
of F', including all the archimedean ones, such that all the representations involved
are unramified at places outside S. Now with II as above, the cuspidality of A2II
follows from the following two propositions.

PROPOSITION 4.1. If IT 2 IV ® x for all x, then L°(s,11 ® 0, > ® py) is
holomorphic at s =1 for every cuspidal representation o of GL(n,Ar), n=1,3.

PROOF. Let ¥ be as in (2.5). By Proposition 2.7, it is enough to show that
wp(X) Z X. If we have wy(X) = X, then wy(oc @ IT) 2 0 @ II. On the other hand,
by Proposition 2.8 we have wo(c @ II) 2 ¢V ® (IIY ® w,). In particular, we must
have IT 2 1TV ® w,, contradicting the hypothesis. ]

PROPOSITION 4.2. If 1 £ 11 ® x for all nontrivial x, then L (s,11® 0, A2® ps)
is holomorphic at s = 1 for every cuspidal representation o of GL(2,AR).

PrOOF. The same argument as in the above proof works as long as w, # 1
because by Proposition 2.8 we have wo(c @ II) 2 0¥ @ (Il ® wy) % o ® II. This
means that if o is a cuspidal representation of GL(2, Ar) with nontrivial central
character, then o cannot occur as an isobaric summand of A?(II).

Now suppose that o is a cuspidal representation of GL(2, Ar) with trivial cen-
tral character and that o is an isobaric summand of A%(II). Then the representation
0 ®6? occurs in A2(II® 6) for any Hecke character 6. Note that [I® 6 also satisfies
the hypothesis that it has no nontrivial self-twists. Choose 6 such that

Woge2 = we* =0 £ 1

to get a contradiction. ([l

5. The proof of (iii)=-(ii)

We prove that if IT satisfies (iii)(5), then it is of the form (ii)(d), and if it
satisfies (iii)(«a), then it is one of (ii)(a)—(c).
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5.1. (iii)(8) = (ii)(d). Assume that
(5.1) NIy
for some nontrivial y. Taking central characters we have y* = 1. If x? # 1, then
we may replace x with x? in (5.1), which means we may assume that the character
x in (5.1) is quadratic. We want to show that II is induced from a quadratic
extension. If IT is a representation of GL(2), then the analogous statement is a

well-known result due to Labesse-Langlands [20]. In our case it follows from the
work of Arthur-Clozel [1] and some L-function arguments as we explain below.

LEMMA 5.2. Let 1T be a cuspidal representation of GL(2n, Ap) satisfying T1 =
I ® x for a nontrivial quadratic character x. Then I = 15(x), where E/F is
the quadratic extension associated with x and 7w is a cuspidal representation of

ProoF. We first claim that the base change Ilg is not cuspidal. To see this,
assume that it is cuspidal. For a finite set .S of places of F' and the corresponding
set T of places of F lying above those in S, as before, we have

(5.3) LT(s, Il x My) = L5(s, T xIY)L5(s, I x I1Y @ x)

= L9(s, I x IIV)2
For sufficiently large S, the left hand side of (5.3) has a simple pole at s = 1 while
the right hand side has a double pole at s = 1. This contradiction shows that IIg is

not cuspidal. This means that Il = m; Hms, where 7; are cuspidal representations
of GL(n, Ag). Further, m % ma, because if they are equivalent, then

L(s, T x I)2 = LT (5,11 x I}) = LT (s, m x )4,

but L(s, I x I1V)? has a double pole and LT (s, m; x m))* has a pole of order 4 at
s=1.

Next, we claim that II 2 £ (7). To show this it is enough to prove that the
partial L-function L (s, 15 () x IIV) has a simple pole at s = 1. This follows from

L(s,15(m) x 1Y) = L%, 15 (m x II}))
= LT(s,m xII})
= LT(s,m xm))LT(s,m x 7).
Since o % m we know that LT (s, 71 x 7y )LT(s,m x my) has a simple pole at
s=1. (]
5.2. (iii) (o) = (ii)(a)—(c). Now assume that
(5.4) MY @y
for some x. For a finite set S of places of F, as before, we have
Lo(s, I xIIY) = L%s,IIx (II®x ')
= L%(s,[MxI)®x ")
= L9(s,I,A2@ x YL (s,II,Sym? @ x ).
The last two L-functions are the standard twisted exterior square and twisted sym-
metric square L-functions of II. If S is a sufficiently large set, then L% (s,II x IIV)

has a simple pole at s = 1. Therefore one and exactly one of the partial twisted
exterior or symmetric square L-functions has a simple pole at s = 1.
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First, assume that L°(s, 11, A2® x~') has a pole at s = 1. Then there exists a
cuspidal representation 7, which may be taken to be globally generic, of GSp(4, Ar)
such that II is the functorial transfer of II, i.e., II is a representation as in (ii)(c).
This result has been known for a long time and, we believe, is originally due to
Jacquet, Piatetski-Shapiro, and Shalika. See Gan-Takeda [6] for a proof. It would
also follow from the more general method of “descent” as we explain below.

Next, assume that L°(s,II, Sym? ® x~!) has a pole at s = 1. Taking central
characters in (5.4) we have wy; = wﬁlx4. In other words, jt = wirx ™2 is a quadratic
character. If p is trivial, then II is a transfer from a cuspidal representation 7
of GSpin(4), a split connected reductive group of type D4 whose derived group
is Spin(4). If u is nontrivial, then II is a functorial transfer from the quasi-split
non-split group GSpin*(4) associated with the quadratic extension E/F attached
to p. These facts can be proved using the “descent” method of Ginzburg-Rallis-
Soudry. If x is trivial, then IT would be a transfer from a special orthogonal or
symplectic group. We refer to Ginzburg-Rallis-Soudry [8, Theorem A] and Soudry
[31, Theorem 4 and 12] for the proofs for classical groups, and Hundley-Sayag [9,
Corollary 3.2.1] for the case of GSpin groups.

With the above notation, if u is trivial, then II is as in (ii)(a), and if it is
nontrivial then II is as in (ii)(b).

6. Examples and Complements

In this section we give a few examples of our main result. In some of them the
proposed representation II of GL(4, Ar) is not yet proved to be automorphic, but it
is conjecturally so. We also comment on possible intersection among the four cases
in part (ii) of Theorem 1.1. Finally, we present a theorem due to A. Kable on when
the exterior square of an irreducible four-dimensional representation is reducible.

6.1. K. Martin’s Gig2. The matrices

in GL(4,C) generate a group Gigo of order 192. Let p be the four-dimensional
representation of the group G192 given by inclusion. Then p is an irreducible repre-
sentation. In [21] K. Martin showed that p is modular, i.e., there exists a (cuspidal)
automorphic representation II(p) that corresponds to p.

ExaMPLE 6.1. Let II; = II(p). Then II; is a cuspidal automorphic represen-
tation of GL(4, Ar). Moreover, it is neither essentially self-dual nor does it have a
nontrivial self-twist. It is not on the list of possibilities of (ii). Furthermore, A%II;
is cuspidal. In other words, II; is an example of a cuspidal representation which
does not satisfy any of (i)—(iii) of Theorem 1.1.
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PROOF. First we check that AZ?(p) is an irreducible representation. To see
this consider the standard basis (ej,es,e3,e4) for C* and fix the ordered basis
{(wy,wa, ..., wg) of CO = A2C* given by

w1 =e1 Qe —e2Re1, we =€ Qe3—e3Re;, wyg=e1Qeqg—ey4Qeq,
Wy =ex®e3 —e3Qez, Ws =e2Q0eq4 —eg4Qe2, Wg=e€3Qeq4 —e4Qes.

Let A, B,C, D be the images of a,b, ¢,d under A?, respectively. Then, with respect
to the above basis, we have

1 -1

It is easy to check that if a 6 x 6 matrix X commutes with A, B, and C, then it
has to be of the form

Further, if XD = DX, thena=c=d=eand b= f =0, i.e., X is a scalar matrix.
Therefore, Homg,,, (A%p, A%p) = C and, by Schur’s lemma, the representation A?p
is irreducible. This implies that A%II; is cuspidal. (This is because, if a complex
Galois representation ¢ is modular, i.e., corresponds to an automorphic represen-
tation m = (o), then o is irreducible if and only if 7 is cuspidal. This fact follows
from L(s,0 ® V) = L(s, ™ x 7"); see Ramakrishnan [27, Introduction].) Martin
observes that p, and hence Iy, is not essentially self-dual. Clearly II; is not on the
list of possibilities in (ii) of the main theorem because if it were, then A2Il; would
not be cuspidal (see Section 3). Hence IT; does not satisfy any of the equivalent
statements of Theorem 1.1. O

In [21] Martin considers a four-dimensional irreducible representation p of the
absolute Galois group of Q whose image in PGL(4, C), denoted G, is an extension
of A4 by V4. In this situation G is either V4 x A4 or Vj - A4. In the former case p
is of GO(4)-type and IT = II(p) is a transfer from GL(2,Ar) x GL(2, Ar), which is
contained in our (ii)(a). The example of G192 is an instance of the latter situation.
In either case, II(p) may also be thought of as being obtained by automorphic
induction across a non-normal quartic extension with no quadratic subextension.
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6.2. The standard representation of S;. Consider a tower of number fields
J/J/E/F. Here, E/F and J/J are quadratic extensions, .J/E is an As-extension,
J/F is an Ss-extension, J/E is an SL(2, F5)-extension, and J/F is Galois. (Recall
that As = PSL(2,F5).) In what follows we identify As, S5 and SL(2,F5) with these
Galois groups.

Let o be the standard four-dimensional irreducible representation of S,

o: 5 — GL(4,C).
Here are some properties of o:
(1) A?0 is a six-dimensional irreducible representation of S5 (see [5, §3.2]).
(2) o|a, is irreducible (because o % o ® €, where € is the sign character of Ss).
(3) A%(0|a;) = (A%0)|a, is reducible (because A%(0) = A%(0) ® €), and its
irreducible constituents are both of degree 3.
(4) o is self-dual (because the character of o has integer values).

(5) olay, = p1 ® pa2, where p; and po are the two-dimensional irreducible
representations of SL(2,F5) (see [15, Lemma 5.1]).

We need some details about the p;. Let p be the unique (up to twists) cuspidal
representation of GL(2,F5) whose restriction to SL(2,F5) is reducible. In this case,
plst.(2.rs) = p1 @ pa2. If g € GL(2,F5) — Z(F5)SL(2,F5), then pf = p,. Here Z is the
center of GL(2). Conjugating SL(2,F5) by such an element g induces the nontrivial
outer automorphism of SL(2,F5) because, if it were an inner automorphism, then
we would have p; 22 po, which contradicts the fact that the restriction from GLs2 to
SLy is multiplicity-free.

Let p denote either p; or ps. In constructing examples (to illustrate our main
theorem), we make the following assumption: p is modular, i.e., there exists a
cuspidal automorphic representation 7(p) of GL(2,Ag) with p < w(p). In this
situation, it is expected [17] that there exists an automorphic representation (o)
of GL(4,Ap) with w(0) < o and 7(o) is the Asai transfer of n(p), i.e., (o) =

As(m(p))-

EXAMPLE 6.2. Let IIy = (o) = As(w(p)). Then II; is a cuspidal automorphic
representation of GL(4, Ar) which is self-dual. However, it is the Asai transfer of a
nondihedral cuspidal representation. Moreover, it has no nontrivial self-twists and
it is not on the list of possibilities in (ii). Furthermore, its exterior square transfer
A2II, is cuspidal. In other words, I, is an example of a cuspidal representation
which does not satisfy any of (i)—(iii) of Theorem 1.1.

PRrROOF. Since II; = 7(0) and o is irreducible, we conclude that II; is cuspidal.
(Cuspidality of Il may also be seen by appealing to the cuspidality criterion for
the Asai transfer due to Ramakrishnan [26, Theorem 1.4].)

Next, we note that Il is self-dual and is the Asai transfer of a cuspidal repre-
sentation, namely 7(p). Note that 7(p) is not dihedral, as p is not induced from a
character of an index two subgroup because there is no such subgroup in SL(2, F5).
Also, II; has no nontrivial self-twists because o has no nontrivial self-twists.

Finally, note that A%l is cuspidal since A%Ily = A%7w(0) = m(A%0) and A20 is
an irreducible representation implying that m(A%0) is cuspidal. (See, for example,
Ramakrishnan [27, Introduction].) O

EXAMPLE 6.3. Let II3 = (Il3) g be the base change of II; to an automorphic
representation of GL(4, Ag). Then II; is a cuspidal automorphic representation of
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GL(4,Ag) which is self-dual and is not the Asai transfer of a nondihedral repre-
sentation. It is contained in (ii)(a) and its exterior square transfer A%Il3 is not
cuspidal. In other words, II3 is an example of a cuspidal representation which
satisfies (i)—(iii) of Theorem 1.1.

PROOF. To see cuspidality of II3, as well as the fact that it is contained in
(ii)(a), note that

I3 = (Ils)p = 7(0)p = 7(0|a;) = 7(p1 @ p2) = 7(p1) W (p2).

Neither p; is monomial since SL(2,F5) does not have an index two subgroup. Ap-
plying the cuspidality criterion for m(p;) X m(p2) due to Ramakrishnan [25, The-
orem 11.1], we see that II3 is not cuspidal if and only if m(p1) = 7(p2) ® p for
some Hecke character p of E. On the other hand, 7(p2) ® u = m(p2 @ ), where
we identify the Hecke character p with a character of the absolute Galois group
of F via global class field theory. Hence, we have m(p1) = 7(p2 ® ). This im-
plies that p; = po ® u (since, for any two Galois representations 71 and 7o, one
has m(71) = m(7) if and only if 71 = 79; one can see this by considering the
equality L°(s,7(m1) x 7(12)Y) = L%(s,71 ® 75)). Therefore, u is a character of
Gal(J/E) = SL(2,F5), a perfect group, hence p is trivial. Whence p; = py, which
contradicts the fact that they are inequivalent, as was observed earlier.
Next, observe that A?II3 is not cuspidal because

NIz = A (7(p1) B m(p2)) = (Sym®(m(p1)) @ Wr(py)) ® (Sym*(m(p2)) @ wr(py)),

which is of isobaric type (3, 3). (See Proposition 3.1.)

Finally, we observe that II3 is self-dual because o, and hence 4., is self-dual
and that II3 could not be an Asai transfer of a nondihedral representation because
if it were, then A%(II3) would be cuspidal by Proposition 3.2. O

6.3. On possible intersections between representations in (ii). The
purpose of this subsection is to show that the cases (ii)(a) through (ii)(d) are not
mutually exclusive.

EXAMPLE 6.4. Let m = I£(x) be a cuspidal automorphic representation of
GL(2, Ar) which is automorphically induced from a Hecke character x of E, where
E/F is a quadratic extension. Let 7 be a nondihedral cuspidal automorphic rep-
resentation of GL(2,Ar). Let IIy = # X 7. Then Il is a representation that is
common to (ii)(a), (ii)(c) and (ii)(d).

ProoF. From Ramakrishnan’s cuspidality criterion [25, Theorem 11.1] we
know that II4 is a cuspidal representation of GL(4,Ar). By construction, Iy is
in (ii)(a).

We observe that

Iy =15 (x) K7 = I5(x ® 7p).
Since the induced representation 15 (y®7x) is cuspidal, the inducing representation
X ® Tg i8, a fortiori, cuspidal. Hence Il is in (ii)(d).

Now we claim that II is also a transfer from a (generic) cuspidal representation

of GSp(4, Ar). To see this we recall the following well known identities:

Sym*(I5(x)) = Le(d®) Bxlax,

N(IE(x) = Xlax - wE/F,
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where wg/p is the quadratic Hecke character of F' associated to E/F' by class field
theory. In particular, the central character of 7 is given by wr = x|, x -wg/p. From
F

Proposition 3.1 we have
N (B 7) = (Sym*(7) ® w,) B (Sym*(r) ® wy) .
For brevity write w = w;w,. We deduce that
A (Iy) = (I5(x*) @ wr) Bwwg,p B (Sym*(1) @ wr) -

Hence, the partial L-function L°(s,II,A? ® (w wE/F)_l) has a pole at s = 1. Ap-
plying a recent result of Gan and Takeda [6] we conclude that II is a transfer from
GSp(4), i.e., Il is in (ii)(c). O

6.4. A calculation on the Galois side. As mentioned in the introduction,
one may ask for an irreducibility criterion on the Galois side, i.e., for f-adic Ga-
lois representations or complex representations of the Langlands group £g, which
reflects the cuspidality criterion one is looking for. In this section we present such
a theorem due to A. Kable. We are grateful to him for the permission to include
this material here. Theorem 6.5 below is the analogue of the equivalence of (i) and
(iii) in Theorem 1.1. We begin by reviewing some preliminaries.

Let k be an algebraically closed field whose characteristic is not two and let V'
be a four-dimensional k-vector space. Fix a nonzero element n € A*V. There is a
nondegenerate symmetric bilinear form B on A%V defined by wi Aws = B(wy,ws)n
for all wy,ws € A2V. The bilinear space (A%2V, B) is isomorphic to the orthogonal
sum of three hyperbolic planes. Let GO(B) be the group of similitudes of B,
A : GO(B) — k* the similitude character, and GSO(B) the subgroup of proper
similitudes. This subgroup consists of those T' € GO(B) such that det(T) = \(T)?,
and it coincides with the connected component of the identity in the algebraic
group GO(B). (In the literature, the group GSO(B) is also denoted by SGO(B)
or GO"(B).) We use similar notation also for the similitude groups of forms on V'
itself. Let p : GL(V) — GL(A%V) be the homomorphism p(S) = A2S.

Let G be a group and let o be an irreducible representation of G on V. Recall
that o is essentially self-dual if there is a character y of G such that 0¥ = y ® 0.
In this case, x~! is a subrepresentation of ¢ ® 0. We say that o has symplectic
type if x~1 occurs in A20 and orthogonal type if =1 occurs in SymZc. If o is
essentially self-dual of orthogonal type, then there is a nonzero symmetric bilinear
form C on V such that G acts on V by similitudes of C'. The kernel of C is a
G-invariant proper subspace of V' and hence trivial. Thus, C' is nondegenerate and
o(G) C GO(O). If o(G) C GSO(C), then we say that o is of proper orthogonal
type; otherwise, we say that o is of improper orthogonal type. Finally, we say that
o has a nontrivial quadratic self-twist if there is a nontrivial {£1}-valued character
x of G such that 0 = xy ® 0.

THEOREM 6.5 (A. Kable). Let o be an irreducible 4-dimensional representation
of a group G over an algebraically closed field whose characteristic is not two. Then
the following two conditions on o are equivalent:

(1) A%0 is reducible.
(2) o satisfies at least one of the following:
(a) is essentially self-dual of symplectic type,
(b) has a nontrivial quadratic self-twist, or
(c) is essentially self-dual of proper orthogonal type.
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Toward the proof of the above theorem, we begin with a lemma.

LEMMA 6.6. The bilinear space (A*V, B) has the following properties:

(1) The image of p is GSO(B).

(2) An isotropic line in A2V has the form A2Q, where Q <V is a uniquely
determined 2-dimensional subspace of V.

(3) An isotropic 3-space in N2V either has the form L AV, where L <V is
a uniquely determined line, or the form N*U, where U <V is a uniquely
determined 3-space.

(4) Let W < A%V be a 3-space on which B is nondegenerate. Then there is a
nondegenerate symmetric bilinear form C on V' such that

{g € GL(V) | p(9)(W) = W} = GSO(C).

The form C' is determined by W up to scalars. Every nondegenerate sym-
metric bilinear form on V occurs in this way for a suitable choice of W.

PROOF. We omit the proofs of (1), (2), and (3), as they are easy exercises, and
briefly sketch the proof of (4). Let @ be the quadric hypersurface in P(A?V) con-
sisting of null vectors for B. By (2), we may identify @) with the Grassmannian of
lines in P(V'). Let W be a 3-dimensional subspace of A2V on which B is nondegen-
erate, and Y = P(W) N Q be the smooth plane conic defined by B|w . Let T be the
subvariety of P(V') obtained by taking the union of the lines in P(V') corresponding
to points of Y. It is easily verified that T' is a smooth quadric hypersurface, and
so there is a nondegenerate symmetric bilinear form C' on V', unique up to scalars,
such that T has equation C(v,v) = 0. An element g € GL(V') preserves T together
with the ruling 7' — Y sending a line in T to the corresponding point of Y if and
only if g € GSO(C). From the construction, the set of g with this property is the
same as the set of all g such that p(g)(W) = W. The last claim in (4) follows from
the fact that GL(V) acts transitively on the set of all nondegenerate symmetric
bilinear forms on V. O

PROPOSITION 6.7. The representation (o,V) is essentially self-dual of symplec-
tic type if and only if A2V contains a G-invariant line.

ProoF. This follows immediately from the definitions. ]
LEMMA 6.8. There is no G-invariant isotropic 3-space in A*V.

PROOF. If there is such a 3-space, then, by Lemma 6.6, it is of the form LAV
or of the form A2U. Note that G-invariance of the 3-space combined with the
uniqueness statements in Lemma 6.6 imply that L or U is also G-invariant, which
contradicts irreducibility of . (]

The proof of the following proposition would be substantially simpler if the
action of G on A2V were completely reducible. However, in the current generality,
this need not be true.

PROPOSITION 6.9. Suppose that o is not essentially self-dual of symplectic
type. Then o has a nontrivial quadratic self-twist if and only if A2V contains a
G-invariant 2-space.

PRrROOF. Suppose first that ¢ has a nontrivial quadratic self-twist, say by the
character x. Let H be the kernel of y and recall that, by Clifford theory, o|g is
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the sum of two 2-dimensional subrepresentations. Let W < V be the H-invariant
2-space on which one of these subrepresentations is realized. Then it is easy to
see that the G-translates of AW span a G-invariant 2-space in A2V. (The reader
should compare this with the proof of Proposition 3.5. Indeed, the 2-dimensional
G-invariant subspace is the induction to G of the determinant character of the
representation of H on W. Recall that if o is a Galois representation that corre-
sponds to an automorphic representation 7, then the determinant character of o
corresponds to the central character of 7.)

Now suppose that A2V contains a G-invariant 2-space P. The kernel of B|p is
G-invariant and thus is either {0} or P, for the first hypothesis implies that there
can be no G-invariant line in A2V. Suppose that the kernel is P. Then the 4-space
P+ contains P and the form B and the action of G pass down to P+ /P. Suppose
that B has a nontrivial kernel in P+/P. This kernel cannot be all of P+/P, for
then P would be an isotropic 4-space in A2V. Thus the kernel must be a line in
P /P and this kernel is necessarily G-invariant. The preimage of this line in P~ is
an isotropic G-invariant 3-space in A2V, contrary to Lemma 6.8. We conclude that
(P+/P, B) is a nondegenerate quadratic 2-space. Such a space is isomorphic to a
hyperbolic plane and hence contains exactly two isotropic lines. The action of G on
P~ /P is by similitudes, hence it permutes these lines. Taking the preimage in P+,
we obtain two isotropic 3-spaces A; and A in A%V that are permuted by G. By
Lemma 6.8, these isotropic G-spaces cannot be fixed by G and we conclude that the
stabilizer of each is a subgroup H of index two in G. By repeating the argument
of Lemma 6.8 with H in place of G, we conclude that there is either a line L < V
or a 3-space U < V that is H-invariant. By replacing o by ¢V if necessary, we
may assume that the former possibility holds. Let gg € G — H. Then the 2-space
L + o(go)L is easily seen to be G-invariant, contrary to the irreducibility of o and
oV. This contradiction finally allows us to conclude that the restriction of B to P
is nondegenerate.

We now repeat the argument of the previous paragraph with the space P in
place of the space P~ /P. It yields an index two subgroup H of G and two isotropic
lines in A2V that are fixed by H. By Lemma 6.6, each of these lines has the form
A2Q with Q < V a 2-space. By the uniqueness assertion from Lemma, 6.6, each of
these 2-spaces is H-invariant. It now follows from Clifford theory that if y is the
nontrivial {£1}-valued character on G whose kernel is H, then x ® 0 = ¢. Thus o
has a nontrivial quadratic self-twist, as required. (]

PROPOSITION 6.10. Suppose that o is neither essentially self-dual of symplectic
type nor has a nontrivial quadratic self-twist. Then o is essentially self-dual of
proper orthogonal type if and only if A2V contains a G-invariant 3-space.

PROOF. Let W < A%V be a G-invariant 3-space. By Lemma 6.8, W cannot
be isotropic. The group G acts on W by similitudes and so the kernel of B|y
is G-invariant. We have just observed that this kernel cannot be W and, by the
hypotheses and the preceding results, it cannot be of dimension 1 or 2. Thus the
restriction of B to W is nondegenerate. It follows from Lemma 6.6 that there is a
nondegenerate symmetric bilinear form C on V such that o(G) C GSO(C). This
implies that o is essentially self-dual of proper orthogonal type.

Now suppose that o is essentially self-dual of proper orthogonal type, so that
there is a nondegenerate bilinear form C on V such that o(G) C GSO(C). By



CUSPIDALITY CRITERION 51

Lemma 6.6, there is a 3-space W C A%V such that p(GSO(C)) preserves W. In
particular, W is G-invariant, and the reverse implication is proved. (Il

PROOF OF THEOREM 6.5. We know that the representation A%0 is essentially
self-dual. Thus, if it has any proper nonzero G-invariant subspace, it necessarily has
such a subspace of dimension at most 3. The proof follows from Propositions 6.7,
6.9 and 6.10. (]

6.5. Exception in (iii)(«). Using Theorem 6.5 it is possible to explain the
seemingly strange exception in (iii)(«) of Theorem 1.1. For this we first set up
some notation.

Let G be a group and let H be a subgroup of index two in G. If (r,WW) is a
2-dimensional representation of H, then Asg,p(7), the Asai lift of 7, which is a
4-dimensional representation of G, is defined as follows. Fix g € G — H. Define the
representation (7', W) of H via

7'(h) = (ghg™").
We have a homomorphism
7x 71+ H— GL(W) x GL(W) — (GL(W) x GL(W)) x (G/H).

Here the action of G/H on (GL(W) x GL(W)) is as in (2.3), i.e, via switching
the two factors. We can extend the map 7 X 7’ from H to a map 7 from G to
(GL(W) x GL(W)) x (G/H) by setting 7(g) = (1w, 7(g?),7), where v denotes the
nontrivial element of G/H. In other words

(2) = (r(h),7(ghg™"),1) ifz=he H,
(7(h),7(ghg),7) itz =hg e Hg.

It is easy to check that 7 is a homomorphism. We define Asg/p(7) = Aso 7,
where the map “As” is as in (2.4). This gives a representation of G on the space
V =W @ W. To summarize, we have the following commutative diagram:

T

H (GL(W) x GL(W)) x (G/H)
| 4
G T GL(V)

PROPOSITION 6.11. Assume that T is an irreducible 2-dimensional representa-
tion of H and o = Asq,p(7) is irreducible. Then T has a nontrivial self-twist if
and only if o has a nontrivial self-twist.

PROOF. First, assume that 7 has a nontrivial self-twist, i.e., there is a nontrivial
quadratic character x of H and a nonzero T' € Hompg (7,7 ® x). Set K = ker(x).
Since o is irreducible, by [26, Theorem 1.4] we know that K is not normal in G.
Hence gKg~! # K. Let x* be the character of G obtained via composing x with
the transfer homomorphism from G to H®P. Observe that y*|y is nontrivial
because otherwise we would have x*(h) = x(h)x(ghg™') = 1 for all h € H, which
implies that K = gK¢g~'. Therefore, x* is nontrivial. It is now easy to see that
T ® T is a nonzero element of Homg (0,0 ® x*), i.e., o has a nontrivial self-twist.
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Next, assume that ¢ has a nontrivial self-twist. This implies that o = 1§, (p),
where M is a subgroup of index 2 in G and p is a 2-dimensional representation of
M. Hence, we have

Asc/u(T) = 15(p).
Take A2 of both sides and restrict back to H. The semisimplification of the left
hand side then gives

R,eSH(/\Q(ASG/H(T)))SS = /\Q(ResH(AsG/H(T)))SS
>~ AT @71 )ss

11

((Sym?(7) ® det(7')) @ ((Sym?(7') ® det(7)),
i.e., a direct sum of two 3-dimensional representations of H. However, the right
hand side, by [16, §3], gives

Resy (A2(I(p)))ss = Resy (Asgar(p) @ wayar) & Resy (15 (det(p))),

i.e., a direct sum of a 4-dimensional and a 2-dimensional representation. Therefore,
at least one of the two 3-dimensional representations on the left hand side should
be reducible. This implies that Sme(T) should be a reducible representation.
Replacing 7 by 7V if necessary, we may assume that there is a character y occurring
as a quotient of Sym?(7). Hence,

TR (T® det(T)_l) QX TR (Y det(T)_l),

i.e.,, 7 has a self-twist by ydet(r)~!. We claim that x det(r)~! is nontrivial, for
otherwise we would have

2 < dim Hompy (7 ® 7,det(r)) = dim Hompg(7,7" @ det(7))
= dim Hompg(r,7) =1
which is a contradiction. ]

The above proposition explains the strange exception in (iii) (o) of Theorem 1.1.
Assume that (7, W) is the parameter of a cuspidal representation = of GL(2) over
a quadratic extension E/F of number fields. Then o = As(7) is the parameter
of Il = Asg,p(m). Assume that II is cuspidal, i.e., o is irreducible. Since 7 is 2-
dimensional, there is a symplectic form S on W which 7 preserves up to similitudes.
It is easy to see that o preserves S ® S on W ® W up to similitudes. In fact, o
is an essentially self-dual representation of improper orthogonal type. Further, by
the above proposition, we see that 7 is dihedral if and only if o has a nontrivial
(quadratic) self-twist. By Theorem 6.5, one concludes that A%c is reducible if and
only if 7 is dihedral.

References

[1] Arthur J. and Clozel, L. Simple algebras, base change, and the advanced theory of the trace
formula. Annals of Math. Studies 120 (1989), Princeton University Press, Princeton, NJ.

[2] Asgari, M. and Shahidi, F. Generic transfer for general spin groups. Duke Math. J., 132
(2006), no 1, 137-190.

[3] Asgari, M. and Shahidi, F. Generic transfer for general spin groups II. In Preparation.

[4] Asgari, M. and Shahidi, F. Generic Transfer from GSp(4) to GL(4). Compos. Math., 142
(2006), no. 3, 541-550.

[5] Fulton, W. and Harris, J. Representation theory. A first course. Graduate Texts in Mathe-
matics, 129. Readings in Mathematics. Springer-Verlag, New York, 1991.

[6] Gan, W. and Takeda, S. The local Langlands conjecture for GSp(4). Preprint 2007. Available
at http://arxiv.org/abs/0706.0952.



(8]

[9]
(10]
(11]
(12]

(13]

(14]
(15]
(16]

(17]
(18]

[19)
[20]
[21]
[22]
23]
[24]
[25]
[26]
[27]
28]

29]

(30]

(31]

CUSPIDALITY CRITERION 53

Gelbart, S. and Jacquet, H. A relation between automorphic representations of GL(2) and
GL(3). Ann. Sci. Ecole Norm. Sup. (4) 11 (1978), 471-542.

Ginzburg, D. and Rallis, S. and Soudry, D. Generic Automorphic Forms on SO(2n + 1):
Functorial Lift to GL(2n), Endoscopy, and Base Change. Internat. Math. Res. Notices,
2001, no. 14, 729-764.

Hundley, J. and Sayag, E. Descent construction For Gspin groups: main results and appli-
cations, Electron. Res. Announc. Math. Sci. 16 (2009), 30-36.

Jacquet, H., Piatetski-Shapiro, I. and Shalika, J. Rankin—Selberg convolutions, Amer. J.
Math., 105 (1983), no. 2, 367—464.

Jacquet, H. and Shalika, J. On Euler products and the classification of automorphic forms,
I. Amer. J. Math., 103 (1981), no. 4, 499-558.

Jacquet, H. and Shalika, J. On Euler products and the classification of automorphic forms,
1I. Amer. J. Math., 103 (1981), no. 4, 777-815.

Kim, H. Functoriality for the exterior square of GL4 and the symmetric fourth of GLo.
With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. J.
Amer. Math. Soc. 16 (2003), no. 1, 139-183.

Kim, H. Applications of Langlands’ functorial lift of odd orthogonal groups. Trans. Amer.
Math. Soc. 354 (2002), no. 7, 2775-2796.

Kim, H. An ezample of non-normal quintic automorphic induction and modularity of sym-
metric powers of cusp forms of icosahedral type. Invent. Math. 156 (2004), no. 3, 495-502.
Kim, H. An application of exterior square functoriality of GLa; Asai lift. Number theory,
197-202, CRM Proc. Lecture Notes, 36, Amer. Math. Soc., Providence, RI, 2004.

Kim, H. Private communication.

Kim, H., and Shahidi, F. Cuspidality of symmetric powers with applications. Duke Math.
J. 112 (2002), no. 1, 177-197.

Krishnamurthy, M. The Asasi transfer to GL4 via the Langlands—Shahidi method. Int. Math.
Res. Not. 2003, no. 41, 2221-2254.

Labesse, J.-P. and Langlands, R. L-indistinguishability for SL(2). Canad. J. Math., 31 (1979)
726-785.

Martin, K. Modularity of hypertetrahedral representations. C. R. Math. Acad. Sci. Paris 339
(2004), no. 2, 99-102.

Raghuram, A. and Shahidi, F. Functoriality and special values of L-functions, Eisenstein
series and applications, 271-293, Progr. Math., 258, Birkhduser Boston, Boston, MA, 2008.
Raghuram, A. and Shahidi, F. On certain period relations for cusp forms on GL(n), Int.
Math. Res. Not., 2008, Art. ID rnn 077, 23 pages.

Ramakrishnan, D. Modularity of the Rankin—Selberg L-series, and multiplicity one for
SL(2). Ann. of Math. (2) 152 (2000), no. 1, 45-111.

Ramakrishnan, D. Algebraic cycles on Hilbert modular fourfolds and poles of L-functions.
Algebraic groups and arithmetic, 221-274, Tata Inst. Fund. Res., Mumbai, 2004.
Ramakrishnan, D. Modularity of solvable Artin representations of GO(4)-type. Int. Math.
Res. Not. 2002, no. 1, 1-54.

Ramakrishnan, D. Irreducibility and cuspidality. Representation theory and automorphic
forms, 1-27, Progr. Math., 255, Birkhuser Boston, Boston, MA, 2008.

Ramakrishnan, D. and Shahidi, F. Siegel modular forms of genus 2 attached to elliptic
curves. Math. Res. Lett. 14 (2007), no. 2, 315-332.

Ramakrishnan, D. and Wang, S. A cuspidality criterion for the functorial product on
GL(2) x GL(3) with a cohomological application. Int. Math. Res. Not. 2004, no. 27, 1355—
1394.

Shahidi, F. A proof of Langlands’ conjecture on Plancherel measures; Complementary series
for p-adic groups. Ann. of Math., 132, 273-330 (1990).

Soudry, D. On Langlands functoriality from classical groups to GLy. Formes automorphes.
I. Astérisque No. 298 (2005), 335-390.

DEPT. OF MATHEMATICS, OKLAHOMA STATE UNIVERSITY, STILLWATER, OK 74078, USA
E-mail address: asgari@math.okstate.edu

DEPT. OF MATHEMATICS, OKLAHOMA STATE UNIVERSITY, STILLWATER, OK 74078, USA
E-mail address: araghur@math.okstate.edu






Clay Mathematics Proceedings
Volume 13, 2011

Types and Explicit Plancherel Formulae
for Reductive p-adic Groups

Colin J. Bushnell, Guy Henniart, and Philip C. Kutzko

To Freydoon Shahidi, on his sixztieth birthday

0.1. Let F' be a non-Archimedean local field with finite residue field, and let
G be a connected, reductive F-group. That is, G is the group G(F') of F-rational
points of a connected, reductive algebraic group G defined over F', equipped with its
natural (locally profinite) topology inherited from F. This paper is concerned with
the complex representation theory of G. The aim is to give a framework in which
algebraic aspects of the smooth representation theory, expressed in the theory of
types, can be connected via explicit formulee with analytic aspects of the unitary
representation theory, encapsulated in the Plancherel measure. In this introductory
essay, we assume the reader to have some facility with the basic concepts of the
two subjects involved, but more detail will be given in the body of the paper.

0.2. Let H(G) be the space of locally constant, compactly supported functions
f: G — C. We fix a Haar measure p on G. We endow H(G) with the operation
(a,b) — axb of p-convolution, relative to which it becomes an associative C-algebra.
If (w, V) is a smooth representation of GG, a standard construction extends m to an
algebra homomorphism 7 : H(G) — Endc(V). If e is an idempotent element of
H(G) and (7, V) a smooth representation of G, the space w(e)V is a module over
the C-algebra eHe = e x H(G) x e. If Irr, G denotes the set of isomorphism classes
of irreducible smooth representations (w, V') for which m(e) # 0, and if Irr(eHe) is
the set of isomorphism classes of simple eHe-modules, the map (7,V) — w(e)V
induces a canonical bijection

(%) Irr, G —— Trr(eHe).

The central part of this paper studies the analogue of this bijection for unitary
representations of G.
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0.3. So, let G denote the topological space of isomorphism classes of irre-
ducible, continuous, unitary representations of G on Hilbert spaces. This space
carries the Plancherel measure i dual to u; the support of fi is the reduced dual T@
of G.

We let e € H(G) be idempotent and self-adjoint, relative to the canonical
(anti-linear) involution on H(G). The algebra eHe carries an involution inherited
from H and a related inner product. It thereby acquires the structure of a nor-
malized Hilbert algebra. Taking an appropriate completion, we obtain a C* algebra
»C*(eHe) containing eHe as a dense subalgebra. The dual of .C*(eHe), denoted
Ta*(eHe), is a topological space which can be identified with a subset of Irr(eHe).
It carries a canonical Borel measure ji.3e, with a definition analogous to that of
the Plancherel measure (see 3.2 below).

If (r,V) € @, we may again extend 7 to a homomorphism 7 : H(G) —
Endc(V). Our first result is a direct C*-analogue of the bijection (%) above.

Theorem A. Let e € H(G) be self-adjoint and idempotent. Define T@(e) to be the
set of (m,V) € G for which m(e) # 0.

(a) The set ,G(e) is open in ,G.
(b) If (z,V) € G(e), there is a unique Mo (V) € ra*(e'He) isomorphic to
w(e)V as eHe-module. The map

A~k

e : 2G(e) — C (eHe)

is a homeomorphism. R
(c) If S is a Borel subset of .G(e), then

[j,(S) = 6(1(;) ﬂe?—[e (ﬁ’Le(S))

0.4. The primary source for self-adjoint idempotents in H(G) is the represen-
tation theory of compact open subgroups of G: if K is a compact open subgroup
and p is an irreducible smooth representation of K, then p gives a self-adjoint idem-
potent e, € H(G) such that, for any smooth representation (7, V) of G, the space
m(e,)V is the p-isotypic subspace V* of V. Thus ré(ep) is the set of (7, V) € ,G
for which Homg (p, ) # 0: it is easier to denote this set by ,G(p).

Theorem A determines the structure of the topological space Té(p), along
with the measure 7i|,G(p), purely in terms of the Hilbert algebra ep x H(G) x €.
In practice, however, it is better to introduce a second stage. Let H(G, p) be the
convolution algebra of compactly supported p-spherical functions on G. One often
refers to H(G, p) as the p-spherical Hecke algebra of G. It carries a canonical Hilbert
algebra structure, with associated C*-algebra .C*(G,p) and Plancherel measure
3 (Gp) = fp- Again, the C*-algebra dual ré*(G, p) is canonically identified with
a set of isomorphism classes of simple H(G, p)-modules.

If (m,V) is a smooth or continuous unitary representation of G, the space
V, = Homg (p, m) carries the structure of H(G, p)-module. The algebras H(G, p),
e, * H(G) = e, are Morita equivalent (in the algebraic sense). This implies that
the C*-algebras ,C*(G, p), »C*(e,He,) are strongly Morita equivalent. Stitching
these facts together, we get:
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Theorem B. Let K be a compact open subgroup of G and p an irreducible smooth
representation of K. The map (w,V) — V, induces a homeomorphism

iy i +Glp) —=— O (G, p).
If S is a Borel subset of T@(p), then

The sole dependence of Plancherel measure on an abstract algebraic structure
gives us a method of transferring information between groups. In its most direct
form, we get:

Corollary C. Fori = 1,2, let G; be a connected reductive F-group, let K; be a
compact open subgroup of G;, and let p; be an irreducible smooth representation of
K;. Let u; be a Haar measure on G; and let fi; be the corresponding Plancherel
measure on T@Z—. Let

i H(Gr,p1) —— H(Ga,p2)
be an isomorphism of Hilbert algebras. The map j then induces a homeomorphism
.7/\: réZ(pQ) L> Tél(pl)

such that (1)
_ Ha2liv2)

i1 (705)) = dim py f12(S),
for any Borel subset S of TGQ(pg).

0.5. Theorem A and Corollary C acquire interest from the fact that their hy-
potheses are often observed in concrete situations of some importance. To describe
these, we need to recall some algebraic structures. Let R(G) denote the category
of smooth (complex) representations of G. The theory of the Bernstein Centre [4]
gives a decomposition of R(G) as the direct product of a family of full subcategories

RGE) = ] (6.
s€B(G)
The index set B(G), sometimes called the Bernstein spectrum, consists of classes
of pairs (L,o) in which L is an F-Levi subgroup of G and o is an irreducible
cuspidal! representation of L, modulo the relation of inertial equivalence (recalled
in 1.3 below). The decomposition of R(G) leads to a decomposition of ,G. If (, V)
is an irreducible unitary representation of G, the space V°° of G-smooth vectors
in V carries an irreducible smooth representation 7> of G. We define ,«CAT'(s) to be
the set of m € TCAT' for which 7*° € R, (G). We accordingly get a decomposition

G= ) Gls)
s€B(G)

in which the union is disjoint. We can place this structure within the context of
Theorem A via the following result, proved in 3.6 below.

1We use “cuspidal” as synonymous with the standard usages “supercuspidal”, “absolutely
cuspidal”. Experience with representations over fields of positive characteristic suggests that such
a simplification is called for.
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Proposition D. Let s € B(G). There exists a self-adjoint idempotent es € H(G)
such that ,G(s) = ,G(es).

The sets T@(s) are all therefore open, and closed, in r@, and the Plancherel
measure [ is determined by its restrictions to the components ,.G(s).

0.6. Proposition D shows that, in principle at least, the analytic information
embedded in the Plancherel meaure is already detectable in the basic algebraic
structure of R(G). However, one has little information concerning the idempotent
es; or the structure of the Hilbert algebra es;Hes unless one can invoke the theory
of types. The definition of s-type will be recalled later; here, it is sufficient to note
that, if an irreducible representation A of a compact open subgroup J of G is an
s-type in G, then ,G(\) = ,G(s).

The simplest example is that where G = GL,,(F'). Here, any s € B(G) admits
an s-type (J,\). The Hecke algebra H(G, \) is isomorphic to a tensor product of
affine Hecke algebras. Refining mildly the techniques of [11], [13], one sees that this
isomorphism is one of Hilbert algebras. The determination of Plancherel measure
for G is thus reduced to one basic case, that of representations with Iwahori-fixed
vector.

0.7. Explicit constructions of types, and the descriptions of their Hecke alge-
bras, are now known for many groups. If G is GL,(F) or SL,(F), s-types have
been constructed and their Hecke algebras calculated for all s € B(G) [11], [12],
[14], [17], [18]. When G is an inner form of GL,, or a classical group, the most
important kinds of type are covered in two series of papers culminating in [27] or
[29] respectively. The paper [6] contains a very useful technique for constructing
types in groups from types in Levi subgroups. For principal series representations
of split groups G, see [25]; for “level zero” representations of arbitrary G, see [22]

r [23] (and [21] for the Hecke algebras); for cuspidal representations of arbitrary
G (in large residual characteristic) see [31].

The determination of the Hecke algebra of a type (K, p) follows a fairly standard
pattern: one exhibits an explicit isomorphism of H(G, p) with a combinatorially
defined algebra, closely related to an affine Hecke algebra. It seems intrinsic to the
approach that the isomorphism may be normalized to preserve the Hilbert algebra
structure. We do not pursue any examples beyond GL,, (F'), but this background
suggests that the methods of this paper will be widely applicable to computing
Plancherel measure.

0.8. This paper is a refreshed version of a preprint [10] which has been in
circulation for some ten years. Some of the ideas go back further, for example to the
influential [19]. Various editions of [10] have been cited several times, for example
in [1], [2], and its ideas have started to diffuse into the common consciousness.
Formal publication is therefore somewhat overdue.

1. Smooth representation theory

We review the basic concepts. Throughout, G = G(F') is a connected reductive
F-group, as in the Introduction.
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1.1. For this subsection, however, it would be enough to assume only that G is
a unimodular, locally profinite group. In the spirit of fixing our notation, we recall
the elementary parts of the smooth representation theory of such a group G. The
reader may consult the first four sections of [8] for a complete account.

Let (m,V) be a representation of G. Thus V is a complex vector space and 7
is a group homomorphism G — Autc(V). It is (algebraically) irreducible if V is
nonzero and admits no G-invariant subspace other than {0} and V.

If K is a compact open subgroup of G, we denote by VX the space of v € V
such that 7(k)v = v, k € K. We recall that (7, V) is called smooth if V is the
union of its subspaces V¥, as K ranges over the compact open subgroups of G. It
is called admissible if it is smooth and V¥ has finite dimension, for all K.

If (7, V) is a (not necessarily smooth) representation of G, we write

ve = JvE,
K

where, again, K ranges over all compact open subgroups of G. The set V™ is
indeed a subspace of V', and it is stable under 7(G). We denote by 7°° the implied
homomorphism G — Aute(V°°). Certainly, (7°°,V°°) is a smooth representation
of G. We refer to the elements of V°° as the G-smooth vectors in V.

Let H(G) denote the space of functions G — C which are both locally constant
and compactly supported. Thus H(G) is spanned by the characteristic functions
of double cosets KgK, as K ranges over the compact open subgroups of G and g
over G. We fix a Haar measure 1 on G and define

axb(g) = /G a(z) b(z ' g) du(x), {

The function a* b then lies in H(G). The binary operation x, called u-convolution,
endows H(G) with the structure of associative C-algebra. When there is no fear of
confusion, we abbreviate H(G) = H and a x b = ab.

Let M be a left H-module; one says that M is nondegenerate? if HM = M. If
(m, V) is a smooth representation of G, one may extend the homomorphism 7 to
an algebra homomorphism 7 : H — End¢ (V) by setting

w(ajo= [ al@)v@)vdn(e). acH veV.

In this way, V becomes a nondegenerate 7{-module. The categories of smooth
representations of G and of nondegenerate 7-modules are then effectively identical:
see [8] 4.2 for a full account.

a,b € H(G),
g€aqG.

1.2. We now make significant use of the fact that G = G(F) is a connected
reductive F-group. The reader may consult [15], [4] or [5] for proofs of the results
recalled in this subsection. A fundamental property of such groups is:

(1.2.1) Any irreducible smooth representation of G is admissible.

Let (7, V) be a smooth representation of G, and let (#, V') be the smooth dual of
(7, V). By definition, # denotes the natural action of G on the space V = (V*)> of
G-smooth vectors in the linear dual space V* = Hom¢(V, C) (carrying the obvious

2In the terminology of [8], M would be called a smooth module, but that usage is unhelpful
here.
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G-action). There is a canonical bilinear pairing V xV — C, denoted (9, v) + (9, v),
and satisfying
(7(9)0, m(g)v) = (¥, v),
forveV,veV,ged.
Suppose now that the smooth representation (7, V) is irreducible. We say
(m, V) is cuspidal if every function on G of the form

g— (0, m(g)v), VeV, veV,
is compactly supported modulo the centre of G.

1.3. We recall some ideas and results from [4]. Let G° denote the subgroup of
G generated by the compact subgroups of GG. Certainly, G° is an open normal sub-
group of G, and one knows that G/G° is free abelian of finite rank. An unramified
quasicharacter of G is a homomorphism G — C* which is trivial on G°. We write
X (G) for the group of unramified quasicharacters of G.

Let L be an F-Levi subgroup of G. That is to say, L = L(F'), where L is a
Levi component of a parabolic subgroup P of G, with both L and P defined over
F'. In particular, L is a connected reductive F-group, and we can form the group
X(L).

We consider the set of pairs (L, o) consisting of an F-Levi subgroup L of G and
an irreducible cuspidal representation o of L: we call such a pair a cuspidal datum
in G. Two cuspidal data (L;,0;), ¢ = 1,2, are deemed inertially equivalent in G if
there exist g € G and x € X (L2) such that Ly = LY = g 'L;g and o5 is equivalent
to the representation o ®x : # = x(z)o1(gzg™!) of Ly. We denote by B(G) the set
of inertial equivalence classes of cuspidal data in G: this is the Bernstein spectrum
mentioned in the Introduction. We denote by [L,c]q the G-inertial equivalence
class of the cuspidal datum (L, o) in G.

We recall one of the major building blocks of the theory. Let ¢ denote the
functor of normalized smooth induction.

(1.3.1) Let w be an irreducible smooth representation of G.

(1) There is a cuspidal datum (L,o0) in G and an F-parabolic subgroup P of
G, with Levi component L, such that w is equivalent to a subquotient of
G
tpo.

(2) The datum (L, o) is uniquely determined by w, up to G-conjugacy.

The result implies, in particular, that the inertial equivalence class [L, o]q is
determined by 7: it is called the inertial support of .

Let 93(G) denote the category of smooth representations of G, and let s € B(G).
We define a full subcategory R, (G) of R(G) by deeming that its object class shall
consist of all smooth representations 7 of G with the property that every irreducible
subquotient of 7 has inertial support s.

(1.3.2) The abelian category R(G) is the direct product of its subcategories Rs(G),
s € B(G).
That is to say:

(1.3.3) Let (mw, V) be a smooth representation of G.
(1) The space V' has a unique mazimal G-subspace (s, Vs) which is an object

of Rs(G).
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(2) The space V is the direct sum of its subspaces Vs, s € B(G).
(3) If («', V') is a further smooth representation of G, then

Homg(V,V') = ] Homg(Ve,VY).
s€B(G)

Let Irr G denote the set of equivalence classes of irreducible smooth represen-
tations of G. For each s € B(G), let Irry; G be the set of equivalence classes of
irreducible smooth representations of G with inertial support s. As an instance of
(1.3.3) we have

IrrG = U Irrs G,
s€B(G)

the union being disjoint.

1.4. Let e € H(G) be a nonzero idempotent. Thus e x H(G) xe = eHe is a
subalgebra of H with unit element e. Further, HeH is a subalgebra (and two-sided
ideal) of H.

Let (m,V) be a smooth representation of G. The space w(e)V is an eHe-
module, on which e acts as the identity. The G-subspace V. of V| generated by
w(e)V, is HeHV = HeV. By definition, V. is a nondegenerate HeH-module, in
that HeHV, = V.. Moreover, (V;), = V. and eV, = eV.

Let Irr, G denote the set of isomorphism classes of irreducible smooth repre-
sentations (m, V') of G for which m(e) # 0. Let Irr(eHe) be the set of isomorphism
classes of simple eHe-modules. Using the same argument as in [8] 4.3, we get:

(1.4.1) Let (m,V) be an irreducible smooth representation of G.
(1) If n(e)V # 0, then w(e)V is a simple eHe-module.
(2) The map (w,V) — w(e)V induces a bijection
Irre G —=— Trr(eHe).

(3) Consequently, any simple eHe-module has finite complex dimension.
(Part (3) here follows from (1.2.1).)
More generally, let R.(G) denote the full subcategory of J3(G) with object class
consisting of those representations (7, V') for which V' = V.. We have a functor
m, : R (G) — eHe-Mod,
(m, V) — w(e)V.
One says that the idempotent e is special if m, is an equivalence of categories

R (G) = eHe-Mod. Special idempotents relate to the considerations of 1.3 as
follows [13] 3.12.

(1.4.2) Let e € H(G) be idempotent. The following conditions are equivalent:

(1) e is special;
(2) the category Re(G) is closed relative to the formation of G-subquotients;
(3) there is a finite subset S(e) of B(G) such that

I %)

s€S(e)
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There is a strong converse in [13] 3.13:

(1.4.3) Let s € B(G). There exists a special idempotent e € H such that S(e)
{s}. In particular, the functor m. induces an equivalence of categories Rs(G)

eHe-Mod.

I

We review the proof of this result (and mildly strengthen it) in 3.6 below.

1.5. A fruitful source of interesting idempotents is the representation theory
of the compact open subgroups of G.

Let K be a compact open subgroup of G, and let (p, W) be an irreducible
smooth representation of K. The group K is profinite, whence dim W is finite. We
define a function e, : G — C by

dim W

—1
ep() TK)U“(P(J? )

if v € K, and e,(x) = 0 otherwise. Surely e, € H(G), and it is idempotent. If
(m,V) is a smooth representation of G, then m(e,)V is the sum V? of all irreducible
K-subspaces of V' isomorphic to p. (See [8] 4.4 for these elementary facts.)

There is a slightly different algebra related to the irreducible representation
(p, W) of K. Consider the space H(G, p) of compactly supported functions ¢ :

G — Endc (W) which satisfy
(1.5.1) p(k1gks) = p(k1) (g) p(k2),

for k; € K and g € G. This space carries an operation of y-convolution, making it
into an associative C-algebra. The function e, € H(G, p), defined by

0,(@) = { wWEK) 1 px) ifzeK,

(1.5.2) )
0 otherwise,

provides a unit element.

A function ¢ on G satisfying (1.5.1) is called p-spherical. Thus the elements
of H(G, p) are the compactly supported p-spherical functions on G. The algebra
H(G, p) is often called the p-spherical Hecke algebra of G.

1.6. With the same notation as in 1.5, the pair (K, p) is called a type in G if
the idempotent e, is special. For s € B(G), one says that (K, p) is an s-type in G
if it is a type and S(e,) = {s}.

2. Unitary representations

We continue with the same connected, reductive F-group G, to give a sketch of
the standard theory of unitary representations and Plancherel measure. We follow
[16] and [30].

2.1. A unitary representation of G is a pair (m, V'), where V is a Hilbert space
and 7 is a homomorphism from G to the group of unitary operators on V| such
that the map

GxV —YV,

(9,0) —> 7(g)v,
is continuous. We say that (m, V) is (topologically) irreducible if V' is nonzero and
admits no proper, G-invariant, closed subspace.
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Starting from a unitary representation (m, V'), we can form the smooth repre-
sentation (7°°,V*°), asin 1.1. A cornerstone of the theory is the following sequence
of results [3]:

(2.1.1) If (w,V) is a topologically irreducible unitary representation of G, then

(1) the space V*° is nonzero;
(2) the smooth representation (w°, V) is irreducible and hence admissible.

In the opposite direction, let (7, V') be an irreducible admissible representation
of G. One says that (m, V) is pre-unitary if there is a positive definite Hermitian
form [, ] on V satisfying

[m(g)v, m(g)w] = [v,w], g€G, vyweV.

The irreducibility of V implies readily that such a Hermitian form is uniquely deter-
mined, up to positive scale. We may therefore unambiguously define the completion
V of V relative to the norm v — [v,v] 2. This is a Hilbert space, carrying a unitary
representation 7 of G.

(2.1.2) If (m,V) is an irreducible, smooth pre-unitary representation of G, then
the unitary representation (w,V') is topologically irreducible.

Let Irr" G denote the set of isomorphism classes of irreducible, smooth, pre-
unitary representations of G. Let GG denote the set of isomorphism classes of irre-
ducible unitary representations of G. The preceding discussion yields:

(2.1.3) The map (w, V) — (72, V) induces a bijection

G 2 G,

2.2. We recall a standard construction: see [30] 14.2 for details.

If f: G — C is a function, we define another function f*: G — C by f*(g) =
f(g=1), where the bar denotes complex conjugation.

As usual, let L!(G) denote the space of y-measurable functions f : G — C such
that

1l = /G (@) du(z) < oo.

The space L!(G) is stable under the operation f +~ f*. It admits the binary
operation of p-convolution (as in 1.1), relative to which it is an associative C-
algebra. We have the properties

(@xb)" =b"xa”, [axbly <l o, el = el

for a,b € L'(G). Indeed, L'(G) is a Banach *-algebra in which H(G) is dense.
Let (7, V) be a (not necessarily irreducible) unitary representation of G. For
a € L'(G), we define a bounded linear operator 7(a) on V by

m(a)v = /C;a(x)ﬂ(x)vdu(x), veV.

The map a + 7(a) is a Banach *-representation of L'(G). The algebra B(V)
of bounded linear operators on V carries the canonical operator norm, which we
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denote z — ||z||pv). The norm a — ||m(a)|/p(vy on L*(G) then depends only on
the isomorphism class of (7, V). One defines
llall = sup. Im(@)lsvy, a€ LYG),

where (7, V') ranges over the set of isomorphism classes of unitary representations
of G. We then have ||a|| < ||a||1, while ||a]| = 0 if and only if @ = 0. The C* algebra
C*(G) of G is defined to be the completion of L!(G) relative to the norm a — | al|.
The algebra structure of L!(G) and its involution extend to C*(G). It is indeed a
C* algebra, containing H(G) as a dense subalgebra.

We recall that a representation, or x-representation, of a C* algebra C is an
algebra homomorphism 7 of C' in the algebra B(H) of bounded linear operators
on a Hilbert space H, such that w(a*) = 7(a)*. Any such representation is con-
tinuous. A nonzero representation of C is topologically irreducible (that is, has no
proper, C-invariant closed subspace) if and only if it is algebraically irreducible. A
representation (m, H) is called nondegenerate if 7(C)H = H.

In parallel to 1.1, we have [30] 14.2.5:

(2.2.1) Let (m,V) be a unitary representation of G. The map a — w(a), a €
LY(G), extends uniquely to a x-representation of C*(G) on V. This representation
of C*(Q@) is nondegenerate. FEvery nondegenerate representation of C*(G) is of
this form, and this extension process induces an equivalence of categories between
unitary representations of G and nondegenerate representations of C*(G).

The dual C*(G) of C*(G) is defined to be the set of isomorphism classes of
irreducible s-representations of C*(G). The process described in (2.2.1) identifies
the unitary dual G of G with C* (G). Each of these spaces carries a natural topology,
and the identification C*(G) 2 G is a homeomorphism. (These topologies, and the
relation between them, are discussed in [30] 14.6, 14.7. It is not necessary for us
to recall the details.)

2.3. Let (m,V) be an irreducible unitary representation of G. Let a € H(G).
There exists a compact open subgroup K of G such that a(kg) = a(g), for all g € G
and k € K. Tt follows that 7(a)V C VK C V°° and (1.2.1), (2.1.1) together imply
that dim VX < oo. The operator 7(a) has finite-dimensional range, therefore,
whence its trace tr w(a) is defined. It follows that the image 7(C*(G)) is contained
in the algebra of compact operators on V. This says exactly that C*(G) (or G) is
liminal (translated from [16]) or CCR, in the terminology of [30].

As a consequence, we have the following fundamental result [16] 18.8.1, [30]
14.11.2:

Plancherel Theorem. There is a unique positive Borel measure fi on G such that

(2.3.1) f16) = [ wn(pdim). feH(E)
The measure i is called the Plancherel measure on G, relative to p.

Remarks.

(1) The formula (2.3.1) is initially valid for functions f = a* * a, a € H(G).
The version we have given follows from standard manipulations.
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(2) The uniqueness of fi follows as in [16] 18.8.2, on replacing L'(G) N L?(G)

by H(G).
(3) The uniqueness property implies immediately the relation ¢ = ¢~ 1fi,
c>0.

2.4. We let G act by left translation on the space L?(G):
g:a— Aa, Na(r)=alg  z),
for a € L*(GQ), g,z € G. Thus (A, L*(G)) is a unitary representation of G. The
corresponding action of H(G) (cf. 1.1) is given by
Mfla=fxa, feH(G), acL?*G).

As in 2.2, we view L?(G) as a representation of C*(G) and set
(2.4.1) +C*(G) = MC"(Q)).
Thus .C*(G) is a C* algebra, known as the reduced C* algebra of G. Since H(G)
acts faithfully on L?(G), it is a dense subalgebra of .C*(G). We may equivalently

define .C*(G) as the completion of H relative to the operator norm given by its
canonical action on L?(G).

The definition (2.4.1) identifies the dual ,C*(G) of .C*(G) with a closed sub-
set of C*(G). Under the identification (2.2) of C*(G) with G, the set ,C*(G)
corresponds to a closed subset G of G. The set r@ is the reduced unitary dual of
G.

The support of the Plancherel measure i is precisely r@ [16] 18.8.4. Conse-
quently:

(2.4.2) The Plancherel measure [i is the unique positive Borel measure on .G such
that

f16) = [ () dite).
for all f € H(G).

3. Idempotents and Hilbert algebras

In this section, we consider the analogue of (1.4.1) for unitary representations.
This requires an excursion into the basic theory of Hilbert algebras, as in [16].

3.1. We recall the basic definition.

Definition. A Hilbert algebra is a C-algebra A, with an anti-linear involution
and carrying o positive definite Hermitian form [, | =1, ]a, such that
(1) [,y = [y*,2*], v,y € A;
(2) [zy, 2] = [y, 2"2], z,y,2 € A;
(3) for every x € A, the mapping y — zy of A into A is continuous with
respect to the topology induced by [, |;
(4) the set of elements xy, x,y € A, is dense in A.

Observe that condition (4) of the definition is automatically satisfied when A
has a unit. A Hilbert algebra A will be called normalized if it has a unit e and the
inner product satisfies [e,e] = 1.

Let A be a normalized Hilbert algebra, and let A be the Hilbert space obtained
by completing A with respect to [, ]. The action of A on itself by left multiplication
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induces an injection of A into the C*-algebra B(A) of bounded linear operators on
A. We denote by ,.C*(A) the closure of the image of A in B(A).
In particular, ,C*(A) is a C* algebra, the dual of which we denote ,C*(A).

3.2. Let A be a normalized Hilbert algebra, and let (w,V) € Ta*(A). The
irreducibility of V' implies that the unit element e of A acts on V' as the identity. If
»C*(A) is liminal, w(e) is a compact operator and has a trace. We deduce that V is
finite-dimensional. It follows that ,.C*(A) is liminal if and only if all its irreducible
representations have finite dimension.

Supposing this condition holds, let (7,V’) be an irreducible representation of
+C*(A). Since dimV is finite, any A-stable subspace is closed, and hence is
»C*(A)-stable. It follows that V is simple as algebraic ,C*(A)-module, whence
7(,C*(A)) = Endc(V). Since 7(A) is dense in w(,C*(A)), we conclude that
m(A) = End¢(V). This implies that V is simple as an A-module. Moreover,
any A-isomorphism between irreducible representations of ,.C*(A) is a .C*(A)-
isomorphism. We have proved:

Lemma. Let A be a normalized Hilbert algebra such that ~C*(A) is liminal. Let
Irr A denote the set of isomorphism classes of irreducible (algebraic) representations

of A. The map (m, V) — (7|A, V) induces an injection ré*(A) — Irr A.

Notation. If A is a normalized Hilbert algebra such that .C*(A) is liminal, then
+lrr A denotes the canonical image of T@*(A) i Irr A.

In this situation, we have an analogue of the Plancherel Theorem:

Proposition. Let A be a normalized Hilbert algebra, with unit element e, such that
»C*(A) is liminal. There is then a unique positive Borel measure fiy on ,C*(A)
such that

[a,e]a = /A tr(a)diia(m), a€ A.
G+ (4)

Proof. By 17.2.1 of [16], the map (z,y) — [z,y]a extends to a maximal bi-trace
on ,C*(A). Let f be the associated trace. We apply [16] 8.8.5 to obtain a positive

Borel measure ji4 on the dual space T@*(A) with the property that

flyry) = /A trm(y*y) dipa(m), ye C*(A).
+C*(A)

By definition, f(b*b) = [b, b]%, b € A. Applying this in the cases b = ate, b = ati-e

and making the usual manipulations, we see that {14 has the required property. To

show that it is thereby uniquely determined, we argue exactly as in [16] 18.8.2,
replacing L'(G) N L?(G) by A. O

We refer to this measure fi4 as the Plancherel measure for A.
3.3. We return to the connected reductive F-group G. Let e € H(G) be
idempotent, and assume that e is self-adjoint, that is, e* = e. The algebra eHe is

therefore stable under the standard involution z +— x* on H. Imposing the inner
product

(3.3.1) [a,0] = e(1g) ta* xb(1g), a,b € eHe,
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eHe becomes a normalized Hilbert algebra. We may form the C* algebra ,.C*(eHe)
of eHe, as in 3.1.

The metric on eHe, given by the inner product, is equivalent to the restriction
of the L?-metric on H. So, in the notation of 3.1, the Hilbert space (eHe)™ is the
closed subspace ex L?(G)xe of L?(G). The algebra norm on eHe is therefore given
by the operator norm from its natural action on e x L%(G) * e.

Remark. One can equally form a C* algebra by taking the closure of eHe in .C*(G):
the resulting algebra is e,.C*(G)e. This is given by the norm on eHe coming from
its natural action on the closed subspace e x L?(G) of L?(G). Since eHe does not
annihilate the complement of e x L?(G) x e in e x L?(G), the norm on eHe defining
e,.C*(G)e is not, a priori, the same as that defining ,.C*(eHe). We will, however,
show ((3.4.1), (3.5.3) below) that .C*(eHe) = e,.C*(G)e.

3.4. Let ,.C*(e,G) denote the closure of HeH in .C*(G). Thus ,C*(e,G) is
a closed two-sided ideal in ,C*(G) and a liminal C* algebra. Its dual el (G,e) is
naturally identified with a subspace of Ta*(G). Observe that
(3.4.1) e,.C*(e,G)e = e, .C*(G)e,

since each side is a closed subalgebra of .C*(G) containing eHe = eHeHe as a
dense subalgebra.
Following [16] 2.11, we put

2Gle) = {r e .G :m(e) #£0}.

The set T@(e) is open in G ([16] 3.2.1), and the canonical homeomorphism G
ré*(G) induces a homeomorphism

(3.4.2) .Gle) = ,.C (e,@).

3.5. Let e € H be a self-adjoint idempotent as before, and let (7, V) € ,G(e).
The space 7(e)V = 7(e)V>° is therefore nonzero, it has finite dimension, and is an
irreducible eHe-module (1.4.1). We now give our central result.

Theorem. Let e be a self-adjoint, idempotent element of H(G).
(1) The algebra .C*(eHe) is liminal.
(2) The map (m,V) — w(e)V induces a bijection ,G(e) =  Irr(eHe), and a

homeomorphism
(3.5.1) m, : ,Gle) ——s ,C*(eHe).
(3) If S is a Borel subset of Té(e), then
(3.5.2) A(S) = (1) fiene (e (S))-

Preliminary remark. Take (m,V) € 7n@(e). Obviously, m(e)V is a module (in the al-
gebraic sense) over the C* algebra e,.C*(G)e: indeed, it provides a *-representation
of e,.C*(G)e. This algebra, however, is not directly accessible in the manner of eHe
or its associated C* algebra ,.C*(eHe). We therefore need to work indirectly, show-
ing en route that there is an isomorphism ,.C*(eHe) = ¢,.C*(G)e. Moreover, this
isomorphism can be chosen to extend the identity map on eHe, embedded canoni-
cally in either factor.
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Proof. We consider .C*(G) and its natural action on L?(G): recall that ,.C*(G) is
defined as the closure of the algebra H in B(L?(G)). The subspace e x L?(G) ¢ is

stable under the subalgebra e,.C*(G)e. Thus ex L?(G) * e affords a representation
of e,.C*(G)e. We denote by

n:e,C*(G)e — Blex L*(G) xe)

the implied homomorphism. We identify B(e x L?(G) x ¢) with the subalgebra of
B(L?(G)) consisting of operators which annihilate the orthogonal complement of
ex L2(G) xe in L?(G).

Lemma. The homomorphism 0 : e,.C*(G)e — B(ex L2(G)  e) is injective.

Proof. We continue to denote multiplication in .C*(G) by (z,y) — xy. On the
other hand, we denote the natural action of x € B(L?*(G)) on L?(G) by

riyr—x-y, ye<L*aG).
We use the x notation when we wish to emphasize that one factor in the product
belongs to H(G).
Let a € Kern: in particular, a - e = 0. Since ,C*(G) is the closure of H in

B(L*(G)), the left action of ,C*(G) on L?(G) commutes with the right action of
‘H by convolution:

z-(yxf)=(z-y)+f, z€.CG), feH, yeL*G).
Therefore
a-(exf)=(a-e)*xf=0,
for all f € H.

For b, f € H, we have (b-e)x f = bxex f = (be) * f. By continuity, this relation
holds for b € ,C*(G). Above, therefore, we can rewrite (a-e)x f = (ae) - f and
so, by continuity, (ae) - f = 0 for all f € L?(G). However, ae = a, so a - f = 0 for
feL*Q). Asa € .C*(G) C B(L*(G)), we deduce that a = 0, as required. [J

We return to the Hilbert algebra eMe. As remarked in 3.3, ,C*(eHe) is the
closure in B(exL?(G)«e) of the image n(eHe) of eHe. The algebra n(e,.C* (e, G)e) is
closed, being the image of a morphism of C* algebras. Therefore (recalling (3.4.1))

+C*(eHe) = n(e,.C*(e,G)e).
The lemma thus implies that 5 induces a bijective, continuous homomorphism
e,.C*(e,G)e — .C*(eHe) whence (cf. [30] 14.1.13):
Proposition. The map n induces an isomorphism
(3.5.3) e,C*"(Ge=¢€,C"(e,G)e > ,.C*(eHe)
of C* algebras, which is the identity on eHe (embedded canonically in each factor).

For (m,V) € ,G(e), we may now view m(e)V as providing a representation
of ,C*(eHe). As eHe-module, it is irreducible (1.4.1), so m(e)V determines an
element of ,C" (eHe).

Next, we observe that since HeH = HeHeH C .C*(e,G)e,.C*(e,G), the ideal
+C*(e,@)e,.C*(e,G) is dense in ,.C*(e,G). Thus e¢,C*(G)e = €,C"(e,G)e is a
“full corner” [7] in the algebra ,C*(e,G). Appealing to [24] Example 6.7, the
C* algebras .C*(e,G), e, .C*(e,G)e are strongly Morita equivalent. Moreover, on
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categories of representations, this equivalence is the functor (7, V) — m(e)V. Con-
sequently, the map

~ A~k

m,: ,G(e) — ,C (eHe),

(3.5.4)
(m, V) — w(e)V,

is a homeomorphism.

In particular, every element of Ta*(e?’-[e) arises as m(e)V, for some (w,V) €
2Gle). As w(e)V = 7(e)V>® = 7°(e)V>°, it follows that dim7(e)V < co. There-
fore every element of el (eHe) has finite dimension, whence ,.C*(eHe) is liminal.
This proves part (1) of the theorem; part (2) follows from (3.5.4) and 3.2 Lemma.

As for part (3), let f € eHe and let (7,V) € 7n@(e). For v € w(e)V, v’ €
(m(e)V)*, we have

o, 7(f)v] = [=(f)o, 0] = [w(e)n(f*)v, 0] = 0.
It follows that 7 (f)v’ € m(e)V N (w(e)V)L, or 7(f)v' = 0. Therefore

v
tra(f) = tr(r(f)l(e)V),

™

whence
e(16) [f. e = f(lc) = / o T i ()

The result now follows from 3.2 Proposition and part (2) of the theorem. O

3.6. We make a connection with the considerations of 1.4. Let s € B(G), and
define 7nCA?(s) to be the set of € ,G such that 7°° has inertial support s. We write
Irrs G for the set of isomorphism classes of irreducible representations in R (G),
and use the other notation of 1.3, 1.4.

Proposition. Let 5 € B(G).
(1) There ezists a self-adjoint special idempotent es € H(G) with S(es) = {s}.
In particular, ,G(s) = ,G(es) # 0.
(2) The set .G(s) is open in .G and the map (7,V) — 7(es)V induces a
homeomorphism

T@(s) ~ CO* (es x H *es).
(3) The space G is the disjoint union of the open sets .G(s), s € B(G).

Proof. Assertion (2) follows from (1) and 3.5 Theorem, while (3) is implied by (1),
(2.1.3), and the remark in 3.4.

From (1.4.3), we know that there exists a special idempotent e such that G(e) =
{s}. We review the construction of e in [13] 3.13 to show e is self-adjoint.

Let K be a compact open subgroup of G, and take the idempotent ex in H so
that p(K)eg is the characteristic function of K. As in [13], we may choose K so
that ef is special and s € G(ex). We let G act on H by left translation, and take
the corresponding decomposition

@ Hh

teB(G)

with H; € R(G). The spaces H; are two-sided ideals of H with the consequence
that H{H, = 0 when t # u, t,u € B(G). We accordingly write ex = e+e’, with
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e € Hs and ¢’ € @, He The functions e, ¢’ are idempotent and ee’ = €’e = 0.
Moreover, Hs = HeH, e is special, and &(e) = {s}. In particular, Irr; G = Irr, G.

We have to show that e is self-adjoint. If (7,V) is an irreducible smooth
representation of G, let (7*,V*) denote the complex conjugate of its smooth dual
(7, V). Likewise, if t € B(G), t = [L, 0] say, we can define t* = [L,c*]. The class t
only determines the cuspidal representation ¢ up to twisting with some y € X (L),
so we may assume that o is pre-unitary. This implies ¢* = o, so t* = t, for all t.
That is, (Irr¢ G)* = Irr¢ G, for all t. Therefore

Irre« G = (It G)* = (Irrs G)* = It G.
In particular, e* € Hs and (¢)* € P, He. It follows that
ete' =ex =e€j = e +(€)",

whence e* = e, as required. [

4. The p-spherical algebras

Let K be a compact open subgroup of G, and let p : K — Autc(W) be an
irreducible smooth representation of K. The representation p defines a self-adjoint
idempotent e, € H(G), as in 1.5. We henceforward abbreviate

+G(p) = +Glep).
We consider the p-spherical Hecke algebra H(G, p) introduced in 1.5, first showing
that it carries a canonical structure of Hilbert algebra. Taking a completion as in
3.1, we obtain a C* algebra .C*(G, p). The main result of this section compares the

duals ,G(p) and Té*(G, p) = (-C*(G, p))", along with their Plancherel measures.

4.1. Let (p, W) be the contragredient of (p, W). We write

E, = Endc(W).

We first define a canonical Hilbert algebra structure on F,. There is a K-invariant
scalar product [, | on W, uniquely determined up to a positive constant. The
algebra F, then carries the adjoint involution a + a* given by

[a*v,wlw = [v,aw)w, a€E, v,weW.

We define a scalar product [, ] = [, |5, on E, by
_ tr(a*b)
[a,b] = T a,be B,

With this structure, F, is a normalized Hilbert algebra.
As in 1.5, let H(G,p) be the p-convolution algebra of compactly supported
E,-valued functions h on G' which satisfy
h(kll'kQ) = ﬁ(k‘l)h(x)ﬁ(k‘g), x € G, k; € K.
This algebra H(G, p) has identity e, (1.5.2). Further, it is a normalized Hilbert
algebra, relative to the involution h +— h* defined by
h*(z) = (h(z™))", heH(G,p), v€G,

and scalar product

N(Kv)v tr (R * ha(1a)).

[h1, ha] =
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We abbreviate .C*(G,p) = .C*(H(G, p)).
4.2. We denote by a + a' the linear anti-isomorphism E, — E; = End¢(W)
given by
(a'w, w) = (w,aw), we W, ©eW.
Here, {, ) is the canonical bilinear pairing W x W — C. Observe that p(k)! =

p(k™1), k € K. We also use the notation x + z* for the inverse map E; — E,.
This transposition operation gives rise to a linear anti-isomorphism of C-algebras

H(G7 p) — H(G, :5);
h — ht,
where h! denotes the function g — h(g~1)* on G.
We consider the G-representation c—Indf( p compactly induced by p. The un-

derlying vector space consists of the compactly supported functions ¢ : G — W
such that

p(kg) = p(k)o(g), ke K, gea,
and G acts by right translation.
We define a right action of H(G, p) on c¢-Ind p by

h:pr— oh="h'%x¢, ¢ cIndp, h€H(G,p).
This action induces an algebra isomorphism (see, for example, [13] 2.5)
(4.2.1) H(G, p) = Endg(c-Ind p).
Frobenius Reciprocity [8] 2.5 gives an isomorphism
Homg (¢-Ind p, ) = Hompg (p, ),

for any smooth representation (m,V) of G. Set V, = Hompg(p, ). The right
action of H(G, p) on c-Ind p gives a left action on Homeg(c-Ind p, 7), and hence a
representation 7, of H(G, p) on the space V.

Remark. Explicitly, the action of H(G, p) on V, is given by

(4.2.2) h)o: w—)/ fw) du(z),
forp € V,, he H(G,p), we W.

4.3. Let (m,V) be an irreducible unitary representation of G. We can again
form the space V, = Homg (p, 7). Since the kernel of p is open in G, we have
V, = (V*°),, whence V,, carries the structure of an (G, p)-module. Moreover,

Té(p) = Té(ep) = {(F,V) € ré :V # 0}.
We state our second result.

Theorem. Let K be a compact open subgroup of G and (p, W) an irreducible
smooth representation of K.
(1) The algebra .C*(G,p) is liminal.
(2) Let (7,V) € .G(p). The space V, is nonzero and simple as H(G, p)-
module. The natural action of H(G, p) on V, extends uniquely to a repre-
sentation w, of ,C*(G,p).
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(3) The map (m,V) > (7,,V,) induces a homeomorphism
m,: Glp) —— ,C*(G,p).
(4) If S is a Borel subset of ,G(p), then

_dimp
p(K)

where we abbreviate i, = flay(q,p)-

f1(S) oo (p(9)),

~

The proof occupies the rest of the section. In outline, 3.5 gives T@(p) :
+C (ey,He,) and the relation between Plancherel measures fi| .G (p), flc,#e,. We
therefore need to clarify the relation between 7na*(e,ﬂ-lep) and Ta*(G, 0).

4.4. As the first step, we consider the algebra
Hw (G, p) =H(G, p) @c Ejs.
We may make Hw (G, p) into a normalized Hilbert algebra by setting
(h®a)* =h*®a*,
and
[h®a,h ®@d]=][hN]a,d],
for h,h' € H(G,p), a,a’ € E; (¢f. [11] 5.6.16, 5.6.17).
Proposition. For h € H(G,p), a € E;, define a function f = fi, o) on G by
f(z) =dimp-tr(h(z)a"), = €G.

The map (h,a) = f(n,q) induces an isomorphism of Hilbert algebras:

(4.4.1) T:Hw(G,p) —— e, H(GQ)e,.

Proof. This is essentially Proposition 4.3.3 of [11]. All that needs to be checked
is that, for w € W, w € W, b € E,, we have bo (w ® w)! = (w ® bw)*, which is
immediate. This same observation, together with the fact that h(1g), h € H(G, p),
is a scalar matrix, serves to verify that the scalar product given above is the one
defined in §4.3 of [11]. O

We write .Cy, (G, p) = ,C*(Hw (G, p)). Immediately we get:
Corollary.
(1) The map T extends to an isomorphism .Cy, (G, p) = .C*(e,He,), which

~%

induces a homeomorphism T : TG;V(G,p) = .C (e,He,).
(2) The algebra .C3y, (G, p) is liminal.
(3) If S is a Borel subset of TG;V(G,;)), then

firtay (G,0) (S) = fle, e, (T ()
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4.5. Let M be an H(G, p)-module; we define an Hw (G, p)-module My, by
setting My = M ®c W and letting Hw (G, p) act in the obvious way. The map
M — My then induces an equivalence of categories

(4.5.1) Fw : H(G, p)-Mod —=— Hy (G, p)-Mod.

Lemma. The functor Fy induces a homeomorphism

Fw : 2O (G, p) —=— ,Ciy(G, p).

Proof. We note first that the natural embedding
extends to an isomorphism of C* algebras:
LCiy (G, p) & ,C*(G p) @ B
Thus we have
+Ci (G, p) = (,C™(G, p) @c Ep)" .

The algebras ,C*(G, p) and ,C* (G, p)@cE, are strongly Morita equivalent, relative
to the “imprimitivity bimodule” .C*(G,p) ® W. The corresponding homeomor-
phism of dual spaces is induced by H — Hy = HQ W. O

We noted in 4.4 Corollary that the algebra ,.C'yy (G, p) is liminal. The last step
in the proof shows that .C*(G, p) is also liminal, as required for 4.3 Theorem (1).

Given a subset S of Ta*(G, p), we denote by Sy = fW(S) the set of equivalence
classes of representations Hy, € ,.C *W(G, p) for which H € S.

Proposition. Write i, = fi3q,p), and let S be a Borel subset of T@*(G,p), We
then have

fip(S) = dim p - figg, (G.p) (Sw)-

Proof. Let h € H(G, p). We have
(@ L, Loy (6.0 2w (Gp) = [h @ T, €, ® L] = [hy €0)30(60)-
If, on the other hand, (7, H) is an irreducible representation of ,.C*(G, p) then
trrw (h @ 1w ) = dimp - trw(h).

Therefore

(h, elr(c.p) = dimp'/A trw(h) dfipgy, (G,p) (Tw)-
»Ciy (G,p)

Our result now follows from the uniqueness of the measure /i, given by 3.2 Propo-
sition. O
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4.6. We prove 4.3 Theorem. We abbreviate e = e, and return to the category
R.(G) of 1.4. We have the functor

m, = m, : R (G) — eHe-Mod,
(m, V) — mw(e)V =V?,

and also a functor
my : Re(G) — H(G, p)-Mod,

(m, V) — (7, V),

where 7, denotes the natural action of H(G, p) on V,. Using the notation (4.4.1),
(4.5.1), we appeal to [13] 2.13 to see that the functor m, factors as

m, =7, o Fiy om,,

where 7 : Hw (G, p)-Mod — e, H(G)e,-Mod is the equivalence of categories in-
duced by the algebra isomorphism 7.

The functor m, takes irreducible objects to irreducible objects (1.4.1). The
equivalences 1, Fy certainly share this property, so m, also preserves irreducibil-
ity. If £ denotes any of these functors, we write £ for the induced bijection on sets
of isomorphism classes of irreducible objects. Thus

mg =120 Fy o mg :Irre G — IrreFHe.

Restricting to ,.G(p), viewed as a subset of Irr, @ (as in (2.1.3)), 3.5 Theorem (2)
shows that m) induces the homeomorphism m, : ,G(p) = TC*(e’He). Similarly,

A~k

10 gives the homeomorphism 7 : ,«G;V(G, p) = .C (eHe) of 4.4 Proposition and

A~k

FU, the homeomorphism Fw: O (G,p) = Ta*W(G,p) of 4.5 Lemma. We deduce

~%

that m9 induces a homeomorphism i, : .G(p) = ,.C (G, p). It then follows from

3.5 Theorem (3), 4.4 Proposition and 4.5 Proposition that, for any Borel subset S
of .G(p), we have

() = %0 (0 (5)).

However, e,(1¢) = (dim p)?/u(K), which completes the proof of the theorem. [

5. Transfer theorem

We outline a framework within which the results above can be applied.

5.1. Fori = 1,2, let G; be a connected reductive F-group, let K; be a compact
open subgroup of G;, and let p; be an irreducible smooth representation of K,;. We
fix a Haar measure u; on G; and denote by ji; the corresponding Plancherel measure
on ,G,.

We assume given an isomorphism of Hilbert algebras

(5.1.1) j:H(G1,p1) —=— H(Ga, p2).

The map j then extends to an isomorphism ,.C*(Gy,p1) = .C*(Ga,p2) of C*
algebras, which we continue to denote j. It induces a homeomorphism

jl Ta*(GQ,pQ) — ra*(Glapl)a
(m,H) — (woj,H).
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As before, we let T@Z—(pi) denote the set of (w,H) € .G, for which m(ep,) # 0.
Theorem 4.3 gives homeomorphisms
mpi : réz(pl) L) ré*(Gi>pi)> 1= 172

We define
(5.1.2) J =iyl oo, + /Ga(ps) — +Gi(pr).
As an immediate consequence of 4.3 Theorem, we get:
Corollary.

(1) The map J of (5.1.2) is a homeomorphism.

(2) If S is a Borel subset of -Go(p2), then

p (K1) _ p2(K2)
dim (T (S)) = dim s fi2(5).

(5.1.3)

5.2. We record a simple result, useful when applying 5.1 Corollary.

We take Gy, p; as in 5.1, and let Ho(G;, p;) denote the space of functions
f € H(G;, pi) for which f(1g,) = 0. Thus Ho (G, p;) is the orthogonal complement
in H(Gj, ps) of the space Ce,, spanned by the unit element e,, of H(G, p;).

Proposition. Let
k:H(Gr,p1) —— H(G2,p2)

be an isomorphism of C-algebras with involution. Suppose that

k(Ho(G1, p1)) C Ho(G2, p2).

The map k is then an isomorphism of Hilbert algebras.

Proof. Define a linear functional A; on Ho(G;, p;) by
Al(x) = <x7epi>7 T e H(Gupz)

This is the unique linear functional on H(G;, p;) with kernel Hy(G;, p;) such that
A;(e,,) = 1. We therefore have A; = A o k. However, the functional A; satisfies

<x,y> :Al(x*y)v xayeH(Gi’pi)a

whence the result follows. O

5.3. Example. A prime example of 5.1 Corollary is given by the Main The-
orem 5.6.6 of [11]. There, G = GL,(F) and (J,\) is a simple type in G. In
particular, (J, A) is an s-type in G, where s = [L, 0| is of the form

L = GLp(F) X GLy(F) % -+ x GL (F),

(5.3.1)
U:T®T®"'®7,

for a divisor m of n and an irreducible cuspidal representation 7 of GL,,(F'). Any
s € B(G), of the form (5.3.1), admits an s-type which is also a simple type.
Consider the case of (5.3.1) in which m = 1 and 7 is trivial. One then refers
to s as the trivial class in B(G). An s-type is provided by the trivial character 17
of an Iwahori subgroup I of G. The corresponding Hecke algebra H(G,1;) is an
affine Hecke algebra of type A,,_1, with parameter ¢ (the cardinality of the residue
field of F'). The standard presentation ([11] (5.4.6)) shows that H(G,1;) depends,
up to isomorphism of Hilbert algebras, only on n and q. We accordingly denote it

H(n,q).
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Returning to an arbitrary inertial class s of the form (5.3.1), Theorem 5.6.6 of
[11] gives a canonical family of algebra isomorphisms H(G, \) = H (e, ¢f), for a pair
of integers e, f depending on s (or A). Corollary 5.6.17 of [11] and 5.2 Proposition
above combine to show that, among this family, there are isomorphisms of Hilbert
algebras. Corollary 5.1 thus gives fi r@(s) in terms of the basic case fiy (e qs)- It

follows that fi T@(s) is determined by the numerical invariants e, ¢/ attached to s
via (J, A).

5.4. We return to the general case of a connected reductive F-group G. Let
Za be the centre of G and let Z be a closed subgroup of Zg such that Zg/Z is
compact. We fix a unitary character x of Z, and consider the closed subset T@x of
-G consisting of classes of representations (, V) such that 7(z)v = x(2)v, z € Z,
v € V. This can be analyzed in exactly the same way, via pairs (K, p), where K is
open, containing Z such that K/Z is compact, and p is an irreducible representation
of K such that p|Z is a multiple of x. The formal degree calculations [11] 7.7.11,
[12] 8.2 follow exactly this course.

6. Split covers

There is a specific family of applications of 5.1 Corollary within the theory of
types. Greater generality is possible in the following arguments, but we concentrate
on the main case.

6.1. We recall, with necessary detail, a basic construction from [13] §6 et seq.

As before, let G be a connected reductive F-group. We fix an F-Levi subgroup
M of G and a parabolic subgroup P of G with Levi component M. Thus P = M N,
where N is the unipotent radical of P. We let P be the M-opposite of P, so that
P = MN, where N is the unipotent radical of P.

We fix Haar measures pas, g on M, G respectively. Let t € B(M). We make
the following;:

Hypotheses.

(1) There exists a t-type (Kpr, par) in M.
(2) The pair (Kyr, py) admits a G-cover (K, p).
(3) Every function ¢ € H(G, p) has support contained in KMK.

Remark. A G-cover (K, p) of (K, par) satisfying hypothesis (3) is called a split
cover.

The definition of cover [13] 8.1 requires that K N M = K; and
K=KNN-Ky-KnN.

Moreover, p| Ky = par, while Ker p contains both K NN and K N N.
We may write t = [L, 0], for a cuspidal datum (L, c) in G with L C M. We
set

s=1% = [L,0]g € B(G).
The pair (K, p) is an s-type in G [13] 8.3.
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6.2. Under the hypotheses of 6.1, there is a close relation between the Hecke al-
gebras H(M, par), H(G, p). We may view pps, p as sharing the same representation
space W. We first recall [13] 6.3:

Lemma 1. Let ¢ € H(M, prr) have support KpyymKyy, for some m € M.
(1) There exists a unique function T$p € H(G, p), with support KmK, such
that To(m) = ¢(m) (as elements of Endc(W)).
(2) The map T : H(M, ppr) — H(G, p) is an isomorphism of vector spaces.
Let m € M; one says that m is K -positive if
m(KNN)ym*c KNN, and m(KNN)m~'>KnNN.
Part (ii) of [13] Theorem 7.2 yields:

Lemma 2. There is a unique algebra isomorphism to : H(M, par) — H(G, p) such
that, if ¢ € H(M, ppr) has positive support, then to¢p = T¢. Moreover,

supptof = K -suppf - K,
for any 6 € H(M, ppr).

Let 6 denote the module of M (or P) acting on N. That is, if uy is a Haar
measure on N and m € M, then

on(m) = pn(mSm™1) /un(S),

for any measurable subset S of N.
For ¢ € H(M, ppr), define a function ¢’ by

¢ x— P(x) 511\,/2(3:), z e M.

The map ¢ +— ¢’ is then an algebra automorphism of H (M, ppr). Moreover:
Proposition. The map

3 H(M, pa) — H(G, p),

¢ — to(¢)

is an isomorphism of Hilbert algebras.
Proof. The map j is certainly an isomorphism of algebras, and it satisfies

supp j¢ = K -supp ¢ - K,
for any ¢ € H(M, par). The proposition will therefore follow from 5.2 Proposi-

tion when we verify that j is a homomorphism of algebras with involution. That,
however, follows from [13] 7.4. O

6.3. Let us now abbreviate A = H(G,p), B = H(M, ppr). We have equiva-
lences of categories

R(M) — B-Mod, R (G) — A-Mod,
(0, W) — W,,,, (m, V) — V.
The isomorphism j of 6.2 gives a functor, indeed an equivalence of categories,
jx : B-Mod — A-Mod,
X — Homg(A, X).
This has the property [13] 8.4:
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Proposition. The diagram

R (M) —F s ()

B-Mod —— A-Mod

I

commutes.

Remarks. Assume for the moment only that (K, pa) is a t-type admitting a
G-cover (K, p). There is then an algebra homomorphism j relative to which the
preceding Proposition remains valid. When (K p) is a split cover of (K, par)),
then j, and (§ are equivalences of categories. Indeed, j, is an equivalence of cate-
gories if and only if (K, p) is a split cover of (K, par). A more general phenomenon
of this kind holds, without assuming the existence of types and covers. The group
Ng(M) acts on B(M) by conjugation: let Ng(t) denote the stabilizer of t for this
action. According to [26], the functor (& : R(M) — Rs(G) is an equivalence of
categories if and only if Ng(t) = M.

We now translate to the context of unitary representations. Directly from 5.1
Corollary, we obtain:

~

Theorem. With the hypotheses of 6.1, there is a unique map T : TZ/W\(pM) — +G(p)
such that

(ZV), = 5e (Vo) = (E7¥)p. (1. V) € - M(pnr).
The map T is a homeomorphism and, if S is a Borel subset of TJ\/Z(,OM), then
e (Bnr) fine (S) = pe (K) (T 'S).

We remark that the map Z here is the inverse of the map J given by 5.1. The
map J, in this situation, corresponds to taking the t-component of the normalized
Jacquet module at N.

6.4. Example. Take G = GL,(F), let s = [L,0]g € B(G). Write s;, =
[L,o]r € B(L). Let M be an F-Levi subgroup of G containing N¢(s1,) and minimal
for this property. Write sp; = [L,o]p € B(M). In the obvious notation, we then
have Ng(ﬁM) =M.

By the choice of M, there is an sps-type (K}, p)y;) in M which is a tensor prod-

—

uct of simple types. The Plancherel measure fips| M (sps) is therefore determined
as in 5.3.
The main construction in [14] shows:

(6.4.1) There is an open subgroup Ky of K, and a smooth representation py of
K such that

(1) the representation of K}, induced by pa is equivalent to ply, and
(2) the pair (Kar, par) admits a split G-cover (K, p).

In particular, (Kas, par) is an sp-type in M and (K, p) is an s-type in G.
Proposition 6.2 gives an isomorphism H (M, par) = H(G,p) of Hilbert algebras.
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The canonical algebra isomorphism H(M, par) = H(M, p),) of [11] (4.1.3) is an

—~

isomorphism of Hilbert algebras, so fig| r@(s) is given by fips| M (spr) and 6.2.

6.5. Comment. Take integers ni,ne > 1, set n = ni+nge, G = GL,(F),
G; = GL,,(F), and let M denote the maximal Levi subgroup G; x G2 of G. We
take an irreducible cuspidal representation m; of GG; and form the representation
o =71 @mg of M. For simplicity, let us assume that (in the case n; = ns) the pairs
(G;,m;) are inertially inequivalent. Setting s); = [M, o], we have Ng(spr) = M.
We take types (Kar, par), (K, p) as in 6.4.

Let ¢ be a nontrivial character of F. In [9], we calculated the conductor
f(m x 7ra,1)) of the pair (71, 72), in the sense of [20]. We followed the approach
of [28], which obtains the local constant e(m X 72, s,%) by comparing a standard
intertwining operator with uniqueness of Whittaker model. Taking the composite of
two suitable operators, one obtains a scalar operator with eigenvalue ¢—f(m1>72:¢)
where ¢ is the size of the residue field of F'. We calculated this as the quotient
of volumes pug(K)/par(Kpr). As remarked in [28], this composite of intertwining
operators is indeed the quotient of Plancherel measures, as shown here directly.
Note, however, that in [9] there is a relation between the Haar measures ug, pas
dictated, in a subtle way, by the character .
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Jacquet Modules and the Asymptotic Behaviour of Matrix
Coefficients

Bill Casselman

There is an intimate relationship between the asymptotic behaviour at infinity
of matrix coefficients of admissible representations of both real and p-adic reduc-
tive groups and the way in which these representations embed into representations
induced from parabolic subgroups. Weak versions of this were known for a long
time for real groups but, until work of Jacquet on p-adic groups around 1970, one
didn’t really understand very well what was going on. Starting with Jacquet’s ob-
servations, something now called the Jacquet module was constructed, first and
most easily for p-adic groups, and then, with somewhat more difficulty, for real
groups (see [Casselman: 1974] and [Casselman: 1979]). More or less by defini-
tion, the Jacquet module of a representation controls its embeddings into induced
representations, and following another hint by Jacquet it was established without
a lot of difficulty that algebraic properties of the Jacquet module also controlled
the asymptotic behaviour of matrix coefficients. What characterizes this best is
something called the canonical pairing between Jacquet modules associated to
a representation and its contragredient. It is not difficult to define the canonical
pairing abstractly and to relate it to matrix coefficients, but it is not so easy to
determine it in cases where one knows the Jacquet modules explicitly. The formula
of [Macdonald: 1971] for spherical functions is a particular example that has
been known for a long time, but I'm not aware that this has been generalized in
the literature in the way that I’ll do it. In this paper I'll sketch very roughly how
things ought to go.

For p-adic groups, there exists also a relationship between the asymptotic be-
haviour of Whittaker functions and the Whittaker analogue of the Jacquet module.
The best known example here is the formula found in [Casselman-Shalika: 1980]
for unramified principal series. I think it likely that a similar relationship ex-
ists for real groups, and that it will explain to some extent the recent work of
[Hirano-Oda: 2007] on Whittaker functions for SL3(C). T'll make a few com-
ments on this at the end of the paper.

The results discussed in this paper were originally commissioned, in a sense,
by Jim Arthur many years ago. He subsequently used them, at least the ones
concerned with real groups, in [Arthur: 1983], to prove the Paley-Wiener theorem.
His argument depended on Harish-Chandra’s Plancherel formula for real reductive
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groups but in fact, with a little thought and a few observations about Plancherel
measures, one can deduce that formula at the same time as following Jim’s proof.

There is one intriguing question raised by the results I sketch here. One trend
in representation theory over the past few years has been to replace analysis by alge-
braic geometry. This is particularly striking in the theory of unramified representa-
tions of p-adic groups, where sheaves replace functions, which are related to them by
Grothendieck’s dictionary. I have in mind the version of Macdonald’s formula as a
consequence of the ‘geometric’ Satake isomorphism of [Mirkovic-Vilonen: 2000],
for example. (There is an efficient survey of results about unramified represen-
tations in [Haines et al.2003].) What do these ideas have to say in the pres-
ence of ramification? Or about representations of real groups (which, according to
[Manin: 1991], ought to be considered infinitely ramified)?

As I have said, I shall give few details here. My principal purpose, rather, is to
exhibit plainly the astonishing parallels between the real and p-adic cases.

Throughout this paper, G will be a reductive group defined over a local field.
In addition:

P = a parabolic subgroup
N = Np = its unipotent radical
M = Mp = a subgroup of P isomorphic to P/N
A = Ap = maximal split torus in M
Yp eigencharacters of Ad, ’ A
A" ={ac Allafa)] < 1forall a € Xp}
P = opposite of P (i.e. PNP = M)

op(p) = | det Adn(p)|
W = the Weyl group with respect to A.

Thus dp is the modulus character of P.
Part I: What happens for p-adic groups

1. Notation. Suppose £ to be a p-adic field, G the t-rational points on an
unramified reductive group defined over ¢. In addition to basic notation:

A~ (e)={a€ Al|a(a)| <cfor all « € Xp}
K = K, = what [Bruhat-Tits: 1966] call a ‘good’ maximal compact.

Thus G = PK, and if P is minimal we have the Cartan decomposition G =
K, A~ K,.

I write @ —p 0 for a in Ap if |o(a)| — 0 for all @ in ¥ p. Because of the Cartan
decomposition, this is one way points on G travel off to infinity. T'll say that a is
near 0 if all of those same |a(a)| are small.

2. Admissible representations. In these notes a smooth representation
(m,V) of G will be a representation of G on a complex vector space V with the
property that the subgroup of G fixing any v in V is open. It is admissible if in
addition the dimension of the subspace fixed by any open subgroup is finite.

The simplest examples are the principal series. If (o, U) is an admissible rep-
resentation of M, hence of P, the normalized induced representation is the right
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regular representation of G on

Ind(7| P.G) = {f € C%(G.U) | {(p9) = 6, (D)o (p) f(9)}

If (m,V) is an admissible representation of G, its Jacquet module Vy is the
quotient of V' by the linear span V(N) of the vectors v — m(n)v, the universal N-
trivial quotient of V. It is in a natural way a smooth representation of M, which
turns out in fact to be admissible (see [Casselman: 1974]). The normalized
Jacquet module 7y is this twisted by (5;1/2.

The point of the normalization of the Jacquet module is that Frobenius reci-
procity becomes

Homg (7, Ind(o | P,G)) = Homp (7, 0) .

3. Matrix coefficients. The contragredient (%,XN/) of an admissible repre-
sentation (m, V') is the subspace of smooth vectors in its linear dual. The matrix
coefficient associated to v in V, v in V is the function

®5.0(9) = (0, 7(g)v) -
The asymptotic behaviour of matrix coefficients at infinity on the p-adic group G
is fairly simple, at least qualitatively. Jacquet first observed that if v lies in V/(N)
then (m(a)v,v) = 0 for a near 0—i.e. if |a(a)| is small for all @ in ¥ p. This implied,
for example, that the matrix coefficients of a cuspidal representation had compact
support modulo the centre of G. A refinement of Jacquet’s observation is this:

There exists a unique pairing (U, u )can Of Vﬁ and Vi with this property:
for each v, v with images w in V, u in Vi there exists € > 0 such that

~ 1/2 ~
(@ m(a)v) = 85 (@) (@ mx (@)u)an

fora in A= (g).

This canonical pairing induces an isomorphism of Vﬁ with the admissible dual
of V. It has a geometric interpretation. For example, if G = SLy(Q,) and v is fixed
on the right by SLs(Z,), then the matrix coefficient becomes a function on certain
vertices of the Bruhat-Tits tree of G, and their asymptotic behaviour is related to
the embedding of 7 via boundary behaviour into a representation induced from P,
a kind of complex line bundle over the copy of P*(Q,) that compactifies the tree.

4. Principal series. One can describe rather explicitly the Jacquet modules
of representations induced from parabolic subgroups. Can one then describe the
canonical pairing explicitly?

T’ll explain this problem by an example. Suppose P to be minimal and 7 to be
the principal series Ind(x | P, G) with x a generic character of M. Its contragredient
may be identified with

Ind(x | P,G)

where the pairing is

wh= A= [ etwrsan.

K

Can we find an explicit formula for (¢, R, f) as a — 07
Let me recall what we know about the Jacquet module in this situation. The
Bruhat decomposition tells us that G = | |,,cy, PwN, with PxN C PyN if 2 < y in
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W. As explained in [Casselman: 1974], the space Ind(x) is filtered by subspaces
I, of f with support on the closure of PwN. Similarly G = | | PwN, and Ind(x™?!)
is filtered by the opposite order on W. These two double coset decompositions are
transversal to one another. For each w in the Weyl group W we have a map

_ —1
Qw(f) B /NﬁwNwl\N f(w n) n

well defined on I,,-1. It extends generically (that is to say for generic x) to all of
Ind(x), and determines an M-covariant map from 7y to C,,. All together, as long
as x is generic, these induce an isomorphism of the (normalized) Jacquet module
7wy with @ wy. Similar functionals

(=  jwmdn
NNwNw—1\N
determine an isomorphism of 75 with @ wx ™.
The agreement of these formulas with the canonical pairing is clear—the two
Jacquet modules are dual, piece by piece, but the duality is only determined up to
scalar multiplication. We have therefore an asymptotic equality of the form

(o Raf) = Y cun 38 (a) wx(a) - Qu () Qul )
w
for a near 0, with suitable constants ¢, .

The problem we now pose is this: What are those constants?

There is a classical formula found in [Langlands: 1988] that gives the leading
term of the asymptotic behaviour for x in a positive chamber. It involves an analytic
estimate of an integral. (I'll present a simple case of Langlands’ calculation later
on, that of SLa(R).) The result stated here is a stronger and more precise version of
that result. What makes the new version possible is the apparently abstract result
relating asymptotic behaviour to Jacquet modules. One point is that we don’t have
to find the asymptotic behaviour of all matrix coefficients, just enough to cover all
the different components of the Jacquet modules. Another is that we just have to
look at one component at a time.

5. Integration. The question about the constants c, , is not quite precise,
because we have to be more careful about what the integrals mean. The first
point is that it is not functions on P\G that one integrates, but densities. These
may be identified with functions in Ind(5'/2), but the identification depends on a
choice of measures, and is definitely not canonical. There are two integral formulas
commonly used to make the identification of densities with functions in Ind(5'/?),
and I shall introduce a third.

The first formula depends on the factorization G = PK. The integral on
densities must be K-invariant, so we must have

f(x) dx = constant - / f(k)dk,
K

P\G
where we take the total measure of K to be 1. Indeed, we can just define the
integral by this formula, with this choice (and the constant equal to 1).

Since PN is open in G and the integral must be N-invariant, we may also set

f(z) dx = constant /ﬁf(n) dn .

P\C
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where now we can choose the measure on N so that K N N has measure equal to
1. Understanding this second formula requires some work to show that the integral
always converges.

The two formulas can only differ by a scalar. So we have

| swde=p [ g in

for some constant u, easy enough to determine explicitly in all cases:

Let B be an Iwahori subgroup of K and wy in K represent the longest
element of the Weyl group. Then p = meas(Bw,;B)/meas(K).

This is because Bwy B is completely contained in the single Bruhat double coset
ngp.

Integration over N (or, in a mild variation, over w,N) is in many ways the more
natural choice. It is, for example, the one that arises in dealing with Tamagawa
measures (implicit in [Langlands: 1966]). But it has a serious problem, and
that is the question of convergence. Convergence shouldn’t really arise here. The
theory of admissible representations of p-adic groups is essentially algebraic, and
one should be able to work with an arbitrary coefficient field, for which analysis is
not in the toolbox. We would therefore like to modify the formula

P\gf(x) dx = /ﬁf(ﬁ) dnm.

so as to make all integrals into sums, and avoid all convergence considerations.

This is easy, and a very similar idea will reduce the analytical difficulties for
real groups to elementary calculus. Choosing representatives of W in K, we get
also measures and similar formulas on the translates PNw~!. The variety P\G is
covered by these open translates, and we can express

f= wa (support of f,, on PNw ™)

as a sum of functions f,,, each with compact support on one of them. Then

f(z)de = Zw: /ﬁfw(xw_l) de = zw:/w fwlw™'z)de .

P\G Nw—1

All these integrals are now finite sums. This in turn gives explicit measures to
choose for evaluating €2, and €, because if N, = wNw~! then

Ny = (NyNN)(Ny N N).

One can also choose measures on each one-dimensional unipotent root group com-
patibly with the action of w in K.

6. A sample calculation. To evaluate the canonical pairing, we may deal
with each summand of the Jacquet module by itself. We can therefore choose both
f and ¢ with support on PNw™!, in which case it is easy to see what the asymptotic
behaviour of (¢, R, f) is.
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For example, if f, ¢ have support on PN and a near 0 we have

/fna dn—/faa na)p(n) dn
_51/2 /f na (n)dn
= 5},/2(a)x(a)f(1) /_ap(ﬁ) dn (if a is near 0)
N ~
e RONORGRTE)

Similar calculations work for all principal series, and as this suggests the canonical
pairing turns out to be that with ¢, ., = p for all w.
The most general result of this sort is that if

7 =Ind(c|Q, Q)

then the canonical pairing for the Jacquet module 7y, can be expressed explicitly
in terms of the canonical pairing for the Jacquet modules of o and certain Np-
invariant functionals on 7 determined by integration over pieces of the Bruhat
filtration, together with analogues for P for 7. This formula, an explicit formula
for the canonical pairing, is too elaborate to present here.

7. Range of equality. For what range of a does the ‘asymptotic’ equation
hold? The answer depends on the ramification of y as well as on the particular f
and . The most important result is that if y is unramified and both f and ¢ are
fixed by an Iwahori subgroup, then the equation is good on all of A~~. Macdonald’s
formula for the unramified spherical function is neither more nor less than the main
formula together with this observation about the Iwahori-fixed case.

8. Whittaker functions. Let P = MN be a Borel subgroup of a quasi-
split group G, and let ¢ be a non-degenerate character of the maximal unipotent
subgroup N. One may define an analogue V, ny of the Jacquet module to be the
quotient of V' by the span of all (7(n) — ¢(n))v.

The Whittaker functional on V' = Ind(o | P, G) is effectively in the dual of this,
and is defined formally by

(Wy, ) / Fwm)y=(n) dn.

and the Whittaker function as Wy (g) = (Wy, Ry f). Finding the asymptotic be-
haviour of Whittaker functions at infinity, or equivalently finding W, (a) for a — 0,
is similar to that of finding the asymptotic behaviour of matrix coefficients, with the
Whittaker functional Wy, replacing integration against . This is explained, maybe
a bit hurriedly, first of all in [Casselman-Shalika: 1980] and then in more detail
n [Casselman-Shahidi: 1998]. The approach given in that last paper was in
fact motivated by the approach to matrix coefficients that I have used here. There
exists in this situation a canonical map Vy — Vi ny = C describing the asymptotic
behaviour, roughly because as a — 0 the value of ¥(ana~!) becomes 1, and each
component of this map is determined by the effect of the standard intertwining
operators Ty, : Ind(x) — Ind(wy) on the Whittaker functional W,.
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Part II. Real groups

9. Introduction. Let now G be the group of real points on a Zariski-connected
reductive group defined over R. In addition, let

K = a maximal compact subgroup

g, etc. = complex Lie algebra of G etc.

In the first part, the simple nature of Jacquet modules as well as the phenomenon
that ‘asymptotic’ expansions are asymptotic equalities made our task easy. For real
groups, there are both algebraic and analytical complications:

e the behaviour of matrix coefficients at infinity on G is truly asymptotic, ex-
pressed in terms of Taylor series;

e the Jacquet module is, as it consequently has to be, more complicated;

e there is no Bruhat filtration for the usual representation of (g, K) on the K-
finite principal series. Instead, one has to consider certain smooth representa-
tions of G itself, for example the C'*° principal series;

e there are now two Jacquet modules to be considered, one for K-finite, one for
smooth spaces.

You can get a rough idea of what happens in general by looking at the case
of harmonic functions on the unit disk D, a space on which SLy(R) acts (since
the Cayley transform z — (z —i)/(z + i) takes the upper half plane X to D).
There are two spaces of interest: (1) the finite sums of polynomials in z and their
conjugates, a representation of (g, K); (2) the space of harmonic functions which
extend smoothly to D, on which SLy(R) itself acts. In either case, the constant
functions are a stable subspace, and the quotient is the sum of two discrete series,
holomorphic and anti-holomorphic.

The group P fixes the point 1 (corresponding to co on the upper half-plane),
and n acts trivially on the tangent space there. This means that if I is the ideal
of functions in the local ring O vanishing at 1, then n takes O to I, and in general
I™ to I"*!. The asymptotic behaviour of a harmonic function at 1 is controlled by
its Taylor series. The space of all harmonic Taylor series at 1 is a representation
of P as well as the Lie algebra g. This space of formal power series is the correct
analogue of the Jacquet module here. One thing that is deceptive here is that the
K-finite harmonic functions are polynomials. This is unique to that case.

One feature seen here, a feature characteristic of real groups, is that the ana-
logue of the Jacquet module has a simpler relationship to the representation on C'*°
functions than that on K-finite ones—the map from the first onto harmonic Taylor
series is actually surjective, while the second is not.

What I, and presumably everyone who works with both real and p-adic groups,
find so remarkable is that in spite of great differences in technique required to deal
with the two cases, the results themselves are uncannily parallel. It might incline
some to believe that there is some supernatural being at work in this business.

10. The real Jacquet module. If V is a finitely generated Harish-Chandra
module over (g, K) it is finitely generated as a module over U(n), and its contra-
gredient Vis finitely generated over U(n). Its Jacquet module is the completion
Vinj—the projective limit of the quotients V// n*V—with respect to powers of n (in-
troduced in [Casselman: 1979]). It is obviously a representation of (p, K N P)
and in fact one of P, even though V itself is not. Slightly more surprising is that it
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is a representation of all of g, although it is easy to verify. Not so surprising if you
think about the example of harmonic functions, where this completion ts the space
of harmonic Taylor series at 1 and the enveloping algebra U(g) acts by differential
operators.

This Jacquet module is easily related to homomorphisms via Frobenius reci-
procity from V' to representations induced from finite-dimensional representations
of P, since it is universal with respect to n-nilpotent modules.

The projective limit is a kind of non-abelian formal power series construction.
As in the p-adic case:

10.1. Proposition. The functor V — Vi, is exact.

Since a similar question will arise later in different circumstances, I recall how
this goes. As proved in [McConnell: 1967], the Artin-Rees Lemma holds for the
augmentation ideal (n) of U(n). This is one example of the fact that much of the
theory of commutative Noetherian rings remains valid for U(n). If

0>A—-B—-C—=0
is exact then we have a right exact sequence
o= A/M"A — B/n"B - C/n"C — 0.

The left inclusion is not necessarily injective. But by Artin-Rees, there exists k£ > 0
such that then ANn"B C n""*A for n > 0. Suppose (a,) lies in the projective
limit of the quotients A/n™A with image 0 in B/nB. Then for n large, a,4x lies
in n"A, so a, = 0. O

This argument will fail in later circumstances, but something close to it will

succeed. For the moment, let R be the ring U(n), I the ideal generated by n. The
long exact sequence above fits into

-+ — Tor®(R/I", B) — Torf(R/I",C) — A/I"A — B/I"B — C/I"C - 0.

The following is equivalent to Artin-Rees.

10.2. Proposition. If C is a finitely generated module over U(n), then for
some k and n > 0, the canonical map from Tori(R/I™,C) to Torl(R/I"*,C) is
identically 0.

Proof. Suppose

0—-EFE—-F—-C—=0
to be an exact sequence of finitely generated modules over U(n), where F' is free.

Choose k so that ENI*"F C I"%E for n > 0. Since Tor of a free module vanishes,
the proof follows from diagram chasing in:

0 —» Tol(R/I",C) — EJ/I"E — F/I'F
) i 1 A
0 — Torf(R/I"* C) — E/I"*E — F/I"*F ... O
10.3. Corollary. If
0—-A—-B—-C—=0

is an exact sequence of U(n) modules and C is finitely generated, then
0— A[n] — B[n] — C[n] —0

is also ezact.
Exactness for real groups is thus much more sophisticated than it is for p-adic
ones. Still, that one can define a Jacquet module and that it again defines an
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exact functor seems almost miraculous. The one common feature in both cases is
the connection with geometry—here with compactifications of symmetric spaces,
in the other with compactifications of the building. But then the analogy between
symmetric spaces and buildings is another miracle.

11. Verma modules. The Jacquet modules for real groups are closely related
to the more familiar Verma modules.
Traditionally, a Verma module is a representation of g on a space

U(g) ®upy V

where V' is an irreducible finite-dimensional representation of p. Since any finite-
dimensional representation of p is necessarily annihilated by some power of n, every
vector in such a space is also annihilated by some power of n. I shall therefore
introduce a slightly more general notion with the same name—what I shall call a
Verma module is a compatible pair of representations of U(g) and P on a space V
which is finitely generated and has the property that every vector in V' is annihilated
by some power of n. In other words, V is the union V" of its n-torsion subspaces
V(n™). The compatibility means that the representation of P agrees with that of
its Lie algebra p as a subalgebra of g.

Every Verma module is the quotient of one of the form U(g) ® () V, where
V' is a finite-dimensional representation of P. A Verma module will always have
finite length as a module over U(g), and will be annihilated by some ideal of Z(g)
of finite codimension.

How do Verma modules relate to Jacquet modules? If V' is a Verma module,
its linear dual V' is the projective limit of the duals of its finite-dimensional n-stable
subspaces. In other words we know that V is the direct limit of finite-dimensional
subspaces:

V =lim V(n"*)
—
which means that
V = the projective limit of the duals of the V(nk).

Furthermore, we have an exact sequence

0—=V@") -V = (dualof n*) @V
and we deduce the exact sequence

@V =V — dual of V(n*) = 0.

so that V is the projective limit of the finite-dimensional quotients ‘7/ nk V. Tt is a
finitely generated module over the completion Uy, of U(n) with respect to powers
of n".

Conversely, the topological dual of this completion —i.e. the space of linear
functionals vanishing on some n* V-—is the original Verma module. Thus, a natural
and straightforward duality exhibits a close relationship between Verma modules
and g-modules finitely generated over Up,. In particular, the Jacquet module of

V is the linear dual of the space of n-torsion in the linear dual V of V', which is a
Verma module in the sense defined above.

There is another duality relationship between Verma modules for P and those
for its opposite P. Something like this is to be expected in view of the duality
between Jacquet modules in the p-adic case, where N and N both occur in the
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description of asymptotic behaviour of matrix coefficients. It is easy to see that a
Verma module V is always finitely generated over U (). It is in fact the submodule
of n-finite vectors in its completion V = Viw).- The continuous dual U of V is then in
turn a Verma module for p. If we now perform the same construction for U we get
V back again. So the categories of Verma modules for p and p are naturally dual
to each other. This is crucial, as we shall see, in understanding the relationship
between Jacquet modules and matrix coefficients.

12. Jacquet modules and matrix coefficients. Matrix coefficients satisfy
certain differential equations which have regular singularities at infinity on G. This
implies that we have a convergent expansion

(@ m(a)o) =Y conpla)a™(a)

wed n>0

where ® is a finite collection of A-finite functions on A. If A = R*, for example,
functions in ® will be of the form |z|*log™ |z|.
An analogue of Jacquet’s observation holds:

For v in nkV or ¥ in @V the coefficient Cp.n vanishes for n < k.

This is easy to see for harmonic functions, since nthakes O to I*.
In the limit we therefore get a pairing of V[, with Vj5) taking values in a space

of formal series. The pairing of V}, with Vg is best expressed in terms of the
duality explained in the previous section. If v is annihilated by n then the series
associated to v and v will be finite, hence defining an A-finite function. So we are
now in a situation much like that for p-adic groups. This A-finite function may be
evaluated at 1, and in this we we get a ‘canonical pairing’ between V[, and the

n-torsion in ‘N/m ([Casselman: 1979]).

That the pairing is in some strong sense non-degenerate is highly non-trivial,
first proven in [Mili¢i¢ : 1977]. His argument was rather indirect. It will also be
a corollary of the computation of the canonical pairing for induced representations,
which is what this paper is all about.

13. Langlands’ calculation for SLz(R). The results for arbitrary reductive
groups are quite complicated, even to state (and remain so far unpublished). To
give you at least some idea of what goes on I'll look just at the principal series of
SL2(R). But in order to offer some contrast to what is to come later, I'll begin with
a ‘classical’ argument to be found in [Langlands: 1988], which is itself presumably
based on earlier results of Harish-Chandra.

Suppose that f lies in Ind*(x), ¢ in Ind*(x~1). The associated matrix coef-
ficient is

oRof) = [ ola)i(eg)da.
P\G
In the rest of this paper, let

In the following result, let
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13.1. Theorem. (Langlands) If x(x) = |z|® with R(s) > 0 then

(2 Ry ) ~ 8 (ar) X~ (ar)p(w) /N f(wn)dn

ast— 0.
This is an asymptotic equation, with the interpretation that the limit of

. <§07 R(er -
P 572 () W

It is well known (and we’ll see in a moment) that for R(s) > 0 the integral

/fwn

is absolutely convergent and defines an N-invariant functional on Ind(x).
Proof. We have

() R, f) = /N f(wna)p(wn) dn
= / fwayw™ - w - a; *nay)p(wn) dn
N
=6 Y2 (ap)x ay w - ay 'nag)p(wn) dn
5 ()x()/Nf( Jo(wn) d
= 572 (ag)x " (ar)d(ar) / f(wn)p(w - amna; V) dn
N

_ 51/2(at)X71(at)/Nf(wn)<p(w . atnat_l)dn.

We’ll be through if T show that

lim/ fwn)p(w - atnat = /fwn
t—0

First I recall the explicit Iwasawa factorization for SLo(R):

Rl e

where r = v/c2 4+ d2. Thus we can write

o -E [

where n,, k, are continuous functions of z.
As a consequence, the integral is

(s s—1)/2
/(x2+1) (+1)/2f(kw)((t21‘)2+1)( )/ o(ky2p) da.
R
The integrand converges to

(&% + 1) D2 f (k) o (w)

as t — 0. According to the dominated convergence theorem (elementary in this
case, and justified in a moment) the integral converges to p(w) - Qy (f)-

In later sections we’ll see a more precise description of the behaviour of matrix
coefficients at infinity on G.
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I include here a Lemma needed to apply the dominated convergence theorem,
a pleasant exercise in calculus.
13.2. Lemma. For all 0 < |t| <1 and 0 < s the product

(332 + 1)_(S+1)/2((t2$)2 + 1)(5_1)/2

lies between (2 + 1)~ /2 gnd (22 +1)~1.

Proof. These are what you get for t = 0, t = 1, and the derivative with respect
to t is always of constant sign in between.

We shall see later that this result gives only the leading term in an infinite
asymptotic series.

14. The Bruhat filtration. Now let’s begin a new analysis, following the
p-adic case as closely as possible. We need first to say something about the Jacquet
module for principal series. Here, as in the p-adic case, this depends on the Bruhat
decomposition G = P| | PwN.

Let V' be Ind™(x). For f in this space let {2y be the map from U(g) taking X
to X f(1). This lies in a kind of infinitesimal principal series

Vi = Homy ) (U(g): C,512) -

In this way, we get a p-covariant map
Q: f— Q.

Let V,, be the subspace of functions in V' vanishing of infinite order along P, which
are the closure in Ind® () of those functions with compact support on PwN. By
a theorem of E. Borel this fits into a short exact sequence

05V, Va3 0.

I call this the Bruhat filtration of V.
It is important to realize—originally, it took me quite a while to fully absorb—
that:

There does not exist such a sequence for the K-finite principal series.

After all, the K-finite functions are analytic, and an analytic function cannot
vanish of infinite order anywhere. In other words, we do not have a good Bruhat
filtration for the representation of (g, K) on the K-finite principal series. In spite
of this, we do have however a filtration of the Jacquet module of the K-finite
principal series, because according to the main result of [Casselman: 1989], the
Jacquet modules of a K-finite principal series and its C'*° version are the same,
in a very strong sense. The way in which this is phrased in [Casselman: 1989
is that any (g, K)-covariant homomorphism from one K-finite principal series to
another extends continuously to a map between the associated smooth principal
series (the phenomenon called in [Wallach: 1983] ‘automatic continuity’). These
two assertions are essentially equivalent because of Frobenius reciprocity. Another
miracle to put in the pot.

As before, I define the Jacquet module of any representation U of g to be the
projective limit of the quotients U/n*U. As in the p-adic case, the Bruhat filtration
of V gives rise to a filtration of its Jacquet module.
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14.1. Proposition. The exact sequence defining the Bruhat filtration gives
rise to an exact sequence of Jacquet modules

0— (Vw)[n] — V[n] — (Vl)[n] — 0.

As we have seen, if the terms in the original exact sequence were finitely gener-
ated over U(n), this would be a consequence of the Artin-Rees Lemma. This would
still be true if they were finitely generated over U(n)p,. However, I have proved a
variation of Artin-Rees which applies here, because of:

14.2. Lemma. The space Vi is the linear dual of the Verma module
U(g) ®U(p) CX,16;/2.

This is straightforward to verify, and well known. In particular, the space
Vi is finitely generated over U(n),), and with the help of a few standard results
comparing Tor for U(n) and its completion, we can deduce the exactness we want.

|

Incidentally, in the case at hand we can prove everything directly. Again let
R =U(n), and let I be the ideal generated by n. If v is a generator of n, the ring
R is just a polynomial algebra in v. The group Tor?([",A) is the subspace of A
annihilated by I"™. The completion of R with respect to I is still a principal ideal
domain, and the torsion in V7 is finite-dimensional. In particular, there exists some
k > 0 annihilating all its torsion. The canonical projection from Torf(R/I", V;) to
Torf(R/I"*,V}) may be identified with multiplication by v*, which annihilates
all torsion. This is a special case of what I called the variant of Artin-Rees.

One immediate corollary of the Lemma is this:

14.3. Corollary. The subspace n*V) is closed in Vi of finite codimension.

In order to fully understand the Bruhat filtration of the Jacquet module, we
must figure out what (V)] is. The group N is isomorphic to the additive group R.
Its Schwartz space S(IV) is defined by this identification. An application of the same
calculations we made for Langlands’ Theorem, using the Iwasawa decomposition,
tells us:

14.4. Proposition. The restriction of V,, to N is isomorphic to the Schwartz
space S(N).

This is a slight generalization of Schwartz’ identification of S(R) with the space
of those smooth functions on the projective line that vanish of infinite order at oo
(which is in fact a special case).

14.5. Proposition. A function f in V,, lies in n*V,, if and only if

/ P(n)f(n)dn=0
N

for every polynomial P of degree < k.

This identifies the n-torsion in the dual of V,,,. It is a simple exercise in calculus.

14.6. Corollary. The space n*V,, is closed in Vy,, and every quotient V,, /n*V,,
is free of rank one over U(n)/nkU(n).

This gives us:

14.7. Proposition. Each space w*V is closed in V' and has finite codimension.

Proof. If U — V is a continuous map of Fréchet spaces with image of finite
codimension, then its image is closed. This is because if F' is a finite-dimensional
complement, the associated map from U @ F to V is continuous and surjective, so
that the induced map from (U / ker(f )) @ F is an isomorphism of topological vector
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spaces, by the open mapping theorem. The long exact sequence
ce = Vi /0RV, = VEYV S Vi ek =0

tells us that n*V has finite codimension, but it is also the image of a map from
2Fn@V to V. O

Now, let’s try to understand what we have on hand. Dual to the Bruhat
filtration of Ind(x) by double cosets PwN is that of its contragredient Ind(x ') by
cosets PwN. Let the corresponding exact sequence be

0—>17w—>1~/—>1~/1—>0,

giving rise to
0— (Vw)[ﬁ] — ‘/[ﬁ] — (Vl)[ﬁ] — 0.

These two coset decompositions are transversal to one another—the coset PN is open
in G and contains P = PN, while PwN is open in G and contains PwN. Every
smooth function on PwN therefore determines a Taylor series along Pw = PwN,
and in particular every polynomial P(n) on PwN determines one. As we have seen
these are all annihilated by some power of n, so it should not be too surprising to
see:

14.8. Proposition. As a module over g, the n-completion of V., is isomorphic

to the n-completion of the continuous dual (Vi)

Similarly for 171 and V7.

So now we find ourselves in exactly the same situation we saw in the p-adic
case—Bruhat filtrations of Ind(x) and Ind(x~!) with corresponding terms in the
associated graded spaces dual to one another. In the next section we shall see that
this duality matches with the asymptotic expansion of matrix coefficients.

Generically, the Bruhat filtration of Jacquet modules will split, but for isolated
values of x it will not.

There is one final remark to make. Of course the K-finite principal series
V(k) embeds into the smooth one V', inducing a map of their Jacquet modules.
As I have already mentioned, it is a consequence of the ‘automatic continuity’
theorem in [Wallach: 1983] that this is an isomorphism. Thus, although there is
no Bruhat filtration of V{ k), there is one of its Jacquet module. It’s a curious fact,
and presumably a fundamental one.

15. The explicit formula.

Let me recall where we are in the discussion. We want to calculate (¢, R, f)
for ¢ in Ind>*(x~1), f in Ind>(x). As with p-adic groups, since the asymptotic
expansion of matrix coefficients factors through Jacquet modules, but here I do not
see how to use that to simplify calculations. The problem is that we must look at
what happens for smooth functions.

T'll look here at a principal series representation of SLo(R). Let

“= {(t) 1(}15] '

Set x(a) = |t|® as in the discussion of Langlands’ formula.
We express f in Ind(y) and ¢ in Ind(x ') as sums of functions with support
on the open Bruhat double cosets:

f=fut+fi, ¢o=0ut+v1
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where *,, has support on PwN, *; on PN. We will see what happens to each term
in
<§0a Raf> = <901a Raf1> + <<P1a Rafw> + <<Pwa Raf1> + <<Pw; Rafw>

ast — 0.

Tl look first at (., Ra fw) because it offers an interesting comparison with the
verification of Langlands’ formula. To simplify notation I'll set ¢ = @y, f = fu.
We get here as before that

(. Ruf) = 62"\ (a) /N f(wn)p(w - ana™Y)dn,

We must look at the integral, also as before. But here things are somewhat sim-
pler analytically—the functions f(wn) and @(wn) are both of compact support as
functions of n. Set
1=z
=0 ]

and change both the variable n and the functions f(wn) and p(w - ana™!) of n to
functions of x. So we are now considering the integral

/R f(@)p(t2e) d

where f and ¢ are both of compact support on R. You can see immediately and
roughly what is going to happen—as t — 0 ¢(t2z) will be more or less determined
by its behaviour near 0, or in other words by its Taylor series at 0. We get formally

[ 1@t ae= [ 1) Y e om0 de

m>0
(0
= #(0) — ) /Rxmf(a:) dx
m>0 ’

Because f and ¢ have compact support, it is not hard to justify this as an asymp-
totic expansion.
We can find a more enlightening interpretation of this. Let

—_ 0 0
|10
be a generator of . In terms of our choice of coordinates in N the functional

ﬁwm: Ind(x™!) = C, ¢ = Rpm f(w)
is the same as that taking it to ¢(™)(0). It is annihilated by n™. Let
Qum: Ind(x) = C, f— /Nxmf(wn) dn,
which is a meromorphic function of x. In these terms, the formula becomes
(0 Baf) ~ 8"2(@)x (@) (3 P () Quvn(F))

m>0

Actually, this whole expansion can be deduced from the algebra of Verma modules,
if one knows just the leading term. The expansion expresses, essentially, the unique
pairing between generic terms in Jacquet module of the principal series. After
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all, generic Verma modules are irreducible, so the pairing is unique up to scalar
multiplication.

The term (1, R, f1) has a similar asymptotic expression in terms of the Jacquet
modules of V1 and V and the cross terms vanish asymptotically. Define functionals
Qm QLm as I did €, and Qw)m In the end we get as asymptotic expansion a
sum of two infinite series

(o, Buf) ~ 8"*(a (Z () ()

m>0

+ 62 (@x(@) (3 Bm(@)2m(h))

m>0

There is one series for each component in the Bruhat filtration. This is therefore
the analogue for real groups of Macdonald’s formula for spherical functions on
SL2(Qp). Of course, Macdonald’s formula is an exact formula, but here we are
given an asymptotic expansion. But, in fact, K-finite matrix coefficients satisfy
an analytic ordinary differential equation, and the formula for them becomes one
involving convergent series valid everywhere except for a = I, where the differential
equation has a (regular) singularity.

Macdonald’s formula, incidentally, is proven along similar lines in
[Casselman: 2009].

16. Whittaker functions. Whittaker functions for real groups also satisfy
a differential equation with regular singularities along the walls a = 0 for simple
roots « (although irregular at infinity in other directions). Suppose ¥ to be a
non-degenerate character of n. If V' is a finitely generated (g, K )-module, then its
Kostant module (following [Kostant: 1978]) is the space V™) of ny-torsion
in the continuous dual of its canonical G-representation—that is to say continuous
linear functionals annihilated by some power of the U(n)-ideal generated by the
x —Y(x) for  in n. We have a map from Vil g V, taking W ® v to the series
expansion of (W, m(a)v) at @ = 0. How can we fit this into a scheme such as we
have seen above?

I have only a rough idea of what to propose. In the p-adic case we have a
canonical map from Vi to Vi n. In the real case, both the Jacquet module and
the Kostant module are very different as modules over U(n), but have similar
structures as modules over n. A Kostant module is finitely generated over n, and
if U =Vl we get a map from the Jacquet module of V' to the n-completion. An
explicit formula for the expansion of Whittaker functions on the smooth principal
series would then follow from a calculation of the scalars defined by intertwining
operators on Whittaker models. This would not be all that different, conceptually,
from what happens for p-adic groups.
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The ABS Principle : Consequences for L*(G/H)

Laurent Clozel

Pour Freydoon Shahidi, a l’occasion de son soixantiéme anniversaire

1. The purpose of this note is exclusively propagandistic. As we have shown in [8],
the principle in the title has remarkable consequences for the harmonic analysis of
(real or p-adic) semi-simple groups. Precisely, when H C G are two such groups,
this principle imposes very strong constraints

(i) on the representations of H weakly contained in an irreducible represen-
tation wg of G

(ii) on the representations of G weakly contained in ind% 7y , where 7 is an
irreducible representation of H.

(All the representations considered are unitary).

In both cases, the given representation 7y (or 7¢) has to be assumed to belong
to the set of representations singled out by Arthur [2], and which should be the
constituents of the spaces of automorphic forms (for the action of the local, p—adic
group). The Burger—Sarnak principle ([5], [6]) states that these sets are preserved
by induction or restriction. Thus “ABS” stands for Arthur, Burger and Sarnak.
The rigidity argument, which implies the constraints, was introduced in [8], § 3. It
is strongest when we consider unramified representations of G, or H. It involves
a trick called the (p, ¢)—trick in [9].

When (ii) is applied to 7y = Iy= trivial representation, the induced represen-
tation is simply

L*(G/H)
and the ABS principle gives significant a priori information on its spectral decom-
position. It is not complete, because Arthur’s conjectures are not proven. However
approximations of the conjectures are known (and rather precise ones will be, for
classical groups, when Arthur’s program ([2], Ch. 30) is completed). It is quite pos-
sible that these approximations may be useful to determine the spectrum, much
like an argument of Bernstein [4] was successfully used by Delorme [10]. Meanw-
hile, the principle gives much (conjectural) a priori information which should be
useful. We have tried to illustrate, by examples, how it sheds light on some known
or unknown cases, in particular when (G, H) is a symmetric pair as in the work of
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Delorme and others. We will not describe the consequences of the ABS principle
in case (i) as this was done in [9], and made explicit by Lapid, Rogawski [13] and
Venkatesh [16].

2. Arthur’s formalism can be studied in Arthur [2], and has been described, in the
terms needed here, in [8], Ch. 3 and [9]. We refer the reader to these papers for
more details.

Assume for simplicity G, H split over a local field F' (which may be real, p—
adic or a function field). If G is the dual group Arthur considers homomorphisms
(“Arthur parameters”)

¢: WhxSL(2,C) — G
where Wi = the Weil group Wy if F=Ror C
Wi =Wg x SL(2,C) if F'is p-adic.

The restriction of ¥ to W is supposed to be tempered. Unramified parameters
are of the form

¥ Wg x SL(2,C) — G

(thus, trivial on the “first” SL(2) in the p-adic case), and unramified as maps
Wp — G. In the real or complex case, this means that the parameters factor as
sums of unramified characters of R* or C*.

The type of ¢ is the map SL(2,C) — G, which defines uniquely a unipotent
conjugacy class U in G. (Parameters are, of course, considered up to conjugacy).
These parameters are expected to parametrize representations of G = G(F') occur-
ring in L?(G(k)\G(A)) where k is a global field of which F is a completion, and
A = Aj. There will be some ambiguity (¢ will determine a set II(¢) of representa-
tions, expected however to be finite) and some overlap (II(¢)) and II(¢’) will not,
in general, be disjoint). Let us denote by (@) the set of unipotent orbits in the
dual group.

To each v we associate a unipotent orbit U & U(CAT'), determined by |gr(2,c)-
(Recall that unipotent orbits correspond uniquely to maps
SL(2,C) —s G by the Jacobson-Morozov theorem). In particular :

e U = {1} if the parameter ¢ is tempered

e U is unipotent regular if 9| g1,(2,c) is the “maximal” representation SL(2,C) —
G. In this case, 1 sends W into Z(G) (the center) and the associated packet IT(1)
is an Abelian character of G — the trivial representation if ¢ =1 on Wr.

Recall that a Langlands parameter is simply

o:Wh — G

(with semi-simple image). It is expected to parametrize an L—packet II(p) of re-
presentations; this is known for ' = R or C, and for any F if G = GL(n). To an
Arthur parameter we associate a Langlands parameter

1/2 N
(2.1) Oy 1 W > Y (w, ( [l | ~1/2 )) ed

where w € Wi, and |w| is simply |w;| if w = (w1, s) € Wr x SL(2,C). (The absolute
value is given by the reciprocity map Wr — F'*). The L—packet II(¢,) should be
a subset of TI(v)).
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Suppose 9 is unramified. Then ¢, defines, by the known Langlands functoria-
lity in the unramified case, a unique unramified representation (1), with Hecke

matrix
1/2 N
tinton) = v (wob (77, )) e

q is the cardinality of the residue field, and Frob € Gal(k/k) a Frobenius element.
(In the Archimedean case, 7(¢) is defined by the homomorphism (2.1) : Wp —
F* — G and the Langlands parametrization). As in [8], [9] we will assume :

ASSUMPTION 2.1.— For ¢ unramified, 7(¢) is the unique unramified element of
II(x)).

This is true for SL(n). For F real or complex, it should be included in the
results of [1]. For G classical (i.e., orthogonal or symplectic) it follows from the
results announced by Arthur in [3], with some ambiguity if G = SO(2n) (split).

Now return to the situation (ii) of § 1. We have assumed G, H split, but we
will allow ourselves to relax this condition in the examples. In the split case we
take models of G, H over Z and we have maximal compact subgroups G(or),
H(op) — in the p—adic case. (This was implicit in Assumption 2.1 : “unramified”
means unramified w.r. to G(or)). We can consider the unramified part L2 (G/H)
of L?(G/H), i.e., the subspace generated under G by

L*(Kc\G/H)

where K¢ = G(oF). In the real case, K¢ is the maximal compact subgroup.

By the Burger—Sarnak principle for induction (due to Burger, Li and Sarnak
[5] ; and proved in [8], § 3) the support of this representation in G belongs to the
automorphic spectrum [5] and therefore, conjecturally, to the set of representations
parametrized by (unramified) Arthur parameters. In particular, to each constituent
(possibly continuous, of course) of L2, corresponds a unipotent orbit.

PRINCIPLE 2.2.— The constituents of L2, are associated to a unique unipotent orbit
U = Ind§ (Up,req) C G.

Here Ug reqg C H is the regular orbit, and the symbol Indg will be explained
below.

Note that this is a rather strong contraint. For instance, if one tempered re-
presentation belongs to the support of L2, this whole representation is tempered.

We sketch a “proof” assuming (the global variant of) Arthur’s conjectures.
(For more details see [9]). We can choose a global field k such that F, F' are two
completions of k, say k, and k.

By Burger-Li-Sarnak (extended in [8], § 3 to the S—arithmetic case), the sup-
port of

cAG(ke)XG(kw) ¢ _ o 1G(ky) 1 G k)
ind Vs e I = ind 2 T@ indp ) 1

is composed of automorphic representations. Assume 7, ® 7, is irreducible in the
support. If they are unramified, they are associated to the same orbit. But this
applies to 7, ® 7y, and 7, ® m,. Thus, if 7, and 7/, occur, they belong to the same
orbit. (This is the “p, g—trick”).

We note that in many cases the Principle is (approximately) true. For instance,
if G = SL(n), Arthur’s partition of the automorphic spectrum is a theorem, due
to Moeglin-Waldspurger and Luo, Rudnick and Sarnak [8], § 3. (It is not known
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that automorphic representations are of the form (2.1) with ¥y tempered, but
it is true modulo the “approximation to the Ramanujan Conjecture”. At any rate,
the orbit U is well-defined). Interpreted in this fashion, the Principle is a theorem
— with the proof given above. When Arthur’s results announced in [3], Chapter 30
are complete, this will apply to classical groups.

What happens if we induce another representation of H ? (Of course, this is
less interesting for the analysis on homogeneous spaces. . .). If 7y is unramified, and
of Arthur’s type, consider

I = indgﬂ'H, and I, CI.

PRINCIPLE 2.3.— The constituents of I,,,. are associated to a unique unipotent orbit
U := Ind$ (Ug) where Uy is the orbit associated to 7.

In [9] we shew that these considerations, for restriction, gave a natural map
Res : U(G) — U(H) between unipotent orbits. Here we get an induction map
Ind : U(H) — U(G). Tt will have similar properties, e.g.

nd% o Ind%, = Ind%, .

However, one of the most interesting parts of [9], i.e. the multiplication

~ ~ ~

UG) xUG) — U(G)
associated to the diagonal embedding G — G X G, is here lacking : for H = G C
G x G we should consider
inngG(wG) .
If 1¢ = I — the “largest” representation from the spectral point of view — this
is tempered, thus
Ind(Uyeg,¢) = laxa (trivial orbit) .

By Lemma 1 of [16], this implies that the induced representation from any
unitary representation is tempered. Thus the “comultiplication” is trivial.

An explicit description of the (conjectural) map Indg is unknown. For G =
GL(n) and H = M a Levi subgroup, the map has been computed by Lapid—

Rogawski [13] and [16]. In this case M is a Levi subgroup of G.
For instance, assume M = GL(n1) x GL(n2) C G, so M = GL(n;,C) x
GL(n2,C) C G. A unipotent orbit in GL(n,C) is given by a partition
n=my+---+mg,

the trivial representation (minimal orbit) being associated to the partition n = n.
If (m;), (m);) are partitions of ny and ny, the orbit associated to

G
indy; (),
where 7 is a representation of GL(n1) x GL(nz) of types (m;, m’), has type
<m;+mn;—n, m;-+n2—n>n

where, for a set of integers ay, (here indexed by {i} U{j}), the partition < aj >, is
obtained by keeping the integers > 2 and completing by 1’s so as to get a partition
of n.

For instance, if 7 is trivial (so we are decomposing L?(G/M)) we get the type

<2ni1—n, 2ng—n >,
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which is tempered (equal to (1,1,...,1)) if ny = ny = 5. Similarly, if there are r
blocks we get < 2n; —n > which is the orbit {1} unless one of the n;’s is > %.

In particular this induction is not the Lusztig—Spaltenstein induction of orbits,
which sends the regular orbit (associated to the trivial representation) to the regular
orbit [14]. Note that if r = 2, G/M is a “reductive symmetric space” in the sense
of [10], [15], i.e., M is the set of fixed points of an involution.

What can we say about the whole spectrum of I = ind%(Iz)? Assume we
have determined the orbit U C G in Principle 2.3. Thus we have a representation
SL(2,C) — G. (Of course there are unramified representations in I since there
are K—invariant functions on G/H). If we apply the (p, q)- trick again (taking 7,
unramified) we see that :

PRINCIPLE 2.4.— Any representation m in the support of L>(G/H) belongs to an
Arthur packet TL(1)), of type U.

In terms of Langlands parameters, it is expected that II(¢) contains II(py)
(Langlands packet) as well as other representations that are “smaller” from the
spectral point of view, that is, more tempered. If they belong to a II(yy), for
instance, the unipotent orbit of 1)’ should be smaller. (I do not know if, for instance,
the orbit U (v") should be in the closure of U(%))).

3. Queries and examples

We first recall that the arguments in section 2 assumed G split, or at least un-
ramified, at the local prime used to determine the type. If we consider, for instance,
a group over R that is not quasi-split, the spherical representations of G occurring
in L2(G/H) can be quite different, cf. Faraut [11] for SO(n, 1). They can probably
belong to different Arthur packets II(¢)). This restriction should be borne in mind.
(I thank N. Bergeron for pointing this out to me.)

3.1. If H C G is the set of fixed points of an involution, L?(G/H) has been
decomposed for F' archimedean by Delorme, and van den Ban and Schlichtkrull
[10], [15]. Moreover the Arthur packets are known [1]. It would be interesting to
check Principles 2.2 and 2.4 in this case.

3.2. We consider now a case which has been treated by P. Harinck [12]. Here
G is a real group, and she considers L?(G(C)/G(R)). She determined the spectral
decomposition — of course this is now a special case of the results of Delorme and
van den Ban and Schlichtkrull. In particular the spectrum is tempered.

From our point of view this result is obvious — assuming the conjectural argu-
ments, of course. For we can choose a real quadratic extension F'/Q and a quadratic
extension F/F, complex at one Archimedean prime v of F' and split at the other
real prime v/, and then a group G over F giving G by extension of scalars at the
prime v, and split at the prime v’. Call G’ the split form of G.

Then G(E) = G(C) x (G'(R) x G'(R)), with subgroup H = G(Fx) = G(R) x
G'(R), the embedding being the obvious one. The (v, v)-trick says that the types of
L*(G(C)/G(R)), and of L*(G'(R) x G'(R)/G'(R)) — diagonal embedding — coincide.
But the second space has tempered support (Harish-Chandra); therefore so does
the first. (Cf. [16], § 3.7.)

In fact this last result also follows from these principles. Assume G is a group
over R. Choose F', G as before such that G(F,) = G(R) and U = G(Fy) is
compact. (There may be an obstruction to doing this; if necessary use more primes
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v'). Then choose E/F as above, inverting the roles of v and v’. At the prime v,
we have L2(G(R) x G(R)/G(R)); at the prime v', L?(G(C)/U) : by the spherical
theory this is tempered. In both cases, we have ensured that the group is split at
the controlling prime.

The argument of 3.2 will of course apply in the p-adic case. There is no need
to consider a quadratic extension :

CONJECTURE 3.1.— Assume E/F is a finite extension of local fields, and G a
group over F'. Then

L*(G(E)/G(F))
is tempered.
Indeed, the (p, q)- trick reduces us to L?(G(F)¢/G(F)) (diagonal embedding),

isomorphic under G(F)?~! (any (d — 1) factors) to @' L2(G(F), and this is
tempered. This implies that the representation of G(F)? is tempered.

3.3. We now consider the case of symplectic groups, first over R. Assume
G = Sp(g), the symplectic group given by the alternating form of matrix

J:(lg —lq),

The centralizer of the matrix

— 19
(o )

is the maximal compact subgroup U(g), embedded in G by

A+iBr—s ( ‘s i) (A+iBeU()).

The centralizer of the matrix

L=, ") easm
g
is GL(n,R) embedded in G by

A B A-B=C
CEGL(n,R)M(B A)’ where {A+Btcl

It is a Levi subgroup for a maximal parabolic subgroup of G.
Assume that k is a real quadratic field and that € € k is an element that is
positive at one Archimedean prime co; and negative at the other prime coy. Then

( . 1 ) (blocks of type n) belongs to GSp(g,k); its square is central, so it

defines an involution of Sp(g, k), with fixed points U(g) C Sp(g,R) at the prime
oo; and GL(g,R) at the prime cos. Therefore we see — and this is confirmed by the
results in [10], [15] — that L?(G /M) is tempered for G = Sp(g,R) and M the Levi
subgroup of type GL(g).

If v is a finite prime of k, we can now use the “p,¢”—trick (here “v,005”). So
we are naturally led to! :

1. This was pointed out by Akshay Venkatesh.
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CONJECTURE 3.2.— If F' is a p—adic field,
L?(Sp(g, F)/GL(g, F)) is tempered.

The same argument will apply - at least for G quasi-split - when a Levi sub-
group of a maximal parabolic subgroup has a “form” — similarly to the previous
construction for Sp(g) — that is a maximal compact subgroup. For instance, it will
apply to the Levi subgroup M of a maximal parabolic subgroup of G/F such that
some form of G over R is Hermitian symmetric, the maximal compact subgroup
being M after some algebraic extension of the ground field k.

3.4. We conclude with more musings.

3.4.1. We refer to [9] for the similar questions concerning restriction. For
G C G x G (diagonal embedding), a very geometric construction of the restriction
map R R R
Res : U(G) x U(G) — U(G)
(called product in [9]) was provided by Waldspurger [9] : Conjecture 4.2. Of course,
this is conjectural. In many cases his construction can be extended to

Res : U(G) — U(H)

for H C G. It would be interesting, of course, to obtain a conjectural, geometric
description of the induction map.

3.4.2. 1In the case of restriction, very strong constraints are given by the ex-
ponents of representations in the sense of Harish-Chandra and Casselman [9], § 4.
The behaviour of exponents is, in fact, encoded in Waldspurger’s geometric “pro-
jection”. How can one control the exponents of induced representations ? Of course,
partial answers are given by [13], [16].

3.4.3. We end this survey with, perhaps, the must interesting question. Assume
(G, H) is a symmetric pair (G/H is a “reductive” symmetric space, in the accepted
terminology). In the real case, a crucial element in Delorme’s determination of
L?*(G/H) is an a priori estimate on the H—invariant distributions on a unitary
representation 7 of G. This is given by a theorem of Bernstein [4], which implies
that the distribution « on the space of m must be “w-tempered”, for a weight w
on G/H which is explicit ([7], Appendix C).

No doubt such a weight can be defined in the p—adic case; Delorme and his
co—workers (Ph. Blanc, V. Sécherre) are making impressive progress. On the other
hand, from our point of view, we have the unipotent orbit Ug = Ind%(Uj?) —
of course, unknown in general, but which can actually be computed by the “p, ¢
trick” and comparison with the known real case. There should be a natural relation
between the weight and the unipotent orbit.

Références

[1] J. Apams, D. BARBASCH, D. VOGAN, The Langlands classification and irreducible characters
for real reductive groups, Birkhaiiser, 1992.

(2] J. ARTHUR, Unipotent automorphic representations, in Orbites unipotentes et représentations
IT : Groupes p—adiques et réels, Astérisque 171-172 (1981), 13-71.

[3] J. ARTHUR, An introduction to the trace formula, in Harmonic analysis, the trace formula and
Shimura varieties, Clay Math. Proceedings 4 (2005), 1-263.



106 LAURENT CLOZEL

[4] J. BERNSTEIN, On the support of the Plancherel measure, J. Geom. Phys. 5 (1988), 663-710.

[5] M. BURGER, J.S. L1, P. SARNAK, Ramanujan duals and automorphic spectrum, Bull. A.M.S.
26 (1992), 253-257.

[6] M. BURGER, P. SARNAK, Ramanujan duals II, Inv. Math. 106 (1991), 1-11.

[7] J. CARMONA, P. DELORME, Base méromorphe de vecteurs distributions H—invariants dans

les séries principales généralisées d’espaces symétriques réductifs : Equation fonctionnelle, J.
Funct. Anal. 122 (1994), 152-221.

[8] L. CLOZEL, Spectral theory of automorphic forms, in Automorphic forms and applications,
IAS/Park City Math. ser. 12, AMS, Providence, 2007, 43-93.

[9] L. CrozeEL, Combinatorial consequences of Arthur’s conjectures and the Burger—Sarnak me-
thod, Int. Math. Res. Notices 11 (2004), 511-523.

[10] P. DELORME, Formule de Plancherel pour les espaces symétriques réductifs, Ann. of Math.
147 (1998), 417-452.

[11] J. FArAuT, Distributions sphériques sur les espaces hyperboliques, J. Math. Pures Appl. 58
(1979), 369-444.

[12] P. HARINCK, Functions orbitales sur Ge/Gr. Formule d’inversion des intégrales orbitales et
formule de Plancherel, J. Funct. Analysis 153 (1998), 52-107.

[13] E. LAPID, J. ROGAWSKI , On a result of Venkatesh on Clozel’s conjecture, Contemporary
Math. 489 (2009), 173-178.

(14] G. LuszTiq, N.S. SPALTENSTEIN, Induced unipotent classes, J. London Math. Soc. 19 (1979),
41-52.

[15] E. VAN DEN BAN, H. SCHLICHTKRULL, The Plancherel decomposition for a reductive symmetric
space II. Representation theory, Inv. Math. 161 (2005), 567-628.

[16] A. VENKATESH, The Burger-Sarnak method and operations on the unitary dual of GL(n),
Represent. Theory 9 (2005), 268-286 (electronic).

L.C. MATHEMATIQUES BAT. 425, UNIVERSITE PARIS-SUD, 91405 OrsAY CEDEX - FRANCE
E-mail address: laurent.clozel@math.u-psud.fr



Clay Mathematics Proceedings
Volume 13, 2011

Orbital Integrals and Distributions

L. Clozel and J.-P. Labesse

A Freydoon Shahidi, en témoignage d’amitié

The aim of this note is to give a detailed proof of a generalization of a result in
[CL]. We take this opportunity to correct the statement and the proof of theorem
A.1.1 in [CL).

1. Twisted spaces and centralizers

When dealing with the twisted case we shall use the language of twisted spaces
instead of twisted orbital integrals; for the basic properties of twisted spaces we
refer the reader to [Lab3] sections I and II.

Consider a real connected reductive group G and 6 an automorphism of G of
finite order defined over R. We identify G with the group of its complex points.
We introduce the twisted algebraic space

L=Gx#.

Recall that semisimple elements in L are elements that induce semisimple auto-
morphisms of G. Regular semisimple elements are the § € L whose connected
centralizer G5 — i.e. the neutral connected component of the centralizer G? — is
a torus. For such an element the stable centralizer I (in the sense of [Lab3] sec-
tion I1.1) is an abelian group. More precisely Gy is a torus whose centralizer is a
maximal torus T and
Iy =T°

the centralizer of § in T. Strongly regular elements are semisimple elements § whose
centralizer G is commutative; in such a case I; = T? = G°.

In the non-twisted case or in the base change situation T is connected but
this is not the case in general. Nevertheless the possible non-connectivity is mild:
in fact the stable centralizer of a semi-simple element § is quasi-connected (in the
sense of [Lab2]) and in particular

Is =19.Zs
where I9 = Gy is the neutral component of Is and Zs is the centralizer of § in the

center Z¢g of G. This is lemma I1.1.4 of [Lab3].
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LEMMA 1.1. Let § be a regular semisimple element in L. Then Is = 1,5 for
t € Is small enough.

Proof: This follows from the above characterization of the stable centralizer for
regular elements.

O

2. Orbital integrals and measures

Let G (resp. L, etc.) be the set of real points of G (resp. L, etc.) and let K
be a maximal compact subgroup in G which is #-invariant. Let g = € & p be the
corresponding Cartan decomposition of the Lie algebra g of G. We introduce the
twisted real spaces

L=Gx0 and M=Kx60

We fix a Haar measure on GG and on K. This defines invariant measures on L and
M. This gives us an isomorphism between the space of distributions and the space
of generalized functions on L.

Let u be the measure supported on M and defined by the product of our
invariant measure and a smooth function x on M. By abuse of notation we shall
again denote by p the corresponding generalized function. For any smooth function
@ on L we have

() = [ ole)duta) = [ plm)x(m)dm
L M
Viewed as a distribution on L it has a wave front set W(u) C T*(L) (cf. [Hor] and
[GS]) whose fiber Ws(u) above § € L is either the empty set or, if it is non-empty,
then 6 belongs to M C L and the fiber is the set of non-zero cotangent vectors
¢ € T (L) orthogonal to the tangent space of M at .
We shall make the following assumption:

ASSUMPTION 2.1. Any § € M regular semisimple in L has a stable centralizer
Is which is a compact abelian group contained in K.

When 6 = 1 this is equivalent to the condition rank G = rank K and more
generally this is a generalization of Harish-Chandra’s condition that guarantees the
existence of L-discrete series (also called #-discrete series).

Let § € L be a regular semisimple element. Denote by is the Lie algebra of Is.
If § € M and the assumption 2.1 is satisfied we introduce

JE(5) = det(1 — Ad (8)]g/is)
and
JK(§) = det(1 — Ad (0)[t/is)

We denote by dg (resp. dk) the quotient measure on Is\G (resp. I5\K) for some
choice of a Haar measure on Is. The orbital integral of a smooth compactly sup-
ported function ¢ is defined by

Os(p) = /1 \G e(g~'0g) dg
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THEOREM 2.2. Under assumption 2.1 the orbital integral Os(u) of p for § is
well-defined and is given by

K
Os(p) = ”}GEQ)) /Ié\K X (k™ 61k) dik
if 0 has a conjugate 61 in M. When x is itnvariant by K-conjugacy we have simply
I (1)
EIC

The orbital integral vanishes otherwise.

Os(n) X(01) vol(Z5, \ K)

Proof: Let ¢ be a smooth compactly supported function and let dz be the measure
on L defined by the Haar measure on GG. The product is a smooth compactly
supported density. Let § € L be regular semisimple. The orbital integral of ¢ on
the orbit of  can be seen as the integral of the generalized function o5 defined by
the orbit Ss of ¢ against the smooth density ¢(x)dz. We denote by W (os) its wave
front set. Now observe that W (o) is transverse to W(u). By this we mean that
for any & € W(u) and any & € W(os) above the same point one has

S +&6&#0.

In fact if the intersection of the orbit Ss with M is non-empty we may assume
6 € M; we shall show that the tangent spaces to the two submanifolds M and Sy
at § generate the full tangent space and hence their orthogonal spaces minus zero,
which are the wave front sets, are transverse. For 6 € M the tangent space to Sy
at 4, is the right translation by § of

ss = (1 —Ad(9))g
and by assumption 2.1
is = ker(1 — Ad (9))
is contained in €. Since J is semisimple we then have
g=1isDss =t +s5 .

Recall that a generalized function can be integrated against a compactly supported
distribution provided their wave front sets are transverse (see [Hor] Th. 8.2.10
or [GS] Chap. VI, Proposition 3.10, p.335). This shows that the orbital integral
Os(p) makes sense. We now want to compute it. Let a be a smooth positive and
compactly supported function supported on a small neighbourhood of the identity
in G with integral 1. By convolution p becomes a smooth density on L:

ax p(x) = folx)de .

The above given references state that the product of distributions is continuous and
hence

(*) Os(p) = lim falz ™ 6 x)di

when a converges to the Dirac measure at the origin in G. Let ¢ = ¢ be a
function on L that is the product of a smooth function ¢q invariant under conjugacy
and a function 1 smooth with compact support equal to 1 on a neighbourhood of
K. Provided the support of « is small enough, ¥» = 1 on the support of f,. The
map

I\G x Iy — L: (z,t) — "0z



110 L. CLOZEL AND J.-P. LABESSE

is a local diffeomorphism near the identity in I5 with Jacobian J(¢§). Finally, if
¢ is strongly regular and if ¢ is restricted to a sufficiently small neighbourhood of
1 in I, the map is one to one onto its image: in fact for ¢t € I5 small enough ¢4 is
also strongly regular and the centralizer G of a strongly regular element equals its
stable centralizer I5. Therefore, provided ¢y has a small enough support near the
orbit of d, assumed for a while to be strongly regular,

/ch(w) fal@)dr = [ JEt8)po(td) < fal(z™ o) dx) dt .

Is I5\G

But, similarly,

/L (@) dp(z) =

/M w(m)x(m)dm = /15 JE(6) o (6) <~/15\K x(k~1tSk) dk‘) dt .

Now return to formula (x). It remains true for ¢ replaced by td with ¢ sufficently
small in I5. Denote the corresponding generalized function by 5. Then f, (for
« converging to the Dirac measure at the origin) and o4 (for varying ¢) are both
continuous (as follows from [Hoér, Thm. 8.2.10] and [S, p. 110]), and since we are
integrating over a compact set in ¢ we see that

lim JG(t5)<Po(t5)Ot5(fa)dt=/ JG(th)SDo(t‘S)hglOté(fa)dt

@ Is Is

This implies

JY(6) lim fo(z™10x) doe = JK () / x(k~1tok) dk
@ JI\G Is\K

which proves the theorem for strongly regular elements. Now, using 1.1, we see

that ¢ — Oy is smooth for ¢ small enough and by continuity the result extends to

all regular elements. .

3. Lefschetz function

Let Gt = G x (#), where () denotes the finite group generated by 6. Let F
be a finite dimensional irreducible representation supposed #-stable with a chosen
extension, again denoted by F, to the semidirect product G*. Consider 7, an
admissible irreducible representation of GT; the Lefschetz number is by definition

Lef(m, F) = (—1)"trace (0 | H'(g, ;7 @ F) .

Recall that Lef(w, F') = 0 unless the restriction of m to G remains irrreducible
and Ay = Aj, where A, and Az denote the infinitesimal characters of m and F
respectively.

Following [Labl], consider pp, the measure supported on M that gives the
Lefschetz number for F:

trace m(pp) = Lef(m, F) .
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This measure is defined by the function on M

xr(d) = Z(—l)i trace (6 | A" p ® F) = det(1 — | p) trace F (&)
and the normalized Haar measure on K.

LEMMA 3.1. Fither the measure pp is zero or the assumption 2.1 is satisfied.

Proof:  Assume ¢ is regular. Then yp(d) is zero whenever the Lie algebra is of
the centralizer of § projects on p non-trivially. This shows that either the measure
1 is zero or the assumption 2.1 is satisfied at the level of Lie algebras: is C ¢.
But this implies that I is a compact abelian group. Recall that the centralizer
of the compact torus I{ in G is a maximal torus 7 and hence U = TN K is a
maximal torus in K. Clearly T is stable by the Cartan involution; this implies that

its maximal compact subgroup is contained in K. In particular Iy C K. -

By definition Lefschetz functions are smooth compactly supported densities on
L such that for any representation 7 of G* one has

trace m(¢p) = Lef(m, F') .

As shown in [Labl] one obtains Lefschetz functions ¢ for F' by regularization via
Arthur’s multipliers of the measure pup.

LEMMA 3.2. Let a be an Arthur multiplier such that &(Ap) = 1. The Lefschetz
function defined by up and «,

(bF = UF,a
depends continuously, as a distribution, on « and has limit pug, in the sense of

distributions, when « tends to the Dirac measure at the origin. Moreover its orbital
integrals are independent of a.

Proof: The value of ¢ against a test function ¢ is given by the integral over G
of the product of the functions ¢/»(z) = ¢r(z x 0) and ¢'(z) = p(x x 0); it can be
evaluated by the Plancherel formula

/L br(W)o(y) dy = /G Pp(2)¢ (@) d = / trace (n(¢r)(@)") dn

a
but since, by definition of ¢,

() = &(Ax)m (1)

the continuity follows by dominated convergence. We can view ¢ as a function
on G7T; as such its trace is non-zero only on the representations of G irreducible
under G; on such a representation its trace is

a(Ag) trace m(pp)

This is non-zero only if A\; = Az (by the cohomological property of pp) and then
it equals tracem(ur). Hence, by the density theorem of Kottwitz and Rogawski
[KR], the orbital integrals of ¢ are independent of o. (Note that the assumptions

of [KR] are now satisfied, thanks to Delorme and Mezo [DM]). .
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PRrROPOSITION 3.3. Assume that the Lefschetz numbers are not identically zero.
The orbital integrals of a Lefschetz function are given for regular semisimple ele-
ments by

dr(x16x) dr = vol(I5,\K) trace F(6;)
L;\G

if 6 has a conjugate 61 in M ; the orbital integral vanishes otherwise.

Proof: According to 3.2, its orbital integrals are independent of the regularization
via Arthur’s multipliers, and when the multiplier tends to the Dirac measure at the
origin the distribution defined by the Lefschetz function tends to pr. We have

_ J9(0)

xXr(0) = 75 trace F'(6)

Thanks to 3.1 we may appeal to 2.2 and we get
Os(pur) = vol(I5\K) trace F(4) .
Now the continuity of the product of distributions yields the proposition.

4. Erratum and complements to [CL]

We computed in [CL, theorem A.1.1] the semi-simple orbital integrals of Lef-
schetz functions when F is the trivial representation of G. Moreover we assumed
that the stable centralizers were connected. The proof was hasty and the result
incorrect: there is a sign error in the formula given for singular elements. Here we
shall give the corrected statement, in its natural generality: we make no connect-
edness assumption and we allow arbitrary coefficients.

Recall that, for a quasi-connected reductive group I over R [Lab2] with maximal
compact subgroup Ky

() = 5 dim(1/K)

is an integer when I has discrete series. In such a case we choose the Haar measure di
such that the formal degree of the discrete series with trivial infinitesimal character
is 1. Following section A.1 of [CL], this defines an Euler-Poincaré function (i.e. a
Lefschetz function for the trivial automorphism) on I which we denote by f,. We
have

(1) = (=)D a(r)

ep
where d(I) is the order of the quotient W /Wy of the complex / real Weyl group
for a compact Cartan subgroup of I°. One can use Kottwitz signs [Kot] to express
(=1)2() . Denote by T’ the compact inner form of I°. Then

(—1)20) = e(1%)e(T"

I).

We will write e(I) = e(I°) and e(I) = 6(70). We refer to [LBC,§ 2.7] for the
definition of the stable orbital integrals. Let " C K C G be a maximal compact
torus and let

d(G) = #ker[H' (R, T) — H'(R, Q)] .

If G has discrete series, this coincides with the previous definition.
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THEOREM 4.1. Assume ¢ is semisimple with stable centralizer Is. Then

(2) Os(¢r) =0
if Is does mot have a discrete series;
(i4) Os(or) = e(Is)e(Is) d(I5) trace F(§) = felg(l) trace F'(0)

if Is has discrete series and is endowed with the measure di. The stable orbital
integral of ¢ is given by

(4i7) SOs5(pp) =0

if Is does not have discrete series;

(1v) SOs(¢r) = e(Is) d(G) trace F(6)
otherwise.

Proof: For 4 regular in M we have seen in 3.3 that
Os(¢pr) = trace F(9)

where we use the normalized measure on the compact group I5. The descent argu-
ment in [CL, p. 122] can be copied; for ¢ close to 1 in Iy, § being semi-simple and
té regular, we have

0 (1) =1
(for instance, by theorem 2.2 applied to Is, with a simple extension to the quasi-
connected case), whence

O.5(¢F) = trace F(t0) = (’)1{6( I5 Os.r)

ep
where
O r(t) = trace F(t0)

is invariant on I5. We deduce that
O5(dr) = f3(1) Osr(1) .

The same argument applies to the stabilization, the rational character trace F' being
invariant under conjugation by G. The vanishing statements follow similarly from

3.3.
]

Our theorem 4.1 above is essentially theorem A.1.1 in [CL]. But there are sign
errors in [CL]. First, on page 120 line 14 and 16 the sign e(I;) is omitted; this has
no bearing on the considerations preceding the theorem. However Kottwitz’s sign
e(I5) is again repeatedly omitted on page 122 line —8 and —6 and 123 line 6, which
introduces the sign mistakes in the final statement.

5. The unitary case

Finally we will give an explicit statement in the case of base change for unitary
groups, the case used in [CL]. Let H = U(p,q), G = GL(n,C) (n = p+ q) viewed
as a real Lie group and let 6 be the automorphism of G whose group of fixed points
is H. Let E be an irreducible algebraic representation of the complex group G and
consider F' = F ® E, where G acts by

g(e1 ®ez) = ger @ 0(g)e2
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One can extend F to GT by letting 8 act by e; ® es — e ® e;. For g € G define
Ng = g¢0(g). Then, for 6 = g x 0 € L one has
02=vyx1 with v=Nyg
and
trace F'(0) = trace E(v)

as follows from [Clol]. Take K = U(n) C G; then § € M = K x 6 is regular
semi-simple if and only if « is regular semi-simple in K, and the stable centralizer
of ¢ is the connected component of the centralizer of v in K.

THEOREM 5.1. Let § = g x 0 be semi-simple with stable centralizer I5. Then:

(4) Os(¢r) =0
if Is does not have a discrete series;
(i) Os(¢pr) = e(Is)e(Is) d(Is) trace E(7)

if Is has discrete series and is endowed with the measure di. The stable orbital
integral of ¢ is given by

(i) SO5(¢r) =0
if Is does mot have discrete series
(iv) SOs(¢r) = e(Is) d(G) trace E(7)

otherwise. In this case
d(G)=2"

This shows that the results of [CL], in particular the Theorem A.3.1, extend
with similar proof to the case of an arbitrary local system.

Acknowledgement. — We would like to thank Richard Taylor for pointing out
the inadequacy of our proof in [CL] of the main result of this note.
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Functoriality for the Quasisplit Classical Groups

J.W. Cogdell, L.I. Piatetski-Shapiro, and F. Shahidi

Functoriality is one of the most central questions in the theory of automorphic
forms and representations [3, 6, 31, 32]. Locally and globally, it is a manifesta-
tion of Langlands’ formulation of a non-abelian class field theory. Now known as
the Langlands correspondence, this formulation of class field theory can be viewed
as giving an arithmetic parametrization of local or automorphic representations
in terms of admissible homomorphisms of (an appropriate analogue) of the Weil-
Deligne group into the L-group. When this conjectural parametrization is combined
with natural homomorphisms of the L-groups it predicts a transfer or lifting of local
or automorphic representations of two reductive algebraic groups. As a purely au-
tomorphic expression of a global non-abelian class field theory, global functoriality
is inherently an arithmetic process.

Global functoriality from a quasisplit classical group G to GLy associated to
a natural map on the L-groups has been established in many cases. We recall the
main cases:

(i) For G a split classical group with the natural embedding of the L-groups,
this was established in [10] and [11].

(ii) For G a quasisplit unitary group with the L-homomorphism associated to
stable base change on the L-groups, this was established in [29],[26], and
[27].

(iii) For G a split general spin group, this was established in [5].

In this paper we consider simultaneously the cases of quasisplit classical groups G.
This includes all the cases mentioned in (i) and (ii) above as well as the new case
of the quasisplit even special orthogonal groups. Similar methods should work for
the quasisplit GSpin groups, and this will be pursued by Asgari and Shahidi as a
sequel to [5].

As with the previous results above, our method combines the Converse Theorem
for GLy with the Langlands-Shahidi method for controlling the L-functions of the
quasisplit classical groups. One of the crucial ingredients in this method is the
use of the “stability of local y—factors” to finesse the lack of the Local Langlands
Conjecture at the ramified non-archimedean places. The advance that lets us now
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handle the quasisplit orthogonal groups is our general stability result in [14]. In
the past, the stability results were established on a case-by-case basis as needed.
The general stability result in [14] now lets us give a uniform treatment of all
quasisplit classical groups. As before, once we have established the existence of
functoriality for the quasisplit classical groups, the descent results of Ginzburg,
Rallis, and Soudry [16, 42] then give the complete characterization of the image
of functoriality in these cases.

This paper can be considered as a survey of past results, an exposition of how
to apply the general stability result of [14], and the first proof of global functoriality
for the quasisplit even orthogonal groups. We have included an appendix containing
specific calculations for the even quasisplit orthogonal groups. We will return to
local applications of these liftings in a subsequent paper.

Finally, we would like to thank the referee who helped us improve the readability
of the paper.

Dedication. The first two authors would like to take this opportunity to dedicate
their contributions to this paper to their friend and coauthor, Freydoon Shahidi.
The collaboration with Freydoon has been a high point in our careers and we feel
it is fitting for a paper reflecting this to appear in this volume in his honor.

1. Functoriality for quasisplit classical groups

Let k£ be a number field and let Ay be its ring of adeles. We fix a non-trivial
continuous additive character 1) of Ay which is trivial on the principal adeles k.
We will let G,, denote a quasisplit classical group of rank n defined over k. More
specifically, we will consider the following cases.

(i) Odd orthogonal groups. In this case G, = SOag,y1, the split special or-
thogonal group in 2n + 1 variables defined over k, i.e., type B,. The connected
component of the L-group of G,, is LG?L =G, = Sp,,, (C) while the L-group is the
direct product YG,, = Sp,,,(C) x Wj.

(ii) Even orthogonal groups. In this case either (a) G, = SOg,, the split
special orthogonal group in 2n variables defined over k, type D, or (b) G,, = SO3,,
is the quasisplit special orthogonal group associated to a quadratic extension F/k,
i.e, type 2D,,. In either case, the connected component of the L-group of G,, is
LG% = G, = S04, (C). In the split case (a), the L-group of the product “G, =
SO, (C) x Wy, while in the quasisplit case (b), the L-group is the semi-direct
product “G,, = SO,,(C) x W} where the Weil group acts through the quotient
Wy /Wg ~ Gal(E/k) which gives the Galois structure of SO3,,. We will need to
make this Galois action more explicit. Let O, (C) denote the even orthogonal
group of size 2n. Then we have Gal(E/k) ~ O4,(C)/SOs,(C). Conjugation by
an element of Og,(C) of negative determinant gives an outer automorphism of
S04, (C) corresponding to the diagram automorphism which exchanges the roots
oy, and a1 in Bourbaki’s numbering [7] or the numbering in Shahidi [38]. So if
we let b’ € Og,(C) be any element of negative determinant then for o € Gal(E/k)
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the non-trivial element of the Galois group the action of o on * G?l is

a(g) = (k)" 'gl'.
We will discuss this case in more detail below when we discuss the relevant L-
homomorphism and in the appendix (Section 7.1). (Note that when n = 4 except

for the SOZ defined by a quadratic extension the other non-split quasisplit forms
of Dy are not considered to be classical groups.)

(iii) Symplectic groups. In this case G, = Sp,,, the symplectic group in 2n
variables defined over k, type C,,. The connected component of the L-group of G,,
is LG% = G, = SO2,4+1(C) and the L-group is the product “G = SOg,,11(C) x W},

(iv) Unitary groups. In this case either (a) G, = Us, is the even quasisplit
unitary group defined with respect to a quadratic extension E/k or (b) G,, = Ugp41
is the odd quasisplit unitary group defined with respect to a quadratic extension
E/k. Both are of type 2A,,. In case (a) the connected component of the L-group
is LGZ = @n = GL2,(C) and the L-group is the semi-direct product *G, =
GL2, (C) x W), where the Weil group acts through the quotient Wy, /Wg ~ Gal(E/k)
which gives the Galois structure of Us,. In case (b) the connected component of
the Langlands dual group is © Gg = GL32,,4+1(C) and the L-group is the semi-direct
product “G,, = GL2,11(C) x W}, where the Weil groups acts through the quotient
Wi /Wg ~ Gal(E/k) which gives the Galois structure of Us, ;. We will need to
make precise the Galois action. Following [26, 27] we let

In .
in case (a)
1 _Jn )

J, = and set J), = JIn
1 1 in case (b)
—J,

so that G,, = U(J}). Then if ¢ is the non-trivial element in Gal(E/k) then the
action of o on LG?L is
a(g) = ()" 'g T,

the outer automorphism of *G,, conjugated by the form.

In each of these cases let §; denote the first fundamental representation, or
standard representation, of the connected component of the L-group. This is the
defining representation of C:'n on the appropriate CV. As can be seen from the
description of LG?L above, in each case either N = 2n or N = 2n+ 1. Associated to

this representation is a natural embedding of LG% into GLy(C) = LGL(])V. There is
an associated standard representation of the L-group “G,, on either C¥ or CV x CV
which gives rise to a natural L-homomorphism ¢ which we now describe.

In the case of the split classical groups, the standard representation of the L-
group is still on CV and is obtained by extending &; to be trivial on the Weil group.
This representation then determines an L-homomorphism ¢ : *G,, < YGLy. By
Langlands’ principle of functoriality [3, 6, 9], associated to these L-homomorphisms
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there should be a transfer or lift of automorphic representations from G,,(Ag) to
GLn (Ag). These were the cases treated in [10, 11].

In the case of the quasisplit even orthogonal group, we extend the first fun-
damental representation of LG to an embedding of the L-group in the natural
way, to obtain ¢ : G, < “GLy. So in this case we again expect a transfer from
SO3,,(Ar) to GLa,(Ag). Let us elaborate on this embedding, since although well
known it is not all together straightforward. It is related to the theory of twisted
endoscopy and can be found in [1, 2, 4]. The first fundamental representation gives
an embedding of SO3,(C) — GLy(C) with N = 2n. In fact this extends to an
embedding of Oz, (C) < GLy(C). We then choose an L-homomorphism

f Wy — Ogn((C) x Wy C GLN((C) x Wy,
which induces the isomorphism

that is, such that £ factors through Wy, /Wg ~ Gal(E/k) and sends the non-trivial
Galois automorphism o to an element of negative determinant in O, (C) times o.
Let us write this as £ (w) = &' (w) xw with &'(w) € O2,(C). Then in the construction
of £S03, = S04, (C) x W}, the Weil group acts on SOs,(C) through conjugation
by &’'(w). We now turn to the embedding of the L-group. If we represent elements
of £S03,, as products h x w = (h x 1)(1 x w) with h € SO, (C) and w € W}, then
t:S02,(C) x Wy < GLy(C) x Wy is given by t(h x 1) = h x 1 € GLx(C) x Wy
and ¢(1 x w) = £(w) = &'(w) x w. One can find a more detailed description of the
embedding in the appendix (Section 7.1).

In the case of unitary groups we follow the description in [26, 27], to which
the reader can refer for more details. The standard representation of “G,, is now

on CV x CN. The action of the connected component LG: is by

lg x 1](v1,v2) = (gv1,0(g)v2)

while the Weil group acts through the quotient Wy /Wg ~ Gal(E/k) with the
non-trivial Galois element acting by

[1 x o](vi,v2) = (va,v1).

It determines an embedding ¢ of *G,, ~ LG?I x Wy, into (GLy (C) x GLx(C)) x Wy
given by (g x w) = (g x o(g)) X w, where on the right hand side, W}, acts on
GLN(C) x GLN(C) through the quotient Wy, /Wg ~ Gal(E/k) with o(g1 X ¢2) =
g2 X g1. The group (GLy(C) x GLx(C)) x W}, defined in this way is the L-group
of the restriction of scalars Resg/,GLy. Hence the map on L-groups we consider
is that associated to stable base change ¢ : “G,, < *(Resg,,GLy).

To give a unified presentation of these functorialities, we let

e GLy if G,, is orthogonal or symplectic
N Resg/,GLN if G}, is unitary
where N = 2n or 2n + 1 as described above. Then the functorialities that we will

establish are from G, to Hy given in the following table. The embedding ¢ of
L-groups is that described above.
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G, v G, = FHy Hy
SO2p41 SPon(C) X Wi < GLay (C) x W GLoa,
SOa, SO2 (C) x Wi =5 GLay(C) x W GLay,
SO%, SO2,(C) % W, < GLan(C) x Wi GLo,
Spy, SO2+1(C) X Wiy = GLans1(C) x W GLaopit
Usn GLaw(C) 3 Wiy <5 (GLay (C) % GLan(C)) x Wi Res /1 GLay,
Usnt1 | GLany1(C) ¥ Wi < (GLaps1(C) X GLan11(C)) x Wi | Resg/xGLan 11

By Langlands’ principle of functoriality, as explicated in [3, 6, 9], associated
to these L-homomorphisms there should be a transfer or lift of automorphic rep-
resentations from G, (Ay) to Hy(Ag). To be more precise, for each place v of k
we have the local versions of the L—groups, obtained by replacing the Weil group
Wy, with the local Weil group Wy, . The natural maps Wy, — W} make the global
and local L-groups compatible. We will not distinguish between our local and
global L-groups notationally. Our global L-homomorphism ¢ then induces a local
L-homomorphism, which we will denote by ¢, : “G,, — “Hy.

Let m = ®'m, be an irreducible automorphic representation of G,,(Ay). For v a
finite place of k where 7, is unramified, and if necessary the local quadratic exten-
sion E,,/k, is also unramified, the unramified arithmetic Langlands classification
or the Satake classification [6, 35] implies that m, is parametrized by an unramified
admissible homomorphism ¢, : Wy, — L@,, where Wy, is the Weil group of k,,.
By composing with ¢, : G, < “Hy we have an unramified admissible homo-
morphism ®, = ¢, 0 ¢, : Wy, — LHy and this defines an irreducible admissible
unramified representation II, of Hy(k,) [17, 18]. Then II, is the local functorial
lift of m,. The process is outlined in the following local functoriality diagram.

LGn - LHN
Ty ———> N / —_ HU.
Wi,

Similarly, if v is an archimedean place, then by the arithmetic Langlands classifi-
cation 7, is determined by an admissible homomorphism ¢, : W, — ©G,, where
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W, is the local Weil group of k, [6, 30]. The composition ¢, o ¢, is an admissi-
ble homomorphism of W, into “Hy and hence determines a representation IL, of
H, (k,) via the same diagram. This is again the local functorial lift of m,. Note
that in either case we have an equality of local L-functions

L(s,11,) = L(s,®,) = L(8,ty 0 ¢y) = L(8, Ty, Ly)

as well as equalities for the associated e—factors (if v, is unramified as well at the
finite place in question).

An irreducible automorphic representation II = ®'II, of Hy(Ay) is called
a functorial lift of m if for every archimedean place v and for almost all non-
archimedean places v for which 7, is unramified we have that I, is a local functorial
lift of 7,. In particular this entails an equality of (partial) Langlands L-functions

L5(s, M) = H L(s,11,) = H L(s, 7y, ty) = L% (s,7,1),
vgS vgS
where S is the (finite) complement of the places where we know the local Langlands
classification, so the ramified places.

We will let B,, denote a Borel subgroup of GG,, and let U,, denote the unipotent
radical of B,,. The abelianization of U, is a direct sum of copies of k and we may
use ¢ to define a non-degenerate character of U, (Ay) which is trivial on U, (k). By
abuse of notation we continue to call this character .

Let 7 be an irreducible cuspidal representation of G, (Ay). We say that 7 is
globally generic if there is a cusp form ¢ € V. such that ¢ has a non-vanishing
1-Fourier coefficient along U,, i.e., such that

/ (ug) () du £ 0.
Un (k)\Un (Ak)

Cuspidal automorphic representations of GL,, are always globally generic in this
sense. For cuspidal automorphic representations of the classical groups this is a
condition. In general the notion of being globally generic may depend on the choice
of splitting of the group. However, as is shown in the Appendix to [11], given a 7
which is globally generic with respect to some splitting there is always an “outer
twist” which is globally generic with respect to a fixed splitting. This outer twist
provides an abstract isomorphism between globally generic cuspidal representations
and will not effect the L- or e-factors nor the notion of the functorial lift. Hence we
lose no generality in considering cuspidal representations that are globally generic
with respect to our fixed splitting.

The principal result that we will prove in this paper is the following.

THEOREM 1.1. Let k be a number field and let m be an irreducible globally
generic cuspidal automorphic representation of a quasisplit classical group G, (Ag)
as above. Then 7 has a functorial lift to Hy(Ay) associated to the embedding v of
L-groups above.

The low-dimensional cases of this theorem are already well understood. In the
split cases, they were discussed in [11]. Thus we will concentrate primarily on the
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cases where n > 2, except for the quasisplit orthogonal groups where we restrict to
n > 4.

2. The Converse Theorem

In order to effect the functorial lifting from G,, to Hx we will use the Converse
Theorem for GLy [12, 13] as we did in [10, 11]. Let us fix a number field K and
a finite set S of finite places of K. For the case of G, orthogonal or symplectic, the
target for functoriality is GLy (Ay) and we will need K = k. However, in the case
of unitary G,,, the target of functoriality is Resg/,GLy(Ax) ~ GLy(Ag) and we
will need to apply the converse theorem for K = F.

For each integer m, let

Ao(m) = {7 | 7 is a cuspidal representation of GL,,(Ax)}

and
A5 (m) = {r € Ag(m) | 7, is unramified for all v € S}.
We set
N-1 N-1
T(N=1) =[] Ao(m) and TSN —1)= ] A5(m).
m=1 m=1

If n is a continuous character of K*\A%, let us set
TS =T(N-Denp={r=ron : 7 TN -1)}.

THEOREM 2.1 (Converse Theorem). Let II = Q'IL, be an irreducible admissible
representation of GL (Ak) whose central character wyy is invariant under K* and
whose L-function L(s,1I) =[], L(s,11,) is absolutely convergent in some right half-
plane. Let S be a finite set of finite places of K and let n be a continuous character
of K*\A¥. Suppose that for every T € T(S;n) the L-function L(s,II X T) is nice,
that is, it satisfies

(1) L(s,11 x 7) and L(s,1I x 7) extend to entire functions of s € C,
(2) L(s,II x 7) and L(s,II x T) are bounded in vertical strips, and
(3) L(s,II x T) satisfies the functional equation

L(s,JIx 7) = (s, I x 7)L(1 — 5,11 x 7).

Then there exists an automorphic representation II' of GLy (Ak) such that 11, ~ TI,
for almost all v. More precisely, 11, ~ 11 for allv ¢ S.

In the statement of the theorem, the twisted L- and e-factors are defined by
the products

L(s,Tx 1) = [[L(s, My x 7)) (s, 1 x 7) = [[ s,y x 7,000

of local factors as in [12, 10].
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To motivate the next few sections, let us describe how we will apply this theorem
to the problem of Langlands lifting from G,, to Hy. We begin with our globally
generic cuspidal automorphic representation m = ®'m, of G, (A).

If G,, is an orthogonal or symplectic group, then for each place v we need to
associate to m, an irreducible admissible representation II, of Hy(k,) = GLy (k)
such that for every 7 € T(S;7n) we have

L(s, 7y @ Ty, Ly @ 1)) = L(s, 1, X 7,)
6(33 Ty & Tyy by @ L;, wv) = 6(8, IT, x 7, %)

where «/ is the identity map on GL,,(C), or more accurately from the L-group
LGL,;, = GL,(C) x Wy, to GL,,(C) given by projection on the first factor, and
similarly ¢ now represents the representation of “G,, given by ¢ followed by the
projection onto the first factor of “H, or the connected component of the identity,
i.e., the associated map to GLy(C).

If G,, is a unitary group, then for each place v we need to associate to m, an
irreducible admissible representation IL, of Hy(k,) = GLx(F,), where E, = EQk,
is either an honest quadratic extension or the split quadratic algebra over k,, such
that for every 7 € T(S;n) we have

L(saﬂ-v Q) Ty, by @ L{U) = L(S,Hv X Tv)
(8, @ Ty, by @ 1)), 1hy) = €(5,TLy X Ty, 1by).

Now 7, must be viewed as a representation of GL,,(E,), i.e., of Resg,;,GL, (k).
If E,/k, is an honest quadratic extension, then G, (k,) is an honest local unitary
group and Hy(k,) ~ GLy(E,). If v splits in F, so E, ~ E,,, ® B, with E,,, ~ k,,
then G, (k,) ~ GLy(k,) and Hy(k,) ~ GLy(E,) ~ GLy(k,) X GLy(k,). In this
case 11, = II; , ® Il ,,, an outer tensor product, and similarly 7, = 71, ® T2, and
we have a product of two factors on each side. A more detailed description for this
case can be found in [26, 27].

For archimedean places v and those non-archimedean v where m, is unramified,
we take II, to be the local functorial lift of m, described above. For those places
v where 7, is ramified, we will finesse the lack of a local functorial lift using the
stability of v—factors as described in Section 4 below. This will allow us to associate
to m, a representation II, of Hy(k,) at these places as well. The process involves
the choice of a highly ramified character 7, of Hi(k,). If we then take IT = ®'II,,
this is an irreducible representation of Hy(Ag). With the choices above we will
have

Lis,t@1,0@1) = L(s,IT x )
e(s,m@7,0@1) =¢e(s,II x 7)

for Re(s) >> 0 and all 7 € T(S;n) for a suitable fixed character n of Hy(Ay). This
is our candidate lift. The theory of L-functions for G,, x H,,, which we address in
the next section, will then guarantee that the twisted L-functions L(s,m @ 7,t ® ')
are nice for all 7 € T(S;n). Then the L(s,IIx 7) will also be nice and II satisfies the
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hypotheses of the Converse Theorem. Hence there exists an irreducible automorphic
representation II' of Hy(Ay) such that II, ~ IT/ for all archimedean v and almost
all finite v where 7, is unramified. Hence II’ is a functorial lift of .

3. L-functions for G, x H,,

Let 7 be a globally generic cuspidal representation of G,,(Ag) and 7 a cuspidal
representation of H,,(Ay), with m > 1. We let ¢ and ¢/ be the representations of
the L—groups defined in Sections 1 and 2 respectively. To effect our lifting, we must
control the analytic properties of the twisted L-functions L(s,7 ® 7,¢ ® ¢/). This
we do by the method of Langlands and Shahidi, as we outline here.

The L-functions L(s,7 ® 7,t ® ') are the completed L-functions as defined
in [39] via the theory of Eisenstein series. If we let M, ,, denote G,, x H,, with
m > 1, then this appears as the Levi factor of a maximal self-associate parabolic
subgroup P, ,, = M, Ny m of Gy, associated to the root a, as in [38]. The
representation ¢ ® ¢/ then occurs in the adjoint action of £'M,, ,,, on the Lie algebra
In,.m as the representation 7; of [38]. Then these L-functions can be defined
and controlled by considering the induced representation I(s,7 ® 7) described in
[38, 39] since m @ 7 is a cuspidal representation of M,, ,,,(Ag). The local factors
are then defined in [39] via the arithmetic Langlands classification for archimedean
places, through the Satake parameters for finite unramified places, as given by the
poles of the associated y—factor (or local coefficient) if 7, and 7, are tempered,
by analytic extension if 7, and 7, are quasi-tempered, and via the representation
theoretic Langlands classification otherwise. Since it is only these representations
that we will be considering, we will abbreviate our notation by suppressing the
L-homomorphism, so for example

L(s,mx 1) = HL(S,TK’U X Ty) = HL(S,?TU @ Toy by @10) = L(s,r@T,0 1)
v v
with similar conventions for the e— and ~—factors.

The global theory of these twisted L-functions is now quite well understood.

THEOREM 3.1. Let S be a non-empty set of finite places of k. Let K = k when
G, is orthogonal or symplectic or K = E if G, is a unitary group associated to
the quadratic extension E/k and continue to let S denote the corresponding set of
places of K. Let 1 be a character of K*\A) such that, for some v € S, either the
square n? is ramified if K = k, or if K = E then for the places w of E above v
we have both n,, and n,7,, are ramified. Then for all T € T(S;n) the L-function
L(s,m x T) is nice, that is,

(1) L(s,m x T) is an entire function of s,
(2) L(s, 7 x 1) is bounded in vertical strips of finite width, and
(3) we have the functional equation

L(s,mx71)=¢e(s,m x 7)L(1 = 8,7 X T).
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Proof: (1) In all cases this follows from the more general Proposition 2.1 of [28].
Note that in view of the results of Mui¢ [34] and of [8], the necessary result on
normalized intertwining operators, Assumption 1.1 of [28], usually referred to as
Assumption A [24], is valid in all cases as proved in [24, 25]. Note that this
is the only part of the theorem where the twisting by 7 is needed. The specific
ramification stated comes from [11] or [27].

(2) The boundedness in vertical strips of these L-functions is known in wide
generality, which includes the cases of interest to us. It follows from Corollary 4.5
of [15] and is valid for all 7 € T(N — 1), provided one removes neighborhoods of
the finite number of possible poles of the L-function.

(3) The functional equation is also known in wide generality and is a conse-
quence of Theorem 7.7 of [39]. It is again valid for all 7 € T(N —1). O

4. Stability of ~-factors

This section is devoted to the formulation of the stability of the local v-factors
for generic representations of the quasisplit groups under consideration. This result
is necessary for defining a suitable local lift at the non-archimedean places where
we do not have the local Langlands conjecture at our disposal.

For this section, let k denote a p-adic local field, that is, a non-archimedean
local field of characteristic zero. Let G,, now be a quasisplit classical group of the
types defined in Section 1, but now over k. These will correspond to the local
situations that arise in our global problem, with the exception of the global unitary
groups at a place which splits in the defining quadratic extension (see Remark 4.1
below).

4.1. Stability. Let m be a generic irreducible admissible representation of
G, (k) and let n be a continuous character of Hy (k) ~ k* (resp. E* in the local
unitary case). Let 9 be a fixed non-trivial additive character of k. Let (s, 7 xn, )
be the associated ~y-factor as defined in Theorem 3.5 of [39]. These are defined
inductively through the local coefficients Cy(s,m @ 1) of the local induced repre-
sentations analogous to those given above. They are related to the local L- and
e-factors by
(s mx W)Ll — s 7 x 7))
N L(s,m xn) '

v(s,m x 1))

We begin by recalling the main result of [14], with a slight shift in notation for
consistency.

THEOREM 4.1. Let G be a quasisplit connected reductive algebraic group over
k such that the T'—~diagram of Gp is of either type Bni1,Crni1, Dny1,2Ani1 or
2Dypy1i(n+1>4). Let P = MN be a self-associate mazimal parabolic subgroup
of G over k such that the unique simple root in N is the root ay in Bourbaki’s
numbering [7]. Let m be an irreducible admissible generic representation of M (k).
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Then Cy(s,m) is stable, that is, if v is a character of K>, realized as a character
v of M(k) by
#(m) = v(det(Ad,(m))),
then
Cy(s,m @0) = Cy(s, m @ D)

for any two such representations w1 and mo with the same central characters and
all sufficiently highly ramified v. Here n is the Lie algebra of N (k).

Note that this covers the local quasisplit classical groups that are under consid-
eration here if we take G = G, 4+1. The splitting field K is then k itself except in the
2A,, and 2D, cases, where it is the associated quadratic extension E as in Section
1. According to the tables in Section 4 of [38], the Levi subgroups M in Theorem
4.1 are of the form M ~ H; x G,. To use the stability result in the application to
functoriality we need the following elementary lemma.

LEMMA 4.1. Let m € M(k) and write m = a x m’ with a € Hy(k) and m’ €
G (k). Then det(Ad,(m')) =1, i.e.

det(Ad,(m)) = det(Adn(a)).

Proof: An elementary matrix calculation shows that in the symplectic and spe-
cial orthogonal cases we have det(Ad,(m’)) = det(m') = 1. In the unitary case,
det(Ady(m’)) = Ngyj det(m') = 1. O

Thus we see that in Theorem 4.1 the twisting character » of M (k) factors to a
character of the GL; factor in M. We will call a character 7 of Hy(k), suitable if
it arises from a character v of K* via a composition of the embedding GL; — M
followed by the character m — v(det(Ad,(m))) of M. Now Theorem 4.1 has the
following corollary.

COROLLARY 4.1.1. Let G,, be a quasisplit classical group over k as in Section 1,
so that it satisfies the hypotheses of Theorem 4.1. Let w1 and mo be two irreducible
admissible representations of G, (k) having the same central character. Then for
every sufficiently highly ramified suitable character v of Hy(k) we have

’Y(877T1 X 97’(/}) = 7(8771—2 X ﬂ7¢)

Proof: Let G,41 be the quasisplit connected reductive algebraic group over k of
rank one larger such such that the parabolic subgroup P in Theorem 4.1 has Levi
subgroup M ~ Hy X G,,. Then 1 ® m; and 1 ® 7w determine irreducible admissible
representations of M (k) with the same central character. By Theorem 4.1 we know
that for every sufficiently highly ramified character v of K *, determining a character
of M (k) by #(m) = v(det(Adn(m)), we have Cy (s, (1@ )@7) = Cy (s, (1@m2) QD).
By our lemma # factors to only the H; variable in M and (1® m;) @ U = U ® m;
as representations of M (k). Then the statement of the corollary follows from the
definition of y(s,m; X ¥,1) given in [38]. O
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REMARK 4.1. Theorem 4.1 and its corollary cover the possible local situations
that arise in our global problem ezcept for the case of unitary groups at a place
that splits in the global quadratic extension. At these places, locally the hypotheses
of Theorem 4.1 are not satisfied since the parabolic subgroup P in question is no
longer maximal. In this case, G,, ~ GLy, H; ~ GL; x GL1, and, remembering the
implicit L-homomorphism ¢ ® ¢/, both sides are a pair of local GLy x GL; v-factors.
In this case the stability result is due to Jacquet and Shalika [22]. However, as we
shall see, in our application we will not need stability in this situation since the
local Langlands correspondence is known for GLy.

4.2. Stability and parametrization. Let m be an irreducible admissible
representation of one of our local G,,. Assume that 7 is ramified, so we may not
know how to parametrize 7w by an admissible homomorphism of the Weil-Deligne
group W/, into L@,. We wish to replace 7 by a second representation 7’ for which
we have an arithmetic Langlands parameter and for which we still have a modicum
of control over its L- and e-factors.

We replace ™ with an induced representation having the same central character.
To this end, let T,, be the maximal torus of G,,, take a character A of T, and
let I(\) be the associated induced representation. By appropriate choice of A we
can guarantee that 7 and I(\) have the same central character and that I()) is
irreducible. Let ¢y : Wy — LT be the Langlands parameter for A so that the
composition ¢y : Wy, — T, — G, is the arithmetic Langlands parameter for
I(A\). We can take for 7/ any of the so constructed I(\). We fix one. By the
corollary above, for sufficiently highly ramified suitable 7, depending on 7 and our
choice of 7" = I()), we have

Y(s,m X D,90) = (s, 7" X 7,1)).

Once we have the stable y—factor is expressed in terms of a principal series
representations that we can arithmetically parametrize, then we can express the
analytic y—factor as one from arithmetic, the Artin v—factor associated to the Galois
representation ¢ o ¢y.

PROPOSITION 4.1. With notation as above,

V(S’I(A) XD,@/}):’}/(S,(LOgﬁ)\)@I;,@/}).

Proof: The embedding of L-groups ¢ : “G,, < “H y is defined so that ¢ is the map
coming from the restriction of this adjoint action on n, ;| to G,, and similarly for
(" as a representation of H;. By our convention, y(s,I(\) x ©,1) is the y-factor
associated to this representation of the L-group, i.e.,

Y(8, I(N) x ,9) = (8, I[(\) @ D, 0 @ 1, 1h).

To relate this analytic «-factor to that from the parametrization, we embed
G, — G411 as part of the Levi subgroup M, ;1 of the self-associate parabolic
subgroup P11 = M, +1Npt+1 C Gy such that the unique simple root in N,y
is a; as above. Using the product formula (or “cocycle relation”) for the local
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coefficients from Proposition 3.2.1 of [36], the local coefficient Cy (s, I(A)®7) factors
into a product over the roots appearing in the adjoint representation of “T, 1 C
LM, 11 on In,q. Sections 2 and 3 of [23] give a computation of the contribution
of an individual root space to Cy(s,I(A) ® 7) in terms of rank one Artin factors
coming from the co-roots composed with A. The resulting expression (at s = 0)
is found in Proposition 3.4 of [23]. If one takes the expression for a general s and
then extracts the v-factor from the local coefficient, one arrives at

V(s I(A) @ 7,0 @1 ) = (s, (Lo dar) ® 7,1)).
This proves the proposition. ([l

5. The candidate lift

We now return to k denoting a number field. Let 7 = ®'m, be a globally generic
cuspidal representation of G, (A). In this section we will construct our candidate
IT = Q'IL, for the functorial lift of 7 as an irreducible admissible representation of
GLx (Ag). We will construct IT by constructing each local component, or local lift,
IT,. There will be three cases: (i) the archimedean lift, (ii) the non-archimedean
unramified lift, and finally (iii) the non-archimedean ramified lift.

5.1. The archimedean lift. Let v be an archimedean place of k. By the
arithmetic Langlands classification [30, 6], m, is parametrized by an admissible
homomorphism ¢, : Wy, — £G% where Wy, is the Weil group of k,. By composing
with ¢y : “G,, — “H y we have an admissible homomorphism &, = t,0¢, : Wi, —
L' H n and this defines an irreducible admissible representation IL, of H ~(ky). Then
IT, is the local functorial lift of m,. We take IL, as our local lift of m,. (See the
local functoriality diagram in Section 1.)

The local archimedean L— and e—factors defined via the theory of Eisenstein
series we are using are the same as the Artin factors defined through the arithmetic
Langlands classification [37]. Since the embedding ¢, : L@, < LH y is the standard
representation of the L-group of G, (k,) then by the definition of the local L- and
e—factors given in [6] we have

L(s,m,) = L(s,ty 0 ¢y) = L(s,11,)
and
5(8,7TU, wv) = 5(3a Ly © ¢v,¢v) = 5(Sa Hv,wv)

where in both instances the middle factor is the local Artin-Weil L— and e—factor
attached to representations of the Weil group as in [43].

If 7, is an irreducible admissible representation of H,,(k,) then it is in turn
parametrized by an admissible homomorphism ¢! : Wy — £ H,,. Then the tensor
product homomorphism (1, 0 ¢,) ® (¢!, 0 ¢!) : Wi, — LH,,n is admissible and
again we have by definition

L(s, 7y X 7y) = L(8, (ty 0 ¢y) @ (1, 0 ¢))) = L(s,1L, X 7,)
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and

5(3,7(1) X Tvvwv) = E(S, (Lv © ¢v) & (L; o éf);,),%) = 5(33 I, x Tva'l/}v)~
This then gives the following matching of the twisted local L- and e-factors.

PROPOSITION 5.1. Let v be an archimedean place of k and let m, be an irre-
ducible admissible generic representation of G (ky), IL, its local functorial lift to
Hy(ky), and 7, an irreducible admissible generic representation of Hp,(k,) with
m < N. Then

L(s,my X 7)) = L(s,Il, X 7,)  and &(s,my X Ty, W) = (8,11, X 7y, 1y).

5.2. The non-archimedean unramified lift. Now let v be a place of k
which is non-archimedean and assume that m, is an unramified representation.
By the unramified arithmetic Langlands classification or the Satake classification
[6, 35], m, is parametrized by an unramified admissible homomorphism ¢, : Wy, —
LG% where Wy, is the Weil group of k,. By composing with ¢, : L@, — 'Hy we
have an unramified admissible homomorphism ®, = t,0¢, : W, — L Hy and this
defines an irreducible admissible unramified representation II, of Hy(k,) [17, 18].
Then II, is again the local functorial lift of m, and we take it as our local lift.
(Again, see the local functoriality diagram in Section 1.)

We will again need to know that the twisted L- and e-factors agree for m, and
I1,.

PROPOSITION 5.2. Let v be a non-archimedean place of k and let m, be an
irreducible admissible generic unramified representation of G,(k,). Let II, be its
functorial local lift to Hy(k,) as above, and T, an irreducible admissible generic
representation of Hy, (k) with m < N. Then

L(s,my X 1) = L(8, 11, X 1) and &(8, Ty X Ty, ¥y) = (8, Iy X Ty, y).

Proof: Since 7, is unramified its parameter ¢, factors through an unramified ho-
momorphism into the maximal torus T, < £G,,. The composition ¢ o ¢, = ®,
then has image in a torus LT/N < LHy, which necessarily splits, and II, is the
corresponding unramified (isobaric) representation. Then the functoriality diagram
gives that L(s, my,t,) = L(s,I1,) and (s, Ty, Ly, ¥y) = (8, IL,,1,) and both can be
expressed as products of one dimensional abelian Artin L-functions and e—factors.
This is the multiplicativity of the local L- and e—factors in this case. For twisting
by 7, one appeals to the general multiplicativity of local factors from [19, 40] with
respect to the preceding data. This is done in detail for the split groups in [11] and
the calculation here is the same. O

5.3. The non-archimedean ramified lift. Now consider a non-archimedean
place v of k where the local component 7, of 7 is ramified. Assume for now that
we are not in the situation where G,, is a unitary group associated to a quadratic
extension E/k in which the place v splits; we will return to this at the end of
the section. Now we do not have the local Langlands correspondence to give us a
natural local functorial lift. Instead we will use the results of Section 4.
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Given m, we choose an induced representation m, = I(\,) as in Section 4.1
which has the same central character as m, and which we do know how to pa-
rametrize. Let ¢y, @ W, — LT — L@, be the associated parameter. By
composing with ¢, : G, — “Hy we have an admissible homomorphism ®, =
Ly 0P, Wi, — LHy and this defines an irreducible admissible representation
IT, of Hyn(k,). We now use the local functoriality diagram in the following form:

LHN
/ .

v

LGn Ly
Ty > mho=I(\y) —— P,

Wi
Then II, is the local functorial lift of 7, = I(\,). We take II, as our local lift of

v
Ty-

Now let 7, be a sufficiently ramified suitable character of H;(k,) as in Section
4. Then by Corollary 4.1.1 we know that

’7(3;7‘—1} X ﬁqupv) = ’7(3;7‘—; X ﬁqupv)

and by Proposition 4.1 we have

7(5771'1/; X Uy, 7/}11) = 7(57[(/\11) X ﬂmd’v) = "Y(Sv (Lv © Qb)\u) & Uy, 7/}11)

On the other hand, by the functoriality diagram above
7(57 (Lv o (b)\v) & Dy, "/Jv) = ’7(87 ¢, ® mev)

and the work of Harris-Taylor and Henniart establishing the local Langlands con-
jecture for GL,, gives

'7(57 ®, ® lN/vﬂ/’v) = ’Y(saHU X Uy, 77[}11)-
Thus finally
V(Svﬂv X 17@71/11;) = 7(571_[11 X 9’1)’77[}1;)-

For sufficiently ramified 7 the local L-functions L(s, 7, x ,) and L(s,II, X )
both stabilize to 1 [41, 22] and so the stability of local ~-factors is essentially the
stability of local e—factors.

PROPOSITION 5.3. Let m, be an irreducible admissible generic representation of
Gr(ky) and let I1,, be the irreducible admissible representation of Hy(k,) as above.
Then for sufficiently ramified suitable characters v of Hy(k,) we have

L(s,my X Uy) = L(s, 11, X )  and &(8,my X Uy, y) = (8,1, X Dy, 1y).

There is a natural extension of this to the class of representations of H,,(k,)
that we require for the application of the Converse Theorem given in the following
proposition.
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PROPOSITION 5.4. Let v be a non-archimedean place of k. Let mw, be an irre-
ducible admissible generic representation of Gy, (k) and let 1L, be the irreducible
admissible representation of Hy(k,) as above. Let T, be an irreducible admissible
generic representation of Hy,(k,) with m < N of the form 7, ~ 14, ® D, with T,
unramified and v, suitable and sufficiently ramified as above. Then

L(s,my X 7y) = L(s,Il, X 7,)  and &(s,my X Ty, W) = (8,11, X 7y, 1y).

Proof: The proof of this proposition is by the use of multiplicativity of the local
factors with respect to the H,,-variable [40]. Since ¢, is unramified and generic
we can write it as a full induced representation from characters [21]

Hp, (ko
To,0 = IndB;n((kU))(lev Q- Xm,'u)

with each ;. unramified. If we let x;,(z) = |=|% and let u(z) = |x|,, then we

may write 7, as

Ty Indg:((::)) (Dvubl R ® gvubm).

By the multiplicativity of the local factors [40] we find

m
L(s,my X 1) = HL(S + bi, Ty X Ty)
i=1

and
m

e(s,my X Ty, thy) = [ [ (s + bis my X Dy, 4b0).

i=1
On the other hand, by the same results of [19] we also have

L(S,Hv X Tv) = HL(S + b, I, x ’;v)
=1

and
m

e(s, Ly x 7y, 1by) = [ [ (s + b, Ty X i, by).
i=1

By Proposition 5.3 above we see that after factoring the L- and e—factors for
m, and I, twisted by such 7, the factors are term by term equal for 7, a suitable
sufficiently ramified character. This establishes the proposition. (Il

In the appendix (Section 7.2) we explicitly calculate the local lift of a principal
series representation for the case of G,, = SO3,,. For the other cases (at least in the
unramified situation) these explicit calculations are in [11] and [26, 27].

Now let us return to the situation where GG,, is a unitary group associated to
a quadratic extension F/k in which the place v splits. Then G, (k,) ~ GLn(ky)
and Hy(k,) ~ GLy(ky) X GLy(ky). This situation is analyzed in the beginning
of Section 6 of [26]. The L-homomorphism is simply understood in this case. If
7y is an irreducible admissible representation of G, (k,) then, ramified or not, we
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take the representation II, of Hy(k,) to be m, ® T,. The twisting representation
Ty it a representation of H,,(k,) =~ GL,,(k,) X GLy,(k,) and hence of the form
Ty ™ Ti,u ® T2,». Then we have

7(5771-11 Q Ty, t & L/; 1/}11) = 7(55 Ty X T1v, 77[}11)7(5’7}1) X 72,1171/)1)) = ’Y(saHU X Tvﬂ/}v)
and
L(s, Ty @ Tyt @) = L(s,my X T1,0)L(8, 7y X T2n) = L(s, 11, X 7).

So we are in the same situation as in the unramified case, i.e., the stronger Propo-
sition 5.2 holds in this case.

5.4. The global candidate lift. Return now to the global situation. Let
T =~ ®'m, be a globally generic cuspidal representation of G,,(Ag). Let S be a finite
set of finite places such that for all non-archimedean places v ¢ S we have 7, and
1, are unramified (and if necessary the local extension FE,,/k, unramified as well).
For each v ¢ S let II, be the local functorial lift of m, as in Section 5.1 or 5.2.
For the places v € S we take II,, to be the irreducible admissible representation of
Hy (k) obtained in Section 5.3. Then the restricted tensor product II ~ ®'IL, is
an irreducible admissible representation of Hy(Ag). It is self-dual except in the
case of unitary groups, where it is self-conjugate-dual. This is our candidate lift.

For each place v € S choose a suitable sufficiently ramified character 7, = v, of
H,(k,) so that Proposition 5.4 is valid. Let n be any idele class character of Hy(Ay)
which has local component 7, at those v € S. Then combining Propositions 5.1 —
5.4 we obtain the following result on our candidate lift.

PROPOSITION 5.5. Let 7 be a globally generic cuspidal representation of G, (Ay)
and let I be the candidate lift constructed above as a representation of Hy(Ag).
Then for every representation T € T(S;n) = T¥(N — 1) ® n we have

L(s,mx71)=L(s,II x T) and e(s,mx 1) =c¢e(s,II x 7).

6. Global functoriality

6.1. Functoriality. Let us now prove Theorem 1.1. The proof is the usual
one [11, 27], but it is short and we repeat it for completeness.

We begin with our globally generic cuspidal representation of G, (Ag). De-
compose T ~ ®'m, into its local components and let S be a non-empty set of
non-archimedean places such that for all non-archimedean places v ¢ S we have
that 7, and 9, (and if necessary E, /k,) are unramified. Let II ~ ®'IL, be the
irreducible admissible representation of Hy(Ay) constructed in Section 5 as our
candidate lift. By construction II is self-dual or self-conjugate-dual and is the lo-
cal functorial lift of 7 at all places v ¢ S. Choose 7, an idele class character of
H,(Ay), such that its local components 7, are suitable and sufficiently ramified at
those v € S so that Proposition 5.5 is valid. Furthermore, since we have taken S
non-empty, we may choose 7 so that for at least one place vy € S we have that n,,
is sufficiently ramified so that Theorem 3.1 is also valid. Fix this character.
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We are now ready to apply the Converse Theorem to II. Consider 7 € T(S;7).
By Proposition 5.5 we have that

L(s,mx 1) = L(s,II x 7) and  e(s,mx71)=¢e(s,II x 7).

On the other hand, by Theorem 3.1 we know that each L(s,m x 7) and hence
L(s,II x 7) is nice. Thus II satisfies the hypotheses of the Converse Theorem,
Theorem 2.1. Hence there is an automorphic representation II' ~ &'II! of Hy (Ag)
such that II), ~ II, for all v ¢ S. But for v ¢ S, by construction I, is the local
functorial lift of m,. Hence II’ is a functorial lift of 7 as required in the statement
of Theorem 1.1. The lift is then uniquely determined, independent of the choice of
S and 7, by the classification theorem of Jacquet and Shalika [20]. O

6.2. The image of functoriality. In this section we would like to record the
image of functoriality. Assuming the existence of functoriality, the global image has
been analyzed in the papers of Ginzburg, Rallis, and Soudry using their method
of descent [16, 42]. From their method of descent of automorphic representations
from Hy(Ag) to the classical groups G, (Ax) and its local analogue, Ginzburg,
Rallis, and Soudry were able to characterize the image of functoriality from generic
representations.

There is a central character condition that must be satisfied by the lift. For
each classical group we associate a quadratic idele class character of A} as follows.
If G, is of type B,,, Cy, D,,, or 2A,, we simply take X, to be the trivial character
1. If G,, is of type 2D,,, so a quasisplit even special orthogonal group SO3,,, then
the two-dimensional anisotropic kernel of the associated orthogonal space is given
by the norm form of a quadratic extension E/k; in this case we set x, = ng/j the
quadratic character coming from class field theory.

The arithmetic part of their characterization relies on a certain L-function
L(s,I1;, R) for a Hy, having a pole at s = 1. The corresponding representation R
of the L-group depends on the G,, from which we are lifting. If the dual group “G,,
is of orthogonal type, then R = Sym?, if it is of symplectic type then R = A2, and
in the unitary case it is either the Asai representation R = Asaig,, for G, = U411
or the twist by the quadratic character g, of the associated quadratic extension
R = Asaig,;, @ ng /i, for Gy, = Usay,. For the definition of the Asai representation, if
it is not familiar, see [26, 27].

The image of the lifting then has the following characterization [42].

THEOREM 6.1. Let w be a globally generic cuspidal representation of G, (Ag).
Then any functorial lift of m to an automorphic representation I1 of Hyn(Ay) is
self-dual (respectively self-conjugate-dual in the unitary case) with central character
Wi = X, (resp. wilax = Xg, ) and is of the form

N=Ind(ll; ® - -I4) =1I; B--- By,
where each I1; is a unitary self-dual (resp. self-conjugate-dual) cuspidal representa-
tion of Hy,(Ay) such that the partial L-function LT (s,I1;, R), with any sufficiently
large finite set of places T containing all archimedean places, has a pole at s = 1
and 11; 22 11; for i # j. Moreover, any such 1l is the functorial lift of some .
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Let us make a few elementary observations on the distinguishing characteri-
zations of the various lifts. We summarize the image characterization data in the
following table:

Gy R Xa,
SO2p+1 A? 1
SO, Sym” 1

O3, Sym? NE/k
Spay, Sym? 1
Usp, AsaiE/k QNE/kK 1
Usapt1 Asaig)y, 1

We first consider lifts from orthogonal and symplectic groups. Suppose for
simplicity that II is a self-dual cuspidal representation of GLy(Ag). If N =2n+1
is odd, then II can only be a lift from Sp,,, and will be iff L7 (s, I, Sym?) has a
pole at s = 1 and wyy is trivial. If N = 2n is even, then II can only be a lift from
an orthogonal group. If L7 (s,II,A%) has a pole at s = 1 and wy is trivial then
it is a lift from the split SO, 1. On the other hand, if it is a lift from an even
orthogonal group, then necessarily LT (s, 11, Sym2) has a pole at s = 1. Since the
central character wyy is necessarily quadratic, this character will distinguish between
the various even orthogonal groups. If wyy is trivial, then II is a lift from the split
SOz, while if wy = 1g/y for some quadratic extension E/k, then II is a lift from
the quasisplit SO3,, associated to this extension. (If II is isobaric, one applies the
same conditions to the summands.)

We next consider lifts from unitary groups and we begin with a cuspidal repre-
sentation IT of GLx(Ay) for some number field k. If II is to be a lift from a unitary
group Uy, then we must have a quadratic sub-field kg C k with non-trivial Galois
automorphism o such that both wr| Ax = =1 and II ~ II°. Then we can realize

GLy(Ak) = Hy(Ay,) with Hy = Resk/kOGLN If N =2n+1 is odd, then for II
to be a transfer from Uy (Ay,) we would need L (s, II, Asaiy, /4, ) to have a pole at
s =1 and if N = 2n is even then for II to be a transfer from Uy, (A,) we would
need L7 (s, II, Asaiy /i, ® 1k /k,) to have a pole at s = 1.

From these descriptions, it is clear that there is no intersection between lifts
from different orthogonal groups nor between them and symplectic groups since the
A? and Sym? L-functions can never share poles. On the other hand, there seems to
be much room for overlap in the images from orthogonal/symplectic and unitary
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groups as well as potential overlap in the images from different unitary groups. It
would be interesting to understand these.

7. Appendix: Quasisplit orthogonal groups

In this section we present some explicit computation for the case of G,, = SO3,,.
While these are not necessary for what preceded, they can be quite helpful in
understanding this case.

7.1. The L-homomorphism. Let us start with some L-group generalities.
Let k be a local or global field and let T, = Gal(k/k). Let G be a connected
reductive group over k. Let B be a Borel subgroup and 7" C B a Cartan subgroup.
Let ¥o(G) = (X, A, XV, AY) be the based root datum for G associated to (B, T).

Since Out(G) ~ Aut(¥y(G)) we have the short exact sequence of automor-
phisms

1 = Int(G) = Aut(G) — Aut(¥y(G)) — 1.
We fix a splitting of this sequence as follows. For each o € A we fix x, € G. Then
Aut(To(G)) ~ Aut(G, B, T, {za})

realizes Aut(¥o(G)) as a subgroup of Aut(G).
The cocycle

o= F(f7) 7] € HY (T, Aut(@))
then lands in Aut(¥,(G)) and becomes a homomorphism
pa Tk = Aut(To(G)).
We then have the dual action
pd : Gal(k/k) — Aut(To(G)Y) = Aut(¥o(G)).

In the case of SO3,, which splits over E, with (E : k) = 2, let Gal(E/k) = {1,0}.
As before, we realize Aut(¥o(G)) ~ Aut(G, B, T, {zov}). If 7 € 0Gal(k/E) then
pgs(7) must send T to itself, each x4y to itself for 1 < i < n —2, and interchange
Tov_ and xqy. In particular, it must send e, to —e,. So the element 4, (7) can

be represented by an element [@] representing a coset of 7" in the normalizer of T
in Og,(C). In fact

(] = <‘1) (1)) T,
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Let

g)
Il
>

(o)

1

be an element of this coset that fixes the splitting {zov}. Then i € Z(G) =
Z(02,(C)) = {£1}. Thus

s
I

: (3 o)

1

are the only possibilities for an element in O, (C) representing p(7) by conjuga-
tion. The choice of + is irrelevant. So we set

1

g,
Il

(3 o

1
Then our embedding ¢ : SO, (C) x T'y, — GLa,(C) x T'y, must send
(1,7) = (0, 7) if 7€ oGal(k/E)
while B
(1,7)— (1,7) it 7€ Gal(k/E).
This follows from the fact that p%(7)(g) g™t

=W and
(L,7)(g,1) = (7(9),7) = (p&(7)(9), 7) = (wg ™", 7).

In particular
(L,7)(g: 1)(L,7) 7" = (dgw~, 1).
Note that by the matrix representation given for w we are clearly fixing
T = GL;(C)" " x (GL;(C) x GLy(C))/C*
the latter being the L-group of SO3. Moreover note that @ basically represents

only one sign change (e — —ey) and thus cannot be in the Weyl group of T in
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SO2,,(C). Tt represents the outer automorphism (the graph automorphism) of SO,
and (,7) gives the embedding of 7 € ¢Gal(k/E) in GLg,(C) x I'.

7.2. Computation of the local lift and its central character: SO;, . In
the local lifts of Section 5, both the unramified lift and the ramified lift relied on
lifting a principal series representation of GG,, to a representation of GLo,. We will
analyze this in a bit more detail here, computing the local lift in the quasisplit case
and the central character of the local lift in both cases.

Let k be a non-archimedean local field. Let 77 C GLg,, be the standard maximal
split torus. Let

0:We 2T and  x:T'(k) > C*.
Write
ol(ew) = (pola)w)  with o H' (KT,

Let p¥ € X, (T'") = X*(T") be such that for z € & we have p¥ (z) = diag(z, . ..,z) €
GLay,, (k). Then x(p¥(z)) = wx(z) if € kX and 7 = Ind().
Suppose we are in the case of a split SOg, and ¢ = 10 ¢' with ¢ : SO9,(C) —

GL2,(C) and ¢’ : W), — ET. Then
x(p" () = det(p(x)) = det(c(¢'(x))) = 1.

Now let us look at the non-split case SO3,, associated to the quadratic extension
E/k as above. In this case

Tk)=(k)""'xE'" o T=G""'x8S0j.

m

Thus
LT = GL1(C)" ! x (GL1(C) x GL(C))/C*.

and

(p:LO¢/ZWk—)LT—>LT,
where T"(k) ~ (k*)"~2 x EX x (kX)"~2 is a torus of GLa, (k) with E* embedded
in GLz(k) as in Langlands-Labesse [33]. Let u = (pt1, - -, ftn—1, Xn), With p; € X
and x, € E\l, be a character of T(k). Then, by Hilbert’s Theorem 90, E* /k* ~ E!
through the map x — x/x”. Thus we can extend x,, to a character x,, of E*. We
can then consider the character

/7: (:U’la' "aun—lvinvl’égip' "a:ul_l)

of T'(k).

To get a principal series on GLoy,(k), X, must factor through the norm map,
so write Xn = pin © Ngy with p, € kX. Since Xn 18 trivial on restriction to
k>, then pu2 = 1. Since endoscopy then gives the Weil representation of GLa(k)
defined by Ind%’; Xn, it gives the principal series representation I(unng/k, tn) =
I(nnE ks pnt), where nEe/k is the quadratic character of k* associated to the qua-
dratic extension E/k by local class field theory. So if the principal series represen-
tation I(u) of SO3,, (k) transfers to a principal series representation II, of GLay, (k),
it will be induced from the character

(/’1‘17 ey Un—1, MnnE/ka /-L»;la ,u;ilv D) /J/l_l)
of T'(k). Its central character is then simply ng/j.
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Even if x,, does not factor through the norm, the lift II,, will be the represen-

tation of GLay, (k) induced from

(:ulv s vﬂnfl’ﬂ(Ind%];%n)’ﬂrzip s 7“{1)

and its central character is still g /. In fact, the central character of W(Ind%’; Xn)
is the restriction of ng /1, Xy, to k*, which is simply 7g /. Note that now the transfer
is tempered, but not necessarily a principal series.

(1]
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(17]
(18]
(19]
20]
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ABSTRACT. We bound the first occurrence in the theta correspondence of irre-
ducible cuspidal automorphic representations o of orthogonal groups, in terms
of their generalized Gelfand-Graev periods. We also obtain a local analog at
a finite place. As a result, we determine a range of holomorphy of L3 (s, ) in
the right half-plane in terms of the local generalized Gelfand-Graev models of
o at one finite place.

1. Introduction

In [GJS09], we characterized the first occurrence of irreducible cuspidal au-
tomorphic representations of O,,(A) under the theta correspondence to Mp,,, (A),

where Mp,,, (A) is either Spy,, (A) (when m is odd) or Sp,,,(A) (when m is even) in
terms of the existence of poles of certain Eisenstein series (Theorem 1.3, [GJS09]).
Here, A is the ring of adéles of a number field k. As a consequence, we determined
a range of holomorphy in the right half-plane for the standard partial L-functions
L5 (s, 0) of irreducible cuspidal automorphic representations o of O,,(A) (Theorem
1.1 in [GJS09]). These results can be viewed as a natural extension to orthogonal
groups of the work of Kudla and Rallis on symplectic groups ([KR94]) and as a
completion to Meeglin’s work ([M97a] and [M97b]).

In this paper, we discuss the relations between the global or local theta corre-
spondence and the generalized Gelfand-Graev periods or models. As a consequence,
we determine a range of holomorphy in the right half-plane of the standard partial
L-functions L°(s, o) in terms of local generalized Gelfand-Graev models supported
by a local component o, at one finite place v. A preliminary version of such a result
was given in [GJS09] (Theorem 1.7), and some related very interesting applications
were discussed in §7 of [GJS09].
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For an irreducible cuspidal automorphic representation (o, V,) of O,,(A), we
define in §2.2 v o-Fourier coefficients of ¢, € V, in (2.14). The characters 1y o
are parametrized by integers ¢ and square classes a in k. Let r be the Witt index
of the quadratic space defining O,,. We assume that r is positive, 1 < ¢ < r, and
2t < m. Similarly, we define in (2.17) the notion of a 9 o-functional in the local
setting. The main result of this paper can be formulated as follows.

THEOREM 1.1 (Main). Let o be an irreducible cuspidal automorphic represen-
tation of O, (A) and t as above.

1. If there exists one finite local place v of k such that the local component o,
of o has a nonzero 1 o-functional, then the partial L-function L5(s,0) is
holomorphic for Re(s) > 3 —t. In particular, if ¢ has a nonzero ¥y q-
Fourier coefficient, then the partial L-function L° (s, o) is holomorphic for
Re(s) > F —t.

2. Assume that o has a nonzero Y o-Fourier coefficient. If eithert < r—1,
ort < r and « is represented by the quadratic form corresponding to the
anisotropic kernel of the quadratic space defining O,,, then L°(s, o) is
holomorphic for Re(s) > & —t — 1.

REMARK 1.2. Write m = mg + 2r. When mg =1, O,, is the split orthogonal
group in 2r + 1 variables. When t = r, 1o ts a Whittaker character, and the
assertion of the first part of the main theorem is that L°(s, ) is holomorphic when
Re(s) > &. This is Theorem 1.5 in [GIS09]. Ift =r — 1, then o has a nonzero
Yr_1,o-Fourier coefficient. This case was discussed in §7 of [GIS09].

When mg = 0, O,, is the split orthogonal group in 2r variables. If t =r — 1,
then ,_1.o 15 a Whittaker character, and the assertion of the first part of the main
theorem is that L°(s,o) is holomorphic when Re(s) > 1. This is Theorem 1.5 in

[GJS09).

We first prove in §4 that the nonvanishing of )y o-Fourier coefficients of o
determines a range of the lowest occurrence LOy (o) (defined in §3.1) of 3-theta
lifts of 0. Then we establish the corresponding local version of this global result.
This is done by an explicit calculation of the 1, o-Fourier coefficient of theta lifts of
cuspidal automorphic representations from Mp,,, (A) to O,,(A), and an analogous
calculation in the local setting. At the first occurrence, we get a relation between
these 1 o~ Fourier coefficients (respectively, functionals in the local setting) and
Whittaker coefficients (resp. models), corresponding to ¥ and «, on the symplectic
or metaplectic side. Finally, we use Theorem 1.1 in [GJS09]. Since we quote this
theorem several times in this paper, we state it here for convenience.

THEOREM 1.3 (Theorem 1.1 in [GJS09]). Let o be an irreducible cuspidal
automorphic representation of O, (A).
1. IfL%(s,0) has a pole at so = 2 —j > 0, or if m is odd and L (s, o) does
not vanish at s = %, and we let j = 2[%], then there is an automorphic
sign character € of O (A) such that the y-theta lift of o @ € to Mp,y,(A)
does not vanish, i.e. LOy(0) < 2j.
2. IfLOy(0) = 2jo < m, then L(s, o) is holomorphic for Re(s)

> — Jo.
3. IfLOy(0) = 2jo > m, then L%(s,0) is holomorphic for Re(s) >

MIHN’B
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2. The Generalized Gelfand-Graev Periods

Let k be a number field and A be the ring of adeles of k. Let (X, (+,+)) be
a non-degenerate quadratic vector space over k of dimension m and Witt index 7.
We assume that r > 1. For any nonnegative integer a, we denote by

(2.1) Ho =L @l

the polarization of the 2a-dimensional quadratic k-vector space H,, which is the
direct sum of a copies of the hyperbolic plane. Then X,,, can be written as

(2.2) X = Xpmo L (G ©07) = Xy L Mo,

where X,,, (mo = m—2r) is the mo-dimensional anisotropic quadratic vector space,
which is called the anisotropic kernel of X,,.
We may choose a basis for X,

(23) {615"' 3 €ri €1yt s E€mgy €yt 76—1}
such that
1 if j = —i;
(67;,6]‘) = e .
0 ifj# —i,
and (e;,€j) = 0 forall i € {£1,--- ,+r} and j € {1,--- ,mo}, where {e1, - ,e.}
is a basis for £}, {e_,, -+ ,e_1} is a basis for ¢, and {€1, -, €m,} is a basis for
X
Denote the Gram matrix of {€1, -, €my} by Tin,. Then the Gram matrix of
the basis (2.3) is
W
Tn = Tmo ’
Wy

where w, is the r X r permutation matrix with 1 in its second main diagonal, i.e.
(wr)i,j = 5i,r+17j~
For each t € {1,2,--- ,r}, we have the following partial polarization

(2.4) X =05 ® Xon—ot © €

where ¢, (resp. ¢; ) is the totally isotropic subspace of dimension ¢ of £ (resp. £),
generated by {e1,--- ,e:} (resp. by {e_¢, -+ ,e_1}). We will write the elements of
O,, as matrices according to (2.4) and (2.3). Denote by T),_2¢ the Gram matrix of
the basis {141, ,€r, €1, 4 €mg, €—ry -+ €1} of Xpn_oy;

Wr—t
T2t = To
Wr—t
Assume that m — 2t > 1. Let Q; = L;V; be the standard parabolic subgroup
of O,, such that

(2.5) Ly = GL! x Op_2¢ € Oy
and
v ozt z
(2.6) Vi={v=1(u,z,2) = L2t x| €0n},

*

u
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where u € Uy, the maximal standard (upper-triangular) unipotent subgroup of GL;.
Denote the first column of = by z;. Then the vectors

(2.7) 1= "(T11, 0 Tine2t1)

form a k-vector space which is isomorphic to X,, o;. Consider the action of GL; x
Om—2¢ on X, _o; by

(2.8) (a, h) o xy = ahx;.

By the Witt theorem, the space X,,_2; decomposes into the following disjoint union
of k-rational GL; x O,,,_os-orbits:

(2.9) Xm—ot = {0} U Oo U (Uaekx/(kx)zoa),

where Oy consists of all (nonzero) isotropic vectors in X,,_2; and O, consists of
all vectors x1 in X, _o; with (21,71) = a mod (k*)2. Tt is clear that the disjoint
union Ugepx /(xx)2Oq is k-stable.

2.1. Global periods. Let ¢ be a nontrivial character of A/k. Take p, in O,
and define a character ¢y o of V;(A) as follows. For v = v'(u,z,2) € Vi(A), we
define

(2.10) Vra(v) = P(ure 4+ + U110 ((fay 1))

It is clear that the character v o is trivial when restricted to V;(k). Since the Levi
subgroup L; = GL! x O,,_; normalizes V;, the group of k-rational points L (k)
also acts on the characters v ,, as a runs through a square class in £*. Consider
the following decomposition

(2.11) X2t = (k- pa) L (k- pa)*

Since i, is anisotropic, the orthogonal complement (k- )= is a non-degenerate
quadratic k-vector space of dimension m — 2t — 1 with respect to the restriction of
the bilinear form (-,-) on X,,. The stabilizer of ¢, o in O,,_g; is

)J_

(2.12) Dya = O((k - pta) ™)

We want to calculate the Witt index of (k- po)®. Recall that m — 2t > 1. If
t =, then X,,_o; = Xy, is anisotropic, and hence the Witt index of (k- po)t is
zero. If t < r, then the Witt index of X,,_o; is r — t and we have

(2.13) Xnot =0, ® Xpng ® U,

If o is representable by X, , then the Witt index of (k - o)+ is 7 — . If a is not
representable by X,,,, then the Witt index of (k - po)tisr—t—1.

For an automorphic form ¢ on O,,(A), we define the v, o-Fourier coefficient of
¢ by the following integral:

(2.14) Flue(6)(g) = /V R0

It is clear that the restriction of F¥t2(¢) to Dy o(A) is left Dy, (k)-invariant. We
note that when O,, is quasi-split, or split over k, and t = [mT_l}, then the 9y o-
Fourier coefficient is a Whittaker-Fourier coefficient.
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Let ¢’ be an automorphic form on Dy ,(A). Then we define the generalized
Gelfand-Graev period (or Bessel period) of ¢ of type (D o, ¥t,a,¢'), or simply the
(D¢, Y10, ¢)-period of ¢, by the following integral:

(215)  Po, i (6:6) = Po, (6.6) = / Foe (8)(h)¢! (h)dh,

Di,a(k)\Ds,a(A)

if the last integral converges. We refer to [GPSR97] for applications of such periods
to the theory of automorphic L-functions.

2.2. Local models. Let v be a finite local place of k and k, be the local field
of k at v. Let v, be a nontrivial character of k,. We define the v-analogue of 1
for Vi(k,) by

(216) ¢t,a;v(v/(ua &€, Z)) = 77”11(“1,2 +-+ ut—l,lt)wil((:ufa,m xl))

where o € k¢ and g, € Xin—2t(ky) is such that (fa,vs tia,w) = @. Let (o4, V5,) be
an irreducible admissible representation of O,, (k,). We say that o, has a nontrivial
Yt aso-functional if the space

(2.17) Homvy, (1) (Vo s Yr,a:0)

is nonzero. It is clear that in case O,,(k,) is quasi-split or split over k,, and
t = [™51], then a ¢ o-functional is a Whittaker functional.

Let 7, be an irreducible admissible representation of Dy o (k). Then 7, @ ¢ a:0
is a representation of the semi-direct product

(2.18) Tt.a(kv) = Dea(ko) x Vi(k).

We say that o, has a nontrivial generalized Gelfand-Graev model (or Bessel model)
of type (Jt,ar To @ Yt aw), Or a nontrivial (J,a, To ® ¥t a:)-model if the space

(219) Homjt,oc(k'u)(VUv?TU Y wtvaﬂ))

is nonzero. In this case, take 0 # ¢, € Homjt’a(k“)(ng,Tv ® Y1.a:0). Then the
corresponding (J; o, Ty ® ¥, a:0 )-model is the space consisting of all functions of the
following type:

(220) Bft’aw (g) = gv(av(g)(x))v g€ Om(kv)

when x runs through V.

3. Global and Local Theta Correspondences

In this section we recall the global and local theta correspondences for O,,, and
then study the global and local first occurrences of theta correspondences in terms
of the periods or models defined in the previous sections.

3.1. Global and local theta liftings. Let Sp,; be the symplectic group of k-
rank . Then (O,,, Spy;) forms a reductive dual pair in Sp,,,, in the sense of R. Howe
([H79]). We denote by Mpy;(A) the metaplectic double cover Spy;(A) of Spy;(A) if
m = 2n+1 or the A-rational points Spy;(A) of Spy; if m = 2n. Similarly, we denote
by Mpy, (k) the metaplectic double cover §132l(kv) of Spy;(ky) if m = 2n+1 or the
k,-rational points Spy; (k,) of Spy; if m = 2n. Details about Mpy,; (k) and Mpy; (A)
and their splitting properties can be found in many references. See, for instance,
[K94]| or [JngS07b].
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For a non-trivial character ¢ of A/k, there exists the Weil representation wy,
of Spy;,, (A), which is realized in the Schrédinger model S(A™), where S(A™) is
the space of C-valued Schwartz-Bruhat functions on A™.

For ¢ € S(A™), we form the theta function

Opp() = Y wyl@)(@)(©),

fekm’

on §1;2ml (A). This series is absolutely convergent and defines a function of moderate
growth on Sp,,,;(A). There is a natural homomorphism

O (A) X Mpyy(A) = Spy,(4)

with kernel Co = {£1}, and the center of O,,(A) diagonally embedded. We pull
the Weil representation w,, back to O,,(A) x Mpgy;(A). This allows us to restrict
0, 10 Opy(A) X Mpy;(A). See [JngS07b], for instance.

For an irreducible cuspidal automorphic representation (o, V,) of O,,(4), the
integral

(3.1) 02 (h: 6or0) = / 60(@)0y-1 (9, h)dg
O (E)\Om (A)

with ¢, € V,, defines an automorphic form on Mp,;(A). We denote by Hilﬂn(c)
the space generated by all OQZ’m(g; oo, ) as ¢ and ¢, vary. This defines a gen-
uine automorphic representation of Mpy;(A), which we denote by Hil’m(a). We
call this representation the -theta lifting of ¢ to Mpy;(A). Similarly, for a gen-
uine irreducible cuspidal automorphic representation (7,Vz) of Mpy,(A), we get
the automorphic representation ;' (7) of O (A). Its space is generated by the
automorphic forms

(3-2) O 21(9; 07, ) == ¢ (h)0y o (g, h)dh

‘[\dp2l(k)\Mpzz(A)
as ¢ and ¢ vary. We say that 9:/7,25(7}) is the t-theta lifting of 7 to O,,(A). In this
paper, all representations of the metaplectic group (global or local) are assumed to
be genuine.

Recall that a basic problem in the theory of the theta correspondence is to
determine when the -theta lifting 921’m(0) is nonzero for a given irreducible cus-

pidal automorphic representation o of O, (A) (similarly for 67, (7)). In [GJS09],
we introduced the notion of the lowest occurrence LOy (o) of o, with respect to
all twists by automorphic sign characters of O,,(A), in the tower Mp,; (A), via the

1-theta correspondence, namely
(3.3) LOy(0) :== min{FOy(c ®¢)},

where € runs through all automorphic sign characters of O,,(A). As the notation
suggests, FO,, (0 ® €) denotes the first occurrence of o ® € in the tower Mpy; (A) via
the 1-theta correspondence.

Next, we recall briefly from [MVW8T] the local theta correspondence over the
local field k,, where v is a finite local place of k.

For a nontrivial character v, of k,, let wy, be the Weil representation of the re-
ductive dual pair O, (k,) x Mps, (k,) acting on the local Schrédinger model S(k™),
where S(k™) is the space of local k,-valued Schwartz-Bruhat functions on k7. A
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detailed discussion of the splitting of the double cover and the related cocycles can
be found in [JngS07b], for example. See [K94] for general reductive dual pairs.

Let (04, Vy,) ( (74, Vz,), resp.) be an irreducible admissible representation of
Om(ky) ( Mpy;(ky), resp.). If

(3.4) Homo,, (k) xMpy, (ko) (S(k)™), Vo, @ Vz,) # 0,

then we say that 7, is a local v¥,-theta lift of o,,, and o, is a local i,,-theta lift of 7.
We do not assume that the local Howe duality conjecture holds for the case we are
discussing here. The local Howe duality conjecture was proved by J.-L. Waldspurger
[W90], when the residual characteristic of k is odd. In such a circumstance, the
local v,~theta lift is the same as the local ,,-Howe lift. We refer to [MVW8T7] for
more detailed discussions.

We define the first occurrence for the local t,-theta liftings based on (3.4).
More precisely, we say that the first occurrence of o, is FOy, (0,,) = 2l if

HOMO,, (k,)xMpyy, (ko) (S(KT), Vo, ® Va, ) =0,

for all [; < Iy and for all irreducible admissible representations 7, ;, of Mpy,, (k,),
but there exists at least one irreducible admissible representation 7, ;, of Mpy; (k)
such that

HOMO,, (k) x Mpyy, (k) (S(K7), Vo, ® Vi, , ) # 0.

By the local tower property of ([K96], for instance), if the first occurrence of o, is
FOy, (0,) = 2lg, then for any [ > Iy, there always exists an irreducible admissible
representation 7, ; of Mpo,(k,) such that the space

HomOm,(k7,)><Mp21(k1,)(S(k;nl)a Vg’u ® Vﬁ-“)l) 7& 0.

We define the local lowest occurrence of o, by
LOy, (0y) == min{FOy, (0,), FOy, (0, @ det)}.

We mention here the conservation relation conjectured by Kudla and Rallis, namely
that FOy, (0,) + FOy, (0, ® det) = m. See [KRO5].
The local first occurrence for 7, can be defined in the same way.

3.2. Vanishing of theta liftings. For an irreducible cuspidal automorphic
representation o of O,,(A), we are going to relate, by doing some explicit calcula-
tions, the nonvanishing of the 1, o-Fourier coeflicient on o to the first occurrence

FOy (o) of 0.
Following [MW87], [M96] and [GRS03], we say that o has 1, , as a top
Fourier coefficient, for given ¢ € {1,2,--- 7} and a € k* mod (k*)?2, if there is

some ¢, € V, such that the ¢ o-Fourier coefficient f’l’tv”(qﬁa) is not identically
zero, but the vy o/-Fourier coefficients F¥+'.«’ (¢, ) are all identically zero, for all
by € Vy, o' € KX mod (k*)2, and t' > t. Recall again that we assume that
m — 2t > 1. Note that if r, the k-rank of O,,, is zero, i.e. O,, is k-anisotropic, then
o has no such Fourier coefficients at all.

The first result in this paper is

THEOREM 3.1. Let o be an irreducible cuspidal automorphic representation of
Om(A). If 0 has Yo as a top Fourier coefficient, for some t € {1,2,---,r},
with v = 757 > 1, m — 2t > 1, and some o € k* mod (k*)2, then the lowest
occurrence of o, LOy(0) is greater than or equal to 2t, i.e. for any automorphic
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sign character € of Oy, (A), the first occurrence FOy (o ® €) is greater than or equal
to 2t.

Note that when mg < 1 and t = [%], Y1, 1s a Whittaker character. In
these cases the theorem is well known (at least the version with special orthogonal
groups). See [W8O0], for m = 3, [PSS87], for m = 5, [F95], for m odd, in general,
and [GRS97], for m even.

Here is an outline of the proof of Theorem 3.1. It suffices to show that for any
[ < t, the -theta lifting Gil_m(a ® €) is zero as an automorphic representation of
Mpy; (A), for all automorphic sign characters € of O, (A).

If this is not the case, then by the Rallis tower property of theta liftings ([R84]),
there is an integer ! < ¢t and an automorphic sign character e of O,,(A) such that the
1-theta lifting 92{m(0 ® €) is nonzero and cuspidal. Clearly, o ® € has a nontrivial
y,o-Fourier coefficient (and this is its top Fourier coefficient). Thus, we may assume
that e is trivial, and hence that Hil,m(a) is nonzero and cuspidal.

By the main theorem of [M97b] and Theorem 1.2 of [JngS07b], the v-theta

lifting 79; := Hzl’m(a) is a nonzero irreducible cuspidal automorphic representation
of Mp;(A) and we have
(3.5) 0 = 0](To1) = 072167 1, (0))-
We consider the following polarizations for X, and Wy;:
(3.6) Xm = 00 Xm @l
(3.7) Wou = Y ey,

where Wy, is the non-degenerate symplectic k-vector space defining Sp,;, and hence
Mp,,;. We assume that O,, acts from the left on X,, and Sp,; acts from the right
on Wy. We may take a canonical basis

(38) {flf"vfl;f—lv"'af—l}

for Wy, such that Y, is generated by {f1,--- , fi}, Y, is generated by {f_;,- -+, f-1},

and (fZa f—j)Wzl = 62]
We consider the Weil representation wy, on the mixed Schrédinger model

(3.9) Sme2t =Sl (A) @ Wy (A) & Xm_ot(A) @ Y7 (A)).
The Schwartz-Bruhat function ¢ in S, g9 is written as

(310) so(wla"' W3 Yty st aym—Qt)

where w; € Wy (A) and y; € Y7 (A) fori=1,--- ,;tand j=1,--- ,m — 2t
By assumption, o has a nonzero 1; o-Fourier coefficient for ¢ < r and for some
a € kX (see (2.14)), i.e.

(3.11) Flee (90)(g) = /V RO

is nonzero, for some ¢, € V,, and some g € O,,,(A). By (3.5), we may take ¢, to
be

(3.12) sole) = | 0 ()0 (9, )1
Mpy; (k) \Mpy; (A)
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for some ¢z € Vi. Then the 1)y o-Fourier coeflicient Fhto (¢5) can be written as

Fre@e = [ f 551000, (0, )b () o
Vi(K)\Vi(A) / Mpy, (k)\Mpy,; (A)

/ bz (h) 0., (v, B)1by o (v)dvdh.
Mp2z(k)\MP21(A) Vt(k)\Vt(A)

(3.13)

The switch of order of integrations is easily justified, since V;(k)\V;(A) is compact,
¢# is rapidly decreasing and 6y ,(v, h) is of moderate growth. The inner integral
is the v o-Fourier coefficient of the theta function

(3.14) FYro 0y o(- b)) = / O, (0, Ry o (v)dv
Vi (k)\ Vi (A)

Then we have

PROPOSITION 3.2. The 1)y o-Fourier coefficient of the theta function 0y (g, h),
F¥e(Bp (- h)), is zero for all ¢ € S(A™), if | < t.

We postpone the proof of Proposition 3.2 to §4.1.

By Proposition 3.2, if [ < ¢, the 1; o-Fourier coefficient of the theta function
Oy (g, h), FPu(0yp (- h)), is zero for all p € S(A™). It follows that the 1)y -
Fourier coefficient F¥*(¢,) as in (3.11) is zero for all ¢, € V,. This contradicts
our assumption. This will prove Theorem 3.1.

By applying Theorem 3.1 above to Theorem 1.1 in [GJS09], we obtain

COROLLARY 3.3. Let o be an irreducible cuspidal automorphic representation
of O (A). If 0 has rq as a top Fourier coefficient, for some t € {1,2,---,r},
with 1 = 7570 > 1, m — 2t > 1, and some o € k* mod (k*)2, then the partial
L-function L% (s, o) is holomorphic for Re(s) > % —t.

4. Fourier Coefficients of Theta Functions

We shall prove Proposition 3.2 first and then develop its local version after-
wards.

4.1. Proof of Proposition 3.2. We shall use the notation in §3 for the calcu-
lation of the 9y o-Fourier coefficient of the theta function 6y (g, k) as in Proposition
3.2,

(@) FoOuph)i= [y ek,
Vi (B)\ Vi (A)
Let us rewrite the elements (2.6) in V; in the form
u o z
v=uv(u,x,z2)= Lot o*
u*

The subgroup Z; = {v(z) = v(1;,0,z) € V;} is the center of Ny = {v(z,2) =
v(Iy, z,z) € Vi}, and the subgroup Uy = {v(u) = v(u,0,0) € V;} normalizes N;.
We may write the elements of Z;\N; as v(x) = v(Iy, x, 2)Z;, for any z, such that
v(I, z, z) € V;. Note that

1%’0((’1)(1“.%‘, Z)) = ¢(9Ct : :uoc)J
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where x; is the last row of . We have

Fro oo = [ /
Ui (k)\Ut(A) S My (m—2t) (K)\M¢x (m—21)(A)

(4.2) / Oy, (v(2)v(x)V (1), h)z/)t_,é(v(x)v(u))dzdxdu.
Ze(k)\Z¢(A)

By the definition of the mixed Schrédinger model as in (3.9) and (3.10), the
theta function 6 ,(v(z)g, k) can be written as

(4.3) > wy (v(2)g, R)p(wi, -+ WY1, Ym—2t)-
w; €Wy (k),y; €Y, (k)

We have the following formula for the action of wy, (v(z), 1) on the mixed Schrédinger
model:

ww(”(2)7 1)@(11}17 WY1, 7ym72t)
1
= <)0(w17 e, WY1, >ym72t)¢(5tr(Gr(w1a e awt)wtz))v

where Gr(wy, -+ ,w;) is the Gram matrix of (wy, - ,w) (see [K96], p. 37, and
also [JngS07b], p. 727).
Hence the dz-integration in (4.2) can be expressed as

/ QTP#P(’U(Z)ga h)dZ = Z w’tl)(g>h)()0(w1>"' , Wes Y1, 0 7ym72t)
Z(k)\Z¢ (A)

Wi,Yj
1
. / w_l(—tr(Gr(wl, cee wy)wez))dz,
Zo(k)\Z¢(h) 2

where the summation over w;, y; is the same as in (4.3). The order switch of integral
and sum is easily justified, since Z;(k)\Z;(A) is compact and the summation over
wj, y; is absolutely convergent. Note that

1
/ P(=tr(Gr(wy, - -, wy)wiz))dz
Zok\Zi(h) 2

must be zero unless the Gram matrix Gr(wi,---,w;) is zero, i.e. (w;, w;)w, =
0 for all 4,5 = 1,2,---,¢. This means that the subspace of Wy generated by
w1, wa, - ,wy 18 totally isotropic. Since we assume that [ < ¢, we deduce that
wy, wa, -+, wy must be linearly dependent in Wy;. When Gr(wy, -+ ,w;) is zero,

1
/ Y(ztr(Gr(wy, -, wy)wz))dz =1
Zi(k)\Z1(A)
by the choice of the Haar measure on Z;(k)\Z;(A). Therefore we have
(44) / 0w7¢(v(2)gvh)dz = Z wll)(g7h)(p(w17" WY1, 7ym—2t)
Zf(k)\Zt(A) wi,Y;j

where the summation is over all yi, - ,ym—2t € Y, (k), and all wy, -+ ,w; €
Wi (k) with the property that wq, wa, - - - , w; generate a totally isotropic subspace of
Wo (k). Again, since dimy, Span, (w1, -+ ,w) <1 <t, wy,--- ,w; are automatically
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linearly dependent. Hence we obtain

Foetostmy = ] > wolvla)otu).h)

M (m—26) (F)\Mix (m—20) (8) ;g
(4.5) p(wr, - WY1, Yme20) Py o (0(@)0(w))dzdu,

with summation as above. Denote

d = dimy Spang(wy,- - ,we),
E; = Spang(w, - ,wy).
Then we can split the last integral as a sum over 0 < d < [, where in each
summand we compute the last integral with wy,--- ,w; € E4 and E4 varies over all
d-dimensional totally isotropic subspaces of Woy;. Let P; be the standard parabolic

subgroup of Sp,;, which preserves the totally isotropic subspace Y  generated by
{f-a,---, f-1}. Then we may write E4 =Y, 7, where v € P;(k)\Spy; (k). Thus,

l

FoeOu) = 3 [ /
d—0 Y Ut(k)\U¢(A) Mt><(7n72t)(k)\Mt><(7n72t)(A),Yepd(k)\spzl(k)

Z Z ww ) ")/h,) (w17"' y W3 Y1y - aym—Qt)
w; €Y, yJGY
(4.6) g o (v(@)v(w))dedu.

Here, we used the automorphy of theta series. More explicitly, if we write in (4.5),
w; = v;7y, where w; € Eg and v; € Y, then

> wylg.h) o1, oYL Ymeat)
y; ey,

= Z w’t/«'(g?ryh’) : <P(1)1a"' s Uy Y1, -0 ay7n—2t)~
y €Y

The point is that the summation over y; € Yl+ defines the theta series on O, —2:(A) X
Mpy; (A). To explain this, we may assume that g = 1, and that ¢ = ¢ ® s, where

QD(U)], WY1, 7y’m72t) = wl(wlu e 7wt)$02(y17 e 7ym72t)‘
Then

Z wy(Lh) (Wi, s wiyn, o Ym—2t) = pr(wihs -+ wih)fy o, (1, h),
i€y’

where 6 ., is the corresponding theta series for O,,_2:(A) x Mpy;(A). Let us use
now the action of v(z), which follows from the formulae of the Weil representation
on the mixed model. For wy,---,w; € Y,” and y1,- - ,Ym—2t € Yﬁ,

ww( ( ) 1) (wla"' , WY1,y 7ym—2t)
m—2t

t
Z Z Tt41— z,j(wzayj))ﬁp(wlv WYL, s Ym— 2t)
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As before, we may switch the order of summations and the dz-integration and
get

T Bl Z /U (W\U(A) 2 2

YEPa(k)\Spy; (k) Wa,a(k)
(4.7) wy (v(w),vh) - o(wr, - Wi Y1, ,ym_gt)d);é(v(u))du,
where W, 4 is the variety of all (w1, -+, w91, Ym—2t), such that the w; lie in
Y, , the y; lie in ¥}, (w;,y;) =0, for all 2 < i <t, 1 < j <m — 2t, and similarly,
(w1,95) = (Ha);-

Recall that p, is the (column) vector in X,,_o:(k), such that (ga,te) = @,
which enters into the definition of ;.. The action of wy(v(u),1) is linear on
0_4(A) @ Wy (A) and trivial on X,,,_2(A) ® ¥;7(A). The precise form is

W¢(U(U), 1) . QD(’U)l, WY, 7ym72t) = @((wlu e ,’LUt) CWEUWEs Y1, 7ym72t)-
Note that
(48) ('LUl," W Y1, 7ym72t) = ((wlu' o ,’LUt) cWiUWe Y1, 00t 7ym72t)

defines a k-rational action of U; on W, 4. The U.(k)-orbits in W, 4(k) are given
by elements (wy, - ,w; Y1, -, Ym—2t) € Wa a(k), such that (wr,--- ,wy) is of the
following form

(49) (wla"' 7Oawi2a05"' aovwi3707"' 707"' 7O7wi470a"' 70)7

where wy, w;,, Wiy, - -+, w;, are linearly independent elements in Y, . Note that by
definition of W, 4, we must have d > 1 and w; # 0. Denote by wEt:d) the element
n (4.9), and let w.q) = (wzt:d);yl, “**,Ym—2t). Denote its U;(k)-orbit by Oy,
and its stabilizer in Uy, via the action (4.8), by £

Wity 1€

‘cw(t:d) = {u € Ut(k) | wEt:d) P WUy = wEt:d)}'

Again, in (4.7), we may switch order of summations and the du-integration.
Then, the contribution of the U;(k)-orbit O is

W(t:d)

/ S i (0), ), Wy, Yt (0())du
Ui (k)\Ut(A)

W(t:d)

wy (Vi) Yh) (W) ¥ra (v(u))du

Ut (k)\U¢(A) NEL w4y () \Ue (k)

Lo
_ /E g (0(1), YR) P (W) oy (0 (1))
/.

W(t:d) (k)\Ut(A)

wy (v(w), YR) P (W(ta)) Py o (v(w) ) du
wiay ANTE(A)

(4.10) - /L Vi M v(a))da.

iy B\ Luwy, g (A)
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Hence, if the restriction of the character v, o, to the stabilizer Ew(t: O (A) is nontrivial,
then we must have

Yy L(v(a))da = 0.

t,o

/ﬁw(t;d) ()L, gy (A)

This implies that for such a U (k)-orbit Oy, , we have
(4.11)
/ Z Wep (U(U), ’yh)tp(wl’ L, WY1, aym72t)¢;al (v(u))du =0.
Ue(W\Ue(8) o

W(t:d)

Note again that in the orbit Ou, ., Y1, ;Ym—2: are fixed. Now for a Ui (k)-orbit
Ow(t:d) with representative of the form (wét:d); Y1, s Ym—2t), where wzt:d) is as in
(4.9), since r <1 < t, it is easy to check that the stabilizer L, , contains at least
one simple root of GL; in U;. Recall again, that in W, 4, we must have w; # 0.
Hence we must have that the restriction of the character 1, to the stabilizer
Ly, (A) is nontrivial. This proves Proposition 3.2.

4.2. Genericity of theta liftings. We are going to calculate the v ,-Fourier
coefficient F¥t<(¢,) of ¢, € V,, as defined in (3.12) when [ = t. In other words,
we will calculate explicitly the following integral:

(4.12)  F¥re(¢,) = b5 (h) / 0., (v, h) ;o (v)dvdh
) Ve()\Ve(A)

‘/1\/Ip2t(k)\Mp2t(A
for ¢, € V, and ¢ € S(A™). For this, we simply continue our calculation in §4.1,
with [ = ¢. What we did shows that in (4.7) only d = ¢ may contribute a nonzero
summand. Note also that for (w1, -, w1, Ym—2t) € Waulk), wi, -, wy
form a basis of Y,”. Denote by S the unipotent radical of the Siegel parabolic
subgroup P;. Then we may replace in (4.7) (I = t) the summation over v €
P,(k)\Spy, (k) by the summation over v € S(k)\Spoy(k), but now (wq,---,we) =
(f—t,--+, f-1) are fixed to be the standard basis of Y;~. We get

Flo 0y o( b)) = / SOy

UeNU(B) €5 (k)\Spay (k) Ya (k)
(413) Way (’U(U), 'Yh)(,o(f_t, e 7f—1; Y1, 7ym—2t)w;i (’U(U))du,
where Y, is the set of all (y1,--*,Ym—2:), such that the y; lie in Y;", satisfy

(f=i,y;) =0, forall 1 <i<tandl<j<m—2t and similarly

(f=t:95) = (a);-
This implies that Y,, is a single point. Indeed, we must have y; = a; f;, where
a; € k, and
t(ah T 7am72t) = M-

In terms of our notation (3.9), (3.10), it is now more convenient to re-denote the
vector (a1 fe, s am—2:ft) BY fla @ fi € Xm_2:t(k) @ Y, (k). We conclude that

Fre Oy, h) = >

YES(K)\Spyy
(4.14) wy (v(w), vh) - o(f-t,- -+ f-15 o @ f1)Ur o (v(w))du,

* /Utw)\Ut(A)
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Substitute this in (3.13). We get

Flea(@o)e) = / oz (h) /
S(k)\Mp,, (A) Ue (k)\U¢(A)

(4.15) wy (V(u), h) - o(ft, -+ fo15 pta @ fo)¥ia(v(u))dudh,

In the mixed Schrodinger model (3.9), we have, for s = <It Ib> € S(A),
t

wy(1,8) - p(fty s fo1s e @ ft) = iﬁ(%abt,lﬁﬁ(ﬁta o o1 e ® ).

Factoring integration in the last integral through S(A), we get

1
j'_"‘/’t,a - — = h - d
GO = L GO Gas)ds
(4.16) / wy (v(w), h) - @(foty- s fo15 ta ® )Y o (v(w))dudh,
Ue(k)\Ue ()

Next, we have the following formula, for u € U;(A),
ww(u, 1) : QO(fft, e 7f71;/1'a ® ft) = sz(lau_lh)‘%’(ffm e 7f71;/fLa ® ft)7
Then by changing the variable A — uh in the last integral, we get that

P = | ol H) - s Fotisia @ £
S(A)\Mpy, (A)

1
(4.17) : / / Oz (suh) (= asy 1)y o (u)dudsdh.
U(\UL () S5 (R)\S(8) 2

It is clear that the semi-direct product U; x S is the unipotent radical R; of the
standard Borel subgroup of Sp,, and the product of the two characters v, o(u) and
zp(—%a - S¢.14+1) Is a generic character g, o of R;. Hence the inner integrations ds
and du give a Whittaker-Fourier coefficient of ¢z, which is denoted by W;fj:t‘“ (h).
Hence F¥t(¢,)(e) is equal to

(4.18) Wo(LR)Q(fots -, 13 o ® fo)WLRe (h)dh.

/S(A)\MPZt(A)
We record the calculation above in the following proposition.
PROPOSITION 4.1. Let 7 be an irreducible cuspidal automorphic representation

of Mpy,(A). Let o = 0;'4,(7) be the theta lift of T to O (A). We assume thatr >t
and m > 2t. Let ¢, be the element of V,, given by (3.12), namely

6o(g) = / 6= ()04 (g ).
MPQL(k)\Mpzz(A)

Then the 1y o- Fourier coefficient of o is related to the Vg, o- Whittaker -Fourier
coefficient of 7™ by

(4.19) 7 (00)(e) = [ o (L R)Q(ftr  fori o ® f) WL (h)dh,
S(A)\Mpy, (A)

In particular, if T is not generic, or if a is not represented by X,,_o¢, then o has

zero Yy o-Fourier coefficients.

As a corollary, we get
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PROPOSITION 4.2. Let o be an irreducible cuspidal automorphic representation
of Om(A). Assume that o has a nonzero Y o-Fourier coefficient (1 <t <r, m —
2t > 1). Assume that the first occurrence of o, FOy (o) is 2t. Let © = 03!, (o)
be the -theta lift of o to Mpoy,(A). Then 7 is globally generic, with respect to
the Whittaker character Yr, o, as above. Moreover, the formula relating the 1y -
Fourier coefficient of o and the g, o- Whittaker-Fourier coefficient of T is given
(in the above notation) by (4.19).

Conversely, start with an irreducible, cuspidal automorphic representation 7 of
Mpo,; (A), which is globally generic with respect to a character of the form g, a,
where o € k™. Assume that t < r and 2¢ < m. We use the same notation pertaining
to X (Xpm—2t, the symmetric non-degenerate matrices T,,_o; etc.). Since the
quadratic form defined by T},,,12 is not anisotropic, « is represented by T,,,+2. Let
to € Xmo+2(k) be such that (fa, fta) = o, and consider the r.h.s. of (4.19), where
we take wy to be the Weil representation of the dual pair Oy, 1212¢(A) X Mpy, (A).
It is easy to see that the r.h.s is not identically zero. By Proposition 4.1, we conclude
that the 9, o-Fourier coefficient of the ¢ theta lift of 7 t0 Oy 4242:(A) is nontrivial.
In particular, the -theta lift of T to Oung4242:(A) is nonzero. Now, let o be an
irreducible cuspidal automorphic representation of O,,(A), which has a nontrivial
Yy o-Fourier coefficient. We already proved that FOu (o) > 2t. If FOy(0) = 2t,
then, by what we just explained, we must have that » < ¢+ 1. Thus, if we assume
that ¢ < — 1, then we get that FO,(c) > 2t + 2, and hence, by Theorem 1.1 in
[GJS09], L%(s,0) is holomorphic at Re(s) > % — ¢ — 1.

We can repeat the same considerations if « is represented by T,,,. Let p, €
Xm, (k) represent a. Now we repeat the same argument with X,,, replacing X, +2
and obtain that if FO,(0) = 2t and 7 is the t-theta lift of o to Mpy,(A), then
since 7 is globally g, o-generic, it has a nontrivial i-theta lift to Oy, 42:(A), and
we conclude that ¢ > r. Thus, if we assume, in this case, that t < r, then we get, as
before, that FOy () > 2t+2, and that L (s, o) is holomorphic for Re(s) > 2t —¢—1.
Let us summarize this.

THEOREM 4.3. Let o be an irreducible cuspidal automorphic representation of
O (A). Assume that o has a nonzero ¢ -Fourier coefficient (1 <t <r, m—2t>
1).
1. Assumethatt < r—1. Then the partial L-function L°(s, o) is holomorphic
for Re(s) > 5 —t — 1.
2. Assume that o is represented by the quadratic form corresponding to Tp,,,
and that t < r. Then the partial L-function L°(s,c) is holomorphic for
Re(s) > & —t— 1.

5. Completion of the Proof of Theorem 1.1

The proof of Part (1) of Theorem 1.1 is completely analogous to the one in
84.1. We will use the same notation as before, adapted to the local setting.

5.1. Local models and theta lifts. We determine the vanishing of local
theta lifts in terms of the local v o-functional. Here is the result.

THEOREM 5.1. Let F be a finite extension of the p-adic field Q,. Let o be
an irreducible admissible representation of O, (F). Assume that o has a nonzero
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Yy, -functional as defined in (2.17) for some t < r, the Witt index of the quadratic
space Xy, defining O, (F). Then LOy (o) > 2t.

This is the local analogue of Theorem 3.1. The proof uses the local version
of the global arguments used in the proof of Theorem 3.1 and is modeled after
the proof of Proposition 2.1, [JngS03| and of Theorem 4.2, [JngS07a]. Here is a
sketch.

It is enough to show that the local i-theta lift Hilvm(a) of o to Mpy,(F) is zero
for all [ < t. Assume that this is not the case. Then there is a integer [ < t such
that the i-theta lift Gi{m(a) of o to Mpy;(F') is nonzero. This means by (3.4) that
there is an irreducible admissible representation 7 of Mp,, (F') such that

(5.1) Homo,, (7)xMpy, (F) (Wy; 0 ® ) # 0
or equivalently,
(5.2) Homg,, 7y (wy @ 77, 0) #0

where w,;, is the local Weil representation of Mps,,,, (F), restricted to the dual pair
(O (F), Mpy (F)).
Following §3, we consider the analogous polarizations for X, and Wy;:

(5.3) Xy = 4O X 00l

(5.4) Wy = Y aY .

We consider the local Weil representation wy, on the mixed Schrédinger model
(5.5) Sme2 =Sl @ Wy @ Xp_o @ Y,T).

Using similar bases as in §3, we write a local Schwartz-Bruhat function ¢ in S;,g9
as

(5.6) O(wi, -+ WY1, Ym—2t)
where w; € Wo; and y; EYlJr fori=1,---,tand j=1,--- ,m— 2t.
By hypothesis, o has a nonzero v o-functional ¢, i.e. a nonzero element in
Hoth(F) (V07 wt,(y)-

By (5.2), the functional ¢ induces a nonzero functional 5 over Spg2 ® Vizv, such
that

(5'7) B(Ww(vah)%ﬁ) = @bt,a(v)ﬁ(@ag)

for v € Vi(F), h € Mpy(F), £ € Vzv, and ¢ is a function in the mixed model.
We consider the local version of the dz-integration as in (4.4), and obtain as in
[JngS03], p. 755, that for each fixed &, § is supported on

CO = {(wla"' , WY1, - 7ym72t))|(wiij) :O,V 1 é Za] S t}

Indeed, let i be the restriction map from S(W4 & (YV;7)™ %) to S(Cp). It is
surjective. Let i* be the corresponding map on Jacquet modules with respect to Z;
and the trivial character. Then ¢* is an isomorphism, i.e.

Tz, (S(Wyy @ (V1)) = Jz,(S(Co))-
Let C be the complement of Cy in Wi, & (Y;")™ 2. Then it is easy to see that
Jz,(S(C)) = 0 and Jgz,(S(Ch)) = S(Cp). We regard S(Cp) as a module over
(Ze(F)\Vi(F)) X Mpo;(F). Denote U;(F) = Z(F)\Vi(F). We identify U/(F) with
U(F)Mx (m—2¢)(F) and regard v; o as a character of U{(F). Thus, we have to
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prove that Jy:(ry 4, . (S(Co)) = 0, when [ <t. Write Cp as the disjoint union, over
0 < d <, of the varieties

C¢ ={(w1, -+, wi;y1, -+ ,Ym—2¢) € Co | dimp Spanfws, -+ ,w;} = d}.
Then it is enough to prove that Jy (g y, . (S(C§)) = 0, for all 0 < d < I. We can

embed S(CY) inside indg’;g;igd%fﬂ()F)S(Cgﬁ), where

0617_ = {(wlu"' , Wey Y1yt 7y’m72t) S Cg ‘ Wi, ,Wq € Yd7}7

and P4(F) is the inverse image of Py(F) inside Mp,,(F). Thus, we have an embed-
ding
. M F d,—
;00 0.0 (S(CF)) = imd P2 T oy, (S(CET)),

and so it is enough to show that Jy:(r).y, . (S(CE™)) = 0, when [ < t. Using the

action of My, (y—a1) (F') on S(C’g’_) through the formulae of the Weil representation,
we conclude, as above, and as in §4.1 that

Jo1(F) e (S(CH 7)) 2 Tty (1) 0 (S(Woaa))s

where W, 4 is defined exactly by the same relations as in the global case. Finally, it
remains to show that Jy,(r), ¢, o (Ow,.q)) = 0, for every Uy (F)-orbit Oy, , of Wy 4
(same definition as in the global case). This follows, as in the global case, from the
fact that since d <l < t, there is a simple root subgroup in U;(F), which lies in
the stabilizer of the representative wy.q. This proves Theorem 5.1.

5.2. Proof of part (1) of Theorem 1.1. Let ¢ be an irreducible cuspidal
automorphic representation of O,,(A). Assume that there is a finite local place v
of the number field £ such that the local v-component o, of ¢ has a nonzero local
¥y o-functional. Then, by Theorem 5.1, the local i-theta lift of o, to Mpy; (k) is
zero for all I < ¢. Hence the global 1-theta lift of o to Mpg;(A) must be zero for all
I < t. This property holds also for all twists of ¢ by automorphic sign characters,
since the twist of o, by any sign character also has a nonzero local ¥, -functional.
Hence the lowest occurrence of ¢ in the global i-theta liftings, LOy, (o), must be
greater than or equal to 2¢t. By Theorem 1.1 of [GJS09], the partial L-function

L%(s,o) must be holomorphic for Re(s) > Z' — ¢. This completes the proof of
Theorem 1.1.
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Introduction

One major facet of the Langlands program is the problem of connecting re-
sults on local harmonic analysis with the arithmetic of Artin L—functions. One
such connection should come through the determination of reducibility points of
induced representations via local Langlands L—functions. This was established (in
the generic case) by Shahidi [25]. Problems on reducibility of induced represen-
tations of groups over local fields are an important aspect of the global theory of
automorphic forms, and particularly crucial in the theory of Eisenstein series. The
Langlands-Shahidi method has been a powerful approach, and has yielded remark-
able results in the past decade. Here we consider the more modest problem of
describing the structure of induced representations of classical p-adic groups via
the local Langlands correspondence.

Knapp and Stein developed the theory of intertwining operators and R—groups
in the case of archimedean fields [21] and Silberger extended this theory to the case
of p-adic groups [27, 28]. The R-group gives a combinatorial description of the
intertwining algebra of parabolically induced representations. For the archimedean
case Shelstad [26] showed the R-group could be determined from the representa-
tion of the Weil-Deligne group parametrizing the inducing representation. In [1]
Arthur proposed a generalization of this result to arbitrary local fields, refining

2000 Mathematics Subject Classification. Primary 22E50; Secondary 11F70.

© 2011 David Goldberg
159



160 DAVID GOLDBERG

ideas proposed earlier by Langlands [22]. Keys determined R-groups for the prin-
cipal series of Chevalley groups, quasi-split unitary groups, and special unitary
groups, [18, 19, 20], and, in many cases, showed the isomorphism of the Knapp-
Stein R-group with the R-group proposed by Langlands, Shelstad, and Arthur.
The R-groups for reperesentations of classical groups parabolically induced from
arbitrary discrete series were determined in [9]. In [3] Ban and Zhang showed the
isomorphism of the Knapp-Stein and Arthur R—groups for all such representations
of SOs,+1(F). Here, we study induced from unitary supercuspidal representations
of the classical groups SOz 11(F), Span(F) and SOz, (F). In the case of a non-
Siegel maximal parabolic subgroup we impose the condition that the representation
of the Weil-Deligne group which parametrizes the inducing representation is irre-
ducible. We also must assume that the Rankin product L—functions defined by the
Langlands-Shahidi method [25] are Artin. We show, by direct computation, that
the Knapp-Stein and Arthur R—groups are isomorphic. Of course, in the case of
SOz, 41(F) these results are covered by [3]; however, our proof is different. We also
show the isomorphism can be realized by the map from roots to coroots.

Let F' be a nonarchimedean local field of characteristic zero, and suppose G
is a connected reductive group defined over F. Suppose P = MN is a proper
parabolic subgroup. We assume o is an irreducible discrete series representation
of M = M(F). The local Langlands conjecture predicts o is a member of an L—
packet II,(M) with parameter ¢ : Wj — LM, with W}, the Weil-Deligne group
of F and “M the L-group of M. Then composition with the inclusion M — LG
gives a parameter for an L-packet II,(G) of G = G(F). The conjecture is Iz (¢)
consists of the irreducible constituents of Ind%(¢”) for o’ € I, (M). Arthur defines
the R-group, R, attached to the packet I, (M), and a subgroup R, ,. This is
accomplished by looking at the centralizer, S, of the image of ¢ in G = LG°, and
identifying certain subgroups of the Weyl group of S,. Let R(c) be the Knapp-
Stein R—group attached to o. Then, our main result is (under the assumptions we
imposed above) R, , ~ R(0).

In Section 1 we review the theory of intertwining operators, the Knapp-Stein
R-group, the Arthur R—group, and recall the computation of the Knapp-Stein R—
groups for the classical groups. In Section 2 we discuss the isomorphism of R(o)
and R, , in the case where M is a maximal proper Levi subgroup. In Section 3 we
discuss the case where M is a subgroup of the Siegel Levi subgroup, and in Section
4 we address the case where M is not a subgroup of the Siegel Levi subgroup.
Finally, in Section 5 we show the isomorphism can be realized by the map o — oV
from roots to coroots.

The author thanks Jim Arthur for originally suggesting this problem many
years ago, and Dubravka Ban and Freydoon Shahidi for several encouraging and
informative conversations, as well as pointing out some carelessness in earlier ver-
sions. We wish to acknowledge several conversations with Alan Roche and thank
him for several suggestions. Finally, we thank the referee for pointing out several
inconsistencies in the preliminary version, significantly improving the exposition.

1. Preliminaries

Let F' be a local nonarchimedean field of characteristic zero. We let G be a
quasi—split connected reductive group defined over F', and G = G(F'), and we use
similar notation for other groups defined over F. Fix a Borel subgroup B = TU of
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G,with T a maximal torus of G and U the unipotent radical of B. Let & = &(G,T)
be the roots of T in G, let @+ = & (G, T) be the system of positive roots given by
B, and A the simple roots. For § C A we denote by Ay the corresponding subtorus

of T, namely
Ay = < ﬂ Ker a> .
ach
Set Py = MyNy to be the standard parabolic subgroup of G defined by 6. Then
My = Zg(Ay), and Ny = 11 U,, with U, the root subgroup defined by

acdH\T+(0)
a. Here 1 (0) = ®T N spanyf. (See [6] for more details.) If € is fixed, then we
denote the above groups by A = Ay, P =Py, M = My, and N = Ny. As A is the
maximal spit torus in the center of M, we may denote it by An.

We denote by af the complexified dual of the real Lie algebra of A. If v € af
and o is a discrete series representation of M, then we denote the parabolically
induced representation associated to P, o, and v by

I(v,0) = Ind$% (o @ ¢ HrO)),

The induction here is normalized induction, and the function Hp is defined as
in [25]. We let ig pm(0) = I(0,0). Let w € W(G,A) = Ng(A)/M. We fix a
representative w for w. Let A(v,o,w): I(v,0) — I(wv,wo) be the standard inter-
twining operator [21, 27, 28]. Harish—Chandra proved that there is a meromorphic
function pu(v, o, w) on af so that

A(ﬂ}ll, wao, u?fl)A(V, g, 12)) = M(Vv g, ﬁ})iQ Id.

THEOREM 1.1. (Harish-Chandra [14]). Suppose P is a mazimal proper para-
bolic subgroup of G. Then ig (o) is reducible if and only if there is a non—trivial
element w of W(G, A), with wo ~ o, and p(o) = p(0,0,w) # 0.

If wg represents the longest element of W (G, A), then we let p(o) = (0, o, ).
We call p(o) the Plancherel measure of 0. Note, Theorem 1.1 says, in the case
of a maximal proper Levi subgroup, p(o) = 0 if and only if wo ~ o and v —
A(v,0,w)f(g) has a pole at v = 0, for some f € I(v,0) and g € G. (See [29] for
the details of this). We note the existence (or not) of a pole of the intertwining
operator does not depend on the choice of w.

For an arbitrary standard parabolic subgroup P = Py of G, we let ®(P, A) be
the roots of A in P. For a € (P, A), we define M, = Mgy}, and N7, = NNM,,.
Then P} = MN,, is a maximal proper parabolic subgroup of M,. Thus, we have
a Plancherel measure p, (o) attached to iy, a(o) as defined above. We denote
W(o) = {w € W(G,A)lwo ~ c}. Welet A’ = {a € ®(P,A)|ps(c) = 0}. For
a € P(P,A) we let w, € W(G,A) be the associated (relative) reflection. Let
W' = (wq|a € A'). Note, Theorem 1.1 implies W/ C W (o). Let

R(o) ={w € W(o)|lwA" = A"} = {w € W(0o)|wa > 0 for all a € A"}

For w € W(o), one can define normalized intertwining operators A’'(c, @) :
ic.m(0) = ig.m(0), ie, an element in C(0) = Endg(ig,a(0)). One can see [20]
for an explicit description of A’(c,w). There is a two cocycle

n: R(o) x R(o) — C
so that A’(o,w1)A (0, ws) = n(wy, ws) A’ (0, wiws).
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THEOREM 1.2. (Knapp—Stein, Silberger). The above groups satisfy the follow-
ing conditions:

(i): W <aW(o);

(ii): R(o) 2 W(o)/W';
(iii): W(o) = R(o) x W".

Further, W' is the set of w € W(o), so that the normalized self intertwining
operators A'(o,w): ig.m(0) — ig.m (o) are scalar. O

Then the intertwining algebra C(o) of ig a(0) is isomorphic to C[R(c)],, the
group algebra of R(c) twisted by 7. Thus, R(c) (and its representation theory)
determines the structure of ig ps(0). This can be made more explicit [2, 20].

Let Wp be the Weil group of F and Wi = Wr x SLy(C) the Weil-Deligne
group [30]. For a quasi-split connected reductive group G defined over F, we let G
be the complex algebralc group with root datum dual to that of G. The L-group
L@ is given by G = G % Wg, where Wg acts on G by the Galois action on the
root datum of G. (Note, when G is split, W acts trivially on G, so the semidirect
product is, in fact, a direct product.) The local Langlands conjecture says, in part,
that the irreducible tempered representations of G = G(F) are partitioned into
finite subsets (called L—packets), and there is a correspondence between L-packets
and admissible homomorphisms (as defined in [30]) ¢ : W;. — £G. We denote
the L-packet corresponding to ¢ by Ilg(y), and may denote 7 € Ilg(p) by .
One fundamental property of this correspondence is the equality of Langlands L-
functions and Artin L—functions. That is, the conjecture asserts the correspondence
can be chosen such that, for any complex representation r : “G — GL,,(C), we
have L(s,m,, 1) = L(s,r 0 @), for any 7, € Ila(yp).

The local Langlands correspondence also gives rise to a notion of R—group.
Suppose ¢: Wi, — LM is an admissible homomorphism parametrizing the L-packet
[1,(M) containing o. Since IM — G, ¢: Wr — LG parametrizes an L-packet
II,(G) of G, expected to be the set of irreducible components of ig ar(o’) for
o' € [[,(M). We write S, = Z5(Im), and S for its connected component.
The quotient S, = S, /5S¢ should contain information on reducibility, as described
below.

Fix a maximal torus T, in 52, and let Wg = W (S, T,) = Nso (1) /Zss (1)
Similarly let W, = W (S, T,). Then we denote by R, the group W,,/W2. By du-
ality, one can identify W, as the subgroup of W(G, Apr) for which wo € [](M).
Thus, there is a an identification W, , = {w € Wy|lwe ~ o} ~ W(g). We
let W3, = W3 N Wy, Then we define R,, = W, /W ,. Arthur conjectures
R, s ~ R(0). We will prove this claim in many cases. Note, if G is split, we may
consider homomorphisms ¢ : W, — M , since Wp centralizes all of G. For our
computations, we only consider supercuspidal representations of M, and therefore
need only consider the image of the Weil group, Wr. We use the notation A=A N
for the split component of M.

We will recall the computation of R—groups for the classical groups G = G(n) =
SOa+1, SPan, SOsgy,. This description can be made explicit, in that [9] shows
exactly which elements of W (o) lie in R(0).
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We fix forms for the groups G(n). Let
Sp = . S GLn7

and

Uy = . S GLQn

-1
Then, for any n > 1,
SO, = {g € SLn|tgsng = Sn}v
and
SpZn = {g € GLQn‘ 75gu2ng = u2n} .
We also use s,, and us, to denote the complex matrices with the same entries, and
fix these as our our forms for G. When computing the centralizers S, we will often
find an isomorphism with a complex orthogonal (or special orthogonal) group of
some rank r. In each case we are studying, the orthogonal groups arising are split
forms, and we emphasize this by using the standard notation O,.,.(C) or O,41,(C)
for the full orthogonal groups. In order to avoid confusion with other forms, we
also use this notation when we refer to the dual groups G. Fix T to be the maximal
torus of diagonal elements in G. Then

T = {diag{x1, 72, ..., 20,2z, ..., 27 Ha; € Gy}
if G = Spay, or SOs,, and
T = {diag{z1,...,zn, 1,2, ', ..., 27}z € G}

if G = SOg9,41, with G,,, the algebraic multiplicative group over F. We fix B to be
the Borel subgroup of upper triangular matrices in G. The root system ®(G, T) is
of type B,,,C,, or D, and has simple roots

A = {61 —€2,62 —€3,...,6p—1 _enaan})

with «,, = e, 2e,, or e,_1 + e,, respectively. If § C A, with «,, € 0, then

(1.1) M=My~GL,, xGL,, x...xGL,,,
with nqy +ng + - - - + n,. = n. If, on the other hand «,, € 0, then
(1.2) M=My=GL,, XxGL,, x---x GL,, x G(m),

with ny + -+ + n, + m = n. If we take G(0) = {I}, then we can include (1.1)
into (1.2). However, for many of our computations, we work with (1.1) and (1.2)
separately.

We now recall results of Shahidi.
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THEOREM 1.3. (Shahidi [24]) Let G = Spa,, G’ = SOsp,11, and G” = SO,,,.
Consider M ~ GL, as the Siegel Levi subgroup of all these groups. We fix an
irreducible unitary supercuspidal representation of M. We denote the induced rep-
resentations as m = ig,m(0), ™ =ic m(0), and " =igr v (o).

(1): If o # G, then w, 7', and 7" are all irreducible.

(ii): If 0 ~ & then precisely one of the two Langlands L—functions,
L(s,0,Sym?) or L(s,0,A?) has a pole at s = 0. When n is even, and
L(s,0,Sym?) has a pole at s = 0, then 7' is irreducible and 7, 7" are both
reducible. Again, if n is even ,and L(s,o,A\?) has the pole, then © and 7"
are irreducible, while 7' is reducible. If n is odd, then L(s,o,A?) is always
holomorphic at s = 0, and thus L(s, Symz, o) has a pole at s = 0. In this
case ' and 7" are both irreducible, and 7 is reducible.

In terms of the parametrization, this can be viewed as follows. Let ¢: Wp —
GL,(C) ~ M be a parameter for o. We further, by composing with the obvious in-
jections, consider ¢ as a parameter with image in G = SO, 1.,(C), G’ = Span(C),
and G" = SO, ,,(C), respectively. Since o is supercuspidal, ¢(Wr) is an irre-
ducible subgroup of GL,,(C). If ¢ does not fix a non-degenerate bilinear form, then
L(s,Sym? @) and L(s, A%p) are both entire. If, on the other hand ¢ fixes a form,
then the type of the form determines which of these two Artin L—functions has a
pole. That is, L(s, A%2¢) has a pole if and only if ¢ fixes an alternating form, and
L(s,Sym? ¢) has a pole if and only if ¢ fixes a symmetric form. The first of these
means ¢ factors through Sp, (C), i.e., n is even and ¢ is symplectic. In the second
case ¢ is orthogonal, i.e. ¢ factors through SO, (C). The connection of Shahidi’s
results with Artin L—functions is made explicit by Henniart.

THEOREM 1.4. (Henniart [15]). If ¢: Wr — GL,(C) is a tempered parameter,
and o = o, is the corresponding irreducible admissible representation of GL,(F),
then L(s,A2p) = L(s,0,A?) and L(s,Sym® @) = L(s,o,Sym?). In each of these
equalities, the left hand side is an Artin L—function, while the right hand side is the
Langlands L—function, as defined by Shahidi [25].

We can summarize the results of [9] as follows:

THEOREM 1.5. Let G = G(n) = SOqp,41, Span, or SOsy,. Let M ~ GL,, X
GLy, X+ xGLy,, xG(m), withni+---+n.+m=n. Let 0 ~ 01 Q028 R0, QT
be an irreducible discrete series representation of M, with each o; an irreducible
discrete series representation of GLy,(F) and T one such of G(m). In the case of
SOay,, we assume nq,...,ny are even, while nyy1,...,n, are odd, and set

Imfl

COZ EOQm(F)\SOQm(F)

— O
O =

Imfl

(i): If G = SO, 41, or Spon, then R(c) ~ 74, where d is the number of
equivalence classes among the o; for which iG(n, +m,),GL,, (F)xG(m) (0 ®T)
is reducible. '

(ii): Suppose G = SOq, :

a): Supposem = 0. Then R(o) ~ Z3* 721 where d, is the number of equiv-
alence classes among o1, ...,04 such that 1G(n:),GLn, (ry(0i) is reducible,
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and dg is the number of equivalence classes among 011, . ..,0, for which
&i >~ ;.

b): Suppose m > 0 and Cor % 7. Then R(c) ~ Z3 27 where dy is the
number of equivalence classes among o1, . ..,0: such that

1G(ns+m),GLn, (F)xG(m) (07 ® T)

is reducible, and dy is the number of equivalence classes among o441, ... ,0,
for which 6; ~ o;.

c): Suppose m > 0 and Cot ~ 7. Then R(c) ~ Z4, where d is the number of
equivalence classes among the o; for which iG(n, +m,),GL,, (F)xG(m) (0 ®T)
is reducible. ' a

Of course these results can be phrased in terms of L—functions in the case
where the inducing representation is supercuspidal, using Theorems 1.3 or 1.4.
Furthermore, Theorems 1.3 and 1.4 have extensions to discrete series using Shahidi’s
multiplicativity principle and the work of Jacquet, Piatetskii-Shapiro, and Shalika
[16], as detailed in [24]. Thus, in fact, all of Theorem 1.5 can be phrased in terms
of L-functions.

2. Preliminary results on R—groups: The maximal case

We now give some preliminary results on the equality of R—groups on the
group and dual side. These results for maximal parabolic subgroups will be used
to compute R, , in the general case. We begin with a well known result (see, for
example, [4]).

LEMMA 2.1. If G = GL,, and M = GL,, x GLy, then for any irreducible
parameter p: Wp — M, we have R, = {1} = R(0). O

Recall for GL,,(F') it has long been known (see, for example [5]) every L—packet
is a singleton set. Thus, for the Siegel parabolic subgroup Ry, = R,,.

LEMMA 2.2. Let G = Spa,, G’ = SO0, or G’ = SOz,11, and M ~ GL,
the Siegel Levi subgroup of G,G’, or G". Suppose ¢: Wi — GL,(C) is an ir-
reducible representation parametrizing an irreducible unitary supercuspidal repre-
sentation o of M. Let R(o),R'(0), and R"(o) be the Knapp-Stein R—groups at-
tached to ig nm(0), icr m(0), and igr a(0), respectively. Let Ry, Rf,, and R be
the Arthur R—groups attached to @ as a parameter for G, G, and G", respectively.
Then R(c) ~ Ry, R'(0) ~ R}, and R"(0) = R,

PROOF. We first consider G = Sps,. Then G = SOp41,(C), and so
X g 0 0
M= { 01 0 ‘g € GLn((C)},
0 0 6(9)
with 8(g) = s,'g s, 1. By abuse of notation we think of ¢, an M—parameter, as
p(w)

w 1 ,

0(p(w))



166 DAVID GOLDBERG

for a GL, (F') parameter, also labeled ¢. Consider elements of S, in block matrix
form. Thus, if A € S,, write

A A Ags
A=Ay Az A
Az Azz Asg

with Ajq, A1z, Azi, Azz € My (C), Aia, Azz € Myyxi(C), Az, Aoz € My, (C), and
Ay € C. Since ¢ is irreducible, we quickly see, for i = 1 or 3, A;; = \;I,, for some
Ai € C. Also, A1 = Aoz =0, Ajg = A3o = 0. Further A;3, if it is non—zero, is an
equivalence between ¢ and 0 o , while A3; must be an equivalence in the other
A
direction. Thus, if ¢ % ¢, we easily see S, = { 1

A€ (CX} and
AT
R, =1 = R(o), by Theorem 1.3. Now suppose ¢ ~ § o ¢. Then we fix B # 0
with BB = 0 o . Then, by Schur’s Lemma, BA(B) = ¢I, and this implies
Bs,, = €s5,'B. We denote Bs,, = J, and see !J = eJ, so ¢ = +1, and Bs, is a
symmetric or symplectic form fixed by ¢. Now, we set J' =5, 'B~! = B~1J'B~1,
which is a form of the same type as J. Since A € SO,,11,(C), direct computation
shows

A= 0 w 0
Aa1B™Y 0 Aol

must satisfy /\11)\12(1 + E)J =0= )\21)\22(1 + E)J/ and (/\12)\216 + )\11)\22)Sn = Sp,.

Soife =1, then A — ill iu) is an isomorphism with 07 1(C), while if e = —1,
21 Az21
A <>\11 >\12> is an isomorphism with SLy(C). Thus,
A21 A2z

Zo if ¢ is orthogonal;
R, = .
1 otherwise.

Therefore, R, ~ R(0) by Theorem 1.3, as claimed. Note, if ¢ is orthogonal, the
non-trivial element of R, is the standard (block) sign change, C, and thus under
the isomorphism

Sa > Sqv of W(G, A) with W(G, A),

we have R(0)=R,. The computation for G = SO, is similar. Here G =

c_J (9 O _ (A Ar
SOy, (C). Then M = { (O H(g)) g€ GLn((C)}. Welet A= <A21 A22) € S,.

If n is even essentially the same calculation as in the case G = Spa, shows

011(C) if ¢ is orthogonal;
Sy >~ ¢ SLy(C) if ¢ is symplectic;
Ccx otherwise.

Mil,  AeB
A1B™t Aol

A1l A2
det =1.
¢ <)\21 >\22)

If n is odd and ¢ is orthogonal, then A = ( ) € SO, »(C) if and

only if
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Thus, we have S, ~ S0 1(C) >~ C* in this case. Since ¢ cannot be symplectic, the
only other possibility is 6 o ¢ % ¢, in which case S, ~ C*, as before. Thus, when
n is odd, R, = {1}. Then, by Theorems 1.3 and 1.4, R}, ~ R'(0) as claimed, and
the remark about this isomorphism being implemented by a + oV is valid here as
well.
Finally, consider G” = SOs;,11. Then G = Span(C). Setting

0" (g) = un g~ uy

for g € GL,(C), we have

= { (g 9*?9)) ’g e GLn((C)}.

. . . p(w) 0 )
Now, again by abuse of notation, we consider ¢ as the map w > N .
s v P ( 0 6 (p(w))
Ay App

€ S,, we have A;; = \;I,,. Further, Aqs, if it is non—
Az A22) v 12

zero, is an equivalence ¢ ~ 6* o . Similarly, A1, when non—zero, is an equiva-
lence in the opposite direction. Thus, as in the other cases, when ¢ % 6*p, we
have S, ~ C*. Now suppose ¢ ~ 6*p, and fix B with B~ '¢B = #* o ¢. Then
B6*(B) = eI, and now set J = Bu,, = eul, B. In this case *J = —¢J and thus J is
a symplectic form if ¢ is orthogonal, and is symmetric if ¢ is symplectic. Now, the

: _( AMiln 2B :
requirement that A = ()\2131 Aoal, € Spon(C) gives

Then, for A = (

)\12/\11(1 =+ E) =0= /\21)\22(1 + E), and
A1A22 +eX2A92 = 1

So in this case we have

g _ 011(C) if ¢ is symplectic;
¥ 1 SLy(C) if ¢ is orthogonal.

This gives R, = R"(0), as claimed. O

Now we consider the case of non-Siegel maximal parabolic subgroups. Thus,
P = MN, with M ~ GLy x G(m), for some m + k = n, and m > 0. We let
© = p1 ® Y, with both ¢1: Wr — GL(C), and ¢v: Wrp — G’(m) irreducible. We
emphasize that this latter asumption is significant, as, in general, 1) need not be
irreducible, even for supercuspidal L—packets. We let 0 = o, be the supercusp-
idal representation attached to y1. We let [[,(G(m)) be the L-packet of G(m)
parametrized by . We fix a member 7 € [[,(G(m)). Then 7 = 0 ® 7 is an
element of [[,(M). When G = SO2p41, the work of Jiang-Soudry [17] gives the
generic member of the L-packet [ [, (G(m)). We expect that, based on the work of
Cogdell-Kim-Piatetski-Shapiro-Shahidi [8] these results will eventually be extended
to other classical groups. For the purposes of comparing the Arthur R-group with
the Knapp-Stein R—group, we make the following assumption throughout the rest
of this exposition.

Assumption A: We assume the local Langlands conjecture for Rankin product
L-functions. Thus, we assume the local correspondence v <+ Tl (1) is estab-
lished. Further, we assume if o is an irreducible supercuspidal representation of
GLy(F) corresponding to ¢1, as above, then L(s, 1 &) = L(s,0 x ), where this
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latter is the local Rankin product L—function, as defined by Shahidi [25], for generic
representations 7. For non-generic representations we assume Shahidi’s conjecture,
every L—packet contains a generic element [25]. Thus, L(s,0 x 7') = L(s,0 X 7) =
L(s, 1 ® ), for all 7,7" € T1,(G(m)).

Note, in [12] the pole of the intertwining operator A(s,o ® 7) is determined
in terms of the theory of twisted endoscopy. The normalization factor for the
intertwining operator is given by a product L(s, c®7)L(2s, o, 73), with 7, = Sym? py,
or A?pi. A reasonable assumption is that the pole of L(s,o x 7) is controlled by
a certain regular term appearing in the residue as described in [10, 12]. In [12]
it is shown, for G = SOa,,+1, and with this assumption, L(s,o X 7) has a pole at
s = 0 if and only if ¢ is the local transfer of 7, i.e., ¢ is the local component of an
automorphic transfer [7, 8] to the general linear group of a cusp form on the special
orthogonal group, and the corresponding local component of the cusp form on the
special orthogonal group is 7. This result will be extended to the other classical
groups by work in progress of Asgari, Cogdell, and Shahidi.

We first consider the case where G = SOg,41. Thus, G = SOsg,41(F) and
G= Span(C). Since

(" JESR)

we see that

p1(w)
p(w) = Y(w) ;
0" p1(w)
with 6* as in the proof of Lemma 2.2. If A € S, and we write
A A Agg A
A= | A1 Az Ass |, with the block decomposition given by M. Then we have
Az1 Az Asg

A11901 = 9011411, A121/1 = <,01A127 A139*<,01 = 9011413,
Ag1o1 = Y Aa1, Agat) = YAz, As30™p1 =P Ass,
Az1p1 = 071 As1, Azov) = 0% p1 Az, and A330™ 1 = 0% Ass.

Thus, A;; = M\I. Further as ¢ and v are both irreducible, each A;j, for ¢ # j
is either zero or an equivalence. Note, since ¢¥: Wr — Spa,(C), ¢1 ~ ¢ only if
©1 =~ 0*p1. Thus, if ¢1 % 1 then 0*p; % 1 and in this case Ag; = Aoz =0, Ao =
Asze =0, and with Ass = Ao € Spo,(C) we have gy = £1.

So, if 1 % 0*p1, then

A1y
Stp:{ Io, )\ueCX}:CX.

AN
Now, if p1 =~ 6*p1, but @1 % 1), then A € S, implies A is of the form

Ak 0 2B
0 UJ(A)IQm 0
A1 B! 0 Aoy,
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Ay Ai2B
A1 B Agalj,
case, BO*(B) = el and J = Bu,, is a form fixed by ¢;. Since 'J = —cJ, we get
S~ SLs(C) if ¢y is orthogonal;
7 101.1(C) if ¢y is symplectic.

Note w(A) = +1, and in fact w(A) = det ( ) Now, as in the Siegel

Now suppose @1 =~ 1. Since ¢ is only given up to chonjugacy, we may take
w1 =Y ~ 0%p;. We still take J = Bu,, a form fixed by ¢1. Since ¢ is symplectic,
e =1. Let (, ) be the form on C¥ = C?>™ = V; given by (v, v') = tvJv'. So
{p1(w)v, 1(w)v') = (v,v') for all w € Wg, v, v/ € C*. Then C** ~ V; @ C3.
There is then a unique orthogonal form ( , )} on C3 so that ( , Y ® (, ) is
the symplectic form on C3* giving rise to G. So, by the dual pair construction,
Sy = 8021(C). Note, in each case, W, ~ Wy, for even if [, (G(m)) is not a
singleton set, the Weyl group W (G, A 7)) acts trivially on the G(m) component 7.
With Assumption A, we have R, ~ R(7), as predicted.

Suppose now that G = Spa,. Then G = Spa, (F) and G = SOp+41.,(C). The
computations are essentially the same as above. Thus, if @1 % 1 we have

Cc* if o1 200 p1;
Sy >~ ¢ SLy(C) if ¢y is symplectic;
01,1(C) if ¢y is orthogonal.

If 1 >~ 1, then ¢y is orthogonal, and k = 2m + 1. We set (, ) to be the form on
Vi = C* given by (v,v') = tvJv'. So, (p1(w)v, @1(w)v') = (v,v'). Here J = Bs,,
with By = 01 B. Choose ( , )’ on C? so that the form on C** = V; ® C3, given
by (,)® (, )’. Then we see, again, S, ~ SO 1(C) in this case. Thus far we have
proved the following.

LEMMA 2.3. If G = Spa, or SOgp,41 and M ~ GLy x G(m), then, under
Assumption A, R, = ~ R(m) for any 7 € I, (M). O

Now suppose G = SOs,, so G = SO3,(F) and G = SO, (C). Here we
consider 2 cases. Let co: SOpm(C) — SOy, m(C) be the outer automorphism
given by conjugation by an element of Oy, »(C). The two cases we consider are
coth 2 1 and cot) =~ .

In the first case, the computations are essentially as before. If @1 % 6¢; then
S, ~ C* as before. If ¢1 >~ 6y, but ¢ % 9, then

S ~ SLs(C) if ¢ is symplectic;
v 011(C) if ¢q is orthogonal.

Now suppose 1 ~ . Then we may take 1 =1 ~ 0p3. Let (, ) be the orthogonal
form on V; = C*¥ = C?™ fixed by ¢, and consider V = C5™ ~ V; ® C3. Take (, )’
to be a symmetric form on C3 so that (, ) ® (, )’ is the ambient symmetric form.
Then dual pairs gives S, ~ stabgr,c)((, )) N G ~ S0O,,(C) as before. Now
suppose coyp =~ 1. The computations for ¢ % 0¢p; are as before. So assume
1 ~ Op;. First assume that ¢; %2 1. Then, in block form A € S,

A1l 0 Blis
A= 0o & 0 |, withop~u.
B~ 0 Aol



170 DAVID GOLDBERG

If k is even, then 0 = £1, so

{0171(((3) if ¢ is orthogonal,
Sy

SLo(C) if ¢ is symplectic,

and further W, = W,, . If k is odd, then 6§ = £¢y. Note, in this case, S, = 01,:(C)
and W, = Z,. However,

Wop Zo ?fcr:r,
’ 1 ifer#m,

where c is the automorphism dual to cg. Now, if W, » = Zo, then as ¢ & SO, i (C),
W2 . ={1}, and Ry » ~ R(m), as predicted. Finally, suppose cot) > v and ¢; = 9.
Then ¢1 ~ 01, and J = Bsy, is our form fixed by ¢;. Then the computation is, in
fact, the same as in the case cot) % 1, and thus, S, ~ SO, ;(C). Now comparison
with [9] shows we have the result we wish.

PROPOSITION 2.4. If G = SOs,, and M = GLy X SOspy,, then, under Assump-
tion A, for any m = o ® T, supercuspidal, with the property that the parameter
for 7 is irreducible, we have R, . ~ R(w). O

3. The case of Levi factors contained in the Siegel

We now consider the case where M — GL,,. Thus, let M ~ GL,,, X GL,, %
-+ X GLy,,, with ny + ng + --- 4+ n, = n. In this case each L-packet II,(M) is a
singleton, so R,, = R,. Then M ~ GLy,,(C) x GLy,,(C) X --- x GL,, (C). We
consider ¢ = 1 B P2 B ... D p,, with each ¢; irreducible as in Section 2. We now
reduce to the simplest cases. First assume, if G = SO(2n), then each n; is even.
Recall, in all of these cases, W = W(G,AM) = ((¢4)) x (C;), where (ij) € W if
and only if n; = n;, and C;: g; — ©O(g;), where ©(g;) = 0(g;) if G = Spay, or
SOqp, and O(g;) = 0*(g;) if G = SOg2p,41 (where 6 and 0* are as in Section 2). Let
w=sc € W. Wesuppose w = (12 -+ j) and C acts only on the indices 1,2,..., j.
We assume ¢ = Cy, Cy, ... Cy,, and set Q@ = {k1, ko, ..., ke}. We write

wp = _EB(WP)i-

If i > j, then (wp); = ¢;. On the other hand if 1 < ¢ < j, then

Yi—1 if ¢ € Q,

(wep); = o e
0 Yi—1 ifie Q,
where we must take ¢ — 1 modulo j. Then
we @’Yl(pz fas) @72903 DD @Vj—lsoj fas) @73'@1 @‘ijrl P @me
with v, = 1if i € Q, and ; = 0, otherwise. Thus, wy = ¢ if and only if
o1 = Oy ~ @71+V2@3 ~ o~ (._)'Yl+~~~+’7j—1g0j ~ 671+...+7j<p1_

We may choose a conjugate of ¢ so that

© =mip1 ®mOp1 & Moy ® MyOps &
- @ mepr ® myOyy,
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with ¢; % ¢;, and ¢; % Op;, for i # j. Let M, = GLY ™ and G; = G(m;+m}).
Consider ®; = m;p; @ mipl, as a parameter with image in G;. Then

14 4 4
S =[] 5., Sg=115%. We =]]We..
=1 =1 1=1

¢
and W = HW&’, This is the same analysis as in §4 and §5 of [9]. Thus, we
i=1
reduce to the case ny = no =--- =n,, and
w; =0y fori=1,2,3,...,r

Further, by conjugation we may assume @; = ¢ for i = 1,2,...,r. The following
is due to Gross—Prasad when G = SO,,, or SOs,11, and we adopt their proof for
G = Spa,. Note, this generalizes Lemma 2.2.

ProroSITION 3.1. Let G = SOsz,11, Spon, or SOs,. Let n = kr, and let
M ~ GL;,. If G = S03,, we assume k is even. Let o1 be an irreducible unitary
supercuspidal representation of GLy(F) and take o = ®"01 as a representation of
M. Let ¢ = @1 be the parameter associated to o.

(a): If o1 # O, then S, ~ GL,(C).
(b): If G = SOgp41, and @1 =~ 0*p1, then

g ~ Spar(C) if ¢1 is orthogonal;
Y7 000(C)  if gy is symplectic.

(c): If G ~ SO, and p1 ~ Opy, then

g ~ Spar(C) if @1 is symplectic;
?710,.(C) if ¢y is orthogonal.

(d): If G = Spap, and p1 ~ Op1, then

) Sp2r(C) i ¢ is symplectic;
? 71 0,.(C) if o is orthogonal.

PRrROOF. Due to Sections 6 and 7 of [13], we only need to address the case of
G = Span. Let k = nq. First consider case (a). If go = (\i;) € GL.(C), we set
Mile Aol -0 Al
h(go) = ; : € GL,(C). Then
>\r1 I /\7"2 I, - )\rrjk

S, = 0 1 0

0 0 6(h(g0))

For (d) we adopt the argument of [13]. Let V; be the space of ;. Then, identifying
V1 with VY through the form fixed by 1, we have V = V; @ C2* @ C* is the ambient
space for G. We let (, )1, be the form fixed by (1, and (, )¢ the standard orthogonal
form given by multiplication on C*. Then we can choose a (unique up to scalars)

{ h(go) O 0

go € GLT((C)} ~ GL,(C).
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form (, ) on C* sothat (, )= (, )1 ®(, Y ®(, )o, is the form given by s, 1.
Thus S, = O(C*,(, Y)NG

) Sp2-(C) if ¢y is symplectic;
~ | 02,(C) if ¢ is orthogonal.

]

THEOREM 3.2. Let G = Spay, SOy, or SOapt1, and let M = GL,, X ... X
GL,,. If G = SOa,, we assume each n; is even. Let p: Wi — M be an irreducible
representation, and suppose ¢ = o1 B 2 & ... S ¢,. Then R, ~ R(c), where ¢
parametrizes o.

PRrROOF. As per the discussion preceding Proposition 3.1, it is enough to show
this in the case ny = ng = --- = n, = k, for some k, and 0 ~ ®"07. Let p = ®"py.
We take T, to be the maximal torus of block diagonal elements in M. Note, in
each case, T, C S,. Then W, = W(S,,T,) ~ S, x Zj, in the standard way. If
¢1 % Op1, then W, = Wg by Prop. 3.1, and hence R, = {1} = R(0), by [9]. If o1
is orthogonal, then

W — we if G = S02,41;
W; X ZQ, itG= Sp2n'502n7

Therefore,

]. lf G == SOQn+1,

and, again by [9] R, ~ R(o). If ¢ is symplectic, the argument is similar, with the
roles of the groups reversed. ]

Z f == ny ny
ng{ 5 if G = Spay, SO

Now suppose G = SOy, M = GL,, X --- x GL,,_, and at least one n; is odd.

We may assume ni,na,...,n; are even, and n;41, N¢y2,- .., N, are odd. Consider
my=mny+ng+- - +n, Ma =Ny + -+ np. Set G; = SOqy,,. We let

M; = GLp, x---xGL,, C Gy, and

M2 = GLnH_l X"'XGLnT QGQ

Let ¢ = 1 @ -+ @ ¢, and define ¢1: Wp — M1 by 1 = o1 ® - @ ¢, and
Py = 41D - D p,. Let m; be the corresponding irreducible unitary supercuspidal
representation of M;. Let W; = VV(G'27 AM)
LEMMA 3.3. With notation as above;
(a): M ~ My x My;
(b): W(G, Ayy) =Wy x Wy,
(C): SQO = S¢1 x Slbz;
(d): Sg=S;, x5y,
PROOF. Parts (a) and (b) are obvious, and are also parts of lemma 5.1 of [9].

Part (d) will follow from (c). For (c), we consider an element A € S, as block
matrices relative to my + mo = n, i.e.,

Ay A Az Ay
Ax Aga Apz Agy
Az Azz Azz Asa |’
Ay Ay Agz Ay

A:
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and each A;; = ()\ZJZ) is scalar in the appropriate blocks. We note that A € S,
implies

Ao = P1 A1, A13bs = Y1 Ass;

A1 = o Aa1,  A240v1 = haAay;

Azt = 02 Aze,  AzsOihr = O1pg Asy;

Ay o = 01 Aga,  Agzbipy = 01P1 Ags.
Since each of the blocks for 7 is even, and those for ¥y are odd, the above equations
show A;; =0, for

(4,7) =(1,2), (1,3), (2,1), (2,4), (3,1), (3,4), (4,2), (4.3).

Then
- 0 A22 A23 0
S<P - 0 Asy  Ass 0 — S¢1 X Swzv
An 0 0 Ay
in the obvious way. ]
COROLLARY 3.4. With the notation of Lemma 3.2, R, ~ Ry, X Ry,. O
Since we have computed Ry,, we are reduced to the case M = Mo, i.e.,

n1,MNa,...,n, are all odd. Letting S, act on the blocks of M, we have (ij) €
VV(G’7 AM) if and only if n; =mn;. Let Wo = <(’L])‘n, = nj>. We let C = <CZCH_1|Z =
1,2,...,r — 1) where Cj is the ith block sign change. Then we have

W =W(G,Ay) =WoxC=WyxZy "

Consider ¢ = 1 & 2 @ ... D ¢,. Note, since each n; is odd, fp; ~ ¢, if and only
if o; is orthogonal.
We now, briefly, change notation so

M = GL7' xGL}? x ... x GL,', with
0 = Do

with n; odd, and @1, 2, ..., ¢ not orthogonal, while ¢;11, Yt42, ..., are orthog-
onal. Further assume ¢; % ¢; for i # j.

LEMMA 3.5. We let kl = miny + -+ mgny, k‘g = M1 N¢y1 + -+ Mmeny;
G; = SO, and M; the obvious Levi subgroup of G;, as in Lemma 3.3. Let
Y = \Ifl D \112, with

t
U, = @@miwi, and
i=1
2 = @ S
i=t+1
Then
Stp = Sqll X Sq/Q.

PROOF. This is precisely the same argument as lemma 3.3(c), noting that
the appropriate blocks are now zero owing to ¢; being orthogonal if and only if
1>14 1. |
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An easy block matrix computation shows
Sy, ~ GLp, (C) X GLp,(C) x -+ x GL,y,, (C).
Thus, we may assume each ¢; is orthogonal.

PROPOSITION 3.6. Let G = SOa,, M = GL"' x -+ x GL'", with each n;

odd. Suppose ¢ = ©{"* & --- @ @' with each p; orthogonal, and @; % @;, i # j.
Then Sy, >~ S(Omymy (C) X -+ X Oy, i, (C)).

PROOF. For each i fix an equivalence B; of p; with f¢;, and take the form
(', ); on the space V; of ¢; given by B;s,,. Then there is a unique, up to scalars,

choice of forms ( , ), on C™ for each i so that on C*™" the form ( , ) on the

ambient space of G = SO, ,,(C) is é( )i @ (, )i Then each (, ) is orthogonal,
and by duality =
Sy = (Omy 1y (C) X Oy (C) X -+ X Oy (C)) NG
= S(Omy,m; (C) X Oy (C) X -+ X Ogyy,,.(C)), as claimed.

O

THEOREM 3.7. If G = SOap41,p2n, or SOay, and M = GLp, X GLp, X
-+ X GLy,,, then for any irreducible ¢ : Wg — M, we have , R, ~ R(o), with o
parametrized by .

PROOF. Combining Proposition 3.1(c), Theorem 3.2, Corollary 3.4, and Lemma
3.5, it is enough to prove the statement when each n; is odd and ¢; is orthogonal.
By Proposition 3.6, we have

WSO = W(SW7T¢) = HSm7 X Cv
i=1

where C o~ Z" ™=l g a5 in Corollary 3.4. Further, since

S:; = [S(Om1,m1 ((C) Koo X Om'rwm'r'((c))}o
= SO0, mi(C) X SOy my(C) X -+ X SO, .. (C), we have

W(Sg, Tp) = [ (Sm, x 25"7").
i=1

Thus, R, ~ W, /W ~ Z5~', and by Theorem 6.8 of [9], R, ~ R(o). O

4. The case of non-Siegel parabolic subgroups

We now turn to the case where
M= GL,, X GL,, X --+ x GL,_x G(m), with

ni+ns+---+n.+m=n, and m > 0.

We fix ¢ = ¢1 D p2 B+ DB ¢, ® 1), with ; an (irreducible) parameter for
an irreducible unitary supercuspidal representation o; of GL,,, and ¢ a parameter
for a supercuspidal L-packet {7} of G(m). We make the assumption that v is
irreducible. We will first prove some results in general, but eventually we will need
to consider the case of G = SOs,, separately. Recall here we are working under
Assumption A.
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By changing M and ¢ by conjugates, we may assume M ~ GL" x GL}'? x
-~ X GL x G(m), and

o~ ®m101®®m202®-~-®®mf0t ®T,

with o; % 0; and o; % &; for ¢ # j. Thus, we may take

p=ampPemed -Peme ey,

with ¢; % ¢;, and @; % Qog;, for i # j. For i =1,2,...,t, set G; = G(n;m; +m),
and M; = GLJ" x G(m), and consider M; as a Levi subgroup of G;. Denote by
®; the parameter m;p; ® ¢, and let m; = ®™i0; @ 7. Then m; is in the L-packet
[Is,(M;). We denote S; = Sg,, the G centralizer of ®;(Wr). Since Hom(g;, ¥) # 0
for at most one 4, we may assume (by replacing the pair (M, o) with a conjugate)
Hom(p;, ) =0fori=1,2,...,t— 1.

We fix

i

Co =

o O O
o OO
oo = O

LEMMA 4.1. We use the above notation.
(a) Suppose G = SOs,, and Cy - # . Then

(Z) S¢ ~ Sl/ZQ X SQ/ZQ X X St_l/ZQ X St;
(i) Sg == 57 x S5 x ++- x Sf_q x Sf.

(b) Suppose G = SOs,, and Cy -1 ~ 1. Then

(Z) StP ~ (S1/Z2 X Zg) X (SQ/ZQ X Zg) X - X (St,1/Z2 X Zg) X St;
(i) 8% & 89 x 89 x -+ x S2_; x S°.

(c) Suppose G = SOay, 41 or Spayn, then
(1)Sy =~ S1 x Sg x -+ x Sy

(ii)SS = S9 x S5 x -+ x S¢_y x S5,

PRrROOF.
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(a) Let A € S,. Then, relative to the decomposition M =~ GL,, (C)™ x --- x
GL,, (C)™ x G(m), we have

Ain A o0 Ay A Avege o0 Aror
Ayt Age ... Ay Aoy Aorype .. Aoorqs
A
A _ tt
A1+
A2t+1 1 .. A e A2t+1 2t+1

For 1 < i <, we set i/ = 2t + 2 — i. By our assumption that ¢; # ¢;, and
;i % Op;, fori # j,wesee A;; =0for 1 <i < j <t t+2<i<j<2t+1. Similarly,
A =0if1 <i<t,t+2<j<2t+1,unlessj=7¢.orl1<j<tt+2<i<2t+1,
unless j = #’. Further, by our assumption on Hom(y;, ) for 1 < ¢ < ¢, we have
Ajty1 =0and Ay =0fori =1,2,...,t —1,i =t +3,...,2t + 1. Finally, by
Schur’s Lemma, and our assumption that Cy - 1 % 9, we see Ayp1441 is scalar.
Thus,

A11 0 0 . AN 0 AH/
0 A22 0 e e Agg/ 0

Ay A1 Ay
At+1t Ct41 At+1 t

O .. At/t At/ t+1 At/t/ O “e.

Al/l 0 0 Al’l/

with ¢;41 a scalar.
We also see that if 1 <i <t —1, then

Ay 0 Ay
Si = 0 Ci 0 )
Api 0 Ay

with ¢; a scalar and the obvious block decomposition. But, as this element must
be in SOp;n; min; (C), we have ¢; = £1o,,. We let the elements of .S; be denoted by
[A;, ¢;]. We also have
A Appr Aw
Sy = Apyre Ct+1 Apyry )
Apr Apepr Apw

with ¢; a scalar, and we denote these elements by A;. Consider the map 7 : Sy x
Sy X -+ x S — 5, given by

n <<H[Ai,6z’]> 7At> =
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All 0 0 ce . 0 All’
0 A22 0 ve . AQQ/ 0

: A1 0 At—l(t—l)’
(4.1) 0 A, 0

O “ee A(t_l)l t—1 O A(t—l)'(t—l)’

A1/1 0 0 Al’l/

Then 7 is a surjective homomorphism with kernel

(1)}

which gives (i). Part (ii) then follows immediately. This completes (a).

(b) The proof above need only be modified by replacing each ¢; with ¢;Cg?,
with €; € {0,1}. With this modification, the proof of (i) follows the same steps
as (a) and again (ii) is immediate. Finally (c) follows from simple block matrix
computations as in Section 3, taking into account each element of W, acts trivially
on . O

Continuing with the notation above, and that of the proof, we see that we may
take the maximal torus
(42) TL,D = {dlag {A11; A22 A ;Att, Im/, A:&ta ceey Alll}} C Stpv
with blocks of the form

Aii = diag {ailjm , aiZIma vy Qimy Im} y
Al = diag {a;niiln a;t In,. .., a;lllni} =0O(Ay),

i) imy;—1

with m’ = 2m or 2m + 1, as appropriate, and © as in Section 3. Also note we
may take the torus T; = {diag {A;;, I;n/, Al;}} C S, and so Ty, >~ Ty x -+ x Ty If
G = Spap, or SOgp 41, or if G = SO,, and each n; is even, then each element of
W(S,,T,) acts trivially on the middle G(m) block, and hence trivially on . Thus
we have the following result.

LEMMA 4.2. With the notation of the previous lemma, suppose G = Spay,, or
SO2p+41, or G = SOq, and each n; is even. Then
(Z) WQQ%JWq;.l XWq>2 X oo XWq;.t;
(27,) RLP :’chl X R<I>2 X - X Rq>t;
(ZZZ) Rap,o >~ R(I)hﬂ'l X Rq’zﬂfz X X R@hﬂ-t.
|
We now restrict ourselves to the cases of Lemma 4.2, namely, G = Spa,, SO2p,41,
or G = S0O3, and each n; is even. Then, by Lemma 4.2, we may reduce to the case

where M ~ GL; x G(m), and 0 = Q" 09 @ 7. Assume ¢, and 1) are parameters
for o9 and 7, respectively, and we continue to assume 1) is irreducible.
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LEMMA 4.3. Suppose pg =~ Opq, but wo # 1.
(1): If G = Spay,, or SOq,,, (with k even in the latter case), then

g O, ,(C) if wo is orthogonal;
1 Sp2r(C) if @o is symplectic.

(ii): If G = SOg2p11, then

S - O, +(C) if o is symplectic;
7 Spar(T) if o is orthogonal.

ProOF. (i) Let Vp be the space of g (so Vo =~ CF). Let ( , )¢ be the form
on V given by Jy = Bsy, with Byg ~ 0pg, and s; as in Sections 2 and 3. Let
(', )y be the form on C™ fixed by 1, with m’ = 2m + 1, or 2m, as appropriate.
Then there is a unique, up to scalars, non—degenerate form ( , )’ on C?" so that
(, )0®(, ) ®(, )y is the form defined by s9, if G = SO2,, and and sg,41, if
G = Spay. As this is the form which defines G we have Sy == Stabg N G. In
each case we see that S, = O,.,(C) if ¢ is orthogonal, and S, = Spo,(C) if ¢y is
symplectic. This completes (i). The proof of (ii) is similar, with Jy = Buy, and
noting Jy is orthogonal if ¢, is symplectic and vice-versa. O

LEMMA 4.4. We continue with the assumption M ~ GL} x G(m), with the
additional assumption that k is even if G = SOs,. We also assume o ~ Q" 00T,
and po and ¢ are the parameters of oo and T, respectively. (Of course we still

SO,41.(C)  ifk is odd,

assume v is irreducible). If oo ~ 1 then S, ~ 0 © i
1, if k is even.

PROOF. As in the proof of the last lemma, let V[, be the space of ¢y. Since
©o ~ 1 we have V ~ Vy @ C2"*+! is the ambient space for G. If (', Yo is the form
fixed by g, then there is a unique, up to scalars, non-degenerate form { , )’ on
C*+1 so that (, ) =(, Yo® (, ) is the form defining G. Clearly (, )’ must be
orthogonal, so by this dual pair construction S, = Oy,41, N G. The determinant
condition shows this intersection is SO,y1 ,, if k is odd. However, when £ is even,
this copy of O,41,,(C) is a subgroup of G. Thus, S, is as claimed. O

We note, in the last lemma, when £ is even, the difference in Ng, (T,) and
Nise (T,;) can be realized as —Ia, 41, which lies in Zg_(T,). Thus, regardless of the
parity of k, we have W, ~ W¢, so R, = {1}.

THEOREM 4.5. Let M ~ GL} x G(m), with the additional assumption that k
is even if G = SOq,,. Assume o is as in Lemmas 4.3 and 4.4.

. N o=, or
(@): Ry =~ {1} if {% o
G = Span, @o is orthogonal, g # U,
(ii): Ry ~Zy if { G = SOa941, wo is symplectic, pg £ 1; or
G = SOaqp, k is even, @q is orthogonal, and pg # .
|

Since L(s, po @) has a pole at s = 0 if and only if ¢ ~ 1), this can be phrased
as follows. If ¢y % Oy, then R, = {1}. On the other hand, if ¢y ~ Oy, then
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R, ~ Z, unless the product L(s, po & ) L(2s,72 0 ¢o) has a pole at s = 0. Here
ro = Sym2 if G = SOg,41, and is A? otherwise. This is as expected.

THEOREM 4.6. Suppose G = Spay,, SO2,41, or SOgy, and M ~ GL,,, X --- X
GL,, x G(m), with each n; even in the case G = SOs,,. Assume o: Wr — M is
an irreducible parameter for an irreducible unitary supercuspidal representation o
of M. Under Assumption A, R, , = R, and R, ~ R(0).

Proor. That R, = R, , was already observed in these cases, owing to W,
acting trivially on the summand . The R-groups R(o) were computed in [9], and
there the computation in these cases was reduced to the special cases of Theorem
4.5. Of course, if o # &, then R(0) = {1}. Otherwise, if 0 ~ &, then R(0) ~ Zo,
unless L(s,00 % 7)L(2s,00,7) has a pole at s = 0 [25, 10, 12]. Here 7 is Sym? if
G = SO,,,1 and is A%, otherwise. Using Assumption A, Theorem 1.4, Theorem
4.5, and the remarks following Theorem 4.5, we have R, ~ R(0). |

Now let G = SOs,,, so G = SO n(C). We suppose M ~ GL,,, Xx GLy, X --+ X
GL,, x G(m), with m > 1. We assume ni,na,...,n; are odd, and ngiq,...,n,
are even. Let ¢ : Wp — M, and we assume ¢ = 1 D Pa B - D o, B Y. We
let G; = G(ny +n2+ -+ +n +m), and Go = G(ngp1 + -+ + n, + m). Let
M; = GL,, x GL,, X --- x GL,, x G(m) ~ M} x G(m), and My = GL X
-+ X GL,, x G(m) =M} x G(m). We let ¥, : Wp — M be given by

Nt

Uy =0l Y =T DY,
and Uy : Wgrp — Mg, be given by
Uy =@ 10 Y =Ty DY,

Denote the Weyl groups by W; = W(@l,AM) We also denote m; = ny + ng +
<o+ ng, and me = ngp1 + -0+ Ny

LEMMA 4.7. With he notation above we have the following identites:
(a): M ~ M| x My x SOy m(C);
(b) W(G, A]\;j) ~ W1 X WQ;
(c): Sy =~ (Sw,/Z5") X Sy,, withey =1, or2;
(d): Sg = 5§, X Sy,;
(e): Wy > Wy, x Wa,;
(£): Wo =Wy, x Wy,
(g): R, ~ Ry, X Ruy,.
In part (c), e1 =1 if Co - £, and €1 = 2 if Corp ~ 1.

PROOF. As in Lemma 3.3, (a) and (b) are straightforward computations, and
the proofs are as in Lemma 5.10 of [9] We note (c) is a consequence of Lemma
4.1a(i) or b(i) and (d) is one of Lemma 4.1 a(ii) or b(ii). The last three parts now
follow immediately. |

By Theorem 4.6 we are now reduced to considering the case where G = SOs,
and each n; is odd. Let’s suppose, as before M ~ GL7"* X GLy? x... GL7t X SOapp,

niy

Uz@mlalea@mzo.?@_”@mt oo,
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and o; % 0,65, for i # j. Thus, take ¢ = ™1 P--- B™ ¢, B . Assume
01,02,...,0s are not orthogonal, and o441, ...,0, are orthogonal. Then, using the
notation of (4.1), we see A;;» = Ay; =0, for 1 <4 < s. Further, for 1 <i < s,

a(lil)lm a(liQ)Im. . agiglilm
Ay = agil)Ini .. aéirzli_rm
al) L, ... ca o I

with each aﬁ) € C. Also note (again for 1 <i <s) Ayy = O(A;;). As each ; and ¢

are irreducible, and each n; is odd, we have Hom(p;,v) = 0, for each . Thus, again
Ay 0 Ay

using the notation of (4.1), we have Ay = 0 £C;° 0 |, andegg € {0,1}.
Ay 0 Ay

We have the possibility of g = 1 only if Cjy-1 ~ 1. We now describe the centralizer

Sp.

PROPOSITION 4.8. Let G = SO, M ~ GL'' x -+ x GLJ' x G(m), with

each n; odd,
o~®Moy ®®m202 ® e ®®mtot ®T,
and 0; % 0, 03 % 05, fori # j. Take

o= @ml@l@@mzw2@...@@mtwt o,

Assume 01,09,...,0s are not orthogonal and osy1,...,0¢ are orthogonal.
(a) If Co - b #£ 1), then
Sy >~ GLy,, (C) X GLp, (C) X -+ - x GLyy,, (C)x
S (Oms1maa (C) X -+ X Oy, (C)) X Zas
(b) If Coy - op =, then
Se > GLp, (C)XGLpy(C) X+ - X GLp (C)X Oy me iy (C) X+ X Oy (C) X Zig.

PROOF. The proofs follow the reasoning used in earlier results and, in partic-
ular the argument of Proposition 3.6. For 1 < ¢ < s, the map

ayi In, . . g In, R as{ .. ... Ao,
asz)ﬂlni e .. .ag,?imifm agr?il e .. -a%)imf,

is an isomorphism of

(5 o))

with GL,,,(C). Also for these indices, let ( , ); be the form on C?*™i" given by
S2mum, - Let ()0 be the form on C?™ given by sa,,.

For each s + 1 < i <t fix an equivalence B; of ¢; with 0p;. Fix the form (, );
on the space V; of ¢; given by B;s,,. Then there is a unique, up to scalars, choice

of forms, (, ) on C™ for each i > s+ 1 so the form (, ) on C*" is ®{,); ®
i=1

7
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(, i, )o. Then each (, )} is orthogonal. We now, as in previous cases, use the
dual pair construction to identify S,. For (a), since the middle 2m x 2m block must
be +15,,, we see, as in the case of Proposition 3.6, that the determinant condition
forces S, to have the form claimed in (a). In case (b), we see the determinant forces
the choice of €y, and gives S, the form as claimed ]

We now compute the R-group R, ,. We take the maximal torus T, C S, given
by (4.2).

THEOREM 4.9. Let G = SOgy, and M >~ GL' x - X GL}' x SOay,, with
each n; odd. Assume 0 ~ @01 Q™ Q) - QR ™0y @ T is an irreducible su-
percuspidal representation of M. We assume o; % o0;, and o; % G5, for i # j. We
let v; be a parameter for o;, and ¥ a (conjectural) parameter for 7. We assume
is irreducible. Finally, assume 01,02, ...,05 are not orthogonal, while 0541, ...,0;
are orthogonal. Let d =1 — s.

(a) If Co - b &£ 9, then Ry, , ~ 7471,
(b) If Co - ~ 1, then Ry, , ~ Z3.

PrOOF. We first describe W, = W (S, T,), irrespective of whether Coyp ~ ¢
or not. Let the permutation group S; act on {1,2,...,t}, and let Wy = ((ij)|n; =
n;). For each 4, the permutation group S,,, acts on the m; blocks giving rise to ;.
Further, since m > 0, we have the subgroup of block sign changes in W, is

C={(Ci;jCo|ll <i<t,1<j<my),
where Cj; is the block sign change on the j-th block of the blocks corresponding to

o;. Now, we have
¢
W, = (WO : Hsmi> x C.
i=1

Let
Co={(CijCri|s +1< ik <t,1<j<m;,1 <1<my),
and
Cy :<Cij00|8+1§i§t,l §]§m1>,
We note, with our assumptions

t
Weo =[] Sm. % Co
i=1

if Coy -9 %1, and
t
Weo =[] Sm. xCa
i=1
if Cy -1 ~ 1. Note Cy ~ Zgn”ﬁmﬁmﬂnﬁl, and Cy ~ ZJH T Now

8o 22 GLy, (C) X -+ X GLy, (C) X SOy ey (C) X - X SOy i, (C).

So in either case

s t
W2 [[Sme x [ (S, x Z57").
i=1

i=s+1

Thus, in case (a) Ry, ~ Z3 ', while in case (b), R, , ~ Z3. O
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THEOREM 4.10. Let G = SOgzp41, Span, or SOz, and M ~ GL,,, x GL,, x
-+ XGLy, X502y, Assume 0 ~ 01 ®02Q---Q0,QT is an irreducible supercuspidal
representation of M. We let ¢; be a parameter for o;, and ¢ a (conjectural) param-
eter for . We assume v is irreducible. Then, under Assumption A, R(o) ~ R, .

PROOF. From Theorem 4.6, we can reduce to the case covered by Theorem 4.9.
Then we only need compare the results of Sections 5 and 6 of [9] (See Theorem 1.5)
with those of Theorem 4.9. This comparison gives R(c) ~ R, , in each case. O

REMARK 4.11. We believe the process of extending these results to the case
where Y is reducible should follow from some combinatorics and the multiplicity one
results of Cogdell, Kim, Piatetski-Shapiro, and Shahidi [8]. Further extension to the
case where o; and T are discrete series should be tractable using the classifications
of Zelevinsky [31] and Meglin and Tadi¢ [23]. We leave these considerations to
future work. We also emphasize, again, in the case of G = SOy, 11 our results are
subsumed by [3], and it seems possible an approach along the lines of that work may
be generalized.

5. Duality implements the isomorphism

We continue with the previous notation. So, ¢ : Wp — M < G, is a parameter
for an L-packet 1I,(M), with o € II,(M) an irreducible unitary supercuspidal
representation. We have shown that R, , ~ R(0), for all cases we have considered.
Now, we claim that this isomorphism can be realized by the dual map o — «aV
sending roots of G, to coroots of G, i.e., to roots of G.

LEMMA 5.1. Let G = G(n) = Span, SO2y, or SOspy1, and M = GL,, X ... X
GL,, x G(m). Then, for any M-parameter o: Wp — M, we have W, ~W(oy,),
and this map arises from the duality o — o .

PRrOOF. By Lemma 2.2 of [3], W, € W(G, A ;). We abuse notation and iden-
tify W(G, Apr) and W(G, Ayy). Comparing the computations preceding Proposi-
tion 3.1, those preceding Lemmas 4.2, 4.7, Theorem 4.9, and those of [9], the lemma
is clear. (]

In order to complete the goal of this section, it is enough to show that W2 =
W' = W(A'). Recall A’ is the positive subroot system of ®(P, A) generated by
those a > 0 with ps(0) = 0. Thus, it is enough to show W2 = W(A')¥. Since
Wy /Wo| = |[W(o)/W'|, it is enough to show the simple reflection s,v associated
with a¥ belongs to W, for every o € A’. We write
(P, A) ={E; :l:Ej‘ I<i<j< r*l}U{ﬁi}::17

where

2E1 G = Sme

ﬁi =< E; G= 502n+1, and

E? + El, G =504,

where these are the obvious elements, as described in [9]. Then
®(P,A) = {E £ B/} U {5}

and BY is EY,2EY, or E,° + E;*, as above.
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Now if o = E} — EY, then sov = (ij) € W, if and only if ; ~ ¢; which
is equivalent to ¢; ~ o, which happens if and only if s, € W', by [4, 9]. Note,
by Lemma 2.1, s, € W, as claimed. If oV = E; + EY, then the result holds by
conjugation.

PROPOSITION 5.2. If oV = Y, then s;, € W if and only if s € W'.

PrROOF. We first assume m = 0. Suppose G = Spy,,. Then s,v = sgy = C; €
W, if and only if ¢; ~ 0¢;, and is equivalent to o; ~ &;. Now, by the proof of
Lemma 2.2, and Hennniart’s theorem [15] (Theorem 1.4), sov € W if and only
¢ is symplectic, i.e., if and only if L(s, A%p;) = L(s,0;,A?) has a pole at s = 0,
and this is equivalent to o € A’ by Shahidi [24] (Theorem 1.3). If G = SOg;,41,
and oY = EY, then, sov is again C;, and C; € W, if and only if ¢; ~ 0%p;.
Again, by Lemma 2.2, C; € W if and only if ¢ is orthogonal and this is equivalent
to L(s,Sym? ¢;) = L(s,0;,Sym?) having a pole (using Theorem 1.4 again) and
equivalent to pq (o) =0, i.e. to @ € A’ (Theorem 1.3). Finally, suppose G = SOa,,.
Then 8 = E° + EY' = ey,_, + ey, for some k; (see [9]). Then

_JCi ifn; is even,
St = 1 if n; is odd.
Thus, we may assume n; is even. In this case, by Lemma 2.2, C; € W,, if and only
if ; ~ Bp;, which is equivalent to o; ~ &;. We also see from the proof of Lemma
2.2 that C; € W3 if and only if ¢; is symplectic, which is equivalent to C; € w',
ie, a € A’ (Theorem 1.3).

Now assume m > 0. If G = SOg,,41, then G= Sp2n(C), and 3 = 2F;. In this
case sgy = C;. We see sgv € W, if and only if ; ~ 6%p;. By the proof of Lemma
2.3 (which precedes its statement) we have C; € W only if ¢; is orthogonal, or
@i ~ 1. This is equivalent to poles at s = 0 for L(2s,Sym? ¢;) or L(s,p; ® ).
We know L(2s, 0, Sym?) = L(2s, Sym? ¢;) by Henniart [15]. Under Assumption A,
L(s,0; x T) = L(s,¢; ® 1), and the latter has a pole if and only if ¢; ~ 1. In [12]
it is shown L(s, 0; x 7) having a pole means o; comes from 7 by twisted endoscopy
(cf. the discussion following Assumption A). Now we see C; € W , if and only if
By € A" It G = Spay, then 8Y = E}. Again, sgv = C;. Here C; € W, if and
only if ¢; >~ 6y;. By the above observation on L-functions, we see C; € W , if and
only if one of L(2s,A%p;) or L(s,p; ® 1)) has a pole at s = 0, i.e., ; is symplectic
or ¢; >~ ¢. By Theorems 1.3 and 1.4 we have sgy € W, if and only if 3; € A
Finally, suppose G = SOy,,. Then, §; = EY + E;. Then C; € W,,, if and only if
either ¢; is symplectic or ¢; is orthogonal and n; s even. The discussion preceding
the proof of Lemma 2.4 shows C; € W2 , if and only if ¢; is symplectic or ¢; ~ ¢
(necessitating n; be even). Now, we again appeal to [15, 25, 24] to see sgy € W,
if and only if 8; € A’. This completes the proof. |

We have now proved the following.

THEOREM 5.3. Under the assumptions of Lemma 5.1, Assumption A, and the
assumption ¢ is irreducible, W2 = [W(A")]Y = W((A")Y). Thus, the map sq
Sqv induces an isomorphism R(o) ~ R, 5. g
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COROLLARY 5.4. Suppose G = Spay, SOay, or SOs,11, and suppose M is a

Levi subgroup of G. Under the assumptions of Theorem 5.3 the sequence

L= W, — W, — R, — 1 splits,

W, = R, x W2, and R, = {w € WywAY = AV} = {w € Wylwa’ >0 Va" €
AV},

PRrROOF. This is a restatement of Theorems 3.7, and 4.10, along with Theorem

5.3 and the Knapp—Stein Theorem|[27, 28] a

(1]
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In this paper, we describe a proof (more concise than the treatments in [PAF]
Chapter 8 and [HO06]) of irreducibility of the modulo p Igusa tower over a (unitary)
Shimura variety. We study the decomposition group of the mixed characteristic
valuation associated to each irreducible component of the Igusa tower (so the ar-
gument is closer to [PAF] Chapter 8 than the purely characteristic p argument
in [HO6]). The author hopes that the account here is easier to follow than the
technical but more general treatment in [HO6] and [PAF].

There are at least two ways of showing irreducibility: (i) the use of the auto-
morphism group of the function field of the Shimura variety of characteristic 0 (cf.
[PAF] Sections 6.4.3 and 8.4.4), which uses characteristic 0 results to prove the
characteristic p assertion, and (ii) a purely characteristic p proof following a line
close to (i) (see [HO6]). There are some other arguments (purely in characteristic
p) to prove the same result (covering different families of reductive groups giving
the Shimura variety) as sketched in [C1] for the Siegel modular variety.

Here is an axiomatic approach to prove irreducibility of an étale covering = :
I — § of a smooth irreducible variety S over the algebraic closure F of F,,. Write
mo(I) for the set of connected components of I. We start with the following two
axioms:
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(A1) A group G = M x Gy acts on I and S compatibly so that M C Aut(I/5),
G1 C Aut(S) and G; acts trivially on mo(I).
(A2) M acts on each fiber of I/S transitively; so, M acts transitively on
™0 (I)
Under (A1-2), we study the stabilizer subgroup T, in G of a point z in a connected
component I° of I and try to prove the following conclusion:

(C) {T4}. for a good choice of a collection of points x and G; generate a dense
subgroup of G.

Once we reach the conclusion (C), by the transitivity (A2), we obtain I° = I getting
the irreducibility of I.

In the setting of Shimura variety Sh of PEL type (of level away from a given
finite set 3 of places), assuming that we have a smooth integral compactification of
Sh over a p-adic discrete valuation ring W (see [ACS] 6.4.1), we can easily verify
the axioms (A1-2) for the following reasons: compatibility of the action in (A1) and
and the transitivity in (A2) follow from the definition. In this case of a Shimura
variety, S is the ordinary locus of the modulo p Shimura variety Sh g of level away
from a given finite set ¥ of places including p and co. Then, for the adéle ring A
away from ¥, G; is the adéle group G(A®)) for the semi-simple group G /o (which
is the derived group of the starting reductive group in Shimura’s data), and M is
the Z,-points M (Z,) of the reductive part M of a parabolic subgroup of G. If we
choose ¥ so that G(Qy) is generated by unipotent elements for all £ ¢ %, G; has
no nontrivial finite quotient group (because unipotent groups over a characteristic
0 field are uniquely divisible). For any finite subcovering I'/S of I, G; acts on the
finite set mo(I’) through a finite quotient of Gy; thus, the action is trivial, proving
(Al).

In the above discussion of how to verify (Al), a key ingredient is that G;
is large enough not to have finite (nontrivial) quotient. As we will do in this
paper, this is deduced from the existence of a smooth toroidal compactification (if
the Shimura variety is not projective) and a characteristic 0 determination of the
automorphism group of the Shimura variety. Alternatively, one can prove that G;
is large by showing that the ¢-adic monodromy homomorphism for primes ¢ # p has
large open image in G(A(®)). Indeed, C.-L. Chai [C] (in the symplectic case) has
deduced the open image result via group theory from the semi-simplicity theorem
of Grothendieck-Deligne of the f-adic representation. The method in [C] should
also work for ¢ ¢ ¥ (for an appropriate ) in our setting.

Let 17F be an irreducible component of I,z. We want to prove I° = (8 =1
(irreducibility). Then Gal(1°/S) C M, and if M = Gal(I°/S), we get I° = 7—1(.9).
Let D be the stabilizer of I° € mp(I) in G. Pick a point & € I (which can be a
generic point), and look at the stabilizer T,, C G of x. Since g, (z) € I° (9. € M) by
the transitivity of the action, we have g,T,g,; ! C D. Then we show that M = G/G;
is generated topologically by {g,T.g; |z € I}, which implies M = Gal(I°/S) and
the conclusion (C).

In the setting of the Igusa tower of a Shimura variety, we can have at least
three choices of the points = € I:

(00) A cusp, assuming that the group G = Resp/gGo for a quasi-split group

Go over a number field F' (acting on a tube domain). This is the proof
given for GSp(2n) in [DAV].
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(cm) A closed point = € I(F) is fixed by a maximal torus T, of G anisotropic at
o0; thus, go Ty (Zp)) gyt C D for Zgy = QN Zy). A well chosen finite set
of closed points X := {z} is enough to generate a dense subgroup of D by
{92T2(Z()) gz *Yoex - This is Ribet’s choice for Hilbert modular varieties
and is also taken in [HO6]. If one uses a CM point (the so-called “hyper-
symmetric point”) carrying a product of copies of CM elliptic curves, often
one such point is sufficient (see Section 3.5);

(gn) Take a coordinate system T = (T4,...,T;) around z € Sh(W) with (z
mod p) € I°(F) (so that 65th > W[y, ...,Ty]]) and take the valuation

v () ea, /)T®) = Inf ord,(c(a, f)).
Then the decomposition group D of v, contains T}, (for all z € I°), and D
is the stabilizer of the generic point of I° containing x (this choice is taken
in [PAF] 8.4.4). The valuation v, corresponds to the generic point of I°.
The point = can be a cusp as in (c0), and in the case of the modular curve
(see Section 1.3), the Hilbert-Siegel modular variety and U(n,n) Shimura
variety, the choice of the infinity cusp works as well (cf. [PAF] 6.4.3).

Actually there is (at least) one more choice. Igusa completed his tower over modular
curves adding super singular points and used such points to prove his irreducibility
theorem in the 1950s. Here we describe the method (gn), but the base point x we
use is the infinity cusp in the elliptic modular case and a hyper symmetric point in
the unitary case.

Fix a prime p and an algebraic closure IF of F,. We fix an algebraic closure Q
(resp. @p) of Q (resp. @Q,), respectively. We fix field embeddings i, : Q < @p
and i : Q < C. Throughout this paper, proofs of the results claimed are given
assuming p > 2 (just for simplicity; see [HO6] for the treatment in the case p = 2).

1. Elliptic modular Igusa tower

As an introduction to the subject, we first describe the simplest case: the
modular curves by the method (gn).

1.1. Elliptic modular function fields. We consider a field K given by

UPJ(N Q(py) inside Q; so K 2 Q,. Take a p-adic place B of K given by i), and write
W C K for the discrete valuation ring of 8. We thus have a continuous embedding
iyt W — @p, and for the maximal ideal m of W, F = W/m is an algebraic closure
of F,. Put G = GL1(Zy) x SLy(AP>)) and we embed diagonally Z,)-points of
the standard diagonal torus M C SL(2) (of the upper triangular Borel subgroup
P={(g.5) ’a € GL(1)} of SL(2)) into G so that (& agl) is sent to a € GL1(Zy)
at p and (§ 1) € SLy(Qy) at all primes £ 1 p.

We consider the modular curve X(N) 51, for an integer N prime to p which
classifies pairs (E, ¢n) /4, where E is an elliptic over A and ¢y : (Z/NZ)? = A[N] =
Ker(N : A — A) is an isomorphism of finite flat group schemes over A. The level
structure ¢ specifies a primitive root of unity (n € py via the Weil pairing

(N = <¢N(1a 0), ¢N(Oa 1)>

Thus X (N) has a scheme structure over Z[uy, ], but we may consider it defined

over Z[+], composing with the morphism Spec(Z[uy, ]) — Spec(Z[+]). If we
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consider level p™-structure ¢, of type I' =T'»(p™) (? = 0,1) given as follows: ¢, is
a subgroup isomorphic to p,m étale locally if I' = T'g(p™) and ¢, : pipm — E[p™] (a
closed immersion of finite flat group schemes) if I' = T'; (p™) (and Np™ > 4), we can
think of the fine moduli space X(NV,I')/p over the base ring B/, 1) which classifies

1
triples (I, ¢, ¢p) a4 over B-algebras A. As the ring B, we take gne of W, IF or K.
As we observed, the open curves X (V) (resp. X(N,T")) can be regarded as schemes
over Spec(Z[+, un]) (resp. over Spec(Q[un])). For N prime to p, X(N) gy is
geometrically irreducible.

We can think of the p-integral Shimura curve

Sh/Z<p> = 1.L]“X(N)/Zm)’
ptN

and more generally over Q,
Shr/@ = I&HX(N,F)/Q
ptN
(regarding these schemes as Zp)-schemes or Q-schemes). Let
X(N,T)yp = X(N,T) g, 1% zlun) B and X(N) pyy = X(N) 1, 21 % 20, 41 B-
The pro-schemes
Xp/p =lm X(N,T);p for B=K and X}, =1lim X (N),y,
N PN
give geometrically irreducible components of Shr,q xq K and S h;pZ)( ) X2 W (the

neutral components). If convenient, we write Shr, (p0)/2,, for Shyz,, (abusing the
notation). By the interpretation of Deligne-Kottwitz, we have

{(B,n: (AP)2 = V(E), ¢),a}
prime-to-p isogenies

(1.1) Shr(A) =

)

where A runs over Z,)-algebras if I' = T'y(p”) and B-algebras (B = F or Q) if
[ =T9(p™) withm >0 (? =0,1), V(E) = AP & lim - E[N]. Thus (a,9) € ¢
(a € GL1(Z,) and g € SLy(AP>))) acts on Shr by

(E7na¢p) g (Evnoga¢poa)7

where a € GLy(Z,) = M(Z,). Write §r for the function field K(Xt) and §®
for K(X®)) (the arithmetic automorphic function fields). This action produces an
embedding

T g/{il} — Aut(Spl(poo)/lC) = Aut(Xpl(poc)/,C).

The action of 7(a,g) on the function field Fr is on the left and has the fol-
lowing property (by Shimura; e.g., [IAT] Theorem 6.23 or [PAF] Theorem 4.14):
For a € GLy(Z,)) (corresponding to (¢ agl) in M(Zy)) diagonally embedded in
SLy(A>))), we have for f € Fr

(1.2) (a)(f)(2) = fla™22);
so, we have 7(a)(f) = f(a™(z)) for o = (§ a91 ). This formula is valid for general

o € GLy(Zy)) if f € §® (thus, our normalization is different form Shimura’s).
We define a valuation

ur(f) = inf ord, e(¢. )
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of modular functions f = Zg c(&, )¢t € Fr. We write v, for vp if T = I'y(p™).

Thus the valuation vy : §® — Z U {oc} has a standard unramified extension
ur @ §r — Z U {oco}. Here are some easy facts:

LEMMA 1.1. (1) Ifa € GLl(Z(p)) = M(Z(p)), then

c(&,7(a)(f)) = e(a®¢, f).
In particular, the diagonally embedded M(Zy)) C G preserves the valua-
tion vr;
(2) The vertical divisor X/(g) = X/(% Qw F of X/(% is a prime diwisor (geo-
metrically irreducible) and gives rise to a unique valuation of FP), whose
explicit form is given by the valuation vg.

PROOF. The first assertion follows directly from (1.2). By the existence of a
smooth compactification of X over W, Zariski’s connectedness theorem tells us
that X%) = X® xy F is irreducible. Thus the vertical Weil prime divisor X%)
on the smooth arithmetic surface X;% gives rise to a unique valuation. By the
irreducibility of X ;ﬁ;), a Wh-integral modular form of level away from p vanishes on
the divisor X ;fFJ) if and only if its g-expansion vanishes modulo p. Thus the valuation

vg is the one corresponding to the vertical prime divisor X;fFJ) cx® |

/W

1.2. mod p connected components and the valuation v,,. Let S be
the ordinary locus X®)[X] & for the Hasse invariant H. Then S is an irreducible

variety over I, because H is a global section of the ample modular line bundle
w®@=1 of the compactification of X/(g). Consider the valuation ring V of §®) of

the valuation vg. Thus the residue field V/my is the function field F(S) of S. Let
E, x & be the universal elliptic curve. Then we consider the Cartesian diagram for
Ey =E X xu) Spec(V):

E, —» E

l |

Spec(V) — X (@),

Since any lift of a power of H is inverted in V, E¢; = Ey Xy Visan ordinary abelian
scheme for the completed valuation ring V = @nn V/p™V. Thus we can think of
the functor Iy = Isomg (ppm, Eg[p™]) which assigns to each p-adic V-algebra
R =lim R/p™R the set of closed immersions: fi,m,r — Ep[p™]/r defined over R.

Since E[p™] has a well defined connected component over V' isomorphic to

ppm étale locally (f} is a henselian local ring), we have canonical isomorphisms of
formal schemes:

o N, m m)é
Iy, = Isomg (pm 5, By [p™]°) = Isomy ((Z/p"Z) 5, By [p™] )

() , ,
= Ep[p"]* - Ep ™%,

where the identity () is given by taking the inverse of the Cartier dual map and
(x%) is given by ¢ — ¢(1) for 1 € Z/p™Z and ¢ € Isom‘A/((Z/me)/‘;,]E‘A/[pm]ét).
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Thus Iﬁ’m/Spf(‘//\') is étale finite. Note here Eg;[p™]° is isomorphic to fn i Etale
locally. By the second expression, Iy /Spf(V) is an étale finite covering over V|
and GL1(Zp) naturally acts on Iy , . Since Iy, is étale faithfully flat over Spf(V),
it is affine, and we may write Iy, = Spf (‘7m) Then V,, is a semi-local normal

X/}—algebra étale finite over ‘7; so, it is a product of complete discrete valuation rings
whose maximal ideal is generated by the rational prime p. Write W = lgln W/p"W,

and take a modular form F on X %7/2}

H. Let X® be a formal completlon of X(P)[L],y, along S (the ordinary locus).
The p-adic formal scheme X® does not depend on the choice of the lift E. Then
we define a p-adic formal scheme Xty = Isom g, (ppn, E) = E[p™]* — E[pm 1%

lifting a positive power of the Hasse invariant

over X (P) | which is étale finite over X®. We may regard )/(\'p sw as the formal
completion of Xt/ along Xt /r. By definition, we have an open immersion

19 m < )?Fl(pm)/W Xg;@ Spf(?),

and 17m is the product of the completions of valuation rings of §p,(,m) unramified
over V. Thus V,,, = V N SFI(pm) inside §r, (pm) Qv V is a semi-local ring V,, with
Vin —@1 Vi /D" Vi = Vi ey V.

We put Iy, = Spec(V,,) and Xp/p = Jim DN X(N,T)r. Then

XFl(pm)/IE‘ = Isoms(upm,IE[pm]o) = Im

gives rise to the Igusa tower [ — -+ — [, — -+ — [; - § over S. We may
regard the moduli scheme X(N,T')/r as a scheme over X(N)[ ] (forgetting the
level p-structure). The set of generic points {nrs € I} Iy p € mo(Im/r)} is in

bijection with my(1,,), and

Vm Rz, F=Vn, ®Zp) F= H F(Ir(;,) (& Ivm QZ () F= I_I {77]7011})'
19, €mo(Im) Iceno(Im)

By the definition of the action of (a, g) € G:

(E,nP), ¢,) = (E,n'") 0 g,6,0a),

G := GLy(Z,) x SLy(AP>®)) acts on Iy . and hence on Iy, (m = 1,2,...,00),
Spec(V) (by Lemma 1.1 (2)), Fr, L, XFV/]F and Xr k. Thus we can form the étale
quotient I my = Iyv,m/GL1(Z/p™Z). Again we have Ip my = Spec(Vr,pm)),
and Vr ) is a valuation ring finite flat over V' sharing the same residue field.
Indeed, there is a unique connected subgroup of E (isomorphic to p,m étale locally)
if (E, ¢n),a gives rise to a unique A-point of X (N,(p™))r. Thus for any m > 0,
Sip = I'&npw X(N,To(p™))/r. This shows that the residue field of Vp (,m) is the

function field of S and that the quotient field of Vi my is S, pm). Since Vi, /V is
étale, we have

Vg = I Vi pm) /0" Ve oy = Jm V/p™V =V,

and V;, is étale finite over Vp (,m). This shows
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LEMMA 1.2. We have the following one-to-one onto correspondences:

{v (8T () — Z|”|C€r0<pm> = Vp,(pm) unramified over vo}
< Max(Vm) A 7"—O(IM) A {77170,1}7

where v is a p-adic valuation of §r,pm) unramified (of degree 1) over vo and
Max(V;y,) is the set of mazimal ideals of Vy,.

The correspondence is given by
v my, ={x € Vylv(z) >0} « I, with F(I})) = V,,/m,.

LEMMA 1.3. The action of G = SLQ(A(pOO)) fives vy, = vp, (pm) and each
element of wo(Ln,).

PROOF. Since Fr, (pm)/Sr, (=) is a finite Galois extension, the set of extensions
of vp,(pm) to 1, (pm) is a finite set, and by the above lemma, it is in bijection
with 7o(I,,). Thus the action of SLo(A®P>)) on 7o(1,,) gives a finite permutation
representation of SLo(AP>)). Since SLy(k) of any field k of characteristic 0 does
not have a nontrivial finite quotient group (because it is generated by divisible

unipotent subgroups), the action of SLy(A(P>)) fixes every irreducible component
of 7T0(Im). O

1.3. Proof of irreducibility of elliptic Igusa tower. Let vo = vp, (p),
and define

D= {x € (GL1(Zy) x SLa(AP))|va o 7(z) = vw} .

Since M(Z)) and SLy(AP)) fixes v (Lemmas 1.1 and 1.3) and the subgroup
(M(Zy))SLa(AP>))) is dense in G = GL1(Z,) x SLa(AP>)), we conclude (C):

THEOREM 1.4. We have D = G.

Let K(®) be a compact open subgroup of SLy(A®P>®)) and K = K®) x GLy(Z,).
Put X = X® /K® (which is the level K modular curve). Let Ix = I/K®),
which is the Igusa tower over Xg. Since [ is irreducible by

Aut(I°/S) = GL1(Z,) = M(Z,) (the above theorem),
I is irreducible. Thus we have reproved

CoROLLARY 1.5 (Igusa). The Igusa tower I over Xy g is irreducible for
K = GLy(Z,) x K®) for each compact open subgroup K®) of SLy(AP>)).

2. Shimura varieties of unitary groups

We give an example S of smooth Shimura varieties for which irreducibility of
the full Igusa tower is false but one can study the irreducible components explicitly.
In other words, we construct a partial tower 1°/.S for which the axioms (A1-2) can
be proved. Write W for the ring of Witt vectors of the algebraic closure IF of F),
and embed W inside C, (the p-adic completion of @p). Hereafter, we write W for
the valuation ring i, ' (W) and K for the field of fractions of W. The (additive)
valuation of W and W is written as ord,; so, ord,(p) = 1. As before, we prove
that Sy is irreducible and smooth and that the Igusa tower I p is étale over S p.
Then for each point z € I(W), we take a coordinate system X7,..., Xy of I and
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define a valuation v, of the function field of I by v, (>, c¢(a)X®) = Inf, ord,(c(a))
(X =X X5? .- X7?). For any automorphism o of Iy fixing x, plainly v, 00 =
vz. Then we conclude the irreducibility by showing that the stabilizers {17 },crow)
inside Aut(I,yy) of x € I(W) cover sufficiently many conjugacy classes of tori to
prove (A1-2). Actually, in the simple case we study, a well chosen single point
xo € I(W) is sufficient.

We first recall briefly the definition of unitary groups over an imaginary qua-
dratic field F' and the construction of the Shimura variety for the unitary groups.
The main source of the information for this part is [PAF| Chapter 7. Then we
prove the irreducibility of the Igusa tower.

Suppose that the imaginary quadratic field F' is sitting inside Q, and write
1: F — Q for the identity embedding. Suppose for simplicity that the fixed prime
p is split in F' and that the embedding 1 : F' < Q composed with ip : Q — @p
gives the standard p-adic place p of F'. Write O for the integer ring of F'.

2.1. Unitary groups. Write ¢ for the generator of Gal(F/Q) (the complex
conjugation on F'). We fix a vector space V over F' with c-Hermitian alternating
form (, ): V xV — Q. We assume we have an O-submodule L C V of finite type
such that

(L1) L®,Q=V;

(L2) (, ) induces Homgz, (Ly,Zy) = Ly, where L, = L ®z Zy,.
We fix an O-lattice L of V' as above.

We identify V' with the column vector space F" by fixing a basis of V over F.
Let C = Endp(V) = M, (F). There exists an invertible matrix s € M, (F) with

fs¢ = —s such that (v, w) = Trp/g("vs - w®), where Trp /g is the trace map: F — Q.

On C, we have the involution ¢ given by x* = s~ !iz¢s. Define algebraic groups

defined over Q by the following group functors from Q-algebras R to groups:
GU(R) = {z € C ®g R|z'z € R*}
(2.1) ={zeCeq R‘txcs cx=v(z)s for v(z)=a'z € R*},

U(R) = {x € GU(R)|2z'z =1}, SU(R) = {z € U(R)| det(z) = 1},
where det(z) is the determinant of z as an F-linear automorphism of V. Then
SU is the derived group of GU and U. Let Z C GU be the center; so Z(R) =
(R®q F)* as a group functor. Since Fg = F ®g R = C with b° = b for complex
conjugation b + b, S = /—1s € M,.(Fg) = M,(C) is a Hermitian matrix. Thus

U(R) is the unitary group of S. We have Homgea(F,C) = {1, c} for the identity
inclusion 1. Writing the signature of S as (mq,m.), we find U(R) = U, ;. (R) =
{2 € GL(©)|'Thns . = Ty} 108 Ty, = (54 1, )-

ExaMPLE 2.1. For a QQ-algebra R,
(1) if s = (§ 1), then (25)" = (% 77) and SU(R) = SLa(R),

—cC

GL3(R) = {2 € GU(R)| det(z) = v(z)} ;

(2) GU(Q) = GL(Q)Z(Q)* and GU(R) = GL(R)Z(R).
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2.2. Abelian schemes of hermitian type. To put a complex structure on
the real vector space Voo =V ®g R, we use an R-algebra homomorphism A : C —
Co = C ®qg R with h(Z) = h(z)*. We call such an algebra homomorphism an
t-homomorphism. Then h(i)* = —h(i) for i = v/—1 and hence z* = h(i)~*a*h(i) is
an involution of C.

ExaMPLE 2.2. If s = (9 '), the morphism a + bi — h(a+ bi) = (¢ 0) €
M>(R) C Cy is an t-homomorphism.

We suppose

(pos) The symmetric real bilinear form (v, w) — (v, h(i)w) on V4 is positive defi-
nite.

It is easy to check that h in Example 2.2 satisfies (pos).

By (pos), we have 0 < (zv,zv) = (v, (zPx)v) for all 0 £ v € V, and z € Cw,
and hence xz”x only has positive eigenvalues; therefore, p is a positive involution of
C (ie., Tro/g(xPx) > 0 unless z = 0).

Fix one such h := hg : C = C, and define X (resp. XT) by the collection of
all conjugates of hg under GU(R) (resp. under SU(R)). Any two homomorphisms
satisfying (pos) are conjugates under SU(R) (see [PAF] Lemma 7.3). Thus X+ =
SU(R)/Cy for the stabilizer Co of hg in SU(R) is connected and is a connected
component of X. On X, GU(R) acts by conjugation (from the left), and by (pos)
the stabilizer Co C GU(R) of hg is a maximal compact subgroup of GU(R) modulo
center.

EXAMPLE 2.3. Assume that s = (9 ') and take ho(a + bi) = (¢ ). Since
ho(C*) gives the stabilizer of i € $ = {z € C|Im(z) > 0}, we have X+ = § by
sending ghog~! to g(i). We also have X = $ LU $H = (C — R) in the same way.

Since h : C = C is an R-algebra homomorphism, we can split Vo =V ®q C
into the direct sum of eigenspaces Vo = Vi @ V4 so that h(z) acts on V; (resp.
V3) through multiplication by z (resp. Z); thereby, we get a complex vector space
structure on Vo by the projection Voo = Vi. Since h(C) C Cw, h(z) commutes
with the action of F'; so, Vj is stable under the action of Fr = F ®g C. We get the
representation p; : F' < Endc(V;). We define E to be the subfield of C fixed by
the open subgroup {o € Aut((C)‘p‘{ =~p1}. I W (2) =g-h(z)g" for g € GU(R),
R’ induces a similar decomposition Vo = V{/ @& V5, and ¢ induces an F-linear
isomorphism between V; and VY; thus, E is independent of the choice of A’ in the
GU (R)-conjugacy class of h. This field F is called the reflex field of (GU, %) (and
is a canonical field of definition of our canonical models of the Shimura variety).

By the positivity (pos), the quotient complex torus V,/L = V;/L has a Rie-
mann form induced by (-, -}. The theta functions with respect to the Hermitian form
(-, ) give rise to global sections of an ample line bundle (e.g., [ABV] Chapter I) on
V1/L and hence embed V4 /L into a projective space over C. The embedded image
is the analytic space Ay, (C) associated with an abelian variety Ay c by Chow’s the-
orem (see [ABV] page 33). Multiplication by b € O on V;/L induces an embedding
i:0 < End(Ayc) and i : F — End%(4,/c) = End(4),/c) @z Q.

The representation p; is given by the action of F' on the Lie algebra Lie(Ay) =
V1 at the origin of A,(C). Since Ay is projective, the field of definition of the
abelian variety Ay, is a field of finite type over Q.
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The reflex field E is the field of rationality of the representation of F' on Lie(Ay,);
therefore, the field of definition of (A, ¢) always contains this field E. It would then
be natural to expect that the moduli variety of triples (4, A, ¢) for an abelian variety
A with F-linear isomorphism Lie(A) 2 V] is defined over E.

Since the isomorphism class of p; is determined by Tr(p;) (see [MFG] Propo-
sition 2.9), E is generated over Q by Tr(py(b)) for all b € F. Thus we have E = F
or Q and that E = Q implies m; = m,, because Tr(p1(£)) = m1&+m.£€ for € € F.
We write O for the integer ring of E. Let Z,y = Z, N Q, put O,y = 0 Rz Zy),
Og,(p) = Op ®z L, and write V for the valuation ring WNE D Og ) (V is
the localization of Og at p). More generally, for a finite set of places ¥, we write
Zs, for the product of Z, over finite places £ € ¥, and we put Zx) = QN Zx and
O(s)y = O ®z Z(s). The ring V has residue field I, since p is split in E because
ECF.

2.3. Shimura variety for GU. We study the classification problem of quadru-
ples (A,)\,i,ﬁ(p))/R: A is a (projective) abelian scheme over a base R, ‘A =
Pic%/R(A) is the dual abelian scheme of A, A : A — !4 is a prime-to-p polar-
ization (that is, an isogeny with degree prime to p fiber-by-fiber geometrically in-
duced from an ample divisor), i : O, — Endﬁ(”) (A) = Endgr(A) @z Z) is a
Z(y)-algebra embedding (taking 1 to the identity of A) with A o i(a) = fi(a) o A
for all & € O, and ) is a level structure. Regarding ‘A as a left O-module by
O 2 b+ 'i(b°) € End(*A), X is F-linear. Hereafter we call A\ F-linear in this sense.
The base scheme R is assumed to be a scheme over Spec(V).

We clarify the meaning of the level structure n®). Fix a base (geometric)
point s € R and write A for the fiber of A at s. We consider the Tate module
T(As) = lim  A[N](k(s)) and VPI(A,) = T(As) @z AP where N runs over
all positive integers ordered by divisibility. The prime-to-p level structure n®) :
V(AP®) = V @g AP>) = VP)(A,) is an O-linear isomorphism. The duality
pairing ey : A[N] x 'A[N] — pxn composed with A gives, after taking the limit
with respect to N, an alternating form (-,-)y : VP (A,) x VP (A,) — AP®)(1) :=
lim, v satisfying the following conditions:

(P1) (a(z),y)x = (z,0%(y))x for a € End(A/p);

(P2) The pairing induces the self-duality: A[p"] = Hom(A[p"], ppn) if N = p".

We require that ®) send the alternating form (-,-) to (-,-)x up to multiple of
scalars in (A(P>))*_ This is possible, because AP>)(1) =2 AP>) up to scalars in
(A(P>))*_ Then n() is required to be an isomorphism of skew Hermitian F-modules
with respect to the pairing (-,-)y on V(®)(A,).

The algebraic fundamental group m; (R, s) acts on V(?)(A,) preserving the skew
Hermitian form (-,-)5 up to scalars in (A(P>))* (because it preserves the Weil ex-
pairing; see [ABV] Section 20). Take a closed subgroup K c GU(AP>)). We
write 77P) for the orbit 7®) o K@) If ¢ o 7P) = 7(P) for all o € 7 (R, s), we say the
level structure 7(P) is defined over R. Even if we change the point s € R, everything
will be conjugated by an isomorphism; therefore, the definition does not depend
on the choice of s as long as R is connected. For nonconnected R, we choose one
geometric point at each connected component.

A quadruple A p = (A, \,4,7P)) is isomorphic to A//R = (A’,)\’,i',ﬁ’(p)) if
we have an O-linear isogeny ¢ : A — A’ defined over R such that p { deg(¢),
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PN =poNop=vAwithveZ 6 dpoiogp ! =i, and ﬁ’(p) = $pon®). Here
(r)+
X
Zip)+ ! s the pri
to-p polarization class A = {vN|v € Z(XPH} of X to the class A of A: ¢*A = A. In

this case, we write A ~ A’. We write A = A’ if the isogeny is an isomorphism of
abelian schemes; that is, deg(¢) = 1.

is the collection of all positive elements in Z(Xp ) Thus ¢ associates the prime-

We take the fibered category C = Cpy of the quadruples (4, A, 4, n(p))/R over
the category V-SCH of V-schemes and define

(22) Home,, (A4, X, 3,15, (A, X, i1/ ") )

thoXNop=uv\ with O<u€Z(Xp)+,}

- cH AA Z
{d) omp(A, A') @z L) poi=io0¢ and " =¢on®

The representation p; is well defined over V, since p splits in F; thus, it is
well defined over O for any V-scheme R. We consider the functor £®) : V-
SCH — SETS given by

EPV(R) = {A/R = (A4, X,i,nP)) /g |Lie(A) = p; over (’)R} |~

Since A /g is a group scheme, its tangent space at the zero section has a Lie algebra
structure over Or. We write Lie(A) for this Lie algebra. Since A is smooth over
R, Lie(A) is a locally free Or-module of rank dimg A. In our case, for a given
quadruple A = (A, /\,i,ﬁ(p))/R, the Lie algebra Lie(A) of A over Op is an O-
module via ¢. Since Lie(A) is locally free of rank dimpg A over Og, we can think of
an isomorphism Lie(A) = p; of Og-representations of O,). One can find in [PAF]
Chapter 7 a proof of the following theorem due to Shimura, Deligne and Kottwitz.

THEOREM 2.1. The functor EP) is representable by a quasi-projective smooth
pro-scheme Sh(P) over V. Letting g € GU(A®P>®)) act on Sh®) by n®) — nPog, for

each compact open subgroup K C G(A(po")), the quotient scheme Shg) = Sh(p)/K
exists as a quasi-projective scheme of finite type over V, and Sh®) = yLnK Sh(lg).
The Shimura variety Sh([?) is projective over V if the Hermitian pairing {-,-) is

anisotropic.

For a finite set of primes Y containing p and co, we can think of the Shimura
variety away from X as follows. Write ¥ = {p,c0} UX'. If ¥’ #£ 0, let GU(Zyx/) =
{9 € GU(Qsv)|gLsy = Ls}, and put Sh(*) = ShP) /GU(Zsxy). Tt is known that

Sh%) is a smooth (quasi-projective) pro-scheme.

Recall the embedding i, : Q < Q,, and the valuation ring ¥V which is the pull-
back by 4, of the p-adic integer ring of the maximal unramified extension of Q,. By
our choice, 1 : F — Q <Z—p> @p induces the valuation ring V. Write K be the filed of
fraction of W. Let Sh{}), = Sh( xgpee(v)Spec(W) and put W = lim W/p"W. By
the reduction map (see [ACS] Corollary 6.4.1.3), we have Wo(Shg?c)) = WO(Sh(/?)

for Sh(/? =5 h%\)} xw F by Zariski’s connectedness theorem and the existence of

h(lgw’ and SU(A®®)) leaves stable each

irreducible component in 7o(S h;,zc)) because X7 is a quotient of SU(R). A proof of

a smooth toroidal compactification of S
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the existence of a smooth toroidal compactification of S h(p K/w can also be found in

[ACS] 6.4.1. Thus, by the existence of a smooth toroidal compactification of S h(E
(and Zariski’s connectedness theorem), we get

PROPOSITION 2.2. Geometrically irreducible components of Sh(z) are generic

fibers of irreducible components of Sh( ). Each irreducible component of Sh( ) has
irreducible special fiber over F, and the group SU(A®)) leaves stable each zrreduczble
component of the Shimura variety Sh(z) Sh (=) w Xw F.

We can compute the stabilizer in GU(A®)) of each point of Wo(Sh(/]F)) explicitly
([HO6] Lemma 1.1).

3. Igusa tower over unitary Shimura variety

We first define the Igusa tower over the GU Shimura variety and prove that the
tower is not irreducible. Then we prove the irreducibility of the partial SU-tower.
Let G(Z,) = {9 € G(Qp)|gL, = L,} for G = GU,U and SU. Let X be a finite set
of rational places including p and oco.

3.1. Unitary group over Z,. Recall our simplifying assumption: p = pp
(p #p) in O so that p is induced by i),. Since O, = Oy x O = Z;, X Zy, on which ¢
acts by interchanging the coordinates, (x,y)¢ = (y,x) and £ € O is sent to (§,£°) €
Zy X Ly, we thus have GL,(0p) = GL.(0p) x GL, (O ) = GL,(Zp) x GL,(Zy).
Since x* = s~ !z¢s for the skew-hermitian matrix s = —'s, if (z,y) € U(Z,), we
have

(@ hy ) = (2,y) 7 =2 = (5,57 (Y, 1) (s, 5%) = (s7Hys, s~ s”)
and y = ‘s~ 1z~ 1%. Thus, choosing a basis of L,, over O,, we have U(Z,) = GL,(Z,)
by sending (z,y) € U(Z ) to ¢ € GL(Z,). Similarly, SU(Z,) = SLT(ZP) and

GU(Zy) = GLy(Zy) x GL1(Zp) by g = (2,y) = (zv(z,y) ! v(z,y)).

3.2. The Igusa tower. Let S/, = S/W be an irreducible component of

the ordinary locus of Sh%\)}. Thus S is the subscheme obtained from Sh;v\)}
removing the closed subscheme of non-ordinary locus at the special fiber at p. By
(-,+), Ly is self-dual. Since O, = O, ® Oy, we have the corresponding decomposition
L,=L,® L.

Let A /g be the universal ordinary abelian scheme over S with its fiber A, at
x € S. Pick a base point zg of S(W) (W = lim W/p"W) with reduction Ty € S(F)
modulo p. We fix an identification: L, = T, A, [p*>°] for the p-adic Tate module
T, Az, [p°°] of the Barsotti-Tate group A, [p>]. Then over the formal completion S
along the special fiber, we have the reduction map T Ay, [p°>°] — T, Az, [p>]¢*. The
kernel of the reduction map gives rise to an Op-direct summand L, C L,. Since O
acts on the tangent space at 0 via the identity inclusion into Z, by multiplicity m;
and the tangent space of A[p]?zo is equal to this eigenspace in the tangent space of
Az,, we find that Ly ®o, F, = F}'t; thus, Ly = Op*'. Similarly, we define L. C Ly
using the reduction map on p-torsion points of A,,. Then L. = O;C. Note that
Ly/Ly = Homg, (L, Zy) and Ly/L. = Homg, (L1, Zy) by (-,-). Let L= L1 @ L. as
O-modules.
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We consider the functor I, = I,(LE) from the category of S/)y-schemes R into
the category of sets taking R to the set of O-linear closed immersions of L&z ji,n /g
into A/g[p"], where A, = A xs R. Since the two schemes £ ®z p,» and A[p"]
are finite flat over S, by the theory of Hilbert schemes, this functor is representable
by a scheme I,,. Then I, classifies quintuples (A, i, 20>, ¢p) for an O-linear
closed immersion ¢, : L Qg pipm — Alp"].

The formal completion S along the special fiber S/zp = S xyy F is a formal
W-scheme. The connected component A[p"]° of A[p"] is well defined over S, and
hence the formal completion IAn/W of I, along its special fiber I,,)p = I, Xy [ can
be written as Isomg(L ®z ppn, A[p"]°). Then fn/§ is isomorphic to the scheme
Isomg (LY /p"LY, A[p"]*) étale finite over S, since by duality, ¢, : £ @ pipn =
A[p"]° gives rise to ‘o1 LV /p"LY = A[p"]*t for LY = L,/ L.

Let 1)y = lgln I, jyy- Tts special fiber

I/W XwFZI&nIn/F

~

is called the Igusa tower over S,r. By the projection L, — Ly, we have U(Z,) =
GL(Lyp) = GL,(Zyp). Consider the universal level structure ¢, : £ ® fipeo — A[p™]
over I. The group GU(Z,) acts on L. Let

P(Zp) = {g S U(Zp) = GL(L}J)|9L1 = Ll}-
Then, identifying GL(L1) = GL,,(Z,) and GL(Ly/L1) = GLy (Zyp), P(Zp) is a
parabolic subgroup of U(Z,) = GL,(Z,) of the following form,
{(a%)|(a,d) € GL(L1) x GL(LY)} = {(8Y) |(a,d) € GLyp,(Zp) X GLy (Zy)} .

Here the action of d € GL(L/) on L/ = L, /L4 is given by the matrix d and hence
it acts on L, = Hom(L,/L1,Z,) by the dual action (induced by (:,-)) written
as d~*. Define M(Z,) = GL(L1) x GL(LY) for the reductive part of P. Put
M1(Z,) = M(Z,)NSU(Z,). Then M(Z,) acts on each fiber of I transitively, since
I/S)r is an M(Z,)-torsor by the action

(¢P’¢F) © (avd) = (¢P © av¢$o d_*),

where the original action of d on L, /L is dualized by the polarization pairing

()n s AT < Lim A[p")° = e

3.3. Reducibility and irreducibility. First, we may assume that S(C) is the
image of SU(A®)) x ¥t in Sh(®)(C) = GU(Q)\(GU(A™) x X)/GU (Zs)Z(Q),
where Zy, = HZEZ—{O@} Zo, Qx = HKGE—{OO} Qy, Z(E) = QNZs in Qx and
GU(ZE) = {il,' € GU(QE)|£L’LE = LE} for Ly = L ®z Zs..

On S, the universal level structure n*) : V(A®)) = V) (A) induces the
trivialization of the étale A*)-sheaf:

det(n®): AP = A\ v(A®)= A vE)(A).
Fu® Fy =)

For any prime ¢ outside X, take a compact open subgroup K of GU(A®)) such that
K = K, x K® with K, = {& € GU(Z)|zL; = Ly} and such that Sh®*) /Sh{>
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(Shg) = Sh®)/K) is an étale covering. Then for the principal congruence sub-
group K (£") C K modulo £", Shg(¢n)yy is constructed as Isomg, =) (L/0" L, A [("])
K

for the universal abelian scheme A g over S h(KE). Let Sk be the image of S'in S h(KE)
and write again as x(p the image of z¢ in Skx. By this expression, the action of
71 (Sk, To) on the étale sheaf A [("], g, factors through the action of K,NSU(Zy).
In particular, its action on A, Ak[¢"] factors through det : K, N SU(Z¢) — O
which is the trivial character by the definition of SU. Thus A, Ak[¢"]is a constant
étale sheaf over Sk /yy. In other words, the action of GU(A®)) on /\;,A(Z) V(A®))
factors through the determinant map, it is trivial on SU(A®)), and V&) (A)
over the irreducible component Sy is constant; thus, the f-adic sheaf /\TO’Z T A
(TeA = lim | A[("]) is identical to \p, TeAs for the fiber of A at any closed point
x € S(K).

For any exact sequence of free Z,-modules X; — X — X, with ranks ri,r
and 75 respectively, we have a natural direct summand A™ X; @ A" X in A" X,
because the ambiguity of lifting x5 € X5 to « € X is killed by wedge product with

A" Xy,
As for the fppf abelian sheaf /\gp1 A[p”];g/ over Sy, it is isomorphic to
w
/\Z1 (Op @ ppn )™*; thus, its dual étale sheaf /\gﬁ1 A[E"]%\/W is constant over §/W.
Similarly Ag* A[p"}%\ is constant. Thus

/w

Elp"] = A AR @z, \ AR5
ZP

Zp

is isomorphic to the constant sheaf Z/p"Z over S yw- Thus we have a morphism

det : I,z = Isom (ﬁ—v A "]ét)—ﬂsom("/\u Li o 7\ Le E[p"))
*Tn/S T S pnﬁv’ D anY Zp ané/7 p
= (Z/p"2)*

over S taking t¢;1 (LY /pnLY = Alp™]®t to

(/\ (65 o) © A <f¢;1mw>) |

Pick a generator

Me \Vi m1 \Vi

L L
im I 1 c Elp™
vel%n som(/\an¥ ®zp/\anX7 [p"])

over Z,, and define I5V = 1503 = det ' (vmod p") and ISV = [SU() —

l'&nn ISU’(E). We claim

THEOREM 3.1. For each finite set 2 of rational places containing p and oo,

ISU’(E)/S is a geometrically irreducible component of I,,/s.
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3.4. Proof. By construction, IEU’(E)

contains an irreducible component of
Ir(i)s Thus we need to prove irreducibility of I U’(E)/ S showing axioms (A1-2).

For a point 2 € I5V:(*) (F), consider the formal completion fo/U’(E)

Opsusr = W[Xy,...., X]) for d = dimw S (& DT = Spf(WXy, ..., Xa)))).

Define the valuation v, : Ozsv,=) — Z U {oo} as already mentioned:
/W

along x. Then

vz(z c(a)X®) = Inf, ordy(c(a))
where X — quxélz ...Xs‘d_ Then the stalk OISU,(Z)’I C OIALS/UV[EZ) inherits the
valuation v, and hence its function field § = K(I°Y"(*)) gets the valuation v,. The
valuation v, is unramified over the function field g = K(S®)). Let D (resp.
T.) be the stabilizer of v, (resp. z) in M;(Z,) x SU(A®)). Then T, C D.

First take ¥ to be Xg given by {p, 00} U {¢|SU is not quasi-split at £}. Then
SU(A®)) does not have any finite quotient. In particular, SU(A®)) fixes each
connected component of ISV and SU(A®)) € D. As will be seen in the following
section, we can find one base point x = xp such that 7,, has p-adically dense
image in M;(Z,) under the projection: SU(A®)) x M(Z,) — M;(Z,). Thus
T,y - SUA®)) is dense in SU(A™)) x M;(Z,). Since D D T, - SUA®)), D
contains SU(A®)) x M,(Z,) and in particular contains M;(Z,). This shows the
irreducibility of 15V,

If ¥y as above is bigger than the minimal choice ¢ = {p, 00}, we note that
F(S(@)) and F(I5Y:(30)) are linearly disjoint over F(S(*0)). Indeed, we have

F(S(U)) N F([SU(Zo)) — IF(S(ZO))

by construction, and the two extensions are Galois extensions over F(S(0)). The

quotient field K of the integral domain F(S(%)) O (s50) F(I{?U’(ZO)) has degree

equal to the covering degree [I;?U’(a) : §(@)] and K is an intermediate field of
]F(ISU’(U))/IF(S(”)); therefore, K is the function field of the full Igusa tower I°2(7)

n/S@)"
This shows that I/Sg(d()g ) is still irreducible.

For an arbitrary ¥ D ¢, the natural projection I5V:(?) — [SU.(3) is surjective
dominant; therefore, the irreducibility of I°Y:(?) implies the irreducibility of I5V:(3).

3.5. Finding the base point xy. Here is how to find the point xzg with p-
adically dense image in M;(Z,). For simplicity, we assume that p > 2. The unitary
group GU,q depends only on the hermitian vector space V' not the lattice L. The
unitary group GU/Z@) depends on the hermitian form on L, = L ®z Z(,), and

S h%) only depends on GUz,; thus, we may change the lattice L without changing
L. In particular, if necessary, replacing L keeping L, intact, we may assume
that the hermitian matrix s is diagonalizable over L (if p > 2).

Since g € M(Z,) acts transitively on E[p"] — E[p"~!] = (Z/p"Z)* by multipli-
cation by det(g), we can change the element

me \V ma L\/
C

. L n
v Gl&nIsom(/\pnIl&/ ®z, /\anv,]E[P 1)
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(appearing in the definition of I5V:(¥0)) at our will. Thus, changing v if necessary,
we only need to find a hyper symmetric point o € I(*0) with T}, SU(A(*0)) dense in
SU(A®0)) x M;(Z,). We may assume that mym, # 0. Diagonalize the hermitian
matrix s over L. By the self-duality of L,, s has p-adic unit diagonal entries
$1,...,8 € F and Im(s;) > 0 < j < my. Note that |s;|v/—1 = +s; has positive
imaginary part. Take an elliptic curve E; /)y with complex multiplication by F' with
Riemann form given by F x F 5 (v,w) — Trpq(v]s;|v/—1w®). Since s; is a p-adic
unit, we may assume that E;(C) = C/a; for a lattice a; in F' with a;, = O,. We
identify EndQ(Ej) = End(FE;) ®z Q with F by sending £ € F' to the multiplication
by £ on C. Take A = Ey ® E2 @ --- ® E,. Embed F into End%(A) so that F —
End%(A) — End%(E;) is 1 if and only if j < m; (thus, F — End%(4) - End%(E;)
is complex conjugation ¢ if and only if 7 > my). By our construction, we have
an isomorphism H;(A(C),Z) = L which takes the Riemann form on H;(A(C),Z)
to (-,-) on L. The Hodge decomposition H;(A(C),C) = H-4% @ H%~! gives the
decomposition V ®g C = V; & V5 and hence a point in hy € XT.

Since p splits in F', F; is ordinary; so hy € XT projects down to a point S(W).
We have

End(ozo)(A/F) = Endo(A/F) X Z(Zo) = Mm1 (O(Eo)) X M"LC(O(ZO))~

Over the place p, E;[p>] v = piyeyy if and only if j < m;. We may identify
T, E;[p*] = Tp(ajp © ppe) = Zp(1) if j < my and T, E;[p™] = Tp(a;5 ® ppe) =
Zy(1) if 7 > m4. In this way we get ¢, : L = T, A[p>]°. By duality, we get

miy T t¢;1 my ) T )
Dus|o| D ws] = |DLEF W |o| D THEFW
Jj=1 Jj=mi+1 Jj=1 j=mi+1

Then we put 7, = ¢® g, " : L, = LS LY = T,A[p®]° & T,A[p™]* = T,A[p>]. We
choose n(*0) of A defined over W so that (A, ¢, n>0)) is over z¢ € I(F), and write
n = (np,n¥0)). For each isogeny a € End(ozo)(A/F) preserving polarization up to

scalars and fixing the generator v € lim Isom(A™ % ®z, N™ pfzv'X ,E[p"]), we
can define p(*0)(a) € SU(AF?) by aon0) = y(F0) o p*0)(a) and p,(a) € M(Z,)
by aomp, = 1, 0 pp(a). Then we embed a in SU(A)) x M(Z,) diagonally by
a s (p®)(a) x pp(a)). Note that aov = v & p,(a) € My(Z,). Since the abelian
scheme above p(a)(zg) is

—1

(4,n0 p(a)) = (Im(a),aon) = (A7),

we find that p()(z¢) = zo. By construction, the stabilizer of zy € I*°)(F) contains
the image Im(p) whose projection to M;(Z,) is the p-adically dense subgroup

(GLm1 (O(Eg)) X Gme (O(Zo))) N SU(Q)

as desired.
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1. Introduction

Consider a quadratic extension of number fields E/F. Let n be the corre-
sponding quadratic idele-class character of F'. Denote by o the non-trivial element
of Gal(E/F). We often write o(z) = Z and N,(2) = 2z. Let U, be a unitary
group in n variables and U,,_1 a unitary group in (n — 1) variables. Suppose that
t: Up—1 — U, is an embedding. In a precise way, let 8 be a Hermitian non-
degenerate form on an E vector space V,, and let e, € V,, be a vector such that
Blen,en) = 1. Let V;,_1 be the orthogonal complement of e,,. Then let U,, be the
automorphism group of 8, and let U,_1 be the automorphism group of 3
Then ¢ is defined by the conditions ¢(h)e,, = e, and t(h)v = hv for v € V,,_;.

Let 7 be an automorphic cuspidal representation of U,, and ¢ an automorphic
cuspidal representation of U,,_1. For ¢, in the space of m and ¢, in the space of o
set

(1) Ay (Pn; Oo) = / & (L(h))bo (h)dh .

Un—l(F)\Un—l(FA)

Vi—1-

Suppose that this bilinear form does not vanish identically. Let II be the standard
base change of 7 to Gl,,(E) and let ¥ be the standard base change of ¢ to Gl,,—1(E).
For simplicity, assume that II and ¥ are themselves cuspidal. The conjecture of
Gross-Prasad for orthogonal groups extends to the present set-up of unitary groups
and predicts that the central value of the L—function L(s,II x ¥) does not vanish.
Cases of this conjecture have been proved by Jiang, Ginzburg and Rallis, at least
in the context of orthogonal groups ([16] and [17]). The conjecture has to be
made much more precise. One must ask to what extent the converse is true. One
must specify which forms of the unitary group and which elements of the packets
corresponding to IT and ¥ are to be used in the formulation of the converse. Finally,
the relation between Ay (or rather Ay Ayy) and the L—value should be made more
precise.

We will not discuss the general case, where there is no restriction on the repre-
sentations. We remark however that the case where o is trivial or one-dimensional
is already very interesting even in the case n = 2 (See [11]) and n = 3 (See [19],
[20], [21], also [4], [5]).

In this note we propose an approach based on a relative trace formula. The
results of this note are quite modest. We only prove the infinitesimal form of the
fundamental lemma for the case n = 3. We do not claim that this implies the
fundamental lemma itself or the smooth matching of functions. We hope, however,
this will interest other mathematicians. In particular, we feel that the fundamental
lemma itself is an interesting problem.

We now describe in rough form the relative trace formula at hand. Let f,, and
frn—1 be smooth functions of compact support on U, (Fa) and U,,_1 (Fy ) respectively.
We introduce the distribution

(2) Aﬂ',cr(fn b2y fnfl) = Z AU(’/T(fn)d)ﬂ'a U(fnfl)d)a')AU(d)ﬂ'a ¢0') 3

where the sum is over orthonormal bases for each representation.
Let ¢ : Gl,,_1 — Gl, be the obvious embedding. For ¢y in the space of II and
¢x, in the space of X, we define

(3) Ag(¢m, ¢x) = / o (e(9))9=(9)dg

Gly—1(E)\Glp—1(Ey)
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Thus the bilinear form Ag is non-zero if and only if L(1,II x ) # 0. In fact we
understand completely the relation between the special value and the bilinear form
Ag.

Say that n is odd. Let us also set

(4) P.(¢n) = #11(g0)dgo

/Gln (F)\Gln (Fy)

(5) Poo1(ds) = n(det go)¢s(g0)dgo

/C;lnl(F)\Glnl(FA)
Strictly speaking, the first integral should be over the quotient of
{9 € Glo(Fy) : | detg[ =1}

by Gl,(F). Similarly for the other integral. The study of the poles of the Asai
L—function and its integral representation (see [3] and [4], also [10]) predict that
P, and P, _; are not identically 0. If n is even, then 1 must appear in the definition
of P, and not appear in the definition of P,_;. This will change somewhat the
following discussion but will lead to the same infinitesimal analog.

Let f/ and f!_; be smooth functions of compact support on Gl,,(Es) and
Gl,,—1(E,) respectively. Consider the distribution

(6) Ans(fr @ fro1) =
> Ac((f) b, o(fr-1)¢2) Pu(é) Pa1(d5) ,

where the sum is over an orthonormal basis of the representations.
One should have an equality

(7) Aro(fa ® frn1) = Aus(fy, ® foo1),
for pairs (fp, fn_1) and (f},, f/,_,) satisfying an appropriate condition of matching

orbital integrals. In turn, the equality should be used to understand the precise
relation between the L value and the bilinear form Ag.
To continue, we associate to the function f, ® f,,—1 in the usual way a kernel

Kf,of,1(91: g2,h1 t ha) on
(Un(FA) X Unfl(FA)) X (Un(FA) X Unfl(FA)) .
The kernel is invariant on the left by the group of rational points. We consider the

(regularized) integral

(8) 2 Ky, @5, 1(t(92) : g2,t(h2) : h2)dgadhs .

/(U,,_l(m\Un_l(Fm)

Likewise, we associate to the function f; ® f/_; a kernel
K}T,L®f7,171(91 :g2,h1 s ha) on

(Glo(En) % Gly_1(Ex)) % (Glo(Es) x Glu_1(En))

and we consider the (regularized) integral

(9) /K}TQ@JN (L(gg) L go, hl : hg)dggdhl?’](det hz)dhg

n—1
where

92 € Gly_1(EN\Gly_1(E4) , hy € GlLy(F)\Gln(Fy) , ha € Gly_1(F)\Glo_1(Fy) .
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The conditions of matching orbital integrals should guarantee that (8) and (9) are
equal. In turn this should imply (7).
In more detail, (8) is equal to

/ Z fn (t(g2) " v 1(h2)) Z fa—1 (95 '€h2))dgadhs
v€EUL(F) €U, _1(F)
or

/zjngzmm S fust (9a€ha))dgadhs
~EU, (F) E€U,_1(F)
In the sum over v we may replace v by ¢(§)y. Then ¢(g2£) appears. Now we combine
the sum over ¢ and the integral over go € U,,_1(F)\U,—1(F4) into an integral for
92 € Up—1(E,) to get

[ 3 fo 020002 s (g2ha))dgahe.
¥
After a change of variables, this becomes
/Z fa ((g2)e(h2) "'y u(h2)) fa-1 (92) dgadhs .
S
At this point, we introduce a new function f,, ,—1 on U, (Fa) defined by

(10) mM@FL(mmmmmmm%

Then we can rewrite the previous expression as
/ ann 1 hs) ’Yb(hz)) dhy .
Un—1(FO\Un—1(Fa)
The group U,,_1 operates on U,, by conjugation:
v = o(h) " yu(h)

For regular elements of U, (F') the stabilizer is trivial. Thus, ignoring terms which
are not regular, the above expression can be rewritten

(1) S g P 0 )

where the sum is now over a set of representatives for the regular orbits of U, _1 (F)
in U, (F).
Likewise, we can write (9) in the form

/}:ﬂlmvm S fhoi(g5 "ha)n(det ha)dgadhadhs.

Y€EGL, (E) £€Gl,_1(F)
The same kind of manipulation as before gives
/ > F(ug2)vha) f—1 (92h2)dgadhin(det hy)dhy
YEGI, (F)

where now go is in Gl,,_1(FE4). If we change variables, this becomes

/ > Fi(ug2)uha) " vha) fr o1 (92)dgadhan(det hy)dhs .
)

YEGL, (E
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We introduce a new function f;, ,, _; on Gl,,(Ey) defined by

frna(g) = / £ ((g2)9) £y (92)dg
Glp—1(Ey)

The above expression can be rewritten
[ X fslelhe) o) dhan(et ha)ane.
YEGIL,(E)

where hy is in Gl (F)\Gl,,(Fa) and hg is in Gl,,—1(F)\Gl,—1(Fy). We also write
this as

(12) /A/EGZ (EZ/GZ (/fnn 1(e(h2)” “th)dhl) n(det ha)dhs

with hy € GI,,(Fy).
At this point we introduce the symmetric space S,, defined by the equation
587 = 1. Thus

(13) Sp(F):={seGl,(E):ss=1.}
Let ®,, ,—1 be the function on S, (Fa) defined by

Brnalg ) = [ Fialgbidh
Gln(Fa)
The expression (12) can be written as

/ Dy, -1 [t(h2) T E(ha)] m(det ho)dhs .
Gln—l(FA)/Glnfl (F) fGSn(F)

The group Gl,,(F') operates on S, (F') by

s u(g)” su(g) -

Again, for regular elements of S, (F') the stabilizer under Gl,,_; (F') is trivial. Thus,
at the cost of ignoring non-regular elements, we get

(14) 252 /G gy e («(h) " €u(h)) n(det h)dh,

1

where the sum is over a set of representatives for the regular orbits of Gi,,_1(F') in
Sn(F).

To carry through our trace formula we need to find a way to match regular
orbits of U,_1(F) in U, (F) with regular orbits of Gl,_1(F) in S,(F). We will
use the notation & — £’ for such a matching. The global condition of matching
orbital integrals is then

/ Frn—1((h) " eu(h))dh =
n—1(Fa)

/ Bpy 1 (L(R) 72 () )p(det h)dh
Glp—1(Fa)

if £ — &', If ¢ does not correspond to any £ then

/@n,n,l(L(h)—lgn(h))n(det h)dh =0.
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A formula of this type is discussed in [7], [8], [9] for n = 2. Or rather, the results
of these papers could be modified to recover a trace formula of the above type.

As a first step, we consider the infinitesimal analog of the above trace formula.
Now n needs not be odd. We set &,, = M(n x n, E). We often drop the index n
if this does not create confusion. We let i, C &,, be the Lie algebra of the group
U,. Then U,_; operates on i, by conjugation. Likewise, we consider the vector
space &, tangent to S, at the origin. This is the vector space of matrices X € &,,
such that X + X = 0. Again the group Gl,,_(F) operates by conjugation on &,,.
The trace formula we have in mind is

(15) f (L(h)’lﬁL(h)) dh =

/Un1(F)\Un1(FA) g, (F)

/ ® (¢(h)~'¢'t(h)) n(det h)dh,
Gly_1(F)\Gly_1(Fy) €6, (F)

where f is a smooth function of compact support on il,(Fa) and ¢ a smooth
function of compact support on &, (F4). Once more, the integrals on both sides
are not convergent and need to be regularized. The equality occurs if the functions
satisfy a certain matching orbital integral condition. We will define a notion of
strongly regular elements and a condition of matching of strongly regular elements
denoted by

E—=¢.
Then the global condition of matching between functions is as before: if & — &
then

/ £ (()E(h) ) dh
U,—1(Fn)

n

= / ® (L(h)E't(h)™") n(det h)dh;
Glyp—1(Fy)
if £ does not correspond to a & then
/ ® (e(h)&u(h) ") n(det h)dh = 0.
Glnfl(FA)
We now investigate in detail the matching of orbits announced above.

2. Orbits of Gl,,_1(F)

Let E be an arbitrary field. We first introduce a convenient definition. Let
P,, P,_1 be two polynomials of degree n and n — 1 respectively in F[X]. We will
say that they are strongly relatively prime if the following condition is satisfied.
There exists a sequence of polynomials P; of degree i, n > i > 0, where P, and
P, are the given polynomials, and the P; are defined inductively by the relation

Piio=QiPip1+F;.

In particular, Py is a non-zero constant. In other words, we demand that the P, and
P,,—1 be relatively prime and the Euclidean algorithm which gives the (constant)
G.C.D. of P, and P, _1 have exactly n—1 steps. Of course the sequence, if it exists,
is unique. Moreover, for each i, the polynomials P;y1, P; are strongly relatively
prime.
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Let V,, be a vector space of dimension n over the field E. We often write V,,(E)
for V,,. We set & = Hompg(V,,,V,,). Let e, € V,, and e} € V;¥ (dual vector space).
Assume (e, e,) # 0. Let V,,_1 be the kernel of eX. Thus

Vi =Vu_1® Fe,.
We define an embedding ¢ : GI(V;,—1(E)) = GU(V,,(E)) by
L(g)’l)n,1 = gUn-1 for v,—1 € Vi1 )
vglen, = en.
We let GI(V,,(E)) act on V,* on the right by
(v7g,v) = (v", gv).
Then «(GI(V,—1(F))) is the subgroup of GI(V,,(E)) which fixes e}, and e,.
Suppose A,, € &. We can represent A,, by a matrix

( Ap1 eno1 )
er_1  an ’
with 4,1 € Hom(V;,—1, V1), €n—1 € Vi1, €4 € V¥ 1, a, € E. This means
that, for all v,_1 € V,,_1(E),

An(vp-1) = Ap—1(va—1) + (€5,_1,Vn—1)€n
and

An(en) = en—1 + ane, .

In particular

Ap(en—1) = An_1(en—1)+{€;_1,€n—1)€n

The group GI(V,,—1(E)) acts on & by

A u(g)Au(g) ™
The operator t(g)Ai(g)~! is represented by the matrix

gAn_197" gen—1
e;kL—1971 G, '

Thus the scalar product (ef_;,e,_1) is an invariant of this action. We often call
it the first invariant of this action. Moreover, if we replace e, and e} by scalar
multiples, the spaces V;,_1, Ee, and the scalar product (e} _;,e,—1) do not change.
We will say that A,, is strongly regular with respect to the pair (e,,e) (or
with respect to the pair (V,,—1,e,)) if the polynomials

det(A, — ) and det(A,—1 — A)

are strongly relatively prime.
Now assume that A,, is strongly regular with respect to (e,,e). We have

det(A, — \) = (ap, — A) det(A,—1 — A) + R())

with R of degree n — 2. The leading term of R is —(e_,e,)(=\)""2. Thus
(eX _1,€en) is non-zero. Thus we can write

Vie1 = Va2 @ Eey_y

where V,,_q is the kernel of e _; and represent A,,_; by a matrix

An72 €n—2
)
€p2 On-1
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with A,_o € Hom(V,,—2,V,,—2), en—2 € Vii_a, €1 € V' 5, a,—1 € E. As before,
this means that

Ap_1(Vn—2) = An—2(vn—2) + (€)_o,Vn—2)€n_1

Ap_1(én—1) =epn—a+an_1€n_1.
Choose a basis €;, 1 <i<n —2, of Vj,_5. Since (e}_;,€;) =0 we have
An(er) = An—i1(e) + (er_1s €i)en = An—i1(6;) = An_a(€;) + €5z, €i)en—1.

On the other hand,

Ap(en—1) =en—o+an_16n_1+{€)_1,en_1)€n .

Thus the matrix of A,, with respect to the basis

(617 €2,...,Ep—-2,6n_1, en)
has the form
Mat(An72) *n—2 0n72
(16) "2 Ap—1 1
on—2 <6:L—17 en—1>en an
where Mat(A,,_2) is the matrix of A,,_o with respect to the basis (€1, €2, ..., €,-2).
The index n — 2 indicates a column of size n —2 and the exponent n—2 a row of size
n — 2. Likewise the matrix of A, _; with respect to the basis (€1, €9,...,€4-2,€p_1)
has the form
Mat(Ap—2) *p_2
*n72 1 .

It follows that
det(A, — X)) =det(Ap—1 — A)(an —A) — (e} _1,en—1)det(A,—o — A).

Thus the polynomials det(A4,-1 — A) and det(A,,_o — \) are strongly relatively
prime and the operator A, _; is strongly regular with respect to (en—1,€5_1). At
this point we proceed inductively. We construct a sequence of subspaces

VicVeCc---CV,_1CV,

with dim(V;) = i, vectors e; € V;, and linear forms e} € V;* such that V;_; is the
kernel of ef. The matrix of A,, with respect to the basis

(61;627'“,67171,671)
is the tridiagonal matrix
a1 0 0 0 0 0 0
c1 a1 0o - 0 0 0 0
0 ¢ a 1 - 0 0 0 0
(17) e
0 0 0 0 - cp-3 Gn2 1 0
0 0 0 0 0 Cn—2 Qp_1 1
o o0 o o0 - 0 0 Cn—1 Gn

where ¢; = (ef,e;) # 0. We note the relations

det(Ai — )\) = det(Ai,1 — /\) — Ci—1 det(Ai,g — )\) s ) Z 2.
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Now suppoe
( ! / / )
€1,€9, ..., € 1

is a basis of V,,_1 and the matrix of A,, with respect to the basis

(€),€h, .. e _1,€n)
has the form
ay 1 0 0 0 0 0 0
¢y ody 1 0 0 0 0
0 ¢ af 1 0 0 0
0O 0 0 0 ¢ 4od_, 1 0
0O 0 0 0 0 ¢ _, d,_, 1
0

Thus, for ¢ > 1

Aneé = 6;;_1 + a;e; + ci—1€i41
(where €], = ey, e_1 = 0 and e],,; = 0) Call A] the sub square matrix obtained by
deleting the last n — i rows and the last n — ¢ columns. Then we have

det(A; = \) =det(A,_; —\) —c;_;det(A,_5 —N),i>2.
Also
det(A, — \) =det(A], — ), det(A,—1 — ) =det(Al,_; — \).

It follows inductively that a; = af, ¢; = ¢}, e} = e;.

We have proved the following Proposition.

PROPOSITION 1. If A is strongly regular with respect to the pair (Vi,_1,en)
there is a unique basis

(617 €2, ..., en_l)
of Vin—1 such that the matriz of A with respect to the basis
(617 €2,...,6n—1, en)

has the form (17). In particular, the a;, 1 <i <mn, and thec;, 1 <j<n—1, are

uniquely determined.

REMARK. If we demand that the matrix have the form

@, ¥, 0 0 -~ 0 0 0 0
g oay vy 0 ... 0 0 0 0
0 ¢y af b - 0 0 0 0
0 0 O O A 6;73 a%72 b;l 2 0
0 0 0 O A 0 C’/ﬂ—2 a/,/n_l b’/ﬂ—l
0o o0 0 0 0 . a,
with respect to a basis of the form
(€),€h, ... e _1,€n),
where (€], ¢€5,...,€, 1) is a basis of V,,_1, then a] = a;, 1 < i < n, bic; = ¢,

1 <i<n-—1, and the e’i are scalar multiples of the e;.
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According to [1], an element A4,, € & is regular if the vectors
Al e 1,0<i<n—2
are linearly independent and the linear forms

efAi 0<i<n-—2

n—1-
are linearly independent. This is equivalent to the condition that the stabilizer
of A, in GI(V,(E)) be trivial and the orbit of A, under GI(V,(E)) be Zariski
closed. A strongly regular element is regular. The above and forthcoming discus-
sion concerning strongly regular elements should apply to regular elements as well.
However, we have verified it is so only in the case n = 2, 3.

3. Orbits of Gi,,_1(F)

Now suppose that F is a quadratic extension of F. Let o be the non trivial
element of the Galois-group of E/F.

Suppose that V,, is given an F form. For clarity we often write V,,(E) for V,,
and V,,(F) for the FF—form. We denote by v — v the corresponding action of o
on V,,(E). Then V,,(F) is the space of v € V,,(E) such that v = v. We assume
e? = e, and V2, = V,,_;. We have an action of ¢ on Hong(V;,, V) denoted by
A A% and defined by

A%(v) = A(v7)7 .
We denote by & the space of A € Hong(V,,, V,,) such that
A% =—-A.

The group GI(V,,—1(F')) can be identified with the group of g € GI(V,,_1(E)) fixed
by o. It operates on &.

We say that an element of G,, is strongly regular if it is strongly regular as an
element of Hong(V,,,V,,). We study the orbits of GI(V,,(F)) in the set of strongly
regular elements of &.

We fix /7 such that E = F(y/7). If A is strongly regular, there is a unique
basis (€1, ea,...,en_1) of V,(F) such that the matrix of A with respect to the basis

(61;627'“,67171,671)
has the form
ap, 7T 0 0 0 0 0 0
% ay 7 0 0 0 0 0
0 % as T 0 0 0 0
(18) SR
0 0 0 0o - C:L/}S an_o /T 0
0 0 0 0 0 CT‘TQ (iﬁ,l T
0 0 0 0 0 0 T’Tl an

Then the a; and the ¢; are the invariants of A. Furthermore, a; € F./7 and
¢; € F*. Two strongly regular elements A and A’ of &,, are conjugate under
Gl(V,—1(F)) if and only they are conjugate under GI(V;,_1(F)), or, equivalently,
if and only if they have the same invariants. Finally, given a; € F\/7, 1 < i < n,
and ¢; € F'*, 1 < j <n—1, there is a strongly regular element of &,, with those
invariants.
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4. Orbits of U,,_1

Let V,, be a E—vector space of dimension n and 8 a non-degenerate Hermitian
form on V,,. Let e, be an anisotropic vector, that is,

Blensen) #0.

Usually, we will scale 8 by demanding that 3(e,,e,) = 1.
Let V,,_1 be the subspace orthogonal to e,. Thus

Vi =Vn_1® Fe,.

Let U(B) be the unitary group of 3. Let 6 be the restriction of 8 to V,,_;. and U(6)
the unitary group of 6. Thus we have an injection ¢ : U(0) — U(S). We have the ad-
joint action of U(5) on Lie(U(8)) and thus an action of U(#) on Lie(U(f3)). We have
an embedding of Lie(U(f)) into Hom(V,,, V;,). We say that an element of Lie(U(5))
is strongly regular if it is strongly regular as an element of Homg(V,,,V,). As
before, to A,, € Hompg(V,,,V,) we associate a matrix

An—l €n—1
€n—1 an '
The condition that A, be in Lie(U(8)) is
Ap_1 € Lie(U(0)),an+an =0

and
* . [3(’0, en—l)
) = )
for all v € V,,_1. Thus the first invariant of the matrix is
* ﬂ(e'nfl,enfl)
€y bpn) = ———— .
< > /8(en7 en)

Assume that A, is strongly regular. Then B(e,—1,en—1) # 0 and V1 is an
orthogonal direct sum

anl = Vn72 ® Eenfl .

We can then repeat the process and obtain in this way an orthogonal basis

(ela €2,...,€Ep—1, en—l)
such that S(e;, e;) # 0 and the matrix of A,, with respect to the basis
(ela 627 R en—17 en)
has the form (17). Moreover, it is the only orthogonal basis with this property. In
addition, for 1 <i<n—1,
Blei, ei)
Bleiv1,eiv1)
Finally, a; € F/7 for 1 <4 < n and ¢; € F* for 1 < j <n—1. Two strongly
regular elements of Lie(U(8)) are conjugate under U(#) if and only if they are
conjugate under GI(V,_1), or, what amounts to the same thing, have the same
invariants.

From now on let us scale 8 by demanding that 8(e;,,e,) = 1. Then 6 determine
[ and we write 8 = 6°.

C; = —
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Given a; € F\/7,1<1i < n, cj € F*,1<j <n—1 there is a non degenerate
Hermitian form 6 on V,,_1, a strongly regular element A of Lie(U(6°)) whose in-
variants are the a; and the ¢;. The isomorphism class of 6 is uniquely determined
and for any choice of 6 the conjugacy class of A under U(#) is uniquely determined.

The determinant of 0 is equal to

(n—1)n _
()= agal

5. Comparison of the orbits, the fundamental lemma

We now consider an F—vector space V,,, a vector e,, # 0, and a linear comple-
ment V,,_1 of e,,. We are also given an F'—form of V,, or, what amounts to the same
thing, an action of o on V,,. We assume that e = e, and V,?_; =V,,_1. For a Her-
mitian form 6 on V,,_; we denote by 6° the Hermitian form on V,, such that V,,_;
and E, are orthogonal, 6¢|V,_; = 60, 6°(e,,e,) = 1. Then U(0) C GI(V,,—1(E))
and GI(V,—1(F)) C GI(V,—1(E)). Let £ be a strongly regular element of Lie(U (6¢))
and &’ a strongly regular element of &. We say that £ matches £ and we write

{=¢

if £ and £ have the same invariants, or, what amounts to the same thing, are
conjugate under GI(V,(F)). Every £ matches a &’. The converse is not true.
However, given &’ there is a 6 and a strongly regular element ¢ of Lie(U(0°)) such
that £ — £’. The form 6 is unique, up to equivalence, and the element £ is unique,
up to conjugation by U(#).

For instance, suppose that F is a quadratic extension of F', a local, non-
Archimedean field. Up to equivalence, there are only two choices for 6. Let 6
be a form whose determinant is a norm and 6; a form whose determinant is not
a norm. Let & be a strongly regular element of G(F) and ¢;, 1 < i < n —1 the
corresponding invariants. If

(n—1)n _
(177 ad- D)

is a norm then & matches an element Lie(U(65)). Otherwise it matches an element
of Lie(U(6%)).

We have a conjecture of smooth matching. If ® is a smooth function of
compact support on &(F) and ¢’ is strongly regular, we define the orbital integral

Qu(E®) = / B ((g)¢'s(g) 1) n(det g)dg
Gl(Vy—1(F))

Likewise, if f;, ¢ = 0,1, is a smooth function of compact support on Lie(U (65)(F),
& a strongly regular element, we define the orbital integral

(6. fi) = / f(u(9)E(g)Y)dg
U(6s)(F)

CONJECTURE 1 (Smooth matching). There is a factor 7(&'), defined for &
strongly regular with the property. Given ®, there is a pair (fo, f1), and conversely,
such that

QG(gla (I)) = T(ﬁl)QUi (E’ia fz)
if& — ¢
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We have a conjectural fundamental lemma. Assume that E/F is an unram-
ified quadratic extension and the residual characteristic is odd. Thus —1 is a norm
in E. To be specific let us take V,, = E", V,,(F) = F™,

0

Ep =

_ o % O

Vn_1(E) =~ E™"! the space of column vectors whose last entry is 0. Finally, let 6
be the form whose matrix is the identity matrix. Thus Lie(U(6§)) is the space of
matrices A € M(n x n, E) such that A+ A = 0. On the other hand &(F) is the
space of matrices A such that A+ A = 0.

Let fo (resp. ®g) be the characteristic function of the matrices with integral
entries in Lie(U(6§5)) (resp. &(F')). Choose the Haar measures so that the standard
maximal compact subgroups have mass 1.

CONJECTURE 2 (fundamental lemma). Let & be a strongly regular element of
S(F) and a;, cj the corresponding invariants. If

Clc% N CZ:

=

has even valuation, then
Qa (€, @0) = (£, (&, fo) »
where & € Lie(U(0§)) matches &' and 7(&') = £1. Otherwise
Qg (€, P9) = 0.
Before we proceed we remark that in the general setting the linear forms
Ap = Tr(4,), — Tr(An,—1)

are invariant under GI(V,,_1(E)). Thus in the above discussion and conjectures we
may replace & := Hom(V,,, V},) by the space

g:={4,:Tr(4,) =0, Tr(A,—1) =0} .
Then Lie(U(6y)°) is replaced by
ug, := Lie(U(65)) N g
and G by
s:=06Ng.
6. Smooth matching and the fundamental Lemma for n = 2

Let E/F be an arbitrary quadratic extension. We choose 7 such that £ = F'\/T.
For n = 2 we take Vo, = E? and V; = E. Then

o-{(2 8)ees)

The only invariant is the determinant. There is no difference between between
regular and strongly regular. The above element is regular if and only if bec # 0.

Similarly,
0o v A !’ T
5= J 0 W+ =0,d+c=0,.
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(6 1)

with 8 € F*. The isomorphism class of 8 depends on the class of § modulo the
subgroup N,.(E*) of norms. The corresponding vector space ug(F) is the space of

matrices of the form
0 b
-9 0 )

Such an element is regular if b # 0. The group Uy (F) = {¢ : tt = 1} operates by
conjugation. The action of ¢ is given by:

Ob'_>()bt
-0 0 bt 0 )

The only invariant of this action is the determinant. Two regular elements

0 b 0 by
00 0 )7\ —=bf0 0

are in the same orbit if and only if b1b; = byby. The only non-regular element is
the 0 matrix.
On the other hand s(F') is the space of matrices of the form

(Ob\({F

The matrix of 8 has the form

c

\/;
Such an element is regular if and only if bc # 0. The group F'* operates by
conjugation. The action of ¢ € F'* is given by

( 0 byF ) 0 btyT
VT VT

The orbits of non-regular elements are the 0 matrix and the orbit of the following

elements:
0 7 0 0
0o o0 ) % 0 /-

The only invariant of this action is the determinant. Two regular elements
0 bl\/7_' 0 bg\/7_'
<1 0 ’ €2 0
VT VT

are conjugate if and only if byc; = baco.
The correspondence between regular elements is as follows:

0 ¥
(%9g>_><0—’ oﬁ>
- vF

if bb) = —b'¢’. Thus we have a bijection between the disjoint union of the regular
orbits of the spaces ug(F'), § € E* /N, F*), and the regular orbits in s(F).

Now suppose that E/F is a local extension. Modulo the group of norms we
have two choices 6y and 6; for . For f; smooth of compact support on u; := uy,
the orbital integral evaluated on

0 b
52:(—% 0)

),b,cGF.
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Qu(fir &) —/U1 fi( —62@ béb >du-
The integral depends only on bb and can be written as
Qu(fi, —0:bb) .
For ® smooth of compact support on [ the orbital integral evaluated on

-(1°F)

T

has the form

takes the form
0 a
Q®,a) := Qs (f, &) =/FX ( 1 ‘Oﬁt )n(t)cm.

We appeal to the following Lemma

LEMMA 1. Let E/F be a quadratic extension of local fields and n the corre-
sponding quadratic character. Given a smooth function of compact support ¢ on
F?, there are two smooth functions of compact support on F ¢1, o such that

/¢f ()0t = 61 (a) + n(a)(a)

m=/¢mmm “w. 6a(0) = [ 9(0.0n(x)

Conversely, given ¢1, @2 there is ¢ such that the above conditions are satisfied.

and

Here we recall that the local Tate integral

/¢ 2)|e*d*x

converges absolutely for s > 0 and extends to a meromorphic function of s which
is holomorphic at s = 0. The improper integral
[ @)z
is the value at s = 0.
The lemma implies that

Qa(®,a) = ¢1(a) + n(a)gz(a)
where ¢1, ¢o are smooth functions of compact support on F. Then the condition
that the pair (fo, f1) matches ® becomes

Qu (fi, —bbb;) = P1(—bbb;) + n(—0;) P2 (—bbb;) .
It is then clear that given ® there is a matching pair (fo, f1) and conversely.

We pass to the fundamental lemma. We assume the fields are non-Archimedean,
the residual characteristic is odd, and the extension is unramified. We take 7 to
be a unit. We also take 6y = 1. On the other hand 6, is any element with odd
valuation. Let fy be the characteristic function of the integral elements of 1. Then,
with the previous notations,

Q(f()’_bg) = Q(fo,%0) = fo ( —OB g ) .
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This is zero unless |bb| < 1 in which case it is 1. On the other hand, let ®, be the
characteristic function of the integrals elements of s. Then

Qc(Po, a) :/ n(t)d*t.
1<t|<a] =t

This is zero unless |a] < 1. Then it is zero unless a is a norm in which case it is
one.
Thus if £ — &', that is, a = —bb, we get

Q(fo,8) = QPo,¢").

Otherwise, we get
Q(Pg,&')=0.

The fundamental lemma is established.

7. The trace formula for n =2

In general, it will be convenient to consider all pairs (U, U, —1) simultaneously.
We illustrate this idea for the case n = 2. Let E/F be a quadratic extension of
number fields.

The trace formula we want to consider has the following shape:

(19) / fo (1(h) " €u(h)) dh =
Uy (F)\U1(Fa

GEEX/N EX) >geu (F)

/ ® (¢(h)~'¢'t(h)) n(det h)dh .
Gla(F\Gl2(FL) ¢1eq(F)

The left hand side converges and is equal to

> | fo(0)Vol(Uy (F)\UL (Fi)) + /U ) f9< _%9 toﬁ )dt

0 BEEX/N EX)

The right hand side must be interpreted as an improper integral. It is equal to

/qu><8 tgF)n(t)dXt—i_/Fg@<% g)n(t)dxt

+Z/ < 0 atgf)mt)dxt.

acFx
For the first two terms, we recall that if ¢ is a Schwartz-Bruhat function on F)j
then the global Tate integral
[ownrnwae

converges for fs > 1 and has analytic continuation to an entire function of s. The

improper integral
[ ot

is the value of this function at s = 0. The remaining terms are absolutely conver-
gent.
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The matching condition is between a family (fp) and a function ®. The global
matching condition has the following form:

0 BN, _ 0 atﬁ) )
/ch<FA>f9(—6t9 0>dt_/pgq)<# 0 ) ntdt

if =880 = . At aplace of F inert in F, the corresponding local matching condition
is described in the previous section. At a place which splits in F, it is elementary.
The local matching conditions imply

> Fo(0)Vol(Uy (F)\U(Fy)) =
%

/qu><8 t\({;>n(t)dXt+/ng><% g)n(t)dxt.

We will not give the proof. It can be derived from [9]

8. Orbits of Giy(F)
We take V3(E) = E3 (column vectors). We set

0
€3 = 0
1

We identify V3" with the space of row vectors with 3 entries. We take e§ = (0,0,1).
Then V2(E) = E? is the space of row vectors whose last component is 0. We denote
by & the space Hompg(Vs, V3) and by g the subspace of A such that Tr(A) = 0 and
Tr(A|Va) = 0. Thus g(E) is the space of 3 x 3 matrices X with entries in E of the
form

a b 2

X = c —a X9
voy2 0
The group Gla(E) operates on g(E). We introduce several invariants of this action:
a b
(20) Al(X) = det( ¢ —a > s
L1
(21) Ay (X) = (1/1,y2)( " >>
2
(22) Bi(X) = detX.

We denote by R(X) the resultant of the following polynomials in A:

detK ‘CL _ba > —/\} , —det[X — A].

It is also an invariant. More explicitly,

(23) A(X) = —a*—be

(24) A(X) = myr +w2y0

(25) Bi(X) = (r1y1 —w2y2)a + z1y2c + 22910
(26) R(X) = Ai(X)Ay(X)*+ Bi(X)?
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Clearly, X is strongly regular if and only if A2(X) # 0 and R(X) # 0. If
X is strongly regular the invariants ci,co and a1, a9, a3 introduced earlier can be
computed in terms of the new invariants as follows:

(27) co = Ay(X)

(28) —cica = R(X)

(29) ap = —Bi(X)A;'(X)
(30) as = —ap

(31) ag = 0

We also introduce

(32) By(X) = (-z2 m )< “ _ba ) ( n )
o (2 0)(3)

Explicitly,

= —2zi19a + 2ic— x2b

5
\_/g

= —2yya+yib — yic

We remark that if we replace < il ) by h < il ) with h € SI(2, F) then (—z2,x1)
2 2
is replaced by (—z2,x1)h~t. It follows that By is Sly(E) invariant. Likewise for
Bs.
We let g(E)" be the set of X such that A3(X) # 0 and g(E)® the set of
X € g(F)" such that R(X) # 0. Thus g(E)? is the set of strongly regular elements.

LEMMA 2. Every Sly(E) orbit in g(E) contains a unique element of the form

a b 0
X = c —a 1
0O t 0

and then A1(X) = —a® —be, Ax(X) =t # 0, Bi(X) = —at, Ba(X) = —b,
B3(X) = —t%¢c, R(X) = —t%bc. In particular, As, Bi, Bo, Bz form a complete set
of invariants for the orbits of Sla(E) in g(E)’ .

PrROOF: If A5(X) # 0 then a fortiori ( il > # 0. Since Sly(F) is transitive
2

on the space of non-zero vectors in F2, we may as well assume

a b 0
X = c —a 1
y1 y2 O

Then yo = A3(X) # 0. We now conjugate X by

1 0
L _ Y1 1
Y2

and obtain a matrix like the one in the lemma. In Giy(E) the stabilizer of the
column (¢) and the row (o0¢) (where t # 0) is the group

{3 §)er)



ON THE GROSS-PRASAD CONJECTURE FOR UNITARY GROUPS

223

Thus the stabilizer in Si3(F) of a matrix like the one in the lemma is indeed trivial.
The remaining assertions of the lemma are easy. O

LEMMA 3. If X isin g(E) then X is strongly reqular if and only if it is regular.

PrROOF: We may assume that

a

c
0

X:

with ¢ # 0. Then X is strongly regular if and only R(X)

b 0
—a 1 ,
t 0

= —t%bc # 0. On the

other hand, it is regular if and only if the column vectors

0
1

(

)

b

—a

)

are linearly independent and the row vectors

(0,1), (ct, —ta)

are linearly independent. Then it is so if and only if b # 0 and ¢ # 0. Our assertion

follows. O

LEMMA 4. Fuvery orbit of Gla(F) in
form

a
X = 1
0
where b £ 0 and t #0. Then
A(X)
Ay (X) =
Bi(X) =
R(X)

If the invariants Ay, As, By take the same

they are in the same orbit of Gla(E).

g(E)® contains a unique element of the

—at
—bt?

values on two matrices in g(E)®, then

Finally, given a1,as,b; in E with as # 0

and aja3 + b3 # 0 there is X € g(E)* such that A1(X) = a1, Ax(X) = as and

Bi(X) = b;.

PROOF: The first assertion follows from the general case, or more simply, from

the previous Lemma.
element of the form
a

c
0

X =

Indeed, by the previous lemma, every orbit contains an

b 0
—a 1
t 0

and then —bct? = R(X). Thus be # 0. Conjugating by

c
0

d

we obtain an element of the required form

0
1

)

. The stabilizer of this element in Giy(E)

is trivial. The remaining assertions are obvious. O
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9. Orbits of Gly(F)
Now we consider the orbits of Gla(F) in 5. Of course, s = /7g(F). We define
s'=sNg(F) and s* =sNg(E)*. For Y € g(F), we have
A(VTY) = TAL(Y)
As(VTY) = TA(Y)
Bi(VTY) = 7VTBi(Y).
Also
R(JTY) =7°R(Y).
Thus, on s°, the functions Ay, As (with values in F') together with the function B
(with values in Fy/7) form a complete set of invariants for the action of Gla(F).

Conversely, given a; € F, ay € F* and by € F+/7 such that a;a3 + b # 0 there is
X € 5° with those numbers for invariants.

10. Orbits of the unitary group

We formulate the fundamental lemma in terms of the Hermitian matrix

0 1
90:(1 O)a

rather than in terms of the Hermitian unit matrix. Then

01 0
b= 1 0 0
00 1

We let Us; be the unitary group for the Hermitian matrix 6§. Thus the Lie algebra
of Us 1 is the space L(F') of matrices = of the form

a b =
== c d 2z
% e

with a+d=0,b€ F\/T,c€ F\/7,e € F\/7. Welet Uy be the unitary group for
the Hermitian matrix 6y. The corresponding Hermitian form is

Q(z1,22) = 2172 + 2271

L(u):<g (1)>

We obtain an action of Uy 1 (F') by conjugation. As before, we set u = 4(Ng. Thus
u is the space of matrices = of the form

We embed U 1 into Uz 1 by

a b =z
(34) E= c  —a z; ,a€Fbec F\/T,cc F\/T.
-z —-z1 0
Then
A(E) = —a®—bc
A2(E) = —Q(z1,22)
By (2) a(Zize — Z221) — b2eZs — cz1Z1
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We set o/ =ung’ and u® = ungs. We study directly the orbits of Uy ; on u®.

LEMMA 5. Fort € F* choose (21,0, 22,0) such that Q(z1,0,220) = —t. Any
orbit of SU1 1 in u on which Ay takes the value t contains a unique element of the
form

a b 21,0
C —a 22,0
—Z20 —z10 O

ProoOF: Since SU;; acting on E? is transitive on the sphere S_; = {v €
E?|Q(v) = —t} and each point of the sphere has a trivial stabilizer in SU; 1, our
assertion is trivial. O

LEMMA 6. Fort € F* choose (z1,0,22,0) such that Q(z1,0,220) = —t. Any
orbit of Uy 1 in u® on which A; takes the value t contains an element of the form
4 b 21,0
== c —a 20

—Z20 —z10 O

The stabilizer in U1 of such an element is trivial. Moreover A1(2) € F, A3(E) €
F, B1(E) € F\/T and —R(E) is a non-zero norm. A1(=), A2(=), B1(Z) completely
determine the orbit of 2. Finally, if ay € F, ay € F and by € F\/T are such that
as #0, aja3 +b? #0 and —(a1a3 + b?) is a norm, then there is = in u® such that
AI(E) =ai, AQ(E) = az and Bl(E) = bl.

PROOF: As before, the orbit in question contains at least one element of this
type, say =y. To prove the remaining assertions we introduce the matrix

1
M = ( Zot T 210 ) € Sly(E).

1
Z2,0t 22,0

(0 1 [ttt o
M(loM_ 0 -t )

It follows that «(M)~1U (M) is the Lie algebra of the unitary group for the Her-
mitian matrix

Then

t=1 0 0
0 —t 0
0 0 1

Then «(M )~ us(M) becomes the space of matrices of the form

« Bz
Bt™2 —a z |,acFJr.
—zZit™! ozt 0

and Z; = (M) "1Zgt(M) is a matrix of the form

ar P 0
Ei=| Bt —ap 1
0 t 0
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We have
A1(E0) = A1(E1) = —of —BuBut?
Ay(Ep) = A2(E1) =t
Bi(Z) = Bi(E1) = —aqt
R(Z0) = R(E1) = —ph

The stabilizer H of the column (9 ) and the row (0 ¢) in the group «(M )~ Uy 10(M)

is the group
u 0
(0 1>,UEU1.

Since Z; is in g(F)® we have 81 # 0. Thus the stabilizer of 2y of Zy in H or in
t(M)71U;y 10(M) is trivial. If the invariants A;, As, By take the same value on two
such elements Z; and Zp of (M) 'u(M), then we have t; = ta, a; = ag and
B151 = Bafa. Then By = fou with w € U;. Then Z; and Z, are conjugate by an

element of H. O

11. Comparison of orbits

In accordance with our general discussion, we match the orbit of = € u® with
the orbit of X € s° and we write = — X if the matrices are conjugate by Gla(FE),
or, what amounts to the same thing, if they have the same invariants A;, Ao, By.
In particular, we have the following Proposition.

PROPOSITION 2. Given X € s°, there is a matriz = in u® which matches X if
and only if —R(X) is a (non-zero) norm.

12. The fundamental lemma for n = 3

We now let E/F be an unramified quadratic extension of non-Archimedean
fields. We assume the residual characteristic is not 2. We let f, be the charac-
teristic function of the matrices with integral entries in u and ®, be similarly the
characteristic function of the set of matrices with integral entries in s. For = € u®
we set

(35) Qu(E) = fu(uBu1)du
Ui
Likewise, for X € s° we set
(36) Qa(X) = Do(gX g~ )n(det g)dg
Gl (F)

The fundamental lemma asserts that if = matches X then

(37) Qu(B) = 7(X)Qa(X)
where 7(X) = %1 is the transfer factor. If, on the contrary, X matches no = then
Qe(X) =0.

To prove the fundamental lemma we exploit the isomorphism between U;; and
S1(2,F). Now Uy ; is the product of the normal subgroup SU; 1 and the torus

. . z 0 %
rfi-(7 2 )er)
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TﬂSUm:{t: ( 8 a91 ),aeFX}.

Let Ty be the subgroup of ¢t € T with |z| = 1. Then Uy 1 = SU; 1Tp.
The function f, is invariant under Ty. Thus, in fact,

Qu(E) :/SU fu(uEuY)du .

To establish the fundamental lemma we will use the isomorphism 6 : SU; ; —
Sly(F) defined by

(VT 0 7
defined as follows. If

and a compatible F'—linear bijective map © : u — g(F

with intersection

_ o

~—

« B 21
== v —a 2z |,a€FBc\TFyeEJTF
-z —2z1 O
then
a b a1
(39) OE)=X,X= c —a x9
y1 Yy 0
where
a=a bzﬁ\/?_ c:%
3322% y2=@

The inverse formulas for z1, zo read

2121‘1—%,22:2414-1’2\/7_'-

(2 2)=0v ) L) Y)

The linear bijection © has the following property of compatibility with the isomor-

phism 6:
O(u(9)=e(9)™") = 1(8(9))O(2)u(6(9))~

Note that

o5

—

for g € SU(1,1).
We can use © to define an action p of T on g. It is defined by
© (Lt)=e(t)™!) = ult) (B(E)) -
Explicitly, if ¢t = diag(z,Z 1), 2 = p + /7, then
a b x
wu(t) ¢ —a 9 =

i y2 O
a bzz PT1 — qY2
C(Z?)il —a p:E22+t12y1

pPY1+qTT P
1 2 _
pr_qzr PY2 — 4711 0
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Fort € TN SU1 = T N SlL(F), p(t) is the conjugation by «(t). Again, T =
To(T N SZQ(F))
We compare the invariants of Z and X = O(EZ). From

—Zz1 — 2172 = —2(w1y1 + T2y2)
and

a(Zize — Z221) — P20Z2 — Y2171 =

1
VT (2az135 + by — ca}) + F(Zaywz — by + cy3)
we get
(40) A(B) = A1(6(8))
(41) A3(E) = —245(0(8))
1

(42) B1(E) = —V7B2(O(8)) - FB?,(@(E))
Also

R(E) = 44, (X)A5(X)? + 7By(X)? + %33()()2 +2By(X)B3(X).

We let g(F') be the image of u® under ©. Thus §(F') is contained in g(F')’. The
functions A;, As and —/7Bs — %Bg form a complete set of invariants for the

action of Sly(F') and Ty on g.
We will let & be the characteristic function of the set of integers in g(F'). For
X € g we set

(43) Qg1,(X) = /S oy PO X1l .

Thus Qu(E) = Qs1,(O(E)).
We match the orbits of Us 1 in u® with the orbits of Gla(F) in s° by matching

the invariants: for Z in u® and Y € g(F)%, 2 — /7Y if

Ai(E) = A(/TY)

A2(8) = A(V7Y)

Bi(E) = Bi(VTY)
This leads to the following relation in terms of X = ©(Z) and Y:

A (X) =7A(Y)

—2A2 (X) = TA2 (Y)
1

—V/TBy(X) — FB3(X) =7V7B(Y)

The last relation can be simplified:
—7Bo(X) — B3(X) = 72B1(Y)

To make this relation explicit, we may replace X € g(F) by a conjugate under
Slo(F') and thus assume

ay bl 0
(44) X = c1 —ap 1
0 tv, O
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The condition that X be in g(F’) reads
tic
161

ty 0, 703 + 2L — 2b1c1t? — 4a3t3 £ 0.
T

The second condition can also be written as

t261
(VTb1 — %)2 —4aft] #0.
As a matter of fact, assuming ¢; # 0, the second condition fails only if a; = 0 and
Tbl = t%cl.
Likewise, we may assume:

a b 0
(45) Y= ¢ —a 1
0 ¢t 0
Then
A(Y) = —a*—bc
A(Y) = ¢t
Bl(Y) = —ta

Moreover R(vY) = 7R(Y) = —ber3t?. This matrix is in g(F)* if and only if ¢ # 0
and be # 0. It matches some X if and only if —R(v/Y) is a norm. Since —7 is a
norm this is equivalent to —bc being a norm.

The condition of matching of orbits becomes: X — Y if

(46) a?+bie; = 7(a®+be)
(47) —Qtl = 7t
(48) Thy +t3c; = —T’ta

In a precise way, this system of equations for (aq,b1,c1,t1) has a solution if and
only if —bc is a norm. If we write

(49) —72be =% — Ta%

then we can take a; for the first entry of X, and then take ¢; = —%t,

t 2
(50) b1:—5(y+ﬂ1),01:5@—m)~

Note that a; = 0 and 7b; = t?¢; would imply y = 0 and thus bc = 0. Thus X is
indeed in g(F).
The fundamental lemma then takes the following form.

THEOREM 1 (The fundamental lemma for n = 3). For Y € g(F)® of the
form (45) define
61) Qe (V)= [ @olgYg n(det g)ds.
Gl (F)
If —bc is not a norm then Qg (Y) = 0. If —bc is a norm, let (ay,by,c1,t1) satisfy
the conditions (46) and let X be the element of §(F') defined by (44). Then
Qa1 (Y) = n(c) s, (X)

We now prove the fundamental lemma.
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13. Orbital integrals for Siy(F')

In this section we compute the orbital integral Qg;,(X), where

a b 0
(52) X=|c¢ —-a 1
0 ¢t O

Suppose Qg;,(X) # 0. This implies that the orbit of X intersects the support of
g, and we get that the invariants of X are integral. In particular a®+bc, t, at, b, t>c

are all integers.
m 0 1 u
gzk‘(o m1)<0 1>,I€EGl2(OF),

We set
dg = dk|m|*d*mdk
The integration over k is superfluous. Thus we get

Qsi, (X) =
a+cu m?(b—2au—u’c) mu
//<I>0 em ™2 —a — cu m~1 dulm|*d*m .
0 tm 0

LEMMA 7. The integral converges absolutely, provided t # 0.
PROOF: Indeed, the ranges of v and m are limited by
ul < Jm|™H 1< m] < 71

Thus the integral is less than the integral
// dulm|*d*m
lul<|m|=1,1<]m|<[t|

:/ |m|d*m
1<m|<[t[~1
which is finite. O

Explicitly, the integral is equal to

//du\m\Qde

|+ cul <1 jul < |m|™!
el < |m|? 1< |m| < (7
|b— 2au — u?c| < |m|72

We first compute the integral for ¢ # 0. We may change u to uc™! to get

|c\71//du|m|2dxm

la+ul <1 Jul < |em™!|

le| < |m[? 1< |m| <[t~

la% + bc — (a+u)?| < |em ™2
Since |a? + be| < 1 and |em™2| < 1 we see that the condition |a + u| < 1 is
superfluous. We may then change u to u — a to obtain

(53) () = [l [ [ dulmfdm

over
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lu—al <|em™Y |a® + be — u?| < |em ™2
{ le] < |m)? 1< |m| < [t

Before embarking on the computation, we prove a lemma which will show that the

orbital integral Q¢q, converges absolutely.

LEMMA 8. Let w be a compact set of F*. Then, with the previous notations,
the relations A3(X) € w, R(X) € w and Qg1,(X) # 0 imply that ¢ is in a compact
set of F*.

PRrROOF: Indeed, both ¢ and be are then in compact sets of F*. If Qg;,(X) # 0
then there are m and u satisfying the above conditions. We have then |c| < [t72] so
that |¢| is bounded above. If |be| < |em™2| then, since |[m~!| < 1 we have |c| > |bc|
and |c| is bounded below. If [em™2| < |bc| then |a? — u?| = |be|. Now |a? + be| < 1
5o |a| is bounded above. Thus |u| is also bounded above. Hence |a + u/| is bounded
above by A say. Then |bc| < Ala —u| < |em™|A < |c|]A. Hence |c| > |be|A™L.
Thus |¢| is bounded below, away from zero, in all cases. O

We have now to distinguish various cases depending on the square class of
—A1(X) = a® + be.

13.1. Some notations. To formulate the result of our computations in a
convenient way, we will introduce some notations.
For A € F'* we set

(54) H(A) = / oy i

Thus p(A) = 0 if |A] < 1. Otherwise u(A) = ‘?‘:qq,_ll. In particular, if |[A] = 1,

then p(A) = 1. Note that the above integral can be written as a sum

Y. Im|

1<|m|<A]

where the sum is over powers of a uniformizer satisfying the required inequalities.
If A,B,C,..., are given then we set

(55) W(A, B,C,...) := u(D)where |D| = inf (4], |B],|C],...)

We also define
w(A: B) = / |m|d™m.
|BI<|m|<|A]

Thus (A : 1) = u(A). We also define
w(A,B,C,---: P,Q,R,...) = pu(D:S)
where |D| = inf (|A|,|B],|C|,...) while |S| = sup (|P|,|Q|, |R|,...). Then
w(A,B,C---:D)=|D|u(AD~*,BD™',CD™'...).
Clearly, if 1 < |C| < inf(]A],|B]), then
(56) A, B: Cw ™)+ u(C) = u(A, B).
We will frequently use the following elementary lemma.
LEMMA 9. The difference
w(A,B,C) — u(Aw, B, C)
is 0 unless 1 < |A| < inf(|B|,|C|), in which case the difference is | A|.
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For A € I'* we set

(57) v(A) = /1<| o d*m

Thus v(A) = 0 if |A| < 1. Otherwise v(A) = 1 — v(A). In particular, if [A] = 1,
then v(A) =1. If A, B,C,..., are given then we set

(58) V(A,B,C,...) =v(D), |D| =inf (JA],|B],|C],...)

We also define
v(A:B) = / d*m
|B|<|m|<|A]

Thus v(A : 1) = v(A). We also define
v(A,B,C,---: PQ,R,...) =v(D:S)

where

D] = inf (AL |BL,|C1,....) , 1] = sup (|P], QL. RI,....)
Clearly,
(59) v(A,B,C---: D) :V(AD’I,BD’I,CD’I...).

We will use frequently the following elementary lemma:
LEMMA 10. The difference
v(A,B,C)—v(Aw, B,C)
is zero unless 1 < |A| < inf(|B],|C|) in which case it is 1.

If x € F* is an element of even valuation, then we denote by /r any element
of F* whose valuation is one-half the valuation of x. If  has odd valuation then
Yxrw is defined but not /z. With this convention, the condition

la| < [a®| < [b]

is equivalent to

o el )

If |a| < |b| then

el e e

13.2. Case where a?+bc is odd. Suppose first a? +bc has odd valuation, or,
as we shall say, is odd. Then there is a uniformizer @ such that a? 4+ bc = 6?w. In
the range (53) for the integral the quadratic condition becomes |§%w —u?| < [em 2|
and, in turn, this is equivalent to |0%w| < |em™2| and |u?| < |em~2|. Thus the
integral is equal to

(62) |c\_1//du|m|2dxm

over
“'SH ve }\m1| u—a] < Jem™)
CTo
1< m| < |t ] < m?| < |e5—201]
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If |e| < 1 then the condition |c| < |m?| is superfluous. Moreover

e

Thus the two conditions on u can be rewritten

_ v C _
\u—a\§|cm 1|’ |a|§‘{ {J\{c_w }‘|m 1|

The integral over u is then equal to |em™!| and so we are left with

(63) / |m|d*m

over the domain

Imlélt‘ll,lmlsH Ve }

v/ cTo

_ Vv C _
ol < | Ve s

With the notation (55) we have, for |¢| < 1,

We pass to the case |c| > 1. Then the condition |c| < |m?| implies the condition
1 < |m|. On the other hand, since

{ \/E }' <le].
cwo
the conditions on u become

|u|s\%

The integral over u is then equal to

v/ C _
‘ \;/[%"m L

and so we are left with

1

(64) v / jmld*m
Vew—1

over

< |m|

’[)C
il < o ol < = o <[ 9 157

We change m to

and we get

over
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Ve
v/ cw
Thus, for |¢| > 1, we find

1 v
io-sfrf b fo{ )

PROPOSITION 3. In summary, if a®>+bc = 6w, (or more generally if a® +bc =
8%we where € is a unit and w a uniformizer), then

wlt=t, 671 S/iw—l ,at f/iw if | <1
L St

Vow—1 Vew
We note that if a = 0 the identity is to be interpreted as

L <t—1 e { — }) if Je| < 1
QSlz(X) = 1
] (t_l { Ve, } , 5_1) if |¢| > 1

13.3. Case where a? + bc is even but not a square. We now assume that
a® + be has even valuation but is not a square. Thus a? + bc = 627 where 7 is a
unit and a non-square. In the range for the integral (53) the quadratic condition
on u becomes [§%7 — u?| < |em™2|. In turn this is equivalent to |[§?| < |em 2| and
|u?| < |em™2|. Thus the integral is equal to

(66) |c|*1/du\m\2dxm

over

1

v,
C
Ve L

v
cw—1

Im| < o™, Im| < [t Il < (67

<

j§

< |{ Ve M el < e
<l < e el < Im?] < le5™?

If |¢| < 1 then the condition |¢| < |m?| is superfluous. The conditions on u can

be rewritten
lu—al <lem™', |a| < H{ \/E }H Im ™|
cw

After integrating over u we find

(67) / |m|d”m

over
1< |m|
o™ m<H \/E }’I5_1|
cw

Thus, for |¢| < 1,

<

m<|t-1,|m|<\{ ve }
Cto

9512(X) = <t_1 s 5_1{



ON THE GROSS-PRASAD CONJECTURE FOR UNITARY GROUPS

235
If || > 1, then the condition 1 < |m/| is superfluous. On the other hand, the
conditions on u become

v C _ _
o< |{ Ve Him ol < e

After integrating over u we find

1
Vew 1
over

im| < [t7, |m| < |ca™"

[y |m| <1671
We change m to

(Ve |

" Ve )
cw—1
to get
/|m|dxm
over
1< |m|
1 Ve 1 1 0| v
Iml <la™"[|] ¢ ] <1677 Sml < Y| Ve
cw w T
Thus, for |¢| > 1 we get

QSL2<X>=M<V1{ &; }’5_1{ - }’a_l{ Ve }> |

We have proved the following Proposition.

(68)

PROPOSITION 4. If a® +bc = §%7 where T is a non-square unit and § # 0, then

u(rl,a—l{i/g },a—l{iﬁ }) if e < 1
Qs (X) ) cw cw
Slo = — v
u(t_l{ %1 },6‘1{1 },a_l{\v/E }) if |e| > 1
T w cw

The meaning of the notations is that if ¢ is even, then the formula is true with

the top element of each column { : } On the contrary, if ¢ is odd, then the

formula is true with the bottom element of each column { : }
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13.4. Case where a? + bc is a square and ¢ # 0. We now assume that
a? +bc = 0% with 6 € F* and ¢ # 0. Then a4+ # 0. In (53), the quadratic
condition on u becomes |62 — u?| < |em™2|. This condition is satisfied if and only
if one of the three following conditions is satisfied:

I @2 < Jem™?| [u?] < Jem™?|
(69) II Jem™2 < |8? |u—4] < |em™2571
IIT Jem™2 < |8%| |u+d] < |em™2571|

Accordingly, we write the integral as a sum of three terms Q2 Slye Qé@, Qég

The term Qélz is given by the same expression as before, namely (68).
It clear that the term Qé{l is obtained from the term Qﬁz by exchanging ¢ and
—¢. Thus we have only to compute QSlz'

(70) QL = ! / jm|?d*m

over
lu—a| <lem™Y |u—3d| < |em™2671
|c672| < |m?| e < Jm?|
1< |m| Im| < [t

We remark that |a? + be| < 1 implies |§| < 1 and so the condition |cd 2| < |m?|
implies |c| < |m?|. We further divide the domain of integration into two sub-
domains defined by |m| < |§71| and |67t < |m| respectively. The last condition
implies 1 < |m|. Correspondingly, we write Qé{z as the sum of two terms Qgél and
Qﬁf defined respectively by

(m Q=1 [ fmPdm

over
lu—al <|em™Y |u—4] <|em™2571
62 <|m?| 1< |m|
m| < 6] Im| < [t71]

and

(72) QU2 = [l [ lmPam

over
lu—al <|em™Y |u—06| <|em2571
02 < m?| |07 < |m]
m| < [t

In Qgél the conditions on u are equivalent to
lu—a| <|em™, |a—d] < |em 267

The second condition can be written

sl{ £

§1/cé(a—6)tw

After integrating over u, we find:

(73) 0l / jm|d”m
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over

m| < |07 m| < [t

1< [m| 072 < |m]?

§1Y/cé(a—6)1
<
Iml < H 51 y/cd(a—0) 1w
If |¢672| < 1 then the condition |cd~2| < |m?| is implied by 1 < |m|. Thus we

find, for [c6 72| < 1,

I7.1 1 -1 -1 ) Vedla—6)7t
Psiy = (t 07,9 { Ved(a—6) 1w

If [¢672| > 1 then the condition |c572| < |m?| implies the condition 1 < |ml.
On the other hand, the condition |cd 2| < |m?| is equivalent to

Sl /e
5 et [ = Iml-

Thus we find, for |ed=2| > 1,

Qi1 — i 1 o5t st \ C(5(a - 5)—1 ) 5*1w71\1/5
Sla ’ ’ v cé(a _ 5)_1w : 51 Yoo 1

We pass to the computation of QI I 2 The conditions on u read
lu — 8| <|em™25~ 2|,|a—5\ <lem™Y|.
Thus, after integrating over u, we find
QL
(74) Q42 =157 [a'm
over

07 < Im|  |ed?| < |m?|
Im| <[t~ |m| < |e(a —6)7]

If |¢] < 1 then the condition |¢672| < |m?| is already implied by [671| < |m].
Thus we find that the domain of integration is

6w < fml, [l < 7], m] < Je(a—8) 7.

Thus, after a change of variables, we get

|5*1|/dxm

1< |m|, |m| < (5w|t_1|, |m| < |dwe(a — 5)_1|

over

or
167 v (c6ww(a—6)~, dwt ™) .
If || > 1 then the relation |67 < |m| is implied by |c572| < |m?|. This

relation is equivalent to
N v
Yewmw ot ’
After a change of variables, we find, for |¢| > 1,
Soot !
QL2 1 Ved(a—6) e Ve
(75) QL2 = 5y <{ AL S R T D

In summary, we have proved:
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PROPOSITION 5. If a® +bc = 62 with § # 0 and ¢ # 0 then Qg1,(X) is the sum

of
(76)

le(X): 1
: L L[ %
u(t‘l{ 7, } {w}{fw}> el > 1

(77) Qg =
(oo YT )
(o { VT { £ ) o
6= (cow(a — §) 1, bt 1) - ) <1
1) o= {;fz;‘w(g(;f)g;ﬁ } z;f; e > 1

plus the terms Qgﬂl and 9{95;2 obtained by changing § into —9§.

We also note that if § = 0 but ¢ # 0 then the conditions (69) become |u?| <
lem™?| so that Qg;, = Qf,, with [§'[ = co. We record this as a Proposition.

PROPOSITION 6. If a® + bc = 0 but c # 0 then

(79) Qg (X) = u<tl’a1{ \/iw }) if |¢] <1

= o1 v
-1 ¢ 1) e :
u(t {m},a {”cw}) if |¢] > 1
In particular if a =0, b=0 but ¢ # 0 then

b (t) if e <1
(80) Qs1,(X) = y (tl{ :/\/% }) if || > 1

13.5. Case where ¢ = 0. We will need the corresponding result when ¢ = 0
(and a = 9).

PROPOSITION 7. If ¢ =0 then
Qs1,(X) =

1
L (t_l,a_l, { Ve, }) + la v (at e, a*wb™t)
Vo —1

PRrOOF:
Qg1,(X) ://du\m\Qde
over
ul <7 e — ] < fm %
2a
L<|m| , [|m|<[t7}|
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Since A;(X) is an integer we have |a| < 1.
We first consider the contribution of the terms for which |m| < |a~!|. Then
the condition on u become

b o
U, Il < fm 2.

/|m|dxm

1< |m| Im] < [t71], [m?| < b7

-
=

Next, we consider the contributions of the terms for which |a '~ < |m|.
Then the conditions on u become

uf < |m™

After integrating over u we find

over

that is,

o b -
Jul < m~%a”, |5 < Im™.

la™!| /dxm

L< |m], Ja™ @] < [ml,
m| < [£71], m| < ]ab™}|.
However, |a| < 1. Thus the condition 1 < |m| is superfluous. Thus this is

vt hab el = v(at Tt w, afwb ).

After integrating over u we find

over

The Proposition follows. O

14. Proof of the fundamental lemma for n = 3

We let

a b 0

(81) v=[1 -a 1

0 t O

with ¢ # 0 and b # 0. Then
a bs™t 0
Qa,(Y) = / Qsi, | s —a 1 |n(s)d*s

Fx 0 t 0

Since the integrand depends only on the absolute value of s, this integral can be
computed as a sum:

a bs7t 0
Z Qsi, | s —a 1 |n(s),
s 0 t 0

where s is summed over the powers of a uniformizer w. It follows from lemma (8)
that the sum is finite, that is, the integral converges absolutely, provided Y is in
g(F)®. In the two next sections, we compute this integral and check Theorem (1).
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That is, if —b is not a norm we show that g, (Y) = 0. Otherwise we solve the
equations (46), define X by (44) and check that
(82) Qsi, (X) = Qai, (Y) :

Before we proceed we remark that Q¢gq,(Y) # 0 implies |41 (Y)| < 1 and |[A3(Y)] <
1. Likewise, if X is defined, Qg;,(X) # 0 implies |A;(X)| < 1 and |43(X)| < 1.
Finally, if X is defined then |A;(X)| = |41(Y)| and |A3(X)| = |A2(Y)|. Thus if
|A1(Y)] > 1 or |A2(Y)| > 1 our assertions are trivially true. Thus we may assume
|A1(Y)| <1 and |A3(Y)| < 1, that is, |a® + b < 1 and |t| < 1.

As before, the discussion depends on the square class of a? +b = —A;(Y).

15. Proof of the fundamental Lemma: a® + b is not a square

15.1. Case where a? + b is odd. We consider the case where a? + b =
—A;(Y) is odd (that is, has odd valuation) and we write a® + b = §?w where @
is a uniformizer. The integral Q¢, is then the sum of two terms Qél,z and ng
corresponding to the contributions of |s| <1 and |s| > 1 respectively. If |s| < 1 we
write s = r? or s = r?ww with |r| < 1. Then

(83) Qa4 = Z [t o e ) = pt 6 e rw)]

Ir|<1

By Lemma 9, the expression Qélz is equal to
Z la=1r|

Ir] <1, 1< |a | <inf(t™1, |6 ).
This is zero unless |0 < |a|. If |§] < |al, after changing 7 to ra, we find

> |-

1<|r|<inf(Ja~1].[¢=1))

over

In other words, we find

A oplat ) i 18] < al
(84) P, = { 0 if 6] > |al

We pass to the contribution of |s| > 1. We write s = r? or s = r’w with |r| > 1.

Then
(85) Qg = Z (@ =t e ) —p(t e 6 e rw)]

1<|r|

Applying lemma (9) we get

Z la= 17|

L<r|, 1 <|a | <inf(j67H, [t Y)
This is zero unless |§]| < |a|. If |§] < |a|, after changing r to ra, we find that this is

> I

sup(la™ w ™|, 1) < [r|, |r[ < [671, 2] < [t

over

over
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Thus we find
-1 ) -1_—1 :
0f, = 1 (6 ,{ s e vl 1l,a 'w if |4] < |al
0 if [0] = |al

(86)

‘We can combine both results to obtain

PROPOSITION 8. If a? + b = §%w then

1 e Vit—la—1 .
,u<t ) 17{ m}) if |6] < al
0 if 18] > |a

Qai, (V) =

PrOOF: Clearly, our integral is 0 if |§| > |a|. If |§] = |a| then the integral
reduces to u(t~1,571). However,

{ v )
Vi—1lé—1lw
belongs to the interval determined by [t7!| and |[6~!| and so the integral can be
written in the stated form.
Assume now that |§| < |al. If |a| > 1 then p(a=t,¢t7!) =0 and [a ™| < 1.
Thus 92, =0 and QF, reduces to

(Ve )

Since [t| < 1 we have |at| > |t?| or
1 e |
Vi-la—lw
so that the result can again being written in the required form.
Finally, assume |§| < |a| < 1. Then [a~'w™!| > 1 and

_ -1 Vi—ta=! o1 1 1 -1
QGlg—,U<5 a{ m}~a w )+u(a ).
Suppose first |t| < |a|. Then p(a=t,t7!) = p(a='). Then |a tw~ ! < [67!| and

<l EE

The sum for ¢y, is then by (56) equal to
(5 f VT

{ Ve Jl= e
Vi Ts f| S
this can be written in the required form.

Suppose now [t| > |a|. Then p(a=1,#71) = p(¢t~1). On the other hand,

= R

Since
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so that QF,  vanishes. On the other hand, since |[§|~! > [¢~!| and

Ve J| 210

the expression given in the Proposition is indeed equal to u(t=1). O.

We now check the fundamental lemma in the case at hand. If —b = a? — §%w is
not a norm, then the valuation of b is odd and |§] > |a|. Then Q¢ (Y) = 0. Now
suppose that —b is a norm, that is, |a| > |[6]. Then —b is in fact a square. Thus we
may solve the equations of matching (46) in the following way. If |u| < 1 we denote
by v/1 4+ u the square root of 1+ u which is congruent to one modulo wOpg. Recall
that 7 is a non-square unit. Then we write

b =9%, y=—1a\/1 - 62a2w;

2

Then we take

t 2 t
a1:0,b1:—§(y+7'a),cl:ﬁ(y—Ta),tlz—%.

We then have a? + bic; = 7(a? + b) = §?cwr. Thus a? + byic; is odd. We have also
le1| = |at~1| and [¢1] = |t|. Let X be as in (44). We then have by Proposition 3,

1 e Vat—1 .
u(t 15 1{ T }) if |a| <[]

Qs1,(X) = i
o (tl { Vat—! } ,(51> if |a| > |t
Vat—Tg—1

Suppose first that |a| < |¢]. Since 0] < |a| we easily get
< o1 Vel
<P Ve
and so the expression for Qg;,(X) reduces to u(t~1). But the same is true of the

expression for Q¢ (V).
Now suppose |a| > |t|. Then the expression for Qgr,(X) becomes

()

s |f VT
S\ R e

this is also the expression for Q¢q,(Y) and we are done. O

Since

15.2. Case where a? + b is even and not a square. Suppose now that
a® 4+ b = §%7 where 7 is, as before, a non-square unit.

PROPOSITION 9. Suppose a® +b = §°7. Then Qg1,(Y) is the sum of
67y (0t w*t et
and
Yi1g-1
—1 .
Y (5 ) { Vilg-1e } ) ) if |a| > sup(|d], [¢])

(-, 6 1) if |a| < sup(|d], [¢])
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PRrOOF: We proceed as before and write Q¢y,(Y') as the sum of Qélz and lezv
these being respectively the contributions of the terms corresponding to |s| < 1
and |s| > 1. For |s| < 1, we set aside the term |s| = 1 and we write s = 72w? or
s = r’w with |r| < 1. We find

G, = wtho7ha™)
+ w0 ro e rw) — p(t 6 rw, e rw)]
Ir|<1
— e
For |s| > 1 we write s = 72 or s = r?w with |r| > 1. We find
(87) ng = Z [u(t_lr_l,é_l,a_lr) - ,u(t_lr_l,é_lw,a_lrw)]
[r|>1
If we add to this Qélz we find
(88) Qai, = pt™ 0 w0 w)
(89) + Z (@ =6 e ) — p(t T 6 e )
[r|>1

Applying lemma (9), the second sum can be computed as

(90) > inf (671, o)
the sum over
Ir|>1,1<inf (|67, Ja" " r]) < |t7'r "

We first consider the contribution of the terms with |a=!r| < |67

(91) Z la= 17|

over
1< Irl, Ja] < I
7| < lad™t[, [r?] < Jat™*|
If we change 7 to ra this becomes
Yp—14—1
(92) u(ot,y Ve W
Vit~la—lw

Next, we consider the contribution of the terms with [§71| < |a=1r|:
> 157

1<r], |(5—1a\ <|r|
|r| <[t~

After a change of variables, this can be written as
LDy

1 <|r| <inf (|67, |@s*t ta™))

over

over

so that this is
\6‘1|u (6t_1,w62t_1a_1)
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In summary we have found that Q¢q, is the sum of

(93) w6, a w)
—Tg—1
(94) pwlot, vt @ 1,07t
Vit~la lw
(95) 67w (6t ws*tra™T)
If |a|] < |4| then the second term is zero and the first can be written as
ut=t 6 1w).
If |a| < [t| then
~1
S e
so that the second term is 0 and the first can be again written as p(t=1, 6 1w).
Now assume that |a| > sup(|d], [t]). Then u(t=1, 6 'w,a 'w) = pla 'w). If
la] > 1 then p(a='w) = 0 while the second term reduces to

(o = )

and we obtain the Proposition. If |a| < 1 then the second term is in fact

51 Vi~ta™! L1
PO Ve [0 )

Adding p(a~'w) to this and using (56) we obtain the Proposition. O
We now check the fundamental lemma for the case at hand. Of course —b =
a? — 627 is a norm. Thus we may solve the conditions of matching (46) as follows:

{ Vi )

t
a1 =07,c1=0,b =—7ta, t; = —%_
Then af + bicy = af = &7 where §; = §7. Thus by section 6.3,
Qg1,(X) =

Yi—1,-1
u(t‘l,é‘l,{ I

R s e }) + |5_1\V(5t_1w,52t_1a_1w) .

If |a|] > sup(|d], |t|) then

vVit-la—lw

|62t ta | < |0t | < |6t

Yi—1g—1
S8

Hence Qs1,, is equal to

—1g-1

pfor,d ViEa 15 (st 8% e )

Vt—la=lw

which is Q¢q, in this case.
Now assume |a| < sup(|d], [t|). Suppose first that [t| < |a| < |§|. Then |[da=| >
1, |6t71 > 1 and |§?| > |ta|. Thus
5 < | Vs
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Recall taht |0] < 1. Hence

Qo, = w0+ |5 (6t )
o —1 -
= 1_7(1_14‘\5 |(—wv(dt™))
while
Qar, = w6~ 'w)+16 p(ot™)
If |§] < 1 then we find
L e -
Qai, = 1_—q_1+|5 1|(1—U(5t 1))
If |6| = 1 then we find
Qaq, = 1- U((Stil)

In any case the two expressions are indeed equal.
Now assume that |§] < |a| < |¢|. Then

= Ve |
and both orbital integrals are equal to
pt™H) + 07 v (0%t e ).
Finally assume |a| < |0] and |a| < |¢|. Then again
1 < H Vo H
and Qg;, is equal to
pt 67 + 10 v (6t )
while Q¢q, is equal to
pt™ 6 tw) + | (et ).
If 1 > |6| > |t| then

5—1 _ -1
Qsi, = (67 + 67 u(6t w) = % + 07 (—u(dt)
while
1 1 1 |67 gt —q7t 1 1
Qai, = p(0" @)+ [0 w(dt™) = 1_—q_1 + 071 —v(dt™))

and those two expressions are indeed equal.
If 1 = |6| > |t| then
Qsi, = (6 H + 07 (ot w) =1 —v(t™)
while
Qar, = [0 vt ™) =1 —v(t™h)
and the two expressions are indeed equal.

Now suppose |§] = |t|. Recall that |§] < 1. Then

ot =gt

QSlQ = /1‘(5_1) 1

1—q
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while
6] 1g~" q_l

Qor, = (6™ @) + 18] Hw(1) = SL

+ 167

and the two expressions are indeed equal.
If |§] < |¢| then both orbital integrals are equal to u(t~!). So the fundamental
lemma has been completely checked in this case. O

16. Proof of the fundamental Lemma: a® + b is a square

Finally we consider the case where a® +b = 62, § # 0. Recall that we compute
01, (Y) as the sum

a bs™t 0
Z Qsi, | s —a 1 |n(s)
s 0 t 0

and a? + bs7's = a? + b = 2. Recall that we have written the orbital integral
Qsr, as a sum of terms labeled QF, , Qg:t, QL2 QI Q12 respectively.
Correspondingly, we write ¢, (Y') as the sum of terms labeled Qélz, le'zl and so
on. For instance,

a bs7t 0
612 ZQSlg (5) _ta (1) n(s).

16.1. Computation of Qél,z. The term Qél,z can be computed as gy, in the
previous case (where a? + b is even and not a square). We write it as a sum

(96) O, =, + Qi
where
L Ve .
u<5 . { i if | > sup(|d], |t])

(97) QGi, =

p(t=t, 6 w) if |a| < sup(|d], [t])
and
(98) Glz = |67 w6t 6%t e w)

16.2. Computation of Q)!. After changing s into s6? we see that
2

a bs'4572 0

ot =Y [ a1 )
s 0 t 0
and so, by Proposition 5, we get QF 1 = QF 1 + Q12 where
o [ s =0)T
99 Q11 _ 1 51 ad
( ) Glsy %:1 77(8):“‘ ) 5 » 8(5(0/ — 6)_1w
and

(100)  QF2 =3 n(s)u (tlﬁlv{ jj‘;éiigijw } : { w:ﬂ\f })

|s1>1



ON THE GROSS-PRASAD CONJECTURE FOR UNITARY GROUPS 247

Suppose first that §(a — §)~! is even. For QIGIZ';'l we write s = r?w? or s = r’w

with || < 1. We find, for |r| < 1, each term

(07 ori/5(a— o)1)
once with a + sign and once with a — sign. So we get zero. For le'zl'Q we write

s=r%or s =7r?w ! with |r| > 1. We find, for |r| > 1, each term

w67 ry 0(a—0)"1): w lr)

one with a + sign and once with a — sign. So we get 0. Thus le‘zl =0ifd(a—0)""
is even.

Now we assume 6(a — )~ ! is odd. For QF 1! we write s = r? or s = r?w with
[r| < 1. We have then added a term corresponding to s = r? with |r| = 1 that we
must subtract. We find

(7,07 Vol —0) 1w +

S (fl,(s*l,rv 5(a—5)*1w) - (fl,afl,r“ 5(a—6)*1w)

rI<1 ri<1
or
QU = —p (71,67 /00— 0) =) .

In particular, this is 0 unless |[§(a — &)~ 'ew| > 1. For Q12

s =r2w~! with |r| > 1. We find

Z (u (t_l,é_l,r Vo(a—0)"1lw: w_lr) —

=1

2

we write s = r° or

i (t_l,é_l,r Vola—0)" w1 w_1r>)

— |1 1l 6, w /8@ — 0) lew ) —
| szz:I 7| (,u (t rw, T w, w/0(a—0) 1w)
1] (tilrflw,éflrflw, \ 5(a—6)*1w)) .

Once more we apply Lemma 9. We find that this is zero unless |[§(a — §) ~'eo| > 1.
Then this is equal to

= = | /o@ =8| D Ird
T
where the sum is for
t~ 1l 5 1w
1<l o) < || ] < |
Véla—6)"1w Vé(a—6)"lw
Thus
ot =

~|@™]

U - 1o 0w
§(a —6) ‘M(Vé(a_é)—lw’ '\“/5(a—5)—1w> .
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Hence we find that Q! is zero unless d(a — )" is odd and [6(a — §) " 'w| > 1. Tt

is then given by
I 0 tw
{/5 )@’ {/6(a—08) 1w

—u (t_l, 51, /6(a— (5)*1w> .
We claim that this is —u(t~1,571). Indeed, this is clear if
)

because the first term is then 0 and the second term equal to —pu(t~1,671). Now
assume that ’W&(a— 5)—1w‘ < inf(|tY,]67Y). Recall |§| <1 and |t| < 1. To be

definite assume [¢t~!| < |671|. Then our sum is

()

—i ( Vo(a— 5)_1w)

-1 -1

q = — ‘t | -1
= — — t

1_g1 p(t)

—|w §(a—0)"tw|pu

5(a—0)lw| >

—|w (a—0)"lw

as was claimed. We have proved:

PROPOSITION 10. QL1 (Y) = 0 unless 6(a — 6)~" is odd and |(a — §)| < [dw].
Then
Qg (V) = —p(t™1,671).

16.3. Computation of lez As before
2

a bs71 0
QG2 (Y Zﬂféf s —a 1 |n(s)
0 t 0

and we denote by Q421

and |s| > 1. Then

and Q22 the respective contributions of the terms |s| <1

OLE2Y) = Ol + 0lf22,

11.2.1 2 2
szlz

We now appeal to Proposition 5. To compute we write s = r or s = r‘w

with |r| < 1. We find:
Q=071 v (FPwd(a—6)1 ot @) — v (FPe(a—6) ", 6t )]
Iri<1

By Lemma 10 this is

LD
Ir] <1,1< |r?wé(a—0)"Y < |6t .
This is 0 unless |a — 6| < |wd| and |tew™!| < |§]. It can then be written as |67

times 1/(1,{ Ea_(s)t—l }{ A })

— Nt~ lw Vw(a—4§)o1

over
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y {Gf%a—®15} {:EZ:QT;U}
Ve ) e Ty

/o 1(a—0)0 1

or

This can be further simplified
(101) QU2 =101 %

T
v (w Vo(a—6)"1, { Z M giflw }) if 6(a — 9) is even

V-1
1/(“ wé(a—é)l,{ ?/&f—tlw }) if 6(a —0) is odd
To compute Q2% we write s = 7% or s = 7w with |r| > 1. We find
Qg2 =101 Z (wré(a—8) "1 or 't 'w) — v (wrd(a—0) "t or 't 1) .
r1>1

By Lemma 10 this is
—67 1

o < |, [ a — )t < |3, | < [ot7Y.

over

This is 0 unless
la =6 < [0t ], [tw ™ < 9]

and can then be written then as
—1 v —1
s—1 -1._ -1 w (a—0)t
[0~ v ((5t T w ,{ o/oT(a = )1 })
or

1122 _ |51 1 [ @t Y ta =)t

We can simplify our result:

PROPOSITION 11. Suppose
la =8| < Jwd], [tw ™| < ]9].

Then
dteven | dtodd
QE2(Y) =271 {v(ét_l) + 0 —1 | d(a—0)even }
0 1 d(a—0)odd
Suppose
61 < Ja— 8] < |62, Jt= ] < 1],
Then
QG (Y) =
dteven | dtodd
276 {v (6t —v((a—08)d") + 0 —1 | d(a—0)even }
-1 0 d(a —0)odd

In all other cases Qi 2(Y) = 0.
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PROOF: In any case both Q52! (Y) and Q¢}22(Y) vanish unless [tww '] < |4].
So we assume that this is the case. Suppose |a — 6| < |wd|. Then QF>!(Y) is non-
zero. Since |0t~ 'ww| > 1 we have also |a — 6| < |67t~ @] so QF>2(Y) is non-zero
as well. We have then to consider 4 cases depending on the parity of (a — §)d and
t6. Suppose for instance that both are even. Then QF2(Y) is [§~'| times

” (w V/8(a— o)1, wVét*l) —v (w§t_1, ot~ \/W)
If o — 6| < |¢| then this is
v (w v 6t—1> —v(wdt™)
= (1-v(=VerT)) = (1= v (=0t™))
= 1u(&t—l).

2
If, on the contrary, |t| < |a — | then this is

v (w Vo(a— 5)—1) —v (wét‘l W)
(1 —v (WW)) - (1 -0 (wéfl W))

= %v(ét‘l).

The other cases are treated in a similar way and we have proved the first assertion
of the Proposition.

Now assume [§| < |a — d]. Then QF>' = 0 and QF>? # 0 if and only if
la — 6| < 6%t 'w|. Note that these conditions imply |(a — 6)ww| > |t|. Assume
t(a — &) even. Then Q2?2 is equal to [§!| times

—v (wétil, wét ™ {/W) .

Since |(a — §)w| > [t], this is in fact

v (msfl Vta - 5)*1) = v(8) — %v(t) - %v(a —4).

Assume now t(a — 6) odd. Then Qf>? is equal to [6~| times

—v (wét—l, st W) .

Since |(a — 0)w| > [t| this is

v (&—1 Ywt(a— 5)*1) —0(0) — Su(t) = So(a—8) — L.

2 2 2
Thus we have completely proved the Proposition. O

16.4. Case where —b is odd. We are now ready to compute ¢, completely.
PROPOSITION 12. If a®+b is a square but —b is not a norm then Q¢ (Y) = 0.

PROOF: Assume that —b is not a norm, that is, has odd valuation. Recall that
—b= (a+9)(a—0). Thus a+0 and a — § have different parities. In particular they
have different absolute values. Thus, choosing the sign + suitably, we must have
la + 0] = |a|] = |0] and |a — 6| < |wd|. In particular (a — §)é is odd and (a + §)d
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QIII.I QIIIQ

even. At this point we recall that the terms and are obtained from

Q-1 and Q12 by changing & into —6. If |a| = |§| > [t| then
Y5
QL1 — ~1 — (51
Gl, — M (5 ) m ,U( )
If |a| = |0] < |¢| then
Ol = pt™ "6 w) = p(t™h).
Thus, in any case,
G, = ™67,
On the other hand,
lezl = _/"'(tilv 571) ) leél =0.

Thus

0k, + 942 + 9l =0
We study the remaining terms. We have

Q& = |67 (6t 6t w) = |0 (6t w) = .
This is 0 unless || > |eo—'¢|. Similarly, the terms Q52 and Q-2 vanish unless
|6 > |ew~1t|. Thus we may assume |§| > |z~ 't|. Then
QG = —10" (st ).

Since |a — 0| < |wd| and (a — ) is odd, we have

oteven | dtodd
0 1 ’

QU2 = 2715 {v(étl) "

On the other hand since |a + §| = |§] and |§] < |6t~ Lw| we get
dteven | 6todd }

ittt =215 {oor ) + G200

Thus we do get
08, + 0l + 041 =0,
This concludes the proof. O

16.5. Case where b is even. We compute Qg,(Y) when a? +b =62, § # 0
and b is even. Then a + 0 and a — § have the same parity. The result is as follows:

PROPOSITION 13. Suppose a4+ b =62, § # 0 and b is even. Then

(103) ) = (0 f V) w21

_ Va-1t—1 1 .
w1 Qe = (07 Y ) e bl >

where

1 if |a| < |wd?t~ 1, (a £ 6)t odd
(105) €=

0 otherwise
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PROOF: First we claim that Q1 and Q! are both zero. Indeed, if QF;! # 0

then |[a—d| < |wd| and (a—3§)d is odd. Then (a+3)d is also odd. However |a+4| = |J|

and so we get a contradiction and QIGIll = 0. Likewise lel 1 = 0. We compute the
2 2

other terms.
We first consider the case |§] < [¢t|. Then the terms Qéi, lef, and QgéQ all
vanish. Thus

Qai,(Y) = Q4 -
We use the formula for Q& . If [a| > [t| > [6] we find
o) = (3 { VT VY (f VT
G =I O\ Vaeie ) TP\ Vet f)
If |t| > |a| then
Qai, (Y) = ﬂ(tilv 571@) = :u‘(til)

Now assume [§] = [t|. Then Q> = Qf[[? = 0. On the other hand,

Qéi = 6" Hv(1, 60 w).

This is zero unless |§| > |a| in which case this is [§71|. Thus, if |a| > |§] = [t], we
find
0. il — (5 Va—14-1 B . Vo141
ot = e =0\ Yot [) TN Vereis )

If |a| < |0] = |¢|, then
Qar, = Qi + 967, = p(0 @) + (67 = p(6™")

Thus if |t| > |§] we find the first formula of the Proposition.
From now on, we assume |6| > [¢|. Then we find

-1, Vet it Ja] > |3
G, = H | Vet 1w =
(6~ tw) if |al < |9]

This can also be written

1 (1 [ Vet 0 if |a| > |d]
(106) QGi, =1 (5 ) { Vo Te }) +{ —[67Y if |a| < |0

Similarly,

|6~ v (5t~ if |a| < |0]
Adding up these results we find

o/ 111
o, = (67 { Vi )+

1.9 { |67 (6%t ta " w) if |a| > |9
QGl2 =

Valt-1w
0 if |a| > |6], |a] > |6°t7}
5 o0t it Jal > 3], Jal < |62
—|67 v (st1) if |a| < |d]

We compute the remaining terms.
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Suppose |a| > |d]. Suppose first that |a + | = |6 — a| = |a| (or for short,
|0 £ a| = |a]). Of course, this is always the case if |a| > [6]. Both Q> and Q-2
are 0 unless |a| < |wd?t~|; then they are equal and

(a=+d)teven | (a = d)todd }
0 -1 '

QU2 + 012 = |51 {v(ézt_la_l) "

Now suppose || = |a| but |0 +a| is not equal to |a| = |d]| for both choices of . Say
0 —a| < |wd| and |6 +a| = [6]. Both Q2 and Qf!? are non-zero. In addition we
remark that 6(0 4 a) have the same parity and are thus even. Thus we again fidn
the same result. Note that here |a| = |§] < |@d?t~t|. We conclude that if |a| > |J]
then QF2 + QFL? = 0 unless |a| < |wé?t~!|. Then
(a £ d)teven | (a =+ d)todd
0 -1 ‘
Finally, suppose |a| < |6]. Then |a £ 6| =[] so (a %+ 0)d is even and both QF2
and leg 2 are non-zero with the same value. Then

(a £ d)teven | (a =+ d)todd }

0Lz + 0fft = o {u 0 +

11.2 I11.2 —1 —1
QGlz + QGZ2 = ‘6 | {U((St ) + 0 1

Summing up, we find the second formula of the Proposition.

16.6. Verification of Q¢ (Y) = Qg,(X). We verify the identity of the fun-
damental lemma when a? +b = 62, § # 0 and b is even. We solve the equations of
matching (46) as before. We write

—7h=y? — Taf

and then we take
Tt 2 t
t; = —5 = E(y—Ta), by = —§(y+7'a).
Then
a? +biey = 7(a® +b) = 762,
Thus a? + byc; is even but not a square. We need to compute |c;|. We have

—7%b=19y? — a3 = 7%a® — 7767,

Suppose |a| > |d]. If |a| = |d] we choose § in such a way that [0 — a| = |a|]. We
have |b| = |a® — 62| < |a|?>. From —72b = y? — 7a? we conclude that |y| < |a| and
la1| < |a|. From

y? —7%a® = 7(a? — 16°)
we conclude that
(y = ma)(y +Ta)| < |af®.
Hence either |y — 7a| = |a| or |y 4+ Ta| = |a|. Thus we can choose y in such a way
that |y — 7a| = |a|. Then
ler] = lat™H = (0 —a)t™1].

Now suppose |6| > |a|. Then [b| = |§|2. From —72b = y? — 7a? we conclude

that |y| < |6| and |a1| < |§]. Suppose |y| < |8|. Then |a;| = |§]. From y? — 1a? =

72a% — 7262 we get
2\ 252 2
a 740 Y
= 1—— —_— _— .
! ( 52) @ a
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Thus 7 is congruent to a square unit modulo wOFp hence is a square, a contradiction.
Thus |y| = |6] and we again find
ler] = 16t =6 — a)t™}].

Now we can write down the formula for Qg;, (X). It reads as follows.
I —a <1,
Qs1,(X) =

(o fmoe= ) Vo= )

If |(§ —a)t~ Y > 1,

Qs1,(X) =
1
1] Ve-ar sl 1) V(6 —a)tt
12 1 ’ y v —
w 6 —a)t'w

Suppose first that |a| > |6]. Recall that if |a| = |§] then we choose ¢ in such a
way that |0 — a| = |a|. Thus |0 — a| = |a| in all cases. Then we find

QSlz(X) =
Var T Va T

t=t, 6t if |a| < |t

o0 iz A Ve ) i<
1 Va~—1lt—1

—1 .

N(5 {w}7{m}> if [t] < al
Consider first the case |a| < |t| so that |§] < |a| < |¢|. This is

Qs1,(X) = p (t_1> { ;/% }) =Qc,(Y).

Consider now the case [t| < |a|. If |§] < [¢] this is

950,000 =1 ({ Yoz ) = 9.

If |§| > |t| then we have to distinguish two cases. If |a| > |wd?t~!| we find

o= ({ Vimie 1) =0 (2 { Vimme )

which is again equal to g, since € = 0 in this case. If |a| < |@§?t~!| and at (or
equivalently (a — d)t) is even we find

Qg1,(X) = p(07).

Since € = 0 in this case, this is again Qg,. If |a| < |@dé?t~ 1| and at (or equivalently
(a — d)t) is odd we find

Qs1,(X) = p(0 w) = p(671) = 671

This is again equal to Qgy,, since € = 1 in this case.
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We now discuss the case where |a| < |d]. Then |a — 6| = || and our expression
for Qg;, simplifies:

-1
,u(t ,{m}> if |0] < |t

Ve-1t-1 o1 1 a? ot if [t] < 1ol
P veTeT= S0 U w [ Vot

This simplifies further as follows:
u(t) i 3] < |t
Qs1, (X) =< u(67Y)  if |t| < |d], 6t even
w6 tew) if |t| < |d], 6t odd
Likewise, the expression for g, (Y') simplifies as follows:
" (t_l) if |o] < [¢]
Qa, (V) =< p(d™ 1) if |¢t| < |0], (a £ d)t even
p(6H — |67 if t] < |6], (a =+ 8t) odd
Again 6t and (0 — a)t have the same parity and p(d~'w) = pu(d~1) — [671|. Thus
Qs1,(X) = Qcr,(Y) in all cases.

17. Proof of the fundamental Lemma: a? +b =0

It remains to treat the case where a® +b = 0. THen —b = a? is a norm. We
proceed as before. We write the integral for Qgi, as the sum of O, and ng
corresponding respectively to the contributions of |s|] < 1 and |s|] > 1. We use
Proposition 6. For |s| < 1 we write s = 72 or s = r?w with |r| < 1. We obtain

Od, = D (ut o) -t a o))
Ir|<1
= N(tilv ail) :
For |s| > 1 we write s = 72 or s = r’w with |r > |1. We find
Qg, = Z (n@ '~ a ) —pt e o rw))
[r|>1

Applying Lemma 9 we find that this is
Z la= 17|

i@ Y < |r], |al < Jr], |7 < Jat™Y.

U/a_lt_l . 71 71 1
PO Vet 70 % 7))
Sa—1p—1
If |a] < |t| then p(t~t a™t) = p(t™1) and p ({ \”/Z*llttiflw } :a‘lw_l,l) = 0.

If |a| > [t| then u(t~*, a=1) = p(a=1). Moreover, if |a| < 1 then

rteal({ G o) ({ )

over

This is
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If |a| > 1 then pu(a™!) =0 and

L \/T ol 1) =4 E/T
Vol 1w Vo lt- 1w

Thus the above equality remains true. In summary,
u(t ) if Ja] < |t
QGlz (Y) = M vV a~1t—1 if |CL| > ‘t|
On the other hand, the conditions of matching (46) can be solved with
—4a Tt

a1:0,b1:0,01:T,t1:—5.

For the corresponding element X we find
p(t) if fa] < [t

_ o/ —1
QSZ2(X) - I (t_l { y a 1t }) if |a| > |t|
a ‘tw

Clearly QSlz (X) = QGlz (Y)
We have now completely proved the fundamental lemma for strongly regular
elements.

18. Other regular elements

Recall the definition of a regular element. A matrix X € M(3x3, E) is regular
if writing X in the form
A B
(&)

the column vectors B, AB are linearly independent and the row vectors C, C'A are
linearly independent. We have seen that if X is in g(E)’ then it is regular if and
only if it is strongly regular. We consider now the elements X which are regular but
not strongly regular. For such an element we have necessarily As(X) = CB = 0.

LEMMA 11. Any element X € g(E) which is reqular but not strongly regular is
conjugate under 1Gla(F) to a unique matriz of the form
0 b 0
c 0 1
100
with b # 0. In addition
A1 (X) = —bec
Bi(X) = b
PROOF: First B and C are not 0. After conjugation we may assume B = (9).
Since C'B = 0 we have
C=(t 0),t#0.
Conjugating by a diagonal matrix in Gla(E) we may assume ¢ = 1. Thus we are
reduced to the case of a matrix of the form

a b 0
c —a 1
1 0 0
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. . 1 . . .
If we conjugate by the matrix ¢ ( w ) we arrive at a matrix of the prescribed

¢ 1

form. The other assertions are obvious. 0.
REMARK: Similarly, the element is conjugate to a unique matrix of the form

0 b 0
c 0 1
-1 0 0

Any element X of s(F') which is regular but not strongly regular is conjugate
under Gl(F) to a unique element of the form

0O b O
e=| ¢ 0o 7
JT 0 0

with b,¢ € F/7 and b # 0. Then
Al(X) = —bc
AQ(X) = br

Two such elements are conjugate under Glo(F') if and only if they are conjugate
under Gly(E).

LEMMA 12. Any element X of uw(F) which is reqular but not strongly regular
is conjugate under LUy 1 to a unique element of the form

0 b 0
c 01 ,
-1 0 O
with b,c € F\/T and b # 0. In addition
Al(X) = —bec
Bi(X) = b

Two such elements are conjugate under Uy ;1 if and only if they are conjugate under

Gla(E).

PROOF: Write
a b =
X = ¢ —a z
-z —z1 0
By assumption we have Z321 + z122 = 0. Conjugating by a diagonal matrix in Uy ;
. . . 1
we may assume zp = 1. Then 21 4+ 21 = 0. Conjugating by the matrix ( 0 211 )

we are reduced to the case where the matrix has the form

a b 0
c —a 1
1 0 0

We finish the proof as before. O
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We see now that any element £’ of s(F') which is regular but not strongly regular
matches an element & of u(F'). Explicitly

0 b O
&= c 01
-1 0 0
matches
0 v 0
g=| ¢ 0 7

VT 0 0

if and only

be=0bcd, -b=1"V'1.

As before, we set

Q) = /U fole(u)€u(u) ™ )du
Q€)= /G oy PO et )y

The fundamental lemma asserts that if £ — £’ then

Qu(8) = 7(6)u,(€) -

To prove the lemma we proceed as before. We set

Then
0 b O
X = cgc 0 1
-1 0 0
with

blzb\/’]_—,clz

2

On the other hand

0 by O
Y = C2 0 1
1 0 O
with
v c

bQZF,CQZF.

Thus in terms of X and Y the matching conditions become

b1
02:—017',(72:——2.
T
‘We have
|b1| = |b2\7 \bQ\ = |02\-
Moreover, if byc; (and thus becs) is even, then bic; is a square if and only if baco is
not a square.
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THEOREM 2 (Remaining case of the fundamental Lemma). If X and Y are as

above and
by

g =—aT,by=——,
T

then
Qs1, (X) = n(b2) Q1 (V) -
19. Orbital integrals for Sio
We compute the orbital integral under SLy(F) of

0 b 0
X={ ¢ 01],
-1 0 0
where b #£ 0, ¢ # 0. We also write Qg,(X) = Qg1, (b, ¢).
We have
—bu bm? 0
Qg1,(X) = /<I> m~2(c—u?b) wub m~' | dulm|2d*m.
—m~! 0 0

If the integral is non-zero then |b| < 1 and |bc|] < 1. Explicitly, the domain of
integration is
1<|m|, |bul <1, [bm? <1,
lbc — u?b?| < |m?b| < 1.
Under the assumption |bc| < 1 the condition |ub| < 1 is superfluous. After a change
of variables, we can rewrite the integral as

B! /du\m\_zdxm
over
lbe —u?| < |m?b| <1,1<|m|.
We divide the integral into the sum of the contribution Qf, (X) of |¢| < [m?| and

the contribution Q% (X) of [m?| < [¢].
We have

L, (X) = b /du\m\_zdxm
over
[u?| < [m?b|, sup(1,|e]) < |m?| < [b]7".

This integral can be computed as follows:

1 _
—1/2__—1
Mg —t le] <1 beven
Z1p-1/2_ -1
=8 P <1 bodd
—1p g =1/2_ 1
= bf‘f ! le| > 1 be odd
—1/2 - -1
‘bc‘l_q—lq lc] >1 beven beeven

—1p —1/2_ _—1
q‘bc‘i_lq el >1 bodd beeven
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For Q% (X) we first compute the integral

du .
/bc—u2ﬁlm2b

It is 0 unless be is a square and then it is equal to 2|bc|~'/2|bm?|. We thus have
0%, (X) = |bc|_1/22/ d*m.
1<|m2[<]c]
This is 0 unless |¢| > 1. Then it is equal to

¢ even —v(c)

codd 1-—wv(c)

Adding our two results we arrive at the following Proposition.

02, (X) = [be] 72 {

PROPOSITION 14. Qg;, (b, ¢) is given by the following formula.
b =1/2 ¢!

p— le] <1 beven

Z1p)-1/2 -1

—1p g —1/2_ -1
| bfi —— le] > 1 be odd
|bc|_1/2 g 1 b b

e e > even  bc even non square
g~ bel /2 =g~

=T ] >1 bodd be even non square

—1/2_ -1

lbcllT_lq —v(e)|be] =2 e > 1 be square
20. Orbital integrals for Gly(F)
We let

0 b 0
Y = c 0 1 ,
1 00

and we write Q¢, (V) = Q¢1, (b, ¢). We have

Qe (V) = D(u(g)Ye(g)~n(det g)dg
Gl (F)
Explicitly, this is
—bau bam? 0
/<I> m~2(ca™t —u?ba) bau m7' | n(a)d*adulm|2d*m.

a~tm! 0 0

or
/n(a)dxadu|m|72dxm

over

Im™ <1, la"tm™ <1
|bau| < 1, |bam?| <1
lcb — u?b?a?| < |m2bal.
As before, if the integral is non-zero then |b| < 1 and |bc|] < 1. Under these
assumptions the condition |bau| < 1 is superfluous. After a change of variables this

becomes
|b\_1//n(a)|a|_1dxadu\m\_2dxm
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over
1< |ml,|a]™" < |ml,
leb — u?| < |m?bal < 1.

After a new change of variables, we get

\b|71//n(a)|a|71dxadudxm
over
L< |ml < Jof < o7,
lbe — u?| < |ab].

/ d*m=1-v(a).
1<im|<]a

b [ n(@lal (1= vle)d*ad

Now, if || > 1 then

Thus we get

over
L<|al < b7, |be — u?| < |abl

or, after a new change of variables,

1) [ n(@)lal ™1~ v(a) + v(b)d"adu
over
b < laf <1, [be —u?| < |af,
We divide the integral into the sum of the contribution Qg,(Y) of |bc| < |a| and
the contribution Q%,(Y") of |bc| > |a|.
To compute Q},(Y) we may write o = w?® or a = w?t?
over s. We set A =0 or A = bc in such a way that

|A| = sup(|b], [be]) -

with s > 0 and sum

We get
Q5(6) =
n) Y. (1-2s+0(b))g’
520,| A< |29 |
—n(b) > (v(b) — 2s)q”.
$>0,|A|<|w2s+1|

If |A| = |@?"| the first sum is for 0 < s < r and the second sum is for 0 < s <7 —1.
We find

n®) | D ¢+ @) —2r)q" | =

0<s<r
A7 — gt _
a0 (B2 o+ o) - 2042
If |e| <1, then A =b, bis even, and we are left with

. |b—1|1/2 _ q—l

1—qg!
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If || > 1 then A = bc, be is even, and we are left with

\bc|_1/2 _q—l
1—gq1

o) (

—v(c)bc|_1/2) .

If |A| = | 1| then both sums are for 0 < s < r. We are left with

Now we compute QZ%,(Y).

|w|1/2\A|_1/2 _ q—l
b .
n( ) 1 _q71

(> )

0<s<r

non-zero result we need |c| > 1. The integral

du
/Ibcu2|<|a|

is 0 unless bc is a square. Then it is equal to 2|a||be|~/2. Thus we find

or

2n(b

c|~1/2 —ov(a) +v a)d*a
Jlbe /|b<|a<|bc|“ (a) + v(B))n(a)d

2|be| /2 /1<| - ‘(1_1;(@))77(@)01*@

Now |b] < |a| < |be|. Thus in order to have a

= 2\bc|’1/2/ n(e)d* a + 2|be|~/?
1<]al<[e]

Let us write |[¢!| = |o"| and use the formula

n(a)d* .

J

|7t <Jal<t

r—1

0

3

n(—1)" = i(—1 (=) = 2(=1)"r).

The first integral is 0 unless r is odd in which case it is 1. We find

Qcn, (V) = {

Adding our two results we

lbel ~1/20(c)
bl ~1/2(1 — v(c))

c even

c odd

arrive at the following Proposition.

PROPOSITION 15. Q¢q, (b, ¢) is given by the following formula.

n(b) lbrll/erqil le] <1 beven
(bl lef <1 bodd
1—qg—1 =
[~ the| 12 —q?
n(b) == le| > 1 be odd
lbe| /2 —q~" —1/2
n(b) =T v(c)|bc| le] > 1 bc even non square
/ e
n(b) |bc|1i:71q e le] >1 beven bc square
— — / -
n(b)4 llbil,qu a le] >1 bodd bc square
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21. Verifcation of Qg;,(X) = n(b2)Qa1, (Y)
Under our condition of matching we have

b1| = [b2], |e1] = [cal.

In addition if byc; and boco are even then bycy is a square if and only bacy is not a
square. By direct inspection we find

Qsi, (b1, c1) = 1(b2)Qa1, (b2, c2) -

This concludes the proof of the fundamental Lemma.
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ABSTRACT. Continuing our earlier paper, we make explicit the L-functions ob-
tained by the Langlands-Shahidi method for quasi-split groups. We also study
the conjecture of Shahidi regarding the holomorphy of the local L-functions,
and holomorphy of the normalized local intertwining operators for Re(s) > %
The recent result by Heiermann and Muié, which says that Shahidi’s conjec-
ture implies the standard module conjecture, settles several exceptional cases
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This paper is a continuation of [14]. As in [14], we make explicit the L-functions
obtained by the Langlands-Shahidi method [27] for quasi-split reductive groups.
Then we study Conjecture 7.1 of [27] (Shahidi’s conjecture) and Assumption (A)

(cf. Section 4).

More precisely, let G be a connected reductive quasi-split algebraic group, and
let M be a maximal Levi subgroup of G. If G is simply connected, then the derived
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group Mp is also simply connected. This fact allows us to compute Levi groups
explicitly for simply connected exceptional groups. To compute L-functions for a
representation m of M(F,), we follow the general theory of [25, 27] and use the
table of [25] for the quasi-split cases as we did for split cases in [14]. Of course,
we only deal with new cases not covered in [14]. For example, there is no Galois
action in B,, cases and so we do not obtain any new L-functions. Such cases will be
omitted unless we want to complement the preceding paper [14] (e.g., Section 2.6).
An interesting case is ?Eg — 3, where we obtain L-functions for HSping (whose
derived group is Sping ). These L-functions agree with the L-functions of W.T. Gan
and J. Hundley that are obtained by the Rankin-Selberg integral [9] (See Remark
2.6 for details). After giving case-by-case explicit computations for L-functions we
study general spinor groups and their properties in Section 2.8. General spinor
groups such as GSpin,, and HSpin,, naturally appear as Levi subgroups of an
algebraic group G even if G is simply connected. For example, HSpinig is a
maximal Levi subgroup of the simply connected split group Eg°. The result of
Section 2.8 will be used in Section 5.

We consider Conjecture 7.1 of [27] (Shahidi’s conjecture) in Section 3. Using
the machinery of multiplicativity of y-factors and the corresponding multiplicativity
of L-functions we study Shahidi’s conjecture. Another key ingredient is the base
change developed by Langlands [21], Arthur and Clozel [2] which enables us to
use the local-global argument. With these theories in hand we can prove Shahidi’s
conjecture for quasi-split cases. The result is summarized in Theorem 3.5.

In Section 4 we study Assumption (A) which concerns holomorphy of the nor-
malized intertwining operators (defined in Section 1). The recent result by V.
Heiermann and G. Muié¢ [10] says that Shahidi’s conjecture implies the standard
module conjecture. This new ingredient settles several exceptional cases left out in
[14]. More precisely, Assumption (A) holds for B, — 1, D,, — 1, (xxx) in [20], and
(xxxii) in [20] (See Theorem 4.11 of [14]). Other recent progress on Langlands’
functoriality from classical groups to general linear groups by J. Cogdell, H. Kim,
I. Piatetski-Shapiro and F. Shahidi [11] provides a new ingredient for Assumption
(A) and settles (xviii),(xxii), and (xxiv) in [20] (See Theorem 4.11 of [14]). The
results concerning Assumption (A) are summarized in Theorem 4.7.

In Section 5, we correct several minor mistakes of [14] where the L-groups of
certain Levi subgroups of exceptional groups are incorrect. However, it does not
affect the computation of L-functions and the subsequent results of [14].

Finally, we make several remarks on the notation. In general we follow the
notation of [14]. For example, F denotes a field of characteristic zero, local or
global, which will be specified in each case, and G denotes F-points of an algebraic
group G. Since we use the Langlands-Shahidi method as a main tool, we also
use the standard notation from [27]. Hence, see [14] or [27] for any unexplained
notation. When we need to use both restricted and non-restricted roots for explicit
computations we use {a,...,a,} for the set of non-restricted simple roots and
{B1,..-s Bm} for the set of restricted simple roots. For example, {81, B2, B3, B4} is
the set of restricted simple roots for 2 Eg while {a, ..., ag } is the set of non-restricted
simple roots of Fg, where oy and aj restrict to 51 and so on. We also need to keep
in mind that we use [30] for the non-restricted root systems of exceptional groups
rather than those of Bourbaki.
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1. Preliminaries

Let G be a connected reductive quasi-split algebraic group over a p-adic field
F' of characteristic zero. Let Ay be the split component in the center of G. Let
7 be a representation of G(F). Then the central character of 7 is defined to be
wr(a) =m(a),a € Ag(F). Hence we will talk about the central character only when
G has a split central torus. N

For a positive reduced root 3, let Gg p be the simply connected covering of
the derived group of the rank-one subgroup attached to 5. There are only two
possibilities; either égyD = Resg/pSLy or SU(2,1)g/p where E/F is a finite
separable extension in the first case and E/F is a quadratic extension defining
SU(2,1)g,r in the second case.

Let P = MN be a maximal parabolic subgroup and let a be the unique simple
root in N so that P = Py, where § = A —{a}. Asin [27], let & = (p,a) ' p, where
p is half the sum of roots in N. The pairing {(a, 8Y) = («, 8) is defined as follows:
Let ¥ be the set of non-restricted roots of T in U, restricting to ¢»*. Here we
choose a Borel subgroup B of G over F, and let B = TU, where T is a maximal
torus and U is the unipotent radical of B. For o, 8 € 9™, we identify «, 8 with

roots of T, and then set (a, ) = 2((;,5[‘3))

Let 7 be an unramified representation of M = M(F') and x be the inducing
character of the torus. Denote by “M the L-group of M and let “n be the Lie
algebra of the L-group of N. The adjoint action 7 of “M on n decomposes as
r = @, r;, with ordering as in [27]. For each i, 1 < i < m, let L(s,m, ;) be the
local L-function defined in [27]. Let ¢ be the semi-simple conjugacy class in ©M°
corresponding to 7w. Note the relationship

x o BY(w) = BY(#),
where Y on the right is considered as a root of “M°. Then we have

L(s,mr)= [ L(s,xoBY)
B>0,(&,B)=1

where

L v it Ggp = L
L(s,x 0 8") = E(S,XOBV) ; 1 Gs.p Resp pSLo,

Lg(s,xoBY)Lp(2s,wg/r(xoBY|px)) if Ggp=2SU(2,1)g/p.
and wg/p is defined as follows: Let E/F be an unramified quadratic extension of
p-adic fields and let wg, wpr be uniformizers of F, F, resp. Then wrp = wg, and
\we|E = g5, and |@wp|p = ¢p'. Hence for any = € E, |2|g = |[Np/p(z)|r, and
F*/Ng/p(E*) has order 2. Let wg,p be the character of [/* defined by local class
field theory, i.e.,

1 on NE/F(EX),
w =
E/F —1 otherwise.

We identify s € C with s& € af and denote by
I(s,m) = I(s@,7) = Ind% 7 ® exp((s&, Hp(-))),
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the induced representation of = from P = P(F) to G = G(F'). Let A(s&, m,wp) be
the standard intertwining operator from I(s&, ) to I(wo(sa),wo(m)). We define
the normalized intertwining operator N (s, 7, wp) by the relation

A(s,m,wp) = r(8, 7, we)N (s, T, wp),

where
(5,70 ﬁ L(is,m,r;)
0) b 1L1—|—zs7rn) (s, m ri, thy)

2. Local L-functions made explicit

In this section we make explicit the L-functions which appear in the constant
term of Eisenstein series. Using the table in Section 4 of [25] we look at it case by
case.

Let F' be a number field and Ap its ring of adeles. In each case we choose a
quasi-split reductive algebraic group G and then compute explicitly each maximal
Levi subgroup M and L(s,m,r;), i = 1,...,m, for any (generic) cuspidal represen-
tation m of M(Ap).

Let x be a character of M. We let m,, = 7 ® x be the representation of M(Ap)
given by (m ® x)(m) = w(m)x(m). In the following, we will consider the twisted
L-function only when it gives rise to a new L-function.

2.1. 2A,, ; case. Let {ay,...,az, 1} be simple roots of type As, 1. Let
ﬁl = g(al + qon— 1) -7ﬁn71 = %(O&n,1 + an+1)7/8n = ay. Then A= {617 7671}
forms simple roots of type C,.

More explicitly, we use the unitary group: Let E/F be a quadratic extension
of number fields and G = U(n,n) be the quasi-split unitary group in 2n variables
defined with respect to E/F. Let G = G(F'). It is given as follows: Let J,, be the
n X n matrix given by

1

Let Jj, = <_J Jn>. Then

U(n,n) = {g € GL(2n)| *gJs,9 = J5,} ,

where z — 7 is the Galois automorphism of E/F. We note that G(E) = GLa, (E).
When v splits in E, then G(F,) = GL2,(F,). The derived group of G is G’ =
SU(n,n) = U(n,n) N SL(2n). The maximal Levi subgroups are of the form M =
Resp/pGLy, x U(l,1). When v splits, M(F,) = diag(A, B, Jy'A™'Jy,) ~ GLy(F,) x
GLQ[( ) X GLk( )

We need to deal also with similitude groups: Let

G = GU(n,n) = {g € GL(2n)| 'gJ},9 = xJ}, for some z = T} .
Then G(E) = GL(2n,E) x E*.
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Let T4 be the maximal F-split torus consisting of diagonal elements in G.
Then

Ty(F) =Ty = {t(A1, ... \n) = diag(A1, .., A, Ay s AT DA € X}
The centralizer of T in G is the maximal torus T of diagonal elements:
T(F) =T = {t(A1, ..., \n) = diag(Ar, .., A, A L AT N € BX )

Then the root system ®(G,T) is of type Ag,_1. But the restricted root system
®(G,T,) is of type C,,. Let Gal(E/F) = {1,7}. The maximal torus T in G is
given by

T = {t()\l, s Ay ) = diag( Mg, ooy Ay AL xj\fl)},
where z = Z. We extend the coroots o¥ : F*X = Ty to a¥ : F* — T as
follows. For v = ¢; — ¢, a¥(\) = t(l,...,)\,...,?_l,...,l) eTforl <i<j<n.

i

For a = e; + €, a¥(\) = t(1,...; X\, Ay ey 1), for 1 < i < j < n. For a = 2e;,
i
a¥(A\) =t(1,..., A, ..., 1) for 1 <4 < n. Here dots represent 1.

2.1.1. 245, 1 — 2. Let = A — {B,}. In this case, M = My = Resg/pGLy.
Then YM = GL,(C) x GL,(C) x Gal(E/F). Let ra be the Asai representation,

ie.,
L : _ _
ra: "M — GLp2(C); 14(91,92,1) = g1 ® g2, 74(91,92,7) = 92 ® g1

Let 0 = ®,0, be a cuspidal representation of M(Ar) = GL,(Ag). Let M(F,) =
GL,(E,), where E, = E ® F,; then
M(F,) = {GLn(Ev) %f v ine.rt,
GL,(Ey,) X GL,(E,,) if v splits, v = wyws.

Let x be a grossencharacter of E with restriction xo to F. Recall that xo corre-
sponds to the transfer from F to F' of the character of the Weil group Wg associated
to x by class field theory. Let m = 0 ® x. Suppose o, is unramified and E,/F, is
unramified. Then if v is inert, o, is an unramified representation of GL,,(E,), and
we denote it by o, = w(p1, ..., ftn ), Where pq, ..., pt, are unramified quasi-characters
of E¢. If v splits, then o, = 0y, ® 04,, Where o, is an unramified representation
of GL,(E,,) for i =1,2. Then we see that m = 1, and

L(S77TU>T1) = L(Svo—'er@XOv)
_ T Le (o xovmil ) Ti<icjon L, (8 piptgxw) - if v s inert
L(s,0u5, X 0w, ® Xov) if v splits,

where Lg, (8, xout1] F><) is the local Hecke L-function over F,, and
L(8, 0, X 0wy @ Xov) is the local Rankin-Selberg L-function. Here L(s, 0,74 ® Xo)
is called the Asai L-function (twisted tensor L-function).

2.1.2. 249, 1 — 1. Let § = A — {B1}. We separate this case, because it
gives the well-known standard L-function of the unitary group. In this case,
M = Resg/pGL1 xU(n,n). Let ¥ = x @ be a cuspidal representation of M(Ap).
Let ¥, be an unramified representation. If v splits, let wyws = v. Then 7, is an
unramified representation of GLs,(F}), and

L(S,Ev,rl) - L(S’le ®7TU)L(87XU)2 ® ’ﬁ'U)
L(S>E’Li>r2) = L(S7X’w1X’w2)‘
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If v is inert, we write m, as m, = 7, ({1, ..., fn ), Where p;’s are unramified quasi-
characters of E¢. Then

L(Sa Eva Tl) = L(S7 X’U/'l‘;l) e L(S7 Xv/'Lr_Ll)L(Sa Xvﬂl) e L(Sa Xvﬂn)
L(s,%y,7m2) = LF, (8, Xo|px )
Therefore, the global L-function is L(s,X,r3) = L(s, x| A;) (Hecke L-function).
When x =1, L(s,%,,r1) is the standard L-function of U(n,n).

2.1.3. 249, 1 — 4. Let 6 = A — {B1.}, and k + 1 = n. In this case, M = My =
Resg/pGLy xU(l,1). Let 0,7 be cuspidal representations of GLy(Ag), U(l,1)(Ar),
resp. Let m = 0 ® 7 be the cuspidal representation of M(Ap).

If v splits (v = wyws), then 7, is a representation of GLy(F,), and 7, =
Oy @Ty @0y, 18 a representation of GLy(F,) X G Loy (F,) X GLi(F,) C GLay(Fy). In
this case, we need to consider the normalizing factors attached to the non-maximal
parabolic subgroup:

L(s,my,r1) = L(8, 00, X Tp)L(8, 00, X Tp), L(8,7y,72) = L(S, 0w, X Ou,)-

If v is inert, let o, = w(u1, ..., 4x), 7 = 7(¥1, ..., 1), where p;, v;’s are unrami-
fied quasi-characters of E. Then

k1
L(s,my,m1) = [ [ [] L(s. vy L5, i), L(s,my,72) = L(s,7a(00)).-

i=1j=1
In this case, we obtain the Rankin-Selberg L-function L(s,o X 7).

REMARK 2.1. The lift from U(n,n) to GLa,/E (called the base change) is given
by m = ®umy — Il = ®,,11,, where

o — My = Tty oy fony B ooy fiy 2) if 0 ds inert and my, = 71, ey fin),
w T ~ . .
I, =my, I, =7, if v splits and wiwe = v.

REMARK 2.2. We note the difference between split group and quasi-split group:
When G = Span, M = GL,_1 X SLa, we obtain the L-function L(s,o x Ad(r)),
where o, T are cuspidal representations of GL,,_1(F),GLa(F), resp. However, when
G =U(n,n), M = Resg/pGLn—1 x U(1,1), even though 0 = A —{f3,_1} as an
F-root system, two L-functions show up in the constant term of the FEisenstein
series.

2.2. 24y, case. Let {ay,...,as,} be simple roots of type As,. Let 8; =
%(al + aop), ey B = %(an + apt1). Then A = {p4, ..., B} forms simple roots of
type BC,,. More explicitly, we use the unitary group G = U(n,n + 1): It is given
by

Umn,n+1)= {g € GL(2n + 1)| tgJ},9 = Jén} ,
In
where J},, = 1 . We note that G(E) = GL(2n + 1, E). Let T4 be
—J,
the maximal F-split torus consisting of diagonal elements in G. Then

Ty(F) =Ty = {t(A1, e Any 1) = diag(Ar, ooy Ao, LA AT DN € FX )

The centralizer of Ty in G is the maximal torus T' of diagonal elements:

T(F) =T = {t(M, .., A, y) = diag(A, oo, Ay, Ay L AN € EXy € B
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Then the root system ®(G, T) is of type As,. But the root system ®(G,T,) is of

type BC,,. We extend the coroots Y : F* — Ty to aV : F* — T as follows.

For f = e; —¢j, BY(N) = t(1, NN ) e Tfor 1 <i < j <n. For
i J

a=e +ej BYN) = (1,0 N A n 1), for 1 < < j < n. For a=2e,
i J

BY(A) =t(1,...,\, ..., 1, AA71) for 1 <4 < n. Here dots represent 1.
2.2.1. 245, —1. Let 0 = A—{$31}. In this case, M = Resg/pGL1 xU(n,n+1).

Let ¥ = x ® w be a cuspidal representation of M(Ap). Let 3, be an unramified
representation. If v splits, let wiws = v. Then 7, is an unramified representation
of GLap+1(Fy) and

L(S, DINR 7“1) = L(S, Xw; @ WU)L(Sa Xwy & ’frv)a

L(Sa Eva TQ) = L(Su Xw1Xw2)'
If v is inert, 7, can be written as m, = m, (1, ..., fin, ), where p;’s are unramified
quasi-characters of E) and v is a character of E,. It acts as

Wv(ﬂl, ooy Uy V)(t(Ala ey )‘n’y)) = :U‘l()‘l) o :U‘n()‘n)y(y()‘l T )‘n)(j‘l T S‘H)_l)'
Then

L(Sv Z’1177/‘1) = L(Sa lej/l_l) e L(Sa XUM;I)L(Sa XU)L(Sa Xvﬂl) o L(Sa Xvﬂn)a
L(Sv Zva2) = LFU (S, Xv‘F,f )

2.2.2. 2Ag, — 3. Let § = A — {8,}. Then M = Resg,;rGL, x U(1) and
a=e+ - -+e,—(ent2+--+eamt1). Let ¥ =7 ® x be a cuspidal representation
of GLH(AE) X U(].,AF)

If v splits (v = wyws), let m, = Ty, ® Ty,, where m,, is an unramified rep-
resentation of GL,(E,,) for i = 1,2, and x, is a character of F,*. Then m = 2
and

L(8,%y,71) = L(8, Ty ) L(8, Tawy )y L(8, B0, 72) = L(8, Tapy X Ty )-

If v is inert, , is an unramified representation of GL,,(E,) and x, is a character
of E!, and we denote it by 7, = m(pu1, ..., fin), where g1, ..., i, are unramified quasi-
characters of E*. Then

L(s,%y,7m1) = L(s,m,), L(s,3y,72) = L(5,7y,74 @ Wg,/F).

2.2.3. 245, — 4. Then M = Resp/pGLr x U(l,l +1). Let 71 = 0 ® 7 be a
cuspidal representation of M(Ap).

If v splits (v = wyws), then 7, is a representation of GLgj41(Fy), and 7, =
Owy, @ Ty ® 0y, 18 a representation of GL(F,) X GLgy11(F,) x GLi(F,) C GLay(Fy).
In this case, we need to consider the normalizing factors attached to the non-
maximal parabolic subgroup:

L(s,my,71) = L(S, 0w, X To)L(S, 00w, X Tu),  L(8,Ty,72) = L(S, 04y, X Ouy)-
If v is inert, let o, = 7(1, ..o, i), T = mw(¥1,..., v, V), where p;,v;’s are
unramified quasi-characters of E and vy is a character of E}. Then
k

k l
L(SvTrU?Tl) = H H L(Shuiyj_l)L(ShuiDj) HL(SMM’L')’

i=1j=1 i=1
L(s,my,m2) = L(s,7A(00) ® wg/Fp).
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In this case, we obtain the Rankin-Selberg L-function L(s,o x 7).

REMARK 2.3. The lift from U(n,n+1) to GLap+1/E (the base change) is given
by m = ®umy — Il = ®,,11,, where

0 - Ty = (1, ooy fn, 1y iy ey i V) if v ds inert and w1, = (i1, ooy fin, V),
w ~ . .
IL,, = my, Ly, =Ty if v splits and wiwge = v.

2.3. 2D,, case. Let G = Spin,, be a quasi-split spin group over a quadratic
extension E/F. It is a simply connected 2-fold covering group of the quasi-split
orthogonal group SO,,, corresponding to a quadratic form of index n — 1 relative
to F but index n relative to E.Let {a; = €1 — €2, ...,Qpn_2 = €n—2 — €n_1,Qp_1 =
€n—1 — €n, 0y = €_1 + €, } be the non-restricted simple roots. Let 1 = a1 =
€1 — €. Bn2 = Gz = €n—2 — €41, Bp—1 = 3(ap_1 + ay) = €,_1. Then
A ={p1,..., Bn—1} form simple roots of type B,_1. Any element in the F-points
T(F) of the maximal torus T can be written as

Hal (tl) et Han,g (tn72)Han,1 (tnfl)Han (t_nfl)a

where t; =t; fori=1,...,n—2 and t; € EX. On the other hand an element in the
F-points of the maximal F-split torus is

Hal (tl) et Han,g (tn72)Han,1 (tnfl)Han (tnfl)a

where t; = t; for all . There is, up to isomorphism, a unique non simply-connected,
non-adjoint group of type 2D,,, namely, SO, .

We define G'Spin,,, to be the maximal Levi subgroup of Spin,,, , ,, which has
Spin,,, as its derived group. More precisely, we add By = eg — e in the root system
and consider the Levi subgroup attached to § = A — {8y}. Then

A= {Hao (tQ)Hal (t2) ~-Hq, , (t2)Han_1(t)Han (t)}a

and
Mp = Spin,,, ANMp ={H,, ,(t)H,, (t):t* =1}
We define
GSping, = (GLy x Spins,)/(ANMp).

Then “GSpins, = GSO2,(C) x Gal(E/F).

2.3.1. 2D, — 1. Let § = A — {Bx}. Let P = MIN. The derived group Mp of
M is

MD = SLk X Spin;l,

where k + [ = n. We identify A with GL;. We fix an identification of Mp and
SLy, x Sping under which the element H,, (t)Hg, (t?) - Hy,  (t*71) goes to the
diagonal element diag(t,t,...,t,t=(*=1) of SL;, and

b(t) = Hoyoy (t2) -+ Ha, , (*) Ha, ., (t) Ha, (1)

A1
is the toral element in Sping;. We define a map f A XxMp — GLy x GLy x
SLk X Spingl by

- (t7t§,x7y) if k even,
. t ,x, — .
[ (a(t), z,y) {(tQ,tk,x,y) if k odd.
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Now, M ~ (GL; x SLy x Sping;)/S, where

g — {(a(t),tI;,b(t2)) : t* =1}  if n even,
T\ {(a(t), 21, b(t%)) : 126 = 1} if n odd.

We obtain a map f: M — GLj x GSping; so that
f(HOék (t)) = (dlag(la e 13 t)a C(t))7

where ¢(t) is an element in GSping;.

Let 71, w3 be cuspidal representations of GLi(Ar), GSpin~ (21, Ar), resp. Let
7 be a cuspidal representation of M(Ap), induced by f and 71, wa. Then the central
character of 7 is

wlwzg, if k& even
Wy =
wiwh. if k odd
If v splits, g, is an unramified representation of GSping(F,). Hence by D,, —1
case in [14], L(s,my,m1) = L(s, 714 X T2), L(8, 7y, 72) = L(8, T104, A2 @ way).
Suppose v is inert, and let ¢, = diag(ay,...,ax) € GLy(C) = “GL; and
ty = diag(by, ..., by, b, o, ..., by tho) X 0 € GSOx(C) x Gal(E/F) be the Satake
parameters attached to 7y, 7o, resp. Here we note that
diag(by, ..., by, by 'bo, ..., b7 'bo) — bo

generates the character group of GSOq and hence by Lemma 1.2 of [14], by =
wa(w). Then
X © Hal = ala’Q_lv -3 X O Hak,1 - ak—la’]zlv

X0 Hep,, =bibyty oo x0Hy, | =bi_1b ' x 0 Hy, = bi_1biby !,

AXp+1

x(a(t)) = wr, = {

n—1
(ay---ap)(by)%, if k even
(a1~-~ak)2(b0)k, if k odd .

Since f(Ha, (t)) = (diag(1, ..., 1,t), b(t)), we can see x o Hy, = axby "by. Hence, we
see that m = 2,

L(S77T’U7T1) = L(577T1U X 772’0)
L(s,7y,72) = L(5, 14, A2 ® wWay).

2.3.2. 2D, —2. Let 0 = A—{B3,_2}. Then P = MN, and pp = e;+---+e,_a.
The connected component of the center of the torus is an F-split torus and is given
by

{Hal (t)Hoéz (t2) T Han72 (tn_Q)Hocnfl (t%)Han (tnTiz )} if n even,
{Hal (tQ)HCm (t4) e Ha"72 (t2(n72))Ha"71 (tniz)Ha (tn72)} if n odd.

n

Since G is simply connected, the derived group Mp of M is simply connected.
Hence Mp = SL, 2 X ResgpSLa. There exists a map f : M — GL, 2 X
Resg,pGLo. Let w1, 7o be cuspidal representations of GL, 2(Ar), GL2(AE), resp.
Let 7w be a cuspidal representation of M(Ap), given by f,m,m. Let m, be an
unramified representation and let x be the inducing character. If v = wyws splits,
then it is D,, — 2 case. So

L(Suﬂ—’lhrl) = L(Suﬂ—l’u X 7T2w1 X 77271)2)7 L(SJT‘—’(MTQ) = L(S77T1’U7 /\2 ®wﬂ'2w1wﬂ'2w2)'
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Suppose v is inert and let m, = 7(p1, ..., in—2), and me, = w(v1,v2), where
H1, .., n—2 are characters of F* and vy, vs are characters of E.¢. Then
X © Hal = ﬂlﬂ517 coey X0 Hanfa = /’l’ﬂ*3/’l‘;i2
n-3
w1 (O Ha, (8) = 115 1 (1), x(a(t) = wi(t)w, * (u).

From this, we see that y o H,, , = un,gl/g|va. Hence m = 2 and

xo Hg

L(S; Ty, 7ql) = L(S; Ty X TA(Tr2v))7 L(S; T, 7q2) = L(S; Tlw, /\2 &® (w‘n'z,,,)

va)v
where 74(7y) = (1| px, va| px s (V1v2) | px )%,WE/F((VIVQNF“X )2).

REMARK 2.4. This case is important because we get the Asai lift from cuspidal
representations of GLy/E to GLy/F in the following way. It corresponds to the
L-group homomorphism
ra: "Resp/pGLy = (GL2(C) x GL2(C)) x Gal(E/F) — GL(C? ® C?) = GL4(C),

7(91,92,1) = g1 ® g2, 7(91,92,6) = g2 ® g1.
The details had been worked out by Krishnamurthy in his thesis [18]: Let m =

®uwTw be a cuspidal representation of GLa(Ag). Let my, = w(p,v) be an unramified
representation. Then the local lift of w,, is given by

1 1y
I — Tl gy s v pxs ((/W)|va)2,wE/F((uu)\va)é) if v is inert,
Y Ty X T, if v =wiws,

where w = wg/p. This is different from automorphic induction; Automorphic in-

duction also gives the lifting from cuspidal representations of GLo/E to GL4/F. It

corresponds to the L-group homomorphism

r: 'Resp/pGLs = (GLo(C) x GLa(C)) x Gal(E/F) — GL(C* & C?) = GL4(C),
r(g1,92,1) = g1 ® g2, 1(91,92,0) = g2 D g1.

Let m = ®ymyw be a cuspidal representation of GLa(Ag). Let my, = w(p,v) be an

unramified representation, where the local lift of m, is given by

1

M, = 15 (m,) = {W(Mivx,w(ubvx)%,yix s wWwWlpx)?) if v is dnert,
Ty, B Ty if v=wiws.
Hence it satisfies the adjoint relation: for any representation o of GLy(Fy),
L(s,0 x IE(m,)) = L(s,08 X 7).
We also note that if m is a cuspidal representation of GL2(AF) and g is the

base change to E, then As(mg) = Sym*(7) & (wxwp/r)-
2.3.3. 2D, — 3. Let 0 = A — {B,_1}, and let P = MIN. Then

n—1 n—1

_ {Hﬂfl (t)HOéz (t2) o 'Hﬂtn—z(tn_2)HOén—1 (t 2 )Hﬂtn (t 2 )} if n odd,
| {Ha, ()Ho, (1Y) - - Ho, (22 H, (1" N H,, (t"1)} if n even.

In this case, the derived group Mp is simply connected, and hence Mp =
SLy_2. We have a map f : M — GL, 2 X Resg/pGLy. Let o be a cuspidal
representation of GL,_2(Ap), n a grossencharacter of E, and 7 be a cuspidal
representation of M(Ap), given by f and o, 7.
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If v splits, we need to consider the normalizing factor of the intertwining opera-
tor attached to the non-maximal parabolic subgroup Py, where § = A—{e,_1+e,}.
Then

L(8, T, 71) = L(8,00 @M, ) L(8, 00 @My )y L(8, Ty, 12) = L(8, 0y A2 @We, Ty Ty )-
If v is inert, let m, be an unramified representation and let x be the inducing
character. Let m1, = m(f1, ...y fhn—1), where pq, ..., pn—1 are characters of F,*. Then
xoH,, = ulugl, ...,xXoH,, , = un,gugfl,
x(a(t)) = wi(t)n(t).
From this, we see that x o H,,, ,Ha, = pin—1 © N1,. Hence m = 2,

L(s,my,m1) = L(s, g0 ®ny), L(s,my,72) = L(s, 7, N’ ®W07,(77U‘FUX )

where 7 is the base change of 7 to E.

2.3.4. 2D, — 4. Let 6§ = A — {B,_3}. We separate this case because this gives
a twisted exterior square lift from GU(2,2)g/p to GLg/F corresponding to the
map A? : EFGU(2,2) = (GL4(C) x GL1(C)) x Gal(E/F) — GLg(C). (See [15]
for the details.) For g € GL4(C),\ € GL1(C), we consider the six-dimensional
representation

A? 1 GL4(C) x GL;(C) — GLg(C)

given by (g,\) — (A%g)\, where A2 is the usual exterior square. (We abuse
the notation by using A% as 6-dimensional representations of both G'L4(C) and
GL4(C) x GL1(C).) Let 8(g,\) = (J, 'tg~L1J;, Mdet(g)). Then there is a matrix
A € GLg(C) such that

A2(0(g,\)) = A1 A% (g,\)A, Vg€ GL4(C).
Now, we can extend A% to “GU(2,2) by mapping
(g, \, 1) — A%(g)A, and (1,1,0) — A.

Let P = Py = MN, and let A be the connected component of the center of M.
Then A(F) = {a(t)|t € F} where

3

_ Hﬂl(t)"‘Han—s(tnig)Han—z(tnig)Han—l(t"T_g)Han(t%) if n odd,
a(t) - 2\ .. 2(n—3) 2(n—3) n—3 n—3 .
Ho, (t°) - Ha, _4(t VHa,, ,(t )Ha, ,(t""°)Ha, (t"7°) if n even.

We note that A is a 1-dimensional torus that splits over F. Since G is simply
connected, the derived group Mp of M is simply connected, and hence

Mp = SL,_3 x SU(2,2).
Note that Sping ~ SU(2,2). Furthermore,

ANMp(F) = {Ha,(t) -+ Ho, (" ") He, ,(t"7 )Ha, (t
if n odd, and
ANMp(F) = {Ha, (2) - Hop, (27D Hy, (877) Hy, (877220073 = 1),

n

n—3

=)t =1},

if n even. We obtain an injection f : M — GL,,_3 x GU(2,2) which is the identity
map when restricted to the derived group Mp. Let 7,7 be a cuspidal represen-
tation of GL,,_3(Ap), GU(2,2)(AF), resp. Let m be a cuspidal representation of
M(AF), induced by the map f and 71, me. Let 7, be an unramified representation.
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If v splits as (w1, we) in E, then 7y, is an unramified representation of GL4(F},) X
GL1(F,). Write mg, = Ty, ® X»- In this case,
L(s,my,m1,0) = L(5, M1y @ Ty, prz @ A’ps @ Xo) = L(s,m10 X A} (T20))
L(8, 7y, T2.0) = L(8,T10, A2 @ (wr, X2)).

Here note that wr, X2 = (wrlaz)o = (@r)w, (Wr)w,-

Suppose v is inert. Let w1, = 7(f1, ...y n—3), and ma, = (v, v2,1p), where
M1, -, n—3, Vo are characters of F* and vy, v are characters of E. We compute
the local L-function for n odd. The “even” case is similar. Let m, be induced from

a character x. Then

X© HOé1 = ﬂlﬂgla Y HOtn_4 = ,u’n*4:u‘:zi3a X © Han_Q = VQ‘FUXv

n—3

X © Ha, (@) Ha, (@) = vivy (@), x(a(®)) = wo, (@)wn, (@) 7,

where w is a uniformizing element in F°. From this, we see that xy o Hy, , =

Hn—3V0, and
L(S, szarl,v) = L(Svﬂlv & T2y, Prn—3 /\t2) = L(Sa Ty X /\3(77211))
L(S, T, '1"2,,0) = .L(S7 T 1o, /\2 ® (Wﬂzv ‘va )),

where AZ(g,) is the unramified representation of G Lg(F,) given by

1
2

1
/\?(71'21;) = W(Vo(Vle\FUx) s VOWE, /Fy, (V1V2|Fv><)27VO(Vl‘FUX)7VO(V2‘FU><)7V0(V1V2|FUX)7VO)‘

2.4. 3Dy case. Let E/F be a cubic Galois extension. Then there exists a
simply connected, absolutely simple quasi-split group G defined over F, which
splits over F, and whose non-restricted root system is of type Ds. We also note
that the only other quasi-split group of type D, is of adjoint type.

Let Bl = %(011 + a3 + 044) = %(61 — eg + 263), [32 = Qg = €9 — €3. Then
A = {B, P2} form simple roots of type Go. For a reference, we record positive
roots: Short roots are

1 1
1, 1 2 = ;(E1—€3T€2—€4TE2TEY), 1 2 = ;(E1—€4T€1TELTEQTESZ).
B, P+ 3( + teates), 261+p 3( +e1+esteztes)
Long roots are

B2, 301 +2B2=e1+ex, 361+ B2 =e1+es.

Note that any element in the maximal torus in G(F') can be written as
H,, (t1)Hy, () Hy, (1) Hy, (t2), where ty = o = ty and t1,t, € E*. Here ~ and
~ denote the Galois conjugate of Gal(FE/F) corresponding to the graph automor-
phism. The element in the maximal F-split torus is Hy, (t1)Has (t1) Ha, (t1) Ha, (2),
where t; = t; = t; for i = 1, 2.

24.1. 3Dy — 1. Let 0 = A — {B2}. Then & = e1 + ez

A = (Y Ker )° = {Ha, (t) Hay (t) Ho, (t) Hoy ()},
Beo

Let P = Py = MIN, where M is the centralizer of A. Since G is simply connected,
the derived group Mp of M is simply connected, and hence

MD = ReSE/FSLQ.
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We obtain a map f : M — Resg/pGLy. Let o be a cuspidal representation of
GL2(Ag) and 7 be the cuspidal representation of M obtained by f and o.
If v splits (v = wywews), then by the result in [16], m = 2 and
L(s,myp,7m1) = L(8, 00, X Owy X Owg), L(s,my,12) = L(s,w),
where w = w,,, Wo,, Wo,, -

If v is inert, let o, = w(u, V), where p,v’s are characters of EX. Let x be the
inducing character of the torus. Then

X © Ho, (t)Hay (t) Ha, (&) = w~ (1), x(a(t)) = .

From this, we see that y o H,, = V|va. Hence m =2 and

L(s,mp,m1) " = (1= plpx ™) (1 = | px i) (1 — mqi®) (1 — pPragp?),
L(s,my,1m2) = L(s,wav|va ).
2.4.2. 3D4 —2. Let 0 =A— {ﬂl} Then & = 261 + eg + e3.
A = ([ kerp)® = {Ha, (t*) Hoy (t*) Ha, (t*) Ha, (%)}
Beb

Let P = Py = MIN, where M is the centralizer of A. Since G is simply connected,
the derived group Mp of M is simply connected, and hence

Mp = SLo.

We obtain a map f : M — Resg/pGL1 X GLa. Let o be a cuspidal representation
of GLy(AFr) and 7 be a grossencharacter of E. Let m be a cuspidal representation
of M(Ap), obtained by f,o,n.

If v splits (v = wywows), then we need to consider the non-maximal parabolic
subgroup attached to § = {as} and normalizing factors attached to m,. In this
case,

A= {Ha1 (tl)Has (t3)Ha4(t4)Ha2 (t2)},
where t% = t1t3ty. Let P = Py = MN. In this case,
X ©° Hozz = /-“jila X(a(tlv t3a t4)) = Wo,, (t2)(77w1 (tl)n’wz (t3)77w3 (t4))2
Then we have x o Hy, = Ny, , X0 Haoy = VN, X © Ho, = vNy,. Hence m = 3 and
L(s,my,7m1) = L(8,00 @ N, ) L(8, 00 @ Ny ) L(8, 04 @ Ny ),

L(Svﬂ-UaTQ): H L(Saﬁwmijav)v
1<i<3

L(577TU5T3) = L(57UU ®w)7

where W = We, Ny Ny Thws -
If v is inert, then

X © Hay(t) = pv= (1), x(a(t)) = ni(pw) o N.
From this, we see that y o Hy, Hyy Hoy, = v o N. Hence m = 3 and
L(s,my,7m1) = L(8,055 @ Ny),
L(s,my,13) = L(s,w0E1,Un12}), L(s,my,13) = L(8,0, QW),

where w = w[,vm\Fx and o, is the base change of o, to E,.
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2.5. %D, case. This is the case when E/F is not a Galois extension. This is
the non-Galois version of the case 3D4. The L-group is PSOg(C) x Ss.

The cases D, — 1 and 6D, — 2 are essentially the same as those of 2D, — 1 and
3D, — 2, resp. The only difference is that we need to consider the case when v is
unramified, and v = wyws, where E,,, = F, and E,,/F, is a quadratic extension.
In this case, the local L-function is L(s, 0, ® 1y)L(8, 04 ® 1) for Ty, & Typ,-

REMARK 2.5. Let 7 be a cuspidal representation of GLy/F, and let g be a
base change to E. It erists whether E/F is Galois or not. But the L-functions
L(s,m,r1) in the cases of 3Dy —1 and Dy — 1 are different. In the case of 3Dy —1,
L(s,7,r1) = L(s,mx7x7). On the other hand, in the case of *Dy—1, L(s,m,11) =
L(s,m x m x (7w ® x)), where x is the quadratic character attached to L/F. Here
K/F is the Galois closure of E/F and L/F is the unique quadratic intermediate
extension.

2.6. 2Eg case. Let G = 2E4 be the simply connected, absolutely simple,
quasi-split group of type Fg. Let 31 = %(oq + as), By = %(042 + o), B3 =as,fB4=
ag. Then A = {4, B2, B3, B4} are simple roots of type Fy. The Dynkin diagram is

o———Oo——0 O
B1 Bo B3 Ba

For a reference, we record positive roots as follows: Short roots are
Bi, B2, B+ p2= %(61 —e3tes—eg), P1+P2+P= %(61 —e4+e3 — eg),
B2+ B3 = %(62—64+€3—€5)7 B1+2B2+ B3 = %(61 —e5+e2 — eg),
B1+ B2+ B3+ Ps = %(61+65+€6+6+63+€4+65+6)7

Br+202+283+0s=z(ea+es+es+e+er+es+es+e),

1
2
1
514‘3524'2534-54:§(€2+€3+€4+6+€1+€2+66+€),

1

5(62—1—64—1—654—6—1—61—l—e4—|—e6—|—6),
1

2/314-352-1-2/334-/34:5(61+€3+€4+€+61+62+65+6),

B1+ 282+ B3+ s =

1
62"‘53"‘54:5(62"‘65+€6+€+€3+64+€6+€),

and long roots are

B3, Ba, Pst+Ba=e3testeste, 20o+203+ 81 =e2+e3+es+te,
282 + B3 =ex —e5, 2B1+2P2+ P53 =e1 — e,
280+ B3+ Ba=ext+es+est+e, 2681+20a+ 083+ B1=e1+estes+e
281 +4Bs+ 3035+ s =e1+eates+e, 281 +4Ps+ 305+ 284 = 2,
281 +4B2+ 23+ Ba=e1t+ex+es+ €201 +202+283+ s =e1 +e3tes+e

Note that any element in the F-points of a maximal torus T can be written as

Hal (tl)Hoér) (t_l)HOtz (tQ)HCM (zQ)HO@ (t?’)HOée (t4)=
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where t3 = t3,t4 = {4 and t; € E*, and an element in the F-points of the maximal
F-split torus is
Hal (tl)Hoér) (tl)HOtz (tQ)HCM (tQ)HOt3 (t?’)HOée (t4)7
where t; = t; for i = 1,2, 3, 4.
2.6.1. 2Eg—1. Let § = A—{B3}. Then & = 2(e1 + e +e€3) + €4+ €5 + €5 + 3¢.
A= ( m kerﬁ)o = {Ha, (t2)Ha5 (tQ)Hocz (t4)Ha4 (t4)Ha3 (tG)Has (tg)}'
peo
Let P = Py = MN, where M is the centralizer of A. Since G is simply connected,
the derived group Mp of M is simply connected, and hence
MD = RGSE/FSLg X SLQ

And

ANMp = {Hq, (tz)Has (tQ)Haz (t4)Ha4 (t4)Has (t6)Has (ts)‘tﬁ =1}

Note that A N Mp is finite.

We obtain a map f : M — Resg/pGL3 x GLa. Let mp,m be a cuspidal
representation of GL3(Ag), GLa(AF), resp. Let 7 be a cuspidal representation of
M(AF), induced by the map f and 71, 7e. Let 7, be an unramified representation.
If v splits, then from Fg — 1 case in [14],

L(Syﬂ'varl) = L(Syﬂ'lwl X Ty X 7T2v)a
L(s,my,1r2) = L(8, (T1, ® W) X T1a,),
L(s,my,13) = L(8, T2y @ W),
where w = wr,,, Wy, Wrs, -
If v is inert, let m, = 7(u1, p2, 13), where p;’s are unramified quasi-characters

of EX. Let mg, = m(v1,v2), where v;’s are unramified quasi-characters of F,¢. Then
7y is induced from the character x of the torus. We have

X © Hal (t)HO(s (B = ,U,1/L2_1(t), X © HOéz (t)H(h; (i) = .UJ2:U‘3_1(t)
X © Hae = V1V2_1a X(a(u)) = wl(UQ)w2(u3)7

where u = @. From this, we see that x o Hoy, = (u3|px)ve. Then by direct
computation, short roots {51 + B2 + B3, B2 + B3, B1 + 202+ B3, B1 + B2+ B3+ Ba, f1 +
2B2+ B3+ Ba, B2+ B3+ Ba} and long roots {3, B3 + B4, 282+ Bz + B4, 22+ B3, 21 +
202 + B3,281 + 282 + B3 + B4} contribute to L(s, m,,r1) and so on. Hence

L(s,my,r1) = L(s,74(714) X Tay),

L(s,my,12) = L(8,74(714) @ w)

L(s,my,13) = L(8, T2y @ W)

where w = wr,, | px Wn,,, and r4(m1,) is the unramified representation of G'Lo(F}),
given by

[SIE

1 1
ra(mi) = (] pxs g2l pxs tsl g ((Bap2) | gx) 25 ((p2ps)| gx) 25 ((paps)| gx) %
1 1 1
w((pap2)px) 2, w((p2ps) | px) 2 w((paps)| px)?)-

where w = wp, /p,. It is the Asai lift of 71, from GL3(E,) to GLg(F,).
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2.6.2. 2Eg—2. Let = A—{B2}. Then & = 3(ey +ea) +2(e3+es) +e5+e6+e.
A = {Ho, () Ho () Hoy (t°) Ha, (t°) Hoy (t) Hog (1)}

Let P = Py = MN. Since G is simply connected, the derived group Mp of M is
simply connected, and hence

MD = RGSE/FSLQ X SLg
And
ANMp = {Ha1 (tg)Has (tg)HOQ (tG)HM(tG)Has (ts)Has (t4)‘t6 = 1}-

We obtain a map f : M — Resg/pGLa x GL3. Let w1, T be a cuspidal represen-
tation of GLa(Ag), GL3(AF), resp. Let m be a cuspidal representation of M(Ap),
induced by the map f and w1, 7. Let m, be an unramified representation.

If v splits, then we need to consider the non-maximal parabolic subgroup at-
tached to A — {ao, @4} and normalizing factors attached to 1y, , Tay, T1w,. In this
case,

A ={H,, (t1)Hq (t%)Has (“4)Ha4(t§)Has (t5)Hag (UQ)}v

2

where t1t5 = u3. Let m1, = 7(p1,11), T1w, = m(p2, v2), 20 = m(01,M2,m3). Then
we have

XoHa, = pvy', Hay = povy ', xo0Hay =13,
xoHay =mny ", x(a(ti,t2)) = wa,, (1)wn,,, (t2)wn,, (u?).
Then we have x o Hy, = v113, x 0 Hy, = v2m3. Hence m = 4 and
L(
L(
L
(

L S, Ty, T'4

S, 7TU7T1) = L(S, 1w, X 7"-21))L(577T1w2 X 7T2v);
8,71'1),7”2) = L(saﬂ'lwl X My X T2y & wﬂ'gv)a
8, Ty, 73) = L(8, T1w, ® W1, wﬂ'zv)v L(s, Tw, ® w771w1w7r2v)7
) = L(s,m2, @ w),
where w = wr,,, Wr,,, Wy, -

If v is inert, let m, = 7(p1, p2), where p;’s are unramified quasi-characters of
E). Let ma, = m(1m1,m2,M3), where n;’s are unramified quasi-characters of F,*, and
7, be induced from the character x of the torus. We have

X © Hoy () Hay (8) = prps5 ' (1), X © Hag = 1275
X0 Hag =muny ', x(a(t)) = wi (th)wa (u®
Then x o Ho, (t)Ha, (t) = p2(n3 o N) and
L(s,my,m1) = L(s, Ty X 2,5, ),
( ) = L(s,74(m10) X Fau ® wry,),
L(s,my,1r3) = L(s,
( ) = L(s,

L(s,my,14) = L(8, T2y ® (WW1U|FUX)W7T2U)'

L S, Ty, T'2

S, My ®W7r1u(w7r2v © N))

where 7y g, is the base change of my, to E, and 74(m1,) is the Asai lift as in the
2Fg — 1 case.
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2.6.3. 2B — 3. Let 0 = A — {31}. Then & = 2e; + ey + e3 + e4 + e5 + 2¢ and
A = {Hp, (t*)Hoy (1*) Ha, (t°) Ho,y (87) Ho (£) Hag (%)}
Let P = Py = MN. Since G is simply connected, the derived group Mp of M is
simply connected, and hence
Mp = Sping .
There is an F-rational map M — Resg,/pG L1 x HSping . Let 1 be a
grossencharacter of E and o be a cuspidal representation of HSping (Ap). Let 7
be a cuspidal representation of M(Af), given by f,o,n. Let m, be an unramified
representation and x be the inducing character.
If v splits, then we need to consider the non-maximal parabolic subgroup at-
tached to A — {ay, a5} and normalizing factors attached to m,. In this case,
A = {Ha, (u*)Hoy (V%) Ho, (u?0) Ho, (00®) Hog (u?0?) Hog (u0) }.
Hence we have a rational map M — GL; x HSping x GL;. Since “HSping =
H Sping(C), let ¢ : HSping(C) — GSOg(C) be the 2 to 1 map. We can write
O (| gsping(c)) = diag(b?, ..., b3,b3b; 2, ..., b3b7 ?) € GSOs(C) and we have

X © Ha, :bgbzz27 x© Hq, :bgbib62> XOHas :b%b??27
X o Hae = b%bgzu X(a(u,’l))) = nwlnwzbg~

Then we have y © Hey = 0, b3 (b1bobsby )™, X © Hay = 10, bi(bibabsba) . Hence
m = 2 and

L(s,m0,71) 7" = (1= nuyby ' (b1b2bsba) g, *) (1 — 0w, b (brbabsbs) "' g, *)

4

T T = s (B1b2bsba)b; gy *) TT(1 = 7, 0 (brbababa) ~*b7g, )
i=1 i=1

IT (1= s bo(brbabsba) (bibs)~%q, ),
1<i<j<4

4

L(s,my,m2) "' = H(l — Ty Tho, 0D 4, *) (1 — Ty Nz Dob;- b(z)%_s),
=1

where ¢, = qF,.

Let v be inert. Using the map ¢ : HSping(C) — GSOg(C) we can write
¢(f|HSpm8(C)) = diag(b?, ..., b3,b2b; %, ..., b3b7 %) x 7, where 7 is the nontrivial ele-
ment in Gal(E/F), and we have

xoHa,Hay = b§b62’ xoHeo, = b2b52’
X © HO(G = b%bQ_Za X(CL( )) - 77ub2
Then x 0 Hy, Hyy = 1,07 b5 2b3 2b. Hence m = 2 and
L(s, my,71) 7" = (1= 10 (bababs) ~2q; **) (1 — mubg * (brbabs) g, )

3
T = b3 (bababs) ~?bia, ) T (1 = mu(brbabs)b; g, ),
=1

i=1

w

3
L(s,my,m2) " = (1= (o] 5?6305 ) T (X = 10l px b7 *) (1 = 10| x b *b5 %)
i=1
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REMARK 2.6. Using the Rankin-Selberg integral, W.T. Gan and J. Hundley
obtained the L-functions for a cuspidal representation of quasi-split PSOg(AFr).
The L-functions of (i) and (ii) of Section 1.4 of [9] agree with the L-functions of
this paper. However, the L-function of the case (i) of Section 1.4 of [9] (attached
to a cubic extension of F') cannot be obtained by the Langlands-Shahidi method.

2.6.4. 2Eg —4. Let 6 = A — {B,}. Then & = e1 + ea + e3 + eq + e5 + e + 2¢
and
A = {Hal (t)HO(s (t)HOtz (t2>HO¢4 (tQ)HO(s (t?))H@G (tz)}
Let P = MN. Since G is simply connected, the derived group Mp of M is simply
connected, and hence

Mp = SU(3,3)
We obtain a map f: M — GL; x GU(3,3).

Let m be a cuspidal representation of GU(3,3)(Ar). Let m, be an unramified
representation. If v splits, then then 7, is a representation of GLg(F,) X F)X,
namely, T, = 0, ® 1),. In this case, by (x) case in [14], m = 2 and

L(Su T, Tl) = L(S, O, AN ® 771))7 L(57 T, TZ) = L(Sawvn?))-

If v is inert, let m, = w(u1, p2, 3, n), where p;’s are characters of EX and 7 is a
character of Fi)*. The central character is ((u1p243)]px )n?. Let x be the inducing
character of the torus. Then

X © HOél (t)Has (ﬂ = ,U'LU'Z_I(t)7 X © HOtz (t)HOu; (E) = ﬂ2:u3_1(t)7
X © Hoy = pis|px,  x(a(t)) = ((apzps)| g )n?

From this, we see that x o Hy, = 7. Hence m = 2 and

3
L(s,my,m1) " = (1= ng, )1 = n(papaps p)ay ) [T = nuil e
=1
I a=nuilpa® T Q= 0(uimle0za)
1<i<j<3 1<i<j<3
3
1 _
T £n( )7 il pxay ),
i=1

and L(s,my,m2) = L(s, ((1p12p3)| px )n°)- This gives the twisted exterior cube L-
function of U (3, 3).

2.7. B, case. In [14], we only dealt with the B,, — 1 case. Here we deal with
the general case. Let G = Spina,11 be a split spin group as in [14]. We define
GSpinan+1 to be the maximal Levi subgroup of Sping, 43 which has Sping, 41 as
the derived group. More precisely, we add ay = eg — e; in the root system and
consider the Levi subgroup attached to 6 = A — {a}. Then

A = {Hyy(t*)Ho, (%) -+ He, ,(t*)Ha, (t) : t € F '},
and
Mp = Spingny1, ANMp = {H,, (t):t*=1}.
We define
GSpinant1 = (GL1 X Spinan11)/(ANMp).
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Note that the center of G is
Z(G)={H,, (t): t* =1}.

Since the center of G.Sping, 4, is connected, the derived group of “GSping, 1 is
simply connected, and is Spa, (C). Therefore, “GSpina, 11 = GSpan(C).

Let § = A — {ay}. Let n = k+ 1. Let P = Py be the parabolic subgroup
attached to # and let A be the connected component of the center of M. Then

E
2

A = {Hal (t)"'HOék(tk)HakJrl (tk)"'Hanfl(tk)Han(t ) i GF*} if k even,
{Hal (t2) e Hak (t%)Hak+1 (t2k) e Hanfz(tQk)Han (tk) ite F*} if k odd.

Since G is simply connected, the derived group Mp of M is simply connected,
and hence M = SLjy x Sping;1. Then

M=GL; x SL;, x Sp’in21+1/(A N MD)

We can define a map f: M — GLi x GSpingy1.

Let m,m be cuspidal representations of GLk(Afr), GSping+1(Ar) with the
central character wy, ws, resp. Let 7 be a cuspidal representation of M(Ar), induced
by f and 7y, me. Then the central character of 7 is

E
o — wiwg , if k even

™ .
wiwh. if k odd.

Here “GSping, 11 = GSpa,(C). Let i, = diag(ay, ...,ar) € GL,(C) = 'GL; and
ty = diag(by, ..., by, bflbo, - bflbo) € GSpq(C) be the Satake parameters attached
to 71y, T2y, resp. Here we note that

diag(by, ..., by, by 'bo, ..., by 'bo) — bo

generates the character group of GSpy, and hence by Lemma 1.2 of [14], by =
wa(ww). Then

-1 -1
xXoHy =ajay,...,xoHqy,_, =ar_10; ",

=biby',...,x0Ha, , =b_1b; ', x0H,, =b_1bb;",

x(a(t)) = wr, = {

xo H,

Q41
(ay---ax)(bo)%, if k even
(a1 ---ax)*(bo)*, if k odd.

Since f(Ha, (t)) = (diag(1, ..., 1,t), b(t)), we can see x o H,, = axby 'by. Hence, we
see that m = 2,

L(s,m,r1) = L(s, 71 X m3),
L(s,m,1r9) = L(s, 71, Sym?* ® wy).
REMARK 2.7. By a low-dimensional accident, GSpins ~ GSpy. Using this
isomorphism, we obtain the spin L-function of cuspidal representations of GSpy

and also the degree 8 L-function of cuspidal representations of GLy X GSpy. These
L-functions have been studied extensively by the Rankin-Selberg method.
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2.8. C, case. In order to demonstrate that we do not obtain any new L-
functions by considering similitude groups, we calculate L-functions for G = G Spap;
The element of the torus is written as

t=t(Us, ey Up, tp) = diag(Ur, ..o, Un, Uy, U0, ooy UT T

Let e;(t) = u; for ¢ = 0,...,n. Then the simple roots are a1 = e1 — €g, ..., 1 =
€n_1 — €n,y = 2e, — eg. The corresponding coroots are

of (u) = tlu,u™ 1, 11, o = (1 Lusu 1) = ¢(1 ., 1w, ).
Any character x of T(F,) is given by x = x(11, ., n, 7o) so that

X(7717 ---777n>7]0)(t(uh ...,’LLn,U())) = 771(“’1) T Wn(un)no(uo)

Let M = GLy X GSpy, k+1 =n. Then & = e; +---+ e, — eg. Let w1, w9 be
cuspidal representations of G Ly, GSpg; with the central characters wy, ws, resp. Let
T =m ®mg. Let w1, = w1, -y k), T20 = 7(V1, oy 1, v9). Then m = 2 and

L(s,my,m1) = L(8,m14 X Th,),
L(Sa T, T?) = L(Sa T1lv, /\2)7
except when k = 1. When k = 1, the second L-function does not occur. Here 7} is

any irreducible constituent of m3|gp,, (a)-

2.9. General spinor groups. We construct several maps between general
spinor groups and G.SOs,. The center of Sping, is {1, ¢, z, cz} where

¢=Ha, ,(-1)Ha,(-1),
and
LIRS Ho (R0 Ha,, (-1) if 0 is even,
| ) 2, (1)) Ha,_ (—V/=T)Ha, (vV=T) ifn is odd.
Following [14], we define H Spins,, to be
GL1 X szngn
{(17 1)7 (V -1, 2)7 (_17 C)7 (_ v—1, Zc)}

By the definition we see that there is a natural 2 to 1 map

HSping, =

GSpina,

GSping, — HSping, ~ . (/T z)}

Note that

GL1 X SOQn N GL1 X S’pingn
{(L 1)7 (_15 Z)} N {(17 1)v (_17 Z)7 (L C)7 (_17 ZC)} '
The map GL; x Spina, — GLy x Spinag,, (t,z) — (t?,x) induces a 2 to 1 map
HSping, — GSOs,. The kernel of the homomorphism G Spinsg, — GSO,, is easy
to compute, and so we have the following proposition.

GSOy, =

PROPOSITION 2.8. There are natural 2 to 1 maps GSping, — HSping, and

HSping, — GSOs, as described above. The composite of the two maps, GSpina, —
GSOap,, is a 4 to 1 map and it has kernel {(1,1),(1,¢), (v/—1,2), (vV—=1,¢c2)}.
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REMARK 2.9. In the literature, GSping, is defined by Clifford algebras. It
is usually referred as Clifford group, e.g., see §20.2 of [8]. Namely, let V be a
vector space of dim 2n with a symmetric bilinear form Q. Then one can construct
Clifford algebras C(Q) and CH(Q). If V=W & W', where dimW = dim W’ = n,
then C*(Q) ~ End(A®*"W) @ End(A°YW). Let x — z* be the anti-involution
such that (v1---v,)* = (=1)"vp---v1 for vy,..,v, € V. Then GSpin(Q) = {x €
CH(Q)|zVx* C V}. Then using the fact that v-v = —v -v* = Q(v,v) forv eV,
we can see that the map p : GSpin(Q) — GSO(Q), p(z)(v) = x-v-x*, is a
homomorphism. If Q is attached to the identity matriz, the kernel is

{£1, £V —lei-ea---ean_1- €20}

Note that Spin(Q) = {x € CT(Q)|zVa* C V,z -a* = 1}. The fact that this is
equivalent to our definition has been pointed out by S. Kudla.

3. Proof of a Conjecture of Shahidi
We recall Conjecture 7.1 of [27] which we call Shahidi’s conjecture:

CONJECTURE (Shahidi’s conjecture). Let m = ®,m, be a generic cuspidal rep-
resentation of M(Ap). If m, is tempered then each L(s,m,,r;) is holomorphic for
Re(s) > 0.

In many cases this conjecture is proved to be true. First of all, if F, is an
archimedean local field, then Shahidi’s conjecture is true since the L-functions and
e-factors are Artin factors. From now on we assume that F, is nonarchimedean.
Casselman and Shahidi prove the conjecture for quasi-split classical groups in [7].
For simply connected groups of type B,, or D,, the conjecture is proved by Asgari
[3] in the split case and by the second named author [17] in the quasi-split case.
The first named author settled Shahidi’s conjecture for split exceptional groups
except for a few cases (cf. Theorem 3.16 of [14]).

We want to prove Shahidi’s conjecture for quasi-split groups. To prepare we
state several general results concerning the holomorphy of L-functions [27].

PROPOSITION 3.1. Let m, be a generic tempered representation of M = M(Fy,).
(1) If m =1 then L(s,m,,r1) is holomorphic for Re(s) > 0.
(2) If m =2 and L(s,my,7m2) = [[;(1 - ajq %)t for |aj| = 1,5 € C, then
L(s,my,7r1) s holomorphic for Re(s) > 0. In particular, if ro is one-
dimensional, then L(s,m,,71) s holomorphic for Re(s) > 0.

The multiplicativity of «-factors plays an important role in studying the holo-
morphy of L-functions and the properties of intertwining operators. The general
theory is explained in [26, 27] and we use the notation of [14] for consistency.

PrRoOPOSITION 3.2. Let m, be an irreducible admissible generic representation
of M = M(F,) such that 7, C Indp,n,(c®1), where o is an irreducible generic ad-
missible representation of Mg = My(F). For each j € S;, let y(s,w;(0),7i(;y,%), 1 <
1 < m, be the corresponding y-factors. Then

'7(57 Ty Tiy ,(/)) = H 7(57 mj(o-)a Ti(5)> w)
JES:
Furthermore, if Shahidi’s conjecture is true for each L(s,w;(0), 7)), then we have
the corresponding multiplicativity for L-functions.
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Let ¢, : Wg, x SLa(C) — LM be the parametrization of m,. Then there is a
corresponding multiplicativity for Artin ~-factors of ¢, as explained in page 280 of
[26]. Since Artin L-functions satisfy holomorphy we obtain the following result.

ProprosITION 3.3. Let 7, and o be as in Proposition 3.2, and suppose m, is
tempered. If each y(s,W;(0),r;(;),%) is an Artin factor then so are (s, 7y, 7i,9)
and L(s,my,r;). In this case, L(s,m,,7;) is holomorphic for Re(s) > 0.

It is expected that (s, m,,7;,%) and L(s,m,,r;) are Artin factors for any tem-
pered representation 7,. However, we do not know this yet except for a few
cases. For example, Shahidi proves that his L-functions are Artin L-functions for
GL, xGLy, C GLy14m. It follows from Proposition 3.3 that Shahidi’s conjecture is
true for tempered representations of GL,, (Fy,) X GL,,(F,) C GLy4m(F,). Using the
local-global argument and the base change we prove another case in the following
lemma.

LEMMA 3.4. Let E/F be a quadratic extension of number fields. Fix a finite
place v of F', and suppose w is a unique place of E lying over v with [E,, : F,] = 2.
Let o be a tempered representation of GL,—1(F,) and p be a unitary character of
Resp prGL1(F,) = GLi(Ey) = Ej so that o ® p is a tempered representation of
M(F,) = GLy_1(F,) X Resg,pGL1(F,)(C GSping,(F,) in *D, — 3 case). Then
L(s,0@u,r1) = L(s,0p,,®u) is an Artin L-function, where o ,, is the base change

of 0.

PRrOOF. By multiplicativity (cf. Proposition 3.2), it is enough to prove it for a
supercuspidal representation o. Let 7 be a cuspidal representation of GL,_1(Af),
and x be a grossencharacter of E such that m, = o, xu = p and 7, X are
unramified for all finite places v/ # v of F' and finite places w’ # w of E. Let 7g
be a cuspidal representation of GL,_1(Ag) obtained by the base change of 7 (cf.
See 1.6 and II1.1-5 of [2]). Now we have functional equations

L(Svﬂ—@erl) = 6(8,7T®X)L(1—S,7T®X,T1)
Lis,me®x) = €(s,7g®@x)L(1—s,7r® X)

Since L(s, Ty @ Xory71) = L(8, (TE)y ® Xor) for all v’ # v (cf. Section 2.3.3), we
see that

(8,0 @ pi,11,) = (5,080 @ p, V).

The fact that o, is tempered (Theorem 6.2, (a) in [2]) implies the corresponding
equation of L-functions

L(s,0 @ u,r1) = L(s,0m, ® 1)

and so the L-function is an Artin L-function. O

We now prove Shahidi’s conjecture by case-by-case analysis for a p-adic field
F,. For simplicity of notation we drop the notation v. For example, we write F' for
F, and 7 for a tempered representation 7, of M(F},), and so F' does not mean the
number field but a p-adic field. Furthermore, we assume that v is non-split since
the split cases are considered in [14].
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3.1. 2D, case. Let G = GSpin,,, and let E/F be a quadratic extension over
which GSpins,, splits. This case is proved in [17] where a detailed proof was given
for 2D,, — 1 but the proof of 2D,, — 2 and 2D,, — 3 was sketchy there. So we treat
these two cases in detail. First, note that 2D,, — 3 case follows from Lemma 3.4
and Proposition 3.3.

Now we consider the 2D,, — 2 case. Let 7,7 be tempered representations of
GL,_o(F),GLy(FE), respectively so that m = m ® 7y is a tempered representation
of M(F) = GL,_2(F) x Resg/pGL2(F). We may assume that mo is a discrete

series. Then 7q is given as a unique subrepresentation of Ind(y| \119/2 ® pf ‘}_31/2)7

where p is a character of GL1(E), and we have

7(8771_1 ®7T2,7"1,¢) :IY(S—’_ 177T1 ®[L,’I"1,’l/1)’)/(8 - 13771 ®M,T1,¢)~

The y-factors on the right are Artin factors and so (s, 71 ® ma,71,%) is also an
Artin factor. Now holomorphy of L(s,m; ® m2,71) for Re(s) > 0 follows from by
Proposition 3.3.

3.2. 3Dy case. Let E/F be a cubic extension over which Sping splits.

3.2.1. 3Dy — 1. Since 7, is one-dimensional we apply Proposition 3.1 (2).

3.2.2. 3Dy — 2. Let o be a tempered representation of GLo(F), and let n be a
character of GL1(E) = E*. Let 7 be a tempered representation of M(F') obtained
from ¢ and n via the F-rational map f. The local-global argument (used in the
proof of Lemma 3.4) with L-function computation in 2.4.2 shows that

L(s,m,m1) = L(s,0 ®n),

where o is the base change of o to E. Now we note that L(s, cp®n) is holomorphic
for Re(s) > 0.

3.3. 5D,. The proof is similar to that of 3Dj.

3.4. 2Ej case. Let E/F be a quadratic extension over which 2Eg splits.

3.4.1. 2Eg — 1. Let 7y, mo be tempered representations of GL3(E),GLo(F) re-
spectively. Let 7 be a tempered representation of M(F') obtained from 7 and 7o
via the F-rational map f. By multiplicativity (Proposition 3.2) we assume that 7
is a discrete series. Since Shahidi’s conjecture is true for supercuspidal represen-
tations we may assume one of 7 or ms is not supercuspidal. If m is given as a

unique square integrable subrepresentation of Ind(] |11T3/2X RX® | |];1/ %X), where x

is a character of GL1(F), and 7y is supercuspidal, then

2 2

yis,mor ) = [[r(s+i— 1x x T, 00) [[ (s +i = 137 x 7o, )

i=0 i=0
After cancellation we see that the corresponding L-function is
L(s,m,71) = L(s+1,x x T2)L(s + 1, x* X )
which is holomorphic for Re(s) > 0. If my < Ind(] |}E/2X ® X ® | |;31/2x) and
72— Ind(| |},/2,u ® | |;1/2u), where p is a character of GL1(F), then

L(s,m,r) = L(s+3/2,x x p DL(s +3/2,x*> x p~ 1)
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which is holomorphic for Re(s) > 0. Finally, if 7; is supercuspidal and 7y <
Ind(| |2 p @ [/* ), then

L(s,m,r) = L(s+1/2,m x p~ 1)

which is holomorphic for Re(s) > 0.

3.4.2. 2Eg — 2. Let 71, m2 be tempered representations of GLy(E),GL3(F) re-
spectively. Let 7 be a tempered representation of M(F') obtained from 7 and 7o
via the F-rational map f. The local-global argument with unramified computation
in 2.6.2 shows that

L(s,m,r1) = L(s,m X T2 g),
where 7y g is the base change of 3 to F2. The proof follows from the fact that
L(s,m X 2 g) is holomorphic for Re(s) > 0.

3.4.3. 2Eg — 3. Let o be a tempered representation of HSping (F), and let 7
be a character of GL1(F). Let m be a tempered representation of M(F') obtained
from o and 7 via the F-rational map f as in 2.6.3. We may assume that m is
a discrete series since any tempered representation is unitarily induced from a
discrete series representation. If o is supercuspidal, then Shahidi’s conjecture is
true by Proposition 7.3 of [27].

If o is a unique square integrable subrepresentation of Ind(| |%p ® o), where p
is a unitary character of GL1(F) and oy is a unitary supercuspidal representation
of HSping (F), then p ~ p and 2e € Z,e > 0 by Casselman’s square integrability
criterion [6]. Then

Y(s,m,r1,10) = y(s+e,nxp,)y(s,nxp,)y(s—e,nxp,P)y(s+e, p@(o0®n),71,)

where 1 on the right is for 2Ds — 1. By Corollary 7.6 of [27], we see that e = 1/2, 1
and

S e —LE 2’><~; if
~ ~ . 57 ]Xp
’Y( 7”)(()”1/})7(57’)’]>(()7w),}/(8—8’77)<p71/))f { ( )nXL/) (37 i ><~) )
L(S,"]X 0) . [(S+—1,77><p) lf e = —2.

From this observation we see that L(s,m,r1) is holomorphic for Re(s) > 0.

If o is a unique square integrable subrepresentation of Ind(| det |%p®0y(), where
p is a unitary supercuspidal representation of GLo(F') and o is a unitary supercus-
pidal representation of HSping (F), then p ~ 5 and 2e € Z by Casselman’s square
integrability criterion [6]. Then

')/(S,TI',T’l,d)) = FY(S + €,p® (GO @ 77)7T17¢)7(S - 6,p® (UO Y n)a’rladj)

where 7 on the right is for 2D, — 2. Note that v(s e, p® (0o ®1n),71,1) are Artin
~-factors (whose proof is similar to that of Lemma 3.4). Now apply Proposition
3.3.

If o is a unique square integrable representation of Ind(| det | p®09), where p is
a unitary supercuspidal representation of GL3(F') and oy is a unitary supercuspidal
representation of HSping (F), then p ~ p and 2e € Z by Casselman’s square
integrability criterion [6]. Then

y(s,mrLY) = y(s+e,p® (00 ®@n),11,9)v(s —e,p® (00 @n),71,7)
X (s+epxnah)y(s—e pxn,)

where 71 on the right is for 2D, — 3. The factors on the right are Artin factors
and so we get holomorphy of L-functions. The remaining cases can be handled
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similarly by applying multiplicativity in a suitable way and noting the factors are
Artin factors.
3.4.4. 2Eg — 4. Since ry is one-dimensional we apply Proposition 3.1 (2).

THEOREM 3.5. Let m be a generic tempered representation of M(F). Then
L(s,m,11) is homomorphic for Re(s) > 0 except possibly for the cases: E7 —3, Eg —
3, Es — 4 and (zaviii) of [20].

4. Proof of Assumption (A)

We recall the following assertion which is called Assumption (A), e.g., [14].

ASSUMPTION (A). Let m = ®,m, be a generic cuspidal representation of M(AF).
Then the normalized intertwining operator N(s,m,,wq) s holomorphic and non-
zero for Re(s) > % for every v.

The first named author has developed a quite general machinery of proving
Assumption (A) through several papers [12, 13, 14]. For the sake of completeness,
we recall several results in the following.

PROPOSITION 4.1. Let w, be a tempered, generic representation of M(F,) for
which Shahidi’s conjecture is true. Then N (s,m,,wp) is holomorphic and non-zero
for Re(s) > 0.

LEMMA 4.2. Let m, be a generic tempered representation of M(F,) which is a
subrepresentation of I(A, p) where p is a supercuspidal representation. If (A, BY) is
a half-integer for each positive root B, then N(s,m,,wy) is holomorphic and non-
zero for Re(s) > —ﬁ, where m is the number of irreducible constituents of the
adjoint action of "M on Fn as in Section 1.

Proposition 4.1 and Lemma 4.2 are direct generalizations of Lemma 4.2 and
Lemma 4.3 of [14] for quasi-split groups. In [14] the statements are given for split
groups, but the proofs are general and work for quasi-split groups, too.

In the special rank-one case of GL x GL; C GLgy;, we have the following
well-known result (cf. Proposition 1.10 of [24] or Lemma 2.10 of [13]):

LEMMA 4.3. Let o and T be tempered representations of GLy(F,) and GL;(F,),
respectively. Then N(s,0 ® T,wq) s holomorphic and non-zero for Re(s) > —1.

The next result concerns non-vanishing of the normalized intertwining operator
N(s,my,wp) which is now known as Zhang’s lemma (Lemma 1.7 of [13] or the proof
of Theorem 3 of [31]).

LEMMA 4.4. Let wg is an irreducible, generic tempered representation of M
and let T(A,mg) be the induced representation. Assume Shahidi’s conjecture for
each rank-one situation. If N (A, 7o, wo) is holomorphic at Ay then it is nonzero at

Ap.

In the study of the normalized intertwining operators it is important to know
when a representation is a fully induced representation. To be specific, let m, be
an irreducible admissible representation of M(F,). By Langlands’ classification
theorem (Chapter IV, Theorem 4.11 and Chapter XI, Theorem 2.10 of [5]), there
exists Langlands’ data (Pg, Ag, 7o) such that 7, = J(Ag, mp) where Pg = MgNj is a
parabolic subgroup of M, Ag is a complex parameter in the positive Weyl chamber,
and 7y is a tempered representation of My (F,). In general, the Langlands’ quotient
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J (Ao, mp) is a quotient of I(Ag,mp). However, if , is generic then it is expected
that J(Ao, 7T0) = I(Ao, 7T()).

CONJECTURE (Standard module conjecture). Let w, be a non-tempered repre-
sentation of M(F,). If m, is generic, then there is a tempered representation my of
My (Fy) and a complex parameter Ag in the positive Weyl chamber such that

( <A0,va/{,(')>).

7y = I(Ao,m0) = Indpy 1) (0 @ qu

Mo (Fy)

This conjecture is proved for many cases. For archimedean places, it is due to
Vogan [29]. For nonarchimedean cases, it is proved in [7] for supercuspidal repre-
sentations, and G. Mui¢ settled many cases for classical groups [22, 23]. Recently,
V. Heiermann and G. Mui¢ proved the following fundamental result [10].

THEOREM 4.5. If the local coefficients Cy (s, m, wo) attached to (M, m) (cf. [27])
are reqular in the negative Weyl chamber, then the standard module conjecture is
true. In particular, Shahidi’s conjecture implies the standard module conjecture.

Next we recall that the analogue of Assumption (A) is true for Re(s) > 1
provided that Shahidi’s conjecture is true (Proposition 4.9 of [14]). Another funda-
mental result concerning normalized intertwining operators is the cocycle relation
of intertwining operators (cf. [1, 27]). The following version is taken from Theorem
1 of [31].

PROPOSITION 4.6. Let m be an irreducible admissible generic representation of
Mjy(F,) where @ C A. If w10, wow10 C A, then

N(A,’/Tv,’wgwl) = N(U)lA, wl’]TU,U)Q)N(A, wv,wl).

Now we assume that m, is generic and non-tempered. We will show that
N (s, 7y, wp) is holomorphic and non-zero for Re(s) > 3 under the following three
assumptions (i),(ii) and (iii) to be specified below:
(i) Shahidi’s conjecture and (hence) the standard module conjecture.
(ii) The assumption of Lemma 4.2 (half integer condition).
From now on we assume (i) and (ii). By the standard module conjecture, we may
write 7, = I(Ag, mo) for a generic tempered representation m, and

I(s,my) = I(s& + Ag, 7).

Then we have
N (s, my, wo) = N(sa+ A, mo,w")|1(s,m,)-

Thus it is enough to prove that N(s& + A, mg,w’) is holomorphic and non-zero
for Re(s) > 1. By Zhang’s lemma (Lemma 4.4), all we have to do is to prove
N(sa@+ Ag, mp, w') is holomorphic for Re(s) > % By Proposition 4.6, we know that
N(sa + Ag, o, w’) is a product of rank-one operators whose complex parameters
are of the form (sa + Ag, 8Y) for positive roots 8 by identifying roots (G, Ag)
with roots (G, Ay) where Ay is the maximal split torus. Further we assume that

(i) Re({s& + Ag,B8Y)) > —1 if the rank-one situation is GLy x GL; C GLg4y
Re({s@ + Ao, 8Y)) > —5= other rank-one situation
for all positive roots 5. By Lemma 4.2 and 4.3, we see that N(s& + Ay, mg,w’) is a

product of rank-one operators, each of which is holomorphic for Re(s) >
completes the proof of Assumption (A) under the assumptions (i),(ii) a
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We shall prove Assumption (A) for 24,,,2D,,,2D, and ?Eg. First, we note that
assumptions (i) and (ii) are fulfilled for these cases. In fact, we proved Shahidi’s
conjecture for these cases in Section 3, and (partial) classifications of tempered
(or square integrable) representations for GL,, (F), U(F), GSping,(F) (cf. [17, 19,
28]) imply assumption (ii). Therefore, the proof of assumption (iii) is the only
issue for these cases. For simplicity of notation, we drop the notation v of place
and write w for m, and F for F,. In view of the discussion above, we may assume
that all the parameters are real, in particular, we assume that s is real. With this
notational convention we prove that N (s, T, wg) is holomorphic and non-zero for
s > 1 by proving the assumption (iii).

4.1. Unitary groups. Let U be either U(n,n) or U(n,n+ 1), and let E/F
be the quadratic extension which defines the unitary group U. Denote by A =
{B1, ..., Bn} the set of simple roots of U. Any Levi subgroup M of U is of the form

M ~ Resg/pGLy, X -+ X Resg/pGLy, x U’

where U’ is a unitary group of the same type of smaller rank.
According to [19], any generic unitary representation of 7 of U(F) is of the
form

m=1Ind|det|go1 ® - ® |det|For ®T

where 0 < rp < -+ <1y < 1, 0; are discrete series of GL,,(E) and 7 is a generic
tempered representation of U’(F). Then we may write

A=s1E1+ -+ s, B,

where 0 < s, < --- <81 < 1. Here Fy,..., E, is the standard basis for R™ so that
Bi:Ei_Ei-i—l for 1§Z§7’l—1 and

5, = 2E, ifU=U(n,n),
"\E, fU=Umn+1).

Hence we can argue and prove Assumption (A) in this case as we do for classical
groups. More precisely, if U = U(n,n) then the (restricted) root system is of
type Cp, and thus the case is identical to that of Spa,. If U = U(n,n + 1) then
the (restricted) root system is of type BC,, and thus the case is similar to that of
SOap,41 (cf. [13]).

4.2. D,, case. The root system of 2Ds, is of type B,,_; and so the proof of
Assumption (A) is similar to that of classical groups of type B,_1 (cf. [13]).

For completeness, we include a proof for the 3D, case which is similar to that
of type G2. In this case [F : F| = 3, and we consider parameters with respect to

| |z
4.2.1. 3Dy — 1. In this case,

& =e;+ ey =361 +20s.

Let m be a representation of GLy(FE) = Resg/pGL2(F). Then we may write
Ag = rB1,0 < r < 3. The rank one situations are those for GL;(E) x GLy(E) C
GLi4,(E) and the least value of (s + Ao, 3Y) is s —r > —1if s > 1.
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4.2.2. 3D, — 2. In this case,

1
a = 5(61 +e2) =251 + fa.

Let 7 be a representation of GLy(F). Then we may write Ag = 78,0 < r < %
The rank one situations are those for GL;(E) x GL(FE) C GLj41(E) and the least
value of (si + Ag, V) is s —3r > —1if s > 3.

4.3. ?2Eg case. In this case [E : F] = 2, and we consider parameters with
respect to | |g. Since the (restricted) root system 2Fjg is of type Fy, the proof of
Assumption (A) is similar to that of the split F case.

4.3.1. 2E5 — 1. In this case

a=2(e1+ext+e3)testes+es+3e=40 +8082 + 683+ 304

Let m; be a representation of GL3(E) and 73 a representation of GLy(F'). We write
ANo=7r181 4+ 7182+ 7284, where 0 < ry <land 0 < ry < %, and

sa+ Ay = (45 +11)B1 + (85 +12)B2 + 6583 + (35 + 12) B4

The rank one operators are for GL;(E) x GL,(E) C GLj4,(E) and the least value
of (sa+ Ao, BY) is s — (r1 +72) > —1if s > 1.
4.3.2. 2E5 — 2. In this case

a=3(e1 +e2) +2(e3+e4) +e5+e6 + 3¢ =301 + 682 + 403 + 20,4

Let 71 be a representation of GLs(FE) and 7y a representation of GL3(F). We write
Ao =7r181 +79B3+ 1984, where 0 < ry < land 0 < ry < %, and

s@&+ Ao = (3s+11)81 + 65082 + (4s + r2) B3 + (25 + 12) fa.

The rank one operators are for GL;(E) x GL,(E) C GLj4,(E) and the least value
of (sa+ Ag,BY)iss—(r; +rg) > —1if s > %
4.3.3. 2Es — 3. In this case

0 =2 +ey+egt+eqgtes+2e=28+ 302 +283+ By

Let 71 be a character of GL1(E) and 73 a representation of HSping (F). Since there
is amap GSping — HSping we may consider 7, as a representation of GSpin, (F).
Let Ey, E1, F3, E3 be the standard basis for R* so that 3y = E; — Ey, 33 = Ey —
Es, B4 = E3 are the simple roots of GSping . Using the standard module conjecture
for GSping (and hence for HSping ), we may write Ag = a1 E1 + axFs + agFs =
a1B2 + (a1 + a2)Ps + (a1 + as + a3) By, where 0 < az < ag < a1 < % In terms of

/Bi,sa
s@+ Ao =2s61 4+ (3s+a1)B2 + (2s + a1 + az)Bs + (s + a1 + az + a3)Pa.

The least value of (s@ + Ag, 3Y) is s — (a1 + az + az) > —1if s > 1.

4.3.4. 2Eg — 4. This case is dual to ?Eg — 3, and the argument is similar.

We summarize the progress of Assumption (A). Since we have the standard
module conjecture available for B,, — 1, D,, — 1, (xxx) in [20], and (xxxii) in [20],
we have Assumption (A) for these cases. On the other hand, the long-sought
functorial lift from classical groups to GLy is proved in [11]. This result pro-
vides the necessary ingredient in the proof of Assumption (A) for (xviii)(SOs —
GLg),(xxii),(xxiv)(SO190 — GL1o) which was not available at the time of [14]. In
conclusion, we have the following theorem.
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THEOREM 4.7. Assumption (A) holds except possibly for the cases E7—3, (zavi)
of [20], Es — 3, Es — 4, and (zxviii) of [20].

REMARK 4.8. The difficulties of the unsettled cases of Assumption (A) lie in
the complicated nature of Levi subgroups in the exceptional group cases, and the lack
of the (partial) classifications of discrete representations of those Levi subgroups.
For example, in the cases of E7 — 3, Es — 3, Es — 4, and (zzviii) of [20], it is hard
to apply multiplicativity to prove Shahidi’s conjecture, which is a key ingredient of
Assumption (A) due to the complicated nature of Levi subgroups.

5. Correction to [14]

The calculations of the Langlands L-groups of certain Levi subgroups are in-
correct. Sections 2.5.4, 2.6.3, 2.6.6, 2.7.3 and 2.7.7 need revision. However, this
does not affect the results of the paper [14].

In Section 2.5.4, we have the maximal Levi subgroup M, denoted by HSpin,
which corresponds to the simple root {a;} of the exceptional group of simply
connected type E§¢. The Langlands L-group LM is not GSpinio(C). In fact,
LM = M(C). To see this, let E¢? be the exceptional group of the adjoint type.
Then E¢? = Eg¢/S, where S is the center of E§¢, and it has order 3. Note that
LEge = Eg4(C), and “M is the maximal Levi subgroup of E¢4(C). Since ANMp
has order 4, we can see that “M = M(C). Hence given a generic cuspidal rep-
resentation m of GSO10(AFr), we can consider it as a cuspidal representation of
H Spinyo(Ap) via the 2 to 1 map HSpinio(Ar) = GSO19(Ar) of Proposition 2.8,
and obtain the degree 16 spin L-function in Section 2.5.4.

In Section 2.6.2 and 2.7.3, GSpinio(C) should be replaced by ©HSpinio(C) =
HSpinio(C) and the map GSpinig — GSO1p is not a 2 to 1 map but a 4 to 1 map
(cf. See Proposition 2.8). These corrections do not affect L-function computations
there.

In Section 2.6.6, LM is not GSpinia(C). Let E¢¢ be the exceptional group
of the adjoint type. Then E¢¢ = E3¢/S, where S is the center of E3¢, and it has
order 2. More explicitly, S = {Ha, (t)Ha, (t)Ha, (t) : t2 = 1}. Let M/ ~ M/S.
Then “M = M'(C). The derived group of M is HS(12,C) (the half-spin group
in Section 2.3.4). Let ¢ = Ha, (—1)Ha.(—1), 2 = Ha, (—1)Ha, (—1)Hay (—1). Then
M = GL; xSpini2/{(1,1), (-1, 2)}. Hence we have a2 to 1 map f : M — GSO15».
(cf. Proposition 2.8).

Let 7' = ®,7, be a generic cuspidal representation of GSO13(AF). Let m
be a spherical representation of GSO;2(F,) with the corresponding semi-simple
conjugacy class £ = e (b2)et(b?)---e5(b2) in T(C), the torus in “GSO5(C) =
GSping,(C), where ef : GL,(C) — T(C) are the standard cocharacters (cf. [4]).
Now let 7 be a cuspidal representation of M(Ar), induced by ' and the 2 to 1
map f. The Satake parameter of 7, is “f(#) in “M. The rest of the calculations
are correct. Since “M is complicated, we are not able to write down explicitly
the L-functions of cuspidal representations of M(Ap) which do not come from
GSO12(AF).

Finally, let E¢¢ be the exceptional group of the adjoint type. Then E¢? = E§°.
So LEg¢ = E§¢(C). Hence in this case, for any maximal Levi subgroup M, LM =
M(C). In particular, “M = M(C) = HSpin14(C) for M = HSpiny4 in Section
2.7.7. The computation of L-functions remains true.
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Reflexions on Receiving the Shaw Prize

Robert P. Langlands

ABSTRACT. As its title indicates this is the text for a lecture delivered in
Hong Kong in September, 2007 on the occasion of the receipt of the Shaw
Prize in Mathematics. It will be published together with an autobiographical
essay by the Shaw Foundation in the Shaw Prize Book, but for the sake of
wider circulation among specialists it is also reproduced here with the kind
permission of the Shaw Foundation. There is a good deal to be said for further
discussion of many of the points made in the text, but that will require a much
more mature understanding of the mathematical issues. I hope that, for the
moment, the lecture is of some value as it stands.

To receive the Shaw Prize is of course a great honor, but it was also an occasion
to discover, or to be reminded, that a number of mathematicians have a perception
of the development of the theory of automorphic forms over the last four decades
that differs from mine if not in a radical, certainly in an essential way. Some of
the differences are a result of misapprehensions that are a natural consequence
of the variety of the theory’s relations to fields practiced by mathematicians with
many different temperaments and training. With a little explanation these misap-
prehensions can be dissipated. The prize is an opportunity to do so. Others are
the result of conflicting methodological stances, mostly unrecognized and certainly
unresolved. Their resolution will certainly demand a deeper understanding of the
subject than is yet available. In this lecture I attempt to describe the current,
unresolved situation. My emphasis will be on my own stance, although my purpose
here is not to advocate but to explain it

My own views are best explained with reference to the accompanying diagram,
in which there are five circles of different sizes, the sizes reflecting nothing more
than the space the associated fields of mathematics occupy in my own mind. The
upper left-hand corner is the analytic theory of automorphic forms, a theory that
came into prominence in the fifties and sixties, as the legacy of mathematicians
like Erich Hecke, C. L. Siegel, Atle Selberg and, as it became more and more
appropriate to employ the language of infinite-dimensional representations, Harish-
Chandra. It is an analytic theory. In the mid-sixties, as a young mathematician
there were several serious questions that I tried to broach, not all in this area
and for most of them with little success. With two I was lucky, simultaneously
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11F80, 22F55.
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and as a result of my own earlier work on the general theory of Eisenstein series,
basically the study of the spectra of specific commuting families of differential
operators on certain noncompact Riemannian manifolds. The spectra are highly
structured and their qualitative properties difficult to establish. To my surprise,
their study ultimately led to a conjectural response to two of the questions or
problems: the definition of a natural family of analytically — at least potentially —
tractable L-functions associated to automorphic forms and the possible structure of
a nonabelian class field theory. The second came immediately after the first, more
the result of inspiration than of effort.

Automorphic forms

Galois .
representations

Function fields
over finitefields

Grothendieckian
agebraic geometry,
Motives

Complex curves

I recall here that not long before, in the proceedings of a mathematical confer-
ence celebrating the second centenary of Princeton University in 1956, Artin had
suggested that such a theory might not exist, or at least might not contain any new
elements. So I may well have been the only one who was searching for it in the
1960’s.

The suggested answer took the form of a construction and a conjecture. The
basic object in the theory of automorphic forms is, today, an automorphic rep-
resentation of the adelic points G(Ap) of a reductive algebraic group G over the
algebraic number field F', all objects that need not be defined here ([1]). For many
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expository purposes, the representation can be replaced by an element of the func-
tion space on which it acts. If, in addition, the group is taken to be GL(2), and, for
simplicity, the adeles replaced by the real numbers, this element is often just a clas-
sical elliptic modular form. This simplification entails, however, a real possibility
of misunderstanding the import of the construction and the conjecture.

The first step in the construction is to attach to G a complex algebraic group
L@, or better “G, usually referred to as the L-group. K is a sufficiently large
finite Galois extension of the ground field F, itself a finite-dimensional extension
of Q at the time of the group’s initial introduction. The L-group has a connected
component G of the same dimension as G and its group of connected components
comes with an isomorphism with Gal(K/F'). So there is an exact sequence

1-G—1Gx — Gal(K/F) — 1.

The second step is to attach to each automorphic representation 7 and to each
finite-dimensional algebraic representation r of G an L-function defined by an
Euler product, at first partial,

(1) Ls(s,m,r) = H L(s,my,T).
vgS

The set S is a finite set of places of F' containing all infinite places, and L(s,7,r)

has the form
1

r(A(m, ’
det (1 - T )

where {A, = A,(7)} is a conjugacy class in Gk attached to 7 or its local repre-
sentative m,. These products converge in a half-plane. Of course, the L-functions
introduced by Hecke, and more generally by H. Maaf}, for GL(2) were the source
of the impulse to search for such general L-functions.

The definition of the L-functions (1) was inspired by the general theory of
Eisenstein series, for it was there that a substantial number of them emerged and
could be continued to the whole complex plane. The first problem that presents
itself is the continuation of all of them, not just as meromorphic functions but as
meromorphic functions with a very limited number of poles. If G is GL(n) and
r = ro the standard representation of GL(n) it was pretty clear that this could be
done, using ideas already proposed, as I recall, in their first form by T. Tamagawa
([2])- The final theory was developed by Godement-Jacquet.

Artin’s proof of the analytic continuation of abelian Artin L-functions came
quickly to my mind and a conjecture simple to state presented itself immediately
with great force. Suppose H and G are two groups over F' and ¢ is a homomor-
phism ¢ : “Hyx — “Gg compatible with the projections onto the Galois group.
Then for any automorphic representation 7y of H(Ag) there is an automorphic
representation g = ¢(mg) of G(Ap) such that {A,(7g)} = {¢p(Ay(7r))} for al-
most all v. The informed reader will notice that for simplicity all problems related
to L-packets have been passed over in silence.

It is immediately clear that this conjecture is already deep and pregnant with
consequence even for H = {1} and G = GL(n). For suppose p is a representation
of the Galois group Gal(K/F) in GL(n,C). Then taking advantage of the freedom
in the choice of K — an inevitable consequence of the initial freedom in the choice
of G — we take “H = Gal(K/F), 'G = GL(n) x Gal(K/F), ¢(0) = o x p(0), 7n
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the unique one-dimensional representation of the trivial group H(Ap) = {1} and
e = ¢(7g), and conclude that

(2) L(Sap) :L(S,’/THap) :L(s’ﬂGar({)),

r(, being the product of the standard representation of GL(n, C) with the trivial rep-
resentation of Gal(K/F'). As a consequence of (2) and the Tamagawa-Godement-
Jacquet theory for GL(n), L(s, p) can be extended to the entire complex plane.

The general conjecture that ¢(mg) always exists I began after some time to call
functoriality. I was amazed by it at the time and remain so today. It has, I believe,
to be regarded as a striking historical fact that the solution — still itself in large
part conjectural, but no longer entirely — to the Artin conjecture (for the first of the
very few available cases, see [3]) appeared as part of a much larger conjecture with
implications of a much broader compass. To deny this context and this historical
origin by referring to the conjectured existence of the mg attached to p as in (2)
as the strong Artin conjecture seems to me wrong-headed. It lends an unmerited
legitimacy to clearly limited methods. The denial can charitably be ascribed to
ignorance and a fear of the analytic theory of automorphic forms.

For number theorists in the 1960’s and subsequent decades, Galois cohomology
and elliptic curves were much more intensively cultivated than algebraic number
theory as such. Legions of practitioners were produced in these domains for whom,
by and large, the analytic theory of automorphic forms, especially nonabelian har-
monic analysis, was anathema. The use by A. Wiles of some simple cases of func-
toriality that could be proven by such means in the proof of the Shimura-Taniyama
conjecture and therefore of Fermat’s theorem was at first simply overlooked ([4]).
Even now that it has been generally noticed, there is among many number theorists
a reluctance to accept the imbrication of number theory and other domains entailed
by a systematic reference to functoriality and nonabelian harmonic analysis and a
failure to recognize the possibilities that this offers.

Once the general conjecture was formulated, the first order of business was to
examine its simpler consequences and to verify in so far as possible that they could
be proved or were compatible with what was then known. There were also over
the years some accretions to the original conjecture. I would now be inclined to
add to the conjectured existence of ¢(7g) just described a second one and to label
the two together functoriality. Functoriality as such applies to all automorphic
representations, even to those that, like most of the representations associated to
Maaf} forms, probably have no strictly diophantine significance.?

There are some fine points concerning the second conjecture for which I would
hesitate to lay my hand in the fire and that I pass over in silence here, but I
describe it nonetheless because something like it has certainly to be proved in any
theory that aspires to completeness. To describe it, I have to assume a notion
adumbrated by Arthur ([5]) that would be a consequence of any complete theory
of the trace formula, namely the notion of Ramanujan type for an automorphic
representation 7, essentially the type for which the Ramanujan conjecture would
be true. Functoriality offers of course the possibility of proving the Ramanujan
conjecture for these representations, which will be in the majority, and of disproving

1Peter Sarnak observed to me that this view is too narrow and referred me, in particular, to
the work of Cogdell, Piatetski-Shapiro and himself on the number of representations of integers
by ternary quadratic forms.
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it for the rest. If 7 is of Ramanujan type, the critical strip for L(s,r,r) will have
the same significance as for Dirichlet L-functions, thus lie between s = 0 and
Rs = 1. Moreover the order m(m,r) of the pole of L(s, 7, r) at s = 1 will be greater
than or equal to 0. Call 7 thick if m(w,r) is always equal to the number of times
the trivial representation of “G is contained in 7. The second conjecture is that
for any m = 7mg there always exists an H, a thick 7y and a ¢ : “H — G such
that 7¢ = ¢(mwg). For a thick 7 the distribution of the conjugacy classes {A4,(7)}
would, basically by definition, be given by the usual Weyl distribution on conjugacy
classes of “H.

So functoriality contains a very general form of the Sato-Tate conjecture. Here,
in contrast to any work on the Artin conjecture, the Sato-Tate conjecture was
formulated before functoriality. So there are historically sound reasons for singling
it out. Its early formulation is, like that of the Taniyama-Shimura conjecture,
no doubt a reflection of the strong early interest in elliptic curves and their zeta-
functions.

The two conjectures of functoriality are in themselves related to Artin’s con-
jecture, largely through their application to the trivial group H = {1}, but, as
formulated here, their purely arithmetic content is otherwise still limited. Not only
do they have a validity extending beyond those automorphic forms strictly related
to diophantine problems but also there is not yet in them any reference to diophan-
tine problems for varieties of dimension greater than zero, for example no reference
to the Taniyama-Shimura conjecture.

A good deal of work has been done on functoriality by F. Shahidi, I. Piatetski-
Shapiro, and others without any pretense that the methods would ever offer the
ultimate insights, but which, in my view, was nevertheless of great importance be-
cause it persuaded many analytic number theorists of the relevance of functoriality
to their problems ([6]). This is, in some sense, quite separate from any interest that
functoriality may have as a tool for more purely diophantine problems. The trace
formula was developed — in higher dimensions created — by J. Arthur and used as
a tool by him and many others in the treatment of specific cases of functoriality,
largely those accessible to endoscopy, especially twisted endoscopy. The book [7]
will be a valuable introduction to the results of many years of effort.

The techniques referred to in the field as endoscopy had, however, from the
beginning an obvious and important limitation. They could provide cases of func-
toriality that have been widely used and in quite different contexts, base change or
the Jacquet-Langlands correspondence in various guises, but functoriality in gen-
eral was not within their range. At the same time, there was a severe technical
difficulty that caused me, and others, to despair: the fundamental lemma. It was
a simply stated general combinatorial lemma and I expected that as such I would
be able to prove it with time. Matters turned out quite differently.

Endoscopy, a feature of nonabelian harmonic analysis on reductive groups over
local or global fields, arose implicitly in a number of contexts, in its twisted form
both implicitly in the early work of Saito-Shintani on what was later called base
change, and somewhat more explicitly in suggestions of — I believe — Jacquet for
functoriality from orthogonal groups or symplectic groups to GL(n). It arose for
me in the context of the trace formula and Shimura varieties.

Over the years a number of my students were introduced to the fundamental
lemma and its difficulties, especially, R. Kottwitz, J. Rogawski and T. Hales. Some
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went on, as is well known, to quite different things, but Kottwitz continued to
reflect not only on it, but also on Shimura varieties and the number-theoretical
difficulties attached to them and on applications of the trace formula. It was he, in
the beginning alone and then later together with M. Goresky and R. MacPherson,
who first had some genuine insight into the topological nature of the lemma.

In the hands of J-L. Waldspurger, G. Laumon and most recently B. C. Ngo,
the lemma and the associated problems took on quite different features. Notice
that, in the diagram under the large circle in the upper left-hand corner, there are
two slightly smaller circles, the size reflecting, as I observed, my own predilections.
These are theories that were inspired by the theory for automorphic forms over
number fields: first of automorphic forms over the second examples of global fields,
namely function fields over finite fields, and then in the very lowest circle over the
complex numbers. By the time we arrive at this third circle the theory has quite a
different flavor. Two names associated to the second circle are V. Drinfeld and L.
Lafforgue ([8]). There is a whole school, strongly influenced by Drinfeld and largely
a Russo-American school, associated to the third circle.

The fundamental lemma is a local lemma, over p-adic fields. The recognition
informing recent work is, first, that to prove it over a p-adic field it is enough to
prove it for the second type of local fields, fields of Laurent series over finite fields,
and secondly that to prove it over such fields it is best to work not with local
orbital integrals but with the corresponding global objects as they appear in the
trace formula. The first step is far from easy but was taken by Waldspurger in an
important paper; for the second we pass naturally from the first of the three circles
on the left of the diagram to the second.

Before passing to the third, I have to indulge in a good deal of somewhat
reckless speculation, but I am growing old and the need to correct false impressions
is growing more urgent. I may no longer have enough time to pursue any insight
slowly to the point of genuine understanding and conviction. So, in the face of
what seem to me the serious misunderstandings that have emerged, I must take my
chances and state my case without delay as clearly as I can. The reader is warned
that prudence is expected of him. He will have to take a great deal of what follows
with a grain of salt until he has reflected on it himself.

I have been troubled for years and often discouraged by my failure, indeed by
the general failure, to broach functoriality in any decisive way. Not so long ago, I
suggested a different approach to the question with which I began to amuse myself
([9],[10]) but it was all very tentative. At the same time, I resolved to learn more
in general about the various researches referred to often in a blanket way by the
catch phraseLanglands program, a phrase that can mean many things.

T also had occasion to listen to lectures of Ngo (supplemented by the report of
J-F.Dat ([11])) and to try to understand them. In particular, I had to attach for
myself some meaning to the notion of stack and algebraic stack. It was a revelation.
I discovered that I had been thinking for decades of orbital integrals in an incorrect
way. | had separated the local from a global part. With the notion of stack, with
the suppleness of the etale cohomology, the two parts are, over global fields of the
second kind, thus over function fields, to be fused and regarded as yielding the
number of points on a stack, a number that can be calculated cohomologically.
The problems encountered in [9],[10] suddenly appeared in an entirely new light. I
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shall try to explain this, although I am still dealing with concepts that I may have
misunderstood.

In [9] a tentative method for approaching functoriality by taking limits in var-
ious trace formulas over an appropriate sequence of functions was introduced. The
global field was taken to be Q, the group GL(2). The following difference, written
in a notation that is not quite the same as that of [9], was encountered

> pex I(p)0m(p)

_ m/2
(3) X /21 Cm X7

I define neither the constant ¢, nor the expression 6,,(p). The question of whether
the limit of this difference exists as X — oo was discussed, but inconclusively. In
[10], I passed to the rational function field over a finite field with ¢ elements. Then
the sum (3) is replaced by

Zdeg p=n nem (p)

nm/2
qnm/2+n :

(4)

The limit is to be taken for a fixed m but with n — oo and the constant has
changed. There would be something similar for the function fields of curves of
positive genus. The divisor p is here prime.

We write (4) as

/
— cmq

5) > deg pen MW (p) — g™ "
qnm/2+n :

We need to show that this expression has a limit as n approaches infinity. The
first term of the numerator is a fused orbital integral, and thus can — I suppose —
be calculated cohomologically. Thus, the dimension of the associated stack being
mn + n, it will be of the form

2(mn+n) d
PORCAD DL
k=0 j=1

where |y; x| = 1. The kth term is the contribution of the cohomology with compact
support in degree k, thus of the cohomology in degree 2(mn + n) — k. So what is
necessary is to show that after the cohomology in degree 0 or at least very small
degrees, which will just contribute the term ¢/,,¢™" ™, there is no cohomology in
positive dimension less than (approximately) the intermediate dimension mn + n
and that the dimension of the cohomology in all degrees can be bounded. Then
the cohomology in degrees around mn + n can contribute to the limit, and the
cohomology in higher degrees will contribute 0 because of the denominator.

All this looks far-fetched. It is suggested by a simple phenomenon, first de-
scribed to me by N. Katz, that is discussed in [10]. In the naive reflexions of that
paper, the stack is replaced by the moduli space of hyperelliptic curves of some
large genus, thus by the space of monic polynomials of a given degree with dis-
tinct roots. This space has cohomology over Q only in degrees 0 and 1. It is an
Filenberg-MacLane space for a braid group, itself fairly closely related to congru-
ence subgroups. For congruence subgroups, the phenomenon of concentration of
cohomology in only a few dimensions, in particular those around the middle dimen-
sion, seems to have presented itself in other contexts ([12]), but all this is still very
new to me.
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I have, of course, passed rather glibly from function fields over finite fields to
ordinary topology. This is the passage from the second circle on the left to the
third. For vanishing theorems, this is perfectly natural because there are compar-
ison theorems between etale cohomology and other cohomologies or between etale
cohomology for a variety (or for stacks!) and its reductions. Moreover, it is quite
likely that as the theory over complex curves progresses, the stacks that appear for
orbital integrals when we are examining the trace formula over function fields over
finite fields will, as a variant of the stacks Heckey of E. Frenkel’s report on recent
advances [8], also appear there.

If so, a gratifying unity will appear. Functoriality, as in the first circle, is to
this point in this presentation largely analytic, the only link to algebraic number
theory being the Artin L-functions. In both geometric forms of the theory, the
reciprocity, both local and global, between Galois representations or representations
of the fundamental group on the one hand and, on the other, automorphic forms
for curves over finite fields, or D-modules and perverse sheaves over the complex
field, is the focus of attention. In these two cases, the functoriality is a consequence
of the reciprocity. Over number fields, functoriality is, as I have stressed, also
applicable to automorphic representations for which there is no reciprocal Galois
representation and there is no real sign that it can be deduced in any generality
except from the trace formula. The possibility that the topological study of the
varieties (or stacks) appearing in the purely geometric theory will be pertinent to
the trace formula is appealing.

There will be at least two major problems. The cohomology of braid groups
is difficult and not well understood. That of the stacks Hecke) and their variants
may be even more challenging. In addition, even if this strategy works, it is limited
at first to global fields associated to curves over finite fields. On the other hand,
a well-defined technique with a well-defined structure that was successful for the
trace formula over function fields would certainly stimulate the search for related
techniques over number fields. It is apparent from [10] that the difficulties, even
for function fields, are related to the behaviour of class numbers, so that it is not
impossible that questions like those raised by the heuristics of Cohen-Lenstra ([13])
will be relevant when we turn to number fields. I expect, however, that for number
fields there will be very large, still unforeseeable difficulties that will make great
demands on the inventive powers of analytic number theorists.

We could continue down the circles on the left to the last of the three and exam-
ine its relation to various aspects of ordinary differential equations or to conformal
field theory, but that is not, so far as I know, where the misunderstandings lie. They
lie largely in a failure to appreciate the autonomous merit of functoriality, but also
in a misapprehension of its relation to motives and to Galois representations.

I myself am inclined to regard the Galois representations as instruments, and
the central relation between the left and the right sides of the diagram as the
diagonal arrow between automorphic forms and motives, not the horizontal and
vertical arrow passing through Galois representations. What the diagonal arrow
provides, as in the proof of Fermat’s last theorem, is passage from a context where
a given, critical assertion is difficult, even impossible, to one in which it is almost
transparent. It may, for example, not be possible to prove directly that there is no
free-standing elliptic curve with various constraints on its ramification, but when
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the curve or an isogenous curve is assumed to be contained in the jacobian of a
modular variety the same conclusion can be immediate.

Grothendieck appears to have been grievously disappointed when his cherished
notion of motives and the theorems needed to establish it turned out to be unneces-
sary for the proof of the last of the Weil conjectures. Perhaps he could have drawn
a different conclusion. As explained in N. Katz’s report ([14]), the last of the Weil
conjectures was proven, by Deligne, in essence on the basis of a profound under-
standing of the etale cohomology theory accompanied by an observation arising in
the theory of automorphic forms, namely that Ramanujan’s conjecture, in its orig-
inal or in its generalized forms, is an immediate consequence of functoriality and
the resulting knowledge of the analytic properties of the family of all L-functions
associated to the corresponding automorphic form or representation. In the context
of the Weil conjectures, there are only the Galois representations, where functori-
ality is almost formal, and so no need for unproved assertions, just for a complete
mastery of the etale cohomology theory. The conclusion to be drawn from this
might have been that the theory of motives will have to be founded simultaneously
with functoriality.

At the moment, I cannot make too much of this suggestion. There is, however,
one point to which I shall return. Reflections on Shimura varieties led to the
introduction of the Taniyama group ([15]). This Taniyama group was then shown
([16]) to be the motivic Galois group of a restricted family of motives, not in the
sense of Grothendieck but in a different sense, that defined by absolute Hodge cycles,
thus the family of motives of potentially C M-type. It is likely that the two senses
will be shown ultimately to coincide. Since the Taniyama group was shown at its
introduction to be closely related to automorphic forms on tori, this is a genuine
connection between automorphic forms and motives — or Galois representations —
whose interest should not be overlooked.

I had already observed that the Taniyama-Shimura conjecture, like the Sato-
Tate conjecture, preceded the introduction of functoriality for automorphic forms.
I myself only became aware of it after my letter to Weil, when he drew my attention
to his paper on the Hecke theory in which he mentions it. With this conjecture
and the large number of L-functions introduced in connection with functoriality at
hand, it was natural to suppose that they would account for all the L-functions
attached to algebraic varieties — in the sense associated in a general way to the pair
of names Hasse-Weil.

Given the Eichler-Shimura theory and the extensive researches of Shimura on
what I later referred to as Shimura varieties, these were the clear context in which
to test the supposition. As I already observed, there were difficulties associated
with endoscopy and therefore with the fundamental lemma. There were also — or
so it seemed to me at first until I was enlightened by Kottwitz — independent com-
binatorial obstacles. Finally there was a serious problem connected with the action
of the Galois group on abelian varieties over finite fields that was finally clarified
by Kottwitz and by Reimann-Zink ([17]). At the time (1992), the general funda-
mental lemma still missing, Kottwitz was able to develop a reasonably complete
theory only for a limited class of varieties ([18]), but these are in themselves of
considerable importance.
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We can now hope that, with the recent work of Laumon-Ngo, it can be es-
tablished in general that the L-functions attached to Shimura varieties are auto-
morphic. It is, however, not yet clear to me what pertinence this will ultimately
have for the general reciprocity between motives and that large but special class
of automorphic representations (sometimes called arithmetic) to which motives are
thought to correspond. The final structure of the arguments can hardly be certain
at this stage.

The proof of the Taniyama-Shimura conjecture, first for semi-stable curves by
Wiles (with the help of R. Taylor) and then in general, introduced an entirely new
element into the correspondence between automorphic representations m and Galois
representations ¢ or, if one immediately passes to the diagonal arrow, motives M.
Here there are many things with which I am completely unfamiliar and many more
that I barely understand. So we are leaving the domains in which I have any claim
whatsoever to authority. In particular, the theory of Galois representations as it
developed in the hands of, say, B. Mazur and J-M. Fontaine is a subject that is
not easily mastered and that I neglected in favor of other interests for too long a
time. This makes it difficult to understand not only the work of Taylor but also
the p-adic local reciprocity, which I am only beginning to learn.

Whether it is the horizontal arrow or the diagonal arrow from motives to au-
tomorphic forms that is being considered, there is also a necessity to establish an
independent stance. My own first impressions were described in my review ([19])
of Hida’s book ([20]). There is a seeding and there are deformations, apparently
of two kinds: the first are moves from a @Q; representation to a QQ;; representation,
but for the same motive; the others simultaneous deformations of automorphic rep-
resentation and Galois representations. The change from [ to I’ is some wondrous
phenomenon at the heart of the etale theory that I have not yet been able to inter-
nalize. There is nothing I can add at present to the comments of M. Harris and R.
Taylor on deformations of both kinds and on the p-adic local reciprocity that are
contained in the text supplementary to my review.

My view of the seeding is different from that of, say, Taylor, perhaps largely be-
cause [ am so attached to functoriality, which has a wider scope than the arithmetic
automorphic representations alone. This attachment suggests to me that the best
seeding is that given by motives of potentially C'M-type, a class that includes all
motives of dimension 0, thus all Artin representations. As I observed, for motives
of C'M-type the correspondence can be established thanks to the Taniyama group
and its properties.

It is, on the other hand, almost an explicit demand of the approach described
here for establishing functoriality for function fields that motives whose cohomol-
ogy consists of arbitrary Galois representations with finite image can be isolated.
Something similar will have to be available for number fields, and at the moment
it is not clear to me where to look. So it is best to keep an open mind.

Recall what the correspondence is to associate to what. We are trying to
establish the isomorphism of two Tannakian categories, perhaps with a fibre functor.
That for automorphic forms will be defined by its group, which will necessarily
be over C. Apart from some obscurities and difficulties caused by centres that I
prefer to disregard at present, this will be essentially the product over all thick
ny of the groups “H. There is, of course, a restriction to elements with the same
image in Gal(K/F) and an inverse limit over K. Notice that H is freely varying.
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Thus the analogue of a motive, better a motive with values in “G, corresponds
to a choice of a thick 7y and a homomorphism ¢ : “H — “G. Motives are of
course defined quite differently and the associated group defined by a categorical
construction that still presents severe problems. There is also a fibre functor to be
introduced by an imbedding @Q; — C. As a consequence the correspondence will be
M — {rg,¢: "H — GL(n)}. So the complete construction does not seem to be
possible without functoriality. This is a point on which to reflect!

The simplest example of the seeding provided by the Taniyama group is of
course that for the trivial group, thus for the trivial representation g, H = {1}.
Supplemented by functoriality, this would mean that every motive of Artin type,
thus essentially every linear representation of Gal(F/F), would have its automor-
phic correspondent. It would mean as well that any base change was possible. It
would also mean, I suppose, that, when the relation between automorphic rep-
resentations of Ramanujan type and the remaining ones was taken into account,
induction to include various motives whose Galois representation is not irreducible
would be possible. This is the kind of information available to R. Taylor and his
collaborators in their recent papers, except that the base change and, in general, the
functoriality at hand are extremely limited, largely to solvable base change, some
form of the Jacquet-Langlands correspondence, and the functoriality provided by
the converse method.

So it is startling to me, initially even somewhat disturbing, that Taylor is able to
deduce from their results the Sato-Tate conjecture. This conjecture is, as observed,
just one case of a statement expected to be valid for all automorphic representations
(of Ramanujan type of course — but these are typical and all others are deduced
from them). Nevertheless, because it anticipated the general assertion and refers to
one of the simplest and most studied classes of diophantine objects, elliptic curves,
a proof of it, even if it turns out to be of limited import for the conjecture in general,
is of special interest. Taylor’s proof lies, in part, outside the strategy described in
this lecture for it does not work with automorphic forms alone and does not rely
solely on functoriality, but combines some special cases of functoriality already at
hand with deformation.

The strategy of the lecture, in spite of a large conjectural element, is coherent
and has a solid record of proved predictions. A major departure from it is at least
a methodological challenge. Moreover, that two different strategies will succeed
in such a highly structured subject seems to me unlikely. Perhaps that described
here is correct and hidden somewhere in the arguments of Taylor is a method
that, say, surmounts the analytic difficulties for number fields, about which I have
been able to suggest very little. Maybe a way will be found to handle with the
deformations not only other automorphic representations of arithmetic type but
even all automorphic representations; on the other hand the Sato-Tate conjecture,
even in its general form for all automorphic representations, may turn out to be
only a weak consequence of functoriality and not lead back to it. The relation
of the conjecture, in its original or in its general form, to functoriality appears,
on reflection, to be like that of the Chebotarev theorem to the Artin conjecture.
Although of importance in its own right, it is a weaker, more accessible assertion.

Until more insight into these questions is acquired, there will remain a serious
intellectual, or methodological, gap between my stance and that of Richard Taylor.
Although we have been yoked by the Shaw Prize, we are to some extent pulling in
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different directions. Perhaps that is not so bad. There is still a long way to go and
the road uncertain.?
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ABSTRACT. We give a new proof of Arthur’s asymptotic formula for the inner
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1. Introduction

Let G be a reductive group over a number field F', and let A be the ring of adeles
of F. The theory of Eisenstein series provides a description of the continuous spec-
trum of L?(G(F)\G(A)) in terms of the discrete spectrum of L2(M (F)\M (A)!) of
Levi subgroups M of G ([Lan76], [MW95]). The role of Eisenstein series is analo-
gous to the role of the exponential functions in the spectral theory of L?(R). Just as
in Fourier analysis, the Eisenstein series are not themselves in L?(G(F)\G(A)). In-
stead, one starts with a better-behaved class of functions (from an analytic point of
view) called pseudo-Eisenstein series, which are smooth and rapidly decreasing. The
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inner product of two pseudo-Eisenstein series is a formal computation ([Lan66))
and gives the coarse spectral decomposition of L?(G(F)\G(A)). The finer spectral
expansion is obtained by performing a shift of contour to the imaginary axis in the
expression for the inner product.

A useful variant of pseudo-Eisenstein series is the analytically cruder truncated
Eisenstein series, which show up in Langlands’ work. Langlands obtained a formula
for the inner product formula of truncated Eisenstein series. In the case of the upper
half-plane this is a consequence of what is known as the Maass-Selberg relations
(cf. [Iwa02]). The complete details of the proof of the formula in the higher
rank case were given by Arthur, who also defined the truncation operator for all
automorphic forms and studied its properties ([Art80]). The proof uses complex
analysis (residue calculus) in a rather mysterious way.

The truncation operator plays a crucial role in the development and the analysis
of the trace formula. In fact, Arthur had to consider the inner product of truncated
Eisenstein series which are induced from square-integrable, but not necessarily cus-
pidal, automorphic forms on the Levi subgroup. As it turns out, the main term in
the inner product is the one appearing in Langlands’ formula, but there are addi-
tional terms which tend to zero exponentially as the truncation parameter grows
[Art82c|. Arthur’s formula is derived from Langlands’ formula using the descrip-
tion of the discrete spectrum as residues of cuspidal Eisenstein series. It is a key
step in Arthur’s fine spectral expansion of the trace formula ([Art82a], [Art82b]).
(A more explicit version of the fine spectral expansion, building on Arthur’s work,
was recently obtained in [FLMO09].)

In [JLR99] the notion of regularized periods was developed and used to study
periods of Eisenstein series in certain cases. (See also [LRO03], [LRO1].) As a by-
product, a new and simple proof of Langlands’ inner product formula was obtained
by reducing it to the vanishing of the regularized inner product of Eisenstein series,
which in turn, immediately follows for local reasons. The purpose of this note is
to extend this argument to the more general case considered by Arthur, namely
when the inducing data is not necessarily cuspidal. The proof is a little trickier
than in the cuspidal case, but hopefully it is still reasonably conceptual and short.
Perhaps more importantly, it is independent of Langlands’ description of the dis-
crete spectrum in terms of residues of cuspidal Eisenstein series.! As a bonus, we
obtain “one-half” of Langlands’ spectral decomposition of L?(G(F)\G(A)) without
appealing to the description of the discrete spectrum. This raises the question of
whether the same can be done for the other half (exhaustion part) as well. While
we do not answer this question here we point out that its plausibility is suggested
by the existence of such an argument in the local case (cf. [Wal03]).

Another motivation is to generalize these results to the relative setup, for in-
stance, the one considered in [JLR99]. We hope to consider this in a subsequent
work.

Acknowledgement. I would like to thank Joseph Bernstein for useful discus-
sions and the referee for carefully reading this manuscript.

lof course, the analytic properties of Eisenstein series are used, but they too can be proved
independently of the description above.
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2. Preliminaries

Throughout, G will be a reductive group over a number field F' and A the ring
of adeles of F. We will freely use Arthur’s notation and conventions from [Art80].
In particular, we fix a maximal split torus Ty over F and let My = Cg(Tp) be a
minimal Levi subgroup defined over F' and Q = Ng(Ty)/Moy the Weyl group. We
also fix a maximal compact K of G(A) which is in good position with respect to
My, a minimal parabolic subgroup Py over F' with Levi My, a Siegel domain & in
G(A) and a height function ||-|| on G(A). Until further notice the letters P and Q
will be reserved for standard parabolic subgroups defined over F', and M = Mp
will denote the Levi subgroup of P containing My. The vector spaces ap, anj, the
sets Ap, Ap, R(Ty,U), Q(P,Q), the lattice Lp, the characteristic functions 7p,
7p, the decomposition

M(A) = M(A)l X A]\/[7
and the map
Hp: G(A) — ap

are as in [ibid.]. We choose Haar measures on G(A), M(A), U(A) K and ap
compatibly with respect to the Iwasawa decomposition. By abuse of notation, we
will often denote by X the F-points of a variety X defined over F.

Denote by Ag the space of automorphic forms on G\G(A). More generally,
for any P we denote by Ap the space of automorphic forms on U(A)P\G(A). The
constant term map ¢ — ¢p from Ag to Ap is defined in the usual way. We
also denote by A% the subspace of Ap consisting of those ¢ such that p(ag) =

6p(a)zp(g) for any a € Ay, and by A2 the subspace of A% of those ¢ such that

ol = / lo(g)? dg < oo.
An PU(A)\G(A)

We can view A% as a dense subspace of Indggﬁg L3 (A M\M(A)), where

L3 (AyM\M(A)) is the direct sum of all irreducible subrepresentations of the
regular representation of M(A) on L%(Ay M\M(A)).
Any ¢ € Ap can be uniquely written as

(1) elg) = Ze““HP(-"”Qi(HP(g))wi(g)

where \; € ajp ¢ are distinct, 0 # Q; € Clap] and 0 # ¢; € A. We denote by
Ep(p) the multiset {\1,...,\,} where \; appears deg@; + 1 times. We also set
Ep(p) =Ep(pp) for p € A.

Given ¢ € Ap and A € ap ¢ let

ex(9) = p(g)eM P,

The Eisenstein series

Ep(g.0.0) = Y #xa(19)
YEP\G

converges for Re A sufficiently regular in the positive Weyl chamber. Similarly, for
any @ = MgV and w € Q(P, Q) the intertwining operators

M(w,\) : Ap — Ag
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defined by
M (w, N\)p(g) = / ex(wtvg) dv
(V (&)U (A)w=1)\V (4)

converge for Re A sufficiently regular in the positive Weyl chamber.

Working hypothesis. For any ¢ € A% and )\ € apc there exist an open
neighborhood N of )y and integers n, m such that

[ H <)‘_>\Oaav>]mE('7§05/\)

a€R(Tv,U)

is a holomorphic function from N to the Fréchet space of smooth functions on
G\G(A) such that the norms

sggHR(X)f](g)l lgll™, X € U(ge),

are finite; similarly, for any @ and w € Q(P, Q)

I = 2ea) " Mw, Mg

aER(Ty,U)

is a holomorphic function on N taking values in a finite-dimensional subspace of
Aé determined by the K- and 3-types of ¢. Moreover, we have functional equations

Eq(M(w, N)g,wA) = E(p,\), @€ A}, we QP,Q)
M (wg, w1 A) o M(wi, N) = M(wowy, ) w1 € QP,Q1), we € QQ1,Q2)

for A € ap .

As is well known, these results are a consequence of Langlands’ theory (cf.
[Lan76|, [MW95|, [Lap08]). However, they can also be proved independently
(for any ¢ € Ap) by a method of Bernstein. Details will appear elsewhere.

The functional equations of the intertwining operators immediately imply that
for A € ia}%, M(w,]) is unitary, hence holomorphic, and therefore extends to a
unitary operator on Indggig L3 (AyM\M(A)). (Cf. [MW95, 1V.3.12].) The
Eisenstein series are also holomorphic near the imaginary axis, but we will not
assume this a priori.

Arthur’s truncation operator is defined for any left G-invariant locally bounded
measurable functions ¢ by

ATo(g)= 3 (-1 N wp(vg)7p(Hp(vg) - T).

PyCP vEP\G

More generally, for any P the relative truncation operator is defined for functions
on P\G(A) by

ATPo(g) = S0 (~1)WmeG N7 g (v9)i8 (Hg(vg) — T).
PyCQCP YEQ\P

Note that AT-Pp = AT-Ppp.
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3. The main results

Our goal is to give an alternative proof for the following result of Arthur.

THEOREM 1 ([Art82c|). Let ¢ € A%, and ¢’ € A%, and let C be a cone
generated by dima§ elements in the positive Weyl chamber of a§. Then there
exists § > 0 such that

T T
(A EP(gaSOa)‘)aA EP'(g’ G\G(A)1 Z Z Z
Q weQ(P,Q) w'eQ(P',Q)
e(wA+w’7,T> (M(w,)\)cp,M(w/,X)ap/)Q
HQGAQ <’U)>\ + w/y’ a\/>

for all (\,XN) € i(a®)* xi(a8,)* and T € C with ||T|| > 0. The implied constant is
independent of T and can be chosen uniformly for (A, X') in a compact set.

+ O(e~0ITIl

Vol(ag/LQ)

We recall that if ¢ and ¢’ are cuspidal then the asymptotic formula in Theorem
1 is exact for T sufficiently regular in the positive Weyl chamber ([Art80, §4]; cf.
[JLR99] for an alternative proof). In the general case, Arthur’s proof is rather
involved. However, it contains two relatively easy ingredients. The first is the
computation of the constant term of Eisenstein series in terms of the inducing data
— a global (but easier) analogue of the geometric Lemma of [BZ77]. The second is
the criterion of square-integrability in terms of the exponents ((MW95, 1.4.11]).

In our approach we use these ingredients as well. However, to avoid some of
the more technical parts of [Art82c] we will adopt the method of proof of [JLR99|
utilizing the regularized inner products of automorphic forms. One can express the
inner product of truncated automorphic forms in terms of the regularized inner
products with respect to a Levi subgroup of the constant terms. In the cuspidal
case considered in [ibid.], this immediately reduces the Theorem to the vanishing of
the regularized inner product of Eisenstein series. In the general case, the vanishing
is still a key ingredient, but the reduction is more subtle. (See Remark 1 below.)

Since we do not assume a priori that the Eisenstein series are holomorphic on
the imaginary axis we will have to resort to the following expedient of Theorem 1.

PROPOSITION 1. Let ¢ be a smooth map from 1(0.P) to a finite-dimensional
subspace of A%; similarly for ¢'. Assume that Ep(-,o(\),\) is smooth on i(a%)*;
similarly for Ep/(-,go’(/\’),)\’). Let C be as in Theorem 1. Then there exists § > 0
such that

T T (!
(2) (A EP(gaSD(A)vA)vA EP’(Q,QO ()‘ ) G\G (A1 Z Z Z
Q weQ(P,Q) w eQ(P',Q)
) (M (w, \)p(V), M (', M) (V)
HaeAQ <w)\ +w'N, av>

for all (\, ') €i(a8)* xi(a8,)* and T € C with ||T|| > 0. The implied constant is
independent of T and can be chosen uniformly for (A, X') in a compact set.

vol(a§/Lq) +O(e~0ITI

Once again, the asymptotic formula is in fact an exact formula if ©(X), ¢’ ()
are cuspidal. Of course, Theorem 1 would follow from Proposition 1 once the
holomorphy of Ep(-, ¢, ) on ia}, is established.
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As a consequence of Proposition 1 we will compute the inner product of wave
packets of Eisenstein series. To formulate this, denote by Wp the space of compactly
supported smooth functions on ia} taking values in a finite-dimensional subspace
of A% such that Ep(-,(A), ) is smooth on ia}. (Ultimately, the last condition is
redundant.) Write

3) Il = [ el ax
For ¢ € Wp let
Ore(9) =Op(9) = |  Er(g,0(A),A) dX.

PROPOSITION 2. For any ¢ € Wp Op, € L2(G\G(A)). The inner product is
given by

@) (O Opy ) = / S (M, Vo), @ () dA.

1ab weq(P,P")
for any ¢’ € Wp.
Consider the Hilbert space £ consisting of families of functions

Fp :iap — Indly) L3 (A M\M(A)), P2 Py

satisfying
-1
I(Fp)pl* = > [P(Mp)| " ||Fp|2 < o,
PDP,
Fp(w\) = M(w,\)Fp()) for all w € Q(P, P'), X € iap.
The subspace £’ consisting of those families such that Fp € Wp for all P is dense

in £. We conclude the following result which is “one-half” of Langlands’ L? de-
composition.

THEOREM 2 ([Lan76]; cf. [MW95]). The map
& (Fp)pop, — Z |P(Mp)| "' ©pr,, (Fp)eL
P

extends to an isometry from L to a subspace of L?(G\G(A)).

Of course, Langlands showed that &£ is onto as well. We will not discuss this
aspect here.

Proposition 2 will also be used to show the holomorphy of the Eisenstein series
on the imaginary axis, to conclude Theorem 1.

4. Polynomial exponential functions

Let V' be a real vector space of dimension d. A function on V of the form
n
flo) =Y e P(v) P eC[V], A € Vg,
i=1
is called a polynomial exponential. Any polynomial exponential function is deter-
mined by its restriction to a non-empty open subset. The decomposition above is
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unique if the \;’s are distinct and P; # 0 for all i. We write £(f) for the multiset
{A1,..., An}, where each \; appears deg P; + 1 times.

We denote the space of polynomial exponential functions by PEY. For any
multiset A of elements of V& we define the subspace

PEV(A) = {f e PEV : E(f) C A}.

One can characterize the polynomial exponential functions as follows. For
veVand A € Vi let D, be the (generalized) difference operator

Dyrf(u) = flu+v)— e Fu).
Then f € PEY ({A1, ..., Am}) if and only if
(5) Dvm,)\m O"'ODvl,)\lf =0

for all vy,...,v, € V. (It suffices to take vy, ..., v, in a neighborhood of 0.)

Let I' be a piecewise continuously differentiable Jordan curve contained in the
strip —5 < Imz < 7 and let D be the bounded domain surrounded by I'. Let
R > 0 and set

RD ={RX: \€ D}.
For any integer k we define the continuous function

sz d
ag’R()‘la"'a k3 T) = , AL,..., A\ € RD, zeR.
~ 2nmi Hz (e# — eM/R)

For any A1,...,A\; € RD we have ak’ ()\1, ce AR ) € PER({)\l, ...y Ak }). More-
over, for any compact subset C' of RD we have

T, _
sup ‘ k'R()\l,...,)\k;x) e BT < 5o
Alyeney AeC,z>0
where
0 = sup Ren.
yel

For any integer m and Aq1,..., A\, € RD let
by My A )y b My A )

Y m—1
be the coefficients of the polynomial (in t)
k—1

Zak (A1, Ak ) H(t—e)"/R).

=1
Once again, for alli =0,...,m—1, bf’R(/\l7 ...y Am; @) is a continuous function on
(RD)* xR, bl-F’R()\l, ce Amy ) € PER({Al, ..y Am}), and for any compact set C of
RD we have

(6) sup
Alyeney Am €C, x>0

e 0T .

(A A D)

Suppose that f € PER({A1,..., Am}) with \; € RD, i = 1,...,m. Then by
the argument of [MW95, Lemma 1.4.2] (based on that of [Wal74, Lemma 6.3.1])
we have the following extrapolation formula:

(7) Zf bFR)\l,...,/\m;x) zeR.
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For a subset A C V¥ and an integer [ > 1 we write
PEL(A) ={f € PEY : E(f) ={ A1, Am},m < LA € A for all i}

(Note that this is not a subspace, or even a subset, of PEY (A).) We will need the
following closedness property of PE ‘S/l(A).

LEMMA 1. Suppose that A C V¥ is compact and | > 1 is an integer. Let f,, be
a sequence in Pg‘g/l(A) and U a non-empty open subset of V such that the limit

fv):= ILm falv) velU
exists pointwise. Then the limit exists for allv € V and f € PE‘S/Z(A).

PrOOF. We can assume, upon translating f,,, that U contains 0. Upon passing
to a subsequence, we can also assume that

E(fn) ={M(n),...; Am(n)}
where m < [ is independent of n and A;(n) converges (say to A;) foralli =1,...,d.
Consider first the case V' = R. Take I' to be the unit circle. Choose R

sufficiently large so that A is contained in the open ball of radius R, and that
[0,d/R] CU. By (7) we have

ful an R (), s A () 0)-

Passing to the limit, we obtam
. Lk
f(@)= lim fu(z) = k;f(RﬂF VO A ).
Thus, f € PEX{A1, ..., Am})-
Consider now the general case. By restricting f, to any line we infer that
f(w) = lim f,, (v) exists for all v € V. Using the criterion (5) for f,, and passing to
the limit, we obtain once again that f € PE({\1,..., \n}). O

Suppose that C is a simplicial cone in V', generated by eq,...,eq4. Let x¢ be the
characteristic function of C. We say that A € V{¥ is negative (resp. non-degenerate)
with respect to C if Re (A, e;) < 0 (resp. (A, e;) #0) foralli=1,...,d.

The following Lemma is elementary, but it is basic to the regularization proce-
dure. See [JLR99] for more details.

LEMMA 2. For any f € PEY and u € V the integral
IV (foww) = [ F@)e (v ) do
v

converges provided that w + X\ is negative with respect to C for all A € E(f). As a
function of w, IV (f,u,w) admits meromorphic continuation to V& with hyperplane
singularities contained in

(w+Ae)=0 xe&(f),j=1,...,d
Outside the singular hyperplanes, IV (f,-,w) € PEV(E(f) +w).

The following Lemma will be used for the uniformity statement in Theorem 1.
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LEMMA 3. Let A be a compact subset of V* such that X is negative with respect
to C for all A € A. Then there exists 6 > 0 depending only on the set Re A such
that for any integer I > 1, a neighborhood U of w € V and a family of functions
F CPEY,(A) such that

sup sup | f(v)| < oo
feEFveU

we have
sup sup |f(v)] el < oo.
feFveutC

PrOOF. As before, considering the translates of f € F by u we can assume
that w = 0. We write E(f) = {\(f),..., An(f)} for f € F with m < k. Without
loss of generality we can assume that m does not depend on f. Choose R so that
[(\,e;)| < R for all A € A and that z1e1 + -+ xqeq € U if 0 < z; < m/R for all
i. By repeated application of (7) we can write

m
k k
f(x1e1+...+:l:ded):k Zk: 1f(§161+"'+§d8d)
1yeeey 4=

b () en) o () en) s21) BB (O () €ea) -, (), €a) s )

where I'; is the boundary of the rectangle with vertices

and v; = maxye4 Re (A, ¢;) < 0. By (6) and our assumption we have

d
Cisd
sup  sup f(g zje;)| ez 2= % < oo
feF x1,...,2q>0 i=1

The lemma follows. O

5. The regularized integral

5.1. Definition and properties. The definition of the regularized integral
is based on the identity

(8) 0lg) = Y A"Po(yg)re(Hp(g) = T), g€ G(A)

P ~eP\G

([Art80, Lemma 1.5]) which is a formal consequence of Langlands’ combinatorial
Lemma

(9) Z (_1)dimagT§?P _ {1 if R= C;7

P:RCP 0 otherwise.

To define the regularized integral, consider
10) 1T =Y [ Kl g ) - T ).
P

(We often suppress the superscript G if it is clear from the context.) This integral is
convergent for Rew sufficiently regular in the negative obtuse Weyl chamber ag _,
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more precisely, when Re(wp + Ep(p) — pp) C ap _ for all P, where

,Z{Z Cal i Co <0 Va e Ap}.
aEAp

I%(p, T,w) admits meromorphic continuation in w with hyperplane singularities
along the finitely many hyperplanes

<w—|—)\—pp,wv> =0, PQP(),)\ESP(QO),WG Ap.

In fact, if
prlg) = 3N Q(Hp()¥ilo)

where @Q; € Cla,] and ¢; € A% then
/ AT p(g)et e Drp (Hp(g) — T) dg
P\G(A)

=2 / / ATMpy(mk) / WHNmeX0Qi(X)Tp(X — T) dX,
. JK I M\M(A) ag

so we can appeal to Lemma 2. In particular, if the exponents of ¢ satisfy the
regularity conditions

A—pp,@’) #0 VP, X € Ep(yp),w e Ap,

(in which case we say that ¢ is #-integrable) then I(¢, T, 0) is well-defined. It was
shown in [JLR99] that in this case I(¢,T,0) does not depend on T and is called
the regularized integral of ¢, denoted by

/ ©(g) dg.
G\G(A)!

Recall that if in fact ¢ € L'(G\G(A)) then for all A € Ep(p), ReA—pp € ap_ (and
conversely — cf. [MW95, 1.4.11] for an analogous statement). Therefore, in that
case, w = 0 is in the range of convergence of (10) and by (8), fé\G(A)l ©(g) dg coin-
cides with the usual integral of ¢. Another crucial fact proved in [JLR99] is that
J. é\G( " is a G(Ay)'-invariant functional on the space of x-integrable automorphic
forms.

We can say a little bit more about (¢, T, w) if we take into account the following
Proposition. Henceforth T will always denote a sufficiently regular element in the
positive Weyl chamber of a§ .

PROPOSITION 3. For all p € A we have

T — ATp(g) dg € PES (U(EP(@) - pp)) :

G\G(M)! P
This is proved exactly as in [LRO3, Proposition 8.4.1].
COROLLARY 1. For any w in general position

I(p, -, w EPS“O U U (Eq(p) +wp —pq)
P QCP
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More generally, for ¢ € Ap and a simplicial cone C of a§ generated by vy, ..., vq
where d = dim a§ we can define

IP(Sov XC,T,CU)

= Y AT () = T)xe () = 7).
PyCQCP

Using the decomposition (1) this can be written as

S [ PR T dk [ e 0Q(X)re(X - T) dX.

G
ap

Once again, the integral converges for Rew in an appropriate cone and admits a
meromorphic continuation in w € ag ¢ with hyperplane singularities along

(w+A—pg,@')=0, QC P, wEAS, A€ Eqly)
(w—|—/\—pp,vi>:0, i=1,...,d, )\EEP(@).

Outside the singular hyperplanes,

Ip(p.xc»w) €PEY | | (wq +Er(¥) - pR)
RCQCP

In particular, if Ip is holomorphic at w = 0 we denote the value by

/ C olo)xe(Hplg) - T) dg.
P\G(A)!

If p(g)xc(Hp(g) — T) belongs to L*(P\G(A)!) which happens precisely when

(1) ReX” — pg € (a5)* for all Q C P and X € Eg(y), and
(2) A — pp is negative with respect to C for all A € Ep(y),

then the integral defining I(yp, T,w) is convergent at w = 0 and

/* e(9)xc(Hp(g) —T) dg = / ©(9)xc(Hp(g) —T) dg.
P\G(A)! P\G(A)!

LEMMA 4. We have the following equality of meromorphic functions

S0 Eppr i o) = [ ATe(g) dy

P G\G(A)!
In particular, the left-hand side does not depend on w.

ProoF. When Rew is sufficiently regular in the negative Weyl chamber of a
the left-hand side is

S>> (—1)dim°g/ AR (g) el HrloD B (H(g)~T)7p(H(9)—T) dg.
P R:RCP R\G(A)!

Interchanging the sum, and using the relation (9), we get the required statement.
|
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5.2. Inner product. ([JLR99]). In a similar vein we define, for any ¢, ¢ € A
FeTw) =Y [ AT RTTg)e e rp(Hp(g) - T) d
P\G(A)!

This integral converges if
Re(w + Ep(p) + Ep(¥)) C afp

for all P. Moreover, I(p,1,T,w) admits meromorphic continuation in w with hy-
perplane singularities along

(wH+A+m@’) =0, PDPy,A€&p(p),nelp(t)),we Ap.
Outside the singular hyperplanes

T s I, 0, T,w) € PEY | | (Eqw) +Eq(®) +wp)
QCP

If I(¢, %, T,w) is holomorphic near w = 0 then

/ e(9)¥(g) dg = I(p,¥,T,0)
G\G(A)!

is independent of T'. In particular, this is the case if ¢ and v are square-integrable,
and in this case,

[ eeiladg= [ ele)il) do
G\G(A)?! G\G(A)!
This follows from the decomposition (8) and the fact that

/ AP o(g)blg)rp (Hp(g) — T) dg =
P\G(A)

/ AP () AT P (g)rp (Hp(g) — T) dg.
P\G(A)!

The sesquilinear form fé\G( Ay 8 G(Ay)!-invariant (whenever defined).

More generally for any P, a simplicial cone C of a§ and ¢ € Ap one defines
IP va 1/)7 XC, )

= Z /\G " ATQ )ATQ—W wHQ(Q» (HQ( ) T)XC(HP(Q)—T) dg
ocp

and

[ elaiiaie(te(s) - T) dg = In(e,b. xe. T,0),
P\G(A)!
the latter, provided that
(1) for any Q C P and any A € Eg(p) and u € Eo(v¥), A+ is non-degenerate
with respect to the Weyl chamber of alc’_-?,, and,
(2) for any A € Ep(p) and p € Ep(¥), A + [ is non-degenerate with respect
to C

As before, we have
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LEMMA 5. (1) For any p,v € Ag we have

. G R _—
> (1) Lp(pr(a). vel) 7o o) = [ AT () AT5(g) dg.
PCG G(F)\G(A)!

(2) For any p,v € Ap we have

Ip(p, . xc~w) €PES [ | (wq +Erlp) + Er®))

RCQCP
outside the singular hyperplanes.

This first part is proved exactly as Lemma 4 using (8), (9) and the fact that
AT is a projection. The second part follows from the fact that for any ¢,y € A

1) T AT (g)AT(g) dg € PE™S (U(Ep(w) + 513(1/))))

G\G(A)! =
(cf. [LRO3, Proposition 8.4.1]).

REMARK 1. The relation

*

[ Mol NG dg = -1 [ (g (Hele) <) dg
G\G(A)! P P\G(A)!

holds if each term on the right-hand side is well-defined. Unfortunately, this is
not necessarily the case if ¢, 1 are square-integrable. For example, if we write
the positive roots for the group G = G3 as « (long), 8 (short), a + 8, a + 28,
a + 368, 2a + 33, then G admits a square-integrable automorphic form ¢ with
Ep,(p) ={m = —a— B,y = —a— 28} ([Lan76], [MW95, Appendix III]). Since
(72, 8Y) = 0 the term

[ ler@F et 1) dg
P\G(A)!

is not defined for the maximal parabolic subgroup P such that A} = {#}. This is
why we have to introduce the parameter w and it explains why the proof in the
non-cuspidal case is more subtle.

6. Regularized inner products of Eisenstein series

For any P, () let o§2p be the set of elements of 2 which are left-Q2(Mg) and right-
Q(Mp) reduced. This is a set of representatives for Q\G/P. For any w € oQp the
group MpNw~tMgw is the Levi subgroup of a parabolic subgroup P, contained in
P, and MgNwMpw™! is the Levi subgroup of a parabolic subgroup @Q,, contained
in Q. We have w € Q(P,, Q). Denote by Q(P; Q) the subset of oQp consisting
of those w such that P, = P, that is, wMpw~! C Mg. Recall also that we set

QUP,Q)={we Qp:wMpw™' = Mg} =Q(P;Q)NQ(Q; P)~*.

PROPOSITION 4. For any ¢ € Ap the constant term of Ep(-,,g) along Q is
given (at least for Re X sufficiently reqular in the positive Weyl chamber) by

> ES (- M(w, Ngp,, wh).
we QQP
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This is a straightforward generalization of the computation of MW95, 11.1.7].
The main difference is that unlike in [loc. cit.] we don’t assume that ¢ is cuspidal,
so that we get a contribution from all w € ¢€Qp, and not merely from w € Q(P; Q).

It is also easy to see that the constant term of the summand

Eg, (- M(w, Npp,, w)

along a parabolic subgroup R C @ is given by
Z Egs('vM(SvA)(pPsaS)‘)
sGLg)YlR('w)
where g r 1 rQ2p — @S2p corresponds to the canonical map R\G/P — Q\G/P.
Note that
1Q.r(U(P; R)) € Q(P; Q).
We will write the constant term of Ep(p, \) along Q as

where

Mol A= Y, EG,(M(w\p,w)).
weQ(P;Q)
(If ¢ is cuspidal then €g = 0.) Thus,
Eq(Eq(p,N)) C U [w(&p, (¥) + Mg
we @p\Q(P;Q)

and more generally for any R C )
(13) Er(€q(p, A)) © U [w(€p, (#) + Mg

weLg'r (2P \QUP;Q))
Recall that
1oir(@2P \ Q(P;Q)) € rQp\ Q(P; R).
By analytic continuation (13) continues to hold whenever Ep(-, p, A) and M (w, A)¢,
w € Q(P; Q) are regular.

LEMMA 6. Let ¢ € AL, w € oQp, p € Ep,(p) and w € Ag,. Then,
Re {(wp, w") < 0 with equality if and only if @" € wap. In particular, if Rewp = 0
then w € Q(P; Q).

Proor. (Cf. [Art82c, p. 61-62].) Clearly, (wu, =) = 0 if @’ € wap since
p € (af)i. By [MWO95, 1.4.11] we have

W= Z Ca ¥

P
(XEAPW

with Rec, < 0 for all a. Thus,

wp = Z CoWar.

aEA}};w

The wa’s are positive roots of ag, . Therefore (wa,w") > 0 for all w € Ag,. Tt
follows that Re (wu,w") < 0. If equality holds then necessarily (wa,w") = 0 for
all o € AL . Then w'w" € ap, is orthogonal to (af, )*. Therefore w™'w" € ap
as required.
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If Rewp = 0 then by the above AQ C wap. Thus, ag € wap, which means
that Mg 2O wMw™1. O

COROLLARY 2. Let ¢ € A%. There exists a constant k such that for any
A € ap ¢ outside the singular hyperplanes of E(-, A) and the intertwining operators,
and all RC Q C G,
Er(M(p, ) UEr(Eq(p, A))

is of size < k (as a multiset) and is contained in a ball of radius ||\|| + k around 0
m aa,c. Moreover,

U Reé&r(Mq(e,N)
A€ia},
and

U Re&r(€o(p, V)
A€iap,
are finite subsets of the closure of a, _. The second set does not contain 0.

We can also infer another crucial property.

PROPOSITION 5. Let ¢ € A%, o' € A%, and suppose that either P or P’ is
proper. Then for X € (a$)%, N € (a§,)% in general position we have

/ EP(g7<p7A)EP’(gaSO/aA/) dg = 0.
G\G(A)!

PROOF. We can assume that ¢(-g) (resp. ¢'(-g)) belongs to an irreducible sub-
space 7 (resp. ') of L2(ApM\M(A)) (vesp. L?(Ap M'\M'(A))). The regularized
integral, if defined, gives a G(A)'-invariant sesquilinear form on Indps)(m, ) x
Indpray(n’, ). However, such a form does not exist (even locally) for A, A’ in
general position unless P = P’ = G. It therefore remains to show that

/ Ep(9,0,\)Epi(g9,¢',N) dg
G\G(A)!

is well-defined for A, A’ in general position. Let A € Eq(Ep(-,¢,A)) and A’ €
EQ(Ep(-,¢',XN)). Then there exist w € oQp, w' € oQpr, u € Ep, (¢) and p' €
Epr (') such that A = (wX + p)g and A’ = (w'\ + p')q. Suppose that w € Ag.
Then (A + A7, @) is a non-constant affine functional of (A, ') € a}, ¢ X}, ¢ unless
w” € wal Nw'al’, in which case,
Re (A+A,@") =Re(wp, w") + (w'p,@") <0

by Lemma 6. In any case A+A’ is non-degenerate with respect to the Weyl chamber
of ag for A, X' in general position. |

7. Proof of Proposition 1

We are now ready to prove Proposition 1, our makeshift for Theorem 1. Denote
by J(T') the left-hand side of (2) and by M (T) the main term on the right-hand
side of (2). Also, let R(T) = J(T) — M(T). For the moment, we suppress the
dependence on A, X (as well as ¢, ¢’) from the notation. By (11) and Corollary 2
we have Re £(J(T)) € af _. Since E(M(T)) C iaf we also have Re E(R(T)) C aj _.
To prove (2) we have to show that

Re&(R(T)) C @ _ \ {0}.
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Using the first part of Lemma 5 and the decomposition (12) for the constant
term of Eisenstein series, we can write

J(T) = (Ta w) + J2 (T7 w)
for w in general position, where
Ji (Tv w) = Z(_l)dim agIQ(mQ(QO(/\% /\)7 mQ(@/(/\/)’ )‘,)7 7. T, w)
Q
and

JQ(va) = Z(_l)dimug [IQ(QEQ(SD(A)v A)va(wl()‘/)v )‘/)a'f_QvTaw)—’_
Q

IoMq(p(N),A), €q(¢'(X), ), 7, T, w)+
19(€q(p(N), A), Eq(¢'(X), N), g, T, w)] -
Assume that w € iaf is in general position.

It follows from Corollary 2 and the second part of Lemma 5 that there exists a
finite set 0 ¢ A C a5 _ and an integer [, both independent of A, N and w such that

al .
(14) Jo (T, w) € PEL (A + Bju|+a+ 21 +1(195))

where B, (iaf) denotes the ball of radius a around 0 in iag.
Assume first that (A, \') is in general position. The term J;(7,w) is the sum
over Q, w € Q(P;Q) and w’ € Q(P’;Q), of

/ IMQ(ESU,('kaM(w’)‘)‘p()‘)vw/\)aEg ,(~k,M(w’,A’)gp’()\’),w’)\'),T,w) dk
K w

o e(w)\+w’y+w,TQ>
x vol(ag/Lq)

HaeAQ <w)\+w/7—|—w,av>'

By Proposition 5 this is 0 at w = 0 unless w € Q(P, Q) and v’ € Q(P’, Q) in which
case the value at w = 0 is equal to
e NT) (M (w, Ao (V) M (', X' (X)) g
HaeAQ (WA +w' X, av)
Thus, J; (T, w) is holomorphic at w = 0 and J;1(T,0) = M(T). Let w, be a sequence

of ia§ which converges to 0 and which lies outside the singular hyperplanes of
J1(T,w) and J3(T,w). Then

vol(a$ /L)

R(T) = J(T) — M(T) = Jo(T,0) = lim Jo(T,wy).

n—00

Applying Lemma 1 for f,, = Jo(T,w,) and using (14) we conclude that

oS -
R(T) € PELS (A+ Byj+n+1(ia5))-

This gives the relation (2) for A, A" in general position.

To prove (2) for arbitrary A, X’ choose a sequence (A, A,,) in general position
which converges for (A, \'). We will emphasize the dependence on J(T'), M (T') and
R(T) on A X by writing J(A, N, T), M(X\, X, T) and R(\, N, T) respectively. By
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the argument of [Art82b, top of p. 1299] (see also §8 below) M (X, N, T') is smooth
for (A, \') €i(a%)* x i(a$,)*.? Thus,

lim M(An, N, T) = M(A\, N, T).

n—oo

On the other hand, by the properties of the truncation operator, we also have
lim J( A\, A, T) = J(\ N, T).
n—oo

We infer that
R\N,T) = le R\, A, T).

Since we know that
G
R(An, A, T) € PES (A+ B, +i1n, 1+ (105))

we infer once again from Lemma 1 that

as . %
RN, T) € PEL (A + B+ n+1(ia5))

which implies (2).

The uniformity of the error term follows from Lemma 3 applied to the family
R(\, N, T) where A\, \' range over a compact set of i(a%)* x i(a$,)*.
This concludes the proof of Proposition 1.

More preparations. Recall that ultimately we want to prove Theorem 1.
What remains to be shown is the holomorphy of the Eisenstein series on the imag-
inary axis. This will be done in the next section using Proposition 2 (which also
implies Theorem 2). To that end we need some variations on a theme of Arthur.
We recall the notion of (G, M)-families and switch to the notation of [Art82b],
which we will freely use without further comment.

We start with the following elementary Lemma. Let V' be a Euclidean space
and denote by S(V') the Fréchet space of Schwartz functions on V.

LEMMA 7. Let H be the hyperplane in V defined by 0 £ X € V*. Then the map
= f/ () defines a continuous linear map

{feSV): flg=0} = S(V).

PRrROOF. The statement immediately reduces to the case V = R, in which case
it follows from the formula
/ I (tx)

valid for any smooth function f with f(0 O

COROLLARY 3. Suppose that (cq(N))oepm) s a (G, M)-family and cq €
S(ia}p). Then ey € S(iap). Moreover cpr is a continuous linear map from the
space of (G, M)-families (a closed subspace of S(ia%)PM)) to S(ia%).

2This is based only on the holomorphy of the intertwining operators, and not on the results
of [Art82c].
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ProOF. Let
o= J[ »aY).
a€R(Ta,U)
Then o
cMm o= ZQGP(M) cqQ(A) GQ((>\))
O(})

Since 0g|0© for all @@ € P(M), the numerator is a continuous function of (cg)g
and by [Art81, Lemma 6.2] it vanishes on the root hyperplanes. Therefore by
repeatedly applying the Lemma for each root, we obtain the result. O

The (G, M)-family (cq(T; N))gep () is defined in [Art82b, §2] as
co(T;\) = Yo (T))

where Yo (T') are certain affine transformations in T' defined (for any Q € F(M))
in [ibid.]. Fix a cone C as in Theorem 1. A simple fact which is an immediate
consequence of the definition is that there exists ¢ > 0 such that for any Q € F(M)
and a € Ag we have

(15) (o, Yo(T)) = ¢||T|

forall T € C.
The following is essentially contained in [ibid., §4]. For completeness we give a
proof.

LEMMA 8. For any n there exists a continuous seminorm p, on the space of
Schwartz functions on ia} such that for any (G, M)-family dg(\) consisting of
Schwartz functions and T € C we have

T;\)d
/ M&)QW d\—dp(0)| < A+ TN D paldg).
ie®)* oepn Q QEP(M)

PROOF. We use the product formula of [Art88, §7] to write the integrand as
> Q1 Q2)efH (T3 Nd7 ()
Q1,Q2

where the sum is over pairs Q1, Qs € F(M) such that a®' + ap? = a@ and a3’ N

anf =0, and a(Q1,Q2) are certain constants, which we do not need to care about
except that

1 Q=P
G,Q) = ’
(G, Q) {O otherwise.
By [Art82b, (3.1)]
T = [ X (T, )l d
Yo, (T)+a$?

where XCI\Q/; (T,-) is the characteristic function in ap of the convex hull of the set
Y& (T). Thus,

| @ o= | V& (T, H) g, (H) dH
i(a)” Yo, (T)+ag!
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where
o) = [ )
i(apg)*

Suppose first that (1 # G and let o € Ag,. We have (o, H) = (o, Yg, (T)) for all
H €Yy, (T)+ap'. It follows from (15) that there exists a constant C' such that
1+ ||T) < C(1+||H]||) for all H € Yg,(T) + ap'. Thus, for any n

[ o
i(a)*

DT [ @ an
Yo, (T)+agt

where
cn,@, = sup (C(1+[X]))" |pq,(X)|.

Xeaf

Since fYQI(T)Jragl X(T, H) dH is polynomial in T we obtain

(16) < ew Qo (LHTIH™

[ ;o
i(apg)*

for appropriate n’. By Corollary 3 ¢, ¢, is a continuous seminorm on the space of
(G, M)-families.
On the other hand, the contribution from @y = G is

[ (T on() it = [ op(H) dt + [ (1= (T, H))on(H) di.

P P

Since

op(H) = /( e dn

and there exists C' > 0 such that xp (T, H) =1 unless 1 + |[|T']| < C(1 + ||H||), we
get

(1) [ (T H)on(H) dH — dp(0)| < cnn(1+ |T]) "
ap
Combining (16) and (17) we get the Lemma. O

We also need another simple property of the truncation operator.

LEMMA 9. Suppose that F is a function of uniform moderate growth on G\G(A).
Then F € L?(G\G(A)) if and only if (ATF, F)a\a) converges as T — oo in C,
in which case it converges to ||F||?.

PROOF. Recall that (ATF, F) = |[ATF|? < ||F|? ([Art80, §1]). By [Lap06,
Lemma 6.2] there exists a constant ¢ such that ATF(g) = F(g) for all g € &
where

Sr={ge&: (w Hy(g) —T) < cforall w € Ag}.
It follows that
IATF|* = [1Flx, |1”
where X is the image of &7 in G\G(A). The Lemma now follows from Lebesgue’s
monotone convergence theorem. (|
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8. Proof of Theorems 1 and 2

Next we prove Proposition 2, which immediately implies Theorem 2. We fix a
cone C as in Theorem 1. By Lemma 9 it suffices to show that the inner product

(ATOp,, ATOp o) avaa)

converges to the right-hand side of (4) as T — oo in C. Using Fourier transform
on ag and the properties of the truncation operator ([Art80]) we write this inner
product as

/ /(G) /G (ATEp( oA+ 1), A) AT Ep (' (N + 1), X)) g gays 4N AN .
az)* a *

By Proposition 1 the limit of this expression as T'— oo in C is equal to the limit of

(1) / /( / SOy Y vl@/Lo)

)" Q weQ(P,Q) weQ(P,Q)
e<“+w V) (M (w, N(h+ p), M(w', X)g' (N + )
HaeAQ (WA +w'N,av)
We have to show that this limit exists and is equal to the right-hand side of (4). This
is clear if P and P’ are not associate, in which case both sides are 0. Otherwise, by
choosing w € Q(P, P’) and changing ¢’ to M (w, )¢’ (wA) we can assume without

loss of generality that P’ = P. Following [Art82b, §§1-2] we recast the integrand
in terms of (G, M)-families by writing it as the sum over s € Q(P, P) of

Z cq(T; N)dg (X A)
Oo(A)
where A = s\ — X, ¢o(T';A) is as in the previous section and
Ao\ A) = (p(A+ 1), Moy (N Magyp(s,5~ -+ A (5~ A+ A) + )

By Lemma 8 the inner integral in (18) approaches

Do (O A+, M(s,s7 N (s A+ ) p
s€Q(P,P)

L d\ d\ dp.

QEP(M)

as T — oo in C uniformly in A and p. Thus, the limit of (18) exists and is equal to

/ /( . (A + 1), M(s, s A (s A+ ) p dX dp.

seQ( PP)

This is equal to the right-hand side of (4) by adjointness and change of variable.
This concludes the proof of Proposition 2.

Finally, we explain how to derive from Proposition 2 the holomorphy of the
Eisenstein series on the imaginary axis, which is needed to infer Theorem 1. The
prototype of the argument is the fact that a meromorphic function f on C" with
singularities along hyperplanes of the form (A v —wvy) = 0, A € R*, vy € C",
and whose restriction to R™ is in L#(R"™), must be holomorphic near R™. Indeed,
otherwise there exist vy, A € R™ and an integer k£ > 1 such that

Ao —v0)* f(v)
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is holomorphic and non-zero near vo. Thus, |f(v)| grows at least like [(X, v — vg)| ™"
near vy, and the latter in not square-integrable on any neighborhood of vy in R™.

Note that the conclusion is not true for arbitrary meromorphic functions as
shown by the example

f(z1,.00y20) = L

n > 5.
2442272 2\’
621+ +Z,L(zl ++Zn)

For the case at hand, we first sharpen Proposition 2 as follows.

LEMMA 10. Suppose that ¢ is a bounded measurable function from iap into a
finite-dimensional space V' of A%. Suppose that ¢ is supported in a compact set C
on which Ep(1,-) is regular for all ¢ € V. Similarly for ¢'. Then Proposition 2
holds for v, ¢'. In particular, we have

(19) 10411 72(c\aay <121l
where ||¢||« is as in (3).

PROOF. It is enough to consider the case ¢’ = . Let ¢, be a sequence in Wp

such that

(1) ¢, take values in V;

(2) ¢y, are uniformly bounded;

(3) ¢n are supported inside a fixed, compact neighborhood of C' on which

Ep(1,-) is regular for all ¢ € V.

(4) ¢n — ¢ with respect to ||-||«.

We will show that

(20) O,, — O, in L*(G\G(A)).

Taking the limit in the identity (4) for ¢, we will obtain the Lemma. To show
(20) observe that, once again by (4), O, is a Cauchy sequence in L?(G\G(A)) and
therefore it has a limit F'. On the other hand, ©,, converges pointwise to ©, by
Lebesgue’s dominated convergence Theorem. Thus F' = ©,,. (]

PROPOSITION 6. For any ¢ € A% the Eisenstein series Ep(-, ¢, \) is holomor-
phic for A € ia}.

PROOF. Suppose on the contrary that for some ¢g € A% (say, with |¢o] = 1)
Ep(-,¢0,A) is not holomorphic near ia%. Then there exists A\g € iak, r > 0,
a € R(Ty,U) and an integer k > 1 such that

E*(-,\) == IN*Ep(-, ¢0, \)

is holomorphic on ||A — Ag|| < 2r and non-zero at A\g where [(\) = (A — Ao, V).
Fix zg € G(A) such that E*(zg, \g) # 0. For any n > 0 define

E A
90()\) _ { (an(POaA)@O A€ n

0 otherwise
where
Ay, ={X€iap : [[A = Xo|| <7 and [[(N)] > n}.
‘We have )
E*(x0,\)|
O, (z0) = |l¢l? z/ 1B (@o, N7 d\.
o) =l = [ 5
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It follows that

a2 < Oy (x0) = |lpll2 < ean' "

with ¢; > 0 where we will denote by ¢; constants which are independent of 1 (and
later on of €). Using (19) we obtain,
184l L2(cr\aay < can® ™.
For any € > 0 let N, be a compact neighborhood of xg so that
|E*(z,A) — E*(x0,\)] < €
for all © € N, and ||A — A\o|| < r. Then for any = € N,
10,(2) — O,(0)] < e/ I A < caen 2.
Ay
All in all,
e T2 vol(Ne) < [©p(20)llzi(v.) < 1941wy + 194 — Op (o)l v,y <
Vol(N) 10, ) + caen' 2 vol(N.) < 3 vol(No) b~ + cxen' 2 vol(N,).
Taking € = ¢1/2¢4 we obtain
n172k < 057]%7]“

with ¢5 independent of n. This is impossible if 7 is sufficiently small. ]
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Multiplicité 1 dans les paquets d’Arthur aux places p-adiques

C. Mceglin
En l’honneur de Freydoon Shahidi, pour son 60e anniversaire

RESUME. The main goal of this paper is to summarize the construction of
Arthur’s packet of representations and to finish the proofs of the fact that each
representation occurs with multiplicity at most 1 in such a packet. This will
complete the work of [21] and [28]. More precise results are in the unpublished

paper [22].
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1. Introduction

Le but de cet article est de résumer les grandes lignes qui permettent de montrer
que les paquets d’Arthur locaux, aux places p-adiques n’ont pas de multiplicité. Ceci
part comme hypothese générale que I'on connait ’existence de paquets de séries
discretes pour les groupes considérés via des formules de transfert de caracteres,
transfert endoscopique et transfert endoscopiques tordus et que l’on sait que ces
paquets de séries discretes ont multiplicité 1. Ces résultats sont annoncés au moins
dans certains cas par Arthur (cf. en particulier le dernier chapitre de [3]) et les
exposés faits par Arthur mais au moment ou on écrit ces lignes, le texte définitif
d’Arthur n’est pas disponible, nos résultats sont donc conditionnels.
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On ne récrit pas les démonstrations techniques déja disponibles sous forme de
publications [28], [21] mais on ajoute la démonstration de I'irréductibilité dans la
définition méme des représentations dans le cas général (cf. 4.1.2, 4.2) qui n’était
pas incluse dans ces publications; c¢’est nécessaire pour avoir la multiplicité 1. On
essaie aussi de considérer tous les groupes pour lesquels nos méthodes s’appliquent ;
aux groupes classiques usuels, on ajoute les groupes GSpin (en suivant les idées
d’Arthur [5]) et on aborde aussi le cas des groupes métaplectiques; on prouve ici
la classification des séries discrétes des groupes métaplectiques en s’appuyant sur
celles des groupes orthogonaux ; on doit supposer que la caractéristique résiduelle
est différente de 2 pour ce résultat et on donne une description des paquets généraux
en prenant une définition ad hoc a l'aide de la correspondance de Howe. Pour les
groupes métaplectiques, nous n’écrivons pas de propriétés de transfert.

Décrivons un peu plus précisément ’article. Ici F' est un corps p-adique. Sha-
hidi et ses collaborateurs, en particulier Goldberg, Kim et Asgari ont montré
comment les résultats d’Harish-Chandra sur les opérateurs d’entrelacement per-
mettent de comprendre les fonctions L attachées & des représentations cuspidales
génériques de certains groupes M, M étant vu comme sous-groupes de Levi de
groupes H, la représentation du L-groupe de M donnant lieu a la fonction L est
alors celle qui s’obtient naturellement dans la dualité de Langlands a I'aide du
parabolique dual dans “H et de P’action de “M dans I’algebre de Lie du radical
unipotent de ce parabolique. Shahidi en interprétant les résultats d’Harish-Chandra
a déduit de ces observations des résultats importants sur les points de réductibilité
des induites de cuspidales : exprimons les sur 'exemple le plus simple. Ici G =
SO(2n + 1, F), la forme déployée, o est une représentation cuspidale générique de
G et p est une représentation cuspidale unitaire d’un groupe linéaire GL(d,, F'). On
voit GL(d,, F') x G comme un sous-groupe de Levi de H = SO(2(n+d,)+ 1, F) et
on considere les induites de la représentation p| |*®@c oll s € R>(, notées simplement
pl|° x o. D’apres les résultats d’Harish-Chandra une telle induite est irréductible
pour tout s réel si p 2 p* c’est la condition dite improprement de ”ramification”
ou encore il faut qu'un élément du groupe de Weyl de H stabilise la représentation
p®o. De plus Silberger a montré que si la condition de "ramification” est satisfaite
alors il existe exactement un réel s, , positif ou nul tel que I'induite p| |*= x o soit
réductible. Shahidi a alors démontré que s, , = 0,1/2 ou 1 et le fait que s, , soit
entier ou demi-entier ne dépend que de p et non de o. En effet, d’aprés Shahidi,
Sp.c = 1/2 si et seulement si la fonction L(p, Sym?, s) a un pole en s = 0. On peut
maintenant généraliser ces résultats en enlevant 'hypothése que o est générique
mais cela se fait au prix de 'utilisation de lemmes fondamentaux et de la formule
des traces simplifiée (la simplification permet uniquement d’éviter les lemmes fonda-
mentaux pondérés). Ceci est expliqué par les travaux d’Arthur (cf. par exemple [4]
et [6]). La meilleure fagon d’expliquer la situation pour le G fixé ici est de considérer
les homomorphismes ¢ de Wr x SL(2,C) dans Sp(2n, C), pris évidemment & conju-
gaison pres, dont le centralisateur dans Sp(2n,C) est un groupe fini. A un tel ¥,
Arthur associe (cf [6]) un ensemble sans multiplicité de séries discrtetes (ensemble
noté II(¢))) tel que la somme des traces, >y, trm se calcule en fonction de la
trace de la représentation tempérée de GL(2n, F') associée par la correspondance
de Langlands locale & ¥ ; plus exactement cette représentation 7&7 (1)) est inva-
riante par 'automorphisme extérieur de GL(2n, F'), noté 65 et on prolonge cette
représentation en une représentation du produit semi-direct de GL(2n, F') x {1,6};
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ici on appelle g 'automorphisme h +— J(tg=1)J =1 olt J est tel que f¢ conserve
un épinglage. Et alors, Arthur montre que pour un bon choix de ce prolongement,
le choix qui est tel que 8¢ induise une action triviale sur le modele de Whittaker
usuel, et pour tout g € G semi-simple suffisamment régulier

Y trmlg) = 6(g, 8, hy)tr 1 (v)(hebc), (%)
mell(y)

ol g est hy sont simplement reliés par le fait que les valeurs propres de g différentes
de 1 sont celles de hy0g(hy) et ot §(g, 0, hy) est un facteur de transfert géométrique
qui vaut identiquement 1 dans un certain nombre de cas en particulier dans le cas
que nous considérons ici. En d’autres termes, G est un groupe endoscopique de
GL(n).0g et 9% (¢)) est un transfert de > rem(y) T pour lendoscopie tordue; si
G est un groupe endoscopique principal, les facteurs de transfert valent identique-
ment 1. Ce résultat d’Arthur n’est pas encore completement rédigé mais Arthur
a largement expliqué sa démonstration. Le transfert commute a 2 opérations clé,
I'induction et la restriction (ceci se trouve déja dans les travaux de Shelstad dans le
cas de ’endoscopie ordinaire, cf. aussi [28] 4.2.1 pour la restriction). On a donc des
renseignements sur les modules de Jacquet des éléments de II()) en fonction des
modules de Jacquet de 7% (1)) on le reprend en 2.3 ci-dessous. Ainsi si on revient
a p, o ci-dessus sans supposer que o est générique, on vérifie que si s, , > 0 alors
linduite p||~%¢ X o contient une sous-représentation qui est une série discrete
irréductible ; cette série discrete appartient a un paquet paramétré par un mor-
phisme noté v et le s, se calcule a 'aide du module de Jacquet de TGl () et
on retrouve alors les résultats de Shahidi, la fonction L qui intervient est main-
tenant L(Zp, Sym?2,s) ou Lp est la représentation de Wr qui correspond & p par
la correspondance de Langlands ; dans tout I'article on notera p tout simplement
p. Henniart a montré dans un cadre tres général que ces fonctions L coincident
et on a donc bien une généralisation du résultat de Shahidi. A partir de la on a
une connaissance tres précise des représentations intervenant dans II(1)) et ceci est
rappelé en 2.3.

On vient d’expliquer comment (*) permet de comprendre les points de réductibi-
lité des induites de cuspidales mais pour établir la classification des séries discretes,
Arthur utilise toutes les propriétés de I’endoscopie. Jusqu’ici on avait supposé le
groupe considéré quasi-déployé; c’est ’endoscopie ordinaire qui permet de traiter
aussi les groupes non quasi-déployés, en utilisant le transfert stable vers la forme
quasi-déployée. Pour traiter les groupes métaplectiques, on utilise la correspon-
dance de Howe donc on n’a plus de formule de caracteres; on suppose alors que la
caractéristique résiduelle est différente de 2.

Pour les applications & la formule des traces le point est de généraliser (*) &
tout morphisme ¢ de Wg x SL(2,C) x SL(2,C) dans Sp(2n,C) en modifiant les
signes du membres de gauche. Pour un tel ¢ Arthur sait démontrer ’existence du
paquet de représentations II(¢) tel que (*) soit satisfait mais avec éventuellement
des coefficients dans le membre de gauche qui sont, & un signe pres qu’Arthur sait
calculer, des entiers; on ne sait pas encore avec quelle généralité Arthur écrira
ses résultats. Dans cet article on résume les points qui permettent de prouver
que les coefficients sont +1 deés qu’on le sait pour les paquets de séries discretes
(nos méthodes ne permettent nullement de le démontrer pour les paquets de séries
discretes). La démonstration est technique et elle s’appuie sur 2 types de résultats ;
d’une part du coté des groupes linéaires, pour ¢ général il faut écrire la 65-trace
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de 7¢I (1)) dans le groupe de Grothendieck de facon & pouvoir calculer de quelle
représentation elle est un transfert (ceci est fait dans [28]). De fagon analogue, on a
une formule pour le groupe classique considéré dans le groupe de Grothendieck qui
ne nécessite d’ailleurs pas que le groupe soit quasi-déployé. Le point est alors de
décrire cette formule comme combinaison linéaire avec coefficient +1 (explicites) de
traces de représentations irréductibles; ceci est fait dans [21]. En fait la méthode
est un peu plus fine, pour chaque caractére, €, du centralisateur de 1, on définit
dans le groupe de Grothendieck de G une représentation 7 (1, €) et on montre que
cette représentation est une somme sans multiplicité de représentations irréductibles
(donc & coefficient 1) puis on prouve qu’une bonne combinaison linéaire avec des
coefficients +1 de ces représentations 7 (1, €) a pour transfert la 6-trace de 7% ().
La description des représentations est completement explicite sous ’hypothese que
la restriction de ¢ & Wr x Agr,2,c) est sans multiplicité, ot Agy, 2 c) est la diagonale
de SL(2,C); dans ce cas, on a une paramétrisation précise des représentations dans
II(1)). On passe au cas général sans perdre la multiplicité 1 (cf 4.2 ci-dessous) mais
en perdant de la précision sur la paramétrisation; dans cet article on donne une
démonstration complete de l'irréductibilité de certaines induites (la démonstration
se trouve dans une prépublication [22] qui restera prépublication, vue sa techni-
cité) de fagon a ce que toutes les étapes de la preuve soient disponibles sous forme
de publication. Quand on travaille dans le groupe classique, on a exactement la
méme combinatoire que le groupe soit quasi-déployé ou non ; la différence porte sur
la restriction du caracteére e (ci-dessus) au centre du groupe dual; dans le cas de
G Spin ce n’est pas exactement le groupe dual, ceci est expliqué en toute généralité
par Arthur en [4] et repris ici dans le cas particulier considéré; par exemple si
G = GSpin(2n 4+ 1, F) la composante neutre du groupe dual est Gsp(2n,C) mais
les centralisateurs sont calculés dans Sp(2n,C) et c’est le centre de Sp(2n,C) qui
distingue la forme déployée de celle qui ne l’est pas.

Les groupes pour lesquels les méthodes développées ci-dessous fonctionnent bien
sont les groupes classiques et leurs variantes; c’est-a-dire ce sont les groupes qui
peuvent étre mis en famille indexée par le rang, {G(n);n € N} ici n est le rang du
groupe, tel que les classes de conjugaison des sous-groupes de Levi de G(n) pour tout
n sont indexés par les multiensembles {ng; (n1,--+,ne)}, ot n =ng+ny+- -+ ny,
ng > 0 et les n; pour i € [1,£] sont définis & Pordre pres, le sous-groupe de Levi étant
isomorphe & X;¢c[1, G L(n;) x G(ng) ot G(ng) est le groupe de méme type que G(n)
mais de rang ng ; ceci n’est pas suffisant, on veut aussi que la composante neutre du
L groupe de G ait une représentation naturelle injective dans un groupe linéaire de
rang 2n ou 2n + 1, c’est-a-dire que I'on exclut encore les groupes G = Gsp ou GO.
On obtient finalement les groupes classiques usuels sans supposer nécessairement
qu’ils sont quasi-déployés, ce qui sous entend qu’il faut considérer O(2n, F') et non
SO(2n, F) (pour ces groupes il faut tenir compte du discriminant de la forme et
de l'invariant de Hasse dans les paramétrisations ; ceci est amplement écrit dans la
littérature, par exemple [17] et on ne revient pas la-dessus) ; les groupes unitaires
sont aussi acceptables et les groupes GSpin(2m + 1, F') (les deux formes, déployée
ou non déployée) ; ceci est remarqué dans [7] et repris dans [8], [14]. Le groupe
dual & considérer est alors GSp(2m, C) que l'on considére en suivant Arthur (cf [5])
comme un sous-groupe de GL(2m,C)x GL(1,C). On peut aussi traiter une variante
non connexe de GSpin(2m, F') avec comme groupe dual GO(2m,C) encore inclus
dans GL(2m,C) x GL(1,C). 1l faut préciser ici que nous n’avons pas fait toutes
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les vérifications nécessaires pour les groupes orthogonaux paires et leurs variantes
GSpin(2n, F); la difficulté vient de la non connexité. Pour les représentations,
il suffit d’appliquer la théorie de Mackey et la difficulté est dans le cas tempéré
et non dans le passage du cas tempéré au cas général. Il y a aussi une difficulté
avec les facteurs de transfert, ces facteurs de transfert n’apparaissent pas pour les
autres groupes qui sont des groupes endoscopiques principaux mais viennent pour
les groupes orthogonaux pairs et la non connexité du groupe n’améliore pas leur
définition (je ne sais méme pas si elle existe); la aussi la difficulté est pour les
représentations tempérées et je préfere attendre les résultats précis annoncés par
Arthur pour utiliser son yoga et faire les vérifications. Le groupe métaplectique
rentre aussi dans ce shéma, au moins si p # 2 a la différence de taille pres que
lon n’a pas d’analogue de (*); on remplace cette caractérisation des paquets par
la correspondance de Howe. Ce sont des idées diies, me semble-t-il, & Adams et
exploitées dans ses travaux en particulier communs avec Barbasch et Trapa et dans
les travaux de Renard et Trappa, au moins dans le cas des groupes archimédiens.
Pour donner la forme d’un paquet d’Arthur général de Mp(2n, F'), on a en plus
I’hypothése que le caractere d’une représentation est localement L!, je ne sais pas
si cela est démontré dans la littérature ; cette hypothese vient du fait que [26] 4.11.
2 n’est pas algébrique. On caractérise un paquet d’Arthur par son image dans la
correspondance de Howe pour la paire Mp(2n, F),O0(2n+2N +1, F) pour N grand
en demandant que cette image soit ’ensemble des représentations de O(2n 4+ 2N +
1, F') dont la restriction & SO(2n + 2N + 1, F) soit dans le paquet d’Arthur prédit
par Adams et qui interviennent dans cette correspondance de Howe.

2. Notations

F est un corps p-adique, n est toujours un entier, G est I'un des groupes sui-
vants, quasi-déployé ou non : Sp(2n, F'), SO(2n+1, F), O(2n, F), GSpin(2n+1, F),
GSpin™(2n, F) (cf ci-dessous pour la définition), Mp(2n, F') (notation abusive,
puisque le groupe n’est pas le groupe des points sur F' d’un groupe algébrique). On
pose respectivement suivant les cas G le groupe complexe SO(2n+1, C), Sp(2n,C),
O(2n,C), GSp(2n,C), GO(2n,C). On considere la représentation naturelle de G*
dans le GL évident sauf dans le cas GSp et GO ou on considere la représentation
naturelle dans GL(2n,C) x GL(1) comme expliquée ci-dessous (on suit Arthur). On
note 6, ou € 'automorphisme extérieur de GL qui respecte un épinglage dans tous
les cas sauf quand G est un groupe G.Spin ot 'automorphisme est décrit ci-dessous.

On considére aussi des morphismes ¢ de Wp x SL(2,C) x SL(2,C) dans G*
vu grace a la représentation de G* décrite comme une représentation de Wp x
SL(2,C) x SL(2,C). On suppose toujours que cette représentation est unitaire,
continue au sens habituel sur Wr algébrique sur les copies de SL(2,C). On décom-
pose alors cette représentation en sous-représentations irréductibles et on note
Jord(y)) 'ensemble de ces sous-représentations irréductibles comptées avec mul-
tiplicité ; dans le cas des groupes G'Spin, on a en plus un caractere de Wr noté vy, ;
on l'oublie en général des notations. Un élément de Jord(y) est donc un triplet
(p,a,b) ou p est une représentation irréductible unitaire de Wr et a,b sont des
entiers déterminant des représentations irréductibles de SL(2,C), représentation
irréductible que 'on écrira parfois p ® [a] @ [b].

On considérera aussi le centralisateur de v, il est a prendre dans G* sauf dans le
cas des groupes G = G Spin o on le prend dans Sp(2n,C) ou dans GO(2n,C). On
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considérera ensuite des caracteéres de ce centralisateur ; dans tous les cas sauf celui
des groupes métaplectiques, ces caractéres ont pour restrictions au centre de G*
le caractere trivial si et seulement si G est quasi-déployé. Dans le cas des groupes
métaplectiques, il n’y a pas de condition sur la restriction des caracteres au centre
de G* ici Sp(2n,C). 1l est facile d’identifier un caractere du centralisateur de 9 a
une application de Jord(y) dans £1, ou Jord(y) est ici vu comme un ensemble
sans multiplicité, application qui vaut +1 sur tous les triplets (p,a,b) tel que la
représentation p ® [a] ® [b] n’est pas & valeurs dans un groupe de méme type que
G*; plus précisément si (p, a,b) n’a pas la bonne parité (cf. 4.1)

La notation p qui revient dans tout cet article, signifie indifféremment une
représentation irréductible unitaire de Wr ou une représentation cuspidale unitaire
irréductible de GL(d,, F) (ce qui définit d,).

On a essayé d’éviter le maximum de technicité dans cet article, mais on a
par endroit besoin de la notation bien commode Jac, =7 ; elle signifie que 7 est
une représentation lisse de longueur finie de G, = est un nombre réel (en général
un demi-entier), p est comme ci-dessus et Jac,»m est I’élément du groupe de
Grothendieck du groupe G’ de méme type que G mais de rang d, plus petit tel
que le module de Jacquet de 7 pour le parabolique de Levi GL(d,, F)) x G’ soit

de la forme (p| |” ® Jac,, |m7T>EB (@g',guo’ ® U”), ou o', 0" décrive un ensemble

de représentations irréductibles de GL(d,, F') et G’ respectivement telles que ¢’ ne
soit pas isomorphe & p[[*. On peut composer ces applications Jac,| - en faisant
attention a la notation

Jacp| v © Jacp‘ [¢ T =: Jacp| [,p] [#7T-

Soit 1) comme ci-dessus ; on note 7% (1)) la représentation du GL convenable
isomorphe a l'induite X (, 4.5)es0rd(w)SPeR(St(p,a),b), on St signifie Steinberg et
Speh(St(p,a),b) est Punique quotient irréductible de l'induite St(p,a)||®~1/2 x
oo x St(p,a)||7®~Y/2. Pour donner la définition de 7% (¢)), il suffit bien évidem-
ment d’avoir une représentation de Wr x SL(2,C) x SL(2,C) (il n’est pas utile de
savoir qu’elle est a valeurs dans G* ; on utilisera par endroit cette généralisation.

Convention pour les 1) tempérés

Quand ) est trivial sur la 2e copie de SL(2,C), tout (p,a,b) € Jord(y) est tel
que b =1 et on remplace donc les triplets par des couples.

2.1. Les groupes GSpin. On suit ici [7] et [8] : Spin(2m + 1, F) est le
revétement d’ordre 2 de SO(2m + 1, F) non trivial; ce qui suppose que l'on a
fixé une forme orthogonale non nécessairement sans noyau anisotrope de dimen-
sion 2n + 1. Ce groupe a un centre isomorphe & Z/2Z (cf. [7] proposition 2.2). On
note ¢ 1’élément non trivial de ce centre et on considere GSpin(2m + 1,F) :=
GL(1,F) x Spin(2m + 1, F)/{(1,1),(=1,¢)} (ct. [7] def. 2.3). On définit aussi
Spin(2m, F') comme le revétement d’ordre 2 non trivial de la forme quasidéployée
de SO(2m, F); 'automorphisme extérieur de SO(2m, F) se releve en un auto-
morphisme , aut, de Spin(2m, F'). Le centre de Spin(2m, F) est un groupe & 4
éléments et son sous-groupe formé par les éléments invariants sous aut est d’ordre
2; c’est le sous-groupe {1,c} avec les notations de [7] proposition 2.2. On note
Spin™¢(2m, F) le produit semi-direct de Spin(2m, F') avec {1, aut} et on pose en-
core GSpin™¢(2m, F) le quotient GL(1, F') x Spin™¢(2m, F)/{(1,1), (-1, ¢)}. Toute
représentation irréductible d’un de ces groupes a un caractere central. On supposera
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toujours que ce caractére central est unitaire. Si 7 est la représentation considérée,
on note v, la restriction du caractére central de 7 au facteur GL(1, F) qui apparait
ci-dessus. D’apres [7] 2.7, les sous-groupes de Levi des groupes GSpin(2m + 1, F)
déployés sont de la forme

GL(n1,F) x -+ X GL(ng, F) x GSpin(2(m —ny — -+ —ny) + 1, F);

son argument (qui utilise le L-groupe comme décrit ci-dessous) montre aussi que la
composante connexe du centre de GSpin(2m + 1, F') s’'identifie & celle de

GSpin(2(m—ny — -+ —mng) + 1, F).

Le cas de GSpin(2m, F) déployé est fait dans [14] page 545. Kim y calcule ef-
fectivement les sous-groupes & un parametre et montre ainsi qu’un sous-groupe
parabolique maximal de GSpin(2m, F) est de la forme GL(1) x GL(1) x SL(k) x
Spin(2(m —k))/S ou k < m et le premier GL(1) est celui qui sert & définir GSpin
et le 2e est le tore déployé maximal dans le centre du sous-groupe de Levi de Spin
obtenu par intersection ; ce sont des arguments sur les groupes dérivés puisque 1’on
sait que le groupe dérivé doit étre simplement connexe; le groupe S se calcule a
laide des coracines et Kim montre qu’en plus de I’élément {—1, 1,1, c}, il contient,
si k est pair

{(1,8,t1dg, 1); t*/2 = 1} U {(=1, ¢, tId, c); t*/? = —1}.

Si k est impair, ce groupe vaut {(1,¢,t2Idy, 1);t* = 1} U {—1,¢,t21dy, ¢); t* = —1}.
En tant que groupe algébrique ce Levi est isomorphe naturellement & GL(k) x
GSpin(2(m — k)). Avec cette présentation, il est clair que ceci reste vrai si GSpin
n’est pas quasidéployé et que ceci s’étend aussi & GSpin™¢(2n).

Le groupe dual est Gsp(2m,C) pour GSpin(2m + 1, F) et GO(2m,C) pour
GSpin™©(2m, F). En suivant [5] on voit ces groupes comme des sous-groupes de
GL(2m,C) x GL(1,C) par le plongement g — (g,)y) ot Ay est le scalaire tel
que ‘gJeg = A\gJi ou Jg est la matrice antidiagonale avec des 1 dans le 2e cas
et la matrice antidiagonale mais avec des —1 comme entrées non nulles sur les m
premieres colonnes et des 1 pour les m dernieres.

A la suite de [5] on note O+ "automorphisme de GL(2m,C) x GL(1,C) défini
par Og-(g,A) = J(*g=1)J A, \). On considere les homomorphismes de Wr x
SL(2,C) x SL(2,C) dans GL(2m,C) x GL(1,C) dont la classe de conjugaison
est fg- invariante. La projection sur le facteur GL(1,C) définit un caractere de
Wr, noté wy ; on considere wy comme un caractere de Wr x SL(2,C) trivial sur
SL(2,C). La projection sur le facteur GL(2m, C) définit une représentation, &
de dimension 2m de Wg x SL(2,C) x SL(2,C). On suppose toujours que cette
représentation est semi-simple de restriction a Wx bornée. Supposons que la classe
de conjugaison de 9 soit fg«-invariante ; cette hypothese se traduit exactement par
le fait que ¥L* @ Wy G On supposera toujours que wy est un caractere
unitaire. En [5], Arthur a classifié les classes de conjugaison d’homomorphisme .
Dualement Pautomorphisme 6o de GL(2m,G) x GL(1, F) & considérer et auto-
morphisme 0g(g,z) = J(*g1))J 1, det(g)z) (cf. [5]) page 66.

2.2. Le groupe métaplectique et la filtration de Kudla. Ici on suppose
que p # 2, p étant la caractéristique résiduelle du corps de base. On peut com-
prendre les représentations irréductibles du groupe métaplectique en utilisant la
représentation métaplectique et tous les groupes orthogonaux d’une forme de di-
mension impaire ; comme on le verra ci-dessous, il est justifié de considérer Sp(2n, C)
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comme groupe dual. C’est-a-dire que 'on considérera des homomorphismes de
Wg x SL(2,C) x SL(2,C) dans Sp(2n,C).

On aura besoin des résultats suivants sur la représentation métaplectique, es-
sentiellement dis & Kudla dans sa these ([15]). On fixe 2 tours de Witt d’espaces
orthogonaux de dimension impaire, 'une correspondant aux formes orthogonales
de noyau anisotrope de dimension 1 et I'autre a celles ayant un noyau anisotrope de
dimension 3; on suppose que les discriminants valent 1 pour tous ces espaces. La
premiere tour est formé d’espaces orthogonaux d’invariant de Hasse 1 et la deuxieme
d’espaces orthogonaux d’invariant de Hasse —1. Les objets associés dans ce qui suit
via 'une ou l'autre des tours seront notés avec un indice ( = + représentant I’in-
variant de Hasse attaché a la tour. On fixe le groupe métaplectique Mp(2n, F')
et on a donc 2 familles de représentations métaplectiques donnant des correspon-
dances de Howe. Soit 7 une représentation cuspidale de Mp(2n, F'); on note 7¢
la. premiere occurrence de 7w dans ces représentations; Kudla a démontré que 7,
est une représentation cuspidale. Notons m¢ l'entier impair tel que 7¢ est une
représentation de O(m¢, F'). On sait d’apres les travaux de Kudla et de Rallis ([16],
theorem 3.8) que l'on a

(my—1)+(m_—1) >4dn+2.

Une conjecture de Kudla est que cette inégalité est une égalité et 1'égalité est
démontré par Kudla et Rallis dans un certain nombre de cas qui incluent le cas
ou 7 est cuspidale ([16], theorem 3.9). On a une inégalité symétrique : on fixe m
et l'invariant de Hasse ( et on regarde la tour de Witt quand n varie. Soit 7 une
représentation cuspidale de O(m, F); et on note n(7) la premiére occurrence de 7.
Pour sign le caractére signe de O(m, F)¢, on définit de méme n(7 ® sign) et on a
n(7) + n(7 @ sign) > 2(m — 1) + 2.

Le résultat clé du a Kudla que nous utiliserons est le suivant. Pour n comme
ci-dessus, m un entier impair ¢ un signe qui donne l'invariant de Hasse d’une forme
orthogonale de dimension m et de déterminant 1, on note €2, ,, ¢ la représentation
métaplectique pour la paire Mp(2n, F), O(m, F).. Pour d < n, Kudla a calculé les
modules de Jacquet de cette représentation pour le parabolique maximal isomorphe
aGL(d,F)x Mp(2(n—d), F) de Mp(2n, F); il a décrit une filtration & 2 termes de

ce module de Jacquet, le quotient est isomorphe a Q,_g4 . ¢ est le sous-module est

isomorphe & indg(m’F)deyd ® Qp—d,m—2d4,c ol Q est un parabolique de O(m, F') de

Levi isomorphe & GL(d, F)) x O(m —2d, F) (ce terme n’existe pas si ) n’existe pas),
wd,q est a torsion pres essentiellement la représentation réguliere gauche et droite de
GL(d,F)x GL(d, F) ou le premier GL(d, F') est dans Mp(2n, F) et le deuxieéme est
un facteur de Q. Le groupe GL(d, F') sous-groupe de Mp(2n, F') opere sur y,—g.m ¢
par le caractere |det|~ ("= (m=1/2-1/2) "Soit n/ m’ et 7' @7’ un quotient irréductible
de Q7 m ¢ et on suppose qu'il existe une représentation cuspidale irréductible p’
d’un groupe GL(d,, F') et une représentation irréductible ¢’ de Mp(2(n —d,), F)
tel que 7’ soit un sous-module de 'induite p’ X ¢’. En utilisant la filtration ci-dessus
et quelques dualités, on vérifie que 2 cas sont possibles : soit p/ = ||~ (»~(m=1)/2=1/2
et o/ @ ' est un quotient de Qn_dp/,,,m soit il existe une représentation irréductible
¢’ telle que 0 ® ¢’ soit un quotient de Qn/,dp,’m/,gdp,’g et 7’ est un sous-module de
linduite p’ X &’ ; pour ce que l'on fait, le probleme des torsions n’est pas grave, ce
qui compte est la valeur du caractere exceptionnel et celle la est facile a calculer.
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Kudla a aussi établi une filtration symétrique en échangeant les roles des
groupes métaplectiques et orthogonaux ; le caractére exceptionnel est alors —((m —
1)/2 —n —1/2). On applique ce résultat de la fagon suivante :

soit p une représentation cuspidale unitaire d'un GL(d,,F) et z € R. On
considere les correspondances pour Mp(2n + 2d,, F') avec les tours de Witt déja
décrites. On fixe un quotient irréductible de 'induite 7’ de p| |* x 7. On suppose que
soit p n’est pas le caractere trivial soit « n’est pas un demi-entier non entier. Ainsi
7', par la filtration de Kudla, est un quotient de la représentation métaplectique
Qntd, mc+d,,c- Et il existe une représentation irréductible 7" de O(m¢ + 2d,, F)¢
telle que 7’ soit I'image de 7’ dans la correspondance définie par Qntd, me+2d,,c-
On sait alors que 7’ est un sous-quotient de U'induite p| |* x 7¢ (cf. [34]). De plus,
par la filtration de Kudla, Jac,|-=7" # 0 puisque ceci est vrai pour 7 et donc
7’ est un quotient de I'induite p||* x 7; on vérifie symétriquement I'implication
réciproque ; on a donc

Jacp‘ |—z7T/ 7£ 0= Jacp‘ I—m’ﬁ/ 7£ 0.

Si I'une des induites est irréductible, on a aussi Jac,| -7 # 0 et Jac,+7" # 0 et
les 2 induites sont irréductibles si x # 0. Si x = 0, les induites p X w et p X 7T sont
semi-simples et tout sous-module irréductible de I'une a pour image un sous-module
irréductible de l'autre. On sait que pour le groupe orthogonal, une telle induite est
sans multiplicité mais on ne le sait pas pour le groupe métaplectique puisque cela fait
partie des résultats d’Harish-Chandra. Supposons donc que p x 7 soit de la forme
o @ o; dans ce cas nécessairement p x 7 est irréductible. Le module de Jacquet
de p x 7 est lui semi-simple de longueur 2. Mais alors l'induite déja considérée

. O(m,F . N .
mdQ(m )de,d ® Qpme ¢ a 2 homomorphismes linérairement indépendants dans

(indg(m4+2d”’F)p X 7?) ® 7 surjectifs par irréductibilité. Comme le module de

Jacquet de p X ™ a un unique quotient irréductible, par réciprocité de Frobenius,
cela donne 2 homomorphismes linéairement indépendants de €, . ¢ sur 7@7. Ceci
est exclu et on a donc montré :

LEMME 2.2.1. si p n'est pas la représentation triviale ou si x n’est pas un
demi-entier non entier, on a 'équivalence pour ¢ fizé, p||* x 7 est irréductible si
et seulement si p||* X 7¢ est irréductible.

Supposons maintenant que p est le caractere trivial et que = est un demi-entier
non entier ; on fixe encore un sous-quotient irréductible 7’ de I'induite | [* x . Pour
¢ fixé, la premiere occurrence de 7’ est soit m soit m¢+2; le premier cas se produit
exactement quand z = o := —(n+1—(m¢—1)/2—1/2) comme on le voit en utilisant
la filtration ci-dessus pour la représentation €2y, 1, ,¢. Supposons donc d’abord que
= —(n—(me—1)/2+1/2); alors 7’ est 'image de 7 dans la correspondance
Qnt1,m ¢ et on sait (cela se vérifie avec la filtration) que le module de Jacquet de 7’
est réduit & un terme. Ainsi I'induite ||~ (m<=1)/2+1/2 . 7 est réductible. On pose
xq1 := (n—(m¢—1)/2—1/2); on remarque que 1 = —((m¢+2—1)/2—n—1/2) et
symétriquement, on démontre que I'induite | |** x 7¢ est réductible. Par le résultat
de Silberger ([33]), on sait que les induites | |* x ¢ sont irréductibles pour tout réel
x différent de £x1. On veut en déduire que les induites ||* x 7w sont irréductibles
pour tout & # *xg. Pour x # +xq, £x1, le résultat est clair avec la filtration : 7’
a pour image toute I'induite || x 7 par irréductibilité. En utilisant la filtration
symétrique de celle décrite on voit que le module de Jacquet de 7’ a 2 termes et
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Iinduite est donc irréductible. Supposons donc que z = x1. On vérifie alors que le
sous-module irréductible de I'induite p||** X 7¢ a sa premiére occurrence dans la
correspondance Qn,m<+2’< et a donc son image dans la correspondance Qn+1’mg+27c
qui est un sous-quotient de I'induite | [*° X 7 ; on peut le voir en considérant d’abord
la filtration de Kudla pour le parabolique GL(1) x O(mc, F)) de O(m¢+2, F)¢ puis
en appliquant encore la filtration telle que décrite au quotient {2,411, m ¢. Donc tout
sous-quotient irréductible 7’ de 'induite | |** x 7 correspond & un sous-quotient de
I'induite | |"* X 7¢ qui n’est pas le sous-module. Il n’y a plus qu’un choix et 'existence
de la correspondance de Howe assure alors I'irréductibilité de I'induite | [** x 7.

Remarquons que 'on a donc étendu le résultat de Silberger au cas des groupes
métaplectiques et méme un peu plus :

LEMME 2.2.2. soit 7w une représentation cuspidale irréductible de Mp(2n, F) et
soit p une représentation cuspidale unitaire d’un groupe GL(d,,F). Si p n’est pas
autoduale pour tout réel x Uinduite p| |* x 7 est irréductible. Si p est autoduale il
existe exactement une valeur de x € Rxsq tel que p||* X 7 soit réductible ; notons
Zpn cetle valeur de x et notons pour ( = £, 7¢ la premiére occurrence de m. On
a Tpr = Tpz,. pour toute représentation p autoduale sauf la représentation triviale
pour laquelle on a x1 x = |n— (m¢—1)/24+1/2|; en particulier x1 . est demi-entier
non entier.

2.3. Blocs de Jordan et classification des représentations cuspidales.
On rappelle la définition bien commode ; soit 7 une série discrete irréductible d’un
groupe G ; on note Jord(m) 'ensemble des couples (p, a) formés d’'une représentation
cuspidale irréductible unitaire p d'un groupe GL(d,, F) et d’un entier a > 1 tel que
I'induite St(p,a) x 7 soit irréductible alors qu’il existe un entier a’ de méme parité
que a tel que linduite St(p, a’) x m soit réductible ; St signifie ”Steinberg”. Ce n’est
pas la définition originale de [19] car on évite ici le recours aux fonctions L. L’in-
terprétation en termes de fonctions L découle des résultats d’Arthur, précisément,
on va montrer qu’avec cette définition, on retrouve la classification de Langlands
telle que montrée par Arthur.

Via la correspondance de Langlands, on identifie une représentation cuspidale
irréductible, p, d'un groupe GL(d,, F) & un morphisme, encore noté p, de Wr dans
GL(dp,C). On pose nx =32, 1 e sora(r) @ dp, 'infini si Jord(m) n’était pas fini (cf.
[18] ou la finitude est démontrée a priori pour au moins certains de nos groupes). A
un tel ensemble Jord(w), on associe un morphisme semi-simple 1, de WrxSL(2,C)
dans GL(n.,C) dont la décomposition en sous-représentations irréductibles est
précisément Y, ¢ 75.q(r) PR[a] olt [a] est la représentation irréductible de SL(2, C)
de dimension a. Soit (p,a) € Jord(w) et fixons o’ de méme parité que a tel que I'in-
duite St(p,a’) x m soit réductible. Si G n’est pas un groupe métaplectique, on sait
grace aux travaux d’Harish-Chandra qu’il existe un élément du groupe de Weyl de G
qui stabilise le sous-groupe de Levi GL(ad,, F') X G et la représentation St(p,a’) @7
de ce sous-groupe de Levi. On vérifie que cela entraine que p ~ p* si G n’est pas
un groupe GSpin. Si G est un groupe GSpin, le centre de G a pour composante
neutre le groupe GL(1, F) qui apparait naturellement dans la construction et ce
groupe agit par un caractere v, ; la condition est alors p ~ p* ® v,. Dans les 2 cas
la représentation p est nécessairement unitaire car 'on a supposé que 7 est unitaire.

On note m*(G) la dimension de la représentation naturelle du G* (la compo-
sante neutre du L-groupe de G). Soit ¢ un morphisme semi-simple de Wz x.SL(2, C)
dans GL(m*(G),C) ou, si G = GSpin(m, F), GL(m*(G),C) x C*. On peut alors
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définir 7¢% (1)) la représentation de GL(m*(G), F) (ou de GL(m*(G), F) x F*) qui
correspond a v via la correspondance de Langlands locale. On a déja défini 64 et
O¢+. On suppose que la classe de conjugaison de 1 est invariante sous fg« ; on pro-
longe alors 7% (1)) au produit semi-direct de GL(m*(G), F) (ou GL(m*(G), F) x
F*)avec {1,0c}. On suppose ici que G est quasidéployé et n’est pas le groupe
métaplectique et on dit qu'une série discrtee m de G est dans II(¢)) s’il existe une
combinaison linéaire de traces de série discrete contenant de fagon non triviale la
trace de 7 dont le transfert & GL(m*(G), F) (ou GL(m*(G), F) x F*) est la 0 trace
de m%E(¢)). Pour simplifier on admet ici que si ¢ est comme ci-dessus, la g-trace
de 7E (1)) ne vit que sur un groupe endoscopique du produit semi-direct ci-dessus ;
c’est annoncé par Arthur. En combinant D'article [2] et argument général de [24)]
on montre alors aisément qu’il existe au moins un morphisme ¢ tel que 7 € II(%))
mais ceci fait aussi partie des annonces faites par Arthur. On admet aussi que les
paquets de séries discrétes sont sans multiplicité c’est-a-dire que la somme (sans
multiplicité) des traces des représentations dans II(¢)) est une distribution stable
dont le transfert & GL(mg, F).0g est la O-trace de 79L(¢)); cela ne sert que pour
avoir la multiplicité 1 pour tout paquet d’Arthur.

Le théoréme ci-dessous fait le lien entre 'approche de [19] et [25] et celle
évidemment plus efficace d’Arthur. Ce qui importe pour nous est que I'on a ainsi
un calcul des points de réductibilité des induites de cuspidales dont on a besoin
pour décrire les représentations. De plus, la définition des blocs de Jordan est une
traduction des propriétés de certaines fonctions p de Harish-Chandra et le résultat
ci-dessous montre, comme on s’y attendait, que ces propriétés sont des invariants
des paquets de Langlands de séries discretes.

THEOREME 2.3.1. Soit G un groupe classique quasi-déployé ce qui inclut GSpin
et exclut les groupes métaplectiques et soit m une série discréte de G. Alors w €
TI(¢)) si et seulement si i est conjugué de 1, ce qui sous-entend que n, vaut
nécessairement m*(Q).

Remarque

Soit 7 une représentation cuspidale de G et p une représentation cuspidale d’un
GL telle que p =~ p* ®@v, (cf. 2.1). On note z, » le réel positif ou nul tel que I'induite
pl e x 7 soit réductible. Alors Jord(m) est ’ensemble des couples (p',a’) tel que
Ty x> 1/2 est un demi-entier et a < 2z, . avec a = 2z, . Ceci est démontré dans
[18] pour les groupes classiques usuels par des méthodes complétement élémentaires
de théorie des représentations, qui se généralisent donc sans probléeme a tous les
groupes que nous considérons ici. Cela donne une caractérisation facile du paquet
contenant une représentation cuspidale en termes de points de réductibilité des
induites.

Venons en aux preuves. Dans ce qui suit on suppose que le groupe G n’est pas
le groupe métaplectique, on traitera ce groupe ultérieurement.

On suppose d’abord que 7 est une représentation cuspidale irréductible de G.

On fixe 1 un morphisme 6~ invariant. On décompose v en sous représentations
irréductibles, c’est-a-dire un ensemble de couples (p,a) et on a la condition que
p* >~ p @y ol vy est trivial si G # GSpin et s’identifie (via la théorie du corps
de classes) au caractére de Wy décrit en 2.1 sinon. Fixons a priori p vérifiant
p* >~ p® vy et on note a, 4 le plus grand entier tel que (p, a,,) intervient dans v
et si cet entier n’existe pas on pose a, y = 0 si le morphisme 9 @ p ® oo définit une



344 C. MEGLIN

représentation du produit semi-direct de GL(m*(G) + 2d,, F') avec {1,0¢} dont
la fg-trace est un transfert d’une distribution stable a support des séries discrétes
d’un groupe de méme type que G et a,, = —1 dans le cas restant. On pose
alors x, . 1= (ap,4 +1)/2. On appelle Jord(1) 'ensemble des sous-représentations
irréductibles incluses dans v, ¢’est un ensemble que I'on identifie & un ensemble de
couple (p,a) ot p a la propriété d’invariance ci-dessus et a est un entier strictement
positif.

On suppose que 7 € II(¢)). Dans le cas de G = GSpin, on a vy, = vx.

On fixe p et on montre d’abord que si z,y > 1/2 alors z,, = x,~; en ef-
fet, on considere le morphisme, 7,/1;, analogue a 1 mais ou on a remplacé la sous-
représentation associée a (p, a, ) par la sous-représentation associée a (p, a,,y +2).
On réalise WGL(wZ‘) comme "unique sous-module irréductible de I'induite p| |+ x
TGl () x p||7%»v qui se prolonge aux actions de fg (au moins pour des bons
choix qui n’importent pas). On écrit la fg-trace de ¢~ (1/1;) comme transfert et on
calcule les modules de Jacquet qui viennent de la réciprocité de Frobenius pour 'in-
clusion ci-dessus (cf. [28] 4.2.1) ; on montre ainsi que nécessairement la trace d’un
sous-quotient de I'induite p| | X 7 intervient pour calculer ce transfert et que ce
sous-quotient est nécessairement un sous-module de p||*#* x 7w mais n’est pas un
sous-module de p||~*»¥ X 7 car son module de Jacquet ne peut contenir le terme
pl|~®»¥ ® m (par positivité). Cela prouve la réductibilité de 'induite p||*»* x 7
et I'égalité x, = x,» pour cette représentation p. Ceci entraine que Jord(y) est
un sous-ensemble de Jord(m). Supposons momentanément que G soit un groupe
orthogonal ou symplectique ; dans ce cas, on peut utiliser I'inégalité de [18]

Z ad, < mg. (1)

(p,a)eJord(m)

Comme 1 définit une représentation de dimension mg,, on a aussi avec ce que I'on
vient de démontrer :

mg = Z ad, > Z ad,.

(p,a)€Jord(y) (p,a)€Jord(m)

On a donc Pégalité de Jord(y) et de Jord(w). Si G = GSpin ou est un groupe
unitaire, I'inégalité (1) n’a pas été démontrée méme si les méthodes employées s’y
préteraient sans doute. Vus les résultats d’Arthur, on peut retrouver cette inégalité
différemment, ce sont les arguments développés dans [24] en particulier 5.3, qui eux
sont tout a fait généraux quand on sait a priori que toute série discrete appartient
a un paquet dont on sait transférer la trace a un groupe linéaire tordu par un
automorphisme extérieur : on montre que I'induite suivante :

X (payeorampl |2 s,

ou les (p,a) sont ordonnés tels que (p,a’) arrive plus & gauche que (p,a) si @’ < a,
contient une série discréte 1 comme sous-module irréductible et que Jord(m; 1) =
U(p,a)eord(r)(psa +2). On met 7, dans un paquet II(¢)4 ;) pour un bon choix
de morphisme 1, .. Et on calcule les modules de Jacquet de 7L (1), ) comme
transfert convenable. On montre en particulier facilement que Jord(y ) contient
Jord(ms4); en écrivant que ¥4 4 est une représentation de dimension

mg + 2 Z d,

(p,a)eJord(m)
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on obtient alors I'inégalité (1).

On a donc démontré le théoreme dans le cas des représentations cuspidales.
Pour I’étendre a toutes les séries discretes, on introduit la notion de support cuspidal
étendu ; soit m une représentation irréductible de G de caracteére central unitaire.
On choisit un sous-groupe de Levi de GG et une représentation cuspidale, o, tels que
7 soit un sous-quotient de I'induite de ¢ ; on écrit o sous la forme ®ie[1,0i @ Teusp
en utilisant un isomorphisme du Levi comme produit de ¢-groupes linéaires (pour
¢ convenable) avec un groupe de méme type que G. Pour tout ¢ € [1,¢], on définit
fco; comme étant o si G n’est pas un groupe G\Spin et o} @ v, si G = GSpin, ol
v, est le caractere par lequel GL(1, F'), vu comme composante neutre du centre de
G Spin agit sur m. On définit le support cuspidal étendu de 7,5, comme la collection
des représentations U, a)e Jord(r.., Yre|—(a—1)/2,(a—1)/2] P| |* €t le support cuspidal
étendu de m comme 'union du support cuspidal étendu de mqysp avec la collection
Usen,qi Yien,g 0aoi. On note Suppeusp,o(m) Uensemble ainsi défini; cet ensemble
est considéré non ordonné mais avec multiplicité. On montre par des méthodes de
théorie des représentations que si 7 est une série discrete,

Suppcusp,eﬂ— = U(p,a)eJord(Tr) Uxe[—(a—l)/Q,(a—l)/Q] P| |I

Cela force une propriété tres particuliere de 'ensemble Suppcysp.e () on peut 1écrire
comme union de segments symétriques en l'origine. De plus le résultat du théoreme
se transforme simplement en l'assertion que pour toute série discrete m si w €
II(x)) pour % convenable, alors Suppcysp.m est le support cuspidal usuel de la
représentation 7% (¢)). On a donc démontré cette assertion pour Teusp €6 0N la
déduit pour w en prenant des modules de Jacquet dans l'identité qui donne la 64
trace de 7L (1)) comme transfert d’une combinaison linéaire de trace de séries
discretes incluant celle de 7; c’est la démonstration faite dans [24] qui est totale-
ment générale. On a ainsi le théoreme 1 pour toutes les séries discretes.

2.4. Le cas des groupes non quasi-déployés.

THEOREME 2.4.1. Le théoréme de 2.8 est aussi vrai pour les groupes algébriques
classiques non quasi-déployés.

On suppose ici que G n’est pas quasi-déployé et on note G 4ep la forme intérieure
quasi-déployée de G. Pour définir les paquets, on utilise le transfert stable entre G
et Ggep- On fixe ¢ comme précédemment, en particulier avec Jord(t)) sans multipli-
cité. Et on définit le paquet Ige, (1)) pour le groupe Ggep. On transfert la distribu-
tion stable Zﬂendw(w) tr en une distribution stable sur G' qui est une somme fini
de caractere de représentations elliptiques de G (d’apres [28]) avec des coefficients a
priori dans C*. On note alors II(¢)) ’ensemble des représentations qui interviennent
dans cette combinaison linéaire. On montre encore que toute série discréte m de G
est dans un paquet de la forme II(¢)) et qu’alors Jord(w) = Jord(¢) pour un tel
paquet (cf. [23]).

On montre aussi que tout élément de TI(¢)) est une série discrete : si 7 est une
représentation elliptique sans étre une série discrete, il existe des couples (p;, a;)
pour i € [1,£] et une série discréte 7’ tels que 7 soit une combinaison linéaire de
sous-modules irréductibles de l'induite x;cq1 ¢St(ps, a;) x ©’. On pose Jord(m) =
Jord(n") Uiep1,q (pi, ai) Uiepr,g (pi> a;) ; c’est donc un ensemble avec multiplicité. Et
étant donné ce que l'on a déja démontré pour les séries discretes, on a certainement
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I’égalité :
ad, =mg.
(p,a)eJord(r)

On va montrer encore que Jord(mw) = Jord(y) ce qui donnera une contradiction.
Pour cela, on utilise le morphisme %, qui consiste & changer tous les (p,a) de
Jord(y) en (p,a + 2) et on consideére Il4e,(104). On écrit pour des bons coef-
ficients > o trmy(h) comme transfert de degp,+en(w+) tr Tgep +. On calcule
encore Zw+€Hdep(w+) O(p,a)€Jord(1) ) ACp| [(a+1)/2Tdep,+ OU on ordonne Jord(zp) pour
que (p,a) soit plus & gauche que (p,a’) si a < a’. On trouve nécessairement la
distribution stable associée & ¥ et donc pour tout 7w € II(¢) il existe au moins une
représentation w1 € II(¢) tel que le module de Jacquet

T+

O(p,a)eJord(yp)J ACp| |(a+1) /2T 4

contienne 7. Mais on sait parfaitement calculé ces modules de Jacquet puisque
I’on sait que 74 est une combinaison linéaire de représentations tempérées. Et cela
montre que nécessairement pour tout (p,a) € Jord(1)), on a aussi (p,a) € Jord(rw).
Mais par définition de Jord(z), on a ’égalité

Z ad, =mg.

(p,a)€Jord(y)

En comparant avec la méme égalité pour Jord(w) cela force Jord(m) = Jord(v).

2.5. Classification des séries discréetes. Ici encore, on exclut les groupes
métaplectiques. On a donc déja rééxpliqué comment Arthur associe un morphisme
de Wg x SL(2,C) dans G* & toute série discrete 7 ; notons ¢ ce morphisme. De plus,
supposons que G ne soit pas un groupe G'Spin ; en utilisant les propriété de transfert
endoscopique, Arthur associe a 7 un caractere du groupe Centrg=1 trivial sur le
centre Zg+ exactement quand G est quasidéployé ; méme si ce n’est écrit que pour les
groupes quasi-déployé, il est facile de ’étendre au cas non quasidéployé en utilisant
la stabilisation de [28] avec la modification de [4] pour action des automorphismes
sur les données endoscopiques. Si G est un groupe GSpin(m) les mémes résultats
restent vrais & condition d’utiliser le centralisateur de 7w dans Sp(m — 1,C) ou
O(m, C) suivant que m est pair ou impair et non dans Gsp(m —1,C) ou GO(m, C)
et on tire cela de [4] qui explique la situation en général. Dans le cas quasi-déployé et
au moins pour les groupes considérés ici, il n’y a pas de différence mais la différence
apparait dans le cas non quasidéployé ; ’application de restriction de ’ensemble des
caracteres du centralisateur de 1) dans G* au sous-groupe qui est le centralisateur
de v dans Sp ou O est surjective sur ’ensemble des caracteres de ce sous-groupe
trivial sur le centre du groupe. On note €, ce caractére.

On rappelle juste ici une propriété de ce caractere €,. Nous avions aussi défini
en [19] pour toute série discréete un sous-groupe du groupe ci-dessus et un caractere
de ce sous-groupe : & tout élément (p,a) de Jord(y) est associé canoniquement un
élément du centralisteur dans G* de 1 que l'on note z, 4 ; c’est I’élément qui agit
par —1 sur l'espace de la représentation associé a p,a et par 1 "ailleurs”. Notre
sous-groupe est engendré par les éléments z, , pour (p,a) € Jord(z)) avec a pair et
par les éléments z, .z, o pour (p,a), (p,a’) € Jord(¢) (le méme p) sans hypothese
de parité sur a, a’. Cette définition avait été faite avec des propriétés de modules de
Jacquet et on a vérifié aisément (cf. [24] 8.4.3) qu’elle coincidait avec la restriction
de e, défini par Arthur a notre sous-groupe. C’est comme cela que l'on obtient
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la propriété suivante : soit (p,a), (p,a’) € Jord(y) le méme p tel que ¢’ < a et
il n'existe pas b €]a’,a[ avec (p,b) € Jord(y); on dit alors que (p,a) et (p,a’)
sont consécutifs. Alors er(2p,02p,ar) = 1 si et seulement si 7 est un sous-module
d’une représentation induite de la forme p||@=1/2 x ... x p[[(@+D/2 x 5 ol o
est convenable. Si (p,a) € Jord(y) avec a pair on a la méme interprétation pour
€x(2p,a) = 1 en faisant @’ = 0 ci-dessus. On note temporairement @, min le plus
petit entier tel que (p, a, min) € Jord(y) si cet entier existe.

On dit que le caractére € du centralisateur de 1 dans G* ou sa variante si
G = GSpin(m) est alterné si pour (p,a), (p,a’) consécutifs, €x(z,qa2pa) = —1 et
si pour tout (p, @y min) € Jord(1) tel que @, min soit pair, ex(2p.a, ;) = —1. On
a déja défini la notion Jord(w) ou Jord(y) est sans trou (rappelons : si (p,a) est
dans I'ensemble avec a > 2 alors (p, a — 2) est aussi dans I’ensemble). Pour avoir un
théoreme plus joli et éviter de devoir faire intervenir explicitement la condition sur
la restriction au centre, quand G est défini via 'utilisation d’une forme orthogonale,
on note pour ¢ = +£, G¢ le groupe pour la forme orthogonale de méme discriminant
et d’invariant de Hasse (. On note alors G I'union de G4 et G_. Dans le cas ou
la forme orthogonale est de dimension paire, dans ses résultats annoncés, Arthur
montre aussi que le discrimant de la forme orthogonale est relié au déterminant des
morphismes ¥y, qui interviennent via la théorie du corps de classes. Ceci inter-
vient de facon cruciale et naturelle quand on caractérise les groupes orthogonaux
O(2n, F) (ou GSpin(2n, F)) comme groupe endoscopique mais cela n’intervient pas
explicitement ici et on 'oublie donc des énoncés pour les alléger.

Ceci amene a la classification des représentations cuspidales de G sous la forme
suivante :

THEOREME 2.5.1. La classification de Langlands des séries discrétes de G,
telle qu’établie par Arthur, induit une bijection entre l’ensemble des représentations
cuspidales de G (a isomorphisme prés) et 'ensemble des couples 1, € tel que Jord ()

est sans trou et e est alterné; la bijection, ™ — (1, €) est définie par le fait que
Jord(y) = Jord(m) et € = €.

1l résulte de ce qui précede que si 7 est cuspidal Jord(w) est sans trou et
€, est alterné; comme Jord(y) = Jord(w) si m € II(¢), on a un des sens du
théoréme. Réciproquement, soit 1, e tel que Jord(y) soit sans trou et e soit al-
terné. On sait par les travaux d’Arthur, comme expliqué dans les paragraphes
précédents, qu’il existe une série discrete © de G tel que Jord(w) = Jord(y) et
€x = €. Il faut montrer que 7 est cuspidal. Mais si 7 n’est pas cuspidal, il existe une
représentation cuspidale unitaire irréductible p’ d’un groupe linéaire et un réel posi-
tif (nécessairement) ainsi qu’une représentation irréductible o tel que 7 soit un sous-
module de I'induite p||* X 0. On a démontré (cf. [19]) qu’il existe nécessairement
(p,a) € Jord(vy) tel que p' ~ p et x = (a —1)/2 et c’est élémentaire : on montre
que nécessairement o est tempérée, on peut étendre la définition de Jord(w) aux
représentation tempérée (cela a été fait ci-dessus) donc définir Jord(o); on étend
aussi le résultat qui calcule Suppeysp.e(o) en fonction de Jord(o); en particulier
SUppPeusp.e(0) est aussi une réunion de segments symétriques en 0. Il est clair que
SUPPeusp.e(T) = Suppeusp,e(c) U p'[|* Uba(p')||~*; si on rajoute & des segments
symétriques en 0, 2 éléments et que le résultat est encore une union de segments
symétriques en 0, nécessairement p’ ~ fgp’ et les éléments s’ajoutent aux extrémité
d’un segment de Suppcusp,(o), éventuellement le segment vide si = 1/2. Cela
donne ’assertion.
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Remarque

Le théoreme ne détermine pas completement la bijection; Arthur la précise
en utilisant toutes les propriétés de I’endoscopie. Il y a des choix a faire mais qui
semble-t-il reviennent a utiliser les modeles de Whittaker pour les représentations
des groupes GL. Il apparait que quand tous les résultats d’Arthur seront dispo-
nibles, on devrait pouvoir donner une classification précise a la Shahidi de la fagon
suivante : soit donc m une représentation cuspidale et 1, le morphisme qui lui est
associé simplement par Jord(mw) = Jord(i,). Soit (p,a) un couple formé d’une
représentation cuspidale unitaire d’un groupe linéaire et a un entier. On regarde
Popérateur d’entrelacement standard défini méromorphiquement pour s € C :

M(p,a,7,5) = Stlp, )| |* x 7 = 0 (St(p, )| |~ x .

I faut normaliser cet opérateur d’entrelacement en utilisant uniquement (p,a) et
Yr (et non 7 € (). Pour faire simple, on pourrait dire que 1’on prend la nor-
malisation de Langlands-Shahidi pour I'unique représentation ayant un modele de
Whittaker dans II(y)) quand une telle représentation existe. Une autre fagon de
faire est d'utiliser les fonctions L et les facteurs e de la représentation 7<% (1)) ; on
prend la formule conjecturale de Langlands-Shahidi pour le groupe G mais on rem-
place les fonctions L et e par leur expression en terme de 7¢% (v, ) conformément
a la fonctorialité de Langlands; on note r(p,a,v,s) cette fonction méromorphe ;
explicitement pour chaque groupe, s’introduit une représentation rg d'un GL : si
G = Sp(2n, F), rg est la représentation Sym?, si G est un groupe orthogonal r¢g
est la représentation A% si G est un groupe G'Spin c’est la représentation de [14] et
si G est un groupe unitaire, U(n) rg est soit la fonction L d’Asai soit un twist de
cette fonction suivant la parité de n (cf. [11]) et on a, si G est quasi-déployé,

T(p7 a’ 11Z)’ S) =
L(St(p,a) x St(p',b), s)
(St(p,a) x St(p',b'),1+s)
L(St(p,a),ra,2s)
(St(p,a),ra, 1+ 2s)
et dans le cas non quasi déployé, il faut sans doute rajouter des facteurs abéliens. Ce
que l’on veut et qui pour le moment n’est qu’une conjecture : on pose N(p, a, ), s) :=
r(p,a, ¢, s)M(p,a,, s) et on veut, pour les couples p, a tel que St(p,a) ~ St(p,a)*®
vy la formule de produit N(p,a,v,—s) o N(p,a,1,s) = 1. Supposons alors que
(p,a) € Jord() et on veut alors que le caractere e associé a 7 soit tel que €(p, a)
soit le scalaire par lequel N (p, a,1),0) agit sur I'induite irréductible St(p,a) x .
Ceci est lié aux résultats sur I’endoscopie annoncés par Arthur et pourrait
méme en résulter directement. En effet une telle assertion est en fait le calcul de la
distribution caractere

X(p’,b’)G,]ord(il})E(St(pv a) X St(pl7 bl)a S)_l L

xe(St(p,a),rg,2s) ™" 17

Z tr N(p, a,,0)St(p,a) x m)

mell(y)

comme transfert. Si (p, a) n’a pas la bonne parité c’est-a-dire si St(p, a) ne provient
pas par endoscopie d’un groupe de méme type que G, cette distribution doit étre
stable et sinon elle doit étre un transfert endoscopique a partir d’un groupe endosco-
pique; ici le groupe a considérer est un groupe de méme type que G mais de rang
ad, plus grand et le groupe endoscopique est la forme quasidéployée du groupe
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ayant pour L-groupe G*(ad,,C) x G*(ad, + m{,,C). Et un tel calcul, doit, me
semble-t-il, intervenir nécessairement dans la comparaison des formules de traces.
La fonction r(p, a, 1, s) est essentiellement le facteur de normalisation pour l’entre-
lacement :

St(p, a)| [° x 7 (y) x St(p,a)| |,

la seule différence vient de la fontion L(St(p,a) x St(p,a),2s) (et le facteur € cor-
respondant) qui intervient dans le cas du groupe GL et se factorise en

L(St(pa a’)era QS)L(St(p, (l), T/G, 23)

pour 7 une représentation convenable de GL(ad,,C); pour le groupe G, on ne
garde que le premier facteur, le 2e facteur a un pole en s = 0 et il faut donc de
toute facon ’enlever ; dans le cas du groupe linéaire ce pdle compense un pole de
lopérateur d’entrelacement standard puisque l'induite est irréductible alors que
lopérateur d’entrelacement standard n’a pas de pole pour le groupe classique, I'in-
duite étant réductible.

L’intérét de cette description est qu’elle ne fait pas intervenir les facteurs de
transfert et les choix sont clairs.

2.6. Paquets élémentaires, le version . Pour traiter les groupes métaplec-
tiques, on utilise les groupes orthogonaux en se placant dans le domaine de petit
rang, c’est-a-dire que le groupe orthogonal considéré est de rang beaucoup plus
grand que le groupe métaplectique considéré ; cette notion est die a R. Howe et
dans ce cas Adams a conjecturé le calcul de la correspondance de Howe. Suivant ces
conjectures, on sait que l'image d’une série discrete ne reste pas une série discrete
mais est dans un paquet d’Arthur simple. On décrit ici un peu plus généralement
les paquets qui vont intervenir et on reviendra en 4.2 sur la construction générale.

Ici on fixe un morphisme ¢ de Wr x SL(2,C) x SL(2, C) dans G*, on décompose
ce morphisme en sous-représentations irréductibles indexées par des triplets (p, a, b)
€ Jord(v) et on suppose que tous ces triplets ont la propriété que inf(a,b) = 1.
Ce cas a été traité complétement en [20] et on reprend ici quelques propriétés. On
se limite ici au cas ol la restriction de ¢ & W fois la diagonale de SL(2,C) x
SL(2,C) est sans multiplicité. On a construit en [20] un paquet de représentations
associées a 1) ; ce paquet est paramétré par les caracteres du centralisateur de
avec la bonne restriction au centre de G* et le bon déterminant de vy, ; on note
(1, €) la représentation correspondant au caractere e. On aura besoin des propriétés
suivantes (qui sont celles qui permettent de construire par récurrence ces paquets
de représentations) :

le propriété : soit (p,a,bd),(p,a’,b’) 2 triplets distincts tels que inf(a,b) =
inf(a’,b') =1 et pour tout triplet (p,a”,b") € Jord()

sup(a”,b") ¢ [sup(a,b), sup(a’,b")];

on suppose que (a — b)(a’ —b') > 0 et que sup(a,b) > sup(a’,b’) et on note ¢ le
signe de a —b. On note 1’ le morphisme qui se déduit de v en ajoutant les 2 triplets
et on suppose que v’ se factorise par un groupe de méme type que G*. On note
(p| |CCsupab)=1)/2 .yl |=Csup(a’ D) =1)/2) Punique sous-représentation irréductible
de l'induite, pour un GL convenable

p| |C(sup(a,b)—1)/2 N p| ‘—C(sup(a ,b )—1)/2'
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Soit (1, €) une représentation du paquet associé a v ; alors I'induite

<P| |C(sup(a,b)—1)/2’ . ,,0‘ |—C(sup(a',b')—1)/2> x T

a exactement 2 sous-modules irréductibles; ces 2 sous-modules sont dans le paquet
associé & 1’ et sont les représentations 7(¢/’, €’) ou € est un prolongement de e au
centralisateur de v’ vérifiant €'(p, a,b) = € (p,a’, V).

2e propriété : soit m une représentation du paquet associé a 1. Soit x un réel
et p une représentation cuspidal unitaire d'un groupe GL(d,, F'). On ne peut avoir
Jac, = # 0 que s'il existe (p,a,b) € Jord(1)) avec 2|z + 1 = sup(a,b) et x(a —
b) > 0 (en particulier nécessairement = > 0). Réciproquement si cette condition
est satisfaite et si Jord(vy)) ne contient pas de triplet (p,a’,b’) avec sup(a’,b’) =
sup(a,b) — 2 alors Jac,||=m # 0.

Une variante de cette propriété est la suivante : soit (p,a,b) € Jord(¢y); on
note (p,a’,v’) un triplet tel que sup(a’,t’) = sup(a,b) + 2, inf(a’,b’) =1 et (o' —
b')(a —b) > 0. On note ¢ le signe de a’ — b’ et on note ¢’ le morphisme qui se
déduit de 9 en remplagant (p, a,b) par (p,a’,b"). On suppose encore que pour tout
(p,a” ") € Jord(v)), sup(a”’,b") # sup(a’,b’) ou encore que la restriction de ¢’ &
W fois la diagonale de SL(2,C) x SL(2,C) est sans multiplicité. Soit 7 (1), €) une
représentation dans le paquet associé a ¢, alors I'induite p| |<(S“”(“/’b/)71)/2 X (1, €)
a un unique sous-module irréductible et ce sous-module irréductible appartient au
paquet associé & ¢’ ; de plus il est associé au caracteére e (vu naturellement comme
une application de Jord(y') ~ Jord(y)) dans £1).

3e propriété : on suppose que Jord(y) contient, pour ¢ un entier convenable,
des éléments (p,aq,1), -+, (p,as 1) avec a3 < 2 et tels que pour tout i € [1,4],
a; = a1 + 2(i — 1). On note ¥’ le morphisme obtenu & partir de ¢ en changeant
chaque triplet (p,a;,1) en (p,1,a;). Soit m = 7(1), €) une représentation du paquet
associé a v correspondant au caractere €. Alors, m est dans le paquet associé a
Y si et seulement si pour tout i € [1,4], e(p,a;,1) = n(=1)""1, ou n = &1 est
indépendant de i et vaut nécessairement —1 si a1 = 2.

En [20], on a développé cette construction et montré qu’elle est équivalente &
une construction plus adaptée au calcul du transfert, construction que ’on rappel-
lera en 4.1 ci-dessous.

3. Le cas des groupes métaplectiques

Le but de ce paragraphe est d’étendre la classification de Langlands aux séries
discretes des groupes métaplectiques. On ne veut utiliser que la notion de module de
Jacquet et de réciprocité de Frobenius pour les groupes métaplectiques. On définit
les séries discretes par leurs propriétés sur les modules de Jacquet ; les exposants
doivent étre dans la chambre de Weyl obtuse positive ouverte; on a quand méme
besoin de savoir qu'une représentation ayant cette propriété est unitaire (sinon les
démonstrations sont autrement plus compliquées) ; on 'admet donc ici. Si on rem-
place la chambre de Weyl obtuse ouverte par fermée, on obtient les représentations
dites tempérées. Le lemme combinatoire de Bernstein-Zelevinsky qui permet de cal-
culer les modules de Jacquet d’une induite s’applique et on vérifie sans probleme
que l'induite d’une représentation tempérée, a tous ses sous-quotients qui sont des
représentations tempérées. L’hypothese d’unitarité entraine qu’'une telle induite est
semi-simple.
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3.1. Propriété des blocs de Jordan d’une série discrete du groupe
métaplectique. Soit 7 une série discréte de Mp(2n, F); on a déja défini Jord(r);
on définit aussi Jord” (7) comme I’ensemble des couples (p, a) ol p est une représen-
tation cuspidale irréductible autoduale d’un groupe linéaire et a est un entier pair
exactement quand L(p, Sym?,s) a un pole en s = 0 et tel que I'induite St(p, a) soit
irréductible ; la différence avec Jord(m) et que I'on remplace le fait que la parité de
a est déterminée par une propriété de fonction L et non par le fait qu’il existe un
entier ¢’ de méme parité que a tel que 'induite St(p,a’) x 7 soit réductible. On
montrera que Jord(w) = Jord" () mais ce n’est pas immédiat.

On fixe un ensemble J de couples (p,a) comme ci-dessus avec p ~ p* et a
pair exactement quand L(p, Sym?,s) a un pole en s = 0. On note D I’ensemble
des séries discretes, m, des groupes métaplectiques Mp(2n/, F') ou n’ peut varier
mais telles que Jord®(m) = {J}. A priori D pourrait étre un ensemble infini. On
fixe N un entier pair grand et on note, my := 1+ N + Z(p’a)ejadp et on note
€7 n, Vensemble des représentations de O(my, F') dont la restriction & SO(m, F')
est dans le paquet non tempéré associé a I’ensemble des triplets {(p,a,1); (p,a) €
J U(1,1,N)}. On sait que pour N grand, (exactement pour tout N strictement
supérieur & tout a tel que (1,a) € J) le cardinal de €7 y est exactement 2 x 2171
le premier 2 vient du fait que l'on considere des représentations de O(my, F) et
non SO(my, F). On va montrer alors 1’assertion :

PROPOSITION 3.1.1. On fize n. Soit m € D5 une représentation de Mp(2n, F).
Pour tout N grand, notion relative a n, l'image de w dans la correspondance de
Howe Mp(2n,F),O(my, F) est un élément de E7 . De plus 2n = Z(p’a)ejadp

et Jord®(r) = Jord(r).

On démontre d’abord I'assertion sous I’hypothese que 7 est cuspidale.

On note 7 la premiere occurrence de 7 dans la tour de Witt des espaces orthogo-
naux impairs de noyau anisotrope de dimension 1 et de discriminant 1. On reprend
2.2; on connait le demi-entier 1 7 tel que l'induite | |*** x 7 soit réductible, il s’écrit
sous la forme (amaz7 + 1)/2 OU Gmaq est le plus petit entier pair éventuellement 0
tel que si (1,a) € Jord(T), maz > a. On a donc montré, avec les notations de loc.
cit. :

z1=m—(mz—1)/2-1/2) = £(amazz + 1)/2.

On a aussi montré une égalité symétrique en remplacant 7 par =
xo=(—n+(mz —1)/2 —-1/2) = £(amaz,~ + 1)/2.
De plus pour tout p non la représentation triviale (p,a) € Jord(n) si et seulement
si (p,a) € Jord(T).
Supposons d’abord que (mz —1)/2 —n > 0. On a alors
Umaz7 = (Mz — 1) = 2n; amag,r = (Mz — 1) — 2n — 2.

On rappelle que Jord(7) et Jord(m) sont sans trou; on passe donc de Jord(7w) a
Jord(m) en enlevant simplement le couple (p, Gmas,7). En particulier Jord(w) C
Jord® () car Jord(7) est formé de couple (p,a) avec la parité de a déterminé par
les poles des fonctions L de la représentation p vu comme représentation de Wg
et donc de la fonction L de p vue comme représentation d’'un GL d’apres [13].
Réciproquement soit (p,a) € Jord”(r); la seule possibilité pour que (p,a) ne soit
pas dans Jord(m) est que pour tout a’ de méme parité que a linduite St(p,a’) x 7
soit irréductible. On suppose d’abord que p n’est pas la représentation triviale;
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on sait qu'il existe a’ comme ci-dessus tel que St(p,a’) x 7 soit réductible; on
regarde 'image des 2 sous-représentations irréductibles de St(p,a’) x 7 dans la
correspondance de Howe pour cette fois la tour de Witt d’espaces symplectiques.
On vérifie que chacune de ces représentations a une image qui est un sous-module
de St(p,a’) x 7; cela force la réductibilité de cette induite. On suppose mainte-
nant que p est la représentation triviale; ici on sait que si (p,a) € Jord®(w), a
est nécessairement paire et on a alors vu ci-dessus que l'induite St(p,a) x 7 est
irréductible, pour a pair, exactement quand a < (221, — 1)/2; c’est-a-dire aussi
(p,a) € Jord(r).

On vient donc de montrer que pour les représentations cuspidales 7 des groupes
métaplectiques, on a Jord(w) = JordL ().

On montre maintenant que pour N grand (avec les notations de 1’énoncé)
I'image de 7 est dans £y ; c’est une retraduction des résultats de Kudla. On sait a
priori que I'image de 7, 7 est un sous-quotient de l'induite :

X we[—(N=1)/2,n—(ms—1)/2—1/2] |© X T
On sait aussi, avec la filtration de Kudla que Jac, 7y = 0 pour tout z # —(N —
1)/2; on note (| |~(N=1/2 ... | |»=(mz=1)/2-1/2) yunique sous-module irréductible
de l'induite, pour le GL convenable, X,ci_(N—1)/2,n—(ms—1)/2—1/2]] |” et 7y est
donc un sous-module irréductible de I'induite
(J|7N=072 | [pemam1)/221/2y o g

On distingue 2 cas; le le cas est celui o n < (mz — 1)/2 dans ce cas, I'induite
ci-dessus a un unique sous-module irréductible car (1,(mz — 1) — 2n) est dans
Jord(7) et pour tout (1,a) € Jord(7), nécessairement a < (mz — 1) — 2n. Ce sous-
module irréductible est un élément de £7 y (variante de la 2e propriété de 2.6).
Dans le cas ot n > (mz — 1)/2, I'induite écrite a 2 sous-modules irréductibles car
si (1,a) € Jord(7) on a a < 2n— (mz —1) —2); (cf. 1le propriété de 2.6) ces 2 sous-
modules irréductibles sont les 2 représentations associées au morphisme élémentaire
Yy tel que Jord(¥n) = {(p, a,b)} tels que pour tout p non la représentation triviale,
b=1et (p,a) € Jord(m) et pour p la représentation triviale, on a soit, b = 1 et
a est un entier pair vérifiant @ < amag,x, S0it @ = 1 et b = 2n — (mz — 1) ou
b = N; une de ces 2 représentations exactement est dans £ n celle qui vérifie
Jac‘ |-ntmz—1/241/2 = 0. Or la filtration de Kudla dit que c’est Tx qui a cette
propriété (cf. 3e propriété de 2.6). Cela termine la preuve de l’assertion.

On démontre le théoréme par récurrence sur n. Pour n = 0, il n’y a rien a
démontrer car il n’y a pas de représentation du coté du groupe métaplectique. On
fixe donc n tel que I’énoncé soit vrai pour tout n’ < n et soit J un ensemble
de couples (p,a) comme dans 1’énoncé. Soit 7 une série discréte irréductible de
Mp(2n, F) telle que Jord(m) = J. On fixe p et x tel que Jac,j«m # 0; x est
nécessairement un demi-entier, (parceque c’est vrai pour les cuspidales) strictement
positif (parce que 7 est une série discrete). Par réciprocité de Frobenius on écrit 7
comme sous-module d’une induite de la forme p| |* X o pour o une représentation
irréductible convenable. Un calcul complétement élémentaire (cf. [19] 2.1) montre
que soit o est une série discréte soit il existe une série discrete o et une inclusion
de o dans l'induite :

ol ol FED) x o,
On fixe un tel couple p, x en supposant z minimum et on fixe alors ¢’ convenant ;
on suppose que l'on est dans le 2e cas qui est le cas le plus difficile ; nécessairement
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x > 1/2 et 7 est donc un sous-module irréductible de l'induite :

<p‘ |m7 7p|‘7(z71)> XOJ' (1)

On pose J' := Jord(o'). Pour tout N grand, on définit £/ n/. Par récurrence,
on sait que I'image de ¢’ dans la correspondance de Howe pour N grand est un
élément, noté & dans £/ n. Pour les mémes valeurs de N, on note 7y l'image de
7w dans la correspondance de Howe et on vérifie en utilisant la filtration de Kudla
que 7y est un sous-module irréductible de I'induite :

(plI*s ol [77Y) x Gy (2)
On considere d’abord le cas ol soit p n’est pas autoduale soit 2z + 1 n’a pas la
bonne parité; dans ce cas, I'induite (2) a un unique sous-module irréductible qui
n’est pas une série discrete. Il vérifie nécessairement Jac,| |17 # 0. On en déduit
avec la filtration de Kudla que Jac,||--1m # 0 ce qui contredit la minimalité de .

On suppose donc maintenant que p est autoduale et que 2z + 1 a la bonne
parité.

On sait décrire les sous-modules irréductibles de (2) (cf. le propriété de 2.6);
ce sont des représentations qui sont associées au morphisme élémentaire ¥ tel que
(p',a,b') € Jord(yn) si et seulement si soit b’ =1 et (p,a’) € J', soit p' = 1,0’ =
1,0/ = N soit p’ = p, b =1et a’ =2x+1 ou 2z —1. Le point est donc de démontrer
que J = J'U{(p,2z+1),(p,22—1)}. On suppose d’abord que (p,2x—1) € J'; on
sait alors que 7y est un sous-module d’une induite de la forme St(p, 22—1) xo” pour
0" convenable et vérifie donc Jac,| j=-17n # 0. On aurait alors aussi Jac,||=-17 # 0
ce qui contredirait la minimalité de z. Ainsi (p,22 — 1) ¢ J’. On montre aussi
que (p,2x + 1) ¢ J'; sinon, 7 serait un sous-module irréductible de l'induite
St(p,2x) x ©” pour 7" convenable et on aurait Jac,y|jp-1.... p||--DTN % 0. Cela
entraine une assertion de non nullité du méme type pour 7 mais ceci contredit le fait
que 7 est une série discréte. Il reste & montrer que J = J'U{(p,22+1), (p,22—1)}.
On vérifie d’abord que pour ¢ = +1, I'induite St(p, 2z + ¢) X 7 est irréductible;
supposons qu’il n’en soit pas ainsi et que 'induite est réductible. Par unitarité,
cette induite est semi-simple et soit m; I'un de ses sous-modules irréductible. On
vérifie que Jac,| -1/ .. ‘717(471)/2St(p, 2z + {) x 7 est isomorphe & 2 copies
de 7. Cela prouve d’une part que la longueur de l'induite est 2 et d’autre part
que Hom(7y, St(p, 22 + ¢) X 7) est de dimension 1, par réciprocité de Frobenius.
Ainsi les 2 sous-représentations de 'induite sont non isomorphes. Les images de
ces 2 sous-représentations par la correspondance de Howe, sont pour N grand des
sous-modules irréductibles de l'induite St(p,2x + ¢) x 7. Il faut donc que cette
induite soit réductible ce qui n’est pas le cas puisque (p, 2z + (, 1) intervient dans
la décomposition en sous-représentation irréductible du morphisme associé a 7.
Il faut encore démontrer qu’il existe a’ de méme parité que 2z + 1 tel que I'induite
St(p,a’) x 7 soit réductible. Par récurrence on sait que Jord(c') = Jord®(c’) et
d’apres la condition de parité déja montrée on sait que pour a’ grand St(p,a’) X o’
est réductible. Or

St(p, ') x (pl[7, -+ .ol [7E7V) x 0" = (o] 7, -, pl 7@ D) x St(p,a') x o’

a 4 sous-modules irréductibles. Un calcul de module de Jacquet montre alors que
St(p,a’) x ™ ne peut étre irréductible. On vient donc de montrer que I'image de
m est un élément de £ n; on a aussi I'égalité 2n = E(p,a)ej ad, en appliquant
I’hypothese de récurrence & o’ en tenant compte de Uinclusion (1). Il faut encore
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montrer que J = Jordl(m) puisque l'on vient de démontrer que J = Jord(m).
Puisque J intervient dans la décomposition en sous-représentations irréductibles
du morphisme associé & 7y, on a certainement Jord(m) = J C Jord*(r). Soit
(p,a) € Jord™ () ; on sait donc que l'induite St(p,a) x 7 est irréductible et que la
parité de a dépend des poéles de la fonction L(p, Sym?,s) en s = 0; on utilise le
méme argument que ci-dessus pour montrer que pour a’ grand de méme parité que
a, Uinduite St(p,a’) x 7 est réductible.
Cela termine la preuve de la récurrence.

3.2. Caractere associé a une série discréete de Mp(2n, F'). Soit donc 7
une série discrete de Mp(2n, F'); on lui a associé Jord(w) et on lui associe une
application, €., de Jord(mw) dans 1 en utilisant son image par la correspondance
de Howe 7 définie pour N grand ; cette application qui s’identifie & un caractere
du centralisateur de 1 pourra définir soit le caractere trivial soit le caractere non
trivial par restriction au centre de Sp(2n, C). En effet on a vu que 75 € € jord(r), N
a la restriction de 7y est associée une application de Jord(mw) U (1,1, N) dans +1,
notée e, n ; on vérifie aisément que cette définition ne dépend pas du choix de N
grand. On note simplement e, la restriction de e y & Jord(m). Remarquons que si
7N et 7y sont les images de 2 séries discretes distincts 7 et 7/ alors nécessairement
TN 2 7y ® sign et Papplication qui & 7 associe Jord(w), e, est donc injective. On
veut montrer que son image est exactement 1’ensemble des couple J,e ou J est
un ensemble de couples (p, a) sans multiplicité avec la condition sur la parité de a
(a est pair si et seulement si L(p, Sym?,s) a un pole en s = 0) et la condition de

dimension
2n = Z ad,

(p,a)
et € est une application de Jord(r) dans {£1}.

On fixe J un ensemble de couples (p,a) comme ci-dessus et € une application
de J dans {£1}. On traite d’abord le cas cuspidal c’est-a-dire le cas ou J est sans
trou et ou € est alterné et on distingue encore 2 cas. On suppose d’abord que J ne
contient aucun élément (p,a) avec p la représentation triviale. On note alors

C = X(p,a)Eje(p’ a)'

On sait que l'on peut associer & J, € une représentation cuspidale de SO(m, F').,
ou m = 2n+1, notée 7y telle que Jord(7y) = J et ez, = €. On note 7; pour i = 1,2
les extensions de 7y & O(m, F')¢. Et pour i = 1,2 et N grand, on note m; y I'image
de 7; dans la correspondance de Howe Mp(2n + N, F),O(m, F).. En utilisant la
filtration de Kudla et le fait que 7; est cuspidale, on voit que la premiere occurrence
de 7; est pour N = 2 ou N = 0. Montrons d’abord par I’absurde qu’au moins pour
une valeur de ¢, N = 0. Supposons donc que pour ¢ = 1,2, la premiere occurrence
de 7; est pour N = 2; ceci est équivalent a dire que Jac‘ |-1/2Ti,2 = 0. Ainsi 7; 9
est une représentation cuspidale. On calcule I'image de 7; » dans la correspondance
Mp(2n+2,F),0O(m+2N', F), pour N’ grand. On vérifie que 'image est un sous-
module irréductible, 7; n+ de I'induite :

!
(TNH2 YR xom.

De plus, le fait que Jac||-1/27;,2 = 0 entraine la méme assertion pour 7; y+ a cause
de la filtration de Kudla. Ainsi 71 nv = 72 v @ sign et cela contredit 'inégalité
fondamentale de 2.2. Ainsi pour au moins une valeur de i, N = 0. Pour vérifier
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que T; = T;p, pour cette valeur de ¢ convient, on calcule encore I'image de m;
dans la correspondance Mp(2n, F'),O(m + 2N’, F)¢ et on trouve un sous-module
irréductible de I'induite

(TN TR X R

Et il résulte des définitions que € est I'application associée a ;.

On suppose maintenant que J contient des blocs du type (1,a) et on note ay,
Ientier ¢ maximum avec cette propriété. On note alors J' I’ensemble J auquel
on a enlevé (1,a1) ainsi J' contient (1,b) pour b pair strictement inférieur & a;.
On pose ici ¢ := X(,q)eg7€(p,a) et on note pour i = 1,2, 7; les représentations
cuspidales de O(m/, F')¢ correspondant & J’ et & ¢ la restriction de € a J'; ici
m’ = 2n+1—2a;. On a déja calculé la premiere occurrence des représentations 7; ;
d’apres l'inégalité fondamentale de 2.2, on sait que pour au moins une valeur de i
cette premiere occurrence se fait pour 2n; > m’. Fixons un tel ¢ et notons m; I'image
de 7;; on sait que c’est une représentation cuspidale tel que Jord(m;) s’obtient en
ajoutant un couple (1,b) avec b = a3 — 2+ 2 = a1. Ainsi 7; est une représentation
de Mp(2n, F') et on vérifie comme ci-dessus qu’elle convient.

On ne fait plus d’hypothese sur J et € et on démontre maintenant ’existence
de la représentation m associée a J,e€ par récurrence sur n. On suppose d’abord
que € n'est pas alterné; on fixe (p,a), (p,a’) consecutifs tels que €(p,a) = €(p,a’).
On note J’ lensemble J auquel on a enlevé (p,a) et (p,a’). On note 7’ la série
discrete de Mp(2n/, F') (n’ convenable) correspondant & J' et a la restriction de
e & J’'. On suppose que a > a'. D’apres les propriétés de Jord(n'), on sait que
I'induite St(p,a’) x 7" est réductible et elle a donc 2 sous-modules irréductibles non
isomorphes (calcul de modules de Jacquet et réciprocité de Frobenius, argument
déja employé). Puis on vérifie que I'induite

(pII V2, p| |02

a 2 sous-représentations irréductibles que ’on note m; pour ¢ = 1, 2 ; ces représenta-
tions sont non isomorphes car elles ont des modules de Jacquet non isomorphes.
Le point est de démontrer que pour ¢ = 1,2, m; est une série discrete et qu’elle
correspond & J et une application ¢; ayant méme restriction & J’ que € et vérifiant
€i(p,a) = €i(p,a’).

On utilise 7; y 'image de m; dans la correspondance avec O(2n + 1+ 2N, F);
on a montré que 7; y est dans £7 n et les propriétés des modules de Jacquet de m;
se lisent sur ceux de 7; . On obtient alors ’assertion.

11 reste a voir le cas ot J a des trous, c’est-a-dire ou il existe (p,a) € J avec
a>2et(p,a—2) ¢ J.On appelle ici J' I'ensemble qui se déduit de J en remplagant
(p,a) par (p,a —2) et on note € Papplication qui se déduit naturellement de e. On
admet Pexistence de 7’ une série discrete de Mp(2n — 2d,, F') correspondant a J’
et ¢ et on considere Iinduite p| |(*~1/2 x 7/, On vérifie qu’elle a un unique sous-
module irréductible que I'on note 7 et il faut vérifier que 7 est une série discrete et
que 7 est associé & J et €; cela se fait comme ci-dessus.

Cela termine la preuve.

4. Construction générale

Onon On pose (g« = +1 si G* est un groupe (de similitudes) orthogonal et —1
sinon. On fixe un morphisme 1 de Wr xSL(2,C)xSL(2,C) dans G* ; on décompose
1 en sous-représentations irréductibles, ¥ = @, q4.p)csord(w)P @ [a] ® [b]. On tient
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évidemment compte des multiplicités éventuelles de Jord(v), ce qui suppose que
p ® [a] ® [b] est considéré avec le sous-espace dans lequel cette représentation est
réalisée. Supposons que 6~ laisse stable la classe d’isomorphie de p ® [a] ® [b]; on
peut alors construire une forme bilinéaire symétrique ou orthogonale telle que la
représentation de Wr®SL(2,C)®SL(2, C) laisse stable cette forme éventuellement
a homothétie pres; on note (4,5 = +1 si cette forme est orthogonale et —1 sinon.
Pour G non un groupe de type GSpin, on dit que (p, a,b) a bonne parité si la classe
d’isomorphie de cette représentation est stable par g~ et si (, 4,5 = (= ; le cas des
groupes GSpin est un peu différent et expliqué dans [5]; il faut fixé v, c’est-a-dire
que 'on fixe un caractere de Wg et que 'on regarde les morphismes ¢ a valeurs
dans G* qui dans l'inclusion dans GL(m¢,, C) x GL(1,C) se projette sur v, dans
le facteur GL(1,C).

On décompose ¥ = 1mp @ Ypp en la somme de ses sous représentations ayant
bonne parité, ce qui donne 1y, et la somme des autres représentations, c’est-a-dire la
somme de celles qui ne sont pas fg+-invariante (& isomorphisme pres) et de celles qui
ont mauvaise parité. De I'algebre linéaire élémentaire montre que ’on peut trouver
une sous-représentation, ¥ /2 mp de m, telle que Yy = V12 mp © O+ (V1/2,mp)-
De plus, I'ensemble des éléments 2,45 définis ci-dessus engendre le groupe des
composantes du centralisateur de 1) dans G* ; on peut donc ainsi identifier le groupe
des composantes du commutant de 1, (dans un groupe convenable) & celui de .

Supposons défini un ensemble de représentations m € II(vy,) et pour chacune
de ces représentations un caractere du groupe des composantes du centralisateur
de i, nOté €, tel que le caractere

Z €x(Ppp)trm

FEH(’(Zpr)

soit stable et se transfere en la trace tordue de 7% (1),) pour un bon choix d’action
de O, olt €, (1bpp) est le produit des e, (2p,q4,5)""! quand (p,a, b) parcourt Jord(i,)
en tenant compte des multiplicités ; ce signe est la valeur du caractétre €, sur 'image
par ¢y, de I'’élément non trivial du centre de la 2e copie de SL(2,C).

On sait que 76T (1) est Iinduite 7L (Y /2 ) X TEL () x 0G(7T1G/g,mp) et
toute action de @ sur 7% (vbp) se prolonge donc canoniquement a 7GL(4). De plus
pour le prolongement de I'action utilisée pour calculer le transfert ci-dessus, on a
aussi que Zwen(wb,,) ew(wbp)ﬂ'GL(z/)l/g’mp) x 7 a pour transfert la trace tordue de

mE ().

Il y a donc 2 points & démontrer : d’une part construire II(¢y,) et d’autre part
démontrer que pour tout 7 € I(¢y,) linduite 7L (Y1/2,mp) X T est irréductible.

4.1. Construction dans le cas de bonne parité . La construction donnée
ici est une variante de celle donnée dans [21]. Son avantage et qu'il est plus facile
de définir I'action de @ sur 7% (1)) pour laquelle on a I’égalité de transfert.

4.1.1. Le cas de restriction discréte a la diagonale. On suppose ici que la res-
triction de ¢ & Wy fois la diagonale de SL(2,C) x SL(2,C) est sans multiplicité ;
c’est ce que I'on appelle le cas de restriction discrete a la diagonale, ce cas a été traité
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en [21] et cela signifie en termes concrets que pour tout (p, a, b), (p,a’,b’) € Jord(y),
les segments [ja —b| +1,a+b— 1] et [’ — V'|,a’ + b — 1] sont disjoints.

On reprend alors les constructions de [21] ; on fixe un couple (Z,7) d’applications
de Jord(y) dans Z>o x {£1} soumis aux conditions suivantes pour tout (p,a,b) €
Jord(y) :

Hp.a,b) € 0,inf(a,b)/2] N Z.
et siinf(a,b)/2 € Z et que t(p,a,b) = inf(a,b)/2 alors n(p,a,b) = +.
A un tel couple on associe une application, €, de J ord(y) dans £1 en posant :

Y(p,a,b) € Jord(vy), %Q(Pa a,b) = n(p,a, b)mf(“’b)(_1)[mf(aab)/QHz(p,a,b).

On pose encore €, (v) =[], 4. 1) s0ra(y) €tn (P b)btt.
Le but des constructions est d’associer a un tel couple une représentation
irréductible, 7(v,t,1) de G de telle sorte que la distribution

Z Eﬁvﬁ(w)ﬂ(’lpa t, Q)a

tn

soit stable et se transfere en la f-trace de 7<% (1)) (pour un choix d’action de 0 &
préciser), ot I'on ne somme que sur les couples ¢, 7 tels que ¢, ait sa restriction au
centre de G* déterminé par G. -

Cette construction se fait par récurrence ou la récurrence porte sur

()= S inf((ab) - 1).
(p,a,b)eJord(y)
On traite donc d’abord le cas ou £() = 0.

Soit p une représentation cuspidale unitaire et x un demi-entier; on suppose
que p =~ Ogp. Pour P un sous-groupe parabolique de Levi M de G, on écrit M
comme un produit de facteurs GL et un groupe Gj; de méme type que G mais
de rang en général plus petit. Soit ¢ une représentation irréductible de P triviale
sur le radical unipotent de P et vue comme une représentation de M ; on écrit o
comme produit tensoriel ogy, X g ol 0g est une représentation de G s et ogr, une
représentation des facteurs GL. On pose proj, <.o = 0 sile support cuspidal de ogp,
contient des termes qui ne sont pas de la forme p| |¥ avec |y| < x et proj, <0 =0
sinon. On prolonge linéairement cette application au groupe de Grothendieck des
représentations lisses de longueur finie de P triviales sur le radical unipotent de P.

On a défini en [20] inv, <,, une application dans le groupe de Grothendieck de
G, en posant :

NV, <o () 1= Z(—l)rgpindgresg(w),
J3
ou P parcourt I’ensemble des sous-groupes paraboliques standard de G. On peut
définir de fagon identique inv, <, en remplacant I'inégalité stricte par une inégalité
large.

On considere Tyemyp (¢, Q) comme étant la série discrete associée a la restriction,
Ytemp de 1 a W fois la diagonale de SL(2, C) x SL(2, C) et au caractere 7, puisque
Jord(Yemp) s'identifie tres facilement & Jord(y) : ces 2 morphismes ont méme
restriction & W fois la diagonale de SL(2,C).

On pose

o (Y1) = 0(p.a.b)e Jord(w)ib>atMWp, < (b—1)/2000p < (b—1) /2T (Vtemps 1)
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ol 0y, = *1 est tel que 7(3p, 1) est une représentation et non son opposée. Bien sir
il faut démontrer Pexistence d’un tel signe, c’est fait en [20] ol 'on montre en plus
qu’avec cette définition, (1, n) est irréductible. On reviendra sur la question du
signe plus bas. On avait une de_scription plus constructive en 2.6 et [20] montre que
les 2 définitions sont équivalentes.

On suppose maintenant que £(¢)) > 0 et on construit m (1, ¢, ) par récurrence.
On fixe (p, a, b) avec inf(a,b) > 1; il est en fait facile de vérifier que les constructions
ci-dessous sont indépendantes de ce choix (et ¢’est expliqué en [21]). On pose encore
¢ le signe de a — b en prenant ( = + si a = b.

le cas : t(p,a,b) > 0; on pose ¢’ le morphisme qui se déduit de ¢ en changeant
(p,a,b)en (p,a,b—2)sib < aet(p,a—2,b)sib > a;il correspond & un groupe, G’ de
méme type que G mais de rang plus petit. On vérifie que 3’ est encore de restriction
discrete a Wiy fois la diagonale de SL(2,C) x SL(2,C); on considere t',n" qui se
déduisent de fagon naturelle de ¢, sauf que I'on pose t'(p, a,b—2) (out'(p,a—2,b))
= t(p,a,b) — 1. 1l est facile de voir que ey, a la bonne restriction au centre de

I'analogue pour G’ de G* si c’est le cas pour ¢;,,,. On suppose donc défini, 7 (¢, ', n’).
On a besoin de savoir que U'induite : (p| [(@=0)/2 ... p||~CU@+0)/2=1)y s m (o ¢ 1))
a un unique sous-module irréductible et on pose alors 7(v,t,n) cet unique sous-
module irréductible, ¢’est-a-dire : B

(1, ¢, Q) — (| |(a—b)/27 -~ |—<((a+b)/2—1)> % W(z/}/’t_/’ ﬂ/)-

L’unicité du sous-module irréductible se montre en démontrant par récurrence des
propriétés des modules de Jacquet des représentations ainsi construites ; on renvoie
a [21].

2e cas : t(p, a,b) = 0. On note ¥’ le morphisme qui se déduit de ¥ en remplacant
(p,a,b) par la somme portant sur les entiers ¢ € [ja — b| + 1,a + b — 1] de méme
parité que a + b — 1 des représentations associées a (p,c,1) si ( = + et (p,1,¢) si
¢ = —. On définit ¢/, 7' sur Jord(y) — {(p,a,b)} en restreignant ¢ et n et on pose
t'(p.e,1) (ou (p,1,¢)) = 0,7 (p, ¢, 1) (ou (p, 1,¢)) = n(p,a,b)(=1)~1*=*1=172 pour
tout ¢ comme ci-dessus. On vérifie que [], ey (p,c,1) (ou (p, 1,¢)) vaut

ninf(a,b)(_1)[inf(a,b)/2];
ainsi €, et €, ont méme restriction au centre de G*. De plus £(¢') = £(¢)) —

inf(a,b) +1 < £(z) et on pose alors simplement
m(,t,n) =7t ).

Et TI(¢)) est exactement ’ensemble des représentations (1), t,n). Ceci sera justifié
en 5. Toutes ces représentations sont non isomorphes entre elles, une fois 1 fixé.

4.1.2. Le cas général de bonne parité. On suppose ici que 1 = 1, ; on se
ramene au cas de restriction discrete & la diagonale de la fagon suivante. Pour
tout (p,a,b) € Jord(v)), on défini (,4p = +1 si a > b et —1 sinon. On dit qu'un
morphisme s, pour un groupe de méme type que G mais de rang éventuellement
plus grand domine fortement 1 s’il existe une application de Jord(¢) vu comme
ensemble avec multiplicité dans Zx>o notée T' tel que l'on ait ’égalité d’ensemble
avec multiplicité Jord(¢s) =

{(p7 a+ (1 + <p,a,b) I(p7 a, b)7 b+ (1 - <p,a,b) I(pv a, b))7 (pv a, b) € JOTd(’L/J)}
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En clair on augmente de 27°(p, a, b) le plus grand des 2 entiers a, b et on laisse 'autre
inchangé. Précisons que écriture préte a confusion car on voit dans Jord(y) plu-
sieurs copies d’'un méme élément (p,a,b) (cela dépend des multiplicités) et que
T est défini sur chacune de ces copies indépendamment. On demande de plus
que T vérifie la condition suivante : soient (p,a,b),(p,da’,b’) € Jord(y) (la méme
représentation p) tels que (0.5 = (parpr- Sila—b| > @’ = V| ou |(a—b)| = |a' = V|
et Cpab = —;Cpar,ty = + alors soit T'(p,a,b) > T (p,a’, V).

Plus généralement, on met un ordre total sur Jord(y) tel que (p,a,b) > jora(y)
(p,d', V') si |(a —b)/2| > |(a' —V)/2| ou si I'on a égalité mais (pap = — =
—Cp,a’,p' 5 le reste n’a pas d’importance. On fixe (po, ao, bo) € Jord(¢) et on dit que
Vs (posao,bo domine ¢ si Pon a T(p, a,b) > T(p,a’,t’) pour tout (p,a,b) > jordcy)
(p7 a/v bl) ZJord(d)) (pOa ao, bo et Tpﬂlxb = 0 pour tout (/), a, b) SJord(w) (pa ao, bO)

Grace a I’hypothese que 1, = ¥, il existe des morphismes s, dominant for-
tement ¢ et de restriction discrete a la diagonale; on en fixe un c’est-a-dire une
fonction T' de Jord(y) dans les entiers avec les hypotheses écrites ci-dessus pour
qu’il n’y ait pas de confusion, on suppose (ce qui est loisible) que T'(p1,a1,b1) =0
pour (p1,a1,b1) le plus petit élément de Jord(v); on peut donc voir 15 comme
> pyar,br- On sait donc définir TI(v)s 5, 4, 5,) pour un tel morphisme et on va
obtenir II(¢)) en prenant des modules de Jacquet convenables.

Pour cela, pour (p,a,b) € Jord(v) et T fixé comme ci-dessus, on pose

A(pa a, b> I(pa a, b) =

(a_b)/2+gp,a,bz(pvaab) ((p,a,b)((a—i—b)/Q_ 1+z<p7a’b))

(CL - b)/2 + Cp,a,b T Cp@,b(a + b)/2

C’est-a-dire que si (, 4, = +, les lignes sont des segments croissants (de gauche a
droite) et les colonnes des segments décroissants (de haut en bas) et que si (, 4 =
— les croissances sont inverses. On voit A(p,a,b,T(p,a,b) comme un ensemble
totalement ordonné (on commence en haut & gauche puis on prend l'ordre de la
lecture frangaise). A une telle collection de segments, Zelevinsky a associé une
représentation irréductible, notons la Z(p,a,b, T p)a,b) comme unique sous-module
d’une certaine induite associé au segment soit formés par les lignes soit pas les
colonnes le résultat est le méme.

On fixe (po,a0,by) € Jord(z) et on suppose défini (s 9.a0,6,)- On note
(p,a,b) Vélément de Jord(v)), il existe, minimal parmi ceux qui sont plus grands
que (po, ao, bo) ; 8'il n'existe pas, on a fini et sinon on définit II()s ,q,4) de la fagon
suivante : on pose B = |(a—b)/2|, A= (a+b)/2—1 et (¢~ , o) est par définition
Pensemble des représentations (a priori virtuelle)
7T/ = Oie[lva,a,b] Jac(j(B+i),--- ,((A+i)7T
quand 7 parcourt II(¢)s 4 a0,6,- On va montrer que pour m comme précédemment
7’ est nulle ou irréductible et que 7 est uniquement déterminé par n’ si 7’ est non
nul. Pour cela on montre les lemmes suivants :

LEMME 4.1.1. Soit ' un morphisme tel que II(¢') ait déja été défini avec les
propriétés ci-dessus. Soit x € R et soit 7' € II(¢)'). Soit m un entier positif. On
a Jacg.... ;m = 0 ot x intervient m fois sauf s’il existe au moins m élément de
Jord(y') de la forme (p,a’,b") avec x = (a’ = V') /2.
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Ce lemme a été démontré en [21] 5.2 et est donc vrai pour les morphismes
s et les représentations qui leur sont associées. On admet donc le éléments de
II(Y> py,a0,b0) €t 0N le démontre pour les éléments de II(Ys , 45) avec les notations
qui précédent I’énoncé; on démontrera au passage que 7’ tel que défini ci-dessus
est nul ou irréductible. On pose p = pg; on démontre la propriété par récurrence
décroissante sur i € [1,T), 4], cela revient & remplacer 9 , o5 par un morphisme
qui s’en déduit en remplacant (p,a,b) par (p,a + 2i — 2,b) ou (p,a,b + 2i — 2)
suivant que a > b ou @ < b. On peut donc supposer que 7, ,, = 1 en ayant perdu
I'hypotheése que T}, 45 est trés grand. On note v~ le morphisme relatif a m; on
remplace (p,a,b) par (p, A, B,¢) en posant B = |(a —b)|, A= (a+b)/2—1et (
le signe de (a —b) si a — b # 0 et + sinon. On sait donc que l'on obtient 1’ en
remplacant dans Jord(¢s ) 'élément (p, A+1, B+1,() par (p, 4, B, {). Etant donné
lordre mis sur Jord(1)) on sait encore que pour tout (p,a’,b’',{’) € Jord(y)s ), on a
soit |(a' = ¥')| < B soit (¢' —')/2 > A. On a donc défini, a priori dans le groupe
de Grothendieck, " par

7T/ = JG/CC(BJ’,l)’... LA+ T

On suppose que ™ # 0 et on fixe une représentation irréductible o tel que par
réciprocité de Frobenius, on a une inclusion

7 p| |SBTY x o p] [(ATD) o, (1)
En appliquant le lemme & 7, on sait que Jac,m = 0 pour tout
z €]¢(B+1),¢(A+1)],

Iinclusion ci-dessus ce factorise donc nécessairement par 1'unique sous-module ir-
réductible pour le GL convenable de I'induite p| [¢(B+D) x ... x p| |<(A+1) Ce sous-
module est noté (p| [SBHD ... p|[(A+D) Clest une représentation de Steinberg
tordue si ( = — et une représentation de Speh (tordue) si { = +. On montre que
o satisfait au lemme. On prend x et m comme dans 1’énoncé et on suppose que
Jacg,... zo0 # 0 ol x intervient m fois. Par réciprocité de Frobenius, il existe une
représentation ¢’ et une inclusion

o= p|[Fx - xpl]" xo. (2)

En reporte (2) dans (1). On considére d’abord le cas ott 2 # (B et x # (A + 2).
Dans ce cas I'induite

(pl [€PHD e pl AT o | [7 3¢ oo ¢ p £

est irréductible et on a aussi Jac, ... 7 # 0 ol x intervient m fois si z # ((B + 1)
et m + 1 fois si « = (B + 1); le résultat pour o se déduit donc du résultat pour
m. On suppose maintenant que z = (B; dans ce cas on note 7 un sous-quotient
irréductible de Iinduite (p| [CBHD) ... p| |S(A+DY) x p| |# et on vérifie que T x p| |*
est irréductible. On a donc Jac,.... ;™ # 0 mais pour uniquement m — 1 copies de
x; le lemme pour 7, x et m — 1 donne le lemme pour o,z et m puisque (p, A, B, ()
est dans Jord(y') sans étre dans Jord(¢s). Pour x = ((A + 2) on veut montrer
que Jacizo = 0; on suppose donc que m = 1. On sait que Jac,m = 0 donc on sait
que si Jacyo # 0, on sait que (1) et (2) vont nécessairement se factoriser par :

T (p| ‘C(B+1)7 -~ ‘C(A+2)> < o

Si B+ 1 est grand par rapport aux |(a’ —b')/2| avec (p,a’,b") € Jord(y<) vérifiant
|(a’ = b')/2| < B, on déduit directement de la construction dans le cas discret que
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Jace(p41),... ¢(B+2)™ = 0. Si on n’a pas cette hypothese on sait que 7 a été construit
par module de Jacquet par la procédure qui précede I’énonce. Plus précisément, on

considere I'induite

|C(B+2), .. |<(A+2)>

X .

{pl _rd
Elle contient un unique sous-module irréductible et c’est d’apres la définition de 7
une représentation dans le paquet associé & un morphisme qui se déduit de ¥ en
remplagant (p, A+1, B4+1,() par (p, A+2, B4+2, (). On note 7" cette représentation
et on peut appliquer le lemme & 7" et on a donc

"l <p| |<(B+2)a e ap‘ |C(A+2)> X <p| ‘C(B+1)7 T 7p| ‘C(A+2)> xa'.

Mais on peut échanger les 2 premiers facteurs par irréductibilité et on obtient donc
Jacep+1ym" = 0; ceci contredit le lemme pour 77,2 = {(B + 1) et m = 1. D’ot1
la nullité cherchée. On revient maintenant a (1) pour calculer Jac¢(gt1y,... c(A4+1)T-
On applique ce module de Jacquet au terme de droite de (1); on sait maintenant
que Jacgyo = 0 pour tout x € [((B+1),((A+1)]. Ainsi les formules de Bernstein et
Zelevinsky montrent que le résultat est o, d’olt nécessairement 7’ = . On a donc
démontré le lemme.

LEMME 4.1.2. On note (¢ , 0p) Uensemble des éléments de la forme

Oie[1,T, 4y OCC(B+i), - C(A+i)T

en supprimant ceux qui sont nuls. Cet ensemble est sans multiplicité

Les paquets sont sans multiplicités si la restriction de ¥ a W fois la diagonale
de SL(2,C) est sans multiplicité d’apres [21]. On démontre donc le lemme par la
récurrence qui suit la construction. On reprend la preuve précédente et on fait une
récurrence sur ¢ comme dans cette preuve. On considere donc 7y, o distincts dans
le paquet associé a 1~ (avec les notations de cette preuve) et on pose pour i = 1,2,
m; = Jace(p41),... c(a+1)Ti- On sait que ce sont des représentations irréductibles ou
nulles et le point est de démontrer que si elles sont toutes 2 non nulles, elles sont
distincts. Mais on a démontrer I'inclusion pour ¢ = 1,2 tel que 7} # 0 :

T > <p| |<(B+1)7 U 7p| ‘C(A+1)> X ﬂ-z/'v

et que le membre de droite n’a qu’un unique sous-module irréductible. L’assertion
est alors claire.
On peut résumer les résultat dans un lemme : pour tout choix de t, U définis

sur Jord(¢s
LEMME 4.1.3. La représentation
T Lss1y) 7= 0(p,a6) T ACA(p,a,b.1(p,ab) T(Vs L1 )

est soit nulle soit irréductible, ou les (p, a,b) sont pris dans l'ordre croissant (le plus
grand est le plus a gauche avec les inversions usuelles dans les compositions d’ap-
plications). On note I1(v)) I’ensemble des représentations 7r(¢,§>>,ﬂ>>) qui sont non
nulles ; cet ensemble est sans multiplicité, c’est-a-dire que toutes les représentations
ainsi définies sont non isomorphes.

On peut améliorer ce lemme en précisant certains cas ou la représentation
obtenue est nulle et paramétrer les représentations de II(v)) uniquement avec les
couples t,n défini sur Jord(y)) vu comme ensemble sans mulitplicité. On renvoie &
[21] pour lénoncé et [22] pour la preuve. Le plus intéressant dans ce raffinement
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est que €, est une application de Jord(y) dans {£1} ou Jord(y) est main-
tenant vu sans multiplicité si 7(1, s, Q>>) est non nul. On utilise cette propriété
pour simplifier I’écriture. Mais pour le résultat de multiplicité 1 dans les paquets
d’Arthur, ce raffinement n’est pas utile.

La paramétrisation qui vient de nos constructions dépend tres fortement du
choix que lon a fait pour ordonner Jord(vy); en fait tout ordre total sur Jord(vy)
vérifiant la simple condition

(,0, a, b) >Jo7‘d(w) (pv a/v b/) si (a - b)(a/ - b/) 2 O’
la—bl>]a’ —V|eta+b>a +V
convient pour obtenir le lemme ; on obtient heureusement globalement le méme en-
semble de représentations mais la paramétrisation n’est pas la méme ; pour démon-
trer que ’on a le méme paquet de représentation on utilise 'interprétation de II(%))

en termes de transfert, c’est tout a fait non trivial et on reviendra sur ces questions
dans un autre article.

4.2. Le cas général. Ici on suppose que ¥ = 1, D Ypp €t que 1y, n'est pas
trivial. On a alors défini 7y /5 ,,,, €t on pose pour ¢ et 1 comme ci-dessus

77(1[%2 ﬂ) = TrGL(/l/Jl/Q,mp) X ﬂ-(rdjbpaév ﬂ)

Il est démontré en [22] que cette induite est irréductible. En loc. cit., on fait la
preuve sans supposer que m(\yp, t, 1) est unitaire. On donne ici la démonstration de
lirréductibilité en supposant que ;(wbp, t,n) est unitaire. Cette hypotheése est tout
A fait raisonable puisqu’il résulte des résultats d’Arthur qu’une telle représentation
est nécessairement composante locale d’une forme automorphe de carré intégrable ;
d’ott 'unitarité. Pour simplifier ’écriture, on pose 7 := 7(¢pp,t,7) et on note v, le
caractere central de 7 si G est de la forme GSpin et v, le caractére trivial sinon.

On doit donc démontrer que I'induite WGL(wl/Q)mp) X T (Yup, t, Q) a un unique
sous-module irréductible. On rappelle que 7% (v, /2,mp) €st une induite irréductible
de la forme

X (p’a7b)€Jord(¢l/2,m,p)Speh(st(p7 CL), b)

On démontre I'irréductibilité cherchée par récurrence sur |Jord(y1 /2 mp)|- Suppo-
sons d’abord qu’il existe (p, a,b) € Jord(1/2,mp) tel que p 2 p* @ vy ; on fixe un tel
p et on écrit ¥ J2,mp le morphisme qui se déduit de v/, en enlevant toutes les
représentations correspondant aux triplets (p, a, b) pour la représentation p fixé; on
suppose aussi (ce qui est loisible) que Jord(vy /2 ) ne contient aucun terme de la
forme (p* ® vy,a’,b’). Ainsi on a
T (W1 2,mp) X T X (0 )s(p,a,b)eTord(: o, mp) SPER(SE(p, @), 0) X T (U] 15 1) X 0.

On montre que le module de Jacquet de cette induite contient le terme

<7TGL(1/)1/2,mp) X T X(a,b);(p,a,b)EJord(l[)l/Q’mp)Speh(St(p7 a)a b)>®

GL
<7T (wll/Q,mp) X ﬂ—) (*)
et que c’est le seul terme de la forme o ® 7’ pour une représentation o du groupe

GL( > abd,, F)
(a,b);(p,a,b)€Jord(Y1/2,mp)
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dont le support cuspidal est formée de représentation de la forme p||* avec
t—(a—"b)/2€Z;

ce sont les formules combinatoires de Bernstein-Zelevinsky et évidemment le fait
que p % p* ® vr. Par récurrence, on sait que la représentation 7TGL(1/)/1/27mp) X T
est irréductible et la réciprocité de Frobenius dit que toute sous-représentation
irréductible de I'induite WGL(wl /Q)mp) X 7 contient dans son module de Jacquet la
représentation (*) comme quotient. Comme le foncteur de Jacquet est un foncteur
exact, il y a donc au plus une sous-représentation irréductible.

On suppose donc maintenant que pour tout (p,a,b) € Jord(vy/zmp), on a
PPt R Uy,

On se ramene aisément au cas oll ¥, est de restriction discrete a la diagonale
puisque les Jac définis pour passer du cas de restriction discréte a la diagonale
au cas général commutent & 'induction par des représentations Speh(St(p,a),b)
si (p,a,b) n’est pas de bonne parité. On se ramene aussi aisément (en suivant les
définitions) au cas out ¢ = 0 ce qui permet de supposer que £(1p,) = 0, c’est-a-dire
que Yy, est un morphisme élémentaire. Puis on se ramene encore au cas ot ¥y,
est tempéré : 'argument consiste a définir plus précisément proj, <, pour z un
demi-entier en ne gardant que les supports cuspidaux des représentations des GL
de la forme p||* avec |z| < x et z — x € Z. Alors I'application que l'on a définie
pour passer de Piemp,bp & Ppp commute alors & I'induction par xGL (wl/g’mp) et elle
conserve l'irréductibilité éventuelle. L'intérét de ces réductions est de traiter le cas
ott 7L (1/2, mp) est tempéré, qui est en fait le cas le plus difficile.

On suppose donc d’abord que 12, est tempéré. On sait donc que b = 1
pour tout (p,a,b) € Jord(ir 2,mp) (c’est hypothese tempéré) et que 7 est une
série discrete ; on sait aussi que (p,a) ¢ Jord(w) parce qu’il n’existe pas a’ de méme
parité que a avec St(p, a’) x  réductible mais on a donc que I'induite St(p, a) X 7 est
irréductible. L’irréductibilité de I'induite ><(p’a’b)ek}ord(wl/zm’p)St(p7 a) X 7 se montre
alors en utilisant la théorie d’Harish-Chandra ; I'irréductibilité se voit sur les poles
des opérateurs d’entrelacement standard; or ces opérateurs se factorisent et font
nécessairement intervenir un opérateur d’entrelacement standard

St(p,a)| | x m = St(p,a)||7° x 7

qui a un pole en s = 0. D’ou l'irréductibilité annoncée.

On suppose maintenant que 7 (1, /2,mp) D'est pas une représentation tempé-
rée. On introduit la notation suivante; soit (p,a) comme précédemment et soit
t,t' des demi-entiers tels que t' — ¢t + 1 € Zsq; on note Q(St(p,a),t’,t) Punique
sous-module irréductible de I'induite St(p,a)||" x --- x St(p,a)||* induite pour un
groupe GL convenable. Pour (p,a,b) € Jord(i1 /2,mp), on pose &, = &, = —1/2si b
est pair et §, = —1, 6, = 0 si b est impair. On considére I'induite

X oy Jord(tn s b1 (Q(St(p, 0),—(b—1)/2.6,) x Q(St(p.a).—(b—1)/2, 5;,>)

x (pﬂavb)6J0Td('¢’1/2,mp)§b:15t(p7 a’) X,

ol on ordonne les (p, a,b) qui interviennent de telle sorte que si (p, a,b) et (p,a’,b’)
interviennent alors si b > V', (p,a,b) est plus & gauche. L’intérét est alors que
l'induite Q(St(p,a),—(b —1)/2,6;) x Q(St(p,a), —(b' — 1)/2,04) est irréductible
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(d’apres [27]1.6.3). On vérifie alors que 'induite est une sous-représentation de
I'induite

X(p,a,b)eJord(wl/zymp);b>1 (Q(St(pv a)a _(b - 1)/27 5b) X Q(St(pv a’)v _(b - 1)/2a 5b))

X (paab)eJord($y ja.mp)b=1[29t(ps @) X T. (2)
Ici il n’y a plus besoin de mettre d’ordre sur Jord(11/2,mp) grace aux propriétés
d’irréductibilité prouvées en loc. cit..

On vérifie que cette induite a un unique sous-module irréductible; c’est un
calcul de module de Jacquet, disons que I'on peut utiliser la théorie du quotient de
Langlands si 7 est tempérée ce que 'on a le droit de supposer.

On note Lang(1 j2,mp, ) ce sous-module irréductible ; il intervient en plus avec
multiplicité 1 comme sous-quotient de I'induite. Avant de continuer, on remarque
que Lang(1 j2,mp, ™) est certainement un sous-quotient de I'induite WGL(wl/Q)mp) X
7 ; c’est un calcul de module de Jacquet qui le prouve. Comme la représentation
7GL (¢ /2,mp) X T est unitaire, I'irréductibilité cherchée est donc équivalente a I'exis-
tence d'une inclusion de 7% (1; /3 np) X 7 dans 'induite (2).

Il y a malheureusement quelques difficultés techniques pour démontrer ce résul-
tat dans le cas ou il existe (p,a,b) € Jord(wl/g)mp) avec b impair. On traitera
ci-dessous le cas ot Jord(iy /z,mp) contient exactement un élément (p,a,b) avec
b > 1 et ici on se ramene par récurrence a ce cas; la récurrence porte donc sur
le cardinal de 'ensemble (p',a’,b") € Jord(vy/2mp) tel que ¥’ > 1. Fixons (p, a, b)
avec b > 1; on note wll/Z,mp le morphisme qui se déduit de 9y /5 ,,, en enlevant la
représentation associée a (p,a,b) et on suppose que Jord(y] /2,mp) contient aussi
un élément (p',a’,b’) avec b’ > 1. Quitte & échanger ces 2 triplets, on suppose que
b > b'. Par hypothese de récurrence, on sait que ﬂGL(z/);/Zmp) x 7 est irréductible
donc réduit a Lang(z/)i/Zmp,ﬂ); on note w;f/Z,mp le morphisme qui se déduit de
1/);/277”17 en enlevant (p/,a’,b’) mais en rajoutant si b’ est impair (p,a’,1). Donc on
a des inclusions :

T (1 j2,mp) X ™ = Q(St(p,a), —(b—1)/2, (b—1)/2) x Q(St(p', a'), —(b' = 1) /2, 6)
xQ(St(p',a"),— (V) —1)/2,0y) x ﬂ'GL(dji’/Q)mp) X T
~ Q(St(p',a’), —(b/ —1)/2,6y) x Q(St(p',a’),—(b —1)/2, 0 )%
Q(St(p,a), —(b—1)/2,(b—1)/2) x 7“E (W )5 ) X .
Par récurrence, on sait que la représentation induite
Q(St(p,a), —(b—1)/2,(b—1)/2) x T (%] 3, 1)) X T

est irréductible réduite au "bon” sous-quotient de Langlands. On peut donc pro-
longer les morphismes ci-dessus en une inclusion

— Q(St(p',a"),—(b' —1)/2,8y) x Q(St(p',a’), — (V) —1)/2,6)
xQ(St(p,a),—(b—1)/2,0p) X Q(St(p,a), —(b—1)/2,8)
XT(GL( i//Q,mp) X St(pa a) X,
ou le facteur St(p,a) n’intervient que si b est impair. Il est alors facile de continuer
pour trouver une inclusion de 7 (11 /3 ;) X 7 dans I'induite (2). Cela réduit donc

la preuve de 'irréductibilité de I'induite WGL(wl/Q)mp) x 7 au cas ou Jord(Y1 /2,mp)
ne contient qu’un élément (p,a,b) avec b > 1. On a le droit d’utiliser I'involution
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d’Iwahori-Matsumoto généralisée ([9], [29]) ; cette involution change 7 mais 7 reste
dans un paquet associé a un morphisme z/Jgp qui s’obtient simplement en échangeant
les 2 copies de SL(2,C). Et elle change 1)1 /2, en échangeant les triplets (p, a, b)
en (p,b,a) puisqu’ici c’est involution de Zelevinsky. On se rameéne ainsi & des cas
tres particuliers de 912, @ Pour tout (p,a,b) € Jord(Yr/2mp) on a a =b =1
sauf soit pour exactement 1 triplet de la forme (p, a,b) avec inf(a,b) > 1 soit pour
exactement 2 triplets I'un étant de la forme (p, 1,b) et I'autre de la forme (p’,a’,1);
dans le 2e cas, on écrit a’ = a et on suppose dans les 2 cas que a > b (on 8’y rameéne
éventuellement avec 'involution d’Iwahori-Matsumoto généralisée).

Maintenant, on fait en plus une récurrence sur |Jord(i2,mp)|- On suppose
donc pour initialiser la récurrence que Jord(v; 2 1p) n’a qu'un élément (p, a, b) avec
a > b > 1. On démontre d’abord que pour tout demi-entier x tel que x — (b—1)/2
soit dans Z l'induite :

St(p,a)| | x = (3)
est irréductible. Le cas @ = 0 (qui n’est possible que si b est impair) a déja été
traité. On suppose donc que x > 0 et on remarque que Uinduite (3) a un unique
quotient irréductible qui est auss I'unique sous-module irréductible de l'induite
St(p,a)| |~*xm. De plus cette représentation irréductible intervient avec multiplicité
1 comme sous-quotient de l'induite. Il suffit donc de démontrer que 'opérateur
d’entrelacement standard :

St(p,a)||* x m = St(p,a)||7* x 7

est un isomorphisme. Montrons cela : on inclut 7 dans une induite de la forme
X (pr,21) Pl |*" X Teusp O (o, 2) parcourt un ensemble avec multiplicité formé d’une
représentation cuspidale unitaire p’ et d’un demi-entier z’ et ol Teys, €st une
représentation cuspidale. Le point est que si (p/,2’) apparait et si p' ~ p ou p*,
z' —t # £1 pour tout ¢ € [(a —1)/2,—(a — 1)/2] + x pour des questions de parité.
De plus St(p, a)| |* X meusp st aussi irréductible : les points de réductibilité des in-
duites de la forme p| |* X Teysp pour s demi-entier sont aussi tels que s —¢ ¢ Z pour
tout t comme ci-dessus. On a alors facilement l’isomorphisme annoncée puisque
lopérateur d’entrelacement standard est la restriction d’un produit d’opérateur
du méme type qui correspondent aux induites que I'on vient de décrire. On écrit
maintenant (ici on n’utilise pas le fait que a > b)

QSt(p, @), —(b—1)/2, (b —1)/2) x 7 =
Q(St(p,a), —(b—1)/2,(b = 3)/2) x St(p,a)| |*~V/2 x 7

~ Q(St(p,a),—(b—1)/2,(b—3)/2) x St(p,a)| [T~/ x 7

~ St(p,a)||"C~V/2 x Q(St(p, a), —(b— 1)/2, (b—3)/2) x .
Si b =2 ou 3 on a terminé. Sinon, on recommence en utilisant 1’inclusion

Q(St(p,a),=(b—1)/2,(b=3)/2) =
Q(St(p,a), —(b—1)/2, (b= 5)/2) x St(p, a)| |*~272.
Finalement on trouve 'inclusion Q(St(p,a),—(b—1)/2,(b—1)/2) x 1 —
X ge[—(b—1)/2,6,] 5t (p, @) [T x Q(St(p,a), —(b—1)/2,0s) x St(p,a) x T,

ou le dernier St(p,a) n’intervient que si b est impair. On vérifie encore que la
derniere induite a un unique sous-module irréductible et on conclut ainsi.
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On peut alors traiter I'un des cas restants : on suppose que |Jord(y1 /2.mp)| a
plus d’un élément et contient (p, a,b) avec a > b > 1. Ainsi il existe des triplets de
la forme (p’,1,1) dnas Jord(11 /2,mp) et on en fixe 1. On note 7r’1/27mp le morphisme

qui se déduit de 1 /2, en enlevant (p’,1,1) et (p,a,b). On a

TrGL(wl/Q,mp) X = pl X Q(‘St(p’ a)7 _(b - 1)/2’ (b - 1)/2) x 7T(¢1/2,mp) X T

Par récurrence, on sait que I'induite Q(St(p, a), —(b—1)/2, (b—1)