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Preface

The conference celebrating the 60th birthday of Alain Connes was hosted jointly
by IHÉS (March 29–30, 2007) and Institut Henri Poincaré (April 2–7, 2007). The
talks were a vibrant testimony of the health and vitality of the subject of noncom-
mutative geometry, as reflected by its many interactions with other fields, including
operator algebras, physics, analysis, topology, and number theory, which is the most
recently opened frontier. The conference was a marvelous tribute to the breadth
and depth of Alain Connes’ contributions to mathematics.

The conference started with a talk by Michael Atiyah, entitled

Radical thoughts on the foundations of physics
Atiyah observed that all physical models since Newton, quantum mechanics

included, have started from the basic premise that one can predict the future from
full knowledge of the present. He suggested an alternative to this paradigm: besides
the present, we may also need some knowledge of the past in order to predict the
future. That is, perhaps the universe has memory, and somehow the short term
memory of the past should play a role in predictions. This means that, instead
of an ordinary differential equation or PDE, one should use a “delayed differential
equation”.

The next talk of the morning session was delivered by Yuri Manin, with the

title
Cohomomorphisms and operads

and based on his joint paper with D. Borisov. Their work gives a unified
axiomatic treatment of generalized operads as functors on categories of abstract
labeled graphs, thus providing an approach to symmetry and moduli objects in
non-commutative geometries.

In the afternoon, the first talk was by Katia Consani, and was entitled

Vanishing cycles: an adelic analogue

She drew an analogy between the geometry of the adèle class space and the
theory of singularities, by which the complement of the idèle class group in the
adèle class space is compared to the singular fiber of an algebraic degeneration.

It was followed by a talk given by Matilde Marcolli, entitled

How noncommutative geometry looks at number theory

She gave a broad survey of the interactions between noncommutative geometry
and number theory, starting from the phase transitions with spontaneous symmetry
breaking associated to Q-lattices. She also described the new notion of endomotive,

xi



xii PREFACE

which together with cyclic cohomology gives the conceptual meaning in noncom-
mutative geometry of the spectral realization of zeros of L-functions.

The first talk on Friday was given by Erling Størmer:

Survey of entropy for operator algebras

Erling gave vivid recollections of his collaboration with Alain in the seventies,
and of the evolution since that time of the notion of entropy for automorphisms of
factors, originally introduced by Connes and Størmer in order to classify shifts of
the II1 hyperfinite factor.

The second talk was by Alain Connes, and was entitled

Noncommutative geometry and physics

Alain described the physics part of his book with Matilde Marcolli, whose
content is about equally divided between number theory and physics. He showed
in particular how the work on renormalization and motivic Galois theory fits with
the understanding, obtained in joint work with A. Chamseddine and M. Marcolli,
of the extremely complex Lagrangian of gravity coupled with matter as unveiling
the fine texture of space-time using the spectral action principle. At the end of
the talk he explained the link between the two parts of the book based on the
analogy between the electroweak phase transition in the standard model and the
phase transitions which play a crucial role in the quantum statistical mechanics
models involved in the approach to RH. In particular he proposed to extend the
symmetry breaking to the full gravitational sector so that geometry appears only
at low temperature as an emerging phenomenon.

The last talk on Friday was by

Don Zagier, and had the title
Quantum modular forms

Don explained a new type of modular objects, which live on the boundary of
the usual domain of modular forms. He gave a number of examples of such quantum
modular forms, coming from number theory, combinatorics (q-series) and quantum
invariants of 3-manifolds and knots.

Friday ended with a delightful piano concert (Chopin) and poetry session, with
pianist Lydie Solomon at the piano, and the poetess Nicole Barriere reciting 20th
century poetry and one of her poems.

After a weekend break, the conference moved on Monday to the Institut Henri
Poincaré (IHP), in the heart of Paris.

The first talk on Monday was given by

Dirk Kreimer, with the title

Diffeomorphism invariance, locality and the residue:
a physicist’s harvest of a friend’s work

He explained the role of locality and of the “residue” in the conceptual un-
derstanding of the Feynman diagram computations of quantum field theory. The
residue also plays a basic role in noncommutative geometry, by filtering out the



PREFACE xiii

unimportant details and giving the proper meaning to the notion of locality in that
framework.

Ali Chamseddine delivered the talk entitled

The little key to uncover the hidden noncommutative structure of space-time

Ali showed how, using the spectral action principle and spectral triples in non-
commutative geometry, one can determine the finite noncommutative space whose
product by the continuum describes the fine structure of space-time corresponding
to the Standard Model coupled to gravity.

Gianni Landi gave the next talk, with the title

Quantum Groups and Quantum Spaces are Noncommutative Geometries

Gianni described his recent results with his collaborators, showing that quan-
tum spheres and quantum groups such as SUq(2) admit natural Dirac operators
yielding spectral geometries with finite summability and fulfilling all regularity
conditions of spectral triples.

Michel Dubois-Violette gave the talk

Moduli spaces for regular algebras

He discussed the noncommutative generalizations of polynomial algebras, which
can be used in various noncommutative settings, noncommutative differential ge-
ometry, noncommutative algebraic geometry, etc. as well as in the applications in
physics.

Masoud Khalkhali’s talk was entitled

Hopf cyclic cohomology and noncommutative geometry:
some new thoughts and a tribute to Alain

He explained the role played by index theory and transverse geometry of foli-
ations in Connes’ discovery of cyclic cohomology in 1980-1981, and of Hopf cyclic
cohomology in the late 1990’s by Connes and Moscovici. He then gave a specula-
tive survey on how Hopf cyclic theory can be extended to deal with more general
types of symmetries, like those defined by quasi Hopf algebras and Hopf algebras
in braided monoidal categories.

On Tuesday the theme of the conference moved to von Neumann algebras and
was a tribute to Alain Connes’ immense legacy in the subject. The speakers were
as follows.

Anthony Wassermann, who talked about

Non-commutative geometry and conformal field theory

He gave a survey of the deep interaction between conformal field theory and
operator algebras and in particular of the role played by the composition of corre-
spondences between von Neumann algebras to describe the fusion rules turning the
positive energy representations into a tensor category.

Vaughan Jones gave a talk entitled

Operations on planar algebras and subfactors
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He explained the development of the theory of planar algebras which, among
other applications, provided a very convenient axiomatization of the standard in-
variant of a subfactor and a useful new technique, similar in spirit to Conway’s
skein theory, for analyzing their structure.

Dietmar Bisch talked about

Free product of planar algebras and inclusions of subfactors

The standard invariant of a subfactor can be axiomatized in algebraic-combinatorial
terms as a planar algebra. Jones and Bisch discovered a notion of “free product”
of planar algebras, which gives rise to uncountably many new infinite depth sub-
factors. For instance, the Fuss-Catalan planar algebras can be viewed as a “free
product” of two Temperley-Lieb planar algebras.

Sorin Popa’s talk was entitled

Rigidity phenomena in von Neumann algebras of group actions

Sorin described a wealth of new startling results, which he obtained in the
recent years by combining rigidity techniques based on property T together with
his notion of malleability derived from Haagerup’s compact approximation property.
His work solved the long-standing problem of the computation of the fundamental
group of type II1 factors.

Stefan Vaes talked about

Explicit computations of all bifinite Connes’ correspondences for certain II1 factors

He showed how to use the rigidity techniques introduced by S. Popa to give an
explicit description of the ring of all bifinite correspondences for certain II1 factors,
a result which illustrates the remarkable power of the new techniques.

Dimitri Shlyakhtenko then gave the talk

Free entropy dimension, L2 derivations and stochastic calculus

He showed that the L2-derivations introduced in his joint work with Alain
give rise to a free stochastic differential equation which has a stationary solution.
This solution gives lower bounds on Voiculescu’s microstates free entropy dimension
for generators of a finite von Neumann algebra M . It follows that for a class of
Rω embeddable groups, their microstates free entropy is given by the expression

β
(2)
1 − β

(2)
0 + 1, with β

(2)
j being the Cheeger-Gromov L2 Betti numbers.

Wednesday’s talks focused on the Baum-Connes conjecture, topology and C*-
algebras.

Vincent Lafforgue gave the first talk, with the title

Strengthening property (T)

He introduced the strengthened property (T) which is an obstacle to prove
the Baum-Connes conjecture with arbitrary coefficients for SL3(R) or SL3(Qp),
using only the bivariant theory KKban, and stability under holomorphic functional
calculus.

Gennadi Kasparov’s talk was entitled

A K-theoretic index formula for transversally elliptic operators
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Gennadi explained the K-theoretic version of the index theorem for transver-
sally elliptic operators in the sense of Atiyah, which gives a conceptual understand-
ing of the computation of the index formula in K-theory using C∗-algebra cross
products and the Kasparov product. The talk provided yet another illustration of
the power of his bivariant theory.

Nigel Higson’s talk was on

The Baum-Connes conjecture and the Mackey analogy

He explained the connection between C∗-algebra K-theory and Mackey’s pro-
posal to study representation theory for a semisimple group G by developing an
analogy between G and an associated semidirect product group. He showed how
to use Mackey’s point of view to give a new proof of the complex semisimple case
of the Connes-Kasparov conjecture.

Marc Rieffel delivered a talk entitled

A new look at ‘Matrix algebras converge to the sphere’

He showed how the approximation of the sphere by matrix algebras can be
precisely understood using the notion of metric on noncommutative spaces obtained
as a natural generalization of the Dirac distance between states introduced by
Connes for spectral triples.

Guoliang Yu talked about

Higher index theory of elliptic operators and noncommutative geometry

He gave a survey on recent development of higher index theory in the context
of noncommutative geometry, its applications, and its fascinating connection to
the geometry of groups and metric spaces. Higher index theory has important
applications to problems in differential topology and differential geometry such
as the Novikov Conjecture on homotopy invariance of higher signatures and the
existence problem of Riemannian metrics with positive scalar curvature.

Paul Baum lecture had the title

Noncommutative algebraic geometry and the representation theory of p-adic groups

He described his joint work with R. Plymen and A.-M. Aubert. Motivated by
the tools of noncommutative geometry such as cyclic homology applied in the con-
text of representation theory they conjecture the existence of a simple geometric
structure underlying questions of reducibility of parabolically induced representa-
tions of reductive p-adic groups.

The first talk on Thursday was given by

Joachim Cuntz

C*-algebras associated with the ax+b-semigroup over N

He presented a C∗-algebra which is naturally associated to the ax+b-semigroup
over N. It is simple and purely infinite and can be obtained from the algebra
considered by Bost and Connes by adding one unitary generator which corresponds
to addition. Its stabilization can be described as a crossed product of the algebra
of continuous functions, vanishing at infinity, on the space of finite adeles for Q by
the natural action of the ax+ b-semigroup over Q.

Uffe Haggerup’s talk was entitled
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Connes’ classification of injective factors seen from a new perspective

Uffe presented his joint work with Magdalena Musat on the classification of
preduals of injective factors up to completely bounded (cb) isomorphisms. They
show that preduals of semifinite factors are not cb-isomorphic to preduals of type
III factors and they obtain a characterization of those hyperfinite factors M whose
preduals are cb-isomorphic to the predual of the unique hyperfinite type III1-factor.

Dan Voiculescu gave the talk entitled

Aspects of free analysis

He surveyed the analysis around the free difference quotient derivation, which
is the natural derivation for variables with the highest degree of noncommutativity
and explained how a highly noncommutative extension of the spectral theory of
resolvents is emerging from his free probability theory. Dan also discussed the
possibility of using this spectral theory in relativistic quantum physics.

Alain Connes’s talk was entitled

Thermodynamics of endomotives and the zeros of zeta

He described the number theory part of his joint book with Matilde Marcolli,
and the phase transitions with spontaneous symmetry breaking which arise for the
higher dimensional analogues of the Bost-Connes system, such as the GL(2)-system
of two-dimensional Q-lattices.

The last lecture on Thursday was delivered by

Henri Moscovici, with the title

Spectral geometry of noncommutative spaces

A long time collaborator and friend of Alain, Henri gave a survey of their joint
work inspired by index theory, highlighting the local index formula in noncommu-
tative geometry and its application to the transverse geometry of foliations, which
in turn led to their discovery of Hopf cyclic cohomology. He then focused on their
recent work on twisted spectral triples of type III. Twisting notwithstanding, the
Chern character of such a spectral triple still lands in the standard cyclic cohomol-
ogy of the underlying algebra, which raises the challenge of expressing it by a local
formula.

The conference on Thursday ended with a reception at Institut de Mathémati-
ques de Jussieu and the dedication of a birthday gift to Alain, a telescope to cele-
brate his farsighted visionary work!

There were four talks in the last day of the conference on Friday, all by former
students of Alain.

The first was by

Alain Valette, entitled

Proper isometric actions on Hilbert and Banach spaces

He began by recalling in a witty manner the way he was introduced to property
T by Alain, during a fast car drive from Bures to Paris. He then explained a
beautiful piece of geometric group theory, inspired by the Baum-Connes conjecture.

George Skandalis talked about
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Holonomy groupoid and C*-algebra of a foliation

He showed that many aspects of the interaction between noncommutative ge-
ometry and foliation theory generalize to the set up of singular foliations.

At the end of Georges’ talk the whole audience gave him and the other orga-
nizers a big ovation for the splendid organizing job.

Marc Rosso’s talk had the title

Quantum groups and algebraic combinatorics

He showed that the quantum shuffle approach to quantum groups and the
combinatorics of Lyndon words provide new character formulas for irreducible rep-
resentations and a new way of constructing the canonical bases.

Jean-Benôıt Bost gave the last talk of the conference, on

Characteristic values of evaluation maps and Diophantine geometry

He sketched his conceptual geometric approach to Diophantine approximation
as a theory of characteristic numbers in the context of Arakelov geometry and
some intriguing analogies with noncommutative geometry and elliptic theory on
noncommutative spaces.

This volume collects articles contributed by speakers at the conference, with
their coauthors in some cases, together with a few others, offered for the occasion
by the following mathematicians: Etienne Blanchard, Dan Burghelea, Pierre
Cartier, Max Karoubi, Jean-Louis Loday and Maria Ronco, Alejandro
Perez and Carlo Rovelli, James Simons and Dennis Sullivan, and Raimar
Wulkenhaar. Many of the papers in this volume cover new results, and do not
necessarily reflect the topic and content of the talks given at the conference.

The editors would like to heartily thank all the contributors. Along with them,
we also express our enormous respect and admiration for the honoree, and wish
him many more years of fruitful and inspirational research.

Acknowledgements. The editors are very grateful to Vida Salahi of the Clay
Mathematics Institute for handling the whole editorial process and formatting the
articles. Our thanks are also due to Arthur Greenspoon for kindly copyediting and
checking the entire manuscript.
The volume’s cover was designed by Marie Claude Vergne, IHES, and Teresa Levy
of the AMS. We would like to thank both of them.

Finally, we would like to acknowledge the generous support of the following
organizations, without whom this event would not have been possible. (Région
Ile-de-France, Clay Mathematics Institute, Centre National de la Recherche Scien-
tifique, Institut de Mathématiques de Jussieu et le Projet Algèbres d Opérateurs,
Institut Henri Poincaré, Fédération de Recherche Mathématiques de Paris Centre,
Université Pierre et Marie Curie, Université Paris Diderot, GDR Géométrie Non
Commutative, Institut des Hautes Études Scientifiques, Institut Universitaire de
France, Collège de France)

Etienne Blanchard, David Ellwood, Masoud Khalkhali, Matilde
Marcolli, Henri Moscovici, Sorin Popa

August 2010
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A Geometric Description of Equivariant K-Homology for Proper
Actions

Paul Baum, Nigel Higson, and Thomas Schick

Dedicated with admiration and affection to
Alain Connes on his 60th birthday

ABSTRACT. Let G be a discrete group and let X be a G-finite, proper G-CW-complex.
We prove that Kasparov’s equivariant K-homology groups KKG

∗ (C0(X),C) are isomor-
phic to the geometric equivariant K-homology groups of X that are obtained by making
the geometric K-homology theory of Baum and Douglas equivariant in the natural way.
This reconciles the original and current formulations of the Baum-Connes conjecture for
discrete groups.

1. Introduction

In the original formulation of the Baum-Connes conjecture [BC00], the topological
K-theory of a discrete group G (the “left-hand side” of the conjecture) was defined geo-
metrically in terms of proper G-manifolds. Later, in [BCH94], the definition was changed
so as to involve Kasparov’s equivariant KK-theory. The change was made to accommo-
date new examples beyond the realm of discrete groups, such as p-adic groups, for which
the geometric definition was not convenient or adequate. But it left open the question of
whether the original and revised definitions are equivalent for discrete groups (for con-
nected or almost-connected Lie groups the equivalence is straightforward). This is the
question that we shall address in this paper.

In a recent article [BHS07], we gave a complete proof that the (non-equivariant)
geometric K-homology theory of Baum and Douglas [BD82] agrees with Kasparov’s K-
homology on finite CW-complexes. Here we shall show that our techniques extend to
show that the original and revised definitions of topological K-theory for a discrete group
agree—provided that those techniques are supplemented by a key result of Lück and Oliver
about equivariant vector bundles over G-finite, proper G-CW-complexes [LO01].

Lück and Oliver prove that if X is a G-finite, proper G-CW-complex, then there is
a rich supply of equivariant vector bundles on X. It follows that the Grothendieck group

2010 Mathematics Subject Classification. Primary 19K33; Secondary 19K35, 19L47, 58J22.
The first- and second-named authors were partially supported by US National Science Foundation grants.

c© 2010 Paul Baum, Nigel Higson and Thomas Schick
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2 PAUL BAUM, NIGEL HIGSON, AND THOMAS SCHICK

K0
G(X) of complex G-vector bundles is the degree zero group of a Z/2Z-graded cohomol-

ogy theory on X, and it is essentially this fact that we shall need to carry over the arguments
of [BHS07] to the equivariant case.

We shall show that the Lück-Oliver theorem is equivalent to the assertion that the
crossed product C∗-algebra C∗(X,G) associated to the action of G on X has an approxi-
mate identity consisting of projections. As a result K0

G(X) is isomorphic to the K0-group
of the crossed product C∗-algebra. This has some further benefits for us—for example it
makes it clear that each complex G-vector bundle on a G-compact proper G-manifold has
a unique smooth structure, up to isomorphism.

Returning to the Baum-Connes conjecture, the assertion that the old and the revised
versions are the same is a consequence of the assertion that the natural G-equivariant de-
velopment of the Baum-Douglas K-homology theory, which we shall write as KG

∗ (X), is
isomorphic to Kasparov’s group KKG

∗ (C0(X),C) for any G-finite, proper G-CW-complex
X. There is a natural map

μ : KG
∗ (X) −→ KKG

∗ (C0(X),C)

which is defined using the index of Dirac operators, and we shall prove that it is an isomor-
phism. What makes this nontrivial is that the groups KG

∗ (X) do not obviously constitute a
homology theory. We shall address this problem by introducing groups kG∗ (X) that mani-
festly do constitute a homology theory and by constructing a commutative diagram

kG∗ (X)
�� KG

∗ (X)

μ

��
kG∗ (X) μ

�� KKG
∗ (C0(X),C).

We shall prove that the map from kG∗ (X) to KKG
∗ (C0(X),C) is an isomorphism when X is

a G-finite, proper G-CW-complex and that the map from kG∗ (X) to KG
∗ (X) is surjective.

This proves that the map from kG∗ (X) to KKG
∗ (C0(X),C) is an isomorphism.

2. Proper Actions

Throughout the paper we shall work with a fixed a countable discrete group G. By a
G-space we shall mean a topological space with an action of G by homeomorphisms. We
shall be concerned in the first place with proper G-CW-complexes. These are G-spaces
with filtrations

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ X

such that Xk is obtained from Xk−1 by attaching equivariant cells of the form Dk ×G/H

along their boundaries, where H is any finite subgroup of G. See [Lüc05, Section 1] for
more details.

The Baum-Connes conjecture as formulated in [BCH94] involves universal proper G-
spaces. In the context of proper G-CW-complexes, these may be characterized as follows:

2.1. THEOREM ([Lüc05, Theorem 1.9]). There is a proper G-CW-complex EG with
the property that if Y is any proper G-CW-complex, then there is a G-equivariant contin-
uous map from Y into EG, and moreover this map is unique up to equivariant homotopy.

Clearly the G-CW-complex EG is unique up to equivariant homotopy. The universal
space used in the formulation of the Baum-Connes conjecture is defined a bit differently
(see [BCH94, Section 1]), but by the results of [Lüc05, Section 2] the same conjecture
results if the above version of EG is used. Compare also Theorem 2.3 below.
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A proper G-CW-complex is said to be G-finite if only finitely many equivariant cells
are used in its construction. These are G-compact proper G-spaces in the sense of the
following definition.

2.2. DEFINITION. We shall say that a G-space X is a G-compact, proper G-space if

(a) X is locally compact and Hausdorff.
(b) The quotient space X/G is compact and Hausdorff in the quotient topology.
(c) Each point of X is contained in an equivariant neighborhood U that maps continuously

and equivariantly onto some proper orbit space G/H (where H is a finite subgroup of
G).

Apart from G-finite G-CW-complexes, we shall also be concerned with smooth man-
ifolds (with smooth actions of G) that satisfy these conditions. We shall call them G-
compact proper G-manifolds.

The following result is a consequence of [Lüc05, Theorem 3.7] (the final statement
reflects a simple feature of the CW-topology on EG).

2.3. THEOREM. If X is any G-finite proper G-space, then there is a G-equivariant
map from X to EG. It is unique up to equivariant homotopy, and its image is contained
within a G-finite subcomplex of EG.

3. Equivariant Geometric K-Homology

In this section we shall present the equivariant version of the geometric K-homology
theory of Baum and Douglas [BD82]. The definition presents no difficulties, so we shall be
brief. The reader is referred to [BD82] or [BHS07] for treatments of the non-equivariant
theory.

We shall work with principal bundles, rather than with spinor bundles as in [BD82]
or [BHS07]. To fix notation, recall the following rudimentary facts about Clifford alge-
bras, Spinc-groups and Spinc-structures. Denote by Cliff(n) the Z/2Z-graded complex
∗-algebra generated by skew-adjoint degree-one elements e1, . . . , en such that

eiej + ejei = −2δijI.

We shall consider Rn as embedded into Cliff(n) in such a way that the standard basis of
R

n is carried to e1, . . . , en.
Denote by Spinc(n) the group of all even-grading-degree unitary elements in Cliff(n)

that map R
n into itself under the adjoint action. This is a compact Lie group. The image

of the group homomorphism

α : Spinc(n) −→ GL(n,R)

given by the adjoint action is SO(n) and the kernel is the circle group U(1) of all unitaries
in Cliff(n) that are multiples of the identity element.

There is a natural complex conjugation operation on Cliff(n) (since the relations defin-
ing the Clifford algebra involve only real coefficients) and the map u �→ uū∗ is a homo-
morphism from Spinc(n) onto U(1). The combined homomorphism

Spinc
(n) −→ SO(n)×U(1)

is a double covering.
Let M be a smooth, proper G-manifold and let V be a smooth, real G-vector bundle

over M of rank n. A G-Spinc-structure on V is a homotopy class of reductions of the
principal frame bundle of V (viewed as a G-equivariant right principal GL(n,R)-bundle)
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to a G-equivariant principal Spinc
(n)-bundle. In other words it is a homotopy class of

commutative diagrams

Q
ϕ ��

��

P

��
M M

of smooth G-manifolds, where P is the bundle of ordered bases for the fibers of V , Q is a
G-equivariant principal Spinc(n)-bundle, and

ϕ(qu) = ϕ(q)α(u)

for every q ∈ Q and every u ∈ Spinc
(n). A G-Spinc-structure on V determines a G-

invariant orientation, and a specific choice of Q within its homotopy class determines a
Euclidean structure.

3.1. EXAMPLE. Every G-equivariant complex vector bundle carries a natural Spinc-
structure because there is a (unique) group homomorphism U(k) → Spinc(2k) that lifts
the map

U(k) −→ SO(2k)×U(1)

given in the right-hand factor by the determinant.

A G-Spinc-vector bundle is a smooth real G-vector bundle with a given G-Spinc-
structure. The direct sum of two G-Spinc-vector bundles carries a natural G-Spinc-struc-
ture. This is obtained from the diagram

Spinc
(m)× Spinc

(n)

��

�� Spinc
(m+ n)

��
GL(n,R)×GL(m,R) �� GL(m+ n,R)

that is in turn obtained from the inclusions of Cliff(m) and Cliff(n) into Cliff(m+n) given
by the formulas ek �→ ek and ek �→ em+k, respectively. In addition, if V and V ⊕ W

carry Spinc-structures, then there is a unique Spinc-structure on W whose direct sum, as
above, with the Spinc-structure on V is the given Spinc-structure on the direct sum. This
is the two out of three principle for Spinc-structures.

If M is a smooth G-manifold, then a G-Spinc-structure on M is a G-Spinc-structure
on its tangent bundle, and a G-Spinc-manifold is a smooth G-manifold together with a
given G-Spinc-structure.

3.2. DEFINITION. Let X be any G-space. An equivariant K-cycle for X is a triple
(M,E, f) consisting of:

(a) A G-compact, proper G-Spinc-manifold M without boundary.1

(b) A smooth complex G-vector bundle E over M.
(c) A continuous and G-equivariant map f : M → X.

The geometric equivariant K-homology groups KG
∗ (X) will be obtained by placing a

certain equivalence relation on the class of all equivariant K-cycles. Before describing it,
we give constructions at the level of cycles that will give the arithmetic structure of the
groups KG

∗ (X).

1The manifold M need not be connected. Moreover different connected components of M may have dif-
ferent dimensions.
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If (M,E, f) and (M ′, E ′, f ′) are two equivariant K-cycles for X, then their disjoint
union is the equivariant K-cycle (M�M ′, E� E ′, f � f ′). The operation of disjoint union
will give addition.

Let V be a G-Spinc-vector bundle with a G-Spinc-structure ϕ : Q → P. Fix an
orientation-reversing isometry of Rn. Since it preserves the inner product, τ induces an
automorphism of Cliff(n), and hence of Spinc

(n), that we shall also denote by τ. Consider
the map ϕτ : Qτ → P, where:

(a) Qτ is equal to Q as a G-manifold, but has the twisted action q ·τ u = q · τ(u) of the
group Spinc

(n).
(b) ατ(q) = α(u)τ.

It defines the opposite G-Spinc-vector bundle −V . Applying this to manifolds, we define
the opposite of an equivariant K-cycle (M,E, f) to be the equivariant K-cycle (−M,E, f).
This will give the operation of additive inverse in the geometric groups KG

∗ (X).
If M is a Spinc-G-manifold, then its boundary ∂M inherits a Spinc-G-structure. This

is obtained from the pullback diagram

Spinc
(n−1)

��

�� Spinc(n)

��
GL(n−1,R) �� GL(n,R)

associated to the lower-right-corner embedding of GL(n−1,R) into GL(n,R) and the
inclusion of Cliff(n−1) into Cliff(n) that maps the generators ek to ek+1. Using the
outward-pointing normal first convention, the bundle of frames for T∂M maps to the re-
striction to the boundary of the bundle of frames for TM. A pullback construction gives
the required reduction to Spinc

(n−1).

3.3. DEFINITION. An equivariant K-cycle for X is a boundary if there is a G-compact,
proper G-Spinc-manifold W with boundary, a smooth, Hermitian equivariant vector bun-
dle E over W and a continuous equivariant map f : W → X such that the given cycle
is isomorphic to (∂W,E|∂W , f|∂W). Two equivariant K-cycles for X, (M1, E1, f1) and
(M2, E2, f2) are bordant if the disjoint union of one with the opposite of the other is a
boundary.

The most subtle aspect of the equivalence relation on equivariant K-cycles that defines
geometric K-homology involves certain sphere bundles over Spinc-manifolds. To describe
it we begin by considering a single sphere.

View Sn−1 as the boundary of the unit ball in R
n. The frame bundle for R

n can
of course be identified with R

n × GL(n,R) since the columns of any invertible matrix
constitute a frame for R

n. We can therefore equip R
n with the trivial Spinc-structure

R
n × Spinc

(n).
According to the prescription given prior to Definition 3.3, the associated Spinc-

structure on the sphere Sn−1 is given by the right principal Spinc
(n−1)-bundle Q whose

fiber at v ∈ Sn−1 is the space of all elements u ∈ Spinc(n) whose image in SO(n) is
a matrix with first column equal to v. Observe that Q is Spinc

(n)-equivariant for the left
action of Spinc

(n) on the sphere given by the projection to SO(n).
Let us now assume that n = 2k+1. We are going to fix a certain Spinc

(n)-equivariant
complex vector bundle F on S2k. The key property of F is that the Spinc(n)-equivariant
index of the Dirac operator (discussed in the next section) coupled to F is equal to the rank-
one trivial representation of Spinc

(n). An explicit calculation, given in [BHS07], shows
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that the dual of the positive part of the spinor bundle for Sn−1 has the required property. It
follows easily from the Bott periodicity theorem that F is essentially unique (up to addition
of trivial bundles, any two F are isomorphic). For what follows, any choice of F will do.
The bundle F and the trivial line bundle together generate K(S2k), and for that reason we
shall call it the Bott generator.

Following these preliminaries, we can describe the “vector bundle modification” step
in the equivalence relation defining geometric K-homology.

Let V be a G-Spinc-vector bundle of rank 2k over a G-Spinc-manifold M and denote
by ̂M the sphere bundle2 of the direct sum vector bundle R⊕ V . The manifold ̂M may be
described as the fiber bundle

̂M = Q×Spinc(2k+1) S
2k,

where Q is the principal G-Spinc
(2k+1)-bundle associated to R ⊕ V . Its tangent bundle

is isomorphic to the pullback of the tangent bundle of M, direct sum the fiberwise tangent
bundle Q ×Spinc(2k+1) TS

2k. Both carry natural G-Spinc-structures, and so ̂M is a G-
Spinc-manifold.

Form the G-equivariant complex vector bundle

Q×Spinc(2k+1) F,

from the Bott generator discussed above. We shall use the same symbol F for this bundle
over ̂M.

3.4. DEFINITION. Let (M,E, f) be an equivariant K-cycle and let V be a rank 2k

G-Spinc-vector bundle over M. The modification of (M,E, f) associated to V is the equi-
variant K-cycle

(M,E, f) ^ =
(

̂M,F⊗ π∗(E), f ◦ π
)

,

where:

(a) ̂M is the total space of the sphere bundle of R⊕V , equipped with the G-Spinc-structure
described above;

(b) π is the projection from ̂M onto M; and
(c) F is the G-equivariant complex vector bundle on ̂M described above.

We are now ready to define the geometric equivariant K-homology groups.

3.5. DEFINITION. Denote by KG(X) the set of equivalence classes of equivariant K-
cycles over X, for the equivalence relation generated by the following three elementary
relations:

(a) If (M,E1, f) and (M,E2, f) are two equivariant K-cycles with the same proper, G-
compact G-Spinc-manifold M and same map f : M → X, then

(M �M,E1 � E2, f � f) ∼ (M,E1 ⊕ E2, f).

(b) If (M1, E1, f1) and (M2, E2, f2) are bordant equivariant K-cycles then

(M1, E1, f1) ∼ (M2, E2, f2).

(c) If (M,E, f) is an equivariant K-cycle, if V is an even-rank G-Spinc-vector bundle over
M, and if (M,E, f) ^ is the modification of (M,E, f) associated to V , then

(M,E, f) ∼ (M,E, f) ^ .

2Strictly speaking, to form the sphere bundle we need a metric on V and so a specific choice of principal
bundle Q within its homotopy class. Of course, any two sphere bundles will be bordant.
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The set KG(X) is an abelian group with addition given by disjoint union. Denote by
KG

ev(X) and KG
odd(X) the subgroups of KG(X) composed of equivalence classes of equivari-

ant K-cycles (M,E, f) for which every connected component of M is even-dimensional or
odd-dimensional, respectively. Then KG(X) ∼= KG

ev(X)⊕ KG
odd(X).

4. Equivariant Kasparov Theory

In this section we shall define a natural transformation from geometric equivariant K-
homology to Kasparov’s equivariant K-homology. Once again, this is a straightforward
extension to the equivariant context of the Baum-Douglas theory that was reviewed in
detail already in the paper [BHS07]. Therefore we shall be brief.

Fix a second countable G-compact proper G-space X, for example a G-finite proper
G-CW-complex. The second countability assumption is made for consistency with Kas-
parov’s theory, which applies to second countable locally compact spaces, or separable
C∗-algebras.

We shall denote by KKG
n (C0(X),C) the Kasparov group KKG

(

C0(X),Cliff(n)
)

(the
action of G on Cliff(n) is trivial). See [Kas88, Section 2]. There are canonical isomor-
phisms

KKG
n (C0(X),C) ∼= KKG

n+2(C0(X),C)

coming from the periodicity of Clifford algebras. Compare [BHS07]. As a result we may
form the 2-periodic groups KKG

ev / odd(C0(X),C).
The natural transformation

μ : KG
ev / odd(X) −→ KKG

ev / odd(C0(X),C)

into Kasparov theory is defined by associating to an equivariant K-cycle (M,E, f) a Dirac
operator, and then constructing from the Dirac operator a cycle for Kasparov’s analytic
K-homology group.

The vector space Cliff(n) carries a natural inner product in which the monomials
ei1 · · · eik form an orthonormal basis. If M is a G-compact, proper G-Spinc-manifol, and
if Q is a lifting to Spinc

(n) of the frame bundle of M, then the Z/2Z-graded Hermitian
vector bundle

S = Q×Spin(n) Cliff(n)

that is formed using the left multiplication action of Spinc
(n) on Cliff(n) carries a right

action of the algebra Cliff(n) and a commuting left action of TM as odd-graded skew-
adjoint endomorphisms such that v2 = −‖v‖2I. This is called the action of TM on the
spinor bundle S by Clifford multiplication.

4.1. REMARK. There are other versions of the spinor bundle that do not carry a right
Clifford algebra action. The bundle used here has the advantage of allowing a uniform
treatment of both even- and odd-rank bundles V . In addition the real case may be treated
similarly (although we shall not consider it in this paper).

4.2. DEFINITION. Let M be a G-compact proper G-Spinc-manifold. Fix an associated
principal Spinc-bundle over M, and let S be the spinor bundle, as above. Let E be a smooth,
Hermitian G-vector bundle over M. We shall call an odd-graded, symmetric, order one
linear partial differential operator D acting on the sections of S ⊗ E a Dirac operator if it
commutes with the right Clifford algebra action on the spinor bundle and if

[D, f]u = grad(f) · u,
for every smooth function f on M and every section u of S⊗ E, where grad(f) · u denotes
Clifford multiplication on S by the gradient of f.
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Dirac operators in this sense always exist, and basic PDE theory gives the following
result:

4.3. PROPOSITION. The Dirac operator D, considered as an unbounded operator on
L2(M,S ⊗ E) with domain the smooth compactly supported sections, is essentially self-
adjoint. The bounded Hilbert space operator F = D(I + D2)−1/2 commutes, modulo
compact operators, with multiplication operators from C0(M). Moreover the product of
I− F2 with any multiplication operator from C0(M) is a compact operator. �

Now the Hilbert space L2(M,S⊗ E) carries a right action of Cliff(n) that commutes
with D and the action of C0(M). It also carries a unique Cliff(n)-valued inner product
〈 , 〉Cliff such that

〈s1, s2〉 = τ
(

〈s1, s2〉Cliff
)

where on the left is the L2-inner product, and on the right is the state τ on Cliff(n) that
maps all nontrivial monomials ei1 · · · eip to zero. Using it we place a Hilbert Cliff(n)-
module structure on L2(M,S⊗ E).

Proposition 4.3 implies that the operator F = D(I +D2)−1/2, viewed as an operator
on the Hilbert Cliff(n)-module L2(M,S ⊗ E), yields a cycle for Kasparov’s equivariant
KK-group KKG(C0(M),Cliff(n)) (see [Kas88, Definition 2.2]).

4.4. DEFINITION. We shall denote by [M,E] ∈ KKG
n (C0(M),C) the KK-class of the

operator F = D(I+D2)−1/2.

The first main theorem concerning the classes [M,E] is as follows:

4.5. THEOREM. The correspondence that associates to each equivariant K-cycle
(M,E, f) the KK-class

f∗[M,E] ∈ KKG
ev / odd(C0(X),C)

gives a well-defined homomorphism

μ : KG
ev / odd(X) −→ KKG

ev / odd(C0(X),C).

The non-equivariant case of the theorem is proved in [BHS07]. The proof for the
equivariant case is exactly the same and therefore will not be repeated.

Our aim in this paper is to prove the second main theorem concerning the classes
[M,E].

4.6. THEOREM. If X is any proper, G-finite G-CW-complex, then the index map

μ : KG
ev / odd(X) −→ KKG

ev / odd(C0(X),C)

is an isomorphism.

The non-equivariant version of the theorem is due to Baum and Douglas, and is proved
in detail in [BHS07]. Although the proof of the equivariant result is the same in outline,
new issues must also be resolved having to do with the properties of equivariant vector
bundles on G-compact proper G-spaces. These we shall consider next.

5. Equivariant Vector Bundles

Throughout this section we shall use the term G-bundle as an abbreviation for G-
equivariant complex vector bundle. We shall review the basic theory of G-bundles over
G-compact proper G-spaces, mostly as worked out by Lück and Oliver in [LO01]. In the
next section we shall recast their results in the language of C∗-algebra K-theory.
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5.1. THEOREM. Let X be a G-compact, proper G-space. There is a G-bundle E over
X such that for every x ∈ X, the fiber Ex is a multiple of the regular representation of the
isotropy group Gx. �

PROOF. This is proved for G-finite proper G-CW-complexes in [LO01, Corollary 2.8].
That result extends to more general X by pulling back along the map supplied by Theo-
rem 2.3. �

5.2. COROLLARY (Compare [LO01, Lemma 3.8]). Let Z be a G-compact proper G-
space and let X be a closed, G-invariant subset of Z. If F is any G-bundle on X, then there
is a G-bundle E on Z such that F embeds as a summand of E|X.

PROOF. Fix a G-bundle E on Z, as in Theorem 5.1. There are G-invariant open sub-
sets U1, . . . , Un of X such that:

(a) The sets cover X.
(b) For each j there is a finite subgroup of Fj ⊆ G and an equivariant map πj : Uj → G/Fj.
(c) F|X∩Uj

is isomorphic to a bundle pulled back along πj.
(d) E|Uj

is also isomorphic to a bundle pulled back along πj.

Replacing E by a direct sum E⊕ · · · ⊕E, if necessary, we find that F|Uj
may be embedded

as a summand of E|Uj
, for every j. Making a second replacement of E by an n-fold direct

sum E ⊕ · · · ⊕ E and using a standard partition of unity argument, we may now embed F

into E, as required. �
More generally, if f : X → Z is a map between G-compact proper G-spaces, and if F

is a G-bundle on X, then the same argument shows that F is isomorphic to a summand of
the pullback along f of some G-bundle on Z.

5.3. DEFINITION. If S is any set, then denote by C[S] the free vector space on the set
S, equipped with the standard inner product in which the elements of S are orthonormal.
If S is equipped with an action of G, then we shall consider C[S] to be equipped with the
corresponding permutation action of G.

We are interested primarily in the case where S = G, which we shall view as equipped
with the usual left translation action of G.

5.4. DEFINITION. A standard G-bundle on a G-compact proper G-space X is a G-
invariant subset E of X×C[G] with the property that for every compact subset K ⊆ X there
is a finite subset S ⊆ G such that the intersection of E with K×C[G] is a (nonequivariant)
complex vector subbundle of K× C[S].

5.5. REMARK. We require that the restriction of E to K, as above, be a topological
vector subbundle of the finite-dimensional trivial bundle K×C[S]. This fixes the topology
on E and determines a G-bundle structure.

It follows from a standard partition of unity argument that every G-bundle on X is
isomorphic to a standard G-bundle. We are going to prove the following result, which
gives the set of standard G-bundles a useful directed set structure.

5.6. THEOREM. Any two standard G-bundles are subbundles of a common third.
Moreover the union of all standard G-bundles is X×C[G].

5.7. REMARK. In Section 8 we shall modify Definition 5.4 very slightly by replac-
ing G with a countable disjoint union G∞ = G � G � · · · (thought of as a left G-set).
Theorem 5.6 remains true, with the same proof.
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Since the theorem is obvious if G is finite, we shall assume G is infinite until the proof
of Theorem 5.6 is concluded.

5.8. LEMMA. If S is a finite subset of G, if K is a compact subset of X, and if E is any
G-bundle over X, then there is a standard G-bundle E1 that is isomorphic to E and whose
restriction to K is orthogonal to K×C[S].

PROOF. Let E1 be any standard bundle that is isomorphic to the equivariant vector
bundle E. If g ∈ G, then the set

E1 · g = { (x, e · g) : e ∈ E1,x }

is also a standard G-bundle. Here, in forming the vectors e · g we are using the right
translation action of G on itself and hence on C[G]. The bundle g ·E1 is isomorphic to E1,
and hence to E. If we enlarge S, if necessary, so that E1|K ⊆ K × C[S], and if we choose
g ∈ G so that S ∩ Sg = ∅, then (E1 · g)|K is orthogonal to K×C[S], as required. �

5.9. LEMMA. Let E be a G-bundle on X and let E2 be a standard G-bundle. There is
a standard G-bundle that is isomorphic to E and orthogonal to E2.

PROOF. Let K be a compact subset of X whose G-saturation is X, and let S be a finite
subset of G such that E2|K ⊆ K× C[S]. Now apply the previous lemma. �

5.10. LEMMA. Let U be a G-invariant open subset of X, and let Y and Z be G-
invariant closed subsets of X such that

Z ⊆ U ⊆ Y ⊆ X.

Let F be a standard G-bundle over Y. There is a standard G-bundle E1 over X such that
F|Z ⊆ E1|Z. Moreover, given a standard G-bundle E2 over X such that E2|Y is orthogonal
to F|Y , the standard G-bundle E1 may be chosen to be orthogonal to E2.

PROOF. According to Theorem 5.1, there is a G-bundle E over X such that F embeds
in E|Y . Any complement of F in E|Y may be embedded as a standard G-bundle F ′ on Y that
is orthogonal to F, and after replacing F with F ⊕ F ′ we may assume that in fact there is a
G-bundle E on X such that E|Y ∼= F.

Fix such an isomorphism Φ : E|Y → F. Next, there is an embedding Ψ of E as a
standard G-bundle on X such that Φ[E] is orthogonal to E2 and Φ[E]|Y is orthogonal to
F (by a slight elaboration of Lemma 5.9). If we choose a G-invariant scalar function ϕ

on X such that ϕ = 1 on Z and ϕ = 0 outside of U, and if we set ψ = 1 − ϕ, then
E1 = (ϕΦ+ ψΨ)[E] has the required properties. �

5.11. LEMMA. Let K be any compact subset of X, and let S be a finite subset of G.
There is a standard G-bundle that contains K× C[S].

PROOF. The compact set K may be written as a finite union of compact sets

K = K1 ∪ · · · ∪ Kn

where each Kj is included in a G-invariant open set that maps equivariantly onto some
proper coset space G/Hj, in such a way that Kj maps to the identity coset. We shall use
induction on n.

Let E2 be a standard G-bundle that contains the set
(

K1 ∪ · · · ∪ Kn−1

)

× C[S].
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There is a G-compact subset Y ⊆ X that contains a G-invariant neighborhood U of Kn and
over which there is a standard G-bundle L such that

Kn×C[S] ⊆ L|Kn
and E2|Y ⊆ L.

Indeed we may choose Y so that it maps equivariantly to G/Hn, and if Yn is the inverse
image of the identity coset, then we may form

L =
⋃

g∈G

gYn × C[Sgn],

where Sn is a sufficiently large finite and Hn-invariant subset of G.
Now apply the previous lemma to the standard G-bundle F = L�E2|Y (the orthogonal

complement of E|Y in L) to obtain a standard G-bundle E1 on X such that E1 is orthogonal
to E2 and

L|Kn
� E2|Kn

⊆ E1|Kn
.

The standard G-bundle E1 ⊕ E2 then contains K×C[S], as required. �
PROOF OF THEOREM 5.6. Since there is a standard G-bundle that contains any given

K×C[S], it is clear that the union of all standard G-bundles is X×C[G]. Let E1 and E2 be
standard G-bundles on X. Choose a compact set K whose G-translates cover X and choose
a finite set S ⊆ G such that E1|K, E2|K ⊆ K×C[S]. If E is a standard G-bundle containing
K×C[S], then it contains E1 and E2. �

6. C*-Algebras and Equivariant K-Theory

6.1. DEFINITION. If S is any set, then denote by M[S] the ∗-algebra of complex
matrices [Ts1s2

] with rows and columns parametrized by the set S, all but finitely many of
whose entries are zero.

We shall be interested in the case where S = G. In this case the group G acts on M[G]

by automorphisms via the formula (g · T)g1,g2
= Tg−1g1,g−1g2

.

6.2. DEFINITION. Let X be a G-compact proper G-space. Let us call a function
F : X → M[G] standard if its matrix element functions

Fg1,g2
: x �→ F(x)g1,g2

are continuous and compactly supported, and if for every compact subset K of X all but
finitely many of them vanish outside of K. We shall denote by C(X,G) the ∗-algebra of all
standard, G-equivariant functions from X to M[G].

Note that if P is a projection in the ∗-algebra C(X,G), then the range of P (that is,
the bundle over X whose fiber over x ∈ X is the range of the projection operator P(x) in
C[G]) is a standard G-bundle in the sense of Section 5. In fact every standard G-bundle
is obtained in this way, which explains our interest in C(X,G). In fact we are even more
interested in the following C∗-algebra completion of C(X,G).

6.3. DEFINITION. Let X be a G-compact proper G-space. Denote by C∗(X,G) the
C∗-algebra of G-equivariant, continuous functions from X into the compact operators on
�2(G).

6.4. REMARK. The C∗-algebra C∗(X,G) is isomorphic to the crossed product C∗-
algebra C0(X)�G. If Eg1,g2 denotes the matrix with 1 in entry (g1, g2) and zero in every
other entry, then the formula

f [g] �→
∑

h

h(f)Eh,hg
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gives an isomorphism from C0(X)�G to C∗(X,G), and the formula

F �→
∑

g∈G

Fe,g [g]

gives its inverse. Since the action of G on X is proper, the maximal and reduced crossed
products are equal. Indeed, there is a unique C∗-algebra completion of the ∗-algebra
C(X,G).

6.5. LEMMA. Assume that G is infinite and X is a G-compact proper G-space. The
correspondence between projections in C(X,G) and their ranges induces bijections among
the following sets:

(a) Equivalence classes of projections in C(X,G).
(b) Equivalence classes of projections in C∗(X,G).
(c) Isomorphism classes of standard G-bundles on X.
(d) Isomorphism classes of Hermitian G-bundles on X.

If X is a G-compact proper G-manifold, then there is in addition a bijection with

(e) Isomorphism classes of smooth Hermitian G-bundles on X.

PROOF. Recall that two projections P and Q in a ∗-algebra are equivalent if and only
if there is an element U such that U∗U = P and UU∗ = Q. The inclusion of C(X,G) into
C∗(X,G) is a simple example of a holomorphically closed subalgebra, and as a result the
inclusion induces a bijection between the sets in (a) and (b). Compare [Bla98, Sections 3
and 4]. The sets in (a) and (c) are in bijective correspondence virtually by definition. The
sets in (c) and (d) are in bijection thanks to Lemma 5.8, which in particular shows that
every G-bundle is isomorphic to a standard bundle, if G is infinite.

If X is a manifold, then the inclusion of the smooth functions in C(X,G) into C∗(X,G)

is also a holomorphically closed subalgebra, and this gives the final part of the lemma
since equivalence classes projections in the algebra of smooth functions correspond to
isomorphism classes of (the obvious concept of) smooth standard G-bundles. �

6.6. REMARK. If G is finite, then the lemma remains true if C(X,G) and C∗(X,G)

are replaced by direct limits of matrix algebras over themselves.

6.7. THEOREM. The C∗-algebra C∗(X,G) has an approximate identity consisting of
projections.

PROOF. We claim that for every finite set of elements F1, . . . , Fn in C(X,G) there is
a projection P in C(X,G) such that

Fj = PFj = FjP

for all j = 1, . . . , n. Indeed, the orthogonal projection onto any standard G-bundle is a
projection in C(X,G) (and conversely). So the claim follows from Theorem 5.6, and the
theorem follows since C(X,G) is dense in C∗(X,G). �

6.8. THEOREM. Let X be a G-compact proper G-space. The bijections in Lemma 6.5
determine a natural isomorphism between the Grothendieck group of G-bundles on X and
the K0-group of the C∗-algebra C∗(X,G).

PROOF. If A is any C∗-algebra with an approximate unit consisting of projections,
then the natural map from the Grothedieck group of projections in matrix algebras over A
into K0(A) is an isomorphism. So the theorem follows from the previous result. �
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6.9. DEFINITION. If X is a G-compact proper G-space, and j ∈ Z/2Z, then denote
by K

j
G(X) the Kj-group of the C∗-algebra C∗(X,G). If Y is a G-invariant closed subset of

X, then denote by K
j
G(X, Y) the K0-group of the ideal in C∗(X,G) consisting of functions

that vanish on Y.

By the above, K0
G(X) is the Grothendieck group of isomorphism classes of G-bundles

on X.
The relative groups K

j
G(X, Y) satisfy excision (of the strongest possible type, that

K
j
G(X, Y) depends only on X \ Y). Elementary K-theory provides functorial coboundary

maps
∂ : K

j
G(Y) −→ K

j+1
G (X, Y),

and these give the groups K
j
G(X, Y) the structure of a Z/2Z-graded cohomology theory

on G-compact proper G-spaces, in the sense that that they fit into functorial long exact
sequences

. . . �� Kj
G(X)

�� Kj
G(Y)

�� Kj+1
G (X, Y) �� Kj+1

G (X) �� . . .

Although we have accessed this fact using C∗-algebra K-theory, this is also the main result
of [LO01].

We conclude by reviewing the Gysin maps in equivariant K-theory that we shall need
in the next section. Let E be a complex G-bundle over a G-compact proper G-manifold
M. As we noted earlier, E carries a canonical Spinc-structure. Form the sphere bundle ̂M

of the real bundle R⊕ E, as in Section 3. The manifold M is equivariantly embedded as a
retract in ̂M using the section

M � m �→ (1, 0) ∈ R⊕ Em,

and associated to the embedding is a short exact sequence of K-theory groups

0 −→ K0
G(

̂M,M) −→ K0
G(

̂M) −→ K0
G(M) −→ 0.

Let F be the complex G-bundle over ̂M that we defined in Section 3, and denote by F0
the complex G-bundle obtained by restricting F to M, then pulling back the restriction to
̂M using the projection from ̂M down to M. The difference [F] − [F0] defines an element
of K0

G(
̂M,M). The relative group is a module over K0

G(M), and multiplication against
[F] − [F0] gives the Thom homomorphism

K0
G(M) −→ K0

G(
̂M,M).

The complement ̂M \M identifies with the total space of E via the map

E � e �→ 1
1+‖e‖2 (1, e) ∈ R⊕ E.

If ι : M → N is an embedding of G-compact proper G-manifolds, and if the normal bundle
to the embedding is identified with E, then the Gysin map

ι! : K
0
G(M) → K0

G(N)

is the composition

K0
G(M)

Thom �� K0
G(

̂M,M)
∼= �� K0

G(N,N ′) �� K0
G(N),

where N ′ ⊆ N is the complement of a tubular neighborhood and the middle map is given
by excision and the identification of the tubular neighborhood with E.
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The Gysin map is functorial for compositions of embeddings. It is well-defined for
embeddings of manifolds with boundary, as long as the embedding is transverse to the
boundary of N, and carries the boundary of M into the boundary of N.

7. The Technical Theory

In this section we shall construct the homology groups kG∗ (X) that were described in
the introduction. They are obtained as direct limits of certain bordism groups.

7.1. DEFINITION. Let Z be a proper G-space and let E be a G-bundle on Z. A stable
(Z, E)-manifold is a G-compact proper G-manifold M (possibly with boundary) together
with an equivalence class of pairs (h,ϕ), where:

(a) h : M → Z is a continuous and G-equivariant map.
(b) ϕ is an isomorphism of topological real G-bundles

ϕ : R
r ⊕ TM −→ R

s ⊕ h∗E,

for some r, s ≥ 0. Here R
r and R

s denote the trivial bundles of ranks r and s (with
trivial action of G on the fibers).

The equivalence relation is stable homotopy: (h0, ϕ0) and (h1, ϕ1) are equivalent if there
is a homotopy h : M × [0, 1] → Z between h0 and h1 and an isomorphism of real G-
bundles over M× [0, 1]

ϕ : R
r ⊕ TM −→ R

s ⊕ h∗E,

with r ≥ r0, r1, that restricts to Ir−r0 ⊕ϕ0 and Ir−r1 ⊕ϕ1 at the two endpoints of [0, 1].

If M is a stable (Z, E)-manifold with boundary, then its boundary may be equipped
with a stable (Z, E)-structure by forming the composition

R
r ⊕ R⊕ T∂M ∼=

�� Rr × TM
∣

∣

∂M ϕ
�� Rs ⊕ f∗E,

in which R⊕ T∂M is identified with TM|∂M by the “exterior normal first” convention.

7.2. DEFINITION. Let X be a G-finite proper G-CW-complex and let Y be a G-
subcomplex of X. For j = 0, 1, 2, . . . we define Ω

(Z,E)

j (X, Y) to be the group of equiva-
lence classes of triples (M,a, f), where

(a) M is a smooth, proper, G-compact G-manifold of dimension j with a stable (Z, E)-
structure.

(b) a is a class in the group K0
G(M).

(c) f : M → X is a continuous, G-equivariant map such that f[∂M] ⊆ Y.

The equivalence relation is the obvious notion of bordism.

7.3. REMARK. Of course, the relation of bordism is arranged to incorporate the classes
a ∈ K0

G(M), so that if (M,a, f) is the boundary of (W,b, g), then not only do we have
that M = ∂W and f = g|M, but also the restriction map K0

G(W) → K0
G(M) takes b to a.

One approach to the concept of bordism between manifolds with boundary is reviewed in
[BHS07, Definition 5.5].

The sets Ω(Z,E)(X, Y) are abelian groups. The group operation given by disjoint union
and the additive inverse of (M,a, f) is (−M,a, f). Here the opposite −M is obtained by
composing the bundle isomorphism ϕ with an orientation-reversing automorphism of the
trivial bundle R

s. (See Lemma 8.3 for another description of the inverse.)



A GEOMETRIC DESCRIPTION OF EQUIVARIANT K-HOMOLOGY FOR PROPER ACTIONS 15

The groups Ω
(Z,E)

j (X, Y) constitute a homology theory on G-finite proper G-CW-
complexes. The boundary maps

∂ : Ω
(Z,E)

j (X, Y) −→ Ω
(Z,E)

j−1 (Y)

take (M,a, f) to (∂M,a|∂M, f|∂M). They fit into sequences

. . . �� Ω(Z,E)

j (X) �� Ω(Z,E)

j (X, Y) �� Ω(Z,E)

j−1 (Y) �� Ω(Z,E)

j−1 (X) �� . . .

whose exactness follows from direct manipulations with cycles, using two facts. First if
M1 and M2 are stable (Z, E)-manifolds, and if ∂M1 = −∂M2, then there is a stable
(Z, E)-structure on the manifold M obtained by joining M1 and M2 together along their
common boundary that restricts to the given structures on M1 and M2. Second, if a1

and a2 are equivariant K-theory classes on M1 and M2 that restrict to a common class
on the boundary, then there is a K-theory class on M that restricts to a1 and a2. This
follows from the Mayer-Vietoris sequence for equivariant K-theory, and therefore from
the results of Lück and Oliver reviewed in Sections 5 and 6. A map of pairs of G-CW-
complexes (X1, Y1) → (X2, Y2) that is a homeomorphism from X1 \Y1 to X2 \Y2 induces
an isomorphism on relative groups.

As they stand, the bordism groups Ω
(Z,E)

j (X, Y) are rather far from equivariant K-
homology groups, most obviously because they are not 2-periodic. We shall obtain the
technical groups kGj (X, Y) by simultaneously forcing periodicity and removing depen-
dence of the bordism groups on the pair (Z, E).

Let M be a stable (Z, E)-manifold with structure maps h and ϕ, as in Definition 7.1
and let F be a complex Hermitian G-bundle on Z of rank k. The pullback of F to M has a
unique smooth structure, and so we may form the sphere bundle S(R⊕h∗F), which is a G-
compact proper G-manifold. It is also a stable (Z, E⊕ F)-manifold. Indeed, if B(R⊕h∗F)
is the unit ball bundle, and if p is the projection to M, then

TB(R⊕ h∗F) ∼= R⊕ p∗T∗M⊕ h∗F

(once a complement to the vertical tangent bundle is chosen). So we obtain an isomorphism

R
r ⊕ TB(R⊕ h∗F) ∼= R

r ⊕ R⊕ p∗T∗M⊕ p∗h∗F

∼= R
s ⊕ R⊕ p∗h∗E⊕ p∗h∗F

using the given stable (Z, E)-structure on M. We can then equip the sphere bundle with
the stable (Z, E⊕ F)-structure it inherits as the boundary of the ball bundle.

Suppose now that (M,a, f) is a cycle for the bordism group Ω
(Z,E)

j (X, Y). We can

form from it the cycle (̂M, ι!(a), f ◦ π) for the group Ω
(Z,E⊕F)

j+2k (X, Y), where:

(a) ̂M is the sphere bundle for R⊕h∗F with the stable (Z, E⊕ F)-structure just described.
(b) ι : M →

̂M is the inclusion of M into the sphere bundle given by the formula m �→
(1, 0) ∈ R⊕ Fh(m) and ι! : K

0
G(M) → K0

G(
̂M) is the Gysin map.

(c) π is the projection from ̂M to M.

Since this construction may also be carried out on bordisms between manifolds, we obtain
a well-defined map on bordism classes.

7.4. DEFINITION. Let k = dimC(F). Denote by

βF : Ω
(Z,E)

j (X, Y) −→ Ω
(Z,E⊕F)

j+2k (X, Y)

the map determined by the above construction.
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7.5. LEMMA. If F1 and F2 are G-bundles on Z of ranks k1 and k2 respectively, then

βF2 ◦ βF1 = βF
: Ω

(Z,E)

j (X, Y) −→ Ω
(Z,E⊕F)

j+2k (X, Y),

where F = F1 ⊕ F2 and k = k1 + k2.

PROOF. Let c = (M,a, f) be a cycle for the bordism group Ω
(Z,E)

j (X, Y). The man-

ifolds ̂M1 and ̂M2 obtained from M by the modification processes underlying βF2 ◦ βF1

and βF are fiber bundles over M whose fibers are the product of spheres in R ⊕ F1 and
R ⊕ F2 in the first case and the sphere in R ⊕ F in the second. The product embeds as a
hypersurface in the unit ball of R⊕ F, for example via the map

(

(s1, f1), (s2, f2)
)

�→ 1
6

(

(2+ s1)s2, f1, (2+ s1)f2
)

,

and we obtain from this construction a bordism ̂W between ̂M1 and ̂M2. The map

j : t �→ (1
2
(1+ t), 0, 0

)

embeds M×[0, 1] into ̂W, transversely to the boundary of ̂W, and on the boundary compo-
nents of M×[0, 1] the embedding restricts to the given embeddings of M into ̂M1 and ̂M2.
The class a ∈ K0

G(M) determines a class a ∈ K0
G(M×[0, 1]) by homotopy invariance, and

the triple (̂W, j!(a), f ◦ π) gives a bordism between the cycles representing βF2(βF1(c))

and βF(c), as required. �

Now fix a universal space EG as in Section 2. Let Z be a G-finite G-subcomplex
of EG. In order to cope with the contingency that G might be finite we shall modify the
notion of G-standard bundle as advertised in Remark 5.7, so that standard G-bundles are
now taken to be suitable subbundles of Z× C[G∞].

Let E be a standard G-bundle over Z, as considered in Section 5. Form a partial order
on the set of pairs (Z, E) by inclusion:

(Z1, E1) ≤ (Z2, E2) ⇔ Z1 ⊆ Z2 and E1 ⊆ E2|Z1
.

According to the results of Section 5 this is a directed set.

7.6. DEFINITION. For j ∈ Z define the groups kGj (X, Y) to be the direct limits

kGj (X, Y) = lim−→
(Z,E)

Ω
(Z,E)

j+2 rank(E)(X, Y)

over the directed set of all pairs (Z, E), as above.

8. Proof of the Main Theorem

We aim to prove Theorem 4.6, that the geometric equivariant K-homology groups of
Section 3 are isomorphic to the analytic groups of Section 4. We shall do so by comparing
the technical groups of the previous section first to equivariant KK-theory and then to
geometric K-homology.

The equivariant KK-groups determine a homology theory on G-finite proper G-CW
pairs (or indeed on arbitrary second-countable G-compact proper G-CW pairs) if one de-
fines the relative groups for a pair (X, Y) to be KKG

j (C0(X \ Y),C). The boundary maps
are provided by the boundary maps of the six-term exact sequence in KK-theory.
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If (M,a, f) is a cycle for Ω(Z,E)(X, Y), then an element of the Kasparov group
KKG

j (C0(X \ Y),C) may be defined as follows. Form the Dirac operator D on the in-
terior of M using the Spinc-structure associated to the given stable (Z, E)-structure on M.
It determines a class

[D] ∈ KKG
j (C0(M \ ∂M),C).

For example we may equip M \ ∂M) with a complete G-invariant Riemannian metric and
then form a KK-class using F = D(I +D2)−

1
2 as in Section 4 (it does not depend on the

choice of metric). Compare [HR00, Ch. 10], where the non-equivariant case is handled;
the G-compact proper G-manifold situation is the same. We can then form the Kasparov
product a⊗ [D] ∈ KKG

j (C0(X \ Y),C) and hence the class

f∗(a⊗ [D]) ∈ KKG
j (C0(X \ Y),C)

more or less exactly as we did in Section 4.

8.1. THEOREM. The correspondence that associates to a cycle (M,a, f) the element
f∗(a⊗ [D]) above is a natural transformation

kG∗ (X, Y) −→ KKG
∗ (C0(X \ Y),C)

between homology theories. �
This is a mild elaboration of Theorem 4.5 and the equivariant counterpart of [BHS07,

Theorem 6.1]. The equivariant case may be handled exactly as in [BHS07].
Our first goal to show that this natural transformation is an isomorphism on G-finite

proper G-CW-complexes. To do so it suffices to show that it is an isomorphism on the
“points” X = G/H corresponding to finite subgroups H of G. The following observation
clarifies what needs to be done in this case.

8.2. LEMMA. Let H be a finite subgroup of G. There is a commutative diagram

kG∗ (G/H)
μ �� KKG

∗ (C0(G/H),C)

kH∗ (pt)
μ

��

Ind

��

KKH
∗ (C,C)

Ind

��

in which the vertical maps are isomorphisms.

PROOF. The right-hand induction map is defined as follows. If H is a Hilbert space,
or Hilbert module, with unitary H-action, define IndH to be the space of square-integrable
sections of G ×H H. It carries a natural representation of C0(G/H), and if F is an H-
equivariant Fredholm operator on H, then the operator Ind F on IndH given by the point-
wise action of F determines a cycle for KKG

j (C0(G/H),C).
The inverse of the induction map defined in this way is given by compression to the

range of the projection operator determined by the indicator function of the identity coset
in G/H (this function being viewed as an element of C0(G/H).

The left-hand induction map is defined in a similar fashion. We choose our model
for EH to be a point, which we can include into EG as an H-fixed 0-cell, and we use
the induced manifolds IndM = G ×H M, which map canonically to G/H ⊆ EG. Note
that any G-manifold that maps to G/H has this form. The construction of an inverse of
induction and the proof that induction is an isomorphism are immediate upon noting that
any G-map f : IndM → EG is G-equivariantly homotopic to one that factors through
G/H ⊆ EG. �
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It suffices, therefore, to prove that the map

μ : kHj (pt) −→ KKH
j (C,C)

is an isomorphism. The right hand group is isomorphic to the representation ring R(H)

when j is even and is zero when j is odd.

8.3. LEMMA. Let (M,a, f) be a cycle for kGj (X). If a = a1 + a2 in K0
G(M), then

[(M,a, f)] = [(M,a1, f)] + [(M,a2, f)]

in kGj (X).

PROOF. Suppose that (M,a, f) ∈ Ω
(Z,E)

j+2k (X). Fix a bordism W between S2 and

S2 � S2 by situating two copies of the 2-sphere of radius 1
4

inside the unit sphere. There
are smooth paths I1 and I2 embedded into the bounding manifold W that connect the north
and south poles of the large sphere to the south and north poles of the small spheres, that
meet the spheres transversally, and that have trivial normal bundles in W.

The class a1 ∈ K0
G(M) pulls back to a class ã1 ∈ K0

G(M × I1). Similarly, the class a2

pulls back to a class ã2 ∈ K0
G(M× I2). We obtain

ã := ã1 � ã2 ∈ K0
G(M× I),

where I = I1 � I2. Now form the class

j!(ã) ∈ K0
G(M×W),

where j is the inclusion of M × I into M×W. If f̃ : M ×W → X is the projection from
M × W to M, followed by f, then the class (M×W, j!(ã), f̃) is a bordism between the
images of (M,a, f) and (M,a1, f) � (M,a2, f) under the map

β : Ωj(X)
(Z,E)

→ Ω
(Z,E⊕C)

j+2(k+1)
(X).

In view of the definition of kGj (X) the lemma is proved. �

8.4. REMARK. The lemma shows that −[(M,a, f)] = [(M,−a, f)] in kGj (X).

8.5. PROPOSITION. Let H be a finite group. The homomorphism

μ : kH∗ (pt) −→ KKH
∗ (C,C)

is an isomorphism.

PROOF. We shall prove that the homomorphism

R(H) −→ kH0 (pt)

a �→ (pt, a, Id)
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is surjective, and that in addition, the group kH1 (pt) is zero. This will suffice because
KKH

0 (C,C)
∼= R(H), with the isomorphism being given by the above correspondence and

the map μ, while KKH
1 (C,C) = 0.

Fix an element of kH0 (pt) and represent it by a cycle (M,a) for Ω(pt,E)
2n (pt) (we drop

the map f : M → pt from our notation here and below). Thus M is a 2n-dimensional
Spinc-manifold with a given stable isomorphism from its tangent bundle to a trivial bundle
M×E, where E is a complex representation of H. The manifold M may be equivariantly
embedded in a finite-dimensional complex representation V of H. By composing with the
subspace embedding V → E⊕V and by adding to V a multiple of the trivial representation,
if necessary, we arrive at an embedding into E⊕V with trivial normal bundle M×V .

Using the map

βF
: Ω

(pt,E)
2n (pt) −→ Ω

(pt,E⊕V)

2n+2k (pt)

we find that the given element of kH0 (pt) is represented by the cycle (N,b) = (̂M, ι∗(a)).
Here N = ̂M is a codimension one submanifold of E⊕V⊕R and is the boundary of some
compact X (namely the ball bundle associated to ̂M). By enclosing X in a large ball we
construct a bordism Y between ̂M and a sphere S ⊆ V⊕F⊕R. The union of X and Y is the
ball bounded by the sphere S. By applying the Mayer-Vietoris sequence in H-equivariant
K-theory to the decomposition X ∪ Y of the ball, we find that the class b ∈ K0

H(N) may
be written as a sum bX + bY , where bX is the restriction of a class in K0

H(X) and bY is the
restriction of a class in K0

H(Y). By the previous lemma,

[(N,b)] = [(N,bX)] + [(N,bY)].

The first class is zero in Ω
(pt,E⊕F)

2n+2k (pt), while the second is equal to some class [(S, c)]

thanks to the bordism Y. We have therefore shown that every class in kH0 (pt) is represented
by a sphere in some W⊕R, where W is a complex representation of H.

To complete the proof we invoke Bott periodicity. The class c is a sum c0 + c1 where
c0 is represented by a trivial bundle (one that extends over the ball) and c1 is in the image
of the Gysin map associated to the inclusion

pt �→ (0, 1) ∈ S ⊆ W × R.

This completes the computation of kH0 (pt).
The proof that kH1 (pt) = 0 is essentially the same. Every cycle is equivalent to one of

the form [(S, c)], where S is the sphere in a complex representaion of H. But the sphere
is odd-dimensional and by Bott periodicity every class in K0

H(S) extends over the ball. So
(S, c) is a boundary. �

8.6. COROLLARY. If X is a G-finite proper G-CW-complex, then the map

μ : kG∗ (X) −→ KKG
∗ (C0(X),C)

is an isomorphism. �

Next we need to relate the technical groups kGj (X) to the geometric groups KG
j (X).

8.7. LEMMA. The class in KG
j (X) of an equivariant K-cycle (M,E, f) depends only

on M, f and the class of the G-bundle E in the Grothendieck group K0
G(X).

PROOF. Fixing M and f, the map that associates to a G-bundle E on M the class
of (M,E, f) in KG

j (X) is additive, and so extends to a map from the Grothendieck group
K0
G(X) into KG

j (X). �
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Thanks to the lemma, we can attach a meaning to the class in the geometric group
KG
j (X) of any triple (M,a, f), whenever M is a G-compact proper G-Spinc-manifold, f is

an equivariant map from M to X, and a ∈ KG(M). In particular, we can do so when M is
a stable (Z, E)-manifold. We obtain in this way a natural transformation

Ω
(Z,E)

j (X) −→ KG
j (X)

8.8. LEMMA. If F is any G-bundle over Z of rank k, then the diagram

Ω
(Z,E)

j (X) ��

βF

��

KG
j (X)

Ω
(Z,E⊕F)

j+2k (X) �� KG
j+2k(X)

is commutative.

PROOF. This follows from the definitions of the Gysin homomorphism and vector
bundle modification. �

We obtain therefore a natural transformation

kGj (X) −→ KG
j (X)

that fits into a commutative diagram

kGj (X)
�� KG

j (X)

μ

��
kGj (X) μ

�� KKG
j (C0(X),C).

8.9. LEMMA. For every j the map from kGj (X) into the equivariant geometric K-
homology group KG

j (X) is surjective.

PROOF. Let (M,E, f) be an equivariant K-cycle for X. The manifold M maps equiv-
ariantly to a G-finite subcomplex Z of the universal space EG and so may be regarded as a
closed subspace of M× Z by the diagonal embedding.

The tangent bundle for M (indeed its complexification) embeds as a summand of a
G-bundle that is pulled back from a standard G-bundle on a G-finite subcomplex Z of EG
along some map h : X → Z (see Corollary 5.2 and the comment following it). Thus there
is an isomorphism of real bundles

TM⊕ F0 ∼= h∗E

where F is a real G-bundle on M and E is a complex G-bundle on Z. By adding a trivial
bundle if necessary, we obtain an isomorphism

TM⊕ F1 ∼= h∗E⊕ R
s,

where F1 = F⊕ R
s has even fiber dimension. By the two out of three principle for Spinc-

structures from Section 3, the bundle F1 carries a Spinc-structure whose direct sum with
the given Spinc-structure on TM is the direct sum of the Spinc-structure on h∗E associated
with its complex structure and the trivial Spinc-structure on R. If we carry out a vector
bundle modification using F1, then we obtain an equivariant K-cycle (M,E, f) ^ that is
equivalent to (M,E, f) and for which ̂M carries a stable (Z, E)-structure compatible with
its Spinc-structure. �
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With this, as we pointed out in the introduction, the proof of Theorem 4.6 is complete.

9. The Baum-Connes Assembly Map

Let G be a countable discrete group. The essence of the Baum-Connes conjecture for
G is the assertion that every class in the K-theory of the reduced group C∗-algebra C∗

r(G)

arises as the index of an elliptic operator on a G-compact proper G-manifold, and that in
addition the only relations among these indices arise from geometric relations (such as for
example bordism) between the operators. The conjecture arose from a K-theoretic analysis
of Lie groups and of crossed product algebras related to foliations. However here we shall
discuss only the C∗-algebras of discrete groups.

To make their conjecture precise, Baum and Connes constructed in [BC00] geometric
groups Kj(G) from cycles related to the symbols of equivariant elliptic pseudodifferential
operators, and an equivalence relation related to the Gysin map in K-theory. They then
defined an index map

μ : Kj
(G) −→ Kj(C

∗
r(G))

that they conjectured to be an isomorphism.
Although the Dirac operator on a Spinc-manifold did not play a central role in [BC00],

it is nonetheless a fairly routine matter to identify the geometric group defined there with
the group generated from cycles (M,E), where:

(a) M is a G-compact proper G-Spinc-manifold, all of whose components have either
even or odd dimension, according as j is 0 or 1, and

(b) E is a complex G-bundle on M.

The equivalence relation between cycles is generated by bordism, direct sum/disjoint union
and vector bundle modification, exactly as in Section 3, except that here there is no ref-
erence space X, nor any map from M to X. Compare [Bau04], where the conjecture for
countable discrete groups is formulated in precisely this way.

It follows from the universal property of the space EG that there is an isomorphism

Kj(G) ∼= lim−→
X⊆EG

KG
j (X),

where on the right is the direct limit of the geometric K-homology groups of the G-finite
subcomplexes of the G-CW-complex EG.

In a later paper [BCH94], Baum, Connes and Higson defined an assembly map

μ : lim−→
X⊆EG

KKG
j (C(X),C) −→ Kj(C

∗
r(G))

Its relation to the original Baum-Connes map is summarized by the commutative diagram

Kj(G)
∼= ��

μ

��

lim−→X⊆EG
KG
j (X)

μ �� lim−→X⊆EG
KKG

j (C(X),C)

μ

��
Kj(C

∗
r(G))

=
�� Kj(C

∗
r(G)),

where the horizontal map labelled (yet again) μ is the one analyzed in this paper, and
shown to be an isomorphism. Because it is an isomorphism, the reformulation of the
Baum-Connes conjecture in [BCH94] is equivalent to the original in [BC00] for discrete
groups.
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Despite the discovery some years ago of counterexamples to various extensions of the
Baum-Connes conjecture (see [HLS02]), there is, as of today, no known counterexample
to the conjecture as reviewed here.
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Abstract. There is a natural construction which associates to a finitely gen-
erated, countable, discrete group G and a 3-cocycle ω of G an inclusion of II1
factors, the so-called diagonal subfactors (with cocycle). In the case when the
cocycle is trivial these subfactors are well studied and their standard invariant
(or planar algebra) is known. We give a description of the planar algebra of
these subfactors when a cocycle is present. The action of Jones’ planar operad
involves the 3-cocycle ω explicitly and some interesting identities for 3-cocycles
appear when naturality of the action is verified.

1. Introduction

The theory of subfactors ([10]) has experienced several new developments in the
last few years through the introduction of planar algebra technology ([11]). Every
subfactor comes with a very rich mathematical object, the standard invariant or
planar algebra of the subfactor, which in nice situations is a complete invariant of
the subfactor ([20], [21]). It can be described in many interesting ways, as for
instance a certain category of bimodules ([18], see also [2]), as lattices of multi-
matrix algebras ([19]), or as a planar algebra ([11]). The planar algebra approach
is particularly powerful since it allows one to use algebraic-combinatorial methods
in conjunction with topological ones to investigate the structure of subfactors. A
number of examples of explicit planar algebras associated to subfactors have been
computed (see for instance [3], [4], [8], [11], [14], [15], [16]) but there is a need
for more concrete examples. This is what we accomplish in this paper. We give a
description of the planar algebra of the diagonal subfactors associated to a G-kernel.

Let P be a II1 factor and let θ1, . . . , θn be automorphisms of P (we may
assume without loss of generality that θ1 = id). Consider the subfactor N =
{
∑n

i=1 θi(x)eii |x ∈ P} ⊂ M = P ⊗Mn(C), where (eij)1≤i,j≤n denote matrix units
in Mn(C). N ⊂ M is then called the diagonal subfactor associated to {θi}1≤i≤n.
These subfactors were proposed by Jones in 1985 to provide examples of potentially
non-classifiable subfactors, since this construction allows one to translate problems
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on classification of group actions into problems on subfactors. Popa used them to
prove vanishing of 2-cohomology results for cocycle actions of finitely generated,
strongly amenable groups on an arbitrary II1 factor ([23]). Ocneanu had proved
such a result for cocycle actions of amenable groups on the hyperfinite II1 factor
using different techniques ([17]). The diagonal subfactors are of course reducible
and have Jones index n2. They provide a wealth of simple examples of infinite depth
subfactors whose structure theory is well understood. In particular, the standard
invariant or planar algebra of these subfactors has been determined in ([20], [11],
[1]).

Let G be the group generated by the images gi of θi, 1 ≤ i ≤ n, in OutP =
AutP/IntP . Popa showed that analytical properties of these subfactors are re-
flected in the corresponding properties of the group G. For instance, if P is hyper-
finite, then the diagonal subfactor is amenable (in the sense of Popa) if and only
if G is an amenable group ([20]). The subfactor has property (T) in the sense of
Popa if and only if G has property (T) of Kazhdan ([22]). The principal graphs
of these subfactors are then Cayley-like graphs of G with respect to the generators
g1, . . . , gn and their inverses (see [20] or [1] for the precise statement). The higher
relative commutants, Jones projections and conditional expectations have all been
worked out in ([20], [11], [1]).

A well-known variation of the diagonal subfactors is obtained as follows (see e.g.
[20]). Consider aG-kernel, that is, an injective homomorphism χ from a (countable,
discrete, finitely generated) group G into OutP . Denote by ε : AutP → OutP
the canonical homomorphism, and let α : G → AutP be a lift of χ such that
ε ◦ αs = χ(s), for all s ∈ G. It follows that αsαt = Adu(s, t)αst, for all s, t ∈ G,
and some unitaries u(s, t) ∈ P . Associativity of composition of automorphisms
implies that Ad (u(r, s)u(rs, t)) = Ad (αr(u(s, t))u(r, st)). Hence there is a function
ω : G × G × G → T with u(r, s)u(rs, t) = ω(r, s, t)αr(u(s, t))u(r, st). It is easy to
check that ω is a 3-cocycle and that its class in H3(G,T) does not depend on the
choices made. One usually denotes the class by Ob(G) or Ob(χ), the obstruction
of χ. It is an obstruction to lifting G to an action on the II1 factor P . Clearly,
if two G-kernels χ and η are conjugate (in OutP ), then Ob(χ) = Ob(η). It was
shown in [17] that Ob is a complete conjugacy invariant for G-kernels if P is the
hyperfinite II1 factor and G is a countable, discrete, amenable group. Note that in
general, even if Ob(G) = 0, there may be no lifting of the G-kernel to an action on
P . Connes and Jones found in [7] the first such example of a non-liftable G-kernel
with vanishing obstruction, where G is a group with property (T). Vanishing of the
obstruction is a necessary and sufficient condition for G to lift to a cocycle action
on the II1 factor P . See [5], [12], [17], [23], [24] for more on this.

Connes showed that if G is cyclic, one can construct G-kernels in OutR with
arbitrary obstructions, where R denotes the hyperfinite II1 factor ([6]). It was an
open problem whether this result is true for more general groups, and Jones showed
in [9] that this is indeed the case for G an arbitrary discrete group. Thus, given
a discrete group G and a class π ∈ H3(G,T), there is G-kernel χ : G → OutR
with Ob(χ) = π. Sutherland constructed G-kernels with arbitrary obstructions in
non-hyperfinite II1 factors ([24]).

Given a finitely generated, countable group G and a 3-cocycle ω, we can asso-
ciate a (hyperfinite) subfactor to (G,ω) as follows. Let χ : G → OutP be a G-kernel
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with Ob(G) = [ω] ∈ H3(G,T) (choose for instance P = R, and use [9]). Fix gen-
erators {g1, . . . , gn} of G, let α be a lift of χ, and consider the diagonal subfactor
associated to the automorphisms αg1 , . . . , αgn (let us choose g1 = e, the identity of
G, and αe = id). If η is another G-kernel with lift β, and automorphisms βg1 , . . . ,
βgn , then the diagonal subfactors associated to (αgi)i and (βgj )j are isomorphic if
and only if there is an automorphism θ of the underlying II1 factor P such that
αgπ(i)

= θβgiθ
−1 mod IntP , where π is a permutation of the indices (fixing 1) (see

e.g. [23]). Thus, in particular, isomorphism of these diagonal subfactors implies
that Ob(χ) = Ob(η) (up to a possible modification of χ by the permutation π).
Isomorphism of standard invariants is weaker than isomorphism of subfactors, but
we still have the following. If (G,χ) and (G, η) are two G-kernels as above with
Ob(η) = Ob(χ), then the standard invariants of the associated diagonal subfactors
are isomorphic (see ([20], page 228 ff.). The converse is not true due to the fact that
group isomorphisms can change the class of a 3-cocycle. If one constructs diagonal
subfactors where the automorphisms are repeated with distinct multiplicities, one
can show a converse, e.g. if G is strongly amenable and P is hyperfinite, using
Popa’s classification results of amenable subfactors ([20], page 229 ff.). Clearly,
the 3-cocycle ω giving rise to the obstruction of the G-kernel will appear in the
standard invariant of these diagonal subfactors (with cocycle) and the purpose of
this paper is to give a precise description of this occurrence.

Here is a more detailed outline of the sections of this paper. We review group
cocycles in section 2. In section 3, we define an abstract planar algebra P 〈gi:i∈I〉,ω

associated to a finitely generated group G with a fixed finite generating set {gi}i∈I ,
and a 3-cocycle ω ∈ Z3(G,T). The vector spaces underlying this planar algebra
are spanned by multi-indices in I2n such that the corresponding alternating word
on generators and their inverses is the identity in G. The action of Jones’ planar
operad is defined explicity, and of course ω appears prominently in this definition.
It should be noted that the definition of the action of a tangle involves a labelling of
the strings in the tangle whereas the planar algebra description of the group-type
subfactors in [3] involved a labelling of boundary segments (called “openings” in
[3]) of the internal and external discs of the tangle. We would like to point out that
the 3-cocycle ω does not appear in our definition of the action of the multiplication,
inclusion, Jones projection and right conditional expectation tangles. It does appear
in the definition of the action of the left conditional expectation tangles (and hence
the rotation tangles). We verify in this section that our definition of the action of
tangles is indeed natural with respect to composition of tangles. This takes a little
work, but some interesting identities for 3-cocycles appear along the way.

In section 4 we give a model for the higher relative commutants of the diagonal
subfactor with cocycle and describe the associated concrete planar algebra. We
choose an appropriate basis of the higher relative commutants which allows us to
identify this concrete planar algebra with the abstractly defined one in section 3.
This isomorphism is obtained in the usual way by constructing a filtered ∗-algebra
isomorphism between the abstract planar algebra of section 3 and the concrete one
of section 4, that preserves Jones projection and conditional expectation tangles.
The main feature of this planar algebra is the fact that the distinguished basis of the
higher relative commutants that we found here matches with the one coming from
the description of the planar algebra as a path algebra associated to the principal
graphs of the subfactor (see e.g. [13], [11]). Conversely, we prove that any finite
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index extremal subfactor whose standard invariant is given by the abstract planar
algebra (in section 3), must necessarily be (isomorphic to) a diagonal subfactor.

2. A brief review of group cocycles

For the convenience of the reader, we recall in this brief section the definition of
a cocycle of a group G. G will denote throughout this article a countable, discrete
group, and we will denote the identity of G by e. Define Cn = Fun(Gn,T), the
space of functions from Gn to T, and ∂n : Cn → Cn+1 by

∂n(φ)(g1, · · · , gn+1)

= φ(g2, · · · , gn+1) φ(g1g2, g3, · · · , gn+1)
−1

φ(g1, g2g3, g4, · · · , gn+1) · · ·

· · ·φ(g1, · · · , gn−1, gngn+1)
(−1)n φ(g1, · · · , gn)(−1)n+1

It follows that
(

∂n+1 ◦ ∂n
)

(·) = 1Cn+2 where 1 denotes the constant function 1.

Denote ker(∂) by Zn(G,T) (whose elements are called n-cocycles) and Im(∂n−1)
by Bn(G,T) (whose elements are called coboundaries). Note that Bn(G,T) ⊂
Zn(G,T).

In this paper we will be dealing mostly with a 3-cocycle ω. Thus ω satisfies the
identity

ω(g1, g2, g3) ω(g1, g2g3, g4) ω(g2, g3, g4) = ω(g1g2, g3, g4) ω(g1, g2, g3g4)(2.1)

We call ω normalized if ω(g1, g2, g3) = 1 whenever either of g1, g2, g3 is e.
Any cocycle ω is coboundary equivalent to a normalized cocycle. In particu-

lar, (ω · ∂2(φ)) is a normalized 3-cocycle, where φ ∈ C2 is defined as φ(g1, g2) =
ω(g1, e, e) ω(e, e, g2) for all g1, g2 ∈ G.

3. An abstract planar algebra

In this section we will construct an abstract planar algebra which, in section 4,
will be shown to be isomorphic to the planar algebra of a diagonal subfactor with
cocycle.

Let G be a countable, discrete group generated by a finite subset {gi}i∈I , and
let ω ∈ Z3(G,T) be a normalized 3-cocycle. We will construct a planar algebra
P 〈gi:i∈I〉,ω (= P ) as follows. Let e denote the identity of G. We define first a map
alt from multi-indices

∐

n≥0 I
n to G by

⎛

⎝

∐

n≥0

In

⎞

⎠ 	 i = (i1, · · · , in) alt
−→ g−1
i1

gi2 · · · g
(−1)n

in
= alt(i) ∈ G

where alt of the empty multi-index is defined to be the identity element of the
group. To define the planar algebra we need to define vector spaces Pn and an
action of Jones’ planar operad on these vector spaces. We refer to [11] for the
planar algebra terminology used in this paper.

The vector spaces. Define Pn =

{

C{i ∈ I2n : alt(i) = e} if n > 0,
C if n = 0.
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D2

i1

i3

i5

i2

i8

i9

*

*

*

D1
D0

i4
i6

i7

Figure 1. Example of a state on a tangle

Action of tangles. Let T be an n0-tangle having internal discs D1, · · · , Db

with colors n1, · · · , nb respectively (or no internal discs of course). A state σ on T
is a map from {strings in T} to I such that alt(σ|∂Dc

) = e for all 1 ≤ c ≤ b, where
σ|∂Dc

denotes the element of I2nc obtained by reading the elements of I induced
at the marked points on the boundary of Dc by the strings via the map σ, starting
from the first marked point and moving clockwise. This has been illustrated in
Figure 1, where alt(σ|∂D1

) and alt(σ|∂D2
) are just the products g−1

i1
gi2g

−1
i3

gi4g
−1
i4

gi5
and g−1

i2
gi6g

−1
i7

gi3 respectively, and are thus required to be the identity element. It

is a consequence that alt(σ|∂D0
)(= g−1

i8
gi6g

−1
i7

gi5g
−1
i1

gi8 = e in the figure) holds for
the external disc. Let S(T ) denote the states on T .

In order to define the action ZT of T , it is enough to define the coefficient
〈ZT (k

1, · · · , kb)|k0〉 of k0 in the linear expansion of ZT (k
1, · · · , kb), where kc ∈ I2nc

such that alt(kc) = e for 1 ≤ c ≤ b. For this, we choose a picture T1 in the isotopy

class of T and then choose a simple path pc in D0 \ [
∐b

c=1 Int(Dc)] starting from
the ∗ 1 of D0 to that of Dc for 1 ≤ c ≤ b such that:

(i) pc intersects the strings of T1 transversally for 1 ≤ c ≤ b,
(ii) pc1 and pc2 intersect exactly at the ∗ of D0 for 1 ≤ c1 = c2 ≤ b.

Note that any state σ on T gives an element σ|pc
∈ Imc obtained by reading the

elements of I induced by σ at the crossings of the path pc and the strings along the
direction of the path where mc (necessarily even) is the number of strings cut by
pc.

Define

〈ZT (k
1, · · · , kb) | k0〉 =

∑

σ∈S(T ) s.t.

σ|∂Dd
=kd

for 0≤d≤b

b
∏

c=1

λσ|pc (k
c)

where λj(i) =
∏n

s=1 λj(i, s) and

1Recall ∗ of a disc D is a point chosen on the boundary of D strictly between the last and
the first marked points, moving clockwise.
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λj(i, s) =

{

ω(alt(j), alt(i1, · · · , is), gis) if s is odd
ω(alt(j), alt(i1, · · · , is−1), gis) if s is even

for i ∈ In, j ∈ Im. If there is no compatible state on T , then we take the
coefficient to be 0 and if there is no internal disc in T , then the scalar inside the
sum is considered to be 1. (Note that λj(i) depends only on alt(j) and i.)

We need to show first that the multilinear map ZT is well-defined. Two config-
urations of paths {pc}bc=1 and {p′c}bc=1 in T1 can be obtained from each other using
a finite sequence of the following moves:
I. isotopy

pc
pc

AA BB
∼

II. cap-sliding moves

pcpc pc

AA

B B

∼

III. disc-sliding moves

D0 D0Dd Dd

pc

pc

pd

pd

· · ·· · ·

∗ ∗ ∗ ∗∼

IV. rotation moves

D0D0 DcDc

pcpc

· · ·· · ·

∗∗∗ ∗ ∼
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It is enough to check that the definition of the action is independent under each
of the above moves. Invariance under isotopy moves are the easiest to check since
σ|pc

= σ|p′
c
for all c ∈ {1, · · · , b}. To see invariance under the remaining three

moves, we show that alt(σ|pc
) = alt(σ|p′

c
) for 1 ≤ c ≤ b. For a cap-sliding move,

note that the cap induces the same index at the two consecutive crossing with the
path but after applying the alt map, the corresponding group elements cancel each
other since they inverses of each other. For the disc-sliding (resp., rotation moves),
the invariance follows from the fact that alt(σ|∂Dd

) = e (resp., alt(σ|∂Dc
) = e).

We will show next that the action is compatible with composition of tangles.

Action is natural with respect to composition of tangles. Let S be an
m0-tangle containing the internal discs D′

1, · · · , D′
a with colors m1, · · · ,ma and T

be an m1-tangle containing internal discs D1, · · · , Db with colors n1, · · · , nb. Let
D′

0 and D0 denote the external discs of S and T respectively. We need to show

that for all ic
′ ∈ I2mc′ and jc ∈ I2nc , where c′ ∈ {0, 2, · · · , a} and c ∈ {1, · · · , b},

(3.1) 〈ZS(ZT (j
1, · · · , jb), i2, · · · , ia)|i0〉 = 〈ZS◦D′

1
T (j

1, · · · , jb, i2, · · · , ia)|i0〉

The left-hand side of (3.1) can be expanded as
∑

i1∈I2m1 s.t.

alt(i1)=e

〈ZS(i
1, i2, · · · , ia)|i0〉 〈ZT (j

1, · · · , jb)|i1〉

=
∑

σ∈S(S), τ∈S(T ) s.t. σ|∂D′
c′
=ic

′
, τ |∂Dc=jc for

c′∈{0,2,··· ,a}, c∈{1,··· ,b} and σ|∂D′
1
=τ |∂D0

=i1

(

a
∏

c′=1

λσ|p′
c′
(ic

′
)

)(

b
∏

c=1

λτ |pc (j
c)

)

where p′c′ ’s and pc’s are paths in the tangles S and T respectively, required to define
their actions. For the action of S ◦D′

1
T , we consider the paths p′c′ for 2 ≤ c′ ≤ a

and p′1◦pc for 1 ≤ c ≤ b. (Strictly speaking, in order to define the action of S ◦D′
1
T ,

one has to make the p′1-portion of the paths (p′1 ◦ pc) disjoint for different values of
c.) So, the right-hand side of (3.1) becomes

∑

γ∈S(S◦D′
1
T ) s.t. γ|∂D′

c′
=ic

′
, γ|∂Dc=jc

for c′∈{0,2,··· ,a}, c∈{1,··· ,b}

(

a
∏

c′=2

λγ|p′
c′
(ic

′
)

)(

b
∏

c=1

λγ|p′1◦pc
(jc)

)

Observe that

{

(σ, τ ) ∈ S(S)× S(T ) : σ|∂D′
c′
= ic

′
for c′ ∈ {0, 2, · · · , a}

τ |∂Dc
= jc for 1 ≤ c ≤ b, σ|∂D′

1
= τ |∂D0

}

is clearly in bijection with

{

γ ∈ S(S ◦D′
1
T ) :

γ|∂D′
c′
= ic

′
for c′ ∈ {0, 2, · · · , a},

γ|∂Dc
= jc for 1 ≤ c ≤ b

}

.

A bijection is obtained by sending (σ, τ ) to the state defined by σ (resp. τ ) on the
S-part (resp. T -part) of S ◦D′

1
T and the well-definedness of such a state is a con-

sequence of the condition σ|∂D′
1
= τ |∂D0

; we denote this state by σ ◦ τ . If these
sets are empty, equation (3.1) holds trivially since both sides have value 0. Let
us assume that the sets are nonempty. It is enough to prove for σ ∈ S(S) and
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τ ∈ S(T ) such that σ|∂D′
c′

= ic
′
for 0 ≤ c′ ≤ a and τ |∂Dc

= jc for 1 ≤ c ≤ b and

τ |∂D0
= i1 we have

(3.2) λσ|p′1
(i1)

b
∏

c=1

λτ |pc (j
c) =

b
∏

c=1

λ(σ◦τ)|(p′1◦pc)
(jc)

We prove this in two cases.

Case 1: T has no internal disc or closed loop, that is, T is a Temperley-Lieb
diagram. Then the right-hand side of equation (3.2) is 1. It remains to show
λσ|p′1

(i1) = 1. This follows from the next lemma and the fact that i1 = ZT (1) is a

sequence of non-crossing matched pairings of indices from I.

Lemma 3.1. If i ∈ I, j ∈ Im, i = (i1, · · · , in) ∈ In and 0 ≤ s ≤ n, then we
have λj(i) = λj(i1, · · · , is, i, i, is+1, · · · , in).

Proof: Note that
(i) λj(i, r) = λj((i1, · · · , is, i, i, is+1, · · · , in), r) for 1 ≤ r ≤ s, and

(ii) λj(i, r) = λj((i1, · · · , is, i, i, is+1, · · · , in), r + 2) for s+ 1 ≤ r ≤ n.

We compute then,

λj((i1, · · · , is, i, i, is+1, · · · , in), s+ 1) λj((i1, · · · , is, i, i, is+1, · · · , in), s+ 2)

=

{

ω(alt(j), alt(i1, · · · , is, i), gi) ω(alt(j), alt(i1, · · · , is, i), gi) if s is even
ω(alt(j), alt(i1, · · · , is), gi) ω(alt(j), alt(i1, · · · , is, i, i), gi) if s is odd

=1.

�

Remark 3.2. In Lemma 3.1, if i is a sequence of indices with non-crossing
matched pairings, then we can apply the lemma several times to reduce all the
consecutive matched pairings to get λj(i) = 1. �

Case 2: T has at least one internal disc. Any unlabelled tangle T can be ex-
pressed as composition of elementary annular tangles of four types as described in
[3], namely, capping, cap-inclusion, left-inclusion and disc-inclusion tangles. It is
enough to prove equation (3.2) for any tangle S and compatible tangle T in E (=
the set of all elementary tangles). If T is a capping or cap-inclusion type annular
tangle, the proof directly follows from Lemma 3.1 and is left to the reader.

If T is a left-inclusion annular tangle, equation (3.2) is implied from the follow-
ing lemma.

Lemma 3.3. For all i ∈ I2m, j ∈ I2n and k ∈ I2n1 such that alt(i) = e, we
have

λ(k,j)(i) = λk(j, i,˜j) λj(i)

where ˜j is the sequence of indices from j in the reverse order.
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Proof: We rearrange the terms of the right-hand side of the identity in the lemma
in the following way:

λk(j, i,˜j) λj(i)

=

(

2n
∏

r=1

λk((j, i,˜j), r) λk((j, i,˜j), 2(m+ 2n)− r + 1)

)(

2m
∏

s=1

λk((j, i,˜j), 2n+ s) λj(i, s)

)

Let i = (i1, · · · , i2m) and j = (j1, · · · , j2n). Note that for 1 ≤ r ≤ 2n,

λk((j, i,˜j), 2(m+ 2n)− r + 1)

=

{

ω(alt(k), alt(j1, · · · , jr), gjr) if r is odd
ω(alt(k), alt(j1, · · · , jr−1), gjr) if r is even

=λk((j, i,˜j), r)

since alt(i) = e and alt(j, i,˜j) = alt(j)alt(i)(alt(j))−1 = e. Thus the first prod-
uct of the terms in the rearrangement vanishes. For the second product, if s ∈
{1, · · · , 2m} is odd, then

λk((j, i,˜j), 2n+ s) λj(i, s)

= ω(alt(k), alt(j)alt(i1, · · · , is), gis) ω(alt(j), alt(i1, · · · , is), gis)
= ω(alt(k), alt(j), alt(i1, · · · , is−1)) ω(alt(k, j), alt(i1, · · · , is), gis)·

ω(alt(k), alt(j), alt(i1, · · · , is))
= ω(alt(k), alt(j), alt(i1, · · · , is−1)) λ(k,j)(i, s) ω(alt(k), alt(j), alt(i1, · · · , is))

where we used the defining equation (2.1) of the 3-cocycle ω for the second equality.
Similarly, if s ∈ {1, · · · , 2m} is even, then

λk((j, i,˜j), 2n+ s) λj(i, s)

= ω(alt(k), alt(j), alt(i1, · · · , is−1)) λ(k,j)(i, s) ω(alt(k), alt(j), alt(i1, · · · , is))

Thus,

2m
∏

s=1

λk((j, i,˜j), 2n+ s) λj(i, s)

=
m
∏

t=1

(

λk((j, i,˜j), 2n+ 2t− 1) λj(i, 2t− 1)
)(

λk((j, i,˜j), 2n+ 2t) λj(i, 2t)
)

=
m
∏

t=1

(

ω(alt(k), alt(j), alt(i1, · · · , i2t−2)) λ(k,j)(i, 2t− 1)

λ(k,j)(i, 2t) ω(alt(k), alt(j), alt(i1, · · · , i2t))

)

= ω(alt(k), alt(j), e)

(

m
∏

t=1

λ(k,j)(i, 2t− 1) λ(k,j)(i, 2t)

)

ω(alt(k), alt(j), alt(i))

= λ(k,j)(i)

since alt(i) = e and ω is normalized. �
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Remark 3.4. The proof of Lemma 3.3 also implies the following identity:

λk(j, i,˜j) =
2m+2n
∏

s=2n+1

λk((j, i,˜j), s)

�

Now, suppose T is a disc-inclusion tangle as shown in Figure 2. Note that
n1 = m1. Without loss of generality, we can assume that T be given by the
following picture in which we also indicate the paths p1 and p2.

D0

D1

D2

p1

p2

· · ·

· · ·

· · ·

· · ·· · ·

∗

∗

∗

1 · · · 2r

1

1

m1

m1 + 12m1

n1

n1 + 12n1

n2

n2 + 12n2

Figure 2. Disc inclusion tangle

Observe that since p1 does not intersect any string, we have that τ |p1
is the

empty multi-index. So it is enough to prove

(3.3) λσ|p′1
(i1) λτ |p2 (j

2) = λσ|p′1
(j1) λ(σ|p′1 ,τ |p2 )

(j2)

Let us denote τ |p2
by k ∈ I2r. Since τ is a state, the following relations clearly

follow from Figure 2:

(i) i1s = j1s for 1 ≤ s ≤ 2r and 2r + n2 + 1 ≤ s ≤ 2n1,
(ii) i12r+s = j2s for 1 ≤ s ≤ n2,
(iii) i1s = ks = j1s for 1 ≤ s ≤ 2r,
(iv) j12r+s = j22n2−s+1 for 1 ≤ s ≤ n2.

We now express λσ|p′1
(i1) as a product of three terms with which we work

separately.

λσ|p′1
(i1) =

(

2r
∏

s=1

λσ|p′1
(i1, s)

)(

2r+n2
∏

s=2r+1

λσ|p′1
(i1, s)

)(

2n1
∏

s=2r+n2+1

λσ|p′1
(i1, s)

)
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First term: For 1 ≤ s ≤ 2r,

λσ|p′1
(i1, s) =

{

ω(alt(σ|p′
1
), alt(i11, · · · , i1s), gi1s) if s is odd

ω(alt(σ|p′
1
), alt(i11, · · · , i1s−1), gi1s) if s is even

=

{

ω(alt(σ|p′
1
), alt(j11 , · · · , j1s ), gj1s ) if s is odd

ω(alt(σ|p′
1
), alt(j11 , · · · , j1s−1), gj1s ) if s is even

(applying (i))

= λσ|p′1
(j1, s).

Second term: For 2r + 1 ≤ s ≤ 2r + n2,

λσ|p′1
(i1, s) =

{

ω(alt(σ|p′
1
), alt(i11, · · · , i1s), gi1s) if s is odd

ω(alt(σ|p′
1
), alt(i11, · · · , i1s−1), gi1s) if s is even

=

{

ω(alt(σ|p′
1
), alt(k)alt(j21 , · · · , j2s−2r), gj2s−2r

) if s is odd

ω(alt(σ|p′
1
), alt(k)alt(j21 , · · · , j2s−2r−1), gj2s−2r

) if s is even

(applying (ii) and (iii))

= λσ|p′
1

((k, j2,˜k), s).

Third term: Note that

alt(i12r+1, · · · , i12r+n2
) = alt(j21 , · · · , j2n2

) (using (ii))(v)

= alt(j22n2
, · · · , j2n2+1) (since alt(j2) = e)

= alt(j12r+1, · · · , j12r+n2
) (using (iv)).

Thus, for 2r + n2 + 1 ≤ s ≤ 2n1,

λσ|p′1
(i1, s)

=

{

ω(alt(σ|p′
1
), alt(i11, · · · , i12r)alt(i12r+1, · · · , i12r+n2

, · · · i1s, gi1s) if s is odd
ω(alt(σ|p′

1
), alt(i11, · · · , i12r)alt(i12r+1, · · · , i12r+n2

, · · · i1s−1, gi1s) if s is even

=

{

ω(alt(σ|p′
1
), alt(j11 , · · · , j1s ), gj1s ) if s is odd

ω(alt(σ|p′
1
), alt(j11 , · · · , j1s−1), gj1s ) if s is even

(using (i) and (v))

= λσ|p′1
(j1, s).

Combining the three terms, we get

λσ|p′1
(i1) =

(

2r
∏

s=1

λσ|p′1
(j1, s)

)(

2r+n2
∏

s=2r+1

λσ|p′1
((k, j2,˜k), s)

)(

2n1
∏

s=2r+n2+1

λσ|p′1
(j1, s)

)

= λσ|p′1
(j1)

(

2r+n2
∏

s=2r+1

λσ|p′1
(j1, s)

)(

2r+n2
∏

s=2r+1

λσ|p′1
((k, j2,˜k), s)

)

.

Now, for 2r + 1 ≤ s ≤ 2r + n2, we compute
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λσ|p′1
(j1, s)

=

{

ω(alt(σ|p′
1
), alt(j11 , · · · , j12r, · · · , j1s ), gj1s ) if s is odd

ω(alt(σ|p′
1
), alt(j11 , · · · , j12r, · · · , j1s−1), gj1s ) if s is even

=

{

ω(alt(σ|p′
1
), alt(k)alt(j22n2

, · · · , j22n2+2r−s+1), gj22n2+2r−s+1
) if s is odd

ω(alt(σ|p′
1
), alt(k)alt(j22n2

, · · · , j22n2+2r−s+2), gj22n2+2r−s+1
) if s is even

(using (iii) and (iv))

=

{

ω(alt(σ|p′
1
), alt(k)alt(j21 , · · · , j22n2+2r−s), gj22n2+2r−s+1

) if s is odd

ω(alt(σ|p′
1
), alt(k)alt(j21 , · · · , j22n2+2r−s+1), gj22n2+2r−s+1

) if s is even

(since alt(j2) = e)

=λσ|p′1
((k, j2,˜k), 2n2 + 4r − s+ 1).

Hence, we obtain

λσ|p′1
(i1) = λσ|p′1

(j1)

(

2r+2n2
∏

s=2r+n2+1

λσ|p′1
((k, j2,˜k), s)

)(

2r+n2
∏

s=2r+1

λσ|p′1
((k, j2,˜k), s)

)

= λσ|p′1
(j1) λσ|p′1

(k, j2,˜k) (by Remark 3.4).

We can now proceed with the proof of equation (3.3):

λσ|p′1
(i1) λτ |p2 (j

2) = λσ|p′1
(j1) λσ|p′1

(k, j2,˜k) λk(j
2)

= λσ|p′1
(j1) λ(σ|p′1 ,k)

(j2),

where we applied Lemma 3.3 for the last identity. This completes the proof that the
action of tangles defined above is compatible with composition of tangles (called
naturality of composition in [11]). Hence, P 〈gi:i∈I〉,ω is a planar algebra.

We will define next a ∗-structure on P 〈gi:i∈I〉,ω. Note that if i ∈ I2n, then

alt(i) = e if and only if alt(˜i) = e. Extend the operation ∼ conjugate linearly to

define a ∗-structure on P
〈gi:i∈I〉,ω
n . Clearly, this is an involution. We need to check

whether the action of tangles preserves ∗, that is, ZT∗ ◦ (∗ × · · · × ∗) = ∗ ◦ ZT . It
is enough to check this identity when T has no internal discs or closed loops, and
when T is an elementary annular tangle.

If T has no internal discs or closed loops, then it is a Temperley-Lieb diagram
and hence ZT is the sum of all sequences of indices from I which have non-crossing
matched pairings where the positions of the pairings are given by the numberings
of the marked points on the boundary of T which are connected by a string. Now,
in the tangle T ∗, the m-th and the n-th marked points are connected by a string
if and only if the m-th and the n-th marked points starting from the last point in
T , reading anticlockwise, are connected. So, ZT∗ is indeed the sum of all sequences
featuring in the linear expansion of ZT in the reverse order (that is, applying ∼).

If T is an elementary annular tangle of capping (resp. cap-inclusion) type with
m-th and (m + 1)-st marked points of the internal (resp. external) disc being
connected by a string, then T ∗ is also the same kind of elementary annular tangle
but the ‘capping’ occurs at the m-th and (m+ 1)-st marked points of the internal
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(resp. external) disc starting from the last point reading anticlockwise. The identity
easily follows from this observation.

If T is an elementary tangle of left-inclusion type, then T = T ∗. The identity
will then follow from the next lemma.

Lemma 3.5. If j ∈ Im and i = (i1, · · · , i2n) ∈ I2n such that alt(i) = e, then

λj(˜i) = λj(i).

Proof: The proof is an immediate consequence of alt(i1, · · · , is) = alt(i2n, · · · , is+1),
which holds since alt(i) = e. �

Lastly, if T is an elementary tangle of disc-inclusion type given by Figure 2,

then we need to show 〈ZT∗(˜i,˜j),˜k〉 = 〈ZT (i, j), k〉 for i, k ∈ I2n1 , j ∈ I2n2 with
alt(i) = alt(j) = alt(k) = e. It is easy to verify that i, j and k define a state on T

if and only if ˜i, ˜j and ˜k define the same on T ∗. If they fail to define a state, then
both sides are zero. If they define a state, then the scalars appearing on both sides
can be made equal by applying Lemma 3.5.

Remark 3.6. If ω is trivial, that is, a coboundary, then P 〈gi:i∈I〉,ω is isomorphic
to example 2.7 in [11]. Jones constructed this example of a planar algebra by
considering a certain subspace of the tensor planar algebra (TPA) over the vector
space with the indexing set I as a basis. He then showed that this subspace is
closed under the TPA-action of tangles, thus showing that the subspace is indeed
a planar algebra. One can view our planar algebra P 〈gi:i∈I〉,ω as a subspace of the
TPA in an obvious way but the action of planar tangles induced by TPA will not
be the same as our action which involves the extra data of a 3-cocycle. It does not
seem clear if our planar algebra P 〈gi:i∈I〉,ω can be viewed as a planar subalgebra of
the tensor planar algebra over the vector space with basis I if ω is nontrivial.

4. The planar algebra of the diagonal subfactor with cocycle

In this section we will compute the relative commutants of the diagonal sub-
factor associated to a G-kernel. We will determine the filtered ∗-algebra structure,
Jones projections and the conditional expectations. Note that some of this can
already be found in [1], [20], [11]. The main point here is that we are able to
choose an appropriate basis of the higher relative commutants such that the action
of planar tangles on these allows us to identify this concrete planar algebra with
the abstract one defined in the previous section.

Let N be a II1 factor, I be a finite set and for i ∈ I, choose θi ∈ AutN . Set
M = MI ⊗ N where MI denotes the matrix algebra whose rows and columns are
indexed by I. As in the introduction, consider the diagonal subfactor N ↪→ M
given by

N 	 x 
−→
∑

i∈I

Ei,i ⊗ θi(x) ∈ M

that is, an element x of N sits in M as a diagonal matrix whose ith diagonal is
θi(x). If we have another collection of automorphisms θ′i ∈ AutN for i ∈ I such
that θi = θ′i mod IntN , for all i ∈ I (up to a permutation of I), then the associated
diagonal subfactors are isomorphic. It is therefore natural to associate a diagonal
subfactor to a collection of elements gi ∈ OutN , i ∈ I. We consider the subgroup
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G = 〈gi : i ∈ I〉 of OutN , which can be viewed as a G-kernel in the obvious way,
and choose a lift

G 	 g
α
−→ αg ∈ AutN

such that αe = idN . Set αi = αgi for all i ∈ I. Consider the diagonal subfactor
N ⊂ M = MI ⊗N where the ith diagonal entry of an element of N viewed in M is
twisted by the action of αi . The index of this subfactor is |I|2. SetMn = MIn+1⊗N
for n ≥ 0. We will often identify Ei,j ⊗Ek,l ∈ MIm ⊗MIn with E(i,k),(j,l) ∈ MIm+n

for i, j ∈ Im and k, l ∈ In. Now, Mn−1 is included in Mn in the following way:

Mn−1 = MIn ⊗N 	 Ei,j⊗x 
−→ Ei,j⊗ψn(x) ∈ MIn ⊗MI ⊗N = MIn+1 ⊗N = Mn

for all i, j ∈ In and x ∈ N where ψn : N → MI ⊗N is defined as:

ψn(x) =

{ ∑

k∈I Ek,k ⊗ αk(x) if n is even
∑

k∈I Ek,k ⊗ α−1
k (x) if n is odd

It is easy to check (see [20], [1]) that N ⊂ M ⊂ M1 ⊂ M2 ⊂ · · · is isomorphic to
the Jones tower of II1 factors associated to N ⊂ M where the Jones projections
and conditional expectations are given by:

en = |I|−1
∑

k∈In−1,i,j∈I

E(k,i,i),(k,j,j) ⊗ 1 ∈ Mn

E
Mn

Mn−1
(E(i,k),(j,l) ⊗ x) = δk,l |I|−1 Ei,j ⊗ α

(−1)n−1

k (x)

for all i, j ∈ In, k, l ∈ I, x ∈ N . Moreover,
{

√

|I|(Ei,j ⊗ 1) : i, j ∈ I
}

forms a

Pimsner-Popa basis of M over N . This basis will be used to write the conditional
expectation of commutant of N onto the commutant of M (see [2]).

To find the relative commutant N ′ ∩ Mn−1, first note that N is included in
Mn−1 by the following map:

N 	 x 
−→
∑

i∈In

Ei,i ⊗ alt−1
α (i)(x) ∈ Mn−1

where altα(i) = α−1
i1

αi2 · · ·α
(−1)n

in
∈ AutN for i = (i1, · · · , in) ∈ In. Now, if

∑

i,j∈In xi,j(Ei,j ⊗ 1) ∈ N ′ ∩Mn−1, then
∑

i,j∈In

xi,j(Ei,j ⊗ 1) y = y
∑

i,j∈In

xi,j(Ei,j ⊗ 1) for all y ∈ N

⇔ xi,j

(

altα(i)alt
−1
α (j)

)

(y) = y xi,j for all y ∈ N , i, j ∈ In

⇔ xi,jaltα(i,˜j)(y) = y xi,j for all y ∈ N , i, j ∈ In

Thus, for i, j ∈ In, if xi,j = 0, then x0 =
xi,j

‖xi,j‖ ∈ U(N) and Adx0 ◦altα(i,˜j) =
idN which implies alt(i,˜j) = e. Similarly, if there exist i, j ∈ In such that alt(i,˜j) =

e, then u(Ei,j ⊗ 1) ∈ N ′ ∩Mn−1 where u ∈ U(N) satisfies Adu ◦ altα(i,˜j) = idN .
Thus,

N ′ ∩Mn−1 = span

{

u(Ei,j ⊗ 1) ∈ Mn−1

∣

∣

∣

∣

i, j ∈ In and u ∈ U(N)

s.t. Adu ◦ altα(i,˜j) = idN

}

.

The elements in this set do not yet form a basis since the unitary u can be
modified by a scalar of absolute value 1. To get a good basis of N ′ ∩Mn−1 we need
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to choose u in such a way that the planar algebra associated to N ⊂ M can easily
be identified with the abstract one defined in Section 3.

We now digress a little bit to set up some notations. Let u : G × G → U(N)
be a unitary defined by

αg1αg2 = Adu(g1, g2) ◦ αg1g2 for all g1, g2 ∈ G

such that u(g1, g2) = 1 whenever either of g1 or g2 is e. For i = (i1, · · · , in) ∈ In,
define

vm(i) =

{

u∗(alt(i1, · · · , im), gim) if m is odd
u(alt(i1, · · · , im−1), gim) if m is even

and set v(i) = v1(i) · · · vn(i). Next, we prove a several useful lemmas involving v.
The first lemma motivates our choice of the basis.

Lemma 4.1. altα(i) = Ad v(i) ◦ αalt(i) for all i ∈ In.

Proof: Using the definition of u, note that for all m ≥ 1,

Ad vm(i) =

{

αalt(i1,··· ,im−1)α
−1
im

α−1
alt(i1,··· ,im) if m is odd

αalt(i1,··· ,im−1)αimα−1
alt(i1,··· ,im) if m is even

Hence

Ad v(i) = Ad v1(i) · · ·Ad vn(i) = αeα
−1
i1

αi2 · · ·α
(−1)n

in
α−1
alt(i1,··· ,in) = altα(i)α

−1
alt(i).

�

Lemma 4.2. For any k = (k1, · · · , k2n) ∈ I2n such that alt(k) = e, we have

v(˜k)v(k) = 1.

Proof: First we expand v(˜k) and v(k) into products of unitaries arising from the

definition of v, and then we consider the product of the p-th unitary of v(˜k) from
the right and p-th unitary of v(k) from the left, that is,

v2n−p+1(˜k)vp(k) =

{

u(alt(k2n, · · · , kp+1), kp) u
∗(alt(k1, · · · , kp), kp) if p is odd

u∗(alt(k2n, · · · , kp), kp) u(alt(k1, · · · , kp−1), kp) if p is even

=

{

u(alt(k1, · · · , kp), kp) u∗(alt(k1, · · · , kp), kp) if p is odd
u∗(alt(k1, · · · , kp−1), kp) u(alt(k1, · · · , kp−1), kp) if p is even

= 1,

for 1 ≤ p ≤ 2n. �

Lemma 4.3. For i = (i1, · · · , in), j = (j1, · · · , jn), k = (k1, · · · , kn) ∈ In such

that alt(i,˜j) = e = alt(j,˜k), we have v(i,˜j) v(j,˜k) = v(i,˜k).

Proof: Using an argument similar to the proof of Lemma 4.2, one can prove that
the product of the p-th unitary of v(i,˜j) from the right and the p-th unitary of
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v(j,˜k) from the left, is 1 for 1 ≤ p ≤ n. Again, for n+ 1 ≤ p ≤ 2n,

vp(j,˜k) =

{

u∗(alt(j)k
(−1)n+1

2n · · · k−1
2n−p+1, k2n−p+1) if p is odd

u(alt(j)k
(−1)n+1

2n · · · k−1
2n−p+2, k2n−p+1) if p is even

=

{

u∗(alt(i)k
(−1)n+1

2n · · · k−1
2n−p+1, k2n−p+1) if p is odd

u(alt(i)k
(−1)n+1

2n · · · k−1
2n−p+2, k2n−p+1) if p is even

(alt(i,˜j) = e)

= vp(i,˜k).

Thus,

v(i,˜j) v(j,˜k) = v1(i,˜j) · · · vn(i,˜j)vn+1(j,˜k) · · · v2n(j,˜k)
= v1(i,˜k) · · · vn(i,˜k)vn+1(i,˜k) · · · v2n(i,˜k) = v(i,˜k)

�

By applying Lemma 4.1, we see that the set

{

v∗(i,˜j)(Ei,j ⊗ 1)

∣

∣

∣

∣

i, j ∈ In s.t.

alt(i,˜j) = e

}

is a basis for N ′∩Mn−1. We will use this basis to establish an isomorphism between
the planar algebra associated to N ⊂ M and the abstract planar algebra defined in
Section 3. Let ω : G×G×G → T be the 3-cocycle associated to G, that is, for all
g1, g2, g3 ∈ G we have

u(g1, g2)u(g1g2, g3) = ω(g1, g2, g3)αg1(u(g2, g3))u(g1, g2g3).

As before, this is a consequence of associativity of the multiplication in G.
We prove next a useful lemma relating v and ω.

Lemma 4.4. If i ∈ I and k = (k1, · · · , k2n) ∈ I2n such that alt(k) = e and
k1 = k2n, then altα(i, k1)(v(k)) = λ(i,k1)(k) v(i, k2, · · · , k2n−1, i).

Proof: We expand altα(i, k1)(v(k)) as a product of unitaries and work with them
separately. For 1 ≤ p ≤ n, we have
(i) altα(i, k1)(v2p−1(k))

=
(

α−1
gi αk1

)

(u∗(alt(k1, · · · , k2p−1), gk2p−1
))

=
(

Adu∗(g−1
i , gi)u(g

−1
i , gk1

) ◦ αg−1
i gk1

)

(u∗(alt(k1, · · · , k2p−1), gk2p−1
))

(using the definition of u)
= ω(alt(i, k1), alt(k1, · · · , k2p−1), gk2p−1

)

Adu∗(g−1
i , gi)u(g

−1
i , gk1

)

⎛

⎝

u(alt(i, k1), alt(k1, · · · , k2p−2, k2p−1, k2p−1))
· u∗(alt(i, k1, k1, k2, · · · , k2p−1), gk2p−1

)
· u∗(alt(i, k1), alt(k1, · · · , k2p−1))

⎞

⎠

(using the definition of ω)

(ii) altα(i, k1)(v2p(k))
=

(

α−1
gi αki1

)

(u(alt(k1, · · · , k2p−1), gk2p
))

=
(

Adu∗(g−1
i , gi)u(g

−1
i , gk1

) ◦ αg−1
i gk1

)

(u(alt(k1, · · · , k2p−1), gk2p
))

(using the definition of u)
= ω(alt(i, k1), alt(k1, · · · , k2p−1), gk2p

)

Adu∗(g−1
i , gi)u(g

−1
i , gk1

)

⎛

⎝

u(alt(i, k1), alt(k1, · · · , k2p−1))
· u(alt(i, k1, k1, k2, · · · , k2p−1), gk2p

)
· u∗(alt(i, k1), alt(k1, · · · , k2p))

⎞

⎠

(using the definition of ω)
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Multiplying (i) and (ii), we get,

altα(i, k1)((v2p−1(k)) (v2p(k)))

=λ(i,k1)(k, 2p− 1) λ(i,k1)(k, 2p)

Adu∗(g−1
i , gi)u(g

−1
i , gk1

)

⎛

⎜

⎜

⎝

u(alt(i, k1), alt(k1, · · · , k2p−2, k2p−1, k2p−1))
· u∗(alt(i, k1, k1, k2, · · · , k2p−1), gk2p−1

)
· u(alt(i, k1, k1, k2, · · · , k2p−1), gk2p

)
· u∗(alt(i, k1), alt(k1, · · · , k2p))

⎞

⎟

⎟

⎠

=λ(i,k1)(k, 2p− 1) λ(i,k1)(k, 2p)
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Adu∗(g−1
i , gi)u(g

−1
i , gk1

)

⎛

⎝

u(alt(i, k1), e) u
∗(g−1

i , gk1
)

· v2(i, k2, · · · , k2n−1, i)
· u∗(alt(i, k1), alt(k1, k2))

⎞

⎠ if p = 1

Adu∗(g−1
i , gi)u(g

−1
i , gk1

)

⎛

⎜

⎜

⎝

u(alt(i, k1), alt(k1, · · · , k2p−2))
· v2p−1(i, k2, · · · , k2n−1, i)
· v2p(i, k2, · · · , k2n−1, i)
· u∗(alt(i, k1), alt(k1, · · · , k2p))

⎞

⎟

⎟

⎠

if 2 ≤ p ≤ n− 1

Adu∗(g−1
i , gi)u(g

−1
i , gk1

)

⎛

⎝

u(alt(i, k1), alt(k1, · · · , k2n−2))
· v2n−1(i, k2, · · · , k2n−1, i)
· u(g−1

i , gk1
) u∗(alt(i, k1), e)

⎞

⎠ if p = n

def
=Wp.

Thus,

altα(i, k1)(v(k)) = W1 · · ·Wn = λ(i,k1)(k)·

Adu∗(g−1
i , gi)u(g

−1
i , gk1

)

⎛

⎝

u∗(g−1
i , gk1

)
· v2(i, k2, · · · , k2n−1, i) · · · v2n−1(i, k2, · · · , k2n−1, i)
· u(g−1

i , gk1
)

⎞

⎠

= λ(i,k1)(k)u
∗(g−1

i , gi)v2(i, k2, · · · , k2n−1, i) · · · v2n−1(i, k2, · · · , k2n−1, i)u(g
−1
i , gi)

= λ(i,k1)(k) v(i, k2, · · · , k2n−1, i).

�
Let us recall the following well-known fact about isomorphisms of two planar

algebras which will be used in the next theorem ([11]). Let P 1 and P 2 be two
planar algebras. Then P 1 ∼= P 2 (as planar algebras) if and only if there exist a
vector space isomorphism ψ : P 1

n → P 2
n such that:

(i) ψ preserves the filtered algebra structure,
(ii) ψ preserves the actions of all Jones projection tangles and the (two types

of) conditional expectation tangles.

If P 1 and P 2 are ∗-planar algebras, then we require ψ to be ∗-preserving.
Theorem 4.5. The planar algebra P sf associated to the diagonal subfactor

obtained from a II1 factor N and a finite collection of automorphisms αi ∈ AutN
for i ∈ I, is isomorphic to P 〈gi:i∈I〉,ω, where gi = [αi] ∈ OutN for all i ∈ I, and ω
is the normalized 3-cocycle associated to G = 〈gi : i ∈ I〉 ⊆ OutN as above.

Proof: Let G = 〈gi : i ∈ I〉 and without loss of generality, let us assume that α is
a lift of G such that αi = αgi . By [11] we have P sf

n = N ′ ∩Mn−1 for all n ≥ 0.



40 DIETMAR BISCH, PARAMITA DAS, AND SHAMINDRA KUMAR GHOSH

Define the map φ : P sf → P
def
= P 〈gi:i∈I〉,ω by first defining it on basis elements

as φ(v∗(i,˜j)(Ei,j ⊗ 1)) = (i,˜j) for all i, j ∈ In such that alt(i,˜j) = e, and then

extending it linearly. Clearly, φ is a vector space isomorphism. We will show that
φ is ∗-planar algebra isomorphism. We make first the following observation:

For i ∈ I, i = (i1, · · · , in) ∈ In and 0 ≤ s ≤ n, we have the identity v(i) =
v(i1, · · · , is, i, i, is+1, · · · , in). The proof is similar to that of Lemma 3.1. Thus, if i
is a sequence of indices with non-crossing matched pairings, then using this identity
several times to reduce all consecutive matched pairings, we get v(i) = 1.

We show now that φ is indeed a planar algebra isomorphism following the
remark just before the theorem.

(a) φ is unital: Since 1P sf
n

=
∑

i∈In(Ei,i ⊗ 1) and v(i,˜i) = 1 by the above observa-

tion, we get φ(1P sf
n
) =
∑

i∈In(i,˜i) = 1Pn
.

(b) φ preserves Jones projection tangles: By Theorem 4.2.1 in [11], the n-th Jones

projection tangle En acts as ZP sf

En
= |I|en =

∑

k∈In−1,i,j∈I(E(k,i,i),(k,j,j)⊗1). Since

(k, i, i, j, j,˜k) is a sequence of indices with non-crossing matched pairings, by the

above note v(k, i, i, j, j,˜k) = 1. So, φ(ZP sf

En
) =
∑

k∈In−1,i,j∈I(k, i, i, j, j,
˜k) = ZP

En
.

(c) φ preserves the action of the conditional expectation tangle: By Theorem 4.2.1

in [11], the action of the conditional expectation tangle En+1
n is given by ZP sf

En+1
n

=

|I| EMn

Mn−1
|N ′∩Mn

. We compute

ZP sf

En+1
n

(v∗(i, k, l,˜j)(E(i,k),(j,l) ⊗ 1)) = v∗(i, k, l,˜j)EMn

Mn−1
(E(i,k),(j,l) ⊗ 1)

= δk,l v
∗(i, k, k,˜j)(Ei,j ⊗ 1)

= δk,l v
∗(i,˜j)(Ei,j ⊗ 1)

φ
−→ δk,l (i,˜j) ∈ Pn

for all i, j ∈ In, k, l ∈ I such that alt(i, k, l,˜j) = e. From the action of tangles

defined in Section 3, it is easy to check ZP
En+1
n

(i, k, l,˜j) = δk,l (i,˜j).

(d) φ preserves ∗: Applying ∗ on a basis element of P sf
n , we get

(

v∗(i,˜j)(Ei,j ⊗ 1)
)∗

= (Ej,i ⊗ 1)v(i,˜j) =
(

altα(j)alt
−1
α (i)

)

(v(i,˜j))(Ej,i ⊗ 1)

= altα(j,˜i)(v(i,˜j))(Ej,i ⊗ 1)

= v(j,˜i) v(i,˜j) v∗(j,˜i)(Ej,i ⊗ 1)

= v∗(j,˜i)(Ej,i ⊗ 1)
φ
−→ (j,˜i) = (i,˜j)∗

for i, j ∈ In such that alt(i,˜j) = e. Note that we used Lemma 4.1 for the third
equality and Lemma 4.2 for the fourth one.
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(e) φ preserves multiplication: Suppose i, j, k, l ∈ In such that alt(i,˜j) = e =

alt(k,˜l). Then,
(

v∗(i,˜j)(Ei,j ⊗ 1)
)

·
(

v∗(k,˜l)(Ek,l ⊗ 1)
)

= v∗(i,˜j)
(

altα(i,˜j)
)

(v∗(k,˜l))(Ei,j ⊗ 1)(Ek,l ⊗ 1)

= v∗(i,˜j)v(i,˜j)v∗(k,˜l))v∗(i,˜j)δj,k (Ei,l ⊗ 1) (using Lemma 4.1)

=δj,k

(

v(i,˜j)v(j,˜l))
)∗

(Ei,l ⊗ 1) = δj,k v∗(i,˜l)(Ei,l ⊗ 1) (using Lemma 4.3)

On the other hand, one can easily deduce from the action of the multiplication

tangle in P that (i,˜j) · (k,˜l) = δj,k (i,˜l).

(f) φ preserves the action of the left conditional expectation tangle: By Theorem
4.2.1 in [11], the action of the left conditional expectation tangle E ′

n is given by

ZP sf

E′
n

= |I| EN ′∩Mn−1

M ′∩Mn−1
. Using the basis of M over N mentioned before, the condi-

tional expectation onto M ′ ∩Nn−1 can be expressed as (see [2])

E
N ′∩Mn−1

M ′∩Mn−1
(x) = |I|−2

∑

i,j∈I

(
√

|I|(Ei,j ⊗ 1)
)

x
(
√

|I|(Ej,i ⊗ 1)
)

= |I|−1
∑

i,j∈I

(Ei,j ⊗ 1)x(Ej,i ⊗ 1)

for x ∈ N ′ ∩ Mn−1. Hence, for i = (i1, · · · , in−1), j = (j1, · · · , jn−1) ∈ In−1 and

k, l ∈ I such that alt(k, i,˜j, l) = e, we have

ZP sf

E′
n

(

v∗(k, i,˜j, l)(E(k,i),(l,j) ⊗ 1)
)

=
∑

i,j∈I

(Ei,j ⊗ 1)v∗(k, i,˜j, l)(E(k,i),(l,j) ⊗ 1)(Ej,i ⊗ 1)

=
∑

i,j∈I

altα(i, j)(v
∗(k, i,˜j, l))(Ei,j ⊗ 1)(E(k,i),(l,j) ⊗ 1)(Ej,i ⊗ 1)

= δk,l
∑

i∈I

altα(i, k)(v
∗(k, i,˜j, k))(E(i,i),(i,j) ⊗ 1)

= δk,l
∑

i∈I

λi,k(k, i, j, k)v
∗(i, i,˜j, i)(E(i,i),(i,j) ⊗ 1) (using Lemma 4.4)

On the other hand, one can easily check that the action of E ′
n is given by

ZP
E′
n
(k, i,˜j, l) = δk,l

∑

i∈I

λi,k(k, i, j, k) (i, i,˜j, i).

�
Corollary 4.6. Given a group G generated by a finite collection gi for i ∈ I

and given a normalized 3-cocycle ω ∈ Z3(G,T), there exists a hyperfinite subfactor
whose associated planar algebra is isomorphic to P 〈gi:i∈I〉,ω.

Proof: The proof follows from [9] and Theorem 4.5. �
Remark 4.7. Note that the isomorphism φ in the proof of Theorem 4.5 uses

the 3-cocycle ω only in the step involving the conditional expectation onto the
commutant of M . In particular, the filtered ∗-algebra structure does not involve ω.
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Analyzing the filtered ∗-algebra structure of our planar algebra, one can easily
find that the principal graph Γ of N ⊂ M is a Cayley-like graph. More precisely, if
Gn = {alt(i) : i ∈ In} for n ≥ 1, and G0 = {e}, then Vn(Γ) = Gn \ Gn−2 denotes
the set of vertices of Γ which are at a distance n from the distinguished vertex for
n ≥ 1, and V0(Γ) = {e}. The number of edges between g ∈ Vn(Γ) and h ∈ Vn+1(Γ)
is
∑

i∈I δg,hgi (resp.
∑

i∈I δggi,h) if n is odd (resp. even). Note that this is well
known.

The most elegant feature of the planar algebra P 〈gi:i∈I〉,ω is that the distin-
guished basis forms the ‘loop-basis’ of the filtered ∗-algebra arising from paths on
the principal graph. Note that the 3-cocycle ω does not enter in the definition of the
actions of multiplication, inclusion and unit tangles (defined in Section 3) or in the
∗-operation. Of course, we found the abstract planar algebra by first computing the
action of tangles on the relative commutants. We then deduced from it an abstract
prescription of the planar algebra associated to a G-kernel and a 3-cocycle, which
is the one presented in Section 3.

The path algebra associated to the principal graph can always be used to obtain
a description of the filtered ∗-algebra structure of a subfactor planar algebra (see
for instance [13]). The extra information encoded in the planar algebra, which
the principal graph cannot provide, is the action of the left conditional expectation
tangle (or equivalently, the rotation tangle or the left-inclusion tangle with an even
number of strings). The main issue in this paper was the choice of the unitaries
v(i) satisfying the conclusion of Lemma 4.1 in such a way that the basis elements
of N ′ ∩ Mn correspond to loops on the principal graph with the correspondence
extending to a filtered ∗-algebra isomorphism. Note that this choice of v(i) is
unique up to a scalar in T. It is a delicate choice in the sense that another choice
would very likely make the 3-cocycle ω appear in the description of the filtered ∗-
algebra structure, whereas ω does not feature in the path algebra on the principal
graph Γ.

We will prove next a converse of Theorem 4.5. We will refer to the abstract
planar algebra defined in Section 3 as diagonal planar algebra.

Theorem 4.8. Any finite index extremal subfactor N ⊂ M whose standard
invariant is given by a diagonal planar algebra is a diagonal subfactor. Moreover,
if the associated group and its generators of the diagonal planar algebra is given by
G and {gi : i ∈ I} repectively, then for every i0 ∈ I, there exists αi ∈ AutN , i ∈ I,
such that:

(i) (N ⊂ M) ∼= (N ↪→ MI ⊗N) where N ↪→ MI ⊗N is the diagonal subfactor
with respect to the automorphisms αi for i ∈ I.

(ii) There exists a group isomorphism ψ : 〈αi : i ∈ I〉OutN → 〈g−1
i0

gi : i ∈ I〉 ≤
G sending αi to g−1

i0
gi for all i ∈ I.

Proof: Let P be the planar algebra associated to N ⊂ M , PΔ be a diagonal pla-
nar algebra associated to G and {gi : i ∈ I}, and φ : PΔ → P a ∗-planar algebra
isomorphism.

Setting up matrix units:
For all i, j ∈ I such that gi = gj , set qij := φ((i, j)) ∈ P1 = N ′ ∩ M . Note that
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∑

i∈I

qii = 1. So, to create other off-diagonal matrix units qij , we partition I =
m
∐

n=0
In

such that:
(i) i0 ∈ I0,
(ii) gi = gj ⇔ i, j ∈ In for some 0 ≤ n ≤ m.

For each n ∈ {1, 2, · · · ,m}, choose in ∈ In and a partial isometry qi0in ∈ M such

that qi0in
(

qi0in
)∗

= qi0i0 and
(

qi0in
)∗

qi0in = qinin . (Note that qi0i0 = φ((i0, i0)) and qinin =

φ((in, in)) have the same trace |I|−1). Extend q by defining q : I × I → M by

I × I ⊃ Is × It 	 (i, j)
q
→ qij := qiis

(

qi0is
)∗

qi0it q
it
j = φ((i, is))

(

qi0is
)∗

qi0it φ((it, j)) ∈ M

It is completely routine to check (using properties of partial isometry and action of
multiplication tangle in PΔ) that (i) q is well-defined, (ii) qijq

k
l = δj,kq

i
l , and (iii)

(

qij
)∗

= qji .

Finding automorphisms:
Using extremality of N ⊂ M , for each i ∈ I, we get

[qiiMqii : Nqii ] = 1 ⇒ Nqii = qiiMqii

⇒ Nqij ⊂ qiiMqjj ⊂ qijN and Nqij ⊃ qiiMqjj ⊃ qijN

⇒ Nqij = qiiMqjj = qijN ⇒ M ∼=
⊕

i,j∈I

qijN

where we use [qii , N ] = 0 in the second implication.

For each i ∈ I, define αi : N → N by qi0i x = αi(x)q
i0
i for all x ∈ N . Since N is a

factor and [qjj , N ] = 0 for j ∈ I, αi is well-defined and injective; surjectivity follows

from Nqij = qijN . Linearity and homomorphism property of αi follow immediately,

and we also have the identity xqi0i = qi0i α−1
i (x). To show qijx =

(

α−1
i αj

)

(x)qij , note
that

qii0x = qii0xq
i0
i qii0 = qiiα

−1
i (x)qii0 = α−1

i (x)qii0

⇒ qijx = qii0αj(x)q
i0
j =

(

α−1
i αj

)

(x)qij , for all x ∈ N, for all i, j ∈ I.

Using this relation, it is easy to show that αi is ∗-preserving. Two other easy con-
sequences are αi = αj if and only if gi = gj and αi0 = idN .

Structure of diagonal subfactor:
Define:

(i) κ : M̃ := MI ⊗N → M by κ(Ei,j ⊗ x) = qijα
−1
j (x) = α−1

i (x)qij ,

(ii) λ : M → M̃ by λ(x) =
∑

i,j∈I

Ei,j ⊗ λi,j(x),

where λi,j : M → N is the map given by the relation qiixq
j
j = qijα

−1
j (λi,j(x)) for all

x ∈ M .
Clearly, κ ◦ λ = idM , λ ◦ κ = idM̃ and κ is a ∗-isomorphism. Set Ñ := λ(N) =

{

∑

i∈I

Ei,i ⊗ αi(x)

∣

∣

∣

∣

x ∈ N

}

⊂ M̃ .

This proves that N ⊂ M is a diagonal subfactor as claimed. The rest of the
proof pertains to 4.8 (ii).
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Matrix units for the tower of the basic construction:
Let Mn denote the II1 factor obtained from N ⊂ M by iterating the basic con-

struction n times. We will first define q
i
j ∈ Mn−1 for i, j ∈ In and n ≥ 2 satisfying:

(i)
(

q
i
j

)∗
= q

j

i for all i, j ∈ In,

(ii) q
i
j x = altα(i, j̃)(x) q

i
j for all i, j ∈ In and x ∈ N ,

(iii) q
i
i = φ((i, ĩ)) for all i ∈ In,

(iv) q
i
j q

k
l = δj,k q

i
l for all i, j, k, l ∈ In,

(v) q
(s,s)
(t,t) q

u
v = δt,u q

(s,s)
(v,t) for all s, t, u, v ∈ In−1 and s, t ∈ I

by induction on n, where altα is defined by altα(i1, · · · , im) = α−1
i1

αi2α
−1
i3

· · ·α(−1)m

im
.

Suppose we have defined such q
i
j ’s for all i, j ∈ Im and m ≤ n. Now, for

i, j ∈ I and i, j ∈ In, set q
(i,i)
(j,j) := q

i
(s,i) En q

(s,j)
j ∈ Mn for some s ∈ In−1, where

En = |I|en is the element in Mn given by the n-th Jones projection tangle. To

show that the definition of q
(i,i)
(j,j) is independent of s ∈ In−1, observe that

q
(i,i)
(j,j) = q

i
(s,i) φ(s, s̃) En q

(s,j)
j = q

i
(s,i) q

s
t En qts q

(s,j)
j = q

i
(t,i) En q

(t,j)
j

for all t ∈ In−1. Properties (i) and (v) hold trivially. For (ii), note that

q
(i,i)
(j,j) x = altα(i, i, s̃, s, j, j̃)(x) q

(i,i)
(j,j) = altα((i, i), (̃j, j))(x) q

(i,i)
(j,j) for all x ∈ N.

Next, we prove property (iv). For i ∈ I and m ≥ 1, let ηm(i) denote the
element

· · ·

· · ·

∗

∗∗

∗

1

1
ηm(i) =

2

2 m− 1

m− 1 m

m

qii

qii

if m is odd

if m is even

in M ′
m−2 ∩Mm−1 (where M−1 := N , M0 := M). Two important relations which

we will often use, are ηm(i)Em = ηm+1(i)Em and Emηm(i) = Emηm+1(i). Getting
back to property (iv), we have

q
(i,i)
(j,j) q

(k,k)
(l,l) = q

i
(s,i) En q

(s,j)
j q

k
(s,k) En q

(s,l)
l = δj,k q

i
(s,i) En q

(s,j)
(s,k) En q

(s,l)
l

= δj,k q
i
(s,i) En ηn(j) q

(s,j)
(s,k) En q

(s,l)
l = δj,k q

i
(s,i) En ηn+1(j) q

(s,j)
(s,k) En q

(s,l)
l

= δj,k q
i
(s,i) En q

(s,j)
(s,k) ηn+1(j) En q

(s,l)
l = δj,k q

i
(s,i) En q

(s,j)
(s,k) ηn(j) En q

(s,l)
l

= δj,k δj,k q
i
(s,i) En q

(s,j)
(s,j) En q

(s,l)
l = δj,k δj,k q

i
(s,i) En φ((s, j, j, s̃)) En q

(s,l)
l

= δj,k δj,k q
i
(s,i) φ((s, s̃)) En q

(s,l)
l = δj,k δj,k q

i
(s,i) En q

(s,l)
l = δj,k δj,k q

(i,i)
(l,l) .
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It remains to establish property (iii). Now, for i ∈ In, i ∈ I and s ∈ In−1,

φ((i, i, i, ĩ)) q
(i,i)
(i,i) φ((i, i, i, ĩ)) = φ((i, ĩ)) ηn+1(i) q

i
s,i En q

s,i
i ηn+1(i) φ((i, ĩ))

= φ((i, ĩ)) q
i
s,i ηn+1(i) En ηn+1(i) q

s,i
i φ((i, ĩ)) = q

i
s,i ηn(i) En ηn(i) q

s,i
i

= q
i
s,i En q

s,i
i = q

(i,i)
(i,i) .

Since q
(i,i)
(i,i) ∈ P(N ′∩Mn) (by property (ii)) and φ((i, i, i, ĩ)) is a minimal projection

of Pn+1 = N ′ ∩Mn, therefore q
(i,i)
(i,i) = φ((i, i, i, ĩ)).

The proof for the initial case of n = 2 is similar and is left to reader.

Correspondence between relations satisfied by αi’s and gi’s:
In this part, we will prove that for i, j ∈ In, alt(i, j̃) = e if and only if altα(i, j̃) ∈
IntN .

Following the construction of the isomorphism λ between M and M̃ , one can
define an isomorphism λ(n) as follows:

Mn−1 	 x
λ(n)


−→ λ(n)(x) =
∑

k,l∈In

Ek,l ⊗ λ
(n)
k,l (x) ∈ M̃n−1 := MIn ⊗N

where λ
(n)
k,l : Mn−1 → N is the map given by the relation

q
k
k x q

l
l = q

k
l altα(l)

(

λ
(n)
k,l (x)

)

.

Thus, λ(n)(N) =

{

∑

k∈In

Ek,k ⊗ alt−1
α (k)(x) : x ∈ N

}

, for n ≥ 1. Note that λ(1) =

λ.
Let alt(i, j̃) = e for i, j ∈ In. Note that λ(n)(q

i
j) = Ei,j ⊗ 1 and λ(n)

(

φ((i, j̃))
)

are partial isometries between λ(n)(q
i
i) = λ(n)

(

φ((i, ĩ))
)

= Ei,i ⊗ 1 and λ(n)(q
j

j ) =

λ(n)
(

φ((j, j̃))
)

= Ej,j ⊗ 1. So, there exists u ∈ U(N) such that λ(n)
(

φ((i, j̃))
)

=

Ei,j ⊗ u = λ(n)
(

q
i
j v
)

where v = altα(j)(u) ∈ U(N). Hence,

q
i
j v = φ((i, j̃)) ∈ N ′ ∩Mn−1

⇒ y q
i
j v = q

i
j v y =

(

altα((i, j̃)) ◦Ad v
)

(y) q
i
j v for all y ∈ N

⇒
(

altα((i, j̃)) ◦Ad v
)

(y) = y for all y ∈ N

⇒ altα((i, j̃)) ∈ IntN.

Conversely, if altα((i, j̃)) ∈ IntN , that is, altα((i, j̃)) ◦ Ad v = idN for some

v ∈ U(N), then
(

Ei,j ⊗ alt−1
α (j)(v)

)

∈
(

(

λ(n)(N)
)′ ∩ M̃n−1

)

. Now, alt((i, j̃)) = e

implies dim
(

(

λ(n)(N)
)′ ∩ M̃n−1

)

> dim (N ′ ∩Mn−1) which is a contradiction.

Hence, alt((i, j̃)) = e.

The group generated by αi’s:
Let H := 〈θi = [αi]Out N : i ∈ I〉 ≤ OutN , H̃ := 〈g−1

i0
gi : i ∈ I〉 ≤ G, J :=
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I × {1,−1}. Define maps wH :
∐

n≥1

Jn → H and wH̃ :
∐

n≥1

Jn → H̃ by

Jn 	 ((i1, ε1), (i2, ε2), · · · (in, εn))
wH
−→ θε1i1 θ

ε2
i2
· · · θεnin ∈ H

Jn 	 ((i1, ε1), (i2, ε2), · · · (in, εn))
wH̃
−→ (g−1

i0
gi1)

ε1(g−1
i0

gi2)
ε2 · · · (g−1

i0
gin)

εn ∈ H̃

Define γ : H → H̃ by γ
(

wH(j)
)

= wH̃(j). For γ to be an isomorphism, it is enough

to show that γ is well-defined and injective. Suppose the map ρ : J → I2 sends
(i, 1) (resp. (i,−1)) to (i0, i) (resp. (i, i0)). Extend ρ to ρ : Jn → I2n entrywise.
Note that wH(j) = altH

(

ρ(j)
)

and wH̃(j) = alt
(

ρ(j)
)

. This implies

wH(j) = 1H ⇔ altα
(

ρ(j)
)

∈ IntN ⇔ alt
(

ρ(j)
)

= e ⇔ wH̃(j) = e.

Hence, H and H̃ are isomorphic. �
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K1-Injectivity for Properly Infinite C∗-Algebras

Étienne Blanchard

Dedicated to Alain Connes on the occasion of his 60th birthday

1. Introduction

One of the main tools to classify C∗-algebras is the study of its projections
and its unitaries. It was proved by Cuntz in [Cun81] that if A is a purely infinite
simple C∗-algebra, then the kernel of the natural map for the unitary group U(A)
to the K-theory group K1(A) is reduced to the connected component U0(A), i.e. A
is K1-injective (see §3). We study in this note a finitely generated C∗-algebra, the
K1-injectivity of which would imply the K1-injectivity of all unital properly infinite
C∗-algebras.

Note that such a question was already considered in [Blac07], [BRR08].

The author would like to thank H. Lin, R. Nest, M. Rørdam and W. Winter
for helpful comments.

2. Preliminaries

Let us first review briefly the theory introduced by Cuntz ([Cun78]) of com-
parison of positive elements in a C∗-algebra.

Definition 2.1. ([Cun78], [Rør92]) Given two positive elements a, b in a C∗-
algebra A, one says that:
– a is dominated by b (written a � b) if and only if there is a sequence {dk; k ∈ N}
in A such that ‖d∗kbdk − a‖ → 0 when k → ∞,
– a is properly infinite if a �= 0 and a ⊕ a � a ⊕ 0 in the C∗-algebra M2(A) :=
M2(C)⊗A.

This leads to the following notions of infiniteness for C∗-algebras.

Definition 2.2. ([Cun78], [Cun81], [KR00]) A unital C∗-algebra A is said
to be:
– properly infinite if its unit 1A is properly infinite in A,
– purely infinite if all the non-zero positive elements in A are properly infinite in A.

2010 Mathematics Subject Classification. Primary: 46L80; Secondary: 46L06, 46L35.
Key words and phrases. K1-injectivity, Proper Infiniteness, C∗-algebras.

c© 2010 Étienne Blanchard
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Remark 2.3. Kirchberg and Rørdam have proved in [KR00, Theorem 4.16]
that a C∗-algebra A is purely infinite (in the above sense) if and only if there is no
character on the C∗-algebra A and any positive element a in A which lies in the
closed two-sided ideal generated by another positive element b in A satisfies a � b.

The first examples of such C∗-algebras were given by Cuntz in [Cun81]: For
any integer n ≥ 2, the C∗-algebra Tn is the universal unital C∗-algebra generated
by n isometries s1, . . . , sn satisfying the relation

(2.1) s1s
∗
1 + · · ·+ sns

∗
n ≤ 1

Then, the closed two sided ideal in Tn generated by the minimal projection pn+1 :=
1− s1s

∗
1 − . . .− sns

∗
n is isomorphic to the C∗-algebra K of compact operators on an

infinite dimension separable Hilbert space and one has an exact sequence

(2.2) 0 → K → Tn π−→On → 0 ,

where the quotient On is a purely infinite simple unital nuclear C∗-algebra
([Cun81]).

Remark 2.4. A unital C∗-algebra A is properly infinite if and only if there
exists a unital ∗-homomorphism T2 → A.

3. K1-injectivity of Tn
Given a unital C∗-algebra A with unitary group U(A), denote by U0(A) the

connected component of 1A in U(A). For each strictly positive integer k ≥ 1, the
upper diagonal embedding u ∈ U(Mk(A) ) �→ (u ⊕ 1A) ∈ U(Mk+1(A) ) sends the
connected component U0(Mk(A) ) into U0(Mk+1(A) ), whence a canonical homo-
morphism ΘA from U(A)

/

U0(A) to K1(A) := lim
k→∞

U(Mk(A) )
/

U0(Mk(A) ). As

noticed by Blackadar in [Blac07], this map is (1) neither injective, (2) nor surjec-
tive in general:

(1) If U2 denotes the compact unitary group of the matrix C∗-algebra M2(C),
A := C(U2×U2,M2(C) ) and u, v ∈ U(A) are the two unitaries u(x, y) = x
and v(x, y) = y, then z := uvu∗v∗ is not unitarily homotopic to 1A in U(A)
but the unitary z ⊕ 1A belongs to U0(M2(A)) ([AJT60]).

(2) If A = C(T3), then U(A)/U0(A) ∼= Z
3 but K1(A) ∼= Z

4.

Definition 3.1. The unital C∗-algebra A is said to be K1-injective if the map
ΘA is injective.

Cuntz proved in [Cun81] that ΘA is surjective as soon as the C∗-algebra A
is properly infinite and that it is also injective if the C∗-algebra A is simple and
purely infinite. Now, the K-theoretical six-term cyclic exact sequence associated
to the exact sequence (2.2) implies that K1(Tn) = 0 since K1(K) = K1(On) = 0.
Thus, the map ΘTn

is zero.

Proposition 3.2. For all n ≥ 2, the C∗-algebra Tn is K1-injective, i.e. any
unitary u ∈ U(Tn) is unitarily homotopic to 1Tn

in U(Tn) (written u ∼h 1Tn
).

Proof. The C∗-algebras Tn have real rank zero by Proposition 2.3 of [Zha90]. And
Lin proved that any unital C∗-algebra of real rank zero is K1-injective ([Lin01,
Corollary 4.2.10]). �
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Corollary 3.3. If α : T3 → T3 is a unital ∗-endomorphism, then its restriction
to the unital copy of T2 generated by the two isometries s1, s2 is unitarily homotopic
to idT2

among all unital ∗-homomorphisms T2 → T3.
Proof. The isometry

∑

k=1,2 α(sk)s
∗
k extends to a unitary u ∈ U(T3) such that

α(sk) = usk for k = 1, 2 ([BRR08, Lemma 2.4]). But Proposition 3.2 yields that
U(T3) = U0(T3), whence a homotopy u ∼h 1 in U(T3), and so the desired result
holds. �

Remark 3.4. The unital map ι : C → T2 induces an isomorphism in K-theory.
Indeed, [1T2

] = [s1s
∗
1]+ [s2s

∗
2]+ [p3] = 2 [1T2

]+ [p3] and so [1T2
] = −[p3] is invertible

in K0(T2).

4. K1-injectivity of properly infinite C∗-algebras

Denote by T2 ∗C T2 the universal unital free product with amalgamation over
C (in the sequel called full unital free product) of two copies of T2 amalgamated
over C and let j0, j1 be the two canonical unital inclusions of T2 in T2 ∗C T2. We
show in this section that the K1-injectivity of T2 ∗C T2 is equivalent to the K1-
injectivity of all the unital properly infinite C∗-algebras. The proof is similar to
that of the universality of the full unital free product O∞ ∗C O∞ (see Theorem 5.5
of [BRR08]).

Definition 4.1. ([Blan09], [BRR08, §2]) If X is a compact Hausdorff
space, a unital C(X)-algebra is a unital C∗-algebra A endowed with a unital
∗-homomorphism from the C∗-algebra C(X) of continuous functions on X to the
centre of A.

For any non-empty closed subset Y of X, we denote by πA
Y (or simply by πY

if no confusion is possible) the quotient map from A to the quotient AY of A by
the (closed) ideal C0(X \ Y ) · A . For any point x ∈ X, we also denote by Ax the
quotient A{x} and by πx the quotient map π{x}.

Proposition 4.2. The following assertions are equivalent.

(i) T2 ∗C T2 is K1-injective.
(ii) D :={f ∈ C([0, 1], T2 ∗C T2) ; f(0) ∈ j0(T2) and f(1)∈ j1(T2) } is properly

infinite.
(iii) There exists a unital ∗-homomorphism θ : T2 → D.
(iv) There exists a projection q ∈ D with π0(q) = j0(s1s

∗
1) and π1(q) =

j1(s1s
∗
1) .

(v) Any unital properly infinite C∗-algebra A is K1-injective.

Proof. (i)⇒(ii) We have a pull-back diagram

D

�����
���

���
�

����
���

���
��

D[0, 12 ]

π 1
2 ����

��
��

��
�

D[ 12 ,1]

π 1
2�����

��
��
��

T2 ∗C T2
and the two C∗-algebras D[0, 12 ]

and D[ 12 ,1]
are properly infinite (Remark 2.4). Hence,

the implication follows from [BRR08, Proposition 2.7].
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(ii)⇒(iii) is Remark 2.4 applied to the C∗-algebra D.

(iii)⇒(iv) The two full, properly infinite projections j0(s1s
∗
1) and π0 ◦ θ(s1s∗1)

are unitarily equivalent in j0(T2) by [LLR00, Lemma 2.2.2] and [BRR08, Proposi-
tion 2.3]. Thus, they are homotopic among the projections in the C∗-algebra j0(T2)
(written j0(s1s

∗
1) ∼h π0 ◦ θ(s1s

∗
1) ) by Proposition 3.2. Similarly, π1 ◦ θ(s1s

∗
1) ∼h

j1(s1s
∗
1) in j1(T2). Further, π0 ◦ θ(s1s∗1) ∼h π1 ◦ θ(s1s∗1) in T2 ∗C T2 by hypothesis,

whence the result by composition.

(iv)⇒(v) By [BRR08, Proposition 5.1], it is equivalent to prove that if p and p′

are two properly infinite full projections in A, then there exist full properly infinite
projections p0, and p′0 in A such that p0 ≤ p, p′0 ≤ p′ and p0 ∼h p′0 .

Fix two such projections p and p′ in A. Then, there exist unital ∗-
homomorphisms σ : T2 → pAp, σ′ : T2 → p′Ap′ and isometries t, t′ ∈ A such
that 1A = t∗pt = (t′)∗p′t′ . Now, one thoroughly defines unital ∗-homomorphisms
α0 : T2 → A and α1 : T2 → A by

α0(sk) := σ(sk) · t and α1(sk) := σ′(sk) · t′ for k = 1, 2 ,

whence a unital ∗-homomorphism α := α0 ∗α1 : T2 ∗C T2 → A such that α ◦ j0 = α0

and α ◦ j1 = α1 .
The two full properly infinite projections p0 = α0(s1s

∗
1) and p′0 = α1(s1s

∗
1)

satisfy p0 ≤ p and p′0 ≤ p′ . Further, the projection (id ⊗ α)(q) gives a continuous
path of projections in A from p0 to p′0 . �

Remark 4.3. The C∗-algebra M2(D) is properly infinite by [BRR08, Propo-
sition 2.7].

Lemma 4.4. K0(T2 ∗C T2) = Z and K1(T2 ∗C T2) = 0

Proof. The commutative diagram

C

ı0

��

ı1 �� T2
j1

��
T2

j0 �� T2 ∗C T2

yields by [Ger97, Theorem

2.2] a six-term cyclic exact sequence

K0(C) = Z
(ı0⊕ı1)∗−→ K0(T2 ⊕ T2) = Z⊕ Z

(j0)∗−(j1)∗−→ K0(T2 ∗C T2)
↑ ↓

K1(T2 ∗C T2) ←− K1(T2 ⊕ T2) = 0⊕ 0 ←− K1(C) = 0

Now, Remark 3.4 implies that the map (ı0⊕ ı1)∗ is injective, whence the equalities.
�

Remark 4.5. Skandalis noticed that the C∗-algebra T2 is KK-equivalent to C

and so T2 ∗C T2 is KK-equivalent to C ∗C C = C.

This Lemma entails that the K1-injectivity question for unital properly infinite
C∗-algebras boils down to knowing whether U(T2 ∗C T2) = U0(T2 ∗C T2) . Note that
Proposition 3.2 already yields that U(T2) ∗T U(T2) ⊂ U0(T2 ∗C T2) .

But the following holds.

Proposition 4.6. Set p3 =1 − s1s
∗
1 − s2s

∗
2 in the Cuntz algebra T2 and let u

be the canonical unitary generating C∗(Z).
(i) The relations j0(sk) �→ sk and j1(sk) �→ u sk (k = 1, 2) uniquely define a unital



K1-INJECTIVITY FOR PROPERLY INFINITE C∗-ALGEBRAS 53

∗-homomorphism T2 ∗C T2 → T2 ∗C C∗(Z) which is injective but not K1-surjective.
(ii) The two projections j0(p3) and j1(p3) satisfy j1(p3) �∼ j0(p3) in T2 ∗C T2.
(iii) There is no v ∈ U(T2 ∗C T2) such that j1(s1s

∗
1 + s2s

∗
2) = v j0(s1s

∗
1 + s2s

∗
2) v

∗.
(iv) There is a unitary v ∈ U(T2 ∗C T2) such that j1(s1s

∗
1) = v j0(s1s

∗
1) v

∗.

Proof. (i) The unital C∗-subalgebra of O3 generated by the two isometries s1
and s2 is isomorphic to T2, whence a unital C∗-embedding T2 ∗C T2 ⊂ O3 ∗C O3

([ADEL04]). Let Φ be the ∗-homomorphism from O3 ∗C O3 to the free product
O3 ∗C C∗(Z) = C∗(s1, s2, s3, u

)

fixed by the relations

Φ(j0(sk)) = sk and Φ(j1(sk)) = u sk for k = 1, 2, 3

and let Ψ : O3 ∗C C∗(Z) → O3 ∗C O3 be the only ∗-homomorphism such that

Ψ(u) =
3
∑

l=1

j1(sl)j0(sl)
∗ and Ψ(sk) = j0(sk) for k = 1, 2, 3.

For all k = 1, 2, 3, we have the equalities:
– Ψ ◦ Φ(j0(sk)) = Ψ(sk) = j0(sk) ,
– Ψ ◦ Φ(j1(sk)) = Ψ(usk) = j1(sk) ,
– Φ ◦Ψ(sk) = Φ(j0(sk)) = sk .

Also, Ψ(u)∗Ψ(u) =
∑

l,l′ j0(sl′)j1(sl′)
∗j1(sl)j0(sl)

∗ = 1O3∗CO3
= Ψ(u)Ψ(u)∗, i.e.

Ψ(u) is a unitary in O3 ∗C O3 which satisfies:
– Φ ◦Ψ(u) =

∑

l=1,2,3 Φ(j1(sl))Φ(j0(sl)
∗) = u .

Thus, Φ is an invertible unital ∗-homomorphism with inverse Ψ ([Blac07]), and
the restriction of Φ to the C∗-subalgebra T2 ∗C T2 takes values in T2 ∗C C∗(Z) ⊂
O3 ∗C C∗(Z).

Now, there is (see [Ger97]) a six-term cyclic exact sequence

K0(C) = Z ↪→ K0

(

T2 ⊕ C∗(Z)
)

= Z⊕ Z → K0(T2 ∗C C∗(Z) )
↑ ↓

K1(T2 ∗C C∗(Z) ) ← K1

(

T2 ⊕ C∗(Z)
)

= 0⊕ Z ← K1(C) = 0

and so, K1(T2 ∗C C∗(Z) ) = Z, whereas K1(T2 ∗C T2) = 0 by Lemma 4.4.

(ii) Let π0 : T2 → L(H) be a unital ∗-representation on a separable Hilbert space
H such that π0(p3) is a rank one projection, let π1 : T2 → L(H) be a unital ∗-
representation such that π1(p3) is a rank two projection and consider the induced
unital ∗-representation π = π0 ∗ π1 of the unital free product T2 ∗C T2.

Then the two projections π[j0(p3)] = π0(p3) and π[j1(p3)] = π1(p3) have dis-
tinct ranks and so cannot be equivalent in L(H). Hence, j0(p3) �∼ j1(p3) in T2 ∗CT2.
(iii) This is just a rewriting of the previous assertion since s1s

∗
1 + s2s

∗
2 = 1 − p3.

Indeed, the partial isometry b = j1(s1)j0(s1)
∗ + j1(s2)j0(s2)

∗ defines a Murray-von
Neumann equivalence in T2∗CT2 between the projections j0(s1s

∗
1+s2s

∗
2) = 1−j0(p3)

and j1(s1s
∗
1 + s2s

∗
2) = 1− j1(p3). Thus, they are unitarily equivalent in T2 ∗C T2 if

and only if j0(p3) ∼ j1(p3) in T2 ∗C T2 ([LLR00, Proposition 2.2.2]).

(iv) There exists a unitary v ∈ U(T2 ∗C T2) (which is necessarily K1-trivial by
Lemma 4.4) such that j1(s1s

∗
1) = v j0(s1s

∗
1) v

∗. Indeed, we have the inequalities

1 > s2s
∗
2 + p3 > s2s

∗
2 > s2s1(s2s

∗
2 + p3)s

∗
1s

∗
2 + s2s2(s2s

∗
2 + p3)s

∗
2s

∗
2 in T2 .

Thus, if we set w := j1(s1)j0(s1)
∗, then 1 − w∗w = j0(s2s

∗
2 + p3) and 1 − ww∗ =

j1(s2s
∗
2+p3) are two properly infinite and full K0-equivalent projections in T2 ∗CT2.

Thus, there is a partial isometry a ∈ T2 ∗C T2 with a∗a = 1 − w∗w and aa∗ =
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1 − ww∗ ([Cun81]). The sum v = a + w has the required properties ([BRR08,
Lemma 2.4]). �

Remarks 4.7. (i) The equivalence (iv)⇔(v) in Proposition 4.2 implies that all
unital properly infinite C∗-algebras are K1-injective if and only if the unitary v ∈
U(T2 ∗CT2) constructed in Proposition 4.6.(iv) belongs to the connected component
U0(T2 ∗C T2).

Note that v ⊕ 1 ∼h 1⊕ 1 in U(M2(T2 ∗C T2)) by [LLR00, Exercice 8.11].

(ii) Let σ ∈ U(T2) be the symmetry σ = s1s
∗
2 + s2s

∗
1 + p3 , let v ∈ U(T2 ∗C T2)

be a unitary such that j1(s1s
∗
1) = vj0(s1s

∗
1)v

∗ (Proposition 4.6.(iv)) and set z :=
v∗j1(σ)vj0(σ) .

Then, q1 = j0(s1s
∗
1), q2 = j0(s2s

∗
2) and q3 = zj0(s2s

∗
2)z

∗ are three properly
infinite full projections in T2 ∗C T2 which satisfy:
– q1q3 = j0(s1s

∗
1) v

∗ j1(s2s
∗
2) v = v∗ j1(s1s

∗
1)j1(s2s

∗
2) v = 0 = q1q2 ,

– q2 ∼h q1 ∼h q3 in T2 ∗C T2 since σ ∈ U0(T2) and so z ∼h v∗v = 1 in U(T2 ∗C T2) ,
– q1 + q3 = v∗j1(s1s

∗
1 + s2s

∗
2)v �∼u j0(s1s

∗
1 + s2s

∗
2) = q1 + q2 in T2 ∗C T2 by Proposi-

tion 4.6.(iii).
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Abstract. We give a θ-deformed version of the ADHM construction of in-
stantons with arbitrary topological charge on the sphere S4. Classically, the
instanton gauge fields are constructed from suitable monad data; we show
that in the deformed case the set of monads is itself a noncommutative space.
We use these monads to construct noncommutative ‘families’ of instantons (i.e.
noncommutative families of anti-self-dual connections) on the deformed sphere
S4
θ . We also compute the topological charge of each of the families. Finally

we discuss what it means for such families to be gauge equivalent.
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1. Introduction

The purpose of the present article is to generalise the ADHM method for con-
structing instantons on the four-sphere S4 to the framework of noncommutative ge-
ometry, by giving a construction of instantons on the noncommutative four-sphere
S4
θ of [9].
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Instantons arise in physics as anti-self-dual solutions of the Yang-Mills equa-
tions. Mathematically they are connections with anti-self-dual curvature on smooth
G-bundles over a four-dimensional compact manifold. Since the very beginning they
have been of central importance for both disciplines, an importance that has only
grown over the years.

Of particular interest are instantons on SU(2)-bundles over the Euclidean four-
sphere S4. Thanks to the ADHM method of [2], the full solution to the problem
of constructing such instantons on S4 has long been known and, as a consequence,
the moduli space Mk of instantons with topological charge equal to k is known to
be a manifold of dimension 8k − 3. Starting with a trivial vector bundle over S4,
the ADHM strategy is to construct an orthogonal projection to some (non-trivial)
sub-bundle E in such a way that the projection of the trivial connection to E has
anti-self-dual curvature.

The geometric ingredient which implements the classical ADHM construction
is the Penrose twistor fibration CP

3 → S4. The total space CP
3 of the fibration

is called the twistor space of S4 and may be thought of as the bundle of projec-
tive spinors over S4 (although it has its origins elsewhere [21]). The pull-back
of an instanton bundle along this fibration is a holomorphic vector bundle over
CP

3 equipped with a set of reality conditions which identify it as such a pull-back
[24]. In this way, the construction of instantons is equivalent to the construction
of holomorphic bundles over twistor space.

Using powerful results from algebraic geometry, one gives an explicit description
of all relevant holomorphic vector bundles over a complex projective space ([12, 4],
cf. also [20]). Each of them arises as the cohomology of a monad: a suitable
complex of vector bundles

0 → A σ−→ B τ−→ C → 0

such that σ is injective and τ is surjective. The ADHM construction tells us how to
convert a given monad into an orthogonal projection of vector bundles as described
above and guarantees that the resulting connection has anti-self-dual curvature.

Following the general strategy of the classical case, our goal is to give a de-
formed version of the ADHM method and hence a construction of instantons on the
noncommutative four-sphere S4

θ . The techniques involved lend themselves rather
neatly to the framework of noncommutative geometry; the construction of vector
bundles and connections by orthogonal projection is particularly natural in light
of the Serre-Swan theorem [11], which trades vector bundles for finitely generated
projective modules.

The paper is organised as follows. Sect. 2 reviews the noncommutative spaces
in question, namely the θ-deformed versions of the four-sphere S4

θ and its twistor
space CP

3
θ. We recall also the construction of the basic instanton and the principal

bundle on which it is defined, as well as the details of the noncommutative twistor
fibration. Sect. 3 recalls the construction of the quantum group SLθ(2,H) of con-
formal transformations of S4

θ and the quantum subgroup Spθ(2) of isometries. The
main purpose of these two sections is to gather together into one place the relevant
contributions from [9, 14, 15, 16, 5] and to establish notation; in doing so we also
make some novel improvements to previous versions. Sect. 4 presents the deformed
ADHM construction itself. We show that in the deformed case the set of all mon-
ads is parameterised by a collection of noncommutative spaces ˜Mθ;k indexed by
k a positive integer. We use each of these spaces to construct a noncommutative
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‘family’ of instantons whose topological charge we show to be equal to k. Finally in
Sect. 5 we discuss what it means for families of instantons to be gauge equivalent. In
particular, we show that the quantum symmetries of the sphere S4

θ generate gauge
degrees of freedom, a feature which is a consequence of the noncommutativity and
is not present in the classical construction. For further discussion in this direction
we refer to [6].

2. The Twistor Fibration

The use of the twistor fibration in the ADHM construction is crucial: this
fibration captures in its geometry the very nature of the anti-self-duality equations,
with the result that an instanton bundle is reinterpreted via pull-back in terms of
holomorphic data on twistor space [24] (cf. also [1]). In particular, this means that
twistor space plays the role of an ‘auxiliary space’ on which the ADHM construction
takes place, before passing back down to the base space S4 (we refer to [19] for
more on the ADHM construction from a twistor perspective).

We start by recalling the details of the algebra inclusion A(S4
θ ) ↪→ A(S7

θ )
as a noncommutative principal bundle with undeformed structure group SU(2);
associated to this principal bundle there is in particular a basic instanton bundle
[14]. Next we give a description of the noncommutative twistor space in terms
of its coordinate algebra A(CP3

θ), as well as a dualised description of the twistor
fibration, now appearing [5] as an algebra inclusion A(S4

θ ) ↪→ A(CP3
θ).

2.1. The noncommutative Hopf fibration. With λ = exp (2πiθ) the de-
formation parameter, the coordinate algebra A(S4

θ ) of the noncommutative four-
sphere S4

θ is the ∗-algebra generated by a central real element x and elements α, β,
α∗, β∗, modulo the relations

(1) αβ = λβα, α∗β∗ = λβ∗α∗, β∗α = λαβ∗, βα∗ = λα∗β,

together with the sphere relation

(2) α∗α+ β∗β + x2 = 1.

Similarly, the coordinate algebra of the noncommutative seven-sphere A(S7
θ ) is

generated as a ∗-algebra by the elements {zj , z∗j | j = 1, . . . , 4} and is subject to
the commutation relations

(3) zjzl = ηjlzlzj , zjz
∗
l = ηljz

∗
l zj , z∗j z

∗
l = ηjlz

∗
l z

∗
j ,

as well as the sphere relation

(4) z∗1z1 + z∗2z2 + z∗3z3 + z∗4z4 = 1.

Compatibility with the SU(2) principal bundle structure requires the deformation
matrix (ηjk) be given by

(5) (ηjk) =

⎛

⎜

⎜

⎝

1 1 μ̄ μ
1 1 μ μ̄
μ μ̄ 1 1
μ̄ μ 1 1

⎞

⎟

⎟

⎠

, μ = exp (iπθ).

The values of the deformation parameters λ, μ are precisely those which allow
an embedding of the classical group SU(2) into the group AutA(S7

θ ). We denote
by A(C4

θ) the algebra generated by the {zj , z∗j } subject to the relations (3); the
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quotient by the additional sphere relation yields the algebra A(S7
θ ). The algebra

inclusion A(S4
θ ) ↪→ A(S7

θ ) is given explicitly by

α = 2(z1z
∗
3 + z∗2z4), β = 2(z2z

∗
3 − z∗1z4), x = z1z

∗
1 + z2z

∗
2 − z3z

∗
3 − z4z

∗
4 .(6)

One easily verifies that for the right SU(2)-action on A(S7
θ ) given on generators by

(7) (z1, z
∗
2 , z3, z

∗
4) �→ (z1, z

∗
2 , z3, z

∗
4)

(

w 0
0 w

)

, w =

(

w1 −w̄2

w2 w̄1

)

∈ SU(2),

the invariant subalgebra is generated as expected by α, β, x and their conjugates,
so one indeed has

InvSU(2)A(S7
θ ) = A(S4

θ ).

When θ = 0 we recover the usual algebras of functions on the classical spheres
S4 and S7. The inclusion A(S4) ↪→ A(S7) is just a dualised description of the
standard SU(2) Hopf fibration S7 → S4.

These noncommutative spheres have canonical differential calculi arising as de-
formations of the classical ones. Explicitly, one has a first order differential calculus
Ω1(S7

θ ) on A(S7
θ ) spanned as an A(S7

θ )-bimodule by {dzj , dz∗j , j = 1, . . . , 4}, sub-
ject to the relations

zidzj = ηijdzjzi, zidz
∗
j = ηjidz

∗
j zi,

with ηij as before. One also has relations

dzidzj + ηijdzjdzi = 0, dzidz
∗
j + ηjidz

∗
j dzi = 0,

allowing one to extend the first order calculus to a differential graded algebra Ω(S7
θ ).

There is a unique differential d on Ω(S7
θ ) such that d : zj �→ dzj . Furthermore,

Ω(S7
θ ) has an involution given by the graded extension of the map zj �→ z∗j . The

story is similar for the four-sphere, in that the differential graded algebra Ω(S4
θ ) is

generated in degree one by dα, dα∗, dβ, dβ∗, dx, subject to the relations

αdβ = λ(dβ)α, β∗dα = λ(dα)β∗,

dαdβ + λdβdα = 0, dβ∗dα+ λdαdβ∗ = 0.

The above are the same as the relations (1) or (3) but with d inserted. As vector
spaces, the graded components Ωk(S7

θ ) and Ωk(S4
θ ) of k-forms on the noncommu-

tative spheres are identical to their classical counterparts, although the algebra
relations between forms are twisted. In particular this means that the Hodge ∗-
operator on S4

θ ,

∗θ : Ωk(S4
θ ) → Ω4−k(S4

θ ),

is defined by the same formula as it is classically. One still has that ∗2θ = 1, whence
there is a direct sum decomposition of two-forms

Ω2(S4
θ ) = Ω2

+(S
4
θ )⊕ Ω2

−(S
4
θ ),

with Ω2
±(S

4
θ ) := {ω ∈ Ω2(S4

θ ) | ∗θω = ±ω} the spaces of self-dual and anti-self-dual
two-forms.
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2.2. The basic instanton. Amongst the nice properties of the classical Hopf
fibration is that its canonical connection is an anti-instanton: its curvature is a
self-dual two-form with values in the Lie algebra su(2) of the structure group.
This property holds also in the noncommutative case, giving a simple example of
a noncommutative instanton. It has an elegant description [14] in terms of the
function algebras A(S7

θ ), A(S4
θ ) as follows. One takes the pair of elements of the

right A(S7
θ )-module A(S7

θ )
4 := C

4 ⊗A(S7
θ ) given by

|ψ1〉 =
(

z1 z2 z3 z4
)t
, |ψ2〉 =

(

−z∗2 z∗1 −z∗4 z∗3
)t
.

With the natural Hermitian structure on A(S7
θ )

4 given by 〈ξ|η〉 =
∑

i ξ
∗
i ηi, one sees

that 〈ψj |ψl〉 = δjl. It is convenient to introduce the matrix-valued function Ψ on
S7
θ given by

(8) Ψ =
(

|ψ1〉 |ψ2〉
)

=

(

z1 z2 z3 z4
−z∗2 z∗1 −z∗4 z∗3

)t

.

From orthonormality of the columns one has that Ψ∗Ψ = 1 and hence the matrix

(9) q := ΨΨ∗ =
1

2

⎛

⎜

⎜

⎝

1 + x 0 α −μ̄ β∗

0 1 + x β μα∗

α∗ β∗ 1− x 0
−μβ μ̄ α 0 1− x

⎞

⎟

⎟

⎠

is a self-adjoint idempotent of rank two, i.e. q∗ = q = q2 and Tr q = 2. The action
(7) of SU(2) on A(S7

θ ) now takes the form

Ψ �→ Ψw, w ∈ SU(2),

from which the SU(2)-invariance of the entries of q is immediately deduced. We
may also write the commutation relations of A(S7

θ ) in the useful form

(10) ΨiaΨjb = ηijΨjbΨia, a, b = 1, 2 i, j = 1, 2, 3, 4.

If ρ is the defining representation of SU(2) on C
2, the finitely generated projec-

tive right A(S4
θ )-module E := qA(S4

θ)
4 is isomorphic to the module of equivariant

maps from A(S7
θ ) to C

2,

E ∼= {φ ∈ A(S7
θ )⊗ C

2 | (w ⊗ id)φ = (id⊗ ρ(w−1))φ for all w ∈ SU(2)}.

The module E has the role of the module of sections of the ‘associated bundle’
E = S7

θ ×SU(2) C
2. With the projection q = ΨΨ∗ there comes the canonical

Grassmann connection defined on the module E by

∇ := q ◦ d : E → E ⊗A(S4
θ)

Ω1(S4
θ ).

The curvature of ∇ is ∇2 = q(dq)2, which may be shown to be self-dual with
respect to the Hodge operator,

∗θ(q(dq)2) = q(dq)2.

The complementary projector p = 1 − q yields a connection whose curvature is
anti-self-dual, ∗θ(p(dp)2) = −p(dp)2, and hence an instanton on the noncommuta-
tive four-sphere, which we call the basic instanton. Noncommutative index theory
computes its ‘topological charge’ to be equal to −1.
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Using the standard basis (e1, e2) of C2, equivariant maps are written as φ =
∑

a φa ⊗ ea. On them, one has explicitly that

∇(φa) = dφa +
∑

b
ωabφb,

where the connection one-form ω = ωab is found to be

(11) ωab =
1
2

∑

j
((Ψ∗)ajdΨjb − d(Ψ∗)ajΨjb) .

From this it is easy to see that ωab = −(ω∗)ba and
∑

a ωaa = 0, so that ω is an
element of Ω1(S7

θ )⊗ su(2).

2.3. Noncommutative twistor space. It is well-known that, as a real six-
dimensional manifold, the space CP

3 may be identified with the set of all 4 × 4
Hermitian projector matrices of rank one: this is because each such matrix uniquely
determines and is uniquely determined by a one-dimensional subspace of C4. Thus
the coordinate algebra A(CP3) of CP3 has a defining matrix of generators

(12) Q =

⎛

⎜

⎜

⎝

t1 x1 x2 x3

x∗
1 t2 y3 y2

x∗
2 y∗3 t3 y1

x∗
3 y∗2 y∗1 t4

⎞

⎟

⎟

⎠

,

with t∗j = tj , j = 1, . . . , 4 and TrQ =
∑

j tj = 1, as well as the relations coming

from the condition Q2 = Q, that is to say
∑

j QkjQjl = Qkl. The noncommutative

twistor algebra A(CP3
θ) is obtained by deforming these relations: with deformation

parameter λ = exp (2πiθ), one has that t1, . . . , t4 are central, that

x1x3 = λ̄x3x1, x2x1 = λ̄x1x2, x2x3 = λ̄x3x2

as well as the auxiliary relations

y1y2 = λ̄y2y1, y1y3 = λ̄y3y1, y2y3 = λ̄y3y2, x1(y1, y2, y3) = (λ̄2y1, λ̄y2, λy3)x1,

x2(y1, y2, y3) = (λ̄y1, y2, λy3)x2, x3(y1, y2, y3) = (λ̄y1, λ̄y2, y3)x3,

and similar relations obtained by taking the adjoint under ∗ of those above (we refer
to [5] for further details). To proceed further it is useful to note that classically
CP

3 is the quotient of the sphere S7 by the action of the diagonal U(1) subgroup
of SU(2). This remains true in the noncommutative case and one identifies the
generators of A(CP3

θ) as

(13) Qjl = zjz
∗
l ,

via the generators {zj , z∗j } of A(S7
θ ). Indeed, from equation (13) one could infer the

relations on the generators of A(CP3
θ) from those on the generators of A(S7

θ ). By its
very definition A(CP3

θ) is the invariant subalgebra of A(S7
θ ) under this U(1)-action

and equation (13) defines an inclusion of algebras

A(CP3
θ) ↪→ A(S7

θ ),

giving a noncommutative principal bundle with structure group U(1). We thus
have algebra inclusions

(14) A(S4
θ ) ↪→ A(CP3

θ) ↪→ A(S7
θ ),

with the left-hand arrow still to be determined. As in the classical case, this in-
clusion is not a principal fibration (the ‘typical fibre’ is a copy of the undeformed
CP

1) but we may nevertheless express the generators of A(CP3
θ) in terms of the
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generators of A(S4
θ ). For this we need the non-degenerate map on A(C4

θ) given on
generators by

(15) J(z1, z2, z3, z4) := (−z∗2 , z
∗
1 ,−z∗4 , z

∗
3)

and extended as an anti-algebra map. Classically, in doing so we would be identi-
fying the set of quaternions H with the set of 2× 2 matrices over C of the form

c1 + c2j ∈ H �→
(

c1 −c̄2
c2 c̄1

)

∈ M2(C),

and the map J corresponds to right multiplication by the quaternion j. In the
deformed case, this very same identification defines the algebra A(H2

θ) to be equal
to the algebra A(C4

θ) equipped with the map J [16].
Using the identification of generators (13) the map J extends to an automor-

phism of A(CP3
θ), given in terms of the matrix generators in equation (12) by

J(t1) = t2, J(t2) = t1, J(t3) = t4, J(t4) = t3,

J(x1) = −x1, J(y1) = −y1, J(x∗
1) = −x∗

1, J(y∗1) = −y∗1 ,

J(x2) = μ y∗2 , J(x3) = −y∗3 , J(x∗
2) = μ̄ y2, J(x∗

3) = −y3,

J(y2) = μ̄ x∗
2, J(y3) = −x∗

3, J(y∗2) = μx2, J(y∗3) = −x3,

as required for J to respect the algebra relations ofA(CP3
θ). The subalgebra fixed by

the map J is precisely A(S4
θ ); in fact one has an algebra inclusion A(S4

θ ) ↪→ A(CP3
θ)

given on generators by

(16) x �→ 2(t1 + t2 − 1), α �→ 2(x2 + μ y∗2), β �→ 2(−x∗
3 + y3),

with μ =
√
λ = exp (πiθ). In the notation of equation (8) we have Q = |ψ1〉〈ψ1|,

and we note also that |ψ2〉 = |Jψ1〉, so that equation (16) is just the statement that

q = |ψ1〉〈ψ1|+ |ψ2〉〈ψ2| = |ψ1〉〈ψ1|+ |Jψ1〉〈Jψ1| = Q+ J(Q).

This gives us the promised algebraic description of the twistor fibration (14): the
generators of A(S4

θ ) are identified with the degree one elements of A(CP3
θ) of the

form Z + J(Z).

3. The Quantum Conformal Group

Next, we briefly review the construction of the quantum groups which describe
the symmetries of the spheres S4

θ and S7
θ (and the symmetries of the Hopf fibration

defined in Sect. 2.1).

3.1. The quantum groups SLθ(2,H) and Spθ(2). To begin, we need a
noncommutative analogue of the set of all linear transformations of the quaternionic
vector space H

2
θ defined above. To this end, we define a transformation bialgebra

for the algebra A(H2
θ) to be a bialgebra B such that there is a ∗-algebra map

ΔL : A(C4
θ) → B⊗A(C4

θ) commuting with the map J of equation (15). The set of all
transformation bialgebras for A(H2

θ) forms a category in the natural way; we define
the bialgebra A(Mθ(2,H)) as the universal initial object in the category, meaning
that whenever B is a transformation bialgebra for A(H2

θ) there is a morphism of
transformation bialgebras A(Mθ(2,H)) → B [16]. Using the universality property,
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one finds that A(Mθ(2,H)) is the associative algebra generated by the entries of
the following 4× 4 matrix:

(17) A =

(

aij bij
cij dij

)

=

⎛

⎜

⎜

⎝

a1 −a∗2 b1 −b∗2
a2 a∗1 b2 b∗1
c1 −c∗2 d1 −d∗2
c2 c∗1 d2 d∗1

⎞

⎟

⎟

⎠

.

With our earlier notation, we think of this matrix as generated by four quaternion-
valued functions, writing

a = (aij) =

(

a1 −a∗2
a2 a∗1

)

and similarly for the other entries b, c, d. The coalgebra structure on A(Mθ(2,H))
is given by

Δ(Aij) =
∑

l
Ail ⊗Alj , ε(Aij) = δij

for i, j = 1, . . . , 4, and its ∗-structure is evident from the matrix (17). The coaction
ΔL is determined to be

(18) ΔL : A(C4
θ) → A(Mθ(2,H))⊗A(C4

θ), ΔL(Ψia) =
∑

j
Aij ⊗Ψja,

where Ψ is the matrix in equation (8) (although here we do not assume the sphere
relation and instead think of the entries of Ψ as generators of the algebra A(C4

θ)).
The relations between the generators of A(Mθ(2,H)) are found from the require-
ment that ΔL make A(C4

θ) into an A(Mθ(2,H))-comodule algebra. One computes

(19) ΔL(ΨiaΨjb) =
∑

km
(AimAjl − ηijηlmAjlAim)⊗ΨmaΨlb

and, since the products ΨmaΨlb may be taken to be all independent as k, l, a, b vary,
we must have that

(20) AimAjl = ηijηlmAjlAim

for i, j, l,m = 1, . . . , 4. It is not difficult to see that the algebra generated by the aij
is commutative, as are the algebras generated by the bij , cij , dij , although overall
the algebra is noncommutative due to some non-trivial relations among components
in different blocks.

Of course, A(Mθ(2,H)) is not quite a Hopf algebra since it does not have an
antipode. We obtain a Hopf algebra by passing to the quotient of A(Mθ(2,H)) by
the Hopf ∗-ideal generated by the element D − 1, where D = detA is the formal
determinant of the matrix A in (17). We denote the quotient by A(SLθ(2,H)), the
coordinate algebra on the quantum group SLθ(2,H) of matrices in Mθ(2,H) with
determinant one, and continue to write the generators of the quotient as Aij . The
algebra A(SLθ(2,H)) inherits a ∗-bialgebra structure from that of A(Mθ(2,H)) and
we use the determinant to define an antipode S : A(SLθ(2,H)) → A(SLθ(2,H)) as
in [16]. The datum (A(SL(2,H)),Δ, ε, S) constitutes a Hopf ∗-algebra.

The Hopf algebra A(Spθ(2)) is the quotient of A(SLθ(2,H)) by the two-sided
∗-Hopf ideal generated by

∑

l
(A∗)liAlj − δij , i, j = 1, . . . , 4.

In this algebra we have the relations A∗A = AA∗ = 1, or equivalently S(A) = A∗.
This Hopf algebra is the coordinate algebra on the quantum group Spθ(2), the
subgroup of SLθ(2,H) of unitary matrices.
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Finally there is an inclusion of algebrasA(S7
θ ) ↪→ A(Spθ(2)) given on generators

by the ∗-algebra map

(21) z1 �→ a1, z2 �→ a2, z3 �→ c1, z4 �→ c2.

This means that we may identify the first two columns of the matrix A with the ma-
trix Ψ of equation (8). Similarly there is an algebra inclusion A(S4

θ ) ↪→ A(Spθ(2))
given by

(22) x �→ a1a
∗
1 − a2a

∗
2 + c1c

∗
1 − c2c

∗
2, α �→ a1c

∗
1 − a∗2c2, β �→ −a∗1c2 + a2c

∗
1.

These inclusions yield algebra isomorphisms of A(S7
θ ) and A(S4

θ ) with certain sub-
algebras of A(Spθ(2)) of coinvariants under coactions by appropriate sub-Hopf alge-
bras, thus realising the noncommutative spheres as quantum homogeneous spaces
for Spθ(2). We refer to [16] for details of these constructions.

3.2. Quantum conformal transformations. We now review how the quan-
tum groups obtained in the previous section (co)act on the spheres S7

θ and S4
θ as

‘quantum symmetries’. The coaction

(23) ΔL : A(C4
θ) → A(SLθ(2,H))⊗A(C4

θ), ΔL(Ψia) =
∑

j
Aij ⊗Ψja,

is by construction a ∗-algebra map and so, if we assume that the quantity

r2 :=
∑

j
z∗j zj

is invertible with inverse r−2, then we may also define an inverse for the quantity

ρ2 := ΔL

(
∑

j
z∗j zj

)

by ρ−2 := ΔL(r
−2). Inverting r2 corresponds to deleting the origin in C

4
θ and we

define the coordinate algebra of the corresponding subset of C4
θ by

A0(C
4
θ) := A(C4

θ)[r
−2],

the algebra A(C4
θ) with r−2 adjoined. Extending ΔL as a ∗-algebra map gives a

well-defined coaction

ΔL : A0(C
4
θ) → A(SLθ(2,H))⊗A0(C

4
θ)

for which A0(C
4
θ) is an A(SLθ(2,H))-comodule algebra.

Writing A0(˜C
4
θ) := ΔL(A0(C

4
θ)) for the image of A0(C

4
θ) under ΔL, both ρ2

and ρ−2 are central in the algebra A0(˜C
4
θ), since r2 and r−2 are central in A0(C

4
θ).

Now the coaction ΔL descends to a coaction of the Hopf algebra A(Spθ(2)),

(24) ΔL : A0(C
4
θ) → A(Spθ(2))⊗A0(C

4
θ),

by the same formula (18) now viewed for the quotient A(Spθ(2)). In particular, for
this coaction one has

(Ψ∗Ψ)ab �→
∑

ijl
(A∗)liAij ⊗ (Ψ∗)alΨjb =

∑

jl
δlj ⊗ (Ψ∗)alΨjb = 1⊗ (Ψ∗Ψ)ab,

since the generators Aij satisfy the relations
∑

i(A
∗)liAij = δlj in the algebra

A(Spθ(2)). Then both A(S4
θ ) and A(S7

θ ) are A(Spθ(2))-comodule algebras, since
this coaction preserves the sphere relations (2) and (4).

In contrast, the spheres S7
θ and S4

θ are not preserved under the coaction of
the larger quantum group SLθ(2,H). Although defined on the algebra A0(C

4
θ), the

coaction ΔL of A(SLθ(2,H)) is not well-defined on the seven-sphere A(S7
θ ) since it



64 SIMON BRAIN AND GIOVANNI LANDI

does not preserve the sphere relation r2 = 1 of equation (4). By definition, we have
instead that ΔL(r

2) = ρ2, meaning that the coaction of A(SLθ(2,H)) ‘inflates’ the
sphere A(S7

θ ) [16]. Since r2 is a central element of A0(C
4
θ), we may evaluate it as

a positive real number. The result is the coordinate algebra of a noncommutative
sphere S7

θ,r of radius r; as this radius varies in A0(C
4
θ), it sweeps out a family of

seven-spheres. Similarly, evaluation of the central element ρ2 in A0(˜C
4
θ) yields the

coordinate algebra of a noncommutative sphere ˜S7
θ,ρ of radius ρ and, as the value

of ρ varies in A0(˜C
4
θ), it sweeps out another family of seven-spheres. The coaction

ΔL of A(SLθ(2,H)) on A0(C
4
θ) serves to map the family parameterised by r2 onto

the family parameterised by ρ2.
A similar fact is found for the generators α, β, x of the four-sphere algebra

A(S4
θ ). The coaction of A(SLθ(2,H)) does not preserve the sphere relation but

gives instead that

ΔL(α
∗α+ β∗β + x2) = ρ4,

and the four-sphere S4
θ is also inflated. Let us write A(Qθ) for the subalgebra of

A0(C
4
θ) generated by α, β, x and their conjugates. Then as r4 varies in A(Qθ),

we get a family of noncommutative four-spheres. Similarly, we define α̃ := ΔL(α),

β̃ := ΔL(β), x̃ := ΔL(x) and so forth, and writeA( ˜Qθ) for the subalgebra ofA0(˜C
4
θ)

that they generate. It is precisely the SU(2)-invariant subalgebra of A0(˜C
4
θ), and

as ρ4 varies in A( ˜Qθ) we get another family of noncommutative four-spheres. The
coaction of the quantum group A(SLθ(2,H)) maps the family parameterised by r4

onto the family parameterised by ρ4.
Thus there is a family of SU(2)-principal fibrations given by the algebra in-

clusion A(Qθ) ↪→ A0(C
4
θ), the family being parameterised by the function r2. For

a fixed value of r2 we get an SU(2) principal bundle S7
θ,r → S4

θ,r2 . Similarly, the

algebra inclusion A( ˜Qθ) ↪→ A0(˜C
4
θ) defines a family of SU(2)-principal fibrations

parameterised by the function ρ2. The above construction shows that the coaction
of the quantum group A(SLθ(2,H)) carries the former family of principal fibrations
onto the latter.

All of this means that, as things stand, we cannot use the presentations ofA(S4
θ )

and A(S7
θ ) of Sect. 2.1 to give a well-defined coaction of A(SLθ(2,H)), since the

sphere relations we use to define them are not preserved by the coaction. Rather we
should work with the families of spheres all at once (this is the price we have to pay
for working with the coaction of a Hopf algebra rather than the action of a group).
To do this, we note that the algebra A(S4

θ ) may be identified with the subalgebra
of A0(C

4
θ) generated by r−2α, r−2β, r−2x, together with their conjugates, since the

sphere relation

(25) (r−2α)(r−2α)∗ + (r−2β)(r−2β)∗ + (r−2x)2 = 1

is automatically satisfied in A0(C
4
θ). The result of doing so is that we have a

well-defined coaction,

ΔL : A(S4
θ ) → A(SLθ(2,H))⊗A(S4

θ ),

defined on the generators r−2α, r−2β, r−2x and their conjugates, with the sphere
relation (25) now preserved by ΔL. In this way, we think of SLθ(2,H)) as the
quantum group of conformal transformations of S4

θ .
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In these new terms, the construction of the defining projector for A(S4
θ ) needs

to be modified only slightly. We now take the normalised matrix

(26) Ψ = r−1

(

z1 z2 z3 z4
−z∗2 z∗1 −z∗4 z∗3

)t

,

at the price of including the generator r−1 as well (not a problem in the smooth
closure [16]). Thanks to the relation (25), we still have Ψ∗Ψ = 1 and the required
projector is

(27) q := ΨΨ∗ = 1
2r

−2

⎛

⎜

⎜

⎝

r2 + x 0 α −μ̄ β∗

0 r2 + x β μα∗

α∗ β∗ r2 − x 0
−μβ μ̄ α 0 r2 − x

⎞

⎟

⎟

⎠

.

By the above discussion, the coaction ΔL of A(SLθ(2,H)) is now well-defined on

the algebra generated by the entries of this matrix. Writing ˜Ψia := ΔL(Ψia), the
image of q under ΔL is computed to be

(28) q̃ := ˜Ψ˜Ψ∗ = 1
2ρ

−2

⎛

⎜

⎜

⎝

ρ2 + x̃ 0 α̃ −μ̄ β̃∗

0 ρ2 + x β̃ μ α̃∗

α̃∗ β̃∗ ρ2 − x 0

−μ β̃ μ̄ α̃ 0 ρ2 − x̃

⎞

⎟

⎟

⎠

.

The entries of these projectors generate respectively subalgebras of A0(C
4
θ) and

A0(˜C
4
θ), each parameterising the families of noncommutative four-spheres discussed

above.
Finally, we observe that similar statements may be made about the U(1)-

principal fibration S7
θ → CP

3
θ. We do not need a sphere relation in order to define

the coordinate algebra A(CP3
θ): in Sect. 2.3 it was merely convenient to do so.

Instead, we may identify A(CP3
θ) as the U(1)-invariant subalgebra of A0(C

4
θ) gen-

erated by elements t1 = r−2z1z
∗
2 , x1 = r−2z1z

∗
2 , x2 = r−2z1z

∗
3 , x3 = r−2z1z

∗
4 and

so forth.

4. A Noncommutative ADHM construction

There is a well-known solution to the problem of constructing instantons on
the classical four-sphere S4 which goes under the name of ADHM construction.
Techniques of linear algebra are used to construct vector bundles over twistor space
CP

3, which are in turn put together to construct a vector bundle over S4 equipped
with an instanton connection. It is known that all such connections are obtained
in this way [2, 3].

Our goal here is to generalise the ADHM method to a deformed version which
constructs instantons on the noncommutative sphere S4

θ . The classical construction
may be obtained from our deformed version by setting θ = 0. As usual our approach
stems from writing the classical construction in a dualised language which does not
depend on the commutativity of the available function algebras, although here
the situation is not as straightforward as one might first expect. The deformed
construction is rather more subtle than it is in the commutative case and produces
noncommutative ‘families’ of instantons.
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4.1. A noncommutative space of monads. The algebra A(C4
θ) has a nat-

ural Z-grading given by assigning to its generators the degrees

deg(zj) = 1, deg(z∗j ) = −1, j = 1, . . . , 4,

which results in a decomposition A(C4
θ) = ⊕n∈ZAn. Then for each r ∈ Z there

is a ‘degree shift’ map from A(C4
θ) to itself whose image we denote A(C4

θ)(r); by
definition the degree n component of A(C4

θ)(r) is Ar+n.
Similarly, if a given A(C4

θ)-module E is Z-graded, we denote the degree-shifted
modules by E(r), r ∈ Z. In particular, for each finite dimensional vector space
H the corresponding free right module H ⊗ A(C4

θ) is Z-graded by the grading on
A(C4

θ), and the shift maps on A(C4
θ) induce the shift maps on H ⊗A(C4

θ).
The input data for the classical ADHM construction of SU(2) instantons with

topological charge k is a monad, by which we mean a sequence of free right modules
over the algebra A(C4),

(29) H ⊗A(C4)(−1)
σz−→ K ⊗A(C4)

τz−→ L⊗A(C4)(1),

where H, K and L are complex vector spaces of dimensions k, 2k + 2 and k re-
spectively. The arrows σz and τz are A(C4)-module homomorphisms assumed to
be such that σz is injective, τz is surjective and that the composition τzσz = 0.
This is the usual approach in algebraic geometry [20], although here we work with
A(C4)-modules, i.e. global sections of vector bundles, rather than with locally-free
sheaves.

The degree shifts signify that we think of σz and τz respectively as elements of
H∗⊗K⊗A1 and K∗⊗L⊗A1, where A1 is the degree one component of A(C4) (the
vector space spanned by the generators z1, . . . , z4). This means that alternatively
we may think of them as linear maps

(30) σz : H × C
4 → K, τz : K × C

4 → L,

thus recovering the more explicit geometric approach of [2].
Our goal in this section is to give a description of a monad of the form (29)

in an algebraic framework which allows the possibility of the algebra A(C4
θ) being

noncommutative. In this setting, we require the maps σz and τz to be parameterised
by the noncommutative space C

4
θ rather than by the classical space C

4, as was the
case in equation (30). Our first task then is to find an analogue of the space of
linear module maps H ⊗A(C4

θ)(−1) → K ⊗A(C4
θ).

Following a general strategy [23], we define A(˜Mθ(H,K)) to be the universal
algebra for which there is a morphism of right A(C4

θ)-modules,

σz : H ⊗A(C4
θ)(−1) → A(˜Mθ(H,K))⊗K ⊗A(C4

θ),

which is linear in the generators z1, . . . , z4 of A(C4
θ). By this we mean that whenever

B is an algebra satisfying these properties there exists a morphism of algebras

φ : A(˜Mθ(H,K)) → B and a commutative diagram

H ⊗A(C4
θ)(−1)

σz−−−−→ A(˜Mθ(H,K))⊗K ⊗A(C4
θ)

⏐

⏐

�id

⏐

⏐

�
φ⊗id

H ⊗A(C4
θ)(−1)

σ′
z−−−−→ B ⊗K ⊗A(C4

θ)

of right A(C4
θ)-modules, with σ′

z denoting the corresponding map for the algebra
B.
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Choosing a basis (u1, . . . , uk) for the vector space H and a basis (v1, . . . , v2k+2)

for the vector space K, the algebra A(˜Mθ(H,K)) is generated by the matrix ele-
ments

{Mα
ab | a = 1, . . . , 2k + 2, b = 1, . . . , k, α = 1, . . . , 4},

which define a map σz, expressed on simple tensors by

(31) σz : ub ⊗ Z �→
∑

a,α
Mα

ab ⊗ va ⊗ zαZ, Z ∈ A(C4
θ).

In more compact notation, for each α we arrange these elements into a (2k+2)×k
matrix Mα = (Mα

ab), so that with respect to the above bases, σz may be written

(32) σz =
∑

α
Mα ⊗ zα.

To find the relations in the algebra A(˜Mθ(H,K)), let us write (û1, . . . , ûk) for
the basis of H∗ which is dual to (u1, . . . , uk) and write (v̂1, . . . , v̂2k+2) for the basis
of K∗ dual to (v1, . . . , v2k+2). Then the map (31) has an equivalent dual description
(also denoted σz) in terms of the dual vector spaces H∗, K∗ as

(33) σz : v̂a ⊗ Z �→
∑

b,α
Mα

ab ⊗ ûb ⊗ zαZ,

and extended as an A(C4
θ)-module map. The functionals ûb, v̂a together with their

conjugates û∗
b , v̂

∗
a generate the coordinate algebras of H and K respectively. It is

only natural to require that (33) be an algebra map.

Proposition 4.1. With (ηαβ) the matrix (5) of deformation parameters, the
matrix elements Mα

ab enjoy the relations

(34) Mα
abM

β
cd = ηβαM

β
cdM

α
ab

for each a, c = 1, . . . , 2k + 2, each b, d = 1, . . . , k and each α, β = 1, . . . , 4.

Proof. The requirement that (33) is an algebra map means that in degree
one we need σz(v̂av̂c) = σz(v̂cv̂a) for all a, c = 1, . . . , 2k + 2, which translates into
the statement that

∑

b,d,α,β
Mα

abM
β
cd ⊗ ûbûd ⊗ zαzβ =

∑

b,d,α,β
Mβ

cdM
α
ab ⊗ ûdûb ⊗ zβzα

for all a, c = 1, . . . , 2k + 2. Using in turn the relations (3) and the fact that the
generators ûb, ûd commute for all values of b, d, this equation may be rearranged
to give

∑

b,d,α,β

(

Mα
abM

β
cd − ηβαM

β
cdM

α
ab

)

⊗ ûbûd ⊗ zαzβ = 0.

Since for b ≤ d and α ≤ β the quantities ûbûd ⊗ zαzβ may all be taken to be
independent, we must have that their coefficients are all zero, leading to the stated
relations. �

The above proposition simply says that the entries of a given matrix Mα all
commute, whereas the relations between the entries of the matrices Mα and Mβ are

determined by the deformation parameter ηβα. Hence the algebra A(˜Mθ(H,K)) is

generated by the Mα
ab subject to the relations (34). The algebra A(˜Mθ=0(H,K))

is commutative and parameterises the space of all possible maps σz, since for each

point x ∈ ˜Mθ=0(H,K) there is an evaluation map,

evx : A(˜Mθ=0(H,K)) → C,
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which yields an A(C4)-module homomorphism

(evx ⊗ id)σz : H ⊗A(C4)(−1) → K ⊗A(C4),

(evx ⊗ id)σz :=
∑

evx(M
α
ab)⊗ zα.

When θ is different from zero, there need not be enough evaluation maps avail-

able. Nevertheless, we think of A(˜Mθ(H,K)) as a noncommutative family of maps

parameterised by the noncommutative space ˜Mθ(H,K).

Remark 4.2. Since we constructed A(˜Mθ(H,K)) through the minimal re-
quirement that σz is an algebra map, it is indeed the universal algebra with the

required properties. This means that our interpretation of A(˜Mθ(H,K)) as a non-
commutative family of maps is in agreement with the approaches of [23, 25, 22]
for quantum families of maps parameterised by noncommutative spaces. Moreover,
it also agrees with the definition of algebras of rectangular quantum matrices dis-
cussed in [17]. It may also be viewed as a kind of ‘comeasuring’ as introduced in
[18], but now for modules instead of algebras.

Thus we have a noncommutative analogue of the space of all maps σz. A similar

construction works for the maps τz: there is a universal algebra A(˜Mθ(K,L))
generated by matrix elements Nα

ba for labels b = 1, . . . , k, a = 1, . . . , 2k + 2 and
α = 1, . . . , 4, here coming from a map

(35) τz : va ⊗ Z �→
∑

b,α
Nα

ba ⊗ wb ⊗ zαZ,

having chosen a basis (w1, . . . , wk) for the vector space L. Dually, the requirement
that τz be an algebra map from the coordinate algebra of L to the coordinate

algebra of K results in relations for the generators of the algebra A(˜Mθ(K,L)),

(36) Nα
baN

β
dc = ηβαN

β
dcN

α
ba,

which are the parallel of conditions (34) for the algebra A(˜Mθ(H,K)).
To complete the monad picture we finally require that the composition of the

maps σz and τz be zero. In the dualised format the composition is easily dealt with
as the composition as a map from the coordinate algebra of L to that of H, with
the product appearing as part of a general procedure for ‘gluing’ quantum matrices
[17]. By this we mean that the composition ϑz := τz ◦ σz is given in terms of an
algebra-valued k×k matrix, the product of a k×(2k+2) matrix with a (2k+2)×k
matrix. Explicitly, the map is

ϑz : H ⊗A(C4
θ)(−1) → A(˜Mθ(H,L))⊗ L⊗A(C4

θ)(1),

ϑz : ŵa ⊗ Z �→
∑

b,α,β
Tα,β
ab ⊗ ŵb ⊗ zαzβZ,

where A(˜Mθ(H,L)) is the coordinate algebra generated by the matrix elements

Tα,β
ab for α, β = 1, . . . , 4 and a, b = 1, . . . , k. The matrix multiplication (τz, σz) �→ ϑz

now appears as a ‘coproduct’

A(˜Mθ(H,L)) → A(˜Mθ(K,L))⊗A(˜Mθ(H,K)),

Tα,β
cd :=

∑

b
Nα

cb ⊗Mβ
bd, α, β = 1, . . . , 4, c, d = 1, . . . , k.

The condition τzσz = 0 is therefore that the image of this map in A(˜Mθ(K,L))⊗
A(˜Mθ(H,K)) is zero; this is established by the following proposition.
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Proposition 4.3. The condition τzσz = 0 is equivalent to the requirement that

(37)
∑

r
(Nα

brM
β
rd + ηβαN

β
brM

α
rd) = 0

for all b, d = 1, . . . , k and all α, β = 1, . . . , 4.

Proof. In terms of algebra-valued matrices the map τzσz is computed as the
composition of the duals of the maps (31) and (35), following the discussion above,
to be equal to

(τzσz)bd =
∑

r,α,β
Nα

brM
β
rd ⊗ zαzβ .

Equating to zero the coefficients of the linearly independent generators zαzβ for
α ≤ β gives the relations as stated. �

The conditions in equation (37) may be expressed more compactly in terms of
products of matrices as

NαMβ + ηβαN
βMα = 0,

for α, β = 1, . . . , 4 (and as in (36) there is no sum over α and β in this expression).

Definition 4.4. Define A(˜Mθ;k) to be the algebra generated by the matrix

elements Mα
ab and Nβ

ba subject to the relations

Mα
abM

β
cd = ηβαM

β
cdM

α
ab, Nα

baN
β
dc = ηβαN

β
dcN

α
ba,

as well as the relations
∑

r
(Nα

drM
β
rb + ηβαN

β
brM

α
rd) = 0

for all α, β = 1, . . . , 4, all b, d = 1, . . . , k and all a, c = 1, . . . , 2k + 2.

The noncommutative algebra A(˜Mθ;k) is by construction universal amongst
all algebras having the property that the resulting maps σz and τz are algebra
maps which compose to zero. Our interpretation is that for fixed k the collection
of monads over C

4
θ is parameterised by the noncommutative space which is ‘dual’

to this algebra.

4.2. The subspace of self-dual monads. In the classical case, the input
datum of a monad is by itself insufficient to construct bundles over the four-sphere
S4. To achieve this, one must incorporate the quaternionic structure afforded by
the map J as in (15) (in the classical limit) and ensure that the monad is compatible
with this extra structure. The same is true in the noncommutative case, as we shall
see presently.

Given the pair of maps constructed in the previous section,

σz : H ⊗A(C4
θ)(−1) → A(˜Mθ(H,K))⊗K ⊗A(C4

θ),

τz : K ⊗A(C4
θ) → A(˜Mθ(K,L))⊗ L⊗A(C4

θ)(1),

we firstly note that the anti-algebra map J in (15) induces a new pair of maps,

σJ(z) : H ⊗ J
(

A(C4
θ)(−1)

)

→ A
(

˜Mθ(H,K)
)

⊗K ⊗ J
(

A(C4
θ)
)

,

σJ(z) :=
∑

α

Mα ⊗ J(zα),(38)
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and

τJ(z) : K ⊗ J
(

A(C4
θ)
)

→ A
(

˜Mθ(K,L)
)

⊗ L⊗ J
(

A(C4
θ)(1)

)

,

τJ(z) :=
∑

α

Nα ⊗ J(zα).(39)

Here, J
(

A(C4
θ)
)

is the left A(C4
θ)-module induced by the anti-algebra map J and

σJ(z), τJ(z) are homomorphisms of left A(C4
θ)-modules. We may also take the

adjoints of the above maps. To make sense of this, we need to add to our picture
the matrix elements Mα

ab
∗, so that the adjoint of σz is

(40) σ	
z : va ⊗ Z �→

∑

b,α
Mα

ab
∗ ⊗ ub ⊗ z∗αZ, Z ∈ A(C4

θ),

where a = 1, . . . , 2k + 2, b = 1, . . . , k and α = 1, . . . , 4. Let us denote by Mα† the
k× (2k + 2) matrix with entries (Mα†)ba = Mα

ab
∗. Then with respect to the above

choice of bases, the adjoint map σ	
z may be written more compactly as

σ	
z =

∑

α
Mα† ⊗ z∗α.

Similarly, we add the matrix elements Nα
dc

∗ and write (Nα†)cd = Nα
dc

∗, so that the
adjoint of τz is

τ	z : wb ⊗ Z �→
∑

a,α
Nα

ba
∗ ⊗ va ⊗ z∗αZ,

or τ	z =
∑

α Nα† ⊗ z∗α in compact notation. The elements Mα
ab

∗ are the generators

of the algebra A(˜Mθ(K
∗, H∗)), whereas the elements Nα

dc
∗ are the generators the

algebra A(˜Mθ(L
∗,K∗)). Applied to equations (38) and (39), all of this yields a

pair of homomorphisms of right A(C4
θ)-modules

σ	
J(z) : K

∗ ⊗ J
(

A(C4
θ)
)∗ → A

(

˜Mθ(K
∗, H∗)

)

⊗H∗ ⊗ J
(

A(C4
θ)
)∗

(1),

τ	J(z) : L
∗ ⊗ J

(

A(C4
θ)
)∗

(−1) → A
(

˜Mθ(L
∗,K∗)

)

⊗K∗ ⊗ J
(

A(C4
θ)
)∗

,

defined respectively by

σ	
J(z) =

∑

α

Mα† ⊗ J(zα)
∗, τ	J(z) =

∑

α

Nα† ⊗ J(zα)
∗.

Of course, we may identify the vector spaces H and L∗ through the basis isomor-
phism ub �→ ŵb for each b = 1, . . . , k. Similarly the isomorphism va �→ v̂a for
a = 1, . . . , 2k + 2 gives an identification of the vector space K with its dual K∗.
Also, the right module J(A(C4

θ))
∗ may be identified with A(C4

θ) by the composition
of the map J with the involution ∗ (noting that this identification is not the identity
map). Through these identifications, we may think of σ	

J(z) and τ	J(z) as module

homomorphisms

τ	J(z) : H ⊗A(C4
θ)(−1) → A

(

˜Mθ(H,K)
)

⊗K ⊗A(C4
θ),

σ	
J(z) : K ⊗A(C4

θ) → A
(

˜Mθ(K,L)
)

⊗ L⊗A(C4
θ)(1).

It is straightforward to check that we now have σ	
J(z)τ

	
J(z) = 0 and so all of this

means that the maps σ	
J(z) and τ	J(z) also give a parameterisation of the noncommu-

tative space of monads, albeit a different parameterisation from the one we started
with. In the classical case the above procedure applied to a given monad again
yields a monad, although it is not necessarily the one we started with. If fact, in
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the classical case, one is interested only in the subset of monads which are invariant
under the above construction, namely the monad obtained by applying J and dual-
ising is required to be isomorphic to the one we start with (this is the sense in which
we require monads to be compatible with J). We call such monads self-dual. In
our algebraic framework, where we work not with specific monads but rather with

the (possibly noncommutative) space ˜Mθ;k of all monads, this extra requirement
is encoded as follows.

Proposition 4.5. The space of self-dual monads is parameterised by the alge-

bra A(˜MSD
θ;k ), the quotient of the algebra A(˜Mθ;k) by the further relations

(41) N1 = −M2†, N2 = M1†, N3 = −M4†, N4 = M3†.

Proof. The condition that the maps σz and τz should parameterise self-dual
monads is that σz = τ	J(z), equivalently that τz = −σ	

J(z). In terms of the matrices

Mα, Nα, the former condition reads

(42)
∑

α
Mα ⊗ zα =

∑

α
Nα† ⊗ J(zα)

∗.

Equating coefficients of generators of A(C4
θ) in each of these equations yields the

extra relations as stated. �

Remark 4.6. The identification of the vector space K with its dual K∗ means
that the module K ⊗A(C4

θ) acquires a bilinear form given by

(43) (ξ, η) := 〈Jξ|η〉 =
∑

a
(Jξ)∗aηa

for ξ = (ξa) and η = (ηa) ∈ K ⊗ A(C4
θ), with 〈 · | · 〉 the canonical Hermitian

structure on K ⊗A(C4
θ). The monad condition, which now reads

0 = τzσz = −σ	
J(z)σz,

translates into the more practical condition that the columns of the matrix σz

(equivalently the rows of τz) are orthogonal with respect to the form ( · , · ).

Moreover, we see that

0 = τz+J(z)σz+J(z) = τzσz + τzσJ(z) + τJ(z)σz + τJ(z)σJ(z) = τzσJ(z) + τJ(z)σz

= −σ	
J(z)σJ(z) + σ	

zσz

so that in the matrix algebra Mk(C)⊗A(˜MSD
θ;k )⊗A(C4

θ) we have also

σ	
J(z)σJ(z) = σ	

zσz.

Remark 4.7. The above identifications of vector spaces H ∼= L∗ and K ∼= K∗

yield an identification of A(˜Mθ(H,K)) with A(˜Mθ(L
∗,K∗)) and hence a reality

structure on the generators Mα
ab. It follows that the space of self-dual monads

is parameterised by a total of 4k(2k + 2) generators Mα
ab. As already remarked,

the condition σ	
J(z)σz = 0 is equivalent to demanding that the columns of σz are

pairwise orthogonal with respect to the bilinear form ( · , · ) and, since σz has k
columns, this yields 1

2k(k − 1) such orthogonality conditions. Now as in Prop. 4.3
we may equate to zero the coefficients of the products zαzβ for α ≤ β, and we note
that there are 10 such coefficients in each orthogonality condition. This yields a
total of 5k(k − 1) constraints on the generators Mα

ab.
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4.3. ADHM construction of noncommutative instantons. We are ready
for the construction of charge k noncommutative bundles with instanton connec-
tions. As in previous sections, we have the (2k + 2)× k algebra-valued matrices

σz = M1 ⊗ z1 +M2 ⊗ z2 +M3 ⊗ z3 +M4 ⊗ z4,

σJ(z) = −M1 ⊗ z∗2 +M2 ⊗ z∗1 −M3 ⊗ z∗4 +M4 ⊗ z∗3

which, as already observed, have the properties σ	
J(z)σz = 0 and σ	

J(z)σJ(z) = σ	
zσz.

Lemma 4.8. The entries of the matrix ρ2 := σ	
zσz = σ	

J(z)σJ(z) commute with

those of the matrix σz.

Proof. One finds that the (μ, ν) entry of ρ2 is

(ρ2)μν =
∑

r,α,β
(Mα†)μrM

β
rν ⊗ z∗αzβ

and that the a, b entry of σz is

(σz)ab =
∑

γ
Mγ

ab ⊗ zγ .

It is straightforward to check that these elements always commute using the rela-

tions (3) for A(C4
θ) and the relations of Prop. 4.1 for A(˜Mθ(H,K)). The essential

feature is that every factor of ηβα coming from the relations between the Mα’s is
cancelled by a factor of ηαβ coming from the relations between the zα’s. �

We need to enlarge slightly the matrix algebra Mk(C)⊗A(˜MSD
θ;k )⊗A(C4

θ) by

adjoining an inverse element ρ−2 for ρ2, together with a square root ρ−1. That
these matrices may be inverted is an assumption, even in the commutative case
where doing so corresponds to the deletion of the non-generic points of the moduli
space; these correspond to so-called ‘instantons of zero size’.

From the previous lemma the matrix ρ2, which is self-adjoint by construction,

has entries in the centre of the algebra A(˜MSD
θ;k ) ⊗ A(C4

θ), so these new matrices

ρ−1 and ρ−2 must also be self-adjoint with central entries. We collect the matrices
σz, σJ(z) together into the (2k + 2)× 2k matrix

(44) V :=
(

σz σJ(z)

)

and we have by construction that

V∗V = ρ2
(

Ik 0
0 Ik

)

,

where Ik denotes the k×k identity matrix. This of course means that the quantity

(45) Q := Vρ−2V∗ = σzρ
−2σ	

z + σJ(z)ρ
−2σ	

J(z)

is automatically a projection: Q2 = Q = Q∗ . For convenience we denote

Qz := σzρ
−2σ	

z , QJ(z) := σJ(z)ρ
−2σ	

J(z),

which are themselves projections, in fact orthogonal ones, QJ(z)Qz = 0, due to the
fact that σ	

J(z)σz = 0.

Lemma 4.9. The trace of the projection Qz is equal to k; likewise for QJ(z).
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Proof. We compute the trace as follows:

TrQz =
∑

μ
(σzρ

−2σ	
z)μμ =

∑

μ,r,s
(σz)μr(ρ

−2)rs(σ
	
z)sμ

=
∑

μ,r,s
(ρ−2)rs(σz)μr(σz)

	
sμ =

∑

μ,r,s
(ρ−2)rs(σz)

	
sμ(σz)μr

=
∑

r,s
(ρ−2)rs(σ

	
zσz)sr = Tr Ik = k.

In the third equality we have used the fact that, as said, the entries of ρ−2 commute
with those of σz, whereas in the fourth equality we have used the fact that every

element of A(˜MSD
θ;k )⊗A(C4

θ) commutes with its own adjoint. An analogous chain
of equality establishes the same result for the projection QJ(z). �

As a consequence the projection Q has trace 2k.

Proposition 4.10. The operator

P := I2k+2 − Q

is a projection in the algebra M2k+2

(

A(˜MSD
θ;k )⊗A(S4

θ )
)

with trace equal to 2.

Proof. The entries of the projection Qz are in the subalgebra of A(˜MSD
θ;k )⊗

A(C4
θ) made up of U(1)-invariants which, by the discussion of Sect. 3.2, is precisely

A(˜MSD
θ;k ) ⊗ A(CP3

θ). Now recall from Sect. 2.3 that the degree one elements of

A(CP3
θ) of the form Z + J(Z) generate the J-invariant subalgebra, which may be

identified with A(S4
θ ). The entries of Qz being linear in the generators of A(CP3

θ),

it follows that the projection Q has entries in A(˜MSD
θ;k )⊗A(S4

θ ). The same is true
of the complementary projection P as well. Finally, since the projection Q has trace
2k, the trace of the projector P is just 2. �

We think of the projective right A(S4
θ )-module E := PA(S4

θ )
2k+2 as defining a

family of rank two vector bundles over S4
θ parameterised by the noncommutative

space ˜MSD
θ;k . We equip this family of vector bundles with the associated family of

Grassmann connections ∇ := P ◦ (id ⊗ d), after extending the exterior derivative

from A(S4
θ ) to A(˜MSD

θ;k )⊗A(S4
θ ) by id⊗ d. Moreover, we need also to extend the

Hodge ∗-operator as id⊗ ∗θ.

Proposition 4.11. The curvature F = P((id ⊗ d)P)2 of the Grassmann con-
nection ∇ = P ◦ (id⊗ d) is anti-self-dual, that is to say (id⊗ ∗θ)F = −F .

Proof. When θ = 0 this construction is the usual ADHM construction and
it is known [2] (cf. also [19]) that it produces connections whose curvature is an
anti-self-dual two-form:

(id⊗ ∗θ)P((id⊗ d)P)2 = −P((id⊗ d)P)2.

As observed in Sect. 2.1, the Hodge ∗-operator is defined by the same formula as it is
classically and, as vector spaces, the self-dual and anti-self-dual two-forms Ω2

±(S
4
θ )

are the same as their undeformed counterparts Ω2
±(S

4). This identification survives

the tensoring by A(˜MSD
θ;k ) which yields A(˜MSD

θ;k ) ⊗ Ω2
±(S

4
θ ) to be isomorphic, as

vector spaces, to A(˜MSD
k ) ⊗ Ω2

±(S
4). Thus the anti-self-duality holds also when

θ �= 0. �
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Remark 4.12. One may alternatively verify the anti-self-duality via a complex
structure. Indeed, there is an (almost) complex structure γ : Ω1(CP3

θ) → Ω1(CP3
θ)

given by γ(dzl) := (d ◦ J)(zl), l = 1, . . . , 4, the operator J being the one defined in
(15), for which we declare the forms dzl to be holomorphic and the forms dz∗l to
be anti-holomorphic. For instance, on generators of A(CP3

θ) we have

d(zjz
∗
l ) = ηljz

∗
l dzj + zjdz

∗
l

from the Leibniz rule and the relations (3), and we write d = ∂ + ∂̄ with re-
spect to this decomposition into holomorphic and anti-holomorphic forms. Since
as vector spaces the various graded components of the differential algebra Ω(CP3

θ)
are undeformed, these operators ∂, ∂̄ extend to a full Dolbeault complex with
∂2 = ∂̄2 = ∂̄∂ + ∂∂̄ = 0. The algebra inclusion A(S4

θ ) ↪→ A(CP3
θ) extends to an

inclusion of differential graded algebras Ω(S4
θ ) ↪→ Ω(CP3

θ) and the Hodge operator
∗θ is, as in the classical case, defined in such a way that a two-form ω ∈ Ω2(S4

θ ) is
anti-self-dual if and only if its image in Ω2(CP3

θ) is of type (1, 1). Thus, to check
that the curvature P((id ⊗ d)P)2 is anti-self-dual, we use this inclusion of forms
(i.e. we express everything in terms of dzj , dz

∗
j ) and check that each component

Fad = Pab((id ⊗ d)Pbc) ∧ (id ⊗ d)Pcd) of the curvature is a sum of terms of type
(1, 1). This approach to noncommutative twistor theory, including a more explicit
description of the noncommutative Penrose-Ward Transform, will be discussed in
more detail elsewhere.

We next turn to the computation of the topological charge of the family of
bundles E := PA(S4

θ )
2k+2 given above. To this end we observe that the matrix σz

has k linearly independent columns (since if not, it would not be injective) and that
the columns of σJ(z) are obtained from those of σz by applying the map J . Clearly
we are free to rearrange the columns of the matrix V (since this will not alter the
class of the projection P), whence we may as well arrange them as

V =
(

σz
(1) J(σz

(1)) σz
(2) J(σz

(2)) · · · σz
(k) J(σz

(k))
)

,

where σz
(l) denotes the l-th column of σz and J(σz

(l)) denotes the l-th column of
σJ(z). For fixed l, we denote the entries of the column σz

(l) (together with their
conjugates) by

wμ
(l) :=

∑

α
Mα

μl ⊗ zα, (wμ
(l))∗ :=

∑

α
Mα

μl
∗ ⊗ z∗α, μ = 1, . . . , 2k + 2.

The entries of the column J(σz
(l)) are obtained from those of σz

(l) by applying
the map J , and one clearly has J((wμ

(l))∗) = (J(wμ
(l)))∗. In the classical limit

θ = 0, we could evaluate the parameters Mα
ab as fixed numerical values: this would

identify the columns σ
(l)
z and J(σ

(l)
z ) as spanning a quaternionic line in H

k+1, where

the latter is defined by the 2k + 2 complex coordinates w
(l)
μ and their conjugates,

equipped with an anti-involution J . In the noncommutative case, although we lack

the evaluation of the parameters Mα
ab, we continue to interpret the columns σ

(l)
z

and J(σ
(l)
z ) as spanning a ‘one-dimensional’ quaternionic line.

As already observed in Rem. 4.6, the columns of σz are orthogonal, as are the
columns of σJ(z); whence the rank 2k projection Q in (45) decomposes as a sum of
projections

Q = Q1 + · · ·+ Qk,
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where Ql := ˜Ψi
˜Ψl

∗ is the rank two projection defined by the (2k + 2) × 2 matrix
˜Ψl comprised of the columns σz

(l) and J(σz
(l)), appropriately normalised by ρ−1.

Explicitly, this matrix is

˜Ψl :=
(∑

r,α(M
α
μr ⊗ zα)(ρ

−1)rl
∑

s,β(M
β
μs ⊗ J(zβ))(ρ

−1)sl
)

μ=1,...,2k+2
,

and a direct check yields ˜Ψl
∗
˜Ψl = I2 so that Ql is indeed a projection for each

l = 1, . . . , k. Hence the matrix V in (44) has 2k columns which we interpret as
spanning k quaternionic lines, with the same being true of the normalised matrix
Vρ−1. The computation of the topological charge of the projection Q therefore
boils down to the computation of the charge of each of the projections Ql, for
l = 1, . . . , k.

Lemma 4.13. For each l = 1, . . . , k the projection Ql is Murray-von Neumann

equivalent to the projection 1 ⊗ q in the algebra M2k+2(A(˜MSD
θ;k ) ⊗ A(S4

θ )), where

q is the basic projection defined in equation (27).

Proof. From equations (26) and (27) we know that q = ΨΨ∗. Then, for each

l = 1, . . . , k define a partial isometry Vl in M2k+2,4

(

A(˜MSD
θ;k )⊗A(S4

θ )
)

by

Vl := ˜Ψl (1⊗Ψ∗), V ∗
l := (1⊗Ψ) ˜Ψ∗

l .

Straightforward computations show that VlVl
∗ = Ql and Vl

∗Vl = 1⊗ q. �

We invoke the strategy of [16] to compute the topological charge of the family
of bundles defined by each Ql. Indeed, the charge of the projection q was shown
in [14] be equal to 1, given as a pairing between the second Chern class ch2(q),
which lives in the cyclic homology group HC4(A(S4

θ)), with the fundamental class of

S4
θ , which lives in the cyclic cohomology HC4(A(S4

θ )). Although the class ch2(Ql),

being an element in HC4(A(˜MSD
θ;k )⊗A(S4

θ )), may not a priori be paired with the

fundamental class of S4
θ , Kasparov’s KK-theory is used to show that in fact there

is a well-defined pairing between the K-theory K0

(

A(˜MSD
θ;k )⊗A(S4

θ )
)

and the K-

homology K0(A(S4
θ )). Since by the previous lemma the projections 1 ⊗ q and Ql

define the same class in the K-theory of A(˜MSD
θ;k )⊗A(S4

θ), it follows as in [16] that
the topological charge of each projection Ql is equal to 1.

Proposition 4.14. The family of bundles E = PA(S4
θ )

2k+2 has topological
charge equal to −k.

Proof. By the argument given above, the projections Ql have topological
charge equal to 1 for each l = 1, . . . , k. The projection Q = Q1 + · · ·+Qk therefore
has charge k, whence P must have charge −k. �

We finish this section by remarking that the construction given above in the
section has an interpretation in terms of ‘universal connections’, as described in
[3]. As already said, the classical quaternion vector space H

k+1 may be identified
with the complex vector space C

2k+2 equipped with the quaternionic structure
J . Points of the Grassmannian manifold Grk(H

k+1) of quaternionic k-dimensional
subspaces of Hk+1 may thus be identified with 2k-dimensional subspaces of C2k+2

which are invariant under the involution J . Following the general strategy of [5]
for the coordinatisation of Grassmannians, the algebra of functions on Grk(H

k+1)
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is given by functions taking values in the set of rank 2k projectors P = (Pμ
ν) on

C
2k+2 which are J-invariant, viz.

A(Grk(H
k+1)) :=

C

[

Pμ
ν |

∑

λ
Pμ

λP
λ
ν = Pμ

ν , (Pμ
ν)

∗ = P ν
μ,

∑

μ
Pμ

μ = 2k, J(Pμ
ν) = Pμ

ν

]

,

where μ, ν = 1, . . . , 2k + 2. In the classical case, when θ = 0, the projection Q in
(45) realises A(S4

θ=0) as a subalgebra of A(Grk(H
k+1)), whence this construction

should be viewed as the dual of an embedding S4 ↪→ Grk(H
k+1), as given in [3]. We

expect that, in the deformed case, the projection Q views A(S4
θ ) as a subalgebra

of a suitably-deformed version of A(Grk(H
k+1)). For fixed k, the set of monads is

bound to parameterise the set of such ‘algebra embeddings’.

4.4. ADHM construction of charge one instantons. As a way of illus-
tration we briefly verify that the above ADHM construction of noncommutative
families of instantons gives back the family constructed in [16] when performed for
the charge one case.

The starting point is the basic instanton on S4
θ described in Sect. 2.2 and which

arises via a monad construction as follows. The monad we consider is the sequence

(46) A(C4
θ)(−1)

σz−→ C
4 ⊗A(C4

θ)
τz−→ A(C4

θ)(1),

where the arrows are the maps

σz =
(

z1 z2 z3 z4
)t
, τz = σ	

J(z) =
(

−z2 z1 −z4 z3
)

.

Since τzσz = σ	
J(z)σz = 0, it is clear that this is a monad with k = 1; by construction

it is self-dual. In the present case ρ2 = σ	
zσz =

∑

j z
∗
j zj = r2, which we already

assumed was invertible (corresponding to the deletion of the origin in C
4
θ). One

computes that

VV∗ = 1
2r

−2

⎛

⎜

⎜

⎝

r2 + x 0 α β
0 r2 + x −μβ∗ μ̄α∗

α∗ −μ̄β r2 − x 0
β∗ μα 0 r2 − x

⎞

⎟

⎟

⎠

which is just the projector q of equation (27). This is the ‘tautological’ monad
construction given in [5]. The anti-self-dual version is the projector P = 1− VV∗,
in agreement with the ADHM construction above.

The monad (46) may be rewritten in the form

(47) σz = (1, 0, 0, 0)t⊗z1 + (0, 1, 0, 0)t⊗z2 + (0, 0, 1, 0)t⊗z3 + (0, 0, 0, 1)t⊗z4,

with τz defined as its dual. With the strategy of [16] one generates new instan-
tons by coacting on the generators z1, . . . , z4 with the quantum conformal group
A(SLθ(2,H)). Using the formula (18) for the coaction, the monad map (47) trans-
forms into

(48) σΔL(z) =

⎛

⎜

⎜

⎝

a1
a2
c1
c2

⎞

⎟

⎟

⎠

⊗ z1 +

⎛

⎜

⎜

⎝

−a∗2
a∗1
−c∗2
c∗1

⎞

⎟

⎟

⎠

⊗ z2 +

⎛

⎜

⎜

⎝

b1
b2
d1
d2

⎞

⎟

⎟

⎠

⊗ z3 +

⎛

⎜

⎜

⎝

−b∗2
b∗1
−d∗2
d∗1

⎞

⎟

⎟

⎠

⊗ z4,
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and these four column vectors are the columns of the matrix (17) which defines the
algebra A(SLθ(2,H)). If we write

̂M1 =
(

a1 a2 c1 c2
)t
, ̂M2 =

(

−a∗2 a∗1 −c∗2 c∗1
)t
,

̂M3 =
(

b1 b2 d1 d2
)t
, ̂M4 =

(

−b∗2 b∗1 −d∗2 d∗1
)t
,

then we have the algebra relations ̂Mα
j
̂Mβ

l = ηjlηβα̂M
β
l
̂Mα

j coming from the rela-

tions (20) for A(SLθ(2,H)). We thus think of the algebra generated by the ̂Mα
j as

parameterising the set of charge one instantons, since the map σΔL(z) may be used
to construct the family (28) of projections with topological charge equal to 1 and
hence a family of Grassmann connections with anti-self-dual curvature, just as in
[16].

In contrast, the ADHM construction of Sect. 4.3 for the case k = 1 says that

the charge one monads are parameterised by the algebra A(˜Mθ;k) generated by
the matrix elements Mα

j , with j, α = 1, . . . , 4, subject in particular to the relations

Mα
j M

β
l = ηβαM

β
l M

α
j .

We see that these two approaches seem to give different parameterisations of
the set of monads for the case k = 1, and hence of the set of charge one instantons.
The discrepancy has its root in the fact that the ADHM construction requires
generators lying in the same row of the matrix (Aij) to commute, whereas the
‘coaction approach’ given above says that such generators do not commute.

However, the discrepancy fades away when we pass to the ‘true’ parameter
space for the families. On the one hand, as observed in [16], the coaction (24) of
the quantum subgroup A(Spθ(2)) of A(SLθ(2,H)) leaves the basic one-form (11)
invariant. We think of the latter coaction as generating gauge-equivalent instan-
tons, so that the ‘true’ parameter space for this family is rather the subalgebra of
A(SLθ(2,H)) of coinvariants under the coaction of A(Spθ(2)). The generators of
this algebra are computed to be

m̂αβ :=
∑

l
̂Mα

l
∗
̂Mβ

l , α, β = 1 . . . , 4,

whose relations are easily found to be

(49) m̂αβm̂μν = ηβμηνβημαηανm̂μνm̂αβ ,

and which certainly do not depend on the rows of the matrix (Aij). On the other
hand, gauge equivalence for the ADHM family parameterised by the Mα

i is gener-
ated by the action of the classical group Sp(2) (we borrow this result from Prop. 5.2
in the next section), and here the invariant subalgebra is generated by elements of
the form

mαβ :=
∑

l
Mα

l
∗Mβ

l , α, β = 1 . . . , 4.

The relations in this algebra are just as in equation (49), so that these two families
of charge one instantons are just the same.

5. Gauge Equivalence of Noncommutative Instantons

Classically, a way to think of a gauge transformation of a vector bundle E over
S4 is as a unitary change of basis in each fibre Ex in a way which depends smoothly
on x ∈ S4. Two connections on E are said to be gauge equivalent if they are related
by a gauge transformation in this way. Now, rather than being interested in the
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set of all instantons on S4, one is interested in the collection of gauge equivalence
classes, that is to say classes of instantons modulo gauge transformations.

It is therefore necessary to have an analogue of the notion of gauge equivalence
also for the noncommutative families of instantons constructed previously. In fact,
noncommutative geometry is a very natural setting for the study of gauge trans-
formations, as we shall see in this section; we refer in particular to [7, 8] (cf. also
[13]).

5.1. Gauge equivalence for families of instantons. Recall that a first
order differential calculus on a unital ∗-algebra A is a pair (Ω1A, dA), where Ω1A
is an A-A-bimodule giving the space of one-forms and dA : A → Ω1A is a linear
map satisfying the Leibniz rule,

dA(xy) = x(dAy) + (dAx)y for all x, y ∈ A.

One also assumes that the map x ⊗ y → x(dAy) is surjective. One names Ω1A a
∗-calculus if for xj , yj ∈ A one has that

∑

j xjdyj = 0 implies
∑

j d(y
∗
j )x

∗
j = 0:

it follows from this condition that there is [26] a unique ∗-structure on Ω1A such
that (dAa)

∗ = dA(a
∗) for all a ∈ A. The differential calculi on A(S4

θ ) and A(S7
θ ) in

Sect. 2.1 are examples of first order differential ∗-calculi on noncommutative spaces.
Let us fix a choice of ∗-calculus on A. Then let E be a finitely generated

projective right A-module endowed with an A-valued Hermitian structure denoted
by 〈·|·〉. A connection on E is a linear map ∇ : E → E⊗AΩ1A satisfying the Leibniz
rule

∇(ξx) = (∇ξ)x+ ξ ⊗ dAx for all ξ ∈ E , x ∈ A.

The connection ∇ is said to be compatible with the Hermitian structure on E if it
obeys

〈∇ξ|η〉+ 〈ξ|∇η〉 = dA〈ξ|η〉 for all ξ ∈ E , x ∈ A.

On E there is at least one compatible connection, the so-called Grassmann con-
nection ∇0. If P ∈ EndA(E), P 2 = P = P ∗, is the projection which defines E as
a direct summand of a free module, that is, E = P (CN ⊗ A), then ∇0 = P ◦ d.
Any other connection on E is of the form ∇ = ∇0 + ω, where ω is an element of
HomA(E , E ⊗A Ω1A).

The gauge group of E is defined to be

U(E) := {U ∈ EndA(E) | 〈Uξ|Uη〉 = 〈ξ|η〉 for all ξ, η ∈ E} .
If ∇ is a compatible connection on E , each element U of the gauge group U(E)
induces a ‘new’ connection by the action

∇U := U∇U∗.

Of course, ∇U is not really a different connection, it simply expresses ∇ in terms
of the transformed bundle UE , hence one says that a pair of connections ∇1, ∇2

on E are gauge equivalent if they are related by such a gauge transformation U . In
terms of the decomposition ∇ = ∇0 + ω, one finds that ∇U = ∇0 + ωU , where

ωU := U(∇0U
∗) + UωU∗.

A choice of gauge would be a choice of partial isometry Ψ : E → AN such that
Ψ∗Ψ = IdE and ΨΨ∗ = P . Any other gauge is then given by an element U of the
gauge group of E : the partial isometry Ψ gets replaced by UΨ, for which we indeed
have

(UΨ)∗(UΨ) = Ψ∗Ψ = IdE .
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and the projection P gets transformed to

(UΨ)(UΨ)∗ = U(ΨΨ∗)U∗ = UPU∗,

an operation that does not change the equivalence class of P . In the fixed gauge
the Grassmann connection ∇0 = P ◦d naturally acts on ‘equivariant maps’ ϕ = ΨF
where F ∈ AN . The result is an ‘equivariant one-form’,

∇0(ΨF ) = (ΨΨ∗)d(ΨF ) = Ψ
(

dF +Ψ∗d(Ψ)F
)

,

and identifies the gauge potential to be given by

A = 1
2 (Ψ

∗(dΨ)−( dΨ∗)Ψ).

Under the transformation Ψ �→ UΨ, the gauge potential transforms as expected:

Ψ∗dΨ �→ Ψ∗(dΨ) + Ψ∗U∗(dU)Ψ.

We now turn back to the construction of instantons. Gauge equivalence being
defined as above by unitary module endomorphisms means that we are free to act
on the right A(C4

θ)-module K = K ⊗ A(C4
θ) by a unitary element of the matrix

algebra M2k+2(C) ⊗ A(C4
θ). In order to preserve the instanton construction, we

must do so in a way preserving the bilinear form ( · , · ) of equation (43) which
comes from the identification of K with its dual K∗. Hence the map σz in (31)
(or in (33)) is defined up to a transformation A ∈ EndA(C4

θ)
(K), which is unitary

and is required to commute with the quaternion structure J . Similarly, we are free
to change basis in the modules H = H ⊗A(C4

θ) and L = L ⊗A(C4
θ), provided we

preserve the fact that we identify J(H)	 and L. This means that the map τz of
(35) is defined up to an invertible transformation B ∈ EndA(C4

θ)
(H).

All this is saying is that the monad maps σz and τz were expressed as matrices
with respect to a choice of basis for each of the vector spaces H, K and L; it is natu-
ral to question the extent to which the resulting Grassmann connection ∇ depends
on the choice of these bases. We denote by GL(H) the set of automorphisms of H
and by Sp(K) the set of all unitary endomorphisms of K respecting the quaternion
structure:

Sp(K) := {A ∈ EndA(C4
θ)
(K) | 〈Aξ|Aξ〉 = 〈ξ|ξ〉, J(Aξ) = AJ(ξ) for all ξ ∈ K}.

Given A ∈ Sp(K) and B ∈ GL(H), the gauge freedom is to map σz �→ AσzB.

Proposition 5.1. For all B ∈ GL(H), under the transformation σz �→ σzB
the projection P of Prop. 4.10 is left invariant.

Proof. One first checks that ρ2 �→ (σzB)	(σzB) = B	ρ2B under this trans-
formation, so that

Qz �→ σzB(B	ρ2B)−1B	σ	
z = σzB(B−1ρ−2(B	)−1)B	σ	

z = Qz,

whence the projection P is unchanged. �

Proposition 5.2. For all A ∈ Sp(K), under the transformation σz �→ Aσz the
projection P of Prop. 4.10 transforms as P �→ APA	.

Proof. Replacing σz by Aσz leaves ρ2 invariant (since A is unitary) and so
has the effect that

Qz �→ Aσzρ
−2σ	

zA
	 = AQzA

	,

whence it follows that P is mapped to APA	. �
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These results give the general gauge freedom on monads, although from the
point of view of computing the number of constraints on the algebra generators Mα

ab

we need only consider the effect of these transformations on the vector spaces H, K
and L, i.e. it is enough to consider the groups of ‘constant’ automorphisms. This
means the group Sp(K) = Sp(k+1) ⊂ Sp(K) and the group GL(k,R) ⊂ GL(H) (the
latter because we must preserve the identification of J(H)	 with L, and complex
linear transformations of H would interfere with the tensor product in J(H)	).
In fact, it is known in the classical case that these constant transformations are
sufficient to generate all gauge symmetries of the instanton bundles produced by
the ADHM construction.

We conclude that in the noncommutative case as well the gauge equivalence
imposes an additional (k+1)(2(k+1)+1) constraints due to Sp(k+1) and a further
k2 constraints due to GL(k,R). From Rem. 4.7, the total number of generators
minus the total number of constraints is thus computed to be

(8k2 + 8k)− 5k(k − 1)− (3k2 + 5k + 3) = 8k − 3,

just as for the classical case, a result which is somehow reassuring.

5.2. Morita equivalent geometries and gauge theory. It is a known idea
that Morita equivalent algebras describe the same topological space. The simplest
case is that of a one-point space X = {∗}: the matrix algebras Mn(C) for any
positive integer n all have the same one-point spectrum. More generally, if X is
a compact Hausdorff space, the algebras C(X)⊗Mn(C) are all Morita equivalent
and all have the same spectrum X.

With this in mind, gauge theory arises naturally out of the consideration of
how to transfer differential structures between Morita equivalent algebras. If one
takes such structures to be defined by a Dirac operator and associated spectral
triple, then the method for doing this is discussed in [7, 8]. Here we discuss a more
general framework, where algebras may be equipped with differential calculi not
necessarily coming from a spectral triple.

Let A be a unital ∗-algebra and suppose that the ∗-algebra B is Morita equiv-
alent to A via the B-A-bimodule E , that is to say B � EndA(E). In addition, on E
there are compatible A-valued and B-valued Hermitian structures 1. Then a choice
of a connection ∇ on E , viewed as a right A-module, yields a differential calculus
on B. First of all, the operator on B given by

d∇B (x) := [∇, x], x ∈ B,

is easily seen to be a derivation: d∇B (xy) = x(d∇By) + (d∇Bx)y, for x, y ∈ B. The
B-B-bimodule Ω1B of one-forms is then defined by

Ω1B := B
(

d∇B(B)
)

B.

For this to define a ∗-calculus we need that the connection ∇ be compatible with
the A-valued Hermitian structure on E in the sense that

〈∇ξ|η〉+ 〈ξ|∇η〉 = dA〈ξ|η〉

1We shall also require the Hermitian structures to be self-dual, i.e. every right A-module
homomorphism ϕ : E → A is represented by an element of η ∈ E by the assignment ϕ(·) = 〈η|·〉.
A similar property holds for the second Hermitian structure as well.
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for all a ∈ A and ξ, η ∈ E . If this compatibility condition is satisfied, the assumption
∑

j xjd
∇
Byj = 0 translates into

∑

j(xj∇yj)ξ =
∑

j xjyj(∇ξ) for all xj , yj ∈ B and
all ξ ∈ E . This implies, for all ξ, η ∈ E and all xj , yj ∈ B, that

∑

j
〈d∇B(y∗j )x

∗
jξ|η〉 =

∑

j
〈∇(x∗

jy
∗
j ξ)− x∗

j∇(y∗j ξ)|η〉

=
∑

j
−〈x∗

jy
∗
j ξ|∇η〉+ dA〈x∗

jy
∗
j ξ|η〉

+ 〈y∗j ξ|∇(xjη)〉 − dA〈y∗j ξ|xjη〉

=
∑

j
−〈x∗

jy
∗
j ξ|∇η〉+ 〈ξ|yjxj∇η〉,

whence it follows that
∑

j d
∇
B(y∗j )x

∗
j = 0 as it should for a ∗-calculus. We interpret

the passage dA → d∇B as an inner fluctuation of the geometry which results in a

‘Morita equivalent’ first order calculus (Ω1B, d∇B), now for the algebra B.
A natural application is to think of the algebra A as being Morita equivalent to

itself, so that E = A as a right A-module and B = A. In this case, any Hermitian
connection on E is necessarily of the form

(50) ∇ξ = dAξ + ωξ, for ξ ∈ E ,
with ω = −ω∗ ∈ Ω1A a skew-adjoint one-form. The corresponding differential on
B = A is computed to be

(d∇Ab)ξ = [∇, b]ξ = ∇(bξ)− b∇ξ = dA(bξ) + ωbξ − bdAξ − bωξ = (dAb)ξ + [ω, b]ξ,

using the Leibniz rule for dA. The passage

dA → d∇A = dA + [ω, · ]
is once again interpreted as an inner fluctuation of the geometry, although when A
is commutative there are no non-trivial inner fluctuations and thus no new degrees
of freedom generated by the above self-Morita mechanism. However, in the non-
commutative situation there is an interesting special case where ω is taken to be of
the form ω = u∗dAu, for u a unitary element of the algebra A. Such a fluctuation
is unitarily equivalent to acting on A by the inner automorphism

αu : A → A, αu(a) = uau∗,

since for all a ∈ A we have that d∇A(a) = u∗dA(αu(a))u. It therefore follows that
inner fluctuations defined by inner automorphisms generate gauge theory on A.

5.3. Gauge theory from quantum symmetries. We now consider a slightly
different type of gauge equivalence for our instanton construction which is not
present in the classical case and is a purely quantum (i.e. noncommutative) phe-
nomenon.

We consider the case where A is a comodule ∗-algebra under a left coaction of
a Hopf algebra H, so that A is isomorphic to its image B = ΔL(A). To transfer
a calculus on A to one on B, a possible strategy is as follows. We take the B-A-
bimodule to be E := B = ΔL(A) with left B-action and right A-action defined
by

b � ξ := bξ, ξ � a = ξΔL(a)

for ξ ∈ E , a ∈ A, b ∈ B. We also assume that the calculus Ω1A is left H-covariant,
so that ΔL extends to a coaction on Ω1A as a bimodule map such that dA is an
intertwiner, whence the above bimodule structure on E extends to one-forms in
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the natural way. This also canonically equips B with a ∗-calculus Ω1B, where the
differential is dB = id⊗ dA.

We choose an arbitrary Hermitian connection on the right A-module E for the
calculus (Ω1A, dA), which is necessarily of the form

∇ξ = (id⊗ dA)ξ + ω̃ξ, ξ ∈ E
with ω̃ = ΔL(ω) for some ω = −ω∗ ∈ Ω1A a skew-adjoint one-form. The corre-
sponding differential on B is again defined by

(d∇Bb)ξ = [∇, b�]ξ = ∇(b � ξ)− b �∇ξ = dA(b � ξ) + ω(b � ξ)− b � (dAξ + ωξ) ,

and works out to be

dBb = (id⊗ dA)b+ [ω̃, b].

Note also that for all b ∈ B we have b = ΔL(a) for some a ∈ A and so it follows
that

dBb = ΔL(dAa) + ΔL([ω, a]),

so that the coaction commutes with inner fluctuations. Moreover, in the case where
A is noncommutative, there are non-trivial inner automorphisms of A and hence
non-trivial gauge degrees of freedom which carry over from A to ΔL(A).

In particular, we apply this to the case A = A(S4
θ ), with H = A(SLθ(2,H))

the quantum conformal group of S4
θ . The above discussion means that the coac-

tion of A(SLθ(2,H)) on A(S4
θ ) by conformal transformations in itself generates

gauge freedom. The natural way to extend the exterior derivative dA on A(S4
θ ) to

ΔL(A(S4
θ )) is as id⊗ dA: this corresponds to taking ω̃ = 0 and is the choice made

in [16]. However, in general we have the freedom to make the transition

dA → (id⊗ dA) + [ω̃, · ]
for some ω̃ = ΔL(u

∗dAu), where u is some unitary element of A(S4
θ ). Since the

group of inner automorphisms of A is trivial when A is commutative, this is a
feature of gauge theory which is certainly not present in the classical case and is
unique to the noncommutative paradigm. More on this will be reported elsewhere.
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Abstract. In this paper we consider three homotopy functors on the category
of manifolds , hH∗, cH∗, sH∗, and parallel them with three other homotopy
functors on the category of connected commutative differential graded alge-
bras, HH∗, CH∗, SH∗. If P is a smooth 1-connected manifold and the algebra

is the de-Rham algebra of P the two pairs of functors agree but in general they
do not. The functors HH∗ and CH∗ can also be derived as Hochschild resp.
cyclic homology of a commutative differential graded algebra, but this is not
the way they are introduced here. The third one SH∗, although inspired from
negative cyclic homology, cannot be identified with any sort of cyclic homology
of any algebra. The functor sH∗ might play some role in topology. Important
tools in the construction of the functors HH∗, CH∗and SH∗, in addition to
the linear algebra suggested by cyclic theory, are Sullivan’s minimal model
theorem and the ”free loop” construction described in this paper.
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1. Introduction

This paper deals with commutative differential graded algebras and the re-
sults are of significance in “commutative” geometry/topology. However they were
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inspired largely by the linear algebra underlying Connes’ cyclic theory. The topo-
logical results formulated here, Theorem 2 and Theorem 3, were first established
as a consequence of the identification of the cohomology, resp. S1−equivariant
cohomology, of the free loop spaces of a 1-connected smooth manifold with the
Hochschild, resp. cyclic, homology of its de Rham algebra, cf. [16], [8], [4]. In this
paper this identification is circumvented. Still, the results illustrate the powerful
influence of Connes’ mathematics in areas outside non–commutative geometry.

In this paper, inspired by the relationship between Hochschild, cyclic and neg-
ative cyclic homology of a unital algebra, we consider two systems of graded vector
space valued homotopy functors hH∗, cH∗, sH∗and HH∗, CH∗, SH∗ and investi-
gate their relationship. The first three functors are defined on the category of

smooth manifolds and smooth maps via the free loop space PS1

of a smooth mani-
fold P, which is a smooth S1-manifold of infinite dimension. The next three functors
are defined on the category of connected commutative differential graded algebras
via an algebraic analogue of the “free loop” construction and via Sullivan’s min-
imal model theorem, Theorem 1. The relationship between them is suggested by
the general diagram Fig 2 in section 2.

When applied to the de Rham algebra of a 1-connected smooth manifold the
last three functors take the same values as the first three. This is not the case when
the smooth manifold is not 1-connected; the exact relationship will be addressed in
a future work.

The first three functors are based on a formalism (manipulation with differential
forms) which can be considered for any smooth (finite or infinite dimensional)
manifold M and any smooth vector field X on M. However, it seems to be of
relevance when the vector field X comes from a smooth S1−action on M. This is
of mild interest if the manifold is of finite dimension but more interesting when
the manifold is of infinite dimension. In particular, it is quite interesting when

M = PS1

, the free loop space of P, and the action is the canonical S1−action

on PS1

. Manipulation with differential forms on PS1

leads to the graded vector
spaces hH∗(P ), cH∗(P ), sH∗(P ) with the first two being the cohomology, resp.

the S1−equivariant cohomology, of PS1

but sH∗ being a new homotopy functor,
referred to here as s–cohomology.

This functor was first introduced in [3], [4] but so far not been seriously in-
vestigated. The functor sH∗ relates, at least in the case of a 1-connected manifold
P , the Waldhausen algebraic K−theory of P and the Atiyah–Hirzebruch complex
K−theory (based on complex vector bundles) of P. It has a rather simple descrip-

tion in terms of an infinite sequence of smooth invariant differential forms on PS1

.

The additional structures on PS1

, the power maps ψk k = 1, 2, · · · , and the
involution τ = ψ−1, provide endomorphisms of hH∗(P ), cH∗(P ), sH∗(P ) whose
eigenvalues and eigenspaces are interesting issues. They are clarified only when
P is 1-connected. This is done in view of the relationship with the functors
HH∗, CH∗, SH∗.

It might be only a coincidence but still an appealing observation that the sym-
metric, resp. antisymmetric, part of sH∗(P ) with respect to the canonical involu-
tion τ calculates, for a 1-connected manifold P and in the stability range, the vector
space Hom(π∗(H/Diff(P ), κ), κ = R,C; the symmetric part when dimP is even
the antisymmetric part when dimP is odd, cf. [2], [3]. Here H/Diff(P ) denotes
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the (homotopy) quotient of the space of homotopy equivalences of P by the group
of diffeomorphisms with the C∞−topology.

The functors HH∗, CH∗, SH∗ are the algebraic versions of hH∗, cH∗, sH∗ and
are defined on the category of (homologically connected) commutative differential
graded algebras. Their definition uses the “free loop” construction, an algebraic
analogue of the free loop space, described in this paper only for free connected
commutative differential graded algebras (Λ[V ], dV ). A priori these functors are
defined only for free connected commutative differential graded algebras. Since
they are homotopy functors they extend to all connected commutative differential
graded algebras via Sullivan’s minimal model theorem, Theorem 1.

Using the definition presented here one can take full advantage of the simple
form that the algebraic analogue of the power maps take on the free loop construc-
tion. As a consequence one obtains a simple description of the eigenvalues and
eigenspaces of the endomorphisms induced from the algebraic power maps on HH∗

and CH∗ and one can implicitly understand their additional structure.
The extension of the results of Sullivan–Vigué, cf. [20], to incorporate S1−ac-

tions and the power maps in the minimal model of PS1

summarized in Section 7
leads finally to results about hH∗, cH∗, sH∗ when P is 1-connected, Theorem 3.

In addition to the algebraic definition of HH∗, CH∗, SH∗ this paper contains
the proof of the homotopy invariance of sH∗.

2. Mixed complexes, a formalism inspired from Connes’ cyclic theory

A mixed complex (C∗, δ∗, β∗) consists of a graded vector space C∗ ( ∗ a non
negative integer) and linear maps, δ∗ : C∗ → C∗+1, β∗+1 : C∗+1 → C∗ which satisfy

δ∗+1 · δ∗ =0

β∗ · β∗+1 =0

β∗+1 · δ∗ + δ∗−1 · β∗ =0.

When there is no risk of confusion the index ∗ will be deleted and we write
(C, δ, β) instead of (C∗, δ∗, β∗). Using the terminology of [4], [9] a mixed complex
can be viewed either as a cochain complex (C∗, d∗) equipped with an S1−action
β∗, or as a chain complex (C∗, β∗) equipped with an algebraic S1−action δ∗.

To a mixed complex (C∗, δ∗, β∗) one associates a number of cochain, chain
and 2−periodic cochain complexes, and then their cohomologies, homologies and
2−periodic cohomologies1, as follows.

First denote by

(1)

+Cr =
∏

k≥0

Cr−2k −Cr :=
∏

k≥0

Cr+2k

PC2r+1 =
∏

k≥0

C2k+1
PC2r =

∏

k≥0

C2k for any r

PC2r+1 =
⊕

k≥0

C2k+1 PC2r =
⊕

k≥0

C2k for any r.

1We will use the word “homology” for a functor derived from a chain complex and “coho-
mology” for one derived from a cochain complex. The 2−periodic chain and cochain complexes
can be identified.
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Since our vector spaces are Z≥0-graded the direct product +Cr involves only finitely
many factors.

Next introduce

(2)

+Dr
β(wr, wr−2, · · · ) :=(δωr, (δωr−2 + βωr), · · · )

+Dδ
r(wr, wr−2, · · · ) :=((βωr + δωr−2), (βωr−2 + δωr−4), · · · )

−Dr
β(· · · , wr+2, wr) :=(· · · , (βωr+4 + δωr+2), (βωr+2 + δωr))

−Dδ
r(· · · , wr+2, wr) :=(· · · , (δωr + βωr+2), βωr)

D2r(· · · , ω2r+2, ω2r, · · ·ω0) =(· · · , (δω2r + βω2r+2), · · · )
D2r+1(· · · , ω2r+3, ω2r+1 · · ·ω1) =(· · · , (δω2k+1 + βω2k+3), · · · ).

Finally consider the cochain complexes

C := (C∗, δ∗), +Cβ := (+C∗,+ D∗
β),

−Cβ := (−C∗,− D∗
β),

the chain complexes

H := (C∗, β∗),
+Hδ := (+C∗,+ Dδ

∗),
−Hδ := (−C∗,− Dδ

∗)

and the 2−periodic cochain complexes 2

PC := (PC∗, D∗), PC := (PC∗, D∗)

whose cohomology, homology and 2−periodic cohomology are denoted by

H∗ := H∗(C, δ), +H∗
β :=+ H∗

β(C, δ, β),
−H∗

β :=− H∗
β(C, δ, β),

H∗ := H∗(C, β),
+Hδ

∗ :=+ Hδ
∗(C, δ, β),

−Hδ
∗ :=− Hδ

∗(C, δ, β),

PH∗ := PH∗(C, δ,β), PH∗ := PH∗(C, δ, β).

In this paper the chain complexes H,± Hδ will only be used to derive conclusions
about the cochain complexes C,± Cβ , PC.

The obvious inclusions and projections lead to the following commutative dia-
grams of short exact sequences:

0 �� −Hδ
∗

��

��

PC∗ ��

��

+Hδ
∗−2

��

id

��

0

0 �� H∗ �� +Hδ
∗

�� +Hδ
∗−2

�� 0

0 �� +C∗−2
β

i∗−2
��

id

��

+C∗
β

��

I∗

��

C∗ ��

��

0

0 �� +C∗−2
β

I∗−2
��
PC∗ �� −C∗

β
�� 0.

They give rise to the following commutative diagram of long exact sequences.

2here (PC∗, D∗) is regarded as a cochain complex with D∗ obtained from the degree +1
derivation δ perturbed by the degree −1 derivation β ; the same complex can be regarded as a
chain complex with D∗ obtained from the degree −1 derivation β perturbed by the degree +1
derivation δ; the cohomology for the first is the same as the homology for the second
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· · · �� −Hδ
r

��

hr

��

PH(r) ��

��

+Hδ
r−2

��

id

��

−Hδ
r−1

��

hr−1

��

· · ·

· · · �� Hr
Jr �� +Hδ

r

Sr �� +Hδ
r−2

Br−2 �� Hr−1
�� · · ·

Fig 1.

· · · �� +Hr−2
β

Sr−2
��

id

��

+Hr
β

��

I
∗

��

Hr Br
��

ir

��

+Hr−1
β

��

id

��

· · ·

· · · �� +Hr−2
β

I
r−2

��
PHr

J
r

�� −Hr
β

B
r
�� +Hr−1

β
�� · · ·

Fig 2.
and

+Hr−2
β

I
r−2

��

Sr−2
�� +Hr

β

I
r

�����
���

���
���

��

��

PHr = PHr+2 lim
→
S

+Hr+2k
β��

The diagram (Fig 1) is the one familiar in the homological algebra of Hochschild
versus cyclic homologies, cf [19]. The diagram Fig 2 is the one we will use in this
paper.

Note that the Hochschild, cyclic, periodic cyclic, negative cyclic homology of
an associative unital algebra A as defined in [19], is H∗,

+ Hδ
∗ , PH

∗,− Hδ
∗ of the

Hochschild mixed complex with Cr := A⊗(r+1) , β the Hochschild boundary, and
δr = (1−τr+1)·sr ·(1+τr+· · · τ rr ) where τr(a0⊗a1⊗· · ·⊗ar) = (ar⊗a0⊗· · ·⊗ar−1)
and sr(a0 ⊗ a1 ⊗ · · · ⊗ ar) = (1⊗ a0 ⊗ a1 ⊗ · · · ⊗ ar).

A morphism f : (C∗
1 , δ

∗
1 , β

1
∗) → (C∗

2 , δ
∗
2 , β

2
∗) is a degree preserving linear map

which intertwines δ’s and β’s. It induces degree preserving linear maps between
any of the homologies /cohomologies defined above. The following elementary ob-
servations will be used below.

Proposition 1. Let (C, δ, β) be a mixed cochain complex.

1.PHr = lim
→
S

+Hr+2k
β , where Sk+2r :+ Hk+2r

β →+ Hk+2r+2
β is induced by the

inclusion +C∗
β →+ C∗+2

β .
2. The following is an exact sequence

0 �� lim′
←
S

+Hδ
r−1+2k ��

PHr �� lim
←
S

+Hδ
r+2k �� 0,

with Sk+2r :+ Hδ
k+2r →+ Hδ

k+2r−2 induced by the projection +Hδ
∗ →+ Hδ

∗−2.

Let f∗ : (C∗
1 , δ

∗
1 , β

1
∗) → (C∗

2 , δ
∗
2 , β

2
∗) be a morphism of mixed complexes.

3. If H∗(f) is an isomorphism then so is +H∗
β(f) and PH∗(f).

4. If H∗(f) is an isomorphism then so is +Hδ
∗(f) and PH∗(f).

5. If H∗(f) and H∗(f) are both isomorphisms then, in addition to the conclu-
sions in (3) and (4), −H∗

β(f) is an isomorphism.
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Proof. (1): Recall that a direct sequence of cochain complexes

C∗
0

i0→ C∗
1

i1→ C∗
2

i2→ · · ·
induces, by passing to cohomology, the direct sequence

H∗(C∗
0 )

H(i0)→ H∗(C∗
1 )

H(i1)→ H∗(C∗
2 )

i2→ · · ·
and that Hj(lim

→
C∗
i ) = lim

→
Hj(C∗

i ) for any j.

(2): Recall that an inverse sequence of chain complexes

H0
∗

p0← H1
∗

p1← H2
∗

p2← · · ·
induces, by passing to homology, the sequence

H∗(H∗
0)

H(p0)← H∗(H∗
1)

H(p1)← H∗(H∗
2)

p2← · · ·
and the following short exact sequence cf.[19] 5.1.9.

0 �� lim′
←

Hj−1(Hi
∗) �� Hj(lim←

Hi
∗) �� lim

←
Hj(Hi

∗) �� 0

for any j.
Item (3) follows by induction on degree from the naturality of the first exact

sequence in the diagram Fig 2 and (1).
Item (4) follows by induction from the naturality of the second exact sequence

of the diagram Fig 1 and from (2).
Item (5) follows from the naturality of the second exact sequence in diagram

Fig 2 and from (3) and (4). �

The mixed complex (C∗, δ∗, β∗) is called β−acyclic if β1 is surjective and
ker(βr) = im(βr+1). If so consider the diagram whose rows are short exact se-
quences of cochain complexes

0 �� (Im(β)∗, δ∗)

j

����
���

���
���

�
i �� (C∗, δ∗)

β ��

id

����
���

���
���

��
((Im(β))∗−1, δ∗−1) �� 0

0 �� (+C∗−2
β ,+ D∗−2

β )
i∗−2

�� (+C∗
β,

+ D∗
β) �� (C∗, δ∗) �� 0

Each row induces the long exact sequence in the diagram below and a simple
inspection of boundary maps in these long exact sequences permits one to construct
linear maps θr and to verify that the diagram below is commutative.

Hr−2(Im(β), δ)

θr−2

��

�� Hr(Im(β), δ)

θr

��

�� Hr(C, δ)

id

��

�� Hr−1(Im(β), δ)

θr−1

��
+Hr−2

β (C, δ, β) �� +Hr
β(C, δ, β) �� Hr(C, δ) �� +Hr−1

β (C, δ, β)

As a consequence one verifies by induction on degree that the inclusion
j : (Im(β), δ) → (+C,+Dβ) induces an isomorphism H∗(Im(β), δ) →+ H∗

β(C, δ, β).

Mixed complex with power maps and involution
A collection of degree zero (degree preserving) linear maps Ψk, k = 1, 2. · · · , τ :=

Ψ−1 which satisfy

(i) Ψk ◦ δ = δ ◦Ψk,
(ii) Ψk ◦ β = kβ ◦Ψk,
(iii) Ψk ◦Ψr = Ψr ◦Ψk = Ψkr, Ψ1 = id
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will be referred to as “power maps and involution”, or simpler “power maps”,
Ψk, k = −1, 1, 2, · · · . 3. They provide the morphisms of cochain complexes

Ψk : C →C,
±Ψk :± Cβ →±Cβ
PΨk : PC →PC

defined as follows

+Ψr
k(wr, wr−2, · · · ) =(Ψr(ωr),

1

k
Ψr−2(ωr−2), · · · )

−Ψr
k(· · · , wr+2, wr) :=(· · · , kΨ2r+2

k (ωr+2),Ψ
r
k(ωr))

and

PΨ2r
k (· · · , ω2r+2, ω2r, ωr−2, · · · , ω0) =

= (· · · , kΨ2r+2
k (ωr+2),Ψ

2r
k (ω2r),

1

k
Ψ2r−2

k (ω2r−2), · · · ,
1

kr
Ψ0

k(ω0))

PΨ2r+1
k (· · · , ω2r+3, ω2r+1, ω2r−1, · · · , ω1) =

= (· · · , kΨ2r+3
k (ω2r+3),Ψ

2r+1
k (ω2r+1),

1

k
Ψ2r−1

k (ω2r−1), · · · ,
1

kr
Ψ1

k(ω1))

Consequently they induce the endomorphisms

Ψ∗
k : H∗ → H∗

±Ψ
∗
k :± H∗

β →± H∗
β

PΨ∗
k : PH∗ → PH∗

Note that in diagram (Fig 2):
J
∗, J∗ and the vertical arrows intertwine the endomorphisms induced by Ψk,
B
∗, resp. B∗, intertwines k(−Ψk), resp. kΨk, with

+Ψk,
I
∗−2, resp. S∗−2, intertwines +Ψk with kPΨk resp. k(+Ψk),
The above elementary linear algebra will be applied to CDGA’s in the next

sections.

3. Mixed commutative differential graded algebras

Let κ be a field of characteristic zero (for example Q,R,C).

Definition 1. (i) A commutative graded algebra, abbreviated CGA, is
an associative unital augmentable graded algebra A∗, (the augmentation
is not part of the data) which is commutative in the graded sense, i.e.

a1 · a2 = (−1)r1r2a2 · a1, ai ∈ Ari , i = 1, 2.

(ii) An exterior differential d∗A : A∗ → A∗+1, is a degree +1 linear map which
satisfies

d(a1 · a2) = d(a1) · a2 + (−1)r1a1 · d(a2), a1 ∈ Ar1 , d∗+1
A d∗A = 0.

3We use the notation τ for Ψ−1 to emphasize that is an involution and to suggest consistency
with other familiar involutions in homological algebra and topology.
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(iii) An interior differential βA
∗ : A∗ → A∗−1 is a degree −1 linear map which

satisfies

β(a1 · a2) = β(a1) · a2 + (−1)r1a1 · β(a2), a1 ∈ Ar1 , βA
∗−1β

A
∗ = 0.

(iv) The exterior and interior differentials d∗ and β∗ are compatible if

d∗−1 · β∗ + β∗+1 · d∗ = 0.

(v) A pair (A∗, d∗), A∗ a CGA and d∗ an exterior differential, is called CDGA
and a triple (A∗, d∗, β∗), A∗ a CGA, d∗ an exterior differential and β∗ an
interior differential, with d∗ and β∗ compatible, is called a mixed CDGA.

A mixed CDGA is a mixed cochain complex.
A degree preserving linear map f∗ : A∗ → B∗ is a morphism of CGA’s, resp.

CDGA’s, resp. mixed CDGA’s if is a unit preserving graded algebra homomorphism
and intertwines d’s and β’s when appropriate.

We will consider the categories of CGA’s, CDGA’s and mixed CDGA’s. In all
these three categories there is a canonical tensor product and in the category of
CDGA’s a well defined concept of homotopy between two morphisms 4(cf. [19],
[14]). The category of mixed CDGA’s is a subcategory of mixed cochain complexes
and all definitions and considerations in section 2 can be applied.

For a (commutative) differential graded algebra (A∗, d∗A), the graded vector
space H∗(A∗, d∗) = Ker(d∗)/Im(d∗−1) is a commutative graded algebra whose
multiplication is induced by the multiplication in A∗. A morphism f = f∗ :
(A∗, d∗A) → (B∗, d∗B) induces a degree preserving linear map, H∗(f) : H∗(A∗, d∗A) →
H∗(B∗, d∗B), which is an algebra homomorphism.

Definition 2. A morphism of CDGA’s f, with Hk(f) an isomorphism for any
k, is called a quasi–isomorphism.

The CDGA (A, dA) is called homologically connected if H0(A, dA) = κ and
homologically 1-connected if it is homologically connected and H1(A, dA) = 0.

The full subcategory of homologically connected CDGA’s will be denoted by
c–CDGA. For all practical purposes (related to geometry and topology) it suffices
to consider only c-CDGA’ s.

Definition 3. 1. The CDGA (A, d) is called free if A = Λ[V ], where V =
∑

i≥0 V
i is a graded vector space and Λ[V ] denotes the free commutative graded

algebra generated by V. If in addition V 0 = 0 then it is called a free connected
commutative differential graded algebra, abbreviated fc-CDGA.

2. The CDGA (A, d) is called minimal if it is a fc-CDGA and in addition
i. d(V ) ⊂ Λ+[V ] · Λ+[V ], with Λ+[V ] the ideal generated by V ,
ii. V 1 = ⊕α∈IVα with I a well ordered set and d(Vβ) ⊂ Λ[⊕α<βVα] (the set I

and its order are not part of the data)

4let k(t, dt) be the free commutative graded algebra generated by the symbol t of degree
zero and dt of degree one, equipped with the differential d(t) = dt. A morphism F : (A, dA) →
(B, dB)⊗k (k(t, dt), d), is called an elementary homotopy from f to g , f, g : (A, dA) → (B, dB), if
ρ0 · F = f, and ρ1 · F = g where

ρ0(a⊗ p(t)) =p(0)a, ρ0(a⊗ p(t)dt) = 0,

ρ1(a⊗ p(t)) =p(1)a, ρ1(a⊗ p(t)dt) = 0,

The homotopy is the equivalence relation generated by elementary homotopy.
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Observation 1. If (Λ[V ], dV ) is minimal and 1-connected, then V 1 = 0 and,
for v ∈ V i, dV (v)is a linear combination of products of elements vj ∈ V j with j < i.
In particular for v ∈ V 2 one has dv = 0.

The interest of minimal algebras comes from the following result [18], [14].

Theorem 1. 1 (D. Sullivan)
1. A quasi–isomorphism between two minimal CDGA’s is an isomorphism.
2. For any homologically connected CDGA, (A, dA), there exist quasi–iso-

morphisms θ : (Λ[V ], dV ) → (A, dA) with (Λ[V ], dV ) minimal. Such a θ will be
called a minimal model of (A, dA).

3. Given a morphism f : (A, dA) → (B, dB) and the minimal models θA :
(Λ[VA], dVA

) → (A, dA) and θB : (Λ[VB], dVB
) → (B, dB), there exist morphisms

f ′ : (Λ[VA], dVA
) → (Λ[VB], dVB

) such that f ·θA and θB ·f ′ are homotopic; moreover
any two such (f ′)’s are homotopic.

We can therefore consider the homotopy category of c–CDGA’s, whose mor-
phisms are homotopy classes of morphisms of CDGA’s. By the above theorem the
full subcategory of fc-CDGA’s is a skeleton, and therefore any homotopy functor
a priori defined on fc–CDGA’s admits extensions to homotopy functors defined on
the full homotopy category of c–CDGA’s and all these extensions are isomorphic
as functors. In particular any statement about a homotopy functor on the category
c-CDGA need only be verified for fc–CDGA.

Precisely for a c–GDGA, (A, dA), choose a minimal model θA : (Λ[VA], dVA) →
(A, dA) and for any f : (A, dA) → (B, dB) choose a morphism f ′ : (Λ[VA], dVA) →
(Λ[VB], dVB) so that θB · f ′ and f · θA are homotopic. Define the value of the
functor on (A, dA) to be the value on (Λ[VA], dVA) and the value on a morphism
f : (A, dA) → (B, dB) to be the value on the morphism f ′ : (Λ[VA], dVA) →
(Λ[VB], dVB).

There are two natural examples of mixed CDGA’s; one is provided by a smooth
manifold equipped with a smooth vector field, the other by a construction referred
to as “the free loop”, considered first by Sullivan-Vigué. The free loop construction
applies directly only to an fc-CDGA but in view of Theorem 1 can be indirectly
used for any c–CDGA.

The first will lead to (the de Rham version of) a new homotopy functor defined
on the category of possibly infinite dimensional manifolds (hence on the homotopy
category of all countable CW complexes) , the s-cohomology, and its relationship
with other familiar homotopy functors 5, cf. section 4 below. The second leads
to simple definitions of three homotopy functors defined on the full category of c–
CDGA’s (via the minimal model theorem) with values in the graded vector spaces
endowed with weight decomposition, cf section 5 below. Their properties lead
to interesting results about the cohomology of the free loop space of 1-connected
spaces.

5this functor was called in [4] and [6] string cohomology for its unifying role explained below,
cf. Observation 2. The name ”string homology” was afterwards used by Sullivan and his school to
designate the homology and equivariant homology of the free loop space of a closed manifold when
endowed with additional structures induced by intersection theory and the Pontrjagin product in
the chains of based pointed loops, cf. [11].
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4. de Rham Theory in the presence of a smooth vector field

Let M be a smooth manifold, possibly of infinite dimension. In the latter
case the manifold is modeled on a good Fréchet space 6, for which the differential
calculus can be performed as expected.

Consider the CDGA of differential forms Ω∗(M) with exterior differential d∗ :
Ω∗(M) → Ω∗+1(M) and interior differential iX∗ : Ω∗(M) → Ω∗−1(M), the contrac-
tion along the vector fieldX. They are not compatible. However we can consider the
Lie derivative LX := d · iX + iX · d and define ΩX(M) := {ω ∈ Ω(M)|LXω = 0};
ΩX(M) consists of the smooth forms invariant by the flow induced by X. The
graded vector space Ω∗

X(M), a subalgebra of Ω∗(M), is a commutative graded al-
gebra and the restriction of d∗ and of iX∗ leave invariant Ω∗

X(M) and are compatible.
Consequently (Ω∗

X(M), d∗, iX∗ ) is a mixed CDGA.
Denote

(i) H∗
X(M) := H∗(Ω∗

X , d∗),
(ii) ±H∗

X(M) :=± H∗(Ω∗
X , d∗, iX∗ ),

(iii) PH∗
X(M) := PH∗(Ω∗

X , d∗, iX∗ ),
(iv) PH∗

X(M) := PH∗(Ω∗
X , d∗, iX∗ ).

The diagram Fig 2 becomes

�� +Hr
X(M)

Sr
��

id

��

+Hr+2
X (M)

Jr+2
��

I
r+2

��

Hr+2(M)
Br+2

��

��

+Hr+1
X (M) ��

��

· · ·

�� +Hr
X(M)

I
r

�� PHr+2(M)
J
r+2

�� −Hr+2
X (M)

B
r+2

�� +Hr+1
X (M) �� · · ·

Fig 3

The above diagram becomes more interesting if the vector field X is induced
from an S1 action μ : S1 ×M → M (i.e. if x ∈ M then X(x) is the tangent to the
orbits through x). In this section we will explore particular cases of this diagram.

Observe that since μ is a smooth action, the subset F of fixed points is a smooth
submanifold. For any x ∈ F denote by ρx : S1×Tx(M) → Tx(M) the linearization
of the action at x, which is a linear representation. The inclusion F ⊂ M induces
the morphism r∗ : (Ω∗

X(M), d∗, iX∗ ) → (Ω∗(F ), d∗, 0).
For a linear representation ρ : S1 × V → V on a good Fréchet space denote by

V f the fixed point set and by X the vector field associated to ρ when regarded as
a smooth action.

Definition 4. A linear representation ρ : S1 × V → V on the good Fréchet
space is good if the following conditions hold:

a. V f , the fixed point set, is a good Fréchet space,
b. The map r∗ : Ω∗(V ) → Ω∗(V f ) induced by the inclusion is surjective,
c. (Ω∗

X(V, V f ), iX∗ ) with (Ω∗
X(V, V f ) = ker r∗ is acyclic.

We have:

Proposition 2. 1. Any representation on a finite dimensional vector space is
good.

6this is Fréchet space with countable base which admits a smooth partition of unity. Note
that if a Fréchet space V is good then the space of smooth maps C∞(S1, V ) equipped with the
C∞− topology is also good.
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2. If V is a good Fréchet space then the regular representation ρ : S1 ×
C∞(S1, V ) → C∞(S1, V ), with C∞(S1, V ), the Fréchet space of smooth functions,
is good.

For a proof consult Appendix [3]. The proof is based on an explicit formula
for iX in the case of an irreducible S1− representation and on the writing of the
elements of C∞(S1, V ) as Fourier series.

Definition 5. A smooth action μ : S1 ×M → M is good if its linearization
at any fixed point is a good representation.

Thus a smooth action on any finite dimensional manifold is good and so is the

canonical smooth action of S1 on PS1

, the smooth manifold of smooth maps from
S1 to P where P is any smooth Fréchet manifold (in particular a finite dimensional
manifold). In view of the definitions above observe the following.

Proposition 3. If M̃ = (M,μ) is a smooth S1−manifold and X is the asso-
ciated vector field, then:

1. H∗
X(M) = H∗(M),

2. +H∗
X(M) = H∗

S1(M̃) and S : H∗(M) → H∗+2(M) is identified with the
multiplication by u ∈ H2

S1(pt), the generator of the equivariant cohomology of the
one–point space,

3. PH∗
X(M) = lim

→
S

H∗+2k
S1 (M̃).

If the action is good then:
4. PH∗

X(M) = K∗(F ) where

Kr(F ) =
∏

k

H2k(F ) if r is even

Kr(F ) =
∏

k

H2k+1(F ) if r is odd.

If M is a closed n−dimension manifold then :

5. −H∗
X(M) = HS1

n−1−∗(M̃,OM ), with HS1

∗ (M̃,OM ) the equivariant homology

with coefficients in the orientation bundle 7 of M.

Proof. 1. The verification is standard since S1 is compact and connected; one
constructs av∗ : (Ω∗(M), d∗) → (Ω∗

X , d∗) by S1− averaging using the compactness
of S1. The homomorphism induced in cohomology by av∗ is obviously surjective.
To check it is injective one has to show that any closed k differential form ω which
becomes exact after applying av∗ is already exact, precisely

∫

c
ω = 0 for any smooth

k− cycle c. Indeed, since the connectivity of S1 implies
∫

c
ω =

∫

μ(−θ,c)
ω, θ ∈ S1,

one has:

7Recall that HS1

∗ (M,OM ) = H∗(M//S1,OM ) where M//S1 is the homotopy quotient of
this action. This equivariant homology can be derived from invariant currents in the same way
as equivariant cohomology from invariant forms, cf. [1]. The complex of invariant currents (with

coefficients in the orientation bundle) contains the complex (Ωn−∗
X (M,OM ), ∂n−∗) as a quasi–

isomorphic subcomplex.
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∫

c

ω = (1/2π)

∫

S1

(

∫

c

ω)dθ =

(1/2π)

∫

S1

(

∫

μ(−θ,c)

ω)dθ = (1/2π)

∫

S1

(

∫

c

μ∗
θ(ω))dθ =

∫

c

(1/2π)

∫

S1

μ∗
θ(ω)dθ) =

∫

c

av∗(ω) = 0.

Here μθ denotes the diffeomorphism μ(θ, ·) : M → M.
2. Looking at the definition in section 2 one recognizes one of the most familiar

definition of equivariant cohomology using invariant differential forms cf. [1].
3. The proof is a straightforward consequence of Proposition 1 in section 2 and

(2) above.
4. Let F be the smooth submanifold of fixed points of μ. Clearly r∗ :

(Ω∗
X(M), d∗, iX∗ ) → (Ω∗(F ), d∗F , 0) is a morphism of mixed CDGA, hence of mixed

complexes. If the smooth action is good then the above morphism induces an iso-
morphism in homology H∗(Ω

∗
X , iX∗ ) → H∗(Ω

∗(F ), 0). To check this we have to show
that (ker r∗, iX∗ ), with ker r∗ := {ω ∈ Ω∗

X(M)|ω|F = 0}, is acyclic. This follows (by
S1−averageing) from the acyclicity of the chain complex (Ω∗(M,F ), iX∗ ) which in
turn can be derived using the linearity with respect to functions of of iX . Indeed,
using a “partition of unity” argument it suffices to verify this acyclicity locally. For
points outside F the acyclicity follows from the acyclicity of the complex

· · ·Λ∗−1(V )
ie→ Λ∗(V )

ie→ Λ∗−1(V ) → · · · , where V is a Fréchet space , Λk(F )
the space of skew-symmetric k−linear maps from V to κ = R,C and e ∈ V \ 0. For
points x ∈ F this follows from the fact that the linearization of the action at x is
a good representation, as stated in Proposition 2.

5. If M̃ is a finite dimensional smooth S1−manifold we can equip M with an
invariant Riemannian metric g and consider � : Ω∗(M) → Ωn−∗(M ;OM ) the Hodge
star operator. Denote by ω ∈ Ω1(M) the 1−form corresponding to X with respect
to the metric g, by eω : Ω∗(M ;OM ) → Ω∗+1(M ;OM ) the exterior multiplication
with ω and by ∂∗ : Ω∗(M ;OM ) → Ω∗−1(M ;OM ) the formal adjoint of d∗−1 with
respect to g, i.e. ∂∗ = ± � · dn−∗ · �−1. Note that eω = ± � · iX · �−1. All these
operators leave ΩX invariant since g is invariant. Clearly (Ω∗

X(M ;OM ), e∗ω, ∂∗) is a
mixed cochain complex and we have

−H∗
iX (ΩX(M), d, iX) =+ H∂

n−∗(ΩX(M ;OM ), eω, ∂).

The equivariant homology of M̃ with coefficients in the orientation bundle can be
calculated from the complex of invariant currents which, if M is closed, contains
the complex (Ωn−∗

X (M,OM ), ∂n−∗) as a quasi–isomorphic sub complex. As a con-
sequence we have

Hn−∗(ΩX(M ;OM ), ∂) =H∗(M ;OM )

+Heω
n−∗(ΩX(M ;OM ), eω, ∂) =HS1

∗ (M ;OM )

(cf. section 2 for notations). �

As a consequence of Proposition 3 (1)-(4) for any smooth S1 manifold with
good S1− action the second long exact sequence in the diagram Fig 3 becomes
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· · · → Hr−2
S1 (M̃)

����
���

���
���

�
I
r−2

�� Kr(F )
J
r

�� −Hr
S1(M̃)

B
r

�� Hr−1
S1 (M̃) �� · · ·

lim
→
S

Hr+2k
S1 (M̃)

��

Fig 4

The sequence above is obviously natural in the sense that f : M̃ → Ñ , an S1−
equivariant smooth map, induces a commutative diagram whose rows are the above
exact sequence Fig 4 for M̃ and Ñ . Then if f and its restriction to the fixed point
set induce isomorphisms in cohomology it induces isomorphisms in H∗

S1 and K∗

and then all other types of equivariant cohomologies −H∗
S1 , PH∗

S1 , PH∗
S1 .

If M̃ is a compact smooth S1− manifold, in view of Proposition 3 (5), one

identifies −Hr
S1(M) with HS1

n−r(M ;OM ) and in view of this identification writes
Pdn−r. instead of Br. The long exact sequence becomes

· · · �� Kr(F ) �� HS1

n−r(M̃ ;OM )
Pdn−r �� Hr−1

S1 (M̃) �� Kr+1(F ) �� · · · .
Fig 5

In case the fixed point set is empty we conclude that

Pdn−r : HS1

n−r(M̃,OM ) → Hr−1
S1 (M̃)

is an isomorphism. In this case the orbit space M/S1 is a Q−homological manifold
of dimension (n− 1), hence

HS1

n−r(M̃ ;OM ) =Hn−r(M/S1;OM/S1)

Hr−1
S1 (M̃ ;OM ) =Hr−1(M/S1;OM/S1)

and Pd∗ is nothing but the Poincaré duality isomorphism for Q− homology mani-
folds. In general the long exact sequence Fig 5 measures the failure of the Poincaré
duality map, Pd∗, to be an isomorphism.

5. The free loop space and S-cohomology

A more interesting example is provided by the S1−manifold ˜PS1 := (PS1

, μ).

Here PS1

denotes the smooth manifold of smooth maps from S1 to P modeled by the
Fréchet space C∞(S1, V ) where V is the model for P (finite or infinite dimensional
Fréchet space) cf [3]. This smooth manifold is equipped with the canonical smooth

S1−action μ : S1 × PS1 → PS1

defined by

μ(θ, α)(θ′) = α(θ + θ′), α : S1 → P, θ, θ′ ∈ S1 = R/2π.

The fixed points set of the action μ consist of the constant maps and is hence identi-
fied with P. This action is the restriction of the canonical action of O(2), the group
of isometries of S1, to the subgroup of orientation preserving isometries identified
with S1 itself. For any x ∈ P viewed as a fixed point of μ the linearization repre-
sentation is the regular representation of S1 on V = Tx(P ). In view of Proposition

2 the action μ is good. The space PS1

is also equipped with the natural maps
ψk, k = 1, 2, · · · , the geometric power maps and with the involution τ, defined by
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ψk(α)(θ) = α(kθ)

τ (α)(θ) = α(−θ)

with α ∈ PS1

, and θ ∈ S1.
The involution τ is the restriction of the action of O(2) to the reflection θ → −θ

in S1. Then (Ω∗
X(PS1

), d∗, iX∗ ) is a mixed CDGA, hence a mixed complex with power
maps Ψk, τ and involution τ induced from ψk and τ.

Suppose f : P1 → P2 is a smooth map. It induces a smooth equivariant map

fS1

: PS1

1 → PS1

2 whose restriction to the fixed point set is exactly f. If f is a

homotopy equivalence then so is fS1

.
Introduce the notation

hH∗(P ) := H∗(PS1

),

cH∗(P ) := H∗
S1( ˜PS1),

sH∗(P ) :=− H∗
S1( ˜PS1).

The assignments P � hH∗(P ), P � cH∗(P ), P � sH∗(P ) are functors 8 with the
property that hH∗(f), cH∗(f), sH∗(f) are isomorphism if f is a homotopy equiva-
lence, hence they are all homotopy functors . They are related by the commutative

diagram below. This diagram is the same as diagram (Fig 3) applied to M̃ = ˜PS1

with the specifications provided by Proposition 3.

· · · �� cHr−2(P )
Sr−2

��

id

��

cHr(P )
Jr

��

I
r

��

hHr(P )
Br

��

��

cHr−1(P ) ��

id

��

· · ·

· · · �� cHr−2(P )
I
r−2

��

S

��

Kr(P )
J
r

�� sHr(P )
B
r
�� cHr−1(P ) �� · · ·

cHr(P ) ��

I
r

		������������
lim
→

cHr+2k(P )

��

Fig 6

where lim
→

cHr+2k(P ) = lim
→

{· · · → cHr+2k(P )
S→ cHr+2k+2(P ) → · · · }.

The linear map

cH∗(P ) = H∗
S1( ˜PS1)

I
r

→ K∗

factors through lim
→

cHr+2k(P ) which depends only on the fundamental group of

P. Indeed, it is shown in [5] that if P (1) 9 is a smooth manifold (possibly of infinite
dimension) which has the homotopy type of K(π, 1) and p(1) : P → P (1) is smooth

map inducing an isomorphism for the fundamental group then lim
→

Hr+2k
S1 ( ˜PS1) →

lim
→

Hr+2k
S1 ( ˜P (1)S1) is an isomorphism. cf [5]. Then if one denotes by cH∗(M) :=

coker(cH∗(M) → cH∗(pt)) and K∗(M) := coker(K∗(M) → K∗(pt))10 one obtains

8the notations hH∗, cH∗ are motivated by the Hochschild resp. cyclic homology interpreta-
tion of these functors, while sH∗ is abbreviation from string cohomology.

9the notation for the first stage Postnikov term of P.
10clearly Kr(pt) = Hr

S1 (pt) = κ, resp. 0, if r is even, resp. odd.
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Theorem 2. If P is a 1-connected smooth manifold then we have the following
short exact sequence:

0 → K
r
(P )⊗ κ

J
r

→ sHr(P )
B
r

→ cHr−1(P ) → 0

where κ = R or C.

Observation 2. The vector space K∗(P ) can be identified via the Chern
character with the Atiyah–Hirzebruch (complex) K−theory tensored with the field
κ = R or C, depending on what sort of differential forms one considers (real or

complex valued). When P is 1-connected cH∗(P ) identifies with Hom(Ã∗(P), k),

where Ã∗(P ) denotes the reduced Waldhausen algebraic K−theory11, cf [4]. From
this perspective sH∗ unifies topological (Atiyah–Hirzebruch) K−theory and Wald-
hausen algebraic K−theory.

Observation 3. In view of the definition of −H∗
β(C

∗, δ∗, β∗), cf. section 2,

observe that sH∗(P ) is represented by infinite sequences 12, rather than eventually

finite sequences of invariant differential forms on PS1

. If instead of “infinite se-
quences” we would have considered “eventually finite sequences” the outcome would
have been different for infinite dimensional manifolds. The difference between “infi-
nite sequences” and “eventually finite sequences” exists only for infinite dimensional

manifolds, which PS1

always is.

The power maps ψk induce the endomorphisms hΨk, cΨk sΨk and KΨk on
hH∗, cH∗, sH∗, and K∗.

In general only the KΨk are easy to describe. Precisely, if r is even then
Kr =

∏

i≥0 H
2i(P ) and if r is odd then Kr =

∏

i≥0 H
2i+1(P ), and in both cases

KΨk =
∏

i≥0 k
i−rId.

The symmetric part with respect to the involution cΨ−1, i.e. the eigenspaces

corresponding to the eigenvalues +1 identifies with H∗
O(2)(P

S1

), the equivariant

cohomology for the canonical O(2)−action.
However, if P is 1-connected, in view of the section 6, one can describe both

the eigenvalues and the eigenspaces of the power maps hΨk and cΨk and then of
sΨk. We have:

Theorem 3. Let P be a 1-connected manifold.
1. All eigenvalues of the endomorphisms hΨk and cΨk are kr, r = 0, 1, 2 · · · ,

and the eigenspaces corresponding to kr are independent of k provided k ≥ 2.
2. Denote these eigenspaces by hH∗(M)(r) and cH∗(M)(r). Then
hH∗(0) = H∗(X;κ), cH∗(0) = H∗+1(X;κ), and
hHr(p) = cHr(p) = 0, p ≥ r + 1.
3. If

∑

i dimπi(P ) ⊗ κ < ∞, κ the field of real or complex numbers and
∑

i dim(Hi(P )) < ∞ then for any r ≥ 0 one has
∑

i

dim hHi(P )(r) < ∞,
∑

i

dim cHi(P )(r) < ∞.

11often referred to as A− theory.
12sH∗(P ) is the cohomology of the cochain complex (−C∗,− D∗) with −Cr =

∏
k≥0 Ω

r+2k
inv (PS1

) and −Dr(· · · , ωr+2, ωr) = (· · · , (iXωr+2 + dωr)), cf. section 2.
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If P is “formal” in the sense of rational homotopy theory 13 (a projective
complex algebraic variety, or more generally a closed Kähler manifold is formal, cf
[13] ) then the Euler Poincaré characteristic

χh(λ) :=
∑

i,r

dimhHi(r)λr

and

χc(λ) :=
∑

i,r

dim cHi(r)λr

can be explicitly calculated in terms of the numbers dimHi(P ), cf [B]. The explicit
formulae are quite complicated. They require the results of P.Hanlon [15] about the
eigenspaces of Adams operations in Hochschild and cyclic homology as well as the
identification of hH∗(P ) resp. cH∗(P ) with the Hochschild, resp. cyclic, homology
of the graded algebra H∗(P ). These are not discussed in this paper but the reader
can consult [8] and [6] for precise statements.

The functor sH
r
(P ) is of particular interest in geometric topology. In the case

P is 1-connected it calculates in some ranges the homotopy groups of the (homo-
topy) quotient space of homotopy equivalences by the group of diffeomorphisms [3],
[6].

6. The free loop construction for CDGA

The “free loop ” construction associates to a free connected CDGA, (Λ[V ], dV )
a mixed CDGA, (Λ[V ⊕ V ], δV , i

V ), endowed with power maps Ψk and involution
τ defined as follows.

(i) Let V = ⊕i≥0V
i
with V

i
:= V i+1 and let Λ[V ⊕ V ] be the commutative

graded algebra generated by V ⊕ V .
(ii) Let iV : Λ[V ⊕V ] → Λ[V ⊕V ]be the unique internal differential (of degree

−1) which extends iV (v) = v and iV (v) = 0.
(iii) Let δV : Λ[V ⊕ V ] → Λ[V ⊕ V ] be the unique external differential (of

degree +1) which extends δV (v) = d(v) and δ(v) = −iV (d(v)).
(iv) Let Ψk : (Λ[V ⊕V ], δV ) → (Λ[V ⊕V ], δV ), k = −1, 1, 2, · · · be the unique

morphisms of CDGA which extends Ψk(v) = v,Ψk(v) = kv. We put
τ := Ψ−1. The maps Ψk k ≥ 1 are called the power maps and τ the
canonical involution. One has

Ψk ·Ψr =Ψkr

Ψk · iV =kiV ·Ψk

(v) Let Λ+[V ⊕V ] be the ideal of Λ[V ⊕V ] generated by V ⊕V or the kernel
of the augmentation which vanishes on V ⊕ V .

Note that :

Observation 4. 1. (Im(iV), δV, 0) is a mixed subcomplex of (Λ+[V ⊕V ], δV , i
V )

⊂ (Λ[V ⊕ V ], δV , i
V )

2. Ψk, k = −1, 1, 2, · · · leave (Λ+[V ⊕V ], δV , i
V ) and (Im(iV), δ) invariant and

have kr r = 0, 1, 2, · · · as eigenvalues. These are all the eigenvalues.

13i.e. for each connected component of P, the de Rham algebra and the cohomology algebra
equipped with the differential 0 are homotopy equivalent, cf section 6.
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For k ≥ 2 the eigenspace of Ψr : Λ[V ⊕ V ] → Λ[V ⊕ V ] corresponding to

the eigenvalue kr is exactly Λ[V ] ⊗ V
⊗r

, resp. Λ+[V ⊕ V ] ∩ Λ[V ] ⊗ V
⊗r

, resp.

Im(iV)(r) = Im(iV)∩Λ[V]⊗V
⊗r
, and hence independent of k. Each such eigenspace

is δV −invariant.
3. The mixed complex (Λ+[V ⊕ V ], δV , i

V ) is iV −acyclic,
4. We have the decomposition

(Λ[V ⊕ V ], δV ) =
⊕

r≥1

(Λ[V ]⊗ V
⊗r

, δV )

and the analogous decomposition for (Λ+[V ⊕ V ], δV ) and (Im(iV), δV), referred to
from now on as the weight decomposition.

Consider the complex (Λ[V ] ⊗ V
⊗r

, δV ) and the filtration provided by Λ[V ]⊗
Fp(V

⊗r
) with Fp(V

⊗r
) the span of elements in V

⊗r
of total degree ≤ p.

For a graded vector space W = ⊕iW
i denote dimW =

∑

dimW i.

Observation 5. 1. (Λ[V ]⊗Fp(V
⊗r

), δV ) is a subcomplex of (Λ[V ]⊗V
⊗r

, δV ).
2.If (Λ[V ], dV ) is minimal and 1– connected then, by Observation 1,

δ(Fp(V
⊗r

)) ⊂ Λ[V ]⊗ Fp−1(V
⊗r

) and then

(Λ[V ]⊗ Fp(V
⊗r

)/Λ[V ]⊗ Fp−1(V
⊗r

) , δV ) = (Λ[V ], dV )⊗ Fp(V
⊗r

)/Fp−1(V
⊗r

).

2.
∑

p dim(Fp(V
⊗r

)/Fp−1(V
⊗r

)) = dim(V
⊗r

) = (dimV )r.

If f : (Λ[V ], dV ) → Λ(W,dW ) is a morphism of CDGAs then it induces f̃ :
(Λ[V ⊕V ], δV , i

V ) → (Λ[W ⊕W ], δW , iW ) which intertwines Ψ′
ks and then preserves

the weight decompositions.
We introduce the the notation HH∗, CH∗PH∗

HH∗(Λ[V ], dV ) :=H∗(Λ[V ⊕ V ], δV )

CH∗(Λ[V ], dV ) :=
+H∗

iV (Λ[V ⊕ V ], δV , i
V )

PH∗(Λ[V ], dV ) :=PH∗
iV (Λ[V ⊕ V ], δV , i

V )

and for a morphism f denote by HH(f), CH(f), PH(f) the linear maps induced

by f̃ . The assignments HH∗, CH∗, PH∗ provide functors from the category of
fc–CDGA’s to graded vector spaces. They come equipped with the operations
HΨk, CΨk, etc. induced from Ψk. Since for f a quasi–isomorphismHH∗(f), CH∗(f),
PH∗(f) are isomorphisms, these functors, as shown in section 3, extend to the cat-
egory of c–CDGA’s. We have the following result.

Theorem 4. Let (A, dA) be a connected CDGA.
1. All the eigenvalues of the endomorphisms HΨk and CΨk are kr, r =

0, 1, 2, . . . and their eigenspaces are independent of k provided k ≥ 2. One denotes
them by HH(A, dA)(r), and CH(A, dA)(r).

2.
HH∗(A, dA)(0) =H∗(A, dA),

CH∗(A, dA)(0) =H∗+1(A, dA)

HHr(A, dA)(p) =CHr(A, dA)(p) = 0, p ≥ r + 1
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3.Suppose (A, dA) is 1-connected with minimal model (Λ[V ], dV ). If
∑

i dimV i <
∞ and

∑

i dimHi(A, dA) < ∞ then for any r ≥ 0 one has
∑

i

dimHHi(A, dA)(r) < ∞,
∑

i

dimCHi(A, dA)(r) < ∞.

Proof. It suffices to check the statements for (A, dA) = (Λ[V ], dV ) minimal.
Items (1) and (2) are immediate consequences of Observation 4.

Item 3) follows from Observation 5. Indeed for a fixed r one has

∑

i

dimHi(Λ[V ]⊗ V
⊗r

, δV )) ≤
∑

i,p

dimHi(Λ[V ]⊗ Fp(V
⊗r

/Λ[V ]⊗ Fp−1(V
⊗r

), δV ) =

(dimV )r ·
∑

i

dimHi(Λ[V ], dV )

�

In addition to χ(A, dA) :=
∑

(−1)i dimHi(A, dA) one can consider
χH(A, dA)(r) :=

∑

(−1)i dimHHi(A, dA)(r) and
χC(A, dA)(r) :=

∑

(−1)i dimCHi(A, dA)(r),
and then the power series in λ,

χH(A, dA)(λ) :=
∑

χH(A, dA)(r)λ
r, χC(A, dA)(λ) :=

∑

χC(A, dA)(r)λr.

Theorem 4 (3) implies that for (A, dA) 1-connected with
∑

i dimV i < ∞ and
∑

i dimHi(A, dA) < ∞ the partial Euler–Poincaré characteristics χH(A, dA)(r)
and χC(A, dA)(r) and therefore the power series χH(A, dA)(λ) and χC(A, dA)(λ)
are well defined. The results of Hanlon [15] permit one to calculate explicitly
χH(λ) and χC(λ) in terms of dimHi(A, dA) if (A, dA) is 1-connected and formal,
i.e. there exists a quasi–isomorphism (Λ[V ], d) → (H∗(Λ[V ], d), 0), (Λ[V ], d) to a
minimal model of (A, dA).

We want to define an algebraic analogue of the functor sH∗ on the category
of cCDGA’s. Recall that for a morphism f∗ : (C∗

1 , d
∗
1) → (C∗

2 , d
∗
2) the “mapping

cone” Cone(f∗) is the cochain complex with components C∗
f = C∗

2 ⊕C∗+1
1 and with

d∗f =

(

d∗2 f∗+1

0 −d∗+1
1

)

.

Notice that, when f∗ is injective, the morphism Cone(f∗) → C∗
2/f

∗(C∗
1) defined

by the composition C∗
2 ⊕ C∗+1

1 → C∗
2 → C∗

2/f
∗(C∗

1 ) is a quasi–isomorphism.
We will consider the composition

I∗−2 :+ C∗−2
iV

(Λ[V ⊕ V ], δV , i
V )

I∗−2

→ PC∗(Λ[V ⊕ V ], δV , i
V )

P
∗(p)→ PCr(Λ[V ], dV , 0)

with the first arrow provided by the natural transformation I∗−2 :+ C∗−2
β → PC∗

described in section 2 applied to the mixed complex (Λ[V ⊕ V ], δV , i
V ) and the

second induced by the projection on the zero weight component of (Λ[V⊕V ], δV , i
V ).

The mapping cone Cone(I∗−2), is functorial when regarded on the category of
fc–CDGA’s. Define

SH∗(Λ[V ], dV ) := H∗(Cone(I∗)).

The assignment (Λ[V ], dV ) � SH∗(Λ[V ], dV ) is a homotopy functor.
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Consider the commutative diagrams

+C∗−2
iV

(Λ[V ⊕ V ], δV , i
V )

i∗−2
��

id

��

+C∗
iV (Λ[V ⊕ V ], δV , i

V ) ��

I∗

��

�� Cone(i∗−2)

��
+C∗−2

iV
(Λ[V ⊕ V ], δV , i

V )
I∗−2

�� PC∗(Λ[V ], dV , 0) �� Cone(I∗−2).

and

+C∗−2

iV
(Λ[V ⊕ V ], δV , iV )

i∗−2 ��

id

��

+C∗
iV (Λ[V ⊕ V ], δ, iV ) ��

id

��

Cone(i∗−2)

��
+C∗−2

iV
(Λ[V ⊕ V ], δV , iV )

i∗−2 �� +C∗
iV (Λ[V ⊕ V ], δV , iV ) �� C∗(Λ[V ⊕ V ], δV )

with the last vertical arrow in the second diagram a quasi–isomorphism as noted
above.

The long exact sequence induced by passing to cohomology in the first diagram
combined with the identifications implied by the second diagram lead to

· · · �� CHr−2 Sr−2
��

id

��

CHr Jr
��

T r

��

HHr Br
��

��

CHr−1 ��

id

��

· · ·

· · · �� CHr−2 I
r−2

��

Sr−2

��

Kr
J
r

�� SHr+2 B
r

�� CHr−1 �� · · ·

CHr ��

I
r



���������
PHr

��

Fig 7

with PHr = lim
→

CHr+2k and Kr := Kr(Λ[V ], dV ) given by =
∏

k H
2k(Λ[V ], dV )

resp.
∏

k H
2k+1(Λ[V ], dV )if r is even, resp. odd. It is immediate that Theorem 2

remains true for sH∗, cH∗ replaced by SH∗, CH∗ as follows easily from the diagram
Fig 7. The diagram Fig 7 should be compared with diagram Fig 6. This explains
why SH∗(Λ[V ], dV ) will be regarded as the algebraic analogue of sH∗(P ).

It is natural to ask if the functors HH∗, CH∗, SH∗ applied to (Ω∗(P ), d∗) cal-
culate hH∗, cH∗, sH∗ applied to P and the diagram Fig 7 identifies to the diagram
Fig 6. The answer is in general no, but is yes if P 1-connected .

The minimal model theory, discussed in the next section, permits one to identify
HH∗(Ω∗(P ), d∗), CH∗(Ω∗(P ), d∗) with hH∗(P ), CH∗(P ) and then SH∗(Ω∗(P ), d∗)
with SH∗(P ) and actually diagram Fig 6 with diagram Fig 7 when P is 1-connected.

7. Minimal models and the proof of Theorem 3

Observe that if (A∗, d∗, β∗) is a mixed CDGA equipped with the power maps
and involution Ψk, k = −1, 1, 2, · · · , then the diagram

+H∗
β(A∗, d∗, β∗) ��

+Ψk

��

H∗(A∗, d∗)

+Ψk

��
+H∗

β(A∗, d∗, β∗) �� H∗(A∗, d∗)



104 DAN BURGHELEA

can be derived by passing to cohomology in the commutative diagram of CDGA’s.

(A∗ ⊗ Λ[u],D[u]) ��

Ψk[u]

��

(A∗, d∗)

Ψk

��
(A∗ ⊗ Λ[u],D[u]) �� (A∗, d∗)

where Λ[u] is the free commutative graded algebra generated by the symbol u of
degree 2, D[u](a⊗ur) = d(a)⊗ur +β(a)⊗ur+1 and Ψ[u](a⊗ur) = 1/krΨ(a)⊗ur.

For P 1-connected and (Λ([V ], dV ) a minimal model of (Ω∗(P ), d∗) we want to
establish the existence of the homotopy commutative diagram

A ��

ΨP
k [u]

��

B

ΨP
k

��

C

θ̃

���������
��

Ψk[u]

��

D

θ

���������

Ψk

��

A �� B

C ��

θ̃

���������
D

θ

���������

where

A =(ΩX(PS1

)⊗ Λ[u],D[u])

B =(ΩX(PS1

), d)

C =(Λ[V ⊕ V ]⊗ Λ[u], δ[u])

D =(Λ[V ⊕ V ], δ)

with
D[u](ω ⊗ ur) =d(ω)⊗ ur + iX(ω)⊗ ur+1

δ[u](a⊗ ur) =δ(a)⊗ ur + iV (ω)⊗ ur+1.

The existence of the quasi–isomorphism θ was established in [20]. The ex-

istence of the quasi–isomorphism θ̃ and the homotopy commutativity of the top
square was established in [9] and the homotopy commutativity of the side squares
was verified in [8]. The right side square, resp. left side square, in this diagram
provides identifications of HH∗(Λ[V ], dV ) with hH∗(P ), resp. of CH∗(Λ[V ], dV )
with cH∗(P ). These identifications are compatible with all natural transformations
defined above and with the endomorphisms induced by the algebraic resp. geomet-
ric power maps. In particular one derives Theorem 3 from Theorem 4. It is tedious
but straightforward to derive, under the hypothesis of 1– connectivity for P, the
identification of the diagram Fig 6 for P and the diagram Fig 7 for (Ω∗(P ), d∗).
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Vinberg Algebras, Lie Groups and Combinatorics
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Dedicated to Alain Connes on the occasion of his 60th birthday, to witness our long lasting
friendship

Abstract. Vinberg algebras are usually called pre-Lie algebras and were in-
troduced long ago by Gerstenhaber. We propose to follow a different route by
motivating these algebras by problems coming from differential geometry, and
first studied in depth by Vinberg. We shall recall how the Lie bracket of vector
fields can be obtained by skewsymmetrizing a more fundamental product. We
shall then develop a combinatorial method for the higher order differential ope-
rators, quite similar to the procedure used in studying Runge–Kutta methods.
We shall then move to nilpotent (or pronilpotent) Lie groups. In the last part

of these lectures, I shall apply the previous methods in the renormalization
theory of quantum fields (à la Connes–Kreimer).

1. Introduction

Vinberg (or pre-Lie) algebras have become important new tools in combina-
torics and differential geometry. They generate a special class of Lie algebras. Our
purpose in these notes is to describe them in some detail, and to apply them in the
method of renormalization theory introduced by Alain Connes and Dirk Kreimer.
These authors have introduced a Hopf algebra, here we consider a simpler algebraic
tool, the Vinberg algebras. Such a Vinberg algebra gives rise to a Lie algebra; hence
to a Lie group (or rather inverse limit of Lie groups). This provides an alternative
route to the results of Connes and Kreimer.

2. Vinberg (pre-Lie) algebras

2.1. The basic concept. Associative algebras and Lie algebras have been
with us for a while. Historically, there have been many attempts to define other
types of algebras. But the efforts were not systematic, or the right viewpoint was
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not reached, and only the theory of Jordan algebras was developed to a reasonable
extent. Lie remarked that for commutators [ab] := ab− ba the Jacobi identity,

J(a, b, c) := [a[bc]] + [b[ca]] + [c[ab]] = 0,

pertaining to the definition of Lie algebras, is implied by associativity. The com-
putation is trivial, but it is useful for us to recall it. For a, b, c elements of any
algebra:

[a[bc]] = a(bc)− a(cb)− (bc)a+ (cb)a,

[b[ca]] = b(ca)− b(ac)− (ca)b+ (ac)b,(1)

[c[ab]] = c(ab)− c(ba)− (ab)c+ (ba)c.

Define the associator A(a, b, c) of three elements a, b, c as

A(a, b, c) = a(bc)− (ab)c.

An algebra is associative iff A(a, b, c) vanishes identically. Then (1) tells us clearly
that

J(a, b, c) = total skewsymmetrization of A(a, b, c).

Therefore, for J to vanish, it is not necessary that A vanish in turn; it is enough
that

(2) A(a, b, c)−A(b, a, c) = a(bc)− (ab)c− b(ac) + (ba)c = 0.

We call this the Vinberg identity, and algebras with this property will be called
Vinberg algebras. They were introduced with the name pre-Lie algebras by Ger-
stenhaber in 1962, and around the same epoch by Vinberg in relation with problems
in differential geometry. A more general definition of a pre-Lie algebra would be
that of an algebra with a product such that the corresponding commutators define
a Lie algebra. In the previous definition, a Vinberg algebra is one in which A(a, b, c)
is symmetric in a, b; hence a more precise terminology would be left-symmetric Vin-
berg algebra. Similarly, if A(a, b, c) is symmetric in b, c, we get a right-symmetric
Vinberg algebra. For us, a pre-Lie algebra shall be a right-symmetric Vinberg alge-
bra.

Let A be a (left-symmetric) Vinberg algebra, with product ab. According to
the previous explanations, we define a Lie algebra ALie with bracket

[ab] = ab− ba .

For each a in A, let La be the linear operator b �→ ab of left multiplication by a in
A. Vinberg’s identity can be written as

L[ab] = La Lb − Lb La ,

hence the operators La provide a representation of the Lie algebra ALie in the
space A, the so-called half-adjoint representation. We have a similar property for
the right-symmetric Vinberg algebras, and the operators Ra : b �→ −ab.
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2.2. Examples.
2.2.1. Consider vector fields written in local coordinates (x1, . . . , xn) ≡ (xα) ≡

x, with x ∈ R
n. To a vector function Xα(x) one can associate the Lie derivative

LX , that is, the differential operator defined by

LXf =
n
∑

α=1

Xα ∂f

∂xα
=: Xα ∂αf ;

we of course use Einstein’s notation in this Einstein year!1 The little miracle is that

[LXLY ] = LXLY − LY LX

is again a first order differential operator, hence of the form L[X,Y ]; and then the
Jacobi identity for the Lie bracket [X,Y ] comes for free from associativity of the
algebra of differential operators.

However, we can do things differently. We define DXY by

(3) (DXY )β := Xα ∂αY
β.

This definition is not intrinsic, in the sense of not being consistent under general
changes of coordinates. But allow us to go on. Suppose now we define a bracket
[X,Y ] by

(4) [X,Y ] := DXY −DY X

and use also notations X � Y and X ∗ Y for DXY . Soon it will be apparent that
the grafting notation X � Y for the product of X and Y given by DXY is very
pertinent. Now we check that X � Y satisfies a Vinberg identity:

X � (Y � Z)− (X � Y ) � Z = DXDY Z −DDXY Z

= Xα ∂α(Y
β ∂βZ

•)− (DXY )β ∂βZ
•

= Xα ∂α(Y
β ∂βZ

•)−Xα ∂αY
β ∂βZ

•

= XαY β ∂α∂βZ
•.

Because ∂α∂βZ
• is symmetric in α, β, we then see that A(X,Y, Z) = A(Y,X,Z)

with the operation �, and this is all we need to establish the Jacobi identity for the
Lie bracket. We shall eventually see (section 2.2) that this calculation can be given
an intrinsic meaning, after all.

A calculation similar to the previous one establishes that LXLY f −LDXY f is
symmetric in X,Y , that is,

LXLY f − LY LXf = LDXY f − LDY Xf = L[X,Y ]f

for an arbitrary smooth function f . Hence the two definitions of the bracket [X,Y ]
agree!

2.2.2. Next consider polynomial vector fields; that is, X(x) is a function from R
n

to R
n such that

X = X0 +X1 +X2 + · · ·
where Xi is a (vector-valued) homogeneous polynomial of degree i in n variables.
It is well known that any of these is of the form

Xi(x) = Ξi(x, . . . , x),

1This was written in 2005!
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for Ξi(y1, . . . , yi) a uniquely defined symmetric multilinear function. We represent
the last identity by means of a graph:

Xi(x)

�������	Ξi

����
���

����
����

���

��
���

���
��
�

��
���

���
��

�

����
���

����
���

����

x x . . . x . . . x x

Here we have a rooted tree with the root on top and with unordered leaves.
Now we reconsider DXY with X homogeneous of degree i and Y homogeneous

of degree j. Let the symmetric function Θj with j entries correspond to Y as Ξi

to X above. Then Z = DXY has degree i+ j − 1. Precisely, the Leibniz rule says
that Z is obtained by considering the substitution for Ξi(x, . . . , x) of each variable
argument in the symmetric function Θj , and summing over all the terms obtained.
We define, for r between 1 and j,
(5)
Θj |r Ξi(x1, . . . , xi+j−1) = Θj(x1, . . . , xr−1,Ξi(xr, . . . , xi+r−1), xi+r, . . . , xi+j−1),


������Θj

�����
�����

�����
�����

�����
����
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���
. . .

and the sum

(6) Θj ◦ Ξi =

j
∑

r=1

Θj |r Ξi,

which is a symmetric function in i+ j−1 entries (also written as Ξi �Θj). Thereby
Z is given as a sum of insertions or graftings:

Z(x) = Θj ◦ Ξi(x, . . . , x).

We may look at the Vinberg property in the light of this graphical representa-
tion. Consider in turn Ξ � (Θ �Λ) in relation with (Ξ �Θ) �Λ: when grafting Ξ on
Θ � Λ, we can choose to do it on a Θ-part or on a Λ-part. Now, the insertions on
a Θ-part are totally cancelled in Ξ � (Θ � Λ) − (Ξ � Θ) � Λ, and there remain the
insertions on Λ-parts. But the latter are symmetric in Ξ,Θ: here ∂α∂β = ∂β∂α is
the rule of symmetry of the insertions! Thus the Vinberg property holds.

2.2.3. We look now at Poisson brackets, in two variables for simplicity of nota-
tion:

{f, g} = ∂pf ∂qg − ∂pg ∂qf.

Suppose we define a ‘star’ product by

f � g := ∂pf ∂qg,
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so

{f, g} = [f � g].

Then

(f � g) � h = ∂p(f � g) ∂qh = ∂2
ppf ∂qg ∂qh+ ∂pf ∂2

pqg ∂qh

has two terms. The Jacobi identity certainly holds; it contains 24 summands. But
� is a counterexample for the Vinberg property, since the six expressions obtained
by permutation of f, g, h in A(f, g, h) are distinct in general.

2.2.4. We now come to Lie groups. Let e be the neutral element of one of such
G. Consider local coordinates x ≡ (x1, . . . , xn) on G with the property xi(e) = 0.
In general in those coordinates, the group product rule will have the form

(7) z = F (x; y) =
∑

p≥0, q≥0

Fp,q(x; y) if z = x · y.

We trust that the reader will be able to distinguish when we refer to abstract ele-
ments of the group and when to their coordinates, in our notation.

Here Fp,q(x
1, . . . , xn; y1, . . . , yn) is a polynomial in 2n variables, homogeneous

of degree p in x, q in y; moreover F0,0 = 0 and Fp,0(x; y) = x, F0,p(x; y) = y for
any p ≥ 1. Let g denote the tangent (Lie) algebra of G. Consider

(x, y) := xyx−1y−1;

then, in coordinates,

(8) (x, y) = G(x; y) =
∑

p≥0, q≥0

Gp,q(x; y),

where G0,0 = G1,0 = G0,1 = 0 and G1,1(x; y) = F1,1(x; y)− F1,1(y;x) is a bilinear
function. If we make the identification with tangent vectors at the identity, then
G1,1 defines the bracket in g, hence must satisfy the Jacobi identity. But we want
a calculational explanation for this fact. The foregoing is obviously related to
Poincaré’s bilinear groups. Given an (associative, finite-dimensional, unital) algebra
A, its units form a group A× with e = 1A. For x, y small enough, 1 + x and 1 + y
lie in A× with (1 + x)(1 + y) = 1 + (x+ y + xy) (hence the name “bilinear”), and
the commutator (1 + x, 1 + y) coincides, up to third order terms, and shifting the
origin from 1 to 0, with

(1 + x)(1 + y)− (1 + y)(1 + x) = xy − yx.

Hence, the Lie algebra corresponding to the Lie group A× is the vector space A
endowed with the bracket [ab] = ab− ba.

More generally, write x ∗ y for F1,1(x; y) and using polarization expand the
product x · y as follows:

F (x; y) = x+ y + x ∗ y + L(x, x, y) +M(x, y, y) +O4(x, y),

where L and M are trilinear, satisfying

L(x, y, z) = L(y, x, z)

M(x, y, z) = M(x, z, y),

and O4 contains no term of total degree < 4. By associativity of the group law, we
obtain

F (x;F (y; z))− F (F (x; y); z) = 0.
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Keeping only the terms trilinear in x, y, z, we obtain the identity

A(x, y, z) = 2L(x, y, z)− 2M(x, y, z)

for the associator A(x, y, z) = x∗ (y ∗z)− (x∗y)∗z. From the symmetry properties
of L(x, y, z) and M(x, y, z), it follows that the skew-symmetrization of A(x, y, z) is
0, hence the bracket [xy] = x ∗ y− y ∗x = G1,1(x; y) on R

d satisfies Jacobi identity.
If F (x; y)− x is linear in y, then M = 0, hence the operation x ∗ y satisfies the

left-symmetric Vinberg identity: the Lie algebra of G comes from a left-symmetric
Vinberg algebra. Similarly, if F (x; y) − y is linear in x, then the product x ∗ y
defines on R

d a right-symmetric Vinberg algebra. More on this topic in section 2.3.

2.3. The Gerstenhaber approach and noncommutative polynomials.
Gerstenhaber arrived at the concept of pre-Lie algebra when working on Hochschild
cohomology. Let A be an associative algebra, and consider cochains:

cp : A⊗p → A; dq : A⊗q → A.

Then, for i = 1, . . . , p, we form the cochain with p+ q − 1 arguments given by:
(9)
cp |i dq(a1, . . . , ap+q−1) = cp(a1, . . . , ai−1, dq(ai, . . . , ai+q−1), ai+q, . . . , ap+q−1);

and we set

(10) cp ◦ dq :=

p
∑

i=1

cp |i dq.

Here, for instance, is c4 |2 d3 :

◦

��������c4

��
��
��
��







���
���

���
���

���

a1 �������	d3

��
��
��
��







a5 a6

a2 a3 a4

The small miracle is that [cp dq] := cp ◦ dq − dq ◦ cp satisfies the Jacobi identity!
(This, by the way, is nowadays known as the Gerstenhaber bracket, and plays
an important role for instance in the theory of deformations.) We are going to
see that the Jacobi identity holds because cp ◦ dq happens to satisfy the right-
symmetric Vinberg property. Indeed, we can represent graphically the cochains
as we did with the symmetric functions in example 1.2.2; now dq is grafted on cp
in all possible ways, and everything works the same, with the only difference that
the leaves now have a natural order. But this does not affect the conclusion that
cp ◦ (dq ◦ er)− (cp ◦ dq) ◦ er is symmetric in dq, er. Hence the Jacobi identity holds.

We have moreover gleaned an interpretation of the cochains as noncommutative
vector fields.
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3. Some good reasons to study Vinberg algebras

3.1. Operads. Let V be a vector space over a suitable field k of characteristic
zero, and let us denote EV (1) := EndV and, for n ≥ 2,

EV (n) := Hom(V ⊗n, V ); EV =
⊕

n≥1

EV (n).

Consider then fn ∈ EV (n), gp ∈ EV (p) and, somewhat similarly to the previous
section, define, for i = 1, . . . , n, an element of EV (n+ p− 1) by

(11) fn |i gp = fn ◦ (id⊗i−1
V ⊗ gp ⊗ id⊗n−i

V ).

This we represent by trees with half-edges (those branches that do not connect
blobs) and edges (those that do connect blobs to effect the insertions). For example,

◦

��������f

��
��
��
��

��
��

��
��

���
���

���
���

��

1 ������ !g

��
��
��
��

��
��

��
�� 5 6

2 3 4

To each rooted planar tree does correspond an operation of this kind. In these
operations there are numerous compatibility conditions of the associativity type in
that

(12) (fm |i gn) |j hp = fm |i (gn |j−i+1 hp) when

{

1 ≤ i ≤ m,

i ≤ j ≤ i+ n− 1;

and of the commutativity type:

(13) (fm |i gn) |j hp = (fm |j−n+1 hp) |i gn when

{

1 ≤ i ≤ m,

i+ n ≤ j ≤ n+m− 1

which is a kind of locality principle in the insertions. This construction gives rise
to an operad P, that we regard as a collection of vector spaces P(n) indexed by the
positive integers, together with bilinear maps:

P(n)⊗ P(p) → P(n+ p− 1) : f ⊗ g �→ f |i g, for each i = 1, . . . , n

satisfying the above-mentioned properties. In the standard definition, the P(n) are
k[Sn]-modules, but we shall not employ that yet. In the example there are moreover
maps

ξn : EV (n)⊗ V ⊗n → V,

with obvious associativity and unity properties. In general, given the operad P, a
P-algebra is a vector space A with maps

P(n)⊗ A⊗n → A

with the analogous properties. This gives rise to an ‘operadic map’ P → EA.
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What is the relation to Vinberg algebras? Take f ◦ g =
∑n

i=1 f |i g and define
θg by θg(f) = f ◦ g, for f, g ∈ P. Then, although ◦ is not associative, {θg}g∈E is a
Lie algebra of operators acting on P, since the bracket [hg] = g ◦ h− h ◦ g satisfies

(14) [θh θg] := θ[hg]

by a reasoning like that of the previous section. This is the “half-adjoint representa-
tion” of Gerstenhaber. Identity (14) means that P =

⊕

n>0
P(n) is a right-symmetric

Vinberg algebra.
In general, given a category of algebras, we can associate to it an operad de-

scribing the “natural” operations that can be defined on it; if, for instance, we
consider the category of associative algebras, all the trees of the same size in the
construction above will determine the same operation in the corresponding operad.
Thus there are different classes of operads, according to the basic properties of
defining operations. Some are represented in the following table.

P Operations Relations

As xy (xy)z = x(yz)

Com xy = yx (xy)z = x(yz)

Lie [xy] = −[yx] Jacobi

Mag xy no relation

Vinb xy x(yz)− (xy)z = y(xz)− (yx)z

Zinb xy (xy)z = x(yz) + x(zy)

2-as x · y, x ∗ y both associative

Dend x≺ y, x� y
x ∗ y = x≺ y + y � x (see below)

Dialgebras, that is, vector spaces with two multiplications, can be considered
as well. A particularly interesting case of dialgebras are the dendriform dialgebras
of Loday. They can be obtained as follows. Let (D, ∗) be an associative algebra.
Assume that D is a bimodule over itself, D ≡ DDD. We write � and ≺ for the left
and right actions, respectively. Assume moreover that, for all a, b ∈ D,

(15) a ∗ b = a≺ b+ a� b.

Then by definition D is a dendriform dialgebra. In detail, the dendriform properties
are

a≺ (b ∗ c) = a≺ (b� c+ b≺ c) = (a≺ b)≺ c;

(a ∗ b)� c = (a� b+ a≺ b)� c = a� (b� c);

(a� b)≺ c = a� (b≺ c).

Conversely, these last relations (on the right hand sides) are enough to establish
associativity of ∗ defined by the equality in (15). Without changing the underlying
linear structure,D gives rise not only to an associative algebra, but also to a Vinberg
algebra and, in two different ways, to the same Lie algebra. For that, consider the
following:

(16) x � y := x� y − y ≺ x.
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This defines a Vinberg algebra structure. Moreover,

x � y − y � x = x� y − y ≺ x− y � x+ x≺ y = x ∗ y − y ∗ x,
so the corresponding Lie algebra structures coincide. We have then the following
quadrilateral of functors between categories of algebras, with the same underlying
vector structure:

Dend-alg
� ��

∗
��

Vinb-alg

[· ·]
��

As-alg
[· ·] �� Lie-alg

To conclude this part, we remark on the affinity between the notion of operad
and the functor of restriction of scalars. Let A and B be rings with unit, and let
φ : A → B be a unital ring homomorphism. Then any (say) right B-module F
becomes a right A-module by defining

t · a := t φ(a) for t ∈ F , a ∈ A.

If G is another right B-module and ψ ∈ HomB(F ,G), then ψ(t · a) = ψ(tφ(a)) =
ψ(t)φ(a) = ψ(t) ·a, so ψ can also be regarded as a member of HomA(F ,G). In this
way, φ defines a functor Rφ from the category of right B-modules to the category
of right A-modules. This functor is called restriction of scalars in regard of the
case in which φ is the inclusion map of a subring A into a larger ring B, for obvious
reasons.

Let us interpret in a similar way the previous functors between categories
of algebras, for instance going from associative algebras to Lie algebras. For
the operads As, the n-th term As(n) has a basis consisting of the operations
(x1, . . . , xn) �→ xσ(1) . . . xσ(n) for the n! permutations σ of {1, . . . , n}. Similarly,
Lie(n) is the multilinear part in the free Lie algebra with generators x1, . . . , xn.
There is a map φn from Lie(n) to As(n) interpreting iterated brackets by means of
the rule [ab] = ab − ba. For instance, Lie(3) has a basis [x1[x2x3]], [x2[x1x3]] and
[x1[x2x3]] for instance is mapped by φ3 to x1x2x3−x1x3x2−x2x3x1+x3x2x1. An
associative algebra is a vector space on which the elements of As =

⊕

n≥1

As(n) give

operations. By means of the operadic map φ =
⊕

n≥1

φn from Lie to As, we interpret

the natural operations in Lie as natural operations for associative algebras, hence
the previous functor from associative algebras to Lie algebras.

3.2. More on Vinberg algebras in differential geometry. Let M = Md

denote a manifold with dimM = d, and let TM be its tangent bundle. We define
a linear connection on M as an R-bilinear operation ∇ that, given two vector fields
X,Y ∈ Γ(M,TM), produces a new vector field ∇XY with the properties

∇fXY = f∇XY (C∞-linearity in X);(17)

∇X(fY ) = (LXf)Y + f∇XY (Leibniz rule).(18)

Here LX denotes the Lie derivative with respect to the vector field X. Now define
the torsion T and curvature R of ∇ respectively by

T (X,Y ) := ∇XY −∇Y X − [X,Y ];(19)

R(X,Y )Z :=
(

∇X∇Y −∇Y ∇X −∇[X,Y ]

)

Z,(20)
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with Z ∈ Γ(M,TM), too. One checks without too much difficulty C∞-bilinearity
of T ,

(21) T (fX, Y ) = T (X, fY ) = fT (X,Y ).

This means that the map T : Γ(M,TM)⊗2 → Γ(M,TM) descends to a map TxM⊗
TxM → TxM , for all x ∈ M . Similarly for R(·, ·)Z. This allows the definition of
the torsion and curvature as tensors, familiar from Riemannian geometry. Suppose
now R = 0, T = 0. That is:

[X,Y ] := ∇XY −∇Y X;

and thus
∇X∇Y Z −∇Y ∇XZ = ∇[X,Y ]Z = ∇∇XY−∇Y XZ.

We can see the Vinberg relation here; in fact this is how he came by it, when dealing
with simply transitive affine actions of groups on R

d.
The covariant derivative map ∇X : Y �→ ∇Y X is a bundle map from TM

to TM . In general we envisage Hom(TM⊗p, TM⊗q) =: Tp,q , where the maps
considered are fibrewise linear. The sections of these bundles are called tensor
fields. We have T0,1 � TM ; T1,1 � EndTM , and so on. We can look at ∇ as a
map

∇ : Γ(M, T0,1) � X �→ ∇X ∈ Γ(M, T1,1),
with the property ∇(fX) = df⊗X+f∇X. This map can be extended to all tensor
fields:

∇ : Γ(M, Tp,q) � T �→ ∇T ∈ Γ(M, Tp+1,q),

by

(22) ∇(T ⊗ T ′) = ∇T ⊗ T ′ + T ⊗∇T ′.

We have then ∇f = df , for f a section of T0,0.
In the index notation, we go from T

β1,...,βq
α1,...,αp to T

β1,...,βq
α1,...,αp;αp+1 . We can think of

T as a ‘box’ that takes the ‘input’ (α1, . . . , αp) and transforms it into the ‘output’
(β1, . . . , βq). See this in the next figures, as the action of ∇:

β1, . . . , βq β1, . . . , βq

T

������

�� �� ��

∇ �� ∇T

������

�� �� �� ��

α1, . . . , αp α1, . . . , αp, αp+1

and the tensor product as a ‘glueing’ or juxtaposing operation:

T

����

�� ��
⊗ T ′

����

�� ��

= T ⊗ T ′

��������

�� �� �� ��
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Another operation is contraction: given Φ ∈ EndTM , we can consider TrΦ =
∑

Φα
α. This is represented by ‘sewing’:

Φ

��

��

Tr �� Φ

"# $%

&' ()

|

The graphical representation makes the point, often underlined by Penrose, that
this apparently coordinate-dependent definition, and the tensor index notation in
general, are actually intrinsic.

Let us now assume that onM we have given a connection with vanishing torsion
and curvature (so the manifold is “locally flat”). Then there exist local coordinates
(x1, . . . , xd) with ∇2xα = 0, such that a smooth function f on M , with vanishing
∇2f in T2,0, is affine:

f = c0 + c1x
1 + · · ·+ cdx

d

with real constants c0, c1, . . . , cd. Moreover, ∇XY = DXY in those coordinates;
and so we come to see that

[X,Y ] := DXY −DY X

is a special form of an intrinsic object! Under the present hypothesis, we can further
consider the maps

∇mX : Symm TM → TM,

where ∇mX is of the form tβα1,...,αm
, with symmetry in the indices; symmetry comes

from torsion-freeness, of course. If we put

(23) {X | Y1, . . . , Ym} := ∇mX(Y1, . . . , Ym),

we find the properties
(24)

{X | Y1, . . . , Ym−1, Ym} = ∇Ym{X | Y1, . . . , Ym−1} −
m−1∑

i=1

{X | Y1, . . . ,∇YmYi, . . . , Ym−1},

characteristic of the ‘brace’ operation in Vinberg algebras.

3.3. Lie groups with affine coordinates. The developments in the previous
section enable us to recast the results of the end of section 1.2.4 in a more invariant
way. Let us start from a Lie algebra g and a Lie group G with Lie algebra g. We
identify g with the space Te G of vectors tangent to the group manifold G at the
unit element e of G. Changing slightly the notation, a pre-Lie algebra structure on
g, compatible with the given Lie bracket, is a bilinear operation (X,Y ) �→ {X | Y }
in g satisfying the following rules:

(25) {X | Y } − {Y | X} = [X,Y ] ,

(26) {X | Y1, Y2} = {X | Y2, Y1} .



118 PIERRE CARTIER

The definition of {X | Y1, Y2} is the special case m = 2 in the inductive definition
of the braces
(27)

{X | Y1, . . . , Ym} = {{X | Y1, . . . , Ym−1} | Ym} −
m−1∑

i=1

{X | Y1, . . . , {Yi | Yn}, . . . , Ym−1}

similar to formula (24).
A vector field X on the Lie group G is called right-invariant if it is invariant

under the right translations g �→ gg0 acting on the manifold G. There is a Similar
definition for tensor fields or connections. For any X in g, there exists a unique
right-invariant vector field, whose value at e isX, to be denotedXr. If (X1, . . . , Xn)
is a basis of g (over the real field R), then every vector field X on G can be written
as

(28) X = f1X
r
1 + · · ·+ fn X

r
n ,

with a unique set of smooth functions f1, . . . , fn on G.
There exists a unique connection ∇r on G such that the right-invariant vector

fields are characterized by the equation ∇rX = 0. More explicitly, if X is given as
in (28), one has

(29) ∇r
Y X = LY f1 ·Xr

1 + · · ·+ LY fn ·Xr
n

or, more compactly ∇rX =
n
∑

i=1

dfi ⊗Xr
i . An arbitrary right-invariant connection

∇ on G is of the form

(30) ∇Y X = ∇r
Y X +A(X,Y ) ,

where A is a right-invariant tensor field of type T2,1. Since A is right-invariant,
there exists a bilinear operation (X,Y ) �→ {X | Y } on g such that

(31) A(Xr, Y r) = {X | Y }r ,
hence

(32) ∇Y rXr = {X | Y }r

for X,Y in g. According to the well-known formula

(33) [Xr, Y r] = −[X,Y ]r ,

the torsion T and the curvature R of the connection ∇ are right-invariant tensor
fields, whose values at the unit e of G are given by

(34) Te(X,Y ) = [X,Y ]− {X | Y }+ {Y | X}

(35) Re(X,Y ) · Z = {Z | Y,X} − {Z | X,Y }+ {Z | Te(X,Y )}
for X,Y, Z in g. Comparing these formulas with (25) and (26) we can conclude:

The formula (32) establishes a bijection between the right-invariant connections on
G, with vanishing torsion and curvature, and the pre-Lie algebra operations on g,
generating via (25) the given Lie bracket g.

We finish by describing the development map c : G → g associated to a con-
nection ∇ as before. Assume that G is simply connected. Define the sheaf F on G
such that, for any open set U in G, F(U) consists of the smooth functions f on U
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such that ∇2f = 0. More explicitly, using local coordinates xα, with corresponding
partial derivatives ∂α = ∂/∂xα, and the coefficients of the connection ∇ given by

(36) ∇α ∂β = Γγ
αβ ∂γ ,

the equation ∇2f = 0 reads ∂α ∂βf = Γγ
αβ ∂γf . Each point g0 of G belongs to the

domain U0 of a system of local coordinates xα, such that ∇2xα = 0. For every
connected open set U contained in U0, F(U) consists of the functions of the form

c0+
n
∑

α=1
cαx

α, with constants c0, c1, . . . , cn. That is, the sheaf F is locally constant.

Since G is assumed to be simply connected, the sheaf F is globally constant. It
means that taking g0 = e, there exist globally defined smooth functions x1, . . . , xn

on G, vanishing at e, satisfying the equations ∇2xα = 0, which induce a coordinate
system around e.

We reformulate this as follows: there exists a smooth map c : G → g, such that
c(e) = 0, ∇2c = 0, and the derivative de c at the origin is the identity map of Te G
onto g. We call c the development map.

Using the development map, we can describe the group law in G by the explicit
formula

(37) c(x · y) = c(y) +
∑

m≥0

1

m!
{c(x) | c(y), . . . , c(y)

︸ ︷︷ ︸

m

}

involving the braces, and valid in a neighbourhood of e in G. Otherwise stated, the
development map c defines a local chart c : U → g of G around e, such that the
product in this chart is given by

(38) X · Y = Y +
∑

m≥0

1

m!
{X | Y m} .

We can introduce a norm in g such that

(39) ‖{X | Y }‖ ≤ ‖X‖ · ‖Y ‖ .

An easy induction gives the estimate

(40) ‖{X | Y1, . . . , Ym}‖ ≤ m!‖X‖ · ‖Y1‖ . . . ‖Ym‖ ;

hence the series (38) converges for ‖Y ‖ < 1 and all X.

Remarks. 1) In a Lie group like G, there is a locally defined logarithm log : U → g

and the multiplication in G is described by the Campbell-Baker-Hausdorff formula

(41) log(x · y) = CH(log x, log y) ;

the right-side can be calculated from the Lie bracket in g, in a very complicated
way. Formula (38) is much simpler.

2) Comparing formulas (7) and (38), we may identify F1,1(x; y) with {x | y}
and hence the commutator

G1,1(x; y) = F1,1(x; y)− F1,1(y;x)

with {x | y} − {y | x}. This is in agreement with formula (25).
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4. The Connes–Kreimer paradigm

4.1. Graded Vinberg algebras.
4.1.1. General theory. In view of the applications, we work in this section with

algebras over the field C of complex numbers. The case of the field R of real numbers
requires very small changes. By replacing Lie groups with algebraic groups, one
could cover the case of an arbitrary ground field of characteristic 0.

We consider an algebra A which can be a Lie algebra, or a Vinberg algebra
(left- or right-symmetric). We say A is graded if it is a direct sum A =

⊕

n≥1

An,

where each subspace An is finite-dimensional, and the multiplication satisfies the
rule:

(G) ap · aq belongs to Ap+q for ap in Ap, aq in Aq .

The subspace
⊕

n>p
An is an ideal in A, and the quotient algebra A(p) := A/

⊕

n>p
An

(isomorphic to
⊕

1≤n≤p

An) is finite-dimensional. We call A(p) the truncation of A.

We assume now that A is a pre-Lie algebra, with product {X | Y }, defining
the Lie bracket

[X,Y ] = {X | Y } − {Y | X} .
The corresponding Lie algebra is graded and denoted by g. To the truncated pre-
Lie algebra A(p) corresponds the truncated Lie algebra g(p). It follows from (G)
that any iterated Lie bracket in g(p) with n > p factors vanishes, hence g(p) is
a finite-dimensional nilpotent Lie algebra. By well-known results, if G(p) is the
simply connected complex Lie group with Lie algebra g(p), the exponential map
is an isomorphism of complex manifolds of g(p) onto G(p), hence there exists a
globally defined logarithm map log : G(p) → g(p).

Introducing as before the braces {X | Y1, . . . , Ym} in the pre-Lie algebra A,
hence in its truncations A(p), it follows from (G) that {X | Y1, . . . , Ym} is of
degree d + e1 + · · · + em if X ∈ Ad, Yi ∈ Aei ; since d ≥ 1, ei ≥ 1, one obtains
d+e1+ · · ·+em ≥ m+1, hence the braces {X | Y1, . . . , Ym} vanish in the truncated
pre-Lie algebra A(p) for any m with m > p − 1. According to formula (38), we
define a (non-linear) multiplication in A(p) by the rule

(42) X · Y = Y +

p−1
∑

m=0

{X | Y m}/m! .

It can be shown, using the properties of braces, that this is a group law on A(p) =
g(p). Hence A(p) is a simply connected complex Lie group with Lie algebra g(p).
From the uniqueness of simply connected Lie groups, it follows that the development
map c : G(p) → g(p) is an isomorphism of G(p) with the group defined by the
multiplication (42) in g(p).

We can go to the limit. The truncated pre-Lie algebras A(p), the corresponding
truncated Lie algebras g(p) as well as the groups G(p) form inverse systems. The

inverse limit Â = lim←−A(p) is the direct product
∏

m≥1

Am, whose elements can be

represented as series a1 + a2 + · · · with ai in Ai. The product in Ĝ = lim←− Ĝ(p) is

given by X ·Y = Y +
∑

m≥0

{X | Y m}/m!: in this series, any homogeneous component

is obtained using finitely many operations.
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4.1.2. An example. Suppose P is an operad with P(1) = 0 and each P(n) of

finite dimension. In section 2.1, we introduced a composition f ◦ g =
n
∑

i=1

f |i g,

for f in P(n), g in P(p), with values in P(n + p − 1). Shifting degrees, we define
A(n) = P(n + 1) for n ≥ 1 and the properties of the product f ◦ g show that
A =

⊕

n≥1

An is a graded pre-Lie algebra. We can, as before, associate to it a Lie

algebra, and an inverse limit of complex nilpotent Lie groups.
Take for instance the operad Com corresponding to the category of commutative

and associative algebras. For each n ≥ 1, the space A(n) = Com(n + 1) is one-
dimensional, generated by an element zn corresponding to the product x1 . . . xn+1

in a commutative algebra. The composition is given for n ≥ 1, p ≥ 1 by

(43) zn |i zp = zn+p (1 ≤ i ≤ n+ 1) ,

hence the pre-Lie bracket

(44) {zn | zp} = (n+ 1) zn+p

and the Lie bracket

(45) [zn, zp] = (n− p) zn+p

(Witt algebra).

The elements in Â =
∏

n≥1

An can be identified with complex formal power series

of the form
∑

n≥1

cn t
n+1 = c(t) with the brace

(46) {c(t) | d(t)} = c′(t) d(t)

(where c′(t) is the derivative of c(t)). The corresponding Lie bracket is given by

(47) [c(t), d(t)] = c′(t) d(t)− d′(t) c(t) .

The map c(t) �→ −c(t) d
dt gives an isomorphism of this Lie algebra with the Lie

algebra of formal vector fields
∑

n≥1

cn t
n+1 d

dt , and zn corresponds to −tn+1 d
dt . For

the group Ĝ, it is the group of formal power series

(48) f(t) = t+ u1 t
2 + u2 t

3 + · · ·

with composition

(49) (f ◦ g)(t) = f(g(t)) .

The explicit form of this multiplication rests on the Faà di Bruno formula – which
preserves its validity for analytic functions on the appropriate domains [1].

Exercise. Show that the braces are given by

{c | d1, . . . , dm} = c(m)d1 · · · dm

where c(m) is the m-th derivative of c. Derive the value of {zn | zp1
, . . . , zpm

}.
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4.2. Graph combinatorics in physics. We begin by some Feynman-graphology.
Feynman diagrams are constructed out of sets of vertices v ∈ V and sets of rays Rv

originating in each vertex. This gives rise to ‘stars’ or ‘corollas’.

•��

��

��
��

• • •

We sew them by choosing sets of disjoint pairs in R :=
⊔

v Rv and involutive
maps s : R → R that interchange elements in a chosen pair

s(a) = b; s(b) = a.

The pair (a, b) becomes an edge.

• •

•

Graphical insertion of middle points to keep track of edges is useful in some
circumstances. Rays that do not become edges may be called legs or half-edges.
On the graphs we define a grafting operation, that slightly generalizes the grafting
of trees. We graft a connected diagram Γ′ into another connected diagram Γ by
choosing a vertex v ∈ Γ and establishing a bijection ϕ between Rv and the legs of Γ′.
Grafting in the middle of edges is accepted. Obviously one needs the cardinality
of those sets to coincide to proceed; but the order implied in the bijection is also
important. The result is called Γ ◦v,ϕ Γ′.

Γ
Γ′

As before, the insertion of Γ′′ into Γ ◦v,ϕ Γ′ can be done like this:

Γ
Γ′

Γ′′
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which has the commutativity property, or like this:

Γ
Γ′

Γ′′

which has the associativity property.
Then one sums (in the sense of formal linear combinations) over the vertices

and possible bijections:

Γ′ � Γ := Γ ◦ Γ′ :=
∑

v,ϕ

Γ ◦v,ϕ Γ′.

Some of the graphs we sum over might be isomorphic; we disregard ‘symmetry
factors’. This grafting product Γ′ �Γ satisfies the (left-symmetric) Vinberg identity.

The set of graphs is endowed with a weight function, given by the number n
of external legs, and a grading, given by the number L of loops. Grafting does
not change the weight of a diagram2, whereas the grade of Γ′ � Γ is L(Γ) + L(Γ′).
If π denotes a Feynman rule (an appropriate linear map of the space of linear
combinations of graphs into the complex numbers), then the operator θΓ′ is defined
by

θΓ′π(Γ) = π(Γ′ � Γ).
In view of the preceding considerations,

[θΓ1
θΓ2

] := θΓ2�Γ1
− θΓ1�Γ2

,

just like in (14), is a Lie bracket. Consider now truncated spaces3 of graphs Wn(L)
with a fixed number n of external legs and bounded loop grading. We can regard
Wn as an algebraic unipotent group limL→∞ Wn(L), an inverse limit of complex
nilpotent Lie groups. The situation is similar to the case of Diff with its standard
affine coordinates.

The important point is that the Lie algebra corresponding to the group Wn

(or its truncation Wn(L)) is a vector space whose basis consists of diagrams, with
bracket [Γ,Γ′] = Γ′ � Γ− Γ � Γ′ derived from the Vinberg bracket defined above.

4.3. Renormalization scheme according to Connes and Kreimer. Let
us fix the weight n, that is, the number of external legs. The simply connected
nilpotent Lie group Wn(L), for every L, can be realized, according to well-known
results, as an algebraic subgroup of the group Tp(C) of complex triangular matrices
of the form

⎛

⎜

⎝

1 ∗
. . .

0 1

⎞

⎟

⎠

(with p rows and p columns). Via dimensional regularization (see section 3.4), one
defines a Feynman rule associating to every Feynman graph Γ a formal Laurent
series in a variable ε. From this Feynman rule, we construct, for fixed n and L, an

2That is, the weight of Γ′ � Γ is the weight of Γ.
3If we don’t allow vertices of valence 2, then the spaces Wn(L) are finite-dimensional, and

Wn becomes a graded pre-Lie algebra in the sense of section 3.1.



124 PIERRE CARTIER

element g(ε) of the group Wn(L). We can interpret it as a matrix g(ε) = (gij(ε))
in the triangular group Tp(C): each entry gij(ε) belongs to the ring C [[ε, ε−1]] of
formal Laurent series.

When a diagram is divergent, but has no subdivergences, the corresponding
amplitude is of the form

g(ε) =

(

1 a(ε)
0 1

)

.

Here

a(ε) = a−(ε
−1) + a+(ε),

where a− is a polynomial and a+ is a series, and the ambiguity in their definition
is solved by deciding a−(0) = 0. Then the famous ‘Birkhoff decomposition’ by
Connes and Kreimer [5] is simply given in this case by

g(ε) =

(

1 a−(ε
−1)

0 1

)(

1 a+(ε)
0 1

)

=: g−(ε
−1) g+(ε).

Suppose now the diagram is divergent overall, and has a subdivergence; then
the corresponding amplitude is typically of the form

g(ε) =

⎛

⎝

1 a(ε) b(ε)
0 1 c(ε)
0 0 1

⎞

⎠ =

⎛

⎝

1 a−(ε
−1) + a+(ε) b−(ε

−1) + b+(ε)
0 1 c−(ε

−1) + c+(ε)
0 0 1

⎞

⎠ .

We are going to factorize this in the form g(ε) = g−(ε
−1)g+(ε) again. We obtain

g(ε) =

⎛

⎝

1 a−(ε
−1) b−(ε

−1)− (a−c+)−(ε
−1)

0 1 c−(ε
−1)

0 0 1

⎞

⎠

⎛

⎝

1 a+(ε) b+(ε)− (a−c+)+(ε)
0 1 c+(ε)
0 0 1

⎞

⎠

=: g−(ε
−1)g+(ε).

That is, one proceeds subdiagonal by subdiagonal, effecting the previous renorma-
lization of the subdivergence —this Kurusch Ebrahimi-Fard would do by use of
abstract Rota–Baxter operator properties.

4.4. Analytical considerations. Consider now a diagram Γ with n external
legs (corresponding to high-energy reactions involving n particles). The figure shows
two examples, respectively with n = L = 2; and with n = 3 and L = 1.

�� ���p

��
�k1

��
�k2

������

�p1
����

���
��

�

�p2 ��
��

In the figure on the right, we must have �p = �p1+�p2, by momentum conservation. In
fact, one considers p ∈ M4, the relativistic four-momentum, to include conservation
of energy. (By the way, possible symmetries here, like the one implemented by
change of the time orientation p �→ −p correspond to deep conservation principles
in physics.) The result of the calculation of the scattering amplitude defined by the
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diagram will depend on p, obviously. In the diagram

*+,-./01k
p

p/2

p/2

��������

��
��

��
��

we put k1 = p/2 + k, k2 = p/2− k; to it corresponds the integral

(50) I(p) =

∫

d4k

((p/2 + k)2 +m2)((p/2− k)2 +m2)
.

By means of analytic continuation we have gone over to “Euclidean” integrals; so
the squares in this formula have their ordinary meaning. By power counting, it is
clear that I(p) diverges. We can make a cutoff |k| < Λ (physically this is justified,
as we have no information on ultra-high frequencies) and study the asymptotic
behaviour of the integral with Λ. This method is however awkward for diagrams
with subdivergences. Following Schwinger, Feynman, Symanzik, Nambu, Nakanishi
and many others since the 50’s and 60’s, we can pass to the effective action integral,
mathematically given by the identity

(51)
1

p2 +m2
=

∫ ∞

0

dα e−α(p2+m2).

If we now substitute these integrals for the fractions in (50), after doing the easy
Gaussian integral, we are left with an integral of the form

(52)

∫ ∞

0

∫ ∞

0

dα1 dα2
e−(α1+α2)m

2

e
− α1α2

2(α1+α2)
p2

(α1 + α2)2
.

Whereas Λ had dimensions of energy, the α’s behave as the square of a minimal
length. In order to avoid the divergence of this integral near zero, one can regularize
by choosing α1, α2 ≥ ε; a harmless alternative is to cut the corner out, α1+α2 ≥ ε.
In the case of having three denominators, we would get numerators of the type
α1α2+α1α3+α2α3 in the exponentials; and so on. These integrals can be attacked
by blow-up methods. Let us consider the relatively simple related integral:

∫ 1

0

∫ 1

0

dα1 dα2

1− α1α2
.

This is finite, as the limit of the integral with the corner cut out (yielding the
Stasheff polyhedron P4 [2]) exists and is equal to ζ(2) = π2/6 —by the way, as
an exercise the reader is challenged to find an elementary proof of this last fact,
discovered by Euler. One can practice a blow-up at the point α1 = α2 = 1 with
the introduction of a new coordinate α3 := 1−α1

1−α1α2
, to obtain a surface in the real

three-space as domain of integration; then the singularity disappears.

We make a final comment on dimensional renormalization. This is a form of
analytic regularization, in turn developed in the last century by Hadamard, Riesz,
Gelfand, Bernstein,. . . and is concerned with integrals of the form

∫

D

ϕ(x)

[P (x)]s
dx
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with P a polynomial and s a complex parameter. The denominator in (52) that
comes from the Gaussian integral is in fact (α1 +α2)

d/2, where d is the dimension.
The idea is to make d = 4− ε a complex variable. Feynman amplitudes, always for
a fixed number of external legs, become integrals I(Γ, p, ε), that give rise to Laurent
expansions in ε. The elements of the Connes–Kreimer group of diffeographisms that
‘kill’ the divergences are of the form

g−(ε
−1) = exp

(

β−1

ε
+

β−2

ε2
+ · · ·

)

,

where the β−i live in the Lie algebra of that group. This is related to the notion of
the motivic Galois group, investigated at present by Alain Connes, Matilde Marcolli
and myself.
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Noncommutative Geometry as the Key to Unlock the
Secrets of Space-Time

Ali H. Chamseddine

Abstract. I give a summary of the progress made on using the elegant con-
struction of Alain Connes’ noncommutative geometry to explore the nature of
space-time at very high energies. In particular I show that by making very
few natural and weak assumptions about the structure of the noncommuta-
tive space, one can deduce the structure of all fundamental interactions at low
energies.

1. Introduction

This article is dedicated to Alain Connes on the occasion of his 60th birthday.
I came to know Alain well during my first visit to IHES in 1996. I was immediately
overwhelmed with his brilliance and the inflow of his ideas, and within a short time
started to collaborate with him on the interface of noncommutative geometry, his
invention, and the ideas of unification in theoretical physics. This collaboration has
been very fruitful, and we have come to appreciate the mysterious links between
geometry and physics. Many problems remain, but I am optimistic that the chal-
lenge of finding a quantum theory of gravity using the geometric tools that Alain
developed is within reach. At the personal level, I discovered that Alain is a very
warm person, full of life, and has a fantastic sense of humor. I am proud of his
friendship.

What I will present here is a summary of a forthcoming long article in col-
laboration with Alain, which hopefully will appear in the near future, where a
self-contained exposition of the methods of noncommutative geometry applied to
particle physics is explained in a language accessible to physicists [1]. A good part
of this forthcoming article will elaborate and build on the results that were first ob-
tained with the crucial input of the collaboration with Marcolli [2]. In addition, the
introduction present in a recent paper [3] can be used to help introduce the reader
to the general philosophy of our program. Our aim is to provide enough material
to help students and young researchers who wish to learn about this promising
direction of research.
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The laws of physics at low energies are well encoded by the action functional
which is the sum of the Einstein-Hilbert action and that of the standard model.
These two parts have different properties, the first being dependent on the geometry
of the underlying manifold (M, g) where g is the metric, while the other is governed
by internal symmetries of a gauge groupG which can be well described using the lan-
guage of vector bundles. The underlying symmetries are also different. General rel-
ativity is governed by diffeomorphism invariance (outer automorphisms of (M, g))
while gauge symmetries are based on local gauge invariance (inner automorphisms).
Thus the natural group of invariance is the semi-direct product

G = U �Diff (M)

where

U = C∞ (M,U(1)× SU(2)× SU(3)) .

It is possible to trace back the failure of finding a unified theory of all interactions
including quantum gravity to the difference between these two kinds of symmetries.
In addition, there are many unanswered questions within the established formula-
tion of the standard model. For example, the following questions have no compelling
answer: Why is the gauge group specifically given by U(1)×SU(2)×SU(3) ? Why
do the fermions occupy the particular representations that they do? Why are there
three families and why are there 16 fundamental fermions per family? What is the
theoretical origin of the Higgs mechanism and the spontaneous breakdown of gauge
symmetries? What is the Higgs mass and how does one explain all the fermionic
masses? These are only a few of the questions that have to be answered by the
ultimate unified theory of all interactions. We shall attempt to answer some of
these questions taking as a starting point the following observations. At energies
well below the Planck scale

MP =

√

1

8πG
≡ 1

κ
= 2.43× 1018 Gev

gravity can be safely considered as a classical theory. But as energies approach
the Planck scale one expects the quantum nature of space-time to reveal itself,
and for the Einstein-Hilbert action to become an approximation of some deformed
theory. In addition the other three forces must be unified with gravity in such a
way that all interactions will correspond to one underlying symmetry. One thus
would expect that the nature of space-time, and thus of geometry, would change
at Planckian energies in such a way that at lower energies, one recovers the above
picture of diffeomorphisms and internal gauge symmetries. It is not realistic to
guess the exact properties of space-time at Planckian energies and to make directly
an extrapolation of 17 orders of magnitude from our present energies. We are
therefore led to take an indirect approach where we search for the hidden structure
in the functional of gravity coupled to the standard model at present energies. To
do this we shall make a basic conjecture which we will take as a starting point:

Conjecture 1. At some energy level, space-time is the product of a continuous
four-dimensional manifold times a discrete space F .

The aim then is to find supporting evidence for this conjecture. Once this is
done the next step would be to find the true geometry at Planckian energies, for
which this product in turn is a limit.
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This is the minimal extension where no new extra dimensions are assumed.
The task now is to determine with minimal input the properties of the discrete
space F , and construct the associated physical theory. Remarkably, we will show
that this information will allow us to determine the hidden structure of space-time,
and answer some, but not all (so far) of the questions posed above.

2. A Brief Summary of Alain Connes NCG

The basic idea is based on physics. The modern way of measuring distances
is spectral. The unit of distance is taken as the wavelength of atomic spectra. To
adapt this geometrically the notion of real variable which one takes as a function
f on a set X where f : X →R has to be replaced. This is now taken to be a
self-adjoint operator in a Hilbert space as in quantum mechanics. The space X is
described by the algebra A of coordinates which is represented as operators in a
fixed Hilbert space H. The geometry of the noncommutative space is determined in
terms of the spectral data (A,H,D, J , γ) . A real, even spectral triple is defined
by [4], [5]

• A is an associative algebra with unit 1 and involution ∗.
• H is a complex Hilbert space carrying a faithful representation π of the
algebra.

• D is a self-adjoint operator on H with the resolvent (D − λ)−1 , λ /∈ R of
D compact.

• J is an anti–unitary operator on H, which is a real structure (charge
conjugation.)

• γ is a unitary operator on H, the chirality.

We require the following axioms to hold:

• J2 =ε , (ε = 1 in dimension zero and ε = −1 in 4 dimensions).
• [a, bo ] = 0 for all a, b ∈ A, where bo = Jb∗J−1. This is the zeroth order
condition. This is needed to define the right action on elements of H :
ζb = boζ, and is the statement that left action and right action commute.

• DJ = ε′JD, Jγ = ε′′γJ, Dγ = −γD where ε, ε′, ε′′ ∈ {−1, 1} . The
reality conditions resemble the conditions governing the existence of Ma-
jorana (real) fermions.

• [[D, a], bo ] = 0 for all a, b ∈ A. This is the first order condition.
• γ2 = 1 and [γ, a] = 0 for all a ∈ A. These properties allow the decompo-

sition H = HL ⊕HR.
• H is endowed with the A-bimodule structure aζb = aboζ.
• The notion of dimension is governed by growth of eigenvalues, and may
be fractal or complex.

• We stress that we are considering spaces with Euclidean signature.

A has a well-defined unitary group

U = {u ∈ A; uu∗ = u∗u = 1} .
The natural adjoint action of U on H is given by ζ → uζu∗ = uJ u J∗ζ ∀ζ ∈ H.
Then

〈ζ,Dζ〉
is not invariant under the above transformation:

(uJ u J∗)D (uJ u J∗)∗ = D + u [D, u∗] + J (u [D, u∗])J∗.
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However, the action 〈ζ,DAζ〉 is invariant, where

DA = D +A+ ε′JAJ−1, A =
∑

i

ai
[

D, bi
]

and A = A∗ is self-adjoint. This is similar to the appearance of the interaction
term for the photon with electrons

iψγμ∂μψ → iψγμ (∂μ + ieAμ)ψ

to maintain invariance under the variations ψ → eieα(x)ψ.
The properties listed above of the anti-linear isometry J : H → H are character-

istic of a real structure of KO-dimension n ∈ Z/8 on the spectral triple (A,H, D).
The numbers ε, ε′, ε′′ ∈ {−1, 1} are a function of n mod 8 given by

n 0 1 2 3 4 5 6 7

ε 1 1 −1 −1 −1 −1 1 1
ε′ 1 −1 1 1 1 −1 1 1
ε′′ 1 −1 1 −1

We take the algebra A to be given by a tensor product which geometrically
corresponds to a product space. The spectral geometry of A is given by the product
rule A = C∞ (M)⊗AF where the algebra AF is finite dimensional, and

H = L2 (M,S)⊗HF , D = DM ⊗ 1 + γ5 ⊗DF ,

where L2 (M,S) is the Hilbert space of L2 spinors, and DM is the Dirac operator
of the Levi-Civita spin connection on M , DM = γμ (∂μ + ωμ) . The Hilbert space
HF is taken to include the physical fermions. The chirality operator is γ = γ5⊗ γF
and the reality operator is J = C ⊗ JF , where C is the charge conjugation matrix.

In order to avoid the fermion doubling problem where the fermions ζ, ζc, ζ∗, ζc∗,
ζ ∈ H, should not be all independent, it was shown that the finite dimensional
space must be taken to be of K-theoretic dimension 6 [6], [7], where in this case
(ε, ε′, ε”) = (1, 1,−1) (so as to impose the condition Jζ = ζ) . This makes the total
K-theoretic dimension of the noncommutative space to be 10 and would allow one
to impose the reality (Majorana) condition and the Weyl condition simultaneously
in the Minkowskian continued form, a situation very familiar in ten-dimensional
supersymmetry. In the Euclidean version, the use of J in the fermionic action would
give for the chiral fermions in the path integral a Pfaffian instead of a determinant
[6], and will thus cut down the fermionic degrees of freedom by a factor of 2. In
other words, in order to have the fermionic sector free of the fermionic doubling
problem we must make the choice

J 2
F = 1, JFDF = DFJF , JF γF = −γFJF .

In what follows we will restrict our attention to determination of the finite algebra,
and will omit the subscript F .

3. Classification of Finite Noncommutative Spaces

There are two main constraints on the algebra from the axioms of noncom-
mutative geometry. We first look for involutive algebras A of operators in H such
that,

[a, bo ] = 0 , ∀ a, b ∈ A ,
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where for any operator a in H, ao = Ja∗J −1. This is called the zeroth order
condition. We shall assume that the representations ofA and J inH are irreducible.

The classification of the irreducible triplets (A,H, J) leads to the following
theorem [8], [9]:

Theorem 2. The center Z (AC) is C or C⊕C.

If the center Z (AC) is C then we can state the following theorem:

Theorem 3. Let H be a Hilbert space of dimension n. Then an irreducible
solution with Z (AC) = C exists iff n = k2 is a square. It is given by AC = Mk (C)
acting by left multiplication on itself and the anti-linear involution

J (x) = x∗, ∀x ∈ Mk (C) .

For AC = Mk (C) we have A =Mk (C) , Mk (R) or Ma (H) for even k = 2a,
where H is the field of quaternions [10]. These correspond respectively to the
unitary, orthogonal and symplectic case.

If the center Z (AC) is C⊕ C then we can state the theorem:

Theorem 4. Let H be a Hilbert space of dimension n. Then an irreducible
solution with Z (AC) = C⊕C exists iff n = 2k2 is twice a square. It is given
by AC = Mk (C) ⊕ Mk (C) acting by left multiplication on itself and anti-linear
involution

J (x, y) = (y∗, x∗) , ∀x, y ∈ Mk (C) .

With each of the Mk (C) in AC we can have the three possibilities Mk (C) ,
Mk (R) , or Ma (H) , where k = 2a. At this point we make the hypothesis that we
are in the “symplectic–unitary” case, thus restricting the algebra A to the form

A = Ma (H)⊕Mk (C) , k = 2a.

The dimension of the Hilbert space is n = 2k2; however, because of the reality
condition, these correspond to k2 fundamental fermions , where k = 2a is an even
integer. The first possible value for k is 2 corresponding to a Hilbert space of four
fermions and an algebra A = H ⊕ M2 (C). This is ruled out because it does not
allow one to impose a grading on the algebra. It is also ruled out by the existence of
quarks. The next possible value for k is 4, thus predicting the number of fermions
to be 16.

In the Z (AC) = C case, one can show that it is not possible to have the finite
space to be of K-theoretic dimension 6 consistent with the relation Jγ = −γJ [8].
We therefore can proceed directly to the second case.

One then takes the grading γ of H so that the K-theoretic dimension of the
finite space is 6 and this is consistent with the condition J γ = −γJ. It is given by

γ (ζ, η) = (γζ,−γη) .

This grading breaks the algebra A = M2 (H)⊕M4 (C), which is non-trivially graded
only for the M2 (H) component, to its even part:

Aev = HR ⊕HL ⊕M4 (C) .

The Dirac operator must connect the two pieces non-trivially, and therefore
must satisfy

[D,Z (A)] �= {0} .
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The physical meaning of this constraint is to allow some of the fermions to ac-
quire Majorana masses, realizing the see-saw mechanism, and thus connecting the
fermions to their conjugates.

We have to look for subalgebras AF ⊂ Aev, the even part of the algebra A, for
which [[D, a], bo ] = 0, ∀ a, b ∈ AF . We can state the theorem:

Theorem 5. Up to automorphisms of Aev, there exists a unique involutive
subalgebra AF ⊂ Aev of maximal dimension admitting off-diagonal Dirac operators

AF =
{(

λ⊕ λ
)

⊕ q, λ⊕m |λ ∈ C, q ∈ H, m ∈ M3 (C)
}

⊂ H⊕H⊕M4 (C) .

It is isomorphic to C⊕H⊕M3 (C).

4. Tensor Notation

It is helpful to write the results obtained about the standard model using tensor
notation. The Dirac action must take the form

Ψ∗
MDN

MΨN

where ΨM =

(

ψA

ψA′

)

and we have denoted ψA′ = ψc
A, the conjugate spinor. We

start with the algebra

A = M4 (C)⊕M4 (C)

and denote the spinors by ψA = ψαI , A = αI, α = 1, · · · , 4, I = 1, · · · , 4, and
thus DB

A = DβJ
αI . The Dirac operator takes the form

D =

(

DB
A DB

′

A

DB
A′ DB

′

A′

)

,

where A′ = α′I ′, α′ = 1′, · · · , 4′, I ′ = 1′, · · · , 4′, and DB
′

A′ = D
B

A , D
B
A′ = D

B
′

A

and overbar denotes complex conjugation.
Elements of the algebra A are matrices aNM of the special form:

a =

(

Xβ
αδ

J
I 0

0 δβ
′

α′Y J′

I′

)

,

where Xβ
α is an element of the first M4 (C) and Y J′

I′ is an element of the second
M4 (C) . The reality operator J is defined by

J =

(

0 δβ
′

α δJ
′

I

δβα′δJI′ 0

)

× complex conjugation.

In this representation we deduce that ao takes the form

ao = Ja∗J−1 =

(

δβα ˜Y
J
I 0

0 ˜Xβ′

α′ δJ
′

I′′

)

,

where˜ denotes transposition. It is trivial to verify that [a, bo ] = 0.
The order one condition is

[[D, a] , bo ] = 0
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If we write

bo =

(

δβαW
J
I 0

0 Zβ′

α′ δJ
′

I′

)

,

then the commutator [[D, a] , bo ] is given by
(

[[D,X] ,W ]
B
A ((DY −XD)Z −W (DY −XD))

B′

A

((DX − Y D)W − Z (DX − Y D))BA′ [[D,Y ] , Z]B
′

A′

)

the vanishing of which implies the equations:
(

DγK
αI Xβ

γ −Xγ
αD

βK
γI

)

W J
K −WK

I

(

DγJ
αKXβ

γ −Xγ
αD

βJ
γK

)

= 0
(

Dγ′K′

αI Y J′

K′ −Xγ
αD

γ′K
γI

)

Zβ′

γ′ −WK
I

(

Dβ′K′

αK Y J′

K′ −Xγ
αD

β′J′

γK

)

= 0.

We have shown [8], [2], that the only non-zero solution of the second equation is

Dβ′K′

αI = δ
.
1
αδ

β′
.
1′
δ1I δ

K′

1′ k
∗νR

which means that there can be only one non-zero single entry in the off-diagonal

16× 16 matrix DB
′

A , and this implies that

DβJ
αI = Dβ

α(l)δ
1
I δ

J
1 +Dβ

α(q)δ
i
Iδ

J
j δ

j
i

Y J′

I′ = δ1
′

I′δJ
′

1′ Y
1′

1′ + δi
′

I′δJ
′

j′ Y
j′

i′

X
.
1
.
1
= Y 1′

1′ , Xα
.
1
= 0, α �=

.
1,

where we have split the index I = 1, i, and I ′ = 1′, i′. From the property of
commutation of the grading operator

gβα =

(

12 0
0 −12

)

[g, a] = 0 a ∈ M4 (C) ,

the algebraM4 (C) reduces to M2 (C)R⊕M2 (C)L .We further impose the condition
of symplectic isometry on M2 (C)R ⊕M2 (C)L ,

σ2 ⊗ 12 (a)σ2 ⊗ 12 = a,

which reduces it to HR⊕HL. We will be using the notation

α =
.
1,

.
2, a where ξ .

1,
.
2

∈ HR, ξa ∈ HL.

Together with the above condition this implies that

Xβ
α = δ

.
1
αδ

β
.
1
X

.
1
.
1
+ δ

.
2
αδ

β
.
2
X

.
1
.
1 + δaαδ

β
b X

b
a

and the algebra HR⊕HL ⊕M4 (C) reduces to

C⊕H⊕M3 (C)

because X
.
1
.
1
= Y 1′

1′ . Expanding the Dirac action we get

ψ∗
AD

B
AψB + ψ∗

.
1′1′

DB
.
1′1′

ψB + ψ∗
AD

.

1′1′

A ψ .
1′1′

+ ψ∗
A′DB′

A′ψB′
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The spinors can thus be denoted by

ψA = ψαI = (ψα1, ψαi)

=
(

ψ .
11
, ψ .

21
, ψa1, ψ .

1i
, ψ .

2i
, ψai

)

≡ (νR, eR, la, uRi, dRi, qai) ,

where la = (νL, eL) and qai = (uLi, dLi) . The component ψ .
1
′
1′

= ψc
.
11

= νcR, which

implies that the Dirac action

ψ∗
AD

B
AψB + ν∗cR k∗νRνR + c.c

has only a mixing term for the right-handed neutrinos.
Having determined the structure of the Dirac operator of the discrete space,

we can form the Dirac operator of the product space of this discrete space times a
four-dimensional Riemannian manifold:

D = DM ⊗ 1 + γ5 ⊗DF .

As DF is a 32×32 matrix tensored with the 3×3 matrices of generation space and
with the Clifford algebra, D is 384× 384 matrix.

To take inner automorphisms into account, we have to evaluate the Dirac op-
erator

DA = D +A+ JAJ−1,

where

A =
∑

a [D, b] .

In particular

AB
A =

∑

aCA
(

DD
C bBD − bDCDB

D

)

.

Note there are no mixing terms like DD′

C bBD′ because b is block diagonal.
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Evaluating all components of the full Dirac operator DN
M , quoting only the

result as the full derivation will be given in a forthcoming paper [1], we obtain:

(D)
.
11
.
11

= γμ ⊗Dμ ⊗ 13, Dμ = ∂μ +
1

4
ωcd
μ (e) γcd, 13 = generations

(D)
a1
.
11

= γ5 ⊗ k∗ν ⊗ εabHb kν = 3× 3 neutrino mixing matrix

(D)
.
21
.
21

= γμ ⊗ (Dμ + ig1Bμ)⊗ 13

(D)
a1
.
21

= γ5 ⊗ k∗e ⊗H
a

(D)
.
11
a1 = γ5 ⊗ kν ⊗ εabH

b

(D)
.
21
a1 = γ5 ⊗ ke ⊗Ha

(D)
b1
a1 = γμ ⊗

((

Dμ +
i

2
g1Bμ

)

δba −
i

2
g2W

α
μ (σα)

b
a

)

⊗ 13, σα = Pauli

(D)
.
1j
.
1i

= γμ ⊗
((

Dμ − 2i

3
g1Bμ

)

δji −
i

2
g3V

m
μ (λm)ji

)

⊗ 13, λi = Gell-Mann

(D)
aj
.
1i

= γ5 ⊗ k∗u ⊗ εabHbδ
j
i

(D)
.
2j
.
2i

= γμ ⊗
((

Dμ +
i

3
g1Bμ

)

δji −
i

2
g3V

m
μ (λm)

j
i

)

⊗ 13

(D)aj.
2i

= γ5 ⊗ k∗d ⊗H
a
δji

(D)bjai = γμ ⊗
((

Dμ − i

6
g1Bμ

)

δbaδ
j
i −

i

2
g2W

α
μ (σα)ba δ

j
i −

i

2
g3V

m
μ (λm)ji δ

b
a

)

⊗ 13

(D)
.
1j
ai = γ5 ⊗ ku ⊗ εabH

b
δji

(D)
.
2j
ai = γ5 ⊗ kd ⊗Haδ

j
i

(D)
.

1′1′
.
11

= γ5 ⊗ k∗νRσ generate scale MR by 〈σ〉 = MR

(D)
.
11
.
1′1′

= γ5 ⊗ kνRσ

DB′

A′ = D
B

A , DB
A′ = D

B′

A , DB′

A = D
B

A′

where Bμ,W
α
μ and V m

μ are the U(1), SU(2) and SU(3) gauge fields, and H is a
complex doublet scalar field and σ is a singlet real scalar field. We have assumed
that the unitary algebra U (A) is restricted to SU (A) to eliminate a superfluous
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U(1) gauge field. Pictorially, the matrix DN
M has the structure:

( .
11
vR

.
21
eR

a1
la

.
1i
uiR

.
2i
diR

ai
qiL

)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

.
11
.
21
b1
.
1j
.
2j
bj

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(D)
.
11
.
11

0 (D)a1.
11

0 0 0

0 (D)
.
21
.
21

(D)
a1
.
21

0 0 0

(D)
.
11
b1 (D)

.
21
b1 (D)b1a1 0 0 0

0 0 0 (D)
.
1i
.
1j

0 (D)ai.
1j

0 0 0 0 (D)
.
2i
.
2j

(D)ai.
2j

0 0 0 (D)
.
1i
bj (D)

.
2i
bj (D)aibj

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Needless to say the term ψ∗
MDN

MψN contains all the fermionic terms and their
interactions in the standard model.

5. The Spectral Action Principle

There is a shift of point of view in NCG similar to Fourier transform, where the
usual emphasis on the points x ∈ M of a geometric space is now replaced by the
spectrum Σ of the operator D. The existence of Riemannian manifolds which are
isospectral but not isometric shows that the following hypothesis is stronger than
the usual diffeomorphism invariance of the action of general relativity

The physical action depends only on Σ

This is the spectral action principle [11]. The spectrum is a geometric invariant
and replaces diffeomorphism invariance. We now apply this basic principle to the
noncommutative geometry defined by the spectrum of the standard model to show
that the dynamics of all interactions, including gravity is given by the spectral
action

Trace f

(

DA

Λ

)

+
1

2
〈JΨ, DAΨ〉 ,

where f is a positive function, Λ a cut-off scale needed to make DA

Λ dimensionless,
and Ψ is a Grassmann variable which represents fermions.

In the case of the cut-off function, f only plays a role through its moments
f0, f2, f4, where

fk =

∞
∫

0

f(v)vk−1dv, for k > 0, , f0 = f(0).

These will serve as three free parameters in the model. In this case the action
SΛ[DA] is the number of eigenvalues λ of DA counted with their multiplicities such
that |λ| ≤ Λ.
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To illustrate how this comes about, expand the function f in terms of its Laplace
transform

Tracef (P ) =
∑

s

fsTrace
(

P−s
)

Trace
(

P−s
)

=
1

Γ (s)

∞
∫

0

ts−1Trace
(

e−tP
)

dt Re (s) ≥ 0

Trace
(

e−tP
)

�
∑

n≥0

t
n−m

d

∫

M

an (x, P ) dv (x) ,

where m = 4 is the dimension of the manifold M and d = 2 is the order of the
elliptic operatorD2. Gilkey gives generic formulas for the Seeley-DeWitt coefficients
an (x, P ) for a large class of differential operators P [12]. The details are explained
in preceding papers [11], [2] or using the tensorial notation, in a forthcoming paper
[1].

The bosonic part of the spectral action gives an action that unifies gravity
with SU(2)× U(1)× SU(3) Yang-Mills gauge theory, with a Higgs doublet H and
spontaneous symmetry breaking and a real scalar field σ. It is given by [11], [2]

S =
48

π2
f4Λ

4

∫

d4x
√
g

− 4

π2
f2Λ

2

∫

d4x
√
g

(

R+
1

2
aHH +

1

4
c

)

+
1

2π2
f0

∫

d4x
√
g

[

1

30

(

−18C2
μνρσ + 11R∗R∗)

+
5

3
g21B

2
μν + g22

(

Wα
μν

)2
+ g23

(

V m
μν

)2

+
1

6
aRHaH

a
+ b

(

HH
)2

+ a |∇μHa|2

+2eHH σ2 +
1

2
d σ4 +

1

12
cRσ2 +

1

2
c (∂μσ)

2

]

+ f−2Λ
−2a6 + · · ·

This can be rearranged, after normalizing the kinetic energies and ignoring the σ
field which only plays a role in cosmology, to the form:

S =
∫

(

1
2κ2

0
R+ α0 Cμνρσ C

μνρσ + γ0 + τ0 R
∗R∗

+ 1
4 G

i
μν G

μνi + 1
4 F

α
μν F

μνα + 1
4 Bμν B

μν

+ 1
2 |Dμ H|2 − μ2

0|H|2 − ξ0 R |H|2 + λ0|H|4
)

√
g d4x,
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where

1

κ2
0

= Λ2 96 f2 − f0 c

12π2
, μ2

0 = Λ2

(

2
f2
f0

− e

a

)

α0 = − 3 f0
10π2

, τ0 =
11 f0
60π2

, λ0 =
π2

2 f0

b

a2

γ0 = Λ4 1

π2
(48 f4 − f2 c+

1

4
f0d), ξ0 =

1

12
.

The parameters a, b, c, d, e are all dimensionless and related to the Yukawa couplings
that give the fermionic masses after the spontaneous breaking of symmetry:

a = Tr
(

ke∗ke + kν∗kν + 3ku∗ku + 3kd∗kd
)

b = Tr
(

(ke∗ke)
2
+ (kν∗kν)

2
+ 3 (ku∗ku)

2
+ 3

(

kd∗kd
)2
)

c = Tr (k∗RkR) , d = Tr ((k∗RkR)
2
), e = Tr (k∗RkRk

ν∗kν) .

6. Predictions of Spectral Action for Standard Model

We shall first perform our analysis by assuming that the function f is well
approximated by the cut-off function, thus allowing us to ignore higher order terms.
We will determine to what extent such an approximation could be made, and its
effects on the predictions. The normalization of the kinetic terms imposes a relation
between the coupling constants g1, g2, g3 and the coefficient f0, of the form

g23 f0
2π2

=
1

4
, g23 = g22 =

5

3
g21 .

This gives the relation sin2 θW = 3
8 , a value also obtained in SU(5) and SO(10)

grand unified theories. The three moments of the function f0, f2 and f4 can be used
to specify the initial conditions on the gauge couplings, the Newton constant and
the cosmological constant. We deduce that the geometrical picture is valid at high
energies, and the spectral action must be considered in the Wilsonian approach,
where all coupling constants are energy dependent and follow the renormalization
group equations. For example, The fine structure constant αem is given by

αem = sin(θw)
2 α2 , αi =

g2i
4π

.

Its infrared value is ∼ 1/137.036 but it is running as a function of the energy and
increases to the value αem(MZ) = 1/128.09 already at the energy MZ ∼ 91.188
Gev.

Assuming the “big desert” hypothesis, the running of the three couplings αi is
known. With 1-loop corrections only, it is given by [13]

βgi = (4π)−2 bi g
3
i , with b = (

41

6
,−19

6
,−7),
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3

2

5 3
1

Couplings

so that

α−1
1 (Λ) = α−1

1 (MZ)−
41

12π
log

Λ

MZ

α−1
2 (Λ) = α−1

2 (MZ) +
19

12π
log

Λ

MZ

α−1
3 (Λ) = α−1

3 (MZ) +
42

12π
log

Λ

MZ
,

where MZ is the mass of the Z0 vector boson.

In fact, if one considers the actual experimental values

g1(MZ) = 0.3575, g2(MZ) = 0.6514, g3(MZ) = 1.221,

one obtains the values

α1(MZ) = 0.0101, α2(MZ) = 0.0337, α3(MZ) = 0.1186.

The graphs of the running of the three constants αi do not meet exactly, hence do
not specify a unique unification energy.

Next we study the running of the Higgs quartic coupling λ [14]:

dλ

dt
= λγ +

1

8π2
(12λ2 +B),

where

γ =
1

16π2
(12k2t − 9g22 − 3g21)

B =
3

16
(3g42 + 2g21 g

2
2 + g41)− 3 k4t .

The Higgs mass is then given by

m2
H = 8λ

M2

g2
, mH =

√
2λ

2M

g
.

The numerical solution to these equations with the boundary value λ0 = 0.356 at
Λ = 1017 Gev gives λ(MZ) ∼ 0.241 and a Higgs mass of the order of 170 Gev. This
value will receive substantial corrections when gravitational loop effects are taken
into account, and these will also effect the running of the gauge couplings.
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The mass of the top quark is governed by the top quark Yukawa coupling kt
and is given by the equation

mtop(t) =
1√
2

2M

g
kt =

1√
2
v kt,

where v = 2M
g is the vacuum expectation value of the Higgs field. There is a relation

between the Yukawa and the gauge couplings which emerges as a consequence of
normalizing the Higgs interactions. This relation is a consequence of the fact that
all fermions get their masses by coupling to the same Higgs through interactions of
the form

kHψψ.

After normalizing the kinetic energies of the Higgs field through the redefinition
H → π√

af0
H, the mass terms take the form

π√
f0

k√
a
Hψψ.

Using the identity
∑

i

(

ki√
a

)2

= 1 gives a relation among the fermion masses and

W mass [2]
∑

generations

m2
e +m2

ν + 3m2
d + 3m2

u = 8M2
W .

The value of g at a unification scale of 1017 Gev is ∼ 0.517. Thus, neglecting the τ
neutrino Yukawa coupling, we get the simplified relation

kt =
2√
3
g ∼ 0.597 .

The numerical integration of the differential equation yields an acceptable value for
the top quark mass of 179 Gev [2]. One reason why the resulting top quark mass
is acceptable while the Higgs mass is not is because the latter is dependent on the
cut-off function.

The fact that the coupling constants do not meet is giving us information
about the nature of the function f used in the spectral action. Our results were
obtained under the assumption that the function f is the cut-off function for which
all coefficients of the higher order terms in the asymptotic expansion vanish. These
coefficients are given by derivatives of the function evaluated at zero. We can infer
from these results, especially from the near meeting of the coupling constants, the
good approximate values for sin2 θ and the top quark mass, that the function f is
well approximated by the cut-off function, but deviates slightly from it. What is
needed then is for the Taylor coefficients of the function to be very small but not
zero.

To prove that this is indeed the case we compute the gauge and Higgs contri-
butions to the next order, i.e. a6, in the asymptotic expansion. It is enough to look
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only at the non-gravitational terms [1]:

− f ′(0)

12π2Λ2

[

c1HH

(

1

4
g22
(

Wα
μν

)2
)

+ c2HH
(

g23
(

V m
μν

)2
)

+ c3HσαH

(

1

2
g1g2BμνW

α
μν

)

+ c4
(

HH
)3

+ c5
(

HH
)2

σ2

+ c6

(

(

H∇μH
)2

+
(

∇μHH
)2
)

+ c7
(

∇μ∇νH
)

(∇μ∇νH)

+ c8

(

HH |∇μH|2 +
∣

∣H∇μH
∣

∣

2
)

+ c9 |∇μ (Hσ)|2 + c10
∣

∣εabHa∇μHb

∣

∣

2

+c11∇μH∇νH

(

3

2
ig1Bμν

)

+ c12∇μHσα∇νH

(

3

2
ig2W

α
μν

)]

where the coefficients c1, · · · , c12 depend only on the Yukawa couplings. The exact
expression will be given in reference [1]. This clearly shows that the kinetic terms of
the gauge fields get modified, and are all multiplied with the coefficients f−2 = f ′(0).
The remarkable thing is that if we rescale the Higgs field by

H = ϕ
Λ

|kt| ,

assuming the top quark mass dominates the other fermion masses, then the po-
tential will depend on Λ through an overall scale and the |kt| dependence drops
out:

V =
3Λ4

π2

(

−2f2ϕϕ+
1

2
f0 (ϕϕ)

2
+

1

3
f−2 (ϕϕ)

3
+ · · ·

)

.

Now since ϕ is a dimensionless doublet field, the vev

〈ϕ〉 = v

(

0
1

)

,

will have a numerical value that depends only on the coefficients f2, f0

v20 =
f0

2f−2
,

and will be perturbed very slightly by the higher coefficients f−2, f−4, . . ., provided
they decrease very rapidly. Looking at the minimum of the potential with the three
terms above we have

v2 =
f0

2f−2

(

−1 +

√

1 + 8
f2f−2

f2
0

)

.

Thus the condition that the higher order term in the potential perturb the minimum
v0 slightly requires the condition

f−2 � f2
0

8f2
,

so that

v2 � v20

(

1− 4
f2f−2

f2
0

)

.

We can get a rough estimate of the coefficients f0 and f2 at unification scale by
setting

4f2Λ
2

π2
=

1

2κ2
, κ = 4.2× 10−19Gev−1
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which implies that

f2 �
(

π2

8

)(

1

κΛ

)2

.

Thus, if Λ is of the order of MPlanck then f2 ∼ 1 while if Λ ∼ 1017 then f2 ∼ 102.
We also have

f0g
2
3

2π2
=

1

4
,

thus

f0 =
π

8αs
∼ 20, αs =

g23
4π

at unification scale. Therefore we must have

f−2 � 102

f2

and this can be anywhere between 102 and 10−2 depending on whether Λ is at the
Planck mass or two orders less.

We can now speculate on the form of the function F (D2) = f (D). This
function must have rapidly decreasing Taylor coefficients (these are F0 = F (0) ,
F−2 = −F ′ (0) , F−4 = F ′′ (0) · · · ) while the Mellin coefficients F2, F4 should
behave independently. The cut-off function can be approximated by the sequence
F{N} (x)

F{N} (x) = A

(

1 + x+
1

2!
x2 + · · ·+ 1

N !
xN

)

e−x

where

A ∼ 20.

This function has the property that the first N coefficients in the Taylor expansion
vanish, and is thus a very good approximation to a cut-off function. A slightly
perturbed form of this function is given by

F{N} (x, ε) = e−εxF{N} (x)

where ε ≤ ±10−2. In this case, we have f−2 = Aε, f−4 = Aε2. To get a feeling for
this function we can plot F{10} (x, ε)
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This shows that ε should be at least of order 10−2 to 10−3 in order not to
disturb the cut-off function much, in the region where the scale is comparable to Λ.
As seen from the plot, the function FN (x, ε) is indistinguishable from FN (x) for
ε ∼ 10−3. From this we deduce that higher order terms in the heat kernel expansion
will be suppressed by the Taylor coefficients of the function, and the perturbation
can be trusted to within one order from the Planck scale. This property will ensure
that the initial conditions on the RG equations for the gauge coupling constant
get modified. To see this, we have, to lowest order, the modification to the gauge
kinetic energies [1]:

f−2v
2
0

12π2

[(

17

12
g21B

2
μν

)

+

(

3

4
g22
(

Wα
μν

)2
)

+
(

g23
(

V m
μν

)2
)

+
9i

4
g1g

2
2BμνW

+
μ W−

ν

+
1

2
g1g2BμνW

3
μν − 3

2
v2
(

g1Bμ − g2W
3
μ

)2
+ 6g22W

+
μ W−

μ + 6v2
(

g1Bμ − g2W
3
μ

)2

+
3

2
g22

∣

∣

∣

∣

∂μW
−
ν − i

2

(

g1Bμ − g2W
3
μ

)

W−
ν − i

2
W−

μ

(

g1Bν − g2W
3
ν

)

∣

∣

∣

∣

2

+
3

4

∣

∣

∣

∣

∂μ
(

g1Bν − g2W
3
ν

)

− ig22W
+
μ W−

ν − i

2

(

g1Bμ − g2W
3
μ

) (

g1Bν − g2W
3
ν

)

∣

∣

∣

∣

2
]

It remains to show that this form, for some value of f−2, can provide a mechanism
for the unification of the three gauge couplings at some energy not far from the
Planck scale. Similarly, the contributions to the Higgs potential are expected to
modify the prediction of the Higgs mass [15]. The analysis of the running of the
gauge coupling constants and the Higgs mass, taking these higher order terms into
account, is presently under study. We hope to report on this in the near future.
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7. Spectral Action for Noncommutative Spaces with Boundary

In the Hamiltonian quantization of gravity it is essential to include boundary
terms in the action as this allows one to define consistently the momentum conjugate
to the metric. This makes it necessary to modify the Einstein-Hilbert action by
adding to it a surface integral term so that the variation of the action is well defined.
The reason for this is that the curvature scalar R contains second derivatives of the
metric, which are removed after integrating by parts to obtain an action which is
quadratic in first derivatives of the metric. To see this note that the curvature
R ∼ ∂Γ + ΓΓ where Γ ∼ g−1∂g has two parts; one part is of second order in
derivatives of the form g−1∂2g and the second part is the square of derivative terms
of the form ∂g∂g. To define the conjugate momenta in the Hamiltonian formalism,
it is necessary to integrate by parts the term g−1∂2g and change it to the form
∂g∂g. These surface terms, which turned out to be very important, are canceled by
modifying the Euclidean action to

I = − 1

16π

∫

M

d4x
√
gR − 1

8π

∫

∂M

d3x
√
hK,

where ∂M is the boundary of M , hab is the induced metric on ∂M and K is the
trace of the second fundamental form on ∂M. Notice that there is a relative factor
of 2 between the two terms, and that the boundary term has to be completely
fixed. This is a delicate fine tuning and is not determined by any symmetry, but
only by the consistency requirement. There is no known symmetry that predicts
this combination and it is always added by hand [16]. In contrast we can compute
the spectral action for manifolds with boundary. The Hermiticity of the Dirac
operator

(ψ|Dψ) = (Dψ|ψ),
is satisfied provided that π−ψ|∂M = 0, where π− = 1

2 (1− χ) is a projection op-

erator on ∂M with χ2 = 1. To compute the spectral action for manifolds with
boundary we have to specify the condition π−Dψ|∂M = 0. The result of the com-
putation gives the remarkable result that the Gibbons-Hawking boundary term is
generated without any fine tuning [17]. Adding matter interactions does not alter
the relative sign and coefficients of these two terms, even when higher orders are
included. The Dirac operator for a product space such as that of the standard
model must now be taken to be of the form

D = D1 ⊗ γF + 1⊗DF ,

instead of

D = D1 ⊗ 1 + γ5 ⊗DF ,

because γ5 does not anticommute with D1 on ∂M.

8. Dilaton and the dynamical generation of scale

Replacing the cutoff scale Λ in the spectral action and replacing f(D
2

Λ2 ) by f(P )

where P = e−φD2e−φ modifies the spectral action with dilaton dependence to the
form [18]

Tr F (P ) �
6
∑

n=0

f4−n

∫

d4x
√
ge(4−n)φan

(

x,D2
)

.
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One can then show that the dilaton dependence almost disappears from the action
if one rescales the fields according to

Gμν = e2φgμν

H ′ = e−φH

ψ′ = e−
3
2φψ.

With this rescaling one finds the result that the spectral action

I (gμν , H, ψ, φ) = I (Gμν , H
′, ψ′, φ = 0) +

24f2
π2

∫

d4x
√
GGμν∂μφ∂νφ

is scale invariant (independent of the dilaton field) except for the kinetic energy
of the dilaton field φ. The dilaton field has no potential at the classical level. It
acquires a Coleman-Weinberg potential [19] through quantum corrections, and thus
a vev and a very small mass. [20]. The Higgs sector in this case becomes identical
with the Randall-Sundrum model [21]. In that model there are two branes in a
five-dimensional space, one located at x5 = 0 representing the invisible sector, and
another located at x5 = πrc, the visible sector. The physical masses are set by the
symmetry breaking scale v = v0e

−krcπ so thatm = m0e
−krcπ. If the bare symmetry

breaking scale is taken at m0 ∼ 1019 Gev, then by taking krcπ = 10 one gets the
low-energy mass scale m ∼ 102 Gev. It is not surprising that the Randall-Sundrum
scenario is naturally incorporated in the noncommutative geometric model [22],
[23], because intuitively one can think of the discrete space as providing the different
right-handed and left-handed brane sectors.

9. Speculations on the Structure of the Noncommutative Space and
Quantum Gravity

The small deviation from experimental results of the predictions of the standard
model derived from the spectral action can have the following interpretation. This
is an indication that the basic assumption we made about space-time as a product
of a continuous four-dimensional manifold times a discrete space breaks down at
energies just below the unification (Planck) scale. This will lead us to postulate
that, at Planckian energies, the structure of space-time becomes noncommutative
in a nontrivial way, which will change in an intrinsic way the particle spectrum. On
the other hand, the encouraging results we obtained about the unique prediction of
the spectrum of the standard model, the determination of the gauge group and the
particle representations, can be taken as a guide that the true geometry should re-
produce at lower energies, the product structure we assumed. The starting point is
to look for a noncommutative space whose KO-dimension is ten (mod 8) and whose
metric dimension is dictated by the growth of eigenvalues of the Dirac operator to
be four. A good starting point would be to mesh in a smooth manner the four-
dimensional manifold with the discrete space M2 (H) ⊕ M4 (C) . The appearance
of 4 × 4 matrices and their relation to a four-dimensional space-time may not be
accidental. In particular, we can define the four-dimensional manifold through the
following data. The C∗-algebra is generated byM2 (H) and a projection e = e2 = e∗
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such that [24]
〈

e− 1

2

〉

= 0

〈(

e− 1

2

)

[D, e]2n
〉

=

{

0, n = 0, 1
γ, n = 2

}

,

where γ is the chirality operator satisfying

γ2 = γ, γ = γ∗, γe = eγ, Dγ = −γD

The constraint on e forces it to be of the form

e =

⎛

⎜

⎜

⎝

1
2 + t 0 α β
0 1

2 + t −β∗ α∗

α∗ −β 1
2 − t 0

β∗ α 0 1
2 − t

⎞

⎟

⎟

⎠

where t, α, α∗, β and β∗ all commute and satisfy the relation

t2 + |α|2 + |β|2 =
1

4
.

One can then check that A = C
(

S4
)

. The differential constraints are then satisfied

by any Riemannian structure with a given volume form on S4. This space can be
deformed by considering the algebra to be generated by M4 (C) and e, where [25]

e =

(

q11 q12
q21 q22

)

and each q is a 2× 2 matrix of the form

q =

(

α β
−λβ α∗

)

In this case the projection constraints imply

e =

⎛

⎜

⎜

⎝

1
2 + t 0 α β
0 1

2 + t −λβ∗ α∗

α∗ −λβ 1
2 − t 0

β∗ α 0 1
2 − t

⎞

⎟

⎟

⎠

satisfying
αα∗ = α∗α, ββ∗ = β∗β, αβ = λβα, α∗β = λβα

giving rise to deformed S4.
The idea now is to define the noncommutative space by marrying the concept

of generating a manifold as instantonic solution of a set of equations, and to blend
these with the finite space. For further details see [1].

10. Conclusions

We summarize the main assumptions made:

• Space-time is a product of a continuous four-dimensional manifold times
a finite space.

• One of the algebras M4 (C) is subject to symplectic symmetry reducing it
to M2 (H) .

• The commutator of the Dirac operator with the center of the algebra is
non-trivial, [D,Z (A)] �= 0.
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• The unitary algebra U (A) is restricted to SU (A) .

These give rise to the following results:

• The number of fundamental fermions is 16.
• The algebra of the finite space is C⊕H⊕M3 (C) .
• The correct representations of the fermions with respect to SU(3) ×
SU(2)× U(1) are derived.

• The Higgs doublet appears as part of the inner fluctuations of the metric,
and the spontaneous symmetry breaking mechanism appears naturally
with the negative mass term without any tuning.

• Mass of the top quark of around 179 Gev.
• See-saw mechanism to give very light left-handed neutrinos.

The following problems are encountered:

• The unification of the gauge couplings with each other and with the New-
ton constant do not meet at one point which is expected to be one order
below the Planck scale.

• The naive prediction of the mass of the Higgs field is around 170 Gev. This
however, depends on the value of the gauge couplings at the unification
scale and the form of the spectral function and higher order corrections.

• No new particles besides those of the Standard Model. This will be prob-
lematic if new physics is observed at LHC.

• No explanation of the number of generations.
• No constraints on the values of the Yukawa couplings which are the non-
zero entries in the Dirac operator of the finite space.

From these results we can deduce the following:

• It is necessary to include the higher order corrections to the spectral action
using a convergent series for the heat kernel expansion. This step is now
done, and shows clearly that the corrections cannot be ignored if the
spectral function deviates even slightly from the cut-off function. What
remains to be done is to input these corrections into the RG equations
and prove that this mechanism does produce gauge couplings unification,
and thus will enable us to get an accurate prediction for the Higgs mass.

• To get an insight into the problem of quantum gravity, it is essential to
find the noncommutative space whose limit is the product M4 × F. We
speculated that this could be done by adopting the strategy of generat-
ing a continuous manifold through instantonic solutions of algebraic and
differential constraints. This step has to be elaborated on and we must
construct in detail the structure of such a space, to study its properties at
the Planck scale and to show that the usual space-time can be recovered
from the geometry of a non-trivial noncommutative space.

• The results obtained so far are very encouraging and we hope to report
on future positive developments.
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Abstract. To each integral domain R with finite quotients we associate a
purely infinite simple C*-algebra in a very natural way. Its stabilization can
be identified with the crossed product of the algebra of continuous functions
on the “finite adèle space” corresponding to R by the action of the ax+b-group
over the quotient field Q(R). We study the relationship to generalized Bost-
Connes systems and deduce for them a description as universal C*-algebras
with the help of our construction.
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1. Introduction

In [Cun1], the first named author introduced C*-algebras QZ and QN asso-
ciated with the ring of integers Z or also with the semiring N, respectively, and
which can be obtained from the natural actions of Z and N, by multiplication and
addition, on the Hilbert spaces �2(Z) and �2(N).

This was originally motivated by the well known construction by Bost and
Connes [BoCo] who had introduced a C*-dynamical system (CQ, σt) and studied
its KMS states.
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The Bost-Connes algebra CQ is naturally embedded into QN. The difference
between the two algebras lies in the fact that QN contains, besides the operators
induced by multiplication in N also those corresponding to addition.

A main result in [Cun1] was the proof that the algebras QZ and QN are simple
purely infinite and, after stabilization, can also be described as crossed products of
the algebra of functions on the finite adèle space Af over Q by the ax + b-groups
over Q or Q+. This leads in particular to a simple presentation, by generators and
relations, of the C*-algebras generated by the “left regular representations” of Z
and N.

In the present paper we extend the construction of [Cun1] to an arbitrary com-
mutative ring R without zero divisors (an integral domain) subject to a finiteness
condition which is typically satisfied by the integral domains considered in number
theory (rings of integers in algebraic number fields or polynomial rings over finite
fields). We denote the associated C*-algebra by A[R]. We generalize the result
from [Cun1] by showing that A[R] and its stabilization A(R) are purely infinite
simple and that A(R) can be represented as a crossed product of the algebra of

functions on the “finite adèle space”, corresponding to the profinite completion R̂
of R, by the action of the ax+ b-group over the quotient field Q(R). At the same
time we streamline and improve the arguments given in [Cun1] in the case R = Z.

We also show that the higher dimensional analogues of the Bost-Connes system,
studied in [CMR] for imaginary quadratic number fields and in [LLN] for arbitrary
number fields, embed into the C*-algebra A[R] if the number field affords at most
one real place and the class number is one. We use this to deduce a description of
the algebras considered in [CMR], [LLN] (for number fields with at most one real
place and class number one) in terms of generators and relations.

The main result of [LLN] was to construct and classify all KMSβ states of gen-
eralized Bost-Connes systems which were originally introduced by Ha and Paugam
in [HaPa]. Now, our description of the algebras arising in these C*-dynamical
systems can be used to construct all extremal KMSβ states in a very natural way
(in complete analogy to the original case of Q treated in [BoCo]).

2. Universal C*-algebras

Throughout this article, R will denote an integral domain with the following
properties:

1. the set of units R∗ in R does not equal R× := R\ {0} (so we exclude fields)
2. for each m ∈ R× the ideal (m) generated by m in R is of finite index in R.
We will always think of R as a subring of its quotient field Q(R).
Now, let us introduce our C*-algebras A[R] in a universal way in terms of

generators and relations. Later on, we will see more concrete models for A[R].

Definition 2.1. Let A[R] be the universal C*-algebra generated by isometries
{sm: m ∈ R×} and unitaries {un: n ∈ R} with the relations

(i) sksm = skm
(ii) ulun = ul+n

(iii) smun = umnsm
(iv)

∑

n+(m)∈R/(m) u
nemu−n = 1

for all k,m ∈ R×, l, n ∈ R, where em = sms∗m is the final projection corre-
sponding to sm.
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The sum is taken over all cosets n+(m) in R/(m) and unemu−n is independent
of the choice of n. This follows from (i) , (ii) and (iii) (once they are valid).

A[R] exists as the generators must have norm 1. To show that this universal
C*-algebra is not trivial, it suffices to give an explicit nontrivial representation of
these generators and relations on a Hilbert space. For this purpose, we consider
the “left regular representation” on the Hilbert space �2(R) given by the operators

Sm(ξr) := ξrm

Un(ξr) := ξr+n.

We immediately check the relations: (iii) reflects distributivity and (iv) holds since
UnSmS∗

mU−n is the projection onto span ({ξr: r ∈ n+ (m)}) and R is the disjoint
union of the cosets {n+ (m): n ∈ R}. Hence, the universal property provides a
nontrivial representation via sm �→ Sm, un �→ Un.

In analogy to the case of groups, one can think of

Ar[R] := C∗ ({Sm: m ∈ R×} ∪ {Un: n ∈ R}
)

⊆ L(�2(R))

as the reduced C*-algebra associated to R.
Moreover, we define PR := R � R× where R× acts on R via multiplication.

PR is called the ax + b-semigroup over R. This semigroup describes all affine
transformations of R and thereby incorporates the ring structure of R. PR is not
a group as R is not a field. Furthermore, PR can be realized as the subsemigroup
{( a b

0 1 ) : a ∈ R× , b ∈ R} in M2(R). For us, it is important to note that we have a
natural representation of PR in A[R] given by ( a b

0 1 ) �−→ ubsa.

3. The Inner Structure

In order to see that A[R] is simple and purely infinite, we proceed similarly as
in [Cun1]. This means that we construct a faithful conditional expectation out of
certain group actions and describe this expectation with the help of appropriate
projections (actually, this idea already appears in [Cun2]).

3.1. Preparations. We begin with some immediate consequences of the char-
acteristic relations defining A[R]. First of all, the projections unemu−n, ulemu−l

are orthogonal if n + (m) �= l + (m) because of (iv) . Denote by P the set of all
these projections, P = {unemu−n : m ∈ R× , n ∈ R}. We have the following

Lemma 3.1. The formula

em =
∑

n+(k)∈R/(k)

umnemku
−mn

is valid for all k, m ∈ R×. Furthermore, the projections in P commute and span(P )
is multiplicatively closed.

Proof. This follows by

em = sm1s∗m

= sm(
∑

n+(k)∈R/(k)

uneku
−n)s∗m

=
∑

n+(k)∈R/(k)

umnemku
−mn.
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Given two projections unemu−n, uleku
−l, we can use the formula above to write

both projections as sums of conjugates of emk = ekm. Hence it follows that they
commute and that their product is in span(P ). �

As span(P ) is obviously a subspace closed under involution, we get that C∗(P ) =
span(P ) is a commutative C*-subalgebra of A[R]. We denote it by D[R] and inves-
tigate its structure later on.

Now we present the “standard form” of elements in the canonical dense subal-
gebra of A[R].

Lemma 3.2. Define S :=
{

s∗munfu−n′
sm′ : m, m′ ∈ R× ; n, n′ ∈ R ; f ∈ P

}

.

span(S) is the *-algebra in A[R] generated by {sm : m ∈ R×} ∪ {un : n ∈ R}.

Proof. Since S contains the generators and is a subset of the smallest *-
algebra containing them, we just have to prove that span(S) is closed under multi-
plication (as it obviously is an involutive subspace). This follows from the following
calculation:

s∗munfu−n′
sm′ · s∗kuleu−l′sk′

= s∗munfu−n′
sm′s∗m′s∗ksm′uleu−l′sk′

= s∗mun−n′
un′

fu−n′

︸ ︷︷ ︸

=:f̃

em′s∗ksm′ uleu−l
︸ ︷︷ ︸

=:ẽ

ul−l′sk′

= s∗mun−n′
s∗kskf̃ s

∗
kskem′s∗ksm′ ẽs∗m′sm′ul−l′sk′

= s∗kmukn−kn′
skf̃ s

∗
k

︸ ︷︷ ︸

∈P

skem′s∗k
︸ ︷︷ ︸

∈P

sm′ ẽs∗m′
︸ ︷︷ ︸

∈P

ulm′−l′m′
sk′m′ .

As span(P ) is closed under multiplication, we conclude that the same holds for
span(S). �

3.2. A Faithful Conditional Expectation.

Proposition 3.3. There is a faithful conditional expectation

Θ: A[R] −→ D[R]

characterized by

Θ(s∗munfu−n′
sm′) = δm,m′δn,n′s∗munfu−nsm

for all m, m′ ∈ R×; n, n′ ∈ R; f ∈ P .

Proof. Θ will be constructed as the composition of two faithful conditional
expectations

Θs: A[R] −→ C∗ ({em: m ∈ R×} ∪ {un: n ∈ R}
)

Θu: Θs(A[R]) −→ D[R]

both arising from group actions on A[R] or Θs(A[R]) respectively.
1. Construction of Θs:
Consider the Pontrjagin dual group Ĝ of the discrete multiplicative group G :=

(Q(R)×, ·) in the quotient field of R. To each character φ in Ĝ we assign the
automorphism αφ ∈ Aut(A[R]) given by αφ(sm) = φ(m)sm, αφ(u

n) = un for all
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m ∈ R×, n ∈ R. The existence of αφ is guaranteed by the universal property of
A[R]. In this way, we get a group homomorphism

Ĝ −→ Aut(A[R])

φ �−→ αφ

which is continuous for the point-norm topology.
It is known that Θs defined by

Θs(x) =

∫

Ĝ

αφ(x)dμ(φ)

is a faithful conditional expectation from A[R] onto the fixed-point algebra A[R]Ĝ,

where μ is the normalized Haar measure on the compact group Ĝ (see [Bla],
II.6.10.4 (v)).

It will be useful to determine A[R]Ĝ more precisely. In order to do so let us
calculate

Θs(s
∗
munfu−n′

sm′)

=

∫

Ĝ

αφ(s
∗
munfu−n′

sm′)dμ(φ)

=

(∫

Ĝ

φ(m−1m′)dμ(φ)

)

s∗munfu−n′
sm′

= δm,m′s∗munfu−n′
sm′ .

Thus, A[R]Ĝ = Θs(A[R]) = span(
{

s∗munfu−n′
sm: m ∈ R×; n, n′ ∈ R; f ∈ P

}

as

A[R] = span(
{

s∗munfu−n′
sm′ : m, m′ ∈ R×; n, n′ ∈ R; f ∈ P

}

by Lemma 3.2. But

we can do even better, claiming

A[R]Ĝ = span(
{

unemu−n′
: m ∈ R×; n, n′ ∈ R;

}

),

because we have

s∗muneku
−n′

sm

= s∗memuneku
−nun−n′

sm

= s∗m
∑

l+(k)∈R/(k)

ulmekmu−lmun
∑

i+(m)∈R/(m)

uikekmu−iku−nun−n′
sm

= s∗m
∑

a

uamekmu−amun−n′
sm

=
∑

a

uaeku
−as∗mun−n′

sm.

where the sums are taken over appropriate indices a (this being justified by Lemma
3.1).

Additionally,

s∗mun−n′
sm = s∗memun−n′

emsm

=

{

0 if n− n′ /∈ (m)

um−1(n−n′) if n− n′ ∈ (m)
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so that each s∗munfu−n′
sm lies in span(

{

unemu−n′
: m ∈ R×; n, n′ ∈ R

}

). This

implies A[R]Ĝ = C∗({em: m ∈ R×} ∪ {un: n ∈ R}).
2. Construction of Θu:
Defining H := (R,+), each χ ∈ Ĥ gives an automorphism βχ ∈ Aut(Θs(A[R]))

with the properties βχ(em) = em and βχ(u
n) = χ(n)un. To see the existence of βχ,

we fix m ∈ R× and consider C∗({un: n ∈ R} , em).

Lemma 3.4. C∗({un: n ∈ R} , em) is the universal C*-algebra generated by uni-
taries {vn: n ∈ R} and one projection fm such that

vnvn
′
= vn+n′

∑

n+(m)∈R/(m)

vnfmv−n = 1,

the latter relation implicitly including vlmfm = fmvlm for all l ∈ R.

Proof. The universal C*-algebra given by these generators and relations can
be faithfully represented on a (necessarily infinite-dimensional) Hilbert space. Then,
we can identify this algebra with Mp(C

∗({vn: n ∈ R})) where p := #[R/(m)]. The
isomorphism is provided by the p pairwise orthogonal projections vnfmv−n each
being equivalent to 1 (where {n+ (m)} = R/(m)). Now the same argument shows
C∗({un: n ∈ R} , em) ∼= Mp(C

∗({un: n ∈ R})). Thus it remains to show that

C∗({vn: n ∈ R}) −→ C∗({un: n ∈ R}); vn �−→ un

is an isomorphism. This follows by the following observations:
For each n, Sp(un) is maximal, meaning that it is T if char(R) = 0 and

{ζ ∈ T: ζp = 1} if char(R) = p (in this case we have (un)p = 1 for all n ∈ R).
This follows from the “left regular representation” of A[R] discussed above. There-
fore, Sp(vn) = Sp(un) for all n ∈ R.

Given n1, ..., ni ∈ R, we have C∗({vn1 , ... , vni}) ∼= C∗({un1 , ... , uni}). To
see this, we can assume that the n1, ..., ni are linearly independent over the prime
ring of R, so that we get Spec(C∗({un1 , ... , uni}) ∼= Sp(un1)× ...× Sp(uni) which
can be identified with Sp(vn1)× ...× Sp(vni) ∼= Spec(C∗({vn1 , ... , vni}).

Now the claim follows by taking the inductive limit of the isomorphisms ob-
tained via the identification of these spectra, and we again get an isomorphism
sending vn to un. �

This Lemma yields automorphisms βχ,m ∈ Aut(C∗({un: n ∈ R} , em)) given
by βχ,m(em) = em, βχ,m(un) = χ(n)un. Now, since βχ,km|C∗(

⋃
{un: n∈R},em) =

βχ,m, βχ can be constructed as the inductive limit of the βχ,m. Here, we use
C∗({em: m ∈ R×} ∪ {un: n ∈ R}) = lim−→C∗({un: n ∈ R} , em) with the inclusions

C∗({un: n ∈ R} , em) ↪→ C∗({un: n ∈ R} , ekm) given by Lemma 3.1.

Clearly, Ĥ acts on Θs(A[R]) via χ �−→ βχ, which is again continuous for the
point-norm topology. So we can proceed just as before defining

Θu(y) =

∫

Ĥ

βχ(y)dμ(χ),

and an analogous calculation shows Θu(u
nemu−n′

) = δn,n′unemu−n. Hence it

follows that (Θs(A[R]))Ĥ =
(

A[R]Ĝ
)Ĥ

= D[R].
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As mentioned at the beginning, we set Θ := Θu ◦ Θs which obviously yields a
faithful conditional expectation with the property

Θ(s∗munfu−n′
sm′) = Θu(δm,m′s∗munfu−n′

sm) = δm,m′δn,n′s∗munfu−nsm

�

In the following we want to give an alternative description of Θ with the help
of sufficiently small projections. Let y be in span(S), which means

y =
∑

m,m′,n,n′,f

a(m,m′,n,n′,f)s
∗
munfu−n′

sm′ .

In this sum, there are only finitely many projections lying in P which appear with
nontrivial coefficients. Write them as sums of mutually orthogonal projections
un1eMu−n1 , ... , unN eMu−nN .

Proposition 3.5. There are N pairwise orthogonal projections fi in P such
that

I.

Φ : C∗(
{

un1eMu−n1 , ... , unN eMu−nN
}

) −→ C∗({f1, ... , fN})

z �−→
N
∑

i=1

fizfi

is an isomorphism.

II. Φ(Θ(y)) =
∑N

i=1 fiyfi

Proof. We will find appropriate νi and μ so that fi := uνieμu
−νi satisfies I.

and II.
As a first step, the conditions

νi + (M) = ni + (M) for all 1 ≤ i ≤ N

μ ∈ (M)

enforce mutual orthogonality and imply I. as we have for λ = M−1μ (in R by the
second condition)

fiu
njeMu−njfi

= fi
∑

l+(λ)∈R/(λ)

unj+lMeμu
−nj−lMfi

= δi,jfi

because

fiu
nj+lMeμu

−nj−lM �= 0 for some l ∈ R

⇔ νi + (μ) = nj + lM + (μ) for some l ∈ R

⇔ νi + (M) = nj + (M)(since μ ∈ (M))

⇔ i = j(as νi + (M) = ni + (M) �= nj + (M) for all i �= j).

Therefore, Φ maps unieMu−ni to fi and is thus an isomorphism.
To find sufficient conditions on νi and μ for II., let us consider those summands

in y with a(m,m′,n,n′,f) �= 0 and δm,m′δn,n′ = 0. Call the corresponding indices
(m,m′, n, n′, f) critical; there are only finitely many of them. As Θ maps such
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summands to 0, we have to ensure that fis
∗
munfu−n′

sm′fi = 0 for those critical
indices.

We have

fis
∗
munfu−n′

sm′fi

= s∗mun
(

u−nsmfis
∗
mun
)

f
(

u−n′
sm′fis

∗
m′un′

)

u−n′
sm′

= s∗mun(umνi−nemμu
−mνi+num′νi−n′

em′μu
−m′νi+n′

)fu−n′
sm′

and the term in brackets can be described as

umνi−nemμu
−mνi+num′νi−n′

em′μu
−m′νi+n′

=
∑

a+(m′)∈R/(m′)

u−n+mνi+amμemm′μu
n−mνi−amμ

·
∑

b+(m)∈R/(m)

u−n′+m′νi+bm′μemm′μu
n−m′νi−bm′μ

Now we see that the projections in these two sums are pairwise orthogonal if

−n+mνi + amμ+ (mm′μ) �= −n′ +m′νi + bm′μ+ (mm′μ)

⇔ n− n′ + νi(m
′ −m) + (bm′ − am)μ /∈ (mm′μ) for all a, b in R.

This can be enforced by the even stronger condition

n− n′ + νi(m
′ −m) /∈ (μ),

which we have to satisfy for each critical index simultaneously.
On the whole, the projections fi satisfy I. and II. if νi and μ have the three

properties

• νi + (M) = ni + (M) for all 1 ≤ i ≤ N
• μ ∈ (M)
• n− n′ + νi(m

′ −m) /∈ (μ) for all critical indices.

One could, for example, choose νi such that νi +(M) = ni +(M) for all 1 ≤ i ≤ N
and n − n′ + νi(m

′ − m) �= 0 for all critical indices. This can be simultaneously
done as there are infinitely many possibilities for the νi to satisfy the first condition,
while the second one only excludes finitely many (namely −(m′ −m)−1(n−n′) for
all critical indices with m �= m′, otherwise this condition is automatically valid as
δm,m′δn,n′ = 0). Then just take an element r ∈ R× which is not invertible and set

μ := rM
∏

[n− n′ + νi(m
′ −m)] ∈ R×

where the product is taken over all critical indices. It is immediate that this choice
of μ enforces the second and third condition. �

3.3. Purely Infinite Simple C*-algebras. With the help of these ingredi-
ents it is now possible to prove the following result:

Theorem 3.6. A[R] is simple and purely infinite, i.e. for all 0 �= x ∈ A[R]
there are a, b in A[R] with axb = 1.

Proof. Consider first a positive, nontrivial element x in A[R]. Recall that
we have constructed a faithful conditional expectation Φ in Proposition 3.3. As
Θ(x) �= 0 we can assume ‖Θ(x)‖ = 1. Since span(S) is dense in A[R] (compare
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Lemma 3.2) we can find y ∈ span(S)+ with ‖x− y‖ < 1
2 , ‖Θ(y)‖ = 1. Proposition

3.5 gives pairwise orthogonal projections fi and Φ depending on y with

Φ(Θ(y)) =
N
∑

i=1

fiyfi =
N
∑

i=1

λifi

for some nonnegative λi, as we know that Φ(Θ(y)) lies in C∗({f1, ... , fN}) and
that Θ(y) is positive. Since Φ is isometric, we have 1 = ‖Φ(Θ(y))‖. Thus, there

must be an index j with λj = 1, as ‖
∑N

i=1 λifi‖ = sup1≤i≤N λi. Consider the
isometry s := uνjsμ. It has the properties ss

∗ = fj and s∗fjs = s∗ss∗s = 1, so that

(3.1) s∗ys = s∗fjss
∗yss∗fjs = s∗f2

j yf
2
j s = s∗fjs = 1.

Therefore, we conclude that

‖s∗xs− 1‖ = ‖s∗(x− y)s‖ <
1

2
.

This implies that s∗xs is invertible in A[R].
Set a := (s∗xs)−1s∗ and b := s; this gives axb = (s∗xs)−1s∗xs = 1 as claimed.
Given an arbitrary nontrivial element x, we get by the same argument as above,

applied to x∗x, elements a′ and b′ with a′x∗xb′ = 1. Then, we can set a := a′x∗

and b := b′. �
Remark 3.7. An immediate consequence is the fact that every nontrivial C*-

algebra generated by unitaries and isometries satisfying the characteristic relations
is canonically isomorphic to A[R].

As a special case of this observation, we get Ar[R] ∼= A[R].

4. Representation as a Crossed Product

This section is about representing A[R] as a crossed product involving some
kind of a generalized finite adèle ring and the ax+ b-group PQ(R).

4.1. Ring-theoretical Constructions. We start with some ring-theoretical
constructions. Set

R̂ = lim
←−

{R/(m); plm,m}
where plm,m: R/(lm) −→ R/(m) is the canonical projection. This is the profinite
completion of R.

A concrete description would be

R̂ =

{

(rm)m ∈
∏

m∈R×

R/(m) : plm,m(rlm) = rm

}

with the induced topology of the product
∏

m R/(m), each finite Ring R/(m) car-

rying the discrete topology. R̂ is a compact ring with addition and multiplication
defined componentwise. Furthermore, we have the diagonal embedding

R ↪→ R̂; r �−→ (r)m

and we will identify R with a subring of R̂ via this embedding.
Moreover, for l ∈ R× we have the canonical projection R̂ � R/(l). Its kernel

equals lR̂ as those elements are mapped to 0, while an element (rm)m in the kernel

can be written as l · (l−1rlm)m ∈ lR̂. Therefore, we get an isomorphism R̂/lR̂ ∼=
R/(l).
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As a next step, set

R := lim−→{Rm; φm,lm}

where Rm = R̂ for all m ∈ R× and φm,lm is multiplication by l.
An explicit picture for R is

∐

m∈R×

Rm/ ∼

where xl ∼ ym ⇔ mxl = lym for xl ∈ Rl, ym ∈ Rm. Denote by p the canonical
projection

∐

m∈R× Rm � R and by ιm the embedding

R̂ → Rm → R;x �−→ p(x).

R is a locally compact ring via

ιm(x) + ιl(y) = ιlm(lx+my), ιm(x) · ιl(y) = ιlm(xy).

Again, we identify R̂ with a subring of R via ι1.
An immediate observation is the fact that ιm(R̂) is compact and open in R.

Compactness is clear as ιm is continuous and R̂ is compact. Furthermore,

Rl ∩ p−1(ιm(R̂))

= {xl ∈ Rl: xl ∼ ym for some ym ∈ Rm}
= φ−1

l,lm(lR̂)

and lR̂ is open in R̂ because R̂\lR̂ =
⋃

r+(l) �=(l) r + lR̂ using the isomorphism

R̂/lR̂ ∼= R/(l). Therefore, R̂\lR̂ is a finite union of compact sets, thus closed.

4.2. Description of the Algebra. With these preparations, we can establish
connections with the C*-algebra A[R].

Observation 4.1. D[R] ∼= C(R̂) via unemu−n �−→ pmR̂+n, where pmR̂+n

denotes the characteristic function on the compact and open subset mR̂+ n ⊆ R̂.

Proof. Consider Dm = C∗({unemu−n: n ∈ R/(m)}) together with the inclu-
sions Dm ↪→ Dlm. D[R] can be described as the inductive limit of this system.
Furthermore, Spec(Dm) ∼= R/(m) as the projections unemu−n are mutually or-
thogonal. Moreover,

Spec(Dlm) −→ Spec(Dm);χ �−→ χ|Dm

corresponds to

plm,m: R/(lm) −→ R/(m); r + (lm) �−→ r + (m)

via this identification. Therefore, we have Spec(D) ∼= lim
←−

{R/(m); plm,m} = R̂.

Thus we get the isomorphism

α: D[R] −→ C(R̂);unemu−n �−→ pmR̂+n.

�

Definition 4.2. The stabilization of A[R], denoted by A(R), is defined as the
inductive limit of the system {A(R)m; ϕm,lm} where we take A(R)m = A[R] and
ϕm,lm: A[R] −→ A[R] given by x �−→ slxs

∗
l .
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Furthermore, we set D(R) = lim−→{D(R)m; ϕm,lm} with D(R)m = D[R] and

ϕm,lm just defined as above. D(R) can obviously be identified with a C*-subalgebra
of A(R).

Observation 4.3. We have D(R) ∼= C0(R).

Proof. The maps ϕm,lm, conjugated by α (see Observation 4.1), give maps

ψm,lm := α ◦ ϕm,lm ◦ α−1: C(R̂) −→ C(R̂)

where ψm,lm(f)(x) = f(l−1x)plR̂(x). This follows from the calculation

ψm,lm ◦ α(unemu−n)(x)

= ψm,lm(pmR̂+n)(x)

= pmR̂+n(l
−1x)plR̂(x)

= plmR̂+ln(x)

= α(ulnelmu−ln)(x)

= α ◦ ϕm,lm(unemu−n)(x).

This yields an isomorphism D(R) −→ lim−→
{

C(R̂); ψm,lm

}

.

Additionally, we consider homomorphisms

κk: C(R̂) −→ C0(R); f �−→ f ◦ ι−1
k · pιk(R̂).

They satisfy κlm ◦ ϕm,lm = κm because

κlm ◦ ϕm,lm(f)(x)

= ϕm,lm(f)(ι−1
lm(x))pιlm(R̂)(x)

= f(l−1ι−1
lm(x)) · pιlm(lR̂)(x)

= f(ι−1
m (x))pιm(x)

= κm(f)(x).

Hence these homomorphisms give rise to a homomorphism

lim−→
{

C(R̂); ψm,lm

}

−→ C0(R)

which is injective as each κk is injective because of κk(f) ◦ ιk = f and surjective

because of R =
⋃

m∈R× ιm(R̂) and Stone-Weierstrass. �

Finally, we come to the already mentioned picture of A(R).

Theorem 4.4. A(R) is isomorphic to C0(R) � PQ(R) where the ax + b-group
acts on R via affine transformations.

Proof. The first step is the observation that we have a canonical isomorphism

pR̂(C0(R)� PQ(R))pR̂
∼= A[R]

denoted by β:
To this end, consider un := V( 1 n

0 1 )
pR̂ and sm := V(m 0

0 1 )
pR̂. Here, V( 1 n

0 1 )
and V(m 0

0 1 )
denote the unitaries in M(C0(R)�PQ(R)) implementing the action of

PQ(R). u
n and sm are unitaries and isometries in pR̂(C0(R)� PQ(R))pR̂ satisfying

the characteristic relations of A[R]. Furthermore, unsms∗mu−n = pmR̂+n so that
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C∗({unsms∗mu−n: m, m′ ∈ R×; n ∈ R}) is a closed C*-subalgebra of C(R̂) sepa-

rating points and thus equal to C(R̂) = pR̂C0(R) by Stone-Weierstrass. Hence it
follows that pR̂(C0(R) � PQ(R))pR̂ is the C*-algebra generated by the un and sm
and thus isomorphic to A[R] by Remark 3.7.

Secondly, define

ϕ̃m,lm: pR̂(C0(R)� PQ(R))pR̂ −→ pR̂(C0(R)� PQ(R))pR̂

to be conjugation by V( l 0
0 1 )

. It is clear that we have β ◦ϕm,lm ◦β−1 = ϕ̃m,lm, thus

an isomorphism

A(R) −→ lim−→
{

pR̂(C0(R)� PQ(R))pR̂; ϕ̃m,lm

}

.

Moreover, set

λk: pR̂(C0(R)� PQ(R))pR̂ −→ C0(R)� PQ(R)

z �−→ V ∗
( k 0
0 1 )

zV( k 0
0 1 )

.

As

λlm ◦ ϕ̃m,lm(z)

= V ∗
( lm 0

0 1 )
V( l 0

0 1 )
zV ∗

( l 0
0 1 )

V( lm 0
0 1 )

= V ∗
(m 0
0 1 )

zV(m 0
0 1 )

= λm(z),

this gives a homomorphism

λ: lim−→
{

pR̂(C0(R)� PQ(R))pR̂; ϕ̃m,lm

}

−→ C0(R)� PQ(R)

which is injective as this is the case for each λm, and it is surjective as λm(pR̂) =
pιm(R̂) is an approximate unit for C0(R)� PQ(R). �

Remark 4.5. Combining this result with the preceding remark, we see that

Ar[R] ∼= A[R] ∼= pR̂(C0(R)� PQ(R))pR̂

Therefore, pR̂(C0(R) � PQ(R))pR̂ can be faithfully represented on �2(R) in a very
natural way.

Remark 4.6. We call A(R) the stabilization because A(R) ∼= K ⊗ A[R]. This
comes from the observation that A[R] is isomorphic to ML(A[R]) with regard to the
L pairwise orthogonal projections {unelu

−n : n ∈ R}, where L = #[R/(l)]. And
under this identification, conjugation with sl (which is ϕm,lm) corresponds to the
inclusion of A[R] into the upper left corner of ML(A[R]).

In other words, using the theory of crossed products by semigroups, we can
also say that A[R] ∼= C(R̂) � PR and that the dynamical system corresponding to
A(R) is just the associated minimal dilation system (see [Lac]).

Remark 4.7. Having the classification programme for C*-algebras in mind, one
should note that each of the algebras A[R] is nuclear, as PQ(R)

∼= Q(R)�Q(R)× is
always amenable because it is solvable.
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5. Links to Algebraic Number Theory

The typical examples we have in mind are the ring of integers in an algebraic
number field and polynomial rings with coefficients in a finite field. These are
exactly the objects of interest in algebraic number theory.

Let R = o be such a ring (the conditions from the beginning are satisfied).
First of all, we have in this case ô ∼=

∏

oν , where the product is taken over all the
finite places ν over K = Q(o). If o has positive characteristic (i.e. o sits in a finite
extension of Fp(T )), we call the place corresponding to T−1 infinite. Here, ô is to
be understood in the sense of the previous section, and oν is the completion of o
with respect to ν.

Furthermore, we have R ∼= Af , which is the finite adèle ring.
These identifications can be proven as follows:

ô = lim
←− m {o/(m)}

∼= lim
←− ℘i,ni

{o/℘n1
1 · · ·℘nl

l }

(o is a Dedekind ring, thus unique factorization of ideals holds)

∼= lim
←− n℘

⎧

⎨

⎩

∏

℘∈Spec(o)\{0}
o/℘n℘

⎫

⎬

⎭

(Chinese remainder theorem)

∼=
∏

℘∈Spec(o)\{(0)}
lim
←− n {o/℘n}

∼=
∏

ν finite

lim
←− n {oν/Pn

ν }

(there is a bijection between nontrivial prime ideals and finite places)

∼=
∏

ν finite

oν

(o is a Dedekind ring)

where Pν is the subset of oν with valuation strictly smaller than 1.
The second identification comes from

R ∼= lim−→ ô ∼= lim−→
{
∏

oν

}

∼= (o×)−1
∏

oν
∼= Af .

The details can be found in [Wei] and [Neu].
So all in all, we have purely infinite C*-algebras A[o] ∼= C(ô) � Po with stabi-

lization A(o) ∼= C0(Af )� PK .

6. Relationship to Bost-Connes Systems

As mentioned at the beginning, our investigations are partly motivated by the
work of Bost and Connes, who studied a C*-dynamical system for Q which had
several interesting properties: e.g. it revealed connections to explicit class field
theory over the rational numbers (see [BoCo]). As a next step, Connes, Marcolli
and Ramachandran succeeded in constructing a C*-dynamical system for imaginary
quadratic number fields and establishing analogous connections to explicit class field
theory for these (see [CMR]).
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In the meantime, there have been several attempts to construct systems with
similar properties for arbitrary number fields (see [CoMa] for an overview).

Most recently, Laca, Larsen and Neshveyev studied C*-dynamical systems for
arbitrary number fields generalizing the systems mentioned above for the case of
Q and imaginary quadratic fields. These dynamical systems have already been
considered in [HaPa], but Laca, Larsen and Neshveyev managed to classify the
corresponding KMS states, which was a key ingredient in setting up connections
to class field theory. Still, these results have not led to more insights concerning
explicit class field theory.

Our aim in the following section is to embed these generalized Bost-Connes al-
gebras into A, at least for a certain class of number fields. Viewing these generalized
Bost-Connes systems as subalgebras of our C*-algebra A, it will be possible to de-
duce for them a description as universal C*-algebras with generators and relations,
as Bost and Connes originally did in the case of Q.

First of all, let us very briefly explain the construction in [LLN], to set up the
notation:

Fix an algebraic number field K and let o be its ring of integers.
Denote the ring of finite adèles by Af =

∏′

ν finite

Kν , where we take the restricted

direct product with respect to the ring inclusions oν ⊆ Kν ; let K∞ =
∏

ν infinite

Kν

be the product of the completions Kν over the set of infinite places; then the ring
of adèles can be written as A = K∞ × Af .

Furthermore, the group of idèles is A
∗ = K×

∞ ×
∏′

ν finite

K×
ν ; this time the re-

stricted product is taken with respect to o∗ν ⊆ K×
ν . Let us write K∞,+ for the

component of the identity in K∞.
Moreover, take ô =

∏

ν finite

oν and ô∗ =
∏

ν finite

o∗ν .

We will frequently think of subsets of Af as embedded in A, just by filling in
zeros at the infinite places (or identities in the multiplicative case). Moreover, the
algebraic number field (or subsets in K) can always be thought of as subsets of the
adèles (or of the idèles in the multiplicative case) using the diagonal embedding.

Now, for each number field K, Laca, Larsen and Neshveyev construct a topo-
logical space (which was originally considered in [CMR])

X = A
∗/K×K×

∞,+ ×ô∗ Af

which is a quotient of A∗/K×K×
∞,+ × Af with respect to the equivalence relation

((xν), (yν)) ∼ ((x′
ν), (y

′
ν))

⇔ there exists (rν) ∈ ô
∗ with ((rν)(xν), (rν)

−1(yν)) = ((x′
ν), (y

′
ν)).

For brevity, let us write U for K×K×
∞,+. Y := A

∗/U ×ô∗ ô is a clopen subset of X.
Furthermore, they consider an action of A∗

f/ô
∗ on X given by (zν)((xν), (yν)) =

((zν)
−1(xν), (zν)(yν)). Finally, their C*-algebra is given by

A = 1Y
(

C0(X)�A
∗
f/ô

∗) 1Y .

At this point, we should note that - presented in this way - this is a purely
adelic-idelic way of describing the system, but that these objects have their natural
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meaning in number theory via certain abstract identifications (mostly provided by
class field theory), for instance:

A
∗/U ∼= Gal(Kab/K), where Gal(Kab/K) is the Galois group of the maximal

abelian field extension of K, or
A

∗
f/ô

∗ ∼= JK , where JK is the group of fractional ideals (see [Wei], IV 3).

6.1. Comparison of the Adelic-Idelic Constructions. We start the com-
parison on a purely topological level considering the adelic-idelic constructions. The
first aim will be to establish a relationship between A

∗/U ×ô∗ Af and Af .
There is a canonical map

ψ∗ : Af −→ A
∗/U ×ô∗ Af

(yν) �−→ ((1)•, (yν))
•

which we would like to investigate in detail. By (·)•, we mean the corresponding
equivalence classes.

From the definitions, we immediately get

ψ∗((yν)) = ψ∗((ỹν))

⇔ ((1)•, (yν)) ∼ ((1)•, (ỹν))

⇔ there exists (zν) ∈ ô∗ such that ((1)•, (yν)) = ((zν)
•, (zν)

−1(ỹν))

⇔ there exists (zν) ∈ ô
∗ ∩ U with (yν) = (zν)

−1(ỹν).

Let us calculate ô∗ ∩ U , as this will be needed later on:

Lemma 6.1.

ô
∗ ∩ U = o∗ ∩

⋂

ν real

ν−1(R>0)

Proof. The inclusion “⊆” holds because we have

o
∗ ⊆ ô

∗ and o
∗ ∩
⋂

ν real

ν−1(R>0) ⊆ K×K×
∞,+.

To get the other inclusion, observe

(zν) ∈ ô∗ ∩ U

⇔ (zν) ∈ ô
∗ and there exists a sequence (z(n)ν ) in K×K×

∞,+ with

(zν) = lim
n→∞

(z(n)ν ) in A
∗.

By the definition of the topology on A
∗, there is a finite set of places P such

that

(zν) ∈
∏

ν∈P

K×
ν ×
∏

ν /∈P

o
∗
ν

⇒ there is Ñ ∈ N with (z(n)ν ) ∈
∏

ν∈P

K×
ν ×
∏

ν /∈P

o∗ν for all n ≥ Ñ .

As lim
n→∞

(z
(n)
ν ) = (zν), we conclude that lim

n→∞
z
(n)
ν = zν for all places ν in K×

ν .

But, as z
(n)
ν ∈ o∗ν for almost all finite places if n ≥ Ñ and because o∗ν is open in

K×
ν , there must be N ∈ N (N ≥ Ñ) such that:

z(n)ν ∈ o∗ν for all finite places ν and for all n ≥ N.
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Also, as (z
(n)
ν ) lies in K×K×

∞,+, there exists, for each n, z(n) in K× such that

z
(n)
ν = z(n) at every finite place (K is diagonally embedded). Thus, we have z(n) =

z
(n)
ν ∈ K× ∩ o∗ν for all finite places and for all n ≥ N , which means that z(n) ∈
K× ∩

⋂

ν finite

o∗ν = o∗ for all n ≥ N . Hence it follows that

(z(n)ν ) = (z(n)) ∈ o∗ ⊆ ô∗ for all n ≥ N.

Moreover, as (zν) lies in ô∗, we must have zν = 1 for all infinite places, so that

z
(n)
ν ∈ R>0 for all real places and for sufficiently large n. Using the observation

above (z(n) = z
(n)
ν ), we conclude that z(n) ∈ ν−1(R>0) for all real places and for n

large enough, and hence

(zν) ∈ o∗ ∩
⋂

ν real

ν−1(R>0)

as claimed. �

Let us now consider the quotient space Af/ ∼ô∗∩U , where

(yν) ∼ô∗∩U (ỹν) if and only if there exists (zν) ∈ ô
∗ ∩ U such that (yν) = (zν)(ỹν).

Using the universal property of this quotient, we get a continuous and injective
map

ϕ∗ : Af/ ∼ô∗∩U−→ A
∗/U ×ô∗ Af

with ψ∗ = ϕ∗ ◦ p, where p is the projection map Af → Af/ ∼ô∗∩U .

Lemma 6.2. ϕ∗ is closed.

Proof. It suffices to show that ψ∗ is closed, because of the following: Take
A ⊆ Af/ ∼ô∗∩U to be an arbitrary closed set. As p is continuous, p−1(A) is closed
in Af . Assuming that ψ∗ is closed, ϕ∗(A) = ϕ∗pp−1(A) = ψ∗p−1(A) is closed in
A

∗/ ∼ô∗∩U .
Now take A ⊆ Af to be an arbitrary closed set, and let

π : A∗/U × Af → A
∗/U ×ô∗ Af

be the canonical projection. We have to show that ψ∗(A) is closed, which is equiv-
alent to closedness of π−1ψ∗(A). We have

π−1ψ∗(A)

= {((aν)•, (bν)) ∈ A
∗ × Af : π((aν)

•, (bν)) ∈ ψ∗(A)}
= {((aν)•, (bν)) ∈ A

∗ × Af : ∃ (yν) ∈ A : ((aν)
•, (bν)) ∼ ((1)•, (yν))}

=
{

((aν)
•, (bν)) : ∃ (yν) ∈ A, (zν) ∈ ô

∗ : (aν)
• = (zν)

• ∧ (bν) = (zν)
−1(yν)

}

=
{

((zν)
•, (zν)

−1(yν)) ∈ A
∗ × Af : (zν) ∈ ô

∗, (yν) ∈ A
}

Now suppose we have a sequence ((z
(n)
ν )•, (z

(n)
ν )−1(y

(n)
ν )) in π−1ϕ∗(A) converging

to ((aν)
•, (bν)) ∈ A

∗/U × Af . Then we claim: ((aν)
•, (bν)) ∈ π−1ψ∗(A).

Indeed: ô∗ is compact, therefore there is a convergent subsequence (z
(nk)
ν )

with limit (zν) ∈ ô∗. Thus, (zν)
• = lim

k→∞
(z

(nk)
ν )• = lim

n→∞
(z

(n)
ν )• = (aν)

• and

(y
(nk)
ν ) = (z

(nk)
ν )(z

(nk)
ν )−1(y

(nk)
ν ) −→

k
(zν)(bν). Hence, (y

(nk)
ν ) is a sequence in A

converging in Af , therefore (zν)(bν) = limk→∞(y
(nk)
ν ) =: (yν) lies in A. Thus we
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have (bν) = (zν)
−1(yν) and hence ((aν)

•, (bν)) = ((zν)
•, (zν)

−1(yν)) ∈ π−1ψ∗(A)
which proves our claim and therefore the Lemma. �

It remains to investigate under which conditions ϕ∗ is surjective.

Lemma 6.3. ϕ∗ is surjective if hK = 1 and there is at most one real (infinite)
place of K.

Proof. First of all, ϕ∗ is surjective if and only if ψ∗ is so. Now, ψ∗ is surjective
if for any (aν)

• ∈ A
∗/U , (bν) ∈ Af there are (yν) ∈ Af , (zν) ∈ ô∗ such that (aν)

• =
(zν)

• and (bν) = (zν)
−1(yν) (this is equivalent to ((aν)

•, (bν)) ∼ ((1)•, (yν))). As
the first condition is the crucial one (once it holds, the second one can be enforced),
ψ∗ is surjective if (and only if) A∗ = ô∗ · U .

Assuming that the number of real places is not bigger than one, we have
K×K×

∞ô∗ = K×K×
∞,+ô

∗ because given (a)(bν)(cν) ∈ K×K×
∞ô∗ with bν < 0 at

the real place, we have (a)(bν)(cν) = (−a)(−bν)(−cν) ∈ K×K×
∞,+ô

∗.

Now, hK = 1 implies 1 = #[JK/PK ] = #[I(K)/P (K)] = #[A∗/K×K×
∞ô∗]

(see [Wei], V 3). Hence it follows that we have A
∗ = K×K×

∞ô∗ = K×K×
∞,+ô

∗.
This implies that ψ∗ is surjective. �

Summarizing our observations to this point, we get

Proposition 6.4. If hK = 1 and there is at most one real place, then the map

ϕ∗ : Af/ ∼ô∗∩U −→ A
∗/U ×ô∗ Af

(yν)
• �−→ ((1)•, (yν))

•

is a homoemorphism.

Remark 6.5. One should note that Lemma 6.3 is not optimal in the sense that
ϕ∗ can be surjective even if K has more than one real place. The crucial criterion
is whether o∗ is embedded in K×

∞ in such a way that every possible combination
of signs (in the real places) can be arranged (compare [LaFr], Proposition 4 for a
similar problem).

6.2. Comparison of the C*-algebras. As a next step, let us study the
corresponding C*-algebras and the crossed products in the situation of the last
proposition (hK = 1, at most one real place):

Proposition 6.6. ϕ∗ induces *-isomorphisms

C0(X)�A
∗
f/ô

∗ �−→ C0(Af/ ∼ô∗∩U )�K×/o∗

and

A �−→ 1ô/∼ô∗∩U

(

C0(Af/ ∼ô∗∩U )�K×/o∗
)

1ô/∼ô∗∩U

if there are no real places of K.
If there is a real place, we get *-isomorphisms

C0(X)�A
∗
f/ô

∗ �−→ C0(Af/ ∼ô∗∩U )�K×
>0/o

∗
>0

and

A �−→ 1ô/∼ô∗∩U

(

C0(Af/ ∼ô∗∩U )�K×
>0/o

∗
>0

)

1ô/∼ô∗∩U
.

Here we have fixed a real embedding corresponding to the real place and we
think of K as a subset of R via this embedding.
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Proof. As a first step, ϕ∗ induces a *-isomorphism

C0(X)
�−→ C0(Af/ ∼ô∗∩U )

(recall X = A
∗/U ×ô∗ Af ).

Now, let us assume that K does not have any real places. It remains to prove
that the actions of A∗

f/ô
∗ and K×/o∗ are compatible. But this follows from the

fact that we have an isomorphism (because of hK = 1)

K×/o∗
�−→ A

∗
f/ô

∗

λ• �−→ (λ)•

and the following computation:

(λ)• · ϕ∗((yν))

= (λ)• · ((1)•, (yν))•

= ((λ−1)•, (λ)(yν))
•

= ((1)•, (λ)(yν))
•

= ϕ∗(λ• · (yν)•).

This gives us the first isomorphism, which we denote by ϕ.
To get the second one, we have to show ϕ(1Y ) = 1ô/∼ô∗∩U

, which is equivalent
to ϕ∗(ô/ ∼ô∗∩U ) = Y . To see this, let us prove Y ⊆ ϕ∗(ô/ ∼ô∗∩U ), since the other
inclusion is certainly valid. Take any ((aν)

•, (bν))
• ∈ Y , as ϕ∗ is surjective we can

find (yν) ∈ Af such that ((aν)
•, (bν))

• = ((1)•, (yν))
•. Therefore, we can also find

(zν) in ô∗ such that ((zν)
•, (zν)

−1(yν)) = ((aν)
•, (bν)), and thus, (yν) = (zν)(bν) ∈

ô. This means that ((aν)
•, (bν))

• ∈ ϕ∗(ô/ ∼ô∗∩U ).
This completes the proof for the case of no real places. If K has one real place,

the proof will be exactly the same. But one should note that in the computation
above, one really needs the restriction to K×

>0/o
∗
>0 because for λ ∈ K, (λ)• ∈ A

∗
f

lies in U if and only if λ is positive. �

To get the relationship with our algebras A, we remark that there are canonical
embeddings

C0(Af/ ∼ô∗∩U )�K×/o∗ ↪→ C0(Af )�K× ↪→ C0(Af )� PK
∼= A(o)

if K does not have real places and

C0(Af/ ∼ô∗∩U )�K×
>0/o

∗
>0 ↪→ C0(Af )�K× ↪→ C0(Af )� PK

∼= A(o)

for the case of one real place (see Theorem 4.4 for the description of A(o)).
Restricting these embeddings to the generalized Bost-Connes algebra A (using

the *-isomorphisms of Proposition 6.6), we get embeddings A ↪→ A[o]. At this
point, we should note that there is no distinction between reduced or full crossed
products as all the groups are amenable. Therefore, we really get embeddings.

Remark 6.7. In the case of purely imaginary number fields of class number
one, the observations made in Remark 2.2.(iii) of [LLN] are related to our results
(compare also the paper [LaFr]).
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6.3. Representation of the Bost-Connes Algebras. Regarding the gen-
eralized Bost-Connes systems as subalgebras of our algebras as above, it is possible
to get an alternative description of A as a universal C*-algebra with generators and
relations:

Theorem 6.8. Let hK = 1 and assume that K has no real places. In this case,
A is the universal C*-algebra generated by nontrivial projections

f(m,n) for every m ∈ o×/ ∼o∗ , n ∈ (o/(m)) / ∼o∗

and isometries

sp for each p ∈ o×/ ∼o∗

satisfying the relations

• spsq = spq for all p, q ∈ o×/ ∼o∗

• f(1, 0) = 1
• spf(m,n)s∗p = f(mp, np) for all p,m ∈ o×/o∗, n ∈ (o/(m)) / ∼o∗

•
∑

j f(mp, j) = f(p, k) for all m, p ∈ o×/o∗, k ∈ (o/(p)) / ∼o∗

The sum in the last relation is taken over π−1
mp,m(k), where

πmp,m : (o/(mp)) / ∼o∗−→ (o/(p)) / ∼o∗

is the canonical projection.
If there is one real place, one has to substitute o× by o

×
>0 and o∗ by o∗>0.

Before we start with the proof, it should be noted that one can think of the
projection f(m,n) as

∑

ulemu−l, where the sum is taken over all classes l + (m)
in o/(m) which are in the same equivalence class as n with respect to ∼o∗ . This is
exactly the way how these elements are embedded into A[o]. Moreover, using the
characteristic relations in A[o], the relations above can be checked in a straightfor-
ward manner.

Proof. Let us prove the theorem in the case of no real places, the other case
can be proven in an analogous way.

The first step is to establish a *-isomorphism of the commutative C*-algebras
C(ô/ ∼ô∗∩U ) and C∗({f(m,n) : m ∈ o×/ ∼o∗ , n ∈ (o/(m)) / ∼o∗}).

We already had the description ô = lim
←−

{o/(m) ; φlm,m}. It will be convenient

to describe ô∗ ∩ U = o∗ in a similar way using projective limits.
We claim: ô∗ ∩ U ∼= lim

←−
{(o∗ + (m))/(m) ; φlm,m} where the φlm,m are the

canonical projections (o∗ + (lm))/(lm) → (o∗ + (m))/(m) as above.
To prove the claim, consider the following continuous embeddings

o∗ ↪→ lim
←−

{(o∗ + (m))/(m) ; φlm,m} ↪→ ô.

Their composition is exactly the diagonal embedding of o∗ into ô.
Moreover, lim

←−
{(o∗ + (m))/(m) ; φlm,m} (identified with its image in ô) is com-

pact and contains o∗. As it follows from the construction of this projective limit that
o∗ (embedded in the projective limit) is dense, we have proven the claim (compare
Lemma 6.1).
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Furthermore, we have

ô/ ∼ô∗∩U

∼= lim
←−

{o/(m) ; φlm,m} / ∼lim
←−

{(o∗+(m))/(m) ; φlm,m}

∼= lim
←−

{(o/(m)) ∼o∗ ; φlm,m} .

The first identification has already been proven; for the second one, consider the
following maps:

lim
←−

{o/(m)} / ∼lim
←−

{(o∗+(m))/(m)} � lim
←−

{(o/(m)) / ∼o∗}

(am)• �→ (a•m)

(bm)• ←� (b•m)

Existence and continuity of the upper map is given by the universal properties
of projective limits and quotient spaces. The lower map is well-defined for the
following reason:

Let (b•m) = (c•m), we have to show (bm)• = (cm)•.
For each m ∈ o×, there is an rm ∈ o∗ with the property that bm + (m) =

rmcm + (m). But the net ((rm))m has a convergent subnet with limit (sm) in
lim
←−

{(o∗ + (m))/(m) ; φlm,m} as this set is compact. And the choice of the rm

ensures that we have (bm) = (sm)(cm); thus (bm) ∼lim
←−

{(o∗+(m))/(m) ; φlm,m} (cm).

Therefore, the lower map exists as well.
Now, the upper map is a bijective continuous map, and the range is Hausdorff,

whereas the domain is quasi-compact. Hence it follows that these maps are mutually
inverse homoemorphisms.

After this step, we can now use Laca’s result on crossed products by semigroups
(see [Lac]) to conclude the proof:

The universal C*-algebra with the generators and relations as listed above is
exactly given by the crossed product

C∗(
{

f(m,n) : m ∈ o×/ ∼o∗ , n ∈ (o/(m)) / ∼o∗
}

)�
(

o×/ ∼o∗
)

where we take the endomorphisms given by conjugation with sp. This is valid as
both C*-algebras have the same universal properties.

Furthermore, the identification above shows that

C∗(
{

f(m,n) : m ∈ o
×/ ∼o∗ , n ∈ (o/(m)) / ∼o∗

}

)�
(

o
×/ ∼o∗

)

∼= C(ô/ ∼ô∗∩U )�
(

o×/ ∼o∗
)

and the last C*-algebra is isomorphic to

1ô/∼ô∗∩U

(

C0(Af/ ∼ô∗∩U )�K×/o∗
)

1ô/∼ô∗∩U
.

This follows from the work of Laca, since in Laca’s notation, C0(Af/ ∼ô∗∩U ) to-
gether with the action of K×/o∗ is the minimal automorphism dilation correspond-
ing to C(ô/ ∼ô∗∩U )� (o×/ ∼o∗) (see [Lac]).

Finally, Proposition 6.6 implies

1ô/∼ô∗∩U

(

C0(Af/ ∼ô∗∩U )�K×/o∗
)

1ô/∼ô∗∩U

∼= 1Y
(

C0(X)�A
∗
f/ô

∗) 1Y = A.

�
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Remark 6.9. Again, using Ar[o] ∼= A[o], this result gives us a faithful (and
again rather natural) representation of A on �2(o).

As a last point, we explain how to use Theorem 6.8 to construct the extremal
KMSβ states of the C*-dynamical system (A, σt), where σt(sp) = N(p)itsp and N
is the norm of the number field K. σt exists because of the universal property of
A (see Theorem 6.8). (A, σt) is exactly the system considered in [LLN].

We essentially follow the construction in [BoCo], THEOREM 25 (a), in the
sense that for each element of the Galois group Gal(Kab/K), we can construct
a representation of A using its universal property which yields the corresponding
KMSβ state.

First of all, we can associate to each α ∈ Gal(Kab/K) the *-representation

πα : A −→ L
(

�2(o×/ ∼o∗)
)

by

πα(sp)ξr = ξpr

πα(f(m,n))ξr =

{

ξr if α(r + (m)) = n ∈ (o/(m)) / ∼o∗

0 otherwise

Here, α is the image of α under the composition

Gal(Kab/K) −→ ô
∗/o∗ −→ (o/(m))

∗
/ ∼o∗ .

The existence of πα follows from the universal property of A described in The-
orem 6.8.

Now, let us define H(ξr) = log(N(r))ξr. With this (unbounded) operator we
can construct the following KMSβ state

ϕβ,α(x) = ζ(β)−1tr(πα(x)e
−βH)

where ζ is the zeta-function of the number field K and 1 < β < ∞.
This observation gives us candidates for the extremal KMSβ states, and this

construction follows an alternative, more operator-theoretic route compared to the
rather measure-theoretic approach of [LLN]. But it is another question whether
these ϕβ,α are precisely all the extremal KMSβ states of this C*-dynamical system
for 1 < β < ∞. This is answered in the affirmative in [LLN], Theorem 2.1.(iii).
The connection is built by identifying the semigroup of integral ideals, J+

K , with
o×/ ∼o∗ using our assumption on K that the class number is 1.
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Abstract. We discuss the noncommutative generalizations of polynomial al-
gebras which after appropriate completions can be used as coordinate algebras
in various noncommutative settings (noncommutative differential geometry,
noncommutative algebraic geometry, etc.). These algebras have finite presen-
tations and are completely characterized and classified by their (noncommu-
tative) volume forms.
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Introduction

The universal skeletons for coordinate algebras in classical geometry (differen-
tial geometry, algebraic geometry, etc.) are polynomial algebras. The appropriate
function algebras are obtained by completions with respect to the adapted topolo-
gies and either by a gluing process or by taking quotient algebras.

Our aim here is to discuss the noncommutative generalizations of polynomial
algebras which can be used similarly in various noncommutative settings: noncom-
mutative differential geometry [13], [14], [15], noncommutative algebraic geometry,
etc. as well as in applications in physics.

At the very beginning, one has to face the question of what class of algebras
we should consider as generalizations of the algebras of polynomial functions on
finite-dimensional vector spaces. It seems clear that one must stay within the class
of the N-graded algebras which are connected, generated in degree 1 with finite pre-
sentations. There is a minimal choice which is the class of quadratic algebras which
are Koszul (see below) of finite global dimension, which have polynomial growth
and satisfy a version of Poincaré duality refered to as the Gorenstein property in
[1]. A bigger class is the class of regular algebras in the sense of [1], which shall be
referred to as the class of AS-regular algebras in the following. We shall consider
here a bigger class in that we shall drop the condition of polynomial growth in-
cluded in the AS-regularity condition. We shall refer to this bigger class of algebras
as regular algebras. Although polynomial growth is a very natural condition for
noncommutative coordinate algebras (and from the point of view of deformation
theory), it turns out that for our analysis we do not need it and that by imposing
polynomial growth one eliminates algebras which in spite of the fact that they do
not have interpretation of (noncommutative) coordinate algebras are very inter-
esting and are furthermore relevant for physics. Of course, at any stage one can
restrict attention to the subclass of algebras with polynomial growth (or which are
quadratic, etc.). For global dimensions D = 2 and D = 3, the regular algebras
are N -homogeneous and Koszul. We shall recall what this Koszul property means.
This is a very desirable property that one can formulate only for N -homogeneous
algebras for the moment (i.e. algebras with relations of degree N). This is why, for
global dimensions D ≥ 4, we shall impose N -homogeneity and Koszulity.
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In the following we shall review various concepts and results. We shall in par-
ticular give a survey of the results of [22], [23] in which we shall insist on the
conceptual points and omit technical proofs. We shall illustrate the main points
by a lot of examples. A central result is that the algebras under consideration
are completely specified by multilinear forms on finite-dimensional vector spaces.
Given such an algebra, the corresponding multilinear form, which is unique up to
a nonvanishing scale factor, plays the role of the (noncommutative) volume form.
Furthermore, isomorphic algebras correspond to multilinear forms which are in the
same orbit of the corresponding linear group (GL(g) for g generators). The deter-
mination of the moduli space of these algebras is of course of mathematical interest
in itself. Concerning physics, the classification of these algebras can become of
great importance since in a noncommutative geometrical approach to the quantum
theory of space and gravitation one should expect the occurrence at some approxi-
mation of a superposition of noncommutative geometries.

It is worth noticing that the results of [23] have been recently generalized to
the quiver case in [9]. The correspondence between [23] and [9] should read : mul-
tilinear forms or volumes ↔ superpotentials.

Finally one should point out that this article is not only a survey but that it
also contains new results and concepts.

Let us give some indications on the notation. Throughout the paper K denotes
a field, all vector spaces and algebras are over K, the dual of a vector space E is
denoted by E∗ and the symbol ⊗ denotes the tensor product over K. Without other
specifications, an algebra will always be an associative unital algebra. A graded
algebra will be a N-graded algebra A = ⊕n∈NAn. Such a graded algebra is said to
be connected whenever A0 = K1l. Given an (r, s)-matrix A, we denote by At its
transposed (s, r)-matrix. We use the Einstein summation convention of repeated
up down indices in the formulas.

1. Regular algebras

The aim of this section is to make explicit the general class of algebras that we
wish to investigate and to set up some notations.

1.1. Graded algebras. The algebras that we shall consider will be connected
N-graded algebras which are finitely generated in degree 1 and finitely presented
with homogeneous relations of degrees ≥ 2. These algebras are the objects of the
category GrAlg, the morphisms of this category being the homogeneous algebra
homomorphisms of degree 0.

An algebra A ∈ GrAlg is of the form A = A(E,R) = T (E)/[R] where E = A1

is finite-dimensional, R = ⊕n≥2Rn is a finite-dimensional graded subspace of T (E)
such that (independence)

Rn ∩ [⊕m<nRm] = {0}

for any n (Rn = {0} for n < 2) and where [F ] denotes for any subset F ⊂ T (E)
the two-sided ideal generated by F . The graded vector space R is the space of
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independent relations of A.

By choosing a basis (xλ)λ∈{1,...,g} of E and a homogeneous basis (fα)α∈{1,...,r}
of R one can also write

A = K〈x1, . . . , xg〉/[f1, . . . , fr]
where fα ∈ E⊗Nα

, Nα ≥ 2. Notice that r(= dim R) is well defined (i.e. it only
depends on A).

If R is concentrated in degree N (≥ 2) i.e. if R ⊂ E⊗N

then A will be said to be
an N -homogeneous algebra. The N -homogeneous algebras form a full subcategory
HNAlg of GrAlg, [3], [6].

1.2. Dimension. Let A ∈ GrAlg so A = K〈x1, . . . , xg〉/[f1, . . . , fr] and one

can define Mαλ ∈ E⊗Nα−1

by setting fα = Mαλ ⊗ xλ ∈ E⊗Nα
. Then the presenta-

tion of A by generators and relations is equivalent to the exactness of the sequence
of left A-modules [1]

(1.1) Ar M→ Ag x→ A ε→ K → 0

where M means right multiplication (in A) by the matrix (Mαλ), x means right
multiplication by the column (xλ) and ε is the projection onto A0 = K. In more
intrinsic notation the exact sequence (1.1) reads for A = A(E,R)

(1.2) A⊗R → A⊗ E
m→ A ε→ K → 0

where m is the multiplication of A and the first arrow is as in (1.1). The exact se-
quence (1.2) corresponding to the presentation of A extends as a minimal projective
resolution

· · · → En → En−1 → E0 → K → 0

of the left A-module K which is in fact a free resolution [11]

(1.3) · · · → A⊗ En → A⊗ En−1 → · · · → A → K → 0

and it follows from the very definition of ExtA(K,K) that one can make the iden-
tifications

(1.4) E∗
n = ExtnA(K,K)

which read R∗ = Ext2A(K,K) and E∗ = Ext1A(K,K) for n = 2 and n = 1. The
Yoneda algebra ExtA(K,K) is the cohomology of a graded differential algebra, from
which it follows that it carries a canonical A∞-structure [29], [33]. It turns out
that one can reconstruct the graded algebra A from the A∞-algebra ExtA(K,K)
[30], [33]. Thus the A∞-algebra ExtA(K,K) is a natural dual of the graded algebra
A. In the case of an N -homogeneous algebra A, there is another natural dual of A
which is its Koszul dual A! [6] (see below). In the case of a Koszul algebra these
two notions are strongly connected and coincide in the quadratic case (N = 2), [7].

The length of the resolution (1.3) is the projective dimension of the left module
K. It is classical [11], [2] that the left global dimension of A (for A ∈ GrAlg)
coincides with the projective dimension of K as left module and that it also coin-
cides with the right global dimension (and with the projective dimension of K as
right module). Furthermore it has been shown recently [4] that this dimension also
coincides with the Hochschild dimension of A in homology as well as in cohomology.
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So for an algebra A ∈ GrAlg there is a unique definition of the dimension from
a homological point of view, which will be referred to as its global dimension in
the sequel. In the following, we shall only consider algebras in GrAlg with finite
global dimension.

It is worth noticing here that there is another dimension for A ∈ GrAlg, which
is the Gelfand-Kirillov dimension, but since in the following polynomial growth
plays no role (and therefore will not be assumed) we shall only consider the global
dimension for our general analysis.

1.3. Poincaré duality. We now assume that A = A(E,R) ∈ GrAlg is of
finite global dimension D. The (free) resolution (1.3) of K then reads

0 → A⊗ ED → · · · → A⊗ E1 → A → K → 0

with E1 = A1 = E.

By applying the functor HomA(•,A) to the chain complex

0 → A⊗ ED → · · · → A⊗ E → A → 0

of (free) left A-modules, one obtains a cochain complex E ′

0 → E ′
0 → E ′

1 → · · · → E ′
D → 0

of right A-modules. The cohomology of this complex is by definition ExtA(K,A)
that is, one has

(1.5) Hn(E ′) = ExtnA(K,A)

for any n ∈ N.

By definition A is said to be Gorenstein if one has ExtDA(K,A) = K and
ExtnA(K,A) = 0 for n �= D. This means that

0 → E ′
0 → · · · → E ′

D → K → 0

is a free resolution of K as right A-module. This resolution is then a minimal
projective resolution of the right A-module K, which implies the isomorphisms

E∗
n  ED−n

of vector spaces and therefore

(1.6) dim(En) = dim(ED−n)

for 0 ≤ n ≤ D.

Thus the Gorenstein property is a variant of the Poincaré duality property.

1.4. Regularity. Let A = A(E,R) be a graded algebra of GrAlg. A will be
said to be regular if it is of finite global dimension, gldim(A) = D < ∞, and is
Gorenstein. This definition of regularity is directly inspired from that of [1] which
will be referred to as AS-regularity, the only difference being that we have dropped
the condition of polynomial growth since we do not need it for the analysis in the
sequel and since it would eliminate very interesting examples.
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This is the class of algebras that we would like to analyse and we shall do it
for low global dimensions D = 2 and D = 3. For higher global dimension, we shall
restrict a little the class of algebras that we will consider. In order to understand
this let us recall the following result [7].

Proposition 1. Let A be a regular algebra of global dimension D.
(i) If D = 2 then A is quadratic and Koszul.
(ii) If D = 3 then A is N-homogeneous with N ≥ 2 and Koszul.

Thus, for D < 4, regularity implies N -homogeneity (with N = 2 for D = 2)
and Koszulity. We shall explain later what the Koszul property is. This is a very
desirable property that one can formulate for the moment only for homogeneous
algebras. This is why we shall restrict attention in the following to regular algebras
which are N -homogeneous (with N ≥ 2) and Koszul. In view of the above propo-
sition this is not a restriction for regular algebras of global dimension D = 2 and
D = 3; however one knows examples of regular algebras in global dimension 4 and
higher which are not homogeneous.

2. Global dimension D = 2

This section is devoted to the description of the regular algebras of global
dimension D = 2.

2.1. General results. Let us use the notation of the beginning of §1.2; so let
A = K〈x1, . . . , xg〉/[f1, . . . , fr] and consider the exact sequence (1.1) corresponding
to the presentation of A. The algebra A has global dimension D = 2 if and only if
(1.1) extends as an exact sequence

0 → Ar M→ Ag x→ A ε→ K → 0

i.e. as a free resolution of K of length D = 2.

Assume now that D = 2 and that A is Gorenstein. Then the Gorenstein
property implies that r = 1, that degree(M) = degree(x) = 1, so M = (Bρλx

ρ),
and that the matrix (Bλμ) ∈ Mg(K) is invertible. The above free resolution of K
then reads

(2.1) 0 → A xtB→ Ag x→ A ε→ K → 0

with obvious notations.

Conversely, let b be a nondegenerate bilinear form on K
g with matrix elements

Bλμ in the canonical basis and let A be the (quadratic) algebra generated by g
generators xλ with relation Bλμx

λxμ = 0; then A is Gorenstein of global dimension
D = 2. One has the following theorem [23].

Theorem 2. Let b be a nondegenerate bilinear form on K
g (g ≥ 2) with compo-

nents Bμν = b(eμ, eν) in the canonical basis (eλ) of K
g. Then the quadratic algebra

A generated by the elements xλ (λ ∈ {1, . . . , g}) with the relation Bμνx
μxν = 0

is regular of global dimension D = 2. Conversely, any regular algebra of global
dimension D = 2 is of the above kind for some g ≥ 2 and some nondegenerate
bilinear form b on K

g. Furthermore, two such algebras A and A′ are isomorphic if
and only if g = g′ and b′ = b ◦ L for some L ∈ GL(g,K).
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The last part of this theorem is almost obvious and gives a description of the
moduli space of the regular algebras of global dimension D = 2.

The right action b �→ b ◦ L of the linear group on bilinear forms is a particular
case of the right action of the linear group GL(V ) on multilinear forms on a vector
space V defined for an n-linear form w by

(2.2) w ◦ L(v1, . . . , vn) = w(Lv1, . . . , Lvn)

for any vk ∈ V , k ∈ {1, . . . , n}.

For reasons which will become clear, the algebra A (regular of global dimension
D = 2) associated to the nondegenerate bilinear form b on K

g as in Theorem 2 will
be denoted A(b, 2) in the following.

2.2. Poincaré series and polynomial growth. Let A be a regular algebra
of global dimension D = 2. Then the exact sequence (2.1) splits as

0 → An−2
xtB→ Ag

n−1
x→ An → 0

for n �= 0 with of course A0 = K and An = 0 for n < 0. It follows that the Poincaré
series PA(t) of A is given by

(2.3) PA(t) =
1

1− gt+ t2

in view of the Euler-Poincaré formula.

For g = 2 one has

PA(t) =

(

1

1− t

)2

so A then has polynomial growth (with GKdim=2) while for g > 2 one has

PA(t) =
1

(1− k−1t)(1− kt)

with

k =
1

2
(g +

√

g2 − 4) > 1

so A then has exponential growth.

Let us now discuss the case of the regular algebras of global dimension 2 with
g = 2 generators i.e. which have polynomial growth. In view of Theorem 2 these
algebras are classified by the GL(2,K)-orbits of nondegenerate bilinear forms on
K

2. Assuming that K is algebraically closed, it is easy to classify these GL(2,K)-
orbits of nondegenerate bilinear forms according to the rank rk of their symmetric
parts [24] :

(0) rk = 0 - there is only one orbit, which is the orbit of the bilinear form b = ε
with matrix of components

B =

(

0 −1
1 0

)
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which corresponds to the relations x1x2 − x2x1 = 0, so A is isomorphic to the
polynomial algebra K[x1, x2],

(1) rk = 1 - there is only one orbit, which is the orbit of the bilinear form b with
matrix of components

B =

(

0 −1
1 1

)

which corresponds to the relations x1x2 − x2x1 − (x2)2 = 0,

(2) rk = 2 - there is a 1-parameter family of orbits which are the orbits of the
bilinear forms b = εq with matrices of components

B =

(

0 −1
q 0

)

for q ∈ K with q2 − q �= 0 modulo q ∼ q−1, which corresponds to the relations
x1x2 − qx2x1 = 0.

The case (0) corresponds to the ordinary plane, the case (1) corresponds to
the Jordanian plane and the cases (2) correspond to the Manin planes. One thus
recovers the usual description of the algebras which are regular in the sense of [1]
i.e. AS-regular of global dimension 2, [28], [1].

2.3. Hecke symmetries. Any linear mapping

R : Kg ⊗K
g → K

g ⊗K
g

is characterized by its components Rμν
λρ defined by

R(eλ ⊗ eρ) = Rμν
λρeμ ⊗ eν

in the canonical basis (eλ) of K
g.

Let b be a nondegenerate bilinear form on K
g with components Bλρ = b(eλ, eρ)

and let Kμν be the components of a bilinear form on the dual vector space of Kg

in the dual basis of (eλ). Define the endomorphism R of Kg ⊗K
g by setting

(2.4) Rμν
λρ = δμλδ

ν
ρ +KμνBλρ

for μ, ν, λ, ρ ∈ {1, . . . , g}. Assume now that the above R defined by (2.4) satisfies
the Yang-Baxter equation

(2.5) (I ⊗R)(R⊗ I)(I ⊗R) = (R⊗ I)(I ⊗R)(R⊗ I)

on (Kg)⊗
3

where I denotes the identity mapping of Kg onto itself. One verifies that
(2.5) is equivalent to

(2.6)

{

KBKtBt + (1 + tr(KBt))1l = 0
KtBtKB + (1 + tr(KBt))1l = 0

where K and B are the matrices (Kμν) and (Bλρ) of Mg(K) and where the product
is the matrix product. Equations (2.6) then imply that one has

(2.7) (R− 1l)(R− (1 + tr(KBt))1l) = 0

which means that R is a Hecke symmetry in the terminology of [26].



NONCOMMUTATIVE COORDINATE ALGEBRAS 179

Given the nondegenerate bilinear for b, one can always solve (2.6). For instance

(2.8) K = qB−1

with q ∈ K such that

(2.9) q + q−1 + tr(B−1Bt) = 0

is a solution of (2.6). The corresponding Hecke symmetries will be called the stan-
dard Hecke symmetries associated with (the nondegenerate bilinear form) b while
more generally the Hecke symmetries associated with the solutions of (2.6) will be
said to be associated with b. There are generically two standard Hecke symmetries
corresponding to the two roots of Equation (2.9).

Notice that (2.6) implies that K �= 0 so if R is a Hecke symmetry associated to
b, the defining relation of A(b, 2) namely Bμνx

μxν = 0 is equivalent to the quadratic
relations

(2.10) xμxν = Rμν
λρx

λxρ

for μ, ν ∈ {1, . . . , g}.

In the case g = 2 with b = εq, i.e.

B =

(

0 −1
q 0

)

with q �= 0 which includes cases (0) and (2) of §2.2, one can take

K =

(

0 1
−p 0

)

, p ∈ K

as solution of (2.6). Equation (2.7) then reads

(R− 1l)(R+ pq) = 0

and for p = q, R is a standard Hecke symmetry for b = εq. In the classical situation
q = 1, i.e. for A = K[x1, x2], the two standard Hecke symmetries coincide and
reduce to the flip

x⊗ y �→ y ⊗ x

of K2 ⊗K
2.

2.4. Actions of quantum groups. There are quantum groups acting on the
noncommutative planes corresponding to the regular algebras of global dimension
D = 2. For the Manin planes corresponding to the A(εq, 2) these are the quantum
groups SLq(2), GLq(2) and GLp,q(2) [34], [35].

For the noncommutative plane corresponding to A(b, 2) where b is a nonde-
generate bilinear form on K

g, the generalization of SLq(2) is the quantum group
of the nondegenerate bilinear form b [24]. Let us recall the definition of this ob-
ject. Let H(b) be the unital associative algebra generated by the g2 elements uμ

ν

(μ, ν ∈ {1, . . . , g}) with the relations

(2.11) Bλρu
λ
μu

ρ
ν = Bμν1l

and

(2.12) Bμνuλ
μu

ρ
ν = Bλρ1l
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where the Bμν are the matrix elements of the inverse matrix B−1 of the matrix B
of the components Bμν = b(eμ, eν) of b. One verifies easily that there is a unique
structure of Hopf algebra on H(b) with coproduct Δ, counit ε and antipode S such
that

Δ(uμ
ν ) = uμ

ρ ⊗ uρ
ν(2.13)

ε(uμ
ν ) = δμν(2.14)

S(uμ
ν ) = BμλBρνu

ρ
λ(2.15)

the product and the unit being the original ones on H(b).

There is a canonical algebrahomomorphism ΔL : A(b, 2) → H(b)⊗A(b, 2) such
that

ΔL(x
λ) = uλ

μ ⊗ xμ

for λ ∈ {1, . . . , g}. This equips A(b, 2) with a structure of H(b)-comodule. The
dual object of H(b) is the quantum group of the nondegenerate bilinear form b.
The analysis of the category of representations of this quantum group has been
done in [8]. To the coaction ΔL of H(b) on A(b, 2) corresponds an action of this
quantum group on the noncommutative plane corresponding to A(b, 2).

The (quadratic) homogeneous part of the relations (2.11) and (2.12) reads

(2.16) uμ
αu

ν
βR

αβ
λρ = Rμν

αβu
α
λu

β
ρ

where R is a standard Hecke symmetry of b. In fact (2.16) together with (2.13)
and (2.14) define a bialgebra with counit for any R. In the case where R is a
standard Hecke symmetry then BμνBρλu

λ
μu

ρ
ν is in the center and the Hopf algebra

H(b) corresponding to the quantum group of b is the quotient of the bialgebra by
the ideal generated by the element

BμνBρλu
λ
μu

ρ
ν − g1l

of the center. In fact H(b) is a quotient of a bigger Hopf algebra associated with
the homogeneous relations (2.16) which is the generalization of the Hopf algebra
corresponding to GLq(2) in the case b = εq, (g = 2). More generally, if R is an
arbitrary Hecke symmetry associated with b, there is a Hopf algebra associated
with the quadratic relations (2.16) which coacts on A(b, 2) and corresponds to the
generalization of GLp,q(2).

3. Global dimension D = 3

In this section we shall analyse regular algebras of global dimension D = 3 and
describe some representative examples. For global dimensions D ≥ 3 what replaces
the bilinear forms of global dimension D = 2 (last section) are multilinear forms,
so we start this section with a discussion on multilinear forms.

3.1. Multilinear forms. Let V be a vector space with dim(V ) ≥ 2, Q be
an element of the linear group GL(V ) and m be an integer with m ≥ 2. Then an
m-linear form w on V (i.e. a linear form on V ⊗m

) will be said to be Q-cyclic if one
has

(3.1) w(X1, . . . , Xm) = w(QXm, X1, . . . , Xm−1)
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for any X1, . . . , Xm ∈ V .

Let w be Q-cyclic; then one has

w(X1, . . . , Xm) = w(QXk, . . . , QXm, X1, . . . , Xk−1)

for 1 ≤ k ≤ m so in particular one has

w(X1, . . . , Xm) = w(QX1, . . . , QXm)

for any X1, . . . , Xm ∈ V , which also reads w = w ◦Q and means that w is invariant
by Q.

Now let now w be an arbitrary Q-invariant m-linear form on V ; then the m-
linear form πQ(w) on V defined by

πQ(w)(X1, . . . , Xm) =
1

m

m
∑

k=1

w(QXk, . . . , QXm, X1, . . . , Xk−1)

for any X1, . . . , Xm ∈ V is Q-cyclic and this defines a projection πQ of the space of
Q-invariant m-linear forms onto the space of Q-cyclic m-linear forms on V . This
projection is GL(V )-equivariant in the sense that if w is Q-invariant (resp. Q-
cyclic) then w ◦ L is L−1QL-invariant (resp. L−1QL-cyclic) for any L ∈ GL(V ).

The m-linear form w on V will be said to be preregular if it satisfies the fol-
lowing conditions (i) and (ii) :
(i) w(X,X1, . . . , Xm−1) = 0 for any X1, . . . , Xm−1 ∈ V implies X = 0,
(ii) there is a Qw ∈ GL(V ) such that w is Qw-cyclic.

Condition (i) implies that Qw is unique under (ii) and Conditions (ii) and (i)
imply that w satisfies the following condition (i’) which is stronger than (i) :
(i’) w(X1, . . . , Xk, X,Xk+1, . . . , Xm−1) = 0 for any X1, . . . , Xm−1 ∈ V implies
X = 0, for any k ∈ {0, . . . ,m− 1}.

An m-linear form w on V satisfying (i’) will be said to be 1-site-nondegenerate.
The set of preregular m-linear forms on V is invariant by the action of GL(V ) and
one has

(3.2) Qw◦L = L−1QwL

for any preregular m-linear form w on V .

A bilinear form b on K
g is preregular if and only if it is nondegenerate; one

then has Qb = (B−1)tB where B is the matrix of components of b.

The condition of preregularity will be involved throughout the paper. We now
introduce a stronger condition which is involved specifically in the description of
the regular algebras of global dimension D = 3. Let N be an integer with N ≥ 2;
then an (N + 1)-linear form w on V will be said to be 3-regular if it is preregular
and satisfies the following condition (iii) :
(iii) If L0 and L1 are endomorphisms of V satisfying

w(L0X0, X1, X2, . . . , XN ) = w(X0, L1X1, X2, . . . , XN )
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for any X0, . . . , Xn ∈ V , then L0 = L1 = k1l for some k ∈ K.

The set of 3-regular (N + 1)-linear forms is also invariant by GL(V ).

Condition (iii) is a sort of 2-sites nondegeneracy condition. Consider the
stronger condition (iii’) :
(iii’)

∑

i w(Yi, Zi, X1, . . . , XN−1) = 0 for any X1, . . . , XN−1 ∈ V implies
∑

i

Yi ⊗ Zi = 0.

It is clear that (iii’) ⇒ (iii), however it is a strictly stronger condition. For in-
stance let ε be the completely antisymmetric (N + 1)-linear form on K

N+1 with
ε(e0, . . . , eN ) = 1. Then ε is 3-regular but one has

ε(Y, Z,X1, . . . , XN−1) + ε(Z, Y,X1 . . . , XN−1) = 0

identically and this does not imply Y ⊗ Z + Z ⊗ Y = 0.

3.2. General results for D = 3. Let w be a preregular (N + 1)-linear form
on K

g with components Wλ0...λN
= w(eλ0

, . . . , eλN
) in the canonical basis (eλ) of

K
g and let A(w,N) be the N -homogeneous algebra generated by the g elements

xλ (λ ∈ {1, . . . , g}) with the g relations

(3.3) Wλλ1...λN
xλ1 · · ·xλN = 0

for λ ∈ {1, . . . , g}. In other words one has A(w,N) = A(E,R) with E = ⊕λKxλ

and R =
∑

λ KWλλ1...λN
xλ1 ⊗ · · · ⊗ xλN . Condition (i) implies that dim(R) = g,

that is, that the latter sum is direct and that the relations (3.3) are independent.

Let us now use again the notation of the beginning of §1.2, so let A ∈ GrAlg
with A = K〈x1, . . . , xy〉/[f1, . . . , fr] and consider the exact sequence (1.1) corre-
sponding to the presentation of A. Then A has global dimension D = 3 if and only
if (1.1) extends as an exact sequence

0 → As → Ar M→ Ag x→ A ε→ K → 0

i.e. as a free resolution of K of length D = 3. Assume now that A is regular. Then
the Gorenstein property (Poincaré duality) implies immediately that r = g, that
s = 1, that the above resolution reads with an appropriate choice of the relations
fλ

(3.4) 0 → A xt

→ Ag M→ Ag x→ A ε→ K → 0

and that w = xλ ⊗ fλ is homogeneous, say of degree N + 1, and is preregular [1].
So A = A(w,N) as above. In fact one has the following theorem [23].

Theorem 3. Let A be a regular algebra of global dimension D = 3. Then
A = A(w,N) for some N ≥ 2, some g ≥ 2 and some 3-regular (N +1)-linear form
w on K

g.

The Poincaré series of A = A(w,N) as in the above theorem (i.e. A regular
with D = 3) is given by

(3.5) PA(t) =
1

1− gt+ gtN − tN+1
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in view of (3.4).

If one compares this theorem with Theorem 2 for D = 2, one sees that there
are two missing items : first there is no converse of the statement in Theorem 3
and second there is no characterization of the isomorphism classes. Concerning the
first point, it was conjectured in [23] that given a 3-regular (N + 1)-linear form
w on K

g then A(w,N) is a regular algebra with D = 3, but unfortunately this is
wrong and we shall give counterexamples (see below). This means that one has to
find some slightly stronger condition than 3-regularity for w (for D = 3).

Concerning the second point the following result holds (independently of the
regularity of the algebras) [23].

Proposition 4. Let w be a 3-regular (N+1)-linear form on K
g and let w′ be a

3-regular (N ′+1)-linear form on K
g′
. Then A(w,N) and A(w′, N ′) are isomorphic

if and only if g′ = g, N ′ = N and w′ = w ◦ L for some L ∈ GL(g,K).

The conditions g′ = g and N ′ = N are clear but the 3-regularity is genuinely
involved in the proof of this proposition (see in [23]).

Following [1] one deduces from (3.5) that a regular algebra of global dimension
D = 3 has polynomial growth if and only if g = 3 and N = 2 or g = 2 and N = 3;
Otherwise it has exponential growth (for g ≥ 2 and N ≥ 2).

3.3. Examples and counterexamples. All AS-regular algebras of global
dimension D = 3 of course give examples and our notations w,M,Qw come from
[1]. In fact, the classification of the regular algebras of global dimension D = 3
with polynomial growth is based on the possible Jordan decompositions of the
corresponding Qw’s. Let us give some representative examples.
(a) The 3-dimensional Sklyanin algebra [37], [36]. This is the algebra A generated
by 3 elements x, y, z with relations

(3.6)

⎧

⎨

⎩

xy − qyx = pz2

yz − qzy = px2

zx− qxz = py2

where p, q ∈ K with (p, q) �= (0, 0) and (p3 + 1, q3 + 1) �= (0, 0).

This algebra is AS-regular with D = 3. One has A = A(w, 2) with

(3.7)
w = x⊗ y ⊗ z + y ⊗ z ⊗ x+ z ⊗ x⊗ y

− q(x⊗ z ⊗ y + y ⊗ x⊗ z + z ⊗ y ⊗ x)
− p(x⊗ x⊗ x+ y ⊗ y ⊗ y + z ⊗ z ⊗ z)

where we have identified the 3-linear form w on K
3 with the corresponding element

of (K3∗)⊗
3

. One verifies that w is 3-regular and one has

(3.8) Qw = 1l

for the corresponding element of GL(3,K).

(b) The q-deformed 3-dimensional polynomial algebra. This is the algebra A gen-
erated by 3 elements x, y, z with relations
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(3.9)

⎧

⎨

⎩

xy = qcyx
yz = qazy
zx = qbxz

with q, a, b, c ∈ K, abc = 1 and q �= 0. This algebra is AS-regular with D = 3 and
one has A = A(w, 2) with

(3.10) w = bx⊗y⊗z+cy⊗z⊗x+az⊗x⊗y−q(abx⊗z⊗y+bcy⊗x⊗z+caz⊗y⊗x)

with the same conventions as above. One verifies that w is 3-regular and one has

(3.11) Qw =

⎛

⎝

b/c 0 0
0 c/a 0
0 0 a/b

⎞

⎠

(c) Type E quadratic AS-algebra [1]. This is the algebra A generated by 3 elements
x, y, z with relations

(3.12)

⎧

⎨

⎩

x2 + ζ−1yz + ζ zy = 0
y2 + ζ−4zx+ ζ4xz = 0
z2 + ζ−7xy + ζ7yx = 0

where ζ ∈ K is a primitive 9th root of 1, ζ9 = 1.
This algebra is AS-regular with D = 3 and A = A(w, 2) with

(3.13)

w = x⊗ z ⊗ x+ y ⊗ x⊗ y + z ⊗ y ⊗ z
+ ζ z ⊗ x⊗ x+ ζ−1x⊗ x⊗ z
+ ζ4x⊗ y ⊗ y + ζ−4y ⊗ y ⊗ x
+ ζ7y ⊗ z ⊗ z + ζ−7z ⊗ z ⊗ y

which defines a 3-regular 3-linear form on K
3.

One has

(3.14) Qw =

⎛

⎝

ζ 0 0
0 ζ4 0
0 0 ζ7

⎞

⎠

for the corresponding element of GL(3,K).

It is worth noticing here that the algebras of Case (a) and Case (b) are defor-
mations of the polynomial algebra K[x, y, z] while this is not the case here. In fact
the algebra with relations (3.12) is quite rigid.

(d) Counterexample to the converse of Theorem 3. Let A be the algebra generated
by 3 elements x, y, z with relations

(3.15)

⎧

⎨

⎩

x2 + yz = 0
y2 + zx = 0
xy = 0

Then A = A(w, 2) where the 3-linear form w on K
3 is given by

(3.16) w = x⊗ x⊗ x+ y ⊗ y ⊗ y + x⊗ y ⊗ z + y ⊗ z ⊗ x+ z ⊗ x⊗ y
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with the same conventions as before. One verifies that w is again 3-regular and one
has Qw = 1l. However, A is not regular of global dimension D = 3. Indeed the
candidate for (3.4) is

0 → A xt

→ A3 M→ A3 x→ A ε→ K → 0

with xt = (x, y, z) and

M =

⎛

⎝

x 0 y
z y 0
0 x 0

⎞

⎠

but this complex is not exact in second position : One has

(yz, 0, 0) ∈ Ker(M)

while (yz, 0, 0) is not in the image of xt.
This algebra is discussed in [1] and there is a similar one which is cubic with 2
generators.

(e) The Yang-Mills algebra [17]. The Yang-Mills algebra is the cubic algebra A
generated by g elements ∇λ (λ ∈ {1, . . . , g}) with relations

(3.17) gλμ[∇λ, [∇μ,∇ν ]] = 0

for ν ∈ {1, . . . , g}, where the gλμ are the components of a symmetric nondegenerate
bilinear form on K

g. The use here of covariant instead of contravariant notational
conventions has a physical origin. This algebra is regular of global dimension D = 3.
One has A = A(w, 3) where w is the 4-linear form on K

g with components

(3.18) Wα1α2α3α4 = gα1α2gα3α4 + gα2α3gα4α1 − 2gα1α3gα2α4

for αk ∈ {1, . . . , g}. This 4-linear form on K
g is 3-regular, in fact it satisfies the

strong condition (iii’), and one has Qw = 1l.

(f) The super Yang-Mills algebra [19]. There is a “super” version of the Yang-Mills

algebra which is the cubic algebra Ã generated by g elements Sλ (λ ∈ {1, . . . , g})
with relations

(3.19) gλμ[Sλ, [Sμ, Sν ]+] = 0

for ν ∈ {1, . . . , g}, where the gλμ are as above and [A,B]+ = AB +BA.

This algebra is again regular of global dimension 3 and Ã = A(w̃, 3) where w̃
is the 4-linear form on K

g with components

(3.20) W̃α1α2α3α4 = gα2α3gα4α1 − gα1α2gα3α4

for αk ∈ {1, . . . , g}. This w̃ is 3-regular (and satisfies (iii’)) and Qw̃ = −1l. Notice
that the equations (3.19) are equivalent to

(3.21) [Sλ, g
μνSμSν ] = 0

i.e. to the fact that gμνSμSν is central.

Before leaving this section, it is worth noticing that the Yang-Mills algebra is
by its very definition the universal enveloping algebra of a graded Lie algebra. In
the case g = 2 this is an AS-regular algebra considered in [1] which is the universal
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enveloping algebra of the graded 3-dimensional Lie algebra with basis (∇1,∇2) in
degree 1 and C in degree 2 with Lie bracket defined by

[∇1,∇2] = C, [∇1, C] = 0, [∇2, C] = 0.

In the case g > 2, the Yang-Mills algebra has exponential growth.

Similar considerations apply to the super Yang-Mills where the above Lie alge-
bra is replaced by a super Lie algebra.

4. Homogeneous algebras

The aim of this section is to describe properties of N -homogeneous algebras
and to introduce and discuss the Koszul property [3], [6].

4.1. Koszul duality. Let A ∈ HNAlg be an N -homogeneous algebra, that

is, A = A(E,R) with R ⊂ E⊗N

. One defines the (Koszul) dual A! of A to be the
N -homogeneous algebra

(4.1) A! = A(E∗, R⊥)

where R⊥ ⊂ E∗⊗N

= (E⊗N

)∗ is the annihilator of R, i.e. the subspace

R⊥ = {ω ∈ (E⊗N

)∗|ω(x) = 0, ∀x ∈ R}

of (E⊗N

)∗ identified with E∗⊗N

(there a canonical identification of (E⊗N

)∗ with

E∗⊗N

since E is finite-dimensional). One has canonically

(4.2) (A!)! = A
and to any morphism f : A → A′ = A(E′, R′) of HNAlg corresponds a morphism
f ! : A′! → A! which is induced by the transpose of the restriction f � E : E → E′

of f to E. The correspondence (A �→ A!, f �→ f !) defines a contravariant involutive
functor ((f !)! = f).

4.2. The Koszul N-complex K(A). .
Let A = A(E,R) be an N -homogeneous algebra with dual A! = ⊕nA!

n and
consider the dual vector spaces A!∗

n of the A!
n. One has

(4.3)

{

A!∗
n = E⊗n

for n < N
A!∗

n = ∩r+s=n−NE⊗r ⊗R⊗ E⊗s

for n ≥ N

so that for any n ∈ N one has A!∗
n ⊂ E⊗n

. Let us then define the sequence of
homomorphisms of (free) left A-modules

(4.4) · · · d→ A⊗A!∗
n+1

d→ A⊗A!∗
n

d→ · · · d→ A → 0

where d : A⊗A!∗
n+1 → A⊗A!∗

n is induced by the map

a⊗ (e0 ⊗ e1 ⊗ · · · ⊗ en) �→ ae0 ⊗ (e1 ⊗ · · · ⊗ en)

of A⊗ E⊗n−1

into A⊗ E⊗n

. Then one has

(4.5) dN = 0

since A!∗
n ⊂ R⊗E⊗n−N

for n ≥ N . Thus (4.4) defines an N -complex which will be
refered to as the Koszul N -complex of A and denoted by K(A).
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As for any N -complex [21] one obtains from K(A) a family Cp,r(K(A)) of ordi-
nary complexes, called the contractions of K(A), by putting together alternatively
p and N − p arrows d of K(A). The complex Cp,r(K(A)) is defined as

(4.6) · · · d
N−p

→ A⊗A!∗
Nk+r

dp

→ A⊗A!∗
Nk−p+r

dN−p

→ A⊗A!∗
N(k−1)+r

dp

→ · · ·

for 0 ≤ r < p ≤ N − 1 [6] (one verifies that all such complexes are exhausted by
these couples (p, r)). For the homology of these complexes one has the following
result [6].

Proposition 5. Let A = A(E,R) be an N-homogeneous algebra with N ≥ 3.
Assume that (p, r) is distinct from (N−1, 0) and that Cp,r(K(A)) is exact at degree

k = 1. Then R = 0 or R = E⊗N

.

Except for CN−1,0(K(A)), a nontrivial acyclicity for Cp,r(K(A)) leads to the
trivial algebras A = T (E) or A = T (E)!.

4.3. Koszul complexes and Koszul property. The last proposition points
out the complex CN−1,0(K(A)), which will be denoted by K(A,K) and referred to
as the Koszul complex of A. It coincides with the Koszul complex originality intro-
duced in [3] without mention to the N -complex K(A). Of course for a quadratic
algebra A, i.e. for N = 2, one has K(A) = K(A,K) and this coincides with the
definition of [38] (see also [34], [35]).

An N -homogeneous algebra A will be said to be a Koszul algebra whenever
its Koszul complex K(A,K) is acyclic in positive degrees, (i.e. Hn(K(A,K)) = 0
for n ≥ 1). This is the generalization given in [3] of the definition of [38] to
N -homogeneous algebras. There are very good reasons explained in [3] for this
generalization. We content ourselves here with observing that, among the con-
tractions of K(A), the Koszul complex K(A,K) is distinguished by the fact that it
terminates as a projective resolution of K. Indeed, the presentation of A = A(E,R)
is equivalent to the exactness of the sequence

A⊗R
dN−1

→ A⊗ E
d→ A ε→ K → 0

as observed before and, on the other hand one has A!∗
1 = E and A!∗

N = R so K(A,K)
terminates as

· · · d→ A⊗R
dN−1

→ A⊗ E
d→ A → 0.

Thus if A is a Koszul algebra, one has a free resolution of K which is then in fact
a minimal projective resolution of the trivial left A-module K given by

(4.7) K(A,K)
ε→ K → 0

which is referred to as the Koszul resolution of (the left A-module) K.

Notice that if A is a regular algebra of global dimension 2 (resp. 3) then (2.1)
(resp. (3.4)) are the Koszul resolutions of K (with a slight abuse of language)
so that A is then a Koszul algebra as announced in Proposition 1. One has the
following result [25].

Proposition 6. Let A be a Koszul N-homogeneous algebra. One has

PA(t)QA(t) = 1
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where the series QA(t) is defined by

QA(t) =
∑

n∈N

(dim(A!
Nn)t

Nn − dim(A!
Nn+1)t

Nn+1)

and where PA(t) =
∑

n dim(An)t
n is the Poincaré series of A.

In fact the Koszul N -complex splits into sub-N -complexes for the total degree

K(A) = ⊕K(n)(A)

which induces a splitting of the Koszul complex into finite-dimensional subcom-
plexes

K(A,K) = ⊕K(n)(A,K)

and the proposition follows from the Euler-Poincaré formula applied to each com-
ponent.

Notice that in the quadratic case, one has QA(t) = PA!(−t).

If A is a Koszul N -homogeneous algebra, one has clearly

(4.8) A!
Nn  Ext2nA (K,K),A!

Nn+1  Ext2n+1
A (K,K)

and therefore by setting

(4.9) YA(t) =
∑

n∈N

(dim(Ext2nA (K,K))tNn − dim(Ext2n+1
A (K,K))tNn+1)

one has PA(t)YA(t) = 1. In [31] it is shown that, conversely, if A is an N -
homogeneous algebra such that one has

(4.10) PA(t)YA(t) = 1

then A is Koszul. This gives an interesting numerical criterion for Koszulity which
has to be compared with the fact that there are N -homogeneous algebras A satis-
fying PA(t)QA(t) = 1 which are not Koszul (of course then (4.8) does not hold).

In (4.4) the factors A are considered as left A-modules. By considering A as a

right A-module and by exchanging the factors, one obtains an N -complex K̃(A) of
right A-modules.

(4.11) · · · d̃→ A!∗
n+1 ⊗A d̃→ A!∗

n ⊗A d̃→ · · · d̃→ A → 0

where d̃ : A!∗
n+1 ⊗A → A!∗

n ⊗A is induced by the mapping (e1 ⊗ · · · ⊗ en+1)⊗ a �→
(e1 ⊗ · · · ⊗ en)⊗ en+1a of E⊗n+1 ⊗A into E⊗n ⊗A. The fact that d̃N = 0 follows

from A!∗
N ⊂ E⊗n−N ⊗R for n ≥ N . Let us consider the sequences (L,R)

(4.12) · · · dL,dR→ A⊗A!∗
n+1 ⊗A dL,dR→ A⊗A!∗

n ⊗A dL,dR→ · · · dL,dR→ A⊗A → 0

where dL = d ⊗ I and dR = I ⊗ d̃, I being the identity mapping of A onto itself.
One has dNL = dNR = 0 and dL and dR are homomorphisms of (A,A)-bimodules,
i.e. of left A⊗Aopp-modules. The two N -differentials dL and dR commute, so one
has

(dL − dR)

(

N−1
∑

p=0

dpLd
N−p−1
R

)

=

(

N−1
∑

p=0

dpLd
N−p−1
R

)

(dL − dR) = dNL − dNR = 0.
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It follows that one defines a complex of free A⊗Aopp-modules K(A,A) by setting

(4.13)

⎧

⎨

⎩

K2m(A,A) = A⊗A!∗
Nm ⊗A

K2m+1(A,A) = A⊗A!∗
Nm+1 ⊗A

with differential δ′ defined by

(4.14)

⎧

⎨

⎩

δ′ = dL − dR : K2m+1(A,A) → K2m(A,A)

δ′ =
∑N−1

p=0 dpLd
N−p−1
R : K2(m+1)(A,A) → K2m+1(A,A)

which will be referred to as the bimodule Koszul complex of A.

It turns out that K(A,A) is acyclic in positive degrees if and only if K(A,K)
is acyclic in positive degrees, that is, if and only if A is a Koszul algebra. On the
other hand one has the obvious exact sequence of bimodules

A⊗ E ⊗A δ′→ A⊗A m→ A → 0

where m denotes the product of A. This means that H0(K(A,A)) = A and there-
fore whenever A is Koszul one has a free resolution

K(A,A)
m→ A → 0

of the left A ⊗ Aopp-module A which is a minimal projective resolution of A and
will be referred to as the Koszul resolution of A.

4.4. Small complex and Poincaré duality for Koszul algebras. Let A
be anN -homogeneous Koszul algebra and letM be a (A,A)-bimodule considered as
a right A⊗Aopp-module. Then by interpreting the Hochschild homology H(A,M)

of A with values in M as TorA⊗Aopp

(M,A) [12], one sees that the homology of the
complex M⊗A⊗Aopp K(A,A) is the M-valued Hochschild homology of A. We shall
refer to this latter complex as the small Hochschild complex of the Koszul algebra
A with coefficients in M and denote it by S(A,M). It reads

(4.15) · · · δ→ M⊗A!∗
N(m+1)

δ→ M⊗A!∗
Nm+1

δ→ M⊗A!∗
Nm

δ→ · · ·
where δ is obtained from δ′ by applying the factors dL to the right of M and the
factors dR to the left of M.

By construction the lengths of the complexes K(A,K) and K(A,A) coincide.
Assume that A is a Koszul algebra; then this implies that the projective dimension
of the trivial A-module K coincides with the Hochschild dimension of A, which is
a particular case of the general result of [4].

The Koszul complex K(A,K) is a chain complex since its differential is of degree
−1; the same is true for K(A,A). By applying the functor HomA(•,A) to the chain
complex of free left A-modules K(A,K) one obtains the cochain complex L(A,K)
of free right A-modules

0 → L0(A,K) → · · · → Ln(A,K) → · · ·
where Ln(A,K) = HomA(Kn(A,K),A). Assume that A is Koszul of global di-
mension D. Then Ln(A,K) = 0 for n > D and A is Gorenstein if and only if
Hn(L(A,K)) = 0 for n < D and HD(L(A,K)) = K. When A is Koszul of global
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dimension D and Gorenstein, this implies a precise form of the Poincaré duality
between the Hochschild homology and the Hochschild cohomology of A, [7], [41],
[42]. In the case of a regular algebra A = A(w,N) of global dimension 3, it reads
for an A-bimodule M
(4.16) Hn(A,M) = H3−n(A,M)

for 0 ≤ n ≤ 3 when Qw = 1l, (when Qw �= 1l it induces an automorphism σw of A
and one has to twist by σw the left multiplication of M by A on the right-hand
side of (4.16)).

The complex L(A,K) is also a contraction of a natural N -complex L(A). This
N -complex L(A) is the cochain N -complex of free right A-modules obtained by
applying the functor HomA(•,A) to the Koszul N -complex K(A) (which is a chain
N -complex of free left A-modules). The right A-module Ln(A) identifies canoni-
cally with A!

n ⊗ A while the N -differential of L(A) is then the left multiplication
by x∗

λ ⊗ xλ in A! ⊗A, where (x∗
λ) is the dual basis of (xλ) (E = ⊕λKxλ). One has

L(A,K) = C1,0(L(A)), i.e. L0(A,K) = A = L0(A),L1(A,K) = LN (A), etc.

4.5. Examples of Koszul algebras. All regular algebras of global dimen-
sions D = 2 and D = 3 are Koszul so in particular the examples of regular algebras
of Sections 2 and 3 are examples of Koszul algebras. We shall describe regular
Koszul algebras of higher global dimension D in Section 5. Let us give here some
examples of Koszul algebras which are not generically regular.

(a) Koszul duals of quadratic algebras. It is well known and not hard to show that
if A is a quadratic algebra, then its Koszul dual A! is Koszul if and only if A is
Koszul. Even if A is regular, A! is generically not regular.

For instance the exterior algebra
∧

K
g is the Koszul dual of the algebra of poly-

nomial functions on K
g which is regular and Koszul of global dimension g; however

∧

K
g is not of finite global dimension.

It is worth noticing here that if A is an N -homogeneous algebra with N > 2,
then the Koszulity of A does not imply the Koszulity of its Koszul dual A! (this is
due to the jumps in degrees in the Koszul resolution). For instance the Koszul dual
A! of the Yang-Mills algebra A (§3.3, example (e)) is such that PA!(t)QA!(t) �= 1
(by direct computation) so it is not Koszul in view of Proposition 6.

(b) Degenerate bilinear form [5]. In the following b is a bilinear form on K
g with

g ≥ 2, B = (Bμν) is the matrix of components Bμν = b(eμ, eν) of b in the canonical
basis of Kg and A = A(b, 2) is the quadratic algebra generated by g elements xλ

with the relation

Bμνx
μxν = 0

i.e. we generalize the notation of Section 2 to cases where b can be degenerate. In
[5] one finds the following results (Propositions 5.4 and 5.5 in [5]) which contains
Theorem 2.

Proposition 7. Assume that b �= 0, then A = A(b, 2) has the following prop-
erties :
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1) A is Koszul,
2) A has global dimension D = 2 except in the case where b is symmetric of rank 1
in which case D = ∞,
3) A is Gorenstein if and only if b is nondegenerate.

Thus for b degenerate one has a lot of examples of Koszul algebras which are
not regular. In [5] there is a similar statement for N -homogeneous algebras with
one relation (r = 1) which although slightly more involved permits the construction
of examples (see, e.g. Example (c) in the next section §5.3).

(c) The self-duality algebra [17]. In the case g = 4 and gλμ = δλμ, the Yang-
Mills algebra (Example (e) in § 3.3) admits the 2 nontrivial quotients A(+) and
A(−), where A(ε) (ε = ±) is the quadratic algebra generated by the 4 elements ∇λ

(λ ∈ {1, 2, 3, 4}) with relations

(4.17) [∇4,∇k] = ε[∇	,∇m]

for any cyclic permutation (k, �,m) of (1,2,3). Let us fix ε = + and call A(+) the
self-duality algebra (the study of A(−) is similar). In [17] it was shown that this
algebra is Koszul of global dimension D = 2 and that the Koszul resolution reads

(4.18) 0 → (A(+))3 → (A(+))4 → A(+) ε→ K → 0

from which it follows that

(4.19) PA(+)(t) =
1

(1− t)(1− 3t)

so A(+) has exponential growth and is not Gorenstein.

It follows from the definition that A(+) is the universal enveloping algebra of a
Lie algebra which is the semi-direct product of the free Lie algebra L(∇1,∇2,∇3)
by the derivation δ given by

(4.20) δ(∇k) = [∇	,∇m]

for any cyclic permutation (k, �,m) of (1,2,3). Formula (4.19) as well as all the
above properties of A(+) also follow directly from this structure.

(d) The super self-duality algebra [19]. In a similar way as in the last example, for
g = 4 and gλμ = δλμ, the super Yang-Mills algebra (Example (f) in § 3.3) admits

the 2 nontrivial quotients Ã(+) and Ã(−), where Ã(ε) (ε = ±) is the quadratic
algebra generated by the 4 elements Sλ (λ ∈ {1, 2, 3, 4}) with relations

(4.21) i[S4, Sk]+ = ε[S	, Sm]

for any cyclic permutation (k, �,m) of (1,2,3). Let us fix ε = + and call Ã(+)

the super self-duality algebra. This algebra is again a Koszul algebra of global
dimension 2 which is not Gorenstein and has Poincaré series given by

(4.22) PÃ(+)(t) =
1

(1− t)(1− 3t)

and so has also exponential growth. This algebra has direct relations with the
4-dimensional Sklyanin algebra (see in [19]).
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5. Arbitrary global dimension D

In the previous sections, we have seen that the regular algebras of global di-
mensions D = 2 and D = 3 are N -homogeneous (with N = 2 for D = 2) and
Koszul. This very desirable property permits one to write explicit canonical reso-
lutions. On the other hand one can formulate for the moment this Koszul property
only for N -homogeneous algebras. This is why in this section we shall restrict
attention to Koszul homogeneous algebras and our aim is then to formulate the
generalization of Theorem 3 for arbitrary global dimension D. Notice however that
for global dimensions D ≥ 4, regularity does not imply N -homogeneity. It is worth
mentioning here that for D = 4 the AS-regular algebras, i.e. the regular algebras
with polynomial growth, have been recently classified [32].

We shall need a class of N -homogeneous algebras associated with preregular
multilinear forms that we now describe.

5.1. Homogeneous algebras associated to multilinear forms. In this
subsection m and N are integers with m ≥ N ≥ 2 and w is a preregular m-linear
form on K

g (g ≥ 2) with components Wλ1...λm
= w(eλ1

, . . . , eλm
) in the canonical

basis (eλ) of Kg. Let A = A(w,N) be the N -homogeneous algebra generated by
the elements xλ (λ ∈ {1, . . . , g}) with relation

(5.1) Wλ1...λm−Nμ1...μN
xμ1 · · ·xμN = 0

for λk ∈ {1, . . . , g}. Thus one has A = A(E,R) with E = ⊕λKxλ and

R =
∑

λk

KWλ1...λm−Nμ1...μN
xμ1 ⊗ · · · ⊗ xμN ⊂ E⊗N

.

Notice that this generalizes the definitions of Section 2 (which is the case m = N =
2) and Section 3 (which is the case m = N + 1).

Let us define the subspaces Wn ⊂ E⊗n

for m ≥ n ≥ 0 by

(5.2)

{

Wn = E⊗n

for N − 1 ≥ n ≥ 0
Wn =

∑

λk
KWλ1...λm−nμ1...μn

xμ1 ⊗ · · · ⊗ xμn for m ≥ n ≥ N

so in particular W1 = E and WN = R. The twisted cyclicity of w (property (ii) of
§3.1) and (4.3) imply the following proposition.

Proposition 8. The sequence

(5.3) 0 → A⊗Wm
d→ A⊗Wm−1

d→ · · · d→ A → 0

is a sub-N-complex of the Koszul N-complex K(A) of A.

In fact one has Wn ⊂ A!∗
n and d(A⊗Wn+1) ⊂ A⊗Wn. In particular one has

Wm = Kw ⊂ A!∗
m so w is a linear form on A!

m. We then define the linear form ωw

on the algebra A! by setting

(5.4) ωw = w ◦ pm
where pm : A! → A!

m is the canonical projection onto the degree m component.
With E = ⊕λKxλ, w is canonically an m-linear form on E∗ and Qw an element of
GL(E∗). With these identifications one has the following theorem [23].
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Theorem 9. The element Qw of GL(E∗) induces an automorphism σw of the
N-homogeneous algebra A! = A(E∗, R⊥) and one has

(5.5) ωw(xy) = ωw(σw(y)x)

for any x, y ∈ A!. The subset of A!

I = {y ∈ A!|ωw(xy) = 0, ∀x ∈ A!}
is a two-sided ideal of A! and the quotient algebra F(w,N) = A!/I equipped with
the linear form induced by ωw is a graded Frobenius algebra.

To prove this theorem, one first verifies by using the Qw-invariance of w that

one has Q⊗N

w R⊥ ⊂ R⊥, which implies the existence of σw. Then (5.5) is just a
translation of the Qw-cyclicity of w. By definition I is a left ideal and (5.5) implies
that it is also a right ideal. The quotient F = A!/I is a finite-dimensional graded
algebra and the pairing induced by (x, y) �→ ωw(xy) is nondegenerate and is a
Frobenius pairing on F .

Corollary 10. Considered as an element of GL(E), the transpose Qt
w = Qw

of Qw induces an automorphism σw of the N-homogeneous algebra A = A(E,R).

Let us end this subsection by noting that, at this level of generality and for
N = 2 (i.e. in the quadratic case), the multilinear form w induces a (twisted)
noncommutative m-form for A. For this let wA be the (A,A)-bimodule which
coincides with A as right A-module and is such that the structure of left A-module
is given by the left multiplication by (−1)(m−1)n(σw)−1(a) for a ∈ An. One has
the following result [23].

Proposition 11. In the case N = 2, that is, for A = A(w, 2), 1l ⊗ w is
canonically a nontrivial wA-valued Hochschild m-cycle on A.

In this statement, 1l is interpreted as an element of wA while w ∈ E⊗m

is
interpreted as an element of A⊗m

(E = A1 ⊂ A) so that 1l ⊗ w is a wA-valued
Hochschild m-chain.

5.2. General results for Koszul-Gorenstein algebras. For the N -homo-
geneous algebras which are Koszul of finite global dimension D and which are
Gorenstein (a particular class of regular algebras if D ≥ 4), one has the following
theorem [23].

Theorem 12. Let A be an N-homogeneous algebra which is Koszul of finite
global dimension D and Gorenstein. Then A = A(w,N) for some preregular m-
linear form on K

g for some g. If N ≥ 3 then m = Np+1 and D = 2p+1 for some
p ≥ 1 while for N = 2 one has m = D.

For the proof we refer to [23].

Under the assumptions of Theorem 12 the Koszul resolution of the trivial left
A-module K reads

0 → A⊗Wm
d→ A⊗Wm−1

dN−1

→ · · · d→ A⊗WN
dN−1

→ A⊗ E
d→ A ε→ K → 0

or, by setting

(5.6)

{

νN (2k) = Nk
νN (2k + 1) = Nk + 1
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for k ∈ N,

(5.7) 0 → A⊗WνN (D)
d′
→ · · · d′

→ A⊗WνN (k)
d′
→ A⊗WνN (k−1)→· · · d′

→ A ε→ K → 0

where d′ is defined by

(5.8)

{

d′ = dN−1 : A⊗WνN (2k) → A⊗WνN (2k−1)

d′ = d : A⊗WνN (2k+1) → A⊗WνN (2k)

for k ∈ N.

Notice that one has

(5.9) dim(WνN (k)) = dim(WνN (D−k))

for 0 ≤ k ≤ D. In particular A ⊗ WνN (D) = A ⊗ w so one sees that 1l ⊗ w is the
generator of the top module of the Koszul resolution, which again corresponds to
the interpretation of 1l⊗ w as a volume form.

It is worth noticing here that it has been already shown in [10] that the qua-
dratic algebras which are Koszul and regular are determined by multilinear form
(D-linear for global dimension D) which correspond to volume forms in this non-
commutative setting.

Let us come back to a more general situation. Assume that D and N are given
integers with D ≥ 2 and N ≥ 2 and that N = 2 whenever D is an even integer.
Then let w be a preregular m-linear form on K

g with m = D for N = 2 and
m = Np+1 for D = 2p+1 and consider the N -homogeneous algebra A = A(w,N).
The complex

(5.10) 0 → A⊗WνN (D)
d′
→ · · · d′

→ A⊗WνN (k)
d′
→ · · · d′

→ A → 0

is still well defined, with νN as in (5.6) and d′ as in (5.8), and is a subcomplex of
the Koszul complex K(A,K) of A in view of Proposition 8. It is clear that if this
complex is acyclic in positive degree, it coincides with the Koszul complex of A and
that A is then Koszul of global dimension D and Gorenstein. Thus, as remarked
in [9] one has the following result, which gives a sort of converse of Theorem 12.

Proposition 13. Let A = A(w,N) be as above; then A is Koszul of global
dimension D and Gorenstein if and only if the complex (5.10) is acyclic in positive
degrees.

A weaker assumption on the complex (5.10) is to assume that it coincides with
the Koszul complex. In the case where D = 3, one has the following proposition
[23].

Proposition 14. Let w be a preregular (N + 1)-linear form on K
g and let

A = A(w,N); then the following conditions are equivalent:

(a) A!∗
N+1 = Kw.

(b) The complex (5.10) coincides with the Koszul complex K(A,K) of A.

(c) w is 3-regular.
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Let us consider A = A(w,N) with Koszul dual A! = ⊕nA!
n and let us define

the graded algebra

(5.11) A′ = A′(w,N) = ⊕nA′
n

to be A! for N = 2 and to be defined for N > 2 by

(5.12) A′
n = A!

νN (n)

for n ∈ N with product (x, y) �→ x • y defined by

(5.13) x • y = π(xy)

where π : A! → A′ is the canonical projection of A! onto A′ = ⊕nA!
νN (n) ⊂ A!

defined by setting π(A!
k) = 0 whenever k is not in νN (N). Thus this product is

defined for two homogeneous elements x and y by

xy = 0

whenever x and y are both of odd degree and

xy = product in A!

otherwise. It is clear that this product is associative. One has the following result.

Theorem 15. Assume that D,N and w are as above, that is, N = 2 for D even
and w is a preregular m-linear form on K

g with m = D for N = 2 and m = Np+1
for D = 2p+ 1. Then the following conditions are equivalent.

(a) A′(w,N) equipped with the linear form induced by ωw is a Frobenius algebra.

(b) The complex (5.10) coincides with the Koszul complex K(A,K) of A(w,N).

Proof. The proof of this proposition is almost tautological since conditions (a) and
(b) are both equivalent to WνN (n) = A!∗

νN (n) = A′
n
∗
for n ∈ N. �

This is of course directly inspired by [7] and implies Theorem 1.2 of [7] since
when A(w,N) is Koszul one has A!

νN (n) = ExtnA(K,K) and the product of A′(w,N)

is essentially the Yoneda product ([7], Proposition 3.1). Let us recall this Theorem
1.2 of [7], which is an important result.

Theorem 16. Let A be an N-homogeneous algebra which is Koszul of finite
global dimension. Then A is Gorenstein if and only if the Yoneda algebra E(A) =
ExtA(K,K) is Frobenius.

As pointed out before this follows from Theorem 12 and Theorem 15 by using
the fact that one has A′ = E(A) whenever A is Koszul.

Remarks.
1) One sees that, with D,N and w as in Theorem 15, one has two natural Frobenius
algebras associated with A(w,N). The first one is the algebra F(w,N) = A!/I of
Theorem 9, the other one is the algebra F ′(w,N) = A′/I ′, where

I ′ = {y ∈ A′|ωw(x • y) = 0, ∀x ∈ A′}
is a two-sided ideal since σw induces an automorphism of A′ satisfying ωw(x • y) =
ωw(σw(y) • x). These two Frobenius algebras coincide for N = 2 but are different
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for N > 2.
2) D,N and w being as in Theorem 15, it is tempting in view of Proposition
14 to say that w is D-regular whenever the equivalent conditions (a) and (b) are
satisfied. In fact Condition (a) contains several nondegeneracy conditions. This
notion involves both D and N as above.

5.3. Examples. Of course one has already all the examples of Section 3. Let
us give two quadratic examples and a class of N -homogeneous examples.

(a) The extended 4-dimensional Sklyanin algebra [16], [18], [20]. In connection with
a problem of K-homology, the following quadratic algebra Au has been introduced
in [16] and analyzed in detail in [18], [20]. The algebra Au is the quadratic algebra
generated by 4 elements xλ (λ ∈ {0, 1, 2, 3}) with relations

(5.14) cos(ϕ0 − ϕk)[x
0, xk] = i sin(ϕ	 − ϕm)[x	, xm]+

(5.15) cos(ϕ	 − ϕm)[x	, xm] = i sin(ϕ0 − ϕk)[x
0, xk]+

for any cyclic permutation (k, �,m) of (1,2,3). The parameter u is the element
u =

(

ei(ϕ1−ϕ0), ei(ϕ2−ϕ0), ei(ϕ3−ϕ0)
)

of T 3. Thus there are a priori 3 scalar parame-
ters ϕ1 −ϕ0, ϕ2 −ϕ0 and ϕ3 −ϕ0. However, for generic values of these parameters
one can show that Au only depends on two scalar parameters and that then by
an appropriate linear change of generators it reduces to the 4-dimensional Sklyanin
algebra introduced in [39] and studied in [40] from the point of view of general
regularity.

The algebraAu is Koszul of global dimensionD = 4 and is Gorenstein whenever
none of the 6 relations (5.14), (5.15) becomes trivial and one then has the nontrivial
Hochschild cycle (in Z(A,A))

w = ch 3
2
(Uu) = −

∑

α,β,γ,δ εαβγδ cos(ϕα − ϕβ + ϕγ − ϕδ)x
α ⊗ xβ ⊗ xγ ⊗ xδ

+ i
∑

μ,ν sin(2(ϕμ − ϕν))x
μ ⊗ xν ⊗ xμ ⊗ xν

which defines a 4-linear form on K
4 which is preregular with

Qw = −1l

i.e. w is graded-cyclic. One verifies that one then has Au = A(w, 2) and that 1l⊗w
is a Hochschild 4-cycle, i.e. 1l⊗ w ∈ Z4(A,A).

(b) The q-deformed D-dimensional polynomial algebra. This is the algebra A gen-
erated by D elements xλ (λ ∈ {1, . . . , D}) with relations

(5.16) xμxν = qμνxνxμ

for μ, ν ∈ {1, . . . , D} where the qμν ∈ K satisfy

(5.17) qμνqνμ = 1, qλλ = 1

for any λ, μ, ν ∈ {1, . . . , D}.
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This algebra is Koszul of global dimension D and Gorenstein. One has A =
A(w, 2) with

(5.18) w =
∑

π∈SD

χ(π)xπ(1) ⊗ · · · ⊗ xπ(D)

where SD is the group of permutations of {1, . . . , D} and where χ : SD → K is
given by χ(π) =

∏

(μν)(−qμν) with Π(μν) corresponding to the standard embedding

SD ↪→ {
∏

(μν)

bμν , μ < ν} ⊂ BD

of SD into the group of braids BD.

One then has

(5.19) (Qw)
μ
ν =

⎛

⎝

∏

λ 
=μ

(−qλμ)

⎞

⎠ δμν

for the matrix element of the corresponding Qw ∈ GL(D,K).

(c) Precommutative examples [3],[7]. Let the integers g and N be such that
g ≥ N ≥ 2 and let ε be the completely antisymmetric g-linear form on K

g with
ε(e1, . . . , eg) = 1. Consider the N -homogeneous algebra A = A(ε,N), i.e. the
algebra generated by g elements xλ (λ ∈ {1, . . . , g}) with the relations

ελ1...λg−N μ1...μN
xμ1 · · ·xμN = 0

where ελ1...λg
= ε(eλ1

, . . . , eλg
). It is clear that ε is preregular with

Qε = (−1)g−11l

as associated element of GL(g,K).

It was shown in [3] where this algebra was introduced that A(ε,N) is a Koszul
algebra of finite global dimension and it was shown in [7] that it is Gorenstein if
and only if either N = 2 or N > 2 and g = Np + 1 for some integer p ≥ 1. For
N = 2 this reduces to the algebra polynomial functions on K

g while for N > 2 and
g = Np+ 1 this is a regular algebra of global dimension D = 2p+ 1. In the latter
case, the ideal I of Theorem 9 is generated by the quadratic elements αβ + βα
of A(ε,N)! so that the quotient Frobenius algebra F(ε,N) = A!/I reduces to the
exterior algebra

∧

K
g, which is precisely the Koszul dual algebra of the quadratic

algebra of polynomial functions on K
g. Thus by this process one recovers the qua-

dratic relations implying the original N -homogeneous ones.

Notice that for N > 2 the algebra A(ε,N) has exponential growth [3].
In [27] a twisted version of this example associated with a Hecke symmetry was
introduced and analyzed with similar results. This paper [27] even contains a super
version of these examples. See also [26] (and [43]) for the quadratic case associated
with a Hecke symmetry.

Remark.
In contrast to the previous example forN > 2, in the cases of the Yang-Mills algebra
and the super Yang-Mills algebra the ideal I of Theorem 9 vanishes, that is the
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Koszul duals are then Frobenius. The reason is that in these cases the 3-regular
multilinear forms (4-linear) w given respectively by (3.18) and (3.20) satisfy the
stronger condition (iii’) of §3.1.

5.4. Classical limit versus infinitesimal preregularity. We now consider
perturbations of the algebra K[x1, . . . , xg] of polynomial functions on K

g. More
precisely, one has K[x1, . . . , xg] = A(ε, 2) where ε is the g-linear form on K

g which
is completely antisymmetric with ε1 2...g = 1, where ελ1...λg

= ε(eλ1
, . . . , eλg

) are
the components of ε in the canonical basis (eλ) of Kg. Let wt be a 1-parameter
family of preregular g-linear forms on K

g with w0 = ε and let us investigate what
happens formally at first order in t. One writes

(5.20)

{

wt = ε+ tẇ + o(t2)

Qwt
= (−1)g−11l + tQ̇+ o(t2)

and the first order Qwt
-cyclicity reads

(5.21) Ẇλ1...λg
= Q̇λ

λg
ελλ1...λg−1

+ (−1)g−1Ẇλgλ1...λg−1

with Ẇλ1...λg
= ẇ(eλ1

, . . . , eλg
). This equation implies

(5.22) tr(Q̇) = Q̇λ
λ = 0

which suggests det(Qwt
) = 1 for a finite version. So a natural question is the

following : Does a quadratic AS-regular algebra A(w, 2) is such that det(Qw) = 1?
By looking at Example (c) of §3.3, one can see that the answer is no. Notice however
that the quadratic AS-algebra of type E is isolated.
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1. Introduction

It has been apparent for quite some time that there exists a strong connection
between subfactors, large random matrices and free probability theory. Perhaps the
most clear instance of this connection is that all three theories have an underlying
planar structure. For example, the standard invariant of a subfactor (i.e., the sys-
tem of higher relative commutants) is in a natural way a planar algebra [Jon99].
Traces of polynomials in random matrices naturally count certain planar objects
([tH74, BIPZ78, GMS06, MS06, CMŚS07, MŚS07, Zvo97]). Finally, the
combinatorics of free probability theory is intimately tied to that of non-crossing
(i.e., planar) partitions [Spe94]. Furthermore, techniques from some of these sub-
jects have proved useful for applications to others. For example, there are many
connections between work in free probability theory and certain computations in the
paper [BJ97]. Random matrices and free probability theory were used to construct
subfactors [Răd94, SU02, Pop95, PS03b]. More recently, Mingo and Speicher
and Guionnet and Maurel-Segala [Gui06, GMS06, MS06, MŚS07, CMŚS07]
have found combinatorial expressions, involving planar diagrams, for the large-N
asymptotics of moments of polynomials in certain random matrices.

In this paper we exploit for the first time the graded algebra coming from
a planar algebra P to obtain a subfactor N ⊂ M whose standard invariant is
P . The essential ingredient is a trace on the graded algebra coming from free
probability/random matrices, whose use in this context was inspired by [Gui06,
GMS06, GS08], which promises to be a source of further developments in this
direction.

We take the point of view that all of the three subjects mentioned above are
intimately related to the notion of a planar algebra. Specifically, the underlying
idea is that a planar algebra, endowed with its graded multiplication ∧0 and trace
Tr0 is a natural replacement for the ring of polynomials occurring in both free
probability theory [VDN92] and the theory of random matrices with a potential
[Gui06, GMS06, GS08].

To be more precise, a subfactor planar algebra (SPA) P will be a graded vector
space P = (Pn, n > 0, P±

0 ) which is an algebra over the planar operad of [Jon01,
Jon99, Jon00] and satisfies certain dimension and positivity conditions outlined
in §2. Every extremal finite index subfactor has an SPA as its standard invariant.
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Given an SPA P , we define the sequence GrkP , k = 0, 1, 2, . . . of complex
∗-algebras with GrkP = ⊕n≥kPn (P0,+ ⊕

⊕

n≥1 Pn if k = 0) and multiplications
∧k : Pn × Pm → Pn+m−k given by tangles as in §2. On each GrkP we define a
trace Trk : GrkP → C using the sum of all Temperley-Lieb tangles. The trace Tr0
comes directly from Wick’s Theorem applied to large N limit of a certain Gaussian
matrix model using Wishart matrices, defined in §3. But once calculated, this trace
can be defined entirely in terms of planar algebras.

A rather important special case is when the matrix models may be taken as
p independent Hermitian matrices. Then the algebra Gr0P is the even degree
subalgebra of C〈{X}〉, the non-commutative polynomials in p self-adjoint variables
{X} (with #{X} = p). The trace Tr0 is then the one discovered by Voiculescu
in the context of his free probability theory [VDN92, Voi85, Voi91]. It can
be realized as the vacuum expectation value on the full Fock space on a real p-
dimensional vector space with basis {X}, by the representation of C〈{X}〉 which
sends X to �X+�∗X , �X being the left creation operator of X (see [Voi85, VDN92]).
The higher multiplications ∧k are then given (on monomials of even degree ≥ 2k)
by

(X1X2 · · ·Xr) ∧k (Y1Y2 · · ·Ys) = (
k
∏

i=1

δXr−i+1,Yi
)X1 · · ·Xr−kYk+1 · · ·Ys.

Our main result is, with notation as above and an SPA P , of index parameter δ,

Theorem. (i) For each k, trk is a faithful tracial state on GrkP and the GNS
completion of GrkP is a II1 factor Mk as long as δ > 1;

(ii) There are unital inclusions GrkP ⊂ Grk+1P which extend to Mk ⊂
Mk+1and projections ek ∈ Grk+1P , such that (Mk+1, ek) is the tower of basic
constructions for the subfactor M0 ⊂ M1;
(iii) The relative commutants M ′

0 ∩ Mk are canonically identified with the vector
spaces Pk and this identification is a homomorphism of planar ∗-algebras.

This theorem gives a new proof of the breakthrough result of Popa [Pop95],
showing that any subfactor planar algebra P can indeed be realized by the system
of higher relative commutants of a II1 subfactor.

The key ingredient in the proofs will be representations of the algebras GrkP
on Fock spaces. In order to define these we will suppose that P is given as a planar
subalgebra of the full planar algebra PΓ of some bipartite graph Γ = Γ+Γ− as in
[Jon00]. This is always possible — one may for instance take Γ to be the principal
graph of P . A basis of PΓ is formed by loops on Γ starting and ending in Γ+ but
we will define a slightly different planar algebra structure from that of [Jon00],
better adapted to graded multiplication.

The Fock space will then be spanned (orthogonally) by paths of varying lengths
on Γ, ending in Γ+. It is naturally Z/2Z-graded. Note that Γ may be infinite so
we need to make a choice of Perron-Frobenius eigenvector and eigenvalue for the
adjacency matrix of Γ. There will not necessarily be a Markov trace on PΓ so we
work instead with the center-valued trace. This will restrict to a Markov trace on
P .

As in the theory of graph C∗-algebras [Rae05], each edge e of Γ defines an
operator �e (of grading 1) on the Fock space, creating an edge on a path. A loop of
edges e1 · · · e2p in PΓ is then represented by the product c(e1)c(e2) · · · c(e2p) where
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c(ei) is a version of ai�(ei)+a−1
i �(e∗i ) according to the parity of i, where the factors

ai are determined by the Perron-Frobenius eigenvector. We also make use of the
fact that the Fock space of loops and the resulting II1 factor can be embedded
into a type III factor canonically associated to the graph and its Perron-Frobenius
eigenvector using a free version of the second quantization procedure.

1.1. Notations. To aid the reader, we list here some notation used in the
paper.

• Bipartite graph (§2.4): Γ; vertices: Γ; even/odd vertices: Γ±; Edges:
E; positively/negatively oriented edges: E±; edges starting at v: Γ+(v);
edges ending at v: Γ−(v). All loops of length k starting at even/odd
vertex: L±

k ; all loops starting at a positive/negative vertex: L±.
• Planar algebra (Def. 4): P ; k-box space: Pk,±; positive/negative part:
P±; Pk = Pk,+. Planar algebra of a graph (§2.4): PΓ, PΓ

k,± etc. Subfactor
planar algebra: Def. 5.

• Graded multiplications: ∧k (Def. 7), the algebra GrkP . Trace on GrkP :
Trk (Def. 8).

2. On planar algebras

2.1. Definition. We begin with a definition of planar algebra which will be
recognizably equivalent to other definitions [Jon99] and suited to the purposes of
this paper.

Definition 1. (Planar k-tangles.) A planar k-tangle will consist of a smoothly
embedded disc D (= D0) in R

2 minus the interiors of a finite (possibly empty) set
of disjoint smoothly embedded discs D1, D2, . . . , Dn in the interior of D. Each disc
Di, i ≥ 0, will have an even number 2ki ≥ 0 of marked points on its boundary
(with k = k0). Inside D and outside D1, D2, . . . , Dn there is also a finite set of
disjoint smoothly embedded curves called strings which are either closed curves or
whose boundaries are marked points of the Di’s. Each marked point is a boundary
point of some string, and the strings meet the boundaries of the discs transversally,
only in the marked points. The connected components of the complement of the

strings in
◦
D \

n
⋃

i=1

Di are called regions. Those parts of the boundaries of the discs

between adjacent marked points (and the whole boundary if there are no marked
points) will be called intervals. The regions of the tangle will be shaded black and
white so that two regions whose boundaries intersect are shaded differently. (Such
a shading is always possible, since there is an even number of marked points.) The
shading will be considered to extend to the intervals which are part of the boundary
of a region. Finally, to each disc in a tangle there is a distinguished interval on its
boundary (which may be shaded black or white).

Definition 2. The set of internal discs of a tangle T will be denoted by DT .

Remark 1. Observe that diffeomorphisms of R2 act on planar tangles in the
obvious way. In particular if Φ is a diffeomorphism it induces a map Φ : DT →
DΦ(T )

We will often have to draw pictures of tangles. To indicate the distinguished
interval on the boundary of a disc we will place a *, near to that disc, in the region
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whose boundary contains the distinguished interval. An example of a 4-tangle
illustrating all the above ingredients is given below:

We will often use pictures with a given number of strings to illustrate a sit-
uation where the number of strings is arbitrary. We hope this will not lead to
misinterpretation. Similarly, if the shading is implicit or both possible shadings are
intended we will suppress the shading.

Given planar k and k′-tangles T and S respectively, we say they are composable
if

(1) The outside boundary of S is equal to the boundary of one of the inside
discs of T , where equality means that the marked points are the same,
the shadings of the intervals are the same and the distinguished intervals
are the same. And,

(2) The union of the strings of S and those of T are smooth curves.

Definition 3. If T and S are composable we define the composition T ◦ S to
be the union T ∪ S. The strings of T ◦ S are the unions of the strings of T and S.

Since the shadings of T and S agree on their common boundary curve, it is easy
to see that T ∪ S is a planar k-tangle. This composition operation is often called
"gluing" as one may think of S as being glued inside T .

We will now define a notion of planar algebra. Axioms can be subtracted to
obtain more general objects but for convenience in this paper the term "planar
algebra" will imply all the properties.

Before giving the formal definition we recall the notion of the Cartesian product
of vector spaces over an index set I, ×i∈IVi. This is the set of functions f from
I to the union of the Vi with f(i) ∈ Vi. Vector space operations are pointwise.
Multilinearity is defined in the obvious way, and one converts multilinearity into
linearity in the usual way to obtain ⊗i∈IVi, the tensor product indexed by I. A
Cartesian product over the empty set will mean the scalars.

Definition 4. A (unital) planar algebra P will be a family of Z/2Z-graded
vector spaces indexed by the set {N ∪ {0}}, where Pk,± will denote the ± graded
space indexed by k. To each planar tangle T there will be a multilinear map

ZT : ×D∈DT
PD → PD0

where PD is the vector space indexed by half the number of marked boundary
points of D and graded by + if the distinguished interval of D is shaded white and
− if it is shaded black.

The maps ZT are subject to the following two requirements:
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(1) (Isotopy invariance) If ϕ is an orientation preserving diffeomorphism of
R

2 then
ZT = Zϕ(T )

where the sets of internal discs of T and ϕ(T ) are identified using ϕ.
(2) (Naturality)

ZT◦S = ZT ◦ ZS

where the right hand side of the equation is defined as follows: first observe
that DT◦S is naturally identified with (DT \{D′})∪DS , where D′ is the disc
of T containing S. Thus, given a function f on DT◦S to the appropriate
vector spaces, we may define a function f̃ on DT by

f̃(D) =

{

f(D) if D �= D′

ZS(f |DS
) if D = D′

Finally, the formula ZT ◦ ZS(f) = ZT (f̃) defines the right hand side.
The natural notation for ZT (f) is to write in the {f(D), D ∈ DT } into

D. This is just like the notation “y(x1, . . . , xn)” for a function of several
variables, where the xi are the f(D), and the internal discs correspond to
the spaces between the commas. (We also call the internal disks “input
discs”). Thus if R1 and R2 are in P2,+, R3 is in P2,− and R4 is in P3,+

then the following picture is an element of P4,− :

The vector spaces Pn,± will possess a conjugate linear involution ∗,
x → x∗ with the compatibility requirement:

ZT (f
∗) = ZΦ(T )(f ◦ Φ)∗

whenever Φ is an orientation reversing diffeomorphism.
Observe that P0,± become unital commutative ∗-algebras under the

multiplication operation (with either shading):

ab =

a

b

Definition 5. A subfactor planar algebra P will be a planar algebra
satisfying the following four conditions:
(a) dim(Pn,±) < ∞ for all (n,±)
(b) dim(P0,±) = 1
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Condition (ii) allows us to canonically identify P0,± with C as *-algebras,
1 being Z (a 0-tangle with nothing in it).

This further allows us to define a sesquilinear form on each Pn,± by

〈a, b〉 =
b∗

a∗

∗

where the outside region is shaded according to ±.

(3) The form 〈 , 〉 is positive definite.
(4) ZT1

= ZT2
where T1 and T2 are the following two 0-tangles:

T1 = T∗ T2 = T∗

The last condition is topologically natural and corresponds to extremality
of the subfactor ([PP86],[Pop94, 1.2.5]). This condition means that the
partition function of a fully-labeled zero-tangle (when considered with-
out its boundary disc) is actually well-defined for that zero-tangle on the
sphere S2 obtained by adding a point at ∞ to R

2. It is natural then to
suppress the outer disc of a 0-tangle in pictures.

Remark 2. Once P0,± have been identified with the scalars there is a canonical
scalar δ associated with a subfactor planar algebra with the property that the
multilinear map associated to any tangle containing a closed string is equal to δ
times the multilinear map of the same tangle with the closed string removed. By
positivity δ > 0 and it is well known that in fact the possible values of δ form the
set {4 cos2 π/n : n = 3, 4, 5, . . .} ∪ [4,∞) [Jon83].

Remark 3. Since δ �= 0 it is clear that all the spaces Pn,− are redundant and
subfactor planar algebra could be axiomatized in terms of Pn,+. For this reason we
will use in what follows Pn to denote Pn,+ (even in the non-subfactor case).

Remark 4. In the development of planar algebras the following structures
played a major role:

(1) Multiplication: Each Pn,± is a *-algebra with the involution defined above
and the multiplications

ab =
b

a
∗

∗∗

There are two choices of shadings which give in general non-isomorphic
algebra structures. (We shall refer to this multiplication sometimes as the
“usual” multiplication on Pn,±).
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(2) Trace: Each Pn,± is equipped with a linear map Tr : Pn,± → P0,± which
is given by

Tr(x) = x∗
· · ·

(3) The Temperley-Lieb tangles: each tangle consisting of an outside box
all of whose 2k boundary points are connected by (non-crossing) strings
inside of the box determines an element of Pk,±, pairing depending on the
shading of the region containing ∗. The set of such tangles is denoted by
TL(k).

(4) The Jones projections: ek ∈ Pk,+ is given by the Temperley-Lieb tangle
(having 2k boundary points):

ek =
· · · · · ·∗

.

Remark 5. (Rectangles). It is sometimes very convenient to use rectangles
rather than circles for the input and output discs. Strictly speaking this is not
allowed since the boundaries are supposed to be smooth. But nothing will happen
at the corners of the rectangles so one may simply interpret a picture of a rectangle
as one with smoothed corners. Use of horizontal rectangles also makes it possible
to avoid specifying the first interval which we will always suppose to be the one
containing the left hand vertical part of the rectangle.

Remark 6. (Outer disks and shading). We occasionally omit the outer disk
when describing a planar algebra element, especially in the case that there are no
boundary points on the outer disk. Also, unless the shading is explicitly indicated
in a picture, we follow the convention that the region adjacent to the boundary
region marked with a ∗ is unshaded (white).

2.2. Graded algebra structures.

Definition 6. If P is a planar algebra we define a graded algebra GrP as
follows. As a graded vector space GrP =

⊕∞
n=0 Pn,+ and the g ∧ : Pn×Pm → Pm+n

is given by the tangle below which puts the element of Pn entirely to the left of the
element of Pn:

a ∧ b =
a b

∗ ∗

∗

(The shading in the picture above is determined by saying that the region
adjacent to the marked interval on the outer box is unshaded (white); as before, ∗’s
denote the marked intervals on the disks). Note that one could also define a dual
structure changing + to − and changing the shading in the above figure.

As a graded algebra a subfactor planar algebra is just the free graded algebra
on a certain graded vector space, as we shall see.

If P is a subfactor planar algebra let M be the 2-sided ideal of GrP spanned
by all elements of degree 1 or more. M. Each graded piece of M has an innner
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product as defined above. For each n ≥ 1 let Nn be the orthogonal complement of
(M2)n in Mn.

Theorem 1. With notation as above, GrP is the free graded algebra generated
freely by ∪∞

n=1Nn.

Proof. Let π = (π1, π2, ..., πk) be an ordered k-tuple of integers with πi ≥ 1

and
k
∑

j=1

πk = n. Then multiplication defines linear maps

multπ : Nπ1
⊗Nπ2

⊗ · · · ⊗Nπk
→ Pn.

By induction the images of multπ span M2
n as π varies. So, together with Nn they

span Pn. Thus the theorem follows from the two assertions:
i) Each multπ is injective.
ii) The images of the multπ are orthogonal for different π.

To see i), note that each multπ is an isometry if we give

Nπ1
⊗Nπ2

⊗ · · · ⊗Nπk

the Hilbert space tensor product structure.
To see ii), let π and ρ be two distinct partitions of n as above. Suppose π1 > ρ1.

Consider the following picture:

This is the inner product of an element y1 ⊗ y2 ⊗ · · · in Nρ1
⊗Nρ2

⊗ · · · ⊗Nρk

with an element x1 ⊗ x2 ⊗ · · · in Nπ1 ⊗Nπ2
⊗ · · · ⊗Nπk

. (Here π1 = 3, π2 = 2 and
ρ1 = 2 = ρ2 = ρ3). One may evaluate the tangle inside the dashed curve to obtain
an element of Mπ1−ρ1

. Thus the figure is actually the inner product of x1 with an
element of M2, thus it is zero. So the images of multπ and multρ are orthogonal
unless π1 = ρ1. Continuing in this way we see that the images of multπ and multρ
are orthogonal unless π = ρ. �

Remark 7. Writing elements of GrP as sums of products of elements orthog-
onal to M2 times arbitrary elements gives, by an easy argument with generating
functions,

ΨP(z) = 1− 1

ΦP(z)

where ΨP(z) is the generating function for dim(M/M2)n, and ΦP(z) is the gen-
erating function for dimPn. In general, if Φn is the generating function for the
dimensions of the graded vector space Mn/Mn+1 we have Φn = Φ(Φn −Φn+1), so
that Φn = (1− 1/Φ)n.

Although the graded algebra structure is not commutative even up to a sign,
the presence of the cyclic group action gives a kind of “cyclic commutativity” as
follows, where ρ denotes the action of the counterclockwise rotation tangle on Pn:

Proposition 1. If P is a planar algebra then

ρdeg a(a ∧ b) = b ∧ a
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Proof. Just draw the picture. �
Remark 8. The multiplication in an exterior algebra can be made to satisfy

exactly the same commutativity formula by making the cyclic group act by the
appropriate sign in each degree.

Besides GrP we will need other "shifted" graded *-algebra structures on P in
order to define a subfactor and analyze its tower.

Definition 7. Given a planar algebra P = (Pn) and an integer k ≥ 0 we make
⊕∞

n=kPn into an associative (unital) *-algebra with multiplication ∧k : Pm × Pn →
Pm+n−k given by the following formula:

A ∧k B =
A B

∗∗
∗ · · ·

k

︷

︸

︸

︷

︸︷
︷︸

k

· · ·

The involution (denoted by † to distinguish it from the usual involution ∗ on Pk)
is given by

A† = A∗

∗ · · ·
∗k

︷︸
︸︷

k︷︸︸︷

The shading in both figures above is determined by the condition that the marked
boundary region ∗ is adjacent to an unshaded (white) region. Here A∗ means φ(A)
where φ is an orientation-reversing diffeomorphism (cf. Def. 4(2)).

We denote this *-algebra by GrkP .

2.3. The traces Trk. Any planar algebra contains in a canonical way the
Temperley-Lieb planar algebra TL. Indeed, TL is spanned by TL diagrams: a
TL diagram is a diagram that has no inner disks, and all of whose strings connect
points on the outer disk. Any such diagram is naturally an element of P .

Definition 8. Let Tn be the sum of all TL diagrams having 2n points on the
outer disk represented pictorially below (for n = 3):

Tn

(The position of the ∗ is irrelevant, by since the set of TL diagrams is invariant
under a rotation by 2π/n). The trace Trk(x) is defined for x ∈ Pm, m ≥ k, and is
valued in the zero box space of P :

Tn

x

∗ · · ·· · · · · ·
︸︷︷︸

k
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where n = m− k (in other words, there are k strings surrounding Tn).

Lemma 1. Trk is a trace on GrkP if endowed with the multiplication ∧k.

Proof. This follows from the fact that the set of all TL diagrams on 2m points
is invariant under rotations by 2π/m. �

Before proceeding further, we consider an example. Let us assume that P is a
subfactor planar algebra, so that in particular P0,± are one-dimensional and Trk

is scalar-valued. Let ∪ be the following element of TL: ∪ =
∗

. Let us denote
by Φ the moment generating function of ∪. Thus we let Φ(z) be the unique scalar
defined by

Φ(z) =
∞
∑

n=0

Tr0(∪ ∧0 · · · ∧0 ∪
︸ ︷︷ ︸

n times

)zn.

We shall presently compute Φ(z) by using planar algebra methods.

Definition 9. Let Tn be the element of the planar algebra defined as the sum
of all the Temperley-Lieb diagrams connecting the 2n boundary points,

Lemma 2.

Φ(z) =
1− (δ − 1)z

2z

(

1−
√

1− 4z

(1− (δ − 1)z)2

)

.

Proof. The trace of ∪n is given by the picture (corresponding to n = 3):

Tn

Group the TL diagrams in Tn according to where the first boundary point of ∪n is
connected. Adding all those diagrams where it is connected to its nearest neighbor
we get δTr0(∪n−1). Proceeding similarly we get, for k = 1, 2, . . . , n− 1, contribu-
tions of the form:

Tk Tn−k−1

If the first term in the picture is rotated by one we may use the rotational
invariance of Tk to see that it is just Tr0(∪k). Thus we have, for each n > 0,

Tr0(∪n) = (δ − 1)Tr0(∪n−1) +
n−1
∑

k=0

Tr0(∪k)Tr0(∪n−k−1)

Multiplying both sides by zn and summing from n = 1 to ∞ we see that

Φ− 1 = z(δ − 1)Φ + zΦ2

Solving the quadratic equation and checking the first term to get the right solution
we obtain our answer. �
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The function Φ in Lemma 2 is that of a free Poisson random variable having R-
transform δ(1−z)−1 (see [Voi00, p. 311]). We shall give an alternative computation
using free convolution later in the paper (see Lemma 5).

The following lemma can be easily proved by drawing the appropriate pictures:

Lemma 3. The obvious linear embedding of Pk into GrkP = Pk⊕Pk+1⊕· · · is
an algebra ∗-homomorphism from Pk endowed with its usual ∗-algebra structure of
Remark 4, to GrkP taken with multiplication ∧k and conjugation † as in Definition
7. Moreover, this embedding carries the trace Trk to the usual trace Tr on Pk.

2.4. The planar algebra of a bipartite graph. Let Γ = Γ+ ∪ Γ− be a
(locally finite) bipartite graph with adjacency matrix AΓ possessing an eigenvector
μ = μv (v being a vertex of Γ) with μv > 0 for all v and AΓμ = δμ. Note that
although μ may be unbounded as a function of Γ, the ratios μ(v)/μ(v′), where v
and v′ are adjacent, are bounded by the eigenvector condition.

We shall denote by E the set of oriented edges of Γ, taken with all possible
orientations. Thus E = E+ ∪ E−, where E+ consists of all edges of Γ oriented so
as to start at a vertex in Γ+ and end at a vertex in Γ−, and E− will consists of all
edges of Γ oriented so as to start in Γ− and end in Γ+. For e ∈ E we’ll denote by
eo the edge with the opposite orientation.

In [Jon00] a planar algebra was associated with the above data with the prop-
erty that closed strings may be removed multiplicatively as in remark 2. We quickly
redo this planar algebra with a slightly different (but isomorphic) structure, em-
phasizing those elements that arise when Γ is infinite.

With Γ, μ as above we will define the planar algebra PΓ = PΓ
n,±, where PΓ

n,±
is the vector space of bounded functions on loops on Γ of length 2n starting and
ending in Γ+ for the plus sign and Γ− for the minus sign.

Definition 10. (Spin State) Given a planar tangle T , and a bipartite graph
Γ as above a spin state σ will be a function from the regions of T to the vertices
of Γ, shaded regions being mapped to Γ+ and unshaded ones to Γ−, together with
a function from the strings of T to the edges of Γ such that if a string S is part of
the boundary of the regions R1 and R2 then σ(S) is an edge connecting σ(R1) and
σ(R2).

Note that a state σ determines a function �σ : DT ∪ {boundary disc} →
{loops on Γ} in the obvious way — if we follow a disc of T around clockwise,
the intervals, beginning at the distinguished one, touch regions of T to which σ has
assigned vertices of Γ and the strings connected to the marked boundary points of
a disc D have been assigned edges of Γ connecting the vertices on either side. We
will call �σ(D) the loop induced on D by σ.

Definition 11. (The curvature factor of a spin state.) Given a tangle and a
spin state σ as above, define the curvature factor c(σ) as follows. First isotope the
tangle so that all discs are horizontal rectangles (with the first boundary interval on
the left as in remark 5) and all marked points are on the top edges of the rectangles.
Arrange also for all singularities of the y coordinate on the strings to be generic
(maxima or minima). Near such a maximum (resp. minimum) we see regions above
and below, one of which is convex, labeled by adjacent (on Γ) vertices vconvex and

vconcave according to σ. Assign the number

√

μ(vconvex)

μ(vconcave)
to this singularity. Then
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the curvature factor is

c(σ) = product over all maxima and minima of

√

μ(vconvex)

μ(vconcave)
.

Definition 12. (The planar algebra of a bipartite graph.) We now define the
action of a planar tangle T on PΓ. We are given a function R : DT → functions on
{loops on Γ} and we have to define a function on loops appropriate to the boundary
of T in a multilinear way.

So, given a loop γ appropriate to the boundary, define

ZT (R)(γ) =
∑

σ

{

∏

D∈DT

R(D)(�σ(D))

}

c(σ)

where the sum runs over all σ which induce γ on the boundary of T .

The main thing to note in this definition is that the sum is finite since there are
only a finite number of states inducing γ on the boundary, and it defines a bounded
function since all the R are bounded and so is the factor c(σ).

We leave it as an exercise to show that this definition of ZT is compatible with
the gluing of tangles and the *-structure, where the * of a loop is that loop read
backwards; also that the eigenvector property of μ guarantees that contractible
closed strings in tangles can be removed with a multiplicative factor of δ; also that
this planar algebra structure is isomorphic to that of [Jon99], the only change
being in how tangles are isotoped in order to define the factor c(σ). The reason
for the change is that we are mostly dealing with the graded algebra, for which the
isotopy we use is the most natural.

Each of the vector spaces PΓ
n,± is infinite dimensional if Γ is infinite. Moreover

PΓ
0,± are the abelian von Neumann algebras �∞(Γ±) which act on the PΓ

n,±. (Note
that the graded product and the usual product are the same on these subalgebras).
The trace tangle when applied to any element of the planar algebra PΓ

0,± produces
an element of �∞(Γ±). We thus get a bilinear conditional expectation E from PΓ

0,±
(taken with its usual product) onto �∞(Γ±).

The inner product tangles of definition 5 thus become �∞(Γ±)-valued inner
products, satisfying 〈a, b〉 = E(a∗b). It will follow from a representation of the
graph planar algebra on a Hilbert space that the conditional expectation E (and
thus the inner product) is non-negative definite.

2.4.1. Representing the planar algebra of a bipartite graph as loops. In the next
few sections, we shall work out several examples, which make explicit the operations
of graded multiplication on PΓ, and which will be useful in the rest of the paper.
All of the facts mentioned below are straightforward consequences of the definition
of the graph planar algebra.

We will sometimes use the word “loop” to also mean the planar algebra element
given by the delta function on the set of all loops supported on the given loop.

As a matter of convenience, when inserting a loop into an internal disc of a
tangle we will line up the edges of the loop with the boundary points of the disc,
starting with the one first in clockwise order after ∗. This convention is useful,
since given a string meeting the disc in question at a certain boundary point, any
state σ which has a nonzero contribution to the sum ZT of will have to assign the
edge of this boundary point to that string.
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For an edge e we’ll write s(e) for its starting vertex and t(e) for its ending
vertex. For a vertex v we’ll write Γ+(v) for the set of all edges starting at v (i.e.,
Γ+(v) = {e : s(e) = v}), and we’ll denote by Γ−(v) the set of all edges that end at
v. We’ll also use the notation

σ(e) =

[

μ(t(e))

μ(s(e))

]1/2

.

Let L+
k be the set of all loops of length 2k starting at an even vertex, and L−

k

be the set of all loops of length 2k starting at an odd vertex.
From now on, fix an integer t and consider the algebra GrtP

Γ with its graded
multiplication ∧t.

Let a ∈ L+
k be a loop,

a = et+1 · · · ekfo
k · · · fo

1 e1 · · · et

where ej and fj are edges of Γ. Let

b = e′t+1 · · · e′kf ′
k
o · · · f ′

1
o
e′1 · · · e′t

Then the graded product a ∧t b is given by:

e1 · · ·

· · ·

et
∗

∗

et+1· · ·

· · ·

ek fo
k

· · ·

· · ·

fo
t+1f

o
t

· · ·

· · ·

fo
1 e′1 · · ·

· · ·

e′t
∗

e′t+1· · ·

· · ·

e′k f ′
k
o · · ·

· · ·

f ′
t+1
o

f ′
t
o· · ·

· · ·

f ′
1
o

which translates into the following formula:

a ∧t b = δs(f1)=s(e′1)

t
∏

j=1

δfj=e′j

[

μ(s(e′j))

μ(t(e′j))

]1/2

·

·et+1 · · · ekfo
k · · · fo

t+1 e′t+1 · · · e′k′f ′o
k′ · · · f ′o

1 · · · e1 · · · et.

Apart from the Perron-Frobenious factors, a ∧t b corresponds to a kind of
amalgamated concatenation of paths, although the edges of the path should be
cyclically permuted. If for a path a ∈ L±

k (parity according to t) we denote by
Dt(a) the path that starts at the (t+ 1)-st edge of a, then we have:

Dt(a) ∧t Dt(b) = const ·Dt(c)

where c is zero if the last t edges of a do not form the inverse of the path formed
by the first t segments of b, and is the concatenation of a (with the last t segments
removed) and b (with the first t segments removed) otherwise.

In particular, if t = 0, given two paths a, b in L+
k the graded multiplication ∧0

is just concatenation of paths (note that in this case Dt is the identity map).
The (usual) trace Tr is given by

Tr(e1 · · · ekfo
k · · · fo

1 ) =
∏

j

δej=fjσ(ej)s(e)

(where again the infinite sums are locally finite).
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2.4.2. TL ⊂ Gr0P
Γ. Let us now set t = 0 and identify in terms of paths the

element of TL(k) ⊂ PΓ
k ⊂ Gr0P

Γ corresponding to any TL picture. Suppose that
we are given a box B with 2k boundary points (arranged so that all boundary
points are at the top and ∗ is at position 0 from the top-left). Assume also that
there are k non-crossing curves inside B which connect pairs of boundary points
together. Let π be the associated non-crossing pairing. The associated element of
the planar algebra is the function wB on loops, defined on a loop a by

wB(a) =

{

σ(e1) · · ·σ(en) if ei = eoj whenever i
π∼ j, i �= j,

0 otherwise.

If π = {i1, j1} ∪ · · · ∪ {ik, jk} where i1 < i2 < · · · and ip < jp, then one can think
of wB as the following locally finite sum of delta functions:

wB =
∑

e1···e2k∈L+
k

{
∏

δeip=eojp
σ(eip)

}

(e1 · · · e2k).

For example, the element wB ∈ Gr0P
Γ associated to the non-crossing pairing

{1, 4}, {2, 3}, {5, 12}, {6, 9}, {7, 8}, {10, 11} (thus k = 6 and t = 0) is presented
below:

wB =
∑

e1, . . . , e6 :

e1e2e
o
2e

o
1e3e4e5e

o
5e6e

o
6e

o
3 ∈ L+

5

σ(e1) · · ·σ(e6)
e1 e2 eo2 eo1 e3∗ e4 e5 eo5 eo4 e6 eo6 eo3

(The dotted lines are for illustration purposes only and are not part of the planar
diagram). In this way, given a TL(k) element B we get an associated element
wB ∈ PΓ

k,+ ∈ GrkP
Γ. This embedding is the canonical inclusion of the Temperley-

Lieb planar algebra into PΓ.
2.4.3. The center-valued trace Tr0 on Gr0P

Γ. As before, we denote by Tk the
element

Tk =
∑

B∈TL(k)

wB

obtained by summing over all TL(k) diagrams.
Let P0,± be the zero-box space, i.e., as a linear space it is �∞(Γ±). The algebras

PΓ
0,±, when considered with the graded multiplication ∧0, are abelian, and are in

the center of Gr0P
Γ. Recall that E : PΓ

n → PΓ
0 is a PΓ

0 -bilinear map determined
by E(ab∗) = 〈a, b〉; one can check that E(v) = μ(v)v, where v denotes the delta
function at Γ±.

The center-valued trace Tr0 : Gr0P
Γ → PΓ

0 is given by the equation

Tr0(x) = 〈x, Tk〉 = E(x · Tk), v ∈ V +, x ∈ PΓ
k .

Here as before Tk is the sum of all TL diagrams.

Lemma 4. Let v ∈ Γ and let φv : Gr0P
Γ → C be defined by φv(x)v = Tr0(x)∧0v

(i.e., the value of Tr0(x), viewed as a function on Γ). Let x = e1 · · · e2k ∈ L+
k be a

loop. Then if x starts at v,

φv(x) =
∑

π∈NCP (2k)

∏

{i,j}⊂π

σ(ei)δei=eoj
,
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where the sum is over all non-crossing pairings of 2k integers and the product is
taken over all tuples {i, j}, i < j which are paired by π. If x does not start at v,
φv(x) = 0.

Furthermore, φv is uniquely determined by the recursive formula

φv(x) =
∑

x=ex1eox2

σ(e)φt(e)(x1)φv(x2)

and the formula φv(ef
o) = δe=f δs(e)=vσ(e).

We note that although the support of an element a ∈ Gr0P
Γ, viewed as a

function on paths, may not be finite, the support of a ∧0 v is always finite, since
this element is supported on paths of a fixed length starting and ending at v. Thus
the value of φv is well-defined. Moreover, to know the value of φv, it is sufficient to
know its value on elements of Gr0P

Γ that have finite support.

Proof. Clearly, the recursive formula gives rise to a uniquely defined lin-
ear functional on all finitely-supported elements of Gr0P

Γ (these elements are, of
course, viewed as functions on paths). By the comments above, we shall therefore
prove the lemma if we prove that both the functional φv and the functional

φ′
v(x) = δs(e1)=v

∑

π∈NCP (2k)

∏

{i,j}⊂π

σ(ei)δei=eoj

satisfy this recursive relation.
Let π ∈ NCP (2k). Then 1 is paired with some integer q. Thus NCP (2k) =

�q>1NC{2, . . . , q − 1} ×NC{q + 1, . . . , 2k}. Thus

φ′
v(x) = δs(e1)=v

∑

π∈NCP (2k)

∏

{i,j}⊂π

σ(ei)δei=eoj

=
∑

q>1

∑

π1 ∈ NCP{1, . . . , q − 1}
π2 ∈ NCP{q + 1, . . . , 2l}

δe1=eoq
σ(e1)

∏

{i,j}⊂π1

σ(ei)δei=eoj

∏

{i,j}⊂π2

σ(ei)δei=eoj

=
∑

x=ex1eox2

σ(e)φ′
t(e)(x1)φ

′
v(x2).

Furthermore, φ′
v(ef

o) is given by the claimed formula. Thus φ′
v satisfies the recur-

sive relation.
We now turn to showing that φv satisfies the same recursive relation. Note

that φv(x) = 0 unless x starts at v.
Note that if x = e1 · · · e2k and y = f1 · · · f2k then 〈x, y〉 = 0 unless x = yo (an

opposite of a path is a path with the order of edges and also all edges reversed).
Furthermore, if x = yo, then

〈x, xo〉 = s(e1)

2k
∏

i=1

σ(ei)

The set TL of all Temperley-Lieb diagrams can be written as a union

TL(2k) = �qTL{2, . . . , q − 1} × TL{q + 1, . . . , 2k}
in a manner similar to decomposing the partitions (q denotes the other endpoint
of the string ending at 1). Let us assume that x starts at v. Let us denote by
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1B1qB2 the diagram in which 1 is connected to q and B1 ∈ TL{2, . . . , q − 1},
B2 ∈ TL{q + 1, . . . , 2k}. Then

Tr0(x) = 〈x, Tk〉 =
∑

B∈TL(2k)

〈x,wB〉

=
∑

q

∑

B1 ∈ TL{1, . . . , q − 1}
B2 ∈ TL{q + 1, . . . , 2k}

〈x,w1B1qB2
〉.

Now, recall that

wB =
∑

f1...f2k∈L+
k

{
∏

δeip=eojp
σ(fip)

}

f1 · · · f2k,

so that

w1B1qB2
=

∑

f1...fq−1e...f2k−1eo∈L+
k

σ(e)
∏

{ip, jp} ⊂ B1

or {ip,jp} ⊂ B2

δfip=fo
jp
σ(fip)ef1 · · · fq−1e

ofq+1 · · · f2k

=
∑

e

σ(e)ewB1
eowB2

.

Moreover,

〈x,w1B1qB2
〉 = 0

unless x has the form x = ex1e
ox2 with x1 a loop having length q − 2 and e an

edge. In this case,

〈x,w1B1qB2
〉 = 〈x1, wB1

〉〈x2, wB2
〉σ(e)σ(eo)σ(e) = 〈x1, wB1

〉〈x2, wB2
〉σ(e).

Lastly, if v = s(e) then

Tr0(ee
o) = 〈e, e〉 = σ(e)v.

It follows that φv satisfies the same recursive formula as φ′
v and, in particular,

φv = φ′
v. �

2.4.4. Examples. Let us denote by ∪ the element
∑

eeo∈L+ σ(e)eeo. Then

Tr0(∪) =
∑

e∈E+

∑

f

E(eeo · ffo)σ(e)σ(f)

=
∑

e

E(eeo · eeo)
[

μ(t(e))

μ(s(e))

]

=
∑

e

[

μ(t(e))

μ(s(e))

]

s(e)

=
∑

v∈Γ+

v
1

μ(v)

∑

s(e)=v

μ(t(e)) =
∑

v∈Γ+

δv,

since
∑

s(e)=v μ(t(e)) =
∑

w Γvvμ(w) = δμ(v).
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2.5. Planar subalgebras of PΓ. It is not the planar algebras PΓ that are of
real interest, but some of their planar subalgebras, in particular those with finite
dimensional Pn and 1-dimensional P0,± for which the inner product is thus scalar
valued and inherits positive definiteness from PΓ.

The following theorem, which follows from Popa’s work on the theory of λ-
lattices (see e.g. Theorem 2.9 (4) in [PS03b]), shows that any subfactor planar
algebra is a sub-planar algebra of a planar algebra of a discrete bipartite graph.

Theorem 2. Let P be an (extremal) subfactor planar algebra, realized as the
λ-lattice Aij with principal graph Γ and associated Perron-Frobenius eigenvector μ.
Let Aj

i be as in Theorem 2.9(4) in [PS03b]. Then:
(a) The graph planar algebra PΓ is the planar algebra of the inclusion A−1

−1 ⊂ A−1
0 ;

in other words, (A−1
−1)

′ ∩ A−1
k = PΓ

k ;
(b) The isomorphism Pj,+ = A−1j

∼= (A0
−1)

′ ∩ A−1
j ⊂ (A−1

−1)
′ ∩ A−1

j gives rise to a
planar algebra inclusion of P into PΓ.

The algebras A−1
−1 and A−1

0 were constructed in [PS03b] as certain non-unital
inductive limits of the algebra Aij . Pictorially, this construction corresponds to
e.g. taking A−1

0 to be the inductive limit of the algebras {Pk : k even} using
the non-unital inclusion given by the following picture (the region containing ∗ is
unshaded):

Pk � x

· · ·∗

· · ·
�→ x

· · ·∗

· · ·
∈ Pk+2

The algebra A−1
−1 then consists of all diagrams having a vertical through-string on

the left (again, region containing ∗ is unshaded):

A−1
−1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x

· · ·

· · ·

∗ ⎫

⎪

⎪

⎬

⎪

⎪

⎭

3. A random matrix model for Tr0

3.1. Random block matrices associated to the graph. Given Γ as above,
let Γ± be the sets of its even and odd vertices. Let A = A+ ⊕ A− where A± =
�∞(Γ±) = PΓ

0,±. We shall denote by E± the set of edges of Γ which are positively or
negatively oriented (according to the sign ±). We shall make the convention that
together with any edge e ∈ E± there is also its opposite edge eo ∈ E∓.

We endow A with a (semi-finite) trace tr given on the minimal projections of
A by the formula

tr(δv) = μ(v), v ∈ Γ.

Let N,M be integers. For each choice of M choose integers {Mv : v ∈ Γf} with
the property that for each fixed vertex v, Mv/M → μ(v) as M → ∞.

In the foregoing, we will consider (infinite if the graph Γ is infinite) matri-
ces whose entries are indexed by the set �v∈Γ{1, . . . , N} × {1, . . . ,Mv}. Such
an entry will be denoted Aij mn vw, where i, j ∈ {1, . . . , N}, m ∈ {1, . . . ,Mv},
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n ∈ {1, . . . ,Mw} and v, w ∈ Γ. Given such a matrix A = (Aij mn vw), we compute
its trace as follows:

tr(A) =
∑

v

1

N

∑

1≤i≤N

1

M

∑

1≤n≤Mv

Aii nn vv.

Our matrices will be such that Aij mn vw = 0 unless v, w belong to a finite set, so
that the sum above is finite.

For v ∈ Γ consider the diagonal matrix dv given by

(dv)ij mn uw = δi=jδm=nδu=w=v.

Note that the joint law of (dv : v ∈ Γ) converges as M → ∞ to the joint law of
(δv : v ∈ Γ).

Consider then for a positively oriented edge e ∈ E+ from v to w the NMv ×
NMw matrix Xe defined as follows. The entry Xe

ij mn tu is zero unless t = v and
u = w. Otherwise, Xe

ij mn vw is (up to scaling) a random Gaussian matrix; in
other words, the entries form a family of independent complex Gaussian random
variables, each of variance (μ(s(e))μ(t(e)))−1/2(NM)−1. We shall moreover choose
the matrices Xe in such a way that the entries of matrices corresponding to different
positively oriented edges are independent. Thus the variables

{Xe
ij mn vw : e ∈ E+, v = s(e), w = t(e), 1 ≤ i, j ≤ N, 1 ≤ m ≤ Mv, 1 ≤ n ≤ Mw}

are assumed to be independent.
For a negatively oriented edge f , set Xf = X∗

eo . For a loop w ∈ L±
k ,w =

e1 · · · e2k, set Xw = Xe1 · · ·Xe2k . Note that w �→ Xw is a homomorphism from the
algebra (PΓ,∧0) to the algebra of random matrices.

3.2. Tr0 via random matrices.

Proposition 2. Let E denote the expected value of a random variable. Then
the matrices Xe satisfy: (a) dvXedw = δv=s(e)δw=t(e)Xe; (b) E(tr(X∗

eXe)) =

E(tr(XeX
∗
e )) is independent of N and converges to (μ(s(e))μ(t(e)))1/2 as M → ∞;

(c) For any v ∈ V , w ∈ L±
k , limM→∞ limN→∞ E(tr(dvXw)) = tr(δv)Tr0(w)(v)

(here Tr0(w)(v) means the value of the function Tr0(w) ∈ �∞(Γ) at v ∈ Γ).

Proof. (a) and (b) are both straightforward; note that

E(tr(XeX
∗
e )) =

1

(μ(s(e))μ(t(e)))1/2
MvMw

M2
→ (μ(s(e))μ(t(e)))1/2.

To see (c), we first note that if w = eeo then E(tr(Xw)) → (μ(s(e))μ(t(e))1/2

as N → ∞ and then M → ∞. On the other hand, tr(Tr0(w)) = σ(e)tr(w) =
σ(e)μ(s(e)) = (μ(s(e))μ(t(e)))1/2.

Denote by E the conditional expectation onto the algebra A. Then we have
that if v = s(e), E(XeX

∗
e ) is a multiple of dv. Since E is tr-preserving, we have

E(E(XeX
∗
e )) = tr(v)−1tr(E(XeX

∗
e ))δv = σ(e)dv.

In particular, we see that

E(E(XeX
∗
f )) = δe=f δv σ(e).

It is known (see e.g. [BG05, Shl96]) that the variables {Xe : e ∈ Γ} converge in
distribution (jointly also with elements of A) to a family of A-valued semicircular
variables with variance

θe : δw �→ δw=vδv σ(e).
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Hence if w = e1 · · · e2k, then for any a ∈ A,

lim
N→∞

lim
M→∞

tr(dv(E(E(Xw))) = tr

⎛

⎝δv
∑

π∈NC(2k)

∏

{i,j}⊂π

δei=fiσ(e)

⎞

⎠ .

By Lemma 4, we see that

tr(E(E(Xw))dv) → tr(δv)Tr0(w)(v), ∀v ∈ V,

as claimed. �
Since the trace tr is positive and faithful on A we conclude that the center-

valued trace Tr0 is non-negative:

Corollary 1. Tr0(x
∗ ∧0 x) ≥ 0 if x ∈ PΓ.

3.3. Another construction of random block matrices. Recall that a bi-
partite graph can be used as a Bratteli diagram to describe an inclusion of two
algebras.

Let B ⊂ C be an inclusion of multi-matrix algebras corresponding to the graph
Γ. This means B =

⊕

v∈V+
Mk(v)×k(v) and C =

⊕

w∈V−
Ml(w)×l(w). In particular,

each v ∈ Γ+ corresponds to a central projection pv in B (the unit of the v-th
direct summand), and each w ∈ Γ− corresponds to a central projection qw ∈ C.
The inclusion B ⊂ M is such that pvqw = 0 if there is no edge between v and w.
If there are r edges between v and w, then Mk(v)×k(v) = pvBpv is included into
qwCqw = Ml(w)×l(w) with index r. In particular, this means that l(w) = rk(v)
and also that we can choose r orthogonal projections {P e}s(e)=v,t(e)=w in qwCqw

with the property that P eqwCqwP
e

φe∼= Mk(v)×k(v) and the inclusion of pvBpv into
qwCqw is given by x �→

∑

s(e)=v,t(e)=w P eφj(x)P
e. Choose also isometries Ve,f so

that P eVe,f = Ve,fP
f .

Let Tr be the semi-finite trace on B ⊕ C determined by the requirement that
Tr(pv) = μ(v), Tr(qw) = μ(w).

Let Y be a semicircular element, free from B⊕C (this only makes sense in the
case that Tr(1) < ∞; more precisely, we shall consider a large projection Q in the
center of B ⊕ C and consider an element Y free from Q(B ⊕ C)Q with respect to
Tr(Q)−1Tr(·); our computations will not depend on Q once it is large enough).

To a positive edge e, we associate: (i) a central projection ps(e) ∈ B; (ii) a
projection P e ∈ qt(e)Cqt(e) ⊂ C.

Let Ye = (μ(t(e))μ(s(e)))−1/4
∑

s(f)=s(e),t(f)=t(e)(ps(e)Y Pe)Ve,f if e ∈ E+ and
Ye = Y ∗

eo if e ∈ E−.
Note that YeYf = 0 unless t(e) = s(f). We can think of Ye as a limit of a

“μ(s(e))×μ(t(e))” random block matrix, since its left and right support projections,
pv and qw, have traces μ(s(e)) and μ(t(e)). In fact, one can model Y by a suitable
GUE random matrix in the limit when its size goes to infinity, in which case the
variables Ye are indeed approximated in law by random blocks as their sizes go to
infinity.

Furthermore, if e ∈ E+,

Tr(pvYeqwY
∗
f ) = (μ(t(e))μ(s(e)))−1/2Tr(pvps(e))Tr(

∑

e′,f ′

Ve,e′qwVf ′,f )

= (μ(t(e))μ(s(e)))−1/2δv=s(e)Tr(pv)δw=t(e)δv=fTr(qw).
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Thus also Tr(qwYfopvY
∗
eo) = (μ(t(e))μ(s(e)))−1/2δv=s(e)Tr(pv)δw=t(e)δv=fTr(qw).

It follows that if we denote by E the conditional expectation onto the center of
B ⊕ C, then, keeping in mind that Tr(δv) = μ(v),

E(YeδvYf ) = (μ(t(e))μ(s(e)))−1/2δe=foδv=t(e)δs(e)μ(t(v)) = δe=foδv=t(e)δs(e)σ(e).

Thus the variables {Ye : e ∈ E} have the same joint ∗-distribution as the variables
{Xe : e ∈ E} that we constructed in the previous section.

4. The Fock Space Model

4.1. A Hilbert bimodule associated to a bipartite graph. Let Γ be a
bipartite graph, as before. Consider the complex vector space H with basis given
by the (oriented) edges E of the graph; we denote, as before, by E+ the set of
positively oriented edges. Then H is equipped with a natural conjugation which
takes an edge to its opposite, e �→ eo. The inner product on H is determined by
requiring that 〈e, f〉 = 0 unless e = f and

‖e‖2 =

[

μ(s(e))

μ(t(e))

]1/2

.

(Note that e �→ eo is not isometric). As before, we shall use the notation

σ(e) =

[

μ(t(e))

μ(s(e))

]1/2

= ‖e‖−2.

Let A denote the abelian algebra A = �∞(Γ), where as before Γ denotes the
set of vertices of Γ. Then H is naturally an A,A-bimodule: given e an edge in E,
define

v · e · v′ = δv=s(e)δv′=t(e)e.

Moreover, H has a natural A-valued inner product:

〈e, f〉A = 〈e, f〉s(e) = 〈e, f〉t(fo).

4.2. The operators c(e), the weight φ, and the A-valued conditional
expectation E. We now consider the Fock space [Pim97]

F = A⊕
⊕

k≥0

H⊗Ak

(here ⊗A denotes the relative bimodule tensor product). For e ∈ E we consider the
operator

�(e) : F → F , �(e)ξ = e⊗ ξ.

Its adjoint is given by

�(e)∗(e1 ⊗ · · · ⊗ en) = 〈e, e1〉Ae2 ⊗ · · · ⊗ en.

Note that the norm of this operator is given by

‖�(e)‖ = ‖�∗(e)�(e)‖1/2 = ‖e‖.
Let also

c(e) = �(e) + �(eo)∗.

Note that c(e)∗ = c(eo).
Let B(F) be the algebra of bounded adjointable operators on F and let E :

B(F) → A be the natural conditional expectation given by

(1) E(X) = 〈1A, X1A〉A.
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Each vertex v ∈ Γ determines a state on B(F) given by

φv(X) = δv ◦ E(X),

where δv : A → C is the point evaluation at v. Then

φ =
∑

v

φv

is a weight on B(F). Note that φ is finite on all finite words in c(e) : e ∈ E, and
therefore defines a semifinite weight on the von Neumann algebra W ∗(c(e) : e ∈ E)
(in the GNS representation associated to φ).

Lemma 5. (i) The weight φ and the conditional expectation E are faithful on
this algebra.

(ii) The modular group of φ is determined by σφ
t (c(e)) =

[

μ(t(e))
μ(s(e))

]it

c(e) =

σ(e)2itc(e).
(iii) Consider ∪ =

⊕

v even
∑

e∈Γ+(v) σ(e)c(e)c(e
o), where Γ+(v) denotes the

set of all edges that start at v. Then for each v, the law of ∪ with respect to φv has
no atoms and is the free Poisson law with R-transform δ(1 − z)−1. In particular,
v∪v is bounded for all v and thus the (possibly infinite) direct sum defining ∪ yields
a bounded operator.

Proof. The GNS vector space Fv associated to the state φv on the algebra
W ∗(c(e) : e ∈ E) can be identified with the subspace of the Fock space F (H) =
Cv ⊕

⊕

k≥1 H
⊗k spanned by tensors of the form e1 ⊗ · · · ⊗ en, ej ∈ E for which

e1 · · · en form a path (i.e., are “composable”: s(ej) = t(ej+1)) and so that en starts
at v. The identification takes the tensor e1 ⊗A · · · ⊗A ek to e1 ⊗ · · · ⊗ ek ∈ F (H).
If we denote by �̂(e) : F (H) → F (H) the operator �̂(e)ξ = e ⊗ ξ and by ĉ(e) the
operator ĉ(e) = �̂(e) + �̂(eo)∗, then we have

P ĉ(e)P = c(e), P : F (H) → Fv orthogonal projection.

Let P be the set of all paths in Γ and P (v) be the set of all paths starting at v. For
a path w = e1 · · · en ∈ P (v), let c(w) = c(e1) · · · c(en) and similarly for ĉ. We then
see that the joint laws associated to the vacuum expectation state of the variables

{c(w) : w ∈ P (v)} and {ĉ(w) : w ∈ P (v)}
have the same law. Indeed, ĉ(w)v = c(w)v if w ∈ Pv.

It follows that the von Neumann algebra generated by (A, c(e) : e ∈ E) in the
GNS representation πv associated to φv can be embedded into the von Neumann
algebra W ∗(ĉ(e) : e ∈ E) in such a way that the restriction of the state φ̂v = 〈v, ·v〉
to the former algebra is exactly φv. But it is known [Shl97] that φ̂v is faithful,
and so φv is faithful (on the image in the GNS construction πv). Furthermore, the
modular group of φ̂v is given by

σφ̂v
t (ĉ(e)) =

[

μ(t(e))

μ(s(e))

]it

ĉ(e).

It follows that

σφv

t (πv(c(e))) =

[

μ(t(e))

μ(s(e))

]it

πv(c(e)).

It is clear that the GNS vector space for the weight φ on W ∗(A, c(e) : e ∈ E) is
just the direct sum of the GNS vector spaces for φv taken over all vertices v. Thus φ
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is faithful and so E is faithful (on the possibly larger algebra W ∗(A, c(e) : e ∈ E)).
Thus (i) holds.

Let now
Y =

∑

e∈Γ+(v)

σ(e)ĉ(e)ĉ(eo).

Then Y has the same law for φ̂v as does ∪ for φv. Note that Y =
∑

e∈Γ+(v) b(e),
with b(e) = σ(e)ĉ(e)ĉ(eo). Thus b(e) are free and so the law of Y satisfies

μY = �e∈Γ+(v)μb(e).

Now, for each e, b(e)1/2 has the free Poisson distribution with R-transform
(μ(t(e))/μ(s(e))) · (1 − z)−1 (see [Shl97, Remark 4.4 on p. 347]). Thus the law
of b(e) has only one atom of mass α(e) = 1− μ(t(e))/μ(s(e)) at zero (this expres-
sion is to be interpreted as zero if it is negative). It follows from additivity of the
R-transform [VDN92] that the law of Y is free Poisson with R-transform

(1− z)−1
∑

e∈Γ+(v)

μ(t(e))

μ(v)
=

δ

1− z
,

which will have an atom iff δ < 1. Since δ ≥ 1, the law of Y has no atoms. Thus
(iii) holds.

Finally, it is also clear that (ii) holds since a similar formula holds in the GNS
representation of each φv and φ =

∑

φv. �
Lemma 6. Let L be the set of all loops in Γ. Then the algebra W ∗(c(w) : w ∈ L)

belongs to the fixed point of the modular group acting on the von Neumann algebra
W ∗(c(w) : w ∈ P ).

Proof. Since w is a loop, the factors μ(t(e))/μ(s(e)) associated to each factor
in c(w) cancel. �

4.3. The conditional expectation E realizes Tr0. Let Yw = c(w), w ∈ L+
k

(the set of all loops starting at a positive vertex and of length 2k).

Lemma 7. Let w ∈ L be a loop given by w = e1 · · · en. Then φ(Yw) =
∑

π∈NC(2k)

∏

{i,j}⊂π δei=eoj
σ(ei). In particular, E(Yw) = Tr0(w).

Proof. E(Yw) =
∑

π∈NC(2k)

∏

{i,j}⊂π δei=eoj
· E(YeiYej )s(ei). Moreover,

E(c(ei)c(ei)
∗) = s(ei)σ(ei). The rest follows from Lemma 4. �

Lemma 8. Let L+ be the set of loops starting at an even vertex. Consider
M0 = W ∗(c(w) : w ∈ L) with its semi-finite weight φ. Then each even v ∈ Γ,
defines a central projection in M0 and

(M0, φ) =
⊕

v even

(vM0v, φv).

For each v, the algebra vM0v can be canonically embedded into a free group factor.

Proof. If w ∈ L is a loop starting at v, then v′c(w) = c(w)v′ = δv=v′c(w).
To see that v ∈ M0, note that v is the support projection of the element v ∪ v =
∑

e∈Γ+(v) σ(e)c(e)c(e
o) ∈ M0.

We have seen before that πv(W
∗(c(w) : w ∈ P )) with its state φv can be

embedded into a free Araki-Woods factor associated to H and taken with its free
quasi-free state, in a state-preserving way. The image of M0 under πv is precisely
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vM0v, and this image clearly lies in the centralizer of the free quasi-free state.
The free quasi-free state is almost-periodic (the modular group, restricted to c(H)
has as its eigenvectors the edges of Γ) and therefore the centralizer is a free group
factor. �

Note that φ =
⊕

φv is faithful.

Theorem 3. Let w ∈ L+ be a loop on Γ, starting at an even vertex. Then
the map w �→ c(w) extends to a trace-preserving embedding with dense range of
(Gr0P

Γ,∧0, T r0) into (M0, E). Thus Tr0 is a faithful center-valued trace.

Proof. Clearly the theorem is true on elements of PΓ
+ that have finite support,

i.e., are finite linear combinations of loops.
We have to check that this embedding makes sense for elements of PΓ

+ which,
as functions on loops, have infinite support.

Let w ∈ PΓ
k . Then for any v ∈ Γ+, δv ∧0 w = w ∧0 δv = δv ∧0 w ∧0 δv has finite

support. Moreover, by assumption 〈w,w∗〉 ∈ PΓ
0 = �∞(Γ+) has finite �∞ norm.

But the value of 〈w,w∗〉 at v is exactly ‖c(δv ∧0 w ∧0 δv)‖2L2(φv)
and is therefore

uniformly bounded as a function of v. Moreover, note that each c(δv ∧0 w ∧0 δv)
belongs to the span of words of length 2k in operators c(e) : e ∈ E+.

The eigenvector condition implies that the ratios μ(v)/μ(w) for v, w adjacent
are bounded, and also that the valence of the graph is bounded.

It follows that the linear dimension of the space of all loops of length k starting
at a vertex v is uniformly bounded, by a constant independent of v. Moreover,
the norms of the orthogonal basis for this space (consisting of the various loops)
are bounded both above and below uniformly in v. Thus the restrictions of the
operator norm and the L2(φ)-norm to the finite-dimensional linear span of loops of
length k starting at v are equivalent, and the constants in the equivalence can be
chosen to be uniform in v.

It follows that vc(w)v is uniformly bounded in norm (independent of v).
Since the projections v : v ∈ Γ+ are orthogonal, it follows that c(w), defined as

the ultraweakly-convergent sum
∑

vc(w)v, is a bounded operator in M0.
Since the map w �→ c(w) is bilinear over PΓ

0 , and is an algebra homomorphism
when restricted to finite linear combinations of loops, it is easy to see that it is an
algebra homomorphism on all of Gr0P

Γ,∧0. �

4.4. The operator ∪. Let Γ+(v) denote the set of all edges starting at an
even vertex v and let E+ denote the set of all positively oriented edges (i.e., ones
that start at an even vertex). Recall that

∪ =
∑

e∈E+

σ(e)c(e)c(e)∗.

If we let δ be the Perron-Frobenius eigenvalue, then

(∪) =
∑

e∈E+

σ(e) (�(e)�(eo) + (�(e)�(eo))∗ + �(e)�(e)∗ + σ(e))

= 2
∑

e∈E+

σ(e)�(�(e)�(eo)) +
∑

v

∑

e∈Γ+(v)

[

μ(t(e))

μ(s(e))

]

v +
∑

e∈E+

σ(e)�(e)�(e)∗

= 2
∑

e∈Γ+(v)

σ(e)�(�(e)�(eo)) + δ +
∑

e∈E+

σ(e)�(e)�(e)∗.
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Here we used
∑

e∈Γ+(v)

μ(t(e)) =
∑

j

Γvjμj = δμ(v)

so that
∑

e∈Γ+(v)

μ(t(e))

μ(s(e))
=

1

μ(v)

∑

e∈Γ+(v)

μ(t(e)) =
1

μ(v)
δμ(v) = δ.

Let F+ be the set of all vectors in F starting and ending in a positive vertex and
let A+ = A ∩ F+. Since if ζ ∈ F �A+

∑

e∈Γ+(v)

σ(e)�(e)�(e)∗ζ = ζ,

(because of the normalizations of the lengths of e, eo we have that the sum
∑

e∈Γ+(v) σ(e)�(e)�(e)
∗ is the same as the sum

∑

f �(f)�(f
∗) where the summation

is over an orthonormal basis). Thus

(2) ∪|F+
= 2

∑

e∈Γ+(v)

σ(e)�(�(e)�(eo)) + δ + (1− P ),

where P : F+ → F+ is the projection onto A+ ⊂ F+ and δ is the Perron-Frobenius
eigenvalue.

As consequence, we note that we can now identify the position of Av =
πv(W

∗(Y )) = vW ∗(Y )v inside of vFv = L2(W ∗(c(w) : w ∈ L), φv) identified
with a subspace of Cv ⊕

⊕

k≥1 H
⊗k:

Lemma 9. Let v be an even vertex. Then L2(Av) is the closed linear span of
the orthogonal system of vectors

ξ⊗k =

⎛

⎝

∑

e∈Γ+(v)

σ(e)e⊗ eo

⎞

⎠

⊗k

, k = 0, 1, . . . .

Moreover,

‖ξ⊗k‖22 = δk,

where δ is the Perron-Frobenius eigenvalue.

Proof. We note that Y v = ξ. Moreover, the linear span of ξ⊗k is clearly
stable under the action of Y . Thus it is sufficient to prove that if ξ⊗r for r < k are
in L2(A) then also ξ⊗k ∈ L2(A). But this follows from noting that Y kv = ξ⊗k + ζ,
where ζ is a tensor of smaller degree in L2(A).

Furthermore,

〈ξ, ξ〉 =
∑

e∈Γ+(v)

[

μ(t(e))

μ(s(e))

]

‖e⊗ eo‖22 =
∑

e∈Γ+(v)

μ(t(e))

μ(v)
=

1

μ(v)

∑

j

Γvjμj = δ.

�
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4.5. Relative commutant of ∪. Recall that the space L2(M0, φ) admits the
decomposition L2(M0, φ) =

⊕

v L
2(vM0v, φv) =

⊕

v vFv. Let as before Y = ∪ ,
A = W ∗(Y ) and Av = vAv.

Lemma 10. (i) Av is a singular MASA in vM0v.
(ii) W ∗(∪)′ ∩M0 =

⊕

v even vAv.
(iii) Consider the algebra

N+ = W ∗(c(w) : w a path in Γ starting and ending at an even vertex).

Then A′ ∩ N+ =
⊕

v∈Γ+
vAv.

Proof. We first note that any v ∈ V commutes with Y = ∪. In particular,
v ∈ A′∩N+. Hence [Y, x] = 0 implies that v[Y, x]w = [Y, vxw] = 0 for all v, w ∈ V .
Hence A′ ∩ N+ is the closure of

∑

v,w(A′ ∩ vN+w).
Consider the full Fock space F (H) as in the proof of Lemma 5, where H is as

before a Hilbert space having as basis edges of Γ. Thus F (H) is spanned by all
tensors of the form ei1 ⊗ · · · ⊗ eim , where eik ∈ E. Let H̃ = H ⊗H, and consider
F̃ ⊂ F (H) given by F̃ =

⊕

k≥0 H̃
⊗k. Let T = W ∗(�̂(e) + �̂(eo)∗ : e ∈ E) acting on

F (H), and consider the subalgebra Q ⊂ T given by

Q = W ∗([�̂(e) + �̂(eo)∗][�̂(f) + �̂(fo)∗] : e, f ∈ E).

Then clearly L2(Q) ⊂ L2(P ) can be identified with F̃ ⊂ F (H). Furthermore, Q is
invariant under the modular group associated to φv (the vector state associated to
the vacuum vector in F̃ ⊂ F (H)). Thus the modular group of Q is the restriction
to Q of the modular group of P .

Fix v, w ∈ V . Denote by λv the element
∑

e∈Γ+(v)

σ(e)(�̂(e) + �̂(eo)∗)(�̂(eo) + �̂(e)∗) ∈ Q.

Denote by ρw the element
∑

e∈Γ+(w)

σ(e)(r̂(e) + r̂(eo)∗)(r̂(eo) + r̂(e)∗) ∈ JQJ

(here r̂ denotes the right creation operator and J is the modular conjugation). Note
that ρv = JλvJ .

We now make the identification U : L2(vN+w) ↪→ L2(Q) obtained by sending
a tensor e1 ⊗A · · · ⊗A e2n associated to a path e1 · · · e2n starting at v and ending at
w to the tensor e1 ⊗ · · · ⊗ e2n. It is not hard to see that

λvU = UY, ρwU = UJY J.

It follows that the laws of ρw and λv (with respect to the vacuum state on F̃(H))
are the same as that of Y and have no atoms; thus W ∗(λv) and W ∗(ρw) are
diffuse. In particular, if Ξ ∈ L2(vN+w) satisfies Y Ξ = JY JΞ, then UΞ satisfies
λvUΞ = ρwUΞ.

Consequently, we would prove (iii) if we could show:
(a) if v �= w, λvζ = ρwζ for ζ ∈ UL2(vN+w) only occurs if ζ = 0 and
(b) if v = w and λvζ = ρvζ for some ζ ∈ UL2(vN+v), then ζ ∈ UL2(vAv).
Let ξv =

∑

e∈Γ+(v) σ(e)e⊗ eo.
Assume first that u = v. Let Kv = H̃�Cξv. Put Hv = CΩ⊕Cξv⊕Cξ⊗2

v ⊕· · · .
Then Hv = UL2(vAv) in such a way that the left and right multiplication by Y
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on L2(vAv) correspond to the actions of λv and ρv. In particular, Hv is invariant
under both λv and ρv.

The image of L2(vN+v) under U lies in the closure of the direct sum

Hv ⊕ (Hv ⊗Kv ⊗Hv)⊕ (Hv ⊗Kv ⊗Hv ⊗Kv ⊗Hv)⊕ · · · .
(This direct sum is identified with a subspace F̃ by identifying Ω ⊗ ζ and ζ ⊗ Ω
with ζ if ζ ∈ F (H)). Each direct summand in this sum is invariant under both ρv
and λv since their actions respect the tensor product decompositions Hv ⊗ Kv ⊗
· · · ⊗Kv ⊗Hv: ρv acts as id ⊗ ρv|Hv

and λv acts as λv|Hv
⊗ id.

Now, for any choice of orthonormal basis for Kv ⊗Hv ⊗ · · · ⊗Kv, ζα, we have
for all h, g ∈ Hv:

〈h⊗ ζα ⊗ g, h′ ⊗ ζα′ ⊗ g′〉 = δα=α′〈h, h′〉〈g, g′〉
and consequently Hv⊗Kv⊗· · ·⊗Hv is isomorphic to an (infinite) multiple of Hv⊗Hv

as a bimodule over W ∗(λv) acting on the left copy of Hv and W ∗(ρv) = JW ∗(λv)J
acting on the right copy of Hv. Since the spectral measure of λv is non-atomic, it
follows that there can be no vector Ξ contained in Hv ⊗Kv ⊗ · · · ⊗ Hv satisfying
λvΞ = ρvΞ, since such a vector would give rise (via an isomorphism of Hv ⊗ Hv

with Hilbert-Schmidt operators on this space) to a Hilbert-Schmidt operator on
Hv, commuting with λv.

Thus the only possible Ξ satisfying λvΞ = ρvΞ and lying in the image of
UL2(vN+v) must be contained in Hv = UL2(vAv). Thus we have proved (b).

To prove (a), we note that if v �= w, and we let Kv,w = H̃ � (Cξv ⊕ Cξw), the
image of L2(vN+w) lies in

Hv ⊗

⎛

⎝

⊕

k≥0

⊕

u1,...,uk∈{v,w}
Kv,w ⊗Hu1

⊗Kv,w ⊗Hu2
⊗ · · · ⊗Kvw

⎞

⎠⊗Hw

(once again identified with a subspace of F̃ as before), which is isomorphic to an
infinite multiple of Hv ⊗Hw as a bimodule over W ∗(λv) acting on the left copy of
Hv and W ∗(λw) acting on the right copy of Hw. Once again, we see that there can
be no vector Ξ satisfying λvΞ = ρwΞ in this space. Thus (a) is also proved. Thus
we have proved (iii).

Note that we have actually proved that L2(vM0v, φv) when viewed as a bimod-
ule over Av = W ∗(vY v) is the direct sum of L2(Av) and an (infinite) multiple of
the coarse Av,Av-bimodule L2(Av)⊗̄L2(Av). Recall (see e.g. [PS03a] or [FM77])
that the normalizer of Av is contained in its quasi-normalizer NQ(Av), which con-

sists of those elements ζ in vM0v for which the associated bimodule AvζAv
L2

is
“discrete”. This bimodule cannot be discrete if it contains a sub-bimodule isomor-
phic to a compression of the coarse Av,Av-bimodule. Thus the only ζ ∈ QN (Av)
must lie in L2(Av) and thus in Av. It follows that the normalizer of Av in vM0v
is contained in Av. Thus Av is a singular MASA and so (i) follows. Now (ii) easily
follows from (i). �

4.6. The operator �, relative commutant of W ∗(∪,�) and factoriality.
We now consider the following sum

� =
∑

effoeo∈L+

[

μ(t(f))

μ(s(e))

]1/2

c(e)c(f)c(f)∗c(e)∗
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taken over all loops that start at an even vertex. The pictorial representation of
this planar algebra element is:

� = ∗ .

Lemma 11. Let v be a fixed even vertex. Assume that there is a path of
length 2 from v to v not of the form eeoffo. Then algebra vW ∗(∪,�)v has a
trivial relative commutant inside of the algebra vN+v, where N+ = W ∗(c(w) :
w a path in Γ starting and ending at an even vertex).

Proof. Because of Lemma 10, we know that the relative commutant of
vW ∗(∪,�)v inside of vN+v is contained in vW ∗(∪)v = Av.

Let η = e1 ⊗ f1 ⊗ fo
1 ⊗ eo1 where f1 �= eo1 and e1f1f

o
1 e

o
1 is a path from v to v.

Set
Z = v � v =

∑

e,fo

σ(e)σ(f)c(e)c(f)c(fo)c(eo),

where the sum is over all paths effoeo from v to v. Then if k, l > 0, and ξ ∈
L2(vW ∗(∪)v) = L2(Av) is as in Lemma 9, we have:

〈η ⊗ ξ⊗k, [Z, ξ⊗l]〉 =
〈

η ⊗ ξ⊗k,
∑

e,f

{

σ(e)σ(f)c(e)c(f)c(fo)c(eo)ξ⊗l

−σ(e)σ(f)ξ⊗lc(e)c(f)c(fo)c(eo)
}〉

=
〈

η ⊗ ξ⊗k,
∑

e,f

σ(e)σ(f)e⊗ f ⊗ fo ⊗ eo ⊗ ξ⊗l

+
∑

e,f

σ(e)σ(f)
μ(t(e))1/2

μ(v)1/2
e⊗ f ⊗ fo ⊗ ξ⊗(l−1)

〉

.

Thus

〈η ⊗ ξ⊗k, [Z, ξ⊗l]〉 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

μ(t(f1))
1/2

μ(v)1/2
, l = k

μ(t(f1))
1/2

μ(v)1/2
· μ(t(e1))

1/2

μ(v)1/2
, l = k + 1

0, otherwise.

Thus if we consider
a =

∑

αkξ
⊗k ∈ L2(Av)

and assume that [a, Z] = 0 and a ⊥ Cv (so that α0 = 0), we obtain

0 = 〈η ⊗ ξ⊗k, [Z, a]〉

=
μ(t(f1))

1/2

μ(v)1/2

(

αk +
μ(t(e1))

1/2

μ(v)1/2
αk+1

)

, k ≥ 1.

Since the choice of e1 was arbitrary, we find that

αk = −μ(t(e))1/2

μ(v)1/2
αk+1, ∀e ∈ Γ+(v).

If a �= 0, not all αk are zero; from this recursive relation we deduce that μ(t(e))
are all equal to the same value, μ′, independent of e ∈ Γ+(v) and that (after
rescaling a by a non-zero constant) we may assume that αk+1 = (−1)kλ−(k+1)

where λ = (μ(t(e))/μ(v))1/2 = (μ′/μ(v))1/2.
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On the other hand,
∑

Γvjμ
′ = δμ(v)

so that
(
∑

Γvj)μ
′/μ(v) = (

∑

Γvj)λ
2 = δ.

Thus if N ≥ 1 is the valence of Γ at v, we find that Nλ2 = δ, so that λ2 = δ/N .
Using the fact that ‖ξ‖22 = δ, we compute:

‖a‖22 =
∑

k

|αk|2‖ξ⊗k‖22 =
∑

k

λ−2kδk =
∑

k

(N/δ)kδk =
∑

k

Nk = ∞,

which is impossible. Thus [Z, a] = 0 forces a ∈ Cv. �

Lemma 12. Let Γ be a connected bipartite graph with N+1 vertices, v ∈ Γ even
and assume that the hypothesis of Lemma 11 is not satisfied. Then the remaining
vertices e1, . . . , eN of Γ are all connected to v by a single edge, and Γ has no other
edges.

We can now prove that the relative commutant of W ∗(∪,�) can be controlled,
if the graph Γ is not too small. The cases we exclude are A1 (a graph with a single
vertex and no edges) and A2 (a graph with exactly two vertices connected by a
single edge). In these cases, ∪ and � commute (in fact, they are equal). In either
of these cases, the Perron-Frobenius eigenvalue is 1, which is of little interest to us.

Theorem 4. Assume that Γ �= A2 and Γ �= A1 and let v ∈ Γ even. Then
(i) the relative commutant (vW ∗(∪,�)v)′ ∩ vM0v is trivial. In particular, the cen-
ter of M0 is the algebra A+ = �∞(even vertices). (ii) W ∗(∪,�)′ ∩ N+ = PΓ

0

(where N+ = W ∗(c(w) : w a path that starts and ends at an even vertex), and
PΓ
0 =

⊕

v even vC).

Proof. Because of Lemma 11 and Lemma 12, it remains to consider the case
in which Γ is a graph with N+1 > 3 vertices v, e1, . . . , eN with a single edge between
v and each ej and no other edges. Since Γ = [1 · · · 1], we find that ‖Γ‖ = N and
therefore δ = N . Moreover, one can normalize the Perron-Frobenius eigenvector to
be μ(e) = 1 for all e ∈ {v, e1, . . . , en}.

Thus ξ =
∑

j ej ⊗ eoj , Z = v � v =
∑

i c(ei)c(e
o
i )c(ei)c(e

o
i ).

Let k > 1. Then

[Z, ξ⊗k] =
∑

i

c(ei)c(e
o
i )c(ei)c(e

o
i )ξ

⊗k − ξ⊗kc(ei)c(e
o
i )c(ei)c(e

o
i )

= ξ⊗k−2 + 4ξ⊗k−1 + 6ξ⊗k + 3ξ⊗k+1

+
∑

i

ei ⊗ eoi ⊗ ei ⊗ eoi ⊗ ξ⊗k−1 +
∑

i

ei ⊗ eoi ⊗ ei ⊗ eoi ⊗ ξ⊗k

−ξ⊗k−2 − 4ξ⊗k−1 − 6ξ⊗k − 3ξ⊗k+1

−
∑

i

ξ⊗k−1 ⊗ ei ⊗ eoi ⊗ ei ⊗ eoi +
∑

i

ξ⊗kei ⊗ eoi ⊗ ei ⊗ eoi

=
∑

i

ei ⊗ eoi ⊗ ei ⊗ eoi ⊗ (ξ⊗k + ξ⊗k−1)

−(ξ⊗k + ξ⊗k−1)⊗
∑

i

ei ⊗ eoi ⊗ ei ⊗ eoi

= ζ ⊗ (ξ⊗k + ξ⊗k−1)− (ξ⊗k + ξ⊗k−1)⊗ ζ,
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where we have set ζ =
∑

i ei ⊗ eoi ⊗ ei ⊗ eoi .
Let η = e1 ⊗ eo1 ⊗ e2 ⊗ eo2. Then η ⊗ ξ⊗l ⊥ ζ ⊗ ξ⊗k for all l, k. On the other

hand, 〈η ⊗ ξ⊗l, ξ⊗k ⊗ ζ〉 = δk=l‖ξ⊗k−1‖.
It follows that for any k > 1,

〈η ⊗ ξ⊗l, [Z, ξ⊗k]〉 = 〈ζ ⊗ (ξ⊗k + ξ⊗k−1)− (ξ⊗k + ξ⊗k−1)⊗ ζ, η ⊗ ξ⊗l〉
=− 〈ξ⊗k ⊗ ζ, η ⊗ ξ⊗l〉 − 〈ξ⊗k−1 ⊗ ζ, η ⊗ ξ⊗l〉
=− δl=k‖ξ⊗(l−1)‖ − δl=k−1‖ξ⊗(l−1)‖.

It follows that if a =
∑

αkξ
⊗k ∈ L2(Av), and we assume that [Z, a] = 0, then we

get for all l ≥ 2:

0 = 〈[Z, a], η ⊗ ξ⊗l〉 =
∑

k

αk〈[Z, ξ⊗k], η ⊗ ξ⊗l〉

= −αl‖ξ⊗(l−1)‖ − αl+1‖ξ⊗(l−1)‖.

It follows that αk, k ≥ 2, is a constant sequence. But the sequence {αk} is in L2

and thus must be zero.
It follows that a ∈ L2(Av) commutes with Z, then a = α01 + α1∪. But in this

case, [a, Z]Ω = α1[∪, Z]Ω. The only tensors of degree 6 in ∪ZΩ are ξ ⊗ ζ, and the
only terms of this degree in Z ∪ Ω are ζ ⊗ ξ, which are not equal. Thus [a, Z] = 0
implies that also α1 = 0 and so a must be a scalar.

To see (ii), note first that any v ∈ Γ+ is a projection in the relative commutant
of W ∗(∪,�)′ ∩ N+. Since the projections corresponding to different vertices are
orthogonal, it follows that any element x in the relative commutant is a weakly-
convergent infinite sum

∑

v∈Γ+
vxv, where vxv ∈ vW ∗(∪,�)′v ∩ vN+v = Cv. �

4.7. Factoriality of M0. Let P be an (extremal) subfactor planar algebra
embedded into the planar algebra of some graph Γ. Thus (Gr0P, Tr0) can be
viewed as a subalgebra of (Gr0P

Γ, T r0) ⊂ M0. Moreover, TL(1), TL(2) ⊂ Gr0P ,
and so ∪ and � both belong to Gr0P . Therefore, the center of W ∗(Gr0P, Tr0) is
contained in the relative commutant of W ∗(∪,�) inside of M0. By Theorem 4, this
relative commutant is the intersection of the algebra A0 identified with the zero box
space in PΓ.

Lemma 13. Assume that the zero-box space of P is one-dimensional. Then
W ∗(Gr0P, Tr0) ∩A+ = C1A+

.

Proof. Note that tr0 is the restriction to W ∗(Gr0P,∧0, T r0) of the conditional
expectation E from M0 onto A+ (which is the center of M0). Since this conditional
expectation is normal, if z ∈ W ∗(Gr0P, Tr0) ∩ A+, then z = E(z). On the other
hand, z is the limit (in the weak-operator topology) of some sequence zi ∈ Gr0P .
For each i, E(zi) = Tr0(zi) belongs to the zero-box space of P+. Since ∪ ∈ P and
the zero-box space is one-dimensional E(zi) must be a multiple of E(∪) = δC1A+

and hence z = E(z) ∈ C1A+
. �

Thus if the zero box space of P is one-dimensional, and since W ∗(∪) is diffuse,
we automatically get:

Theorem 5. Let P be a planar algebra with one-dimensional zero box space
and of index δ > 1. Then M0 = W ∗(Gr0P, Tr0) is a type II1 factor.
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Since M0 ⊂ M0, we see by Lemma 8 that M0 can be actually embedded into a
direct sum of free group factors. In particular, M0 has the Haagerup property and
is Rω-embeddable.

5. Higher relative commutants

5.1. The algebra M1 and the trace φ1. We now proceed to define the alge-
bra M1 = W ∗(Gr1P, Tr1), which will contain M0 = W ∗(Gr0P, Tr0) as a subfactor.

Let us denote by M0 the image of the algebra Gr0P inside M0 ⊂ M0 acting
on the Fock space F as in the previous section.

We first recall from Section 2 that if we identify elements of PΓ with paths,
then the multiplication ∧1 on GrPΓ

1 can be expressed as follows. Let w = e1 · · · en
and w′ = e′1 · · · e′m be two paths. Denote by D1(w) the path obtained from w by
following the path w, but starting at the first point of w (rather than its starting
point). Then

D−1
1 (D1(w) ∧1 D1(w

′)) = σ(en)
−1δen=e′1

e1 · · · en−1e
′
2 · · · e′m.

(note that the factor σ(en)
−1 is exactly the norm ‖en‖2).

To a path w = e1 · · · en = e1w0en, where w0 = e2 · · · en−1 we associate the
variable

c1(w) = �(e1)c(w0)�(e
o
n)

∗ ∈ B(F).

Lemma 14. Y
(1)

D−1
1 (w)

Y
(1)

D−1
1 (w′)

= Y
(1)

D−1
1 (w∧1w′)

.

Proof. This follows from the relation �(e)∗�(g) = δe=g‖e‖2. �

Let us introduce the notation

M1 = span{c1(w) : w ∈ L−}
where L− is the set of all loops starting at an odd vertex.

The vector space M1 is an algebra with multiplication ∧1. Thus w �→
c1(D

−1
1 (w)) is a ∗-homomorphism from Gr1P

Γ onto M1. The unit of M1 is the
element

∑

e∈E−

σ(e)�(e)�(e)∗

(here E− is the set of all odd edges, i.e., ones ending at an even vertex).

Lemma 15. Let E− be the set of all odd edges. Then the map

i : Y �→
∑

e∈E−

σ(e)�(e)Y �(e)∗

defines a unital ∗-homomorphism from the algebra M0 to the algebra M1.

Proof. We note that

i(Yw) · i(Yw′) =
∑

e∈E−

σ(e)2‖e‖2�(e)YwYw′�(e)∗

=
∑

e∈E−

σ(e)�(e)YwYw′�(e)∗.

Thus i is a homomorphism. Moreover, i is clearly ∗-preserving. �



232 A. GUIONNET, V. F. R. JONES, AND D. SHLYAKHTENKO

We now define a tracial weight φ1 on M1:

φ1(�(e)Yw�(f)
∗) = δ−1δe=fσ(e)

−1φ(Yw)

(the first δ is the Perron-Frobenius eigenvalue; note that e = f forces Yw ∈ M0).
In other words,

φ1(X) = δ−1
∑

f∈E−

σ(f)−1φ(〈f,Xf〉A).

The last observation shows that φ1(X) is a non-negative functional.
Moreover, for any v ∈ M0,

φ1(i(v)) = δ−1
∑

f∈Γ−(v)

σ(f)−1‖f‖22

= δ−1
∑

f∈Γ−(v)

(

μ(s(f))

μ(t(f))

)

= δ−1
∑

j

Γjv
μ(j)

μ(v)
= δ−1δ = 1.

(here Γ−(v) denotes the set of edges ending at v).
Finally, φ1 is a trace, since if w,w′ are two loops of the form eŵfo and e′ŵ′f ′o

with s(e) = t(fo), s(e′) = t(f ′o) then

φ1(ww
′) = δe=f ′δf=e′δ

−1‖e‖4‖f‖2φ(ŵŵ′)

= δe′=fδf ′=eδ
−1‖e′‖6φ(ŵ′ŵ) = φ1(w

′w)

since e = f ′ and ‖f ′‖ = ‖e′‖.
We finally note that

φ1(i(Yw)) =
∑

e

δ−1

(

μ(s(e))

μ(t(e))

)

φ(w)

= φ(w)

because μ is an eigenvector for the graph matrix. We summarize these observations
as the following

Lemma 16. The weight φ1 is a semifinite faithful trace, and the inclusion i :
(M0, φ) → (M1, φ1) is trace-preserving.

Proof. Let us consider Y =
∑

g,h∈E−
�(g)xg,h�(h)

∗, xg,h ∈ W ∗(c(e) : e ∈
Γ) with Y ∗Y in the domain of φ1. Then Y ∗Y =

∑

g,h,g′ �(g)xg,hx
∗
g′,h�(g

′)∗‖h‖2.
Moreover,

φ1(Y Y ∗) = δ−1
∑

g,h

‖h‖2‖g‖4φ(xg,hx
∗
g,h)

and xg,hx
∗
g,h ∈ M0. Thus if φ1(Y

∗Y ) = 0, each of the positive terms in the sum
above must be zero and so φ(xg,hx

∗
g,h) = 0 for all g, h. It follows that Y = 0. �

Define now the map E1 : M1 → M0 by

E1(�(e)c(w)�(f)
∗) = δe=fδ

−1

(

μ(s(e))

μ(t(e))

)

c(w).

Note that
E1(i(Y )) = Y

and moreover

E1(i(c(w))�(e)c(w)�(f)
∗) = YwE1(�(e)c(w

′)�(f)∗)

E1(�(e)c(w)�(f)
∗i(c(w)′)) = E1(�(e)c(w)�(f)

∗)c(w′)
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so that i ◦ E1 : M1 → i(M0) ⊂ M1 is an A0-linear projection. Moreover, we
see that φ1 = φ ◦ (i ◦ E1) so that E1 = i ◦ E1 is the trace-preserving conditional
expectation from M1 → M0. It follows that E1 extends also to the von Neumann
algebra generated by M1.

5.2. The algebras Mn and traces φn. The algebras Mn with semi-finite
traces φk are defined in a similar way. The algebra Mn is the linear span

Mn = span{�(e1) · · · �(en)c(w)�(fn)∗ · · · �(f1)∗ : e1 · · · enwf0
n · · · fo

1 ∈ L±}
where the parity of the loops is chosen to match the parity of n. For a loop
e1 · · · enwfo

n · · · fo
1 ∈ L±, we set

cn(e1 · · · enwfo
n · · · fo

1 ) = �(e1) · · · �(en)c(w)�(fn)∗ · · · �(f1)∗ ∈ Mn.

Then map L+ � w �→ c(D−1
k (w)) defines a ∗-homomorphism from GrkP

Γ to Mk.
(Recall that Dk(w)) denotes the loop obtained by replacing the starting point in w
by the k-th point on the path w).

Let

φn = δ−n
∑

w=f1···fn

(

μ(s(fn))

μ(t(f1))

)1/2

φ ◦ 〈·fn ⊗ · · · ⊗ f1, fn ⊗ · · · ⊗ f1〉A.

The inclusion i = in−1
n : Mn−1 → Mn is given by

cn−1(w) �→
∑

eweo∈L

σ(e)−1�(e)cn−1(w)�(e)
∗.

One can check that i is again a trace-preserving inclusion. The conditional expec-
tation En : Mn → Mn−1 is given by

En(�(e)cn−1(w)�(f)
∗) = δe=fδ

−1

(

μ(s(e))

μ(t(e))

)

cn−1(w).

As before, set
En = i ◦ En : Mn → i(Mn−1) ⊂ Mn.

It is not hard to check that this is the unique trace-preserving Mn−1 linear con-
ditional expectation from Mn to i(Mn−1) and that the trace φn is faithful (the
argument is exactly the same as in the case n = 1). Moreover, one can easily check
that En = Trn if we identify Mn with GrnP

Γ.
Let us set

ijn = in−1
n ◦ · · · ◦ ijj+1 : Mj → Mn, in = i0n.

Comparing these with the definitions of section 2 we get:

Theorem 6. The map w �→ cn(w) is a ∗-isomorphism from GrkP
Γ onto Mk.

The semifinite weight φk satisfies φk(v ∧0 Trk(x)) = φk(v ∧0 x). In particular, the
trace Trk is positive and faithful.

5.3. Higher relative commutants. We now let

Mk = W ∗(GrkP
Γ, φk) = W ∗(Mk).

Given a planar subalgebra P ⊂ PΓ, we’ll denote by M the subalgebra of Mk

generated by elements from P . In other words, Mk = W ∗(GrkP, Trk).
We’ll denote by ∪n and �n the images in Mn of ∪,� ∈ M0. Note that ∪n,�n ∈

Mn.
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Lemma 17. Let e1 · · · enfo
1 · · · fo

n be a loop in L± (parity according to n).
Then the element Z = �(e1) · · · �(en)�(f1)∗ · · · �(fn)∗ ∈ W ∗(∪n,�n)

′ ∩ Mn ⊂
W ∗(∪n,�n)

′ ∩Mn.

The proof is a straightforward computation and is omitted.

Lemma 18. Let P ⊂ PΓ be a subfactor planar algebra with index, and let
Mn = W ∗(GrnP, Trn) as above. Then W ∗(∪n,�n)

′ ∩Mn = Pn,+.

Proof. Let Qn be the set of all paths in Γ of length n ending at an even
vertex (and starting at an even or odd vertex, according to the parity of n). For
w = e1 · · · en ∈ Qn, let Fw = �(e1) · · · �(en). Then for any Y ∈ Mn,

(3) Ŷw,w′ = F ∗
wY Fw′ ∈ N+.

Moreover,

(4) Y =
∑

w,w′∈Qn

cw,w′FwŶw,w′F ∗
w′

where cw,w′ are some constants. Since the sum above is finite, it follows that
equations (3) and (4) continue to hold whenever Y ∈ Mn, i.e. after passing to
weak limits.

Thus if Y ∈ Mn, and we set Z = FwF
∗
w, Z ′ = Fw′F ∗

w′ , then ZY Z ′ = F ∗
wŶ Fw,

where Ŷ ∈ N+. Moreover, Y is equal to a fixed finite linear combination of terms
{ZY Z ′ : w,w′ ∈ Qn}.

Let us assume now that Y ∈ W ∗(∪n,�n)
′ ∩ Mn. Then by choosing Z,Z ′ as

above, we see from Lemma 17 that ZY Z ′ ∈ W ∗(∪n,�n)
′ ∩Mn. Using equations

(3) and (4), we conclude that Y is a finite linear combination of terms of the form

�(e1) · · · �(en)X�(fn)
∗ · · · �(f1)∗, X ∈ N+,

and that each such term must belong to the relative commutant W ∗(∪n,�n)
′∩Mk.

We can thus assume that Y = �(e1) · · · �(en)X�(fn)
∗ · · · �(f1)∗ with X ∈ N+.

Then

[Y, in(∪)] =
(

μ(t(en))

μ(s(e1))

)1/2

�(e1) · · · �(en)[X,∪]�(fn)∗ · · · �(f1)∗

and similarly

[Y, in(�)] =
(

μ(t(en))

μ(s(e1))

)1/2

�(e1) · · · �(en)[X,�]�(fn)∗ · · · �(f1)∗.

Thus if Y is in the relative commutant of in(∪,�) ∩ Mn, then X must be in the
relative commutant of {∪,�} in N+, which we know to be A+ (Theorem 4). It
follows that

{∪,�}′ ∩Mn ⊂ span{�(e1) · · · �(en)�(fn)∗ · · · �(f1)∗ : e1 · · · enfo
n · · · fo

1 ∈ L±}
= {cn(w) : w ∈ L± a loop of length 2n starting at an even

odd
vertex}.

Since the reverse inclusion holds by Lemma 17, equality holds. In particular,
{∪n,�n}′ ∩ Mn = {∪n,�n}′ ∩ Mn. We now see from the definitions in section
2 that the latter algebra is exactly the planar algebra PΓ

n,+ taken with its usual
multiplication.

Thus it follows that

{∪,�}′ ∩Mn = PΓ
n,+ ∩Mn.
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We claim that the latter intersection is exactly Pn,+. To see this, write any Y ∈ Mn

as
Y =

∑

w,w′∈Qn

cw,w′FwŶw,w;F
∗
w′

with Ŷw,w′ = F ∗
wY Fw′ ∈ N+, as before. Let

En(Y ) =
∑

w,w′∈Qn

cw,w′FwE(Ŷw,w′)F ∗
w,

where E : N+ → A+ is the (normal) conditional expectation given by (1). Then
En is a weakly-continuous map, and moreover En(Y ) = Y if Y ∈ PΓ

n,+. Thus if
Y ∈ PΓ

n,+ ∩Mn, then Y is the limit (in the weak operator topology) of a sequence
Y (j) ∈ (Pkj ,+) ⊂ Mn. But then Y = E(Y ) = limk E(Y (k)). Since the zero-
box space of P is one-dimensional, it follows that E(Y (k)) ∈ Pn,+ (since then
E(Ŷ

(k)
w,w′) ∈ C1A+

) and so Y ∈ Pn,+. Thus PΓ
n,+ ∩Mn = Pn,+ and the theorem is

proved. �

Theorem 7. Let P ⊂ PΓ be a subfactor planar subalgebra of index δ �= 1. Let
Mk = W ∗(GrkP, trk). Then M ′

0 ∩Mk = Pk,+ as algebras (here Pk,+ is taken with
ordinary multiplication) in a way that preserves Jones projections.

Proof. Since ∪k,�k ∈ Mk, Lemma 18 shows that Pk,+ ⊃ M ′
0∩Mk. Thus it is

enough to prove that Pk,+ ⊂ M ′
0 ∩Mk. But this is immediate, since Pk commutes

with ik(M0) and thus with M0. The correspondence takes Jones projections to
Jones projections (as is immediate from the pictures). �

Lemma 19. Let ek ∈ Pk,+, k ≥ 2 be the Jones projection. Then ek is the Jones
projection for the inclusion Mk−2 ⊂ Mk−1.

Proof. We first check that ek ∈ M ′
k−2 ∩Mk. Indeed,

ek = δ−1

k strings total
︷ ︸︸ ︷

· · · · · ·∗

and since x ∈ Mk−2, it has the form

x = A

∗ · · ·· · ·
k−2
︷ ︸︸ ︷

.

We now compute:

δek ∧k x = · · · · · ·
A

· · ·· · ·

∗

= A

∗ · · ·· · ·
= δx ∧k ek (by symmetry).
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(here dashed lines indicate removed boxes).
Next, we check that ek ∧k x ∧k ek = Ek−2(x) ∧k ek for

x = A

∗ · · ·· · ·
k−1
︷ ︸︸ ︷

∈ Mk−1.

Note that it follows from the formula for Ek−2 (or from an explicit computation
using the trace) that

Ek−2(A) = δ−1 A

∗ · · ·· · ·
k−2
︷ ︸︸ ︷

Now, we compute the product δ2ek ∧k x ∧k ek:

· · · · · ·
A

· · ·· · · · · · · · ·

∗ · · ·

= A

∗ · · ·· · ·
= δ EMk−2

(A)

∗ · · ·· · ·
= δ2Ek−2(x) ∧k ek.

Finally, we check that the trace Trk is λ-Markov. Let x ∈ Mk−1. Then:

δTrk(x ∧k ek) = Trk

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

· · · · · ·
x

· · · · · ·

∗ ⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

= Trk

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x

∗· · · · · ·
⎫

⎪

⎪

⎬

⎪

⎪

⎭

=
Tn

x

· · ·∗· · · · · ·
=

Tn

x

· · ·∗· · · · · ·

=
Tn

x

· · ·∗· · · · · ·
= Trk−1(x).

This completes the proof. �
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Lemma 20. The algebras M0 ⊂ M1 ⊂ M2 ⊂ · · · are exactly the tower obtained
by iterating the basic construction for M0 ⊂ M1.

Proof. We first note that because of the Markov property and the Jones re-
lations between the projections en, the algebras M̂n = 〈M, e1, . . . , en−1〉, n ≥ 2 are
exactly the algebras appearing in the basic construction for M0 ⊂ M1. Hence clearly
M̂n ⊂ Mn. Now suppose that for some n this inclusion were strict; choose small-
est such n (necessarily > 1 since M0 = M̂0 and M1 = M̂1). Then the projection
en+1 is the Jones projection for Mn−1 ⊂ Mn and also for Mn−1 = M̂n−1 ⊂ M̂n.
Thus the index of Mn−1 ⊂ Mn is the same as that of Mn−1 ⊂ M̂n. But since
M̂n ⊂ Mn, multiplicativity of index entails [Mn : M̂n] = 1 and thus M = M̂n, a
contradiction. �

5.4. The planar algebra structure on the higher relative commutants.
At this stage we have constructed a (II1) subfactor M0 ⊂ M1 and its tower Mk as
the completions of GrkP . We have also shown that M ′

0 ∩Mk is precisely subspace
Pk ⊂ Grk(P ).

Theorem 8. The linear identification of Pk and M ′
0 ∩ Mj constructed in

Theorem 7 is an isomorphism between P and the planar algebra of the subfactor
P (M0 ⊂ M1).

In particular, any subfactor planar algebra can be naturally realized as the pla-
nar algebra of the II1 subfactor P (W ∗(Gr0P, Tr0) ⊂ W ∗(Gr1P, Tr1)) .

The second part of the theorem gives an alternative proof of a result of Popa
[Pop93, Pop95, PS03b].

Proof. We have seen in Theorem 7 that the restriction of the multiplication
of Grk(P ) (hence Mk) to Pk is precisely the one given by the multiplication tangle.
By [Jon99], to conclude that the planar algebra structure defined on P by this
identification with the higher relative commutants for M0 ⊂ M1 is the same as the
original planar algebra structure on P , we have to check the following.

1) That M0 ⊂ M1 is extremal (which means there is only one trace on the
M ′

0 ∩Mk, that of Mk).
2) The Jones projections ei of the tower are ( 1δ times) the diagrammatic ei’s.
3) The inclusion of M ′

0 ∩Mk in M ′
0 ∩Mk+1 is given by the appropriate tangle.

4) The trace on M ′
0 ∩Mk given by restricting the trace on Mk is given by the

appropriate tangle.
5) The projection from M ′

0 ∩ Mk onto M ′
1 ∩ Mk is given by the appropriate

tangle.
For these, 1) follows from the definition of extremality in [PP86, Pop94] and

a simple diagrammatic manipulation involving spherical invariance of the partition
function. 2) was proved as part of Theorem 7. Properties 3) and 4) are just obvious
pictures. The only one that requires any thought is 5), which we now prove.

Claim 1. Any element in M ′
1∩Mk is in the image of the map from M ′

0∩Mk−1

to M ′
0 ∩Mk defined by the following annular tangle:

A �→
A

· · · · · ·∗

.
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(The shading is determined by the stars being in unshaded regions, the position of
∗ on the inside box being irrelevant.)

Proof of claim. It is a simple diagrammatic calculation to show that the
image of this tangle does indeed commute with M1. On the other hand the tangle
defines an injective map (the inverse tangle is obvious) and from general subfactor
theory the dimensions of M ′

0 ∩Mk−1 and M ′
1 ∩Mk are the same. �

Claim 2. If A is in M ′
0 ∩Mk, identified with Pk, then

EM ′
1
(A) = δ−1

A

· · · · · ·∗
∗ .

Proof of claim. By extremality EM ′
1
= EM ′

1∩Mk
for elements of M ′

0 ∩Mk.
Drawing the picture for tr(AB) for A ∈ M ′

0 ∩Mk and B ∈ M ′
1 ∩Mk, the result is

visible. �

This concludes the proof of the Theorem. �
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The Tangent Groupoid and the Index Theorem

Nigel Higson

ABSTRACT. We present a proof of the index theorem for Dirac operators that is
drawn from Connes’ tangent groupoid approach, as described in his book Non-
commutative Geometry.

1. Introduction

The algebra of linear partial differential operators on a smooth manifold is
filtered by the usual concept of order. The principal symbol of an operator of order
k is its class in the degree k part of the associated graded algebra, which might
therefore be called the principal symbol algebra. The set of polynomials

p(x) = D0 + xD1 + · · ·+ xnDn

with partial differential operator coefficients for which the order of the coefficient
Dk is no more than k (for 0 ≤ k ≤ n) is an algebra over C[x]. The quotient by
the ideal of polynomials that vanish at a nonzero t ∈ R is the algebra of partial
differential operators. When t is zero the quotient is the principal symbol algebra.
In this standard algebraic way, the algebra of linear partial differential operators
is exhibited as a deformation of the principal symbol algebra.

The convolution C∗-algebra of Alain Connes’ tangent groupoid is an ana-
lytic counterpart of this deformation. It exhibits the C∗-algebra generated by the
smoothing operators on a smooth closed manifold as a deformation of the C∗-
algebra generated by the smooth, compactly supported functions on the cotan-
gent bundle (in comparison, the principal symbol algebra is the algebra of smooth
functions on the cotangent bundle that are polynomial in each fiber).

There is a simple way to relate elliptic partial differential operators to Connes’
C∗-algebra using spectral theory, and this makes the C∗-algebra of the tangent
groupoid available for use as a tool in the index theory of elliptic operators. In a
short section of his famous book [Con94, Section II.5], Connes sketches a proof of
the Atiyah-Singer index theorem using the tangent groupoid and groupoid tech-
niques. As he notes, his proof is closely related to the K-theory proof of Atiyah
and Singer [AS68a], but it has the advantage of extending easily to more elaborate
settings, for example to foliations.
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Connes uses the tangent groupoid to build the analytic index map of Atiyah
and Singer. Moreover Connes, like Atiyah and Singer, uses an embedding into
Euclidean space to describe the index map topologically. But although these in-
gredients of the two proofs are the same, they are combined differently.

The aim of this paper is to explore this difference a bit further by presenting
a proof of the index theorem that reduces Connes’ proof to what is arguably its
essence. The result is to my mind pleasingly simple, and although the argument
does not actually mention groupoids at all, I hope it will help advertise the worth
of Connes’ C∗-algebraic and groupoid-theoretic points of view.

My friendship with Alain Connes goes back to our joint work on asymptotic
morphisms and E-theory [CH90]. In some sense E-theory starts from the tangent
groupoid, since the tangent groupoid is the basic example of an asymptotic mor-
phism in the same way that the Dirac operator is the basic example of a Kasparov
module. So it seems to me fitting to return to the subject here.

It goes without saying that Alain has taught me an immense amount over the
years. Moreover, working with Alain gave my self-confidence a great boost at an
early stage of my career, and it surely raised my standing in the eyes of others as
well. So I owe him a great debt, and I am grateful that I am able to acknowledge
that debt here.

2. Index for Families

In this section and the next I shall review some basic constructions in C∗-
algebra K-theory and elliptic operator theory. Many of the likely readers of this
paper will be familiar with these things, and they ought to proceed directly to Sec-
tion 4, or even to the proof of the index theorem in Section 6. For those who are
not so well-versed in these areas, I have tried to write enough to at least suggest
that C∗-algebras are a very convenient setting in which to work out the analytic
foundations of index theory.1

Let Y be a locally compact Hausdorff space and let H be a countably generated,
continuous field of Hilbert spaces over Y. The reader is referred to [Dix77, Ch 10]
or [DD63] for the definition, but the essence of it is to specify a family of sections
deemed to be continuous, rather than derive the concept of continuous section
from an overall topology on the bundle of Hilbert space fibers.

A bounded (and adjointable) operator on H is a uniformly bounded family T =

{Ty : Hy → Hy}y∈Y of operators on the fibers of H that, along with its adjoint
family, maps continuous sections to continuous sections. The bounded operators
form a C∗-algebra.

2.1. DEFINITION. The C∗-algebra of compact operators on H is generated by
bounded operators of the form

Ty : vy �→ 〈v ′
y, vy〉v ′′

y ,

where v ′ and v ′′ are compactly supported continuous sections of H.

The compact operators form a closed ideal within the bounded operators.
Note that the compactness condition goes beyond compactness of the individ-
ual operators Ty. In the case of a constant field, bounded operators are bounded

1John Roe and I are preparing a book-length account of groupoids and index theory that has very
much influenced what is written here.
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∗-strongly continuous families of operators, whereas compact operators are norm-
continuous families of compact operators that vanish at infinity.

Suppose that the continuous field H is Z2-graded, and that on each Hy there
is given an unbounded,2 odd-graded, self-adjoint operator Dy such that:
(a) each resolvent operator (Dy + iI)−1 is compact, and
(b) the family of resolvents is a compact operator on H.
We aim to construct an index for the family D = {Dy}y∈Y in K(Y) that reduces to
the Fredholm index when Y is a point (in the graded context the Fredholm index
is defined to be the dimension of the even-graded part of the kernel of D minus
the dimension of the odd-graded part).

We aim to do so because throughout the proof of the index theorem we shall be
working with families of Fredholm operators. But we shall begin by considering
a single Hilbert space operator.

2.2. DEFINITION. Let D be an unbounded, odd-graded, self-adjoint operator
on a Z2-graded Hilbert space H = H0 ⊕H1. Its graph projection is the orthogonal
projection onto the graph of the part of D that maps H0 into H1.

The graph is a closed subspace of H = H0 ⊕ H1, so the graph projection PD

is an operator on H. If P1 is the orthogonal projection onto H1, then it is easy to
check that

PD − P1 = D(I+D2
)
−1

+ γ(I+D2
)
−1,

where γ is the grading operator on H. As a result, if the resolvent of D is compact,
then PD − P1 is compact too.

The index of D can be recovered from PD and P1 using K-theory. In general, if
the difference of two projections in a C∗-algebra lies in an ideal, then their formal
difference determines an element in the K-theory of that ideal. In the case at hand,
the K-theory of the compact operators is isomorphic to Z, and the integer obtained
from the formal difference PD − P1 is the index of D.

If D is an operator on a continuous field H as in (a) and (b) above, and if
PD and P1 are obtained by applying the graph projection construction fiberwise,
then the difference PD−P1 is compact, and so the formal difference determines an
element in the K-theory of the compact operators on the continuous field H.

If H is a trivial field, then this K-theory group is canonically isomorphic to
K(Y), and we therefore obtain an index class in K(Y) as required. The case where
H is not trivial can be handled in many ways. For example we can embed H as a
continuous subfield of a trivial field H ′ (even as a summand; see [DD63, p. 259])
and then proceed as follows.

2.3. LEMMA. Every compact operator T on H extends to a compact operator T ′ on
H ′ by defining T ′

y to be zero on the orthogonal complement of Hy in H ′
y. �

The lemma gives a homomorphism from the compact operators on H to the
compact operators on H ′ and hence a map from the K-theory of the compact op-
erators on H into K(Y).

2.4. DEFINITION. Let D = {Dy}y∈Y be an odd-graded operator on a Z2-graded
continuous field of Hilbert spaces that satisfies conditions (a) and (b) above. Define
the index class

Index(D) ∈ K(Y)

2In accordance with standard usage, “unbounded” means “possibly unbounded.”
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by pushing forward the formal difference PD − P1 into K(Y), as above.

2.5. LEMMA. The index class is independent of the embedding into a trivial field that
is used in its construction. It has the following properties:

(a) Index(D) is functorial: if Z is a closed subset of Y, then Index(D)maps to Index(D
∣

∣

Z
)

under the restriction map from K(Y) to K(Z).
(b) Index(D) is additive: if D = D ′ ⊕D ′′ on H ′ ⊕H ′′, then

Index(D) = Index(D ′
) + Index(D ′′

).

(c) Index(D) = 0 if the operators Dy are invertible.
(d) If Dop denotes the operator on the field Hop obtained by reversing the grading on H,

then Index(Dop) = − Index(D). �

2.6. REMARK. If Y is compact, and if H is a continuous field of constant and
finite fiber dimension, then

Index(D) = [H0] − [H1] ∈ K(Y),

where H0 and H1 are the even and odd subfields of H (they are locally trivial, and
hence are vector bundles). As a matter of fact, this additional property, together
with the others, actually characterizes the index, although we shall not use this
fact.

3. Functional Analysis for First Order Elliptic Operators

Let π : X → Y be a submersion between smooth manifolds. The manifolds may
have boundaries, but if so, then we require that the boundary of X be the inverse
image of the boundary of Y. The fibers Xy = π−1{y} are then smooth manifolds
without boundary.

We shall assume that each fiber Xy is equipped with a smooth measure μy,
and that if f is a smooth, compactly supported function on X, then the quantity
∫

Xy
f(x)dμy(x) is a smooth function of y.
Let S be a smooth Hermitian vector bundle over X and let Sy be its restriction

to Xy. The Hilbert spaces Hy = L2(Xy, Sy) form a continuous field of Hilbert
spaces H over Y whose continuous sections are generated (in the sense of [Dix77,
Proposition 10.2.3]) by the smooth compactly supported sections of S.

Let Dy be a first-order linear partial differential operator acting on the sections
of Sy and suppose that the family D = {Dy} is smooth in the sense that if u is a
smooth section of S on X, then the section Du defined by

(Du)
∣

∣

Xy
= Dy(u

∣

∣

Xy
)

is also smooth.
We shall assume that each Dy is formally self-adjoint. To apply the index

construction of the last section we shall need to obtain from Dy an operator that
is self-adjoint in the sense of Hilbert space theory (see for example [Kat76, Ch. 5]).
For this the following concept is useful.

3.1. DEFINITION (See [HR00, Definition 10.2.8]). The manifold X is complete
with respect to D if there is a smooth, proper function g : X → [0,∞) such that the
commutator [D, g] is a uniformly bounded endomorphism of S.
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3.2. PROPOSITION (See [HR00, Proposition 10.2.10]). If X is complete with respect
to D, then each formally self-adjoint operator Dy is essentially self-adjoint on the smooth,
compactly supported sections of Sy. �

Recall that an operator is essentially self-adjoint if its operator-theoretic clo-
sure is self-adjoint (see for example [Kat76, Ch. 5] again). From now on we shall
assume that X is complete for D, and in a slight abuse of notation we shall write
Dy when in operator-theoretic contexts we actually mean the closure of Dy. Form
the resolvent family

r(D) := (D+ iI)−1 = {(Dy + iI)−1}y∈Y .

It is certainly a bounded operator on the continuous field H. To say more, we
shall suppose from here on that each operator Dy is elliptic. We can then draw the
following conclusion.

3.3. PROPOSITION. If f is a smooth, compactly supported function on X, acting on
the continuous field H as a family of multiplication operators, then f·r(D) is a compact
endomorphism of H.

This is standard fare, but let us sketch a proof based on a C∗-algebra calcula-
tion.

3.4. LEMMA. Let A be a C∗-algebra that includes C0(X) as a C∗-subalgebra and let
a be an element of A that commutes with C0(X). Suppose that for every x ∈ X and every
ε > 0 there is some f ∈ C0(X) such that f(x) = 1 and ‖f·a‖ < ε. Then f·a = 0 for every
f ∈ C0(X). �

Let B be the C∗-algebra of bounded continuous functions from (0, 1] into the
bounded operators on H, and let J be the ideal of functions whose distance to the
compact operators converges to zero at 0. Let A = B/J. The operator-valued func-
tion a : t �→ (tD + iI)−1 determines an element of A, and so does every constant
operator-valued function f : t �→ f, for every f ∈ C0(X). It suffices to show that the
product f · a ∈ A is zero since

lim
t→0

f·(tD+ iI)−1
(D+ iI)−1

= −if·(D+ iI)−1.

The elements a and f commute in A, so it suffices to verify the estimates in
Lemma 3.4 for each given x and ε > 0. The product f·a ∈ A depends only on the
restriction of D to a neighborhood of the support of f, so we may as well assume
that D is compactly supported and elliptic near the support of f. Furthermore, by
choosing f to have sufficiently small support, we may assume that p : X → Y is
actually a trivial vector bundle (since any submersion is locally isomorphic to a
trivial vector bundle).

Using the basic estimate for constant coefficient elliptic operators we can find
f with sufficiently small support so that f·a is ε-close to f·a ′, where a ′ is defined
in the same way as a, but using an operator D ′ that restricts to the same constant
coefficient elliptic operator in each vector space fiber of p. A Fourier transform cal-
culation then shows that for every t ∈ (0, 1] the operator f·(tD ′+ iI)−1 is compact,
and the proof of Proposition 3.3 is complete.

If X is compact, then we may choose f ≡ 1 in Proposition 3.3, and conclude
from Section 2 that D has a well-defined index in the K-theory group K(Y). Thus
a smooth family of elliptic operators on the fibers of a submersion with compact
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fibers and compact base has a well-defined families index in K(Y) (compare [AS71]).
But in the proof of the index theorem that we shall present here the manifold X will
not be compact.

As a substitute for compactness we shall work with operators of the form D+

E, where E is a suitable smooth self-adjoint endomorphism of S. The operators in
the family D+E are still essentially self-adjoint because X is complete with respect
to D+ E. The compactness of the resolvent r(D+ E) is guaranteed (in the cases of
concern to us) by the following calculation.

3.5. PROPOSITION. Assume that S is Z2-graded and that D is odd-graded. Let E be a
smooth, odd-graded self-adjoint endomorphism of the Hermitian bundle S over X. Assume
that
(a) The square of E is a proper scalar function from X to [0,∞).
(b) The anticommutator DE+ ED is a uniformly bounded smooth endomorphism of S.
Then r(D+ E) is a compact operator on the continuous field H.

PROOF. We shall show that for every ε > 0 the family r(D+E) lies within ε of
a compact operator.

Choose a smooth, compactly supported real function f such that if F = γf,
where γ is the grading operator on S, then

‖(D+ E + F)s‖ ≥ ε−1‖s‖
for every compactly supported smooth section s. This is possible because first of
all

(D+ E+ F)2 = D2 + (DE+ ED) + [D, f]γ+ E2 + f2.

It therefore suffices to choose f such that

E2
+ f2 ≥ ε−2

+ ‖DE+ ED‖+ ‖[D, f]‖,
and this may be done because X is complete with respect to D.

The estimate implies that ‖r(D+ E+ F)‖ < ε. But then

r(D+ E) − r(D+ E+ F) = r(D+ E+ F) · γf · r(D+ E),

and by Proposition 3.3 the right hand side is compact. �

3.6. REMARK. Obviously the hypotheses can be relaxed in various ways. But
they are adequate for our purposes as they stand.

4. Deformation Spaces

This section describes the deformation construction that underlies both the
tangent groupoid and the proof of the index theorem.

4.1. DEFINITION. Let M be a smooth, closed submanifold of a smooth mani-
fold V without boundary. The deformation space NVM associated to the inclusion
of M into V is the set

NVM = NVM � V×(0, 1],

where NVM is the normal bundle of M in V .

4.2. REMARK. The deformation space concept is taken from algebraic geome-
try, where its counterpart is called the deformation to the normal cone. See [BFM75]
or [Ful98, Chapter 5].
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We equip NVM with the weakest topology (i.e. the one with the fewest open
sets) such that:
(a) The natural map NVM → V × [0, 1] that on V×(0, 1] is the inclusion map,

while on NVM is the projection to M, followed by inclusion into V×{0}, is
continuous.

(b) If f : V → R is a smooth function that vanishes on M, then the function

δf : NVM −→ R

defined by the formulas

δf(X) = X(f) and δf(v, t) =
f(v)

t

is continuous.
This topology is Hausdorff and also locally Euclidean:

4.3. LEMMA. If x1, . . . , xp, y1, . . . , yq are smooth local coordinates on V such that
the xi restrict to local coordinates on M, whereas the yj vanish on M, then the functions

x1, . . . , xp, δy1, . . . , δyq, t

are local coordinates on the deformation space: they determine a homeomorphism from the
open subset where they are defined to an open subset of Rp+q × [0, 1].

PROOF. Let U be the open subset of V on which the coordinates are defined.
The would-be coordinate functions are then defined on NU(M∩U), which by the
item (a) above is an open subset. (Incidentally, by xj and t we mean the functions
obtained by first applying the map in item (a), then composing with xj and t.)

The associated map

NU(M∩U) → R
p×R

q×[0, 1]

is continuous and one-to-one, and has open image. Viewing U as an open sub-
set of Rp×R

q via the given coordinates, and identifying the normal bundle with
(M∩U)×R

q, the inverse map is given by the formula

(u, v, t) �→
{

(u, u+ tv, t) t �= 0

(u, v, 0) t = 0.

To check its continuity one verifies that its compositions with the maps in (a) and
(b) above are continuous. �

The coordinate charts given by the lemma in fact constitute an atlas for a
smooth manifold structure on NVM. That smooth structure can be described a
bit more invariantly as follows.

4.4. DEFINITION. Let X be a set and let F = {fα : X → Vα} be a family of
functions from X into smooth manifolds. Let us say that a function f : X → R is
smoothly composed from the family F if it has the form

X
(fα1

,...,fαk
)
�� Vα1

× · · · × Vαk

h ��
R,

where h is a smooth function on the product manifold.

4.5. PROPOSITION. There is a unique smooth manifold structure on the deforma-
tion space NVM for which the smooth real-valued functions on NVM are precisely the
functions that are locally smoothly composed from the functions in (a) and (b) above.
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PROOF. It suffices to show that if x1, . . . , xp, y1, . . . , yq are local coordinates,
as in the previous lemma, then every function on NVM that is smoothly composed
from the functions in (a) and (b) is locally smoothly composed from the functions

x1, . . . , xp, δy1, . . . , δyq, t.

In turn, it suffices to prove that every δf is so composed, and this is an immediate
consequence of Taylor’s theorem. �

4.6. EXAMPLE. Suppose that M is embedded in a smooth vector bundle W

over M via a section s : M → W. Each vector w ∈ W determines a tangent vector
at each point in the fiber containing W, and in this way the normal bundle NWM

identifies with W itself. The product manifold W×[0, 1] is mapped diffeomorphi-
cally onto the deformation space NWM by the formulas

(w, 0) �→ w ∈ NWM and (m,w, t) �→ (m, s(m) + tw, t) ∈ W×(0, 1].

5. Spinor Bundles, the Thom Class and the Dirac Operator

Let V be a smooth, oriented euclidean vector bundle of rank 2k over a smooth
manifold M. A spinor bundle for V is a smooth Z2-graded Hermitian vector bundle
SV over M that is equipped with an R-linear smooth bundle map

c : V −→ End(SV)

such that:
(a) Each c(v) is odd-graded, skew-adjoint, and satisfies

c(v)2 = −‖v‖21.
(b) The grading operator on SV is given by the local formula

γ = ikv1 · · · v2k,
involving any oriented local orthonormal frame of V .

(c) The map c induces an isomorphism

c : Cliff(V)
∼=−→ End(SV),

where Cliff(V) denotes the bundle of complex Clifford algebras associated to
V .

See [BD82] or [LM89], for example.
If M reduces to a single point, so that V is a single Euclidean vector space, then

a spinor bundle for V , which is better named a spinor vector space S for V , exists and
is unique up to isomorphism.

5.1. DEFINITION. Let V be an oriented, even-rank Euclidean vector bundle
over a compact manifold M and let SV be a a spinor bundle for V . View the
pullback of SV to the total space of V as a continuous field of (finite-dimensional)
Z2-graded Hilbert spaces over the manifold V . The Thom class β(SV) ∈ K(V) is the
index class, in the sense of Section 2, of the family of operators

{

Ev : Sπ(v)V → Sπ(v)V
}

v∈V

where Ev = c(v)γ is the self-adjoint Clifford multiplication operator associated to
v ∈ V (γ is the grading operator on SV).
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5.2. REMARK. If V carries a Hermitian structure, then we can set SV =
∧∗

C
V

and
c(v) = d(v) − d(v)∗ : Sπ(v)V −→ Sπ(v)V,

where d(v)(ω) = v∧ω. The family {c(v)γ} is homotopic to the family {d(v)+d(v)∗},
which agrees with the standard definition of Thom class.

There is a useful two-out-of-three principle for spinor bundles. We shall use it
when we formulate the index theorem below.

5.3. LEMMA. Let V ′ and V ′′ be oriented, even-rank euclidean vector bundles over
M, and let V = V ′ ⊕ V ′′.

(a) If SV ′ and SV ′′ are spinor bundles for V ′ and V ′′, then SV ′⊗̂SV ′′, equipped with the
action

c(v ′, v ′′) = c(v ′)⊗̂I+ I⊗̂c(v ′′)

is a spinor bundle for V .
(b) If SV is a spinor bundle for V , and if SV ′ is a spinor bundle for V ′, then there exists

a spinor bundle SV ′′ for V ′′ such that SV ′ ⊗̂ SV ′′, viewed as a spinor bundle for
V = V ′ ⊕ V ′′, is isomorphic to SV .

PROOF. Part (a) is straightforward. As for (b), one can take

S ′V = HomV ′′(SV, SV ′′),

the Z2-graded Hermitian vector bundle of morphisms SV → SV ′′ that commute
with the actions of V ′′ on SV and SV ′′. �

We shall also use the following concepts of conjugate spinor bundle and oppo-
site spinor bundle (these terms are introduced for our current purposes only and
are not standard).

5.4. DEFINITION. Let SV be a spinor bundle for a Euclidean vector bundle V

of rank 2k, and denote by SV the complex conjugate of the underlying Hermitian
bundle. Since End(SV) = End(SV), we may equip SV with the same map

c : V → End(SV)

with which SV is equipped. We shall also equip SV with the same grading as SV

if k is even, and the opposite grading if k is odd. We obtain a spinor bundle for V ,
called the conjugate spinor bundle.

5.5. DEFINITION. Suppose that V ′ and V ′′ are oriented, even-rank euclidean
vector bundles over M and that the direct sum

V = V ′ ⊕ V ′′

is a trivial bundle. Let SV ′ be a spinor bundle for V ′. A spinor bundle SV ′′ for V ′′

is opposite to the spinor bundle SV ′ if the tensor product

SV = SV ′ ⊗̂ SV ′′

is isomorphic to the trivial spinor bundle for V .

5.6. REMARK. Lemma 5.3 guarantees that opposite spinor bundles exist.
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Now let M be an oriented Riemannian manifold without boundary and let SM
be a spinor bundle for the tangent bundle. A Dirac operator for SM is a first-order,
formally self-adjoint, odd-graded linear partial differental operator

D : C∞

c (M,SM) −→ C∞

c (M,SM)

such that
[D, f]u = c

(

grad f
)

u.

for every smooth function f on M (viewed on the left as a multiplication operator
on sections of SM). Every Dirac operator D is elliptic and so if M is closed, then
(the self-adjoint extension of) D is Fredholm.

5.7. EXAMPLE. If M is a Hermitian complex manifold, then the Dolbeault op-
erator D = ∂̄ + ∂̄∗ (see [AS68b, §4]) is a Dirac operator in the above sense. The
manifold need not be Kähler.

The K-theory formulation of the index theorem uses an embedding of M into a
Euclidean space. Let us assume for simplicity thatM is embedded into a Euclidean
vector space V isometrically. We can always adjust the metric on M and spinor
bundle so that this is so, without altering the index of the Dirac operator, so this is
no real restriction.3

5.8. THEOREM (Atiyah and Singer). Let M be a closed submanifold of dimension
2k in an oriented, even-dimensional Euclidean space V and let S be a spinor vector space
for V . If D is a Dirac operator on M, acting on sections of a spinor bundle SM, and if the
normal bundle NVM is equipped with a spinor bundle SN opposite to SM, then

Index(D) · β(S) = (−1)kι∗
(

β(SN)
)

∈ K(V),

where ι∗ : K(NVM) → K(V) is the map induced by a tubular neighborhood inclusion of
NVM into V .

5.9. REMARK. As it stands, the theorem is an identity in K(V). An application
of the Chern character yields the formula

Index(D) = (−1)l−k

∫

NVM

ch
(

β(SN)
)

,

where dim(V) = 2l, since
∫

V
ch(β(S)) = (−1)l. Characteristic class computations

then give the more familiar formula

Index(D) =

∫

M

e
1
2
c1(L(SM)) Â(TM),

where L(SM) = HomV (SM, SM) is the canonical line bundle of maps from SM to
SM commuting with the action of TM. Compare [AS68b] or [LM89, Appendix D].

6. Proof of the Index Theorem

Let M be a smooth closed manifold that is embedded as a submanifold of a
finite-dimensional real vector space V . Define a map

p : M×V×[0, 1] −→ NVM

where NVM is the deformation space of Section 4, by the formulas

p(m, v, 0) = pm(v),

3Even without appealing the existence of isometric embeddings.
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where pm is the projection from V onto V/TmM (which is the fiber of the normal
bundle NVM over the point m ∈ M), and, if t �= 0,

p(m, v, t) = (m+ tv, t).

6.1. LEMMA. The map p is a submersion. �

6.2. REMARK. If we think of M×V as a trivial vector bundle over M, and the
diagonal embedding of M into M×V as a section, then the diffeomorphism from
M×V×[0, 1] to NM×VM, given in Example 4.6, identifies the submersion p with
the map from NM×VM onto NVM that is induced from the projection of M×V

onto V .

Suppose now that SM is a Hermitian bundle on M (soon to be a spinor bun-
dle) and that D is a first-order linear partial differential operator acting on the
sections of SM (soon to be a Dirac operator, but for the moment not necessarily
even elliptic).

Pull back the bundle SM to M×V×[0, 1]. Define a smooth family of operators
on the fibers of p, acting on the sections of this pullback bundle, as follows.

(a) If (v, t) ∈ V×(0, 1] ⊆ NVM, then the fiber of p over (v, t) is the manifold
{

(m, t−1(v−m), t) : m ∈ M
}

⊆ M×V×[0, 1]

and so the coordinate projection onto M identifies the fiber with the manifold
M. We define D(v,t) = tD.

(b) If (m, v) ∈ NVM ⊆ NVM, then the fiber of the map p over X is the manifold

{m}× TmM× {0} ⊆ M×V×[0, 1].

Let Dm be the model operator on TmM, obtained from D by freezing the coeffi-
cients at m and dropping order zero terms. We define D(m,v) = −Dm.

6.3. LEMMA. The operators above form a smooth family of elliptic operators. More-
over the manifold M×V×[0, 1] is complete with respect to this family.

PROOF. If we embed the bundle S over M as a summand of a trivial bundle,
then we can reduce the lemma to the case where S is trivial, in which case the
original operator D is a system of operators on scalar functions. This allows us
to further reduce to the cases where D is either a vector field or multiplication by
a function f on M. In the latter case the family is multiplication by the smooth
function (m, v, t) �→ tf(m) on M×V×[0, 1]. In the former case, if X is a vector field
on M, then the associated family of operators is given by the smooth vector field

X(m,v,t) = (tXm,−Xm, 0)

on M×V×[0, 1], where we identify the tangent space of the product manifold at
(m, v, t) with TmM×V×R and we consider TmM as a subspace of V via the given
embedding of M.

As for completeness, if g : V → [0,∞) is any smooth proper function, then
its composition with the second coordinate projection on M×V×[0, 1] is a smooth
proper function on the product manifold whose commutator with D is uniformly
bounded. �
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Assume now that V is even-dimensional, oriented and Euclidean. Assume
that M has dimension 2k, that it is oriented, and that it is equipped with the Rie-
mannian metric it inherits as a submanifold of V . Let SM be a spinor bundle for
TM and D be a Dirac operator for SM.

Fix a spinor space S for V and let E : V → End(S) be self-adjoint Clifford mul-
tiplication, as in Definition 5.1. Consider E as a function

E : M×V×[0, 1] −→ End(S)

via the coordinate projection onto V .
Form the tensor product SM⊗̂S with fibers SmM⊗̂S. Form the operator D⊗̂I

on sections of SM⊗̂S over M×V×[0, 1], and also the self-adjoint endomorphism
I⊗̂E.

6.4. LEMMA. The anticommutator of D⊗̂I and I⊗̂E is a uniformly bounded endo-
morphism of SM⊗̂S, while (I⊗̂E)2 is a proper function on M×V×[0, 1].

PROOF. The square of I⊗̂E is the scalar function ‖v‖2, which is certainly a
proper function on M×V×[0, 1]. The anticommutator of D⊗̂I and I⊗̂E is the same
as the commutator of D⊗I and I⊗E on the sections of SM⊗S. �

According to Proposition 3.5 there is therefore an index class

Index(D⊗̂I+ I⊗̂E) ∈ K(NVM).

We shall prove the index theorem by computing the restriction of this index class
to the closed subsets NVM and V of NVM, where the latter is embedded as V×{1}.
We shall calculate that

Index(D⊗̂I+ I⊗̂E)
∣

∣

NVM
= (−1)kβ(NVM) ∈ K(NVM)

and
Index(D⊗̂I+ I⊗̂E)

∣

∣

V
= Index(D) · β(V) ∈ K(V),

and then the index formula will follow from the following calculation.

6.5. LEMMA. Let ι : NVM → V be a tubular neighborhood embedding associated to
the embedding of M into V as a closed submanifold. The diagram

K(NVM)

��

K(NVM)

��
K(NVM)

ι∗
�� K(V),

in which the vertical maps are given by the inclusions of NVM and V into NVM, is
commutative.

PROOF. Since NVM = NVM � V×(0, 1], and since V×(0, 1] is contractible in
the sense of locally compact spaces, the inclusion of NVM into NVM as a closed
subset induces an isomorphism

K(NVM)
∼= �� K(NVM)

by restriction of K-theory classes. It follows that the open inclusion of the tubular
neighborhood W = ι(NVM) into V induces an isomorphism

K(NWM)
∼= �� K(NVM).
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The lemma therefore reduces to the case where V = W, and now the calculation in
Example 4.6, plus the homotopy invariance of K-theory, completes the proof. �

We shall now calculate Index(D⊗̂I + I⊗̂E)|NVM. Recall from Definition 5.5
that the opposite spinor bundle SN for the normal bundle NVM is defined so that
there is an isomorphism of spinor bundles

M×S ∼= SM ⊗̂ SN

for the trivial bundle M×V . As a result there is an isomorphism

SM⊗̂S ∼=
(

SM⊗̂SM
)

⊗̂SN.

The continuous field of Hilbert spaces on which (D⊗̂I+ I⊗̂E)|NVM acts can there-
fore be written as the field with fiber

L2(TmM,SmM)⊗̂S ∼= L2(TmM,SmM⊗̂SmM) ⊗̂ SmN

over (m, v) ∈ NVM. If we define an operator Bm on the first tensor factor on the
right hand side by

Bm = −Dm⊗̂I+ I⊗̂Em,

where the function Em on TmM is self-adjoint Clifford multiplication, and if we
denote by Ev self-adjoint Clifford multiplication by a normal vector v on SmN,
then

(D⊗̂I+ I⊗̂E)(m,v)
∼= Bm⊗̂I+ I⊗̂Ev

(one should be aware that the descriptions on the left and right use different tensor
product decompositions).

We shall now compute the index of the family on the right hand side. The first
step is the following lemma, in which we shall use the canonical isomorphisms

SmM⊗̂SmM ∼= End(SmM) ∼= Cliff(TmM),

so as to view Bm as an operator on L2(TmM,Cliff(TmM)). Note that according to
our conventions, the first isomorphism in the display is grading-preserving if k is
even and grading-reversing if k is odd.

6.6. LEMMA. The kernel of (the closure of ) Bm is spanned by the function

v �→ exp(−1
2
‖v‖2)I ∈ Cliff(TmM).

On the orthogonal complement of the kernel, B2
m is bounded below by 2.

PROOF. We compute that

B2
m = Δ+ ‖v‖2 + (N− 2k)

where Δ is the Laplace operator and N is the number operator that acts as pI on all
monomials ei1 · · · eip . The lemma therefore follows from the well-known eigen-
value theory of the quantum harmonic oscillator Δ+ ‖v‖2. See for example [GJ87,
p. 12]. �

Now form the one-dimensional continuous field of Hilbert spaces

Km = ker(Bm) ⊆ L2(TmM,SmM⊗̂SmM).
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It is purely even-graded if k is even, and purely odd-graded if k is odd. The section
given in the lemma trivializes K, and as a result

L2(TmM,SmM⊗̂SmM) ⊗̂ SmN ∼= Km⊗̂SmN ⊕ K⊥
m⊗̂SmN

∼= SmN ⊕ K⊥
m⊗̂SmN,

where the isomorphism between the first summands is grading-preserving or
grading-reversing, according as k is even or odd. In the final direct sum decom-
position the operator Bm⊗̂I + I⊗̂Ev acts as the self-adjoint Clifford multiplication
operator Ev on SmN and as an invertible operator on K⊥

m⊗̂SmN, since

(Bm⊗̂I+ I⊗̂Ev)
2 = B2

m⊗̂I+ I⊗̂E2
v,

while B2
m ≥ 2 on K⊥

m. Using the additivity of the index, together with the triviality
of the index of the second summand, we find that

Index(D⊗̂I+ I⊗̂E)
∣

∣

NVM
= Index(B⊗̂I+ I⊗̂E)

= (−1)kβ(SN) ∈ K(NVM),

as required.
It remains to compute Index(D⊗̂I+ I⊗̂E)|V . This is quite simple. The map

q : M×V×[0, 1] −→ V×[0, 1]

q : (m, v, t) �→ (tm+ v, t)

is a submersion, and every fiber

q−1{(v, t)} =
{

(m, v− tm, t) : m ∈ M
}

⊆ M×V×[0, 1]

is isomorphic to M via the projection to M. Construct the smooth family D that is
the Dirac operator on each fiber, and then form the family

D⊗̂I+ I⊗̂E,

acting on sections of SM⊗̂S by using the same self-adjoint Clifford multiplication
endomorphism as E as before. We are re-using notation, but this is not especially
reckless because the restriction to V ∼= V×{1} of the new family is identical to
the same restriction of the old one. However the restriction to V ∼= V×{0} of the
new family, which has the same index as the restriction to V×{1} by homotopy
invariance of K-theory, is the family of operators

D⊗̂I+ I⊗̂Ev : L
2(M,SM)⊗̂S −→ L2(M,SM)⊗̂S

Decompose L2(M,SM) into the kernel of D, direct sum its orthogonal comple-
ment, and decompose L2(M,SM)⊗̂S accordingly. On the second summand the
above operators are uniformly bounded below by the first positive eigenvalue in
the spectrum of D. On the first summand the operators are

I⊗̂Ev : ker(D)⊗̂S −→ ker(D)⊗̂S

Taking into account the grading on ker(D) we find that

Index(D⊗̂I+ I⊗̂E)
∣

∣

V
= Index(D) · β(S),

as required.
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7. Some Remarks on the Tangent Groupoid

The proof of the index theorem given in Section 6 generalizes in a number of
simple ways. For instance we can introduce a coefficient vector bundle F on M,
and if DF is a Dirac-type operator acting on F⊗ SM, then we find that

Index(DF) · β(S) = (−1)kι∗
(

[F] · β(SN)
)

∈ K(V).

In addition, since the proof deals with families anyway, it extends directly to a
proof of the Atiyah-Singer index theorem for families of Dirac-type operators.

Other cases can be handled too, but after a certain point it becomes more con-
ceptual and otherwise more appropriate to invest in groupoid theory.

The tangent groupoid TM is the deformation space associated to the diagonal
embedding of M into M×M. This embedding is the inclusion of the units into
the pair groupoid of M, and same construction, when applied to the inclusion
of the unit space into other groupoids, produces other tangent groupoids. For
example when applied to the foliation groupoid of a foliated manifold it produces
the leafwise tangent groupoid of the foliation.

But let us focus on the classical index theorem and indicate how the proof
of the index theorem presented in Section 6 is drawn from Connes’ argument in
[Con94, Section II.5]. Assuming M is embedded in a vector space V , Connes con-
structs a homomorphism from the groupoid TM into V , and hence an action of
TM on the manifold V by translations [Con94, p. 105]. Associated to this there
is a crossed product groupoid TM�V , and in fact a family of crossed product
groupoids, since the translations can be scaled by s ∈ [0, 1].

When s = 0 the translation action is trivial and the groupoid TM�V is the
tangent groupoid TM times the parameter space V . It exhibits an elliptic operator
as a deformation of its symbol, more or less as indicated in the introduction.

Connes’ key observation is that when s = 1 the crossed product TM�V is
Morita equivalent to a space, that is, to a groupoid comprised entirely of units. The
space in question is NVM and in fact if we set X = M×V×[0, 1], then

TM�V ∼=
{

(x1, x2) ∈ X× X : p(x1) = p(x2)
}

,

where p is the submersion from X onto NVM defined in Section 6. The proof we
presented is based on the fact that if D is a Dirac operator, then the symbol-to-
operator deformation at s = 0 that is encoded by the tangent groupoid deforms as
s varies from 0 to 1, to the family that we studied in Section 6.

For general operators the analysis of the deformation as s varies is more dif-
ficult, and a Bott periodicity argument is required, as in the final part of Connes’
proof [Con94, p. 106].
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Le Théorème de Périodicité en K-Théorie Hermitienne

Max Karoubi

Cet article est dédié à Alain Connes, pour sa contribution admirable à la beauté des
mathématiques et sa générosité à nous la faire découvrir.

La périodicité de Bott joue un rôle primordial en K-théorie topologique. Elle
est d’ailleurs liée intimement au théorème d’Atiyah-Singer et plus généralement à
la géométrie non commutative. Dans deux articles précédents [K1] et [K2], nous
avons démontré l’analogue de ce théorème en K-théorie hermitienne pour des an-
neaux discrets avec (anti)involution a �→a, sous l’hypothèse qu’il existe un élément
λ du centre de A tel que λ+λ = 1 (on dit alors que 1 est scindé dans A). Si l’anneau
est commutatif et muni de l’involution triviale, ceci introduit l’hypothèse que 2 est
inversible dans A.
Si cette dernière hypothèse est anodine pour les algèbres de Banach, il n’en est pas
de même pour des anneaux importants comme l’anneau de groupe Zπ, où π est
un groupe discret. Une difficulté rencontrée pour l’étude de ce type d’anneau est la
divergence entre les notions de forme quadratique et de forme hermitienne. Dans
cet article, nous développons une théorie qui dépasse cette dichotomie et qui est
déjà présente dans le travail fondamental de Ranicki [R]. Grâce à cette théorie le
théorème de périodicité peut être démontré pour tout anneau. Nous montrons par
exemple que les groupes de Witt supérieurs d’un corps fini de caractéristique 2 sont
tous isomorphes à Z/2 (exemple 5.14).
Les méthodes de cet article sont beaucoup inspirées de celles de [K1] et [K2] que
nous adaptons à notre propos, ce qui nous permet d’être relativement bref pour
certaines démonstrations. Un autre ingrédient essentiel est un cup-produit entre
formes quadratiques défini par Clauwens [C]. Celui-ci permet de définir le mor-
phisme de périodicité dans le cas général. L’article de Clauwens ayant été écrit
dans un contexte différent, nous reprenons dans un appendice les lemmes essentiels
dont nous avons besoin pour nos démonstrations.
Résumons brièvement les différentes parties de cet article en commençant par le
théorème principal qui sera démontré dans le § 5.

Théorème. Soit A un anneau quelconque. On a alors une équivalence d’ho-
motopie naturelle

εV
él(A) ≈ Ω−εU

él(A)
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où les espaces V él et U él représentent les fibres homotopiques des foncteurs oubli
et hyperbolique respectivement pour des catégories de modules quadratiques appro-
priées.

(1) Description de différents types de formes hermitiennes. Après des
rappels sur les définitions classiques utilisées, nous introduisons un nou-
veau type de groupe orthogonal, dit “élargi” : cf. 1.6/7. Si 1 est scindé dans
A, celui-ci cöıncide avec le groupe orthogonal sur l’anneau des nombres
duaux associé à A, soit A[e]/e2, noté simplement A(e) dans la suite de
l’article.

(2) Les groupes de Grothendieck et Bass en K−théorie hermitienne.
Nous montrons comment les théorèmes principaux en K−théorie hermi-
tienne restent valables dans le cas “élargi”. Nous précisons aussi les no-
tations utilisées, en suivant partiellement la terminologie du livre de Bak
[B1]. Par exemple, la notation “L”, utilisée en [K1] et [K2], est aban-
donnée et remplacée par la notation “KQ”, pour éviter toute ambigüité
avec les groupes de chirurgie.

(3) Les groupes εKQn(A) pour n > 0 et n < 0. Les définitions essentielles
sont contenues dans ce paragraphe, en utilisant des idées bien connues en
K−théorie algébrique. Le théorème 3.2 permet de comparer les théories
“max” et “min”, suivant la terminologie de Bak. Nous montrons aussi
comment les techniques de Quillen se transcrivent dans notre situation en
une description plus géométrique des éléments de εKQn(A).

(4) Cup-produits en K−théorie hermitienne. Le cup-produit de Clau-
wens. Le cup-produit en K−théorie hermitienne est défini à l’aide de sa
description en termes de fibrés plats. Un cup-produit plus subtil, dû es-
sentiellement à Clauwens, est défini en 4.3 (cf. aussi l’appendice). Nous
montrons comment tous ces produits sont reliés entre eux dans le théorème
4.8.

(5) Le théorème fondamental de la K−théorie hermitienne pour des
anneaux arbitraires.Dans ce paragraphe, nous généralisons les résultats
principaux de [K1] et [K2] (cf. le théorème 5.2 et la remarque 5.11). La
relation avec les groupes de Witt est faite dans le théorème 5.10.

(6) Les groupes de Witt stabilisés. En utilisant les résultats précédents,
nous introduisons une théorie nouvelle de groupes de Witt “stabilisés”
généralisant ceux définis en [K4]. Ses propriétés fondamentales sont
décrites en 6.1. Une généralisation dans le cadre des schémas a été proposée
par M. Schlichting [S] en supposant 2 inversible.

(7) Appendice. Les lemmes de Clauwens.

Remerciements. Ce travail a été essentiellement accompli pendant le pro-
gramme thématique sur la théorie de l’homotopie en 2007, organisé au Fields Ins-
titute à Toronto. Je remercie également A. Ranicki pour avoir attiré mon attention
sur l’article de Clauwens [C], J. Berrick pour la démonstration du lemme 4 en ap-
pendice, plus simple que le lemme original de Clauwens, ainsi que le referee et M.
Schlichting pour des commentaires pertinents après une première version de cet
article.
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1. Description des différents types de formes hermitiennes et
quadratiques.

1.1. Soit A un anneau muni d’une (anti)involution a �→a (on dit alors que A
est un anneau hermitien) et soit 1 ε = ±1. Nous désignons par P(A) la catégorie
des A−modules (à droite) qui sont projectifs de type fini (les morphismes étant
restreints aux isomorphismes). Si E est un objet de P(A), son dual E∗ est le groupe
formé des applications additives f : E → A telles que f(xλ) = λf(x), où λ ∈ A et
x ∈ E. C’est en fait un objet de P(A), la structure deA-module à droite étant définie
par la formule (f · λ)(x) = f(x)λ. Le module E et son bidual E∗∗ sont isomorphes

canoniquement grâce à la correspondance x �→(f �→f(x)). Nous identifierons E à E∗∗

par cet isomorphisme. Par ailleurs, si f : E → F est un morphisme dans P(A), son
transposé tf : F ∗ → E∗ est défini par la formule classique t(f)(g) = g · f et on a
t(tf) = f , compte tenu des isomorphismes canoniques entre les modules E, F et
leurs biduaux respectifs.

1.2. Nous définissons une forme ε-hermitienne sur E comme un morphisme
φ : E → E∗ tel que tφ = εφ, où tφ : (E∗)∗ ∼= E → E∗. La forme φ est dite “non
dégénérée” si c’est un isomorphisme. Il convient de remarquer que la donnée de φ
équivaut à celle d’une application Z−bilinéaire

χ : E × E → A

telle que χ(xλ, yμ) = λχ(x, y)μ si λ et μ ∈ A, x et y ∈ E. La correspondance est
donnée par la formule classique suivante :

χ(x, y) = φ(y)(x)

La condition de ε-symetrie (tφ = εφ) se traduit par l’identité

χ(y, x) = εχ(x, y)

Dans cet article, les formes hermitiennes φ qui nous intéressent sont paires : elles
s’écrivent sous la forme

φ = φ0 + εtφ0

Il convient de noter que φ0 n’est pas déterminé par cette formule. Si φ1 est un autre
choix et si pose γ = φ0 − φ1, on a tγ = −εγ.

1.3. Les formes hermitiennes paires sont les objets d’une catégorie notée 2

εQmax(A), définie de la manière suivante : un morphisme

(E, φ) → (F, ψ)

est un isomorphisme f entre les A-modules sous-jacents tel que le diagramme sui-
vant commute :

E

φ

��

f �� F

ψ

��
E∗ F ∗

tf

��

1. On pourrait choisir plus généralement un élément ε du centre de A tel que εε = 1. Cepen-
dant, on se ramène à ce cas en remplaçant A par M2(A), l’algèbre des matrices 2×2 à coefficients
dans A, munie d’une involution adéquate (cf. 1.10).

2. En suivant la terminologie de Bak [B1].
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1.4. De manière parallèle, en suivant Tits [T] et Wall [W], on définit une forme
ε-quadratique non dégénérée sur E comme une classe de morphismes

φ0 : E → E∗

tels que φ0+εtφ0 = φ soit une forme hermitienne non dégénérée. Plus précisément,
la classe de φ0 est définie modulo l’addition par un morphisme du type tγ − εγ.
Les formes ε-quadratiques sont aussi les objets d’une catégorie notée 3

εQmin(A).
Un morphisme

(E, φ0) → (F, ψ0)

est un isomorphisme f entre les A-modules sous-jacents tel qu’il existe γ, morphisme
de E dans E∗, vérifiant l’identité

tf · ψ0 · f = φ0 + γ − εtγ (S)

1.5. Remarques. Si A est un corps muni de l’involution triviale, il est facile
de voir que la catégorie des 1-formes quadratiques est équivalente à la catégorie
usuelle : il suffit de poser

q(x) = φ0(x)(x)

Cette remarque justifie la définition abstraite introduite dans 1.3.

Par ailleurs, si 1 est scindé dans A (cf. l’introduction), la catégorie des modules
ε-hermitiens est équivalente à celle des modules ε-quadratiques : avec les définitions
ci-dessus il suffit de poser γ = λ(tf · ψ0 · f − φ0). Ce cas se présente notamment si
2 est inversible dans A.

1.6. Nous allons maintenant introduire une troisième catégorie qui jouera un
rôle important dans notre travail et qui sera notée Qél(A) (“él” pour “élargi” ; cf. la
fin de 1.7). Les objets sont quasiment les mêmes que ceux de la catégorie εQmin(A)
précédente, sauf que l’on considère les φ0 comme donnés dans la structure (on ne
considère pas seulement les classes de tels φ0). Un morphisme de (E, φ0) vers (F, ψ0)
est défini par un couple (f, γ), tel que l’identité (S) ci-dessus soit satisfaite. La loi
de composition des morphismes s’explicite ainsi

(f, γ).(g, ζ) = (f · g, ζ + tg · γ · g) (C)

ce qui est cohérent avec l’identité (S).

1.7. Il est instructif de décrire plus précisément le groupe des automorphismes
d’un objet dans chacune des trois catégories. Si (E, φ) est un objet de εQmax(A),
le groupe unitaire εO

max(E, φ) est défini par des isomorphismes f : E → E tels
que

tf · φ · f = φ

Si on note f∗ = φ−1 · tf · φ l’opérateur adjoint de f , il revient au même d’écrire

f∗ · f = IdE (ou f · f∗ = IdE)

Le groupe orthogonal εO
min(E, φ0) est défini par des isomorphismes f : E → E

tels qu’il existe γ, morphisme de E dans E∗, vérifiant l’identité
tf · φ0 · f = φ0 + γ − εtγ (E)

Il est clair que εO
min(E, φ0) est un sous-groupe de εO

max(E, φ) pour φ = φ0+ εtφ0,
la forme hermitienne associée à φ0. Il est facile de voir que les groupes εO

max(E, φ)

3. cf. la note précédente.
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et εO
min(E, φ0) cöıncident si 1 est scindé dans A.

Finalement, le groupe orthogonal élargi εO
él(E, φ0) est défini par des couples

(f, γ) vérifiant l’identité (E) ci-dessus. La loi de composition est donnée par l’iden-
tité (C) écrite aussi plus haut. On a un épimorphisme

εO
él(E, φ0) → εO

min(E, φ0)

dont le noyau est égal au groupe abélien εS(E) formé des morphismes γ : E → E∗

tels que tγ = εγ. Nous obtenons ainsi une extension de groupes non triviale en
général

1 ��
εS(E) ��

εO
él(E, φ0) ��

εO
min(E, φ0) �� 1

Celle-ci justifie la terminologie adoptée de “groupe orthogonal élargi”.

Pour les calculs, il est commode d’identifier E à son dual par la forme hermi-
tienne φ associée à φ0. Le morphisme γ est alors remplacé par un endomorphisme
u = φ−1 · γ de E. On peut de même remplacer φ0 par ψ = φ−1 · φ0. On a alors
ψ∗ = φ−1 · tψ · φ = φ−1 · (tφ0 · εφ−1 · φ) = φ−1 · (φ− φ0) = 1− ψ. La relation (E)
ci-dessus s’écrit alors f∗ ·ψ ·f = ψ+u−u∗ ou encore f−1.ψ.f = ψ+u−u∗ puisque
f est unitaire.

Grâce à cette traduction, la loi de composition dans εO
él(E, φ0) s’écrit simplement

(f, u) · (g, v) = (f · g, v + g∗ · u · g) = (f · g, v + g−1 · u · g)
Le noyau εS(E) de l’homomorphisme surjectif εO

él(E, φ0) → εO
min(E, φ0) s’iden-

tifie à l’ensemble des morphismes auto-adjoints de E, noté simplement S(E). L’ex-
tension précédente s’écrit alors de manière équivalente

1 → S(E) ��
εO

él(E) ��
εO

min(E) �� 1

Dans cette extension, le groupe εO
min(E) opère à droite sur S(E) par la formule

suivante :

(u, g) �→g−1 · u · g

1.8. Si 1 est scindé dans A, on peut définir une section s de cette extension en
posant

s(g) = (g, λ(g∗ · ψ · g − ψ)) = (g, λ(g−1 · ψ · g − ψ))

Il en résulte que le groupe orthogonal élargi s’identifie au produit semi-direct du
groupe orthogonal εO(E) par le groupe additif S(E), grâce à l’action définie ci-
dessus. Une autre façon de voir les choses est d’introduire l’anneau des nombres
duaux A(e) avec e2 = 0 et e = −e puis d’étendre les scalaires à A(e). Nous savons
déjà que le groupe orthogonal εO

min(E) s’identifie au groupe unitaire εO
max(E).

Par ailleurs, l’épimorphisme

Omax(E(e)) → Omax(E)

a comme noyau l’ensemble des matrices unitaires du type 1+ue, c’est-à-dire vérifiant
l’identité (1 + ue)(1 − u∗e) = 1 + (u − u∗)e = 1, soit u = u∗. Le groupe unitaire
opère sur ce noyau par l’action à droite définie par la même action : (u, g) �→g−1ug.
Il en résulte que le groupe orthogonal élargi Oél(E) s’identifie à Omax(E(e)) en tant
que produit semi-direct.
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1.9. Considérons le cas particulier où A = B×Bop, Bop étant l’anneau opposé
à B, l’involution permutant les facteurs du produit. Si nous posons λ = (1, 0), on
a λ + λ = 1, ce qui montre que 1 est scindé dans A. Il est facile de voir que la
donnée d’un A-module hermitien équivaut à celle d’un B-module. Les catégories

εQmax(A) et εQmin(A) sont donc toutes les deux équivalentes à la catégorie P(B)
(avec les isomorphismes comme morphismes). D’après 1.7, nous en déduisons que
les catégories εQél(A) et P(B(e)) sont équivalentes. En effet, nous avons montré
en 1.7 que le groupe des automorphismes d’un objet de εQél(A) est le même que
celui des automorphismes du B-module correspondant, vu comme un objet de B(e)
par extension des scalaires. Puisque les classes d’isomorphie d’objets de P(B(e))
cöıncident avec les classes d’isomorphie d’objets de P(B), l’assertion résulte de
considérations générales sur les équivalences de catégories.

1.10. Rappelons maintenant la définition du foncteur hyperbolique classique

H : P(A) → εQmin(A)

Si E est un objet de P(A), H(E) est le A-module E ⊕ E∗ muni de la forme qua-
dratique

ϕ0 : E ⊕ E∗ → (E ⊕ E∗)∗ ≈ E∗ ⊕ E

définie par la matrice

ϕ0 =

(

0 1
0 0

)

Si u est un isomorphisme dans la catégorie P(A), on définit H(u) = g = u⊕ tu−1.
On vérifie que tg.ϕ0.g = ϕ0 et que H(u) est donc bien un isomorphisme dans la
catégorie εQmin(A). On peut décrire ce foncteur de manière plus conceptuelle en
considérant l’anneau Λ = M2(A) des matrices 2 × 2 à coefficients dans A et où
l’involution est définie par

(

a b
c d

)

�→
(

d b
c a

)

L’équivalence de Morita démontrée dans [B1] §9 montre que les catégories εQmin(Λ)
et εQmin(A) sont équivalentes. On démontre par la même méthode que les catégories

εQmax(Λ) et εQmax(A) d’une part et les catégories εQél(Λ) et εQél(A) d’autre part
sont équivalentes. Le foncteur hyperbolique P(A) → εQmin(A) est alors induit par
l’homomorphisme d’anneaux A×Aop → M2(A) défini par

(a, b) �→
(

a 0

0 b

)

D’après 1.8, cette méthode a l’avantage de définir un nouveau foncteur hyperbolique
de P(A) dans la catégorie plus fine εQél(A) par la composition des foncteurs évidents
suivants induits par des morphismes d’anneaux ou des équivalences de Morita :

P(A) → P(A(e))∼εQél(A×Aop) → εQél(M2(A))∼εQél(A)

On procède de même pour le foncteur “oubli” εQél(A) → P(A) qui est la composi-
tion

εQél(A) → εQél(A×Aop)∼P(A(e)) → P(A)
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2. Les groupes de Grothendieck et Bass en K−théorie hermitienne.

2.1. Aux catégories précédentes εQmax(A), εQmin(A) et εQél(A), nous pouvons
associer trois groupes de K−théorie hermitienne notés εKQmax(A), εKQmin(A) et

εKQél(A) respectivement, reliés par des homomorphismes canoniques

εKQél(A)
u ��

εKQmin(A)
v ��

εKQmax(A) ,

Il est clair que u est un isomorphisme et que v est surjectif. Par ailleurs, nous
pouvons définir l’analogue du groupes de Bass K1(A) en K−théorie hermitienne.
Dans ce but, le lemme suivant, dont la démonstration est détaillée dans [KV] p. 61
par exemple, est essentiel.

2.2. Lemme. Tout module ε-quadratique est facteur direct d’un module hy-
perbolique.

2.3. Puisque tout module projectif de type fini est facteur direct d’un module
libre du type An, on voit que les groupes classiques qui jouent le rôle de GLn(A)
sont les groupes d’automorphismes de modules hyperboliques du type H(An) dans
chacune des trois catégories concernées.
Plus précisément, écrivons E = M ⊕M∗ (on considèrera le cas où M = An un peu
plus tard). La forme quadratique associée est définie par la matrice φ0 précédente
avec ψ comme forme hermitienne associée, soit

φ0 =

(

0 1
0 0

)

φ =

(

0 1
ε 0

)

Si f : E → E est un homomorphisme défini par une matrice f =

(

a b
c d

)

, son

adjoint est la matrice f∗ =

(

td εtb
εtc ta

)

.

Dans le cas où M = An, il convient de remplacer la notation tu par tu, si on écrit
u comme une matrice n × n. En effet, la conjugaison résulte de l’identification de
An avec son dual (An)∗.

2.4. Notations. On désigne par εO
max
n,n (A) (resp. εO

min
n,n(A), εO

él
n,n(A)) le

groupe unitaire (resp. orthogonal, orthogonal élargi) associé au module hyperbo-
lique (A)n ⊕ (An)∗.

2.5. Exemple. Supposons que A soit un corps muni de l’involution triviale
et que ε = 1. Le fait que f soit unitaire (f ∈ 1O

max
n,n (A)) se traduit par les identités

suivantes (où a, b, c et d sont des matrices n× n) :

a · td+ b · tc = 1

a · tb+ b · ta = 0

c · td+ d · tc = 0

c · tb+ d · ta = 1

L’automorphisme f est orthogonal (f ∈ 1O
min
n,n(A)) s’il existe en outre des matrices

h et k telles que a · tb = h− th et c · td = k − tk.
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Pour décrire un élément du groupe orthogonal élargi, il faut se donner en outre
un endomorphisme défini par une matrice 2n× 2n,

u =

(

α β
γ δ

)

liée à f et à la forme φ0 (cf. 1.6/7). Plus précisément, le couple (f, u) doit vérifier
l’identité suivante

(

td · a tb · d
tc · a tc · b

)

=

(

1 0
0 0

)

+

(

α β
γ δ

)

−
(

tδ tβ
tγ tα

)

Elle résulte de l’équation (E) en 1.7, à condition d’identifier E⊕E∗ à E∗⊕E (avec
E = An).

2.6. Revenons au cas général d’un anneau A quelconque. Pour simplifier, nous
écrirons εOn,n(A) au lieu de εO

max
n,n (A), εO

min
n,n(A), εO

él
n,n(A) en revenant à ces

notations spécifiques lorsqu’il sera nécessaire de distinguer les trois groupes. De
même, nous utiliserons la terminologie uniforme “groupe orthogonal” au lieu de
“groupe unitaire”, “groupe orthogonal” ou “groupe orthogonal élargi”, lorsque nos
considérations s’appliquent aux trois variantes. Avec ces conventions, le groupe or-
thogonal infini εO(A) est défini comme la limite inductive des groupes εOn,n(A) avec
les inclusions évidentes. En suivant l’exemple du groupe linéaire, nous définissons
le “groupe de Bass” εKQ1(A) comme le quotient de εO(A) par le sous-groupe des
commutateurs [εO(A), εO(A)]. Le fait que ce sous-groupe soit parfait résulte de
considérations bien connues sur la stabilisation des matrices qu’on peut résumer
par des identités générales. La première est la suivante :
(

αβα−1β 0 0
0 1 0
0 0 1

)

=

(

α 0 0

0 α−1 0
0 0 1

)(

β 0 0
0 1 0

0 0 β−1

)(

α−1 0 0
0 α 0
0 0 1

)(

β−1 0 0
0 1 0
0 0 β

)

Par ailleurs, modulo le sous-groupe des commutateurs, une matrice du type
⎛

⎝

α 0 0
0 α−1 0
0 0 1

⎞

⎠

peut aussi s’écrire
⎛

⎝

α 0 0
0 α−1 0
0 0 1

⎞

⎠

⎛

⎝

0 1 0
0 0 1
1 0 0

⎞

⎠ =

⎛

⎝

0 α 0
0 0 α−1

1 0 0

⎞

⎠

qui est le commutateur suivant
⎛

⎝

α 0 0
0 0 1
0 1 0

⎞

⎠

⎛

⎝

0 1 0
1 0 0
0 0 1

⎞

⎠

⎛

⎝

α−1 0 0
0 0 1
0 1 0

⎞

⎠

⎛

⎝

0 1 0
1 0 0
0 0 1

⎞

⎠

Toutes ces identités (qui sont vraies dans le cadre plus général de catégorie monöıdales
symétriques) démontrent bien que [εO(A), εO(A)] est parfait. Pour chacune des trois
théories considérées, on utilisera les notations εKQmax

1 (A), εKQmin
1 (A), εKQél

1 (A)
ou simplement εKQ1(A).
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2.7. Théorème . Considérons un carré cartésien d’anneaux hermitiens (avec
ϕ1 surjectif)

A

ϕ2

��

ψ1 �� A1

ϕ1

��
A2

ψ2

�� A′

On a alors une suite exacte (dite de Mayer-Vietoris) entre les groupes de K-théorie
hermitienne

εKQ1(A) ��
εKQ1(A1)⊕ εKQ1(A2) ��

εKQ1(A
′) ��

εKQ(A) �� . . .

. . . ��
εKQ(A1)⊕ εKQ(A2) ��

εKQ(A′)

Démonstration. Ce théorème classique peut être démontré de diverses manières.
L’une d’entre eux est esquissée dans le livre de Milnor [M] et détaillée dans celui de
Bak [B1]. Une autre démonstration est indiquée dans [KV] p. 68-70 (elle s’applique
dans les trois situations). Le point important est de remarquer qu’un élément du
sous-groupe des commutateurs [εO(A′), εO(A′)] se relève en un élément de εO(A1).
Ceci est démontré grâce au lemme de Whitehead classique adapté au cas hermitien
(cf. [KV] théorème 2.6 par exemple).

2.8. Dans [B1] p. 191, Bak démontre une suite exacte intéressante reliant les
groupes εKQmax et εKQmin. Elle s’écrit

εKQmin
1 (A) ��

εKQmax
1 (A) ��

εΞ(A) ��
εKQmin(A) ��

εKQmax(A)

Le groupe de 2-torsion εΞ(A) est explicité ainsi. Nous définissons d’abord Γ = Γ(A)
comme l’ensemble des éléments a de A tels que a = εa et Λ comme le sous-groupe
de Γ formé des b−εb. Alors εΞ(A) est le quotient de Γ/Λ⊗AΓ/Λ par le sous-groupe
engendré par tous les éléments de la forme

{a⊗b− b⊗a} et {a⊗b− a⊗bab}
Dans la définition du produit tensoriel Γ/Λ⊗AΓ/Λ, l’action à droite de A sur Γ/Λ
est (γ, a) �→aγa. L’action à gauche est définie de manière similaire par (a, γ) �→a.γ.a
Un théorème plus général est en fait énoncé dans [B1] en utilisant des “formes
paramètres” arbitraires Γ et Λ.

2.9. Remarque. La suite exacte précédente permet de définir un invariant
des formes quadratiques proche de l’invariant de Arf en considérant des corps
de caractéristique 2 (cf. [B2]). Dans ce cas, le groupe KQmax

1 (A) est réduit à 0,
KQmax(A) ∼= Z et le noyau de la flèche

KQmin(A) → KQmax(A) = Z

s’identifie ainsi au groupe Ξ(A) précédent : c’est le quotient de A⊗ZA par le sous-
groupe engendré par les relations {a⊗b−b⊗a}, {a⊗b−a⊗b2a} et {c2a⊗b−a⊗c2b}.
L’invariant de Arf classique est obtenu par l’application a⊗b�→a·b : elle est à valeurs
dans le quotientG de F par le sous-groupe additif engendré par les relations {a2−a}.
Cette application de Ξ(A) dans G admet une rétraction induite par l’application
a �→1⊗a.
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3. Les groupes de K−théorie hermitienne εKQn(A) pour n < 0 et n > 0.

3.1. Pour définir les groupes εKQn pour n < 0, nous suivons le même schéma
qu’en K-théorie algébrique [KV]. De manière précise, si on pose n = −m, on pose
KQn(A) = KQ(SmA), où SmA est la mième suspension de l’anneau A. Notons que
l’isomorphisme

εKQél(A) ∼= εKQmin(A)

implique par suspensions itérées l’isomorphisme

εKQél
−m(A) ∼= εKQmin

−m(A)

Le théorème suivant est moins évident.

3.2. Théorème . L’homomorphisme

εKQmin
n (A) → εKQmax

n (A)

est surjectif pour n = 0, bijectif pour n < 0.

Démonstration. La surjectivité pour tout n est une conséquence immédiate des
définitions (car nous considérons des formes hermitiennes paires). Par induction
sur n, il suffit de démontrer l’injectivité pour n = −1. Pour cela, écrivons la suite
exacte 2.8, en remplaçant A par sa suspension SA et son cône CA. On obtient alors
un diagramme commutatif

εKQmin
1 (CA) ��

��

εKQmax
1 (CA) ��

��

εΞ(CA) ��

��

εKQmin(CA) ��

��

εKQmax(CA)

��
εKQmin

1 (SA) �� εKQmax
1 (SA) ��

εΞ(SA) ��
εKQmin(SA) ��

εKQmax(SA)

Puisque le cône d’un anneau est “flasque” (il existe un foncteur τ de la catégorie
P(CA) dans elle-même tel que τ⊕Id soit isomorphe à τ ), ses groupes de K−théorie
hermitienne sont réduits à 0, ce qui implique que εΞ(CA) est aussi égal à 0. Pour
démontrer l’injectivité de la flèche εKQmin

−1 (A) → εKQmax
−1 (A), il suffit donc de

montrer que l’homomorphisme εΞ(CA) → εΞ(SA) est surjectif, ce qui est une
conséquence du lemme suivant.

3.3. Lemme. Notons Γ(R) le groupe Γ défini en 2.8 pour tout anneau R.
Alors l’homomorphisme canonique

Γ(CA) → Γ(SA)

est surjectif.

Démonstration. Un élément de Γ(SA) est défini par une matrice infinie M telle
que sur chaque ligne et chaque colonne il n’existe qu’un nombre fini d’éléments non
nuls et telle que tM = εM modulo une matrice finie. Soient aij les éléments (en
nombre fini) de la matrice M tels que aij 	= εaji. Si on remplace ces éléments par
0, on trouve une matrice N dans CA qui est ε-hermitienne et dont la classe dans
SA est égale à celle de M .
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3.4. Définissons maintenant les groupes εKQn pour n > 0, ce qui est plus
délicat. En principe, il suffit de copier la construction + de Quillen à l’espace
BεO(A), ce qui est possible car le sous-groupe des commutateurs [εO(A), εO(A)] est
parfait. On définit alors εKQn(A) comme le nième groupe d’homotopie de BεO(A)+

(pour n > 0). En fait, nous disposons de trois groupes de K-théorie hermitienne

εKQmax
n (A), εKQmin

n (A) et εKQél
n(A)

associés respectivement aux groupes εO
max(A), εO

min(A) et εO
él(A). Conformément

à la philosophie de cet article, nous adopterons la notation uniforme εKQn(A)
pour ne pas compliquer l’exposition, lorsqu’il n’y a pas de risque de confusion. Ces
groupes sont difficiles à calculer en général, comme d’ailleurs les groupes Kn(A)
de Quillen dont ils sont la généralisation. Nous verrons cependant que, dans une
certaine mesure, les “groupes de Witt supérieurs” εWn(A) = Coker(Kn(A) →
εKQn(A)) sont plus accessibles.

3.5. Comme il est bien connu, il existe d’autres définitions des foncteurs Kn

et εKQn équivalentes à la construction + de Quillen. La construction dite “S−1S”
(due aussi à Quillen) est détaillée dans le cadre hermitien dans [K1] §1 et nous l’uti-
liserons pour la preuve de 4.6. Il existe aussi une définition en termes de A-fibrés
plats qui est détaillée dans [K2] p. 42 et c’est celle que nous utiliserons essentielle-
ment ici. Rappelons-là brièvement dans le cadre que nous intéresse.
On définit un A-fibré hermitien “virtuel” sur un CW -complexe X comme la donnée
d’une fibration acyclique Y → X et d’un A-fibré plat E sur Y , la fibre étant un
A-module projectif de type fini muni d’une forme hermitienne dans l’un des trois
sens que nous avons donnés à ce terme (ceci veut dire que les fonctions de transi-
tion du fibré sur Y sont des fonctions localement constantes dans chacune des trois
catégories “max”, “min” ou “él” concernées).

Deux tels fibrés virtuels

E → Y → X et E′ → Y ′ → X

sont dits équivalents s’il existe un fibré virtuel E1 → Y1 → X et un diagramme
commutatif

Y
f ��

σ

��

X

f ′

��
Y1

f1

����������
Y ′

σ′
��

tel que σ∗(E1) ∼= E et σ′∗(E1) ∼= E′.

En suivant le même schéma qu’en [K2] p. 42-50, on montre que le groupe de
Grothendieck construit avec ces fibrés virtuels est isomorphe au groupe défini par les
classes d’homotopie deX dans εKQ0(A)×BεO(A)+, noté εKQA(X), et qui est une
“théorie cohomologique” en X. Si X est une sphère de dimension n ≥ 0, on retrouve
ainsi εKQn(A) comme le conoyau de la flèche évidente εKQ0(A) → εKQA(X).

On peut définir le spectre de la K−théorie hermitienne par la même méthode
qu’en K−théorie algébrique. Ainsi, dans [K1], on démontre l’analogue du théorème
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de Gersten-Wagoner [W] en K−théorie hermitienne : on a une équivalence d’ho-
motopie (non naturelle) entre Ω(BεO(SA)+) et εKQ0(A) × BεO(A)+ (la même
démonstration s’applique dans les trois cas considérés ici). Plus précisément, on
définit le Ω-spectre de la K-théorie hermitienne εKQ(A)∗ par les formules sui-
vantes :

εKQ(A)n = Ω(BεO(Sn+1A)+) pour n ≥ 0

εKQ(A)n = Ω−n(BεO(A)+) pour n < 0

En fait, ce spectre n’est qu’un langage commode. Pour pouvoir définir des cup-
produits en K-théorie hermitienne, nous nous servirons plutôt de la théorie co-
homologique associée en termes de fibrés virtuellement plats comme nous l’avons
explicité plus haut. D’ailleurs, une situation analogue se présente en K−théorie
topologique, où les opérations sont plus aisément définies sur les fibrés vectoriels
plutôt que sur la grassmannienne infinie.

4. Cup-produits en K−théorie hermitienne. Le cup-produit de
Clauwens.

4.1. L’avantage du point de vue des fibrés plats est une définition très simple du
cup-produit. Celui-ci est explicité dans [K2] à partir d’un morphisme Z-bilinéaire

ϕ : A×B → C

vérifiant la propriété de multiplicativité suivante :

ϕ(aa′, bb′) = ϕ(a, b)ϕ(a′, b′)

Le cup-produit s’écrit alors sous la forme d’un accouplement bilinéaire

KA(X)×KB(Y ) → KA⊗B(X × Y )

où la flèche est simplement induite par le produit tensoriel des fibrés virtuellement
plats. Si X est un espace muni d’un point base P , il est commode d’introduire

la “K-théorie réduite” ˜KA(X) = Ker[KA(X) → KA(P ) = K0(A)]. Le produit
précédent induit alors un “cup-produit réduit”

˜KA(X)× ˜KB(Y ) → ˜KA⊗B(X ∧ Y )

En particulier, si X (resp. Y ) est une sphère Sn (resp. Sp) avec n et p ≥ 0, on en
déduit le cup-produit usuel en K-théorie algébrique (cf. aussi [L]).

4.2. Le même schéma s’applique en K−théorie hermitienne 4. Par exemple,
compte tenu des signes de symétrie, les cup-produits classiques sont schématisés
par des accouplements

εKQmax × ηKQmin → εηKQmin

et

εKQmax × ηKQél → εηKQél

De manière précise, si nous considérons une ε-forme hermitienne paire φ = φ0+εtφ0

sur un A-module E et une forme η-quadratique définie par une classe de de mor-
phismes ψ0 sur un B-module F , alors φ⊗ψ0 est une classe de forme εη-quadratique
sur E ⊗ F . En outre, si α (resp. β ) est un morphisme unitaire (resp. orthogonal)
de E (resp. F ), il est facile de voir que α ⊗ β est un morphisme orthogonal de
E ⊗ F . De manière analogue, si (β, γ) est un morphisme dans la catégorie ηQél, le

4. Á condition de supposer en outre que ϕ(a, b) = ϕ(a, b)
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couple (α ⊗ β, α ⊗ γ) définit un morphisme dans la catégorie εηQél, ce qui définit
le deuxième accouplement.
Ces deux cup-produits, définis en termes de modules, s’étendent naturellement aux
fibrés plats ou virtuellement plats dans les catégories concernées (il convient de
noter cependant que ψ0 n’est pas donné dans la structure pour le premier accou-
plement mais seulement sa classe fibre par fibre). En considérant des fibrés plats
sur des sphères homologiques, on définit ainsi des accouplements

εKQmax
n (A)× ηKQmin

p (B) → εηKQmin
n+p(C)

et

εKQmax
n (A)× ηKQél

p (B) → εηKQél
n+p(C)

4.3. Nous allons maintenant introduire un autre cup-produit plus subtil, dû
essentiellement à Clauwens [C]. Celui-ci a été écrit par Clauwens pour les catégories
de modules mais il s’étend aisément aux “bonnes” catégories de fibrés virtuellement
plats munis de formes quadratiques. De manière précise, considérons d’abord la
catégorie ηQ

él(B) et la catégorie Qél0(A [s]) formée des A [s]-modules provenant de
A par extension des scalaires, l’involution de A et la transformation s �→1− s.
Un objet de εQél0(A[s]) peut être décrit comme un couple (E, θ), où E est un objet
de P(A) et θ une forme ε-quadratique sur E⊗ZZ[s] s’écrivant sous la forme

∑

θns
n,

où θn est un morphisme de E vers E∗.
Considérons maintenant un objet (F, δ) de ηQél(B), où δ est une forme η
-quadratique non dégénérée sur F avec Δ = δ + ηtδ comme forme hermitienne
associée. Sur E⊗F on peut alors considérer la forme εη-quadratique définie par la
formule suivante

κ =
∑

θn⊗Δ(Δ−1δ)n

Cette formule se simplifie si on identifie F et son dual par l’isomorphisme Δ, ce
qui revient à remplacer Δ−1δ par δ. On peut de même identifier E à E∗ par l’iso-
morphisme θ0 +

∑∞
n=0

tθn. Le foncteur de dualité f �→tf est alors remplacée par
le foncteur d’adjonction f �→f∗. Un avantage de cette formulation est aussi de se
débarrasser des signes de symétrie. La formule précédente s’écrit alors sous une
forme plus simple

κ =
∑

θn⊗δn

avec δ∗ = 1 − δ. En quelques lemmes fondamentaux (cf. [C] p. 43 et 44 et aussi
l’appendice, où on écrit φ au lieu de Δ−1δ pour éviter toute confusion), Clauwens
montre que l’accouplement précédent

Obj(εQél0(A[s]))× Obj(ηQél(B)) → Obj(εηQél(A⊗B))

est bien défini sur les classes d’isomorphie de modules quadratiques élargis. En fait,
Clauwens considère dans son article des modules libres mais sa méthode est plus
générale, comme nous l’explicitons dans l’appendice. Nous pouvons même aller un
peu plus loin en interprétant cette correspondance comme un produit tensoriel. De
manière précise, si E′ est un A-module “élargi” et si F est un B-module élargi,
F peut être vu come un Z [s]-module par l’action de l’endomorphisme (Δ−1δ) ci-
dessus. La correspondance (E′, F ) �→ E′ ⊗Z[s] F définit alors un accouplement plus
général

Ob(εQ
él(A [s])×Ob(ηQ

él(B)) −→ Ob(εηQ
él(A⊗B))
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En particulier, nous pouvons définir un cup-produit remarquable

εKQél(A [s])× ηKQél(B) −→ εηKQél(A⊗B)

Dans les considérations précédentes, nous aurions pu remplacer la catégorie Qél

par la catégorie plus simple Qmin. La raison pour travailler dans la catégorie Qél

est notre souhait de généraliser l’acccouplement défini sur les groupes KQ0 aux
groupes KQn définis dans le §3 pour n > 0. Si nous choisissons la définition de la
K−théorie hermitienne en termes de fibrés plats, il nous faut montrer par exemple
que la classe d’isomorphie de la forme quadratique κ définie plus haut ne dépend
que des classes de θ et de δ. Les lemmes de Clauwens (redémontrés en appendice)
montrent la nécessité de se donner le morphisme γ dans la formule (S) en 1.4. Grâce
à ce nouveau point du vue, on peut étendre le cup-produit précédent aux groupes
de K-théorie supérieurs (dans la catégorie “él”) soit

εKQél
n (A [s])× ηKQél

p (B) −→ εηKQél
n+p(A⊗B)

4.4. Ce cup-produit sur les groupes KQél supérieurs nécessite plus d’explica-
tions. En effet, il convient de remarquer que les accouplements précédents entre
fibrés virtuellement plats sont simplement définis au niveau des classes d’isomor-
phie d’objets ; ils ne sont pas fonctoriels par rapport à la 2e variable. Un point qui
mérite d’être vérifié avec soin est donc la locale trivialité du produit tensoriel de
fibrés plats (dans la catégorie “él”) sur un espace X. Soit donc (Ui) un recouvre-
ment trivialisant de X pour des fibrés plats E et F (dans la catégorie “él”). On a
donc des trivialisations ϕi : EUi

−→ Ti et ψi : FUi
−→ T ′

i , où T et T ′ sont des fibrés
triviaux. Grâce aux lemmes de Clauwens adaptés à la catégorie des fibrés plats (voir
l’appendice, notamment le lemme 7.4), nous déduisons des trivialisations ϕi et ψi

une trivialisation de EUi
⊗FUi

= (E⊗F )Ui
, c’est à dire un isomorphisme explicite

γi : (E ⊗ F )Ui
−→ Ti ⊗ T ′

i

De ces différents isomorphismes (lorsque i varie), on déduit des fonctions de tran-
sitions γj · γ−1

i pour le fibré E ⊗F , assez compliquées cependant. Ainsi les lemmes
démontrés dans l’appendice pour des classes d’isomorphie de modules se trans-
crivent sans problème aux classes d’isomorphie de fibrés plats.

4.5. Au début de son article (théorème 1, p. 42), Clauwens montre que modulo
l’addition de A-modules hyperboliques (voir l’appendice pour un énoncé précis), on
peut se ramener au cas où θ est “linéaire”, i.e. du type θ = gs. En d’autres termes,
θn = 0, à l’exception de θ1 qui est égal à g. Puisque la forme hermitienne associée
gs + εtg(1 − s) est un isomorphisme, ceci implique que tg = εg(1 + N), où N est
un endomorphisme nilpotent de E (un tel g est dit “presque hermitien”). Dans ce
cas, la formule pour la forme quadratique κ ci-dessus est très simple : on trouve

κ = g⊗δ

(si on identifie F à son dual par Δ ) En d’autres termes, l’accouplement précédent
sur les groupes KQél généralise (pour N = 0) l’accouplement classique entre les
formes hermitiennes (non nécessairement paires) et les formes quadratiques. Un
cas particulier important est le cup-produit

1KQél
1 (SZ [s])× ηKQél

p (B) −→ ηKQél
1+p(SZ⊗B) = ηKQél

1+p(SB)
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4.6. Théorème . Soit u1 l’élement de 1KQél0
1 (SZ[s]) = 1KQél

1 (SZ[s]) cor-
respondant à l’élément unité dans KQ0(Z[s]) = Z × Z (cf. [C], p. 47). Alors le
cup-produit par u1 induit un isomorphisme entre ηKQél

p (B) et ηKQél
1+p(SB)

Démonstration. Elle est analogue à celle en K−théorie algébrique ou hermitienne
classique (cf. [K1] p. 224).

4.7. Rappelons par ailleurs qu’un autre cup-produit plus simple a été défini en
4.2 :

εKQmax
n (A)× ηKQél

p (B) → εηKQél
n+p(A⊗B)

Ces deux produits sont reliés ainsi :

4.8. Théorème . Le cup-produit de Clauwens est partiellement associatif dans
le sens suivant. Pour trois anneaux B, C et D, on a le diagramme commutatif (avec
n = n1 + n2, ε = ε1ε2)

ε1KQmax
n1

(C)× ε2KQél
n2

(D[s])× ηKQél
p (B) ��

��

ε1KQmax
n1

(C)× ε2ηKQél
n2+p(D ⊗B)

��
ε1ε2KQél

n1+n2
((C ⊗D)[s])× ηKQél

p (B) ��
εηKQél

n+p(C ⊗D ⊗B)

Démonstration. C’est une conséquence directe de la formule donnée en 4.3. Nous
devons multiplier les deux membres de la formule par la même forme hermitienne
paire avant et après avoir fait le produit tensoriel par Δ(Δ−1δ)n.

4.9. Remarque. Pour les degrés négatifs, nous avons seulement à considérer
des modules sur des suspensions itérées des anneaux considérés. La notion de forme
quadratique élargie est alors inutile dans les démonstrations. On peut même se
limiter aux formes hermitiennes paires pour les degrés < 0 d’après 3.2.

4.10. Remarque. Si 1 est scindé dans A (par exemple si 2 est inversible), on
a des isomorphismes KQél

n(A) ∼= KQmax
n (A(e)) ∼= KQmin

n (A(e)) avec e = −e.

5. Le théorème fondamental de la K−théorie hermitienne pour des
anneaux arbitraires

5.1. Dans ce paragraphe, nous allons désigner le spectre de la K-théorie hermi-
tienne ainsi que celui de la K-théorie algébrique par des caractères gras. De manière
précise, K(A) représentera le spectre de la K-théorie algébrique usuelle ; celui de
la K-théorie hermitienne sera représenté par l’un des trois
spectres εKQmax(A), εKQmin(A) ou εKQél(A), suivant la théorie considérée. En
particulier, les foncteurs “oubli” et hyperbolique induisent des morphismes

εKQél(A) → K(A) et K(A) → −εKQél(A)

dont les fibres homotopiques respectives seront notées εV
él(A) et −εU

él(A).
L’énoncé suivant généralise le théorème de [K2] (p. 260).

5.2. Théorème . Nous avons une équivalence d’homotopie naturelle

εV
él(A) ≈ Ω−εU

él(A)
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5.3. Remarques. Le théorème est évident lorsque A = B×Bop, une situation
déjà considérée dans les paragraphes précédents. Dans ce cas, les spectres εV

él(A)
et Ω−εU

él(A) cöıncident tous les deux avec la fibre homotopique du morphisme
évident K(B(e)) → K(B)xK(B).

Par ailleurs, si 1 est scindé dans A, nous retrouvons le théorème fondamental de la
K-théorie hermitienne énoncé dans [K2] p. 260 (cf. la remarque 5.11 un peu plus
loin). La démonstration du théorème 5.2 va être en fait calquée sur celle de [K2].
Nous mentionnerons simplement ici les modifications à y apporter.

5.4. Rappelons d’abord le principe général de la démonstration dans [K2] que
nous appliquerons à plusieurs reprises : un morphisme d’anneaux hermitiens f :
A → B induit une application entre spectres

εKQél(A) → εKQél(B)

dont nous pouvons interpréter la fibre homotopique d’après un argument adapté de
Wagoner [W]. Pour cela, on considère le produit fibré d’anneaux

R ��

��

CB

��
SA �� SB

d’où on déduit la fibration homotopique

εKQél(R) ��
εKQél(SA) ��

εKQél(SB)

car εKQél(CB) est contractile. L’espace des lacets de εKQél(R) est donc la fibre
homotopique recherchée du morphisme

εKQél(A) → εKQél(B)

Deux cas importants peuvent être considérés. Dans le premier, le morphisme
est A × Aop → M2(A) et dans le second A → A × Aop, tous les deux définis en
1.8. Si nous désignons 5 par UA (resp. VA) l’anneau R obtenu dans ces deux cas,
nous voyons que εU

él(A) est homotopiquement équivalent à ΩεKQél(UA) et que

εV
él(A) est homotopiquement équivalent à ΩKεQél(VA).

5.5. Nous souhaitons définir une application

εV
él(SA) → −εU

él(A)

L’idée, déjà présente dans [K2], est d’inclure cette application dans le diagramme
suivant

εKQél(A) ��

��

K(A) ��

��

εVél(SA) ��

��

εKQél(SA) ��

σ

��

K(SA) ��

��

εVél(S2A)

��
−εDél(A) �� K(A) �� −εUél(A) �� −εDél(SA) �� K(SA) �� −εUél(SA)

La théorie −εD
él(A) est ici la fibre homotopique de l’application

K(A) → −εUél(A) qui est induite par le morphisme d’anneaux A × Aop → M2(A)

5. En fait, pour la K−théorie, c’est à dire la K−théorie hermitienne de A×Aop, nous devons
remplacer l’anneau des nombres duaux A(e) par A, comme il a été précisé en 1.8.
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décrit précédemment. Pour compléter ce diagramme, nous utilisons un élément re-
marquable de −1D

max
0 (Z) et effectuons le “cup-produit” par cet élément pour définir

une application naturelle σ : εKQél(A) → −εD
él(A). Les détails sont explicités en

[K2] §2.3-8 (le fait que 1 soit éventuellement scindé dans A n’est pas nécessaire
pour cet argument, comme il a été déjà souligné dans [K2]).

5.6.. Nous procédons de manière symétrique pour construire une application
en sens inverse −εU

él(A) → εV
él(SA). Elle s’insère dans le diagramme commutatif

suivant
�� Ω−εKQél(A) ��

��

−εUél(A) ��

��

K(A) ��

��

−εKQél(A) ��

θ

��

−εUél(A)

��
��
εEél(SA) ��

εVél(SA) �� K(A) ��
εEél(S2A) ��

εVél(S2A)

La théorie εE
él(A) est ici la fibre homotopique de l’application composée

εV
él(A) → εV

él(SA× SAop) = K(A(e)) → K(A)

Pour compléter le diagramme, nous devons définir une application

θ : −εKQél(A) → εE
él(S2A)

L’idée nouvelle par rapport à [K2] est d’utiliser maintenant le cup-produit de Clau-
wens (écrit de manière relative pour la theorie E), soit

−1E
él
−2(Z[s])× −εKQél

n(A) → εE
él
n−2(A)

(avec s = −s).
Ceci se traduit au niveau des spectres par l’application θ. L’élément

de −1E
él
−2(Z[s]) = −1KQél

−2(Z[s]) = −1KQmin
−2 (Z[s]) avec lequel est effectué le cup-

produit est écrit de manière explicite dans [K1] p. 243 par une matrice à 30 termes
avec un léger changement de notations (remplacer la lettre λ par s). Nous devons
ensuite plonger l’algèbre des polynômes laurentiens en les deux variables z et t dans
la double suspension de Z[s].

Pour terminer la démonstration du théorème 5.2, nous devons montrer que les
deux compositions

εVél(SA) �� −εUél(A) ��
εVél(SA) et −εUél(A) ��

εVél(SA) �� −εUél(A)

sont des équivalences d’homotopie. Nous nous référons de nouveau à [K2] p 273-
277 pour le détail des arguments. Le point essentiel est l’associativité partielle du
cup-produit établi en 4.7 qui remplace l’associativité usuelle utilisée en [K2]. En
effet, de cette associativité partielle, on déduit des diagrammes commutatifs

1KQél
0 (Z[s])× εKQél

n(A) ��

��

εKQél
n(A)

��
−1D

él
0 (Z[s])× εKQél

n(A) ��

��

−εD
él
n (A)

��
1KQél

0 (Z[s])× εKQél
n(A) ��

εKQél
n(A)

Ce raisonnement montre que la composition

εV
él(SA) �� −εU

él(A) ��
εV

él(SA)
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est une équivalence d’homotopie. On démontre de même la commutativité du dia-
gramme

−1D
él
0 (Z[s])× εKQél

n(A) ��

��

−εD
él
n (A)

��
1KQél

0 (Z[s])× εKQél
n(A) ��

��

εKQn(A)

��
−1D

él
0 (Z[s])× εKQél

n(A) �� −εD
él
n (A)

ce qui montre que la composition en sens inverse

−εU
él(A) ��

εV
él(SA) �� −εU

él(A)

est aussi une équivalence d’homotopie.

5.7. Remarque. Si nous nous intéressons uniquement aux “groupes de Witt
élargis”

εW
él
n (A) = Coker(Kn(A) → εKQél

n(A))

les arguments précédents se simplifient considérablement (avec un résultat moins
fort cependant ; à comparer avec 5.9 et 6.6). Le cup-produit par les éléments u2 ∈
−1W

max
2 (Z) et u−2 ∈ −1W

él
−2(Z[s]), associés aux éléments construits en 5.5 et 5.6,

définissent des homomorphismes

εW
él
n (A) → −εW

él
n+2(A) et −εW

él
n+2(A) → εW

él
n (A)

dont la composition (à isomorphisme près) est la multiplication par 4 (en utilisant
des arguments de K−théorie topologique : cf. [K1], p. 251). Notons que εW

él
n (A)

est isomorphe à εW
min
n (A) si n ≤ 0 et à εW

max
n (A) si n < 0. Le groupe de Witt

“stabilisé” que nous définirons dans le §6 utilisera de manière essentielle le deuxième
cup-produit.

5.8. Comme il a été explicité en [K2] p. 278, le théorème 5.2 implique une
suite exacte à 12 termes dont les termes sont définis ainsi. Le “cogroupe de Witt”

εWn
él
(A) est le noyau de la flèche oubli

εKQél
n(A)) → Kn(A)

Nous définissons le groupe kn(A) (resp. kn(A) ) comme le groupe de cohomologie
de Tate pair (resp. impair) de Z/2 opérant sur Kn(A).

5.9. Théorème . Avec les définitions précédentes, nous avons une suite exacte
à 12 termes où, pour simplifier, nous écrivons F pour F (A) en général, F étant

l’un des foncteurs W él, W
él
, kél ou k

él
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5.10. Théorème . Supposons que 1 soit scindé dans A (par exemple que 2
soit inversible). Les homomorphismes naturels

εW
él
n (A) → εWn(A) et εW

él

n(A) → εWn(A)

sont alors des isomorphismes.

Démonstration. En raisonnant par récurrence sur n, c’est une conséquence immédiate
de 5.9 et du théorème 4.3 de [K2] (voir aussi la remarque suivante).

5.11. Remarque. Si 1 est scindé dans A, nous avons un diagramme commu-
tatif de spectres

εV
él(A) ≈ Ω−εU

él(A)

εV(A)

��

≈ Ω−εU(A)

��

où les flèches verticales sont des monomorphismes scindés. On voit ainsi que le
théorème 5.2 implique le théorème fondamental de [K2] p. 260. Nous profitons
de cette occasion pour combler une lacune dans sa démonstration : elle supposait
implicitement que 1W (Z[s]) ≈ Z, un résultat dû aussi à Clauwens ([C] p. 47).

5.12. Nous allons conclure ce paragraphe par un calcul explicite de groupes
de Witt dans des situations qui ne sont pas envisagées en [K2]. Nous remarquons
d’abord que par la même méthode, nous pouvons définir en bas degrés des mor-
phismes de périodicité

εU
min(A) �� −εV

min(SA) et −εV
min(SA) ��

εU
min(A)

inverses l’un de l’autre à isomorphisme près, en sorte que le diagramme suivant
commute

εU
él(A)

��

�� −εV
él(SA)

��

��
εU

él(A)

��
εU

min(A) �� −εV
min(SA) ��

εU
min(A)

En effet, la sophistication des fibrés plats n’est pas nécessaire dans cette situation.
Par ailleurs, puisque εKQél(B) est isomorphe à εKQmin(B) pour tout anneau B,

on déduit du diagramme précédent un isomorphisme εU
él(A)

∼=→ εU
min(A). Nous

avons enfin le diagramme commutatif suivant de suites exactes

0 ��
εW

él
1 (A)

��

��
εU

él(A)

��

�� K(A)

��

��
εKQél(A)

��
0 ��

εW
min
1 (A) ��

εU
min(A) �� K(A) ��

εKQmin(A)

Puisque les trois flèches de droite verticales sont des isomorphismes, nous en déduisons
le théorème suivant

5.13. Théorème . Pour tout anneau A, l’homomorphisme naturel

εW
él
1 (A) → εW

min
1 (A)

est un isomorphisme.
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5.14. Exemple. Soit A = Fq un corps fini de caractéristique 2. D’après
Quillen, les groupes Kn(Fq) sont des groupes finis d’ordre impair à l’exception
de K0(Fq) = Z. On a W0(Fq) = Z/2, isomorphisme défini par l’invariant de Arf et
W1(Fq) = Z/2, isomorphisme défini par l’invariant de Dickson. Ici les groupes de
Witt sont ceux calculés avec la forme paramètre min (c’est-à-dire ceux associés à
des formes quadratiques).
Par ailleurs, la suite exacte des 12 (théorème 5.11) se réduit en fait à une suite à 6
termes, car ε = 1 = −1. Si on utilise le théorème précédent, on en déduit que les
groupes de Witt élargis W él

n (Fq) sont égaux à Z/2 pour tout n ∈ Z.

6. Les groupes de Witt stabilisés

6.1. Remarque. Ce paragraphe est une extension aux anneaux quelconques
des idées développées dans une Note aux Comptes Rendus [K4]. Une autre exten-
sion aux schémas est décrite dans [S].

6.2. Nous nous plaçons dans la catégorie des anneaux discrets A avec involution
a �→a (nous ne supposons pas la commutativité ni l’existence d’un élément unité).
Les groupes de Witt stabilisés εWn(A), avec ε = ±1 et n ∈ Z, que nous définirons
plus loin, vérifient les propriétés suivantes

1) Exactitude. Pour toute suite exacte d’anneaux discrets avec involution

0 �� A′ �� A �� A′′ �� 0

nous avons une suite exacte naturelle des groupes W
�� εWn+1(A) �� εWn+1(A”) ��

εWn(A′) �� εWn(A) ��
εWn(A′′) ��

2) Periodicité. Nous avons un isomorphisme naturel

εWn(A) ∼= −εWn+2(A)

et par conséquent une périodicité 4 par rapport à l’indice n.
3) Invariance par extension nilpotente. Si I est un idéal nilpotent dans
A, la projection A → A/I induit un isomorphisme

εWn(A) ∼= εWn(A/I)

En d’autres termes εWn(I) = 0 pour un anneau nilpotent.
4) Invariance homotopique. Si 1 est scindé dans A (en particulier si 2 est
inversible) l’extension polynomiale A → A[t] (où t = t ) induit un isomor-
phisme

εWn(A) ∼= εWn(A[t])

5) Normalisation. Si A est unitaire, il existe un homomorphisme naturel

Θ : εWn(A) → εWn(A)

où εWn(A) est le groupe de Witt classique [K1] construit avec les formes
quadratiques. Celui-ci induit un isomorphisme

εWn(A)⊗Z Z
′ ∼= εWn(A)⊗Z Z

′

où Z
′ = Z[1/2].

Si A est noethérien régulier, l’homomorphisme Θ est un isomorphisme lorsque
n ≤ 0. Si on suppose en outre que 2 est inversible dans A, les 1Wn(A), n
mod 4, sont les groupes de Witt triangulés de Balmer [Ba].
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6.3. Pour démontrer l’existence d’une telle théorie, nous allons essentiellement
utiliser les résultats du paragraphe précédent sur la périodicité en K-théorie hermi-
tienne. Rappelons que dans [K2] p. 243 nous avons défini un élément remarquable
u−2 dans

−1KQ−2(Z[s]) = −1KQél
−2(Z[s])

défini par une matrice antisymétrique ayant 30 éléments et à coefficients dans l’an-
neau des polynômes laurentiens à deux variables Z[s][t, u, t−1, u−1]. Cet élément
nous a déjà servi dans le §5 pour définir la flèche −εU

él
n+1(A) → εV

él
n (A).

6.4. Dans le paragraphe 4, nous avons défini pour tout anneau unitaire A un
cup-produit

−1KQél
−2(Z[s])× εKQél

n(A) → −εKQél
n−2(A)

Puisque nous sommes seulement intéressés aux valeurs de n qui sont ≤ 0, nous
pouvons remplacer les groupes KQél

n par KQmin
n (et même KQmax

n pour n < 0), que
nous noterons simplement KQn. En outre, l’homomorphisme de périodicité (défini
par le cup-produit avec u−2)

β : εKQn(A) → −εKQn−2(A)

composé à gauche par la flèche oubli −εKQn−2(A) → Kn−2(A) ou composé à droite
par la flèche hyperbolique Kn(A) → εKQn(A) est réduit à 0 (car la K-théorie de la
suspension d’un anneau noethérien régulier est triviale). Par conséquent, la limite
inductive du système de groupes de K−théorie hermitienne

εKQn(A) �� −εKQn−2(A) ��
εKQn−4(A) �� −εKQn−6(A) �� . . .

est aussi la limite inductive du système de groupes de Witt associés

εWn(A) �� −εWn−2(A) ��
εWn−4(A) �� −εWn−6(A) �� . . .

Cette limite est par définition le groupe de Witt stabilisé εWn(A) que nous sou-
haitions définir. Notons que grâce à l’excision en K-théorie et en K-théorie her-
mitienne en degrés ≤ 0, nous pouvons étendre cette définition aux anneaux non
nécessairement unitaires en définissant εKQn(A) comme le noyau de εKQn(A

+) →
εKQn(Z) , où A+ est l’anneau A (considéré comme une Z-algèbre) après addition
d’un élément unité. La définition de εWn(A) pour A non unitaire est tout à fait
analogue. De ces considérations et de l’excision pour les groupes KQn si n ≤ 0,
nous déduisons la première propriété des groupes de Witt stabilisés :

6.5. Théorème . A toute suite exacte d’anneaux discrets avec involution

0 �� A′ �� A �� A” �� 0

nous pouvons associer naturellement une suite exacte des groupes de Witt stabilisés

6.6. L’isomorphisme εWn(A) ∼= −εWn+2(A) et la périodicité 4 se déduisent
immédiatement des définitions.
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6.7. Théorème (normalisation). Soit A un anneau noethérien régulier uni-
taire. Alors le groupe de Witt stabilisé 1W0(A) (resp.−1W0(A)) cöıncide avec le
groupe de Witt classique des formes quadratiques (resp. (-1)-quadratiques). En
outre, pour tout anneau A unitaire, les homomorphismes canoniques

εW
él
n (A) ��

εW
min
n (A) ��

εW
max
n (A) ��

εWn(A)

induisent des isomorphismes en tensorisant par Z
′ = Z[1/2].

Démonstration. Puisque les groupes de K-théorie négative de A sont triviaux si
A est noethérien régulier, la suite exacte à 12 termes décrite en 5.9 montre que les
flèches de la suite

εW0(A) �� −εW−2(A) ��
εW−4(A) �� −εW−6(A) �� ...

sont des isomorphismes. Par exemple, si ε = 1 et si A est le corps à 2 éléments,
nous trouvons le groupe Z/2 (qui est détecté par l’invariant de Arf).
Par ailleurs si A est un anneau quelconque, en utilisant la localisation en K-
théorie hermitienne, nous avons construit en [K1] deux éléments dans −1W

max
2 (Z)

et −1W
max
−2 (Z) dont le cup-produit dans 1W

max(Z) est une puissance de 2. Les
premiers isomorphismes se démontrent en se ramenant par périodicité aux degrés
négatifs. Le dernier isomorphisme résulte de la suite exacte à 12 termes démontrée
en 5.9.

6.8. Théorème (invariance par extension nilpotente). Si I est un idéal
nilpotent dans A, la projection A → A/I induit un isomorphisme

εWn(A) ∼= εWn(A/I)

Par conséquent, εWn(I) = 0 pour tout idéal nilpotent I.

Démonstration. Sans restreindre la généralité, nous pouvons supposer que A est
unitaire. Dans ce cas, il est bien connu que tout module projectif de type fini sur
A/I provient d’un module projectif E sur A par extension des scalaires et qu’il est
donc du type E/I. Par conséquent, la forme ε-hermitienne sur A/I est donnée par
un isomorphisme

ϕ : E/I → (E/I)∗

Puisque ϕ est paire, nous pouvons l’écrire sour la forme ϕ0 + εtϕ0. Soit ϕ̃0 un
homomorphisme E → E∗ tel que ϕ̃0 = ϕ0 mod I. Alors ϕ = ϕ̃0 + εtϕ̃0 est une
forme ε- hermitienne non dégénérée E → E∗ qui est un relevé de ϕ. Ceci montre
que le morphisme εKQ0(A) → εKQ0(A/I) est surjectif pour tout idéal nilpotent
I (aussi bien pour KQmax que pour KQmin). Il en est donc de même de

εKQn(A) → εKQn(A/I)

pour n ≤ 0 en considérant des suspensions itérées (él, max et min cöıncident en
degrés n < 0 ; cf. 3.2). La surjectivité de l’homomorphisme εWn(A) → εWn(A/I)
en résulte.
L’injectivité du morphisme εWn(A) → εWn(A/I) est plus délicate à montrer. En
raisonnant par récurrence sur le degré de nilpotence de I, nous pouvons d’abord
supposer que I2 = 0. Par ailleurs, nous savons que tout module muni d’une forme
hermitienne paire est facteur direct d’un module hyperbolique. C’est donc l’image
d’un projecteur auto-adjoint p, soit p2 = p et p∗ = p dans un H(An).
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Enfin, sans restreindre la généralité (puisque nous stabilisons), nous pouvons sup-
poser que A est la suspension SR d’un anneau R et que I = SJ où J est un idéal de
R tel que J2 = 0. La démonstration de l’injectivité se résume alors à la solution du
problème suivant : nous considérons deux projecteurs auto-adjoints p0 et p1 dans
un module hyperbolique sur A = SR tels que leurs images mod I, soient p0 et p1
sont conjuguées. Puisque εKQ1(SR) ∼= εKQ0(R) en général et que le morphisme

εKQ0(R) → εKQ0(R/J) est surjectif comme nous l’avons vu précédemment, nous
pouvons supposer sans restreindre la généralité 6 que p0 = p1 ou encore p1 = p0+σ,
où σ appartient à I. De l’identité (p1)

2 = p1 et de l’égalité I2 = 0, nous déduisons
les relations suivantes :

σ = p0σ + σp0

σp0σ = 0

σ2 = σ2p0 = p0σ
2

Considérons maintenant l’endomorphisme α = 1 − p0 − p1 + 2p0p1. Puisque
α ≡ 1 mod I, c’est un isomorphisme. Par ailleurs, il vérifie la relation αp1 = p0α.
Nous allons maintenant montrer que αα∗ = 1. Pour cela, on remarque que α s’écrit
aussi

α = 1− σ + 2p0σ

et, grâce aux identités précédentes, un calcul direct montre bien que

αα∗ = (1− σ + 2p0σ)(1− σ + 2σp0) = 1

Les projecteurs p0 et p1 sont ainsi conjugués par un automorphisme unitaire et
déterminent par conséquent la même classe de forme hermitienne paire 7.

6.9. Théorème (invariance homotopique). Soit A un anneau unitaire tel
que 1 soit scindé dans A. Il existe donc un élément λ dans le centre de A tel
que λ + λ = 1. L’extension polynomiale A → A[t] (avec t = t) induit alors un
isomorphisme

εWn(A) ∼= εWn(A[t])

Démonstration. Il suffit de démontrer le théorème pour n = 0. Celui-ci est déjà
connu pour 2 inversible dans A (voir [O] pour une preuve simple). Cependant, il
existe des anneaux où 2 n’est pas inversible et où 1 est scindé, par exemple le corps
fini F4 muni de l’involution non triviale. Pour traiter ce cas plus général, nous de-
vons rééxaminer la preuve classique. En fait, le seul point qui mérite une précision
dans cette preuve est le lemme suivant.

6.10. Lemme. Soit A un anneau avec λ dans le centre de A tel que 1 = λ+λ.
Soit E un A-module muni d’une forme ε-hermitienne et soit α = 1+νt un élément
de GL(E ⊗ Z[t]) avec ν nilpotent et auto-adjoint. Alors α peut être écrit sous la
forme γ(t)∗γ(t), où γ(t) est un polynôme en t dans l’anneau engendré par λ et ν.

Démonstration. Nous allons construire par récurrence sur n un polynôme de degré

6. La surjectivité de l’homomorphisme εKQmin
1 (Λ) → εKQmin

1 (Λ/I) implique la surjectivité

de l’homomorphisme εOmin(Λ) → εOmin(Λ/I).
7. D’après 2.10, il revient au même de considérer des formes hermitienne paires ou des formes

quadratiques dans les groupes stabilisés.
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au plus n dans l’anneau engendré par ν et λ, soit γn(t) = 1+a1t+a2t
2+ · · ·+ant

n,
tel que γn(t)

∗γn(t) ≡ 1+νt mod (νt)n+1. Pour n = 1, nous posons γ1(t) = 1+λνt.
Si γn est construit, nous avons γn(t)

∗γn(t) = 1 + νt + bn+1(νt)
n+1 mod (νt)n+2

avec bn+1 = B1n+1. Nous posons alors γn+1(t) = (1 − λbn+1(νt)
n+1)γn(t) pour

obtenir l’identité requise

γn+1(t)
∗γn+1(t) ≡ 1 + νt mod (νt)n+2

6.11. Exemple. Si A est un corps fini de caractéristique 2, il est facile de
montrer que les groupes de Witt stabilisés Wn(A) sont tous isomorphes à Z/2. Ils
cöıncident en fait avec les groupes W él

n (A) en tout degré.

6.12. Remarque. Ces groupes deWitt stabilisés ont été généralisés aux schémas
par M. Schlichting [S]. Dans cette généralité, on doit cependant supposer 2 inver-
sible.

7. Les lemmes de Clauwens

7.1. Lemme. La forme hermitienne associée à la forme quadratique κ définie
en 4.3 est non dégénérée.

Démonstration. Nous suivons les simplications de notation indiquées en 4.3 en rem-
plaçant notamment δ par φ tel que φ+ φ∗ = 1. Nous pouvons donc écrire

κ =
∑

θn⊗φn

qu’il est plus suggestif de noter θ(φ). Nous avons alors

κ+ κ∗ =
∑

θn⊗φn +
∑

(θn)
∗⊗(φ)∗n =

∑

θn⊗φn +
∑

(θn)
∗⊗(1− φ)n

Par ailleurs, on sait que le polynôme en s défini par
∑

θn⊗sn+
∑

(θn)
∗⊗(1−s)n est

inversible (c’est la forme hermitienne H associée à θ). Il en résulte évidemment que
κ+ κ∗ est inversible. On peut aussi l’écrire H(φ) avec un abus d’écriture évident.

7.2. Lemme. Si on change θ =
∑

θns
n en θ+Z−Z∗, les formes quadratiques

associés κ et κ′ sont équivalentes.

Démonstration. La forme quadratique θ =
∑

θns
n est modifiée en

∑

θns
n +

∑

σns
n −

∑

(σn)
∗(1− s)n

Par conséquent κ est modifiée en κ+ σ(φ)− (σ(φ))∗ (remplacer s par φ ).

7.3. Lemme. Modulo l’image de KQ(A) dans KQél0(A[s]) (et même d’une
forme hyperbolique sur A), tout élément de ce dernier groupe peut être représenté
par une forme linéaire en s.

Démonstration. Soit θ =
∑N

0 θns
n une forme quadratique de degré N . L’iden-

tité suivante et un raisonnement par récurrence sur N montre qu’on peut réduire
le degré de θ à 0 ou 1

⎛

⎝

1 −s (θN )∗(1− s)N−1

0 1 0
0 0 1

⎞

⎠

⎛

⎝

θ 0 0
0 0 1
0 0 0

⎞

⎠

⎛

⎝

1 0 0
−1 + s 1 0
θNsN−1 0 1

⎞

⎠



LE THÉORÈME DE PÉRIODICITÉ EN K-THÉORIE HERMITIENNE 281

=

⎛

⎝

θ − θNsN 0 −s
θNsN−1 1 0

0 0 1

⎞

⎠

Si θ s’écrit θ0 + θ1s, on peut aussi éliminer le terme constant en écrivant que θ
est équivalente à

θ0 + θ1s− θ0(1− s) + (θ0)
∗s = (θ1 + θ0 + (θ0)

∗)s

ce qui démontre le lemme.

Le lemme précédent nous montre qu’il suffit de vérifier la validité du produit de
Clauwens défini en 4.3 (mêmes notations), dans le cas où θ est une forme linéaire
en s, soit σs avec σ presque symétrique, i.e. σ∗ = σ(1 + N), avec N nilpotent. Il
nous faut montrer ensuite que le cup-produit de Clauwens ne dépend que de la
forme quadratique associée à δ (ou l’endomorphisme φ grâce à l’identification de
F à son dual). Rappelons qu’on a aussi identifié E à son dual par l’isomorphisme
θ0 +

∑∞
n=0

tθn.

Si on pose G = E⊗F , la transposée tf d’une application f de G dans son dual
s’identifie également à son application adjointe f∗ (cf. les remarques faites en 4.3).

7.4. Lemme. Soit φ et ζ deux endomorphismes de F tels que φ + φ∗ = 1.
Pour tout entier p ≥ 0, il existe alors un isomorphisme fp de G sur son dual tel
que

(fp)
∗(σ⊗φ)fp = σ⊗(φ+ ζ − ζ∗) + Zp − (Zp)

∗ mod (σNp+1⊗1)

où N = σ−1σ∗ − 1 est nilpotent et où l’expression mod (σNp+1⊗1) signifie une
somme de morphismes du type σNp+1⊗κp+1 + σNp+2⊗κp+2 + · · · (qui est finie
puisque N est nilpotent).

Démonstration. Puisque σ∗ = σ + σN , on a σ∗Nk⊗1 = σNk⊗1 mod (σNk+1⊗1).
On a de même N∗kσNr = σNr+k mod σNr+k+1⊗1. Nous allons maintenant
construire fp et Zp par récurrence sur p. Pour p = 0, on pose f0 = 1 et Z0 = −σ⊗ζ.
Pour définir fp+1 à partir de fp, on écrit

(fp)
∗(σ⊗φ)fp − [σ⊗(φ+ ζ − ζ∗)+Zp − (Zp)

∗] = −σNp+1⊗κp+1 mod (σNp+1⊗1)

On pose alors U = Np+1⊗κp+1 et fp+1 = fp + U et Zp+1 = Zp + U∗(σ⊗φ)
En travaillant mod (σNp+2⊗1), on obtient les identités suivantes

(fp+1)
∗(σ⊗φ)fp+1 − [σ⊗(φ+ ζ − ζ∗) + Zp+1 − (Zp+1)

∗]
= (fp+1)

∗(σ⊗φ)fp+1− (fp)
∗(σ⊗φ)fp− (Zp+1−Zp)+((Zp+1)

∗− (Zp)
∗)−σNp+1⊗κ

= U∗(σ⊗φ)+(σ⊗φ)U −U∗(σ⊗φ))+(σ∗⊗φ∗)U −σNp+1⊗κ = σNp+1(φ+φ∗−1)κ
= 0 mod σNp+2⊗1
Ceci achève la démonstration du lemme.
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tions to cyclic cohomology theory in the course of his work on noncommutative
geometry over the past 30 years.

Contents

1. Introduction 283
2. Cyclic cohomology 285
3. From K-homology to cyclic cohomology 292
4. Cyclic modules 295
5. The local index formula and beyond 298
6. Hopf cyclic cohomology 303
References 310

1. Introduction

Cyclic cohomology was discovered by Alain Connes no later than 1981 and in
fact it was announced in that year in a conference in Oberwolfach [5]. I have
reproduced the text of his abstract below. As it appears in his report, one of
Connes’ main motivations to introduce cyclic cohomology theory came from index
theory on foliated spaces. Let (V,F) be a compact foliated manifold and let V/F
denote the space of leaves of (V,F). This space, with its natural quotient topology,
is, in general, a highly singular space and in noncommutative geometry one usually
replaces the quotient space V/F with a noncommutative algebra A = C∗(V,F)
called the foliation algebra of (V,F). It is the convolution algebra of the holonomy
groupoid of the foliation and is a C∗-algebra. It has a dense subalgebra A =
C∞(V,F) which plays the role of the algebra of smooth functions on V/F . Let D
be a transversally elliptic operator on (V,F). The analytic index of D, index(D) ∈
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58J42.

c© 2010 Masoud Khalkhali
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K0(A), is an element of theK-theory of A. This should be compared with the family
index theorem [1] where the analytic index of a family of fiberwise elliptic operators
is an element of the K-theory of the base. Connes realized that to identify this class
by a cohomological expression it would be necessary to have a noncommutative
analogue of the Chern character, i.e., a map from K0(A) to a, then unknown,
cohomology theory for the noncommutative algebra A. This theory, now known
as cyclic cohomology, would then play the role of the noncommutative analogue
of de Rham homology of currents for smooth manifolds. Its dual version, cyclic
homology, corresponds, in the commutative case, to de Rham cohomology.

Connes arrived at his definition of cyclic cohomology by a careful analysis of the
algebraic structures deeply hidden in the (super)traces of products of commutators
of operators. These expressions are directly defined in terms of an elliptic operator
and its parametrix and give the index of the operator when paired with a K-theory
class. In his own words [5]:

“The transverse elliptic theory for foliations requires as a preliminary step a
purely algebraic work, of computing for a noncommutative algebra A the cohomology
of the following complex: n-cochains are multilinear functions
ϕ(f0, . . . , fn) of f0, . . . , fn ∈ A where

ϕ(f1, . . . , f0) = (−1)nϕ(f0, . . . , fn)

and the boundary is

bϕ(f0, . . . , fn+1) = ϕ(f0f1, . . . , fn+1)− ϕ(f0, f1f2, . . . , fn+1) + · · ·
+(−1)n+1ϕ(fn+1f0, . . . , fn).

The basic class associated to a transversally elliptic operator, for A = the algebra
of the foliation, is given by:

ϕ(f0, . . . , fn) = Trace (εF [F, f0][F, f1] · · · [F, fn]), f i ∈ A
where

F =

(

0 Q
P 0

)

, ε =

(

1 0
0 −1

)

,

and Q is a parametrix of P . An operation

S : Hn(A) → Hn+2(A)

is constructed as well as a pairing

K(A)×H(A) → C

where K(A) is the algebraic K-theory of A. It gives the index of the operator from
its associated class ϕ. Moreover 〈e, ϕ〉 = 〈e, Sϕ〉, so that the important group
to determine is the inductive limit Hp = Lim

→
H n(A) for the map S. Using the

tools of homological algebra the groups Hn(A,A∗) of Hochschild cohomology with
coefficients in the bimodule A∗ are easier to determine and the solution of the
problem is obtained in two steps:
1) the construction of a map

B : Hn(A,A∗) → Hn−1(A)

and the proof of a long exact sequence

· · · → Hn(A,A∗)
B→ Hn−1(A)

S→ Hn+1(A)
I→ Hn+1(A,A∗) → · · ·



A SHORT SURVEY OF CYCLIC COHOMOLOGY 285

where I is the obvious map from the cohomology of the above complex to the
Hochschild cohomology;
2) the construction of a spectral sequence with E2 term given by the cohomology
of the degree −1 differential I ◦ B on the Hochschild groups Hn(A,A∗) and which
converges strongly to a graded group associated to the inductive limit.

This purely algebraic theory is then used. For A = C∞(V ) one gets the de Rham
homology of currents, and for the pseudo-torus, i.e. the algebra of the Kronecker
foliation, one finds that the Hochschild cohomology depends on the Diophantine na-
ture of the rotation number while the above theory gives H0

p of dimension 2 and H1
p

of dimension 2, as expected, but from some remarkable cancellations.”

A full exposition of these results later appeared in two IHES preprints [6], and
were eventually published as [9]. With the appearance of [9] one could say that
the first stage of the development of noncommutative geometry and specially cyclic
cohomology reached a stage of maturity. In the next few sections I shall try to give
a quick and concise survey of some aspects of cyclic cohomology theory as they
were developed in [9]. The last two sections are devoted to developments in the
subject after [9] arising from the work of Connes.

It is a distinct honor and a great pleasure to dedicate this short survey of cyclic
cohomology theory as a small token of our friendship to Alain Connes, the originator
of the subject, on the occasion of his 60th birthday. It inevitably only covers part
of what has been done by Alain in this very important corner of noncommutative
geometry. It is impossible to cover everything, and in particular I have left out
many important topics developed by him including, among others, the Godbillon-
Vey invariant and type III factors [8], the transverse fundamental class for foliations
[8], the Novikov conjecture for hyperbolic groups [18], entire cyclic cohomology [10],
and multiplicative characteristic classes [12]. Finally I would like to thank Farzad
Fathi zadeh for carefully reading the text and for several useful comments, and
Arthur Greenspoon who kindly edited the whole text.

2. Cyclic cohomology

Cyclic cohomology can be defined in several ways, each shedding light on a
different aspect of it. Its original definition [5, 9] was through a remarkable sub-
complex of the Hochschild complex that we recall first. By algebra in this paper
we mean an associative algebra over C. For an algebra A let

Cn(A) = Hom(A⊗(n+1), C), n = 0, 1, . . . ,

denote the space of (n+1)-linear functionals on A. These are our n-cochains. The
Hochschild differential b : Cn(A) → Cn+1(A) is defined as

(bϕ)(a0, . . . , an+1) =

n
∑

i=0

(−1)iϕ(a0, . . . , aiai+1, . . . , an+1)

+(−1)n+1ϕ(an+1a0, . . . , an).

The cohomology of the complex (C∗(A), b) is the Hochschild cohomology of A with
coefficients in the bimodule A∗.

The following definition is fundamental and marks the departure from Hochschild
cohomology in [5, 9]:
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Definition 2.1. An n-cochain ϕ ∈ Cn(A) is called cyclic if

ϕ(an, a0, . . . , an−1) = (−1)nϕ(a0, a1, . . . , an)

for all a0, . . . , an in A. The space of cyclic n-cochains will be denoted by Cn
λ (A).

Just why, of all possible symmetry conditions on cochains, the cyclic property
is a reasonable choice is at first glance not at all clear.

Lemma 2.1. The space of cyclic cochains is invariant under the action of b,
i.e., bCn

λ (A) ⊂ Cn+1
λ (A) for all n ≥ 0.

To see this one introduces the operators λ : Cn(A) → Cn(A) and b′ : Cn(A) →
Cn+1(A) by

(λϕ)(a0, . . . , an) = (−1)nϕ(an, a0, . . . , an−1),

(b′ϕ)(a0, . . . , an+1) =

n
∑

i=0

(−1)iϕ(a0, . . . , aiai+1, . . . , an+1),

and checks that (1 − λ)b = b′(1 − λ). Since C∗
λ(A) = Ker (1 − λ), the lemma is

proved.
We therefore have a subcomplex of the Hochschild complex, called the cyclic

complex of A:

(1) C0
λ(A)

b−→ C1
λ(A)

b−→ C2
λ(A)

b−→ · · · .
Definition 2.2. The cohomology of the cyclic complex (1) is the cyclic coho-

mology of A and will be denoted by HCn(A), n = 0, 1, 2, . . . .

And that is Connes’ first definition of cyclic cohomology. A cocycle for the
cyclic cohomology group HCn(A) is called a cyclic n-cocycle on A. It is an (n+1)-
linear functional ϕ on A which satisfies the two conditions:

(1− λ)ϕ = 0, and bϕ = 0.

The inclusion of complexes

(2) (C∗
λ(A), b) ↪→ (C∗(A), b)

induces a map I from cyclic cohomology to Hochschild cohomology:

I : HCn(A) −→ HHn(A), n = 0, 1, 2, . . . .

A closer inspection of the long exact sequence associated to (2), yields Connes’
long exact sequence relating Hochschild cohomology to cyclic cohomology. This is
however easier said than done. The reason is that to identify the cohomology of
the quotient one must use another long exact sequence, and combine the two long
exact sequences to obtain the result. To simplify the notation, let us denote the
Hochschild and cyclic complexes by C and Cλ, respectively. Then (2) gives us an
exact sequence of complexes

(3) 0 → Cλ → C
π→ C/Cλ → 0.

Its associated long exact sequence is

(4) · · · −→ HCn(A) −→ HHn(A) −→ Hn(C/Cλ) −→ HCn+1(A) −→ · · ·
We need to identify the cohomology groups Hn(C/Cλ). To this end, consider the
short exact sequence of complexes

(5) 0 −→ C/Cλ
1−λ−→ (C, b′)

N−→ Cλ −→ 0,
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where the operator N is defined by

N = 1 + λ+ λ2 + · · ·+ λn : Cn −→ Cn.

The relations (1 − λ)b = b′(1 − λ), N(1 − λ) = (1 − λ)N = 0, and bN = Nb′

show that 1 − λ and N are morphisms of complexes in (5). As for the exactness
of (5), the only nontrivial part is to show that ker (N) ⊂ im (1− λ), which can be
verified. Assuming A is unital, the middle complex (C, b′) in (5) can be shown to be
exact with a contracting homotopy s : Cn → Cn−1 defined by (sϕ)(a0, . . . , an−1) =
(−1)n−1ϕ(a0, . . . , an−1, 1), which satisfies b′s + sb′ = id. The long exact sequence
associated to (5) looks like
(6)
· · · −→ Hn(C/Cλ) −→ Hn

b′(C) −→ HCn(A) −→ Hn+1(C/Cλ) −→ Hn+1
b′ (C) −→ · · ·

Since Hn
b′(C) = 0 for all n, it follows that the connecting homomorphism

(7) δ : HCn−1(A) → Hn(C/Cλ)

is an isomorphism for all n ≥ 0. Using this in (4), we obtain Connes’ long exact
sequence relating Hochschild and cyclic cohomology:

(8) · · · −→ HCn(A)
I−→ HHn(A)

B−→ HCn−1(A)
S−→ HCn+1(A) −→ · · · .

The operators B and S play a prominent role in noncommutative geometry.
As we shall see, the operator B is the analogue of de Rham’s differential in the
noncommutative world, while the periodicity operator S is closely related to Bott
periodicity in topological K-theory. Remarkably, there is a formula for B on the
level of cochains given by B = NB0, where B0 : Cn → Cn−1 is defined by

B0ϕ(a0, . . . , an−1) = ϕ(1, a0, . . . , an−1)− (−1)nϕ(a0, . . . , an−1, 1).

Using the relations (1− λ)b = b′(1− λ), (1− λ)N = N(1− λ) = 0, bN = Nb′, and
sb′ + b′s = 1, one shows that

(9) bB +Bb = 0, and B2 = 0.

Using the periodicity operator S, the periodic cyclic cohomology of A is then
defined as the direct limit of cyclic cohomology groups under the operator S:

HP i(A) := Lim
−→

HC2n+i(A), i = 0, 1.

Notice that since S has degree 2, there are only two periodic groups. These periodic
groups have better stability properties compared to cyclic cohomology groups. For
example, they are homotopy invariant, and they pair with K-theory.

A much deeper relationship between Hochschild and cyclic cohomology groups
is encoded in Connes’ (b, B)-bicomplex and the associated Connes spectral sequence
that we shall briefly recall now. Consider the relations (9). The (b, B)-bicomplex
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of a unital algebra A, denoted by B (A), is the bicomplex

...
...

...

C2(A)
B−−−−→ C1(A)

B−−−−→ C0(A)

b

�

⏐

⏐ b

�

⏐

⏐

C1(A)
B−−−−→ C0(A)

b

�

⏐

⏐

C0(A)

As usual, there are two spectral sequences attached to this bicomplex. The fol-
lowing fundamental result of Connes [9] shows that the spectral sequence obtained
from filtration by rows converges to cyclic cohomology. Notice that the E1 term of
this spectral sequence is the Hochschild cohomology of A.

Theorem 2.1. The map ϕ 	→ (0, . . . , 0, ϕ) is a quasi-isomorphism of complexes

(C∗
λ(A), b) → (TotB (A), b+B).

This is a consequence of the vanishing of the E2 term of the second spectral
sequence (filtration by columns) of B(A). To prove this, Connes considers the short
exact sequence of b-complexes

0 −→ ImB −→ KerB −→ KerB/ImB −→ 0,

and proves that ([9], Lemma 41), the induced map

Hb(ImB) −→ Hb(KerB)

is an isomorphism. This is a very technical result. It follows that Hb(KerB/ImB)
vanishes. To take care of the first column one appeals to the fact that ImB 

Ker (1− λ) is the space of cyclic cochains.

We give an alternative proof of Theorem (2.1) above. To this end, consider the
cyclic bicomplex C(A) defined by

...
...

...

C2(A)
1−λ−−−−→ C2(A)

N−−−−→ C2(A)
1−λ−−−−→ · · ·

�

⏐

⏐b

�

⏐

⏐−b′
�

⏐

⏐b

C1(A)
1−λ−−−−→ C1(A)

N−−−−→ C1(A)
1−λ−−−−→ · · ·

�

⏐

⏐b

�

⏐

⏐−b′
�

⏐

⏐b

C0(A)
1−λ−−−−→ C0(A)

N−−−−→ C0(A)
1−λ−−−−→ · · ·

The total cohomology of C(A) is isomorphic to cyclic cohomology:

Hn(Tot C (A)) 
 HCn(A), n ≥ 0.

This is a consequence of the simple fact that the rows of C(A) are exact except in
degree zero, where their cohomology coincides with the cyclic complex (C∗

λ(A), b).
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So it suffices to show that TotB(A) and Tot C(A) are quasi-isomorphic. This can
be done by explicit formulas. Consider the chain maps

I : TotB(A) → Tot C(A), I = id +Ns,

J : Tot C(A) → TotB(A), J = id + sN.

It can be directly verified that the following operators define chain homotopy equiv-
alences:

g : TotB(A) → TotB(A), g = Ns2B0,

h : Tot C(A) → Tot C(A), h = s.

To give an example of an application of the spectral sequence of Theorem
(2.1), let me recall Connes’ computation of the continuous cyclic cohomology of
the topological algebra A = C∞(M), i.e., the algebra of smooth complex valued
functions on a closed smooth n-dimensional manifoldM . This example is important
since, apart from its applications, it clearly shows that cyclic cohomology is a
noncommutative analogue of de Rham homology.

The continuous analogues of Hochschild and cyclic cohomology for topological
algebras are defined as follows [9]. Let A be a topological algebra. A continuous
cochain on A is a jointly continuous multilinear map ϕ : A × A × · · · × A → C.
By working with just continuous cochains, as opposed to all cochains, one obtains
the continuous analogues of Hochschild and cyclic cohomology groups. In working
with algebras of smooth functions (both in the commutative and noncommutative
case), it is essential to use this continuous analogue.

The topology of C∞(M) is defined by the sequence of seminorms

‖f‖n = sup |∂α f |, |α| ≤ n,

where the supremum is over a fixed, finite, coordinate cover for M . Under this
topology, C∞(M) is a locally convex, in fact nuclear, topological algebra. Similarly
one topologizes the space of p-forms on M for all p ≥ 0. Let

ΩpM := Homcont(Ω
pM,C)

denote the continuous dual of the space of p−forms on M . Elements of ΩpM are
called de Rham p-currents. By dualizing the de Rham differential d, we obtain a
differential d∗ : Ω∗M → Ω∗−1M , and a complex, called the de Rham complex of
currents on M :

Ω0M
d∗
←− Ω1M

d∗
←− Ω2M

d∗
←− · · · .

The homology of this complex is the de Rham homology of M and we denote it by
HdR

∗ (M).
It is easy to check that for any m-current C, closed or not, the cochain

(10) ϕC(f0, f1, . . . , fm) := 〈C, f0df1 · · · dfm〉,

is a continuous Hochschild cocycle on C∞(M). Now if C is closed, then one checks
that ϕC is a cyclic m-cocycle on C∞(M). Thus we obtain natural maps

(11) ΩmM → HHm
cont(C

∞(M))

and

(12) ZmM → HCm
cont(C

∞(M)),
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where Zm(M) ⊂ ΩmM is the space of closed m-currents on M . For example, if M
is oriented and C represents its orientation class, then

ϕC(f0, f1, . . . , fn) =

∫

M

f0df1 · · · dfn,(13)

which is easily checked to be a cyclic n-cocycle on A.
In [9], using an explicit resolution, Connes shows that (11) is a quasi-isomorph-

ism. Thus we have a natural isomorphism between space of de Rham currents on
M and the continuous Hochschild cohomology of C∞(M) :

(14) HHi
cont(C

∞(M)) 
 ΩiM i = 0, 1, . . .

To compute the continuous cyclic homology of A, one first observes that under the
isomorphism (14) the operator B corresponds to the de Rham differential d∗. More
precisely, for each integer n ≥ 0 there is a commutative diagram:

Ωn+1M
μ−−−−→ Cn+1(A)

⏐

⏐

�d∗
⏐

⏐

�B

ΩnM
μ−−−−→ Cn(A)

where μ(C) = ϕC and ϕC is defined by (10). Then, using the spectral sequence of
Theorem (2.1) and the isomorphism (14), Connes obtains [9]:

(15) HCn
cont(C

∞(M)) 
 Zn(M)⊕HdR
n−2(M)⊕ · · · ⊕HdR

k (M),

where k = 0 if n is even and k = 1 is n is odd. For the continuous periodic cyclic
cohomology he obtains

(16) HP k
cont(C

∞(M)) 

⊕

i

HdR
2i+k(M), k = 0, 1.

We shall also briefly recall Connes’ computation of the Hochschild and cyclic
cohomology of smooth noncommutative tori [9]. This result already appeared in
Connes’ Oberwolfach report [5]. When θ is rational, the smooth noncommutative
torus Aθ can be shown to be Morita equivalent to C∞(T 2), the algebra of smooth
functions on the 2-torus. One can then use Morita invariance of Hochschild and
cyclic cohomology to reduce the computation of these groups to those for the algebra
C∞(T 2). This takes care of rational θ. So we can assume θ is irrational and we
denote the generators of Aθ by U and V with the relation V U = λUV , where
λ = e2πiθ.

Recall that an irrational number θ is said to satisfy a Diophantine condition if
|1− λn|−1 = O(nk) for some positive integer k.

Proposition 2.1. ([9]) Let θ /∈ Q. Then
a) One has HH0(Aθ) = C,
b) If θ satisfies a Diophantine condition then HHi(Aθ) is 2-dimensional for i=1
and is 1-dimensional for i = 2,
c) If θ does not satisfy a Diophantine condition, then HHi(Aθ) are infinite dimen-
sional non-Hausdorff spaces for i = 1, 2.

Remarkably, for all values of θ, the periodic cyclic cohomology is finite dimen-
sional and is given by

HP 0(Aθ) = C
2, HP 1(Aθ) = C

2.
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An explicit basis for these groups are given by cyclic 1-cocycles

ϕ1(a0, a1) = τ (a0δ1(a1)), and ϕ1(a0, a1) = τ (a0δ2(a1))

and cyclic 2-cocycles

ϕ(a0, a1, a2) = τ (a0(δ1(a1)δ2(a2)− δ2(a1)δ1(a2))), and Sτ,

where δ1, δ2 : Aθ → Aθ are the canonical derivations defined by

δ1(
∑

amnU
mV n) =

∑

mamnU
mV n, δ2(U

mV n) =
∑

namnU
mV n,

and τ : Aθ → C is the canonical trace.
A noncommutative generalization of formulas like (13) was introduced in [9]

and played an important role in the development of cyclic cohomology theory in
general. It gives a geometric meaning to the notion of a cyclic cocycle over an
algebra and goes as follows. Let (Ω, d) be a differential graded algebra. A closed
graded trace of dimension n on (Ω, d) is a linear map

∫

: Ωn −→ C

such that
∫

dω = 0, and

∫

[ω1, ω2] = 0,

for all ω in Ωn−1, ω1 in Ωi, ω2 in Ωj and i+ j = n. An n dimensional cycle over an
algebra A is a triple (Ω,

∫

, ρ), where
∫

is an n-dimensional closed graded trace on
(Ω, d) and ρ : A → Ω0 is an algebra homomorphism. Given a cycle (Ω,

∫

, ρ) over
A, its character is the cyclic n-cocycle on A defined by

(17) ϕ(a0, a1, . . . , an) =

∫

ρ(a0)dρ(a1) · · · dρ(an).

Conversely one shows that all cyclic cocycles are obtained in this way.
Once one has the definition of cyclic cohomology, it is not difficult to formulate

a dual notion of cyclic homology and a pairing between the two. Let Cn(A) =
A⊗(n+1). The analogues of the operators b, b′ and λ are easily defined on C∗(A)
and are usually denoted by the same letters, as we do here. For example b :
Cn(A) → Cn−1(A) is defined by

b(a0 ⊗ · · · ⊗ an) =
n−1
∑

i=0

(−1)i(a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an)(18)

+ (−1)n(ana0 ⊗ · · · ⊗ an−1).(19)

Let

Cλ
n(A) := Cn(A)/Im(1− λ).

The relation (1 − λ)b′ = b(1 − λ) shows that the operator b is well defined on
Cλ

∗ (A). The complex (Cλ
∗ (A), b) is called the homological cyclic complex of A and

its homology, denoted by HCn(A), n = 0, 1, . . . , is the cyclic homology of A. The
evaluation map 〈ϕ, (a0 ⊗ · · · ⊗ an)〉 	→ ϕ(a0, . . . , an) clearly defines a degree zero
pairing HC∗(A)⊗HC∗(A) → C. Many results of cyclic cohomology theory, such as
Connes’ long exact sequence and spectral sequence, and Morita invariance, continue
to hold for cyclic homology theory with basically the same proofs.

Another important idea of Connes in the 1980’s was the introduction of entire
cyclic cohomology of Banach algebras [10]. This allows one to deal with algebras of
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functions on infinite dimensional (noncommutative) spaces such as those appearing
in constructive quantum field theory. These algebras typically don’t carry finitely
summable Fredholm modules, but in some cases have so-called θ-summable Fred-
holm modules. In [10] Connes extends the definition of Chern character to such
Fredholm modules with values in entire cyclic cohomology.

After the appearance of [9], cyclic (co)homology theory took on many lives
and was further developed along distinct lines, including a purely algebraic one,
with a big impact on algebraic K-theory. The cyclic cohomology of many algebras
was later computed including the very important case of group algebras [2] and
groupoid algebras. For many of these more algebraic aspects of the theory we refer
to [33, 32] and references therein.

3. From K-homology to cyclic cohomology

As I said in the introduction, Connes’ original motivation for the development
of cyclic cohomology was to give a receptacle for a noncommutative Chern character
map on the K-homology of noncommutative algebras. The cycles of K-homology
can be represented by, even or odd, Fredholm modules. Here we just focus on the
odd case, and we refer to [9, 13] for the even case. Given a Hilbert space H, let
L(H) denote the algebra of bounded linear operators on H, and K(H) denote the
algebra of compact operators. Also, for 1 ≤ p < ∞, let Lp(H) denote the Schatten
ideal of p-summable operators. By definition, T ∈ Lp(H) if |T |p is a trace class
operator.

Definition 3.1. An odd Fredholm module over a unital algebra A is a pair
(H, F ) where
1. H is a Hilbert space endowed with a representation

π : A −→ L(H),

2. F ∈ L(H) is a bounded selfadjoint operator with F 2 = I,
3. For all a ∈ A we have

(20) [F, π(a)] = Fπ(a)− π(a)F ∈ K(H).

A Fredholm module (H, F ) is called p-summable if, instead of (20), we have
the stronger condition:

[F, π(a)] ∈ Lp(H)(21)

for all a ∈ A.
To give a simple example, let A = C(S1) be the algebra of continuous functions

on the circle and let A act on H = L2(S1) as multiplication operators. Let F (en) =
en if n ≥ 0 and F (en) = −en for n < 0, where en(x) = e2πinx, n ∈ Z, denotes the
standard orthonormal basis ofH. Clearly F is selfadjoint and F 2 = I. To show that
[F, π(f)] is a compact operator for all f ∈ C(S1), notice that if f =

∑

|n|≤N anen
is a finite trigonometric sum then [F, π(f)] is a finite rank operator and hence is
compact. In general we can uniformly approximate a continuous function by a
trigonometric sum and show that the commutator is compact for any continuous
f . This shows that (H, F ) is an odd Fredholm module over C(S1). This Fredholm
module is not p-summable for any 1 ≤ p < ∞. If we restrict it to the subalgebra
C∞(S1) of smooth functions, then it can be checked that (H, F ) is in fact p-
summable for all p > 1, but is not 1-summable even in this case.
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Now let me describe Connes’ noncommutative Chern character from K-
homology to cyclic cohomology. Let (H, F ) be an odd p-summable Fredholm mod-
ule over an algebra A. For any odd integer 2n−1 such that 2n ≥ p, Connes defines
a cyclic (2n− 1)-cocycle ϕ2n−1 on A by [9]

(22) ϕ2n−1(a0, a1, . . . , a2n−1) = Tr (F [F, a0][F, a1] · · · [F, a2n−1]),

where Tr denotes the operator trace and instead of π(a) we simply write a. Notice
that by our p-summability assumption, each commutator is in Lp(H) and hence,
by Hölder inequality for Schatten class operators, their product is in fact a trace
class operator as soon as 2n ≥ p. One checks by a direct computation that ϕ2n−1

is a cyclic cocycle.
The next proposition shows that these cyclic cocycles are related to each other

via the periodicity S-operator of cyclic cohomology. This is probably how Connes
came across the periodicity operator S in the first place.

Proposition 3.1. For all n with 2n ≥ p we have

Sϕ2n−1 = −(n+ 1
2 )ϕ2n+1.

By rescaling ϕ2n−1’s, one obtains a well defined element in the periodic cyclic
cohomology. The (unstable) odd Connes-Chern character Ch2n−1 = Ch2n−1(H, F )
of an odd finitely summable Fredholm module (H, F ) over A is defined by rescaling
the cocycles ϕ2n−1 appropriately. Let

Ch2n−1 (a0, . . . , a2n−1) := (−1)n2(n− 1
2 ) · · ·

1
2 Tr (F [F, a0][F, a1] · · · [F, a2n−1]).

Definition 3.2. The Connes-Chern character of an odd p-summable Fredholm
module (H, F ) over an algebra A is the class of the cyclic cocycle Ch2n−1 in the
odd periodic cyclic cohomology group HP odd(A).

By the above Proposition, the class of Ch2n−1 in HP odd(A) is independent of
the choice of n.

Let us compute the character of the Fredholm module of the above Example
with A = C∞(S1). By the above definition, Ch1 (H, F ) = [ϕ1] is the class of the
following cyclic 1-cocycle in HP odd(A) :

ϕ1 (f0, f1) = Tr (F [F, f0][F, f1]).

One can identify this cyclic cocycle with a local formula. We claim that

ϕ1 (f0, f1) =
4

2πi

∫

f0df1, for all f0, f1 ∈ A.

By linearity, It suffices to check this relation for basis elements f0 = em, f1 = en
for all m,n ∈ Z, which is easy to do.

The duality, that is, the bilinear pairing, between K-theory and K-homology
is defined through the Fredholm index. More precisely there is an index pairing
between odd (resp. even) Fredholm modules over A and the algebraic K-theory

group Kalg
1 (A) (resp. K0(A)). We shall describe it only in the odd case at hand.

Let (H, F ) be an odd Fredholm module over A and let U ∈ A× be an invertible
element in A. Let P = F+1

2 : H → H be the projection operator defined by F .
One checks that the operator

PUP : PH → PH
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is a Fredholm operator. In fact, using the compactness of commutators [F, a], one
checks that PU−1P is an inverse for PUP modulo compact operators, which of
course implies that PUP is a Fredholm operator. The index pairing is then defined
as

〈(H, F ), [U ]〉 := index (PUP ),

where the index on the right hand side is the Fredholm index. If the invertible
U happens to be in Mn(A) we can apply this definition to the algebra Mn(A) by
noticing that (H⊗C

n, F ⊗ 1) is a Fredholm module over Mn(A) in a natural way.
The resulting map can be shown to induce a well defined additive map

〈(H, F ), −〉 : Kalg
1 (A) → C.

Notice that this map is purely topological in the sense that to define it we did not
have to impose any finite summability, i.e., smoothness, condition on the Fredholm
module.

Going back to our example and choosing f : S1 → GL1(C) a continuous func-

tion on S1 representing an element ofKalg
1 (C(S1)), the index pairing 〈[(H, F )], [f ]〉 =

index(PfP ) can be explicitly calculated. In fact in this case a simple homotopy
argument gives the index of the Toeplitz operator PfP : PH → PH in terms of the
winding number of f around the origin:

〈[(H, F )], [f ]〉 = −W (f, 0).

Of course, when f is smooth the winding number can be computed by integrating
the 1-form 1

2πi
dz
z over the curve defined by f :

W (f, 0) =
1

2πi

∫

f−1df =
1

2πi
ϕ(f−1, f)

where ϕ is the cyclic 1-cocycle on C∞(S1) defined by ϕ(f, g) =
∫

fdg. This is
a special case of a very general index formula proved by Connes [9] in a fully
noncommutative situation:

Proposition 3.2. Let (H, F ) be an odd p-summable Fredholm module over an
algebra A and let 2n − 1 be an odd integer such that 2n ≥ p. If u is an invertible
element in A then

index (PuP ) =
(−1)n

22n
ϕ2n−1(u

−1, u, . . . , u−1, u),

where the cyclic cocycle ϕ2n−1 is defined by

ϕ2n−1 (a0, a1, . . . , a2n−1) = Tr (F [F, a0][F, a1] · · · [F, a2n−1]).

The above index formula can be expressed in a more conceptual manner once
Connes’ Chern character in K-theory is introduced. In [4, 9], Connes shows that
the Chern-Weil definition of Chern character on topological K-theory admits a vast
generalization to a noncommutative setting. For a noncommutative algebra A and
each integer n ≥ 0, he defined pairings between cyclic cohomology and K-theory:

(23) HC2n(A)⊗K0(A) −→ C, HC2n+1(A)⊗Kalg
1 (A) −→ C.

These pairings are compatible with the periodicity operator S in cyclic cohomology
in the sense that

〈[ϕ], [e]〉 = 〈S[ϕ], [e]〉,
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for all cyclic cocycles ϕ and K-theory classes [e], and thus induce a pairing

HP i(A)⊗Kalg
i (A) −→ C, i = 0, 1

between periodic cyclic cohomology and K-theory.
We briefly recall its definition. Let ϕ be a cyclic 2n-cocycle on A and let

e ∈ Mk(A) be an idempotent representing a class inK0(A). The pairingHC2n(A)⊗
K0(A) −→ C is defined by

(24) 〈[ϕ], [e]〉 = (n!)−1 ϕ̃(e, . . . , e),

where ϕ̃ is the ‘extension’ of ϕ to Mk(A) defined by the formula

(25) ϕ̃(m0 ⊗ a0, . . . ,m2n ⊗ a2n) = tr(m0 · · ·m2n)ϕ(a0, . . . , a2n).

It can be shown that ϕ̃ is a cyclic n-cocycle as well.
The formulas in the odd case are as follows. Given an invertible matrix u ∈

Mk(A), representing a class in Kalg
1 (A), and an odd cyclic (2n − 1)-cocycle ϕ on

A, the pairing is given by

(26) 〈[ϕ], [u]〉 := 2−(2n+1)

(n− 1
2 ) · · ·

1
2

ϕ̃(u−1 − 1, u− 1, . . . , u−1 − 1, u− 1).

Any cyclic cocycle can be represented by a normalized cocycle for which ϕ(a0, . . . , an) =
0 if ai = 1 for some i. When ϕ is normalized, formula (26) reduces to a particularly
simple form:

(27) 〈[ϕ], [u]〉 = 2−(2n+1)

(n− 1
2 ) · · ·

1
2

ϕ̃(u−1, u, . . . , u−1, u).

Using the pairingHC2n−1(A)⊗Kalg
1 (A) → C and the definition of Ch2n−1 (H, F ),

the above index formula in Proposition (3.2) can be written as

(28) index (PuP ) = 〈Ch2n−1 (H, F ), [u]〉,
or in its stable form

index (PuP ) = 〈Chodd (H, F ), [u]〉.
This equality amounts to the equality Topological Index = Analytic Index in a fully
noncommutative setting.

An immediate consequence of the index formula (28) is an integrality theorem
for numbers defined by the right hand side of (28). This should be compared
with classical integrality results for topological invariants of manifolds that are
established through the Atiyah-Singer index theorem. An early nice application
was Connes’ proof of the idempotent conjecture for group C∗-algebras of free groups
in [9]. Among other applications I should mention a mathematical treatment of
integral quantum Hall effect, and most recently to quantum computing in the work
of Mike Freedman and collaborators [29].

4. Cyclic modules

With the introduction of the cyclic category Λ in [7], Connes took another major
step in conceptualizing and generalizing cyclic cohomology far beyond its original
inception. We already saw in the last section three different definitions of the cyclic
cohomology of an algebra through explicit complexes. The original motivation of
[7] was to define the cyclic cohomology of algebras as a derived functor. Since
the category of algebras and algebra homomorphisms is not an additive category,
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the standard abelian homological algebra is not applicable here. Let k be a unital
commutative ring. In [7], an abelian category Λk of cyclic k-modules is defined
that can be thought of as the ‘abelianization’ of the category of k-algebras. Cyclic
cohomology is then shown to be the derived functor of the functor of traces, as we
shall explain in this section. More generally Connes defined the notion of a cyclic
object in an abelian category and its cyclic cohomology [7].

Later developments proved that this extension of cyclic cohomology was of great
significance. Apart from earlier applications, we should mention the recent work
[16] where the abelian category of cyclic modules plays a role similar to that of the
category of motives for noncommutative geometry. Another recent example is the
cyclic cohomology of Hopf algebras [20, 21, 30, 31], which cannot be defined as the
cyclic cohomology of an algebra or a coalgebra but only as the cyclic cohomology
of a cyclic module naturally attached to the given Hopf algebra and a coefficient
system (see the last section for more on Hopf cyclic cohomology). Let us briefly
sketch the definition of the cyclic category Λ.

Recall that the simplicial category Δ is a small category whose objects are the
totally ordered sets

[n] = {0 < 1 < · · · < n}, n = 0, 1, 2, . . . ,

and whose morphisms f : [n] → [m] are order preserving, i.e. monotone non-
decreasing, maps f : {0, 1, . . . , n} → {0, 1, . . . ,m}. Of particular interest among
the morphisms of Δ are faces δi and degeneracies σj ,

δi : [n− 1] → [n], i = 0, 1, . . . , n,

σj : [n+ 1] → [n], j = 0, 1, . . . , n.

By definition δi is the unique injective morphism missing i and σj is the unique
surjective morphism identifying j with j + 1.

The cyclic category Λ has the same set of objects as Δ and in fact contains
Δ as a subcategory. Morphisms of Λ are generated by simplicial morphisms and
new morphisms τn : [n] → [n], n ≥ 0, defined by τn(i) = i + 1 for 0 ≤ i < n and
τn(n) = 0. We have the following extra relations:

τnδi = δi−1τn−1, τnδ0 = δn, 1 ≤ i ≤ n,

τnσi = σi−1τn+1, τnσ0 = σnτ
2
n+1 1 ≤ i ≤ n,

τn+1
n = id.

It can be shown that the classifying space BΛ of the small category Λ is homotopy
equivalent to the classifying space of the circle S1 [7].

A cyclic object in a category C is a functor Λop → C. A cocyclic object in C is
a functor Λ → C. For any commutative unital ring k, we denote the category of
cyclic k-modules by Λk. A morphism of cyclic k-modules is a natural transformation
between the corresponding functors. It is clear that Λk is an abelian category. More
generally, if A is an abelian category then the category ΛA of cyclic objects in A
is itself an abelian category.

Let Algk denote the category of unital k-algebras and unital algebra homomor-
phisms. There is a functor

� : Algk −→ Λk, A 	→ A�,

defined by

A�
n = A⊗(n+1), n ≥ 0,
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with face, degeneracy and cyclic operators given by

δi(a0 ⊗ a1 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an,

δn(a0 ⊗ a1 ⊗ · · · ⊗ an) = ana0 ⊗ a1 ⊗ · · · ⊗ an−1,

σi(a0 ⊗ a1 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ ai ⊗ 1⊗ · · · ⊗ an,

τn(a0 ⊗ a1 ⊗ · · · ⊗ an) = an ⊗ a0 ⊗ · · · ⊗ an−1.

A unital algebra map f : A → B induces a morphism of cyclic modules f � : A� → B�

by f �(a0 ⊗ · · · ⊗ an) = (f(a0)⊗ · · · ⊗ f(an)).
This functor � embeds the non-additive category of k-algebras into the abelian

category of cyclic k-modules. A first main observation of [7] is that

HomΛk
(A�, k�) 
 T (A),

where T (A) is the space of traces from A → k. To a trace τ one associate the cyclic
map (fn)n≥0, where

fn(a0 ⊗ a1 ⊗ · · · ⊗ an) = τ (a0a1 · · · an), n ≥ 0.

It can be easily shown that this defines a one to one correspondence.
Now we can state the following fundamental theorem of Connes [7] which

greatly extends the above observation and shows that cyclic cohomology is a de-
rived functor, in fact an Ext functor, provided that we work in the category of
cyclic modules:

Theorem 4.1. Let k be a field of characteristic zero. For any unital k-algebra
A, there is a canonical isomorphism

HCn(A) 
 ExtnΛk
(A�, k�), for all n ≥ 0.

Apart from their applications in the study of cyclic cohomology of algebras and
Hopf algebras (about the latter see the next section), cyclic modules have also come
to play an important role in applications of noncommutative geometry to number
theory. They play a role similar to that of motives in algebraic geometry. Let me
briefly explain this point.

The program outlined by Connes, Consani and Marcolli in [16] aims at creating
an environment where something like Weil’s proof of the Riemann hypothesis for
function fields can be repeated in the characteristic zero case. Among other things,
they produce an analogue of the Frobenius automorphism in characteristic zero in
this paper. Since Connes’ trace formula is over the noncommutative adèles class
space [14], the geometric setting is that of noncommutative geometry and they must
go far beyond what is done so far in noncommutative geometry and import many
ideas from modern algebraic geometry to noncommutative geometry. To achieve
this, as a first step, good analogues of étale cohomology, the category of motives,
and correspondences in noncommutative geometry must be introduced. Happily it
turns out that Connes’ category of cyclic modules and the closely related bivariant
cyclic homology, as well as KK-theory, are quite useful in this regard.

The construction of the Frobenius in characteristic zero follows a very general
process that combines cyclic homology with quantum statistical mechanics in a
novel way. Starting from a pair (A,ϕ) of an algebra and a state ϕ (a noncommu-
tative space endowed with a ‘probability measure’), they proceed by invoking the
canonical one-parameter group of automorphisms σ = σϕ and consider the extremal
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equilibrium states Σβ at inverse temperatures β > 1. Under suitable conditions,
there is an algebra map

ρ : A�σ R → S(Σβ × R
∗
+)⊗ L,

where L denotes the algebra of trace class operators. The cyclic module D(A,ϕ) is
defined as the cokernel of the induced map by Tr ◦ ρ on the cyclic modules of these
two algebras. The dual multiplicative group R

∗
+ acts on D(A,ϕ) and, in examples

coming from number theory, replaces Frobenius in characteristic zero. The three
steps involved in the construction of D(A,ϕ) are called cooling, distillation, and
dual action in the paper.

A remarkable property of the cyclic category Λ, not shared by the simplicial
category, is its self-duality in the sense that there is a natural isomorphism of
categories Λ 
 Λop [7]. Roughly speaking, the duality functor Λop −→ Λ acts as the
identity on objects of Λ and exchanges face and degeneracy operators while sending
the cyclic operator to its inverse. Thus to a cyclic (resp. cocyclic) module one can
associate a cocyclic (resp. cyclic) module by applying the duality isomorphism.
This duality plays an important role in Hopf cyclic cohomology.

5. The local index formula and beyond

In practice, computing Connes-Chern characters defined by formulas like (22)
is rather difficult since they involve the ordinary operator trace and are non-local.
Thus one needs to compute the class of this cyclic cocycle by a local formula. This is
rather similar to passing from the McKean-Singer formula for the index of an ellip-
tic operator to a local cohomological formula involving integrating a locally defined
differential form, i.e., the Atiyah-Singer index formula. The solution of this problem
was arrived at in two stages. First, in [13], Connes gave a partial answer by giving
a local formula for the Hochschild class of the Chern character, and then Connes
and Moscovici gave a formula that captures the full cyclic cohomology class of the
character by a local formula [19]. Broadly speaking, the ideas involved amount to
going from noncommutative differential topology to noncommutative spectral geom-
etry, and need the introduction of two new concepts.

In the first place, a noncommutative analogue of integration was found by
Connes by replacing the operator trace by the Dixmier trace [11], and, secondly,
one refines the topological notion of Fredholm module by the metric notion of a
spectral triple, or K-cycles as they were originally named in [13]. Developing the
necessary tools to handle this local index formula, shaped, more or less, the second
stage of the development of noncommutative geometry after the appearance of the
landmark papers [9]. One can say that while in its first stage noncommutative
geometry was influenced by differential and algebraic topology, especially index
theory, the Novikov conjecture and the Baum-Connes conjecture, in this second
stage it was chiefly informed by spectral geometry.

We start with a quick review of the Dixmier trace and the noncommutative
integral, following [13] closely. For a compact operator T , let μn(T ), n = 1, 2, . . . ,

denote the sequence of eigenvalues of |T | = (T ∗T )
1
2 written in decreasing order.

Thus, by the minimax principle, μ1(T ) = ||T ||, and in general

μn(T ) = inf ||T |V ||, n ≥ 1,

where the infimum is over the set of subspaces of codimension n − 1, and T |V
denotes the restriction of T to the subspace V . The natural domain of the Dixmier
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trace is the set of operators

L1,∞(H) := {T ∈ K(H);

N
∑

1

μn(T ) = O (logN)}.

Notice that trace class operators are automatically in L1,∞(H). The Dixmier trace
of an operator T ∈ L1,∞(H) measures the logarithmic divergence of its ordinary
trace. More precisely, we are interested in taking some kind of limit of the bounded
sequence

σN (T ) =

∑N
1 μn(T )

logN
as N → ∞. The problem of course is that, while by our assumption the sequence is
bounded, the usual limit may not exists and must be replaced by a carefully chosen
‘generalized limit’.

To this end, let TraceΛ(T ),Λ ∈ [1,∞), be the piecewise affine interpolation of

the partial trace function TraceN (T ) =
∑N

1 μn(T ). Recall that a state on a C∗-
algebra is a non-zero positive linear functional on the algebra. Let ω : Cb[e,∞) → C

be a normalized state on the algebra of bounded continuous functions on [e,∞) such
that ω(f) = 0 for all f vanishing at ∞. Now, using ω, the Dixmier trace of a positive
operator T ∈ L1,∞(H) is defined as

Trω(T ) := ω(τΛ(T )),

where

τΛ(T ) =
1

logΛ

∫ Λ

e

Tracer(T )

log r

dr

r

is the Cesàro mean of the function Tracer(T )
logr over the multiplicative group R

∗
+. One

then extends Trω to all of L1,∞(H) by linearity.
The resulting linear functional Trω is a positive trace on L(1,∞)(H). It is easy

to see from its definition that if T actually happens to be a trace class operator
then Trω(T ) = 0 for all ω, i.e., the Dixmier trace is invariant under perturbations
by trace class operators. This is a very useful property and makes Trω a flexible
tool in computations. The Dixmier trace, Trω, in general depends on the limiting
procedure ω; however, for the class of operators T for which LimΛ→∞ τΛ(T ) exit,
it is independent of the choice of ω and is equal to LimΛ→∞τΛ(T ). One of the
main results proved in [11] is that if M is a closed n-dimensional manifold, E is a
smooth vector bundle on M , P is a pseudodifferential operator of order −n acting
between L2-sections of E, and H = L2(M,E), then P ∈ L(1,∞)(H) and, for any
choice of ω, Trω(P ) = n−1Res(P ). Here Res denotes Wodzicki’s noncommutative
residue. For example, if D is an elliptic first order differential operator, |D|−n is
a pseudodifferential operator of order −n and, for any bounded operator a, the
Dixmier trace Trω(a|D|−n) is independent of the choice of ω.

The second ingredient of the local index formula is the notion of spectral triple
[13]. Spectral triples provide a refinement of Fredholm modules. Going from Fred-
holm modules to spectral triples is similar to going from the conformal class of a
Riemannian metric to the metric itself. Spectral triples simultaneously provide a
notion of Dirac operator in noncommutative geometry, as well as a Riemannian
type distance function for noncommutative spaces.

To motivate the definition of a spectral triple, we recall that the Dirac opera-
tor D/ on a compact Riemannian Spinc manifold acts as an unbounded selfadjoint
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operator on the Hilbert space L2(M,S) of L2-spinors on the manifold M . If we let
C∞(M) act on L2(M,S) by multiplication operators, then one can check that for
any smooth function f , the commutator [D, f ] = Df − fD extends to a bounded
operator on L2(M,S). Now the geodesic distance d on M can be recovered from
the following beautiful distance formula of Connes [13]:

d(p, q) = Sup{|f(p)− f(q)|; ‖ [D, f ] ‖≤ 1}, ∀p, q ∈ M.

The triple (C∞(M), L2(M,S), D/) is a commutative example of a spectral triple. Its
general definition, in the odd case, is as follows. This definition should be compared
with Definition (3.1).

Definition 5.1. Let A be a unital algebra. An odd spectral triple on A is a
triple (A,H, D) consisting of a Hilbert space H, a selfadjoint unbounded operator
D : Dom(D) ⊂ H → H with compact resolvent, i.e., (D + λ)−1 ∈ K(H), for allλ /∈
R, and a representation π : A → L(H) of A such that for all a ∈ A, the commutator
[D, π(a)] is defined on Dom(D) and extends to a bounded operator on H.

The finite summability assumption (21) for Fredholm modules has a finer ana-
logue for spectral triples. For simplicity we shall assume that D is invertible (in
general, since KerD is finite dimensional, by restricting to its orthogonal comple-
ment we can always reduce to this case). A spectral triple is called finitely summable
if for some n ≥ 1

(29) |D|−n ∈ L1,∞(H).

A simple example of an odd spectral triple is (C∞(S1), L2(S1), D), where D
is the unique selfadjoint extension of the operator −i d

dx . Eigenvalues of |D| are
|n|, n ∈ Z, which shows that, if we restrict D to the orthogonal complement of
constant functions, then |D|−1 ∈ L1,∞(L2(S1)).

Given a spectral triple (A,H, D), one obtains a Fredholm module (A,H, F ) by
choosing F = Sign (D) = D|D|−1. Connes’ Hochschild character formula gives a
local expression for the Hochschild class of the Connes-Chern character of (A,H, F )
in terms of D itself. For this one has to assume that the spectral triple (A,H, D)
is regular in the sense that for all a ∈ A,

a and [D, a] ∈ ∩Dom(δk)

where the derivation δ is given by δ(x) = [|D|, x].
Now, assuming (29) holds, Connes defines an (n+1)−linear functional ϕ on A

by
ϕ(a0, a1, . . . , an) = Trω(a

0[D, a1] · · · [D, an]|D|−n).

It can be shown that ϕ is a Hochschild n-cocycle on A. We recall that a Hochschild
n-cycle c ∈ Zn(A,A) is an element c =

∑

a0 ⊗ a1 ⊗ · · · ⊗ an ∈ A⊗(n+1) such that
its Hochschild boundary b(c) = 0, where b is defined by (18). The following result,
known as Connes’ Hochschild character formula, computes the Hochschild class of
the Chern charcater by a local formula, i.e., in terms of ϕ:

Theorem 5.1. Let (A,H, D) be a regular spectral triple. Let F = Sign (D)
denote the sign of D and τn ∈ HCn(A) denote the Connes-Chern charcater of
(H, F ). For every n-dimensional Hochschild cycle c =

∑

a0 ⊗ a1 ⊗ · · · ⊗ an ∈
Zn(A,A), one has

〈τn, c〉 =
∑

ϕ(a0, a1, . . . , an).
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Identifying the full cyclic cohomology class of the Connes-Chern character of
(A,H, D) by a local formula is the content of Connes-Moscovici’s local index for-
mula. For this we have to assume the spectral triple satisfies another technical
condition. Let B denote the subalgebra of L(H) generated by operators δk(a) and
δk([D, a]), k ≥ 1. A spectral triple is said to have a discrete dimension spectrum Σ
if Σ ⊂ C is discrete and for any b ∈ B the function

ζb(z) = Trace(b|D|−z), Re z > n,

extends to a holomorphic function on C \Σ. It is further assumed that Σ is simple
in the sense that ζb(z) has only simple poles in Σ.

The local index formula of Connes and Moscovici [19] is given by the following
Theorem (we have used the formulation in [15]):

Theorem 5.2. 1. The equality
∫

−P = Resz=0 Trace(P |D|−z)

defines a trace on the algebra generated by A, [D,A], and |D|z, z ∈ C.
2. There are only a finite number of non-zero terms in the following formula which
defines the odd components (ϕn)n=1,3,... of an odd cyclic cocycle in the (b, B) bi-
complex of A: For each odd integer n let

ϕn(a
0, . . . , an) :=

∑

k

cn,k

∫

−a0[D, a1](k1) · · · [D, an](kn)|D|−n−2|k|

where T (k) := ∇k and ∇(T ) = D2T − TD2, k is a multi-index, |k| = k1 + · · ·+ kn
and

cn,k := (−1)|k|
√
2i(k1! · · · kn!)−1((k1 + 1) · · · (k1 + k2 + · · · kn))−1Γ(|k|+ n

2
).

3. The pairing of the cyclic cohomology class (ϕn) ∈ HC∗(A) with K1(A) gives the
Fredholm index of D with coefficients in K1(A).

As is indicated in part 1) of the above Theorem, a regular spectral triple nec-
essarily defines a trace on its underlying algebra by the formula a ∈ A 	→

∫

−a =
Resz=0 Trace(a|D|−z). Thus, to deal with ‘type III algebras’ which carry no non-
trivial traces, the notion of spectral triple must be modified. In [25] Connes and
Moscovici define a notion of twisted spectral triple, where the twist is afforded by
an algebra automorphism (related to the modular automorphism group). More
precisely, one postulates that there exists an automorphism σ of A such that the
twisted commutators

[D, a]σ := Da− σ(a)D

are bounded operators for all a ∈ A. They show that, in the twisted case, the
Dixmier trace induces a twisted trace on the algebra A, but surprisingly, under
some regularity conditions, the Connes-Chern character of the phase space lands
in ordinary cyclic cohomology. Thus its pairing with ordinary K-theory makes
sense, and it can be recovered as the index of Fredholm operators. This suggests
the significance of developing a local index formula for twisted spectral triples, i.e.
finding a formula for a cocycle, cohomologous to the Connes-Chern character in
the (b, B)-bicomplex, which is given in terms of twisted commutators and residue
functionals. I beleive that this new theme of twisted spectral triples, and type III
noncommutative geometry in general, will dominate the subject in near future.
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For example, very recently a local index formula has been proved for a class of
twisted spectral triples by Henri Moscovici [34] that can be found in the present
volume. This class is obtained by twisting an ordinary spectral triple (A,H, D)
by a subgroup G of conformal similarities of the triple, i.e. the set of all unitary
operators U ∈ U(H) such that UAU∗ = A, and UDU∗ = μ(U)D, with μ(U) > 0.
It is shown that the crossed product algebra A � G admits an automorphism σ,
given by the formula σ(aU) = μ(U)−1aU , for all a ∈ A, U ∈ G, and (A�G,H, D)
is a twisted spectral triple. The analogue of the noncommutative residue on the
circle, for algebras of formal twisted pseudodifferential symbols, is constructed in
[27].

A very recent development related to (twisted) spectral triples is the noncom-
mutative Gauss-Bonnet theorem of Connes and Tretkoff for the noncommutative
two-torus Aθ [26]. In classical geometry a spectral zeta function is associated to the
Laplacian Δg = d∗d of a Riemann surface with metric g:

ζ(s) =
∑

j

λ−s
j , Re(s) > 1,

where the λj ’ s are the nonzero eigenvalues of Δg. This zeta function has a mero-
morphic continuation with no pole at 0, and the Gauss-Bonnet theorem for surfaces
can be expressed as

ζ(0) + Card{j|λj = 0} =
1

12π

∫

Σ

R =
1

6
χ(Σ),

where R is the curvature and χ(Σ) is the Euler-Poincaré characteristic.
It is this formulation of the Gauss-Bonnet theorem in spectral terms that admits

a generalization to noncommutative geometry. Let Aθ denote the C∗-algebra of the
noncommutative torus with parameter θ ∈ R \ Q and let τ : Aθ → C denote its
faithful normalized trace. One can define an inner product

〈a, b〉 = τ (b∗a), a, b ∈ Aθ,

and complete Aθ with respect to this inner product to obtain a Hilbert space H0.
More generally, for any smooth selfadjoint element h = h∗ ∈ Aθ one defines an
inner product 〈a, b〉ϕ = τ (b∗ae−h), where the positive linear functional ϕ = ϕh is
defined by

ϕ(a) = τ (ae−h), a ∈ Aθ.

Let Hϕ denote the completion of Aθ with respect to this conformally equivalent
metric.

Using the canonical derivations δ1 and δ2 of Aθ, one can introduce a complex
structure on Aθ by defining

∂ = δ1 + iδ2, ∂∗ = δ1 − iδ2.

These operators can be considered as unbounded operators on H0 and ∂∗ is the
adjoint of ∂. Then the unperturbed Laplacian on Aθ is given by

Δ = ∂∗∂ = δ21 + δ22 .

In general we can consider the unbounded operator ∂ = δ1 + iδ2 : Hϕ → H(1,0),

where H(1,0) is the completion of the linear span of elements of the form a∂b with
a, b ∈ A∞

θ . Let ∂∗
ϕ denote its adjoint. Then the Laplacian for the conformally

equivalent metric 〈a, b〉ϕ is given by Δ′ = ∂∗
ϕ∂.
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In [26], Connes and Tretkoff show that the value at 0 of the zeta function
associated to this Laplacian Δ′ is an invariant of the conformal class of the metric
on Aθ, i.e. of h. A natural problem here is to extend this result by considering
the most general complex structure on Aθ of the form ∂ = δ1 + τδ2, where τ is a
complex number with Im(τ ) > 0. This problem is now solved in full generality in
[28].

6. Hopf cyclic cohomology

A major development in cyclic cohomology theory in the last ten years was the
introduction of Hopf cyclic cohomology for Hopf algebras by Connes and Moscovici
[20]. As we saw in Section 5, the local index formula gives the Connes-Chern
character of a regular spectral triple (A,H, D) as a cyclic cocycle in the (b, B)-
bicomplex of the algebra A. For spectral triples of interest in transverse geometry
[20], this cocycle is differentiable in the sense that it is in the image of the Connes-
Moscovici characteristic map χτ defined below (31), with H = H1 a Hopf algebra
and A = AΓ, a noncommutative algebra, whose definitions we shall recall in this
section. To identify this cyclic cocycle in terms of characteristic classes of foliations,
they realized that it would be extremely helpful to show that it is the image of a
polynomial in some universal cocycles for a cohomology theory for a universal Hopf
algebra, and this gave birth to Hopf cyclic cohomology and to the universal Hopf
algebra H = H1. This is similar to the situation for classical characteristic classes
of manifolds, which are pullbacks of group cohomology classes.

The Connes-Moscovici characteristic map can be formulated in general terms
as follows. Let H be a Hopf algebra acting as quantum symmetries of an algebra
A, i.e., A is a left H-module, and the algebra structure of A is compatible with the
coalgebra structure of H in the sense that the multiplication A×A → A and the
unit map C → A of A are morphisms of H-modules. A common terminology to
describe this situation is to say that A is a left H-module algebra. Using Sweedler’s
notation for the coproduct of H, Δ(h) = h(1) ⊗ h(2) (summation is understood),
this latter compatibility condition can be expressed as

h(ab) = h(1)(a)h(2)(b), and h(1) = ε(h)1,

for all h ∈ H and a, b ∈ A. In general one should think of such actions of Hopf
algebras as the noncommutative geometry analogue of the action of differential
operators on a manifold.

It is also important to extend the notion of trace to allow twisted traces, such
as KMS states in quantum statistical mechanics, as well as the idea of invariance
of a (twisted) trace. The general setting introduced in [20] is the following. Let
δ : H → C be a character of H, i.e. a unital algebra map, and σ ∈ H be a grouplike
element, i.e. it satisfies Δσ = σ ⊗ σ. A linear map τ : A → C is called δ-invariant
if for all h ∈ H and a ∈ A,

τ (h(a)) = δ(h)τ (a),

and is called a σ-trace if for all a, b in A,

τ (ab) = τ (bσ(a)).

Now for a, b ∈ A, let

〈a, b〉 := τ (ab).
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Let τ be a σ-trace on A. Then τ is δ-invariant if and only if the integration by parts
formula holds. That is, for all h ∈ H and a, b ∈ A,

〈h(a), b〉 = 〈a, ˜Sδ(h)(b)〉.(30)

Here S denotes the antipode of H and the δ-twisted antipode ˜Sδ : H → H is defined

by ˜Sδ = δ ∗ S, i.e.
˜Sδ(h) = δ(h(1))S(h(2)),

for all h ∈ H. Loosely speaking, (30) says that the formal adjoint of the differential

operator h is ˜Sδ(h). Following [20, 21], we say that (δ, σ) is a modular pair if
δ(σ) = 1, and a modular pair in involution if in addition we have

˜S2
δ (h) = σhσ−1,

for all h in H. The importance of this notion will become clear in the next para-
graph.

Now, for each n ≥ 0, the Connes-Moscovici characteristic map

χτ : H⊗n −→ Cn(A),(31)

is defined by

χτ (h1 ⊗ · · · ⊗ hn)(a0 ⊗ · · · ⊗ an) = τ (a0h1(a1) · · ·hn(an)).

Notice that the right hand side of (31) is the cocyclic module that (its cohomology)
defines the cyclic cohomology of the algebra A. The main question about (31) is
whether one can promote the collection of linear spaces {H⊗n}n≥0 to a cocyclic
module such that the characteristic map χτ turns into a morphism of cocyclic
modules. We recall that the face, degeneracy, and cyclic operators for {Cn(A)}n≥0

are defined by:

δiϕ(a0, . . . , an+1) = ϕ(a0, . . . , aiai+1, . . . , an+1), i = 0, . . . , n,

δn+1ϕ(a0, . . . , an+1) = ϕ(an+1a0, a1, . . . , an),

σiϕ(a0, . . . , an) = ϕ(a0, . . . , ai, 1, . . . , an), i = 0, . . . , n,

τnϕ(a0, . . . , an) = ϕ(an, a0, . . . , an−1).

The relation h(ab) = h(1)(a)h(2)(b) shows that, in order for χτ to be compatible
with face operators, the face operators δi on H⊗n, at least for 0 ≤ i < n, must
involve the coproduct ofH. In fact if we define, for 0 ≤ i ≤ n, δni : H⊗n → H⊗(n+1),
by

δ0(h1 ⊗ · · · ⊗ hn) = 1⊗ h1 ⊗ · · · ⊗ hn,

δi(h1 ⊗ · · · ⊗ hn) = h1 ⊗ · · · ⊗ h
(1)
i ⊗ h

(2)
i ⊗ · · · ⊗ hn,

δn+1(h1 ⊗ · · · ⊗ hn) = h1 ⊗ · · · ⊗ hn ⊗ σ,

then we have, for all i = 0, 1, . . . , n

χτδi = δiχτ .

Notice that the last relation is a consequence of the σ-trace property of τ . Similarly,
the relation h(1A) = ε(h)1A shows that the degeneracy operators on H⊗n should
involve the counit of H. We thus define

σi(h1 ⊗ · · · ⊗ hn) = h1 ⊗ · · · ⊗ ε(hi)⊗ · · · ⊗ hn.
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It is very hard, on the other hand, to come up with a correct formula for the
cyclic operator τn : H⊗n → H⊗n. Compatibility with χτ demands that

τ (a0τn(h1 ⊗ · · · ⊗ hn)(a1 ⊗ · · · ⊗ an)) = τ (anh1(a0)h2(a1) · · ·hn(an−1)),

for all ai’s and hi’s. For n = 1, the integration by parts formula (30), combined
with the σ-trace property of τ , shows that

τ (a1h(a0)) = τ (h(a0)σ(a1)) = τ (a0S̃δ(h)σ(a1)).

This suggests that we should define τ1 : H → H by

τ1(h) = S̃δ(h)σ.

Note that the required cyclicity condition for τ1, τ
2
1 = 1, is equivalent to the invo-

lution condition ˜S2
δ (h) = σhσ−1 for the pair (δ, σ). This line of reasoning can be

extended to all n ≥ 0 and gives us:

τ (anh1(a0) · · ·hn(an−1)) = τ (h1(a0) · · ·hn(an−1)σ(an))

= τ (a0S̃δ(h1)(h2(a1) · · ·hn(an−1)σ(an)))

= τ (a0S̃δ(h1) · (h2 ⊗ · · · ⊗ hn ⊗ σ)(a1 ⊗ · · · ⊗ an)).

This suggests that the Hopf-cyclic operator τn : H⊗n → H⊗n should be defined as

τn(h1 ⊗ · · · ⊗ hn) = S̃δ(h1) · (h2 ⊗ · · · ⊗ hn ⊗ σ),

where · denotes the diagonal action defined by

h · (h1 ⊗ · · · ⊗ hn) := h(1)h1 ⊗ h(2)h2 ⊗ · · · ⊗ h(n)hn.

The remarkable fact, proved by Connes and Moscovici [20, 21], is that endowed
with the above face, degeneracy, and cyclic operators, {H⊗n}n≥0 is a cocyclic
module. The proof is a very clever and complicated tour de force of Hopf algebra
identities.

The resulting cyclic cohomology groups, which depend on the choice of a mod-
ular pair in involution (δ, σ), are denoted by HCn

(δ,σ)(H), n = 0, 1, . . . . The charac-

teristic map (31) clearly induces a map between corresponding cyclic cohomology
groups

χτ : HCn
(δ,σ)(H) → HCn(A).

Under this map Hopf cyclic cocycles are mapped to cyclic cocycles on A. Very many
of the interesting cyclic cocycles in noncommutative geometry are obtained in this
fashion. Using the above discussed cocyclic module structure of {H⊗n}n≥0, we see
that a Hopf cyclic n-cocycle is an element x ∈ H⊗n which satisfies the relations

bx = 0, (1− λ)x = 0,

where b : H⊗n → H⊗(n+1) and λ : H⊗n → H⊗n are defined by

b(h1 ⊗ · · · ⊗ hn) = 1⊗ h1 ⊗ · · · ⊗ hn

+

n
∑

i=1

(−1)ih1 ⊗ · · · ⊗ h
(1)
i ⊗ h

(2)
i ⊗ · · · ⊗ hn

+ (−1)n+1h1 ⊗ · · · ⊗ hn ⊗ σ,

λ(h1 ⊗ · · · ⊗ hn) = (−1)nS̃δ(h1) · (h2 ⊗ · · · ⊗ hn ⊗ σ).

The characteristic map (31) has its origins in Connes’ earlier work on noncom-
mutative differential geometry [4], and on his work on the transverse fundamental
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class of foliations [8]. In fact in these papers some interesting cyclic cocycles were
defined in the context of actions of Lie algebras and (Lie) groups. Both examples
can be shown to be special cases of the characteristic map. For example let A = Aθ

denote the smooth algebra of coordinates for the noncommutative torus with pa-
rameter θ ∈ R. The abelian Lie algebra R

2 acts on Aθ via canonical derivations
δ1 and δ2. The standard trace τ on Aθ is invariant under the action of R2, i.e.,
we have τ (δ1(a)) = τ (δ2(a)) = 0 for all a ∈ Aθ. Then one can directly check that
under the characteristic map (31) the two dimensional generator of the Lie algebra
homology of R2 is mapped to the following cyclic 2-cocycle on Aθ first defined in
[4]:

ϕ(a0, a1, a2) =
1

2πi
τ (a0(δ1(a1)δ2(a2)− δ2(a1)δ1(a2))).

For a second example let G be a discrete group and c be a normalized group n-
cocycle on G with trivial coefficients. Here by normalized we mean c(g1, . . . , gn) = 0
if gi = e for some i. Then one checks that the following is a cyclic n-cocycle on the
group algebra CG [8]:

ϕ(g0, g1 . . . , gn) =

{

c(g1, g2 . . . , gn) if g0g1 . . . gn = 1
0 otherwise

After an appropriate dual version of Hopf cyclic cohomology is defined, one can
show that this cyclic cocycle can also be defined via (31).

The most sophisticated example of the characteristic map (31), so far, involves
the Connes-Moscovici Hopf algebra H1 and its action on algebras of interest in
transverse geometry. In fact, as we shall see, H1 acts as quantum symmetries of
various objects of interest in noncommutative geometry, like the frame bundle of
the ‘space’ of leaves of codimension one foliations or the ‘space’ of modular forms
modulo the action of Hecke correspondences.

To describe H1, let gaff denote the Lie algebra of the group of affine transfor-
mations of the line with linear basis X and Y and the relation [Y,X] = X. Let g
be an abelian Lie algebra with basis {δn; n = 1, 2, . . . }. Its universal enveloping
algebra U(g) should be regarded as the continuous dual of the pro-unipotent group
of orientation preserving diffeomorphisms ϕ of R with ϕ(0) = 0 and ϕ′(0) = 1. It
is easily seen that gaff acts on g via

[Y, δn] = nδn, [X, δn] = δn+1,

for all n. Let gCM := gaff �g be the corresponding semidirect product Lie algebra.
As an algebra, H1 coincides with the universal enveloping algebra of the Lie algebra
gCM . Thus H1 is the universal algebra generated by {X,Y, δn;n = 1, 2, . . . } subject
to the relations

[Y,X] = X, [Y, δn] = nδn, [X, δn] = δn+1, [δk, δl] = 0,

for n, k, l = 1, 2, . . . . We let the counit of H1 coincide with the counit of U(gCM ).
Its coproduct and antipode, however, will be certain deformations of the coproduct
and antipode of U(gCM ) as follows. Using the universal property of U(gCM ), one
checks that the relations

ΔY = Y ⊗ 1 + 1⊗ Y, Δδ1 = δ1 ⊗ 1 + 1⊗ δ1,

ΔX = X ⊗ 1 + 1⊗X + δ1 ⊗ Y,

determine a unique algebra map Δ : H1 → H1⊗H1. Note that Δ is not cocommuta-
tive and it differs from the coproduct of the enveloping algebra U(gCM ). Similarly,
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one checks that there is a unique antialgebra map, the antipode, S : H1 → H1

determined by the relations

S(Y ) = −Y, S(X) = −X + δ1Y, S(δ1) = −δ1.

The first realization of H1 was through its action as quantum symmetries of
the ‘frame bundle’ of the noncommutative space of leaves of codimension one folia-
tions. More precisely, given a codimension one foliation (V,F), let M be a smooth
transversal for (V,F). Let A = C∞

0 (F+M) denote the algebra of smooth functions
with compact support on the bundle of positively oriented frames on M and let
Γ ⊂ Diff+(M) denote the holonomy group of (V,F). One has a natural prolon-
gation of the action of Γ to F+(M) by

ϕ(y, y1) = (ϕ(y), ϕ′(y)(y1)).

Let AΓ = C∞
0 (F+M)�Γ denote the corresponding crossed product algebra. Thus

the elements of AΓ consist of finite linear combinations (over C) of terms fU∗
ϕ with

f ∈ C∞
0 (F+M) and ϕ ∈ Γ. Its product is defined by

fU∗
ϕ · gU∗

ψ = (f · ϕ(g))U∗
ψϕ.

There is an action of H1 on AΓ, given by [20, 23]:

Y (fU∗
ϕ) = y1

∂f

∂y1
U∗
ϕ, X(fU∗

ϕ) = y1
∂f

∂y
U∗
ϕ,

δn(fU
∗
ϕ) = yn1

dn

dyn
(log

dϕ

dy
)fU∗

ϕ.

Once these formulas are given, it can be checked, by a long computation, that AΓ

is indeed an H1-module algebra. To define the corresponding characteristic map,
Connes and Moscovici defined a modular pair in involution (δ, 1) on H1 and a
δ-invariant trace on AΓ as we shall describe next.

Let δ denote the unique extension of the modular character

δ : gaff → R, δ(X) = 1, δ(Y ) = 0,

to a character δ : U(gaff ) → C. There is a unique extension of δ to a character,
denoted by the same symbol δ : H1 → C. Indeed, the relations [Y, δn] = nδn
show that we must have δ(δn) = 0, for n = 1, 2, . . . . One can then check that
these relations are compatible with the algebra structure of H1. The algebra AΓ =
C∞

0 (F+(M)� Γ admits a δ-invariant trace τ : AΓ → C given by [20]:

τ (fU∗
ϕ) =

∫

F+(M)

f(y, y1)
dydy1
y21

, if ϕ = 1,

and τ (fU∗
ϕ) = 0, otherwise. Now, using the δ-invariant trace τ and the above

defined action H1 ⊗AΓ → AΓ, the characteristic map (31) takes the form

χτ : HC∗
(δ,1)(H1) −→ HC∗(AΓ).

This map plays a fundamental role in transverse index theory in [20].
The Hopf algebra H1 shows its beautiful head in number theory as well. To give

an indication of this, I shall briefly discuss the modular Hecke algebras and actions
of H1 on them as they were introduced by Connes and Moscovici in [23, 24]. For
each N ≥ 1, let

Γ(N) =

{(

a b
c d

)

∈ SL(2,Z);

(

a b
c d

)

=

(

1 0
0 1

)

modN

}
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denote the level N congruence subgroup of Γ(1) = SL(2,Z). Let Mk(Γ(N)) denote
the space of modular forms of level N and weight k and

M(Γ(N)) :=
⊕

k

Mk(Γ(N))

be the graded algebra of modular forms of level N . Finally, let

M := lim
→
N

M(Γ(N))

denote the algebra of modular forms of all levels, where the inductive system is
defined by divisibility. The group

G+(Q) := GL+(2,Q),

acts on M through its usual action on functions on the upper half-plane (with
corresponding weight):

(f, α) 	→ f |kα(z) = det(α)k/2(cz + d)−kf(α · z),

α =

(

a b
c d

)

, α · z =
az + b

cz + d
.

The simplest modular Hecke algebra is the crossed-product algebra

A = AG+(Q) := M�G+(Q).

Elements of this (noncommutative) algebra will be denoted by finite sums
∑

fU∗
γ ,

f ∈ M, γ ∈ G+(Q). A can be thought of as the algebra of noncommutative co-
ordinates on the noncommutative quotient space of modular forms modulo Hecke
correspondences.

Now consider the operator X of degree two on the space of modular forms
defined by

X :=
1

2πi

d

dz
− 1

12πi

d

dz
(logΔ) · Y,

where

Δ(z) = (2π)12η24(z) = (2π)12q
∞
∏

n=1

(1− qn)24, q = e2πiz,

η is the Dedekind eta function, and Y is the grading operator

Y (f) =
k

2
· f, for all f ∈ Mk.

It is shown in [23] that there is a unique action of H1 on AG+(Q) determined by

X(fU∗
γ ) = X(f)U∗

γ , Y (fU∗
γ ) = Y (f)U∗

γ ,

δ1(fU
∗
γ ) = μγ · f(U∗

γ ),

where

μγ(z) =
1

2πi

d

dz
log

Δ|γ
Δ

.

This action is compatible with the algebra structure, i.e., AG+(Q) is an H1-module
algebra. Thus one can think of H1 as quantum symmetries of the noncommutative
space represented by AG+(Q).

More generally, for any congruence subgroup Γ, an algebra A(Γ) is constructed
in [23] that contains as subalgebras both the algebra of Γ-modular forms and the
Hecke ring at level Γ. There is also a corresponding action of H1 on A(Γ).
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The Hopf cyclic cohomology groups HCn
(δ,σ)(H) are computed in several cases

in [20]. Of particular interest for applications to transverse index theory and num-
ber theory is the (periodic) cyclic cohomology of H1. It is shown in [20] that the
periodic groups HPn

(δ,1)(H1) are canonically isomorphic to the Gelfand-Fuchs co-

homology, with trivial coefficients, of the Lie algebra a1 of formal vector fields on
the line:

HP ∗
(δ,1)(H1) =

⊕

i≥0

H∗+2i
GF (a1,C).

This result is very significant in that it relates the Gelfand-Fuchs construction of
characteristic classes of smooth manifolds to a noncommutative geometric construc-
tion of the same via H1. Connes and Moscovici also identified certain interesting
elements in the Hopf cyclic cohomology of H1. For example, it can be directly
checked that the elements δ′2 := δ2 − 1

2δ
2
1 and δ1 are Hopf cyclic 1-cocycles for H1,

and

F := X ⊗ Y − Y ⊗X − δ1Y ⊗ Y

is a Hopf cyclic 2-cocycle. Under the characteristic map (31) and for A = AΓ these
Hopf cyclic cocycles are mapped to the Schwarzian derivative, the Godbillon-Vey
cocycle, and the transverse fundamental class of Connes [8], respectively. See [24]
for detailed calculations as well as relations with modular forms and modular Hecke
algebras. Very recently the unstable cyclic cohomology groups of H1, and a series
of other Hopf algebras attached to pseudogroups of geometric structures, were fully
computed in [35, 36]. In particular it is shown that the groups HCn

(δ,σ)(H1) are

finite dimensional for all n.
The notion of modular pair in involution (δ, σ) for a Hopf algebra might seem

rather ad hoc at a first glance. This is in fact not the case and the concept is
very natural and fundamental. For example, it is shown in [21] that coribbon Hopf
algebras and compact quantum groups are endowed with canonical modular pairs
of the form (δ, 1) and, dually, ribbon Hopf algebras have canonical modular pairs of
the type (1, σ). The fundamental importance of modular pairs in involution was
further elucidated when Hopf cyclic cohomology with coefficients was introduced in
[30, 31]. It turns out that some very stringent conditions have to be imposed on an
H-module M in order for M to serve as a coefficient (local system) for Hopf cyclic
cohomology theory. Such modules are called stable anti-Yetter-Drinfeld modules.
More precisely, a (left-left) anti-Yetter-Drinfeld H-module is a left H-module M
which is simultaneously a left H-comodule such that

ρ(hm) = h(1)m(−1)S(h(3))⊗ h(2)m(0),

for all h ∈ H and m ∈ M. Here ρ : M → H ⊗ M , ρ(m) = m(−1) ⊗ m(0) is the
comodule structure map of M . M is called stable if in addition we have

m(−1)m(0) = m,

for all m ∈ M . Given a stable anti-Yetter-Drinfeld (SAYD) module M over H,
one can then define the Hopf cyclic cohomology of H with coefficients in M. One-
dimensional SAYD modules correspond to Connes-Moscovici’s modular pairs in
involution. More precisely, there is a one-to-one correspondence between modular
pairs in involution (δ, σ) on H and SAYD module structures on M = C, the ground
field, defined by

h.r = δ(h)r, r 	→ σ ⊗ r,
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for all h ∈ H and r ∈ C. Thus a modular pair in involution can be regarded as an
‘equivariant line bundle’ over the noncommutative space represented by the Hopf
algebra H.
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modules. C. R. Math. Acad. Sci. Paris 338 (2004), no. 8, 587–590.

[31] P. Hajac, M. Khalkhali, B. Rangipour, and Y. Sommerhäuser, Hopf-cyclic homology and
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The Core Hopf Algebra

Dirk Kreimer

Abstract. We study the core Hopf algebra underlying the renormalization

Hopf algebra.

1. Introduction

In a recent study of the role of limiting mixed Hodge structure, Spencer Bloch
and the author introduced the core Hopf algebra on one-particle irreducible graphs
(1PI graphs, also dubbed core graphs in [1]). It is a Hopf algebra which contains
the renormalization Hopf algebra as a quotient algebra. One can also view it as the
renormalization Hopf algebra of a field theory formulated in infinite dimensions, as
then any graph which has closed loops is superficially divergent, and any sum over
all superficially divergent 1PI graphs reduces to a sum over 1PI graphs.

In this short contribution, we introduce the core Hopf algebra in examples
and discuss its larger role in quantum field theory. Formal proofs are to be found
in future work. Our main task is to outline some intriguing aspects of the Hopf
algebra structure underlying perturbation theory, going far beyond the problem of
renormalization. I feel these ideas are a fitting tribute to my earlier papers with
Alain on the subject [4, 5, 6], and I report on these ideas here for the first time
in public in deep respect for Alain’s contributions to science, and in deep gratitude
for his friendship.

2. The core Hopf algebra

The basic formula for the Hopf algebra of a renormalizable field theory is

(1) Δ(Γ) = Γ⊗ I+ I⊗ Γ +
∑

γ=∪γi,ω(γi)≤0

γ ⊗ Γ/γ.

Here, the sum runs over disjoint unions of superficially divergent one-particle irre-
ducible graphs, and Γ/γ is obtained by shrinking in Γ each component γi of γ = ∪iγi
to a point. A component γi is superficially divergent if ω(γi) := b(γi)D−w(γi) ≤ 0.
Here, b gives the first Betti number, the number of independent cycles, D is the
dimension of spacetime and w(γi) the sum of the scaling weights of internal edges
and vertices of γi. A scaling weight of an edge is the dimensionality (in units of
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mass) of the coefficient of the quadratic field monomial generating this covariance,
and minus that dimensionality for a vertex. So for example, in non-Abelian gauge
theory in four dimensions of spacetime, a propagating gauge-field has a scaling
weight of two (as any boson in four dimensions) and the three-gluon vertex has
scaling weight −1, as it involves three gauge fields and one spacetime derivative.
See [1] for notation and details. This renormalization Hopf algebra can be easily
augmented to take care of the quantum numbers which label external legs, incorpo-
rating formfactors and kinematics of Feynman amplitudes. We focus here on some
elementary aspects of iteration of subgraphs into each other, and will not clutter
notation any further.

The core Hopf algebra is then obtained by relaxing the qualification on super-
ficial divergence: we simply sum over all 1PI subgraphs.

(2) Δ(Γ) = Γ⊗ I+ I⊗ Γ +
∑

γ=∪γi

γ ⊗ Γ/γ.

Note that this immediately implies that the only primitives are one-loop graphs. As
an aside, we note that for the renormalization Hopf algebra of quantum gravity, the
particular powercounting rules of gravity [7] ensure that for perturbative gravity,
the renormalization Hopf algebra and the core algebra agree.

Let us give now an example for the core Hopf algebra in φ4 theory.

Δc

( )

= ⊗ I+ I⊗

+2 ⊗ + ⊗ .(3)

In the renormalization Hopf algebra we would simply have

(4) Δ
( )

= ⊗ I+ I⊗ + ⊗ .

So why should we study the core Hopf algebra? Let us discuss the structure of the
graph polynomial:

(5) φ(Γ) =
∑

spanning trees T

∏

e/∈T

Ae,

accompanying this graph. Labeling the two straight edges on the left as A1, A2 and
the other two as A3, A4, it reads

φ
( )

= A1A3 +A1A4 +A2A3 +A2A4 +A3A4(6)

= (A1 +A2)(A3 +A4) +A3A4,(7)

= (A1 +A2 +A3)A4 + (A1 +A2)A3(8)

= (A1 +A2 +A4)A3 + (A1 +A2)A4(9)

corresponding to the five spanning trees of the graph. We can find the coproduct
of the renormalization as well as the core Hopf algebra from a factorization

(10) φ(Γ) = φ(Γ/γ)φ(γ) + r(Γ, γ)

such that r(Γ, γ) is of higher degree in the variables of φ(γ) than φ(γ) itself. For
example, from (7)

(11) φ
( )

= φ
( )

φ
( )

+A3A4,
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where A3A4 is quadratic in the variables A3, A4 of the subgraph made up of edges
3, 4 of the initial graph, while that subgraph γ itself, superficially divergent as
ω(γ) = 0, has graph polynomial

(12) φ
( )

= A3 +A4,

while the cograph has

(13) φ
(

/
)

= A1 +A2.

Clearly, when A3, A4 tend to zero jointly, r(Γ, γ) vanishes faster than φ(Γ/γ)φ(γ)
and hence we find a subdivergence with regard to the A3, A4 integration using the
Feynman rules in parametric representation. The other factorizations (8,9) above
have limits which remain integrable over the respective subgraph variables.

But any investigation of the algebro-geometric structure of periods assigned to
graphs starts with the investigation of the graph hypersurface XΓ : φ(Γ) = 0, and
the question of how that graph hypersurface meets the simplex Ai > 0. Integrability
is a rather irrelevant criterion in this respect, as studied in detail in [1], and the
two other factorizations (8,9)

A1A3 +A1A4 +A2A3 +A2A4 +A3A4 = (A1 +A2 +A3)A4
︸ ︷︷ ︸

linear in A4

+(A1 +A2)A3
︸ ︷︷ ︸

constant in A4

= (A1 +A2 +A4)A3
︸ ︷︷ ︸

linear in A3

+(A1 +A2)A4
︸ ︷︷ ︸

constant in A3

,(14)

give the other two terms generated by the non-trivial part of Δc and are mandatory
in order to study the situation from the perspective of a limiting mixed Hodge
structure. Note that

(15) ω
( )

= +1.

Actually, let us get an idea of how the connection between the Hopf algebra and
limiting Hodge structures emerges. For details, the reader can refer to [1]. Consider

e
−

⎛

⎝
0 1
0 0

⎞

⎠
⎛

⎝

2 +

⎞

⎠ =

⎛

⎝

− 2 −
2 +

⎞

⎠ .

The entries of the column vector clearly originate from the coproduct on the
graph. Replacing graphs by their graph polynomials and trying to integrate against
the edge variables hits a non-integrable logarithmic singularity near the origin,
parametrized say by a small cut-off t. Supplementing the exponential with a suit-
able ln t gives a rhs which allows for a limit t → 0.

As an amusing side remark, let me mention that the famous problem of over-
lapping divergences in renormalization corresponds to precisely the coexistence of
different factorizations in the above sense. While the above has three coexistent
decompositions of the graph polynomial all contributing to the core coproduct, only
a single term contributes to the renormalization coproduct, as this graph has no
overlapping divergences with regard to renormalization.

For the renormalization Hopf algebra it has proved worthwhile to study its
Hochschild cohomology, as this provides a prefered way to prove renormalizability
of counterterms and illuminates the structure of Dyson–Schwinger equations (DSE).
Let us see how the core Hopf algebra fares in this respect.



316 DIRK KREIMER

3. DSE in the core Hopf algebra

Let us stay for simplicity in the realm of massless φ4 theory in four dimensions
of space-time. In the renormalization Hopf algebra, we have to study two Green
functions, one for the vertex function (four external legs), and one for the inverse
propagator (two external legs).

Both are obtained from the evaluation by suitably renormalized Feynman rules
φR of the series X4(g) and X2(g) of all 1PI graphs with the appropriate number
of four or two external legs.

These series in the coupling g (series in g with coefficients in the Hopf alge-
bra) are fixpoints of equations formed by studying the Hochschild cohomology [8],

bBj,m
+ = 0, m ∈ {2, 4} of these Hopf algebras:

X4(g) = I+
∑

j>0

gjBj,4
+

(

X4(g)

(

X4(g)

(X2(g))2

)j
)

(16)

X2(g) = I−
∑

j>0

gjBj,2
+

(

X2(g)

(

X4(g)

(X2(g))2

)j
)

.(17)

It is crucial that the Bj,m
+ are closed one-cocycles: it leads to a clean approach to

non-perturbative aspects of local field theory and to an analysis of the structure of
solution of Dyson–Schwinger equations in such theories [9, 10, 11].

In the above,

(18) Bj,m
+ =

∑

|γ|=j,Δ(γ)=γ⊗I+I⊗γ

1

sym(γ)
Bγ

+,

with γ having m external legs and

(19) Bγ
+(X) =

∑

Γ

bij(γ,X,Γ)

maxf(Γ)[γ|X]|X|∧
Γ.

The reader will have to consult [12, 13] for details. We just mention that bij(γ,X,Γ)
counts the number of bijections between external edges of X and insertion places
of γ so as to obtain Γ, maxf counts the number of ways to shrink 1PI subgraphs
such that the cograph is primitive under the coproduct, [γ|X] counts the number of
insertion places for X in γ, and |X|∧ gives the number of different graphs generated
from permuting external edges.

Here is an illuminating example: First, from Hochschild closedness, Bγ
+(I) =

γ, ∀γ. Hence X4(g) starts as

(20) I+
1

2
+ · · ·+O(g2).

Here, + · · · refers to the two other orientations of this graph (the s, t, u channels).
Let us now look at

(21)
1

2
B

+···
+

(

(

X4(g)

X2(g)

)2
)

appearing on the rhs of (16).
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Let us Taylor expand the argument in g to first order and concentrate on the
term coming from the expansion of the square of the vertex function. We find

(22)
1

2
B

+···
+

(

2× 1

2
× + · · ·

)

.

The number of insertion places is

(23)
[

|
]

= 2,

there are three orientations,

(24)
∣

∣

∣

∣

∣

∣

∧
= 3,

giving two bijections leading to graphs of the form

(25) ,

(swapped or permuted possibly) each of which has a single maximal forest, maxf= 1,
and one bijection leading to

(26)

with two maximal forests.
We hence find

1

2
B

+···
+

(

+ · · ·
)

=
1

4

(

+ · · ·
)

+
1

2

(

+ · · ·
)

,

with all the correct symmetry factors. Computing now the coproduct delivers

Δ

⎛

⎝

1

2
B

+···
+

(

+ · · ·
)

⎞

⎠ =
1

2
B

+···
+

(

+ · · ·
)

⊗ I

+I⊗ 1

2
B

+···
+

(

+ · · ·
)

+
1

2

(

+ · · ·
)

⊗ ( + · · · )

which agrees with

1

2
B

+···
+

(

+ · · ·
)

⊗ I

+

⎛

⎝id⊗ 1

2
B

+···
+

⎞

⎠Δ
((

+ · · ·
))

,

as required by Hochschild cohomology. Hochschild cohomology does us an enormous
favor here, and it becomes even more impressive when one realizes how it conspires
to give rhyme and reason to internal symmetries in a field theory [12, 14, 15].

So what changes if we try the same with the core Hopf algebra?
Let us first describe the primitives. We noted already that they are all one-loop

graphs. Next, we observe that in the core Hopf algebra underlying the vertices and
edges of φ4

4 theory we must have vertices of arbitrary high but even valence.
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Hence, the one-loop graphs can be described by partitions, where each entry
j in the partition corresponds to a (2j + 2)-valent vertex in the one-loop graph,
the length of the partition gives the number of vertices on the one-loop graph (and
equals the number of its edges), and the size of the partition gives the total number
of external edges.

So for example

(27) ∼ (1, 1)

and

(28) ∼ (1, 1, 1).

We are led to the following system:

X2(g) = I− gB
(1)
+ (X4/X2(g)),(29)

X4(g) = I+ g 1
2B

(1,1)
+ ((X4)2/(X2(g))2) + g 1

2B
(2)
+ (X6(g)/X2(g)),(30)

X6(g) = gB
(1,1,1)
+ ((X4(g))3/(X2(g))3)(31)

+g 1
2B

(2,1)
+ ((X6(g)X4(g))/(X2(g))2)

+g 1
2B

(3)
+ (X8(g)/X2(g)),

and so on, which is best understood graphically (we omit giving contributions
obtained by swapping or permuting external edges):

= 1− g12

+g12= 1 + g12

= g +g12 +g12

.

Note that we have only a finite number of one-loop primitives contributing to each
fix-point equation, but we have an infinite set of equations to consider. Also,
we emphasize that we maintain the B+ operators to be closed one-cocycles in the
Hochschild cohomology of the core Hopf algebra, and claim that the same definition
(19) achieves precisely that.

The series X4 and X2 which are fixpoints of the above system are the same
series as the one obtained in the Hochschild cohomology of the renormalization Hopf
algebra above. This is a rather remarkable fact. We have actually done something
very typical for the functional integral: we have traded a loop expansion for a leg
expansion.
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It is instructive to see in an example how this comes about. From B+(1, 1) we
get the same graphs as before, but

(32)

now has three maximal forests (in the core Hopf algebra the number of maximal
forests equals the number of non-self-intersecting closed paths we can draw on the
graph). So this contribution gets an extra factor 1/3. The missing 2/3 is precisely
provided from the same graph generated by insertions of

(33)

into B
(2)
+ , where the number of relevant bijections is two.

4. sub Hopf algebras and AdS/CFT

Now, for the renormalization Hopf algebra and its Hochschild cohomology we
have learned a rather remarkable story: if we decompose a series of graphs by order,

(34) Xs(g) =

∞
∑

j=0

csjg
j ,

with csj Hopf algebra elements, these finite linear combinations of graphs provide a
sub Hopf algebra. To achieve this in the presence of internal symmetries one has to
divide by suitable ideals [12, 14, 15], and doing so, we finally can work with much
simpler Hopf algebras. Combining with the structure of the renormalization group
[6, 9, 10, 11] then fully exhibits the recursive structure of field theory parameter-
ized by the periods underlying the motives coming with the graph hypersurfaces.

And for the core Hopf algebra? If we sum all graphs contributing to a chosen
amplitude at a given loop order, do these form linear combinations the generators
of a sub Hopf algebra? Certainly not as they stand, but what is the structure of the
(co-) ideals such that we can obtain such a sub Hopf algebra when taking quotients?

Applying the techniques of [12, 14, 15] this is straightforward as we will report
elsewhere [16]. The harder question is to study Feynman rules and see to what
extent they respect such quotients.

Here, we note that the relations

(35) X2k/X2(k−1) = X2(k+1)/X2k

determine a co-ideal such that we get the desired sub Hopf algebras. Similar rela-
tions will show up in the study of any core Hopf algebra for other quantum field
theories.

Two points deserve attention: if we had not considered φ4 but perturbative
gravity, these would be precisely the relations which, if tolerated by the Feynman
rules, will render gravity renormalizable. Putting this together with the pecularities
of powercounting of perturbative gravity as studied in [7] opens an avenue to a
renormalizabe approach to gravity after all, which deserves much further study.

At tree level, the relations (35) have a recursive form very familiar from studying
the now famous [17] on-shell recursion relations of tree (and actually one-loop)
amplitudes. This also deserves much future work. Note in particular that one-loop
recursion relations boil down here to relations between the Hochschild one-cocycles
driving the equations of motion.
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Indeed, in very recent work [16] we showed how co-ideals of the core Hopf
algebra as above are in accordance with the celebrated BCFW [3] relations. Similar
relations hold for the spin-2 graviton [2], possibly justifying the above hope for a
renormalizable theory of gravity.

5. Unitarity of the S-matrix

The main role which the core Hopf algebra has to play in the future is, I
believe, in reconciling our understanding of renormalization with the unitarity of
the S-matrix. The notion of a cut at a Feynman graph is compatible with the core
coproduct. This again will be discussed elsewhere, but let us give us one example.
Consider the wheel with three spokes

(36)

A

B

CD

.

We have labelled its vertices A,B,C,D. External edges are not drawn, but all
vertices are supposed to be four-valent. We consider the graph as contributing to a
1 → 3 production amplitude, and consider the particle incoming at vertex A. The
core Hopf algebra delivers the following coproduct for this graph:

Δc

( )

= ⊗ I+ I⊗

+4 ⊗ + 3 ⊗ + ⊗ .

Note that from the terms on the rhs only allows for cuts C separating

incoming and outgoing particles.
The other ones are too tadpole-ish to contribute:

(37) C
( )

= C
( )

= 0.

Now consider the cuts C determining the imaginary part.

(38) C
( )

=
A

B

C

AB AC AD ABCA ACD

D

ABD

.

We see four contributions which have an intact subgraph , and three contri-

butions where no internal loop is left intact. We have labeled each cut by the set
of vertices connected to vertex A.

If we now let CC (completely cut) be the operator which assigns the sum of all
cuts to a graph such that no internal loop is left intact, then

(39) (id⊗ CC)Δc

( )

is in one-to-one correspondence with C( ) and hence describes the structure

of this imaginary part rather well.
This is the beginning of a mathematically beautifully approach to unitarity

and the S-matrix based on the core Hopf algebra. I hope to report more on that
in collaboration with Spencer Bloch, still continuing to celebrate a line of thought
which started in [18] and first blossomed in my work with Alain.
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Propriété (T) Renforcée et Conjecture de Baum-Connes

Vincent Lafforgue

Cet article est dédié à Alain Connes
pour son soixantième anniversaire

Nous cherchons à comprendre pourquoi la propriété (T) de Kazhdan [Kaz67,
HV89, BHV08], et plus particulièrement une forme renforcée de celle-ci introduite
dans [Laf08], sont un obstacle à une démonstration de la surjectivité de l’applica-
tion de Baum-Connes à coefficients arbitraires pour des groupes ayant un élément
γ de Kasparov, à l’aide des méthodes connues.

Nous passons d’abord en revue trois méthodes pour montrer la surjectivité de
l’application de Baum-Connes à coefficients pour des groupes ayant un élément γ de
Kasparov (pour lesquels l’injectivité de l’application de Baum-Connes à coefficients
est connue). La première méthode (due à Kasparov [Kas88]) consiste à montrer que
γ = 1 dans KKG(C,C). C’est la méthode qui a donné le plus de résultats positifs
mais nous ne la mentionnons que brièvement car elle échoue pour les groupes non
compacts ayant la propriété (T) pour des raisons évidentes alors que l’obstacle de
la propriété (T) renforcée est plus subtil pour les autres méthodes. La deuxième
méthode (d’abord proposée par Julg [Jul97]) consiste à construire une homotopie
de 1 à γ en utilisant des représentations dans des espaces de Hilbert qui ne sont pas
unitaires mais dont la croissance est contrôlée par une exponentielle arbitrairement
petite. Nous justifions en détail, en nous appuyant sur des idées de Higson, le fait
que, pour un groupe localement compact agissant de façon continue, isométrique
et propre sur un espace de dimension asymptotique finie avec contrôle linéaire (et
donc en particulier pour un groupe hyperbolique), l’existence d’une telle homotopie
implique la surjectivité de l’application de Baum-Connes à coefficients arbitraires.
La troisième méthode est la méthode banachique [Laf02a], qui fait intervenir des
complétions inconditionnelles et dont le résultat dépend beaucoup des coefficients :
elle ne montre la conjecture de Baum-Connes à coefficients arbitraires pour aucun
groupe !

Nous proposons ensuite un cadre général (assez évident) englobant ces trois
méthodes et nous en tirons une condition nécessaire pour qu’une méthode inscrite
dans ce cadre général, c’est-à-dire utilisant la KK-théorie banachique et des argu-
ments élémentaires de stabilité par calcul fonctionnel holomorphe, puisse montrer
la surjectivité de l’application de Baum-Connes à coefficients arbitraires.
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Nous expliquons ensuite pourquoi la propriété (T) renforcée [Laf08] est un
obstacle à une démonstration de la surjectivité de l’application de Baum-Connes à
coefficients arbitraires par une méthode de ce type.

Nous montrons enfin que SL3(Qp) a la propriété (T) renforcée (cela a été
démontré dans [Laf08] mais comme nous donnons ici une définition différente de
la propriété (T) renforcée, adaptée à la conjecture de Baum-Connes, nous devons
reprendre la démonstration). En fait tout groupe algébrique presque simple sur
un corps local non-archimédien ou archimédien, dont l’algèbre de Lie contient sl3,
possède la propriété (T) renforcée au sens de cet article (en modifiant un peu la
définition dans le cas archimédien en raison de l’absence de sous-groupe compact
ouvert) mais nous ne le montrons pas ici.

Bien sûr cela ne donne aucune indication qu’il puisse exister un contre-exemple
à la conjecture de Baum-Connes à coefficients pour un tel groupe. Au contraire les
idées de Jean-Benoît Bost sur le principe d’Oka [Bos90] restent intactes et font
espérer que la conjecture de Baum-Connes à coefficients soit vraie pour tous les
groupes de Lie réels ou p-adiques.

Quand Paul Baum et Alain Connes ont formulé leur conjecture la propriété (T)
est apparue très vite comme un obstacle pour montrer la surjectivité de l’applica-
tion de Baum-Connes. Bien que cet obstacle ait été contourné dans quelques cas,
l’obstacle de la propriété (T) renforcée reste infranchissable actuellement.

C’est avec un très grand plaisir que je dédie cet article à Alain Connes, qui a
inspiré tant de mathématiciens.

1. Rappels

Nous renvoyons à [BCH94] pour l’énoncé de la conjecture de Baum-Connes à
coefficients, à [Kas88, Laf02a] pour la KK-théorie et la KK-théorie banachique,
et à [Ska99, Laf01, Laf02b] pour des introductions bien adaptées à la suite.

Soit G un groupe localement compact et dg une mesure de Haar à gauche sur
G. Soit A une C∗-algèbre munie d’une action continue de G. On note Cc(G,A)
l’algèbre des fonctions continues à support compact sur G à valeurs dans A munie
du produit de convolution

(f1.f2)(g) =

∫

g1∈G

f1(g1)g1(f2(g
−1
1 g))dg1

(cette formule est naturelle si on écrit les éléments de Cc(G,A) sous la forme
∫

g∈G
f(g)egdg). On définit L1(G,A) comme la complétion de Cc(G,A) pour la

norme
∫

||f(g)||Adg et C∗
red(G,A) comme la complétion pour la norme d’opérateur

de la convolution à gauche sur le A-module hilbertien L2(G,A). On rappelle que
L2(G,A) est le complété du A-module pré-hilbertien Cc(G,A), dont la structure de
A-module à droite est donnée par

(

∫

ega(g)dg)b =

∫

ega(g)bdg

et dont le produit hermitien est donné par

〈
∫

ega(g)dg,

∫

egb(g)dg〉 =
∫

a(g)∗b(g)dg.

Si on écrit les éléments du A-module pré-hilbertien Cc(G,A) sous la forme
∫

a(g)egdg
les formules sont un peu plus compliquées.
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On note EG un G-espace propre qui est final dans la catégorie dont les ob-
jets sont les G-espaces propres et dont les morphismes sont les G-morphismes à
homotopie près. Pour toute G-C∗-algèbre A et pour j ∈ Z/2Z on pose

Ktop
j (G,A) = lim−→ KKj

G(C0(Y ), A)

où la limite est prise suivant les parties G-invariantes et G-compactes Y de EG. On
a un morphisme de groupes abéliens, dit morphisme d’assemblage ou application
de Baum-Connes,

μG,A
red : Ktop

j (G,A) → Kj(C
∗
red(G,A)).

La conjecture de Baum-Connes à coefficients [BCH94] affirme que μG,A
red est un

isomorphisme de groupes abéliens. Higson, Skandalis et moi-même [HLS02] avons
trouvé des contre-exemples à la surjectivité de l’application de Baum-Connes à
coefficients pour certains groupes discrets construits par Gromov (pour lesquels on
ne sait pas construire un élément γ au sens suivant).

On supposera toujours que G possède un élément γ de Kasparov. Dans [Tu99a],
Jean-Louis Tu a axiomatisé les propriétés d’un élément γ, essentiellement sous la
forme suivante. On appelle élément γ un élément de KKG(C,C) tel que γ = η⊗B d
avec B une G-C∗-algèbre propre, η ∈ KKG(C, B) et d ∈ KKG(B,C), et que pour
toute partie G-compacte Y de EG, q∗(γ) = 1 dans KKG�Y (C0(Y ), C0(Y )) où q est
la projection de Y vers le point (on renvoie à [Gal99] pour la notation KKG�Y ).
Ces conditions impliquent que γ2 = γ dans KKG(C,C).

Sous cette hypothèse, pour toute G-C∗-algèbre A, μG,A
red est injective et son

image est égale à celle de l’action sur K∗(C
∗
red(G,A)) de l’idempotent jGred ◦ σA(γ).

On rappelle que les morphismes d’anneaux

σA : KKG(C,C) → KKG(A,A)

et jGred : KKG(A,A) → KK(C∗
red(G,A), C∗

red(G,A))

ont été construits par Kasparov [Kas88]. Donc la surjectivité de μG,A
red équivaut au

fait que jGred ◦ σA(γ) agit par l’identité sur K∗(C
∗
red(G,A)).

D’après [Kas88, KS91, KS94, KS03] les groupes de Lie réels ou p-adiques
et les groupes “boliques” (donc en particulier les groupes hyperboliques) possèdent
un élément γ.

2. Quelques méthodes pour montrer la surjectivité de l’application de
Baum-Connes à coefficients

Nous indiquons les principales méthodes pour montrer la surjectivité de μG,A
red

pour un groupe localement compact G possédant un élément γ de Kasparov. Elles
s’appuient toutes sur la construction d’une certaine homotopie de 1 à γ.

2.1. Homotopie par des représentations unitaires. La première méthode
pour montrer la conjecture de Baum-Connes à coefficients arbitraires pour G est
due à Kasparov et consiste à montrer γ = 1 dans KKG(C,C) (voir [Jul98] pour un
séminaire Bourbaki sur ce sujet). Cela a été fait pour SO(n, 1) [Kas84], les groupes
agissant proprement sur des arbres [JV84] (voir aussi [Pim86]), SU(n, 1) [JK95],
et enfin dans le cas des groupes de Haagerup qui contient tous les cas précé-
dents [HK01]. Un groupe est dit de Haagerup ou encore a-T-menable s’il possède
une action isométrique affine continue et propre sur un espace de Hilbert. Tous les
groupes moyennables ont la propriété de Haagerup. Cependant on sait que γ �= 1
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dans KKG(C,C) si G a la propriété (T) de Kazhdan et n’est pas compact. Nous
ne donnons pas plus de détails sur ces importants travaux car l’objet de cet article
est l’obstacle de la propriété (T).

2.2. Homotopie par des représentations non unitaires dans des es-
paces de Hilbert. La rédaction de ce paragraphe a été très influencée par des
discussions avec Guoliang Yu, qui m’a indiqué les références [Mat07, Roe05] et
que je remercie.

Dans [Jul97], Julg a proposé d’utiliser des représentations bornées non uni-
taires dans des Hilbert pour montrer la conjecture de Baum-Connes à coefficients
pour Sp(n, 1). En 1999, Higson, Julg et moi-même avons discuté de la possibi-
lité d’utiliser des représentations à croissance exponentielle arbitrairement petite.
Cette méthode permet de montrer la conjecture de Baum-Connes à coefficients pour
Sp(n, 1) [Jul02] et pour les groupes hyperboliques [Laf09]. Cette méthode est ex-
plicitée dans le corollaire 2.12, qui résulte du théorème 2.3 et de la proposition 2.10.

Le théorème 2.3, dont l’idée est due à Nigel Higson, affirme que si un groupe
localement compact G possède un élément γ de Kasparov et agit de façon continue,
isométrique et propre sur un espace de dimension asymptotique finie avec contrôle
linéaire, l’existence d’homotopies de 1 à γ, utilisant des représentations dans des
espaces de Hilbert dont la croissance est contrôlée par une exponentielle arbitraire-
ment petite, implique la surjectivité de l’application de Baum-Connes à coefficients.
La notion de dimension asymptotique est due à Gromov [Gro93]. D’autre part la
proposition 2.10 rappelle, d’après Gromov [Gro93] et Roe [Roe05], que tout es-
pace métrique faiblement géodésique, hyperbolique et à géométrie grossière bornée
est de dimension asymptotique finie avec contrôle linéaire.

Définition 2.1. Soit N ∈ N et (μ0, μ1) ∈ R
2
+. Un espace métrique (X, d) est de

dimension asymptotique ≤ N avec contrôle linéaire (μ0, μ1) si pour tout d ∈ R+ il
existe une partition X =

⋃

i∈I Xi et une application “couleur” c : I → {0, 1, . . . , N}
telles que

– pour tout i ∈ I, Xi est mesurable et diam(Xi) ≤ μ0d+ μ1,
– pour i, j ∈ I vérifiant c(i) = c(j) et i �= j on a d(Xi, Xj) > d, où l’on note

d(Xi, Xj) = infy∈Xi,z∈Xj
d(y, z).

Remarque. La propriété de dimension asymptotique finie avec contrôle linéaire
est invariante par quasi-isométrie.

Définition 2.2. Soit G un groupe localement compact. On appelle longueur
sur G une fonction continue � : G → R+ vérifiant �(g−1) = �(g) et �(g1g2) ≤
�(g1) + �(g2) pour tous g, g1, g2 ∈ G.

Soit G un groupe localement compact et � une longueur sur G. Pour toutes
G-C∗-algèbres A et B on définit EG,�(A,B) comme l’ensemble des classes d’iso-
morphisme de (E, π, T ) où E est un (A,B)-bimodule hilbertien Z/2Z-gradué muni
d’une action continue de G vérifiant ‖π(g)‖ ≤ e�(g) pour tout g ∈ G, et d’un opé-
rateur T borné impair tel que pour tout a ∈ A les opérateurs [a, T ] et a(T 2 − 1)
soient compacts et que l’application g �→ a(g(T ) − T ) soit une application normi-
quement continue de G dans KB(E). On définit ensuite KKG,�(A,B) comme l’en-
semble des classes d’homotopie dans EG,�(A,B) : deux éléments sont homotopes
si ils sont les évaluations en 0 et 1 d’un élément de EG,�(A,B[0, 1]). On rappelle
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que B[0, 1] = C([0, 1], B) muni de la norme du supremum. On peut montrer que la
somme directe munit KKG,�(A,B) d’une structure de groupe abélien.

En particulier EG,�(C,C) est l’ensemble des classes d’isomorphisme de (H, π, T )
où H est un espace de Hilbert Z/2Z-gradué muni d’une action continue de G
vérifiant ‖π(g)‖ ≤ e�(g) pour tout g ∈ G, et d’un opérateur T borné impair tel
que (T 2 − 1) soit compact et que l’application g �→ g(T ) − T soit une application
normiquement continue de G dans K(H).

Le théorème suivant repose sur des idées de Nigel Higson.

Théorème 2.3. Soit G un groupe localement compact agissant de façon isomé-
trique et continue sur un espace métrique (X, d) de dimension asymptotique finie
avec contrôle linéaire. Soit x0 un point de X et � la longueur sur G définie par
�(g) = d(x0, gx0). Soit γ ∈ KKG(C,C) tel que pour tout s > 0, il existe C ∈ R+ tel
que l’image de 1−γ dans KKG,s�+C(C,C) soit nulle. Alors pour toute G-C∗-algèbre
A, jGred ◦ σA(γ) agit par l’identité sur K∗(C

∗
red(G,A)).

Le théorème résultera de la conjonction des propositions 2.5 et 2.6.
Pour toute longueur � sur G on note EG,� la classe des représentations (H, π)

de G dans un espace de Hilbert H telles que ‖π(g)‖L(H) ≤ e�(g) pour tout g ∈ G
et on définit l’algèbre de Banach C�(G,A) comme la complétion de Cc(G,A) pour
la norme

‖f‖C�(G,A) = sup
(H,π)∈EG,�

‖α(f)‖LA(H⊗L2(G,A))

où le morphisme α : Cc(G,A) → LA(H ⊗ L2(G,A)) est donné par la formule

α(

∫

G

a(g)egdg)(h⊗ (

∫

G

b(g)egdg)) =

∫

G×G

π(g1)h⊗ a(g1)g1(b(g2))eg1g2dg1dg2.

Si � et �′ sont deux longueurs avec �′(g) ≤ �(g) pour tout g ∈ G, on a un
morphisme d’algèbres de Banach de C�(G,A) dans C�′(G,A).

On note que EG,0 est la classe des représentations unitaires de G. Le lemme
suivant est un des ingrédients de la construction de la descente de Kasparov [Kas88]
dans le cas particulier qui nous intéresse, c’est-à-dire

jGred ◦ σA : KKG(C,C) → KK(C∗
red(G,A), C∗

red(G,A)).

Lemme 2.4. On a C0(G,A) = C∗
red(G,A).

Démonstration. Bien que ce lemme soit très connu, nous en rappelons la démons-
tration, car la démonstration du lemme 2.7 ci-dessous repose sur la même idée. Soit
(H, π) une représentation unitaire de G. On doit montrer que α se prolonge en
un morphisme de C∗-algèbres α : C∗

red(G,A) → LA(H ⊗ L2(G,A)). Soit g0 ∈ G.
Notons θg0 l’opérateur unitaire sur le A-module hilbertien H ⊗L2(G,A) défini par

θg0(h⊗
∫

G

a(g)egdg) =

∫

G

π(g0g
−1)h⊗ a(g)egdg.

D’autre part notons β : C∗
red(G,A) → LA(H ⊗ L2(G,A)) le morphisme défini par

β(

∫

G

a(g)egdg)(h⊗ (

∫

G

b(g)egdg)) = h⊗
∫

G×G

a(g1)g1(b(g2))eg1g2dg1dg2.

On a alors α(a) = θ−1
g0 ◦ β(a) ◦ θg0 pour tout a ∈ Cc(G,A), donc α se prolonge par

continuité à C∗
red(G,A). Ceci achève la démonstration du lemme 2.4. �
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Proposition 2.5. Pour toute longueur � sur G on a un morphisme de descente

jG,�,A
red : KKG,�(C,C) → KKban(C�(G,A), C∗

red(G,A))

qui coïncide avec jGred ◦ σA si � = 0 et tel que si � et �′ sont deux longueurs avec
�′(g) ≤ �(g) pour tout g ∈ G, le diagramme suivant soit commutatif

KKG,�′(C,C)
jG,�′,A
red−−−−→ KKban(C�′(G,A), C∗

red(G,A))
⏐

�

⏐

�

KKG,�(C,C)
jG,�,A
red−−−−→ KKban(C�(G,A), C∗

red(G,A))

Remarque. Nous utiliserons le diagramme commutatif ci-dessus avec �′ = 0.
Remarque. On pourrait aussi construire pour deux G-C∗-algèbres A et B un
morphisme de descente

KKG,�(A,B) → KKban(C�,B(G,A), C∗
red(G,B))

en définissant C�,B(G,A) comme le complété de Cc(G,A) pour la norme d’opérateur
sur les C∗

red(G,B)-modules hilbertiens C∗
red(G,E) avec E un (A,B)-bimodule hil-

bertien muni d’une action continue de G vérifiant ‖π(g)‖ ≤ e�(g) pour tout g ∈ G.
Nous n’en aurons pas besoin.
Démonstration de la proposition 2.5. En suivant [Kas88], si (H, π, T ) ∈
EG,�(C,C), on construit

jG,�,A
red (H, π, T ) ∈ Eban(C�(G,A), C∗

red(G,A))

de la manière suivante. On considère le C∗
red(G,A)-module hilbertien

E = H ⊗ C∗
red(G,A)

et on définit un morphisme α′ : Cc(G,A) → LC∗
red(G,A)(E) par la formule évidente

α′(

∫

G

a(g)egdg)(h⊗ (

∫

G

b(g)egdg)) =

∫

G×G

π(g1)h⊗ a(g1)g1(b(g2))eg1g2dg1dg2.

Comme LC∗
red(G,A)(E) s’injecte isométriquement dans LA(H ⊗L2(G,A)), et que la

composée de α′ et de cette injection est

α : Cc(G,A) → LA(H ⊗ L2(G,A))

considéré précédemment, et par la définition même de C�(G,A), α se prolonge par
continuité en un morphisme C�(G,A) → LC∗

red(G,A)(E). On définit d’autre part
T̃ = T ⊗ 1 ∈ LC∗

red(G,A)(E) et on pose jG,�,A
red (H, π, T ) = (E, T̃ ). �

Proposition 2.6. Soient N ∈ N et (μ0, μ1) ∈ R
2
+. Soit G un groupe localement

compact agissant de façon isométrique et continue sur un espace métrique (X, d) de
dimension asymptotique finie ≤ N avec contrôle linéaire (μ0, μ1). Soit x0 un point
de X et � la longueur sur G définie par �(g) = d(x0, gx0). Soit A une G-C∗-algèbre.
Pour tout r ∈ R+ on note Br l’ensemble des éléments de G qui vérifient �(g) ≤ r.
Pour f ∈ Cc(G,A) on note supp(f) l’adhérence dans G du sous-ensemble des g tels
que f(g) �= 0.

Alors pour tous s > 0, C ∈ R+, r ∈ R
∗
+ et f ∈ Cc(G,A) avec supp(f) ⊂ Br,

on a
‖f‖Cs�+C(G,A) ≤ (N + 1)e(4μ0+1)sr+(2μ1s+2C)‖f‖C∗

red(G,A).
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Démonstration du théorème 2.3 en admettant la proposition 2.6. On
désigne par ρ le rayon spectral. Il résulte immédiatement de la proposition 2.6 que
pour tous s ∈ R

∗
+, C ∈ R+, r ∈ R+ et pour toute fonction f ∈ Cc(G,A) telle que

supp(f) ⊂ Br on a

ρCs�+C(G,A)(f) ≤ e(4μ0+1)srρC∗
red(G,A)(f).(1)

Pour tout i ∈ N
∗ soit Ci ∈ R+ tel que l’image de 1 − γ dans KKG, 1i �+Ci

(C,C)

soit nulle. Par la proposition 2.5, jGred ◦ σA(γ) agit par l’identité sur l’image de
K∗(C 1

i �+Ci
(G,A)) dans K∗(C

∗
red(G,A)). Il résulte alors de l’inégalité (1), appli-

quée à A ⊗ Mk(C) pour tout entier k ∈ N
∗, et aux longueurs 1

i � + Ci, que la
suite d’algèbres de Banach (C 1

i �+Ci
(G,A))i∈N∗ vérifie les hypothèses du lemme 1.7.2

de [Laf02a]. Par conséquent K∗(C
∗
red(G,A)) est égal à la réunion des images de

K∗(C 1
i �+Ci

(G,A)) et on a montré le théorème 2.3 en admettant la proposition 2.6.
�

Voici maintenant la démonstration de la proposition 2.6, dont l’idée est due à
Nigel Higson.

On plonge G dans X par κ : g �→ g−1x0. On munit G de la distance invariante
à droite d définie par d(g, g′) = d(κ(g), κ(g′)) = �(g′g−1).

Soient s > 0, C ∈ R+ et (H, π) dans EG,s�+C .

Lemme 2.7. Soit m, r ∈ R+, f ∈ Cc(G,A) avec supp(f) ⊂ Br, et w ∈ H ⊗
L2(G,A) tel que supp(w) a un diamètre inférieur ou égal à m pour la distance
ci-dessus (c’est-à-dire de façon équivalente κ(supp(w)) a un diamètre inférieur ou
égal à m). Alors

‖α(f)w‖H⊗L2(G,A) ≤ es(2m+r)+2C‖f‖C∗
red(G,A)‖w‖H⊗L2(G,A).

Démonstration. Soit g0 ∈ supp(w). On a α(f)w = θ−1
g0 (β(f)θg0(w)). Pour w′ ∈

H ⊗ L2(G,A) tel que supp(w′) est inclus dans la boule fermée de centre g0 et de
rayon R, on a ‖θg0(w′)‖H⊗L2(G,A) ≤ esR+C‖w′‖H⊗L2(G,A) et de même pour θ−1

g0 ,
ce qui démontre le lemme, car supp(w) est inclus dans la boule fermée de centre g0
et de rayon m et supp(β(f)θg0(w)) est inclus dans la boule fermée de centre g0 et
de rayon m+ r. �
Démonstration de la proposition 2.6. Soient r ∈ R

∗
+ et f ∈ Cc(G,A) avec

supp(f) ⊂ Br. Soit X =
⋃

i∈I Xi une partition et c : I → {0, 1, . . . , N} une
application couleur, satisfaisant les conditions de la définition 2.1 avec d = 2r.
Pour tout i ∈ I, on note pi le projecteur orthogonal de H ⊗ L2(G,A) sur H ⊗
L2(κ−1(Xi), A). Pour tout j ∈ {0, 1, . . . , N} on note qj le projecteur orthogonal de
H ⊗ L2(G,A) sur H ⊗ L2(κ−1(

⋃

i∈I,c(i)=j Xi), A). On a α(f) =
∑N

j=0 α(f)qj donc
il suffit de montrer, pour tout j ∈ {0, 1, . . . , N},

‖α(f)qj‖L(H⊗L2(G,A)) ≤ e(4μ0+1)sr+(2μ1s+2C)‖f‖C∗
red(G,A).

Pour i ∈ I et w ∈ H ⊗ L2(κ−1(Xi), A), α(f)w est supporté par

κ−1({x ∈ X, d(x,Xi) ≤ r}).
Soit j ∈ {0, 1, . . . , N}. Par hypothèse les parties {x ∈ X, d(x,Xi) ≤ r} de X, pour
i vérifiant c(i) = j, sont deux à deux disjointes. Donc

‖α(f)qj‖L(H⊗L2(G,A)) = sup
i∈I,c(i)=j

‖α(f)pi‖L(H⊗L2(G,A)).
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Enfin pour tout i ∈ I et w ∈ H ⊗ L2(G,A) on a

‖α(f)piw‖H⊗L2(G,A) ≤ e(4μ0+1)sr+(2μ1s+2C)‖f‖C∗
red(G,A)‖w‖H⊗L2(G,A)

grâce au lemme 2.7 puisque piw est supporté sur κ−1(Xi) dont le diamètre est
inférieur ou égal à 2μ0r + μ1. �

Définition 2.8. Soit δ ≥ 0 et (X, d) un espace métrique. On dit que (X, d) est
δ-hyperbolique si pour tout quadruplet (x, y, z, t) de points de X on a

d(x, z) + d(y, t) ≤ max
(

d(x, t) + d(y, z), d(x, y) + d(z, t)
)

+ δ.

On dit que (X, d) est faiblement δ-géodésique si pour tous x, y ∈ X et pour tout
s ∈ [0, d(x, y) + δ] il existe z ∈ X tel que d(x, z) ≤ s et d(z, y) ≤ d(x, y)− s+ δ.

Un espace métrique (X, d) est dit hyperbolique (resp. faiblement géodésique)
s’il existe δ ≥ 0 tel que (X, d) soit δ-hyperbolique (resp. faiblement δ-géodésique).

Définition 2.9. Un espace métrique (X, d) est dit à géométrie grossière bornée
s’il existe Δ > 0 tel que pour tout R > 0 il existe un entier N tel que dans toute
boule fermée de rayon R le nombre maximal de points dont les distances mutuelles
sont supérieures ou égales à Δ est inférieur ou égal à N .

C’est la définition 3.1 de [KS03].
La proposition suivante est due à Gromov ([Gro93] page 31) et Roe [Roe05].

Nous rappelons la démonstration parce que nos hypothèses sont légèrement diffé-
rentes de celles de [Roe05].

Proposition 2.10. Tout espace métrique faiblement géodésique, hyperbolique
et à géométrie grossière bornée est de dimension asymptotique finie avec contrôle
linéaire.

Plus précisément soit (X, d) un espace métrique, δ,Δ ∈ R
∗
+ et M ∈ N

∗ tels que
(X, d) soit faiblement δ-géodésique et δ-hyperbolique et que toute boule fermée de
rayon 4δ+2Δ dans X contienne au plus M points dont les distances mutuelles sont
supérieures ou égales à Δ. Alors (X, d) est de dimension asymptotique ≤ 2M − 1
avec contrôle linéaire (3, 5δ + 2Δ).

Lemme 2.11. Soit δ, ε > 0 et (X, d) un espace métrique δ-hyperbolique. Soient
x0, x, x

′, y, y′ ∈ X tels que

d(x0, x
′) + d(x′, x) ≤ d(x0, x) + ε et d(x0, y

′) + d(y′, y) ≤ d(x0, y) + ε.(2)

Alors

d(x′, y′) ≤ max(|d(x0, x
′)− d(x0, y

′)|+ ε+2δ, d(x, y)− d(x, x′)− d(y, y′) + 2ε+2δ).

Démonstration. La propriété d’hyperbolicité pour x, x0, y
′, y donne

d(x, y′) ≤ max(d(x, y) + d(x0, y
′)− d(x0, y), d(x, x0) + d(y, y′)− d(x0, y)) + δ

d’où l’on déduit grâce à la deuxième partie de (2),

d(x, y′) ≤ max(d(x, y)− d(y, y′), d(x, x0)− d(x0, y
′)) + ε+ δ.(3)

La propriété d’hyperbolicité pour y′, x0, x
′, x donne

d(y′, x′) ≤ max(d(y′, x) + d(x0, x
′)− d(x0, x), d(y

′, x0) + d(x, x′)− d(x0, x)) + δ.

Grâce à (3), on a
d(y′, x) + d(x0, x

′)− d(x0, x)
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≤ max(d(x, y)− d(y, y′) + d(x0, x
′)− d(x0, x), d(x0, x

′)− d(x0, y
′)) + ε+ δ.

Par la première moitié de (2),

d(x, y)− d(y, y′) + d(x0, x
′)− d(x0, x) ≤ d(x, y)− d(y, y′)− d(x, x′) + ε.

Enfin par la première moitié de (2),

d(y′, x0) + d(x, x′)− d(x0, x) ≤ d(x0, y
′)− d(x0, x

′) + ε.

�
Démonstration de la proposition 2.10. D’abord nous choisissons une partie
Y ⊂ X telle que pour tous y, y′ ∈ Y avec y �= y′ on ait d(y, y′) ≥ Δ, et que
Y soit maximale pour cette propriété. Alors tout point de X est à distance < Δ
de Y . On munit Y de la distance induite par X, si bien que toute boule fermée
de rayon 4δ + 2Δ dans Y contient au plus M points. On fixe une application
cY : Y → {0, . . . ,M − 1} telle que pour y, y′ ∈ Y vérifiant cY (y) = cY (y

′) et y �= y′

on ait d(y, y′) > 4δ + 2Δ. Une telle application existe par le lemme de Zorn car si
elle est définie sur Z ⊂ Y , pour tout z ∈ Y \Z on peut la prolonger à Z ∪{z} grâce
à la propriété précédente, et par maximalité elle peut donc étre définie sur Y .

Soit d ∈ R+. Pour tout k ∈ N, on pose

Ak = {x ∈ X, d(x0, x) ∈ [k(d+ δ), (k + 1)(d+ δ)[}.
On va définir pour tout k ∈ N un ensemble fini Ik muni d’une application ck :
Ik → {0, . . . ,M − 1}, et une partition Ak =

⋃

i∈Ik
Xk,i avec Xk,i mesurable et

de diamètre ≤ 3d + 5δ + 2Δ, de telle sorte que la partition X =
⋃

(k,i)∈I Xk,i,
paramétrée par la réunion disjointe I = {(k, i), k ∈ N, i ∈ Ik} munie de l’application
couleur c : I → {0, . . . , 2M − 1} définie par c(k, i) = ck(i) pour i ∈ Ik avec k
pair et c(k, i) = M + ck(i) pour i ∈ Ik avec k impair, vérifie les conditions de la
définition 2.1.

D’abord on pose I0 = {x0} et X0,x0
= A0 dont le diamètre est ≤ 2d+ 2δ. On

définit c0 : I0 → {0, . . . ,M − 1} en posant c0(x0) = 0. Pour k ∈ N
∗ on choisit une

application mesurable μk : Ak → Y telle que pour tout x ∈ Ak il existe x′ ∈ X
vérifiant

d(x0, x
′) ≤ (k − 1

2
)(d+ δ) et d(x′, x) ≤ d(x0, x)− (k − 1

2
)(d+ δ) + δ(4)

et tel que d(x′, μk(x)) ≤ Δ. Une telle application existe car pour tout x ∈ X
un tel x′ existe puisque (X, d) est faiblement δ-géodésique, et d(x′, Y ) < Δ par
construction de Y . On pose alors Ik = μk(Ak), on note

ck : Ik → {0, . . . ,M − 1}
la restriction de cY à Ik et pour i ∈ Ik on note Xk,i = μ−1

k (i). Pour tout i ∈ Ik, le
diamètre de Xk,i est ≤ 3d+ 5δ + 2Δ. En effet pour x, x′ comme ci-dessus on a

d(x, x′) ≤ (k + 1)(d+ δ)− (k − 1

2
)(d+ δ) + δ =

3

2
d+

5

2
δ

et d(x′, μk(x)) ≤ Δ, donc pour tout i ∈ Ik, Xk,i est inclus dans la boule fermée
de centre i et de rayon 3

2d+
5
2δ +Δ. Montrons maintenant que pour (k, i) et (l, j)

des éléments distincts de I tels que c(k, i) = c(l, j) on a d(Xk,i, Xl,j) ≥ d + δ.
C’est clair si k �= l car l’hypothèse c(k, i) = c(l, j) implique alors |k − l| ≥ 2.
Pour terminer il suffit donc de montrer que pour k ∈ N

∗ et x, y ∈ Ak tels que
d(x, y) ≤ d+ δ, on a d(μk(x), μk(y)) ≤ 4δ+2Δ. Soient x′, y′ ∈ X vérifiant (4) ainsi
que la même condition pour y, y′ et tels que d(x′, μk(x)) ≤ Δ et d(y′, μk(y)) ≤ Δ.
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Alors d(x0, x
′) et d(x0, y

′) appartiennent à [(k− 1
2 )(d+ δ)− δ, (k− 1

2 )(d+ δ)], donc
|d(x0, x

′)− d(x0, y
′)| ≤ δ. De plus d(x, x′) ≥ d(x0, x)− d(x0, x

′) ≥ d+δ
2 et de même

d(y, y′) ≥ d+δ
2 . En appliquant le lemme 2.11 à x0, x, x

′, y, y′ avec ε = δ on en déduit
d(x′, y′) ≤ 4δ et donc

d(μk(x), μk(y)) ≤ 4δ + 2Δ.

�

Corollaire 2.12. Soit G un groupe localement compact agissant de façon iso-
métrique, continue et propre sur un espace métrique (X, d) hyperbolique, faiblement
géodésique et à géométrie grossière bornée. Soit x0 un point de X et � la longueur
sur G définie par �(g) = d(x0, gx0). Soit γ ∈ KKG(C,C) l’élément défini sous ces
hypothèses par Kasparov et Skandalis [KS03]. Supposons que pour tout s > 0 il
existe C ∈ R+ tel que l’image de 1 − γ dans KKG,s�+C(C,C) soit nulle. Alors
G vérifie la conjecture de Baum-Connes à coefficients, c’est-à-dire que pour toute
G-C∗-algèbre A, μG,A

red : Ktop
∗ (G,A) → K∗(C

∗
red(G,A)) est une bijection.

Démonstration. D’après [KS03] μG,A
red est injective et son image est égale à l’image

de l’idempotent de End(K∗(C
∗
red(G,A))) qui est associé à jGred(σA(γ)). Il suffit donc

de montrer que jGred(σA(γ)) agit par l’identité sur K∗(C
∗
red(G,A)). Cela résulte de

la conjonction du théorème 2.3 et de la proposition 2.10. �
Remarque. Comme la propriété de dimension asymptotique finie avec contrôle
linéaire passe aux produits, le corollaire 2.12 est encore vrai si (X, d) est un pro-
duit fini d’espaces métriques hyperboliques, faiblement géodésiques et à géométrie
grossière bornée.
Remarque. D’après [Mat07, BD06, CG04] les espaces symétriques et les im-
meubles affines sont de dimension asymptotique finie. Par les mêmes arguments on
vérifie facilement qu’ils sont de dimension asymptotique finie avec contrôle linéaire.
Donnons l’idée, pour la commodité du lecteur. Comme la propriété de dimension
asymptotique finie avec contrôle linéaire passe aux sous-espaces, il suffit de le mon-
trer pour G/K, avec G = SLn(F ), F un corps local, et K un sous-groupe compact
maximal de G. Si B est le sous-groupe de Borel des matrices triangulaires supé-
rieures, on a G/K = B/B ∩ K et B est un produit semi-direct itéré de groupes
abéliens. Or la propriété de dimension asymptotique finie avec contrôle linéaire
passe aux produits semi-directs et est vraie pour ces groupes abéliens.

Donc par exemple pour montrer la conjecture de Baum-Connes à coefficient
pour SL3(Qp) il suffirait de construire des homotopies reliant 1 à l’élément γ
de [KS91], comme dans les hypothèses du théorème 2.3. Malheureusement nous
verrons plus loin qu’à cause de la propriété (T) renforcée, quelle que soit la lon-
gueur � sur G = SL3(Qp), il existe s > 0 tel que pour tout C ∈ R+, γ �= 1
dans KKG,s�+C(C,C). La propriété (T) renforcée est satisfaite par tous les groupes
presque simples sur un corps local dont l’algèbre de Lie contient sl3 et on s’attend
à ce qu’elle soit satisfaite par tous les groupes presque simples sur un corps local
dont le rang déployé est ≥ 2.

2.3. Méthode banachique. Une complétion A(G) de Cc(G) est dite incon-
ditionnelle si ‖f‖ ne dépend que g �→ |f(g)|. Pour toute G-C∗-algèbre A on définit
alors A(G,A) comme la complétion de Cc(G,A) pour la norme

∥

∥g �→ ‖f(g)‖A
∥

∥

A(G)
.

On construit dans [Laf02a] (juste avant la proposition 1.7.4) une application d’as-
semblage μG,A

A : Ktop
j (G,A) → Kj(A(G,A)). Si on a ‖f‖C∗

red(G) ≤ ‖f‖A(G) =
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‖f∗‖A(G) pour tout f ∈ Cc(G), d’après les propositions 1.6.4 et 1.7.6 de [Laf02a],
l’identité de Cc(G,A) s’étend en un morphisme i : A(G,A) → C∗

red(G,A) et on a
un diagramme commutatif

Ktop
j (G,A)

μG,A
A−−−→ Kj(A(G,A))

μG,A
red ↘

⏐

⏐

�i∗

Kj(C
∗
red(G,A))

La conjecture de Bost (initialement formulée pour A = L1) affirme que μG,A
A

est un isomorphisme pour tout groupe G, toute complétion inconditionnelle A et
toute G-C∗-algèbre A. On ne connait pas de contre-exemples à cette conjecture.
Nous ne nous intéressons ici qu’à la surjectivité de μG,A

A et μG,A
red . Dans [Laf02a] on

a montré que si G a un élément γ et si

(C1) il existe une longueur � sur G telle que, pour tout s > 0, on ait γ = 1 dans
KKban

G,s�(C,C),

alors pour toute complétion inconditionnelle A(G) et pour toute G-C∗-algèbre A,
μG,A
A est une surjection. En effet on note As�(G,A) le complété de Cc(G,A) pour

la norme ‖g �→ es�(g)‖f(g)‖A‖A(G). On rappelle que l’on a introduit dans [Laf02a]
une descente

KKban
G,s�(C,C) → KKban(As�(G,A),A(G,A)).

Comme A(G,A) est la limite inductive des As�(G,A) quand s tend vers 0,
K∗(A(G,A)) est la réunion des images des K∗(As�(G,A)). D’autre part (C1) est
vrai pour tous les groupes de Lie réels ou p-adiques d’après [Laf02a] et pour les
groupes hyperboliques d’après [Laf02a, MY02].
Remarque. Pour montrer la surjectivité de μG,A

A pour toute complétion incon-
ditionnelle A(G) et pour toute G-C∗-algèbre A, on voit grâce au lemme 1.7.2
de [Laf02a] qu’il suffit d’avoir la condition plus faible suivante
(C1′) il existe une longueur � sur G telle que pour tout s > 0, il existe C ∈ R+ tel
que l’on ait γ = 1 dans KKban

G,s�+C(C,C).
Cependant on ne connaît pas de cas où (C1′) soit réalisée et pas (C1).

Soit A une G-C∗-algèbre. Faisons l’hypothèse suivante.

(C2) Il existe une complétion inconditionnelle A(G) telle que A(G,A) soit stable
par calcul fonctionnel holomorphe dans C∗

red(G,A).

On rappelle qu’un morphisme injectif d’algèbres de Banach dont l’image est dense
et stable par calcul fonctionnel holomorphe induit un isomorphisme en K-théorie
(voir l’appendice de [Bos90]). Par conséquent si G a un élément γ et si (C1) et
(C2) sont vraies, le diagramme commutatif ci-dessus montre la surjectivité de μG,A

red .
Malheureusement la condition (C2) n’est pratiquement jamais vraie pour A

arbitraire et pour A = C elle n’est montrée que pour quelques groupes : les groupes
de Lie semi-simples réels ou p-adiques [Laf02a], et les groupes discrets ayant la
propriété (RD), en particulier les groupes hyperboliques et d’après [RRS98, Laf00,
Cha03] les réseaux cocompacts dans des produits de SL3(F ) avec F corps local,
SL3(H) et E6(−26).
Remarque. Non seulement SL3(Z), qui est un réseau non cocompact de SL3(R),
n’a pas la propriété (RD), mais la condition (C2) elle-même est fausse pour G =
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SL3(Z) avec A = C. En effet soit

H = Z � Z
2 où Z agit sur Z

2 par n �→
(

3 1
2 1

)n

.

On sait que H s’identifie à un sous-groupe de G par le morphisme

(n,

(

a
b

)

) �→

⎛

⎝

(

3 1
2 1

)n (

a
b

)

0 1

⎞

⎠ .

Soit A(G) une complétion inconditionnelle de CG incluse dans C∗
red(G). Soit A(H)

la complétion de CH pour la norme de A(G) (c’est-à-dire l’intersection de C∗
red(H)

avec A(G)). Alors A(H) est une complétion inconditionnelle de CH incluse dans
C∗

red(H). Comme H est moyennable, pour toute fonction positive à support fini f
sur H on a ‖f‖C∗

red(H) = ‖f‖�1(H), donc A(H) est incluse dans �1(H). Or �1(H)

n’est pas stable par calcul fonctionnel holomorphe dans C∗
red(H). La preuve que

nous allons donner est très proche de [Jen68]. Posons

xi = (1,

(

i
0

)

) ∈ H = Z � Z
2 pour i = 0, 1, 2.

Alors x0, x1, x2 engendrent un semi-groupe libre dans H car, si on note
(

ak
bk

)

=

(

3 1
2 1

)k (
1
0

)

,

pour n ∈ N et i0, . . . , in−1 ∈ {0, 1, 2}n on a

xi0 . . . xin−1
= (n,

(∑n−1
k=0 ikak

∑n−1
k=0 ikbk

)

)

et comme ak+1 ≥ 3ak > 0 pour tout k ∈ N la connaissance de
∑n−1

k=0 ikak détermine
i0, . . . , in−1. Donc ex0

+ ex1
− ex2

a pour rayon spectral 3 dans �1(H), alors que sa
norme dans C∗

red(H) est supz∈C,|z|=1 |1 + z − z2| < 3.
Remarque. La conjecture de Baum-Connes à coefficients peut aussi être énoncée
pour des groupoïdes [Tu99a, Tu99b] en utilisant [Gal99]. La notion de complé-
tion inconditionnelle existe aussi dans ce cadre et a été utilisée dans [Laf07] pour
montrer la conjecture de Baum-Connes sans coefficients pour certains “groupoïdes
hyperboliques”, en particulier les produits croisés de groupes hyperboliques par
des espaces localement compacts. On montre ainsi dans [Laf07] la conjecture de
Baum-Connes à coefficients commutatifs pour les groupes hyperboliques.
Remarque. Dans tous les cas où une homotopie (E, π, T ) de 1 à γ a été construite
dans Eban

G,� (C,C[0, 1]) pour une certaine longueur �, la C[0, 1]-paire E est à dualité
isométrique au sens de la définition suivante.

Définition 2.13. Soit B une algèbre de Banach. Une B-paire E est dite à
dualité isométrique si les applications B-linéaires E> → LB(E

<, B) et E< →
LB(E

>, B) sont des injections isométriques.

Notons qu’à toute B-paire E on peut associer une B-paire Ê à dualité isomé-
trique de la façon suivante : on note Ê> le B-module de Banach complété de E>

pour la norme
‖x‖Ê> = sup

ξ∈E<,‖ξ‖E<≤1

‖〈ξ, x〉‖B.
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On définit alors Ê< comme le B-module de Banach complété de E< pour la norme

‖ξ‖Ê< = sup
x∈Ê>,‖x‖Ê>≤1

‖〈ξ, x〉‖B.

On vérifie que Ê est une B-paire à dualité isométrique. Le prolongement par conti-
nuité donne un morphisme LB(E) → LB(Ê) qui envoie KB(E) dans KB(Ê) et
que l’on note T �→ T̂ . En particulier si G est un groupe localement compact, �
une longueur sur G et A et B des G-algèbres de Banach, et si (E, π, T ) appartient
à Eban

G,� (A,B), (Ê, π̂, T̂ ) appartient aussi à Eban
G,� (A,B) et en construisant un cône

on montre que les deux sont homotopes. Plus bas, dans la condition (D4), nous
demanderons que E soit à dualité isométrique, car nous ne savons pas montrer le
lemme 4.4 sans cette hypothèse.

3. Un cadre général englobant ces méthodes

Soit G un groupe localement compact possédant un élément γ, et � une longueur
sur G. Soit A une G-C∗-algèbre. Toutes les méthodes présentées dans le paragraphe
précédent pour montrer la surjectivité de

μG,A
red : Ktop

∗ (G,A) → K∗(C
∗
red(G,A))

(sauf [Laf07] mentionné dans l’avant-dernière remarque) obéissent au schéma sui-
vant :

(D) Pour tout s > 0 trouver C ∈ R+, et une sous-algèbre de Banach B de
C∗

red(G,A) contenant Cc(G,A), telle que
– (D1) pour tout n ∈ N

∗

sup
f∈Cc(G,A) supporté dans la boule fermée de rayon n

‖f‖B
‖f‖C∗

red(G,A)
≤ Cesn.

– (D2) on possède une homotopie (E, π, T ) de 1 à γ dans Eban
G,? (C,C[0, 1]) (où

? indique que la longueur n’est pas précisée, c’est-à-dire qu’il n’y a pas de
condition de norme sur l’action de G) qui fournit par descente un élément
(Ẽ, π̃, T̃ ) de Eban(B, C∗

red(G,A)[0, 1]), tel que (Ẽ<, Ẽ>) soit une complétion
de (Cc(G,A⊗alg E<), Cc(G,A⊗alg E>)) pour certaines normes.

Précisions. On rappelle que pour toute algèbre de Banach B, on note B[0, 1] =
C([0, 1], B) muni de la norme du supremum. On ne s’attend pas à avoir en général
un morphisme de descente

KKban
G,? (C,C) → KKban(B, C∗

red(G,A))

(on n’a pas supposé B de la forme A(G,A) où A(G) est une complétion incondition-
nelle car avec cette restriction la condition (D1) serait impossible à réaliser dans la
plupart des cas). C’est seulement pour l’homotopie particulière (E, π, T ) de (D2)
que l’on demande une descente, c’est-à-dire l’existence de (Ẽ, π̃, T̃ ) comme ci-dessus,
afin de montrer l’égalité entre les images de γ et 1 dans KKban(B, C∗

red(G,A)).
Montrons que (D) implique la surjectivité de μG,A

red . On note Bm associée à
s = 1/m. La condition (D1) implique que pour m,n ∈ N

∗ et f ∈ Cc(G,A) supportée
dans la boule fermée de rayon n on a ρBm

(f) ≤ e
n
m ρC∗

red(G,A)(f) (et la même
condition en remplaçant A par Mk(A) pour tout k ∈ N

∗) et donc le lemme 1.7.2
de [Laf02a] montre que K∗(C

∗
red(G,A)) est la réunion des images des K∗(Bm). Or
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par la condition (D2), jGred ◦ σA(γ) agit par l’identité sur l’image de K∗(Bm) dans
K∗(C

∗
red(G,A)), pour tout m ∈ N

∗.
Montrons maintenant que (D) englobe les méthodes du paragraphe précédent.

D’abord si γ = 1 dans KKG(C,C), on prend B = C∗
red(G,A) et la condition (D2)

résulte de la descente de Kasparov

jGred ◦ σA : EG(C,C[0, 1]) → E(C∗
red(G,A), C∗

red(G,A)[0, 1]).

Pour la méthode du sous-paragraphe 2.2, avec s > 0 et C ∈ R+ comme dans le
théorème 2.3, on prend B = Cs�+C(G,A) et les conditions (D1) et (D2) sont assurées
par les propositions 2.6 et 2.5. Enfin pour la méthode banachique décrite dans le
sous-paragraphe 2.3, où l’on a A = C, on prend, pour s > 0 et A(G) comme dans
les conditions (C1) et (C2), B = As�(G).
Remarque. La preuve de la conjecture de Baum-Connes à coefficients commutatifs
pour les groupes hyperboliques donnée dans [Laf07] et mentionnée à la fin du
paragraphe précédent rentre pratiquement dans le cadre de (D) en prenant A =
C0(Y ), où Y est un espace localement compact muni d’une action d’un groupe
hyperbolique Γ et B est une certaine complétion inconditionnelle de Cc(G) en notant
G le groupoïde produit croisé de Y par Γ. La condition (D2) est assurée par la
descente en KK-théorie banachique pour les groupoïdes (introduite dans [Laf07])
mais la condition (D1) n’est pas vérifiée par B car la stabilité par calcul fonctionnel
holomorphe de B dans C∗

red(G) = C∗
red(Γ, C0(Y )) est démontrée par une méthode ad

hoc. Cette méthode ne se généralise pas à d’autres cas (par exemple dans [Laf07]
on ne montre pas la conjecture de Baum-Connes à coefficients commutatifs pour
un produit de deux groupes hyperboliques).

4. Un obstacle à ( ˜D) pour certains groupes

Dans ce paragraphe on se donne un sous-groupe compact ouvert K ⊂ G. On
suppose

∫

K
dg = 1 et on note eK =

∫

K
egdg ∈ Cc(G). Nous étudierons dans le

paragraphe suivant le cas où G = SL3(Qp) et K = SL3(Zp).
On note ( ˜D) la réunion de (D) = (D1)+(D2) et de deux conditions techniques

(D3) et (D4) que nous expliciterons plus loin. Nous allons définir une propriété (T)
renforcée pour G (relativement à K) qui empêche que ( ˜D) soit vraie pour toute G-
C∗-algèbre A (ou même pour toute G-C∗-algèbre commutative A). Nous noterons
(TSchur) cette propriété car sa définition, qui est adaptée à la conjecture de Baum-
Connes, fait intervenir des produits de Schur (voir la remarque après le lemme 4.3).
On renvoie à [CH85, Haa86, CH89, Dor93, CDSW05] pour des travaux sur
l’approximation de la fonction constante égale à 1 par des éléments de l’algèbre de
Fourier dont les normes de Schur sont bornées (ce problème est lié à l’étude des
représentations uniformément bornées, alors que nous sommes intéressés dans cet
article par les représentations dont la croissance est contrôlée par une exponentielle
assez petite). Dans le paragraphe suivant nous montrerons que SL3(Qp) possède
(TSchur) relativement à SL3(Zp). Dans la définition suivante, la C∗-algèbre C0(G)
est munie de l’action de G par translations à droite.

Définition 4.1. On dit que G a la propriété (TSchur) relativement à K si pour
toute longueur � sur G invariante à gauche et à droite par K, il existe s > 0 et
une fonction φ : G → R+ invariante à gauche et à droite par K et tendant vers 0
à l’infini tels que la propriété suivante soit vraie :
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si c : G → C est une fonction K-invariante à gauche et à droite telle que pour
tout n ∈ N et pour tout f ∈ eKCc(G,C0(G))eK supporté dans {g ∈ G, �(g) ≤ n}
on ait

‖g �→ c(g)f(g)‖C∗
red(G,C0(G)) ≤ esn‖f‖C∗

red(G,C0(G))

alors c admet une limite à l’infini c∞ ∈ C et on a |c(g) − c∞| ≤ φ(g) pour tout
g ∈ G.

Remarque. La propriété (TSchur) que nous venons de définir diffère un peu de
la propriété (T) renforcée de la définition 0.1 de [Laf08]. Expliquons le rapport
logique entre les deux, en nous restreignant au cas où G = SL3(Qp) et K =
SL3(Zp) pour pouvoir citer [Laf08] (mais ce qui suit reste vrai quels que soient
G et K). Le théorème 3.2 de [Laf08] montre la propriété (T) renforcée (au sens de
la définition 0.1 de [Laf08], en oubliant ici la généralisation à certains espaces de
Banach) pour SL3(Qp) à l’aide des propositions 3.3 et 3.4 de [Laf08] qui donnent
des renseignements sur les coefficients de matrice entre vecteurs SL3(Zp)-invariants
(resp. d’un autre type sous l’action de SL3(Zp)). Le rapport logique entre (TSchur)
et (T) renforcé est le suivant : la propriété (TSchur) pour G = SL3(Qp) relativement
à K = SL3(Zp) implique facilement l’énoncé de la proposition 3.3 de [Laf08] mais
pas celui de la proposition 3.4 de [Laf08]. Néanmoins pour tout groupe localement
compact G et tout sous-groupe compact ouvert K, si G a la propriété (TSchur)
relativement à K, G a la propriété (T) de Kazhdan (adapter le lemme 3.5 de [Laf08]
et l’argument qui le précède, qui montrent que la proposition 3.3 de [Laf08] implique
la propriété (T) de Kazhdan pour SL3(Qp)).

Si un groupe localement compact G a la propriété (T) renforcée au sens de la
définition 0.1 de [Laf08], c’est-à-dire si la représentation triviale est isolée parmi les
représentations dans des espaces de Hilbert à croissance exponentielle suffisamment
petite, il est clair que la méthode proposée au paragraphe 2.2 ne peut s’appliquer à
G. Néanmoins on pourrait imaginer qu’une méthode hybride comme (D) permette
de montrer la conjecture de Baum-Connes à coefficients pour G. La proposition 4.2
montre que si G possède la propriété (TSchur) relativement à un sous-groupe ou-
vert compact K, la méthode (D) échoue elle aussi pour des coefficients arbitraires.
Cependant pour montrer la proposition 4.2 nous devons ajouter à (D) les deux
conditions techniques suivantes, qui complètent (D2).

– (D3) La C[0, 1]-paire E est à dualité isométrique.
– (D4) La C∗-algèbre A est unifère, l’action de K sur E est isométrique et le
B-C∗

red(G,A)[0, 1]-bimodule (Ẽ<, Ẽ>) qui est une complétion de

(Cc(G,A⊗alg E<), Cc(G,A⊗alg E>))

vérifie l’estimée suivante. On note χK la fonction caractéristique de K. Pour
x ∈ E> et ξ ∈ E< des éléments K-invariants, on note

eK ⊗ 1A ⊗ x ∈ Cc(G,A⊗alg E>) la fonction g �→ χK(g)1A ⊗ x

et eK ⊗ 1A ⊗ ξ ∈ Cc(G,A⊗alg E<) la fonction g �→ χK(g)1A ⊗ ξ.

Alors on demande

‖eK ⊗ 1A ⊗ x‖Ẽ> ≤ ‖x‖E> et ‖eK ⊗ 1A ⊗ ξ‖Ẽ< ≤ ‖ξ‖E< .

Proposition 4.2. Si G n’est pas compact et a la propriété (TSchur) relativement
à K, la condition ( ˜D) = (D1) + (D2) + (D3) + (D4) n’est satisfaite pour aucune
G-C∗-algèbre commutative unifère A contenant C0(G) comme sous-G-C∗-algèbre.
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La proposition 4.2 résultera des lemmes 4.3 et 4.4.
Le lemme 4.3 donne des estimées sur les produits de Schur par les coefficients

de matrice des représentations intervenant dans une homotopie de 1 à γ, qui sont
nécessaires pour que les conditions (D1), (D2) et (D4) soient satisfaites.

Lemme 4.3. Soit A une G-C∗-algèbre commutative unifère, s > 0, C ∈ R+.
Soit (E, π, T ) ∈ Eban

G,? (C,C[0, 1]) une homotopie de 1 à γ telle que, pour une certaine
sous-algèbre de Banach B de C∗

red(G,A) contenant Cc(G,A) les conditions (D1),
(D2) et (D4) soient satisfaites.

Alors pour tout t ∈ [0, 1], pour x ∈ E>
t et ξ ∈ E<

t des éléments K-invariants,
pour tout n ∈ N et pour tout f ∈ eKCc(G,A)eK supporté dans {g ∈ G, �(g) ≤ n}
on a, en notant c(g) = 〈ξ, πt(g)x〉,

‖g �→ c(g)f(g)‖C∗
red(G,A) ≤ Cesn‖f‖C∗

red(G,A)‖x‖E>
t
‖ξ‖E<

t
.

Précisons que dans ce lemme, pour t ∈ [0, 1], Et désigne la C-paire image
directe de E par le morphisme C[0, 1] → C d’évaluation en t. En particulier E>

t =
E> ⊗π

C[0,1] C et E<
t = C⊗π

C[0,1] E
<.

Démonstration du lemme 4.3. Soit t ∈ [0, 1], et x ∈ E>
t et ξ ∈ E<

t des éléments
K-invariants. On note

eK ⊗ 1A ⊗ x ∈ Cc(G,A⊗alg E>
t ) la fonction g �→ χK(g)1A ⊗ x

où χK désigne la fonction caractéristique de K. De même on note

eK ⊗ 1A ⊗ ξ ∈ Cc(G,A⊗alg E<
t ) la fonction g �→ χK(g)1A ⊗ ξ.

Dans la condition (D) apparaît un B-C∗
red(G,A)[0, 1]-bimodule (Ẽ<, Ẽ>) qui est

une complétion de

(Cc(G,A⊗alg E<), Cc(G,A⊗alg E>)).

Donc pour tout t ∈ [0, 1], le B-C∗
red(G,A)-bimodule (Ẽ<

t , Ẽ>
t ) est une complétion

de
(Cc(G,A⊗alg E<

t ), Cc(G,A⊗alg E>
t )).

Grâce à la condition (D4), pour tous t, x, ξ comme ci-dessus on a

‖eK ⊗ 1A ⊗ x‖Ẽ>
t
≤ ‖x‖E>

t
et ‖eK ⊗ 1A ⊗ ξ‖Ẽ<

t
≤ ‖ξ‖E<

t
.

Voici maintenant le calcul fondamental. On pose c(g) = 〈ξ, πt(g)x〉. Pour tout
f ∈ eKCc(G,A)eK on a

〈eK ⊗ 1A ⊗ ξ, f(eK ⊗ 1A ⊗ x)〉 = (g �→ c(g)f(g)) ∈ Cc(G,A).

Or comme Ẽt doit être un B-C∗
red(G,A)-bimodule, pour X ∈ Ẽ>

t , Ξ ∈ Ẽ<
t et

f ∈ Cc(G,A) on doit avoir

‖〈Ξ, fX〉‖C∗
red(G,A) ≤ ‖Ξ‖Ẽ<

t
‖X‖Ẽ>

t
‖f‖B.

On en déduit que pour tout f ∈ eKCc(G,A)eK on doit avoir

‖g �→ c(g)f(g)‖C∗
red(G,A) ≤ ‖ξ‖E<

t
‖x‖E>

t
‖f‖B.(5)

Grâce à la condition (D1) le lemme 4.3 est alors démontré. �
Remarque. Pour toute fonction c : K\G/K → C, on peut noter

Schurc : eKCc(G,A)eK → eKCc(G,A)eK
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le produit de Schur, qui à g �→ f(g) associe g �→ c(g)f(g). Alors on peut réexpri-
mer (5) en disant que Schurc s’étend en une application continue de eKBeK dans
eKC∗

red(G,A)eK et que
∥

∥Schurc
∥

∥

L(eKBeK ,eKC∗
red(G,A)eK)

≤ ‖ξ‖E<
t
‖x‖E>

t
.

Lemme 4.4. On suppose que G n’est pas compact. Soit ψ : G → R+ invariante
à gauche et à droite par K et tendant vers 0 à l’infini. Il n’existe pas d’homotopie
(E, π, T ) de 1 à γ dans Eban

G,? (C,C[0, 1]) (où ? indique que la longueur n’est pas pré-
cisée), telle que K agisse isométriquement sur E, que E soit à dualité isométrique,
et que pour tout t ∈ [0, 1], pour x ∈ E>

t et ξ ∈ E<
t des éléments K-invariants de

norme 1, le coefficient de matrice c : K\G/K → C, g �→ 〈ξ, πt(g)x〉, admette une
limite à l’infini c∞ et vérifie |c(g)− c∞| ≤ ψ(g) pour tout g ∈ G.

Démonstration. Supposons par l’absurde qu’une telle homotopie (E, π, T ) existe.
Pour g ∈ G, on pose P g = eKegeK ∈ LC[0,1](E). Grâce à l’hypothèse que E

est à dualité isométrique, pour g, g′ ∈ G on a ‖P g − P g′‖ ≤ ψ(g) + ψ(g′). Donc
P g est une suite de Cauchy dans LC[0,1](E) (quand g tend vers l’infini) et admet
une limite P ∈ LC[0,1](E). Comme P gP g′

=
∫

K
P gkg′

dk on montre facilement que
P est un idempotent dans LC[0,1](E). De plus pour t = 0, 1, Pt est le projecteur
orthogonal sur les vecteurs G-invariants (E0 et E1 sont des espaces de Hilbert munis
de représentations unitaires de G).

Pour tout g ∈ G, [P g, T ] ∈ KC[0,1](E), d’où en passant à la limite [P, T ] ∈
KC[0,1](E). On note ImP la C[0, 1]-paire formée des images de P> et P< dans E> et
E<. Alors PTP ∈ LC[0,1](ImP ) et (PTP )2−1 ∈ KC[0,1](ImP ) donc (ImP, PTP ) ∈
Eban(C,C[0, 1]). Or (PTP )t est d’indice 1 pour t = 0 et d’indice 0 pour t = 1 (en
effet E0 représente 1 dans KKG(C,C) et comme G n’est pas compact, E1, qui
représente γ, fait intervenir des représentations unitaires de G dans des espaces de
Hilbert qui n’admettent pas de vecteurs G-invariants). Cette contradiction achève
la démonstration du lemme 4.4. �
Démonstration de la proposition 4.2. On raisonne par l’absurde. On suppose
que G n’est pas compact et vérifie (TSchur) relativement à K. Soit � la longueur
fixée avant l’énoncé de (D). Soit A une G-C∗-algèbre commutative unifère contenant
C0(G) comme sous-G-C∗-algèbre, telle que G vérifie la condition ( ˜D) pour A. On
fixe s et φ comme dans (TSchur). Soit C associé à s dans (D). On applique le
lemme 4.3 à A, s et C, puis (TSchur), puis le lemme 4.4 avec ψ = Cφ, et on arrive
à une contradiction. �

5. Démonstration de la propriété (T) renforcée pour SL3(Qp)

Le but de ce paragraphe est de montrer le théorème suivant.

Théorème 5.1. Pour tout nombre premier p, SL3(Qp) a la propriété (TSchur)
relativement à SL3(Zp), au sens de la définition 4.1.

On note G = SL3(Qp) et K = SL3(Zp). On rappelle que C0(G) est muni de
l’action de G par translations à droite. On a

C∗
red(G,C0(G)) = K(L2(G)).

La sous-algèbre eKC∗
red(G,C0(G))eK de C∗

red(G,C0(G)) s’identifie à K(�2(G/K)).



340 VINCENT LAFFORGUE

Soit Λ = {(i, j) ∈ N
2, i− j = 0 modulo 3}. L’application

(i, j) �→ K
(

p
i+2j

3

⎛

⎝

p−(i+j) 0 0
0 p−j 0
0 1

⎞

⎠

)

K

est une bijection de Λ vers K\G/K. On munit G de la longueur � définie par

�
(

k
(

p
i+2j

3

⎛

⎝

p−(i+j) 0 0
0 p−j 0
0 1

⎞

⎠

)

k′
)

= i+ j

pour k, k′ ∈ K et (i, j) ∈ Λ.
On note B l’immeuble de G. On rappelle que les sommets de B sont identifiés

aux réseaux de Q
3
p, à homothétie près par Q

∗
p. Pour tout réseau M on note [M ] sa

classe d’équivalence. Etant donnés x, y ∈ B il existe un unique couple (i, j) ∈ N
2

tel que dans une certaine base (v1, v2, v3) de Q
3
p on ait

x = [Zpv1 + Zpv2 + Zpv3] et y = [Zpp
−i−jv1 + Zpp

−jv2 + Zpv3].

On écrit σ(x, y) = (i, j). On a alors σ(y, x) = (j, i). On munit B de la distance d défi-
nie par d(x, y) = i+j si σ(x, y) = (i, j). Le déterminant d’une classe d’équivalence de
réseaux (pour la relation d’homothétie) est bien déterminé dans Q∗

p/Z
∗
pp

3Z = Z/3Z

(où p−1
Z
∗
pp

3Z correspond à 1 ∈ Z/3Z) et on appelle type : B → Z/3Z la fonc-
tion correspondante. On note B0 l’ensemble des points de B de type 0 et on note
x0 ∈ B0 la classe d’équivalence du réseau Z

3
p. Comme SL3(Qp) agit transitivement

sur B0 et que le stabilisateur de x0 est SL3(Zp), on a une bijection G/K → B0

qui à gK associe gx0. Pour x, y ∈ B0 on a σ(x, y) ∈ Λ. Pour x, y, x′, y′ ∈ B0 on a
σ(x, y) = σ(x′, y′) si et seulement si il existe un élément de SL3(Qp) transportant
x sur x′ et y sur y′.
Démonstration du théorème 5.1 en admettant la proposition 5.2. Pour
tout n ∈ N, f ∈ eKC∗

red(G,C0(G))eK est supporté sur Bn = {g ∈ G, �(g) ≤ n} si
et seulement si l’opérateur T ∈ K(�2(B0)) correspondant vérifie Tx,y = 0 lorsque
d(x, y) > n. On voit donc que le théorème 5.1 résulte de la proposition suivante. �

Proposition 5.2. Soient s ∈ [0, 1
4 [ et c : Λ → C une fonction telle que pour

tout n ∈ N

sup
T

‖(Txyc(σ(x, y)))x,y∈B0‖K(�2(B0))

‖T‖K(�2(B0))
≤ psn(6)

où le supremum est pris sur les matrices T indexées par B0, ayant un nombre fini
de coefficients non nuls, et vérifiant Txy = 0 si d(x, y) > n. Alors c admet une
limite c∞ à l’infini, et

|c(i, j)− c∞| ≤
( 2ps

p
1
2+s − 1

+
2(ps + p2s)

1− p
4s−1

2

)

p
4s−1

6 (i+j+max(i,j))

pour tout (i, j) ∈ Λ.

La fin de ce paragraphe est consacrée à la démonstration de la proposition 5.2.

Lemme 5.3. Soit (m,m′) ∈ N
2 avec m ≤ m′. Soit (e1, e2, e3) une base de Q

3
p.

Soient x1, x2, x3 ∈ Zp tel que l’un d’entre eux appartienne à Z
∗
p. Soient ξ1, ξ2, ξ3 ∈

Zp tel que l’un d’entre eux appartienne à Z
∗
p. Soit

M = Zpp
−m(x1e1 + x2e2 + x3e3) + Zpe1 + Zpe2 + Zpe3 et
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N = {u1e1 + u2e2 + u3e3 ∈ Zpe1 + Zpe2 + Zpe3, ξ1u1 + ξ2u2 + ξ3u3 ∈ pm
′
Zp}.

Alors σ([M ], [N ]) = (i,m +m′ − 2i) où i est le plus grand entier de {0, ...,m} tel
que ξ1x1 + ξ2x2 + ξ3x3 ≡ 0 modulo pi.

Démonstration. Comme l’énoncé est invariant par l’action de SL3(Zp) sur le
vecteur

(

x1
x2
x3

)

et le covecteur (ξ1, ξ2, ξ3) on peut supposer ξ2 = ξ3 = 0, ξ1 = 1 et
x3 = 0. Si i < m la valuation p-adique de x1 est égale à i et on a

M = Zpp
−m(x1e1 + x2e2) + Zpp

−ie2 + Zpe3

et N = Zpp
m′−i(x1e1 + x2e2) + Zpe2 + Zpe3.

Si i = m on a M = Zpe1 + Zpp
−me2 + Zpe3 et N = Zpp

m′
e1 + Zpe2 + Zpe3. �

Remarque. On a toujours

σ([Zpe1 + Zpe2 + Zpe3], [M ]) = (m, 0) et σ([Zpe1 + Zpe2 + Zpe3], [N ]) = (0,m′).

Début de la démonstration de la proposition 5.2. Fixons (m,m′) ∈ N
2

avec m ≤ m′ et m +m′ ∈ 3N. Soit (e1, e2, e3) une base de Q
3
p telle que le type de

[Zpe1+Zpe2+Zpe3] soit m′ modulo 3. Nous définissons deux applications injectives
α : (Z/pmZ)2 → B0 et β : (Z/pm

′
Z)2 → B0 de la façon suivante. Pour x =

(x2, x3) ∈ (Z/pmZ)2,

α(x) = [Zpp
−m(e1 + x2e2 + x3e3) + Zpe2 + Zpe3],

et pour y = (y1, y2) ∈ (Z/pm
′
Z)2,

β(y) = [{u = u1e1 +u2e2+u3e3 ∈ Zpe1+Zpe2+Zpe3, u1y1+u2y2 +u3 ∈ pm
′
Zp}].

Par abus nous avons supposé dans les formules ci-dessus que x2, x3, y1, y2 étaient
relevés en des éléments de Zp, mais α(x) et β(y) ne dépendent pas des relèvements.

Lemme 5.4. Soient x = (x2, x3) ∈ (Z/pmZ)2 et y = (y1, y2) dans (Z/pm
′
Z)2.

Soit i le plus grand entier de {0, ...,m} tel que y1 + x2y2 + x3 ≡ 0 modulo pi. Alors
σ(α(x), β(y)) = (i,m+m′ − 2i).

Démonstration. Ce lemme est une conséquence immédiate du lemme 5.3. �

Lemme 5.5. Soient k, k′ des entiers supérieurs ou égaux à 2 avec k′ multiple
de k, l1, l2 deux éléments distincts de Z/kZ et a1, a2 ∈ R. Soit

(Tx,y)x∈(Z/kZ)2,y∈(Z/k′Z)2

la matrice définie par

T(x2,x3),(y1,y2) = a1 si y1 + x2y2 + x3 = l1 dans Z/kZ,

= a2 si y1 + x2y2 + x3 = l2 dans Z/kZ,

= 0 sinon.

Alors

‖T‖Mk2,k′2 (C) =
k′

k
sup

q∈Z/kZ

∣

∣

∣a1e
i2πql1/k + a2e

i2πql2/k
∣

∣

∣

∥

∥

∥(e−i2πqx2y2/k)
∥

∥

∥

Mk(C)

=
k′

k
sup

q∈Z/kZ

√

k × pgcd(k, q)
∣

∣

∣a1e
i2πql1/k + a2e

i2πql2/k
∣

∣

∣.
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Démonstration. Comme Tx,y ne dépend que de l’image de y dans (Z/kZ)2, on se
ramène facilement au cas où k′ = k. Le lemme découle alors de la diagonalisation
des matrices circulantes, car lorsqu’on fixe x2 et y2 la matrice (T(x2,x3),(y1,y2))x3,y1

est une matrice circulante, que l’on diagonalise par une transformation de Fourier
en x3 et y1. �
Fin de la démonstration de la proposition 5.2. Pour i ∈ {0, ...,m} on note
((Ti)x,y)x∈(Z/pmZ)2,y∈(Z/pm′

Z)2 la matrice définie par

(Ti)(x2,x3),(y1,y2) = p−m′
si y1 + x2y2 + x3 = pi dans Z/pmZ,

= 0 sinon

On note que Ti est normalisée pour être de norme 1 dans Mp2m,p2m′ (C).
Soit i ∈ {1, ...,m}. Alors

‖Ti − Ti−1‖ ≤ 2p−
i
2

En effet par le lemme 5.5 on a

‖Ti − Ti−1‖ = sup
q∈Z/pmZ

p−
m
2

√

pgcd(pm, q)
∣

∣

∣1− ei2πqp
i−1(p−1)/pm

∣

∣

∣

et 1− ei2πqp
i−1(p−1)/pm

s’annule si pm−i+1 divise q et

p−
m
2

√

pgcd(pm, q)
∣

∣

∣1− ei2πqp
i−1(p−1)/pm

∣

∣

∣ ≤ 2p−
m
2

√

pgcd(pm, q) ≤ 2p−
i
2

si pm−i+1 ne divise pas q.
Comme le vecteur de norme 1 de C

(Z/pm′
Z)2 dont toutes les coordonnées sont

égales à p−m′
a pour image par Ti et Ti−1 le vecteur de norme 1 de C

(Z/pm
Z)2 dont

toutes les coordonnées sont égales à p−m , on a, pour a, b ∈ C, ‖aTi+bTi−1‖ ≥ |a+b|.
Soit (m,m′) ∈ N

2 avec m ≤ m′. Pour tout i ∈ {0, . . . ,m} on note T̃i ∈
K(�2(B0)) la matrice (qui a un nombre fini de coefficients non nuls) telle que

(T̃i)x,y = 0 si x �∈ Im(α) ou y �∈ Im(β)

et (T̃i)α(x),β(y) = (Ti)x,y pour x ∈ (Z/pmZ)2 et y ∈ (Z/pm
′
Z)2.

Soit i ∈ {1, . . . ,m}. En appliquant (6) à T = T̃i − T̃i−1 et n = m+m′ − i + 1, on
obtient

∣

∣

∣c(i,m+m′ − 2i)− c(i− 1,m+m′ − 2i+ 2))
∣

∣

∣

≤
∥

∥

∥c(i,m+m′ − 2i)Ti − c(i− 1,m+m′ − 2i+ 2)Ti−1

∥

∥

∥

≤ ‖Ti − Ti−1‖ps(m+m′−i+1) ≤ 2p−
i
2 ps(m+m′−i+1).

En appliquant l’inégalité précédente avec m′ = m ou m′ = m + 1 (c’est-à-dire
m = i+ [ j2 ] ≥ i) on trouve que pour tous (i, j) ∈ Λ avec i > 0,

|c(i, j)− c(i− 1, j + 2)| ≤ 2p−
i
2+s(i+j+1).

En faisant agir l’automorphisme

g �→

⎛

⎝

0 0 1
0 1 0
1 0 0

⎞

⎠
tg−1

⎛

⎝

0 0 1
0 1 0
1 0 0

⎞

⎠
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de G, qui stabilise K, et envoie

p
i+2j

3

⎛

⎝

p−(i+j) 0 0
0 p−j 0
0 0 1

⎞

⎠ sur p
2i+j

3

⎛

⎝

p−(i+j) 0 0
0 p−i 0
0 0 1

⎞

⎠ ,

on obtient, pour (i, j) ∈ Λ avec j > 0,

|c(i, j)− c(i+ 2, j − 1)| ≤ 2p−
j
2+s(i+j+1).

Donc on a, pour (i, j) ∈ Λ, avec i ≥ j,
∣

∣

∣c(i, j)− c(
2i+ j

3
,
2i+ j

3
)
∣

∣

∣

≤ 2
(

(

p−
1
2−s

)

+
(

p−
1
2−s

)2
+ · · ·+

(

p−
1
2−s

)
i−j
3

)

p
2i+j

6 (4s−1)+s(7)

≤ 2ps

p
1
2+s − 1

p
4s−1

6 (2i+j),

ainsi que la même inégalité en permutant i et j. Pour i ≥ 1 on trouve

|c(i, i)− c(i+ 1, i+ 1)| ≤ |c(i, i)− c(i− 1, i+ 2)|+ |c(i− 1, i+ 2)− c(i+ 1, i+ 1)|

≤ 2
(

ps + p2s−1
)

p
4s−1

2 i.

En prenant x1 ∈ B0 tel que σ(x0, x1) = (1, 1), et en appliquant (6) à la matrice T
indexée par B0 telle que Tx,y = 1 pour x, y ∈ {x0, x1} et 0 sinon, on obtient

|c(0, 0)− c(1, 1)| ≤
∥

∥

∥

(

c(0, 0) c(1, 1)
c(1, 1) c(0, 0)

)

∥

∥

∥ ≤ p2s
∥

∥

∥

(

1 1
1 1

)

∥

∥

∥ = 2p2s.

On a donc pour tout i ∈ N,

|c(i, i)− c(i+ 1, i+ 1)| ≤ 2
(

ps + p2s
)

p
4s−1

2 i.

On en déduit que c(i, i) admet une limite c∞ à l’infini et que
∣

∣

∣c(i, i)− c∞

∣

∣

∣ ≤ 2
ps + p2s

1− p
4s−1

2

p
4s−1

2 i

pour tout i ∈ N. En utilisant (7) et l’inégalité obtenue en permutant i et j on a
alors, pour (i, j) ∈ Λ,

∣

∣

∣c(i, j)− c∞

∣

∣

∣ ≤
( 2ps

p
1
2+s − 1

+ 2
ps + p2s

1− p
4s−1

2

)

p
4s−1

6 (i+j+max(i,j)).

La proposition 5.2 est démontrée. �
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Ce travail est dédié à Alain Connes en témoignage d’estime et d’une longue amitié

Abstract. We define a “combinatorial Hopf algebra” as a Hopf algebra which
is free (or cofree) and equipped with a given isomorphism to the free algebra
over the indecomposables (resp. the cofree coalgebra over the primitives). We
show that the choice of such an isomorphism implies the existence of a finer
algebraic structure on the Hopf algebra and on the indecomposables (resp. the

primitives). For instance a cofree-cocommutative right-sided combinatorial
Hopf algebra is completely determined by its primitive part which is a pre-Lie
algebra. The key example is the Connes-Kreimer Hopf algebra. The study of
all these combinatorial Hopf algebra types gives rise to several good triples of
operads. It involves the operads: dendriform, pre-Lie, brace, and variations of
them.

Introduction

Many recent papers are devoted to some infinite dimensional Hopf algebras
called collectively “combinatorial Hopf algebras”. The Connes-Kreimer Hopf alge-
bra is one of them [13]. Among other examples we find: the Faà di Bruno alge-
bra, variations of the symmetric functions: Sym,NSym,FSym,QSym,FQSym,
PQSym, (Aguiar-Sottile [2, 3], Bergeron-Hohlweg [4], Chapoton-Livernet [12],
Livernet [33], Malvenuto-Reutenauer [44], Hivert-Novelli-Thibon [25], Palacios-
Ronco [48]), examples related to knot theory (Turaev [61]), to quantum field theory
(Brouder [5], Figueroa-Gracia-Bond́ıa [16], Brouder-Frabetti-Krattenthaler [6, 7],
van Suijlekom [59]), to foliations (Connes-Moscovici [14]), to K-theory (Gangl-
Goncharov-Levin [21], Loday-Ronco [39], Lam-Pylyavskyy [32]). The aim of this
paper is to make precise the meaning of combinatorial Hopf algebras and to unravel
their fine algebraic structure.

Here is a typical example of a combinatorial Hopf algebra. The Connes-Kreimer
algebra HCK is a free-commutative Hopf algebra over some families of trees t. The
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coalgebra structure is of the form

Δ(t) =
∑

c

Pc(t)⊗Rc(t),

where Pc(t) is a polynomial of trees and Rc(t) is a tree (the sum is over admissible
cuts c, cf. 5.7). In this description there are two key points. First, we observe
that, not only is HCK free as a commutative algebra, but we are given a precise
isomorphism with the polynomial algebra over the indecomposables (spanned by
the trees). This is why we call it a “combinatorial” Hopf algebra. Second, the
coproduct has a special form since its second component is linear (a tree instead
of a polynomial of trees). This is called the “right-sided condition”. A priori the
space of indecomposables is a Lie coalgebra. But it is known, in this case, that it
has a finer structure: it is a pre-Lie coalgebra. Our claim is that the existence of
this pre-Lie structure is not special to the Connes-Kreimer algebra, but is a general
fact for combinatorial Hopf algebras satisfying the right-sided condition.

This case (free-commutative Hopf algebra) can be dualized (in the graded sense)
to give rise to the following statement: a Hopf algebra structure on the cofree-
cocommutative coalgebra Sc(V ), which satisfies some “right-sided condition” (cf.
3.1), induces a pre-Lie algebra structure on V (cf. Theorem 5.3). The Lie product
on the primitive part V is the anti-symmetrization of this pre-Lie product.

We will see that there are several contexts for combinatorial Hopf algebras,
depending on the following choice of options: free or cofree, associative or com-
mutative, general or right-sided. Since the free and cofree cases are dual to one
another under graded dualization we will only study one of them in detail, namely
the cofree case. Some generalizations are evoked in the last section.

In the cofree-coassociative general context a combinatorial Hopf algebra is a
Hopf algebra structure on the tensor coalgebra T c(R) for a certain vector space
R. We show that, for such a combinatorial Hopf algebra, the primitive part R is
a multibrace algebra (MB-algebra) and that any multibrace algebra R gives rise
to a Hopf structure on T c(R). A multibrace algebra is determined by (p + q)-ary
operations Mpq satisfying some relations analogous to the relations satisfied by the
brace algebras (see 2.3). Moreover T c(R) inherits a finer algebraic structure: it is a
dipterous algebra (see 2.7). So, in the cofree-coassociative context, the classification
of the combinatorial Hopf algebras involves the operad P = MB governing the
primitive part and the operad A = Dipt governing the algebra structure. We show
that the combinatorial Hopf algebra associated to a free multibrace algebra is in
fact a free dipterous algebra:

Dipt(V ) ∼= T c(MB(V )).

This is part of a more general result which says that there is a “good triple of
operads” (in the sense of [38]):

(As,Dipt,MB),

where As is the operad of associative algebras.
Our aim is to handle similarly the three other cases (cofree-coassociative right-

sided, cofree-cocommutative general, cofree-cocommutative right-sided) and to de-
termine the operad P and the operad A when possible. We show that these two
operads are strongly related since there is a good triple of operads

(C,A,P)
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where C = As or Com (governing commutative algebras) depending on the context
we are working in. We show that the operads P and A are as follows:

C A P
Dipt

general As or MB
2as

Dend
right-sided As or Brace

Y := 2as/ ∼
general Com ComAs SMB

right-sided Com X :=? SBrace = PreLie

In the last case we conjecture the existence of an operad structure on
Com ◦ preLie, that we denote by X . Some of these operads are known, the other
ones are variations of known types:

• MB : multibrace algebra, also called B∞-algebra in [42], non-differential
B∞ in [19], Hirsch algebra in [30], LR-algebra in [45], see 2.5,

• Brace : brace algebra [19, 20], see 3.3,
• SMB : symmetric multibrace algebra, a symmetric variation of MB, see
4.5,

• PreLie : pre-Lie algebra, also called Vinberg algebra, or right-symmetric
algebra, see 5.1,

• Dipt : dipterous algebra [40], see 2.7,
• Dend : dendriform algebra [35], see 3.6,
• 2as : 2-associative algebra (two associative products) [42], see 2.19,
• Y := 2as/{Mpq = 0 | p ≥ 2}, see 3.17,
• ComAs : commutative-associative algebra (a commutative product and
an associative product), see 4.7.

The dimension of the space of n-ary operations is given in the following tableau:

C A P
general, As n! 2Cn−1 × n! Cn × n!

right-sided, As n! cn × n! cn−1 × n!

general, Com 1 dn fn
right-sided, Com 1 (n+ 1)n−1 nn−1

where cn is the Catalan number, Cn is the super-Catalan number, dn is the number
of “labeled series-parallel posets with n points” and fn is the number of “connected
labeled series-parallel posets with n nodes” (cf. [57, 58] problem 5.39 and 4.14):

n 1 2 3 4 5 · · ·
cn 1 2 5 14 42 · · ·
Cn 1 3 11 45 197 · · ·

dimComAs(n) = dn 1 3 19 195 2791 · · ·
dimSMB(n) = fn 1 2 12 122 1740 · · ·

We observe that some of these operads are rather simple since they are binary
and quadratic: PreLie,Dipt,Dend, 2as, ComAs. The others are more complicated
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since they involve n-ary generating operations for any n: MB,Brace, SMB, or
nonquadratic relations: Y .

Summarizing our results, we have shown the existence of the following good
triples of operads:

(As,Dipt,MB), (As, 2as,MB), (Com,ComAs, SMB),
(As,Dend,Brace), (As,Y , Brace), (Com,X , P reLie),

except for the last one which is conjectural.

In most examples the space of primitives R comes endowed with a basis of
“combinatorial objects” like permutations, trees, graphs, tableaux. Therefore the
Hopf algebra is made up of polynomials on these combinatorial objects. For instance
in every context the free algebra P(V ) can be described by means of trees. Changing
the basis of R does not change the P-algebra structure of R. However, if the
coalgebra isomorphism H ∼= T c(R) (resp. Sc(R)) is modified, then the P-algebra
structure of R is modified accordingly. For instance, in the cofree-cocommutative
right-sided context, the structure of pre-Lie algebra of R is modified (but not its
structure of Lie algebra). In 6.4 we make explicit two different combinatorial Hopf
algebra structures on the Malvenuto-Reutenauer Hopf algebra. This importance of
the basis had been envisioned by Joni and Rota in their seminal paper [29] where
they say: “It must be stressed that the coalgebras of combinatorics come equipped
with a distinguished basis, and many an interesting combinatorial problem can be
formulated algebraically as that of transforming this basis into another basis with
more desirable properties. Thus, a mere structure theory of coalgebras—or Hopf
algebras—will hardly be sufficient for combinatorial purposes.”

The plan of the paper is as follows. In the first section we recall the basic notion
of Hopf algebra and the results on triples of operads that are going to be used in
the proofs. The other four sections are devoted to the following four cases:

• section 2: cofree-coassociative CHA and MB-algebras,
• section 3: cofree-coassociative right-sided CHA and Brace-algebras,
• section 4: cofree-cocommutative CHA and SMB-algebras,
• section 5: cofree-cocommutative right-sided CHA and PreLie-algebras.

The plan of each of these four sections is as follows:

• definition of the CHAs involved,
• the algebraic structure of the primitives, the operad P, the equivalence,
• the algebraic structure of the Hopf algebra, the operad A,
• comparison of P and A, the good triple (C,A,P), where C = As or Com,
• combinatorial description of the free algebras P(V ) and A(V ) when avail-
able,

• the dual case (free-associative or free-commutative),
• variation (in the associative context)

The first case (cofree-coassociative general CHA) is treated in details. When
the proofs in the other cases are analogous they are, most of the time, omitted. In
the last section we list several examples from the literature.

Finally, let us say a word about the terminology. In the literature the term
“combinatorial Hopf algebras” is used to call Hopf algebras based on combinato-
rial objects (cf. for instance [25]), without a precise definition about what is a
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combinatorial object. In all cases these Hopf algebras are free (or cofree) and the
combinatorial objects provide a basis, whence an isomorphism as required in our
definition. The only exception is the use of combinatorial Hopf algebra in the paper
[3] where an extra piece of information is required (namely a character map).

Acknowledgement. Thanks to Emily Burgunder, Vladimir Dotsenko, Ralf Holt-
kamp, Muriel Livernet and Bruno Vallette for useful comments on earlier versions
of this paper. Thanks also to the referee whose comments were very helpful in
clarifying a few points.

Notation. In this paper K is a field and all vector spaces are over K. Its unit is
denoted by 1. The vector space spanned by the elements of a set X is denoted by
K[X]. The tensor product of vector spaces over K is denoted by ⊗. The tensor
product of n copies of the space V is denoted by V ⊗n. For vi ∈ V the element
v1⊗· · ·⊗vn of V ⊗n is denoted by the concatenation of the elements: v1 · · · vn. The
tensor module over V is the direct sum

T (V ) := K1⊕ V ⊕ V ⊗2 ⊕ · · · ⊕ V ⊗n ⊕ · · ·

and the reduced tensor module is T (V ) := T (V )/K1. The symmetric module over
V is the direct sum

S(V ) := K1⊕ V ⊕ S2(V )⊕ · · · ⊕ Sn(V )⊕ · · ·

and the reduced symmetric module is S̄(V ) := S(V )/K1, where Sn(V ) = (V ⊗n)Sn

is the quotient of V ⊗n by the action of the symmetric group. We still denote by
v1 · · · vn the image in Sn(V ) of v1 · · · vn ∈ V ⊗n. If V is generated by x1, . . . , xn, then
S(V ) (resp. T (V )) can be identified with the polynomials (resp. noncommutative
polynomials) in n variables.

If the set X is a basis of V = K[X], then we write T (X) (resp. S(X)) in place
of T (V ) (resp. S(V )).

1. Prerequisites: Hopf algebras and operads

1.1. Hopf algebras. Recall that a bialgebra is a vector spaceH equipped with
an associative and unital algebra structure (H, ∗, u) and a coassociative counital
coalgebra structure (H,Δ, ε), which satisfy the Hopf compatibility relation, that is,
Δ : H → H⊗H and ε : H → K are morphisms of associative unital algebras.

It is helpful to introduce the augmentation ideal H := Ker ε and the reduced
comultiplication Δ : H → H⊗H defined by the formula Δ(x) = x⊗1+1⊗x+Δ(x).

The iteration of the map Δ gives rise to n-ary cooperations Δ
n
: H → H⊗n

. The
filtration of H is defined by:

FrH := {x ∈ H | Δn
(x) = 0 for any n > r}.

By definition H is said to be conilpotent if H =
⋃

r≥1 FrH. Observe that the first

piece of the filtration is the space of primitives of the bialgebra: F1H = PrimH.
Since any conilpotent bialgebra can be equipped with an antipode, there is an
equivalence between conilpotent Hopf algebras and conilpotent bialgebras.
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1.2. Cofree bialgebras. We say that a conilpotent bialgebra is cofree-coasso-
ciative if, as a conilpotent coalgebra, it is a cofree object. Denoting by R the space
of primitives, it means that there exists an isomorphism of coalgebras H ∼= T cR.
Recall that the cofree coalgebra T cR is the tensor module as a graded vector space,
and that the coproduct is the deconcatenation:

Δ(x1 · · ·xn) =

i=n
∑

i=0

x1 · · ·xi ⊗ xi+1 · · ·xn.

As a result the following universal property holds: any conilpotent coalgebra homo-
morphism C → T c(R) is completely determined by the composite C → T c(R) → R.
On the other hand, any linear map ϕ : C → R which maps 1 to 0 determines a
unique coalgebra homomorphism C → T c(R). The component in R⊗n of the image
of c ∈ C is

∑

ϕ(c(1))⊗ · · · ⊗ ϕ(c(n)), where Δn(c) =
∑

c(1) ⊗ · · · ⊗ c(n).
Similar statements hold in the cocommutative case with Sc(R) in place of

T c(R).

1.3. Operads. For an operad P the free P-algebra over the vector space V
is denoted by P(V ). It is of the form P(V ) =

⊕

n P(n) ⊗Sn
V ⊗n where P(n)

is the space of n-ary operations considered as a right module. The left module

structure of V ⊗n is given by σ(̇v1 · · · vn) = vσ−1(1) · · · vσ−1(n) . If P(n) is free as a
representation of Sn, then we write it P(n) = Pn⊗K[Sn] and Pn is called the space
of nonsymmetric n-ary operations. In this case we obtain P(V ) =

⊕

n Pn ⊗ V ⊗n.
The generating series of the operad P is

fP(t) :=
∑

n≥1

dim
P(n)

n!
tn.

The operads governing the associative algebras, commutative algebras, Lie algebras,
pre-Lie algebras are denoted As, Com, Lie, PreLie respectively. For more on
operads, see for instance [43].

1.4. Triple of operads. Recall briefly from [38] what it means for (C,A,P)
to be a good triple of operads. First, we assume that there is a well-defined notion
of Cc-A-bialgebra, C governing the coalgebra structure and A governing the alge-
bra structure. The operations and the cooperations are assumed to be related by
compatibility relations. In our cases these compatibility relations are always dis-
tributive, that is, the composite of an operation with a cooperation can be written
as the composite of a cooperation followed by an operation (or an algebraic sum of
them). Then,

– the primitive part of any Cc-A-bialgebra is a P-algebra,

– there is a pair of adjoint functors (U 
 F ): A-alg
U

←−−→
F

P-alg,

– the following structure theorem holds:
for any Cc-A-bialgebra H the following are equivalent:

(a) H is conilpotent,
(b) H is isomorphic to U(PrimH),
(c) H is cofree over its primitive part, i.e. isomorphic to Cc(PrimH).

An important consequence of this theorem is an isomorphism of vector spaces
A(V ) ∼= Cc(P(V )), which is functorial in V .
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In [38] we found a criterion which ensures that the notion of Cc-A-bialgebra
gives rise to a good triple of operads (C,A,P), where the operad P := Prim CA is
made up of the primitive operations. There are three conditions:
(H0) The compatibility relations are distributive.
(H1) The free A-algebra A(V ) is naturally a Cc-A-bialgebra.
(H2epi) The C-coalgebra map A(V ) → Cc(V ) (deduced from H1) admits a splitting.

The isomorphism A(V ) ∼= Cc(P(V )), which is a consequence of these hypothe-
ses, depends on the choice of the splitting. It implies fA(t) = fC(fP(t)).

In the cases that we are looking at in this paper C is either the operad As or
the operad Com. The condition (H0) is immediate to verify by direct inspection.
So the first task (once A is discovered) consists in verifying the hypotheses (H1)
and (H2epi). The second task consists in unravelling the operad P by providing a
presentation by generators and relations.

2. (Co)free-(co)associative CHA

In this section we study the cofree-coassociative CHAs. Some of the results
of this section were announced in [40], where the notion of dipterous algebras was
introduced for the first time. Examples will be given in section 6. They include
the Malvenuto-Reutenauer algebra (6.4), the incidence Hopf algebras (6.8) and the
Hopf algebra on a tensor module (6.5).

2.1. Definition. A cofree-coassociative combinatorial Hopf algebra H (cofree-
coassociative CHA for short) is a cofree bialgebra with a prescribed isomorphism
with T c(R) (here R := PrimH). Equivalently, it is a vector space R with a product
∗ on T c(R) which makes (T c(R), ∗,Δ) (Δ = deconcatenation) into a Hopf algebra.

It is important to notice that the isomorphism H ∼= T c(R) is part of the struc-
ture. Any change of this isomorphism changes the product ∗. Such an isomorphism
is completely determined by a splitting of the inclusion R = PrimH � H (analogue
of a Lie idempotent).

A morphism of cofree-coassociative CHAs is a linear map ϕ : R → R′ whose
extension T cϕ : T c(R) → T c(R′) is a morphism of Hopf algebras.

2.2. Multibraces. Let H = T c(R) be a cofree-coassociative CHA. Since it
is cofree, the multiplication ∗ : T c(R) ⊗ T c(R) → T c(R) is completely determined
by its projection onto R. So, there are well-defined maps Mpq : R⊗p ⊗ R⊗q → R,
called multibrace operations, given by the following composite:

T c(R)⊗ T c(R)
∗ �� T c(R)

proj

��
R⊗p ⊗R⊗q

inc

��

Mpq �� R

It is sometimes helpful to write

{x1, . . . , xp; y1, . . . , yq} := Mpq(x1 · · ·xp; y1 · · · , yq)
One also finds the notation {x1, . . . , xp}{y1, . . . , yq} in the literature [19, 1].

2.3. Proposition. Let Mpq be (p+ q)-ary operations on R (p ≥ 0, q ≥ 0), and
let ∗ be the unique binary operation on T c(R) which is a coalgebra morphism and
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whose projection onto R coincides with the Mpq’s. The following assertions are
equivalent:

(a) the operation ∗ is associative and unital,
(b) the operations Mpq satisfy the following relations R:

M00 = 0,M01 = id = M10,M0q = 0 = Mp0, for p > 1, q > 1,

and, for any integers i, j, k greater than or equal to 1,
(Rijk) :
∑

1≤l≤i+j

Mlk ◦ (Mi1j1 · · ·Miljl ; id
⊗k) =

∑

1≤m≤j+k

Mim ◦ (id⊗i;Mj1k1
· · ·Mjmkm

)

where the left sum is extended to all sets of indices i1, · · · , il; j1, · · · , jl such that
i1+ · · ·+ il = i; j1+ · · ·+ jl = j, and the right sum is extended to all sets of indices
j1, · · · , jm; k1, · · · , km such that j1 + · · ·+ jm = j; k1 + · · ·+ km = k.

In the formula the concatenation of operations MpqMrs has the following mean-
ing:

MpqMrs(x1 · · ·xp+r; y1 · · · yq+s) =

Mpq(x1 · · ·xp; y1 · · · yq)Mrs(xp+1 · · ·xp+r; yq+1 · · · yq+s).

Proof. See [40] and Proposition 1.6 of [42]. �

2.4. Example. The first nontrivial relation is (R111) which reads

M21(uv + vu, w) +M11(M11(u, v), w) = M11(u,M11(v, w)) +M12(u, vw + wv)

for any u, v, w ∈ R.

2.5. Multibrace algebra. By definition a multibrace algebra (or MB-
algebra) is a vector space R equipped with multibrace operations Mpq, that is
(p+ q)-ary operations Mpq : R⊗p ⊗R⊗q → R, which satisfy all the conditions R of
Proposition 2.3.

This notion was called B∞-algebra in [42] and first appeared in the differential
graded framework as B∞-algebra in [19, 20]. It appears in [45] as LR-algebras.

2.6. Theorem. There is an equivalence of categories between the cofree-coasso-
ciative combinatorial Hopf algebras and the multibrace algebras.

Proof. Taking the primitives gives a functor Prim : coAs-CHA → MB-alg. In the
other direction the functor MB-alg → coAs-CHA, R �→ T c(R), is a consequence
of Proposition 2.3. These two functors are inverse to each other. �

2.7. Dipterous structures. A dipterous algebra (cf. [40]) is a vector space
A equipped with two binary operations ∗ and � which satisfy the two relations

(x ∗ y) ∗ z = x ∗ (y ∗ z), and (x ∗ y) � z = x � (y � z)

for any x, y, z ∈ A. In most examples the associative algebras that we are working
with are unital and augmented. Therefore it is helpful to introduce the notion of
unital dipterous algebra. It is an augmented algebra A = K 1⊕ A such that A is a
dipterous algebra, i.e. equipped with a right operation. We ask that the following
relations hold for any a ∈ A:

a � 1 = 0, and 1 � a = a.

Observe that 1 � 1 is not defined, but 1 is a unit for ∗.
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If A and B are two dipterous algebras, then there is a way to construct a
dipterous structure on the tensor product A⊗B as follows. The associative product
is as usual:

(a⊗ b) ∗ (a′ ⊗ b′) = (a ∗ a′)⊗ (b ∗ b′).
The right product is given by

(a⊗ b) � (a′ ⊗ b′) = (a ∗ a′)⊗ (b � b′).

This formula makes sense provided that we do not have b = 1 and b′ = 1 simulta-
neously. In that case we put

(a⊗ 1) � (a′ ⊗ 1) = (a � a′)⊗ 1 .

Again this formula makes sense provided that we do not have a = 1 and a′ = 1
simultaneously. But, in that case, both elements are the unit of A ⊗ B for which
we do not need to define the left product with itself.

It is straightforward to show that, equipped with these two products, A ⊗ B
becomes a unital dipterous algebra (cf. [40]).

By definition a dipterous bialgebra is a unital dipterous algebra (H, ∗,�) equip-
ped with a coassociative counital coproduct Δ : H → H⊗H which is a morphism
of unital dipterous algebras. This last condition means that the following two
compatibility relations hold:

Δ(x∗y) = Δ(x)∗Δ(y) and Δ(x � y) = Δ(x) � Δ(y) =
∑

x(1)∗y(1)⊗x(2) � y(2).

2.8. Proposition. Any cofree-coassociative CHA has a natural structure of
unital dipterous bialgebra.

Proof. We denote by ∗ the associative product on T c(R) induced by the MB-
structure of R. Define a new binary operation on T c(R) by:

(u1 · · ·uk) � (v1 · · · vl) := ((u1 · · ·uk) ∗ (v1 · · · vl−1)) � vl,

for u1, . . . , uk, v1, . . . , vl ∈ R for l ≥ 2 and for l = 1:

(u1 · · ·uk) � v1 = u1 · · ·ukv1.

In particular, we get:

(((u1 � u2) � u3) � · · · ) � uk := u1u2u3 · · ·uk.

It is immediate to verify that the two binary operations ∗ and � satisfy the
dipterous relation.

The compatibility relation with the deconcatenation Δ is also immediate by
induction. �

2.9. Proposition. [40] The free unital dipterous algebra on the vector space
V , denoted Dipt(V ), is naturally equipped with a dipterous bialgebra structure, and,
a fortiori, with a Hopf algebra structure.

Proof. We follow the general procedure given in [36]. Consider the map V →
Dipt(V )⊗Dipt(V ), v �→ v⊗ 1 + 1⊗ v. Since Dipt(V ) is free, there exists a unique
extension of this map as a dipterous morphism

Δ : Dipt(V ) → Dipt(V )⊗Dipt(V ).

Using again the universal property of Dipt(V ) it is immediate to check that Δ is
coassociative. Hence (Dipt(V ), ∗,�,Δ) is a dipterous bialgebra and this structure
is functorial in V . �
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2.10. Remark. Let H be an Asc-Dipt-bialgebra which is conilpotent. By
results of [40] there exists an isomorphism of coassociative coalgebras T c(PrimH) ∼=
H. Any choice of such an isomorphism makes H into a cofree-coassociative CHA.

2.11. From dipterous algebras to multibrace algebras. Let
A = (A,�, ∗) be a dipterous algebra. For elements u1, . . . , up in A we define :

ω�(u1 · · ·up) := (((u1 � u2) � u3) � · · · ) � up.

We construct (p+ q)-ary operations on A inductively as follows:

M00 = 0, M10 = idA = M01, and Mn0 = 0 = M0n for n ≥ 2,

and

Mpq :=
(

ω�) ∗
(

ω�)−
∑

k≥2

∑

ω�(Mi1j1Mi2j2 · · ·Mikjk

)

where the second sum (for which k ≥ 2 is fixed) is extended to all sets of indices
(i1, . . . , ik; j1, . . . , jk) such that i1 + · · ·+ ik = p and j1 + · · ·+ jk = q.

For instance:

M11(u; v) = u ∗ v − u � v − v � u ,

M21(uv;w) = (u � v) ∗ w − u � M11(v;w)−M11(u;w) � v

−(u � v) � w − (u � w) � v − (w � u) � v ,

= (u � v) ∗ w − (u � v) � w − u � (v ∗ w) + u � (v � w),

M12(u; vw) = u ∗ (v � w)−M11(u; v) � w − v � M11(u;w)

−(u � v) � w − (v � u) � w − (v � w) � u .

= u ∗ (v � w)− (u ∗ v) � w − v � (u ∗ w − u � w − w � u)− (v � w) � u.

Let us remark that, if we define x ≺ y := x ∗ y − x � y, then M21 becomes:

M21(uv;w) = (u � v) ≺ w − u � (v ≺ w).

2.12. Proposition. There is a (forgetful) functor F from the category of dipter-
ous algebras to the category of multibrace algebras given by

(A, ∗,�) �→ (A, {Mpq}p≥0,q≥0).

The functor F has a left adjoint denoted U . For a brace algebra R, the dipterous
algebra U(R) is the quotient of the free dipterous algebra on the vector space R
modulo the relations which identify the MB-structure of R with the MB-structure
coming from the dipterous structure. Moreover U(R) is a dipterous bialgebra.

Proof. The proof follows immediately from the definition of a multibrace algebra,
using that ω�(u1 · · ·up) = u1 ⊗ · · · ⊗ up and that ∗ is associative.

Since F is a forgetful functor, it is immediate that it has a left adjoint, which
is precisely U as described in the statement.

Since the free dipterous algebra is a dipterous bialgebra by Proposition 2.9, it
follows that its quotient U(R) is also a dipterous bialgebra. �
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2.13. Theorem. There is a good triple of operads

(As,Dipt,MB).

For any vector space V there is a natural isomorphism of CHAs:

Dipt(V ) ∼= T c(MB(V )).

Proof. Let P = PrimAsDipt denote the operad made up of the primitive operations
for Asc-Dipt-bialgebras. The hypothesis (H1), recalled in 1.4, is fullfilled thanks to
Proposition 2.9. The hypothesis (H2epi) is also fullfilled because a splitting of the
coalgebra map Dipt(V ) → As(V ) = T c(V ) is given by

v1 · · · vn �→ ω�(v1 · · · vn).
The coalgebra morphism property is proved by induction on n. Hence, by [38],
there is a good triple of operads

(As,Dipt,P).

It remains to show that we have P = MB. Since the operations Mpq are prim-
itive by construction there is a natural map MB(V ) → P(V ), with extension
T c(MB(V )) → T c(P(V )). By Theorem 2.6 T c(MB(V )) is a dipterous alge-
bra, therefore there is a natural dipterous morphism from Dipt(V ) to it. Since
(As,Dipt,P) is a good triple of operads, the composite

Dipt(V ) → T c(MB(V )) → T c(P(V ))

is an isomorphism. As a consequence the map MB(n) → P(n) on the spaces of
n-ary operations is surjective. It suffices to show that they have the same (finite)
dimension to deduce that it is an isomorphism.

The dimension ofMB(n) is known to be Cn×n!, where Cn is the super-Catalan
number (number of planar rooted trees with n leaves), cf. [42]. The dimension
of Dipt(n) is known to be 2 × Cn × n!, see 2.15. From the functional equation
relating the generating series of the two functors Dipt and P deduced from Dipt =
As ◦ P and from the functional equation satisfied by the generating series of the
super-Catalan numbers (cf. 2.14) we conclude that dimP(n) = Cn × n!. Hence
dimMB(n) = dimP(n) and MB = P as expected. �

2.14. Planar trees. In order to describe the structure of the free dipterous
algebra we introduce the combinatorial objects named planar trees. We denote by
PTn the set of planar trees with n leaves, n ≥ 1, which are reduced (every vertex
has at least two inputs) and rooted. Here are the first of them:

PT1 = {|}, PT2 = { ��
�� }, PT3 =

{ �� ����

���� ,
������

���� ,
����

����
}

.

The lowest vertex is called the root vertex. Observe that the tree | has no
vertex.

We define PT∞ :=
⋃

n≥1 PTn. The number of elements in PTn is the so-called
super Catalan number Cn.

By definition the grafting of k planar trees {x(1), . . . , x(k)} is a planar tree
denoted

∨

(x(1), . . . , x(k)) obtained by joining the k roots to a new vertex and adding
a new root. For k = 2, sometimes we shall write x(1) ∨x(2) instead of

∨

(x(1), x(2)).
Observe that the grafting operation is not associative. In fact the three trees
(x∨y)∨ z, x∨ (y∨ z),

∨

(x, y, z) are all different. Any planar tree x can be uniquely
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obtained as x =
∨

(x(1), . . . , x(k)), where k is the number of inputs of the root
vertex.

The grafting operation gives a bijection between the set of k-tuples of planar
trees, for any k ≥ 2, and PT∞\{|}. Indeed, the inverse is the map

∨

(x(1), . . . , x(k)) �→ {x(1), . . . , x(k)}.

As a consequence the generating series C(t) =
∑

n≥0 Cnt
n satisfies the equation

2tCf(t)2 − (1 + t)C(t) + 1 = 0.

2.15. Free dipterous algebra. Since, in the relations defining the notion of a
dipterous algebra, the variables stay in the same order, we only need to understand
the free dipterous algebra on one generator (i.e. over K). In other words the operad
Dipt is a nonsymmetric operad (see [43]).

Let T (PT∞) be the free unital associative algebra over the vector space K[PT∞]
spanned by the set PT∞. So we write T (PT∞) instead of T (K[PT∞]). A set of
linear generators of T (PT∞) is made up of the monomials t1t2 · · · tk where the ti’s
are planar trees. We define a right product on the augmentation ideal as follows:

(t1t2 · · · tk) � (s1s2 · · · sl) :=
(

t1 ∨
(

t2 ∨ (· · · ∨
∨

(tk, s1, . . . , sl)·)
)

)

.

Observe that the right product of two monomials is always a tree. As before we
extend the right operation by 1 � ω = ω and ω � 1 = 0 for ω in the augmentation
ideal.

2.16. Proposition. The associative algebra T (PT∞) equipped with the right
product defined above is the free unital dipterous algebra on one generator.

Proof. Let us verify the dipterous relation. On one hand we have

((t1 · · · tk) ∗ (s1 · · · sl)) � (r1 · · · rm) = (t1 · · · tks1 · · · sl) � (r1 · · · rm)

=
(

t1 ∨
(

· · · ∨ (tk
∨

(s1, . . . , sl−1,
∨

(sl, r1, . . . , rm)·)) ·
)

)

On the other hand we have

(t1 · · · tk) �
(

(s1 · · · sl) � (r1 · · · rm)
)

= (t1 · · · tk) �
(

s1 ∨ (· · · ∨ (sl ∨ r1 · · · ∨ rm) ·
)

)

=
(

t1 ∨
(

· · · ∨ (tk
∨

(s1, . . . , sl−1,
∨

(sl, r1, . . . , rm)·)) ·
)

)

.

And so (T (PT∞, ∗,�) is a dipterous algebra. Since any linear generator can be
obtained from the tree | by combining the two operations ∗ and �, it is a quotient
of Dipt(K). In order to show that it is free on one generator it is sufficient to show
that, for any dipterous algebra A and any element a ∈ A, there is a unique dipterous
morphism T (PT∞) → A mapping | to a. We already know how to construct a map
and we know that it is unique. To prove that it is a dipterous morphism we proceed
by induction (on the degree of the trees) like in the proof of the dendriform case
performed in [35] Proposition 5.7. �

2.17. Remark. As in the case of the operad 2as governing the 2-associative
algebras (cf. [42]) the operad Dipt can be described in terms of two copies of the
set PT∞.
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2.18. Free-associative CHA and co-multibraces. A free-associative com-
binatorial Hopf algebra H = K1 ⊕ H, free-associative CHA for short, is a Hopf
algebra structure on the tensor algebra T (C). Here C is the space of indecom-

posables of H, that is, C := H/H2
. This structure is encoded into the coproduct

map Δ. The preceding results admit an obvious dualization. So, C is a multibrace
coalgebra and this comultibrace structure determines completely the Hopf algebra
(T (C), ∗,Δ). The space T (C) inherits a dipterous coalgebra structure which makes
it into a Diptc-As-bialgebra.

For any vector space V there is an isomorphism of CHAs

T (MBc(V )) ∼= Diptc(V ).

These spaces are spanned by trees and the (co)operations can be made explicit
through “admissible cuts” (the dual notion of grafting).

2.19. 2-associative bialgebras. A 2-associative algebra A (or 2as-algebra
for short) is a vector space equipped with two associative products. Here we assume
that they are unital, that is, A contains an element 1 which is a unit for the two
associative products · and ∗. In [42] we introduced the notion of 2-associative
bialgebra (more precisely Asc-2as-bialgebra) which is a 2as-algebra equipped with
a coassociative (and counital) coproduct satisfying the Hopf compatibility relation
with ∗ and the unital infinitesimal compatibility relation with · (see loc.cit. for
details).

Let H = (T c(R), ∗) be a cofree-coassociative CHA. In [42] we have shown
that, if we consider the concatenation product · on the tensor module T c(R), then
(T c(R), ∗, ·,Δ) is a 2-associative bialgebra. The same results as before are valid
with dipterous replaced by 2-associative. They are the subject of [42] where it is
proved that

(As, 2as,MB)

is a good triple of operads.
Let us recall from loc. cit. that there is a functor

F : 2as-alg → MB-alg

which provides operations Mpq out of the two associative operations · and ∗. For
instance:

M11(x; y) = x ∗ y − x · y − y · x ,

M21(xy; z) = (x · y) ∗ z − x · (y ∗ z)− (x ∗ z) · y + x · y · z,
M12(x; yz) = x ∗ (y · z)− (x ∗ y) · z − y · (x ∗ z) + y · x · z.

The choice of 2-associative bialgebras behaves well with the symmetrization
procedure that we deal with in Section 4. The choice of dipterous bialgebras behaves
well with the right-sided hypothesis, dealt with in Section 3.

2.20. From dipterous to 2-associative. Let λ be a formal parameter (or
an element in K). We consider algebras having two binary operations ∗ and � such
that ∗ is associative and the following relation holds:

(λx ∗ y + (1− λ)x � y) � z = x � (y � z).
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Let us denote by Zλ the associated operad. It is clear that Z0 = 2as and Z1 = Dipt.
So we have a homotopy between the operads 2as and Dipt. It would be interesting
to know if we always have a good triple of operads

(As,Zλ,MB)

such that any cofree-coassociative CHA is a Zλ-bialgebra.

3. (Co)free-(co)associative right-sided CHA

In this section we study the cofree-coassociative CHAs (and then free-associative
CHAs) which satisfy the right-sided property (r-s). We will see that they are den-
driform bialgebras which have been thoroughly studied in [35, 39, 52, 53, 54]. The
space of primitives inherits a brace algebra structure. In the last part of the section
we study the alternative structure, denoted Y , which is close to the 2-associative
structure. Examples will be given in section 6. They include the Hopf algebra
of quasi-symmetric functions (6.2), the Malvenuto-Reutenauer algebra (6.4), the
Solomon-Tits algebra (6.2), the algebra of parking functions (6.2) and Hopf alge-
bras constructed out of operads (6.7).

3.1. Right-sided condition on combinatorial Hopf algebras. Let H =
(T c(R), ∗) be a cofree-coassociative CHA. There is a natural grading H = ⊕nHn

given by Hn := R⊗n. We study the cofree-coassociative CHAs satisfying the fol-
lowing condition.

Right-sided condition:
(r-s) for any integer q the subspace

⊕

n≥q Hn is a right-sided ideal of H.

Since H is a cofree-coassociative CHA, by Proposition 2.3 the associative prod-
uct ∗ is given by a family {Mpq}p,q≥0 of (p + q)-ary operations, satisfying the
relations R.

3.2. Proposition. The combinatorial Hopf algebra H is right-sided if and only
if Mpq = 0 for p ≥ 2.

Proof. Recall that H = T c(V ) is right-sided if the subspace Fr =
⊕

n≥r V
⊗n is a

right ideal of T c(V ).
If Fr is a right-sided ideal, then

(x1 · · ·xp) ∗ (y1 · · · yq) = Mpq(x1 · · ·xp; y1 · · · yq) + z,

where z ∈ F2. But, for p ≥ 2, (x1 · · ·xp) ∗ (y1 · · · yq) must belong to Fp and
Mpq(x1 · · ·xp; y1 · · · yq) ∈ F1 \ F2, which implies that Mpq = 0 for all q and p ≥ 2.

Conversely, suppose that Mpq = 0 for all m and n ≥ 2. The formula for ∗ is
then given by:

(x1 · · ·xp) ∗ (y1 · · · yq) =
∑

r

(
∑

k�q
|k|=p+2

y1 · · · yk0
M1k1

(x1; yk0+1, · · · , yk0+j1) · · · yk1
M1j2(x2; · · · ) · · · yk1+j2) · · ·

M1jp(xp; · · · ) · · · yq)
)

,

where 0 ≤ k0 ≤ k0+j1 ≤ · · · ≤ kp−1+jp ≤ q. So, the element (x1 · · ·xp)∗(y1 · · · yq)
belongs to Fp, which ends the proof. �
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3.3. Brace algebras. A brace algebra is a vector space R equipped with a
(1 + q)-ary operation denoted {−;−, . . . ,−} for any q ≥ 1 satisfying the following
formulas:

{{x; y1, . . . , yn}; z1, . . . , zm} =
∑

{x; . . . , {y1; . . .}, . . . , {yn; . . . , }, . . .}.

On the right-hand side the dots are filled with the variables zi’s (in order) with
the convention {yk; ∅} = yk. This notion appears in the work of Gerstenhaber and
Voronov in [19].

3.4. Lemma. A multibrace algebra for which Mpq = 0 when p ≥ 2 is a brace
algebra and vice-versa.

Proof. It is straightforward to check that, under the identification

M1q(x; y1 · · · yq) = {x; y1, . . . , yq},
the relations Rijk are exactly the brace relations. �

3.5. Theorem. The primitive part of a cofree-coassociative r-s CHA is a brace
algebra. There is an equivalence of categories between cofree-coassociative r-s CHAs
and brace algebras.

Proof. By Proposition 2.3 the primitive part of a cofree bialgebra is a MB-algebra.
By Lemma 3.2 property (r-s) implies that Mpq = 0 when p ≥ 2. Therefore, by
Lemma 3.4 this primitive part is a brace algebra. The two functors R �→ T c(R)
and H = T c(R) �→ R are obviously inverse to each other. �

3.6. Dendriform algebras [35]. A dendriform algebra is a vector space A
equipped with two binary operations denoted ≺ and � which satisfy the conditions:

⎧

⎨

⎩

(x ≺ y) ≺ z = x ≺ (y ∗ z),
(x � y) ≺ z = x � (y ≺ z),
(x ∗ y) � z = x � (y � z).

where x ∗ y := x ≺ y + x � y.
As in the case of dipterous algebras, there is a notion of unital dendriform

algebra. It is a vector space A = K 1⊕ A such that A is a dendriform algebra and
the two binary operations are extended as follows:

{

1 ≺ x = 0 , x ≺ 1 = x,
1 � x = x , x � 1 = 0.

Observe that one has 1 ∗ x = x = x ∗ 1 as expected, but 1 ≺ 1 and 1 � 1 are not
defined.

3.7. Proposition. Any cofree-coassociative CHA which is right-sided is a den-
driform bialgebra.

Proof. By Proposition 2.8 the Hopf algebra H is a dipterous algebra. Let us define
the operation ≺ by the equality x ∗ y = x ≺ y + x � y.

Condition (r-s) implies that the operations ≺ and � satisfy the relation

(x � y) ≺ z = x � (y ≺ z).

It is clear that the axioms for a dipterous algebra satisfying this extra condition
are equivalent to the axioms for dendriform algebras. �
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3.8. From dendriform algebras to brace algebras. The forgetful functor
from dipterous algebras to multibrace algebras sends a dendriform algebra to a
brace algebra with the same underlying space. In fact its restriction is precisely the
functor constructed in [52]. Explicitly it is given by

M1q(v; v1, . . . , vq) =

i=q
∑

i=0

(−1)iω≺(v1 · · · vi) � v ≺ ω�(vi+1 · · · vq),

where

ω≺(v1 · · · vn) := v1 ≺ (v2 ≺ (· · · ≺ (vn−1 ≺ vn)))

and where

ω�(v1 · · · vn) := ((v1 � v2) � · · · ) � vn,

is the element defined in Subsection 2.9. The proofs of the following results are
similar to those of section 2 and can be found in [52, 53, 54].

3.9. Theorem. There is a good triple of operads

(As,Dend,Brace).

For any vector space V there is a natural isomorphism of cofree dendriform bialge-
bras, and, a fortiori, of cofree-coassociative right-sided CHAs:

Dend(V ) ∼= T c(Brace(V )).

3.10. Planar binary trees and free dendriform algebra. The set of pla-
nar binary trees with n leaves, denoted PBTn, is made up of the planar trees (cf.
2.14) with exactly two inputs at each vertex. The number of elements of PBTn is
the Catalan number cn. For any n ≥ 1 a tree t ∈ PBTn can be uniquely written
as a grafting t = tl ∨ tr. It is shown in [35] that the free dendriform algebra on one
generator Dend(K) is the Hopf algebra HLR := ⊕n≥1K[PBTn] equipped with the
following right and left product:

t ≺ s := tl ∨ (tr ∗ s), t � s := (t ∗ sl) ∨ sr.

It was first introduced in our paper [39]. Notice that the tree | is the unit and the

tree y := ��
��

is the generator. In order to compute in HLR the following formula

proves to be helpful:

t � y ≺ s = t ∨ s.

In order to work with the free dendriform algebra on a vector space V (resp. on
a set X) it suffices to decorate the trees by putting elements of V (resp. X) in
between the leaves. For instance:

v ���
��� ,

v1 v2���
������

������ ,

v1 v2			 ������

������ ,

v1 v2 v3



��� ��������

 ,

represent respectively

v, v1 � v2, v1 ≺ v2, v1 � v2 ≺ v3.
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3.11. Planar binary trees and the primitives. The primitive operations
can be described by planar binary trees as follows. The following results, stated
without proofs, are taken from [54].

The dendriform analog of the Eulerian idempotent acting on the dendriform
bialgebra Dend(K) is defined by the formula

e :=
∑

n≥1

(−1)n+1ωn
� ◦Δn

,

where Δ is the reduced coproduct of Dend(K), and where

ωn
�(x1, . . . , xn) := x1 � (x2 � (· · · � (xn−1 � xn))), for xi ∈ Dend(K).

This operator has the following properties:

(1) the element e(x) is a primitive element, for any x ∈ Dend(K),
(2) e(x � y) = 0 , for any pair of elements x and y of Dend(K),
(3) e(x) = x for any x ∈ Prim(Dend(K)).

Moreover, if t = | ∨ x is a tree in PBTn, with x ∈ PBTn−1, then e(t) =
t+

∑

i t
i
1 ∨ ti2, for some ti1 ∈ PBTni

with ni ≥ 2.
An easy argument on the dimensions of Dend(K)n and T (

⊕

m≥0 K[PBTm])n
shows that the elements e(| ∨ t), with t ∈ PBTn, form a basis of Prim(Dend(K))n,
for all n ≥ 1. From these results it follows that any element of Dend(K) is a sum of
elements of type ((x1 � x2) � . . . ) � xr, with xi ∈ Prim(Dend(K)) for 1 ≤ i ≤ r.

Moreover, the coproduct Δ of Dend(K), satisfies that:

Δ(((x1 � x2) � · · · ) � xr) =
r

∑

i=0

((x1 � x2) � · · · ) � xi ⊗ ((xi+1 � xi+2) � · · · ) � xr,

for any x1, . . . , xr ∈ Prim(Dend(K)). Therefore there is a bijection

K[PBTn−1 × Sn] ∼= (PrimAsDend)(n)

given by (t;x1, . . . , xn) �→ (e(| ∨t);x1, . . . , xn). For instance, in the free dendriform
algebra Dend(V ) over the vector space V we get the following formulas in low
dimension for any vi ∈ V :

(|; v1) �→ v1, ( ��
��

; v1v2) �→ v1 ≺ v2 − v2 � v1 = M11(v1; v2),

( �� ����

���� ; v1v2v3

)

�→

( ������ ������

������ ; v1v2v3

)

−
( �� ��������

������ ; v2v1v3

)

+
(

������
������

������ ; v2v3v1

)

= v1 ≺ (v2 � v3)− v2 � v1 ≺ v3) + (v2 ≺ v3) � v1)

= M12(v1; v2v3),
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( ������

���� ; v1v2v3

)

�→

(
������ ������

������ ; v1v2v3

)

−
( �� ��������

������ ; v3v1v2

)

−
(

������
������

������ ; v2v3v1

)

+
( �� ����

������

������ ; v3v2v1

)

+
(

������
������

������ ; v3v2v1

)

= v1 ≺ (v2 ≺ v3)−v3 � v1 ≺ v2−(v2 ≺ v3) � v1+(v3 � v2) � v1+(v3 ≺ v2) � v1

= M11(M11(v1; v2); v3)−M12(v1; v2v3).

Various basis of Dend(K) and comparison between them have been studied in
[2, 18, 27].

3.12. Unreduced planar trees. We denote the set of planar unreduced trees
with n vertices by PUTn. In low dimensions we have, for n = 1 to 4,

• •

•

•

•

•

•

• •

�
�

�
�

•

•

•

•

•

•

• •

�
�

�
�

•

•

�
�

•

•

�
�

•

•

�
�

•

•

�
�

•

• • •

�
�

�
�

The number of elements of PUTn is also the Catalan number cn. Let us define a
grafting operation on PUT∞ as follows. The unreduced planar tree x∨y is obtained
by putting the tree y on the right-hand side of x and joining the root of x to the
root of y by a new edge. The root-vertex of x ∨ y is taken to be the root-vertex of
x.

3.13. Lemma. [P. Palacios, thesis, unpublished]. The map ϕ : PBTn → PUTn

given by ϕ(t ∨ s) = ϕ(t) ∨ ϕ(s) and ϕ(|) = • is a bijection.

The following list of planar binary trees gives under ϕ the list of planar unre-
duced trees cited above:

| ��
��

������

����
�� ����

����
������ ������

������
������ ������

������
�� ��������

������

������
������

������
�� ����

������

������

3.14. Labelled planar unreduced trees and the operad Brace. We re-
call the explicit description of the operad Brace in terms of planar unreduced trees
(see for instance [10]). We first construct the Sn-module Brace(n) and then we
give the formula for the partial composition operation ◦i.

The Sn-module Brace(n) is the following regular representation:

Brace(n) = K[PUTn × Sn].

The generating operation M1n corresponds to cn × idn where cn is the corolla. In
order to describe μ ◦i ν for μ ∈ Brace(m) and ν ∈ Brace(n) it suffices to describe
it for μ = t× idm and ν = r × idn (t and r are trees). The composite

(t× idm) ◦1 (r × idn)
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is obtained through the brace relation 3.3. For instance, letting n = m = 2, the
relation

{{x1;x2};x3} = {x1;x2, x3}+ {x1; {x2;x3}}+ {x1;x3;x2}
gives:

(

•

•
× id2

)
◦1

(

•

•
× id2

)
=

•

•

•

�
�
�
� × id3 +

•

•

•

× id3 +

•

•

•

�
�
�
� × [132]

Observe that the action of the symmetric group is involved in this formula.
In order to describe the ◦i composition operation we label the vertices of a planar
unreduced tree as follows. The root-vertex is labelled by 1. The other vertices are
labelled according to the following rule: for t = x ∨ y the integers labelling the
vertices of x are less than the the integers labelling the vertices of y. Here are the
first of them:

•1 •1

•2

•1

•2

•3

•1

•2 •3

�
�

�
�

•1

•2

•3

•4

•1

•2

•3 •4

�
�

�
�

•1

•2

�
�

•3

•4

�
�

•1

•2

�
�

•4

•3

�
�

•1

•2 •3 •4

�
�

�
�

For i = 2, . . . ,m we have

(t× idm) ◦i (r × idn) = (t ◦i r × idm+n−1)

where the t ◦i r is obtained by grafting the tree r to the tree t by adjoining an edge
from the ith vertex of t to the root of r. For instance:

•

• • •

�
�

�
� ◦2

•

•

•

�
��

�
� =

• •

•

•

• •

�
�

�
�

�
�
�
�

3.15. Comparison of PrimAsDend and Brace. Putting together the results
of the preceding paragraphs we see that there is a bijection

K[PBTn×Sn]
ϕ−→ K[PUTn×Sn] ∼= Brace(n) = PrimAsDend(n) ∼= K[PBTn×Sn],

where the last isomorphism is the inverse of t �→ e(| ∨t), cf. 3.11. This composite
is not the identity.

3.16. Free-associative right-sided CHA. In the dual framework, that is,
for an associative CHA H = T (C), where C is a multibrace coalgebra, the right-
sided condition reads as follows:
(r-s) the coproduct Δ on T (C), given by Δ(v) = v ⊗ 1 + 1 ⊗ v +

∑

v(1) ⊗ v(2), is
such that

v(2) ∈ C for any v ∈ C.

This condition implies that C is in fact a brace coalgebra and that H is a
dendriform coalgebra.
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All the results of this section can be dualized: C is a brace coalgebra and T (C)
is a Dendc-As-bialgebra. For instance the free-associative CHA Dendc(K) can be
seen as a noncommutative variation of the Connes-Kreimer algebra. The coproduct
can be described on planar binary trees and hence on planar unreduced trees by
means of admissible cuts. Some of these results have been worked out explicitly in
[18].

3.17. Y-algebras. If, instead of looking at the dipterous structure of a cofree-
coassociative r-s CHA, we look its 2-associative structure (cf. [42] and 2.19), then
the relevant quotient structure is more complicated: it is a Y-algebra, where Y is
the quotient of the operad 2as by the operadic ideal generated by the operations
Mpq for p ≥ 2:

Y := 2as/{Mpq | p ≥ 2}.
Since the operations Mpq are primitive for 2as-bialgebras, the notion of Y-bialgebra
is well-defined. Let H be a cofree-coassociative CHA which is right-sided. By
Theorem 4.2 of [42] it is a 2as-bialgebra. By Proposition 3.2 the operations Mpq

are 0 on H for p ≥ 2. Therefore H is a Y-algebra, and even a Y-bialgebra.

3.18. Theorem. There is a good triple of operads

(As,Y , Brace).

Proof. Since the operations Mpq are primitive, by Proposition 3.1.1 of [38] there is
a good triple of operads

(As,Y ,PrimAsY).

Let us consider the free Y-algebra over V , denoted Y(V ). Its primitive part is
PrimY(V ) = (PrimAsY)(V ). It is a multibrace algebra for which Mpq = 0 for
p ≥ 2, therefore it is a brace algebra. Since these structures are functorial in V we
get a surjective map of operads

Brace � PrimAsY .

In order to show that this is an isomorphism, it suffices to show that, for any n,
the spaces Brace(n) and (PrimAsY)(n) have the same dimension. Since we have
isomorphisms Dend ∼= Asc ◦Brace and Y ∼= Asc ◦PrimAsY , it suffices to show that
dimDend(n) = dimY(n). We claim that the isomorphism of CHAs Dipt(V ) ∼=
T c(MB(V )) ∼= 2as(V ) induces an isomorphism Dend(V ) ∼= Y(V ) which implies
the expected equality. This last isomorphism is a consequence of the following
Proposition. �

3.19. Proposition. The quotient of the operad Dipt by the relations Mpq = 0
for p ≥ 2 is the operad Dend.

Proof. We know that the operad Dend is the quotient of Dipt by the relation
M21 = 0 (cf. last line of section 2.11). Therefore it suffices to show that, in Dipt,
M21 = 0 implies Mpq = 0 for any p ≥ 2. This is an immediate consequence of the
following Lemma. �

3.20. Lemma. In the free dipterous algebra Dipt(V ) the following relations hold:

Mn1(x1 · · ·xn; y) = M(n−1)1((x1 � x2)x3 · · ·xn; y)− x1 � M(n−1)1(x2x3 · · ·xn; y)



COMBINATORIAL HOPF ALGEBRAS 367

for n ≥ 3,

Mnm(x1 · · ·xn; y1 · · · ym) = Mn(m−1)(x1 · · ·xn; (y1 � y2)y3 · · · ym)

−y1 � Mn(m−1)(x1 · · ·xn; y2)y3 · · · ym)

for m > 1.

Proof. We prove the first equality applying a recursive argument. The result may
be checked for n = 3 by a straightforward calculation.
Let n > 3 and suppose that the equality holds for all Mh1, with h < n. We get:

(1) ω�(x1 · · ·xn) ∗ y =

n
∑

r=0

(

n−r
∑

j=0

ω�(x1 · · ·xrMj1(· · ·xr+j ; y) · · ·xn)
)

.

(2) ω�(x1 · · ·xn) ∗ y =

ω�((x1 � x2) · · ·xn) ∗ y =
n
∑

r=2

(

n−r
∑

j=0

ω�(x1 · · ·xrMj1(· · ·xr+j ; y) · · ·xn)
)

+

n
∑

j=2

ω�(M(j−1)1((x1 � x2) · · ·xj ; y) · · ·xn) + ω�(y(x1 � x2) · · ·xn).

Equalities (1) and (2) imply:

(3)
n
∑

j=0

ω�(Mj1(x1 · · ·xj ; y) · · ·xn) +
n−1
∑

j=0

ω�(x1Mj1(· · ·xj+1; y) · · ·xn) =

n
∑

j=2

ω�(M(j−1)1((x1 � x2) · · ·xj ; y) · · ·xn) + ω�((y ∗ x1)x2 · · ·xn).

The recursive hypothesis states that:

Mj1(x1 · · ·xj ; y) + x1 � M(j−1)1(x2 · · ·xj ; y) = M(j−1)1((x1 � x2)x3 · · ·xj ; y),

for 3 ≤ j ≤ n− 1.

Applying it, (3) becomes:

Mn1(x1 · · ·xn; y) + x1 � M(n−1)1(x2 · · ·xn; y) + ω�(yx1 · · ·xn)+

ω�(M11(y;x1)x2 · · ·xn) + ω�(M11(x1 � x2; y)x3 · · ·xn) + ω�(x1yx2 · · ·xn) =

ω�(M11(x1 � x2; y)x3 · · ·xn)+M(n−1)1((x1 � x2)x3 · · ·xn; y)+ω�((y∗x1)x2 · · ·xn).

But, since M11(y;x1) = y ∗ x1 − y � x1 − x1 � y, we get:

Mn1(x1 · · ·xn; y) + x1 � M(n−1)1(x2 · · ·xn; y) = M(n−1)1((x1 � x2)x3 · · ·xn; y),

which ends the proof of the first equality.

For the second statement, the result is easy to verify for all n ≥ 0 and m = 2.
For m > 2, suppose that the equality holds for all 1 ≤ k ≤ n and 1 ≤ h < m.
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We get:

(4) ω�(x1 · · ·xn) ∗ ω�(y1 · · · ym) = ω�(x1 · · ·xn) ∗ ω�((y1 � y2)y3 · · · ym) =
∑

ω�(x1 · · ·xhMj(k−1)(· · ·xh+j ; (y1 � y2) · · · yk)Mr1s1 · · ·Mrlsl(· · ·xn · · · ym))

+Mn(m−1)(x1 · · ·xn; (y1 � y2) · · · ym),

where the sum is taken over 0 ≤ h ≤ n, 2 ≤ k ≤ m, 0 ≤ j ≤ n − h, j < n and the
compositions (r1, . . . , rl) of n− h− j, and (s1, . . . , sl) of m− k. Note that if j = 0,
then k = 2.

Applying the formula recursively, we get:

(1) if h > 0, then

ω�(x1 · · ·xhMj(k−1)(· · ·xh+j ; (y1 � y2) · · · yk)) =
ω�(x1 · · ·xhMjk(· · ·xh+j ; y1 · · · yk))+

ω�((ω�(x1 · · ·xh) ∗ y1)Mj(k−1)(· · ·xh+j ; y2 · · · yk))

=
∑

0≤l≤s≤h

ω�(x1 · · ·xlM(s−l)1(· · ·xs; y1) · · ·xhMj(k−1)(· · ·xh+j ; y2 · · · yk)).

(2) if h = 0 , then

Mj(k−1)(x1 · · ·xj ; (y1 � y2) · · · yk) =
Mjk(x1 · · ·xj ; y1 · · · yk) + y1 � Mj(k−1)(x1 · · ·xj ; y2 · · · yk).

The formulas above imply the equality:

∑

ω�(x1 · · ·xhMj(k−1)(· · ·xh+j ; (y1 � y2) · · · yk)Mr1s1 · · ·Mrlsl(· · ·xn · · · ym)) =
∑

ω�(Mi1j1 · · ·Mirjr )(x1 · · ·xny1 · · · ym)− y1 � Mn(m−1)(x1 · · ·xn; y2 · · · ym).

where the first sum is taken over 0 ≤ h < n, 2 ≤ k ≤ m, 0 ≤ j ≤ n − h and
the compositions (r1, . . . , rl), (s1, . . . , sl), and the second sum is taken over k ≥
2, i1 + · · ·+ ir = n, j1 + · · ·+ jr = m. Replacing in (4), we get the equality:

∑

k≥2

(
∑

i1+···+ir=n
j1+···+jr=m

ω�(Mi1j1 · · ·Mirjr)(x1 · · ·xny1 · · · ym)+Mnm(x1 · · ·xn; y1 · · · ym) =

ω�(x1 · · ·xn) ∗ ω�(y1 · · · ym) =
∑

k≥2

(
∑

i1+···+ir=n
j1+···+jr=m

ω�(Mi1j1) · · ·Mirjr)(x1 · · ·xny1 · · · ym)−

y1 � Mn(m−1)(x1 · · ·xn; y2 · · · ym) +Mn(m−1)(x1 · · ·xn; (y1 � y2) · · · ym),

which implies:

Mnm(x1 · · ·xn; y1 · · · ym) =

y1 � Mn(m−1)(x1 · · ·xn; y2 · · · ym) +Mn(m−1)(x1 · · ·xn; (y1 � y2) · · · ym),

as expected. �
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3.21. On the operad Y. As a corollary of Theorem 3.18 we deduce an iso-
morphism of S-modules:

Y ∼= T c(Brace).

Hence Y(n) has the same dimension as Dend(n), that is,

dimY(n) = cn × n!.

4. (Co)free-(co)commutative CHA

In this section we study the cofree-cocommutative CHAs. We will see that they
are ComAs-bialgebras. The space of primitives inherits a symmetric multibrace
(SMB) algebra structure. We omit the proofs, which are completely analogous to
the non-symmetric case. In this section K is a characteristic zero field.

4.1. Definition. A cofree-cocommutative combinatorial Hopf algebra H (co-
free-cocommutative CHA for short) is a cofree-cocommutative bialgebra with a pre-
scribed isomorphism with Sc(R) (here R := PrimH). Equivalently, it is a vector
space R with a product ∗ on Sc(R) which makes (Sc(R), ∗,Δ) (Δ = deconcatena-
tion) into a Hopf algebra.

4.2. Symmetric multibraces. LetH = Sc(R) be a cofree-coassociative CHA.
Since it is cofree, the multiplication ∗ : Sc(R)⊗Sc(R) → Sc(R) is completely deter-
mined by its projection onto R. So, there are well-defined maps Mpq : SpR⊗SqR →
R, called symmetric multibrace operations, given by the following composite:

Sc(R)⊗ Sc(R)
∗ �� Sc(R)

proj

��
SpR⊗ SqR

inc

��

Mpq �� R

In the next proposition we make explicit all the relations satisfied by the sym-
metric multibrace operations. We use the following notation. First Sh(p, q) denotes
the set of permutations made up of (p, q)-shuffles. Second, for any integer m, a com-
position ofm is an ordered sequence k = (k1, . . . , kr) of nonnegative integers ki such

that
r

∑

i=1

ki = m. We write (k1, . . . , kr) � m when k is a composition of m.

4.3. Proposition. Let Mpq : SpR ⊗ SqR → R be (p, q)-symmetric operations
on the vector space R. Let ∗ be the unique binary operation on ScR which is a
cocommutative coalgebra morphism and whose projection onto R coincides with the
Mpq’s. The following assertions are equivalent:

(a) the operation ∗ is associative and unital,
(b) the (p, q)-symmetric operations Mpq satisfy the following relations SR:

M00 = 0,M01 = id = M10,M0q = 0 = Mp0, for p > 1, q > 1,

and, for any integers i, j, k greater than or equal to 1 and any elements
x1, . . . , xn, y1, . . . , ym, z1, . . . , zr ∈ R:

(SRijk) :
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∑

r≥1

( ∑

(n1,...,nk)�n

(m1,...,mk)�m

1

k!

( ∑

σ∈Sh(n1,...,nk)

τ∈Sh(m1,...,mk)

Mkr(Mn1m1(x
σ
1 ; y

τ

1
) · · ·Mnkmk (x

σ
k ; y

τ

k
); z1, . . . , zr)

))

=
∑

l≥1

( ∑

(m1,...,ml)�m

(r1,...,rl)�l

1

l!

( ∑

γ∈Sh(m1,...,ml)

δ∈Sh(r1,...,rl)

Mnl(x1 · · ·xn;Mm1r1(y
γ

1
; zδ1), . . . ,Mmlrl(y

γ

l
; zδl )

))
,

where the first sum is taken over all pairs of compositions (n1, . . . , nk) � n and
(m1, . . . ,mk) � m such that if ni = 0 then mi �= 0, for 1 ≤ i ≤ k, while the second
one is taken over all pairs of compositions (m1, . . . ,ml) � m and (r1, . . . , rl) � r
such that if mj = 0 then rj �= 0, for 1 ≤ j ≤ l. The elements xσ

i , y
τ
i
, yγ

j
and zδj are

defined by:

wω
i := wω(p1+···+pi−1+1) ⊗ · · · ⊗ wω(p1+···+pi),

for w ∈ R⊗p, (p1, . . . , ps) � p, ω ∈ Sh(p1, . . . , ps), and 1 ≤ i ≤ s.

Proof. From the unitality and counitality property of the Hopf algebra Sc(R) we
deduce that

M00 = 0, M10 = idV = M01, and Mn0 = 0 = M0n for n ≥ 2.

The operation ∗ is related to the operations Mpq by the following formula:

u1 · · ·up ∗ v1 · · · vq =

p+q
∑

k=1

(u1 · · ·up ∗ v1 · · · vq)k

where the component (u1 · · ·up ∗ v1 · · · vq)k ∈ Sk(R) is given by:

(u1 · · ·up ∗ v1 · · · vq)k =
∑

Mi1j1(u1 · · ·ui1 , v1 · · · vj1)Mi2j2(ui1+1 · · ·ui1+i2 , vj1+1 · · · vj1+j2) · · ·
· · ·Mikjk(· · ·up, · · · vq) ∈ V ⊗k .

where the sum is extended to all the sequences of indices satisfying the following
conditions:

– each sequence of integers {1, . . . i1}, {i1 + 1, . . . , i1 + i2}, . . . is ordered
– 1 ≤ i1 + 1 ≤ i1 + i2 + 1 ≤ . . .,
– each sequence of integers {1, . . . j1}, {j1 + 1, . . . , j1 + j2}, . . . is ordered
– 1 ≤ j1 + 1 ≤ j1 + j2 + 1 ≤ . . ..
This formula, which holds in the cocommutative case, is analogous to the for-

mula given in the coassociative case in section 1.4 of [42] (cf. Proposition 2.3).
The difference (restriction on the sequences of indices) is due to the fact that the
coproduct is cocommutative, hence the map Δ : S(V ) → S(V )⊗S(V ) is viewed as
a composite Δ : S(V ) → S2(S(V )⊗ S(V )) � S(V )⊗ S(V ).

For instance we get

(u1 · · ·up ∗ v1 · · · vq)1 = Mpq(u1 · · ·up; v1 · · · vq),
(u1 · · ·up ∗ v1 · · · vq)p+q = u1 · · ·upv1 · · · vq,

(u1u2 ∗ v1)2 = u1M11(u2; v1) +M11(u1; v1)u2.

By computing the component in R of the two elements:

(x1 · · ·xi ∗ y1 · · · yj) ∗ z1 · · · zk = x1 · · ·xi ∗ (y1 · · · yj ∗ z1 · · · zk)
we get the relation (SRijk). The rest of the proof is as in Proposition 2.3. �
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4.4. Example. The first nontrivial relation is (SR111), which reads

M21(uv;w) +M11(M11(u; v);w) = M11(u;M11(v;w)) +M12(u; vw)

for any u, v, w ∈ R. Remember that we are working in the symmetric framework,
so uv = vu. Here are the next ones:

(SR112)

M22(uv;wx) +M12(M11(u; v);wx) =

M13(u; vwx) +M12(u;M11(v;w)x) +M12(u;wM11(v;x)) +M11(u;M12(v;wx)),

(SR121)

M31(uvw;x) +M21(M11(u; v)w;x) +M21(vM11(u;w);x) +M11(M12(u; vw);x) =

M13(u; vwx) +M12(u; vM11(w;x)) +M12(u;M11(v;x)w) +M11(u;M21(vw;x)),

(SR211)

M31(uvw;x) +M21(uM11(v;w);x) +M21(M11(u;wv);x) +M11(M21(uv;w);x) =

M22(uv;wx) +M21(uv;M11(w;x)),

4.5. Symmetric multibrace algebra. By definition a symmetric multibrace
algebra (or SMB-algebra) is a vector space R equipped with symmetric multibrace
operations Mpq, that is (p+ q)-ary operations Mpq : SpR⊗SqR → R, which satisfy
all the conditions SR of Proposition 4.3.

4.6. Theorem. There is an equivalence of categories between the cofree-cocom-
mutative CHAs and the SMB-algebras.

4.7. Commutative-associative bialgebra. A ComAs-algebra is a vector
space equipped with two associative operations, one of them being commutative.
We denote by x ·y the commutative one and by x∗y the associative one. A ComAs-
algebra is unital if there is an element 1 which is a unit for both operations.

A ComAs-bialgebra (i.e. a Comc-ComAs-bialgebra) is a unital ComAs-algebra
equipped with a counital cocommutative coproduct which satisfies the Hopf com-
patibility relation for both operations.

4.8. Proposition. Any cofree-cocommutative CHA is a ComAs-bialgebra.

Proof. Let H = Sc(V ) be a cofree-cocommutative CHA. We equip Sc(V ) = S(V )
with the standard commutative product, denoted ·, so that (S(V ), ·,Δ) is the clas-
sical polynomial algebra. Since H is endowed with another associative product,
denoted ∗, we have a ComAs-bialgebra H = (S(V ), ·, ∗,Δ). �

4.9. Proposition. The free ComAs algebra over V is a natural ComAs-
bialgebra.

Proof. The tensor product of two ComAs-algebras is still a ComAs-algebra. So we
can apply the method of [36] to construct the expected coproduct. �
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4.10. From ComAs-algebras to SMB-algebras. Let us recall that a conil-
potent commutative and cocommutative Hopf algebra (H, ·,Δ) is isomorphic to
Sc(Prim(H)). We choose the Eulerian idempotent e(1) : H −→ H (cf. [51, 34]), to
construct this isomorphism.

If H is a Comc-ComAs-bialgebra, then, a fortiori, it is a Comc-Com-bialgebra
and we identifyH with Sc(Prim(H)) as above. We identify the dot product x·y with
the polynomial product xy. The associative product ∗ induces a SMB structure
on Prim(H). As in the case of 2-associative bialgebras, the relationship between
the associative product, the commutative product and the multibraces is given by:

(x1 · · ·xn) ∗ (y1 · · · ym) =
∑

r

1

r!

(
∑

(k1,...,kr)�n

(h1,...,hr)�m

(
∑

σ∈Sh(k1,...,kr)

τ∈Sh(h1,...,hr)

Mn1m1
(xσ

1 , y
τ
1
) · · ·Mnrmr

(xσ
r , y

τ
r
)
))

,

where the sum is taken over all pairs of compositions

(k1, . . . , kr) � n and (h1, . . . , hr) � m

such that if ki = 0 then hi �= 0.
Note that the formula for Mnm may be obtained easily in terms of ∗, · and the

Mij ’s, for 1 ≤ i ≤ n, 1 ≤ j ≤ m and i+ j < n+m. For instance:

M11(x1; y1) = x1 ∗ y1 − x1y1,

M12(x1; y1y2) = x1 ∗ (y1y2)− x1y1y2 −M11(x1; y1)y2 − y1M11(x1; y2)

= x ∗ (yz)− (x ∗ y)z − y(x ∗ z) + xyz.

4.11. Proposition. There is a forgetful functor F from the category of ComAs-
algebras to the category of SMB-algebras.

4.12. Theorem. There is a good triple of operads

(Com,ComAs, SMB).

For any V there is a canonical isomorphism

ComAs(V ) ∼= Sc(SMB(V )).

4.13. The operad ComAs. The operad ComAs is a set-theoretic operad. Its
underlying set was described by R. Stanley in [57]. The dimension of ComAs(n)
is the number dn of “labeled series-parallel posets with n points”:

{1, 3, 19, 195, 2791, 51303, . . . }.

4.14. The operad SMB. The operad SMB can be described by using the
“connected labeled series-parallel posets with n nodes”, cf. [57]. Let us mention
the first dimensions fn = dimSMB(n) for n ≥ 1:

{1, 2, 12, 122, 1740, 31922, . . . }.

From the presentation of the operad SMB it is clear that we can modify it
by reducing the number of generators. For instance the relation SR111 shows that
we can get rid of one of the two generators M12,M21. More symmetrically we
can replace the two generators M12 and M21 by M12 + M21. This discussion is
postponed to a further paper.
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4.15. From Lie algebras to SMB-algebras. Let g be a Lie algebra and let
U(g) be its universal enveloping algebra. By the Cartier-Milnor-Moore theorem we
know that U(g) is isomorphic to Sc(g) as a coalgebra. Let us choose the Eulerian
idempotents to realize this isomorphism explicitly, cf. [51, 34]:

e : U(g) ∼= Sc(g).

Recall from [34] that the component e(1), whose image lies in g = PrimU(g) ⊂ U(g)
is obtained by

e(1) = log	(Id),

where log	 is the convolution log. The other components are given by

e(i) =
(e(1))	i

i!
.

Once this isomorphism is chosen, Theorem 4.6 implies that there is an SMB-algebra
structure on g. Hence we have constructed a forgetful functor

Lie-alg → SMB-alg.

In low dimension we get the following formulas:

M11(x; y) =
1

2
[x, y],

M12(x; yz) =
1

6
[[x, y], z]− 1

12
[x, [y, z]],

M21(xy; z) = − 1

12
[[x, y], z] +

1

6
[x, [y, z]].

4.16. Free-commutative CHA. As in the preceding examples there is a
dual version of the results of this section. We leave it to the interested reader to
phrase them in detail.

5. (Co)free-(co)commutative right-sided CHA

In this section we study the cofree-cocommutative CHAs which satisfy the right-
sided property (r-s). The space of primitives inherits a symmetric brace algebra
structure, which turns out to be the same as a pre-Lie algebra structure. As shown
in [11] the free pre-Lie algebra on one generator gives rise to a cofree-cocommutative
CHA which is the Grossman-Larson algebra [24]. In the dual framework, the cofree
pre-Lie coalgebra on one generator gives rise to a free-commutative CHA which is
the Connes-Kreimer Hopf algebra [13]. In this section K is a characteristic zero
field. Examples will be given in section Examples will be given in section 6. They
include the dual of the Faà di Bruno algebra (6.1) and the symmetric functions
algebra (6.3).

5.1. Right-sided cofree-cocommutative CHA. Let H be a cofree-cocom-
mutative CHA. By definition H = (Sc(R), ∗,Δ) is said to be right-sided if the
following condition holds:

(r-s) for any integer q the subspace
⊕

n≥q Hn is a right-sided ideal of H,

where Hn := Sn(R). We have seen that the associative product ∗ is given by a
family {Mpq}p,q≥0 of symmetric multibrace operations (cf. Proposition 4.3). If H
is right-sided, then, as in 3.2, the operations Mpq are 0 for any p ≥ 2. Hence we
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get a symmetric brace algebra, SBrace-algebra for short, that is, a vector space R
equipped with operations M1q verifying:

M1m(M1n(x; y1 · · · yn); z1 · · · zm) =
∑

(m1,...,mn+1�m

(
∑

σ∈Sh(m1,...,mn+1)

M1(n+mn+1)(x;M1m1
(y1, z

σ
1 ) · · ·M1mn

(yn; z
σ
n)z

σ
n+1)

)

,

where zσi := zσ(m1+···+mi−1+1) ⊗ · · · ⊗ zσ(m1+···+mi).
We remark that the first relation (n = 1) implies that the operation M11 is

pre-Lie. Recall that an operation {−,−} is pre-Lie if

{{x, y}, z} − {x, {y, z}} = {{x, z}, y} − {x, {z, y}}.
Moreover it follows from SR111 (cf. 4.4) that the operation M12 is completely
determined by the operation M11 since M21 = 0. More generally, all the operations
M1n are determined by M11 and the following result holds.

5.2. Proposition (Guin-Oudom [22, 23]). A symmetric brace algebra is equiv-
alent to a pre-Lie algebra.

Proof. A proof can be found in [23], see also [31]. The operations M1n are obtained
from M11 recursively by the formulas:

M11(x; y) := {x, y},
M1n(x; y1 · · · yn) := M11(M1(n−1)(x; y1 · · · yn−1); yn)−

∑

1≤i≤n−1

M1(n−1)(x; y1 · · ·M11(yi; yn) · · · yn−1),

for x, y1, . . . , yn ∈ V . �
5.3.Theorem. The category of cofree-cocommutative right-sided CHAs is equiv-

alent to the category of pre-Lie algebras.

Proof. Taking the primitives gives a functor from cofree-cocommutative r-s CHAs to
pre-Lie algebras. Since any pre-Lie algebra gives rise to a symmetric brace algebra,
we can apply the reconstruction functor to get a cofree-cocommutative CHA (cf.
4.6). Since we started with a symmetric brace algebra rather than a general SMB-
algebra, the Hopf algebra is right-sided, hence the existence of a functor from
pre-Lie algebras to cofree-cocommutative r-s CHAs. Obviously these two functors
are inverse to each other. �

5.4. Unreduced trees and free pre-Lie algebra. In 3.12 we defined the
planar unreduced trees. The quotient by the obvious relation gives the notion of
(non-planar) unreduced trees. For instance, in this setting, the two drawings

•

•

�
�

•

•

�
�

•

•

�
�

•

•

�
�

define the same element. The set of unreduced trees with n vertices is denoted
UTn. The free pre-Lie algebra on V has been described by Livernet and Chapoton
in [11] in terms of unreduced trees labeled by elements of V :

PreLie(V ) =
∑

n

K[UTn]⊗ V ⊗n.
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The pre-Lie product is given by the following rule. If ω and ω′ are two labelled
unreduced trees, then the pre-Lie product {ω, ω′} is the sum of all the trees obtained
from ω and ω′ by drawing an edge from a vertex of ω to the root of ω′. The root
of this new tree is the root of ω. For instance:

x= •
x {x,y}=

•x

•y
{x,{y,z}}=

•x

•y

•z

{{x,y},z}=
•x

•y

•z

+

•x

•y •z

�
�

�
�

5.5. The conjectural operad X . The results of the three other cases lead
us naturally to conjecture the existence of an operad structure X on Com ◦ preLie
compatible with the operad structure of Com and preLie (extension of operads,
see 3.4.2 in [38]). Observe that

dimX (n) = (n+ 1)n−1.

If so, then we conjecture that any cofree-cocommutative right-sided CHA is a
X -algebra.

5.6. Grossman-Larson Hopf algebra. In [24] Grossman and Larson con-
structed a cocommutative Hopf algebra on some trees. It turns out that this is
exactly the combinatorial Hopf algebra Sc(preLie(K)).

5.7. Free-commutative right-sided CHAs and Connes-Kreimer alge-
bra. As before the results of this section can be linearly dualized. It should be
said that many examples in the literature appear as free-commutative (rather than
cofree-cocommutative). For instance the dual of Sc(preLie(K)), that is, the alge-
bra S(copreLie(K)), is the Connes-Kreimer Hopf algebra (cf. [49, 26]). It can be
constructed either directly as in [13], or by means of the cofree pre-Lie coalgebra
on one generator.

The direct construction consists in taking the free-commutative algebra over
the set of unreduced trees. The coproduct is given by the formula

Δ(t) =
∑

c

Pc(t)⊗Rc(t),

where Pc(t) is a polynomial of trees and Rc(t) is a tree, the sum is over admissible
cuts c. Let us recall that a cut of the tree t is admissible if there is one and only one
cut on any path from the root to a leaf. Among the pieces, one of them contains
the root, this is the tree Rc(t). The other ones assemble to give a polynomial,
which is Pc(t). Observe that there are two extreme cuts: under the root (it gives
the element t⊗ 1), above the leaves (it gives the element 1⊗ t).

We end this section with the dual version of Theorem 5.3.

5.8. Theorem. The category of free-commutative right-sided CHAs is equiva-
lent to the category of pre-Lie coalgebras.
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5.9. Cofree-cocommutative CHAs being right and left-sided. Let H
be a cofree-cocommutative CHA which is both right-sided and left-sided. As a
consequence its primitive part is such that Mnm = 0 except possibly for M11. By
formula R111 it follows that M11 is associative.

This case has been studied in [37] where it is proved that there is a good triple
of operads

(Com,CTD,As)

where As is the operad of nonunital associative algebras, and CTD is the operad of
commutative tridendriform algebras. Recall from [41] that a tridendriform algebra
is determined by three binary operations x ≺ y, x � y, x · y satisfying 7 relations.
It is said to be commutative whenever x ≺ y = y � x and x · y = y · x for any x
and y. Then, the 7 relations come down to the following 4 relations:

(x ≺ y) ≺ z = x ≺ (y ≺ z + z ≺ y + y · z),
(x ≺ y) · z = x · (z ≺ y),

(x · y) ≺ z = x · (y ≺ z),

(x · y) · z = x · (y · z),
The second relation has been, unfortunately, mistakenly omitted in [37].

There is an equivalence of categories between the right-and-left-sided cofree-
cocommutative CHAs and the nonunital associative algebras.

6. Examples

There are many examples of combinatorial Hopf algebras in the literature. We
already described some of them: the free algebras of type Dipt, 2as, ComAs,
Dend, Y and their dual. In these cases the combinatorial objects at work are trees
(of various types). The examples coming from quantum field theory are usually
free-associative or free-commutative (for instance Connes-Kreimer algebra). In this
section we list some specific examples and refer to the literature for more infor-
mation. In 6.4 we give an example of two different CHA structures on a given
cofree-coassociative Hopf algebra.

6.1. Faà di Bruno algebra. On F =
⊕

n≥1 Kxn the operation

{xp, xq} := −pxp+q

is a pre-Lie product since

{{xp, xq}, xr} − {xp, {xq, xr}} = p2xp+q+r,

is symmetric in q and r.
Up to a minor modification, this is the pre-Lie algebra coming from the nonsym-

metric operad As, cf. 6.7. By Theorem 5.3 the coalgebra Sc(F ) is a combinatorial
Hopf algebra which is cofree-commutative and right-sided as an algebra. This is
exactly the graded dual of the Faà di Bruno Hopf algebra, since the Lie bracket is
given by [xp, xq] = (−p+ q)xp+q, see for instance [29, 16, 17]. More precisely, let
us introduce the dual basis an := 1

n!x
∗
n−1. The linear dual S

c(F )∗ is the polynomial
algebra in a2, . . . , an, . . . and the coproduct is given by

Δ(an) =
n
∑

k=1

∑

λ

(

n

λ; k

)

aλ1
1 · · · aλn

n ⊗ ak
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where
(

n
λ;k

)

= n!
λ1!···λn!(1!)λ1 ···(n!)λn

for λ1+· · ·+λn = k and λ1+2λ2+· · ·+nλn = n.

We see immediately from this formula that the Faà di Bruno Hopf algebra is a right-
sided coalgebra.

This Hopf algebra proves helpful in studying the higher derivatives of a compo-
sition of formal power series (Faà di Bruno’s formula) because it is the Hopf algebra
of functions on the group of invertible formal power series in one variable.

It is immediate to check that the pre-Lie algebra F is generated (in character-
istic zero) by one element, namely x1. Hence F is a quotient of PreLie(K). As a
consequence the Faà di Bruno Hopf algebra gets identified with a subalgebra of the
Connes-Kreimer algebra.

There is an analogue of the Faà di Bruno algebra in the noncommutative frame-
work due to Brouder, Frabetti and Menous, cf. [8]. Since F is a pre-Lie algebra,
a fortiori it is a brace algebra. Therefore, taking the cofree-coassociative coalgebra
gives a combinatorial Hopf algebra. The graded dual is a noncommutative analogue
of the Faà di Bruno algebra.

6.2. The algebra of quasi-symmetric functions QSym. (see [25]). Let
K[ξ1, . . . , ξn, . . .] be the algebra of all polynomial functions on an infinite fam-
ily of variables {ξn}n≥1. The algebra of quasi-symmetric functions QSym is
the subalgebra of all polynomial functions f ∈ K[ξ1, . . . , ξn, . . .] such that f =
∑

n1···nr
fn1···nr

(∑

i1<···<ir
ξn1
i1

· · · ξnr
ir

)

, for certain coefficients fi1···ir ∈ K. The
product ∗ of QSym is the usual product of p olynomials.

The subspace of homogeneous elements of degree n of QSym has a natural
basis {xn1···nr

}n1+···+nr=n, with:

xn1···nr
:=

∑

i1<···<ir

ξn1
i1

· · · ξnr
ir
.

The coproduct on QSym is defined by:

Δ(xn1···nr
) :=

∑

0≤j≤r

xn1···nj
⊗ xnj+1···nr

.

It is clear that the subspace of primitive elements of QSym is the vector space
⊕

n≥1 Kxn. Moreover, the coalgebra isomorphism with T c(
⊕

n≥1 Kxn) sends the
element xn1···nr

to xn1
⊗ · · · ⊗ xnr

.

Note that QSym is cofree-coassociative and its product is associative and com-
mutative. The multibrace structure of

⊕

n≥1 Kxn associated to the product ∗ is
given by:

Mnm(xi1 · · ·xin ;xj1 · · ·xjm) =

{

xi1+j1 , for n = m = 1,

0, otherwise.

The graded dual of QSym is the Solomon descent algebra NSym. It is the free
algebra over the space

⊕

n≥1 Kxn, with the coassociative cocommutative coproduct
Δ∗ given by:

Δ∗(xn) :=

n
∑

i=0

xi ⊗ xn−i.

The Solomon descent algebra is a cofree-cocommutative CHA, isomorphic as a
coalgebra to Sc

(

Lie(
⊕

n≥1 Kxn)
)

. This is a particular example of the case discussed
in 4.15.
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6.3. The Hopf algebra Sym. The Hopf algebra Sym is a cofree-cocom-
mutative CHA isomorphic as a coalgebra to Sc

(⊕

n≥1 Kxn

)

. This is a particular
example of the case discussed in 4.15.

6.4. The Malvenuto-Reutenauer algebra HMR. (See [44]). The under-
lying space of HMR is the graded space

⊕

n≥0 K[Sn], where Sn denotes the group
of permutations of n elements. The product of HMR is the shuffle product, given
by:

σ ∗ τ :=
∑

δ∈Sh(n,m)

(σ × τ ) · δ−1,

for σ ∈ Sn and τ ∈ Sm; where Sh(n,m) denotes the set of all (n,m)-shuffles and ×
denotes the concatenation of permutations.

Given a permutation σ ∈ Sn and an integer 0 ≤ i ≤ n, let σi
(1) be the map

from {1, . . . , i} to {1, . . . , n} whose image is σi
(1) = (σ(1), . . . , σ(i)) and σi

(2) be the

map whose image is σi
(2) = (σ(i+ 1), . . . , σ(i)).

The coproduct is defined as follows:

Δ(σ) :=
n
∑

i=0

std(σi
(1))⊗ std(σi

(2)),

where std(τ ) is the unique permutation in Sn such that std(τ )(i) < std(τ )(j) if and
only if τ (i) < τ (j), for any injective map τ : {1, . . . , k} −→ {1, . . . , n}. In degree
two the primitive space is 1-dimensional generated by 12− 21. In degree three it is
3-dimensional generated by the elements:

u := 213− 312,

v := 231− 132,

w := 321− 132− 213 + 123.
An element σ ∈ Sn is called irreducible if σ /∈

⋃

1≤i≤n−1 Si × Sn−i. We denote
by Irrn the subset of irreducible elements of Sn. In low dimension we get Irr2 =
{21}, Irr3 = {231, 312, 321}.

We will give two different structures of combinatorial Hopf algebra on HMR.
For the first one it appears as a cofree-coassociative general CHA and for the second
one it appears as a cofree-coassociative right-sided CHA.
1) Define an isomorphism ϕ from T c

(⊕

n K[Irrn]
)

to HMR by

ϕ(x) =

{

e
(1)
inf (σ), for x = σ ∈

⋃

n Irrn

e
(1)
inf (σ1)× · · · × e

(1)
inf (σm), for x = σ1 ⊗ · · · ⊗ σm,

where

e
(1)
inf (σ) :=

∑

i≥1

(−1)i+1 ×i ◦Δi
(σ) = σ − σ(1) × σ(2) + · · ·

is the (infinitesimal) idempotent defined in [42]. For instance, in low dimension,
we get:

ϕ(21) = 21− 12,

ϕ(231) = 231− 132− 123 + 123 = 231− 132,

ϕ(312) = 312− 123− 213 + 123 = 312− 213,

ϕ(321) = 321− 132− 213 + 123.
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Under this construction (HMR, φ) become a cofree-coassociative general CHA.
Hence the space

⊕

n≥1 K[Irrn] inherits a structure of MB-algebra (see [55] for

explicit formulas). The 2as-bialgebra structure is given by the products × and ∗,
and the coproduct Δ.

2) Define an isomorphism θ : T c
(⊕

n K[Irrn]
)

−→ HMR as follows:

θ(x) =

{

e(σ), for x = σ ∈
⋃

n Irrn

((e(σ1) � e(σ2)) . . . ) � e(σm), for x = σ1 ⊗ · · · ⊗ σm,

where e(σ) :=
∑

i≥1(−1)i+1ωi
� ◦ Δ

i
(σ) is the idempotent defined in section 3.11.

So (HMR, θ) is a cofree-coassociative right-sided CHA. Indeed, one can check that
the multi-brace operations satisfy Mpq = 0 for p ≥ 2, so there is a brace structure
on K[Irrn]. The dendriform algebra structure on HMR is given by

σ � τ :=
∑

δ∈Sh(n,m)
δ(n+m)=n+m

(σ × τ ) · δ−1,

σ ≺ τ :=
∑

δ∈Sh(n,m)
δ(n)=n+m

(σ × τ ) · δ−1.

Observe that, because of the second condition under the summation sign, the
sum is only over half-shuffles. In low dimension (n ≤ 3) θ coincides with ϕ, but for
n ≥ 4 it is different.

The Hopf algebra of Solomon-Tits and the algebra FPQSym of parking func-
tions may be described as CHA in a similar way, cf. [47, 48].

In [50] the authors show that there exists a subalgebra ofHMR which is spanned
by the image of the standard Young tableaux. They construct a coalgebra structure
for which the “connected tableaux” form a basis of the primitive part. Hence there
is a MB-algebra structure on this latter space.

6.5. Tensor module as indecomposables. In the literature there are sev-
eral examples of combinatorial Hopf algebras whose space of indecomposables is
the tensor module.

- in [9] Brouder and Schmitt construct a Hopf algebra structure on T (T (H)),
S(T (H)) and on S(S(H)) where H is a non-unital bialgebra. These constructions
generalize a construction of G. Pinter related to renormalisation in perturbative
quantum field theory.

- In [61] Turaev constructs a Hopf algebra structure on T (T (V )) (resp. T (T (V )))
which is free-associative right-sided. As we know, there is a structure of pre-Lie
coalgebra on T (V ) (resp. T (V )) which is studied in detail. It is part of a more
general structure: a brace coalgebra structure, not studied in loc.cit.

6.6. Quantum field theory. The Connes-Kreimer algebra is an example of
the combinatorial Hopf algebras which appear in quantum field theory. They are
based on graphs (Feynman graphs) and the rule is always the same: a subgraph is
singled out and put on the right side. What is left is used to construct the left-hand
side of the coproduct. See for instance [14, 16, 6, 5, 60].
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6.7. Operads. For any nonsymmetric operad P, the space
⊕

n Pn has a nat-
ural structure of brace algebra, therefore T c(

⊕

n Pn) is a cofree-coassociative r-s
CHA (cf. for instance [28, 46]). Similarly, if P is a properad, then it can be shown
that ⊕n,mP(n,m) is naturally equipped with a structure of MB-algebra, cf. [45].
Therefore T c

(⊕

n,m P(n,m)
)

is a cofree-coassociative CHA.

6.8. Incidence Hopf algebras. Continuing the paper of Joni and Rota [29]
W. Schmitt studied in [56] the notion of incidence Hopf algebras. In the last sections
of the work he described incidence Hopf algebras related to families of graphs closed
under formation of induced subgraphs and sums. His examples include the the Faà
di Bruno algebra. The incidence Hopf algebras on graphs defined in [56] are either
free-commutative or free-associative, so they enter in the examples studied in this
paper.

Consider for instance the free associative algebra spanned by the set G̃0 of
all the isomorphism classes of connected simple graphs (i.e. having neither loops
nor multiple edges) with linearly ordered vertex set, and let Hl(G) be the free

associative algebra generated by G̃0. Note that as a vector space Hl(G) is spanned
by the isomorphism classes of simple graphs with linearly ordered vertex set.

For any simple connected graph G with the set of vertices V (G) linearly ordered
and any subset of U ⊆ V (G) the induced graph G|U is the graph whose set of
vertices is U , with the edge set formed by all the edges of G which have both end-
vertices in U . Note that G|U is simple, and that U inherits the linear order of
V (G). So, the isomorphism class of G|U belongs to Hl(G). The coalgebra structure
on Hl(G) is given by

Δ(〈G〉) :=
∑

U⊆V (G)

〈G|U〉 ⊗ 〈G|(V (G)− U)〉,

where 〈−,−〉 denotes the isomorphism class.
Clearly Hl(G) is free-associative and is cofree-cocommutative. Its graded dual

Hl(G)∗ is cofree-coassociative isomorphic to TC(K[G̃0]). The multibrace structure

on K[G̃0] is given by:
Mnm

(

〈G1〉 · · · 〈Gn〉; 〈H1〉 · · · 〈Hm〉
)

= the sum of the isomorphism classes of all
simple connected graphs G such that:

(1) the set of vertices V (G) is the disjoint union

(

n
⋃

i=1

V (Gi)
)
⋃

(

m
⋃

j=1

V (Hj)
)

,

(2) If i �= k, there does not exist any edge of G between a vertex of Gi and a
vertex of Gk,

(3) If j �= l, there does not exist any edge of G between a vertex of Hj and a
vertex of Hl,

(4) the linear order on V (G) is such that for 1 ≤ i < k ≤ n, the minimal vertex
of Gi is smaller than the minimal vertex of Gk; and for 1 ≤ j < k ≤ m, the
minimal vertex of Hj is smaller than the minimal vertex of Hl. Moreover,
the induced orders on G|Gi and G|Hj coincide with the orders of Gi and
Hj , respectively.
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6.9. Relationship with algebraic K-theory. The free dendriform algebra
on one generator is spanned by the planar binary trees (cf. 3.10 and [35]). If, in
each dimension, we take the sum of all the trees, then it spans a one-dimensional
space, and the sum over all dimensions form a sub-Hopf algebra of the Loday-Ronco
algebra Dend(K). The same procedure applied to the free dendriform algebra over
some decoration set X provides a combinatorial Hopf algebra which is dual to the
Hopf algebra constructed by Gangl, Goncharov and Levin in [21]. The importance
of this combinatorial Hopf algebra lies in its close relationship with computation in
algebraic K-theory (cf. loc.cit.).

7. Variations

Another interesting case consists in assuming both right-sidedness and left-
sidedness on a CHA. It is treated in the first paragraph of this section.

In this paper our object of study is conilpotent Hopf algebras. As we know it
involves an associative product and a coassociative coproduct. But there exist more
general types of bialgebras involving various kinds of operads. We briefly mention
the pattern of a similar theory to generalized bialgebras in the second paragraph.

7.1. Cofree-associative right and left-sided CHAs. Let us assume that
the CHA H is both right-sided and left-sided. Then it turns out that the multibrace
operations are all trivial with the exception of M11. From the formula 2.4 we deduce
that M11 is an associative operation. So the primitive part is simply an associative
algebra. This example is well-documented in the literature, it is called “quasi-shuffle
algebra”, cf. [15, 37].

7.2. Generalized bialgebras. In [38] we introduced the notion of generalized
bialgebras, more specifically Cc-A-bialgebras, where C governs the coalgebra struc-
ture and A governs the algebra structure. Under some hypothesis a Cc-A-bialgebra
H is cofree and its primitive part is governed by an operad P. We assume that the
triple of operads (C,A,P) is good (in particular A ∼= C ◦ P as S-modules ). As a
consequence there is an isomorphism H ∼= Cc(PrimH). Once such an isomorphism
is chosen, we call this data a combinatorial Cc-A-bialgebra. In this framework one
can generalize the results of this paper as follows. There exists an operad Q and a
morphism of operads P → Q such that the P-algebra of PrimH can be lifted to a
Q-algebra structure.
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Cyclotomy and Analytic Geometry over F1
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To Alain Connes, for his sixtieth anniversary

Abstract. Geometry over non–existent “field with one element” F1 conceived
by Jacques Tits [Ti] half a century ago recently found an incarnation, in several
related but different guises. In this paper I analyze the crucial role of roots
of unity in this geometry and propose a version of the notion of “analytic
functions” over F1. The paper combines a focused survey of various approaches

with some new constructions.

Introduction: many faces of cyclotomy

0.1. Roots of unity and the field with one element. The basics of alge-
braic geometry over an elusive “field with one element F1” were laid down recently
in [So], [De1], [De2], [TV], fifty years after a seminal remark by J. Tits [Ti]. There
are many motivations to look for F1; a hope to imitate Weil’s proof for Riemann’s
zeta is one of them, cf. [CCMa3], [Ku], [Ma1].

An important role in the formalization of F1–geometry was played by the sug-
gestion made in [KS] that one should simultaneously consider all the “finite exten-
sions” F1n . This resulted in the approach of [So], where a geometric object, say a
scheme, V over F1, acquired flesh after a base extension to Z, and the F1– geom-
etry of V was reflected in (and in fact, formally defined in terms of) the geometry
of “cyclotomic” points of an appropriate ordinary scheme VZ. In [De1] and [TV],
schemes over F1 are defined in categorical terms independently of cyclotomy, but
the latter reappears soon: see the Definition 1.1 below and the following discussion.

All these ideas are interrelated but lead to somewhat different versions of basic
definitions, and develop the initial intuition in different directions, so that their
divergence can be fruitfully exploited. With this goal in mind, I have chosen the
topics to be discussed in sec. 1, where four approaches to the definition of F1–
geometry are sketched and compared.

Of course, roots of unity appear naturally in many different geometric contexts,
not motivated by geometry over F1: some of these contexts are reviewed below in
the subsections 0.2–0.6 of this Introduction. I have compiled a sample of them with
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an explicit goal: to guess how the insights gained within these contexts could help
develop F1–geometry.

Seemingly, a similar desire moved the authors of [CCMa2] to put the theory of
Bost–Connes in the framework of F1–geometry.

I show in Sec. 2 and Sec. 3 that the results of [Ha1], the preparatory part to
K. Habiro’s work on Witten–Reshetikhin–Turaev invariants of homology spheres
[Ha2], and discoveries about these invariants made in [Law] and [LawZ], can be
naturally viewed as a contribution to the rudiments of analytic geometry over F1.

Finally, in Sec. 4 I discuss Witt vectors and a series of F1–models of moduli
spaces.

Acknowledgements. V. Golyshev’s note [Go] prompted me to think about cy-
clotomy in the F1 context. K. Habiro read a preliminary version of this paper and
suggested several complements and simplifications. H. Lenstra kindly referred me
to [van D] and other useful sources on profinite numbers. A. Connes and C. Consani
sent me a copy of their new paper [CC] which was being written during the same
weeks as the first version this article.

When this first version appeared on the arXiv on Sept. 09, 2008, I received
several messages commenting upon and developing the framework involving roots
of unity in F1–geometry.

Matilde Marcolli used the multivariable Habiro ring in [Marc] in order to gen-
eralize the Bost–Connes system.

James Borger drew my attention to the fact that my treatment of the cyclotomic
coordinates on Witt schemes perfectly matches his remarkable basic idea that “a
lambda–ring structure (in the sense of Grothendieck–Riemann–Roch) on a ring
R should be thought of as descent data for R from Z to F1” (message of Sept.
11, 2008). Borger’s approach promises to be a significant breakthrough in our
understanding of F1–geometry, and I have added a brief discussion of it in this new
version.

Finally, a totally anonymous referee provided a list of useful remarks and sug-
gestions.

I deeply appreciate their interest and help.

0.2. Roots of unity and Morse–Smale diffeomorphisms. This aspect of
cyclotomy is described by D. Grayson in [Gr].

Let M be a compact smooth manifold, f a diffeomorphism of M . It is called
Morse–Smale if it is structurally stable, and only a finite number of points x are
non–wandering. (A point x is called non–wandering if, for any neighborhood U of
x, we have U ∩ fn(U) �= ∅ for some n > 0).

Assume that all eigenvalues of the action of f on the integral cohomology of
M are roots of unity and pose the question: When f is isotopic to a Morse–Smale
map?

There is an obstruction to this, lying in the group SK1(R), where R is the
ring obtained by localizing Z[q] with respect to Φ0(q) := q and all cyclotomic
polynomials

Φn(q) :=
∏

η

(q − η)
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where η runs over all primitive roots of unity of degree n ≥ 1.

This ring turns out to be a principal ideal domain. The reason for this is that
each closed point (a prime ideal of depth two) of the “arithmetical plane” SpecZ[q]
is situated on an arithmetic curve Φn(q) = 0, n ≥ 0, because all finite fields consist
of roots of unity and zero.

Localization cuts all these curves off, and all closed points go with them. The
remaining prime ideals are of height one, and they are principal.

The same effect can be achieved by localizing with respect to all primes p ∈ Z,
thus getting the principal ideal domain Q[q]. This localization excises the closed
fibers of the projection SpecZ[q] → SpecZ, and all the closed points with them.

This suggests that the union of cyclotomic arithmetic curves Φn(q) = 0 can be
imagined as the union of closed fibers of the projection SpecZ[q] → Spec F1[q], and
the arithmetic plane itself as the product of two coordinate axes, the arithmetic
one SpecZ and the geometric one, Spec F1[q], over the “absolute point” Spec F1.

In Sec. 1 below, I review several versions of algebraic F1–geometry where this
intuition can be made precise.

0.2.1. Question. Is there a context in which diffeomorphisms f , acting on the
integral cohomology of M with eigenvalues roots of unity, could be interpreted as
“Frobenius maps in characteristic 1”, and their fixed (or non–wandering) points in
a Morse–Smale situation as F1n–points of an appropriate variety?

0.3. Roots of unity and the Witten–Reshetikhin–Turaev invariants.
An apparently totally different line of thought led to the consideration of comple-
tions of Z[q] with respect to various linear topologies generated by the cyclotomic
polynomials Φn(q). Namely, it turned out that the invariants of 3–dimensional
homology spheres, introduced first by E. Witten by means of path integrals, and
mathematically constructed by Reshetikhin and Turaev, can be unified into objects
lying in completions of the kind described above.

0.3.1. Question. Can these completions be interpreted in a framework of F1–
geometry?

We try to answer this question affirmatively in Sec. 2 and Sec. 3 below.

(Similar completions along the arithmetical axis produce for example direct
products of p–adic integers

∏

Zpi
and the ring lim←−N

Z/(p1 . . . pN ), in which Z can

be embedded.)

We suggest two interpretations, one in the framework of Soulé’s axiomatics,
and another more in the spirit of Toën–Vaquié and Deitmar’s definitions. Here are
brief explanations.

Soulé’s definition of an F1–scheme X involves, besides XZ, a C–algebra AX ,
and each cyclotomic point of XZ coming from X must assign “values” to the el-
ements of AX . His choice of AX for the multiplicative group Gm,F1

is that of
continuous functions on the unit circle in C (cf. [So], 5.2.2). For the affine line he
uses holomorphic functions in the open unit circle continuous on the boundary.

We suggest to consider respectively the ring of Habiro’s analytic functions and
the ring of Habiro’s functions admitting an analytic continuation in the open unit
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disc. The first one consists of formal series

(0.1) f(q) = a0 +
∞
∑

n=1

an(1− q) · · · (1− qn).

where the an are polynomials in q of degree ≤ n − 1. At any root of unity, only a
finite number of terms do not vanish, so f is a well defined function on cyclotomic
points.

The second option consists in considering holomorphic functions ϕ(q) in the
unit circle, such that for any root of unity ζ, a radial limit limr→1− rζ exists, and
the family of such limits can be given by the series (0.1).

Versions of this choice might involve functions holomorphic inside variable rings
with outer boundary |q| = 1 admitting radial limits at roots of unity, or even pairs
of functions ϕ−, resp. ϕ+, holomorphic inside narrow rings with outer, resp. inner,
boundary unit circle, which restrict to a C∞–function on all small radial intervals
(1− εζ , 1 + εζ) · ζ containing roots of unity ζ. In particular, they must satisfy

lim
r→1−

ϕ− (rζ) = lim
r→1+

ϕ+(rζ)

The limit values should admit the representation (0.1).

The fact that there exist highly nontrivial and interesting examples of such
functions was discovered in the theory of Witten–Reshetikhin–Turaev invariants:
cf. [Law], [LawZ]. Don Zagier says that ϕ± “leak through” roots of unity.

On the other hand, if AX is not a part of the definition of an F1–scheme, as
in the versions of [TV] and [De1], one can still imagine that a ring of the type
discussed above would form a part of the structure of analytic F1–varieties when
F1–geometry becomes mature enough to include analytic geometry.

[CCMa2] also suggests that time is ripe for such generalizations.

0.4. Roots of unity and the Bost–Connes system. In the paper [BoCo]
roots of unity appear in the following setting. Consider the Hecke algebra H with
involution over Q given by the following presentation. The generators are denoted
μn, n ∈ Z+, and e(γ), γ ∈ Q/Z. The relations are

μ∗
nμn = 1, μmn = μmμn, μ∗

mμn = μnμ
∗
m for (m,n) = 1;

e(γ)∗ = e(−γ), e(γ1 + γ2) = e(γ1) e(γ2);

e(γ)μn = μne(nγ), μne(γ)μ
∗
n =

1

n

∑

nδ=γ

e(δ).

The idèle class group ̂Z∗ of Q acts upon H in a very explicit and simple way: on

the e(γ)’s the action is induced by the multiplication ̂Z∗ ×Q/Z → Q/Z, whereas
on the μn’s it is the identity.

The algebra H admits an involutive representation ρ in l2(Z+): denoting by
{εk} the standard basis of this space, we have

ρ(μn) εk = εnk, ρ(e(γ))εk = e2πikγεk.

From this, one can produce the whole Gal (Qab/Q)–orbit {ρg} of such representa-
tions, applying g ∈ Gal (Qab/Q) to all roots of unity occuring on the right hand
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sides of the expressions for ρ(e(γ))εk. All these representations can be canoni-
cally extended to the C∗–algebra completion C of H constructed from the regular
representation of H. Let us denote them by the same symbol ρg.

To formulate the main theorem of [BoCo], we need some more explanations.
The algebra C admits a canonical action of R, which can be interpreted as time
evolution represented on the algebra of observables. This is a general (and deep)
fact in the theory of C∗–algebras, but for C the action of R can be quite explicitly
described on the generators. Let us denote by σt the action of t ∈ R. A KMSβ
state at inverse temperature β on (C, σt) is defined as a state ϕ on C such that for
any x, y ∈ C there exists a bounded holomorphic function Fx,y(z) defined in the
strip 0 ≤ Im z ≤ β and continuous on the boundary, satisfying

ϕ(xσt(y)) = Fx,y(t), ϕ(σt(y)x) = Fx,y(t+ iβ).

Now denote by H the positive operator on l2(Z+): Hεk = (log k) εk. Then for
any β > 1, g ∈ Gal (Qab/Q) one can define a KMSβ state ϕβ,g on (C, σt) by the
following formula:

ϕβ,g(x) := ζ(β)−1Trace (ρg(x) e
−βH), x ∈ C

where ζ is the Riemann zeta–function. The map g 
→ ϕβ,g(x) is a homeomorphism
of Gal (Qab/Q) with the space of extreme points of the Choquet simplex of all
KMSβ states.

On the contrary, for β < 1 there is a unique KMSβ state. This is a remarkable
“arithmetical symmetry breaking” phenomenon.

The description of the Hecke algebra above involves denominators in the last
relation. In [CCMa2], the authors construct Z–models of finite layers of this object
and natural morphisms between them, and show that the resulting system is a lift
to Z of an F1–tower.

This picture is generalized to the multivariable case in [Marc].

0.5. Witt vectors. It is desirable to consider the arithmetical axis SpecZ as
an F1–space as well, but in the current framework it is certainly not a scheme of
finite type. In fact, its base extension to Z is elusive, being precisely what we would
like to see as the spectrum of Z⊗ Z.

Nevertheless, in a certain sense primes can be considered as cyclotomic points
of SpecZ, at which the “cyclotomic coordinates”, all integers, take values that are
roots of unity or zero.

In fact, roots of unity of degree q = pn−1 (and zero), considered together with
their embedding into a fixed unramified extension Znr

p of Zp rather than C, appear
as natural coefficients of p–adic expansions discovered by Teichmüller and Witt.
Namely, each residue class in Znr

p /(p) has a unique (Teichmüller) representative ζ
which is either a root of unity or 0 in Znr

p , so that an element of such an extension

can be written as a well-defined series
∑∞

i=0 ζip
i. Moreover, coefficients of a sum

or a product of two such series are given by Witt’s universal polynomials in the
coefficients of the summands/factors in the following sense: one must reduce Witt’s
coefficients modulo p, apply these polynomials (which are defined over Z), and lift
the results back to roots of unity.

This can be generalized to the so called “big Witt ring” and interpreted in the
following way. On affine spaces Ak

Z = SpecZ [u1, u2, . . . , uk] there exists a natural
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system of “cyclotomic coordinates” (in the p–adic context sometimes called “ghost
coordinates”). In terms of these coordinates, one can define an F1–gadget à la Soulé,
requiring that, in the subfunctor of points, these coordinates take cyclotomic values
(including zero). However, Witt’s addition/multiplication becomes well defined
only after extension to Z, unless the notion of morphism over F1 is drastically
extended.

To me, this looks like a strong argument for considering options for such an
extension.

We supply some more details in Sec. 4.

0.6. Roots of unity and the analogy between Hilbert polynomials and
zeta functions. There were several suggestions that Hilbert polynomials H(n),
say, of graded commutative rings, behave like toy zeta functions.

Rather precise recent observations by V. Golyshev in [Go] can be summarized
as follows.

a) The comparison to zetas becomes most striking if one restricts oneself to the
following Hilbert polynomials of projective smooth manifolds X:

(i) If X is of general type or Fano: consider H−KX
(n) := χ(−nKX).

(ii) If X is a Calabi–Yau manifold embedded as an anticanonical section in
a Fano manifold: consider the Euler characteristic of the powers of the induced
anticanonical sheaf.

b) With this normalization, Serre duality leads to a functional equation for the
Hilbert polynomial of the s 
→ −1− s type.

c) In many cases, the well known inequalities for Chern numbers of X imply
that all roots of H(s) lie in the critical strip −1 < Re s < 0, and sometimes even
more precise statements. For example, Yau’s inequality c31 ≥ 8/3c1c2 for Fano
threefolds shows this fact for them.

0.6.1. Question. Is there a systematic relationship between Hilbert polynomials
and zeta functions of schemes (or more general spaces) over F1?

The existence of such zeta functions and their structure in certain cases was
heuristically suggested in [Ma1] (cf. also [Ku]). They make precise sense for some
specimens in Soulé’s category, and are indeed polynomials; see also [CC] for essential
complements. An obvious attack on question 0.6.1 might start with comparing the
counting of F1n–points with counting of monomials in cyclotomic coordinates.

Roots of unity appear in this context via the following beautiful observation
due to F. Rodriguez–Villegas [RV].

Consider first an arbitrary polynomial H(q) ∈ Z[q]. Define another polynomial
P (t) such that

∞
∑

n=0

H(n)tn =
P (t)

(1− t)d

where P (1) �= 0. Let d := degH + 1, e := degP.

Rodriguez–Villegas proves that if all roots of P lie on the unit circle, then H(q)
has simple roots at q = −1, . . . , e+1− d and possible additional roots at the middle

of this critical strip Re q =
e− d

2
.
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This result can be applied to the case when H(n) = dimAn is the Hilbert
polynomial of a graded algebra ⊕∞

n=0An generated by A1, of Krull dimension d, a
complete intersection of polydegree (n1, . . . , ns).

It turns out that e = n1 + · · ·+ ns and P (t) =
∏s

j=1(1 + t+ · · ·+ tnj ), so that
all roots of P are in fact roots of unity.

The critical strip in [Go] has width 1, because Golyshev differently normalizes
the grading via −KX . However, the Rodriguez–Villegas grading agrees with the
motivic philosophy involving weights and Tate’s motives over F1, see [Ma1].

0.7. Summary. We are guided by the following heuristics. Each time that
roots of unity appear in a certain context, we try to interpret the functions whose
values are these roots of unity as cyclotomic coordinates on a relevant F1–scheme,
in the sense of the Definition 1.1 below, or a version thereof.

An appropriate version of (big) Witt vectors must furnish the basic F1–analytic
(or formal) approximation to the arithmetic line SpecZ.

1. Geometry over F1: generalities

This section sketches and compares four approaches to the definition of F1–
geometry. Preparing a colloquium talk in Paris, I have succumbed to the temptation
to associate them with some dominant trends in the history of art.

1.1. Affine schemes over F1 according to Toën and Vaquié. (Abstract
Expressionism). Affine schemes over F1 arise in the most straightforward (and al-
lowing vast generalizations) manner in the framework of [TV], according to which
algebraic geometry over F1 is a special case of algebraic geometry relative to a
monoidal symmetric category (C,⊗,1), which is assumed to be complete, cocom-
plete, and to admit internal Hom’s.

Such a category C gives rise to the category of commutative, associative and
unitary monoids Comm (C) which serves as a substitute for the category of ordinary
commutative rings. Each object A of Comm (C) determines the category of A–
modules A–Mod consisting of pairs (M,μ) where M is an object of C together
with an action μ : A⊗M → M and satisfying the usual formalism.

The opposite category AffC := Comm (C)opp is called the category of C–affine
schemes, and the tautological functor Comm (C) → AffC is called Spec.

Florian Marty in [Mart2] defines and studies the notion of smoothness in the
Toën–Vaquié geometry. This requires passing to the homotopical algebra in appro-
priate simplicial categories.

According to [TV], we obtain F1–geometry as the geometry relative to the
monoidal category of sets and direct products (Ens,×, ∗).

Commutative rings relative to (Ens,×, ∗) are just the ordinary commutative
(associative, unital) monoids written multiplicatively: this explains the popular
motto that to do F1–algebra one must forget the additive structure: cf. [Har]. This
structure is restored when one applies the functor “base change” ⊗F1

Z: a monoid
M turns into the commutative associative unital ring Z[M ]. The opposite to the
monoidal category will be denoted by AffF1

.
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More generally, any commutative ring R determines the base extension functor

⊗F1
R : AffF1

→ AffR, M 
→ R[M ],

from affine schemes over F1 to affine schemes over SpecR.

Elements of monoids M will be called cyclotomic coordinates on the respective
affine scheme. The same term will refer to their images in R[M ]. On more general
schemes, we may speak about local cyclotomic coordinates.

1.2. Deitmar’s affine schemes. (Minimalism). A. Deitmar in [De1] adopts
the same definition of the category AffF1

. Moreover, he associates to a monoidM a
topological space which we will denote specM (to distinguish it from the spectrum
of prime ideals of a ring Spec (∗)), and which is endowed with a structure sheaf.
Points of this space are prime ideals P ⊂ M : submonoids such that xy ∈ P implies
x ∈ P or y ∈ P . Basic open sets and the structure (pre)sheaf of monoids are deter-
mined via localization, just as in the classical case of commutative rings. Moreover,
Deitmar characterizes morphisms in AffF1

in terms of appropriate morphisms of
topological spaces spec with structure sheaves.

1.3. Examples. (i) Affine F1–schemes associated to abelian groups. Let M
be an abelian group considered as a monoid in Ens. We have

specM ⊗F1
Z = SpecZ[M ].

In particular, [TV] define F1n as the monoid (group) Z/nZ, and its spectrum after
lifting to Z becomes

(1.1) spec F1n ⊗F1
Z := SpecZ[q]/(qn − 1) = SpecZ[q]/{n}q.

In [So], the study of Z[q]/{n}q–points of an a priori given ordinary scheme X gives
clues to finding its F1–forms identified with certain subfunctors of F1n–points.

In our paper, formula (1.1) motivates the introduction of analytic functions on
(certain) F1–schemes via Habiro’s formalism: morally, they are functions that are
defined at all F1n–points, but nowhere else. (In fact, the latter stricture should not
be taken too literally: some functions have very interesting p–adic, and sometimes
complex, arguments and values as well).

(ii). Affine scheme Gm,F1
. Over F1, it is represented by the spectrum of the

infinite cyclic group Z. Lifted to Z, it becomes the ordinary Gm = SpecZ[q, q−1].

1.4. Affine spaces. The affine line A1
F1

is the spectrum of the infinite cyclic

monoid N. Its lift to Z is A1
Z := SpecZ[q]. Similarly, Ak

F1
is the spectrum of Nk,

k ≥ 1.

The space specN consists of one closed point (q) and one generic point.

One can also consider N×, that is, the free monoid freely generated by all
primes. Its lift to Z is the ring of polynomials in infinitely many variables indexed
by primes.



CYCLOTOMY AND ANALYTIC GEOMETRY OVER F1 393

1.5. Affine scheme GL(n)F1
. According to [TV], Proposition 4.1, the natural

sheaf (in the Grothendieck flat topology, see [TV] and 1.6 below) of automorphisms
of a free module of rank n is represented, after lifting to Z, by the semidirect
product of Gn

m and Sn (the symmetric group).

In the more down–to–earth language of [De1], sec. 5, this is expressed as follows.
Let A be a commutative monoid. Define the (set–theoretic) group of “A–valued
points of GL(n)F1

” as

GL(n)F1
(A) := AutA(A

n).

This can be identified with the group of (n, n) matrices with entries in A ⊂ Z[A],
having exactly one non–zero element in each row and each column. This is precisely
the description of [TV] quoted above.

The reader should be warned that, contrary to what happened with Ak and Gm,
after lifting GL(n)F1

to Z we do not get the usual GL(n)Z. This caused a difficulty
in the framework of [So], where it was not obvious how to choose “cyclotomic points
of GL(n)Z.” In fact, according to [TV], Proposition 4.1, GL(n)Z for n > 1 is not a
lift of an F1–scheme in their sense.

1.6. General schemes over F1. Glueing general schemes from affine ones is
defined differently in [TV] and [De1], respectively.

For Deitmar, an F1–scheme is a topological space with a sheaf of monoids that
is everywhere locally affine, that is, locally isomorphic to some specM .

Toën and Vaquié endow the category AffC with a natural Grothendieck topol-
ogy, which is called the flat topology. Using it, one can defined general schemes rela-
tive to C, as functors that can be obtained from disjoint unions of affine schemes X
by taking the quotient with respect to an equivalence relation R ⊂ X×X such that
projections R → X are local Zariski isomorphisms. Such schemes form a category
denoted Sch (C).

Florian Marty in [Mart1] presents a thorough study of the Zariski topology
on the category of commutative monoids in C and applies it to the comparison of
Deitmar’s schemes with Toën–Vaquié’s ones.

1.7. Schemes over F1 à la Soulé. (Critical Realism). The idea of Soulé’s
definitions in [So] can be succinctly formulated as the project of direct reconstruc-
tion of F1–schemas X of finite type from certain schemes XZ over Z endowed with
some kind of descent data from Z to F1.

However, more than only descent data to F1 is required: Soulé’s spaces come
with an additional data AX which is a C–algebra, morally an algebra of functions
on the “∞–adic completion” of X.

This latter structure embeds F1–geometry into a wider context, potentially
containing also rich structures of Arakelov, or ∞–adic geometry. Some hints that
this should be necessary and possible can be glimpsed in the remark made in [Ma1],
1.7. Namely, in [Ma1] it was suggested that the zeta function of Pk

F1
must be

(2π)−(k+1)s(s− 1) · · · (s− k).
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Combining this with Deninger’s representation of the basic Euler Γ–factor at
arithmetical infinity as a regularized product

ΓC(s)
−1 :=

(2π)s

Γ(s)
=

∏

n≥0

s+ n

2π

we see that this gamma–factor should be understood as the zeta–function of the
(motivic dual of) an infinite dimensional projective space over F1.

However, the existing framework is too narrow to make sense of this statement:
although the zeta of Pk

F1
is now defined in [So] and agrees with expectations of

[Ma1] (up to a power of 2π), the infinite–dimensional case and its connections with
∞–adic geometry still elude us. A promising approach extensively elaborated in the
thesis by N. Durov (cf. [Du]) might pave the way to this unification. The treatment
of the Bost–Connes dynamical system in [CCMa2] provides another bridge between
F1–geometry and the Archimedean world.

Returning to [So], we will now sketch his version of F1–schemes of finite type.

The data defining such a scheme X consist of:

(i) A Z–scheme of finite type XZ.

(ii) A subfunctor X(R) of the functor of points of XZ from a category of rings
to the category of sets:

XZ(R) := Hom(SpecR,XZ).

Here R runs over rings that are direct summands of ⊗iZ[q]/({ni}q), and each X(R)
is required to be a finite set. We will call elements of X(R) “cyclotomic points”.

(iii) A C–algebra AX , and an assignment of complex values to each element
f ∈ AX at each pair consisting of a point of X(R) and a ring homomorphism
R → C.

We will not spell out here the compatibility requirements between these data,
which are pretty straightforward.

Morphisms of schemes over F1 are pairs consisting of functor morphisms of cy-
clotomic points and contravariant homomorphisms of function algebras, compatible
with the rest of the data.

It is natural to call an F1–scheme X affine if XZ is affine. But, without further
restrictions, one would get many schemes over Z into which the cyclotomic points
could be embedded as a subfunctor. The restriction that restores the uniqueness of
XZ once X is known declares that XZ must be the initial object in the category of
such embeddings (see [So], Sec. 4, Definition 3, for a precise statement). A similar
universality requirement defines general F1–schemes (loc. cit., Definition 5).

We will now formally define the notion of cyclotomic coordinates on Soulé’s
F1–schemes. Let X be an affine F1–scheme, XZ = SpecA.

1.7.1. Definition.

Definition 1.1. A cyclotomic coordinate on the affine F1–scheme X in the
sense of Soulé is any element f ∈ A whose values at all cyclotomic points X(R)
are either 0 or roots of unity.
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Clearly, cyclotomic coordinates in this sense form a commutative monoid with
unit. If the scheme X is not affine, local cyclotomic coordinates can be defined,
forming a (pre)sheaf of commutative monoids.

Recall that in the framework of [TV] and [De1], where Z–lifts of F1–spaces
are patched from spectra of monoid ring Z [S], the elements of S themselves were
called cyclotomic coordinates. However, since these versions of F1–schemes are not
equivalent to Soulé’s version, we should use this term being aware of its context.

Notice also that

a) To reconstruct cyclotomic coordinates in the sense 1.7.1, it is sufficient to
know XZ and the functor R → X(R) ⊂ XZ(R). This is a part of the structure of
a gadget, as Soulé’s truc was translated in [CCMa2]).

b) The rings R used by Soulé to probe schemes over F1 are essentially group
rings of finite abelian groups.

Conceivably, one could replace finite abelian groups by finite commutative uni-
tal monoids, thus narrowing the gap between [So] and [TV], [De].

c) Moreover, one could sketch rudiments of supergeometry over F1, by requiring
Z2–grading of our monoids, a structure subgroup {±1}, and the anticommutation
rule for odd elements.

The following example from [So] serves as a good illustration of similarities and
differences between affine schemes in the sense of [So] and [TV] respectively, and of
relationships of F1 to Arakelov geometry.

1.7.2. Arakelov vector bundles over SpecZ as affine F1–schemes. An Arakelov
vector bundle Λ̄ over SpecZ is defined as a pair consisting of a free abelian group
Λ of finite rank and a Hermitian norm || · || on ΛC := Λ ⊗ C, “integral structure
at arithmetical infinity”. The global sections of Λ̄ over the “compactification”
SpecZ ∪∞ are defined as B ∩ Λ, where B := {x ∈ ΛC | ||x|| ≤ 1}.

In order to produce a Soulé affine scheme X(Λ̄) out of Λ̄, make an additional
choice (on which the final product will not depend): choose a finite subset Φ ⊂
B ∩ Λ \ {0} such that if v ∈ B ∩ Λ \ {0}, then exactly one element of the pair
{v,−v} belongs to Φ. Let Λ0 be the sublattice of Λ generated by Φ, Λt

0 the dual
lattice.

Now we can define the structure data.

(i) X(Λ̄)Z := Z[Λt
0].

(ii) The points of X(Λ̄)(R) are given by the following prescription:

X(Λ̄)(R) := {x =
∑

v∈Φ

v ⊗ ζv |x ∈ Λ⊗Z R, ζv ∈ μ(R) ∪ {0} }.

Equivalently, coefficients of v ∈ Φ are cyclotomic coordinates.

(iii) AX(Λ̄) is defined as the algebra of holomorphic functions which are contin-
uous on the boundary of the following domain:

C := {x ∈ Λ0 ⊗C | ||x|| ≤ cardΦ}.

Given a homomorphism σ : R → C, a cyclotomic R–valued point x and a function
f ∈ Z[Λt

0], we get its value at (x, σ) in an obvious way.
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Comparing this example to the definitions of [TV] and [De1], we see that the
algebra X(Λ̄)Z := Z[Λt

0] fits in their framework, but that other elements of the
structure significantly change morphisms and points.

1.7.3. A non–affine case: toric varieties. The treatment of this case in [TV],
[De1] and [So] leads to essentially the same object (although Soulé produces his
C–algebra only in the smooth case, i.e. for regular fans).

Let Δ be a fan. Each element σ ∈ Δ determines the dual cone σ∗. Let Mσ be
the commutative monoid of integer points of σ∗, Uσ is its spectrum as F1–scheme. If
τ is a face of σ, we get a morphism of monoids Mσ → Mτ . The respective morphism
of schemes Uτ → Uσ is Zariski open. Put X :=

∐

σ∈Δ Uσ. According to [TV], 4.2,
the quotient of X × X modulo equivalence relation R :=

∐

σ,τ∈Δ Uσ∩τ defines an

F1–scheme X(Δ)F1
. Lifting it to Z, we get the classical toric scheme X(Δ).

In [De1], the same quotient is straightforwardly interpreted as a glueing of
monoid spectra. In [So] the picture is enhanced by an appropriate C–algebra.

1.8. Tits’s problem and Connes–Consani schemes. Tits remarked that
one can substitute q = 1 in the classical formulas for the number of Fq points of
a projective space Pn−1 (resp. Grassmannian Gr (n, j)) and get formulas for the
cardinality of {1, . . . , n} (resp. of the set of subsets of cardinality j in it). Thus we
get a version of classical combinatorial projective geometry, in which each line has
two points, each plane has three points, etc. Tits asked in [Ti] how to extend this
to Chevalley groups and the respective homogeneous spaces: it would be a version
of geometry of homogeneous spaces “over a field of characteristic 1” as he put it
then.

This project was realized only in 2008, when A. Connes and C. Consani adapted
Soulé’s definition to this problem in [CC]. Their main innovation consists in con-
sidering the functor of cyclotomic points X(R) as taking values in the category of
graded sets. Only components of degree zero are taken into account in various point
counting contexts. After clarifying this issue they find out that Chevalley schemes
have F12 as a natural field of definition, rather than F1.

1.9. Lambda–rings and Borger’s project. (Futurism). As I have already
mentioned, the key idea of James Borger consists in a totally new conception
of Z–to–F1 descent data: namely, a restricted λ–ring structure in the sense of
Grothendieck.

According to [BorS], one can think about such a structure on a ring without
additive torsion R as a family ψp : R → R of commuting ring endomorphisms
indexed by primes such that ψp(x)− x ∈ pR for all x, p.

More generally, as is sketched in [Bor2], we may consider the category of
“spaces” SpZ, defined as sheaves of sets on the category of affine schemes with
the étale topology. It is endowed with the endofunctor W ∗ of infinite big Witt
vectors (cf. the definition in 4.1 below). This endofunctor carries a canonical
monad structure. A Λ–structure on a space X is defined as an action of W ∗ on
X. Λ–spaces with W ∗–equivariant morphisms form a category SpZ/Λ. The functor
forgetting the Λ–structure is called v∗ : SpZ/Λ → SpZ. It admits a left adjoint v!
and a right one v∗. The first one must be thought of as (geometric) forgetting the
base, and the second one as Weil’s restriction of scalars functor.
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Using the general topos formalism, Borger looks at the algebraic geometry of
Λ–rings as a lifted algebraic geometry over F1, represented by the big etale topos
over F1.

In particular, the ring W (Z) of big Witt vectors with entries in Z should be
thought of as (a completed version of) Z⊗F1

Z.

Varieties of finite type over F1 (in this sense) are very rigid, combinatorial ob-
jects. They are essentially quotients of toric varieties by toric equivalence relations.
In particular, only Tate motives descend to F1.

Non–finite–type schemes over F1 are more interesting. The big de Rham–Witt
cohomology of X “is” the de Rham cohomology of X ”viewed as an F1–scheme”.
It should contain the full information of the motive of X and is probably a concrete
universal Weil cohomology theory.

The Weil restriction of scalars from Z to F1 is an arithmetically global version
of Buium’s p–jet space.

1.10. A summary. Deitmar’s definition of the category of schemes over F1

is, as he himself stresses in the opening paragraph of [De2], a minimalistic one. It is
quite transparent, but obviously does not allow one to treat some more sophisticated
situations, such as Soulé’s scheme 1.7.2. In fact, Theorem 4.1 of [De2] shows that if
X is a connected integral F1–scheme of finite type, then its lift to C, XC, consists
of a finite union of mutually isomorphic toric varieties.

The richness of Toën and Vaquié’s definition becomes apparent when it is ap-
plied to other basic symmetric monoidal categories. Especially remarkable is the
extension of F1–geometry S1-Sch which is the category of schemes relative to the
category (SEns,×, ∗) of simplicial sets with direct product. There is a canonical
functor “base extension” S1-Sch → F1-Sch, so that this geometry lies “below”
F1–geometry, in the same sense as F1–geometry lies below Z–geometry. Another
extension with great promise is the algebraic geometry over “brave new rings”.

One outstanding problem is to extend cyclotomy to the homotopical framework.

This is an appropriate place to stress that in a wider context of [TV], or even-
tually in noncommutative F1–geometry, the spectrum of F1 loses its privileged
position of a final object of a geometric category. For example, in noncommutative
geometry, or in an appropriate category of stacks, the quotient of this spectrum
modulo the trivial action of a group must lie below this spectrum.

Soulé’s algebrasAX are a very important element of the structure, in particular,
because they form a bridge to Arakelov geometry. Soulé uses concrete choices of
them in order to produce a “just right” supply of morphisms, without a priori
constraining these choices formally.

However, these algebras appear as an ad hoc and somewhat arbitrary supple-
ment to the natural F1–algebraic objects. Perhaps a way to think about them is to
imagine a possible definition of 1–adic numbers.

Borger’s context might lead to progress in this direction.
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2. Habiro’s analytic functions of many variables

statements of results

2.1. Notations. Rings in this and the next sections are associative, commu-
tative and unital, unless the context suggests otherwise. Ring homomorphisms are
unital. Letters R,R0, R1, . . . denote rings, q, q0, q1, . . . are independent commuting
variables.

Let R be a ring, I = {Iα} a family of ideals filtered by inclusion. The ring
projective limit lim←−α

R/Iα is called the completion of R with respect to I and

denoted ̂RI or some version of this notation. When I is (cofinal to) the family of
powers of one ideal I, the respective limit is called the I–adic completion.

We say that R is I– (resp. I–adically) separated if ∩αIα = ∅. Equivalently, the
canonical homomorphism R → ̂RI is injective. Example: R = Z, I any infinite
filtering system.

When q is considered as a “quantization parameter”, our quantized (Gaussian)
versions of integers and factorials are, as in [Ha2],

(2.1) {N}q := qN − 1, {N}q! := {N}q{N − 1}q . . . {1}q.

Fix an integral domain R0 of characteristic zero and put Rn := R0[q0, . . . , qn],
with natural embeddings R0 ⊂ R1 ⊂ R2 ⊂ · · ·

Denote by In,N ⊂ Rn the ideal ({N}q1 !, . . . , {N}qn !), N ≥ 1. Clearly, In,N ⊂
In,N+1 so that the rings R

(N)
n := Rn/In,N , n ≥ 1 being fixed, form an inverse

system.

2.2. Definition.

Definition 2.1. The ring of Habiro’s analytic functions of n variables over
R0 is defined as

̂Rn := lim←−
N

R(N)
n .

2.3. Taylor series of analytic functions. Choose a vector of roots of unity
ζ = (ζ1, . . . , ζn) such that all ζi are in R0. For any integer M > 0, there exists
N0 = N0(ζ,M) such that In,N ⊂ (q1 − ζ1, . . . , qn − ζn)

M for all N ≥ N0. In fact,
{N}qi ! is divisible by any fixed monomial (qi − ζ)M , ζ ∈ μ, if N is large enough.

The completion lim←−M
Rn/(q1 − ζ1, . . . , qn − ζn)

M is R[[q1 − ζ1, . . . , qn − ζn]].

Therefore we obtain a ring homomorphism “Taylor expansion at the point ζ”:

Tn(ζ) : ̂Rn → R0[[q1 − ζ1, . . . , qn − ζn]].
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2.3.1. Theorem.

Theorem 2.2. If R0 is an integral domain, p–adically separated for all primes

p, then the same is true for ̂Rn, and the Habiro–Taylor homomorphism Tn(ζ) is
injective.

More generally, let F = {F1, . . . ,Fn} ∈ Z[q] be a family of monic polynomials
in R0[q] all of whose roots are roots of unity. Denote by (F ) the ideal generated by
F1(q1), . . . , Fn(qn) in Rn. In place of the formal series ring above, we can consider
the completion

̂RF := lim←−
M

Rn/(F )M

and the respective Taylor expansion homomorphism:

Tn(F ) : ̂Rn → ̂RF .

2.3.2. Theorem.

Theorem 2.3. If R0 is an integral domain, p–adically separated for all p, R[[F ]]
is also p–adically separated, and the homomorphism Tn(F ) is injective.

K. Habiro proved these results, as well as their generalizations, for n = 1, and
we build upon his proof.

2.3.3. Differential calculus. Divided powers of partial derivatives with respect
to qk are continuous in the linear topologies generated by In,N , resp. by all (q1 −
ζ1, . . . , qn − ζn)

M . Hence these derivatives make sense in ̂Rn, and their values at
(ζ1, . . . , ζn) are the Taylor coefficients of the respective series.

(In order to check the continuity with respect to In,N it suffices to notice that
as N tends to infinity, {N}q! as a polynomial of q vanishes at a growing set of
roots of unity with infinitely growing multiplicity at each root of unity. Taking a
derivative of such a sequence of polynomials does not destroy this property).

Thus we can develop for ̂Rn the conventional formalism of tangent and cotan-
gent modules, differential forms, etc.

2.4. Elements of ̂Rn as functions on roots of unity. Let R′
0 ⊃ R0 be an

integral domain flat over R0 and containing all roots of unity (that is, all cyclotomic
polynomials qn−1 completely split in R′

0). Denote by μ the set of all roots of unity
in R′

0. Choose ζ := (ζ1, . . . , ζn) ∈ μn. Any element of Rn, being a polynomial in
(q1, . . . , qn), takes a certain value at ζ belonging to R′

0. If N ≥ N0(ζ), all elements

of In,N vanish at ζ. Hence any element f ∈ ̂Rn defines a map f̄ : μn → R′
0.

This map is R0–linear and compatible with pointwise addition and multiplication
of functions.

Besides assuming that R0 is p–adically separated for all primes p, impose the
following separatedness condition: for any infinite sequence of pairwise distinct
primes p1, . . . , pk, . . . , we have

(2.2) ∩∞
m=1Rp1 · · · pm = {0}.
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2.4.1. Theorem.

Theorem 2.4. Under these assumptions, the map f 
→ f̄ is injective.

One can also formulate this statement without adjoining to R0 roots of unity.

2.4.2. Theorem.

Theorem 2.5. The natural map ̂Rn →
∏∞

m=1
̂Rn mod (Φm(q1), . . . ,Φm(qn)) is

injective.

For n = 1, these results were established by K. Habiro. He has also shown
that vanishing of f̄ on certain sufficiently large subsets of μ suffices to establish the
vanishing of f .

More precisely, Habiro’s topology on the set μ of all roots of unity is defined as
follows (cf. [Ha2], 1.2).

Two roots of unity ξ, η are called adjacent if ξη−1 is of order pm, m ∈ Z, p a
prime; or equivalently, if ξ − η is not a unit (as an algebraic number). Clearly, the
action of Gal (Q/Q) preserves adjacency.

2.4.3. Definition.

Definition 2.6. A subset U ⊂ μ is called open if, for any point ξ ∈ U , all
except for finitely many η ∈ μ adjacent to ξ belong to U .

The Galois action is continuous in this topology, in marked contrast to the
topology induced from C.

Let now μ′ be an infinite set of roots of unity. A point ξ ∈ μ′ is a limit point
of μ′ if for any open neighborhood U of ξ we have μ′ ∩ (U \ ξ) �= ∅. In Habiro’s
topology, this means that μ′ contains infinitely many points adjacent to ξ.

2.4.4. Theorem.

Theorem 2.7. Under the notations and assumptions of Theorem 2.2, let ν =

ν1 × · · · × νn ⊂ μn be a set, such that each νi ⊂ μ has a limit point. Let f ∈ ̂Rn. If
the restriction f̄ |ν is identically zero, then f = 0.

In the next section, we will prove this last result. Theorems 2.4 and 2.5 follow
from it.

2.5. Analogs of Habiro’s functions on the arithmetic axis and analytic
continuation. The Habiro ring of one variable lim←−N

Z[q]/({N}q!) “is” the lift to

Z of an imaginary ring lim←−N
F1[q]/({N}q!).

Along the arithmetic axis, the straightforward analog of the latter exists: this

is the topological ring of profinite integers ̂Z := lim←−N
Z/(N !). Its elements can be

uniquely represented by infinite series
∑∞

n=1 cnn!, where the cn are integers with
0 ≤ cn ≤ n, cf. [van D].

H. Lenstra in [Le] discusses profinite Fibonacci numbers: continuous extrapo-

lation to n ∈ ̂Z of the Fibonacci function n 
→ un.

An analog of the profinite number 1+
∑∞

n=1(−1)nn! is the remarkable example
of Habiro function of one variable

1 +

∞
∑

n=1

(−1)n{n}q! = 1 +

∞
∑

n=1

(1− q) · · · (1− qn).
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As a function on roots of unity, it emerged in a work of M. Kontsevich on Feynman
integrals (talk at MPIM, 1997). Don Zagier in [Za] proved that its values, as well
as values of its derivatives, are radial limits of the function (resp. its derivatives)
holomorphic in the unit circle

1

2

∞
∑

n=1

nχ(n)q(n
2−1)/24,

where χ is the quadratic character of conductor 12.

2.6. Habiro’s functions on F1–schemes. Let X be an F1–scheme in the
sense of one of the definitions from Sec. 1. Let (x1, . . . , xn) be a finite family
of local cyclotomic coordinates on X. For any ring R as in 1.7. (ii), denote by
U(R) ⊂ X(R) the set of cyclotomic points at which all xi are defined and take
non–zero values.

Consider an analytic function f ∈ ̂Rn in the sense of Habiro. This function
then defines a map

fR : U(R) → R, fR(r) := f̄(x1(r), . . . , xn(r)),

with evident functorial properties.

In an appropriate setting such functions must be local sections of a global sheaf.
I hope to return to this problem in another paper. Here I will restrict myself to the
following observations.

(i) We have to exclude zero values, because q1 is invertible in ̂R1, and hence

each monomial qm1
1 · · · qmn

n is invertible in ̂Rn. In fact,

q−1 = 1 +
∞
∑

n=1

(−1)nqn{n}q!,

see [Ha1], Proposition 7.1.

(ii) From the perspective of this paper, it seems quite natural to consider lo-
calizations with respect to functions such as qm1

1 · · · qmn
n − 1, deleting sets of roots

of unity closed in Habiro’s topology. However, such functions are generally not cy-
clotomic coordinates. This runs counter to the spirit of Toën–Vaqué’s definitions,
and requires rethinking of their framework.

3. Habiro’s analytic functions of many variables

Proofs and generalizations

3.1. The case n = 1. Assuming that a ring R is I–separated for each member
I of some set of filters SR, we can deduce that the ring R[q], and certain its
completions, are separated with respect to the members of another set of filters,
say SR[T ]. Results of this type are collected and proved in [Ha1]. They will allow
us to perform inductive steps, passing from n to n+ 1,
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3.2. Proof of the Theorem 2.2. We will perform induction on n, using
Habiro’s theorem for n = 1 ([Ha1], Theorem 5.2) as the basis of induction.

Assuming the theorem proved for ̂Rn, we will proceed by decomposing the

Taylor series map ̂Rn+1 → R0[[q1 − ζ1, . . . , qn − ζn, qn+1 − ζn+1]] into the product
of two ring homomorphisms and checking injectivity of each one:

̂Rn+1
α→ → ̂Rn[[qn+1 − ζn+1]]

β→ →R0[[q1 − ζ1, . . . , qn − ζn]] [[qn+1 − zn+1]]

Now we will define the arrows α, β and check their properties.

The arrow β is continuous in (qn+1 − ζn+1)–adic topology, acts identically on

qn+1 − ζn+1, and sends each element of ̂Rn to its Taylor series at (ζ1, . . . , ζn). In
view of the inductive assumption, β is injective.

To define α, consider an element g ∈ ̂Rn+1. It can be represented as the limit
of a sequence of polynomials g1, g2, . . . , gN , . . . , where gi ∈ R0[q1, . . . , qn+1] such
that gN+1 ≡ gN mod In+1,N .

From the definition it follows that

In+1,N = In,N [qn+1] +Rn+1 · {N}qn+1
!

Therefore,

(3.1) gN+1 = gN + iN + rN · {N}qn+1
!,

where

iN ∈ In,N [qn+1], rN ∈ Rn+1.

Now consider a point (ζ1, . . . , ζn+1) as above. Clearly,

In,N [qn+1] = In,N [qn+1 − ζn+1].

Write gN , iN , {N}qn+1
! as polynomials in qn+1 − ζn+1 with coefficients in Rn.

When N becomes large enough, {N}qn+1
! starts with an arbitrarily large power of

qn+1 − ζn+1. Therefore for any given M , the coefficient at (qn+1 − ζn+1)
M in gN+1

is the same as in gN + iN if N ≥ N1(M, ζ). Hence the sequence of these coefficients

(M being fixed and N growing) converges to a certain element aM ∈ ̂Rn.

Put α(g) :=
∑∞

M=0 aM (qn+1 − ζn+1)
M . One can routinely check that α(g)

depends only on g ∈ ̂Rn+1 and not on the system (gN ) chosen to represent g.
Moreover, we get a ring homomorphism

(3.2) α : ̂Rn+1 → ̂Rn[[qn+1 − ζn+1]].

Let us check that α is injective. In fact, take a nonzero element g = lim gN .
Then there exist arbitrarily large N such that gN /∈ In+1,N . Representing gN as a
polynomial in qn+1 − ζn+1 with coefficients in Rn, we can find in this polynomial a
coefficient, not belonging to In,N . In the limit, it will produce a nonvanishing aM .

Finally, β ◦ α = Tn+1(ζ) by construction.
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3.3. Proof of the Theorem 2.7. We first remark that the case n = 1 is
essentially covered by Theorem 6.1 of [Ha1], if one weakens the assumption R0 ⊂ Q̄
in the statement of this Theorem. In fact, this assumption is used only at the end
of the proof, in order to ensure the validity of the separatedness condition (2.2).

Instead, we will simply postulate (2.2). for R0, and then deduce it for each ̂Rn

using the Taylor embedding of Rn into R0[[q1 − ζ1, . . . , qn+1 − ζn+1]].

To pass from n to n+ 1, I will start with the following remarks.

Let R be a ring endowed with a filtering family of ideals I = {Iα}. Consider
the following two families of ideals in the polynomial ring R[q]:

(i) I1 := {Iα[q] + ({N}q!) |α,N arbitrary}.
(ii) I2 := {({N}q!) |N arbitrary}.
Denote by R[q]˜ (resp. R[q]̂ ) the completion of R[q] with respect to I1 (resp.

I2.
For any N and α, we have natural surjections

R[q]/({N}q!) → R[q]/(Iα[q] + ({N}q!)).
Passing to the limit, we get a canonical surjection

ϕ : R[q]̂→ R[q]˜.

3.3.1. Lemma.

Lemma 3.1. Consider the case R = ̂Rn, I = {̂In,N ) where

̂In,N := ({N}q1 !, . . . , {N}qn !) ⊂ ̂Rn.

Then the homomorphism

ϕ : ̂Rn[qn+1]
̂→ ̂Rn[qn+1]

˜= ̂Rn+1

is an isomorphism.

Proof. It suffices to check that Kerϕ = {0}. In fact, as in 3.2, we have an
injection

α : ̂Rn[qn+1]
˜→ ̂Rn[[qn+1 − 1]]

and a one–variable Taylor series injection

T : ̂Rn[qn+1]
̂→ ̂Rn[[qn+1 − 1]].

By construction, α ◦ ϕ = T , hence ϕ is an injection as well. �

3.3.2. End of proof of Theorem 2.7. Suppose now that g ∈ ̂Rn+1 vanishes at
all points (ζ1, . . . , ζn+1), ζi ∈ νi ⊂ μ, each of νi having a limit point. To simplify
notation, assume that all roots of unity are in R0.

The evaluation of g at (ζ1, . . . , ζn+1) can be decomposed into the composition
of two arrows:

ev(ζ1,...,ζn) ◦ evζn+1
: ̂Rn+1 → ̂Rn → R0,

where the first arrow evζn+1
is obtained by taking the constant term in α(g), (3.2),

and the second one is the evaluation at (ζ1, . . . , ζn).

First, fix (ζ1, . . . , ζn) and vary ζn+1 ∈ νn+1. We have already identified ̂Rn+1

with ̂Rn[qn+1]
̂ in a way which is clearly compatible with evaluation maps.



404 YURI I. MANIN

From the Habiro Theorem 6.1, [Ha1], we obtain that

ev(ζ1,...,ζn)(g) = 0

for all
(ζ1, . . . , ζn) ∈ ν1 × · · · × νn.

By the inductive assumption, g = 0. This finishes the proof.

3.4. General monoids, coordinate independence, and functorality.
Let M be a commutative monoid with unit.

We can consider the completion R′
0[M ] of R0[M ] with respect to the system of

ideals IN , where IN is generated by all elements {N}m! := (mn − 1) · · · (m− 1) for
m ∈ M .

Obviously, any morphism ψ : M → N induces the respective morphism of the
completed rings. In particular, the diagonal morphism M → M × M produces a
structure of Hopf algebra on R0[M ] and its completed version on R′

0[M ].

As K. Habiro noticed in a message to the author (Aug. 23, 2008), applying this

construction to M = Zn, we get precisely ̂Rn (if qi corresponds to the basic vector

(0, . . . , 1, 0, . . . , 0), with 1 at the i–th place.) Since the qi are invertible in ̂Rn, we
could as well start with R0[q1, q

−1
1 , . . . , qn, q

−1
n ], but it seemed more natural to me

to deduce the invertibility at the end of the construction.

4. Schemes with natural cyclotomic coordinates

Witt vectors and moduli spaces

In this section we treat two disjoint constructions.

4.1. Witt functors. The (big) Witt ring scheme W can be defined as an
infinite dimensional affine space SpecZ[u1, u2, u3, . . . ], whose polynomial algebra
of functions A is endowed with two homomorphisms A → A ⊗ A, “coaddition” α
and “comultiplication” μ.

The functor of its R–points, for a variable commutative ring R, set theoretically
is W (R) =

∏∞
k=1R where the k–th coordinate of the product is the value of uk

at the respective R–point. The maps α and μ induce on W (R) the structure of
commutative ring, functorial in R. This structure can be described quite explicitly,
if we use in place of {uk} the “ghost coordinates”

qn :=
∑

d|n
du

n/d
d .

In these coordinates, α and μ induce respectively componentwise addition and
multiplication (cf. [Haz], sec. 9 and 14, in particular (14.3)).

The N–truncated Witt scheme W (N) is obtained if we apply this to the subring
Z[u1, . . . , uN ] with induced αN and μN . For a prime p, the scheme Wp is obtained

by taking the subring generated by all upk , k ≥ 0. The truncated version W
(N)
p

jumps only at powers of p as well. In this way we get quotient functors of the Witt
functor, valued in commutative algebras.

In place of subrings, one can consider quotients by the ideals generated by the
complementary coordinates.
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4.1.1. Definition.

Definition 4.1. The (truncated) Witt gadget W(N) is defined by the following
data:

(i) W(N)
Z := W (N).

(ii) For a ring R as in 1.7, (ii), the subfunctor of cyclotomic points W(N)
Z (R)

of W (N)(R) is defined as consisting of points whose ghost coordinates are 0 or roots
of unity.

Thus, ghost coordinates are cyclotomic coordinates in the sense of Definition
1.1

4.2. Moduli spaces L0;2,B. In an ideal world, not only schemes allowing
“finite combinatorial” description ([So], p. 217) must be extensions of objects over
F1, but perhaps “all” rigid structures as well. An obvious challenge is presented by
M0,n, moduli spaces of stable curves of genus zero with n marked points forming
the basic operad of quantum cohomology.

As the first approximation, we look in this subsection to some moduli spaces
introduced in [LoMa1] and studied further in [LoMa2] and [Ma2]. Generally, they
parametrize curves of genus g, with marked points, a part of which (carrying “black”
labels) being allowed to merge between them, although not with singular or “white
labeled” points. There is an appropriate notion of stability and a representability
theorem. (Both were vastly generalized in the study [BaMa].)

Here we will focus on the case of genus zero, two white points and arbitrary
(≥ 1) number of black points. The resulting moduli spaces turn out to be toric,
based upon permutohedral fans. Therefore they are certainly lifts to Z of toric
F1–schemes. We discuss which of the canonical morphisms between them descend
to F1.

It is convenient to label the black points by elements of a finite set B, carrying
no additional structure (rather than, say, by {1, . . . , n}, which suggests a complete
order on labels).

Below we will give a toric description of the respective moduli space that we
will now denote by LB. For proofs, see [LoMa1].

4.3. Partitions. A partition {σ} of a finite set B is a totally ordered set of
non–empty subsets of B whose union is B and whose pairwise intersections are
empty. If a partition consists of N subsets, it is called an N–partition. If its
components are denoted σ1, . . . , σN , or otherwise listed, this means that they are
listed in their structure order.

Let τ be an (N + 1)–partition of B. If N ≥ 1, it determines a well ordered
family of N 2–partitions σ(a):

(4.1) σ
(a)
1 := τ1 ∪ · · · ∪ τa, σ

(a)
2 := τa+1 ∪ · · · ∪ τN+1, a = 1, . . . , N .

In the reverse direction, call a family of 2–partitions (σ(i)) good if for any i �= j we

have σ(i) �= σ(j) and either σ
(i)
1 ⊂ σ

(j)
1 or σ

(j)
1 ⊂ σ

(i)
1 . Any good family is naturally

well–ordered by the relation σ
(i)
1 ⊂ σ

(j)
1 , and we will consider this ordering as a part

of the structure. If a good family of 2–partitions consists of N members, we will
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usually choose superscripts 1, . . . , N to number these partitions in such a way that

σ
(i)
1 ⊂ σ

(j)
1 for i < j.

Such a good family produces one (N + 1)–partition τ :

(4.2) τ1 := σ
(1)
1 , τ2 := σ

(2)
1 \ σ(1)

1 , . . . , τN := σ
(N)
1 \ σ(N−1)

1 , τN+1 = σ
(N)
2 .

This correspondence between good N–element families of 2–partitions and (N+1)–

partitions is one–to–one, because clearly σ
(i)
1 = τ1 ∪ · · · ∪ τi for 1 ≤ i ≤ N.

4.4. The fan FB. Now we will describe a fan FB in the space NB ⊗R, where
NB := Hom (Gm, TB), TB := GB

m/Gm. Clearly, NB can be canonically identified
with ZB/Z, the latter subgroup being embedded diagonally. Similarly, NB ⊗R =
RB/R. We will write the vectors of this space (resp. lattice) as functions B → R
(resp. B → Z) considered modulo constant functions. For a subset β ⊂ B, let χβ

be the function equal 1 on β and 0 elsewhere.

4.4.1. Definition.

Definition 4.2. The fan FB consists of the following l–dimensional cones C(τ )
labeled by (l + 1)–partitions τ of B.

If τ is the trivial 1–partition, C(τ ) = {0}.
If σ is a 2–partition, C(σ) is generated by χσ1

, or, equivalently, −χσ2
, modulo

constants.

Generally, let τ be an (l + 1)–partition, and σ(i), i = 1, . . . , l, the respective
good family of 2–partitions (4.1). Then C(τ ) as a cone is generated by all C(σ(i)).

4.5. Toric varieties LB and forgetful morphisms. We denote by LB the
variety associated with the fan FB. It is smooth and proper, in fact projective.

Assume that B ⊂ B′. Then we have the projection morphism ZB′ → ZB which
induces the morphism fB′,B : NB′ → NB . It satisfies the following property: for
each cone C(τ ′) ∈ FB′ , there exists a cone C(τ ) ∈ FB such that fB′,B(C(τ ′)) ⊂
C(τ ). In fact, τ is obtained from τ ′ by deleting elements of B′ \B and then deleting
the empty subsets of the resulting partition of B.

Therefore, we have a morphism fB′,B
∗ : LB′ → LB which we will call the forget-

ful morphism (it forgets elements of B′ \B).The forgetful morphism is flat, because
locally in toric coordinates it is described as adjoining variables and localization.

4.6. LB as families of curves with two white and B black points. This
structure can be defined in terms of forgetful morphisms forgetting just one point
B. Let B ⊂ B′, cardB′ \B = 1.

We start with describing structure sections.

In order to define the two white sections of the forgetful morphism, consider
two partitions (B′ \ B,B) and (B,B′ \ B) of B′ and the respective closed strata.
The forgetful morphism restricted to these strata identifies them with LB. We will
call them x0 and x∞ respectively.

Finally, to define the j–th black section, j ∈ B, consider the morphism of
lattices sj : NB → NB′ which extends a function χ on B to the function sj(χ)
on B′ taking the value χ(j) at the forgotten point. This morphism satisfies the
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following condition: each cone C(τ ) from FB lands in an appropriate cone C(τ ′)
from FB′ . Hence we have the induced morphisms sj∗ : LB → LB′ which obviously
are sections. Moreover, they do not intersect x0 and x∞.

4.6.1. Proposition.

Proposition 4.3. With the notations and assumptions above, the forgetful
morphism is a universal family of (painted stable) marked curves of genus zero with
two white points and B black points.

In order to see the structure of fibers of the forgetful morphism, one should
notice that the inverse image of any point x ∈ Lτ is acted upon by the multiplicative
group Gm = Ker (TB′ → TB). This action breaks the fiber into a finite number of
orbits which coincide with the intersections of this fiber with various Lτ ′ described
above. When τ ′ is obtained by adding the forgotten point to one of the parts, this
intersection is a torsor over the kernel, otherwise it is a point. As a result, we get
that the fiber is a chain of P1’s, whose components are labeled by the components
of τ and singular points by the neighboring pairs of components.

4.7. Clutching morphisms. They are morphisms of the type LB1
× LB2

→
LB1

∐
B2

whose fiberwise description is this: glue ∞ of the first curve to 0 of the
second curve. They admit an obvious toric description.

About their operadic role, see [Ma2].

4.8. Proposition.

Proposition 4.4. Forgetful and clutching morphisms descend to the F1–models
of the toric varieties LB.
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Abstract. We consider parametric Feynman integrals and their dimensional
regularization from the point of view of differential forms on hypersurface
complements and the approach to mixed Hodge structures via oscillatory inte-
grals. We consider restrictions to linear subspaces that slice the singular locus,
to handle the presence of non-isolated singularities. In order to account for
all possible choices of slicing, we encode this extra datum as an enrichment
of the Hopf algebra of Feynman graphs. We introduce a new regularization
method for parametric Feynman integrals, which is based on Leray cobound-
aries and, like dimensional regularization, replaces a divergent integral with a
Laurent series in a complex parameter. The Connes–Kreimer formulation of
renormalization can be applied to this regularization method. We relate the
dimensional regularization of the Feynman integral to the Mellin transforms of
certain Gelfand–Leray forms and we show that, upon varying the external mo-

menta, the Feynman integrals for a given graph span a family of subspaces in
the cohomological Milnor fibration. We show how to pass from regular singu-
lar Picard–Fuchs equations to irregular singular flat equisingular connections.
In the last section, which is more speculative in nature, we propose a geomet-
ric model for dimensional regularization in terms of logarithmic motives and
motivic sheaves.
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1. Introduction

We consider here perturbative quantum field theories governed by a Lagrangian,
which in a Lorentzian metric of signature (+1,−1, . . . ,−1) on the flatD-dimensional
spacetime R

D, is given in the form

(1.1) L(φ) = 1

2
(∂φ)2 − m2

2
φ2 − Lint(φ),

where the interaction term Lint(φ) is polynomial in φ of degree at least three. The
corresponding action functional S(φ) =

∫

L(φ)dDx involves a single scalar field φ.
This is the simplest case, considered in the work of Connes–Kreimer. Generaliza-
tions of the Connes–Kreimer formalism for other theories have been developed more
recently (see for instance [40] for the case of gauge theories), but for the purposes
of the present paper we restrict our attention to scalar theories.

The purpose of this paper is to relate the approach to renormalization of
Connes–Kreimer [21], via Birkhoff factorization of loops in Lie groups of char-
acters of the Hopf algebra of Feynman graphs, and its successive reformulation of
Connes–Marcolli [22] in terms of Galois theory of a category of flat equisingular
connections with irregular singularities, to the approach via parametric Feynman
integrals, periods of complements of graph hypersurfaces, and motives, developed
by Bloch–Esnault–Kreimer in [14], [13].

The main approach we follow in this paper, in order to bridge between these
two different approaches, is a formulation of the dimensionally regularized Feynman
integrals in terms of Mellin transforms of certain Gelfand–Leray forms, as in the
approach of Varchenko [42], [43] to the theory of singularities and asymptotic mixed
Hodge structures on the cohomological Milnor fibration, in terms of asymptotic
properties of oscillatory integrals.

We deal with the fact that the graph hypersurfaces tend to have non-isolated
singularities by slicing the Feynman integral along generic linear spaces of dimension
at most equal to the codimension of the singular locus, using the same kind of
techniques used in the integral geometry of Radon transforms in projective spaces
developed by Gelfand–Gindikin–Graev [28]. Since typically the singular locus is
rather large in dimension, the slices obtained in this way will often be singular
curves in P

2 or singular surfaces in P
3. Instead of considering a single choice of a

slicing, which would mean losing too much information on the graph hypersurface,
one considers all possible choices and implements the data of the cutting linear
space as part of the Hopf algebra of graphs, much like what one does with the
choice of the external momenta, so that all possible choices are considered as part
of the structure.

The formulation one obtains in this way, in terms of Gelfand–Leray forms, sug-
gests a new method of regularization of parametric Feynman integrals, which, as in
the case of dimensional regularization, replaces a divergent integral with a Laurent
series in a complex variable ε, but which is defined using Leray coboundaries to
avoid the singular locus, by integrating around it along the fibers of a circle bundle.
We check that the formulation of renormalization in terms of Hopf algebras and
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Birkhoff factorization developed in Connes–Kreimer [21] applies without changes
if one uses this new regularization method instead of the customary dimensional
regularization.

The interpretation of the dimensionally regularized Feynman integrals as Mellin
transforms of Gelfand–Leray forms provides a direct link between Feynman integrals
and the cohomological Milnor fibration. In particular, we prove that, upon varying
the external momenta and the spacetime dimension D ∈ N in which the scalar
theory is considered, the corresponding Feynman integrals determine a family of
subspaces of the cohomological Milnor fibration, which inherit a Hodge and a weight
filtration from the asymptotic mixed Hodge structure of Varchenko. It remains to
be seen when this subspace recovers the full Milnor fiber cohomology and/or when
these induced filtrations still define a mixed Hodge structure.

Another important question, in trying to compare the approaches of [22] and
[14], is the use of irregular, as opposed to regular singular, connections. In fact,
from the point of view of motives or mixed Hodge structures, what one expects to
find is regular singular connections. These appear naturally in the form of Picard–
Fuchs equations and Gauss–Manin connections. However, the Galois theory ap-
proach to the classification of divergences in perturbative quantum field theory
developed in [22] relies on the use of irregular singular connections and a form of
the Riemann–Hilbert correspondence based on Ramis’ wild fundamental group. We
reconcile these two approaches by showing that, upon passing to Mellin transforms
of solutions of a regular singular Picard–Fuchs equation, one obtains solutions of
differential equations with irregular singularities. More precisely, we first recall the
construction and properties of the irregular singular connections considered in [22]
and the equisingularity condition that characterizes them. We then prove that so-
lutions of the regular singular Picard–Fuchs equations at the singular points of a
graph hypersurface (sliced with a linear space of a suitable dimension so that sin-
gularities are isolated) can be assembled to give rise to a solution of a differential
system of the type considered in [22], with irregular singularities and with coeffi-
cients in the Lie algebra of the affine group scheme of the Hopf algebra of Feynman
graphs of the theory, suitably enriched to account for the choice of the slicing of
the Feynman integrals by linear spaces of the appropriate dimension.

Finally, we propose a motivic interpretation for dimensional regularization,
in terms of the logarithmic extensions of Tate motives (the Kummer motives),
and their pullbacks via the polynomial function defining the graph hypersurface.
This amounts to associating to the Feynman graphs of a given scalar theory a
subcategory of the Arapura category of motivic sheaves of [3]. We expect that this
may provide a way of interpreting the relation between dimensionally regularized
Feynman integrals and cohomological Milnor fibrations in terms of a motivic version
of the Milnor fiber. We hope to relate, in this way, a motivic zeta function associated
to the resulting mixed motive with the dimensionally regularized Feynman integral.

An in-depth study of parametric Feynman integrals in perturbative renormal-
ization and their relation to mixed Hodge structures was carried out in very recent
work of Bloch and Kreimer [15]. The topics covered in this paper, as well as other
recent developments arising from the collaboration of Aluffi and the author, are
reviewed in the recent monograph [36].
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2. Parametric Feynman integrals

In this section we recall the Feynman parametric formulation of the momentum
integrals associated to the Feynman graphs in the perturbative expansion of a scalar
field theory. We also recall the Dimensional Regularization method and the form of
the regularized integrals. These are all well known techniques, but we review them
briefly for completeness. We also recall the explicit form of the graph polynomials
ΨΓ(t) and PΓ(t, p) and their properties, as well as the explicit mass scale dependence
of the dimensionally regularized Feynman integrals. Moreover, in §2.4 we give a
reformulation of the Feynman integrals in terms of differential forms on hypersurface
complements in projective spaces.

2.1. Feynman parameters and algebraic varieties. We recall briefly the
method for the computation of Feynman integrals based on the parametric rep-
resentation. This is well known material in the physics literature, see e.g. §6-2-3
of [31], §18 of [11], and §6 of [37]. However, since it is not part of the standard
mathematician’s toolkit, we prefer to spend a few words here recalling the basic
ideas.

The terms in the formal asymptotic expansion of functional integrals
∫

O(φ)e
i
�
S(φ)D[φ],

obtained by treating the interaction terms Sint(φ) =
∫

Lint(φ)d
Dx as a perturba-

tion, are labeled by Feynman graphs of the theory. The topology of these graphs is
constrained by the requirement that the valence of each vertex is equal to the degree
of one of the monomials in the Lagrangian. The edges of the graph are divided into
internal lines, each connecting two vertices, and external lines, which are half-lines
with one end attached to a vertex of the graph and one open end. The order in the
expansion is given by the loop number of the graph, or by the number of internal
lines. Each external line carries a datum of an external momentum p ∈ R

D with a
conservation law

(2.1)
∑

e∈Eext(Γ)

pe = 0,

where Eext(Γ) is the set of external edges of Γ.
We assume that all our graphs are one-particle-irreducible (1PI), i.e. that they

cannot be disconnected by cutting a single internal edge.
The Feynman rules assign to a Feynman graph a function

U(Γ) = U(Γ, p1 . . . , pN )

of the external momenta obtained by integrating, over momentum variables ke
assigned to each internal edge of Γ, an expression involving propagators for each
internal line and momentum conservations at each vertex, in the form

(2.2) U(Γ) =

∫

δ(
∑n

i=1 εv,iki +
∑N

j=1 εv,jpj)

q1 · · · qn
dDk1 · · · dDkn,
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where n = #Eint(Γ), the number of internal edges in the graph, N = #Eext(Γ)
and εv,e is the incidence matrix

(2.3) εv,e =

⎧

⎨

⎩

+1 t(e) = v
−1 s(e) = v
0 otherwise,

with s(e) and t(v) the source and target vertices of the oriented edge e.
The qi, for i = 1, . . . , n are the quadratic forms defining the free field propagator

associated to the corresponding line in the graph, namely

(2.4) qi(k) = k2i −m2 + iε or qi(k) = k2i +m2,

respectively in the Lorentzian and in the Eucidean signature case. In the following,
we work primarily in the Euclidean setting.

We refer to U(Γ) as the unrenormalized Feynman integral. The parametric
form of U(Γ) is obtained by first introducing the Schwinger parameters, using the
identity

1

q
=

∫ ∞

0

e−sqds.

This gives the expression

(2.5)
1

q1 · · · qn
=

∫ ∞

0

· · ·
∫ ∞

0

e−(s1q1+···+snqn) ds1 · · · dsn,

which is a special case of the more general identity
(2.6)

1

qk1
1 · · · qkn

n

=
1

Γ(k1) · · ·Γ(kn)

∫ ∞

0

· · ·
∫ ∞

0

e−(s1q1+···+snqn) sk1−1
1 · · · skn−1

n ds1 · · · dsn.

The Feynman parametric form is obtained from this expression by a change of
variables that replaces the Schwinger parameters si ∈ R+ with new variables ti ∈
[0, 1], by setting si = Sti with S = s1 + · · ·+ sn. This gives
(2.7)

1

qk1
1 · · · qkn

n

=
Γ(k1 + · · ·+ kn)

Γ(k1) · · ·Γ(kn)

∫ 1

0

· · ·
∫ 1

0

tk1−1
1 · · · tkn−1

n δ(1−
∑n

i=1 ti)

(t1q1 + · · ·+ tnqn)k1+···+kn
dt1 · · · dtn,

hence in particular one obtains

(2.8)
1

q1 · · · qn
= (n− 1)!

∫

δ(1−
∑n

i=1 ti)

(t1q1 + · · ·+ tnqn)n
dt1 · · · dtn,

as an integration in the Feynman parameters t = (ti) over the simplex

(2.9) Σ = {t = (ti) ∈ R
n
+ |

∑

i

ti = 1}.

Next one introduces a further change of variables involving another matrix
naturally associated to the graph, the circuit matrix ηik, defined in terms of an
orientation of the edges ei ∈ E(Γ) and a choice of a basis for the first homology
group, lk ∈ H1(Γ,Z), with k = 1, . . . , � = b1(Γ), by setting

(2.10) ηik =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

+1 edge ei ∈ loop lk, same orientation

−1 edge ei ∈ loop lk, reverse orientation

0 otherwise.
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We also define MΓ(t) to be the matrix

(2.11) (MΓ)kr(t) =
n
∑

i=0

tiηikηir.

Notice that, while the matrix MΓ(t) depends on the choice of the orientation of
the edges and of the choice of a basis for the first homology of Γ, the determinant
det(MΓ(t)) is independent of both choices.

One then makes a change of variables in the quadratic forms qi of (2.4), by
setting

(2.12) ki = ui +

�
∑

k=1

ηikxk,

with the constraint

(2.13)
n
∑

i=0

tiuiηik = 0,

for all k = 1, . . . , �. The momentum conservation relations

n
∑

i=1

εv,iki +
N
∑

j=1

εv,jpj = 0

of (2.2) shows that the ui in (2.12) also satisfy

(2.14)

n
∑

i=1

εv,iui +

N
∑

j=1

εv,jpj = 0.

This uses the fact that the incidence matrix ε = (εv,e) and the circuit matrix
η = (ηe,k) satisfy εη =

∑

e∈E(Γ) εv,eηe,k = 0, cf. [37], §3. The two equations (2.13)

and (2.14) are the analogs for momenta in Feynman graphs of the Kirchhoff laws of
circuits, respectively giving the conservation laws for the sum of voltage drops along
a loop in a circuit and of incoming currents at a vertex, with momenta replacing
currents and the Feynman parameters in the role of resistances ([11], §18).

The ui are determined by (2.13) and (2.14), and one can write the term
∑

i ti(u
2
i + m2) in the form of a function of the Feynman parameters t and the

external momenta p of the form

(2.15) VΓ(t, p) := pτRΓ(t)p+m2,

where we use the fact that
∑

i ti = 1. The N ×N matrix R(t), with N = #Eext(Γ)
is constructed out of another matrix associated to the graph. This is obtained as
follows (cf. [31], §6-2-3). Let DΓ(t) denote the matrix

(2.16) (DΓ(t))v,v′ =

n
∑

i=1

εv,i εv′,i t
−1
i ,

with n = #Eint(Γ) and with εv,i the incidence matrix as in (2.3). Then the qua-
dratic form pτR(t)p of (2.15) has the form

(2.17) pτRΓp =
∑

v,v′

Pv(DΓ(t)
−1)v,v′Pv′ ,
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where

(2.18) Pv =
∑

e∈Eext(Γ),t(e)=v

pe

is the sum of the incoming external momenta at the vertex v.

Summarizing the previous discussion, the result of the change of variables (2.12)
is that we can rewrite the original Feynman integral (2.2) in the following form.

Lemma 2.1. For n − D�/2 > 0, the Feynman integral (2.2) can be written,
after the change of variables (2.12), in the form

(2.19)

∫

Σ

δ(1−
∑

i ti)

det(MΓ(t))D/2VΓ(t, p)n−D�/2
dt1 · · · dtn,

up to a multiplicative constant.

Proof. This follows [11], §18 and [31] p.376. First recall the well known
identity for the Gaussian integral

(2.20)

∫

e−
1
2x

τAxdDx1 · · · dDx� =
(2π)D�/2

det(A)D/2
,

for A an �× � real symmetric matrix. We then have

1

(4π)D�/2

∫

e−xτAxdDx1 · · · dDx� = det(A)−D/2.

With the change of variable (2.12) and the conditions (2.13) and (2.14), one can
rewrite the integral U(Γ) of (2.2) in the form

(2.21) U(Γ) =

∫

Rn
+

e−VΓ(t,p)

(∫

e−xτMΓ(t)xdDxi · · · dDx�

)

dt1 · · · dtn,

where � = b1(Γ) is the number of loops in the graph. After performing the Gaussian
integration and rewriting the expression in the external momenta as described above
in the form (2.15) and (2.17), this becomes of the form

(2.22) U(Γ) = (4π)−�D/2

∫

Rn
+

e−VΓ(t,p)

ΨΓ(t)D/2
dt1 · · · dtn,

with

(2.23) ΨΓ(t) = detMΓ(t).

Then using the identity 1 =
∫∞
0

dλ δ(λ−
∑n

i=1 ti) and scaling ti �→ tiλ, one rewrites
(2.22) in the form
(2.24)

U(Γ) = (4π)−�D/2

∫ ∞

0

(

∫

[0,1]n
δ(1−

∑

i

ti)
e−λVΓ(t,p)

ΨΓ(t)D/2
dt1 · · · dtn

)

λn−D�/2 dλ

λ
.

Using again the special form

(2.25) V
−n+D�/2
Γ =

1

Γ(n−D�/2)

∫ ∞

0

e−λVΓλn−D�/2−1 dλ

of the general identity (2.6), one then obtains the parametric form

(2.26) U(Γ) =
Γ(n−D�/2)

(4π)�D/2

∫

[0,1]n

δ(1−
∑

i ti)

ΨΓ(t)D/2VΓ(t, p)n−D�/2
dt1 · · · dtn.
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The condition n−D�/2 = �(1−D/2) +#V (Γ)− 1 > 0 ensures the convergence at
λ = 0 of the integral (2.25). �

A graph is said to be log divergent if n = D�/2, in which case the Feynman
integral reduces to the simpler form

(2.27)

∫

Σ

ω

det(MΓ(t))D/2
,

with ω = δ(1 −
∑

i ti)dt1 · · · dtn the volume form on the simplex Σ defined by the
integration (2.26).

Remark 2.2. For the purpose of establishing relations between values of Feyn-
man integrals and periods of motives, it is important to check that the multiplicative
constant one is neglecting in passing from (2.2) to the parametric form (2.19) in
fact belongs to Q(π), cf. [14]. In (2.26) one sees in fact that the multiplicative
constant is of the form Γ(n−D�/2)(4π)−�D/2. This either gives a divergent factor,
at the poles of the Gamma function, in which case one considers the residue, or
else, when convergent, it gives a multiplicative factor in Q(π).

The function ΨΓ(t) = det(MΓ(t)) has an equivalent expression in terms of the
connectivity of the graph Γ as the polynomial (see [31], §6-2-3 and [37] §1.3-2)

(2.28) ΨΓ(t) =
∑

S

∏

e∈S

te,

where S ranges over all the sets S ⊂ Eint(Γ) of � = b1(Γ) internal edges of Γ,
such that the removal of all the edges in S leaves a connected graph. This can be
equivalently formulated in terms of spanning trees of the graph Γ ([37] §1.3), i.e.
ΨΓ(t) is given by the Kirchhoff polynomial

(2.29) ΨΓ(t) =
∑

T

∏

e/∈T

te,

with the sum over spanning trees T of the graph. Each spanning tree, in fact, has
#V − 1 edges and is the complement of a cut-set S.

Lemma 2.3. The graph polynomial ΨΓ is a homogeneous polynomial of degree

(2.30) degΨΓ = b1(Γ).

In the massless case with m = 0, the function VΓ(t, p), for fixed p, is homogeneous
of degree one and given by the ratio of a homogeneous polynomial PΓ(t, p) by ΨΓ(t).

Proof. We have degΨΓ = #E(Γ)−#E(T ), where #E(T ) = #V (Γ)−1 is the
number of edges in a (hence any) spanning tree, hence from the Euler characteristic
formula #V (Γ) − #E(Γ) = 1 − b1(Γ) we get (2.30). We write the polynomial
VΓ(t, p) = pτRΓ(t)p+

∑

i tim
2. In the massless case, using the reformulation given

in (6-87) and (6-88) of [31], p.297, we rewrite the function VΓ(t, p) in the form of
the ratio

(2.31) VΓ(t, p) =
PΓ(t, p)

ΨΓ(t)
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of a homogeneous polynomial PΓ of degree � + 1 = b1(Γ) + 1, divided by the
polynomial ΨΓ, which is homogeneous of degree b1(Γ). In fact, we have ([31],
§6-2-3)

(2.32) PΓ(p, t) =
∑

C⊂Γ

sC
∏

e∈C

te,

where the sum is over the cut-sets C ⊂ Γ, i.e. the collections of b1(Γ)+1 edges that
divide the graph Γ into exactly two connected components Γ1 ∪Γ2. The coefficient
sC is a function of the external momenta attached to the vertices in either one of
the two components:

(2.33) sC =

⎛

⎝

∑

v∈V (Γ1)

Pv

⎞

⎠

2

=

⎛

⎝

∑

v∈V (Γ2)

Pv

⎞

⎠

2

,

where the Pv are defined as in (2.18), as the sum of the incoming external momenta
(see [31], (6-87) and (6-88)). �

In the following, we work under the following assumption on the graph Γ.

Definition 2.4. A 1PI graph Γ satisfies the generic condition on the exter-
nal momenta if, for p in a dense open set in the space of external momenta, the
polynomials PΓ(t, p) and ΨΓ(t) have no common factor.

To understand better the nature of this condition, it is useful to reformulate
the polynomial PΓ(t, p) of (2.32) in terms of spanning trees of the graph. One has,
in the case where m = 0,

(2.34) PΓ(p, t) =
∑

T

∑

e′∈T

sT,e′ te′
∏

e∈T c

te,

where sT,e′ = sC for the cut-set C = T c ∪ {e′}.
The parameter space of the external momenta is the hyperplane in the affine

space A
D·#Eext(Γ) obtained by imposing the conservation law

(2.35)
∑

e∈Eext(Γ)

pe = 0.

Thus, the simplest possible configuration of external momenta is the one where
one puts all the external momenta to zero, except for a pair pe1 = p = −pe2
associated to a choice of a pair of external edges {e1, e2} ⊂ Eext(Γ). Let vi be the
unique vertex attached to the external edge ei of the chosen pair. We then have,
in this case, Pv1 = p = −Pv2 . Upon writing the polynomial PΓ(t, p) in the form
(2.34), we obtain in this case

(2.36) PΓ(p, t) = p2
∑

T

(
∑

e′∈Tv1,v2

te′)
∏

e/∈T

te,

where Tv1,v2 ⊂ T is the unique path in T without backtrackings connecting the
vertices v1 and v2. We use (2.33) to get sC = p2 for all the nonzero terms in this
(2.36). These are all the terms that correspond to cut-sets C such that the vertices
v1 and v2 belong to different components. These cut-sets consist of the complement
of a spanning tree T and an edge of Tv1,v2 .
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In the following we will make use of the notation

(2.37) LT (t) = p2
∑

e∈Tv1,v2

te

for the linear functions in (2.36).
If the polynomial ΨΓ(t) of (2.29) divides (2.36), one has

PΓ(p, t) = ΨΓ(t) · L(t),
for a degree one polynomial L(t), which gives

∑

T

(LT (t)− L(t))
∏

e/∈T

te ≡ 0,

for all t. One then sees, for example, that the 1PI condition on the graph Γ is
necessary in order to have the condition of Definition 2.4. In fact, for a graph that
is not 1PI, one may be able to find vertices and momenta as above such that the
degree one polynomials LT (t) are all equal to the same L(t). Generally, the validity
of the condition of Definition 2.4 can be checked algorithmically for a given graph.

One does not need to assume the condition of Definition 2.4. However, several of
our formulae become more complicated if we allow the case where the polynomials
ΨΓ and PΓ(t, p) have common factors. Thus, for our purposes we assume that
we are working under the hypothesis that the “generic condition on the external
momenta” holds.

Definition 2.5. The affine graph hypersurface X̂Γ is the zero locus of the
Kirchhoff polynomial

(2.38) X̂Γ = {t ∈ A
n : ΨΓ(t) = 0},

with n = #Eint(Γ). The locus of zeros of the polynomial PΓ(t, p), for fixed external
momenta p, also defines a hypersurface

(2.39) ŶΓ = ŶΓ(p) := {t ∈ A
n |PΓ(t, p) = 0}.

Since both ΨΓ(t) and PΓ(t, p) are homogeneous polynomials in t, we can consider
the corresponding projective hypersurfaces

(2.40) XΓ = {t = (t1 : · · · : tn) ∈ P
n−1 : ΨΓ(t) = 0}

of degree b1(Γ) and

(2.41) YΓ = YΓ(p) := {t = (t1 : · · · : tn) ∈ P
n−1 |PΓ(t, p) = 0}.

of degree b1(Γ) + 1.

In the case of log divergent graphs, or of arbitrary graphs in the range with
sufficiently large spacetime dimension D (i.e. for D satisfying −n+D�/2 ≥ 0, with
n = #Eint(Γ) and � = b1(Γ)), the possible divergences of the Feynman integral
U(Γ) depend on the intersection of the domain of integration Σ with the graph

hypersurface X̂Γ in P
n−1. Notice that the intersections Σ∩ X̂Γ can only happen on

the boundary ∂Σ, as in the interior of Σ the polynomial ΨΓ takes strictly positive
real values. See [14] and [13] for a detailed analysis of this case and for its motivic
interpretation. More generally, for non-log-divergent integrals of the form (2.19),
outside of the range −n + D�/2 ≥ 0, the singularities of the integral also involve

the intersections of the hypersurfaces ŶΓ(t, p) with the domain of integration Σ.
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This case requires in general a more detailed analysis, as in this case some of the
intersections may also appear away from the boundary of Σ, depending on the
values of the external momenta p, see e.g. [11], §18.

2.2. Dimensional Regularization. One of the main problems that emerged
in the historic development of perturbative quantum field theory is how to “cure”
the divergences that occur systematically in the Feynman integrals (2.2), i.e. the
problem of renormalization. Usually this is treated by choosing a regularization
method, combined with a renormalization procedure. Regularization replaces a
divergent integral (2.2) with a function of additional parameters that happens to
have a pole or singularity at the special value of the parameter that corresponds
to the original integral, but which is otherwise well defined and finite at nearby
values of the parameter. Renormalization, on the other hand, gives a method for
extracting finite values from the regularized expressions in a way that is consistent
with the combinatorics of nested subdivergences, i.e. subgraphs of graphs with
divergent Feynman integrals, which themselves contribute divergences.

The Connes–Kreimer theory [21] uses the regularization method known as di-
mensional regularization and minimal subtraction, combined with the renormaliza-
tion procedure of Bogoliubov–Parasiuk–Hepp–Zimmermann (BPHZ). It was later
shown (see e.g. [27]) that the main results of Connes–Kreimer may be applied to
other regularization procedures, as long as the “subtraction of infinities” can be
formulated in terms of a Rota–Baxter operator. The projection of a Laurent se-
ries onto its polar part is an example of such an operator, which corresponds to
the “minimal subtraction” case. Using this more general formulation, it is possi-
ble to extend the Connes–Kreimer theory to other regularization methods, which
makes it possible, for instance, to extend it to the case of curved backgrounds as in
[1]. We concentrate here on the Dimensional Regularization and Minimal Subtrac-
tion procedure. In fact, our purpose is to compare the approach to motives and
renormalization of [22] with the one of [14], and we prefer to remain close to the
formulation given in [22] using DimReg.

Dimensional Regularization consists of formally extending the usual Gaussian
integration (2.20) from the case of integer dimension D ∈ N to the case of a “com-
plexified dimension” z ∈ C, in a small neighborhood of z = 0, by setting

(2.42)

∫

e−
1
2x

τAxdD+zx1 · · · dD+zx� :=
(2π)(D+z)�/2

det(A)(D+z)/2
,

This results in the analytic continuation of the parametric Feynman integral for-
mulae (2.22), (2.24), (2.26) to complex values of the dimension D.

Lemma 2.6. Upon replacing the integer dimension D by a complexified dimen-
sion D �→ D + z, with z ∈ Δ∗ a small punctured disk around z = 0, the integral
(2.21) becomes of the form
(2.43)

U(Γ)(z) =
Γ(n− (D+z)�

2 )

(4π)
�(D+z)

2

∫

[0,1]n

δ(1−
∑

i ti)

ΨΓ(t)(D+z)/2VΓ(t, p)n−(D+z)�/2
dt1 · · · dtn.
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Proof. One uses the same argument as in Lemma 2.1, but using (2.42) instead
of (2.20) in (2.21). This gives

(2.44) U(Γ) = (4π)−�(D+z)/2

∫

Rn
+

e−VΓ(t,p)

ΨΓ(t)(D+z)/2
dt1 · · · dtn,

We then use the same argument as in Lemma 2.1 to write this in the form

(2.45) U(Γ) =

(4π)−�(D+z)/2

∫ ∞

0

(

∫

[0,1]n
δ(1−

∑

i

ti)
e−λVΓ(t,p)

ΨΓ(t)(D+z)/2
dt1 · · · dtn

)

λn−(D+z)�/2 dλ

λ

and we use

(2.46) V
−n+(D+z)�/2
Γ =

1

Γ(n− (D + z)�/2)

∫ ∞

0

e−λVΓλn−(D+z)�/2−1 dλ

to obtain (2.43). One recovers the parametric form (2.19) from (2.42). �

2.3. Mass scale dependence. It is well known that, when one regularizes
the integrals U(Γ) using dimensional regularization, as recalled above, one intro-
duces an explicit dependence on the mass scale, which plays a very important role
in the renormalization process and is the source of the nontrivial action of the
renormalization group (see [20], [21], [22], [23]).

The source of the mass scale dependence is the fact that, in order to maintain
the physical units, the integral (2.42) should in fact be written in the form

(2.47)

∫

e−
1
2x

τAxμ−zdD+zx1 · · ·μ−zdD+zx� := μ−z� (2π)(D+z)�/2

det(A)(D+z)/2
,

where μ has the physical units of a mass (energy), so that the μ−zdD+zxi still have
the same physical units as the original dDxi (see [20]).

Lemma 2.7. The dimensional regularization U(Γ)(z) of (2.43) depends on the
mass scale μ in the form

(2.48) Uμ(Γ)(z) = μ−z�Γ(n− (D+z)�
2 )

(4π)
�(D+z)

2

∫

[0,1]n

δ(1−
∑

i ti)dt1 · · · dtn
ΨΓ(t)

(D+z)
2 VΓ(t, p)n−

(D+z)�
2

.

Proof. In the derivation of the parametric form of the Feynman integral with
dimensional regularization, we see that we have in (2.44) a mass scale dependence

(2.49) Uμ(Γ)(z) = (4π)−�(D+z)/2μ−z�

∫

Rn
+

e−VΓ(t,p)

ΨΓ(t)(D+z)/2
dt1 · · · dtn.

The rest of the argument of Lemma 2.6 is unchanged. In particular, no further μ
dependence is introduced by the term in VΓ(t, p), so that we obtain (2.48). �
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2.4. Integrals on projective spaces. As remarked above, due to the homo-
geneity of the polynomials ΨΓ and PΓ, it is natural to regard the graph hypersur-
faces as projective hypersurfaces XΓ and YΓ in P

n−1, with n the number of internal
lines of the graph Γ. Thus, we want to think of the parametric Feynman integrals
as being computed in projective space.

In order to reformulate in projective space P
n−1 integrals originally defined in

affine space A
n, one needs to work with the projective analog (cf. [28], §II) of the

volume form

ωn = dt1 ∧ · · · ∧ dtn.

This is given by the form

(2.50) Ω =

n
∑

i=1

(−1)i+1ti dt1 ∧ · · · ∧ ̂dti ∧ · · · ∧ dtn.

The relation between the volume form dt1 ∧ · · · ∧ dtn and the homogeneous form Ω
of degree n of (2.50) is given by (cf. [25], p.180)

(2.51) Ω = Δ(ωn),

where Δ : Ωk → Ωk−1 is the operator of contraction with the Euler vector field

(2.52) E =
∑

i

ti
∂

∂ti
,

(2.53) Δ(ω)(v1, · · · , vk−1) = ω(E, v1, · · · , vk−1).

In the parametric Feynman integrals, we consider as region of definition of
the integrand (in the log divergent case, or in the case of integrals in the range
−n+D�/2 ≥ 0) the hypersurface complement

(2.54) D(ΨΓ) = {t ∈ A
n |ΨΓ(t) �= 0} = A

n
� X̂Γ,

while in the formulation (2.26) outside of the range −n+D�/2 ≥ 0, we also need to

avoid the second hypersurface ŶΓ defined by the vanishing of PΓ (for assigned ex-
ternal momenta), as in (2.39). In this case the domain of definition of the integrand
is

(2.55)
D(ΨΓ, PΓ) = {t ∈ A

n |ΨΓ(t) �= 0 and PΓ(t, p) �= 0}

= D(ΨΓ) ∩ D(PΓ) = A
n
� (X̂Γ ∪ ŶΓ).

Let U(ΨΓ) and U(ΨΓ, PΓ) denote the corresponding hypersurface complements
in projective space, namely

(2.56)

U(ΨΓ) = {t ∈ P
n−1 |ΨΓ(t) �= 0} = P

n−1
�XΓ

U(ΨΓ, PΓ) = {t ∈ P
n−1 |ΨΓ(t) �= 0 and PΓ(t, p) �= 0}

= U(ΨΓ) ∩ U(PΓ) = P
n−1

� (XΓ ∪ YΓ).

As we see in more detail in (2.70) and Proposition 2.9 below, in both the affine
and the projective case, we can describe D(ΨΓ, PΓ) and U(ΨΓ, PΓ) as hypersurface
complements, by identifying XΓ ∪ YΓ with the hypersurface defined by the vanish-
ing of a homogeneous polynomial given by a product Ψn1

Γ · Pn2

Γ , a homogeneous
polynomial of degree n1b1(Γ) + n2(b1(Γ) + 1), where the component hypersurfaces
XΓ and YΓ are counted with multiplicities n1 and n2. These multiplicities depend
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on the number of edges and loops of the graph and on the spacetime dimension,
and are defined more precisely in (2.70) below. Thus, in the following, wherever
needed, we write D(ΨΓ, PΓ) = D(f) and U(ΨΓ, PΓ) = U(f), with f = Ψn1

Γ ·Pn2

Γ , as
in the various cases of (2.70) below.

We introduce here some notation that will be useful in the following (cf. [25],
p.177). Let R = C[t1, . . . , tn] be the ring of polynomials of An. Let Rm denote
the subset of homogeneous polynomials of degree m. Similarly, let Ωk denote the
R-module of k-forms on A

n and let Ωk
m denote the subset of k-forms that are

homogeneous of degree m.

We recall the following general fact (cf. [25], p.178) about hypersurface com-
plements. Let π : An

� {0} → P
n−1 be the standard projection t = (t1, . . . , tn) �→

t = (t1 : · · · : tn). Suppose given a homogeneous polynomial function f on A
n

of degree deg(f). Let D(f) ⊂ A
n and U(f) ⊂ P

n−1 be the hypersurface comple-
ments, i.e. the complements, in A

n and P
n−1 respectively, of the locus of zeros

Xf = {t | f(t) = 0}. With the notation introduced here above, we can always write
a form ω ∈ Ωk(D(f)) as

(2.57) ω =
η

fm
, with η ∈ Ωk

m deg(f).

We then have the following characterization of the pullback along π : D(f) →
U(f) of forms on U(f) (see [25], p.180 and [26]). Given ω ∈ Ωk(U(f)), the pullback
π∗(ω) ∈ Ωk(D(f)) is characterized by the properties of being invariant under the
Gm action on A

n
� {0} and of satisfying Δ(π∗(ω)) = 0, where Δ is the contraction

(2.53) with the Euler vector field E of (2.52). Thus, since the sequence

0 → Ωn Δ→ Ωn−1 Δ→ · · · Δ→ Ω1 Δ→ Ω0 → 0

is exact at all but the last term, one can write

(2.58) π∗(ω) =
Δ(η)

fm
, with η ∈ Ωk

m deg(f).

Thus, in particular, any (n− 1)-form on U(f) ⊂ P
n−1 can be written as

(2.59)
hΩ

fm
, with h ∈ Rm deg(f)−n

and with Ω = Δ(dt1 ∧ · · · ∧ dtn) the (n− 1)-form (2.50), homogeneous of degree n.

Proposition 2.8. Let ω ∈ Ωk
m deg(f) be a closed k-form which is homogeneous

of degree m deg(f), and consider the form ω/fm on A
n. Let Σ ⊂ A

n
� {0} be a

k-dimensional domain with boundary ∂Σ �= ∅. Then the integration of ω/fm on Σ
satisfies

(2.60) m deg(f)

∫

Σ

ω

fm
=

∫

∂Σ

Δ(ω)

fm
+

∫

Σ

df ∧ Δ(ω)

fm+1
.

Proof. Recall that we have ([25], [26])

(2.61) d

(

Δ(ω)

fm

)

= −Δ(dfω)

fm+1
,

where, for a form ω that is homogeneous of degree m deg(f),

(2.62) dfω = f dω −mdf ∧ ω.
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Thus, we have

(2.63) d

(

Δ(ω)

fm

)

= −Δ(dω)

fm
+m

Δ(df ∧ ω)

fm+1
.

Since the form ω is closed, dω = 0, and we have

(2.64) Δ(df ∧ ω) = deg(f) f ω − df ∧Δ(ω),

we obtain from the above

(2.65) d

(

Δ(ω)

fm

)

= m deg(f)
ω

fm
− df ∧Δ(ω)

fm+1
.

By Stokes’ theorem we have
∫

∂Σ

Δ(ω)

fm
=

∫

Σ

d

(

Δ(ω)

fm

)

.

Using (2.65) this gives

(2.66)

∫

∂Σ

Δ(ω)

fm
= m deg(f)

∫

Σ

ω

fm
−
∫

Σ

df ∧Δ(ω)

fm+1
.

�

We can use this result to reformulate the parametric Feynman integrals in terms
of integrals of forms that are pullbacks to A

n
� {0} of forms on a hypersurface

complement in P
n−1. For simplicity, we remove here the divergent Γ-factor from

the parametric Feynman integral and we concentrate on the residue given by the
integration on the simplex Σ as in (2.67) below.

Proposition 2.9. Under the generic condition on the external momenta, the
parametric Feynman integral

(2.67) U(Γ) =

∫

Σ

ωn

Ψ
D/2
Γ V

n−D�/2
Γ

can be computed as

(2.68) U(Γ) =
1

C(n,D, �)

(∫

∂Σ

π∗(η) +

∫

Σ

df ∧ π∗(η)

f

)

,

where π : An
� {0} → P

n−1 is the projection and η is the form on the hypersurface
complement U(f) in P

n−1 with

(2.69) π∗(η) =
Δ(ω)

fm
,

on A
n, where

(2.70) f =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

PΓ n− D(�+1)
2 ≥ 0

P
2n−D�

2m

Γ Ψ
D
2m

Γ n− D(�+1)
2 < 0 < n− D�

2
m = gcd{n−D�/2, D/2}

ΨΓ n− D�
2 ≤ 0,
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with

(2.71) m =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

n−D�/2 n− D(�+1)
2 ≥ 0

gcd{n−D�/2, D/2} n− D(�+1)
2 < 0 < n− D�

2

−n+D(�+ 1)/2 n− D�
2 ≤ 0,

and with

(2.72) ω =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Ψ
n−D(�+1)/2
Γ ωn n− D(�+1)

2 ≥ 0

Ψ
n−D�/2
Γ ωn n− D(�+1)

2 < 0 < n− D�
2

P
−n+D�/2
Γ ωn n− D�

2 ≤ 0,

where ωn = dt1 ∧ · · · ∧ dtn on A
n, with Ω = Δ(ωn) as in (2.50). The coefficient

C(n,D, �) in (2.68) is given by

(2.73) C(n,D, �) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(n−D�/2)(�+ 1) n− D(�+1)
2 ≥ 0

(n−D�/2)�+ n n− D(�+1)
2 < 0 < n− D�

2

−(n−D(�+ 1)/2)� n− D�
2 ≤ 0.

Proof. Consider on A
n the form given by Δ(ω)/fm, with f , m, and ω, re-

spectively as in (2.70), (2.71) and (2.72). We assume the condition of Definition 2.4,
i.e. for a generic choice of the external momenta the polynomials PΓ and ΨΓ have
no common factor. First notice that, since the polynomial ΨΓ is homogeneous of
degree � and PΓ is homogeneous of degree �+1, the form Δ(ω)/fm is Gm-invariant
on A

n
� {0}. Moreover, since it is of the form α = Δ(ω)/fm, it also satisfies

Δ(α) = 0, hence it is the pullback of a form η on U(f) ⊂ P
n−1. Also notice that

the domain of integration Σ ⊂ A
n, given by the simplex Σ = {

∑

i ti = 1, ti ≥ 0},
is contained in a fundamental domain of the action of the multiplicative group C

∗

on C
n
� {0}.

Applying the result of Proposition 2.8 above, we obtain
∫

Σ

dt1 ∧ · · · ∧ dtn

Ψ
D/2
Γ V

n−D�/2
Γ

=

∫

Σ

ω

fm

=
1

m deg(f)

(∫

∂Σ

Δ(ω)

fm
+

∫

Σ

df ∧ Δ(ω)

fm+1

)

= C(n,D, �)−1

(

∫

∂Σ

Δ(ωn)

Ψ
D/2
Γ V

n−D�/2
Γ

+

∫

Σ

df ∧ Δ(ωn)

Ψa
ΓP

b
Γ

)

,

where f is as in (2.70) and

(2.74) a =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

D(�+ 1)/2− n n− D(�+1)
2 ≥ 0

D
2 (1 +

1
m) n− D(�+1)

2 < 0 < n− D�
2

−n+ D(�+1)
2 + 1 n− D�

2 ≤ 0,

(2.75) b =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

n− D�
2 + 1 n− D(�+1)

2 ≥ 0

(n− D�
2 )(1 + 1

m ) n− D(�+1)
2 < 0 < n− D�

2

n− D�
2 n− D�

2 ≤ 0.
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In fact, the cases of n − D(�+1)
2 ≥ 0 and n − D�

2 ≤ 0 are clear, while in the range

with n− D(�+1)
2 < 0 and n− D�

2 > 0 we have

fm+1 = P
(n−D�/2)(1+ 1

m )

Γ Ψ
D
2 (1+ 1

m )

Γ .

The coefficient C(n,D, �) is given by C(n,D, �) = m deg(f), with m and f as in
(2.71) and (2.70). Thus, it is given by (2.73), where in the second case we use

m((�+ 1)(n−D�/2)/m+D�/2m) = (n−D�/2)�+ n,

for m = gcd{n−D�/2, D/2}. �

3. Singularities, slicing, and Milnor fiber

3.1. Non-isolated singularities. One problem in trying to use in our setting
the techniques developed in singularity theory (cf. [5]) to study mixed Hodge struc-
tures in terms of oscillatory integrals is that the graph hypersurfaces XΓ ⊂ P

n−1

defined by the vanishing of the polynomial ΨΓ(t) = det(MΓ(t)) usually have non-
isolated singularities. This can easily be seen by the following observation.

Lemma 3.1. Let Γ be a graph with degΨΓ > 2. The singular locus of XΓ is
given by the intersection of cones over the hypersurfaces XΓe

, for e ∈ E(Γ), where
Γe is the graph obtained by removing the edge e of Γ. The cones C(XΓe

) do not
intersect transversely.

Proof. First observe that, since XΓ is defined by a homogeneous equation
ΨΓ(t) = 0, with ΨΓ a polynomial of degree m, the Euler formula mΨΓ(t) =
∑

e te
∂
∂te

ΨΓ(t) implies that ∩eZ(∂eΨΓ) ⊂ XΓ, where Z(∂eΨΓ) is the zero locus
of the te-derivative. Thus, the singular locus of XΓ is just given by the equations
∂eΨΓ = 0. The variables te appear in the polynomial ΨΓ(t) only with degree zero or
one, hence the polynomial ∂eΨΓ consists of only those monomials of ΨΓ that con-
tain the variable te, where one sets te = 1. The resulting polynomial is therefore of
the form ΨΓe

, where Γe is the graph obtained from Γ by removing the edge e. In
fact, one can see in terms of spanning trees that, if T is a spanning tree containing
the edge e then T �e is no longer a spanning tree of Γe, so the corresponding terms
disappear in passing from ΨΓ to ΨΓe

, while if T is a spanning tree of Γ which does
not contain e, then T is still a spanning tree of Γe and the corresponding mono-
mial mT of ΨΓe

is the same as the monomial mT in ΨΓ without the variable te.
Thus, the zero locus Z(ΨΓe

) ⊂ P
n−1 is a cone C(XΓe

) over the graph hypersur-
face XΓe

⊂ P
n−2 with vertex at the coordinate point ve = (0, . . . , 0, 1, 0, . . . 0) with

te = 1. To see that these cones do not intersect transversely, notice that, in the
case where degΨΓ > 2, given any two C(XΓe

) and C(XΓe′ ) the vertex of one cone
is contained in the graph hypersurface spanning the other cone. �

The work of Bergbauer–Rej [10] gives a more detailed analysis of the singular
locus of the graph hypersurfaces, using a formula for the Kirchhoff polynomials
under insertion of subgraphs at vertices.

3.2. Projective Radon transform. Among various techniques introduced
for the study of non-isolated singularities, a common procedure consists of cutting
the ambient space with linear spaces of dimension complementary to that of the
singular locus of the hypersurface (cf. e.g. [41]). In this case, the restriction of the
function defining the hypersurface to these linear spaces defines hypersurfaces with
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isolated singularities, to which the usual invariants and constructions for isolated
singularities can be applied.

One finds that, in typical cases, the graph hypersurfaces have singular locus of
codimension one, which means that the slicing is given by planes P2 intersecting the
hypersurface along a curve with isolated singular points. When the singular locus is
of codimension two in the hypersurface, the slicing is given by 3-dimensional spaces
cutting the hypersurface into a family of surfaces in P

3 with isolated singularities.

In our setting, we are interested in computing integrals of the form (2.67). From
this point of view, the procedure of restricting the function defining the hypersurface
to linear spaces of a fixed dimension corresponds to an integral transform analogous
to a Radon transform in projective space (cf. [28]).

We recall the basic setting for integral transforms on projective spaces (cf. §II
of [28]). On any k-dimensional subspace A

k ⊂ A
n there is a unique (up to a

multiplicative constant) (k − 1)-form that is invariant under the action of SLk. It
is given as in (2.50) by the expression

(3.1) Ωk =
k
∑

i=1

(−1)i+1ti dt1 ∧ · · · ∧ ̂dti ∧ · · · ∧ dtk.

The form (3.1) is homogeneous of degree k. Suppose given a function f on A
n

which satisfies the homogeneity condition

(3.2) f(λt) = λ−kf(t), ∀t ∈ A
n, λ ∈ Gm.

Then the integrand fΩk is well defined on the corresponding projective space
P
k−1 ⊂ P

n−1 and one defines the integral by integrating on a fundamental do-
main in A

k
� {0}, i.e. on a surface that intersect each line from the origin once.

Suppose given dual vectors ξi ∈ (An)′, for i = 1, . . . , n − k. These define a
k-dimensional linear subspace Π = Πξ ⊂ A

n by the vanishing condition

(3.3) Πξ = {t ∈ A
n | 〈ξi, t〉 = 0, i = 1, . . . , n− k}.

Given a choice of a subspace Πξ, there exists a (k − 1)-form Ωξ on A
n satisfying

(3.4) 〈ξ1, dt〉 ∧ · · · ∧ 〈ξn−k, dt〉 ∧ Ωξ = Ωn,

with Ωn the (n− 1)-form of (2.50), cf. (3.1). The form Ωξ is not uniquely defined
on A

n, but its restriction to Πξ is uniquely defined by (3.4). Then, given a function
f on A

n with the homogeneity condition (3.2), one can consider the integrand fΩξ

and define its integral on the projective space π(Πξ) ⊂ P
n−1 as above. This defines

the integral transform, that is, the (k− 1)-dimensional projective Radon transform
(§II of [28]), as

(3.5) Fk(f)(ξ) =

∫

π(Πξ)

f(t) Ωξ(t) =

∫

Pn−1

f(t)

n−k
∏

i=1

δ(〈ξi, t〉) Ωξ(t).

For our purposes, it is convenient to consider also the following variant of the
Radon transform (3.5).

Definition 3.2. Let Σ ⊂ A
n be a compact region that is contained in a funda-

mental domain of the action of Gm on A
n
� {0}. The partial (k − 1)-dimensional
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projective Radon transform is given by the expression

(3.6) FΣ,k(f)(ξ) =

∫

Σ∩π(Πξ)

f(t) Ωξ(t) =

∫

Σ∩π(Πξ)

f(t)

n−k
∏

i=1

δ(〈ξi, t〉) Ωξ(t),

where one identifies Σ with its image π(Σ) ⊂ P
n−1.

Let us now return to the parametric Feynman integrals we are considering.

Proposition 3.3. The Feynman integral (2.22) can be reformulated as

(3.7) U(Γ) =
Γ(k − D�

2 )

(4π)�D/2

∫

FΣ,k(fΓ)(ξ) 〈ξ, dt〉,

where ξ is an (n− k)-frame in A
n and FΣ,k(f) is the Radon transform, with Σ the

simplex
∑

i ti = 1, ti ≥ 0, and with

(3.8) fΓ(t) =
VΓ(t, p)

−k+D�/2

ΨΓ(t)D/2
.

Proof. Consider first the form (2.22) of the Feynman integral, which we write
equivalently as

(3.9) U(Γ) = (4π)−�D/2

∫

An

χ+(t)
e−VΓ(t,p)

ΨΓ(t)D/2
dt1 · · · dtn,

where χ+(t) is the characteristic function of the domain R
n
+.

Given a choice of an (n− k)-frame ξ, we can then write the Feynman integrals
in the form

(3.10) U(Γ) = (4π)−�D/2

∫

(

∫

Πξ

χ+(t)
e−VΓ(t,p)

ΨΓ(t)D/2
ωξ

)

〈ξ, dt〉,

where 〈ξ, dt〉 is a shorthand notation for

〈ξ, dt〉 = 〈ξ1, dt〉 ∧ · · · ∧ 〈ξn−k, dt〉
and ωξ satisfies

(3.11) 〈ξ, dt〉 ∧ ωξ = ωn = dt1 ∧ · · · ∧ dtn.

We then apply the same procedure as in (2.24) and (2.25) to the integral on
Πξ and write it in the form
(3.12)
∫

Πξ

χ+(t)
e−VΓ(t,p)

ΨΓ(t)D/2
ωξ(t) = Γ(k − D�

2
)

∫

Πξ

δ(1−
∑

i

ti)
ωξ(t)

ΨΓ(t)D/2VΓ(t, p)k−D�/2
.

The function fΓ(t) of (3.8) satisfies the scaling property (3.2) and the integrand

ωξ(t)

ΨΓ(t)D/2VΓ(t, p)k−D�/2

is therefore Gm-invariant, since the form ωξ is homogeneous of degree k. Moreover,
the domain Σ of integration is contained in a fundamental domain for the action
of Gm. Thus, we can reformulate the integral (3.12) in projective space in terms of
the Radon transform as

(3.13) Γ(k − D�

2
) (4π)−�D/2

∫

FΣ,k(fΓ)(ξ) 〈ξ, dt〉,
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where FΣ,k(fΓ) is the Radon transform over the simplex Σ, as in Definition 3.2. �

In the following, we will then consider integrals of the form

(3.14) U(Γ)ξ = FΣ,k(fΓ)(ξ) =

∫

Πξ

δ(1−
∑

i

ti)
ωξ(t)

ΨΓ(t)D/2VΓ(t, p)k−D�/2

=

∫

Σξ

ωξ(t)

ΨΓ(t)D/2VΓ(t, p)k−D�/2

as well as their dimensional regularizations

(3.15) U(Γ)ξ(z) =

∫

Σξ

ωξ(t)

ΨΓ(t)(D+z)/2VΓ(t, p)k−(D+z)�/2
,

where Πξ is a generic linear subspace of dimension equal to the codimension of the
singular locus of the hypersurface XΓ ∪ YΓ.

3.3. The polar filtration. As we recalled already in §2.4 above (cf. [25])
algebraic differential forms ω ∈ Ωk(D(f)) on a hypersurface complement can always
be written in the form ω = η/fm as in (2.57), for some m ∈ N and some η ∈
Ωk

m deg(f). The minimal m such that ω can be written in the form ω = η/fm is

called the order of pole of ω along the hypersurface X and is denoted by ordX(ω).
The order of pole induces a filtration, called the polar filtration, on the de Rham
complex of differential forms on the hypersurface complement. One denotes by
P rΩk

Pn ⊂ Ωk
Pn the subspace of forms of order ordX(ω) ≤ k− r+1, if k− r+ 1 ≥ 0,

or P rΩk = 0 for k − r + 1 < 0. The polar filtration P • is related to the Hodge
filtration F • by P rΩm ⊃ F rΩm, by a result of [24].

Proposition 3.4. Under the generic condition on the external momenta, the
forms

(3.16)
Ωξ

Ψ
D/2
Γ V

k−D�/2
Γ

span subspaces P r,k
ξ of the polar filtration P rΩk−1

Pn−1 of a hypersurface complement

U(f) ⊂ P
n−1, where

(3.17) f =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

PΓ k −D(�+ 1)/2 ≥ 0

P
(k−D�/2)/m
Γ Ψ

D/(2m)
Γ k −D(�+ 1)/2 < 0 < k −D�/2,

m = gcd{k −D�/2, D/2}

ΨΓ k −D�/2 ≤ 0,

and for the index r of the filtration in the range

(3.18)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

r ≤ D�/2 k −D(�+ 1)/2 ≥ 0

r ≤ k − gcd{k −D�/2, D/2} k −D(�+ 1)/2 < 0 < k −D�/2

r ≤ 2k −D(�+ 1)/2 k −D�/2 ≤ 0.
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Proof. We are assuming that PΓ and ΨΓ have no common factor, for generic
external momenta. Consider first the case where k − D�/2 ≥ 0. This is further
divided into two cases: the case where also k −D(�+ 1)/2 ≥ 0 and the case where
k −D(�+ 1)/2 < 0. In the first case, the form (3.16) can be written, using (2.31),
as

(3.19)
Δ(α)

fm
=

Ψ
k−D(�+1)/2
Γ Ωξ

P
k−D�/2
Γ

,

where

(3.20) α = Ψ
k−D(�+1)/2
Γ ωξ and f = PΓ, with m = k −D�/2.

Thus, in this case we consider the polar filtration for differential forms on the
complement of the projective hypersurface YΓ of degree � + 1 defined by PΓ = 0.
The forms (3.19), for a generic choice of the (n−k)-frame ξ, and for varying external

momenta p, span a subspace P r,k
ξ of the polar filtration P rΩk−1

Pn−1 , for all r ≤ D�/2.

Notice that r ≤ D�/2 also implies r ≤ k so that one remains within the nontrivial
range k − r ≥ 0 of the filtration.

In the case where we still have k −D�/2 ≥ 0 but k −D(�+ 1)/2 < 0, we let

m = gcd{k −D�/2, D/2},

so that k −D�/2 = n1m and D/2 = n2m. We then write (3.16) in the form

(3.21)
Δ(α)

fm
=

Ψ
k−D�/2
Γ Ωξ

P
k−D�/2
Γ Ψ

D/2
Γ

,

with

(3.22) α = Ψ
k−D�/2
Γ ωξ, and f = Pn1

Γ Ψn2

Γ and m = gcd{k −D�/2, D/2}.

In this case, we consider the polar filtration associated to the complement of the
projective hypersurface defined by the equation Pn1

Γ Ψn2

Γ = 0. For a generic choice
of the (n− k)-frame ξ, and for varying external momenta p, we obtain in this case

a subspace P r,k
ξ of the polar filtration P rΩk−1

Pn−1 , for all r ≤ k−gcd{k−D�/2, D/2}.
The remaining case is when k −D�/2 < 0, so that also k −D(�+ 1)/2 < 0. In

this case, we write (3.16) in the form

(3.23)
Δ(α)

fm
=

P
−k+D�/2
Γ Ωξ

Ψ
−k+D(�+1)/2
Γ

,

where

(3.24) α = P
−k+D�/2
Γ ωξ, and f = ΨΓ and m = −k +D(�+ 1)/2.

We are considering here the polar filtration on forms on the complement of the
hypersurface XΓ defined by ΨΓ = 0. We then obtain, for generic ξ and varying p,

a subspace of P r,k
ξ of the filtration P rΩk−1

Pn−1 , for all r ≤ 2k −D(�+ 1)/2. �
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3.4. Milnor fiber. Suppose then that k = codimSing(X), where Sing(X)
is the singular locus of the hypersurface X = {f = 0}, with f as in Proposition
3.4 above. In this case, for generic ξ, the linear space Πξ cuts the singular locus
Sing(X) transversely and the restriction Xξ = X ∩Πξ has isolated singularities.

Recall that, in the case of isolated singularities, there is an isomorphism between
the cohomology of the Milnor fiber Fξ ofXξ and the total cohomology of the Koszul–
de Rham complex of forms (2.57) with the total differential dfω = f dω−mdf ∧ω
as above. The explict isomorphism is given by the Poincaré residue map and can
be written in the form

(3.25) [ω] �→ [j∗Δ(ωξ)],

where j : Fξ ↪→ Πξ is the inclusion of the Milnor fiber in the ambient space (see
[25], §6).

Let M(f) be the Milnor algebra of f , i.e. the quotient of the polynomial ring
in the coordinates of the ambient projective space by the ideal of the derivatives of
f . When f has isolated singularities, the Milnor algebra is finite dimensional. One
denotes by M(f)m the homogeneous component of degree m of M(f).

It then follows from the identification (3.25) above ([25],§6.2) that, in the case
of isolated singularities, a basis for the cohomology Hr(Fξ) of the Milnor fiber, with
r = dimΠξ − 1 is given by elements of the form

(3.26) ωα =
tαΔ(ωξ)

fm
, with tα ∈ M(f)m deg(f)−k,

where f is the restriction to Πξ of the function of (3.17). We then have the following
consequence of Proposition 3.4.

Corollary 3.5. For a generic (n−k)-frame ξ with n−k = dimSing(X), with
X the hypersurface of Proposition 3.4, and for a fixed generic choice of the external
momenta p under the assumption of Definition 2.4, the Feynman integrand (3.16)
of (3.14) defines a cohomology class in Hr(Fξ), with r = dimΠξ − 1 and Fξ ⊂ Πξ

the Milnor fiber of the hypersurface with isolated singularities Xξ = X ∩Πξ ⊂ Πξ.

Proof. By Proposition 3.4, the form (3.16) can be written as

(3.27)
hΔ(ωξ)

fm
,

where f is as in (3.17), and h is a polynomial of the form

(3.28) h =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Ψ
k−D(�+1)/2
Γ k −D(�+ 1)/2 ≥ 0

Ψ
k−D�/2
Γ k −D(�+ 1)/2 < 0 < k −D�/2

P
−k+D�/2
Γ k −D�/2 ≤ 0.

Let Iξ denote the ideal of derivatives of the restriction f |Πξ
of f to Πξ. Then let

(3.29) hξ = h mod Iξ.

For a fixed generic choice of the external momenta, this defines an element in the
Milnor algebra M(f |Πξ

), which lies in the homogeneous component

M(f |Πξ
)m deg(f)−k,
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for

(3.30) m =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

k −D�/2 k −D(�+ 1)/2 ≥ 0

gcd{k −D�/2, D/2} k −D(�+ 1)/2 < 0 < k −D�/2

−k +D(�+ 1)/2 k −D�/2 ≤ 0.

Thus, the form (3.27) defines a class in the cohomology Hr(Fξ) with

r = dimΠξ − 1.

�

3.5. The Feynman integral: slicing. As in Proposition 2.9, we can refor-
mulate the integral (3.14) in terms of integrals of pullbacks of forms on a hypersur-
face complement in projective space, using the explicit description of Proposition
3.4 above.

Proposition 3.6. The integral (3.14) can be computed in the form

(3.31) U(Γ)ξ =
1

C(k,D, �)

(

∫

∂Σ∩Πξ

π∗(ηξ) +

∫

Σ∩Πξ

df |Πξ
∧ π∗(ηξ)

f |Πξ

)

,

where π : An
� {0} → P

n−1 is the projection and ηξ satisfies

(3.32) π∗(ηξ) =
h|Πξ

Ωξ

(f |Πξ
)m

on A
n, where Ωξ is given by (3.4) and f , m and h are as in Proposition 3.4 and

Corollary 3.5. The coefficient C(k,D, �) is given as in (2.73).

Proof. As in the case of Proposition 2.9, the result follows by applying Propo-
sition 2.8 and Proposition 3.4, together with the fact that Ωξ = Δ(ωξ), which can
be seen by writing

Ωξ =
n−k
∏

i=1

δ(〈ξi, t〉) Ωn.

The coefficient C(k,D, �) is given by C(k,D, �) = m deg(f), with m and f as in
(3.30) and (3.17). �

4. Oscillatory integrals: Leray and Dimensional Regularizations

A well known method for studying integrals of holomorphic forms on vanishing
cycles of a singularity and to relate these to mixed Hodge structures is via oscillatory
integrals and their asymptotic expansion (see [4] and Vol.II of [5]). Our main
result in this section will be to show that the dimensionally regularized parametric
Feynman integrals can be related to the Mellin transform of a Gelfand–Leray form,
whose Fourier transform is the oscillatory integral usually considered in the context
of singularity theory.
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4.1. Oscillatory integrals and the Gelfand–Leray forms. We recall here
briefly some results on oscillatory integrals and their asymptotic expansion. We
refer the reader to §2, Vol.II of [5] for more details. In general, an oscillatory
integral is an expression of the form

(4.1) I(α) =

∫

Rn

eiαf(x)φ(x) dx1 · · · dxn,

where f : Rn → R and φ : Rn → R are smooth functions and α ∈ R
∗
+ is a real

parameter. It is well known that, if the phase f(x) is an analytic function in a
neighborhood of a critical point x0, then (4.1) has an asymptotic development for
α → ∞ given by a series

(4.2) I(α) ∼ eiαf(x0)
∑

u

n−1
∑

k=0

ak,u(φ)α
u(logα)k,

where u runs over a finite set of arithmetic progressions of negative rational numbers
depending only on the phase f(x), and the ak,u are distributions supported on the
critical points of the phase, cf. §2.6.1, Vol.II of [5].

It is also well known that the integral (4.1) can be reformulated in terms of
one-dimensional integrals using the Gelfand–Leray form

(4.3) I(α) =

∫

R

eiαt

(

∫

Xt(R)

φ(x)ωf (x, t)

)

dt

where Xt(R) ⊂ R
n is the level set Xt(R) = {x ∈ R

n : f(x) = t} and ωf (x, t) is the
Gelfand–Leray form, that is, the unique (n− 1)-form on the level hypersurface Xt

with the property that

(4.4) df ∧ ωf (x, t) = dx1 ∧ · · · ∧ dxn.

Notice that, as in the case of the forms (3.4), there is an ambiguity in the choice
of an (n − 1)-form satisfying (4.4), but the restriction to Xt is unique so that the
Gelfand–Leray form on Xt is well defined. Notice also that, up to throwing away
a set of measure zero, we can assume here that the integration is over the values
t ∈ R such that the level set Xt is a smooth hypersurface.

The Gelfand–Leray form ωf (x, t) is often written in the notation

(4.5) ωf (x, t) =
dx1 ∧ · · · ∧ dxn

df
.

It is given by the Poincaré residue

(4.6)
ω

df
= Resε=0

ω

f − ε
.

The Gelfand–Leray function is the associated function

(4.7) J(t) :=

∫

Lt

φ(x)ωf (x, t).

For more details, see §2.6 and §2.7, Vol.II [5].
We recall here a property of the Gelfand–Leray forms that will be useful in the

following, where we consider complex hypersurfaces X ⊂ A
n = C

n, with defining
polynomial equation f = 0 and the hypersurface complement D(f) ⊂ A

n, such that
the restriction of f to the interior of the domain of integration Σ ⊂ A

n takes values
in R

∗
+.
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Recall that the Leray coboundary of a k-chain σ in X is a (k + 1)-chain in
D(f) obtained by considering a tubular neighborhood of X in A

n, in the following
way. Since X is a hypersurface, the boundary of its tubular neighborhood is a
circle bundle over X. One considers the preimage of σ under the projection map
as a chain in D(f). We denote the resulting chain by L(σ). It is called the Leray
coboundary of σ (see [5] p.282). The Leray coboundary L(σ) is a cycle if σ is a
cycle, and if one changes σ by a boundary then L(σ) also changes by a boundary.

Lemma 4.1. Let σε be a k-chain in Xε = {t ∈ A
n|f(t) = ε} and let L(σε)

be its Leray coboundary in D(f − ε). Then, for a form α ∈ Ωk that admits a
Gelfand–Leray form, one has

(4.8)
1

2πi

∫

L(σ(ε))

df ∧ α

f − ε
=

∫

σ(ε)

α,

where

(4.9)
d

dε

∫

σ(ε)

α =

∫

σ(ε)

dα

df
−
∫

∂σ(ε)

α

df
.

Proof. First let us show that if α has a Gelfand–Leray form then dα also
does. We have a form α/df such that

df ∧ α

df
= α.

Its differential gives

dα = d

(

df ∧ α

df

)

= −df ∧ d

(

α

df

)

.

Thus, the form
dα

df
= −d

(

α

df

)

is a Gelfand–Leray form for dα.
Then we proceed to prove the first statement. One can write

1

2πi

∫

L(σ(ε))

df ∧ α

f − ε
=

1

2πi

∫

γ

(

∫

σ(s)

α

)

ds

s− ε
,

where γ ∼= S1 is the boundary of a small disk centered at ε ∈ C. This can then be
written as

=
1

2πi

∫

γ

∫

σ(ε)

α
ds

s− ε
+

(

1

2πi

∫

γ

∫

σ(s)

α
ds

s− ε
− 1

2πi

∫

γ

∫

σ(ε)

α
ds

s− ε

)

.

The last term can be made arbitrarily small, so one gets (4.8). To obtain (4.9)
notice that

1

2πi

d

dε

∫

L(σ(ε))

df ∧ α

f − ε
=

1

2πi

∫

L(σ(ε))

df ∧ α

(f − ε)2
.

One then uses

d

(

α

f − ε

)

=
dα

f − ε
− α

(f − ε)2

to rewrite the above as

1

2πi

(

∫

L(σ(ε))

dα

f − ε
−
∫

L(σ(ε))

d

(

α

f − ε

)

)
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=
1

2πi

∫

L(σ(ε))

df ∧ dα
df

f − ε
− 1

2πi

∫

L(∂σ(ε))

α

f − ε

=
1

2πi

∫

L(σ(ε))

df ∧ dα
df

f − ε
− 1

2πi

∫

L(∂σ(ε))

df ∧ α
df

f − ε
,

where dα/df is a Gelfand–Leray form such that

df ∧ dα

df
= dα,

and α/df is a Gelfand–Leray form with the property that

df ∧ α

df
= α.

This then gives by (4.8)

d

dε

∫

σ(ε)

α =

∫

σ(ε)

dα

df
−
∫

∂σ(ε)

α

df
.

This completes the proof. �

4.2. Leray coboundary regularization and subtraction. The formula-
tion (2.68) of the parametric Feynman integrals, in the form of Proposition 2.9,
suggests a regularization procedure different from Dimensional Regularization, but
with the similar effect of replacing a divergent integral with a meromorphic function
to which the “minimal subtraction” procedure can be applied to remove the polar
part and extract a finite value.

Since the singularities arise where the domain of integration Σ meets the hy-
persurface X = {f = 0}, with f as in (2.70), we can concentrate on only the part
of the integral that is supported near this intersection.

Let Dε(X) denote a neighborhood of the hypersurface X in P
n−1, given by

level sets

(4.10) Dε(X) = ∪s∈Δ∗
ε
Xs,

where Xs = {t|f(t) = s} and Δ∗
ε ⊂ C

∗ is a small punctured disk of radius ε > 0.
The boundary ∂Dε(X) is given by

(4.11) ∂Dε(X) = ∪s∈∂Δ∗
ε
Xs.

It is a circle bundle over the generic fiber Xε, with projection πε : ∂Dε(X) → Xε.
Given a domain of integration Σ, we consider the intersection Σ ∩ Dε(X). This
is the region that contains the locus Σ ∩ X where the divergence in the Feynman
integral can occur. We let Lε(Σ) denote the set

(4.12) Lε(Σ) = π−1
ε (Σ ∩Xε).

This enjoys the same properties of the Leray coboundary discussed above. In
particular, notice that Lε(∂Σ) = ∂Lε(Σ).

We consider forms π∗(η) as in (2.69). To keep track explicitly of the order of
pole of such forms along the hypersurface X, we modify the notation and write

(4.13) π∗(ηm) =
Δ(ω)

fm
,

with ω and f as in (2.69).
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We then make the following proposal for a regularization method for the Feyn-
man integrals (2.68). We call it Leray regularization, because it is based on the use of
Leray coboundaries. (Notice that this procedure of regularization and subtraction
happens after having already removed the divergent Γ-factor from the parametric
Feynman integrals and passing to residues. It is meant in fact to take care of the
remaining singularities that arise from the intersections of the hypersurface with
the domain of integration.)

Definition 4.2. The Leray regularized Feynman integral is obtained from (2.68)
by replacing the part

(4.14)

∫

∂Σ∩Dε(X)

π∗(ηm) +

∫

Σ∩Dε(X)

df ∧ π∗(ηm)

f

of (2.68) with the integral

(4.15)

∫

Lε(∂Σ)

π∗(ηm−1)

f − ε
+

∫

Lε(Σ)

df ∧ π∗(ηm)

f − ε
.

Thus, the Leray regularization introduced here consists of replacing the integral
over Σ∩Dε(X) with an integral over Lε(Σ) � (Σ∩Xε)×S1, which avoids the locus
Σ ∩ X where the divergence can occur by going around it along a circle of small
radius ε > 0.

Using the result of Lemma 4.1, we can formulate (4.15) equivalently in the
following form.

Lemma 4.3. The Leray regularization of the Feynman integral (2.68) can be
equivalently written in the form

(4.16)

U(Γ)ε =
1

C(n,D, �)

(

∫

∂Σ∩Dε(X)c
π∗(ηm) +

∫

Σ∩Dε(X)c
df ∧ π∗(ηm)

f

)

+
2πi

C(n,D, �)

(∫

∂Σ∩Xε

π∗(ηm−1)

df
+

∫

Σ∩Xε

π∗(ηm),

)

with π∗(ηm) = Δ(ω)/fm as in (4.13) and Proposition 2.9.

Proof. The result follows directly from Proposition 2.9 and Lemma 4.1 ap-
plied to (4.15). �

In (4.16) we use the notation Dε(X)c to denote the complement of Dε(X).
Notice how only the part of the integral (2.68) that is computed inside Dε(X) is
replaced by (4.15) in the Leray regularization, while the part of the integral (2.68)
computed outside of Dε(X) remains unchanged.

We now study the dependence on the parameter ε > 0 of the Leray regularized
Feynman integral (4.15), that is, of the integral

(4.17) Iε :=

∫

∂Σ∩Xε

π∗(ηm−1)

df
+

∫

Σ∩Xε

π∗(ηm).

Theorem 4.4. The function Iε of (4.17) is infinitely differentiable in ε. More-
over, it extends to a holomorphic function for ε ∈ Δ∗ ⊂ C, a small punctured disk,
with a pole of order at most m at ε = 0, with m as in (2.71).
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Proof. To prove the differentiability of Iε, let us write

(4.18) Aε(η) =

∫

Σ∩Xε

π∗(η),

with π∗(η) as in (2.69). By Lemma 4.1 above, and the fact that dπ∗(η) = 0, we
obtain

(4.19)
d

dε
Aε(η) = −

∫

∂Σ∩Xε

π∗(η)

df
,

where f is as in (2.70) and π∗(η)/df is the Gelfand–Leray form of π∗(η). Thus, we
can write

Iε = Aε(ηm)− d

dε
Aε(ηm−1).

Thus, to check the differentiability in the variable ε to all orders of Iε is equivalent
to checking that of Aε. We define then Υ : Ωn → Ωn by setting

(4.20) Υ(α) = d

(

α

df

)

,

where α/df is a Gelfand–Leray form for α. In turn, the n-form Υ(α) also has a
Gelfand–Leray form, which we denote by

(4.21) δ(α) =
Υ(α)

df
=

d
(

α
df

)

df
.

We then prove that, for k ≥ 2,

(4.22)
dk

dεk
Aε = −

∫

∂Σ∩Xε

δk−1

(

π∗(η)

df

)

.

This follows by induction. In fact, we first see that

d2

dε2
Aε = − d

dε

∫

∂Σ∩Xε

π∗(η)

df

which, applying Lemma 4.1 gives

= −
∫

∂Σ∩Xε

d
(

π∗(η)
df

)

df
.

Assuming then that

dk

dεk
Aε = −

∫

∂Σ∩Xε

δk−1

(

π∗(η)

df

)

we obtain again by a direct application of Lemma 4.1

dk+1

dεk+1
Aε = −

∫

∂Σ∩Xε

d

(

δk−1
(

π∗(η)
df

)

df

)

df

= −
∫

∂Σ∩Xε

δk
(

π∗(η)

df

)

.

This proves differentiability to all orders.
Notice then that, while the expression (4.15) used in Definition 4.2 is, a priori,

only defined for ε > 0, the equivalent expression given in the second line of (4.16)
and in (4.17) is clearly defined for any complex ε ∈ Δ∗ in a punctured disk around
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ε = 0 of sufficiently small radius. It can then be seen that the expression (4.17) de-
pends holomorphically on the parameter ε by the general argument on holomorphic
dependence on parameters given in Part III, §10.2 of Vol.II of [5].

Finally, to see that Iε has a pole of order at most m at ε = 0, notice that the
form π∗(ηm) of (4.13) is given by Δ(ω)/fm and has a pole of order at most m

at X. This is evident in the two cases with n − D(�+1)
2 ≥ 0 or n − D�

2 ≤ 0. It

also holds in the intermediate case with n − D(�+1)
2 < 0 < n − D�

2 , since we are
using the convention that, in the case of a hypersurface X defined by a polynomial
f = fn1

1 fn2
2 , a form Δ(ω)/fm has pole order m along X, even though on the

individual components it has order mn1 and mn2, respectively. �

In particular, the result of Proposition 4.4 shows that we can use the Leray
regularization as an alternative to dimensional regularization to replace a divergent
Feynman integral by a meromorphic function of a complex variable ε with a pole
at ε = 0. It is then possible to proceed as in dimensional regularization and apply
“minimal subtraction”, namely subtract the polar part of the resulting Laurent
series in ε and evaluate the remaining part at ε = 0.

It is clear that this regularization method is subject to the same problems as di-
mensional regularization when it comes to considering Feynman integrals associated
to graphs that contain subdivergences. One can organize the hierarchy of subdi-
vergences using the Bogoliubov-Parasiuk preparation, as in the case of dimensional
regularization.

4.3. Birkhoff factorization and renormalization. Connes and Kreimer
[21] showed that the BPHZ renormalization procedure, in the DimReg+MS reg-
ularization scheme, can be understood conceptually as the Birkhoff factorization
of loops in the Lie group of complex points of the affine group scheme G dual to
a commutative Hopf algebra H generated by the Feynman diagrams of the given
physical theory. The Hopf algebra H, at the discrete combinatorial level, is the
commutative algebra generated by the one-particle-irreducible (1PI) graphs of the
theory, with the coproduct

(4.23) Δ(Γ) = Γ⊗ 1 + 1⊗ Γ +
∑

γ ⊗ Γ/γ,

where the sum is over proper subgraphs γ ⊂ Γ satisfying a set of properties such
as being Feynman diagrams of the same theory (see for instance [23] for a detailed
discussion of the assumptions on the family of subgraphs involved in the coproduct).
The quotient Γ/γ denotes the graph obtained by contracting each component of γ
to a single vertex. It is sometimes denoted in the literature with the notation Γ//γ.
The Hopf algebra is graded by the number of internal lines of graphs.

After identifying loops γ : Δ∗ → G(C), defined on an infinitesimal punctured
disk Δ∗ around z = 0, with elements φ ∈ G(K) = Hom(H,K), where K is the field
of germs of meromorphic functions at z = 0, Connes and Kreimer showed that the
BPHZ formula for renormalization is the recursive formula

(4.24)
φ−(x) = −T (φ(x) +

∑

φ−(x
′)φ(x′′))

φ+(x) = φ(x) + φ−(x) +
∑

φ−(x
′)φ(x′′),

with Δ(x) = x ⊗ 1 + 1 ⊗ x +
∑

x′ ⊗ x′′, and x′, x′′ of lower degree, and with T
the projection of a Laurent series onto its polar part. The original BPHZ formula
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is obtained by applying (4.24) to the element φ ∈ Hom(H,K) that assigns to a
generator Γ of H its unrenormalized Feynman integral U(Γ). As shown in [21], the
formula (4.24) is the recursive formula that gives the Birkhoff factorization

(4.25) γ(z) = γ−(z)
−1γ+(z)

of the loop γ into a part γ+ that is holomorphic on Δ and a part γ− that is
holomorphic at ∞ ∈ P

1(C), where one identifies γ+ with φ+ ∈ Hom(H,O), with
O the algebra of germs of holomorphic functions at z = 0 and γ− with φ− ∈
Hom(H,Q) wth Q = C[z−1] so that

(4.26) φ = (φ− ◦ S) ∗ φ+,

with S the antipode of H and ∗ the product in the affine group scheme G, dual to
the coproduct of H.

The formulation in terms of Birkhoff factorization of loops with values in the
Lie group of complex points of the affine group scheme of diffeographisms is ap-
plied in [21] to the Dimensional Regularization of Feynman integrals. Namely, the
dimensionally regularized Feynman integrals U(Γ)(z) of (2.43) define an element
φ ∈ Hom(H,K), with H the Connes–Kreimer Hopf algebra of Feynman graphs of
the theory and K the field of germs of meromorphic functions at z = 0, given by
assigning as values on the generators of the Hopf algebra

(4.27) φ(Γ) = U(Γ) ∈ K.

In the case of dimensional regularization of Feynman integrals, the fact that the
U(Γ)(z) define meromorphic functions is very delicate, see the discussion in §1.4
of [23], especially Lemma 1.7, Lemma 1.8, and Theorem 1.9. On the contrary, we
have seen that, using the Leray coboundary regularization introduced above, one
easily obtains meromorphic functions of the parameter ε. We return to discuss the
analytic continuation to meromorphic functions of the dimensionally regularized
integrals via a different approach in §4.4 below.

By the results of §4.2 above, we can apply the same BPHZ renormalization
procedure to the Leray coboundary regularization introduced in Definition 4.3. We
thus consider the element φ ∈ Hom(H,K) defined by assigning on generators

(4.28) φ(Γ)(ε) = U(Γ)ε

defined as in (4.16). By Proposition 4.4, we know that U(Γ)ε defines a germ of a
meromorphic function for ε ∈ Δ∗, an infinitesimal punctured disk around ε = 0,
hence it defines an element in K. We can then apply the Birkhoff factorization of
φ, as in (4.26). This provides the counterterms, in the form

(4.29) C(Γ)ε = φ−(Γ)(ε),

which, as a function of ε, is an element in Q, and the renormalized value of the
Feynman integral, given by the finite value at zero

(4.30) R(Γ) = φ+(Γ)(0),

where φ+(Γ)(ε) defines an element in the ring of convergent power series O ⊂ K.
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4.4. Mellin transform and the DimReg integral. We now return to con-
sider the method of Dimensional Regularization and reinterpret it in terms of oscil-
latory integrals and mixed Hodge structures. As we recalled briefly in §4.1 above,
the oscillatory integrals used in the theory of singularities and mixed Hodge struc-
tures can be seen as Fourier transforms (4.3) of a Gelfand–Leray function (4.7).
One can also consider, instead of a Fourier transform, a Mellin transform of the
same Gelfand–Leray function. Since the Mellin and Fourier transforms determine
each other by well known formulae, the information obtained in this way is equiv-
alent. In the context of singularity theory, the Mellin transforms of Gelfand–Leray
functions and their relation to the oscillatory integral is discussed, for instance, in
Part II, §7.2.1, of [5], Vol.II.

It was already proved by Belkale and Brosnan in [9] that, in the case of log-
divergent graphs, the dimensionally regularized parametric Feynman integral can
be written as a local Igusa L-function. This was later generalized to the non-log-
divergent case in the work of Bogner and Weinzierl [16], [17], [18]. Our approach
here is closely related to these results, though we do not discuss in detail the explicit
relation. Moreover, we simplify the form of the integrals with respect to the case
considered by Bogner and Weinzierl, so that we do not have to perform the cutting
into sectors and blowups. We rely, in fact, on the formulation in terms of the
exponential of the rational function VΓ(t, p) and its expansion, and we analyze the
resulting terms individually. A more detailed analysis using the formulation of
Bogner–Weinzierl and Belkale–Brosnan is possible, but we do not consider it here.

In order to relate the dimensionally regularized parametric Feynman integral
to the oscillatory integrals and the Mellin transforms of Gelfand–Leray functions,
consider again the integrals of the form (2.43), or better, the similar integrals com-
puted after slicing with a k-plane Πξ as in §3.5, so that the intersection XΓ ∩ Πξ

has isolated singularities.
As shown in Lemma 2.6, we can equivalently compute the dimensionally reg-

ularized Feynman integral (2.43) using the form (2.44). Thus, we first consider an
integral of the form

(4.31)

∫

Π+
ξ

e−VΓ(t,p)

ΨΓ(t)(D+z)/2
ωξ

where Π+
ξ = Πξ ∩R

n
+ and ωξ is as in (3.11). After expanding the exponential term

and using (2.31), we are reduced to considering integrals of the form

(4.32)

∫

Π+
ξ

PΓ(t, p)
�

ΨΓ(t)�+(D+z)/2
ωξ.

Thus, we concentrate here on integrals of the form

(4.33) FΓ,ξ(z) =

∫

Ψz
Γ χξ P

�
ΓΩξ,

with Ωξ is as in (3.4), and for some integer � ≥ 0. We have made here a sim-
ple change of coordinates on the complex variable z, whose meaning will become
apparent in a moment.

The function χξ in (4.33) is the characteristic function of the domain of inte-
gration. In order to show that one can extract from these dimensionally regularized
Feynman integrals information on the singularities of the graph hypersurface XΓ
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(through its slices XΓ ∩ Πξ), it suffices to concentrate on the part of the domain
of integration that is close to the hypersurface XΓ. Thus, we can include in the
function χξ an additional cutoff of the integral that is supported in a neighborhood
of the intersection Σξ ∩ XΓ of the original domain of integration in Πξ with the
graph hypersurface.

In the following, for simplicity of notation, we just write (4.33) as

(4.34) FΓ,ξ(z) =

∫

Ψz
Γ αξ,

where

(4.35) αξ = χξ P
�
Γ Ωξ.

Lemma 4.5. The function (4.34) is the Mellin transform of the Gelfand-Leray
function

(4.36) JΓ,ξ(ε) =

∫

Xε

αξ

df
,

with f = ΨΓ|Πξ
.

Proof. First observe that both functions ΨΓ(t) and PΓ(t, p) are real when
restricted to the domain Σ ⊂ R

n
+, with ΨΓ(t) > 0 on the interior of this domain.

Thus, we can write the function FΓ,ξ(z) of (4.34) in the form

(4.37) FΓ,ξ(z) =

∫ ∞

0

sz
(∫

Xs

αξ

df

)

ds.

One can then recognize that (4.37) is in fact the Mellin transform

(4.38) FΓ,ξ(z) =

∫ ∞

0

szJΓ,ξ(s) ds,

for JΓ,ξ as in (4.36), the corresponding Gelfand–Leray function. �

The identification of FΓ,ξ(z) with the Mellin transform (4.38) also provides an
answer to the problem of the analytic continuation to meromorphic functions in
the complex plane for functions of the form (4.33). This analytic continuation is
needed in order to justify our change of variables in z in passing from (4.32) to
(4.33), as well as the use of integrals of the form (4.33) to derive conclusions about
the original dimensionally regularized integrals (4.32). In fact, the existence of an
analytic continuation to meromorphic functions for the functions FΓ,ξ(z) follows
from the existence of an asymptotic expansion for Gelfand–Leray functions of the
form

(4.39) J(s) =

∫

Xs

α

df
, α = hχωn,

with h a polynomial term and χ a compactly supported smooth function, supported
near an isolated singularity of the hypersurface f = 0. The asymptotic expansion
is given by

(4.40) J(s) ∼
∑

λ∈Ξ

n−1
∑

r=0

ar,λ s
λ log(s)r, s → 0+
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with Ξ a discrete subset of R. The points λ ∈ Ξ depend on the set of multiplicities
of an embedded resolution of the singularity, see Part II, §7 of [5] and [42]. This
implies the following result (cf. [5]), for generic choice of the slicing Πξ and of the
external momenta.

Corollary 4.6. Suppose that the cutoff function χξ in (4.35) is supported
in a small neighborhood of an isolated singularity of XΓ ∩ Πξ. Then the function
FΓ,ξ(z), defined as in (4.34) for �(z) > 0 sufficiently large, admits an analytic
continuation to a meromorphic function over the whole complex plane, with poles
at the discrete set of points z = −(λ+1), with λ ∈ Ξ as in (4.40), with the coefficient
of (z+ λ+1)−(r+1) in the Laurent series expansion given by (−1)rr!ar,λ, with ar,λ
as in (4.40).

4.5. Dimensional regularization and mixed Hodge structures. We use
the results of the previous section relating the dimensional regularization of the
Feynman integrals to the Mellin transform of Gelfand–Leray functions, and the
results of §3.4 on the interpretation in terms of cohomology of the Milnor fiber,
to relate the dimensionally regularized Feynman integrals to limiting mixed Hodge
structures.

We assume here to be in the case of isolated singularities, possibly after replac-
ing the original Feynman integrals with their slices along planes Πξ of dimension
complementary to that of the singular locus of the hypersurface, as discussed in
§§3.2 and 3.5 above.

The cohomological Milnor fibration has fiber over ε given by the complex vector
space Hk−1(Fε,C), where the Milnor fiber Fε of Xξ is homotopically a bouquet
of μ spheres Sk−1, with k = dimΠξ − 1 and with μ the Milnor number of the
isolated singularity. A holomorphic k-form α = hωξ/f

m determines a section of
the cohomological Milnor fibration by taking the classes

(4.41)

[

α

df
|Fε

]

∈ Hk−1(Fε,C).

We then have the following results ([5], Vol.II §13). The asymptotic formula (4.40)
for the Gelfand–Leray functions implies that the function of ε obtained by pairing
the section (4.41) with a locally constant section of the homological Milnor fibration
has an asymptotic expansion

(4.42)

〈[

α

df

]

, δ

〉

∼
∑

λ,r

ar,λ
r!

ελ log(ε)r,

for ε → 0, where δ(ε) ∈ Hk−1(Fε,Z). Moreover, there exist classes

(4.43) ηαr,λ(ε) ∈ Hk−1(Fε,C)

such that the coefficients ar,λ of (4.42) are given by

(4.44) 〈ηαr,λ(ε), δ(ε)〉 = ar,λ.

Thus, one defines the “geometric section” associated to the holomorphic k-form α
as

(4.45) σ(α) :=
∑

r,λ

ηαr,λ(ε)
ελ log(ε)r

r!
.
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The order of the geometric section σ(α) is defined as being the smallest λ in the
discrete set Ξ ⊂ R such that ηα0,λ �= 0. One denotes it by λα. The principal part of

σ(α) is then defined as

(4.46) σmax(α)(ε) := ελα

(

ηα0,λα
+ · · ·+ log(ε)k−1

(k − 1)!
ηαk−1,λα

)

,

where one knows that

(4.47) ηαr,λ = N rηα0,λ,

where N is the nilpotent operator given by the logarithm of the unipotent mon-
odromy, given by

N = − 1

2πi
log T

with log T =
∑

r≥1(−1)r+1(T − id)r/r.
The asymptotic mixed Hodge structure on the fibers of the cohomological Milnor

fibration constructed by Varchenko ([43], [44]) has as the Hodge filtration the
subspaces F r ⊂ Hk−1(Fε,C) defined by

(4.48) F r = {[α/df ] |λα ≤ k − r − 1}
and as weight filtration W� ⊂ Hk−1(Fε,C) the filtration associated to the nilpotent
monodromy operatorN . This mixed Hodge structure has the same weight filtration
as the limiting mixed Hodge structure constructed by Steenbrink ([38], [39]), but
the Hodge filtration is different, though the two agree on the graded pieces of the
weight filtration.

We now use a refined version of the results of §3.4, and in particular Corollary
3.5 for Feynman integrands as in (3.16). We show that, upon varying the choice
of the external momenta p and of the spacetime dimension D, the corresponding
Feynman integrands, in a neighborhood of an isolated singular point of XΓ ∩ Πξ,
determine a subspace of the cohomology Hk−1(Fξ,C) of the Milnor fiber of XΓ∩Πξ.
This inherits a Hodge and a weight filtration from the Milnor fiber cohomology
with its asymptotic mixed Hodge structure. We concentrate on the case where
k − D�/2 ≤ 0, so that we can consider, for fixed k, arbitrarily large values of
D ∈ N.

Proposition 4.7. Consider Feynman integrals, sliced along a linear space Πξ

as in (3.14). We write the integrand in the form

(4.49) αξ =
hΩξ

fm
,

with

(4.50)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

h = P
−k+D�/2
Γ

f = ΨΓ

m = −k +D(�+ 1)/2,

as in (3.24), with k −D�/2 ≤ 0. Upon varying the external momenta p in PΓ(p, t)
and the spacetime dimension D ∈ N, with k − D�/2 ≤ 0, the forms αξ as above
determine a subspace

Hk−1
Feynman(Fε,C) ⊂ Hk−1(Fε,C),
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of the fibers of the cohomological Milnor fibration, spanned by elements of the form
(4.49), where the polynomials h = hT,v,w,p are of the form

(4.51) h(t) =

−k+D�/2
∏

i=1

LTi
(t)

∏

e/∈Ti

te,

where the Ti are spanning trees and the LTi
(t) are the linear functions of (2.37).

Proof. Consider the explicit expression (2.32) of the polynomial PΓ(t, p) as
a function of the external momenta, through the coefficients sC of (2.33). One
can see that, by varying arbitrarily the external momenta, subject to the global
conservation law (2.35), one can reduce to the simplest possible case, where all
external momenta are zero except for a pair of opposite momenta Pv1 = p =
−Pv2 associated to a pair of external edges attached to a pair of vertices v1, v2.
In such a case, the polynomial PΓ(t, p) becomes of the form (2.36). Thus, when
considering powers PΓ(t, p)

−k+D�/2 for varying D, we obtain all polynomials of the
form (4.51). �

We denote by Hk−1
Feynman(Fε,C) the subspace of the cohomology Hk−1(Fε,C) of

the Milnor fiber spanned by the classes [αξ/df ] with αξ of the form (4.49), with
h of the form (4.51), considered modulo the ideal generated by the derivatives
of f = ΨΓ and localized at an isolated singular point, i.e. viewed as elements in
the Milnor algebra M(f). The subspace Hk−1

Feynman(Fε,C) inherits a Hodge and a

weight filtration F • ∩ Hk−1
Feynman and W• ∩ Hk−1

Feynman from the asymptotic mixed

Hodge structure of Varchenko on Hk−1(Fε,C). It is an interesting problem to see

whether the subspace Hk−1
Feynman recovers the full Hk−1(Fε,C) and if

(F • ∩Hk−1
Feynman,W• ∩Hk−1

Feynman)

still give a mixed Hodge structure, at least for some classes of graphs Γ.

5. Regular and irregular singular connections

An important and still mysterious aspect of the motivic approach to Feynman
integrals and renormalization is the problem of reconciling the Riemann–Hilbert
correspondence of perturbative renormalization formulated by Connes–Marcolli in
[22] (see also [23]), which is based on equivalence classes of certain irregular sin-
gular connections, with the setting of motives (especially mixed Tate motives) and
mixed Hodge structures, which are naturally related to regular singular connec-
tions. The irregular singular connections of [22] have values in the Lie algebra of
the Connes–Kreimer group of diffeographisms and are defined on a fibration over
a punctured disk with fiber the multiplicative group, respectively representing the
complex variable z of dimensional regularization and the energy scale μ (or rather
μz) upon which the dimensionally regularized Feynman integrals depend. On the
other hand, in the case of hypersurfaces in projective spaces, the natural associated
regular singular connection is the Gauss–Manin connection on the cohomology of
the Milnor fiber and the Picard–Fuchs equation for the vanishing cycles. We sketch
here a relation between this regular singular connection and the irregular equisin-
gular connections of [22]. (To avoid any possible confusion, the reader should keep
in mind that the use of the term “equisingular” in [22] is not the same as the well
established use in singularity theory, as in [41] for instance.)
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5.1. Picard–Fuchs equation and Gauss–Manin connection. In the fol-
lowing we let

(5.1)

[

ωi

df

]

i = 1, . . . , μ

be a basis for the vanishing cohomology bundle, written with the same notation we
used above for the Gelfand–Leray form. Then the Gauss–Manin connection on the
vanishing cohomology bundle, which is defined by the integer cohomology lattice
in each real cohomology fiber, acts on the basis (5.1) by

(5.2) ∇GM
s

[

ωi

df

]

s

=
∑

j

pij(s)

[

ωj

df

]

s

,

where the pij(s) are holomorphic away from s = 0 and have a pole at s = 0. The
Gauss–Manin connection is regular singular and its monodromy agrees with the
monodromy of the singularity (see [4], §2.3). Given a covariantly constant section
δ(s) of the vanishing homology bundle, the function

(5.3) I(s) =

(

∫

δ(s)

ω1

df
, . . . ,

∫

δ(s)

ωμ

df

)

is a solution of the regular-singular Picard–Fuchs equation

(5.4)
d

ds
I(s) = P (s)I(s), with P (s)ij = pij(s).

Similarly, suppose given a holomorphic n-form ω and let ω/df be the corre-
sponding Gelfand–Leray form, defining a section [ω/df ] of the vanishing cohomology
bundle. Let δ1, . . . , δμ be a basis of the vanishing homology, δi(s) ∈ Hn−1(Fs,Z).
Then the function

(5.5) I(s) =

(

∫

δ1(s)

ω

df
, . . . ,

∫

δμ(s)

ω

df

)

satisfies a regular singular order � differential equation

(5.6) I(�)(s) + p1(s)I
(�−1)(s) + · · ·+ p�(s)I(s) = 0,

where the order is bounded above by the multiplicity of the critical point (see
[5], §12.2.1). One refers to (5.6), or to the equivalent system of regular singular
homogeneous first order equations

(5.7)
d

ds
I(s) = P(s)I(s),

with

(5.8) Ir(s) = sr−1I(r−1)(s),

as the Picard–Fuchs equation of ω. For the relation between Picard–Fuchs equations
and mixed Hodge structures see §12 of [5] and [32].
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5.2. Flat equisingular connections. We first recall some properties of the
flat equisingular connections introduced in [22] (see also §1 of [23]). We denote
by G the affine group scheme dual to the commutative Hopf algebra of Feynman
diagrams, graded by loop number. We let g denote the Lie algebra g = Lie(G).
Let K denote the field of germs of meromorphic functions at z = 0. We also let
B denote a fibration over an infinitesimal disk Δ∗ with fiber the multiplicative
group Gm and we denote by P the principal G-bundle P = B × G. We consider
Lie(G)-valued flat connections ω that are equisingular, i.e. they satisfy

• The connection satisfies ω(z, λu) = λY ω(z, u), for λ ∈ Gm, with Y the
grading operator.

• Solutions of Dγ = ω have the property that their pullbacks σ∗(γ) ∈ G(K)
along any section σ : Δ → B with fixed value σ(0) have the same negative
piece of the Birkhoff factorization σ∗(γ)−.

The first condition and the flatness condition imply that the connection ω(z, u)
can be written in the form

(5.9) ω(z, u) = uY (a(z)) dz + uY (b(z))
du

u
,

where a(z) and b(z) are elements of g(K) satisfying the flatness condition

(5.10)
db

dz
− Y (a) + [a, b] = 0.

Recall that the Lie bracket in the Lie algebra Lie(G) is obtained by assigning

(5.11) [Γ,Γ′] =
∑

v∈V (Γ)

Γ ◦v Γ′ −
∑

v′∈V (Γ′)

Γ′ ◦v′ Γ,

where Γ ◦v Γ′ denotes the graph obtained by inserting Γ′ into Γ at the vertex
v ∈ V (Γ) and the sum is over all vertices where an insertion is possible.

The equisingularity condition, which determines the behavior of pullbacks of
solutions along sections of the fibration Gm → B → Δ, can be checked by writing
the equation Df = ω in the more explicit form

(5.12) γ−1 dγ

dz
= a(z), and γ−1Y (γ) = b(z).

When one interprets elements γ ∈ G(K) as algebra homomorphisms φ ∈ Hom(H,K),
one can write the above equivalently in the form

(5.13) (φ ◦ S) ∗ dφ

dz
= a, and (φ ◦ S) ∗ Y (φ) = b,

where S is the antipode in H and ∗ is the product dual to the coproduct in the
Hopf algebra. This means, on generators Γ of H,

(5.14) 〈(φ ◦ S)⊗ dφ

dz
,Δ(Γ)〉 = aΓ, and 〈(φ ◦ S)⊗ Y (φ),Δ(Γ)〉 = bΓ,

where

Δ(Γ) = Γ⊗ 1 + 1⊗ Γ +
∑

γ

γ ⊗ Γ/γ

as in (4.23), with the sum over subdivergences, and the antipode is given inductively
by

(5.15) S(X) = −X −
∑

S(X ′)X ′′,
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for Δ(X) = X ⊗ 1 + 1⊗X +
∑

X ′ ⊗X ′′, with X ′ and X ′′ of lower degree.

5.3. From regular to irregular singularities. We now show how to pro-
duce a flat connection of the desired form (5.9), with irregular singularities, starting
from the graph hypersuraces XΓ, a consistent choice of slicing Πξ, and the regular
singular Picard–Fuchs equation associated to the resulting isolated singularities of
XΓ ∩Πξ.

We begin by introducing a small modification of the Hopf algebra and coprod-
uct, which accounts for the fact of having to choose a slicing Πξ. This is similar to
what happens when one enriches the discrete Hopf algebra by adding the data of
the external momenta.

Let SΓ denote the manifold of planes Πξ in A
#E(Γ) with

dimΠξ ≤ codimSing(XΓ).

We can write SΓ as a disjoint union

(5.16) SΓ =

codimSing(XΓ)
⋃

m=1

SΓ,m,

where SΓ,m is the manifold of m-dimensional planes in A
#E(Γ). We denote by

C∞(SΓ) the space of test functions on SΓ and by C−∞
c (SΓ) its dual space of distri-

butions.

Lemma 5.1. Suppose given a subgraph γ ⊂ Γ. Then the choice of a distribution
σ ∈ C−∞

c (SΓ) induces distributions σγ ∈ C−∞
c (Sγ) and σΓ/γ ∈ C−∞

c (SΓ/γ).

Proof. Given γ ⊂ Γ, neglecting external edges, we can realize the affine Xγ

as a hypersurface inside a linear subspace A
#E(γ) ⊂ A

#E(Γ) and similarly for the
affine XΓ/γ , seen as a hypersurface inside a linear subspace A

#E(Γ/γ) ⊂ A
#E(Γ),

where we simply identify the edges of γ or Γ/γ with a subset of the edges of the
original graph Γ.

One then has a restriction map Tγ : SΓ,γ → Sγ , where SΓ,γ ⊂ SΓ is the union
of the components SΓ,m of SΓ with m ≤ codimSing(Xγ),

(5.17) SΓ,γ =

codimSing(Xγ)
⋃

m=1

SΓ,m,

which is given by

(5.18) Tγ(Πξ) = Πξ ∩ A
#E(γ).

This induces a map Tγ : C∞(Sγ) → C∞(SΓ) given by

(5.19) Tγ(f)(Πξ) =

{

f(Tγ(Πξ)) Πξ ∈ SΓ,γ

0 otherwise.

In turn, this defines a map Tγ : C−∞
c (SΓ) → C−∞

c (Sγ), at the level of distributions,
by

(5.20) Tγ(σ)(f) = σ(Tγ(f)).

The argument for Γ/γ is analogous. One sets σγ = Tγ(σΓ) and σΓ/γ = TΓ/γ(σΓ).
�
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We then enrich the original Hopf algebra H by adding the datum of the slicing
Πξ. We consider the commutative algebra

(5.21) H̃ = Sym(C−∞
c (S)),

where S = ∪ΓSΓ, endowed with the coproduct

(5.22) Δ(Γ, σ) = (Γ, σ)⊗ 1 + 1⊗ (Γ, σ) +
∑

γ

(γ, σγ)⊗ (Γ/γ, σΓ/γ).

Lemma 5.2. The coproduct (5.22) is coassociative and H̃ is a Hopf algebra.

Proof. The proof is analogous to the one given in [23], Theorem 1.27. �

We then proceed as follows. We pass to the projective instead of affine formu-
lation and we fix a small neighborhood of an isolated singular point of XΓ ∩ Πξ,
for Πξ a linear space of dimension at most equal to the codimension of Sing(XΓ).
Suppose given a holomorphic k-form αξ on Πξ. Then there exists an associated
regular singular Picard–Fuchs equation

(5.23) J
(�)
Γ,ξ(s) + p1(s)J

(�−1)
Γ,ξ (s) + · · ·+ p�(s)JΓ,ξ(s) = 0,

with the property that any solution JΓ,ξ(s) is a linear combination of the functions

(5.24) JΓ,ξ,i(s) =

∫

δi(s)

αξ

df
,

where δ1, . . . , δμ be a basis of locally constant sections of the homological Milnor
fibration, δi(s) ∈ Hk−1(Fs,Z), and αξ/df is the Gelfand–Leray form associated to
the holomorphic k-form αξ.

This depends on the choice of a singular point and can be localized in a small
neighborhood of the singular point in XΓ ∩ Πξ. In fact, introducing a cutoff χξ

as in (4.33) that is supported near the singularities of XΓ ∩Πξ amounts to adding
the expressions (5.24) for the different singular points. Thus, to simplify notations,
we can just assume to have a single expression JΓ,ξ(s) at a unique isolated critical
point.

We then have the following result, which constructs irregular singular connec-
tions as in §5.2 from solutions of the regular singular Picard–Fuchs equation.

Theorem 5.3. Any solution JΓ,ξ of the regular singular Picard–Fuchs equa-
tion (5.23) determines a flat g(K)-valued connection ω(z, u) of the form (5.9).
Moreover, if the k-form αξ is given by P �

ΓΩξ as in (4.35), then the connection is
equisingular.

Proof. We consider the Mellin transform, as in (4.38)

(5.25) FΓ,ξ(z) =

∫ ∞

0

sz JΓ,ξ(s) ds.

As in Corollary 4.6 (see §7 of [5]), the function FΓ,ξ(z) admits an analytic contin-
uation to meromorphic functions with poles at points z = −(λ + 1) with λ ∈ ΞΓ,ξ

a discrete set in R of points related to the multiplicities of an embedded resolution
of the singular point of XΓ ∩Πξ. We look at the function FΓ,ξ(z) in a small neigh-
borhood of a chosen point z = −D. It has an expansion as a Laurent series, with
a pole at z = −D if −D ∈ ΞΓ,ξ.
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After a change of variables on the complex coordinate z, so that we have z ∈ Δ∗,
a small neighborhood of z = 0, we define

(5.26) φμ(Γ, σ)(z) := μ−z b1(Γ)σ

(

FΓ,ξ(−
D + z

2
)

)

,

where we consider FΓ,ξ as a function of ξ to which we apply the distribution σ.
More precisely, after identifying FΓ,ξ with its Laurent series expansion, we apply σ
to the coefficients seen as functions of ξ. This defines an algebra homomorphism
φμ ∈ Hom(H̃,K), by assigning the values (5.26) on generators. Here μ is the mass
scale as in §2.3 above. The homomorphism φ defined by (5.26) can be equivalently

described as a family of G̃(C)-valued loops γμ : Δ∗ → G̃(C), depending on the

mass scale μ. Here G̃ denotes the affine group scheme dual to the commutative
Hopf algebra H̃. The dependence on μ of (5.26) implies that γμ satisfies the scaling
property

(5.27) γetμ(z) = θtz(γμ(z)),

where θt is the one-parameter family of automorphisms of H̃ generated by the
grading, d

dtθt|t=0 = Y . Then one sets

(5.28) aμ(z) := (φμ ◦ S) ∗ d

dz
φμ, and bμ(z) := (φμ ◦ S) ∗ Y (φμ),

where S and ∗ are the antipode of H̃ and the product dual to the coproduct Δ
of (5.22). These define elements aμ, bμ Ω1(g(K)), which one can use to define a
connection ω(z, u) of the form (5.9). More precisely, for μ = et, one has

γ−1
μ

d

dz
γμ = θt(γ

−1 d

dz
γ) = uY (a(z)),

where we set uY = etY and then extend the resulting expression to u ∈ Gm(C) =
C

∗. Similarly, we get γ−1
μ Y (γμ) = uY (b(z)). Thus, the connection ω(z, u) defined in

this way satisfies by construction the first condition of the equisingularity property,
namely ω(z, λu) = λY ω(z, u), for all λ ∈ Gm. One can see that the connection is
flat since we have

d

dz
bμ(z)− Y (aμ(z)) =

dγ−1
μ (z)

dz
Y (γμ(z)) + γ−1

μ (z)
d

dz
(Y (γμ(z)))

−Y (γ−1
μ (z))

d

dz
γμ(z)− γ−1

μ (z)
d

dz
(Y (γμ(z)))

= −γ−1
μ (z)

d

dz
(γμ(z))γ

−1
μ (z)Y (γμ(z))− γ−1

μ (z)Y (γμ(z))γ
−1
μ (z) = −[a(z), b(z)].

The second condition of equisingularity is the property that, in the Birkhoff
factorization

γμ(z) = γμ,−(z)
−1γμ,+(z),

the negative part satisfies
d

dμ
γμ,−(z) = 0.

By dimensional analysis on the counterterms, in the case of Dimensional Regu-
larization and Minimal Subtraction, it is possible to show (see [20] §5.8.1) that
the counterterms obtained by the BPHZ procedure applied to the Feynman in-
tegral Uμ(Γ)(z) of (2.49) and (2.48) do not depend on the mass parameter μ.
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This means, as shown in [21] (see also Proposition 1.44 of [23]), that the Feyn-
man integrals Uμ(Γ)(z) define a G(C)-valued loop γμ(z) with the property that
∂μγμ,−(z) = 0. The integrals (5.25) considered here, in the case where αξ is of the
form (4.35), correspond to slices along a linear space Πξ of the Feynman integrals
(2.49), localized by a cutoff χξ near the singular points. The explicit dependence
on μ in the integrals (3.31) is as in (5.26), which is unchanged with respect to that
of the original dimensionally regularized Feynman integrals (2.49). Thus, the same
argument of [20] §5.8.1 and Proposition 1.44 of [23] applies to this case to show
that ∂μγμ,−(z) = 0. �

6. Logarithmic motives, Dimensional Regularization, and motivic
sheaves

In this section we propose a candidate for a motivic formulation of dimensional
regularization. As we discussed already in §2.2 above, in physics dimensional regu-
larization is intended as a purely formal recipe that assigns a meaning to Gaussian
integrals in “complexified dimension” z ∈ C by continuation to non-integer values
of the usual formula for integer dimensions

(6.1)

∫

e−λt2dzt := πz/2λ−z/2.

Usually, in so doing, one does not attempt to give a geometric meaning to the
space of integration as a “space in complexified dimension z ∈ C”. The question
of whether one can actually make sense of a geometry in complexified dimension
was considered in [23], from the point of view of noncommutative geometry, where
the usual notion of dimension of a space is replaced by the dimension spectrum,
which is a set of complex numbers. A geometric model for a space whose dimension
spectrum consists of a single point z ∈ C

∗ is given in §I.19.2 of [23], and it is shown
that the formula (6.1) can be recovered from the properties of the Dirac operator
on this space.

Here we also consider the question of giving geometric meaning to the complex-
ified dimension, but we try to construct a geometric model underlying the operation
of dimensional regularization using motives. We propose a candidate for a motive
describing the dimensional regularization of a given Feynman graph. This is defined
as an extension (in fact as a pro-motive) in the category of mixed motives, which
is obtained from the logarithmic extension of Tate motives and the motive of the
graph hypersurface. Just as in the case of noncommutative geometry, where the
operation of dimensional regularization is understood as a product of the ordinary
space in integer dimension by the “space of dimension z”, here we also find that the
dimensionally regularized Feynman integral is recovered by taking the product, in
a category of motivic sheaves, of the motive associated to the graph hypersurface
of a given Feynman graph by this pro-motive representing the “space of dimension
z”. It would be interesting to find a more explicit relation between this motivic
description of dimensional regularization and the one based on noncommutative
geometry.

6.1. Mixed Tate motives and the logarithmic extensions. We recall
briefly the definition of the logarithmic motives, as given in [6]. Let DM(Gm)
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be the Voevodsky category of mixed motives (motivic sheaves) over the multi-
plicative group Gm. We will assume that the base field K is a number field (in
fact, we can work over Q) so that the extensions considered here take place in
an abelian category of mixed Tate motives (cf. [2], [34]). Recall that the exten-
sions Ext1DM(K)(Q(0),Q(1)) of Tate motives are given by the Kummer motives

M = [Z
u→ Gm] with u(1) = q ∈ K

∗. This extension has period matrix of the form

(6.2)

(

1 0
log q 2πi

)

.

When, instead of working with motives over the base field K, one works with
the relative setting of motivic sheaves over a base scheme S, instead of the Tate
motives Q(n) one considers the Tate sheaves QS(n). These correspond to the
constant sheaf with the motive Q(n) over each point s ∈ S. In the case where
S = Gm, there is a natural way to assemble the Kummer motives into a unique
extension in Ext1DM(Gm)(QGm

(0),QGm
(1)). This is the Kummer extension

(6.3) QGm
(1) → K → QGm

(0) → QGm
(1)[1],

where over the point s ∈ Gm one is taking the Kummer extension Ms = [Z
u→ Gm]

with u(1) = s. Because of the logarithm function log(s) that appears in the period
matrix for this extension, the Kummer extension (6.3) is also referred to as the
logarithmic motive. We use the notation K = Log as in [6] to refer to this extension,
cf. [7].

When working with Q-coefficients, so that one can include denominators in
the definition of projectors, one can then consider the logarithmic motives Logn,
defined as in [6] by setting

(6.4) Logn = Symn(K),

where the symmetric powers of an object in DMQ(Gm) are defined as

(6.5) Symn(X) =
1

#Σn

∑

σ∈Σn

σ(Xn).

Recall that the polylogarithms appear naturally as period matrices for exten-
sions involving the symmetric powers Logn = Symn(K), in the form [12]

(6.6) 0 → Logn−1(1) → Ln → Q(0) → 0,

where M(1) = M ⊗Q(1) and L1 = Log. The mixed motive Ln has period matrix

(6.7)

(

1 0

M
(n)
Li MLogn−1(1)

)

with

(6.8) M
(n)
Li = (−Li1(s),−Li2(s), . . . ,−Lin(s))

τ ,

where τ means transpose and where

Li1(s) = − log(1− s), and Lin(s) =

∫ s

0

Lin−1(u)
du

u
,

equivalently defined (on the principal branch) using the power series

Lin(s) =
∑

k

sk

kn
,
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and with
(6.9)

MLogn(1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2πi 0 0 · · · 0
2πi log(s) (2πi)2 0 · · · 0

2πi log
2(s)
2! (2πi)2 log(s) (2πi)3 · · · 0

...
...

... · · ·
...

2πi log
n(s)
n! (2πi)2 logn−1(s)

(n−1)! (2πi)3 logn−2(s)
(n−2)! · · · (2πi)n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The period matrices for the motives Logn correspond to the description of Logn

as extension of Q(0) by Logn−1(1), i.e. to the distinguished triangles in DM(Gm)
of the form

(6.10) Logn−1(1) → Logn → Q(0) → Logn−1(1)[1].

The motives Logn form a projective system under the canonical maps

βn : Logn+1 → Logn

given by the composition of the morphisms Symn+m(K) → Symn(K)⊗ Symm(K),
as in [6], Lemma 4.35, given by the fact that Symn+m(K) is canonically a direct
factor of Symn(K) ⊗ Symm(K), and the map Symm(K) → Q(0) of (6.10), in the
particular case m = 1. Let Log∞ denote the pro-motive obtained as the projective
limit

(6.11) Log∞ = lim←−
n

Logn.

The analog of the period matrix (6.9) then becomes the infinite matrix
(6.12)

MLog∞(1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2πi 0 0 · · · 0 · · ·
2πi log(s) (2πi)2 0 · · · 0 · · ·
2πi log

2(s)
2! (2πi)2 log(s) (2πi)3 · · · 0 · · ·

...
...

... · · ·
... · · ·

2πi log
n(s)
n! (2πi)2 logn−1(s)

(n−1)! (2πi)3 logn−2(s)
(n−2)! · · · (2πi)n · · ·

...
...

... · · ·
... · · ·

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

In other words, the mixed Hodge structure associated to the motives Logn is
the one that has as the weight filtration W−2k the range of multiplication by the
matrix MLogn defined as in (6.9) on vectors in Q

n with the first k− 1 entries equal
to zero, while the Hodge filtration F−k is given by the range of multiplication of
MLogn on vectors of Cn with the entries from k + 1 to n equal to zero [12].

Thus, in this Hodge realization, the H0 piece corresponds to the first column
of the matrix MLogn , where the k-th entry corresponds to the k-th graded piece
of the weight filtration. Let us consider the corresponding grading operator, that
multiplies the k-th entry by T k. One can then associate to the h0-piece of the Log∞

motive the following formal expression that corresponds in the period matrix (6.12)
to the H0 part in the MHS realization:

(6.13) Q ·
∑

k

logk(s)

k!
T k =: Q · sT .
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The formal expression (6.13) has in fact an interpretation in terms of periods.
This follows from a well known result (cf. e.g. [30], Lemma 2.10) expressing the
powers of the logarithm in terms of iterated integrals. For iterated integrals we use
the notation as in [30]

(6.14)

∫ b

a

ds

s
◦ ds

s
◦ · · · ◦ ds

s
=

∫

a≤s1≤···≤sn≤b

ds1
s1

∧ · · · ∧ dsn
sn

.

We also denote by Λa,b(n) the domain

(6.15) Λa,b(n) = {(s1, . . . , sn) | a ≤ s1 ≤ · · · ≤ sn ≤ b}.

Lemma 6.1. The expression (6.13) is obtained as rational multiples of the pair-
ing

(6.16) sT =

∫

Λ1,s(∞)

η(T ),

with Λ1,s(∞) = ∪nΛ1,s(n) and the form

(6.17) η(T ) :=
∑

n

ds1
s1

∧ · · · ∧ dsn
sn

Tn.

Proof. The result follows from the basic identity (cf. [30], Lemma 2.10)

(6.18)

∫

Λa,b(n)

ds1
s1

∧ · · · ∧ dsn
sn

=
log

(

b
a

)

n!
.

�

6.2. Motivic sheaves and graph hypersurfaces. Arapura constructed in
[3] a category of motivic sheaves over a base scheme S, modeled on Nori’s approach
to the construction of categories of mixed motives. We discuss briefly how a sim-
ilar formalism may be applied to the Feynman motives associated to the graph
hypersurfaces with the corresponding periods of the form (2.19).

The category of motivic sheaves constructed in [3] is based on Nori’s con-
struction of categories of motives via representations of graphs made of objects
and morphisms (cf. [19]). In Arapura’s case, one constructs a category of motivic
sheaves over a scheme S, by taking as vertices of the corresponding graph objects
of the form

(6.19) (f : X → S, Y, i, w) ,

where f : X → S is a quasi-projective morphism, Y ⊂ X is a closed subvariety,
i ∈ N, and w ∈ Z. One thinks of such an object as determining a motivic version
hi
S(X,Y )(w) of the local system given by the (Tate twisted) fiberwise cohomology

of the pair Hi
S(X,Y ;Q) = Rif∗j!QX�Y , where j = jX�Y : X�Y ↪→ X is the open

inclusion, i.e. the sheaf defined by

U �→ Hi(f−1(U), f−1(U) ∩ Y ;Q).

The edges are given by the geometric morphisms, i.e. morphisms of varieties over
S,
(6.20)
(f1 : X1 → S, Y1, i, w) → (f ′ : X2 → S, Y2 = F (Y ), i, w), with f2 ◦ F = f1;
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the connecting morphisms

(6.21) (f : X → S, Y, i+ 1, w) → (f |Y : Y → S,Z, i, w), for Z ⊂ Y ⊂ X;

and the twisted projection morphisms

(6.22) (f : X × P
1 → S, Y × P

1 ∪X × {0}, i+ 2, w + 1) → (f : X → S, Y, i, w).

The product in the category of motivic sheaves of [3] is given by the fiber
product

(6.23)
(X → S, Y, i, w)× (X ′ → S, Y ′, i′, w′) =

(X ×S X ′ → S, Y ×S X ′ ∪X ×S Y ′, i+ i′, w + w′).

This has the following effect on period computations.

Lemma 6.2. Suppose then given Σ ⊂ X and Σ′ ⊂ X ′, defining relative homol-
ogy cycles for (X,Y ) and (X ′, Y ′), respectively. One then has, for the fiber product
(6.23), the period pairing

(6.24)

∫

Σ×SΣ′
π∗
X(ω) ∧ π∗

X′(η) =

∫

Σ

ω ∧ f∗f ′
∗(η),

where f : Σ → S and f ′ : Σ′ → S are the restrictions of the maps X → S and
X ′ → S.

Proof. First recall that, when integrating a differential form on a fiber prod-
uct, one has the formula

(6.25)

∫

X×SX′
π∗
X(ω) ∧ π∗

X′(η) =

∫

X

ω ∧ (πX)∗π
∗
X′(η) =

∫

X

ω ∧ f∗f ′
∗(η),

which corresponds to the diagram

X ×S X ′

πX

����
��
��
��
�

πX′
���

��
��

��
��

X
f

���
��

��
��

��
� X ′

f ′

�����
��
��
��
�

S

(6.26)

Suppose then given Σ ⊂ X such that ∂Σ ⊂ Y and Σ′ ⊂ X ′ with ∂Σ′ ⊂ Y ′. One
has

∂(Σ×S Σ′) = ∂Σ×S Σ′ ∪ Σ×S ∂Σ′ ⊂ Y ×S X ′ ∪X ×S Y ′,

so that Σ×S Σ′ defines a relative homology class in (X×S X ′, Y ×S X ′∪X×S Y ′).
Given elements [ω] ∈ H ·

S(X,Y ) and [η] ∈ H ·
S(X

′, Y ′), we then apply the formula
(6.25) to the integration on Σ×S Σ′ and obtain (6.24). �
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6.3. Logarithmic Feynman motives. Consider then the graph polynomial
ΨΓ(s) = det(MΓ(s)). By removing the set of zeros of ΨΓ, i.e. the graph hypersur-
face XΓ, we can consider ΨΓ as a morphism

(6.27) ΨΓ : A#EΓ � X̂Γ → Gm.

We can then consider the pullback of the logarithmic motive Log ∈ DM(Gm)
by this morphism, as in the construction of the logarithmic specialization system
given in [6]. This gives a motive

(6.28) LogΓ := Ψ∗
Γ(Log) ∈ DM(UΓ),

where UΓ = A
#EΓ � X̂Γ.

In fact, a more sophisticated approach would involve considering here the “log
complex” as in §9.2 of [35], cf. also §9.4 of [35], see also [29].

In the context of the category of motivic sheaves of Arapura recalled above, we
can define the Feynman motives as follows.

Definition 6.3. The category of Feynman motivic sheaves, for a fixed scalar
quantum field theory, is the subcategory of the Arapura category of motivic sheaves
over Gm spanned by the objects of the form

(6.29) (ΨΓ : A#E(Γ)
� X̂Γ → Gm,Λ� (Λ ∩ X̂Γ),#E(Γ)− 1,#E(Γ)− 1),

where Γ ranges over the Feynman graphs of the given scalar field theory, and where

(6.30) Λ = {t ∈ A
#E(Γ) |

∏

i

ti = 0}

is the union of the coordinate hyperplanes.

The above correspond to the local systems

(6.31) Hn−1
Gm

(An
� X̂Γ,Λ� (Λ ∩ X̂Γ),Q(n− 1)),

with n = #Eint(Γ).

One can also include as part of the data the slicing by all possible k-dimensional
linear spaces Πξ ⊂ A

#E(Γ), with k ≤ codimSing(XΓ), as we did in our previous
discussions, and consider instead of the (6.29) objects of the form

(6.32) (ΨΓ|Πξ
: Πξ � (X̂Γ ∩Πξ) → Gm, (Λ ∩Πξ)� (Λ ∩ X̂Γ ∩Πξ), k − 1, w).

Remark 6.4. The reason for taking the cohomology (6.31) relative to the alge-
braic simplex Λ, that is, the union of the coordinate hyperplanes defined by (6.30), is
that, in this way, we can regard the topological simplex Σ = {t ∈ R

n
+ |

∑n
i=1 ti = 1}

as defining a homology cycle, since ∂Σ ⊂ Λ.

6.4. Dimensional Regularization and motives. In these terms, the pro-
cedure of dimensional regularization can then be described as follows. Consider
again the logarithmic (pro-)motive, viewed itself as a motivic sheaf XLog∞ → Gm

over Gm. One can then take the product of a Feynman motive

(ΨΓ : An
� X̂Γ → Gm,Λ� (Λ ∩ X̂Γ), k − 1, k − 1),

or more generally one of the form (6.32), by the (pro-)motive

(6.33) (X∞
Log → Gm,Λ∞, 0, 0),
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where Λ∞ is such that the domain of integration Λ1,t(∞) of the period computation
of Lemma 6.1 defines a cycle. The product is given by a fiber product as in (6.23),
namely

Ψ∗
Γ(Log

∞) = (An
� X̂Γ)�Gm

XLog∞ ��

��

XLog∞

��
A

n
� X̂Γ

ΨΓ �� Gm

(6.34)

We then have the following interpretation of the dimensionally regularized
Feynman integrals.

Proposition 6.5. The dimensionally regularized Feynman integral FΓ,ξ(z) of
(4.34) are periods on the product, in the category of motivic sheaves enlarged to
include projective limits, of the Feynman motive (6.32) by the logarithmic pro-
motive Log∞ seen as the motivic sheaf (6.33).

Proof. Consider the product (6.34), with the two projections

πX : (Πξ � (X̂Γ ∩Πξ))×Gm
XLog∞ → Πξ � (X̂Γ ∩Πξ)

πL : (Πξ � (X̂Γ ∩Πξ))×Gm
XLog∞ → XLog∞ .

and the form π∗
X(αξ)∧ π∗

L(η(T )), where αξ is as in (4.35), and η(T ) is the form on
XLog∞ that gives the period (6.16). The period computation of Lemma 6.1 gives

(6.35) Ψ∗
Γ

(

∫

Λ1,s(∞)

η(T )

)

=

∫

Λ1,ΨΓ(t)(∞)

η(T ) =
∑

n

log(ΨΓ(t))
n

n!
Tn = ΨΓ(t)

T .

We then have, by (6.24),
∫

(Σ∩Πξ)×GmΛ1,ΨΓ(t)(∞)

π∗
X(αξ) ∧ π∗

L(η(T )) =

∫

Σ∩Πξ

αξ ∧ (πX)∗π
∗
L(η(T )) =

∫

Σ∩Πξ

ΨT
Γαξ.

This is the integral (4.34), up to replacing the formal variable T of (6.13) with the
complex DimReg variable z. �

The interpretation that emerges from this calculation is that performing the
dimensional regularization of a Feynman integral can be thought of as taking the
product in the category of motivic sheaves of the motive (motivic sheaf) of the graph
hypersurface by the projective limit of the logarithmic motives. The variable z ∈
Gm that gives the complexified dimension of dimensional regularization corresponds
to the 1-parameter group generated by the grading operator associated to the weight
filtration of the logarithmic motives. The dimensionally regularized integral is then
a period of this product motive.



456 MATILDE MARCOLLI

6.5. Motivic zeta function and the DimReg integral. Kapranov intro-
duced a notion of motivic zeta function by defining

(6.36) ZX(T ) :=
∑

n≥0

Symn(X)Tn,

where the Symn(X) can be regarded as objects in an abelian category of motives,
or as classes [Symn(X)] in the corresponding Grothendieck ring. Kapranov proved
that, when X is the motive of a curve, then the zeta function is a rational function,
in the sense that, given a motivic measure μ : K0(M) → A, the zeta function
ZX,μ(T ) ∈ A[[T ]] is a rational function of T . Later, Larsen and Lunts showed that
in general this is not true in the case of algebraic surfaces [33].

Here we consider the motivic zeta function of the pullback of the logarithmic
motive along the function ΨΓ as in (6.27). Namely, we consider the motivic zeta
function

(6.37) ZLog,Γ(T ) :=
∑

n≥0

Symn(LogΓ)T
n.

An interesting question, which we do not address in the present paper, is
whether one can define a motivic lift of the Dimensional Regularization of the
Feynman integral associated to a Feynman graph Γ using the motivic zeta function
(6.37). In other words, whether one can obtain the zeta function

(6.38) ZΓ(T ) :=
∑

n≥0

logn ΨΓ

n!
Tn = ΨT

Γ

and the associated integrals

(6.39)
∑

n≥0

(

∫

Σ∩Πξ

logn ΨΓ

n!
αξ

)

Tn =

∫

Σ∩Πξ

ΨT
Γαξ

in a natural way from the motivic zeta function (6.37) of Ψ∗
Γ(Log). We hope to

return to this and related questions in following work.
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Abstract. Guichardet [Gui72] showed that every unitary representation of
the free group Fn (2 ≤ n < ∞) has non-zero 1-cohomology. We construct a
continuum of pairwise inequivalent, irreducible, unitary representations of Fn,
with vanishing reduced 1-cohomology and such that the C∗-algebra generated
by each representation is the unitized algebra of the compact operators.

1. Introduction

If G is a countable discrete group and π a unitary representation of G, we denote
by H1(G, π) the first cohomology of G with coefficients in π, i.e. the quotient of
the space Z1(G, π) of 1-cocycles by the space B1(G, π) of 1-coboundaries. Endowed
with the topology of pointwise convergence, Z1(G, π) becomes a Fréchet space, and

the reduced 1-cohomology H1(G, π) is defined as the quotient of Z1(G, π) by the
closure of the space of 1-coboundaries.

Reduced 1-cohomology was first considered by Guichardet [Gui72] and its
relevance to questions of rigidity and geometric group theory was emphasized more
recently in papers of Shalom (see [Sha00], [Sha04]).

This paper focuses on the free group on n generators G = Fn (2 ≤ n ≤ ∞):
its 1-cohomology has the following interesting property established by Guichardet
(Example 1 in [Gui72]): H1(F2, π) �= 0 for every unitary representation π of F2.
Using the dictionary between 1-cohomology and affine isometric actions on Hilbert
spaces (see e.g. [BHV08], p.73), the geometric equivalent of this observation is:
every unitary representation of F2 is the linear part of some affine isometric action
without a globally fixed point.

We illustrate the difference between reduced and ordinary 1-cohomology by
establishing:

Theorem 1.1. Fix n ∈ N∪{∞} (n ≥ 2). There exists a continuum of pairwise
inequivalent, unitary, irreducible representations σ of Fn such that
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1) H1(Fn, σ) = 0.

2) The C∗-algebra generated by σ(Fn) is K̃, the unitized C∗-algebra of the al-
gebra K of compact operators on an infinite-dimensional separable Hilbert
space.

There are other instances of the fact that, for a given group, the vanishing of
the 1-cohomology is not equivalent to the vanishing of its reduced counterpart: for
example, let λG be the left regular representation of a countably infinite amenable
group G; then H1(G, λG) �= 0, by Théorème 1 in [Gui72], while H1(G, λG) = 0 by
[MV07]. Let us mention however a remarkable result by Shalom [Sha00]: for a
compactly generated locally compact group, the vanishing of reduced 1-cohomology
for all unitary representations, is equivalent to the vanishing of 1-cohomology for
all unitary representations (the latter being equivalent to Kazhdan’s property (T),
by the Delorme-Guichardet theorem, see Chapter 2 in [BHV08]).

2. Proof of Theorem 1.1

Let us denote by ImT the range of the linear operator T .

Lemma 2.1. Fix an integer n ≥ 2. Let U1, ..., Un be unitary operators on a
Hilbert space such that:

1) 1 is not an eigenvalue of Ui, for 1 ≤ i ≤ n;
2) for 2 ≤ j ≤ n:

Im(Uj − 1) ∩ (

j−1
∑

i=1

Im(Ui − 1)) = {0}.

Then the assignment π(xi) = U∗
i defines a unitary representation π of the free

group Fn on n generators x1, ..., xn, such that H1(Fn, π) = 0.

Proof of the lemma: We start the same way as Guichardet in Example 1
in [Gui72], in his proof of H1(F2, σ) �= 0 for every unitary representation σ of F2.
For a unitary representation π of Fn on a Hilbert space V , the map

Z1(Fn, π) → V n : b 
→ (b(x1), ..., b(xn))

is a topological isomorphism (surjectivity follows from the freeness of the group: a
1-cocycle can be defined arbitrarily on generators). In that isomorphism, B1(Fn, π)
corresponds to the image of the map

ψ : V → V n : v 
→ ((π(x1)− 1)v, ..., (π(xn)− 1)v)

So H1(Fn, π) = 0 if and only if ψ has dense image, if and only if ψ∗ : V n → V is
injective. But

ψ∗(v1, ..., vn) =
n
∑

i=1

(π(xi)
∗ − 1)vi.

With Ui = π(xi)
∗, we see that our assumptions on U1, ..., Un exactly mean that ψ∗

is injective. �
We now come to a problem in operator theory, namely construct families of

unitary operators satisfying the conditions in Lemma 2.1. We will elaborate on
Dixmier’s elegant construction [Dix49] (see also Theorem 3.6 in [FW71]) to answer
that question.
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Proof of Theorem 1.1: On V = L2[0, 2π] with the trigonometric orthonormal
system (ek)k∈Z, let us construct unitary operators Un (n ≥ 1) such that Un − 1 is

trace-class, 1 is not an eigenvalue of Un and Im(Un−1)∩(
∑n−1

m=1 Im(Um−1)) = {0}
for n ≥ 2. Moreover U1, U2 will be shown to act together irreducibly on V . Taking
into account the fact that every irreducible C∗-algebra intersecting K non-trivially,
must contain it (see [Dix77], Corollary 4.1.10), we get the second statement in the

Theorem. For n < ∞, the first statement (vanishing of H1) will follow straight
from Lemma 2.1. For n = ∞, we observe that if a group Γ is the increasing union
of subgroups Γn with H1(Γn, σ|Γn

) = 0, then clearly H1(Γ, σ) = 0.
To construct a continuum of such families of unitary operators, fix a real-valued

rapidly decreasing sequence a = (ak)k∈Z, such that 0 �= ak �= am for k �= m ∈ Z,
and define a diagonal, trace-class operator A(a) on V by

A(a)ek = akek (k ∈ Z).

Note that A(a) is injective with all eigenvalues of multiplicity 1, by our choice of
a. Now let (xn)n>0 be a strictly increasing sequence in [0, 2π[, with x1 = 0 and x2

π
irrational. Define a function ξn on [0, 2π[ by

ξn(x) =

{

−1 if 0 ≤ x < xn

1 if xn ≤ x < 2π

Let Mn be the operator of multiplication by ξn: this is a self-adjoint unitary oper-

ator on V ; note that M1 = 1. Set A
(a)
n = MnA

(a)M∗
n; the following holds:

Claim: For n ≥ 2:

ImA(a)
n ∩ (

n−1
∑

i=1

ImA
(a)
i ) = {0}.

To prove the claim, observe that , because a is rapidly decreasing, ImA(a) is
contained in the space of restrictions of real-analytic functions to [0, 2π[. Then
∑n−1

i=1 ImA
(a)
i is contained in the space of functions on [0, 2π[ whose restrictions to

all intervals [x1, x2[, [x2, x3[, ..., [xn−1, 2π[ are real analytic. On the other hand non-

zero functions in ImA
(a)
n are not analytic in the neighborhood of xn ∈]xn−1, 2π[,

proving the claim.

Let then U
(a)
n be the Cayley transform of A

(a)
n :

U (a)
n = (1− iA(a)

n )(1 + iA(a)
n )−1.

Then U
(a)
n is unitary, 1 is not an eigenvalue of U

(a)
n , and U

(a)
n is diagonal in the

basis (Mnek)k∈Z, with all eigenvalues of multiplicity 1. Moreover

U (a)
n − 1 = −2iA(a)

n (1 + iA(a)
n )−1

so that U
(a)
n − 1 is trace-class, and Im(U

(a)
n − 1) ∩ (

∑n−1
m=1 Im(U

(a)
m − 1)) = {0} by

the claim.
To prove that U

(a)
1 , U

(a)
2 together act irreducibly on V , let S be an operator on

V which commutes both with U
(a)
1 and U

(a)
2 . Since U

(a)
1 , U

(a)
2 have all eigenvalues
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of multiplicity 1, the operator S must be diagonal both in the bases (ek)k∈Z and
(M2ek)k∈Z. From the Fourier series expansion of M2ek:

M2ek = (1− x2

π
)ek +

∑

m �=k

i

π(m− k)
[1− ei(k−m)x2 ]em

and the fact that all Fourier coefficients of M2ek are non-zero (because x2

π is irra-
tional), it follows that S must be scalar. Irreducibility then follows from Schur’s
lemma.

Finally, to get a continuum of pairwise inequivalent representations, we notice

that, since U
(a)
1 − 1 is trace-class, the complex number

Tr(U
(a)
1 − 1) = −2iTrA(a)(1 + iA(a))−1 = −2i

∑

k∈Z

ak(1 + iak)
−1

is an invariant of unitary equivalence of the associated representation. So, varying
a in the space of real-valued rapidly decreasing sequences satisfying 0 �= ak �= am
for k �= m ∈ Z, we get the desired continuum. �

Theorem 1.1 motivates:

Question 1. Is there a countable group G such that H1(G, π) �= 0 for every
unitary representation π of G?

Note that such a group, if it exists, must be non-amenable: indeed, by Corollary
5.2 in [MV07], a countable amenable group G has H1(G, λG) = 0, where λG is the
left regular representation.

3. A remark

The irreducible representations σ constructed in Theorem 1.1 have the property
that σ(g)− 1 ∈ K for every g ∈ Fn. We observe that this fact alone is responsible
for the non-vanishing of H1.

Proposition 3.1. Let G be a discrete group. Assume that there exists an
infinite-dimensional unitary irreducible representation π of G with the property that
1 − π(g) is a compact operator for every g ∈ G. Then B1(G, π) is not closed in
Z1(G, π); in particular H1(G, π) �= 0.

Proof: Observe that by irreducibility the C∗-algebra generated by π(G) is K̃,
and consider the short exact sequence

0 → K → K̃ q→ C → 0.

For f ∈ �1(G), we have q(π(f)) =
∑

g∈G f(g)q(π(g)) =
∑

g∈G f(g) for every f ∈
�1(G), so that

|
∑

g∈G

f(g)| ≤ ‖π(f)‖.

By Theorem 3.4.4 in [Dix77], this means exactly that π weakly contains the triv-
ial representation of G. We conclude by applying another result by Guichardet
([Gui72], Théorème 1): for a unitary representation without non-zero fixed vec-
tors, the space of 1-coboundaries is not closed in the space of 1-cocycles if and only
if the representation weakly contains the trivial representation. �
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Dedicated to Alain Connes, with admiration, friendship and gratitude

Abstract. We prove a local index formula for a class of twisted spectral
triples of type III modeled on the transverse geometry of conformal foliations
with locally constant transverse conformal factor. Compared with the earlier
proofs in the untwisted case, the novel aspect resides in the fact that the
twisted analogues of the JLO entire cocycle and of its retraction are no longer
cocycles in their respective Connes bicomplexes. We show however that the
passage to the infinite temperature limit, respectively the integration along the
full temperature range against the Haar measure of the positive half-line, has
the remarkable effect of curing in both cases the deviations from the cocycle
and transgression identities.

Introduction

The local-global principle, as epitomized by the Atiyah-Singer index theorem
but in the larger operator theoretic framework, has played a pivotal role in Alain
Connes’ overarching design of the foundations of Noncommutative Geometry. Al-
though I was too overwhelmed by his brilliant intellect and fantastic mathematical
insight to fully realize it at the time, this very theme was in fact the subtext of our
first mathematical conversation, in the autumn of 1978, while we were both visiting
the Institute for Advanced Study. As his program advanced, the theme gradually
evolved into a perennial context for a substantial part of our collaborative work
and, last but not least, it became a pretext for a close, lifelong friendship. As a
token of my deep appreciation, I thought it would befit the occasion to try to run
anew the machinery that has emerged, this time in the presence of a twist.

The basic template for a space in the Connes program is encoded in the notion
of spectral triple. In our recent joint paper [10] we showed that this notion can
be adapted to include certain type III spaces by the simple device of incorporating
in it a twisting automorphism of the algebra of coordinates. The paradigmatic
examples of such spaces are those describing the transverse geometry of a foliation
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of codimension 1, or of a conformal foliation of arbitrary codimension. While it is
always possible to associate a spectral triple of type II to any foliation by passing to
the frame bundle of a complete transversal (cf. [8]), the very construction introduces
a large number of additional parameters, which in turn makes the task of computing
the characteristic classes quite formidable (see [9]). The twisting device on the
other hand, whenever applicable, allows one to bypass the extra step of geometric
reduction to type II.

Since the primary effect of the twisting automorphism is the replacement of the
bimodule of noncommutative differential forms of a spectral triple with a bimodule
of twisted differential forms, one would have expected the characteristic classes of
a twisted spectral triple to be captured by a twisted version of the Connes-Chern
character, landing in twisted cyclic cohomology. Somewhat counterintuitively, it
turned out that no cohomological twisting is actually needed, and that Connes’
original construction of the Chern character in noncommutative geometry [3] re-
mains in fact operative in the twisted case as well. The natural question that arises
is whether the Connes-Chern character of a twisted spectral triple can also be ex-
pressed in local terms as in [8], by means of a residue integral that eliminates all
quantum infinitesimal perturbations of order strictly larger than 1.

In this paper we produce such a local index formula for a class of spectral
triples twisted by scaling automorphisms, modeled on the geometry of a conformal
foliation whose holonomy consists of germs of conformal transformations of R

n.
The proof is patterned on the strategy that evolved over a number of years of joint
(and joyful) work leading up to the residue index formula [5, 6, 7, 8], with the
important difference that the twisted counterpart of the JLO cocycle [18], which
played a key role in our earlier proof (as well as in in Higson’s [16]) is no longer a
cocycle.

The plan of the paper is as follows. In §1 we recall from [10] the basic definitions
concerning twisted spectral triples and their characters. Extrapolating from the
expression of local Hochschild cocycle in op.cit. we then make a straightforward
Ansatz in §2, predicting the form of the twisted local formula for the Connes-Chern
character. In §3 we test the Ansatz on “real-life” examples of twisted spectral triples
occurring in conformal geometry. These are the spectral triples describing the
transverse geometry of the conformal foliations whose holonomy is given by germs
of Möbius transformations of Sn. We conclude that the Ansatz holds true if the
holonomy is restricted to the parabolic subgroup preserving a point, or equivalently
to the similarity transformations of Rn.

The main results of the paper are proved in §4, where we establish the validity
of the Ansatz for an abstract class of twisted spectral triples, modeled on the
conformal foliations with locally constant transverse conformal factor. While the
twisted entire cochain analogous to [18] is no longer a cocycle, passing to the infinite
temperature limit has the remarkable effect of restoring the cocycle identity, and
the resulting cocycle can be expressed in terms of a residue integral as in [8]. To
show that this residue cocycle represents the Connes-Chern character, one needs
to transit through a transgressed version, as in [7]. In turn, the transgression
process does yield a genuine cocycle because it involves integrating along the full
temperature range, with respect to the Haar measure of R+, which miraculously
again cures the deviation from the cocycle identity.
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1. Twisted spectral triples and their characters

We begin by briefly reviewing the notion of twisted spectral triple of type III,
introduced in [10], together with some of its basic properties.

1.1. Twisted spectral triple. A twisted spectral triple (A,H, D, σ) consists
of a local Banach ∗-algebra A represented in the Hilbert space H by bounded
operators, an automorphism σ ∈ Aut (A), and a self-adjoint unbounded operator
D such that, for any a ∈ A,

a(D2 + 1)−
1
2 ∈ K(H) (compact operators);(1.1)

a(DomD) ⊂ DomD and [D, a]σ := Da − σ(a)D is bounded;(1.2)

σ(a∗) = (σ−1(a))∗.(1.3)

A Z2-graded (or even) σ-spectral triple has the additional datum of a grading
operator

γ = γ∗ ∈ L(H) , γ2 = I

which anticommutes with D, and commutes with the action of A. In case the al-
gebra itself is Z2-graded, the commutator’s properties (including the twisted com-
mutators) are understood in the graded sense.

We shall be concerned with finitely-summable twisted spectral triples, i.e. with
those that satisfy a stronger version of (1.1), namely the (p,∞)-summability con-
dition

(1.4) a(D2 + 1)−
1
2 ∈ L(p,∞)(H), ∀ a ∈ A,

for some 1 ≤ p < ∞ of the same parity as the spectral triple. The notation is that
of [4, IV, 2.α] ,

L(p,∞)(H) = {T ∈ K(H) ;

N
∑

i=0

μi(T ) = O(N1− 1
p )}, if p > 1,(1.5)

L(1,∞)(H) = {T ∈ K(H) ;
N
∑

i=0

μi(T ) = O(logN)}.(1.6)

1.2. Graded double. As in the untwisted situation, there is a canonical
way (cf. [3, Part I, §7]) to pass from an ungraded (or odd) twisted spectral triple
(A,H, D, σ) to a Z2-graded twisted one over the Z2-graded algebra

Agr = A⊗ C1.

Here C1 denotes the Clifford algebra Cliff(R)⊗ C; its even part is C+
1 = C 1, with

1 the unit of C1, while the odd part is C−
1 = C ε, with ε2 = 1. The automorphism

remains σ, identified with σ ⊗ Id. One constructs an Agr-module by first letting
H1 = H

+
1 ⊕ H

−
1 be the Z2-graded Hilbert space with H

±
1 = C on which C1 acts via

λ1 + με 
→
(

λ μ
μ λ

)

, λ, μ ∈ C,

and then taking

Hgr = H⊗ H1, with H±
gr = H⊗ H

±
1 ,
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on which Agr acts via the exterior tensor product representation; the corresponding
grading operator is

γ = IdH ⊗ γ1, where γ1 =

(

1 0
0 −1

)

.

Finally, as operator one takes

Dgr = D ⊗ P1, where P1 =

(

0 i
−i 0

)

: H1 → H1.

1.3. Invertible double. When D is not invertible, we shall resort to the
construction described in [3, Part I, §6] (akin to the passage from the Dirac op-
erator on flat space to the Dirac Hamiltonian with mass) to canonically associate

to (A,H, D, γ, σ) a new σ-spectral triple (A, ˜H, ˜D, γ̃, σ) with invertible operator,
defined as follows. With H1 as above, one takes

˜H = H⊗̂H1 (graded tensor product), γ̃ = γ⊗̂γ1,

˜D = D⊗̂Id + Id⊗̂F1, where F1 =

(

0 1
1 0

)

: H1 → H1.

The algebra A is made to act on ˜H via the representation

a ∈ A 
→ ã := a⊗̂e1, where e1 =

(

1 0
0 0

)

: H1 → H1.

1.4. Lipschitz regularity. In [10] a twisted spectral triple (A,H, D, σ) with
invertible D was called Lipschitz regular if it satisfies the additional condition

(1.7) [|D|, a]σ := |D| a− σ(a) |D| is bounded, ∀ a ∈ A.

Such a twisted spectral triple can be ‘untwisted’ by passage to its ‘phase’ operator
F = D |D|−1. Indeed,

[F, a] = |D|−1
(

(Da − σ(a)D) − (|D| a− σ(a) |D|)F
)

,

which shows that these commutators are compact operators, of the same order of
magnitude as D−1. Thus, (H, F ) is a Fredholm module over A, defining a K∗-cycle
over the norm closure C∗-algebra ofA. Moreover, if (A,H, D, σ) is (p,∞)-summable
so is (H, F ).

We extend the Lipschitz regularity condition to any spectral triple (A,H, D, σ)

by requiring that its invertible double (A, ˜H, ˜D, γ̃, σ) be Lipschitz regular. Since

˜F := ˜D| ˜D|−1 = D(D2 + 1)−
1
2 ⊗̂Id + (D2 + 1)−

1
2 ⊗̂F1,

and therefore

[ ˜F , a] = [D(D2 + 1)−
1
2 , a]⊗̂e11 + (D2 + 1)−

1
2 a⊗̂e21 − a(D2 + 1)−

1
2 ⊗̂e12,

Lipschitz regularity can be alternatively phrased as the requirement

(1.8) [D(D2 + 1)−
1
2 , a] ∈ K(H), ∀ a ∈ A .

In the (p,∞)-summable case these commutators belong to the ideal L(p,∞)(H) of
K(H).
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1.5. Connes-Chern character. By resorting if necessary to the doubling
procedures described in 1.2 and 1.3, we may assume without essential loss of gen-
erality that the (p,∞)-summable twisted spectral triple (A,H, D, σ) under consid-
eration is Z2-graded and D invertible. We shall often do so in the sequel without
any further mention.

Let (A,H, D, σ) be such a twisted spectral triple which is also Lipschitz-regular.
Then, as remarked in 1.4, it gives rise to a ‘phase’ Fredholm module (H, F ) over A.
In turn, the latter has a well-defined Connes-Chern character in cyclic cohomology,
cf. [3], which up to a normalizing constant is represented by the cyclic cocycle

(1.9) τpF (a0, a1, . . . , ap) := Tr (γ F [F, a0] [F, a1] · · · [F, ap]) , ai ∈ A.

In [10], we have actually shown that a (p,∞)-summable twisted spectral triple
as above admits a Connes-Chern character without assuming Lipschitz regularity.
Indeed, we showed that the (p+ 1)-linear form on A

(1.10) τpFσ
(a0, a1, . . . , ap) := Tr (γ D−1[D, a0]σ D

−1[D, a1]σ · · · D−1[D, ap]σ),

is a cyclic cocycle in Zn
λ (A), by means of which one can recover the index pairing of

D withK∗(A). More precisely, up to a universal constant factor cp, Index(σ(e)De)
is given by τpFσ

(e, . . . , e), for any class [e] ∈ K0(A).

1.6. Conformally perturbed spectral triple. An instructive class of ex-
amples of twisted spectral triples arises from conformal-type perturbations of ordi-
nary spectral triples. Let (A,H, D) be a (p,∞)-summable spectral triple, and let
h = h∗ ∈ A. By setting

Dh = eh D eh, and σh(a) = e2h a e−2h, ∀ a ∈ A

one easily sees that

(1.11) Dh a − σh(a)Dh = eh [D, σh/2(a)] e
h ∈ L(H) ,

thus giving rise to a twisted spectral triple (A,H, Dh, σh). Noting that

(1.12) D−1
h [Dh, a]σ = e−h D−1 [D, σh/2(a)] e

h ,

one obtains the identity

Tr (γ D−1
h [Dh, a0]σ D

−1
h [Dh, a1]σ · · · D−1

h [Dh, ap]σ)(1.13)

= Tr (γ D−1[D, σh/2(a0)]D
−1[D, σh/2(a1)] · · · D−1[D, σh/2(ap)]) .

The right hand side is a cyclic cocycle on A that represents, for h = 1 and up to
normalization, the Connes-Chern character

Ch∗(A,H, D) ∈ HC∗(A)

of (A,H, D) viewed as a Fredholm module, cf. [3, Part I, §6]. It follows that the
left hand side, which is the cyclic cocycle obtained by composition with the inner
automorphism σh/2, determines the same class in periodic cyclic cohomology. This
justifies regarding (1.13) as defining the periodic Connes-Chern character of the
conformally perturbed spectral triple:

(1.14) Ch∗(A,H, Dh, σh) := Ch∗(A,H, D) ∈ HP ∗(A).
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1.7. Local Hochschild cocycle. With the goal of extending the local index
formula of [8] to twisted spectral triples, we looked in [10] for an analogue of
Connes’ residue formula [4, IV.2.γ] for the Hochschild class of the Connes-Chern
character.

We recall that if (A,H, D) is an (even, invertible) (p,∞)-summable spectral
triple satisfying the smoothness condition

(1.15) A, [D,A] ⊂
⋂

k>0

Dom(δk), where δ(T ) := [|D|, T ] ,

the Hochschild cohomology class I
(

Ch∗(A,H, D)
)

∈ HH∗(A) admits a local repre-
sentation, given by the formula

(1.16) κD(a0, a1, . . . , ap) := Trω
(

γa0[D, a1] · · · [D, ap]D
−p

)

, ai ∈ A ,

which defines a Hochschild cocycle. Here Trω stands for a Dixmier trace (see [4,
IV.2.β, γ]) on the ideal L(1,∞)(H). The local nature of the above formula stems
from the fact that the Dixmier trace vanishes on the subideal

L(1,∞)
0 (H) = {T ∈ K(H) ;

N
∑

i=0

μi(T ) = o(logN)},

which contains the trace class operators, and in particular all smoothing operators
on any closed manifold. Thus, κD(a0, a1, . . . , ap) depends only on the class of the

operator a0[D, a1] · · · [D, ap]D
−p ∈ L(1,∞)(H) modulo L(1,∞)

0 (H), which plays the
role of its symbol.

Using the identity

(1.17) [D, a]D−k = D−k+1
(

Dk aD−k − Dk−1 aD−k+1
)

, ∀ a ∈ A ,

one can successively move D−p to the left and rewrite the cocycle κD in the form

κD(a0, a1, . . . , ap) = Trω
(

γa0(Da1D
−1 − a1) · · · (DpapD

−p −Dp−1apD
−p+1)

)

.

In the twisted case, taking a clue from (1.12), one is led to make the formal
substitution

(1.18) Dk aD−k 
−→ Dk σ−k(a)D−k , ∀ a ∈ A ,

and use the twisted version of (1.17), namely

(1.19) [D, σ−k(a)]σ D
−k = D−k+1

(

Dk σ−k(a)D−k − Dk−1 σ−k+1(a)D−k+1
)

,

to reverse the process of distributing D−p among the factors. Assuming that the
domain condition which permits the above operation is fulfilled, one thus arrives at
the expression

(1.20) κD,σ(a0, a1, . . . , ap) := Trω
(

γa0[D, σ−1(a1)]σ · · · [D, σ−p(ap)]σD
−p

)

.

This was shown in [10] to indeed be a Hochschild p-cocycle, and it will be useful
to reproduce the elementary calculation that validates this statement. It relies on
two basic properties of twisted spectral triples. The first is the obvious fact that
the σ-bracket with D satisfies the twisted derivation rule

(1.21) [D, ab]σ = σ(a) [D, b]σ + [D, a]σ b, a, b ∈ A.
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The second is the observation that the positive linear functional on A,

a 
→ Trω(a |D|−p),

is a σ−p-trace on A, i.e. satisfies

Trω(a b |D|−p) = Trω(b σ
−p(a) |D|−p), ∀ a, b ∈ A .

It is in fact a σ−p-hypertrace, since for any T ∈ L(H) one still has

(1.22) Trω(T σ−p(a) |D|−p) = Trω(a T |D|−p) .

Making use of the Leibniz rule (1.21), one computes the Hochschild coboundary
of κD,σ ∈ Zp(A,A∗) as follows:

bκD,σ(a0, a1, ..., ap+1) =

=

p
∑

i=0

(−1)i κD,σ(a0, ..., aiai+1, ..., ap+1) + (−1)p+1
κD,σ(ap+1a0, a1, ..., ap)

= Trω
(

γ a0 a1 [D, σ−1(a2)]σ · · · [D, σ−p(ap+1)]σ D
−p

)

−Trω
(

γ a0a1 [D, σ−1(a2)]σ · · · [D, σ−p(ap+1)]σ D
−p

)

−Trω
(

γ a0 [D, σ−1(a1)]σ σ
−1(a2) · · · [D, σ−p(ap+1)]σ D

−p
)

+ . . .

. . .+ (−1)p Trω
(

γa0[D, σ−1(a1)]σ · · ·
· · · [D, σ−p+1(ap−1)]σσ

−p+1(ap)[D, σ−p(ap+1)]σD
−p

)

+

+(−1)p Trω
(

γa0[D, σ−1(a1)]σ · · ·
· · · [D, σ−p+1(ap−1)]σ[D, σ−p(ap)]σσ

−p(ap+1)D
−p

)

+

+(−1)p+1 Trω
(

γap+1a0 [D, σ−1(a1)]σ · · · [D, σ−p(ap)]σ D
−p

)

= 0 .

The end result is 0 because the successive terms cancel in pairs, with the last two
terms canceling each other thanks to the enhanced σ−p-trace property Eq. (1.22).

2. Ansatz for a twisted local index formula

2.1. Local index formula for spectral triples. The local index formula
that delivers in full the Connes-Chern character in cyclic cohomology was developed
in [8], in terms of residue functionals that generalize Wodzicki’s noncommutative
residue, and in the framework of an abstract pseudodifferential calculus which gives
a precise meaning to the notion of symbol. We briefly recall the salient notions.

Let (A,H, D) be a (p,∞)-summable spectral triple (with D invertible), which
satisfies the smoothness condition (1.15). We denote by B the algebra generated by
⋃

k≥0

δk(A + [D,A]), and also set H
∞ :=

⋂

k≥0

Dom(|D|k). We now consider linear

operators P : H∞ → H∞ that admit an expansion of the form

(2.1) P ∼
∑

k≥0

bk|D|s−k , with bk ∈ B , s ∈ C ,
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in the sense that

P −
∑

0≤k<N

bk|D|s−k ∈ B ·OP�s−N , ∀N > 0 ,

where R ∈ OPr ⇐⇒ |D|−rR ∈
⋂

k>0

Dom(δk),

and B ·OPr :=

⎧

⎨

⎩

∑

j

bjRj ; bj ∈ B, Rj ∈ OPr

⎫

⎬

⎭

.

Thanks to the key commutation relation (see [8, Appendix B, Thm. B.1])

(2.2) |D|s b ∼
∑

k≥0

s(s− 1) · · · (s− k + 1)

k!
δk(b) |D|s−k , ∀ b ∈ B , s ∈ C ,

these operators form a filtered algebra.

Let now D(A,H, D) be the algebra generated by
⋃

k≥0

∇k(A + [D,A]), where

∇ denotes the derivation ∇(T ) = [D2, T ]. Its elements play the role of differential
operators. They too have a natural order, determined by total power of ∇ involved
in each monomial. Furthermore, the analogue of (2.2) holds: for any q-th order
operator T ∈ Dq(A,H, D) and N > 0,

(2.3) D2s T −
∑

0≤k<N

s(s− 1) · · · (s− k + 1)

k!
∇k(T )D2(s−k) ∈ OP2�s+q−N .

The intrinsic pseudodifferential calculus for the spectral triple is based on the al-
gebra Ψ•(A,H, D), generated by the operators defined by (2.1) together with the
differential operators. It is a filtered algebra, and its quotient modulo the ideal of
smoothing operators Ψ−∞(A,H, D) =

⋂

N≥0 B ·OP−N gives the corresponding

algebra of complete symbols CS•(A,H, D) := Ψ•(A,H, D)/Ψ−∞(A,H, D).

Underlying the setup for the local index formula is the essential assumption that
the spectral triple admits a discrete dimension spectrum, to which all singularities
of zeta functions associated to elements of B are confined; the postulated spectrum
is a discrete subset Σ ⊂ C, such that the holomorphic functions

(2.4) ζb(z) = Tr(b |D|−z) , �z > p , b ∈ B,

admit holomorphic extensions to C \ Σ. This requirement is supplemented by a
technical condition stipulating that the functions Γ(z) ζb(z) decay rapidly on finite
vertical strips.

For the sake of convenience, we shall make the stronger assumption that the
dimension spectrum is simple, i.e. Σ consists of simple poles. Then, for any P ∈
ΨN (A,H, D) the zeta function

(2.5) ζP (z) = Tr(P |D|−z) , �z > p+N ,

can be meromorphically continued to C, with simple poles in Σ+N . Furthermore,
the residue functional

(2.6)

∫

D

−P := Resz=0 ζP (2z) , P ∈ Ψ•(A,H, D)
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is an (algebraic) trace. By its very construction it vanishes on Ψ•(A,H, D)∩L1(H),
and in particular it descends to a trace on CS•(A,H, D).

The local index formula expresses the Connes-Chern character Ch∗(A,H, D) ∈
HC∗(A) in terms of a cocycle in the bicomplex {CC(A), b, B}, whose components
are defined by means of the symbolic trace. In the (invertible) odd case, these
components are as follows: for q = 2�+ 1, � ∈ Z

+ ,

(2.7) τ qodd(a0, . . . , aq) =
√
2i

∑

k

cq,k

∫

D

− a0 [D, a1]
(k1) · · · [D, aq]

(kq) |D|−2|k|−q ,

where
P (k) = ∇k(P ) , ∀P ∈ Ψ•(A,H, D) ,

and the coefficients are given by

cq,k =
(−1)|k|

k1! · · · kq! (k1 + 1) · · · (k1 + · · ·+ kq + q)
Γ
(

|k|+ q

2

)

,(2.8)

where k = (k1, . . . , kq) , |k| = k1 + · · ·+ kq .

In the even case, with q = 2�, � ∈ Z
+ ,

τ0ev(a) = Resz=0

(

Γ(z) Tr(a |D|−2z)
)

,(2.9)

τ qev(a0, . . . , aq) =
∑

k

cq,k

∫

D

− γ a0 [D, a1]
(k1) · · · [D, aq]

(kq) |D|−2|k|−q .

Each component τ q = τ qev/odd has finitely many nonzero summands, and τ q ≡ 0

for any q > p.

Since the expressions τ q(a0, . . . , aq) are unaffected by the scaling D 
→ tD,
t ∈ R, we can write them in terms of the scale-invariant operators

αk(a) := DkaD−k , a ∈ A.

Indeed, using the obvious identity

[D, a](k+1) D−2k−3 = D2
(

[D, a](k) D−2k−1
)

D−2 − [D, a](k)D−2k−1 ,

one verifies by induction that for any k ≥ 0,

[D, a](k)D−2k−1 =

k
∑

j=0

(−1)j
(

k

j

)

(

α2(k−j)+1(a) − α2(k−j)(a)
)

.

Therefore, for any � ∈ Z,

[D, a](k)D−� =

k
∑

j=0

(−1)j
(

k

j

)

(

α2(k−j)+1(a) − α2(k−j)(a)
)

D2k+1−�

= D2k+1−�
k

∑

j=0

(−1)j
(

k

j

)

(

α�−2j(a) − α�−2j−1(a)
)

.

With the abbreviated notation

(2.10) Σ(k,�)(a) :=
k
∑

j=0

(−1)j
(

k

j

)

(

α�−2j(a) − α�−2j−1(a)
)

,
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the above equality takes the form

(2.11) [D, a](k)D−� = D2k+1−� Σ(k,�)(a).

Successive application of the identity (2.11) brings the components τ q with q > 0
to the form

(2.12) τ q(a0, . . . , aq) =
∑

k

cq,k

∫

D

− γ a0 Σ
(k1, 2k1+1)(a1) · · ·Σ(kq, 2(k1+···+kq)+q)(aq) .

This formula covers the case of either parity, provided that in the odd case we
define γ := F = D|D|−1, and incorporate the factor

√
2i in the expression (2.8) of

the coefficients cq,k for q odd.

2.2. Ansatz for the twisted case. Assume now that (A,H, D, σ) is a (p,∞)-
summable (invertible) twisted σ-spectral triple. The twisted analogue of the usual
bimodule of gauge potentials or noncommutative differential forms is obviously the
linear subspace Ω1

D,σ(A) ⊂ L(H) consisting of operators of the form

A =
∑

i

ai
(

D bi − σ(bi)D
)

, ai, bi ∈ A ,

which is a bimodule for the action

a · ω · b = σ(a)ω b , ∀ a, b ∈ A , ∀ ω ∈ Ω1
D,σ(A) .

In the presence of the Lipschitz regularity axiom (1.8), one can similarly define
a bimodule |Ω|1D,σ(A) ⊂ L(H), by simply replacing D with |D|. Furthermore, as

noted before cf. (1.21), the map

a 
→ dσ(a) = Da− σ(a)D

is a σ-derivation of A with values in Ω1
D,σ(A), and clearly, so is the map

a 
→ δσ(a) = |D| a− σ(a) |D| .
However, in order for the analogue of the smoothness condition (1.15) to make
sense, one needs to postulate the existence of an extension of the automorphism
σ ∈ Aut (A), and consequently of the σ-derivation δσ, to a larger subalgebra of
L(H), which should contain Ω1

D,σ(A) as well as its higher δσ-iterations.

Thus, the formulation of a twisted version for the pseudodifferential calculus
is not canonical. Ignoring this aspect for now, let us pretend that an adequate
analogue Ψ•(A,H, D, σ) of the algebra of pseudodifferential operators has already
been constructed, and assume that the twisted σ-spectral triple (A,H, D, σ) admits
a simple discrete dimension spectrum Σ ⊂ C. We can then focus on finding an
appropriate candidate for the local character cocycle. Denoting

(2.13) αk
σ(a) := Dk σ−k(a)D−k , a ∈ A,

and

(2.14) Σ(k,�)
σ (a) :=

k
∑

j=0

(−1)j
(

k

j

)

(

α�−2j
σ (a) − α�−2j−1

σ (a)
)

,

the analogues of the summands in Eq. (2.12) are the ‘residue integrals’

(2.15)

∫

D

−γ a0 Σ
(k1, 2k1+1)
σ (a1) · · ·Σ(kq, 2(k1+···+kq)+q)

σ (aq) .
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We next define the twisted version of the higher commutators as follows:

(2.16) (a)(k)σ :=

k
∑

j=0

(−1)j
(

k

j

)

D2(k−j)σ2j(a)D2j ,

respectively
(2.17)

[D, a](k)σ :=

k
∑

j=0

(−1)j
(

k

j

)

(

D2(k−j)+1σ2j(a)D2j −D2(k−j)σ2j+1(a)D2j+1
)

.

Remark 2.1. Noting that

(a)(k+1)
σ = D2 (a)(k)σ − (σ2(a))(k)σ D2 ,

[D, a](k+1)
σ = D2 [D, a](k)σ − [D, σ2(a)](k)σ D2 ,

one could be tempted to regard the expressions (2.16), (2.17) as genuine iterated
twisted commutators with D2. However, that would not be correct, because there

is no guarantee that if, for instance, [D, a]σ = 0 then [D, a]
(k)
σ = 0 for all k ≥ 1. A

counterexample can be easily obtained in the setting of §3.1, using Eq. (3.12).

At any rate, with the above notation, we can now put (2.15) in a form similar
to Eq. (2.9). Indeed, the counterpart of the identity (2.11) is

D2k+1−� Σ(k,�)
σ (a) = [D, σ−�(a)](k)σ D−�,

which we then employ to reverse the process by which the expression (2.12) was
obtained from (2.7). Keeping the same notational conventions used in (2.12), one
thus arrives at the following Ansatz for the twisted version of the local character
cocycle:

τ qσ(a0, . . . , aq) =(2.18)
∑

k

cq,k

∫

D

− γ a0 [D, σ−2k1−1(a1)]
(k1)
σ · · · [D, σ−2(k1+···+kq)−q(aq)]

(kq)
σ |D|−2|k|−q.

There is an immediate obstruction for this formula to define a (b, B)-cocycle, which
arises from the B-coboundary of τ1odd. Indeed,

Bτ1σ(a) =
∑

k≥0

c1,k

∫

D

−F [D, σ−2k−1(a)](k)σ D−2k−1 =
∑

k≥0

c1,k

∫

D

−F Σ(k, 2k+1)
σ (a)

=
∑

k≥0

c1,k

k
∑

j=0

(−1)j
(

k

j

) (∫

D

−F a2(k−j)+1
σ (a) −

∫

D

−F α2(k−j)
σ (a)

)

=
∑

k≥0

c1,k

k
∑

j=0

(−1)j
(

k

j

) (∫

D

−F σ−2(k−j)−1(a) −
∫

D

−F σ−2(k−j)(a)

)

.

This expression vanishes if

(2.19)

∫

D

−F σ(a) =

∫

D

−F a , ∀ a ∈ A ,

or equivalently
∫

D

− [D, a]σ |D|−1 = 0 , ∀ a ∈ A ,
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As will become apparent in the next section, Eq. (2.19) has something in
common with the Selberg principle for orbital integrals of reductive Lie groups. We
shall show later that for a special class of conformally twisted spectral triples there
are no higher obstructions to the validity of the Ansatz.

3. Conformal geometry and twisted spectral triples

In order to shed some light on the nature and plausibility of the above setup for
the Ansatz, we examine in this section some authentic examples of twisted spectral
triples arising in conformal geometry.

3.1. Transversely conformal spectral triple. Let M be a smooth con-
nected closed spin manifold of dimension n. To each Riemannian metric g on M
one can canonically associate a Dirac operator D = D/g acting on the Hilbert space

H = Hg := L2(M,Sg) of L2-sections of the spin bundle S = Sg, and thus a cor-
responding spectral triple (C∞(M),H, D) over the algebra C∞(M). Assume now
thatM is endowed with a conformal structure [g], consisting of all Riemannian met-
rics conformally equivalent to a given Riemannian metric g. Let SCO(M, [g]) be the
group of diffeomorphisms of M that preserve the conformal structure, the orienta-
tion and the spin structure. It is a Lie group, and we denote by G = SCO(M, [g])0
its connected component of the identity. We then form the discrete crossed product
algebra AG = C∞(M)�G. This algebra consists of finite sums of the form

a =
∑

Γ

fφ vφ , fφ ∈ C∞(M), φ ∈ G,

with the product rule determined by

vφ f = (f ◦ φ−1) vφ , vφ vψ = vφψ .

It can be represented by bounded linear operators on the Hilbert space H =
L2(M,S) of L2-sections of the spin bundle S, by letting a function f ∈ C∞(M) act
as the multiplication operator

(3.1) π(f) (u) = f u , u ∈ L2(M,S) ,

and the diffeomorphisms φ ∈ G act as translation operators

(3.2) π(vφ) (u) ≡ Vφ (u) := φ̃ ◦ u ◦ φ−1 , u ∈ L2(M,S) ,

where φ̃ is the canonical lift of φ to an automorphism of S; such a lift is well-
defined, not just modulo Z/2Z, for any φ ∈ SCO(M, [g])0. To make G act by
unitary operators, one needs to replace each operator V −1

φ , φ ∈ G, by the operator

(3.3) U−1
φ (u) = e−nhφ V −1

φ (u) = e−nhφ φ̃−1 ◦ u ◦ φ , u ∈ L2(M,S) ,

where hφ ∈ C∞(M) is determined by the conformal factor via the equation

(3.4) φ∗(g) = e−4hφ g .

Indeed, using the fact that the Riemannian volume forms are related by the equality

(3.5) volφ∗(g) = e−2nhφ volg ,
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and denoting the fiberwise norm by | · |, one easily checks that U−1
φ is unitary:

||U−1
φ (u)||2 =

∫

M

e−2nhφ |φ̃−1(u ◦ φ)|2 volg =

∫

M

|φ̃−1(u ◦ φ)|2 φ∗(volg)

=

∫

M

|u|2 volg = ||u||2, ∀u ∈ L2(M,S) .

Lemma 3.1. For any φ ∈ G = SCO(M, [g])0 and with D = D/g, one has

(3.6) U∗
φ ◦D ◦ Uφ = ehφ ◦D ◦ ehφ .

Proof. Via the natural identification β
φ∗(g)
g corresponding to the change of

metric, defined as in [2], the Dirac operator D/φ∗(g) can be implemented as an
operator

Dφ∗(g), g =
(

βφ∗(g)
g

)−1

◦D/φ∗(g) ◦ βφ∗(g)
g

acting on the sections of the bundle Sg. It is explicitly given by the formula

(3.7) Dφ∗(g), g = e(n+1)h D/g e
(−n+1)h .

On the other hand, as differential operator,

(3.8) Dφ∗(g), g = V −1
φ ◦D/g ◦ Vφ .

Combining (3.7) and (3.8) one obtains

V −1
φ ◦D/g ◦ Vφ = e(n+1)h D/g e

(−n+1)h ,

or equivalently

e−nh ◦ V −1
φ ◦D/g ◦ Vφ ◦ enh = eh ◦D/g ◦ eh .

�

Let σ be the algebra automorphism of AG defined on generators by

(3.9) σ(f v−1
φ ) = e−2hφ f v−1

φ , f ∈ C∞(M), φ ∈ G.

Lemma 3.2. The twisted commutators

[D, π(a)]σ := D ◦ π(a) − π(σ(a)) ◦D, a ∈ AG ,

are bounded.

Proof. It suffices to check the claimed property for a = e−nhφ v−1
φ . In that

case one has

[D, π(a)]σ = D ◦ U∗
φ − e−2hφ ◦ U∗

φ ◦D =
(

D − e−2hφ ◦ U∗
φ ◦D ◦ Uφ

)

◦ U∗
φ .

In view of Eq. (3.6), it follows that

[D,U∗
φ ]σ =

(

D − e−hφ ◦D ◦ ehφ
)

U∗
φ == − e−hφ [D, ehφ ] ◦ U∗

φ(3.10)

= −c(dhφ)U
∗
φ .

�
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For further reference, we note that as a consequence of (3.10) one has

(3.11) [D, f U∗
φ ]σ = c(df − f dhφ)U

∗
φ ,

and in particular

(3.12) [D, ehφ U∗
φ ]σ = 0 .

Proposition 3.3. The algebra AG = C∞(M)�G, endowed with the automor-
phism σ ∈ AutAG and the representation π on the Hilbert space H = L2(M,S),
together with the Dirac operator D = D/g, defines an (n,∞)-summable σ-spectral

triple (AG,H, D, σ), which moreover satisfies the strong Lipschitz-regularity prop-
erty

(3.13) |D|−t
(

|D|t a − σt(a) |D|t
)

∈ L(n,∞)(H) , ∀ t ∈ R.

Proof. The boundedness property (1.2) was verified in Lemma 3.2. To prove
Lipschitz regularity, one notes that, when viewed as a pseudodifferential operator,
U∗
φ ◦D ◦ Uφ has principal symbol

(3.14) σpr(U
∗
φ ◦D ◦ Uφ)(x, ξ) = e2hφc(ξ) , ξ ∈ T ∗

xM

where c(ξ) ∈ End(Sx) stands for the Clifford multiplication by ξ. Furthermore, for
any t ∈ R, the principal symbol of U∗

φ ◦ |D|t ◦ Uφ is

(3.15) σpr(U
∗
φ ◦ |D|t ◦ Uφ)(x, ξ) = e2thφ ||ξ||t ,

since

U∗
φ ◦ |D|t ◦ Uφ = |U∗

φ ◦D ◦ Uφ|t .
Now

|D|t ◦ U∗
φ − σt(U∗

φ) ◦ |D|t =
(

|D|t − e−2thφ U∗
φ ◦ |D|t ◦ Uφ

)

◦ U∗
φ ,

and by Eq. (3.15),

σpr

(

|D|t − e−2thφ U∗
φ ◦ |D|t ◦ Uφ

)

= ||ξ||t − e−2thφ e2thφ ||ξ||t = 0.

Thus, the operator |D|t − e−2thφ U∗
φ ◦ |D|t ◦Uφ is pseudodifferential of order t− 1,

hence its product by |D|−t is of order −1 and therefore in L(n,∞). �

Remark 3.4. In the same fashion, Rn with its standard metric g0, together with
the flat Dirac operator D0 = D/g0 , gives rise to the (n,∞)-summable non-unital σ-

spectral triple (AG0
,H0, D0, σ), where G0 = CO(Rn, g0), and AG0

= C∞
c (Rn)�G0.

According to the Ferrand-Obata theorem (cf. [12] for a complete proof), the
conformal group CO(M, [g]) of a (not necessarily closed) manifold M of dimension
n ≥ 2 is inessential, i.e. reduces to the group of isometries for a metric in the
conformal class [g], except when Mn is conformally equivalent to the standard
sphere Sn or to the standard Euclidean space Rn. Correspondingly, the only twisted
spectral triples arising from the above construction which are not isomorphic to
ordinary spectral triples are those associated to the n-sphere and to the flat n-
space.
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3.2. Transverse noncommutative residue. With the same assumptions as
in the preceding subsection, let Ψ•(M ;S) denote the algebra of classical pseuodo-
differential operators acting on the sections of the spin bundle. The group G acts
on Ψ•(M ;S) in the natural fashion:

(3.16) φ · P := Vφ P V −1
φ , φ ∈ G, P ∈ Ψ•(M ;S).

One can thus form the crossed product algebra Ψ•(M ;S)�G. The representation
π : AG → L(H) extends in a tautological manner to a representation of the enlarged
algebra Ψ•(M ;S)�G by densely defined linear operators on H = L2(M,S), which
will still be denoted by π:

(3.17) π(P vφ) (u) := P
(

Vφ(u)
)

= P (φ̃ ◦ u ◦ φ−1) , u ∈ C∞(M,S) .
We set out to show that given any P ∈ ΨN (AG) the zeta function

(3.18) ζP(z) := Tr(P |D|−z) , �z > n+N

can be meromorphically continued to the whole complex plane; by linearity, it
suffices to take P = P Vφ, with P ∈ ΨN (M ;S) and φ ∈ G.

If G is inessential, φ is an isometry and the statement can be proved via the
Mellin transform and heat kernel asymptotics (see [1, §6.3]). A more direct proof,
given in [11], relies on the stationary phase method (cf. e.g. [17, Thm. 7.7.5]),
applied to a phase function whose expression in local charts U covering a tubular
neighborhood of the fixed point set Mφ is of the form

(3.19) f(x, ξ) = 〈x− φ(x), ξ〉 , x ∈ U, ξ ∈ R
n, ||ξ|| = 1.

By restriction to the fibers of the normal bundle to Mφ, this function gives rise to a
family of fiberwise phase functions, each having a single non-degenerate stationary
point. Using the stationary phase for this family, it is shown in [11, Prop. 2.4] that
the zeta function ζVφ P has a meromorphic extension to C whose poles are at most

simple and located at the points zk = N +nφ−k, k ∈ Z
+, where nφ = dimMφ.

In the sphere case, by Liouville’s theorem the group of conformal automor-
phisms CO(Sn, [g]) coincides with the group M(n) ∼= PO(n + 1, 1) of Möbius
transformations in dimension n, and G = SCO(Sn, [g]) is its connected compo-
nent. Now if φ ∈ G is elliptic, i.e. conjugate to an element in the maximal compact
subgroup O(n+1), by replacing D in formula (3.18) with a conjugate by a unitary
operator we can reduce to the isometric case.

The non-elliptic diffeomorphisms φ ∈ M(n) fall into two classes: hyperbolic and
parabolic (see [19, §2]).

A hyperbolic transformation φ ∈ M(n) has two distinct fixed points, say x+

and x−, and its tangent map at each of these points dφx± : Tx±Sn → Tx±Sn is
represented by an element of O(n)×R

+, with multiplier μ±, with μ > 1. Because of
the nontrivial multiplier, the phase function (3.19) has no critical points away from
the zero section of the cotangent bundle T ∗Sn. The stationary phase principle,
in its most basic form (cf. [17, Thm. 7.7.1]) and utilized in the same manner as
in [11], implies then that the zeta function ζVφ P extends to an entire function.

A parabolic transformation φ ∈ M(n) has a single fixed point x0 ∈ Sn, however,
det(Id− dφx0

) = 0. Accordingly, the phase function has 0 as its only critical value,
and the corresponding critical set is

(3.20) Cφ = {(x0, ξ) | ξ ∈ R
k, dφx0

(ξ) = ξ}.
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The generalized stationary phase gives an asymptotic expansion

(3.21)

∫

||ξ||=1

eir〈x−φ(x), ξ〉 a(x, ξ) dn−1ξ dnx ∼
∑

α

∞
∑

j=0

2n−1
∑

k=0

δj,k(a) r
α−j logk r ,

where α = 1
2 dimCφ − n and the distributions δj,k are supported in Cφ. Following

the same line of arguments as in [11], but using stereographic coordinates instead
of normal coordinates, one obtains the desired meromorphic continuation of the
zeta function ζVφ P , with (at most) simple poles at the points

zk = N +
1

2
dimCφ − k, where k ∈ Z

+.

We summarize the conclusion of the preceding discussion as follows.

Theorem 3.5. For any P ∈ ΨN (Mn;S) and any φ ∈ G, the associated zeta
function ζP Vφ

has a meromorphic extension to C. Moreover,

10 if φ ∈ G is elliptic, then the poles of ζVφ P are at most simple and are
located at the points zk = N + dimMφ − k, k ∈ Z

+;
20 if φ ∈ G is hyperbolic, then ζVφ P is entire;

30 if φ ∈ G is parabolic, then the poles of ζVφ P are at most simple and are

located at the points zk = N + 1
2 dimCφ − k, k ∈ Z

+.

This provides the transverse noncommutative residue functional
∫

D

−P = Resz=0 ζP(2z) , P ∈ Ψ•(M ;S)�G,

which satisfies a property analogous to the Selberg Principle.

Corollary 3.6. For any hyperbolic transformation φ ∈ G and any P ∈
ΨN (Sn;S),

∫

D

−P Vφ = 0 .

As another consequence, one can explicitly compute the candidate for the
Hochschild character given by Eq. (1.20), and thus directly verify that it gives
the expected result.

Proposition 3.7. The local Hochschild cocycle of the transversely conformal
σ-spectral triple (AG,Hg, D/g, σ) associated to a closed spin manifold Mn modulo

the conformal group G = SCO(M, [g]) is a cyclic cocycle whose periodic cyclic
cohomology class coincides with the transverse fundamental class [M/G].

Proof. Let ak = fk U
∗
φk

∈ AG, k = 0, 1, . . . , n. The integrand in the formula

(1.20),
a0 [D, σ−1(a1)]σ · · · [D, σ−n(an)]σ |D|−n ,

can be put in the form P Vφ with P ∈ Ψ−n(Sn;S) and φ−1 = φn ◦ · · · ◦ φ0. It
follows from Prop. 3.5, specialized to the case when N = −n, that the zeta function
ζP Vφ

(z) has no pole at z = 0. Therefore
∫

D

−P Vφ = 0 , unless φ = Id,
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i.e. the cocycle (1.20) is localized at the identity. Employing Getzler’s symbol
calculus for asymptotic operators as indicated in [8, Remark II.1], and using the
expression (3.11) of the twisted commutators, the Hochschild cocycle (1.20) can be
explicitly computed. The end result is a cyclic cocycle, which is easily seen to differ
by a coboundary from the standard transverse fundamental cocycle (cf. [10, Thm
3.11])

τM/G(f0U
∗
φ0
, . . . , fnU

∗
φn

) =

⎧

⎨

⎩

∫

M
f0 d(f1 ◦ φ0) ∧ · · · ∧ d(fn ◦ φn−1 ◦ · · · ◦ φ0),

if φn ◦ · · · ◦ φ0 = Id;
0 otherwise .

�

Remark 3.8. If M is closed and G inessential, hence compact, the correspond-
ing σ-spectral triple is a conformal perturbation, cf. §1.6, of an equivariant spectral
triple. Its Connes-Chern character, given by (1.14), can be explicitly computed
from the local index formula of [8] by employing an equivariant version of the
Getzler symbol calculus, or the equivariant heat kernel techniques in [1].

3.3. Transverse similarities. Endow R
n with the Euclidean metric g0 =

∑n
i=1 dx

i⊗dxi. The group G = Sim(n) of conformal (or similarity) transformations
of the Euclidean n-space is generated by rotations, translations by vectors y ∈ R

n,

τy(x) = x− y, ∀x ∈ R
n,

and homotheties ρλ, λ > 0,

ρλ(x) = λ−1x, ∀x ∈ R
n.

The only non-isometries are the homotheties,

ρ∗λg0 = λ−2g0 .

i.e. in the notation of §3.1 the corresponding conformal factor is

e−4hρλ (x) = λ−2 , ∀x ∈ R
n.

With AG := C∞
c (Rn) � G, the definition (3.9) of the automorphism σ ∈ AutAG

specializes to

(3.22) σ(f Uφ) = μ(φ) f Uφ , φ ∈ G ,

where μ : G → R
+ is the character determined by the multiplier of the similarity

transformation:

μ(φ) = 1 if φ ∈ O(n), μ(τy) = 1, ∀ y ∈ R
n, and μ(ρλ) = λ, ∀λ > 0.

Also, the covariace relation (3.6) becomes

(3.23) U−1
φ ◦D ◦ Uφ = μ(φ)D , φ ∈ G .

Let Ψ•
c(R

n;S) denote the algebra of classical pseudodifferential operators with
x-compact support. Since the conformal factors are constant, one can easily extend
σ to an automorphism of Ψ•

c(R
n;S)�G, by simply setting

(3.24) σ(P Uφ) = μ(φ) P Uφ , φ ∈ G, P ∈ Ψ•
c(R

n,S).
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Indeed,

σ(P Uφ) · σ(QUψ) =
(

μ(φ) P Uφ

)

·
(

μ(ψ) QUψ

)

=(3.25)

= μ(φψ)P · (UφQU−1
φ )Uφψ = σ

(

P · (UφQU−1
φ )Uφψ

)

= σ(P Uφ ·QUψ) .

Proposition 3.9. The residue functional

∫

D

− : Ψ•
c(R

n;S) � G → C is a σ-

invariant trace.

Proof. The σ-invariance of the residue is a consequence of Corollary 3.6 (Sel-
berg Principle). Indeed, let P = PUφ ∈ Ψ•

c(R
n;S) � G. If μ(φ) �= 1 then φ has

a unique fixed point x0 ∈ R
n, at which dφx0

= μ(φ)Id. Thus, there are no fixed
points on T ∗

R
n, hence the zeta function ζP(z) is entire (see §3.2). On the other

hand, if μ(φ) = 1 then σ(P) = P.
To prove that the residue functional is a trace, let PUφ, QUψ ∈ Ψ•

c(R
n;S)�G.

One has

Tr
(

PUφ QUψ |D|−z
)

= Tr
(

QUψ |D|−zP Uφ

)

=

= Tr
(

QUψ P |D|−z Uφ

)

+Tr
(

QUψ [|D|−z, P ]Uφ

)

Using the identity Eq. (2.2) to express the commutator [|D|−z, P ], one sees that

Resz=0Tr
(

QUψ [|D|−z, P ]Uφ

)

= 0 ,

hence,
∫

D

−PUφ QUψ = Resz=0Tr
(

QUψ P |D|−z Uφ

)

= Resz=0Tr
(

QUψ PUφ U
−1
φ |D|−z Uφ

)

.

By Eq. (3.23), U−1
φ |D|−z Uφ = μ(φ)−z|D|−z, therefore

∫

D

−PUφ QUψ = Resz=0

(

μ(φ)−z Tr
(

QUψ PUφ |D|−z
))

=

∫

D

−QUψ PUφ.

�
Remark 3.10. One can explicitly verify in this specific case that the cochain

(2.18) of the Ansatz does satisfy the cocycle identity

b τ q−1
σ + B τ q+1

σ = 0.

Indeed, the direct, albeit lengthy, computations by which the cocycle identity is
checked in the beginning of the proof in [8, Theorem II.1] can be reproduced almost
verbatim. Once the commutator with D2 is substituted by the twisted commutator

(3.26) ∇σ(P) = D2 P − σ2(P)D2 ,

and usual iterated Leibniz rule is replaced with its twisted version

∇m
σ (P1P2 · · · Pq) =

∑

m1+...+mq=m

m!

m1! · · ·mq!
·(3.27)

∇m1
σ (σ2(m2+...+mq)(P1))∇m2

σ (σ2(m3+...+mq)(P2)) · · · ∇mq
σ (Pq) ,

the “integration by parts” property, which is repeatedly used in those calculations,
becomes a consequence of Proposition 3.9. As a simple illustration,

∫

D

−∇σ(P)D−2 =

∫

D

−D2 P D−2 −
∫

D

−σ2(P) =

∫

D

−P −
∫

D

−σ2(P) = 0 .
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A different approach, which provides a complete verification of the Ansatz in
greater generality, constitutes the contents of the section that follows.

4. Twisting by scaling automorphisms and the local index formula

By abstracting the essential features of the preceding example, we define in
this section a general class of spectral triples twisted by scaling automorphisms, for
which we shall prove the validity of the Ansatz in its entirety.

4.1. Scaling automorphisms. Motivated by the Euclidean similarities in
§3.3, we introduce the following abstract version of a spectral triple twisted by
similarities.

Definition 4.1. Let (A,H, D) be a spectral triple over the (non-unital) in-
volutive algebra A. A scaling automorphism of (A,H, D) is defined by a unitary
operator U ∈ U(H) such that

(4.1) U AU∗ = A , and U DU∗ = μ(U)D, with μ(U) > 0.

Scaling automorphisms form a group Sim(A,H, D), endowed by construction
with a scaling character μ : Sim(A,H, D) → R

+. Its subgroup Kerμ consists of the
isometries of (A,H, D), and will be denoted Isom(A,H, D).

For the clarity of the exposition it will be convenient to assume D invertible.
This can always be achieved by passage to the invertible double, cf. §1.3,

˜D = D⊗̂Id + Id⊗̂F1 .

However, in doing so the similarity condition (4.1) cannot be exactly reproduced.
Instead, it takes the modified form

(4.2) U ˜DU∗ = μ(U) ˜D⊗̂Id + (1− μ(U)) Id⊗̂F1 .

We will explain at the end of the paper the minor modifications needed to handle
the perturbed similarity condition.

In the remainder of the paper we fix a group of scaling automorphisms G ⊂
Sim(A,H, D), and let AG = A � G. We shall also denote by G0 the subgroup of
isometries in G.

Proposition 4.2. The formula

(4.3) σ(aU) = μ(U)−1 aU, ∀U ∈ G, a ∈ A,

defines an automorphism σ : AG → AG, and (AG,H, D, σ) is a σ-spectral triple.
Moreover,

(4.4) [D, aU ]σ = [D, a]U.

Proof. Indeed, one has for any monomials aU, b V ∈ AG = A�G,

σ(aU) σ(b V ) =
(

μ(U)−1 aU
) (

μ(V )−1 b V
)

=

= μ(UV )−1 a (U bU∗)UV = σ
(

aU(b))UV
)

= σ(aU b V ) .

Furthermore, in view of (4.1),

[D, aU ]σ = [D, a]U + a
(

D − μ(U)−1 U DU∗
)

U = [D, a]U ∈ L(H).

�
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The resulting σ-spectral triple (AG,H, D, σ) will be called twisted by scaling
automorphisms. With the goal of establishing the validity of the Ansatz for twisted
spectral triples of this form, we start with the assumption that the base spec-
tral triple (A,H, D) is (p,∞)-summable, and satisfies the smoothness condition
(1.15). We recall that the corresponding algebra of pseudodifferential operators
Ψ•(A,H, D) is Z-filtered (by the order) and Z2-graded (even/odd), and that it
includes the subalgebra of differential operators D(A,H, D).

Proposition 4.3. With the above notation and hypotheses,

(1) the action of G extends to an action by automorphisms on Ψ(A,H, D),

(4.5) P 
→ U � P := U P U∗, ∀P ∈ Ψ(A,H, D), U ∈ G,

which respects both the order filtration and the even/odd grading;
(2) the automorphism σ ∈ Aut (AG) extends to an automorphism σ of the

crossed product algebra Ψ(AG,H, D) := Ψ(A,H, D)�G, by setting

(4.6) σ(P U) = μ(U)−1 P U, ∀U ∈ G, P ∈ Ψ(A,H, D),

(3) the twisted commutators by D, |D| and D2 define twisted derivations dσ,
δσ, resp. ∇σ, of the algebra Ψ(AG,H, D).

Proof. The condition (4.1) ensures that D(A,H, D) remains invariant under
conjugation by U ∈ G, and also implies that

(4.7) U |D|z U∗ = μ(U)z |D|z, ∀ z ∈ C.

The verification of the other claims is straightforward. �

We now add the extended simple dimension spectrum hypothesis: there exists
a discrete set ΣG ⊂ C, such that the holomorphic functions

(4.8) ζB(z) = Tr(B |D|−z) , �z > p , ∀B ∈ BG := B �G,

admit meromorphic extensions to C with simple poles in ΣG, and the functions
Γ(z) ζB(z) decay rapidly on finite vertical strips.

The proof of Proposition 3.9 applies verbatim and shows that the residue func-
tional

∫

D

−P := Resz=0 ζP(2z) , P ∈ Ψ(AG,H, D)

is automatically a trace. We require it to be σ-invariant:

(4.9)

∫

D

−σ(P) =

∫

D

−P.

This axiom de facto enforces the Selberg Principle, since it implies

(4.10)

∫

D

−P U = 0, if μ(U) �= 1, P ∈ Ψ(A,H, D), U ∈ G ;

in particular, the residue functional is necessarily supported on Ψ(AG0
,H, D), where

G0 := Isom(A,H, D).
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4.2. Twisted JLO brackets. We define the twisted JLO bracket of order q
as the (q + 1)-linear form on Ψ(AG,H, D) which for α0, . . . , αq ∈ Ψ(A,H, D) and
U0, . . . , Uq ∈ G has the expression

〈α0U
∗
0 , . . . , αqU

∗
q 〉D =

∫

Δq

Tr
(

γ α0U
∗
0 e−s0μ(U0)

2D2

α1U
∗
1 e−s1μ(U0U1)

2D2 · · ·(4.11)

· · ·αqU
∗
q e−sqμ(U0···Uq)

2D2)

,

where the integration is over the q-simplex

Δq :=
{

s = (s0, · · · , sq) ∈ R
q+1

∣

∣ sj ≥ 0, s0 + · · ·+ sq = 1
}

.

Throughout the rest of this subsection, we shall assume that α0, . . . , αq are
polynomial expressions in D and the elements of A, [D,A], and are homogeneous
in λ when D is replaced by λD. Given a JLO bracket as in (4.11), for any ε > 0
we denote by 〈α0U

∗
0 , . . . , αqU

∗
q 〉D(ε) the expression obtained by replacing every D

occurring in each α0, . . . , αq by ε1/2D. Equivalently,

〈α0U
∗
0 , . . . , αqU

∗
q 〉D(ε) = ε

m
2 〈α0U

∗
0 , . . . , αqU

∗
q 〉ε1/2D ,(4.12)

where m is the total degree in λ after replacing every D by λD in the product
α0 · · ·αq. As before, by U0, . . . , Uq we denote arbitrary elements in G.

Proposition 4.4. Let α0 ∈ A, and α1, . . . , αq ∈ [D,A]. There is an asymp-
totic expansion of the form

(4.13) 〈α0U
∗
0 , . . . , αqU

∗
q 〉D(ε) ∼ε↘0

m
∑

j=0

(cj + c′j log ε) ε
q
2−ρj + O(1),

with ρ0, . . . , ρm a finite set of points in the half-plane �z ≥ q
2 .

Proof. Moving all the unitaries Ui to the rightmost position,

Tr
(

γ α0U
∗
0 e−s0μ(U0)

2D2

U0(U
∗
0U

∗
1 )α1 (U1U0)U

∗
0U

∗
1 e

−s1μ(U0U1)
2D2

(U1U0) · · ·

(U∗
0 · · ·U∗

q−1)αq (Uq−1 · · ·U0)(U
∗
0 · · ·U∗

q )e
−sqμ(U0···Uq)

2D2

(Uq · · ·U0)U
∗
0 · · ·U∗

q

)

,

the twisted JLO bracket relative to ε1/2D takes the form

〈α0U
∗
0 , . . . , αqU

∗
q 〉ε1/2D =(4.14)

=

∫

Δq

Tr
(

γ α0 e
−s1εD

2

α′
1 e

−(s2−s1)εD
2 · · · α′

q e
−(1−sq)εD

2

U∗
0 · · ·U∗

q

)

,

where α′
1 = U∗

0U
∗
1 � α1, . . . , α

′
q = U∗

0 · · ·U∗
q−1 � αq.

We next use the expansion

(4.15) e−εD2

α ∼ε↘0

∞
∑

n=0

(−1)nεn

n!
∇n(α) e−εD2

, α ∈ D(A,H, D),

which is the heat operator analogue of the expansion (2.3) (cf. also (4.21) infra, for
its twisted version), to move the heat operators in Eq. (4.14) to the right and bring
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them all to the last position. One obtains

〈α0U
∗
0 , . . . , αqU

∗
q 〉ε1/2D ∼ε↘0

1

q!

∑

N≥0

∑

n1+...+nq=N

(−1)NεN

n1! · · ·nq!
(4.16)

·
∫

0≤s1≤...≤sq≤1

sn1
1 · · · snq

q · Tr
(

γα0∇n1(α′
1) · · ·∇nq (α′

q)e
−εD2

U∗
0 · · ·U∗

q

)

=
1

q!

∑

N≥0

∑

n1+...+nq=N

(−1)NεN

n1! · · ·nq!(n1 + 1) · · · (n1 + · · ·nq + q)
·

·Tr
(

γα0∇n1(α′
1) · · ·∇nq (α′

q)e
−εD2

U∗
0 · · ·U∗

q

)

.

The extended simple dimension spectrum hypothesis ensures that the zeta functions

ζN (z) = Tr
(

γ U∗
0 · · ·U∗

q α0 ∇n1(α′
1) · · · ∇nq (α′

q) |D|−2z−2N
)

, �z >
p

2
,

have meromorphic continuations with simple poles. One has

ζN (z) =
1

Γ(z +N)

∫ ∞

0

tz+N−1Tr
(

γU∗
0 · · ·U∗

q α0∇n1(α′
1) · · ·∇nq (α′

q)e
−tD2)

dt.

Proceeding as in the proof of [8, Theorem II.1], one establishes by means of the
inverse Mellin transform the existence of an asymptotic expansion

εN+ q
2 Tr

(

γ U∗
0 · · ·U∗

q α0 ∇n1(α′
1) · · · ∇nq (α′

q) e
−εD2) ∼ε↘0(4.17)

∑

j

(cN,j + c′N,j log ε) ε
q
2−ρN,j + O(1) ,

where the exponents ρN,j are the poles of ζN (z) whose real parts are in the half-
plane �z ≥ q

2 . �

Definition 4.5. We define the constant term 〈α0U
∗
0 , . . . , αqU

∗
q 〉D|0 as the fi-

nite part Pf0 in the asymptotic expansion 〈α0U
∗
0 , . . . , αqU

∗
q 〉D(ε); it is given by the

coefficient c0 when ρ0 =
q

2
, and is 0 otherwise.

Proposition 4.6. The constant term 〈α0U
∗
0 , . . . , αqU

∗
q 〉D|0 satisfies

〈α0U
∗
0 , . . . , αqU

∗
q 〉D|0 = 0, unless μ(U0 · · ·Uq) = 1;(4.18)

〈σ(α0U
∗
0 ), . . . , σ(αqU

∗
q )〉D|0 = 〈α0U

∗
0 , . . . , αqU

∗
q 〉D|0.(4.19)

Proof. Up to a numerical factor, 〈α0U
∗
0 , . . . , αqU

∗
q 〉D|0 coincides with the

residue Resz=0 ζN . In view of the axiom (4.10),

if μ(U0 · · ·Uq) �= 1 then Resz=0 ζN = 0, ∀N ≥ 0.

This proves the property (4.18), which in turn readily implies (4.19). �

In order to compute the constant term, we shall employ the elementary Duhamel-
type commutator formula

e−(β−α)λ2D2

A − Ae−(β−α)λ2μ2D2

=(4.20)

−
∫ β

α

e−(s−α)λ2D2

λ2(D2A− μ2AD2)e−(β−s)λ2μ2D2

ds,
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where A ∈ AG, λ, μ > 0 and [α, β] ⊂ R. It is obtained by integrating the identity

d

ds

(

e−(s−α)D2

Ae−(β−s)μ2D2
)

= −e−(s−α)D2

(D2A− μ2AD2)e−(β−s)μ2D2

and then replacing D by λD.
By iterating (4.20), and using the abbreviation ∇μ(A) = D2A − μ2AD2, one

obtains for any N ∈ N,

(4.21) e−t2D2

A =
N−1
∑

k=0

(−1)kt2k

k!
∇k

μ(A) e−t2μ2D2

+ RN (D,A, μ, t).

The remainder is given by the formula

RN (D,A, μ, t) = (−1)N t2N
∫

ΔN

e−s1t
2D2∇N

μ (A)e−(1−s1)t
2μ2D2

ds1 · · · dsN

=
(−1)N t2N

(N − 1)!

∫ 1

0

(1− s)N−1e−st2D2∇N
μ (A)e−(1−s)t2μ2D2

ds,(4.22)

Using the finite-summability assumption, it is easy to estimate the above expression
and thus show that Eq. (4.21) does provide an asymptotic expansion as t ↘ 0.

Applying this expansion for a twisted bracket as in Proposition 4.4 one obtains

〈α0U
∗
0 , . . . , αqU

∗
q 〉tD =

∫

Δq

Tr
(

γ α0U
∗
0 e−s1μ(U0)

2t2D2

α1U
∗
1 e

−(s2−s1)μ(U0U1)
2t2D2

· · · e−(sq−sq−1)μ(U0···Uq−1)
2t2D2

αqU
∗
q e−(1−sq)μ(U0···Uq)

2t2D2)

∼t↘0

∑

N≥0

(−1)N t2N
∑

n1+...+nq=N

μ(U0)
2(n1+...+nq) · · ·μ(Uq−1)

2nq

n1! · · ·nq!
·

Tr
(

γ α0U
∗
0 ∇n1

σ (α1U
∗
1 ) · · ·∇nq

σ (αqU
∗
q ) e

−μ(U0···Uq)
2t2D2)

∫

0≤s1≤...≤sq≤1

sn1
1 · · · snq

q

=
∑

N≥0

(−1)N t2N
∑

n1+...+nq=N

μ(U0)
2(n1+...+nq) · · ·μ(Uq−1)

2nq

n1! · · ·nq!(n1 + 1) · · · (n1 + · · ·nq + q)
·

Tr
(

γ α0U
∗
0 ∇n1

σ (α1U
∗
1 ) · · ·∇nq

σ (αqU
∗
q ) e

−t2D2)

.

In view of (4.18), we may assume μ(U0 · · ·Uq)
−2(n1+...+nq) = 1; multiplying by

μ(U0 · · ·Uq)
−2(n1+...+nq) , we can continue by

=
∑

N≥0

(−1)N t2N
∑

n1+...+nq=N

μ(U1)
−2n1 · · ·μ(Uq)

−2(n1+...+nq)

n1! · · ·nq!(n1 + 1) · · · (n1 + · · ·nq + q)
·

Tr
(

γ α0U
∗
0 ∇n1

σ (α1U
∗
1 ) · · ·∇nq

σ (αqU
∗
q ) e

−t2D2)

=
∑

N≥0

(−1)N t2N
∑

n1+...+nq=N

1

n1! · · ·nq!(n1 + 1) · · · (n1 + · · ·nq + q)
·

Tr
(

γ α0U
∗
0 ∇n1

σ

(

σ−2n1(α1U
∗
1 )
)

· · · ∇nq
σ

(

σ−2(n1+...+nq)(αqU
∗
q )
)

e−t2D2)

.

Comparing with the expansion obtained in the proof of Proposition 4.4, and
converting the result into a residue via the Mellin transform, we arrive at the
following conclusion.
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Proposition 4.7. The constant term has the expression

〈α0U
∗
0 , . . . , αqU

∗
q 〉D|0 =

1

q!

∑

n1,...,nq≥0

(−1)n1+...+nqΓ
(

n1 + . . .+ nq +
q
2

)

n1! · · ·nq!(n1 + 1) · · · (n1 + · · ·nq + q)
·

∫

D

−γ α0U
∗
0∇n1

σ

(

σ−2n1(α1U
∗
1 )
)

· · ·∇nq
σ

(

σ−2(n1+...+nq)(αqU
∗
q )
)

|D|−2(n1+...+nq)−q.

4.3. The cocycle identity. To compute coboundaries of the twisted brackets
in the cyclic bicomplex, one needs to establish identities similar to those satisfied
by the usual JLO brackets, cf. [15, Lemma 2.2].

Lemma 4.8. With the same notation as in the preceding subsection, one has

〈α0U
∗
0 , . . . , αqU

∗
q 〉D =

q
∑

k=0

〈α0U
∗
0 , . . . , 1, αkU

∗
k , . . . , aqU

∗
q 〉D.

Proof. Proceeding as in [15, loc. cit.], one writes

〈α0U
∗
0 , . . . , αqU

∗
q 〉D =

∫ 1

0

〈α0U
∗
0 , . . . , αqU

∗
q 〉D ds =

=

∫ 1

0

ds

∫

0≤s1≤...≤sq≤1

Tr
(

γ α0U
∗
0 e−s1μ(U0)

2D2

α1U
∗
1 ·

· e−(s2−s1)μ(U0U1)
2D2 · · ·αqU

∗
q e−(1−sq)μ(U0···Uq)

2D2)

=

=

∫

0≤s≤s1≤...≤sq≤1

Tr
(

γ α0U
∗
0 e−sμ(U0)

2D2 · 1 · e−(s1−s)μ(U0)
2D2

α1U
∗
1 ·

· e−(s2−s)μ(U0U1)
2D2 · · ·αqU

∗
q e−(1−sq)μ(U0···Uq)

2D2)

+

+

∫

0≤s1≤s≤...≤sq≤1

Tr
(

γ α0U
∗
0 e−s1μ(U0)

2D2

α1U
∗
1 e−(s−s1)μ(U0U1)

2D2

· 1 · e−(s2−s)μ(U0U1)
2D2 · · ·αqU

∗
q e−(1−sq)μ(U0···Uq)

2D2)

+ . . .

. . . +

∫

0≤s1≤...≤sq≤s≤1

Tr
(

γ α0U
∗
0 e−s1μ(U0)

2D2 · · ·αqU
∗
q ·

· e−(s−sq)μ(U0···Uq)
2D2 · 1 · e−(1−sq)μ(U0···Uq)

2D2)

.

Lemma 4.9. For j = 1, . . . , q − 1, one has

〈α0U
∗
0 , . . . , αj−1U

∗
j−1 · αjU

∗
j , αj+1U

∗
j+1, . . . , αqU

∗
q 〉D

−〈α0U
∗
0 , . . . , αj−1U

∗
j−1, αjU

∗
j · αj+1U

∗
j+1, . . . , αqU

∗
q 〉D

= 〈σ2(α0U
∗
0 ), . . . , σ

2(αj−1U
∗
j−1), [D

2, αjU
∗
j ]σ, αj+1U

∗
j+1, . . . , αqU

∗
q 〉D.
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Proof. Making use of the commutator formula (4.20), one can write

〈α0U
∗
0 , . . . , αj−1U

∗
j−1 · αjU

∗
j , αj+1U

∗
j+1, . . . , αqU

∗
q 〉D − 〈α0U

∗
0 , . . . , αj−1U

∗
j−1,

αjU
∗
j · αj+1U

∗
j+1, . . . , αqU

∗
q 〉D

=

∫

Δq

Tr
(

γα0U
∗
0 e−s1μ(U0)

2D2 · · ·αj−1U
∗
j−1

(

∫ tj+1

tj−1

e−(sj−sj−1)μ(U0···Uj−1)
2D2 ·

μ(U0 · · ·Uj−1)
2[D2, αjU

∗
j ]σe

−(sj+1−sj)μ(U0···Uj)
2D2

dsj
)

·

αj+1U
∗
j+1 · · ·αqU

∗
q e−(1−sq)μ(U0···Uq)

2D2
)

=

∫

Δq

Tr
(

γσ2(α0U
∗
0 ) e

−s1μ(U0)
2D2 · · ·σ2(αj−1U

∗
j−1)

(

∫ tj+1

tj−1

e−(sj−sj−1)μ(U0···Uj−1)
2D2

[D2, αjU
∗
j ]σe

−(sj+1−sj)μ(U0···Uj)
2D2

dsj
)

·

αj+1U
∗
j+1 · · ·αqU

∗
q e−(1−sq)μ(U0···Uq)

2D2
)

.

In contrast with the untwisted case, the cyclic symmetry property is no longer
exactly satisfied. It only subsists in a weaker form.

Lemma 4.10. With m denoting the degree in D of the product α0 · · ·αq, one
has

(4.23) 〈α0U
∗
0 , . . . , αqU

∗
q 〉D|0 = 〈α1U

∗
1 , . . . , αqU

∗
q , σ

−m(α0U
∗
0 )〉D|0.

Moreover, if μ(U0 · · ·Uq) = 1, then

(4.24) 〈α0U
∗
0 , . . . , αqU

∗
q 〉D(ε) = 〈α1U

∗
1 , . . . , αqU

∗
q , σ

−m(α0U
∗
0 )〉D(μ(U0)

2ε).

Proof. Indeed,

〈α0U
∗
0 , . . . , αqU

∗
q 〉D(μ(U0)

−2ε) =

= μ(U0)
−mε

m
2

∫

Δq

Tr
(

γα0U
∗
0 e

−sq+1εD
2

α1U
∗
1 e

−s1μ(U1)
2εD2 · · ·

· · ·αqU
∗
q e−sqμ(U1···Uq)

2εD2)

= ε
m
2

∫

Δq

Tr
(

γα1U
∗
1 e

−s1μ(U1)
2εD2 · · ·

· · ·αqU
∗
q e−sqμ(U1···Uq)

2εD2

σ−m(α0U
∗
0 )e

−sq+1εD
2)

,

which under the assumption μ(U0 · · ·Uq) = 1 equals

= ε
m
2

∫

Δq

Tr
(

γα1U
∗
1 e

−s1μ(U1)
2εD2 · · ·αqU

∗
q e−sqμ(U1···Uq)

2εD2 ·

·σ−m(α0U
∗
0 ) e

−sq+1μ(U0···Uq)
2εD2)

= 〈α1U
∗
1 , . . . , αqU

∗
q , σ

−m(α0U
∗
0 )〉D(ε).

This proves (4.24), and also implies the equality of the their constant terms. On
the other hand, if μ(U0 · · ·Uq) �= 1, then both sides of (4.23) vanish, cf. (4.18). �

We now introduce the twisted version of the JLO cocycles by defining, for any
q + 1 elements A0, . . . , Aq ∈ AG,

(4.25) Jq(D)(A0, . . . , Aq) = 〈A0, [D, σ−1(A1)]σ, . . . , [D, σ−q(Aq)]σ〉D.
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The collection {Jq(D)}q=0,2,4,..., resp. {Jq(D)}q=1,3,5,..., is a cochain in the entire
cyclic cohomology bicomplex of AG but, because of the failure of cyclic symmetry
pointed out above, this cochain is not a cocycle. Instead, we form the 1-parameter
family

(4.26) Jq(ε1/2D)(A0, . . . , Aq) := ε
q
2 〈A0, [D, σ−1(A1)]σ, . . . , [D, σ−q(Aq)]σ〉ε1/2D ,

where ε ∈ R
+, and passing to the constant term we define

(4.27) J q(D)(A0, . . . , Aq) := 〈A0, [D, σ−1(A1)]σ, . . . , [D, σ−q(Aq)]σ〉D|0 .

According to Proposition 4.7, it has the explicit form predicted by the Ansatz

J q(D)(A0, . . . , Aq) =
∑

k

cq,k

∫

D

− γ A0 [D, σ−2k1−1(A1)]
(k1)
σ · · ·(4.28)

· · · [D, σ−2(k1+...+kq)−q(Aq)]
(kq)
σ |D|−2|k|−q,

which in particular implies that

(4.29) J q(D) = 0, for any q > p ;

also, by Proposition 4.4

J q(D)(a0U
∗
0 , . . . , aqU

∗
q ) = 0, if μ(U∗

0 · · ·U∗
q ) �= 1 .(4.30)

Thus, {J q(D)}q=0,2,4,..., resp. {J q(D)}q=1,3,5,..., defines a cochain in the (b, B)-
bicomplex of AG, which is supported on the conjugacy classes from G0.

Theorem 4.11. The cochain J •(D) satisfies the cocycle identity

(4.31) bJ q−1(D)(a0U
∗
0 , . . . , aqU

∗
q ) + BJ q+1(D)(a0U

∗
0 , . . . , aqU

∗
q ) = 0 .

Proof. The first stage of the proof will consist in establishing the identity

bJ q−1(D)(a0U
∗
0 , . . . , aqU

∗
q ) =

q
∑

j=1

(−1)j−1〈σ(a0U∗
0 ), . . . ,(4.32)

[D, σ−(j−2)(aj−1U
∗
j−1)]σ, [D

2, σ−j(ajU
∗
j )]σ, [D, σ−j−1(aj+1U

∗
j+1)]σ, . . . ,

. . . , [D, σ−q(aqU
∗
q )]σ〉D|0.
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To this end, we compute

bJq−1(D)(a0U
∗
0 , . . . , aqU

∗
q ) = 〈a0U∗

0 · a1U∗
1 , . . . , [D, σ−(q−1)(aqU

∗
q )]σ〉D +

+

q−1
∑

j=1

(−1)j〈a0U∗
0 , . . . , [D, σ−j(ajU

∗
j · aj+1U

∗
j+1)]σ, . . . 〉D +

+(−1)q〈aqU∗
q · a0U∗

0 , . . . , [D, σ−(q−1)(aq−1U
∗
q−1)]σ〉D

= 〈a0U∗
0 · a1U∗

1 , . . . , [D, σ−(q−1)(aqU
∗
q ]σ〉D +

−〈a0U∗
0 , a1U

∗
1 · [D, σ−1(a2U

∗
2 )]σ, . . . , [D, σ−(q−1)(aqU

∗
q )]σ〉D +

+

q−1
∑

j=2

(−1)j−1〈a0U∗
0 , . . .

. . . , [D, σ−(j−1)(aj−1U
∗
j−1)]σ · σ−(j−1)(ajU

∗
j ), . . .〉D +

+

q−1
∑

j=2

(−1)j〈a0U∗
0 , . . . , σ

−(j−1)(ajU
∗
j ) · [D, σ−j(aj+1U

∗
j+1)]σ, . . .〉D +

+(−1)(q−1)〈a0U∗
0 , [D, σ−1(a1U

∗
1 )]σ, . . .

. . . , [D, σ−(q−1)(aq−1U
∗
q−1)]σ · σ−(q−1)(aqU

∗
q )〉D

+(−1)q〈aqU∗
q · a0U∗

0 , . . . , [D, σ−(q−1)(aq−1U
∗
q−1)]σ〉D,

which by Lemma 4.9 is equal to

〈σ2(a0U
∗
0 ), [D

2, a1U
∗
1 ]σ, . . . , [D, σ−(q−1)(aqU

∗
q )]σ〉D +

+

q−1
∑

j=2

(−1)j−1〈σ2(a0U
∗
0 ), . . . , [D, σ−(j−3)(aj−1U

∗
j−1)]σ, [D

2, σ−(j−1)(ajU
∗
j )]σ,

[D, σ−j(aj+1U
∗
j+1)]σ, . . . , [D, σ−(q−1)(aqU

∗
q )]σ〉D

+(−1)(q−1)〈a0U∗
0 , [D, σ−1(a1U

∗
1 )]σ, . . .

. . . , [D, σ−(q−1)(aq−1U
∗
q−1)]σ · σ−(q−1)(aqU

∗
q )〉D +

+(−1)q〈aqU∗
q · a0U∗

0 , . . . , [D, σ−(q−1)(aq−1U
∗
q−1)]σ〉D.

At this point we pass to the constant terms and use Eq. (4.23) for the last two
terms, to replace them by the sum

(−1)(q−1)〈[D, σ−1(a1U
∗
1 )]σ, . . .

. . . , [D, σ−(q−1)(aq−1U
∗
q−1)]σ · σ−(q−1)(aqU

∗
q ), σ

−(q−1)(a0U
∗
0 )〉D|0

+ (−1)q〈[D, σ−1(a1U
∗
1 )]σ, . . . , [D, σ−(q−1)(aq−1U

∗
q−1)]σ,

σ−(q−1)(aqU
∗
q ) · σ−(q−1)(a0U

∗
0 )〉D|0 .

In turn, by Lemma 4.9 this equals

= (−1)(q−1)〈[D, σ(a1U
∗
1 )]σ, . . . , [D, σ−(q−3)(aq−1U

∗
q−1)]σ,

[D2, σ−(q−1)(aqU
∗
q )]σ, σ

−(q−1)(a0U
∗
0 )〉D|0.
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Applying once again Eq. (4.23), and taking into account that the homogeneity
degree in D is q + 1, the above expression becomes

= (−1)(q−1)〈σ2(a0U
∗
0 ), [D, σ(a1U

∗
1 )]σ, . . . , [D, σ−(q−3)(aq−1U

∗
q−1)]σ,

[D2, σ−(q−1)(aqU
∗
q )]σ〉D|0.

Summing up, one obtains

bJ q−1(D)(a0U
∗
0 , . . . , aqU

∗
q ) =

q
∑

j=1

(−1)j−1〈σ2(a0U
∗
0 ), . . . , [D, σ−(j−3)(aj−1U

∗
j−1)]σ, [D, [D, σ−(j−1)(ajU

∗
j )]σ]σ,

[D, σ−j(aj+1U
∗
j+1)]σ, . . . , [D, σ−(q−1)(aqU

∗
q )]σ〉D|0.

Combined with the σ-invariance property (4.19), this completes the proof of Eq.
(4.32).

The second stage of the proof will show that the B-boundary

BJ q+1(D)(a0U
∗
0 , . . . , aqU

∗
q ) =

=

q
∑

k=0

(−1)kq J q+1(D)(1, akU
∗
k , . . . aqU

∗
q , a0U

∗
0 , . . . , ak−1U

∗
k−1),

satisfies the identity

BJ q+1(D)(a0U
∗
0 , . . . , aqU

∗
q ) = 〈[D, σ−1(a0U

∗
0 )]σ, . . .(4.33)

. . . , [D, σ−(q+1)(aqU
∗
q )]σ〉D|0.

To this end, we note that by Lemma 4.8,

〈[D, σ−1(a0U
∗
0 )]σ, . . . , [D, σ−(q+1)(aqU

∗
q )]σ〉D =

=

q
∑

k=0

〈[D, σ−1(a0U
∗
0 )]σ, . . . , 1, [D, σ−(k+1)(akU

∗
k )]σ, . . . , [D, σ−(q+1)(aqU

∗
q )]σ〉D.

Passing to the constant term, we apply Eq. (4.23) k times to the k-th term of the
sum and rewrite it in the form

〈[D, σ−1(a0U
∗
0 )]σ, . . . , 1, [D, σ−(k+1)(akU

∗
k )]σ, . . . , [D, σ−(q+1)(aqU

∗
q )]σ〉D|0

= (−1)kq〈1, [D, σ−(k+1)(akU
∗
k )]σ, . . . [D, σ−(q+1)(aqU

∗
q )]σ, [D, σ−(q+2)(a0U

∗
0 )]σ,

. . . , [D, σ−(q+k+1)(ak−1U
∗
k−1)]σ〉D|0.

Summing up, one obtains

〈[D, σ−1(a0U
∗
0 )]σ, . . . , [D, σ−(q+1)(aqU

∗
q )]σ〉D|0

=

q
∑

k=0

(−1)kq〈1, [D, σ−(k+1)(akU
∗
k )]σ, . . . , [D, σ−(q+1)(aqU

∗
q )]σ, [D, σ−(q+2)(a0U

∗
0 )]σ,

. . . , [D, σ−(q+k+1)(ak−1U
∗
k−1)]σ〉D|0

=

q
∑

k=0

(−1)kq J q+1(D)(1, akU
∗
k , . . . , aqU

∗
q , a0U

∗
0 , . . . , ak−1U

∗
k−1),

which proves Eq. (4.33).
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To relate the two identities satisfied by the coboundary operators, we use the
generalized Leibniz rule (3.27) and write

[D, a0U
∗
0 e−s0μ(U0)

2D2 · · · [D, σ−q(aqU
∗
q )]σ e

−sqμ(U0···Uq)
2D2

]σ

= [D, a0U
∗
0 ]σ e

−s0μ(U0)
2D2 · · · [D, σ−q(aqU

∗
q )]σ e

−sqμ(U0···Uq)
2D2

+

σ(a0U
∗
0 ) e

−s0μ(U0)
2D2

[D2, σ−1(a1U
∗
1 )]σ e

−s1μ(U0U1)
2D2 · · ·

· · · [D, σ−q(aqU
∗
q )]σ e

−sqμ(U0···Uq)
2D2

+ · · ·+

(−1)q−1σ(a0U
∗
0 )e

−s0μ(U0)
2D2

[D, a1U
∗
1 ]σe

−s1μ(U0U1)
2D2 · · ·

· · · [D2, σ−q(aqU
∗
q )]σe

−sqμ(U0···Uq)
2D2

.

Since, in view of the Selberg property (4.10),

∫

D

− vanishes on twisted graded com-

mutators, one obtains

−〈[D, a0U
∗
0 ]σ, [D, σ−1(a1U

∗
1 )]σ, . . . , [D, σ−q(aqU

∗
q )]σ〉D|0 =

=

q
∑

j=1

(−1)j−1〈σ(a0U∗
0 ), . . . , [D, σ−(j−2)(aj−1U

∗
j−1)]σ, [D

2, σ−j(ajU
∗
j )]σ,

[D, σ−j−1(aj+1U
∗
j+1)]σ, . . . , [D, σ−q(aqU

∗
q )]σ〉D|0.

We can now rewrite Eq. (4.32) in the form

bJ q−1(D)(a0U
∗
0 , . . . , aqU

∗
q ) =

−〈[D, a0U
∗
0 ]σ, [D, σ−1(a1U

∗
1 )]σ, . . . , [D, σ−q(aqU

∗
q )]σ〉D|0 ,

Using once more the invariance property (4.19) and comparing with Eq. (4.33) one
obtains the desired cocycle identity. �

4.4. Transgression and proof of the Ansatz. In view of the the prop-
erty (4.30), we can restrict our considerations to the (b, B)-subcomplex CC∗

G0
(AG)

of cochains supported by the conjugacy classes in G0. Far from being a mere
convenience, this restriction is actually essential for the validity of the ensuing cal-
culations.

We denote by ιs(V ) the twisted contraction operator on CC∗(ΨG),

ισ(V )〈A0, . . . , Aq〉D =

=

q
∑

k=0

(−1)(#A0+···+#Ak)#V 〈σ2(A0), . . . , σ
2(Ak), V, Ak+1, . . . , Aq〉D,

where #A stands for the degree of A, and extend it to cochain-valued functions by
setting

(ισ(V )〈A0, . . . , Aq〉D)(ε) := ιs(V )
(

〈A0, . . . , Aq〉D(ε)
)

, ε ∈ R
+.

In what follows, we shall denote by τ 
→ Dτ one of the following two families
of operators Dt = tD, t ∈ R

+ and Du = D|D|−u, u ∈ [0, 1], and will denote by

Ḋ the corresponding derivative. In each case, we define the cochains J\q(Dτ , V ) ∈
CC∗

G0
(AG) by the formula

J\q(Dτ , V )(a0U
∗
0 , . . . , aqU

∗
q ) =(4.34)

= ισ(V )〈a0U∗
0 , [Dτ , σ

−1(a1U
∗
1 )]σ, . . . , [Dτ , σ

−q(aqU
∗
q )]σ〉Dτ

,
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where V will be either the (odd) operator Ḋτ or the (even) operator [Dτ , Ḋτ ].
We would like to evaluate the expression

(4.35)
d

dτ
Jq(Dτ ) + bJ\q−1(Dτ , Ḋτ ) +BJ\q+1(Dτ , Ḋτ ) ,

which vanishes in the untwisted case (cf. e.g. [14, Prop. 10.12]). The derivative

d

dτ
Jq(Dτ )(a0U

∗
0 , . . . , aqU

∗
q ) =

∫

Δq

d

dτ
Tr

(

γa0U
∗
0 e

−s1μ(U0)
2D2

τ [Dτ , σ
−1(a1U

∗
1 )]σ

e−(s2−s1)μ(U0U1)
2D2

τ · · · [Dτ , σ
−q(aqU

∗
q )]σe

−(1−sq)μ(U0···Uq)
2D2

τ

)

.

splits into two sums of terms. The first sum simply consists of the derivatives of
the twisted commutators

(4.36) Kq(Dτ )(a0U
∗
0 , . . . , aqU

∗
q ) :=

q
∑

j=1

〈a0U∗
0 , . . . , [Ḋτ , σ

−j(ajU
∗
j )]σ, . . .〉Dτ

.

To evaluate the second sum one relies, as in the standard case, on the Duhamel
formula

d

dτ
e−D2

τ = −
∫ 1

0

e−sD2
τ [Dτ , Ḋτ ] e

−(1−s)D2
τ ds.

By applying it in the form

(4.37)
d

dτ
e−(sj+1−sj)μ

2D2
τ = −μ2

∫ sj+1

sj

e−(s−sj)μ
2D2

τ [Dτ , Ḋτ ] e
−(sj+1−s)μ2D2

τ ds ,

one obtains

q
∑

j=0

∫

Δq

Tr
(

γ · · · [Dτ , σ
−j(ajU

∗
j )]σ

d

dτ
e−(sj+1−sj)μ(U0···Uj)

2D2
τ · · ·

)

=

= −
q

∑

j=0

μ(U0 · · ·Uj)
2

∫

Δq+1

Tr
(

γ · · · [Dτ , σ
−j(ajU

∗
j )]σ

e−(s−sj)μ(U0···Uj)
2Dτ [Dτ , Ḋτ ] e

−(sj+1−s)μ(U0···Uj)
2D2

τ · · ·
)

=

= −
q

∑

j=0

∫

Δq+1

〈σ2(a0U
∗
0 ), . . . , [Dτ , σ

−(j−2)(ajU
∗
j )]σ, [Dτ , Ḋτ ], . . . ,

. . . , [Dτ , σ
−q(aqU

∗
q )]σ〉Dτ

= −J\q(Dτ , [Dτ , Ḋτ ])(a0U
∗
0 , . . . , aqU

∗
q ) .

This gives the identity

(4.38)
d

dτ
Jq(Dτ ) = Kq(Dτ ) − J\q(Dτ , [Dτ , Ḋτ ]).

On the other hand, in order to evaluate the coboundary of J\•(Dτ , Ḋτ ), as
in the proof of Theorem 4.11, we apply the Leibniz rule to the integrand for the
expression of J\q(Dτ , Ḋτ )(a0U

∗
0 , . . . , aqU

∗
q ). By abuse of notation, we write this

bracket operation in the form

[Dτ , J\q(Dτ , Ḋτ )(a0U
∗
0 , . . . , aqU

∗
q )]σ ,
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and compute it as follows

[Dτ , ισ(Ḋτ )〈a0U∗
0 , [Dτ , σ

−1(a1U
∗
1 )]σ, . . . , [Dτ , σ

−q(aqU
∗
q )]σ〉Dτ

]σ =

= [Dτ , 〈σ2(a0U
∗
0 ), Ḋτ , [Dτ , σ

−1(a1U
∗
1 )]σ, . . . , [Dτ , σ

−q(aqU
∗
q )]σ〉Dτ

]σ + · · ·
= 〈[Dτ , σ

2(a0U
∗
0 )]σ, Ḋτ , [Dτ , σ(a1U

∗
1 )]σ, . . . , [Dτ , σ

−q(aqU
∗
q )]σ〉Dτ

+〈σ4(a0U
∗
0 ), [Dτ , Ḋτ ], [Dτ , σ

−1(a1U
∗
1 )]σ, . . . , [Dτ , σ

−q(aqU
∗
q )]σ〉Dτ

+

+〈σ4(a0U
∗
0 ), Ḋτ , [Dτ , σ(a1U

∗
1 )]σ, [Dτ , σ

−2(a2U
∗
2 )]σ, . . . , [Dτ , σ

−q(aqU
∗
q )]σ〉Dτ

+ · · · and so on.

There are two kinds of terms appearing in this sum. Those which contain the term
[Dτ , σ

2(a0U
∗
0 )]σ come from

ι(Ḋτ ) 〈[Dτ , a0U
∗
0 ]σ, [Dτ , σ

−1(a1U
∗
1 )]σ, . . . , [Dτ , σ

−q(aqU
∗
q )]σ〉Dτ

,

and they closely resemble those appearing in BJ\q+1(Dτ , Ḋτ ). The remaining terms
are of the form

〈σ4(a0U
∗
0 ), . . . , Ḋτ , . . . , [Dτ , σ

−(j−2)(aj−1U
∗
j−1)]σ, [D

2
τ , σ

−j(ajU
∗
j )]σ,

[Dτ , σ
−j−1(aj+1U

∗
j+1)]σ, . . . , [Dτ , σ

−q(aqU
∗
q )]σ〉Ds

,

or

〈σ4(a0U
∗
0 ), . . . , [Dτ , σ

−(j−2)(aj−1U
∗
j−1)]σ, [D

2
τ , σ

−j(ajU
∗
j )]σ, . . .

. . . , Ḋτ , . . . , [Dτ , σ
−j−1(aj+1U

∗
j+1)]σ, . . . , [Dτ , σ

−q(aqU
∗
q )]σ〉Dτ

,

and they match those occurring in bJ\q−1(Dτ , Ḋτ ) +Kq, plus terms which contain

[Dτ , Ḋτ ] and account for J\q−1
(Dτ , [Dτ , Ḋτ ]).

Indeed, for the b-coboundary of J\•(Dτ , Ḋτ ), we write

bJ\q−1(Dτ , Ḋτ )(a0U
∗
0 , . . . , aqU

∗
q ) =

= ισ(Ḋτ )〈a0U∗
0 · a1U∗

1 , [Dτ , σ
−1(a2U

∗
2 )]σ, . . . , [Dτ , σ

−q+1(aqU
∗
q )]σ〉Dτ

− ισ(Ḋτ )〈a0U∗
0 , a1U

∗
1 · [Dτ , σ

−1(a2U
∗
2 )]σ, . . . , [Dτ , σ

−(q−1)(aqU
∗
q )]σ〉Dτ

+

q−1
∑

j=2

(−1)j−1ισ(Ḋτ )〈a0U∗
0 , . . . , [Dτ , σ

−(j−1)(aj−1U
∗
j−1)]σ · σ−(j−1)(ajU

∗
j ), . . .〉Dτ

+

q−1
∑

j=2

(−1)jισ(Ḋτ )〈a0U∗
0 , . . . , σ

−(j−1)(ajU
∗
j ) · [Dτ , σ

−j(aj+1U
∗
j+1)]σ, . . .〉Dτ

+

+(−1)(q−1)ισ(Ḋτ )〈a0U∗
0 , [Dτ , σ

−1(a1U
∗
1 )]σ, . . .

. . . , [Dτ , σ
−(q−1)(aq−1U

∗
q−1)]σ · σ−(q−1)(aqU

∗
q )〉Dτ

+

+(−1)qισ(Ḋτ )〈aqU∗
q · a0U∗

0 , . . . , [Dτ , σ
−(q−1)(aq−1U

∗
q−1)]σ〉Dτ

.
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Let us take a closer look at the first two terms, and expand ισ(Ḋτ ). One has

ισ(Ḋτ )〈a0U∗
0 · a1U∗

1 , [Dτ , σ
−1(a2U

∗
2 )]σ, . . . , [Dτ , σ

−q+1(aqU
∗
q )]σ〉Dτ

− ισ(Ḋτ )〈a0U∗
0 , a1U

∗
1 · [D, σ−1(a2U

∗
2 )]σ, . . . , [Dτ , σ

−(q−1)(aqU
∗
q )]σ〉Dτ

= 〈σ2(a0U
∗
0 · a1U∗

1 ), Ḋτ , [Dτ , σ
−1(a2U

∗
2 )]σ, . . . , [Dτ , σ

−q+1(aqU
∗
q )]σ〉Dτ

−〈σ2(a0U
∗
0 ), Ḋτ , a1U

∗
1 · [Dτ , σ

−1(a2U
∗
2 )]σ, . . . , [Dτ , σ

−(q−1)(aqU
∗
q )]σ〉Dτ

+

q
∑

k=2

(−1)k〈σ2(a0U
∗
0 · a1U∗

1 ), [Dτ , σ(a2U
∗
2 )]σ, . . . ,

[Dτ , σ
−(k−3)(akU

∗
k )]σ, Ḋτ , [Dτ , σ

−k(ak+1U
∗
k+1)]σ, . . . , [Dτ , σ

−(q−1)(aqU
∗
q )]σ〉Dτ

−
q

∑

k=2

(−1)k〈σ2(a0U
∗
0 ), σ

2(a1U
∗
1 ) · [Dτ , σ(a2U

∗
2 )]σ, . . . ,

[Dτ , σ
−(k−3)(akU

∗
k )]σ, Ḋτ , [Dτ , σ

−k(ak+1U
∗
k+1)]σ, . . . , [Dτ , σ

−(q−1)(aqU
∗
q )]σ〉Dτ

= 〈σ2(a0U
∗
0 · a1U∗

1 ), Ḋτ , [Dτ , σ
−1(a2U

∗
2 )]σ, . . . , [Dτ , σ

−q+1(aqU
∗
q )]σ〉Dτ

−〈σ2(a0U
∗
0 ), Ḋτ , a1U

∗
1 · [Dτ , σ

−1(a2U
∗
2 )]σ, . . . , [Dτ , σ

−(q−1)(aqU
∗
q )]σ〉Dτ

+

q
∑

k=2

(−1)k〈σ4(a0U
∗
0 ), [D

2
τ , σ

2(a1U
∗
1 )]σ, [Dτ , σ(a2U

∗
2 )]σ, . . . ,

[Dτ , σ
−(k−3)(akU

∗
k )]σ, Ḋτ , [Dτ , σ

−k(ak+1U
∗
k+1)]σ, . . . , [Dτ , σ

−(q−1)(aqU
∗
q )]σ〉Dτ

where we have used Lemma 4.9 after the first pair of terms.
We now look at pairs of terms indexed by the same j = 2, . . . , q − 1,

ισ(Ḋτ )〈a0U∗
0 , . . . , [Dτ , σ

−(j−1)(aj−1U
∗
j−1)]σ · σ−(j−1)(ajU

∗
j ), . . . , 〉Dτ

− ισ(Ḋτ )〈a0U∗
0 , . . . , σ

−(j−1)(ajU
∗
j ) · [Dτ , σ

−j(aj+1U
∗
j+1)]σ, . . . , 〉Dτ

=

=
∑

k≤j−2

(−1)k〈σ4(a0U
∗
0 ), . . . , Ḋτ , . . . , [Dτ , σ

−(j−3)(aj−1U
∗
j−1)]σ,

[D2
τ , σ

−(j−1)(ajU
∗
j )]σ, [Dτ , σ

−j(aj+1U
∗
j+1)]σ, . . . , 〉Dτ

+(−1)j−1〈σ2(a0U
∗
0 ), . . . , [Dτ , σ

−(j−3)(aj−1U
∗
j−1)]σ · σ−(j−3)(ajU

∗
j ), Ḋτ , . . . , 〉Dτ

− (−1)j−1〈σ2(a0U
∗
0 ), . . . , σ

−(j−3)(aj−1U
∗
j−1), Ḋτ ,

σ−(j−1)(ajU
∗
j ) · [Dτ , σ

−j(aj+1U
∗
j+1)]σ, . . . , 〉Dτ

+

+
∑

k≥j

(−1)k〈σ4(a0U
∗
0 ), . . . , [Dτ , σ

−(j−5)(aj−1U
∗
j−1)]σ, [D

2
τ , σ

−(j−3)(ajU
∗
j )]σ, . . . ,

. . . , Ḋτ , . . . , 〉Dτ
,

where we have again applied Lemma 4.9. We focus on the last two terms,

ι(Ḋτ )〈a0U∗
0 , [Dτ , σ

−1(a1U
∗
1 )]σ, . . . , [Dτ , σ

−(q−1)(aq−1U
∗
q−1)]σ · σ−(q−1)(aqU

∗
q )〉Dτ

−ι(Ḋτ )〈aqU∗
q · a0U∗

0 , . . . , [Dτ , σ
−(q−1)(aq−1U

∗
q−1)]σ〉Dτ

= 〈σ2(a0U
∗
0 ), Ḋτ , [Dτ , σ

−1(a1U
∗
1 )]σ, . . .

. . . , [Dτ , σ
−(q−1)(aq−1U

∗
q−1)]σ · σ−(q−1)(aqU

∗
q )〉Dτ

−〈σ2(aqU
∗
q · a0U∗

0 ), Ḋτ , . . . , [Dτ , σ
−(q−1)(aq−1U

∗
q−1)]σ〉Dτ

+ · · ·
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because one has to use Eq. (4.24) to prepare them for the application of Lemma
4.9, as follows:

= (−1)(q−1)〈Ḋτ , [Dτ , σ
−1(a1U

∗
1 )]σ, . . . ,

. . . , [Dτ , σ
−(q−1)(aq−1U

∗
q−1)]σ · σ−(q−1)(aqU

∗
q ), σ

−(q−1)(a0U
∗
0 )〉μ(U0)Dτ

+(−1)q〈Ḋτ , [Dτ , σ
−1(a1U

∗
1 )]σ, . . . [Dτ , σ

−(q−1)(aq−1U
∗
q−1)]σ,

σ−(q−1)(aqU
∗
q ) · σ−(q−1)(a0U

∗
0 )〉μ(UqU0)Dτ

.

In doing so, we have rescaled the operatorDτ . This kind of rescaling, which appears
every time we need to make cyclic rearrangements, prevents the expression (4.35)
from vanishing.

However, in the special case of the scaling family τ = t 
→ Dt = tD, one can
integrate from 0 to ∞, replacing the ordinary integral near 0 with its finite part
as in [7, §4]. Also, since D is invertible, the proof of Lemma 2 in op.cit. can be
easily replicated to produce the necessary estimates for the behavior of J•(tD) and
J\•(tD,D) as t ↗ ∞. After integrating all the expressions involved in the above
calculation, the mismatching disappears and all cancellations that take place in the
untwisted case do occur in this case too. Indeed, taking as an example the first of
the two terms above, one has

Pf0

∫ ∞

ε

〈a0U∗
0 , D, [Dt, σ

−1(a1U
∗
1 )]σ, . . . ,

. . . , [Dt, σ
−(q−1)(aq−1U

∗
q−1)]σ · σ−(q−1)(aqU

∗
q )〉tD dt

= Pf0

∫ ∞

ε

〈a0U∗
0 , D, [D, σ−1(a1U

∗
1 )]σ, . . . ,

. . . , [D, σ−(q−1)(aq−1U
∗
q−1)]σ · σ−(q−1)(aqU

∗
q )〉D(t)

dt

t
.

By Eq. (4.24) this equals

= Pf0

∫ ∞

ε

〈D, [D, σ−1(a1U
∗
1 )]σ, . . . ,

. . . , [D, σ−(q−1)(aq−1U
∗
q−1)]σ · σ−(q−1)(aqU

∗
q ), σ

−q(a0U
∗
0 )〉D(μ(U0)

2t)
dt

t
,

which after the substitution t 
→ μ(U0)
−2t becomes

= Pf0

∫ ∞

μ(U0)2ε

〈D, [D, σ−1(a1U
∗
1 )]σ, . . . ,

. . . , [D, σ−(q−1)(aq−1U
∗
q−1)]σ · σ−(q−1)(aqU

∗
q ), σ

−q(a0U
∗
0 )〉D(t)

dt

t
.

In this way one obtains the following transgression formula:

Lemma 4.12. For any q ≥ 0, one has

Pf0J
q(tD)− lim

t↗∞
Jq(tD) =(4.39)

= b

(

Pf0

∫ ∞

ε

J\q−1(tD,D) dt

)

+ B

(

Pf0

∫ ∞

ε

J\q+1(tD,D) dt

)

.
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On the other hand, with virtually identical arguments as in the proof of [7,
Proposition 2], one establishes the similar vanishing result:

lim
t↗∞

Jq(tD) = 0 .(4.40)

In particular, for q = p (summability dimension), applying the b-boundary to Eq.
(4.39) and using the cocycle identity (4.31) together with the vanishing property
(4.29), one obtains

bB

(

Pf0

∫ ∞

ε

J\p+1(tD,D) dt

)

= bJ p(D)) = −BJ p+2(D)) = 0 .

This shows that

T p(D) := B

(

Pf0

∫ ∞

ε

J\p+1
(tD,D) dt

)

(4.41)

is a cyclic cocycle.

Lemma 4.13. The (b, B)-cocycle J •(D) is cohomologous to the cyclic cocycle
T p(D).

Proof. In view of Eqs. (4.39) and (4.40), the difference between the two
cochains is a total coboundary in the periodic cyclic complex:

J •(D)− T p(D) = (b+B)

(

Pf0

∫ ∞

ε

J\•(tD,D) dt

)

.(4.42)

�

We are now ready to conclude the proof of the Ansatz for spectral triples twisted
by scaling automorphisms.

Theorem 4.14. The periodic cyclic cohomology class in HP ∗(AG) of the co-
cycle J •(D) coincides with the Connes-Chern character Ch∗(AG,H, D).

Proof. The strategy for the proof remains the same as in [7, 8], and relies on
employing the family Du = D|D|−u, u ∈ [0, 1] in order to construct a homotopy
between the cocycle T p(D) and the global cocycle τpF . Using the fact that each
Du defines its own spectral triple twisted by scaling automorphisms (with character
μ1−u), and with similar analytic estimates and algebraic manipulations as above,
one establishes the analogue of [8, Proposition 3] in the form

T p(D0)− T p(D1) = (b+B)

(∫ 1

0

Pf0

∫ ∞

ε

J\•(tDu, Du) dt du

)

.

Since D1 = F and F 2 = Id, the cyclic cocycle T p(D1) can be easily seen to

coincide, up to the constant factor
Γ( p

2+1)

2p! , with the very cocycle τpF (cf. Eq. (1.9))

that defines the Connes-Chern character. �

4.5. The non-invertible case. As noted after Definition 4.1, the passage

from (A,H, D) to the invertible double ( ˜A, ˜H, ˜D) necessitates the replacement of
the exact similarity condition (4.1) by the perturbed version (4.2). This does affect
the twisted commutators, but only up to higher order in the asymptotic expansion.
More precisely,

(4.43) [ε
1
2 ˜D, ã U∗]σ = [ε

1
2 ˜D, ã]U∗ + ε

1
2 aU∗⊗̂e1F1.
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At the same time,

˜D2 = (D2 + Id)⊗̂Id , hence U ˜D2 U∗ =
(

μ(U)2 D2 + Id
)

⊗̂Id .

Retracing the arguments leading to the expansion Eq. (4.17), one sees that the
constant term remains unaffected by the perturbation.

Alternatively, one could proceed as in [16, §6.1], and add a compact operator
‘mass’ to the Dirac Hamiltonian. Specifically, in the construction of the invertible
double, one takes

˜D = D⊗̂Id +K⊗̂F1 ,

where K ∈ OP−∞ is a smoothing operator such that

[K,D] = [D,K] and D2 +K2 is invertible.

The similarity condition is again perturbed, this time by a smoothing operator.
Since the residue integral factors through the complete symbols, the constant term

remains of the same form as in Proposition 4.7, only with D replaced by ˜D.

4.6. Application to foliations with transverse similarity structure.
We conclude by briefly indicating how one can use the above result in order to
compute the index pairing for the leaf space of a foliation with transverse similarity
structure.

A codimension n foliation F of an N -dimensional manifold V is said to have a
transverse similarity structure if there exist an open cover {Ui}i∈I of V and a family
{hi : Ui → R

n}i∈I of submersions such that F|Ui = {h−1
i (y); y ∈ hi(Ui)} and the

covering transformations gji : hi|Ui ∩ Uj → hj |Uj ∩ Uj are given by similarities in
Sim(n). Concrete examples of such foliations can be found in [20], where for the
case n = N−1 all nonsingular flows which admit a closed transversal (satisfying an
additional property) are in fact classified. When N = 3 the notion of a transverse
similarity structure to a nonsingular flow coincides with that of a complex affine
structure, treated in [13] without the requirement for the existence of a closed
transversal.

Given a foliation F with a transverse similarity structure, let G denote the
smooth étale groupoid associated to a complete transversal M and let AG = C∞

c (G)
(see [4, II, §§8-10]). The Dirac operator D on M defines a spectral triple twisted
by similarities over the algebra AG , whose Connes-Chern character is given by the
cocycle J •(D) ∈ CC•(AG). On the other hand, let P be a proper G-manifold [4,
II, §10] with compact quotient P/G, and let D be a G-invariant elliptic differential
operator on P . By a construction explained in [6, §5] for discrete groups and in [4,
III, 7.γ] for étale groupoids, one associates to D a well-defined K-theory class

Ind(D) ∈ K∗(AG ⊗R) ,

where R is the algebra of infinite matrices with rapidly decaying entries. In the
even case, this class can be represented by a difference idempotent

ED − E0 ∈ Mk(AG ⊗R) .

The index pairing between the K-homology class of D and the K-theory class of
Ind(D) is then computed by the pairing of their explicitly expressed Chern charac-
ters:

〈D, Ind(D)〉 = 〈J •(D), ch•(ED − E0)〉 .
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Observables in Quantum Gravity

Alejandro Perez and Carlo Rovelli

Abstract. We study a family of physical observable quantities in quantum
gravity. We call them W functions, or n-net functions. They represent transi-
tion amplitudes between quantum states of the geometry, are analogous to the
n-point functions in quantum field theory, but depend on spin networks with
n connected components. In particular, they include the three-geometry to

three-geometry transition amplitude. The W functions are scalar under four-
dimensional diffeomorphisms, and fully gauge invariant. They capture the
physical content of the quantum gravitational theory. In particular, they can
be used to compute scattering amplitudes between particle-like field quanta.

We show that W functions are the natural n-point functions of the field
theoretical formulation of the gravitational spinfoam models. They can be
computed from a perturbation expansion, which can be interpreted as a sum-
over-four-geometries. Therefore the W functions bridge between the canonical
(loop) and the covariant (spinfoam) formulations of quantum gravity. Follow-
ing Wightman, the physical Hilbert space of the theory can be reconstructed
from the W functions, if a suitable positivity condition is satisfied.

We compute explicitly the W functions in a “free” model in which the
interaction giving the gravitational vertex is shut off, and we show that, in this
simple case, we have positivity, the physical Hilbert space of the theory can
be constructed explicitly and the theory admits a well-defined interpretation
in terms of diffeomorphism invariant transition amplitudes between quantized
geometries.

Preface, by C.R.

I met Alain in Cambridge, at the Newton Institute, in July 94. I was immediately
deeply impressed by his astonishing intelligence and by the contagious force of his
burning and almost childlike intellectual passion. I had the privilege of finding right
away a common ground in our interests, and I found that Alain had much to teach
me even in the subjects that I thought were more specific to my own work. Alain
is a deep thinker, with an immense and youthful courage, and the rare capacity of
finding genuine new ways for thinking about reality. In my opinion, he is among

2010 Mathematics Subject Classification. Primary: 83C45. Secondary: 81T05, 83C27.
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the extremely rare thinkers that are today truly opening new paths for all of us. I
admire him profoundly, as a scientist and as a human being.

The article that follows does not concern the topic on which Alain and I have
collaborated (which is the nature of physical time [1]). But it concerns a problem
on which Alain has long reflected: what are the natural observable quantities in a
theory where space and time are not primary notions? The article reports work
by Alejandro Perez and myself, which we did some time ago, but was not pub-
lished. This work is at the basis of numerous subsequent developments in quantum
gravity, and in particular of most of the recent calculations of graviton scattering
amplitudes in the context of loop quantum gravity [2]. In particular, the relation
between geometry transition amplitudes (and W functions) and particle scattering
amplitudes was clarified in [3]. It is a pleasure to dedicate this work to Alain, as a
sign of my admiration, and my pride and gratitude for his friendship.

1. Introduction

One of the hard problems in non-perturbative quantum gravity [5] is to con-
struct a full set of physically meaningful observable quantities [6]. In this paper, we
point out that there is a natural set of quantities that one can define in quantum
general relativity, which are gauge invariant, have a natural physical interpretation,
and could play the role played by the n-point functions in quantum field theory.
We denote these quantities as W functions, or n-net functions. As the n-point
functions in a quantum field theory, these quantities are not natural quantities of
the corresponding classical field theory, namely in general relativity. Nevertheless,
they capture the physical content of the quantum theory and are related to the
classical theory.

The W functions are closely related to the three-geometry to three-geometry
transition amplitude studied by Hawking [7]. However, they are not transition
amplitudes between states in which the classical three-geometry has an arbitrary
sharp value, but rather transition amplitudes between eigenstates of the three-
geometry. In loop quantum gravity [8, 9], these eigenstates are characterized by
discretized geometries and are labelled by abstract spin networks [10, 11], or s-
knots. Thus the W functions are rather transition amplitudes between states with
fixed amounts of “quanta of geometry”. This is analogous to the n-point functions
in field theory, which are not transition amplitudes between field configurations,
but rather transition amplitudes between states characterized by a fixed number
of “quanta of field” – that is, particles. Furthermore, the W functions generalize
the three-geometry to three-geometry amplitude (a 2-point function) to arbitrary
n-point functions; more precisely, we define the W functions as a functional W (s)
over an algebra A of abstract (not necessarily connected) spin networks. In this
respect, the W functions are analogous to the Wightman distributions [12] (hence
the choice of the letter W ).

We start from a general definition of the W functions, based on canonical
quantum gravity. We show that the W functions are well defined diffeomorphism
invariant observable quantities and we clarify their physical interpretation. In this
paper we focus on the case in which the dynamics is “real”, in a sense defined
below. The physical meaning of this reality and the extension of the formalism to
the general case are discussed at the end of the paper.
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A crucial property of the Wightman functions is the possibility of reconstruct-
ing the quantum field theory from them – a subtle application of the beautiful
Gelfand-Naimark-Segal (GNS) representation theorem in the theory of C∗-algebras.
We show here that the W functions have the same property: under appropriate
conditions –in particular, a positivity condition– the physical Hilbert space of the
theory and a suitable operator algebra can be reconstructed from the W functions,
using the GNS construction. In other words, we explore the extension to the gen-
erally covariant context of Wightman’s remarkable intuition that the content of a
quantum field theory is encoded in its n-point functions. To this end, we need to
strip Wightman’s theory from all the “details” that follow from the existence of a
background Minkowski space (positivity of the energy, uniqueness of the vacuum,
microlocality. . . ) and show that the core idea remains valid even in the absence of
a background spacetime. For a line of investigation similar in spirit, see [13].

Since the diffeomorphism invariant quantum field theory can be characterized
by its W functions, the way is open for defining a quantum theory of gravity
by directly constructing its W functions. Remarkably, spinfoam models [14, 15]
provide a natural perturbative definition of W functions. In particular, it has been
recently shown that general spinfoam models can be obtained as the Feynman
expansion of certain peculiar field theories over a group [16, 17, 18, 19]. We
show here that the gauge invariant n-point functions of these field theories are
precisely W functions. This construction provides a direct link between the field
theoretical formulation of the spinfoam models and canonical quantum gravity. The
link is similar in spirit to the link between the operator definition of quantum field
theory and the construction of its n-point functions via a functional integral [12].
In particular, given the field theoretical formulation of a spinfoam model, we can
construct a quantum gravity physical Hilbert space from its W functions. On the
one hand, loop quantum gravity provides the general framework and, in particular,
the physical interpretation of the W functions; on the other hand, the field theory
over the group provides an indirect but complete definition of the dynamics. This
is especially interesting in light, in particular, of the construction of Lorentzian
spinfoam models [20, 21]. In turn, the perturbative expansion of the field theory
defines a sum over spinfoams which can be directly interpreted as a sum over the
4-geometries formulation of quantum gravity. Some of the the ideas presented here
are independently derived in [22].

We give an example of reconstruction in Section 5. We consider a simple “free”
model, obtained by dropping the interaction term which gives the quantum gravity
vertex. We prove positivity for this case, and thus the existence of a Hilbert space of
spin networks for this quantum theory. Finally, in Section 6 we discuss the meaning
of the reality assumption and the extension to the complex case.

All together, we obtain an attractive unified picture, in which canonical loop
quantum gravity, covariant spinfoam models, and a family of diffeomorphism-
invariant physical observables for quantum gravity fit into a unified scheme.

The ideas described in this paper were first presented in the second conference
on Quantum Gravity in Warsaw, in June 1999.

2. The 2-net function W (s, s′) in canonical quantum gravity

In loop quantum gravity [8, 9], the Hilbert space Hdiff of the states invariant
under three-dimensional diffeomorphisms admits a discrete [26] basis of states |s〉,
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labelled by abstract spin networks (or s-knots) s. Let us define this space precisely.
An abstract spin network s is an abstract graph (not necessarily connected) Γs,
with links labelled by (nontrivial) SU(2) representations, and nodes labelled by
SU(2) intertwiners [25, 26]. If the graphs of s and s′ are different, the two spin
network states |s〉 and |s′〉 are orthogonal; if the graphs are the same, the scalar
product 〈s|s′〉 is the same as that given by the spin network basis of an SU(2)
lattice gauge theory [9].

For what follows, it is important to notice that there is a natural union opera-
tion ∪ defined on the abstract spin networks: s ∪ s′ is the spin network defined by
the graph formed by the two disconnected components Γs and Γs′ .

The extended Hilbert space Hex formed by the unconstrained states is spanned
by a basis of embedded spin networks [9]. The relation between Hdiff and the
extended Hilbert space Hex can be formally expressed in terms of a “projection”
operator Pdiff : Hex → Hdiff which sends an embedded spin network state of a suit-
able basis of Hex into an abstract spin network state, or s-knot, in Hdiff [15]. Due
to the infinite volume of the group of diffeomorphisms (or to the fact that the zero
eigenvalue of the diffeomorphism constraint is in the continuous spectrum) Hdiff

is not a proper subspace of Hex and Pdiff is not a true projection operator (hence
the quotation marks), but several techniques for taking care of these technicalities
are known, and the space Hdiff and the operator Pdiff are well defined.

The states |s〉 have a straightforward physical interpretation, which follows
from the fact that they are projections on Hdiff of eigenstates of the area and vol-
ume operators [10, 11]. The interpretation is the following. A state |s〉 represents
a three-geometry. A three-geometry is an equivalence class of three-metrics under
diffeomorphisms. The geometry represented by |s〉 is quantized, in the sense that it
is formed by regions and surfaces having quantized values of volume and area. In-
tuitively, each node of s represents a “chunk” of space, whose (quantized) volume is
determined by the intertwiner associated to the node. Two such chunks of space are
adjacent if there is a link between the corresponding nodes. The (quantized) area
of the surface that separates them is determined by the representation j associated
to this link, according to the now well known relation [11]

(1) A = 8πγ�G
√

j(j + 1)

where �, G, γ are the reduced Planck constant, the Newton constant and the Immirzi
parameter (the dimensionless free parameter in the theory). This interpretation of
the states |s〉 follows from the study of the area and volume operators on the
Hilbert space of non-diffeomorphism invariant states. Notice that the states |s〉 are
not gauge invariant either, and do not represent physical gauge invariant notions.
The same is true for the corresponding classical notion of three-geometry: a three-
geometry is determined by an ADM surface, which is a non-gauge-invariant notion
in general relativity.

The dynamics of the theory is given by the Hamiltonian constraint H(x), which
is the operator that encodes the dynamics of quantum general relativity [9]. We
assume here H(x) to be a symmetric operator. The space of solutions of this
constraint is the physical Hilbert space of the theory HPh. Instead of using the
Hamiltonian constraint, we can work with the linear operator P : Hdiff → HPh that
projects onto the kernel of H(x). (A suitable extension of Hdiff to its generalized
states –or any other of the many techniques developed for this purpose– should be
used in order to take care of the technical complications in defining the Hilbert
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eigenspace corresponding to an eigenvalue in the continuous spectrum.) For more
details on this operator, and, in particular, a more precise definition as a three-
dimensional diffeomorphism invariant object, see [15]. Instead of worrying about
the explicit construction of P , we assume here that the operator P : Hdiff → HPh

is given, and we consider the quantity

(2) W (s, s′) := 〈s|P |s′〉.
Our key observation is that this is a well-defined fully gauge invariant quantity,
which represents a physical observable in quantum gravity and has a precise and
well-understood physical interpretation.

The gauge invariance of W (s, s′) is immediate. All the objects on the r.h.s. of
(2) are invariant under three-dimensional diffeomorphisms, therefore we only need
to check invariance under time reparametrizations. An infinitesimal coordinate-
time shift is generated by the Hamiltonian constraint. If we gauge transform (say)
the bra state 〈s| we obtain

(3) δW (s, s′) = 〈Hs|P |s′〉 = 〈s|HP |s′〉 = 0,

because P is precisely the projection on the kernel of H. Therefore W (s, s′) repre-
sents a gauge-invariant transition amplitude. In fact, this is precisely the physical
three-geometry to three-geometry transition amplitude.

To clarify why the three-geometry to three-geometry transition amplitude is
a physical gauge-invariant quantity, consider a simple analogy with a well known
system. Consider a free relativistic particle in three spatial dimensions. Its physical
description is given by its position �x(t) at each time t. To have explicit Lorentz
invariance in the formalism, the dynamics can be represented as a constrained
reparametrization invariant dynamical system, by promoting the time variable t to
the role of dynamical variable x0 = t, and introducing an unphysical parameter
“time” τ . The dynamics is then entirely determined by the constraints p2−m2 = 0
and p0 > 0. The corresponding constraints in the quantum theory are the Klein-
Gordon equation and the restriction to its positive frequency solutions. The Hilbert
space Hex of the unconstrained states is formed by the square integrable functions
on Minkowski space. The physical Hilbert space HPh of the physical states is
formed by the positive frequency solutions of the Klein-Gordon equation. There
is a well defined projection operator P , which restricts any state in HPh (more
precisely, in the extension of HPh which includes its generalized states) to its mass
shell, positive frequency, component. Now, consider the (generalized) state |�x, x0〉
in H. This is the eigenstate of both the position �x and the time x0 operators, which
are well defined self-adjoint operators on H. The interpretation of |�x, x0〉 is clear:
it is a particle at the Minkowski spacetime point (�x, x0). On the other hand, this
is clearly not a physical state: there is no physical particle that can “stay” in a
single point of spacetime (where is it after a second?). It is a state that does not
satisfy the dynamics. Notice also that in H two such states at two different points
of Minkowski space are orthogonal. However, given the state |�x, x0〉 in H, we can
project it down to HPh and define the physical state

(4) |�x, x0〉Ph = P |�x, x0〉.
In momentum space, this amounts to restricting it to its mass shell positive fre-
quency components. In coordinate space, this amounts to spreading out the delta
function to a full solution of the Klein-Gordon equation, which –as its happens– at
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time x0 is concentrated around �x, but at other times is spread around the future
and past light cones of (�x, x0). The state |�x, x0〉Ph is a physical state, and has a
physical interpretation consistent with the dynamics: it is a (Heisenberg) state in
which the particle is in �x at time x0, and has appropriately moved around in space
at other times. The transition amplitude between two such states is a physically
meaningful quantity. Indeed, it is nothing else than the familiar propagator in
Minkowski space. But notice that

(5) W (�x, x0; �x′, x0′) = Ph〈�x, x0|�x′, x0′〉Ph = 〈�x, x0|P |�x′, x0′〉,
Namely, the propagator is nothing but the matrix element of the projection operator
P between the unphysical states |�x, x0〉!

It is clear that the structure illustrated is the precisely the same as in quan-
tum gravity. A classical three-geometry is determined by three degrees of freedom
per space point. Two of these correspond to physical degrees of freedom of the
gravitational field, in analogy with the dependent variable �x above. The third is
the independent temporal variable, in analogy with the x0 variable in the example
above.1 Therefore s, precisely as (�x, x0), includes the dependent as well as the inde-
pendent (time) variables. The states |s〉 are quantum states concentrated at a single
three-geometry. Precisely as the states |�x, x0〉, these are unphysical, because space-
time cannot be concentrated on a unique three-geometry, in the very same sense in
which a particle cannot be at a unique point of Minkowski space. The projection P
projects a state |s〉 into a physical state which spreads across three-geometries, and
the transition amplitude (2) gives the amplitude of measuring the three-geometry
corresponding to s after we have measured the three geometry corresponding to s′.
This amplitude is well defined and diffeomorphism invariant.

3. Reality of P and W functions

Let us now return to the gravitational theory. We assume in this section that
P has the following property, which we call (for reason that will become clear later
on) “reality”

(6) 〈s1 ∪ s3|P |s2〉 = 〈s1|P |s2 ∪ s3〉.
The physical meaning of this property, as well as the extension of the formalism to
the case in which this property does not hold, is discussed in Section 6.

Consider the vector in HPh

(7) |0〉Ph ≡ P |0〉.
and, in general,

(8) |s〉Ph ≡ P |s〉.
(See the particle analogy discussed at the end of last section.) The 2-net function
W (s, s′), defined in (2), can then be written also as

(9) W (s, s′) = Ph〈s|s′〉Ph.

1Of course, there is no a priori physical distinction between the two sets. This is because
the dynamics of general relativity is relational: it provides relations between quantities which are
on an equal footing, not a preferred temporal variable. The advantage of the formalism we are
considering here is that it does not require such a distinction to be made. It does not require one
to single out a preferred time variable.
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Clearly the states |s〉Ph form an overcomplete basis of HPh. In particular, there
will be relations between them, of the form

(10)
∑

s

cs|s〉Ph = 0

for appropriate complex numbers cs. Notice that (10) is equivalent to P
∑

s cs|s〉 =
0, or 〈s′P

∑

s cs|s〉 = 0, ∀s′. This can also be rewritten as 〈s′∪s′′P
∑

s cs|s〉 = 0, ∀s′
and, because of the reality (6) of P , as 〈s′P

∑

s cs|s ∪ s”〉 = 0, ∀s′. Therefore

(11)
∑

s

cs|s ∪ s′′〉Ph = 0

for all s′′, whenever (10) holds. Using this fact, we define on HPh the operator

(12) φ̂s|s′〉Ph = |s′ ∪ s〉Ph.

This definition is well posed, in spite of the overcompleteness of the vectors |s〉Ph,
because of (11), that is, φs sends the vanishing linear combinations (10) of states

into the linear combinations (11) which are still vanishing. Also, notice that φ̂s is
self-adjoint, again because of the reality of P ,

Ph〈s1|φ†
s|s2〉Ph = Ph〈φss1|s2〉Ph = Ph〈s1 ∪ s|s2〉Ph = 〈s1 ∪ s|P |s2〉

= 〈s1|P |s2 ∪ s〉 = Ph〈s1|s2 ∪ s〉Ph = Ph〈s1|φs|s2〉Ph,(13)

and it commutes with itself,

(14) [φ̂s, φ̂s′ ] = 0,

since

(15) φ̂sφ̂s′ = φ̂s′ φ̂s = φ̂s∪s′ .

The 2-net function W (s, s′), defined in (2), can now be written as

(16) W (s, s′) = Ph〈0|φ̂sφ̂s′ |0〉Ph.

More generally, we can define

(17) W (s) = Ph〈0|φ̂s|0〉Ph.

so that

(18) W (s, s′) = W (s ∪ s′).

Now, consider the linear space A formed by the (formal) linear combinations
of spin networks, with complex coefficients

(19) A =
∑

s

css.

There is a natural product defined on A by s · s′ = s ∪ s′, and a natural star
operation defined by s∗ = s (Here we refer to spin networks labeled by SU(2)
representations and each representation of SU(2) is conjugate to itself. When spin
networks are labeled by representations of groups which are not self-conjugate the
star operation should replace representations with dual representations.) We define
the norm ||A|| = sups|cs|. We obtain in this way a C∗-algebra structure on A. The
quantity W (s), defined in (17), defines a linear functional on A. A straightforward
calculation shows that the functional is positive

(20) W (A∗A) ≥ 0.
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We can thus apply the Gelfand-Naimark-Segal construction to the C∗-algebra A
and the positive linear functional W , obtaining a Hilbert space H, a “vacuum”
state |0) and a representation φ of A in the Hilbert space, such that

(21) W (s) = (0|φ̂(s)|0).
But it is clear that in doing so we have simply reconstructed the Hilbert space HPh,

the “vacuum” state |0) = |0〉Ph and the algebra of the operators φ̂(s) = φ̂s. In other
words, the content of the canonical theory of quantum gravity can be coded, in the
spirit of Wightman, in the positive linear functional W (s) over the algebra A of
spin networks.

We can thus determine the dynamics of the theory by giving W (s), instead
of explicitly giving the projection P , or the Hamiltonian constraint, and recon-
struct the physical Hilbert space from W (s). In particular, the main physical
gauge-invariant observable, namely the three-geometry to three-geometry transi-
tion amplitude, is simply the value of W (s) on the spin networks s formed by two
disjoint components.

We close this section with a comment about locality. The sense in which gen-
eral relativity is a local theory is far more subtle than in ordinary field theory. For
a detailed discussion of this issue see for instance [6]. In particular, physical gauge
invariant observables are independent of the spacetime coordinates �x, t, and there-
fore they are not localized on the spacetime manifold, which is coordinatized by
�x, t. Nevertheless, the dynamics of general relativity is still local in an appropriate
sense. This locality should be reflected in a general property of the W functions.
Roughly, we expect that if a spin network s can be cut into two parts (connected
to each other) sext and sin, and a second spin network s′ can be cut into two parts
(connected to each other) s′ext and s′in, and if sext = s′ext, then W (s, s′) should
be independent of sext. In other words, the local evolution in a part of the spin
network should be independent of what happens elsewhere on the spin network. A
precise formulation of this property and its consequences deserve to be studied.

4. W (s) in field theories over a group

In the last few years, intriguing developments in quantum gravity have been
obtained using the spinfoam [14] formalism. Recently, it has been shown that
any spinfoam model can be derived from an auxiliary field theory over a group
manifold [16, 17]. Several spinfoam models defined from auxiliary theories defined
over a group have been developed. They are covariant, have remarkable finiteness
properties [18], exist in Lorentzian form [21] and represent intriguing covariant
models for a quantum theory of the gravitational field. In this section, we illustrate
the emergence of a W (s) functional over A in the context of these field theories
over a group manifold. For a similar derivation see [22].

For concreteness, and simplicity of the presentation, let us consider a specific
model. Consider a real field theory for a scalar field defined over a group manifold
φ(gi) = φ(g1, g2, g3, g4), where gi ∈ G (that is φ : G4 → C), which we choose for
the moment to be a compact Lie group [16, 18]. The field φ(g1, g2, g3, g4) is defined
to be symmetric under permutation of its four arguments, G-invariant in the sense
that it satisfies Pgφ = φ, where the operator Pg is defined by

(22) Pgφ(g
1, g2, g3, g4) ≡

∫

G

dg φ(g1g, g2g, g3g, g4g),
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and finally to be zero-mode free, namely

(23)

∫

G

dg φ(g1g, g2, g3, g4) = 0.

This last property is necessary to make the relationship between spin network
states and field operator products (described below) a one-to-one relationship. The
dynamics is given by an action S[φ], which we do not specify for the moment. The
n-point functions of the theory are functions of n four-tuples of group elements;
they have the form

(24) W (gi11 , . . . , ginn ) =

∫

[Dφ] φ(gi11 ) · · ·φ(ginn ) eiS[φ].

Let us work in momentum space. Using the Peter-Weyl theorem, we expand the

field in terms of the matrix elements of the irreducible representations D
(N)
αβ of G.

(25) φ(g1, . . . , g4) =
∑

N1...N4

Φα1...α4

(N1...N4)β1...β4
D(N1)β1

α1
(g1) · · ·D(N4)β4

α4
(g4).

We denote by CN1...N4 Λ
α1...α4

a normalized basis in the space of the intertwiners be-
tween the representations N1, . . . , N4. Imposing the G-invariance of the field on
the momentum space components, and using the relation

(26)

∫

G

dg D
(N1)
α1β1

(g) · · ·D(N4)
α4β4

(g) =
∑

Λ

CN1...N4 Λ
α1...α4

CN1...N4 Λ
β1...β4

we can write the field as

φ(g1, . . . , g4) =(27)
∑

N1,...,N4

Φα1...α4

(N1...N4)β1...β4
D(N1)γ1

α1
(g1) · · ·D(N4)γ4

α4
(g4)

∑

Λ

CN1...N4,Λ

γ1...γ4
Cβ1...β4

N1...N4,Λ,

or, defining (for later convenience)

(28) φα1...α4
N1...N4,Λ :=

Φα1...α4

(N1...N4)β1...β4
CN1...N4 Λ

β1...β4

ΔN1
ΔN2

ΔN3
ΔN4

,

where ΔN is the dimension of the representation N , by

φ(g1, . . . , g4) =(29)
∑

N1,...,N4,Λ

φα1...α4
N1...N4,Λ

(

ΔN1
. . .ΔN4

D(N1)γ1
α1

(g1) · · ·D(N4)γ4
α4

(g4)C
N1...N4,Λ

γ1...γ4

)

.

We can take the quantities φα1...α4
N1...N4,Λ as the independent “Fourier components” of

the field, and therefore write the W functions, in momentum space, as
(30)

W
α1

1α
1
2α

1
3α

1
4

N1
1N1

2N1
3N1

4 ,Λ1 . . .
αn

1 α
n
2 α

n
3α

n
4

Nn
1 Nn

2 Nn
3 Nn

4 ,Λn
=

∫

[Dφ] φ
α1

1α
1
2α

1
3α

1
4

N1
1N1

2N1
3N1

4 ,Λ1 . . . φ
αn

1 α
n
2 α

n
3α

n
4

Nn
1 Nn

2 Nn
3 Nn

4 ,Λn
eiS[φ].

However, the measure and the action are G-invariant. Therefore the only nontrivial
independent W functions are given by G-invariant combinations of fields, where G
acts on each index αn

i by the representation Nn
i . There is only one way of obtaining

G-singlets: to have the indices αn
i all paired –with the two indices of the pair sitting

in the same representation– and to sum over the paired indices. Each independent
W function is determined by a choice of indices and their pairing.
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In order to describe these index choices and pairings, let us associate to each
field φα1α2α3α4

N1N2N3N4,Λ
in the integrand a four-valent node; we associate to this node the

intertwiner Λn, and to each of its four links a representation Nn
i . We then connect

the links between two fields with paired indices. We obtain a graph, with nodes
labelled by intertwiners and links labelled by representations (satisfying Clebsch-
Gordan-like relations), namely a spin network s (in the group G). Thus, indepen-
dent W functions are labelled by spin networks!

In other words, to each spin network s, with nodes n labelled by intertwiners
Λn and links l labelled by representations Nl, we can associate a gauge invariant
product of field operators φs

(31) φs =
∑

αl

∏

n

φ
αn

1 α
n
2 α

n
3α

n
4

Nn
1 Nn

2 Nn
3 Nn

4 ,Λn

where αn
i is the index associated to the link l which is the i-th link of the node n.

And we define

(32) W (s) =

∫

[Dφ]φs e
iS[φ].

Therefore the field theory over the group defines a W functional over the spin
network algebra A. If W (s) is positive, we then have immediately, thanks to the
GNS theorem, a Hilbert space and an algebra of field operators whose vacuum ex-
pectation value is W (s). Under suitable conditions, this could be identified with
the physical Hilbert space of quantum gravity. For this, the group G has to be
SU(2), or, alternatively, the representations and the intertwiners should be in cor-
respondence with those of SU(2). This is the case in particular for the gravitational
SO(4) and SO(3, 1) models [20, 21] in which the dynamics restricts the represen-
tations to the simple, or balanced, representations, which can be identified with the
irreducible SU(2) representations.

The relation between field theory and quantum gravity becomes much more
transparent by expressing W (s) explicitly as a perturbation expansion. Indeed, as
shown in Ref. [16, 17, 18], the standard field theoretical perturbation expansion
of W (s) in Feynman graphs turns out to be a sum over spinfoams. In particular
W (s, s′) = W (s ∪ s′) is given by a sum over all spinfoams σ bounded by the spin
networks s and s′

(33) W (s, s′) =
∑

σ, ∂σ=s∪s′

A(σ)

where A(σ) is a complex amplitude associated to the spinfoam σ (see Ref. [16, 17,
18, 19]). A spinfoam σ admits an interpretation as a (discretized) 4-geometry. In
particular, σ can be the complex dual to a four-dimensional cellular complex, and
the representations and intertwiners are naturally related to areas and volumes of
the elementary 2- and 3-cells. Therefore (33) is a (precise) implementation of the
representation of quantum gravity as a sum over geometries, introduced by Wheeler
and Misner [23], and developed by Hawking and collaborators [7]. The generation
of the spacetimes summed over as Feynman diagrams is a four-dimensional analog
of the two-dimensional quantum gravity models developed some time ago in the
context of string theory in zero dimensions [28].
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5. A “free” theory

As a simple example, we sketch here the structure of a very simple model in
which the action S[φ] contains only a kinetic part and no interaction part.

(34) S[φ] = (i/2)

∫

dg1 · · · dg4 φ2(g1, · · · , g4).

A straightforward calculation yields the action in momentum space,

(35) S[φ]=
i

2
φα1...α4

N1...N4,Λφ
β1...β4

M1...M4,Λ̃

(

(ΔN1
· · ·ΔN4

)δα1β1
· · · δα4β4

δN1M1 · · · δN4M4δΛΛ̃
)

,

where sum over repeated indices is understood.
Every n-point function of the field theory can be calculated as functional deriva-

tives of the generating function W(J) defined as

(36) W(J) =

∫

Dφ exp
(

iS[φ] + Jα1...α4
N1...N4,Λφ

N1...N4,Λ

α1...α4

)

,

which can be easily computed using standard Gaussian integration:

(37) W (J) = C exp
(

1

2

Jα1...α4
N1...N4,Λ JN1...N4,Λ

α1...α4

ΔN1
· · ·ΔN4

)

,

The n-point function depends on the boundary 4-valent spin network defined by
the action of the Jα1...α4

N1...N4,Λ’s, which can be represented by a 4-valent node carrying
the representations N1, N2, N3, N4 respectively and an intertwiner colored by Λ.
Contraction of their indices αi is represented by the connection of the corresponding
links. Let us illustrate with an example the computation of the Wightman functions
for this free theory. The two-point function W (s1, s2) is given by

(38) W (s1, s2) =

{

δ

δJα1...α4
N1...N4,Λ

δ

Jα1...α4
N1...N4,Λ

δ

δJβ1...β4
M1...M4,Γ

δ

δJβ1...β4
M1...M4,Γ

W (J)

}

J=0

,

where the boundary spin networks s1, and s2 are given by the corresponding con-
traction of the J ’s functional derivatives, namely:

δ

δJα1...α4
N1...N4,Λ

δ

Jα1...α4
N1...N4,Λ

→
Ν

Ν

Ν

Λ Λ

Ν

1 

2

3

4

,(39)

and

δ

δJβ1...β4
M1...M4,Γ

δ

δJβ1...β4
M1...M4,Γ

→
Μ

Μ

Γ Γ

Μ

Μ1 

2

3

4

.(40)

A straightforward calculation gives

(41) W (S1, S2) = 1 + δN1M1
· · · δN4M4

δΛΛ̃.
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The C∗-algebra A is defined as the algebra generated by the free sum of (not
necessarily connected) 4-valent spin networks over SO(4) as in (19). The ∗ opera-
tion is simply defined by complex conjugation of the components of A. We define
the functional W over the algebra by means of the corresponding Wightman func-
tions of our spinfoam model. The fact that the positivity condition holds for W
(namely, W (A∗A) ≥ 0) can be easily seen from the form of the functional measure.
We can explicitly construct an orthonormal basis in HPh as follows. There are two
kind of situations: spin networks which do not interfere with the vacuum |0〉 (the
empty spin network), and those which do. In the first case the projection is trivial
and the elements of the physical Hilbert space HPh are the simply the original spin
network states. Some examples are the following:

|0〉 = 1,

|ij, λ〉 = λ
i

j
,

|ijkl, λγ〉 = j
l
k

i

λ γ for λ �= γ,

|ijkl, λγ〉 = λ γi l

j

k

for λ �= γ or i �= l,

|ijklmn, λγδ〉 =
l m

n

i j

k

λ δ

γ

.

The states which interfere with the vacuum are those for which there are closed
bubble diagrams from the given spin network to ‘nothing’. In those orthonormal
states the physical state can be constructed by simply subtracting the vacuum part
using the standard Gram-Schmidt procedure. For example

|ijkl, λ〉 = −1 + j
l
k

i

λ λ ,

|ijk, λ〉 = −1 + λi i

j

k
λ ,
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|ij, λ〉 = −1 + λ
i

j
λ

i

j
,

and so on. Other states turn out to be just the tensor product of the previous ones,
namely

|ijklmn, λδ〉 = −
n

δ
m

+
n

δ
m

j
l
k

i

λ λ ,

|ijkmn, λδ〉 = −
n

δ
m

+
n

δ
m

λi i

j

k
λ ,

|ijmn, λδ〉 = −
n

δ
m

+ λ
i

j
λ

i

j n
δ

m
,

and so on. The procedure can be clearly continued to construct an orthonormal
basis of HPh.

6. Complex P

An important ingredient in the above construction is the assumption that P
is real, equation (6). This assumption greatly simplifies the construction, allowing
a simple definition of the φs operators. Here we discuss the meaning of this as-
sumption and the extension of the formalism to the case in which P is non-real, or
“complex”.

To clarify the meaning of the reality condition, let us represent graphically the
2-net function W (s, s′) as in Figure 1, when s and s′ are connected. If s′ is formed
by two connected components s1 and s2, we represent it as in Figure 2. Then the
reality of P is expressed by the equality in Figure 3. That is, it represents an a priori
indistinguishability between past and future boundaries of spacetime. This property
is closely connected with crossing symmetry [15], which is essentially the analogous
property at the level of the Hamiltonian constraint. The property is natural from
the perspective of Atiyah’s topological quantum field theory axiomatic framework
[27]. It is perhaps natural to expect this property for Euclidean quantum gravity.
Whether we should expect Lorentzian quantum gravity to have the same property,
on the other hand, is not clear to us. On the one hand, the causal structure of
the Lorentzian four-geometries seems to suggest that one should distinguish past
and future boundaries. Notice also that (6) implies that the transition amplitudes
W (s, s′) are real, because

(42) W (s, s′) = 〈s|P |s′〉 = 〈0|P |s′ ∪ s〉 = 〈s′|P |s〉 = 〈s|P |s′〉 = W (s, s′),
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Figure 1. The three-geometry to three-geometry transition am-
plitude W (s, s′) between two connected three-geometries.

Figure 2. The transition amplitude between a doubly connected
and a connected three-geometry.

which would prevent quantum mechanical interference between the |s〉 basis states
(but not between generic states). On the other hand, however, temporal relations
between boundaries may be induced a posteriori by the dynamics, instead of being
a priori given in the structure of the formalism itself.

If we drop the reality condition on P , the main difficulty is that the definition
(12) of the field operator becomes inconsistent. However, one can still retain a
(partial) characterization of the field operator φs by requiring only

(43) φ̂s|0〉Ph = |s〉Ph.

This is certainly consistent. Notice that in general we have then

(44) φ†
s �= φs.
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=

Figure 3. The reality condition on P .

And the 2-net function is now given by

(45) W (s, s′) = Ph〈0|φ̂†
sφ̂s′ |0〉Ph.

That is, we have to add the adjoint operation to equation (16).
The relevant abstract C∗-algebra now has a non-trivial star operation, different

from s∗ = s. If φ̂†
s and φ̂s′ are independent, the C

∗-algebra is generated by products
of s’s and s∗’s, and

(46) W (s, s′) = W (s∗ ∪ s′).

Starting from the field theory, we may generate a W functional on the complex
algebra A by using a complex field, instead of a real one. The resulting structure
will be explored in detail elsewhere.

A closely related problem is whether the n-net W functions should be thought
as analogous to the Wightman distributions (the vacuum expectation values of
products of field operators), to the Feynman distributions (the vacuum expecta-
tion values of time-ordered products of field operators) or rather to the Schwinger
functions (the appropriate analytic continuations of the Wightman distributions to
imaginary time). In the case of a conventional quantum field theory defined on
Minkowski space, one can apply the GNS reconstruction theorem to the Wightman
distributions. On the other hand, one obtains directly the Feynman distributions
as functional integrals of products of fields (with suitable “prescriptions” at the
poles); while one can obtain the Schwinger functions as momenta of a stochastic
process [12]. The Osterwalder-Schrader reconstruction theorem [29] that allows
the reconstruction of the Wightman distributions from the Schwinger functions re-
quires a duality “star” operation to be defined, corresponding to the inversion of
the time variable. Presumably, the distinction between these different families of
n-point functions makes no sense in the generally covariant context. The peculiar
analytic structure of the n-point functions of field theory on Minkowski space is
a consequence of the positivity of the energy (the Fourier transform of a function
with support on the positive numbers is analytic in the upper complex plane.),
while there is no notion of positivity of the energy in quantum gravity – indeed,



516 ALEJANDRO PEREZ AND CARLO ROVELLI

there is no notion of energy at all– and one should be careful in trying to generalize
standard quantum field theoretical prejudices to the generally covariant context.

7. Conclusion

We have studied the family of quantities W (s), which we propose as the main
physical observables of a quantum theory of gravity. We have proposed a general
framework, based on these quantities, that ties the canonical (loop) and the co-
variant (spinfoam) approaches to quantum gravity. The connection between the
two formalisms is provided by the GNS reconstruction theorem, and parallels the
connection between the Hilbert space and the functional formulations of conven-
tional quantum field theory, which one obtains from the properties of the n-point
functions.

Many issues deserve to be clarified. Among these are the reality of P and
the complex algebra A; the locality property of W (s) mentioned at the end of
Section 3; and the connection between W (s) and the S-matrix when spacetime
admits asymptotic regions. An explicit construction of the C∗-algebra and its GNS
construction in the case of the 2-dimensional theory [30] would also be of great
interest and presumably not too hard to do.
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Abstract. Given a countable group G, we consider the sets Sfactor(G),
Seqrel(G), of subgroups F ⊂ R+ for which there exists a free ergodic probability
measure preserving actionG � X such that the fundamental group of the asso-
ciated II1 factor L∞(X)�G, respectively orbit equivalence relationR(G � X),
equals F . We prove that if G = Γ∗∞ ∗ Z, with Γ �= 1, then Sfactor(G) and

Seqrel(G) contain R+ itself, all of its countable subgroups, as well as uncount-
able subgroups that can have any Hausdorff dimension α ∈ (0, 1). We deduce
that there exist II1 factors of the form M = L∞(X)�F∞ such that the funda-
mental group of M is R+, but M⊗B(�2(N)) admits no continuous trace scaling
action of R+. We then prove that if G = Γ∗Λ, with Γ,Λ finitely generated ICC
groups, one of which has property (T), then Sfactor(G) = Seqrel(G) = {{1}}.

1. Introduction

Some of the most intriguing phenomena concerning group measure space II1
factors M = L∞(X) � G and orbit equivalence relations R = R(G � X), arising
from free ergodic probability measure preserving (p.m.p.) actions G � X of count-
able groups G on probability spaces (X,μ), pertain to their fundamental groups
F(M), F(R) ([20]). Although much progress has been made in understanding and
calculating these invariants, many natural questions on how the group G may affect
the behavior of F(M), F(R) remain open.

A first indication that certain properties of G can impact the invariants in-
dependently of the way it acts appeared in Connes’ groundbreaking work on the
classification and the structure of von Neumann factors, from the 1970’s. Thus,
a side effect of the uniqueness of the amenable II1 factor [5] and of the amenable
II1 equivalence relation [7], is that F(M) = F(R) = R+ whenever the group G
is amenable. On the other hand, arguments from Connes’ rigidity paper [4] were
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used to show that if G is infinite conjugacy class (ICC) and has the property (T)
of Kazhdan, then F(M),F(R) are countable for any free ergodic p.m.p. action of
G ([25], [17]).

Then, in the late 1990’s, Gaboriau discovered that certain groups G, such as
the free groups with finitely many generators, Fn, 2 ≤ n < ∞, give rise to orbit
equivalence relations R = R(G � X) with F(R) = {1}, for any free ergodic p.m.p.
action F � X [15]. Moreover, many factors of the form L∞(X)� Fn were shown
to have trivial fundamental group as well (cf. [29], [24]) and it is strongly believed
that, in fact, this holds true for all Fn � X.

In turn, a completely new type of phenomena emerged in the case G = F∞,
where it was shown that there exist free ergodic p.m.p. actions F∞ � X with
the fundamental group of the associated II1 factors and equivalence relations,
F(M),F(R), ranging over a “large” family of subgroups F ⊂ R+, containing R+

itself, all its countable subgroups, as well as “many” uncountable subgroups �= R+

[31]. In fact, it was conjectured in [31] that any group F that can be realized as
a fundamental group of a II1 factor or equivalence relation can also be realised as
F(L∞(X)� F∞), F(R(F∞ � X)), for some free ergodic p.m.p. action F∞ � X.

Related to all these phenomena, we introduced in [31] the sets Sfactor(G),
Seqrel(G), of subgroups F ⊂ R+ for which there exists a free ergodic m.p. action
G � X such that F(L∞(X) � G) = F , respectively F(R(G � X)) = F . Using
this notation, the result in [31] shows, more precisely, that Sfactor(F∞)∩Seqrel(F∞)
contains the set Scentr of all subgroups F ⊂ R+ for which there exists a free ergodic
action of an amenable group Λ on an infinite measure space (Y, ν), such that the set
of scalars t > 0 that can appear as scaling constants of non-singular automorphisms
θ of (Y, ν) commuting with Λ � Y equals F . In turn, Scentr is shown to contain
R+, all its countable subgroups and uncountable subgroups F ⊂ R+ with arbitrary
Hausdorff dimension in the interval (0, 1) ([31]). While an abstract characterization
of Sfactor(F∞), Seqrel(F∞) remains elusive, it was noticed in [31] that subgroups in
either set, as in fact subgroups in Sfactor(G), Seqrel(G) for any G, must be Borel
sets and Polishable.

Our purpose in this paper is to estimate (or even completely calculate) the
invariants Sfactor(G), Seqrel(G) for other classes of groups G. We target two types
of results: on the one hand, detecting classes of groups G for which Sfactor(G),
Seqrel(G) are “large”, containing for instance the set Scentr defined above (like in
the case case G = F∞); on the other hand, detecting classes of groups G for which
Sfactor(G), Seqrel(G) contain only “small” subgroups of R+ (e.g. countable, or just
{1}).

Thus, our first result enlarges considerably the class of groups G for which we
can show that the set Scentr is contained in both Sfactor(G) and Seqrel(G).

Theorem 1.1. Let Γ be a non-trivial group, Σ an infinite amenable group and
denote G = Γ∗∞ ∗ Σ. Then,

Scentr ⊂ Sfactor(G) and Scentr ⊂ Seqrel(G) .

Moreover, there exist free ergodic p.m.p. actions G � (X,μ) such that the II1
factor M = L∞(X) � G has fundamental group F(M) = R+, but the II∞ factor
M⊗B(�2(N)) admits no trace scaling action of R+.

In Section 6, we will show that if the full group of an equivalence relation R on
a probability space (X,μ) contains a property (T) group acting ergodically on X,
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then F(R) is countable. Thus, if a group Γ appearing in Theorem 1.1 contains an
infinite subgroup Λ with the property (T) and if G = Γ∗∞ ∗Σ � X is a free ergodic
p.m.p. action such that RG has fundamental group equal to an uncountable group
in Scentr, then the restriction of G � X to Λ cannot be ergodic.

Note that the last part of Theorem 1.1 provides group measure space II1 factors
M = L∞(X)�G which do have fundamental group equal to R+ yet cannot appear
in the continuous decomposition of a type III1 factor. The problem of whether
such II1 factors exist was posed over the years by several people, including Connes,
Takesaki, and more recently Shlyakhtenko. The fact that there are even factors of
the form L∞(X)�F∞ satisfying this property (by simply taking Γ = Σ = Z in 1.1)
should be contrasted with the fact that the II∞ factor associated with L(F∞) does
admit a trace scaling action of R+, by [34].

Note that all groups of the form G = Γ∗∞ ∗ Σ, covered by the above theorem,

have infinite first �2-Betti number, β
(2)
1 (G) = ∞, and in fact β

(2)
n (G) = ∞, 0,

∀n ≥ 2. On the other hand, by Gaboriau’s scaling formula for �2-Betti numbers [15],

any free ergodic p.m.p. action of a group G with β
(2)
n (G) �= 0,∞, for some n, gives

rise to an equivalence relation RG with trivial fundamental group, F(RG) = {1}.
In other words, Seqrel(G) = {{1}}. While it is still an open question whether
the corresponding II1 factors M = L∞(X) � G satisfy F(M) = {1} as well (i.e.
Sfactor(G) = {{1}}), our next result provides a large class of groups G for which
this is indeed the case.

Theorem 1.2. Let Γ and Λ be infinite, finitely generated groups. Assume that
Γ is ICC and that one of the following conditions holds.

a) Γ = Γ1 × Γ2, with Γ1 non-trivial and Γ2 non-amenable,
b) Γ admits a non-virtually abelian, normal subgroup Γ1 with the relative

property (T).

Then, Sfactor(Γ ∗ Λ) = Seqrel(Γ ∗ Λ) = {{1}}.

When viewed from the perspective of Connes’ discrete decomposition of type
IIIλ factors with 0 < λ < 1 ([6]) and respectively Connes-Takesaki continuous
decomposition of type III1 factors ([10]), the above result provides a large class
of groups G with the property that no II1 factor M arising from an arbitrary free
ergodic p.m.p. action of G can appear in the decomposition of a type III factor (i.e.,
as Connes puts it, no such M can appear as the “shadow” of a type III factor).

While II1 factors M = L∞(X) � Γ arising from free ergodic p.m.p. actions
Γ � X of ICC property (T) groups always have countable fundamental group (cf.
[4], [25], [17]), it was not known whether there exist cases when F(M) �= {1}.
Our next result gives the first such examples. It also provides the first “concrete”
examples of free ergodic p.m.p. actions Γ � X with the associated II1 factors M
having fundamental group �= {1},R+. Indeed, the actions in Theorem 1.1 above
and in [31] are shown to exist by using a Baire-category argument, at some point,
while in 1.3 below they are specific G-actions, obtained as diagonal products of
Bernoulli and profinite actions.

Theorem 1.3. Let F ⊂ Q+ be a subgroup generated by a subset of the prime
numbers. Let G = Z

n
� SL(n,Z) with n ≥ 3. Then G admits a free ergodic

p.m.p. action G � (X,μ) such that the fundamental group of L∞(X) � G and of
R(G � X) equals F .
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We in fact believe that any subgroup of Q+ can be realized as the fundamental
group of a factor or equivalence relation arising from a free ergodic p.m.p. action
of Zn

� SL(n,Z), n ≥ 3. The question of whether there exist free ergodic p.m.p.
actions of an ICC property (T) group G � X such that F(RG) or F(L∞(X)�G)
contains irrational numbers remains open. In fact, it is not even known whether the
union of all the fundamental groups of II1 factors and equivalence relations arising
from free ergodic p.m.p. actions of a fixed ICC property (T) group G is necessarily
countable or not.

Finally, noticing that for a large number of groups G it is known that {1} ∈
Sfactor(G) (see e.g. [27], [29], [30]), we conjecture that this is in fact the case for
all non-amenable groups G. If true, this would also show that the only possibil-
ities for Sfactor(G), Seqrel(G) to be single point sets are Sfactor(G) = Seqrel(G) =
{R+}, Sfactor(G) = Seqrel(G) = {{1}}, the first situation corresponding to G
being amenable. This would provide a new, interesting facet of the dichotomy
amenable/non-amenable for groups.

2. Preliminaries

The fundamental group F(M) of a II1 factor M , introduced in [20], is defined
as the following subgroup of R+.

F(M) = {τ (p)/τ (q) | p, q are non-zero projections in M such that pMp ∼= qMq} .

We call II1 equivalence relation on a standard probability space (X,μ) any er-
godic probability measure preserving (p.m.p.) measurable equivalence relation with
countable equivalence classes. The fundamental group F(R) of a II1 equivalence
relation R is defined as

F(R) = {μ(Y )/μ(Z) | R|Y ∼= R|Z} .

Whenever Γ � (X,μ) is a free ergodic p.m.p. action, we denote by R(Γ � X) the
associated II1 orbit equivalence (OE) relation and by L∞(X) � Γ the associated
group measure space II1 factor [20].

Definition 2.1. A free ergodic p.m.p. action Γ � (X,μ) is called rigid if the
corresponding inclusion L∞(X) ⊂ L∞(X)�Γ is rigid in the sense of [29, Proposition
4.1].

Some sets of subgroups of R and ergodic measures. Given a countable
group Γ, we are interested in

Sfactor(Γ) := {F ⊂ R+ | there exists a free ergodic p.m.p. action Γ � (X,μ)

such that F(L∞(X)� Γ) = F} ,

Seqrel(Γ) := {F ⊂ R+ | there exists a free ergodic p.m.p. action Γ � (X,μ)

such that F(R(Γ � X)) = F} .

In [31, Theorem 5.3 and formula (2.2)], we have shown that both Sfactor(F∞)
and Seqrel(F∞) contain Scentr, defined as

Scentr := {F ⊂ R+ | there exists Λ � (Y, η) , a free ergodic m.p. action,

with Λ amenable and mod(CentrΛ(Y )) = F } .

Following [1, Section 4], we call ergodic measure on R any σ-finite measure ν on
the Borel sets of R having the following properties, where we denote λx(y) = x+ y.
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• For all x ∈ R, either ν ◦ λx = ν or ν ◦ λx ⊥ ν.
• There exists a countable subgroup Q ⊂ R such that ν ◦ λx = ν for all
x ∈ Q and such that every Q-invariant Borel function on R is ν-almost
everywhere constant.

For every ergodic measure ν on R, one defines

Hν := {x ∈ R | ν ◦ λx = ν} .

As shown in [1], the groups Hν can have arbitrary Hausdorff dimension and all
exp(Hν) belong to Scentr. We refer to [31, Section 2 and the proof of Theorem 5.3]
for a detailed exposition.

Intertwining by bimodules and the notation A ≺
M

B . In Sections 3

and 4, we use the method of intertwining by bimodules, introduced by the first
author in [29]. Let (M, τ ) be a von Neumann algebra with faithful normal tracial
state τ . We use the notation Mn = Mn(C) ⊗M . When A,B ⊂ Mn are possibly
non-unital embeddings, we write A ≺

M
B if there exists a non-zero partial isometry

v ∈ 1A(Mn,m(C) ⊗ M) and a, possibly non-unital, normal ∗-homomorphism ρ :
A → Bm satisfying av = vρ(a) for all a ∈ A. Several equivalent formulations of
this property can be given; see [26, Theorem 2.1] (see also [37, Theorem C.3]).

Suppose that A and B are Cartan subalgebras of the II1 factor M . Let A0 ⊂ A
be a von Neumann subalgebra such that A′

0 ∩ M = A. By [29, Theorem A.1],
A0 ≺

M
B if and only if there exists a unitary u ∈ M such that uAu∗ = B.

3. Groups G for which Sfactor(G) contains uncountable groups

The following theorem, whose proof is given at the end of the section, provides a
large family of groups G such that Sfactor(G) and Seqrel(G) is large, in the sense that
both contain Scentr. Moreover, we prove that G admits free ergodic p.m.p. actions
G � (X,μ) such that the II1 factor M := L∞(X)�G has fundamental group R+,
but nevertheless, the II∞ factor M⊗B(�2(N)) admits no strongly continuous trace
scaling action of R+.

The groups G involved are infinite free product groups and should be contrasted
with the groups G treated in Theorem 4.1, for which Sfactor(G) is trivial (cf. Remark
4.2).

Theorem 3.1. Let Γ be a non-trivial group, Σ an infinite amenable group and
denote G = Γ∗∞ ∗ Σ. Then,

Scentr ⊂ Sfactor(G) and Scentr ⊂ Seqrel(G) .

Moreover, there exist free ergodic p.m.p. actions G � (X,μ) such that the II1
factor M = L∞(X) � G has fundamental group F(M) = R+, but the II∞ factor
M⊗B(�2(N)) admits no trace scaling action of R+.

In the course of the proof of Theorem 3.1, we will also obtain the following
result.

Theorem 3.2. There exist II1 factors M1 and M2 such that F(M1) �= R+ �=
F(M2), but nevertheless F(M1⊗M2) = R+.
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Let G be a countable group with subgroup Γ. Suppose that G � (X,μ) is a free
p.m.p. action such that the restriction to Γ is ergodic. Slightly changing notations
compared to [31, Section 2], denote by Emb(Γ, G) the set of non-singular partial
automorphisms φ of (X,μ) satisfying φ(g · x) ∈ G · φ(x) for all g ∈ Γ and almost
all x ∈ X with x, g · x ∈ D(φ). Denote by [[G]] the full pseudogroup of the OE
relation R(G � X), i.e. the set of a partial automorphisms φ of (X,μ) satisfying
φ(x) ∈ G · x for almost all x ∈ D(φ).

The following lemma generalizes [31, Theorem 4.1].

Lemma 3.3. Let Γ be an infinite group, Λ an arbitrary group, both acting freely

and p.m.p. on (X,μ). There exists a free p.m.p. action Γ∗∞ ∗ Λ α
� (X,μ) with the

following properties.

• The restriction of α to Γ∗∞ is ergodic and rigid (in the sense of Definition
2.1).

• Emb(Γ∗∞,Γ∗∞ ∗ Λ) = [[Γ∗∞ ∗ Λ]].
• The restriction of α to any of the copies of Γ, resp. to Λ, is conjugate to
the originally given action.

Proof. Denote the given actions by Γ
β
� (X,μ) and Λ

ρ
� (X,μ). We introduce

the following notations:

Γ∗∞ =
∞∗

n=−1
Gn with all Gn

∼= Γ ,

Γn :=
n∗

k=−1
Gk ,

ΓE := G−1 ∗G0 ∗ ∗
n∈E

Gn whenever E ⊂ N .

By [16, Theorem 1.2], take a free ergodic p.m.p. action Γ0
α0
� (X,μ) such that α0 is

a rigid action and such that the restrictions of α0 to G−1 and G0 are conjugate to
the action β. By [36, Category Lemma] and [19, Lemma A.1], extend α0 to a free
action of Γ0 ∗ Λ on (X,μ), still denoted by α0, whose restriction to Λ is conjugate
to the action ρ.

Extend the action α0 inductively to free actions Γn ∗ Λ αn
� (X,μ) following the

procedure in [31, Section 3] and such that the restriction of αn to Gk ⊂ Γn is

conjugate to β for all k ≤ n. We end up with the free action Γ∗∞ ∗ Λ α∞
� (X,μ).

For every infinite subset E ⊂ N, we denote by αE the restriction of α∞ to ΓE ∗ Λ.
Following the proof of [31, Theorem 4.1], there exists an infinite subset E ⊂ N such
that Emb(ΓE ,ΓE ∗ Λ) = [[ΓE ∗ Λ]]. Since ΓE

∼= Γ∗∞, the lemma is proved. �

Remark 3.4. Using the methods of [16, Section 2.3], Lemma 3.3 can be shown
for Γ1∗Γ2 instead of the infinite free product Γ∗∞, for arbitrary infinite groups Γ1,Γ2

with given free p.m.p. actions on (X,μ). Such a generalization does not provide a
refinement for Theorem 3.1 though, since the proof of Theorem 3.1 involves taking
once more an infinite free product.

For the formulation of the following theorem, recall that the automorphism
group Aut(N) of a von Neumann algebra with separable predual is a Polish group
under the topology making the maps Aut(N) → N∗ : α �→ ω ◦ α continuous for
all ω ∈ N∗. Similarly, the group Aut(Y, η) of non-singular isomorphisms of (Y, η)



FUNDAMENTAL GROUP OF II1 FACTORS AND EQUIVALENCE RELATIONS 525

(up to equality almost everywhere) is a Polish group and CentrAutY (Γ2) is a closed
subgroup whenever Γ2 � (Y, η) is a non-singular action.

Theorem 3.5. Let Γ1 ∗ Γ2
α
� (X,μ) be a free p.m.p. action. Let Γ2 � (Y, η)

be a free ergodic action preserving the infinite standard measure η. Consider the
action Γ1 ∗ Γ2 � X × Y given by

(3.1) g · (x, y) = (g · x, y) ∀g ∈ Γ1 , h · (x, y) = (h · x, h · y) ∀h ∈ Γ2 .

Make the following assumptions.

• The restriction of α to Γ1 is ergodic and rigid.
• We have Emb(Γ1,Γ1 ∗ Γ2) = [[Γ1 ∗ Γ2]].
• Γ2 is amenable.

Then, the following holds.

(1) The map

Θ : CentrAutY (Γ2) → Aut(R(Γ1 ∗ Γ2 � X × Y )) : Δ �→ ΘΔ

where ΘΔ(x, y) = (x,Δ(y))

induces an onto group isomorphism between CentrAutY (Γ2) and
Out(R(Γ1 ∗ Γ2 � X × Y )).

(2) Define the II∞ factor N := L∞(X × Y ) � (Γ1 ∗ Γ2). Denote for every
Δ ∈ CentrAutY (Γ2), by θΔ the corresponding automorphism of N .
(a) The group Aut(N) is generated by the three subgroups

{θΔ | Δ ∈ CentrAutY (Γ2)}, the inner automorphism group Inn(N) =

{Adu | u ∈ U(N)} and the group of automorphisms(1) H :=
{θ ∈ Aut(N) | θ(a) = a for all a ∈ L∞(X × Y )}.

(b) The subgroup Inn(N) ·H of Aut(N) is closed and normal in Aut(N)
and the map

CentrAutY (Γ2) →
Aut(N)

Inn(N) ·H : Δ �→ θΔ

is an isomorphism and homeomorphism of Polish groups.

Proof. The proof of (1) is identical to [31, Lemma 5.1]. It remains to prove
(2).

Write A = L∞(X) and B = L∞(Y ). We first prove that every automor-
phism of N preserves the Cartan subalgebra A⊗B up to unitary conjugacy. To-
gether with point 1, this implies 2(a). So, let θ be an automorphism of N :=
(A⊗B) � (Γ1 ∗ Γ2). Take a projection p ∈ A⊗B of finite trace and put q = θ(p).
After unitary conjugacy, we may assume that q ∈ A⊗B. By [29, Theorem A.1], it
is sufficient to prove that θ(Ap) ≺

qNq
(A⊗B)q.

Since θ(Ap) ⊂ qNq is rigid, [19, Theorem 5.1] implies that

θ(Ap) ≺
qNq

q
(

(A⊗B)� Γi

)

q for some i = 1, 2.

Since θ(Ap) is quasi-regular in qNq, [19, Theorem 1.1] implies that
θ(Ap) ≺

qNq
(A⊗B)q.

(1)Note that H is isomorphic to the group of S1-valued 1-cocycles for the action Γ1 ∗ Γ2 �

X × Y .
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We finally prove 2(b). Observe that U(N) is a Polish group in a natural way
and that the map U(N) → Aut(N) : u �→ Adu is a continuous group morphism.
Define H as in the formulation of the theorem and note that H is a closed subgroup
of Aut(N). We form the semidirect product Polish group U(N)�H in such a way
that π : U(N) � H → Aut(N) : π(u, θ) = (Adu) ◦ θ is a group morphism. Note
that π is continuous and denote K := (U(N) � H)/Kerπ. Again, K is a Polish
group. We form the semidirect product Polish group K �CentrAutY (Γ2) in such a
way that

ρ : K � CentrAutY (Γ2) → Aut(N) : ρ(k,Δ) = π(k)θΔ

is a group morphism. Then ρ is a continuous and injective group morphism be-
tween Polish groups. Moreover, by (2a), ρ is onto. So, ρ is a homeomorphism.
Hence, Inn(N) · H = ρ(K) is closed and normal in Aut(N) and the map Δ �→
θΔ provides an isomorphism and homeomorphism between CentrAutY (Γ2) and
Aut(N)/(Inn(N) ·H). �

Lemma 3.6. Let Γ ∗ Λ � (X,μ) be a free p.m.p. action with the restriction
to Γ being ergodic. Let Λ � (Y, η) be a free ergodic action preserving the infinite
standard measure η. Assume that Λ is amenable. Consider Γ ∗ Λ � X × Y as
in (3.1). Let Z ⊂ Y be a subset of finite measure and define the II1 equivalence
relation R as the restriction of R(Γ ∗ Λ � X × Y ) to Z.

Whenever Σ is an infinite amenable group, there exists a free ergodic p.m.p.
action Γ∗∞ ∗ Σ � X × Z such that R = R(Γ∗∞ ∗ Σ � X × Z).

Proof. Denote by R1 the equivalence relation given by the restriction of
R(Λ � X × Y ) to X ×Z. Note that R1 need not be ergodic. Since Λ is amenable
and almost every equivalence class of R1 is infinite, the results in [7] and [22] allow
one to take a free p.m.p. action Σ � X × Z whose OE relation is precisely R1.

Since the action of Λ on (Y, η) is ergodic, take φn ∈ [[Λ]] with dom(φn) = X×Z
and range(φn) = X × Zn, where Zn, n ∈ N, forms a partition of Y (up to measure
zero). Since the action of Γ leaves every X × Zn globally invariant, we can view
φ−1
n Γφn as a group of automorphisms of X × Z. It is now an exercise to check

that R is freely generated by the OE relations of φ−1
n Γφn, n ∈ N, together with

Σ � X×Z. This provides us with the required free action of Γ∗∞∗Σ � X×Z. �

The following is the final ingredient in the proof of Theorem 3.1.

Lemma 3.7. There exist ergodic measures ν, ν′ on R such that Hν �= R �= Hν′

and Hν +Hν′ = R.

Proof. As explained in [31, Section 2], an ergodic measure ν on R can be
associated to any pair (an), (bn) of sequences in N satisfying

∑∞
n=1 b

−1
n < ∞ and

bn < an/2 for all n, in such a way that

Hν =
{

x ∈ R

∣

∣

∣

∞
∑

n=1

an
bn

‖a1 · · · an−1x‖ < ∞
}

where ‖x‖ denotes the distance of x ∈ R to Z ⊂ R. Take an = 22n+2, bn = 22n

and associate with it the ergodic measure ν. Take a′n = 22n+1, b′n = 22n−1 and
associate with it the ergodic measure ν′. First of all,

∞
∑

n=1

bn
a1 · · · an

�∈ Hν and

∞
∑

n=1

b′n
a′1 · · · a′n

�∈ Hν′
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proving that Hν �= R �= Hν′ .
Let now x ∈ R and write

x = x0 +

∞
∑

n=1

xn

a1 · · · an
with xn ∈ {0, . . . , an − 1} .

Write for every n ∈ N, xn = yn +
√
anzn with yn, zn ∈ {0, . . . ,√an}. Define

y = x0 +

∞
∑

n=1

yn
a1 · · · an

and z =

∞
∑

n=1

2zn
a′1 · · · a′n

.

One checks that y ∈ Hν , z ∈ Hν′ and x = y + z. So, Hν +Hν′ = R. �

Proof of Theorem 3.1. Since Γ∗∞ = (Γ∗Γ)∗∞, we may assume that Γ is an
infinite group. Let Σ,Λ be infinite amenable groups and Λ � (Y, η) a free ergodic
action preserving the infinite standard measure η. Set G := Γ∗∞ ∗ Σ. We prove
the existence of a free ergodic p.m.p. action of G � Z such that the associated
II1 factor M := L∞(Z) � G and equivalence relation R := R(G � Z) have the
following properties.

(1) The fundamental group of M and the fundamental group of R equal
mod(CentrAutY (Λ)).

(2) The II∞ factor M⊗B(�2(N)) admits a strongly continuous trace-scaling
action of R+ if and only if the group morphism

(3.2) mod : CentrAutY (Λ) → R+

is onto and splits continuously.

Choose any free p.m.p. actions Γ � (X,μ) and Λ � (X,μ). Take a free
p.m.p. action Γ∗∞ ∗ Λ � (X,μ) satisfying the conclusions of Lemma 3.3. Define
Γ∗∞ ∗Λ � X × Y by (3.1), with Γ1 = Γ∗∞ and Γ2 = Λ. Define the II1 equivalence
relation R by restricting R(Γ∗∞ ∗Λ � X × Y ) to a subset Z of finite measure. By
Lemma 3.6, we can take a free ergodic p.m.p. action G � Z whose OE relation
equals R. By (1) of Theorem 3.5,

F(R) = mod(CentrAutY (Λ)) .

Put M := L∞(Z)�G and note that M⊗B(�2(N)) ∼= L∞(X × Y )� (Γ∗∞ ∗Λ). By
(2a) of Theorem 3.5, also

F(M) = mod(Aut(N)) = mod(CentrAutY (Λ)) .

If the group morphism (3.2) splits continuously, it is clear that N admits a strongly
continuous trace scaling action. The converse follows from (2b) of Theorem 3.5.

In order to conclude the proof of Theorem 3.1, we have to construct an action
Λ � (Y, η) such that mod(CentrAutY (Λ)) = R+, but the morphism (3.2) does not
split continuously. By Lemma 3.7, we can take ergodic measures ν1, ν2 on R such
that Hν1

�= R �= Hν2
, while Hν1

+ Hν2
= R. By formula (2.2) in [31], we can

take amenable groups Λ1,Λ2 and free ergodic infinite measure preserving actions
Λi � (Yi, ηi) such that mod(CentrAutYi

(Λi)) = exp(Hνi
). Since the homomor-

phism mod is continuous, we equip exp(Hνi
) with the (Polish) quotient topology.

In this way, the Hνi
become Polish groups and the embedding Hνi

↪→ R continuous.
We prove that

mod : CentrAut(Y1×Y2)(Λ1 × Λ2) → R+
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admits no continuous splitting. Assume that it does. Since the left-hand side of
the previous formula equals CentrAutY1

(Λ1)×CentrAutY2
(Λ2), the homomorphism

Hν1
×Hν2

→ R : (x, y) �→ x+ y

admits a continuous splitting. We then find continuous homomorphisms θi : R →
Hνi

such that x = θ1(x) + θ2(x) for all x ∈ R. Since the embedding Hνi
↪→ R is

continuous, there exist λi ∈ R such that θi(x) = λix for all x ∈ R. But, Hνi
�= R,

forcing λi = 0 for i = 1, 2, a contradiction. �

Proof of Theorem 3.2. By Lemma 3.7, we can take ergodic measures ν1, ν2
on R such that Hν1

�= R �= Hν2
, while Hν1

+ Hν2
= R. By formula (2.2) in [31],

exp(Hνi
) ∈ Scentr, so that by Theorem 3.1, we can take II1 factorsMi with F(Mi) =

exp(Hνi
). Then the fundamental group of M1⊗M2 contains exp(Hν1

+ Hν2
) and

hence equals R+. �

4. Groups G for which Sfactor(G) is trivial

Combining results from [3, 15, 19], we prove that for the following groups G,
Sfactor(G) is trivial.

Theorem 4.1. Let Γ and Λ be infinite, finitely generated groups. Assume that
Γ is ICC and that one of the following conditions holds.

a) Γ = Γ1 × Γ2 is a non-trivial direct product with Γ2 being non-amenable,
b) Γ admits a non-virtually abelian, normal subgroup Γ1 with the relative

property (T).

Then Sfactor(Γ ∗ Λ) = Seqrel(Γ ∗ Λ) = {{1}}.

Remark 4.2. Observe that Theorem 4.1 implies that, in general, Theorem 3.1
is false if we only take a finite free product.

Proof of Theorem 4.1. Let Γ ∗Λ � (X,μ) be a free ergodic p.m.p. action.

Note first that by [15, Propriétés 1.5], we have 0 < β
(2)
1 (Γ∗Λ) < ∞. Hence, by [15,

Corollaire 5.7], the fundamental group of the OE relation R(Γ ∗ Λ � X) is trivial.
Write A = L∞(X), M1 = A� Γ, M2 = A�Λ. Finally, set M = A� (Γ ∗Λ) =

M1 ∗A M2. Suppose that p ∈ A is a projection and θ : M → pMp a ∗-isomorphism.
It remains to prove that θ(A) and pA are unitarily conjugate, since this implies
that F(M) = F(R(Γ ∗ Λ � X)).

Under assumption a), we invoke [3, Theorem 4.2] and under assumption b),
we invoke [19, Theorem 5.1] and conclude in both cases that θ(L(Γ1)) ≺

M
Mi for

some i = 1, 2. Take a projection q ∈ Mn
i , a non-zero partial isometry v ∈

p(M1,n(C) ⊗ M)q and a unital ∗-homomorphism ρ : L(Γ1) → qMn
i q satisfying

θ(a)v = vρ(a) for all a ∈ L(Γ1). In both cases a) and b), the group Γ1 is not
virtually abelian. Hence, ρ(L(Γ1)) �≺

Mi

A. By [19, Theorem 1.1], the normalizer of

ρ(L(Γ1)) inside qMnq is contained in qMn
i q. Since v∗v commutes with ρ(L(Γ1)),

we may first of all assume that q = v∗v. Next, it follows that v∗θ(L(Γ))v ⊂ qMn
i q.

Hence, θ(L(Γ)) ≺
M

Mi.

Repeating the previous paragraph, we may assume that ρ : L(Γ) → qMn
i q,

θ(a)v = vρ(a) for all a ∈ L(Γ) and v∗v = q. Since Γ is an ICC group, we get that

M ∩ L(Γ)′ = M1 ∩ L(Γ)′ = AΓ .
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So, vv∗ ∈ θ(AΓ). It follows that v∗θ(A)v is a Cartan subalgebra of qMnq. Moreover,
for all g ∈ Γ, the unitary v∗θ(ug)v = ρ(ug) belongs to qMn

i q and normalizes
v∗θ(A)v. Then, [19, Theorem 1.8] implies that there exists w ∈ qMn such that
ww∗ = q, w∗w ∈ An and w∗v∗θ(A)vw = w∗wAn. It follows that θ(A) and pA are
unitarily conjugate. �

5. Sfactor(Z
n
� SL(n,Z)) is non-trivial, for all n ≥ 3

When Γ is an ICC property (T) group, all groups in Sfactor(Γ) are countable
(cf. [17, Proof of Theorem 1.7], or [25, Theorem 4.5.1]). Nevertheless, Sfactor(Γ)
can be non-trivial, as shown by the next theorem, in which we show that if Γ =
Z
n
� SL(n,Z), n ≥ 3, then Sfactor(Γ) contains “many” subgroups of Q+. It is

unclear though whether there exists a free ergodic p.m.p. action Γ � (X,μ) of an
ICC property (T) group Γ such that F(R(Γ � X)) �⊂ Q+.

Theorem 5.1. Let F ⊂ Q+ be a subgroup generated by a subset of the prime
numbers. Let Γ = Z

n
� SL(n,Z) with n ≥ 3. Then Γ admits a “concrete” free

ergodic p.m.p. action Γ � (X,μ) such that both the fundamental group of L∞(X)�Γ
and of R(Γ � X) equal F .

We prove Theorem 5.1 as a consequence of the following more general result.

Theorem 5.2. Let Γ be a group having a normal, non-virtually abelian subgroup
Σ with the relative property (T) and with Γ/Σ being finitely generated. Let Γ ⊃
Γ1 ⊃ Γ2 ⊃ · · · be a decreasing sequence of finite index subgroups such that the
action Γ � (X,μ) := lim←−Γ/Γn is essentially free. Consider the diagonal product

action Γ � X × [0, 1]Γ of Γ � X and the Bernoulli action Γ � [0, 1]Γ.
Then the fundamental groups of the associated II1 factor and II1 equivalence

relation are both equal to
{ [Γ : Λ1]

[Γ : Λ2]

∣

∣

∣ Γn ⊂ Λ1 ∩ Λ2 for large enough n, and

Λ1 � lim←−Λ1/Γn is conjugate with Λ2 � lim←−Λ2/Γn

}

.

(5.1)

Conjugacy of two profinite actions can be expressed in purely group-theoretic
terms; see e.g. [18, Proposition 1.8].

Before proving Theorem 5.2, we introduce some terminology and an auxiliary
result. Recall that a 1-cocycle ω : Γ×X → Λ for an action Γ � (X,μ) with values
in a countable group Λ is a measurable map satisfying

ω(gh, x) = ω(g, h · x)ω(h, x) for all g, h ∈ Γ and almost all x ∈ X .

The 1-cocycles ω, ω′ : Γ×X → Λ are called cohomologous if there exists a measur-
able map ϕ : X → Λ satisfying ω′(g, x) = ϕ(g ·x)ω(g, x)ϕ(x)−1 almost everywhere.
We identify homomorphisms from Γ to Λ with 1-cocyles ω that are independent of
the x-variable.

Definition 5.3. Let Γ � (X,μ) be a free ergodic p.m.p. action. We say that
a 1-cocycle ω : Γ×X → Λ virtually untwists if there exists

• a finite index subgroup Γ0 < Γ and a measurable map π : X → Γ/Γ0

satisfying π(g · x) = gπ(x) almost everywhere,
• a 1-cocycle ω′ : Γ× Γ/Γ0 → Λ for the action Γ � Γ/Γ0,
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such that ω is cohomologous to the 1-cocycle (g, x) �→ ω′(g, π(x)).
We call Γ � (X,μ) virtually cocycle superrigid (with countable target groups)

if every 1-cocycle with values in a countable group Λ virtually untwists.

A stable orbit equivalence between free ergodic p.m.p. actions Γ � (X,μ) and
Λ � (X ′, μ′) is a map Δ : X → X ′ satisfying the following properties.

• For almost every x ∈ X, we have Δ(Γ · x) = Λ ·Δ(x).
• There exists a partitionX =

⊔

n Xn ofX into measurable subsetsXn ⊂ X
and there exist measurable subsets X ′

n ⊂ X ′ such that for every n ∈ N,
the restriction of Δ to Xn is a non-singular isomorphism between Xn and
X ′

n.

By ergodicity, all of these non-singular isomorphisms Δ|Xn
: Xn → X ′

n are measure
scaling, with the scaling being independent of n. This scaling factor is called the
compression constant of the stable OE Δ and denoted by c(Δ).

The Zimmer 1-cocycle ω : Γ × X → Λ associated with the stable OE Δ is
defined by

Δ(g · x) = ω(g, x) ·Δ(x) almost everywhere.

Two stable OEs Δ1,Δ2 : X → X ′ are called similar if Δ1(x) ∈ Λ ·Δ2(x) for almost
all x ∈ X. Note that similar stable OEs give rise to cohomologous 1-cocycles.

WheneverX0 ⊂ X andX ′
0 ⊂ X ′ are non-negligible measurable subsets and Δ0 :

X0 → X ′
0 is a non-singular isomorphism satisfying Δ0(Γ·x∩X0) = Λ·Δ0(x)∩X ′

0 for
almost all x ∈ X0, ergodicity allows one to choose a measurable map p : X → X0

with p(x) ∈ Γ · x for almost all x ∈ X and then, Δ := Δ0 ◦ p defines a stable OE.
Another choice of p gives rise to a similar stable OE. It follows that

F(R(Γ � X)) = {c(Δ) | Δ is a stable OE between Γ � X and Γ � X} .

Let Γ � (X,μ). We say that the action Γ � X is induced from Γ1 � X1 if
X1 is a non-neglible measurable subset of X and Γ1 < Γ is a finite index subgroup
such that g ·X1 = X1 for all g ∈ Γ1 and μ(g ·X1∩X1) = 0 if g ∈ Γ−Γ1. Obviously,
in this situation Γ � X is stably orbit equivalent to Γ1 � X1 with compression
constant [Γ : Γ1]

−1.
The following provides one more instance of a general principle going back to

[38, Proposition 4.2.11]. For other versions of this, see [28, Proposition 5.11] and
[37, Lemma 4.7].

Proposition 5.4. Let Δ : X → X ′ be a stable OE between the free ergodic
p.m.p. actions Γ � (X,μ) and Λ � (X ′, μ′). If the associated Zimmer 1-cocycle
virtually untwists (see Definition 5.3), there exist finite index subgroups Γ1 < Γ,
Λ1 < Λ, non-negligible measurable subsets X1 ⊂ X, X ′

1 ⊂ X ′ and a finite normal
subgroup H � Γ1 such that

(1) Γ � X is induced from Γ1 � X1,
(2) Λ � Y is induced from Λ1 � Y1,
(3) the actions Γ1/H � X1/H and Λ1 � Y1 are conjugate,

and such that the stable OE Δ is similar to the composition of the canonical stable
OEs given by (1), (3) and (2). In particular, the compression constant of Δ equals

c(Δ) =
[Λ : Λ1]

[Γ : Γ1]|H| .
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Proof. Let Δ(g · x) = ω(g, x) ·Δ(x) almost everywhere. By our assumption,
take a finite index subgroup Γ1, a quotient map π : X → Γ/Γ1 and a 1-cocycle
ω′ : Γ × Γ/Γ1 → Λ such that π(g · x) = gπ(x) almost everywhere and such that ω
is cohomologous to the 1-cocycle (g, x) �→ ω′(g, π(x)). Define X1 = π−1(eΓ1). By
construction, Γ � X is induced from Γ1 � X1.

Denote by Δ1 the restriction of Δ to X1. Then Δ1 is a stable OE between
Γ1 � X1 and Λ � Y . By construction, the 1-cocycle associated with Δ1 is
cohomologous to a homomorphism from Γ1 to Λ. The conclusion of the proposition
now follows from [37, Lemma 4.7]. �

In order to show the equality of the fundamental groups of the II1 factor and
the II1 equivalence relation associated with the Γ-actions defined in Theorem 5.2,
we need the following result about automatic preservation of Cartan subalgebras.

Proposition 5.5. Let Γ be a countable group having a normal, non-virtually
abelian subgroup Σ with the relative property (T). Let Γ � (X,μ) be a free ergodic
p.m.p. action and assume that this action admits a free and profinite quotient: there
exists a free profinite p.m.p. action Γ � (X1, μ1) and a quotient map π : X → X1

satisfying π(g · x) = g · π(x) almost everywhere.
Let (Y0, η0) be a non-trivial standard probability space and set (Y, η) = (Y0, η0)

Γ.
Consider the diagonal action Γ � (X × Y, μ× η). Set M = L∞(X × Y )� Γ.

Then every isomorphism θ : M → pMp preserves, up to unitary conjugacy, the
natural Cartan subalgebras of M , pMp.

Proof. Set A = L∞(X) and B = L∞(Y ). Let θ : M → pMp be an isomor-
phism. Denote A1 = L∞(X1) and view A1 as a globally Γ-invariant von Neumann
subalgebra of A.

Almost literally repeating [26, Theorem 4.1] (see also [37, Lemma 6.1]), we find
that θ(L(Σ)) ≺

M
A�Γ. Take a projection q ∈ (A�Γ)n, a non-zero partial isometry

v ∈ p(M1,n(C)⊗M)q and a unital ∗-homomorphism α : L(Σ) → q(A� Γ)nq such
that θ(a)v = vα(a) for all a ∈ L(Σ).

Since Σ is normal in Γ and since Σ � X1 is profinite, the quasi-normalizer of
L(Σ) inside M contains A1 � Γ. Since Σ is non-virtually abelian, L(Σ) cannot be
embedded in an amplification of A. So, by [37, Proposition D.5],

v∗θ(A1 � Γ)v ⊂ (A� Γ)n .

It follows in particular that θ(A1) ≺
M

A � Γ. We claim that in fact θ(A1) ≺
M

A.

Indeed, if this were not the case, applying once more [37, Proposition D.5] (and
using the regularity of A1 ⊂ (A⊗B)� Γ) would yield M ≺

M
A� Γ, a contradiction.

This proves the claim.
Since Γ � X1 is free, we have A′

1 ∩M = A⊗B. Hence, the proposition follows
from [29, Theorem A.1]. �

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. Put (X,μ) = lim←−Γ/Γn as in the formulation of the

theorem. We assume Γ � X to be essentially free. Let Y = [0, 1]Γ and denote by
η the infinite product of the Lebesgue measure on [0, 1]. We consider the diagonal
action Γ � X × Y .
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By Proposition 5.5, we have

F(L∞(X × Y )� Γ) = F(R(Γ � X × Y )) .

Whenever Λ1 < Γ is a subgroup containing Γn for large enough n, the action
Γ � (X,μ) is induced from the action Λ1 � X1 := lim←−Λ1/Γn, and hence Γ � X×Y

is induced from Λ1 � X1 ×Y . Since Λ1 � [0, 1]Γ and Λ1 � [0, 1]Λ1 are isomorphic
actions, it follows that the set defined by (5.1) is part of the fundamental group
F(R(Γ � X × Y )).

A combination of [28, Theorem 0.1] and [18, Theorem B] yields that the di-
agonal action Γ � X × Y is virtually cocycle superrigid in the sense of Definition
5.3. So, we can apply Proposition 5.4.

Let Δ : X × Y → X × Y be a stable OE between Γ � X × Y and itself.
We have to prove that c(Δ) belongs to the set defined in (5.1). Proposition 5.4
provides us with finite index subgroups G1, G2 of Γ, non-negligible measurable
subsets Z1, Z2 ⊂ X×Y and a finite normal subgroup H of G1 such that Γ � X×Y
is induced fromGi � Zi and such thatG1/H � Z1/H is conjugate toG2 � Z2, say
through the isomorphism Δ : Z1/H → Z2 and the group isomorphism δ : G1 → G2.

Finally, c(Δ) = [Γ:G2]
[Γ:G1]|H| .

Since the Bernoulli action Gi � Y is mixing, we have Zi = Xi×Y , with Γ � X
being induced fromGi � Xi. Moreover, still because the Bernoulli action is mixing,
Δ(x, y) = (Δ0(x), . . .), where Δ0 : X1/H → X2 is an isomorphism conjugating the
actions G1/H � X1/H and G2 � X2 through the group isomorphism δ : G1/H →
G2.

Denote by πn : X → Γ/Γn the natural quotient map. By [18, Lemma 4.1], we
find k ∈ N and g ∈ Γ such that gΓkg

−1 ⊂ G1 and X1 = π−1
k (G1gΓk). Moreover,

since Γ � X is free, we can take k large enough and assume that H ∩ Γk = {e}.
Replacing G1 by g−1G1g and X1 by g−1 ·X1, we may assume that g = e. Note that
G1/H � X1/H = lim←−G1/(ΓnH) is induced from (ΓkH)/H � lim←−(ΓkH)/(ΓnH)

and that the latter is conjugate to Γk � lim←−Γk/Γn, because Γk ∩H = {e}.
It follows that Γ � X is induced from δ((ΓkH)/H) � Δ0(lim←−(ΓkH)/(ΓnH)).

Applying as above [18, Lemma 4.11], we find h ∈ Γ such that, after replacing δ by
g �→ hδ(g)h−1 and Δ0 by x �→ h ·Δ0(x), we have Γn ⊂ Λ2 := δ((ΓkH)/H) for n
large enough and

Δ0(lim←−(ΓkH)/(ΓnH)) = lim←−Λ2/Γn .

Denoting Λ1 = Γk, we have constructed finite index subgroups Λ1,Λ2 ⊂ Γ such
that Γn ⊂ Λ1 ∩ Λ2 for n large enough and such that the actions Λi � lim←−Λi/Γn

are conjugate for i = 1, 2. Tracing back the construction, we also have

c(Δ) =
[Γ : Λ2]

[Γ : Λ1]

concluding the proof of the theorem. �

Proof of Theorem 5.1. Let F be a subgroup of Q+ generated by a non-
empty subset P of the prime numbers. The case F = {1} will be discussed at the
end of the proof. Denote by R the subring of Q generated by P−1. Note that R∗ =
F ∪ (−F). Set G = Rn

� GL(n,R) and Γ = Z
n
� SL(n,Z). Let G = {g1, g2, . . . }

and define the finite index subgroups Γk < Γ as Γk = Γ ∩
⋂k

i=1 giΓg
−1
i . Define the

profinite action Γ � (X,μ) := lim←−Γ/Γk.
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We first argue why Γ � (X,μ) is essentially free. Let p ∈ P and take k1 <
k2 < k3 < · · · such that (0, pl1) ∈ {g1, . . . , gkl

}. One checks that Γkl
⊂ Gl :=

plZn
�SL(n,Z), and hence it suffices to prove freeness of Γ � lim←−Γ/Gl. The latter

has been shown in [18, discussion before Corollary 5.8].
Consider the diagonal action Γ � X × [0, 1]Γ. Denote by F the set defined

in (5.1). By Theorem 5.2, we have to prove that F = R∗
+. It is more convenient

to write X = lim←−Γ/ΓF , where F runs through the finite subsets of G and ΓF :=

Γ ∩
⋂

g∈F gΓg−1. Whenever g ∈ G, the action Γ � X is induced from

Γ ∩ gΓg−1
� lim←−

g∈F⊂G

Γ ∩ gΓg−1

ΓF

and is induced from

g−1Γg ∩ Γ � lim←−
g−1∈F⊂G

g−1Γg ∩ Γ

ΓF
.

The two actions are conjugate by construction. If g = (x,A), one checks that

[Γ : Γ ∩ gΓg−1]

[Γ : g−1Γg ∩ Γ]
= | detA| .

It follows that R∗
+ ⊂ F .

Conversely, we claim that whenever Λ1,Λ2 < Γ are isomorphic finite index
subgroups of Γ such that Γk ⊂ Λ1 ∩ Λ2 for some k, then [Γ : Λ1]/[Γ : Λ2] ∈ R∗

+.
Once this claim is proven, we get the required equality F = R∗

+. Let δ : Λ1 → Λ2 be
an isomorphism and Γk ⊂ Λ1 ∩Λ2. We have δ(Λ1 ∩Z

n) = Λ2 ∩Z
n. An elementary

argument for this fact can be given by repeating the beginning of the proof of [32,
Proposition 7.1]. Denoting by π : Γ → SL(n,Z) the quotient map, π(Λ1) and π(Λ2)
are isomorphic finite index subgroups of SL(n,Z). Using [18, Lemma 5.2], it follows
that [SL(n,Z) : π(Λ1)] = [SL(n,Z) : π(Λ2)]. Hence, we get

[Γ : Λ1]

[Γ : Λ2]
=

[SL(n,Z) : π(Λ1)] [Z
n : Zn ∩ Λ1]

[SL(n,Z) : π(Λ2)] [Zn : Zn ∩ Λ2]
=

[Zn : Zn ∩ Λ1]

[Zn : Zn ∩ Λ2]
.

Being finite index subgroups of Zn, we have Λi ∩ Z
n = BiZ

n for some Bi ∈ Mn(Z)
with detBi �= 0, i = 1, 2. It follows that there exists A ∈ GL(n,Q) such that
δ(x, 1) = (Ax, 1) for all (x, 1) ∈ Λ1 ∩ Z

n. Hence,

[Zn : Zn ∩ Λ1]

[Zn : Zn ∩ Λ2]
=

[Zn : Zn ∩A−1
Z
n]

[Zn : Zn ∩AZn]
.

Since

Z
n ∩ Γk ⊂ Z

n ∩ Λ1 ∩ Λ2 ⊂ Z
n ∩AZ

n ∩A−1
Z
n ,

we find α ∈ R∗ ∩ (N − {0}) such that αZn ⊂ Z
n ∩ AZ

n ∩ A−1
Z
n for i = 1, 2. We

conclude that A ∈ GL(n,R) and finally,

[Γ : Λ1]

[Γ : Λ2]
= | detA|−1 ∈ R∗

+ .

To conclude the proof of the theorem, we need to construct a free ergodic p.m.p.
action Γ � (X,μ) such that the associated II1 factor has trivial fundamental group.
By [27, Corollary 0.2], the Bernoulli action Γ � [0, 1]Γ has this property. Other
examples can be given as follows. Let p1, p2, . . . be an enumeration of the prime
numbers and set Γk = p1 · · · pkZn

� SL(n,Z). By Theorem 5.2 and [18, Corollary
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5.8], the diagonal product of the Bernoulli action Γ � [0, 1]Γ and the profinite
action Γ � lim←−Γ/Γk, provides a crossed product II1 factor with trivial fundamental

group. �

6. Property (T) and countability of the fundamental group

In his celebrated “rigidity paper” [4], Connes showed that II1 factors arising
from ICC groups with the property (T) of Kazhdan have countable fundamental
group. Using the same ideas, it was later shown that, for a separable II1 factor
M to have countable F(M), it is in fact sufficient that M contains a subfactor
with the property (T) in the sense of [9] and having trivial relative commutant,
N ′ ∩M = C (cf. Theorem 4.6.1 in [25]; see also [21] for a more general statement).
It was also shown that if M is a separable II1 factor, then the family of subfactors
Ni ⊂ M, i ∈ I, having property (T) and trivial relative commutant, is countable
modulo conjugacy by unitaries in M (cf. Theorem 4.5.1 in [25]; see also [23] for a
related result). In this section, we prove some analogous results for II1 equivalence
relations.

In particular, these results show that given any Kazhdan group Γ, Seqrel(Γ) can
only contain countable subgroups of R+, and if in addition Γ is ICC then the same
holds true for Sfactor(Γ). More generally, Part 1 of Theorem 6.4 below shows that
this is still the case if the center of Γ “virtually coincides” with its FC radical (as
defined before 6.4). However, if one drops this assumption on Γ, then the situation
becomes quite complicated. Thus, Part 2 of Theorem 6.4 shows that if a property
(T) group Γ is residually finite and has non-virtually abelian FC radical, then Γ
admits free ergodic p.m.p. actions Γ � (X,μ) such that L∞(X)�Γ is McDuff and
hence its fundamental group is equal to R+.

We first need some notation. Thus, if R is a II1 equivalence relation on the
standard probability space (X,μ), then we denote by [R] the full group of the equiv-
alence relation R, consisting of all non-singular isomorphisms φ : X → X satisfying
(x, φ(x)) ∈ R for almost all x ∈ X. The full pseudogroup of R is denoted by [[R]]
and consists of all non-singular partial automorphisms φ between measurable sub-
sets D(φ), R(φ) ⊂ X, satisfying (x, φ(x)) ∈ R for almost all x ∈ D(φ). Note that,
since R is II1, every φ ∈ [[R]] is measure preserving. If Γ ⊂ [[R]] is a subgroup,
we denote by s(Γ) ⊂ X its support, i.e. the subset Y ⊂ X with the property that
R(g) = D(g) = Y , ∀g ∈ Γ. Two such subgroups Γ,Λ ⊂ [[R]] are conjugate by an
element in [[R]] if there exists φ ∈ [[R]] such that D(φ) = s(Γ), R(φ) = s(Λ) and
φΓ = Λφ.

Theorem 6.1. Let R be a II1 equivalence relation on the probability space
(X,μ).

(1) If [R] contains a property (T) group Γ implementing an ergodic action
on (X,μ), then F(R) is countable. More generally, if [R] contains a
countable group Γ having a subgroup H ⊂ Γ with the relative property (T)
implementing an ergodic action on (X,μ), then F(R) is countable.

(2) Let T be the set of property (T) subgroups Γ ⊂ [[R]] acting ergodically on
s(Γ). Then T is countable, modulo conjugacy by elements in [[R]].

Note that the ergodicity assumption of the action of Γ on (X,μ) in Part 1
of the above statement is crucial. Indeed, Theorem 3.1 provides examples of free
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ergodic p.m.p. actions G � (X,μ) such that R(G � X) has uncountable funda-
mental group, but nevertheless G contains a subgroup having property (T) (which,
a fortiori, acts non-ergodically on (X,μ)). In turn, the existence of a property (T)
subgroup of [R] acting freely and ergodically on X, does not ensure that the II1
factor L(R) has countable fundamental group. Indeed, by [8] there exist free er-
godic p.m.p. actions of groups of the form G = Γ×Σ, with Γ having property (T)
and acting by Bernoulli shifts (thus ergodically), such that M = L∞(X)�G splits
off the hyperfinite II1 factor, and thus F(M) = R+. In fact, as pointed out in [28],
more than being countable, the fundamental group of R(G � X) is trivial.

Note also that in the case R comes from a free ergodic action of a property (T)
group, Γ � (X,μ), Part 1 of Theorem 6.1 was already shown in [17, Corollary 1.8],
in the case Γ is ICC, and in [18, Theorem 5.9], in the general case. We will use
the above result in [33] to prove that the II1 equivalence R obtained by restricting
the II∞ equivalence relation implemented by SL(n,Z) � R

n, n ≥ 4, to a subset of
measure 1 has property (T) in the sense of Zimmer, yet cannot be implemented by
an action (even non-free) of a property (T) group because F(R) = R+.

We will prove Theorem 6.1 by contradiction, using the property (T) of the
subgroups and a “separability” argument, in the spirit of [25]. For more on this
strategy of proofs, which grew out of Connes’ rigidity paper [4], we send the inter-
ested reader to Section 4 in [30]. As a result of this argument, we obtain two copies
Γ1,Γ2 ⊂ [[R]] of the same property (T) group, which are uniformly close one to the
other. This in turn gives rise to a non-zero intertwiner φ ∈ [[R]] between Γ1,Γ2.
But if the Γi-actions are assumed ergodic, this forces μ(s(Γ1)) = μ(s(Γ2)) and the
conjugacy of Γ1,Γ2.

The existence of an intertwiner between uniformly close subgroups in [[R]] is the
subject of the next lemma. Recall that [[R]] has a natural metric space structure,
inherited from the Hilbert-norm ‖ · ‖2 of the underlying II1 factor L(R) associated
with R, by viewing every φ ∈ [[R]] as a partial isometry in L(R) and using the
‖ · ‖2-norm on the latter. The metric can be concretely written as

d(φ, ψ)2 = μ
(

D(φ)� D(ψ)
)

+ 2μ
(

{x ∈ D(φ) ∩D(ψ) | φ(x) �= ψ(x)}
)

,

where � denotes the symmetric difference of two sets. We will also need the natural
σ-finite measure μ(1) on R ⊂ X ×X, defined by the formula

μ(1)(U) =
∫

X

#{y | (x, y) ∈ U} dμ(x) =

∫

X

#{x | (x, y) ∈ U} dμ(y)

for all measurable subsets U ⊂ R.

Lemma 6.2. Let R be a II1 equivalence relation on the standard probability
space (X,μ). Suppose that Γ is a countable group, X0, Y0 ⊂ X and let

α : Γ → [R|X0
] and β : Γ → [R|Y0

]

be group morphisms satisfying d(αg, βg) ≤ 1/5 for all g ∈ Γ and μ(X0), μ(Y0) ≥ 3/4.
Then there exist non-negligible measurable subsets X1 ⊂ X0, Y1 ⊂ Y0 and φ ∈ [[R]]
with D(φ) = X1, R(φ) = Y1 such that

X1 is globally (αg)g∈Γ-invariant , Y1 is globally (βg)g∈Γ-invariant, and

φ(αg(x)) = βg(φ(x)) for almost all x ∈ D(φ) .

Proof. Denote by Tr the normal faithful semi-finite trace on L∞(R) given by
integration along μ(1). Let p ∈ L∞(R) be the projection onto R ∩ X0 × Y0 and
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e ≤ p the projection onto {(z, z) | z ∈ X0 ∩ Y0}. Set B = L∞(R)p. The group Γ
acts by automorphisms ρg of B given by

(ρgF )(x, y) = F (αg−1(x), βg−1(y)) for almost all (x, y) ∈ R ∩X × Y .

Since ‖ρg(e)− e‖22,Tr = 2μ
(

{z ∈ X0 ∩ Y0 | αg−1(z) �= βg−1(z)}
)

, we get

‖ρg(e)− e‖2,Tr ≤
1

5
for all g ∈ Γ .

Define a ∈ B+ as the unique element of minimal ‖·‖2,Tr in the weakly closed convex
hull conv{ρg(e) | g ∈ Γ}. It follows that ‖a−e‖2,Tr ≤ 1/5 and that ρg(a) = a for all
g ∈ Γ. Note that 0 ≤ a ≤ 1. Defining f as the spectral projection f = χ[1/2,1](a),
we find that ‖f − e‖2,Tr ≤ 2/5 and ρg(f) = f for all g ∈ Γ. We write f = χW ,
where W ⊂ R ∩X0 × Y0 is globally (ρg)g∈Γ-invariant and satisfies

(6.1) μ(1)
(

W � {(z, z) | z ∈ X0 ∩ Y0}
)

≤ 4

25
.

Denote xW := {y ∈ Y0 | (x, y) ∈ W} and Wy := {x ∈ X0 | (x, y) ∈ W}. Define

W0 := {(x, y) ∈ W | xW and Wy are singletons } .

Then W0 is still globally (ρg)g∈Γ-invariant. Since μ(X0), μ(Y0) ≥ 3/4 and
μ(X0 � Y0) ≤ 1/25, we have μ(X0 ∩ Y0) ≥ 3/4 − 1/25. By (6.1), the set of
x ∈ X0 such that xW is a singleton then has measure at least 3/4 − 1/25 − 4/25.
The same holds for the set of y ∈ Y0 such that Wy is a singleton. So, W0 has
measure at least 1/10. By construction, W0 is the graph of a partial automorphism
φ ∈ [[R]] satisfying all the conclusions of the lemma. �

Proof of Theorem 6.1. Let us first prove Part 1 of the theorem. By the
relative property (T) of H ⊂ Γ, there exist F ⊂ Γ and 0 < ε < 1/4 such that
whenever π : Γ → U(H) is a unitary representation of Γ on a Hilbert space H and
ξ0 ∈ H a unit vector satisfying ‖π(g)ξ0−ξ0‖ ≤ ε for all g ∈ F , then ‖π(h)ξ0−ξ0‖ ≤
1/8 for all h ∈ H.

Choose for every t ∈ (0, 1) a measurable subset Yt ⊂ X with μ(Yt) = t and such
that Ys ⊂ Yt if s ≤ t. Assume that the fundamental group of R is uncountable.
For every t ∈ F(R)∩ (3/4, 1), choose an isomorphism Δt : X → Yt between R and
R|Yt

. Note that Δt scales the measure μ by t. Define αt
g = Δt ◦ αg ◦Δ−1

t . Note

that αt
g ∈ [[R]] with D(αt

g) = R(αt
g) = Yt. Since F(R) ∩ (3/4, 1) is uncountable,

separability of the metric space ([[R]], d) yields s, t ∈ F(R) ∩ (3/4, 1) with s < t
and d(αs

g, α
t
g) ≤ ε/2 for all g ∈ F .

Define the Hilbert spaceH = L2(R∩Ys×Yt, μ
(1)) and the unitary representation

π : Γ → U(H) : (π(g)ξ)(x, y) = ξ(αs
g−1(x), αt

g−1(y)) .

Set Δs := {(y, y) | y ∈ Ys} and ξ0 := s−1/2χΔs
. Then ξ0 is a unit vector in H and,

for all g ∈ F ,

‖π(g)ξ0 − ξ0‖2 = 2s−1μ
(

{y ∈ Ys | αs
g−1(y) �= αt

g−1(y)}
)

≤ s−1d(αs
g, α

t
g)

2 ≤ ε2 .

It follows that ‖π(h)ξ0 − ξ0‖ ≤ 1/8 for all h ∈ H. So, for all h ∈ H, we have

2μ
(

{y ∈ Ys | αs
h(y) �= αt

h(y)}
)

≤ s

64
≤ 1

64
.
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Since also, given g ∈ F ,

μ(Yt \ Ys) ≤ d(αs
g, α

t
g)

2 ≤ ε2

4
≤ 1

64
,

it follows that

d(αs
h, α

t
h)

2 ≤ μ(Yt \ Ys) +
1

64
<

1

25

for all h ∈ H. Since (αh)h∈H implements an ergodic action on (X,μ), the same
holds for (αs

h)h∈H , (αt
h)h∈H and so, Lemma 6.2 provides an element φ ∈ [[R]] with

D(φ) = Ys and R(φ) = Yt. Since φ is a measure preserving isomorphism between
Ys and Yt and μ(Ys) = s < t = μ(Yt), we reached a contradiction.

To prove Part 2 of Theorem 6.1, assume by contradiction that there exist
uncountably many subgroups {Γi | i ∈ I} in [[R]] which have property (T) and are
non-conjugate in [[R]]. We continue to use the measurable subsets Yt ⊂ X with
μ(Yt) = t and Ys ⊂ Yt whenever s ≤ t. By the ergodicity of R, we may assume
that for every i ∈ I, the support of Γi is one of the Ys.

By Shalom’s theorem [35, Theorem 6.7], every property (T) group is the quo-
tient of a finitely presented property (T) group. Since there are only countably
many finitely presented groups, we may assume that all Γi’s are quotients of the
same property (T) group Γ through surjective homomorphisms αi : Γ → Γi. Fi-
nally, we may assume that there exists t ∈ (0, 1) such that μ(s(Γi)) ∈ (3t/4, t) for
all i ∈ I. So, replacing R by R|Yt

, we may assume that μ(s(Γi)) ∈ (3/4, 1) for all
i ∈ I.

By the property (T) of Γ, there exist F ⊂ Γ and 0 < ε < 1/4 such that whenever
π : Γ → U(H) is a unitary representation of Γ on a Hilbert space H and ξ0 ∈ H a
unit vector satisfying ‖π(g)ξ0 − ξ0‖ ≤ ε for all g ∈ F , then ‖π(g)ξ0 − ξ0‖ ≤ 1/8 for
all g ∈ Γ.

Now, by the separability of ([[R]], d), there exist i �= j such that d(αi(g), αj(g))
≤ ε/2, ∀g ∈ F . Let Yi ⊂ X, Yj ⊂ X be the support of Γi resp. Γj and assume
Yi ⊂ Yj . We define H, ξ0 ∈ H, π : Γ → U(H) as before, but replacing αs

g by αi(g),

αt
g by αj(g), Ys by Yi and Yt by Yj . The same estimates then show that ξ0 is a

unit vector satisfying ‖πg(ξ0)− ξ0‖ ≤ ε, ∀g ∈ F . Thus, ‖π(g)ξ0 − ξ0‖ ≤ 1/8 for all
g ∈ Γ. As before, this translates into d(αi(g), αj(g)) ≤ 1/4, ∀g ∈ Γ. By Lemma 6.2,
this implies Γi, Γj are conjugate by an element in [[R]], contradicting our initial
assumption. �

Part 2 of Theorem 6.1 readily implies that the functor Γ �→ RΓ, from free
ergodic p.m.p. actions of property (T) groups with morphisms given by conjugacy,
to the associated equivalence relations with morphisms given by orbital isomor-
phism, is “countable to one”. In other words, there are at most countably many
non-conjugate free ergodic p.m.p. actions in each OE class of a free ergodic p.m.p.
action of a property (T) group. In fact, even more is true: any free ergodic p.m.p.
action of a property (T) group follows “orbit equivalent superrigid, modulo count-
able classes”, in a sense made precise below.

Corollary 6.3. Let Γ � X be a free ergodic p.m.p. action of a property (T)
group. Let Λi � Xi, i ∈ I, be a family of free ergodic p.m.p. actions such that
RΓ � Rti

Λi
, for some ti > 0. Then the family I is countable, modulo conjugacy of

actions.
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Proof. We may assume that ti ≥ 1/c for all i ∈ I and some c > 0. Setting
R = (RΓ)

c, we can view all Λi as subgroups of [[R]], with the action of Λi on
s(Λi) ⊂ X being conjugate to Λi � Xi. By [14, Corollary 1.4], all Λi have property
(T). So, by Part 2 of Theorem 6.1, the family I is countable modulo conjugacy of
actions. �

When Γ is an ICC property (T) group, all groups in Sfactor(Γ) are countable (cf.
[17, Proof of Theorem 1.7], or [25, Theorem 4.5.1]). The next theorem generalizes
this result to Kazhdan groups Γ with the property that the center Z(Γ) has finite
index in the FC-radical Γf of Γ, defined by

Γf := {g ∈ Γ | g has a finite conjugacy class } .

On the other hand, we prove in the second part of the theorem below that if Γ
is a residually finite property (T) group such that Γf is not virtually abelian (i.e.,
Z(Γf ) < Γf has infinite index), then Γ admits a free ergodic p.m.p. action on (X,μ)
with L∞(X)� Γ being McDuff and hence, R+ ∈ Sfactor(Γ).

At the time of finishing a first version of this article, the only known examples
of Kazhdan groups Γ with infinite FC-radical Γf were such that Z(Γ) has finite
index in Γf (see e.g. [2, Example 1.7.13] and [11, Definition 2.4]). While we were
unable to show whether or not there exist residually finite Kazhdan groups Γ with
non virtually abelian FC-radical Γf , after discussing this problem with several
specialists, it was indicated to us by Mark Sapir and Denis Osin that such groups
probably do exist. Very recently, this was confirmed by Mikhail Ershov [13] who
showed that every Golod-Shafarevich group has a residually finite quotient whose
FC-radical is not virtually abelian. Since he proved in [12] that there exist Golod-
Shafarevich groups with property (T) and since property (T) passes to quotients,
there indeed exist free ergodic p.m.p. actions Γ � (X,μ) of property (T) groups
such that L∞(X)� Γ is McDuff.

Theorem 6.4. Let Γ be a property (T) group.

(1) If Z(Γ) has finite index in the FC-radical Γf , then Sfactor(Γ) only contains
countable groups.

(2) If Γ is residually finite and [Γf ,Z(Γf )] = ∞, then Γ admits a free ergodic
profinite p.m.p. action on (X,μ) such that L∞(X)� Γ is McDuff.

Proof. Whenever H ⊂ Γ, denote by CΓ(H) the centralizer of H inside Γ.
Assume first that Z(Γ) has finite index in Γf . Let Γ � (X,μ) be free ergodic

p.m.p. Write A := L∞(X) and M := A� Γ. Define Λ := CΓ(Γf ). Since Z(Γ) has
finite index in Γf , it follows that Λ has finite index in Γ. A fortiori, the subgroup
Λ1 := Λ ·Γf has finite index in Γ. Also, the subalgebra AΛ of Λ-invariant functions
in A, is finite dimensional and globally Λ1-invariant. Consider the subalgebra B :=
AΛ

� Λ1 of M . Since L(Λ1) ⊂ B has finite index, it follows that B has property
(T). On the other hand M ∩B′ ⊂ M ∩L(Λ)′ and it is straightforward to check that
M ∩ L(Λ)′ ⊂ AΛ

� Γf . So, we get M ∩ B′ ⊂ B. By [21, Theorem A.1], it follows
that F(M) is countable.

Suppose from now on that Γ is residually finite and [Γf ,Z(Γf )] = ∞. Let
Γf = {h1, h2, . . .} be an enumeration. Let Hn � Γ be a decreasing sequence of
normal, finite index subgroups with

⋂

n Hn = {e}. Define

Γn := Hn ∩
⋂

s∈Γ/CΓ(h1,...,hn)

sCΓ(h1, . . . , hn)s
−1 .
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By construction, Γn is a decreasing sequence of normal, finite index subgroups with
⋂

n Γn = {e} and such that for all h ∈ Γf , we have Γn ⊂ CΓ(h) for all n large
enough.

Denote (X,μ) = lim←−(Γ/Γn, counting probability measure). Consider the nat-

ural free, ergodic, profinite, p.m.p. action Γ � (X,μ). Put A = L∞(X) and
M := A � Γ. For every s ∈ Γ and n ∈ N, denote by χsΓn

the function equal to 1
on sΓn and zero elsewhere and interpret χsΓn

as a projection in A.
For every h ∈ Γf , define the unitary vh ∈ M ∩ L(Γ)′ by

vh :=
∑

s∈Γ/Γn

χsΓn
ush−1s−1 for n large enough, meaning Γn ⊂ CΓ(h).

It is straightforward to check that Γf → U(M∩L(Γ)′) : h �→ vh is a group morphism
and that τ (vh) = 0 whenever h �= e.

Claim. If for all n ∈ N, we have hn ∈ Γf ∩ Γn with hn �= e, then (vhn
) is a

central sequence in M with τ (vhn
) = 0 for all n. For all n, we have vhn

∈ L(Γ)′.
So, to prove the claim, it suffices to take k ∈ N, g ∈ Γ and prove that

lim
n

‖[χgΓk
, vhn

]‖2 = 0 .

But, by construction, χgΓk
and vhn

commute when n ≥ k.
Since Z(Γf ) < Γf has infinite index and since Γf has finite conjugacy classes,

it follows that Γf has no finite index abelian subgroups. So, for every n, the
finite index subgroup Γf ∩ Γn of Γf is non-abelian. Therefore, we can choose

hn, h
′
n ∈ Γf ∩ Γn such that hnh

′
nh

−1
n h′

n
−1 �= e. By the claim above, vhn

and vh′
n

are central sequences. By construction, τ (vhn
vh′

n
v∗hn

v∗h′
n
) = 0 for all n. So, M is

McDuff.
�
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Abstract. In an earlier paper of mine relating vector bundles and Gromov–
Hausdorff distance for ordinary compact metric spaces, it was crucial that the
Lipschitz seminorms from the metrics satisfy a strong Leibniz property. In
the present paper, for the now non-commutative situation of matrix algebras

converging to the sphere (or to other spaces) for quantum Gromov–Hausdorff
distance, we show how to construct suitable seminorms that also satisfy the
strong Leibniz property. This is in preparation for making precise certain
statements in the literature of high-energy physics concerning “vector bundles”
over matrix algebras that “correspond” to monopole bundles over the sphere.
We show that a fairly general source of seminorms that satisfy the strong
Leibniz property consists of derivations into normed bimodules. For matrix
algebras our main technical tools are coherent states and Berezin symbols.

Introduction

In a previous paper [30] I showed how to give a precise meaning to statements in
the literature of high-energy physics and string theory of the kind “Matrix algebras
converge to the sphere”. (See [30] for numerous references to the relevant physics
literature.) I did this by introducing the concept of “compact quantum metric
spaces”, in which the metric data is given by a seminorm on the non-commutative
“algebra of functions”. This seminorm plays the role of the usual Lipschitz semi-
norm on the algebra of continuous functions on an ordinary compact metric space.
However, I was somewhat puzzled by the fact that I needed virtually no algebraic
conditions on the seminorm, only an important analytic condition. But when I later
began trying to give precise meaning to further statements in the physics literature
of the kind “here are the vector bundles over the matrix algebras that correspond to
the monopole bundles over the sphere” (see [32] for many references), I found that
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for ordinary metric spaces a strong form of the Leibniz inequality for the seminorm
played a crucial role [32]. (See, for example, the proof of proposition 2.3 of [32].)
However, on returning to the non-commutative case of matrix algebras converging
to the sphere (or to other spaces), for some time I did not see how to construct
useful seminorms that brought the matrix algebras and sphere close together while
also having the strong Leibniz property. The main purpose of this paper is to show
how to construct such seminorms. As in the earlier paper [30], the setting is that
of coadjoint orbits of compact semisimple Lie groups, of which the 2-sphere is the
simplest example. The main technical tools continue to be coherent states and
Berezin symbols.

In the first four sections of this paper we show that a fairly general setting for
obtaining seminorms that possess the strong Leibniz property that we need consists
of derivations into normed bimodules, and we examine various aspects of this topic.
The strong Leibniz property for a seminorm L on a normed unital algebra A consists
of the usual Leibniz inequality together with the inequality

L(a−1) ≤ ‖a−1‖2L(a)

whenever a is invertible in A. I have not seen this latter inequality discussed in
the literature, but it plays a crucial role in [32]. In Section 4 we put together the
various conditions that we have found to be important, and thereby give a tentative
definition for a “compact C∗-metric space”.

In Section 5 we examine the use of seminorms with the strong Leibniz property
in connection with quantum Gromov–Hausdorff distance. (I expect that many of
the ideas and techniques developed in this paper will apply to many other classes of
examples beyond “Matrix algebras converge to the sphere”.) In Section 6 we extend
to the case of strongly Leibniz seminorms the construction technique introduced
in [29] that we called “bridges”. Sections 7 and 8 contain those pieces of our
development that can be carried out for certain homogeneous spaces of any compact
group (including finite ones). Section 9 gives the statement of our main theorem
for coadjoint orbits, while Sections 10 through 13 contain the detailed technical
development needed to prove our main theorem. Finally, in Section 14 we relate
our results to other variants of quantum Gromov–Hausdorff distance that have been
developed by David Kerr, Hanfeng Li, and Wei Wu [13, 14, 18, 19, 41, 42, 43].

We can describe our basic setup and our main theorem somewhat more specif-
ically as follows, where definitions for various terms are given in later sections. Let
G be a compact semisimple Lie group, let (U,H) be an irreducible unitary repre-
sentation of G, and let P be the rank-one projection along a highest weight vector
for (U,H). Let α be the action of G on L(H) by conjugation by U , and let H be
the α-stability group of P . Let A = C(G/H). Let ω be the highest weight for U ,
and for each n ∈ Z>0 let (Un,Hn) be the irreducible representation of G of highest
weight nω. Let α also denote the action of G on Bn = L(Hn) by conjugation by
Un.

Choose on G a continuous length-function �. Then � and the translation action
of G on A, as well as the actions α of G on each Bn, determine seminorms LA on
A and LBn on Bn that make (A,LA) and each (Bn, LBn) into compact C∗-metric
spaces.

Main Theorem (sketchy statement of Theorem 9.1). For any ε > 0 there exists an
N such that for any n ≥ N we can explicitly construct a strongly Leibniz seminorm,
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Ln, on A ⊕ Bn making A ⊕ Bn into a compact C∗-metric space, such that the
quotients of Ln on A and Bn are LA and LBn , and for which the quantum Gromov-
Hausdorff distance between A and Bn is no greater than ε.

I plan to apply the results of this paper in a future paper to discuss vector
bundles over non-commutative spaces (e.g., monopole bundles), along the lines
used for ordinary spaces in [32].

I developed part of the material presented here during a ten-week visit at
the Isaac Newton Institute in Cambridge, England, in the Fall of 2006. I am
very appreciative of the stimulating and enjoyable conditions provided by the Isaac
Newton Institute.

I am grateful to Hanfeng Li for some important comments on the first version
of this paper, which led to some substantial improvements given in the present
version.

1. Strongly Leibniz seminorms

From my investigation of the relation between vector bundles on compact
metric spaces that are close together, both for ordinary spaces [32] and for non-
commutative spaces (a continuing investigation), I have found that the following
properties are very important when considering the seminorms that play the role of
the Lipschitz seminorms of ordinary metric spaces. Unless the contrary is stated,
we allow our seminorms to take the value +∞, but we require that they take value
0 at 0. We use the usual conventions for calculating with +∞. The following
definition is close to definition 2.1 of [32].

Definition 1.1. Let A be a normed unital algebra over R or C, and let L be
a seminorm on A. We say that:

1) L is Leibniz if it satisfies the inequality

L(ab) ≤ L(a)‖b‖+ ‖a‖L(b)
for all a, b ∈ A.

2) L is strongly Leibniz if it is Leibniz, and L(1) = 0, and if for any a ∈ A
that has an inverse in A, we have

L(a−1) ≤ ‖a−1‖2L(a).
3) L is finite if L(a) < ∞ for all a ∈ A.
4) L is semifinite if {a : L(a) < ∞} is norm-dense in A.
5) L is continuous if it is norm-continuous.
6) L is lower-semicontinuous if for one r ∈ R>0, hence for all r > 0, the set

{a ∈ A : L(a) ≤ r}
is norm-closed in A.

If, furthermore, A is a ∗-normed algebra (i.e., has an isometric involution), then
we define L∗ by L∗(a) = L(a∗) for a ∈ A. We then say that L is a ∗-seminorm if
L = L∗.

The proof of the following proposition is straightforward.

Proposition 1.2. Let A be a unital normed algebra.

i. Let L be a seminorm on A and let r ∈ R
+. If L satisfies one of the

properties 1–6 above then rL satisfies that same property.
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ii. Let L1 and L2 be two seminorms on A. If they are both Leibniz, or
strongly Leibniz, or finite, or continuous, or lower semicontinuous, then
so is L1 + L2.

iii. Let {Lα} be a family of seminorms on A, possibly infinite, and let L be
the supremum of this family. (That is, L =

∨

α Lα, defined by L(a) =
supα{Lα(a)}. For two seminorms, L and L′, we will denote their maxi-
mum by L ∨L′.) Then L is a seminorm on A, and if each Lα is Leibniz,
or strongly Leibniz, or lower-semicontinuous, then so is L.

iv. If A is a ∗-normed algebra and if L satisfies one of the properties 1–6
above, then L∗ satisfies that same property.

I have seen no discussion of the strong Leibniz property in the literature. I do
not know of an example of a finite Leibniz seminorm which does not satisfy the
inequality for L(a−1) in the definition of “strongly Leibniz”. But if we allow the
value +∞ then examples can be constructed in the following way. Let A be a unital
normed algebra and let B be a unital subalgebra of A. Let L0 be a finite Leibniz
seminorm on B. Define a Leibniz seminorm, L, on A by L(a) = L0(a) if a ∈ B
and L(a) = +∞ otherwise. If B contains an element that is invertible in A but not
in B then L is not strongly Leibniz. For example, let A = C([0, 1]) and let B be
its subalgebra of polynomial functions, with L0(f) = ‖f ′‖. (This example is not
lower-semicontinuous.)

Let Af = {a : L(a) < ∞}. It is clear that if L is Leibniz then Af is a subalgebra
of A. If L is in fact strongly Leibniz and a ∈ Af , then clearly a is invertible in Af

if and only if it is invertible in A. It follows that for any a ∈ Af the spectrum of
a in Af will be the same as its spectrum in A. In stupid examples we may have
1 /∈ Af , but with that understood, we see that:

Proposition 1.3. If L is strongly Leibniz then Af is a spectrally stable subal-
gebra of A.

The importance of this proposition will be seen in Section 3. We also remark
that if A has an involution and if L is a Leibniz seminorm that is also a ∗-seminorm,
then Af is a ∗-subalgebra of A.

Simple arguments prove the following two propositions.

Proposition 1.4. Let A be a normed unital algebra, and let L be a seminorm
on A. Let B be a unital subalgebra of A, equipped with the norm from A. If L
is Leibniz, or strongly Leibniz, or finite, or continuous, or lower-semicontinuous,
then so is the restriction of L to B as a seminorm on B. (But if L is semifinite,
its restriction to B need not be semifinite.)

Proposition 1.5. Let A be a ∗-normed unital algebra and let L be a seminorm
on A. Let L̃ = L ∨ L∗. Then L̃ is a ∗-seminorm. If L is Leibniz, or strongly
Leibniz, or finite, or continuous, or lower-semicontinuous, then so is L̃. (But if L

is semifinite, L̃ need not be semifinite.)

So in this way we can usually arrange to work with ∗-seminorms when dealing
with ∗-algebras.

Here is another way to combine seminorms:

Proposition 1.6. Let L1, . . . , Ln be seminorms on a normed unital algebra
A, and let ‖ · ‖0 be a norm on R

n with the property that if (rj), (sj) ∈ R
n, and if
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0 ≤ rj ≤ sj for all j, 1 ≤ j ≤ n, then ‖(rj)‖0 ≤ ‖(sj)‖0. Define a seminorm, N ,
on A by N(a) = ‖(Lj(a))‖0, with the evident meaning if Lj(a) = ∞ for some j. If
each Lj satisfies a particular one of properties 1, 2, 3, 5, 6 of Definition 1.1 then
N satisfies that property too.

Proof. If each Lj is Leibniz, then

N(ab) = ‖(Lj(ab))‖0 ≤ ‖(Lj(a)‖b‖+ ‖a‖Lj(b))‖0
≤ ‖(Lj(a))‖0‖b‖+ ‖a‖‖(Lj(b))‖0 = N(a)‖b‖+ ‖a‖N(b),

and if each Lj is strongly Leibniz, then also

N(a−1) = ‖(Lj(a
−1))‖0 ≤ ‖(‖a−1‖2Lj(a))‖0 = ‖a−1‖2N(a).

It is clear that if each Lj is finite, or continuous, then so is N .
Suppose instead that each Lj is lower-semicontinuous. Let (am) be a sequence

in A which converges in norm to a ∈ A, and suppose that there is a constant,
K, such that N(am) ≤ K for each m. For each m let pm = (Lj(am)) ∈ R

n, so
that ‖pm‖0 ≤ K. Since the K-ball of Rn for ‖ · ‖0 is compact, we can pass to a
convergent subsequence, so we can assume that the sequence {pm} converges to a
vector, p, in R

n such that ‖p‖0 ≤ K and whose entries are non-negative. Let ε > 0
be given. Then there is an integer mε such that if m ≥ mε then Lj(am) ≤ pj + ε
for each j. Since each Lj is lower-semicontinuous, it follows that Lj(a) ≤ pj + ε
for each j. Then N(a) = ‖(Lj(a))‖0 ≤ ‖(pj + ε)‖0 ≤ ‖p‖0 + ε‖(1, . . . , 1)‖0. Thus
N(a) ≤ K since ‖p‖0 ≤ K and ε is arbitrary. �

2. General sources of strongly Leibniz seminorms

We will now examine general methods for constructing strongly Leibniz semi-
norms. We recall first [11] that a first-order differential calculus over a unital
algebra A is a pair (Ω, d) consisting of a bimodule Ω over A and a derivation d from
A into Ω, that is, a linear map from A into Ω such that

d(ab) = (da)b+ a(db)

for all a, b ∈ Ω. (We will always assume that our bimodules are such that 1A acts
as the identity operator on both left and right.) It is common to assume that Ω
is generated as a bimodule by the range of d, but we will not need to impose this
requirement, though it can always be arranged by replacing Ω by its sub-bimodule
generated by the range of d.

Suppose now that A is a normed unital algebra (with ‖1A‖ = 1), and that
(Ω, d) is a first-order differential calculus for A. Assume further that Ω is equipped
with a norm that makes it into a normed A-bimodule, that is,

‖aωb‖Ω ≤ ‖a‖‖ω‖Ω‖b‖
for all a, b ∈ A and ω ∈ Ω. We will then say that (Ω, d, ‖·‖Ω) is a normed first-order
differential calculus. We do not require that d be continuous for the norms on A
and Ω. We define L on A by

L(a) = ‖da‖Ω.
Notice that L is finite, and that L is continuous if d is.

Proposition 2.1. Let L on A be defined as above for a normed first-order
differential calculus. Then L is strongly Leibniz.
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Proof. That L is Leibniz follows immediately from the definitions of a deriva-
tion and of a normed bimodule. To see that L is strongly Leibniz, notice first that
from the definition of a derivation we obtain d(1A) = 0, so that L(1A) = 0. Suppose
now that a is an invertible element of A. Then

0 = d(1A) = d(aa−1) = (da)a−1 + a(d(a−1)).

Thus

d(a−1) = −a−1(da)a−1.

On taking the norm we see that L(a−1) ≤ ‖a−1‖2L(a). �

We remark that no effective characterization seems to be known as to which
Leibniz seminorms come from normed first-order differential calculi (or of inner
ones) as above. They fall within the scope of the “flat” differential seminorms
defined in definition 4.3 of [4], and for which equivalent conditions are given in
theorem 4.4 of [4]. Necessary conditions for a differential seminorm to be flat are
given immediately after definition 4.3 and in proposition 4.7 of [4]. For Leibniz
seminorms we see above that a further necessary condition is that of being strongly
Leibniz.

Let us now give some examples.

Example 2.2. Let (X, ρ) be a compact metric space. For given x0, x1 ∈ X
with x0 
= x1 let Ωx0,x1

be R or C according to whether A = C(X) is over R or C,
and define actions of A on Ωx0,x1

by

f · ω = f(x0)ω, ω · f = ωf(x1).

Define d by

df = (f(x1)− f(x0))/ρ(x1, x0).

It is easily checked that (Ωx0,x1
, d) is a first-order differential calculus over A. Give

A = C(X) its supremum norm, ‖ · ‖∞, and give Ωx0,x1
the usual norm on R or C.

Then Ωx0,x1
is a normed A-bimodule. Clearly d is continuous. We set

Lx0,x1
(f) = ‖df‖ = |f(x1)− f(x0)|/ρ(x1, x0).

Then from Proposition 2.1 it follows that Lx0,x1
is strongly Leibniz (and continu-

ous).
Now let L be the supremum of the Lx0,x1

over all pairs (x0, x1) with x1 
=
x0. We obtain in this way the usual Lipschitz seminorm, Lρ, on C(X). From
Proposition 1.2 it follows that Lρ is strongly Leibniz and lower-semicontinuous. Of
course Lρ is not continuous in general. But Lρ is semifinite, since it is finite on the
functions fx0

(x) = ρ(x, x0), and these already generate a dense subalgebra, as seen
by means of the Stone–Weierstrass theorem.

This example can be recast in a quite familiar form in the following way. Let
Z = (X ×X) \Δ where Δ is the diagonal of X ×X. Thus Z is a locally compact
space. Let Ω = Cb(Z), the linear space of bounded continuous functions on Z with
the supremum norm. Then Ω is a normed C(X)-bimodule for the actions

(fω)(x0, x1) = f(x0)ω(x0, x1), (ωf)(x0, x1) = ω(x0, x1)f(x1).

Let A denote the subalgebra of C(X) consisting of the Lipschitz functions, and
define a derivation d from A to C(Z) by

(df)(x0, x1) = (f(x1)− f(x0))/ρ(x1, x0).
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Then the usual Lipschitz seminorm is given by Lρ(f) = ‖df‖∞. Alternatively, let
Ω = C(Z), the space of all continuous, possibly unbounded, functions on Z, as a
C(X)-bimodule in the above way. Then d can be defined on all of C(X) by the
above formula. We can now consider the supremum norm on C(Z), taking value
+∞ on unbounded functions (so a bit beyond our definitions above), and again set
Lρ(f) = ‖df‖∞.

Example 2.3. Let us now consider some examples in which the normed unital
algebra A may be non-commutative. If Ω is an A-bimodule, one always has the
corresponding inner derivations. That is, if ω ∈ Ω we can set dω(a) = ωa − aω.
If Ω is a normed A-bimodule then dω is continuous, with ‖dω‖ ≤ 2‖ω‖. The
corresponding seminorm, Lω, defined by Lω(a) = ‖dω(a)‖, is then a continuous
strongly Leibniz seminorm.

Suppose now that B is a unital normed algebra and that π is a unital homo-
morphism from A into B. Then we can view B as a bimodule over A in the evident
way, and obtain inner derivations and corresponding strongly Leibniz seminorms,
which are continuous if π is.

Example 2.4. Suppose now that π is a non-degenerate representation of A as
operators on a normed space X, so that π can be viewed as a unital homomorphism
from A into B(X), the algebra of bounded operators on X. Then B(X) can be
viewed in the evident way as a bimodule over A, and any element, D, of B(X)
determines an inner derivation, and corresponding seminorm

L(a) = ‖Dπ(a)− π(a)D‖ = ‖[D, π(a)]‖.

More generally, if one has two representations, π1 and π2 of A on X, then one
can view B(X) as an A-bimodule via

a · T · b = π1(a)Tπ2(a),

and again any element, D, of B(X) will determine an inner derivation. (The twisted
commutators in equation 2.4 and lemma 2.2 of [8] fit into this view, except that
there D is usually an unbounded operator.) Alternately one can assemble π1 and
π2 into one representation on X ⊕X, and use the operator ( 0 D

D 0 ) on X ⊕X.
As an important particular case, for X we can take A itself and let π be the left-

regular representation of A on itself. As element of B(X) we can take an isometric
algebra automorphism, α, of A. Then

(α ◦ π(a)− π(a) ◦ α)(b) = α(ab)− aα(b)

= (α(a)− a)α(b).

From this we see that

‖α ◦ π(a)− π(a) ◦ α‖ = ‖α(a)− a‖,

so that if we set L(a) = ‖α(a) − a‖ then L will be a continuous strongly Leibniz
seminorm. We can view this in another way. View A as a bimodule over A by

a · b · c = abα(c),

and set d(a) = α(a) − a. It is easily checked that d is a (continuous) derivation,
and so from Proposition 2.1 we see again that L is strongly Leibniz. (This does not
require that α be isometric.)
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Example 2.5. Now let G be a group, and let α be an action of G on A, that is,
a homomorphism from G into Aut(A). Let � be a length-function on G. For each
x ∈ G with x 
= eG the map a �→ ‖αx(a)− a‖/�(x) is a continuous strongly Leibniz
seminorm. Let L be the supremum over G of all of these seminorms, so that

L(a) = sup{‖αx(a)− a‖/�(x) : x 
= eG}.
By Proposition 1.2 we see that L is a lower-semicontinuous strongly-Leibniz semi-
norm. Of course L may not be semifinite. But if G is a locally compact group, if A
is complete, so a Banach algebra, if α is a strongly continuous action by isometric
automorphisms of A, and if � is a continuous length-function, then the discussion
before theorem 2.2 of [28] shows that L is semifinite. The discussion there is stated
just for C∗-algebras, but it applies without change to Banach algebras.

Example 2.6. Suppose now that G is a connected Lie group, and that α is a
strongly continuous action of G on A by isometric automorphisms. Let g denote
the Lie algebra of G, and let A∞ denote the dense subalgebra of smooth elements
of A for the action α. We let α also denote the corresponding infinitesimal action
of g on A∞, defined by

αX(a) =
d

dt

∣

∣

∣

∣

t=0

αexp(tX)(a)

for X ∈ g and a ∈ A∞. The argument in the proof of lemma 3.1 of [28] works here,
and shows that

‖αX(a)‖ = sup{‖αexp(tX)(a)− a‖/|t| : t 
= 0}.
It follows from Proposition 1.2 that the map a �→ ‖αX(a)‖ is a finite lower-
semicontinuous strongly-Leibniz seminorm on A∞. Suppose further that we are
given a norm on g, and that we set

L(a) = sup{‖αX(a)‖ : ‖X‖ ≤ 1}.
It follows again from Proposition 1.2 that L is a lower-semicontinuous strongly-
Leibniz seminorm on A∞, which is easily seen to be finite, but which may well not
be norm-continuous.

Example 2.7. Suppose now that G is a Lie group and that (U,H) is a strongly
continuous representation of G on a Hilbert space H. As discussed in section 3 of
[28] we can define an action, α, of G on B(H) by αx(T ) = UxTU

∗
x , and we can let B

be the largest subalgebra of B(H) on which this action is strongly continuous. We
can then apply the discussion of the previous example to obtain a seminorm L on
B∞. If A is a unital ∗-subalgebra of B∞ (which need not be carried into itself by α),
then according to Proposition 1.4 the restriction of L to A is a lower-semicontinuous
strongly-Leibniz ∗-seminorm which is clearly finite.

Example 2.8. Let us consider the above situation for the special case in which
g = R. Then U is generated by a self-adjoint (often unbounded) operator, D, on
H, that is, Ut = eitD for all t ∈ R. Then it follows easily that for T ∈ B∞

L(T ) = ‖[D,T ]‖,
and in particular that the commutator [D,T ] is a bounded operator. All of this
will then be true for any T ∈ A ⊂ B∞. This applies in particular to the “Dirac”
operators on which Connes [6, 11] bases his approach to metric non-commutative
differential geometry.
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3. Closed seminorms

We adapt here some definitions from section 4 of [26]. Let A be a normed
unital algebra, and let Ā denote its completion. Let L be a seminorm on A (value
+∞ allowed) and let

L1 = {a ∈ A : L(a) ≤ 1}.
Let L̄1 be the closure of L1 in Ā, and let L̄ denote the corresponding “Minkowski
functional” on Ā, defined by setting, for c ∈ Ā,

L̄(c) = inf{r ∈ R
+ : c ∈ rL̄1}.

The value +∞ must be allowed. Then L̄ is a seminorm on Ā, and the proof
of proposition 4.4 of [26] tells us that if L is lower-semicontinuous, then L̄ is an
extension of L. We call L̄ the closure of L. We see that the set {c ∈ Ā : L̄(c) ≤ 1}
is closed in Ā. We say that the original seminorm L on A is closed if L1 is closed
in Ā, or, equivalently, is complete for the norm on A. Clearly if L is closed, then
it is lower-semicontinuous. If L is closed and is not defined on all of Ā, then L̄ is
obtained simply by giving it value +∞ on all the elements of Ā that are not in A.
It is clear that if L is semifinite then so is L̄. We recall that a unital subalgebra
B of a unital algebra A is said to be spectrally stable in A if for any b ∈ B the
spectrum of b as an element of B is the same as its spectrum as an element of A,
or equivalently, that any b that is invertible in A is invertible in B.

Proposition 3.1. Let L be a Leibniz seminorm on a normed unital algebra A.
Then L̄ is Leibniz. Set

Āf = {c ∈ Ā : L̄(c) < ∞}.
If L(1) < ∞, then Āf is a unital spectrally-stable subalgebra of the norm closure of
Āf in Ā. If A is defined over C, then Āf is stable under the holomorphic-function
calculus of its closure.

Proof. Let c, d ∈ Ā. If L̄(c) = ∞ or L̄(d) = ∞ there is nothing to show for
the Leibniz condition. Otherwise, we can find sequences {an} and {bn} in A such
that {an} converge to c while {L(an)} converges to L̄(c) and L(an) ≤ L̄(c) for all
n, and similarly for {bn} and d. Then anbn converges to cd and

L(anbn) ≤ L(an)‖bn‖+ ‖an‖L(bn) ≤ L̄(c)‖bn‖+ ‖an‖L̄(d),

and the right-hand side converges to L̄(c)‖d‖+ ‖c‖L̄(d). Thus L̄ is Leibniz.
If L(1) < ∞ so that Āf is a unital subalgebra of Ā, then it follows from

proposition 3.12 of [4] (or proposition 1.7 and theorem 1.17 of [36], or lemma 1.6.1
of [9]) that Āf is spectrally stable in its closure in Ā, and in fact is stable under the
holomorphic-function calculus there. We sketch the proof in our simpler setting.
Define a new norm, M , on Āf by

M(c) = ‖c‖+ L̄(c).

Then, as mentioned after definition 4.5 of [26], Āf will be complete for the norm
M because L̄ is closed. (See the proof of proposition 1.6.2 of [39].) Because L̄ is
Leibniz, M is easily seen to be an algebra norm, so that Āf becomes a Banach
algebra. Let c ∈ Āf . From the Leibniz rule we find that L̄(cn) ≤ n‖c‖n−1L̄(c), so
that

M(cn) ≤ ‖c‖n + n‖c‖n−1L̄(c).
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From this it follows that if ‖c‖ < 1 then the series
∑∞

n=0 c
n converges for M to an

element of Āf . Thus 1− c is invertible in Āf . It follows that if instead ‖1− c‖ < 1
then c is invertible in Āf . From this it is then easily seen (e.g. lemma 3.38 of
[11]) that if c ∈ Āf and if c is invertible in the norm-closure of Āf in Ā, then c is
invertible in Āf . Consequently Āf is spectrally stable in its closure in Ā.

Assume now that A is defined over C. For the definition and properties of the
holomorphic-function (or “symbolic”) calculus see [12, 34]. It is well-known that
a dense subalgebra that is spectrally stable and is a Banach algebra for a norm
stronger that the norm of the bigger algebra, is stable under the holomorphic-
function calculus. (See the comments after definition 3.25 of [11].) We briefly
recall the reason, for our context. For notational simplicity we assume that Āf is
dense in Ā. Let c ∈ Āf , and let f be a C-valued function defined and holomorphic
on an open neighborhood O of the spectrum σĀ(c). Let γ be the union of a finite
number of curves in O that surrounds σĀ(c) in the usual way such that the Cauchy
integral formula using γ gives f on a neighborhood of σĀ(c). Since Ā

f is spectrally
stable in Ā, the function z �→ (z − c)−1, well-defined on γ, has values in Āf . Since
Āf is a Banach algebra for M , this function is continuous for M , and the integral

f(c) =
1

2πi

∫

γ

f(z)(z − c)−1dz

is well defined in Āf . Since the homomorphism from Āf with norm M to Ā with
its original norm is clearly continuous, the image of f(c) in Ā will be expressed by
the same integral but now interpreted in Ā. But f(c) ∈ Āf . So the above integral,
but interpreted in Ā, gives an element of Āf as was to be shown. �

For the use of the holomorphic-function calculus when dealing with algebras
over R see proposition 2.4 of [32].

One reason that the property of being closed under the holomorphic-function
calculus is important is that it implies that Āf and its closure, say B, in Ā have
essentially the same finitely-generated projective modules (“vector bundles”) in the
sense that any such right module V for B is of the form V = W ⊗Āf B for such a
right module W over Āf , unique up to isomorphism. This is crucial to [32], and
to our proposed discussion of projective modules and quantum Gromov–Hausdorff
distance for non-commutative C∗-algebras. The inclusion of Āf into B also gives
an isomorphism of their K-groups. (See appendix IIIC of [6] and theorem 3.44 of
[11].)

Proposition 3.2. Let L be a strongly-Leibniz seminorm on a normed algebra
A. Assume that Af is dense and spectrally stable in Ā. Then the closure, L̄, of L
is strongly Leibniz.

Proof. It is clear that L̄(1) = 0. From Proposition 3.1 we know that L̄ is
Leibniz. Thus we only need to verify the condition on inverses. Suppose now that
c ∈ Ā and that c is invertible in Ā. If L̄(c) = ∞ there is nothing to show, so assume
that c ∈ Āf . Then there is a sequence {an} in A that converges to c while {L(an)}
converges to L̄(c) with L(an) ≤ L̄(c) for all n (so an ∈ Af ). Since c is invertible
in Ā, and the set of invertible elements of a unital Banach algebra is open, the
elements an are eventually invertible in Ā. Since Af is assumed to be spectrally
stable in Ā the elements an are eventually invertible in Af . Thus we can adjust the
sequence {an} so that each element is invertible in Af . Then the sequence {a−1

n }
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converges to c−1, while for each n

L(a−1
n ) ≤ ‖a−1

n ‖2L(an) ≤ ‖a−1
n ‖2L̄(c).

It follows easily that L̄(c−1) ≤ ‖c−1‖2L̄(c). Thus L̄ is strongly Leibniz. �

4. C∗-metrics

Up to this point we have ignored the crucial analytic property of the seminorms
that define quantum metric spaces, i.e., Lip-norms. We recall this property here,
for our special context of unital C∗-algebras. Let A be a unital ∗-algebra equipped
with a C∗-norm (but not assumed to be complete). Let L be a seminorm on A
such that L(1) = 0. Define a metric, ρL, on the state space, S(A), of A by

ρL(μ, ν) = sup{|μ(a)− ν(a)| : a = a∗ and L(a) ≤ 1}.
(Without further hypotheses ρL might take the value +∞.) We will say that L is
a Lip-norm if the topology on S(A) from ρL coincides with the weak-∗ topology on
S(A). In our definition of Lip-norms in definition 2.1 of [29] we, in effect, assumed
that our seminorms L were defined only on the self-adjoint part of A, but still
defined ρL as above. The comments before definition 2.1 of [29] show that if L
is a ∗-seminorm then ρL would not change if the condition “a = a∗” above were
omitted.

We now come to the definition that seems to be dictated by our investigation
of vector bundles and Gromov–Hausdorff distance, both for ordinary metric spaces
[32] and for quantum ones. It should be viewed as tentative, since future experience
may require additional hypotheses.

Definition 4.1. Let A be a unital C∗-normed algebra and let L be a seminorm
on A (possibly taking value +∞). We will say that L is a C∗-metric on A if

a) L is a lower-semicontinuous strongly-Leibniz ∗-seminorm,
b) L (restricted to Asa) is a Lip-norm,
c) Af is spectrally stable in the completion, Ā, of A.

By a compact C∗-metric space we mean a pair (A,L) consisting of a unital C∗-
normed algebra A and a C∗-metric L on A.

In using the word “space” above, we should logically be referring to objects in
the dual to the category of unital C∗-algebras. But we will not make this distinction
explicit during our discussions in this paper.

We need condition c) in Definition 4.1 so that we can apply Proposition 3.2
to conclude that the closure of a C∗-metric is strongly Leibniz and itself satisfies
condition c). Hanfeng Li has pointed out to me that the subalgebra of polynomials
in the algebra of continuous functions on the unit interval with the usual Lipschitz
seminorm shows that condition c) is independent of conditions a) and b).

At this time it is not clear to me how best to define C∗-metric spaces that
are locally compact but not compact, though some substantial indications can be
gleaned from the results in [16].

Recall [4] that a ∗-subalgebra B of a C∗-algebra A is said to be stable under the
C2-function calculus for self-adjoint elements if for any b ∈ B with b∗ = b and any
twice continuously differentiable function f on R, the element f(b) of A, defined
by the continuous-function calculus on self-adjoint elements of A, is in fact again
in B.
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Proposition 4.2. Every C∗-metric on a unital C∗-normed algebra is semifi-
nite. Let L be a C∗-metric on a unital C∗-normed algebra A, and let L̄ be its closure
on the completion Ā of A (so L̄ is an extension of L). Then L̄ is a C∗-metric. Let
Āf be defined as earlier (so now Āf is dense in Ā). Then Āf is stable both under
the holomorphic-function calculus of Ā and the C2-calculus on self-adjoint elements
of Ā.

Proof. Let L be a C∗-metric on a unital C∗-normed algebra A, and let Af

be defined as above. Suppose that Af is not dense in A. Then it is easily seen that
there is an a ∈ A with a∗ = a that is not in the closure of Af . By the Hahn–Banach
theorem there is a linear functional of norm 1 on the self-adjoint part of A that
has value 0 on all of the self-adjoint part of Af . From lemma 2.1 of [26] it then
follows that there are two distinct states of A which agree on Af . Then the distance
between these two states for the metric ρL determined by L is 0, which contradicts
the requirement that the topology on S(A) determined by ρL coincides with the
weak-∗ topology.

The fact that L̄ is a C∗-metric is seen as follows. By definition, L̄ is closed, and
so lower-semicontinuous. As remarked above, L̄ is strongly Leibniz by condition
c) and Proposition 3.2. The closure of a Lip-norm is again a Lip-norm, giving the
same metric on the state-space, as seen in proposition 4.4 of [26]. That L̄ satisfies
condition c) follows from Proposition 3.1.

The fact that Āf is stable under the holomorphic-function calculus of Ā follows
immediately from the semifiniteness of L̄ and Proposition 3.1. The fact that Āf

is stable for the C2-function calculus on self-adjoint elements of Ā follows quickly
from proposition 6.4 of [4], which actually gives a slightly stronger fact. �

The condition that L be a Lip-norm is often a difficult one to verify for various
specific examples. But most of the Lip-norms that have been constructed on C∗-
algebras so far are in fact C∗-metrics. We explain this now for several of the classes
of examples described in sections 2 and 3 of [28].

Example 4.3. Let A be a unital C∗-algebra, let G be a compact group, and
let α be an action of G on A that is ergodic in the sense that if an a ∈ A satisfies
αx(a) = a for all x ∈ G then a ∈ C1A. Let � be a continuous length function on G,
and define a seminorm L on A, as in Example 2.5, by

L(a) = sup{‖αx(a)− a‖/�(x) : x /∈ eG}.
It is shown in [28] that L is a Lip-norm. But we saw in Example 2.5 that L is lower-
semicontinuous and strongly Leibniz. Since L is defined on all of A, the spectral
stability of Āf in A follows from Proposition 3.1.

The next several examples involve “Dirac” operators in various settings.

Example 4.4. This class of examples is the main class discussed in Connes’s
first paper [5] on metric aspects of non-commutative geometry. It is discussed
briefly as example 3.6 of [28]. Let G be a discrete group and let A = C∗

r (G) be its
reduced group C∗-algebra acting on �2(G). Let � be a length function on G. As
Dirac operator take the operator D = M� of pointwise multiplication by � on �2(G).
The one-parameter unitary group generated by D simply sends t to the operator
of pointwise multiplication by the function eit�. We are then in the context of
Examples 2.7 and 2.8. It is easily seen that the dense subalgebra Cc(G) of functions
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of finite support is in the smooth algebra B∞ for the action of G on L(�2(G)). As
in Example 2.8 we thus obtain a lower-semicontinuous strongly-Leibniz semifinite
∗-seminorm on A, which for any f ∈ Cc(G) is given by

L(f) = ‖[D, f ]‖.
From Proposition 3.1 it follows that Af (for the closure of L) is stable for the
holomorphic-function calculus. But for stupid length functions L can fail to be a
Lip-norm, and it is not easy to see when it is a Lip-norm, and thus a C∗-metric.
In [27], by means of a long and interesting argument, it is shown that L is a Lip-
norm, and thus a C∗-metric, for G = Z

d (and even for the twisted group algebra
C∗(Zd, γ) where γ is a bicharacter on Z

d) when � is either a word-length function
or the restriction to Z

d of a norm on R
d. In [22] it is shown, by techniques entirely

different from those used for the case of Zd, that if G is a hyperbolic group and � is
a word-length function on G then L is a Lip-norm, and thus a C∗-metric. For other
classes of infinite discrete groups, e.g., nilpotent ones, it remains a mystery as to
whether L is a Lip-norm if � is a word-length function. Some related examples can
be found in [1].

Example 4.5. Let α be an action of the d-dimensional torus T
d, d ≥ 2, on a

unital C∗-algebra A. In [24] it is shown that for any skew-symmetric real d × d
matrix θ one can deform the product on A to get a new C∗-algebra, Aθ. Connes
and Landi [7] show that when M is a compact spin Riemannian manifold and α is
a smooth action of Td on M , so on A = C(M), leaving the Riemannian metric in-
variant, and lifting to the spin bundle, then there is a natural Dirac operator for the
(usually non-commutative) deformed algebra Aθ. As in Examples 2.8 and 4.3, this
Dirac operator determines a ∗-seminorm, L, on Aθ which is lower semicontinuous,
strongly Leibniz, and semifinite. Hanfeng Li [17] showed that L is a Lip∗-norm.
Thus L is a C∗-metric.

5. Quotient seminorms and proximity

We now try to modify the definition of quantum Gromov–Hausdorff distance
so as to use the above definition of C∗-metrics. This involves quotient seminorms,
so we begin by exploring them. There are at least three difficulties that confront
us, namely that the quotient of a Leibniz seminorm may not be Leibniz, that the
quotient of a strongly Leibniz seminorm, even if it is Leibniz, may not be strongly
Leibniz, and that reasonable ∗-seminorms can agree on self-adjoint elements but
still be distinct. We begin by considering the first difficulty.

Let L be a Leibniz seminorm on a unital normed algebra C, and let π : C � A
be a unital homomorphism from C onto a unital normed algebra A. Let L̃A be the
quotient seminorm on A, defined by

L̃A(a) = inf{L(c) : c ∈ C and π(c) = a}.
It is known [4] that L̃A need not be Leibniz. (See also lemma 4.3 of [19] and the
comments just before it.) But the situation can be partly rescued by the following
definition.

Definition 5.1. Let C, A, π and L be as above, and assume that π is norm
non-increasing. We say that L is π-compatible if for every a ∈ A and every ε > 0
there is a c ∈ C such that π(c) = a and simultaneously

L(c) ≤ L̃A(a) + ε and ‖c‖ ≤ ‖a‖+ ε.
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Proposition 5.2. Let C, A, π and L be as above. If L is π-compatible then
the norm on A coincides with the quotient norm from C, and L̃A is Leibniz.

Proof. The statement about the norms is easily verified. Suppose now that
a, b ∈ A and ε > 0 are given. Since L is π-compatible, we can find c, d ∈ C such
that π(c) = a and π(d) = b and the conditions of Definition 5.1 are satisfied. Then
π(cd) = π(ab), and so

L̃A(ab) ≤ L(cd) ≤ L(c)‖d‖+ ‖c‖L(d)
≤ (L̃A(a) + ε)(‖b‖+ ε) + (‖a‖+ ε)(L̃A(b) + ε).

Since ε is arbitrary, we see that L̃A is Leibniz. �
However, if L is strongly Leibniz and if L̃A is Leibniz, there seems to be no

reason that L̃A need be strongly Leibniz (though I do not have an example showing
this difficulty). I do not know of a useful way to partly rescue this difficulty.

We now consider the third difficulty. It is quite instructive to first consider
ordinary metric spaces. For this purpose π-compatibility is useful.

Proposition 5.3. Let (Z, ρ) be a compact metric space, and let C = C(Z) be
its C∗-algebra of continuous complex-valued functions. Let X be a closed subset of
Z, let A = C(X), and let π : C → A be the usual restriction homomorphism. Then
the Leibniz seminorm Lρ for ρ is π-compatible.

Proof. Let f ∈ A. Let Q be the radial retraction of C onto its ball of radius
‖f‖∞ centered at 0. It is easily seen that the Lipschitz constant of Q is 1. Then
for any h ∈ C with π(h) = f we can set g = Q ◦ h and we will have π(g) = f and
L(g) ≤ L(h) while ‖g‖ = ‖f‖. This quickly gives the desired result. �

We remark that the above argument does not work for matrix-valued functions,
as employed in [32], since the radial retraction no longer has Lipschitz constant 1
[31].

While Proposition 5.3 appears favorable, the difficulty is that the quotient of
Lρ on A need not agree with the Lipschitz seminorm from the metric ρX on X
coming from restricting ρ:

Example 5.4. (See [39, 31].) Let (X, ρX) be the metric space containing
exactly 3 points, at distance 2 from each other. We can ask what the Gromov–
Hausdorff distance is from (X, ρX) to a metric space consisting of one point, say p.
It is easily seen that the answer is 1, with the metric ρ on Z = X∪{p} that extends
ρX giving p distance 1 to each point of X. Now let f be the function on X which
sends the three points of X to the three different cube roots of 1 in C. It is not
difficult to see that the extension of f to Z that has the smallest Lipschitz norm
is the extension g that sends p to 0. But Lρ(g) is easily seen to be substantially
larger than LρX (f). As remarked in [32, 31], this is possible because the metric
on Z is somewhat hyperbolic.

On the other hand, for any compact metric space (Z, ρ), any closed subset X
of Z, and for any f ∈ CR(X), there is a g ∈ CR(Z) with g|X = f , ‖g‖ = ‖f‖ and
Lρ(g) = LρX (f) [31]. This shows in particular that here LρX does coincide with
the quotient seminorm from Lρ. It also means that for the situation of Example 5.4
we have two Leibniz seminorms on C(X) which agree on real-valued functions but
are nevertheless distinct. (For a related phenomenon see [23].) From the comments
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at the end of the first paragraph of Section 4 we see that these two seminorms will
give the same metrics on the set of probability measures on X, and in particular
the same metrics on X.

We now turn our attention to Gromov–Hausdorff distance. Let (A,LA) and
(B,LB) be C∗-metric spaces. The evident way to adapt the definition of quantum
Gromov–Hausdorff distance given in definition 4.2 of [29] is to require that the
seminorms L considered on A ⊕ B be C∗-metrics. Example 5.4 shows that we
cannot require the quotient of L on A to agree with LA, except on self-adjoint
elements (though for the main class of examples considered in later sections they
will agree, so those examples are better behaved than Example 5.4). Then we do
not know whether the quotient is Leibniz. We could impose π-compatibility to
ensure this, but then we still may not have the strong Leibniz property, so it is not
clear that it is useful to impose this.

Perhaps as our topic develops in the future it will become clearer what are
the best conditions to impose. Anyway, guided by the above observations, we set,
parallel to notation 4.1 of [29]:

Notation 5.5. Let (A,LA) and (B,LB) be compact C∗-metric spaces. We let
MC(LA, LB) denote the collection of all C∗-metrics, L, on A ⊕ B such that the
quotient of L on A agrees with LA on self-adjoint elements of A, and similarly for
the quotient of L on B.

We want to modify the definition of quantum Gromov–Hausdorff distance,
distq, given in definition 4.2 of [29] by requiring that the seminorms involved there
are in MC(LA, LB). But I am not able to show that the resulting notion satisfies
the triangle inequality. When one tries to imitate the proof of the triangle inequal-
ity for distq given in theorem 4.3 of [29], one of the main obstacles is in showing
that the Lip-norm LAC of lemma 4.6, which is defined as a quotient seminorm, is
a C∗-metric. I would not be surprised if the triangle inequality fails. So the term
“distance” should not be used. I will use instead the term “proximity”. Thus:

Definition 5.6. Let (A,LA) and (B,LB) be compact C∗-metric spaces. We
define their proximity by

prox(A,B) = inf{distρL

H (S(A), S(B)) : L ∈ MC(LA, LB)}.

This definition makes sense in the following way. Both S(A) and S(B) are
closed subsets of S(A⊕ B). Much as at the beginning of Section 4, ρL is a metric
on S(A⊕B), and distρL

H is ordinary Hausdorff distance with respect to ρL. We note
that the hypotheses in the definition of MC(LA, LB) are such that proposition 3.1
of [29] applies, so that for any L ∈ MC(LA, LB) the restrictions of ρL to S(A)
and S(B) coincide with ρLA

and ρLB
. Put another way, when we associate to each

L ∈ MC(LA, LB) its restriction to the self-adjoint part of A⊕B we obtain a map
from MC(LA, LB) to M(Ls

A, L
s
B), where Ls

A denotes the restriction of LA to the
self-adjoint part of A, and similarly for Ls

B. This map need not be either injective
or surjective.

It is clear that

distq(A,B) ≤ prox(A,B),

since prox(A,B) is an infimum over a subset of the seminorms used to define
distq(A,B). Thus if we have a sequence (Bn, LBn) of C∗-metric spaces for which
the sequence prox(A,Bn) converges to 0, then it follows that (Bn, LBn) converges
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to (A,LA) for quantum Gromov–Hausdorff distance. For this reason the absence
of the triangle inequality will not be too serious a problem. The advantage of prox,
as mentioned earlier, is that the use of seminorms L on A⊕B that are C∗-metrics
permits one to try to generalize to C∗-metric spaces the results about vector bun-
dles obtained in [32] for ordinary metric spaces. (We plan to discuss this in a future
paper.)

6. Bimodule bridges

In the development of quantum Gromov–Hausdorff distance given in [29] and
used in [30], a very convenient method for constructing suitable seminorms L on
A⊕B involved suitable continuous seminorms N on A⊕B that we called “bridges”,
with L then defined as

L(a, b) = LA(a) ∨ LB(b) ∨N(a, b).

Within the context of the present paper it is natural to require that N satisfy a
suitable Leibniz condition. There is an evident condition to consider, coming from
viewing N as a seminorm on the algebra A⊕B. But it seems more appropriate to
require the stronger condition

N((a, b)(a′, b′)) ≤ N(a, b)‖b′‖ + ‖a‖N(a′, b′).

Examples show that this condition can be interpreted as indicating that N only
provides metric data between A and B, and not within A or within B.

We will find it very useful to use bridges that come from normed bimodules.
Such bridges will satisfy the Leibniz condition stated above. Let A and B be unital
C∗-algebras, and let Ω be an A-B-bimodule. We say that Ω is a normed bimodule
if it is equipped with a norm that satisfies, much as in Section 2,

‖aωb‖ ≤ ‖a‖‖ω‖‖b‖

for all a ∈ A, b ∈ B and ω ∈ Ω. We assume that the identity elements of A and B
both act as the identity operator on Ω.

Definition 6.1. Let (A,LA) and (B,LB) be C
∗-metric spaces. By a bimodule

bridge for (A,LA) and (B,LB) we mean a normed A-B-bimodule Ω together with
a distinguished element ω0 
= 0 such that when we form the seminorm N on A⊕B
defined by

N(a, b) = ‖aω0 − ω0b‖,
it has the property that for any a ∈ A with a = a∗ and any ε > 0 there is a b ∈ B
with b∗ = b such that

LB(b) ∨N(a, b) ≤ LA(a) + ε,

and similarly for A and B interchanged.

Theorem 6.2. Let (Ω, ω0) be a bimodule bridge for the C∗-metric spaces (A,LA)
and (B,LB), and let N be defined as above in terms of (Ω, ω0). Define L on A⊕B
by

L(a, b) = LA(a) ∨ LB(b) ∨N(a, b) ∨N(a∗, b∗).

Then L ∈ MC(LA, LB).
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Proof. One can show directly that N is strongly Leibniz, or view Ω as an
(A ⊕ B)-bimodule in the evident way and apply Proposition 2.1. Since N is also
continuous, it follows from Proposition 1.2 that L is lower-semicontinuous and
strongly Leibniz. Clearly L is a ∗-seminorm. Thus condition a) of Definition 4.1 is
satisfied.

We now want to apply theorem 5.2 of [29] to show that L is a Lip∗-norm.
We must thus show that N ∨ N∗, restricted to the self-adjoint part of A ⊕ B,
is a bridge as defined in definition 5.1 of [29]. From its bimodule source it is
clear that N(1A, 1B) = 0, while N(1A, 0) 
= 0 since ω0 
= 0. Since also N is
continuous, it follows that the first two conditions of definition 5.1 are satisfied.
The main technical condition of Definition 6.1 directly implies that condition 3 of
definition 5.1 of [29] is satisfied, so that N ∨ N∗ is indeed a bridge, and so L,
restricted to self-adjoint elements, is a Lip-norm. Thus L is a Lip∗-norm, and so
condition b) of Definition 4.1 is satisfied.

Because N is clearly finite, (A ⊕ B)f , as defined for L, coincides with Af ⊕
Bf . From the fact that Af and Bf are by assumption spectrally stable in their
completion it follows easily that (A ⊕ B)f is spectrally stable in its completion.
Thus L satisfies condition c) of Definition 4.1, so that L is a C∗-metric.

Suppose now that we are given a ∈ A with a = a∗. From the formula for L it is
clear that L(a, b) ≥ LA(a) for all b ∈ B. Let ε > 0 be given. Then by Definition 6.1
there is a b ∈ B with b = b∗ such that

LB(b) ∨N(a, b) ≤ LA(a) + ε.

Since N and N∗ agree on self-adjoint elements, it follows that L(a, b) ≤ LA(a) + ε.
Since ε is arbitrary, it follows that the quotient of L on A applied to a gives LA(a).
In the same way the quotient of L on B, restricted to self-adjoint elements, gives
LB on self-adjoint elements. Thus L ∈ MC(LA, LB). �

In the next sections we will see how to construct useful bimodule bridges for
“matrix algebras converging to the sphere”.

Hanfeng Li has pointed out to me that prox is dominated by the “nuclear
Gromov-Hausdorff distance” distnu that he defined in remark 5.5 of [19] and studied
further in section 5 of [14]. He gives a proof of this in the appendix of [20]. (He
uses the term “nuclear” because this distance has favorable properties for nuclear
C∗-algebras.) We sketch here how this works, so that it can be easily compared
with what we have done above. The crux of Li’s approach is that he restricts
attention to bimodules of a quite special kind. Specifically, for unital C∗-algebras
A and B let H(A,B) denote the collection of all triples (D, ιA, ιB) consisting of a
unital C∗-algebra D and injective (so isometric) unital homomorphisms ιA and ιB
from A and B into D. We can then view D as an A-B-bimodule in the evident
way. For a C∗-metric LA on A Li sets

E(LA) = {a ∈ Asa : LA(a) ≤ 1},
the LA-unit-ball in Asa. Then for any (D, ιA, ιB) ∈ H(A,B) he considers

distH(ιA(E(LA)), ιB(E(LB))),

the ordinary Hausdorff distance in D for the norm of D. Even though E(LA) and
E(LB) are unbounded, this distance is finite, for the following reason. Let rA be
the radius of (A,LA), as defined in section 2 of [26], so that ‖ã‖˜ ≤ rALA(a) for
any a ∈ Asa, where ˜ denotes image in the quotient Asa/R1A, with the quotient
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norm. Then if a ∈ E(LA) so that LA(a) ≤ 1, it follows that a = a′ + t1A for some
t ∈ R and a′ ∈ Asa with ‖a′‖ ≤ rA. Let b = t1B, so that b ∈ E(LB). Then

‖ιA(a)− ιB(b)‖ = ‖a′‖ ≤ rA.

Thus ιA(E(LA)) is in the rA-neighborhood of ιB(E(LB)). By also interchanging the
roles of a and b we see that

distH(ιA(E(LA)), ιB(E(LB))) ≤ max(rA, rB).

Then Li defines distnu(A,B) (or, more precisely, distnu(LA, LB)) to be

inf{distH(ιA(E(LA)), ιB(E(LB))) : (D, ιA, ιB) ∈ H(A,B)}.

Li shows as follows that distnu satisfies the triangle inequality. Suppose that
a third compact C∗-metric space (C,LC) is given. Let dAB = distnu(A,B), and
similarly for dBC and dAC . Given ε > 0 we can find (D, ιA, ιB) ∈ H(A,B) and
(E, ρB, ρC) ∈ H(B,C) such that

distH(ιA(E(LA)), ιB(E(LB)) ≤ dAB + ε,

and similarly for dBC . Let F = D ∗B E be an amalgamated product of D and E
over B (using the inclusions ιB and ρB). This means that there are unital injective
homomorphisms σD and σE of D and E into F such that σD ◦ ιB = σE ◦ ρB. (It
is natural to cut down to the subalgebra generated by the images of D and E in
F .)

Before continuing, we remark that it is easy to construct a universal amalga-
mated free product, A ∗C B, if one does not insist that the homomorphisms into it
from A and B are injective. One takes the quotient of the universal (i.e. full) free
product A ∗ B by the ideal generated by the desired relations from C. See [21].
What is not as simple is to show that the evident homomorphisms of A and B into
the universal A ∗C B are injective. This was first shown by Blackadar in [3]. In a
comment added in proof in that paper, Blackadar says that John Phillips has shown
him a preferable proof. Blackadar has shown me this proof of John Phillips, and
since it seems not to have appeared in print up to now, we sketch it here. Hanfeng
Li has pointed out to me that a version of the argument in a substantially more
complicated situation appears in the proof of proposition 2.2 of [2].

To simplify notation we simply view C as a unital subalgebra of each of A
and B. The crux of the matter is to show that there are faithful (non-degenerate)
representations of A and B on the same Hilbert space whose restrictions to C are
equal. We construct such representations as follows.

(1) Let (π1,H1) be a faithful representation of A. Form the restricted repre-
sentation (π1|C ,H1) of C, and extend it to a representation (ρ1,H1⊕K1)
of B. (This can be done by decomposing into cyclic representations and
extending their states – see lemma 2.1 of [2] .)

(2) Notice that ρ1|C carries H1 into itself and so carries K1 into itself. Extend
(ρ1|C ,K1) to a representation (π2,K1 ⊕H2) of A.

(3) Extend (π2|C ,H2) to a representation (ρ2,H2 ⊕K2) of B.
(4) Continue this process through all the positive integers, and form H =

⊕∞
1 (Hj ⊕Kj). The πj ’s and ρj ’s combine to give representations π and ρ

of A and B on H which can be checked to agree on C. Since π1 was chosen
to be a faithful representation of A, so is π. Thus the homomorphism from
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A into A ∗C B must be injective. The situation is symmetric for A and
B, so the homomorphism from B into A ∗C B must also be injective.

We return to demonstrating the triangle inequality for distnu. Let τA =
σD ◦ ιA and τC = σE ◦ ρC . Then (F, τA, τC) ∈ H(A,C). Furthermore, if a ∈
E(LA) then there is a b ∈ E(LB) such that ‖ιA(a) − ιB(b)‖ ≤ dAB + ε, so that
‖τA(a)− σD(ιB(b))‖ ≤ dAB + ε. In the same way there exists c ∈ E(LC) such that
‖σE(ρB(b))− τC(c)‖ ≤ dBC + ε. But σD(ιB(b)) = σE(ρB(b)), and so

‖τA(a)− τC(c)‖ ≤ dAB + dBC + 2ε.

In this way we find that

distnu(LA, LC) ≤ distnu(LA, LB) + distnu(LB, LC).

Further favorable properties of distnu are presented in [19, 14] that we will not
discuss here.

Given (D, ιA, ιB) ∈ H(A,B), we can view D as a normed A-B-bimodule in the
evident way, and as special element we can choose ω0 = 1D. The corresponding
bounded seminorm ND on A⊕B is then simply defined by

ND(a, b) = ‖ιA(a)− ιB(b)‖.
Given C∗-metrics LA and LB on A and B, we can seek constants γ such that γ−1ND

is a bimodule bridge for LA and LB. Let δ = distH(ιA(E(LA)), ιB(E(LB))). Given
any ε > 0 we show that δ + ε is such a constant. Let a ∈ Asa with LA(a) = 1.
Then there is a b ∈ Bsa such that LB(b) ≤ 1 and ‖ιA(a)− ιB(b)‖ ≤ δ + ε, so that

LB(b) ∨ (δ + ε)−1ND(a, b) ≤ 1 = LA(a).

We can interchange the roles of A and B. Thus we see that (δ+ε)−1ND is indeed a
bimodule bridge. Notice that for any a ∈ A and b ∈ B we have N(a∗, b∗) = N(a, b).
Thus when we define L on A⊕B by

L(a, b) = LA(a) ∨ LB(b) ∨ (δ + ε)−1ND(a, b)

it follows from Theorem 6.2 that L ∈ MC(LA, LB).
But even more is true. As suggested by Li, we will follow the argument in the

last paragraph of the proof of proposition 4.7 of [18]. Let μ ∈ S(A). View A and
B as subalgebras of D via ιA and ιB. By the Hahn-Banach theorem, extend μ to
a state ν̃ of D, and then restrict ν̃ to B to get ν ∈ S(B). Then for a ∈ Asa and
b ∈ Bsa we have

|μ(a)− ν(b)| = |ν̃(a)− ν̃(b)| ≤ ‖ιA(a)− ιB(b)‖ ≤ (δ + ε)L(a, b),

where L is defined as above. Consequently if L(a, b) ≤ 1 then we have |μ(a)−ν(b)| ≤
(δ+ε). Thus μ is in the δ+ε-neighborhood of S(B) for the metric ρL on S(A⊕B).
The same argument works with the roles of A and B reversed. Since ε is arbitrary,
we see from this that

prox(A,B) ≤ distnu(A,B),

as asserted.
In [19, 14] Li indicates that distnu works very well with many of the classes of

specific examples whose metric aspects have been studied. In particular, he pointed
out to me that distnu can be used to give an alternate proof of our Main Theorem (in
a qualitative way). This alternate proof is attractive because of its quite general
approach. However, a proof via distnu appears to me to be less concrete and
quantitative than that which we give in the next sections, both because the proof
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via distnu uses a somewhat deep theorem of Blanchard on the subtrivialization of
continuous fields of nuclear C∗-algebras (as discussed in remark 5.5 of [19]), and
because of its use of the Hahn-Banach theorem seen just above. The proof we will
give provides specific estimates for the approximation, and provides a constructive
way of finding a state for one of the algebras that is close to a given state of the
other algebra.

Motivated by Li’s definition of his nuclear distance I did find, for use in [33],
some convenient bimodules that are C∗-algebras. But the corresponding injective
maps are not unital, so these bimodules do not actually fit into Li’s framework.

7. Matrix algebras and homogeneous spaces

In this section we begin the study of our main example. Our discussion will be
fairly parallel to that in [30] but with some important differences. For the reader’s
convenience we will include here some fragments of [30] in order to make precise
our setting. We will usually use the notation used in [30].

Let G be a compact group (perhaps even finite at first). Let U be an irreducible
unitary representation of G on a Hilbert space H. Let B = L(H) denote the C∗-
algebra of linear operators on H (a “full matrix algebra”). There is a natural action,
α, of G on B by conjugation by U . That is, αx(T ) = UxTU

∗
x for x ∈ G and T ∈ B.

We introduce metric data into the picture by choosing a continuous length-function,
�, on G. We require that � satisfy the additional condition that �(xyx−1) = �(y) for
x, y ∈ G. This ensures that the metric on G defined by � is invariant under both
left and right translations. As in Example 2.5 we define a seminorm, LB , on B by

LB(T ) = sup{‖αx(T )− T‖/�(x) : x 
= eG}.
Then LB is a C∗-metric on B for the reasons given in Example 4.3.

Let P be a rank-one projection in B. Let H = {x ∈ G : αx(P ) = P}, the
stability subgroup for P . Let A = C(G/H), the C∗-algebra of continuous complex-
valued functions on G/H. We let λ denote the usual action of G on G/H, and so
on A, by translation. We define a seminorm, LA, on A as in Example 2.5 by

LA(f) = sup{‖λx(f)− f‖/�(x) : x 
= eG}.
Again, LA is a C∗-metric for the reasons given in Example 4.3.

We can then ask for estimates of prox(A,B). To obtain such an estimate we
need to construct a suitable C∗-metric on A ⊕ B. We do this as follows. For any
T ∈ B its Berezin covariant symbol, σT , is defined by

σT (x) = tr(Tαx(P )),

for x ∈ G. Here tr is the usual unnormalized trace on B. Because of the definition
of H we see that σT ∈ C(G/H) = A. When the αx(P )’s are viewed as giving states
of B via tr as above, they form a “coherent state”, assigning a pure state of B to
each pure state of A. Once we note that tr is α-invariant, it is easy to see that
σ is a unital, positive, norm-non-increasing α-λ-equivariant operator from B to A.
However eventually one really wants also the property that if σT = 0 then T = 0.
This is equivalent to the linear span of the αx(P )’s in B being all of B. It is an
interesting question as to which representations U admit such a P , and how many
such P ’s, even for finite groups.

We let Ω = L(B,A), the Banach space of linear operators from B to A,
equipped with the operator norm corresponding to the C∗-norms on A and B.
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(Perhaps we should be using the space of completely bounded operators here.) We
let M and Λ denote the left regular representations of A and B. Then Ω is an
A-B-bimodule for the operations

fω = Mf ◦ ω and ωT = ω ◦ ΛT .

It is easily checked that Ω is a normed A-B-bimodule. Of course σ ∈ Ω. We will
take our bimodule bridge for (A,LA) and (B,LB) to be of the form (Ω, γ−1σ) where
γ is a positive real number that is yet to be determined. Set

Nσ(f, T ) = ‖Mf ◦ σ − σ ◦ ΛT ‖.
Then the seminorm N from (Ω, γ−1σ) is defined by

N(f, T ) = γ−1Nσ(f, T ).

We need to determine the values of γ for which (Ω, γ−1σ) is a bimodule bridge
so that, in particular, the corresponding seminorm L has LA and LB as quotients
for self-adjoint elements. But, as a first step in showing what the implication for
proximity will be, we have:

Proposition 7.1. Suppose that γ is such that (Ω, γ−1σ) is a bimodule bridge
for LA and LB, and let N be the seminorm it determines. Let L = LA∨LB∨N∨N∗

and let ρL be the metric on S(A ⊕ B) that L determines. Then S(A) is in the γ-
neighborhood of S(B) for ρL.

Proof. Let μ ∈ S(A). We must find a ν ∈ S(B) such that ρL(μ, ν) ≤ γ. We
choose ν = μ ◦σ. Let (f, T ) ∈ A⊕B be such that L(f, T ) ≤ 1, so that N(f, T ) ≤ 1
and thus Nσ(f, T ) ≤ γ. Then

|μ(f, T )− ν(f, T )| = |μ(f)− μ(σT )| ≤ ‖f − σT ‖
= ‖(Mf ◦ σ − σ ◦ ΛT )(I)‖ ≤ Nσ(f, T ) ≤ γ,

where I is the identity element in B. From the definition of ρL it follows that
ρL(μ, ν) ≤ γ. �

We remark that in our earlier paper on “matrix algebras converge to the sphere”
[30] the bridge N that we had used was N(f, T ) = γ−1‖f − σT ‖. The above
calculation reveals that this old N is related to our new one just by applying our
Mf ◦ σ − σ ◦ ΛT to the identity operator. The old N is not Leibniz.

To proceed further we now obtain another expression for Nσ which will be more
convenient for some purposes. We note that for S, T ∈ B and f ∈ A we have

(Mf ◦ σ − σ ◦ ΛT )(S) = fσS − σTS ,

and that when this is evaluated at x ∈ G/H we obtain

f(x)σS(x)− σTS(x) = f(x) tr(Sαx(P ))− tr(TSαx(P ))

= tr(αx(P )(f(x)I − T )S).

The operator norm of Mf ◦ σ − σ ◦ΛT is then the supremum of the absolute value
of the above expression taken over all x ∈ G/H and S ∈ B with ‖S‖ ≤ 1. But tr
gives a pairing that expresses the dual of B with its operator norm as B with the
trace-class norm, which we denote by ‖ · ‖1. From this fact we see that

‖Mf ◦ σ − σ · ΛT ‖ = sup{‖αx(P )(f(x)I − T )‖1 : x ∈ G/H}.
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But if R is a rank-one operator then R∗R = r2Q for some rank-one projection Q
and some r ∈ R

+, so that

‖R‖1 = tr((R∗R)1/2) = r = ‖R∗R‖1/2 = ‖R‖,
where the norm on the right is the operator norm. In this way we obtain:

Proposition 7.2. For f ∈ A and T ∈ B we have

Nσ(f, T ) = sup{Nx(f, T ) : x ∈ G/H}
where Nx(f, T ) = ‖αx(P )(f(x)I − T )‖.

We remark that Nx(f, T ) can easily be checked to be strongly Leibniz. Also, see
the first section of [33] for a different, perhaps more convenient, normed bimodule
that determines Nσ.

8. The choice of the constant γ

Let us first see what choices of γ ensure that L has LA as a quotient. It suffices
to choose γ such that for any f ∈ A we can find T ∈ B such that LB(T )∨N(f, T ) ≤
LA(f). On G/H let us momentarily use the G-invariant measure of mass 1 to give
A the norm from L2(G/H). Similarly, on B we put the Hilbert–Schmidt norm from
the normalized trace. Then σ has an adjoint operator, which we denote by σ̆. It is
easily computed [30] to be defined by

σ̆f = d

∫

G/H

f(x)αx(P )dx,

where d is the dimension of H. One can easily verify that σ̆ is a positive and λ-
α-equivariant map from A to B. Furthermore, σ̆1 = d

∫

αx(P )dx, which is clearly
α-invariant, and so is a scalar multiple of I since U is irreducible. But clearly
the usual trace of d

∫

αx(P )dx is d. Thus σ̆1 = I, that is, σ̆ is unital. (This is
why we used the normalized traces in defining σ̆.) It follows that σ̆ is also norm
non-increasing.

Then, given f ∈ A, we will choose T to be T = σ̆f . It is easily seen (as in the
proof of proposition 1.1 of [30]) that LB(σ̆f ) ≤ LA(f). For any x ∈ G/H we have
by equivariance of σ̆

Nx(f, σ̆f ) = ‖αx(P )(f(x)I − σ̆f )‖ = ‖P ((λ−1
x f)(e)I − σ̆λ−1

x f )‖.

Since f is arbitrary and LA is λ-invariant, it clearly suffices for us to consider
‖P (f(e)I − σ̆f )‖. But

‖P (f(e)I − σ̆f )‖ =

∥

∥

∥

∥

P

(

f(e)d

∫

αy(P )dy − d

∫

f(y)αy(P )dy

)∥

∥

∥

∥

= d

∥

∥

∥

∥

∫

(f(e)− f(y))Pαy(P )dy

∥

∥

∥

∥

≤ LA(f) d

∫

ρG/H(e, y)‖Pαy(P )‖dy,

where ρG/H is the ordinary metric on G/H from LA. From all of this we obtain:

Proposition 8.1. Set γA = d
∫

ρG/H(e, y)‖Pαy(P )‖dy. Then for any γ ≥ γA

the seminorm L = LA∨LB ∨γ−1(Nσ ∨N∗
σ) on A⊕B has LA as its quotient on A.
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We remark that in the above proposition we do not have to restrict attention
to self-adjoint elements, in contrast to the requirement in Definition 6.1. Note that
σ̆f̄ = (σ̆f )

∗. I do not know whether the above condition on γ is the best that can
be obtained in the absence of further hypotheses on G, U , P and �.

We now consider the quotient of L on B. Given T ∈ B we seek f ∈ A such
that LA(f) ∨ N(f, T ) ≤ LB(T ). We choose f = σT , and seek what requirement
this puts on γ. As above, it is easy to check that LA(σT ) ≤ LB(T ). Again by
equivariance we have

Nx(σT , T ) = ‖αx(P )(tr(Tαx(P ))I − T )‖ = ‖P (tr(Pα−1
x (T ))I − α−1

x (T ))‖.
Since T is arbitrary and LB is α-invariant, it suffices to choose γ large enough that
‖P tr(PT )− PT‖ ≤ γLB(T ) for all T ∈ B. Notice that the left-hand side gives a

seminorm (with value 0 for T = P or I) on the quotient space B̃ = B/CI, while

LB gives a norm on B̃. Since B is finite-dimensional, there does exist a finite γ
such that the above inequality is satisfied. Notice also that σT∗ = (σT )

−. Thus we
obtain:

Proposition 8.2. Define γB by

γB = sup{‖P tr(PT )− PT‖ : T ∈ B and LB(T ) ≤ 1}.
Then γB is finite, and for any γ ≥ γB the seminorm L = LA ∨LB ∨ γ−1(Nσ ∨N∗

σ)
on A⊕B has LB as its quotient on B.

For later use we now express ‖P (tr(PT )I − T )‖ in a different form. Since
taking adjoints is an isometry, and by the C∗-relation, and by the fact that if R is
a positive operator then ‖PRP‖ = tr(PRP ) because P is of rank 1, we have

‖P (tr(PT )I − T )‖2 = ‖P (tr(PT )I − T )(tr(PT )I − T )∗P‖

= tr
(

P (tr(PT )I − T )(tr(PT )I − T )∗P )
)

= | tr(PT )|2 − tr(PTP )tr(PT )

− tr(PT ) tr(PT ∗P ) + tr(PTT ∗P )

= tr(PTT ∗P )− | tr(PT )|2.
Thus:

Proposition 8.3. For any T ∈ B we have

‖P (tr(PT )I − T )‖ = (tr(PTT ∗P )− | tr(PT )|2)1/2.

We remark that if ξ is a unit vector in the range of P then

tr(PTT ∗P )− | tr(PT )|2 = 〈TT ∗ξ, ξ〉 − |〈T ∗ξ, ξ〉|2.
When T is self-adjoint this is the “mean-square deviation” of T in the state deter-
mined by ξ [37].

We now need to consider how small a neighborhood of S(A) contains S(B).
Let ν ∈ S(B) be given. We choose μ = ν ◦ σ̆, and observe that μ ∈ S(A). Let
(f, T ) ∈ A⊕B be such that L(f, T ) ≤ 1, so that Nσ(f, T ) ≤ γ. Then

|μ(f, T )− ν(f, T )| = |ν(σ̆f )− ν(T )| ≤ ‖σ̆f − T‖

=

∥

∥

∥

∥

d

∫

f(x)αx(P )dx− d

∫

αx(P )Tdx

∥

∥

∥

∥
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= d

∥

∥

∥

∥

∫

αx(P )(f(x)I − T )dx

∥

∥

∥

∥

≤ d

∫

Nx(f, T )dx

≤ dNσ(f, T ) ≤ dγ.

But the presence of d here causes us difficulties later, so we take another path,
namely that used near the end of section 2 of [30]. We have

‖σ̆f − T‖ ≤ ‖σ̆f − σ̆(σT )‖+ ‖σ̆(σT )− T‖
≤ ‖f − σT ‖+ ‖σ̆(σT )− T‖ ≤ γA + ‖σ̆(σT )− T‖,

where we have used that ‖f − σT ‖ ≤ Nσ(f, T ), as seen in the proof of Proposition
7.1. Notice that T �→ ‖σ̆(σT ) − T‖ is a seminorm on B which takes value 0 for

T = I, and so descends to a seminorm on B̃ = B/CI, where LB becomes a norm.

Notation 8.4. We set

δB = sup{‖T − σ̆(σT )‖ : LB(T ) ≤ 1}.

With this notation the above discussion gives:

Proposition 8.5. Suppose that γ ≥ γA ∨ γB, so that L has LA and LB as
quotients (where L = LA ∨ LB ∨ γ−1(Nσ ∨N∗

σ)). Then S(B) is in the (γA + δB)-
neighborhood of S(A).

9. The set-up for compact Lie groups

We now specialize to the case in which G is a compact connected semisimple
Lie group. We use many of the techniques used in sections 6 and 7 of [30], and we
usually use the notation established in sections 5 and 6 of [30]. We now review that
notation. We let g0 denote the Lie algebra ofG, while g denotes the complexification
of g0. We choose a maximal torus in G, with corresponding Cartan subalgebra of g,
its set of roots, and a choice of positive roots. We let (U,H) be an irreducible unitary
representation of G, and we let U also denote the corresponding representation of
g. We choose a highest weight vector, ξ, for (U,H) with ‖ξ‖ = 1. For any n ∈ Z≥1

we set ξn = ξ⊗n in H⊗n, and we let (Un,Hn) be the restriction of U⊗n to the
U⊗n-invariant subspace, Hn, of H⊗n which is generated by ξn. Then (Un,Hn) is
an irreducible representation of G with highest weight vector ξn, and its highest
weight is just n times the highest weight of (U,H). We denote the dimension of Hn

by dn.
We let Bn = L(Hn). The action of G on Bn by conjugation by Un will be

denoted simply by α. We assume that a continuous length function, �, has been
chosen for G, and we denote the corresponding C∗-metric on Bn by LB

n . We let
Pn denote the rank-one projection along ξn. Then the α-stability subgroup H for
P = P 1 will also be the stability subgroup for each Pn. Let γA

n and γB
n be the

constants defined in Propositions 8.1 and 8.2 but for Pn.
As done earlier, we let A = C(G/H), and we let LA be the seminorm on A for

� and the action of G. We can now state the main theorem of this paper.

Theorem 9.1. Let notation be as above. Set γn = max{γA
n , γ

B
n } for each

n, and let Ln be defined on A ⊕ Bn as in Proposition 7.1 but using γn. Then
Ln ∈ MC(LA, LB), and the sequence {Ln} shows that the sequence {prox(A,Bn)}
converges to 0 as n goes to ∞.

The next three sections will be devoted to the proof of this theorem.
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10. The proof that γA
n → 0

Consistent with the notation of Proposition 8.1, we have set

γA
n = dn

∫

ρG/H(e, x)‖Pnαx(P
n)‖dx.

Proposition 10.1. The sequence {γA
n } converges to 0.

Proof. For any two vectors η, ζ we let 〈η, ζ〉0 denote the rank-one operator
that they determine. Then for any n we have

‖Pnαx(P
n)‖ = ‖〈ξn, ξn〉0〈Un

x ξ
n, Un

x ξ
n〉0‖

= |〈Un
x ξ

n, ξn〉| = |〈Uxξ, ξ〉|n = ‖Pαx(P )‖n.
We use the analogous treatment given in lemma 3.3 and theorem 3.4 of [30], where
it is shown that dn|〈Uxξ, ξ〉|2ndx (= dn‖Pnαx(P

n)‖2dx) is a probability measure
on G/H, and that the sequence of these probability measures converges in the
weak-∗ topology to the δ-measure on G/H supported at eH. Since ρG/H(e, e) = 0,

it follows that the sequence dn
∫

ρG/H(e, x)‖Pnαx(P
n)‖2dx converges to 0 . Now

γA
2n =d2n

∫

ρG/H(e, x)‖Pαx(P )‖2ndx

= (d2n/dn)dn

∫

ρG/H(e, x)‖Pnαx(P
n)‖2dx,

and so if we can show that (d2n/dn) is bounded, then we find that the sequence
{γ2n} converges to 0. We use the Weyl dimension formula, as presented for example
in theorem 4.14.6 of [38], to show that {d2n/dn} is bounded. We let ω be the highest
weight of U for our choice P of positive roots. If one examines the dimension
formula, it is evident that one only needs to use those positive roots α such that
〈ω, α〉 > 0. We denote this set by Pω, and we denote its cardinality by p. It is clear
that for any n ∈ Z>0 we have Pnω = Pω. The Weyl dimension formula then tells
us that

dn =
(
∏

〈nω + δ, α〉
)/(

∏

〈δ, α〉
)

where both products are taken over Pω, and δ is half the sum of the positive roots.
Thus

d2n/dn =
(
∏

〈2nω + δ, α〉
)/(

∏

〈nω + δ, α〉
)

=
∏

(1 + 〈nω, α〉/〈nω + δ, α〉) ≤ 2p,

so that the sequence d2n/dn is bounded as needed, and consequently the sequence
{γA

2n} converges to 0. In the same way, we find that dn+1/dn ≤ (1 + n−1)p. Since
0 ≤ ‖Pαx(P )‖ ≤ 1, we have ‖Pαx(P )‖n ≥ ‖Pαx(P )‖n+1. Thus the integrals
defining γA

n are non-increasing. It follows that γA
2n+1 ≤ (1+(2n)−1)pγA

2n. Since the

sequence {γA
2n} converges to 0, it follows that the sequence {γA

2n+1} does also, so

that the sequence {γA
n } converges to 0. �

11. Properties of Berezin symbols

We now need results related to those given in sections 4 and 5 of [30], leading
to the proof of theorem 6.1 of [30], and we will shortly also need theorem 6.1 of
[30] itself. But Jeremy Sain has found a substantial simplification of the proof



568 MARC A. RIEFFEL

of theorem 6.1 of [30]. He gives his argument in section 4.4 of [35] in the more
complicated context of quantum groups. We will use his arguments here in our
present context. This will in particular provide Sain’s proof of theorem 6.1 of [30].

As in [30], we denote the Berezin symbol map from Bn to A = C(G/H) by
σn. From theorem 3.1 of [30] we find that σn is injective because ξn is a highest
weight vector. Consistent with the notation defined near the beginning of Section
8, we denote the adjoint of σn by σ̆n. We let

(11.1) δAn =

∫

G/H

ρG/H(e, x)dntr(P
nαx(P

n)) dx.

In section 3 of [30] δAn was denoted by γn, and theorem 3.4 of [30] shows both that
the sequence {δAn } converges to 0, and that

(11.2) ‖f − σn(σ̆n(f))‖∞ ≤ δAnLA(f)

for all f ∈ A and all n. We remark that σn ◦ σ̆n is often called the “Berezin
transform” (for a given n).

As in section 4 of [30] we let Ĝ denote the set of equivalence classes of irreducible

unitary representations of G. For any finite subset S of Ĝ we let AS and Bn
S denote

the direct sum of the isotypic components of A and Bn for the representations in
S and for the actions of G on A and Bn (and similarly for actions on other Banach
spaces). Since σn is equivariant, it carries Bn

S into AS . Since σn is injective, it
follows that the dimension of Bn

S is no larger than that of AS , which is finite.
Since {δAn } converges to 0, it follows from Inequality 11.2 that σn◦σ̆n converges

strongly to the identity operator on the space of functions f for which LA(f) < ∞.
But AS is contained in this space and is finite-dimensional, and σn ◦ σ̆n carries AS
into itself for each n. Consequently σn ◦ σ̆n restricted to AS converges in norm
to the identity operator on AS . It follows that there is an integer, NS , such that
σn ◦ σ̆n on AS is invertible and ‖(σn ◦ σ̆n)−1‖ < 2 for every n > NS . In particular,
σn from Bn

S to AS will be surjective for n > NS . Since, as mentioned above, σn is
always injective, and ‖σn‖ = 1 = ‖σ̆n‖ for all n, we can quickly see that:

Lemma 11.3. (See corollary 4.17 of [35].) For n > NS both σn and σ̆n going
between AS and Bn

S are invertible and their inverses have operator norm no bigger
than 2.

Fix n > NS , and let T ∈ Bn
S be given. Set f = (σ̆n)−1(T ). Note that f is

well-defined, and that ‖f‖∞ ≤ 2‖T‖ by Lemma 11.3. Then

‖T − σ̆n(σn
T )‖ = ‖σ̆n(f)− σ̆n(σn(σ̆n

f ))‖ ≤ ‖f − σn(σ̆n
f )‖ ≤ δAnLA(f),

where we have used Inequality 11.2 for the last inequality just above. Because
(σ̆n)−1 is α-λ-equivariant and ‖(σ̆n)−1‖ ≤ 2, we have LA(f) ≤ 2LB

n (T ). We have
thus obtained:

Lemma 11.4. (See proposition 4.19 of [35].) For any n > NS and any T ∈ Bn
S

we have

‖T − σ̆n(σn
T )‖ ≤ 2δAnL

B
n (T ).

Choose a faithful finite-dimensional unitary representation, π0, of G that con-
tains the trivial representation, and let π = π0 ⊗ π̄0, where π̄0 is the contragredient
representation for π0. Let χ be the character of π. Then χ is a non-negative real-
valued function on G. Since π is faithful, we have the strict inequality χ(x) < χ(e)
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for any x ∈ G with x 
= e. Let χm denote the character of π⊗m, so that equally well

it is the mth pointwise power of χ. Set ϕm = χm/‖χm‖1. Then the sequence {ϕm}
is a norm-1 approximate identity for the convolution algebra L1(G), as seen in the
proof of theorem 8.2 of [29]. Furthermore, each ϕm is central in L1(G). Let β be
an isometric strongly continuous action of G on a Banach space D, and let LD be
the corresponding seminorm for �. Let βϕn

denote the corresponding “integrated
form” operator. As in the proof of lemma 8.3 of [29], for each d ∈ D we have

‖d− βϕm
(d)‖ = ‖d

∫

ϕm(x) dx −
∫

ϕm(x)βx(d) dx‖

≤
∫

ϕm‖d− βx(d)‖dx ≤
(∫

ϕm(x)�(x)dx

)

LD(d),

and the sequence
{∫

ϕm(x)�(x)dx
}

converges to 0.
We can now argue exactly as in the rest of the proof of theorem 6.1 of [30] to

obtain:

Theorem 11.5. (Theorem 6.1 of [30]) For each n ≥ 1 let δBn be as defined in
Notation 8.4 but for Bn, so that it is the smallest constant such that

‖T − σ̆n(σn
T )‖ ≤ δBn LB

n (T )

for all T ∈ Bn. Then the sequence {δBn } converges to 0.

Proof of Theorem 11.5. Let ε > 0 be given. We can choose ϕ = ϕm as
just above such that for any ergodic action β of G on any unital C∗-algebra C we
have ‖c− βϕ(c)‖ ≤ (ε/3)L(c) for all c ∈ C. Now ϕ is a positive function, and is a

linear combination of the characters of a finite subset S of Ĝ, and so the integrated
operator βϕ is a completely positive unital equivariant map of C onto its S-isotypic
component.

Then for every n and every T ∈ Bn we have αϕ(T ) ∈ Bn
S and

‖T − σ̆n(σn
T )‖ ≤ (ε/3)LB

n (T ) + ‖αϕ(T )− σ̆n(σn
αϕ(T ))‖+ (ε/3)LB

n (T ).

From Lemma 11.4 there is an integer Nε such that for any n > Nε and any T ′ ∈ Bn
S

we have

‖T ′ − σ̆n(σn(T ′))‖ ≤ (ε/3)LB
n (T

′).

Since αϕ(T ) ∈ Bn
S , we can apply this to T ′ = αϕ(T ). When we use the fact that

LB
n (αϕ(T )) ≤ LB

n (T ), we see that for any n > Nε and any T ∈ Bn we have

‖T − σ̆n(σn
T )‖ ≤ εLB

n (T ).

This immediately implies the statement about the sequence {δBn }.
�

12. The proof that γB
n → 0

Consistent with the notation of Proposition 8.2, we have set

γB
n = sup{‖Pn tr(PnT )− PnT‖ : T ∈ Bn and LB

n (T ) ≤ 1}.

Proposition 12.1. The sequence {γB
n } converges to 0.
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Proof. Let ε > 0 be given. With the notation that we used just before
Theorem 11.5, choose m0 such that for ϕ = ϕm0

we have
∫

ϕ(x)�(x)dx ≤ ε/4.
Then by the calculation done there we have

‖T − αϕ(T )‖ ≤ (ε/4)LB
n (T )

for all n and for all T ∈ Bn. Then for any n and any T ∈ Bn

‖(Pn tr(PnT )− PnT )− (Pn tr(Pnαϕ(T ))− Pnαϕ(T ))‖
≤ | tr(Pn(T − αϕ(T )))|+ ‖T − αϕ(T )‖
≤ 2‖T − αϕ(T )‖ ≤ (ε/2)LB

n (T ),

where for the next-to-last inequality we have used the fact that Pn(T − αϕ(T )) is
of rank 1.

Now as discussed in the proof of Theorem 11.5, ϕ is a linear combination of the
characters of a finite subset S of Ĝ. Thus αϕ(T ) ∈ Bn

S and LB
n (αϕ(T )) ≤ LB

n (T ),
and so we now see that it suffices to prove:

Main Lemma 12.2. Let S be given. For any ε > 0 there is an integer Nε such
that for any n ≥ Nε and any T ∈ Bn

S we have

‖Pn tr(PnT )− PnT‖ ≤ (ε/2)LB
n (T ).

Proof. Let f ∈ A, and let n be given. Because A is commutative and σ̆n is
positive, it follows from Kadison’s generalized Schwarz inequality (e.g. 10.5.9 of
[12]) that we have

σ̆n
f (σ̆

n
f )

∗ ≤ σ̆n
ff̄

for the usual order on positive operators. When we combine this with Proposi-
tion 8.3 we obtain

‖Pn(tr(Pnσ̆n
f )I − σ̆n

f )‖2 = tr(Pnσ̆n
f (σ̆

n
f )

∗Pn)− | tr(Pnσ̆n
f )|2

≤ tr(Pnσ̆n
ff̄ )− | tr(Pnσ̆n

f )|2 = (σn(σ̆n
ff̄ ))(e)− |σn(σ̆n

f )(e)|2,
which by Inequality 11.2 above and theorem 3.4 of [30] converges to

(ff̄)(e)− |f(e)|2 = 0

as n increases.
For each n define an operator, Jn, on Bn by

Jn(T ) = Pn(tr(PnT )I − T ).

The calculation above shows that the sequence Jn(σ̆n
f ) converges to 0 for any f ∈ A

with LA(f) < ∞. For S as above it follows that the sequence of restrictions of
Jn◦σ̆n to AS converges to 0 in operator norm. Let NS be as in Lemma 11.3, so that
‖(σ̆n)−1‖ ≤ 2 for n > NS . It follows that for n > NS we have ‖Jn‖ ≤ 2‖Jn ◦ σ̆n‖,
so that the sequence of restrictions of Jn to Bn

S converges to 0 in norm. Thus for
any ε′ > 0 we can find an nε′ such that for n > nε′ and all T ∈ Bn

S we have

‖Jn(T )‖ ≤ ε′‖T‖.
Now Jn(I) = 0, and so it follows that

‖Jn(T )‖ ≤ ε′‖T̃‖∼,
where much as before ‖ · ‖∼ denotes the quotient norm on B̃n = Bn/CI. But
by lemma 2.4 of [25] the radius of each of the algebras Bn is no larger than r =
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∫

�(x)dx, in the sense that ‖T̃‖∼ ≤ rLB
n (T ) for all T ∈ Bn. We include a slightly

simpler proof here. For T ∈ Bn let η(T ) =
∫

αx(T ) dx, so that η(T ) ∈ CI since
Un is irreducible. Then

‖T̃‖∼ ≤ ‖T − η(T )‖ = ‖
∫

(T − αx(T ))dx‖ ≤ LB
n (T )

∫

�(x)dx.

It follows that

Jn(T ) ≤ rε′LB
n (T ).

Consequently, if we choose ε′ = ε/(2r), and set Nε = nε′ ∨ NS , we find that for
n ≥ Nε we have

‖Pn tr(PnT )− PnT‖ ≤ (ε/2)LB
n (T )

for all T ∈ Bn
S , as needed. �

�

13. The proof of the main theorem

We now use the results of the previous sections to prove Theorem 9.1. For any
n set γn = max(γA

n , γ
B
n ), and define Ln on A⊕Bn by

Ln(f, T ) = LA(f) ∨ LB
n (T ) ∨ γ−1

n (Nσn(f, T ) ∨Nσn(f̄ , T ∗)).

Then for each n we have γn ≥ γA
n so that the quotient of Ln on A is LA by

Proposition 8.1, and we have γn ≥ γB
n so that the quotient of Ln on Bn is LB

n by
Proposition 8.2. Thus Ln is in MC(LA, L

B
n ) as defined in Notation 5.5.

Then according to Proposition 7.1 (with notation as in Proposition 8.1 and in
the sentence before Proposition 10.1), S(A) is in the γn-neighborhood of S(Bn) for
ρLn

. Furthermore, according to Proposition 8.5 (with notation as in Theorem 11.5)
S(Bn) is in the (γA

n + δBn )-neighborhood of S(A). It follows that

dist
ρLn

H (S(A), S(Bn)) ≤ max{γA
n + δBn , γn} = max{γA

n + δBn , γB
n },

and so

prox(A,Bn) ≤ max{γA
n + δBn , γB

n }.
But γA

n , δ
B
n and γB

n all converge to 0 as n goes to ∞, according to Proposition 10.1,
Theorem 11.5 (theorem 6.1 of [30]), and Proposition 12.1 respectively. Conse-
quently prox(A,Bn) converges to 0 as n goes to ∞, as desired.

14. Matricial seminorms

In this section we will briefly describe the relations between the previous sec-
tions of this paper and several variants of quantum Gromov–Hausdorff distance.

The first variant is the matricial quantum Gromov–Hausdorff distance intro-
duced by Kerr [13]. It has the advantage that if two C∗-algebras with Lip-norms
are at distance 0 for his distance then the C∗-algebras are isomorphic. We will not
repeat here Kerr’s definitions and results for general operator systems; rather we
will only indicate, somewhat sketchily, what Kerr’s variant says in the context of
the present paper. For any unital C∗-algebra A and each q ∈ Z>0 the ∗-algebra
Mq(A) of q× q matrices with entries in A has a unique C∗-norm. The collection of
these C∗-norms forms a “matricial norm” for A. Given unital C∗-algebras A and
B, a linear map ϕ : A → B determines for each q a linear map, ϕq, from Mq(A)
to Mq(B), by entry-wise application. One says that ϕ is “completely positive” if
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each ϕq is positive as a map between C∗-algebras. For each q let UCPq(A) de-
note the collection of all unital completely positive maps from A into Mq(C). The
UCPq(A)’s are called the “matricial state-spaces” of A. All these considerations
apply equally well to unital C∗-normed algebras, where “positive” is with respect
to the completions.

Let a Lip∗-norm, L, on A be specified. Then Kerr defines a metric, ρqL, on
UCPq(A) by

ρqL(ϕ, ψ) = sup{‖ϕ(a)− ψ(a)‖ : L(a) ≤ 1},
and he shows that the topology on UCPq(A) determined by ρqL agrees with the
point-norm topology (and so is compact). Now let (A,LA) and (B,LB) be unital
C∗-algebras with Lip∗-norms. Essentially as in definition 4.2 of [29] let M(LA, LB)
denote the set of Lip∗-norms on A⊕B whose quotients on the self-adjoint part agree
with LA and LB. Note that UCPn(A) and UCPn(B) can be viewed as subsets of
UCPn(A⊕B) in an evident way. Then for each q Kerr defines the q-distance, distqs,
between A and B by

distqs(A,B) = inf{distρ
q
L

H (UCPq(A), UCPq(B)) : L ∈ M(A,B)},
and he defines the complete distance, dists, by

dists(A,B) = sup
q
{distqs(A,B)}.

Finally (for our purposes), he shows that for our setting of coadjoint orbits with
A = C(G/H) and Bn = L(Hn) with their Lip∗-norms from a length function �,
one has

lim
n→∞

dists(A,Bn) = 0.

We can quickly adapt Kerr’s arguments to our Leibniz setting. For C∗-algebras
A and B equipped with C∗-metrics, we define MC(LA, LB) exactly as in Nota-
tion 5.5. Any L in MC(LA, LB) is, in particular, a Lip∗-norm, and so defines for
each q the metric ρqL on UCPq(A⊕B). We can then define, for each q,

proxq(A,B) = inf{distρ
q
L

H (UCPq(A), UCPq(B)) : L ∈ MC(A⊕B)}.
Then we can define “complete proximity” by

proxs(A,B) = sup
q
{proxq(A,B)}.

Of course, we have

dists(A,B) ≤ proxs(A,B).

Theorem 14.1. For A = C(G/H) and Bn = L(Hn) with their C∗-metrics LA

and Ln
B as defined earlier in terms of a length function on G, we have

lim
n→∞

proxs(A,Bn) = 0.

Proof. We follow the outline of Kerr’s example 3.13 of [13], but for a given
n we set, as earlier,

Ln = LA ∨ LB
n ∨Nn ∨N∗

n

with Nn = γ−1
n Nσn and with γn chosen exactly as in the proof of Theorem 9.1

that is completed in Section 13. Thus Ln ∈ MC(LA, L
B
n ). The key observation,

for Kerr and for us, is that σn and σ̆n are (unital) completely positive maps, so
that if ϕ ∈ UCPq(A) then ϕ ◦ σn is in UCPq(B

n), and similarly for σ̆n. Given
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ϕ ∈ UCPq(A), set ψ = ϕ ◦ σn. Then exactly as in the proof of Proposition 7.1 we
see that if Ln(f, T ) ≤ 1 then

‖ϕ(f)− ψ(T )‖ ≤ ‖f − σT ‖ ≤ γn,

so that UCPq(A) is in the γn neighborhood of UCPq(B
n). On the other hand,

for any ψ ∈ UCPq(B
n) set ϕ = ψ ◦ σ̆. Then in the somewhat more complicated

way given in Section 13 we find that UCPq(B
n) is in as small a neighborhood of

UCPq(A) as desired if n is sufficiently large. �

We remark that in section 5 of [13] Kerr considers a weak form of the Leibniz
property which he calls “f -Leibniz” (for which he comments that the corresponding
distance may not satisfy the triangle inequality).

In [18] Hanfeng Li introduced a quite flexible variant of quantum Gromov–
Hausdorff distance that in a suitable way uses the Hausdorff distance between the
unit L-balls of two quantum metric spaces. Li called this “order-unit quantum
Gromov–Hausdorff distance”. In [14] Kerr and Li developed a matricial version
of Li’s variant, which they called “operator Gromov–Hausdorff distance”. They
then show (theorem 3.7) that this version coincides with Kerr’s matricial quantum
Gromov–Hausdorff distance. It would be interesting to have a version of our com-
plete proximity above that is defined in terms of the unit L-balls, since it might
well have certain technical advantages similar to those possessed by Li’s order-unit
Gromov–Hausdorff distance.

For the specific case of C∗-algebras, Li introduced [19] yet another variant of
quantum Gromov–Hausdorff distance that explicitly uses the algebra multiplica-
tion. He calls this “C∗-algebraic quantum Gromov–Hausdorff distance”. It would
be interesting to know how this version relates to Leibniz seminorms and proximity.
We should mention that in several places the later papers of Kerr and of Li dis-
cussed in this section again consider the f -Leibniz property that Kerr introduced
in [13].

Hanfeng Li has pointed out to me that much the same arguments as given in the
last part of Section 6, showing that prox is dominated by his distnu, also show that
our “complete proximity” proxs is dominated by distnu; and since, as mentioned in
Section 6, the examples that have been studied so far for convergence for quantum
Gromov-Hausdorff distance all involve nuclear C∗-algebras, and convergence for
them holds for distnu, this gives for them a proof of convergence for proxs.

The papers discussed above all begin just with a Lip-norm. In a different
direction Wei Wu has defined and studied matricial Lipschitz seminorms [41, 42,
43]. Again, we will not repeat here his general definitions and results; rather we
will only indicate somewhat sketchily how they can be adapted to the context of
the present paper, I thank Wei Wu for answering several questions that I had about
his papers.

Let G be a compact group equipped with a length function �, and let α be an
action of G on a unital C∗-algebra A. Then G has an evident entry-wise action
on Mq(A) for each q ∈ Z>0, and we can then use � to define a seminorm, Lq,
on each Mq(A) as in Example 2.5. This family of seminorms satisfies Ruan-type
axioms [10], in particular, L(Tij) ≤ Lq(T ) for T = {Tij} ∈ Mq(A). Wu presents
this family as one example of what he calls a “matrix Lipschitz seminorm” on A.
It is a very natural example, and it indicates how natural it is to consider matrix
Lipschitz seminorms quite generally. However Wu does not make use of the fact
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that each of the seminorms Lq above is Leibniz (in fact, strongly Leibniz), and he
uses the bridge from [30], which is not Leibniz.

For A = C(G/H) and Bn as earlier we denote the seminorms by Lq
A and

Ln,q
B . As Wu notes, the Berezin symbol map σn gives, by entry-wise application,

a completely positive map from Mq(B
n) to Mq(A) for each q ∈ Z>0. We denote

these maps still by σn. Much as in Section 7 we can then define a seminorm on
Mq(A⊕Bn) by

‖Mf ◦ σn − σn ◦ ΛT ‖.
But the analogue of the alternative description in terms of seminorms Nx given in
Proposition 7.2 is now more complicated, and so I have found it best just to work
directly with the analogs of the Nx’s. Specifically, we write diag(αx(P

n)) for the
matrix in Mq(B

n) each of whose diagonal entries is αx(P
n), with all other entries

being 0. For each x ∈ G (or G/H) we set

Nn,q
x (f, T ) = ‖diag(αx(P ))(f(x)⊗ In − T )‖

for any (f, T ) ∈ Mq(A ⊕ Bn). It is easily seen that Nn,q
x is strongly Leibniz. We

then set

Nn,q
σ (f, T ) = sup{Nn,q

x (f, T ) : x ∈ G}.
Then we set

Nn,q(f, T ) = γ−1Nn,q
σ (f, T ),

where γ remains to be chosen for each n. Finally we set

Ln,q(f, T ) = Lq
A(f) ∨ Ln,q

B (T ) ∨Nn,q(f, T ) ∨N∗
n,q(f, T ).

It is easily verified that the family {Ln,q} is a “matrix Lipschitz seminorm” as
defined in definition 3.1 of [43]. We would like to choose γ in such a way that the
quotients of Ln,q on Mq(A) and Mq(B

n) are Lq
A and Ln,q

B .
We consider the quotient on Mq(A) first. We note, as does Wu, that σ̆n gives,

by entry-wise application, a unital completely positive map fromMq(A) toMq(B
n).

Given f ∈ Mq(A), we set T = σ̆n
f . Then, much as in Section 8,

Nn,q
x (f, T ) =

∥

∥

∥

∥

{

αx(P
n)(fij(x)In − d

∫

fij(y)αy(P
n)dy

}∥

∥

∥

∥

,

where {·} denotes a matrix. As in Section 8, the translation-invariance of Lq
A and

the arbitrariness of f permit us to consider just the case in which x = e. Then,
with manipulations as in Section 8, we see that

Nn,q
e (f, T ) ≤ d

∫

‖{fij(e)− fij(y)}‖‖ diag(Pnαy(P
n))‖dy

≤ Lq
A(f)

∫

ρ(e, y)d‖Pnαy(P
n)‖dy

= Lq
A(f)γ

A
n ,

where γA
n is defined at the beginning of Section 9. Thus if γ ≥ γA

n then the quotient
of Ln,q on Mq(A) will be Lq

A, which is exactly the same condition as for the case
of q = 1 treated in Section 8.

We now consider the quotient on Mq(B
n). Given T ∈ Mq(B

n), we set f = σn
T .

Then

Nn,q
x (f, T ) = ‖{αx(P )(tr(αx(P )Tij)In − Tij)}‖.
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I don’t see a good way to estimate this except by the entry-wise estimate

≤ q sup
i,j

‖αx(P )(tr(αx(P )Tij)In − Tij)‖

≤ qγB
n sup

i,j
LB
n (Tij) ≤ qγB

n Ln,q
B (T ),

where γB
n is defined at the beginning of Section 12, and where we have used

the α-invariance of LB
n , and the fact that for any R ∈ Mq(B

n) we have ‖R‖ ≤
q supi,j{‖Rij‖}. (To see this latter, express R as the sum of the q matrices whose
only non-zero entries are the entries Rij of R for which i− j is constant modulo q.)
Thus if γ ≥ qγB

n then the quotient of Ln,q on Mq(B
n) will be Ln,q

B . The factor of q
in this estimate has the quite undesirable effect that we seem not to be able to say
that for a sufficiently large γ it is true that for all q simultaneously the quotient of
Ln,q on Mq(B

n) is Ln,q
B . Thus the family {Ln,q} cannot be used to estimate the

“quantized Gromov–Hausdorff distance” defined by Wu in definition 4.5 of [43].
But for fixed q we will still have that qγB

n converges to 0 as n → ∞, and this may
still be useful, for instance in dealing with vector bundles along the lines discussed
in [32].

According to Wu’s definition of “quantized Gromov–Hausdorff distance” we
must now show that UCPq(A) and UCPq(Bn) are within suitable neighborhoods of
each other in UCPq(A⊕B) (once we have chosen γ ≥ γA

n ∨qγB
n ). Given f ∈ Mq(A)

and ϕ ∈ UCPq(A) (which Wu denotes by CSq(A)), let 〈〈ϕ, f〉〉 denote the element
of Mq2(C) whose entries are the ϕij(fkl)’s. (See 1.1.27 of [10].) Equivalently,
view f as in Mq ⊗ A, and let ϕ̃ = Iq ⊗ ϕ so that ϕ̃ : Mq ⊗ A → Mq ⊗Mq. Then
〈〈ϕ, f〉〉 = ϕ̃(f). We can thus use Lq

A to define a metric, DLq
A
, on UCPq(A), defined

by

DLq
A
(ϕ1, ϕ2) = sup{‖〈〈ϕ1, f〉〉 − 〈〈ϕ2, f〉〉‖ : f ∈ Mq(A), Lq

A(f) ≤ 1}.
(See proposition 3.1 of [42].) Wu shows that the topology on UCPq(A) from the
metric DLq

A
coincides with the point-norm topology. In the same way Ln,q

B defines

a metric on UCPq(B
n), and Ln,q defines a metric on UCPq(A⊕Bn). Furthermore,

when we view UCPq(A) and UCPq(B
n) as subsets of UCPq(A⊕Bn), the restriction

of DLn,q
to them will agree with DLq

A
and DLn,q

B
if the quotients of Ln,q on Mq(A)

and Mq(B
n) agree with Lq

A and Ln,q
B . (See proposition 3.6 of [43].)

We now show that UCPq(A) is in a suitably small neighborhood of UCPq(B
n)

for DLq
n
.

Lemma 14.2. For any (f, T ) ∈ Mq(A⊕Bn) we have

‖f − σn
T ‖ ≤ qNn,q

σ (f, T ).

Proof.

‖f − σn
T ‖ = sup

x
‖{fij(x)− tr(αx(P )Tij)}‖

≤ q sup
x,i,j

| tr(αx(P )(fij(x)In − Tij))|

≤ q sup
x,i,j

‖αx(P )(fij(x)In − Tij)‖

≤ q sup
x

‖{αx(P )(fij(x)In − Tij)}‖ = qNn,q
σ (f, T ).

�
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We can now proceed much as in the first half of Wu’s proof of theorem 8.6 of
[43]. Let q be fixed, and now set γn = γA

n ∨ qγB
n in the definition of Ln,q, so that

Ln,q has the right quotients. Let ϕ ∈ UCPq(A) be given. Set ψ = ϕ ◦ σn, so that
ψ ∈ UCPq(B

n). Suppose that (f, T ) ∈ Mq(A⊕Bn) and that Lq
n(f, T ) ≤ 1, so that

Nn,q
σ (f, T ) ≤ γn. Then by Lemma 14.2,

‖〈〈ϕ, f〉〉 − 〈〈ψ, T 〉〉‖ = ‖〈〈ϕ, f − σn
T 〉〉‖

≤ ‖f − σn
T ‖ ≤ qNn,q

σ (f, T ) ≤ qγn.

Thus UCPq(A) is in the qγn-neighborhood of UCPq(Bn). Since γ
A
n ∨qγB

n converges
to 0 as n → ∞ we can make qγn as small as desired by choosing n large enough.

We now show that UCPq(B
n) is in a suitably small neighborhood of UCPq(A).

We can proceed as in the second half of Wu’s proof of his theorem 8.6 of [43]. Let
ψ ∈ UCPq(B

n) be given. Set ϕ = ψ ◦ σ̆n, so that ϕ ∈ UCPq(A). For L(f, T ) ≤ 1
as above we have, much as in the proof of Proposition 8.5,

‖〈〈ϕ, f〉〉 − 〈〈ψ, T 〉〉‖ = ‖〈〈ψ, σ̆n
f − T 〉〉‖

≤ ‖σ̆n
f − T‖ ≤ ‖σ̆n

f − σ̆n(σn
T )‖+ ‖σ̆n(σn

T )− T‖
≤ ‖f − σn

T ‖+ ‖σ̆n(σn
T )− T‖

≤ qγn + ‖σ̆n(σn
T )− T‖.

We can deal with the second of these terms much as we do in Section 13, just as
Wu does. One then sees that for a given ε > 0 one can (for a fixed q) choose N
large enough that UCPq(A) and UCPq(B

n) are in each other’s ε-neighborhood for
n ≥ N .

It will be interesting to see whether the von Neumann algebra approach to
quantum metrics developed in [15, 40] eventually leads to a useful notion of quan-
tum Gromov-Hausdorff distance, perhaps even in matricial form.
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To Alain who perceived and was inspired by the deeper meaning of noncommutativity

Abstract. An equivalence relation, preserving the Chern-Weil form, is de-
fined between connections on a complex vector bundle. Bundles equipped with
such an equivalence class are called Structured Bundles, and their isomorphism
classes form an abelian semiring. By applying the Grothedieck construction

one obtains the ring K̂, elements of which, modulo a complex torus of dimen-
sion the sum of the odd Betti numbers of the base, are uniquely determined
by the corresponding element of ordinary K and the Chern-Weil form. This

construction provides a simple model of differential K-theory, cf. [5], as well
as a useful codification of vector bundles with connection.

Introduction

This paper grew out of the effort to construct a simple geometric model for
differential K-theory, roughly speaking, the fibre product of usual K-theory with
closed differential forms, [4],[5],[6]. More specifically, by differential K-theory we

will mean any functor K̂ on the smooth category which satisfies the diagram dis-
played below. The model which finally emerged also fulfilled our long-standing
wish for a simple and straightforward codification of complex vector bundles with
connection.

The set of pairs of connections whose Chern-Simons difference form is exact
defines an equivalence relation in the space of all connections on a given bundle.
We call a pair, V = (V, {∇}), consisting of a vector bundle together with a partic-
ular such equivalence class, a structured bundle. As is true for vector bundles,
structured bundles have additive inverses up to trivial structured bundles: given
V there is a W such that their direct sum is equivalent to a bundle with trivial
holonomy (Theorem 1.8).

By defining Struct to be the commutative semiring of isomorphism classes of
structured bundles, and using the standard Grothedieck device to turn Struct into
a commutative ring, we obtain K̂, a functor from smooth compact manifolds with
corners into commutative rings. As in ordinary K, every element of K̂ may be
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written as V − [n], where V is a structured bundle and [n] is the trivial structured

bundle of dim n. K̂ achieves the above desired codification of connections and
serves as the sought-after geometric model of differential K-theory.

Defining four natural transformations into and out of K̂ we develop in the first
four sections the diagram with exact diagonals and boundaries,

0 0

�
��� �

���

Λodd/ΛGL � ΛBGL
d

�
���
deR i

�
��� �

���
ch deR

�
���

Hodd(C) K̂ Heven(C)

reduction mod Z

�
��� �

���
j δ

�
��� �

���
c

Kodd(C/Z) � Keven(Z)
Bockstein

�
��� �

���

0 0

where the sequence along the upper boundary may be identified (via ch⊗ C) with
the Bockstein sequence for complex K-theory (the long exact sequence associated
to the short exact sequence of coefficients 0 → Z → C → C/Z → 0), and that
along the lower boundary comes from de Rham theory. Here, ΛBGL means all
even closed forms cohomologous to Chern characters of complex vector bundles,
and ΛGL means all odd closed forms cohomologous to pull-backs by maps into
GL = union of the GL(n,C) of the transgression of the Chern character form. δ is
the map which simply drops the connection, and ch is the Chern-Weil map applied
to the Chern character polynomial. The fibre product statement above is related
to the commutative square on the right half of the diagram.

The work’s main technical innovation is embodied in Proposition 2.6, where
it is shown that all odd forms modulo ΛGL arise as the Chern-Simons difference
forms between the trivial connection and arbitrary connections on trivial bundles.
A corollary, as implied by the diagram above, is that every even total closed form
cohomologous to the Chern character of a vector bundle may be realized as the
Chern character form of a connection on a stabilized version of that bundle. In
particular, if a bundle has zero characteristic classes over C, then there is a con-
nection on that bundle, stabilized by adding in a trivial bundle, with vanishing
Chern-Weil forms.

By considering the simultaneous kernel of ch and δ, the diagram also shows
that the ambiguity in determining a structured bundle (up to stabilization) solely
by its characteristic forms and underlying element of K is measured by a complex
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torus, the dimension of which is the sum of the odd Betti numbers of the base
manifold.

In showing that the kernel of ch is K(C/Z) we use the work of Karoubi [2]
and Lott [1], which gave a related description of K(C/Z) involving a bundle with
connection and an extra total odd form whose d is the Chern character form.

We also point out that the existence of a differential K-theory associated to K-
theory, and indeed a differential theory associated to any exotic cohomology theory,
was constructed in the paper of Hopkins and Singer [5]. Following their approach,
Freed, as well as Hopkins and Singer and perhaps others like ourselves, were aware
that a model for differential K-theory could be constructed based on pairs (E,O),
where E is a bundle with connection and O is a total odd form with an equivalence
relation generalizing that in [1]. One point of the present work is that this total odd
form may be taken to be zero in the equivalent description of differential K-theory
presented here.

There is a word for word variant of the above concerning complex vector bundles
with Hermitian connection. Now there is a functor K̂R, four natural transformations
and the diagram

0 0

�
��� �

���

Λodd/ΛU � ΛBU
d

�
���
deR i

�
��� �

���
ch deR

�
���

Hodd(R) K̂R Heven(R)

reduction mod Z

�
��� �

���
j δ

�
��� �

���
c

Kodd(R/Z) � Keven(Z)
Bockstein

�
��� �

���

0 0

This is discussed briefly in Section 5. As a corollary, for any bundle over a closed
Riemannian manifold, after stabilizing there is a unitary connection on the bundle
whose Chern-Weil form is the harmonic representative of the Chern character of
the bundle. Moreover, when the odd Betti numbers vanish, this structured bundle
is unique up to adding factors with trivial holonomy.

Our model of K̂ or K̂R relates to two questions:

1. Up to a natural transformation, are K̂ or K̂R uniquely determined by the
diagram, as shown in [7] for ordinary differential cohomology.

2. Can one enrich the families index theorem by passing from K to K̂ or
K̂R? cf. [3], [4], [6], and the Remark below.
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Both of these questions are now answered in the affirmative. There
are short proofs in a manuscript we are revising. The main point is to
define a differential characters version of differential K-theory. Bunke and
Schick have a general result applicable to the first question, and Freed and
Lott have a general result applicable to the second question. Both have
appeared in arxiv.

Remark 0.1 (I.M. Singer). Differential K-theory arose from anomaly
cancellation problems in string theory and M -theory [6(b), 5]. In [6(d)],
Freed and Hopkins showed how an anomaly could be cancelled if one had
a refined index theorem for K̂.

Edward Witten described global anomalies in terms of connections on
the determinant line bundle [8]. He gave a formula for the holonomy of
the connection in terms of the eta invariant for an appropriate operator.
Bismut and Freed gave a rigorous proof in [3(c)], as did Cheeger in [12].See
also Freed’s account of determinant line bundles in [6(a)].

This model of K̂ or K̂R might be helpful for certain quantum theories and
M -theory, in which it has already been observed that actions can be written more
appropriately in the language of differential K-theory than in that of differential
forms [6(c)]. In this respect we note Theorem 3.5, showing that K̂ and K̂R satisfy
the Mayer-Vietoris property, which relates to locality.

1. Structured Bundles

Let [V,∇] be a complex vector bundle with connection over a smooth compact
manifold with corners, X, and let R ∈ Λ2(X,End(V )) denote its curvature tensor.

Using the Chern-Weil homomorphism, the Chern character of V , ch(V ), may
be represented by the total complex-valued closed form on X, ch(∇), defined by

(1.1) ch(∇) =
∑

j=0

1

j!

(

1

2πi

)j

tr(

j
︷ ︸︸ ︷

R ∧ · · · ∧R) ∈ Λeven(X,C).

For t ∈ [0, 1] and γ(t) = ∇t a smooth curve of connections, (∇t)′ = At ∈
Λ1(X,End(V )), and we set

(1.2)

cs(γ) =

∫ 1

0

∑

j=1

1

(j − 1)!

(

1

2πi

)j

tr(At ∧

j−1
︷ ︸︸ ︷

Rt ∧ · · · ∧Rt) ∈ Λodd(X,C).

It is a standard fact that

(1.3) dcs(γ) = ch(∇1)− ch(∇0).

There is a second formulation of (1.2) which will be useful in what follows.
Let Π : X × [0, 1] → X be the standard projection, and set W = Π∗(V ). We

may construct a connection, ∇̄, on W by defining ∇̄s = ∇t
Π∗(s)

when s is tangent

to the slice through t, and by making ∇̄∂/∂t(Π
∗(f)) = 0 for f any cross-section of

V .
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Let R̄ be the curvature tensor of ∇̄. Then, if r, s are tangent to the slice through
t,

(1.4)

R̄r,s = Rt
Π∗(r),Π∗(s)

R̄∂/∂t, s = At
Π∗(s)

.

The first is straightforward. To show the second, let w ∈ W(x,t), and extend it
to be of the form Π∗(f), where f is a cross-section of V . Also extend s to be the
lift of a vector field on X. Clearly [s, ∂/∂t] = 0. Thus

R̄∂/∂t, s w = ∇̄∂/∂t∇̄sw − ∇̄s∇̄∂/∂tw = ∇̄∂/∂t∇̄sw =
d

dt
∇t

Π∗(s)
w = At

Π∗(s)
w.

Now, let ψt : X → X × [0, 1] be the slice map, ψt(x) = (x, t). Then by (1.4)

tr(At ∧

j−1
︷ ︸︸ ︷

Rt ∧ · · · ∧Rt) = ψ∗
t ( tr(i∂/∂tR̄ ∧

j−1
︷ ︸︸ ︷

R̄ ∧ · · · ∧ R̄) )

= ψ∗
t ( i∂/∂t(

1
j tr(

j
︷ ︸︸ ︷

R̄ ∧ · · · ∧ R̄)) ).

From this we conclude

(1.5) cs(γ) =

∫ 1

0

ψ∗
t (i∂/∂t ch(∇̄)).

The following proposition is almost certainly well known, but we did not find
a reference.

Proposition 1.1. If α and γ are two paths connecting ∇0 and ∇1, then

cs(α) = cs(γ) + exact.

Proof. It is sufficient to prove that if γ is a closed path of connections, then
cs(γ) is exact.
By (1.3) cs(γ) is obviously closed. To show it is exact we show that cs(γ) integrates
to 0 on every cycle of X.

Let Z be such a cycle. Then by (1.5)
∫

Z

cs(γ) =

∫

Z×S1

ch(∇̄) = ch(W )(Z × S1)

= Π∗(ch(V ))(Z × S1) = ch(V )(Π∗(Z × S1)) = 0

Thus cs(γ) is exact. �

Since ∇0 and ∇1 may always be joined by a smooth path, using Proposition
1.1, we may set

(1.6) CS (∇0,∇1) = cs(γ) mod exact.

From Proposition 1.1 we also see

(1.7) CS (∇0,∇1) + CS (∇1,∇2) = CS (∇0,∇2).

Definition 1.2. ∇0 and ∇1 will be called equivalent, and written ∇0 ∼ ∇1,
if CS (∇0,∇1) = 0. Equation (1.7) shows that ∼ is an equivalence relation.

Definition 1.3. A pair V = [V, {∇}], where {∇} is an equivalence class of
connections on V , will be called a structured bundle.
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If ∇W is a connection on W and σ : V → W is a bundle isomorphism covering
the identity map of X, σ induces σ∗(∇W ), a connection on V , and it is easily
seen that {σ∗(∇W )} = σ∗({∇W }). V = [V, {∇V }] and W = [W, {∇W }] are called
isomorphic if σ∗({∇W }) = {∇V }.

If ψ : X → Y is C∞, and V is a bundle over Y with connections ∇0 and ∇1,
then, in the usual manner, ψ∗(∇0) and ψ∗(∇1) are connections on ψ∗(V ). Clearly

CS (ψ∗(∇0), ψ∗(∇1)) = ψ∗(CS (∇0,∇1)).

Thus, if V = [V, {∇}] is a structured bundle over Y then ψ∗(V) = [ψ∗(V ), {ψ∗(∇)}]
is well defined as a structured bundle over X.

Suppose ψt : X → Y is a smooth 1-parameter family of maps. If V = [V, {∇}]
is a structured bundle over Y , then Vt = [ψ∗

t (V ), ψ∗
t ({∇})] is a 1-parameter family

of structured bundles over X. Assume t ∈ [0, 1] and let γx : [0, 1] → Y be the curve
γx(t) = ψt(x). Let σt : ψ

∗
0(V ) → ψ∗

t (V ) be parallel transport along the curves γt.
Then, letting W = ψ∗

0(V ) and ∇t = σ∗
t (ψ

∗
t (∇)), Wt = [W, {∇t}] is a 1-parameter

family of structured bundles over X, isomorphic to the family Vt, having the same
underlying vector bundle.

Letting γ′
x(t) denote the tangent vector to γx at t, and using (1.5), we conclude

(1.8) CS (∇0,∇1) =

∫ 1

0

ψ∗
t (iγ′

x(t)
ch(∇)) dt.

If ∇V and ∇W are connections on V and W they determine connections on
V ⊕W and V ⊗W , denoted by ∇V ⊕∇W and ∇W ⊗∇W . For f, g cross-sections
in V and W and r a tangent vector to X,

(∇V ⊕∇W )r(f, g) = (∇V
r f,∇W

r g)
(∇V ⊗∇W )r(f ⊗ g) = ∇V

r (f)⊗ g + f ⊗∇W
r (g).

It is well known that

(1.9) ch(∇V ⊕∇W ) = ch(∇V ) + ch(∇W )

(1.10) ch(∇V ⊗∇W ) = ch(∇V ) ∧ ch(∇W ).

Lemma 1.4. Let ∇V , ∇̄V ,∇W , ∇̄W be connections on the indicated bundles.
Then

a) CS (∇V ⊕∇W , ∇̄V ⊕ ∇̄W ) = CS (∇V , ∇̄V ) + CS (∇W , ∇̄W )
b) CS (∇V ⊗∇W , ∇̄V ⊗ ∇̄W ) = ch(∇V ) ∧ CS (∇W , ∇̄W )

+ch(∇̄W ) ∧ CS (∇V , ∇̄V )

Proof. Using (1.7)

CS (∇V ⊕∇W , ∇̄V ⊕∇̄W ) = CS (∇V ⊕∇W ,∇V ⊕∇̄W )+CS (∇V ⊕∇̄W , ∇̄V ⊕∇̄W ).

Direct calculation of each term using (1.2) shows a).
Again using (1.7)

CS (∇V ⊗∇W , ∇̄V ⊗∇̄W ) = CS (∇V ⊗∇W ,∇V ⊗∇̄W )+CS(∇V ⊗∇̄W , ∇̄V ⊗∇̄W )

and again from (1.2), direct calculation shows b). �

From Lemma 1.4 one immediately sees
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Proposition 1.5. If V = [V, {∇V }] and W = [W, {∇W }] are structured bun-
dles, then the equivalence classes {∇V ⊕∇W } and {∇V ⊗∇W } are independent of
the choices of ∇V ∈ {∇V } and ∇W ∈ {∇W }, and so

V ⊕W = [V ⊕W, {∇V ⊕∇W }] and

V ⊗W = [V ⊗W, {∇V ⊗∇W }]
are well defined structured bundles.

Definition 1.6. We define Struct(X) to be the set of isomorphism classes
of structured bundles over X. By Proposition 1.5, the operations ⊕ and ⊗ make
Struct(X) an abelian semigroup with commutative, distributive multiplication. A
smooth map ψ from X to Y induces ψ∗ : Struct(Y ) → Struct(X) preserving these
operations. Thus, Struct is a functor on the category of smooth compact manifolds
with corners into that of commutative semirings.

We conclude from (1.3) that ch : Struct(X) → Λeven(X) is a well defined
natural transformation, and from (1.9) and (1.10)

(1.11)
ch(V ⊕W) = ch(V) + ch(W)

ch(V ⊗W) = ch(V) ∧ ch(W).

Definition 1.7. A connection ∇ on V will be called Flat if its holonomy
around every closed path is the identity. This implies the curvature R ≡ 0 and that
V is naturally isomorphic to the product bundle with the trivial product connection.
V = [V, {∇}] will be called Flat if some ∇ ∈ {∇} is Flat. Since any two such of
dim n are isomorphic, we shall denote this isomorphism class by [n] ∈ Struct(X).

The following theorem is based on a related result in [11], stated without giving
the proof. We employ that proof here in Lemma 1.9 below.

Theorem 1.8. Given any V ∈ Struct(X) there is a W ∈ Struct(X) such that
V ⊕W = [n] for some n. Any such W will be called an inverse of V.

To prove the Theorem we need

Lemma 1.9. Let ∇ be a connection on V ⊕W with curvature R. Let ∇V and
∇W be the connections on V and W induced by ∇. E.g. if ΠV : V ⊕ W → V
is the projection, and f is a cross-section in V then ∇V

r f = ΠV (∇rf). Suppose
Rr,s(V ) ⊆ V and Rr,s(W ) ⊆ W for all tangent vectors r, s at any point of X.
Then,

∇V ⊕∇W ∼ ∇.

Proof. We may write

∇ = ∇V ⊕∇W +A

where A ∈ Λ1(X,End(V ⊕W )). For f a cross-section in V we see

Arf = ∇rf −ΠV (∇rf) = ΠW (∇rf) ∈ W.

As the same holds for W , we see

(1.12) Ar(V ) ⊆ W and Ar(W ) ⊆ V.
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Setting ∇̄ = ∇V ⊕∇W , let R̄ denote its curvature and d̄ denote its exterior differ-
entiation operator. Since ∇̄ preserves V and W , (1.12) implies

(1.13) d̄Ar,s(V ) ⊆ W and d̄Ar,s(W ) ⊆ V.

The usual formula for computing the curvature of one connection from that of
another shows

R = R̄+A ∧A+ d̄A.

By hypothesis, R preserves V and W . So does R̄, being the curvature of a direct
sum connection, and so does A∧A by (1.12). This implies that d̄A preserves them
as well, but (1.13) shows the opposite. Thus d̄A = 0 and

(1.14) R = R̄+A ∧A.

Let ∇t = ∇̄ + tA, a curve of connections joining ∇V ⊕∇W to ∇. Letting Rt

denote the associated curvature, we see from (1.14)

(1.15) Rt = R̄+ t2A ∧A.

In the notation of (1.2), At = (∇t)′ = A, and so the CS integrand consists of terms
of the form

tr(A ∧

j−1
︷ ︸︸ ︷

Rt ∧ · · · ∧Rt).

But, by (1.15) Rt preserves both V and W , and, since A reverses them, all such
trace terms must vanish. Thus CS (∇, ∇̄) = 0. �

Proof of Theorem 1.8

Proof. The classifying spaces BkGL(n,C) = GL(n+ k,C)/GL(n,C)×GL
(k,C) come with natural bundles, V n and W k, of dimension n and k, and connec-
tions ∇n and ∇k induced by the standard Flat connection on V n ⊕W k. Lemma
(1.9) shows that Vn = [V n, {∇n}] and Wk = [W k, {∇k}] are inverses of each other.

The theorem of Narasimhan-Ramanan [9] shows that for sufficiently large k,
an n-dim V ∈ Struct(X) may be obtained as the pull-back of Vn via a C∞ map of
X → BkGL(n,C). The pull-back of Wk will then be an inverse of V in the sense
of Theorem 1.8. �

2. The Stably Trivial Case

Let GL = lim
n

GL(n,C), the stabilized complex general linear group and G its

Lie algebra. G consists of complex-valued matrices, all but a finite number of whose
entries are 0. Let θ ∈ Λ1(GL,G) denote the canonical left invariant G-valued form
on GL. Set

(2.1) Θ =
∑

j=1

bj tr(

2j−1
︷ ︸︸ ︷

θ ∧ θ ∧ · · · ∧ θ) ∈ ∧odd(GL)

where

bj =
1

(j − 1)!

(

1

2πi

)j ∫ 1

0

(t2 − t)j−1 dt.
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It is well known that Θ is a bi-invariant closed odd form, and the free abelian
group generated by all distinct products of its components represent the entire
complex cohomology ring of GL. We define ΛGL ⊆ Λodd by

(2.2) ΛGL(X) = {g∗(Θ)}+ Λodd
exact

where g : X → GL runs through all C∞ maps.
Note that if g, h map X into GL, then g ⊕ h : X → GL may be defined, and

(g ⊕ h)∗(Θ) = g∗(Θ) + h∗(Θ). Moreover, (g−1)∗(Θ) = −g∗(Θ). Thus ΛGL(X) is
an abelian group.

Lemma 2.1. Let V be a trivial bundle with the two Flat connections ∇ and ∇̄.
Then

CS (∇, ∇̄) ∈ ΛGL/Λ
odd
exact.

Proof. Since ∇ and ∇̄ each have trivial holonomy, we can find a cross-section
g ∈ Aut(V ) such that

∇̄ = g−1 ◦ ∇ ◦ g.
Expressing g as a matrix with respect to a ∇-parallel framing of V , we see

∇̄ = ∇+ g−1 dg.

Now, regarding g : X → GL, one easily sees that g−1dg = g∗(θ). Thus

∇̄ = ∇+ g∗(θ).

Setting ∇̄t = ∇+ tg∗(θ), we see that

R̄t = R+ t dg∗(θ) + t2 g∗(θ) ∧ g∗(θ).

But, either calculating on GL, or directly with g−1dg, we see that dg∗(θ) = −g∗(θ)∧
g∗(θ). Moreover, since ∇ has trivial holonomy, R ≡ 0. Thus

R̄t = (t2 − t)g∗(θ) ∧ g∗(θ).

It then follows from (1.2) that CS (∇, ∇̄) = g∗(Θ). �

Definition 2.2.

StructST(X) = { [V, {∇}] ∈ Struct(X) | V is stably trivial }.
For V ∈ StructST(X), let F and H be trivial bundles such that V ⊕ F = H and let
∇F ,∇H be Flat connections on F and H. We define

̂CS : StructST(X) → Λodd/ΛGL

by
̂CS (V) = CS (∇H ,∇⊕∇F ) mod ΛGL/Λ

odd
exact.

Proposition 2.3. ̂CS is a well defined homomorphism.

Proof. Suppose F̄ , H̄,∇F̄ ,∇H̄ are another pair of trivial bundles with Flat
connections with V ⊕ F̄ = H̄. Using (1.6), Lemma 1.4 and Lemma 2.1, and working
mod ΛGL, we see

CS (∇H̄ ,∇⊕∇F̄ ) = CS (∇H̄ ⊕∇F ,∇⊕∇F̄ ⊕∇F )

= CS (∇H ⊕∇F̄ ,∇⊕∇F̄ ⊕∇F )

= CS (∇H ,∇⊕∇F ).
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Thus ̂CS is well defined. That ̂CS is a homomorphism follows immediately from
Lemma 1.4. �

Definition 2.4. V ∈ Struct(X) is called stably Flat if there exists Flat F and
H such that V ⊕ F = H. The set of these objects will be denoted by StructSF(X).
Clearly StructSF(X) ⊆ StructST(X) and is a sub-semigroup.

Proposition 2.5. ker(̂CS ) = StructSF(X).

Proof. Obviously StructSF ⊆ ker(̂CS ). Now suppose ̂CS (V) = 0. Let F,H,∇F

and ∇H be as in the definition of ̂CS . Now, ̂CS (V) = 0 implies

CS (∇H ,∇⊕∇F ) = g∗(Θ) mod Λodd
exact

for some g : X → GL. Again as in the proof of Lemma 2.1, choosing a ∇H -parallel
framing of H, we may regard g ∈ Aut(H) and set

∇̄H = g−1(∇H ◦ g).
As in the Lemma we see CS (∇H , ∇̄H) = g∗(Θ) and thus CS (∇̄H ,∇H) = −g∗(Θ).
Therefore

CS (∇̄H ,∇⊕∇F ) = CS (∇̄H ,∇H) + CS (∇H ,∇⊕∇F )

= −g∗(Θ) + g∗(Θ) = 0 mod exact.

Setting H̄ = [H, {∇̄H}] and F = [F, {∇F }] we see V ⊕ F = H̄ and thus V ∈
StructSF(X). �

Proposition 2.6. Im(̂CS) = Λodd(X)/ΛGL(X).

Proof. If L is a trivialized line bundle over X then any connection on L is
simply a complex-valued 1-form, w. Since w∧w = 0, the associated curvature, Rw,
is dw, and {w} = {w + df | f ∈ C∞(X,C)}.

Let Lw = [L, {w}]. Using tw as a curve of connections joining w to the trivial
connection, noting that Rtw = tRw, and working mod ΛGL, (1.2) shows

(2.3) ̂CS (Lw) =
∑

j=1

1

j!

(

1

2πi

)j

w ∧ (dw)j−1.

We first suppose X = Rn. If w = f dx then w∧dw = 0 and thus ̂CS (Lf dx) = f dx.

Moreover, since ̂CS is a homomorphism

̂CS

(

∑

i

⊕Lfidxi

)

=
∑

fidxi.

Thus Λ1(Rn)/ΛG(R
n) ⊆ Im(̂CS).

Proceeding by induction on k, suppose

(2.4)

⎛

⎝

k
∑

j=1

Λ2j−1(Rn)

⎞

⎠ /ΛGL(R
n) ⊆ Im(̂CS ).

Let w = x1dx2 + x3dx4 + · · ·+ x2k−1dx2k + fdx2k+1.
Claim: w ∧ (dw)k = (k + 1)!fdx1 ∧ · · · ∧ dx2k+1 + exact.
To show this, let γ = dx1 ∧ dx2 + · · ·+ dx2k−1 ∧ dx2k, and note

dw = γ + df ∧ dx2k+1 ⇒ (dw)k = (γ + df ∧ dx2k+1)
k.
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Since all powers of df ∧ dx2k vanish,

(dw)k = γk + kγk−1 ∧ df ∧ dx2k+1 = k!dx1 ∧ · · · ∧ dx2k+

k!

⎡

⎣

k
∑

j=1

dx1 ∧ dx2 ∧ · · · ∧ ̂dx2j−1 ∧ dx2j ∧ · · · ∧ dx2k−1 ∧ dx2k

⎤

⎦ ∧ df ∧ dx2k+1

Thus,

w ∧ (dw)k = k!fdx1 ∧ · · · ∧ dx2k+1 +

k!

⎡

⎣

k
∑

j=1

dx1 ∧ · · · ∧ dx2j−2 ∧ x2j−1 ∧ dx2j ∧ · · · ∧ dx2k

⎤

⎦ ∧ df ∧ dx2k+1

= k! fdx1 ∧ · · · ∧ dx2k+1

−k!
k
∑

j=1

dx1 ∧ · · · ∧ dx2j−1 ∧ x2j−1df ∧ dx2j ∧ · · · ∧ dx2k+1

= (k + 1)! fdx1 ∧ · · · ∧ dx2k+1 + exact.

Thus, working modΛGL(R
n),

̂CS (L(2πi)k+1w) = fdx1 ∧ · · · ∧ dx2k+1 + θ,

where

θ ∈
k
∑

j=1

Λ2j−1(Rn).

By induction, θ = ̂CS (V) for some V ∈ StructST(R
n). Theorem 1.8 shows V has an

inverse V−1. Clearly V−1 ∈ StructST(R
n) and by Proposition 2.3, ̂CS (V−1) = −θ.

Thus

̂CS (L(2πi)k+1w ⊕ V−1) = fdx1 ∧ · · · ∧ dx2k+1.

The general element of Λ2k+1(Rn) is the sum of such terms, and thus is the image

under ̂CS of the direct sum of the inverse images of each of these terms.
For the general case let ψ : X → Rn be an imbedding. Since ψ∗ : Λodd(Rn) →

Λodd(X) is onto, and ψ∗(ΛGL(R
n)) ⊆ ΛGL(X), ψ∗ : Λodd(Rn)/ΛGL(Rn) → Λodd(X)/

ΛGL(X) is onto. Moreover, ψ∗(StructST(R
n)) ⊆ StructST(X), and finally ̂CS◦ψ∗ =

ψ∗ ◦ ̂CS . Thus if ρ ∈ Λodd(X)/ΛGL(X), we can find ρ̄ ∈ Λodd(Rn)/ΛGL(R
n) with

ψ∗(ρ̄) = ρ. By the special case, ρ̄ = ̂CS (V) for some V ∈ StructST(R
n). Then

ρ = ψ∗(̂CS (V)) = ̂CS (ψ∗(V)).

�

From Propositions 2.3, 2.5, 2.6 we see

Theorem 2.7.

̂CS : StructST(X)/StructSF(X) ∼=−→ Λodd(X)/ΛGL(X).
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3. K̂(X)

Using the standard construction of K, which transforms an abelian semi-group
into a group, we define

K̂ = K(Struct(X)).

K̂(X) is the free abelian group generated by isomorphism classes of structured

bundles, modulo the relation V +W − (V ⊕W). Equivalently defined, K̂(X) is the
quotient of the semigroup under ⊕ consisting of all pairs (V ,W) modulo the sub-
semigroup consisting of pairs (V ,V). Since (0,V) is obviously the additive inverse
of (V , 0), we write (V ,W) as V −W .

By Theorem 1.8, using the pairs definition above it is straightforward to show

(3.1) Every element of K̂(X) is of the form V − [n].

(3.2) V − [n] = 0 ⇔ V is stably Flat and n = dim(V).
Again using the pairs definition, one sees that ⊗ is well defined in K̂(X),

and thus K̂(X) becomes a commutative ring. (Defining (V ,W) ⊗ (V ′,W ′) to be
(V ⊗ V ′ ⊕W ⊗W ′,W ⊗V ′ ⊕ V ⊗W ′) one sees that {(W ,W)} is an ideal.)

We define ∧BGL ⊆ Λeven by

ΛBGL(X) = {ch(V)}+ Λeven
exact

where V ranges over all elements of Struct(X). From (1.9) and (1.10) and Theorem
1.8 we see that ΛBGL(X) is a commutative ring.

By analogy with the definition of ΛGL, and using the theorem of Narasimhan-
Ramanan [9], we could alternatively have defined

ΛBGL(X) = {φ∗(Ω)}+ Λeven
exact

where φ : X → BGL ranges over all C∞ maps, and Ω is the Chern character form
of the standard connection on the classifying bundle over BGL.

Clearly, ch extends to K̂(X), and maps it to ΛBGL(C). We also define

δ : K̂(X) → K(X)

by
δ( [V, {∇}]− [W, {∇̄}] ) = V −W.

Letting c : K(X) → Heven(X,C) be the natural transformation defined by the
Chern character, and deR : ΛBGL(X) → Heven(X,C) be that defined by the de
Rham Theorem, we see

(3.3)

ΛBGL(X)

�
���
ch deR

�
���

K̂(X) ⊗ Heven(X,C)

δ

�
��� �

���
c

K(X)

is a commutative diagram.
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Proposition 3.1. ker(δ) ∼= Λodd(X)/ΛGL(X).

Proof. Define Γ : StructST /StructSF → K̂ by

Γ({V}) = V − [n],

where n = dim(V). By (3.2), Γ is well defined and is an injection. Moreover, it is
clear that Im(Γ) = ker(δ). Thus from Theorem 2.7,

Γ ◦ ̂CS
−1

: Λodd(X)/ΛGL(X)
∼=−→ ker(δ).

�

Let i = Γ ◦ ̂CS
−1

. Since δ is clearly onto,

(3.4) 0 −→ Λodd(X)/ΛGL(X)
i−→ K̂(X)

δ−→ K(X) −→ 0

is an exact sequence.

Proposition 3.2. ch ◦ i = d, and ch is onto.

Proof. To show the first, note that from the definition of ̂CS ,

d̂CS (V) = ch(V)− dim(V) = ch(Γ(V))

for any V ∈ StructST (X). Thus, for θ ∈ Λodd(X) and {θ} its equivalence class mod
ΛGL(X),

ch(i({θ})) = ch(Γ(̂CS
−1

({θ}))) = d({θ}) = dθ.

To show the second, let μ ∈ ΛBGL(X). By definition, ∃ V ∈ Struct(X) and
θ ∈ Λodd so that μ = ch(V) + dθ. By the above, μ = ch(V + i({θ})).

�

Let deR : Hodd(X,C) → Λodd(X)/ΛGL(X) be the obvious map induced by the
de Rham Theorem. Since the image of deR consists of closed forms, d ◦ deR = 0,
which by Proposition 3.2, implies ch ◦ i ◦ deR = 0. Thus, i ◦ deR(Hodd(X,C)) ⊆
ker(ch). We have now established

Proposition 3.3. The following diagram of functors and natural transforma-
tions is commutative, and its diagonals are exact.
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0 0

�
��� �

���

Λodd/ΛGL � ΛBGL
d

�
���
deR i

�
��� �

���
ch deR

�
���

Hodd(C) K̂ Heven(C)

i ◦ deR
�
��� �

���
⊆ δ

�
��� �

���
c

ker(ch) � K
δ |

�
��� �

���

0 0

Corollary 3.4. The outside sequences

Hodd(C)
i◦deR−→ ker(ch)

δ |−→ K
c−→ Heven(C)

Hodd(C)
deR−→ Λodd/ΛGL

d−→ ΛBGL
deR−→ Heven(C)

are exact.

Proof. Exactness of the first follows from diagram chasing, and that of the
second from the de Rham Theorem. �

In the decomposition below we assume that D is a codimension zero submani-
fold with collar neighborhoods in each of A and B. Thus a smooth form on D can
be extended to a smooth form on either A or B.

Theorem 3.5 (Mayer-Vietoris). Let A,B ⊆ X with A∩B = D and A∪B = X.

If μA ∈ K̂(A) and μB ∈ K̂(B) with μA|D = μB |D, then there exists μ ∈ K̂(X)
with μ|A = μA and μ|B = μB.

Proof. Following the diagram in Proposition 3.3, since δ(μA) |D = δ(μB) |D,
the Mayer-Vietoris property for K produces V − [n] ∈ K(X) with (V − [n]) |A =

δ(μA) and (V − [n]) |B = δ(μB). Choose μ̄ ∈ K̂(X) with δ(μ̄) = V − [n].
Now, δ(μ̄ |A) = δ(μ̄) |A = δ(μA), and similarly for B. Thus, by the diagram

(3.5)
μ̄ |A = μA + i({αA})

μ̄ |B = μB + i({αB})

where αA, αB ∈ Λodd(A), Λodd(B) and {αA}, {αB} represent their equivalence
classes mod ΛGL(A), ΛGL(B).
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By the above,

i({αA |D})− i({αB |D}) = i({αA}) |D − i({αB}) |D
= (μ̄ |A) |D − (μ̄ |B) |D − μA |D + μB |D.

The first pair vanishes since each term is μ̄ |D, and the second pair vanishes by
hypothesis. Since i is an injection,

αA |D = αB |D + w

where w ∈ ΛGL(D).

Case I: w = dρ
Extend ρ to all of A, and set α̃A = αA+dρ. Thus {α̃A} = {αA}, and α̃A |D =

αB |D. The latter equation implies there is a unique α ∈ Λodd(X) with α |A = α̃A

and α |B = αB . Thus by (3.5)

μ̄ |A = μA + i({α}) |A
μ̄ |B = μB + i({α}) |B

which implies that μ = μ̄− i({α}) satisfies the conditions of the theorem.

Case II: w = g∗(Θ) + dρ, where g : D → GL, and g∗(Θ) is not exact.
Using the clutching construction, we may construct a vector bundle V over X

with the properties that V |A and V |B are each trivialized by cross-sections {EA
i }

and {EB
i }, and

(3.6) EB
j |D =

∑

i

gijE
A
i |D.

Choose a connection, ∇′, on V , set V = [V, {∇′}] and μ′ = V − [dim(V)] ∈ K̂(X).
By construction, δ(μ′ |A) = 0 = δ(μ′ |B), and thus

μ′ |A = i({α′
A})

μ′ |B = i({α′
B})

where α′
A, α

′
B ∈ Λodd(A), Λodd(B) and {α′

A}, {α′
B} represent their equivalence

classes modulo ΛGL(A), ΛGL(B).
Let ∇AF and ∇BF be the Flat connections on V |A and V |B defined by

making {EA
i }, {EB

i } parallel. By the definition of i, and working mod exact, we
may take

α′
A = CS (∇AF ,∇′ |A)

α′
B = CS (∇BF ,∇′ |B).

Now, continuing to work mod exact,

α′
A |D − α′

B |D = CS (∇AF |D,∇′ |D)− CS (∇BF |D,∇′ |D)

= CS (∇AF |D,∇BF |D) = g∗(Θ)

by (3.6) and the argument of Lemma 2.1.
Thus, by taking ¯̄μ = μ̄− μ′ and referring to (3.5) we see

¯̄μ |A = μA + i({αA − α′
A})

¯̄μ |B = μB + i({αB − α′
B})
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and

(αA − α′
A) |D = (αB − α′

B) |D + exact.

The problem is now reduced to Case I. �
Corollary 3.6. ker(ch) also satisfies the Mayer-Vietoris property.

Proof. In the theorem above, if ch(μA) = 0 = ch(μB), then ch(μ) |A = 0 =
ch(μ) |B. Since ch(μ) is a differential form, this implies ch(μ) = 0. �

Corollary 3.7. ker(ch) is a homotopy functor.

Proof. Any element of ker(ch) is of the form V − [dim(V)], where ch(V) =
dim(V). By (1.8) the pull-backs of V under two smoothly homotopic C∞ maps
would be isomorphic, and so of course would pull-backs of [dim(V)]. �

Remark 3.8. Now we can see using [10] that ker(ch) is a homotopy functor
represented by homotopy classes of maps into some classifying space. Rather than
determining this space now, we will shift gears in the next section and use the work
of Lott and Karoubi in [1] and [2].

4. ker(ch) is equivalent to K-theory with coefficients in C/Z

The K-groups are the even part of an exotic Z-graded cohomology theory
which is 2-periodic. For every Z-graded cohomology theory, h, there is a long ex-
act sequence, analogous to the Bockstein sequence in ordinary cohomology theory,
associated to the coefficient sequence
0 → Z → C → C/Z → 0,

· · · → hi−1(C/Z) → hi(Z) → hi(C) → hi(C/Z) → · · ·
where hi(Z) = hi, hi(C) = hi⊕C, and the hi−1(C/Z) may be defined by homotopy
classes of mappings into a classifying space, in this case the homotopy fibre of the
map of classifying spaces corresponding to the map ⊗C in degree i. cf. [10], [13].
For the convenience of the reader, we discuss and characterize homotopy fibres in
the Appendix.

In the case of K-theory, Karoubi [2] and Lott [1] studied a smooth model of
K(C/Z). In this model one considers the semigroup of triples (V ,∇, η), where
[V ,∇] is a complex vector bundle with connection, and η ∈ Λodd/Λexact with dη =
ch(∇)− dimV . (V ,∇, η) and (V , ∇̄, η̄) are called equivalent iff

η − η̄ = CS (∇̄,∇).

Trivial elements are triples where [V ,∇] is Flat and η = 0. Stabilizing this equiv-
alence by the addition of trivial elements, passing to isomorphism classes, and
dividing out by trivial elements, yields the model of K(C/Z).

In this model, the “Bockstein” sequence contains

(4.1) Hodd(C)
α−→ Kodd(C/Z)

β−→ Keven(Z)

where α is defined by choosing any closed form η representing a given cohomology
class μ and setting α(μ) = (F, ∇F ,−η) where [F,∇F ] is Flat. β is defined by
taking (V ,∇, η) into V − dimV ∈ K(Z).

There is a natural map, Φ, sending ker(ch) into this model, in which

Φ([V , {∇}]− [dimV ]) = (V ,∇, 0).
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Proposition 4.1. Φ : ker(ch) −→ Kodd(C/Z) is a bijection. Moreover, using
the notation of the diagram in Prop. 3.3, the diagram below is commutative.

Kodd(C/Z)

�
���
α β

�
���

Hodd(C)
�
Φ Keven(Z)

i ◦ deR
�
��� �

���
δ |

ker(ch)

Proof. Injectivity of Φ follows from the definition of structured bundles, and

surjectivity follows from the surjectivity of ̂CS in Prop. 2.6. Moreover, it is imme-
diate from (4.1) that β ◦ Φ = δ |.

To see that the left side commutes, let μ ∈ Hodd(C) be represented by a closed
form η. From the definition of i in Prop. 3.3 we see

i ◦ deR(μ) = [F, {∇}]− [dimF ]

where F may be taken to be trivial and ̂CS ([F, {∇}]) = η mod ΛGL. Using Lemma
2.1 and enlarging F if necessary, we may find a suitable Flat connection ∇F so that
CS (∇F ,∇) = η mod exact. Then

Φ ◦ i ◦ deR(μ) = (F,∇, 0) ∼ (F,∇F , η) = α(μ).

�

Thus, via Φ, we may substitute Kodd(C/Z) for ker(ch) in Prop 3.3, and so
prove

Theorem 4.2. The following diagram has exact diagonals and exact upper and
lower boundaries.
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0 0

�
��� �

���

Λodd/ΛGL � ΛBGL
d

�
���
deR i

�
��� �

���
ch deR

�
���

Hodd(C) K̂ Heven(C)

reduction mod Z

�
��� �

���
j δ

�
��� �

���
c

Kodd(C/Z) � Keven(Z)
Bockstein

�
��� �

���

0 0

Corollary 4.3. If we set

Keven(Z) † ΛBGL = {(V,w) ∈ Keven(Z)× ΛBGL | c(V ) = deR(w)}

and

T = Hodd(C) / deR(ΛGL)

then the diagram shows that

0 → T → K̂ → Keven(Z) † ΛBGL → 0

is an exact sequence, the kernel of which is a complex torus of dimension the sum
of the odd Betti numbers of the underlying manifold.

5. Hermitian Vector Bundles

In all that preceded, the basic objects were complex vector bundles with con-
nection. The entire approach immediately applies to Hermitian bundles with inner
product preserving connection. The same definition of equivalence goes through
and gives rise to a Hermitian version of Struct. Analogs of all results remain true,
with proofs following identical lines.

Letting K̂R = K (Hermitian Struct), we obtain the following commutative
diagram,
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0 0

�
��� �

���

Λodd/ΛU � ΛBU
d

�
���
deR i

�
��� �

���
ch deR

�
���

Hodd(R) K̂R Heven(R)

reduction mod Z

�
��� �

���
j δ

�
��� �

���
ch

Kodd(R/Z) � Keven(Z)
Bockstein

�
��� �

���

0 0

where ΛU and ΛBU are real-valued forms, defined analogously to ΛGL and ΛBGL.

By analogy to Corollary 4.3, we see

Corollary 5.1. For any bundle over a closed Riemannian manifold after
stabilizing, there is a unitary connection on the bundle whose Chern-Weil form is
the harmonic representative of the Chern character of the bundle. Moreover, when
the odd Betti numbers vanish, this structured bundle is unique up to adding factors
with trivial holonomy.

Appendix

Recall in the homotopy theory of spaces homotopy equivalent to CW complexes
that a map X → Y is homotopy equivalent to the projection map of a Serre

fibration. To see this let us assume X and Y are connected. First replace X
p→ Y

by X
p̃→ Ỹ where p̃ is an inclusion by replacing Y by (the mapping cylinder of p)

X × I ∪∼ Y where X × 1 is collapsed by p onto its image in Y .
Then replace X by X̃ where X̃ is all the paths in Ỹ that start in X. Then X̃

maps into Ỹ (continue to call it p̃) with the Serre path lifting property by evaluating

a path at its endpoint in Ỹ . Clearly, Ỹ ∼ Y , X̃ ∼ X, and p̃ ∼ p.

The fibre F → X of X
p→ Y is defined up to homotopy to be the inclusion into

X̃ of the paths in Ỹ starting in X and ending at a specific point y ∈ Y (or Ỹ ).

Question: What properties characterize the homotopy fibre F
i→ X of a

map X
p→ Y ?

In the following, we assume X, Y , F , and F ′ are connected.

Proposition 5.2. Suppose we have a map F ′ i′−→ X and further suppose the

composition F ′ i′→ X
p→ Y is provided with a null homotopy so that the induced map
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of homotopy sets
πi(X,F ′) → πi(Y, base point)

are bijections i = 1, 2, .... Then F ′ i′→ X is homotopy equivalent to the homotopy

fibre F → X of X
p−→ Y .

Proof. By our hypothesis, F ′ is connected. By the path lifting property of

Serre fibrations, the null homotopy of the composition F ′ i→ X
p→ Y defines a

canonical homotopy class of maps F ′ → F so that

F ′ i′→ X
p→ Y

↓ || ||
F

i→ X
p→ Y

is homotopy commutative.
Now we look at the exact sequence of homotopy groups and sets

· · · → π2X → π2(X,F ′) → π1F ′ → π1X → π1(X,F ′) → π0F ′ ∼= pt

|| ↓ ↓ || ↓ ∼=↓
· · · → π2X → π2(X,F ) → π1F → π1X → π1(X,F ) → π0F ∼= pt

In a Serre fibration the path lifting property implies that the homotopy sets πi(X,F )
are isomorphic to πi(Y, base point) and thus become groups. By the above commu-
tative diagram the maps πi(X,F ′) → πi(X,F ) are bijections. Thus the proposition
follows from the 5-lemma. �
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Entropy in Operator Algebras

Erling Størmer

Dedicated to Alain Connes on the occasion of his 60th birthday

Introduction

Noncommutative entropy is one of the many mathematical topics in which
Alain Connes has excelled. In these notes I shall give a quick survey of the subject
with the main emphasis on Alain’s contributions and influence.

After Ornstein in 1970 [19] published his result on the classification of Bernoulli
shifts by entropy, entropy related studies in ergodic theory became a very active
discipline in the early 1970’s. At roughly the same time it became clear that
operator algebras and ergodic theory had more in common than was previously
recognized. It was therefore a natural problem to try to extend the concept of
entropy to operator algebras. It started in the C∗−algebraic formalism of quantum
statistical mechanics, where spin lattice systems with automorphisms arising from
translations behaved very much like abelian systems, so that entropy could be
generalized by replacing partitions by local algebras. The resulting mean entropy
yielded most of the results one wanted. But in more general C∗−dynamical systems
mean entropy was useless.

Alain and I met often at that time, and we both thought about possible non-
commutative generalizations of entropy. One of our motivations was that it might
yield useful invariants for operator algebras. This later on turned out to be true by
Brown’s characterization [2] of type I C∗−algebras as those C∗−algebras for which
inner automorphisms have zero entropy with respect to invariant states. Alain’s
and my common interest developed into joint work on the problem, in which Alain’s
deep understanding and technical fluency made it possible to write our paper [7],
which appeared in 1975, in which we gave a definition which has proved useful to
this day. Twelve years later Alain jointly with Narnhofer and Thirring [6] extended
the definition to C∗−algebras and obtained what I consider the best definition to
date.

Some years later, in 1995, Voiculescu [30] defined topological entropy, which
together with an extension by Brown to exact C∗−algebras [3] became the basic
generalization of topological entropy as it is defined in ergodic theory.
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There have been many other attempts at defining entropy of automorphisms in
operator algebras. I shall indicate some of them in Section 8. Most of them suffer
from a drawback in that they do not satisfy all the criteria I want for a suitable
definition; namely

(i) They should restrict to the usual entropy in the abelian case.

(ii) They should be computable in the simpler noncommutative cases, e.g. give
log n for the entropy with respect to the tracial state of the shift on the infinite
tensor product of the n× n matrices.

(iii)There should be a kind of Kolmogorov-Sinai theorem in the theory.
Since the technical proofs of the theory are covered in the book [18] by Nesh-

veyev and myself and also the survey article of mine [27], I shall mainly state results
and definitions and try to present the main ideas involved.

1. Definition of noncommutative entropy

Let us first fix notation and recall the definition of entropy as it is given in the
“classical” abelian case.

Let (X,B, μ) be a probability space with X a set, B a σ−algebra, and μ a
probability measure. Let P = {P1, ..., Pk} be a partition of X with Pi ∈ B, and let
η denote the real function on [0,1] defined by η(0) = 0, η(t) = −t log t for t > 0.
The entropy of P is

H(P) =

k
∑

i=1

η(μ(Pi)).

We identify Pi with its characteristic function χPi
and P with the linear span of

the χPi
, i = 1, ...k. Then P is a finite dimensional subalgebra of L∞(X,B, μ). If

P1, ...,Pk are finite dimensional subalgebras we define their joint entropy by

(1) H(P1, ...,Pk) = H(

k
∨

i=1

Pi),

where
∨k

i=1 Pi is the finite dimensional algebra they generate. If T is a nonsingular
measure preserving transformation of X, define an automorphism α of L∞(X,B, μ)
by

α(f)(x) = f(T−1x)

for f ∈ L∞(X,B, μ), x ∈ X. Then we put

(2) H(α,P) = lim
n

1

n
H(P, α(P), ..., αn−1(P)),

and the entropy of α as

(3) H(α) = sup
P

H(α,P),

where the sup is taken over all finite dimensional subalgebras of L∞(X,B, μ). In
order to compute H(α) it is usually necessary to invoke the Kolmogorov-Sinai
Theorem. There are several versions of this theorem. The one which is most
useful for generalization to the noncommutative case states that if P1 ⊂ P2 ⊂ · · ·
are finite dimensional subalgebras with union weakly dense in L∞(X,B, μ), then
H(α) = limn H(α,Pn). If we want to define entropy in the noncommutative case,
the natural first approach would be to replace L∞(X,B, μ) by a C∗−algebra or a
von Neumann algebra and the measure μ by a state φ and a partition by a finite
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dimensional subalgebra. If M is a finite dimensional C∗−algebra with a tracial
state τ , then a natural definition of the entropy of M is

H(M) =
∑

i

η(τ (ei)),

where e1, ..., ek is an orthogonal family of minimal projections in M with sum 1.
But if N is another finite dimensional C∗−subalgebra then the algebra generated
by M and N is often of infinite dimension, so equation (1) does not make sense.
To overcome this problem we must rewrite (1) in a form which considers the Pi

separately.
Consider first one finite dimensional subalgebra P. Let

F = {fi ∈ P : i = 1, . . . , n, fi ≥ 0,

n
∑

i=1

fi = 1}

be a finite partition of 1 in P. Then we can show

H(P) = sup
F

∑

i

(η(μ(fi))− μ(η(fi))),

where the sup is taken over all finite partitions F. Let now P1, ...,Pn be finite dimen-
sional subalgebras of L∞(X,B, μ), EPk

the μ− invariant conditional expectation
of L∞(X,B, μ) onto Pk, and F = {fi1,...,in} a finite partition of 1 in L∞(X,B, μ).
Put

f
(k)
ik

=
∑

ǐk

fi1,...,in ,

i.e. the sum holding the index ik fixed.

Theorem 1. With the above notation

H(P1, ...,Pn) = sup
F

∑

i1,...,in

η(μ(fi1,...,in))−
n
∑

k=1

∑

ik

μ(η(EPk
f
(k)
ik

)),

where the sup is taken over all finite partitions of
∨

i Pi.

This formula for H(P1, ...,Pn) makes sense in the noncommutative case, and
was behind the definition in [7]. Let M be a von Neumann algebra with a faithful
normal tracial state τ. Let N1, ..., Nn ⊂ M be finite dimensional von Neumann
subalgebras. Let EN denote the τ−invariant conditional expectation on a von
Neumann subalgebra N of M, and let F = {fi1,...,in} be as before with fi1,...,in ∈
M+. Then with μ replaced by τ and the Pi by Ni, we define the mutual entropy
H(N1, ..., Nn) as in the theorem. If α is an automorphism of M such that τ ◦α = τ
define H(α,N) as in the classical case (2), and the entropy of α as in (3), i.e.

H(α) = sup
N

H(α,N).

H(α) has many features in common with classical entropy; for example if M is
hyperfinite then H(αp) = |p|H(α) for an integer p, but it does not behave so well
with respect to tensor products. If (Mi, αi, τi), i = 1, 2, are two W ∗−dynamical
systems as above, then we can only conclude that

H(α1 ⊗ α2) ≥ H(α1) +H(α2),

because there are not enough finite dimensional subalgebras of M1⊗M2 of the form
N1 ⊗N2 to conclude equality.
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The Kolmogorov-Sinai Theorem assumes the form alluded to above, namely

Theorem 2. If N1 ⊂ N2 ⊂ · · · is an increasing sequence of finite dimensional
von Neumann subalgebras of M with union weakly dense in M , then

H(α) = lim
n

H(α,Nn).

A technical tool in the proof is that of relative (or conditional) entropy of two
finite dimensional subalgebras N and P , defined by

H(N |P ) = sup
∑

i

(τ (η(EP (xi)))− τ (η(EN(xi)))),

where the sup is taken over all finite partitions xi of 1. H(N |P ) has very nice con-
tinuity properties, which are used in the proof, i.e. if N is approximately contained
in P in the ‖ · ‖2-norm defined by τ, then H(N |P ) is small. We shall encounter
relative entropy again in Section 7 in a different situation.

The mutual entropy H(N1, ..., Nn) satisfies most of the properties that can
be expected from the abelian case, like symmetry in the Ni, subadditivity, mono-
tonicity etc. One property has been very useful for computation, namely, if Pi

is a C∗−subalgebra of Ni for each i such that the Pi pairwise commute, and
∨

i Pi =
∨

i Ni, then H(N1, ..., Nn) = H(
∨

i Ni). A more abelian result was shown
by Haagerup and myself [10]. We use the short hand ”masa” for maximal abelian
subalgebra.

Theorem 3. With notation as above suppose N =
∨n

i=1 Ni is finite dimen-
sional. Then H(N1, ..., Nn) = H(N) if and only if there exists a masa A ⊂ N such
that A =

∨n
i=1 A ∩Ni.

The easy part of the proof is a direct consequence of the properties of H alluded
to above, namely

H(N) ≥ H(N1, ..., Nn), since Ni ⊂ N

≥ H(A ∩N1, ..., A ∩Nn), since A ∩Ni ⊂ Ni

= H(

n
∨

i=1

A ∩Ni), since the abelian algebras A ∩Ni commute

= H(A)

= H(N), since A is a masa in N.

The converse implication is much more involved as one then has to construct the
masa A.

Example. Let M =
⊗∞

−∞(Mi, τi) be the infinite tensor product of the n × n
matrices Mi with itself with respect to the tracial state τi on Mi. Let α be the shift
on M , and D =

⊗∞
−∞ Di, where Di = α(D0), D0 a masa in M0. Then

H(α) = H(α|D) = log n.

This follows immediately from the easy part of Theorem 3 together with the

Kolmogorov-Sinai Theorem (Thm.2) applied to the sequence Nk =
⊗k

−k Mi ⊂ M.
The example can easily be generalized to general Bernoulli shifts by replacing τi by
a state φi = φ0 for all i. Then M must be replaced by the centralizer of φ = ⊗φi.

After the appearance of Alain’s and my paper [7] not much happened to the
theory for ten years until Alain realized that the formula for mutual entropy could
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be rewritten in terms of relative entropy of states, and thus the definition of entropy
could be extended to nontracial states (for details of the following see Chapter 3 in
[18]). Recall that if φ and ψ are positive linear functionals on a finite dimensional
C∗−algebra with density operators Qφ and Qψ with respect to a trace Tr, then
their relative entropy is

S(φ, ψ) = Tr(Qφ(logQφ − logQψ)), if φ ≤ λψ, λ > 0,

and we put S(φ, ψ) = +∞ if no such λ exists. Note that τη(x) = −S(τ (x·)|N , τ |N )
for N a finite dimensional algebra, and that the map x �→ τ (x·) establishes a 1-1
correspondence between positive operators 0 ≤ x ≤ 1 and positive linear functionals
φ ≤ τ on N. We can therefore rewrite the definition of mutual entropy as

H(N1, ..., Nn) = sup
φi1,...,in

∑

i1,...,in

η(φi1,...,in(1)) +
∑

k

∑

ik

S(φ
(k)
ik

|Nk
, τ |Nk

),

where φi1,...,in and φ
(k)
ik

are defined in analogy with the fi1,...,in and f
(k)
ik

in the
abelian case. Alain [5] then defined the mutual entropy with respect to a normal
state analogously, namely

Hφ(N1, ..., Nn) = sup
φi1,...,in

∑

i1,...,in

η(φi1,...,in(1)) +
∑

k

∑

ik

S(φ
(k)
ik

|Nk
, φ|Nk),

where
∑

φi1,...,in = φ, and S is a more general definition of relative entropy than
the above. Thus he could define Hφ(α) of a φ−invariant automorphism α of a von
Neumann algebra with respect to a normal state φ.

A couple of years later Alain together with Narnhofer and Thirring extended
the definition to automorphisms of C∗−algebras [6]. Then one encounters a new
problem, namely the lack of sufficiently many finite dimensional C∗−subalgebras
of a C∗−algebra A. They solved this by restating the definition as

(4) Hφ(γ1, ..., γn) = sup
φi1,...,in

∑

i1,...,in

η(φi1,...,in(1)) +
∑

k

∑

ik

S(φ
(k)
ik

◦ γk, φ ◦ γk),

where γ1, ..., γn are completely positive maps from finite dimensional C∗−algebras
into A.

A clever trick was to represent the definition as an abelian problem. They
noticed that if C is a finite dimensional abelian C∗−algebra, C1, ..., Cn ⊂ C subal-
gebras, μ a state on C, and P : A → C a unital positive map such that φ = μ ◦ P ,
then a decomposition of φ is given by

φi1,...,in(a) = μ(P (a)p
(1)
i1

· · · p(n)in
),

where p
(k)
ik

is the set of atoms in Ck. Conversely each decomposition of φ gives rise
to such an abelian model, denoted by (C, μ, (Ck), P ). Thus (4) can be rewritten as

(5) Hφ(γ1, ..., γn) = supHμ(
∨

k

Ck) +
∑

k

∑

ik

S(μ(P ◦ γk)p(k)ik
, φ ◦ γk),

where the sup is taken over all abelian models. As before Hμ(
∨

k Ck) is the entropy
of

∨

k Ck) with respect to μ. Now, the entropy of a φ−invariant automorphism α
is defined as before, namely we put

Hφ(α, γ) = lim
1

n
Hφ(γ, α ◦ γ, ..., αn−1 ◦ γ),
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and

hφ(α) = sup
γ

Hφ(α, γ).

This entropy is usually referred to as the CNT-entropy after Connes, Narnhofer
and Thirring, and it has all the desired properties, including a Kolmogorov-Sinai
theorem resembling that of Theorem 2. It is tied together with the von Neumann al-
gebra definition via the GNS-representation πφ of φ. Namely, let ᾱ be the extension
of α to πα(A)”. Then

hφ(α) = Hφ(ᾱ).

Thus, after placing the theory of dynamical entropy on a firm basis, Alain
stopped working actively on entropy; there were so many other things he wanted to
do. But he kept his interest in the subject and had a strong influence on its further
development. This I shall describe in the next sections.

2. Bogoliubov automorphisms

One of my favorite C∗−algebras is the CAR-algebra A(H), which is isomorphic
to the infinite tensor product of the 2 × 2 matrices. It is generated by operators
a(f) where f ∈ H, a complex Hilbert space, and f → a(f) is a linear map of H
into a C∗−algebra satisfying the canonical anticommutation relations

a(f)a(g)∗ + a(g)∗a(f) = (f, g)1,

a(f)a(g) + a(g)a(f) = 0,

for all f, g ∈ H. If U is a unitary operator on H, the Bogoliubov automorphism of
A(H) corresponding to U is defined by

αU (a(f)) = a(Uf).

Let m(U) be the multiplicity function of the absolutely continuous part of U , and
let τ be the unique tracial state on A(H).

In a letter written in 1987, or perhaps it was in 1988, Alain asked me to prove
the following formula:

hτ (αU ) =
log 2

2π

∫ 2π

0

m(U)(θ)dθ,

a formula which requires deep insight in the theory to guess. I started on the
problem, but hit a wall after a while. Fortunately I met Voiculescu at a conference
in Kansas and told him about the problem. It turned out that he could do what I
could not do, so we could prove the above formula, even in the more general setting
of certain quasi-free states. The ideas are explained in [27], Chapter 4, and details
can be found in [18], Chapter 13. The main idea is the following. A unitary U
can be written as a direct sum Us ⊕ Ua, where Us has singular and Ua absolutely
continuous spectral measure with respect to the Lebesgue measure dθ on the circle.
The first step is to show hτ (αUs

) = 0. This is also true for the entropy with respect
to a quasi-free state ωA which is defined by an operator 0 ≤ A ≤ 1 by the formula

ωA(a(g1)
∗ · · · a(gm)∗a(f1) · · ·a(fn)) = δmn det(Afi, gj).

ω is αU -invariant if and only if AU = UA. Note that τ = ω 1
2
.

If A has pure point spectrum, ωA is an infinite product state. The part Ua is
then essentially a direct sum of powers of the bilateral shift. Elaborating on these
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vague ideas, Voiculescu and I [28] could prove the following theorem under the
assumption of pure point spectrum.

Theorem 4.

hωA
(αU ) =

log 2

2π

∫ 2π

0

Tr(η(A(θ)) + η(1−A(θ)))dθ,

where H =
∫ ⊕

Hθdθ,A =
∫ ⊕

A(θ)dθ, Ua =
∫ ⊕

Ua(θ)dθ, are direct integral repre-
sentations of H,A,Ua respectively.

The assumption that A had pure point spectrum inspired others to improve
the theorem. First Narnhofer and Thirring [14] and Park and Shin [20] proved
generalizations, and then Neshveyev [16] proved it in general. His paper was the
starting point of a fruitful collaboration with me, later resulting in a permanent
position for Neshveyev at the University of Oslo. Thus Alain’s influence on the
entropy formula for Bogoliubov automorphisms was not only a proof of the, I think,
most spectacular formula in the theory of dynamical entropy, but also it changed
Neshveyev’s life considerably.

3. Topological and a related entropy

When we defined entropy we encountered the problem of considering the alge-
bra generated by several finite dimensional algebras. We overcame the problem by
considering them separately and could thus define their mutual entropy; see The-
orem 1. Alain and I [8] proposed another definition in which we considered finite
subsets of operators of the von Neumann algebra instead of subalgebras, and thus
reduced the problem with generated algebras to that of taking unions of sets. The
definition was as follows. Let M ⊂ B(H) be a von Neumann algebra with a cyclic
and separating trace vector. Let τ be the corresponding trace. Let U(M) denote
the unitary group in M . For δ > O and F ⊂ U(M) finite put

(6) hτ
δ (F ) = inf{S(φ) : φ ∈ B(H)+∗ , φ |M= τ, S(φ, φ ◦Adu) < δ ∀u ∈ F}

The analogue of H(α,N) for a τ−invariant automorphism α is now

hτ (α, F ) = sup
δ>0

lim sup
n

1

n
hτ
δ (

n−1
⋃

i=0

αi(F )),

and the entropy is

hτ (α) = sup
F

hτ (α, F ),

where the sup is taken over all finite subsets F of U(M). We could then show that
the definition coincided with the classical definition in the abelian case, but did
nothing else with it.

The above procedure reappeared in Voiculescu’s definition of topological en-
tropy [30]. Instead of taking the entropy S(φ) in (6) he used the idea of the
McMillan Theorem. Let (X,B, μ) be a probability space with a nonsingular mea-
sure preserving transformation T ofX. Let α be the corresponding automorphism of
L∞(X,B, μ). If P is a finite partition, the entropy H(P, α) is, up to approximation
depending on μ, roughly determined by the number of sets in P. The corresponding
value for a finite dimensional C∗−algebra B is rankB, the dimension of a masa in
B. Voiculescu’s definition now takes the form:
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Let A be a C∗−algebra, F a finite subset of A and B a finite dimensional
C∗−algebra. Let ρ and ψ be two unital completely positive maps, ρ : A → B and
ψ : B → A. Put

(7) rcp(F, δ) = inf{rankB : ‖ψ ◦ ρ(x)− x‖ < δ},
where the inf is over all triples (B, ρ, ψ). Let α ∈ Aut(A) be an automorphism.
Then the analogue of H(α,N) is now

ht(α, F ) = sup
δ>0

lim sup
n

1

n
log rcp(

n−1
⋃

i=0

αi(F )),

and the topological entropy of α is

ht(α) = sup
F

ht(α, F ),

where the sup is taken over all finite subsets of A. This works well when A is a
nuclear algebra, because we always find B, ρ, ψ such that ‖ψ ◦ ρ(x) − x‖ < δ for
all x ∈ F. More generally, as shown by Brown [3], it works when A is exact. ht(α)
satisfies most of the properties one expects from topological entropy. We have
a Kolmogorov-Sinai Theorem, and ht(αp) = |p|ht(α) for an integer p. Moreover
hφ(α) ≤ ht(α) for all α−invariant states φ. But the topological entropy of a tensor
product of two automorphism satisfies only the inequality

ht(α⊗ β) ≤ ht(α) + ht(β),

which is the opposite inequality of what we have for dynamical entropy. In partic-
ular when there exist φ and ψ such that hφ(α) = ht(α) and similarly for β, then
we have equalities in the above inequality and the corresponding for dynamical
entropy.

This leads us to a problem which was left open in the first papers on noncom-
mutative entropy; namely, is

hφ⊗ψ(α⊗ β) = hφ(α) + hψ(β)?

Even when φ and ψ are traces the answer turned out to be negative. Narnhofer,
Thirring and I [15] found an example of a binary shift α on the CAR-algebra for
which hτ (α) = 0, while hτ⊗τ (α⊗α) = log 2. In this example ht(α) = log 2. Almost
at the same time Sauvageot [23] exhibited another example where equality fails.

4. The variational principle

The variational principle has over the years attracted much attention both in
classical ergodic theory and in the C∗−algebra setting for quantum statistical me-
chanics. Using mean entropy on spin lattice systems mathematical physicists, in
particular Araki, Lanford, Robinson, and Ruelle showed that the variational prin-
ciple holds with respect to translations and that the KMS condition characterizes
equilibrium states. It was natural to expect that one might prove similar results
for the CNT-entropy hφ. Early work on this extension was done by Narnhofer [13],
studying KMS states and then by Moriya [12], who showed that for lattice systems
one could replace mean entropy by dynamical entropy in the formalism of the vari-
ational principle. The formulation of the simplest case is that for an automorphism
α of a C∗−algebra one should have ht(α) = sup hφ(α), where the sup is taken over
all α−invariant states. This is false for almost all binary shifts of the CAR-algebra,
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see Theorem 12.2.3 and Proposition 12.2.1 in [18]. Thus some assumptions are
necessary. Again Alain’s deep insight was necessary.

Alain is a very good friend of the Norwegian operator algebraists, and once
he went with some of us to an old mining town, Røros, in Norway to go skiing.
At dinner one day Alain suggested to me that I show the variational principle for
asymptotically abelian C∗−algebras, because he was convinced that for some of the
many definitions of asymptotic abelianness the variational principle should hold. I
thought that it was a very nice problem and invited Sergey Neshveyev to come to
Oslo and work on it with me. Later on I noticed that Alain had stated the problem
in his book on noncommutative geometry.

Let me first start with the finite dimensional case. Let B be a finite dimensional
C∗−algebra with a trace TrB satisfying TrB(e) = 1 for all minimal projections in
B. Let φ = TrB(Qφ·) be a state on B with density operator Qφ. in B+. Let

S(φ) = TrB(η(Qφ))

be the entropy of φ. The variational principle is formulated as follows.

Lemma 5. With the above notation

S(φ)− φ(h) ≤ log TrB(e
−h)

for h ∈ B self-adjoint. Equality holds if and only if

Qφ =
e−h

TrB(e−h)

is the Gibbs state. In the latter case φ is a KMS state with respect to the one-
parameter automorphism group

σt(x) = e−ithxeith.

That φ is KMS means that φ(aσh
it(b)) = φ(ba) for all a, b ∈ B. This lemma gives

a model for defining the analogue, called pressure, of log TrB(e
−h). We imitate the

definition of topological entropy. So, let A be a C∗−algebra, F ⊂ A a finite set,
and B a finite dimensional C∗−algebra with completely positive maps ρ : A →
B,ψ : B → A. Let h ∈ A be self-adjoint and α an automorphism of A. If δ > 0 let

P (h, F, δ) = inf
(B,ρ,ψ)

{log TrB(e−ρ(h)) : ‖ψ ◦ ρ(x)− x‖ < δ, ∀x ∈ F}.

Note that if h = 0 then log TrB(e
−ρ(h)) = rankB, so we have the situation of the

definition of topological entropy. Now continue as in the definition of topologi-
cal entropy and obtain the pressure P (α, h) of α with respect to h. In particular
P (α, 0) = ht(α). One can show that P (α, h) satisfies the main properties expected
from the abelian case, see Section 9.1 in [18]. The choice of asymptotic abelianness
which is required for the variational principle, is given by

Definition 6. A C∗−dynamical system (A,α) is called asymptotically abelian
with locality if there exists an α−invariant dense *-subalgebra A ⊂ A, called the
local algebra, such that for each pair a, b ∈ A the C∗−algebra C∗(a, b) they generate
is finite dimensional, and there exists p = p(a, b) ∈ N such that [αj(a), b] = 0
whenever |p| ≤ j, and [ , ] denotes the commutator.

A good example of the above situation is the infinite tensor product
⊗∞

−∞ Bi,
with Bi = B0 finite dimensional and α the shift. Then A consists of operators which
are finite sums of finite tensors. Note that if A is separable, we can take a dense
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sequence in A and inductively define an increasing sequence of finite dimensional
C∗−subalgebras of A with union dense in A, hence in A. Thus A is an AF-algbebra.
We can now formulate the variational principle [17].

Theorem 7. Let (A,α) be a unital separable C∗−dynamical system which is
asymptotically abelian with locality. Then

P (α, h) = sup
φ
(hφ(α)− φ(h)),

where the sup is taken over all α−invariant states. In particular the topological
entropy satisfies

ht(α) = sup
φ

hφ(α).

The proof consists essentially of two lemmas. The first proves the theorem
under the assumption that there exists a finite dimensional C∗−subalgebra N of A
such that the images αj(N) all commute for j ∈ Z and that they generate A as a
C∗−algebra. In general there is no such N, but for each N there is p ∈ N such that
αi(N) and αj(N) commute whenever |i− j| ≥ p, and some estimation is necessary
to reduce to the first lemma.

In order to obtain the KMS part for the analogue of Gibbs states one must be
more careful in defining the corresponding 1-parameter automorphism group. So
assume (A,α) is asymptotically abelian with locality and h a self-adjoint operator
in the local algebra A. Put

δh(x) =
∑

i∈Z
[αj(h), x]

for x ∈ A,. For each x ∈ A the sum is finite, and δh is a derivation of A which
defines a 1-parameter group σh

t = exp(itδh) of automorphisms of A. Let β ≥ 0. We
say an α−invariant state φ is an equilibrium state at h at inverse temperature β if

P (α, βh) = hφ(α)− βφ(h)(= sup
ψ

(hψ(α)− βψ(h)).

Then the KMS condition for equilibrium states (or Gibbs states) can be formulated.

Theorem 8. With (A,α) and notation as above assume ht(α) < ∞, and let
h ∈ A be self-adjoint. Suppose φ is an equilibrium state at h at inverse temperature
β. Then φ is a KMS state for σh at β. In particular, if ht(α) = hφ(α), then φ is a
trace.

5. Free products

In this and the following two sections I want to present a glimpse of three
major developments in the theory which have not been under as direct influence of
Alain as the previous sections. As we have seen, entropy was best behaved and took
values expected from the abelian theory when the C∗−dynamical system (A,α) had
a great deal of abelianness built into it. To understand entropy better it is therefore
necessary to consider the opposite case when the system is highly noncommutative.
The first study was of the free shift, defined as follows.

Let F∞ be the free group on an infinite number of generators (gi)i∈Z . Let
L(F∞) be the II1− factor obtained from the left regular representation of F∞, and
let α be the free shift on L(F∞) defined by α(gi) = gi+1. α is extremely ergodic; for
example if N ⊂ L(F∞) is a finite dimensional C∗−subalgebra, or abelian, or even
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injective, and α(N) = N, then N = C1, [22]. Our experience from the abelian case
would make us guess that such an automorphism must have infinite entropy, but
from the results in Section 1 the extreme noncommutativity of L(F∞) indicates that
this may not be so. Furthermore F∞ has some features in common with compact
groups in that powers of the free shift α do not move elements “very far away”.
The answer is given in the next theorem, [26].

Theorem 9. The free shift of L(F∞) has entropy H(α) = 0 taken with respect
to the trace.

The result was subsequently extended to free products of C∗−algebras by
Choda, Brown, Dykema, and Shlyakhtenko, see [17], Chapter 14.

Theorem 10. Let A0 be an exact C∗−algebra, and An = A0, n ∈ Z. Let φ0 be
a state of A0, and φn = φ0 the same state on An. Let α be the free shift on the free
product (A, φ) = (∗An, ∗φn). Then ht(α) = 0.

A similar theorem was proved by me for dynamical entropy of general C∗−alge-
bras. I mentioned in Section 4 that almost all binary shifts on the CAR-algebra
have entropy zero. In those cases too, the reason is the highly noncommutative
situation of the example. We can summarize the discussion with the following
general principle:

If (A,α) is a highly noncommutative C∗−dynamical system, then ht(α) and
hφ(α) tend to be zero.

6. Crossed products

If (A,α) is a C∗−dynamical system and φ an α−invariant state, the crossed
product A�αZ is generated by an isomorphic image of A and a unitary operator u
such that α(x) = uxu∗ for x ∈ A. This and more general constructions yield many
of the main examples of C∗− and von Neumann algebras in operator algebra theory.
Define an automorphism ᾱ on A �α Z by ᾱ(x) = α(x) if x ∈ A, and ᾱ(u) = u.
There is a natural conditional expectation E : A�α Z → A defined by E(xun) = 0
if n �= 0, and E(x) = x for x ∈ A. Then φ̄ = φ ◦ E is an ᾱ−invariant state. From
the early days of the theory it was an open problem to find the entropy of ᾱ with
respect to φ̄. This was solved by Voiculescu [30] in 1995.

Theorem 11. With the above notation hφ̄(ᾱ) = hφ(α).

The result has later been extended to more general situations. In the special
case when A = L∞(X,B, μ) with X nonatomic, and α is a freely acting ergodic
μ−invariant automorphism, then the von Neumann algebra closure (A �α Z)” of
A�α Z is a II1−factor with A as a masa. Then the entropy of ᾱ is the entropy of
the restriction α to the invariant masa A.

7. Subfactors and relative entropy

In classical ergodic theory we have relative entropyH(P1|P2) for two partitions.
If T is a measure preserving transformation then

(8) H(T ) = lim
n

H(

n
∨

0

T−iP|
n
∨

1

T−iP),
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when P is a generator. In Section 1 we saw how to define relative entropy with
respect to a trace between two finite dimensional C∗−subalgebras of a finite von
Neumann algebra and mentioned the extension by Pimsner and Popa [21] to infinite
dimensions when one algebra was contained in the other. Pimsner and Popa noticed
that relative entropy is closely related to the Jones index [M : N ] of a von Neumann
algebra M with respect to a subfactor N. Their most striking result is

Theorem 12. Let N ⊂ M be II1−factors with [M : N ] < ∞ and N ′ ∩M = C.
Then

H(M |N) = log[M : N ].

If N ⊂ M are II1−factors with finite Jones index, let EN : M → N be the trace
invariant conditional expectation of M onto N, and let eN denote the projection in
B(L2(M), τ ) such that

eNxeN = EN (x)eN , ∀x ∈ M.

We then get an increasing sequence of II1− factors

M−1 = N ⊂ M0 = M ⊂ M1 = (M, eN ) ⊂ M2 = (M1, eM ) ⊂ ...,

where (M, eN ) denotes the von Neumann algebra generated by M and eN , etc.
The relative commutants M ′

k ∩Ml, k < l, are finite dimensional, and we obtain an
automorphism, denoted by Γ, called the canonical shift on

A∞ = lim
k→−∞,l→+∞

M ′
k ∩Ml,

where the limit is the inductive limit as C∗−algebras, such that Γ(M ′
k ∩ Ml) =

M ′
k+2 ∩ Ml+2. The canonical shift was introduced by Pimsner and Popa and Oc-

neanu, and its entropy has been studied by Choda and Hiai, see e.g. [4] and a little
by myself. The result is a striking relationship between relative entropy, dynamical
entropy and index theory reminiscent of equation (8).

Theorem 13. With the above notation let R = (
⋃∞

n=1 M
′ ∩M2n)”. Then

1

2
H(R|Γ(R)) ≤ H(Γ) ≤ ht(Γ) ≤ log[M : N ].

If furthermore N ⊂ M has finite depth, then all inequalities above are equalities.

8. Other definitions of entropy

I want to conclude these notes with a few words on some of the many other
attempts at defining noncommutative entropy. For more details see the Notes in
Chapters 3,6,7, and also Chapter 5 in [18].

Shortly before Alain and I wrote our paper on entropy G. Emch introduced a
definition [9]. It is too involved to describe here, but it did not catch on because it
lacked a Kolmogorov-Sinai Theorem, and it had the deficiency that his definition
of H(α,N) is not increasing in N .

When Alain and I worked on our paper, we had another possible candidate,
namely the abelian entropy

Hab(α) = sup
A

H(α|A),

where the sup is taken over all abelian subalgebras of the finite von Neumann
algebra M such that α(A) = A. Note that by monotonicity Hab(α) ≤ H(α). We
dropped it because it is not satisfactory for computations, and it is not necessarily
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true that αk(A) = A for some k ∈ N implies that α(A) = A. However, if we look
at the examples discussed in these notes, we see that it coincides with the entropy
H(α) for shifts on infinite tensor products whenever H(α) = 0, in particular the
free shift on L(F∞), and crossed products with abelian algebras. As far as I know
it is still an open question whether Hab(α) = H(α), or even if they are equal for
the entropy hφ(α) defined with respect to an invariant state.

Alain and I had another candidate for entropy, namely the one presented in
Section 3 just before I introduced Voiculescu’s definition of topological entropy.
Recall equation (7) in Section 3,

rcp(F ) = inf{rankB : ‖ψ ◦ ρ(x)− x‖ < δ ∀x ∈ F}.

Voiculescu also studied the analogous expression with different norms. An impor-
tant case is when φ is a faithful α−invariant state, and we replace the norm above by
the norm ‖x‖φ = φ(x∗x)

1
2 . Then we get a dynamical entropy h cpaφ(α), called the

completely positive approximation entropy. It satisfies roughly the same properties
as topological entropy and has been useful in several contexts.

Sauvageot and Thouvenot [25] introduced a definition of entropy, which coin-
cides with the CNT-entropy hφ when we are in the situation when the Kolmogorov-
Sinai Theorem holds, see Theorem 5.1.5 in [18]. Let (A, φ, α) be a C∗−dynamical
system and (X,μ, T ) a probability space with a nonsingular measure preserving
transformation T of X. Let β(f) = f ◦ T−1 be the corresponding automorphism of
L∞(X,μ). By a stationary coupling also called joining, of (A, φ, α) with (X,μ, T )
we mean an α ⊗ β−invariant state λ on A ⊗ L∞(X,μ) such that λ|A = φ, and
λ|L∞(X,μ) = μ. Via the same formula as defined equation (5) we can give a defini-

tion of an entropy hST
φ (α) which makes the action of T on X more explicit than it

did in the definition of CNT-entropy. Just as we did before, we take the sup over
all couplings to define the entropy, see Definition 5.1.1 in [18].

Alicki and Fannes [1] suggested a promising definition of entropy. Let A0 be an
α−invariant *-subalgebra of A. They considered finite subsets X = {x1, ..., xn} ⊂
A0 such that

∑n
1 xkx

∗
k = 1, called a partition of unity. They defined a completely

positive map θX : Mn(C) → A by θX(eij) = x∗
i xj and considered the entropy

H[φ,X] of the state φ ◦ θX . If Y = {y1, ..., ym} is another partition of unity we
obtain a new partition X ◦ Y consisting of the elements xkyl. Then put

h[φ, α,X] = lim sup
n

1

n
H[φ, αn−1 ◦ αn−2 ◦ · · · ◦X].

This construction defines an entropy h[φ, α,A0] with respect to A0 by taking the
sup over all X. In some cases there exist good natural choices for A0 to give useful
answers for the entropy. But the theory lacks a Kolmogorov-Sinai Theorem with
the drawback that implies.

A tempting approach to noncommutative entropy is to consider the represen-
tation of the self-adjoint part Asa of A as the continuous real functions on the
state space S(A) of A by a �→ â defined by â(φ) = φ(a), and then use the classical
abelian entropy for the transformation T on S(A) defined by T (φ) = φ ◦α−1. This
does not work well, because there are too few continuous affine functions to give
enough information. But some information on hφ(α) has been obtained [24]; for
example if hμ(T ) = 0 for all T−invariant probability measures μ on S(A) with
barycenter φ, then hφ(α) = 0. In particular, if the topological entropy of T is zero,
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then hφ(α) = 0 for all α−invariant states φ. For more information on this approach
consider Chapter 7 in [18].

Concerning other definitions of topological entropy I should mention that Hu-
detz, see e.g. [11] and Thomsen [29] have given definitions based on the same
approach as that taken by Alicki and Fannes.

I conclude this section with a wish. Find a definition of entropy which gives
useful nonzero values for entropy of highly noncommutative C∗−dynamical systems.
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Abstract. In order to extend the spectral action principle to non-compact
spaces, we propose a framework for spectral triples where the algebra may
be non-unital but the resolvent of the Dirac operator remains compact. We
show that an example is given by the supersymmetric harmonic oscillator
which, interestingly, provides two different Dirac operators. This leads to two
different representations of the volume form on the Hilbert space, and only
their product is the grading operator. The index of the even-to-odd part of
each of these Dirac operators is 1.

We also compute the spectral action for the corresponding Connes-Lott
two-point model. There is an additional harmonic oscillator potential for the
Higgs field, whereas the Yang-Mills action is unchanged. The total Higgs po-
tential shows a two-phase structure with smooth transition between them: In
the spontaneously broken phase below a critical radius, all fields are massive,
with the Higgs field mass slightly smaller than the NCG prediction. In the un-
broken phase above the critical radius, gauge fields and fermions are massless,
whereas the Higgs field remains massive.

1. Introduction

One of the greatest achievements of noncommutative geometry [1] is the con-
ceptual understanding of the Standard Model of particle physics. This was not
reached in one step. It took more than 15 years

• from the first appearance of the Higgs potential in noncommutative models
[2, 3]

• via the two-sheeted universe of Connes-Lott [4] with its bimodule struc-
ture [1],

• the discovery of the real structure [5] (which eliminated one redundant
U(1) group),

• the understanding of gauge fields as inner fluctuations in an axiomatic
setting [6] and the move from the Dixmier trace based action functional
to the spectral action principle [7], which unifies the Standard Model with
gravity,
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• the superseding of the unimodularity condition [8] (which eliminated the
second redundant U(1) group),

• to the spectacular rebirth [9] with the explanation [10] of the C ⊕ H ⊕
M3(C) Standard Model matrix algebra as the distinguished maximal sub-
algebra of M2(H)⊕M4(C) compatible with a non-trivial first order con-
dition (i.e. Majorana masses) and a six-dimensional real structure (i.e.
charge conjugation).

There is one important message of this evolution: One should never be com-
pletely satisfied with one’s achievements! The description given in Alain Connes’
book [1] definitely has its beauty. The little annoyance with the redundant U(1)
found its solution in the real structure [5] which soon was realised as a key to unlock-
ing the secrets of spin manifolds [6] in noncommutative geometry. This axiomatic
setting initiated many examples of noncommutative manifolds and culminated in
the recent spectral characterisation of manifolds [11].

Let me give a wish list for further improvements—not as a criticism of the
model, but rather as a possible source of insight.

(1) Quantisation. The outcome of the spectral action principle is a classical
action functional valid at a distinguished (grand unification) scale. It is
connected to the scale realised in a particle accelerator by the renormali-
sation group flow. This flow can be computed by rules from perturbative
quantum field theory. The input is not directly the spectral action, but a
gauge-fixed version of it which involves Faddeev-Popov ghosts. It is highly
desirable to include these ghosts in the spectral action, because in this
way unitary invariance is realised as cohomology of the BRS complex. We
may speculate that the BRS cohomology of the spectral action is deeply
connected to the wealth of noncommutative cohomology theories. As a
starting point one might use results of Perrot [12], who identifies the BRS
coboundary as the de Rham differential in the loop space C∞(S1,U(A))
and connects the chiral anomaly with the local index formula [13].

(2) Big desert. The present form of the spectral action is based on the big
desert hypothesis which asserts that, apart from the Higgs boson, all par-
ticles relevant at the grand unification scale are already discovered. The
minor mismatch between observed and predicted U(1) coupling constant
(see Figure 1 in [9]) might suggest some new physics in the desert. Candi-
dates include supersymmetry and dark matter, but also noncommutativity
of space itself could alter the slope of the running U(1) coupling.

The latter question concerning the renormalisation group flow of field
theories on noncommutative geometries was intensely studied in the last
decade. After unexpected difficulties with UV/IR-mixing, we established
perturbative renormalisability of scalar field theories on Moyal-deformed
Euclidean space [14, 15]. The key is a deformation also of the differen-
tial calculus, namely from the Laplace operator to the harmonic oscillator
Schrödinger operator. It turned out indeed that the combined Moyal-
harmonic oscillator deformation removes the Landau ghost of the com-
mutative scalar model [16] by altering the slope of the running coupling
constant [17]. Since the U(1)-part of the Standard Model has the same
Landau ghost problem, we might expect that, once the Standard Model
has been grounded in an appropriate noncommutative geometry, the three
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running couplings of Figure 1 in [9] will eventually intersect in a single
point.

The first step in this programme is to construct a spectral triple
with its canonically associated spectral action for the combined Moyal-
harmonic oscillator deformation. The present paper achieves an interme-
diate goal: We construct and investigate a commutative harmonic oscil-
lator spectral triple. Its Moyal isospectral deformation will be treated in
[18], building on ideas developed in [19]. The main obstacle was to iden-
tify a Dirac operator whose square is the harmonic oscillator Hamiltonian
of [14]. The solution which we give in this paper is deeply connected to
supersymmetric quantum mechanics [20], in particular to Witten’s ap-
proach to Morse theory [21]. It would be interesting to reformulate Wit-
ten’s results in noncommutative index theory using the spectral triple we
suggest.

(3) Time. The spectral action relies on compact Euclidean geometry. For the
Standard Model one typically chooses the manifold S3 × S1, where S3 is
for “space” and S1 for “temperature”, not “time”. Although the universe
is filled with thermal background radiation, it is desirable to allow for a
genuine time evolution of the spectral geometry. In fact, noncommutative
von Neumann algebras carry their own time evolution through the mod-
ular automorphism group, and it has been argued [22] that this is the
source of the physical time flow. So far the modular automorphisms seem
disconnected from the spectral action. The most ambitious project to rec-
oncile time development and spectral geometry within generally covariant
quantum field theory was initiated by Paschke and Verch [23].

(4) Compactness. As mentioned above, the spectral action presumes com-
pactness, namely, compactness of the resolvent of the Dirac operator.
The example we study in this paper shows that compactness of the re-
solvent does not imply spatial compactness. It is eventually a matter of
experiment to determine the type of compactness of the universe.

The paper is organised as follows: We propose in Section 2 a definition of non-
unital spectral triples, but with compactness of the resolvent of the Dirac operator.
We show in Section 3 that the supersymmetric harmonic oscillator is an example
of such a spectral triple: In Section 3.1 we introduce the supercharges in a slightly
generalised framework and briefly discuss their cohomology. The supercharges give
rise to two distinct Dirac operators. In Section 3.2 we identify for the harmonic
oscillator the algebra and the smooth part of the Hilbert space. In Section 3.3 and
Appendix A we compute the dimension spectrum. The novel orientability structure
is studied in Section 3.4, and Section 3.5 discusses the index formula for the Dirac
operators. The spectral action is computed in Section 4 and Appendix B. In the
final Section 5 we study the solution of the equations of motion.

2. Non-compact spectral triples

Motivated by the spectral characterisation of manifolds [11], we propose here
a definition of spectral triples which does not require the algebra to be unital.
There are several proposals in the literature for a non-compact generalisation of
spectral triples; see [24] and references therein. To include R

d with its standard
Dirac operator, these proposals relax the compactness of the resolvent of D to the
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requirement that π(a)(D+ i)−1 is compact for all a ∈ A. However, compactness of
the resolvent (or similar regularisation [25]) is essential for a well-defined spectral
action. Moreover, the usual Dirac operator on R

d is not suited for an index formula
[26]. We therefore keep compactness of the resolvent (and thus exclude standard
R

d), but to achieve this in the non-compact situation we are forced to give up (at
least in our example)

(1) the universality of dimensions,
(2) the connection between volume form and Z2-grading.

We give some comments after the definition. To simplify the presentation we require
the algebra to be commutative; the noncommutative generalisation involves the real
structure J .

Definition 1. A (possibly non-compact) commutative spectral triple with finite
volume (A,H,D) is given by a (possibly non-unital) commutative and involutive
algebra A represented on a Hilbert space H and a selfadjoint unbounded operator D
in H with compact resolvent fulfilling the conditions 1-5 below.

(1) Regularity and dimension spectrum. For any a ∈ A, both a and

[D, a] belong to
⋂∞

n=1 dom(δn), where δT := [〈D〉, T ] and 〈D〉 := (D2+1)
1
2 .

For any element φ of the algebra Ψ0(A) generated by δma and
δm[D, a], with a ∈ A, the function ζφ(z) := Tr(φ〈D〉−z) extends holomor-
phically to C \Sd for some discrete set Sd ⊂ C (the dimension spectrum),
and all poles of ζφ at z ∈ Sd are simple.

(2) Metric dimension. The maximum d := max{r ∈ R ∩ Sd} belongs to

N. The noncommutative integral

∫

− a〈D〉−d is finite for any a ∈ A and

positive for positive elements of A.

(3) Orientability. For the preferred unitisation

B := {b ∈ A′′ : b, [D, b] ∈
⋂

n∈N

dom(δm)} ,

there is a Hochschild d-cycle c ∈ Zd(B,B), i.e. a finite sum of terms
b0⊗b1⊗· · ·⊗bd. Its representation γ := πD(c), with πD(b0⊗b1⊗· · ·⊗bd) :=
b0[D, b1] · · · [D, bd], satisfies γ2 = 1 and γ∗ = γ. Additionally, γ defines
the volume form on A, i.e.

φγ(a0, . . . , ad) :=

∫

−
(

γa0[D, a1] · · · [D, ad]〈D〉−d
)

provides a non-vanishing Hochschild d-cocycle φγ on A.

(4) First order. [[D, b], b′] = 0 for all b, b′ ∈ B.

(5) Finiteness. The subspace H∞ :=

∞
⋂

k=0

dom(Dk) ⊂ H is a finitely gen-

erated projective A-module eAn, for some n ∈ N and some projector
e = e2 = e∗ ∈ Mn(B). The composition of the noncommutative inte-
gral with the induced Hermitian structure ( | ) : H∞ ×H∞ → A coincides
with the scalar product 〈 , 〉 on H∞,

〈ξ, η〉 =
∫

−
(

(ξ|η) 〈D〉−d
)

, ξ, η ∈ H∞ .
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The dimension spectrum was introduced by Connes and Moscovici [13] precisely
to describe by a local formula the lower-dimensional pieces in the Chern character
that are ignored by the top-dimensional Hochschild cohomology class. The local
index formula was generalised in [27] to a larger class of examples. We are interested
in a similar situation. For non-unital algebras we may have the characteristic values

of the resolvent of D run as O(n− 1
p ) for p greater than the metric dimension d. The

dimension spectrum is the right tool to deal with this case.
It would be interesting to know whether Definition 1, despite its differences

from Connes’ original definition [11], allows reconstruction of a manifold structure
on the spectrum X = Spec(A) of the norm closure A of A. At first sight, the
construction of candidates for local charts only uses the measure λ on X defined by
the noncommutative integral λ(f) =

∫

− f〈D〉−d for f ∈ A = C(X) and the fact that
the Hilbert space H is precisely the L2-closure of H∞ with respect to λ. The details
of how

∫

− f〈D〉−d is constructed, whether as a state-independent Dixmier trace or
as a residue in the dimension spectrum, do not seem to enter. In particular, Lemma
2.1 of [11] holds: if 1 ∈ A, then B = A (in the notation of Definition 1), so that
conditions (3),(4),(5) are the same as in [11], with the sole exception that γ is not
necessarily the Z2-grading for even d or γ = 1 for odd d. However, this was only
used for uniqueness of the noncommutative integral, which we achieve alternatively
from the dimension spectrum. But [11, §9] makes heavy use of the asymptotics of
the eigenvalues of 〈D〉−1 to prove injectivity of the local charts; we do not know
how to achieve this from the dimension spectrum.

3. A spectral triple for the harmonic oscillator

3.1. Supersymmetric quantum mechanics. Supersymmetric quantum
mechanics provides an elegant approach to exactly solvable quantum-mechanical
models [20] and is also a powerful tool in mathematics [21]. Our notation is a
compromise between [20] and [21].

Let X be a d-dimensional smooth manifold with trivial cotangent bundle and
∂μ, for μ = 1, . . . , d, be the basis of the tangent space TxX induced by the coordinate
functions. On the Hilbert space L2(X) we consider the unbounded operators

aμ = e−ωh∂μe
ωh = ∂μ +Wμ , a†μ = −eωh∂μe

−ωh = −∂μ +Wμ ,(1)

where h is some real-valued function on X, the Morse function [21], and Wμ(x) =
ω(∂μh)(x). It is convenient to keep the frequency ω separate from h. The resulting
commutation relations are

[aμ, aν ] = [a†μ, a
†
ν ] = 0 , [aμ, a

†
ν ] = 2ω∂μ∂νh .(2)

We define fermionic ladder operators bμ, b†μ which satisfy the anticommutation
relations

{bμ, bν} = 0 , {b†μ, b†ν} = 0 , {bμ, b†ν} = δμν .(3)

We also let all mixed commutators vanish, [a
(†)
μ , b(†)ν ] = 0. We introduce the

supercharges Q,Q† by

Q := aμ ⊗ b†μ , Q† := a†μ ⊗ bμ .(4)
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Unless otherwise stated, we use Einstein’s summation convention, i.e. summation
over a pair of upper/lower Greek indices from 1 to d is understood. The super-
charges satisfy

{Q,Q} = {Q†,Q†} = 0 , {Q,Q†} =: H , [Q,H] = [Q†,H] = 0 .(5)

The Hamiltonian H introduced by the anticommutator reads explicitly (index rais-
ing by δμν)

H =
1

2
δμν{aμ, a†ν} ⊗ 1 +

1

2
[aμ, a

†
ν ]⊗ [b†μ, bν ](6)

=
(

− ∂μ∂
μ + ω2(∂μh)(∂

μh)
)

⊗ 1 + ω(∂μ∂νh)⊗ [b†μ, bν ] .

The supercharges give rise to two anticommuting Dirac operators

D1 = Q+Q
† , D2 = iQ− iQ† ,(7)

D2
i = H for i = 1, 2 , D1D2 +D2D1 = 0 .(8)

We let |0〉f be the fermionic vacuum with bμ|0〉f = 0. By repeated application
of b†μ one constructs out of |0〉f the 2d-dimensional fermionic Hilbert space

∧

(Cd)
in which we label the standard orthonormal basis as follows:

|s1, . . . , sd〉f = (b†1)s1 . . . (b†d)sd |0〉f , sμ ∈ {0, 1} .(9)

The fermionic number operator is Nf = b†μb
μ, with

Nf |s1, . . . , sd〉f = (s1 + · · ·+ sd)|s1, . . . , sd〉f .

The fermionic Hilbert space is N-graded by
∧

(Cd) =
⊕d

p=0 Λ
p(Cd) with

dim(Λp(Cd)) =
(

d
p

)

. Accordingly, the total Hilbert space H = L2(X) ⊗
∧

(Cd)

is graded by the fermion number, H =
⊕d

p=0 Hp. Note that Q : Hp → Hp+1 and

Q† : Hp → Hp−1. The induced Z2-grading operator is

Γ = (−1)Nf , Γ2 = 1 , Γ = Γ∗ , ΓDi +DiΓ = 0 .(10)

Let Bp(ω) be the dimension of the p-th cohomology group of Q, i.e. the number of
linearly independent ψp ∈ kerQ ∩ Hp that cannot be written as ψp = Qηp−1 for
some η ∈ Hp−1. According to Witten [21], Bp(ω) coincides with the Betti number
Bp and is deeply connected with the Morse index Mp for the function h: Let xα be
a critical point of h, i.e. (∂μh)(x) = 0. If ∂μ∂νh is regular at each of these critical
points, then Mp is the number of critical points at which ∂μ∂νh has p negative
eigenvalues. The weak Morse inequalities Mp ≥ Bp follow from the eigenvalue
problem for H in the limit of large ω.

By Hodge theory, which relies on the Hilbert space structure, every generator
of the p-th cohomology group of Q has a unique representative ψ which is also Q†-
exact (and thus belongs to kerH). Since the bμ, b†μ generate linearly independent
subspaces, this means (no summation over μ̄, ν̄)

(aμ̄ ⊗ b†μ̄)ψ = 0 and (a†ν̄ ⊗ bν̄)ψ = 0 for all μ̄, ν̄ = 1, . . . , d .(11)

The only candidates are (up to a multiplicative constant)

ψ0 = e−ωh|0〉f and ψd = eωhb†1 · · · b†d|0〉f .(12)

For compact manifolds, where both e±ωh are integrable, this yields B0 = 1 and
Bd = 1 as the only non-vanishing Betti numbers. In the non-compact case one
should choose e−ωh integrable, so that eωh is not integrable, and hence Bp = δp0.
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Of course, this behaviour is due to the assumption of a trivial cotangent bundle.
For more interesting topology one should define the smooth subspace of the Hilbert
space as a finitely generated projective module.

3.2. The harmonic oscillator. In the following we propose a spectral triple
in the sense of Definition 1 with objects related to the harmonic oscillator. We will
check the axioms, but no attempt will be made to reconstruct a manifold.

The harmonic oscillator is obtained from the Morse function h = ‖x‖2

2 =
1
2δ

μνxμxν on the manifold R
d. This leads to the relation

[aμ, a
†
ν ] = 2ωδμν ,(13)

which in turn permits a complete reconstruction of the eigenfunctions by repeated
application of a†μ, b

†ν to the ground state ψ0 = |0〉b ⊗ |0〉f ∈ kerH, with |0〉b =

(ωπ )
d
4 e−

ω
2 ‖x‖2

. Defining

|n1, . . . , nd〉b =
1

√

n1! . . . nd!(2ω)n1+···+nd

(a†1)
n1 · · · (a†d)nd |0〉b , nμ ∈ N ,(14)

the tensor products |n1, . . . , nd〉b⊗|s1, . . . , sd〉f of (14) with (9) form an orthonormal

basis of the Hilbert space H = 2(Nd)⊗ C
2d � L2(Rd)⊗

∧

(Cd).
There are two ways of viewing the Hamiltonian (6). In the L2(Rd)-

representation, we have

H = H ⊗ 1 + ω ⊗ Σ , H = −∂μ∂
μ + ω2xμx

μ , Σ = [b†μ, bμ] ,(15)

i.e. the total Hamiltonian is the sum of the harmonic oscillator Hamiltonian and
ω times the spin matrix Σ. This representation will be useful when considering
the algebra A later on which is also realised in the L2(Rd)-representation. In the
2(Nd)-representation, we have

D2
1 = D2

2 = H = a†μa
μ ⊗ 1 + 2ω ⊗ b†μb

μ = 2ω(Nb +Nf ) ,(16)

which is up to a factor of 2ω the supersymmetric number operator:

D2
i (|n1, . . . , nd〉b ⊗ |s1, . . . , sd〉f )(17)

=
(

2ω

d
∑

μ=1

(nμ + sμ)
)

(|n1, . . . , nd〉b ⊗ |s1, . . . , sd〉f ) .

In particular, the kernel ofDi is one-dimensional, and the resolvent ofDi is compact.
To deal with the kernel, we introduce

〈D〉 := (D2
1 + 1)

1
2 = (D2

2 + 1)
1
2 , δT := [〈D〉, T ] for T ∈ B(H) .(18)

Counting the number of eigenvalues ≤ N one finds that 〈D〉−1 is a noncommutative
infinitesimal of order 2d, and 〈D〉−p is trace-class for p > 2d. Formula (17) also
shows that

H∞ :=
⋂

m≥0

dom(Dn) = S(Nd)⊗
∧

(Cd) � S(Rd)⊗
∧

(Cd) �
(

S(Rd)
)2d

,(19)

which is required to be a finitely generated projective module over the algebra of
the spectral triple. We are interested here in the commutative case, so that we are
led to consider the algebra

A = S(Rd)(20)
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of Schwartz class functions with standard commutative product. The Hermitian

structure is pointwise the scalar product in
∧

(Cd), i.e. (ξ|η) =
∑2d

i=1 ξ
∗
i ηi for ξ =

(ξ1, . . . , ξ2d), η = (η1, . . . , η2d) ∈ H∞ =
(

S(Rd)
)2d

.
As usual, we represent the algebra A on H by pointwise multiplication in

L2(Rd):

f(ψ ⊗ ρ) := (fψ)⊗ ρ for f ∈ A , ψ ∈ L2(Rd) , ρ ∈
∧

(Cd) .(21)

The action of A commutes with bμ, b†μ so that we obtain

[D1, f ] = ∂μf ⊗ (b†μ − bμ) , [D2, f ] = ∂μf ⊗ (ib†μ + ibμ) .(22)

In particular, the first-order condition is satisfied. For f ∈ A, the expansion coeffi-
cients 〈n1, . . . , nd|f |n′

1, . . . , n
′
d〉 are Schwartz sequences in nμ, n

′
μ. Therefore, f and

[Di, f ] belong for any m ∈ N to the domain of δm.
We show in joint work with V. Gayral [18] (which supersedes [19]), that the

Moyal-deformation of S(Rd) together with the same Dirac operator and Hilbert
space forms a noncommutative spectral triple in the sense of Definition 1, i.e. an
isospectral deformation.

3.3. Dimension spectrum. In this subsection we take for D either of D1 or
D2. We consider the algebra Ψ0(A) generated by δmf and δm[D, f ]. As 〈D〉−z

is trace-class for Re(z) > 2d, the ζ-function ζφ(z) := Tr(φ〈D〉−z) exists for such
z ∈ C and φ ∈ Ψ0(A) and can possibly be extended to a meromorphic function on
C. The following theorem identifies the poles and the structure of the residues:

Theorem 2. The spectral triple (A,H,D) has dimension spectrum Sd = d−N

and hence metric dimension d. All poles of ζφ at z ∈ Sd are simple with local
residues, i.e. for φ = δn1f1 · · · δnvfv, any residue resz∈Sdζφ(z) is a finite sum of
∫

Rd

dx xα0(∂α1f1) · · · (∂αvfv), where αi are multi-indices. The analogous result

holds when fi in φ is replaced by [D, fi].

This theorem is the central result of this paper. We give the rather long proof
in Appendix A.

A special case of the proof of Theorem 2 is the computation of the Dixmier
trace:

Proposition 3.

∫

− f〈D〉−d =
1

(4π)
d
2Γ(d+2

2 )

∫

Rd

dx f(x) for any f ∈ A.

Proof. As the dimension spectrum is simple, the Dixmier trace can be computed
as a residue [28], is independent of the state ω, and defines unambiguously the
noncommutative integral:

∫

− f〈D〉−d = ress=1Tr(f〈D〉−sd) .(23)

Taking v = 1 and n1 = 0 in (82) and inserting detQ and Q−1 from (85) and (86)
as well as (80), we have

∫

− f〈D〉−d = ress=1

(

1

Γ( sd2 )

∫ ∞

0

dt0 t
sd
2 −1
0 e−t0

∫

Rd

dp

(2π)d
f̂(p)

e
− p2

ω tanh(ωt0)

tanhd(ωt0)

)

.(24)
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We write f̂(p) = f̂(0) + pμ
∂f̂

∂pμ
(0) + pμpν

∫ 1

0

dλ (1− λ)
∂2f̂

∂pμ∂pν
(λpμ) and get

1

Γ( sd2 )

∫ ∞

0

dt0 t
sd
2 −1
0 e−t0

∫

Rd

dp

(2π)d
f̂(0)

e
− p2

ω tanh(ωt0)

tanhd(ωt0)
(25)

=
f̂(0)

(4π)
d
2 Γ( sd2 )

∫ ∞

0

dt0 t
(s−1)d

2 −1
0 e−t0

( ωt0
tanh(ωt0)

) d
2

︸ ︷︷ ︸

g(t0)

=
f̂(0)

(4π)
d
2

Γ( (s−1)d
2 )

Γ( sd2 )
+

f̂(0)

(4π)
d
2Γ( sd2 )

∫ ∞

0

dt0 t
(s−1)d

2
0 e−t0

∫ 1

0

dλ g′(λt0) .

As |g′(y)| ≤ d
2y

d
2−1 for all y ∈ R+, we have

∣

∣

∣

∫ ∞

0

dt0 t
(s−1)d

2
0 e−t0

∫ 1

0

dλ g′(λt0)
∣

∣

∣ ≤
∫ ∞

0

dt0 t
s
2−1
0 e−t0 = Γ( s2 ) ,(26)

which is regular for s = 1. The first-order term pμ
∂f̂
∂pμ

(0) does not contribute as an

odd function in p. In the remainder,
∫ 1

0
dλ(1− λ) ∂2f̂

∂pμ∂ν
(λpμ) is bounded, and

∫

dp

(2π)d
pμpν

e
− p2

ω tanh(ωt0)

tanhd(ωt0)
=

ω2

2

δμν

(4π)
d
2

( ω

tanh(ωt0)

) d
2−1

(27)

provides another factor of t0 so that the remainder does not contribute to the

residue at s = 1. The assertion follows from f̂(0) =

∫

Rd

dx f(x). �

Therefore, with the normalisation 〈ξ, η〉 = 1

(4π)
d
2 Γ(d+2

2 )

∫

Rd

dx (ξ|η) of the scalar

product in H, the finiteness condition is satisfied.
It remains to discuss the orientability, for which we need the algebra

B := {b ∈ A′′ : b, [D, b] ∈
⋂

m∈N

dom(δm)} .(28)

Clearly, B is unital and commutative; we now show that it contains the plane waves
uμ = eixμ .

Lemma 4. uμ = eixμ ∈ B .

Proof. From (73), which applies without change to T = uμ, we get (no sum-
mation over μ)

δnuμ =
(−i)n

πn

∫ ∞

0

n
∏

i=1

dλi

√
λi

〈D〉2 + λi
{∂μ, . . . , {∂μ
︸ ︷︷ ︸

n derivatives

, eix
μ} . . . }

n
∏

j=1

1

〈D〉2 + λj
.(29)

We have
(

n
∏

i=1

1

A+ λi

)

B(30)

=

(

∑

S∈{1,2,...,n}
(−1)|S|

(
∏

i∈S

1

A+ λi

)

(ad(A))|S|(B)

)

(
n
∏

j=1

1

A+ λj

)

,
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where the sum runs over all subsets S ⊂ {1, 2, . . . , n} including the empty set. After
relabelling of the |S| elements of S, which gives a factor

(

n
|S|
)

, we have

δn(uμ) =
(−i)n

πn

n
∑

k=0

(

n

k

)

ik(31)

×
∫ ∞

0

k
∏

i=1

1

〈D〉2 + λi
{ ∂μ, . . . , {∂μ
︸ ︷︷ ︸

n+k derivatives

, eix
μ} . . . }

n
∏

j=1

dλj

√

λj

(〈D〉2 + λj)2
.

The anticommutators can be arranged as a finite sum with r ≤ n derivatives on
the right and l ≤ k derivatives on the left of eix

μ

. Each such term is estimated by

∥

∥

∥

∥

∫ ∞

0

k
∏

i=1

1

〈D〉2 + λi
(∂μ)

leix
μ

(∂μ)
r〈D〉−n

n
∏

j=1

dλj

√

λj〈D〉
(〈D〉2 + λj)2

∥

∥

∥

∥

(32)

≤
∥

∥〈D〉−2k(∂μ)
l
∥

∥

∥

∥(∂μ)
r〈D〉−n

∥

∥

∥

∥

∥

∥

∫ ∞

0

dλ
√
λ〈D〉

(〈D〉2 + λ)2

∥

∥

∥

∥

n

,

which is bounded because the integral in the second line evaluates to π
2 . �

By the same arguments one shows that the algebra C∞
b (Rd) of smooth bounded

functions with all derivatives bounded is contained in B, and it is plausible that
actually B = C∞

b (Rd).

3.4. Orientability. Here the distinction between D1 and D2 is crucial again.
It follows from the standard example of the compact case that

c =
∑

σ∈Sd

ε(σ)
i
d(d−1)

2

d!
(u1 · · ·ud)

−1 ⊗ uσ(1) ⊗ · · ·uσ(d) ∈ Zd(B,B)(33)

is a Hochschild d-cycle, bc = 0. From (22) and (3) we obtain

γ1 := πD1
(c) = i

d(d+1)
2 (b†1 − b1) · · · (b†d − bd) ,(34)

γ2 := πD2
(c) = i

d(d+3)
2 (b†1 + b1) · · · (b†d + bd) .

Both γi commute with every element of A or B. Using the anticommutation rela-
tions (3) and (bμ)∗ ≡ b†μ, we have

γ2
1 = 1 = γ2

2 , γ∗
1 = γ1 , γ∗

2 = γ2 .(35)

Decomposing the fermionic part of the Dirac operators Di in b†μ ± bμ, we have

(b†μ ± bμ)γ1 = ±(−1)dγ1(b
†μ ± bμ) , (b†μ ± bμ)γ2 = ∓(−1)dγ2(b

†μ ± bμ) .(36)

Therefore, b†μ± bμ and hence the Di always (d even or odd) anticommute with the
product γ1γ2, which turns out to be (up to a factor) the Z2-grading (−1)Nf of the
Hilbert space:

(−i)dγ1γ2 = idγ2γ1 = (b1b†1 − b†1b1) · · · (bdb†d − b†dbd) = (−1)Nf .(37)

This is quite different from conventional spectral triples [11] with a single operator
D.
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3.5. The index formula. We let H = Hev ⊕Hodd be the decomposition into
even and odd subspaces with respect to the grading (−1)Nf induced by the fermion
number operator Nf . The Di are off-diagonal in this decomposition, Di = D+

i +D−
i ,

with D+
i = Di

∣

∣

Hev
: Hev → Hodd and D−

i = (D+
i )

∗ = Di

∣

∣

Hodd
: Hodd → Hev.

There is a well-defined index problem for D+
i due to Elliott, Natsume and Nest

[26]. The D+
i are elliptic pseudodifferential operators in the sense of Shubin [29]

with symbol ai. Then, the analytic index

index (D+
i ) = dim kerD+

i − dim kerD−
i(38)

can be computed by an index formula for the symbol ai as described below.
Following [26], we associate to (appropriate) operators Pa : S(Rn;Ck) →

S(Rn;Ck) the symbol a ∈ Mk(C
∞(T ∗

R
n)) by

(Paη)(x) =
1

(2π)n

∫

Rn×Rn

dξ dy ei〈x−y,ξ〉
ai(x, ξ) η(y) , η ∈ S(Rn;Ck) .(39)

The symbol a is said to be elliptic of order m if there exist C,R > 0 such that
a(x, ξ)∗a(x, ξ) ≥ C(‖x‖2 + ‖ξ‖2)m1k for ‖x‖2 + ‖ξ‖2 ≥ R.

For m > 0 one defines the graph projector

ea =

(

(1 + a∗a)−1 (1 + a∗a)−1a

a∗(1 + a∗a)−1 a∗(1 + a∗a)−1a

)

∈ M2k(C(T ∗
R

n))(40)

and the matrix êa = ea − ( 0 0
0 1 ) ∈ M2k(C0(T

∗
R

n)), i.e. êa vanishes at infinity for
m > 0 (the entries of êa are of order −m). Using continuous fields of C∗-algebras,
the following index theorem is proven in [26]:

Theorem 5. If Pa is an elliptic pseudodifferential operator of positive order,
then

index (Pa) =
1

(2πi)nn!

∫

T∗Rn

tr
(

êa(dêa)
2n
)

,(41)

where T ∗
R

n is oriented by dx1 ∧ dξ1 ∧ · · · ∧ dxn ∧ dξn > 0.

Let us return to our example. Restricting D+
i to the even part of H∞,

we regard D+
i as an operator D+

i : S(Rd;C2d−1

) → S(Rd;C2d−1

). The symbol
ai ∈ M2d−1(C∞(T ∗

R
d)) of D+

i is obtained from the action of Q,Q† on the basis

ei〈ξ,x〉|s1, . . . , sd〉f . For example, we have for d = 2 in the matrix bases
(|0,0〉f
|1,1〉f

)

of
(∧

(Cd)
)

ev
and
(|1,0〉f
|0,1〉f

)

of
(∧

(Cd)
)

odd
the representation

a1(x1, x2, ξ1, ξ2) =

(

iξ1 + ωx1 −(−iξ2 + ωx2)
iξ2 + ωx2 −iξ1 + ωx1

)

.(42)

The product ai(x, ξ)
∗ai(x, ξ) is the restriction of the symbol of H to the even

subspace. This implies

ai(x, ξ)
∗
ai(x, ξ) = (ω2‖x‖2 + ‖ξ‖2)12d−1 ,(43)

i.e. ellipticity of order 1 if ω > 0. Note that the usual Dirac operator iγμ∂μ on R
d

is not elliptic in this sense.
For d = 2 an already lengthy computation shows

tr
(

êa1
dêa1

∧ dêa1
∧ dêa1

∧ dêa1

)

= − 96ω2 dx1 ∧ dξ1 ∧ dx2 ∧ dξ2
(1 + ω2x2

1 + ω2x2
2 + ξ21 + ξ22)

5
,(44)
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which yields

index (D+
1 ) =

1

(2πi)2 · 2

∫ ∞

0

2πx dx

∫ ∞

0

2πξ dξ
(−96ω2)

(1 + ω2x2 + ξ2)5
= 1 .(45)

This is of course expected in any dimension d: the (one-dimensional) kernel of D+
i

is spanned by the Gaußian e−
ω
2 ‖x‖2 |0, . . . , 0〉f , and the cokernel is trivial.

4. The spectral action for the U(1)-Higgs model

In the Connes-Lott spirit [4] we take the tensor product of the (d = 4)-
dimensional spectral triple (A,H,D1) with the finite Higgs spectral triple
(C⊕ C,C2,Mσ1, σ3), which is even with Z2-grading σ3. Here, M is a real number,
and σk are the Pauli matrices. For the bosonic sector considered here only the
spectrum of Di matters, so that D1 and D2 give identical results. The total Dirac
operator D = D1 ⊗ σ3 + 1⊗Mσ1 of the product triple becomes

D =

(

D1 M
M −D1

)

.(46)

In this representation, the algebra is A⊕A � (f, g) with diagonal action by point-
wise multiplication on Htot = H⊕H. The commutator of D with (f, g) is

[D, (f, g)] =

(

∂μf ⊗ (b†μ − bμ) M(g − f)
M(f − g) −∂μg ⊗ (b†μ − bμ)

)

.(47)

This shows that selfadjoint fluctuated Dirac operators DA = D +
∑

i ai[D, bi] are
of the form

DA =

(

D1 + iAμ ⊗ (b†μ − bμ) φ⊗ 1
φ̄⊗ 1 −D1 − iBμ ⊗ (b†μ − bμ)

)

,(48)

for real fields Aμ = Aμ, Bμ = Bμ ∈ A and a complex field φ ∈ A. The square of
DA is

D2
A =

(

H ⊗ 1 + ω ⊗ Σ+ iFA + |φ|2 ⊗ 1 Dμφ⊗ (b†μ − bμ)

−Dμφ⊗ (b†μ − bμ) H ⊗ 1 + ω ⊗ Σ+ iFB + |φ|2 ⊗ 1

)

,

(49)

where

Dμφ := ∂μφ+ i(Aμ −Bμ)φ ,(50)

FA := {D1, Aμ ⊗ (b†μ − bμ)}+ iAμAν ⊗ (b†μ − bμ)(b†ν − bν)

= (−{∂μ, Aμ} − iAμA
μ)⊗ 1 +

1

4
FA
μν ⊗ [b†μ − bμ, b†ν − bν ](51)

and similarly for FB. Here, FA
μν = ∂μAν − ∂νAμ is the U(1)-curvature (field

strength), and the explicit appearance of x has dropped out in FA because of
{b†μ + bμ, b†ν − bν} = 0.

According to the spectral action principle [6, 7], the bosonic action depends
only on the spectrum of the Dirac operator. Thus, by functional calculus, the most
general form of the bosonic action is

S(DA) = Tr
(

χ(D2
A)
)

=

∫ ∞

0

dt Tr(e−tD2
A)χ̂(t) ,(52)
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for some function χ : R+ → R+ for which the operator trace exists. The second
equality is obtained by Laplace transformation, which produces the inverse Laplace
transform χ̂ of χ(s) =

∫∞
0

dt e−stχ̂(t). One has

χz :=

∫ ∞

0

dt tzχ̂(t) =

⎧

⎨

⎩

1

Γ(−z)

∫ ∞

0

ds s−z−1χ(s) for z /∈ N ,

(−1)kχ(k)(0) for z = k ∈ N .

(53)

To compute the traces Tr(e−tD2
A) we write D2

A = H0 − V , with H0 := H + ωΣ,
and consider the Duhamel expansion

e−t0(H0−V )

(54)

= e−t0H0 −
∫ t0

0

dt1
d

dt1

(

e−(t0−t1)(H0−V )e−t1H0
)

= e−t0H0 +

∫ t0

0

dt1
(

e−(t0−t1)(H0−V )V e−t1H0
)

= e−t0H0 +

∫ t0

0

dt1
(

e−(t0−t1)H0V e−t1H0
)

+

∫ t0

0

dt1

∫ t0−t1

0

dt2
(

e−(t0−t1−t2)H0V e−t2H0V e−t1H0
)

+ . . .

+

∫ t0

0

dt1 . . .

∫ t0−t1−···−tn−1

0

dtn
(

e−(t0−t1−···−tn)H0(V e−tnH0) · · · (V e−t1H0)
)

+ . . .

= e−t0H0 +

∞
∑

n=1

tn0

∫

Δn

dnα
(

e−t0(1−|α|)H0

n
∏

j=1

(V e−t0αjH0)
)

,

where the integration is performed over the standard n-simplex Δn := {α :=
(α1, . . . , αn) ∈ R

n , αi ≥ 0 , |α| := α1 + · · ·+ αn ≤ 1}.
Using tr(eωΣt) = (2 cosh(ωt))4 and the Mehler kernel (76), the vacuum contri-

bution without V is

Tr(e−t(H+ωΣ)⊗12) =
(

2 tr(eωΣt)
)

∫

R4

dx e−tH(x, x)(55)

= 2(2 cosh(ωt))4 ·
( ω

2π sinh(2ωt)

)2
∫

R4

dx e−ω tanh(ωt)‖x‖2

=
2

tanh4(ωt)
.

With coth4(ωt) = 1
(ωt)4 + 4

3(ωt)2 + 26
45 + O(t2) we get under the usual assumption

χ(k)(0) = 0 for k = 1, 2, 3, . . . the asymptotic expansion1

S0(DA) =
2χ−4

ω4
+

8χ−2

3ω2
+

52χ0

45
.(56)

1The Laplace transformation for the vacuum contribution can be performed exactly. For

powers of cothx = 1+e−2x

1−e−2x we have

(1 + y

1− y

)n
= 1 +

∞∑

k=1

(k + n− 1)!

k!
2F1

( −k , −n

1− k − n

∣
∣
∣− 1

)

︸ ︷︷ ︸
=Fn(k)

yk .
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For the further computation we distinguish the vertices (see (49), (50) and (51))

V1 := diag
(

i{∂μ, Aμ} ⊗ 1, i{∂μ, Bμ} ⊗ 1
)

,(57)

V2 := diag
(

−AμA
μ ⊗ 1− |φ2| ⊗ 1,−BμB

μ ⊗ 1− |φ2| ⊗ 1
)

,

V3 := diag
(

− iFA
μν ⊗ 1

4 [b
†μ − bμ, b†ν − bν ], −iFB

μν ⊗ 1
4 [b

†μ − bμ, b†ν − bν ]
)

,

V4 =

(

0 −Dμφ⊗ (b†μ − bμ)

Dμφ⊗ (b†μ − bμ) 0

)

.

We compute the traces of the spectral action in the same way as the residues of
the ζ-function in Appendix A. The main step consists in computing the following
trace:

St1,...,tv (Ṽ1, . . . , Ṽv) := Tr
(

Ṽ1e
−t1H Ṽ2e

−t2H · · · Ṽve
−tvH

)

,(58)

either with Ṽi = fi or Ṽi = −i{∂μ, fμ
i } = −i(∂μf

μ
i ) − 2ifμ

i ∂μ. We realise this

alternative as Ṽi = f1−ni
i {−i∂μ, f

μ}ni with ni ∈ {0, 1}:

Sn1...nv
t1,...tv (f1, . . . , fv)

(59)

=

n1
∑

k1=0

· · ·
nv
∑

kv=0

ωk1+···+kv

∫

(R4×R4)v

(
v
∏

i=1

dxidpi
(2π)4

)

×
(

v
∏

i=1

f̂1−ni
i (pi)

(

f̂μ1

i (pi)p
1−ki
i,μi

P ki
μi

(

2ωti,
∂

∂pi
,

∂

∂pi+1

))ni
)(

v
∏

i=1

e−tiH(xi, xi+1)e
ipixi

)

=

n1
∑

k1=0

· · ·
nv
∑

kv=0

∫

(R4)v

(
v
∏

i=1

dpi
(2π)4

) ωk1+···+kv

(2 sinh(ω(t1 + · · ·+ tv)))4

×
(

v
∏

i=1

f̂1−ni
i (pi)

(

f̂μ1

i (pi)p
1−ki
i,μi

P ki
μi

(

2ωti,
∂

∂pi
,

∂

∂pi+1

))ni
)

e−
1
4pQ

−1p ,

where Pμ and Q−1 are given in (83) and (86). From the formulae analogous to (88)
and (90) we thus obtain

Sn1...nv
t1,...tv (f1, . . . , fv)

(60)

=
∑

k1+r11+ . . .+r1v = n1, . . . ,
k1+rv1+ . . .+rvv = nv,

rii = 0 , rij = rji

∫

(R4)v

(
v
∏

i=1

dpi
(2π)4

) 1

(2 sinh(ωt))4

(
v
∏

i=1

f̂1−ni
i (pi)

(

f̂μi

i (pi)
)ni
)

×
(

v
∏

i=1

(
∑

j �=i

sinh(ωtji)

sinh(ωt)
pj,μi

)ki
)(
∏

i≤j

(

2ωδμiμj

cosh(ωtji)

sinh(ωt)

)rij)

e−
1
4pQ

−1p ,

Particular values are F1(k) = 2, F2(k) = 4k, F3(k) = 8k2 + 4, F4(k) = 16k3 + 32k and F5(k) =

32k4 + 160k2 + 48. Inserted into (52) we obtain after Laplace transformation

S0(DA) = 2χ(0) +
∞∑

k=1

(32k3 + 64k)χ(2ωk) .
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where tji := tj + · · ·+ ti−1 − ti − · · · − tj−1 and t := t1 + · · ·+ tv
For the spectral action we are interested in the small-t behaviour. From (86) we

know that the singularity in sinh−4−
∑

i<j rij (ωt) is protected by exp(− (p1+···+pv)
2

4ω tanh(ωt) )

unless the total momentum is conserved. Thus, Taylor-expanding the prefactor
about pv = −(p1 + · · ·+ pv−1) up to order ρ and Gaußian integration in pv yields

Sn1,...nv

t1,...,tv = O(t−2−n1+···+nv
2 �+� ρ

2 �) .

To obtain the spectral action, there are apart from the (at most) t-neutral matrix
trace the v integrations over t1, . . . , tv which contribute another power of tv. If there
are vi vertices of type Vi present, with v1 + · · · + v4 = v, then n1 + · · · + nv = v1,
and we have for such a contribution

St(V
v1
1 , . . . , V v4

4 ) = O(t−2+v2+v3+v4+� v1
2 �+� ρ

2 �) .

Only the non-positive exponents contribute to the asymptotic expansion so that it
suffices to compute the following traces of vertex combinations:

(1) V2 with Taylor expansion up to order ρ = 2 (V3 and V4 are traceless, and
in V1 alone there is necessarily k1 = n1 = 1 and then no sum over i �= j),

(2) V1V1 with Taylor expansion up to order ρ = 2,
(3) V1V2, V2V1 and V1V1V2, V1V2V1, V2V1V1 with Taylor expansion up to order

ρ = 0,
(4) V2V2, V3V3 and V4V4 with Taylor expansion up to order ρ = 0 (mixed

products are traceless),
(5) V1V1V1 and V1V1V1V1 with Taylor expansion up to order ρ = 0.

We compute these vertex combinations in Appendix B. The spectral action
is the sum of (100), (104), (107), (109), (111), (113) and (115). Altogether, the
spectral action of the Abelian Higgs model reads

S(DA) =
2χ−4

ω4
+

8χ−2

3ω2
+

52χ0

45
(61)

+
χ0

π2

∫

R4

dx
{ 5

12
(Fμν

A FAμν + Fμν
B FBμν) +Dμφ(D

μφ)

− 2χ−1

χ0
|φ|2 + |φ|4 + 2ω2‖x‖2|φ|2

}

(x) .

The scalar sector (putting A = B = 0 and ignoring the constant) is almost identical
to the commutative version of the renormalisable φ4-action [14],

S(DA)|A=b=0 =
χ0

π2

∫

R4

dx
{

∂μφ̄(∂
μφ) + 2ω2‖x‖2|φ|2 − 2χ−1

χ0
|φ|2 + |φ|4

}

(x) .

(62)

The crucial difference is the negative mass squared term, which leads to a drastically
different vacuum structure, as shown in the next section.

5. Field equations

We can assume the solution of the corresponding equation of motion to be given
by A = B = 0 and φ a real function. Then, the Euler-Lagrange equation reads

−Δφ+ 2ω2‖x‖2φ+ 2φ3 − 2χ−1

χ0
φ = 0 .(63)
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In terms of the rescaled radius r = 2
1
4
√
ω‖x‖ and the rescaled field φ = π√

2χ0
ϕ we

have the rotationally invariant equation

− ϕ′′(r)− 3

r
ϕ′(r) + (r2 − 4μ2)ϕ(r) = −λϕ3(r) ,(64)

μ2 =
χ−1√
8ωχ0

, λ =
π2

√
2ωχ0

.

We expand ϕ in terms of eigenfunctions of the four-dimensional harmonic oscillator,

ϕ =
2√
λ

∞
∑

n=0

cnϕn ,(65)

ϕn := e−
r2

2 L1
n(r

2) ,
(

− d2

dr2
− 3

r

d

dr
+ r2
)

ϕn = 4(n+ 1)ϕn .

We are thus left with the equation
∞
∑

n=0

cn(μ
2 − n− 1)ϕn =

∞
∑

k,l,m=0

ckclcmϕkϕlϕm(66)

or, using the orthogonality relation,

cn(μ
2−n−1) =

1

(n+ 1)

∞
∑

k,l,m=0

ckclcm

∫ ∞

0

dt e−2t t L1
k(t)L

1
l (t)L

1
m(t)L1

n(t) .(67)

The generating function (1− z)−α−1 exp(− xz

1− z
) =

∞
∑

k=0

Lα
k (t)z

k is used to obtain

cn(μ
2 − n− 1)(68)

=
∞
∑

k,l,m=0

ckclcm
k!l!m!

( dk

dwk

dl

dyl
dm

dzm
(1− yz − yw − wz + 2wyz)n

(2− y − z − w + yzw)n+2

)

w=y=z=0
.

With a cut-off N for the matrix indices, this equation can be solved numerically.
It turns out that except for a region about r = 4μ2 the convergence is quite good.
Figure 1 contains plots of the vacuum solution ϕvac(r) for 4μ2 = 9 and 4μ2 = 13

compared with the ellipse ϕ2 + 1
4r

2 = μ2. We learn that ϕvac(r) <
√

μ2 − 1
4r

2 due

to the negative curvature 1
ϕ (ϕ

′′+ 3
rϕ

′) < 0 which effectively reduces μ2. For r > 2μ

we should have ϕvac(r) = 0 as the only solution2. We also expect that for μ → ∞,
where the ellipse becomes flat, the vacuum solution approaches its limiting ellipse.

This limit is connected to the limit ω → 0, i.e r = 2
1
4
√
ω‖x‖ → 0. In this limit the

usual constant Higgs vacuum is recovered:

lim
ω→0

φ2 =
π2

2χ2
0

4μ2

λ
=

χ−1

χ2
0

= const .(69)

For finite ω the cut-off for ϕvac at r = 2μ implies that ϕvac is an integrable function.
The vacuum solution

2√
λ
ϕvac =

√

4μ2

λ

ϕvac

μ
=

√

2χ−1

π2

ϕvac

μ
(70)

2The numerical convergence in the figure is bad for r ≈ 2μ.
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Figure 1. The lower curve at r = 0 shows ϕvac(r) in units of 2√
λ
,

with cut-off at N = 10. The upper curve at r = 0 is the ellipse
ϕ2+ 1

4r
2 = μ2. The error is below 1% for r < 1.8μ. The true curve

ϕvac(r) is expected to stay always below the ellipse and to connect
smoothly (at least C2) to ϕvac = 0 for r > 2μ.

sets the scale for the bare masses of gauge fields and fermions. On the other hand,
the bare mass of the Higgs field is obtained from the shift of the Higgs potential
into its minimum and therefore reads

√

√
2ω((r2 − 4μ2) + 12μ2

ϕ2
vac

μ2
) =

√

4χ−1

χ0

√

3
2ϕ

2
vac − 1

2μ
2 + 1

8r
2

μ
.(71)

We compare in Figure 2 the scale ϕvac

μ of gauge field mass with the scale

1
μ

√

3
2ϕ

2
vac − 1

2μ
2 + 1

8r
2 of the bare Higgs mass. Reinserting ω we obtain the follow-

ing two-phase structure:

• A spontaneously broken phase for ω2‖x‖2 < χ−1

χ0
.

Fermions, gauge fields and Higgs field are all massive, with the Higgs mass
slightly smaller than the prediction from noncommutative geometry [9].
In particular, this phase is the only existing one in the limit ω → 0, and
in this limit the NCG prediction is recovered.

• An unbroken phase for ω2‖x‖2 > χ−1

χ0
.

Fermions and gauge fields are massless, whereas the Higgs field remains
massive.

The model we have studied is a toy model. But, as it is a noncommutative
geometry like that of the NCG-formulation of the Standard Model [9], it is ulti-
mately an experimental question to set limits on the frequency parameter ω. To
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Figure 2. The scale ϕvac

μ (r) (middle curve at r = 0) of the gauge

field mass compared with the scale 1
μ

√

3
2ϕ

2
vac(r)− 1

2μ
2 + 1

8r
2 of

the Higgs field mass (lowest curve at r = 0) and the limit-

ing ellipse s2 + r2

4μ2 = 1 and hyperbola r2

8μ2 − s2 = 1
2 . Cut-

off again at N = 10. The true curve ϕvac

μ (r) should always

stay below the ellipse and connect smoothly to ϕvac

μ = 0 for

r > 2μ. The true curve 1
μ

√

3
2ϕ

2
vac(r)− 1

2μ
2 + 1

8r
2 should stay

below ϕvac

μ for r < 2μ, whereas for r > 2μ one should exactly have

1
μ

√

3
2ϕ

2
vac − 1

2μ
2 + 1

8r
2(r) =

√

r2

8μ2− 1
2 .

be compatible with both high energy and cosmological data, ω has to be extremely
small. We definitely live in the spontaneously broken phase ω2‖x‖2 < χ−1

χ0
, and

the observable universe is very close to ω2‖x‖2 = 0. Nevertheless, a regulating
ω �= 0 has some nice consequences such as integrability of the Higgs vacuum and
integrability of the cosmological constant.

One may speculate how an ω �= 0 can be detected. We mentioned the reduction
of the ratio between Higgs mass and Z mass compared with the NCG prediction.
However, in the presence of ω �= 0 the β-functions must be recomputed so that at
the moment no prediction is possible. In cosmology, limits for ω could be obtained
from precision measurements of the ratio between the proton mass and the electron
mass at far distance. The electron mass which governs the atomic spectra via the
Rydberg frequency should vary in the same way as the Higgs scale ϕvac

μ . On the

other hand, the proton mass arises mainly from broken scale invariance in QCD and
therefore can be regarded as constant. This means that the gravitational energy
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of a standard star is constant whereas its transition into radiation energy might
vary with the position of the star in the universe. Observational limits on such a
variation would limit the value of ω.

Another observable consequence could be a variation of the cosmological con-
stant. The Higgs potential at the vacuum solution is negative and hence reduces
the volume term of the cosmological constant. Thus, the effective cosmological
constant would increase with the radius (the masses of gauge fields and fermions
dissolve into the cosmological constant).

6. Conclusion and perspectives

We have proposed a definition for non-compact spectral triples (A,H,D) where
the algebra is allowed to be non-unital but the resolvent of the operator D remains
compact. The metric dimension is defined via the dimension spectrum; it is (in
general) different from the noncommutative dimension given by the decay rate of
the characteristic values of the resolvent.

Our definition excludes non-compact manifolds with the standard Dirac op-
erator, but this is necessary for a well-defined index problem and a well-defined
spectral action in the non-compact case. An example for our definition is given
by operators D which are square roots of the d-dimensional harmonic oscillator
Hamiltonian −Δ+ω2x2. These square roots are constructed by conjugation of the
partial derivatives with e±ωh, where h is the Morse function. This relates to su-
persymmetric quantum mechanics, in particular to a special case of Witten’s work
[21] on Morse theory.

The most involved piece of work was the computation of the dimension spec-
trum which showed that the metric dimension is the oscillator dimension and that
all residues of the operator zeta function are local. Due to its relation to supersym-
metry, there are in fact two Dirac operators D1 and D2, which define two distinct
images γ1 and γ2 of the d-dimensional volume form, and only the product γ1γ2

defines the Z2-grading.
We have computed the spectral action for the corresponding Connes-Lott two-

point model. In contrast to standard R
d, the spectral action is finite also in the

cosmological constant part. The result is an Abelian Higgs model with additional
harmonic oscillator potential for the Higgs field. The resulting field equations show
a phase transition phenomenon: There is a spontaneously broken phase below a
critical radius determined by the oscillator frequency ω, which for small enough ω is
qualitatively identical to standard Higgs models. Possible observable consequences
are discussed at the end of the previous section. Above the critical radius we have
an unbroken phase with massless gauge fields. This phase is necessary to have an
integrable vacuum solution for the Higgs field.

The class of spectral triples we proposed deserves further investigation. We
show with V. Gayral [18] that there is an isospectral Moyal deformation of the har-
monic oscillator spectral triple. Some ideas appeared already in our preprint [19]
with H. Grosse, but the mathematical structure was unclear at that point. The
field equations of the preprint [19] are correct, but their “solution” is wrong. It
misses the phase transitions which we first observed for the commutative model in
the present paper. We expect that the phase structure is much richer in the Moyal-
deformed model. A hint can already be found in the pure gauge field sector, which
leads in terms of “covariant coordinates” to the field equation [Xμ, [Xμ, Xν ]] = 0.
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This equation has the Moyal deformation [Xμ, Xν ] = iΘμν = const as a solu-
tion, but also commutative coordinates [Xμ, Xν ] = 0; the preferred solution arises
from a subtle interplay with the boundary conditions. One may speculate that
these boundary conditions change with the temperature of the universe, so that
the (non)commutative geometry could emerge through a cascade of phase tran-
sitions when the universe cools down. The Moyal-deformed harmonic oscillator
spectral triple could serve as an excellent toy model to study these transitions.

On the mathematical side, the relation to supersymmetric quantum mechanics
needs further study. In particular, a real structure (or better several real structures)
must be identified to reduce the multiplicity of the action of the algebra from its

present value 2d to 2
d
2 in order to support a Spinc structure. One should also allow

for a non-trivial projection e to define the smooth subspace H∞ = eAn of the
Hilbert space. The corresponding action of Di or its components Q,Q† would then
permit a complete reformulation of Witten’s approach [21] to Morse theory in the
framework of spectral triples and noncommutative index theory.
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Appendix A. Proof of Theorem 2

Let D denote D1 or D2. The spectral identity A =
1

π

∫ ∞

0

dλ√
λ

A2

A2 + λ
for a

positive selfadjoint operator A leads to

δT =
1

π

∫ ∞

0

dλ
√
λ

1

〈D〉2 + λ
[D2, T ]

1

〈D〉2 + λ
.(72)

From (15) we recall that D2 = H+ωΣ, whereH = −∂μ∂μ+ω2xμx
μ and Σ = [b†μ, b

μ]
satisfy [H,Σ] = 0. This implies

δnT =

m
∑

k=0

(

n

k

)

(

ω ad(Σ)
)n−k

(

1

πn

∫ ∞

0

n
∏

i=1

dλi

√
λi

〈D〉2 + λi
(ad(H))k(T )

n
∏

j=1

1

〈D〉2+λj

)

.

(73)

The case T = [D1, f ] = ∂μf ⊗ (b†μ − bμ) or T = [D2, f ] = ∂μf ⊗ (ib†μ + ibμ) is also
reduced to T = f ; only ad(Σ) distinguishes them, and each application of ad(Σ)
makes δT more regular. It is therefore sufficient to study T = f and k = n. Using
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[H, f ] = −(Δf)− 2(∂μf)∂μ = −{∂μ, ∂μf}, we have

δnf =

n
∑

k=0

(

n

k

)

2k
(−1)n

πn

∫ ∞

0

n
∏

i=1

dλi

√
λi

〈D〉2 + λi
(74)

× (Δn−k∂μ1 · · · ∂μkf)∂μ1
· · · ∂μk

n
∏

j=1

1

〈D〉2 + λj
.

By linearity, it suffices to consider φ = (δn1f1) · · · (δnvfv). The most convenient
way is to compute ζφ(z) as a trace over position space kernels,

ζφ(z)(75)

:= Tr
(

(δn1f1) · · · (δnvfv)〈D〉−z
)

= tr

(∫ ∞

0

dt0
t
z
2−1
0

Γ( z2 )

∫

(Rd)v

(
v
∏

i=1

dyi

)

(δn1f1)(y1, y2) · · · (δnv−1fv−1)(yv−1, yv)

× (δnvfv)(yv, y0)(e
−t0〈D〉2)(y0, y1)

)

.

The remaining trace tr is taken in
∧

(Cd). Further evaluation is possible thanks to
the d-dimensional Mehler kernel

e−tH(x, y) =
( ω

2π sinh(2ωt)

) d
2

e−
ω
4 coth(ωt)‖x−y‖2−ω

4 tanh(ωt)‖x+y‖2

,(76)

for x, y ∈ R
d, which solves the differential equation ( d

dt +Hx)e
−tH(x, y) = 0 with

initial condition limt→0 e
−tH(x, y) = δ(x− y). Uniqueness of the solution implies

∫

Rd

dy e−t1H(x, y)e−t2H(y, z) = e−(t1+t2)H(x, z) .(77)

We can therefore recombine left and right Mehler kernels

1

〈D〉2 + λi,ji

=

∫ ∞

0

dti,ji e
−ti,ji (H+ωΣ+1+λi,ji

)(78)

in (74) and integrate over λi,ji :

(δnifi)(yi, yi+1)

(79)

=

ni
∑

ki=0

(

ni

ki

)

2ki
(−1)ni

(2
√
π)ni

∫ ∞

0

ni
∏

ji=1

dti,jidsi,ji

(ti,ji + si,ji)
3
2

e−(1+ωΣ)(Si+Ti)

×
∫

Rd

dxi e
−SiH(yi, xi)(Δ

ni−ki∂μi
1 · · · ∂μi

ki fi)(xi)
∂k1

∂x
μi
1

i · · · ∂x
μi
ki

i

e−TiH(xi, yi+1) ,

where Si :=
∑ni

ji=1 sji and Ti :=
∑ni

ji=1 tji . We insert this into (75), move e−S1H un-
der the trace to the end, and perform the yi-integrations which combine the Mehler

kernels into e−
τi
2ωH(xi, xi+1), with τi = 2ω(Ti + Si+1 + δivt0) and the convention

v + 1 ≡ 1. The remaining trace in
∧

(Cd) is

tr(e−Σy) = tr(e−y[b†1,b1] · · · e−y[b†d,bd]) = (2 cosh y)d .(80)
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Now the ki partial derivatives of the Mehler kernel read

ni
∑

ki=0

(

ni

ki

)

2ki(−1)ni(Δni−ki∂μi
1 · · · ∂μi

ki fi)(xi)
∂k1

∂x
μi
1

i · · · ∂x
μi
ki

i

e−
τiH

2ω (xi, xi+1)

(81)

=
∑

ki+2li+ri=ni

ni!

li!ki!ri!
ωni−ki−li(−1)ki+li2li cothli(τi)

(

Δki+li∂μi
1 · · · ∂μi

ri fi
)

(xi)

×
( ri
∏

j=1

(

(xi − xi+1) coth
τi
2 + (xi + xi+1) tanh

τi
2

)

μi
j

)

e−
τiH

2ω (xi, xi+1) .

We represent the fi by their Fourier transforms fi(x) =

∫

Rd

dpi
(2π)d

f̂i(pi) e
ipixi ,

write the xi, xi+1 in (81) as derivatives with respect to pi, pi+1, respectively, and
obtain after Gaußian integration of the xi

ζφ(z) =
∑

k1+2l1+r1 = n1, . . . ,
kv+2lv+rv = nv

( v
∏

i=1

ni!

li!ki!ri!
ωni−ki

)

1

Γ( z2 )(2
√
π)n1+···+nv

(82)

×
∫ ∞

0

dt0 t
z
2−1
0

∫ ∞

0

v
∏

i=1

ni
∏

ji=1

dti,jidsi,ji

(ti,ji + si,ji)
3
2

e−(t0+
∑n

i=1(Si+Ti))

×
(

2 cosh τ1+···+τv
2

)d
( v
∏

i=1

( 2

ω
coth τi

)li( ω

2π sinh τi

) d
2

)

×
∫

(Rd)v

(
v
∏

i=1

dpi
(2π)d

)

( v
∏

i=1

(p2i )
ki+lip

μi
1

i · · · pμ
i
ri

i f̂i(pi)

)

×
( v
∏

i=1

ri
∏

j=1

Pμi
j

(

τi;
∂

∂pi
,

∂

∂pi+1

)

)

(

√
π
dv

e−
1
4 pQ

−1p

(detQ)
d
2

)

,

where

Pμi
j

(

τi;
∂

∂pi
,

∂

∂pi+1

)

:= coth
τi
2

( ∂

∂p
μi
j

i

− ∂

∂p
μi
j

i+1

)

+ tanh
τi
2

( ∂

∂p
μi
j

i

+
∂

∂p
μi
j

i+1

)

(83)

and

Q =
ω

2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

sinh(τv+τ1)
sinh τv sinh τ1

−1
sinh τ1

0 . . . 0 −1
sinh τv

−1
sinh τ1

sinh(τ1+τ2)
sinh τ1 sinh τ2

−1
sinh τ2

. . .
. . . 0

0 −1
sinh τ2

sinh(τ2+τ3)
sinh τ2 sinh τ3

. . .
. . . 0

...
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . . sinh(τv−2+τv−1)

sinh τv−2 sinh τv−1

−1
sinh τv−1

−1
sinh τv

0 0 . . . −1
sinh τv−1

sinh(τv−1+τv)
sinh τv−1 sinh τv

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(84)

By Gauß-Jordan elimination and multiple use of the addition theorems for sinh
it is straightforward to compute the determinant and the inverse of the symmetric
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matrix Q (the result also holds for v = 1):

detQ =
(ω

2

)v 4 sinh2( 12 (τ1 + · · ·+ τv))
∏v

i=1 sinh τi
,(85)

(Q−1)ij =
1

ω tanh( 12 (τ1 + · · ·+ τv))
+ Q̃ij ,(86)

Q̃ij = −
2 sinh( 12 (τi + · · ·+ τj−1)) sinh(

1
2 (τj + · · ·+ τi−1))

ω sinh( 12 (τ1 + · · ·+ τv))
,(87)

where in Q̃ij one of the chains τi + · · ·+ τj−1 or τj + · · ·+ τi−1 passes through the
index v ≡ 0. The determinant can also be obtained from the fact that for p = 0 we
just have the trace over the concatenation of Mehler kernels (77).

The action of (Pμi
j
) on e−

1
4 pQ

−1p is partitioned into k′i out of ri single contrac-

tions, l′i double contractions and rij halves of mixed contraction with another index

j �= i such that k′i + l′i +
∑

j �=i rij = ri. Their number is ri!

2l
′
i l′i!k

′
i!ri1!···riv !

if we put

rii = 0 and rij = rji. Together with the multiplying factor p
μi
j

i , a single contraction
gives a factor

pμ
i

i Pμi(− 1
4pQ

−1p) = −p2i
ω

−
∑

j �=i

sinh(
τi+···+τj−1−τj−···−τi−1

2 )

ω sinh( τ1+···+τv
2 )

pipj .(88)

A double contraction with respect to the same index i gives a factor

pμ
i

i pν
i

i PμiPνi(− 1
4pQ

−1p) =
(

− 4 coth τi
ω

+
2

ω
coth( τ1+···+τv

2 )
)

p2i .(89)

A mixed contraction with respect to different indices i �= j gives a factor

pμ
i

i pμ
j

j PμiPμj (− 1
4pQ

−1p) = 2
cosh(

τj+···+τi−1−τi−···−τj−1

2 )

ω sinh( τ1+···+τv
2 )

pipj .(90)

We insert these formulae into (82) and notice that the sum over li, l
′
i combines to

a joint sum (with new index li) involving only the factor
p2
i

ω coth( 12 (τ1 + · · ·+ τv))
from (89), whereas coth τi cancels. In the same way, the sum over ki, k

′
i cancels the

term −p2i from (88) so that only the sum over j �= i remains:

ζφ(z) =
∑

k1+2l1+r1 = n1, . . . ,
kv+2lv+rv = nv
r1+ . . .+rv = 2m

∑

r11+ . . .+r1v = r1, . . . ,
rv1+ . . .+rvv = rv

( v
∏

i=1

ni!

li!ki!

)

2mωl1+···+lv+m

Γ( z2 )(2
√
π)n1+···+nv

(91)

×
∫ ∞

0

dt0 t
z
2−1
0

∫ ∞

0

v
∏

i=1

ni
∏

ji=1

dti,jidsi,ji

(ti,ji + si,ji)
3
2

e−(t0+
∑n

i=1(Si+Ti))

(

tanh τ1+···+τv
2

)d+l1+···+lv

×
∫

(Rd)v

(
v
∏

i=1

dpi
(2π)d

)

(

∏

i<j

1

rij !

(cosh
( τj+···+τi−1

2 − τi+···+τj−1

2

)

sinh( τ1+···+τv
2 )

pipj

)rij
)

×
( v
∏

i=1

(
∑

j �=i

sinh
( τj+···+τi−1

2 − τi+···+τj−1

2

)

sinh( τ1+···+τv
2 )

pipj

)ki

(p2i )
li f̂i(pi)

)

e−
1
4pQ

−1p.
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The zeta-function potentially has a singularity for τ = τ1 + · · · + τv → 0

of order τ
z+k1+···+kv

2 −d. The contribution z
2 is from dt0 t

z
2−1
0 , the measure

∏

dtds

(t+s)
3
2
contributes n1+···+nv

2 , and (tanh τ
2 )

−d−l1−···−lv (sinh τ
2 )

−r12+···+rv−1,v con-

tribute −(d + l1 + · · · + lv +
r1+···+rv

2 ). However, the independence of the leading

term in Q−1
ij from i, j shows that this singularity is protected by e

− (p1+···+pv)2

ω tanh τ
2 unless

the total momentum is conserved, p1 + · · ·+ pv = 0. The remaining singularity is
identified by a Taylor expansion in pv about p̄v := −(p1 + · · ·+ pv−1) up to order
ρ to be determined later:

F (p1, . . . , pv)(92)

=
∑

|α|≤ρ

(pv − p̄v)
α

α!

∂|α|F

∂pαv
(p1, . . . , pv−1, p̄v)

+
∑

|α|=ρ+1

(pv − p̄v)
α

ρ!

∫ 1

0

dλ (1− λ)ρ
∂|α|F

∂pαv
(p1, . . . , pv−1, p̄v + λ(pv − p̄v)) ,

where α is a multi-index. Together with the measure dpv, the last line combines

with tanh−d( τ2 ) to a factor dP P ρ+1 e−P 2

tanh
ρ+1−d

2 ( τ2 ), where P = pv−p̄v√
tanh τ

2

. For

sufficiently large but finite ρ we shall see in (96) that the potential singularity in

t
z
2
0 is cancelled so that the last line of (92) is regular. The bilinear form in the
exponent has the form

e−
1
4pQ

−1p = e
− (pv−p̄v)2

4ω tanh τ
2
− 1

2 (pv−p̄v)q− 1
2 p̄v

v−1∑

j=1

Q̃vjpj− 1
4

v−1∑

i,j=1

Q̃ijpipj

, q :=

v−1
∑

j=1

Q̃vjpj .

(93)

We can thus perform the Gaußian integration over pv and obtain for the restricted
zeta function ζr, where the second line of (92) is removed:

ζrφ(z)

(94)

=
∑

k1+2l1+r11+ . . .+r1v = n1, . . . ,
k1+2l1+rv1+ . . .+rvv = nv,

rii = 0 , rij = rji

n1! · · ·nv!

Γ( z2 )π
d
2 (2

√
π)n1+···+nv

×
∫ ∞

0

dt0 t
z
2−1
0

∫ ∞

0

v
∏

i=1

ni
∏

ji=1

dti,jidsi,ji

(ti,ji + si,ji)
3
2

e−t
( ω

tanh(ωt)

) d
2+

∑v
i=1 li+

∑
i<j rij

×
∫

(Rd)v−1

(
v−1
∏

i=1

dpi
(2π)d

)
∑

|α|≤ρ

(−2)|α|

α!

∂|α|

∂qα

(

e
ω
4 q2 tanh(ωt)− 1

2 p̄v

∑v−1
j=1 Q̃vjpj− 1

4

∑v−1
i,j=1 Q̃ijpipj

)

× ∂|α|

∂pαv

(

(

∏

i<j

(

2 cosh(ωtij)
cosh(ωt) pipj

)rij

rij !

)( v
∏

i=1

(
∑

j �=i

sinh(ωtij)
sinh(ωt) pipj

)ki

ki!

(p2i )
li

li!
f̂i(pi)

)

)

pv �→p̄v

,
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where t = 1
2ω τ = t0+

∑v
i=1(Ti+Si) and tij =

1
2ω (τj+· · ·+τi−1)− 1

2ω (τi+· · ·+τj−1).

The q-derivatives and the quadratic form in the exponent become with Q̃ij =
cosh(ωtij)−cosh(ωt)

ω sinh(ωt)

∑

|α|≤ρ

(−2)|α|

α!

∂|α|

∂qα

(

e
ω
4 q2 tanh(ωt)− 1

2 p̄v

∑v−1
j=1 Q̃vjpj− 1

4

∑v−1
i,j=1 Q̃ijpipj

)∂|α|

∂pαv
(95)

=
∑

|α|+2a≤ρ

(ω tanh(ωt))a+|α|e−
(∑v−1

i,j=1

sinh(ωt
−
ij

) sinh(ωt
+
ij

)

2ω sinh(2ωt) pipj

)

× 1

a!

( ∂2

∂pμv∂pvμ

)a 1

α!

( v−1
∑

j=1

2 sinh(ω
t+tvj

2 ) sinh(ω
t+tjv

2 )

ω sinh(ωt)
pj

)α
∂|α|

∂pαv
,

where t−ij = t+ tkv
∣

∣

k=min(i,j)
and t+ij = t+ tvk

∣

∣

k=max(i,j)
. Note that (95) is bounded

for all t.
We insert (95) into (94). We change the integration variables to t0 = (1− u)t,

∑v
i=1(Si + Ti) = ut with integration over t from 0 to ∞, over u from 0 to 1

and over the surface Δ given by
∑v

i=1(Si + Ti) = 1. We write the denominators
1

sinh(ωt) = 1
ωt · ωt

sinh(ωt) and 1
tanh(ωt) = 1

ωt · ωt
tanh(ωt) and expand the bounded (at

0) fractions ωt
sinh(ωt) and ωt

tanh(ωt) into a Taylor series in (ωt). The numerators in

hyperbolic functions of (ωt) and (ωtij) and 1
cosh(ωt) are expanded into a Taylor

series in their arguments. Then, for each term in the sum, the u, t-integral is of the
form

1

Γ( z2 )

∫ ∞

0

dt t(
z
2−

d
2+

k1+···+kv
2 +a+2|α|+b−1)e−t

∫ 1

0

du(1− u)
z
2−1u

n1+···+nv
2 +c−1(96)

=
Γ( z2 − d

2 + k1+···+kv

2 + a+ 2|α|+ b) Γ(n1+···+nv

2 + c)

Γ( z2 + n1+···+nv

2 + c)
,

where the integers b ≥ c ≥ 0 arise from the Taylor expansion. The remaining
integration over the simplex Δ is regular because from the Taylor expansion only
positive powers of the integration variables appear. From (96) we deduce the fol-
lowing information about the pole structure:

• For z /∈ Z or for z > d there is no pole.
• For z = d − N with N ∈ N, and n1, . . . , nv such that z + n1 + · · · + nv

is even, there is a pole for a finite (and non-vanishing) number of index
combinations and finite Taylor order ρ = d+n1 + · · ·+nv − k1 − · · · − kv.

This concludes the proof that Sd = d− N.
It remains to characterise the nature of the residues. From (94) we conclude

that the residues are given by the integral over p1, . . . , pv−1 of an integrand which is

a polynomial in p1, . . . , pv−1 times
∏v−1

i=1 f̂i(pi) times possible derivatives of f̂v(p̄v).
Reconstructing the pv-variable by a δ-function and integrating by parts the deriva-

tives of f̂v(p̄v), the residue becomes a finite sum of the form

resz=d−N (ζ(z))(97)
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=
∑

α0,...,αv

cα0...αv

∫

(Rd)v

(
v
∏

i=1

dpi
(2π)d

)

∫

Rd

dx ei(p1+···+pv)xxα0

v
∏

i=1

pαi
i f̂i(pi)

=
∑

α0,...,αv

∫

Rd

dx cα0...αv
(−i)|α1|+···+|αv |xα0

v
∏

i=1

(∂αifi)(xi) ,

where the αj are multi-indices which contract to a Lorentz scalar. The prefactor
cα0...αv

results from the integration over the t-variables. Thus, the residues are
local. �

We would like to stress that it was important to keep track of the combinatorial
factors which led to the cancellation of denominators 1

sinh τi
. Such denominators

in the final formula (94) would be fatal because in that case the u-integral of (96)
would produce a hypergeometric function instead of the beta function and therefore
an infinite sum for the residue, which could be non-local.

Appendix B. Vertices contributing to the spectral action

We compute here the individual vertex contributions (54) to the spectral action.
This is done by inserting the vertices (57) into (60) and then computing the ti-
integrals.

B.1. V2. The contribution of a single V2-vertex is

St(V2) =

∫ t

0

dt1 tr(e−ωΣt)S0
t (f) , f = −2|φ|2 −AμA

μ −BμB
μ .(98)

With tr(e−ωΣt) = (2 cosh(ωt))4 we have after second order Taylor expansion, ig-
noring the remainder and the odd first-order term,

St(V2) =

∫

R4

dp

(2π)4
t

(tanh(ωt))4

(

f̂(0) +
1

2
pμpν

∂2f̂

∂pμ∂pν
(0)
)

e−
p2

4ω tanh(ωt)(99)

=
ω2t

π2 tanh2(ωt)

(

f̂(0) + ω tanh(ωt)δμν
∂2f̂

∂pμ∂pν
(0)
)

=
ω2t

π2 tanh2(ωt)

∫

R4

dx
(

f(x)− ω‖x‖2 tanh(ωt) f(x)
)

,

after Fourier transformation f̂(p) =
∫

R4 dx e−ipxf(x). Inserting f we obtain after
Laplace transformation the leading terms of the asymptotic expansion to

S2(DA) =
χ−1

π2

∫

R4

dx
(

− 2|φ|2 −AμA
μ −BμB

μ
)

(x)(100)

+
χ0

π2

∫

R4

dx (ω2|x|2
(

2|φ|2 +AμA
μ +BμB

μ
)

(x) .

B.2. V1V1. The contribution of two V1-vertices is

St(V1, V1) =

∫ t

0

dt1

∫ t−t1

0

dt2 tr(e−ωΣt)S1,1
t2,t−t2

(−A,−A) + (A �→ B) .(101)

This is the most involved computation. To (60) there are the two contributions
k1 = k2 = 1 up to order 0 and r12 = r21 = 1 with Taylor expansion about p2 = −p1
up to order 2:
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St(V1, V1)

(102)

=

∫ t

0

dt1

∫ t−t1

0

dt2

∫

(R4)2

dp1dp2
(2π)8

1

tanh4(ωt)
e−

(p1+p2)2

4ω tanh(ωt)
+p1p2

sinh(ωt2) sinh(ω(t−t2))

ω sinh(ωt)

×
{

Âμ(p1)Â
ν(−p1)

(sinh2(ω(t− 2t2))

sinh2(ωt)
p1μp1ν + 2ωδμν

cos(ω(t− 2t2))

sinh(ωt)

)

+ (p1 + p2)
ρÂμ(p1)

∂Âν

∂pρ2
(−p1) · 2ωδμν

cos(ω(t− 2t2))

sinh(ωt)

+
1

2
(p1 + p2)

ρ(p1 + p2)
σÂμ(p1)

∂2Âν

∂pρ2∂p
σ
2

(−p1) · 2ωδμν
cos(ω(t− 2t2))

sinh(ωt)

}

+ (A �→ B)

=

∫ t

0

dt1

∫ t−t1

0

dt2

∫

R4

dp1
(2π)4

ω2

π2 tanh2(ωt)
e−

sinh(2ωt2) sinh(2ω(t−t2))

2ω sinh(2ωt) p2
1

×
{

Âμ(p1)Â
ν(−p1)

(sinh2(ω(t− 2t2))

sinh2(ωt)
p1μp1ν + 2ωδμν

cos(ω(t− 2t2))

sinh(ωt)

)

+ 4ωpρ1Â
μ(p1)

∂Âμ

∂pρ2
(−p1) ·

sinh(ωt2) sinh(ω(t− t2))

cos(ωt)

cos(ω(t− 2t2))

sinh(ωt)

+ ω
(

2δρσω tanh(ωt) + 4pρ1p
σ
1

sinh2(ωt2) sinh
2(ω(t− t2))

cos2(ωt)

)

× Âμ(p1)
∂2Âμ

∂pρ2∂p
σ
2

(−p1) ·
cos(ω(t− 2t2))

sinh(ωt)

}

+ (A �→ B) .

Up to O(t) this reduces to

St(V1, V1)

(103)

=

∫ t

0

dt1

∫ t−t1

0

dt2

∫

R4

dp1
(2π)4

ω2

π2 tanh2(ωt)

×
{

Âμ(p1)Â
ν(−p1)

(sinh2(ω(t− 2t2))

sinh2(ωt)
p1μp1ν

− δμν
cosh(ω(t− 2t2))

sinh(ωt)

sinh(2ωt2) sinh(2ω(t− t2))

sinh(2ωt)
p21

)

+ 2ωÂμ(p1)Âμ(−p1)
cosh(ω(t− 2t2))

sinh(ωt)
+ 2ω2Âμ(p1)

∂2Âμ

∂pρ2∂p2ρ
(−p1)

cosh(ω(t−2t2))

cosh(ωt)

}

+ (A �→ B)

=

∫

R4

dp1
(2π)4

ω2

π2 tanh2(ωt)

×
{

Âμ(p1)Â
ν(−p1)

(( t

4ω tanh(ωt)
− t2

4 sinh2(ωt)

)

p1μp1ν − δμν
t tanh(ωt)

6ω
p21

)
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+ t Âμ(p1)Âμ(−p1) + (ωt) tanh(ωt) Âμ(p1)
∂2Âμ

∂pρ2∂p2ρ
(−p1)

}

+ (A �→ B) .

After Fourier and Laplace transformation, the leading contribution to the spectral
action becomes

S11(DA) =
χ−1

π2

∫

R4

dx
(

AμA
μ +BμB

μ
)

(x)(104)

− χ0

π2

∫

R4

dx (ω2‖x‖2)
(

AμA
μ +BμB

μ
)

(x)

− χ0

12π2

∫

R4

dx
(

FA
μνF

Aμν + FB
μνF

Bμν
)

(x) .

B.3. V2V2, V3V3, V4V4. We have

4
∑

i=2

St(Vi, Vi)(105)

=

∫ t

0

dt1

∫ t−t1

0

dt2

{

tr(e−ωΣt)
(

S0,0
t2,t−t2

(−|φ|2 −AμA
μ,−|φ|2 −AμA

μ)

+ S0,0
t2,t−t2

(−|φ|2 −BμB
μ,−|φ|2 −BμB

μ)
)

+ tr
( i

4
[b†μ − bμ, b†ν − bν ]e−ωΣt2

i

4
[b†ρ − bρ, b†σ − bσ]e−ωΣ(t−t2)

)

×
(

S0,0
t2,t−t2

(FA
μν , F

A
ρσ) + S0,0

t2,t−t2
(FB

μν , F
B
ρσ)
)

+ tr
(

(b†μ − bμ)e−ωΣt2(b†ν − bν)e−ωΣ(t−t2)
)

×
(

S0,0
t2,t−t2(−Dμφ,Dνφ) + S0,0

t2,t−t2(Dμφ,−Dνφ)
)

}

.

Since the S0,0
t2,t−t2 are at least O(t−2), only the O(t0)-parts of e−ωΣt2 and e−ωΣ(t−t2)

will contribute to the spectral action. Now the traces in
∧

(C4) are easy to compute:

tr
(

eωΣt
)

= (2 cosh(ωt))4 ,(106)

tr
(

(b†μ − bμ)e−ωΣt2(b†ν − bν)e−ωΣ(t−t2)
)

= −16δμν +O(t) ,

tr
(

i
4 [b

†μ−bμ, b†ν−bν ]e−ωΣt2 i
4 [b

†ρ−bρ, b†σ−bσ]e−ωΣ(t−t2)
)

= 8(δμρδνσ−δμσδνρ)+O(t).

After Taylor expansion about p2 = −p1 up to order 0, integration over p2, t1, t2 and
Laplace transformation, we obtain

(S22+S33+S44)(DA) =
χ0

2π2

∫

R4

dx
{

2Dμφ(D
μφ) + (|φ|2 +AμA

μ)2

(107)

+ FA
μνF

Aμν + (|φ|2 +BμB
μ)2 + FB

μνF
Bμν
}

(x) .

B.4. V1V2, V2V1. With the abbreviation fφA := |φ|2 +AμA
μ, we have

St(V1, V2) + St(V2, V1)

(108)

=

∫ t

0

dt1

∫ t−t1

0

dt2 tr(e−ωΣt)
(

S1,0
t2,t−t2

(−A,−fφA) + S0,1
t2,t−t2

(−fφA,−A)
)
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+ (A �→ B)

=

∫ t

0

dt1

∫ t−t1

0

dt2

∫

R4×R4

dp1dp2
(2π)8

1

tanh4(ωt)

×
(

p2,μÂ
μ(p1)f̂φA(p2)− p1,μÂ

μ(p2)f̂φA(p1)
) sinh(ω(t− 2t2))

sinh(ωt)
e−

1
4pQ

−1p + (A �→ B)

=

∫ t

0

dt1

∫ t−t1

0

dt2

∫

R4

dp1
(2π)4

ω2

π2 tanh2(ωt)

sinh(ω(t− 2t2))

sinh(ωt)

×
(

− p1,μÂ
μ(p1)f̂φA(−p1)− p1,μÂ

μ(−p1)f̂φA(p1)
)

+ (A �→ B) +O(t)

= O(t) .

We thus have

S12(DA) = 0 .(109)

B.5. V1V1V2, V1V2V1, V2V1V1. Only the ki = 0 terms in (60) contribute to
the leading order. With the abbreviation fφA := |φ|2 +AμA

μ, these give

St(V1, V1, V2) + St(V1, V2, V1) + St(V2, V1, V1)

(110)

=

∫ t

0

dt1

∫ t−t1

0

dt2

∫ t−t1−t2

0

dt3 tr(e−ωΣt)
(

S1,1,0
t3,t2,t−t2−t3(−A,−A,−fφA)

+ S1,0,1
t3,t2,t−t2−t3

(−A,−fφA,−A) + S0,1,1
t3,t2,t−t2−t3

(−fφA,−A,−A)
)

+ (A �→ B)

=

∫ t

0

dt1

∫ t−t1

0

dt2

∫ t−t1−t2

0

dt3

∫

(R4)3

dp1 dp2 dp3
(2π)12

−2ω

tanh4(ωt) sinh(ωt)

×
(

Âμ(p1)Â
μ(p2)f̂φA(p3) cosh(ω(t− 2t3))

+ Âμ(p1)f̂φA(p2)Â
μ(p3) cosh(ω(t− 2t2 − 2t3))

+ f̂φA(p1)Âμ(p2)Â
μ(p3) cosh(ω(t− 2t2))

)

e−
1
4 pQ

−1p + (A �→ B) +O(t)

=

∫ t

0

dt1

∫ t−t1

0

dt2

∫ t−t1−t2

0

dt3

∫

(R4)2

dp1 dp2
(2π)8

(−2ω3)

π2 tanh2(ωt) sinh(ωt)

× Âμ(p1)Â
μ(p2)f̂φA(−p1 − p2)

(

cosh(ω(t− 2t3)) + cosh(ω(t− 2t2 − 2t3))

+ cosh(ω(t− 2t2))
)

+ (A �→ B) +O(t)

=

∫

(R4)2

dp1 dp2
(2π)8

(−ω2t2)

π2 tanh2(ωt)
Âμ(p1)Â

μ(p2)f̂φA(−p1 − p2) + (A �→ B) +O(t) .

After Fourier and Laplace transformation we obtain

S112(DA) = −χ0

π2

∫

R4

dx
{

AμA
μ(|φ|2 +AνA

ν) +BμB
μ(|φ|2 +BνB

ν)
}

(x) .(111)
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B.6. V1V1V1. The leading order in (60) is given by the (k1 = 1, r23 = 1) and
the other two cyclic permutations:

St(V1, V1, V1)

(112)

=

∫ t

0

dt1

∫ t−t1

0

dt2

∫ t−t1−t2

0

dt3 tr(e−ωΣt)S1,1,1
t3,t2,t−t2−t3(−A,−A,−A) + (A �→ B)

=

∫ t

0

dt1

∫ t−t1

0

dt2

∫ t−t1−t2

0

dt3

∫

(R4)3

dp1 dp2 dp3
(2π)12

−2ω

tanh4(ωt) sinh2(ωt)
Âμ(p1)Âν(p2)Âρ(p3)

×
(

(pμ2 sinh(ω(t− 2t3)) + pμ3 sinh(ω(t− 2t2 − 2t3)))δ
νρ cosh(ω(t− 2t2))

+ (pν3 sinh(ω(t− 2t2)) + pν1 sinh(ω(2t3 − t)))δρμ cosh(ω(t− 2t2 − 2t3))

+ (pρ1 sinh(ω(2t2 + 2t3 − t)) + pρ2 sinh(ω(2t2 − t)))δμν cosh(ω(t− 2t3))
)

× e−
1
4pQ

−1p + (A �→ B)

=

∫ t

0

dt1

∫ t−t1

0

dt2

∫ t−t1−t2

0

dt3

∫

(R4)3

dp1 dp2 dp3
(2π)12

−2ω

tanh4(ωt) sinh2(ωt)
Âμ(p1)Âν(p2)Âρ(p3)

× pμ2

(

sinh(ω(2t2 − 2t3)) + sinh(ω(4t3 + 2t2 − 2t) + sinh(ω(2t− 4t2 − 2t3))
)

+ (A �→ B)

= O(t) .

(The integral without e−
1
4 pQ

−1p cancels exactly.) We thus have

S111(DA) = 0 .(113)

B.7. V1V1V1V1. The leading order in (60) is given by the three possibilities
with ki = 0:

St(V1, V1, V1, V1)

(114)

=

∫ t

0

dt1

∫ t−t1

0

dt2

∫ t−t1−t2

0

dt3

∫ t−t1−t2−t3

0

dt4 tr(e−ωΣt)

× S1,1,1,1
t4,t3,t2,t−t2−t3−t4(−A,−A,−A,−A) + (A �→ B)

=

∫

(R4)3

dp1 dp2 dp3
(2π)12

(2ω)2

tanh4(ωt) sinh2(ωt)
Âμ(p1)Âν(p2)Âρ(p3)Âσ(p4)

×
∫ t

0

dt1

∫ t−t1

0

dt2

∫ t−t1−t2

0

dt3

∫ t−t1−t2

0

dt3

∫ t−t1−t2−t3

0

dt4

(

cosh(ωt21) cosh(ωt43)δ
μνδρσ

+ cosh(ωt31) cosh(ωt42)δ
μρδνσ + cosh(ωt41) cosh(ωt32)δ

μσδνρ
)

+ (A �→ B) ,

with t21 = t − 2t4, t43 = t − 2t2, t31 = t − 2t3 − 2t4, t42 = t − 2t2 − 2t3, t41 =
t−2t2−2t3−2t4 and t32 = t−2t3. Taylor expansion in p4 and Gaußian integration

over dp4

(2π)4 yield, as usual, a factor ω2

π2 tanh(ωt) and an exponential function that

can be ignored in leading order. The t1, . . . , t4 integrals evaluate to t2 sinh2(ωt)
8ω2 , so
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that we conclude

S1111(DA) =
χ0

2π2

∫

R4

dx
{

AμA
μAνA

ν +BμB
μBνB

ν
}

(x) .(115)
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Dedicated to Alain Connes on the occassion of his sixtieth birthday

1. Introduction

A central problem in noncommutative geometry is the Baum-Connes conjec-
ture. The Baum-Connes conjecture provides an algorithm for computing the K-
theory of reduced group C∗-algebras and higher indices of elliptic differential oper-
ators on compact manifolds. The conjecture implies the Novikov conjecture on ho-
motopy invariance of higher signatures, the Gromov-Lawson-Rosenberg conjecture
on positive scalar curvature, and the Kadison-Kaplansky idempotent conjecture.
Despite great progress, the Baum-Connes conjecture remains open. The purpose
of this article is to give a characterization of the K-theory elements in the image
of the Baum-Connes map. A very different characterization was given by Joachim
Cuntz in [10].

This paper is organized as follows. In Section 2, we give an elementary definition
of the Baum-Connes map. In Section 3, we state the main results. In Section 4, we
introduce a certain local K-theory to indicate the proofs of the main results of this
article.

I would like to thank Alain for his encouragement over the years and for many
enlightening discussions. It has always been a great joy to hear him talk about
mathematics.

The author wishes to express his gratitude to the referee for several suggestions
which improved the exposition of this paper.

2. A reformulation of the Baum-Connes map

In this section, we give an elementary definition of the Baum-Connes map which
will be useful for the rest of this article.

Let Γ be a countable discrete group. Let X be a locally compact metric space
with a proper and cocompact isometric action of Γ. Let C0(X) be the algebra of
all complex-valued continuous functions on X which vanish at infinity.

The following definition due to John Roe will play an important role in our
discussions [15].

2010 Mathematics Subject Classification. Primary: 19K56, Secondary: 19K35, 46L55, 58J22.
The author is partially supported by NSF and CNSF..

c© 2010 Guoliang Yu
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Definition 2.1. Let H be a Hilbert space and let φ be a ∗-homomorphism from
C0(X) to B(H), the C∗-algebra of all bounded operators on H.

(1) Let T be a bounded linear operator acting on H. The support of T is de-
fined to be the complement (in X×X) of the set of all points (x, y) ∈ X×X
for which there exists f ∈ C0(X) and g ∈ C0(X) satisfying φ(f)Tφ(g) = 0
and f(x) �= 0 and g(y) �= 0;

(2) The propagation of T is defined to be: sup{d(x, y) : (x, y) ∈ Supp(T )};
(3) T is said to be locally compact if φ(f)T and Tφ(f) are compact for all

f ∈ C0(X).

Let H be a Hilbert space with a Γ-action and let φ be a ∗-homomorphism from
C0(X) to B(H) such that it is covariant in the sense that φ(γf)h = (γ(φ(f))γ−1)h
for all γ ∈ Γ, f ∈ C0(X) and h ∈ H. Such a triple (C0(X),Γ, φ) is called a covariant
system.

Definition 2.2. We define the covariant system (C0(X),Γ, φ) to be admissible
if

(1) the Γ-action on X is proper and cocompact;
(2) φ(f) is noncompact for any nonzero function f ∈ C0(X);
(3) for each x ∈ X, the action of the stabilizer group Γx on H is regular in

the sense that it is isomorphic to the action of Γx on l2(Γx)⊗W for some
infinite dimensional Hilbert space W , where the Γx action on l2(Γx) is
regular and the Γx action on W is trivial.

We remark that condition (3) in the above definition can be dropped if Γ acts
on X freely. In particular, if M is a compact manifold and Γ = π1(M), then

(C0(˜M),Γ, φ) is an admissible covariant system, where ˜M is the universal cover of

M and φ(f)ξ = fξ for each f ∈ C0(˜M) and all ξ ∈ L2(˜M). In general, for each
locally compact metric space with a proper and cocompact isometric action of Γ,
there exists an admissible covariant system (C0(X),Γ, φ).

Definition 2.3. Let (C0(X),Γ, φ) be an admissible covariant system. We
define C(Γ, X,H) to be the algebra of Γ-invariant locally compact operators acting
on H with finite propagation. The C∗-algebra C∗

r (Γ, X,H) is the operator norm
closure of C(Γ, X,H).

Proposition 2.4. If (C0(X),Γ, φ) is an admissible covariant system, then
C∗

r (Γ, X,H) is ∗-isomorphic to C∗
rΓ⊗K, where C∗

rΓ is the reduced group C∗-algebra
and K is the algebra of all compact operators.

When the group Γ is torsion-free, this result is due to John Roe [16].
Let H be a Hilbert space, let F be an operator acting on H, let φ be a ∗-

homomorphism from C0(X) to B(H) such that F is Γ-equivariant, i.e. γFγ−1 = F
for all γ ∈ Γ, and φ(f)F − Fφ(f), φ(f)(FF ∗ − I) and φ(f)(F ∗F − I) are compact
operators for all f ∈ C0(X). Such an F should be viewed as a generalized Γ-
equivariant elliptic operator on X.

(H,φ, F ) gives a Kasparov cycle representing a K-homology class in KΓ
0 (X).

It is not difficult to prove that every K-homology class KΓ
0 (X) is equivalent to

(H,φ, F ) such that (C0(X),Γ, φ) is an admissible covariant system. This follows
from the fact that there exists a ∗-homomorphism φ′ : C0(X) → B(H ′) for some
Hilbert space H ′ with a Γ action such that (C0(X),Γ, φ) is a covariant system and
the covariant system (C0(X),Γ, φ⊕ φ′) is admissible.
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For any ε > 0, let {Ui}i∈I be a locally finite and Γ-equivariant open cover of X
satisfying diameter(Ui) < ε for all i. Let {ψi} be a Γ-equivariant partition of unity
subordinate to {Ui}i∈I . We define

Fε =
∑

i∈I

φ(
√

ψi)Fφ(
√

ψi),

where the infinite sum converges in the strong topology.
Note that Fε has propagation ε and (H,φ, Fε) is equivalent to (H,φ, F ) in

KΓ
0 (X).
Fε is a multiplier of C∗

r (Γ, X,H). Fε is invertible modulo C∗
r (Γ, X,H), i.e. Fε

is a generalized Fredholm operator.
Let ∂ be the boundary map in K-theory:

K1(M(C∗
r (Γ, X,H))/C∗

r (Γ, X,H)) → K0(C
∗
r (Γ, X,H)),

where M(C∗
r (Γ, X,H)) is the multiplier algebra of C∗

r (Γ, X,H). We can define the
Baum-Connes map

μ : KΓ
0 (X) → K0(C

∗
r (Γ, X,H)) ∼= K0(C

∗
rΓ)

by

μ([(H,φ, F )]) = ∂([Fε]).

More precisely, the Baum-Connes map can be implemented as follows.
Let pε be the idempotent:

(

FεF
∗
ε + (I − FεF

∗
ε )FεF

∗
ε Fε(I − F ∗

ε Fε) + (I − FεF
∗
ε )Fε(I − F ∗

ε Fε)
(I − F ∗

ε Fε)F
∗
ε (I − F ∗

ε Fε)
2

)

.

Observe that the propagation of pε is at most 5ε.
Let

p0 =

(

I 0
0 0

)

.

We have

μ([(H,φ, F )]) = [pε]− [p0].

μ([(H,φ, F )]) should be interpreted as the index of the generalized Fredholm
operator Fε.

In the odd case, we can similarly define the Baum-Connes map μ as follows.
Any K-homology class in KΓ

1 (X) can be represented by (H,φ, F ) such that the
covariant system (C0(X),Γ, φ) is admissible, where H is a Hilbert space, F is an
operator acting on H, φ is a ∗-homomorphism from C0(X) to B(H) such that F is
Γ-equivariant, i.e. γFγ−1 = F for all γ ∈ Γ, and φ(f)F −Fφ(f), φ(f)(F 2− I) and
φ(f)(F ∗ − F ) are compact operators for all f ∈ C0(X).

For each ε > 0, let Fε be defined as in the even case. Let

qε =
1

2
(Fε + I).

qε gives rise to an element in K0(M(C∗
r (Γ, X,H))/C∗

r (Γ, X,H)).
Let ∂ be the boundary map in K-theory:

K0(M(C∗
r (Γ, X,H))/C∗

r (Γ, X,H)) → K1(C
∗
r (Γ, X,H)).
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We can define the Baum-Connes map

μ : KΓ
1 (X) → K1(C

∗
r (Γ, X,H)) ∼= K1(C

∗
rΓ)

by

μ([(H,φ, F )]) = ∂([qε]).

More precisely, we have

μ([(H,φ, F )]) = exp(2πiqε).

The following is the well known Baum-Connes conjecture [2] [3].

Conjecture 2.1. Let EΓ be the universal space for proper Γ actions. The
Baum-Connes map μ : KΓ

∗ (EΓ) → K∗(C
∗
rΓ), is an isomorphism.

KΓ
∗ (EΓ) should be understood as the inductive limit of KΓ

∗ (X) for all closed
Γ-invariant subspaces X such that the quotient X/Γ is compact.

3. The image of the Baum-Connes map

In this section, we give a characterization of the image of the Baum-Connes
map.

For any δ > 0, an operator q is said to be a δ-quasi-projection if q∗ = q and

||q2 − q|| < δ.

When δ = 1
100 , a δ-quasi-projection will be called a quasi-projection.

Theorem 3.1. An element [p] in K0(C
∗
rΓ) is in the image of the Baum-Connes

map if and only if there exists an admissible covariant system
(C0(X),Γ, φ) for some locally compact and finite dimensional simplicial polyhedron
with the simplicial metric and dimension n such that [p] is equivalent to [q] − [p0]
and q is a quasi-projection in Mkn

(C∗
r (Γ, X,H)) for some natural number kn with

propagation at most εn, where kn depends only on n and εn is a positive con-
stant depending only on n, p0 = I ⊕ 0, and the propagation of an element in
Mk(C

∗
r (Γ, X,H)) is defined to be the maximal propagation of its entries.

The “only if” part of Theorem 3.1 follows from the construction of the Baum-
Connes map in the previous section. To prove the “if” part of Theorem 3.1, we
will need certain localization techniques in the next section. The proof of Theorem
3.1 yields concrete estimations of kn and εn (kn grows exponentially in n and εn
decays exponentially in n).

We remark that, as a consequence of the proof of Theorem 3.1, if an element [p]
inK0(C

∗
rΓ) is in the image of the Baum-Connes map, then there exists an admissible

covariant system (C0(X),Γ, φ) for some locally compact and finite dimensional
simplicial polyhedron with the simplicial metric such that there exists a natural
number kn depending on n for which, given any ε > 0, [p] is equivalent to [q] −
[p0] and q is a quasi-projection in Mkn

(C∗
r (Γ, X,H)) with propagation at most ε.

When Γ is a finitely generated torsion-free group, in the equivalence C∗
r (Γ, X,H) ∼=

C∗
rΓ⊗K, small propagation in C∗

r (Γ, X,H) corresponds to propagation at most 1
in C∗

rΓ⊗K with respect to the word metric of Γ. As a consequence, we obtain the
following result.
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Corollary 3.2. Let Γ be a finitely generated torsion-free group with a finite
generating set S. Every element in the image of the Baum-Connes map in K0(C

∗
rΓ)

is equivalent to [q] − [p0] such that q is a quasi-projection in Mk(C
∗
rΓ) such that

each of its entries is a linear combination of elements in S ∪ {e}, where e is the
identity of Γ.

We remark that if the classifying space for the torsion-free group Γ is finite
dimensional, then the matrix size k in the above corollary depends only on the
dimension of the classifying space.

For any δ > 0, an operator v is said to be a δ-quasi-unitary if

||v∗v − I|| < δ

and
||vv∗ − I|| < δ.

When δ = 1
100 , a δ-quasi-unitary will be called a quasi-unitary.

We have a similar result in the odd case.

Theorem 3.3. An element [u] in K1(C
∗
rΓ) is in the image of the Baum-Connes

map if and only if there exists an admissible covariant system
(C0(X),Γ, φ) for some locally compact and finite dimensional simplicial polyhe-
dron with the simplicial metric and dimension n such that u is equivalent to a
quasi-unitary in Mkn

(C∗
r (Γ, X,H)+) for some natural number kn with propagation

at most εn, where kn depends only on n and εn is a positive constant depending
only on n.

The proof of Theorem 3.3 yields concrete estimations of kn and εn (kn grows
exponentially in n and εn decays exponentially in n). It is an open question whether
we can replace the quasi-unitary condition on v by simply an invertibility condition.

We remark that, as a consequence of the proof of Theorem 3.3, if an element [u]
in K1(C

∗
rΓ) is in the image of the Baum-Connes map, then there exists an admissi-

ble covariant system (C0(X),Γ, φ) for some locally compact and finite dimensional
simplicial polyhedron with the simplicial metric such that there exists a natural
number kn depending on n for which, given for any ε > 0, [u] is equivalent to a
quasi-unitary in Mkn

(C∗
r (Γ, X,H)+) for some natural number k with propagation

at most ε. When Γ is a finitely generated torsion-free group, in the equivalence
C∗

r (Γ, X,H) ∼= C∗
rΓ ⊗K, small propagation in C∗

r (Γ, X,H) corresponds to propa-
gation at most 1 in C∗

rΓ⊗K with respect to the word metric of Γ. As a consequence,
we obtain the following result.

Corollary 3.4. Let Γ be a finitely generated torsion-free group with a finite
generating set S. Every element in the image of the Baum-Connes map in K1(C

∗
rΓ)

is equivalent to [v] such that v is a quasi-unitary in Mk(C
∗
rΓ) and each of its entries

is a linear combination of elements in S ∪ {e}, where e is the identity of Γ.

We remark that if the classifying space for the torsion-free group Γ is finite
dimensional, then the matrix size k in the above corollary depends only on the
dimension of the classifying space.

4. Localization techniques in K-theory

In this section, we develop several localization techniques necessary to prove
Theorem 3.1 and 3.3.
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Let X be a locally compact and finite dimensional simplicial polyhedron. We
endow X with the simplicial metric. Let (C0(X),Γ, φ) be an admissible covariant
system introduced in the previous section, where φ is a ∗-homomorphism from
C0(X) to B(H) for some Hilbert space H.

Definition 4.1. The algebraic localization algebra C∗
L,alg(Γ, X,H) is defined to

the algebra of all bounded and uniformly continuous functions f : [0,∞) → C(Γ, H)
such that the propagation of f(t) goes to 0 as t → ∞. The localization algebra
C∗

L(Γ, X,H) is the norm closure of C∗
L,alg(Γ, X,H) with respect to the following

norm:
||f || = supt∈[0,∞)||f(t)||.

It is not difficult to prove that, up to a ∗-isomorphism, C∗
L,alg(Γ, X,H) and

C∗
L(Γ, X,H) are independent of the choice of the admissible covariant system

(C0(X),Γ, φ). The localization algebra is an equivariant analogue of the algebra
introduced in [19].

Any K-homology class in KΓ
0 (X) can be represented by (H,φ, F ) such that the

covariant system (C0(X),Γ, φ) is admissible, where H is a Hilbert space, F is an
operator acting on H, φ is a ∗-homomorphism from C0(X) to B(H) such that F
is Γ-equivariant, φ(f)F − Fφ(f), φ(f)(FF ∗ − I) and φ(f)(F ∗F − I) are compact
operators for all f ∈ C0(X).

For each natural number n, we let F 1
n

be defined as in the previous section.

We define a operator valued function F (t) on [0,∞) by

F (t) = (t− n+ 1)F 1
n
+ (t− n)F 1

n+1

for all t ∈ [n, n+ 1].
F (t) is a multiplier of C∗

L(Γ, X,H) and is invertible modulo C∗
L(Γ, X,H). We

define the local Baum-Connes map

μL : KΓ
0 (X) → K0(C

∗
L(Γ, X,H)),

by
μL[H,φ, F )] = ∂[F (t)],

where
∂ : K1(M(C∗

L(Γ, X,H))/C∗
L(Γ, X,H)) → K∗

0 (C
∗
L(Γ, X,H)),

is the boundary map in K-theory and M(C∗
L(Γ, X,H)) is the multiplier algebra of

C∗
L(Γ, X,H).

Similarly we can define the local Baum-Connes map

μL : KΓ
1 (X) → K1(C

∗
L(Γ, X,H)).

We remark that the local Baum-Connes map is very much in the spirit of the
local index theory of elliptic differential operators. The local Baum-Connes map is
an equivariant analogue of the local index map introduced in [19].

Theorem 4.2. The local Baum-Connes map μL is an isomorphism from KΓ
∗ (X)

to K∗(C
∗
L(Γ, X,H)) if X is a finite dimensional simplicial polyhedron.

Let e be the evaluation map:

C∗
L(Γ, X,H) → C∗

r (Γ, X,H) ∼= C∗
rΓ⊗K

defined by:
e(f) = f(0)
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for all f ∈ C∗
L(Γ, X,H).

We have
μ = e∗ ◦ μL.

Next we shall define a quantitative version of local K-theory.

Definition 4.3. Let (C0(X),Γ, φ) be an admissible covariant system introduced
as in the previoius section, where φ is a ∗-homomorphism from C0(X) to B(H)
for some Hilbert space H. For each ε > 0, we define the quantitative K-group
Kε

0(C
∗
r (Γ, X,H)) to be the Grothendieck group of the semi-abelian group of the

equivalence classes of all quasi-projections of propagation at most ε with two quasi-
projections being equivalent if and only there exists a homotopy path of 1

10 -quasi-
projections with propagation at most 10ε.

Definition 4.4. Let (C0(X),Γ, φ) be an admissible covariant system intro-
duced as in the previoius section, where φ is a ∗-homomorphism from C0(X) to
B(H) for some Hilbert space H. For each ε > 0, we define the quantitative K-
group Kε

1(C
∗
r (Γ, X,H)) to be the abelian group of the equivalence classes of all

quasi-unitaries in C∗
r (Γ, X,H)+ with propagation at most ε with two quasi-unitaries

being equivalent if and only there exists a homotopy path of 1
10 -quasi-unitaries with

propagation at most 10ε.

The above quantitative K-groups are equivariant analogues of concepts intro-
duced in [20].

Next we shall formulate a Mayer-Vietoris sequence for the quantitative local K-
theory. Together with Lipschitz homotopy invariance, the Mayer-Vietoris sequence
provides an algorithm to compute the quantitative local K-theory when ε is small.

If φ is a ∗-homomorphism from C0(X) to B(H) for some Hilbert space H, φ can
be extended to a ∗-homomorphism from the algebra of all bounded Borel functions
on X to B(H). If Y is a closed subset of X, by identifying C0(Y ) with a subalgebra
of the algebra of all bounded Borel functions on X, φ induces a ∗-homomorphism

from C0(Y ) to B(H) (still denoted by φ). We let
◦
Y be the set of points in Y

which are interior points of X. If
◦
Y is dense in Y and φ(f) is noncompact for any

nonzero function f ∈ C0(X), then the induced ∗-homomorphism from C0(Y ) to
B(H) satisfies the same condition.

For each r ≥ 0, we define

Nr(Y ) = {x ∈ X : d(x, Y ) ≤ r}.
Theorem 4.5. Let X be a locally compact and finite dimensional polyhedron

with the simplicial metric and X = Y ∪ Z, where Y and Z are closed subsets of
X. Assume that (C0(X),Γ, φ) is an admissible covariant system introduced as in
the previoius section, where φ is a ∗-homomorphism from C0(X) to B(H) for some

Hilbert space H. If Y and Z are Γ-invariant,
◦
Y and

◦
Z are respectively dense in Y

and Z, then there exists a univeral constant c ≥ 1 such that the following sequence
is asymptotically exact:

Kε
1(C

∗
r (Γ, Y ∩ Z,H))

i→ Kε
1(C

∗
r (Γ, Y,H))⊕Kε

1(C
∗
r (Γ, Z,H))

j→ Kε
1(C

∗
r (Γ, X,H))

∂→ Kcε
0 (C∗

r (Γ, Ncε(Y ) ∩Ncε(Z), H))
i→ Kcε

0 (C∗
r (Γ, Ncε(Y ), H))⊕Kcε

0 (C∗
r (Γ, Ncε(Z), H))

j→ Kcε
0 (C∗

r (Γ, X,H)),

in the sense that
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(1) j ◦ i = 0;
(2) the kernel of j : Kε

1(C
∗
r (Γ, Y,H)) ⊕Kε

1(C
∗
r (Γ, Z,H)) → Kε

1(C
∗
r (Γ, X,H))

in Kc2ε
1 (C∗

r (Γ, Y,H)) ⊕ Kc2ε
1 (C∗

r (Γ, Z,H)) is contained in the image of

i : Kc2ε
1 (C∗

r (Γ, Y ∩ Z,H)) → Kc2ε
1 (C∗

r (Γ, Y,H))⊕Kc2ε
1 (C∗

r (Γ, Z,H));
(3) ∂ ◦ j = 0;

(4) the kernel of ∂ in Kc2ε
1 (C∗

r (Γ, X,H)) is contained in the image of j :

Kc2ε
1 (C∗

r (Γ, Ncε(Y ), H))⊕Kc2ε
1 (C∗

r (Γ, Ncε(Z), H)) → Kc2ε
1 (C∗

r (Γ, X,H));
(5) i ◦ ∂ = 0;
(6) the kernel of i : Kε

0(C
∗
r (Γ, Y ∩Z,H)) → Kε

0(C
∗
r (Γ, Y,H))⊕Kε

0(C
∗
r (Γ, Z,H))

in Kc2ε
0 (C∗

r (Γ, Ncε(Y ) ∩ Ncε(Z), H)) is contained in the image of ∂ :

Kcε
1 (C∗

r (Γ, X,H)) → Kc2ε
0 (C∗

r (Γ, Ncε(Y ) ∩Ncε(Z), H)).

Let X1 and X2 be two metric spaces with proper and cocompact Γ-actions.
Assume that (C0(Xk),Γ, φk) is an admissible covariant system for each k = 1, 2,
where φk is a ∗-homomorphism from C0(Xk) to B(Hk) for some Hilbert space Hk.
A map f : X1 → X2 is called a Lipschitz map if there exists a constant C > 0
satisfying d(f(x), f(y)) ≤ Cd(x, y) for all x, y ∈ X1, where C is called the Lipschitz
constant. A homotopy F : X1× [0, 1] → X2, is called a Lipschitz homotopy if F (·, t)
is Lipschitz with the same Lipschitz constant.

A Γ-equivariant Lipschitz map f induces a homomorphism

f∗ : Kε
∗(C

∗
r (Γ, X1, H1)) → KC′ε

∗ (C∗
r (Γ, X2, H2)),

where C ′ is any constant greater than the Lipschitz constant C of f .
The following result on Lipschitz homotopy invariance is a very useful tool in

computing quantitative K-groups.

Theorem 4.6. If F is a Γ-equivariant Lipschitz homotopy from X1 to X2 with
Lipschitz constant C, then

F (·, 0)∗ = F (·, 1)∗ : Kε
∗(C

∗
r (Γ, X1, H1)) → K10Cε

∗ (C∗
r (Γ, X2, H2)).

For any ε > o, we can define a quantitative Baum-Connes map:

με : K
Γ
∗ (X) → Kε

∗(C
∗
r (Γ, X,H)).

Theorem 4.7. Let X be a locally compact and finite dimensional polyhedron
with the simplicial metric and dimension n and let (C0(X),Γ, φ) be an admissible
covariant system. There exists εn > 0 such that the quantitative Baum-Connes map
με is an isomorphism for all positive ε ≤ εn.

The proof of the above theorem follows from a standard five-lemma argument
using Theorem 4.5, Theorem 4.6, and a quantitative version of Bott periodicity.
Now Theorems 3.1 and 3.3 follow from Theorem 4.7.
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A classical modular form is a holomorphic function f in the complex upper
half-plane H satisfying the transformation equation

(1) (f |kγ)(z) := (cz + d)−k f
(az + b

cz + d

)

= f(z)

for all z ∈ H and all matrices γ =
(

a b
c d

)

∈ SL(2,Z), where k, the weight of
the modular form, is a fixed integer. Of course, there are many variants: one
can replace the group SL(2,Z) by a group commensurable with it or by a more
general Fuchsian subgroup of SL(2,R); the automorphy factor (cz + d)−k may be
multiplied by a character or replaced by a more general multiplier system; the
weight k may be half-integral or even rational; the function f can be vector-valued
rather than scalar-valued; there may be a further additive correction on the right-
hand side of (1); one can allow non-holomorphic functions of specified type (e.g.,
Maass wave forms); etc. But in all of these generalizations, as well as the higher-
dimensional generalizations of modular forms to Hilbert or Siegel modular forms or
to automorphic forms of more general type, the functions considered are defined on
a symmetric space X = G/K associated to a Lie group G and transform suitably
with respect to the action of a discrete subgroup Γ ⊂ G on X.

In this note we want to discuss, in the simplest cases, another type of modular
object which, because it has the “feel” of the objects occurring in perturbative
quantum field theory and because several of the examples come from quantum
invariants of knots and 3-manifolds, we call quantum modular forms. These are
objects which live at the boundary of the space X, are defined only asymptotically,
rather than exactly, and have a transformation behavior of a quite different type
with respect to some modular group. We will consider only the case when G is
SL(2,R), X is H, and Γ is SL(2,Z) or a group commensurable with it. Then, as
is well-known, the natural boundary of X is P1(Q) = Q ∪ {∞}, the set of “cusps”
of Γ.

A quantum modular form should therefore be a complex-valued function f
on Q, or possibly on P

1(Q)� S for some finite subset S ⊂ P
1(Q), having a certain

behavior under the action of Γ on P
1(Q). Here neither of the properties which are
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required of classical modular forms—analyticity and Γ-covariance—are reasonable
things to require: the former because P

1(Q), viewed as the set of cusps of the ac-
tion on Γ on H, is naturally equipped only with the discrete topology, not with its
induced topology as a subset of P1(R), so that any requirement of continuity or
analyticity is vacuous; and the latter because Γ acts on P

1(Q) transitively or with
only finitely many orbits, so that any requirement of Γ-covariance of a function on
this set would lead to a trivial definition. So we do not demand either continu-
ity/analyticity or modularity, but require instead that the failure of one precisely
offsets the failure of the other. In other words, our quantum modular form should
be a function f : Q → C for which the function hγ : Q� {γ−1(∞)} → C defined by

(2) hγ(x) = f(x) − (f |kγ)(x)
has some property of continuity or analyticity (now with respect to the real topol-
ogy) for every element γ ∈ Γ. This is purposely a little vague, since examples coming
from different sources have somewhat different properties, and we want to consider
all of them as being quantum modular forms. For the sake of definiteness we will
take as our canonical definition of a quantum modular form a function f : Q → C

for which the function hγ defined by (2) extends to a real-analytic function on
P
1(R) � Sγ , where Sγ ⊂ P

1(R) is a finite set (typically just {∞, γ−1(∞)}), for
each γ ∈ Γ. Notice that this property need only be checked for a set of generators
of Γ, and hence for only finitely many elements, because its validity for γ1 and γ2
automatically implies its validity for γ1γ2. In fact, the function γ �→ hγ is a cocycle
on Γ (i.e., it satisfies hγ1γ2

= hγ1
|kγ2 + hγ2

), so that any quantum modular form
defines a cohomology class in the first cohomology group of Γ with coefficients in
the space of piecewise analytic functions on P

1(R) with the action h �→ h|kγ of Γ.
The definition just given describes what one can call a weak quantum modular

form. A strong quantum modular form—and most of our examples will belong to
this category—is an object with a stronger (and more interesting) structure: it
associates to each element of Q a formal power series over C, rather than just a
complex number, with a correspondingly stronger requirement on its behavior under
the action of Γ. To describe this, we write the power series in C[[ε]] associated to
x ∈ Q as f(x+ iε) rather than, say, fx(ε), so that f is now defined in the union of
(disjoint!) formal infinitesimal neighborhoods of all points x ∈ Q ⊂ C. Since the
function hγ in (2) was required to be real-analytic on the complement of a finite
subset Sγ of P1(R), it extends holomorphically to a neighborhood of P1(R)�Sγ in
P
1(C), and in particular has a power series expansion (convergent in some disk of

positive radius) around each point x ∈ Q. Our stronger requirement is now that
the equation

(3) f(z) − (f |kγ)(z) = hγ(z) (γ ∈ Γ, z → x ∈ Q)

holds as an identity between countable collections of formal power series.
Finally, there is a further property which holds for all the examples of strong

quantum modular forms that we know, namely, that the formal function f(z) just
described extends to an actual function f : (C � R) ∪ Q → C that is analytic
on C � R and whose asymptotic expansion as one approaches any rational point
x ∈ Q vertically from above or below coincides to all orders with the formal power
series f at x. (Here “analytic” can mean “holomorphic” or merely “real-analytic,”
depending on the example.) Of course such an extension, even if it exists, isn’t
canonical since it can be modified by adding an analytic function in H± which
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vanishes to infinite order as one approaches any rational point, but in our examples
there will often be a natural choice. One then gets a peculiar kind of object: an
analytic function in the upper half-plane which “leaks” into the lower half-plane
through the infinitely many “holes” Q ⊂ R in the real axis to another analytic
function in H− in such a way that the combined function on H ∪Q∪H− is C∞ on
any vertical line passing through a rational point, or more generally on any smooth
curve in C which intersects R only orthogonally and in rational points. The sheaf
defined by functions of this type gives (C � R) ∪Q a bizarre “hybrid topology” in
which it is a 1-dimensional complex manifold at all points outside of Q and a kind
of 1-dimensional real C∞-manifold at all points of Q.

All of this sounds somewhat abstract. Let us turn for the rest of the paper to the
examples, which are taken from a variety of fields: number theory, combinatorics
(q-series) and, as already mentioned, quantum invariants of 3-manifolds and knots.

Example 0. We begin with a function which is is more of a prototype than
a true example because it does not fit precisely into the scheme described above,
but which is in the same spirit and is very familiar to number theorists. This is the
classical Dedekind sum, defined on pairs of coprime integers (c, d) with c > 0 by
the formula

s(d, c) =
∑

0<k<c

((k

c

)) ((kd

c

))

,

where ((x)) denotes x− [x]− 1
2 for x �∈ Z . It satisfies the well-known identities

s(d+ c, c) = s(d, c), s(−d, c) = −s(d, c), s(d, c) + s(c, d) =
c2 + d2 + 1− 3cd

12cd
,

which determine it completely. Hence the function S : Q → Q defined by S(d/c) =
12s(d, c) satisfies the functional equations

S(x)−S(x+1) = 0, S(x)−S(−1/x) = x+
1

x
± 3+

1

Num(x)Den(x)
(x ≶ 0) .

If we ignore the last term, which is the reason why we said that this example does
not quite fit in with our general scheme, then we see that we have precisely an
example of the type of transformation property described above. (The reason for
the anomaly is that this example is related to the Eisenstein series of weight 2 on
SL(2,Z), which is a quasimodular rather than a modular form.)

We mention that a function with quantum modular properties very similar to
those of the Dedekind sum occurs in a recent preprint of Brian Conrey [5].

Example 1. We consider the following two q-hypergeometric functions, the
first of which was given in Ramanujan’s “Lost” Notebook and the second, its part-
ner, discovered later:

σ(q) =
∞
∑

n=0

qn(n+1)/2

(1 + q)(1 + q2) · · · (1 + qn)

= 1 + q − q2 + 2 q3 − 2 q4 + q5 + q7 − 2 q8 + · · · ,

σ∗(q) = 2

∞
∑

n=1

(−1)nqn
2

(1− q)(1− q3) · · · (1− q2n−1)

= −2 q − 2 q2 − 2 q3 + 2 q7 + 2 q8 + 2 q10 + · · · .
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In a beautiful paper by George Andrews, Freeman Dyson and Dean Hickerson [2]—
the story is told in more detail in the last section of Dyson’s famous survey arti-
cle [8]—several identities expressing these two q-series as theta series associated to
indefinite quadratic forms were proved, thereby explaining in particular the other-
wise amazing experimental fact that the coefficients of both are very small, even
though the individual terms have huge coefficients. (For instance, no coefficient
of qn in σ(q) for n ≤ 1600 is greater than 4 in absolute value, even though some
coefficients of the individual terms in the sum in the same range exceed 1013.) A
typical identity they proved is

(4) q σ
(

q24
)

=
∑

a, b∈Z

a>6|b|

(

12

a

)

(

−1
)b

qa
2−24b2 ,

the right-hand side of which is very similar to that of the modular identity

(5)
η(24z)3

η(48z)
=

∑

a, b∈Z

a>6|b|

(

−12

a

)

(

−1
)b

qa
2−24b2 ,

where η(z) = q1/24
∏∞

n=1(1− qn) denotes the classical Dedekind eta function.
In an equally beautiful paper [4] which appeared side-by-side with the Andrews-

Dyson-Hickerson paper, Henri Cohen interpreted these identities in terms, first of
algebraic number theory, and then of the theory of Maass wave forms. Define
coefficients

{

T (n)
}

n∈24Z+1
by

(6) q σ
(

q24
)

=
∑

n≥0

T (n) qn , q−1 σ∗(q24
)

=
∑

n<0

T (n) q|n| .

Then the identities of [2] are equivalent to the fact that T (n) is the coefficient of
|n|−s in the Dirichlet series

L(s) =
∏

p≡±3
(mod 8)

1

1− p−2s

∏

p≡±7
(mod 24)

1

1 + p−2s

∏

p≡±1
(mod 24)

1

(1− ε(p) p−s)2
,

where ε(p) is defined for p = |P | with P ∈ 24Z+1 by ε(p) = (−1)b =
(

12
c

)

=
(

24
f

)

if

P has the representations P = a2− 72b2 = c2−96d2 = e2−192f2 as a norm in the
three quadratic orders Z[6

√
2], Z[4

√
6] and Z[8

√
3], respectively. Cohen observed

that this is an Artin L-function that can be expressed via the identities L(s) =
ζ
Q

(√
3+

√
3
)(s)/ζ

Q

(√
3
)(s) = ζ

Q

(√
3+

√
6
)(s)/ζ

Q

(√
3
)(s) as a quotient of Dedekind

zeta functions. This implies the functional equation ̂L(s) = −̂L(1 − s), where
̂L(s) = (24

√
2/π)sΓ(s/2)2L(s), and from this in turn one deduces that the function

(7) u(z) =
√
y

∑

n∈24Z+1

T (n)K0

(

2π|n|y/24
)

e2πinx/24 (z = x+ iy ∈ H)

satisfies u(−1/2z) = u(z) as well as the more obvious functional equation u(z+1) =
e2πi/24u(z), whence also u(z/(2z + 1)) = e2πi/24u(z). Since u(z) is also an eigen-
function of the hyperbolic Laplace operator −y2

(

∂2/∂x2+∂2/∂y2
)

with eigenvalue
1/4, this shows that u(z) is a Maass wave form on the congruence subgroup Γ0(2)
and thus that the identity (4) is just as modular in nature as the identity (5), but
now using non-holomorphic rather than holomorphic modular forms.
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All of this seems to have nothing to do with quantum modular forms. However,
Cohen also observed a further phenomenon, and it is this which concerns us here.
One has the two q-series identities (the first due to Andrews, the second derived in
a similar way by Cohen)

(8)

σ(q) = 1 +

∞
∑

n=0

(−1)n qn+1 (1− q)(1− q2) · · · (1− qn) ,

σ∗(q) = −2

∞
∑

n=0

qn+1 (1− q2)(1− q4) · · · (1− q2n) .

Cohen observed that the right-hand side of each of these expressions, as well as
being a convergent series in the disk |q| < 1, also makes sense whenever q is a root
of unity, because the series is then terminating in both cases. He then discovered
the following surprising fact about these functions.

Lemma. Define σ and σ∗ at roots of unity by (8). Then σ(q) = −σ∗(q−1) for
every root of unity q.

The first cases of this can be checked by hand: σ(1) = −σ(1) = 2, σ(−1) =
−σ∗(−1) = −2, σ(ω) = −σ∗(ω2) = 2ω + 6 for ω2 + ω + 1 = 0, and σ(±i) =
−σ∗(∓i) = ∓2i− 4.

Proof. The Laurent series

Sk =

k
∑

n=1

q−n(n−1)/2(1 + q)(1 + q2) · · · (1 + qk−n) ∈ Z[q, q−1]

satisfies the recursion Sk+1 − Sk = qk+1
(

Sk+1 − (1 + q) · · · (1 + qk)
)

− q−k(k+1)/2,
so by induction

(9)
k−1
∑

n=0

(

q−1−1
)

· · ·
(

q−n−1
)

−
k−1
∑

n=0

qn+1(1−q2) · · · (1−q2n) = (1−q) · · · (1−qk)Sk

for every k ≥ 0. If q is a root of unity and k is bigger than or equal to the order
of q, then the right-hand side of (9) vanishes and the left-hand side is easily seen
to be 1

2σ(q
−1) + 1

2σ
∗(q) . �

We can now define our quantum modular form. Define a function f : Q → C

by

(10) f(x) = q1/24 σ(q) = −q1/24 σ∗(q−1) (x ∈ Q, q = e2πix) ,

where the equality of the two formulas is precisely the content of the lemma. This
function, whose values for x with denominator ≤ 4 were given (up to the factor
q1/24) before the proof of the lemma, jumps around erratically as x runs through
the rational numbers, but the cocycle defined by (3) with Γ = Γ0(2) and k = 1 is
almost everywhere analytic:

Proposition. The function f : Q → C defined by (10) satisfies

(11) f(x+ 1) = e2πi/24f(x) ,
1

2x+ 1
f
( x

2x+ 1

)

= e2πi/24f(x) + h(x)

where h : R → C is C∞ on R and real-analytic except at x = −1/2 .
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We illustrate this behavior by plotting in Figure 1 the real part of f(x) for all
rational numbers x ∈ [−1.7, 1.1] with denominator ≤ 100 (the imaginary part looks
very similar), and in Figure 2 the values of the real and imaginary parts of h(x) for
the same values of x.

−1.5 −1 −.5 .5 1

−3

−2

−1

1

2

3

4

Figure 1. Graph of (f(x))

−1.5 −1 −.5 .5 1

−1

−.5

.5

1

1.5

Figure 2. Graph of (h(x)) and
�(h(x))

This proposition, which we will prove in a moment, shows that f is a quantum
modular form in the sense explained in the introduction, and the figures depict
graphically what this means. In fact, f is a strong quantum modular form. Indeed,
the two expressions in (8) are not only well-defined complex numbers when q is a
root of unity, but well-defined power series in t, with coefficients in Q[ξ], when we
take q = ξe−t with ξ a root of unity. Furthermore, the identity σ(q) = −σ∗(q−1)
of the lemma remains true as an identity in Q[ξ][[t]], with the same proof, because
the right-hand side of (7) is O(tm) for k larger than m times the order of ξ. For
instance, if we take ξ = 1 we find

σ
(

e−t
)

= −σ∗(et
)

= 2− 2 t+5 t2− 55

3
t3 +

1073

12
t4 − 32671

60
t5 +

286333

72
t6 − · · · .

If we extend the definition of f to infinitesimal neighborhoods of all rational points
by interpreting (10) in the obvious way when x is replaced by x + iy with x ∈ Q

and y infinitesimal (so q = ξe−t with ξ = e2πix and t = 2πy), then (11) then
still holds, where h(x) is extended to a neighborhood of R � {−1/2} by analytic
continuation. Here we can also clearly see the phenomenon of “leaking through
the rational numbers” mentioned in the introduction, because we can extend the
formally defined function f to a globally defined function f : H ∪ H− ∪ Q → C by
setting

(12) f(z) =

{

q1/24 σ(q) if z ∈ H ∪Q ,

−q1/24 σ∗(q−1) if z ∈ H− ∪Q,

where q = e2πiz. Then the argument just given shows that f , which is obviously
analytic in both H and H−, is C∞ on any curve passing vertically through a rational
point. In fact, the function f(z) is the key to the proof of the proposition. Inserting
the Fourier expansions (6) into (12) we can rewrite the definition of f in C� R as

f(z) =

{

∑

n>0 T (n) q
n if z ∈ H ,

−
∑

n<0 T (n) q
n if z ∈ H−,
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which stands exactly is the same relation to the Maass wave form (7) as the functions
denoted in the same way in the earlier work of J. Lewis and the author on Maass
cusp forms on SL(2,Z) and their associated “period functions” [12, 13]. Making
the needed minor changes in the results given there, we find that the holomorphic
function f in C�R can be expressed in terms of the Maass form u by the integral
formulas

(13) f(z) =

{
∫∞
z

[u(τ ), rz(τ )] if z ∈ H ,

−
∫∞
z̄

[rz(τ ), u(τ )] if z ∈ H−,

where the function rz : H → C is defined by rz(τ ) = (�(τ )/(τ − z)(τ̄ − z))1/2 and,
like u, is an eigenfunction of the hyperbolic Laplace operator (with respect to τ )
with eigenvalue 1/4, and where [ · , · ] denotes the Green’s form

[

u(τ ), v(τ )
]

=
∂u(τ )

∂τ
v(τ ) dτ + u(τ )

∂v(τ )

∂τ̄
dτ̄ ,

which is a closed 1-form whenever u and v are eigenfunctions of the hyperbolic
Laplace operator with the same eigenvalue. From this and the modularity property
u(γτ ) = χ(γ)u(τ ) for γ ∈ Γ of u(τ ), where χ : Γ0(2) → C

∗ is the character sending
both generators

(

1 1
0 1

)

and
(

1 0
2 1

)

to e2πi/24, together with the easy equivariance

property rγz(γτ ) = ±(cz+d)rz(τ ) for γ =
( · ·
c d

)

∈ SL(2,R), we deduce, apart from

the obvious periodicity property f(z + 1) = e2πi/24f(z), the formula

(14) (2z + 1) f
( z

2z + 1

)

− e2πi/24f(z) = −
∫ ∞

−1/2

[u(τ ), rz(τ )]

for z in either the upper or the lower half-plane, where the integral is taken along
any path from −1/2 to ∞ passing to the left of z or z̄. But the right-hand side
now makes sense for any z lying to the right of both the chosen path and its
reflection in the x-axis, so (if we push the path of integration far to the left) defines
a holomorphic function on all of C� (−∞, 0]. The function h(x) occurring in (11)
for x > 0 is the restriction of this function to R+ and hence is real-analytic, and a
similar argument works for z ∈ C � [0,∞) and x < 0 if we change the minus sign
on the left-hand side of (14) to a plus sign and take a path of integration passing
to the right of z and z̄. This establishes the real-analyticity of h on R

∗. The fact
that it is C∞ also at x = −1/2 follows by looking more closely at the integral and
using that u is a cusp form, as was done in [13] for the period functions of Maass
forms on the full modular group. �

A similar discussion applies to other Maass wave forms on groups commensu-
rable with SL(2,Z). We refer to the article [3] by R. Bruggeman for a treatment of
this more general case.

Example 2. Our second example comes from [14], where the following ele-
mentary but rather surprising facts were proved.
1. Let Q5 denote the set of all quadratic functions Q(x) = ax2 + bx + c with
a, b, c ∈ Z, a < 0, and discriminant b2 − 4ac equal to 5. Then for every rational
number x we have

∑

Q∈Q5

max(Q(x), 0) = 2 ,

the sum always being finite. (For example, the only Q ∈ Q5 with Q( 13 ) > 0 are

−x2+x+1, −x2−x+1, −5x2+5x− 1 and −11x2+7x−1 and the corresponding



666 DON ZAGIER

values Q( 13 ) =
11
9 , 5

9 ,
1
9 ,

1
9 add up to 2.) More generally, if for every positive non-

square integer D we define QD like Q5 but with the discriminant of Q now being
the given number D, then we have

(15)
∑

Q∈QD

max(Q(x), 0) = αD

for all x ∈ Q, where αD is a rational number that depends only on D and is equal
to a simple multiple of the value of the Dedekind zeta function of Q(

√
D) at s = 2.

2. If one replaces the expression max(Q(x), 0) by its cube, then the same thing
happens: one has

(16)
∑

Q∈QD

max(Q(x), 0)3 = βD

for all x ∈ Q, where βD ∈ Q is related to ζ
Q(

√
D)(4). But for the fifth power one

has instead

(17)
∑

Q∈QD

max(Q(x), 0)5 = γD + δD Φ(x)

where γD (again related to ζ
Q(

√
D)(6)) and δD are rational numbers depending only

on D and Φ : Q → Q is an even periodic function satisfying q10 Φ( pq ) ∈ Z for all
p
q ∈ Q, the first values being

p/q (mod 1) 0 1/2 ±1/3 ±1/4 ±1/5 ±2/5 ±1/6
q10 Φ(p/q) 1 −1049 −29399 12076 3132025 −8012423 30839551

The function Φ satisfies—and, if one fixes one value, is uniquely characterized
by—the two functional equations

(18) Φ(x+1) = Φ(x) , x10 Φ(−1/x) = Φ(x) + x10 − 691

36
x2(x2 − 1)3 − 1 .

Therefore Φ(x) (and hence also
∑

Q∈QD
max(Q(x), 0)5 for any D) is a quantum

modular form. This example is unusual in that the cocycle rγ = Φ − Φ|−10γ is
analytic on all of R (it is a polynomial) and that Φ itself extends continuously (and
even differentiably, though not C∞) from Q to R.

Here, again, the explanation is modular, but much simpler than in our first
example because now only holomorphic modular forms on the full modular group
are involved. The reason for the different behavior of the functions in (15) and (16)
and in (17) is that there are no holomorphic modular forms except for Eisenstein
series of weight 4 or 8 on SL(2,Z), while in weight 12 one has the cusp form

Δ(z) = q

∞
∏

n=1

(

1− qn
)24

=

∞
∑

n=1

τ (n) qn
(

z ∈ H, q = e2πiz
)

,

as well as the Eisenstein series. The existence of the quantum modular form Φ fol-
lows directly from the existence of the cusp form Δ, as a consequence the classical
Eichler-Shimura-Manin theory of periods of holomorphic modular forms. Specifi-
cally, we associate to Δ(z) its Eichler integral

(19) ˜Δ(z) =
(2π/i)11

10!

∫ ∞

z

Δ(z′) (z′ − z)10 dz′ =

∞
∑

n=1

τ (n)

n11
qn (z ∈ H) .
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(For an arbitrary cusp form f of weight k, ˜f would be defined the same way with

10 and 11 replaced by k − 2 and k − 1.) Then
d10 ˜Δ(z)

dz10
= Δ(z) and from this and

the modularity of Δ one deduces easily that

(20) ˜Δ(z) − (cz + d)10 ˜Δ
(az + b

cz + d

)

= P( a b
c d

)(z)

(or, more succinctly, ˜Δ
∣

∣

−10
(γ−1) = Pγ) for all γ =

(

a b
c d

)

∈ Γ1 = PSL(2,Z), where

Pγ(z) is a polynomial of degree ≤ 10, given explicitly by

(21) Pγ(z) =
(2π/i)11

10!

∫ ∞

γ−1(∞)

Δ(z′) (z − z′)10 dz′ .

These polynomials satisfy the cocycle relation Pγγ′ = Pγ

∣

∣

−10
γ′+Pγ′ and hence are

determined by their values for the generators T =
(

1 1
1 0

)

and S =
(

0 −1
1 0

)

of Γ1,
which are PT = 0 (obviously) and

PS(z) = −Ω1

(

z10 − 691

36
z2(z2 − 1)3 − 1

)

+ Ω2

(

z(z2 − 1)2(z2 − 4)(4z2 − 1)
)

with Ω1 = 0.98943291 · · · ∈ R, Ω2 = 1.53908051 . . . i ∈ iR. From this and (18) we
deduce that

(22) Φ(x) = 
(

˜Δ(x)/Ω1

)

=
1

Ω1

∞
∑

n=1

τ (n)

n11
cos(2πnx)

for x ∈ R, where ˜Δ(x) is defined by either of the formulas in (19), both of which
remain convergent also when z lies on the real axis. The above-mentioned “contin-
uous but not infinitely differentiable” properties of the function Φ follow from this:
it is known that τ (n) is O

(

n11/2
)

but not o
(

n5
)

for n large, so the function Φ(x)
on R is 4 times but not 6 times continuously differentiable.

In this example, too, we find a function that “leaks” from H into H− through
the rational holes in the real axis. To do this, we extend the definition (19) to the
lower half-plane by

˜Δ(z) =
(2π/i)11

10!

∫ ∞

z̄

Δ(z′) (z′ − z)10 dz′(23)

=
1

10!

∞
∑

n=1

τ (n)

n11
γ11(4πn|y|) qn (z ∈ H−),

where z = x+ iy ∈ H and γ11(t) =
∫∞
t

e−u u10 du, the incomplete gamma function
(which is equal to e−t times a polynomial in t). For z = x ∈ R the integrals in

both (19) and (23) are convergent, because Δ(x + iy) = O
(

y−6
)

as |y| → 0, so ˜Δ
extends in this case to a continuous function in all of C. This extended function still
satisfies the functional equation (20), with the same polynomials Pγ as before, and
because Δ is a cusp form and hence vanishes to infinite order as τ approaches any
rational point, one sees easily that its restriction to any vertical line passing through
a rational point is infinitely often differentiable. However, unlike the situation in our
first example, here the function that “leaks” is only real-analytic, not holomorphic,
in the lower half-plane.
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Example 3. Our next example of a quantum modular form comes from the
unusual series

(24) F (q) =
∞
∑

m=0

(1− q)(1− q2) · · · (1− qm) ,

invented by Maxim Kontsevich, which has the peculiarity of not converging on any
open subset of C but nevertheless makes sense as a function on the set of roots of
unity because the series terminates after N terms if qN = 1. We will be fairly brief
in our treatment here, since this function was studied in detail in [15], and will
only discuss the quantum modular aspect. Define ϕ : Q → C by ϕ(x) = q1/24F (q),
where q = e2πix as usual. Then ϕ(1/n) has an asymptotic expansion of the form

(25) ϕ(1/n) ∼ n3/2 e2πi(3−n)/24 +

∞
∑

j=0

cj (−2πi/n)j

as n → ∞, where c0 = 1, c1 = 23
24 , c2 = 1681

1152 ,. . . are certain rational coeffi-

cients. From the trivial functional equation ϕ(x + 1) = e2πi/24ϕ(x) one sees that

e2πi(3−n)/24 equals
√
i ϕ(−n), so (25) says that the function g(x) defined by the

second of the two equations
(26)

ϕ(x+1) = e2πi/24ϕ(x) , ϕ(x)∓ i1/2|x|3/2 ϕ(−1/x) = g(x) (x ∈ Q, ±x > 0)

is smooth (i.e., has a well-defined Taylor expansion) at x = 0, and in fact it is
real-analytic on the rest of the real axis, so that (26) presents ϕ(x) as a quantum
modular form.

The explanation is quite similar to that in the last example, except that the cusp
form Δ(z) is replaced by its 24th root η(z), which is a modular form of half-integral
weight. Again we have a function η̃(z) in H ∪ H−, related to η(z) in the same way

as ˜Δ(z) in the previous example was related to Δ(z). (The direct analogues of the
integrals in (19) and (23) diverge, because η has weight 1/2, so that the exponent
“10” in the integrand would have to be replaced by “−3/2,” but they can be made
sense of by integrating by parts once, or alternatively, we can use the definitions via

sums rather than integrals.) In particular, since η(z) =
∑∞

n=0 n
(

12
n

)

qn
2/24 (Euler),

this gives that η̃(z), appropriately normalized, is given by

(27) η̃(z) =

∞
∑

n=0

n
(12

n

)

qn
2/24 = q1/24

(

1 − 5q − 7q2 + 11q5 + · · ·
)

,

and now the relation to Kontsevich’s function follows from the formula
∞
∑

n=0

(

q1/24(1− q)(1− q2) · · · (1− qn) − η(z)
)

= −1

2
η̃(z) + η(z)

(

1

2
−

∞
∑

n=1

qn

1− qn

)

([15], Theorem 2), which implies that −2ϕ(x) for x ∈ Q is the limiting value of
η̃(z) as z approaches x from either the upper or the lower half-plane. We also
deduce (26), with an explicit formula for the cocycle function g(x) as an integral of
the Dedekind eta-function along a path from 0 to ∞ in the upper half-plane.

We observe in passing that the function of this example, like those of Exam-
ples 4 and 5, belongs to the Habiro ring of “analytic functions of roots of unity” [10].
These functions, which are also related to the (now so very fashionable) F1-story,
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occur in many contexts connected with quantum topological invariants and quan-
tum groups, and would be a natural setting to look for more examples of quantum
modular forms.

Example 4. The next example, taken from [11], is similar in many ways to the
last one, but is interesting because it comes from topology and more particularly
from the theory of quantum invariants of 3-manifolds. Again we shall be brief and
refer to the original paper for details. To any 3-manifold one can associate the
so-called Witten-Reshetikhin-Turaev invariant, defined by the first of these authors
by a path integral that can be made sense of only perturbatively or in the sense
of topological quantum field theory, and by the second two in a rigorous, but less
illuminating, algebraic way. The invariant makes sense at roots of unity of the form
ζK = e2πi/K with K > 0 integral. For manifolds of very special types (such as
torus knots or Seifert fibrations) there are explicit formulas for it, and in particular
for the Poincaré homology sphere Σ(2, 3, 5) it is given by

(28) W (q) =
1

2G

∑

β (mod 60K)
β 	≡0 (mod K)

(1− α24β)(1− α40β)

1 + α60β
α−(β+1)2 ,

if q = ζK , where α = ζ120K and G =
∑

βmod 60K

α−β2

= (1− i)
√
30K (Gauss sum).

We extend this to other roots of unity by Galois invariance W (q)σ = W (qσ), or
equivalently by formula (28) for q equal to any primitive Kth root of unity, with α
being any primitive (120K)-th root of unity with α120 = q. Let χ+(n) be the odd
periodic function of period 60 defined by the formula

χ+(n) =

{

(−1)[n/30] if (n, 6) = 1 and n ≡ ±1 (mod 5),

0 otherwise,

and let Θ+(z) be the theta series

Θ+(z) =

∞
∑

n=1

nχ+(n) q
n2

120 = q
1

120

(

1 + 11q + 19q3 + 29q7 − 31q8 − · · ·
)

(z ∈ H),

which is a modular form of weight 3/2 on a certain congruence subgroup of SL(2,Z)
(and in fact is the first component of a 2-component vector-valued modular form
of weight 3/2 on the full group SL(2,Z)). Then for every x ∈ Q the number

(29) f(x) = 2 eπix/60
(

1 − W
(

e2πix
))

is equal to the limit as z → x of the Eichler integral

(30) ˜Θ+(z) =
∞
∑

n=1

χ+(n) q
n2

120 = q
1

120

(

1 + q + q3 + q7 − q8 − · · ·
)

([11], Theorem 1), and from this it follows that the function f : Q → C is a quantum
modular form (in fact, a strong quantum modular form). The whole story is quite
similar to that in Example 3 except that this time the modular form whose Eichler
integral is involved has weight 3/2 rather than 1/2. There is also an expression

∞
∑

n=0

[

qn(1− q)(1− q6) · · · (1− q5n−4) + q4n+3(1− q4)(1− q9) · · · (1− q5n−1)
]
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for q−1/120
˜Θ+(q) (due to Zwegers) of the same type as (24), which terminates and

hence gives a closed formula for W (q) whenever q is a root of unity of order not
divisible by 5, as well as relations (also pointed out by Zwegers) to the mock theta
functions of Ramanujan. See [11] for more details.

Example 5. The last example, which again comes from topology, is the most
mysterious and in many ways the most interesting. The function from Q/Z to R

that we obtain in this case is not a quantum modular form in the strict sense of
the definition we gave in the introduction, let alone a strong quantum modular
form, because the associated cocycle is no longer analytic or even continuous, but
it nevertheless will turn out to have a clearly defined modularity property.

To any knot and any integer n ≥ 2 one can associate a Laurent polynomial
Jn(q) ∈ Z[q, q−1], called the n-colored Jones polynomial. The definition, which
involves the theory of quantum groups, will not be reviewed here since we will only
look at one example and here the Jones polynomials can simply be given by an
explicit formula. We will consider the figure-eight knot, the simplest hyperbolic
knot. The Jones polynomial of this knot is given by

Jn(q) =
n−1
∑

m=0

q−mn
m
∏

j=1

(1− qn−j)(1− qn+j) .

(Here the sum could also be taken from m = 0 to ∞ since the mth summand is 0
for m ≥ n.) If we fix a root of unity q, then the function n �→ Jn(q) is periodic,
of period N if qN = 1, so we can extrapolate it backwards to define Jn(q) also
for n ≤ 0. Of particular interest to us is the Q-valued function on roots of unity
defined by

(31) J0(q) := JN (q) =
∞
∑

m=0

∣

∣(1− q)(1− q2) · · · (1− qm)
∣

∣

2
(q ∈ C

∗, qN = 1 )

(compare the sum on the right-hand side to (24)), the first few values of which are
as follows:

q 1 −1 ζ±1
3 ±i ζ±1

5 ζ±2
5 ζ±1

6

J0(q) 1 5 13 27 46 + 2
√
5 46− 2

√
5 89

The function J0, which is related to perturbative SL(2,C) Chern-Simons theory
(cf. [7]), is of a very different nature than the Jones polynomials themselves. For
instance, the values of the Jones polynomials Jn(q) when q is a root of unity are
of only polynomial growth if qn �= 1, but the values of J0(ζN ) = JN (ζN ) are
exponentially big, as one can see in the following table:

N 100 200 300
max0<n<N |Jn(ζN )| 12.07 18.62 24.99
J0(ζN ) = JN (ζN ) 8.20× 1016 2.48× 1031 4.89× 1045

Explicitly, J0(ζN ) is given by the the asymptotic formula [1]

J0
(

e2πi/N
)

∼ 1
4
√
3
N3/2 eCN (n → ∞) ,
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where C = 0.3230659 . . . is 1/2π times the hyperbolic volume of the complement
of the knot, and in fact one has a complete asymptotic expansion [6, 9, 16]
(32)

J0
(

e2πi/N
)

=
1

31/4
N3/2 eCN

(

1 +
11

36
√
3

π

N
+

697

7776

π2

N2
+

724351

4199040
√
3

π3

N3
+ · · ·

)

as N → ∞, where the factor in parentheses is a power series in π/N
√
3 with

rational coefficients. Conjecturally [7], the corresponding expansion for an arbitrary
hyperbolic knot would be a power series in πi/N with coefficients in the trace field
of the knot, this trace field being Q(

√
−3) for the figure 8 knot.

But since J0(q) is defined for all roots of unity, we can look at its expansion
near some other point than 1, e.g., we can consider the values q = −ζN rather
than q = ζN . It is here that the phenomenon of most interest to us appears: these
values are given (experimentally) by the asymptotic series

(33) J0
(

−e2πi/N
)

= κ(N)· 3
1/4

23/2
N3/2 eCN/4

(

1 +
41

36
√
3

π

N
+

12625

7776

π2

N2
+ · · ·

)

,

of the same general form as (32), but this time involving an extra factor

κ(N) =

⎧

⎪

⎨

⎪

⎩

27 if N ≡ 1 (mod 2),

1 if N ≡ 2 (mod 4),

5 if N ≡ 0 (mod 4)

that depends on the value of N (mod 4). Comparing with the table of values
of J0(q) given above, we find that this factor is given in all cases by κ(N) =
J0

(

iN+2
)

. What’s more, if we now try rational rather than integral values for N ,
but with bounded denominators, then we find that (33) still holds, with κ(N) =
J0

(

eπi(N+2)/2
)

. Going back to (32), we find exactly the same behavior there: if
N goes to infinity, not through integers, but through rational numbers, say with
denominator 2, 3 or 4, then (32) remains true if we multiply the right-hand side
multiplied by 5, 13, and 27, respectively (and in general by J0(e

2πiN )). More
generally, the experimentally found asymptotic behavior of the function

(34) J : Q/Z → Q ∩ R , J(x) := J0(e
2πix)

as x tends to a fixed rational number α = a/c (a, c ∈ Z, (a, c) = 1) from the right
or left is given by the formula

(35) J(α± ε) = J(α∗ ± β) · exp(C/c2ε)

ε3/2
(

A±(α) + B±(α)ε + C±(α)ε
2 + · · ·

)

as ε tends to 0 through positive rational values with 1/c2ε ≡ β (mod 1) for some
fixed rational number β, where α∗ = d/c with d ≡ a−1 (mod c) and A±(α) =
A(±α), B±(α) = B(±α), . . . are algebraic numbers depending only on α modulo 1.
(In equations (32) and (33) we have α = α∗ = β = 0 and α = α∗ = 1/2, β ≡ N/4
(mod 1), respectively, explaining the extra factor κ(N) = J((N+2)/4) in the latter
case.)

The factor J(α∗ ± β) in equation (35) looks odd at first sight, but in fact has
a simple modular explanation: if we set γ =

(

a b
c d

)

, where b ∈ Z is chosen so

that γ ∈ SL(2,Z), then we have J(α∗ ± β) = J(−α∗ ± 1/c2ε) = J(γ−1(α ± ε)),
so that (35) can be seen as simply relating the values of J(X) and J(γ(X)) as X
(=−α∗±1/c2ε ) tends to infinity through rational numbers with small denominator.
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The asymptotic formula (35) is therefore equivalent to the first part of the following
conjecture generalizing formulas (32) and (33):

Conjecture. Let α ∈ Q and choose γ ∈ SL(2,Z) with γ(∞) = α. Then for
suitable real numbers S0(α), S1(α), . . . depending only on α (mod 1) we have an
asymptotic expansion

(36)
J(γ(X))

J(X)
∼

(

π/�
)3/2

exp

( ∞
∑

n=0

Sn(α) �
n−1

)

, � =
π/

√
3

X − γ−1(∞)

as X → ∞ through rational numbers with bounded denominators. The value of
S0(α) is independent of α and is equal to πC/

√
3, while S1(α) ∈ Q log

(

K×
a

)

and
Sn(α) ∈ Kα for n ≥ 2, where Kα is the maximal real subfield of the cyclotomic
field Q

(√
−3, e2πiα

)

.

We expect that a similar conjecture should hold for any hyperbolic knot comple-
ment, with � being defined as πi/(X − γ−1(∞)) (we divided this by

√
−3 in our

special case to make everything real) and Kα being replaced by K
(

e2πiα
)

, where
K is the trace field of the knot. The case when α = 0 and X ∈ Z is precisely the
arithmeticity conjecture from [7] which was cited earlier.

Observe that the correctness of (36) is unchanged by replacing (γ,X) by
(γT,X − 1) or (Tγ,X), where T =

(

1 1
0 1

)

, since these changes do not affect the
left-hand side or the quantity �, so the quantities Sn(α) really do depend only on α
rather than on γ, and are periodic in α.

Here is a table of the numerically obtained values of Sn(α) for some small n
and simple α , where in the last line εk (k = 1, 2, 3) denotes the real cyclotomic
unit ζk + ζ−k with ζ = ζ−1

3 e4πia/5 and π29 = 2− ε1 + ε2 + 2ε3, a prime of Q(ζ) of
norm −29.

α exp(S1(α)) S2(α) S3(α) S4(α)

0 1
3

11
2232

2
32

1081
21355

1
2 (23/3)1/2 41

2432
19

2332
71089
27355

1
3 2 · 32/3 37

2233
401
2136

30767
21385

2
3 34/3 25

2233
182
36

29027
21385

1
6 27/2 · 35/6 193

2433
24691
2736

8027957
29385

5
6 23/2 · 313/6 67

2433
1289
2336

1759883
27385

± 1
4

23(2
√
3±1)

3(2±
√
3)1/4

1855±360
√
3

263211
71132±3123

√
3

2832112
1499191589±43727850

√
3

2113551113

a

5
, 5 � a (53/3)1/2|π29|

(ε31ε3/ε2)
1/10

1
223253π29

(2678− 943ε1 · · · · · ·
+1831ε2 + 2990ε3)

Formulas (35) or (36) say that the values of J(x) as x approaches any given
rational number go exponentially rapidly to infinity and lie on certain smooth curves
(countably many, all proportional to one another) depending on the rational number
in question. This behavior can be seen clearly in the graph of the function J,
which looks as follows, where because of the very rapid growth we have plotted
f(x) = log(J(x)) rather than J itself, so that now the different curves containing
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the points of the graph with argument near any fixed rational point differ by vertical
translations:

5

10

15

0 1

Figure 3. Graph of f(x) = log(J(x))

To make more sense of this graph, we do as in Examples 1–4 and compare the
values of f(x) at x and 1/x. The graph of the difference indeed looks much better
than the graph of f itself:

−3

−2

−1

1

2

3

4

1 2 3 4

Figure 4. Graph of h(x) = log(J(x)/J(1/x))

The behavior that we see here is a consequence of the conjecture above, which can
easily be seen to imply that the function h(x) has a jump at every rational point
α = a/c but is C∞ as we approach α from the left or from the right, with limiting
values of the form h±(α) = ±C/ac+ log(β±(α)) as x approaches α from the left or
from the right, where β±(α) are real algebraic numbers. This smoothness from the
two sides can be seen more clearly by looking more closely at the graph of h(x) in
the neighborhood of a rational point α with small denominator, say α = 3/8 :
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2.4

2.3

2.2

2.1
.35 .36 .37 .38 .39

6/17 5/14 4/11 3/8 5/13

2.27

2.26

2.25

2.24

2.23

2.22
.373 .374 .375 .376 .377

3/8

Figure 5. Graphs of h(x) near x = 3/8

By contrast, in a small interval around the point 1/φ (φ = (1 +
√
5)/2 = golden

ratio), where there are no points with particularly small denominator, we get the
following picture

1.108

1.107

1.106

1.105

1.104

1.103
.617 .618 .619

29/47 21/34 1/φ 34/55

Figure 6. Graph of h(x) near x = 1/φ

showing that, unlike what the picture in Figure 4 might have suggested, h(x) is not
monotone decreasing on {x > 0} and seeming to indicate that the function h(x) is
continuous but in general not differentiable at irrational values of x.
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