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Introduction

These are the proceedings of the 2007 Clay Summer School on Homogeneous
Flows, Moduli Spaces and Arithmetic, which took place at the Centro di Ricerca
Matematica Ennio De Giorgi in Pisa between June 11th and July 6th, 2007. More
than 100 young researchers and graduate students attended this intensive four week
school, as well as 18 lecturers and other established researchers.

As suggested by the name, the topic of this summer school consisted of two
connected but distinct areas of active current research: flows on homogeneous spaces
of algebraic groups (or Lie groups), and dynamics on moduli spaces of abelian or
quadratic differentials on surfaces. These two subjects have common roots and
have several important features in common; most importantly, they give concrete
examples of dynamical systems with highly interesting behavior and a rich and
powerful theory. Moreover, both have applications whose scope lies well outside
that of the theory of dynamical systems.

The first three weeks of the summer school were devoted to the basic theory,
and consisted mostly of three long lecture series. Based on these lecture series, the
following four sets of notes were written:

[1] Interval exchange maps and translation surfaces by J. C. Yoccoz
[2] Unipotent flows and applications by A. Eskin
[3] Quantitative nondivergence and its Diophantine applications by D. Klein-

bock
[4] Diagonal actions on locally homogeneous spaces by M. Einsiedler and E.

Lindenstrauss

Furthermore, there was a shorter lecture series

[5] Fuchsian groups, geodesic flows on surfaces of constant negative curva-
ture and symbolic coding of geodesics by S. Katok.

Extensive notes for all the lecture series given in the first three weeks of the school
are included in this proceedings volume (the content of the course by Eskin and
Kleinbock has been separated into two different sets of notes). These papers were
written to be read independently, and any of the five papers [1]–[5] could serve as
a good starting point for the interested reader. More advanced topics were covered
by several lecture series and individual lectures mostly given in the last week of
the summer school; it was left to the discretion of the lecturers in these shorter
courses whether to provide notes for these proceedings (though they were strongly
encouraged to contribute). A list of these lecture notes with some additional details
is given below.

vii



viii INTRODUCTION

The common root of both main topics of the summer school mentioned above
lie (at least in part) in the theory of flows on surfaces of constant negative cur-
vature, particularly the modular surface SL(2,Z)\H, where pioneering work was
done in the early 20th century by mathematicians such as Artin, Hedlund, Morse
and others, and this theory has been developed much further in the times since.
One highlight was the discovery that the geodesic flow on the modular surface is
intimately connected to the continued fraction expansion of real numbers; indeed,
when things are properly set up, one can view the continued fraction expansion
as a symbolic coding of trajectories of the geodesic flow. These flows and their
symbolic codings are carefully explained in Katok’s notes; in later sections of that
work, recent extensions of this classical result are also discussed.

One can view the modular surface SL(2,Z)\H in two ways: firstly, it can be
viewed as the locally homogeneous space SL(2,Z)\ SL(2,R)/ SO(2,R), in which case
the geodesic flow as well as another important geometric flow — the horocycle flow
— can be viewed as in the projection of trajectories of the one parameter groups

(1) gt =

(
et/2 0
0 e−t/2

)
and ut =

(
1 t
0 1

)

on the quotient space SL(2,Z)\ SL(2,R). Another way to view SL(2,Z)\H is as a
moduli space of flat structure (up to rotations) on a two-dimensional torus. These
two different points of view generalize to the two main themes of this Clay Summer
School: flows on homogeneous spaces, and flows on moduli spaces of abelian or
quadratic differentials (which are essentially fancy names for flat structures in two
related but slightly different senses).

Flows on moduli spaces of flat structures. The torus is the only surface
admitting a flat structure with no singularities. When one considers flat structures
for surfaces of higher genus, one is forced to admit singularities: points where the
total angles add up to more than 2π. It turns out that interval exchange maps play
an important role in studying the analogue of the geodesic flow (sometimes called
the Teichmüller geodesic flow) on these moduli spaces of flat structures. We recall
that interval exchange maps are the following simple yet intriguing dynamical sys-
tem: divide the unit interval [0, 1] into finitely many intervals I1, I2, . . . , Id and then
permute these intervals according to a permutation π ∈ Sd. Yoccoz’ contribution
to this proceedings provides an introduction to this theory, and provides full proofs
of the most fundamental theorems (by Keane, Masur, Veech, Zorich) in the first
ten sections and an introduction to some more advanced topics (Kontsevich-Zorich
cocycle, cohomological equation, connected components of the moduli space, expo-
nential mixing of the Teichmüller flow) in the last four sections. Further advanced
topics are provided by notes based on the shorter lecture series

[6] Chaoticity of the Teichmüller flow by A. Avila

given in the last week of school; in these notes the interested reader can find surveys
of the proof of two recent theorems: the simplicity of the Lyapunov spectrum for
the Kontsevich-Zorich cocycle and that a typical interval exchange map with three
or more intervals is weak mixing.

Flows on homogeneous spaces and applications to arithmetic. Flows
on homogeneous spaces concerns the dynamics of group actions on quotient spaces
Γ\G, where G is usually taken to be either a (i) Lie group, or (ii) an algebraic
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group over R, or (iii) an algebraic group over the p-adic numbers Qp, or (iv) a
product of algebraic groups as in (ii) and (iii) above, involving several different
fields (sometimes called an S-algebraic group, where S refers to the set of “primes”

p that are used(1).)
A simple case is the case of G = SL(2,R) and Γ a lattice in G, for instance

Γ = SL(2,Z). In this case we have discussed (e.g. (1)) the action of two one-
parameter subgroups of SL(2,R): the group gt corresponding to the geodesic flow
on the unit tangent bundle on Γ\H and ut, which corresponds to the horocycle
flow on the same space. These two flows behave very differently: the ut-flow is
very rigid, and one can algebraically classify orbit closures, invariant measures,
measurable factors, self joinings, and even the asymptotic distribution of individual
orbits. The gt-flow is very flexible: it is certainly ergodic, but individual orbits can
behave very badly. Moreover, the gt-flow is measure-theoretically equivalent to a
Bernoulli shift which has a wealth of measurable factors and self joinings.

The group ut is an example of a unipotent group. In a fundamental series of
papers published in 1990; 91, M. Ratner proved that the above mentioned rigidity
properties of ut-flow are shared by all unipotent group actions on homogeneous
spaces, in particular establishing in complete generality Raghunathan’s conjecture
about orbit closures for such actions (some cases of which were known previously,
notably in the context of the Oppenheim conjecture discussed below). For the gt-
flow the situation is rather different: while a diagonalizable one-parameter group in
general behaves very much like gt, higher-dimensional diagonalizable groups seem
to behave much more rigidly (though not as rigidly as unipotent group actions).

The notes by Eskin discuss in detail unipotent flows, with an emphasis on ap-
plications, particularly regarding values attained by indefinite quadratic forms and
Oppenheim’s Conjecture. This long-standing conjecture was proved by Margulis
in the mid-80s using homogeneous dynamics, and in particular unipotent dynam-
ics. In dynamical terms, what Margulis has shown is that any bounded orbit of
SO(2, 1) on SL(3,Z)\ SL(3,R) is closed. The notes also give a detailed exposition of
a more delicate result giving precise asymptotics to the distribution of these values
by Eskin, Margulis and Mozes (under certain assumptions on the signature of a
quadratic form). Some of the ideas and methods used in the theory of unipotent
flows, and in particular some of the ideas used by Ratner in her proof of the Mea-
sure Classification Theorem are also described in these notes. Eskin’s notes also
contain other interesting applications of unipotent rigidity as well as connections
to dynamics of rational billiards.

Kleinbock’s notes focus on a method originally introduced by Margulis and
developed significantly since, to show that orbits of unipotent group actions do
not diverge to infinity. In particular, a quantitative version of the non-divergence
statement due to S. G. Dani is an important ingredient in the proof of various
versions of orbit closure and equidistribution theorems, including Ratner’s Orbit
Closure Theorem. However these techniques are more widely applicable and, in
particular, were used by Kleinbock and Margulis to prove a conjecture of Sprindžuk
on Diophantine approximations; this connection is also carefully discussed.

The notes by Einsiedler and Lindenstrauss discuss diagonalizable group actions,
based mostly on work by the authors and by A. Katok in various combinations. A
crucial role in current analysis of these actions is played by the concept of entropy.

(1)For this purpose ∞ is a prime and Q∞ = R.
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These notes give a detailed and self-contained account of the theory of the entropy
in the locally homogeneous context, the construction of leafwise measures on fo-
liations, and the connection between the two. Subsequently an account is given
of two rather different and complementary methods to study measures invariant
under multidimensional diagonalizability actions under suitable entropy assump-
tions, which go under the names of the high entropy method and the low entropy
method. Two applications of this theory are also discussed: a partial result toward
a conjecture of Littlewood on simultaneous Diophantine approximations, and how
these techniques can be used to establish Arithmetic Quantum Unique Ergodicity
on compact surfaces.

The material given in these three basic papers about homogeneous dynamics
is complemented by the following two more advanced notes:

[7] Counting and equidistribution on homogeneous spaces, via mixing and
unipotent flows by H. Oh

[8] Equidistribution of Heegner points and L-functions by G. Harcos

In Oh’s notes, the use of equidistribution of unipotent flows (and the closely related
but more quantitative mixing properties of diagonalizable flows) to count integer
and rational points on certain varieties, a theme touched upon in Eskin’s note,
is developed further, and several state-of-the-art applications are explained. The
notes by Harcos give some brief background in the theory of L-functions and how
it relates to equidistribution of periodic orbits of the diagonal group in SL(2).

Semiclassical analysis and dynamics. One of the applications of the theory
of diagonalizable actions discussed in the Einsiedler-Lindenstrauss note is establish-
ing Arithmetic Quantum Unique Ergodicity for compact (arithmetic) surfaces. The
Quantum Unique Ergodicity conjecture deals with the asymptotic distribution of
eigenfunctions of the Laplacian; the arithmetic case is a very special case where
the surface is arithmetic and eigenfunctions of the Laplacian are chosen so as to
respect the rich set of symmetries of such surfaces. This question is considered from
a completely different point of view in the notes

[9] Eigenfunctions of the Laplacian on negatively curved manifolds: a semi-
classical approach by N. Anantharaman.

In these notes the basics of semiclassical analysis are reviewed, the connections be-
tween eigenvalues of the Laplacian and the geodesic flow, which have been discussed
to some extent in the Einsiedler-Lindenstrauss notes, are developed in a much more
systematic way, and very recent work relating entropy and limiting distributions
of eigenfunctions of the Laplacian in general compact negatively curved manifolds
(including the variable curvature case) is exposed.

Acknowledgement. This Clay Summer School was hosted by the Centro di
Ricerca Matematica Ennio De Giorgi in Pisa; we are grateful to its director, Mariano
Giaquinta, for accepting to host the school in this inspiring venue. The hospitality of
this institute was outstanding, and the local staff, particularly Antonella Gregorace,
Ilaria Gabbani, and Valentina Giuffra, went out of their way to help this school be
a success. The summer school would not come to being without the vision and
generosity of the Clay Mathematics Institute, and the hard work put into the
school by its president, Jim Carlson, and its program manager, Christa Carter. We
would especially like to thank CMI’s publication manager Vida Salahi for all her
work and dedication in bringing this volume to completion.



INTRODUCTION xi

In addition to the authors of the notes listed above, the following mathemati-
cians gave one or more lectures during this school: G. Forni, A. Gamburd, Y. Manin,
G. Margulis, J. Marklof, M. Mirzakhani, S. Mozes, N. Templier, C. Ulcigrai, and
A. Venkatesh. All lecturers and participants contributed to the enthusiastic and
stimulating atmosphere at this school, and we thank them warmly for this.

For a variety of reasons, these lecture notes appear almost 3 years after the
summer school. Quite a bit of work went into them, and indeed this is one of the
reasons for the delay. They contain a substantial amount of material which cannot
be found in any textbook, and we hope you, the reader, would find them useful!

Manfred Einsiedler, David Ellwood, Alex Eskin, Dmitry Kleinbock, Elon Lin-
denstrauss, Gregory Margulis, Stefano Marmi and Jean-Christophe Yoccoz

May 2010
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Interval exchange maps and translation surfaces

Jean-Christophe Yoccoz

Introduction

Let T be a 2-dimensional torus equipped with a flat Riemannian metric and
a vector field which is unitary and parallel for that metric. Then there exists
a unique lattice Λ ⊂ R

2 such that T is isometric to R
2/Λ and the vector field

on T corresponds to the vertical vector field ∂
∂y on R

2/Λ. The corresponding

“Teichmüller space” (classification modulo diffeomorphisms isotopic to the identity)
is thus GL(2,R), viewed as the space of lattices equipped with a basis; the “moduli
space” (classification modulo the full diffeomorphism group) is the homogeneous
space GL(2,R)/GL(2,Z), viewed as the space of lattices in R

2.
The dynamics of the vertical vector field on R

2/Λ can be analyzed through the
return map to a non vertical closed oriented geodesic S on R

2/Λ ; in the natural
parameter on S which identifies S with T = R/Z (after scaling time), the return
map is a rotation x �→ x + α on T for some α ∈ T. When α /∈ Q/Z, all orbits are
dense and equidistributed on R

2/Λ : the rotation and the vectorfield are uniquely
ergodic (which means that they have a unique invariant probability measure, in
this case the respective normalized Lebesgue measures on S and R

2/Λ).
In the irrational case, an efficient way to analyze the recurrence of orbits is to

use the continuous fraction of the angle α. It is well-known that the continuous
fraction algorithm is strongly related to the action of the 1-parameter diagonal sub-
group in SL(2,R) on the moduli space SL(2,R)/SL(2,Z) of “normalized” lattices
in R

2. It is also important in this context that the discrete subgroup SL(2,Z) of
SL(2,R) is itself a lattice, i.e. has finite covolume, but is not cocompact.

Our aim is to explain how every feature discussed so far can be generalized
to higher genus surfaces. In the first ten sections, we give complete proofs of the
basic facts of the theory, which owes a lot to the pionneering work of W. Veech
[Ve1]-[Ve5], with significant contributions by M. Keane [Kea1, Kea2], H. Masur
[Ma], G. Rauzy [Rau], A. Zorich [Zo2]-[Zo4], A. Eskin, G.Forni [For1]-[For3]
and many others. In the last four sections, we present without proofs some more
advanced results in different directions.

2010 Mathematics Subject Classification. Primary 54C40, 14E20; Secondary 46E25, 20C20.
Key words and phrases. Interval exchange maps, translation surfaces, moduli space, Teichm-

ller flow, Rauzy-Veech algorithm.

c© 2010 Jean-Christophe Yoccoz
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2 JEAN-CHRISTOPHE YOCCOZ

The reader is advised to consult [Zo1] for an excellent and very complete survey
on translation surfaces. See also [Y1] for a first and shorter version of these notes.

In Section 1 we give the definition of a translation surface, and introduce the
many geometric structures attached to it. Section 2 explains how translation sur-
faces occur naturally in connection with billiards in rational polygonal tables. In
Section 3, we introduce interval exchange maps, which occur as return maps of the
vertical flow of a translation surface. We explain in Section 4 Veech’s fundamental
zippered rectangle construction which allow to obtain a translation surface from
an interval exchange map and appropriate suspension data. The relation between
interval exchange maps and translation surfaces is further investigated in Section
5, which concludes with Keane’s theorem on the minimality of interval exchange
maps with no connection. Section 6 introduces the Teichmüller spaces and the
moduli spaces; the fundamental theorem of Masur and Veech on the finiteness of
the canonical Lebesgue measure in normalized moduli space is stated. In Section
7, we introduce the Rauzy-Veech algorithm for interval exchange maps with no
connection, which is a substitute for the continuous fraction algorithm. The ba-
sic properties of this algorithm are established. Invariant measures for interval
exchange maps with no connection are considered in Section 8. In Section 9, the
dynamics in parameter space are introduced, whose study lead ultimately to a proof
of the Masur-Veech theorem. Almost sure unique ergodicity of interval exchange
maps, a related fundamental result of Masur and Veech, is proven in Section 10.

In Section 11, we introduce the Kontsevich-Zorich cocycle, and present the
related results of Forni and Avila-Viana. In section 12, we consider the cohomo-
logical equation for an interval exchange map and present the result of Marmi,
Moussa and myself, which extend previous fundamental work of Forni. In Section
13, we present the classification of the connected components of the moduli space
by Kontsevich and Zorich. In the last section, we discuss the exponential mixing
of the Teichmüller flow proved by Avila, Gouezel and myself.

1. Definition of a translation surface

1.1. We start from the following combinational data :

• a compact orientable topological surface M of genus g � 1 ;
• a non-empty finite subset Σ = {A1, . . . , As} of M ;
• an associated family κ = (κ1, . . . , κs) of positive integers which should be

seen as ramification indices.

Moreover we require (for reasons that will be apparent soon) that κ and g are
related through

(1.1) 2g − 2 =
s∑

i=1

(κi − 1) .

The classical setting considered in the introduction corresponds to g = 1, s =
1, κ1 = 1.

Definition 1.1. A structure of translation surface on (M,Σ,K) is a maximal
atlas ζ for M −Σ of charts by open sets of C � R

2 which satisfies the two following
properties:
(i) any coordinate change between two charts of the atlas is locally a translation of
R

2 ;
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(ii) for every 1 � i � s, there exists a neighbourhood Vi of Ai, a neighbourhood
Wi of 0 in R

2 and a ramified covering π : (Vi, Ai) → (Wi, 0) of degree κi such that
every injective restriction of π is a chart of ζ.

1.2. Because many structures on R
2 are translation-invariant, a translation

surface (M,Σ, κ, ζ) is canonically equipped with several auxiliary structures:

• a preferred orientation ; actually, one frequently starts with an oriented
(rather than orientable) surface M and only considers those translation
surface structures which are compatible with the preferred orientation ;

• a structure of Riemann surface ; this is only defined initially by the atlas
ζ on M −Σ, but is easily seen to extend to M in a unique way : if Vi is a
small disk around Ai ∈ Σ, Vi − {Ai} is the κi- fold covering of Wi − {0},
with Wi a small disk around 0 ∈ C, hence is biholomorphic to D

∗ ;
• a flat metric on M −Σ ; the metric exhibits a true singularity at each Ai

such that κi > 1; the total angle around each Ai ∈ Σ is 2πκi ;
• an area form on M −Σ, extending smoothly to M ; in the neighbourhood

of Ai ∈ Σ, it takes the form κ2
i (x

2 + y2)κi−1dx ∧ dy in a natural system
of coordinates ;

• the geodesic flow of the flat metric on M − Σ gives rise to a 1-parameter
family of constant unitary directional flows on M −Σ, containing in par-
ticular a vertical flow ∂/∂y and a horizontal flow ∂/∂x.

We will be interested in the dynamics of these vector fields. By convention
(and symmetry) we will generally concentrate on the vertical vector field.

1.3. Together with the complex structure onM , a translation surface structure
ζ also provides an holomorphic (w.r.t that complex structure) 1-form ω, character-
ized by the property that it is written as dz in the charts of ζ. In particular, this
holomorphic 1-form does not vanish on M − Σ. At a point Ai ∈ Σ, it follows from
condition (ii) that ω has a zero of order (κi − 1). The relation (1) between g and
κ is thus a consequence of the Riemann-Roch formula.

We have just seen that a translation surface structure determine a complex
structure on M and a holomorphic 1-form ω with prescribed zeros. Conversely,
such data determine a translation surface structure ζ : the charts of ζ are obtained
by local integration of the 1-form ω.

The last remark is also a first way to provide explicit examples of translation
surfaces. Another very important way, that will be presented in Section 5, is by sus-
pension of one-dimensional maps called interval exchange maps. A third way, which
however only gives rise to a restricted family of translation surfaces, is presented in
the next section.

2. The translation surface associated to a rational polygonal billiard

2.1. Let U be a bounded connected open subset in R
2 � C whose boundary

is a finite union of line segments ; we say that U is a polygonal billiard table. We
say that U is rational if the angle between any two segments in the boundary is
commensurate with π.

The billiard flow associated to the billiard table U is governed by the laws of
optics (or mechanics) : point particles move linearly at unit speed inside U , and
reflect on the smooth parts of the boundary ; the motion is stopped if the boundary
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is hit at a non smooth point, but this only concerns a codimension one subset of
initial conditions.

The best way to study the billiard flow on a rational polygonal billiard table is
to view it as the geodesic flow on a translation surface constructed from the table;
this is the construction that we now explain.

2.2. Let Û be the prime end compactification of U : a point of Û is
determined by a point z0 in the closure U of U in C and a component of B(z0, ε)∩U
with ε small enough (as U is polygonal, this does not depend on ε if ε is small
enough).

Exercise 2.1. Define the natural topology on Û ; prove that Û is compact,

and that the natural map from U into Û is an homeomorphism onto a dense open

subset of Û .

Exercise 2.2. Show that the natural map from Û onto U is injective (and
then a homeomorphism) iff the boundary of U is the disjoint union of finitely many
polygonal Jordan curves.

A point in Û −U is regular if the corresponding sector in B(z0, ε) ∩ U is flat;

the non regular points of Û − U are the vertices of Û .

Exercise 2.3. Show that every component of Û − U is homeomorphic to a
circle and contain at least two vertices. Show that there are only finitely many
vertices.

A connected component of regular points in Û−U is a side of Û . The closure in

Û of a side C of Û is the union of C and two distinct vertices called the endpoints
of C. A vertex is the endpoint of exactly two sides.

2.3. The previous considerations only depend on U being a polygonal billiard

table ; we now assume that U is rational. For each side C of Û , let σC ∈ O(2,R)
the orthogonal symmetry with respect to the direction of the image of C in U ⊂ R

2.
Let G be the subgroup of O(2,R) generated by the σC .

As U is rational, G is finite. More precisely, if N is the smallest integer such

that the angle between any two sides of Û can be written as πm/N for some integer
m, G is a dihedral group of order 2N , generated by the rotations of order N and a
symmetry σC .

For any vertex q ∈ Û , we denote by Gq the subgroup of G generated by σC

and σC′ , where C and C ′ are the sides of Û having q as endpoint ; if the angle of
C and C ′ is π mq/Nq with mq ∧Nq = 1, Gq is dihedral of order 2Nq.

We now define a topological space M as the quotient of Û ×G by the following
equivalence relation : two points (z, g), (z′, g′) are equivalent iff z = z′ and moreover

• g−1g′ = 1G if z ∈ U ;

• g−1g′ ∈ {1G, σC} if z belongs to a side C of Û ;

• g−1g′ ∈ Gz if z is a vertex of Û .

We also define a finite subset Σ of M as the image in M of the vertices of Û .

Exercise 2.4. Prove that M is a compact topological orientable surface.

To define a structure of translation surface on (M,Σ) (with appropriate rami-
fication indices), we consider the following atlas on M − Σ.
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• for each g ∈ G, we have a chart

U × {g} → R
2

(z, g) �→ g(z) ;

• for each z0 belonging to a side C of Û , and each g ∈ G, let z̃0 be the
image of z0 in U, ε be small enough, V be the component of B(z̃0, ε) ∩ U

corresponding to z0, V̂ be interior of the closure of the image of V in Û ;
we have a map

V̂ × {g, g σc} → R
2

sending (z, g) to g(z) and (z, gσc) to g(σ̃c(z)), where σ̃c is the affine
orthogonal symmetry with respect to the line containing the image of C
in R

2. This map is compatible with the identifications defining M and
defines a chart from a neighbourhood of (z, g) in M onto an open subset
of R2.

One checks easily that the coordinate changes between the charts considered above
are translations. One then completes this atlas to a maximal one with property (i)
of the definition of translation surfaces.

Exercise 2.5. Let q be a vertex of Û , and let πmq/Nq be the angle between
the sides at q and Gq the subgroup of G as above. Show that property (ii) in
the definition of a translation surface is satisfied at any point (q, g Gq) ∈ Σ, with
ramification index mq (independent of the coset g Gq under consideration).

We have therefore defined the ramification indices κi at the points of Σ and
constructed a translation surface structure on (M,Σ, κ).

2.4. The relation between the trajectories of the billiard flow on U and the
geodesics on M − Σ is as follows.

Let z(t), 0 � t � T be a billiard trajectory ; let t1 < · · · < tN be the successive

times in (0, T ) where the trajectory bounces on the sides of Û (by hypothesis, the
trajectory does not go through a vertex, except perhaps at the endpoints 0 and T ).
Denote by Ci the side met at time ti and define inductively g0, . . . , gN by

g0 = 1G ,

gi+1 = gi σCi+1
.

For any g ∈ G, the formulas

zg(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(z(t), gg0), for 0 � t � t1,

(z(t), ggi), for ti � t � ti+1 (1 � i < N),

(z(t), ggN ), for tN � t � T,

define a geodesic path on M . Conversely, every geodesic path on M (contained in
M−Σ except perhaps for its endpoints) defines by projection on the first coordinate
a trajectory of the billiard flow on U .



6 JEAN-CHRISTOPHE YOCCOZ

2.5. The left action
g0(z, g) = (z, g0 g)

of G on Û×G is compatible with the equivalence relation defining M and therefore
defines a left action of G on M . The corresponding transformations of M are
isometries of the flat metric of M but not isomorphisms of the translation surface
structure (except for the identity !). The existence of such a large group of isometries
explain why the translation surfaces constructed from billiard tables are special
amongst general translation surfaces.

2.6. On the other hand, when a billiard table admits non trivial symmetries,
this gives rise to isomorphisms of the translation surface structures. More precisely,
let H be the subgroup of G formed of the h ∈ G such that h(U) is a translate U+th
of U . The group H acts on the left on M through the formula

h(z, g) = (h(z)− th, g h
−1),

which is compatible with the equivalence relation defining M . Each h ∈ H acts
through an isomorphism of the translation surface structure (permuting the points
of Σ). This allows to consider the quotient under the action of H to get a re-
duced translation surface (M ′,Σ′, κ′, ζ ′) and a ramified covering from (M,Σ) onto
(M ′,Σ′).

2.7. To illustrate all this, consider the case where U is a regular n-gon, n � 3.
The angle at each vertex is then π n−2

n .

Exercise 2.6. Show that G = Gq for every vertex q and that G has order n if
n is even, 2n if n is odd. Show that Σ has n points, each having ramification index

n− 2 if n is odd, n−2
2 if n is even. Conclude that the genus of M is (n−1)(n−2)

2 if n

is odd, (n2 − 1)2 if n is even.

Exercise 2.7. Show that the subgroup H of subsection 2.6. is equal to G if
n is even, and is of index 2 if n is odd. Show that the reduced translation surface
satisfies #Σ′ = 2 if N − 2 is divisible by 4, #Σ′ = 1 otherwise. Show that the

corresponding ramification index is n−2 if n odd, (n−2)
2 if n is divisible by 4, (n−2)

4

if n− 2 is divisible by 4. Conclude that the genus g′ is (n−1)
2 if n is odd, n

4 if n is

divisible by 4 , (n−2)
4 if n− 2 is divisible by 4.

3. Interval exchange maps : basic definitions

3.1. Let (M,Σ, κ, ζ) be a translation surface and let X be one of the non zero
constant vector fields on M − Σ defined by ζ.

Definition 3.1. An incoming (resp. outgoing) separatrix for X is an
orbit of X ending (resp. starting) at a marked point in Σ. A connection is an
orbit of X which is both an incoming and outgoing separatrix.

At a point Ai ∈ Σ, there are κi incoming separatrices and κi outgoing separa-
trices.

Let S be an open bounded geodesic segment in M − Σ, parametrized by arc
length, and transverse to X. Consider the first return map TS to S of the flow
generated by the vectorfield X.

As X is area-preserving, the Poincaré recurrence theorem guarantees that the
map TS is defined on a subset DTS

of S of full 1-dimensional Lebesgue measure.
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The domain DTS
is open because S itself is open and the restriction of TS to each

component of DTS
is a translation (because the flow of X is isometric). Also, the

return time is constant on each component of DTS
.

We now show that DTS
has only finitely many components. Indeed, let x ∈ S

be an endpoint of some component J of DTS
, and let tJ the return time to S of

points in J . Either there exists T ∈ (0, tJ) such that the orbit of X starting at x
stops at time T at a point of Σ without having crossed S, or the orbit of X starting
at x is defined up to time tJ and is at this moment at one of the endpoints of S,
also without having crossed S. This leaves only a finite number of possibilities for
x, which gives the finiteness assertion.

The return map TS is thus an interval exchange map according to the following
definition.

Definition 3.2. Let I ⊂ R be a bounded open interval. An interval exchange
map (i.e.m) T on I is a one-to-one map T : DT → DT−1 such that DT ⊂ I,DT−1 ⊂
I, I−DT and I−DT−1 are finite sets (with the same cardinality) and the restriction
of T to each component of DT is a translation onto some component of DT−1 .

3.2. Markings, combinatorial data. Let T : DT → DT−1 be an interval ex-
change map. Let d = #π0(DT ) = #π0(DT−1). Then T realizes a bijection between
π0(DT ) and π0(DT−1). To keep track of the combinatorial data, in particular when
we will consider below the Rauzy-Veech continuous fraction algorithm for i.e.m, it
is convenient to give names to the components of DT (and therefore through T also
to those of DT−1). This is formalized as follow.

Amarking for T is given by an alphabetA with #A = d and a pair π = (πt, πb)
of one-to-one maps

πt A → {1, . . . , d}
πb

such that, for each α ∈ A, the component of DT in position πt(α) (counting from
the left) is sent by T to the component of DT−1 in position πb(α). We summarize
these combinatorial data by writing just(

π−1
t (1) . . . π−1

t (d)
π−1
b (1) . . . π−1

b (d)

)

expressing how the intervals which are exchanged appear before and after applying
T .

Two markings (A, πt, πb), (A′, π′
t, π

′
b) are equivalent if there exists a bijection

i : A → A′ with πt = π′
t ◦ i, πb = π′

b ◦ i. Clearly T determines the marking up to
equivalence.

3.3. Irreducible combinatorial data. We say that combinatorial data
(A, πt, πb) are irreducible if for every 1 � k < d = #A, we have

π−1
t ({1, . . . , k}) 
= π−1

b ({1 . . . k}).
The condition is invariant under equivalence of markings. We will always assume
that the i.e.m under consideration satisfy this property. Otherwise, if we have

π−1
t ({1, . . . , k}) = π−1

b ({1 . . . k}).
T is the juxtaposition of an i.e.m with k intervals and another with d− k, and the
dynamics of T reduce to simpler cases.
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3.4. Terminology and notations. Let T : DT → DT−1 be an i.e.m on an
interval I ; let (A, πt, πb) a marking for T .

The points ut
1 < ut

2 < · · · < ut
d−1 of I −DT are called the singularities of T ;

the points ub
1 < ub

2 < · · · < ub
d−1 of I −DT−1 are called the singularities of T−1.

For each α ∈ A, we denote by Itα or just Iα the component of DT in position
πt(α) (counting from the left), and by Ibα its image by T which is also the component
of DT−1 in position πb(α).

We denote by λα the common length of Itα and Ibα. The vector λ = (λα)α∈A in
R

A is the length vector and will be considered as a row vector.
On the other hand, let δα be the real number such that Ibα = Itα + δα. The

vector δ = (δα)α∈A is the translation vector and will be considered as a column
vector.

The length vector and the translation vector are related through the obvious
formulas

δα =
∑

πb(β)<πb(α)

λβ −
∑

πt(β)<πt(α)

λβ =
∑
β

Ωαβλβ

where the antisymmetric matrix Ω is defined by

Ωαβ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+1 if πb(β) < πb(α) and πt(β) > πt(α),

−1 if πb(β) > πb(α) and πt(β) < πt(α),

0 otherwise.

4. Suspension of i.e.m : the zippered rectangle construction

4.1. We have seen in subsection 3.1 that we come naturally to the definition
of an interval exchange map by considering return maps for constant vector fields
on translation surfaces.

Conversely, starting from an interval exchange map T , we will construct, fol-
lowing Veech [Ve2] a translation surface for which T appears as a return map of the
vertical vector field. However, as the case of the torus for rotations already demon-
strates, supplementary data such as return times are needed to specify uniquely
the translation surface.

Let T : DT → DT−1 be an i.e.m on an interval I, equipped with a marking
(A, πt, πb) as above.

A vector τ ∈ R
A is a suspension vector if it satisfies the following inequalities

(Sπ)
∑

πt(α)<k

τα > 0 ,
∑

πb(α)<k

τα < 0 for all 1 < k � d .

Define

τ canα = πb(α)− πt(α) , α ∈ A .

Then the vector τ can satisfies (Sπ) iff the combinatorial data are irreducible (an
hypothesis that we will assume from now on). When the combinatorial data are
not irreducible, no vector τ ∈ R

A satisfies (Sπ).

4.2. A simple version of the construction. Let T as above ; we assume
that the combinatorial data are irreducible and use the notations of subsection 3.4.
Let also τ ∈ R

A be a suspension vector.
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We will construct from these data a translation surface (M,Σ, κ, ζ). We first
give a simple version of the construction that unfortunately is not valid for all values
of the data. We identify as usual R2 with C and set ζα = λα + iτα for α ∈ A.

Consider the “top” polygonal line connecting the points 0, ζπ−1
t (1), ζπ−1

t (1) +

ζπ−1
t (2), . . . , ζπ−1

t (1) + ζπ−1
t (2) + · · ·+ ζπ−1

t (d) and the “bottom” polygonal line con-

necting the points 0, ζπ−1
b (1), ζπ−1

b (1) + ζπ−1
b (2), . . . , ζπ−1

b (1) + ζπ−1
b (2) + · · ·+ ζπ−1

b (d).

Observe that both lines have the same endpoints and that, from the suspension
condition (Sπ), all intermediary points in the top (resp. bottom) line lie in the
upper (resp. lower) half-plane.

When the two lines do not intersect except from their endpoints, their union is a
Jordan curve and we can construct a translation surface as follows : denoting by W
the closed polygonal disk bounded by the two lines, we identify for each α ∈ A the
ζα side of the top line with the ζα side of the bottom line through the appropriate
translation and define M to be the topological space obtained from W with this
identifications. The finite subset Σ is the image of the vertices of W .

Exercise 4.1. Check that M is indeed a compact oriented topological surface.

The atlas defining the translation surface structure is obvious : besides the
identity map on the interior of W , we use charts defined on neighbourhoods of the
interiors of the ζα sides which have been identified.

Condition (ii) in the definition of a translation surface and ramification indices
will be discussed below.

This construction is very easy to visualize, and the non intersection condition

is frequently satisfied : for instance when
∑
α

τα = 0 (in particular for τ = τ can),

or when λπ−1
t (d) = λπ−1

b (d). Unfortunately, it is not always satisfied. For instance,

taking for combinatorial data (with A = {A,B,C,D}),

π = (πt, πb) =

(
A B D C
D A C B

)
,

we may have ζA = 1 + i, ζB = 3 + 3i, ζC = ε + i, ζD = 3 − 3i with ε > 0. Then
the suspension condition (Sπ) is satisfied but the two lines intersect non trivially
when 0 < ε < 1.

4.3. Zippered rectangles. Let T, λ, τ, ζ = λ+iτ as above. The length vector
and the translation vector δ are related through.

δ = Ωtλ .

We define

h = −Ωtτ ,

θ = δ − ih = Ωtζ .

We consider here λ, τ as row vectors in R
A, ζ as a row vector in C

A, δ, h as
column vectors in R

A and θ as a column vector in C
A.

Exercise 4.2. Check that in the construction of subsection 4.2, the ζα side
of the “top line” was identified to the ζα side of the “bottom line” through a
translation by θα.
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We observe that for all α ∈ A we have

hα =
∑

πtβ<πtα

τβ −
∑

πbβ<πbα

τβ

and therefore, from the suspension condition (Sπ) :

hα > 0 .

Indeed, the first sum on the right-hand side is > 0 except if πtα = 1 when it is 0
and the second sum is < 0 except if πbα = 1 when it is 0. By irreducibility, we
cannot have both πtα = 1 and πbα = 1.

Define the rectangles in R
2 = C :

Rt
α = Itα × [0, hα] ,

Rb
α = Ibα × [−hα, 0] ,

Let ut
1 < ut

2 < · · · < ut
d−1 be the singularities of T, ub

1 < ub
2 < · · · < ub

d−1 those of

T−1. Write also I = (u0, ud). Define, for 1 � i � d− 1 :

St
i = {ut

i} × [0,
∑

πtα�i

τα),

Sb
i = {ub

i} × (
∑

πbα�i

τα, 0].

Define the points

C0 = (u0, 0), Cd = (ud,
∑
α

τα),

Ct
i = C0 +

∑
πtα�i

ζα, Cb
i = C0 +

∑
πbα�i

ζα , for 0 < i < d.

Finally, let S∗ be the closed vertical segment whose endpoints are (ud, 0) and

Cd (Figure 1). Let M̂ be the union of all the elements just defined : the Rt
α, R

b
α,

(α ∈ A), St
i , S

b
i , (0 < i < d), C0, Cd, C

t
i , C

b
i , (0 < i < d) and S∗.

We use translations by θα, α ∈ A to identify some of these elements :

• We identify Rt
α and Rb

α = Rt
α + θα .

• We identify Ct
πt(α)

and Cb
πb(α)

= Ct
πt(α)

+ θα, and also Ct
πt(α)−1 and

Cb
πb(α)−1 = Ct

πt(α)−1 + θα; here, we have by convention Ct
0 = Cb

0 =

C0, C
t
d = Cb

d = Cd.
• finally, if Σα τα > 0, we identify by θπ−1

b (d) the top part of St
πtπ

−1
b (d)

with

S∗ ; if Σα τα < 0, we identify S∗ with the bottom part of Sb
πbπ

−1
t (d)

by

θπ−1
t (d).

We denote by M the topological space deduced from M̂ by these identifications.
We denote by Σ the part of M which is the image of {C0, Cd, C

t
i , C

b
i } .

One easily checks that M is compact and that M−Σ is a topological orientable
surface. Every point in M −Σ, except those in the image of S∗ when Σ τα 
= 0, has

a representative in the interior of M̂ ; for those points, a local continuous section of

the projection from M̂ ontoM provides a chart for the atlas defining the translation
surface structure. We leave the reader provide charts around points in the image
of S∗.
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Figure 1

In the next section, we complete the construction by investigating the local
structure at points in Σ : this means checking that M is indeed a topological
surface, that condition (ii) in the definition of translation surfaces is satisfied, and
computing the ramification indices.

Let us however observe right now that we have indeed a suspension for the
i.e.m. T on I. The return map on the horizontal segment I × {0} (or rather its

image in M) of the vertical vector field
∂

∂y
is exactly T . The return time of Itα is

equal to hα.

4.4. Ramification indices. Let C the set {Ct
i , C

b
i ; 0 < i < d} with 2d − 2

elements ; turning around points of Σ in an anticlockwise manner, we define a
“successor” map σ : C → C :

• σ(Ct
i ) = Cb

πbπ
−1
t (i+1)−1

, except if πbπ
−1
t (i+ 1) = 1 in which case σ(Ct

i ) =

Cb
πbπ

−1
t (1)−1

;

• σ(Cb
j ) = Ct

πtπ
−1
b (j)

except if πtπ
−1
b (j) = d in which case σ(Cb

j ) = Ct
πtπ

−1
b (d)

.

We see that σ is a permutation of C, exchanging the Ct
i and the Cb

j . Therefore
every cycle of σ has even length.

From the very definition of σ, points of Σ are in one-to-one correspondance with
the cycles of σ. Moreover, one checks that small neighbourhoods of points of Σ are
homeomorphic to disks, and that condition (ii) in the definition of a translation
index is satisfied, the ramification index being half the length of the corresponding
cycle. Summing up :

• The number s of points in Σ is the number of cycles of the permutation
σ.
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• The ramification indices κj are the half lengths of the cycles ; in particular,
we have

d− 1 =

s∑
j=1

κj .

If g is the genus of the compact surface M , we also must have

2g − 2 =

s∑
i=1

(κi − 1) .

We therefore can relate d, g, s by

d = 2g + s− 1 .

4.5. Homology and cohomology of M . Consider the homology groups
H1(M,Z), H1(M − Σ,Z), H1(M,Σ,Z). The first one has rank 2g, the last two
have rank 2g + s− 1 = d. They are related through maps

H1(M − Σ,Z) → H1(M,Z) → H1(M,Σ,Z),

where the first map is onto and the second is injective. The zippered rectangle
construction provides natural bases for H1(M − Σ,Z) and H1(M,Σ,Z).

For α ∈ A, let [θα] be the image in H1(M − Σ,Z) of a path joining in the

interior of M̂ the center of Rt
α to the center of Rb

α ; and let [ζα] be the image
in H1(M,Σ,Z) of a path joining in Rt

α ∪ {Ct
πt(α)−1, C

t
πt(α)

} the point Ct
πt(α)−1 to

Ct
πt(α)

(if πt(α) = d and Σατα < 0, the path should be allowed to go through S∗

also).
The intersection form establishes a duality between H1(M − Σ,Z) and

H1(M,Σ,Z). Now we clearly have, for α, β ∈ A :

< [θα], [ζβ] >= δαβ ,

which shows that ([θα])α∈A, ([ζβ])β∈A are respectively bases of H1(M − Σ,Z),
H1(M,Σ,Z) dual to each other.

Considering [θα] as classes in H1(M,Z), the intersection form now reads :

< [θα], [θβ ] >= Ωβα ,

Indeed, writing [θα] for the image of [θα] in H1(M,Σ,Z), we have

[θα] =
∑
β

Ωαβ [ζβ]

which shows in particular that
rk Ω = 2g .

Going to cohomology, we have maps

H1(M,Σ,Z) → H1(M,Z) → H1(M − Σ,Z)

(and similar maps with real and complex coefficients) where the first map is onto
and the second is injective.

The holomorphic 1−form ω associated to the translation surface structure de-
termines by integration a class [ω] ∈ H1(M,Σ,C) (this will be studied in more
details and generality in section 6 below). One has

< [ω], [ζα] >= ζα ,

< [ω], [θα] >= θα ,
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where [ω] is the image of [ω] in H1(M − Σ,C).
Therefore the vectors λ, τ can be considered as elements of H1(M,Σ,R), the

vector ζ = λ+ iτ as an element of H1(M,Σ,C). The vectors δ, h can be considered
as elements of H1(M −Σ,R) ; they actually belong to the image of H1(M,R) into
H1(M −Σ,R) because they vanish on the kernel of the map from H1(M −Σ,Z) to
H1(M,Z). Similarly, θ = δ − ih belongs to the image of H1(M,C) into H1(M −
Σ,C). Finally, the area of the translation surface M is given by

A =
∑
α

λα hα = τ Ω tλ .

5. Representability, minimality, connections

5.1. We have seen in subsection 3.1 that for any translation surface, the return
map of the vertical vector field on any horizontal segment is an interval exchange
map. In the zippered rectangle construction, the horizontal segment I×{0} is wide
enough to intersect all orbits of the vertical vector field.

Already in the case of the torus, when the vertical vectorfield has rational slope
with respect to the lattice, it is clear that a short enough horizontal segment will not
intersect all orbits. In higher genus, the same can happen even when the vertical
vector field has no periodic orbits, as the following construction shows.

Let Λ1,Λ2 be two lattices in R
2 with no non zero vertical vectors ; let Ti =

R
2/Λi ; choose on each Ti two vertical segments [Ai, Bi] of the same length. Slit

Ti along [Ai, Bi] and glue isometrically the left side of [A1, B1] to the right side of
[A2, B2] and vice-versa. We obtain a compact oriented surface M of genus 2, with
two marked points A (image of A1, A2) and B (image of B1, B2) ; the canonical
translation surface structures on T1, T2 generate a translation surface structure
on (M, {A,B}) with ramification indices κA = κB = 2. The vector field has no
periodic orbit in view of the hypothesis on Λ1,Λ2 but obviously any small horizontal
segment in T1 not intersecting [A1, B1] will only intersect the orbits of the vectorfield
contained in T1.

Even when an horizontal segment intersects all orbits of the vertical vectorfield,
the number of intervals in the i.e.m obtained as return map depends on the segment.

Exercise 5.1. For a torus with one marked point and a minimal vertical vec-
torfield, show that the return map on a horizontal segment starting at the marked
point is an i.e.m with 2 or 3 intervals. Find necessary and sufficient conditions for
the return map to have only 2 intervals.

5.2. In order to understand which translation surfaces can be obtained via the
zippered rectangle construction, the following lemma is useful.

Let (M,Σ, κ, ζ) be a translation surface. Denote by (ΦV
t ), resp. (Φ

H
t ), the flow

of the vertical, resp. horizontal, vectorfield. Let x0 ∈ M − Σ a point of period T
for the vertical vectorfield.

Lemma 5.2. There exists a maximal open bounded interval J around 0 such
that for s ∈ J , the vertical flow ΦV

t (Φ
H
s (x0)) is defined for all times t ∈ R. One

has

ΦV
t+T (Φ

H
s (x0)) = ΦV

t (Φ
H
s (x0)),
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for s ∈ J, t ∈ R, and the map

J × R/TZ → M

(s, t) �→ ΦV
t (Φ

H
s (x0))

is injective. The compact set

Z+ = lim
s↗sup J

{ΦV
[0,T ](Φ

H
s (x0))}

is a finite union of points of Σ and vertical connections between them. The same
holds for

Z− = lim
s↘inf J

{ΦV
[0,T ](Φ

H
s (x0))}.

The image ΦV
[0,T ](Φ

H
J (x0)) is called the cylinder around the periodic orbit of

x0. Its boundary in M is Z+ ∪ Z−.

Proof. Let J be an open bounded interval around 0 such that ΦH
s (x0) is

defined for s ∈ J and ΦV
t (Φ

H
s (x0)) is defined for all t ∈ R, s ∈ J . Any J small

enough will have this property. Moreover, we must have

ΦV
T (Φ

H
s (x0)) = ΦH

s (x0)

for all s ∈ J because the set of s with this property contains 0 and is open and
closed in J . The map

J × R/TZ → M
(s, t) �→ ΦV

t (Φ
H
s (x0))

must be injective : if we had

ΦV
t0(Φ

H
s0(x0)) = ΦV

t1(Φ
H
s1(x0)),

then either s0 = s1 , 0 < t1 − t0 < T would contradict that T is the minimal period
of x0 or s0 < s1 would imply that

ΦV
[0,T ](Φ

H
[s0,s1]

(x0))

is open and closed in M , hence equal to M , contradicting that Σ is non empty. The
injectivity gives a bound on the length of J , namely

|J | � AT−1

where A is the area of M . This bound means that there exists indeed a maximal
bounded open interval with the required properties. The maximality in turn implies
that the set Z+ must meet Σ (otherwise ΦH

sup J (x0) is defined and of period T for

the vertical flow), and thus is a finite union of points of Σ and vertical connections
between them. Similarly for Z−. �

Proposition 5.3. Let (M,Σ, κ, ζ) be a translation surface, and S be an open
bounded horizontal segment in M . Assume that S meets every vertical connection
(if any). Then, either every infinite half-orbit of the vertical vectorfield meets S,
or there is a cylinder containing every (infinite) orbit of the vertical vectorfield not
meeting S.
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Proof. Denote by TS the return map of the vertical vectorfield to S, by Φt the
flow of the vertical vectorfield. Let ut be a singularity of TS , J the component of the
domain of TS to the left of ut, tJ the return time to S in J . For 0 � t � tL(ut) := tJ ,
let

ΦL
t (u

t) = lim
x↗ut

Φt(x).

In the same way we define a right-limit ΦR
t (u

t), 0 � t � tR(ut), and, for a singularity
ub of T−1

S , we define left and right limits ΦL
t (u

b),ΦR
t (u

b) (for negative time intervals
0 � t � tL(ub), 0 � t � tR(ub) respectively).

Claim 5.4. The sets XL = [
⋃

ut ΦL
[0,tL(ut)](u

t) ]
⋃

[
⋃

ub ΦL
[tL(ub),0](u

b) ] and

XR = [
⋃

ut ΦR
[0,tR(ut)] (u

t) ]
⋃

[
⋃

ub ΦR
[tR(ub),0] (u

b) ] are equal.

Proof. Let ut be a singularity of TS . We prove that ΦL
[0,tL(ut)](u

t) is contained

in XR. The claim then follows by symmetry. We distinguish two cases.

(a): Assume first that lim
x↗ut

TS(x) is not the right endpoint of S. Then,

it is a singularity ub of T−1
S . As S meets every vertical connection, the

set ΦL
[0,tL(ut)] (ut) contains exactly one point of Σ, say ΦL

t∗(u
t). Then

ΦL
[0,t∗] (ut) is equal to ΦR

[0,t∗] (ut), and ΦL
[t∗,tL(ut)] (ut) is contained in

ΦR
[tR(ub),0] (u

b).

(b): Assume now that lim
x↗ut

TS(x) = u∗ is the right endpoint of S. Then

ub = lim
x↗u∗

TS(x) is a singularity of T−1
S . Again, as S meets every vertical

connection, the union ΦL
[0,tL(ut)] (u

t)∪ΦL
[tL(ub),0] (u

b) contains at most one

point of Σ, and it is contained in ΦR
[0,tR(ut)] (u

t) ∪ ΦR
[tR(ub),0] (u

b) .

�
End of proof of proposition : Let X be the union, over the components J of the

domain pf TS , of the Φ[0,tJ ](J) (with tJ the return time to S on J) ; let X̂ be the

union of X and XL = XR. As XL = XR, X̂ ∩ (M − Σ) is open in M − Σ. There
are now two possibilities.

(a): the return map TS does not coincide with the identity in the neigh-

bourhood of either endpoint of S. Then, the set X̂ is easily seen to be

also closed in M . Therefore X̂ = M and every infinite half-orbit of the
vertical vectorfield meets S.

(b): The return map TS coincides with the identity in the neighbourhood of
at least one of the endpoints of S. Let Y be the cylinder containing the
corresponding periodic orbits. As the boundary of Y is made of vertical

connections and points of Σ, it is contained in X̂. Then X̂ ∪ Y must be
equal to M and the second possibility in the statement of the proposition
holds.

�
Corollary 5.5. If the vertical vectorfield on a translation surface has no con-

nection, it is minimal : every infinite half orbit is dense.

Proof. Otherwise there exists an open bounded horizontal segment S which
does not meet every infinite vertical half-orbit. By the proposition, there would
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exist a cylinder containing these orbits ; but this is also not possible, since the
boundary of a cylinder contains a vertical connection. �

Corollary 5.6. Let (M,Σ, κ, ζ) be a translation surface and S be an open
bounded horizontal segment. Assume that

(H1): S meets every vertical connection (if any).
(H2): The left endpoint of S is in Σ.
(H3): The right endpoint of S either belongs to Σ, or to a vertical separatrix

segment which does not meet S.

Then the translation surface is isomorphic to the one constructed from the return
map TS by the zippered rectangle construction with appropriate suspension data.

Proof. Applying the Proposition 5.3, we see that the second possibility in the
statement of the proposition is forbidden by the hypothesis (H2) and therefore S
meets every infinite half-orbit of the vertical vectorfield. Therefore, every ingoing
separatrix of the vertical vectorfield meets S ; the intersection point which is closest
(on the separatrix) to the marked point is a singularity of TS and we obtain in this
way a one-to-one map between ingoing separatrices of the vertical vectorfield and
singularities of TS ; in the same way, there is a natural one-to-one correspondence
between outgoing separatrices and singularities of T−1

S . The vertical lengths of
the corresponding separatrices segments determine the suspension data. It is now
a direct verification, which we leave to the reader, to check that our translation
surface is indeed isomorphic to the one obtained from these suspension data by the
zippered rectangle construction. �

Proposition 5.7. Let (M,Σ, κ, ζ) be a translation surface and let S∞ be an
outgoing separatrix of the horizontal vectorfield. If either the horizontal or the
vertical vectorfield has no connection, then some initial segment S of S∞ satisfies
the hypotheses (H1), (H2), (H3) of Corollary 5.6

Proof. First assume that there is no vertical connection. Then any initial

segment S of S∞ satisfies (H1) and (H2).Let S̃ be some initial segment of S∞, and
S′ be some vertical separatrix ; as there is no vertical connection, S′ is dense, and

therefore intersects S̃. Let B be the intersection point closest along S′ to the point
of Σ at the end of S′ ; the initial segment S of S∞ with right endpoint B satisfies
(H1) , (H2) and (H3).

Assume now that there is no horizontal connection. Then S∞ is dense. As
there are only finitely many vertical connections, every initial segment S of S∞
which is long enough satisfies (H1), and also (H2). Let S′ be a short enough

vertical separatrix segment ; if the initial segment S̃ of S∞ is long enough it will

intersect S′, but only after having met all vertical connections ; again we cut S̃ at
the intersection point with S′ which is closest to the marked point at the end of S′.
We get an initial segment S of S∞ which satisfies (H1), (H2) and (H3). �

5.3. We reformulate Corollary 5.5 in the context of i.e.m.

Definition 5.8. A connection for an i.e.m. T on an interval I is a triple
(m,ut, ub) where m is a non negative integer, ut is a singularity of T , ub is a
singularity of T−1, such that

Tm(ub) = ut .
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Theorem 5.9. (Keane [Kea1]) If an i.e.m. has no connection, it is minimal
: every half-orbit is dense.

Proof. Choose suspension data, construct a translation surface by the zip-
pered rectangle construction ; the vertical vectorfield has no connection because
the i.e.m. does not have either ; thus it is minimal and the same holds for the
i.e.m. �

5.4. In this context, the following result of Keane is also relevant.

Proposition 5.10. If the coordinates of the length vector of an i.e.m. are
rationally independent, it has no connection.

Proof. Choose suspension data, construct a translation surface by the zip-
pered rectangle construction. We use the notations of 4.5. If the i.e.m. had a con-
nection, the vertical vectorfield on the translation surface would have a connection
which we could express as a linear combination Σ nα[ζα] in H1(M,Σ,Z) with inte-
ger coefficients. Integrating against the holomorphic 1-form, we have Σ nα λα = 0
but Σ nατα 
= 0, a contradiction. �

Exercise 5.11. For d = 2 , T is minimal iff there is no connection, anf iff the
lengths of the intervals are rationally independent. For d � 3, show that there exists
T minimal but having a connection, and also T with no connection but lengths data
rationally dependent.

6. The Teichmüller space and the Moduli space

6.1. The Teichmüller space. Let M be a compact orientable topological
surface, Σ a finite non-empty subset, κ a set of ramification indices.

We denote by Diff(M,Σ) the group of homeomorphisms of M fixing each
point of Σ, by Diff+(M,Σ) the subgroup of index 2 formed of orientation pre-
serving homeomorphisms, by Diff0(M,Σ) the neutral component of Diff(M,Σ), by
Mod(M,Σ) the modular group (or mapping class group) Diff(M,Σ)/Diff0(M,Σ),
and by Mod+(M,Σ) the subgroup (of index 2) Diff+(M,Σ)/Diff0 (M,Σ) .

The group Diff(M,Σ) acts on the set of translation surface structures on
(M,Σ, κ): if ζ = (ϕα) is an atlas defining such a structure, f∗ζ is the atlas (ϕα◦f−1)
(for f ∈ Diff(M,Σ)).

Definition 6.1. The Teichmüller space Q(M,Σ, κ) is the set of orbits of the
action of Diff0(M,Σ) on the set of translation surface structures on (M,Σ, κ).

6.2. Topology on Q(M,Σ, κ). We will fix once and for all a universal cover

p : (M̃, ∗) → (M,A1)

where A1 is the first point of Σ.
Given a translation surface structure ζ on (M,Σ, κ), we define an associated

developing map

Dζ : (M̃, ∗) → (C, 0)

by integrating from ∗ the 1-form p∗ω, where ω is the holomorphic 1-form determined
by ζ.

Conversely, the developing map determines ζ. The set of translation surface

structures on (M, ζ, κ) can therefore be considered as a subset of C(M̃,C) ; we equip
this set with the compact-open topology, the set of translation surface structures
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with the induced topology, and the Teichmüller space Q(M,Σ, κ) with the quotient
topology.

6.3. The period map. Let ζ be a translation surface structure on (M,Σ, κ), ω
be the associated holomorphic 1-form, γ a relative homology class in H1(M,Σ,Z).
As ω is closed, the integral

∫
γ
ω is well-defined. Moreover, if f is an homeomorphism

in Diff0(M,Σ), f acts trivially on H1(M,Σ,Z), therefore the map

ζ �→ (γ →
∫
γ

ω)

is constant on orbits of Diff0(M,Σ) and defines a map

Θ : Q(M,Σ, κ) → Hom(H1(M,Σ,Z),C)

called the period map. Here, we will generally identify in the right-hand side
Hom(H1(M,Σ,Z),C) with the cohomology group H1(M,Σ,C). The importance of
the period map lies in the following property.

Proposition 6.2. The period map is a local homeomorphism.

The proposition will be proved in section 6.5

6.4. Action of GL(2,R) on Teichmüller space. Let ζ = (ϕα) be an atlas
defining a translation surface structure on (M,Σ, κ), and let g be an element of
GL(2,R) acting on R

2 � C.
Consider the atlas g∗ζ = (g◦ϕα) ; because the conjugacy of a translation by an

element of GL(2,R) is still a translation, the atlas g∗ζ defines another translation
surface structure on (M,Σ, κ) and we have thus a left action of GL(2,R) on the
space of translation surface structures.

It is clear that this action commutes with the action of the group Diff(M,Σ). In
particular, it defines a left action of GL(2,R) on the Teichmüller space Q(M,Σ, κ).
One easily checks that this action is continuous.

Regarding the period map Θ, the group GL(2,R) acts on the right-hand side
Hom(H1(M,Σ,Z),C) by acting on the target C = R

2. The period map is then
covariant with respect to the actions of GL(2,R) on the source and the image.

It is to be noted that the subgroup SO(2,R) preserves some of the auxiliary
structures associated to a translation surface structure : the complex structure is
invariant, the holomorphic 1-form is replaced by a multiple of modulus 1, the flat
metric is preserved as is the associated area. The group SO(2,R) acts transitively
on the set of constant unitary vectorfields ; therefore, every result proved for the
vertical vectorfield is valid for a non constant unitary vectorfield. Actually, if we
use the full action of GL(2,R), we see that in section 5 we can replace the vertical
and horizontal vectorfield by any two non-proportional constant vectorfields on the
translation surface.

6.5. Proof of proposition 6.2.

Proof. We first observe that the period map is continuous : this follows im-
mediately from the definition of the topology on Teichmüller space. To study the
properties of Θ in the neighbourhood of a point [ζ] in Q(M,Σ, κ), we may assume
that the translation structure ζ has no vertical connection ; otherwise, we could
replace ζ by R∗ζ for some appropriate R ∈ SO(2,R) and use the covariance of the
period map.
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Then we know that the translation surface structure ζ can be obtained by the
zippered rectangle construction from some i.e.m. T on some interval I.

Because the conditions on the length data λ and the suspension data τ in
the zippered rectangle construction are open, the period map, expressed locally by
(λ, τ ), is locally onto. It remains to be seen that the period map is locally injective,
with continuous inverse.

In the zippered rectangle construction, we will always assume (by choosing the
horizontal separatrix S∞ appropriately in proposition 5.6) that the first marked
point A1 of Σ is the left endpoint of the interval I. The surface M was obtained

in section 4.3 from some explicitly defined subset M̂ of C, depending only on π, λ

and τ . We can lift M̂ to a (connected) subset M̂ζ of M̃ (with the left endpoint of
I lifted to ∗) with the property that the developing map Dζ is an homeomorphism

from M̂ζ onto M̂ .
If ζ0, ζ1 are two translation surface structures close to ζ with the same image

by the period map, the subset M̂ of C will be the same for ζ0 and ζ1. There will

be a unique homeomorphism h : M̂ζ0 → M̂ζ1 such that Dζ0 = Dζ1 ◦ h on M̂ζ0 .

It is easily checked that h extends uniquely as a homeomorphism of (M̃, ∗) still
satisfying Dζ0 = Dζ1 ◦h, and that extension is the lift of an homeomorphism of M .
This proves that [ζ0] = [ζ1] in Teichmüller space. This proves local injectivity of
the period map ; the continuity of local inverses is proven along the same lines and
left to the reader. �

6.6. Geometric structures on Teichmüller space. First, we can use the
locally injective restrictions of the period map as charts defining a structure of
complex manifold of complex dimension d = 2g + s− 1.

This complex manifold will also be equipped with a canonical volume form.
Indeed, we can normalize Lebesgue measure on Hom(H1(M,Σ,Z),R2) by asking
that the lattice Hom(H1(M,Σ,Z),Z2) has covolume 1. We then lift by the period
map this canonical volume to Teichmüller space.

6.7. Examples and remarks. Let us consider the case g = s = 1 of the
torus T with a single marked point {A1}. Fix a basis [ζ1], [ζ2] for the homology
group H1(T, {A1},Z).

In this case, the period map is injective and allows to identify the Teichmüller
space with its image. The image of the period map is

Q(T, {A1}, 1) = {(ζ1, ζ2) ∈ (C∗)2, ζ2/ζ1 /∈ R} .

The two components of Q(T, {A1}, 1) correspond to the two possible orienta-
tions. Restricting to Im ζ2/ζ1 > 0, the map (ζ1, ζ2) → ζ2/ζ1 presents Q(T, {A1}, 1)
as fibered over the upper half-plane H (representing the classical Teichmüller space
of T ) with fiber C∗ (representing the choice of a non-zero holomorphic 1-form).

Remark 6.3. For g � 2, the period map is not injective. Indeed, let γ be a
loop on M which is homologous but not homotopic to 0. We assume that γ∩Σ = ∅.
Let then f be a Dehn twist along γ ; this can be constructed fixing each point of
Σ and thus defining an element of Diff(M,Σ).

If ζ is any translation surface structure on (M,Σ, κ), f∗ζ and ζ will have the
same image by the period map because f induces the identity on H1(M,Σ,Z). On
the other hand, ζ and f∗ζ represent different points in Teichmüller space : indeed,
we will see that [fn

∗ ζ] goes to ∞ in Teichmüller space as n goes to ±∞ in Z.



20 JEAN-CHRISTOPHE YOCCOZ

Remark 6.4. Regarding the relation to “classical” Teichmüller theory classi-
fying the complex structures on compact surfaces, consider the two extremal cases.

Take first s = 2g−2, κ1 = κ2 = · · · = κs = 2 ; this means that the holomorphic
1-form associated with the translation surface structure has only simple zeros, the
generic situation for an holomorphic 1-form. The Teichmüller space Q(M,Σ, κ) of
dimension 2g + s − 1 = 4g − 3 is fibered over the “classical” Teichmüller space
of dimension 3g − 3 ; the fiber of dimension g corresponds to the choice of the
holomorphic 1-form (which form a g-dimensional vector space; however, one has to
exclude the zero form and those having multiple zeros).

Consider now the case s = 1, κ1 = 2g− 2 ; this means that the holomorphic 1-
form has a single zero of maximal multiplicity ; when g � 3, not all Riemann surfaces
of genus g admit such an holomorphic 1-form. Indeed the Teichmüller space has
dimension 2g+s−1 = 2g and the scaling of the holomorphic 1-form corresponds to
1 dimension, hence Q(M,Σ, κ) is fibered over a subvariety of “classical” Teichmüller
space of codimension � g − 2.

6.8. Normalizations.
6.8.1. Normalization of orientation. It is generally convenient to fix an ori-

entation of the orientable topological surface M and then to consider only those
translation surface structures ζ on (M,Σ, κ) which are compatible with the given
orientation. The groups Diff+(M,Σ) and GL+(2,R) act on this subset. We denote
by Q+(M,Σ, κ) the corresponding subset of Teichmüller space.

6.8.2. Normalization of area. Given a translation surface structure ζ compati-
ble with a chosen orientation, let A(ζ) be the surface of M for the area-form ( on
M−Σ ) induced by ζ. It is clear that the function A is invariant under the action of
Diff+(M,Σ) and therefore induces a function still denoted by A on the Teichmüller
space Q+(M,Σ, κ).

We will write Q(1)(M,Σ, κ) for the locus {A = 1} in Q+(M,Σ, κ)). As A is a
smooth submersion, Q(1)(M,Σ, κ) is a codimension 1 real-analytic submanifold of
Q+(M,Σ, κ).

If [ζ] ∈ Q+(M,Σ, κ) and g ∈ GL+(2,R), we have

A(g∗[ζ]) = detg A([ζ]) .

In particular, Q(1)(M,Σ, κ) is invariant under the action of Diff+(M,Σ) and SL(2,R).
Let μ be the canonical volume form on Q+(M,Σ, κ). We write

μ = μ1 ∧
dA

A
;

then μ1 induces on Q(1)(M,Σ, κ) a canonical volume form which is invariant under
the action of Diff+(M,Σ) and SL(2,R).

6.9. he moduli space. The discrete group Mod(M,Σ) acts continuously on
the Teichmüller space Q(M,Σ, κ).

Definition 6.5. The moduli space is the quotient

M(M,Σ, κ) := Q(M,Σ, κ) / Mod(M,Σ) .

The normalized moduli space is the quotient

M(1)(M,Σ, κ) := Q(1)(M,Σ, κ) / Mod+(M,Σ) .
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The action of the modular group Mod(M,Σ) on Q(M,Σ, κ) is proper but not
always free, as we explain below. This means that the moduli space is an orbifold
(locally the quotient of a manifold by a finite group) but not (always) a manifold.

To see that the action is proper, consider as above a universal cover p : (M̃, ∗) →
(M,A1). Let Σ̃ = p−1(Σ). Given a translation surface structure ζ, we can lift the

flat metric defined by ζ to M̃ and consider the distance dζ on Σ̃ induced by this
metric (as length of shortest path). It is clear that this distance only depends on
the class of ζ in Teichmüller space. If ζ, ζ ′ are two translation surface structures,

the distances dζ , dζ′ on ζ̃ are quasiisometric : there exists C � 1 such that

C−1dζ(B,B′) � dζ′(B,B′) � C dζ(B,B′)

for all B,B′ ∈ Σ̃. We write C(ζ, ζ ′) for the best constant C.

Exercise 6.6. Prove that a subset X ⊂ Q(M,Σ, κ) is relatively compact iff
(given any ζ0 ∈ Q(M,Σ, κ)) the quantities C(ζ, ζ0), ζ ∈ X, are bounded.

The distances dζ have the property that any ball of finite radius only contain

finitely many points. On the other hand, the modular group Mod(M,Σ) acts on Σ̃,

and there exists a finite subset Σ̃0 of Σ̃ such that, for any finite subset Σ̃1 of Σ̃, the

set {g ∈ Mod(M,Σ), g(Σ̃0) ⊂ Σ̃1} is finite. Using the compactness criterion given
by the exercise, it is easy to conclude that the action is proper.

To see that the action is not always free, it is sufficient to construct a translation
surface with a non trivial group of automorphisms. Start with an integer k � 2 and
k copies of the same translation torus T with two marked points A,B. Denote by
Ti, Ai, Bi the ith copy, 1 � i � k. Slit Ti along a geodesic segment AiBi (the same
for all i). For each i, glue isometrically the left side of AiBi in Ti to the right side
of Ai+1Bi+1 ( with (Tk+1, Ak+1, Bk+1) = (T1, A1, B1)). One obtains a translation
surface of genus k with 2 marked points of ramification index k and an obvious
automorphism group cyclic of order k.

6.10. Marked translation surfaces and marked moduli space. From
the point of view of the zippered rectangles construction, it is more convenient to
consider translation surfaces with an additional marking.

Indeed, if the construction starts from an i.e.m. T on an interval I, we have
said above that we always take the left endpoint of I as the first marked point A1

of the set Σ on the surface M . But the interval I itself appears on the surface as
an outgoing separatrix of the horizontal vector field.

Definition 6.7. A marked translation surface is a translation surface
(M,Σ, κ, ζ) with a marked outgoing horizontal separatrix coming out of A1.

Obviously, we require that an isomorphism between marked translation surfaces
should respect the marked horizontal separatrices. We can then define a Teichmüller

space Q̃(M,Σ, κ) of marked translation surfaces. It is a κ1-fold cover of Q(M,Σ, κ),
because there are κ1 possible choices for an horizontal separatrix out of A1. In

particular, when κ1 = 1, the marking is automatic and Q̃(M,Σ, κ) = Q(M,Σ, κ).
On the other hand, it is quite obvious that a marked translation surface cannot

have an automorphism distinct from the identity. Therefore, the modular group

Mod(M,Σ) acts freely on Q̃(M,Σ, κ) and the quotient space, that we denote by

M̃(M,Σ, κ), is now a complex manifold. This moduli space is a κ1-fold ramified
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covering of the moduli space M(M,Σ, κ). Normalizing orientation and area gives

a codimension 1 real-analytic submanifold M̃(1)(M,Σ, κ).

6.11. In the following sections, we will present the proofs of the following
results, obtained independently by H. Masur [Ma] and W. Veech [Ve2].

Theorem 6.8. Almost all i.e.m. are uniquely ergodic.

The combinatorial data are here fixed and “almost all” refer to the choice of
length data according to Lebesgue measure.

Theorem 6.9. The normalized moduli space M̃1(M,Σ, κ) has finite volume.
The action of the group SL(2,R) on it is ergodic.

We will follow the approach of W. Veech [Ve5]. The Teichmüller flow on the

moduli space M̃(1)(M,Σ, κ) is the restriction of the action of SL(2,R) to the 1-

parameter diagonal subgroup

(
et 0
0 e−t

)
. The ergodicity of the action will follow

from the ergodicity of this flow (stronger properties of this flow will be presented
in later sections).

Let us consider what happens in the simple case g = s = 1. Then, the
normalized Teichmüller space is Q(1)(M,Σ, κ) = SL(2,R), the modular group
Mod+(M,Σ) is SL(2,Z), the normalized moduli space is the space of normalized
lattices SL(2,R) / SL(2,Z) which has unit area and on which SL(2,R) obviously
acts transitively. The Teichmüller flow is essentially the geodesic flow on the mod-
ular surface. It is well known that this flow is closely related to the classical con-
tinuous fraction algorithm. G. Rauzy and W. Veech, introduced a renormalization
algorithm for i.e.m., later refined by A. Zorich, which plays the role of the classical
continuous fraction algorithm for more than 2 intervals. This will be the subject of
the next sections.

7. The Rauzy-Veech algorithm

7.1. The aim of the Rauzy-Veech algorithm [Rau, Ve1, Ve2], to be defined
below, is to understand the dynamics of an i.e.m. by looking at the return map on
shorter and shorter intervals. What makes this general “renormalization” method
available is the fact that the return maps are still i.e.m. with bounded combinatorial
complexity : actually, by choosing the small intervals carefully, they have the same
number of singularities than the i.e.m. we started with.

7.2. Definition of one step of the algorithm. Let T be an i.e.m. on
an interval I, with irreducible combinatorial data (A, πt, πb). Let d = #A; let
ut
1 < · · · < ut

d−1 be the singularities of T , ub
1 < · · · < ub

d−1 be the singularities of

T−1.
The step of the algorithm is defined for T if ut

d−1 
= ub
d−1. Observe that if

ut
d−1 = ut

d−1, then (0, ut
d−1, u

b
d−1) is a connection for T (see Subsection 5.3).

When ut
d−1 
= ub

d−1, we define Ĩ to be the open interval with the same left

endpoint than I and right endpoint equal to max(ut
d−1, u

b
d−1).

Let T̃ be the return map of T to Ĩ. To understand T̃ , let us introduce the
letters αt, αb satisfying πt(αt) = πb(αb) = d which correspond to the intervals at
the right of I before and after applying T . The hypothesis ut

d−1 
= ub
d−1 corresponds

to λαt

= λαb

. We distinguish two cases.
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1) ub
d−1 > ut

d−1 ⇐⇒ λαt
> λαb

: We say that αt is the winner and αb is the
loser of this step of the algorithm, and that the step is of top type. We
have in this case

T̃ (x) =

{
T (x) if x /∈ Itαb

T 2(x) if x ∈ Itαb

We use the same alphabet to label the intervals of T̃ ; we define :

Ĩtα = Itα for α 
= αt ,

Ĩtαt
= Itαt

∩ Ĩ = (ut
d−1, u

b
d−1) ,

Ĩbα = Ibα for α 
= αb, αt ,

Ĩbαb
= T (Ibαb

) ,

Ĩbαt
= Ibαt

/Ĩbαb
.

The new length data are given by

λ̃α =

{
λα if α 
= αt

λαt
− λαb

if α = αt .

The new combinatorial data are given by

π̃t = πt ;

π̃b(α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

πb(α) if πb(α) � πb(αt),

πb(αt) + 1 if α = αb ,

πb(α) + 1 if πb(αt) < πb(α) < d .

2) ut
d−1 > ub

d−1 ⇐⇒ λαb
> λαt

: We now say that αb is the winner, αt the
loser, and the step is of bottom type. We have

T̃−1(x) =

{
T−1(x) if x /∈ Ibαt

T−2(x) if x ∈ Ibαt

(we could also write the formulas for T̃ ; we prefer to write them for

T̃−1 in order to keep more obvious the bottom/top time symmetry of the
setting). The new labelling is

Ĩbα = Ibα for α 
= αb ,

Ĩbαb
= Ibαb

∩ Ĩ = (ub
d−1, u

t
d−1) ,

Ĩtα = Itα for α 
= αt, αb ,

Ĩtαt
= T−1(Itαt

) ,

Ĩtαb
= Itαb

/Ĩtαt
.
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The new length data are given by

λ̃α =

{
λα if α 
= αb

λαb
− λαt

if α = αb .

The new combinatorial data are given by

π̃b = πb ;

π̃t(α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

πt(α) if πt(α) � πt(αt),

πt(αb) + 1 if α = αt ,

πt(α) + 1 if πt(αb) < πt(α) < d .

Exercise 7.1. Show that the combinatorial data (π̃t, π̃b) for T̃ are irreducible.

Exercise 7.2. Show that if T has no connection, then T̃ also has no connection.

This means that for i.e.m. with no connections, it is possible to iterate indefi-
nitely the algorithm ; the converse is also true, see below.

Exercise 7.3. Check that the return map of T on an interval I ′ with the same

left endpoint than I and |Ĩ| < |I ′| < |I| is an i.e.m with d+ 1 intervals.

In the case of 2 intervals, there is only one possible set of irreducible combina-
torial data and the algorithm is given by

(λA, λB) �−→
{

(λA − λB, λB) if λA > λB,

(λA, λB − λA) if λB > λA .

the iteration of which gives the classical continued fraction algorithm.

7.3. Rauzy diagrams. Let A be an alphabet. For irreducible combinatorial
data π = (πt, πb) , we have defined in the last section new combinatorial data
π̃ = (π̃t, π̃b) depending only on (πt, πb) and the type (top or bottom) of the step ;
we write π̃ = Rt(π) or π̃ = Rb(π) accordingly.

A Rauzy class on the alphabet A is a set of irreducible combinatorial data π =
(πt, πs) which is invariant under both Rt and Rb and minimal with this property.
The associated Rauzy diagram has the elements of this set as vertices. The
arrows of the diagram join a vertex to its images by Rt and Rb and are of top and
bottom type accordingly.

The winner of an arrow of top type (resp. bottom type) starting at (πt, πb) is
the letter αt (resp. αb) such that πt(αt) = d (resp. πb(αb) = d). The loser is the
letter αb (resp. αt) such that πb(αb) = d (resp. πt(αt) = d).

Exercise 7.4. Show that the maps Rt, Rb are invertible and that each vertex
is therefore the endpoint of exactly one arrow of top type and an arrow of bottom
type.

Exercise 7.5. Let γ, γ′ be arrows in a Rauzy diagram of the same type such
that the endpoint of γ is the starting point of γ′ ; show that γ, γ′ have the same
winner.
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Figure 2

For d = 2 or 3, there is, up to equivalence, only one Rauzy diagram pictured
(Figure 2).

For d = 4, there are two non-equivalent Rauzy diagrams pictured (Figure 3).
They correspond respectively (see next section) to the cases g = 2, s = 1 and
g = 1, s = 3.

7.4. The basic step for suspensions. Recall from section 4.1 that for com-
binatorial data π = (πt, πb), suspension data (τα)α∈A must satisfy

(Sπ)
∑

πt(α)<k

τα > 0 ,
∑

πb(α)<k

τα < 0 for all 1 < k � d .

We denote by Θπ the convex open cone in R
A defined by these inequalities.

The main reason to consider Θπ is the following property. Set π̃ = Rt(π). Define
also, for τ ∈ R

A

τ̃α =

{
τα if α 
= αt

ταt
− ταb

if α = αt .

where πt(αt) = πb(αb) = d .

Lemma 7.6. The linear map τ → τ̃ sends Θπ onto Θπ̃ ∩ {
∑

α τ̃α < 0} .

There is a symmetric statement exchanging top and bottom.

Proof. Let τ ∈ Θπ. As π̃t = πt, and τ̃α = τα for πt(α) < d, the first half of
the conditions for (Sπ̃) are satisfied. Let � = πb(αt) ; for k � �, we have∑

π̃b(α)<k

τ̃α =
∑

πb(α)<k

τ̃α =
∑

πb(α)<k

τα < 0 .

Next we have∑
π̃b(α)�	

τ̃α =
∑

πb(α)<	

τα + ταt
− ταb

=
∑

πb(α)<	

τα −
∑

πt(α)<d

τα +
∑

πb(α)<d

τα < 0 ,

and for � < k � d ∑
π̃b(α)�k

τ̃α =
∑

πb(α)�k−1

τα < 0 .
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Figure 3

Conversely, let τ̃ ∈ Θπ̃ ∩ {
∑

τ̃α < 0}. Again the first half of (Sπ) is satisfied.
For the second half, we have

∑
πb(α)<k

τα =

⎧⎨
⎩

∑
π̃b(α)<k τα if 1 < k � �,

∑
π̃b(α)�k τα if � < k � d .

Thus, condition (Sπ) is satisfied. �

Let then T be an i.e.m. on an interval I, with (irreducible) combinatorial
data π = (πt, πb) on an alphabet A. Assume that the condition λαt


= λαb
(with

πt(αt) = πb(αb) = d) for one step of the algorithm is satisfied. Let τ ∈ Θπ be
suspension data satisfying the required conditions (Sπ).

If the step is of top type, we define

τ̃α =

{
τα if α 
= αt

ταt
− ταb

if α = αt .

If the step is of bottom type, we define

τ̃α =

{
τα if α 
= αb

ταb
− ταt

if α = αb .
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Figure 4. M(π, λ, τ ) M(π̃, λ̃, τ̃ )

(The formulas are the same than for the length data).
We have explained in Section 4 how to construct a translation surfaceM(π, λ, τ )

from the given data by the zippered rectangle construction. Writing π̃ = Rt(π) or

Rb(π) according to the type of the step and writing λ̃ for the length data of T̃ as

above, we construct another translation surface M(π̃, λ̃, τ̃ ) from these new data.

An easily checked but fundamental observation is thatM(π, λ, τ ) andM(π̃, λ̃, τ̃ )
are canonically isomorphic. This is best seen by contemplating the picture, Fig-
ure 4.

The canonical bases of the homology groups H1(M,Σ,Z), H1(M − Σ,Z) are
related as follows : If α0 is the winner and α1 is the loser of the step of the
algorithm, one has, with the notations of Section 4.5,

[ζ̃α] = [ζα] if α 
= α0 ,

[ζ̃α0
] = [ζα0

]− [ζα1
] ,

[θ̃α] = [θα] if α 
= α1 ,

[θ̃α1
] = [θα1

] + [θα0
] .

7.5. Formalism for the iteration of the algorithm. Given an i.e.m. T0

on an interval I(0) with no connection and irreducible combinatorial data (A, π(0)),
the iteration of the Rauzy-Veech algorithm will produce a sequence of i.e.m. Tn

on shorter and shorter intervals I(n) with combinatorial data π(n) (on the same
alphabet A ). The sequence (π(n))n�0 represents an infinite path in the Rauzy

diagram D containing π(0) which is determined by its starting vertex π(0) and the
types of the successive arrows.

To relate the length vectors and the translation vectors, as well as the suspen-
sion data that we could associate to the i.e.m., we introduce the following matrices
in SL(ZA).

Let γ be an arrow of D, with winner α and loser β. We define

Bγ = I+ Eβα

where I is the identity matrix and Eβα is the elementary matrix with only one
non-zero coefficient, equal to 1, in position β α. We extend the definition to a path
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γ = (γ1, · · · , γn) defining
Bγ = Bγn

· · ·Bγ1
.

The matrices Bγ belong to SL(ZA) and have nonnegative coefficients. For

n � 0, let λ(n) be the length vector for Tn (considered as a row vector), let δ(n)

be the translation vector (considered as a column vector) ; for m � n, let γ(m,n)
the finite path in D from π(m) to π(n) determined by the algorithm. The following
formulas are trivially checked when n = m+1 and then extended by functoriality :

λ(m) = λ(n) Bγ(m,n) ,

δ(n) = Bγ(m,n) δ(m) .

The following interpretation of the coefficients of the matrices Bγ(m,n) is also
immediately checked by induction on n−m : for α, β ∈ A, the coefficient of Bγ(m,n)

in position αβ is the time spent in I
(m)
β by a point in I

(n)
α under iteration by Tm

before coming back to I(n). In particular, the sum over β of the row of the matrix

of index α gives the return time under Tm of I
(n)
α in I(n).

7.6. Symplecticity of Bγ . Let γ be a finite path in a Rauzy diagram D,
starting at a vertex π and ending at a vertex π′. Let Ωπ,Ωπ′ be the matrices
associated to π, π′ as in subsection 3.4. We have seen in subsection 4.5 that rk Ωπ =
rk Ωπ′ = 2g, where g is the genus of the translation surface obtained by the
zippered rectangle construction from any vertex in D (and any choice of length and
suspension data).

From the relation between length and translation vectors given in subsection
3.4 and in the last section, we obtain

Ωπ′ = Bγ Ωπ
tBγ .

From this we see that :

• B−1
γ , acting on row vectors, sends the kernel of Ωπ onto the kernel of Ωπ′ ;

• Bγ , acting on column vectors, sends the image of Ωπ onto the image of
Ωπ′ ;

• if we equip the quotients R
A/KerΩπ � ImΩπ, R

A/Ker Ωπ′ � ImΩ′
π

of the symplectic structures determined by Ωπ,Ωπ′ respectively, then Bγ

(acting on column vectors) is symplectic w.r.t these structures.

Proposition 7.7. One can choose, for each vertex π of D, a basis of row
vectors for KerΩπ such that, for all γ : π → π′, the matrix of the restriction of

B−1
γ w.r.t. the selected bases of KerΩπ, KerΩπ′ is the identity. In particular, if γ

is a loop at π, the restriction of B−1
γ to the kernel of Ωπ is the identity.

Proof. We construct, for each vertex π of D, an isomorphism iπ from KerΩπ

onto the same subspace K of RA, such that iπ′◦ tB−1
γ = iπ for any arrow γ : π → π′.

Choosing a basis for K and transferring it to each KerΩπ via iπ then achieves the
required property.

For 0 � k < d, let ut
k, u

b
k be the linear forms on the space of row vectors defined

by

ut
k(λ) =

∑
πtα�k

λα ,
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ub
k(λ) =

∑
πbα�k

λα .

For each vertex π, define linear maps itπ, i
b
π of RA into itself by

itπ(λ) = (ut
πt(α)−1)α∈A, ibπ(λ) = (ub

πb(α)−1)α∈A.

Then the map (itπ, i
b
π) : R

A → R
A×R

A is injective and KerΩπ is the inverse image
by this map of the diagonal of RA × R

A. Let Kπ be the image of KerΩπ by itπ; it
is also the image by ibπ. Let iπ be the common restriction of itπ, i

b
π to KerΩπ.

When we perform a single step of the algorithm, corresponding to an arrow
γ : π → π′, of top type for instance, the λα with πt(α) < d and πt itself do not
change, hence the ut

k for 0 � k < d stay the same. This means that Kπ = Kπ′ and
iπ′ ◦ tB−1

γ = iπ. �

7.7. Complete paths.

Definition 7.8. A (finite) path in a Rauzy diagram is complete if every
letter in A is the winner of at least one arrow in the path. An infinite path in a
Rauzy diagram is ∞-complete if every letter in A is the winner of infinitely many
arrows in the path. Equivalently, an ∞-complete path is one can be written as
the concatenation of infinitely many complete paths.

This is a relevant notion because of the following characterization of paths
associated to an i.e.m.

Proposition 7.9. An infinite path in a Rauzy diagram is associated to some
i.e.m. iff it is ∞-complete.

We prove first that a path associated to an i.e.m. is ∞-complete, then an
important auxiliary result, and then that an ∞-complete path is associated to
some i.e.m .

Proof. Let A′ be the set of letters which are the winners of at most finitely
many arrows in the path γT associated to an i.e.m. T = T0.

Let (Tn)n�0 be the sequence of i.e.m. obtained from T by iterating the Rauzy-

Veech algorithm, λ(n), π(n) the length and combinatorial data of Tn.
There exists n0 such that no letter in A′ is a winner for n � n0. Then the

lengths λ
(n)
α for α ∈ A′, n � n0, are independent of n.

At each step, the length of the loser is subtracted from the length of the winner.
As lengths are always positive, there must exist n1 � n0 such that no letter in A′

is a loser for n � n1. This means that, for α ∈ A′, both π
(n)
t (α) and π

(n)
b (α)

are non-decreasing with n for n � n1, hence there exists n2 � n1 such that these
quantities are independent of n for n � n2.

Let α ∈ A′, β ∈ A − A′. We claim that π
(n2)
t (α) < π

(n2)
t (β) and π

(n2)
b (α) <

π
(n2)
b (β). As A − A′ is not empty and π(n2) is irreducible, this implies that A′ is

empty, and therefore γT is ∞-complete.

Assume by contradiction, for instance, that π
(n2)
t (β) < π

(n2)
t (α). We have

π
(n)
t (α) = π

(n2)
t (α) for n � n2, hence also π

(n)
t (β) = π

(n2)
t (β) for n � n2. Thus β is

not the winner of an arrow of top type for n � n2. As β ∈ A−A′, β is the winner
of an arrow of bottom type for some n � n2, which gives

π
(n+1)
t (α) = π

(n)
t (α) + 1,
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a contradiction. The claim is proved; this completes the proof of the first part of
the proposition. Before proving the second half of Proposition 7.9, we give some
Corollaries of the first half.

Corollary 7.10. The length of the interval I(n) on which Tn acts goes to zero
as n goes to +∞.

Proof. Each length λ
(n)
α is a non-increasing function of n hence has a limit

λ
(∞)
α . Let ε > 0, n0 such that λ

(n)
α � λ

(∞)
α + ε for all n � n0, α ∈ A.

Let β ∈ A. There exists n1 > n0 such that β is the winner of the arrow of
index n1−1 but not of the next arrow of index n1. Then β is the loser of the arrow
of index n1. Let α be the winner of this arrow. We have

λ(n1)
α = λ(n1−1)

α − λ
(n1−1)
β ,

hence λ
(∞)
β � λ

(n1−1)
β � ε. As ε is arbitrary, we have λ

(∞)
β = 0 for all β ∈ A. �

Corollary 7.11. The Rauzy-Veech algorithm stops iff the i.e.m. has a con-
nection.

Proof. We already know that the algorithm does not stop if the i.e.m. has no
connection. Assume that T has a connection (m,ut, ub) ; here ut is a singularity of
T , ub a singularity of T−1 and m is a nonnegative integer such that Tm(ub) = ut.

Assume that one can apply the algorithm once to get an i.e.m. T̃ on an interval Ĩ ;

the intersection {ub, T (ub), . . . Tm(ub) = ut}∩Ĩ will produce a connection (m̃, ũt, ũb)

for T̃ with m̃ � m, and m̃ = m iff {ub, T (ub), . . . , Tm(ub)} ⊂ Ĩ. When we iterate
the algorithm, the length of the interval goes to zero unless the algorithm stops ;
this must therefore happen at some point. �

Proposition 7.12. [MmMsY, Y1] Let γ be a finite path in a Rauzy diagram
that can be written as the concatenation of 2d− 3 complete paths (where d = #A).
Then all coefficients of Bγ are positive.

Proof. Write γ = γ
1
∗ · · · ∗ γ

2d−3
, with each γ

i
complete, and let γ(i) =

γ
1
∗ · · · ∗ γ

i
. Recall that the diagonal coefficients of Bγ (for any path γ) are always

positive. It is therefore sufficient to show that, for any distinct letters α1, α0 in A,
we have (Bγ(i))α0α1

> 0 for some i.

As α1 is the winner of an arrow in γ
1
, the loser of which we call α2, we have

(Bγ(1))α2α1
> 0.

When d = 2, we must have α2 = α0 and the result is achieved. Assume d > 2 and
α2 
= α0. Because γ

2
and γ

3
are complete, there exists in γ

2
∗ γ

3
an arrow with

winner α3 
= α1, α2 immediately followed by an arrow with winner α1 or α2. This
leads to

(Bγ(3))α3α1
> 0 .

If d = 3, we must have α0 = α3 and we are done. If d > 3 and α3 
= α0, we go
on in the same way : there exists in γ

4
∗ γ

5
an arrow with winner α4 
= α1, α2, α3

immediately followed by an arrow with winner α1, α2 or α3. This leads to

(Bγ(5))α4α1
> 0 .

and we go on . . . �
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End of proof of Proposition 7.9 : We want to show that if an infinite path γ
can be written as the concatenation γ

1
∗ γ

2
∗ γ

3
. . . of complete paths, then γ is

associated to some i.e.m. with no connection by the Rauzy-Veech algorithm.
Define the convex open cone

Cn = (R∗
+)

ABγ
n
Bγ

n−1
. . . Bγ

1

This is the set of length data (for i.e.m having the starting point of γ as combina-
torial data) which lead to a path starting with γ

1
∗ · · · ∗ γ

n
. The set of length data

corresponding to γ is therefore

C(γ) =
⋂
n�0

Cn .

By Proposition 2, the closure of Cn+2d−3 is contained in Cn ∪ {0}. Therefore

{0} ∪ C(γ) =
⋂
n�0

Cn .

which shows that C(γ) is not empty. �

We will describe more precisely C(γ) in the next section.

8. Invariant measures

8.1. Invariant measures and topological conjugacy. Let T be an i.e.m
on an interval I, with combinatorial data π = (πt, πb) on an alphabet A. We assume
that T has no connection and denote by γ = γT the infinite path associated to T
in the Rauzy diagram D of π.

Let C(γ) be the convex cone considered above ; its elements are the length
data of the i.e.m with combinatorial data π which have no connection and γ as
associated path. Let M(T ) be the set of finite measures on I invariant under T .

The sets C(γ) and M(T ) are in one-to-one correspondence as follows. Let
λ ∈ C(γ) and let Tλ be an i.e.m with these length data (and combinatorial data π)
on an interval Iλ. Let u (resp. uλ) be the largest singularity of T−1 (resp. T−1

λ ).
The sets (Tn(u))n�0 and (Tn

λ (uλ))n�0 are dense in I and Iλ respectively because
T and Tλ are minimal, having no connection. The bijection

H : Tn
λ (uλ) �−→ Tn(u)

is increasing because T and Tλ have the same path for the Rauzy-Veech algorithm.
Therefore H extends uniquely to an homeomorphism from Iλ onto I, which obvi-
ously satisfies

H ◦ Tλ = T ◦H
Thus, Tλ and T are topologically conjugated. The image under H∗ of the Lebesgue
measure on Iλ is a measure on I (of total mass |Iλ|) which is invariant under T .

Conversely, let μ be a finite measure invariant under T . We set, for α ∈ A
λα = μ(Itα) = μ(Ibα) .

We also define, for x ∈ I

K(x) = μ({y ∈ I ; y < x}) .
As T is minimal, μ has no atom and the support of μ is I ; therefore, K is an
homeomorphism from I onto (0, μ(I)) =: Iμ.
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Define then

Tμ = K ◦ T ◦K−1 .

Then Tμ preserves the Lebesgue measure and it is easy to check that Tμ is an i.e.m
on Iμ with combinatorial data π and length data λ.

It is immediate to check that the two maps C(γ) → M(T ), M(T ) → C(γ) just
defined are inverse to each other.

8.2. Number of invariant ergodic probability measures. Let T be an
i.e.m on an interval I. Let g be the genus of the translation surfaces that can
be constructed from T by the zippered rectangle construction. Let M(T ) be the
cone of finite invariant measures for T , which can be identified with the cone C(γ)
determined by the infinite path γ associated to T by the Rauzy-Veech algorithm.

Proposition 8.1. The cone C(γ)∪{0} is a closed simplicial cone of dimension
� g. The number of invariant ergodic probability measures is therefore � g.

Proof. We have seen in the second part of the proof of Proposition 7.9 in
Subsection 7.7 that C(γ) ∪ {0} is a closed cone. That this closed cone is simplicial
follows from the identification of C(γ) withM(T ) : extremal rays of C(γ) correspond
to ergodic invariant probability measures and invariant probability measures can
be written in a unique way as convex combination of ergodic ones.

It remains to be seen that the subspace E of RA generated by C(γ) has di-
mension � g. Let (A, π) be combinatorial data for T , let Ω be the corresponding
antisymmetric matrix.

We first claim that E ∩ Ker Ω = {0}. Indeed, let v, v′ ∈ C(γ) such that
v − v′ ∈ Ker Ω. Write γ(n) for the initial part of γ of length n. According to the
Proposition in Section 7.6, the vector (v − v′)B−1

γ(n) depends only on the endpoint

of γ(n). On the other hand, from Corollary 7.10 in Subsection 7.7, we have that
v B−1

γ(n) and v′ B−1
γ(n) go to zero. Hence v = v′, proving the claim.

We now show that the image of E in R
A/Ker Ω is isotropic for the symplectic

form determined by Ω. Otherwise, there would exist v, v′ ∈ C(γ) with
v Ω tv′ > 0 .

Again, v B−1
γ(n), v

′ B−1
γ(n) go to zero. But according to Section 7.6 we have

v B−1
γ(n) Ωn

tB−1
γ(n)

tv′ = vΩ tv′ ,

where Ωn is the matrix associated to the endpoint of γ(n). This gives a contradic-
tion; as rk Ω = 2g, we conclude that dim E � g. �

In the next Section, we see that the bound in the proposition is optimal. How-
ever, as mentioned in Subsection 6.11, a theorem of Masur and Veech guarantees
that C(γ) is a ray for almost all i.e.m.

8.3. Examples of non uniquely ergodic i.e.m. [Kea1, KeyNew]
We will construct in a Rauzy diagram of genus g an infinite path γ which is

an infinite concatenation of complete paths but has the property that the subspace
generated by C(γ) has dimension g.

Let d � 2. Define A(d) = {1, . . . , d} and

π
(d)
t (k) = k , π

(d)
b (k) = d+ 1− k ,



INTERVAL EXCHANGE MAPS AND TRANSLATION SURFACES 33

for 1 � k � d. Let R(d) be the Rauzy class for π(d) = (π
(d)
t , π

(d)
b ), D(d)

the associated Rauzy diagram. From Section 4.4, we check that the translation
surfaces constructed from these combinatorial data through the zippered rectangle
construction satisfy :

• if d is even, d = 2g, s = 1, k1 = 2g − 1 ;
• if d is odd, d = 2g + 1 , s = 2 , k1 = k2 = g .

The diagrams D(d) for d = 2, 3, 4 have been pictured in Subsection 7.3. Their
structure can be described as follows.

There is a canonical involution i of D(d) defined on vertices by i(π) = π̂ with

π̂t(k) = πb(d+ 1− k) ,

π̂b(k) = πt(d+ 1− k) .

The unique fixed point of i is π(d), and i changes the type of arrows from top
to bottom and back. If one defines

Dt(d) = {π ∈ R(d) , πt(2) = 2}
Db(d) = {π ∈ R(d) , πb(d− 1) = 2}

then i(Dt(d)) = Db(d) , i(Db(d)) = Dt(d) , Dt(d) ∩ Db(d) = {π(d)} and any arrow
has both endpoints in Dt(d) or both endpoints in Db(d). Moreover, if one defines,
for 3 � k � d

Db,k(d) = {π ∈ R(d) ; πb(d− 1) = 2 , πt(k) = 2} ,

then Db,k(d) is isomorphic to Dt(k − 1) through an isomorphism which respects
type, winner and loser.

A cycle of length d − 1 of arrows of bottom type starting at π(d) connects
together the vertex in Db,k(d) corresponding to π(k−1) in Dt(k − 1).

Let us now assume that d = 2g is even. Consider, for positive integersm1, . . . ,mg,

the loop γ(m1, . . . ,mg) at π
(d) in D(d) whose successful winners are (in exponential

notation for repetition)

(1d−22m11)d21(dd−44m23)d2 . . . ((d− 3)2(d− 2)mg−1(d− 3))d2(d− 1)mg .

This is a complete loop in D(d).
Assume that 0 � m1 � m2 · · · � mg and let e1, . . . , ed be the canonical basis

of Rd. One checks that

• e1Bγ and e2Bγ have size ∼ m1 in the approximate direction of f1 := e2;
• e3Bγ and e4Bγ have size ∼ m2 in the approximate direction of f2 :=

e4 + e1;
• e5Bγ and e6Bγ have size ∼ m3 in the approximate direction of f3 :=
e6 + e3 + 2e1;

•
...
...

• ed−3Bγ and ed−2Bγ have size ∼ mg−1 in the approximate direction of
fg−1 := ed−2 + ed−5 + · · ·+ 2g−3e1;

• ed−1Bγ and edBγ have size ∼ mg in the approximate direction of fg :=
ed−1 + ed−3 + · · ·+ 2g−2e1.

Observe that f1, . . . , fg are linearly independent.
Now take a sequence (m	)	>0 increasing very fast, define

γi = γ(mig+1,mig+2, . . . ,mig+g−1),
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γ(i) = γ0 ∗ γ1 · · · ∗ γi−1,

γ = γ0 ∗ γ1 ∗ . . .
One checks that for all i > 0 and 1 � k � g, the vectors e2k−1 Bγ(i) and e2k Bγ(i)

have approximate directions fk ; more precisely, as i → ∞, their directions converge
to the same limit fk(∞) which can be chosen arbitrarily close to fk. In particular, if
the sequence (m	)	>0 increases fast enough, the limit directions fk(∞), 1 � k � g,
are linearly independent, which implies that the vector space spanned by C(γ) has
dimension g.

9. Rauzy-Veech dynamics and Teichmüller flow

We establish in this section a relation between the Rauzy-Veech continued
fraction algorithm and the Teichmüller flow on the moduli space M(M,Σ, κ) that
generalizes the classical case of the usual continued fraction and the geodesic flow
on the modular surface.

This will also exhibit the moduli space in a form which allows to check that its
volume is finite. Throughout this section, we fix an alphabet A, a Rauzy class R
and denote by D the associated Rauzy diagram.

9.1. Rauzy-Veech dynamics. With

Δ = {λ ∈ R
A; λα > 0, ∀ α ∈ A },

we set

Δ(D) = R× P(Δ).

We denote by V+ : Δ(D) → Δ(D) the map induced by one step of the Rauzy-Veech
algorithm. More precisely, let γ : π → π′ be an arrow of D. Let α0 be the winner
of γ and let α1 be the loser of γ. Define

Δγ = {λ ∈ Δ; λα0
> λα1

}.
Then the domain of V+ is the union, over all arrows γ, of the {π}×P(Δγ) and the
restriction of V+ to this set is induced by

(π, λ) �→ (π′, λB−1
γ ).

Each simplex in Δ(D) (identified by a vertex π of D) contains two components
of the domain of V+ (associated to the two arrows starting at π), each being sent
to a full simplex of Δ(D) (corresponding to the endpoint of the arrow). The map
V+ is therefore essentially 2-to-1.

Introducing the suspension variables τ leads to a map V which is essentially
the natural extension of V+. Let

S(D) =
⊔
R

({π} × P(Δ)× P(Θπ)),

where we recall from Subsection 7.4 that

Θπ = {τ ∈ R
A;

∑
πt(α)<k

τα > 0,
∑

πb(α)<k

τα < 0, ∀ 1 < k � d}.

For an arrow γ : π → π′ of D, we set

Θγ = {τ ∈ Θπ′ ; ε
∑
α

τα > 0},
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where ε = −1 (resp.ε = +1) if γ is of top type (resp. bottom type). Define then

Sγ(D) = {π} × P(Δγ)× P(Θπ),

Sγ(D) = {π′} × P(Δ)× P(Θγ).

The domain of V : S(D) → S(D) is the (disjoint) union, over all arrows of D, of
the Sγ(D); the image of V is the (disjoint) union of the Sγ(D), the restriction of V
to Sγ(D) sends this set in a one-to-one way onto Sγ(D) through the map induced
by

(π, λ, τ ) �→ (π′, λB−1
γ , τB−1

γ ).

The map V is therefore, up to codimension one sets, invertible.

9.2. Rauzy diagrams and Teichmüller spaces. Let π be an element of R.
Recall that the canonical length and suspension data are given by

λcan
α = 1, τ canα = πb(α)− πt(α), ∀ α ∈ A.

With these data, we construct (using the zippered rectangle construction of Subsec-
tion 4.3, or the simplified version of Subsection 4.2) a translation surface
(Mπ,Σπ, κπ, ζπ).

On the other hand, starting from data (λ, τ ) ∈ Δ×Θπ, the zippered rectangle
construction produces a translation surface which is a deformation of (Mπ,Σπ, κπ, ζπ),
i.e homeomorphic to (Mπ,Σπ, κπ) through an homeomorphism whose isotopy class
is canonically defined. We therefore obtain a canonical embedding

iπ : Δ×Θπ −→ Q̃(Mπ,Σπ, κπ)

in the marked Teichmüller space. This is an embedding because it is a local section
of the period map.

Let now γ : π → π′ be an arrow of D. The data λ = λcanBγ , τ = τ can pro-
duce a translation surface (Mπ,Σπ, κπ, ζ

0
π); the data λ = λcan, τ = τ canB−1

γ with

the combinatorial data π′ produce a translation surface (Mπ′ ,Σπ′ , κπ′ , ζ1π′). As ob-
served in Subsection 7.4, these two translation surfaces are canonically isomorphic.
This means that there exists an homeomorphism between the topological surfaces
(Mπ,Σπ, κπ) and (Mπ′ ,Σπ′ , κπ′) whose isotopy class is canonically defined by γ.
This leads to a canonical homeomorphism

jγ : Q̃(Mπ,Σπ, κπ) −→ Q̃(Mπ′ ,Σπ′ , κπ′)

between marked Teichmüller spaces.
Let us observe that the isomorphic translation surfaces (Mπ,Σπ, κπ, ζ

0
π),

(Mπ′ ,Σπ′ , κπ′ , ζ1π′) above define a point in

iπ(Δπ ×Θπ) ∩ j−1
γ (iπ′(Δπ′ ×Θπ′)).

As a consequence the union

iπ(Δπ ×Θπ) ∪ j−1
γ (iπ′(Δπ′ ×Θπ′))

is a connected subset of Q̃(Mπ,Σπ, κπ).
We introduce the groupoid Γ(D) of paths in the non-oriented Rauzy diagram

D̃: the vertices of D̃ are those of D (i.e the elements of the Rauzy class R) but for

each arrow γ : π → π′ in D we have two arrows γ+ : π → π′ and γ− : π′ → π in D̃.
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The groupoid Γ(D) is the groupoid of oriented paths in D̃, quotiented out by
the cancellation rules γ+ ∗ γ− = γ− ∗ γ+ = 1. We denote by Γπ(D) the subset of

reduced paths starting at π and by π1(D̃, π) the group of reduced loops at π.
For each arrow γ of D, we have defined above an isomorphism jγ between

marked Teichmüller spaces. There is a unique way to extend functorially this
definition to Γ(D): for each γ ∈ Γ(D) starting at π and ending at π′, we have an
isomorphism

jγ : Q̃(Mπ,Σπ, κπ) −→ Q̃(Mπ′ ,Σπ′ , κπ′),

and jγ1∗γ2
= jγ2

◦ jγ1
whenever γ1 ∗ γ2 is defined. In particular, when γ ∈ π1(D̃, π),

jγ is an automorphism of Q̃(Mπ,Σπ, κπ). We obtain in this way a group homomor-
phism

γ �−→ jγ ,

π1(D̃, π) −→ Mod+(Mπ,Σπ) .

We now define

Uπ =
⋃

Γπ(D)

j−1
γ (iπ′(Δπ′ ×Θπ′)) ,

where π′ is the endpoint of γ ∈ Γπ(D). It follows immediately from the observation

at the end of subsection 9.1 that Uπ is an open connected subset of Q̃(Mπ,Σπ, κπ).

We will denote by Cπ the component of Q̃(Mπ,Σπ, κπ) which contains Uπ.

9.3. The following result shows that, when considering some component C of a

(marked) Teichmüller space Q̃(M,Σ, κ), there is no loss of generality if we assume
that (M,Σ, κ) = (Mπ,Σπ, κπ) (for some appropriate combinatorial data (A, π))
and C = Cπ.

Proposition 9.1. Let (M,Σ, κ) be combinatorial data for a translation surface,

let C be a connected component of the marked Teichmüller space Q̃(M,Σ, κ), and
let U be the open subset of C formed by the translation surface structures in C that
can be obtained through the zippered rectangle construction.

(1) The set C − U has real codimension � 2 in C.
(2) There exist combinatorial data (A, π) and a homeomorphism

g : (Mπ,Σπ, κπ) → (M,Σ, κ) such that the corresponding isomorphism
g∗ of marked Teichmüller spaces satisfy

g∗(Uπ) = U .
(3) Assume that (A′, π′) are combinatorial data and g′ : (Mπ′ ,Σπ′ , κπ′) →

(M,Σ, κ) is an homeomorphism such that

g′∗(Uπ′) ⊂ C.
Then, the Rauzy diagrams D, D′ spanned by π, π′ are isomorphic. More-
over, assuming that D = D′, π = π′, the element of Mod+(Mπ,Σπ)
determined by g−1 ◦ g′ belongs to the image of the group homomorphism

π1(D, π) −→ Mod+(Mπ,Σπ)

defined in the last subsection.

Remark 9.2. It is quite possible that this homomorphism is always onto. This
has been checked for g = 1, with any number of marked points, by Wang Zhiren.
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Proof. Part 1. of the proposition is a consequence of the Proposition 5.7 and
the Corollary 5.6: if a translation surface structure on (M,Σ, κ) has no vertical
connection or no horizontal connection, it can be represented with the appropriate
marking as a suspension through the zippered rectangle construction. Having both
horizontal and vertical connections is indeed a codimension 2 property: this can
already be seen on each orbit of the SL(2,R) action (for instance).

By definition of U , this open set is the union, over all combinatorial data (A, π),
and all homeomorphisms g : (Mπ,Σπ, κπ) → (M,Σ, κ) such that g∗(iπ(Δπ×Θπ)) ⊂
C, of the sets g∗(iπ(Δπ × Θπ)). As its complement in C has codimension � 2, the
open set U is connected.

Claim 9.3. If (A, π, g), (A′, π′, g′) satisfy

g∗(iπ(Δπ ×Θπ))
⋂

g′∗(iπ′(Δπ′ ×Θπ′)) 
= ∅,

then the Rauzy diagrams D, D′ spanned by π, π′ are isomorphic and (assuming

A = A′, D = D′) either g∗
−1 ◦ g′∗ or g′∗

−1 ◦ g∗ is equal to jγ for a finite oriented
path γ in D.

Proof. By hypothesis, there are two isomorphic translation surface structures
ζ, ζ ′ on (M,Σ, κ) such that:

• ζ is obtained by the zippered rectangle construction from an i.e.m T acting
on an interval I with combinatorial data (A, π), length data λ, suspension
data τ ;

• ζ ′ is obtained by the zippered rectangle construction from an i.e.m T ′

acting on an interval I ′ with combinatorial data (A′, π′), length data λ′,
suspension data τ ′.

Let G : (M,Σ, κ, ζ) → (M,Σ, κ, ζ ′) be an isomorphism. It sends the marked
outgoing horizontal separatrix for ζ isometrically onto the marked outgoing sepa-
ratrix for ζ ′.

If |I| = |I ′|, we can already conclude that T = T ′ and τ = τ ′. Assume for
instance that |I| > |I ′|. Then T ′ must be the first return map of T on the interval
of length |I ′| with the same left endpoint than I. That T ′ is obtained from T by
a finite number of steps of the Rauzy-Veech algorithm now follows from Corollary
7.10 in Subsection 7.7 (applying if necessary the same small rotation to both ζ
and ζ ′, we may assume that ζ has no vertical connection) and the last exercise in
Subsection 7.2 �

End of proof of proposition: A first consequence of the claim is that the combi-
natorial data (A, π) such that g∗(iπ(Δπ ×Θπ)) ⊂ C all belong to the same Rauzy
class (up to isomorphism): otherwise, the set U would not be connected. Once we
know that, both the second and the third part of the proposition are immediate
consequences of the claim. �

9.4. Rauzy diagrams and moduli spaces. Let A, R, D as above. We fix
a vertex π∗ of D and denote simply (Mπ∗ ,Σπ∗ , κπ∗), Uπ∗ , Cπ∗ by (M,Σ, κ), U , C.

It follows from the third part of the proposition that the stabilizer of C (for the

action of Mod+(M,Σ) on Q̃(M,Σ, κ)) is the subgroup image of π1(D, π∗), which
will be denoted by Mod0(M,Σ).
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We now define what amounts to a fundamental domain for the action of
Mod0(M,Σ) on C. For each vertex π of D, define

Δ0
π = {λ ∈ Δ; 1 �

∑
α

λα � 1 + min(λαt
, λαb

) }

where πt(αt) = πb(αb) = d.
Consider then the disjoint union, over elements of R, of the Δ0

π × Θπ and
perform the following identifications on the boundaries of these sets.

The part of the boundary of Δ0
π × Θπ where

∑
α λα = 1 is called the lower

boundary of Δ0
π ×Θπ; it is divided into a top half where

∑
α τα < 0 and a bottom

half where
∑

α τα > 0.
The part of the boundary of Δ0

π × Θπ where
∑

α λα = 1 + min(λαt
, λαb

) is
called the upper boundary of Δ0

π ×Θπ; it is divided into a top half where λαt
> λαb

and a bottom half where λαt
< λαb

.
For each arrow γ : π → π′ in D, of top type, we identify the top half of the

upper boundary of Δ0
π ×Θπ with the top half of the lower boundary of Δ0

π′ ×Θπ′

through (λ, τ ) �→ (λB−1
γ , τB−1

γ ); when γ is of bottom type, we identify similarly
bottom halves.

We denote by M(D) the space obtained from
⊔

π Δ
0
π ×Θπ by these identifica-

tions. From its definition in Subsection 9.2, it is clear that the set U is invariant
under Mod0(M,Σ). The same is true for the smaller set

V :=
⋃

γ∈Γπ∗ (D)

j−1
γ (iπ(Δ

0
π ×Θπ)) ,

where π is the endpoint of a path γ ∈ Γπ∗(D).

Proposition 9.4. There exists a unique continuous map

p : V −→ M(D)

such that for every γ ∈ Γπ∗(D) (with endpoint π), the composition p ◦ j−1
γ ◦ iπ is

the canonical map from Δ0
π × Θπ to M(D). Moreover, p is a covering map which

identifies M(D) with the quotient of V by the action of Mod0(M,Σ). The set U−V
has codimension 1.

Proof. Let γ be a path in Γπ∗(D) with endpoint π, and let γ0 be an arrow
from π to some vertex π′. The intersection

j−1
γ (iπ(Δ

0
π ×Θπ))

⋂
j−1
γ∗γ0

(iπ′(Δ0
π′ ×Θπ′))

is non empty; if γ0 is for instance of top type, it is equal to the image j−1
γ ◦ iπ of

the top half of the upper boundary of Δ0
π ×Θπ and also to the image by j−1

γ∗γ0
◦ iπ′

of the top half of the lower boundary of Δ0
π′ ×Θπ′ , the identification between these

halves being exactly as in M(D). Moreover, it follows from the claim in the proof
of Proposition 9.1 that this is the only case where a non empty intersection occurs.
As a consequence, a map p with the property required in the statement of the
proposition exists, is continuous, and is uniquely defined by this property.

From the property defining p, two points in V have the same image under p iff
they belong to the same Mod0(M,Σ) orbit. This implies that p is a covering map.
Finally, let [ζ] = j−1

γ ◦ iπ(λ, τ ) be a point of U (with γ ∈ Γπ∗(D), π the endpoint of

γ, λ ∈ Δπ, τ ∈ Θπ). If λ ∈ Δ0
π, then [ζ] belongs to V . Otherwise,

∑
α λα is either

too large or too small. If it is too large, we apply one step of the Rauzy-Veech
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algorithm unless λαt
= λαb

. If it is too small, we apply one step backwards unless∑
α τα = 0. Iterating this process, we will end up in V unless we run into one of

the codimension one conditions that stops the algorithm (forwards or backwards).
This proves that U − V has codimension 1. �

9.5. Canonical volumes. Zorich acceleration. The last proposition allows

us to identify M(D) with a subset of the marked moduli space M̃(M,Σ, κ) whose
complement has codimension 1. In particular this subset has full measure for the
canonical volume of the moduli space. Observe that, in view of its relation with
the period map, the canonical volume in M(D) is nothing else than the standard
Lebesgue measure dλ dτ restricted to each Δ0

π ×Θπ.
The model M(D) for (part of) the moduli space provides us also with a natural

transversal section for the Teichmüller flow, namely the union over the vertices π of
D of the lower boundaries of the Δ0

π×Θπ. Indeed, in each Δ0
π×Θπ, the Teichmüller

flow reads as

(λ, τ ) �→ (et λ, e−t τ )

and flows from the lower boundary of Δ0
π ×Θπ to its upper boundary, being then

glued as prescribed by the Rauzy-Veech algorithm to the lower boundary of some
Δ0

π′ ×Θπ′ .
When computing volumes, we have to normalize the area A = τ Ωπ

tλ. Let
M(1)(D) be the subset of M(D) defined by {A = 1}. We can identify the set S(D)
of Subsection 9.1 with the transverse section to the Teichmüller flow in M(1)(D)

{(π, λ, τ ) ∈
⊔
π

{π} ×Δ×Θπ;
∑
α

λα = 1, τ Ωπ
tλ = 1}.

With this identification, the return map of the Teichmüller flow on S(D) is
precisely given by the Rauzy-Veech dynamics V defined in Subsection 9.1. The
return time is equal to

log
||λ||1

||λB−1
γ ||1

,

where || . ||1 is the �1-norm.
Observe that the return time is bounded from above, but not bounded away

from 0. The unfortunate consequence, as we see below, is that the measure of S(D)
is infinite; this already happens in the elementary case d = 2.

In order to get nicer dynamical properties, Zorich [Zo2] considered instead a
smaller transversal section S∗(D) ⊂ S(D) which still gives an easily understood
return map but has finite measure. For an arrow γ : π → π′ of top type (resp. of
bottom type), let S∗

γ(D) be the set of (π, λ, τ ) ∈ Sγ(D) such that
∑

τα > 0 (resp.∑
τα < 0). Let S∗(D) be the union of the S∗

γ(D) over all arrows of D.
The return map of the Teichmüller flow to S∗(D), which is also the return map

of V to S∗(D), will be denoted by V ∗. It is obtained as follows: one iterates V as
long as the type of the corresponding arrow does not change. It is easy to check
that it is the same than to ask that the winner does not change.

This property of V ∗ shows the return time for V to S∗(D) does not depends
on the τ -coordinate. One can therefore define a map V ∗

+ : Δ(D) → Δ(D) such that
V ∗ is fibered over V ∗

+.
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Example 9.5. For d = 2, we have

S(D) = {(λA, λB, τA, τB); λA > 0, λB > 0, τA > 0, τB < 0,

λA + λB = 1, λAτB − λBτA = 1},
St(D) = {(λA, λB, τA, τB) ∈ S(D); λA > λB},
Sb(D) = {(λA, λB, τA, τB) ∈ S(D); λA < λB} ,

St(D) = {(λA, λB, τA, τB) ∈ S(D); τA + τB < 0},
Sb(D) = {(λA, λB, τA, τB) ∈ S(D); τA + τB > 0},
S∗
t (D) = {(λA, λB, τA, τB) ∈ S(D); λA > λB , τA + τB > 0} ,

S∗
b (D) = {(λA, λB, τA, τB) ∈ S(D); λA < λB , τA + τB > 0} .

For (λA, λB, τA, τB) ∈ St(D), we have

V (λA, λB, τA, τB) = (λAλ
−1
B , 1− λAλ

−1
B , λBτA, λB(τB − τA)).

For (λA, λB, τA, τB) ∈ S∗
t (D), we have

V ∗(λA, λB, τA, τB) = (λAΛ
−1, 1− λAΛ

−1,ΛτA,Λ(τB − nτA)),

where Λ = λB − (n− 1)λA, nλA < λB < (n+ 1)λA, n � 1.
On the λ-coordinate, V ∗

+ is essentially given by the Gauss map.

9.6. Volume estimates: the key combinatorial lemmas. We will present
three volume estimates: two for the measures of S(D) and S∗(D) and one for the
measure ofM(1)(D), i.e the integral over S(D) of the return time for the Teichmüller
flow.

Before doing that, we consider the case d = 2 as an example of what happens
in general. We first integrate over the τ variables. For a point (λA, λB) with
λB > λA > 0, λA + λB = 1,

• the integral over {τA > 0, τB < 0, λBτA − λAτB = 1} gives λ−1
A λ−1

B ;
• the integral over {τA + τB > 0, τB < 0, λBτA − λAτB = 1} gives (λA +

λB)
−1λ−1

B = λ−1
B .

Formulas for λA > λB > 0, λA + λB = 1 are symmetric.
For the measure of S(D), we have therefore to integrate∫ 1

2

0

d λ

λ(1− λ)

with the pole at 0 making the integral divergent.
For the measure of S∗(D), we have to integrate∫ 1

2

0

d λ

1− λ

on a domain away from the pole; the integral is equal to log 2.
For the measure of M(1)(D), the return time is − log(1 − λ); the zero at 0

cancels the pole and we obtain

−
∫ 1

2

0

d λ

λ(1− λ)
log(1− λ) =

π2

12
.

The measure of M(1)(D) is twice this.
We come back to the general case. Again, we want first to perform the inte-

gration over the τ variables. These variables run over the convex cone Θπ but are
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restricted by the area condition. Define as usual αt, αb by πt(αt) = πb(αb) = d.
Set

ht
α =

∑
πt(β)�πt(α)

τβ ,

hb
α = −

∑
πb(β)�πb(α)

τβ ,

ȟt
α =

∑
πt(β)<πt(α)

τβ ,

ȟb
α = −

∑
πb(β)<πb(α)

τβ .

With h = −Ω tτ as in Subsection 4.3, we have

hα = ht
α + hb

α = ȟt
α + ȟb

α,

for all α ∈ A and ht
αt

+ hb
αb

= 0. The suspension conditions are

ht
α > 0 for α 
= αt, hb

α < 0 for α 
= αb.

Consider for instance the top half of Δ = Δπ where λαt
> λαb

(the other case
is symmetric); we write

λ̂α = λα for α 
= αt,

λ̂αt
= λαt

− λαb
,

ĥα = hα for α 
= αb,

ĥαb
= hαb

+ hαt
.

The area is given by

A =
∑
α

λαhα =
∑
α

λ̂αĥα.

We decompose Θπ into a finite family G(π) of simplicial disjoint cones. Let Γ
be a cone in this family, and let τ (1), · · · , τ (d) be a base of RA of volume 1 such
that

Γ = {
d∑
1

tiτi ; ti > 0 } .

Writing h(i) = −Ωπ
tτ (i) for 1 � i � d, the area condition becomes

d∑
1

ti (
∑
α

λ̂α ĥ(i)
α ) = 1,

and therefore the integral over Γ gives

1

(d− 1)!
[

d∏
1

(
∑
α

λ̂α ĥ(i)
α ) ]−1.

To get the measure of S(D), we should then integrate this quantity over the
top half of Δπ (normalized by

∑
α λα = 1), sum over Γ ∈ G(π), sum over π and

finally add the symmetric contribution of the bottom halves.
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Only the first step presents a finiteness problem. To deal with it, given a proper
subset B of A, we introduce the subspace EB of RA generated by the τ in the closure

of Θπ such that ĥα = 0 for all α ∈ B ( with again h = −Ω tτ ).

Lemma 9.6. We have codimEB � #B, and even codimEB > #B when αb ∈ B.
Proof. We will find sufficiently many independent linear forms vanishing on

EB. Assume first that αb /∈ B. Let τ be a vector in the closure of Θπ, such that

ĥα = 0 for all α ∈ B. For α ∈ B, we have

ĥα = hα = ht
α + hb

α = ȟt
α + ȟb

α,

with hb
α � 0, ht

α � 0 (if α 
= αt), ȟ
t
α � 0, ȟb

α � 0.
We have therefore ht

α = 0 for α ∈ B, α 
= αt, and also ȟt
α = 0 for α ∈ B,

πt(α) > 1. This gives at least #B independent linear forms vanishing on such
vectors τ , and thus also on EB (the independence of the forms come from the
triangular form of the ht

α, ȟ
t
α).

Assume now that αb ∈ B. Let τ be a vector in the closure of Θπ, such that

ĥα = 0 for all α ∈ B. The relation ĥαb
= 0 implies hαt

= hαb
= 0, hence

ht
αt

+ hb
αt

= hb
αb

+ ht
αb

= 0.

As we have hb
αt

� 0, ht
αb

� 0, ht
αt

+ hb
αb

= 0, we conclude that

ht
αt

= hb
αt

= hb
αb

= ht
αb

= 0.

We have therefore

• hb
α = ȟb

α = 0 for all α ∈ B;
• ht

α = ȟt
α = 0 for all α ∈ B.

The first set of relations gives at least #B + 1 independent linear forms vanishing
on EB unless πb(B) = {1, · · · ,#B}. The same is true for the second set of rela-
tions unless πt(B) = {1, · · · ,#B}. By irreducibility, the two exceptional cases are
mutually exclusive and the proof of the lemma is complete. �

When we deal with S∗(D), we should replace Θπ by

Θt
π = {τ ∈ Θπ;

∑
α

τα > 0 }

when we deal with the top half of Δπ. We proceed in the same way, decomposing
Θπ into a finite family of simplicial cones Γ∗. We now define E∗

B as the subspace of

R
A generated by the vectors τ in the closure of Θt

π, such that ĥα = 0 for all α ∈ B.
Lemma 9.7. We have codimE∗

B > #B for all proper subsets B of A.

Proof. Obviously we have E∗
B ⊂ EB, therefore the case where αb ∈ B is given

by Lemma 9.6. We therefore assume that αb /∈ B.
Let τ be a vector in the closure of Θt

π, such that ĥα = 0 for all α ∈ B. For
α ∈ B, we have

0 = ĥα = hα = ht
α + hb

α = ȟt
α + ȟb

α,

with ȟt
α � 0, ȟb

α � 0, hb
α � 0 (because α 
= αb), h

t
α � 0 (even for α = αt). We

therefore have

• hb
α = ȟb

α = 0 for all α ∈ B,
• ht

α = ȟt
α = 0 for all α ∈ B,

and conclude as in Lemma 9.6. �
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9.7. Finiteness of volume for M(1)(D) and S∗(D). The combinatorial
facts proven in the last subsection will be combined with the following simple ana-
lytic lemma. Let

Δ(1) = {λ ∈ R
A; λα > 0,

∑
α

λα = 1 }.

For B ⊂ A, define also

Δ
(1)
B = {λ ∈ Δ(1); λα = 0 for α /∈ B}.

Consider linear forms L1, · · · , Lp,M1, · · · ,Mq on R
A which are positive on Δ(1),

and the rational map

R :=
L1 · · ·Lp

M1 · · ·Mq
.

For B ⊂ A, let

m+(B) = #{i; Li(λ) = 0 for all λ ∈ Δ
(1)
B },

m−(B) = #{j; Mj(λ) = 0 for all λ ∈ Δ
(1)
B },

m(B) = m+(B)−m−(B).

Lemma 9.8. Assume that d + m(B) > #B holds for all proper subsets of A.
Then R is integrable on Δ(1).

Remark 9.9. The converse is also true but will not be used.

Proof. We decompose Δ(1) as follows: let

N := {n ∈ N
A; min

α
nα = 0}.

For n ∈ N , let Δ(1)(n) be the set of λ ∈ Δ(1) such that λα � 1
2d if nα = 0 and

1

2d
21−nα > λα � 1

2d
2−nα

if nα > 0. We have indeed

Δ(1) =
⊔
N

Δ(1)(n)

and also
C−1 2−

∑

nα � vol Δ(1)(n) � C 2−
∑

nα .

Fix n ∈ N . Let 0 = n0 < n1 < · · · be the distinct values, in increasing order,
taken by the nα, and let

Bi := {α ∈ A; nα � ni }.
Let L be a linear form on R

A, positive on Δ(1). There is a maximal subset B(L) ⊂ A
such that L(λ) = 0 for all λ ∈ Δ

(1)
B(L). We have then, for n ∈ N , λ ∈ Δ(1)(n)

C−1
L 2−m � L(λ) � CL2

−m, with m = min
A−B(L)

nα.

The definition of m shows that m � ni iff A−B(L) ⊂ Bi and m = ni iff Bc
i ⊂ B(L)

but Bc
i+1 
⊂ B(L). From this, we see that for n ∈ N , λ ∈ Δ(1)(n), we have

C−1
R 2−N � R(λ) � CR2

−N ,

with
N =

∑
i�0

ni (m(Bc
i )−m(Bc

i+1)) =
∑
i>0

(ni − ni−1) m(Bc
i ).
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Using the hypothesis of the lemma, we have, for i > 0

m(Bc
i ) � #Bc

i − d+ 1 = 1−#Bi ,

and therefore

N �
∑
i>0

(ni − ni−1)−
∑
i�0

ni(#Bi −#Bi+1) = max
α

nα −
∑
α

nα .

We conclude that the integral of R on Δ(1)(n) is at most of the order of 2−maxα nα .
Summing over N gives the required result. �

We can now prove the finiteness of the measures of M(1)(D) and S∗(D). As
explained in Subsection 9.6, the total masses of these measures are expressed as

finite sums of certain integrals over top or bottom halves of the Δ
(1)
π . We will

consider the case of top halves, the other case being symmetric. Observe that

the top half of Δ
(1)
π is characterized by the inequalities λ̂α > 0, ∀α ∈ A. We will

therefore in both cases apply the lemma above in the λ̂ variables. We don’t

have
∑

λ̂α = 1, but observe that
∑

λα = 1 implies 1
2 �

∑
λ̂α � 1, which is good

enough.

• We start with M(1)(D). The return time of the Teichmüller flow to S(D)

is equal to − log
∑

λ̂α = − log(1− λαb
) on the top half of Δ

(1)
π .

According to Subsection 9.6, we have to integrate

− log(1− λαb
)

(d− 1)!
[

d∏
1

( Σα λ̂α ĥ(i)
α ) ]−1

over the top half of Δ
(1)
π . The vectors h(i) = −Ωπ

tτ (i) are obtained here
from vectors τ (i) generating a simplicial cone Γ ⊂ Θπ.

We apply the lemma above with p = 1, q = d. We take L(λ) = λαb
=

λ̂αb
, a linear form of the same order than the return time − log(1− λαb

).

The linear forms Mi are the Σα λ̂α ĥ
(i)
α .

We check the hypothesis of the lemma. Let B ⊂ A be a proper subset.
First, we have m+(B) = 0 if αb ∈ B, m+(B) = 1 if αb /∈ B. Next we have

Σα λ̂α ĥ(i)
α = 0, for all λ̂ ∈ Δ

(1)
B

iff ĥ
(i)
α = 0 for all α ∈ B. By definition of EB, this happens iff τ (i) ∈

EB. As the τ (i) are independent, Lemma 1 in the last subsection gives
m−(B) � d−#B if αb /∈ B, m−(B) < d−#B if αb ∈ B. The hypothesis of
the lemma above is thus satisfied, and its conclusion gives the finiteness
of the measure of M(1)(D).

• We now deal with S∗(D). According to subsection 9.6, we have to inte-
grate

1

(d− 1)!
[

d∏
1

( Σα λ̂α ĥ(i)
α ) ]−1

over the top half of Δ
(1)
π . The vectors h(i) = −Ωπ

tτ (i) are obtained here
from vectors τ (i) generating a simplicial cone Γ∗ ⊂ Θt

π.
We will apply the lemma above with p = 0, q = d. The linear forms

Mi are the Σα λ̂α ĥ
(i)
α .
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We check the hypothesis of the lemma . For a proper subset B ⊂ A,
we have

Σα λ̂α ĥ(i)
α = 0, for all λ̂ ∈ Δ

(1)
B

iff ĥ
(i)
α = 0 for all α ∈ B. By definition of E∗

B, this happens iff τ (i) ∈ E∗
B.

As the τ (i) are independent, Lemma 2 in the last subsection guarantees
that there are less than d − #B such indices i. The hypothesis of the
lemma above is thus satisfied, and its conclusion gives the finiteness of
the measure of S∗(D).

We have thus proved a first statement in the theorems of Masur and Veech
presented in Subsection 6.11, the finiteness of the volume of the moduli space of
translation surfaces. Except in the simplest cases, it seems difficult to get the exact
value of this volume through this method. Exact formulas for the volumes of the
moduli spaces have been obtained by Eskin and Okounkov [EOk] using a different
approach.

We end this section with the following statement, which is an easy consequence
of the lemma above.

Proposition 9.10. The canonical measure on S∗(D) satisfies, for all ε > 0

m({(π, λ, τ ) ∈ S∗(D); minαλα < ε } � Cε(log ε)d−2,

where the constant C depends only on d.

Proof. In the context of the proof of the lemma, it is sufficient to observe
that the number of n ∈ N such that maxα nα = N is of the order of Nd−2. �

10. Ergodicity and unique ergodicity

In this section, we complete the proofs of the theorems of Masur and Veech
presented in Subsection 6.11.

10.1. Hilbert metric. Let C be an open set in the projective space PN which
is the image of an open convex cone in R

N+1 whose closure intersects some hyper-
plane only at the origin.

Given two distinct points x, y ∈ C, the intersection of the line through x, y with
C is a segment (a, b). The crossratio of the points a, b, x, y gives rise to a distance
on C called the Hilbert metric on C:

dC(x, y) := | log x− a

y − a

x− b

y − b
|.

Exercise 10.1. Check the triangle inequality.

The following properties are easily verified.

• Let X be a subset of C; then the closure X of X in P
N is contained in C

iff X has finite diameter for dC .
• If ϕ : PN → P

N is a projective isomorphism, then, for all x, y ∈ C

dϕ(C)(ϕ(x), ϕ(y)) = dC(x, y).

• If C ′ ⊂ C is a smaller set satisfying the same hypothesis than C, then,
for all x, y ∈ C ′

dC(x, y) � dC′(x, y).



46 JEAN-CHRISTOPHE YOCCOZ

• If C ′ is a set satisfying the same hypothesis than C and C
′ ⊂ C, there

exists k ∈ (0, 1) such that, for all x, y ∈ C ′

dC(x, y) � k dC′(x, y).

Thus, if ϕ : PN → P
N is a projective isomorphism satisfying ϕ(C) ⊂ C, there

exists k ∈ (0, 1) such that, for all x, y ∈ C ′ we have

dC(ϕ(x), ϕ(y)) � k dC(x, y).

10.2. Almost sure unique ergodicity. We prove that, for every combina-
torial data (A, π), and almost every length vector λ ∈ R

A, the corresponding i.e.m
is uniquely ergodic.

The set of i.e.m having a connection has codimension 1. Therefore, almost
surely the Rauzy-Veech algorithm does not stop and associates to the i.e.m T an
infinite path γT starting at π in the Rauzy diagram D constructed from (A, π).
According to Subsection 8.1, we have to prove that the closed convex cone C(γT )
determined by γT is almost surely a ray.

By Poincaré recurrence of the Teichmüller flow and Subsection 7.7, for almost
every length vector λ, there exists an initial segment γs of γT which occurs infinitely
many times in γT and such that all coefficients of the matrix Bγs

are positive. We
write γT as a concatenation

γT = γs ∗ γ1 ∗ γs ∗ γ2 ∗ · · · .
Let C be the open set in P(RA) image of the positive cone in R

A. From the last
property in the last subsection, there exists k ∈ (0, 1) such that Bγs

decreases the
Hilbert metric dC at least by a factor k, while the Bγi

, i = 1, 2, · · · do not increase
dC . The first image CBγs

has closure contained in C hence has finite diameter K
for dC . We then have

diam(CBγs∗···γi
) � Kki−1.

It follows that the image in P(RA) of C(γT ) is a point. The result is proved.

10.3. Ergodicity of the Teichmüller flow. We will prove in this subsection
that the Teichmüller flow on M(1)(D) and its return maps V on S(D) and V ∗ on
S∗(D) are ergodic. In view of the relation between these three dynamical systems,
the three statements are equivalent. We will prove that V ∗ is ergodic.

From the ergodicity of V and V ∗, it follows that the maps V+ and V ∗
+ on Δ(D)

are also ergodic.
By Birkhoff’s ergodic theorem, for every continuous function ϕ on S∗(D), there

exists an almost everywhere defined fuction ϕ such that, for almost every (π, λ, τ ) ∈
S∗(D), one has

lim
n→+∞

1

n

n−1∑
0

ϕ((V ∗)m(π, λ, τ )) = ϕ(π, λ, τ ),

and also

lim
n→+∞

1

n

n−1∑
0

ϕ((V ∗)−m(π, λ, τ )) = ϕ(π, λ, τ ).

To prove ergodicity, it is sufficient to show that ϕ is almost everywhere constant,
for any continuous function ϕ.
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Starting from almost every (π, λ, τ ), one can iterate the Rauzy-Veech algorithm
both forward and backward. This leads to a biinfinite path γ = γ+ ∗ γ− in the
Rauzy diagram D, where γ+ depends only on (π, λ) and γ− depends only on (π, τ ).

By Poincaré recurrence, for almost every (π, τ ), there is a finite path γe at the
end of γ− such that all coefficients of Bγe

are positive and which appears infinitely
many times in γ−. Let again C be the open set in P(RA) image of the positive cone
in R

A, dC the associated Hilbert metric. Let λ, λ′ ∈ Δπ; for m � 0, let λ−m, λ′
−m

be the respective λ-components of (V ∗)−m(π, λ, τ ), (V ∗)−m(π, λ′, τ ). By the same
argument that in the last subsection, we have

lim
m→+∞

dC(λ−m, λ′
−m) = 0.

This implies that, for almost every (π, τ ), ϕ(π, λ, τ ) does not depend on λ.
We claim that the same argument works exchanging λ and τ , future and past.

For almost every (π, λ), we want to find a finite path γs at the beginning of γ
+ which

appears infinitely many times in γ+ (this is guaranteed by Poincaré recurrence) and
satisfies

ΘπB
−1
γs

⊂ Θπ′ ∪ {0}
where π′ is the endpoint of γs. Then, using the Hilbert metrics relative to the
open sets images in P(RA) of the Θπ, we conclude in the same way as above that,
for almost every (π, λ, τ ), ϕ(π, λ, τ ) does not depend on τ . Thus, almost surely,
ϕ(π, λ, τ ) does not depend on λ and τ . But ϕ(π, λ, τ ) is also V ∗-invariant, therefore
it must be almost everywhere constant.

It remains to prove that, almost surely, some initial path γs of γ+ satisfies
ΘπB

−1
γs

⊂ Θπ′ ∪ {0}. This is a consequence of the following result.

Lemma 10.2. If a finite path γ in D, from a vertex π to a vertex π′, is the
concatenation of 3d− 4 complete paths, then we have

ΘπB
−1
γ ⊂ Θπ′ ∪ {0}.

Proof. For combinatorial data π and τ ∈ R
A, we write as before

ht
α =

∑
πt(β)�πt(α)

τβ, hb
α = −

∑
πb(β)�πb(α)

τβ, hα = ht
α + hb

α.

We write γ1, γ2, · · · , γm for the successive arrows of γ.

Starting from π =: π0 with a nonzero vector τ0 ∈ R
A satisfying

(10.1) h0, t
α � 0 for π0

t (α) < d, h0, b
α � 0 for π0

b (α) < d,

we have to show that

(10.2) hm, t
α > 0 for πm

t (α) < d, hm, b
α > 0 for πm

b (α) < d,

where πj is the endpoint of γj and hj, t, hj, b are calculated from τ j := τ j−1B−1
γj

.

The heigth vectors hj are column vectors related by

hj = Bγj
hj−1

and their entries are nonnegative. Let m′ < m is the smallest integer such that the
initial part γ1 ∗ · · · ∗ γm′ of γ is the concatenation of 2d − 3 complete paths. By
Proposition 7.12 in Subsection 7.7, we have

(10.3) hj
α > 0, ∀α ∈ A, ∀ j � m′.
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If γj is of top type, one has πj
t = πj−1

t and

hj, t
α = hj−1, t

α , if πj
t (α) < d,(10.4)

hj, b
α = hj−1, b

α , if πj−1
t (α) < d, and πj−1

b (α) < d,(10.5)

hj, b
αb

= hj−1, b
αt

, with πj−1
t (αt) = πj−1

b (αb) = d,(10.6)

hj, b
αt

= hj−1, b
α∗ + hj−1

αt
, with πj−1

b (α∗) = d− 1.(10.7)

Let �t(j) (resp. �b(j)) be the largest integer � such that hj, t
α > 0 for πj

t (α) < �

(resp. hj, b
α > 0 for πj

b(α) < �). We want to show that �t(m) = �b(m) = d. This
implies the required conclusion.

We always have (trivially) �t(j) � 1, �b(j) � 1. Assume for instance that γj
is of top type as above. Then relation (10.4) and πj

t = πj−1
t imply that �t(j) �

�t(j − 1). If πj
b(αt) = πj−1

b (αt) > �b(j − 1), we have �b(j) � �b(j − 1) from (10.5).

On the other hand, if πj
b(αt) � �b(j − 1) and j > m′, it follows from relations

(10.3),(10.5),(10.6),(10.7) that �b(j) > �b(j − 1). We first conclude that �t, �b are
non-decreasing functions of j � m′.

Let m′ < m0 < m1 � m be such that γm0
∗ · · · ∗ γm1−1 is complete. Observe

that there is a letter bα such that π(bα) = 1 for all vertices π of D. Letm0 � j < m1

such that bα is the winner of γj . Then γj is of top type so, in the notations above,

we have bα = αt, 1 = πj
b(αt) � �b(j− 1) and �b(j) > �b(j− 1). As we can find d− 1

disjoint such complete subpaths between m′ and m, this shows that �b(m) = d.
The proof that �t(m) = d is symmetric. �

The proof of ergodicity is now complete. We recall the full statement.

Theorem 10.3. The maps V (on S(D)), V ∗ (on S∗(D)),V+ and V ∗
+ (on Δ(D))

are ergodic. The restriction of the Teichmüller flow to any component of the marked

moduli space M̃(1)(M,Σ, κ) is ergodic. The action of SL(2,R) on any such com-
ponent is therefore also ergodic.

11. Lyapunov exponents

The remaining sections are planned as introductions to further reading. The
results are presented mostly without proofs. In this section, we introduce the
Kontsevich-Zorich cocycle [Kon] and present the results of Forni [For2] and Avila-
Viana [AvVi1].

11.1. Oseledets multiplicative ergodic theorem. Let (X,B, μ) be a prob-
ability space, and let T : X → X be a measure-preserving ergodic transformation.
Let also

A : X −→ GL(d,R)

be a measurable function. We assume that both log ||A|| and log ||A−1|| are inte-
grable. These data allow to define a linear cocycle

X × R
d −→ X × R

d

(x, v) �−→ (Tx,A(x)v).

Iterating this map leads to consider, for n � 0, the matrices

A(n)(x) := A(Tn−1x) · · ·A(x).
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When T is invertible, one can also consider, for n < 0

A(n)(x) := (A(−n)(Tnx))−1 = (A(Tnx)−1 · · · (A(T−1x))−1.

To state Oseledets multiplicative theorem, we distinguish the case where T is
invertible, which allows a stronger conclusion, from the general case.

Theorem 11.1. (Oseledets [Os])

1. The invertible case: There exist numbers λ1 > · · · > λr (the Lya-
punov exponents) and, at almost every point x ∈ X, a decomposition

R
d = F1(x)⊕ · · · ⊕ Fr(x)

depending measurably on x, which is invariant under the action of the
cocycle

A(x)Fi(x) = Fi(Tx)

and such that, for 1 � i � r, v ∈ Fi(x), v 
= 0, one has

lim
n→±∞

1

n
log ||A(n)(x)v|| = λi.

2. The general case: There exist numbers λ1 > · · · > λr and, at almost
every point x ∈ X, a filtration

R
d = E0(x) ⊃ E1(x) ⊃ · · · ⊃ Er(x) = {0}

depending measurably on x, which is invariant under the action of the
cocycle

A(x)Ei(x) = Ei(Tx)

and such that, for v ∈ Ei−1(x)− Ei(x), one has

lim
n→+∞

1

n
log ||A(n)(x)v|| = λi.

Remarks

(1) In the invertible case, one obtains the second statement from the first by
setting

Ei(x) = ⊕r
i+1Fj(x).

(2) When A is independent of x, the Lyapunov exponents are the logarithms
of the moduli of the eigenvalues of A and the Fi are the sums of the
corresponding generalized eigenspaces.

(3) The statements above require obvious modifications for continuous time,
i.e for flows and semiflows.

11.2. The Kontsevich-Zorich cocycle (discrete version). Let R be a
Rauzy class, D the associated Rauzy diagram.

We have defined in subsection 9.1 the map V+ on the space Δ(D) which is the
dynamics in parameter space defined by the Rauzy-Veech algorithm. There is a
partition mod.0

Δ(D) =
⋃
γ

{π} × P(Δγ)

over arrows γ : π → π′ of D, such that on {π} × P(Δγ), V+ is given by

V+(π, λ) = (π′, λB−1
γ ) .
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The (extended) Kontsevich-Zorich cocycle is the linear cocycle V+,KZ :
Δ(D)× R

A → Δ(D)× R
A over V+ defined on {π} × P(Δγ)× R

A by

V+,KZ(π, λ, w) = (V+(π, λ), Bγ w).

Over the accelerated Zorich dynamics V ∗
+ on Δ(D), we similarly define

V ∗
+,KZ(π, λ, w) = (V ∗

+(π, λ), Bγ w),

where γ is the path in D (formed of arrows of the same type, having the same
winner) associated to a single iteration of V ∗ at the point (π, λ) under consideration.

The extended Kontsevich-Zorich cocycle has a natural interpretation in terms
of Birkhoff sums. Let T be an i.e.m with combinatorial data π, length data λ, acting
on an interval I. Assume that T has no connection. Let Tn (with combinatorial
data π(n), length data λ(n), acting on an interval I(n) ⊂ I) be the i.e.m obtained
from T after n steps of the Rauzy-Veech algorithm.

For any function ϕ on I, one can associate a new function S(n)ϕ on I(n) by

S(n)ϕ(x) =
∑

0�i<r(x)

ϕ(T i(x)),

where r(x) is the return time in I(n) of x ∈ I(n).
Let w ∈ R

A. Consider w as the function on I which takes on Itα the constant
value wα. Then it is easy to see that the function S(n)w is constant on each interval

I
(n),t
α ⊂ I(n) and thus can also be considered as a vector in R

A. It follows from the
properties of the matrices Bγ(m,n) mentioned at the end of section 7.5 that one has

V n
+,KZ(π, λ, w) = (π(n), λ(n), S(n)w).

As was mentioned in subsection 7.6, for any arrow γ : π → π′, the image of
Im Ωπ under Bγ is equal to Im Ωπ′ . One obtains the restricted Kontsevich-Zorich
cocycle by allowing only, in the definition of V+,KZ or V ∗

+,KZ , the vector w to vary
in Im Ωπ.

When necessary, the Kontsevich-Zorich cocycle (in its extended or restricted
version) can also be viewed as a linear cocycle over V or V ∗. This is important
when one wants to use the Oseledets theorem for invertible maps.

11.3. The Kontsevich-Zorich cocycle (continuous version). The con-
tinuous version of the Kontsevich-Zorich cocycle is defined over the Teichmüller flow

(Tt)t∈R (on the moduli space M(M,Σ, κ), or the marked moduli space M̃(M,Σ, κ))
in the following way.

Consider for instance the case of the marked moduli space. Recall that we

denote by Q̃(M,Σ, κ) the associated marked Teichmüller space. On the product

Q̃(M,Σ, κ) × H1(M − Σ,R), we define a linear cocycle over the Teichmüller flow

on Q̃(M,Σ, κ) by

T KZ
t (ζ, θ) = (Tt(ζ), θ).

The modular group Mod(M,Σ) acts in a non trivial canonical way on both factors

of the product Q̃(M,Σ, κ)×H1(M−Σ,R). The quotient is a vector bundle over the

marked moduli space M̃(M,Σ, κ), equipped with a flow fibered over the Teichmüller
flow: this flow is the continuous version of the extended Kontsevich-Zorich cocycle.
One gets the restricted version by restricting the fiber to the subspace H1(M,R) ⊂
H1(M − Σ,R).
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Let us explicit the relation between the discrete and continuous version of the
KZ-cocycle.

Let (π, λ, τ ) be an element of S(D), viewed both as (cf. Subsection 9.1) the
domain of the natural extension of the Rauzy-Veech dynamics and as (cf. Subsec-
tion 9.5) a transverse section to the Teichmüller flow in M(1)(D). Let w ∈ R

A. Let
(M,Σ, κ, ζ) be the translation surface obtained from (π, λ, τ ) by the zippered rec-
tangle construction. As seen in Subsection 4.5, this construction provides us with
a canonical basis (ζα)α∈A of the homology group H1(M,Σ,Z). We associate to w
the homology class ζw =

∑
α wαζα ∈ H1(M,Σ,R), which can also be viewed as a

cohomology class in H1(M − Σ,R) from the duality provided by the intersection
form.

We assume that (M,Σ, κ, ζ) has no vertical connection. From (π, λ, τ ) viewed

as a point in M(1)(D) ⊂ M̃(M,Σ, κ), we flow with the Teichmüller flow during
a time t to a point (π′, λ′, τ ′) ∈ M(1)(D). The continuous Teichmüller trajectory
corresponds to a path γ from π to π′ in D. As seen in Subsection 7.4, the translation
surface (M,Σ, κ, ζ) is canonically isomorphic to the translation surface constructed
from the data (π′, e−tλ′, etτ ′). This isomorphism and the combinatorial data π′

provides another basis (ζ ′α)α∈A for H1(M,Σ,Z) (or H1(M −Σ,Z)). We express ζw
as ζw =

∑
α w′

αζ
′
α. Then, we have

w′ = Bγw.

The two versions of the KZ-cocycle are thus seen to be equivalent.

11.4. Lyapunov spectrum of the Kontsevich-Zorich cocycle. We start
with some simple observations which follow from Subsections 7.6, 9.7 and 10.3.

It follows from the proposition in Subsection 7.6 that one can choose, for each
vertex π of D, a basis for the quotient space R

A/ImΩπ, in such a way that, for
every arrow γ : π → π′, the homomorphism from R

A/ImΩπ to R
A/ImΩπ′ induced

by Bγ corresponds to the identity matrix in the selected bases.
As a consequence, vectors in these quotient spaces stay bounded under the ac-

tion of the KZ-cocycle. It follows that 0 is the unique Lyapunov exponent associated
with this part of the KZ-cocycle. The multiplicity of this exponent is s−1 = d−2g.

By the Masur-Veech theorem stated in Subsection 6.11 and proved in Subsec-

tions 9.7 10.3, the canonical measures on M(M,Σ, κ) and M̃(M,Σ, κ) have finite
total masses, and the Teichmüller flow is ergodic with respect to these invariant
measures. As seen in Subsection 9.7 and first proved by Zorich, the canonical invari-

ant measure on M̃(M,Σ, κ) induces on S∗(D) a finite measure which is equivalent
to Lebesgue measure and invariant under V ∗. This measure can be projected to
Δ(D) to obtain a finite measure, equivalent to Lebesgue measure, which is invariant
under V ∗

+.
We can thus apply the Oseledets theorem to the restricted KZ-cocycle, either

in the continuous version over the Teichmüller flow or in the discrete version over
V ∗ or V ∗

+.
However, one has first to check the integrability condition of Subsection 10.1

We do that for the discrete version of the cocycle. From the definition of the Zorich
acceleration V ∗

+ of the Rauzy-Veech dynamics, the norm of the matrix Bγ defining
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the KZ-cocycle at a point (π, λ) is bounded by

||Bγ || � C

∑
α λα

minα λα
.

The same estimate holds for the inverse of this matrix. But the proposition
at the end of Subsection 9.7 states that the majorant in the inequality above is
larger than A on a set of measure at most A−1(logA)d−2, which easily implies the
required integrability.

Observe that the same computation shows that the return time for the Te-
ichmüller flow on S∗(D) is integrable. By Birkhoff’s ergodic theorem, the mean
value θ∗1 over S∗(D) of this return time has the following property: for almost any

point in ζ ∈ M̃(M,Σ, κ), we have

lim
T→+∞

1

T
#{t ∈ [0, T ]; Tt(ζ) ∈ S∗(D)} =

1

θ∗1
.

As a consequence, the Lyapunov exponents for the discrete KZ-cocycle over V ∗

or V ∗
+ are proportional by a factor θ∗1 to those of the continuous KZ-cocycle over

T .

Exercise 11.2. Show that the largest Lyapunov exponent of the continuous
KZ-cocycle over T is equal to 1, and that the largest Lyapunov exponent of the
discrete KZ-cocycle over V ∗ or V ∗

+ is equal to θ∗1 .

Exercise 11.3. Use the ergodicity of V ∗
+ to show that the largest Lyapunov

exponent of the KZ-cocycle is simple.

Let γ : π → π′ be an arrow of D. We have also seen in Subsection 7.6 that,
when we equip ImΩπ and ImΩπ′ with the symplectic structures defined by Ωπ,
Ωπ′ respectively, the restriction of Bγ to ImΩπ is symplectic. This implies that the
Lyapunov spectrum (i.e the Lyapunov exponents, counted with multiplicities) of the
restricted KZ-cocycle is symmetric with respect to 0: counted with multiplicities
the Lyapunov exponents of the continuous restricted KZ-cocycle have the form

1 = θ1 > θ2 � . . . θg � θg+1 = −θg � . . . � θ2g−1 = −θ2 > θ2g = −1,

the Lyapunov exponents for the discrete restricted KZ-cocycle over V ∗ or V ∗
+ being

the θ∗i := θ∗1 θi.
Kontsevich and Zorich conjectured that all Lyapunov exponents of the re-

stricted KZ-cocycle are simple. In particular, this stipulates that θg > θg+1 = −θg,
hence that the restricted KZ-cocycle is hyperbolic in the sense that it does not have
0 as Lyapunov exponent. Forni then proved the hyperbolicity of the restricted
KZ-cocycle before Avila and Viana proved the full conjecture of Kontsevich and
Zorich.

Theorem 11.4. (Forni [For2, Kri]) The restricted Kontsevich-Zorich cocycle
is hyperbolic.

The (Lyapunov) hyperbolicity of the KZ-cocycle holds w.r.t the invariant mea-
sure equivalent to Lebesgue measure, but not to any invariant measure.

Exercise 11.5. In the Rauzy diagram with g = 2, d = 4, find a complete
loop γ such that Bγ has two eigenvalues of modulus 1.

Observe that when g = 2, Forni’s theorem already implies that the Lyapunov
spectrum of the KZ-cocycle is simple. For higher genus, we have
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Theorem 11.6. (Avila-Viana [AvVi1, AvVi2]) The Lyapunov spectrum of
the restricted Kontsevich-Zorich cocycle is simple.

The proofs of both theorems (Avila-Viana’s approach is quite different from
Forni’s) are beyond the scope of these notes.

The Lyapunov exponents of the restricted discrete KZ-cocycle over V ∗ and
V ∗
+ are the same. The conclusions of the Oseledets theorem are however slightly

different.

• For almost every (π, λ, τ ) ∈ S∗(D), there exists a direct sum decomposi-
tion into 1-dimensional subspaces

ImΩπ = ⊕2g
1 Fi(π, λ, τ ),

such that, for w ∈ Fi(π, λ, τ ), w 
= 0, we have, writing (V ∗
KZ)

n(π, λ, τ, w) =
((V ∗)n(π, λ, τ ), wn)

lim
n→±∞

1

n
log

||wn||
||w|| = θ∗i .

• For almost every (π, λ) ∈ Δ(D), there exists a filtration

ImΩπ = E0(π, λ) ⊃ E1(π, λ) ⊃ . . . ⊃ E2g(π, λ) = {0},
with codimEi(π, λ) = i, such that, for w ∈ Ei−1(π, λ)−Ei(π, λ), writing
(V ∗

+,KZ)
n(π, λ, w) = ((V ∗

+)
n(π, λ), wn), we have

lim
n→+∞

1

n
log

||wn||
||w|| = θ∗i .

For almost every (π, λ, τ ) ∈ S∗(D), and every 0 � i < 2g, the direct sum

⊕2g
i+1Fi(π, λ, τ ) is independent of τ and equal to Ei(π, λ). Symmetrically, for almost

every (π, λ, τ ) ∈ S∗(D), and every 0 < i � 2g, the direct sum ⊕i
1Fi(π, λ, τ ) is

independent of λ.
When one considers (assuming s > 1) the extended KZ-cocycle over V ∗ or

V ∗
+, one obtains moreover

• In the invertible case, a subspace F∗(π, λ, τ ), which complements ImΩπ

and has dimension s− 1, associated to the exponent 0;
• In the non invertible case, the subspaces associated to the positive expo-
nents are the

E∗
i (π, λ) := Ei(π, λ)⊕ F∗(π, λ, τ ), ∀ 0 � i � g,

which satisfy codimE∗
i (π, λ) = i. The subspace associated to the expo-

nent 0 is

E∗(π, λ) := F∗(π, λ, τ )⊕ Eg+1(π, λ),

and those associated with the negative exponents θ∗i , g < i � 2g are the
Ei(π, λ).

11.5. Lyapunov exponents of the Teichmüller flow. Recall that S(D)
was identified in Subsection 9.5 with the transverse section to the Teichmüller flow
in M(1)(D)

{(π, λ, τ ) ∈
⊔
π

{π} ×Δ×Θπ;
∑
α

λα = 1, τ Ωπ
tλ = 1},
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the return map being given by the Rauzy-Veech invertible dynamics V . Thus,
a number of iterations of V , associated to a path γ : π → π′ in D, correspond to
the Teichmüller time

log
||λ||1

||λ B−1
γ ||1

= − log ||λ B−1
γ ||1

and to the return map

(π, λ, τ ) �→ (π′,
λ B−1

γ

||λ B−1
γ ||1

, ||λ B−1
γ ||1 τ B−1

γ ).

From Subsection 7.6, we know that the action of B−1
γ on row vectors in KerΩπ

is neutral and the action on the quotient R
A/KerΩπ � ImΩπ is given by Bγ .

From this we deduce immediately the Lyapunov exponents of the Teichmüller flow
on M(1)(D) (with respect to the canonical invariant measure)

• There are, counted with multiplicities, d− 1 = (2g − 1) + (s− 1) positive
Lyapunov exponents which are the simple exponents

2 = 1 + θ1 > 1 + θ2 > . . . > 1 + θ2g−1

and, when s > 1, the exponent 1 (between 1 + θg and 1 + θg+1) with
multiplicity s− 1.

• There are symmetrically d − 1 = (2g − 1) + (s − 1) negative Lyapunov
exponents which are the simple exponents

−1 + θ2 > . . . > −1 + θ2g−1 > −1 + θ2g = −2

and, when s > 1, the exponent −1 with multiplicity s− 1.
• Finally, the exponent 0 = 1 + θ2g = −1 + θ1 was killed by the normaliza-
tion conditions on λ and τ , but is still present with multiplicity 1 in the
direction of the flow.

• When considering the flow in M(D), the exponent 0 has multiplicity 2
because the foliation by the levels of the area map A is invariant.

• The strong local stable manifold of a point (π, λ0, τ0) ∈ M(D) has equa-
tion {λ = λ0, (τ − τ0) Ωπ

tλ0 = 0}. Similarly, the strong local unstable
manifold has equation {τ = τ0, τ0 Ωπ

t(λ− λ0) = 0}.

11.6. Deviation of ergodic averages. Let T be an i.e.m with combinatorial
data (A, π) and domain �Itα. Given a point x0, a letter α ∈ A and an integer k,
denote the number of visits to Itα of the orbit of x0 up to time k by

χα(k) := # {i ∈ [0, k) ; T i(x0) ∈ Itα} .

How do these numbers behave as k goes to +∞? This was one of the questions
that led Kontsevich and Zorich to introduce their cocycle.

A first answer is provided by Birkhoff’s theorem: by the theorem of Masur and
Veech, for almost all length data λ, T is ergodic w.r.t Lebesgue measure. Therefore,
for such a T , one has , for all α ∈ A and almost all x0

lim
k→+∞

1

k
χα(k) = |Itα| = λα .

A slightly better answer is obtained by using that, by the same theorem of
Masur and Veech, almost all T are actually uniquely ergodic. Indeed, if f is a
uniquely ergodic minimal homeomorphism of a compact metric space X and ϕ is
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a continuous function on X, the convergence of the Birkhoff sums of ϕ holds for
any initial value x0 and is uniform in x0. Here, T is not a homeomorphism and the
characteristic function of Itα is not continuous but this is not a problem in reason
of the following trick.

Split any point in the forward orbit of the singularities of T−1 and the backward
orbit of the singularities of T into its left and right limit. One obtains, equipped

with the order topology, a compact metric space Î. The i.e.m T induces on Î a

homeomorphism T̂ which is easily seen to be uniquely ergodic when T is. Also,

the interval Itα corresponds to a clopen set in Î so its characteristic function is
continuous.

A much more precise answer on the speed of convergence of the 1
kχα(k) is

obtained using the KZ-cocycle.
Assume that T has no connection. Let (I(n))n�0 be the intervals of induction

for the Rauzy-Veech algorithm, (Tn)n�0 the corresponding i.e.m, w ∈ R
A. Viewing

w as the function on �Itα with constant value wα on Itα, the Birkhoff sums of w are
given by

Skw(x0) =
∑
α

wαχα(k) .

On the other hand, we have seen in Subsection 11.2 that the KZ-cocycle is directly
related to the Birkhoff sums S(n)w of w corresponding to the return to I(n).

In order to relate Skw(x0) to the S(n)w, we introduce the point x∗ of the
orbit {T j(x0); 0 � j � k } which is closest to the left endpoint of I. We consider
separately in Skw(x0) the part of the sum which is before x∗ and the part which is
after x∗. Thus, we have just to consider Birkhoff sums Sjw(x

∗) (with j ∈ Z).
Consider such a sum Sjw(x

∗), with for instance j � 0 (the case j � 0 is similar).
In the orbit {T 	(x∗); 0 � � � j }, there exists a unique subsequence (x∗

s)0�s�r =
(T js(x∗))0�s�r, and a sequence (ns)0�s�r with the following properties:

• 0 = j0 < j1 < . . . < jr = j ;
• 0 � nr � . . . � n0 ;
• the point x∗

s belongs to I(ns) for 0 � s � r;
• the point x∗

s does not belong to I(ns+1) for 1 � s � r;
• the point T 	(x∗) does not belong to I(ns) for 1 � s � r, js−1 < � < js;

This means that the sum
∑js−1

js−1
w(T 	(x∗)) corresponds to a first return in I(ns).

Writing αs for the letter such that x∗
s−1 ∈ I

t, (ns)
αs , we have

Sjw(x
∗) =

r∑
1

(S(ns)w)αs
.

As the return time of Tn in I(n+1) is 1 or 2, we have actually n0 > n1 > . . . > nr.
On the other hand, assume that the data (π, λ) of T are typical for Oseledets
theorem applied to the KZ-cocycle; when w ∈ E∗

i (π, λ) for some 0 � i < g (resp.
w ∈ E∗

g (π, λ)), one has

lim sup
log ||S(n)w||
log ||S(n)1|| = θi+1,

(resp. lim sup
log ||S(n)w||
log ||S(n)1|| = 0. )

From this, one obtains the following result
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Theorem 11.7. [Zo3] For almost every i.e.m. T = Tπ,λ, and all x ∈ I, one
has

lim sup
log |Skw(x)|

log k
� θi+1

if w ∈ E∗
i (π, λ) for some 0 � i < g and

lim sup
log |Skw(x)|

log k
= 0

if w ∈ E∗
g (π, λ).

There is a similar interpretation of the KZ-cocycle in terms of the way that the
orbits of the vertical flow of a typical translation surface wind around the surface:
see [Zo1, Zo4].

12. The cohomological equation

We present in this section the main result of [MmMsY]. Let f : X → X be a
map. The cohomological equation associated to this dynamical system is

ψ ◦ f − ψ = ϕ,

where ϕ is a given function on X (usually assumed to have some degree of smooth-
ness), and ψ is an unknown function on X (generally required to have another
degree of smoothness).

12.1. Irrational numbers of Roth type.

Definition 12.1. An irrational number α is of Roth type if, for every ε > 0,
there exists C = Cε > 0 such that, for every rational p

q , one has

|α− p

q
| � C

q2+ε
.

The reason for the terminology is the celebrated result

Theorem 12.2. (Roth) Every irrational algebraic number is of Roth type.

Let α = [a0; a1, . . .] be the continuous fraction decomposition of the irrational
number α, and let ( pn

qn
) be the associated convergents of α. Then α is of Roth type

iff qn+1 = O(q1+ε
n ) for all ε > 0; this can be reformulated as an+1 = O(qεn) for all

ε > 0.
The set of irrational numbers of Roth type has full Lebesgue measure: indeed,

for every q � 1, C > 0, the set of α ∈ (0, 1) such that

|α− p

q
| < C

q2+ε

for some p ∈ Z has measure � 2Cq−1−ε and the series
∑

q�1 q
−1−ε is convergent.

Standard methods of harmonic analysis allow to prove the following fundamen-
tal result, where Rα denotes the rotation x �→ x+ α on T.

Theorem 12.3. Let α be an irrational number of Roth type and let r, s be
nonnegative real numbers with r − s > 1. For every function ϕ ∈ Cr(T) of mean
value 0, there exists a unique function ψ ∈ Cs(T) of mean value 0 such that

ψ ◦Rα − ψ = ϕ.
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12.2. Interval exchange maps of Roth type. Let T be an interval ex-
change map, (A, π) its combinatorial data; denote by R the Rauzy class of π and
by D the associated Rauzy diagram.

We assume that T has no connection. The Rauzy-Veech algorithm applied to T
produces an infinite path γ in D starting from π. From Proposition 1 in Subsection
7.7, the path γ is ∞-complete. We can therefore write in a unique way γ as a
concatenation

γ = γ1 ∗ γ2 ∗ . . . ∗ γn ∗ . . .
where each γi is complete but no strict initial subpath of γi is complete. We write
γ(n) for the initial part

γ(n) = γ1 ∗ γ2 ∗ . . . ∗ γn
of γ.

We say that T is an i.e.m of Roth type if it satisfies the three conditions (a),
(b), (c) below.

(a): For every ε > 0, there exists C = Cε such that, for all n > 0, one
has

||Bγn
|| � C ||Bγ(n−1)||ε.

Exercise 12.4. Let x �→ x+α be an irrational rotation on T and let
T be the associated i.e.m with two intervals. Show that α is of Roth type
iff T satisfies condition (a).

Let λ ∈ R
A be the length data of T and let E1 = {

∑
α λαwα = 0}; this

hyperplane of RA should be viewed as the space of functions w, constant
on each Itα, of mean value 0.

(b): There exists θ > 0, C > 0, such that, for all n > 0, one has

||Bγ(n)|E1
|| � C ||Bγ(n)||1−θ.

Exercise 12.5. Show that condition (b) is always satisfied when d =
2.

Exercise 12.6. Show that condition (b) implies that T is uniquely
ergodic.

Exercise 12.7. Assume that T satisfies the following reinforcement
of condition (a): there exists C > 0 such that ||Bγn

|| < C for all n > 0.
Show that this imply that T satisfies condition (b).

Exercise 12.8. Show that the condition of the last exercise is satisfied
iff the orbit of (π, λ) under V is relatively compact in Δ(D).

In order to state part (c) of the definition of Roth type i.e.m, we
define, for � � k

γ(k, �) = γk+1 ∗ . . . ∗ γ	
and introduce, for k � 0

Es(k) := {w ∈ R
A ; lim sup

	→+∞

log ||Bγ(k,	)w||
log ||Bγ(k,	)||

< 0}.

Observe that Es(k) is a vector subspace of RA which is sent by Bγ(k,	)

onto Es(�). Denote by B�
k,	 the restriction of Bγ(k,	) to Es(k) and by B�

k,	

the map from R
A/Es(k) to R

A/Es(�) induced by Bγ(k,	).
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(c): For every ε > 0, there exists C = Cε such that, for all � � k, we
have

||B�
k,	|| � C ||Bγ(	)||ε,

||(B�
k,	)

−1|| � C ||Bγ(	)||ε.
Assume that μ is a probability measure which is invariant under the dynamics V

generated by the Rauzy-Veech algorithm or the accelerated version V ∗. Assume also
that the integrability condition of Oseledets’s theorem is satisfied by the Kontsevich-
Zorich cocycle w.r.t μ. For instance, μ could be the canonical V ∗-invariant measure
absolutely continuous w.r.t Lebesgue, or could be supported by a periodic orbit of
V (or more generally a compact V -invariant subset of Δ(D)).

Then, property (c) is satisfied by μ-almost all T . The spaces Es(k) are the
stable subspaces associated to the negative Lyapunov exponents (relative to μ) and
the estimates in (c) follow from the conclusions of Oseledets’s theorem.

Property (b) is also satisfied by μ-almost all T . Indeed, the largest Lyapunov
exponent for μ is simple, with associated hyperplane equal to E1 (the simplicity
of the largest exponent for μ is proven from the positivity of the matrices B as in
Subsection 10.2).

Regarding property (a), no general statement w.r.t any invariant probability μ
as above is known. On the other hand, with respect to the canonical V ∗-invariant
measure absolutely continuous w.r.t Lebesgue, (or equivalently w.r.t Lebesgue mea-
sure), almost all T satisfy property (a): this follows from a stronger statement that
will be presented in Section 14 We thus obtain

Proposition 12.9. For any combinatorial data (A, π), and Lebesgue almost
any length vector λ, the i.e.m T constructed from these data is of Roth type.

12.3. The cohomological equation for interval exchange maps. The
first and decisive breakthrough concerning the cohomological equation for i.e.m of
higher genus was obtained by Forni [For1]. He actually works with the (nonzero)
constant vectorfields X on a translation surface (M,Σ, κ, ζ) for which the cohomo-
logical equation takes the form

X.Ψ = Φ.

He defines from the flat metrics associated to the structure of translation surface a
family Hs(M) of Sobolev spaces and obtains the following result

Theorem 12.10. (Forni [For1, For3]) Let k � 0 be an integer and r, s be real
numbers satisfying s − 3 > k > r. For almost all constant unit vectorfields X on
(M,Σ, κ, ζ), and all functions Φ ∈ Hs(M) satisfying D.Φ = 0 for all D ∈ Is

X , there
exists Ψ ∈ Hr(M) such that X.Ψ = Φ. Here, Is

X is the finite-dimensional space of
X-invariant distributions in H−s(M).

A slight drawback of Forni’s theorem is that no explicit description of the set
of ”good” directions for which it is possible to solve the cohomological equation is
given. This is addressed by the next result.

Let T be an interval exchange map, (A, π) its combinatorial data, �Itα the
domain of T . We denote by BV1

∗(�Itα) the Banach space of functions ϕ on �Itα
with the following properties

• the restriction of ϕ to each Itα is absolutely continuous and its derivative
is a function of bounded variation;
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• the mean value of the derivative Dϕ over �Itα is 0.

Remark 12.11. The first property implies that the limits ϕ((ut
i)

+) (for 0 �
i < d) and ϕ((ut

i)
−) (for 0 < i � d) exist, where u0 = ut

0, ud = ut
d are the endpoints

of the domain of t and ut
1 < . . . < ut

d−1 are the singularities of T . Then the second
condition is

d−1∑
1

(ϕ((ut
i)

+)− ϕ((ut
i)

−)) + ϕ(u+
0 )− ϕ(u−

d ) = 0.

Theorem 12.12. [MmMsY] Assume that T has no connection and is of Roth
type. Then, for every function ϕ ∈ BV1

∗(�Itα), there exists a bounded function ψ
on �Itα and a function χ which is constant on each Itα such that

ψ ◦ T − ψ = ϕ− χ .

Remark 12.13. The solution (ψ, χ) of the equation is unique if one restricts
ψ, χ to smaller subspaces. More precisely, let ET be the subspace of RA formed of
the functions χ, constant on each Itα, which can be written as ψ ◦ T − ψ for some
bounded function ψ; let E∗

T be a complementary subspace of ET in R
A. Then,

under the hypotheses of the theorem, one can find a unique pair (ψ, χ) satisfying
moreover that ψ has mean value 0 and that χ ∈ E∗

T . The quotient space R
A/ET

can thus be seen as the obstruction to solve the cohomological equation for the
smoothness data under consideration.

As the derivative of T is 1 on each Itα, differentiating the cohomological equation
leads to the same equation for derivatives of ϕ, ψ, with only constants of integration
to keep under control. A result on the cohomological equation in higher smoothness
is therefore easily deduced from the basic result above.

For r � 1, let BVr
∗(�Itα) be the space of functions ϕ on �Itα such that

• the restriction of ϕ to each Itα is of class Cr−1, Dr−1ϕ is absolutely con-
tinuous on Itα and Drϕ is a function of bounded variation;

• the mean value of the derivative Djϕ over �Itα is 0 for every integer
0 < j � r.

On the other hand, let I be the interval supporting the action of T . Denote for
r � 2 by Cr−2+Lip(I) the space of functions ψ on I which are of class Cr−2 on all
of I and such that Dr−2ψ is Lipschitz on I.

Finally, for r � 1, let E(r) be the space of functions χ on �Itα such that

• the restriction of χ to each Itα is a polynomial of degree < r;
• the mean value of the derivative Djχ over �Itα is 0 for every integer

0 < j < r.

One has then

Theorem 12.14. Assume that T has no connection and is of Roth type. Let r
be an integer � 2. Then, for every function ϕ ∈ BVr

∗(�Itα), there exists a function
ψ ∈ Cr−2+Lip(I) and a function χ ∈ E(r) such that

ψ ◦ T − ψ = ϕ− χ .
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12.4. Sketch of the proof. We give some indications about the steps of the
proof of the theorem.

We want to use the following classical result.

Theorem 12.15. (Gottschak-Hedlund) Let f be a minimal homeomorphism of
a compact metric space X, let x0 be a point of X, and let ϕ be a continuous function
on X. The following are equivalent:

(1) The Birkhoff sums
∑n−1

0 ϕ ◦ f i(x0) are bounded.
(2) There exists a continuous function ψ on X such that

ψ ◦ f − ψ = ϕ.

By splitting each point in the orbits of the singularities of T and T−1 into its

left and right limit, one obtain a compact metric space Î on which T induces a

minimal homeomorphism. Moreover, every continuous function ψ̂ on Î induces a
bounded function on I. Therefore, in view of the theorem of Gottschalk-Hedlund,
it is sufficient to find, for every ϕ ∈ BV1

∗(�Itα), a function χ, constant on each Itα,
such that the Birkhoff sums of ϕ− χ are bounded.

Let BV(�Itα) be the Banach space of functions ϕ1 of bounded variation on �Itα,
equipped with the norm

||ϕ1||BV := sup
	It

α

|ϕ1(x)| + |ϕ1|BV ,

|ϕ1|BV :=
∑
α

VarIt
α
ϕ1 .

Let I(n) = �It, (n)α ⊂ I be the interval of induction for the step of the Rauzy-
Veech algorithm associated to the initial path γ(n) of γ (notations of Subsection
12.2). A simple but crucial observation, in the spirit of the Denjoy estimates for
circle diffeomorphisms, is that, for ϕ1 ∈ BV(�Itα), the Birkhoff sum S(n)ϕ1 cor-

responding to returns in I(n) (see Subsection 11.2) satisfy S(n)ϕ1 ∈ BV(�It, (n)α )
with

|S(n)ϕ1|BV � |ϕ1|BV .

This estimate is the basic ingredient in the proof of the

Proposition 12.16. Assume that T has no connection and satisfy conditions
(a) and (b) of Subsection 12.2. For every function ϕ1 ∈ BV(�Itα) of mean value 0,
and every n � 0, we have

sup
	I

t, (n)
α

|S(n)ϕ1(x)| � C ||Bγ(n)||1−
θ
2d ||ϕ1||BV ,

where C depends only on the constants in condition (a) and (b).

From condition (a), the lengths |It, (n)α | satisfy

lim
n→+∞

log |It, (n)α |
log ||Bγ(n)||

= −1 .

Therefore, for every ϕ1 ∈ BV(�Itα) of mean value 0, and every n � 0, there exists a
primitive ϕ0 ∈ BV1

∗(�Itα) of ϕ1 (one constant of integration being chosen for each
Itα) such that

sup
	I

t, (n)
α

|S(n)ϕ0(x)| � C ||Bγ(n)||−
θ
3d ||ϕ1||BV .



INTERVAL EXCHANGE MAPS AND TRANSLATION SURFACES 61

Using condition (c) of Subsection 12.2, one can change the order of the quan-
tifiers to make the primitive ϕ0 independent of n and still satisfy

sup
	I

t, (n)
α

|S(n)ϕ0(x)| � C ||Bγ(n)||−ω||ϕ1||BV ,

for some ω > 0. But the last estimate, together with condition (a) of 12.2,
easily imply that the Birkhoff sums of ϕ0 are bounded. This proves the required
result: starting from any ϕ ∈ BV1

∗(�Itα), we take ϕ1 := Dϕ ∈ BV(�Itα); it has
mean value 0 and therefore has a primitive ϕ0 such that the Birkhoff sums of ϕ0

are bounded. The difference ϕ− ϕ0 is constant on every Itα.

13. Connected components of the moduli spaces

We present in this section the classification of the connected components of the
moduli space M(M,Σ, κ) by Kontsevich and Zorich [KonZo]. The classification
of the connected components of the marked moduli space is the same: it is easy

to see that the canonical covering map from M̃(M,Σ, κ) to M(M,Σ, κ) induces a
bijection at the π0 level. Observe also that for classification purposes, we can and
will assume that all ramification indices κi are > 1.

13.1. Hyperelliptic components. Let d � 4 be an integer, and let P ∈ C[z]
be a polynomial of degree d+ 1 with simple roots. Adding 1 or 2 points at infinity
(depending on whether d is even or odd) to the complex curve {w2 = P (z)},
one obtains an hyperelliptic compact Riemann surface M of genus g = [d2 ]. The

holomorphic 1-form ω := dz
w has no zero at finite distance. When d is even, it has a

zero of order d− 2 = 2g− 2 at the single point A1 at infinity. When d is odd, it has
a zero of the same order g − 1 = d−3

2 at each of the two points A1, A2 at infinity.
The translation surface defined by (M,ω) has therefore the following data:

• s = 1, κ1 = 2g − 1 if d is even;
• s = 2, κ1 = κ2 = g if d is odd.

Moreover we have d = 2g + s− 1 in all cases so d is the complex dimension of
the corresponding moduli space.

Observe that, for a ∈ C
∗, b ∈ C, the polynomials P and a−2P (az + b) produce

isomorphic translation surfaces. One has therefore exactly d independent complex
parameters to deform the translation surface through a change of polynomial P . It
is not difficult to see that one gets in this way, for each integer d � 4, a whole con-
nected component of the corresponding moduli space. Such connected components
are called hyperelliptic.

Hyperelliptic components correspond to the simplest Rauzy classes. Let #A =
d. A Rauzy class containing some combinatorial data π = (πt, πb) such that πt(α)+
πb(α) = d+1 for all α ∈ A is associated to the hyperelliptic component of dimension
d.

When g = 2, the values d = 4 and d = 5 correspond to a double zero or two
simple zeros for ω respectively. It is immediate to check that the hyperelliptic Rauzy
classes described above are the only ones giving these values of (g, s, κ). Therefore,
the two strata of the moduli space in genus 2 are connected and hyperelliptic.

Kontsevich and Zorich discovered that the situation is quite different in genus
� 3.
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13.2. Parity of spin structure. Let (M,Σ, κ, ζ) be a translation surface
such that all κi are odd. We denote as usual Σ = (A1, . . . , As). The divisor

D =
∑ (κi−1)

2 Ai defines a spin structure on the Riemann surface M (equipped with
the complex structure defined by the structure of translation surface). The parity
of this spin structure is the parity of the dimension of the space of meromorphic
functions f on M such that (f) +D � 0.

The reader should consult [At], [Mil] for some fundamental facts and results
about spin structures and their parity. A fundamental result is that the parity of
the spin structure is invariant under deformation, and is therefore the same for all
translation surfaces in a same connected component of the moduli space.

The parity of the spin structure can be computed in the following way. For a
smooth loop c : S1 → M − Σ, define the index ind(c) to be the degree mod 2 of
the map which associates to t ∈ S

1 the angle between the tangent vector ċ(t) and
the horizontal direction at c(t). As all ramification indices κi are odd, the index
depends only on the class of c in H1(M,Z). Now let ai, bi, 1 � i � g be smooth
loops in M−Σ such that their homology classes form a standard symplectic basis of
H1(M,Z). The parity of the spin structure for the translation surface (M,Σ, κ, ζ)
is then given by

g∑
1

(ind(ai) + 1)(ind(bi) + 1) mod. 2.

13.3. Classification. Kontsevich and Zorich have shown that hyperellipticity
and parity of spin structure are sufficient to classify components. More precisely

Theorem 13.1. [KonZo] Let (g, s, κ) be combinatorial data (with all κi > 1)
determining a moduli space for translation surfaces.

(1) If at least one of the κi is even, the moduli space is connected, except
when s = 2, κ1 = κ2 = g � 4. In this case, the moduli space has two
components, one hyperelliptic and the other not hyperelliptic.

(2) If all κi are odd and either s � 3 or s = 2 and κ1 
= κ2, then the moduli
space has two connected components, one with even spin structure and the
other with odd spin structure.

(3) If either s = 1, g � 4 or s = 2, κ1 = κ2 = g odd � 5, the moduli space has
three connected components: one hyperelliptic and two non hyperelliptic
distinguished by the parity of the spin structure.

(4) If g = 3, s = 1 or s = 2, κ1 = κ2 = 3, the moduli space has two
components, one hyperelliptic and the other not hyperelliptic. If g = 2,s =
1, the moduli space is connected.

We just say a few words of the scheme of the proof. The confluence of the
zeros of the 1-form associated to the structure of translation surface organizes the
various moduli spaces as the strata of a stratification. The minimal stratum Smin

corresponds to a single zero of maximal multiplicity 2g − 2.
Kontsevich and Zorich establish the following fact, which allows to rely any

stratum to Smin: for any stratum S, and any connected component C of Smin,
there exists exactly one component of S which contains C in its closure.

The determination of the connected components of the minimal stratum Smin

is by induction on the genus g. First, using a local construction first described in
[EMaZo], they show that there are at least as many components as stated in the
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theorem: given a translation surface with a single zero A1 of multiplicity 2g − 2,
they split A1 into two zeros A′

1, A
′′
1 of respective multiplicities k′1, k

′′
1 , slit the surface

along a segment joining A′
1 and A′′

1 , and glue the two sides to the two boundary
components of a cylinder. The resulting translation surface has genus g+1, a single
zero of maximal multiplicity 2g and the parity of its spin structure changes when
the parity of k′1 change.

That there are no more components of Smin that as stated in the theorem is
also proved by induction. The idea is to present any generic translation surface in
Smin as the suspension, via the zippered rectangle construction, of an i.e.m and
then take off a handle by an appropriate reduction operation.

14. Exponential mixing of the Teichmüller flow

We present in this section the main results from [AvGoYo].

14.1. Exponential mixing. Let (X,B,m) be a probability space, and let
(T t) be a measure-preserving dynamical system. We allow here for discrete time
(t ∈ Z) as well as continuous time (t ∈ R). We denote by L2

0(X) the Hilbert space of
square-integrable functions of mean value 0, by U t the unitary operator ϕ �→ ϕ◦T t

of L2
0(X). For ϕ, ψ ∈ L2

0(X), we define the correlation coefficient of ϕ, ψ by

cϕ,ψ(t) :=< ϕ,U tψ > .

We recall that

• T t is ergodic iff, for all ϕ, ψ ∈ L2
0(X), cϕ, ψ(t) converges to 0 in the sense

of Cesaro as t → +∞ ;
• T t is mixing iff, for all ϕ, ψ ∈ L2

0(X), cϕ,ψ(t) converges to 0 as t → +∞ .

Exponential mixing requires that this convergence is exponentially fast. However,
simple examples (for instance, the shift map) show that this cannot happen, even
in the most chaotic dynamical systems, for all functions ϕ, ψ ∈ L2

0(X). One
generally requires that ϕ, ψ belong to some Banach space E of ”regular” functions
on X, dense in L2

0(X). Then the correlation coefficients should satisfy

cϕ,ψ(t) � C||ϕ||E ||ψ||E exp(−δ t),

where δ > 0 is independent of ϕ, ψ ∈ E. Observe that this indeed imply mixing.
Exponential mixing, unlike ergodicity or mixing, is not a spectral notion (one

which depends only on the properties of the unitary operators U t).

Theorem 14.1. [AvGoYo] The Teichmuller flow is exponentially mixing on

any connected component of any marked moduli space M̃(1)(M,Σ, κ).

The subspace E of ”regular” functions will be explicited below; for any 1 �
β > 0, it can be chosen to contain all β-Hölder functions with compact support.

14.2. Exponential mixing and irreducible unitary representations of
SL(2,R). The theorem has an interesting consequence with respect to the repre-
sentation of SL(2,R) determined by the action of this group on the marked moduli
spaces.

Ler C be a connected component of some marked moduli space M̃(1)(M,Σ, κ).
Denote by H the Hilbert space of zero mean L2 functions on C. The action of
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SL(2,R) induces an unitary representation of SL(2,R) in H. As any unitary rep-
resentation of SL(2,R), it decomposes as an hilbertian sum

H =

∫
Hξdμ(ξ),

where, for each ξ, the representation of SL(2,R) in Hξ is irreducible.
According to Bargmann, the nontrivial irreducible unitary representations of

SL(2,R) are divided into three families, the discrete, principal and complementary
series. This corresponds to an orthogonal decomposition into invariant subspaces

H = Htr ⊕Hd ⊕Hpr ⊕Hc .

The ergodicity of the action of SL(2,R) (Masur-Veech) means that Htr = {0}.
Write gt for the diagonal element diag(et, e−t) of SL(2,R) corresponding to

the Teichmüller flow. In general, for vectors v, v′ belonging both to the discrete
component Hd or the principal component Hpr of the representation, one has, for
t � 1

< gt(v), v
′ > � C t e−t ||v|| ||v′|| .

On the other hand, the complementary series is parametrized by a parameter
s ∈ (0, 1), with

Hs = {f : S1 → C , ||f ||2 :=

∫ ∫
f(z)f(z′)

|z − z′|1−s
dz dz′ < +∞},

the representation of SL(2,R) in Hs being given by(
a b
c d

)
.f(z) = |βz + α|−1−s f

(
αz + β

βz + α

)
,

with (
i i
−1 1

)−1 (
a b
c d

)(
i i
−1 1

)
=

(
α β

β α

)
.

We observe that the norm in Hs is equivalent to the norm

||f ||′ =
(∑

(1 + |n|)−s|f̂(n)|2
) 1

2

.

The integral powers en(z) := zn, n ∈ Z, are eigenfunctions for the action of
SO(2,R): (

cos θ sin θ
− sin θ cos θ

)
en = exp(2iπnθ) en .

An easy calculation show that, for m,n ∈ Z, t � 1

| < gt em , en > | � < gt e0 , e0 >,

C−1
s et(s−1) � < gt e0 , e0 > � Cs e

t(s−1),

with Cs > 0 depending on s but not on t.

Definition 14.2. A unitary representation H of SL(2,R) has an almost in-
variant vector if, given any compact subset K of SL(2,R) and ε > 0, there exists a
unit vector v ∈ H such that

||g.v − v|| < ε

for all g ∈ K.
A unitary representation H of SL(2,R) with no almost invariant vector is said

to have a spectral gap.
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Let H =
∫
Hξdμ(ξ) be the decomposition of a unitary representation H of

SL(2,R) into irreducible representations. Then H has a spectral gap iff there exists
s0 ∈ (0, 1) such that, for almost every ξ, Hξ is neither the trivial representation
nor isomorphic to a representation in the complementary series with parameter
s ∈ (s0, 1).

Definition 14.3. Let H be a unitary representation of SL(2,R). A vector
v ∈ H is Cr-SO(2,R)-smooth if the function

θ →
(

cos θ sin θ
− sin θ cos θ

)
.v

is of class Cr.

Proposition 14.4. (Ratner [Rat]) If the unitary representation H has a spec-
tral gap, then it is exponential mixing for C2-SO(2,R)-smooth vectors: there exists
δ > 0 and C > 0 such that, for any C2-SO(2,R)-smooth v, v′ ∈ H, t � 1

| < gt.v, v
′ > | � C exp(−δt) ||v||2 ||v′||2 ,

where ||v||2 is the sum of the norm of v and the norm of the second derivative at 0

of θ →
(

cos θ sin θ
− sin θ cos θ

)
.v.

Sketch of proof. It is sufficient to consider unit vectors v, v′ in the com-
plementary component of the representation. There exists s0 ∈ (0, 1) such that
s(ξ) /∈ [s0, 1) for almost every ξ, hence we have

| < gt.em, en >ξ | � C exp(t(s0 − 1))

for all t � 1, m,n ∈ Z, and almost every ξ. Let v, v′ be C2-SO(2,R)-smooth vectors
in the complementary component of H. Write

v =

∫
v(ξ)dμ(ξ) =

∫ ∑
vm(ξ)emdμ(ξ),

and similarly for v′. Then v(ξ) is C2-SO(2,R)-smooth for almost all ξ. From the
remark on the norm in Hs above, this gives, for all m ∈ Z

|vm(ξ)| � C||v(ξ)||2(1 + |m|)
s(ξ)
2 −2.

We conclude that

| < gt.v, v
′ > | �

∫
| < gt.v(ξ), v

′(ξ) > |dμ(ξ)

�
∫

|
∑
m

∑
n

vm(ξ)v′n(ξ) < gt.em, en >ξ |dμ(ξ)

� C exp(t(s0 − 1))

∫
||v(ξ)||2||v′(ξ)||2dμ(ξ)

� C exp(t(s0 − 1)) ||v||2||v′||2.
�

Remark 14.5. The absence of a trivial component, i.e the ergodicity of the
action of SL(2,R), already imply that the action of the diagonal subgroup is mixing:
for vectors of the form

v =

∫
0<s(ξ)<s0

∑
|m|�M

vm(ξ)emdμ(ξ), v′ =

∫
0<s(ξ)<s0

∑
|m|�M

v′m(ξ)emdμ(ξ)
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, for some M > 0, s0 ∈ (0, 1), we have that | < gt.v, v
′ > | converges to 0 by the

calculation above. These vectors are dense in the complementary component of H,
and the mixing property follows.

Conversely

Proposition 14.6. Assume that there exists δ > 0 and a dense subset E of
vectors v in the space of SO(2,R)-invariant vectors in H for which the correlation
coefficients < gt.v, v > are O(exp(−δt)). Then H has a spectral gap.

Proof. We may assume that 0 < δ < 1. Assume by contradiction that H
has no spectral gap. The complementary component vc of any SO(2,R)-invariant
vector takes the form vc =

∫
v0(ξ)e0dμ(ξ), with v0 ∈ L2(μ). As E is dense in the

space of SO(2,R)-invariant vectors in H, we can find v ∈ E such that

μ{ξ, s(ξ) > 1− δ and v0(ξ) 
= 0} > 0 .

Then we have

< gt.vc, vc > =

∫
|φ(ξ)|2 < gt.e0, e0 > dμ(ξ)

�
∫

|φ(ξ)|2C−1
s(ξ) exp(t(s(ξ)− 1))dμ(ξ);

here s(ξ) is the parameter in the complementary series associated to Hξ. Thus
< gt.vc, vc > is not O(exp(−δt)). But v does not have a discrete component, and
the principal component vp satisfies < gt.vp, vp >= O(t exp(−t)). This contradicts
the property of E. �

Coming back to the setting of the theorem in Subsection 14.1, let C be a

component of some marked moduli space M̃(1)(M,Σ, κ). The space of compactly
supported mean zero smooth SO(2,R)-invariant functions on C is dense in the
subspace of SO(2,R)-invariant functions in L2

0(C). Therefore the representation of
SL(2,R) in L2

0(C) has a spectral gap.

14.3. Diophantine estimates. Exponential mixing is a classical property of
uniformly hyperbolic transformations preserving a smooth volume form.

Exercise 14.7. Let A ∈ SL(d,R) be a hyperbolic matrix. The induced diffeo-
morphism of Td preserves Lebesgue measure. Prove that , if ϕ, ψ are Hölder func-
tions on T

d with zero mean-value, the correlation coefficient cϕ,ψ(n) :=
∫
Td ϕ ψ◦An

satisfy

|cϕ,ψ(n)| � C||ϕ|| ||ψ|| exp(−δn),

where δ depends only on A and the Hölder exponent of ϕ, ψ.

With respect to this very basic case, the Teichmüller flow presents three diffi-
culties:

• the time is continuous rather than discrete;
• hyperbolicity is non uniform;
• distortion for large time is not controlled as simply than in the uniformly
hyperbolic setting on a compact manifold.

As the constant time suspension of an Anosov diffeomorphism is obviously not
mixing, the first difficulty is quite serious. The ideas which allow to deal with
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it were first introduced by Dolgopyat [Do] and later developped by Baladi-Vallée
[BaVa].

The other two difficulties are related to a lack of compactness of the moduli
spaces of translation surfaces. To get uniform hyperbolicity and bounded distortion,
one is led to introduce the return map of the Teichmüller flow to a suitably small
transversal section (smaller than the ones considered in Section 9). The problem
is then to control the return time to this transversal section. This is done through
diophantine estimates which we will now present.

Let R be a Rauzy class on an alphabet A, let D be the associated Rauzy
diagram. The estimates depend on a parameter q ∈ R

A
+. For such q, we define a

probability measure Pq on P(RA
+) by

Pq(A) :=
Leb(R+A

⋂
Λq)

Leb(Λq)
,

where Λq = {λ ∈ R
A
+; < λ, q > < 1 }. Define also, for q ∈ R

A
+, M(q) :=

maxα∈A qα, m(q) := minα∈A qα. For a finite path γ in D, starting from a vertex π,
we denote by Δγ the set of λ ∈ Δπ whose Rauzy-Veech path starts with γ.

Let now 0 � m � M be integers, q ∈ R
A
+, π ∈ R. Define Γ0 = Γ0(m,M, q, π)

to be the set of finite paths γ ∈ D starting from π such that

M(Bγq) > 2M M(q), m(Bγq) < 2M−m M(q).

Theorem 14.8. [AvGoYo] There exist constants θ, C depending only on #A
such that

Pq(
⋃

γ∈Γ0

P(Δγ)) � C(m+ 1)θ2−m.

A closely connected estimate is the following. Let M be an integer and q ∈ R
A
+,

π ∈ R. Define Γ1 = Γ1(M, q, π) to be the set of finite paths γ ∈ D starting from π
such that γ is not complete and M(Bγq) > 2M M(q).

Theorem 14.9. [AvGoYo] There exist constants θ, C depending only on #A
such that

Pq(
⋃

γ∈Γ1

P(Δγ)) � C(M + 1)θ2−M .

Exercise 14.10. Use these estimates to show that almost all i.e.m are of Roth
type.
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Unipotent Flows and Applications

Alex Eskin

1. General introduction

1.1. Values of indefinite quadratic forms at integral points. The Op-
penheim Conjecture. Let

Q(x1, . . . , xn) =
∑

1≤i≤j≤n

aijxixj

be a quadratic form in n variables. We always assume that Q is indefinite so that
(so that there exists p with 1 ≤ p < n so that after a linear change of variables, Q
can be expresses as:

Q∗
p(y1, . . . , yn) =

p∑
i=1

y2i −
n∑

i=p+1

y2i

We should think of the coefficients aij of Q as real numbers (not necessarily
rational or integer). One can still ask what will happen if one substitutes integers
for the xi. It is easy to see that if Q is a multiple of a form with rational coefficients,
then the set of values Q(Zn) is a discrete subset of R. Much deeper is the following
conjecture:

Conjecture 1.1 (Oppenheim, 1929). Suppose Q is not proportional to a ra-
tional form and n ≥ 5. Then Q(Zn) is dense in the real line.

This conjecture was extended by Davenport to n ≥ 3.

Theorem 1.2 (Margulis, 1986). The Oppenheim Conjecture is true as long as
n ≥ 3. Thus, if n ≥ 3 and Q is not proportional to a rational form, then Q(Zn) is
dense in R.

This theorem is a triumph of ergodic theory. Before Margulis, the Oppenheim
Conjecture was attacked by analytic number theory methods. (In particular it was
known for n ≥ 21, and for diagonal forms with n ≥ 5).

Failure of the Oppenheim Conjecture in dimension 2. Let α > 0 be a
quadratic irrational such that α2 �∈ Q (e.g. α = (1 +

√
5)/2), and let

Q(x1, x2) = x2
1 − α2x2

2.

c© 2010 Alex Eskin
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Proposition 1.3. There exists ε > 0 such that for all x1, x2 ∈ Z, |Q(x1, x2)| >
ε.

Proof. Suppose not. Then for any 1 > ε > 0 there exist x1, x2 ∈ Z such that

(1) |Q(x1, x2)| = |x1 − αx2||x1 + αx2| ≤ ε.

We may assume x2 �= 0. If ε < α2, one of the factors must be smaller then α.
Without loss of generality, we may assume |x1 − αx2| < α, so |x1 − αx2| < α|x2|.
Then,

|x1 + αx2| = |2αx2 + (x1 − αx2)| ≥ 2α|x2| − |x1 − αx2| ≥ α|x2|.
Substituting into (1) we get

(2)

∣∣∣∣x1

x2
− α

∣∣∣∣ ≤ ε

|x2||x1 + αx2|
≤ ε

α

1

|x2|2
.

But since α is a quadratic irrational, there exists c0 > 0 such that for all p, q ∈ Z,
|pq − α| ≥ c0

q2 . This is a contradiction to (2) if ε < c0α. �

A relation to flows on homogeneous spaces. This was noticed by Raghu-
nathan, and previously in implicit form by Cassels and Swinnerton-Dyer. However
the Cassels-Swinnerton-Dyer paper was mostly forgotten. Raghunathan made clear
the connection to unipotent flows, and explained from the point of view of dynamics
what is different in dimension 2. See §5.1.

1.2. Some basic Ergodic Theory. Transformations, flows and Ergodic
Measures. Let X be a locally compact separable topological space, and T : X →
X a map. We assume that there is a finite measure μ on X which is preserved by T .
One usually normalizes μ so that μ(X) = 1, in which case μ is called a probability
measure.

Sometimes, instead of a transformation T one considers a flow φt, t ∈ R. For a
fixed t, φt is a map from X to X. In this section we state definitions and theorems
for transformations only, even though we will use them for flows later.

Definition 1.4 (Ergodic Measure). An T -invariant probability measure μ is
called ergodic for T if for every measurable T -invariant subset E of X one has
μ(E) = 0 or μ(E) = 1.

Every measure can be written as a linear combination (possibly uncountable,
dealt with via integration) of ergodic measures. This is called the “ergodic decom-
position”.

Ergodic measures always exist. In fact the probability measures form a convex
set, and the ergodic probability measures are the extreme points of this set (cf. the
Krein-Milman theorem).

Birkhoff’s Ergodic Theorem.

Theorem 1.5 (Birkhoff Ergodic Theorem). Suppose μ is ergodic for T , and
suppose f ∈ L1(X,μ). Then for μ-almost all x ∈ X, we have

(3) lim
n→∞

1

n

n−1∑
k=0

f(Tnx) =

∫
X

f dμ.
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The sum on the left-hand side is called the “time average”, and the integral on
the right is the “space average”. Thus the theorem says that for almost all base
points x, the time average along the orbit of x converges to the space average.

This theorem is amazing in its generality: the only assumption is ergodicity of
the measure μ. (This is a some sort of irreducibility assumption).

The set of x ∈ X for which (3) holds is called the generic set for μ.

Mutually singular measures. Recall that two probability measures μ1 and μ2

are called mutually singular (written as μ1 ⊥ μ2 if there exists a set E such that
μ1(E) = 1, μ2(E) = 0 (so μ2(E

c) = 1).
In our proofs we will use repeatedly the following:

Lemma 1.6. Suppose μ1 and μ2 are distinct ergodic measures for the map
T : X → X. Then μ1 ⊥ μ2.

Proof. This is an immediate consequence of the Birkhoff ergodic theorem. Since
μ1 �= μ2 we can find an f such that

∫
X
f dμ1 �=

∫
X
f dμ2. Now let E denote the set

where (3) holds with μ = μ1. �

Remark. It is not difficult to give another proof of Lemma 1.6 using the Radon-
Nikodym theorem.

Given an invariant measure μ for T , we want to find conditions under which
it is ivariant under the action of a larger group. Now if H commutes with T , then
for each h0 ∈ H the measure h0μ is T -invariant. So if μ is ergodic, so is h0μ, and
Lemma 1.6 applies. More can be said, ([cf. [Ra4, Thm. 2.2], [Mor, Lem. 5.8.6]]):

Lemma 1.7. Suppose T : X → X is preserving an ergodic measure μ. Suppose
H is a group with acts continuously on X and commutes with T . Also suppose that
there exists h0 ∈ H such that h0μ �= μ. Then there exists a neighborhood B of
h0 ∈ H and a conull T -invariant subset Ω of X such that

hΩ ∩ Ω = ∅ for all h ∈ B.

Proof. Since h0 commutes with T , the measure h0μ is T -invariant and ergodic.
Thus by Lemma 1.6, h0μ ⊥ μ. This implies there is a compact subset K0 of X,
such that μ(K0) > 0.99 and K0 ∩h0K0 = ∅. By continuity and compactness, there
are open neighborhoods U and U+ of K0, and a symmetric neighborhood Be of e
in H, such that U+ ∩ h0U+ = ∅ and BeU ⊂ U+. From applying (3) with f the
characteristic function of U , we know there is a conull T -invariant subset Ωh0

of X,
such that the T -orbit of every point in Ωh0

spends 99% of its life in U . Now suppose
there exists h ∈ Beh0, such that Ωh0

∩hΩh0
�= ∅. Then there exists x ∈ Ωh0

, n ∈ N,
and c ∈ Be, such that Tnx and ch0T

nx both belong to U . This implies that Tnx
and h0T

nx both belong to U+. This contradicts the fact that U+ ∩ h0U+ = ∅. �

Uniquely ergodic systems. In some applications (in particular to number the-
ory) we need some analogue of (3) for all points x (and not almost all). For example,
we want to know if Q(Zn) is dense for a specific quadratic form Q (and not for al-
most all forms). Then the Birkhoff ergodic theorem is not helpful. However, there
is one situation where we can show that (3) holds for all x.

Definition 1.8. A map T : X → X is called uniquely ergodic if there exists a
unique invariant probability measure μ.
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Proposition 1.9. Suppose X is compact, T : X → X is uniquely ergodic, and
let μ be the invariant probability measure. Suppose f : X → R is continuous. Then
for all x ∈ X, (3) holds.

Proof. This is quite easy (as opposed to the Birkhoff ergodic theorem which is
hard). Let δn be the probability measure on X defined by

δn(f) =
1

n

n−1∑
k=0

f(Tnx)

(we are now thinking of measures as elements of the dual space to the space C(X)
of continuous functions on X). Note that

δn(f ◦ T ) = 1

n

n−1∑
k=0

(f ◦ T )(Tnx) =
1

n

n∑
k=1

f(Tnx),

so

(4) δn(f ◦ T )− δn(f) =
1

n
(f(x)− f(Tnx)),

(since the sum telescopes). Suppose some subsequence δnj
converges to some limit

δ∞ (in the weak-* topology). Then, by (4), δ∞(f ◦ T ) = δ∞(f), i.e. δ∞ is T -
invariant.

Since X is compact, δ∞ is a probability measure, and thus by the assumption
of unique ergodicity, we have δ∞ = μ. Thus all possible limit points of the sequence
δn are μ. Also the space of probability measures on X is compact (in the weak-*
topology), so there exists a convergent subsequence. Hence δn → μ, which is the
same as (3). �

Remarks.

• The main point of the above proof is the construction of an invariant
measure (namely δ∞) supported on the closure of the orbit of x. The
same construction works with flows, or more generally with actions of
amenable groups.

• We have used the compactness of X to argue that δ∞ is a probability
measure: this might fail if X is not compact. This phenomenon is called
“loss of mass”.

• Of course the problem with Proposition 1.9 is that most of the dynam-
ical systems we are interested in are not uniquely ergodic. For example
any system which has a closed orbit which is not the entire space is not
uniquely ergodic.

• However, the proof of Proposition 1.9 suggests that (at least in the amenable
case) the classification of the invariant measures is one of the most power-
ful statements one can make about a dynamical system, in the sense that
it allows one to try to understand every orbit (and not just almost every
orbit).

Exercise 1. (To be used in §3.)
(a) Show that if α is irrational then the map Tα : [0, 1] → [0, 1] given by

Tα(x) = x+ α (mod 1 ) is uniquely ergodic. Hint: Use Fourier analysis.
(b) Use part (a) to show that the flow on R

2/Z2 given by φt(x, y) = (x +
tα, y + t) is uniquely ergodic.
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1.3. Unipotent Flows. Let G be a semisimple Lie group (I will usually as-
sume the center of G is finite), and let Γ be a lattice in G (this means that Γ ⊂ G
is a discrete subgroup, and the quotient G/Γ has finite Haar measure). A lattice Γ
is uniform if G/Γ is compact.

Let U = {ut}t∈R be a unipotent one-parameter subgroup of G. Then U acts
on G/Γ by left multiplication. (Recall that in SL(n,R) a matrix is unipotent if all
its eigenvalues are 1. In a general Lie group an element is unipotent if its Adjoint
(acting on the Lie algebra) is a unipotent matrix. ) Examples of unipotent one
parameter subgroups: {(

1 t
0 1

)
, t ∈ R

}
,

and ⎧⎨
⎩
⎛
⎝1 t t2/2
0 1 t
0 0 1

⎞
⎠ , t ∈ R

⎫⎬
⎭ ,

Ratner’s measure classification theorem.

Definition 1.10. A probability measure μ on G/Γ is called algebraic if there
exists x̄ ∈ G/Γ and a subgroup F of G such that F x̄ is closed, and μ is the F -
invariant probability measure supported on F x̄.

Theorem 1.11 (Ratner’s measure classification theorem). Let G be a Lie group,
Γ ⊂ G a lattice. Let U be a one-parameter unipotent subgroup of G. Then, any
ergodic U-invariant measure is algebraic. (Also the group F in the definition of
algebraic is generated by unipotent elements, and contains U).

Loosely speaking, this theorem says that all U -invariant ergodic measures are
very nice. The assumption that U is unipotent is crucial: if we consider instead
arbitrary one-parameter subgroups, then there are ergodic invariant measures sup-
ported on Cantor sets (and worse). This phenomenon is responsible in particular
for the failure of the Oppenheim conjecture in dimension 2.

Theorem 1.11 has many applications, some of which we will explore in this
course. I will give some indication of the ideas which go into the proof of this
theorem in the next two lectures.

Remark on algebraic measures. Let π : G → G/Γ be the projection map.
Suppose x̄ ∈ G/Γ, and F ⊂ G is a subgroup. Let StabF (x̄) denote the stabilizer in
F of x̄, i.e. the set of elements g ∈ F such that gx̄ = x̄. Then StabF (x̄) = F∩xΓx−1,
where x ∈ G is any element such that π(x) = x̄. Thus there is a continuous
map from F x̄ to F/(F ∩ xΓx−1), which is a bijection, but is in general not a
homeomorphism.

However, in the case of algebraic measures, we are making the additional as-
sumption that F x̄ is closed. In this case, the above map is a homeomorphism, and
thus μ is the image under this map of the Haar measure on F/(F ∩ xΓx−1). The
assumption that μ is a probability measure thus implies that F ∩xΓx−1 is a lattice
in F . (The last condition is usually taken to be part of the definition of an algebraic
measure).

Uniform Distribution and the classification of orbit closures.
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Theorem 1.12 (Ratner’s uniform distribution theorem). Let G be a Lie group,
Γ a lattice in G, and U = {ut}t∈R a one-parameter unipotent subgroup. Then for
any x̄ ∈ G/Γ there exists a subgroup F ⊃ U (generated by unipotents) with F x̄
closed, and an F -invariant algebraic measure μ supported on F x̄, such that for any
f ∈ C(G/Γ),

(5) lim
T→∞

1

T

∫ T

0

f(utx̄) dt =

∫
Fx̄

f dμ

Remarks.

• It follows from (5) that the closure of the orbit Ux̄ is F x̄. Thus Theo-
rem 1.12 can be rephrased as “any orbit is uniformly distributed in its
closure”.

• Theorem 1.12 is derived from Theorem 1.11 by an argument morally sim-
ilar to the proof of Proposition 1.9. There is one more ingredient: one
has to show that the set of subgroups F which appear in Theorem 1.11
is countable up to conjugation (Proposition 4.1 below). For proofs of
this fact see [Ra6, Theorem 1.1] and [Ra7, Cor. A(2)]), or alternatively
[DM4, Proposition 2.1].

An immediate consequence of Theorem 1.12 is the following:

Theorem 1.13 (Raghunathan’s topological conjecture). Let G be a Lie group,
Γ ⊂ G a lattice, and U ⊂ G a one-parameter unipotent subgroup. Suppose x̄ ∈ G/Γ.
Then there exists a subgroup F of G (generated by unipotents) such that the closure
Ux̄ of the orbit Ux̄ is F x̄.

This theorem is due to Ratner in the general case, but several cases were known
previously. See §5.1 for a discussion and the relation to the Oppenheim Conjecture.

Uniformity of convergence. In many applications it is important to somehow
ensure that the time averages converge to the space average uniformly in the base
point x̄ (for example we may have an additional integral over x̄). In the context of
Birkhoff’s ergodic theorem, we have the following:

Lemma 1.14. Suppose φt : X → X is a flow preserving an ergodic probability
measure μ. Suppose f ∈ L1(X,μ). Then for any ε > 0 and δ > 0, there exists
T0 > 0 and a set E ⊂ X with μ(E) < ε, such that for any x ∈ Ec and any T > T0

we have ∣∣∣∣∣
1

T

∫ T

0

f(φt(x)) dt−
∫
X

f dμ

∣∣∣∣∣ < δ

(In other words, one has uniform convergence outside of a set of small measure.)

Proof. Let En denote the set of x ∈ X such that for some T > n,∣∣∣∣∣
1

T

∫ T

0

f(φt(x)) dt−
∫
X

f dμ

∣∣∣∣∣ ≥ δ.

Then by the Birkhoff ergodic theorem, μ(
⋂∞

n=1 En) = 0. Hence there exists n ∈ N

such that μ(En) < ε. Now let T0 = n, and E = En. �

The uniform distribution theorem of Dani-Margulis. One problem with
Lemma 1.14 is that it does not provide us with any information about the ex-
ceptional set E (other then the fact that it has small measure). In the setting
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of unipotent flows, Dani and Margulis proved a theorem (see §4.2 below for the
precise statement) which is the analogue of Lemma 1.14, but with an explicit geo-
metric description of the set E. This theorem is crucial for many applications. Its
proof is based on the Ratner measure classification theorem (Theorem 1.11) and
the “linearization” technique of Dani and Margulis (see §4).

2. The case of SL(2,R)/SL(2,Z)

In this lecture I will be loosely following Ratner’s paper [Ra8].

2.1. Basic Preliminaries. The space of lattices. Let G = SL(n,R), and
let Ln denote the space of unimodular lattices in R

n. (By definition, a lattice Δ is
unimodular if an only if the volume of Rn/Δ = 1. ) G acts on Ln as follows: if
g ∈ G and Δ ∈ Ln is the Z-span of the vectors v1, . . . vn, then gv is the Z-span of
gv1, . . . , gvn. This action is clearly transitive. The stabilizer of the standard lattice
Z
n is Γ = SL(n,Z). This gives an identification of Ln with G/Γ. We choose a

right-invariant metric d(·, ·) on G; then this metric descends to G/Γ.

The set Ln(ε). For ε > 0 let Ln(ε) ⊂ Ln denote the set of lattices whose shortest
non-zero vector has length at least ε.

Theorem 2.1 (Mahler Compactness). For any ε > 0 the set Ln(ε) is compact.

The upper half plane. In the rest of this section, we set n = 2. Let K =
SO(2) ⊂ G. Given a pair of vectors v1, v2 we can find a unique rotation matrix
k ∈ K so that kv1 is pointing along the positive x-axis and kv2 is in the upper
half plane. The map g =

(
v1 v2

)
→ kv2 gives an identification of K\G with the

hyperbolic upper half plane H
2. Now G (and in particular Γ ⊂ G) acts on K\G by

multiplication on the right. Using the identification of K\G with H
2 this becomes

(a variant of) the usual action by fractional linear transformations.

The horocycle and geodesic flows. We use the following notation:

ut =

(
1 t
0 1

)
at =

(
et 0
0 e−t

)
vt =

(
1 0
t 1

)
.

Let U = {ut : t ∈ R}, A = {at : t ∈ R}, V = {vt : t ∈ R}. The action of
U is called the horocycle flow and the action of A is called the geodesic flow. Some
basic commutation relations are the following:

(6) atusa
−1
t = ue2ts atvsa

−1
t = ve−2ts

Thus conjugation by at for t > 0 contracts V and expands U .

Orbits of the geodesic and horocycle flow in the upper half plane. Let
p : G → K\G denote the natural projection. Then for x ∈ G, p(Ux) is either a
horizontal line or a circle tangent to the x-axis. Also p(Ax) is either a vertical line
or a semicircular arc orthogonal to the x-axis.

Flowboxes. Let W+ ⊂ U , W− ⊂ V , W0 ⊂ A be intervals containing the identity
(we have identified all three subgroups with R). By a flowbox we mean a subset of G
of the form W−W0W+, or one of its right translates by g ∈ G. Clearly, W−W0W+g
is an open set containing g. (Recall that in our conventions, right multiplication
by g is an isometry).
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2.2. An elementary non-divergence result. Much more is proved in [Kl1].

Lemma 2.2. There exists an absolute constant ε0 > 0 such that the following
holds: Suppose Δ ∈ L2 is a unimodular lattice. Then Δ cannot contain two linearly
independent vectors each of length less than ε0.

Proof. Let v1 be the shortest vector in Δ, and let v2 be the shortest vector in
Δ linearly independent from v1. Then v1 and v2 span a sublattice Δ′ of Δ. (In
fact Δ′ = Δ but this is not important for us right now). Since Δ is unimodular,
this implies that Vol(R2/Δ′) ≥ 1. But Vol(R2/Δ′) = ‖v1 × v2‖ ≤ ‖v1‖‖v2‖. Hence
‖v1‖‖v2‖ ≥ 1, so the lemma holds with ε0 = 1. �

Remark. In general ε0 depends on the choice of norm on R
2.

The following lemma is a simple “nondivergence” result for unipotent orbits:

Lemma 2.3. Suppose Δ ∈ L2 is a unimodular lattice. Then at least one of the
following holds:

(a) Δ contains a horizontal vector.
(b) There exists t ≥ 0 such that a−1

t Δ ∈ L2(ε0).

Proof. Suppose Δ does not contain a horizontal vector, and Δ �∈ L2(ε0). Then Δ
contains a vector v with ‖v‖ < ε0. Since v is not horizontal, there exists a smallest
t0 > 0 such that ‖a−1

t v‖ = ε0. Then by Lemma 2.2 for t ∈ [0, t0], a
−1
t Δ contains no

vectors shorter then ε0 (other then a−1
t v and possibly its multiples). In particular

a−1
t0 Δ, contains no vectors shorter then ε0. This means a−1

t0 Δ ∈ L2(ε0). �

Remark. We note that Lemma 2.2 and thus Lemma 2.3 are specific to dimension
2.

2.3. The classification of U-invariant measures. Note that for Δ ∈ L2,
the U -orbit of Δ is closed if and only if Δ contains a horizontal vector. (The
horizontal vector is fixed by the action of U). Any closed U -orbit supports a U -
invariant probability measure. All such measures are ergodic.

Let ν denote the Haar measure on L2 = G/Γ. The measure ν is normalized so
that ν(L2) = 1. Recall that ν is ergodic for both the horocycle and the geodesic
flows (this follows from the Moore ergodicity theorem, see e.g. [BM]).

Our main goal in this lecture is the following:

Theorem 2.4. Suppose μ is an ergodic U-invariant probability measure on L2.
Then either μ is supported on a closed orbit, or μ is the Haar measure ν.

Proof. Let L′
2 ⊂ L2 denote the set of lattices which contain a horizontal vector.

Note that the set L′
2 is U -invariant.

Suppose μ is an ergodic U -invariant probability measure on L2. By ergodicity
of μ, μ(L′

2) = 0 or μ(L′
2) = 1. If the latter holds, it is easy to show that μ is

supported on a closed orbit. Thus we assume μ(L′
2) = 0 and we must show that

μ = ν.
Suppose not. Then there exists a compactly supported continuous function

f : L2 → R and ε > 0 such that

(7)

∣∣∣∣
∫
L2

f dμ−
∫
L2

f dν

∣∣∣∣ > ε.
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Since f is uniformly continuous, there exists a neighborhoods of the identityW ′
0 ⊂ A

and W ′
− ⊂ V such that for a ∈ W ′

0, v ∈ W ′
− and Δ′′ ∈ L2,

(8) |f(vaΔ′′)− f(Δ′′)| < ε/3.

Recall that π : G → G/Γ ∼= L2 denotes the natural projection. Since L2(ε0) is
compact the injectivity radius on L2(ε0) is bounded from below, hence there exist
W+ ⊂ U , W0 ⊂ A, W− ⊂ V so that for any g ∈ G with π(g) ∈ L2, the restriction
of π to the flowbox W−W0W+g is injective. We may also assume that W− ⊂ W ′

−
and W0 ⊂ W ′

0. Let δ = ν(W−W0W+) denote the Lebesque measure of the flowbox.
By Lemma 1.14 applied to the Lebesque measure ν, there exists a set E ⊂ L2

with ν(E) < δ and T1 > 0 such that for any interval I with |I| ≥ T1 and any
Δ′ �∈ E,

(9)

∣∣∣∣ 1|I|
∫
I

f(utΔ
′) dt−

∫
L2

f dν

∣∣∣∣ < ε

3
.

Now let Δ be a generic point for U (in the sense of the Birkhoff ergodic theo-
rem). This implies that there exists T2 > 0 such that for any interval I containing
the origin of length greater then T2,

(10)

∣∣∣∣ 1|I|
∫
I

f(utΔ) dt−
∫
L2

f dμ

∣∣∣∣ < ε

3
.

Since μ(L′
2) = 0, we may assume that Δ does not contain any horizontal vectors.

Then by repeatedly applying Lemma 2.3 we can construct arbitrarily large t > 0
such that

(11) a−1
t Δ ∈ L2(ε).

Now suppose t is such that (11) holds, and consider the set Q = atW−W0W+a
−1
t Δ.

Then Q can be rewritten as

Q = (atW−a
−1
t )W0(atW+a

−1
t )Δ

(so when t is large, Q is long in the U direction and short in A and V directions.)
The set Q is an embedded copy of a flowbox in L2, and ν(Q) = δ.

If t is sufficiently large and W−, W0 and W+ are sufficiently small, it is possible
to find for each Δ′ ∈ Q intervals I(Δ′) ⊂ R and I(Δ) ⊂ R with the following
properties: |I(Δ′)| ≥ max(T1, T2), |I(Δ)| ≥ max(T1, T2) and

(12)

∣∣∣∣∣
1

|I(Δ′)|

∫
I(Δ′)

f(utΔ
′) dt− 1

|I(Δ)|

∫
I(Δ)

f(utΔ) dt

∣∣∣∣∣ <
ε

3
.

(this says that the integral of f over a suitably chosen interval of each U -orbit is
nearly the same).

Since ν(E) < δ and ν(Q) = δ, there exists Δ′ ∈ Q ∩ Ec. Now (9) holds with
I = I(Δ′), and (10) holds with I = I(Δ). These estimates together with (12)
contradict (7). �

Remarks.

• The above proof works with minor modifications if Γ is an arbitrary lattice
in SL(2,R) (not just SL(2,Z)).

• If Γ is a uniform lattice in SL(2,R) then the horocycle flow on G/Γ is
uniquely ergodic. This is a theorem of Furstenberg [F].
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• The proof of Theorem 2.4 does not generalize to classification of measures
invariant under a one-parameter unipotent subgroup on e.g. Ln, n ≥ 3.
Completely different ideas are needed. (I will introduce some of them in
the next lecture).

Horospherical subgroups and a theorem of Dani. The key property of U
in dimension 2 which is used in the proof is that U is horospherical, i.e. that it is
equal to the set contracted by a one-parameter diagonal subgroup. (One-parameter
unipotent subgroups are horospherical only in SL(2,R)). An argument similar in
spirit to the proof of Theorem 2.4 can be used to classify the measures invariant
under the action of a horospherical subgroup. This is a theorem of Dani [Dan2]
(which was proved before Ratner’s measure classification theorem). However, the
details, and in particular the non-divergence results needed are much more compli-
cated.

The horospherical case also allows for an analytic approach, see e.g. [Bu].

3. The case of SL(2,R)�R
2.

In this section we will outline a proof of Ratner’s measure classification theorem
Theorem 1.11 in the special case G = SL(2,R)�R

2, Γ = SL(2,Z)�Z
2. We will be

following the argument of Ratner [Ra1, Ra2, Ra3, Ra4, Ra5, Ra6] and Margulis-
Tomanov [MT]. An introduction to these ideas can be found in the books [Mor],
and also [BM]. Another exposition of a closely related case is in [EMaMo].

Let X = G/Γ. Then X can be viewed as a space of pairs (Δ, v), where Δ
is a unimodular lattice in R

2 and v is a marked point on the torus R
2/Δ. (We

remove the translation invariance on the torus R
2/Δ since we consider the origin

as a special point. Alternatively we consider a pair of marked points, and use the
translation invariance of the torus to place one of the points at the origin). X is
thus naturally a fiber bundle where the base is L2 and the fiber above the point
Δ ∈ L2 is the torus R2/Δ. (X is also sometimes called the universal elliptic curve).

The action of SL(2,R) ⊂ G on X is by left multiplication. It amounts to

g · (Δ, v) = (gΔ, gv).

The action of the R
2 part of G on X is by translating the marked point, i.e for

w ∈ R
2, w · (Δ, v) = (Δ, w+ v). Let U be the subgroup of SL(2,R) defined in §2.1.

In this lecture our goal is the following special case of Theorem 1.11:

Theorem 3.1. Let μ be an ergodic U-invariant measure on X. Then μ is
algebraic.

Let μ be an ergodic U -invariant measure on X. Let π1 : X → L2 denote
the natural projection (i.e. π1(Δ, v) = Δ). Then π∗

1(μ) is an ergodic U -invariant
measure on L2. Thus by Theorem 2.4, either π∗

1(μ) is supported on a closed orbit
of U , or π∗

1(μ) is the Haar measure ν on L2. The first case is easy to handle, so in
the rest of this section we assume that π∗

1(μ) = ν. Then we can disintegrate

dμ(Δ, v) = dν(Δ)dλΔ(v)

where λΔ(v) is some probability measure on the torus R2/Δ.
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3.1. Finiteness of the fiber measures. Many of the ideas behind the proof
of Ratner’s measure classification theorem Theorem 1.11 can be illustrated in the
proof of the following:

Proposition 3.2. Either μ is Haar measure on X, or for almost all Δ ∈ L2,
the measure λΔ is supported on a finite set of points.

We will give an almost complete proof of Proposition 3.2 in this subsection,
and then indicate how to complete the proof of Theorem 3.1 in the next subsection.

The subgroups U ,V ,A,H, and W . Let U , V , A be the subgroups of SL(2,R)
defined in §2.1. We also give names to certain subgroups of the R

2 part of G. In
particular, let H = {hs, s ∈ R} be the subgroup of G whose action on X is given

by hs(Δ, v) = (Δ, v + s

(
1
0

)
), and W = {wr, r ∈ R} be the subgroup of G whose

action on X is given by wr(Δ, v) = (Δ, v + r

(
0
1

)
). The action of H is called the

horizontal flow and the action of W the vertical flow.

Action of the centralizer. A key observation is that H commutes with U (and
so the action of H commutes with the action of U). This implies that if μ is
an ergodic U -invariant measure, so is hsμ for any hs ∈ H. (See the discussion
preceeding Lemma 1.7).

Thus, either μ is invariant under H or there exists s ∈ R such that hsμ is
distinct from μ. Suppose μ is invariant under H. Then so are the fiber measures
λΔ for all Δ ∈ L2. Then by Exercise 1 (b), for ν-almost all Δ ∈ L2, λΔ is the
Lebesque measure on R

2/Δ. Thus μ coincides with Haar measure on X for almost
all fibers. Then by the ergodicity of μ we can conclude that μ is the Haar measure
on X.

Thus, Proposition 3.2 follows from the following:

Proposition 3.3. Suppose μ is not H-invariant. Then for almost all Δ ∈ L2,
the measure λΔ is supported on a finite set of points.

The element h and the compact set K. From now on, we assume that μ is not
H-invariant. Then there exists hs0 ∈ H such that hs0μ �= μ. (We may assume that
hs0 is fairly close to the identity). Since hs0μ and μ are both ergodic U -invariant
measures, by Lemma 1.6 we have hs0μ ⊥ μ. Thus the sets of generic points of μ and
hs0μ are disjoint. It follows from Lemma 1.7 that there exists δ > 0 and a subset
Ω ⊂ X with μ(Ω) = 1 such that hsΩ∩Ω = ∅ for all s ∈ (s0−δs0, s0]. It follows that
there exists a compact set K with μ(K) > 0.999 such that for all s ∈ [(1−δ0)s0, s0],
hsK ∩K = ∅. Since K is compact and the action of H is continuous, there exist
ε > 0 and δ > 0 such that

(13) d(hsK,K) > ε for all s ∈ [(1− δ)s0, s0].

The set Ωρ. In view of Lemma 1.14 (with f the characteristic function of K), for
any ρ > 0 we can find a set Ωρ with μ(Ωρ) > 1 − ρ and T0 > 0 such that for all
T > T0 and all p ∈ Ωρ we have

(14)
1

T
|{t ∈ [0, T ] : utx ∈ K}| ≥ 1− (0.01)δ
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Shearing. Suppose p = (Δ, v) and p′ = (Δ, v′) are two nearby points in the same
fiber. We want to study how they diverge under the action of U . Note that utp
and utp

′ are always in the same fiber (i.e. π1(utp) = π1(utp
′) = utΔ), but within

the fiber π−1
1 (utΔ) they will slowly diverge. More precisely, if we let v = (x, y) and

v′ = (x′, y′) we have

utv
′ − utv = (x′ − x+ t(y′ − y), y′ − y).

Note that if y = y′ (i.e. p and p′ are in the same orbit of H) then utp and utp
′ will

not diverge at all.
Now suppose y �= y′. We are considering the regime where |x′ − x|, |y′ − y|

are very small, but t is so large that d(p, p′) is comparable to 1 (this amounts to
|t(y′ − y)| comparable to 1). Under these assumptions, the leading divergence is
along H, i.e.

(15) utp
′ = hsutp+ small error

where s = t(y′ − y).

Lemma 3.4. Suppose that for some positive measure set of Δ ∈ L2, the support
of λΔ is infinite. Then for any ρ > 0 we can find Δ ∈ L2 and a sequence of points
pn = (Δ, (xn, yn)) ∈ Ωρ which converge to p = (Δ, (x, y)) ∈ Ωρ so that yn �= y for
all n.

We postpone the proof of this lemma (which is intuitively reasonable anyway).

Proof of Proposition 3.3. Suppose the conclusion of Proposition 3.3 is false, so
that for some positive measure set of Δ ∈ L2, the support of λΔ is infinite. Then
Lemma 3.4 applies.

Let Tn = s0/(yn − y). Then by (15) we have for t ∈ [(1− δ)Tn, Tn],

(16) d(utpn, hsutp) < εn, where s = t/(y′ − y).

and εn → 0 as n → ∞. If n is sufficiently large, then Tn > T0 where T0 is as in
the definition of Ωρ. Then (14) applies to both p and pn, and we can thus find
t ∈ [(1 − δ)Tn, Tn] such that utpn ∈ K and also utp ∈ K. Then s = t/(y′ − y) ∈
[(1− δ0)s0, s0], and so (16) contradicts (13). �

Proof of Lemma 3.4. Suppose that for some positive measure set of Δ ∈ L2, the
support of λΔ is infinite. Then (by the ergodicity of the action of U on L2), the
support of λΔ is infinite for almost all fibers Δ.

Suppose for the moment that the support of λΔ is countable for almost all
Δ, so λΔ is supported on a sequence of points pn with weights λn. But then the
collection of points with the same weight is a U -invariant set, so by ergodicity of μ
all the points must have the same weight. Thus, since λΔ is a probability measure
if the support of λΔ is countable it must be finite.

Hence we may assume that the support of λΔ is uncountable. Then so is Ωρ∩λΔ

for almost all Δ. Since any uncountable set contains one of its accumulation points,
we may construct a sequence pn ∈ Ωρ with pn → p, where p ∈ Ωρ. It only remains
to verify that if we write pn = (Δ, (xn, yn)) and p = (Δ, (x, y)) then we can ensure
yn �= y.

If it is not possible to do so, then it is easy to see that the support of λΔ is
contained in a finite union of H-orbits. Thus given a < b we can define a function
u((Δ, v)) = λΔ({hsv : s ∈ [a, b]}). This function is U -invariant hence constant
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for each choice of [a, b]. It is easy to conclude from this that the support of λΔ

must be finite. �

3.2. Outline of the Proof of Theorem 3.1. The following general lemma
is a stronger version of Lemma 1.14:

Lemma 3.5 (cf. [MT, Lem. 7.3]). Suppose φt : X → X is a flow preserving an
ergodic probability measure μ. For any ρ > 0, there is a “uniformly generic set” Ωρ

in X, such that

(1) μ(Ωρ) > 1− ρ,
(2) for every ε > 0 and every compact subset K of X, with μ(K) > 1 − ε,

there exists L0 ∈ R
+, such that, for all x ∈ Ωρ and all L > L0, we have

|{ t ∈ [−L,L] | d(φt(x),K) < ε } > (1− ε)(2L).

Outline of proof. This is similar to that of Lemma 1.14, except that one also
chooses a countable basis of functions and approximates K by elements of the
basis. �

We now return to the setting of §3. Let μ be an ergodic invariant measure for
the action of U on X = G/Γ = (SL(2, R)�R

2)/(SL(2,Z)�Z
2). For any ρ > 0 we

chose a “uniformly generic” set Ωρ for μ as in Lemma 3.5.
The argument of §3.1 is the basis of the following more general proposition

(which we state somewhat imprecisely):

Proposition 3.6. Suppose Q is a subgroup of G normalizing U , and suppose
that for any ρ > 0 we can find sequences pn and p′n in Ωρ such that d(pn, p

′
n) → 0,

and under the action of U the leading transverse divergence of the trajectories utpn
and utp

′
n is in the direction of Q (i.e the analogue of (15) holds with q ∈ Q instead

of h ∈ H).
Then the measure μ is Q-invariant.

Remark. The analogous statement for unipotent flows is a cornerstone of the
proof of Ratner’s Measure Classification Theorem [Ra5, Lem. 3.3], [MT, Lem. 7.5],
[Mor, Prop. 5.2.4′].

Remark. For two points in the same fiber, the leading divergence is always along
H (if the points diverge at all). For an arbitrary pair of nearby points in X this is
not the case.

Remark. It is possible that the leading direction of divergence is along U . In that
case we want to consider the leading “transverse” divergence. In other words we
compare utpn and ut′p

′
n where t′ is chosen to cancel the divergence along U (i.e.

one trajectory waits for the other). In that case we say that the leading transverse
divergence is along Q if for some q ∈ Q,

utpn = qut′p
′
n + small error

Remark. To prove Proposition 3.6 we must use Lemma 3.5 instead of Lemma 1.14
as in §3.1 because we must choose Ωρ before we know what subgroup Q (and thus
what compact set K) we will be dealing with.

We now continue the proof of Theorem 3.1. We assume that μ projects to Haar
measure on L2, but that μ is not Haar measure.
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Proposition 3.7. The measure μ is invariant under some subgroup of AH
other then H.

Proof. Choose Ωρ as in Lemma 3.5, with ρ = 0.01. By Proposition 3.2, the
measure on each fiber is supported on a finite set. Also we are assuming that μ
projects to Haar measure on L2. Then it is easy to see that there exist p ∈ Ωρ,
{vn} ⊂ V � {e}, and {wn} ⊂ HW , such that pn = vnwnp ∈ Ωρ, vn → e, and
wn → e.

It is not difficult to compute that (after passing to a subsequence), the leading
direction of divergence of utpn and utp is a one-parameter subgroup Q which is
contained in AH. Then by Proposition 3.6, μ is invariant under Q. By §3.1, we
have Q �= H. �

Invariance under A. Any one-parameter subgroup Q of AH other then H is
conjugate to A (via an element of H). Thus, by replacing μ with a translate
under H, we may (and will) assume μ is A-invariant.

Note. At this point we do not know that μ is A-ergodic.

Proposition 3.8 (cf. [MT, Cor. 8.4], [Mor, Cor. 5.5.2]). There is a conull
subset Ω of X, such that

Ω ∩ VWp = Ω ∩ V p,

for all p ∈ Ω.

Proof. Let Ω be a generic set for for the action of A on X; thus, Ω is conull and,
for each p ∈ Ω,

atp ∈ Ωρ for most t ∈ R
+.

(The existence of such a set follows e.g. from the full version of the Birkhoff
ergodic theorem, in which one does not assume ergodicity). Given p, p′ ∈ Ω, such
that p′ = vwp with v ∈ V and w ∈ W , we wish to show w = e.

Choose a sequence tn → ∞, such that atnp and atnp
′ each belong to Ωρ.

Because tn → ∞ and VW is the foliation that is contracted by aR+ , we know that
a−tn(vw)atn → e. Furthermore, because A acts on the Lie algebra of V with twice
the weight that it acts on the Lie algebra of W , we see that

‖a−tnvatn‖/|a−tnwatn‖ → 0.

Thus p′n = a−tnp
′atn approaches pn = a−tnpatn from the direction of W .

If two points p′n and pn approach each other along W , then an easy compu-
tation shows that utpn and utp

′
n diverge along H. (This observation motivates

Proposition 3.8). Thus by Proposition 3.6 μ must be invariant under H. But this
impossible by §3.1 (since we are assuming that μ is not Haar measure). �

We require the following entropy estimate, (see [EL] for a proof).

Lemma 3.9 (cf. [MT, Thm. 9.7], [Mor, Prop. 2.5.11]). Suppose W is a closed
connected subgroup of VW that is normalized by a ∈ A+, and let

J(a−1,W) = det
(
(Ad a−1)|LieW

)
be the Jacobian of a−1 on W.

(1) If μ is W-invariant, then hμ(a) ≥ log J(a−1,W).
(2) If there is a conull, Borel subset Ω of X, such that Ω ∩ VWp ⊂ Wp, for

every p ∈ Ω, then hμ(a) ≤ log J(a−1,W).
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(3) If the hypotheses of 2 are satisfied, and equality holds in its conclusion,
then μ is W-invariant.

Proposition 3.10 (cf. [MT, Step 1 of 10.5], [Mor, Prop. 5.6.1]). μ is V -
invariant.

Proof. From Lemma 3.9(1), with a−1 in the role of a, we have

log J(a, UX) ≤ hμ(a
−1).

From Proposition 3.8 and Lemma 3.9(2), we have

hμ(a) ≤ log J(a−1, V Y ).

Combining these two inequalities with the facts that

• hμ(a) = hμ(a
−1) and

• J(a, UX) = J(a−1, V Y ),

we have

log J(a, UX) ≤ hμ(a
−1) = hμ(a) ≤ log J(a−1, V Y ) = log J(a, UX).

Thus, we must have equality throughout, so the desired conclusion follows from
Lemma 3.9(3). �

Proposition 3.11. μ is the Lebesgue measure on a single orbit of SL(2,R) on
X.

Proof We know:

• U preserves μ (by assumption),
• A preserves μ (by Proposition 3.7) and
• V preserves μ (by Proposition 3.10).

Since SL(2,R) is generated by U , A and V , μ is SL(2,R) invariant. Because
SL(2,R) is transitive on the quotient L2 and the support of μ on each fiber is finite
(see Proposition 3.2), this implies that some orbit of SL(2,R) has positive measure.
By ergodicity of U , then this orbit is conull. �

This completes the proof of Theorem 3.1.

4. Linearization and ergodicity

4.1. Non-ergodic measures invariant under a unipotent. The collec-
tion H. (Up to conjugation, this should be the collection of groups which appear
in the definition of algebraic measure).

Let G be a Lie group, Γ a discrete subgroup of G, and π : G → G/Γ the natural
quotient map. Let H be the collection of all closed subgroups F of G such that
F ∩ Γ is a lattice in F and the subgroup generated by unipotent one-parameter
subgroups of G contained in F acts ergodically on π(F ) ∼= F/(F ∩ Γ) with respect
to the F -invariant probability measure.

Proposition 4.1. The collection H is countable.
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Proof. See [Ra6, Theorem 1.1] or [DM4, Proposition 2.1] for different proofs of
this result. �

Let U be a unipotent one-parameter subgroup of G and F ∈ H. Define

N(F,U) = {g ∈ G : U ⊂ gFg−1}
S(F,U) =

⋃
{N(F ′, U) : F ′ ∈ H, F ′ ⊂ F, dimF ′ < dimF}.

Lemma 4.2. ([MS, Lemma 2.4]) Let g ∈ G and F ∈ H. Then g ∈ N(F,U) \
S(F,U) if and only if the group gFg−1 is the smallest closed subgroup of G which
contains U and whose orbit through π(g) is closed in G/Γ. Moreover in this case the
action of U on gπ(F ) is ergodic with respect to a finite gFg−1-invariant measure.

As a consequence of this lemma,

(17) π(N(F,U) \ S(F,U)) = π(N(F,U)) \ π(S(F,U)), ∀F ∈ H.

Ratner’s theorem [Ra6] states that given any U -ergodic invariant probability
measure on G/Γ, there exists F ∈ H and g ∈ G such that μ is g−1Fg-invariant
and μ(π(F )g) = 1. Now decomposing any finite invariant measure into its ergodic
component, and using Lemma 4.2, we obtain the following description for any U -
invariant probability measure on G/Γ (see [MS, Theorem 2.2]).

Theorem 4.3 (Ratner). Let U be a unipotent one-parameter subgroup of G
and μ be a finite U-invariant measure on G/Γ. For every F ∈ H, let μF denote
the restriction of μ on π(N(F,U) \ S(F,U)). Then μF is U-invariant and any U-
ergodic component of μF is a gFg−1-invariant measure on the closed orbit gπ(F )
for some g ∈ N(F,U) \ S(F,U).

In particular, for all Borel measurable subsets A of G/Γ,

μ(A) =
∑

F∈H∗

μF (A),

where H∗ ⊂ H is a countable set consisting of one representative from each Γ-
conjugacy class of elements in H.

Remark. We will often use Theorem 4.3 in the following form: suppose μ is any U -
invariant measure on G/Γ which is not Lebesque measure. Then there exists F ∈ H
such that μ gives positive measure to some compact subset of N(F,U) \ S(F,U).

4.2. The theorem of Dani-Margulis on uniform convergence. The “lin-
earization” technique of Dani and Margulis was devised to understand which mea-
sures give positive weight to compact subsets subsets of N(F,U) \ S(F,U). Using
this technique Dani and Margulis proved the following theorem (which is important
for many applications, in particular §5):

Theorem 4.4 ([DM4], Theorem 3). Let G be a connected Lie group and let Γ
be a lattice in G. Let μ be the G-invariant probability measure on G/Γ. Let U =
{ut} be an Ad-unipotent one-parameter subgroup of G and let f be a bounded con-
tinuous function on G/Γ. Let D be a compact subset of G/Γ and let ε > 0 be given.
Then there exist finitely many proper closed subgroups F1 = F1(f,D, ε), · · · , Fk =
Fk(f,D, ε) such that Fi ∩ Γ is a lattice in Fi for all i, and compact subsets C1 =
C1(f,D, ε), · · · , Ck = Ck(f,D, ε) of N(F1, U), · · · , N(Fk, U) respectively, for which
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the following holds: For any compact subset K of D −
⋃

1≤i≤k π(Ci) there exists a
T0 ≥ 0 such that for all x ∈ K and T > T0

(18)
∣∣∣ 1
T

∫ T

0

f(utx) dt−
∫
G/Γ

f dμ
∣∣∣ < ε.

Remarks.

• This theorem can be informally stated as follows: Fix f and ε > 0. Then
(18) holds (i.e. the space average of f is within ε of the time average of f)
uniformly in the base point x, as long as x is restricted to compact sets
away from a finite union of “tubes” N(F,U). (The N(F,U) are associated
with orbits which do not become equidistributed in G/Γ, because their
closure is strictly smaller.)

• It is a key point that only finitely many Fk are needed in Theorem 4.4.
This has the remarkable implication that if F ∈ H but not one of the Fk,
then (18) holds for x ∈ N(F,U) even though Ux is not dense in G/Γ (the
closure of Ux is Fx). Informally, this means the non-dense orbits of U
are themselves becoming equidistributed as they get longer.

A full proof of Theorem 4.4 is beyond the scope of this course. However, we
will describe the “linearization” technique used in its proof in §4.3.

4.3. Ergodicity of limits of ergodic measures. In this subsection we are
following [MS], which refers many times to [DM4].

Let P(G/Γ) be the space of all probability measures on G/Γ.

Theorem 4.5 (Mozes-Shah). Let Ui be a sequence of unipotent one-parameter
subgroups of G, and for each i, let μi be an ergodic Ui-invariant probability measure
on G/Γ. Suppose μi → μ in P(G/Γ). Then there exists a unipotent one-parameter
subgroup U such that μ is an ergodic U-invariant measure on G/Γ. In particular,
μ is algebraic.

Remarks.

• Let Q(G/Γ) ⊂ P(G/Γ) denote the set of measures ergodic for the action
of a unipotent one-parameter subgroup of G, and let Q0(G/Γ) denote
Q(G/Γ) union the zero measure. If combined with the results of [Kl1,
§3], Theorem 4.5 shows that Q0(G/Γ) is compact.

• The theorem actually proved by Mozes and Shah in [MS] gives more
information about what kind of limits of ergodic U -invariant measures
are possible. Here is an easily stated consequence:

Suppose xi ∈ G/Γ converge to x∞ ∈ G/Γ, and also xi ∈ Ux∞. For
i ∈ N ∪ {∞} let μi be the algebraic measures supported on Uxi, so that
the trajectories Uxi are equidistributed with respect to the measures μi.
Then μi → μ∞.

We now give some indication of the proof of Theorem 4.5. Let Ui, μi, μ be as
in Theorem 4.5. Write Ui = {ui(t)}t∈R.

Invariance of μ under a unipotent.

Lemma 4.6. Suppose Ui �= {e} for all large i ∈ N. Then μ is invariant under
a one-parameter unipotent subgroup of G.
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Proof. For each i ∈ N there exists wi in the Lie algebra g of G, such that
‖wi‖ = 1 and Ui = {exp(twi), t ∈ R}. (Here ‖ · ‖ is some Euclidean norm on
g). By passing to a subsequence we may assume that wi → w for some w ∈ g,
‖w‖ = 1. For any t ∈ R we have Ad(exp(twi)) → Ad(exp(tw)) as i → ∞. Note that
Ad(exp(tw)) is unipotent, since the set of unipotent matrices is closed (consider e.g.
the characteristic polynomial). Therefore U = {exp(tw) : t ∈ R} is a nontrivial
unipotent subgroup of G. Since exp twi → exp tw for all t and μi → μ, it follows
that μ is invariant under the action of U on G/Γ. �

Application of Ratner’s measure classification theorem. We want to ana-
lyze the case when the limit measure μ is not the G-invariant measure. By Ratner’s
description of μ as in Theorem 4.3, there exists a proper subgroup F ∈ H, ε0 > 0,
and a compact set C1 ⊂ N(F,U) \ S(F,U) such that μ(π(C1)) > ε0. Thus for
any neighborhood Φ of π(C1), we have μi(Φ) > ε0 for all large i ∈ N. Thus the
unipotent trajectories which are equidistributed with respect to the measures μi

spend a fixed proportion of time in Φ.

Linearization of neighborhoods of singular subsets. Let F ∈ H. Let g

denote the Lie algebra of G and let f denote its Lie subalgebra associated to F .
For d = dim f, put VF = ∧df, the d-th exterior power, and consider the linear G-
action on VF via the representation ∧d Ad, the d-th exterior power of the Adjoint
representation of G on g. Fix pF ∈ ∧df \ {0}, and let ηF : G → VF be the map
defined by ηF (g) = g · pF = (∧dAd g) · pF for all g ∈ G. Note that

ηF
−1(pF ) = {g ∈ NG(F ) : det(Ad g|f) = 1}.

Remark. The idea of Dani and Margulis is to work in the representation space
VF (or more precisely V̄F , which is the quotient of VF by the involution v → −v)
instead of G/Γ. In fact, for most of the argument one works only with the oribit
G ·pF ⊂ VF . The advantage is that F is collapsed to a point (since it stabilizes pF ).
The difficulty is that the map ηF : G → V̄F is not Γ-equivariant, and so becomes
multivalued if considered as a map from G/Γ to VF .

Proposition 4.7 ([DM4, Theorem 3.4]). The orbit Γ · pF is discrete in VF .

Remark. In the arithmetic case the above proposition is immediate.

Proposition 4.8. ([DM4, Prop. 3.2]) Let AF be the linear span of ηF (N(F,U))
in VF . Then

ηF
−1(AF ) = N(F,U).

Let NG(F ) denote the normalizer in G of F . Put ΓF = NG(F ) ∩ Γ. Then for
any γ ∈ ΓF , we have γπ(F ) = π(F ), and hence γ preserves the volume of π(F ).
Therefore | det(Ad γ|f)| = 1. Hence γ · pF = ±pF . Now define

V̄F =

{
VF /{Id,-Id} if ΓF · pF = {pF ,−pF }
VF if ΓF · pF = pF

The action of G factors through the quotient map of VF onto V̄F . Let p̄F denote
the image of pF in V̄F , and define η̄F : G → V̄F as η̄F (g) = g · p̄F for all g ∈ G.
Then ΓF = η̄F

−1(p̄F ) ∩ Γ. Let ĀF denote the image of AF in V̄F . Note that the
inverse image of ĀF in VF is AF .
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For every x ∈ G/Γ, define the set of representatives of x in V̄F to be

Rep(x) = η̄F (π
−1(x)) = η̄F (xΓ) ⊂ V̄F .

Remark. If one attempts to consider the map η̄F : G → V̄F as a map from G/Γ to
V̄F , one obtains the multivalued map which takes x ∈ G/Γ to the set Rep(x) ⊂ V̄F .

The following lemma allows us to understand the map Rep in a special case:

Lemma 4.9. If x = π(g) and g ∈ N(F,U) \ S(F,U)

Rep(x) ∩ ĀF = {g · pF }.
Thus x has a single representative in ĀF ⊂ VF .

Proof. Indeed, using Proposition 4.8,

Rep(π(g)) ∩ ĀF = (gΓ ∩N(F,U)) · p̄F
Now suppose γ ∈ Γ is such that gγ ∈ N(F,U). Then g belongs to N(γFγ−1, U) as
well as N(F,U). Since g �∈ S(F,U), we must have γFγ−1 = F , so γ ∈ ΓF . Then
γp̄F = p̄F , so (gΓ ∩N(F,U)) · p̄F = {g · p̄F} as required. �

We extend this observation in the following result (cf. [Sha1, Prop. 6.5]).

Proposition 4.10 ([DM4, Corollary 3.5]). Let D be a compact subset of ĀF .
Then for any compact set K ⊂ G/Γ \ π(S(F,U)), there exists a neighborhood Φ of
D in V̄F such that any x ∈ K has at most one representative in Φ.

Remark. This proposition constructs a “fundamental domain” Φ around any
compact subset D of ĀF , so that for any x in a compact subset of G/Γ away from
π(S(F,U)), Rep(x) has at most one element in Φ. Using this proposition, one can
uniquely represent in Φ the parts of the unipotent trajectories in G/Γ lying in K.

Proposition 4.11 ([DM4, Proposition 4.2]). Let a compact set C ⊂ ĀF and
an ε > 0 be given. Then there exists a (larger) compact set D ⊂ ĀF with the
following property: For any neighborhood Φ of D in V̄F there exists a neighborhood
Ψ of C in V̄F with Ψ ⊂ Φ such that the following holds: For any unipotent one
parameter subgroup {u(t)} of G, an element w ∈ V̄H and and interval I ⊂ R, if
u(t0)w �∈ Φ for some t0 ∈ I then,

(19) |{t ∈ I : u(t)w ∈ Ψ}| ≤ ε · |{t ∈ I : u(t)w ∈ Φ}|.

Proof. This is a “polynomial divergence” estimate similar to these in [Kl1, §2]
and [Kl1, §3] �

Proposition 4.12. Let ε > 0, a compact set K ⊂ G/Γ \ π(S(F,U)), and a
compact set C ⊂ ĀF be given. Then there exists a neighborhood Ψ of C in V̄F such
that for any unipotent one-parameter subgroup {u(t)} of G and any x ∈ G/Γ, at
least one of the following conditions is satisfied:

(1) There exists w ∈ Rep(x) ∩ Ψ such that {u(t)} ⊂ Gw, where Gw = {g ∈
G : gw = w}.

(2) For all large T > 0,

|{t ∈ [0, T ] : u(t)x ∈ K ∩ π(η̄−1
F (Ψ))}| ≤ εT.
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Figure 1. Proposition 4.11.

Proof. Let a compact set D ⊂ ĀF be as in Proposition 4.11. Let Φ be a given
neighborhood of D in V̄F . Replacing Φ by a smaller neighborhood of D, by Propo-
sition 4.10 the set Rep(x) ∩ Φ contains at most one element for all x ∈ K. By the
choice of D there exists a neighborhood Ψ of C contained in Φ such that equa-
tion (19) holds.

Now put Ω = π(η̄−1
F (Ψ)) ∩K, and define

(20) E = {t ≥ 0 : u(t)x ∈ Ω}.
Let t ∈ E. By the choice of Φ, there exists a unique w ∈ V̄F such that Rep(u(t)x)∩
Φ = {u(t)w}.

Since s → u(s)w is a polynomial function, either it is constant or it is un-
bounded as s → ±∞. In the first case condition 1) is satisfied and we are done.
Now suppose that condition 1 does not hold. Then for every t ∈ E, there exists a
largest open interval I(t) ⊂ (0, T ) containing t such that

(21) u(s)w ∈ Φ for all s ∈ I(t).

Put I = {I(t) : t ∈ E}, Then for any I1 ∈ I and s ∈ I1 ∩ E, we have I(s) = I1.
Therefore for any t1, t2 ∈ E, if t1 < t2 then either I(t1) = I(t2) or I(t1) ∩ I(t2) ⊂
(t1, t2). Hence any t ∈ [0, T ] is contained in at most two distinct elements of I.
Thus

(22)
∑
I∈I

|I| ≤ 2T.

Now by equations (19) and (21), for any t ∈ E,

(23) |{s ∈ I(t) : u(s)w ∈ Ψ}| < ε · |I(t)|.
Therefore by equations (22) and (23), we get

|E| ≤ ε ·
∑
I∈I

|I| ≤ (2ε)T,

which is condition 2 for 2ε in place of ε. �
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Outline of Proof of Theorem 4.5. Suppose μ is not Haar measure on G/Γ. By
Lemma 4.6 μ is invariant under some one-parameter unipotent subgroup μ. Then
by Theorem 4.3 there exists F ∈ H such that μ(N(F,U)) > 0 and μ(S(F,U)) = 0.
Thus there exists a compact subset C1 of N(F,U) \ S(F,U) and α > 0 such that

(24) μ(π(C1)) > α.

Take any y ∈ π(C1). It is easy to see that for each i ∈ N there exists yi ∈
supp(μi) such that {ui(t)yi} is uniformly distributed with respect to μi, and also
yi → y as i → ∞. Let hi → e be a sequence in G such that hiyi = y for all i ∈ N.

We now replace μi by μ′
i = hiμi. We still have μ′

i → μ, but now we also have
y ∈ supp(μ′

i) for all i. Let u′
i(t) = hiui(t)h

−1
i . Then the trajectory {u′

i(t)y} is
uniformly distributed with respect to μ′

i.
We now apply Proposition 4.12 for C = η̄F (C1) and ε = α/2. We can choose a

compact neighborhoodK of π(C1) such thatK∩S(F,U) = ∅. Put Ω = π(η̄−1
F (Ψ))∩

K. Since μ′
i → μ, due to (24) there exists k0 ∈ N such that μ′

i(Ω) > ε for all i ≥ k0.
This means that Condition 2) of Proposition 4.12 is violated for all i ≥ k0. Therefore
according to condition 1) of Proposition 4.12, for each i ≥ k0,

{u′
i(t)y}t∈R ⊂ Gwy,

where Gw is as in Proposition 4.12. By Proposition 4.7, Gwy is closed in G/Γ.
The rest of the proof is by induction on dimG. If dimGw < dimG then

everything is taking place in the homogeneous space Gwy, and therefore μ is ergodic
by the induction hypothesis. If dimGw = dimG then Gw = G and hence F
is a normal subgroup of G. In this case one can project the measures to the
homogeneous space G/(FΓ) and apply induction. �

5. Oppenheim and Quantitative Oppenheim

5.1. The Oppenheim Conjecture. Let Q be an indefinite nondegenerate
quadratic form in n variables. Let Q(Zn) denote the set of values of Q at integral
points. The Oppenheim conjecture, proved by Margulis (cf. [Mar3]) states that if
n ≥ 3, and Q is not proportional to a form with rational coefficients, then Q(Zn)
is dense. The Oppenheim conjecture enjoyed attention and many studies since it
was conjectured in 1929 mostly using analytic number theory methods.

In the mid seventies Raghunathan observed a remarkable connection between
the Oppenheim Conjecture and unipotent flows on the space of lattices Ln =
SL(n,R)/SL(n,Z). It can be summarized as the following:

Observation 5.1 (Raghunathan). Let Q be an indefinite quadratic form Q
and let H = SO(Q) denote its orthogonal group. Consider the orbit of the standard
lattice Z

n ∈ Ln under H. Then the following are equivalent:

(a) The orbit HZ
n is not relatively compact in Ln.

(b) For all ε > 0 there exists u ∈ Z
n such that 0 < |Q(u)| < ε.

(c) The set Q(Zn) is dense in R.

Proof. Suppose (a) holds, so some sequence hkZ
n leaves all compact sets. Then in

view of the Mahler compactness criterion there exist vk ∈ hkZ
n such that ‖vk‖ → 0.

Then also by continuity, Q(vk) → 0. But then h−1
k vk ∈ Z

n, and Q(h−1
k vk) =

Q(vk) → 0. Thus (b) holds.
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It is easy to see that (b) implies (a). It is also possible to show that (b) implies
(c). �

The Oppenheim Conjecture, the Raghunathan Conjecture and Unipo-
tent Flows. Raghunathan also explained why the case n = 2 is different: in
that case H = SO(Q) is not generated by unipotent elements. Margulis’s proof of
the Oppenheim conjecture, given in [Mar 2-4] uses Raghunathan’s observation.
In fact Margulis showed that that any relatively compact orbit of SO(2, 1) in
SL(3,R)/SL(3,Z) is compact; this implies the Oppenheim Conjecture.

Raghunathan also conjectured Theorem 1.13. In the literature it was first stated
in the paper [Dan2] and in a more general form in [Mar3] (when the subgroup U
is not necessarily unipotent but generated by unipotent elements). Raghunathan’s
conjecture was eventually proved in full generality by M. Ratner (see [Ra7]). Earlier
it was known in the following cases: (a) G is reductive and U is horospherical (see
[Dan2]); (b) G = SL(3,R) and U = {u(t)} is a one-parameter unipotent subgroup
of G such that u(t)− I has rank 2 for all t �= 0, where I is the identity matrix (see
[DM2]); (c) G is solvable (see [Sta1] and [Sta2]). We remark that the proof given
in [Dan2] is restricted to horospherical U and the proof given in [Sta1] and [Sta2]
cannot be applied for nonsolvable G.

However the proof in [DM2] together with the methods developed in [Mar 2-4]
and [DM1] suggest an approach for proving the Raghunathan conjecture in general
by studying the minimal invariant sets, and the limits of orbits of sequences of points
tending to a minimal invariant set. This strategy can be outlined as follows: Let
x be a point in G/Γ, and U a connected unipotent subgroup of G. Denote by
X the closure of Ux and consider a minimal closed U -invariant subset Y of X.
Suppose that Ux is not closed (equivalently X is not equal to Ux). Then X should
contain ”many” translations of Y by elements from the normalizer N(U) of U not
belonging to U . After that one can try to prove that X contains orbits of bigger
and bigger unipotent subgroups until one reaches horospherical subgroups. The
basic tool in this strategy is the following fact. Let y be a point in X, and let gn
be a sequence of elements in G such that gn converges to 1, gn does not belong to
N(U), and yn = gny belongs to X. Then X contains AY where A is a nontrivial
connected subset in N(U) containing 1 and ”transversal” to U . To prove this one
has to observe that the orbits Uyn and Uy are ”almost parallel” in the direction of
N(U) most of the time in ”the intermediate range”. (cf. Proposition 3.6).

In fact the set AU as a subset of N(U)/U is the image of a nontrivial rational
map from U into N(U)/U . Moreover this rational map sends 1 to 1 and also
comes from a polynomial map from U into the closure of G/U in the affine space V
containing G/U . This affine space V is the space of the rational representation of
G such that V contains a vector the stabilizer of which is U (Chevalley theorem).

This program was being actively pursued at the time Ratner’s results were
announced (cf. [Sha3]).

5.2. A quantitative version of the Oppenheim Conjecture. References
for this subsection are [EMM1] and [EMM2].

In this section we study some finer questions related to the distribution of the
values of Q at integral points.

Let ν be a continuous positive function on the sphere {v ∈ R
n | ‖v‖ = 1}, and

let Ω = {v ∈ R
n | ‖v‖ < ν(v/‖v‖)}. We denote by TΩ the dilate of Ω by T . Define
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the following set:

V Q
(a,b)(R) = {x ∈ R

n | a < Q(x) < b}
We shall use V(a,b) = V Q

(a,b) when there is no confusion about the form Q. Also

let V(a,b)(Z) = V Q
(a,b)(Z) = {x ∈ Z

n | a < Q(x) < b}. The set TΩ ∩ Z
n consists

of O(Tn) points, Q(TΩ ∩ Z
n) is contained in an interval of the form [−μT 2, μT 2],

where μ > 0 is a constant depending on Q and Ω. Thus one might expect that for
any interval [a, b], as T → ∞,

(25) |V(a,b)(Z) ∩ TΩ| ∼ cQ,Ω(b− a)Tn−2

where cQ,Ω is a constant depending on Q and Ω. This may be interpreted as
“uniform distribution” of the sets Q(Zn ∩ TΩ) in the real line. The main result of
this section is that (25) holds if Q is not proportional to a rational form, and has
signature (p, q) with p ≥ 3, q ≥ 1. We also determine the constant cQ,Ω.

If Q is an indefinite quadratic form in n variables, Ω is as above and (a, b) is
an interval, we show that there exists a constant λ = λQ,Ω so that as T → ∞,

(26) Vol(V(a,b)(R) ∩ TΩ) ∼ λQ,Ω(b− a)Tn−2

The main result is the following:

Theorem 5.2. Let Q be an indefinite quadratic form of signature (p, q), with
p ≥ 3 and q ≥ 1. Suppose Q is not proportional to a rational form. Then for any
interval (a, b), as T → ∞,

(27) |V(a,b)(Z) ∩ TΩ| ∼ λQ,Ω(b− a)Tn−2

where n = p+ q, and λQ,Ω is as in (26).

The asymptotically exact lower bound was proved in [DM4]. Also a lower
bound with a smaller constant was obtained independently by M. Ratner, and by
S. G. Dani jointly with S. Mozes (both unpublished). The upper bound was proved
in [EMM1].

If the signature of Q is (2, 1) or (2, 2) then no universal formula like (25) holds.
In fact, we have the following theorem:

Theorem 5.3. Let Ω0 be the unit ball, and let q = 1 or 2. Then for every
ε > 0 and every interval (a, b) there exists a quadratic form Q of signature (2, q)
not proportional to a rational form, and a constant c > 0 such that for an infinite
sequence Tj → ∞,

|V(a,b)(Z) ∩ TΩ0| > cT q
j (log Tj)

1−ε.

The case q = 1, b ≤ 0 of Theorem 5.3 was noticed by P. Sarnak and worked out
in detail in [Bre]. The quadratic forms constructed are of the form x2

1 + x2
2 − αx2

3,
or x2

1 + x2
2 − α(x2

3 + x2
4), where α is extremely well approximated by squares of

rational numbers.
However in the (2, 1) and (2, 2) cases, one can still establish an upper bound

of the form cT q log T . This upper bound is effective, and is uniform over compact
sets in the set of quadratic forms. We also give an effective uniform upper bound
for the case p ≥ 3.

Theorem 5.4 ([EMM1]). Let O(p, q) denote the space of quadratic forms of
signature (p, q) and discriminant ±1, let n = p + q, (a, b) be an interval, and let
D be a compact subset of O(p, q). Let ν be a continuous positive function on the
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unit sphere and let Ω = {v ∈ R
n | ‖v‖ < ν(v/‖v‖)}. Then, if p ≥ 3 there exists

a constant c depending only on D, (a, b) and Ω such that for any Q ∈ D and all
T > 1,

|V(a,b)(Z) ∩ TΩ| < cTn−2

If p = 2 and q = 1 or q = 2, then there exists a constant c > 0 depending only on
D, (a, b) and Ω such that for any Q ∈ D and all T > 2,

|V(a,b) ∩ TΩ ∩ Z
n| < cTn−2 log T

Also, for the (2, 1) and (2, 2) cases, we have the following “almost everywhere”
result:

Theorem 5.5. For almost all quadratic forms Q of signature (p, q) = (2, 1) or
(2, 2)

|V(a,b)(Z) ∩ TΩ| ∼ λQ,Ω(b− a)Tn−2

where n = p+ q, and λQ,Ω is as in (26).

Theorem 5.5 may be proved using a recent general result of Nevo and Stein
[NS]; see also [EMM1].

It is also possible to give a “uniform” version of Theorem 5.2, following [DM4]:

Theorem 5.6. Let D be a compact subset of O(p, q), with p ≥ 3. Let n = p+q,
and let Ω be as in Theorem 5.4. Then for every interval [a, b] and every θ > 0,
there exists a finite subset P of D such that each Q ∈ P is a scalar multiple of a
rational form and for any compact subset F of D −P there exists T0 such that for
all Q in F and T ≥ T0,

(1− θ)λQ,Ω(b− a)Tn−2 ≤ |V(a,b)(Z) ∩ TΩ| ≤ (1 + θ)λQ,Ω(b− a)Tn−2

where λQ,Ω is as in (26).

As in Theorem 5.2 the upper bound is from [EMM1]; the asymptotically exact
lower bound, which holds even for SO(2, 1) and SO(2, 2), was proved in [DM4].

Remark 5.7. If we consider |V(a,b)(R)∩TΩ∩P(Zn)| instead of |V(a,b)(Z)∩TΩ|
(where P(Zn) denotes the set of primitive lattice points, then Theorem 5.2 and
Theorem 5.6 hold provided one replaces λQ,Ω by λ′

Q,Ω = λQ,Ω/ζ(n), where ζ is the
Riemann zeta function.

More on signature (2,2). Recall that a subspace is called isotropic if the re-
striction of the quadratic form to the subspace is identically zero. Observe also
that whenever a form of signature (2, 2) has a rational isotropic subspace L then
L ∩ TΩ contains on the order of T 2 integral points x for which Q(x) = 0, hence
NQ,Ω(−ε, ε, T ) ≥ cT 2, independently of the choice of ε. Thus to obtain an as-
ymptotic formula similar to (27) in the signature (2, 2) case, we must exclude the
contribution of the rational isotropic subspaces. We remark that an irrational qua-
dratic form of signature (2, 2) may have at most 4 rational isotropic subspaces (see
[EMM2, Lemma 10.3]).

The space of quadratic forms in 4 variables is a linear space of dimension 10.
Fix a norm ‖ · ‖ on this space.
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Definition 5.8. (EWAS) A quadratic form Q is called extremely well approx-
imable by split forms (EWAS) if for any N > 0 there exists a split integral form Q′

and 2 ≤ k ∈ R such that ∥∥∥∥Q− 1

k
Q′
∥∥∥∥ ≤ 1

kN
.

The main result of [EMM2] is:

Theorem 5.9. Suppose Ω is as above. Let Q be an indefinite quadratic form
of signature (2, 2) which is not EWAS. Then for any interval (a, b), as T → ∞,

(28) ÑQ,Ω(a, b, T ) ∼ λQ,Ω(b− a)T 2,

where the constant λQ,Ω is as in (26), and ÑQ,Ω counts the points not contained in
isotropic subspaces.

Open Problem. State and prove a result similar to Theorem 5.9 for the signature
(2, 1) case.

Eigenvalue spacings on flat 2-tori. It has been suggested by Berry and Tabor
that the eigenvalues of the quantization of a completely integrable Hamiltonian
follow the statistics of a Poisson point-process, which means their consecutive spac-
ings should be i.i.d. exponentially distributed. For the Hamiltonian which is the
geodesic flow on the flat 2-torus, it was noted by P. Sarnak [Sar] that this problem
translates to one of the spacing between the values at integers of a binary quadratic
form, and is related to the quantitative Oppenheim problem in the signature (2, 2)
case. We briefly recall the connection following [Sar].

Let Δ ⊂ R
2 be a lattice and let M = R

2/Δ denote the associated flat torus.
The eigenfunctions of the Laplacian on M are of the form fv(·) = e2πi〈v,·〉, where v
belongs to the dual lattice Δ∗. The corresponding eigenvalues are 4π2‖v‖2, v ∈ Δ∗.
These are the values at integral points of the binary quadratic B(m,n) = 4π2‖mv1+
nv2‖2, where {v1, v2} is a Z-basis for Δ∗. We will identify Δ∗ with Z

2 using this
basis.

We label the eigenvalues (with multiplicity) by

0 = λ0(M) < λ1(M) ≤ λ2(M) . . .

It is easy to see that Weyl’s law holds, i.e.

|{j : λj(M) ≤ T}| ∼ cMT,

where cM = (areaM)/(4π). We are interested in the distribution of the local
spacings λj(M)− λk(M). In particular, for 0 �∈ (a, b), set

RM (a, b, T ) =
|{(j, k) : λj(M) ≤ T, λk(M) ≤ T, a ≤ λj(M)− λk(M) ≤ b}|

T
.

The statistic RM is called the pair correlation. The Poisson-random model predicts,
in particular, that

(29) lim
T→∞

RM (a, b, T ) = c2M (b− a).

Note that the differences λj(M) − λk(M) are precisely the integral values of the
quadratic form QM (x1, x2, x3, x4) = B(x1, x2)−B(x3, x4).

P. Sarnak showed in [Sar] that (29) holds on a set of full measure in the space
of tori. Some remarkable related results for forms of higher degree and higher
dimensional tori were proved in [V1], [V2] and [V3]. These methods, however,
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cannot be used to explicitly construct a specific torus for which (29) holds. A
corollary of Theorem 5.9 is the following:

Theorem 5.10. Let M be a 2 dimensional flat torus rescaled so that one of
the coefficients in the associated binary quadratic form B is 1. Let A1, A2 denote
the two other coefficients of B. Suppose that there exists N > 0 such that for all
triples of integers (p1, p2, q) with q ≥ 2,

max
i=1,2

∣∣∣∣Ai −
pi
q

∣∣∣∣ > 1

qN
.

Then, for any interval (a, b) not containing 0, (29) holds, i.e.

lim
T→∞

RM (a, b, T ) = c2M (b− a).

In particular, the set of (A1, A2) ⊂ R
2 for which (29) does not hold has zero Haus-

dorff dimension.
Thus, if one of the Ai is Diophantine’s (e.g. algebraic), then M has a spectrum

whose pair correlation satisfies the Berry-Tabor conjecture.

This establishes the pair correlation for the flat torus or “boxed oscillator” con-
sidered numerically by Berry and Tabor. We note that without some diophantine
condition, (29) may fail.

5.3. Passage to the space of lattices. We now relate the counting problem
of Theorem 5.2 to a certain integral expression involving the orthogonal group of
the quadratic form and the space of lattices SL(n,R)/SL(n,Z). Roughly this is
done as follows. Let f be a bounded function on R

n − {0} vanishing outside a
compact subset. For a lattice Δ ∈ Ln let

(30) f̃(Δ) =
∑

v∈Δ\{0}
f(Δ)

(the function f̃ is called the “Siegel Transform” of f). The proof is based on the
identity of the form

(31)

∫
K

f̃(atkΔ) dk =
∑

v∈Δ\{0}

∫
K

f(atkv) dk

obtained by integrating (30). In (31) {at} is a certain diagonal subgroup of the
orthogonal group of Q, and K is a maximal compact subgroup of the orthogonal
group of Q. Then for an appropriate function f , the right hand side is then related
to the number of lattice points v ∈ [et/2, et]∂Ω with a < Q(v) < b. The asymptotics
of the left-hand side is then established using the ergodic theory of unipotent flows
and some other techniques.

Quadratic Forms, and the lattice ΔQ. Let n ≥ 3, and let p ≥ 2. We denote
n− p by q, and assume q > 0. Let {e1, e2, . . . en} be the standard basis of Rn. Let
Q0 be the quadratic form defined by

(32) Q0

(
n∑

i=1

viei

)
= 2v1vn +

p∑
i=2

v2i −
n−1∑

i=p+1

v2i for all v1, . . . , vn ∈ R.

It is straightforward to verify that Q0 has signature (p, q). Let G = SL(n,R), the
group of n × n matrices of determinant 1. For each quadratic form Q and g ∈ G,
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let Qg denote the quadratic form defined by Qg(v) = Q(gv) for all v ∈ R
n. By

the well known classification of quadratic forms over R, for each Q ∈ O(p, q) there
exists g ∈ G such that Q = Qg

0. Then let ΔQ denote the lattice gZn, so that
Q0(ΔQ) = Q(Zn).

For any quadratic form Q let SO(Q) denote the special orthogonal group cor-
responding to Q; namely {g ∈ G | Qg = Q}. Let H = SO(Q0). Then the map
H\G → O(p, q) given by Hg → Qg

0 is a homeomorphism.

The map at and the group K. For t ∈ R, let at be the linear map so that
ate1 = e−te1, aten = eten, and atei = ei, 2 ≤ i ≤ n − 1. Then the one-parameter
group {at} is contained in H. Let K̂ be the subgroup of G consisting of orthogonal

matrices, and let K = H ∩ K̂. It is easy to check that K is a maximal compact
subgroup of H, and consists of all h ∈ H leaving invariant the subspace spanned
by {e1 + en, e2, . . . , ep}. We denote by m the normalized Haar measure on K.

A Lemma about vectors in R
n. In this section we will be somewhat informal.

For a completely rigorous argument see [EMM1, §§3.4-3.5]. Also for simplicity we
let ν = 1 in this section.

Let W ⊂ R
n be the characteristic function of the region defined by the inequal-

ities on x = (x1, . . . , xn):

a ≤ Q0(x) ≤ b, (1/2) ≤ ‖x‖ ≤ 2,

x1 > 0, (1/2)x1 ≤ |xi| ≤ (1/2)x1 for 2 ≤ i ≤ n− 1.

Let f be the characteristic function of W .

Lemma 5.11. There exists T0 > 0 such that for every t with et > T0, and every
v ∈ R

n with ‖v‖ > T0,

(33) cp,qe
(n−2)t

∫
K

f(atkv) dm(k) ≈
{
1 if a ≤ Q0(x) ≤ b and et

2 ≤ ‖v‖ ≤ et,

0 otherwise

where cp,q is a constant depending only on p and q.

Proof. This is a direct calculation. �

Remark. The ≈ in (33) is essentially equality up to “edge effects”. These edge
effects can be overcome if one approximated f from above and below by continuous
functions f+ and f− in such a way that the L1 norm of f+−f− is small. We choose
not to do this here in order to not clutter the notation.

In (33), we let T = et and sum over v ∈ ΔQ. We obtain:

Proposition 5.12. As T → ∞,

cp,qT
n−2

∫
K

f̃(atkΔQ) ≈ |{v ∈ ΔQ : a < Q0(v) < b and 1
2T ≤ ‖v‖ ≤ T}|,

where t = log T . Note that the right-hand side is by definition |V Q
(a,b)(Z)∩[T/2, T ]Ω0|,

where Ω0 is the unit ball.

We also note without proof the following lemma:
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Lemma 5.13. Let ρ be a continuous positive function on the sphere, and let
Ω = {v ∈ R

n |‖v‖ < ρ(v/‖v‖)}. Then there exists a constant λ = λQ,Ω so that as
T → ∞,

Vol(V Q
(a,b)(R) ∩ TΩ) ∼ λQ,Ω(b− a)Tn−2.

Also (using Siegel’s formula), cp,q
∫
Ln

f̃ = cp,q
∫
Rn f = (1− 22−n)λQ,Ω.

Remark. One can verify that:

λQ,Ω =

∫
L∩Ω

dA

‖∇Q‖ ,

where L is the lightcone Q = 0 and dA is the area element on L.

The main theorems. In view of Proposition 5.12 and Lemma 5.13, to prove
Theorem 5.2 one may use the following theorem:

Theorem 5.14. Suppose p ≥ 3, q ≥ 1. Let Λ ∈ Ln be a unimodular lattice
such that HΛ is not closed. Let ν be any continuous function on K. Then

(34) lim
t→+∞

∫
K

f̃(atkΛ)ν(k) dm(k) =

∫
K

ν dm

∫
Ln

f̃(Δ) dμ(Δ).

To prove Theorem 5.6 we use the following generalization:

Theorem 5.15. Suppose p ≥ 3, q ≥ 1. Let ν be as in Theorem 5.14, and let
C be any compact set in Ln. Then for any ε > 0 there exist finitely many points
Λ1, . . . ,Λ� ∈ Ln such that

(i) The orbits HΛ1, . . . , HΛ� are closed and have finite H-invariant measure.
(ii) For any compact subset F of C \

⋃
1≤i≤� HΛi, there exists t0 > 0, so that

for all Λ ∈ F and t > t0,

(35)

∣∣∣∣
∫
K

f̃(atkΛ)ν(k) dm(k)−
∫
Ln

f̃ dμ

∫
K

ν dm

∣∣∣∣ ≤ ε

Theorem 5.14 and Theorem 5.15 if f̃ is replaced by a bounded function φ.
If we replace f̃ by a bounded continuous function φ then (34) and (35) follow easily
from Theorem 4.4. (This was the original motivation for Theorem 4.4). The fact
that Theorem 4.4 deals with unipotents and Theorem 5.15 deals with large spheres
is not a serious obstacle, since large spheres can be approximated by unipotents.
In fact, the integral in (34) can be rewritten as∫

B

(
1

T (x)

∫ T (x)

0

φ(utx) dm(k)

)
dx,

where B is a suitable subset of G and U is a suitable unipotent. Now by Theo-
rem 4.4, the inner integral tends to

∫
G/Γ

φ uniformly as long as x is in a compact set

away from an explicitly described set E, where E is a finite union of neighborhoods
of sets of the form π(C) where C is a compact subset of some N(F,U). By direct
calculation one can show that only a small part of B is near E, hence Theorem 5.14
and Theorem 5.15 both hold.

Remark. Both Theorem 4.4 and Ratner’s uniform distribution theorem Theo-
rem 1.12 hold for bounded continuous functions, but not for arbitrary continuous
functions from L1(G/Γ). However, for a non-negative bounded continuous function
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f on R
n, the function f̃ defined in (30) is non-negative, continuous, and L1 but un-

bounded (it is in Ls(G/Γ) for 1 ≤ s < n, where G = SL(n,R), and Γ = SL(n,Z)).

The lower bounds. As it was done in [DM4] it is possible to obtain asymp-

totically exact lower bounds by considering bounded continuous functions φ ≤ f̃ .
However, to prove the upper bounds in the theorems stated above we need to exam-
ine carefully the situation at the “cusp” of G/Γ, i.e outside of compact sets. This
will be done in §6.

6. Quantitative Oppenheim (upper bounds)

The references for this section are [EMM1] and [EMM2].

Lattices. Let Δ be a lattice in R
n. We say that a subspace L of Rn is Δ-rational if

L∩Δ is a lattice in L. For any Δ-rational subspace L, we denote by dΔ(L) or simply
by d(L) the volume of L/(L ∩Δ). In the notation of [Kl1, §3], dΔ(L) = ‖L ∩Δ‖.

Let us note that d(L) is equal to the norm of e1 ∧ · · · ∧ e� in the exterior power∧�(Rn) where � = dimL and (e1, · · · , e�) is a basis over Z of L∩Δ. If L = {0} we
write d(L) = 1.

Let us introduce the following notation:

αi(Δ) = sup
{ 1

d(L)

∣∣∣ L is a Δ-rational subspace of dimension i
}
, 0 ≤ i ≤ n,

α(Δ) = max
0≤i≤n

αi(Δ).

(36)

The following lemma is known as the “Lipshitz Principle”:

Lemma 6.1 ([Sch, Lemma 2]). Let f be a bounded function on R
n vanishing

outside a compact subset. Then there exists a positive constant c = c(f) such that

f̃(Δ) < cα(Δ)

for any lattice Δ in R
n. Here f̃ is the function on the space of lattices defined in

(30).

Replacing f̃ by α. By Lemma 6.1, the function f̃(g) on the space of unimodular
lattices Ln is majorized by the function α(g). The function α is more convenient

since it is invariant under the left action of the maximal compact subgroup K̂ of
G, and its growth rate at infinity is known explicitly. Theorems 5.2 and 5.6 are
proved by combining Theorem 4.4 with the following integrability estimate:

Theorem 6.2 ([EMM1]). If p ≥ 3, q ≥ 1 and 0 < s < 2, or if p = 2, q ≥ 1
and 0 < s < 1, then for any lattice Δ in R

n

sup
t>0

∫
K

α(atkΔ)s dm(k) < ∞.

The upper bound is uniform as Δ varies over compact sets in the space of lattices.

This result can be interpreted as follows. For a lattice Δ in Ln and for h ∈ H,
let f(h) = α(hΔ). Since α is left-K̂ invariant, f is a function on the symmetric
space X = K\H. Theorem 6.2 is the statement that if if p ≥ 3, then the averages
of fs, 0 < s < 2 over the sets KatK in X remain bounded as t → ∞, and the
bound is uniform as one varies the base point Δ over compact sets. We remark
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that in the case q = 1, the rank of X is 1, and the sets KatK are metric spheres of
radius t, centered at the origin.

If (p, q) = (2, 1) or (2, 2), Theorem 6.2 does not hold even for s = 1. The
following result is, in general, best possible:

Theorem 6.3 ([EMM1]). If p = 2 and q = 2, or if p = 2 and q = 1, then for
any lattice Δ in R

n,

(37) sup
t>1

1

t

∫
K

α(atkΔ) dm(k) < ∞,

The upper bound is uniform as Δ varies over compact sets in the space of lattices.

Proof of Theorem 5.15 assuming Theorem 6.2. We can assume that f̃ is
nonnegative. Let A(r) = {x ∈ G/Γ : α(x) > r}. Choose a continuous nonnegative
function gr on G/Γ such that gr(x) = 1 if x ∈ A(r + 1), gr(x) = 0 if x /∈ A(r) and
0 ≤ gr(x) ≤ 1 if x ∈ A(r)−A(r + 1). Then∫

K

f̃(atkx)ν(k) dm(k) =

=

∫
K

(f̃gr)(atkx)ν(k) dm(k) +

∫
K

(f̃ − f̃ gr)(atkx)ν(k) dm(k).

(38)

But (letting β = 2 − s), (f̃gr)(y) ≤ B1α(y)
2−βgr(y) = B1α(y)

2−β
2 gr(y)α(y)

−β
2 ≤

B1r
−β

2 α(y)2−
β
2 (the last inequality is true because gr(y) = 0 if α(y) ≤ r). Therefore

(39)

∫
K

(f̃gr)(atkx)ν(k) dm(k) ≤ B1r
−β

2

∫
K

α(atkx)
2− β

2 ν(k) dm(k).

According to Theorem 6.2 there exists B such that∫
K

α(atkx)
2− β

2 dm(k) < B

for any t ≥ 0 and uniformly over x ∈ C. Then (39) implies that

(40)

∫
K

(f̃gr)(atkx)ν(k) dm(k) ≤ BB1(sup ν)r
−β

2 .

Since the function f̃ − f̃gr is continuous and has a compact support, the “bounded
function” case of Theorem 5.15 implies that for every ε > 0 there exists a finite set
of points x1, . . . , x� with Hxi closed for each i so that for every compact subset F

of C \
⋃�

i=1 Hxi there exists t0 > 0 such that for every t > t0 and every x ∈ F ,
(41)∣∣∣∣∣
∫
K

(f̃ − f̃gr)(atkx)ν(k) dm(k)−
∫
G/Γ

(f̃ − f̃gr)(y) dμ(y)

∫
K

ν(k) dm(k)

∣∣∣∣∣ <
ε

2
.

It is easy to see that (38), (40) and (41) imply (35) if r is sufficiently large. This
implies Theorem 5.15. �

In the rest of this section, we prove Theorem 6.2 and Theorem 6.3. We recall
the notation from §5: G is SL(n,R), Γ = SL(n,Z), K̂ ∼= SO(n) is a maximal

compact subgroup of G, H ∼= SO(p, q) ⊂ G, K = H ∩ K̂ is a maximal compact
subgroup of H, and X is the symmetric space K\H. From its definition (36), the

function α(Δ) is the maximum over 1 ≤ i ≤ n of K̂ invariant functions αi(Δ). The
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main idea of the proof is to show that the αs
i satisfy a certain system of integral

inequalities which imply the desired bounds.
If p ≥ 3 and 0 < s < 2, or if (p, q) = (2, 1) or (2, 2) and 0 < s < 1, we show

that for any c > 0 there exist t > 0, and ω > 1 so that the the functions αs
i satisfy

the following system of integral inequalities in the space of lattices:

(42) Atα
s
i ≤ ciα

s
i + ω2 max

0<j≤min(n−i,i)

√
αs
i+jα

s
i−j ,

whereAt is the averaging operator (Atf)(Δ) =
∫
K
f(atkΔ), and ci ≤ c (Lemma 6.7).

If (p, q) = (2, 1) or (2, 2) and s = 1, then (42) also holds (for suitably modified func-
tions αi), but some of the constants ci cannot be made smaller than 1.

Let fi(h) = αi(hΔ), so that each fi is a function on the symmetric space X.
When one restricts to an orbit of H, (42) becomes:

(43) Atf
s
i ≤ cif

s
i + ω2 max

0<j≤min(n−i,i)

√
fs
i+jf

s
i−j .

If rankX = 1, then (Atf)(h) can be interpreted as the average of f over the sphere
of radius 2t in X, centered at h. In §6.4 we show that if the fi satisfy (43) then for
any ε > 0, the function f = fε,s =

∑
0≤i≤n ε

i(n−i)fs
i satisfies the scalar inequality:

(44) Atf ≤ cf + b,

where t, c and b are constants. This inequality is studied in §6.3. We show that if
c is sufficiently small, then (44) for a fixed t together with the uniform continuity
of log f imply that (Arf)(1) is bounded as a function of r, which is the conclusion
of Theorem 6.2. If c = 1, which will occur in the SO(2, 1) and SO(2, 2) cases, then
(44) implies that (Arf)(1) is growing at most linearly with the radius. In §6.4, we
complete the proof of Theorem 6.2, and also prove Theorems 6.3 and 5.15.

Throughout the proof we consider the functions α(g)s for 0 < s < 2 even
though for the application to quadratic forms we only need s = 1+ δ. This yields a
better integrability result, and is also necessary for the proof of Theorem 5.14 and
Theorem 5.15.

6.1. Averages of the functions 1/dsi over spheres. Recall that the func-

tion di is the norm of a certain vector in the exterior power
∧i(Rn). We have the

following:

Proposition 6.4. Let {at | t ∈ R} be a self-adjoint one-parameter subgroup of
SO(2, 1). Let p and q be positive integers and let 0 < i < p+ q. Let

F (i) = {x1 ∧ x2 ∧ · · · ∧ xi | x1, x2, · · · , xi ∈ R
p+q} ⊂

∧i
(Rp+q).

Then, if p ≥ 3, or if p = 2, q = 2 and i �= 2, then for any s, 0 < s < 2,

(45) lim
t→∞

sup
v∈F (i), ‖v‖=1

∫
K

dm(k)

‖atkv‖s
= 0.

where K = SO(p)× SO(q) and SO(2, 1) is embedded into SO(p, q). If p = 2 and
q = 1, or if p = 2, q = 2 and i = 2, then (45) holds for any s, 0 < s < 1.

Proof. This is a direct calculation. �
The next lemma we obtain an analogous result for the case (p, q) = (2, 1), s = 1.
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Lemma 6.5. Let H ∼= SO(2, 1) be the orthogonal group of the quadratic form
x2 + y2 − z2. Let {at | t ∈ R} be a self-adjoint one-parameter subgroup of H, and
let K = H∩O(3) denote the maximal compact of H. We define another norm ‖·‖∗
on R

3 by

(46) ‖(x, y, z)‖∗ = max(
√

x2 + y2, |z|).
Then, for any v ∈ R

3, v �= 0, and any t > 0,

(47)

∫
K

dm(k)

‖atkv‖∗
≤ 1

‖v‖∗ .

6.2. A system of inequalities.

Lemma 6.6. For any two Δ-rational subspaces L and M

(48) d(L)d(M) ≥ d(L ∩M)d(L+M).

Proof. Let π : Rn → R
n/(L ∩ M) denote the natural projection. Then d(L) =

d(π(L))d(L∩M), d(M) = d(π(M))d(L∩M) and d(L+M) = d(π(L+M))d(L∩M).
On the other hand the inequality (48) is equivalent to the inequality

d(L)

d(L ∩M)

d(M)

d(L ∩M)
≥ d(L+M)

d(L ∩M)
.

Therefore replacing L,M and L+M by π(L), π(M) and π(L+M) we can assume
that L∩M = {0}. Let (e1, · · · , e�), � = dimL, and (e�+1, · · · , e�+m), m = dimM ,
be bases in L and M respectively. Then

(49) d(L)d(M) = ‖e1 ∧ · · · ∧ e�‖ ‖e�+1 ∧ · · · ∧ e�+m‖
≥ ‖e1 ∧ · · · ∧ e� ∧ e�+1 ∧ · · · ∧ e�+m‖ ≥ d(L+M)

that proves (48) (the second inequality in (49) is true because (L∩Δ)+(M ∩Δ) ⊂
(L+M) ∩Δ. �

Lemma 6.7. Let {at | t ∈ R} be a self-adjoint one-parameter subgroup of
SO(2, 1). Let p and q be positive integers, and denote p+ q by n. Denote SO(p)×
SO(q) by K. Suppose p ≥ 3, q ≥ 1 and 0 < i < n, or p = 2, q = 2 and i = 1 or 3.
Then for any s, 0 < s < 2, and any c > 0 there exist t > 0 and ω > 1 such that for
any lattice Λ in R

n

(50)

∫
K

αi(atkΛ)
s dm(k) <

c

2
αi(Λ)

s + ω2 max
0<j≤min{n−i,i}

(√
αi+j(Λ)αi−j(Λ)

)s
.

If p = 2, q = 1 and i = 1, 2, or if p = 2, q = 2 and i = 2, then for any s, 0 < s < 1,
and any c > 0 there exist t > 0 and ω > 1 such that (50) holds.

Proof. Fix c > 0. In view of Proposition 6.4 one can find t > 0 such that∫
K

dm(k)

‖atkv‖s
<

c

2
,

whenever v ∈ F (i), ‖v‖ = 1. It follows that

(51)

∫
K

dm(k)

‖atkv‖s
<

c

2
· 1

‖v‖s ,
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for any v ∈ F (i), v �= 0. Let Λ be a lattice in R
n. There exists a Λ-rational subspace

Li of dimension i such that

(52)
1

dΛ(Li)
= αi(Λ).

The inequality (51) implies

(53)

∫
K

dm(k)

datkΛ(atkLi)s
<

c

2

1

dΛ(Li)s
.

Let ω = max0<j<n ‖
∧j

(at)‖. (In fact ω = et). We have that

(54) ω−1 ≤ ‖atv‖
‖v‖ ≤ ω, 0 < j < n, v ∈ F (j).

Let us denote the set of Λ-rational subspaces L of dimension i with dΛ(L) <
ω2dΛ(Li) by Ψi. We get from (54) that for a Λ-rational i-dimensional subspace
L /∈ Ψi

(55) datkΛ(atkL) > datkΛ(atkLi), k ∈ K.

It follows from (53), (55) and the definition of αi that

(56)

∫
K

αi(atkΛ)
s dm(k) <

c

2
αi(Λ)

s if Ψi = {Li}.

Assume now that Ψi �= {Li}. Let M ∈ Ψi, M �= Li. Then dim(M+Li) = i+j, j >
0. Now using (52), (54) and Lemma 6.6 we get that for any k ∈ K

αi(atkΛ) < ωαi(Λ) =
ω

dΛ(Li)
<

ω2√
dΛ(Li)dΛ(M)

≤ ω2√
dΛ(Li ∩M)dΛ(Li +M)

≤ ω2
√
αi+j(Λ)αi−j(Λ).

(57)

Hence if Ψi �= {Li}

(58)

∫
K

αi(atkΛ)
s dm(k) ≤ ω2 max

0<j≤min{n−i,i}

(√
αi+j(Λ)αi−j(Λ)

)s
.

Combining (56) and (58) we get that for any lattice Λ ⊂ R
n, (50) holds. �

In the rest of this subsection we obtain similar systems of inequalities for the
SO(2, 1) and SO(2, 2) cases, with s = 1. For H = SO(2, 1), Δ a lattice in R

3, and
L a Δ-rational subspace of R3, let d∗Δ(L) = ‖e1∧ . . . e�‖∗ where (e1, . . . el) is a basis

for Δ ∩ L. (The norm ‖ · ‖∗ defined in (46) on R
3 =
∧1

(R3) can be extended to∧2(R3) by duality.) For 1 ≤ i ≤ 2, let

(59) α∗
i (Δ) = sup

{ 1

d∗Δ(L)

∣∣∣L is a Δ-rational subspace of dimension i
}
.

Clearly for any Δ,

(60) (1/2)αi(Δ) < α∗
i (Δ) < 2αi(Δ).
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Lemma 6.8. Let {at | t ∈ R} be a self-adjoint one-parameter subgroup of H =
SO(2, 1), and denote SO(2) by K. Then there exist t0 > 0 and ω > 1, such that
for any t < t0, for any unimodular lattice Λ in R

3, and 1 ≤ i ≤ 2,

(61)

∫
K

α∗
i (atkΛ) dm(k) < α∗

i (Λ) + ω2
√
α3−i(Λ).

Proof. The argument is identical to the proof of Lemma 6.7 except that one uses
Lemma 6.5 instead of Proposition 6.4. �

Now let H = SO(2, 2). The space V =
∧2(R4) splits as a direct sum V1 ⊕ V2

of two invariant subspaces, where on each Vi, H preserves a quadratic form Qi of
signature (2, 1). We define on each Vi a Euclidean norm ‖ · ‖∗i by (46) (adapted to
Qi). Let πi denote the orthogonal projections from V to Vi. Now let Δ be a lattice
in R

4, and let L be a two-dimensional Δ-rational subspace of R4. For 1 ≤ i ≤ 2,
let

(62) di,#Δ (L) = ‖πi(e1 ∧ e2)‖∗i ,

where {e1, e2} is a basis over Z for Δ ∩ L. Then let

(63) α#
2 (Δ) = sup

L

{
min

(
1

d1,#Δ (L)
,

1

d2,#Δ (L)

)}
.

The supremum is taken over Δ-rational two dimensional subspaces L. By construc-
tion, for any Δ,

(64) C−1α#
2 (Δ) < α2(Δ) < Cα#

2 (Δ),

where C is an absolute constant.

Lemma 6.9. Let {at | t ∈ R} be a self-adjoint one-parameter subgroup of
SO(2, 1), where SO(2, 1) is diagonally embedded in H = SO(2, 2), under its lo-
cal identification with SL(2,R)× SL(2,R). Denote SO(2)× SO(2) by K, and the

maximal compact of SO(2, 1) by K̃. Then there exist t0 > 0 and ω > 1, such that
for any t < t0 and for any unimodular lattice Λ in R

4,

(65)

∫
K̃

α#
2 (atk̃Λ) dm(k̃) < α#

2 (Λ) + ω2
√
α1(Λ)α3(Λ).

Proof. The group K̃ is diagonally embedded in K. Recall that each SO(2, 2)

invariant subspace Vi of
∧2(R4) is fixed pointwise by one of the SL(2,R) factors,

while the other fixes a quadratic form of signature (2, 1). Thus, for 1 ≤ i ≤ 2, the
inequalities:

(66)

∫
K̃

dm(k̃)

‖πi(atk̃v)‖∗i
≤ 1

‖πi(v)‖∗i
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follow immediately from Lemma 6.5. Hence,

∫
K̃

min

(
1

‖π1(atk̃v)‖∗1
,

1

‖π2(atk̃v)‖∗2

)
dm(k)

≤ min

(∫
K̃

dm(k̃)

‖π1(atk̃v)‖∗1
,

∫
K̃

dm(k̃)

‖π2(atk̃v)‖∗2

)

≤ min

(
1

‖π1(v)‖∗1
,

1

‖π2(v)‖∗2

)
.(67)

The rest of the proof is identical to that of Lemma 6.7 except that (67) is used in
place of Proposition 6.4. �

6.3. Coarsely Superharmonic Functions. Let n ∈ N
+ and let D+

n de-
note the set of diagonal matrices d(λ1, · · · , λn) ∈ GL(n,R) with λ1 ≥ λ2 ≥
· · · ≥ λn > 0. For any g ∈ GL(n,R), consider the Cartan decomposition g =
k1(g)d(g)k2(g), k1(g), k2(g) ∈ K = O(n,R), d(g) ∈ D+

n and denote by λ1(g) ≥
λ2(g) ≥ · · · ≥ λn(g) the eigenvalues of d(g).

Lemma 6.10. For every ε > 0 there exists a neighborhood U of e in O(n,R)
such that

(68)
∣∣∣ λi(d1kd2)

λi(d1)λi(d2)
− 1
∣∣∣ < ε

for any d1, d2 ∈ D+
n , k ∈ U and 1 ≤ i ≤ n.

Proof. Let (e1, · · · , en) be the standard orthonormal basis in R
n. If k ∈ O(n,R)

and 〈ke1, e1〉 > 1− ε then

(69) ‖d1kd2e1‖ > (1− ε)λ1(d1)λ1(d2).

On the other hand, for any g ∈ GL(n,R).

(70) λ1(g) = ‖g‖ ≥ ‖ge1‖.

Since ‖d1kd2‖ ≤ ‖d1‖ ‖d2‖ it follows from (69) and (70) that

(71) 1 ≥ λ1(d1kd2)

λ1(d1)λ1(d2)
> 1− ε,

if 〈ke1, e1〉 > 1− ε. Analogously considering the representation of GL(n,R) in the

i-th exterior product
∧i(Rn) of Rn we get that

(72) 1 ≥ (λ1λ2 · · ·λi)(d1kd2)

(λ1λ2 · · ·λi)(d1d2)
> 1− ε,

if k ∈ O(n,R) and 〈
∧i(k)(e1∧· · ·∧ei), e1∧· · ·∧ei〉 > 1−ε. It is clear that there exists

a neighborhood U of identity in O(n,R) such that 〈
∧i

(k)(e1∧· · ·∧ei), e1∧· · ·∧ei〉 >√
1− ε for every k ∈ U and 1 ≤ i ≤ n. But

λi(g) =
(λ1λ2 · · ·λi)(g)

(λ1λ2 · · ·λi−1)(g)
.

Therefore (68) follows from (72). �
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Lemma 6.11. (cf. the “wavefront lemma” [EMc, Theorem 3.1]) Let H be a
self-adjoint connected reductive subgroup of GL(n,R), let K = O(n,R) ∩ H be a
maximal compact subgroup of H and let {at | t ∈ R} be a self-adjoint one-parameter
subgroup of H. Then for every neighborhood V of e in H there exists a neighborhood
U of e in K such that

(73) atUas ⊂ KV atasK

for any t ≥ 0 and s ≥ 0.

Proof. Conjugating at by an element of K we can assume that {at | t ≥ 0} ⊂ D+
n .

It is easy to see that there exists ε > 0 such that h1 ∈ V h2 whenever h1, h2 ∈ D+
n

and
∣∣∣λi(h1)
λi(h2)

− 1
∣∣∣ < ε for every 1 ≤ i ≤ n. Take a neighborhood U such that (68) is

satisfied. Then (73) is true for this U . �

Proposition 6.12. Let H be a self-adjoint reductive subgroup of GL(n,R), let
K = O(n,R)∩H, let m denote the normalized measure on K, and let A = {at | t ∈
R} be a self-adjoint one-parameter subgroup of H. Let F be a family of strictly
positive functions on H having the following properties:

(a) The logarithms log f for f ∈ F are equicontinuous with respect to a left-
invariant uniform structure on H or, equivalently, for any ε > 0 there
exists a neighborhood V (ε) of 1 in H such that for any f ∈ F ,

(1− ε)f(h) < f(uh) < (1 + ε)f(h)

for any h ∈ H and u ∈ V (ε);
(b) The functions f ∈ F are left K-invariant, that is f(Kh) = f(h), h ∈ H,
(c) supf∈F f(1) < ∞.

Then there exists 0 < c = c(F) < 1 such that for any t > 0 and b > 0 there exists
B = B(t, b) < ∞ with the following property: If f ∈ F and

(74)

∫
K

f(atkh) dm(k) < cf(h) + b

for any h ∈ KAK ⊂ H, then ∫
K

f(aτk) dm(k) < B

for any τ > 0.

Proof. Fix f ∈ F , and let

f̃(h) =

∫
K

f(hk) dm(k).

Properties (a), (b), (c) of the function f imply that f̃ has the same properties.

Hence it suffices to show that the conclusion of the proposition holds for f̃ . There-
fore we can assume that

(75) f(KhK) = f(h), h ∈ H,

and we have to prove that

(76) sup
τ>0

f(aτ ) < B < ∞.
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It follows from property (a) that

(77)
1

2
f(h) < f(uh) < 2f(h), h ∈ H, u ∈ V = V (

1

2
).

According to Lemma 6.11 there exists a neighborhood U of 1 in H such that
atUaτ ∈ KV ataτK for any t ≥ 0 and τ ≥ 0. Then we get from (75) and (77) that

(78)

∫
K

f(atkaτ ) dm(k) ≥
∫
U∩K

f(atkaτ ) dm(k) >
1

2
m(U ∩K)f(ataτ ).

Suppose for some t > 0 and b > 0

(79)

∫
K

f(atkh) dm(k) <
1

4
m(U ∩K)f(h) + b, h ∈ H.

It follows from (78) and (79) that for some b′ > 0,

(80) f(ataτ ) <
1

2
f(aτ ) + b′, for all τ > 0.

Using induction on � we get from (80) that

(81) f(a�t) < 2max{f(1), b′}, ; � ∈ N
+.

Since {ar | 0 ≤ r ≤ t} belongs to V i for some i where V 1 = V, V i = V V i−1, it

follows that suph∈H, 0≤r≤t
f(arh)
f(h) < ∞. Therefore (81) and property (c) imply

(76). �

6.4. Averages over large spheres. In this subsection we complete the proofs
of Theorem 6.2, Theorem 6.3 and Theorem 5.15.

Proof of Theorem 6.2. Define functions f0, f1, · · · , fn on H = SO(p, q) by the
following equalities

fi(h) = αi(hΔ), h ∈ H, 0 ≤ i ≤ n.

Since α(atkΔ)s = max0≤i≤n fi(atk)
s <
∑

0≤i≤n fi(atk)
s it is enough to show that

(82) sup
t>0, 0≤i≤n

∫
K

fs
i (atk) dm(k) < ∞.

Let At denote the averaging operator defined by

(Atf)(h) =

∫
K

f(atkh) dm(k), h ∈ H.

As in Proposition 6.4, let

F (i) = {x1 ∧ x2 ∧ · · · ∧ xi | x1, x2, · · · , xi ∈ R
n} ⊂

∧i(Rn).

Since ‖Kv‖ = ‖v‖ and ‖hv‖
‖v‖ ≤ ‖

∧i
(h)‖, for any v ∈ F (i) and h ∈ H, each fi has

properties (a) and (b) of Proposition 6.12. Applying Lemma 6.7 to Λ = hΔ we see
that for any i, 0 < i < n, and h ∈ H

(83) Atf
s
i <

c

2
fs
i + ω2 max

0<j≤min{n−i,i}

√
fs
i+jf

s
i−j .
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Let us denote q(i) = i(n−i). Then by direct computations 2q(i)−q(i+j)−q(i−j) =
2j2. Therefore we get from (83) that for any i, 0 < i < n, and any positive ε < 1

At(ε
q(i)fs

i ) <
c

2
εq(i)fs

i + ω2 max
0<j≤min{n−i,i}

εq(i)−
q(i+j)+q(i−j)

2

√
εq(i+j)fs

i+jε
q(i−j)fs

i−j

≤ c

2
εq(i)fs

i + εω2 max
0<j≤min{n−i,i}

√
εq(i+j)fs

i+jε
q(i−j)fs

i−j .

(84)

Consider the linear combination

fε,s =
∑

0≤i≤n

εq(i) fs
i .

The function fε,s then also has properties (a) and (b) of Proposition 6.12. Since

εq(i)fs
i < fε,s, f0 = 1 and fn = 1/d(Δ), the inequalities (84) imply the following

inequality:

(85) Atfε,s < 1 + d(Δ)−s +
c

2
fε,s + nεω2fε,s.

Taking ε = c
2nω2 we see that (74) from Proposition 6.12 also holds. Furthermore

property (a) and (74) of Proposition 6.12 hold with the same constants for any
unimodular lattice Δ ∈ R

n. Since fε,s(1) ≤ nα(Δ)s, fε,s(1) is uniformly bounded
as Δ varies over a compact set C of unimodular lattices. Hence the family F of
functions fε,s obtained as Δ varies over C satisfies all the conditions of Proposi-

tion 6.12. Since αi(hΔ)s = fi(h)
s ≤ ε−q(i)fε,s(h), Proposition 6.12 implies that

there exists a constant B > 0 so that for each i, all t > 0, and all Δ ∈ C,∫
K

αi(atkΔ)s dm(k) < B.

From this the theorem follows. �

7. Connections to dynamics of rational billiards

For references to this section see [E2].
In this lecture, we describe some counting problems on translation surfaces and

outline their connection to the dynamics of the SL(2,R) action on the moduli space
of translation surfaces. Much of this is presented in analogy with the quantitative
Oppenheim conjecture (see §5 and §6).

Recall that Ln = SL(n,R)/SL(n,Z) is the space of covolume 1 lattices in R
n.

This space is non-compact, since we can have arbitrarily short vectors in a lattice.

The strata and the measure μ. Let β = β1, . . . , βm be a partition of 2g − 2.
Let H(β) denote the moduli space of translation surfaces with conical singularities
of total angles 2π(β1 + 1), . . . , 2π(βm + 1). (I am using the notation from [Zor]:
Jean-Christophe is using M(·).) We will sometimes call H(β) a stratum. Let
H1(β) ⊂ H(β) denote the subset consisting of surfaces of area 1. Let μ be the
normalized Lebesque measure on H1(β) (as defined by Jean-Christophe via the
period map). We will use the same letter to denote the restriction of μ to H1(β).
A theorem of Masur and Veech (proved in Jean-Christophe’s lectures) states that
μ(H1(β)) < ∞. In §7.5 we will describe how to evaluate the numbers μ(H1(β)).

Note that the case of n = 2 in the space of lattices L2 and the case of stratum
H1(∅) boil down to the same thing, since we are considering the space of unit
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volume tori (or more precisely, the space of 1-forms on unit volume tori), which is
given by SL(2,R)/SL(2,Z).

Note. I will use the term saddle connection to denote what Jean-Christophe is
calling a connection.

Holonomy and the sets Vsc(S) and V (S). Recall that a point S ∈ H(β) can
be viewed as a pair (M,ω) where M is a Riemann surface and ω is a holomorphic
1-form on M . Recall that the holonomy of a curve γ on S is given by

hol(γ) =

∫
γ

ω.

Let

Vsc(S) = {hol(γ) : γ is a saddle connection on S},
so that Vsc(S) ⊂ C � R

2. Note that Vsc(S) is a discrete subset of R2, but it is not,
in general, a subgroup. We also define the analogous set:

V (S) = {hol(γ) : γ is a closed geodesic on S not passing through singularities}.
Note that any such closed geodesic is part of a cylinder and all the closed geodesics
in the cylinder have the same holonomy. (If S = R

2/Z2 is the standard torus with
the standard flat structure, then V (S) = Z

2).

7.1. Counting cylinders and saddle connections. Let B(R) denote a ball
of radius R. Then, |V (S)∩B(R)| is the number of cylinders on S of length at most
R, and |Vsc(S)∩B(R)| is the number of saddle connections (not necessarily vertical)
of length at most R. Masur proved the following:

Theorem 7.1. For all flat surfaces S in a compact set, there are constants c1
and c2 so that for R � 1

c1R
2 < |V (S) ∩B(R)| ≤ |Vsc(S) ∩B(R)| < c2R

2.

The upper bound is proved in [Mas2] and the lower bound is proved in [Mas3].
The proof of the lower bound depends on the proof of the upper bound. Another
proof of both the upper and lower bounds with explicit constants was given by
Vorobets in [Vo1] and [Vo2]. We will sketch below yet another proof of the upper
bound, using the ideas of §6. (See [EM] for the details).

We also note that there is a dense set of directions with a closed trajectory and
thus a cylinder.

The following theorem, gives asymptotic formulas for the number of saddle
connections and cylinders of closed geodesics on a generic surface. It was first
proved in this form in [EM], but many of the ideas came from [Ve], where a
slightly weaker version was proved.

Theorem 7.2. For a.e. S ∈ H1(β), we have

|Vsc(S) ∩B(R)| ∼ πb(β)R2,

where Vsc(S) is the collection of vectors in R
2 given by holonomy of saddle connec-

tions on S, and b(β) is the Siegel-Veech constant defined in §7.2 (see also (89)).
Similarly, for closed geodesics, we have that there is a constant b1(β) so that

|V (S) ∩B(R)| ∼ πb1(β)R
2
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where V (S) is the collection of vectors given by holonomy along (imprimitive) closed
geodesics not passing through singularities, and b1(β) is the associated Siegel-Veech
constant.

It will turn out that the problem of counting saddle connections or cylinders
closed geodesics on a flat surface is analogous to the quantitative Oppenheim prob-
lem (§5 and §6).

7.2. The Siegel-Veech formula. The following construction and its ana-
logues play a key role. For any function of compact support f ∈ Cc(R

n), let

f̂(Δ) =
∑

v∈Δ\0 f(v). Note that if f = χB(1), we get f̂(Δ) = |Δ ∩B(1)|. We have

the Siegel formula: For any f ∈ Cc(R
n),

(86)
1

μ(Ln)

∫
Ln

f̂(Δ)dμ(Δ) =

∫
Rn

fdλ,

where μ is Haar measure on Ln = SL(n,R)/SL(n,Z), and λ is Lebesgue measure
on R

n.
The generalization of this formula to moduli space was developed, so the legend

goes, by Veech while he listened to Margulis lecture on the Oppenheim conjecture.

For f ∈ Cc(R
2) we define the Siegel-Veech transform f̂(S) =

∑
v∈Vsc(S) f(v). Just

as above, if f = χB(1), f̂ counts the number of saddle connections of length ≤ 1.
Just as we had the Siegel formula for lattices, here we have the Siegel-Veech

formula: There is a constant b(β), called the Siegel-Veech constant, such that for
any f ∈ Cc(R

2), we have

(87)
1

μ(H1(β))

∫
H1(β)

f̂(S) dμ(S) = b(β)

∫
R2

f,

where μ is the natural SL(2,R) invariant measue on H1(β).
Let us sketch the proof of this result (essentially from [Ve], also reproduced

in [EM]). The first step (which is by far the most technical) is to show that

f̂ ∈ L1(H1(β)), so that the left hand side is finite. This can be deduced e.g. from
(94) below. Having done this, we denote the quantity on the left hand side of (87)
by ϕ(f).

Thus we have a linear functional ϕ : Cc(R
2) → R, i.e. a measure. But it also

has to be SL(2,R) invariant. Only Lebesgue measue and δ0, the delta measure at
0 are SL(2,R) invariant. Thus we have ϕ(f) = af(0) + b

∫
R2 f . It remains to show

a = 0. Consider the limit of indicator functions f = χB(R) as R → 0. Both sides
of the equation tend to 0, so we have that a = 0, and thus our result.

Returning to lattices, we can apply literally the same arguments to prove the
Siegel formula (86). Note that nothing was special about dimension 2 in the above
proof sketch. Thus, we have almost proved (86) as well. To be precise, we currently
have:

1

μ(Ln)

∫
Ln

f̂(Δ)dμ(Δ) = b

∫
Rn

fdλ,

for some constant b. We need to show b = 1. Here, we once again use f = χB(R),

but this time consider R → ∞. Recall that f̂(Δ) = |Δ ∩ B(R)| ∼ Vol(B(R)), for
R → ∞ and Δ fixed. Thus, we get b = 1, and the Siegel formula.

We should remark that for the space of lattices the proof of the Siegel formula
indicated above is not the easiest available. In fact, it is possible to avoid proving
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apriori that f̂ ∈ L1(Ln). See [Sie] or [Cas] or [Ter] for the details. A well known
consequence of the Siegel formula is the following:

(88) μ(Ln) =
1

n
ζ(2)ζ(3) . . . ζ(n).

For the stata H(β), this method of evaluating b(β) (i.e. considering f = χB(R)

and taking R → ∞) is not avaliable. Essentially the problem is that we do not
have an alternative expression for the constant in Theorem 5.5.

Another approach is to let f = χB(ε), send ε → 0 and keep track of the leading
term in the asymptotics of both sides. This was done in [EMZ] where we obtained
the following result: For any stratum H1(β) in the moduli space of translation
surfaces the coefficient b(β) involved in (87) can be expressed in the following form:

(89) b(β) =
∑
α<β

c(α, β)
μ(H1(α))

μ(H1(β))
,

where the sum is over lower dimensional strata α (which lie at the “boundary” of
H(β)), and c(α, β) are explicitly known rational numbers.

We note that (89) fails as a method for calculating the volumes, since (unlike
the lattice case) we do not have an independent formula for b(β). In §7.5 we will
show that the volumes can be computed in a different way; then (89) can be used
to evaluate the Siegel-Veech constants b(β). These numbers appear in some other
contexts as well, in particular in connection with the Lyapunov exponents of the
geodesic flow.

7.3. Counting using the SL(2,R) action. This subsection is closely parallel
to §5.3. The following exposition will be along the lines of [EM], which was heavily
influenced by [Ve]. To simplify the notation, we only deal with the case of saddle

connections. Define gt =

(
et 0
0 e−t

)
and rθ =

(
cos θ sin θ
− sin θ cos θ

)
. Let f be the

indicator function of the trapezoid defined by the points

(1, 1), (−1, 1), (−1/2, 1/2), (1/2, 1/2).

Lemma 7.3. We have
∫ 2π
0

f(gtrθv) dθ ≈
{
2e−2t if et/2 ≤ ||v|| ≤ et,

0 otherwise.

Proof. Let U denote the trapezoid. Note that

(90) f(gtrθv) �= 0 ⇔ gtrθv ∈ U ⇔ rθv ∈ g−1
t U.

The set g−1
t U is the shaded region in Figure 2. From (90) it is clear that the

integral in Lemma 7.3 is equal to (2π times) the fraction of the circle which lies
inside the shaded region g−1

t U . If v is too long or too short (not drawn), then the
circle would completely miss the shaded region, and the integral would be zero. If
it does not miss, then (2π times) the fraction of the circle in the shaded region is
approximately 2e−2t, independent of ‖v‖. �

We now prove Theorem 7.2. Summing our formula from Lemma 7.3 over

all v ∈ Vsc(S) and recalling the definition of the Siegel-Veech transform f̂(S) =∑
v∈Vsc(S) f(v), we get

1
2e

2t

∫ 2π

0

f̂(gtrθS) dθ ≈ |Vsc(S) ∩B(et)| − |Vsc(S) ∩B(et/2)|.
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v

( 1
2
e−t, 1

2
et)

(e−t, et)

Figure 2. Lemma 7.3.

Writing R = et, we can rewrite this as

(91) 1
2R

2

∫ 2π

0

f̂(gtrθS)dθ ≈ |Vsc(S) ∩B(R)| − |Vsc(S) ∩B(R/2)|.

This equation is key to the counting problem, since the right hand side counts
saddle connections in an annulus, and the left hand side is an integral over (part
of) an SL(2,R) orbit. (The fact that we only have approximate equality does not
affect the leading order asymptotics.) Now we are supposed to use some sort of
ergodic theory to analyze the behavoir of integral on the left-hand-side of (91) as
t → ∞ (or equivalently as R → ∞).

There is an ergodic theorem of Nevo [Ne] which implies that1 for almost

all S ∈ H1(β), and provided that f̂ ∈ L1+ε(H1(β)), the integral converges to

2π
∫
H1(β)

f̂(S) dS = 2πb(β)
∫
R2 f . The assertion that f̂ ∈ L1+ε can be verified

using (94). This immediately implies Theorem 7.2. �
However, this approach is a failure if one wants to prove things about billiards:

our theorems hold for almost every point S, and the set of translation surfaces
arising from rational billiards has measure zero.

One eventual goal is to prove analogues of Ratner’s theorems on unipotent
flows for the SL(2,R) action on H1(β). That is, we would like to classify invariant
measures, orbit closures, and prove uniform distribution, for both the full SL(2,R)
action, and for the horocycle flow. One partial result in this direction is due to

1The theorem of Nevo used here is about a general SL(2,R) action, and uses nothing about
the geometry of the moduli space.
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McMullen [Mc]: he has classified the SL(2,R) orbit closures and invariant measures
for the moduli space of genus 2 surfaces (i.e., the strata H(1, 1) and H(2)). Note
that the integral in (91) is over large circles in SL(2,R), which can be approximated

well by horocycles. Thus the action of the horocycle flow (i.e. the action of

(
1 t
0 1

)
)

is directly relevant. For other very partial results in this direction see [EMaMo],
[EMS] and [CW].

7.4. The upper bounds. In this subsection, we will outline a proof of the
upper bound in Theorem 7.1, following the scheme of §6.

Let B(R) be the ball of radius R centered at 0 in R
n. For a given lattice

Δ ∈ Ln. we would like to find out how many lattice points, that is, how many
points of Δ are contained in B(R).

It is immediately clear that for a fixed lattice Δ, as R → ∞,

(92) |Δ ∩B(R)| ∼ Vol(B(R)) = Vol(B(1))Rn.

(i.e. the number of lattice points is asymptotic to the volume). However, this is not
uniform in Δ. A uniform upper bound has been given in Lemma 6.1, in particular:

(93) |Δ ∩B(1)| < Cα(Δ).

The analagous problem in moduli space is as follows: We are interested in
|Vsc(S) ∩B(1)|, i.e. the number of saddle connections of length at most 1 on S.

The result is as follows: Fix ε > 0. Then there is a constant c = c(β, ε) such
that for all S ∈ H(β) of area 1,

(94) |Vsc(S) ∩B(1)| ≤ c

�(S)1+ε
,

where �(S) is the length of the shortest saddle connection on S.
Assuming (94), the proof of the upper bound in Theorem 7.1 can be following

the scheme of §6 (with a suitable definition for the functions αi).
However, it turns out that the proof of (94) is more difficult that that of (93);

it itself uses the system of inequalities along the line of §6, as well as induction on
the genus.

7.5. Evaluation of the volumes. In this lecture we describe briefly another
strategy for calculating volumes of strata, which also has a parallel for the space
of lattices. Recall that we are considering the spaces H(β) of flat structures with
singularity structure β = (β1, β2, . . . βn), where βi ∈ N,

∑
βi = 2g − 2. Let the set

of singularities be denoted by Σ. We have |Σ| = n, and we have

H1(S,Σ;Z) = Z
2g+n−1.

We can pick a basis by selecting g a-cycles, g b-cycles (from absolute homology),
and n− 1 relative cycles.

Fix a Z-basis γ1, γ2, . . . γk of H1(S,Σ;Z), where k = 2g + n− 1. We recall the
following fact (see [Ko]):

Theorem 7.4. The map (X,ω) → (hol(γ1), . . . , hol(γk)) from H(β) → (R2)k

is a local coordinate system.

By pulling back Lebesgue measure on (R2)k, we obtain a normalized measure
ν on H(β). (For more details on the above constuction, see [Mas1, §3].) Now, we
would like to define a measure on the hypersurface H1(β).
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This is similar to the lattice setting, where if we pick a basis v1, v2, . . . vn for
our lattice Δ ⊂ R

n, we get a matrix in Mn(R) by letting vi be the ith column.
Note that since our lattice is unit volume, our matrix has determinant 1. We have
a natural (Lebesque) measure ν on Mn(R). Consider the det = 1 hypersurface Ω1

(i.e., SL(n,R)). We define a measure μ on this space as follows: let E ⊂ Ω1, and
let C1(E) be the cone over E (i.e. the union of all line segments which start at the
origin and end at a point of E). We define μ(E) = ν(C1(E)). This yields a finite
measure since we are considering a fundamental domain under the SL(n,Z)-action.
This is in fact the measure used in the previous section.

Returning to the setting of surfaces, recall that the area of our surface S =
(X,ω) is given by

Area(S) =
1

2i

∫
X

ω ∧ ω̄ =
1

2i

g∑
i=1

∫
ai

ω̄

∫
bi

ω −
∫
bi

ω̄

∫
ai

ω

where ai and bi are the a- and b-cycles on X respectively.
This gives that the area is a quadratic form in the coordinate sytem, i.e.,

Area(X,ω) = Q(hol(γ1), . . . , hol(γk)).

However, it is a degenerate form, since it only depends on the absolute cycles ai
and bi. We can mimic the lattice picture now: we define μ(E) = ν(C1(E)) for any
subset E ⊂ H1(β). Thus,

μ(H1(β)) = μ(F) = ν(C1(F)),

where F is a fundamental domain.
We now make a cosmetic step. Let CR(F) denote the cone of F extended to

the hypersurface of area R-surfaces. Clearly

μ(H1(β)) = ν(C1(F)) =
ν(CR(F))

Rk
.

We have the following fact:

|CR(F) ∩ (Z2)k| ∼ ν(CR(F))

as R → ∞, i.e. the number of lattice points in a cone is asymptotic to the volume.
Ususally this is used to estimate the number of lattice points, but here we use this
in reverse and estimate the volume by the number of lattice points. Thus, we get
that

μ(H1(β)) =
ν(CR(F))

Rk
∼ |CR(F) ∩ (Z2)k|

Rk
,

or, equivalently,

(95) |CR(F) ∩ (Z2)k| ∼ μ(H1(β))R
k.

The equation (95) is not useful unless we can find an interpretation of the points
of CR(F) ∩ (Z2)k. This is given by the following:

Lemma 7.5. S = (X,ω) ∈ CR(F) ∩ (Z2)k if and only if X is a holomorphic
branched cover of the standard torus of degree ≤ R, ω is the pullback of dz under
the covering map, and all singularities branch over the same point.

Proof: Since S ∈ CR(F), area(S) ≤ R. By definition, S ∈ (Z2)k is equivalent to
hol(γ1), . . . , hol(γk) ∈ Z

2. Fix a non-singular point z0 on S, and define π : S → T ,
where T is the standard torus, by π(z) =

∫ z
z0
ω. Since

∫
γ
ω ∈ Z + iZ for any
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closed curve or saddle connection γ, this is a well defined covering map with all
singularities branching over the same point. Since the torus is unit volume, the
area of S is equal to the degree of the covering. �

Let Nβ(d) denote the number2 of branched covers of T of degree d with branch-
ing type β. (Note that Nβ(d) is defined in purely combinatorial terms).

Combining Lemma 7.5 with (95), we obtain the following: as R → ∞,

(96)
R∑

d=1

Nβ(d) ∼ μ(H1(β))R
k.

(This relation was discovered by Kontsevich and Zorich, and independently by
Masur and the author.) Thus, we can compute μ(H1(β)) if we can compute the
asymptotics of the left-hand-side of (96). This is a purely combinatorial problem.

Suppose we are considering a degree d cover of the torus. Consider the standard
basis a and b of curves on the torus (when the torus is viewed as the unit square,
the curves correspond to the sides of the square). They give rise to permutations of
the sheets, that is, elements of the symmetric group Sd. We will abuse notation by
denoting these permutations also by a and b. Singularity types of covers correspond
to different conjugacy classes of the commutator aba−1b−1. A simple zero is a
transposition, a double zero a three cycle, a two simple zeroes is a product of two
transpositions, etc. (So for example, if we are considering the stratum H(1, 1), the
commutator will be in the same conjugacy class as a product of two transpositions.)
The number of pairs (a, b) ∈ Sd × Sd satisfying such a commutation relation can
be expressed as a sum over the characters of the symmetric group Sd.

However, simply looking at the conjugacy class of the commutator permutation
does not guarantee that the resulting surface is connected. We wish to count only
the connected covers. However, the disconnected ones dominate the count. If one
knows the number of disconnected covers exactly, one can compute the number
of connected covers (by using inclusion/exclusion to subtract off all the possible
ways a cover can disconnect). Unfortunately, as one does that, the first n terms in
the asymptotic formula cancel. Still, it is possible, using the exact formula for the
number of disconnected covers in [BO], to carry out the computation (see [EO]).
The result, is a fairly messy but computable formula for μ(H1(β)).

There are two consequences of the above computations worth mentioning:

Theorem 7.6. The generating function Fβ(q) =
∑∞

d=0 Nβ(d)q
d is a quasi-

modular form, that is, it is a polynomial in the Eisenstein series Gk(q), k = 2, 4, 6.

Theorem 7.7. π−2gμ(H1(β)) ∈ Q, where g is the genus of any surface in
H(β).

Both of the above theorems were conjectured by Kontsevich. Further work
showed that they hold also for the connected components of strata, and that similar
results hold for spaces of quadratic differentials. We remark that Theorem 7.7
implies that the Siegel-Veech constants are rational.

For the space of lattices, one can carry out the same construction. The main
difference is that one ends up counting unbranched covers of the standard torus

2In order for Theorem 7.6 below to hold, we should, when defining Nβ(d), weigh each cover
by the inverse of its automorphism group. However this does not affect the asymptotics and can
be ignored for most purposes.
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Tn, or what is equivalent, sublattices of the standard lattice Z
n. By computing

the number of sublattices of Zn of index at most R, and sending R → ∞, it is not
difficult to reproduce (88).

8. Equidistribution of translates and applications to Diophantine
equations

We will follow parts of [EMc] and [EMS1].
In this section, using ergodic properties of subgroup actions on homogeneous

spaces of Lie groups, we study asymptotic behavior of number of lattice points on
certain affine varieties. Consider for instance the following.

Example 1 Let p(λ) be a monic polynomial of degree n ≥ 2 with integer coefficients
and irreducible over Q. Let Mn(Z) denote the set of n × n integer matrices, and
put

Vp(Z) = {A ∈ Mn(Z) : det(λI −A) = p(λ)}.
Hence Vp(Z) is the set of integral matrices with characteristic polynomial p(λ).

Consider the norm on n × n real matrices given by ‖(xij)‖ =
√∑

ij x
2
ij , and let

N(T, Vp) denote the number of elements of Vp(Z) with norm less than T .

Theorem 8.1. Suppose further that p(λ) splits over R, and for a root α of p(λ)
the ring of algebraic integers in Q(α) is Z[α]. Then, asymptotically as T → ∞,

N(T, Vp) ∼
2n−1hRωn√

D ·
∏n

k=2 Λ(k/2)
Tn(n−1)/2

where h is the class number of Z[α], R is the regulator of Q(α), D is the discriminant
of p(λ), ωn is the volume of the unit ball in R

n(n−1)/2, and Λ(s) = π−sΓ(s)ζ(2s).

Example 1 is a special case of the following counting problem which was first
studied in [DRS] and [EMc].

The counting problem: Let W be a real finite dimensional vector space with
a Q structure and V a Zariski closed real subvariety of W defined over Q. Let
G be a reductive real algebraic group defined over Q, which acts on W via a Q-
representation ρ : G → GL(W ). Suppose that G acts transitively on V . Let ‖ · ‖
denote a Euclidean norm on W . Let BT denote the ball of radius T > 0 in W
around the origin, and define

N(T, V ) = |V ∩BT ∩ Z
n|,

the number of integral points on V with norm less than T . We are interested in
the asymptotics of N(T, V ) as T → ∞.

Let Γ be a subgroup of finite index in G(Z) such that W (Z)Γ ⊂ W (Z). By a
theorem of Borel and Harish-Chandra [BH-C], V (Z) is a union of finitely many
Γ-orbits. Therefore to compute the asymptotics of N(T, V ) it is enough to consider
each Γ-orbit, say O, separately and compute the asymptotics of

N(T, V,O) = |O ∩BT |.
Suppose that O = Γ · v0 for some v0 ∈ V (Z). Then the stabilizer H = {g ∈

G : gv0 = v0} is a reductive real algebraic Q-subgroup, and V ∼= G/H. Define

RT = {gH ∈ G/H : gv0 ∈ BT },
the pullback of the ball BT to G/H.
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Assume that G0 and H0 do not admit nontrivial Q-characters. Then by the
theorem of Borel and Harish-Chandra, G/Γ admits a G-invariant (Borel) probabil-
ity measure, say μG, and H/(Γ ∩ H) admits an H-invariant probability measure,
say μH . Now the natural inclusion H/(Γ ∩H) ↪→ G/Γ is an H-equivariant proper
map. Let π : G → G/Γ be the natural quotient map. Then the orbit π(H) is
closed, H/(Γ∩H) ∼= π(H), and μH can be treated as a measure on G/Γ supported
on π(H). Such finite invariant measures supported on closed orbits of subgroups
are called algebraic measures . Let λG/H denote the (unique) G-invariant measure
on G/H induced by the normalization of the Haar measures on G and H.

The following result was proved in [DRS]; subsequently a simpler proof ap-
peared in [EMc].

Theorem 8.2. Suppose that V is affine symmetric and Γ is irreducible (equiv-
alently, H is the set of fixed points of an involution of G, and G is Q-simple). Then
asymptotically as T → ∞,

N(T, V,O) ∼ λG/H(RT ).

Translates of algebraic measures. For any g ∈ G, let gμH denote the translated
measure defined as

gμH(E) = μH(g−1E), ∀ Borel sets E ⊂ G/Γ.

Note that gμH is supported on gπ(H). A key ingredient in the proofs of Theorem 8.2
in [DRS] and [EMc] is showing that ifH is the set of fixed points of an involution of
G then for any sequence {gi} ⊂ G, such that {giH} has no convergent subsequence
in G/H, the translated measures giμH get ‘equidistributed’ on G/Γ as i → ∞;
that is, the sequence {giμH} weakly converges to μG. The method of [DRS] uses
spectral analysis on G/Γ, while the argument of [EMc] uses the mixing property
of the geodesic flow. However, both methods seem limited essentially to the affine
symmetric case. It should be remarked that for the proof of Theorem 8.2 one needs
only certain averages of translates of the form gμH to become equidistributed.

One can show that under certain conditions if for some sequence {gi} we have
lim giμH = ν then the measure ν is again algebraic. We give exact algebraic
conditions on the sequence {gi} relating it to the limit measure ν. Using this
analysis, we show that the counting estimates as in Theorem 8.2 hold for a large
class of homogeneous varieties. The following particular cases of homogeneous
varieties, which are not affine symmetric, are of interest. We first place Example 1
in this context.

Example 1 continued. Note that Vp(Z) is the set of integral points on the
real subvariety Vp = {A ∈ Mn(R) : det(λI − A) = p(λ)} contained in the vector
space W = Mn(R). Let G = {g ∈ GLn(R) : det g = ±1}. Then G acts on W
via conjugations, and Vp is a closed orbit of G (see [New, Theorem III.7]). Put
Γ = G(Z) = GLn(Z). The companion matrix of p(λ) is

(97) v0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 −an
1 0 −an−1

0 · · ·
...

...
... 0
0 1 −a1

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ Vp(Z).
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The centralizerH of v0 is a maximal Q-torus andH0 has no nontrivial Q-characters.
Note thatH is not the set of fixed points of an involution, and the variety Vp = H\G
is not affine symmetric. Nevertheless, we show that N(T, Vp,Γv0) ∼ λG/H(RT ). By
computing the volumes, we obtain the following estimate.

Theorem 8.3. Let N(T, Vp) be the number of points on Vp(Z) of norm less
than T . Then asymptotically as T → ∞,

N(T, Vp) ∼ cpT
n(n−1)/2,

where cp > 0 is an explicitly computable constant.

We obtain a ‘formula’ for calculating cp; for the sake of simplicity we calculate
it explicitly only under the additional assumptions on p(λ) of Theorem 8.1.

See [BR] for some deeper consequences of the above result.

Example 2. Let A be a nondegenerate indefinite integral quadratic form in n ≥ 3
variables and of signature (p, q), where p ≥ q, and B a definite integral quadratic
form in m ≤ p variables. Let W = Mm×n(R) be the space of m × n matrices.

Consider the norm on W given by ‖(xij)‖ =
√∑

i,j x
2
ij . Define

VA,B = {X ∈ Mm×n(R) : XA tX = B}.

Thus a point on VA,B(Z) corresponds to a way of representing B by A over Z. We
assume that VA,B(Z) is not empty.

The group G = SO(A) acts on W via right multiplication, and the action is
transitive on VA,B . The stabilizer of a point ξ ∈ VA,B is an orthogonal group Hξ in
n−m variables. Let Γ = G(Z). Then the number of Γ-orbits on VA,B(Z) is finite.
Let ξ1, . . . , ξh be the representatives for the orbits.

Theorem 8.4. Let N(T, VA,B) denote the number of points on VA,B(Z) with
norm less than T . Then asymptotically as T → ∞,

N(T, VA,B) ∼
h∑

i=1

vol(Γ ∩Hξi\Hξi)

vol(Γ\G)
cA,BT

r(n−r−1)

where r = min(m, q), and cA,B > 0 is an explicitly computable constant.

Remark 8.5. In some ranges of p, q,m, n this formula may be proved by the
Hardy-Littlewood circle method, or by Θ-function techniques. Using our method
one also obtains asymptotic formulas for the number of points in the individual
orbits Γξi.

Remark 8.6. In the case m > q, the asymptotics of the number of integer
points does not agree with the heuristic of the Hardy-Littlewood circle method, even
if the number of variables mn is very large compared to the number of quadratic
equationsm(m+1)/2. The discrepancy occurs because the null locus {X : XA tX =
0} does not contain a non-singular real point (cf. [Bir, Theorem 1]) and so the
‘singular integral’ vanishes.
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8.1. Connection between counting and translates of measures. We
recall some observations from [DRS, Sect. 2]; see also [EMc]. Let the notation be
as in the counting problem stated in the introduction. For T > 0, define a function
FT on G by

FT (g) =
∑

γ∈Γ/(H∩Γ)

χT (gγ · v0),

where χT is the characteristic function of BT . By construction FT is left Γ-invariant,
and hence it will be treated as a function on G/Γ. Note that

FT (e) =
∑

γ∈Γ/(H∩Γ)

χT (γ · v0) = N(T, V,O).

Since we expect, as in Theorem 8.2, that

N(T, V,O) ∼ λH\G(RT ),

we define

F̂T (g) =
1

λG/H(RT )
FT (g).

Thus the asymptotics in Theorem 8.2 is the assertion

(98) F̂T (e) → 1 as T → ∞.

Proposition 8.7 ([DRS, Sect. 2]). For any compactly supported function ψ
on G/Γ,

〈F̂T , ψ〉 =
1

λG/H(RT )

∫
RT

ψH dλG/H ,

where

ψH(gH) =

∫
G/Γ

ψ d(gμH)

is a function on G/H.

Proof. Let F be a fundamental domain for G/Γ. By definition,

〈FT , ψ〉 =
∑

γ∈Γ/(H∩Γ)

∫
F
χT (gγ)ψ(g) dμG(g)

=
∑

γ∈Γ/(H∩Γ)

∫
Fγ

χT (g)ψ(g) dμG(g)

=

∫
G/(H∩Γ)

χT (g)ψ(g) dμG(g)

=

∫
G/H

∫
H/(H∩Γ)

χT (ḡ)ψ(ḡh) dμH(h) dλG/H(ḡ)

∫
RT

(∫
G/Γ

ψ dḡμH

)
λG/H(ḡ)

�
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8.2. Limiting distributions of translates of algebraic measures. The
following is the main result of this section which allows us to investigate the counting
problems.

Theorem 8.8. Let G be a connected real algebraic group defined over Q, Γ ⊂
G(Q) an arithmetic lattice in G with respect to the Q-structure on G, and π : G →
G/Γ the natural quotient map. Let H ⊂ G be a connected real algebraic Q-subgroup
admitting no nontrivial Q-characters. Let μH denote the H-invariant probability
measure on the closed orbit π(H). For a sequence {gi} ⊂ G, suppose that the
translated measures giμH converge to a probability measure μ on G/Γ. Then there
exists a connected real algebraic Q-subgroup L of G containing H such that the
following holds:

(i) There exists c0 ∈ G such that μ is a c0Lc0
−1-invariant measure supported

on c0π(L).
In particular, μ is a algebraic measure.

(ii) There exist sequences {γi} ⊂ Γ and ci → c0 in G such that γiHγi
−1 ⊂ L

and giH = ciγiH for all but finitely many i ∈ N.

The proof of this theorem is based on the following observation.

Proposition 8.9. Let the notation be as in Theorem 8.8. Then either there
exists a sequence ci → c in G such that ciμi = μH for all i ∈ N (in which case μ =
cμH), or μ is invariant under the action of a nontrivial unipotent one-parameter
subgroup of G.

In order to be able to apply Theorem 8.8 to the problem of counting, we need
to know some conditions under which the sequence {giμH} of probability measures
does not escape to infinity. Suppose further that G and H are reductive. Let Z(H)
be the centralizer of H in G. By rationality π(Z(H)) is closed in G/Γ. Now if
π(Z(H)) is noncompact, there exits a sequence {zi} ⊂ Z(H) such that {π(zi)} is
divergent; that is, it has no convergent subsequence. Then ziμH escapes to the
infinity; that is (ziμH)(K) → 0 for any compact set K ⊂ G/Γ. The condition
that π(Z(H)) is noncompact is equivalent to the condition that H is contained in a
proper parabolic Q-subgroup of G. In the converse direction we have the following
(see [EMS2]).

Theorem 8.10. Let G be a connected real reductive algebraic group defined over
Q, and H a connected real reductive Q-subgroup of G, both admitting no nontrivial
Q-characters. Suppose that H is not contained in any proper parabolic Q-subgroup
of G defined over Q. Let Γ ⊂ G(Q) be an arithmetic lattice in G and π : G →
G/Γ the natural quotient map. Let μH denote the H-invariant probability measure
on π(H). Then given an ε > 0 there exists a compact set K ⊂ G/Γ such that
(gμH)(K) > 1− ε, ∀g ∈ G.

The proof of this result uses generalizations of some results of Dani and Mar-
gulis [DM3]. Combining this theorem with Theorem 8.8, we deduce the following
consequence.

Corollary 8.11. Suppose that H is reductive and a proper maximal connected
real algebraic Q-subgroup of G. Then for any sequence {gi} ⊂ G, if the sequence
{giH} is divergent (that is, it has no convergent subsequence) in G/H, then the
sequence {giμH} gets equidistributed with respect to μG as i → ∞ (that is, giμH →
μG weakly).
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In the general case, one obtains the following analogue of Corollary 8.11. We
note that the condition that H is not contained in any proper Q-parabolic sub-
group of G, is also equivalent to saying that any real algebraic Q-subgroup L of G
containing H is reductive.

Corollary 8.12. Let G be a connected real reductive algebraic group defined
over Q, and H a connected real reductive Q-subgroup of G not contained in any
proper parabolic Q-subgroup of G. Let Γ ⊂ G(Q) be an arithmetic lattice in G.
Suppose that a sequence {gi} ⊂ G is such that the sequence {giμH} does not con-
verge to the G-invariant probability measure. Then after passing to a subsequence,
there exist a proper connected real reductive Q-subgroup L of G containing H and
a compact set C ⊂ G such that

{gi} ⊂ CL(Z(H) ∩ Γ)

8.3. Applications to the counting problem. The case where H is max-
imal. The following is a consequence of Corollary 8.11:

Theorem 8.13. Let G and H be as in the counting problem. Suppose that
H0 is reductive and a proper maximal connected real algebraic Q-subgroup of G,
where H0 denotes the connected component of identity in H. Then asymptotically
as T → ∞

N(T, V,O) ∼ λG/H(RT ).

Remark 8.14. Suppose that H is the set of fixed point of an involution of G.
Let L be a connected real reductive Q-subgroup of G containing H0. Then there
exists a normal Q-subgroup N of G such that L = H0N . Now if G is Q-simple,
then H0 is a maximal proper connected Q-subgroup of G (see [Bor, Lemma 8.0]).
Hence Theorem 8.2 follows from Theorem 8.13.

The general case. We now use Corollary 8.12. For applying this result to the
counting problem, we need to know that averages of translates of the measure μH

along the sets RT become equidistributed as T tends to infinity. I.e., we want the
set of ‘singular sequences’, for which the limit measure is not G-invariant, to have
negligible ‘measure’ in the sets RT as T → ∞. This does not hold when the sets
RT are ‘focused’ along L/H(⊂ G/H):

Definition 8.15. Let G and H be as in the counting problem. For a sequence
Tn → ∞, the sequence {RTn

} of open sets in G/H is said to be focused , if there
exist a proper connected reductive real algebraic Q-subgroup L of G containing H0

and a compact set C ⊂ G such that

lim sup
n→∞

λG/H(qH(CL(Z(H0) ∩ Γ)) ∩RTn
)

λG/H(RTn
)

> 0,

where qH : G → G/H is the natural quotient map.

Note that since L is reductive and defined over Q, we have that π(L) is closed
in G/Γ. In particular, L(Z(H0) ∩ Γ) is closed in G. Also LzH0 = Lz for any
z ∈ Z(H0). Now since C is compact, the set qH(CL(Z(H0)∩Γ)) is closed in G/H.

Now if the focusing of {RTn
} does not occur, then using Corollary 8.12 we can

obtain the following analogue of Corollary 8.11.
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Corollary 8.16. Let G and H be as in the counting problem. Suppose that H0

is not contained in any proper Q-parabolic subgroup of G0, and for some sequence
Tn → ∞, the sequence {RTn

} is not focused. Then given ε > 0 there exists an open
set A ⊂ G/H with the following properties:

(99) lim inf
n→∞

λG/H(A ∩RTn
)

λG/H(RTn
)

> 1− ε

and given any sequence {gi} ⊂ qH
−1(A), if the sequence {qH(gi)} is divergent in

G/H then the sequence {giμH} converges to μG.

This corollary allows us to obtain the counting estimates like in Theorem 8.2
and Theorem 8.13 for a large class of homogeneous varieties.

Theorem 8.17. Let G and H be as in the counting problem. Suppose that H0 is
not contained in any proper Q-parabolic subgroup of G0 (equivalently, Z(H)/(Z(H)∩
Γ) is compact), and for some sequence Tn → ∞ with bounded gaps, the sequence
{RTn

} is not focused. Then asymptotically

N(T, V,O) ∼ λG/H(RT ).

Remark. The non-focusing assumption in Theorem 8.17 is not vacuous. In the
above setup one is required to verify the condition of nonfocusing in Theorem 8.17
separately for each application of the result.

Outline of the proof of Theorem 8.17, assuming Corollary 8.16.

Proposition 8.18. Let the notation and conditions be as in Theorem 8.17.
Then F̂Tn

→ 1 in the weak-star topology on L∞(G/Γ, μG); that is, 〈F̂Tn
, ψ〉 → 〈1, ψ〉

for any compactly supported continuous function ψ on G/Γ.

Proof. As in Proposition 8.7,

〈F̂T , ψ〉 =
1

λG/H(RT )

∫
RT

ψH dλG/H ,

where

ψH(gH) =

∫
HΓ/Γ

ψ(ghΓ) dμH(hΓ) =

∫
G/Γ

ψ d(gμH)

is a function on G/H.
Let ε > 0 be given. Since the sequence {RTn

} is not focused, we obtain a set
A ⊂ G/H as in Corollary 8.16. Break up the integral over RTn

into the integrals
over RTn

∩A and RTn
\A. By equation (99) and the boundedness of ψ, the second

integral is O(ε). By Corollary 8.16, for any sequence {gi} ⊂ qH
−1(A), if {qH(gi)}

has no convergent subsequence in G/H, then gi · μH → μG. Hence

ψH(giH) →
∫
G/Γ

ψ dμG = 〈ψ, 1〉.
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We use dominated convergence theorem to justify the interchange of limits. Now

lim
n→∞

〈F̂Tn
, ψ〉 = lim

n→∞

1

λG/H(RTn
)

∫
RTn∩A

ψH dλG/H + O(ε)

= lim
n→∞

1

λG/H(RTn
)

∫
RTn∩A

〈ψ, 1〉 dλG/H +O(ε)

= lim
n→∞

λG/H(RTn
∩A)

λG/H(RTn
)

〈1, ψ〉+O(ε)

= 〈1, ψ〉+O(ε)

Since ε is arbitrary, the proof is complete. �

Proposition 8.19 ([EMS1]). There are constants a(δ) and b(δ) tending to 1
as δ → 0 such that

b(δ) ≤ lim inf
T→∞

λG/H(R(1−δ)T )

λG/H(RT )
≤ lim sup

T→∞

λG/H(R(1+δ)T )

λG/H(RT )
≤ a(δ).

Proof of Theorem 8.17. Let ψ in Proposition 8.18 tend to a δ-function at the
origin. Then, combining Proposition 8.18 and Proposition 8.19, we obtain that
F̂Ti

→ 1 pointwise on G/Γ as i → ∞. (See [DRS, Lemma 2.3] for the details).
Thus (98) holds. This completes the proof. �

8.4. Invariance under unipotents.

Proposition 8.20. Let G be a semisimple Lie group, Γ be a discrete subgroup
of G, and π : G → G/Γ be the natural quotient map. Let H be a nontrivial
reductive subgroup of G and Ω be a relatively compact neighborhood of identity in
H. Let μΩ be the probability measure on π(Ω) which is the pushforward under π of
the restriction to Ω of a Haar measure on H.

Suppose that for a sequence {gi}i∈N ⊂ G, the sequence {gi · μΩ}i∈N ⊂ P(G/Γ)
converges weakly to a nonzero measure μ on G/Γ. Then one of the following holds:

(1) There exists a compact set C ⊂ G such that {gi}i∈N ⊂ CZG(H).
(2) μ is invariant under a nontrivial unipotent one-parameter subgroup of G.

Proof. (Cf. [Moz, Lemma ??]) Let g be the Lie algebra of G and h ⊂ g be
the Lie subalgebra corresponding to H. Equip g with a Euclidean norm, say ‖ · ‖.

Claim 1. If the Condition 1 above does not hold then there exists a sequence Xi → 0
in h as i → ∞, such that a subsequence of {Ad gi ·Xi}i∈N converges to a nonzero
element Y ∈ g.

To prove the claim there is no loss of generality if we pass to a subsequence of
{gi}i∈N, or replace {gi}i∈N by {gici}i∈N, where {ci}i∈N is contained in a compact
subset of G.

Since H is reductive, there is a Cartan involution θ of G such that θ(H) = H.
Let K be the set of fixed points of θ. Then K is a maximal compact subset of G.
There exists a maximal R-split torus A in G such that

(100) θ(a) = a−1, ∀a ∈ A.
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Choose an order on the system of R-roots of A for G and let Δ be the set of simple
roots. Let A+ be the exponential of the closure of the positive Weyl chamber. Then
by Cartan decomposition we have

G = KA+K.

Hence without loss of generality we can assume that gi = aiki for all i ∈ N, where
ki → k in K as i → ∞ and {ai}i∈N ⊂ A+.

Let

Φ = {α ∈ Δ : sup
i∈N

α(ai) < ∞}.

Then by modifying the sequence {ai}i∈N from the left by multiplications by elements
from a compact set in A+ ∩ (∩β∈Δ\Φ kerβ), we may assume that

(101) α(ai) = 1, ∀α ∈ Φ.

By passing to a subsequence, we may also assume that

(102) lim
i→∞

α(ai) = ∞, ∀α ∈ Δ \ Φ.

Let P be the standard parabolic subgroup of G associated to Φ. Let p be the
Lie algebra of P , and n be the Lie algebra of the unipotent radical N of P . Due to
(100), we have

g = θ(p)⊕ n.

Let πn denote the projection onto n with ker(πn) = σ(p).
Suppose that the claim fails to hold. Then

(103) sup
i∈N

‖Ad gi ·X‖ < ∞, ∀X ∈ h.

Hence by (102),

lim
i→∞

πn(Ad ki ·X) = 0, ∀X ∈ h.

Therefore kHk−1 ⊂ θ(P ). Since θ(H) = H and θ(k) = k, we have that kHk−1 ⊂
P ∩ θ(P ). Hence due to (101),

{ai}i∈N ⊂ ZG(P ∩ θ(P )) ⊂ kZG(H)k−1.

Since g = θ(p) + n and kik
−1 → e as i → ∞, by passing to subsequences, there

exist sequences bi → e in θ(P ) and ni → e in N such that

kik
−1 = bini, ∀i ∈ N.

Let {X1, . . . , Xm} be a basis of h and put q = (X1, . . . , Xm) ∈ ⊕m
i=1g. Consider

the action of G on ⊕m
i=1g via the Adjoint action on each of the summands. Then

gi · q = (gik
−1)(k · q) = (aikik

−1)(k · q) = (aibia
−1
i )(ainiai

−1)(k · q)
By (103), {gi · q}i∈N is a bounded sequence. By (100) and (102), aibiai

−1 → e
as i → ∞. Therefore (ainiai

−1)(k ·q) : i ∈ N} is a bounded sequence. Since N is a
unipotent group, the orbit N(k · q) is closed. Therefore there exists a compact set
C1 ⊂ N such that

ai
−1niai ∈ C1(kZG(H)k−1 ∩N).

Therefore, since {ai} ⊂ kZG(H)k−1 and aibiai
−1 → e as i → ∞, there exists a

compact set C ⊂ G, such that

gik
−1 = aikik

−1 = (aibiai
−1)(ainiai

−1) ∈ CZG(H)k−1, ∀i ∈ N.
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This contradicts the hypothesis of the claim, and hence the proof of Claim 1 is
complete.

Now we can assume that there exists a sequence Xi → 0 in h and a nonzero
elements Y ∈ g such that

lim
i→∞

Ad giXi = Y.

Consider the one-parameter subgroup u : R → G defined as u(t) = exp(tY ) for all
t ∈ R. Since Xi → 0, all the eigenvalues of Ad tXi converge to 1 as i → ∞. Since
u(t) = limi→∞ gi

−1(exp tXi)gi and the eigenvalues are invariant under conjugation,
we have that 1 is the only eigenvalue of Adu(t) for all t ∈ R. Therefore u is a
unipotent one-parameter subgroup of G.

Claim 2. The measure μ is invariant under the action of {u(t) : t ∈ R}.

To prove the claim let t ∈ R and put δ = exp(tXi) for all i ∈ N. Then by the
definition of μΩ, for any ψ ∈ Cc(G/Γ),

(104)

∣∣∣∣∣
∫
G/Γ

ψ(x) dμΩ(x)−
∫
G/Γ

ψ(δix) dμΩ(x)

∣∣∣∣∣ ≤ εi · sup |ψ|,

where εi depends only on δi, and εi → 0 as δi → 0. Let i ∈ N. Applying Eq. 104
for ψi(x) := ψ(gix) for all x ∈ X, we get∣∣∣∣∣

∫
G/Γ

ψ(gix) dμΩ(x)−
∫
G/Γ

ψ((giδigi
−1)gix) dμΩ(x)

∣∣∣∣∣ ≤ εi · sup |ψ|.

We have gi · μΩ → μ weakly as i → ∞, gi
−1δigi → u(t) as i → ∞, and ψ is

uniformly continuous. Therefore∫
G/Γ

ψ(x) dμ(x) =

∫
G/Γ

ψ(xu(g)) dμ(x).

This shows that μ is invariant under {u(t) : t ∈ R}. This completes the proof of
the theorem. �

8.5. Proving Ergodicity. In view of Proposition 8.20 and the measure clas-
sification theorem, Theorem 8.8 would follow immediately if we knew that μ was
ergodic. In general the ergodicity of μ does not follow from Theorem 4.5 since we
are not assuming that H contains unipotents.

The next part of the proof of Theorem 8.8 parallels §4.3. One applies the
measure classification theorem followed by linearization. The analysis is somewhat
more complicated then that of §4.3 because of the multi-dimensional situation, and
the fact that we have a map only from a compact subset of H. The end result is:

Proposition 8.21. Let B ⊂ H be a ball of diameter at most δ0 in H around
e. Let gi be a sequence of elements in G, and let λi be the probability measure on
π(gi(B)) which is the pushforward under gi of the normalized Lebesgue measure
on B. Suppose that λi → λ weakly in the space of probability measures on G/Γ.
Suppose there exist a unipotent one-parameter subgroup U of G and F ∈ H such
that λ(π(N(F,U))) > 0 and λ(π(S(F,U))) = 0. Then there exists a compact set
D ⊂ AF such that the following holds: For any sequence of neighborhoods {Φi} of
D in V̄F , there exists a sequence {γi} ⊂ Γ such that for all large i ∈ N,

(105) gi(B)γi · p̄F ⊂ Φi.
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In general the condition (105) is difficult to analyze using linear algebra meth-
ods. The idea of the proof of Theorem 8.8 is the following: Since we are assuming
that giB return to a compact set in G/Γ, we may write gi = ciγ

′
ihi, where ci is in

a compact set, γ′
i ∈ Γ and hi ∈ B ⊂ H. Without loss of generality, we may then

replace gi by γ′
ihi. Consider rational points hj in BB. The orbit of each rational

point under Γ is discrete, so there are only finitely many possibilities for γ′
ihjγi · p̄F .

By passing to a subsequence one can assume that γ′
ihjγi · p̄F is constant, which

eventually yields the proof of Theorem 8.8.
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Abstract. The main goal of these notes is to describe a proof of quantita-
tive nondivergence estimates for quasi-polynomial trajectories on the space of
lattices, and show how estimates of this kind are applied to some problems in
metric Diophantine approximation.

1. Introduction

These lecture notes constitute part of a course taught together with Alex Eskin
at the Clay Mathematics Institute Summer School at Centro de Giorgi, Pisa, in June
2007. The exposition below is a continuation of [E]; the reader is referred there,
as well as to books [BM, Mor, St] and the article [KSS] from the Handbook
of Dynamical Systems, for background information on homogeneous spaces and
unipotent flows.

In what follows, most of the work will be done on the space Ln of unimodular
lattices in R

n. We recall that G = SL(n,R) acts transitively on Ln (if g ∈ G
and Λ ∈ Ln is the Z-span of the vectors v1, . . .vn, then gΛ is the Z-span of
{gv1, . . . , gvn}), and the stabilizer of the standard lattice Zn is Γ = SL(n,Z). This
gives an identification of Ln with G/Γ. We choose a right-invariant metric on G;
then this metric descends to G/Γ. Equivalently, one can define topology on Ln by
saying that two lattices are close to each other if so are their generating sets.

For ε > 0 we will denote by Ln(ε) ⊂ Ln the set of lattices whose shortest
non-zero vector has norm at least ε. It is clear from the above description of the
topology on Ln that any compact subset of Ln is contained in Ln(ε) for some
positive ε. Conversely, one has

Theorem 1.1 (Mahler Compactness Criterion). For any ε > 0 the set Ln(ε)
is compact.

See [Cas] or [BM] for a proof. We note that the set Ln(ε) depends on the choice
of the norm on R

n, but in a rather mild way: change of one norm for another would
result in multiplication/division of ε by at most a fixed positive constant.

c© 2010 Dmitry Kleinbock
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Recall that an element g of G is unipotent if all its eigenvalues are equal to 1.
If n = 2, every one-parameter unipotent subgroup of G = SL(2,R) is conjugate to

(1.1) U = {ux : x ∈ R} where ux =

(
1 x
0 1

)
.

In general, a crucial property of an arbitrary unipotent subgroup {ux} of SL(n,R)
is that the map x �→ ux is polynomial of degree depending only on n. This observa-
tion was instrumental in the proof due to Margulis that one-parameter unipotent
trajectories on Ln are never divergent. Namely the following theorem was conjec-
tured by Piatetski-Shapiro in the late 1960s and showed in 1971 by Margulis [Mar]
as part of the program aimed at proving arithmeticity of lattices in higher rank
algebraic groups:

Theorem 1.2. Let {ux} be a one-parameter unipotent subgroup of SL(n,R).
Then for any Λ ∈ Ln, uxΛ does not tend to ∞ as x → ∞. Equivalently, there
exists ε > 0 such that the set {x ∈ R+ : uxΛ ∈ Ln(ε)} is unbounded.

In fact, ε in the above theorem can be chosen independent on the choice of {ux},
although it does depend on Λ, see §3 for more detail. The above statement is very
easy to prove when n = 2, but much more difficult for bigger n. In this exposition we
first discuss the easy special case, then the general strategy of Margulis in various
modifications, and then some applications and further extensions of the general
result.

Acknowledgements: The author is grateful to the Clay Mathematics Insti-
tute for a wonderful opportunity to participate in the 2007 Summer School, to the
co-organizers of the event for their help and encouragement, and to the staff at
Centro di Georgi for being so very helpful and attentive. Special thanks are due to
Alex Eskin, the co-lecturer of this course, to Elon Lindenstrauss for careful reading
of a preliminary version of these notes, and to many participants of the summer
school for their patience and valuable comments during and after the lectures. The
work on the manuscript was partially supported by NSF grants DMS-0239463 and
DMS-0801064.

2. Non-divergence of unipotent flows: the case of SL(2,R).

2.1. Geometry of lattices in R
2. Recall the following lemma from [E]:

Lemma 2.1. There exists ε0 > 0 (depending on the choice of the norm on R
2)

such that no Λ ∈ L2 contains two linearly independent vectors each of norm less
than ε0.

Let us now use this lemma to prove a nondivergence result for the U -action on
L2, where U is as in (1.1):

Proposition 2.2. For any Λ ∈ L2, uxΛ does not tend to ∞ as x → ∞.

In other words, for any Λ ∈ L2 there exists a compact subset K of L2 such
that the set {x > 0 : uxΛ ∈ K} is unbounded.

Proof. Assume the contrary; in view of Theorem 1.1, this would amount to
assuming that the norm of the shortest nonzero vector of uxΛ tends to zero as
x → ∞. Note that an obvious example of a divergent orbit would be constructed
if one could find a vector v ∈ Λ� {0} such that uxv → 0. But this is impossible:
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either v is horizontal and thus fixed by U , or its y-component is nonzero and does
not change under the action. Thus the only allowed scenario for a divergent U -
trajectory would be the following: for some v ∈ Λ� {0}, uxv gets very small, say
shorter than ε, then starts growing but before it grows too big (longer than ε),
another vector in Λ � {0} not proportional to v gets shrunk by ux to the length
less than ε. This however is prohibited by Lemma 2.1. �

Remark 2.3. Note that the analogue of this proposition is false if U is replaced
by

(2.1) A = {at : t ∈ R} where at =

(
et 0
0 e−t

)
,

since at can contract nonzero vectors. However the same argument as above shows
that for any continuous function h : R+ → SL(2,R) and any Λ ∈ L2 such that
h(x)Λ diverges, it must do so in a degenerate way (a terminology suggested by
Dani, see [D3]), that is, shrinking some nonzero vector v ∈ Λ. This phenomenon
is specific to dimension 2: if n > 2, as shown in [D3], one can construct divergent
trajectories {atΛ} ⊂ Ln of diagonal one-parameter semigroups {at} ⊂ SL(n,R) in
Ln which diverge in a non-degenerate way (without shrinking any subpace of Rn).

Despite the above remark, Theorem 1.2, which is an analogue of Proposition
2.2, holds for n > 2 as well. An attempt to replicate the proof of Proposition 2.2
verbatim fails miserably: there are no obstructions to having many short linear
independent vectors. We will prove Theorem 1.2 in the next section in a much
stronger (quantitative) form, which also happens to have important applications
to problems arising in Diophantine approximation theory. But first, following the
methodology of [E] where the exposition of Ratner’s theorem begins with an ex-
tensive discussion of the U -action on L2, we explain how one can easily establish a
stronger form of Proposition 2.2, just for n = 2.

2.2. Quantitative nondivergence in L2. We are going to fix an interval
B ⊂ R and Λ ∈ L2, and will look at the piece of trajectory {uxΛ : x ∈ B}.
Applying the philosophy of the proof of Proposition 2.2, one can see that one of
the following two alternatives can take place:

Case 1. There exists a vector v ∈ Λ� {0} such that ‖uxv‖ is small, say less than
ε0, for all x ∈ B. (For example this v may be fixed by U .) This case is not so
interesting: again by Lemma 2.1, we know that this vector v is “the only source of
trouble”, namely no other vector can get small at the same time.

Case 2. The contrary, i.e.

(2.2) ∀v ∈ Λ� {0} sup
x∈B

‖uxv‖ ≥ ρ .

In other words, every nonzero vector grows big enough at least at some point x ∈ B.
This assumption turns out to be enough to conclude that for small ε the trajectory
{uxΛ : x ∈ B} spends relatively small proportion of time, in terms of Lebesgue
measure λ on R, outside of L2(ε).

Theorem 2.4. Suppose an interval B ⊂ R, Λ ∈ L2 and 0 < ρ < ε0 are such
that (2.2) holds. Then for any ε > 0,

λ({x ∈ B : uxΛ /∈ L2(ε)}) ≤ 2
ε

ρ
λ(B) .
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Thus, if one studies the curve {uxΛ} where x ranges from 0 to T , it suffices
to look at the starting point Λ of the trajectory, find its shortest vector v, choose
ρ < min(ε0, ‖v‖), and apply the theorem to get a quantitative statement concerning
the behavior of {uxΛ : 0 ≤ x ≤ T} for any T . Note that it is meaningful, and
requires proof, only when ε is small enough (not greater than ρ/2).

Proof. Denote by P (Λ) the set of primitive vectors in Λ (v is said to be primitive
in Λ if Rv∩Λ is generated by v as a Z-module). Clearly in all the argument it will
suffice to work with primitive vectors.

Now for each v ∈ P (Λ) consider

Bv(ε)
def
= {x ∈ B : ‖uxv‖ < ε} and Bv(ρ)

def
= {x ∈ B : ‖uxv‖ < ρ} ,

where ‖ · ‖ is the supremum norm. Let v =

(
a
b

)
∈ P (Λ) be such that Bv(ε) �= ∅.

Then, since uxv =

(
a+ bx

b

)
, it follows that |b| < ε, and (2.2) implies that b is

nonzero. Therefore, if we denote f(x) = a+ bx, we have

Bv(ε) = {x ∈ B : |f(x)| < ε} and Bv(ρ) = {x ∈ B : |f(x)| < ρ} .
Clearly the ratio of lengths of intervals Bv(ε) and Bv(ρ) is bounded from above by
2ε/ρ (by looking at the worst case when Bv(ε) is close to one of the endpoints of
B). Lemma 2.1 guarantees that the sets Bv(ρ) are disjoint for different v ∈ P (Λ),
and also that uxΛ /∈ L2(ε) whenever x ∈ Bv(ρ)� Bv(ε) for some v ∈ P (Λ). Thus
we conclude that

λ({x ∈ B : uxΛ /∈ L2(ε)}) ≤
∑
v

λ
(
Bv(ε)

)
≤ 2

ε

ρ

∑
v

λ
(
Bv(ρ)

)
≤ 2

ε

ρ
λ(B) . �

Remark 2.5. Before proceeding to the more general case, let us summarize
the main features of the argument. Each primitive vector v came with a function,
x �→ ‖uxv‖, which

[2.5-i] allowed to compare measure of the subsets of B where this function is less
than ε and ρ respectively, and

[2.5-ii] attained value at least ρ on B.

Let us say that a point x ∈ B is (ε/ρ)-protected if x ∈ Bv(ρ) � Bv(ε) for
some v ∈ P (Λ). [2.5-i] and [2.5-ii] imply that for each v, the relative measure of
protected points inside Bv(ρ) is big. Then Lemma 2.1 shows that protected points
are safe (no other vector can cause trouble), i.e. brings us to the realm of Case 1
when restricted to Bv(ρ).

In the analog of the argument for n > 2, properties [2.5-i] and [2.5-ii] of certain
functions will play an important role. However it will be more difficult to protect
points from small vectors, and the final step, that is, an application of Lemma 2.1,
will be replaced by an inductive procedure, described in the next section.

3. Quantitative non-divergence in Ln.

3.1. The main concepts needed for the proof. The crucial idea that
serves as a substitute for the absence of Lemma 2.1 in dimensions 3 and up is
an observation that whenever a lattice Λ in R

n contains two linearly independent
short vectors, one can consider a subgroup of rank two generated by them, and
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this subgroup will be “small”, which should eventually contribute to preventing
other small vectors from showing up. (Here and hereafter by the rank rk(Δ) of a
discrete subgroup Δ of Rn we mean its rank as a free Z-module, or, equivalently,
the dimension of the real vector space spanned by its elements.) Thus we are led
to consider all subgroups of Λ, not just of rank one. In fact, similarly to the n = 2
case, it suffices to work with primitive subgroups. Namely, a subgroup Δ of Λ is
called primitive in Λ if Δ = RΔ ∩ Λ; equivalently, if Δ admits a generating set
which can be completed to a generating set of Λ. The inclusion relation makes the
set P (Λ) of all nonzero primitive subgroups of Λ a partially ordered set of length
equal to rk(Λ) (any two primitive subgroups properly included in one another must
have different ranks). This partial order turns out to be instrumental in creating a
substitute for Lemma 2.1.

We also need a way to measure the size of a discrete subgroup Δ of Rn. The
best solution seems to be to use Euclidean norm ‖ · ‖ and extend it by letting ‖Δ‖
to be the volume of the quotient space RΔ/Δ. This is clearly consistent with the
one-dimensional picture, since ‖Zv‖ = ‖v‖. This is also consistent with the induced
Euclidean structure on the exterior algebra of Rn: if Δ is generated by v1, . . . ,vk,
then ‖Δ‖ = ‖v1 ∧ · · · ∧ vk‖.

Our goal is to understand the trajectories uxΛ as in Theorem 1.2. However,
observe that the group structure of U was not used at all in the proof in the
previous section. Thus we are going to consider “trajectories” of a more general
type. Namely, we will work with continuous functions h from an interval B ⊂ R

into SL(n,R), and replace the map x �→ uxΛ with x �→ h(x)Zn (then in the case of
Theorem 1.2 we are going to have h(x) = uxg where Λ = gZn).

Among the assumptions to be imposed on h, the central role is played by an
analogue of [2.5-i]. This is taken care of by introducing a certain class of functions
and then demanding that all functions of the form x �→ ‖h(x)Δ‖ where Δ ∈ P (Zn),
belong to this class.

If C and α are positive numbers and B a subset of R, let us say that a function
f : B �→ R is (C,α)-good on B if for any open interval J ⊂ B and any ε > 0 one
has

(3.1) λ
(
{x ∈ J : |f(x)| < ε}

)
≤ C

(
ε

supx∈J |f(x)|

)α

λ(J) .

Informally speaking, graphs of good functions are not allowed to spend a big pro-
portion of “time” near the x-axis and then suddenly jump up. Several elementary
facts about (C,α)-good functions are listed below:

Lemma 3.1. (a) f is (C,α)-good on B ⇔ so is |f | ⇒ so is cf ∀ c ∈ R;
(b) fi, i = 1, . . . , k, are (C,α)-good on B ⇒ so is supi |fi|;
(c) If f is (C,α)-good on B and c1 ≤

∣∣ f(x)
g(x)

∣∣ ≤ c2 for all x ∈ B, then g is(
C(c2/c1)

α, α)-good on B;

The proofs are left as exercises. Another exercise is to construct a C∞ function
which is not good on (a) some interval (b) any interval.

The notion of (C,α)-good functions was introduced in [KM1] in 1998, but the
importance of (3.1) for measure estimates on the space of lattices was observed
earlier. For instance, the next proposition, which describes what can be called a
model example of good functions, can be traced to [DM2, Lemma 4.1]. We will
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prove a slightly stronger version paying more atention to the constant C (which
will not really matter for the main results).

Proposition 3.2. For any k ∈ N, any polynomial of degree not greater than k
is

(
k(k + 1)1/k, 1/k

)
-good on R.

Proof. Fix an open interval J ⊂ R, a polynomial f of degree not exceeding
k, and a positive ε. We need to show that

(3.2) λ
(
{x ∈ J : |f(x)| < ε}

)
≤ k(k + 1)1/k

(
ε

supx∈J |f(x)|

)1/k

λ(J) .

Suppose that the left hand side of (3.2) is strictly bigger than some number m.
Then it is possible to choose x1, . . . , xk+1 ∈ {x ∈ J : |f(x)| < ε} with |xi − xj | ≥
m/k for each 1 ≤ i �= j ≤ k+1. (Exercise.) Using Lagrange’s interpolation formula
one can write down the exact expression for f :

(3.3) f(x) =

k+1∑
i=1

f(xi)

∏k+1
j=1, j �=i(x− xj)∏k+1
j=1, j �=i(xi − xj)

.

Note that |f(xi)| < ε for each i, |x − xj | < λ(J) for each j and x ∈ J , and also
|xi − xj | ≥ m/k. Therefore

sup
x∈J

|f(x)| < (k + 1)ε
λ(J)k

(m/k)k
.

which can be rewritten as

m < k(k + 1)1/k
(

ε

supx∈J |f(x)|

)1/k

λ(J) ,

proving (3.2). �

Observe that in the course of the proof of Theorem 2.4 it was basically shown
that linear functions are (2, 1)-good on R. The relevance of the above proposition
for the nondivergence of unipotent flows on Ln is highlighted by

Corollary 3.3. For any n ∈ N there exist (explicitly computable) C = C(n),
α = α(n) such that for any one-parameter unipotent subgroup {ux} of SL(n,R),
any Λ ∈ Ln and any subgroup Δ of Λ, the function x �→ ‖uxΔ‖ is (C,α)-good.

Proof. Represent Δ by a vector w ∈
∧k(Rn) where k is the rank of Δ; the

action of ux on
∧k(Rn) is also unipotent, therefore every component of uxw (with

respect to some basis) is a polynomial in x of degree uniformly bounded in terms of
n. Thus the claim follows from Proposition 3.2, Lemma 3.1(b) for the supremum
norm, and then Lemma 3.1(c) for the Euclidean norm. �

3.2. The main nondivergence result and its history. Let us now state
a generalization of Theorem 2.4 to the case of arbitrary n.

Theorem 3.4. Suppose an interval B ⊂ R, C,α > 0, 0 < ρ < 1 and a
continuous map h : B → SL(n,R) are given. Assume that for any Δ ∈ P (Zn),

[3.4-i] the function x �→ ‖h(x)Δ‖ is (C,α)-good on B, and
[3.4-ii] supx∈B ‖h(x)Δ‖ ≥ ρrk(Δ).
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Then for any ε < ρ,

(3.4) λ({x ∈ B : h(x)Zn /∈ Ln(ε)}) ≤ n2nC

(
ε

ρ

)α

λ(B) .

This is a simplified version of a theorem from [Kl5], which sharpens the one
proved in [KM1]. The latter had a slightly stronger assumptions, with ρ in place of
ρrk(Δ) in [3.4-ii]. In most of the applications this improvement is not needed – but
there are some situations in metric Diophantine approximation, described later in
the notes, where it becomes important. Anyway, the scheme of the proof, see §3.3,
is the same for both original and new versions, and also there are some reasons why
the sharpening appears to be more natural, as will be seen below. See [KLW] for
another exposition of the proof.

It is straightforward to verify that Theorem 1.2 follows from Theorem 3.4:
take B = [0, T ] and h(x) = uxg where Λ = gZn. Condition [3.4-i] has already been
established in Corollary 3.3, and [3.4-ii] clearly holds with some ρ dependent of Λ:
just put x = 0 and

(3.5) ρ = ρ(Λ) = inf
Δ∈P (Λ)

‖Δ‖1/ rk(Δ) ,

positive since Λ is discrete. Furthermore, Theorem 3.4 implies the following

Corollary 3.5. For any Λ ∈ Ln and any positive δ there exists a compact
subset K of Ln such that for any unipotent one-parameter {ux} ⊂ SL(n,R) and
any positive T one has

(3.6)
1

T
λ({0 ≤ x ≤ T : uxΛ /∈ K}) ≤ δ .

This was proved by Dani in 1979 [D1]. For the proof using Theorem 3.4, just
take K = Ln(ε) where ε is such that

(3.7) n2nC(n) (ε/ρ)
α(n)

< δ ,

C(n), α(n) are as in Corollary 3.3 and ρ(Λ) as defined in (3.5). Thus, on top of
Dani’s result, one can recover an expression for the “size” of K in terms of δ.

But this is not the end of the story – one can conclude much more. It immedi-
ately follows from Minkowski’s Lemma that if rk(Δ) is, say, k, then the intersection
of Δ with any compact convex subset of RΔ of volume 2k‖Δ‖ contains a nonzero

vector. Thus such a Δ must contain a nonzero vector of length ≤ 2‖Δ‖/ν1/kk , where

νk is the volume of the unit ball in R
k. Consequently, if we know that Λ ∈ Ln(ρ

′)
for some positive ρ′, then ρ(Λ) as defined in (3.5) is at least c′ρ′ where c′ = c′(n)
depends only on n. Thus we have derived (modulo elementary computations left
as an exercise) the following statement:

Corollary 3.6. For any δ > 0 there exists (explicitly computable) c = c(n, δ)
such that whenever {uxΛ : 0 ≤ x ≤ T} ⊂ Ln is a unipotent trajectory nontrivially
intersecting Ln(ρ) for some ρ > 0, (3.6) holds with K = Ln(cρ).

In order to appreciate a geometric meaning of the above corollary and other
related results, it will be convenient to choose a right-invariant Riemannian metric
on SLn(R) and use it to induce a Riemannian metric on Ln. Then it is not hard
to see that the distance between Ln(ρ) and the complement of Ln(cρ) is uniformly
bounded from above by a constant depending only on c, not on ρ. Thus Corollary
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3.6 guarantees that, regardless of the size of the compact set where a unipotent
trajectory begins, one only needs to increase the set by a bounded distance to
make sure that the trajectory spends, say, at least half the time in the bigger set.
Note that for the last conclusion it is important to have ρrk(Δ) and not ρ in the
right hand side of [3.4-ii]; previously available non-divergence estimates forced a
much more significant expansion of Ln(ρ).

Let us now turn our attention to another non-divergence theorem, proved by
Dani in 1986 [D4], and later generalized by Eskin, Mozes and Shah [EMS]:

Corollary 3.7. For any δ > 0 there exists a compact subset K ⊂ Ln such
that for any unipotent one-parameter subgroup {ux} ⊂ SL(n,R) and any Λ = gZn ∈
Ln, either (3.6) holds for all large T , or there exists a (g−1uxg)-invariant proper
subspace of Rn defined over Q.

Proof. Apply Theorem 3.4 with an arbitrary ρ < 1 and ε as in (3.7), as before
choosing K to be equal to Ln(ε). Assume that the first alternative in the statement
of the corollary is not satisfied for some {ux}, Λ and this K. This means that there
exists an unbounded sequence Tk such that for each k, the conclusion of Theorem
3.4 with ρ = 1, ε chosen as above and h(x) = uxg, does not hold for B = [0, Tk].
Since assumption [3.4-i] is always true, [3.4-ii] must go wrong, i.e. for each k there
must exist Δk ∈ P (Zn) such that ‖uxgΔk‖ < 1 for all 0 ≤ x ≤ Tk. However, by
the discreteness of

∧
(gZn) in

∧
(Rn), there are only finitely many choices for such

subgroups; hence one of them, Δ, works for infinitely many k. But ‖uxgΔ‖2 is a
polynomial, therefore it must be constant, which implies that ux fixes g(RΔ) ⇔
g−1uxg fixes the proper rational subspace RΔ. �

3.3. The proof. In order to prove Theorem 3.4, we are going to create a
substitute for the procedure of marking points by vectors (and thereby declaring
them safe from any other small vectors) used in the proof of Theorem 2.4. However
now vectors will not be sufficient for our purposes, we will need to replace it with
flags, that is, linearly ordered subsets of the partially ordered set (poset) P (Λ),
Λ ∈ Ln. Furthermore, to set up the induction we will need to prove a version of the
theorem with P (Zn) repalced by its subsets (more precisely, sub-posets) P . The
induction will be on the length of P , i.e. the number of elements in its maximal
flag. In this more general theorem we will also get rid of the expressions ρrk(Δ) in
the right hand side of [3.4-ii], replacing them with η(Δ), where η is an arbitrary
function P → (0, 1] (to be called the weight function).

Now let us fix an interval B ⊂ R, a sub-poset P ⊂ P (Zn), a weight function
η and a map h : B → SL(n,R). Then say that, given ε > 0, a point x ∈ B is
ε-protected relative to P if there exists a flag F ⊂ P with the following properties:

(M1) εη(Δ) ≤ ‖h(x)Δ‖ ≤ η(Δ) ∀Δ ∈ F ;
(M2) ‖h(x)Δ‖ ≥ η(Δ) ∀Δ ∈ P � F comparable with every element of F .

We are going to show that with the choice η(Δ) = ρrk(Δ) and P = P (Zn), any
(ε/ρ)-protected point x ∈ B is indeed protected from vectors in h(x)Zn of length less
than ε. But first let us check that the above definition reduces to the one used for
the proof of Theorem 2.4 when P = P (Z2). Indeed, for h(x) = uxg, Δ = Zv of rank
1, η(Δ) = ρ and ε substituted with ε/ρ, (M1) reduces to ε ≤ ‖uxgv‖ ≤ ρ, which

was exactly the condition satisfied by some vector v ∈ Z
2 for x ∈ Bgv(ρ)�Bgv(ε).

Further, (M2) in that case holds trivially, since the only element of P (Z2) � {Δ}
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comparable with Δ is Z2 itself, and ‖gZ2‖ = 1 > ρ2. And the conclusion was that
the existence of such v forces uxgZ

2 to belong to L2(ε).

Here is a generalization:

Proposition 3.8. Let η be given by η(Δ) = ρrk(Δ) for some 0 < ρ < 1. Then
for any ε < ρ and any x ∈ B which is (ε/ρ)-protected relative to P (Zn), one has
h(x)Zn ∈ Ln(ε).

Proof. For x as above, let {0} = Δ0 � Δ1 � · · · � Δ� = Z
n be all the

elements of F ∪
{
{0},Zn

}
. Properties (M1) and (M2) translate into:

(M1) ε
ρ · ρrk(Δi) ≤ ‖h(x)Δi‖ ≤ ρrk(Δi) ∀ i = 0, . . . , 	− 1;

(M2) ‖h(x)Δ‖ ≥ ρrk(Δ) ∀Δ ∈ P (Zn)� F comparable with every Δi.

(Even though Δ0 = {0} is not in P (Zn), it would also satisfy (M1) with the
convention ‖{0}‖ = 1.)

Take any v ∈ Z
n
�{0}. Then there exists j, 1 ≤ j ≤ 	, such that v ∈ Δj�Δj−1.

Denote R(Δj−1 + Zv) ∩ Λ by Δ. Clearly it is a primitive subgroup of Λ satisfying
Δj−1 ⊂ Δ ⊂ Δj , therefore Δ is comparable with Δi for every i (and may or may
not coincide with one of the Δis). Now one can use properties (M1) and (M2) to
deduce that

(3.8) ‖h(x)Δ‖ ≥ min

(
ε

ρ
· ρrk(Δ), ρrk(Δ)

)
= ερrk(Δ)−1 = ερrk(Δi−1) .

On the other hand, from the submultiplicativity of the covolume it follows that
‖h(x)Δ‖ is not greater than ‖h(x)Δi−1‖ · ‖v‖ (recall a similar step in the proof of
Lemma 2.1). Thus

‖h(x)v‖ ≥ ‖h(x)Δ‖
‖h(x)Δi−1‖

≥
by (M1) and (3.8)

ερrk(Δi−1)

ρrk(Δi−1)
= ε .

Hence Λ ∈ Ln(ε) and the proof is finished. �
This is perhaps the crucial point in the proof: we showed that a flag with certain

properties does exactly what a single vector was doing in the case of SL(2,R);
namely, it guarantees that in the lattices corresponding to protected points, no
vector can be shorter than ε.

Now that the above proposition is established, we will forget about the specific
form of the weight function and work with an arbitrary η. Here is a more general
theorem:

Theorem 3.9. Fix 0 ≤ k ≤ n, and suppose an interval B ⊂ R, C,α > 0, a
continuous map h : B → SL(n,R), a poset P ⊂ P (Zn) of length k and a weight
function η : P → (0, 1] are given. Assume that for any Δ ∈ P

[3.9-i] the function x �→ ‖h(x)Δ‖ is (C,α)-good on B, and
[3.9-ii] supx∈B ‖h(x)Δ‖ ≥ η(Δ).

Then for any 0 < ε < 1,

λ({x ∈ B : x is not ε-protected relative to P}) ≤ k2kCεαλ(B) .

We remark that the use of an arbitrary P in place of P (Zn) is justified not only
by a possibility to prove the theorem by induction, but also by some applications
to Diophantine approximation, see e.g. [BKM, Kl3, G1], where proper sub-posets
of P (Zn) arise naturally.
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Proof. We will break the argument into several steps.

Step 0. First let us see what happens when k = 0, the base case of the induction.
In this case P is empty, and the flag F = ∅ will satisfy both (M1) and (M2). Thus
all points of B are ε-protected relative to P for any ε, which means that in the case
k = 0 the claim is trivial. So we can take k ≥ 1 and suppose that the theorem is
proved for all the smaller lengths of P .

Step 1. For any y ∈ B let us define

S(y)
def
= {Δ ∈ P : ‖h(y)Δ‖ < η(Δ)} .

Roughly speaking, S(y) is the set of Δs which gets small enough at y, i.e. potentially
could bring trouble. By the discreteness of h(y)Zn in R

n, this is a finite subset of
P . Note that if this set happens to be empty, then ‖h(y)Δ‖ ≥ η(Δ) for all Δ ∈ P ,
which means that F = ∅ can be used to ε-protect y for any ε. So let us define

E
def
= {y ∈ B : S(y) �= ∅} = {y ∈ B : ∃Δ ∈ P with ‖h(y)Δ‖ < η(Δ)} ;

then to prove the theorem it suffices to estimate the measure of the set of points
x ∈ E which are not ε-protected relative to P . A flashback to the proof for n = 2:
there S(y) consisted of primitive vectors v for which ‖uyv‖ was less than ρ, not more
than one such vector was allowed, and nonexistence of such vectors automatically
placed the lattice in Ln(ε).

Step 2. Take y ∈ E and Δ ∈ S(y), and define BΔ,y to be the maximal interval of
the form B∩(y−r, y+r) on which the absolute value of ‖h(·)Δ‖ is not greater than
η(Δ). From the definition of S(y) and the continuity of functions ‖h(·)Δ‖ it follows
that BΔ,y contains some neighborhood of y. Further, the maximality property of
BΔ,y implies that

(3.9) sup
x∈BΔ,y

‖h(x)Δ‖ = η(Δ) .

Indeed, either Bs,y = B, in which case the claim follows from [3.9-ii], or at one of
the endpoints of BΔ,y, the function ‖h(·)Δ‖ must attain the value η(Δ) – otherwise
one can enlarge the interval and still have ‖h(·)Δ‖ not greater than η(Δ) for all its
points. (Another flashback: intervals BΔ,y are analogues of Bv(ρ) from the proof
of Theorem 2.4 – but this time there is no disjointness, since many Δs can get small
simultaneously.)

Step 3. For any y ∈ E let us choose an element Δy of S(y) such that BΔy,y =⋃
Δ∈S(y) BΔ,y (this can be done since S(y) is finite). In other words, BΔy,y is

maximal among all BΔ,y. For brevity we will denote BΔy,y by By. We now claim
that

(3.10) sup
x∈By

‖h(x)Δ‖ ≥ η(Δ) for any y ∈ E and Δ ∈ P .

Indeed, if not, then ‖h(x)Δ‖ < η(Δ) for all x ∈ By, in particular one necessarily
has ‖h(y)Δ‖ < η(Δ), hence Δ ∈ S(y) and BΔ,y is defined. But BΔ,y is contained
in By, so (3.10) follows from (3.9). This step allows one to replace the covering
{BΔ,y : Δ ∈ S(y), y ∈ E} of E by a more efficient covering {By : y ∈ E};
informally speaking, this is achieved by selecting Δ = Δy which works best for
every given y.
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Step 4. Now we are ready to perform the induction step. For any y ∈ E define

Py
def
= {Δ ∈ P � {Δy} : Δ is comparable with Δy} .

We claim that Py (a poset of length k−1) in place of P and By in place of B satisfy
all the conditions of the theorem. Indeed, [3.9-i] is clear since By is a subset of B,
and [3.9-ii] follows from (3.10). Therefore, by induction,

(3.11) λ({x ∈ By : x is not ε-protected relative to Py}) ≤ (k − 1)2k−1Cεαλ(By) .

Step 5. Does the previous step help us, and how? let us take x outside of this set
of relatively small measure, that is, assume that x is ε-protected relative to Py, and
try to use this protection. By definition, there exists a flag F ′ inside Py such that

(3.12) εη(Δ) ≤ ‖h(x)Δ‖ ≤ η(Δ) ∀Δ ∈ F ′

and

(3.13) ‖h(x)Δ‖ ≥ η(Δ) ∀Δ ∈ Py � F ′ comparable with every element of F ′ .

However this F ′ will NOT protect x relative to the bigger poset P , because Δy,
comparable with every element of F ′, would not satisfy (M2) – on the contrary,
recall that it was chosen so that the reverse inequality, ‖h(x)Δy‖ ≤ η(Δy), holds
for all x ∈ By, see (3.10)! Thus our only choice seems to be to add Δy to F ′, for

extra protection, and put F
def
= F ′ ∪ {Δy}. Then Δ ∈ P � F is comparable with

every element of F if and only if Δ is in Py � F ′, and is comparable with every
element of F ′. Because of that, (M2) immediately follows from (3.13). As for (M1),
we already know it for for Δ �= Δy by (3.12), so it remains to put Δ = Δy. The
upper estimate in (M1) is immediate from (3.10). The lower estimate, on the other
hand, can fail – but only on a set of relatively small measure, because of assumption
[3.9-i] which, by the way, has not been used so far at all:

λ({x ∈ By : ‖h(x)Δy‖ < εη(Δy)}) ≤ C

(
εη(Δy)

supx∈By
‖h(x)Δy‖

)α

λ(By)

≤
(3.9)

C(ε)αλ(By) .

(3.14)

The union of the two sets above, in the left hand sides of (3.11) and (3.3), has
measure at most k2k−1Cεαλ(By). We have just shown that this union exhausts all
the unprotected points as long as we are restricted to By. Thus we have achieved
an analogue of what was extremely easy for n = 2: bounded the measure of the set
of points where things can go wrong on each of the intervals Bv(ρ).

Step 6. It remains to produce a substitute for the disjointness of the intervals,
that is, put together all the Bys. For that, consider the covering {By : y ∈ E} of E
and choose a subcovering {Bi} of multiplicity at most 2. (Exercise: this is always
possible.) Then the measure of {x ∈ E : x is not ε-protected relative to P} is not
greater than∑

i

λ({x ∈ Bi : x is not ε-protected relative to P}) ≤ k2k−1Cεα
∑
i

λ(Bi)

≤ k2kCeαλ(B) ,

and the theorem is proven. �
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4. Applications of non-divergence to metric Diophantine approximation

Here we present applications of Theorem 3.4 to number theory which reach
beyond the unipotent, or even polynomial, case.

4.1. Inheritance of sublinear growth. Our main object of studying will
be a fixed parametrized curve B → Ln, where B ⊂ R is an interval. Given such a
curve, we will consider a family of curves which are translations of the initial one
by some group elements at. That is, put

(4.1) h(x) = ht(x) = ath0(x)

in Theorem 3.4, where h0 is a fixed map from B to SL(n,R). We would like to
investigate the following two questions:

(1) What are interesting examples of h0 and at for which one can establish
conditions [3.4-i] and [3.4-ii] uniformly for all t > 0?

(2) What would be consequences of that for the initial curve h0(x)Z
n?

Let us start with the second question, since it is easier. That is, suppose we are
given an interval B ⊂ R, C,α > 0, 0 < ρ < 1, a continuous map h0 : B → SL(n,R)
and h = ht as in (4.1). Also let us assume that for any Δ ∈ P (Zn) and any t > 0,
conditions [3.4-i] and [3.4-ii] are satisfied. The trick is now to choose ε = e−γt

for some positive γ. From Theorem 3.4 it follows that there exists a constant C̃
(depending on n,C, ρ,B) such that for any t,

λ
(
{x ∈ B : ath0(x)Z

n /∈ Ln(e
−γt)}

)
≤ C̃e−αγt .

The sum of the right hand sides of the above equation will converge if added up
say for t ∈ N. This immediately calls for an application of the following standard
principle from elementary probability theory (the proof is left as an exercise):

Lemma 4.1 (Borel-Cantelli Lemma). If μ is a measure on a space X and {Ai}
is a countable collection of measurable subsets of X with

∑
i μ(Ai) < ∞, then μ-

almost every x ∈ X is contained in at most finitely many sets Ai.

The conclusion from this is: given an arbitrary γ > 0, for λ-almost every x ∈ B
we have ath0(x)Z

n ∈ Ln(e
−γt) if t ∈ N is sufficiently large. In fact, by changing γ

just a little bit it is easily seen that t ∈ N in the last statement can be replaced by
t > 0. (Exercise.) That is, for all γ > 0 we have

(4.2) {atΛ : t > 0} eventually grows slower than the family Ln(e
−γt)

for (Lebesgue) almost every Λ of the form h0(x)Z
n.

To put this conclusion in an appropriate context, we need to describe the family
of sets Ln(ε) in a more detailed way. It is not hard to see, using reduction theory
for SL(n,R)/ SL(n,Z), that minus logarithm of the biggest ε such that Λ ∈ Ln(ε)
is (asymptotically for far away Λ) roughly the same as the distance1 from Λ to Z

n

or some other base point. Thus the validity of (4.2) for any γ > 0 can, and will, be
referred to as the sublinear growth of {atΛ}. More generally, we will say, for fixed
γ0 ≥ 0, that {atΛ} has growth rate ≤ γ0 if (4.2) holds for any γ > γ0.

Now denote by ν the Haar probablilty measure on Ln. One can show using
Siegel’s Formula (see [E] for more detail) that ν

(
Ln�Ln(ε)

)
≤ constn ε

n. (Exercise:

1See a remark after Corollary 3.6 for a description of a metric on Ln; note also that dist(Λ,Zn)
is also roughly the same as minus logarithm of ρ(Λ) defined in (3.5)
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compute this constant; a more difficult exercise: prove that the right hand side
captures the asymptotics of ν

(
Ln�Ln(ε)

)
as ε → 0; this is done in [KM2].) Since

at preserves ν, for any γ > 0 and any t we have

ν
(
{Λ ∈ Ln : atΛ /∈ Ln(e

−γt)}
)
≤ constn e

−nγt ;

therefore for the same (Borel-Cantelli) reason as above, for any positive γ (4.2) is
satisfied by ν-a.e. Λ ∈ Ln. Thus we have proved that, assuming all the functions
of the form (4.1) satisfy [3.4-i] and [3.4-ii], certain dynamical behavior (sublinear
growth of trajectories) of generic points of the phase space is inherited by generic
points on the curve {h0(x)Z

n}.
We note that problems of this type, i.e. studying rates of growth of trajectories,

or rates with which dense trajectories approximate points, are sometimes referred
to as shrinking target problems. Indeed, the family of complements of the sets
Ln(e

−γt) can be thought of as a shrinking target zooming at the cusp of Ln, and to
hit this target means to get into those “neighborhoods of infinity” infinitely many
times. See [KM2] for a detailed discussion.

Also, observe that we haven’t really used the full strength of Theorem 3.4, with
ρrk(Δ) in place of ρ, and it was promised that it is supposed to be important for
applications. The next theorem summarizes the above discussion and strengthens
its conclusions:

Theorem 4.2 ([Kl5]). Suppose an interval B ⊂ R, C,α, γ0 > 0, a continuous
map h0 : B → SL(n,R) and a subgroup {at} ⊂ SL(n,R) are given.

(a) Assume that:

[4.2-i] for all Δ ∈ P (Zn) and t > 0, functions x �→ ‖ath0(x)Δ‖ are (C,α)-good
on B, and

[4.2-ii] for any β > γ0 there exists T such that supx∈B ‖ath0(x)Δ‖ ≥ (e−βt)rk(Δ)

for all Δ ∈ P (Zn) and t > T .

Then for λ-a.e. x ∈ B, {ath0(x)Z
n} has growth rate ≤ γ0.

(b) Suppose that [4.2-ii] does not hold; then {ath0(x)Z
n} has growth rate > γ0 for

all x ∈ B.

Proof. Part (a) follows from a minor modification of the argument preceding
the theorem: for any γ > γ0 choose β between γ and γ0, and apply Theorem 3.4
with ρ = e−βt, and then the Borel-Cantelli Lemma. For part (b), if for some β > γ0
there exist tk → ∞ and Δk ∈ P (Zn) such that ‖atkh0(x)Δk‖ < (e−βtk)rk(Δk) for
all x ∈ B, then for each x, using Minkowski Lemma, one can choose a nonzero
vector vk ∈ Δk such that ‖atkh0(x)vk‖ < e−βtk , which implies that atkh0(x)Z

n /∈
Ln(e

−βtk). �

We have therefore established a remarkable dichotomy: for curves satisfying
[4.2-i], either almost all trajectories grow slowly, or all trajectories grow fast. See
[Kl6] for a further exploration of this theme.

4.2. Checking [3.4-i] and [3.4-ii]. Of course there would be no point in
the argument of the previous section if we didn’t know that there exist examples,
and moreover very naturally arising in number theory, of functions ht as in (4.1)
satisfying the assumptions of Theorem 3.4 uniformly in t. We are going to describe
a special case which is very useful for applications.
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For this, it will be convenient to upgrade the dimension of the space where all
the lattices live from n to n+ 1. Then choose

at = diag(ent, e−t, . . . , e−t) ,

that is, consider a generalization of {at} ⊂ SL(2,R) as in (2.1). One can easily see
that the unstable leaves of the action of at, t > 0, on Ln+1 are given by the orbits
of the group {

uy
def
=

(
1 yT

0 In

)
: y ∈ R

n

}
,

a higher-dimensional analogue of U ⊂ SL(2,R) (This group is denoted by G+
a1

in
the notation of [EL] and is also known as the expanding horospherical subgroup
corresponding to a1). We are going to put our initial curve {h0(x)} inside this
group; that is, consider

h0(x) =

(
1 f(x)T

0 In

)
,

where f is a map B → R
n. The question now becomes: under what conditions on

f can we verify the assumptions of Theorem 3.4 with ht(x) = atuf(x) uniformly in
t.

In order to do that, we need to understand the action of the elements uy on
the exterior powers of Rn+1. Choose the standard basis e0, e1, . . . , en of Rn+1, and
denote by V the space spanned by e1, . . . , en. It will be convenient to identify
y ∈ R

n with y1e1 + · · · + ynen. Note that e0 is expanded by at (eigenvalue ent)
and V is the contracting subspace (eigenvalue e−t). Similarly for any k ≤ n, the
k-th exterior power of Rn+1 splits into the expanding (subspaces containing e0)
and contracting (contained in V ) parts.

Observe that uy leaves e0 fixed and sends vectors v ∈ V to v+(y ·v)e0. From
this is is easy to conclude how uy acts on

∧k(Rn+1): elements of the form e0 ∧w
are fixed, and

(4.3)

v1 ∧ · · · ∧ vk
uy→

(
v1 + (y · v1)e0

)
∧ · · · ∧

(
vk + (y · vk)e0

)

= v1 ∧ · · · ∧ vk + e0 ∧

⎛
⎝ k∑

i=1

±(y · vi)
∧
j �=i

vj

⎞
⎠ .

Now let us see what conditions on f are sufficient to establish [3.4-i] and [3.4-ii].
Take Δ ∈ P (Zn+1) and represent it (up to ±) by the exterior product of generators
of Δ, let us call it w. First of all it follows from the above formula that for any
w ∈

∧
(Rn+1), all the coordinates of uyw, and hence of atuyw for any t, are linear

combinations of 1, y1, . . . , yn (coefficients in these linear combinations depend on
t). Thus property [3.4-i] uniformly over all t would follow if we could find C,α such
that all the linear combinations of 1, f1, . . . , fn are (C,α)-good on B.

It turns out that condition [3.4-ii], that is, supx∈B ‖ath0(x)Δ‖ ≥ ρrk(Δ) for all
Δ and all (large enough) t is also easy to check:

Lemma 4.3. Suppose that f(B) is not contained in any affine hyperplane (equiv-
alently, the restrictions of 1, f1, . . . , fn to B are linearly independent over R). Then:

(a) there exists ρ > 0 such that [3.4-ii] holds for any Δ ∈ P (Zn+1) and any
t > 0;

(b) ∃ t0 > 0 such that [3.4-ii] holds with ρ = 1 for all Δ ∈ P (Zn+1) and t > t0.
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Proof. Both claims are trivial if RΔ contains e0: indeed, from the previous
discussion it follows that w representing Δ is then fixed by uf(x) and expanded by
at. If not, suppose that rk(Δ) = k; then dim(RΔ⊕ Re0) = k + 1. One can choose
an orthonormal set {v1, . . . ,vk−1} ⊂ RΔ ∩ V and complete it to an orthonormal
basis {v1, . . . ,vk, e0} of RΔ⊕ Re0. Then

w = ae0 ∧ v1 · · · ∧ vk−1 + bv1 ∧ · · · ∧ vk ,

where a2 + b2 ≥ 1. (Note: a, b do not have to be integers, and vectors vi are not
necessarily with integer coordinates; however orthonormality is important.) Now
we can, using (4.3), simply look at the projection of uf(x)w onto e0 ∧v1 · · · ∧vk−1:

uf(x)w =
(
a+ b(f(x) · vk)

)
e0 ∧ v1 · · · ∧ vk−1 + . . . .

Regardless of the choice of a, b, the coefficient in front of e0 ∧v1 · · · ∧vk−1 is of the
form c0 + c1f1 + · · · + cnfn with

∑
|ci|2 ≥ 1. In view of the linear independence

assumption and the compactness of the unit sphere in R
n+1, there exists ρ = ρ(B) >

0 such that the supremum of the absolute value of every such function, and hence
supx∈B ‖uf(x)Δ‖ is at least ρ. But e0 ∧ v1 · · · ∧ vk−1 is expanded by at with a rate
at least et, and both conclusions follow. �

Now, abusing terminology for some more, let us introduce the following defini-
tions. Say that a map f from a subset U of R to R

n is good if for λ-a.e. x ∈ U there
exists a neighborhood B ⊂ U of x and C,α > 0 such that any linear combination
of 1, f1, . . . , fn is (C,α)-good on B. We will also say that f is (C,α)-good if C
and α can be chosen uniformly for all x as above. Polynomial maps form a basic
example. Later we will explain how one can prove that real analytic maps also have
this property.

Also, say that f is nonplanar if for any nonempty interval B ⊂ U , the re-
strictions of 1, f1, . . . , fn to B are linearly independent over R; in other words, no
nonempty relatively open piece of f(U) is contained in a proper affine subspace of
R

n. The above discussion can be thus summarized in the following way:

Theorem 4.4. Let U be a subset of R and let f : U → R
n be a continuous good

nonplanar map. Then for λ-a.e. x ∈ U , the at-trajectory of uf(x)Z
n+1 has sublinear

growth.

Note: it follows from remarks made at the end of the previous section and a
“flowbox” argument (see [E]) that the at-trajectory of uyZ

n has sublinear growth
for λ-a.e. y ∈ R

n. Thus the above theorem describes examples of curves in R
n

whose generic points inherit certain property of generic points of Rn.

4.3. Inheritance of Diophantine properties. Of course a reasonable ques-
tion concerning all the argument above would be – why would anybody at all care
about orbit growth properties of typical poitns on some curves. The answer is –
that all along, like monsieur Jourdain speaking in prose, we were actively involved
in proving theorems in Diophantine approximation without knowing it.

Indeed, let us see how y ∈ R
n is characterized by the fact that {atuyZ

n+1} has
growth ≤ γ0. Suppose that for any γ > γ0 there exists T > 0 such that for any
t > T and any nonzero (p,q) ∈ Z× Z

n one has

(4.4)

∥∥∥∥atuy

(
p
q

)∥∥∥∥ = max
(
ent|p+ y · q|, e−t‖q‖

)
≥ e−γt .
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For such γ, given q ∈ Z
n, choose t such that e−t‖q‖ = e−γt ⇔ et = ‖q‖ 1

1−γ . For
large enough ‖q‖ this t will be greater than T . In view of (4.4), ent|p+ y · q| must
be at least e−γt, which translates into

|p+ y · q| ≥ e−(n+γ)t = ‖q‖−
n+γ
1−γ .

We proved that {atuyZ
n+1} having growth rate ≤ γ0 implies that y is Diophantine2

of order v for any v > n+γ0

1−γ0
. In fact, converse implication is also true, and is left

as an exercise; see [KM2, Kl2]. Consequently, sublinear growth of {atuyZ
n+1} is

equivalent to y being Diophantine of all orders > n; those y are called not very well
approximable, to be abbreviated as not VWA. It is an elementary fact, immediately
implied by the Borel-Cantelli Lemma, that λ-a.e. y ∈ R

n is not VWA. Thus we can
reformulate the theorem proved in the previous section as follows:

Theorem 4.5. Let U be an open subset of R and let f : U → R
n be a continuous

good nonplanar map. Then for λ-a.e. x ∈ U , f(x) is not VWA.

Results of this type have a long history, see [BD] and surveys [Sp3, Kl1, Kl4].
The above statement was conjectured by Mahler [Mah] in 1932 for

(4.5) f(x) = (x, x2, . . . , xn) .

This curve is indeed somewhat special: for any x ∈ R, (x, x2, . . . , xn) is VWA if
and only if for some v > n there are infinitely many integer polynomials P of
degree ≤ n such that |P (x)| < (height of P )−v. Thus Mahler’s Conjecture asserts,
roughly speaking, that almost all transcendental numbers are “not very algebraic”.
Mahler himself proved a bound with a weaker exponent, and the full strength of
the conjecture was established in 1964 by Sprindžuk. [Sp1, Sp2]. Then Sprindžuk
in 1980 [Sp3] made the following

Conjecture 4.6 (now a theorem). For open U ⊂ R, let f : U → R
n be

nonplanar and real analytic. Then for λ-a.e. x ∈ U , f(x) is not VWA.

This was proved in [KM1] via deducing it from a more general Theorem 4.5.
Even for general polynomial maps, not of the form (4.5), this was new.

At this point the only missing part for us is to understand why real analytic
implies good. The explanation involves passing from C∞ to Ck class. The next
lemma produces a wide variety of examples of good functions:

Lemma 4.7. For any k ∈ N there exists Ck > 0 such that whenever an interval
B ⊂ R and f ∈ Ck(B), k ∈ N, are such that for some 0 < a ≤ A one has

(4.6) a ≤ |f (k)(x)| ≤ A ∀x ∈ B ,

then f is
(
Ck(A/a)1/k, 1/k

)
-good on B.

This can be seen as a generalization of Proposition 3.2: indeed, polynomials of
degree k satisfy the above assumptions with A = a.

2Definition: y is Diophantine of order v if |q ·y+p| ≥ const ‖q‖−v for all large enough q and
all p. Note that here we interpret y as a linear form, but the method is equally well applicable to
treating y as a vector, that is, looking at inequalities of type ‖qy+p‖ ≥ const |q|−v , where q ∈ Z

and p ∈ Z
n. The book [Sch] by Schmidt is an excellent reference.
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Proof. We outline the argument in the case k = 2, with C2 = 2
√
22; an

extension to arbitrary degree of smoothness is straightforward and is left as an
exercise, see [KM1] for hints. (However it is interesting that letting A = a in the
above lemma produces a constant which is not as good as the one for polynomials.)

Fix a subinterval J of B and denote by d the length of J and by s the supremum
of |f | on J . Take ε > 0; since, by the lower estimate in (4.6), the second derivative
of f does not vanish on J , the set {x ∈ J : |f(x)| < ε} consists of at most 2
intervals. Let I be the maximal of those, and denote its length by r. Then

(4.7) λ({x ∈ J : |f(x)| < ε}) ≤ 2r ,

so it suffices to estimate r from above.

Sublemma 4.8. r ≤ 2
√

6ε/a.

Proof. Let x1, x2, x3 be the left endpoint, midpoint and right endpoint of I
respectively, and let P be the Lagrange polynomial of degree 2 formed by using
values of f at these points, i.e. given by the expression in the right hand side of
(3.3) with k = 2. Then there exists x ∈ I such that P ′′(x) = f ′′(x). Hence, by the
lower estimate in (4.6), |P ′′(x)| ≥ a. On the other hand, one can differentiate the

right hand side of (3.3) twice to get |P ′′(x)| ≤ 3ε
2

(r/2)2
= 24ε/r2. Combining the

last two inequalities yields the desired estimate. �

Now recall that, since we are after the (C,α)-good property, we would like to
have an upper estimate for r in the form r ≤ C(ε/s)αd. Thus let us rewrite the
conclusion of the lemma as

(4.8) r ≤ 2

√
6s

ad2

(ε
s

)1/2

d = 2

√
6t

a

(ε
s

)1/2

d ,

where we introduced a parameter t
def
= s/d2. We see that the above estimate is useful

when t is small, and to finish the proof it suffices to produce an estimate improving
(4.8) for large values of t. Here it goes:

Sublemma 4.9. r ≤
√

10A/a
1−A/2t ·

(ε
s

)1/2

d.

Proof. Let Q be the Taylor polynomial of f of degree 1 at x1. By Taylor’s
formula,

|f(x2)−Q(x2)| ≤ sup
x∈I

|f ′′(x)| (r/2)
2

2
≤

(4.6)

Ar2

8
≤

Lemma 4.8

A

8

24ε

a
= 3

A

a
ε .

But also |f(x2)| ≤ ε, therefore

|Q(x2)| ≤
(
3
A

a
+ 1

)
ε ≤

to simplify computations
4
A

a
ε .

We now apply Lagrange’s formula to reconstruct Q on B by its values at x1, x2.
As in the proof of Proposition 3.2, we get

(4.9) ‖Q‖B ≤
(
4
A

a
ε+ ε

) d

r/2
≤

to simplify computations
10

A

a
· εd

r
.
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Finally, the difference between f and Q on B is, again by the upper estimate in
(4.6), bounded from above by Ad2/2, so from (4.9) one deduces that

s ≤ 10
A

a
· εd

r
+Ad2/2 ≤

to simplify computations
10

A

a
· εd

2

r2
+Ad2/2 ,

or, equivalently,

r ≤

√
10A

a · εd2
s−Ad2/2

=

√
10A

a

1− Ad2/2s
·
(ε
s

)1/2

d .

which is what we wanted to prove. �
It remains to observe (Exercise) that the right hand sides of the two inequalities

in Sublemmas 4.8 and 4.9 are equal to each other when t = 11A/12, and substitute

t = 11A/12 in (4.8) to obtain r ≤ 2
√

11A
2a

(
ε
s

)1/2
d, which, in view of (4.7), gives

the conclusion of Lemma 4.7. �
Here is another important definition. Say that f is 	-nondegenerate at x if Rn is

spanned by f ′(x), f ′′(x), . . . , f (�)(x). We will say that f : U → R
n is 	-nondegenerate

if it is 	-nondegenerate at almost every point. It is clear that nondegeneracy implies
nonplanarity (if f(B) belongs to a proper affine hyperplane for some interval B,
derivatives of all orders at any point of B won’t generate anything more than the
tangent space to this hyperplane). On top of this, we also have

Proposition 4.10. Nondegenerate maps are good. More precisely, if f is 	-
nondegenerate at x0, then there exists a neighborhood B of x0 and positive C such
that any linear combination of 1, f1, . . . , fn is (C, 1/	)-good on B; and with a little
more work this C can be chosen uniformly if we are given an 	-nondegenerate
f : U → R

n.

Proof. The 	-nondegeneracy of f at x0 implies that for any c = (c1, . . . , cn) �=
0 there exists 1 ≤ k ≤ 	 such that c · f (k)(x0) �= 0, and in fact for this k depending

on c there is a uniform lower bound on |c · f (k)(x)| over all c on (or outside)

the unit sphere and x in some neighborhood B of x0. But c · f (k) = f (k) where
f = c0 +

∑n
i=1 cifi; this produces an a as in Lemma 4.7, and using it with some

upper bound A (which can be made closer to a by making B smaller) one concludes
that f is (C, 1/k)-good (and therefore (C, 1/	)-good) on B. �

Proof of Conjecture 4.6. It remains to take a nonplanar analytic f : U →
R, U ⊂ R a bounded interval, and verify that it must be 	-nondegenerate with
some uniform 	. This is an easy exercise. (Hint: if derivatives of f at xk of order
up to k are contained in a hyperplane Lk, then all derivatives of f at lim xk will be
contained in limLk.) �

We remark that as long as the nonplanarity of f is assumed, we are guaranteed
to have condition [3.4-ii] with some ρ uniform in t, and do not really care to dis-
tinguish between ρ and ρrk(Δ). However this distinction becomes important when
f(B) belongs to a proper affine subspace L ⊂ R

n. Then it matters how fast L can
be approximated by rational subspaces. It is possible to use Theorem 4.2 to write
a condition on L equivalent to almost all (⇔ at least one of) its points being not
VWA, or more generally, Diophantine of order v for all v > v0, and also to prove
that this condition is inherited by f(B) whenever f is good and “nonplanar in L”, in
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particular, smooth and “nondegenerate in L” [Kl5]. (Exercises: give definitions of
the terms in quotation marks, show that nondegenerate in L ⇒ good and nonplanar
in L, and real analytic ⇒ nondegenerate in some L.)

4.4. More about the correspondence between approximation and
dynamics. The principle that was used to connect growth rate of {atuyZ

n+1}
and approximation properties of y has various manifestations and has been ex-
tensively used to relate Diophantine approximation to dynamics. In a nutshell,
a very good approximation for y amounts to a very small value of the function
(p,q) �→ ‖q‖n|p+ y · q| at a nonzero integer point ⇔ a small value of the function
v = (v0, v1, . . . , vn) �→ |v0| · max(|v1|, . . . , |vn|)n at a nonzero vector v from the
latice uyZ

n+1. And the reason for the n-th power is precisely to make the latter
function invariant by at ∈ SL(n+ 1,R) and use the action to produce a very small
nonzero vector in the lattice atuyZ

n+1 (⇔ a very deep excursion into the cusp).
The same principle was involved in the reduction of the Oppenheim conjecture

to dynamics of the stabilizer of a quadratic form on the space of lattices, described
in detail in [E]. For the same reasons, the trajectory atuyZ

n+1 is bounded in Ln+1

if and only if y is badly approximable3; this is a theorem of Dani [D3].
As another application of this principle, consider the product of n + 1 linear

forms, v �→
∏n

i=0 |vi|; its stabilizer is the full diagonal subgroup of SL(n + 1,R).
It is not hard to show that the orbit of the lattice uyZ

n+1 under the action of the
semigroup

at = diag(et1+···+tn , e−t1 , . . . , e−tn) , ti > 0

is bounded in Ln+1 if and only if y is an exception to the (n-dimensional version
of the) Littlewood’s Conjecture. More about it can be found in [EL]

In fact, it is worthwhile to mention that all the results discussed in this section
have their multi-parameter analogues; if ht(x) = ath0(x) is used instead of ht, it
is often possible to establish conditions [3.4-ii] and [3.4-ii] uniformly over t ∈ R

n
+.

This yields the proof of a multiplicative version of Sprindžuk’s Conjecture 4.6 (a
special case for the curve (4.5) was conjectured earlier by A. Baker) and many of
its generalizations.

Also note that the correspondence described above already made an appearance
in two more lecture courses in this volume: by Svetlana Katok in the case n = 1
[K], where it was shown that the diagonal action on L2 is a suspension of the
Gauss map, and by Jean-Christophe Yoccoz [Y], who treated the “n = 1” case
as a platform for a generalization of the aforementioned suspension to the moduli
space of translation surface structures in higher genus. Here we are talking about a
generalization of a different kind. In fact one can also treat the at-action on Ln+1

as a suspension of certain first return map, thus obtaining a higher-dimensional
version of continued fractions. However in order to obtain results in Diophantine
approximation it is often efficient to simply work with the suspension itself, as was
demonstrated during these lectures.

Let us describe one more example of the use of Theorem 3.4 in a slightly
different context. Suppose we fix ε > 0 and want to look at the at-trajectories
which, starting from some t0, decide to leave the compact set Ln+1(ε) and never
come back again. This is possible, for example the at-trajectory can be divergent;
but of course this can only happen on a null set by ergodicity, i.e. for any ε, the

3that is, if and only if infp∈Z,q∈Zn�{0} ‖q‖n|p+ y · q| > 0
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trajectory {atuyZ
n+1} will do it for almost no y. Now what about y of the specific

form f(x), for f as above, for Lebesgue-generic x?
Before answering this question, let me restate it in Diophantine language: such

behavior amounts to existence of t0 such that for any t > t0 the system

|y · q+ p| < εe−tn and ‖q‖ < εet

has a nontrivial integer solution (p,q). Number theorists say in this situation that
Dirichlet’s Theorem can be ε-improved for y, see [DS1, DS2]. Partial results, such
as for f of the form (4.5), has been known due to Davenport–Schmidt [DS1], Baker
[Ba1, Ba2] and Bugeaud [Bu].

Let us now see what one can do with the dynamical method. Assume that
f : U → R is (C,α)-good; then condition [3.4-i] will hold with uniform C,α for
all B ⊂ U except for those touching a null set. If f is also nonplanar, we can use
Lemnma 4.3(b) and for any B find t0 such that [3.4-ii] holds with ρ = 1. Then
take ε such that n2nCεα < 1. It follows that for almost every x0 ∈ U , any interval
B ⊂ U centered at x0, the intersection of B with

(4.10) {x ∈ U : atuyZ
n+1 /∈ Ln+1(ε) for large enough t}

has relative measure in B strictly less than one. By the Lebesgue Density Theorem,
the set (4.10) must have measure zero. This conclusion can be phrased as follows:

Theorem 4.11. For any n,C, α there exists ε0 > 0 with the following property:
let U be an open subset of R and let f : U → R

n be a continuous (C,α)-good
nonplanar map. Then for any ε < ε0 and for λ-a.e. x ∈ U , Dirichlet’s Theorem
cannot be ε-improved for f(x).

This was done several years ago in [KW2] in a much more general, multiplica-
tive, context. Then, in the special case when f is real analytic and nonplanar, the
above result was sharpened by Shah [Sh1, Sh2], who established that the conclu-
sion of Theorem 4.11 holds for arbitrary ε0 < 1 using approximation by unipotent
trajectories and the linearization technique described in [E].

5. Concluding remarks

5.1. Generalizations. Quantitative nondivergence results can be proved, and
have applications, in a much more general situations then described above. In
particular, intervals B ⊂ R can be replaced by balls in a metric space satisfying
certain (Besicovitch) covering property; other measures, including those supported
on fractals, can be used instead of Lebesgue measure λ. These generalizations
are based on the work done by [KLW, KT], but most of the main ideas are
contained in the proof presented in §3.3. Among applications to number theory
was the proof of so-called Khintchine-type theorems on nondegenerate manifolds,
both convergence and divergence cases (with Beresnevich, Bernik and Margulis,
see [BKM, BBKM]). More recent developments include studying Diophantine
properties of points on fractal subsets of Rn. For example, a repeated application
of Theorem 3.4 to measures supported on certain self-similar fractals (or, more
generally, satisfying certain decay conditions) allows to construct many bounded
orbits (read: badly approximable vectors) in the supports of those measures. This
was recently done in [KW1]. Other applications involve analogues of Diophantine
approximation results in the S-arithmetic [KT] and positive characteristic [G2]
setting.
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5.2. What else is in the proof. It is fair to say that the approach to metric
Diophantine approximation described above is definitely not the only one available.
Methods originally developed by Sprindžuk have produced many important results,
including an independent proof of Conjecture 4.6 by Beresnevich [Ber], and also
including many theorems which do not seem to be attainable by dynamics on the
space of lattices. However in some cases one can see how the main constructions
used in the the proof of Theorem 3.4 (primitive subgroups of various ranks) show
up in the other proofs in various disguises, and the passage to the space of latices
seems to work as a tool to somehow change variables and compress all the induction
argument into one scheme based on the partial order of subgroups of Zn.

Another classical argument somewhat similar to that proof is the reduction
algorithm of Minkowski (mentioned in [K]) and Siegel (its generalization to Ln).
In fact, flags naturally appear in the construction of Siegel sets (fundamental sets
for SL(n,R)/ SL(n,Z)), hence in the proof of the finiteness of Haar measure on Ln.
Another feature of the proof of Theorem 3.4 is the fact that it does not use the
fact that Ln has finite volume. And indeed, it can be perhaps thought of as an
alternative approach to reduction theory. Using Corollary 3.5 (high frequency of
visits of unipotent trajectories to compact sets), one can construct an everywhere
positive ux-invariant integrable function on Ln, which would contradict to Moore’s
Ergodicity Theorem unless ν(Ln) is finite, thus providing an alternative proof of
a theorem of Borel and Harish-Chandra. Details are left as an exercise. A more
general version of this exercise is a theorem of Dani [D1], which he derived from
Corollary 3.5, that any locally finite ergodic ux-invariant measure on Ln is finite.

5.3. From Ln to G/Γ and beyond. The reader is invited to look at Dani’s
papers from late 1970s and early 1980s [D1, D2, D4], see also [DM1], where
it is shown how Corollary 3.5 and other quantitative nondivergence results can
be extended to an arbitrary homogeneous space, using the Margulis Arithmeticity
Theorem and some standard facts from the theory of algebraic groups. See also
[KT] and [GO] where a similar reduction is carried out in the S-arithmetic case.
Finally, it is worthwhile to mention another important theme of the summer school,
the analogy between homogeneous space of Lie groups and moduli spaces of trans-
lation surface structures. The scheme of proof presented in §3 was used in [MW]
to establish quantitative nondivergence of horocyclic flows on the moduli space of
quadratic differentials, see also [LM, Appendix].
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1. Introduction

1.1. In these notes we present some aspects of work we have conducted, in
parts jointly with Anatole Katok, regarding dynamics of higher rank diagonalizable
groups on (locally) homogeneous spaces(1) Γ\G. A prototypical example of such
an action is the action of the group of determinant one diagonal matrices A on the
space of lattices in R

n with covolume one for n ≥ 3 which can be identified with
the quotient space SL(n,Z)\ SL(n,R). More specifically, we consider the problem
of classifying measures invariant under such an action, and present two of the
applications of this measure classification.

(1)The space X = Γ\G we define is in fact a homogeneous space for the group G in the
abstract sense of algebra but if we also consider the metric structure, see §7.1, the phrase “locally
homogeneous” seems more appropriate.
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There have been several surveys on this topic, including some that we have
written (specifically, [Lin05] and [EL06]). For this reason we will be brief in our
historical discussions and the discussion of the important work of the pioneers of
the subject.

1.2. For the more general setup let G = G(R) be the group of R-points of
a linear algebraic group over R, and let Γ < G be a lattice (i.e., a discrete, finite
covolume subgroup). In this setup it is natural to consider for any subgroup H < G,
in particular for any algebraic subgroup, the action of H on the symmetric space
Γ\G. Ratner’s landmark measure classification theorem (which is somewhat more
general as it considers the case of G a general Lie group) states the following:

1.3. Theorem (M. Ratner [Rt91]). Let G,Γ be as above, and let H < G be
an algebraic subgroup generated by one parameter unipotent subgroups. Then any
H-invariant and ergodic probability measure μ is the natural (i.e., L-invariant)
probability measure on a single orbit of some closed subgroup L < G (L = G is
allowed).

We shall call a probability measure of the type above (i.e., supported on a single
orbit of its stabilizer group) homogeneous.

1.4. For one parameter diagonalizable flows the (partial) hyperbolicity of the
flow guarantees the existence of many invariant measures. It is, however, not un-
reasonable to hope that for multiparameter diagonalizable flows the situation is
better. For example one has the following conjecture attributed to Furstenberg,
Katok-Spatzier and Margulis:

1.5. Conjecture. Let A be the group of diagonal matrices in SL(n,R), n ≥ 3.
Then any A-invariant and ergodic probability measure on SL(n,Z)\ SL(n,R) is ho-
mogeneous.

The reader may note that we have phrased Conjecture 1.5 in a much more
specialized way than Theorem 1.3. While the basic phenomena behind the conjec-
ture is expected to be quite general, care must be exercised when stating it more
generally (even for the groups A and G given above).

1.6. Conjecture 1.5 is open, but some progress has been made. Specifically, in
our joint paper with Katok [EKL06], Conjecture 1.5 is proved under the condition
that there is some a ∈ A with positive entropy (see Theorem 11.5 below for a more
formal statement).

1.7. These lecture notes are based on our joint course given in the CMI Pisa
summer school as well as a graduate course given by the second named author
in Princeton the previous semester. Notes for both were carefully taken by Shi-
mon Brooks and thoroughly edited by us. The material presented here has almost
entirely been published in several research papers, in particular [EK03, Lin06,
EK05, EKL06, EL08].

1.8. The treatment here differs from the original treatment in places, hopefully
for the better. In particular, we use this opportunity to give an alternative simplified
treatment of the high entropy method developed by M.E. and Katok in [EK03,
EK05]. For this reason our treatment of the high entropy method in §9 is much
more careful and thorough than our treatment of the low entropy method in the
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following section (the reader who wishes to learn this technique in greater detail is
advised to look at our recent paper [EL08]).

It is interesting to note that what we call the low entropy method for studying
measures invariant under diagonalizable groups uses heavily unipotent dynamics,
and, in particular, ideas of Ratner developed in her study of isomorphism and
joining rigidity in [Rt82b, Rt82a, Rt83] which was a precursor to her more general
results on unipotent flows in [Rt90, Rt91].

1.9. More generally, the amount of detail given on the various topics is not
uniform. Our treatment of the basic machinery of leafwise measures as well as
entropy in §3-7 is very thorough as are the next two sections §8-9. This has some
correlation to the material given in the Princeton graduate course, though the
presentation of the high entropy method given here is more elaborate.

The last two sections of these notes give a sample of some of the applications
of the measure classification results given in earlier chapters. We have chosen to
present only two: our result with Katok on the set of exceptions to Littlewood’s
Conjecture from [EKL06] and the result of E.L. on Arithmetic Quantum Unique
Ergodicity from [Lin06]. The measure classification results presented here also
have other applications; in particular we mention our joint work with P. Michel
and A. Venkatesh on the distribution properties of periodic torus orbits [ELMV09,
ELMV07].

1.10. One day a more definitive and complete treatment of these measure rigid-
ity results would be written, perhaps by us. Until that day we hope that these notes,
despite their obvious shortcomings, might be useful.

Acknowledgements. This work owes a debt to the Clay Mathematical Insti-
tute in more than one way. We thank CMI for its support of both of us (E.L. was
supported by CMI during the years 2003-2005, and M.E. was supported by CMI in
the second half of 2005). Many of the ideas we present here were developed during
this period. We also thank CMI for the opportunity it provided us to present our
work to a wide and stimulating audience in the Pisa summer school. We also thank
Shimon Brooks for his careful notetaking. Finally we thank Shirali Kadyrov, Bev-
erly Lytle, Fabrizio Polo, Alex Ustian, and in particular Uri Shapira for comments
on the manuscript. The work presented here has been obtained over several years
and supported by several NSF grants, in particular DMS grants DMS-0554373,
0622397 (ME), 0500205 and 0554345 (EL).

2. Ergodic theory: some background

We start by summarizing a few basic notions of ergodic theory, and refer the
reader with the desire to see more details to any book on ergodic theory, e.g.
[Wal82], [Gla03], or [EW09].

2.1. Definition. Let X be a locally compact space, equipped with an action of a
noncompact (but locally compact) group(2) H which we denote by (h, x) �→ h.x for
h ∈ H and x ∈ X. An H-invariant probability measure μ on X is said to be ergodic
if one of the following equivalent conditions holds:

(2)All groups will be assumed to be second countable locally compact, all measures Borel
probability measures unless otherwise specified.
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(i) Suppose Y ⊂ X is a measurable H-invariant set, i.e., h.Y = Y for every
h ∈ H. Then μ(Y ) = 0 or μ(X \ Y ) = 0.

(ii) Suppose f is a measurable function on X with the property that for every
h ∈ H, for μ-a.e. x, f(h.x) = f(x). Then f is equal to a constant a.e.

(iii) μ is an extreme point of the convex set of all H-invariant Borel probability
measures on X.

2.2. A stronger condition which implies ergodicity is mixing:

2.3. Definition. Let X, H and μ be as in Definition 2.1. The action of H is
said to be mixing if for any sequence hi → ∞ in H(3) and any measurable subsets
B,C ⊂ X,

μ(B ∩ hi.C)→ μ(B)μ(C) as i→∞.

Recall that two sets B,C in a probability space are called independent if

μ(B ∩ C) = μ(B)μ(C).

So mixing is asking for two sets to be asymptotically independent (when one of the
sets is moved by bigger and bigger elements of H).

2.4. A basic fact about H-invariant measures is that any H-invariant measure
is an average of ergodic measures, i.e., there is some auxiliary probability space
(Ξ, ν) and a (measurable) map attaching to each ξ ∈ Ξ an H-invariant and ergodic
probability measure μξ on X so that

μ =

∫
Ξ

μξdν(ξ).

This is a special case of Choquet’s theorem on representing points in a compact
convex set as generalized convex combinations of extremal points.

2.5. Definition. An action of a group H on a locally compact topological space X
is said to be uniquely ergodic if there is only one H-invariant probability measure
on X.

2.6. The simplest example of a uniquely ergodic transformation is the map
Tα : x �→ x + α on the one dimensional torus T = R/Z where α is irrational.
Clearly Lebesgue measure m on T is Tα-invariant; we need to show it is the only
such probability measure.

To prove this, let μ be an arbitrary Tα-invariant probability measure. Since μ
is Tα-invariant,

μ̂(n) =

∫
T

e(nx)dμ(x) =

∫
T

e(n(x+ α))dμ(x) = e(nα)μ̂(n),

where as usual e(x) = exp(2πix). Since α is irrational, e(nα) 	= 1 for all n 	= 0,
hence μ̂(n) = 0 for all n 	= 0 and clearly μ̂(0) = 1. Since the functions e(nx) span
a dense subalgebra of the space of continuous functions on T we have μ = m.

2.7. Definition. Let X be a locally compact space, and suppose that H = {ht} ∼= R

acts continuously on X. Let μ be an H-invariant measure on X. We say that x ∈ X

(3)I.e., a sequence so that for any compact K ⊂ H only finitely many of the hi are in K.
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is generic for μ if for every f ∈ C0(X) we have(4):

1

T

∫ T

0

f(ht.x) dt→
∫
X

f(y) dμ(y) as T →∞.

Equidistribution is another closely related notion:

2.8. Definition. A sequence of probability measures μn on a locally compact space
X is said to be equidistributed with respect to a (usually implicit) measure m if they
converge to m in the weak∗ topology, i.e., if

∫
f dμn →

∫
f dm for every f ∈ C0(X).

A sequence of points {xn} in X is said to be equidistributed if the sequence

of probability measures μN = N−1
∑N

n=1 δxn
is equidistributed, i.e., if for every

f ∈ C0(X)

1

N

N∑
n=1

f(xn)→
∫
X

f(y) dm(y) as N →∞.

Clearly there is a lot of overlap between the two definitions, and in many
situations “equidistributed” and “generic” can be used interchangeably.

2.9. For an arbitrary invariant measure μ on X with respect to an action of
H ∼= R, the Birkhoff pointwise ergodic theorem shows that μ-almost every point
x ∈ X is generic with respect to an invariant and ergodic probability measure on
X (which leads to a construction of the ergodic decomposition). If μ is ergodic,
μ-a.e. x ∈ X is generic for μ.

If X is compact, and if the action of H ∼= R on X is uniquely ergodic with μ
being the unique H-invariant measure, then something much stronger is true: every
x ∈ X is generic for μ!

Indeed, let μT denote the probability measure

μT =
1

T

∫ T

0

δht.x dt

for any T > 0. Then any weak∗ limit of μT as T →∞ will beH-invariant. However,
there is only one H-invariant probability measure(5) on X, namely μ, so μT → μ,
i.e., x is generic for μ.

For the irrational rotation considered in §2.6 it follows that all orbits are equidis-
tributed. A more interesting example is provided by the horocycle flow on compact
quotients Γ\ SL(2,R). The unique ergodicity of this system is a theorem due to
Furstenberg [Fur73] and is covered in the lecture notes [Esk] by Eskin.

3. Entropy of dynamical systems: some more background

3.1. A very basic and important invariant in ergodic theory is entropy. It can
be defined for any action of a (not too pathological) unimodular amenable group H
preserving a probability measure [OW87], but for our purposes we will only need
(and only consider) the case H ∼= R or H ∼= Z. For more details we again refer to
[Wal82], [Gla03], or [ELW09].

(4)Where C0(X) denotes the space of continuous functions on X which decay at infinity, i.e.,
so that for any ε > 0 the set {x : |f(x)| ≥ ε} is compact.

(5)This uses the assumption that X is compact. If X is non-compact, one would have to
address the possibility of the limit not being a probability measure. This possibility is often
described as escape of mass.
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Entropy is an important tool also in the study of unipotent flows(6), but plays
a much more prominent role in the study of diagonalizable actions which we will
consider in these notes.

3.2. Let (X,μ) be a probability space. The static entropy Hμ(P) of a finite or
countable partition P of X is defined to be

Hμ(P) = −
∑
P∈P

μ(P ) logμ(P ),

which in the case where P is countable may be finite or infinite.
One basic property of entropy is sub-additivity; the entropy of the refinement

P ∨Q = {P ∩Q : P ∈ P, Q ∈ Q} satisfies
(3.2a) Hμ(P ∨Q) ≤ Hμ(P) +Hμ(Q).
However, this is just a starting point for many more natural identities and properties
of entropy, e.g. equality holds in (3.2a) if and only if P and Q are independent,
the latter means that any element of P is independent of any element of Q in the
sense of probability theory. All these natural properties find good explanations if
one interprets Hμ(P) as the average of the information function

Iμ(P)(x) = − log μ(P ) for x ∈ P ∈ P
which measures the amount of information revealed about x if one is told the
partition element P ∈ P that contains x ∈ P .

3.3. The ergodic theoretic entropy hμ(T ) associated to a measure-preserving
map T : X → X can be defined using the entropy function Hμ as follows:

3.4. Definition. Let μ be a probability measure on X and T : X → X a measurable
map preserving μ. Let P be either a finite or a countable(7) partition of X with
Hμ(P) <∞. The entropy of the four-tuple (X,μ, T,P) is defined to be(8)

(3.4a) hμ(T,P) = lim
N→∞

1

N
Hμ

(
N−1∨
n=0

T−nP
)
.

The ergodic theoretic entropy of (X,μ, T ) is defined to be

hμ(T ) = sup
P:Hμ(P)<∞

hμ(T,P).

The ergodic theoretic entropy was introduced by A. Kolmogorov and Ya. Sinai
and is often called the Kolmogorov-Sinai entropy.(9) We may interpret the entropy
hμ(T ) as a measure of the complexity of the transformation with respect to the
measure μ. We will discuss this in greater detail later, but the geodesic flow has
positive entropy with respect to the Haar measure on Γ\ SL(2,R) while the horo-
cycle flow has zero entropy. However, vanishing entropy does not mean that the

(6)In particular, in [MT94] Margulis and Tomanov give a shorter proof of Ratner’s measure
classification theorem using entropy theory.

(7)One may also restrict oneself to finite partitions without changing the outcome, but we
will see situations where it will be convenient to allow countable partitions.

(8)Note that by the subadditivity of the entropy function Hμ the limit in (3.4a) exists and

is equal to infN
1
N
Hμ(

∨N−1
n=0 T−nP).

(9)Ergodic theoretic entropy is also somewhat confusingly called the metric entropy (even
though it has nothing to do with any metric that might be defined on X!).
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dynamics of the transformation or the flow is simple, e.g. the horocycle flow is
mixing with respect to the Haar measure on Γ\ SL(2,R). Also, one can find quite
complicated measures μ on Γ\ SL(2,R) that are invariant under the geodesic flow
and with respect to which the geodesic flow has zero entropy.

3.5. If μ is a T -invariant but not necessarily ergodic measure, it can be shown
that the entropy of μ is the average of the entropies of its ergodic components: i.e.,
if μ has the ergodic decomposition μ =

∫
μξdν(ξ), then

(3.5a) hμ(T ) =

∫
hμξ

(T )dν(ξ).

Therefore, it follows that an invariant measure with positive entropy has in its
ergodic decomposition a positive fraction of ergodic measures with positive entropy.

3.6. We will see in §7 concrete formulas and estimates for the entropy of flows
on locally homogeneous spaces Γ\G. To obtain these the main tool is the following
notion: A partition P is said to be a generating partition for T and μ if the σ-algebra∨∞

n=−∞ T−nP (i.e., the σ-algebra generated by the sets {TnP : n ∈ Z, P ∈ P})
separates points; that is, for μ-almost every x, the atom of x with respect to this
σ-algebra is {x}.(10) The Kolmogorov-Sinai theorem asserts the non-obvious fact
that hμ(T ) = hμ(T,P) whenever P is a generating partition.

3.7. We have already indicated that we will be interested in the entropy of
flows. So we need to define the ergodic theoretic entropy for flows (i.e., for actions
of groups H ∼= R). Suppose H = {at} is a one parameter group acting on X. Then
it can be shown that for s 	= 0, 1

|s|hμ(x �→ as.x) is independent of s. We define

the entropy of μ with respect to {at}, denoted hμ(a•), to be this common value of
1
|s|hμ(x �→ as.x).

(11)

3.8. Suppose now that (X, d) is a compact metric space, and that T : X → X is
a homeomorphism (the pair (X,T ) is often implicitly identified with the generated
Z-action and is called a topological dynamical system).

3.9. Definition. The Z-action on X generated by T is said to be expansive if
there is some δ > 0 so that for every x 	= y ∈ X there is some n ∈ Z so that
d(Tnx, Tny) > δ.

If X is expansive then any measurable partition P of X for which the diameter
of every element of the partition is < δ is generating (with respect to any measure
μ) in the sense of §3.6.

3.10. Problem. Let A be a d× d integer matrix with determinant 1 or −1. Then
A defines a dynamical system on X = R

n/Zn. Characterize expansiveness of A
with respect to the metric derived from the Euclidean metric on R

n. Also deter-
mine whether an element of the geodesic flow on a compact quotient Γ\ SL(2,R) is
expansive.

(10)Recall that the atom of x with respect to a countably generated σ-algebra A is the
intersection of all B ∈ A containing x and is denoted by [x]A. We will discuss that and related
notions in greater detail in §5.

(11)Note that hμ(a•) depends not only on H as a group but on the particular parametrization

at.
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3.11. For some applications presented later, an important fact is that for many
dynamical systems (X,T ) the map μ �→ hμ(T ) defined on the space of T -invariant
probability measures on X is semicontinuous. This phenomenon is easiest to see
when (X,T ) is expansive.

3.12. Proposition. Suppose (X,T ) is expansive, and that μi, μ are T -invariant
probability measures on X with μi → μ in the weak∗ topology. Then

hμ(T ) ≥ lim
i→∞

hμi
(T ).

In less technical terms, for expansive dynamical systems, a “complicated” in-
variant measure might be approximated by a sequence of “simple” ones, but not
vice versa.

3.13. Proof. Let P be a partition of X such that for each P ∈ P
(i) μ(∂P ) = 0
(ii) P has diameter < δ (δ as in the definition of expansiveness).

As X is compact, such a partition can easily obtained from a (finite sub-cover of
a) cover of X consisting of small enough balls satisfying (i).

Since μ(∂P ) = 0 and μi → μ weak∗, for every P ∈ P we have that μi(P ) →
μ(P ). Then for a fixed N we have (using footnote (8) for the measure μi) that

1

N
Hμ

(
N−1∨
n=0

T−nP
)

= lim
i→∞

1

N
Hμi

(
N−1∨
n=0

T−nP
)

≥ lim
i→∞

hμi
(T,P) (by (ii))

= lim
i→∞

hμi
(T ).

Taking the limit as N →∞ we get

hμ(T ) = hμ(T,P) = lim
N→∞

1

N
Hμ

(
N−1∨
n=0

T−nP
)
≥ lim

i→∞
hμi

(T )

as required. �
Note that we have used both (ii) and expansiveness only to establish

(ii′) hν(T ) = hν(T,P) for ν = μ1, μ2, . . . .

We could have used the following weaker condition: for every ε, there is a partition
P satisfying (i) and

(ii′′) hν(T ) ≤ hν(T,P) + ε for ν = μ1, μ2, . . . .

3.14. We are interested in dynamical systems of the form X = Γ\G (G a
connected Lie group and Γ < G a lattice) and

T : x �→ g.x = xg−1.

Many such systems(12) will not be expansive, and furthermore in the most interest-
ing case of Xn = SL(n,Z)\ SL(n,R) the quotient is not compact (which we assumed
throughout the above discussion of expansiveness).

Even worse, on X2 = SL(2,Z)\ SL(2,R) one may have a sequence of probability
measures μi ergodic and invariant under the one parameter group{

at =

(
et/2 0
0 e−t/2

)}

(12)For example, the geodesic flow defined on quotients of G = SL(2,R).
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with limi→∞ hμi
(a•) > 0 converging weak∗ to a measure μ which is not a probability

measure — there is escape of mass — and furthermore has zero entropy(13).
However, one has the following “folklore theorem”(14) :

3.15. Proposition. Let G be a connected Lie group, Γ < G a lattice, and H = {at}
a one parameter subgroup of G. Suppose that μi, μ are H-invariant probability(15)

measures on X with μi → μ in the weak∗ topology. Then

hμ(a•) ≥ lim
i→∞

hμi
(a•).

For X compact (and possibly by some clever compactification also for general
X), this follows from deep (and complicated) work of Yomdin, Newhouse and Buzzi
(see e.g. [Buz97] for more details); however Proposition 3.15 can be established
quite elementarily. In order to prove this proposition, one shows that any sufficiently
fine finite partition of X satisfies §3.11(ii′′).

3.16. The following example shows that this semicontinuity does not hold for
a general dynamical system:

3.17. Example. Let S =
{
1, 1

2 ,
1
3 , . . . , 0

}
, and X = SZ (equipped with the usual

Tychonoff topology). Let σ : X → X be the shift map defined by σ(x)n = xn+1 for
x = (xn)n∈Z ∈ X.

Let μn be the probability measure on X obtained by taking the product of the
probability measures on S giving equal probability to 0 and 1

n , and δ0 the probability
measure supported on the fixed point 0 = (. . . , 0, 0, . . . ) of σ. Then μn → δ0 weak∗,
hμn

(σ) = log 2 but hδ0(σ) = 0.

3.18. Let (X, d) be a compact metric space and let T : X → X be continuous.
Two points x, x′ ∈ X are said to be k, ε-separated if for some 0 ≤ 
 < k we
have that d(T �x, T �x′) ≥ ε. Let N(X,T, k, ε) denote the maximal cardinality of a
k, ε-separated subset of X.

3.19. Definition. The topological entropy(16) of (X,T ) is defined by

htop(X,T ) = lim
ε→0

H(X,T, ε),

where

H(X,T, ε) = lim
k→∞

logN(X,T, k, ε)

k

The topological entropy of a flow {at} is defined as in §3.7 and denoted by
htop(X, a•).

(13)Strictly speaking, we define entropy only for probability measures, so one needs to rescale
μ first.

(14)Which means in particular that there seems to be no good reference for it. A special case
of this proposition is proved in [EKL06, Section 9]. The proof of this proposition is left as an
exercise to the energetic reader.

(15) Here we assume that the weak∗ limit is a probability measure as, unlike the case of
unipotent flows, there is no general fact that rules out various weird situations. E.g., for the
geodesic flow on a noncompact quotient X of SL(2,R) it is possible to construct a sequence of
invariant probability measures whose limit μ satisfies μ(X) = 1/2.

(16)For X which is only locally compact, one can extend T to a map T̃ on its one-point
compactification X̃ = X ∪ {∞} fixing ∞ and define htop(X,T ) = htop(X̃, T̃ ).
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3.20. Topological entropy and the ergodic theoretic entropy are related by the
variational principle (see e.g. [Gla03, Theorem 17.6] or [KH95, Theorem 4.5.3]).

3.21. Proposition. Let X be a compact metric space and T : X → X a homeo-
morphism.(17) Then

htop(X,T ) = sup
μ

hμ(T )

where the sup runs over all T -invariant probability measures on X.

Note that when μ �→ hμ(T ) is upper semicontinuous (see §3.11) the supremum
is actually attained by some T -invariant measure on X. These measures of maximal
entropy are often quite natural measures, e.g. in many cases they are Haar measures
on Γ\G.

3.22. To further develop the theory of entropy we need to recall in the next
few sections some more notions from measure theory.

4. Conditional Expectation and Martingale theorems

The material of this and the following section can be found in greater detail
e.g. in [EW09].

4.1. Proposition. Let (X,B, μ) be a probability space, and A ⊂ B a sub-σ-algebra.
Then there exists a continuous linear functional

Eμ(·|A) : L1(X,B, μ)→ L1(X,A, μ)
called the conditional expectation of f given A, such that

(4.1a) Eμ(f |A) is A-measurable

for any f ∈ L1(X,B, μ), and we have

(4.1b)

∫
A

Eμ(f |A)dμ =

∫
A

fdμ for all A ∈ A.

Moreover, together equations (4.1a)–(4.1b) characterizes the function Eμ(f |A) ∈
L1(X,B, μ).

On L2(X,B, μ) the operator Eμ(·|A) is simply the orthogonal projection to the
closed subspace L2(X,A, μ). From there one can extend the definition by continuity
to L1(X,B, μ). Often, when we only consider one measure we will drop the measure
in the subscript.

Below we will base our arguments on the dynamical behavior of points. Because
of that we prefer to work with functions instead of equivalence classes of functions
and hence the above uniqueness has be understood accordingly. We will need the
following useful properties of the conditional expectation E(f |A), which we already
phrase in terms of functions rather than equivalence classes of functions:

4.2. Proposition. (i) E(·|A) is a positive operator of norm 1, and more-
over, |E(f |A)| ≤ E(|f ||A) almost everywhere.

(ii) For f ∈ L1(X,B, μ) and g ∈ L∞(X,A, μ), we have E(gf |A) = gE(f |A)
almost everywhere.

(17)This proposition also easily implies the analogous statement for flows {at}.
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(iii) If A′ ⊂ A is a sub-σ-algebra, then

E(E(f |A)|A′) = E(f |A′)

almost everywhere. Moreover, if f ∈ L1(X,A, μ), then E(f |A) = f
almost everywhere.

(iv) If T : X → Y sends the probability measure μ on X to T∗μ = μ◦T−1 = ν
on Y , and if C is a sub-σ-algebra of the σ-algebra BY of measurable sets
on Y , then Eμ(f ◦ T |T−1C) = Eν(f |C) ◦ T for any f ∈ L1(Y,BY , ν).

We only prove the last two claims. Take any A ∈ A′ ⊂ A. By the characterizing
property of conditional expectation, we have∫

A

E(E(f |A)|A′) =

∫
A

E(f |A) =
∫
A

f.

Therefore by uniqueness, we have E(E(f |A)|A′) = E(f |A′) almost everywhere. If
f ∈ L1(X,A, μ), then f satisfies the first characterizing property of E(f |A), while
trivially satisfying the second. Again invoking uniqueness, we have E(f |A) = f
almost everywhere.

We consider now the situation of the pushforward T∗μ = ν of the measure and
the pullback T−1C of the σ-algebra. By the definitions we have∫

T−1C

Eν(f |C) ◦ Tdμ =

∫
C

Eν(f |C)dν =

∫
C

fdν =

∫
T−1C

f ◦ Tdμ

for any C ∈ C, which implies the claim by the uniqueness properties of conditional
expectation.

4.3. The next two theorems describes how the conditional expectation behaves
with respect to a sequence of sub-σ-algebras, and can be thought of as continuity
properties.

4.4. Theorem (Increasing Martingale Convergence Theorem). Let A1, A2, . . . be
a sequence of σ-algebras, such that Ai ⊂ Aj for all i < j. Let A be the smallest
σ-algebras containing all of the An (in this case, we write An ↗ A). Then

E(f |An)→ E(f |A)
almost everywhere and in L1.

4.5. Theorem (Decreasing Martingale Convergence Theorem). Suppose that we
have a sequence of σ-algebras Ai ↘ A, i.e., such that Ai ⊃ Aj for i < j, and
A =

⋂
Ai. Then E(f |An)(x)→ E(f |A)(x) almost everywhere and in L1.

4.6. Remark. In many ways, the Decreasing Martingale Convergence Theo-
rem is similar to the pointwise ergodic theorem. Both theorems have many simi-
larities in their proof with the pointwise ergodic theorem and other theorems; the
proofs consists of two steps, convergence in L1, and a maximum inequality to deduce
pointwise convergence.

5. Countably generated σ-algebras and conditional measures

Note that the algebra generated by a countable set of subsets of X is countable,
but that in general the same is not true for the σ-algebra generated by a countable
set of subsets of X. E.g. the Borel σ-algebra of any space we consider is countably
generated in the following sense.
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5.1. Definition. A σ-algebra A in a space X is countably generated if there is
a countable set (or equivalently algebra) A0 of subsets of X such that the smallest
σ-algebra σ(A0) that contains A0 is precisely A.

5.2. One nice feature of countably generated σ-algebras is that we can study
the atoms of the algebra. If A is generated by a countable algebra A0, then we
define the A-atom of a point x to be

[x]A :=
⋂

x∈A∈A0

A =
⋂

x∈A∈A
A.

The equality follows since A0 is a generating algebra for the σ-algebra A. In
particular, it shows that the atom [x]A does not depend on a choice of the generating
algebra. Notice that by countability of A0 we have [x]A ∈ A. In other words, [x]A
is the smallest set of A containing x. Hence the terminology — the atom of x
cannot be broken up into smaller sets within the σ-algebra A.

Note, in particular, that [x]A could consist of the singleton x; in fact, this is
the case for all atoms of the Borel σ-algebra on, say, R. The notion of atoms is
convenient when we want to consider conditional measures for smaller σ-algebras.

5.3. Caution. A sub σ-algebra of a countably generated σ-algebra need not
be countably generated!

5.4. Lemma. Let (X,B, μ, T ) be an invertible ergodic probability preserving system
such that individual points have zero measure. Then the σ-algebra E of T–invariant
sets (i.e., sets B ∈ B such that B = T−1B = TB) is not countably generated.

5.5. Proof. Since T is ergodic, any set in E has measure 0 or 1, and in
particular, this holds for any generating set. Suppose that E is generated by a
countable collection {E1, E2, . . .}, each Ei having measure 0 or 1. Taking the
intersection of all generators Ei of measure one and the complement X \ Ei of
those of measure zero, we obtain an E-atom [x]E of measure 1. Since the orbit of x
is invariant under T , we have that [x]E must be the orbit of x. Since the orbit is at
most countable, this is a contradiction since μE

x([x]E) = 1. �
5.6. We will now restrict ourselves to the case of X a locally compact, second-

countable metric space; B will be the Borel σ-algebra on X. A space and σ-algebra
of this form will be referred as a standard Borel space, and we will always take μ
to be a Borel measure. We note that for such X, the Borel σ-algebra is countably
generated by open balls with rational radius and center belonging to a countable
dense subset of X. When working with a Borel measure on X, we may replace
X by the one-point-compactification of X, extend the measure trivially to the
compactification, and assume without loss of generality that X is compact.

5.7. Definition. Let A, A′ be sub-σ-algebras of the σ-algebra B of a probability
space (X,B, μ). We say that A is equivalent to A′ modulo μ (denoted A .

=μ A′) if
for every A ∈ A there exists A′ ∈ A′ such that μ(A�A′) = 0, and vice versa.

5.8. Proposition. Let (X,B) be a standard Borel space, and let μ be a Borel

probability measure on X. Then for every sub-σ-algebra A ⊂ B, there exists Ã ⊂ A
such that Ã is countably generated, and Ã .

=μ A.

Roughly speaking the proposition follows since the space L1(X,A, μ) is sepa-
rable, which in turn is true because it is a subspace of L1(X,B, μ). One can define
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Ã by a countable collection of sets Ai ∈ A for which the characteristic functions
χAi

are dense in the set of all characteristic functions χA with A ∈ A.
This Proposition conveniently allows us to ignore issues of countable generation,

as long as we do so with respect to a measure (i.e., up to null sets) on a nice space.
We now wish to prove the existence and fundamental properties of conditional

measures:

5.9. Theorem. Let (X,B, μ) be a probability space with (X,B) being a standard
Borel space, and let A ⊂ B a sub-σ-algebra. Then there exists a subset X ′ ⊂ X of
full measure (i.e., μ(X\X ′) = 0), belonging to A, and Borel probability measures
μA
x for x ∈ X ′ such that:

(i) For every f ∈ L1(X,B, μ) we have E(f |A)(x) =
∫
f(y)dμA

x (y) for almost
every x. In particular, the right-hand side is A-measurable as a function
of x.

(ii) If A .
=μ A′ are equivalent σ-algebras modulo μ, then we have μA

x = μA′

x

for almost every x.
(iii) If A is countably generated, then μA

x ([x]A) = 1 for every x ∈ X ′, and for
x, y ∈ X ′ we have that [x]A = [y]A implies μA

x = μA
y .

(iv) The set X ′ and the map x
τ�→ μA

x are A-measurable on X ′; i.e., if U is
open in P(X), the space of probability measures on X equipped with the
weak∗ topology, then τ−1(U) ∈ A|X′ .

Moreover, the family of conditional measures μA
x is almost everywhere uniquely

determined by its relationship to the conditional expectation described above.

If A is countably generated, then x, y ∈ X are called equivalent w.r.t. A if
[x]A = [y]A. Hence (iii) also says that equivalent points have identical conditional
measures.

5.10. Caution. In general we will only prove facts concerning the conditional
measures μA

x for almost every x ∈ X. In fact, we even restricted ourselves to a
set X ′ of full measure in the existence of μA

x . However, even the set X ′ is by no
means canonical. We also must understand the last claim regarding the uniqueness
in that way; if we have two families of conditional measure defined on sets of full
measure X ′ and X ′′, then one can find a subset of X ′ ∩X ′′ of full measure where
they agree.

5.11. Comments. If N ⊂ X is a null set, it is clear that μA
x (N) = 0 for a.e.

x. (Use Theorem 5.9.(i) and Proposition 4.1 to check this.) However, we cannot
expect more as, for a given x, the set [x]A is often a null set.

If B ⊂ X is measurable, then

(5.11a) μ
(
{x ∈ B : μA

x (B) = 0}
)
= 0.

To see this define A = {x : μA
x (B) = 0} ∈ A and use again Theorem 5.9.(i) and

Proposition 4.1 to get

μ(A ∩B) =

∫
A

χBdμ =

∫
A

μA
x (B)dμ(x) = 0.
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5.12. Proof. Since we are working in a standard Borel space, we may assume
that X is a compact, metric space. Hence, we may choose a countable set of
continuous functions which give a dense Q-vector space {f0 ≡ 1, f1, . . .} ⊂ C(X).

Set g0 = f0 ≡ 1, and for each fi with i ≥ 1, pick(18) gi = E(fi|A) ∈ L1(X,A, μ).
Taking the union of countably many null sets there exists a null set N for the
measure μ such that for all α, β ∈ Q and all i, j, k:

• If α ≤ fi ≤ β (on all of X), then α ≤ gi(x) ≤ β for all x /∈ N .
• If αfi + βfj = fk, then αgi(x) + βgj(x) = gk(x) for x /∈ N .

Now for all x /∈ N , we have a continuous linear functional Lx : fi �→ gi(x) from
C(X) → R of norm ||Lx|| ≤ 1. By the Riesz Representation Theorem, this yields
a measure μA

x on C(X). This measure is characterized by E(f |A)(x) = Lx(f) =∫
f(y)dμA

x (y) for all f ∈ C(X). Using monotone convergence this can be extended
to other class of functions: first to characteristic functions of compact and of open
sets, then to characteristic functions of all Borel sets and finally to integrable func-
tions, i.e., we have part (i) of the Theorem. As already remarked, this implies that
x �→

∫
f(y)dμA

x (y) is an A-measurable function for x /∈ N . This implies part (iv).
Now suppose we have two equivalent σ-algebras A and A′ modulo μ, and take

their common refinement Ã. Then for any f ∈ C(X), we see that both g = E(f |A)
and g′ = E(f |A′) satisfy the characterizing properties of E(f |Ã), and so they are
equal almost everywhere. Again taking a countable union of null sets, corresponding
to a countable dense subset of C(X), we see that μA

x = μA′

x almost everywhere,
giving part (ii).

For part (iii), suppose that A = σ({A1, . . .}) is countably generated. For every
i, we have that χAi

(x) = E(χAi
|A)(x) = μA

x (Ai) almost everywhere. Hence there
exists a set N of μ-measure 0, given by the union of the these null sets for each i,
such that μA

x (Ai) = 1 for all i and every x ∈ Ai\N . Therefore, since [x]A is the
countable intersection of Ai’s containing x, we have μA

x ([x]A) = 1 for all x /∈ N .
Finally, since x → μA

x is A-measurable, we have that [x]A = [y]A ⇒ μA
x = μA

y

whenever both are defined (i.e., x, y ∈ X ′). �

5.13. Another construction. An alternate construction for the conditional
measure for a countably generated σ-algebra is to start by finding a sequence of
finite partitions An ↗ A. For finite partitions, the conditional measures are par-
ticularly simple; we have

μAn
x =

μ|[x]An

μ([x]An
)
.

Now, for any f ∈ C(X), the Increasing Martingale Convergence Theorem tells us
that for any continuous f and for almost every x, we have

∫
fdμAn

x = E(f |An)(x)→
E(f |A)(x). Again by choosing a countable dense subset of C(X) we show a.e. that
μAn
x converge in the weak∗ topology to a measure μA

x as in (i) of the theorem.

5.14. The ergodic decomposition revisited. One application for the no-
tion of conditional measures is that it can be used to prove the existence of the
ergodic decomposition. In fact, for any H-invariant measure μ, we have the ergodic

(18)Here the word “pick” refers to the choice of a representative of the equivalence class of
integrable measurable functions.
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decomposition

μ =

∫
μE
xdμ(x),

where E is (alternatively a countably generated σ-algebra equivalent to) the σ-
algebra of all H-invariant sets, and μE

x is the conditional measure (on the E-atom
of x). This is a somewhat more intrinsic way to write the ergodic decomposition as
one does not have to introduce an auxiliary probability space.

5.15. Definition. Two countably generated σ-algebras A and C on a space X are
countably equivalent if any atom of A can be covered by at most countably many
atoms of C, and vice versa.

5.16. Remark. This is an equivalence relation. Symmetry is part of the
definition, reflexivity is obvious, and transitivity can be readily checked.

5.17. Proposition. Suppose A and A′ are countably equivalent sub-σ-algebras.
Then for μ-a.e. x, we have

μA
x |[x]A∨A′ ∝ μA′

x |[x]A∨A′ .

Or, put another way,

μA∨A′

x =
μA
x |[x]A∨A′

μA
x ([x]A∨A′)

=
μA′

x |[x]A∨A′

μA′
x ([x]A∨A′)

.

Here and in the following the notation μ ∝ ν for two measures on a space X
denotes proportionality, i.e. that there exists some c > 0 with μ = cν.

5.18. Proof. As a first step, we observe that A is countably equivalent to A′

if and only if A is countably equivalent to the σ-algebra generated by A and A′.
Hence we may assume that A ⊂ A′, and the statement of the Proposition reduces
to

μA′

x =
μA
x |[x]A′

μA
x ([x]A′)

.

The next step is to verify that the denominator on the right-hand side is actually
A′-measurable (as a function of x). As A′ is countably generated, we may take a
sequence A′

n ↗ A′ of finite algebras, and consider the decreasing chain of sets [x]A′
n
.

Notice that E(1[x]A′
n
|A)(x) = μA

x ([x]A′
n
) is a perfectly good A ∨ A′

n-measurable

function. In the limit as n→∞, the set [x]A′
n
↘ [x]A′ =

⋂
n[x]A′

n
as (A′

n∨A)↗ A′,

and so x �→ μA
x ([x]A′) is A′-measurable.

We still also have to verify that this denominator is non-zero (almost every-
where). Consider the set Y = {x : μA

x ([x]A′) = 0}. We must show that μ(Y ) = 0
when A and A′ are countably equivalent. The previous step guarantees that Y is
measurable, and we can integrate fibre by fibre: μ(Y ) =

∫
μA
x (Y )dμ(x). But [x]A

is a finite or countable union
⋃

i∈I [xi]A′ of A′-atoms, and so

μA
x (Y ) =

∑
i∈I

μA
x ([xi]A′ ∩ Y )

and so it suffices to show that each term on the right-hand side is 0. If [xi]A′∩Y = ∅,
then there is nothing to show. On the other hand, if there exists some y ∈ [xi]A′∩Y ,
then by definition of Y we have μA

y ([xi]A′) = 0. But [xi]A′ ⊂ [x]A, and so y ∈ [x]A,

which by Theorem 5.9 (and the subsequent Remark) implies that μA
x ([xi]A′) =

μA
y ([xi]A′) = 0.



170 M. EINSIEDLER AND E. LINDENSTRAUSS

We now know that
μA
x |[x]A′

μA
x ([x]A′ )

makes sense. We easily verify that it satisfies the

characterizing properties of μA′

x , and we are done. �

6. Leaf-wise Measures, the construction

We will need later (e.g. in the discussion of entropy) another generalization of
conditional measures that allows us to discuss “the restrictions of the measure”
to the orbits of a group action just like the conditional measures describe “the
restriction of the measure” to the atoms. However, as we have seen in Lemma 5.4,
one cannot expect to have a σ-algebra whose atoms are precisely the orbits.

As we will see these restricted measures for orbits, which we will call leaf-wise
measures, can be constructed by patching together conditional measures for various
σ-algebras whose atoms are pieces of orbits. Such a construction (with little detail
provided) is used by Katok and Spatzier in [KS96]; we follow here the general
framework outlined in [Lin06], with some simplifications and improvements (e.g.
Theorem 6.30 which in this generality seems to be new).

6.1. A few assumptions. Let T be a locally compact, second countable
group. We assume that T is equipped with a right-invariant metric such that any
ball of finite radius has compact closure. We write BT

r (t0) = {t ∈ T : d(t, t0) < r}
for the open ball of radius r around t0 ∈ T , and write BT

r = BT
r (e) for the ball

around the identity e ∈ T . Also let X be a locally compact, second countable metric
space. We assume that T acts continuously on X, i.e., that there is a continuous
map (t, x) �→ t.x ∈ X defined on T ×X → X satisfying s.(t.x) = (st).x and e.x = x
for all s, t ∈ T and x ∈ X. We also assume the T -action to be locally free in the
following uniform way: for every compact K ⊂ X there is some η > 0 such that
t ∈ BT

η , x ∈ K, and t.x = x imply t = e. In particular, the identity element e ∈ T
is isolated in StabT (x) = {t ∈ T : t.x = x}, so that the latter becomes a discrete
group, for every x ∈ X— this property allows a nice foliation of X into T -orbits.
Finally we assume that μ is a Radon (or locally finite) measure on X, meaning that
μ(K) <∞ for any compact K ⊂ X.

6.2. Definition. Let(19) x ∈ X. A set A ⊂ T.x is an open T -plaque if for every
a ∈ A the set {t : t.a ∈ A} is open and bounded.

Note that by the above assumptions on T a set is bounded only if its clo-
sure is compact. We recall that μ ∝ ν for two measures on a space X denotes
proportionality, i.e., that there exists some c > 0 with μ = cν.

6.3. Theorem (Provisional(20)!). In addition to the above assume also that StabT (x) =
{e} for μ-a.e. x ∈ X, i.e., t �→ t.x is injective for a.e. x. Then there is a system
{μT

x }x∈X′ of Radon measures on T which we will call the leaf-wise measures which
are determined uniquely, up to proportionality and outside a set of measure zero,
by the following properties:

(i) The domain X ′ ⊂ X of the function x �→ μT
x is a full measure subset in

the sense that μ(X\X ′) = 0.
(ii) For every f ∈ Cc(T ), the map x �→

∫
fdμT

x is Borel measurable.

(19)Below we will work mostly with points x for which t ∈ T �→ t.x is injective.
(20)Ideally, we would like to “normalize” by looking at equivalence classes of proportional

Radon measures, but this will require further work. See Theorem 6.30.
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(iii) For every x ∈ X ′ and s ∈ T with s.x ∈ X ′, we have μT
x ∝ (μT

s.x)s, where
the right-hand side is the push-forward of μT

s.x by the right translation
(on T ) t �→ ts, see Figure 1.

(iv) Suppose Z ⊂ X and that there exists a countably generated σ-algebra
A of subsets of Z such that for any x ∈ Z, the set [x]A is an open T -
plaque; i.e., Ux,A := {t : t.x ∈ [x]A} is open and bounded satisfying
[x]A = Ux,A.x. Then for μ-a.e. x ∈ Z,

(μ|Z)Ax ∝
(
μT
x |Ux,A

)
.x

where the latter is the push-forward under the map t ∈ Ux,A �→ t.x ∈ [x]A.
(v) The identity element e ∈ T is in the support of μT

x for μ-a.e. x.

e

e

s

s.xx

Figure 1. The two straight lines represent two copies of the group
T and the curved line represents the orbit T.x = T.(s.x). The
arrows from the groups to the orbit represent the orbit maps t→
t.x and t → t.(s.x). Right translation by s from T to T makes
the diagram commutative. In other words, Thm. 6.3(iii) only says
that the infinite measures μT

x .x and μT
s.x.(s.x) on X are propor-

tional.

6.4. Remarks.

(i) The properties of leaf-wise measures are analogous to those of the condi-
tional measures described in Theorem 5.9. With leaf-wise measures, we
demand that the “atoms” correspond to entire (non-compact!) T -orbits,
and herein lie most of the complications. On the other hand, these orbits
inherit the group structure from T , and so the conditional measures μT

x

are actually measures on the group T , which has structure that we can
exploit.

(ii) Property 6.3.(iii) is the analogue of Property 5.9.(iii). Ideally, we would
like to say that, since x and g.x are in the same T -orbit, their leaf-
wise measures should be the same. However, we prefer to work with
measures on T so we move the measures from T.x to T via t.x �→ t
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(which implicitly makes use of the initial point x). Therefore, points on
the orbit correspond to different group elements depending on the base
point; hence we need to employ the right translation in order to have our
measures (defined as measures on the group) agree at points of the orbit.
Another difficulty is that the μT

x need not be probability measures, or
even finite measures. There being no good way to “normalize” them, we
must make do with proportionality instead of equality.

(iii) Property 6.3.(iv) is the most restrictive; this is the heart of the definition.
It essentially says that one can restrict μT

x to Ux,A and get a finite mea-
sure, which looks just like (up to normalization) a good old conditional
measure μA

x derived from A. So μT
x is in essence a global “patching”

together of local conditional measures (up to proportionality issues).

6.5. Examples.

6.5.1. Let X = T
2, on which T = R acts by t.x = x + t�v mod Z

2, for some
irrational vector �v. If μ = λ is the Lebesgue measure on T

2, then we can take μT
x =

λR to be Lebesgue measure on R. Note that, even though the space X is quite nice
(eg., compact), none of the leaf-wise measures are finite. Also, notice that the naive
approach to constructing these measures would be to look at conditional measures
for the sub-σ-algebra A of T -invariant Borel sets. Unfortunately, this σ-algebra is
not countably generated, and is equivalent (see Lemma 5.4 and Proposition 5.8) to
the trivial σ-algebra! This is a situation where passing to an equivalent σ-algebra
to avoid uncountable generation actually destroys the information we want (T -
orbits have measure 0). Instead, we define the leaf-wise measures on small pieces
of T -orbits and then glue them together.

6.5.2. We now give an example of a p-adic group action. Let X = (Qp ×
R)/Z[ 1p ]

∼= (Zp ×R)/Z where both Z[ 1p ] and Z are considered as subgroups via the

canonical diagonal embedding. We let T = Qp act on X by translations (where
our group law is given by addition). To describe an interesting example of leaf-
wise measures, we (measurably) identify X with the space of 2-sided sequences
{x(i)}∞i=−∞ in base p (up to countably many nuisances) as follows: Note that
T = R/Z is the quotient of X by the subgroup Zp and that we may use p-nary digit
expansion in [0, 1) ∼= T. This way x ∈ X determines a one-sided sequence of digits
x(i) for i = 1, 2, . . .. Since multiplication by p is invertible on X, we may recover
all digits x(i) for i = . . . ,−1, 0, 1, . . . by applying the above to the points p−nx.
(The reader should verify that this procedure is well-defined at all but countably
many points and that the assigned sequence of digits uniquely defines the initial
point x ∈ X.)

Under this isomorphism of X with the space of sequences the action of trans-
lation by Zp corresponds to changing (in a particular manner) the coordinates of
the sequence corresponding to i ≤ 0 such that the orbit under Zp consists of all
sequences that agree with the original sequence on all positive coordinates. For this
recall that Zp is isomorphic to {0, . . . , p−1}N0 . More generally, the orbit of a point
under p−n

Zp corresponds to all sequences that have the same coordinates as the
original sequence for i > n. Hence the Qp-orbit corresponds to all sequences that
have the same digits as the original sequence for all i > n for some n.

We now define a measure and discuss the leaf-wise measures for the action by
Qp. Let μ be an identically independently distributed but biased Bernoulli measure
– in other words we identify X again with the space of all 2-sided sequences, i.e.,
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with {0, 1, . . . , p − 1}Z, and define μ as the infinite product measure using some
fixed probability vector v = (v0, . . . , vp−1) 	= ( 1p , . . . ,

1
p ). We note that the map

α : x �→ px defined by multiplication with p (which corresponds to shifting the
sequences) preserves the measure μ and acts ergodically w.r.t. μ (in fact as one can
check directly it is mixing w.r.t. μ which as mentioned before implies ergodicity).
Note also that α preserves the foliation into Qp-orbits and in fact contracts them,
i.e., α(x+Qp) = α(x)+Qp and α(x+ t) = α(x)+ pt for t ∈ Qp and pt is p-adically
smaller than t. Finally note that the Qp-action does not preserve the measure
μ unless v = ( 1p , . . . ,

1
p ). In this case there is very little difference to the above

example on T
2 – the leaf-wise measures end up being Haar measures on Qp. So let

us assume the almost opposite extreme: suppose v0, . . . , vp−1 ∈ (0, 1) and no two
components of v are equal.

Let A be the countably generated σ-algebra (contained in the Borel σ-algebra
of X) whose atoms are the Zp-orbits; it is generated by the cylinder sets of the
form {x : x(i) = εi for 1 ≤ i ≤ N} for any N > 0 and all possible finite sequences
(ε1, . . . , εN ) ∈ {0, . . . , p − 1}N . Equivalently, the A-atoms are all sequences that
agree with a given one on all coordinates for i ≥ 1 so that the atom has the struc-
ture of a one-sided shift space. By independence of the coordinates (w.r.t. μ) the
conditional measures μA

x are all Bernoulli i.i.d. measures according to the original
probability vector v of μ; in other words, a random element of [x]A according to
μA
x is a sequence {y(i)} such that y(i) = x(i) for i ≥ 1, and the digits y(i) for
−∞ < i ≤ 0 are picked independently at random according to the probability
vector defining μ.

What does μT
x look like (where T = Qp)? For this notice that Zp is open in

Qp, so that the atoms for A are open T -plaques. Therefore, if we restrict μT
x to the

subgroup U = Zp of T = Qp, we should get by Theorem 6.3 (iv) that

x+ μT
x |U ∝ μA

x .

To understand this better, let’s examine what a random point of 1
μT
x (U)

μT
x |U looks

like. Of course, an element belonging to Zp corresponds to a sequence {t(i)}0i=−∞;
how are the digits t(i) distributed? Recall that if we translate by x, the resulting
digits (t + x)(i) (with addition formed in Zp where the carry goes to the left)
should be randomly selected according to the original probability vector. Hence the
probability of t(0) = ε with respect to the normalized μT

x |U becomes the original
probability vε+x(0) of selecting the digit ε+ x(0). By our assumption on the vector
v this shift in the distribution determines x(0). However, by using σ-algebras
whose atoms are orbits of pnZp for all n ∈ Z we conclude that μT

x determines all
coordinates of x and hence x! (Of course had we used the theorem to construct the
leaf-wise measures instead of directly finding it by using the structure of the given
measure then the leaf-wise measure would only be defined on a set of full measure
and the above conclusion would only hold on a set of full measure.)

This example shows that the seemingly mild assumption (which we will see
satisfied frequently later) that there are different points with the same leaf-wise
measures (after moving the measures to T as we did) is a rather special property
of the underlying measure μ.

6.5.3. The final example is really more than an example – it is the reason we
are developing the theory of leaf-wise measures and we will return to it in great
detail (and greater generality) in the following sections. Let G be a Lie group, let T
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be a closed subgroup, and let Γ be a discrete subgroup of G. Then T acts by right
translation on X = Γ\G, i.e., for t ∈ T and x = Γg ∈ X we may define t.x = xt−1.
For a probability measure μ on X we have therefore a system of leaf-wise measures
μT
x defined for a.e. x ∈ X (provided the injectivity requirement is satisfied a.e.)

which as we will see describes the properties of the measure along the direction of
T . Moreover, if right translation by some a ∈ G preserves μ, then with the correctly
chosen subgroup T (namely the horospherical subgroups defined later) the leaf-wise
measures for T will allow us to describe entropy of a w.r.t. μ.

The following definition and the existence established in Proposition 6.7 estab-
lished afterwards will be a crucial tool for proving Theorem 6.3.

6.6. Definition. Let E ⊂ X be measurable and let r > 0. We say C ⊂ X is an
r-cross-section for E if

(i) C is Borel measurable,
(ii) |BT

r+1.x ∩ C| = |BT
1 .x ∩ C| = 1 for all x ∈ E ∪ C,

(iii) t ∈ BT
r+1 �→ t.x is injective for all x ∈ C,

(iv) BT
r+1.x ∩BT

r+1.x
′ = ∅ if x 	= x′ ∈ C, and

(v) the restriction of the action map (t, x) �→ t.x to BT
r+1 × C → BT

r+1.C ⊇
BT

r .E is a Borel isomorphism.

The second property describes the heart of the definition; the piece BT
r+1.x

of the T -orbit through x ∈ E intersects C exactly once which justifies the term
cross-section, see Figure 2. Also note that by the second property there is for

E

C

Figure 2. E (the circle) needs to be “small enough” in order for
an r-cross section C (the vertical line through the circle) to exist.
Otherwise, there may be large returns of points in E to E (in
the picture if the circle is just a bit bigger) along the action of T
(indicated by the curved lines).

every x ∈ E some t ∈ BT
1 with t.x = x′ ∈ C. Hence, by right invariance of the

metric on T we have BT
r t

−1 ⊂ BT
r+1 and so the inclusion BT

r+1.C ⊇ BT
r .E stated in

the final property follows from the second property. Moreover, it is clear that the
restriction of the continuous action is measurable, so the only requirement in the
final property is injectivity of the map and the Borel measurability of the inverse.
However, injectivity of this map is precisely the assertion in property (iii) and
(iv). Finally, the measurability of the image and the inverse map are guaranteed
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by a general fact, see [Sri98, §4.5], saying that the image and the inverse of an
injective Borel map are again Borel measurable. The reader who is unfamiliar with
this theorem may construct (replacing the following general proposition) concrete
cross-sections of sufficiently small balls in the important example in §6.5.3 using
a transverse subspace to the Lie algebra of T inside the Lie algebra of G. This
way one may obtain a compact cross-section and this implies measurability of the
inverse map rather directly as the restriction of a continuous map to a compact set
has compact image and a continuous inverse.

6.7. Proposition. Let T act continuously on X satisfying the assumptions dis-

cussed in the beginning of this section. Assume x0 ∈ X is such that t ∈ BT
r+1 �→ t.x0

is injective for some r > 1. Then there exists some δ > 0 such that for all
x ∈ E = Bδ(x0) the map t ∈ BT

r+1 �→ t.x is also injective and such that t.x = t′.x′

for some x, x′ ∈ E and t, t′ ∈ BT
r+1 implies t′t−1, t−1t′ ∈ BT

1 and so x′ ∈ BT
1 .x.

Moreover, there exists some C ⊂ E which is an r-cross-section for E.

6.8. Problem. Prove the proposition in the case where X = Γ\G for a Lie
group G (or a p-adic Lie group) and a closed subgroup T < G by using a transverse
to the Lie algebra of T as suggested above. The reader interested in only these
cases may continue with §6.14.

6.9. Proof, Construction of E. If for every δ there exists some xδ ∈
Bδ(x0) for which the restricted action t ∈ BT

r+1 �→ t.xδ fails to be injective then

there are tδ 	= t′δ ∈ BT
r+1 with tδ.xδ = t′δ.xδ. Choosing converging subsequences

of tδ, t
′
δ we get t, t′ ∈ BT

r+1 with t.x0 = t′.x0. Moreover, we would have t 	= t′ as
otherwise we would get a contradiction to the uniform local freeness of the action

in §6.1 for the compact set BT
r+1.Bε(x0) (where ε is small enough so that Bε(x0) is

compact).
Similarly, if for every δ > 0 there are xδ, x

′
δ ∈ Bδ(x0) and tδ, t

′
δ ∈ BT

r+1 so

that tδ.xδ = t′δ.x
′
δ then in the limit we would have t, t′ ∈ BT

r+1 with t.x0 = t′.x0.
By assumption this implies t = t′, which shows that for sufficiently small δ, we

must have t′δt
−1
δ , t−1

δ t′δ ∈ BT
1 as claimed. Also notice that

(
BT

1

)−1
= BT

1 by right
invariance of the metric.

We now fix some δ > 0 with the above properties and let E = Bδ/2(x0). Below

we will construct a Borel subset C ⊂ E such that |BT
1 .x ∩ C| = 1 for all x ∈ E.

This implies that C is an r-cross-section by the above properties: t ∈ BT
r+1 and

x ∈ E with t.x ∈ C ⊂ E implies t ∈ BT
1 and so property (ii) of the definition

holds. Injectivity of t ∈ BT
r+1 �→ t.x for all x ∈ E we have already checked. For

the property (iv), note that x, x′ ∈ C and t, t′ ∈ BT
r+1 with t.x = t′.x implies

x = t−1t′.x′ ∈ BT
1 .x

′ by the construction of E and so x = x′ by the assumed
property of C. As explained after the definition the last property follows from the
first four. Hence it remains to find a Borel subset C ⊂ E with |BT

1 .x ∩ C| = 1 for
all x ∈ E.

6.10. Outline of construction of C. We will construct C by an inductive
procedure where at every stage we define a set Cn+1 ⊂ Cn such that for every
x ∈ E the set {t ∈ BT

1 : t.x ∈ Cn} is nonempty, compact, and the diameter of this
set decreases to 0 as n→∞.
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6.11. Construction of Pw. For the construction of Cn we first define for
every n a partition of E which refines all prior partitions: For n = 1 we choose a
finite cover of E by closed balls of radius(21) 1, choose some order of these balls,
and define P1 to be the first ball in this cover intersected with E, P2 the second ball
intersected with E minus P1, and more generally if P1, . . . , Pi have been already
defined then Pi+1 is the (i + 1)-th ball intersected with E and with P1 ∪ · · · ∪ Pi

removed from it.
For n = 2 we cover P1 by finitely many closed balls of radius 1/2 and construct

with the same algorithm as above a finite partition of P1 into sets P1,1, . . . , P1,i1 of
diameter less than 1/2. We repeat this also for P2, . . .

Continuing the construction we assume that we already defined the sets Pw

where w is a word of length |w| ≤ n (i.e., w is a list of m natural numbers and m is
called the length |w|) with the obvious compatibilities arising from the construction:
for any w of length |w| = m ≤ n− 1 the sets Pw,1, Pw,2, . . . (there are only finitely
many) all have diameter less than 1/m and form a partition of Pw.

Roughly speaking, we will use these partitions to make decisions in a selection
process: Given some x ∈ E we want to make sure that there is one and only one
element of the desired set C that belongs to BT

1 .x. Assuming this is not the case
for C = E (which can only happen for discrete groups T ) we wish to remove, in
some inductive manner obtaining the sets Cn along the way, some parts of E so as
to make this true for the limiting object C =

⋂
n Cn. Removing too much at once

may be fatal as we may come to the situation where BT
1 .x ∩ Cn is empty for some

x ∈ E. The partition elements Pw give us a way of ordering the elements of the
space which we will use below.

6.12. Definition of Qw and Cn. From the sequence of partitions defined
by {Pw : w is a word of length n} we now define subsets Qw ⊂ Pw to define
the Cn: We let Q1 = P1, and let Q2 = P2 \ BT

1 .Q1, i.e. we remove from P2 all
points that already have on their BT

1 -orbit a point in Q1. More generally, we define
Qi = Pi \

(
BT

1 .(Q1 ∪ · · · ∪Qi−1)
)
for all i and define C1 =

⋃
i Qi (which as before

is just a finite union). We now prove the claim from §6.10 for n = 1 that for every
x ∈ E the set {t ∈ BT

1 : t.x ∈ C1} is nonempty and compact. Here we will use
without explicitly mentioning, as we will also do below, the already established fact
that t ∈ BT

2 and x, t.x ∈ E implies t ∈ BT
1 (note that by assumption r > 1). If i is

chosen minimally with BT
1 .x ∩ Pi nonempty, then

{t ∈ BT
1 : t.x ∈ C1} = {t ∈ BT

1 : t.x ∈ Qi} =

{t ∈ BT
1 : t.x ∈ Pi} = {t ∈ BT

1 : t.x ∈ P1 ∪ · · · ∪ Pi}.

Now note that P1 ∪ · · · ∪ Pi is closed by the above construction (we used closed
balls to cover E and P1 ∪ · · · ∪ Pi equals the union of the first i balls intersected
with E, a closed ball itself), and so the claim follows for n = 1 and any x ∈ E.

Proceeding to the general case for n, we assume Qw ⊂ Pw has been defined
for |w| = m < n with the following properties: we have Qw,i ⊂ Qw for i = 1, 2, . . .
and for all |w| < n − 1, for |w| = |w′| < n and w 	= w′ the sets BT

1 .Qw and
BT

1 .Qw′ are disjoint, and the claim holds for Cm =
⋃
{Qw : |w| = m} and all

m < n. Now fix some word w of length n − 1, we define Qw,1 = Qw ∩ Pw,1,

(21)We ignore, for simplicity of notation, the likely possibility that δ < 1.
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Qw,2 = Qw ∩ Pw,2 \ (BT
1 .Qw,1), and for a general i we define inductively

Qw,i = Qw ∩ Pw,i \
(
BT

1 .(Qw,1 ∪ · · · ∪Qw,i−1)
)
.

By the inductive assumption we know that for a given x ∈ E there is some w of
length n− 1 such that the set

(6.12a) {t ∈ BT
1 : t.x ∈ Cn−1} = {t ∈ BT

1 : t.x ∈ Qw}

is closed and nonempty. Choose i minimally such that BT
1 .x∩Qw,i (or equivalently

BT
1 .x ∩Qw ∩ Pw,i) is nonempty, then as before

(6.12b) {t ∈ BT
1 : t.x ∈ Cn} = {t ∈ BT

1 : t.x ∈ Qw,i} ={
t ∈ BT

1 : t.x ∈ Qw ∩ (Pw,1 ∪ · · · ∪ Pw,i)
}

is nonempty. Now recall that by construction Pw,1 ∪ · · · ∪ Pw,i is relatively closed
in Pw, so that the set in (6.12b) is relatively closed in the set in (6.12a). The latter
is closed by assumption which concludes the induction that indeed for every n the
set {t ∈ BT

1 : t.x ∈ Cn} is closed and nonempty.

6.13. Conclusion. The above shows that Cn =
⋃

w Qw (where the union
is over all words w of length n) satisfies the claim that {t ∈ BT

1 : t.x ∈ Cn} is
compact and non-empty for every x ∈ E. Therefore, C =

⋂
n Cn ⊂ E satisfies

that C ∩ BT
1 .x 	= ∅ for every x ∈ E. Suppose now t1.x, t2.x ∈ C for some x ∈ E

and t1, t2 ∈ BT
1 . Fix some n ≥ 1. Recall that {t ∈ BT

1 : t.x ∈ Cn} = {t ∈ BT
1 :

t.x ∈ Qw} for some Qw corresponding to a word w of length n. As the diameter of
Qw ⊂ Pw is less than 1/n we have d(t1.x, t2.x) < 1/n. This holds for every n, so
that t1.x = t2.x and so t1 = t2 as required. �

6.14. σ-algebras. Proposition 6.7 allows us to construct σ-algebras as they
appear in Theorem 6.3(iv) in abundance. In fact we have found closed balls E and
r-cross-sections C ⊂ E such that BT

r+1×C is measurably isomorphic to Y = BT
r+1.C

(with respect to the natural map) so that we may take the countably generated σ-
algebra on BT

r+1×C whose atoms are of the form BT
r+1×{z} for z ∈ C and transport

it to Y via the isomorphism. As we will work very frequently with σ-algebras of
that type we introduce a name for them.

6.15. Definition. Let r > 1. Given two measurable subsets E ⊂ Y of X and a
countably generated σ-algebra A of subsets of Y , we say that (Y,A) is an (r, T )-
flower with base E, if and only if:

(i) For every x ∈ E, we have that [x]A = Ux.x is an open T -plaque such that
BT

r ⊂ Ux ⊂ BT
r+2.

(ii) Every y ∈ Y is equivalent to some x ∈ E, i.e., the atom [y]A = [x]A is
always an open T -plaque intersecting E nontrivially.

We note that often the cross-section C will be a nullset (for the measure μ on
X), but that the base E will not be a null set, hence it is important to introduce it
— it may be thought of as a slightly thickened version of the cross-section so that
we still know the rough shape of the atoms as required in (i). We may visualize
the flower and the base using Figure 2. The base is the circle and the flower is the
σ-algebra on the tube-like set whose atoms are the curved lines.
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6.16. Corollary. Assume as in Theorem 6.3 that t �→ t.x for t ∈ T is injective
for μ-a.e. x ∈ X. Then for every n there exists a countable list of (n, T )-flowers
such that the union of their bases is a set of full measure. In other words, there
exists a countable collection of σ-algebras Ak of Borel subsets of Borel sets Yk for
k = 1, 2, . . . such that all of the Ak-atoms are open T -plaques for all k, and such
that for a.e. x ∈ X and all n ≥ 1 there exists k such that the Ak-atom [x]Ak

contains BT
n .x.

6.17. Proof. By our assumption there exists a set X0 of full measure such
that t ∈ T �→ t.x0 is injective for x ∈ X0. Fix some n. By Prop. 6.7 applied to
r = n there exists an uncountable collection of closures Ex of balls for x ∈ X0 such
that x is contained in the interior E◦

x and there is an n-cross-section Cx ⊂ Ex for
x ∈ X0. Since X is second countable, there is a countable collection of these sets
Cm ⊂ Em for which the union of the interiors is the same as the union of interiors
of all of them.

As Cm is an n-cross-section for Em, we have that BT
n+1.Cm ⊃ BT

n .Em and

that BT
n+1 × Cm is measurably isomorphic to Ym = BT

n+1.Cm. We now define Am

to be the σ-algebra of subsets of Ym which corresponds under the isomorphism to
{BT

n+1, ∅}⊗BCm
— here BCm

is the Borel σ-algebra of the set Cm. It is clear that
Am is an (n, T )-flower with base Em. Using this construction for all n, we get the
countable list of (n, T )-flowers as required. �

It is natural to ask how the various σ-algebras in the above corollary fit together,
where the next lemma gives the crucial property.

6.18. Lemma. Let Y1, Y2 be Borel subsets of X, and A1,A2 be countably generated
σ-algebras of Y1, Y2 respectively, such that atoms of each Ai are open T -plaques.
Then the σ-algebras C1 := A1|Y1∩Y2

and C2 := A2|Y1∩Y2
are countably equivalent.

6.19. Proof. Let x ∈ Y1∩Y2, and consider [x]C1
= [x]A1

∩Y2. By this and the
assumption on A1 there exists a bounded set U ⊂ T such that [x]C1

= U.x. Now,
for each t ∈ U , we have the open T -plaque [t.x]A2

, which must be of the form Ut.x
for some open, bounded Ut ⊂ T . Now the collection {Ut}t∈U covers U , and since
T is locally compact second countable, there exists a countable subcollection of the
{Ut} covering U . But this means that a countable collection of atoms of A2 covers
[x]C1

; we then intersect each atom with Y1 to get atoms of C2. Switch C1 and C2
and repeat the argument to get the converse. �

6.20. Proof of Theorem 6.3, beginning. We now combine Corollary 6.16,
Lemma 6.18, and Proposition 5.17: Let Ak be the sequence of σ-algebras of subsets
of Yk as in Corollary 6.16. We define Yk,� = Yk ∩ Y� and get that (Ak)|Yk,�

and
(A�)|Yk,�

are countably equivalent by Lemma 6.18. By Proposition 5.17 we get that

(6.20a) μAk
x |[x]A�

and μA�
x |[x]Ak

are proportional for a.e. x ∈ Yk,� (where we used additionally that the conditional
measure for μ|Yk,�

with respect to the σ-algebra Ak|Yk,�
is just the normalized

restriction of μAk
x to Yk,�). Also recall that by Theorem 5.9(iii) for every k there is a

null set in Yk such that for x, y ∈ Yk not belonging to this null set and [x]Ak
= [y]Ak

we have μAk
x = μAk

y . We collect all of these null sets to one null set N ⊂ X and let
X ′′ be the set of all points x ∈ X \N for which t �→ t.x is injective. By construction
of Ak we have [x]Ak

= Ux,k.x for some open and bounded Ux,k ⊂ T . For a bounded
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measurable set D ⊂ T and x ∈ X ′′ we define

(6.20b) μT
x (D) =

1

μAk
x (BT

1 .x)
μAk
x (D.x)

where we choose k such that D.x ⊂ [x]Ak
which by the construction of the se-

quence of σ-algebras, i.e., by Corollary 6.16, is possible. Notice this definition is
independent of k by the proportionality of the conditional measures in (6.20a).

However, we need to justify this definition by showing that the denominator
does not vanish, at least for a.e. x ∈ X ′′. We prove this in the following lemma
which will also prove Theorem 6.3(v).

6.21. Lemma. Suppose A is a countably generated sub-σ-algebra of Borel subsets
of a Borel set Y ⊂ X. Suppose further that the A-atoms are open T -plaques. Let
U ⊂ T be an open neighborhood of the identity. Then for μ-a.e. x ∈ Y , we have
μA
x (U.x) > 0.

6.22. Proof. Set B = {x ∈ Y ′ : μA
x (U.x) = 0}, where Y ′ ⊂ Y is a subset of

full measure on which the conclusion of Theorem 5.9(iii) holds. We wish to show
that μ(B) = 0, and since we can integrate first over the atoms and then over the
space (Theorem 5.9(i) and Proposition 4.1), it is sufficient to show for each x ∈ Y ′

that μA
x (B) = μA

x ([x]A∩B) = 0. Now since atoms of A are open T -plaques, we can
write [x]A = (Ux).x. Set Vx ⊂ Ux to be the set of those t such that t.x ∈ [x]A ∩B.

Now clearly the collection {Ut}t∈Vx
covers Vx, and we can find a countable

subcollection {Uti}∞i=1 that also covers Vx. This implies that {(Uti).x}∞i=1 covers
[x]A ∩B by definition of Vx, so we have

μA
x ([x]A ∩B) ≤ μA

x (
∞⋃
i=1

(Uti).x) ≤
∞∑
i=1

μA
x ((Uti).x)

On the other hand, ti.x ∈ B, so by definition of B we have that each term
μA
x ((Uti).x) = μA

x (U.(ti.x)) on the right-hand side is 0. �

6.23. Proof of Theorem 6.3, summary. We let X ′ ⊂ X ′′ be a subset
of full measure such that the conclusion of Lemma 6.21 holds for the σ-algebra
Ak, all x ∈ Yk ∩ X ′, all k, and every ball U = BT

1/n for all n. This shows that

for x ∈ X ′ the expression on the right of (6.20b) is well defined. By the earlier
established property it is also independent of k (as long as D.x ⊂ [x]Ak

as required
before). Therefore, (6.20b) defines a Radon measure on T satisfying Theorem 6.3
(v). Property (iii) follows directly from the definition and the requirement that
for x, g.x ∈ X ′′ ∩ Yk with [x]Ak

= [g.x]Ak
(which will be the case for many k) we

have μAk
x = μAk

g.x, where we may have a proportionality factor appearing as μT
x is

normalized via the set BT
1 .x and μT

g.x is normalized via the set BT
1 g.x. Property

(iv) follows from Lemma 6.18 and Proposition 5.17 similar to the discussion in 6.20.
We leave property (ii) to the reader. �

We claimed before that the leaf-wise measure describes properties of the mea-
sure μ along the direction of the T -leaves, we now give three examples of this.

6.24. Problem. The most basic question one can ask is the following: What
does it mean to have μT

x ∝ δe a.e.? Here δe is the Dirac measure at the identity of
T , and this case is often described as the leaf-wise measures are trivial a.e. Show
this happens if and only if there is a global cross-section of full measure, i.e., if
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there is a measurable set B ⊂ X with μ(X \ B) = 0 such that x, t.x ∈ B for some
t ∈ T implies t = e.

6.25. Definition. Suppose we have a measure space X, a group T acting on X,
and μ a locally finite measure on X. Then μ is T -recurrent if for every measurable
B ⊂ X of positive measure, and for a.e. x ∈ B, the set {t : t.x ∈ B} is unbounded
(i.e., does not have compact closure in T ).

6.26. Theorem. Let X,T, μ be as before, and suppose additionally that μ is a
probability measure. Then μ is T -recurrent if and only if μT

x is infinite for almost
every x.

6.27. Proof. Assume T -recurrence. Let Y = {x : μT
x (T ) < ∞}, and suppose

that μ(Y ) > 0. We may find a sufficiently large n such that the set Y ′ = {x ∈ Y :
μT
x (B

T
n ) > 0.9μT

x (T )} also has positive measure. We will show that, for any y ∈ Y ′,
the set of return times {t : t.y ∈ Y ′} is bounded; in fact, that {t : t.y ∈ Y ′} ⊂ BT

2n

for any y ∈ Y ′. Since μ(Y ′) > 0, this then shows that μ is not T -recurrent.
Pick any return time t. By definition of Y ′, we know that μT

y (B
T
n ) > 0.9μT

y (T )

and μT
t.y(B

T
n ) > 0.9μT

t.y(T ). On the other hand, from Theorem 6.3.(iii) we know

that μT
t.y ∝ (μT

y )t, so that we have μT
y (B

T
n t) > 0.9μT

y (Tt) = 0.9μT
y (T ). But now

we have two sets BT
n and BT

n t of very large μT
y measure, and so we must have

BT
n ∩BT

n t 	= ∅. This means t ∈ (BT
n )

−1BT
n , as required.

Assume now that the leaf-wise measures satisfy μT
x (T ) = ∞ for a.e. x, but μ

is not T -recurrent. This means there exists a set B of positive measure, and some
compact K ⊂ T such that {t : t.x ∈ B} ⊂ K for every x ∈ B.

We may replace B by a subset of B of positive measure and assume that
B ⊂ E for a measurable E ⊂ X for which there is an r-cross-section C ⊂ E as
in Proposition 6.7, where we chose r sufficiently big so that BT

r ⊃ BT
1 KBT

1 . Let
(BT

r+1.C,A) be the (r, T )-flower for which the atoms are of the form BT
r+1.z for

z ∈ C. As C is a cross-section, the atoms of A are in one-to-one correspondence
with elements of C. We define D = {z ∈ C : μA

z (B) > 0}, where we may require
that μA

x is defined on a setX ′ ∈ A and is strictlyA-measurable by removing possibly
a null set from B. Therefore, the definition of D as a subset of the likely nullset
C makes sense. Note that B \ (BT

r+1.D) is a null set, and so we may furthermore

assume B ⊂ BT
1 .D by the properties of C and E in Proposition 6.7.

Suppose now t.z = t′.z′ for some t, t′ ∈ T and z, z′ ∈ D. By construction of D
and by Proposition 6.7 we may write z = tx.x and z′ = tx′ .x′ for some tx, tx′ ∈ BT

1

and x, x′ ∈ B. Therefore, ttx.x = t′tx′ .x′ which implies that t−1
x′ (t′)−1ttx ∈ K by

the assumed property of B. Thus (t′)−1t ∈ BT
1 KBT

1 ⊂ BT
r , which implies t = t′

and z = z′ since C ⊃ D is an r-cross-section. This shows that for every n we have
that BT

n+1 ×D → BT
n+1.D is injective and just as in Corollary 6.16 this gives rise

to the (n, T )-flower (BT
n+1.D,An) with center BT

1 .D such that the atoms are of the

form BT
n+1.z for z ∈ D.

By Theorem 6.3.(iv), we know that

μAn
x (B) =

μT
x

(
{t ∈ Ux,n : t.x ∈ B}

)
μT
x (Ux,n)

for a.e. x ∈ BT
n .D. Here Ux,n ⊂ T is the shape of the atom, i.e., is such that [x]An

=
Ux,n.x. Clearly, for z ∈ D we have Uz,n = BT

n+1 by construction. Therefore, we
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have for y ∈ B ⊂ E ⊂ BT
1 .C that Uy,n ⊃ BT

n . Also recall that by assumption
y ∈ B, t ∈ T , and t.y ∈ B implies t ∈ K. Together we get for a.e. y ∈ B that

μAn
y (B) ≤

μT
y (K)

μT
y (B

T
n )

,

which approaches zero for a.e. y ∈ B as n → ∞ by assumption on the leaf-wise
measures.

We define
B′ = {y ∈ B : μAn

y (B)→ 0},
which by the above is a subset of B of full measure. We also define the function fn
by the rule fn(x) = 0 if x /∈ BT

n .D and fn(x) = μAn
x (B′) if x ∈ BT

n .D. Clearly, if

y /∈ T.D then fn(y) = 0 for all n. While if y ∈ BT
n0
.D and fn0

(y) = μ
An0
x (B′) > 0

for some n0 then we may find some x ∈ B′ equivalent to y with respect to all An

for n ≥ n0, so that fn(y) = fn(x) for n ≥ n0 by the properties of conditional
measures. Therefore, fn(y)→ 0 for a.e. y ∈ X. By dominated convergence (μ is a
finite measure by assumption and fn ≤ 1) we have

μ(B) =

∫
BT

n .D

μAn
x (B′)dμ =

∫
fndμ→ 0,

i.e., μ(B) = 0 contrary to the assumptions.�

6.28. Problem. With triviality of leaf-wise measures as one possible extreme
for the behavior of μ along the T -leaves and T -recurrence in between, on the oppo-
site extreme we have the following fact: μ is T -invariant if and only if the leaf-wise
measures μT

x are a.e. left Haar measures on T . Show this using the flowers con-
structed in Corollary 6.16.

6.29. Normalization. One possible normalization of the leaf-wise measure
μT
x , which is uniquely characterized by its properties up to a proportionality factor,

is to normalize by a scalar (depending on x measurably) so that μT
x (B

T
1 ) = 1.

However, under this normalization we have no idea how big μT
x (B

T
n ) can be for

n > 1.
It would be convenient if the leaf-wise measures μT

x would belong to a fixed
compact metric space in a natural way — then we could ask (and answer in a
positive manner) the question whether the leaf-wise measures depend measurably
on x where we consider the natural Borel σ-algebra on the compact metric space.
Compare this with the case of conditional measures μA

x for a σ-algebra A and
a finite measure μ on a compact metric space X, here the conditional measures
belong to the compact metric space of probability measures on X (where we use
the weak∗ topology on the space of measures). Unfortunately, the lack of a bound of
μT
x (B

T
2 ) shows, with μT

x normalized using the unit ball, that the leaf-wise measures
do not belong to a compact subset in the space of Radon measures (using the
weak∗ topology induced by compactly supported continuous functions on T ). For

that reason we are interested(22) in the possibly growth rate of μT
x (B

T
n ), so that we

can introduce a different normalization with respect to which we get values in a
compact metric space.

(22)While convenient, this theorem is not completely necessary for the material presented in
the following sections. The reader who is interested in those could skip the proof of this theorem
and return to it later.
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6.30. Theorem. Assume in addition to the assumptions of Theorem 6.3 that μ
is a probability measure on X and that T is unimodular. Denote the bi-invariant
Haar measure on T by λ. Fix weights bn such that

∑∞
n=1 b

−1
n < ∞ (eg., think of

bn = n2) and a sequence rn ↗∞. Then for μ-a.e. x we have

lim
n→∞

μT
x (B

T
rn)

bnλ(BT
rn+5)

= 0

where BT
r is the ball of radius r around e ∈ T .

In other words, the leaf-wise measure of big balls BT
rn can’t grow much faster

than the Haar measure of a slightly bigger ball BT
rn+5. This is useful as it gives

us a function f : T → R
+ which is integrable w.r.t. μT

x for a.e. x ∈ X, e.g.
f(x) = 1

b2nλ(B
T
rn+5)

for x ∈ BT
rn \ BT

rn−1
. Hence we may normalize μT

x such that∫
T
fdμT

x = 1 and we get that μT
x belongs to the compact metric space of measures

ν on T for which
∫
T
fdν ≤ 1, where the latter space is equipped with the weak∗

topology induced by continuous functions with compact support. Hence it makes
sense, and this is essentially Theorem 6.3.(ii), to ask for measurable dependence of
μT
x as a function of x.

Before proving this theorem, we will need the following refinement regarding
the existence of (r, T )-flowers.

6.31. Lemma. For any measurable set B ⊂ X, R > 0, we can find a countable
collection of (R, T )-flowers (Yk,Ak) with base Ek so that

(i) any x ∈ X is contained in only finitely many bases Ek, in fact the mul-
tiplicity is bounded with the bound depending only on T ,

(ii) μ(B \
⋃

k Ek) = 0,
(iii) for every x ∈ Ek there is some y ∈ [x]Ak

∩Ek ∩B so that

BT
1 .y ⊂ [x]Ak

∩ Ek,

for any two equivalent(23) x, y ∈ Ek we have [x]Ak
∩Ek ⊂ BT

4 .y, and
(iv) for every x ∈ Yk there is some y ∈ [x]Ak

∩Ek ∩B.

The third property may, loosely speaking, be described as saying that for points
x in the base Ek we require that there is some y ∈ B∩Ek equivalent to x such that
y is deep inside the base Ek (has distance one to the complement) in the direction
of T .

6.32. Proof. By Corollary 6.16 we already know that we can cover a subset
of full measure by a countable collection of bases Ẽk of (R+ 1, T )-flowers (Ỹk, Ãk)

such that additionally there is some (R+2)-cross-section C̃k ⊂ Ẽk, Ỹk = BT
R+2.C̃k,

and Ẽk ⊂ BT
1 .C̃k. We will construct Yk by an inductive procedure as subsets of Ỹk

and will use the restriction Ak of Ãk to Yk as the σ-algebra.
For k = 1 we define

(6.32a) Y1 =
{
x ∈ Ỹ1 : μÃ1

x (B ∩ Ẽ1) > 0
}
,

and A1 = Ã1|Y1
. By definition we remove from Ỹ1 complete atoms to obtain Y1,

so that the shape of the remaining atoms is unchanged. From this it follows that

(23)Recall that x and y are equivalent w.r.t. Ak if [x]Ak
= [y]Ak

.
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(Y1,A) is an (R + 1, T )-flower with base Ẽ1 ∩ Y1. Also note that B ∩ Ẽ1 ∩ Y1 is a

subset of full measure of B ∩ Ẽ1 (cf. (5.11a) and (6.32a)). We define

E1 = BT
2 .(C̃1 ∩ Y1) ⊃ Ẽ1 ∩ Y1,

where the inclusion follows because Ẽ1 ⊂ BT
1 .C̃1 holds by construction of the orig-

inal flowers. Since we constructed Y1 by removing whole atoms from Ỹ1, we obtain
E1 ⊂ Y1.

Finally, by definition of Y1 we have μA1
x (B ∩ Ẽ1) > 0 for every x ∈ E1 ⊂ Y1, so

there must indeed be some y ∈ B ∩ Ẽ1 which is equivalent to x. Again because Y1

was obtained from Ỹ1 by removing entire atoms, we have y ∈ Ẽ1 ∩ Y1. Moreover,
y ∈ BT

1 .C1 so that BT
1 .y ⊂ (BT

2 .C1) ∩ Y1 = E1. The conclusions in (iii) follow now
easily for the case k = 1. At last notice that (Y1,A1) is an (R, T )-flower with base
E1.

For a general k we assume that we have already defined for any 
 < k an
(R, T )-flower (Y�,A�) with bases E� satisfying: Y� ⊂ Ỹ� is obtained by removing

entire Ã�-atoms, A� = Ã�|Y�
, properties (iii) and (iv) hold, and that B ∩

⋃
�<k E�

contains B ∩
⋃

�<k Ẽ� except possibly for a nullset. The latter is the inductive
assumption regarding (ii) as at the end of the construction it will imply (ii) by the

assumption that the bases Ẽj for j = 1, 2, . . . cover a set of full measure.
We now define

Yk =
{
x ∈ Ỹk : μÃk

x

(
B ∩ Ẽk \

⋃
�<k

E�

)
> 0
}
,

which as before is Ỹk minus a union of complete Ãk-atoms. In particular, we again
get that (Yk,Ak) (with Ak = Ãk|Yk

) is an (R+ 1, T )-flower with base Ẽk ∩ Yk and

that B ∩ Ẽk \
⋃

�<k E� is contained in Ẽk ∩ Yk except possibly for a null set. The
latter ensures the inductive assumption regarding (ii) if we define Ek as a superset

of Ẽk ∩ Yk. We define Ek = BT
2 .(Yk ∩ Ck) which implies Ẽk ∩ Yk ⊂ Ek and also

property (iii) similar to the case k = 1. Indeed, if x ∈ Ek, then x = t.z for some
t ∈ BT

2 and z ∈ Yk ∩ Ck which implies

μAk
z

(
B ∩ Ẽk \

⋃
�<k

E�

)
> 0

by definition of Yk. Hence there is some y ∈ B ∩ Ẽk equivalent to z (and to x) with

y = ty.z for some ty ∈ BT
1 by the properties of Ẽk. This implies BT

1 .y ⊂ Ek as
required.

Suppose now we have completed the above construction defining Yk and Ek

and assume that x belongs to Ek1
, Ek2

, . . . , Ekm
for some k1 < k2 < · · · < km. We

wish to bound m in order to proof (i). By property (iii) we know for j = 1, . . . ,m
that x = tj .yj for some tj ∈ BT

1 and yj ∈ Ekj
∩B. In fact, by the construction we

know that yj ∈ B ∩ Ẽkj
\
⋃

�<kj
E�. Also notice that

t−1
j ti.yi = t−1

j .x = yj for any pair i, j.

However, since BT
1 .yi ⊂ Eki

for i < j we must have t−1
j ti /∈ BT

1 . As the metric

on T is assumed to be right invariant we conclude that the elements t−1
1 , . . . , t−1

km

have all distance ≥ 1, and so m is bounded by the maximal number of 1-separated
elements of BT

1 which has compact closure. This proves (i). �
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6.33. Proof of Theorem 6.30. We fix some δ > 0, and some integer M .
We define

Bm =

{
y :

μT
y (B

T
rn)

μT
y (B

T
4 )
≥ bnδ

λ(BT
rn+5)

λ(BT
4 )

for at least m different n ≤M

}
.

We want to give a bound on μ(Bm) which will be independent of M and tends to
0 as m→∞. Let R = rM , and let Ei and Ai be as in Lemma 6.31. (Note that by
the choice of R the sequence of σ-algebras depends crucially on M .)

Consider the function

G =
M∑
n=1

∞∑
i=1

wnχBT
rn

.Ei

with wn = 1
bnλ(BT

rn+5)
and where χA denotes the characteristic function of a set A.

We claim that G is bounded, with the bound independent of M .
Fixing n and x, let I =

{
i : x ∈ BT

rn .Ei

}
. For each i ∈ I, let h′

i ∈ BT
rn be such

that h′
i.x ∈ Ei, and by Lemma 6.31.(iii), we can modify h′

i to some hi ∈ BT
rn+4 so

that BT
1 hi.x ⊂ [x]Ai

∩ Ei.
As the multiplicity of the sets E1, E2, . . . is bounded by some constant c1 (that

only depends on T ) and since BT
1 hi.x ⊂ Ei we get that∑

i∈I

χBT
1 hi

≤ c1χBrn+5
.

This implies that |I|λ(BT
1 ) ≤ c1λ(B

T
rn+5). We conclude that

∞∑
i=1

wnχBT
rn

.Ei
(x) ≤ wn |I| ≤

c1λ(B
T
rn+5)

bnλ(BT
1 )λ(B

T
rn+5)

≤ c2
bn

,

where c2 again only depends on T . Therefore, G(x) ≤ c3 = c2
∑∞

n=1 b
−1
n for all M

as claimed.
On the other hand, consider the (R, T )-flower (Yi,Ai) with base Ei. By the

properties of leaf-wise measures (Theorem 6.3.(iv)) and Lemma 6.31.(iii), we know
that for every y ∈ Ei ∩Bm and every n,

μAi
y (Ei)

μAi
y (BT

rn .y)
≤

μT
y (B

T
4 )

μT
y (B

T
rn)

.

So if z ∈ Yi and y ∈ [z]Ai
∩ Bm ∩ Ei (the existence of such a y is guaranteed by

Lemma 6.31.(iv)), then χBT
rn

.Ei
≥ χBT

rn
.y and so

∫
Yi

χBT
rn

.Ei
dμAi

z ≥ μAi
y (BT

rn .y) ≥
μT
y (B

T
rn)

μT
y (B

T
4 )

μAi
z (Ei).

Multiplying with wn and summing over n = 1, . . . ,M we get

∫
Yi

M∑
n=1

wnχBT
rn

.Ei
dμAi

z ≥
M∑
n=1

1

bnλ(BT
rn+5)

μT
y (B

T
rn)

μT
y (B

T
4 )

μAi
z (Ei)

≥ mδ
1

λ(BT
4 )

μAi
z (Ei)
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where the latter follows from the definition of Bm. Integrating over z ∈ Yi we get

∫
Yi

M∑
n=1

wnχBT
rn

.Ei
dμ ≥ mδc4μ(Ei)

for a constant c4 > 0 only depending on T . Summing the latter inequality over i,
we get that

c3μ(X) ≥
∫
X

Gdμ ≥ c4mδ
∑
i

μ(Ei) ≥ c4mδμ(Bm)

by Lemma 6.31.(ii). This implies μ(Bm) ≤ c3μ(X)
c4mδ , independent of M . Hence we

may lift the requirement that n ≤M in the definition of Bm without effecting the
above estimate and then let m→∞ and δ → 0 to obtain the theorem. �

7. Leaf-wise Measures and entropy

We return now to the study of entropy in the context of locally homogeneous
spaces.

7.1. General setup, real case. Let G ⊂ SL(n,R) be a closed real linear
group. (One may also take G to be a connected, simply connected real Lie group
if so desired.) Let Γ ⊂ G be a discrete subgroup and define X = Γ\G. We may
endow G with a left-invariant Riemannian metric which then induces a Riemannian
metric on X too. With respect to this metric X is locally isometric to G, i.e., for
every x ∈ X there exists some r > 0 such that g �→ xg is an isometry from the
open r-ball BG

r around the identity in G onto the open r-ball BX
r (x) around x ∈ X.

Within compact subsets of X one may choose r uniformly, and we may refer to r
as an injectivity radius at x (or on the compact subset).

Clearly any g ∈ G acts on X simply by right translation g.x = xg−1 = Γ(hg−1)
for x = Γh ∈ X, and one may check that this action is by Lipschitz automorphisms
of X. For this recall that the metric on X is defined using a left-invariant metric
on G, which in general is not right-invariant. By definition of X the G-action is
transitive.

Recall that Γ is called a lattice if X carries a G-invariant probability measure
mX , which is called the Haar measure on X. This is the case if the quotient is
compact, and in this case Γ is called a uniform lattice. From transitivity of the G-
action it follows that the G-action is ergodic with respect to the Haar measure mX .
Although this is not clear a priori it is often true (in the non-commutative setting
we are most interested in) that unbounded subgroups of G also act ergodically with
respect to mX .

If Γ is a lattice, then we may fix some a ∈ G or a one-parameter subgroup
A = {at = exp(tw) : t ∈ R} and obtain a measure-preserving transformation
a.x = xa−1 or flow at.x = xa−1

t with respect to μ = mX . Our discussion of entropy
below may be understood in that context. However, we will not assume that the
measure μ on X, which we will be discussing, equals the Haar measure or that Γ
is a lattice. Rather we will use the results here to obtain information about an
unknown measure μ and in the best possible situations deduce from that μ equals
the Haar measure.
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7.2. Arithmetic setup. Fix a prime number p and let G be the group of Qp-
points of an algebraic subgroup G ⊂ SL(n), i.e., G would consists of all Qp-points of
a variety G which is contained in the affine space of all n-by-n-matrices and whose
points happen to form a group. Here a Qp-point of G is an element of the variety
whose matrix entries are elements of Qp, as a shorthand we will write G = G(Qp) for
the group of all Qp-points. In this setting (more precisely in the zero characteristic
case) one may say G is defined over a field F if G = {g ∈ SL(n) : φ(g)v ∝ v}
where φ is an algebraic representation over F , i.e., an action of SL(n) by linear
automorphisms of a finite dimensional vector space with a given basis such that
the matrix entries corresponding to φ(g) are polynomials in the matrix entries of
g with coefficients in F , and v equals an F -linear combination of the basis vectors.
Again we will let Γ ⊂ G be a discrete subgroup and study dynamics of subgroups
of G on X = Γ\G.

E.g. if G is the group of Qp-points of SO(3) (defined in the usual way as the
group of matrices of determinant one preserving x2

1+x2
2+x2

3), which is an algebraic
subgroup defined over Q, then one may take Γ to be the group of Z[ 1p ]-points of

SO(3). In this case G is noncompact if p > 2 but X = Γ\G is compact for any p.
A more general setup would be to allow products

G = G∞ ×Gp1
× · · · ×Gp�

over the real and finite places(24) of the group of R-points G∞ = G(R), resp., the
group of Qp-points Gp = G(Qp) for some finite list of primes p ∈ Sfin = {p1, . . . , p�},
of an algebraic group G defined over Q. In this case one may take Γ = G(Z[ 1p : p ∈
Sfin]) to be the Z[ 1p : p ∈ Sfin]-points of G, which one considers as a subgroup of

the product of the real and p-adic groups by sending a matrix γ with coefficients in
Z[ 1p : p ∈ Sfin] to the element (γ, γ, . . . , γ) ∈ G∞×Gp1

×· · ·×Gp�
. This embedding

is called the diagonal embedding. It can easily be checked that (the image of) Γ
forms a discrete subgroup. Often (e.g. when G is semisimple) Γ defined by this
diagonal embedding will form a lattice in G.

A similar construction of arithmetically defined quotientsX = Γ\G can be used
in positive characteristic. Most of what we will discuss in this chapter (and possibly
beyond) applies to either of these settings. However, so as to keep the notation at a
minimum we will confine ourselves to the situation where G = G(k) is the group of
k-points of an algebraic group G defined over k, where k = R, k = Qp, or k equals
a local field of positive characteristic. We will refer to this by briefly saying G is an
algebraic group over a local field k. Also we only assume that Γ < G is a discrete
subgroup.

7.3. The horospherical subgroup defined by a. For the following fix
some a ∈ G. Then we may define the stable horospherical subgroup for a by

G− = {g : anga−n → e as n→∞},

(24)The reader who is familiar with adeles may want to consider them instead of finite
products.
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which in the setting described above is always a closed(25) subgroup of G. Similarly,
one can define the unstable horospherical subgroup G+ e.g. as the stable horospher-
ical subgroup for a−1. (We note, that in the theory of algebraic groups G− and G+

are also known as the unipotent radicals of the parabolic subgroups defined by a
one-parameter subgroup containing a.)

Consider two points x, xg ∈ X = Γ\G for some g ∈ G−. Then an.x and an.xg
get closer and closer to one another as n → ∞. In fact, an.xg = xa−n(anga−n)
and an.x have distance ≤ d(anga−n, e)→ 0. In that sense we will refer to G−.x as
the stable manifold through x. Note that x may not be fixed or even periodic so the
statement needs to be understood by the sequence of tuples of points as described.
Also note that it is not clear that G−.x is necessarily the complete set of points
y for which d(an.y, an.x) → 0, but we will show that for all practical purposes it
suffices to study G−.x.

7.4. Problem. Suppose X is a compact quotient. Show that in this case
G−.x ⊂ X is precisely the set of points y ∈ X with d(an.y, an.x)→ 0 as n→∞.

7.5. Entropy and the horospherical subgroup. The following is one of
the main results of this section.

7.6. Theorem. Let μ be an a-invariant probability measure on Γ\G. Let U be a
closed subgroup of G− normalized by a. Then:

(i) The entropy contribution of U at x

Dμ(a, U)(x) := lim
n→∞

log μU
x (a

−nBU
1 an)

n

exists for a.e. x and defines an a-invariant function on X.
(ii) For a.e. x we have Dμ(a, U)(x) ≤ hμE

x
(a), with equality if U = G−. Here

E denotes the σ-algebra of a-invariant sets as in §5.14.
(iii) For a.e. x we have Dμ(a, U)(x) = 0 if and only if μU

x is finite, which

again holds if and only if μU
x is trivial(26).

In particular, the theorem shows that entropy must vanish for all invariant mea-
sures if the stable horospherical subgroup G− is the trivial subgroup. This is the
case for the horocycle flow (and all other unipotent flows), hence its entropy van-
ishes. Therefore, the most interesting case will be the study of the opposite extreme,
namely, diagonalizable elements a ∈ G (and in the proof we will restrict ourselves
to this case). For instance, the theorem shows that entropy for the geodesic flow
is determined precisely by the leaf-wise measure for the horocyclic subgroup, as
for the time-one-map a1 of the geodesic flow the stable horospherical subgroup is
precisely the horocyclic subgroup.

7.7. Corollary. The measure μ is G−-recurrent if and only if hμE
x
(a) > 0 a.e.

Assume μ is additionally a-ergodic, then μ is G−-recurrent if and only if hμ(a) > 0.

(25)This is not true for general Lie groups, hence our assumption that G should be a linear
group or a simply connected Lie group. In the case of a linear group G− can easily be defined by
linear equations by first bringing a into its Jordan normal form.

(26)Recall that we consider the leaf-wise measures to be trivial if they equal the Dirac measure
at the identity.
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7.8. Entropy and G−
-invariance. To state the second equally important

theorem we ask first what is hmX
(a) where Γ is assumed to be a lattice and mX

denotes the Haar measure on X. The answer follows quickly from Theorem 7.6:
Since mX is invariant under G−, its leaf-wise measures are Haar measures on G−.
Hence the expression in Theorem 7.6.(i) can be calculated and one obtains

DmX
(a,G−) = − log

∣∣detAda |g−
∣∣,

here Ada is the adjoint action of a on the Lie algebra g and g− is the Lie algebra
of G− which is, by definition, invariant and being contracted by Ada.

The following theorem will characterize when a measure μ is invariant under
G− (or under U ⊂ G−) in terms of the entropy hμ(a) (or the entropy contribution
of U). To state it most conveniently, let us define the entropy contribution of an
a-normalized closed subgroup U ⊂ G− by

hμ(a, U) =

∫
Dμ(a, U)dμ

the integral of the entropy contributions at the various x. This way, the entropy
contribution of G− equals the entropy of a (cf. §3.5 and §5.14).

7.9. Theorem. Let U < G− be an a-normalized closed subgroup of the horospher-
ical subgroup G− for some a ∈ G, and let u denote the Lie algebra of U . Let μ be
an a-invariant probability measure on X = Γ\G. Then the entropy contribution is
bounded by

hμ(a, U) ≤ − log
∣∣detAda |u

∣∣
and equality holds if and only if μ is U-invariant.

In many cases this theorem shows that the Haar measure on X is the unique
measure of maximal entropy. For example the Haar measure on SL(2,Z)\ SL(2,R)
is the unique measure of maximal entropy as follows from Theorem 7.9: Since the
stable horospherical subgroup is the upper unipotent subgroup in SL(2,R), we have
that an a-invariant measure whose entropy equals that of the Haar measure must
be invariant under the upper unipotent subgroup. Since hμ(a) = hμ(a

−1) we get
the same for the lower unipotent subgroup. However, since the upper and the
lower unipotent subgroups generate SL(2,R), we get that hμ(a) = hmX

(a) implies
μ = mX . By the same argument one obtains the following more general corollary.

7.10. Corollary. Suppose Γ is a lattice in G, and let X = Γ\G. Suppose a ∈ G
is such that G is generated by G+ and G−. Then mX is the unique measure of
maximal entropy for the action of a on X, i.e., if μ is an a-invariant probability
measure on X with hμ(a) = hmX

(a) then μ = mX .

7.11. Starting the proofs. Let us start by discussing the technical assump-
tion of the last section that a.e. orbit is embedded.

7.12. Lemma. Let μ be an a-invariant probability measure on X = Γ\G. Then
for μ-a.e. x the map u ∈ G− �→ u.x is injective.

7.13. Proof. Suppose x = u.x for some nontrivial u ∈ G−. Then xn = an.x =
anua−n.xn for all n = 1, 2, . . .. However, anua−n → e so that the injectivity radius
at xn goes to 0 as n→∞. This shows that x does not satisfy Poincaré recurrence.
Hence it belongs to a null set. �
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7.14. Semisimple elements and class A elements. As before we assume
that G is an algebraic group over a local field k (or that G is a simply connected
real Lie group), Γ < G a discrete subgroup, and X = Γ\G. We say that a ∈ G is
k-semisimple if as an element of SL(n, k) its eigenvalues belong to k. In particular,
this implies that the adjoint action Ada of a on the Lie algebra has eigenvalues in
k and so is diagonalizable over k. (In the Lie group case the latter would be our
assumption with k = R.) We say furthermore that a is class A if the following
properties hold:

• a is k-semisimple.
• 1 is the only eigenvalue of absolute value 1 for the adjoint action Ada.
• No two different eigenvalues of Ada have the same absolute value.

For class A elements a we have a decomposition of g, the Lie algebra of G, into
subspaces

g = g0 ⊕ g− ⊕ g+

where g0 is the eigenspace for eigenvalue 1, g− is the direct sum of the eigenspaces
with eigenvalues less than 1 in absolute value, and g+ is the direct sum of the
eigenspaces with eigenvalues greater than 1 in absolute value. These are precisely
the Lie algebras of the corresponding subgroups

G0 = {h : ah = ha} = CG(a),

G− = {h : anha−n → e as n→∞},
G+ = {h : a−nhan → e as n→∞}.

We refer to G0 as the centralizer of a, while G− and G+ are the horospherical
subgroups of a.

If convenient we will assume(27) below that a is of class A as this gives us a
convenient description of a neighborhood of e ∈ G in terms of neighborhoods in the
three subgroups G0, G−, and G+. As before we will always assume that U < G−

is a closed a-normalized subgroup of the stable horospherical subgroup.

7.15. Problem. Show that for any Lie group G and any a ∈ G the Lie algebra
generated by g− and g+ is a Lie ideal in g. Deduce that the assumption regarding
a in Corollary 7.10 is satisfied whenever G is a simple real Lie group and g− is
nontrivial.

7.16. Lemma. Let U < G− be a closed a-normalized subgroup for some a ∈ G,
denote conjugation by a by θ(g) = aga−1 for g ∈ G. Let μ be an a-invariant
probability measure on X = Γ\G. Then μU

a.x ∝ θ∗μ
U
x for a.e. x.

7.17. Proof. As a normalizes U it maps an (r, U)-flower (Y,A) with base E
to another σ-algebra a.A of subsets of a.Y whose atoms are still open U -plaques.
More precisely, for u ∈ U we have aua−1 ∈ U and a.(u.x) = θ(u).(a.x). As a
preserves the measure μ the conditional measures for A are mapped to those of
a.A. Combining this with Theorem 6.3.(iv) gives the lemma. �

(27)Replacing G0 and g0 with slightly more complicated versions this assumption can be
avoided but in our applications a will always be of class A.
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7.18. Independence, a-Invariance. From the definition of Dμ(a, U)(x) it
follows that if the limit defining Dμ(a, U)(x) exists, then the original set BU

1 can
be replaced by any bounded neighborhood O of e ∈ U without affecting the limit
Dμ(a, U)(x). In fact, if akBU

1 a−k ⊂ O ⊂ a−kBU
1 ak (and such a k exists as U

is being contracted by a and both BU
1 and O are bounded neighborhoods) then

μ(a−n+kBU
1 an−k) ≤ μ(a−nOan) ≤ μ(a−n−kBU

1 an+k) and this implies the claim
(using the sandwich argument for sequences and n±k

n → 1).
The a-invariance follows from Lemma 7.16: Replacing x by a.x may be in-

terpreted a.e. as replacing μU
x by a measure proportional to θ∗μ

U
x , and the latter

replaces BU
1 by O = a−1BU

1 a. Both the proportionality factor and the change to
O does not affect the limit Dμ(a, U)(x) so that Dμ(a, U)(x) = Dμ(a, U)(a.x) a.e.

7.19. Preparing the reduction to the ergodic case. Recall from §5.14
that for any a-invariant measure μ, we have the ergodic decomposition

μ =

∫
μE
xdμ(x)

where E is the σ-algebra of all a-invariant sets, and μE
x is the conditional measure.

Also recall from §3.5 that the entropy hμ(a) equals the average of the entropies
hμE

x
(a) of the ergodic components. In what follows we wish to reduce the proof

of Theorem 7.6 and 7.9 to the corresponding statements under the assumption of
ergodicity. The reader who is willing to assume ergodicity(28) of a or to accept this,
may continue reading with §7.25.

An important observation (the Hopf argument) is that we can choose the ele-
ments of E to be not only a-invariant, but in fact 〈U, a〉-invariant. This will allow
us to reduce the proof of the main theorems to the case of a-ergodic invariant
measures.

7.20. Lemma. Let C be an a-invariant subset of X. Then there exists a 〈G−, a〉-
invariant set C̃ such that μ(C � C̃) = 0.

7.21. Proof (using the Hopf argument). Let ε > 0 and choose f ∈ Cc(X)
such that ||f − 1C ||1 < ε. Set

Cε =

{
x : lim

n→∞
A(f, n)(x) >

1

2

}

where A(f, n) = 1
n

∑n−1
i=0 f(ai.x). Now

C � Cε ⊂ {x : limn→∞ A(f, n)(x) does NOT exist }(7.21a)

∪{x ∈ C : limn→∞ A(f, n)(x) ≤ 1
2}(7.21b)

∪{x /∈ C : limn→∞ A(f, n)(x) > 1
2}(7.21c)

By the pointwise ergodic theorem, the set on the right of (7.21a) has measure
0. We are interested in showing that the measures of (7.21b) and (7.21c) are small.
Since C is a-invariant, we have

x ∈ C ⇒ A(f − 1C , n)(x) = A(f, n)(x)− 1

x /∈ C ⇒ A(f − 1C , n)(x) = A(f, n)(x)

(28)This assumption should not be confused with A-ergodicity which we will assume in the
later sections but which in general does not imply a-ergodicity.
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Let M(f) = supn |A(f, n)| be the maximal function as in the maximal ergodic
theorem. Then (7.21b) ∪ (7.21c) ⊂ {x : M(f − 1C)(x) ≥ 1/2}. Therefore,
μ
(
(7.21b)∪(7.21c)

)
≤ 2||f − 1C ||1 < 2ε by the maximal ergodic theorem.

Furthermore, we claim that Cε is G−-invariant. Notice that for any h ∈ G−,
we have that an.(h.x) = anha−n.(an.x) and an.x are asymptotic to one another.
Since f has compact support it is uniformly continuous. Therefore, we have

1

n

n−1∑
i=0

[
f(ai.x)− f(ai.(h.x))

]
→ 0

uniformly in x. This shows that Cε is G
−-invariant.

To finish the proof we may choose εn = 2−n and

C̃ = lim
n→∞

C2−n =
⋂
n

⋃
k≥n

C2−n

to obtain a set as in the lemma. �

7.22. Proposition. Let μ =
∫
μE
xdμ(x) be an a-invariant probability measure, and

U < G−. Then for μ-a.e. x, for μE
x-a.e. y, we have μU

y = (μE
x)

U
y .

In other words, by changing the leaf-wise measures for μE
x at most on a μE

x-
nullset, we may define (μE

x)
U
y to be equal to μU

y . With this definition in place,

we also have (μE
x)

U
x = μU

x . (In the formulation of the proposition we avoided this
formula as {x} is a null set for μE

x and so making claims for the leaf-wise measure
at x would be irrelevant.)

7.23. Proof. Recall that the leaf-wise measures μU
x were determined by mov-

ing the conditional measures μAi
x to U and patching them together there. Here

(Yi,Ai) were U -flowers. By Lemma 7.20 (and Proposition 5.8) we may replace E
by a countably generated σ-algebra consisting of a-invariant and U -invariant sets.
In particular, this shows that the atoms of E|Yi

are unions of the atoms of Ai (which
are open U -plaques). However, using conditional measures for Ai it is easy to see
that a measurable function that is constant on Ai-atoms is in fact Ai-measurable
modulo μ. Therefore, we have E|Yi

⊂ Ai modulo μ. However, this inclusion of
σ-algebras implies that

E(E(f |Ai)|E|Yi
) = E(f |E|Yi

)

for any f ∈ L1. In turn, using the defining properties of conditional measures
(in terms of conditional expectations) this gives the following relation between the

conditional measures: for μ-a.e. x ∈ Yi we have for μ
E|Yi
x -a.e. y that

(
μ
E|Yi
x

)Ai

y
= μAi

y .

Translating this to a property of leaf-wise measures we see that μU
y and (μE

x)
U
y agree

on the subset of U corresponding to the atom [x]Ai
and the proposition follows by

collecting the various null sets of Yi. �
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7.24. Proof of reduction to ergodic case. Working with double condi-
tional measures as in the above proposition may be confusing, but it is useful for
the following purpose: In the proof of Theorem 7.6 and 7.9 we are comparing the
entropy of the ergodic components and the entropy contribution arising from the
subgroup U < G−. From §5.14 and §3.5 we know that

hμ(a) =

∫
hμE

x
(a)dμ.

We would like to have a similar relationship betweenDμ(a, U)(x) and DμE
x
(a, U)(x).

Using (μE
x)

U
x = μU

x as in the discussion right after Proposition 7.22 we get

DμE
x
(a, U)(x) = Dμ(a, U)(x).

Since μE
x is a-invariant and ergodic for μ-a.e. x, and as we assume the statements

of Theorem 7.6 and 7.9 in the ergodic case, the general case follows from this. �

7.25. Definition. We say that a σ-algebra A is subordinate to U (mod μ) if for
μ-a.e. x, there exists δ > 0 such that

BU
δ .x ⊂ [x]A ⊂ BU

δ−1 .x.

We say that A is subordinate to U on Y if and only if the above holds for a.e.
x ∈ Y .

We say that A is a-descending if a−1.A ⊂ A.

Ignoring null sets to say that A is subordinate to U is basically equivalent to
say that the A-atoms are open U -plaques. Hence we have already established in
the last section the existence of σ-algebras which are subordinate to U at least
on some sets of positive measure. Also, it is rather easy to find an a-descending
σ-algebra as

∨∞
n=0 a

−n.P is a-descending for any countable partition (or even σ-
algebra) P. We note however, that the existence of an a-descending σ-algebra that
is also subordinate is not trivial.

Recall that we may assume that μ is a-ergodic, so that the a-invariant function
Dμ(a, U)(x) (whose existence we still have to show, see Prop. 7.34) must be constant
a.e. If we are given an a-descending σ-algebra A that is subordinate to U , we will
show the following properties (which, in particular, gives an independent meaning
to the generic value of Dμ(a, U)(x)):

(i) For a.e. x

log μU
x (a

−nBU
1 an)

n
→ Hμ(A|a−1.A) = hμ(a, U)

as n→∞.
(ii) hμ(a, U) ≤ hμ(a), with equality if U = G−.
(iii) If hμ(a, U) = 0 then a−1.A = A (modμ) and μU

x = δe almost surely.

In other words, we will use the σ-algebra A as a gadget linking the two expressions
Dμ(a, U)(x) and hμ(a) appearing in the Theorem 7.6.

Recall that the “empirical entropy” Hμ(A|a−1.A) is the average of the “condi-
tional information function”

Iμ(A|a−1.A)(x) = − log μa−1.A
x ([x]A).



DIAGONAL ACTIONS ON LOCALLY HOMOGENEOUS SPACES 193

7.26. Hyperbolic torus automorphisms. We first look at a particular
example(29) where it is relatively easy to give an a-descending σ-algebra A that is
subordinate to G− and to see the connection to entropy. Let a be a hyperbolic
automorphism of Tm = R

m/Zm. By this we mean that a is defined by a matrix
with eigenvalues, real or complex, of absolute value different from one (this is the
answer to Problem 3.10). We set G = R

m, Γ = Z
m, and write θ for the linear map

on R
m defining a; for consistency we will still write a.x for the action. It is easy to

see that G− is the sum(30) of all generalized eigenspaces for eigenvalues of absolute
value less than one. By expansiveness we know that any partition P whose atoms
have sufficiently small diameter will be a generator for a. By the same argument
one easily shows that A =

∨∞
n=0 a

−n.P satisfies that the A-atoms are of the form
[x]A = Vx.x for bounded subsets Vx ⊂ G−. Also, A is a-descending. The remaining
property that Vx contains the identity in the interior a.e. is not a general property
(as it is likely not true if the boundaries of the partition elements are not null sets)
but follows if we are a bit more careful in the choice of the partition P. What we
will need is the following quantitative strengthening of μ(∂P ) = 0 for all P ∈ P.
7.27. Lemma. Let X be a locally compact metric space and let μ be a Radon
measure on X. Then for every x ∈ X and Lebesgue-a.e. r > 0 there exists a
constant c = cx,r such that μ(∂δBr(x)) ≤ cδ for all sufficiently small δ > 0. Here
we refer to

∂δB = {y ∈ X : inf
z∈B

d(y, z) + inf
z/∈B

d(y, z) < δ}

as the δ-neighborhood of the boundary(31) of a subset B ⊂ X.

7.28. Problem. Prove Lemma 7.27 using the function f(r) = μ(Br(x)). A hint

may be found in the footnote(32)on the next page.

We say that a set B has μ-thin boundary if there exists some c such that
μ(∂δB) ≤ cδ for all δ > 0. It is clear that a set obtained from finitely many sets
with μ-thin boundary via the set-theoretic operations of intersections, union, or
complements also has μ-thin boundary. Hence by Lemma 7.27 any compact space
has a partition P consisting of sets with μ-thin boundary and arbitrarily small
diameter.

We also note another property, which is rather easy to verify for the Euclidean
metric on G = R

m and the linear map θ defining the automorphism a.

7.29. Lemma. There exists some α > 0 and d > 0 depending on a and G such
that for every r ∈ (0, 1] we have

θn(BG−

r ) ⊂ BG
de−nαr

for all n ≥ 1.

7.30. Problem. Let a ∈ G be an element of class A. Prove Lemma 7.29 in the
context of G being a real Lie group, assuming that G is endowed with a left invariant
Riemannian metric.

(29)This example almost fits into the framework under which we work, except that the
automorphism we consider is not coming from an element of G = R

m. We could use a bigger
subgroup, namely a semidirect product of Z and R

m, but this is not necessary and may be more
confusing.

(30)This is always a real subspace even if some eigenvalues are complex.
(31)We use this phrase even though in general ∂B may be empty with ∂δB nonempty.
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Prove Lemma 7.29 in the setting of G being an algebraic group defined over a
p-adic field or a finite characteristic local field by first defining a metric on G. (If
necessary it would not make a difference to our applications below to replace the
upper bound 1 for r by some smaller quantity depending on a and G.)

We now show how the two properties in Lemma 7.27 and Lemma 7.29 can be
used in combination.

7.31. Lemma. Suppose P is a finite partition of X = Γ\G consisting of measurable
sets with μ-thin boundary. Then for a.e. x ∈ X there is some δ > 0 such that

(7.31a) BG−

δ .x ⊂ [x]∨
n≥0 a−n.P .

7.32. Proof. Let c be the maximal constant as in the definition of μ-thin
boundary for the elements of P, and let α and d be as in Lemma 7.29. Also let
r = 1. We write ∂δP for the union of the δ-neighborhoods of the boundaries of the
elements of P.

Fix some δ > 0 and define for n ≥ 0 the set

En = a−n.∂de−nαδP.
By construction we have

μ

⎛
⎝⋃

n≥0

En

⎞
⎠ ≤ cd

⎛
⎝∑

n≥0

e−nα

⎞
⎠ δ,

which shows that for a.e. x there is some δ with x /∈
⋃

n≥0 En. Fix such an x

and the corresponding δ, we claim that (7.31a) holds. Indeed let h ∈ BG−

δ (which
in the case of X = T

m acts by addition h.x = x + h on x ∈ T
m) and suppose

h.x /∈ [x]∨
n≥0 a−n.P . Then there would be some n ≥ 0 such that an.x and an.(h.x)

belong to different elements of the partition P. However, θ contracts G− and
indeed d(θn(h), e) < de−nαδ by Lemma 7.29. Therefore, an.(h.x) = θn(h).(an.x)
and an.x have distance less than de−nαδ, which shows that both belong to ∂de−nαδP.
However, this gives a contradiction to the definition of En and the choice of x and
δ.�

7.33. Hyperbolic torus automorphism concluded. The discussion in
§7.26 together with Lemma 7.31 shows that it is possible to choose P such that the
σ-algebra A =

∨∞
n=0 a

−n.P is a-decreasing and subordinate to G−. Recalling that
P was constructed as a generator (c.f. §3.6) we also get

hμ(a) = hμ(a,P) = Hμ(A|a−1.A).
This establishes the link between Hμ(A|a−1.A) and the entropy hμ(a) in the case at
hand; the link betweenHμ(A|a−1.A) and the entropy contribution we now establish
in great generality.

7.34. Proposition. Suppose A is a countably generated σ-algebra subordinate to
U , such that A ⊃ a−1.A. Then

lim
n→∞

log μU
x (a

−nBU
1 an)

n
= Hμ(A|a−1.A).

In particular, the limit defining the entropy contribution of U at x exists.

(32)Notice that f(r) is monotone and hence differentiable a.e.
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7.35. Proof. We start by showing that

− 1

n
log μa−n.A

x ([x]A)→ Hμ(A|a−1.A).

Here notice first that by Proposition 5.17

μa−1.A
x

∣∣
[x]A

= μa−1.A
x ([x]A)μ

A
x

for a.e. x since [x]a−1.A is a countable union of A-atoms. More generally we obtain
by the same argument that

μa−n.A
x ([x]A) =

n∏
i=1

μa−i.A
x ([x]a−(i−1).A).

Also note that μA
a.x = a∗μ

a−1.A
x (as one may verify from the defining relation of

μA
x in terms of the conditional expectation). Combining these one gets by taking

logarithms that

− 1

n
log μa−n.A

x ([x]A) =
n∑

i=1

− log μa−i.A
x ([x]a−(i−1).A)

n

=
1

n

n−1∑
i=0

Iμ(A|a−1.A)(ai.x)

→ Hμ(A|a−1.A)
by the pointwise ergodic theorem (since μ is assumed to be a-ergodic).

We may also obtain in a similar manner that

log μU
x (a

−nBU
1 an)

n
→
∫

log μU
x (a

−1BU
1 a),

where we assume the normalization μU
x (B

U
1 ) = 1. Indeed by Lemma 7.16 we know

μU
a.x(a

−1BU
1 a) =

μU
x (a−2BU

1 a2)

μU
x (a−1BU

1 a)
, which easily generalizes to higher powers of a and

then gives

μU
x (a

−nBU
1 an) =

n−1∏
i=0

μU
ai.x(a

−1BU
1 a).

Taking the logarithm and using the pointwise ergodic theorem the above claim
follows.

We outline the remainder of the proof of Proposition 7.34: Both of the above
limits measure the growth rate of a dynamically expanded set in relation to a fixed
set. By Theorem 6.3.(iv) the fact that in one expression we are using the condi-

tional measure μa−n.A
x and in the other the leaf-wise measure μU

x seems irrelevant.
However, what is unclear is the precise relationship between the shape Vn,x ⊂ U of
the atoms [x]a−n.A = Vn,x.x and the set a−nBU

1 an. We show below that as n→∞
the influence of the shape is negligible, thus obtaining the proposition.

Fix δ > 0 such that

(7.35a) Y := {x : BU
δ .x ⊂ [x]A ⊂ BU

δ−1 .x}
has positive measure. By the argument in §7.18 (which only assumes the existence
of the limit for r = 1) we know that

(7.35b) lim
n→∞

log μU
x (a

−nBU
r an)

n
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is independent of r for a.e. x. Moreover, for a.e. x there exists a sequence nj of
integers for which anj .x ∈ Y . For those n = nj we therefore have

[x]a−n.A = a−n.[an.x]A ⊂ a−nBU
δ−1an.x

and similarly,
[x]a−n.A ⊃ a−nBU

δ an.x.

Therefore, a−nBU
δ an ⊂ Vn,x ⊂ a−nBU

δ−1an. Also recall that μa−n.A
x is proportional

to μU
x |Vn,x

.x by Theorem 6.3.(iv). Hence

μa−nA
x ([x]A) =

c(x)

μU
x (Vn,x)

where c(x) = μU
x (V0,x). With this notation the above inclusions imply

μU
x (a

−nBU
δ an) ≤ μU

x (Vn,x) = c(x)μa−nA
x ([x]A)

−1 ≤ μU
x (a

−nBU
δ−1an)

for a.e. x. Taking the logarithm, letting n = nj →∞, and using the independence
of the limit in (7.35b) the proposition follows. �

7.36. Returning to the general case. Even though we used in the exam-
ple of the hyperbolic torus automorphism certain special properties of the system,
namely that X is compact and that a is expansive, it does give hope regarding
the existence of a subordinate and a-descending σ-algebra in general. In fact, us-
ing somewhat similar methods (Lemma 7.29, 7.27, and 7.31 are general) as in the
example we now establish the existence of the σ-algebra. However, linking the
σ-algebras and the entropy (as we did in §7.33) will need more work.

7.37. Proposition. Let μ be an a-invariant and ergodic probability measure on
Γ\G, and let U < G− be a closed subgroup normalized by a. Then there exists a
countably generated σ-algebra A such that:

(i) A is subordinate to U .
(ii) a−1.A ⊂ A, i.e., A is a-decreasing.

We note that this establishes the existence of the limit in Theorem 7.6 (i) by
using Proposition 7.34.

7.38. Comment. We note that without the assumption of ergodicity the proof
below almost gives the claims of the proposition in the following sense: For every
ε > 0 there exists a set Y ⊂ X of measure μ(Y ) > 1− ε such that A is subordinate
to U on Y and A is a-decreasing.

7.39. Proof. Applying Lemma 7.27 we can find some open Y ⊂ X with
compact closure such that μ(Y ) > 1− ε and Y has μ-thin boundary, e.g. by letting
Y = BX

r (x0) for some large r. Below we will construct the σ-algebra A which will
be subordinate to U on Y and a-decreasing. Note that under the assumption of
ergodicity this gives the proposition: For a.e. x /∈ Y there exists some positive as
well as some negative n with an.x ∈ Y which together with a−1.A ⊂ A gives the
correct upper, resp., lower bound for [x]A. More precisely, by correct upper bound
we mean that [x]A ⊂ Bx.x for some bounded subset Bx ⊂ U and by correct lower
bound we mean that [x]A ⊃ Ox.x for some open Ox ⊂ U containing the identity
element.

Again applying Lemma 7.27 we can find a finite partition of Y into sets of
small diameter (as specified below) and with μ-thin boundary — here Lemma 7.27
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is applied to find for every x ∈ Y a small ball around x with μ-thin boundary and
then a finite subcover is chosen using compactness. We add to this partition the set
X \ Y to obtain the partition P. Since the boundaries of all elements of P are null
sets, we may assume all elements of P are open (and ignore the remaining null set).
By Lemma 7.31 we know that the atoms of

∨
n≥0 a

−n.P contain a neighborhood of

x in the direction of G− almost surely, i.e., for a.e. x ∈ X there is some δ > 0 such
that

(7.39a) [x]∨
n≥0 a−n.P ⊃ BG−

δ .x.

We will replace P by a σ-algebra PU in such a way that A =
∨

n≥0 a
−n.PU will

be subordinate to U (at least) on Y . Let P denote an element of P different from
X \ Y . We may assume the diameter of P is smaller than the injectivity radius on

Y , we get that P is the injective isometric image of an open subset P̃ of G. By
assumption U is closed, so that the Borel σ-algebra BG/U of the quotient G/U is

countably generated. This induces a σ-algebra CP first on P̃ and then also on P
whose atoms are open U -plaques. We define PU to be the countably generated σ-
algebra whose elements are unions of elements of CP for P ∈ P and possibly the set
X \Y , i.e., the atoms of x for PU is either X \Y if x /∈ Y or an open U -plaque Vx.x
of x if x ∈ Y . We claim that for a.e. x ∈ Y the atom [x]A w.r.t. A =

∨
n≥0 a

−n.PU

is an open U -plaque. Indeed suppose x satisfies (7.39a) for some δ > 0 (which
we may assume is smaller than the injectivity radius) and u ∈ BU

δ . Then for all
n ≥ 0 we know that an.x and anu.x belong to the same element P ∈ P. Fix some
n ≥ 0. If P = X \ Y , then an.x and anu.x still belong to the same atom of PU . If
P 	= X \Y , then we also claim that an.x and anu.x belong to the same atom of PU :

The two elements y = an.x, z = anu.x ∈ P correspond to two elements ỹ, z̃ ∈ P̃ .
Since P and P̃ are isometric and anua−n is being contracted we conclude that these
two points are still on the same U -coset ỹU = z̃U , for otherwise we would get a
contradiction to the injectivity property at z ∈ Y . This shows that the atoms [x]A
for a.e. x ∈ Y are indeed open U -plaques. �

7.40. Proof of Theorem 7.6.(iii). Clearly if μU
x is finite, then the entropy

contribution hμ(a, U) vanishes (as it measures a growth rate). Assume now on
the other hand hμ(a, U) = Hμ(A|a−1A) = 0, where A is as in Prop. 7.37 (cf.
Prop. 7.34). Then

Hμ(A|a−1.A) =
∫
(− log μa−1.A

x ([x]A))dμ = 0

implies μa−1.A
x ([x]A) = 1 a.e. which is equivalent to A = a−1.A modμ. Iterating

this gives am.A = a−m.A modμ and μa−mA
x ([x]am.A) = 1 a.e. and for all m ≥ 1.

By Theorem 6.3.(iv) this says that μU
x (V−m,x \ Vm,x) = 0 a.e., where Vm,x denotes

the shape of the am.A-atom of x. Using again the set Y in (7.35a) we see that the
precise shapes do not matter as V−m,x ↗ U and Vm,x ↘ {e} as m→∞ for a.e. x.
It follows that μU

x ∝ δe. �.

7.41. Proof of the inequality hμ(a, U) ≤ hμ(a, U
′) for U ⊂ U ′ ⊆ G−

.

Assume both U and U ′ are closed a-normalized subgroups of G− such that U ⊂ U ′.
By the construction of the σ-algebra we see that there exist two σ-algebras A and
A′ which are both a-decreasing and subordinate to U and to U ′, resp., such that
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additionally A ⊃ A′. In order to obtain these, one may use the same finite partition
P and then carry the construction through with both groups.

We claim that A′ ∨ a−1.A = A (modμ). We already know one inclusion, to
see the other we describe the atoms for the σ-algebra C = A′ ∨ a−1.A. Suppose
y and x are equivalent w.r.t. C, then a.s. there exists some u ∈ U with y = u.x
where u may be rather big because the a−1.A-atoms are in general bigger than the
A-atoms. To make this more precise, assume y, x belong to the set Y which was
used in the constructions of the σ-algebras. Then we do not know that d(e, u) is
smaller than the injectivity radius (of Y ). However, we know that y = u′.x for
some u′ ∈ U ′ (as the two points are also A′-equivalent), and that d(e, u′) is less
than the injectivity radius. Since for a.e. x the G−-leaf is embedded by Lemma
7.12, we must have u = u′. This implies that x and y = u.x belong to the same
atom of the σ-algebra CP (for x, y ∈ P ⊂ Y ) which was used in the construction of
PU . This shows the two points are equivalent w.r.t. A, first under the assumption
that x, y ∈ Y but the general case follows by the same argument and ergodicity by
using the minimal n with an.x, an.y ∈ Y . As the atoms of the σ-algebra determine
the σ-algebra at least modμ the claim follows.

The claim implies the desired inequality since

h(a, U) = Hμ(A|a−1.A) = Hμ(A′|a−1.A) ≤ Hμ(A′|a−1.A′) = h(a, U ′)

by monotonicity of the entropy function with respect to the given (i.e., the second)
σ-algebra. �

7.42. First proof of the inequality in Theorem 7.9. Recall that U ⊂
G− is a-normalized and that λ denotes the Haar measure on U , which is (unipotent
and so) necessarily unimodular. We may normalize λ to have measure one on the
unit ball of U . Then it is easy to see that λ(a−nBU

1 an) = cn, where c is the
determinant of the adjoint representation of a−1 acting on the Lie algebra u of U .
Hence for a.e. x, we have by Theorem 6.30(33)

lim
n→∞

μU
x (a

−nBU
1 an)

n2cn
= 0 and so

hμ(a, U) = lim
n→∞

log μU
x (a

−nBU
1 an)

n
≤ log c.

This is the inequality in Theorem 7.9. In §7.55 we will give the proof of Theorem
7.9 in full including an independent proof of the inequality shown here. �

7.43. Where we are. To summarize we have shown Theorem 7.6.(i), the
inequality in (ii), (iii), and the inequality in Theorem 7.9 (and also that it suffices
to study ergodic measures). However, we still have to show the equality between the
entropy contribution hμ(a,G

−) and the entropy hμ(a) and the relationship between
invariance and equality in Theorem 7.9. We now turn to the former problem in
general.

7.44. Proposition. Let μ be an a-invariant and ergodic measure on X = Γ\G.
Then there exists a countable partition P with finite entropy which is a generator for

(33)Strictly speaking the sets a−nBU
1 an may not be balls, but the proof can be adapted to

allow for that and the additional thickening of the balls by the parameter 5 does not change the
asymptotical behavior of λ(a−nBU

1 an).
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a modμ. Moreover, the σ-algebra A =
∨

n≥0 a
−n.P is a-decreasing and subordinate

to G−.

Together with Proposition 7.34 this implies the last claim of Theorem 7.6.(ii).
We will need a few more elementary lemmas.

7.45. Lemma. There exists some α > 0 depending on a and G such that for every
r > 0 we have

θn(BG
e−|n|αr) ⊂ BG

r

for all n ∈ Z. Here θ(g) = aga−1 for g ∈ G again stands for conjugation by a.

Basically this lemma follows from the fact that conjugation is a Lipschitz map
whose Lipschitz constant is the norm of the adjoint representation of a.

7.46. Lemma. For every Ω ⊂ Γ\G with compact closure, and for every α and
r > 0, there exist κ(G,α), c(Ω, r) such that for every n, the set Ω can be covered by
ceκn balls of radius e−αnr.

For the proof of this lemma notice that the set Ω can be covered by finitely
many small balls of fixed radius, and that in each one of these we may argue that
the metric is basically flat (e.g. in characteristic zero the logarithm map would be
bi-Lipshitz in a neighborhood of the identity and the claim is quite easy for a linear
space). In a sense this lemma captures (in some weak way) the finite-dimensionality
of the group in question.

7.47. Proof. Equipped with the lemmas above, we are ready to start the
construction of our partition P. Fix an open subset Ω ⊂ X = Γ\G of compact
closure, positive measure, and μ-thin boundary (see Lemma 7.27). We may assume
Ω is a ball Br/16(x0) where r is an injectivity radius at x0.

7.48. The partition Q. We define Q = {Ω, X \Ω}. By Lemma 7.31 we have
that for a.e. x there exists some δ > 0 with

(7.48a) BG−

δ .x ⊂ [x]∨
n≥0 a−n.Q.

7.49. The partition Q̃. Next we define Q̃ = {Qi : i = 0, 1, 2, . . .}, where
we define Q0 = X \ Ω, resp. Q1 = Ω ∩ a−1.Ω, Q2 = (Ω \ a−1.Ω) ∩ a−2Ω, . . ., in
other words we split Ω into countably many sets according to when the points next
visit Ω (under forward iterates of a). (Strictly speaking we should also add the

set Q∞ = Ω ∩
⋂∞

j=1 a
−j .X \ Ω to the partition Q̃, but by Poincaré Recurrence

μ(Q∞) = 0, so we may omit it from the discussion.)

We observe that Q̃ is contained in the σ-algebra
∨∞

n=1 a
−n.Q. Therefore,∨∞

n=1 a
−n.Q =

∨∞
n=1 a

−n.Q̃ and the above claim (7.48a) regarding the atoms re-

mains true for Q̃.
7.50. Finite entropy. We will now show that Hμ(Q̃) <∞ (but we will need

to refine it further to obtain the desired partition). First, note that X \ Ω can
be partitioned according to how much time a point will spend (resp. has already
spent) in X \ Ω before returning to (resp. since coming from) Ω, keeping in mind
that the set of points which remain in X \ Ω forever (resp. have always been
in X \ Ω) has measure 0 by ergodicity. Moreover, the set of points that have
spent time t ≥ 1 in X \ Ω (including the current time) and will return to Ω in
time s ≥ 1 iterations of a the first time is exactly at.Qt+s. This implies that
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X\Ω =
⋃∞

i=1

⋃i
t=1 a

tQi+1 (with the union being disjoint), and since μ is a-invariant,
we see that μ(X \ Ω) =

∑∞
i=1 iμ(Qi+1) < 1. As the sets Q1, Q2, . . . partition Ω we

also have μ(Ω) =
∑∞

i=1 μ(Qi), and so we conclude that

∞∑
i=1

iμ(Qi) = 1.

We can therefore write

Hμ(Q̃) = −
∞∑
i=0

μ(Qi) log μ(Qi) <
∑

μ(Qi)>e−i

μ(Qi)i+
∑

μ(Qi)≤e−i

e−ii+ c <∞

by using monotonicity of − log t in the first case and the monotonicity of −t log t
for small values of t in the second case (the constant c is there to handle the finitely
many cases where the latter monotonicity may not apply).

7.51. The partition P. We now apply Lemma 7.46 to Ω and conclude that
for i ≥ 1 each of the sets Qi ⊂ Ω may be covered with ≤ ceiκ many balls Bj of
radius e−αir/8. Here r is the injectivity radius at the center x0 of the ball Ω and

α is chosen as in Lemma 7.45. We will refine the partition Q̃ by splitting each Qi

into smaller sets. However, so as not to destroy the property (7.48a) we will use
instead of the original balls Bj some modified version of them that are “widened”
or “smeared out” in the direction of G−.

Fix some Qi ∈ Q̃ for i ≥ 1 and write D = Qi to simplify the notation, also
let B1, B2, . . . , BN with N = N(i) ≤ ceiκ be the cover obtained above. We split D
into the sets D1, D2, . . . as follows:

D1 = D ∩ (BG−

r/4 .B1),

D2 = D ∩ (BG−

r/4 .B2) \D1, . . .

Roughly speaking, since the set Ω ⊃ D has small diameter (at most r/8) in com-

parison to its injectivity radius (r) and since the widening by BG−

r/4 is by a bigger

radius, we should think of the splitting of D into the sets D1, . . . as a splitting
transversely to the G−-orbits.

This defines a partition of D = Qi into ≤ ceiκ many sets. Collecting these
partitions for the various sets Qi we obtain one partition P of X containing all of
them and Q0 = X \ Ω.

7.52. Finite entropy. Now for each n, we define μ|Qn
to be the restricted

measure normalized to be a probability measure. Then the entropy Hμ|Qn
(P) ≤

log c+κn since the partition P restricted to Qn has at most ≤ cenκ many elements
by construction. Also

Hμ(P) = Hμ(Q̃) +Hμ(P|Q̃),

and the latter quantity may be expressed as the weighted average of the entropies
Hμ|Qn

(P) so that finally

Hμ(P) ≤ Hμ(Q̃) + log c+ κ
∑

nμ(Qn) <∞.
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7.53. Upper bound for atom. We claim that the partition P has the prop-
erty that for any x, an.x ∈ Ω, we have

[x]∨∞
i=0 a−iP ⊂

(
n⋂

k=0

a−kBG
r ak

)
. x,

which is quite similar to what we proved in the case of a hyperbolic torus auto-
morphism. The idea is that, although we do not learn much information about the
orbits during the time it spends near the cusp (our partition elementQ0 = X\Ω ∈ P
is rather crude there and moreover the injectivity radius is not uniform there), we
compensate by learning a great deal about the point at the time at which it leaves
Ω.

To prove the claim assume x, an.x ∈ Ω and y = g.x ∈ [x]∨∞
i=0 a−iP for some

g ∈ Br. Then x ∈ Qi = D for some i — this means that ai.x ∈ Ω — and x ∈ Dj for
some j ≤ N(i). We will first show the claim for n = i. By equivalence of y = g.x

to x and by construction of the set Dj we get that x = uxhx.zj with ux ∈ BG−

r/4

and hx ∈ BG
e−αnr/8 and similarly for y, where zj ∈ D is the center of the ball

Bj used to define Dj . We may remove zj from the formulas and obtain first that
y = g.x = uyhyh

−1
x u−1

x .x which implies g = uyhyh
−1
x u−1

x ∈ BG
r as r is an injectivity

radius. If r is sufficiently small we obtain from this g = uh with u = uyu
−1
x ∈ BG−

r/2

and h = ux(hyh
−1
x )u−1

x ∈ Be−αnr/2 as conjugation by a small element does not

change the metric much. This shows that akga−k = (akua−k)(akhak) ∈ BG−

r/2B
G
r/2

for k = 1, . . . , i by Lemma 7.45, which proves the claim in the case of n = i.
If n > i we obtain from the above that akga−k ∈ BG

r for k = 1, . . . , i and
then we may repeat the argument with x, y = g.x, and g replaced by ai.x, ai.y and
aiga−i resp., and with n replaced by n − i. Repeating the argument as needed
shows the claim.

The claim implies that

[x]A ⊂ BG−G0

r .x

for a.e. x ∈ Ω, where we define A =
∨∞

n=0 a
−nP and we recall that G0 = CG(a).

Indeed for a.e. x ∈ Ω we have infinitely many n with an.x ∈ Ω by Poincarè recur-
rence.

Moreover, if μ is not compactly supported, then μ(Qn) 	= 0 for infinitely many

n which implies that the above atom is actually contained in BG−

r .x for a.e. x ∈ Ω.
In fact, suppose μ(Qn0

) > 0 then for a.e. x ∈ Ω we know that there are infinitely
many n with an.x ∈ Qn0

. Take one such x and assume that g.x is equivalent to x
and g = uh with u ∈ G− and h ∈ G0. This implies that anga−n = anua−nh = u′h
is the displacement between an.x and ang.x which implies h ∈ BG

e−αn0r/2
. As we

know this for infinitely many n0 we obtain h = e.
If however, we have μ(Qn) = 0 for all but finitely many n, then P is actually

a finite partition modμ and the last statement may not hold. However, in this
case we may artificially split one of the sets of positive measure into countably
many sets of positive measures such that for every ε we have a partition element

of positive measure contained in a set of the form BG−

r/4Bε.xε. Making these new

partition elements small enough, we may assume that their measure decays rapidly
which ensures that the resulting partition still has finite entropy. With this refined
partition the above holds also in this case.
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Notice that the above statements regarding the upper bound BG−

r .x of the
atom were stated for x ∈ Ω, but that a slightly weaker form also holds for a.e.
x ∈ X. In fact, if x ∈ X and n ≥ 1 is such that an.x ∈ Ω satisfies the inclusion

[an.x]A ⊂ BG−

r an.x then we have that [x]A ⊂ BG−

s .x for some s that depends on
n.

7.54. Lower bound for atom. To finish the proof we wish to show that
(7.48a) also holds for the partition P. So suppose x ∈ Ω and δ > 0 satisfies
(7.48a). Here we will use the fact that we “widened” the balls Bj in the direction
of G− to obtain the sets Dj ⊂ Qi. We may assume δ < r/8, and pick some

u ∈ BG−

δ . As Q̃ is contained in the σ-algebra generated by
∨

n≥0 a
−n.Q we know

that x and u.x belong to the same Qi = D ∈ Q̃. Suppose x ∈ Dj which shows

x = uxhx.zj with ux ∈ BG−

r/4 and hx ∈ BG
e−αir/8 where zj ∈ Bj ∩ Ω is the center

of the ball Bj that was used to construct Dj . Now clearly u.x = (uux)hx.zj and
uuxhx ∈ BG

r/2. As the diameter of Ω is at most r/8 by definition, we obtain

uuxhx ∈ BG
r/8 since r is an injectivity radius on Ω. Together with hx ∈ BG

r/8 this

implies uux ∈ BG−

r/4 . (To see this notice that by left invariance of the metric we

have d(g, e) = d(e, g−1) ≤ d(e, h) + d(h, g−1) = d(e, h) + d(gh, e) for all g, h ∈ G.)

This implies that u.x also belongs to BG−

r/4 .Bj and D. In fact this shows u.x ∈ Dj ,

for if u.x /∈ Dj then necessarily u.x ∈ Dj′ for some j′ < j but then by symmetry of
the argument between x and u.x we would have also x /∈ Dj . Therefore, x and u.x
belong to the same element of P. Repeating the argument as needed starting with
ai.x and aiu.x shows that x and u.x are equivalent with respect to

∨∞
n=0 a

−nP.
The points x ∈ X \ Ω are dealt with in the same manner as before by choosing a
minimal n with an.x ∈ Ω. This finishes the proof of Proposition 7.44. �

7.55. Proof of Theorem 7.9. Let U < G− be a closed a-normalized sub-
group. Let μ be an a-invariant and ergodic probability measure on X = Γ\G.
We wish to show that the entropy contribution is bounded by hμ(a, U) ≤ J where
J = − log

∣∣detAda |u
∣∣ is the negative logarithm of the absolute value of the deter-

minant of the adjoint representation of a restricted to the Lie algebra u of U . As
we will show we only have to use convexity of log t for t ∈ R. However, we will have
to use it on every atom [x]a−1.A for an a-decreasing σ-algebra which is subordinate
to U .

We fix a Haar measure mU on U , and note that

(7.55a) mU (a
−1Ba) = eJmU (B) for any measurable B ⊂ U.

For x ∈ X we write Vx ⊂ U for the shape of the A-atom so that Vx.x = [x]A a.e.

Recall that μa−1.A
x is a probability measure on [x]a−1.A = a−1Va.xa.x which is used

in the definition of

Hμ(A|a−1.A) = −
∫

log μa−1.A
x ([x]A).

We wish to compare this to a similar expression where we use (in a careful manner)
the Haar measure mU on U as a replacement for the conditional measures. We note
however, that we will always work with the given measure μ on X, so our notion
of “a.e.” is here always meant w.r.t. μ. We define τHaar

x to be the normalized push
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forward of mU |a−1Va.xa under the orbit map, i.e., we define

τHaar
x =

1

mU (a−1Va.xa)
mU

∣∣
a−1Va.xa

.x,

which again is a probability measure on [x]a−1A.
We define

p(x) = μa−1.A
x ([x]A)

which appears in the definition of Hμ(A|a−1.A). By analogy we also define

pHaar(x) = τHaar
x ([x]A) =

mU (Vx)

mU (a−1Va.xa)
=

mU (Vx)

mU (Va.x)
e−J

where we used (7.55a). Taking the logarithm and applying the ergodic theorem
(check this) we see that −

∫
log pHaardμ = J .

Now we recall that both A and a−1.A are subordinate to U , which means
that after removing a null set they must be countably equivalent. In other words,
there exists a null set N such that for x /∈ N the A-atom of x contains an open
neighborhood of x in the U -orbit. We may also assume that for x /∈ N there are
infinitely many positive and negative n with an.x ∈ Y where Y is as in (7.35a).
Since U is second countable, this implies that

[x]a−1.A \N =

∞⋃
i=1

[xi]A \N

where the union is disjoint. For a.e. x we wouldn’t have to be too careful about the
null set N as it is also a null set for the conditional measure, but note that it may
not be a null set for τHaar

x . Therefore, we write

[x]a−1.A =

∞⋃
i=1

[xi]A ∪Nx

where Nx is a null set for μa−1.A
x but maybe not for τHaar

x . We may assume

μa−1.A
x ([xi]A) > 0, otherwise we just remove this atom from the list and increase

Nx accordingly. This shows

∞∑
i=1

μa−1.A
x ([xi]A) = 1

but only
∞∑
i=1

τHaar
x ([xi]A) ≤ 1.

We now integrate log pHaar − log p over the atom [x]a−1.A to get

(7.55b)

∫
log pHaardμa−1.A

x −
∫

log pdμa−1.A
x ,

but as both functions are constant on the A-atoms (and as Nx is a null set w.r.t.
the measure w.r.t. which we integrate) this integral is nothing but the countable
sum

=

∞∑
i=1

(
log

τHaar
x ([xi]A)

μa−1.A
x ([xi]A)

)
μa−1.A
x ([xi]A)
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Using now convexity of log t for t ∈ R with μa−1.A
x ([xi]A) as the weights at ti =

τHaar
x ([xi]A)

μa−1.A
x ([xi]A)

we get

(7.55c) =

∞∑
i=1

log(ti)μ
a−1.A
x ([xi]A) ≤ log

( ∞∑
i=1

tiμ
a−1.A
x ([xi]A)

)

= log

( ∞∑
i=1

τHaar
x ([xi]A)

)
= log τHaar

x

( ∞⋃
i=1

[xi]A

)
≤ 0.

Integrating this inequality over all of X and recalling the relation of the function p
with the entropy contribution hμ(a, U) = Hμ(A|a−1.A) and of the function pHaar

with J gives the desired inequality.
In case of equality we use strict convexity of log t: If hμ(a, U) = J , then

the integral of the non-positive (due to (7.55c)) expression in (7.55b) vanishes.
Therefore, for a.e. atom (7.55b) vanishes, or equivalently we must have 0 on both
sides of (7.55c). However, this means that τHaar

x (Nx) = 0 and that ti = 1 for all i
by strict convexity of log t. Notice that ti = 1 means that the conditional measure

μa−1.A
x gives the same weight to the A-atoms [xi]A as does the normalized Haar

measure τHaar
x on the a−1.A-atom.

Using that Hμ(a
k.A|a−�.A) = (k + 
)hμ(a, U) = (k + 
)J for any k, 
 ≥ 0

together with the same argument we obtain that the conditional measure μa−�.A
x

gives the same weight to the ak.A-atoms as does the normalized Haar measure on
the a−�.A-atom. For a.e. x the a−�.A-atom can be made arbitrarily large as there
is a sequence 
n → ∞ with a�n .x ∈ Y . Now fix 
, then the various ak.A-atoms
for all k ≥ 0 generate the Borel σ-algebra on the a−�.A-atom, at least on the

complement of N which is a null set both for μa−�.A
x and for the normalized Haar

measure on the atom. This follows as for μa−�.A
x -a.e. y the ak.A atom can be made

to have arbitrarily small diameter since for y /∈ N there is a sequence kn →∞ with

a−kn .y ∈ Y . This shows that μa−�.A
x equals the normalized Haar measure on the

atom [x]a−�.A. Using this for all 
 we see that the leaf-wise measure μU
x is the Haar

measure on U , and so that μ is U -invariant (c.f. Problem 6.28). This concludes the
proof of Theorem 7.9. �

8. The product structure

8.1. Assumptions. In the previous chapter we considered a measure μ on
Γ\G invariant under the action of a diagonalizable element a ∈ G, and studied in
some detail the leafwise measures induced by μ on orbits of unipotent groups U
contracted by a. When considering the action of a multiparameter diagonalizable
group A ⊂ G, it is often possible to find some a ∈ A which contracts some nontrivial
unipotent group U but which acts isometrically on orbits of some other group T
(which may well be contracted by some other element a′ ∈ A). In this case there is
a surprisingly simple relation between the leafwise measures of the group generated
by U and T (which we assume to be simply the product group) and the leafwise
measures for each of these groups: essentially, the leafwise measures for TU will be
the product of the leafwise measures for T and U !

Even though a key motivation to looking at these conditional measures is our
desire to understand action of multiparameter diagonal groups, we will make use
of a single diagonalizable a ∈ G (more precisely — an element of the class A
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defined in §7.14). Let U ⊂ G− be a-normalized, and contracted by a. Finally
let T ⊂ G0 = CG(a) centralize a and assume that T normalizes U (this is not a
very restrictive condition: in particular, the reader can easily verify that the full
contracting subgroup for a is normalized by T ). We define H = TU ⊂ G, which
we can identify with T � U , and will show below that the leaf-wise measure for H
is proportional to the product of the leaf-wise measures for T and U .

8.2. This simple relation was discovered by M.E. and A. Katok and is one of
the key ingredients in the paper [EK03] and extended in [EK05] (cf. also [Lin06,
§6]). A weaker form of this relation can be derived from the work of H. Hu [Hu93]
on entropy of smooth Z

d-actions, and the relation between entropy and leafwise
measures, and was used by Katok and Spatzier in [KS96].

8.3. Example. The following is an example (for G = SL(3,R)) to have in
mind: Let

a =

⎛
⎝e−2

e
e

⎞
⎠ , U =

⎧⎨
⎩
⎛
⎝1 ∗ ∗

1 0
1

⎞
⎠
⎫⎬
⎭ , T =

⎧⎨
⎩
⎛
⎝1 0 0

1 ∗
1

⎞
⎠
⎫⎬
⎭

so that

H =

⎧⎨
⎩
⎛
⎝1 ∗ ∗

1 ∗
1

⎞
⎠
⎫⎬
⎭ .

We note that the Haar measure of H is the three-dimensional Lebesgue measure
and so is also the direct product of the Haar measures on T and U .

8.4. Short reminder. Recall that the equivalence classes by proportionality
of the leaf-wise measures live in a compact metric space, because of the growth
property from Theorem 6.30. More precisely, recall that we have a function ρ > 0
such that

∫
ρdμT

x < ∞ a.e. Taking a sequence {0 ≤ fi ≤ ρ}∞i=1 ⊂ Cc(T ) spanning
a dense subset, we may define

d([ν1], [ν2]) :=

∞∑
i=1

2−i

∣∣∣∣
∫
fidν1∫
ρdν1

−
∫
fidν2∫
ρdν2

∣∣∣∣
for any two equivalence classes of Radon measures with

∫
ρdνi < ∞. If we chose

a representative of the equivalence class we may assume
∫
ρdνi = 1. This way,

the metric just defined corresponds to the weak∗ topology in the space of Radon
measures {

ν :

∫
ρdν = 1

}
⊂
{
ν :

∫
ρdν ≤ 1

}
.

This way the leaf-wise measure μT
x can be interpreted as a measurable function

with values in a compact metric space.
We also recall the property of leaf-wise measures (Theorem 6.3.(iii)):

(8.4a) [μT
x ] = [(μT

t.x).t]

whenever t ∈ T , and x, t.x ∈ X ′ (a set of full measure). The following proposition
extends this by explaining how μT

x transforms under the bigger group H = TU−.
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8.5. Proposition. There exists X ′ ⊂ X of full measure, such that for every x ∈ X ′

and h ∈ H such that h.x ∈ X ′, we have

[μT
x ] = [(μT

h.x)t]

where h = tu′ = u′′t for some u′′, u′ ∈ U and t ∈ T .

The special case of t = e of this proposition implies the following (note, however
that Proposition 8.5 is a substantially stronger statement — cf. §8.9):

8.6. Corollary. Let u ∈ U . Then x, u.x ∈ X ′ implies [μT
x ] = [μT

u.x].

8.7. Proof of Proposition 8.5. As explained above the map x �→ [μT
x ] is

Borel measurable, from Γ\G to a compact metric space. By Luzin’s Theorem, for
any ε > 0, there exists a compact Kε ⊂ Γ\G such that:

• μ(Kε) > 1− ε,
• x �→ [μT

x ] is continuous on Kε, and
• (8.4a) holds whenever x, t.x ∈ Kε.

Define

Xε =
{
x ∈ Kε : sup

n

1

n

n−1∑
i=0

1X\Kε
(ai.x) < 1/2

}

Then using the maximal ergodic theorem one easily verifies that μ(Xε) > 1− 2ε.
If x, h.x ∈ Xε, then there is a sequence ni → ∞ such that anix, anih.x ∈ Kε.

Passing to a subsequence if necessary, we may assume that anix → x0. We note
that a commutes with the elements of T by definition and so Lemma 7.16 implies
that μT

an.x = μT
x for every n and a.e. x. We may assume this holds for any x ∈ Xε.

By continuity on Kε we have

[μT
x ] = [μT

ani .x]→ [μT
x0
].

For h.x, we can rewrite and get

anih.x = anitu′.x = t(aniu′a−ni)ani .x→ t.x0,

since the term in parentheses aniu′a−ni → e as ni → ∞. So again by continuity
we have

[μT
h.x] = [μT

anih.x]→ [μT
t.x0

].

Together, we have for x, h.x ∈ Xε

[μT
x ] = [μT

x0
] = [(μT

t.x0
)t] = [μT

anih.xt] = [μT
h.xt]

as desired. We conclude the proof by letting ε = 1
n ↘ 0, choosing Kε increasing,

and defining X ′ to be the union of the X 1
n
. �

8.8. Corollary (Product structure). Let H = T � U be as in §8.1. There exists
X ′ ⊂ X of full measure, such that for every x ∈ X ′ we have

μH
x ∝ ι(μT

x × μU
x ),

where ι : (t, u) ∈ T × U �→ tu ∈ H.
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8.9. Remark. All the essential facts for this corollary have already been proved
as we explain now. Suppose for a minute that the product formula as in the last
corollary holds, then indeed the leaf-wise measure for T of a point u.x with u ∈ U
should be the same as for x, but as usual we should allow for null sets and just
state this for a.e. u ∈ U (w.r.t. the natural measure μU

x there). This is what we
proved in Corollary 8.6 for a.e. x. (Recall that μ(X \X ′) = 0 implies that for μ-a.e.
x ∈ X and μU

x -a.e. u we have u.x ∈ X ′.)
However, this property does not imply that μH

x is a product measure: E.g. if
μH
x were a measure supported on a measurable graph from T to U then μU

x would
typically be trivial and this would make the above true while μH

x may not be a
product measure.

Proposition 8.5, on the other hand, does contradict the prevalence of this type
of leafwise measures. We may rephrase Proposition 8.5 as follows: for μ-a.e. x and
μH
x -a.e. h = tu (with t ∈ T and u ∈ U) we know that the leaf-wise measure μT

h.x

is, apart from the shift by t (and possibly a proportionality factor), the same as
μT
x . This property is incompatible with a graph-like measure we described above

unless the graph describes a constant map (which is compatible with the product
structure we claim). To convert this heuristic into an argument we need to prove
another lemma regarding leaf-wise measures.

8.10. Lemma. Let H be a locally compact second countable group acting nicely on
X (say, locally and measure-theoretically free), and let μ be a Radon (i.e., locally
finite) measure on X. Assume H = LM = ι(L ×M) is topologically isomorphic
(under the product map ι(
,m) = 
m for 
 ∈ L,m ∈ M) to the product of two
closed subgroups L,M < H. Then L acts by restriction on X and on H by left
translation, and so gives rise to families of leaf-wise measures μL

x and (μH
x )Lh for

x ∈ X and h ∈ H. Then there exists X ′ ⊂ X of full measure such that whenever
x ∈ X ′ we have [(μH

x )Lh ] = [μL
h.x] for μH

x -a.e. h ∈ H.

Roughly speaking the above is what we should expect: μH
x is the measure on

H such that μH
x .x describes μ along on the orbit H.x. Similarly, (μH

x )Lh is the
measure on L for which (μH

x )Lhh describes μH
x on the coset Lh, and so we expect

that (μH
x )Lh will be such that (μH

x )Lhh.x describes μ on the orbit Lh.x which suggests
the conclusion.

8.11. Proof. Let Ξ ⊂ X be an R-cross-section for the action of H on some set
of positive measure (see Definition 6.6). Let ÃH be the σ-algebra {BH

R , ∅}⊗B(Ξ) on
BH

R ×Ξ, where B(Ξ) is the Borel σ-algebra on Ξ. The map ι(h, x) = h.x is injective

on BH
R × Ξ by definition, and so AH = ι(ÃH) is a countably generated σ-algebra

of Borel sets. The atom [x]AH
is an open H-plaque for any x ∈ ι(BH

R ×Ξ) = BH
R .Ξ

(namely equal to BH
R .z for some z ∈ Ξ).

We further define ÃL := {LB ∩ BH
R : B ∈ B(M)} where B(M) is the Borel

σ-algebra on M , which is by assumption a global cross-section of L in H. The σ-
algebra AL = ι(ÃL ×B(Ξ)) is countably generated, and [x]AL

is an open L-plaque
for all x ∈ ι(BH

R × Ξ). Note that AL ⊃ AH .
The measures μH

x and μL
x can be defined by the values of conditional measures

with respect to a countable collection of σ-algebras A(i)
H and A(i)

L constructed as
above. On each of these σ-algebras a corresponding compatibility condition is

satisfied due to the inclusion A(i)
L ⊃ A(i)

H ; this implies the lemma. �



208 M. EINSIEDLER AND E. LINDENSTRAUSS

8.12. Proof of Corollary 8.8. Take x ∈ X to be typical (i.e., outside of the
union of bad null sets from Proposition 8.5, and Lemma 8.10 applied to both L = T ,
M = U and L = U , M = T ). We are going to combine these statements, but for
this it will be easier to restrict μH

x to the bounded product set Q = BT
r B

U
r ⊂ H

for some r > 0, which we may envision as a rectangle with sides BT
r and BU

r .
Using L = T Lemma 8.10 is telling us that the conditional measures for μH

x |Q
with respect to the σ-algebra A = {BT

r , ∅}⊗B(BU
r ) can be obtained from the leaf-

wise measures μT
h.x (for μH

x -a.e. h ∈ Q). As usual, we have to shift the leaf-wise
measure for T back to the space in question, which after applying the lemma may
be taken to be H, and restrict to the atoms of the σ-algebra A in question. This
gives

(8.12a)
(
μH
x

)A
h
∝
(
μT
h.xh

)∣∣
Q
.

However, Proposition 8.5 gives

(8.12b) μT
tu.xt ∝ μT

x .

for μH
x -a.e. h = tu ∈ Q (which is a form of independence of μT

tu.x in terms of
u ∈ U). Using (8.12a)-(8.12b) together, we obtain that the conditional measures of
μH
x |Q with respect to A = {BT

r , ∅} ⊗ B(BU
r ) at h = tu ∈ Q is equal to μT

x |BT
r
× δu

normalized to be a probability measure. However, this just says that μH
x |Q is a

product measure which is proportional to ι(μT
x × νr) for some finite measure νr on

BU
r .

Varying r it is easy to check that one can patch these measures νr together
(i.e. that they extend each other up to a proportionality factor) to obtain a Radon
measure ν on U and that μH

x is in fact proportional to ι(μT
x × ν). We wish to show

that ν ∝ μU
x .

As ι(μT
x × ν) is a product measure it is clear what the conditional measures

for it are with respect to a σ-algebra whose atoms are of the form tV for open
subsets V ⊂ U . However, this corresponds really to the right action of U on H
while we have to use the left action if we want to apply Lemma 8.10 for L = U
and M = T . Luckily U is a normal subgroup, so at least the orbits of these two
actions are the same even though the way these two actions identify the orbit with
the group differs. We now analyze this in more detail.

Restrict again to Q = BT
r B

U
r ⊂ H and consider the σ-algebra A′ = B(BT

r ) ⊗
{BU

r , ∅}, whose atoms are tBU
r for t ∈ BT

r . We know that the conditional measure
of μH

x |Q at h = tu equals ι(δt × νr). Considering now the action of U by left
multiplication on H we see that the atom of h = tu ∈ Q corresponds to the set
Vh = tBU

r h−1 ⊂ U . Using these σ-algebras for all positive integers r we characterize
the leaf-wise measures of μH

x with respect to the U -action and obtain that (μH
x )Uh

must be proportional to (the push forward) t ν h−1 for μH
x -a.e. h.

To summarize we know

(8.12c) μU
h.x ∝ (μH

x )Uh ∝ t ν h−1 where h = tu.

Clearly the above gives the desired statement if we just set h = e. However, strictly
speaking we are not allowed to use h = e as we only know these two formulas for
μH
x -a.e. h ∈ H. Instead we may show the corresponding claim not for the x we

started with but for h.x for μH
x -a.e. h ∈ H. This will show that the corollary holds
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a.e. In fact, for μH
x -a.e. h = tu we know

μH
h.x ∝ μH

x h−1 ∝ ι(μT
x × ν)h−1 ∝ ι(μT

h.xt× ν)h−1 ∝
∝ ι(μT

h.x × tνh−1) ∝ ι(μT
h.x × μU

h.x)

by combining Theorem 6.3.(iii) for the action of H on X, with the product structure
at μH

x already obtained, with Proposition 8.5, with the definition of ι(t, u) = tu,
and finally with (8.12c). �

From the product structure just proven we can read off an analogue of Corollary
8.6 for the action of T . We note however that, since T and U may not commute, a
full analogue of Proposition 8.5 with the roles of T and U reversed will in general
not hold (unless one allows conjugation as in the proof above).

8.13. Corollary. Let t ∈ T . Then x, t.x ∈ X ′ implies [μU
x ] = [μU

t.x].

We refer to Example 6.5.2 for a discussion showing that this mild coincidence
of leaf-wise measures may indeed be a very special property.

9. Invariant measures and entropy for higher rank subgroups A, the
high entropy method

9.1. As before we consider the space X = Γ\G, where G is an algebraic group
over a characteristic zero local field k (say k = R or Qp for simplicity). We fix
an algebraic subgroup A ⊂ G which is diagonalizable over the ground field k. In
algebraic terms A is the group of k-points of a k-split torus, but we may simply
refer to A as a torus and to its action on X as a torus action. We will assume that
we have a homomorphism α : (k×)n ↪→ G which is defined by polynomials with
coefficients in k and whose range equals A. We may often suppress the isomorphism
and use A and (k×)n interchangeably. For example, if G = SL(4,R), we could have

α : (t, s) �→

⎛
⎜⎜⎝
t2

ts
s

t−3s−2

⎞
⎟⎟⎠ .

Let g be the Lie algebra of G. Recall that in zero characteristic, the functions
exp and log are homeomorphisms between neighborhoods of 0 ∈ g and e ∈ G.
Hence, the restriction of the adjoint action of A on the Lie algebra g gives a good
description of the behavior of conjugation on G which as we have seen is crucial in
the study of the action of the elements of A on X.

9.2. A character λ is a homomorphism λ : (k×)n � A → k× defined by
polynomials with coefficients in k; these polynomials necessarily have the form
λ(t1, . . . , tn) = t�11 · · · t�nn where 
1, . . . , 
n ∈ Z.

We say that a character λ is a weight (which one also may refer to as eigenvalue,
Lyapunov weight, or root) for the action of A if there is some nonzero x ∈ g such
that for every a ∈ A, we have Ada(x) = λ(a)x. The set of all such x ∈ g is the
weight space gλ. By the assumption that A is diagonalizable we get a decomposition
g =

⊕
λ∈Φ gλ where Φ is the set of all weights.

For a ∈ A the subspace g−a =
⊕

|λ(a)|<1 g
λ is a nilpotent subalgebra, and exp

gives a global homeomorphism from g−a to the horospherical group G−
a < G. Here,

the absolute value comes from the Archimedean norm on R resp. the p-adic norms
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on Qp. Also, we introduced the subscript in the notation G−
a to explicate the

dependence of the horospherical subgroup on the element a ∈ A used.
Note that [gλ, gη] ⊂ gλη which follows easily from the formula

Ada([x, y]) = [Ada(x), Ada(y)] x, y ∈ g.

Note that in general gλ is not a sub-Lie-algebra if λ2 is also a weight.

9.3. Define an equivalence relation on Φ by λ ∼ η if there exist positive inte-
gers 
,m such that λ� = ηm. This means that λ and η are weights in the same
“direction” — characters are in a one-to-one correspondence with Z

n and under
this correspondence λ ∼ η if and only if they are on the same ray from the origin.
For a nontrivial weight λ ∈ Φ we define the coarse Lyapunov subalgebra

g
[λ] :=

⊕
η∼λ

g
η.

We note that exp gives a globally defined homeomorphism between g[λ] and a
unipotent subgroup G[λ] which we will refer to as the coarse Lyapunov subgroup.

Note that λ is nontrivial (i.e., not the constant homomorphism) implies that
gλ can be made part of some g−a for some correctly chosen a ∈ A. Moreover, two
weights λ and η are equivalent if and only if their corresponding weight spaces are
contained in g−a for the same set of a ∈ A. In this sense, one might say that weights
are equivalent if they cannot be distinguished by any elements of a in terms of
whether or not the weight space is being contracted.

Similarly, the coarse Lyapunov subgroup G[λ] is the intersection of stable horo-
spherical subgroups for various elements of A and is a smallest nontrivial such sub-
group. Dynamically speaking, we may say that the orbits of the coarse Lyapunov
subgroups are the smallest nontrivial intersections one can obtain by intersecting
stable manifolds of various elements of A.

9.4. In this section, we study the structure of the leaf-wise measures on these
coarse Lyapunov groups. This study due to Einsiedler and Katok [EK03, EK05]
by itself gives sufficient information to yield the following measure classification
theorem:

9.5. Theorem (Einsiedler and Katok [EK03]). Let Γ be a discrete subgroup in
G = SL(3,R) and define X = Γ\G. Let A be the full diagonal subgroup of G and
suppose μ is an A-invariant and ergodic probability measure on X. Let

a =

⎛
⎝t 0 0
0 s 0
0 0 t−1s−1

⎞
⎠ ∈ A

and suppose that

hμ(a) >
1

2

(∣∣log | t
s
|
∣∣+ ∣∣log |t2s|∣∣+ ∣∣log |ts2|∣∣).

Then μ is the Haar measure mX on X and in particular Γ is a lattice.

We note that the expression in the parenthesis is the entropy of the Haar
measure mX . Hence, the theorem (as well as its generalizations below) says that
an ergodic measure whose entropy is close to that of the Haar measure must be the
Haar measure.
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In the next section we present a completely different technique (the low entropy
method) that will allow us to sharpen the above theorem, treating all positive
entropy measures.

9.6. Fixing some a ∈ A for which g−a is nontrivial (equivalently, there is some
λ ∈ Φ so that |λ(a)| < 1) we obtain a decomposition g−a =

⊕
i=1,...,� g

[λi] into finitely

many of these “coarse” Lyapunov subalgebras (corresponding to the subgroups
G[λi]).

λ

η

κ

exponent of t

exponent of s

Figure 3. Weights for the Heisenberg group

We order these coarse Lyapunov weights [λ1], [λ2], . . . , [λ�] so that for each i,
the weight λi, or more precisely the corresponding point in Z

k is not in the convex
cone generated by the points corresponding to λi+1, . . . , λ� — we refer to this by
saying that λi is exposed. This ordering guarantees that for every i there will be an
element a ∈ A so that λi(a) = 1 but |λj(a)| < 1 for i < j < 
.

9.7. Example. Take G = SL(3,R), and A the full diagonal subgroup. Let

α be the homomorphism α : (t, s) �→

⎛
⎝t

s
t−1s−1

⎞
⎠. Here g is the algebra of

traceless matrices. Suppose now a = α(t, s) with |t| < |s| < |t−1s−1|. Then g−a is
the algebra of upper triangular nilpotent matrices. Moreover, the coarse Lyapunov
subalgebras are the 1-dimensional spaces

g
[λ] =

⎛
⎝0 ∗ 0

0 0
0

⎞
⎠ , g[η] =

⎛
⎝0 0 ∗

0 0
0

⎞
⎠ , and g

[κ] =

⎛
⎝0 0 0

0 ∗
0

⎞
⎠ ,

with the corresponding weights λ = ts−1, η = t2s and κ = ts2. As Figure 3 shows,
λ1 = λ, λ2 = η and λ3 = κ is a legitimate ordering (as would be the reverse ordering
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and λ, κ, η, but not η, λ, κ). We also have the corresponding subgroups

G[1] =

⎛
⎝1 ∗ 0

1 0
1

⎞
⎠ , G[2] =

⎛
⎝1 0 ∗

1 0
1

⎞
⎠ , and G[3] =

⎛
⎝1 0 0

1 ∗
1

⎞
⎠ .

where G[1] and G[3] each commute with G[2], and the commutator [G[1], G[3]] = G[2].

9.8. Theorem. Let A = α((k×)n), and suppose μ is an A-invariant measure on
X = Γ\G. Fix some a ∈ A, and choose an allowed order of the coarse Lyapunov
subalgebras contracted by a (as described above). Then for μ-a.e. x ∈ X, we have

μG−

x ∝ ι(μG[1]

x × μG[2]

x × · · · × μG[k]

x )

where ι(g1, g2, . . . , gk) = g1g2 · · · gk is the product map.

9.9. Proof. By assumption [λ1] is exposed within the set of all Lyapunov
weights appearing in G−

a so that there exists some a′ ∈ A with G[1] ⊂ G0
a′ and

U = G[2] · · ·G[k] = G−
a ∩ G−

a′ . It follows easily that U is a normal subgroup of

G−
a and that G−

a � G[1]
� U where the isomorphism is just the map ι taking the

product. From Corollary 8.8 we deduce that μ
G−

a
x ∝ ι(μG[1]

x × μU
x ). Repeating the

argument, starting with G[2] inside U , the theorem follows. �

9.10. Corollary.

hμ(a,G
−) =

k∑
i=1

hμ(a,G
[i])

This follows from Theorem 7.6 and Theorem 9.8 since the left hand side is

lim
n→∞

log μG−

x (anBG−

1 a−n)

n

and we have already shown in §7.18 that the particular shape of the set BG−

1 used
in the definition does not matter. Using the product set

BG[1]

1 BG[2]

1 · · ·BG[k]

1

instead we obtain with the theorem that the left hand side splits into the corre-
sponding expression for G[i]. Hence in this setting our term ‘entropy contribution’
is quite accurate. We note, however, that in general such a formula does not hold
for a finer foliation than the coarse Lyapunov subalgebras.

9.11. Getting invariance. In fact, more is true. Let us for now continue
Example 9.7 (which will lead to the proof of Theorem 9.5), and consider f ∈
Cc(G

−
a ), and observe that∫

f(g)dμG−

x =

∫
f(g1g2g3)dμ

[1]
x (g1)dμ

[2]
x (g2)dμ

[3]
x (g3)

=

∫
f(g3g2g1)dμ

[3]
x (g3)dμ

[2]
x (g2)dμ

[1]
x (g1)

where μ
[i]
x := μG[i]

x . This follows from Theorem 9.8 by using the two allowed orders
1, 2, 3 resp. 3, 2, 1. Notice that, since both G[1] and G[3] commute with G[2], we
can rewrite g1g2g3 = g2g1g3, and g3g2g1 = g2g3g1 = (g2[g3, g1])g1g3. Inserting
this above, and taking the leaf-wise measure for the G[2]-action on G−

a we find



DIAGONAL ACTIONS ON LOCALLY HOMOGENEOUS SPACES 213

that μ
[2]
x ∝ μ

[2]
x [g3, g1] for μ

[1]
x -a.e. g1 and μ

[3]
x -a.e. g3 (by using Lemma 8.10 and by

recalling that [g3, g1] ∈ G[2]).
Now, if [g3, g1] has infinite order, in other words if the element [g3, g1] is nontriv-

ial, then μ
[2]
x must be [g3, g1]-invariant; since otherwise, successive translations by

[g3, g1] would cause μ2(B
G[2]

r ) to grow exponentially, contradicting Theorem 6.30.

Since the set {g2 : (μ
[2]
x ).g2 = μ

[2]
x } is closed, it follows that if both μ

[1]
x and μ

[3]
x are

non-atomic, we must have μ
[2]
x invariant under [suppμ

[1]
x , suppμ

[3]
x ].

This is a significant restriction. By Poincaré Recurrence, we know that μ
[1]
x = δe

or suppμ
[1]
x contains arbitrarily small (and large) elements; and similarly for μ

[2]
x .

In the example of the Heisenberg group above, there are only three possible cases:

either μ
[1]
x or μ

[3]
x is trivial, or else the closed group generated by [suppμ

[1]
x , suppμ

[3]
x ]

equals G[2], and so μ
[2]
x is a Haar measure on G[2].

9.12. Proof of Theorem 9.5. The above shows (in the notation of Example

9.7) that if μ
[1]
x and μ

[3]
x are both nontrivial at x, then a.s. μ2 is the Haar measure

on G[2]. Lemma 7.16 shows that the set of points where μ
[i]
x is trivial is A-invariant,

and so has either measure zero or one by ergodicity. Supposing that μ
[1]
x and μ

[3]
x

are both nontrivial a.e., we get that μ2 = μG[2]

x equals the Haar measure on G[2] a.e.
and so that μ is invariant under G[2] by Problem 6.28. We now bring in entropy
and the assumption to the theorem to justify the assumptions to this ‘commutator
argument’.

Let now a ∈ A be as in the theorem. There are essentially two cases for elements
of A: An element a ∈ A is called regular if all of its eigenvalues are different, and is
called singular if two eigenvalues are the same. If a is regular, then we may assume
it is as in Example 9.7, for otherwise we get a group isomorphic to the Heisenberg
group embedded in some other way into SL(3,R). If a is singular we may assume
(again in the notation of Example 9.7) that t = s with |t| < 1.

We define the opposite weight spaces

g[−1] =

⎛
⎝0 0 0
∗ 0 0
0 0 0

⎞
⎠ , g[−2] =

⎛
⎝0 0 0
0 0 0
∗ 0 0

⎞
⎠ , and g

[−3] =

⎛
⎝0 0 0
0 0 0
0 ∗ 0

⎞
⎠ ,

and similarly the coarse Lyapunov subgroups.
In the singular case G−

a = G[2]G[3] and

hμ(a) = hμ(a,G
−
a ) = hμ(a,G

[2]) + hμ(a,G
[3])

by Theorem 7.6 and Corollary 9.10. By Theorem 7.9 each summand on the right
is bounded by 3

∣∣log |t|∣∣ (which is precisely the entropy contribution for the Haar

measure). By assumption on the entropy we have hμ(a) > 3
∣∣log |t|∣∣ (i.e., entropy

is more than one half of the maximal entropy), so that both entropy contributions

are positive. In turn, this shows that both leaf-wise measures μ
[2]
x and μ

[3]
x are

nontrivial a.e. By symmetry of entropy hμ(a) = hμ(a
−1) we also get that both

μG[−2]

x and μG[−3]

x are nontrivial a.e. However, the two subgroups G[2] and G[−3]

do not commute and have commutator G[1]. Moreover, the three groups G[2],
G[1], and G[−3] generate a stable horospherical subgroup G−

a′ (for some regular
a′ ∈ A) which is isomorphic to the Heisenberg group studied so far. By the above
commutator argument we get that μ is invariant under G[1]. Note that we could
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also have used the triple G[3], G[−1], and G[−2] to obtain invariance under G[−1].
So we obtain in the singular case that in fact all leaf wise measures of the coarse
Lyapunov subgroups are nontrivial a.e. (and some of them are Haar measures).
This is enough to imply that μ is invariant under all coarse Lyapunov subgroups
(and so must be the Haar measure mX) by the commutator argument: Any of the
coarse Lyapunov subgroups G[i] is the commutator of two other coarse Lyapunov
subgroups G[j] and G[k] such that all three of them generate a stable horospherical
subgroup (isomorphic to the Heisenberg group).

In the regular case there are a few more possibilities. We know that hμ(a) =

hμ(a,G
[1]) + hμ(a,G

[2]) + hμ(a,G
[3]). In this case the upper bounds coming from

Theorem 7.9 are for the three summands log | st |, − log |t2s|, resp. − log |ts2|. Note
that the second term equals the sum of the other two, so that our assumption
translates to the assumption that at least two out of the three entropy contributions
must be positive — any particular entropy contribution coming from one coarse
Lyapunov subgroup cannot give more than one half of the maximal entropy. Hence

we conclude that at least two of the three leaf-wise measure μG[1]

x , μG[2]

x , or μG[3]

x

must be nontrivial a.e. From the above we know that if μG[1]

x and μG[3]

x are nontrivial

a.e., then μG[2]

x is actually the Haar on G[2] a.e. and so again nontrivial a.e. Using
again symmetry of entropy and the same commutator argument within various
stable horospherical subgroups the theorem follows easily. �

9.13. Problem. Prove the following version of the high entropy theorem for
quotients of G = SL(n,R) (starting with n = 3). Suppose μ is an A-invariant and
ergodic probability measure on X = Γ\G such that all nontrivial elements of A
have positive entropy. Deduce that μ is the Haar measure on X.

Generalizing the commutator argument leads to the following theorem.

9.14. Theorem. (High entropy theorem) Let μ be an A-invariant and ergodic
probability measure on X = Γ\G. Let [ζ] and [η] be coarse Lyapunov weights
such that [ζ] 	= [η] 	= [ζ−1]. Then for a.e. x, μ is invariant under the group

generated by [suppμG[ζ]

x , suppμG[η]

x ]. In fact the same holds with suppμG[ζ]

x and

suppμG[η]

x replaced by the smallest Zariski closed A-normalized subgroups containing
the supports.

To prove this in general we need a few more preparations.

9.15. Invariance subgroups. Let a ∈ A and assume U ⊂ G−
a is a-normalized.

We define for any x the closed subgroup

StabUx = {u ∈ U : uμU
x = μU

x } < U.

Over R, there are — in some sense — very few closed subgroups, which restricts the
possibilities for StabUx . More precisely, we claim that StabUx equals the connected

component (StabUx )
0 of the identity in StabUx , at least for a.e. x.

To see this let d(x) be the distance from (StabUx )
0 to StabUx \(StabUx )0 (using a

left invariant metric) and define d(x) = 0 if the claim holds for x.

Now an StabUx a−n = StabUan.x (see Lemma 7.16), and since a contracts U , we
must have d(anx)→ 0 as n→∞. Thus, we see that d(x) = 0 for a.e. x by Poincaré

recurrence. Therefore, StabUx is connected.
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9.16. Problem. Over Qp it doesn’t make sense to speak of the connected
component (as it would be the trivial group in any case), but we can speak of the

maximal algebraic subgroup contained in StabUx . For this recall that exp and log
are polynomial isomorphisms between the Lie algebra of U and U . Also sub-Lie
algebras are mapped under this map to Zariski closed subgroups of U . We may
define (StabUx )

0 to be the exponential image of the largest subalgebra contained in

the logarithmic image of StabUx . (The reader may verify that over R this defines

the connected component.) Show that (StabUx )
0 = StabUx a.e. (The situation is

in a sense opposite to the real case where one had to apply the contraction by a
to obtain small elements — over Qp we can simply take a power of an element

of StabUx to obtain small elements but one has to apply the expansion a−1 and

Poincaré recurrence to obtain big elements of StabUx .)

9.17. StabUx is normalized by A. If U is one-dimensional, then this follows

simply from StabUx = (StabUx )
0. However, in general this is a special property which

again is a result of Poincaré recurrence.
In fact, as StabUx = (StabUx )

0 it is uniquely determined by its Lie algebra sx.
Notice that san.x = Adna sx a.e. However, A is generated by elements a ∈ A whose
eigenvalues are all powers of a single number t. For these it follows that either
sa.x = sx or that san.x approaches a sub Lie algebra h for which Ada h = h. In
fact, this follows from considering the alternating tensor product of the Lie algebra
of U of degree equal to the dimension of sx (which is independent of x for a.e. x
by ergodicity of A): The action of the class A element a on that space still has
all eigenvalues equal to a power of t and either the point corresponding to sx is an
eigenvector for that action or it approaches projectively one when the iterates of a
are applied to it. By Poincaré recurrence the latter is not possible for a.e. x, hence
the conclusion.

In particular, the above shows that StabU = StabUx is independent of x for
a.e. x as μ is A-ergodic. This makes the following lemma useful for H = U and
L = StabU .

9.18. Lemma. Let H act on X, and L < H be a subgroup. Suppose that for every
l ∈ L, we have lμH

x = μH
x for a.e. x ∈ X. Then μ is L-invariant.

This follows literally from Problem 6.28 and Lemma 8.10, but also purely from
the argument behind Problem 6.28.

9.19. Proof of Theorem 9.14. We take two coarse Lyapunov weights [ζ]
and [η] satisfying [ζ] 	= [η] 	= [ζ−1] as in the theorem. Then there exists an A-
normalized subgroup H ⊂ G−

a (for some a ∈ A) which is a product of coarse
Lyapunov subgroups for which [ζ], [η] are both exposed. This implies as in Theorem
9.8 that

μH
x ∝ ι(μG[ζ]

x × μG[η]

x × μU
x ) ∝ ι(μG[η]

x × μG[ζ]

x × μU
x )

where U is the product of all coarse Lyapunov subgroups that are contained in H
except for G[ζ] and G[η]. The argument in 9.11 now shows that μU

x must be invariant

under [suppμG[ζ]

x , suppμG[η]

x ] ∈ StabU . Together with the above discussion, this

implies that μ is invariant under [suppμG[ζ]

x , suppμG[η]

x ] for a.e. x as claimed.
We now wish to prove the additional claim that μ is, for a.e. x, also invari-

ant under the commutators [h[ζ], h[η]] of elements of the smallest Zariski closed
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a-normalized subgroups P [ζ] � h[ζ] and P [η] � h[η] containing suppμG[ζ]

x resp.

suppμG[η]

x . We may assume ζ (and similarly η) is an indivisible weight, i.e., all
other weights which are coarsely equivalent to ζ are powers of ζ. Now notice that
Zariski closed subgroups of the unipotent group G[ζ] are precisely the exponential
images of subalgebras of the Lie algebra of G[ζ]. To prove the above we are first

claiming that if g[ζ] ∈ suppμG[ζ]

x and h[η] ∈ suppμG[η]

x and we write

log g[ζ] = u[ζ] = uζ + uζ2 + · · ·
log h[η] = v[η] = vη + vη2 + · · ·

with uξ, vξ ∈ gξ, then a.s. exp[uζm , vηn ] preserves the measure μ (or equivalently

μG[ζmηn]

x ). For this we have to proceed by induction on the complexity of the
subgroup U . If U is the trivial subgroup, there is nothing to prove as in this case
G[ζ] and G[η] commute. For the general case we have to compare the group theoretic
commutator

[g[ζ], h[η]] = (g[ζ])−1(h[η]])−1g[ζ]h[η]

with the Lie theoretic commutator in the Lie algebra g. By the Campbell-Baker-
Hausdorff formula the former equals

(9.19a) [g[ζ], h[η]] = exp
(
[u[ζ], v[η]] + · · ·

)
,

where the dots indicate a finite sum of various iterated commutators of u[ζ] and
v[η] with [u[ζ], v[η]]. Let us refer to [u[ζ], v[η]] as the main term. Note that in
log g the only term of weight ζη is [uζ , vη] (which is part of the main term), as
all terms indicated by the dots only contain terms of weight ζkη� with k + 
 ≥ 3.
As g ∈ StabU and this group is A-normalized and equals the exponential image of
its Lie algebra, we see that [uζ , uη] belongs to the Lie algebra of StabU . We note

that this implies that exp[uζ , vη] preserves μG[ζη]

x which implies that exp[uζ , vη] ∈
suppμG[ζη]

x . If we replace η by ζη and h[η] by exp[uζ , vη], we obtain a situation as
before but with a smaller dimensional subgroup U ′ replacing U . By the inductive
hypothesis we conclude that all terms of the form exp[uζm , [uζ , vη]] preserve the
measure. However, this now shows that the term inside the exponential in (9.19a)

corresponding to weight ζ2η is the sum of [uζ2

, vη] (which is part of the main term)
and of a multiple of [uζ , [uζ , vη]]. As before we conclude that this sum belongs

to the Lie algebra of StabU , which in return shows the same for [uζ2

, vη] (and

similarly for [uζ , vη
2

]). Proceeding inductively one shows in the same manner that

all components [uζm , uηn ] of the main term belongs to the Lie algebra of StabU .
As the Lie bracket is bilinear, it is clear that we may multiply the various

components uζm and uηn by scalars without affecting the conclusion. It remains

to show that if [u1, v] and [u2, v] for u1, u2 ∈ g[ζ] and v ∈ g[η] belong to the Lie

algebra of StabU , then the same is true for [[u1, u2], v]. However, this follows from
the Jacobi identity

[[u1, u2], v] = −[[v, u1], u2]− [[u2, v], u1]

where the terms on the right belong to the Lie algebra of StabU by what we already
established.

The above together shows that we may take u, v in the Lie algebra generated

by log suppμ
[ζ]
x resp. generated by log suppμ

[η]
x and obtain that [u, v] belongs to the
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Lie algebra generated by StabU . This together with the Campbell-Baker-Hausdorff
formula is the desired result. �

As a corollary, we have the following entropy gap principle.

9.20. Theorem. Let G be a simple algebraic group defined over R and connected
in the Hausdorff topology. Let Γ < G be a discrete subgroup. Say A ⊂ G is a split
torus of rank at least 2. Suppose μ is an A-invariant and ergodic probability measure
on X = Γ\G. Then for every a, there exists h0 < hmX

(a) such that hμ(a) > h0

implies that μ = mX is the Haar measure on X.

We note that the entropy hmX
(a) of the Haar measure mX on X is determined

by a concrete formula involving only Ada, and so is independent of Γ. If Γ is not
assumed to be a lattice, we still write hmX

(a) for this expression. With this in
mind, we do not have to assume in the above theorem that Γ is a lattice, rather
obtain this as part of the conclusion if only hμ(a) > h0.

9.21. Example. We illustrate Theorem 9.20 as well as another formulation of
the high entropy theorem in the case of G = SL(3,R) (as in Problem 9.13).

Say

a =

⎛
⎝e−t

1
et

⎞
⎠ G−

a =

⎛
⎝1 G[1] G[2]

1 G[3]

1

⎞
⎠

We have

hmX
(a) =

3∑
i=1

hλ(a,G
[i]) = t+ 2t+ t.

If we take h0 = 3t, then hμ(a) > 3t implies that there is an entropy contribution
from all 3 expanding directions, and so all three leaf-wise measures are non-trivial

almost everywhere. Therefore the support of each μG[i]

x is all of G[i], and the
high-entropy method then implies that μ is invariant under all G[i], and therefore
invariant under G, so μ is the Haar measure on X.

Now suppose

a =

⎛
⎝e−2t

et

et

⎞
⎠ G−

a =

⎛
⎝1 G[1] G[2]

1
1

⎞
⎠

we have central directions that are neither expanded nor contracted by a. Here, we
have

hmX
(a) = 3t+ 3t

and hμ(a) > h0 = 3t = 1
2hmX

(at) implies that the Zariski closure of suppμG[i]

x is

a.s. all of G[i], and so by taking the commutator we get invariance of μ under the
central direction as well (eg., since [G[1], G[−2]] is the lower central direction, μ is
invariant under this direction as well.)

Now suppose we know that, for every a, we have hμ(a) > 0. By examining the

element a =

⎛
⎝e−2t

et

et

⎞
⎠ as above, we find that either μG[1]

x or μG[2]

x is nontrivial

almost everywhere. If we assume that, say, μG[2]

x is trivial (and hence that suppμG[1]

x
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is Zariski dense in G[1] a.s.), then we can use the element a =

⎛
⎝e−t

e−t

e2t

⎞
⎠ to

show that μG[3]

x has Zariski dense support in G[3] a.s., and we get invariance under
G[2] anyway. By similar arguments using other singular elements a, we can get
invariance under any G[i], and so μ must be the Haar measure on X.

9.22. Lemma. Let V < U be a-normalized closed subgroups of the stable horo-
spherical subgroup G−

a . Suppose that suppμU
x ⊂ V for a.e. x. Then

hμ(a, U) ≤ hmX
(a, V ) ≤ hmX

(a, U)

In fact, the second inequality is strict (and uniformly so) if V is a proper subgroup
of U .

Note that the assumption on the support of μU
x implies that hμ(a, V ) = hμ(a, U).

With this in mind the lemma follows from Theorem 7.9.

9.23. Lemma. Let a ∈ A and let [η] be coarse Lyapunov weight contracted by a.
Under the hypotheses of 9.20, for h0 large enough and μ-a.e. x, we have that G[η]

is the smallest a-normalized Zariski closed subgroup containing the support of μG[η]

x .

This follows by combining Lemma 9.22 and Corollary 9.10.

9.24. Proposition. For any nontrivial a ∈ A, the simple group G is generated by
the set of commutators [G[λ], G[η]] of all pairs of coarse Lyapunov subgroups which
satisfy [η] 	= [λ] 	= [η−1] and η(a) 	= 1 	= λ(a).

We see that Theorem 9.20 follows from Theorem 9.14 together with Proposi-
tion 9.24 and Lemma 9.23.

9.25. Proof of Proposition 9.24. Let V be a lower dimensional subgroup
of the group of characters of A. Let

w = span{gλ, [gη, gλ] : λ, η /∈ V }
We claim that w is a Lie ideal of g. To check this, we first take x ∈ gδ ⊂ w (first
type of elements) for some δ /∈ V , and some z ∈ gζ and look at [x, z]. There are
two cases:

(i) If ζ /∈ V , then [x, z] ∈ w by definition due to the second type of elements
of w .

(ii) If ζ ∈ V , then [x, z] ∈ gδζ ⊂ w due to the first type of elements since
δζ /∈ V .

Assume now [x, y] ∈ w with x ∈ gλ, y ∈ gη, and λ, η /∈ V as in the second type of
elements of w. Also let as before z ∈ gζ . There are again two cases:

(i) If ζ /∈ V then by the above cases [[x, y], z] ∈ w.
(ii) In the remaining case of ζ ∈ V we use the Jacobi identity

[[x, y], z] = −[[y, z], x]− [[z, x], y]

which leads to the expressions [[y, z], x] and [[z, x], y]. However, [y, z] ∈
gηζ with ηζ /∈ V and λ /∈ V shows that [[y, z], x] is an expression of the
second type in the definition of w. The same holds for [[z, x], y] which
shows that [[x, y], z] ∈ w as claimed.
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As V is assumed to be lower dimensional and the weights span, w is nontrivial and
hence equal to g by the assumption that G is simple.

Now we let V be the kernel of the evaluation map λ �→ λ(a) and let ζ ∈ V
be a nontrivial weight. Then the above claim shows that all elements of the Lie
algebra gζ can be written as sums of Lie commutators of elements of gη, gλ with
η, λ /∈ V . Here we cannot have [η] = [λ] or [η] = [λ−1] as otherwise the commutator
would belong to a weight space gζ also satisfying that ζ is trivial, [η] = [ζ], or that
[η] = [ζ−1] which is impossible as η /∈ V but ζ ∈ V .

Similarly we may now set V equal to the subgroup of characters equivalent
to a given nontrivial λ or its inverse λ−1. Applying again the above we see that
the elements of the weight space gλ can be written as sums of Lie commutators
of elements of gη, gλ with [η] 	= [λ] 	= [η−1]. (By the argument above we do not
have to restrict ourselves any longer to weight spaces that do not commute with
a). Therefore, all elements of all nonzero weight spaces can be generated by the
Lie brackets that we consider.

Finally, note that the Lie algebra generated (set V equal to the trivial group)
by all nonzero weight spaces is the whole of g, so that g is generated indeed by the
Lie brackets that we consider. �

10. Invariant measures for higher rank subgroups A, the low entropy
method

10.1. In this section we sketch the proof of a theorem regarding A-invariant
measures where only positivity of entropy is assumed (instead of entropy close to
being maximal). In addition to the ideas we already discussed they use one more
method, which we refer to as the low entropy method. This method was first used
in [Lin06]; one of the main motivations being the Arithmetic Quantum Unique
Ergodicity Conjecture which is partially resolved in that paper — see §13.

10.2. A basic feature of this method is that it gives a prominent role to the
dynamics of the unipotent groups normalized by A, even though these unipotent
groups a-priori do not preserve the measure in any way. Ideas of Ratner, particularly
from her work on the horocycle flow [Rt82a, Rt82b, Rt83] are used in an essential
way.

We first present this method which has been extended to fairly general situa-
tions in [EL08] in one particular case (the reader who is averse to p-adic numbers
is welcome to replace SL(2,Qp) by SL(2,R) in the theorem and its proof below).

10.3. Theorem. Let X = Γ\ SL(2,R)×SL(2,Qp), where Γ is an irreducible lattice

in G = SL(2,R) × SL(2,Qp). Let A =

((
∗
∗

)
× e

)
be the (one parameter)

diagonal subgroup in the SL(2,R) factor. Suppose μ is an A-invariant probability
measure such that

• μ is SL(2,Qp)-recurrent.
• Almost all A-ergodic components of μ have positive entropy under the

A-flow.

Then μ is the Haar measure on X.
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10.4. We recall that a lattice Γ in G1×G2 is said to be irreducible if the kernel
of the projection to each factor is finite. For the case at hand of G1 = SL(2,R) and
G2 = SL(2,Qp) this is equivalent to both projections being dense. This assumption
of irreducibility is clearly necessary; the assumption that Γ is a lattice (i.e., that
it has finite covolume) is not, though it is not clear that classifying probability
measures in the non-compact case is a very natural question. An example of an
irreducible lattice in SL(2,R)× SL(2,Qp) is SL(2,Z[

1
p ]) (embedded diagonally).

10.5. We remark that unlike many measure classification theorems it is not
possible to reduce Theorem 10.3 to the case of μ being A-ergodic. This is because
if one takes an arbitrary measure μ satisfying the condition of the theorem and
take its ergodic decomposition with respect to the A action there is no reason to
expect the ergodic components to remain SL(2,Qp)-recurrent. The fact that we are
considering general invariant measures requires us to demand that not only does
μ have positive entropy under A, but that each ergodic component has positive
entropy.

10.6. The requirement that μ be SL(2,Qp)-recurrent is clearly necessary, there
are plenty of A invariant and ergodic measures on Γ\ SL(2,R) × SL(2,Qp) with
positive entropy. E.g., when Γ = SL(2,Z[ 1p ]) as above, Γ\ SL(2,R) × SL(2,Qp) is

a compact extension of SL(2,Z)\ SL(2,R) (with the action of A respected by the
corresponding projection map) and hence any A-invariant and ergodic measure on
SL(2,Z)\ SL(2,R) can be lifted to an invariant and ergodic measure on Γ\ SL(2,R)×
SL(2,Qp) with exactly the same entropy(34).

10.7. Outline of Proof. The starting point. Let T = SL(2,Qp) and let

U =

(
1 ∗

1

)
be the real upper unipotent subgroup; then U = G−

a and T < CG(a)∩

CG(U) for e.g.(35) a =

((
e−1

e

)
,

(
1

1

))
∈ A. In particular, the assumptions

to Corollary 8.8 are satisfied and the leaf-wise measures for the subgroup H = TU
are product measures a.s. By Corollary 8.13 there is a subset of full measureX ′ ⊂ X
such that we have μU

x = μU
y whenever x, y ∈ X ′ belong to the same SL(2,Qp)-orbit.

This shows together with the assumed recurrence that we can find many close-by
points with the same leaf-wise measures, i.e., y = (g1, g2).x with the displacements
g1 ∈ SL(2,R) and g2 ∈ SL(2,Qp) both close to the identity and μU

x = μU
y .

As we have already observed in Example 6.5.2 the coincidence of leaf-wise
measures can have strong implications. This is the case here. By replacing both
x and y by u.x and u.y for some (in a certain sense) typical u ∈ U , we bring the
polynomial shearing properties of the U -flow in the picture.

(34)This last claim requires some justification; what is immediate and is sufficient for our
purpose is that the lifted measure would have at least the same entropy as the original measure.
Also if the lifted measure is not ergodic, then one can take a typical ergodic component of it which
will also be a lift of the original measure.

(35)Here e is the constant 2.71828 . . . ; below and above e is also used to denote the identity
element of G.
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10.8. Polynomial divergence. If, starting with y = (g1, g2).x, one moves
along the U -orbit, the displacement of x′ = u.x and y′ = u.y is the conjugate
(ug1u

−1, g2) and the U -action by conjugation is shearing depending polynomially
on the time parameter in U . More precisely, given x and y = (g1, g2).x with

g1 =

(
a b
c d

)
/∈ U (an assumption which we will need to justify), we apply u(s) =(

1 s
1

)
to both to get

xs =

(
1 s

1

)
.x

ys =

(
1 s

1

)
(g1, g2).x = (g(s), g2)xs

We compute

(10.8a) g(s) = u(s)g1u(−s) =
(
a+ cs b+ (d− a)s− cs2

c d− cs

)
.

Hence the terms contributing to the divergence are |d − a| and
√
|c|. (As it

turns out using the square root puts the two terms on more equal footing). For

S = min
(

1
|d−a| ,

1√
|c|

)
, we expect to have g(S) ≈

(
1 r

1

)
= u(r) for some nontrivial

r. Let us explain this more precisely: starting with the top right corner it is possible
that by some coincidence for s = S the terms (d − a)s and cs2 might cancel each
other, but this would be an exception: for most s ∈ [−S, S] the top right coordinate
b + (d − a)s − cs2 in (10.8a) will be of the order 1 (for a linear polynomial this is
obvious, for the general quadratic polynomial one only needs that s is sufficiently
far from both roots). Also g(s) = u(s)g1u(−s) is bounded for s ∈ [−S, S], and
except for the top right entry, for s in that range, all other entries will be very close
to the corresponding entries in the identity matrix (i.e., to one for the diagonal
elements, and to zero for the bottom left corner): indeed, the diagonal entries are

a + cs and d − cs which are close to 1 as |cs| ≤ |c|S ≤
√
|c| and the bottom left

entry c is close to zero (and unchanged).
Hence g(s) will indeed be approximately u(r) for some nontrivial and bounded

r for most s ∈ [−S, S].

10.9. Choosing the correct u(s), two conditions. We will need to
choose some s ∈ [−S, S] such that g(s) has significant size. By the above dis-
cussion this is quite easy and a purely algebraic condition. At the same time
x′ = xs and y′ = ys should have good properties with respect to the measure μ,
which is a measure theoretic condition, the verification of which requires more
work.

Clearly some condition on the points x′ and y′ is needed for them to give any
meaningful information about the measure μ — the most important for us will be
that both x′ and y′ belong to some compact set K on which the map sending a
point z to the leafwise measure μU

z is continuous. We can also assume that this
set K is contained in the conull set on which Theorem 6.3 (iii) holds so that (by
applying that theorem to both x and y) we can deduce from our original assumption
μU
x = μU

y that μU
x′ = μU

y′ .
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If we could take a limit, taking the original points x, y from a sequence xk, yk
ever closer together (which forces rk → ∞), the limit points x′′, y′′ of a common
subsequence of two points x′

k, y
′
k will end up being different points on the same U -

orbit. Restricting everything to a large compact set K where z �→ μU
z is continuous

we would obtain μU
x′′ = μU

y′′ and since y′′ = u.x′′ for some nontrivial u ∈ U also

μU
x′′ ∝ μU

y′′u by Theorem 6.3 (iii). This leads to U -invariance of μ almost(36) as in
the last section.

For this to work we need to ensure that given the two close-by points xk, yk with
the same leaf-wise measures (and other good properties that hold on sets of large
measure) we can find some u(sk) ∈ U such that x′

k = u(sk).xk, y
′
k = u(sk).yk ∈ K

and the displacement is significant but of bounded size. As explained above it is

easy to find some Sk depending on the displacement g
(k)
1 such that u(s)g

(k)
1 u(s)−1

is significant but bounded for all s ∈ [−Sk, Sk] except those belonging to two small
subintervals of [−Sk, Sk]. So basically we have two requirements for sk, it shouldn’t
belong to one of two small subintervals which have been found using purely algebraic
properties, and we also want both points x′

k = u(sk).xk, y
′
k = u(sk).yk to belong

to the compact set K on which everything behaves nicely — which is a measure
theoretic property involving μ since all we know about K is that it has large μ-
measure.

10.10. A maximal ergodic theorem. To prove the latter property we need
a kind of ergodic theorem for the U -action with respect to μ, even though we do
not know invariance under U . A maximal ergodic theorem for the U -action would
imply that for a given set of large measure K, the set of points x, for which there is
some scale S for which it is not true that for most s ∈ [−S, S] we have u(s).x ∈ K,
has small μ-measure (and so can be avoided in the argument). However, here the
correct notion of most must come from the measure μU

x instead of the Lebesgue
measure as μ is not known to be invariant under U .

There are several versions of such maximal ergodic theorems in the literature
starting from Hurewicz [Hur44]; see also [Bec83]. In [Lin06] a variant proved
in the appendix to that paper jointly with D. Rudolph was used. An alternative
approach which we have employed in [EL08] is to use the decreasing Martingale
theorem by using the sequence of σ-algebras a−nA, where A is subordinate to U on
a set of large measure and a-decreasing as in Definition 7.25. The latter approach
has the advantage of working in greater generality, see Comment 7.38.

10.11. Compatibility issue. Assume now that a sufficient form of such a
maximal ergodic theorem holds for the U -action. This then implies, starting with
sufficiently well behaved initial points xk, yk (with μU

xk
= μU

yk
), that for μU

xk
-most

s ∈ [Sk, Sk] (say for 90%) we have u(s).xk, u(s).yk ∈ K. Even so there is still a
gap in the above outline: Can we ensure that the two subintervals of [−Sk, Sk],

where u(s)g
(k)
1 u(s)−1 is too little, have also small mass with respect to μU

xk
? This is

desired as it would ensure the compatibility of the algebraic and measure-theoretic
properties needed, since in this case for μU

xk
-most s ∈ [−Sk, Sk] both properties

would hold. However, if e.g. μU
xk

is trivial, i.e., is supported on the identity only,

(36)The cautious reader may be concerned about the lack of ergodicity assumption here.
Indeed one first only obtains that some ergodic component is U-invariant, but one may apply the
whole argument to the measure restricted to the subset where μU

x is not the Lebesgue measure to
obtain a contradiction.
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this is not the case. Luckily by assumption entropy is positive for a.e. ergodic
component which translates to μU

xk
being nontrivial a.e. Even so, μU

xk
could give

large mass to very small subintervals and the compatibility of the two conditions
does not seem automatic.

10.12. Self-similarity of leaf-wise measures. What rescues the argu-
ment is a kind of self-similarity of the measures μU

x . E.g. if one assumes a doubling
condition of the form that there exists some ρ ∈ (0, 1) for which

(10.12a) μU
x (B

U
ρS) <

1

2
μx(B

U
S ) for all S > 0,

then sufficiently small symmetric subintervals of a given interval [−S, S] also get
small μU

x -mass. (Given such a ρ we then would adjust the meaning of ’significant’ in
the discussion of §10.8 and §10.9.) There is no reason why such a strong regularity
property of the conditional measures should hold. However, the A-action on X
together with Lemma 7.16 implies some regularity properties: E.g. by Poincaré
recurrence there are infinitely many S such that (after rescaling) μU

x restricted to
BU

S is very similar to μU
x restricted to BU

1 . To obtain something similar to (10.12a)
we notice first that there is some ρ > 0 such that

(10.12b) μU
x (B

U
ρ ) <

1

2
except possibly on a set Z of small μ-measure. Then one can apply the standard
maximal ergodic theorem for the action of

ar =

((
e−r

er

)
,

(
1

1

))
∈ A

to show that for μ-most x and for any given K of large μ-measure, most r ∈ [0, R]
satisfy that

(10.12c) μU
x (B

U
ρe2r) <

1

2
μU
x (B

U
e2r)

(which is equivalent by Lemma 7.16 to ar.x satisfying (10.12b)). As it turns out
the weaker (10.12c) is sufficient and one does not need (10.12a).

10.13. The heart of the argument, choosing t. Given the two points
xk, yk and with them the parameter Sk we would need the regularity (10.12c) for
r = 1

2 log Sk in order to apply the arguments from above. This may or may not
happen but we can increase our chance of succeeding by looking not only at the
given points xk, yk but also at all the points atxk, a

tyk for some t ∈ [0, Tk] for the
appropriate choice of Tk (which in this case turns out to be Tk = 1

2 logSk).
This is the technical heat of the argument, and we sketch the proof below. To

simplify matters, we assume that either |d− a| "
√
|c| or |d− a| #

√
|c| (with "

used here in a somewhat loose sense that we refrain from making more precise in
this sketch).

We will only chose values of t for which the new points atxk, a
tyk have good

properties with respect to μ (i.e., belong to a previously defined set of points with
good properties etc.), which in view of the (standard) maximal inequality holds for
most t ∈ [0, Tk] if the original points xk, yk were chosen from a suitable set of large
measure.

Suppose first |d − a| "
√
|c|. In this case, the parameters a, d and with it Sk

are unchanged when xk and yk are replaced by at.xk and at.yk. Therefore, the
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regularity property (10.12c) is needed for the point at.xk and scale r = 1
2 log Sk,

which is equivalent to (10.12c) holding at the original point x for r′ = t+ 1
2 log Sk.

At this stage we still have the freedom to chose t almost arbitrarily in the range
0 ≤ t ≤ 1

2 log Sk. As (10.12c) can be assumed to hold at x for most r′ ∈ [0, log Sk]
we can indeed chose t so that at at.xk (10.12c) holds for precisely the value of r we
need.

In the second case |d − a| #
√
|c|, the important parameter

√
|c| and with it

Sk do change when xk and yk are replaced as above. The danger here is that if
the parameter Sk changes in a particular way, it may be that one is still interested
in the regularity property (10.12c) for x and the very same r = 1

2 logSk even after
introducing t. The reader may verify that this is not the case, after calculating
the parameter Sk(t) for the points at.xk and at.yk as a function of t one sees that
t+ Sk(t) is affine with a linear component 1

2 t. As before a density argument gives
that it is possible to find t as required. In the general case, the function one studies
may switch between having linear part t and having linear part 1

2 t, i.e., may be
only piecewise linear, but this does not alter the density argument for finding t.
Moreover, one easily checks that at.xk and at.yk are still close together.

Having found t, one has the required regularity property to apply the density
argument for s ∈ [−Sk, Sk] and obtains x′

k, y
′
k ∈ K which differ mostly by some

element of U of bounded but significant size. As mentioned before, taking the limit
along some subsequence concludes the argument.

10.14. Justification for g1 /∈ U . Let us finish the outline of the proof of
Theorem 10.3 by justifying the assertion in §10.8 that one can find x, y = (g1, g2).x
with g1 /∈ U and the same U leaf-wise measure using the recurrence of the SL(2,Qp)-
action. By construction, y = (e, h).x for some big h ∈ SL(2,Qp), and we have
already verified that the U leafwise measure at x and y are the same using the
product lemma. What remains is to explain why we can guarantee that g1 	∈ U .

By Poincaré recurrence we may assume that our initial point x satisfies that
there is a sequence tn → ∞ with atn .x → x. If now g1 ∈ U , then atng1a

−tn → e
and applying atn to (e, h).x = y = (g1, g2).x we would obtain (e, h).x = (e, g2).x.
As h is big, but g2 is small, we obtain the nontrivial identity x = (e, h−1g2).x which
is impossible as the lattice Γ is irreducible.

11. Combining the high and low entropy methods

11.1. Consider now the action of the diagonal group A on the space Xn =
SL(n,Z)\ SL(n,R). The method of proof of Theorem 10.3 can be adapted to study
the A-invariant measures also in this case, but there are some extra twists; specif-
ically we will need to combine in the low entropy method we have developed in
the previous section with the high entropy method presented in §9. This has been
carried out in the paper [EKL06] of the authors and A. Katok, and the results of
this section are taken from that paper.

11.2. We recall the following conjecture regarding invariant measures on Xn =
SL(n,Z)\ SL(n,R), which is due to Margulis, Katok and Spatzier, and Furstenberg
(cf. [Mar00]):

11.3. Conjecture. Let A be the group of diagonal matrices in SL(n,R), n ≥ 3.
Then any A-invariant and ergodic probability measure μ on Xn is homogeneous.
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It is not hard to classify the possible homogeneous measures (see e.g. [LW01]).
For n prime, the situation is particularly simple: any A-invariant homogeneous
probability measure on Xn is either the natural measure on a periodic A-orbit, or
the SL(n,R) invariant measure m on Xn.

11.4. In [EKL06] we give together with A.Katok the following partial result
towards Conjecture 11.3:

11.5. Theorem ([EKL06, Theorem 1.3]). Let A be the group of diagonal matrices
as above and n ≥ 3. Let μ be an A-invariant and ergodic probability measure on
Xn. Then one of the following holds:

(i) μ is an A-invariant homogeneous measure which is not supported on a
periodic A-orbit.

(ii) for every one-parameter subgroup {at} < A, hμ(at) = 0.

By the classification of A-invariant homogeneous measures alluded to in §11.3,
if (i) holds μ is not compactly supported.

11.6. For 1 ≤ i 	= j ≤ n, let Uij denote the one parameter unipotents subgroup
of SL(n,R) which consists of all matrices that have 1 on the diagonal and 0 at
all other entries except the (i, j) entry, and let μ be an A-invariant and ergodic
probability measure on Xn which has positive entropy with respect to some a0 ∈ A.
By Theorem 7.6 and our assumption regarding positive entropy of μ it follows that

the leaf-wise measure μ
G−

a0
x are nontrivial almost everywhere (this requires a bit of

explanation, as μ is A-ergodic but not necessarily a0-ergodic; however if one takes
the ergodic decomposition of μ with respect to a0 one gets from the ergodicity
of μ under A that each ergodic component has the same entropy with respect to
a0 and one can apply Theorem 7.6 to each components separately). Using the

product structure of μG−

x given by Corollary 8.8 and the ergodicity under A it

follows that there is some i 	= j so that μ
Uij
x =: μij

x is nontrivial almost everywhere.
For notational simplicity suppose this happens for (i, j) = (1, n).

11.7. One can now apply the argument described in §10.7– §10.14 to the group
U1n and an appropriate a = diag(α1, . . . , αn) ∈ A (we assume all the αi > 0) . One
obvious requirement for a is that it contracts U1n, i.e., that α1 < αn. It turns out
though that in the proof (specifically, in §10.13) additional more subtle conditions
on a need to be imposed that are nonetheless easy to satisfy: indeed in this case
what one needs is simply that

α1 < min
1<i<n

αi ≤ max
1<i<n

αi < αn.

For example, we can take a = diag(e−1, 1, . . . , 1, e) which together with U1n and
Un1 form a subgroup of SL(n,R) isomorphic to SL(2,R).

11.8. We recall what was the outcome of the argument given in §10.7– §10.14
for G = SL(2,R) × SL(2,Qp). The end result of that long argument was finding
two distinct “μ-typical” points x, y with the same leafwise measures (i.e., μU

x = μU
y )

with y = u.x for some nontrivial u ∈ U .
An appropriate adaptation of this argument to the case at hand (i.e., G =

SL(n,R)) will yield at the end two μ-typical points x, y with the same U1n-leafwise
measures which differ by some element u obtained in a limiting procedure involving
the shearing properties of U1n. It turns out that in this case these limiting directions



226 M. EINSIEDLER AND E. LINDENSTRAUSS

u may not belong to U1n but rather one has u ∈ CG(U1n)∩G−; note that this group
CG(U1n)∩G− is precisely the group generated by the 1-parameter unipotent groups
Uij with either i = 1 or j = n (or both).

11.9. Playing around with leaf-wise measures, one can show that the measure
μ must satisfy one of the following two possibilities:

(i) One can find a subset X ′ ⊂ Xn of full measure such that every two points
x, y ∈ X ′ on the same CG(U1n) ∩ G−-orbit are in fact on the same U1n

orbit.
(ii) There are (i, j) 	= (1, n) with i = 1 or j = n so that μij

x is nontrivial a.s.
.

If (i) holds, then the points x, y obtained in §11.8 in fact differ along U1n from
which one can deduce, exactly as in the proof of Theorem 10.3, that μ is U1n in-
variant where we are clearly at the endgame; e.g. one can apply Ratner’s measure
classification theorem, though it is better to first get some more information out of
the proof, specifically invariance along Un1. Ratner’s measure classification theo-
rem for semisimple groups (such as the group generated by U1n and Un1 which is
isomorphic to SL(2,R)) is substantially simpler than the general case (for a simple
proof see [Ein06]). Moreover, also the analysis of all possible cases is much simpler
if one first establishes invariance under this bigger group.

If (ii) holds, by using the time-symmetry of entropy for the element a =
diag(e−1, 1, . . . , 1, e) we obtained that there are some (i′, j′) with i′ = 1 or j′ = n or

both so that μj′i′

x is nontrivial a.s. (note the switch in the order of the indices!). If
(i′, j′) 	= (1, n) we can apply Theorem 9.14 to obtain that μ is invariant under the
group [Uj′i′ , U1n] (which is either Uj′n or U1i′): again arriving at the endgame of
the proof. If (i′, j′) = (1, n) we obtain similarly that μ is invariant under [Un1, Uij ].

11.10. The above simplified discussion neglects to mention one crucial point.
In Theorem 10.3, an important assumption was that Γ is irreducible, an assumption
which only entered in order to show that there are nearby “typical” points x and y
which differ in a shearable direction (i.e., not by an element in U × SL(2,Qp)) —
c.f. §10.14.

The same issue arises also in the case of SL(n,R). For the particular lattice
we are considering, namely SL(n,Z), one can show such nearby “shearable” pairs
exist; but for a general lattice, even in SL(n,R), this problem can actually happen,
and is precisely the source of an important class of counterexamples discovered
by M. Rees to the most optimistic plausible measure classification conjecture for
multidimensional diagonalizable groups [Ree82] (for a more accessible source, see
[EK03, Section 9]; the same phenomena has been discovered independently in a
somewhat different context by S. Mozes [Moz95]).

12. Application towards Littlewood’s Conjecture

12.1. In this section we present an application of the measure classification
results we have developed in the previous sections towards the following conjecture
of Littlewood:

12.2. Conjecture (Littlewood (c. 1930)). For every α, β ∈ R,

(12.2a) lim
n→∞

n‖nα‖‖nβ‖ = 0,
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where ‖w‖ = minn∈Z |w − n| is the distance of w ∈ R to the nearest integer.

12.3. The work we present here toward this conjecture was first presented in
the paper [EKL06] which is joint paper of A. Katok and us. The presentation of
this work is taken essentially verbatim from [Lin07, Sec. 6].

12.4. It turns out that Littlewood’s conjecture would follow from the Con-
jecture 11.3. The reduction is not trivial and is essentially due to Cassels and
Swinnerton-Dyer [CSD55], though there is no discussion of invariant measures in

that paper(37). A more recent discussion of the connection highlighting Cassels’
and Swinnerton-Dyer’s work can be found in [Mar97].

We need the following criterion for when α, β satisfy (12.2a):

12.5. Proposition. (α, β) satisfy (12.2a) if and only if the orbit of

xα,β = SL(3,Z)

⎛
⎝1 α β
0 1 0
0 0 1

⎞
⎠

under the semigroup

A+ = {a(s, t) : s, t ≥ 0} a(s, t) =

⎛
⎝es+t 0 0

0 e−s 0
0 0 e−t

⎞
⎠

is unbounded(38) in X3 = SL(3,Z)\ SL(3,R). Moreover, for any δ > 0 there is a
compact Cδ ⊂ X3, so that if limn→∞ n ‖nα‖ ‖nβ‖ ≥ δ then A+.xα,β ⊂ Cδ.

12.6. Before we prove Proposition 12.5 we need to understand better what it
means for a set E ⊂ X3 to be bounded. We write πΓ : SL(n,R) → Xn for the
natural map that sends g ∈ SL(n,R) to SL(n,Z)g ∈ Xn. We have the following
important criterion (see e.g. [Rag72, Chapter 10]):

12.7. Proposition (Mahler’s compactness criterion). Let n ≥ 2. A set E ⊂ Xn =
SL(n,Z)\ SL(n,R) is bounded if and only if there is some ε > 0 so that for any
x = πΓ(g) ∈ E there is no vector v in the lattice spanned by the rows of g with
‖v‖∞ < ε.

12.8. Proof of Proposition 12.5. We prove only that A+.xα,β unbounded
implies that (α, β) satisfies (12.2a); the remaining assertions of this proposition
follow similarly and are left as an exercise to the reader.

Let ε ∈ (0, 1/2) be arbitrary and write

gα,β =

⎛
⎝1 α β
0 1 0
0 0 1

⎞
⎠ .

(37)It is worthwhile to note that this remarkable paper appeared in 1955, many years before
Conjecture 11.3 was made, and even before 1967 when Furstenberg made his related discoveries
about scarcity of invariant sets and measures for the maps x �→ 2x mod 1 and x �→ 3x mod 1 on
R/Z! The same paper also implicitly discusses the connection between Oppenheim’s conjecture
and the action of SO(2, 1) on X3.

(38)I.e. A+.xα,β is not compact.
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By Mahler’s compactness criterion (see §12.7), if A+.xα,β is unbounded, there is a
a ∈ A+ such that in the lattice generated by the rows of gα,βa

−1 there is a nonzero
vector v with ‖v‖∞ < ε. This vector v is of the form

v = (ne−s−t, (nα−m)es, (nβ − k)et)

where n,m, k are integers at least one of which is nonzero, and s, t ≥ 0. Since
‖v‖∞ < 1/2, n 	= 0 and ‖nα‖ = (nα − m), ‖nβ‖ = (nβ − k). Without loss of
generality n > 0 and

n ‖nα‖ ‖nβ‖ ≤ ‖v‖3∞ < ε3.

As ε was arbitrary, (12.2a) follows. �

12.9. We now turn to answering the following question: With the partial in-
formation given in Theorem 11.5, what information, if any, do we get regarding
Littlewood’s conjecture?

12.10. Theorem ([EKL06, Theorem 1.5]). For any δ > 0, the set

Ξδ =

{
(α, β) ∈ [0, 1]2 : lim

n→∞
n ‖nα‖ ‖nβ‖ ≥ δ

}

has zero upper box dimension(39)(40).

12.11. We present a variant of the proof of this theorem given in [EKL06]. The
first step of the proof, which is where Theorem 11.5 is used, is an explicit sufficient
criterion for a single point α, β to satisfy Littlewood’s conjecture (§12.2). This
criterion is based on the notion of topological entropy; see §3.18 for the definition
and basic properties of this entropy.

Let aσ,τ (t) = a(σt, τ t), with a(s, t) as in §12.5.

12.12. Proposition. Suppose that (α, β) ∈ R
2 does not satisfy (12.2a) or equiva-

lently that A+.x0 is bounded. Then for any σ, τ ≥ 0, the topological entropy of aσ,τ
acting on the compact set

{aσ,τ (t).xα,β : t ∈ R+}
vanishes.

12.13. Proof. Let x0 be as in the proposition such that A+.x0 is bounded.
If the topological entropy were positive, then by the variational principal in §3.21,
there is an aσ,τ -invariant measure μ supported on {aσ,τ (t).x0 : t ∈ R+} with hμ(aσ,τ ) >
0.

Define for any S > 0

μS =
1

S2

∫∫ S

0

a(s, t)∗μ ds dt,

with a(s, t)∗μ denoting the push forward of μ under the map x �→ a(s, t).x. Since
a(s, t) commutes with the one parameter subgroup aσ,τ , for any aσ,τ -invariant mea-
sure μ′ the entropies satisfy

hμ′(aσ,τ ) = ha(s,t)∗μ′(aσ,τ ).

(39)I.e., for every ε > 0, for every 0 < r < 1, one can cover Ξδ by Oδ,ε(r
−ε) boxes of size

r × r.
(40)Since (12.2a) depends only on α, β mod 1 it is sufficient to consider only (α, β) ∈ [0, 1]2.
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If μ has the ergodic decomposition
∫
μξ dν(ξ), the measure μS has ergodic decom-

position S−2
∫∫ S

0

∫
a(s, t)∗μξ dν(ξ) ds dt and so by §3.5, for every S

hμS
(aσ,τ ) = hμ(aσ,τ ).

All μS are supported on the compact set A+.x0, and therefore there is a subsequence
converging weak∗ to some compactly supported probability measure μ∞, which will
be invariant under the full group A. By semicontinuity of entropy (§3.15),

hμ∞(aσ,τ ) ≥ hμ(aσ,τ ) > 0,

hence by Theorem 11.5 the measure μ∞ is not compactly supported(41) — a con-
tradiction. �

12.14. Fix σ, τ ≥ 0. For α, β ∈ R we define Xα,β = {aσ,τ (t).x : t ∈ R+}.
Proposition 12.12 naturally leads us to the question of the size of the set of (α, β) ∈
[0, 1]2 for which htop(Xα,β, aσ,τ ) = 0. This can be answered using the following
general observation:

12.15. Proposition. Let X ′ be a metric space equipped with a continuous R-action
(t, x) �→ at.x. Let X ′

0 be a compact at-invariant
(42) subset of X ′ such that for any

x ∈ X ′
0,

htop(Yx, at) = 0 Yx = {at.x : t ∈ R+}.
Then htop(X

′
0, at) = 0.

12.16. Proof. Assume for contradiction that htop(X
′
0, at) > 0. By the vari-

ational principle (§3.21), there is some at-invariant and ergodic measure μ on X ′
0

with hμ(at) > 0.
By the pointwise ergodic theorem, for μ-almost every x ∈ X ′

0 the measure μ is
supported on Yx. Applying the variational principle again (this time in the opposite
direction) we get that

0 = htop(Yx, at) ≥ hμ(at) > 0

a contradiction. �

12.17. Corollary. Consider, for any compact C ⊂ X3 the set

XC =
{
x ∈ X3 : A+.x ⊂ C

}
.

Then for any σ, τ ≥ 0, it holds that htop(XC , aσ,τ ) = 0.

12.18. Proof. By Proposition 12.12, for any x ∈ XC the topological entropy
of aσ,τ acting on {aσ,τ (t).x : t ∈ R+} is zero. The corollary now follows from Propo-
sition 12.15. �

12.19. We are now in position to prove Theorem 12.10, or more precisely to
deduce the theorem from Theorem 11.5:

(41)Notice that a priori there is no reason to believe μ∞ will be A-ergodic, while Theorem 11.5
deals with A-ergodic measures. So an implicit exercise to the reader is to understand why we can
still deduce from hμ∞(aσ,τ ) > 0 that μ∞ is not compactly supported.

(42)Technical point: we only use that at.X′ ⊂ X′ for t ≥ 0. The variational principle (§3.21)
is still applicable in this case.
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12.20. Proof of Theorem 12.10. To show that Ξδ has upper box dimension
zero, we need to show, for any ε > 0 and for any r ∈ (0, 1) that the set Ξδ can be
covered by Oε(r

−ε) boxes of side r, or equivalently that any r-seperated set (i.e.,
any set S such that for any x, y ∈ S we have ‖x− y‖∞ > r) is of size Oδ,ε(r

−ε).
Let Cδ be as in Proposition 12.5. Let d denote a left invariant Riemannian

metric on G = SL(3,R). Then d induces a metric, also denote by d on X3. For
a, b ∈ R let

ga,b =

⎛
⎝1 a b
0 1 0
0 0 1

⎞
⎠ .

Since Cδ is compact and d is induced from a left invariant Riemannian metric (so
that there is an injectivity radius on Cδ), there will be r0, c0 such that for any
x ∈ Cδ and |a| , |b| < r0

d(x, ga,b.x) ≥ c0 max(|a| , |b|).

For any α, α′, β, β′ ∈ R we have that

xα,β = gα′−α,β′−β .xα′,β′

and more generally for any n

an1,1.xα,β = ge3n(α′−α),e3n(β′−β).a
n
1,1.xα′,β′ .

It follows that if S ⊂ Ξδ is r-separated for r = e−3nr0 ∈ (0, r0) then

S′ = {xα,β : (α, β) ∈ S}

is (n, c0r0)-separated for a1,1 in the sense of §3.18. By definition of Cδ and Ξδ,
we have that (in the notations of §12.17) the set S′ ⊂ XCδ

, a set which has zero
topological entropy with respect to the group a1,1. It follows that the cardinality of
a maximal (n, c0r0)-separated set in S′ is at most Oδ,ε(exp(εn)); hence for r < r0
the cardinality of a maximal r-separated subset of Ξδ is Oδ,ε(r

−ε). �

13. Application to Arithmetic Quantum Unique Ergodicity

13.1. We begin by recalling some basic facts about harmonic analysis on Γ\H.
Here, H := {x + iy : y > 0} is the upper-half plane model of the hyperbolic plane
(for more details, see [Lan75]). It is isomorphic to G/K = SL(2,R)/SO(2,R), and

carries the Riemannian G-invariant metric ds2 = dx2+dy2

y2 , where the action of G

is given by fractional linear transformations in the usual way. This metric gives us
the invariant area form d area = dxdy

y .

We have the Laplacian operator

Δ = y2[∂2
x + ∂2

y ]

which is also invariant underG. We wish to study L2(Γ\H, area) ∼= L2(Γ\G,μHaar)K
for Γ a lattice in G = SL(2,R). Here L2(Γ\G,μHaar)K denotes the space of K-
invariant L2-functions on Γ\G.
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13.2. For any φ ∈ Cc(G), we can write a convolution operator

φ ∗ f :=

∫
G

φ(g)f(xg−1)dg

but we will restrict ourselves to K-bi-invariant functions φ ∈ Cc(K\G/K). In this
case, we have the nice property that

φ ∗ ψ ∗ f = (φ ∗ ψ) ∗ f = (ψ ∗ φ) ∗ f = ψ ∗ φ ∗ f

and so these operators form a large commutative algebra which is called the Hecke
ring. Since the Laplacian can be written as a limit of such convolution operators,
it commutes with this algebra as well.

13.3. We begin with Γ cocompact (harmonic analysis is much easier in this
case). The mapping Aφ : f �→ φ ∗ f is a compact, normal operator (this is false
if Γ is not cocompact!). Therefore L2(M) is spanned by an orthonormal set of
eigenfunctions of Aφ. Since Δ and Aφ commute, we can find an orthonormal basis
of joint eigenfunctions.

In fact, if f is an eigenfunction of Δ, say Δf = λf , it will automatically be an
eigenfunction of the convolution operator Aφ, and the corresponding eigenvalue is
by definition equal to the spherical transform of φ.

Weyl’s Law (true for general compact surfaces) gives the asymptotic number
of eigenvalues of Δ:

#{eigenvalues of Δ ≤ T} ∼ π · area(M) · T

13.4. In many cases we will be interested in Γ NOT cocompact; eg. Γ1 =
SL(2,Z) or one of the “principle congruence subgroups” ΓN = {γ ≡ I mod N}.
For simplicity, let us assume for the moment that M has one cusp (at ∞).

We have some explicit eigenfunctions of Δ on H. For example,

Δ(ys) = s(s− 1)ys = −(1/4 + t2)ys

where we make the convenient substitution s = 1/2+it. These eigenfunctions corre-
spond to planar waves going up; note that they are not Γ-invariant. Closely related
are the Eisenstein series, which are Γ-invariant eigenfunctions of the Laplacian, not
in L2(Γ\H), satisfying

E1/2+it(z) = y1/2+it + θ(1/2 + it)y1/2−it + (rapidly decaying terms)

We have the following spaces [CS80, Ch. 6-7]:

• L2
Eisenstein spanned by the Eisenstein series, and constituting the contin-

uous part of the spectrum.
• L2

constants of constant functions.
• L2

cusp of cusp forms, the orthogonal complement of the others. This
consists of the functions f on Γ\H whose integral along all periodic horo-
cycles vanishes, i.e., (identifying the functions on Γ\H with Γ-invariant

functions on H) functions f so that
∫ 1

0
f(x+ iy)dx = 0 for all y > 0.
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13.5. Selberg [Sel56] proved that if Γ is a congruence subgroup, i.e., ΓN <
Γ < Γ1 for some N , then Weyl’s Law holds for cusp forms

#{eigenvalues of cusp forms ≤ T} ∼ π · area(M) · T
This is very far from the generic picture, where Phillips and Sarnak have conjectured
that L2

cusp is finite dimensional for generic Γ. While this remains to present an open
question, significant results in this direction have been obtained by them [PS92]
and Wolpert [Wol94].

Why is the case of congruence lattices so special? They carry a lot of extra
symmetry, which makes it a lot easier for cusp forms to arise. We will now discuss
these symmetries.

13.6. Hecke Correspodence.

We will define the Hecke correspondence (for a given prime p) in several equiv-
alent ways. For simplicity we work with Γ = Γ1.

13.7. First, associate to z ∈ H the p+ 1 points in Γ\H

Tp(z) := Γ\
{
pz,

z

p
,
z + 1

p
, . . . ,

z + p− 1

p

}

each of these points is a fractional linear image of z, so each branch of this mapping
is an isometry. One needs to check that this passes to the quotient by Γ; i.e., that
if z = γz′ then Tp(z) = Tp(z

′). Since Γ is generated by the maps z �→ z + 1 and
z �→ − 1

z , and Tp(z) is obviously invariant under the former, it remains to check

that Tp(z) = Tp(− 1
z ), which is left to the reader.

13.8. We will now give an alternate way to define Tp. It will be more convenient
for us to work in PGL(2,R) instead of SL(2,R), and so we take Γ = PGL(2,Z)
[this is not quite SL(2,Z) because matrices with determinant −1 are allowed on

the one hand, but on the other hand

(
1

1

)
and

(
−1

−1

)
which were distinct

elements of SL(2,R) are identified in PGL(2,Z), but for our purposes this difference

is very minor]. The matrix γp =

(
p

1

)
∈ comm(Γ), where comm(Γ) denotes the

commensurator of Γ — the set of γ ∈ G such that [Γ : γΓγ−1 ∩ Γ] <∞.
Note that

ΓγpΓ = Γ

(
p

1

)
%

p−1⊔
i=0

Γ

(
1 i
0 p

)

The mapping Tp : Γg �→ ΓγpΓg gives the same correspondence as above.
Because we defined this correspondence by left multiplication, we can still quo-

tient by K on the right, to get a correspondence on Γ\H.

13.9. Here is a third way to define the same correspondence. Since we can
identify X2 = PGL(2,Z)\PGL(2,R) with the space of lattices in R

2 (up to homo-
thety), we can define for x ∈ X2 the set Tp(x) to be the set of all lattices y ∈ X2

homothetic to a sublattice of x of index p; or equivalently as the set of all y ∈ X2

which contain a lattice homothetic to x as a sublattice of index p.
One should check that this agrees with the previous definitions (in particular,

that Tp(x) consists of p+ 1 points, which is not obvious from this defintion).
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13.10. Lastly, we consider PGL(2,Z[ 1p ])\PGL(2,R) × PGL(2,Qp), the space

of Z[ 1p ]-modules that are lattices in R
2 × Q

2
p, again up to homothety. By this we

mean that an element of this space looks like Z[ 1p ](v1, w1) ⊕ Z[ 1p ](v2, w2) where

{v1, v2} is an R-basis for R2, and (w1, w2) is a Qp-basis for Q
2
p; and the two points

Z[ 1p ](v1, w1) ⊕ Z[ 1p ](v2, w2) and Z[ 1p ](λv1, θw1) ⊕ Z[ 1p ](λv2, θw2) are identified for

any λ ∈ R and θ ∈ Qp.
Let π : R2 × Q

2
p → R

2 be the natural projection, and consider the map π1 :

x �→ π(x ∩ R
2 × Z

2
p) for x a lattice as above. Then π1(x) is a lattice in R

2 and
it respects equivalence up to homothety. Moreover, for every lattice y ∈ X2, the
inverse image π−1

1 (y) = PGL(2,Zp).x for some x. We’ve shown that

PGL(2,Z[
1

p
])\PGL(2,R)× PGL(2,Qp)/PGL(2,Zp) ∼= X2

Using (a p-adic version of) the KAK-decomposition, we can write any gp ∈

PGL(2,Qp) as k1

(
pn

1

)
k2 for some k1, k2 ∈ K and some integer n. Then the

map x �→ π1(gp ·π−1
1 (x)) yields a finite collection of points: x if n = 0, the set Tp(x)

if n = 1, and a finite set which we will denote by Tpk(x) if n = k > 1. This gives
our fourth equivalent definition of the Hecke correspondence.

13.11. The Hecke correspondence allows us to define an operator, also denoted
by Tp, on L2(Γ\G) (resp. on L2(Γ\H)) by

Tpf(x) =
1
√
p

∑
y∈Tp(x)

f(y)

As a side remark, we note that for the Eisenstein series, the eigenvalues of Tp

can be computed explicitly, and we have

TpE1/2+it = cos(t log p)E1/2+it

= (p
√

Δ+1/4 + p−
√

Δ+1/4)E1/2+it

The operator (p
√

Δ+1/4+ p−
√

Δ+1/4) is essentially the propagating operator of the
wave equation.

This property equating two operators which are defined by completely different
means (eg., one by global symmetries and one by local differential structure) should
be quite rare. This is one indication that L2

Eisenstein should be very small in the
arithmetic situations, and hence L2

cusp should contain the vast majority of the
eigenfunctions. This idea can be used to give an alternative elementary proof of
the existence of cusp forms [LV07].

One should also note that there are compact surfaces Γ\H with Hecke symme-
tries; one way to construct such lattices Γ is via quaternion algebras (see e.g. [Mor,
Ch. 7]), for example

Γ =

{(
x+

√
2y z +

√
2w

5(z −
√
2w) x−

√
2y

)
: x, y, z, w ∈ Z,

x2 − 2y2 − 5t2 + 10w2 = 1

}
.
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13.12. We now discuss the quantum unique ergodicity conjecture, in particular
in the arithmetic case. We begin with a general compact Riemannian manifold M ,
on which we have the Laplacian ΔM , and we wish to understand the distribution
properties of eigenfunctions of ΔM .

According to Schroedinger, the motion of a free (spinless, non-relativistic) quan-
tum particle flowing in the absence of external forces on M is given by the equation

i
∂ψ

∂t
= ΔMψ

This defines a unitary evolution, i.e., the norm ||ψ(·, t)||L2 is independent of t. We
will always take ||ψ||L2 = 1.

The Born interpretation of the “wave function” ψ is that the function |ψ|2d(vol)
defines a probability measure onM , representing the average position of a particle in
the state ψ; i.e., for any (measurable) region A ⊂M , the probability of finding our
particle in A at time t is given by

∫
A
|ψ(x, t)|2d vol(x), where d vol is the Riemannian

volume on M . Note that if ψ is an eigenfunction of ΔM , then the time dependence
of ψ only appears as a phase; i.e., ψ(x, t) = e−iλtψ(x, 0). Hence eigenfunctions give
rise to steady states, or invariant quantum distributions, dμ̃ψ = |ψ|2d vol.

Let π : S∗M → M be the canonical projection. One can (see below) lift these
μ̃ψ to measures μψ on the unit cotangent bundle S∗M which satisfy:

(i)
∣∣∣∫ f̃dπ∗μψ −

∫
f̃dμ̃ψ

∣∣∣ < λ−0.1 for any f̃ ∈ C∞(M)

(ii)
∣∣∫ Hfdμψ

∣∣ < λ−0.1 for any f ∈ C∞(S∗M), where H is differentiation
along the geodesic flow.

Suppose now that {ψi} is a sequence of (normalized) eigenfunctions whose eigen-
values λi →∞, denote by μ̃i = μ̃ψi

the corresponding measures, and let μi be the
corresponding lifts. The above conditions guarantee that any weak∗ limit point μ∞
of the μi will satisfy

• π∗μ∞ = μ̃∞ (the weak∗ limit of the corresponding μ̃i).
•
∫
Hfdμ∞ = 0, i.e., ∂

∂t

∫
f(gt.x)dμ∞ = 0. This means that μ∞ is gt

invariant.

We call the μ’s “microlocal lifts” of the μ̃’s.

13.13. Definition. Any weak∗ limit μ∞ of {μi} as above is called a quantum
limit.

13.14. Here we will be interested in the special case of M = Γ\H for Γ an
arithmetic lattice; e.g. Γ a congruence subgroup of SL(2,Z), or one of the arithmetic
compact quotients mentioned earlier. These manifolds carry the extra symmetry
of the Hecke operators, and since all of these operators commute, we can find a
basis of L2 (or L2

cusp in the non-compact case) consisting of joint eigenfunctions of
ΔM and all of the Tp, such joint eigenfunctions are called Hecke-Maass forms.
Any weak∗ limit of μψi

, where all of the ψi are Hecke-Maass forms, is called an
arithmetic quantum limit.

13.15. For now, we assume that M is compact. Snirlman, Colin de Verdiere,
and Zelditch have shown that if {ψi}∞i=1 is a full set of (normalized) eigenfunctions

ordered by eigenvalue, then the average 1
N

∑N
i=1 μψi

converges to the Liouville
measure on S∗M . If we assume that the geodesic flow on M is ergodic with respect
to Liouville measure (satisfied e.g. if M has negative sectional curvature), then



DIAGONAL ACTIONS ON LOCALLY HOMOGENEOUS SPACES 235

outside a set E of indices of density zero (i.e., limN→∞
1
N#{i ∈ E : i < N} = 0), the

sequence {μi}i/∈E converges to Liouville measure; this is because an ergodic measure
cannot be written as a proper convex combination of other invariant measures.

13.16. Conjecture (Rudnick-Sarnak [RS94]). Let M be a compact, Riemannian
manifold of negative sectional curvature. Then the Liouville measure on S∗M is
the unique quantum limit.

13.17. Theorem ([Lin06, Theorem 1.4]). Say M = Γ\H, for Γ arithmetic (of
finite covolume, but not necessarily co-compact). Then the only arithmetic quan-
tum limits are scalar multiples of Liouville measure (i.e., the measure is a Haar
measure).

13.18. Corollary. Let f ∈ Cc(M) be such that
∫
M

f = 0. Then for a sequence
{ψi} of Hecke-Maass forms, we have∫

M

f |ψi|2d area(x)→ 0

as i→∞.

Note that in Theorem 13.17 we do not know that the limit measure is a prob-
ability measure. If Γ is cocompact, then this is immediate; but in the case of Γ a
congruence subgroup of SL(2,Z), there remains the possibility that some (or pos-
sibly all) of the mass escapes to the cusp in the limit. We note that since the
summer school this problem has been solved: Soundararajan [Sou09] proved, by
purely number theoretic methods, that the arithmetic quantum limits are proba-
bility measures. Together this proves the arithmetic quantum unique ergodicity
conjecture.

13.19. For example, we could take f in Corollary 13.18 to also be a Hecke-Maass
form (recall these are orthogonal to constants, so the hypothesis is satisfied). In
fact, since these span L2

cusp, the statement of Corollary 13.18 will hold for all such
f if and only if it holds for all Hecke-Maass forms.

An identity of Watson shows that the quantity
∫
ψ1ψ2ψ3d area can be expressed

in terms of L-functions, specifically

∣∣∣∣
∫

ψ1ψ2ψ3d area

∣∣∣∣
2

=
π4Λ( 12 , ψ1 × ψ2 × ψ3)

Λ(1, sym2ψ1)Λ(1, sym2ψ2)Λ(1, sym2ψ3)
.

Hence good estimates on the completed L-function Λ( 12 , ψ1×ψ2×ψ3) would imply
Arithmetic QUE. Unfortunately, the best estimates we have for this L-functions
gives only a trivial bound, and so Theorem 13.17 does not follow from existing
technology in this direction. The Generalized Riemann Hypothesis (GRH) would

imply a bound of � λ
−1/4
i , which would not only imply Theorem 13.17, but would

give an optimal rate of convergence. Further discussion of many of these topics can
be found in the survey [Sar03].

13.20. We also note that Theorem 13.17 has been extended to other Γ\G by
Silberman and Venkatesh; e.g. for G = SL(p,R) and Γ a congruence lattice therein
[SV04, SV06].
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13.21. As a first step, we wish to construct the measures μi from the μ̃i, which
satisfy the conditions of 13.12. The “standard” way to do this is via pseudodif-
ferential calculus (see e.g. [Ana]), but we wish to give a representation-theoretic
construction, which will respect the Hecke symmetries that we wish to exploit.

Given an eigenfunction φ ∈ L2(Γ\H) = L2(Γ\ SL(2,R))K , we can translate the
function via g.φ(x) = φ(xg−1) for any g ∈ SL(2,R). Taking all possible translates,
we get a representation

Vφ = 〈g.φ : g ∈ G〉 = 〈ψ ∗ φ : ψ ∈ Cc(G)〉

where the action of ψ is by convolution as in §13.2. This representation is unitary
(since the Riemannian measure is G-invariant), and also irreducible (this is not
quite obvious, but follows from the general theory). Moreover, the isomorphism
class of this representation is completely determined by the eigenvalue of φ.

In fact, we can write down an explicit model Ṽt
∼= Vφ for this representation

(where t is determined by ΔMφ = ( 14 + t2)φ) . The Hilbert space on which the rep-

resentation acts will be simply L2(K). To understand the action of G = SL(2,R),

extend any function f on K to a function f̃ on G using the NAK decomposition of
SL(2,R),

g = nâk =

(
1 s

1

)(
a

a−1

)(
cos θ sin θ
− sin θ cos θ

)

via

f̃(nâk) = a1+2itf(k)

now define g.f as the restriction of the left translation of f̃ by g to K. It can be
shown by an explicit calculation that this representation is unitary as long as t ∈ R,
i.e., as long as the eigenvalue of φ under the Laplacian is ≥ 1/4 (for our purposes,
this is all we care about).

For every n ≥ 0 we may choose the vector Φ(n) ∈ Vφ that corresponds to the
(normalized) Dirichlet kernel

f(k(θ)) =
1√

2n+ 1

sin (n+ 1
2 )θ

sin θ
2

which is the n-th order approximation to the δ-function on K. We then set μi =

|Φ(n)
i |2dvol (here d vol is the Riemannian volume on Γ\G and n will be chosen as a

function of i below), and we will see that the μi are close to being invariant under
the geodesic flow.

What is the role of n in all of this? There are two competing properties:

• The larger the value of n, the closer f is to a δ function, and the better
the invariance properties of μi. The problem is that then μi loses much
of its relation to μ̃i (i.e., π∗μi and μ̃i become farther apart).

• The smaller the value of n, the closer f is to a constant function, which
means that μi agrees well with μ̃i, but μi loses its invariance properties.

However, as i → ∞ (and simultaneously also t → ∞), both approximations im-
prove; hence if we “split the difference” by choosing an appropriate value of n for
each t, we will get both desired properties in the limit.



DIAGONAL ACTIONS ON LOCALLY HOMOGENEOUS SPACES 237

13.22. We now wish to explain why large n values make μi more invariant. We
define the following differential operators:

Hf =
∂

∂s
f

(
g

(
es

e−s

))

V f =
∂

∂s
f

(
g

(
cosh(s) sinh(s)
sinh(s) cosh(s)

))

Wf =
∂

∂θ
f(gk(θ))

H is differentiation along the geodesic flow, V is differentiation along the perpen-
dicular direction to the geodesic flow, and W is differentiation in the rotational
direction (i.e., fixing the point in M and letting the direction of the tangent vector
vary).

We have the Casimir element

ω = H2 + V 2 −W 2

which is self-adjoint, commutes with translations by any g ∈ G, and coincides (up
to a scalar) with ΔM on the subspace {f : Wf = 0} = L2(Γ\G)K . Every vector
ψ ∈ Vφ is an eigenfunction of ω, with eigenvalue 1 + 4t2.

For t large, consider

〈ωΦ,Φf〉 = 〈Φ, ω(Φf)〉
= 〈Φ, (ωΦ)f〉+ 〈Φ,Φ(ωf)〉+

+ 2〈Φ, HΦHf〉+ 2〈Φ, V ΦV f〉+ 2〈Φ,WΦWf〉,
which follows from ω being self-adjoint and from the product rule for differentiation.
Note that the first terms in both lines are equal:

〈ωΦ,Φf〉 = 〈Φ, (ωΦ)f〉 = (1 + 4t2)〈Φ,Φf〉,
and also that for fixed f , the quantity 〈Φ,Φ(ωf)〉 = Of (1) as the eigenvalue t tends
to infinity. On the other hand, if n is large (but much smaller than t), Φ is close
to being an eigenfunction of H of large eigenvalue (∼ it), and both ||V Φ|| and
||WΦ|| are much less than t||Φ||. Dividing by the “eigenvalue for H” we must have
〈Φ,ΦHf〉 = o(1).

But what is 〈Φ,ΦHf〉? By definition, it is the integral
∫
Hfdμi of the derivative

of f along the geodesic flow. Since this tends to 0 as t gets large, we get

∂

∂t

∫
f(·at)dμ∞ = 0

if μ∞ is a weak∗ limit point of the μi; i.e., we have that μ∞ is at-invariant.

13.23. We have shown that any weak∗ limit point of the measures μ̃i is a
projection of a measure μ∞ on Γ\ SL(2,R) which is at-invariant. But as we know
well, there are many at-invariant measures here, even with positive entropy!

Thus in order to classify quantum limits, we will have to use additional infor-
mation about these limits. At this stage, we will abandon the properties coming
from the φi being eigenfunctions of Δ (though we have not harnessed the full power
of this assumption), and use properties of Hecke eigenfunctions.

The fact that the φi are Hecke eigenfunctions implies (since the Hecke oper-
ators are defined by translations) that Φi (indeed, any vector in Vφi

) is a Hecke



238 M. EINSIEDLER AND E. LINDENSTRAUSS

eigenfunction. Now, one certainly cannot expect |Φi|2 to be a Hecke eigenfunction,
but traces of this symmetry do survive in the measures μi as well as their limit μ∞.

13.24. Recall the Hecke correspondence (fourth formulation) given via the pro-
jection map

PGL(2,Z

[
1

p

]
)\PGL(2,R)× PGL(2,Qp)→ PGL(2,Z)\PGL(2,R).

For each x we have a set of points Tp(x), and its iterates, giving a Hecke tree which
is the projection of a full PGL(2,Qp)-orbit of x.

13.25. Definition. A measure μ on PGL(2,Z)\PGL(2,R) is p-Hecke recurrent if
there is a measure μ̃ on

PGL(2,Z

[
1

p

]
)\PGL(2,R)× PGL(2,Qp)

such that π∗μ̃ = μ and μ̃ is PGL(2,Qp)-recurrent.

13.26. Problem. Show that the property of p-Hecke recurrence is independent
of the lifting; i.e., μ is p-Hecke recurrent if and only if any lifting measure μ̃ is
PGL(2,Qp)-recurrent.

13.27. Let G be an abstract p+1-regular tree, with a distinguished base point.
For a more direct definition of p-Hecke recurrence, we can define leafwise measures
μG
x on these Hecke trees (our space is foliated into Hecke orbits), and then as before

Hecke recurrence will hold whenever these leafwise measures are infinite a.e.
Note that unlike the case of group actions, there is no canonical labeling on

the p-Hecke tree of a point x ∈ X in terms of the nodes of G. The only inherent
structure on these p-Hecke trees is the (discrete) tree metric; and a construction of
leafwise measures in such cases is given in [Lin06].

To avoid having to introduce this formalism we can consider instead the corre-
sponding non-locally finite measure μx,p = μG

x .x on PGL(2,Z)\PGL(2,R).

13.28. These leafwise measures (more precisely, their image under the embed-
ding of the abstract p+ 1-regular tree G to p-Hecke trees in PGL(2,Z)\PGL(2,R)
satisfy a.s. that

μx,p(y)

μx,p(x)
= lim

r→0

μ(Br(y))

μ(Br(x))

where Br(x) = x.BG
r (1) is a small ball around x in the group G.

Now, since Φi are Hecke eigenfunctions, the restriction of Φi to each Hecke tree
will give an eigenfunction of the tree Laplacian. Hecke recurrence will then follow
(after a short argument that can be found in e.g. [Lin06, Sec. 8]) from

13.29. Lemma. Let G be a p + 1-regular tree, and φ : G → C a function such
that ΔGφ = λpφ. Then φ /∈ L2(G); in fact, there exists a (universal) constant
independent of λp, such that ∑

d(x,y)≤R

|φ|2 ≥ cR|φ(x)|2
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13.30. This implies that our quantum limit will be both at-invariant and Hecke
recurrent. By Theorem 10.3, if a.e. ergodic component of μ has positive entropy
(this was shown for arithmetic quantum limits by Bourgain-Lindenstrauss [BL03]),
then μ is G-invariant; i.e., μ is a multiple of Haar measure.
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Current address: ETH Zürich, Departement Mathematik, Rämistrasse 101, 8092 Zürich,
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Introduction

These are the notes of an introductory four-lectures course given in the Summer
School in Pisa in June, 2007. Lectures I and II cover hyperbolic geometry and the
theory of Fuchsian groups; the material of these lectures is mostly an adaptation
from the author’s book “Fuchsian groups” [14]. Lecture III describes the geodesic
flow on the surfaces of constant negative curvature and establishes its dynamical
properties. Lecture IV is devoted to symbolic coding of the geodesic flow with
emphasis on the modular surface. The material of this lecture is based on the survey
article [17] and two more recent papers [20, 21] of the author with I. Ugarcovici.

Lecture I. Hyperbolic geometry

1. Models of hyperbolic geometry

Our first model of hyperbolic geometry is obtained similarly to the model of
elliptic geometry on the unit sphere S2 in R3,

S2 = {(x1, x2, x3) ∈ R3 | x21 + x22 + x23 = 1}.
The metric (arc length) on S2 is induced from the Euclidean metric on R3,

(1.1) ds2 = dx21 + dx22 + dx23

which corresponds to the standard inner product on R3,

(x, y) = x1y1 + x2y2 + x3y3.

The geodesics for this metric (i.e. the length minimizing curves) lie on planes
through 0 ∈ R3 and are arcs of great circles. The group of orientation- preserving
isometries of S2 is the group SO(3) that preserves the standard inner product ( , )
on R3.

If instead of the metric (1.1) we consider a pseudo-metric in R3:

(1.2) ds2h = dx21 + dx22 − dx23,

corresponding to the bilinear symmetric form of signature (2, 1):

(x, y)2,1 = x1y1 + x2y2 − x3y3,

then the upper fold of the hyperboloid

H2 = {(x1, x2, x3) ∈ R3 | x21 + x22 − x23 = −1, x3 > 0}
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represents a model of hyperbolic geometry in two dimensions. Notice that outside
of H2 (x, x)2,1 > −1 and inside H2 (x, x)2,1 < −1.

First, we check that the pseudo-metric (1.2) induces Riemannian metric on
H2. Let x = (x1, x2, x3) ∈ H2. Define x⊥ = {y ∈ R3 | (y, x)2,1 = 0}. It is a plane
passing though 0, and x+ x⊥ is a plane passing through x.

Proposition 1.1. The tangent plane TxH
2 to the hyperboloid H2 at the point

x is given by TxH
2 = x + x⊥ , and ( , )2,1 restricted to x⊥ is positive-definite,

hence gives a scalar product on TxH
2, i.e. a Riemannian metric on H2.

(0,0,1)

(0,0,0)

> -1

< -1

x
v

Figure 1.1. The hyperboloid model

Proof. The upper fold of the hyperboloid is given by the equation x3 =√
x21 + x22 + 1. Let x+ v ∈ TxH

2. A tangent vector v at x is a linear combination
of two basic tangent vectors,

v = a
(
1, 0,

∂x3
∂x1

)
+ b
(
0, 1,

∂x3
∂x2

)
=
(
a, b,

ax1 + bx2
x3

)
.

We see that (v, x)2,1 = 0, i.e. v ∈ x⊥, hence TxH2 ⊂ x + x⊥, and since TxH
2 is a

plane, TxH
2 = x+ x⊥.

Let v ∈ x⊥. By convexity of the hyperboloid, x+ v is outside of H2, hence

−1 < (x+ v, x+ v)2,1 = (x, x)2,1 + 2(x, v)2,1 + (v, v)2,1 = −1 + (v, v)2,1.

Therefore for all v ∈ x⊥, (v, v)2,1 > 0. �
The geodesics for this metric also lie on planes through 0 ∈ R3. The group

of orientation-preserving isometries of H2 is SO(2, 1), the group preserving the
bilinear symmetric form (x, y)2,1,

SO(2, 1) = {A ∈ SL(3,R) | TASA = S, where S =


1 0 0
0 1 0
0 0 −1


}.

Other models of the hyperbolic plane are obtained from the hyperboloid

model described above.

The Beltrami-Klein model. The group G = SO(2, 1) acts transitively on the
upper fold of the hyperboloid H2 by linear transformations. The cone given by the
equation x21 + x22 − x23 = 0 lies outside of H2 and is asymptotic to it, as illustrated
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on Figure 1.1. The intersection of this cone with the plane x3 = 1 tangent to H2

is the circumference ∂U = {x21 + x22 = 1}. Consider the central projection σ of H2

to the plane x3 = 1 from the origin 0 ∈ R3. We have

σ(x1, x2, x3) = (η1, η2),

where η1 = x1

x3
, η2 = x2

x3
. We have η21 + η22 = 1− 1

x2
3

, hence σ(H2) = U = {η21 + η22 <

1}. Equivalently, U may be viewed as the space of negative vectors x ∈ R3, i.e.
such that (x, x)2,1 < 0, which will be useful later. The metric on U is induced by
the hyperbolic metric dh on H2:

d∗h(η1, η2) = dh(σ
−1η1, σ

−1η2).

Geodesics in H2 are mapped to chords of the unit disc U , which thus become
geodesics with respect to the hyperbolic metric d∗h on U (in what follows we will
omit ∗ in most cases). We define the action of G on U so that it commutes with
σ. It follows that G acts on U by fractional linear transformations: for (η1, η2) and

g =


a11 a12 a13
a21 a22 a23
a31 a32 a33




g(η1, η2) =
(a11η1 + a12η2 + a13
a31η1 + a32η2 + a33

,
a21η1 + a22η2 + a23
a31η1 + a32η2 + a33

)
.

Notice that this model is not angle-true. Two geodesics which meet at the boundary
are in fact asymptotically tangent.

The hemispherical model. Let η1 = x1

x3
, η2 = x2

x3
, η3 = 1

x3
. Then from the

equation of H2 we obtain the equation of the unit hemisphere

η21 + η22 + η23 = 1, η3 > 0

This model is obtained from the Beltrami-Klein model by the orthogonal projection
of the unit disc U to the hemisphere. The geodesics in this model are arcs of circles
on the hemisphere orthogonal to the disc—the boundary of the hemispere.

(0,0,-1)

Figure 1.2. The hemispherical, Beltrami-Klein, and Poincaré
disc models
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The Poincaré disc model. The stereographic projection of the hemisphere from
the point (0, 0,−1) onto the plane η3 = 0 (i.e. to the same unit disc U) maps
geodesics in the hemisphere to arcs of circles orthogonal to the boundary ∂U . This
gives us a new model in the unit disc, the Poincaré disc model. If we go from the
Beltrami-Klein model to the Poincaré model (through the hemisphere) we notice
that the end points of the geodesics are preserved and each point with polar coordi-
nates (r, ϕ) is mapped to the point on the same radius (r′, ϕ), where r′ = r√

1−r2+1
.

(0,-1,0)

η

η
1

3

Figure 1.3. The Poincaré upper half-plane model

The Poincaré upper half-plane model. The stereographic projection of the
upper hemisphere from the point (0,−1, 0) onto the plane η2 = 0 give the model in
the half-plane H = {(η1, η3), η3 > 0}.

Since the stereographic projection is conformal (i.e. preserves angles) the hemi-
spherical model and its derivatives, the Poincaré disc model and the Poincaré upper
half-plane model are angle-true.

Models as homogeneous spaces. All three models are obtained algebraically as
homogeneous spacesG/K due to the accidental isomorphisms SL(2,R) ≈ SU(1, 1) ≈
SO(2, 1).

In the Beltrami-Klein model

G = SO(2, 1), K =

{
cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1


 , 0 ≤ ϕ < 2π

}
.

In the Poincaré disc model, G = SU(1, 1), the group that preserves the Her-
mitian form on C2, < z,w >= z1w̄1 − z2w̄2 (for z = (z1, z2) and w = (w1, w2)),
is

SU(1, 1) =
{
g ∈ SL(2,C) | g =

(
a c
c̄ ā

)}
,



248 SVETLANA KATOK

and

K =
{(

eiϕ 0
0 e−iϕ

)
, 0 ≤ ϕ < 2π

}
.

The homogeneous space G/K can be identified with the “projectivized” space of
the negative vectors in C2 (< z, z >< 0), analogous to that discussed above for R3,
or, in homogeneous coordinates, with the unit disc in C,

U = {z ∈ C | |z| < 1}.
In the Poincaré upper half-plane model, G = SL(2,R), and K = SO(2), the

stabilizer of the point i ∈ H. Here the homogeneous space G/K is identified with
the upper half-plane

H = {z ∈ C | Im(z) > 0}.
by the following construction. Each matrix in SL(2,R) can be written as a product
of upper-triangular and orthogonal (the Iwasawa decomposition):

g =

(
a b
c d

)
=

(√
y x√

y

0 1√
y

)(
cosϕ − sinϕ
sinϕ cosϕ

)
,

where x, y ∈ R, y > 0 and 0 ≤ ϕ < 2π. Then π : G/K → H given by

π(g) = g(i) =
ai+ b

ci+ d
= x+ iy = z

does the identification.
In the last two conformal models, the corresponding group G acts by fractional-

linear transformations: for g =

(
a b
c d

)
, g(z) = az+b

cz+d .

2. The hyperbolic plane

Let H = {z ∈ C | Im(z) > 0} be the upper-half plane. Equipped with the
metric

(2.1) ds =

√
dx2 + dy2

y
,

it becomes a model of the hyperbolic or Lobachevski plane (see Exercise 2). We will
see that the geodesics (i.e., the shortest curves with respect to this metric) will be
straight lines and semicircles orthogonal to the real line

R = {z ∈ C | Im(z) = 0}.
Using this fact and elementary geometric considerations, one easily shows that

any two points in H can be joined by a unique geodesic, and that from any point in
H in any direction one can draw a geodesic. We will measure the distance between
two points in H along the geodesic connecting them. It is clear that any geodesic
can be continued indefinitely, and that one can draw a circle centered at a given
point with any given radius.

The tangent space to H at a point z is defined as the space of tangent vectors
at z. It has the structure of a 2-dimensional real vector space or of a 1-dimensional
complex vector space: TzH ≈ R2 ≈ C. The Riemannian metric (2.1) is induced by
the following inner product on TzH: for ζ1 = ξ1 + iη1 and ζ2 = ξ2 + iη2 in TzH, we
put
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(2.2) 〈ζ1, ζ2〉 =
(ζ1, ζ2)

Im(z)2
,

which is a scalar multiple of the Euclidean inner product (ζ1, ζ2) = ξ1ξ2 + η1η2.
We define the angle between two geodesics in H at their intersection point z as the
angle between their tangent vectors in TzH. Using the formula

cosϕ =
〈ζ1, ζ2〉
‖ζ1‖‖ζ2‖

=
(ζ1, ζ2)

|ζ1||ζ2|
,

where ‖ ‖ denotes the norm in TzH corresponding to the inner product 〈 , 〉, and | |
denotes the norm corresponding to the inner product ( , ), we see that this notion
of angle measure coincides with the Euclidean angle measure.

The first four axioms of Euclid hold for this geometry. However, the fifth
postulate of Euclid’s Elements, the axiom of parallels, does not hold: there is more
than one geodesic passing through the point z not lying in the geodesic L that does
not intersect L (see Fig. 2.1). Therefore the geometry in H is non-Euclidean. The
metric in (2.1) is said to be the hyperbolic metric. It can be used to calculate the

length of curves in H the same way the Euclidean metric
√
dx2 + dy2 is used to

calculate the length of curves on the Euclidean plane. Let I = [0, 1] be the unit

z

L

Figure 2.1. Geodesics in the upper half-plane

interval, and γ : I → H be a piecewise differentiable curve in H,

γ(t) = {v(t) = x(t) + iy(t) | t ∈ I}.
The length of the curve γ is defined by

(2.3) h(γ) =

∫ 1

0

√
(dxdt )

2 + (dydt )
2

y(t)
dt.

We define the hyperbolic distance between two points z, w ∈ H by setting

ρ(z, w) = inf h(γ),

where the infimum is taken over all piecewise differentiable curves connecting z and
w.

Proposition 2.1. The function ρ : H × H → R defined above is a distance
function, i.e.

(a) nonnegative: ρ(z, z) = 0; ρ(z, w) > 0 if z 6= w;
(b) symmetric: ρ(u, v) = ρ(v, u);
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(c) satisfies the triangle inequality: ρ(z, u) ≤ ρ(z, w) + ρ(w, u).

Proof. It is easily seen from the definition that (b), (c), and the first part of
property (a) hold. The second part follows from Exercise 3. �

Consider the group SL(2,R) of real 2 × 2 matrices with determinant one. It

acts on H by Möbius transformations if we assign to each g =

(
a b
c d

)
∈ SL(2,R)

the transformation

(2.4) Tg(z) =
az + b

cz + d
.

Proposition 2.2. Any Möbius transformation Tg maps H into itself.

Proof. We can write

w = Tg(z) =
(az + b)(cz + d)

|cz + d|2 =
ac|z|2 + adz + bcz + bd

|cz + d|2 .

Therefore

(2.5) Im(w) =
w − w

2i
=

(ad− bc)(z− z)

2i|cz + d|2 =
Im(z)

|cz + d|2 .

Thus Im(z) > 0 implies Im(w) > 0. �

One can check directly that if g, h ∈ SL(2,R), then Tg ◦ Th = Tgh and
T−1
g = Tg−1 . It follows that each Tg, g ∈ SL(2,R), is a bijection, and thus we

obtain a representation of the group SL(2,R) by Möbius transformations of the
upper-half plane H. In fact, the two matrices g and −g give the same Möbius trans-
formation, so formula (2.4) actually gives a representation of the quotient group
SL(2,R)/{±12} (where 12 is the 2 × 2 identity matrix), denoted by PSL(2,R),
which we will identify with the group of Möbius transformations of the form (2.4).
Notice that PSL(2,R) contains all transformations of the form

z → az + b

cz + d
with ad− bc = ∆ > 0,

since by dividing the numerator and the denominator by
√
∆, we obtain a matrix

for it with determinant equal to 1. In particular, PSL(2,R) contains all trans-
formations of the form z → az + b (a, b ∈ R, a > 0). Since transformations in
PSL(2,R) are continuous, we have the following result.

Theorem 2.3. The group PSL(2,R) acts on H by homeomorphisms.

Definition 2.4. A transformation of H onto itself is called an isometry if it
preserves the hyperbolic distance in H.

Isometries clearly form a group; we will denote it by Isom(H).

Theorem 2.5. Möbius transformations are isometries, i.e., we have the inclu-
sion PSL(2,R) ⊂ Isom(H).

Proof. Let T ∈ PSL(2,R). By Theorem 2.3 T maps H onto itself. Let
γ : I → H be the piecewise differentiable curve given by z(t) = x(t) + iy(t). Let

w = T (z) =
az + b

cz + d
;
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then we have w(t) = T (z(t)) = u(t) + iv(t) along the curve γ. Differentiating, we
obtain

(2.6)
dw

dz
=
a(cz + d)− c(az + b)

(cz + d)2
=

1

(cz + d)2
.

By (2.5) we have

v =
y

|cz + d|2 , therefore
∣∣∣∣dwdz

∣∣∣∣ = v

y
.

Thus

h(T (γ)) =

∫ 1

0

|dwdt |dt
v(t)

=

∫ 1

0

|dwdz ||dzdt |dt
v(t)

=

∫ 1

0

|dzdt |dt
y(t)

= h(γ).

The invariance of the hyperbolic distance follows from this immediately. �

3. Geodesics

Theorem 3.1. The geodesics in H are semicircles and the rays orthogonal to
the real axis R.

Proof. Let z1, z2 ∈ H. First consider the case in which z1 = ia, z2 = ib with
b > a. For any piecewise differentiable curve γ(t) = x(t) + iy(t) connecting ia and
ib, we have

h(γ) =

∫ 1

0

√
(dxdt )

2 + (dydt )
2

y(t)
dt ≥

∫ 1

0

|dydt |dt
y(t)

≥
∫ 1

0

dy
dt dt

y(t)
=

∫ b

a

dy

y
= ln

b

a
,

but this is exactly the hyperbolic length of the segment of the imaginary axis
connecting ia and ib. Therefore the geodesic connecting ia and ib is the segment
of the imaginary axis connecting them.

Now consider the case of arbitrary points z1 and z2. Let L be the unique
Euclidean semicircle or a straight line connecting them. Then by Exercise 4, there
exists a transformation in PSL(2,R) which maps L into the positive imaginary axis.
This reduces the problem to the particular case studied above, and by Theorem
2.5 we conclude that the geodesic between z1 and z2 is the segment of L joining
them. �

Thus we have proved that any two points z and w inH can be joined by a unique
geodesic, and the hyperbolic distance between them is equal to the hyperbolic length
of the geodesic segment joining them; we denote the latter by [z, w]. This and the
additivity of the integral (2.3) imply the following statement.

Corollary 3.2. If z and w are two distinct points in H, then

ρ(z, w) = ρ(z, ξ) + ρ(ξ, w)

if and only if ξ ∈ [z, w].

Theorem 3.3. Any isometry of H, and, in particular, any transformation from
PSL(2,R), maps geodesics into geodesics.

Proof. The same argument as in the Euclidean case using Corollary 3.2 works
here as well. �
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The cross-ratio of distinct points z1, z2, z3, z4 ∈ Ĉ = C∪ {∞} is defined by the
following formula:

(z1, z2; z3, z4) =
(z1 − z2)(z3 − z4)

(z2 − z3)(z4 − z1)
.

Theorem 3.4. Suppose z, w ∈ H are two distinct points, the geodesic joining
z and w has end points z∗, w∗ ∈ R ∪ {∞}, and z ∈ [z∗, w]. Then

ρ(z, w) = ln(w, z∗; z, w∗).

Proof. Using Exercise 4, let us choose a transformation T ∈ PSL(2,R) which
maps the geodesic joining z and w to the imaginary axis. By applying the transfor-
mations z 7→ kz (k > 0) and z 7→ −1/z if necessary, we may assume that T (z∗) = 0,
T (w∗) = ∞ and T (z) = i. Then T (w) = ri for some r > 1, and

ρ(T (z), T (w)) =

∫ r

1

dy

y
= ln r.

On the other hand, (ri, 0; i,∞) = r, and the theorem follows from the invariance
of the cross-ratio under Möbius transformations, a standard fact from complex
analysis (which can be checked by a direct calculation). �

We will derive several explicit formulas for the hyperbolic distance involving
the hyperbolic functions

sinhx =
ex − e−x

2
, coshx =

ex + e−x

2
, tanh z =

sinhx

coshx
.

Theorem 3.5. For z, w ∈ H, we have

(a) ρ(z, w) = ln |z−w|+|z−w|
|z−w|−|z−w| ;

(b) cosh ρ(z, w) = 1 + |z−w|2
2Im(z)Im(w) ;

(c) sinh[ 12ρ(z, w)] =
|z−w|

2(Im(z)Im(w))1/2
;

(d) cosh[ 12ρ(z, w)] =
|z−w|

2(Im(z)Im(w))1/2
;

(e) tanh[ 12ρ(z, w)] = | z−w
z−w |.

Proof. We will prove that (e) holds. By Theorem 2.5, the left-hand side is
invariant under any transformation T ∈ PSL(2,R). By Exercise 5, the right-hand
side is also invariant under any T ∈ PSL(2,R). Therefore if is sufficient to check
the formula for the case when z = i, w = ir (r > 1). The right-hand side is equal to
(r−1)/(r+1). The left-hand side is equal to tanh[ 12 ln r]. A simple calculation shows
that these two expressions are equal. The other formulas are proved similarly. �

4. Isometries

We have seen that transformations in PSL(2,R) are isometries of the hyper-
bolic plane H (Theorem 2.5). The next theorem identifies all isometries of H in
terms of Möbius transformations and symmetry in the imaginary axis.

Theorem 4.1. The group Isom(H) is generated by the Möbius transformations
from PSL(2,R) together with the transformation z 7→ −z. The group PSL(2,R) is
a subgroup of Isom(H) of index two.
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Proof. Let ϕ be any isometry of H. By Theorem 3.3, ϕ maps geodesics into
geodesics. Let I denote the positive imaginary axis. Then ϕ(I) is a geodesic in H,
and, according to Exercise 4, there exists an isometry T ∈ PSL(2,R) that maps
ϕ(I) back to I. By applying the transformations z 7→ kz (k > 0) and z 7→ −1/z, we
may assume that g ◦ ϕ fixes i and maps the rays (i,∞) and (i, 0) onto themselves.
Hence, being an isometry, g◦ϕ fixes each point of I. The same (synthetic) argument
as in the Euclidean case shows that

(4.1) g ◦ ϕ(z) = z or − z.

Let z1 and z2 be two fixed points on I. For any point z not on I, draw two hyperbolic
circles centered at z1 and z2 and passing through z. These circles intersect in two
points, z and z′ = −z, since the picture is symmetric with respect to the imaginary
axis (note that a hyperbolic circle is a Euclidean circle in H, but with a different
center). Since these circles are mapped into themselves under the isometry g ◦ ϕ,
we conclude that g ◦ ϕ(z) = z or g ◦ ϕ(z) = −z. Since isometries are continuous
(see Exercise 6), only one of the equations (4.1) holds for all z ∈ H. If g ◦ϕ(z) = z,
then ϕ(z) is a Möbius transformation of the form (2.4). If g ◦ ϕ(z) = −z, we have

(4.2) ϕ(z) =
az + b

cz + d
with ad− bc = −1,

which proves the theorem. �

Thus we have characterized all the isometries of H. The sign of the determi-
nant of the corresponding matrix in (2.4) or (4.2) determines the orientation of an
isometry. We will refer to transformations in PSL(2,R) as orientation-preserving
isometries and to transformations of the form (4.2) as orientation-reversing isome-
tries.

Now we will study and classify these two types of isometries of the hyperbolic
plane H.

Orientation-preserving isometries. The classification of matrices in
SL(2,R) into hyperbolic, elliptic, and parabolic depended on the absolute value of

their trace, and hence makes sense in PSL(2,R) as well. A matrix A =

(
a b
c d

)
∈

SL(2,R) with trace t = a + d is called hyperbolic if |t| > 2, elliptic if |t| < 2, and
parabolic if |t| = 2. Let

T (z) =
az + b

cz + d
∈ PSL(2,R).

The action of the group PSL(2,R) extends from H to its Euclidean boundary

R ∪ {∞}, hence PSL(2,R) acts on the Euclidean closure of H, denoted by H̃.
The fixed points of T are found by solving the equation

z =
az + b

cz + d
, i.e., cz2 + (d− a)z − b = 0.

We obtain

w1 =
a− d+

√
(a+ d)2 − 4

2c
, w2 =

a− d−
√
(a+ d)2 − 4

2c
.
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Notice that λi = cwi + d (i = 1, 2) are the eigenvalues of the matrix A. A fixed

point wi of T can be expressed in terms of the eigenvector

(
xi
yi

)
with eigenvalue λi,

namely, wi = xi/yi. The derivative at the fixed point wi can be written in terms
of the eigenvalue λi as

T ′(wi) =
1

(cwi + d)2
=

1

λ2i
.

We see that if T is hyperbolic, then it has two fixed points in R ∪ {∞}, if T is
parabolic, it has one fixed point in R∪{∞}, and if T is elliptic, it has two complex
conjugate fixed points, hence one fixed point in H. A Möbius transformation T fixes
∞ if and only if c = 0, and hence it is in the form z 7→ az + b (a, b ∈ R, a > 0). If
a = 1, it is parabolic; if a 6= 0, it is hyperbolic and its second fixed point is b/(1−a).

Definition 4.2. A fixed point w of a transformation f : H̃ → H̃ is called
attracting if |f ′(w)| < 1, and it is called repelling if |f ′(w)| > 1.

Now we are ready to summarize what we know from linear algebra about dif-
ferent kinds of transformations in PSL(2,R) and describe the action of Möbius
transformations in H geometrically.

1. Hyperbolic case. A hyperbolic transformation T ∈ PSL(2,R) has two fixed
points in R ∪ {∞}, one attracting, denoted by u, the other repelling, denoted by
w. The geodesic in H connecting them is called the axis of T and is denoted by
C(T ). By Theorem 3.3, T maps C(T ) onto itself, and C(T ) is the only geodesic
with this property. Let λ be the eigenvalue of a matrix corresponding to T with

|λ| > 1. Then the matrix of T is conjugate to the diagonal matrix

(
λ 0
0 1

λ

)
that

corresponds to the Möbius transformation

(4.3) Λ(z) = λ2z,

i.e., there exists a transformation S ∈ PSL(2,R) such that STS−1 = Λ. The
conjugating transformation S maps the axis of T , oriented from u to w, to the
positive imaginary axis I, oriented from 0 to ∞, which is the axis of Λ (cf. Exercises
4 and 9).

In order to see how a hyperbolic transformation T acts on H, it is useful to look
at the all its iterates T n, n ∈ Z. If z ∈ C(T ), then T n(z) ∈ C(T ) and T n(z) → w as
n→ ∞, while T n(z) → u as n→ −∞. The curve C(T ) is the only geodesic which is
mapped onto itself by T , but there are other T -invariant curves, also “connecting”
u and w. For the standard hyperbolic transformation (4.3), the Euclidean rays in
the upper half-plane issuing from the origin are obviously T -invariant. If we define
the distance from a point z to a given geodesic L as infv∈L ρ(z, v), we see that
the distance is measured over a geodesic passing through z and orthogonal to L
(Exercise 7). Such rays have an important property: they are equidistant from the
axis C(Λ) = I (see Exercise 8), and hence are called equidistants. Under S−1 they
are mapped onto equidistants for the transformation T , which are Euclidean circles
passing through the points u and w (see Figure 4.1).

A useful notion in understanding how hyperbolic transformations act is that of
an isometric circle. Since T ′(z) = (cz + d)−2, the Euclidean lengths are multiplied
by |T ′(z)| = |cz+d|−2. They are unaltered in magnitude if and only if |cz+d| = 1.
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If c 6= 0, then the locus of such points z is the circle∣∣∣∣z + d

c

∣∣∣∣ = 1

|c|
with center at −d/c and radius 1/|c|. The circle

I(T ) = {z ∈ H | |cz + d| = 1}
is called the isometric circle of the transformation T . Since its center −d/c lies in
R, we immediately see that isometric circles are geodesics in H. Further, T (I(T ))
is a circle of the same radius, T (I(T )) = I(T−1), and the transformation maps
the outside of I(T ) onto the inside of I(T−1) and vice versa (see Figure 4.1 and
Exercise 10).

 
C(T)

u w

I

S

0

Figure 4.1. Hyperbolic transformations

If c = 0, then there is no circle with the isometric property: all Euclidean
lengths are altered.

2. Parabolic case. A parabolic transformation T ∈ PSL(2,R) has one fixed point
s ∈ R ∪ {∞}, i.e. “at infinity”. The transformation T has one eigenvalue λ = ±1
and is conjugate to the transformation P (z) = z+b for some b ∈ R, i.e., there exists
a transformation S ∈ PSL(2,R) such that P = STS−1. The transformation P is an
Euclidean translation, and hence it leaves all horizontal lines invariant. Horizontal
lines are called horocycles for the transformation P . Under the map S−1 they are
sent to invariant curves—horocycles—for the transformation T . Horocycles for T
are Euclidean circles tangent to the real line at the parabolic fixed point s (see
Figure 4.2 and Exercise 12); we denote a horocycle through a point s at infinity by
ω(s). Figure 4.2 illustrates a family of horocycles through a given point s ∈ R and
s = ∞.

If c 6= 0, then the isometric circles for T and T−1 are tangent to each other (see
Exercise 11). If c = 0, then there is no unique circle with the isometric property:
in this case T is an Euclidean translation, all Euclidean lengths are unaltered.

3. Elliptic case An elliptic transformation T ∈ PSL(2,R) has a unique fixed
point e ∈ H. It has the eigenvalues λ = cosϕ+ i sinϕ and λ = cosϕ− i sinϕ, and it
is easier to describe its simplest form in the unit disc model of hyperbolic geometry:
U = {z ∈ C | |z| < 1}. The map

(4.4) f(z) =
zi+ 1

z + i
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s

s = ∞ω(s)

ω(∞)
S

Figure 4.2. Parabolic transformations

is a homeomorphism of H onto U . The distance in U is induced by means of the
hyperbolic distance in H:

ρ(z, w) = ρ(f−1z, f−1w) (z, w ∈ U).
The readily verified formula

2|f ′(z)|
1− |f(z)|2 =

1

Im(z)

implies that this distance in U is derived from the metric

ds =
2|dz|

1− |z|2 .

Geodesics in the unit disc model are circular arcs and diameters orthogonal to the
principle circle Σ = {z ∈ C | |z| = 1}, the Euclidean boundary of U . Isometries of
U are the conjugates of isometries of H, i.e., we can write

S = f ◦ T ◦ f−1 (T ∈ PSL(2,R)).

Exercise 13 shows that orientation-preserving isometries of U are of the form

z 7→ az + c

cz + a
(a, c ∈ C, aa− cc = 1),

and the transformation corresponding to the standard reflection R(z) = −z is also
the reflection of U in the vertical diameter.

Let us return to our elliptic transformation T ∈ PSL(2,R) that fixes e ∈ H.
Conjugating T by f , we obtain an elliptic transformation of the unit disc U . Using
an additional conjugation by an orientation-preserving isometry of U if necessary
(see Exercise 14), we bring the fixed point to 0, and hence bring T to the form
z 7→ e2iϕz. In other words, an elliptic transformation with eigenvalues eiϕ and e−iϕ

is conjugate to a rotation by 2ϕ.

Example A. Let z 7→ −1/z be the elliptic transformation given by the matrix(
0 −1
1 0

)
. Its fixed point in H is i. It is a transformation of order 2 since the

identity in PSL(2,R) is {12,−12}, and hence is a half-turn. In the unit disc model,

its matrix is conjugate to the matrix

(
i 0
0 −i

)
.
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Orientation-reversing isometries. The simplest orientation-reversing isometry
of H is the transformation R(z) = −z, a reflection in the imaginary axis I, and
hence it fixes I pointwise. It is also a hyperbolic reflection in I, i.e., if for each
point z we draw a geodesic through z, orthogonally to I that intersects I at the
point z0, then R(z) = z′ is on the same geodesic and ρ(z′, z0) = ρ(z, z0). Let L be
any geodesic in H and T ∈ PSL(2,R) be any Möbius transformation. Then the
transformation

(4.5) TRT−1

fixes the geodesic L = T (I) pointwise and therefore may be regarded as a “reflection
in the geodesic L”. In fact, it is the well-known geometrical transformation called
inversion in a circle (see Exercise 16).

Definition 4.3. Let Q be a circle in R2 with center K and radius r. Given
any point P 6= K in R2, a point P1 is called inverse to P if

(a) P1 lies on the ray from K to P ,
(b) |KP1| · |KP | = r2.

The relationship is reciprocal: if P1 is inverse to P , then P is inverse to P1.
We say that P and P1 are inverse with respect to Q. Obviously, inversion fixes all
points of the circle Q. Inversion may be described by a geometric construction (see
Exercise 15). We will derive a formula for it. Let P , P1 and K be the points z, z1,
and k in C. Then the definition can be rewritten as

|(z1 − k)(z − k)| = r2, arg(z1 − k) = arg(z − k).

Since arg(z − k) = − arg(z − k), both equations are satisfied if and only if

(4.6) (z1 − k)(z − k) = r2.

This gives us the following formula for the inversion in a circle:

(4.7) z1 =
kz + r2 − |k|2

z − k
.

Now we are able to prove a theorem for isometries of the hyperbolic plane
similar to a result in Euclidean geometry.

Theorem 4.4. Every isometry of H is a product of not more than three reflec-
tions in geodesics in H.

Proof. By Theorem 4.1 it suffices to show that each transformation from the
group PSL(2,R) is a product of two reflections. Let

T (z) =
az + b

cz + d
.

First consider the case for which c 6= 0. Then both T and T−1 have well-defined
isometric circles (see Exercise 11). They have the same radius 1/|c| and their centers
are on the real axis at −d/c and a/c, respectively. We will show that T = R◦RI(T ),
where RI(T ) is the reflection in the isometric circle I(T ), or inversion, and R is
the reflection in the vertical geodesic passing through the midpoint of the interval
[−d/c, a/c]. To do this, we use formula (4.6) for inversion:

RI(T )(z) =
− d

c z +
1
c2 − d2

c2

z + d
c

=
−d(z + d

c ) +
1
c

cz + d
.
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The reflection in the line x = (a− d)/2c is given by the formula

R(z) = −z + 2
a− d

2c
.

Combining the two, we obtain

R ◦RI(T ) =
az + b

cz + d
.

Now if c = 0, the transformation T may be either parabolic z 7→ z + b or
hyperbolic z 7→ λ2z + b, each fixing ∞. In the first case, the theorem follows from
the Euclidean result for translations. For T (z) = λ2z + b, it is easy to see that
the reflections should be in circles of radii 1 and λ centered at the second fixed
point. �

5. Hyperbolic area and the Gauss-Bonnet formula

Let T be a Möbius transformation. The differential of T , denoted by DT , at
a point z is the linear map that takes the tangent space TzH onto TT (z)H and is
defined by the 2× 2 matrix

DT =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
.

Theorem 5.1. Let T ∈ PSL(2,R). Then DT preserves the norm in the tan-
gent space at each point.

Proof. For ζ ∈ TzH, we have DT (ζ) = T ′(z)ζ by Exercise 22. Since

|T ′(z)| = Im(T(z))

Im(z)
=

1

|cz + d|2 ,

we can write

‖DT (ζ)‖ =
|DT (ζ)|
Im(T(z))

=
|T ′(z)||ζ|
Im(T(z))

=
|ζ|

Im(z)
= ‖ζ‖.

�
Corollary 5.2. Any transformation in PSL(2,R) is conformal, i.e., it pre-

serves angles.

Proof. It is easy to prove the polarization identity, which asserts that for any
ζ1, ζ2 ∈ TzH we have

〈ζ1, ζ2〉 =
1

2
(‖ζ1‖2 + ‖ζ2‖2 − ‖ζ1 − ζ2‖2);

this identity implies that the inner product and hence the absolute value of the angle
between tangent vectors is also preserved. Since Möbius transformations preserve
orientation, the corollary follows. �

Let A ⊂ H. We define the hyperbolic area of A by the formula

(5.1) µ(A) =

∫
A

dxdy

y2
,

provided this integral exists.

Theorem 5.3. Hyperbolic area is invariant under all Möbius transformations
T ∈ PSL(2,R), i.e., if µ(A) exists, then µ(A) = µ(T (A)).
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Proof. It follows immediately from the preservation of Riemannian metric
(Theorem 5.1). Here is a direct calculation as well. When we performed the change
of variables w = T (z) in the line integral of Theorem 2.5, the coefficient |T ′(z)|
appeared (it is the coefficient responsible for the change of Euclidean lengths). If
we carry out the same change of variables in the plane integral, the Jacobian of this
map will appear, since it is responsible for the change of the Euclidean areas. Let
z = x+ iy, and w = T (z) = u+ iv.

The Jacobian is the determinant of the differential map DT and is customarily
denoted by ∂(u, v)/∂(x, y). Thus

(5.2)
∂(u, v)

∂(x, y)
:= det

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
=
(∂u
∂x

)2
+
(∂v
∂x

)2
= |T ′(z)|2 =

1

|cz + d|4 .

We use this expression to compute the integral

µ(T (A)) =

∫
T (A)

dudv

v2
=

∫
A

∂(u, v)

∂(x, y)

dxdy

v2

=

∫
A

1

|cz + d|4
|cz + d|4

y2
dxdy = µ(A),

as claimed. �
A hyperbolic triangle is a figure bounded by three segments of geodesics. The

intersection points of these geodesics are called the vertices of the triangle. We
allow vertices to belong to R ∪ {∞}. There are four types of hyperbolic triangles,
depending on whether 0, 1, 2, or 3 vertices belong to R ∪ {∞} (see Figure 5.1).

Figure 5.1. Hyperbolic triangles

The Gauss-Bonnet formula shows that the hyperbolic area of a hyperbolic tri-
angle depends only on its angles.

Theorem 5.4 (Gauss-Bonnet). Let ∆ be a hyperbolic triangle with angles α,
β, and γ. Then µ(∆) = π − α− β − γ.

Proof. First we consider the case in which one of the vertices of the triangle
belongs to R ∪ {∞}. Since transformations from PSL(2,R) do not alter the area
and the angles of a triangle, we may apply the transformation from PSL(2,R)
which maps this vertex to ∞ and the base to a segment of the unit circle (as in
Figure 5.2), and prove the formula in this case. The angle at infinity is equal to 0,
and let us assume that the other two angles are equal to α and β.
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α

α β

β
A B

C DO

∆

Figure 5.2. Proof of the Gauss-Bonnet formula

Since the angle measure in the hyperbolic plane coincides with the Euclidean
angle measure, the angles AOC and BOD are equal to α and β, respectively, as
angles with mutually perpendicular sides. Assume the vertical geodesics are the
lines x = a and x = b. Then

µ(∆) =

∫
∆

dxdy

y2
=

∫ b

a

dx

∫ ∞

√
1−x2

dy

y2
=

∫ b

a

dx√
1− x2

.

The substitution x = cos θ (0 ≤ θ ≤ π) gives

µ(∆) =

∫ β

π−α

− sin θdθ

sin θ
= π − α− β.

For the case in which ∆ has no vertices at infinity, we continue the geodesic con-
necting the vertices A and B, and suppose that it intersects the real axis at the
point D (if one side of ∆ is a vertical geodesic, then we label its vertices A and B),
and draw a geodesic from C to D. Then we obtain the situation depicted in Figure
5.3.

We denote the triangle ADC by ∆1 and the triangle CBD by ∆2. Our formula
has already been proved for triangles such as ∆1 and ∆2, since the vertex D is at
infinity. Now we can write

µ(∆) = µ(∆1)− µ(∆2) = (π − α− γ − θ)− (π − θ − π + β)

= π − α− β − γ,

as claimed. �

Theorem 5.4 asserts that the area of a triangle depends only on its angles, and
is equal to the quantity π − α − β − γ, which is called the angular defect. Since
the area of a nondegenerate triangle is positive, the angular defect is positive, and
therefore, in hyperbolic geometry the sum of angles of any triangle is less than π.
We will also see that there are no similar triangles in hyperbolic geometry (except
isometric ones).
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θ
π−β

β

α

γ

A

B

C

D

Figure 5.3. A general case in the Gauss-Bonnet formula

A = A′

B

B′

C

C′

X

α

β

β

γ

Figure 5.4. There are no similar triangles in hyperbolic geometry

Theorem 5.5. If two triangles have the same angles, then there is an isometry
mapping one triangle into the other.

Proof. If necessary, we perform the reflection z 7→ −z, so that the respective
angles of the triangles ABC and A′B′C′ (in the clockwise direction) are equal.
Then we apply a hyperbolic transformation mapping A to A′ (Exercise 14), and an
elliptic transformation mapping the side AB onto the side A′B′. Since the angles
CAB and C′A′B′ are equal, the side AC will be mapped onto the side A′C′. We
must prove that B is then mapped to B′ and C to C′. Assume B′ is mapped inside
the geodesic segment AB. If we had C′ ∈ [A,C], the areas of triangles ABC and
A′B′C′ would not be equal, which contradicts Theorem 5.4. Therefore C must
belong to the side A′C′, and hence the sides BC and B′C′ intersect at a point X
(see Figure 5.4); thus we obtain the triangle B′XB. Its angles are β and π − β
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since the angles at the vertices B and B′ of our original triangles are equal (to β).
Then the sum of the angles of the triangle B′XB is at least π, in contradiction
with Theorem 5.4.

�

6. Hyperbolic trigonometry

Let us consider a general hyperbolic triangle with sides of hyperbolic length
a, b, c and opposite angles α, β, γ. We assume that α, β, and γ are positive (so a, b,
and c are finite) and prove the following results.

Theorem 6.1. (i) The Sine Rule: sinh a
sinα = sinh b

sin β = sinh c
sin γ .

(ii) The Cosine Rule I: cosh c = cosh a cosh b− sinh a sinh b cos γ.

(iii) The Cosine Rule II: cosh c = cosα cosβ+cos γ
sinα sin β .

Remark. Note that Cosine Rule II implies that if two triangles have the same
angles, then their sides are also equal, and therefore it has no analogue in Euclidean
geometry. It also gives an alternative proof of Theorem 5.5.

Proof of (ii). Let us denote the vertices opposite the sides a, b, c by va, vb, vc
respectively. We shall use the model U and may assume that vc = 0 and Im va = 0,
Re va > 0 (see Figure 6.1).

vav  = 0c

vb

Figure 6.1. The Cosine Rule I

By Exercise 20(iv) we have

(6.1) va = tanh
1

2
ρ(0, va) = tanh(

1

2
b),

and similarly,

(6.2) vb = eiγ tanh(
1

2
a),

We have c = ρ(va, vb), and from Exercise 20(iii)

(6.3) cosh c = sinh2[
1

2
ρ(va, vb)] + 1 =

2|va − vb|2
(1− |va|2)(1− |vb|2)

+ 1.
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The right-hand side of expression (6.3) is equal to
cosha cosh b− sinh a sinh b cos γ by Exercise 23, and hence (ii) follows. �

Proof of (i). Using (ii) we obtain

(6.4)

(
sinh c

sin γ

)2

=
sinh2 c

1−
(
cosh a cosh b−cosh c

sinh a sinh b

)2 .
The Sine Rule will be valid if we prove that the expression on the right-hand side
of (6.4) is symmetric in a, b, and c. This follows from the symmetry of

(sinh a sinh b)2 − (cosh a cosh b − cosh c)2

which is obtained by a direct calculation. �

Proof of (iii). Let us write A for cosha,B for cosh b, and C for cosh c. The
Cosine Rule I yields

cos γ =
(AB − C)

(A2 − 1)
1
2 (B2 − 1)

1
2

and so

sin2 γ =
D

(A2 − 1)(B2 − 1)

where D = 1+2ABC−(A2+B2+C2) is symmetric in A,B, and C. The expression
for sin2 γ shows that D ≥ 0. Using analogous expressions for cosα, sinα, cosβ,
and sinβ we observe that if we multiply both the numerator and denominator of

cosα cosβ + cos γ

sinα sinβ

by the positive value of

(A2 − 1)
1
2 (B2 − 1)

1
2 (C2 − 1)

1
2

we obtain

cosα cosβ + cos γ

sinα sinβ
=

[(BC −A)(CA −B) + (AB − C)(C2 − 1)]

D
= C

�

Theorem 6.2. (Pythagorean Theorem) If γ = π
2 we have cosh c = cosha cosh b.

Proof. Immediate from the Cosine Rule I. �

Exercises

1. Prove that the metric in the Poincaré disc model is given by

ds2 =
4(dη21 + dη22)

(1− (η21 + η22))
2
.

2. Prove that the metric in the upper half-plane model is given by

ds2 =
dη21 + dη23

η23
.

3. Prove that if z 6= w, then ρ(z, w) > 0.
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4. Let L be a semicircle or a straight line orthogonal to the real axis which meets
the real axis at a point α. Prove that the transformation

T (z) = −(z − α)−1 + β ∈ PSL(2,R),

for an appropriate value of β, maps L to the positive imaginary axis.

5. Prove that for z, w ∈ H and T ∈ PSL(2,R), we have

|T (z)− T (w)| = |z − w||T ′(z)T ′(w)|1/2.

6. Prove that isometies are continuous maps.

7. (a) Prove that there is a unique geodesic through a point z orthogonal to a given
geodesic L.

(b)* Give a geometric construction of this geodesic.
(c) Prove that for z /∈ L, the greatest lower bound infv∈L ρ(z, v) is achieved on

the geodesic described in (a).

8. Prove that the rays in H issuing from the origin are equidistant from the positive
imaginary axis I.

9. Let A ∈ PSL(2,R) be a hyperbolic transformation, and suppose that B =
SAS−1 (B ∈ PSL(2,R)) is its conjugate. Prove that B is also hyperbolic and find
the relation between their axes C(A) and C(B).

10. Prove that isometric circles I(T ) and I(T−1) have the same radius, and that
the image of I(T ) under the transformation T is I(T−1).

11. Prove that

(a) T is hyperbolic if and only if I(T ) and I(T−1) do not intersect;
(b) T is elliptic if and only if I(T ) and I(T−1) intersect;
(c) T is parabolic if and only if I(T ) and I(T−1) are tangential.

12. Prove that the horocycles for a parabolic transformation with a fixed point
p ∈ R are Euclidean circles tangent to the real line at p.

13. Show that orientation-preserving isometries of U are of the form

z 7→ az + c

cz + a
(a, c ∈ C, aa− cc = 1).

14. Prove that for any two distinct points z1, z2 ∈ H there exists a transformation
T ∈ PSL(2,R) such that T (z1) = z2.

15. Give a geometric construction of the inversion in a given circle Q in the
Euclidean plane R2.

16. Prove that the transformation (4.5) is an inversion in the circle corresponding
to the geodesic L.

17. Prove that any orientation-preserving isometry T of the unit disc U is an
inversion in I(T ) followed by a reflection in the straight line L, the Euclidean
bisector between the centers of the isometric circles I(T ) and I(T−1).
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18. Prove that two hyperbolic transformations in PSL(2,R) commute if and only
if their axes coincide.

19. Let A ∈ PSL(2,R) be hyperbolic and B ∈ PSL(2,R) be an elliptic transfor-
mation different from the identity. Prove that AB 6= BA.

20. Use the map f (4.4) to derive the formulae for the hyperbolic distance in the
unit disc model similar to those in Theorem 3.5, for z, w ∈ U :

(i) ρ(z, w) ∈ ln |1−zw̄|+|z−w|
|1−zw̄|−|z−w| ,

(ii) cosh2[ 12ρ(z, w)] =
|1−zw̄|2

(1−|z|2)(1−|w|2) ,

(iii) sinh2[ 12ρ(z, w)] =
|z−w|2

(1−|z|2)(1−|w|2) ,

(iv) tanh[ 12ρ(z, w)] = | z−w
1−zw̄ |.

21. Justify the calculations in (5.2) by checking that for the Möbius transformation

w = T (z) =
az + b

cz + d
with z = x+ iy, w = u+ iv

we have
∂u

∂x
=
∂v

∂y
,

∂v

∂x
= −∂u

∂y

(these are the classical Cauchy-Riemann equations) and

T ′(z) =
dw

dz
=

1

2

(∂w
∂x

− i
∂w

∂y

)
=
∂u

∂x
+ i

∂v

∂x
;

(Hint: express x and y in terms of z and z and use the Cauchy-Riemann equations.)

22. If we identify the tangent space TzH ≈ R2 with the complex plane C by means
of the map (

ξ
η

)
7→ ξ + iη = ζ,

then DT (ζ) = T ′(z)ζ, where in the left-hand side we have a linear transformation of
TzH ≈ R2, and in the right-hand side, the multiplication of two complex numbers.

23. Show that the right-hand side of expression (6.3) is equal to
cosh a cosh b− sinh a sinh b cosγ.

Lecture II. Fuchsian Groups and Their Fundamental Regions

7. The group PSL(2,R)

Let SH be the unit tangent bundle of the upper half-plane H. It is home-
omorphic to H × S1. Let us parametrize it by local coordinates (z, ζ), where
z ∈ H, ζ ∈ C with |ζ| = Im(z). (Notice that with this parametrization, ‖ζ‖ = 1
(see (2.2)), so that ζ is a unit tangent vector.) The group PSL(2,R) acts on SH
by the differentials: for T : z → az+b

cz+d , T (z, ζ) = (T (z), DT (ζ)), where

(7.1) DT (ζ) =
1

(cz + d)2
ζ.

As any group, PSL(2,R) acts on itself by left multiplication. The next result
connects these two actions.
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Theorem 7.1. There is a homeomorphism between PSL(2,R) and the unit
tangent bundle SH of the upper half-plane H such that the action of PSL(2,R) on
itself by left multiplication corresponds to the action of PSL(2,R) on SH induced
by its action on H by fractional linear transformations.

Proof. Let (i, ι) be a fixed element of SH, where ι is the unit vector at
the point i tangent to the imaginary axis and pointed upwards, and let (z, ζ) be
an arbitrary element of SH. There exists a unique T ∈ PSL(2,R) sending the
imaginary axis to the geodesic passing through z and tangent to ζ (Exercise 4) so
that T (i) = z. By (7.1) we have DT (ι) = ζ, and hence

(7.2) T (i, ι) = (z, ζ).

It is easy to see that the map (z, ζ) → T is a homeomorphism between SH and
PSL(2,R).

For S ∈ PSL(2,R), suppose that S(z, ζ) = (z′, ζ′). By (7.2) S(z, ζ) = ST (i, ι),
and hence S(z, ζ) → ST , and the last assertion follows. �

Let dℓ =
√
ds2 + dθ2 be a Riemannian metric on SH, where ds is the hyperbolic

metric onH (2.1), and θ = 1
2π arg(ζ); and let dv = dµdθ be the canonical (Liouville)

volume on SH, where dµ is the hyperbolic area on H (5.1).

Proposition 7.2. The metric dℓ and the volume dv on SH are PSL(2,R)-
invariant.

Proof. This can be seen by a direct calculation. Let f(z) = az+b
cz+d ∈ PSL(2,R).

In local coordinates (z, ζ) 7→ (f(z), (Df)(ζ)) = (z′, ζ′). The metric dℓ on SH is a
norm in the tangent space to SH:

‖(dz, dζ)‖2 =
|dz|2
y2

+ (dφ)2.

Since each summand is invariant:

|dz′|2
(Imf(z))2

=
|f ′(z)|2|dz|2
(Imf(z))2

=
|dz|2
y2

and (dφ′)2 = (dφ)2,

the invariance of the Riemannian metric dℓ follows. The invariance of the volume
dv follows from the invariance of the metric. �

Thus, besides being a group, PSL(2,R) is also a topological space. Convergence
in PSL(2,R) can be expressed in the matrix language. If gn → g in PSL(2,R),
this means that there exist matrices An ∈ SL(2,R) representing gn such that
limn→∞ ‖An −A‖ = 0, where ‖ · ‖ is a norm on SL(2,R) induced from R4.

Definition 7.3. A subgroup Γ of Isom(H) is called discrete if the induced
topology on Γ is a discrete topology, i.e. if Γ is a discrete set in the topological
space Isom(H).

It follows that Γ is discrete if and only if Tn → Id, Tn ∈ Γ implies Tn = Id for
sufficiently large n.

8. Discrete and properly discontinuous groups

Definition 8.1. A discrete subgroup of Isom (H) is called a Fuchsian group
if it consists of orientation-preserving transformations, in other words, a Fuchsian
group is a discrete subgroup of PSL(2,R).
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For any discrete group Γ of Isom (H), its subgroup Γ+ of index ≤ 2 consisting
of orientation-preserving transformations is a Fuchsian group. Thus the main ingre-
dient in the study of discrete subgroups of isometries of H is the study of Fuchsian
groups. The action of PSL(2,R) on H lifts to the action on its unit tangent bundle
SH by isometries (Proposition 7.2), thus sometimes it is useful to consider Fuchsian
groups as discrete groups of isometries of SH. Certain discrete subgroups of Lie
groups are called lattices by analogy with lattices in Rn that are discrete groups of
isometries of Rn. The latter have the following important property: their action on
Rn is discontinuous in the sense that every point of Rn has a neighborhood which is
carried outside itself by all elements of the lattice except for the identity. In general,
discrete groups of isometries do not have such discontinuous behavior, for if some
elements have fixed points these points cannot have such a neighborhood. How-
ever, they satisfy a slightly weaker discontinuity condition. First we need several
definitions.

Let X be a locally compact metric space, and let G be a group of isometries of
X .

Definition 8.2. A family {Mα | α ∈ A} of subsets of X indexed by elements
of a set A is called locally finite if for any compact subset K ⊂ X , Mα

⋂
K 6= ∅ for

only finitely many α ∈ A.

Remark. Some of the subsets Mα may coincide but they are still considered
different elements of the family.

Definition 8.3. For x ∈ X , a family Gx = {g(x) | g ∈ G} is called the G-orbit
of the point x. Each point of Gx is contained with a multiplicity equal to the order
of Gx, the stabilizer of x in G.

Definition 8.4. We say that a group G acts properly discontinuously on X if
the G-orbit of any point x ∈ X is locally finite.

Since X is locally compact, a group G acts properly discontinuously on X
if and only if each orbit has no accumulation point in X , and the order of the
stabilizer of each point is finite. The first condition, however, is equivalent to the
fact that each orbit of G is discrete. For, if gn(x) → s ∈ X , then for any ε > 0,
ρ(gn(x), gn+1(x)) < ε for sufficiently large n, but since gn is an isometry, we have
ρ(g−1

n gn+1(x), x) < ε, which implies that x is an accumulation point for its orbit
Gx, i.e. Gx is not discrete. In fact, the discreteness of all orbits already implies
the discreteness of the group (see Corollary 8.7 for subgroups of PSL(2,R)).

Example B. Let us consider a group consisting of all transformations

z → az + b

cz + d
(a, b, c, d ∈ Z, ad− bc = 1).

It is called the modular group and denoted by PSL(2,Z) ≈ SL(2,Z)/{±12}.
It is clearly a discrete subgroup of PSL(2,R) and hence a Fuchsian group.

Our next task is to show that a Γ ⊂ PSL(2,R) is a Fuchsian group if and only
if it acts properly discontinuously on H.

Lemma 8.5. Let z0 ∈ H be given and let K be a compact subset of H. Then
the set

E = {T ∈ PSL(2,R) | T (z0) ∈ K}
is compact.
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Proof. PSL(2,R) is topologized as a quotient space of SL(2,R). Thus we
have a continuous map ψ : SL(2,R) → PSL(2,R) defined by

ψ

[
a b
c d

]
= T, where T (z) =

az + b

cz + d
.

If we show that

E1 =

{[
a b
c d

]
∈ SL(2,R) | az0 + b

cz0 + d
∈ K

}

is compact then it follows that E = ψ(E1) is compact. We prove that E1 is compact
by showing it is closed and bounded when regarded as a subset of R4 (identifying[
a b
c d

]
with (a, b, c, d)). We have a continuous map β : SL(2,R) → H defined by

β(A) = ψ(A)(z0). E1 = β−1(K), thus it follows that E1 is closed as the inverse
image of the closed set K.

We now show that E1 is bounded. As K is bounded there exists M1 > 0 such
that ∣∣∣∣az0 + b

cz0 + d

∣∣∣∣ < M1,

for all

[
a b
c d

]
∈ E1.

Also, as K is compact in H, there exists M2 > 0 such that

Im

(
az0 + b

cz0 + d

)
≥M2.

(2.5) implies that the left-hand side of this inequality is Im(z0)/|cz0 + d|2 so that

|cz0 + d| ≤
√(

Im(z0)

M2

)
,

and thus

|az0 + b| ≤M1

√(
Im(z0)

M2

)
,

and we deduce that a, b, c, d are bounded. �

Theorem 8.6. Let Γ be a subgroup of PSL(2,R). Then Γ is a Fuchsian group
if and only if Γ acts properly discontinuously on H.

Proof. We first show that a Fuchsian group acts properly discontinuously
on H. Let z ∈ H and K be a compact subset of H. We use Lemma 8.5 to see
that {T ∈ Γ | T (z) ∈ K} = {T ∈ PSL(2,R) | T (z) ∈ K}⋂Γ is a finite set
(it is the intersection of a compact and a discrete set), and hence Γ acts properly
discontinuously. Conversely, suppose Γ acts properly discontinuously, but it is not
a discrete subgroup of PSL(2,R). Then there exists a sequence {Tk} of distinct
elements of Γ such that Tk → Id as k → ∞. Let s ∈ H be a point not fixed by any of
Tk. Then {Tk(s)} is a sequence of points distinct from s and Tk(s) → s as k → ∞.
Hence every closed hyperbolic disc centered at s contains infinitely many points of
the Γ-orbit of s, i.e. Γ does not act properly discontinuously, a contradiction. �
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Corollary 8.7. Let Γ be a subgroup of PSL(2,R). Then Γ acts properly
discontinuously on H if and only if for all z ∈ H, Γz, the Γ-orbit of z, is a discrete
subset of H.

Proof. Suppose Γ acts properly discontinuously on H, hence each Γ-orbit is
a locally finite family of points, hence a discrete set of H. Conversely, suppose
Γ does not act properly discontinuously on H and hence by Theorem 8.6 is not
discrete. Repeating the argument in the proof of Theorem 8.6, we construct a
sequence {Tk(s)} of points distinct from s such that Tk(s) → s, hence the Γ-orbit
of the point s is not discrete. �

Corollary 8.7 implies the following: if z ∈ H and {Tn} is a sequence of distinct
elements in Γ such that {Tn(z)} has a limit point α ∈ C∪{∞}, then α ∈ R∪{∞}.

9. Definition of a fundamental region

We are going to be concerned with fundamental regions of mainly Fuchsian
groups, however it is convenient to give a definition in a slightly more general
situation. As in §8, let X be a locally compact metric space, and Γ be a group of
isometries acting properly discontinuously on X .

Definition 9.1. A closed region F ⊂ X (i.e. a closure of a non-empty open

set
◦
F , called the interior of F ) is defined to be a fundamental region for Γ if

(i)
⋃
T∈Γ

T (F ) = X ,

(ii)
◦
F ∩ T (

◦
F ) = ∅ for all T ∈ Γ \ {Id}.

The set ∂F = F \
◦
F is called the boundary of F . The family {T (F ) | T ∈ Γ} is

called the tessellation of X .

We shall prove in §10 that any Fuchsian group possesses a nice (connected and
convex) fundamental region. Now we give an example in the simplest situation.

Example C. Let Γ be the cyclic group generated by the transformation z →
2z. Then the semi-annulus shown in Figure 9.1(a) is easily seen to be a fundamental
region for Γ. It is already clear from this example that a fundamental region is not
uniquely determined by the group: an arbitrary small perturbation of the lower
semicircle determines a perturbation of the upper semicircle, and gives yet another
fundamental region shown in Figure 9.1(b).

Theorem 9.2. Let F1 and F2 be two fundamental regions for a Fuchsian group
Γ, and µ(F1) <∞. Suppose that the boundaries of F1 and F2 have zero hyperbolic
area. Then µ(F2) = µ(F1).

Proof. We have µ(
◦
F i) = µ(Fi), i = 1, 2. Now

F1 ⊇ F1 ∩ (
⋃
T∈Γ

T (
◦
F 2)) =

⋃
T∈Γ

(F1 ∩ T (
◦
F 2)).
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(a) (b)

Figure 9.1. Fundamental domains for Example C

Since
◦
F 2 is the interior of a fundamental region, the sets F1 ∩ T (

◦
F 2) are disjoint,

and since µ is PSL(2,R)-invariant,

µ(F1) ≥
∑
T∈Γ

µ(F1 ∩ T (
◦
F 2)) =

∑
T∈Γ

µ(T−1(F1) ∩
◦
F 2) =

∑
T∈Γ

µ(T (F1) ∩
◦
F 2).

Since F1 is a fundamental region ⋃
T∈Γ

T (F1) = H,

and therefore ⋃
T∈Γ

(T (F1) ∩
◦
F 2) =

◦
F 2.

Hence ∑
T∈Γ

µ(T (F1) ∩
◦
F 2) ≥ µ(

⋃
T∈Γ

T (F1) ∩
◦
F 2) = µ(

◦
F 2) = µ(F2).

Interchanging F1 and F2, we obtain µ(F2) ≥ µ(F1). Hence µ(F2) = µ(F1). �

Thus we have proved a very important fact: the area of a fundamental region,
if it is finite, is a numerical invariant of the group. An example of a Fuchsian group
with a fundamental region of infinite area is the group generated by z → z+1 (see
also Example C above). Obviously, a compact fundamental region has finite area.
Non-compact regions also may have finite area. For example, for Γ = PSL(2,Z)
the fundamental region, which will be described in §10 (Example B), is a hyperbolic
triangle with angles π

3 ,
π
3 , 0. By the Gauss-Bonnet formula (Theorem 5.4) its area

is finite and is equal to π − 2π
3 = π

3 .

Theorem 9.3. Let Γ be a discrete group of isometries of the upper half-plane
H, and Λ be a subgroup of Γ of index n. If

Γ = ΛT1 ∪ ΛT2 ∪ · · · ∪ ΛTn

is a decomposition of Γ into Λ-cosets and if F is a fundamental region for Γ then

(i) F1 = T1(F ) ∪ T2(F ) ∪ · · · ∪ Tn(F )is a fundamental region for Λ,
(ii) if µ(F ) is finite and the hyperbolic area of the boundary of F is zero then

µ(F1) = nµ(F ).
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Proof of (i). Let z ∈ H. Since F is a fundamental region for Γ, there exists
w ∈ F and T ∈ Γ such that z = T (w). We have T = STi for some S ∈ Λ and some
i, 1 ≤ i ≤ n. Therefore

z = STi(w) = S(Ti(w)).

Since Ti(w) ∈ F1, z is in the Λ-orbit of some point of F1. Hence the union of the
Λ-images of F1 is H.

Now suppose that z ∈
◦
F 1 and that S(z) ∈

◦
F 1, for S ∈ Λ. We need to prove

that S = Id. Let ε > 0 be so small that Bε(z) (the open hyperbolic disc of radius

ε centered at z) is contained in
◦
F 1. Then Bε(z) has a non-empty intersection

with exactly k of the images of
◦
F under T1, · · · , Tn, where 1 ≤ k ≤ n. Suppose

these images are Ti1(
◦
F ), · · · , Tik(

◦
F ). Let Bε(S(z)) = S(Bε(z)) have a non-empty

intersection with Tj(
◦
F ) say, 1 ≤ j ≤ n. It follows that Bε(z) has a non-empty

intersection with S−1Tj(
◦
F ) so that S−1Tj = Tiℓ where 1 ≤ ℓ ≤ k. Hence

ΛTj = ΛS−1Tj = ΛTiℓ ,

so that Tj = Tiℓ and S = Id. Hence
◦
F 1 contains precisely one point of each

Λ-orbit. �

Proof of (ii). This follows immediately, as µ(T (F )) = µ(F ) for all T ∈
PSL(2,R), and µ(Ti(F ) ∩ Tj(F )) = 0 for i 6= j. �

10. The Dirichlet region

Let Γ be an arbitrary Fuchsian group and let p ∈ H be not fixed by any element
of Γ \ {Id}. We define the Dirichlet region for Γ centered at p to be the set

(10.1) Dp(Γ) = {z ∈ H | ρ(z, p) ≤ ρ(z, T (p)) for all T ∈ Γ}.
By the invariance of the hyperbolic metric under PSL(2,R) this region can also be
defined as

(10.2) Dp(Γ) = {z ∈ H | ρ(z, p) ≤ ρ(T (z), p) for all T ∈ Γ}.
For each fixed T1 ∈ PSL(2,R),

(10.3) {z ∈ H | ρ(z, p) ≤ ρ(z, T1(p))}
is the set of points z which are closer in the hyperbolic metric to p than to T1(p).
Clearly, p ∈ Dp(Γ) and as the Γ-orbit of p is discrete (Corollary 8.7), Dp(Γ) contains
a neighborhood of p. In order to describe the set (10.3) we join the points p and
T1(p) by a geodesic segment and construct a line given by the equation

ρ(z, p) = ρ(z, T1(p)).

Definition 10.1. A perpendicular bisector of the geodesic segment [z1, z2] is
the unique geodesic through w, the mid-point of [z1, z2] orthogonal to [z1, z2].

Lemma 10.2. A line given by the equation

(10.4) ρ(z, z1) = ρ(z, z2)

is the perpendicular bisector of the geodesic segment [z1, z2].
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p

T1(p)

Hp(T1)

Lp(T1)

Figure 10.1. Construction of the Dirichlet region

Proof. We may assume that z1 = i, z2 = ir2 with r > 0: thus w = ir and
the perpendicular bisector is given by the equation |z| = r. On the other hand, by
Theorem 3.5(b) (10.4) is equivalent to

|z − z1|2
y

=
|z − z2|2
r2y

which simplifies to |z| = r. �
We shall denote the perpendicular bisector of the geodesic segment [p, T1(p)] by

Lp(T1), and the hyperbolic half-plane containing p described in (10.3) by Hp(T1)
(see Figure 10.1). Thus Dp(Γ) is the intersection of hyperbolic half-planes:

Dp(Γ) =
⋂

T∈Γ, T 6=Id

Hp(T ),

and thus is a hyperbolically convex region.

Theorem 10.3. If p is not fixed by any element of Γ \ {Id}, then Dp(Γ) is a
connected fundamental region for Γ.

Proof. Let z ∈ H, and Γz be its Γ-orbit. Since Γz is a discrete set, there
exists z0 ∈ Γz with the smallest ρ(z0, p). Then ρ(z0, p) ≤ ρ(T (z0), p) for all T ∈ Γ,
and by (10.2) z0 ∈ Dp(Γ). Thus Dp(Γ) contains at least one point from every
Γ-orbit.

Next we show that if z1, z2 are in the interior of Dp(Γ), they cannot lie in
the same Γ-orbit. If ρ(z, p) = ρ(T (z), p) for some T ∈ Γ \ {Id}, then ρ(z, p) =
ρ(z, T−1(p)) and hence z ∈ Lp(T

−1). Then either z 6∈ Dp(Γ) or z lies on the
boundary of Dp(Γ); hence if z is in the interior of Dp(Γ), ρ(z, p) < ρ(T (z), p)
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for all T ∈ Γ \ {Id}. If two points z1, z2 lie in the same Γ-orbit, this implies
ρ(z1, p) < ρ(z2, p) and ρ(z2, p) < ρ(z1, p), a contradiction. Thus the interior of
Dp(Γ) contains at most one point of each Γ-orbit. Being an intersection of closed
half-planes, Dp(Γ) is closed and convex. Thus Dp(Γ) is path-connected, hence
connected. �

Example B. Γ = PSL(2,Z). It is easily verified that ki (k > 1) is not fixed
by any non-identity element of the modular group, so choose p = ki, where k > 1.
We shall show that the region

F = {z ∈ H | |z| ≥ 1, |Re(z)| ≤ 1

2
},

illustrated in Figure 10.2 is the Dirichlet region for Γ centered at p.
First, the isometries T (z) = z + 1, S(z) = −1/z are in Γ; and, as can be easily

p = ki

i

−1 10− 1
2

1
2

Figure 10.2. A Dirichlet region for PSL(2,Z)

verified, the three geodesic sides of F are Lp(T ), Lp(T
−1) and Lp(S). This shows

that Dp(Γ) ⊂ F . If Dp(Γ) 6= F , there exists z ∈
◦
F and h ∈ Γ such that h(z) ∈

◦
F .

We shall now show that this cannot happen. Suppose that

h(z) =
az + b

cz + d
, (a, b, c, d ∈ Z, ad− bc = 1).

Then

|cz + d|2 = c2|z|2 + 2Re(z)cd+ d2 > c2 + d2 − |cd| = (|c| − |d|)2 + |cd|,
since |z| > 1 and Re(z) > − 1

2 . This lower bound is an integer: it is non-negative and
is not zero (this would be possible only if c = d = 0, which contradicts ad−bc = 1).
Therefore it is at least 1 and |cz + d| > 1. Hence

Imh(z) =
Im(z)

|cz + d|2 < Im(z).
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Exactly the same argument holds with z, h replaced by h(z), h−1, and a contra-
diction is reached: thus Dp(Γ) = F .

In the rest of this section, Γ will be a discrete group of orientation-preserving
isometries of the unit disc U (sometimes also referred to as a Fuchsian group). We
assume that 0 is not an elliptic fixed point, i.e. that c 6= 0 for all T (z) = az+c̄

cz+ā in
the group Γ. We define

R0 =
⋂
T∈Γ

Î(T )
⋂

U ,

the closure of the set of points in U which are exterior to the isometric circles of
all transformations in the group Γ. We shall prove that R0 is a fundamental region
for Γ, called the Ford fundamental region.

Theorem 10.4. R0 is a fundamental region for Γ.

Proof. We shall prove that R0 is a Dirichlet region D0(Γ), and the theorem
will follow from Theorem 10.3. The perpendicular bisector I of the geodesic segment

0

T−1(0) T (0)

I
T (I)

Figure 10.3. Ford region is Dirichlet region

[T−1(0), 0] is a geodesic in the unit disc model, hence the arc of an Euclidean
circle orthogonal to the circle at infinity (see Figure 10.3). Since both geodesic
segments [T−1(0), 0] and [0, T (0)] are segments of the radii of the unit disc, T (I)
is the perpendicular bisector of [0, T (0)] which is the arc of an Euclidean circle of
the same radius. Thus the transformation T maps I to T (I) without alteration
of Euclidean lengths, and therefore the perpendicular bisector of [0, T (0)] is the
isometric circle I(T−1). �

Theorem 10.5. Given any infinite sequence of distinct isometric circles I1, I2, · · ·
of transformations of a Fuchsian group Γ with radii r1, r2, · · · we have lim

n→∞
rn = 0.

Proof. The transformations are of the form

(10.5) T (z) =
az + c̄

cz + ā
(a, c ∈ C, |a|2 − |c|2 = 1).

Recall that the radius of I(T ) is equal to 1
|c| . Let ε > 0 be given. There are only

finitely many T ∈ Γ with |c| < 1/ε. This follows from the discreteness of Γ and
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the relation |a|2 − |c|2 = 1. Hence there are only finitely many T ∈ Γ with I(T ) of
radius exceeding ε, and the theorem follows. �

11. Structure of a Dirichlet region

Dirichlet regions for Fuchsian groups can be quite complicated. They are
bounded by geodesics in H and possibly by segments of the real axis. If two
such geodesics intersect in H, their point of intersection is called a vertex of the
Dirichlet region. It will be shown that the vertices are isolated (see Proposition
11.3 below) so that a Dirichlet region is bounded by a union of (possibly, infinitely
many) geodesics and possibly segments of the real axis (see Figure 11.1 for the unit
disc model). We shall be interested in the tessellation of H formed by a Dirichlet

(i) (ii) (iii) (iv)

Figure 11.1. Dirichlet regions in the unit disc model

region F and all its images under Γ (called faces): {T (F ) | T ∈ Γ}. This tessela-
tion will be referred to as a Dirichlet tessellation. (See Figure 11.2 for a Dirichlet
tessellation for the modular group.) The next theorem shows that the Dirichlet
tessellation has nice local properties.

Definition 11.1. A fundamental region F for a Fuchsian group Γ is called
locally finite if the tessellation {T (F ) | T ∈ Γ} is locally finite (see the definition of
locally finite family of subsets in §8).

Theorem 11.2. A Dirichlet region is locally finite.

Proof. Let F = Dp(Γ), where p is not fixed by any element of Γ \ {Id}. Let
a ∈ F , and let K ⊂ H be a compact neighborhood of a. Suppose that K

⋂
Ti(F ) 6=

∅ for some infinite sequence T1, T2, · · · of distinct elements of Γ. Let σ = sup
z∈K

ρ(p, z).

Since ρ(p, z) ≤ ρ(p, a) + ρ(a, z), for all z ∈ K, and K is bounded, σ is finite. Let
wj ∈ K

⋂
Tj(F ). Then wj = Tj(zj) for zj ∈ F , and by the triangle inequality,

ρ(p, Tj(p)) ≤ ρ(p, wj) + ρ(wj , Tj(p))

= ρ(p, wj) + ρ(zj , p)

≤ ρ(p, wj) + ρ(wj , p) (as zj ∈ Dp(Γ))

≤ 2σ

Thus the infinite set of points T1(p), T2(p), · · · belongs to a compact hyperbolic
ball with center p and radius 2σ, but this contradicts the properly discontinuous
action of Γ. �
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X : z 7→ −
1
z

Y : z 7→ −
1

z+1

Z : z 7→ z + 1

F

X(F )

Y (F )

Z−1(F )

ZX(F )

ZY (F )

ZY X(F )

Y 2(F )

Z(F )

−1 − 1
3

− 2
3 0 1

3
2
3

1

iρ ρ+ 1

Figure 11.2. Dirichlet tessellation for the modular group

Proposition 11.3. The vertices of a Dirichlet region are isolated, that is every
vertex of F has a neighborhood containing no other vertices of F .

Proof. If x lies on the side of the Dirichlet region F = Dp(Γ), then there exists
Tx ∈ Γ such that ρ(p, x) = ρ(Txp, x), hence ρ(p, x) = ρ(p, T−1

x x). Now assume that
a vertex v ∈ H is not isolated, i.e. there is a sequence of vertices vi ∈ F such that
vi → v. According to the above remark, choose Ti such that ρ(p, vi) = ρ(p, Tivi).
We have

ρ(v, Tivi) ≤ ρ(v, vi) + ρ(vi, Tivi) ≤ ρ(v, vi)

+ ρ(vi, p) + ρ(p, Tivi) = ρ(v, vi) + 2ρ(vi, p)

≤ ρ(v, vi) + 2ρ(vi, v) + 2ρ(v, p).

Hence for any ε > 0 ρ(v, Tivi) < 2ρ(v, p)+ε, for large i, which means that Tivi ∈ K
for all i > N whereK is a compact region in H which contradicts the local finiteness
of F . �

Corollary 11.4. A compact Dirichlet region has a finite number of vertices.

We call two points u, v ∈ H congruent if they belong to the same Γ-orbit. First,
notice that two points in a fundamental region F may be congruent only if they
belong to the boundary of F . Suppose now that F is a Dirichlet region for Γ, and
let us consider congruent vertices of F . The congruence is an equivalence relation
on the vertices of F and the equivalence classes are called cycles. If u is fixed by an
elliptic element S, then v = Tu is fixed by the elliptic element TST−1. Thus if one
vertex of the cycle is fixed by an elliptic element, then all the vertices of that cycle
are fixed by conjugate elliptic elements. Such a cycle is called an elliptic cycle and
the vertices are called elliptic vertices. The number of elliptic cycles is equal to the
number of non-congruent elliptic points in F .

Since the Dirichlet region F is a fundamental region, it is clear that every point
w ∈ H fixed by an elliptic element S′ of Γ lies on the boundary of T (F ) for some
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T ∈ Γ. Hence u = T−1(w) lies on the boundary of F and is fixed by the elliptic
element S = T−1S′T . Since Γ is a Fuchsian group, S has a finite order k. Suppose
first that k ≥ 3: then as S is an isometry fixing u which maps geodesics to geodesics,
u must be a vertex whose angle θ is at most 2π/k. (See Figure 11.2 where the angle
at the elliptic fixed point ρ of order 3 is 2π/6.) The hyperbolically convex region
F is bounded by a union of geodesics. The intersection of F with these geodesics is
either a single point or a segment of a geodesic. These segments are called sides of
F . If S has order 2, its fixed point might lie on the interior of a side of F . In this
case, S interchanges the two segments of this side separated by the fixed point. We
will include such elliptic fixed points as vertices of F , the angle at such vertex being
π. Thus a vertex of F is a point of intersection in H of two bounding geodesics of
F or a fixed point of an elliptic element of order 2. (All the previous definitions
such as conjugate, elliptic cycles, etc. apply to this extended set of vertices.)

If a point in H has a nontrivial stabilizer in Γ, this stabilizer is a finite cyclic
subgroup of Γ by Exercise 27; it is a maximal finite cyclic subgroup of Γ by Exercise
28. Conversely, every maximal finite cyclic subgroup of Γ is a stabilizer of a single
point in H. We can summarize the above as:

Theorem 11.5. There is a one-to-one correspondence between the elliptic cy-
cles of F and the conjugacy classes of non-trivial maximal finite cyclic subgroups
of Γ.

Example B. Let Γ be the modular group. The Dirichlet region F in Figure 9

has vertices in H at ρ = −1+
√
3

2 , ρ+ 1 = 1+
√
3

2 and i. These are stabilized by the

cyclic subgroups generated by z 7→ −z−1
z , z 7→ z−1

z , and z 7→ − 1
z , respectively. The

vertices ρ and ρ+1 belong to the same cycle since they are congruent via z → z+1.
Each of them is fixed by an elliptic element of order 3. It is easy to check that these
two vertices form an elliptic cycle. The point i is fixed by an elliptic element of
order 2, and i is the only such point. Thus {i} is an elliptic cycle consisting of
just one vertex. By Theorem 11.5, the modular group has two conjugacy classes
of maximal finite cyclic subgroups, one consisting of groups of order 2, the other
consisting of groups of order 3.

Definition 11.6. The orders of non-conjugate maximal finite cyclic subgroups
of Γ are called the periods of Γ.

Each period is repeated as many times as there are conjugacy classes of maximal
finite cyclic subgroups of that order. Thus the modular group has periods 2, 3.

A parabolic element can be considered as an elliptic element of infinite order; it
has a unique fixed point in R

⋃{∞}. Hence if a point in R
⋃{∞} has a non-trivial

stabilizer in Γ all elements of which have only this fixed point, then this stabilizer is
a maximal (cyclic) parabolic subgroup of Γ, and every maximal parabolic subgroup
of Γ is a stabilizer of a single point in R

⋃{∞}. Let F be a Dirichlet region for Γ
with parabolic elements. It will be shown in §14 that in this case F is not compact
(Theorem 14.2), and if additionally µ(F ) < ∞, then F has at least one vertex at
infinity, i.e. two bounding geodesics of F meet there (Theorem 14.3). Moreover,
each vertex at infinity is a parabolic fixed point for a maximal parabolic subgroup
of Γ (Theorem 14.6), and non-congruent vertices at infinity of F are in a one-to-
one correspondence with conjugasy classes of maximal parabolic subgroups of Γ
(Corollary 14.7). If we allow infinite periods, the period ∞ will occur the same
number of times as there are conjugacy classes of maximal parabolic subgroups.
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This number is called the parabolic class number of Γ. It is easily calculated that
in the modular group every parabolic element is conjugate to z → z + n for some
n ∈ Z, so that the modular group has periods 2, 3, ∞. The angle at a vertex
at infinity is 0. With this convention, the Dirichlet region for the modular group
described in §10 has a vertex at ∞ whose angle is π

∞ = 0.

The following result relates the sum of angles at all elliptic verticies belonging
to an elliptic cycle with the order of that cycle.

Theorem 11.7. Let F be a Dirichlet region for Γ. Let θ1, θ2, · · · , θt be the
internal angles at all congruent vertices of F . Let m be the order of the stabilizer
in Γ of one of these vertices. Then θ1 + · · ·+ θt = 2π/m.

Remarks. 1. As F is locally finite, there are only finitely many vertices in a
congruent cycle.

2. As the stabilizers of two points in a congruent set are conjugate subgroups
of Γ, they have the same order.

3. If a vertex is not a fixed point, we have m = 1 and θ1 + · · ·+ θt = 2π.

Proof. Let v1, . . . , vt be the vertices of the congruent set, the internal angles
being θ1, . . . , θt. Let

H =
{
Id, S, S2, . . . , Sm−1

}
be the stabilizer of v1 in Γ. Then each Sr(F ) (0 ≤ r ≤ m − 1) has a vertex at
v1 whose angle is θ1. Suppose Tk(vk) = v1 for some Tk ∈ Γ. Then the set of all
elements which map vk to v1 is HTk, a coset which has m elements, so the SrTk(F )
have v1 as a vertex with an angle of θk. On the other hand, if a region A(F ) (A ∈ Γ)
has v1 as a vertex, then A−1(v1) ∈ F , hence A−1(v1) = vi for some i, 1 ≤ i ≤ t.
Thus A ∈ HTi, and A(F ) has been included in the above description. So we have
mt regions surrounding v1. These regions are distinct, for if SrTk(F ) = SqTl(F ),
then SrTk = SqTl, and hence r = q and k = l. We conclude then that

m(θ1 + · · ·+ θt) = 2π.

�

We now consider the congruence of sides. Let s be a side of F , a Dirichlet
region for a Fuchsian group Γ. If T ∈ Γ \ {Id} and T (s) is a side of F , then
s and T (s) are called congruent sides. But T (s) is also a side of T (F ) so that
T (s) ⊆ F

⋂
T (F ). If a side of F has a fixed point of an elliptic element S of order

2 on it then S interchanges the two segments of this side. It is convenient to regard
these two segments as distinct sides separated by a vertex. With this convention,
one observes that for each side of F there exists another side of F congruent to
it. There cannot be more than two sides in a congruent set. For, suppose that
for some T1 ∈ Γ \ {Id}, T1(s) is also a side of F ; then T1(s) = F

⋂
T1(F ). Thus

s = T−1
1 (F )

⋂
F = T−1(F )

⋂
F so that T−1

1 (F ) ≡ T−1(F ) which implies T1 = T .
Thus the sides of F fall into congruent pairs. Hence if the number of sides of a
Dirichlet region is finite, it is always even.

Example B. The two vertical sides of the fundamental region for the modular
group found in §10 (Figure 10.2) are congruent via the transformation z → z + 1.
The arc of the unit circle between ρ and ρ+ 1 is the union of two sides: [ρ, i] and
[i, ρ+ 1], congruent via the elliptic transformation of order 2, z → −1/z.
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Theorem 11.8. Let {Ti} be the subset of Γ consisting of those elements which
pair the sides of some fixed Dirichlet region F . Then {Ti} is a set of generators for
Γ.

Proof. Let Λ be the subgroup generated by the set {Ti}. We have to show
that Λ = Γ. Suppose that S1 ∈ Λ, and that S2(F ) is adjacent to S1(F ), i.e.
they share a side. Then S−1

1 S2(F ) is adjacent to F . Hence S−1
1 S2 = Tk for some

Tk ∈ {Ti}; and since S2 = S1Tk we conclude that S2 ∈ Λ. Suppose now S3(F )
intersects S1(F ) in a vertex v. Then S−1

1 S3(F ) intersects F in a vertex u = S−1
1 v.

By Theorem 11.2, there can only be finitely many faces with vertex u, and F can be
“connected” with S−1

1 S3(F ) by a finite chain of faces in such a way that each two
consecutive ones share a side. Hence we can apply the above argument repeatedly
to show that S3 ∈ Λ. Let X =

⋃
S∈Λ

S(F ), Y =
⋃

S∈Γ\Λ
S(F ). Then X

⋂
Y = ∅.

Clearly X ∪Y = H, so if we show that X and Y are closed subsets of H, then as H
is connected and X 6= ∅, we must have X = H and Y = ∅. This would show that
Λ = Γ and the result will follow.

We now show that any union
⋃
Vj(F ) of faces of the tessellation is closed.

Suppose {zi} is an infinite sequence of points of
⋃
Vj(F ) which tends to some limit

z0 ∈ H. Then z0 ∈ T (F ) for some T ∈ Γ, and by Theorem 11.2, any neighborhood
N of z0 intersects only finitely many of the Vj(F ). Therefore, one face of this finite
family, say Vm(F ), must contain a subsequence of {zi} tending to z0. Since Vm(F )
is closed, z0 ∈ Vm(F ) ⊆ ⋃

Vj(F ). Thus
⋃
Vj(F ) is closed, and, in particular, X

and Y are closed. �
Example B. Theorem 11.8 implies that the modular group is generated by

z → z + 1 and z → −1/z.

12. Connection with Riemann surfaces and homogeneous spaces

Let Γ be a Fuchsian group acting on the upper half-plane H, and F be a funda-
mental region for this action. The group Γ induces a natural projection (continuous
and open) π : H → Γ\H, and the points of Γ\H are the Γ-orbits. The restriction
of π to F identifies the congruent points of F that necessarily belong to its bound-
ary ∂F , and makes Γ\F into an oriented surface with possibly some marked points
(which correspond to the elliptic cycles of F ) and cusps (which correspond to non-
congruent vertices at infinity of F ), also known as an orbifold. Its topological type
is determined by the number of cusps and by its genus—the number of handles if we
view the surface as a sphere with handles. If F is locally finite, the quotient space
Γ\H is homeomorphic to Γ\F ([5], Theorem. 9.2.4), hence by choosing F to be a
Dirichlet region which is locally finite by Theorem 11.2, we can find the topological
type of Γ\H. We have seen in §9 (Theorem 9.2) that the area of a fundamental
region (with nice boundary) is, if finite, a numerical invariant of the group Γ. Since
the area on the quotient space Γ\H is induced by the hyperbolic area on H, the
hyperbolic area of Γ\H, denoted by µ(Γ\H), is well defined and equal to µ(F ) for
any fundamental region F . If Γ has a compact Dirichlet region F , then by Propo-
sition 11.3, F has finitely many sides, and the quotient space Γ\H is compact. We
shall see in §14 (Corollary 14.4) that if one Dirichlet region for Γ is compact then
all Dirichlet regions are compact. If, in addition, Γ acts on H without fixed points,
Γ\H is a compact Riemann surface—a 1-dimensional complex manifold—and its
fundamental group is isomorphic to Γ [30].
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Since Γ acts on PSL(2,R) by left multiplication one can form the homoge-
neous space Γ\PSL(2,R). We have seen (Theorem 7.1) that PSL(2,R) can be
interpreted as the unit tangent bundle of the upper half-plane. It is easy to see
(Exercise 24) that if F is a fundamental region for Γ in H, SF is a fundamental
region for Γ in PSL(2,R). It also can be shown (see Exercise 25) that if Γ con-
tains no elliptic elements, the homeomorphism described in Theorem 7.1 induces
an homeomorphism of the corresponding quotient spaces. If Γ contains elliptic el-
ements, an analogous result holds; however, the structure of the fibered bundle is
violated in a finite number of marked points.

Since the fiber in S(Γ\H) over each point of Γ\H is compact, Γ\H is compact
if and only if S(Γ\H) is compact.

13. Fuchsian groups of cofinite volume

Theorem 13.1. (Siegel’s Theorem) If Γ is such that µ(Γ\H) < ∞, then any
Dirichlet region F = Dp(Γ) has finitely many sides.

Proof. [8] Since the vertices of Dp(Γ) are isolated (Proposition 11.3), any
compact subset K ⊂ H contains only finitely many vertices. This takes care of the
case in which F is compact. Now suppose that F is not compact.

The main ingredient of the proof is an estimation of the angles ω at vertices of
the region F . More precisely, we are going to prove that

(13.1)
∑
ω

(π − ω) ≤ µ(F ) + 2π,

where the sum is taken over all vertices of F lying in H. We first notice that F is
a star-like generalized polygon, and that the boundary of F , ∂F , is not necessarily
connected. Let us connect all vertices of F with the point p by geodesics and

Δ

γ

β
γ
k+1

k

k

k

k

p

ak

ak

ak+1

Ak

Ak+1

Figure 13.1. Proof of Siegel’s Theorem
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consider the triangles thus obtained. Let . . . , Am, Am+1, . . . , An, . . . be a connected
set of geodesic segments in ∂F with vertices . . . , am, am+1, . . . , an+1, . . . (Figure
13.1).

We assume that this set is unbounded in both directions. We denote the triangle
with the side Ak by ∆k, its angles by αk, βk, γk, and the angle between Ak and
Ak+1 by ωk; thus we have

ωk = βk + γk+1.

By the Gauss-Bonnet formula (Theorem 5.4) we have

µ(∆k) = π − αk − βk − γk.

Thus

(13.2)

n∑
k=m

αk +

n∑
k=m

µ(∆k) = π − γm − βn +

n−1∑
k=m

(π − ωk).

The left-hand side of this equality is bounded since
∑
αk ≤ 2π and∑

µ(∆k) ≤ µ(F ), hence the right-hand side is also bounded. It follows that∑
(π − ωk) converges, and the following limits exist:

lim
m→−∞

γm = γ∞, lim
n→∞

βn = β∞.

Let us show that

(13.3) π − γ∞ − β∞ ≥ 0.

Since only finitely many segments {Ak} may be a bounded distance from the point
p, we have ak → ∞ as k → ∞. Thus ρ(p, ak+1) > ρ(p, ak) for infinitely many values
of k, and for these values, as follows, for instance, from the Sine Rule (Theorem
6.1(i)), we have γk > βk. On the other hand, βk + γk ≤ π and thus βk ≤ π/2.
Therefore β∞ ≤ π/2. Similarly, γ∞ ≤ π/2, and (13.3) follows.

Let m→ −∞, n→ ∞. Taking into account (13.3) we obtain from 13.2 a limit
inequality

(13.4)

∞∑
k=−∞

αk +

∞∑
k=−∞

µ(∆k) ≥
∞∑

k=−∞
(π − ωk).

The inequality is obtained under the assumption that the connected set of segments
{Ak} is unbounded in both directions. Similar arguments apply in other cases when
the connected set of segments is bounded at least in one direction. Adding up all
these inequalities, we obtain a desired estimate

(13.5) 2π + µ(F ) ≥
∑
ω

(π − ω),

where the sum is taken over all vertices of F which lie a finite hyperbolic distance
from the point p, i.e. in H.

Now we are going to prove, using this estimate, that the number of vertices
which lie a finite distance from the point p is finite. Let a be a vertex and a(1) =
a, a(2), . . . , a(n) all vertices congruent to a. If we denote the angle at vertex a(i) by
ω(i), we have by Theorem 11.7

(13.6) ω(1) + ω(2) + · · ·+ ω(n) = 2π,
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if a is not a fixed point for any T ∈ Γ− {Id}; and
(13.7) ω(1) + ω(2) + · · ·+ ω(n) = 2π/m,

if a is a fixed point of order m. Since F is convex, ω(i) < π, and for each cycle of
the type (13.6), we have n ≥ 3, and hence

(13.8)

n∑
i=1

(π − ω(i)) = (n− 2)π > π.

Comparing (13.8) with (13.5) we conclude that the number of cycles where a
is not a fixed point for any T ∈ Γ \ {Id} is finite. For each cycle of the type (13.7)
we have

(13.9)

n∑
i=1

(π − ω(i)) = (n− 2

m
)π >

π

3
.

Comparing (13.9) with (13.5) we conclude that the number of elliptic cycles of order
≥ 3 is finite. Finally, any elliptic fixed point of order 2 belongs to a segment of ∂F
between two vertices which are not elliptic points of order 2, hence we see that the
number of elliptic cycles of order 2 is also finite. Thus we have proved that there
are only finitely many vertices at a finite distance from the point p.

It remains to show that the number of vertices at infinity is also finite. Let
us take any N vertices at infinity: B1, . . . , BN . It is obvious that there exists a
hyperbolic polygon F1 bounded by a finite number of geodesics and contained inside
F such that its vertices at infinity are B1, . . . , BN . An argument similar to that
in the proof of (13.2) shows that the hyperbolic area of F1 satisfies the following
equation: ∑

ω

(π − ω) = 2π + µ(F1),

where ω are the angles at the vertices of F1, and the sum is taken over all vertices
of F1. Since ω = 0 for all vertices at infinity, we have

πN ≤ 2π + µ(F1) ≤ 2π + µ(F ).

Thus N is bounded from above, and the theorem follows. �

14. Cocompact Fuchsian groups

Definition 14.1. A Fuchsian group is called cocompact if the quotient-space
Γ\H is compact.

The following results reveal the relationship between cocompactness of Γ and
the absence of parabolic elements in Γ.

Theorem 14.2. If a Fuchsian group Γ has a compact Dirichlet region, then Γ
contains no parabolic elements.

Proof. Let F be a compact Dirichlet region for Γ and

η(z) = inf{ρ(z, T (z)) | T ∈ Γ \ {Id}, T not elliptic}.
Since the Γ-orbit of each z ∈ H is a discrete set (Corollary 8.7) and T (z) is contin-
uous, η(z) is a continuous function of z and η(z) > 0. Therefore, as F is compact,



FUCHSIAN GROUPS, GEODESIC FLOWS AND CODING 283

η = inf{η(z) | z ∈ F} is attained and η > 0. If z ∈ H, there exists S ∈ Γ such that
w = S(z) ∈ F . Hence, if T0 ∈ Γ \ {Id} is not elliptic,

ρ(z, T0(z)) = ρ(S(z), S(T0(z)) = ρ(w, ST0S
−1(w)) ≥ η,

and therefore

inf{ρ(z, T0(z)) | z ∈ H, T0 not elliptic} = η > 0.

Now suppose that Γ contains a parabolic element T1. If for someR ∈ PSL(2,R), Γ1 =
RΓR−1 then R(F ) will be a compact fundamental region for Γ1. Thus by conju-
gating Γ in PSL(2,R) we may assume that T1(z) or T

−1
1 (z) is the transformation

z → z + 1. However, by Theorem 3.5(c), ρ(z, z + 1) → 0 as Im(z) → ∞, a contra-
diction. �

Theorem 14.3.

(i) If Γ has a non-compact Dirichlet region, then the quotient space Γ\H is
not compact.

(ii) If a Dirichlet region F = Dp(Γ) for a Fuchsian group Γ has finite hyperbolic
area but is not compact, then it has at least one vertex at infinity.

Proof. Let F = Dp(Γ) be a non-compact Dirichlet region for Γ. We consider
all oriented geodesic rays from the point p; each geodesic ray is uniquely determined
by its direction l at the point p. Since F is a hyperbolically convex region, a
geodesic ray in the direction l either intersects ∂F in a unique point or the whole
geodesic ray lies inside F . Hence we can define a function τ(l) to be the length of
a geodesic segment in the direction l inside F , τ(l) being equal to ∞ in the latter
case. Obviously, τ(l) is a continuous function of l at the points where τ(l) < ∞.
Therefore if τ(l) <∞ for all l, the function τ(l) is bounded; hence the region F is
compact. Thus if F is not compact, there are some directions l for which τ(l) = ∞.
After the identification of the congruent points of ∂F , we obtain a non-compact
orbifold Γ\H and (i) follows. To prove (ii), let us consider one such direction l0.
The intersection of the geodesic ray from p in the direction l0 with the set of points
at infinity belongs to ∂0F , the Euclidean boundary of F . By Theorem 13.1, F has
finitely many sides, hence ∂0F consists of finitely many free sides and vertices at
infinity. Since µ(F ) < ∞, it is easy to see that ∂0F cannot contain any free sides.
Therefore this intersection is a vertex at infinity, and (ii) follows. �

Corollary 14.4. The quotient space of a Fuchsian group Γ, Γ\H, is compact
if and only if any Dirichlet region for Γ is compact.

Let p ∈ H and z(t), 0 ≤ t < ∞, be a geodesic ray from the point p. Let Bt(p)
be a hyperbolic circle centered at z(t) and passing through the point p. Exercise
26 asserts that the limit of Bt(p), as t→ ∞, exists. It is a Euclidean circle passing
through p and through the end of the geodesic z(t), s, corresponding to t = ∞.
It is orthogonal to the geodesic z(t) at s, hence is tangent to the real axis, and
therefore is a horocycle (see §4, Exercise 12, and Figure 4.2). Since the geodesic
ray through p is determined by its direction l, the horocycle depends on p and l and
is denoted by ω(p, l) (see Figure 14.1). Notice that horocycles are not hyperbolic
circles, however they may be considered as circles of infinite radius.

A horocycle through a point s at infinity is denoted by ω(s).
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Theorem 14.5. Let S be a transformation in PSL(2,R) fixing a point s ∈
R. Then S is parabolic if and only if for each horocycle through s, ω(s), we have
S(ω(s)) = ω(s).

Proof. Suppose first that S is parabolic, and R ∈ PSL(2,R) is such that
R(s) = ∞. Then S0 = R ◦ S ◦ R−1 is a parabolic transformation fixing ∞, and
therefore S0(z) = z + h, h ∈ R. Since S0 is a Euclidean translation, it maps each
horizontal line to itself. Since a linear fractional transformation maps circles and
straight lines into circles and straight lines and preserves angles, we conclude that
horocycles are mapped into horocycles. Thus S(ω(s)) = ω(s).

Conversely, suppose S maps each horocycle ω(s) onto itself. Making the same
conjugation as above, we move the fixed point s to ∞. Then S(z) = az + b. The
condition that each horizontal line is mapped into itself implies that a = 1. Hence
S is a parabolic element. �

Theorem 14.6. Suppose Γ has a non-compact Dirichlet region F = Dp(Γ) with
µ(F ) <∞. Then

(i) each vertex of F at infinity is a parabolic fixed point for some T ∈ Γ.
(ii) If ξ is a fixed point of some parabolic element in Γ, then there exists T ∈ Γ

s.t. T (ξ) ∈ ∂0(F ).

Proof of (i). Let b be a vertex of F at infinity. Let us consider all images
S(F ), S ∈ Γ, which have the point b as a vertex. Obviously, there are infinitely
many of them. Let b(1) = b, b(2), . . . , b(n) be all vertices of F congruent to b:

b(k) = Tk(b) (k = 1, . . . , n).

We know from Theorem 13.1 that the number of such vertices is finite. Any image
of F which has the point b as a vertex has a form

TT−1
i (F ) (i = 1, . . . , n),

where T is any element of Γ which fixes the point b. Since there are infinitely many
such images, and since Ti is only taken from a finite set of elements, we conclude
that there are infinitely many elements T ∈ Γ fixing b.

We shall show now that any such element T is a parabolic element. Suppose
T is not parabolic. Let us consider a geodesic z(t), 0 ≤ t ≤ ∞, parametrized by its

s

z(t)

pl

ω(p, l)

Figure 14.1. A horocycle
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length, connecting the points p and b(z(0) = p, z(∞) = b). (See Figure 14.2.) Since
F is a Dirichlet region the whole geodesic lies inside F and

(14.1) ρ(p, z(t)) < ρ(T (p), z(t)), 0 ≤ t <∞.

Consider a horocycle ω(b) containing the point p. Since by our assumption T is

z(t)

w(t)

p

q

b

T (p)

Figure 14.2. A vertex at infinity

not a parabolic transformation, T (p) does not belong to ω(b). Then by Exercise 29
either T (p) or T−1(p) lies inside ω(b). We may assume then that T (p) lies inside
ω(b). Let w(t) be a geodesic passing through T (p) and b. Let q be a second point of
intersection of ω(b) and w(t); we choose the parametrization of w(t) by its length
such that w(0) = q. We notice first that ρ(z(t), w(t)) → 0 as t → ∞. In order to
see this, we conjugate Γ so that its action on H gives: b = ∞, z(t) = a+ it, w(t) =
c+ it (t ≥ t0 > 0). Then using Theorem 3.5(c), we obtain

sinh

[
1

2
ρ(z(t), w(t))

]
=

|a− c|
2t

→ 0 as t → 0,

and the claim follows. We have

t = ρ(p, z(t)) = ρ(q, w(t)) = ρ(q, T (p)) + ρ(T (p), w(t))

≥ ρ(q, T (p)) + ρ(T (p), z(t))− ρ(z(t), w(t)),

and hence for sufficiently large t, we have

ρ(p, z(t)) > ρ(T (p), z(t)),

contradiction with (14.1). �

Proof of (ii). See Exercise 30. �

We leave the proof of the following Corollary (Exercise 31).

Corollary 14.7. There is a one-to-one correspondence between non-congruent
vertices at infinity of a Dirichlet fundamental region for a non-cocompact Fuchsian
group Γ with µ(Γ\H) < ∞ and conjugacy classes of maximal parabolic subgroups
of Γ.
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The following result is a direct consequence of Theorems 13.1, 14.3, and 14.6.

Corollary 14.8. A Fuchsian group Γ is cocompact if and only if
µ(Γ\H) <∞ and Γ contains no parabolic elements.

15. The signature of a Fuchsian group

We now assume that Γ has a compact fundamental region F . By Corollary 11.4
F has finitely many sides, and hence finitely many vertices, finitely many elliptic
cycles, and by Theorem 11.5, a finite number of periods, say m1, . . . ,mr. As we
have seen in §3.6 the quotient space Γ\H is an orbifold, i.e. a compact, oriented
surface of genus g with exactly r marked points. In this case we say that Γ has
signature (g;m1,m2, . . . ,mr).

Theorem 15.1. Let Γ have signature (g;m1, . . . ,mr). Then

µ(Γ\H) = 2π[(2g − 2) +
r∑

i=1

(
1− 1

mi

)
].

Proof. The area of the quotient space was defined in the beginning of §3.6:
µ(Γ\H) = µ(F ) where F is a Dirichlet region. By Theorem 11.5 F has r elliptic
cycles of vertices. (As described in §12, we include the interior point of a side fixed
by an elliptic element of order 2 as a vertex whose angle is π, and then regard this
side as being composed of two sides separated by this vertex.) By Theorem 11.7,

the sum of angles at all elliptic vertices is

4∑
i=1

2π

mi
. Suppose there exist s other cycles

of vertices. Since the order of the stabilizers of these vertices is equal to 1, the sum
of angles at all these vertices is equal to 2πs. Thus the sum of all angles of F is
equal to

2π[

(
r∑

i=1

1

mi

)
+ s].

The sides of F are matched up by elements of Γ. If we identify those matched sides,
we obtain an orbifold of genus g. If F has n such sets of identified sides, we obtain
a decomposition of Γ\H into (r+ s) vertices, n edges, and 1 simply connected face.
By the Euler formula,

2− 2g = (r + s)− n+ 1.

Exercise 32 gives a formula for the hyperbolic area of a hyperbolic polygon. Using
it, we obtain

µ(F ) = (2n− 2)π − 2π[

(
r∑

i=1

1

mi

)
+ s] = 2π[(2g − 2) +

r∑
i=1

(
1− 1

mi

)
].

�

It is quite surprising that the converse to Theorem 15.1 is also true, i.e. that
there exists a Fuchsian group with a given signature. This first appeared in
Poincaré’s paper on Fuchsian groups [27], but the rigorous proof was given much
later and is based on a more general result of Maskit [24].
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Theorem 15.2. (Poincaré’s Theorem) If g ≥ 0, r ≥ 0, mi ≥ 2 (1 ≤ i ≤ r) are
integers and if

(2g − 2) +

r∑
i=1

(
1− 1

mi

)
> 0,

then there exists a Fuchsian group with signature (g;m1, . . . ,mr).

The sketch of the proof of Theorem 15.2 given in [14]; it is illustrated on the
following example.

Example D. Construction of a Fuchsian group with signature (2;−). Since
r = 0, a fundamental region is a regular hyperbolic octagon F8 (see Figure 15.1)
of hyperbolic area 4π. We call this group Γ8. We suppose that t0 is chosen such

v

v

v

v

v

v

v

v
α β
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αβ

α ’
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1

1 2

2

2

2

Figure 15.1. Fundamental region for the group Γ8

that µ(N(t0)) = 4π. Then the area of each of the 8 isosceles hyperbolic triangles
is equal to π

2 ; and since the angle at the origin is equal π
4 , by the Gauss-Bonnet

formula (Theorem 5.4) the two other angles are equal to π
8 . The group Γ8 is

generated by 4 hyperbolic elements, A1, A2, B1, and B2, that identify the sides
of F8 as shown in Figure 15.1. Since all eight sides of F8 are arcs of circles of the
same Euclidean radius of equal Euclidean length, the sides identified by a generator
must be isometric circles of this generator and its inverse. This allows us to use
elementary geometry to explicitely write down those generators. Let

(15.1) A2 =

[
a c
c̄ ā

]
,

then the isometric circle I(A2) is given by the equation |c̄z + ā| = 1. By Exercise
17, A2 maps I(A2) onto I(A−1

2 ) in such a way that the center of I(A2), − ā
c̄ , is
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mapped onto the center of I(A−1
2 ), a

c̄ . But from Figure 15.1 we see that ia
c̄ = − ā

c̄ ,

which implies a = ±|a|( 1√
2
+ i 1√

2
). Let the radius of I(A2) = R, and the distance

of the center of I(A2) from the origin be d. By elementary geometric arguments,

we have d = R(1 +
√
2). On the other hand, |c| = 1

R , and d = |a|
|c| = R|a|, hence

|a| = 1+
√
2; and since |a|2 − |c|2 = 1, we have |c| =

√
2 + 2

√
2. Now let us choose

the + sign in the expression for a, i.e. Arg(a) = π
4 . Since Arg(− ā

c̄ ) =
π
8 , we obtain

Arg(c) = − 5π
8 . Using the formulas cos 5π

8 = −
√

2−
√
2

2 and sin 5π
8 =

√
2+

√
2

2 , we
obtain the expressions for the numbers a and c in (15.1):

a =
2 +

√
2

2
(1 + i), c = −

4
√
2

2
(
√
2 + i(2 +

√
2)).

Other generators of the group Γ8 can also be expressed in terms of parameters a

and c as follows: A1 =

[
a −c
−c̄ ā

]
, B1 =

[
ā −c̄
−c a

]
, B2 =

[
ā c̄
c a

]
.

Let R : H → U be a map given by R(z) = zi+1
z+i , see (4.4). Then Γ = R−1Γ8R

be a subgroup of PSL(2,R) whose generators are:

A2 =

[
Re(a) + Im(c) Im(a) + Re(c)

−(Im(a)− Re(c)) Re(a)− Im(c)

]
,

A1 =

[
Re(a)− Im(c) Im(a)− Re(c)

−(Im(a) + Re(c)) Re(a) + Im(c)

]
,

B1 =

[
Re(a) + Im(c) − Im(a)− Re(c)
Im(a)− Re(c) −Re(a)− Im(c)

]
,

B2 =

[
Re(a)− Im(c) − Im(a) + Re(c)
Im(a) + Re(c) Re(a) + Im(c)

]
.

As elements of PSL(2,R), the generators are:

A2 =




(2+
√
2)(1− 4

√
2)

2
(2+

√
2)− 4

√
2
√
2

2

− (2+
√
2)+ 4

√
2
√
2

2
(2+

√
2)(1+ 4

√
2)

2


 ,

A1 =




(2+
√
2)(1+ 4

√
2)

2
(2+

√
2)+ 4

√
2
√
2

2

− (2+
√
2)− 4

√
2
√
2

2
(2+

√
2)(1− 4

√
2)

2


 ,

B1 =




(2+
√
2)(1− 4

√
2)

2
−(2+

√
2)+ 4

√
2
√
2

2

− −(2+
√
2)− 4

√
2
√
2

2
(2+

√
2)(1+ 4

√
2)

2


 ,

B2 =




(2+
√
2)(1+ 4

√
2)

2
−(2+

√
2)− 4

√
2
√
2

2

− −(2+
√
2)+ 4

√
2
√
2

2
(2+

√
2)(1− 4

√
2)

2


 .

It can be shown that Γ8 is derived from the quaternion algebra over Q(
√
2).
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Exercises

24. Prove that if F is a fundamental region for a Fuchsian group Γ on H, then SF
is a fundamental region for Γ on SH.

25. Prove that if Γ is a Fuchsian group without elliptic elements, then S(Γ\H) is
homeomorphic to Γ\PSL(2,R).
26. Show that the limit of Bt(p) as t → ∞ is a Euclidean circle passing through
p and the end of the geodesic z(t) corresponding to t = ∞, and orthogonal to the
geodesic z(t).

27. Prove that an elliptic subgroup of PSL(2,Z) is a Fuchsian group if and only
of it is finite.

28. If ST = TS then S maps the fixed-point set of T to itself.

29. Let T be a non-parabolic transformation fixing a point b at infinity, ω(b) be a
horocycle, p ∈ ω(b). Prove that either T (p) or T−1(p) lies inside ω(b).

30. Let Γ be a non-elementary Fuchsian group, F a locally finite fundamental
region for Γ, and ξ a fixed point of some parabolic element in Γ, then there exists
T ∈ Γ s.t. T (ξ) ∈ ∂0(F ).

31. Give a careful proof of Corollary 14.7.

32. Prove the Gauss-Bonnet formula for an n-sided star-like hyperbolic polygon Π
with angles α1, . . . , αn:

µ(Π) = (n− 2)π −
n∑

i=1

αi.

Lecture III. Geodesic flow

16. First properties

The geodesic flow {ϕ̃t} on H is defined as an R-action on the unit tangent
bundle SH which moves a tangent vector along the geodesic defined by this vector
with unit speed. As was explained in §7, SH can be identified with PSL(2,R), by
sending v to the unique g ∈ PSL(2,R) such that z = g(i), ζ = g′(z)(ι), where ι is
the unit vector at the point i to the imaginary axis pointing upwards.

Under this identification the PSL(2,R)-action onH by Möbius transformations
corresponds to left multiplications (Theorem 7.1), and the geodesic flow corresponds
to the right multiplication by the one-parameter subgroup

(16.1) at =

(
et/2 0

0 e−t/2

)
such that ϕ̃t(v) ↔ gat .

The orbit {gat} projects to a geodesic through g(i). The quotient space Γ\SH
can be identified with the unit tangent bundle of M = Γ\H, SM , although the
structure of the fibered bundle is violated at elliptic fixed points and cusps (see §12
for details). The geodesic flow {ϕ̃t} on H descents to the geodesic flow {ϕt} on the
factor M via the projection π : SH → SM of the unit tangent bundles (see e.g.
[16, §5.3, 5.4] for more details).

In this chapter we will assume that µ(M) <∞.
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Figure 16.1. Geodesic flow on the upper half-plane H

Theorem 16.1. The geodesic flow {ϕt} : SM → SM preserves the Liouville
volume dv = dµdθ.

Proof. In [16, Theorem 5.3.6] a more general statement for geodesic flows on
Riemannian manifolds is a corollary from the fact that geodesic flows are Hamilton-
ian flows. In this case the theorem follows from the fact that the volume dv = dµdθ
is the left-invariant Haar measure on PSL(2,R) that is also right-invariant since
PSL(2,R) is an unimodular group. �

The following theorem is crucial in establishing further important properties of
the geodesic flow.

Theorem 16.2. The geodesic flow {ϕt} is Anosov, i.e. there exists a C∞ {ϕt}-
invariant decomposition of the tangent bundle to SM , T (SM) = E0 ⊕ E+ ⊕ E−

such that

(a) The integral curves of E0 are orbits of the geodesic flow.
(b) The integral curves of E+ and E− (we call them stable and unstable man-

ifolds and denote them W+ and W−, respectively) are the unit normal
vector fields to the horocycles orthogonal to the orbits of {ϕt}.

(c) There exist positive constants C and λ such that for any pair of points
x1, x2 ∈ SM lying on the same leaf of W+ (or W−),

dW
±

(ϕt(x1), ϕ
t(x2)) ≤ Ce−λ|t|dW

±

(x1, x2) for t ≥ 0, (t ≤ 0).

Here dW
±

is the distance on the corresponding stable or unstable manifold.

Proof. For each v = (z, ζ) ∈ SM , let z(t) be the geodesic through v with the
fixed points w = z(∞) and u = z(−∞). As we saw in §14, there are two horocycles
on H passing through the point z: one tangent to the real axis at w, another - at
u. Let W+(v) be the unit vector field containing v and normal to the horocycle
passing through w, and W−(v) be the unit vector field containing v and normal to
the horocycle passing through u. In order to prove the estimates in (c), we “move”
the geodesic z(t) to the positive imaginary axis by a transformation γ ∈ PSL(2,R)
so that γ(z) = i (this can be done by Exercise 4), and make the calculations for
this particular case. The stable manifold W+ will be mapped to the upward unit
vector field normal to the horocycle H = R + i, and the unstable manifold W−

will be mapped to the outward unit vector field normal to the horocycle passing
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i

ι

0

z

∞

wu

ζ

W+

W−

Figure 16.2. Stable and unstable manifolds

through i and 0 (see Figure 16.2). Let x1 = (i, ι), where ι is the unit vector tangent
to the imaginary axis pointed upwards, and x2 = (i+ x, ι). Then

dW
+

(x1, x2) = x,

and after the time t > 0,

dW
+

(ϕt(x1), ϕ
t(x2)) = xe−t,

so the estimates hold with C = λ = 1. The estimates for the unstable manifold are
obtained by the change of direction of the flow. �

Definition 16.3. A point v ∈ SM is call nonwandering with respect to the
flow {ϕt} if for every open set U ∋ v there is T such that ϕT (U) ∩ U 6= ∅.

Remark. It follows from Poincaré Recurrence Theorem that since the geodesic
flow is volume-preserving, every point of SM is nonwandering [16, Theorem 4.1.18].

17. Dynamics of the geodesic flow

Let x ∈ SM and W+
x be the stable manifold containing x. Denote by D+

x the

set of all points w in W+
x with dW

+

(x,w) < δ0, where δ0 will be chosen later (see
Figure 17.1). For any point w ∈ D+

x we will denote by W−
w the unstable manifold

containing w, and by D−
w the set of all z ∈W−

w with dW
−

(z, w) < δ0.
Let Sx = {z | z ∈ D−

w for some w ∈ D+
x }. For small enough δ0, Sx is a

submanifold of dimension 2 transversal to the orbit of {ϕt}. This construction
gives us a convenient way to parameterize SM locally by the coordinates (t, u, v):
we parameterize D+

x by the length u measured over the stable leaf, and D−
w by the

length v measured over the unstable leaf. The coordinate t is the length on the
orbit of the flow through x.

Theorem 17.1 (Anosov Closing Lemma). Suppose x ∈ SM is such that
d(x, ϕT (x)) < ε. Then

(a) there exists x0 ∈ SM whose orbit is closed, i.e. ϕT ′

(x0) = x0 and such
that for some constant C, d(x0, x) < Cε and |T ′ − T | < Cε;
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W+
x

W−
w

Sx
SϕT x

x0
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w

ϕTx

ϕT ′

x0

Figure 17.1. Dynamical parametrization of SM

(b) for 0 ≤ t ≤ T and some other constant C′

d(ϕtx0, ϕ
tx) ≤ C′εe−min(t,T−t).

D+
z

D+
φ(z)

D−
x

D−
φ(x)

x1

z x

φ(x1)

φ(x)φ(z)

Figure 17.2. Proof of Anosov Closing Lemma

Proof. Consider Sx ∋ x, as in the beginning of this section, of some fixed
size δ0. Then there exists t0 with |t0| < C1ε for some constant C1 and γ ∈ Γ so
that ϕ̃T+t0Sx ∋ dγx. Consider a map φ = (dγ)−1ϕ̃T+t0 : Sx → Sx. Since dγ is an
isometry, we have d(x, φ(x)) < C1ε. There exists z ∈ D−

x such that φ(z) ∈ D+
x (see

Figure 17.2). By property (c), dW
−

(z, x) ≤ C2εe
−T for some constant C2. Take
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x1 ∈ D−
φ(z) ∩ D+

z , then φ(x1) ∈ D+
φ(z) and dW

+

(φ(x1), φ(z)) < C3εe
−T for some

constant C3. Therefore d(x1, φ(x1)) < C4εe
−T . Continuing this process we get a

fixed point x0 : φ(x0) = x0, i.e. (dγ)x0 = ϕT ′

x0 for some T ′ : |T ′ − T | < C1ε.
We have d(x, x0) < Cε. By construction x0 ∈ Sx. Let w ∈ D+

x be a

point such that x0 ∈ D−
w . Then for some constant C3, d

W+

(x,w) < C3ε and

dW
−

(w, x0) < C3ε. For the same reason since d(ϕTx, ϕT ′

x0) < Cε, we can con-

clude that for some t1 with |t1| < C′
2ε, ϕ

T ′+t1x0 ∈ SϕT x and that dW
+

(ϕTx, ϕTw) <

C4ε and dW
−

(ϕTw,ϕT x0) < C4ε for another constant C4. Property (c) implies

that dW
+

(ϕtx, ϕtw) < C5εe
−t and dW

−

(ϕtw,ϕtx0) ≤ C5εe
−(T−t) and therefore

d(ϕtx, ϕtx0) ≤ C6εe
−min(t,T−t).

�

The following results are obtained by geometric considerations (see [16, §5.4]
for cocompact case).

Theorem 17.2. LetM = H\Γ and Γ be a Fuchsian group such that µ(M) <∞.
Then the geodesic flow {ϕt} has a dense orbit on SM , that is, it is topologically
transitive.

Proof. We will prove that for any two nonempty open balls U, V ∈ SM there
is t ∈ R such that ϕt(U) ∩ V 6= ∅, a property equivalent to topological transitivity
[16, Lemma 1.4.2]. It is convenient to visualize this using the unit disc model U
for the hyperbolic plane (see Figure 17.3).

u

v

U

V

c

Figure 17.3. Topological transitivity of the geodesic flow

Using remark at the end of §16 and Theorem 17.1 we can find two periodic
points, u ∈ U and v ∈ V (whose lifts to SU we also denote by u and v). Let
cu and cv be geodesics in U such that ċu = u and ċv = v. We may assume that
cu(−∞) 6= cv(∞), otherwise we replace cu by γ(cu) for some γ ∈ Γ. Consider the
geodesic c such that c(∞) = cv(∞) and c(−∞) = cu(−∞). By Theorem 16.2, for
each t ∈ R we can find two numbers gu(t) and gv(t) such that

d(ċu(gu(t)), ċ(t)) < e−t as t→ −∞
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and

d(ċv(gv(t)), ċ(t)) < e−t as t→ ∞.

Since cu and cv project to closed geodesics on Γ\U , this shows that there exist t1
and t2 such that the projection of ċ(t1) to SM is in U and the projection of ċ(t2)
to SM is in V . This yields the claim. �

The following important result follows immediately from Theorems 17.2 and
17.1:

Corollary 17.3. Periodic orbits of the geodesic flow are dense in SM .

Theorem 17.4. The Liouville measure dv = dµdφ on SM is ergodic under the
geodesic flow.

Proof. The proof [16, Theorem 5.4.16] uses so-called “Hopf arguments”, an
important tool for hyperbolic dynamic. We will show that the ergodic average

f+(x) = fϕt(x) := lim
T→∞

1

T

∫ T

0

f(ϕt(x))dt

is constant a.e. for every function f ∈ L1(SM, v), a property equivalent to er-
godicity. It is sufficient to prove that for a continuous function f with compact
support (hence uniformly continuous) since such functions are dense in L1(SM, v).
Consider such an f . Then by Birkhoff Ergodic Theorem [16, Theorem 4.1.2]

lim
T→∞

1

T

∫ T

0

f(ϕt(x))dt

exists a.e. First we show that f+(x) is constant on stable leaves. Suppose the limit
exists for some p ∈ SM . We will prove that it also exists for all q ∈ W+(p) and is
independent on q: Given ε > 0, there exists T0 such that

f(ϕt(p))− f(ϕt(q)) < ε

for all t > T0 by uniform continuity. But this means that

∣∣∣ 1
T

∫ T

o

(f(ϕt(p))− f(ϕt(q)))dt
∣∣∣ < ε

for sufficiently large T , as required. Since existence and the value of the limit is
ϕt-invariant, f+(x) = fϕt(x) is, in fact, constant on weak stable manifolds, the
integral manifold of E0 ⊕ E+. Consider also the negative time average

f−(x) = lim
T→ ∞

1

T

∫ 0

−T

f(ϕt(x))dt.

It exists and is constant a.e. on unstable manifolds. Furthermore, by a corollary to
Birkhoff Ergodic Theorem [16, Proposition 4.1.3] f+(x) = f−(x) a.e. In terms of
the local C1 coordinates on SM (t, u, v) introduced in the proof of Theorem 17.1, on
a small open set U , by Fubini’s Theorem, for t in a set C of full measure f+(t, u, v) =
f−(t, u, v) for almost all (u, v). But then for any such t1 and t2 the corresponding
sets of (u, v) intersect since they both have full measure. Therefore, f+(t1, u, v) =
f+(t2, u, v) for a.e. (u, v), hence f

+(x) is constant on C, as required. �
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18. Livshitz’s Theorem

A. Livshitz in [23] proved his theorem for Anosov systems on any compact
manifold and showed that the obtained function was C1. Guillemin and Kazhdan
in [10] gave a proof of Livshitz’s theorem for Anosov flows, and in [11] they gave a
proof for geodesic flows on any compact surface and showed that the function was
C∞.

Here we will prove a version of Livshitz’s Theorem for the geodesic flow on SM
of finite volume and possibly with cusps. In this case, it is natural to formulate it
for the class BL of bounded Lipschitz functions.

Theorem 18.1. Let Γ be a discrete subgroup of PSL(2,R), M = Γ\H, µ(M) <
∞, X = S(M), and let {ϕt} be the geodesic flow acting on X. Let f ∈ BL(X)
be a function having zero integrals over all periodic orbits of {ϕt}. Then there
exists a function F on X satisfying a Lipschitz condition with some constant α and
differentiable in the direction of the geodesic flow and such that DF = f , where
D = d

dt is the operator of differentiation along the orbits of the flow {ϕt}.
Proof. Consider a point x0 ∈ X with a dense orbit O(x0) and define a map

F : O(x0) → R by the formula F (x) =
∫ s

0
f(ϕt(x0))dt at x = ϕs(x0). We want

to prove that F extends to a function on X satisfying a Lipschitz condition and
DF = f . We claim that F (x) satisfies a Lipschitz condition on the orbit O(x0).
Let y1 = ϕt1(x0), y2 = ϕt1+T (x0) ∈ O(x0) and d(y1, y2) < ε. Then

F (y2)− F (y1) =

∫ T

0

f(ϕt(y1))dt.

By Theorem 17.1 we can find a point x1 ∈ X such that ϕT ′

x1 = x1 for some
T ′ : |T ′ − T | < C1ε and such that for 0 ≤ t ≤ T , d(ϕtx1, ϕ

ty1) < C2ε for some
constant C2. Since the orbit O(x1) is periodic, we have

∫ T ′

0

f(ϕt(x1))dt = 0.

Therefore, using the estimates of Theorem 17.1(b) we have

|F (y2)− F (y1)| = |
∫ T

0

f(ϕt(y1))dt−
∫ T ′

0

f(ϕt(x1))dt|

≤ |
∫ T

0

f(ϕt(y1))− f(ϕt(x1))dt|+ |
∫ T ′

T

f(ϕt(x0)dt| < αε

for some constant α. The Lipschitz property of the function f is used to estimate
the first term, and the boundeness to estimate the second. This proves the claim.
Therefore F can be extended from the dense set to a function satisfying a Lipschitz
condition on X . Since d

dtF = f on the dense set it follows that F is differentiable

in the direction of the geodesic flow and d
dtF = f on X . �

Exercises

33. Prove that if the function f is C1, then the function F is also C1. Hint: show
that F is differentiable in the directions of W+

x and W−
x using the transversality of

these curves in SM , the fact that they depend continuously on x, and the uniform
convergence of the integral expression for derivative.
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Lecture IV. Symbolic coding of geodesics

19. Representation of the geodesic flow as a special flow

A cross-section C for the geodesic flow is a subset of the unit tangent bundle
SM visited by (almost) every geodesic infinitely often both in the future and in the
past. In other words, every v ∈ C defines an oriented geodesic γ(v) on M which
will return to C infinitely often. The function f : C → R giving the time of the
first return to C is defined as follows: if v ∈ C and t is the time of the first return
of γ(v) to C, then f(v) = t. The map R : C → C defined by R(v) = ϕf(v)(v) is
called the first return map. Thus {ϕt} can be represented as a special flow on the
space

Cf = {(v, s) | v ∈ C, 0 ≤ s ≤ f(v)},
given by the formula ϕt(v, s) = (v, s+t) with the identification (v, f(v)) = (R(v), 0).

v R(v)

f

C

Cf

Figure 19.1. Geodesic flow is a special flow

Let N be a finite or countable alphabet, NZ = {x = {ni}i∈Z | ni ∈ N} be the
space of all bi-infinite sequences endowed with the Tikhonov (product) topology,

σ : NZ → NZ defined by {σx}i = ni+1

be the left shift map, and Λ ⊂ NZ be a closed σ-invariant subset. Then (Λ, σ)
is called a symbolic dynamical system. There are some important classes of such
dynamical systems. The whole space (NZ, σ) is called the Bernoulli shift. If the
space Λ is given by a set of simple transition rules which can be described with
the help of a matrix consisting of zeros and ones, we say that (Λ, σ) is a one-step
topological Markov chain or simply a topological Markov chain (sometimes (Λ, σ)
is also called a subshift of finite type). Similarly, if the space Λ is determined by
specifying which (k+1)-tuples of symbols are allowed, we say that (Λ, σ) is a k-step
topological Markov chain (a precise definition is given in Section 25).

In order to represent the geodesic flow as a special flow over a symbolic dynam-
ical system, one needs to choose an appropriate cross-section C and code it, i.e. to
find an appropriate symbolic dynamical system (Λ, σ) and a continuous surjective
map C : Λ → C (in some cases the actual domain of C is Λ except a finite or
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countable set of excluded sequences) defined such that the diagram

Λ
σ−−−−→ Λ

C

y
yC

C
R−−−−→ C

is commutative. We can then talk about coding sequences for geodesics defined
up to a shift which corresponds to a return of the geodesic to the cross-section C.
Notice that usually the coding map is not injective but only finite-to-one (see e.g.
[1, §3.2 and §5]).

There are two essentially different methods of coding geodesics on surfaces of
constant negative curvature. The geometric code, with respect to a given funda-
mental region, is obtained by a construction universal for all Fuchsian groups. The
second method is specific for the modular group and is of arithmetic nature: it uses
continued fraction expansions of the end points of the geodesic at infinity and a
so-called reduction theory. Bowen and Series [6] extended some of the ideas behind
this type of coding to general Fuchsian groups by using the so-called “boundary
expansions”. In fact, a generalization of continued fractions discussed in §22 makes
this connection even more promising: the arithmetic codings for the modular sur-
face via (a, b)-continued fractions still can be viewed as boundary expansions by
properly partitioning the real axis into three intervals labeled by T , T−1, and S.
Some other classes of continued fractions work for other arithmetic Fuchsian groups,
in particular, for congruence subgroups [17, §7] and for Hecke triangle groups [25].

20. Geometric coding

The Morse method.We first describe the general method of coding geodesics on a
surface of constant negative curvature by recording the sides of a given fundamental
region cut by the geodesic. This method first appeared in a paper by Morse [26] in
1921. However, in a 1927 paper, Koebe [22] mentioned an unpublished work from
1917, where the same ideas were apparently used. Starting with [29] Series called
this method Koebe-Morse, but since this earlier work by Koebe has not been traced,
we think it is more appropriate to call this coding method the Morse method. We
will follow [15] in describing the Morse method for a finitely generated Fuchsian
group Γ of cofinite hyperbolic area.

A Dirichlet fundamental region D of Γ always has an even number of sides
identified by generators of Γ and their inverses (Theorems 13.1 and 11.8); we denote
this set by {gi}. We label the sides of D (on the inside) by elements of the set {gi}
as follows: if a side s is identified in D with the side gi(s), we label the side s by
gi. By labeling all the images of s under Γ by the same generator gi we obtain the
labeling of the whole net S = Γ(∂D) of images of sides of D, such that each side
in S has two labels corresponding to the two images of D shared by this side. We
assign to an oriented geodesic in H a bi-infinite sequence of elements of {gi} which
label the successive sides of S this geodesic crosses.

We describe the Morse coding sequence of a geodesic in H under the assumption
that it does not pass through any vertex of the net S—we call such general position
geodesics. (Morse called the coding sequences admissible line elements, and some
authors [29, 9] referred to them as cutting sequences.) We assume that the geodesic
intersects D and choose an initial point on it inside D. After exiting D, the geodesic
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enters a neighboring image of D through the side labeled, say, by g1 (see Figure
20.1). Therefore this image is g1(D), and the first symbol in the code is g1. If

g1

g1g−1
1

g−1
1

g2

g2

g−1
2g3

g3

g−1
3

g4

g−1
4

D

g1(D)

g1g2(D)

Figure 20.1. Morse coding

it enters the second image of D through the side labeled by g2, the second image
is (g1g2g

−1
1 )(g1(D)) = g1g2(D), and the second symbol in the code is g2, and so

on. Thus we obtain a sequence of all images of D crossed by our geodesic in the
direction of its orientation: D, g1(D), g1g2(D), . . . , and a sequence of all images
of D crossed by our geodesic in the opposite direction: g−1

0 (D), (g0g−1)
−1(D), . . . .

Thus, the Morse coding sequence is

[. . . g−1, g0, g1, g2, . . . ].

By mapping the oriented geodesic segments between every two consecutive crossings
of the net S back to D (as shown in Figure 20.1), we obtain a geodesic in D. The
coding sequence described above may be obtained by taking generators labeling the
sides of D (on the outside) the geodesic hits consequently.

A geodesic on M is closed if and only if it is the projection of the axis of
a hyperbolic element in Γ. For general position geodesics, a coding sequence is
periodic if and only if the geodesic is closed. If a geodesic is the axis of a primitive
hyperbolic element g ∈ Γ, i.e. a hyperbolic element which is not a power of another
element in Γ, we have

g = g1g2 . . . gn

for some n. In this case the sequence is periodic with the least period [g1, g2, . . . , gn].
An ambiguity in assigning a Morse code occurs whenever a geodesic passes

though a vertex of D: such geodesics have more than one code, and closed geodesics
have non-periodic codes along with periodic ones (see [9, 18] for relevant discus-
sions).

For free groups Γ with properly chosen fundamental regions, all reduced (here
this simply means that a generator gi does not follow or precede g−1

i ) bi-infinite
sequences of elements from the generating set {gi} are realized as Morse coding
sequences of geodesics on M (see [29]), but, in general, this is not the case. Even
for the classical example of Γ = PSL(2,Z) with the standard fundamental region F
(Figure 10.2) no elegant description of admissible Morse coding sequences is known
and probably does not exist. Important results in this direction were obtained
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in [9], where the admissible coding sequences were described in terms of forbidden
blocks. The set of generating forbidden blocks found in [9] has an intricate structure
attesting the complexity of the Morse code.

Geometric code for the modular surface. Let Γ = PSL(2,Z), and M = Γ\H
be the modular surface. Recall that the generators of PSL(2,Z) acting on H are
T (z) = z + 1 and S(z) = − 1

z . The Morse code with respect to the standard
fundamental region F can be assigned to any oriented geodesic γ in F (which
does not go to the cusp of F in either direction), and can be described by a bi-
infinite sequence of integers as follows. The boundary of F consists of four sides:
left and right vertical, identified and labeled by T , and T−1, respectively; left
and right circular both identified and labeled by S (see Figure 20.2). It is clear

T−1 F
T

SS i

- 1
2

u w

ρ

1
2

Figure 20.2. The fundamental region and a geodesic on M

from geometrical considerations that any oriented geodesic (not going to the cusp)
returns to the circular boundary of F infinitely often. We first assume that the

geodesic is in general position, i.e. does not pass through the corner ρ = 1
2 + i

√
3
2 of

F (see Figure 20.2). We choose an initial point on the circular boundary of F and
count the number of times it hits the vertical sides of the boundary of F moving
in the direction of the geodesic. A positive integer is assigned to each block of hits
of the right vertical side (or a block of T ’s in the Morse code), and a negative, to
each block of hits of the left vertical side (or a block of T−1’s). Moving the initial
point in the opposite direction allows us to continue the sequence backwards. Thus
we obtain a bi-infinite sequence of nonzero integers

[γ] = [. . . , n−2, n−1, n0, n1, . . . ] ,

uniquely defined up to a shift, which is called the geometric code of γ. Moving
the initial point in either direction until its return to one of the circular sides of F
corresponds to a shift of the geometric coding sequence [γ]. Recall that a geodesic
in general position is closed if and only if the coding sequence is periodic. We
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refer to the least period [n0, n1, . . . , nm] as its geometric code. For example, the
geometric code of the closed geodesic on Figure 20.2 is [4,−3].

A geodesic with geometric code [γ] can be lifted to the upper half-plane H (by
choosing the initial point appropriately) so that it intersects

T±1(F ), . . . , T n0(F ), T n0S(F ), . . . , T n0ST n1S(F ), . . . ,

in the positive direction (the sign in the first group of terms is chosen in accordance
with the sign of n0, etc.) and

S(F ), ST∓1(F ), . . . , ST−n−1(F ), . . . , ST−n−1ST−n−2(F ), . . . ,

in the negative direction.
The case when a geodesic passes through the corner ρ of F was described to

a great extent in [9, §7]. Such a geodesic has multiple codes obtained by approxi-
mating it by general position geodesics which pass near the corner ρ slightly higher
or slightly lower. If a geodesic hits the corner only once it has exactly two codes.
If a geodesic hits the corner at least twice, it hits it infinitely many times and is
closed; if it hits the corner n times in its period, it has exactly 2n + 2 codes, i.e.
shift-equivalence classes of coding sequences, some of which are not periodic. It
is unknown, however, whether there is an upper bound on the number of shift-
equivalence classes of coding sequences corresponding to closed geodesics [9, §9].

Canonical codes considered in [15] were obtained by the convention that a
geodesic passing through ρ in the clockwise direction exits F through the right
vertical side of F labeled by T (this corresponds to the approximation by geodesics
which pass near the corner ρ slightly higher). According to this convention, the
geometric codes of the axes of transformations A4 = T 4S, A3,6 = T 3ST 6S and
A6,3 = T 6ST 3S are [4], [3, 6] and [6, 3], respectively. However, all these geodesics
have other codes. For example, the axis of A4 has a code [2,−1] obtained by
approximation by geodesics which pass near the corner ρ slightly lower, and two
non-periodic codes for the same closed geodesic are

[. . . , 4, 4, 3,−1, 2,−1, 2,−1, 2, . . . ] and [. . . , 2,−1, 2,−1, 2,−1, 3, 4, 4, . . . ].

For more details, see [9, 18].

21. Symbolic representation of geodesics via geometric code.

Let

NZ = {x = {ni}i ∈ Z | ni ∈ N}
be the set of all bi-infinite sequences on the alphabet N = {n ∈ Z | n 6= 0}, endowed
with the Tykhonov product topology, and σ : NZ → NZ be the left shift map given
by {σx}i = ni+1. Let X0 be the set of admissible geometric coding sequences
for general position geodesics in M , and X be its closure in the Tykhonov product
topology. It was proved in [9, Theorem 7.2] that every sequence in X is a geometric
code of a unique oriented geodesic in M , and every geodesic in M has at least one
and at most finitely many codes (see examples above). Thus X is a closed σ-
invariant subspace of NZ.

The cross-section for the geometric code and its partition. Since every
oriented geodesic that does not go to the cusp of F in either direction returns to
the circular boundary of F infinitely often, the set B ⊂ SM consisting of all unit
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vectors in SM with base points on the circular boundary of F and pointing inside
F (see Figure 21.1) is a cross-section which captures the geometric code.

We parameterize the cross-section B by the coordinates (φ, θ), where φ ∈
[−π/6, π/6] parameterizes the arc and θ ∈ [−φ, π − φ] is the angle the unit vector
makes with the positive horizontal axis in the clockwise direction. The elements of
the partition of B are labeled by the symbols of the alphabet N, B = ∪n∈NCn, and
are defined by the following condition: Cn = {v ∈ B | n0(v) = n}, i.e. Cn consists
of all tangent vectors v in B such that, for the coding sequence of the corresponding
geodesic in H, n0(x) = n. Let R : B → B be the first return map. Since the first re-
turn to the cross-section exactly corresponds to the left shift of the coding sequence
x associated to v, we have n0(R(v)) = n1(v). The infinite geometric partition and
its image under the return map R are sketched on Figure 21.2. Boundaries between
the elements of the partition shown on Figure 21.2 correspond to geodesics going
into the corner; the two vertical boundaries of the cross-section B are identified and
correspond to geodesics emanating from the corner. They have more than one code.
For example, the codes [4] and [. . . , 2,−1, 2,−1, 2,−1, 3, 4, 4, 4, . . . ] correspond to
the point on the right boundary of B between C4 and C3, and the codes [2,−1] and
[. . . , 4, 4, 4, 4, 3,−1, 2,−1, 2,−1, 2, . . . ] correspond to the point on the left boundary
between C2 and C3 that are identified and are the four codes of the axis of A4.

The coding map for the geometric code. It was proved in [9, Lemma 7.1] that
if a sequence of general position geodesics is such that the sequence of their coding
sequences converges in the product topology, then the sequence of these geodesics
converges to a limiting geodesic uniformly. Since the tangent vectors in the cross-
section B are determined by the intersection of the corresponding geodesics with
the unit circle, we conclude that the sequence of images of the coding sequences
under the map C : X → B converges to the image of the limiting coding sequence.
This implies that the map C is continuous.

Which geometric codes are realized? Not all bi-infinite sequences of nonzero
integers are realized as geometric codes. For instance, the periodic sequence {8, 2}
is not a geometric code since the geometric code of the axis of T 8ST 2S is [6,−2],
as can be seen on Figure 21.3 [15].

Figure 21.2 gives an insight into the complexity of the geometric code, where the
elements Cn and their forward iterates R(Cn) are shown. Each Cn is a curvilinear

F

B

θ

φ

Figure 21.1. The cross-section B
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C1

C2

C3

C−3

C−2

C−1

...

...

R(C1)

R(C2)

R(C3)

R(C−3)

R(C−2)

R(C−1)

...

...

(π/6,−π/6)

(−π/6, π/6)

(π/6, π − π/6)

(−π/6, π + π/6)

Figure 21.2. The infinite geometric partition and its image under
the return map R

quadrilateral with two vertical and two “horizontal” sides, and each R(Cn) is a
curvilinear quadrilateral with two vertical and two “slanted” sides. The horizontal
sides of Cn are mapped to vertical sides of R(Cn), and the vertical sides of Cn

are stretched across the parallelogram representing B and mapped to the “slanted”
sides of R(Cn).

If n0(v) = n and n1(v) = m for some vector v ∈ B, then R(Cn) ∩ Cm 6= ∅.
Therefore, as Figure 21.2 illustrates, the symbol 2 in a geometric code cannot be
followed by 1, 2, 3, 4 and 5.

We say that Cm and R(Cn) intersect “transversally” if their intersection is a
curvilinear parallelogram with two “horizontal” sides belonging to the horizontal
boundary of Cm and two “slanted” sides belonging to the slanted boundary of
R(Cn). Notice that for each transverse intersection R(Cn)∩Cm its forward iterate
under R stretches to a strip inside R(Cm) between its two vertical sides. Hence,
the symbol m can follow symbol n in a coding sequence.
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Figure 21.3. The geometric code of the axis of T 8ST 2S is [6,−2]

We also observe that the elements Cm and R(Cn) intersect transversally if and
only if |n| ≥ 2, |m| ≥ 2, and

|1/n+ 1/m| ≤ 1/2.

This is a flow-invariant subset which constitutes the essential part of the set of
geometrically Markov codes; see Theorems 25.2 and 25.4 in §25.

22. Arithmetic codings

In this section we describe a method of constructing arithmetic codes for
geodesics on the modular surface M using expansions of the end points of their
lifts to H in what we call generalized minus continued fractions. Three classical
continued fraction expansions described in [19] were defined using different integer-
valued functions (·) (generalized “integer part” functions) that are included into a
2-parameter family of integer-valued functions suggested for consideration recently
by Don Zagier,

(22.1) (x)a,b =



⌊x− a⌋ if x < a

0 if a ≤ x < b

⌈x− b⌉ if x ≥ b ,

where ⌊x⌋ denotes the integer part of x, ⌈x⌉ = ⌊x⌋+ 1.
If (a, b) ∈ P = {(a, b) ∈ R2 | a ≤ 0 ≤ b, b − a ≥ 1, −ab ≤ 1}, any irrational

number x can be expressed in a unique way as an infinite (a, b)-continued fraction

x = n0 −
1

n1 −
1

n2 −
1

. . .
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a b

Figure 22.1. The function (x)a,b

that we will denote by (n0, n1, · · · ) for short. The “digits” ni, i ≥ 1, are non-zero
integers determined recursively by

(22.2) n0 = (x)a,b, x1 = − 1

x− n0
, and ni = (xi)a,b, xi+1 = − 1

xi − ni
.

The following theorem is a starting point of the study of what we call (a, b)-
continued fractions in a joint paper of the author with I. Ugarcovici [21].

Theorem 22.1. Let {ni} be a sequence of integers defined by (22.2) and

rk = (n0, n1, . . . , nk) := n0 −
1

n1 −
1

n2 −
1

. . . − 1

nk

.

Then the sequence rk converges to x.

The three classical continued fraction expansions can be now described as fol-
lows.

G-expansion (a = −1, b = 0). The function

(x)−1,0 = ⌈x⌉ = ⌊x⌋+ 1

(that differs for integers from the classical ceiling function) gives the minus contin-
ued fraction expansion described in [31] and used in [15] for coding closed geodesics.
Since the coding procedure for closed geodesic is the same as the Gauss reduction
theory for indefinite integral quadratic forms, we refer to this expansion as the
Gauss- orG-expansion and call the corresponding codeG-code. G-codes for oriented
geodesics, not necessarily closed, were introduced in [12]. The digits n0, n1, . . . of
a G-expansion satisfy the condition ni ≥ 2, if i ≥ 1. Conversely, any infinite se-
quence of integers n0, n1, n2, . . . with ni ≥ 2 for i ≥ 1 defines a real number whose
G-expansion is ⌈n0, n1, n2, . . . ⌉.
A-expansion (a = −1, b = 1). The function

(x)−1,1 = ⌈x⌋ =
{
⌊x⌋ if x ≥ 0

⌈x⌉ if x < 0
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gives an expansion which was used in [19] to reinterpret the classical Artin code
(A-code). This expansion has digits of alternating signs, and we call it the A-
expansion. Conversely, any infinite sequence of nonzero integers with alternating
signs n0, n1, n2, . . . defines a real number whose A-expansion is ⌈n0, n1, n2, . . . ⌋.

The G- and A-expansions satisfy the following properties:

(1) Two irrationals x, y are PSL(2,Z)-equivalent ⇐⇒ their expansions have
the same tail, that is, if x = (n0, n1, . . . ) and y = (m0,m1, . . . ) then
ni+k = mi+l for some integers k, l and all i ≥ 0;

(2) A real number x is a quadratic irrationality ⇐⇒ (n0, n1, . . . ) is eventually
periodic;

(3) Let x and x′ be conjugate quadratic irrationalities, i.e. the roots of a
quadratic polynomial with integer coefficients. If x = (n0, n1 . . . , nk), then
1
x′ = (nk, . . . , n1, n0).

Let us remark that properties (2) and (3) are also valid for the regular continued
fractions, while property (1) holds if one replaces PSL(2,Z) by PGL(2,Z).

H-expansion (a = − 1
2 , b =

1
2 ). This expansion is obtained using the function

(x)− 1
2
, 1
2
= 〈x〉

(the nearest integer to x). It was first used by Hurwitz [13] in order to es-
tablish a reduction theory for indefinite real quadratic forms, and we call it the
Hurwitz- or H-expansion. The digits ni (i ≥ 1) of an H-expansion satisfy |ni| ≥ 2,
and if |ni| = 2 then nini+1 < 0. Conversely, any infinite sequence of integers
n0, n1, n2, . . . with the above property defines an irrational number whose H-
expansion is 〈n0, n1, n2, . . .〉.

The H-expansion satisfies property (2), but not (1) and (3). There is a minor
exception to property (1): it is possible for two irrationals not sharing the same
tail to be PSL(2,Z)-equivalent, but this can happen if and only if one irrational
has a tail of 3’s in its H-expansion and the other one has a tail of −3’s, i.e. the
irrationals are equivalent to r = (3−

√
5)/2 ([13, 7]). Property (3) is more serious.

In order to construct a meaningful code, we need to use a different expansion for
1/u (introduced also by Hurwitz) so that a property similar to (3) is satisfied. It
uses yet another integer-valued function which is a part of the (a, b)-family:

(x)r−1,1−r = 〈〈x〉〉 =
{
〈x〉 − sgn(x) if sgn(x)(〈x〉 − x) > r,

〈x〉 otherwise,

and is called the H-dual expansion. Now if x = 〈n0, n1 . . . , nk〉, then 1
x′ has a

purely periodicH-dual expansion 1
x′ = 〈〈nk, . . . , n1, n0〉〉. The formula for 〈〈·〉〉 comes

from the fact that if x = 〈n0, n1, . . .〉 then the entries ni satisfy the asymmetric
restriction: if |ni| = 2, then nini+1 < 0. For more details, see [13, 7, 19]; for a
general definition of a dual expansion see §23.
Convergents. If x = (n0, n1, . . . ), then the convergents rk = (n0, n1, . . . , nk) can
be written as pk/qk where pk and qk are obtained inductively as:

p−2 = 0 , p−1 = 1 ; pk = nkpk−1 − pk−2 for k ≥ 0

q−2 = −1 , q−1 = 0 ; qk = nkqk−1 − qk−2 for k ≥ 0 .

The following properties are shared by all three expansions:

• 1 = q0 ≤ |q1| < |q2| < . . . ;
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• pk−1qk − pkqk−1 = 1, for all k ≥ 0.

The rates of convergence, however, are different. For the A- and H-expansions we
have

(22.3)

∣∣∣∣x− pk
qk

∣∣∣∣ ≤ 1

q2k
,

while for the G-expansion we only have

(22.4)

∣∣∣∣x− pk
qk

∣∣∣∣ ≤ 1

qk
.

A quadratic irrationality x has a purely periodic expansion if and only if x
and x′ satisfy certain reduction inequalities, which give us the notion of a reduced
geodesic for each code.

Definition 22.2. An oriented geodesic in H going from u to w is called

• G-reduced if 0 < u < 1 and w > 1;
• A-reduced if |w| > 1 and −1 < sgn(w)u < 0;

• H-reduced if |w| > 2 and sgn(w)u ∈ [r − 1, r], r = (3−
√
5)/2.

Now we can describe a reduction algorithm which works for each arithmetic
α-code, where α = G,A,H . For the H-code we consider only geodesics whose end
point w is not equivalent to r.

Reduction algorithm. Let γ be an arbitrary geodesic on H, with end points u
and w, and w = (n0, n1, n2, . . . ). We construct the sequence of real pairs {(uk, wk)}
(k ≥ 0) defined by u0 = u, w0 = w and

wk+1 = ST−nk . . . ST−n1ST−n0w , uk+1 = ST−nk . . . ST−n1ST−n0u .

Each geodesic with end points uk and wk is PSL(2,Z)-equivalent to γ by construc-
tion.

Theorem 22.3. The above algorithm produces in finitely many steps an α-
reduced geodesic PSL(2,Z)-equivalent to γ, i.e. there exists a positive integer ℓ
such that the geodesic with end points uℓ and wℓ is α-reduced.

To an α-reduced geodesic γ, we associate a bi-infinite sequence of integers

(γ) = (. . . , n−2, n−1, n0, n1, n2, . . . )

called its arithmetic code, by juxtaposing the α-expansions of
w = (n0, n1, n2, . . . ) and 1/u = (n−1, n−2, . . . ) (for the H-code we need to use
the dual H-expansion of 1/u).

Remark. Any further application of the reduction algorithm to an α-reduced
geodesic yields α-reduced geodesics whose codes are left shifts of the code of the
initial α-reduced geodesic.

The proof of Theorem 22.3 follows the same general scheme for each code, but
the notion of reduced geodesic is different in each case, and so are the properties of
the corresponding expansions and estimates.

Now we associate to any oriented geodesic γ in H the α-code of a reduced
geodesic PSL(2,Z)-equivalent to γ, which is obtained by the reduction algorithm
described above.
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Theorem 22.4. Each geodesic γ in H is PSL(2,Z)-equivalent to an α-reduced
geodesic (α = G,A,H). Two reduced geodesics γ and γ′ in H having arithmetic
codes (γ) = (ni)

∞
i=−∞ and (γ′) = (n′

i)
∞
i=−∞ are PSL(2,Z)-equivalent if and only if

for some integer l and all integers i one has n′
i = ni+l.

Example E. Let γ be a geodesic on H from u =
√
5 to w = −

√
3. The

G-expansions are

w = ⌈−1, 2, 2, 3⌉ , 1/u = ⌈1, 2, 6, 2, 2⌉ .
First, we need to find an equivalent G-reduced geodesic. For this we use the re-
duction algorithm described above for G-expansions and construct the sequence
(u1, w1), (u2, w2), . . . , until we obtain a G-reduced pair equivalent to (u,w). We
have

w1 = ST (w) = (1 +
√
3)/2, u1 = ST (u) = (1 −

√
5)/4 ,

w2 = ST−2(w1) = 1 + 1/
√
3, u2 = ST−2(u1) = (7 −

√
5)/11

and the pair (u2, w2) is already G-reduced. The G-expansions of 1/u2 and w2 are

w2 = ⌈2, 3⌉ , 1/u2 = ⌈3, 2, 2, 6, 2⌉ ,
hence ⌈γ⌉ = ⌈2, 6, 2, 2, 3, 2, 3⌉ = ⌈. . . , 2, 2, 6, 2, 2, 2, 6, 2, 2, 3, 2, 3, 2, 3, 2, 3 . . .⌉.

23. Reduction theory and attractors

The notion of a “reduced” geodesic can be explained by studying a map on the
boundary R̄ = R∪ {∞} associated with (a, b)-continued fraction expansion and its
natural extension.

Let

fa,b(x) =



T (x) = x+ 1 if x < a

S(x) = − 1

x
if a ≤ x < b

T−1(x) = x− 1 if x ≥ b .

The map fa,b induces a continued fraction algorithm if the orbit of any point re-
turns to the interval [a, b) infinitely often, and consists of blocks of T ’s and T−1’s
separated by S’s, i.e. exactly if the parameters (a, b) belong to the set

P = {(a, b) | a ≤ 0 ≤ b, b− a ≥ 1, −ab ≤ 1}
indroduced in §22.

We define a two-dimensional natural extension map of fa,b,

Fa,b : R̄
2 \∆ → R̄2 \∆,

where ∆ = {(x, y) ∈ R̄2 | x = y} is the “diagonal”, by

(23.1) Fa,b(x, y) =




(x+ 1, y + 1) if y < a(
− 1

x
,−1

y

)
if a ≤ y < b

(x− 1, y − 1) if y ≥ b .

Numerical experiments led Don Zagier to conjecture that such a map Fa,b has
several interesting properties for all parameter pairs (a, b) ∈ P that we list under
Reduction theory conjecture.
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(1) The map Fa,b possesses a global attractor set Da,b = ∩∞
n=0F

n
a,b(R̄

2 \∆) on
which Fa,b is essentially bijective.

(2) The set Da,b consists of two (or one, in degenerate cases) connected com-
ponents each having finite rectangular structure, i.e. bounded by non-
decreasing step-functions with a finite number of steps.

(3) Every point (x, y) of the plane (x 6= y) is mapped to Da,b after finitely
many iterations of Fa,b.

This conjecture is true for the classical cases whose attractors are shown on Figure
23.1, although for the H-expansion property (3) does not holds for some points

(x, y) with y equivalent to r = (3 −
√
5)/2. It has been proved recently in [21]
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0
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D−1,0

G-expansion
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4
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D−1,1

A-expansion
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D−1/2,1/2

H-expansion

Figure 23.1. Attractors for the classical cases

for an open dense subset of parameter pairs (a, b) ∈ P . A typical attractor Da,b

(a = − 4
5 , b =

2
5 ) is shown on Figure 23.2. The main result of [21] is the following

theorem:

Theorem 23.1. There exists an explicit one-dimensional Lebesgue measure 0
uncountable set E that lies on the diagonal boundary b = a+ 1 of P such that:

(a) for all (a, b) ∈ P\E the map Fa,b has an attractor Da,b satisfying properties
(1) and (2) above;

(b) for an open and dense set in P \ E property (3), and hence the Reduction
theory conjecture, holds. For the rest of P \E property (3) holds for almost
every point of the plane.

If one identifies a geodesic on the upper half-plane with a pair of real numbers
(x, y) ∈ R̄2, x 6= y — its end points, then Fa,b maps a geodesic from x to y to
a geodesic PSL(2,Z)-equivalent to it, and hence can be perceived as a reduction
map.

Coding via (a, b)-continued fractions. In [20] we explained how Theorem 23.1
can be used to describe a reduction procedure for (almost) every geodesic in H. In
what follows we will denote the end points of geodesics by u and w, and whenever
we refer to geodesics, we use (u,w) as coordinates on Da,b.

First, we notice that the orbit of any point in Da,b returns to the subset Λa,b =
Fa,b(Da,b ∩ {a ≤ w ≤ b}) infinitely often.
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Figure 23.2. A typical attractor Da,b (a = − 4
5 , b =

2
5 ).

Definition 23.2. A geodesic inH from u to w is called (a, b)-reduced if (u,w) ∈
Λa,b.

It is easy to see from Figure 23.1 that the sets Λa,b for the three classical cases
are given by the inequalities of Definition 22.2.

In order to use (a, b)-expansions for coding geodesics we need the notion of a
dual expansion.

Definition 23.3. The (a, b)-expansion has a dual expansion if the reflection
of Da,b about the line y = −x is the attractor set of some (a′, b′)-expansion. If
(a′, b′) = (a, b), then the (a, b)-expansion is called self-dual.

It is shown in [20] that the parameter pairs (a, b) ∈ P \ E that admit dual
expansions form a discrete set in D \ E , where

D = {(a, b) | − 1 ≤ a ≤ 0 ≤ b ≤ 1, b− a ≥ 1} ⊂ P ,
and there are no parameter pairs (a, b) that admit dual expansions in the set P \D.

It is obvious from Figure 23.1 that the attractors for Gauss and Artin codes are
symmetric with respect to the line y = −x, hence these classical codes are self-dual.
Figure 23.3 shows the attractors for the Hurwitz expansion and its dual.

The cross-section. In what follows we assume that (a, b) ∈ D \ E . Then every
(a, b)-reduced geodesic from u to w intersects the unit half-circle. Let Ca,b =
P ∪Q1∪Q2, where P consists of the unit vectors based on the circular boundary of
the fundamental region F pointing inward such that the corresponding geodesic γ
on the upper half-plane H is (a, b)-reduced, Q1 consists of the unit vectors based on
the right vertical boundary of F pointing inward such that TS(γ) is (a, b)-reduced,
and Q2 consists of the unit vectors based on the left vertical boundary of F pointing
inward such that T−1S(γ) is (a, b)-reduced. Then a.e. orbit of {ϕt} returns to Ca,b,
i.e. Ca,b is a cross-section for {ϕt}, and Λa,b is a parametrization of Ca,b, as shown
on Figure 23.4. It is easy to see that for the G-code Q2 and the left half of P are
absent.
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Figure 23.3. Attractors for the Hurwitz expansion and its dual
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Figure 23.4. The cross-section Ca,b (left) and its parametrization
Λa,b (right)

Reduction algorithm. Let us now assume that (a, b)-expansion has a dual (a′, b′).
Let γ be a geodesic on H, from u and w, and w = (n0, n1, · · · )a,b. We construct
the sequence of real pairs {(uk, wk)} (k ≥ 0) defined by u0 = u, w0 = w and
wk+1 = ST−nkwk , uk+1 = ST−nkuk . Notice that (uk, wk) = Fnk

a,b(u,w) for

the appropriate nk ≥ 1. Each geodesic with end points uk and wk is PSL(2,Z)-
equivalent to γ by construction.

By Theorem 23.1 the reduction algorithm works in exactly the same way as that
for the classical cases described in §22. For (almost) every geodesic in H, the above
algorithm produces in finitely many steps an (a, b)-reduced geodesic PSL(2,Z)-
equivalent to γ, i.e. there exists a positive integer ℓ such that the geodesic with end
points uℓ and wℓ is (a, b)-reduced. To an (a, b)-reduced geodesic γ, we associate a
bi-infinite sequence of integers

(γ) = (. . . , n−2, n−1, n0, n1, n2, . . . ),

its coding sequence, by juxtaposing the (a, b)-expansion of w = (n0, n1, . . . )a,b and
the dual (a′, b′)-expansion of 1/u = (n−1, n−2, . . . )a′,b′ .
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If γ is a geodesic on H, we denote by γ̄ the canonical projection of γ onM . The
geodesic γ̄ on M can be represented as a bi-infinite sequence of geodesic segments
between successive returns to the cross-section Ca,b. To each segment one can asso-
ciate the corresponding (a, b)-reduced geodesic γi on H. Thus we obtain a sequence
of reduced geodesics {γi}∞i=−∞ representing the geodesic γ̄. If one associates to γi
(with end points u, w) its coding sequence, (γi) = (. . . , n−2, n−1, n0, n1, n2, . . . ),
then γi+1 = ST−n0(γi) , because the map ST−n0 gives the first return to the cross-
section Ca,b. Thus all (a, b)-reduced geodesics γi in the sequence produce the same,
up to a shift, coding sequence, which we call the (a, b)-code of γ and denote by
(γ). The left shift of the sequence corresponds to the return of the geodesic to the
cross-section Ca,b. We remark that if γ̄ is a closed geodesic on M then its coding
sequence is periodic w = (n0, n1, . . . , nm)a,b,

1
u = (nm, . . . , n1, n0)a′,b′ .

24. Symbolic representation of geodesics via arithmetic codes

Let N Z

G be the Bernoulli space on the infinite alphabet NG = {n ∈ Z | n ≥ 2}.
In §22 we proved that each oriented geodesic which does not go to the cusp of M
in either direction admits a unique G-code, ⌈γ⌉ ∈ N Z

G which does not contain a
tail of 2’s. Taking the closure of the set of such G-codes we obtain the entire space
N Z

G. Now, each bi-infinite sequence x ∈ N Z

G produces a geodesic on H from u(x) to
w(x), where

(24.1) w(x) = ⌈n0, n1, . . . ⌉ ,
1

u(x)
= ⌈n−1, n−2, . . . ⌉ .

Notice that if a sequence has a tail of 2’s then the oriented geodesic goes to the
cusp. Thus the set of all oriented geodesics on M can be described symbolically as
the Bernoulli space XG = N Z

G.
For the A-code, the set of all oriented geodesics (which do not go to the cusp) on

M can be described symbolically as a countable one-step Markov chain XA ⊂ N Z

A

with the infinite alphabet NA = {n ∈ Z | n 6= 0} and transition matrix A,

(24.2) A(n,m) =

{
1 if nm < 0,

0 otherwise .

Recall that for the H-code in the reduction algorithm and Theorem 22.4 we
assumed that the end point w of a geodesic is not equivalent to r = (3−

√
5)/2 since

not all geodesics with w equivalent to r can be H-reduced. Taking the closure of the
set of all such H-codes, we obtain a set XH containing also the bi-infinite sequences
with tails of 3’s or −3’s. These exceptional sequences areH-codes of some geodesics
with end points w equivalent to r, but not of all such geodesics. Moreover, each
geodesic with both end points u and w equivalent to r has two H-codes (see Figure
24.1 for the only closed such geodesic) [13]. The set XH is a countable one-step
Markov chain XH ⊂ N Z

H with infinite alphabet NH = {n ∈ Z | |n| ≥ 2} and
transition matrix H ,

(24.3) H(n,m) =

{
0 if |n| = 2 and nm > 0,

1 otherwise .

Therefore, for α = G,A,H , the space Xα is a closed shift-invariant subset
of N Z

α .
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F

Figure 24.1. An exceptional geodesic with two H-codes, 〈3〉 and 〈−3〉

Coding maps for arithmetic codes. As shown above, the coding map for
each arithmetic α-code (α = G,A), Cα : Xα → Cα is a bijection between the cross-
section Cα and the symbolic space Xα ⊂ N Z

α . The map
CH : XH → CH is surjective, and essentially one-to-one: the only exception is
given by the H-codes corresponding to geodesics whose repelling end points are
equivalent to r; for these exceptional H-codes the map is two-to-one.

The product topology on NZ
α is induced by the distance function

d(x, x′) =
1

m
,

where x = (ni), x
′ = (n′

i) ∈ NZ
α, and m = max{k | ni = n′

i for |i| ≤ k}.

Proposition 24.1. The map Cα is continuous.

Proof. If d(x, x′) < 1
m , then the α-expansions of the attracting end points

w(x) and w(x′) of the corresponding geodesics given by (24.1) have the same first
m digits. Hence the first m convergents of their α-expansions are the same, and by
(22.4) and (22.3) |w(x)−w(x′)| < 1

m . Similarly, the first m digits of 1
u(x) and 1

u(x′)

are the same, and hence |u(x)−u(x′)| < u(x)u′(x)
m < 1

m . Therefore the geodesics are

uniformly 1
m -close. But the tangent vectors v(x), v(x′) ∈ Cα are determined by the

intersection of the corresponding geodesic with the unit circle. Hence, by making
m large enough we can make v(x′) as close to v(x) as we wish. �

The partition of the cross-section Cα. We parameterize the lift of the cross-
section Cα to SH, Ca by the coordinates (φ, θ), where φ ∈ [0, π] parameterizes
the unit semicircle (counterclockwise) and θ ∈ [−π/2, (3π)/2] is the angle the unit
vector makes with the positive horizontal axis (counterclockwise). The angle θ
depends on φ and is determined by the condition that the corresponding geodesic
is α-reduced.
The elements of the partition of Ca are labeled by the symbols of the corresponding
alphabet Nα, Ca =

⋃
n∈Nα

Cn and are defined by the following condition: Cn

consists of all tangent vectors v in Ca such that for the coding sequence of the
corresponding geodesic in H, n0(x) = n. The partitions of Ca (and therefore
of Cα by projection) corresponding to the α-code (“the horizontal element”) and
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θ

π/2

−π/2

φ

C2

C3

C4

R(C2) R(C3) R(C4)

C1

C2

C−1

C−2

R(C1)R(C2)

R(C−1)R(C−2)

P+
∪Q+

1 ∪Q+
2

P−
∪Q−

1 ∪Q−
2

Figure 24.2. Infinite partition for the G-code (A-code, respec-
tively) and its image under the return map R

C2

C3

C4

C−2

C−3

C−4

R(C2)
R(C3)R(C4)

R(C−2)

R(C−3)
R(C−4)

...

...

Figure 24.3. Infinite partition for theH-code and its image under
the return map R

their iteration under the first return map R to the cross-section Ca (“the vertical
element”) were obtained in [19], and are shown on Figures 24.2 and 24.3.

If we parameterize the cross-section Ca by using the coordinates u,w and the
inequalities given in Definition 22.2, as was explained in §23, the pictures become
even simpler, each element of the partition is a rectangle. We have chosen the
coordinates (φ, θ) here to be consistent with the parametrization of the cross-section
associated to the geometric code in §21.
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Some results of this section can be illustrated geometrically since the Markov
property of the partition is equivalent to the Markov property of the shift space: the
symbolm follows the symbol n in the coding sequence if and only if R(Cn)∩Cm 6= ∅,
and since all intersections are transversal, according to [1, Theorem 7.9], each
partition is Markov.

Coding map for (a, b)-continued fractions. If an (a, b)-expansion has a dual
and the attaractor Da.b has finite rectangular structure, one can code geodesics on
the modular surface, as was explained in §23. The geodesic flow becomes a special
flow over a symbolic dynamical system (Xa,b ⊂ NZ, σ), on the infinite alphabet
N = Z \ {0}, where Xa,b is the closure of the set of admissible sequences and σ is
the left shift map. The coding map

Ca,b : Xa,b → Ca,b

defined by

Ca,b((. . . , n−2, n−1, n0, n1, n2, . . . )) = (1/(n−1, n−2, . . . )a′,b′ , (n0, n1, . . . )a,b)

is continuous, surjective, and essentially one-to-one. However, it is not known
whether the set of admissible coding sequences Xa,b ⊂ NZ is always Markov.

25. Complexity of the geometric code

Deciding which bi-infinite sequences of nonzero integers are admissible geomet-
ric codes is a nontrivial task. We present some known classes of such admissible
sequences, and show that the space X of all geometric codes is not a topological
Markov chain.

The arithmetic codes we considered in §24 provide partial results: by identifying
certain classes of geometric codes which coincide with arithmetic codes we obtain
classes of admissible geometric codes. The first result of this kind was obtained in
[12]:

Theorem 25.1. A bi-infinite sequence of positive integers
{. . . , n−1, n0, n1, n2, . . . } is an admissible geometric code if and only if

(25.1)
1

ni
+

1

ni+1
≤ 1

2
for all i ∈ Z .

The corresponding geodesics are exactly those for which geometric codes coincide
with G-codes.

The pairs forbidden by Theorem 25.1, {2, p}, {q, 2}, {3, 3}, {3, 4}, {4, 3}, {3, 5},
and {5, 3}—we call them Platonic restrictions—are of Markov type. More precisely,
the set of all bi-infinite sequences satisfying relation (25.1) can be described as a
one-step countable topological Markov chain XP ⊂ NZ

G, with the alphabet NG and
transition matrix P ,

(25.2) P (n,m) =

{
1 if 1/n+ 1/m ≤ 1/2 ,

0 otherwise .

Clearly, XP is a shift-invariant subset of X .
The geodesics identified in Theorem 25.1 have the property that all their seg-

ments in F are positively (clockwise) oriented. Following [12] we call them positive
geodesics, and the corresponding class of sequences positive coding sequences.
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A wider class of admissible coding sequences, which includes the positive ones,
has been identified in [18]:

Theorem 25.2. Any bi-infinite sequence of integers
{. . . , n−1, n0, n1, n2, . . . } such that

(25.3)

∣∣∣∣ 1ni
+

1

ni+1

∣∣∣∣ ≤ 1

2
for i ∈ Z

is realized as a geometric code of a geodesic on M .

The set of all bi-infinite sequences satisfying relation (25.3) can be described
as a one-step countable topological Markov chain, with the alphabet N = {n ∈ Z |
n 6= 0} and transition matrix M ,

(25.4) M(n,m) =

{
1 if |1/n+ 1/m| ≤ 1/2 ,

0 otherwise .

We denote the associated one-step Markov chain by XM . Clearly, XM is a closed
shift-invariant subset of X .

Following [18] we call the admissible geometric coding sequences identified in
Theorem 25.2 and the corresponding geodesics, geometrically Markov. In [19] we
show that the H-code comes closest to the geometric code:

Theorem 25.3. For any geometrically Markov geodesic whose geometric code
does not contain 1’s and −1’s, the H-code coincides with the geometric code.

The set XM is a σ-invariant subset strictly included in X . For example,
[5, 3,−2] is an admissible geometric code, obtained as the code of the closed geodesic
corresponding to the axis of T 5ST 3ST−2S (see Figure 25.1), but it is not geomet-
rically Markov. Moreover, the latter is also an example of a non-geometrically
Markov geodesic for which geometric and H-codes coincide. A natural question
would be to characterize completely the class of geodesics for which the two codes
coincide.

T−1 T

S S

F

Figure 25.1. Geometric code [5, 3,−2]

The following theorems were proved in [18]:
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Theorem 25.4. The set XM is a maximal, transitive one-step countable topo-
logical Markov chain in the set of all geometric codes X.

Theorem 25.5. The set XM is the maximal symmetric (i.e. given by a sym-
metric transition matrix) one-step countable topological Markov chain in the set of
all geometric codes X.

The following result is an extension of a theorem proved in [19]:

Theorem 25.6. For any geometrically Markov geodesic whose geometric code
consists of symbols with alternating signs, the A-code coincides with the geometric
code.

Unlike the spaces of admissible arithmetic codes XG, XA, and XH which in §24
were proved to form topological Markov chains, the space of admissible geometric
codes X is very complicated. In order to state the complexity result proved in [18]
we recall the notion of a k-step topological Markov chain defined on the alphabet
N (see [16, §1.9] for the finite alphabet definition):

Definition 25.7. Given an integer k ≥ 1 and a map τ : Nk+1 → {0, 1}, the
set

Xτ = {x ∈ NZ | τ(ni, ni+1, . . . , ni+k) = 1 ∀ i ∈ Z}
with the restriction of the left-shift map σ to Xτ is called the k-step topological
Markov chain with alphabet N and transition map τ .

Without loss of generality we always assume that the map τ is essential, i.e.
τ(n1, n2, . . . , nk+1) = 1 if and only if there exists a bi-infinite sequence in Xτ

containing the (k + 1)-block {n1, n2, . . . , nk+1}.
Theorem 25.8. The space X of geometric codes is not a k-step topological

Markov chain, for any integer k ≥ 1.

The proof of this result is contained in [17].

26. Applications of arithmetic codes

Calculation of the return time for special flows. In §21 and §24 we have
constructed four continuous surjective coding maps. The map C : X → B for the
geometric code and the map CH : XH → CH (for the H-code) are essentially one-
to-one, (and finite-to-one everywhere) while the maps for the other two arithmetic
codes, Cα : Xα → Cα (α = G,A) are bijections. In all cases the first return to
the cross-section corresponds to the left-shift of the coding sequence. This provides
four symbolic representations of the geodesic flow {ϕt} on SM as a special flow
over (Λ, σ), where Λ = XG, XA, XH , X , with the ceiling function f being the time
of the first return to the cross-section C = CG, CA, CH , B, i.e. four symbolic
representations of the geodesic flow on the space

(26.1) Λf = {(x, y) : x ∈ Λ, 0 ≤ y ≤ f(x)}
as explained in §19.

For Λ = XG, XA, XH , X and C = CG, CA, CH , B, respectively, the ceiling
function f(x) on Λ is the time of the first return of the geodesic γ(x) to the cross-
section C. The following theorem was proved in [12] for the G-code, and appeared
for other arithmetic codes in [19], and for the geometric code in [18]. The same
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formula holds for all (a, b)-codes as well. The proof for all codes is the same. A
similar formula for Artin’s original code has appeared earlier in [28].

Theorem 26.1. Let x ∈ Λ and w(x), u(x) be the end points of the correspond-
ing geodesic γ(x). Then

f(x) = 2 log |w(x)| + log g(x)− log g(σx),

where

g(x) =
|w(x) − u(x)|

√
w(x)2 − 1

w(x)2
√
1− u(x)2

.

This formula was used to obtain topological entropy estimates in [12] and [18].

Factor-maps associated with arithmetic codes and their invariant mea-

sures. Let (u,w) ∈ Λa,b. Making a change of variables x = − 1
w , y = u we obtain

a compact region Da,b ⊂ [a, b)× [−1, 1]. The reduction map in these coordinates

Ga,b : Da,b → Da,b

is given by the formula

Ga,b(x, y) =

(
− 1

x
−
(
− 1

x

)
a,b

,− 1

y −
(
− 1

x

)
a,b

)
.

It may be considered a (natural) extension of the Gauss-type map
ga,b : [a, b) → [a, b),

ga,b(x) = − 1

x
−
(
− 1

x

)
a,b

; ga,b(0) = 0.

One sees immediately that the following diagram

Da,b
Ga,b−−−−→ Da,b

π

y
yπ

[a, b)
ga,b−−−−→ [a, b)

is commutative if π(x, y) = x.

-0.75-0.5-0.25 0 0.25 0.5 0.75 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

D−1,0

-0.75-0.5-0.25 0 0.25 0.5 0.75 1
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-0.5

-0.25

0
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0.5

0.75

1

D−1,1

-0.75-0.5-0.25 0 0.25 0.5 0.75 1
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0

0.25

0.5

0.75

1

D− 1
2
, 1
2

Figure 26.1. The three classical attractors in compact form
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In order to calculate the invariant measure for the map ga,b we use the parametriza-
tion of SH by (u,w, s), considered in [2]: a vector in SH is identified with (u,w, s),
where u,w are the end points of the associated geodesic in H, and s is the dis-
tance to a predetermined point on the geodesic (for example, the midpoint). In
this parametrization the geodesic flow has a particularly simple form:

(26.2) ϕt : (u,w, s) 7→ (u,w, s+ t).

The Liouville measure dv on SH, introduced in §16, in these coordinates is given
by the formula

(26.3) dv =
du dw ds

(w − u)2
,

and its invariance under {ϕt} follows immediately from (26.2) and (26.3). The
measure on the cross-section Λa,b invariant for the first return map is obtained by

dropping ds: dvΛa,b
= du dw

(w−u)2 , and, by the above change of variables, the invariant

measure on Da,b is given by dv̄Da,b
= dxdy

(1+xy)2 . The invariant measure on [a, b)

is obtained by integrating dv̄Da,b
with respect to dy as explained in [2]. Thus, if

we know the exact shape of the set Da,b, we can calculate the invariant measure
precisely.

G-code. In this case gG : [−1, 0) → [−1, 0) is given by gG(x) = − 1
x −

⌈
− 1

x

⌉
,

D−1,0 = [−1, 0]× [0, 1], and the invariant measure for gG on [−1, 0) is

dµG =
dx

1 + x
.

(See also [3] for a similar computation.)

A-code. In this case gA : [−1, 1) → [−1, 1) is given by gA = − 1
x −

⌈
− 1

x

⌋
, D−1,1 =

{[−1, 0]× [−1, 0]} ∪ {[0, 1]× [0, 1]}, and the invariant measure is

dµA =

(
χ[−1,0]

1− x
+
χ[0,1]

1 + x

)
dx.

H-code. In this case gH = [− 1
2 ,

1
2 ) → [− 1

2 ,
1
2 ), gH = − 1

x −
〈
− 1

x

〉
, and the invariant

measure is

dµH =

(
χ[− 1

2
,0]

(1 + rx)(1 + (r − 1)x)
+

χ[0, 1
2
]

(1 − rx)(1 + (1 − r)x)

)
dx.

The formulae for dµA and dµH rectify the formulae given in [17].
In [20] we derive the formulae for the invariant measure for a wider class of

(a, b)-codes.

Classical results proved using arithmetic codes. Artin [4] used regular con-
tinued fractions to prove the topological transitivity of the geodesic flow on the
modular surface (i.e. the existence of a dense geodesic) and the density of closed
geodesics. In fact, any Markov (a, b)-code, in particular, any arithmetic α-code
(α = G,A,H) can be used for this purpose since the Markov property allows us to
list all admissible periodic coding sequences.
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Exercises

34. Let A =

(
1 2
1 3

)
, B =

(
2 1
3 2

)
, and C =

(
0 −1
1 4

)
. Use one of the classical

continued fraction expansions to determine which of these matrices are conjugate
in PSL(2,Z).

35. Verify the formulae for the invariant measures dµG, dµA, dµH .
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Chaoticity of the Teichmüller flow

Artur Avila

Abstract. We consider the Teichmüller flow restricted to connected compo-
nents of strata of the moduli space of Abelian differentials. Various aspects
of “chaoticity” of this flow allow efficient stochastic modelling and permit to
obtain a fine description of typical vertical flows on translation surfaces.

1. Introduction

A translation surface is a compact Riemann surface S together with the choice
of a non-zero Abelian differential (holomorphic 1-form) ω.

Let Σ ⊂ S be the set of zeros of ω, also called singularities. We let κp, p ∈ Σ
be the order of p as a zero. By the Gauss-Bonnet formula,

∑
κp = 2g − 2 where g

is the genus of S (and thus we must have g ≥ 1).
Any non-singular point has a neighborhood where one can define a regular chart

such that ω becomes dz. The family of such charts forms an atlas on S \Σ, whose
coordinate transitions are translations. On the other hand, for every p ∈ Σ there
exists a holomorphic chart in a neighborhood of p where ω becomes zκpdz.

Alternatively, one can give the structure of a translation surface to a compact
orientable surface S, with singularities at Σ (a finite subset of S), by fixing a
maximal atlas on S \Σ whose coordinate transitions are translations, and such that
each p ∈ Σ has a punctured neighborhood isomorphic to a (κp + 1)-folded cover of
a punctured neighborhood of 0 in R

2, for some positive integer κp.
The translation structure yields a flat metric on S with conical singularities at

Σ, which are responsible for carrying the negative curvature when g ≥ 2: the total
angle around p ∈ Σ is 2π(κp+1). The total area is given by

∫
|ω|2 < ∞. It is often

convenient to restrict attention to normalized surfaces, of total area 1.
Translation surfaces carry a natural dynamical system, the vertical flow (or

northbound flow), given by “going up” with unit speed. This flow is defined for all
times outside the singularities and vertical separatrices stemming from them, and
it is clearly area preserving.

1.1. Moduli spaces. Considering translation surfaces in genus g modulo iso-
morphism, one arrives at the moduli space of Abelian differentials Mg. There is a
natural action of SL(2,R) on Mg, which is most easily seen at the level of regular

c© 2010 Artur Avila
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charts, where it acts by postcomposition. The Teichmüller flow Tt is the diagonal

flow Tt(x) =

(
et 0
0 e−t

)
x. The area is preserved by the SL(2,R) action.

By fixing the order of zeros, as an unordered list κ of positive integers (not
necessarily distinct), one defines strata Mg,κ ⊂ Mg. Strata are invariant under
the SL(2,R) action, but are not necessarily connected. They may have at most 3
connected components. Connected components of strata were classified in [KZ].

The moduli space Mg can be given a natural complex analytic structure. The
strata are (not necessarily closed) complex analytic subvarieties of Mg of complex
dimension 2g + n − 1, where n is the number of singularities. The strata can be
given a finer complex affine structure, whose transition charts preserve the integer
lattice, and hence also preserve the canonical volume in C

2g+n−1. This structure
is still preserved by the SL(2,R) action. The strata have infinite volume, but the
set of translation structures of area at most 1 in some strata has a finite volume
[M, V1], which was computed in [EO].

Since area is an invariant of the SL(2,R) action, we now restrict considera-
tions to normalized surfaces and introduce the corresponding real analytic subva-
rieties M1

g and M1
g,κ. For each connected component C of some M1

g,κ, there is a
well-defined probability measure μC in the Lebesgue measure class, coming (up to
scaling) from the volume form on the set of translation structures of area at most
1.

We will basically be concerned with properties of typical translation surfaces,
that is, those that hold μC-almost everywhere in some C.

1.2. Renormalization. We have introduced above two classes of dynamical
systems: the vertical flow on a normalized surface S and the Teichmüller flow on
some connected component of strata C. Both preserve natural probability measures,
but the vertical flow is slow (zero entropy) and the Teichmüller flow is fast (entropy
2g + n− 2 [V2]).

The basic relation between them is that the Teichmüller flow can be seen as a
renormalization flow on the space of vertical flows: The time-et map of the vertical
flow parametrized by some x ∈ C is conjugate to the time-1 map of the vertical
flow parametrized by Tt(x). Accordingly, the investigation of the behavior of Tt,
with respect to the invariant probability measure μC , often yields fundamental
information on the dynamics of the vertical flow for typical surfaces x ∈ C.

An early (and the most well-known) example of succesful application of this
principle was the proof by Masur and Veech of unique ergodicity of vertical flows for
typical surfaces, which was obtained in [M, V1] as a consequence of the Poincaré
Recurrence Theorem applied to the Teichmüller flow.

The Poincaré Recurrence Theorem of course just expresses the invariance of
the probability measure μC . In these notes, we will be basically concerned with the
consequences for the vertical flow of subtler “chaotic” properties of the Teichmüller
flow.

“Chaoticity” expresses lack of predictability and of additional invariant struc-
tures. While this might be thought to be bad at first, it turns out to be quite
helpful, since it allows us to forget about the specifics of messy deterministic dy-
namics and replace it efficiently by stochastic models, which are much easier to
analyze. The unpredictability of the Teichmüller flow has been an important topic
of research on its own. The first achievement was the proof of ergodicity of Tt,
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showed in [M, V1]. In view of the existence of an underlying SL(2,R) action,
ergodicity automatically implies the stronger property of mixing:

(1.1)

∫
φ · (ψ ◦ Tt) dμC → 0 for every φ, ψ ∈ L2

0(μC),

where L2
0(μC) denotes the Hilbert space of L2 observables φ : C → C with zero

average. This raises the problem of the speed of mixing, that is, how fast is the
convergence in (1.1). As usual, no bounds can be obtained for general observables,
but in view of the underlying SL(2,R) action there is a natural class H ⊂ L2(μC),
containing compactly supported smooth observables, for which one can expect to
show exponential mixing. In genus 1, the Teichmüller flow is just the geodesic flow
of the modular surface, and hence exponential mixing was known for a long time.
Exponential mixing was shown to also hold in the higher genus case in [AGY], and
it is discussed in [Y], Section 14.

As for the dynamics of vertical flows, we will focus on two problems, where
the role of chaoticity has been fundamental: the Kontsevich-Zorich conjecture and
typical weak mixing. Actually, for those two problems we will not actually need
to use exponential mixing of the Teichmüller flow itself, but some easier mixing
properties of related discrete renormalization dynamics, which we will describe
later, and which are much easier to show.

Acknowledgements: This research was partially conducted during the period
the author served as a Clay Research Fellow.

2. The Kontsevich-Zorich conjecture

2.1. The Zorich phenomenon. Let us fix some connected component C of
some M1

g,κ. Take a typical translation surface S ∈ C, and choose an arbitrary point
x ∈ S for which the vertical flow ft(x) is defined for all t ≥ 0. Unique ergodicity
of the vertical flow, proved in [M, V1] (for typical S), means that the trajectory
{ft(x)}t≥0 is equidistributed on S, that is, for every φ : M → R continuous, we
have

(2.1)
1

T

∫ T

0

φ(ft(x))dx.

In particular, a long piece of trajectory is a Jordan arc which is very dense in S.
How does this arc “winds around” the surface?

To give a precise sense to this question, let us denote by ΓT the Jordan arc
{ft(x), 0 ≤ t ≤ T}, let γT be a curve (not necessarily simple), obtained by “closing”
ΓT with a small segment (say, whose length is at most the diameter of the surface)
joining fT (x) and x. Then [γT ] ∈ H1(S,Z) is well-defined up to bounded error, and
we may ask about the asymptotics of [γT ] as T grows.

A classical result of Schwartzman [S] states that, due to unique ergodicity, there
exists an asymptotic cycle c ∈ H1(M,R), such that

(2.2)
1

T
[γT ] → c.

The asymptotic cycle can be explicitly related, by Poincaré duality, with [	ω] ∈
H1(S,R), where ω is the Abelian differential giving the translation structure, and
it is easily seen to be non-zero (for typical surfaces).

When g = 1, that is basically the whole story: it is easy to see that [γT ] differs
from Tc by a bounded error. For higher genus however, there is much more that
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can be said about the asymptotics, as was first discovered numerically by Zorich
[Z1]. He found out that if g ≥ 2 the error term has a polynomial amplitude: indeed,
if F1 is the line Rc, we have

(2.3) 0 < λ2 ≡ lim sup
ln dist([γT ], F1)

lnT
< 1.

Moreover, Zorich found out that there exists an “asymptotic plane” F2 ⊃ F1 which
captures most of the error term in the sense that

(2.4) lim sup
ln dist([γT ], F2)

lnT
< λ2.

In genus 2, it turns out that the [γT ] stay at bounded distance from F2. When
g ≥ 3 however, the oscillations about F2 remain of polynomial amplitude. Thus

(2.5) 0 < λ3 ≡ lim sup
ln dist([γT ], F2)

lnT
< λ2.

As before, the oscillations are again concentrated along a subspace F3 with dimF3 =
3 and in genus 3 the [γT ] stay at bounded distance from F3.

This process can be continued, yielding the following picture. For a typical
translation surface in genus g, there is a “deviation spectrum” 1 > λ2 > · · · > λg >
0, and an asymptotic flag F1 ⊂ · · · ⊂ Fg ⊂ H1(M,R), where dimFi = i, such that
F1 is spanned by the asymptotic cycle,

(2.6) λi+1 = lim sup
ln dist([γT ], Fi)

lnT
, 1 ≤ i ≤ g − 1,

and the distance from the [γT ] to Fg is uniformly bounded. Moreover, Fg is a
Lagrangian subspace of H1(M,R) (endowed with the intersection form).

Notice that it is quite immediate that deviation exponents should be invariant
under the Teichmüller flow, so ergodicity implies that they only depend on the con-
nected component of strata where the surface is taken (recall we are only discussing
the picture for typical surfaces).

How the Teichmüller flow can be used to understand the Zorich phenomenon?
The basic idea is again that a long (time T ) trajectory of the vertical flow becomes
short (time 1) by application of the Teichmüller flow for time lnT . In doing so,
however, the translation structure becomes much deformed: for instance, the closed
geodesics of moderate length for the original translation structure become much
longer in the new translation structure. But since the Teichmüller flow is recurrent,
one can expect that the new translation structure is not so deformed after all, if
viewed appropriately: other geodesics may have become of moderate length after
all, and one can look for a map which corresponds geodesics of moderate length for
both structures. This unwinding map will have a complicated action on homology,
which will be behind the rich behavior described by the Zorich phenomenon. We
now turn to a more precise description.

2.2. The Kontsevich-Zorich conjecture. Consider the vector bundle p :
C̃ → C whose fiber p−1(x) is the cohomology H1(S,R) of the underlying surface
S. Each fiber carries a well-defined lattice corresponding to H1(S,Z). In a small
neighborhood of some x ∈ C, there is a unique linear map between the fibers which
preserves the lattice and is close to the identity. In particular, there is a unique
lattice preserving continuous flow T̃t on C̃, which is linear on the fibers and projects
down to the Teichmüller flow. It is called the Kontsevich-Zorich cocycle. Notice
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that the Kontsevich-Zorich cocycle is symplectic with respect to the intersection
form.

We let Bt(x) : p
−1(x) → p−1(Tt(x)) be the action on the fiber. It is possible to

show that one can introduce a continuous inner product on H1(M,R) with respect
to which

(2.7) C−1 ≤ e−t‖Bt‖ ≤ C,

for every x ∈ C, t ≥ 0. By the Oseledets Theorem, it follows that for almost every
x, limt→∞(Bt(x)

∗Bt(x))
1/t converges to a positive operator L(x). The numbers

λ1 ≥ · · · ≥ λ2g such that L(x) is orthogonally equivalent to the diagonal matrix
with entries eλi are almost surely independent of x, and are called the Lyapunov ex-
ponents of the Kontsevich-Zorich cocycle. The Kontsevich-Zorich conjecture states
that all the Lyapunov exponents are distinct (or in other words, the Lyapunov
spectrum is simple).

The Kontsevich-Zorich cocycle can be used to measure the homological behavior
of the unwinding map we alluded before. It is thus no wonder that the main
characteristic quantities of the cocycle, the Lyapunov exponents, are related to the
asymptotic behavior in homology of the trajectories of the vertical flow. Indeed
Zorich [Z1] showed that the full picture for this asymptotic behavior described
above is equivalent to the Kontsevich-Zorich conjecture.

Since the Kontsevich-Zorich cocycle is symplectic, it easily follows that λi =
−λ2g−i+1, and by (2.7), we also conclude that λ1 = 1. Zorich [Z2] (using the
fundamental work of Veech [V2]) showed that λ1 > λ2. Forni [F] proved that
λg > λg+1 (equivalently, λg > 0). The full conjecture was proved in [AV1]. We
will describe a few ideas of the proof, especially the fundamental importance of
“chaoticity”.

2.3. Random products of matrices. It will be convenient to move our focus
from the Teichmüller flow to a discrete analogous.

Choose a small transverse section Σ to the Teichmüller flow on C, and let
f : Σ → Σ be the Poincaré map, that is f(x) = Tr(x)(x) where r(x) = min{t >
0, Tt(x) ∈ Σ}. Let Σr = {(x, t), x ∈ Σ, 0 ≤ t < r(x)}. There is a natural flow ft
on Σr: fs(x, t) = (fk(x), w) where k ≥ 0 and 0 ≤ w ≤ r(fk(x)) are unique such

that w = t + s −
∑k−1

i=0 r(f i(x)). The map proj : Σr → C, proj(x, t) = Tt(x) is
injective, and by ergodicity its image has full measure. It follows that there is a
probability measure μ on Σ such that the probability measure μr on Σr given by
μr(A× [a, b]) = (

∫
r dμ)−1μ(A)(b− a) is the pullback of μC .

Since Σ is small, the fibers p−1(x), x ∈ Σ can be all identified with some fixed
vector space H. We let B(x) : H → H, be given (up to identification) by Br(x)(x).

We define a discrete time cocycle Bn(x) = B(fn−1(x)) · · ·B(x). The Lya-
punov exponents θ1 ≥ · · · ≥ θ2g of this cocycle (logarithms of eigenvalues of

lim(Bn(x)
∗Bn(x))

1/2n for μ-almost every x) are easily related to the Kontsevich-
Zorich exponents: θi =

∫
rdμλi.

To understand the cocycle, it is convenient to think of the sequence

(B(fk(x)))∞k=0

as a sequence of random variables. The “stochastic process generating this se-
quence” is stationary: the probability that a particular block (Bi)

l−1
i=0 appears in

position k (that is, B(fk+j(x)) = Bj , 0 ≤ j ≤ l − 1) is independent of k.
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Ideally, for the purpose of stochastic modelling, we would like to ask for the
sequence of random variables to be independent: that the probability of appearance
of a block (Bi)

k+l−1
i=0 is the product of the probabilities of appearance of (Bi)

k−1
i=0

and (Bi)
l−1
i=0. This is too much to ask in our case. Almost as good however, is the

following form of “almost independence”: the probability of appearance of a block
(Bi)

k+l−1
i=0 is given by the product of the probabilities of appearance of (Bi)

k−1
i=0

and (Bi+k)
l−1
i=0, up to a fixed multiplicative constant C > 0. It turns out that it

is possible to choose Σ so that the resulting sequence of random variables displays
almost independence.1

An important result of Raugi-Guivarch and Goldsheid-Margulis [GR, GM]
gives a criterion for the simplicity of the Lyapunov spectrum for independent prod-
ucts of matrices. This was later extended to matrix products arising from dynamical
systems [BV, AV2]. A version of this criterion was proved in [AV1] for almost
independent products.

Let K be the support of the cocycle, that is, the set of all linear operators B :
H → H such that for every neighborhood B ∈ U , μ{x ∈ Σ, B(x) ∈ U} > 0. Let B
be the monoid generated by K. We say that B is twisting if for any families (Fi)

k
i=1,

(Gi)
k
i=1 of subspaces of H such that Fi and Gi have complementary dimensions,

there exists B ∈ B such that B · Fi is transverse to Gi for 1 ≤ i ≤ k. We say
that B is pinching if for every C > 0, there exists B ∈ B such that the eigenvalues
eδ1 ≥ · · · ≥ eδ2g of B∗B satisfy δi ≥ δi+1 + C (we say that B is C-pinched in this
case).

Theorem 2.1. If B is pinching and twisting then the Lyapunov spectrum is
simple.

Thus, as long as sufficiently “rich” behavior (pinching and twisting) is seen at
all by the Kontsevich-Zorich cocycle, and irrespective of any quantitative estimate
about how frequently such behavior occurs, one may conclude that the Kontsevich-
Zorich conjecture holds. Thus unpredictability, in the form of almost independence,
reduces a quantitative question to a qualitative one.

2.4. Why pinching and twisting imply simplicity. We give a rough idea
of why pinching and twisting of the monoid force simplicity of the Lyapunov spec-
trum.

Let us consider a model problem, which contains all the ideas. Consider two
matrices A(0) and A(1) in SL(d,R) which generate a monoid which is pinching and
twisting, and let us show that the Lyapunov exponents of an independent product
(assigning a positive probability to each of them) of those two matrices are in fact
distinct.

Let Σ = {0, 1}Z and let f : Σ → Σ be the shift f((xn)n∈Z) = (xn+1)n∈Z. Let
A : Σ → SL(n,R) be given by A(x) = A(x0), and let Ak(x) = A(fk−1(x)) · · ·A(x)
for k ≥ 0. Let μ be the corresponding Bernoulli measure on Σ.

2.4.1. u-states and s-states. Fix 1 ≤ i ≤ d − 1 and let G(i, n) be the Grass-
manian of i-planes in R

n. Define a map F : Σ × G(i, n) → Σ × G(i, n) given by
F (x,w) = (f(x), A(x) ·w). A probability measure ν on Σ×G(i, n), which projects
to μ on the first factor, can be thought of as a μ-measurable function that associates

1To be precise, to achieve this one first passes to a finite cover of the Teichmüller flow, as
will be described later, before choosing Σ.
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to each x ∈ Σ a probability measure νx on G(i, n). It is called a u-state if it only
depends on the past: νx = νy if xj = yj , j ≥ 0. It is called a s-state if it only
depends on the future: νx = νy if xj = yj , j < 0.

The set of u-states is compact with respect to the weak-∗ topology and forward
invariant under the action of F∗, so F -invariant u-states exist: take any u-state ν̃,
say ν̃ = μ×η for some probability measure η in G(i, n), and let ν be a Cesaro limit
of F k

∗ ν̃.
Suppose that we knew that the Lyapunov spectrum is simple. Then, by the

Oseledets Theorem, for μ-almost every x ∈ Σ, and for every w ∈ G(i, n) which
is transverse to the sum s(x) of the Oseledets spaces (at x) corresponding to the
(n − i) smallest Lyapunov exponents, An(x) · w is exponentially close to the sum
u(fn(x)) of the Oseledets spaces (at fn(x)) corresponding to the i largest Lyapunov
exponents. It immediately follows that if we construct an invariant u-state ν as
Cesaro limit of F k

∗ (μ×Leb), the conditional measures νx are Dirac masses located
at u(x).

In the argument below we will somewhat reverse this reasoning. We will first
show that pinching and twisting imply that the invariant u-states and s-states have
the properties one would expect if the Lyapunov spectrum were simple, and then
we will argue that those properties are enough to conclude simplicity.

2.4.2. Analysis of conditional measures. Fix an invariant u-state ν. We will
first show that νx is a Dirac measure for μ-almost every x.

Since x �→ νx is measurable, μ-almost every x ∈ Σ is a measurable continuity
point. In other words, for every ε > 0 there exists n0 such that if n ≥ n0, the
probability that νy is at distance at least ε of νx given that y is n-close to x (that
is, xi = yi if |i| < n) is at most ε.

Define νnx to be the average over all y which are n-close to x of νy. By measur-
able continuity, we find out that νnx → νx for μ-almost every x.

Notice that F k
∗ (ν

n
x ) = Ak(x)∗ν

n−k
fk(x)

, 0 ≤ k ≤ n by construction. Let η be the

average of νx over all Σ (thus η = ν0x for μ-almost every x). We can conclude that
Ak(f

−k(x))∗η → νx for μ-almost every x.
The twisting condition implies that η is not supported on a small algebraic set.

This means that fixing any finite setW ⊂ G(n−i, n), the subset of G(i, n) consisting
of subspaces which are transverse to all elements of W has positive η-probability.
Indeed, let z be any point in the support of some η. Thus there exists a positive
probability that z belongs to the support of νx. By the twisting condition, there
exists some x and k ≥ 1 such that B = Ak(x) is such that B · z is transverse to all
element of W . But since νx only depend on the past, there is a positive probability
that Ak(x) = B, given that z belongs to the support of νx. We conclude that there
exists a positive probability that B ·z belongs to the support of νfk(x). This implies,
by invariance, that B · z belongs to the support of η, as desired.

Let us now show that Ak(f
−k(x))∗η converges to a Dirac measure for μ-almost

every x. It is enough to prove this for a positive measure set of x, by ergodicity,
and for a subsequence of k, by covergence.

Using the pinching and twisting condition, it is easy to see that there exists
k > 0 and a matrix B with simple Lyapunov spectrum such that B = Ak(x) with
positive probability. From this it follows that Bn

∗ η converges to a measure with
finite support Z ⊂ G(i, n) (contained in the set of i-planes spanned by eigenvectors
of B).
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Using the twisting condition, there exists k̃ and B̃ such that B̃ · z is transverse
to w for every z ∈ G(i, n) and w ∈ G(n− i, n) which are spanned by eigenvectors

of B, and B̃ = Ak̃(x) with positive probability. This implies that B(n) = BnB̃Bn

is such that B
(n)
∗ η converges to a Dirac measure, supported on some z0 ∈ G(i, n).

Fix n large. Since f is ergodic, for almost every x, there exists arbitrarily
large m such that A2kn+k̃(f

−m(x)) = B(n). Of course, it may still happen that

Am(f−m(x))∗η is not concentrated around Am−2kn−k̃(f
−m+2kn+k̃(x))∗z0. But we

can ensure that this does not happen, with positive probability, by the following
trick. One can show that the twisting condition implies that there is some k0 > 0
such for every z ∈ G(i, n), if ρ is any probability measure concentrated near z and
P ∈ SL(n,R) is arbitrary, then P∗Ak0

(x)∗ρ is concentrated near PAk0
(x) · z with

positive probability. Thus, by changing the coordinates of x between −m+ 2kn+
k̃ + 1 and −m + 2kn + k̃ + k0 (with positive probability conditioned on fixing the
other coordinates) we get Am(f−m(x))∗η concentrated near a Dirac mass.

We have now established that νx = lim(An(f
−n(x))∗η is a Dirac measure for

almost every x. Thus there exists a measurable function x �→ u(x) ∈ G(i, n)
such that νx = δu(x). This function has a few key properties we will exploit:
A(x) · u(x) = u(f(x)), u(x) only depends on the past, and moreover, for every
w ∈ G(n − i, n), u(x) is transverse to w with positive probability (since η is not
supported on a small algebraic set).

By a similar argument, there exists a function x �→ s(x) ∈ G(n − i, n) such
that A(x) · s(x) = s(f(x)) and s(x) only depends on the future. Notice that u(x)
is transverse to s(x) for almost every x. Indeed, if this was not the case then by
ergodicity u(x) would not be transverse to s(x), for almost every x, which would
imply that for every w in the support of s∗μ, u(x) is not transverse to w for almost
every x, a contradiction.

2.4.3. Conclusion. We will now use the functions u and s constructed before to
prove that there is a gap between the i-th and the (i+ 1)-th Lyapunov exponents.

Since u is transverse to s almost everywhere, it follows that there exists z ∈
G(i, n), w ∈ G(n−i, n) with z transverse to w such that if V is a small neighborhood
of z and W is a small neighborhood of w then (u(x), s(x)) ∈ V ×W for a set U of
x with positive measure. For almost every x ∈ U , we know that An(f

−n(x))∗η →
δu(x). Since η is not supported on a small algebraic set, it easily follows that for

almost every x ∈ U , for every C > 0, if n is sufficiently large and f−n(x) ∈ U then

ln
‖An(f

−n(x)) · a‖‖b‖
‖An(f−n(x)) · b‖‖a‖ ≥ C

for every a ∈ u(x) \ {0} and b ∈ s(x) \ {0}. Replacing U by a smaller set, still with
positive measure, we may assume that

ln
‖An(f

−n(x)) · a‖‖b‖
‖An(f−n(x)) · b‖‖a‖ ≥ 1

for every x ∈ U and n ≥ 1 such that f−n(x) ∈ U . By ergodicity, for almost every
x ∈ Σ, for every a ∈ u(x) \ {0} and b ∈ s(x) \ {0},

lim inf
1

n
ln

‖An(f
−n(x)) · a‖

‖An(f−n(x)) · b‖ ≥ μ(U).

This implies that the smallest Lyapunov exponent along u(x) is at least μ(U)
larger than the largest Lyapunov exponent along s(x). This gives the separation of
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the i-th and (i+1)-th exponents. Since 1 ≤ i ≤ d− 1 is arbitrary, simplicity of the
spectrum follows.

2.5. Richness in the Kontsevich-Zorich cocycle. Verifying that the Kont-
sevich -Zorich cocycle is pinching and twisting means basically to show that “com-
plicated” unwinding matrices must eventually appear, without being concerned
with an estimate of their likelyhood.

The Teichmüller flow in each strata of large dimension is somewhat difficult to
analyse directly. However, there are relations between the dynamics on different
strata that allow us to proceed by “induction on the dimension”, so that information
can be passed from lower dimensional strata to higher dimensional ones.

Basically, what we attempt to exploit is the “compactification idea” that lower
dimensional (connected components of) strata sort of embbed “in the boundary”
of higher dimensional (connected components of) strata. This idea, very classical
in the analysis of moduli spaces, is usually considered from the geometric point of
view. A key achievement of [AV1] is to implement this from the dynamical point
of view.

As one goes to the boundary of some strata, something degenerates: there exist
saddle connections, straight segments joining singularities of Σ, of short length. For
simplicity, assume that just one saddle connection is short.

Perhaps this is a saddle connection joining two distinct singularities. In this
case, the degeneration corresponds to collapsing singularities. This is the simplest
case to treat: indeed, the Teichmüller flow on some C is just the restriction of the
Teichmüller flow on Mg, and if there are at least two singularities then C is not
closed in Mg, and there is really some lower dimensional C′ in the boundary of C
in Mg.

It is more difficult to treat the case where there is a single singularity, for in
this case C is closed in Mg. Collapsing a saddle connection then breaks the surface
itself since it necessarily takes us into a lower genus situation (topologically one
needs to cut the surface along an homologically non-trivial loop). Fortunately, it
is enough for us to consider a particular way this degeneration can happen, the
inverse procedure (increasing the genus) of which was described in [KZ].

Though the above description is quite intuitive, geometrically, we actually focus
entirely on the combinatorics. To introduce combinatorics, it is convenient to work
in a finite cover C∗ of strata. The work of Veech [V1] introduces finitely many
simply connected domains Uπ, covering almost all of C∗. Each Uπ comes with a
canonical trivialization of the relative homology bundle. As we move along the
Teichmüller flow, one moves through the Uπ. For each Uπ, there are two ways to
get in and two ways to get out (the interfaces being simply connected as well). In
this way, we can draw a connected graph, whose vertices are the π and there are
two oriented arrows entering and leaving each vertex. Since each Uπ comes with a
trivialization of the relative homology bundle, to each arrow there is a well-defined
matrix in SL(d,R) relating the trivializations. The absolute homology bundle is
identified with a subspace Hπ ⊂ R

d, which is preserved by the matrices.
The graph, called Rauzy diagram, is a good “topologically Markov” model of

the Teichmüller flow dynamics. Indeed any finite concatenation of arrows in the
Rauzy diagram actually is realized by orbits. One is tempted to consider it also as
a probabilistic Markov model. However, this does not work too well because the
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expected number of transitions (necessary to move along the Teichmüller flow for
a fixed positive length of time) is infinite.

To correct for this, we replace this nice finite model by an infinite one, which
does not suffer however from this last defficiency. Given a finite sequence of arrows
γ in the Rauzy diagram, let Uγ be the set of points whose initial sequence of
transitions is given by γ. One first locates an appropriate γ such that Uγ is compact.
We then look at the first return map to Uγ . As it turns out, one can return to Uγ

by infinitely many distinctly combinatorial ways, represented by an infinite set of
finite paths Γ in the Rauzy diagram. This time, we get a nice probabilistic Markov
model: trajectories of the Teichmüller flow can be written as concatenation of paths
of Γ, this induces a shift-invariant measure on ΓZ, and this measure has the nice
“almost independence” property we described before.

We have just seen how to pass from the Rauzy diagram to the setting of the
previous section. It remains to identify richness in the Rauzy diagram itself. Fix
some vertex π in the Rauzy diagram, and let Π(π) be the set of paths that start and
end in π. Then Π(π) is a monoid by concatenation. The set of matrices associated
to elements of Π(π) is a monoid as well, and it is this monoid that we show is
pinching and twisting.

The induction on complexity idea is then realized as follows. Given a compli-
cated Rauzy diagram R, one finds a simpler one (by a procedure called “simple
reduction”) R′, vertices π ∈ R and π′ ∈ R′ and an embedding of Π(π′) → Π(π)
that respects the monoid structure. We are however mostly concerned with relating
the representation of Π(π′) on R

d′
and of Π(π) on R

d (actually, d′ = d − 1), and
more precisely, their restrictions to Hπ′ and Hπ. It turns out that there exists an
injective linear map R

d′ → R
d which makes everything commute. If the genus of

the surfaces corresponding to both Rauzy diagrams are the same, g′ = g, then this
map is actually an isomorphism Hπ′ → Hπ. This proves that pinching and twisting
in R′ implies pinching and twisting in R.

In this way, we can reduce the complexity of the problem as much as possible,
until we are forced to decrease the genus. Thus the simple reduction procedure
gives g′ = g − 1. At this moment, pinching and twisting for R′ certainly imply
some richness for R, but not as much as pinching and twisting. What happens in
fact is that the image Π′ ⊂ Π(π) of the monoid Π(π′) stabilizes a non-zero vector in
Hπ. This certainly means that the representation of Π′ is not pinching and twisting,
but has an important consequence. Since the action of Π′ on Hπ is symplectic and
stabilizes some direction λ0 ∈ PHπ, Π

′ acts on H ′ = Hλ0
= Hλ0/λ0, where Hλ0 is

the symplectic orthogonal to λ0. Now the space H ′ has the same dimension as Hπ′ ,
and in fact the representations of Π(π′) on Hπ′ and of Π′ on H ′ are isomorphic.

Consider now the Lagrangian flag space L on Hπ. Elements of L are increasing
sequences F1 ⊂ · · · ⊂ Fg ⊂ Hπ of isotropic subspaces such that dimFi = i. Let
Lλ be the Lagrangian flag space on Hλ. Then L fibers over PHπ, the fiber over λ
being isomorphic to Lλ.

We are now in position to prove, by induction, that the action of Π(π) on L is
minimal (which implies twisting). We have identified a submonoid Π′ which fixes
one of the fibers of the fibration of L over PHπ (the one over λ0), and by induction
it acts minimally over it. Thus it is enough to show that Π(π) acts minimally on
PHπ. This is in turn a simple consequence of the usual theory of the Teichmüller
flow, basically a translation of the fact that the Oseledets directions corresponding
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to the extremal Lyapunov exponent of the Teichmüller flow depend on the base
point through an open analytic map, which is immediate from Veech’s work [V1].

The proof of pinching is more subtle, and we just describe the strategy. By
twisting and pinching for Π(π′), there is some γ ∈ Π′ which acts on Hπ by an
isomorphism fixing λ0. Moreover, all Lyapunov exponents are simple except for the
middle one which appears with multiplicity 2. A specific combinatorial construction
(expected, though not shown, to correspond to adding an extra Dehn twist) gives
another path γ′ with the same Lyapunov exponents of γ, but ensures that 1 becomes
an eigenvalue of algebraic multiplicity 1. It is easy to see that for every C > 0,
large iterates of a matrix with those properties are C-pinched (the pinching growing
logarithmically in the central space).

3. Weak mixing

Let I ⊂ R be an interval (all intervals will be assumed to be closed in the left
and open in the right) and let f : I → I be an interval exchange transformation
(see also [Y], Section 3). Thus f is a bijection with the property that I can be
partitioned into d ≥ 2 intervals Iα, labelled by an alphabet A on d letters, so that
f |Iα is a translation. Define πt, πb : A → {1, ..., d} so that πt gives the ordering of
the intervals Iα while πb gives the ordering of the intervals f(Iα) and let λ ∈ R

A
+ be

the vector of lengths of the Iα. We call π = (πt, πb) the combinatorial data and λ the
length data. We will assume that π is irreducible, so that π−1

t {1, ..., k} �= {1, ..., k}
for 1 ≤ k ≤ d − 1 (otherwise I can be partitioned into two intervals which are
invariant under f).

We will say that π is a rotation if πt(α)−πb(α)mod d is constant. In this case,
f has a single actual discontinuity. If π is a rotation, the cyclic order of the interval
is preserved: identifying the extremes of I, one gets a circle and f acts by a rigid
rotation.

If π is not a rotation, then f does not preserve the natural cyclic order. Could
it preserve some other, less obvious, one? More precisely, does there exist a mea-
surable non-constant map h : I → S1 and α ∈ R such that h(f(x)) = e2πiαh(x)?
If this does not happen, one says that f is weak mixing. In [AF], we have shown
that for every π that is not a rotation, f is weak mixing for a typical choice of the
length data. This had been previously shown by Katok-Stepin [KS], and then by
Veech [V3], for countably many distinct combinatorial data π, but several cases
escaped considerations, for instance d = 2g, πt(α) + πb(α) = 2g + 1, g ≥ 2.

3.1. Relation with translation surfaces. The relation between interval ex-
change transformations and translation surfaces is well known (for a detailed dis-
cussion, see [Y], Section 4). Fix an interval exchange transformation f , with com-
binatorial and length data (π, λ). Let τ ∈ R

A (the suspension data) be any vector
such that

∑
πt(α)≤k τα > 0, 1 ≤ k ≤ d− 1 and

∑
πb(α)≤k τα < 0, 1 ≤ k ≤ d− 1 (for

instance, τα = πb(α)− πt(α) has this property). Then one associates to (π, λ, τ ) a
translation surface by the zippered rectangles construction of Veech [V1].

The basic idea of the construction is the following. Let ζα = (λα, τα) ∈ R
2.

Consider two simple polygonal arcs in R
2 obtained by concatenating, starting from

0, the vectors ζα, in the order given either by πt or πb. Notice that those two arcs
have the same endpoints, so together they define a closed polygonal curve P . It
is often the case that P is simple: in this case, starting from the closed domain
bounded by P , we can identify (via translations) each of the d pairs of obviously
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parallel sides, so to obtain a compact surface with a natural translation structure.
The general case involves some extra cutting and pasting which we will not detail
here.

Reciprocally, consider a translation surface which has no vertical or horizontal
connections. Take an initial segment of an eastbound separatrix (p, x), starting
at p, such that there exists an initial segment of a vertical separatrix (q, x) which
does not intersect (p, x). Then the first return map to (p, x) is basically an interval
exchange transformation (except that the domain consists of open intervals).

3.2. The Rauzy algorithm. There is a natural dynamics in the space of
interval exchange transformations, the Rauzy algorithm (see also [Y], Section 7).
Let α = π−1

t (d) and β = π−1
b (d). Assuming that λα �= λβ, let I ′ ⊂ I be obtained

by cutting out at the right side of I an interval of size min{λα, λβ}. Then the first
return map f ′ to I ′ is again an interval exchange transformation. This new interval
exchange transformation may have a different combinatorial data. To describe this,
consider two operations on combinatorics. Think of π as a pair of rows, the top
and the bottom, where the letters of A are ordered according to πt and πb. The
top operation keeps the top (respectively, bottom) row unchanged, and takes the
last letter of the bottom (respectively, top) row, β (respectively, α), and puts it
back in the bottom (respectively, top) row just after the position taken by the
letter α (respectively, β), which is last in the top (respectively, bottom) row. The
combinatorial data of f ′ is obtained by applying the top or the bottom operation
to π, according to whether λα > λβ or λα < λβ , and the length data is modified
by changing the larger of λα and λβ to |λα − λβ|.

Let R be the set of all combinatorics that can be obtained from π by applying
a sequence of tops and bottoms. Then the elements of R consist of irreducible
combinatorial data, and the top and the bottom operations are invertible on R.
By considering the length vector projectively, this defines a map R : R × PR

A
+ →

R× PR
A
+ , defined outside a finite union of hyperplanes. It takes each {π} × PR

A
+,

cuts it in 2 and takes each part onto some {π′} × PR
A
+ by a projective map.

The set R together with the top and bottom operations is precisely the Rauzy
diagram that we have discussed previously. As mentioned before, to each vertex of
the Rauzy diagram, one associates a vector space isomorphic to R

d, in fact just RA,
and to each arrow an invertible linear map between the respective vector spaces.
Thus if γ is an arrow starting at π, whose last letter in the top is α and in the
bottom is β, Bγ is defined by (B∗

γ)
−1 · λ = λ′, where all coordinates of λ′ are the

same as λ except that λ′
α = λα−λβ if γ is a top and λ′

β = λβ −λα if γ is a bottom.

As mentioned before, there is a canonical subspace Hπ ⊂ R
A such that if γ is an

arrow starting at π and ending at π′ then Bγ ·Hπ = Hπ′ . This space can be defined
as follows. If f is an interval exchange transformation, we have f(x) = x+(Ωπ ·λ)α
for x ∈ Iα, where Ωπ : RA → R

A is a matrix with entries −1, 0, 1: (Ωπ · λ)α =∑
πb(β)<πb(α)

λβ −
∑

πt(β)<πt(α)
λβ . Thus Ωπ is an antisymmetric matrix, but not

necessarily invertible. The image of Ωπ is Hπ. Restricted to Hπ, Ωπ induces a
symplectic form, so Hπ has even dimension. It is easy to check that Hπ and its
symplectic form are preserved by Bγ .

As for the problem of simplicity of the spectrum, it is convenient to work with
an “acceleration” of the Rauzy algorithm. For x ∈ R × PR

A
+ , let Δ(n)(x) be the

connected component of the domain of Rn containing x. For Lebesgue almost every
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x, there exists n such that Δ = Δ(n)(x) is compactly contained in R×PR
A
+, and in

fact we may require that Bγ has all entries positive, where γ is the concatenation
of the first n arrows obtained by applying the Rauzy algorithm to x (we will call
such Δ nice). Masur and Veech [M, V1] showed that the first return map RΔ to Δ
has full Lebesgue measure (Poincaré recurrence for the Teichmüller flow). This first
return map has infinitely many connected components in its domain, all of them
simplices, and restricted to each of them it is a projective map, onto Δ. Those two
properties imply that there exists an absolutely continuous invariant probability
measure invariant by RΔ, whose density is continuous and positive on the closure.

3.3. The Veech criterium. Masur and Veech [M, V1] showed that almost
every interval exchange transformation is ergodic. Assume that f is ergodic but
not weak mixing. Then there is a non-trivial solution of φ ◦ f = e2πitφ. Since φ is
non-constant and f is ergodic, t /∈ Z.

Basically the only apriori fact about a measurable function such as φ is that
almost every point is a measurable continuity point. Let us apply several times the
Rauzy algorithm to f , arriving at an interval exchange transformation f (n) defined
on a very small interval I(n). The functional equation gives rise to a new equation

(3.1) φ ◦ f (n) = e2πih
(n)
α tφ, x ∈ I(n)α ,

where h
(n)
α is such that f (n)|I(n)α is obtained by iterating f h

(n)
α times. Notice that

h(n) = Bγ · h where hα = 1, α ∈ A and γ is an appropriate concatenation of n
arrows in the Rauzy diagram, corresponding to the different steps of the Rauzy
algorithm needed to go from f to f (n).

Let us hope that φ is close to a constant in I(n) and that all intervals I
(n)
α

have approximately the same size (in the sense that the ration of the largest to the
smallest of the intervals is bounded). Then (3.1) implies that h(n)t must be close
to Z

A.
Let us now assume that f has combinatorial and length data (π, λ) belonging

to some nice Δ. Let ni be the sequence of times such that Rni(π, [λ]) ∈ Δ. The

precompactness of Δ immediately implies that the intervals I
(ni)
α are all commen-

surable. Now assume that Δ is extra nice: Δ is a component of the domain of the

first return map to some nice Δ′. Then it is easy to see that if ki ≤ minα h
(ni)
α is

maximal such that f j |I(ni) is a translation for 1 ≤ j ≤ ki then lim inf ki|I(ni)| > 0.
This easily implies that a measurable function is closer and closer to becoming
constant on I(ni).

This is Veech’s criterium: if f is not weak mixing, then th(n) → Z
A, along a

subsequence corresponding to extra nice renormalizations.

3.4. Veech’s weak mixing Theorem. Veech showed that if h /∈ Hπ then f
is weak mixing for almost every λ. The argument uses a rather simple fact about
the matrices Bγ . If γ ∈ Π(π), that is, γ is a path in R starting and ending at π
then Bγ preserves Hπ. Thus B

∗
γ preserves the orthogonal of Hπ. It turns out that

B∗
γ is the identity on the orthogonal of Hπ.

Both Hπ and its orthogonal complement intersect Z
A in cocompact lattices

whose sum is Z
A. It follows that the orthogonal projection h0 of h = (1, ..., 1)

on the orthogonal complement of Hπ is a primitive element of ZA: thus for any
non-integer t, h0t /∈ Z

A.
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Now assume that f is not weak mixing, but is otherwise typical. Consideration
of an extra nice Δ yields a sequence of moments ni such that h(ni)t is close to
the lattice. It follows that the orthogonal projection of h(ni)t, onto the orthogonal
complement of Hπ is also close to an integer, and since it is constant, it must be
an integer. Since f is typical, it is ergodic so t is not an integer, contradiction.

3.5. Weak mixing for arbitrary combinatorics. In the proof of Veech’s
weak mixing Theorem, we used that the matrix Bγ acts very simply in the trans-
verse direction to Hπ. If h ∈ Hπ, the situation is rather more complicated, since
we have already seem that the monoid Π(π) acts on Hπ in a rich way (pinching
and twisting). This richness is however central to the argument of weak mixing for
such combinatorics, which involves the idea of chaoticity.

There are two aspects that follow from richness that we will use. The first is
the simplicity of the Lyapunov spectrum. The second, a consequence of twisting is
that if E ⊂ Hπ is an arbitrary 2-plane then it is in general position with respect
to the stable Oseledets space, for almost every [λ] ∈ R

A
+. Recall that by simplicity

and symplecticity, the stable space and the unstable space have dimension g where
dimHπ = 2g.

We will assume that g ≥ 2, otherwise π is either a rotation or h /∈ Hπ. We setup
the cocycle (RΔ, A) where A(x) = Bγ |Hπ, where γ is the appropriate sequence of
arrows taken by x to return to Δ.

Using twisting one gets that a fixed line not passing through the origin “sees”
the positive second Lyapunov exponent: it tends to be kicked further away from
the origin under most iterations. By general arguments one gets the following finite
formulation:

Lemma 3.1. There exists ε > 0 such that for every δ > 0 there exists n0 such
that if n > n0 and L ⊂ Hπ is a line not passing by the origin then the probability
(with respect to the invariant absolutely continuous probability measure μ on Δ)

that d(An(x)·L,0)
d(L,0) < eεn is at most δ (where d is the distance in R

A).

The relevance of this lemma is the following. We are trying to show that non-
integer points in the line R(1, ..., 1) can not converge to the integer lattice under
cocycle iteration. The lemma guarantees that points near the origin get kicked
away, on average, as we iterate the cocycle, and in fact this also work at the level
of lines.

The problem is that the cocycle is unbounded, so when a point very near the
origin is kicked away it may become close to another integer point. In a sense
there is some simple local dynamics (of a hyperbolic fixed point) combined which
may mix with “global transitions”, in a picture reminiscent of Smale’s horseshoe.
Such complication is addressed by a probabilistic argument, which forms the core
of [AF].

3.5.1. Stochastic modelling. We will consider first a somewhat simplified model.
Assume that

∫
‖A(x)‖1+δdμ(x) < ∞ for some δ. This is certainly false in our

setting, but allows us to focus already on a large part of the problem. We will
also assume that the matrix product arising from (f,A) is independent, rather
than almost independent. The ideas involved in getting to the almost independent
setting turn out to be of only technical interest.

Assume that there exists a positive measure set of parameters for which the
corresponding interval exchange transformation is not weak mixing. We recall that
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the iterates of the matrices A(x) have all entries positive thus the direction of h is
being expanded. By the Veech criterium, we know that Ak(x) · th is asymptotic
to some sequence pk ⊂ Hπ with integer coordinates, for some t ∈ R \ Z. Then
Lk(x) = Ak(x) · Rh − pk is a sequence of lines converging to the origin but not
passing through it.

There are only countable many possibilities for the Lk. Thus for every δ > 0
there exists some line L not passing through the origin, such that with positive
probability there exists z = z(x) ∈ L with d(Ak(x) · z(x),ZA) < δ for every k ≥ 0.
We will get to a contradiction by taking δ sufficiently small. Notice that L is parallel
to the positive cone (this ensures that the cocycle expands along L as well).

Taking the first iterate of the cocycle basically means choosing one of the count-
ably many possibilities for the matrix A = A(x). Given A, we produce a finite set
of lines L′, called the children of L, by the following rule. For each z ∈ L such that
d(z, 0) < δ and d(A · z, p) < δ for some p ∈ Z

A, L′ − p is a child of L. If p = 0 we
will say that the child is trivial.

It is clear that by making δ → 0, the non-trivial children become more rare.
In fact, a non-trivial child depends on the existence of some z which is close to
0 but A · z is close to a non-zero integer, so ‖A‖ is at least of order δ−1. This
will be central in the argument, as it allows us to concentrate on the trivial child
(at least under the simplified assumptions, otherwise non-trivial children are most
annoying).

Applying successively the cocycle, we get a sequence of finite sets of lines not
passing through the origin, and depending on x. Of course, for a given x this
sequence may collapse to the empty set in finite time. We will show that this
in fact happens for almost every x. This contradicts the assumption on L and
concludes the proof.

Let pn(L) be the probability that the process continues for at least n steps.
This is well-defined for all lines L (say, not passing through the origin and parallel
to the positive cone), not just the special one we defined (but we only arrive at a
contradiction if we prove that pn(L) → 0 for the special one).

We want to estimate pn(J), and show that pn(J) → 0 for all J . Of course,
if J is a line that is very close to the origin, then pn(J) will be close to 1 for a
long time. Thus the dependence on J is certainly important. We postulate that
pn(J) ≤ Ce−κnd(J, 0)−ρ for appropriate parameters κ, ρ > 0. This is coherent with
the idea that d(J, 0) small implies large survival times.

We prove this estimate by induction. For each matrix A that may be applied,
let JA be the set of children. Then clearly

pn+1(J) ≤
∑

P (A)
∑

J′∈JA

pn(J
′),

where p(A) is the probability of choosing A and we have used independence. Thus
it is enough to prove that∑

P (A)
∑

J′∈JA

d(J ′, 0)−ρd(J, 0)ρ < e−κ

for some κ, ρ > 0. We split the sum into two parts. The contribution of the trivial
child is bounded by ∑

P (A)d(A · J, 0)−ρd(J, 0)ρ.
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We want to show that this is less than 1 for small ρ > 0. For ρ = 0, this is actually
1. Using the hypothesis that

∫
‖A‖εdμ < ∞ for some ε > 0 (which is satisfied in

our setting [AGY]), one justifies taking the derivative with respect to ρ at ρ = 0.
It has the form

−
∑

P (A) ln
d(A · J, 0)
d(J, 0)

which is basically what is estimated by the lemma. Thus the derivative is negative
and for small ρ we have∑

P (A)d(A · J, 0)−ρd(J, 0)ρ < e−2κ

for some κ > 0.
We now consider the non-trivial children. It is easy to see that there are at

most about δ‖A‖−1 of those. On the other hand, a simple geometric estimate shows
that d(J ′, 0)−1 is at most about ‖A−1‖, since some point which is δ-near 0 is taken
d(J ′, 0) near a non-zero integer after applying A which has integer coordinates. We
can thus estimate the contribution of non-trivial children by∑

P (A)δ1−ρ‖A‖‖A−1‖ρ.

Under the simplifying integrability assumption, this is O(δ1−ρ) in δ for small ρ,
hence as δ → 0 the non-trivial children are asymptotically irrelevant and the result
follows.

3.5.2. Conditioning. We now describe how to get rid of the simplifying assump-
tion. Basically, nothing is assumed in the original [AF], but the argument is quite
technical. Let us thus assume that ‖A‖ε is integrable for small ε > 0, which was
unknown when [AF] was written but is now a theorem [AGY].

The basic idea is to exploit knowledge of “spatial localization” of the exploding
terms of the integral. This is explained by the following tale. Suppose that in the
stock market there are assets which yield a return, after one unit of time, of plus 0.9
or minus 0.5, with probability 1/2. Two strategies are being considered. Either each
time one chooses a single asset to invest, or each time one redistributes the money
equally among the assets. The first strategy yields almost sure ruin, though the
expectation of the fortune is actually exponentially large, but the second one makes
the speculator exponentially rich almost surely. We have treated the problem so far
under the framework of the second investment strategy, but there is determinism in
the problem, so the modelling by the first strategy is more accurate. Indeed, given
J , each choice of x initiates a civilization timeline, and at each unit of time the
entire civilization is subject to the same matrix. This explains why one can hope
for the almost sure collapse of the civilization started by L, even while the expected
number of children is infinite: the expectation of the logarithm of the number of
children is still finite.

Back to the problem, we take into account spatial localization by breaking
the set of matrices into pieces. One piece consists of a large finite set, with large
probability, Ω. The other pieces are formed by individual matrices outside Ω. Each
point x has then a history, described by which piece is visited as we iterate the
Rauzy algorithm.

We postulate that, by choosing Ω sufficiently large, for almost every x, the
probability of survival up to time n given that the history up to time n is the same
as for x, decreases exponentially according to a similar rule as described before:
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denoting this conditional probability pn(J |x) we have

pn(J |x) ≤ Cn(x)d(J, 0)
−ρ

where Cn(x) → 0 exponentially for almost every x. It is important to consider a
large set of Ω, instead of just letting each matrix to be a piece, otherwise the mod-
elling would become totally deterministic (probabilities are either 0 or 1). Notice
that the stochastic modelling elliminates, for instance, the need to account for the
precise position of the lines (and not merely the distance to 0), using the lemma.

The estimates are now mostly parallel to before. If A(x) ∈ Ω, pn+1(J |x)
becomes smaller than pn(J |RΔ(x)) by a definite factor. Thus Cn(x) involves (mul-
tiplicatively) a term basically e−κk where k is the number of visits to Ω up to n,
which is roughly of size n for large n since Ω has large probability. This provided δ
is sufficiently small, so that there is no need to account for non-trivial children in
Ω. When A(x) /∈ Ω, on the other hand, one accounts precisely for what happens,
and one has a product of terms which are polynomial in the size of the matrices one
visits outside Ω. By making Ω large, those visits become rare, and by integrability
of the logarithm of ‖A‖, this term becomes negligible compared to the first one.
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This note is an expanded version of my lectures given at the Clay summer
school in 2007.

1. Introduction: motivation

Let X be a projective algebraic variety defined over Q, that is, X is the set of
(equivalence classes of) zeros of homogeneous polynomials with coefficients in Q.
The set X(Q) of rational points in X consists of rational zeros of the polynomials.

The following is a classical question in number theory:

“understand the set X(Q) of rational points”.

More detailed questions can be formulated as follows:

(1) Is X(Q) non-empty?
(2) If non-empty, is X(Q) infinite?
(3) If infinite, is X(Q) Zariski dense in X?
(4) If Zariski dense, setting

XT := {x ∈ X(Q) : “ size”(x) < T},
what is the asymptotic growth rate of #XT as T → ∞?

c© 2010 Hee Oh
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(5) Interpret the asymptotic growth rate of #XT in terms of geometric in-
variants of X

(6) Describe the asymptotic distribution of XT as T → ∞?

A basic principle in studying these questions is that

(1.1) “the geometry of X governs the arithmetic of X”.

A good example demonstrating this philosophy is the Mordell conjecture proved by
Faltings [30]:

Theorem 1.2. If X is a curve of genus at least 2, then X(Q) is finite.

Note in the above theorem that a purely geometric property of X imposes a
very strong restriction on the set X(Q).

Smooth projective varieties are classified roughly into three categories accord-
ing to the ampleness of its canonical class KX. For varieties of general type (KX

ample), the following conjecture by Bombieri, Lang and Vojta is a higher dimen-
sional analogue of the Mordell conjecture [65]:

Conjecture 1.3. If X is a smooth projective variety of general type, then
X(K) is not Zariski dense for any number field K.

At the other extreme are Fano varieties (−KX ample). It is expected that a
Fano variety should have a Zariski dense subset of rational points, at least after
passing to a finite field extension of Q. Moreover Manin formulated conjectures in
1987 on the questions (4) and (5) for some special “size functions”, which were soon
generalized by Batyrev and Manin for more general size functions [1], and Peyre
made a conjecture on the question (6) [50].

In these lecture notes, we will focus on the question (4). First, we discuss the
notion of the size of a rational point in X(Q). One way is simply to look at the
Euclidean norm of the point. But this usually gives us infinitely many points of
size less than T , and does not encode enough arithmetic information of the point.

Height function—– A suitable notion of the size of a rational point is given by a
height function. For a general varietyX over Q and to every line bundle L of X over
Q, one can associate a height function HL on X(Q), unique up to multiplication by
a bounded function, via Weil’s height machine (cf. [38]). On the projective space
P
n, the height H = HOPn(1)

associated to the line bundle OPn(1) of a hyperplane is
defined by:

H(x) :=
√
x2
0 + · · ·+ x2

n

where (x0, · · · , xn) is a primitive integral vector representing x ∈ P
n(Q), which is

unique up to sign.
It is clear that there are only finitely many rational points in P

n(Q) of height
less than T , as there are only finitely many (primitive) integral vectors of Euclidean
norm at most T . Schanuel [57] showed that as T → ∞,

#{x ∈ P
n(Q) : HOPn(1)

(x) < T} ∼ c · Tn−1

for an explicit constant c > 0, and this is the simplest case of Manin’s conjecture.
For a general variety X over Q, a very ample line bundle L of X over Q defines

a Q-embedding ψL : X → P
n. Then a height function HL is the pull back of the
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height function HOPn(1)
to X(Q) via ψL. For an ample line bundle L, we set

HL = H
1/k

Lk

for k ∈ N such that Lk is ample.
Note that for any ample line bundle L,

#{x ∈ X(Q) : HL(x) < T} < ∞.

For a subset U of X and T > 0, we define

NU (L, T ) := #{x ∈ X(Q) ∩ U : HL(x) < T}.
Manin’s conjecture—–Manin’s conjecture (or more generally the Batyrev-Manin

conjecture) says the following (cf. [1]):

Conjecture 1.4. Let X be a smooth Fano variety defined over Q. For any
ample line bundle L of X over Q, there exists a Zariski open subset U of X such
that (possibly after passing to a finite field extension), as T → ∞,

NU (L, T ) ∼ c · T aL · (log T )bL−1

where aL ∈ Q>0 and bL ∈ Z≥1 depend only on the geometric invariants of L and
c = c(HL) > 0.

More precisely, the constants aL and bL are given by:

aL := inf{a : a[L] + [KX] ∈ Λeff(X)};
bL := the codimension of the face of Λeff(X) containing aL[L] + [KX] in its interior

where Pic(X) denotes the Picard group of X and Λeff(X) ⊂ Pic(X)⊗R is the cone
of effective divisors.

Remark 1.5. The restriction to a Zariski open subset is necessary in Conjec-

ture 1.4: for the cubic surface X:
∑3

i=0 x
3
i = 0, the above conjecture predicts the

T (log T )3 order of rational points of height
√∑3

i=0 x
2
i < T , but the curve Y given

by the equations x0 = −x1 and x2 = −x3 contains the T 2 order of rational points
of height bounded by T .

Note that the asymptotic growth of the number of rational points of bounded
height, which is arithmetic information on X, is controlled only by the geometric
invariants of X; so this conjecture as well embodies the basic principle (1.1) for
Fano varieties.

Conjecture 1.4 has been proved for smooth complete intersections of small
degree [6], flag varieties [31], smooth toric varieties [2], smooth equivariant com-
pactifications of horospherical varieties [60], smooth equivariant compactifications
of vector groups [11], smooth bi-equivariant compactifications of unipotent groups
[59] and wonderful compactifications of semisimple algebraic groups ([58] and [33]).
We refer to survey articles ([62], [63], [10]) for more backgrounds.

In the first part of these notes, we will discuss a recent work of Gorodnik and the
author [35] which solves new cases of Conjecture 1.4 for certain compactifications of
homogeneous varieties. In contrast to most of the previous works which were based
on the harmonic analysis on the corresponding adelic spaces in order to establish
analytic properties of the associated height zeta function, our approach is to use
the dynamics of flows on the homogeneous spaces of adele groups.



342 HEE OH

Approach—–We will be interested in the projective variety X which is the com-
pactification of an affine homogeneous variety U, and try to understand the asymp-
totic of the number of rational points of U of height less than T (note that U is a
Zariski open subset of X and hence it suffices to count rational points lying in U.).
More precisely, let U be an orbit u0G where G ⊂ PGLn+1 is an algebraic group
defined over Q and u0 ∈ P

n(Q). And let X ⊂ P
n be the Zariski closure of U, and

consider the height function H on X(Q) obtained by the pull pack of HOPn (1).
We attempt to forget about the ambient geometric space X for the time being

and to focus on the rational points U(Q) of the affine homogeneous variety U.
We would like to prove that

(1.6) NT := #{x ∈ U(Q) : H(x) < T} ∼ c · T a · (log T )b−1

for some a, c > 0 and b ≥ 1. How does one prove such a result? Or where should
the growth rate T a(log T )b−1 come from?

Consider for a moment how to count integral vectors of Euclidean norm less
than T in the plane. How does one know that the asymptotic of the number NT

of such integral vectors is of the form πT 2, as T → ∞? It is because that one can
show that NT is asymptotic to the area of disc of radius T and compute that the
area is πT 2, using calculus.

It turns out that one can follow the same basic strategy for counting rational
points. We will first understand the set U(Q) of rational points as a discretely
imbedded subset in certain ambient locally compact space and show that NT is
asymptotic to the volume of a suitably defined height ball in this ambient space.

What is this ambient space where the set U(Q) can be put as a discrete subset?
In the real algebraic variety U(R), why is U(Q) not discrete? It is because the
denominators of points can tend to infinity along prime numbers. The resolution
of this issue can be found precisely using the language of adeles. In section 2, we
define the adeles and discuss their basic properties.

Once we have defined the adelic space U(A) which contains U(Q) as a discrete
subset, we will be extending the height function H of X(Q) to a continuous proper
function on U(A), which we again denote by H, so that BT := {x ∈ U(A) : H(x) ≤
T} is a compact subset of U(A). Then

{x ∈ U(Q) : H(x) ≤ T} = U(Q) ∩BT .

Our techniques based on the dynamical approach work for the orbital counting
function. That is, we will be looking only at a single G(Q)-orbit in U(Q) at a time;
fixing a G(Q)-orbit O := u0G(Q) for u0 ∈ U(Q), what can we say about

NT (O) := #u0G(Q) ∩BT ?

Being able to count points in each orbit u0G(Q) is good news and bad news at
the same time; it gives finer information on the rational points U(Q), but does not
quite say about the behavior of the total U(Q), since there are oftentimes infinitely
many G(Q)-orbits in U(Q).

Denote by L the stabilizer subgroup of u0 in G. To summarize, we will have a
discrete G(Q)-orbit u0G(Q) = L(Q)\G(Q) in the homogeneous space u0G(A) =
L(A)\G(A) ⊂ U(A) and we would like to count points of the orbit u0G(Q) in a
growing sequence of compact subsets BT of L(A)\G(A).

In section 3, we explain a general strategy due to Duke-Rudnick-Sarnak [21]
on the orbital counting problem for [x0]Γ ∩BT in a homogeneous space L\G; here
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Γ is a lattice in a second countable locally compact group G, [x0]Γ is discrete in
L\G for [x0] = L, and {BT ⊂ L\G} is a family of compact subsets. This method
reduces the counting problem for NT (O) into understanding

(i) the asymptotic behavior of adelic periods L(Q)\L(A)gi, as gi → ∞ in
L(A)\G(A);

(ii) certain regularity problem for the volume of adelic height balls BT ⊂
L(A)\G(A).

The techniques needed to establish (ii) are completely disjoint from those for (i),
and this is where an input of algebraic/arithmetic geometry is needed. In section
4, we present the main ergodic result on the translates of semisimple periods in the
adelic homogeneous space based on the study of unipotent flows and establish (i)
when both G and L are connected semisimple and L is a maximal Q-subgroup of
G. In section 5, we explain how to deduce some cases of Manin’s conjecture using
this approach, which is the main result of [35]. We also explain the implications of
this result on the rational points of affine varieties.

In section 6, we deduce mixing theorems for adelic groups as a special case of
the results in section 4. We also explain in this section how the equidistribution of
Hecke points is related to the adelic mixing theorem. In section 7, we interpret a
quantitative adelic mixing theorem as a bound toward the Ramanujan conjecture
on the automorphic spectrum. In section 8, we explain how the mixing theorems
can be used to prove the equidistribution of symmetric periods, based on the special
geometric property of an affine symmetric space, called the wavefront property. This
approach gives an effective counting for the S-integral points on affine symmetric
varieties. In the last section 9, we discuss a problem of Linnik on the representations
of integers by an invariant polynomial, and extend the main result of [29] using the
ergodic result presented in section 4.

We have not sought at all to state the most general statements. On the contrary,
we will be speaking only on the simplest cases in many occasions, for instance, we
stick to the field of rational numbers Q, rather than a number field, and to the
homogeneous spaces L\G with L being a maximal connected Q-subgroup of G.

Acknowledgement: I gratefully acknowledge the collaborations with Alex Gorod-
nik and Yves Benoist. In particular, the results presented in sections 4 and 5 are
based on [35] and those in section 8 are based on [3]. I thank Peter Sarnak for
helpful comments on the preliminary version of these notes. I thank my parents
who took care of my baby Joy during the summer school. My research was partially
supported by NSF grant 0629322).

2. Adeles: definition and basic properties

In this section, we define the notion of adeles, and state some of their basic
properties as we would need (cf. [66], [51]).

2.1. Restricted topological product. Let Xp be a second countable locally
compact topological space for each p in a given countable index set I. The goal is
to construct a reasonable locally compact space which contains all Xp, p ∈ I. The
first attempt will be simply taking the direct product

∏
p Xp. However the direct

product topology does not yield a locally compact space unless either I is finite or
almost all Xp are compact.
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Hence we will do something else which will make the product a locally compact
space and this can be achieved by taking the restricted topological product. Suppose
that an open compact subset Kp ⊂ Xp is given for each p in a co-finite subset I0
of I.

Set

XI :=
∏
p

(Xp : Kp) = {(xp)p∈I ∈
∏
p

Xp : xp ∈ Kp for almost all p}.

We endow on XI the topology generated by subsets of the form
∏

p∈I Vp where Vp

is open in Xp and Vp = Kp for almost all p. The space X with this topology is
called the restricted topological product of Xp’s with respect to the distinguished
open subsets Kp’s. In the case when I is a finite set, XI is simply the direct product
of Xp, p ∈ I.

We need the following basic properties of XI :

Facts 2.1. .

(1) XI is a second countable locally compact space.
(2) Any compact subset of XI is contained in

XS := XS ×
∏
p/∈S

Kp

for some finite S ⊂ I.
(3) If μp’s are Borel measures on Xp’s such that μp(Kp) = 1 whenever p ∈ I0,

then the restricted product μ := ⊗∗
p∈Iμp on XI is defined as follows: first

for each finite subset S ⊂ I, define the measure μS on XS to be simply
the direct product

∏
p∈S μp ×

∏
p/∈S μp|Kp

.

Now for any f ∈ Cc(XI) whose support is contained in XS, set

μ(f) := μS(f).

It is easy to check that μ is well-defined since μS’s are compatible with each
other. Since XI can be written as the union ∪SX

S over finite subsets
S ⊂ I, μ defines a Borel measure on XI by the Riesz representation
theorem.

(4) If each Xp is a group (resp. ring), XI is a group (resp. ring) using the
componentwise operations. If μp is a (resp. left invariant) Haar measure
of Xp for each p ∈ I, then μ is a (resp. left-invariant) Haar measure of
XI .

2.2. Q is a lattice in the adele group A. Denote by R = {∞, 2, 3, · · · } the
set of all primes including the infinite prime ∞. For p = ∞, | · |∞ denotes the usual
absolute value on Q and for p finite, | · |p denotes the normalized p-adic absolute
value on Q, i.e., ∣∣∣pk a

b

∣∣∣
p
= p−k

if p does not divide ab. We obtain the locally compact fields R = Q∞ and Qp’s by
taking the completions of Q with respect to | · |p’s. We set

Zp := {x ∈ Qp : |x|p ≤ 1}
for each p ∈ Rf := R − {∞}.



COUNTING RATIONAL POINTS 345

Definition 2.2. The adele ring A over Q is defined to be the restricted topo-
logical product of Q∞ := R and (Qp,Zp)’s for p ∈ Rf , that is,

A :=
∏
p∈R

(Qp : Zp).

Since every element of Q belongs to Zp for almost all p, Q can be considered
as a subset of A under the diagonal embedding. That Q is a discrete subset of A
follows from the following observation, which shows that 0 is an isolated point in
A:

{x ∈ Q : |x|∞ < 0.5, x ∈ Zp for all p ∈ Rf} = {0}.
Moreover Q is a lattice in A, that is, the quotient of A by Q has finite volume

(with respect to a Haar measure of A). To show this, we consider the ring Af

of finite adeles, i.e., the subring of A whose ∞-component is trivial. Note that
Af =

∏
p∈Rf

(Qp : Zp), and that every element of A can be written as (x∞, xf )

with x∞ ∈ R and xf ∈ Af . We set Zf =
∏

p∈Rf
Zp.

Lemma 2.3. .

(1) Q is dense in Af .
(2) A = Q+ ((0, 1]× Zf ).
(3) Q is a lattice in A.

Proof. For (1), it suffices to show that Z is dense in Zf . Any open subset
in Zf contains a subset of the form

∏
p∈S(ap + pmpZp) ×

∏
p/∈S Zp for some finite

subset S. Hence (1) follows from the Chinese remainder theorem, which says that
there exists x ∈ Z such that x = ap mod pmp for all p ∈ S.

(1) implies that Af = Q + Zf , as Zf is an open subgroup of Af . Now for
(x∞, xf ) ∈ A, we have xf = yf+z ∈ Zf+Q. Hence (x∞, xf ) = (x∞−z, yf )+(z, z).
Now x∞ − z = y∞ + n for some y∞ ∈ (0, 1] and n ∈ Z. Hence

(x∞, xf ) = (y∞, yf − n) + (n+ z, n+ z),

proving (2). (3) follows from (2). �

Let U be an affine variety defined over Q. Choose any Q-isomorphism α of
U onto a Zariski closed Q-subvariety U′ of the N -dimensional affine space AN

for some N . Then the adele space U(A) corresponding to U is defined to be the
restricted topological product of U(Qp)’s with respect to α−1(U′ ∩ Z

N
p )’s. Note

that this definition of U(A) does not depend on the choice of a Q-isomorphism α.
The set U(Q) imbeds into U(A) as a discrete subset.

The adele space U(A) for a general variety U is then defined using the open
coverings of U by affine subsets.

2.3. G(Q) is a lattice in G(A) if G admits no non-trivial Q-character.
Let G ⊂ GLn be a connected Q-group. For a commutative ring J , GLn(J) is
defined to be the matrices with entries in J and with determinant being a unit in
J . We set

G(J) = G ∩GLn(J).

Note that G(Zp) is a compact open subgroup of G(Qp) for each finite p. We
claim that the adele space G(A) associated to G coincides with the restricted
topological product of G(R) and G(Qp)’s with respect to G(Zp)’s for p ∈ Rf .
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To see this, we use the restriction, say α, to G of the map GLn → An2+1 given

by g �→ (g, det(g)−1), where An2+1 is the n2 + 1-dimensional affine space. Since

α−1(α(G) ∩ Z
n2+1
p ) = G(Zp), this shows that G(A) defined at the end of the

previous subsection is equal to
∏

p∈R(G(Qp) : G(Zp)).

We note that G(A), with the component-wise group operation, is a second
countable locally compact group with a (left-invariant) Haar measure μ := ⊗∗μp

where μp is a (left-invariant) Haar measure on G(Qp) with μp(G(Zp)) = 1 for each
finite p ∈ Rf .

Theorem 2.4. [7] If G admits no non-trivial Q-character, then G(Q) is a
lattice in G(A).

We give an outline of the proof of this theorem for G = SLn. We often write an
element of G(A) as (g∞, gf ) ∈ G(R)×G(Af ), where G(Af ) denotes the subgroup
of finite adeles, i.e., with the trivial component at ∞.

Theorem 2.5. Let G = SLn.

(1) G(Q) is dense in G(Af ).
(2) G(Q)\G(A) = Σ0 ×

∏
p∈Rf

G(Zp) where Σ0 = G(Z)\G(R).

(3) G(Q) is a lattice in G(A).

Proof. For 1 ≤ i, j ≤ n, denote by Uij(Qp) (resp. Uij(Q)) the unipotent one
parameter subgroup In +QpEi,j (resp. In +QEi,j) where Eij is the matrix whose
only non-zero entry is 1 at the (i, j)-entry. Since Q is dense in Af and Uij(Qp)’s
generate SLn(Qp), SLn(Qp) is contained in the closure of SLn(Q) in SLn(Af ), and
hence any finite product of SLn(Qp)’s is contained in the closure of SLn(Q) in
SLn(Af ). Since they form a dense subset in SLn(Af ), this proves (1). By (1), we
have

SLn(Af ) = SLn(Q)
∏

p∈Rf

SLn(Zp).

It is easy to deduce (2) and (3) from this, using the facts that SLn(Z) = SLn(Q) ∩∏
p∈Rf

SLn(Zp) and that SLn(Z) is a lattice in SLn(R). �

3. General strategy on orbital counting

We now explain a general strategy for the orbital counting. This, at least in
an explicit form, was first described and used in the work of Duke-Rudnick-Sarnak
[21].

Let G be a locally compact second countable group and L < G a closed sub-
group. Let Γ ⊂ G be a lattice such that the intersection L ∩ Γ is a lattice in L.
This in particular implies that both G and L are unimodular, and that the orbit
x0Γ is a discrete subset of L\G for x0 = [L]. For a given sequence of growing
compact subsets Bn ⊂ L\G, we would like to understand the asymptotic behavior
of #Bn ∩ x0Γ as n → ∞. Heuristics suggest that

#Bn ∩ x0Γ ∼ ν(Bn)

where ν is a measure on L\G determined as follows:

Notation 3.1. Let μG and μL be the Haar measures on G and L such that
μG(Γ\G) = 1 = μL(Γ ∩ L\L). There exists the unique G-invariant measure ν on
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L\G which is compatible with μG and μL, in the sense that for any ψ ∈ Cc(G),∫
G

ψ dμG =

∫
[g]∈L\G

∫
h∈L

ψ(hg)dμL(h)dν([g]).

Definition 3.2 (Counting function). Define the following counting function
on Γ\G:

Fn(g) =
∑

γ∈Γ∩L\Γ
χBn

(x0γg).

Noting that

Fn(e) = #Bn ∩ x0Γ

we will present two conditions which guarantee that

Fn(e) ∼ ν(Bn) as n → ∞.

We denote by P(Γ\G) the space of Borel probability measures on Γ\G and
by Cc(Γ\G) the space of continuous functions on Γ\G with compact support. For
a subgroup K < G, Cc(Γ\G)K denotes a subset of Cc(Γ\G) consisting of right
K-invariant functions.

Since Γ\ΓL = (Γ ∩ L)\L is a closed orbit in Γ\G, we may consider μL as a
probability measure in Γ\G supported in Γ\ΓL.

Definition 3.3. .

(1) For μ ∈ P(Γ\G) and g ∈ G, we denote by g.μ the translation of μ by g,
i.e.,

g.μL(E) := μL(Eg−1)

for any Borel subset E of Γ\G.
(2) For a subset F ⊂ Cc(Γ\G) and a sequence νi ∈ P(Γ\G), we say that νi

weakly converges to μ, as i → ∞, relative to F if for all ψ ∈ F ,

lim
i→∞

νi(ψ) = μ(ψ).

(3) For a sequence gi ∈ L\G, the translate Γ\ΓLgi is said to become equidis-
tributed in Γ\G, as i → ∞, relative to the family F if the sequence (gi).μL

weakly converges to μG relative to F .
(4) If F = Cc(Γ\G), we omit the reference to F in (2) and (3).

Definition 3.4. Let K be a compact subgroup of G. A family {Bn} of K-
invariant compact subsets of L\G is called K-well-rounded if there exists c > 0
such that for every ε > 0, there exists a neighborhood Uε of e in G satisfying

ν(BnUεK − ∩g∈UεKBng) < c · ε · ν(Bn)

for all large n. For K = {e}, we simply say that Bn is well-rounded.

Proposition 3.5. Let K be a compact subgroup of G and {Bn ⊂ L\G} a
sequence of K-invariant compact subsets with ν(Bn) → ∞ as n → ∞. Assume that
the following hold:

(1) For any sequence gi → ∞ in L\G, the translate Γ\ΓLgi becomes equidis-
tributed in Γ\G relative to the family Cc(Γ\G)K ;

(2) The sequence {Bn} is K-well-rounded.
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Then as n → ∞
#x0Γ ∩Bn ∼ ν(Bn).

Proof. The proof consists of two steps. In the first step, we show that the
condition (1) implies the weak-convergence of 1

ν(Bn)
Fn, i.e., for all ψ ∈ Cc(Γ\G)K ,

lim
n→∞

1

ν(Bn)

∫
Γ\G

Fn(x)ψ(x) dμG(x) =

∫
Γ\G

ψ(x) dμG(x) .(3.6)

Observe that

∫
Γ\G

Fnψ dμG =

∫
Γ\G

⎛
⎝ ∑

γ∈Γ∩L\Γ
χBn

(x0γg)ψ(g)

⎞
⎠ dμG(g)

=

∫
Γ∩L\G

χBn
(x0g)ψ(g) dμG(g)

=

∫
L\G

∫
Γ∩L\L

χBn
(x0g) ψ(hg) dμL(h)dν(g)

=

∫
x0g∈Bn

(∫
h∈Γ\ΓL

ψ(hg)dμL(h)

)
dν(g)

=

∫
x0g∈Bn

(∫
Γ\G

ψ(x) d(g.μL)(x)

)
dν(g)

By (1), for any ε > 0, there exists a compact subset Cε ⊂ L\G such that

sup
x0g/∈Cε

|
∫

ψd(g.μL)−
∫

ψdμG| ≤ ε.

Hence

|
∫
x0g∈Bn

(∫
Γ\G

ψ(x) d(g.μL)(x)

)
dν(g)− ν(Bn)

∫
ψdμG|

≤ 2‖ψ‖∞ν(Cε ∩Bn) + εν(Bn).

Since ν(Bn) → ∞, we deduce that

lim sup
n

∣∣∣∣∣
1

ν(Bn)

∫
x0g∈Bn

(∫
Γ\G

ψ(x) d(g.μL)(x)

)
dν(g)−

∫
ψdμG

∣∣∣∣∣ ≤ ε.

Hence (3.6) follows from (1).
In order to deduce the pointwise convergence from the weak convergence, we

will now use the assumption that {Bn} is K-well rounded. Fix ε > 0 and Uε ⊂ G
be a symmetric open neighborhood of e in G as in the definition of the K-well-
roundedness of Bn. Define F+

n,ε and F−
n,ε similarly to Fn but using B+

n,ε := BnUεK

and B−
n,ε := ∩u∈UεKBnu respectively, in place of Bn.

It is easy to check that for all g ∈ UεK,

(3.7) F−
n,ε(g) ≤ Fn(e) ≤ F+

n,ε(g).

Choose a K-invariant non-negative continuous function ψε on Γ\G with support in
Γ\ΓUεK and with the integral

∫
Γ\G ψεdμG one.
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By integrating (3.7) against ψε, we have

〈F−
n,ε, ψε〉 ≤ Fn(e) ≤ 〈F+

n,ε, ψε〉.
Applying (3.6) to F±

n,ε, which we may since ν(B±
n,ε) → ∞, we have

〈F±
n,ε, ψε〉 ∼n ν(B±

n,ε).

Therefore there are constants c1, c2 > 0 such that for any ε > 0,

lim sup
n

Fn(e)

ν(Bn)
≤ (1 + c1ε) · lim sup

n

ν(B+
n,ε)

ν(Bn)
≤ (1 + c1ε)(1 + c2ε).

Similarly,

(1− c1ε)(1− c2ε) ≤ lim inf
n

Fn(e)

ν(Bn)
.

Since ε > 0 is arbitrary, it follows that

lim
n→∞

Fn(e)

ν(Bn)
= 1.

�
Remark 3.8. The above proposition was considered only for K = {e} in [21]

(also in [26]). In applications where G and L are (the identity components of) real
Lie groups, this is usually sufficient. However when G and L are the adelic groups
associated to non-simply connected semisimple Q-groups, the equidistribution in
Prop. 3.5 (1) does not usually hold for all of Cc(Γ\G) (cf. Theorem 4.3). Hence it
is necessary to consider the above modification by introducing compact subgroups
K.

Let μn ∈ P(Γ\G) denote the average of measures x.μL, x ∈ Bn: for ψ ∈
Cc(Γ\G),

μn(ψ) :=
1

ν(Bn)

∫
x∈Bn

(x.μL)(ψ) dν(x) =
1

ν(Bn)

∫
x∈Bn

∫
Γ∩L\L

ψ(hx) dμL(h) dν(x).

The proof of the above proposition yields the following stronger version:

Proposition 3.9. Let K be a compact subgroup of G and {Bn ⊂ L\G} a
sequence of K-invariant compact subsets with ν(Bn) → ∞ as n → ∞. Suppose:

(1) μn weakly converges to μG relative to Cc(Γ\G)K;
(2) The sequence {Bn} is K-well-rounded.

Then as n → ∞,
#x0Γ ∩Bn ∼n ν(Bn).

4. Equidistribution of semisimple periods via unipotent flows

Let G ⊂ GLn be a connected semisimple algebraic Q-group and L a connected
semisimple Q-subgroup of G. Note that G(Q)\G(A) and L(Q)\L(A) have finite
volumes by Theorem 2.4. We are interested in the asymptotic behavior of the
translate

L(Q)\L(A)gi ⊂ G(Q)\G(A)

as gi → ∞ in L(A)\G(A).
We hope that the translate L(Q)\L(A)gi becomes equidistributed in the space

G(Q)\G(A) as gi → ∞ in L(A)\G(A). One obvious obstruction is the existence
of a proper Q-subgroup M of G which contains L properly, since the sequence
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L(Q)\L(A)gi then remains entirely inside the closed subset M(Q)\M(A) for gi ∈
M(A), and hence the desired equidistribution cannot happen for those sequences
gi ∈ M(A).

In the case when both G and L are simply connected, this is the only ob-
struction. In the rest of this section, we assume that L is a maximal connected
Q-subgroup of G, unless mentioned otherwise. We closely follow the exposition in
[35] to which we refer for details.

Theorem 4.1. Suppose that both G and L are simply connected. Then
L(Q)\L(A)gi becomes equidistributed in G(Q)\G(A) for any sequence gi → ∞ in
L(A)\G(A).

In the general case, when G and L are not necessarily simply connected, the
above theorem does not hold, because there are many finite index subgroups of
G(A) which contain G(Q) as a lattice and the entire dynamics may happen only
in these smaller pieces of G(Q)\G(A).

To overcome this issue, we consider a simply connected covering π : G̃ → G
over Q. The map π induces a map from G̃(A) to G(A), which we again denote by
π by abuse of notation.

Lemma 4.2. For any compact open subgroup W of G(Af ), the product

GW := G(Q)π(G̃(A))W

is a normal subgroup of G(A) with finite index.

Theorem 4.3. [35] Fix a compact open subgroup W of G(Af ). Then for any
gi → ∞ in L(A) ∩ GW \GW , the translate L(Q)\(L(A) ∩ GW )gi becomes equidis-
tributed in G(Q)\GW relative to the family Cc(G(Q)\GW )W .

Analogous statement for L being a maximal Q-anisotropic torus was proved in
[64] for G = PGL2 and in [23] for G = PGL3.

In the rest of this section, we will outline the proof of Theorem 4.1; so we
assume that both G and L are simply connected. The first step is to reduce the
equidistribution problem in the homogeneous spaces of an adele group to the S-
algebraic setting, using the strong approximation theorem.

It is convenient to define the following:

Definition 4.4. .

(1) For a semisimple Q-subgroup L of G, an element p ∈ R is called isotropic
for L if N(Qp) is non-compact for any non-trivial normal Q-subgroup N
of L.

(2) For a semisimple Q-subgroup L of G, an element p ∈ R is called strongly
isotropic for L if N(Qp) is non-compact for any non-trivial normal Qp-
subgroup N of L.

(3) A finite subset S of R is called strongly isotropic (resp. isotropic) for L if
S contains a strongly isotropic (resp. isotropic) p for L.

We fix a finite subset S ⊂ R containing ∞ in the rest of this section. We set

GS :=
∏
p∈S

G(Qp).

Denoting by G(AS) the subgroup of G(A) with trivial S-components, the group
G(A) can be naturally identified with the product GS ×G(AS).
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Theorem 4.5 (Strong approximation property). Let S be G-isotropic. Then
for any compact open subgroup WS of G(AS),

G(Q)WS = G(AS).

See [51, 7.4].
Hence any element g ∈ G(A) can be written as

g = (γg, γg)(gS, w)

where γg ∈ G(Q), gS ∈ GS and w ∈ WS . Note that gS is determined uniquely up
to the left multiplication by an element of G(Q) ∩WS .

Definition 4.6. A subgroup Γ of G(Q) is called an S-congruence subgroup if
Γ = G(Q) ∩WS for some compact open subgroup WS of G(AS).

Note that an S-congruence subgroup is a lattice in GS , embedded diagonally.

Example 4.7. If S = {∞, p} and W :=
∏

q 	=p SLn(Zq), then the diagonal

embedding of Γ = SLn(Q) ∩W = SLn(Z[1/p]) is a lattice in SLn(R)× SLn(Qp).

Proposition 4.8. Let S be isotropic for both G and L, and WS a compact
open subgroup of G(AS). Set Γ := G(Q) ∩WS.

(1) The map g �→ gS induces a GS-equivariant topological isomorphism

Φ : G(Q)\G(A)/WS → Γ\GS .

(2) For any g = (γg, γg)(gS, w) ∈ G(A), the map Φ, via the restriction, in-
duces the topological isomorphism

G(Q)\G(Q)L(A)gWS/WS � Γ\Γγ−1
g LSγggS .

Proof. Since the map g �→ (gS , w) induces a GS-equivariant homeomorphism
between G(Q)\G(A) and Γ\(GS × WS), (1) follows. The strong approximation
theorem 4.5 applied to L implies

L(A) = L(Q)LS(gWSg
−1 ∩ L(AS)).

Hence any x ∈ L(A) can be written, modulo L(Q), as (xS, gw
′g−1) for some

w′ ∈ WS and xS ∈ LS . Now

xg = (γg, γg)(γ
−1
g xSγggS , ww

′).

Hence Φ[xg] is represented by γ−1
g xSγggS in Γ\GS . �

The above proposition implies the following:

Lemma 4.9 (Basic Lemma). Let S be isotropic both for G and L. For a se-
quence g ∈ L(A)\G(A) going to infinity, the following are equivalent:

• The translate Ỹg := L(Q)\L(A)g becomes equidistributed in

X̃ := G(Q)\G(A);
• For any compact open subgroup WS of G(AS) and the corresponding S-

congruence subgroup Γ = G(Q)∩WS, the translate Yg := Γ\Γγ−1
g LSγggS

becomes equidistributed in X := Γ\GS.
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Proof. Let μ̃g, μ̃, μg and μ be the invariant probability measures on Ỹg, X̃,

Yg and X respectively. Note that
⋃

WS
Cc(X̃)WS , where the union is taken over all

open compact subgroups WS of G(AS), is dense in Cc(X̃), and that any function

f̃ ∈ Cc(X̃)WS corresponds to a unique function f ∈ Cc((G(Q) ∩ WS)\GS), and
vice versa, by Proposition 4.8. Moreover

μ̃g(f̃) = μg(f) and μ̃(f̃) = μ(f).

Therefore the claim follows.
�

In the following theorem, let G be a connected simply connected semisimple Q-
group and {Li} a sequence of simply connected semisimple Q-groups of G. Suppose
that S is strongly isotropic for all Li. Let Γ be an S-congruence subgroup of G(Q),
and denote by μi the invariant probability measure supported on the closed orbit
Γ\ΓLi,S .

The following theorem is proved in [35], generalizing the works of Mozes-Shah
[46], and of Eskin-Mozes-Shah ([27], [25]).

Theorem 4.10. Let {gi ∈ GS} be given.

(1) If the centralizer of each Li is Q-anisotropic, then (gi).μi does not escape
to infinity, that is, for any ε > 0, there is a compact subset Ω ⊂ Γ\GS

such that

(gi).μi(Ω) > 1− ε for all large i.

(2) If ν ∈ P(Γ\GS) is a weak-limit of (gi).μi, then the following hold:
•

supp(ν) = Γ\ΓgΛ(ν)
where Λ(ν) := {x ∈ GS : x.ν = ν}, g ∈ GS and gΛ(ν)g−1 is a
finite index subgroup of MS for some connected Q-group M with no
non-trivial Q-character.

• For some γi ∈ Γ,

γiLiγ
−1
i ⊂ M

and for some hi ∈ LS, the sequence γihigi converges to g.

The proof of this theorem is based on the theory of unipotent flows on homo-
geneous spaces. To see which unipotent flows we use, pick p ∈ S such that each Li

has no anisotropic Qp-factor. Since S is finite, we may assume the existence of such
p, by passing to a subsequence if necessary. Then Li(Qp) is generated by unipotent
one-parameter subgroups in it and acts ergodically on each Γ\ΓLi,S . From this, we
deduce that there exists a one-parameter unipotent subgroup Ui in Li(Qp) which

acts ergodically on Γ\ΓLi,S . Then U ′
i := g−1

i Uigi acts ergodically on Γ\ΓLi,Sgi and
the measure (gi).μi is a U ′

i -invariant ergodic measure. We then need to understand
the limiting behavior of invariant ergodic measures on Γ\GS under unipotent one
parameter subgroups.

The rest of the proof is then based on the generalization to the S-arithmetic
setting of theorems of Mozes-Shah on limits of ergodic measures invariant under
unipotent flows [46] and of Dani-Margulis [16] on the behavior of unipotent flows
near cusps. Main ingredients of the proof are the measure classification theorem
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of Ratner [52], generalized in the S-arithmetic setting by Ratner [53] and inde-
pendently by Margulis-Tomanov [43], and the linearization methods developed by
Dani-Margulis [17].

Note that g → ∞ in L(A)\G(A) if and only if (gS , γg) → ∞ in LS\GS ×
L(Q)\G(Q)/Γ. Therefore, using the Basic lemma 4.9, Theorem 4.1 follows from
the following corollary of Theorem 4.10:

Corollary 4.11. Suppose that L is a maximal connected Q-subgroup of G.
For (gi, δi) → ∞ in LS\GS × Γ\G(Q)/L(Q) the sequence Γ\ΓδiLSgi becomes
equidistributed in Γ\GS.

5. Well-rounded sequence and Counting rational points

Let G be a connected semisimple algebraic Q-group and L a semisimple max-
imal connected Q-subgroup of G. Let U = L\G and u0 = [L].

Theorem 4.3 yields the following corollary by Proposition 3.5:

Corollary 5.1. If {BT ⊂ L(A)\G(A)} is a family of compact subsets which
is W -well-rounded for some compact open subgroup W of G(Af ), then

#u0G(Q) ∩BT ∼ ν(BT ∩ u0GW )

provided ν(BT ∩ u0GW ) → ∞, where ν is the invariant measure on u0GW which
is compatible with invariant probability measures on G(Q)\GW and L(Q)\(GW ∩
L(A)).

Proof. In order to apply Proposition 3.5, we set G = GW , L = GW ∩ L(A)
for L = StabG(u0) and Γ = G(Q). By Theorem 4.3, the translate Γ\ΓLx becomes
equidistributed in Γ\G relative to Cc(Γ\G)W , as x → ∞ in L\G. Hence the claim
follows from Proposition 3.5. �

5.1. Rational points on projective varieties. LetG be a connected semisim-
ple algebraic Q-group with a Q-rational representation G → GLn+1. Let U :=
u0G ⊂ P

n for some u0 ∈ P
n(Q). Let X ⊂ P

n denote the Zariski closure of U,
which is then a G-equivariant compactification of U. We assume that the stabi-
lizer L in G of u0 is connected and semisimple.

Let L be the line bundle of X given by the pull back of the line bundle OPn(1).
Then L is very ample and G-linearized. Let s0, · · · , sn be the global sections of L
obtained by pulling back the coordinate functions xi’s.

Recall that the height function HL on X(Q) is then given as follows: for x ∈
X(Q),

(5.2) HL(x) := HOPn (1)(x) =
√

x2
0 + · · ·+ x2

n

where (x0, · · · , xn) is a primitive integral vector proportional to (s0(x), · · · , sn(x)).
In order to extend HL to U(A), we assume that there is a G-invariant global section
s of L such that U = {s �= 0}.

Definition 5.3. Define HL : U(A) → R>0 by

HL(x) :=
∏
p∈R

HL,p(xp) for x = (xp)



354 HEE OH

where

HL,p(xp) =

⎧⎨
⎩
max0≤i≤n

∣∣∣ si(xp)
s(xp)

∣∣∣
p

for p finite
√

∑

i si(x∞)2

| s(x∞)|∞ for p = ∞
.

Observe that this definition of HL agrees with the one in (5.2) on U(Q), using
the product formula

∏
p∈R | s(x)|p = 1 for x ∈ U(Q).

Set

BT := {x ∈ U(A) : HL(x) ≤ T};
WL := {g ∈ G(Af ) : HL(xg) = HL(x) for all x ∈ U(A)}.

Then WL is an open compact subgroup of G(Af ) under which BT is invariant.
In view of Corollary 5.1, we would like to show that BT ∩ u0GWL

is WL-well
rounded. So far we have completely ignored any geometry of X; here is the place
where it enters into the counting problem of rational points.

In the following theorem, we suppose that there are only finitely many G(A)-
orbits in U(A). This finiteness condition is equivalent to that G(Qp) acts transi-
tively on U(Qp) for almost all p, as well as to that there are only finitely many
G(Q)-orbits in U(Q). This is always satisfied if L is simply connected. Borovoi [35]
classified symmetric spaces L\G with this finiteness property when G is absolutely
simple.

Theorem 5.4. For any x0 ∈ U(A), we have

(1) the family {x0GWL
∩BT } is WL-well rounded;

(2) for some a ∈ Q>0 and b ∈ Z≥1 (explicitly given in terms of div(s) and the
canonical class KX),

Vol(x0GWL
∩BT ) � T a log T b−1

(� means the ratio of the two sides is between bounded constants uniformly
for all T > 1).

To give some idea of the proof, consider the height zeta function on x0G(A):

η(s) :=

∫
x0G(A)

HL(x)
−sdν(x).

Understanding the analytic properties of η provides the asymptotic growth of
ν(x0G(A)∩BT ) by Tauberian type argument. By the assumption on the finiteness,
x0G(Qp) = U(Qp) for almost all p, and hence for some finite subset S ⊂ R,

η(s) =
∏
p∈S

∫
xpG(Qp)

H−s
L,p(yp) dνp(yp) ·

∏
p/∈S

∫
U(Qp)

H−s
L,p(yp) dνp(yp)

where ν = ⊗∗νp and x = (xp). Using the equivariant resolution of singularities and
by passing to a finite field extension, we may assume that X is smooth with X \U
a strict normal crossing divisor consisting of geometrically irreducible components:

X \U = ∪α∈ADα.

If ω denotes a nowhere zero differential form on U of top degree, we write

div(s) =
∑
α∈A

mαDα and − div(ω) =
∑
α∈A

nαDα
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for mα ∈ N and nα ∈ Z. Each of the local integral
∫
U(Qp)

H−s
L,p(yp) dνp(yp) admits

a formula analogous to Denef’s formula for Igusa zeta function. And putting these
together, one can regularize η(s) by the Dedekind zeta function and obtain that
η(s) has a meromorphic continuation to the half plane �(s) ≥ a− ε for some ε > 0
with a unique pole at s = a of order b, where

a = max
α∈A

nα

mα
and b = #{α ∈ A :

nα

mα
= a}.

This argument has been carried out by Chambert-Loir and Tschinkel [11]. We have
that a > 0 (see [5]) and by Tauberian argument that

ν(x0G(A) ∩BT ) ∼ c · T a(log T )b−1.

Note here that using the finiteness of G(A)-orbits on U(A), the computation
for the local integrals over xpG(Qp) at almost all p becomes that over X(Qp) and
hence a geometric problem. Without this assumption, one probably needs to use
motivic integration.

Since x0G(A) can be covered by finitely many translates of x0GWL
, it is easy to

deduce from here that ν(x0GWL
∩ BT ) � T a(log T )b−1, although it does not yield

the asymptotic equality. The WL-well-roundedness of the sequence x0GWL
∩ BT

does not immediately follow from this as well, but requires knowing a subtle Hölder
property of local integral at ∞ (see Benoist-Oh [3], or Gorodnik-Nevo [34]).

Theorem 5.5. Assume that

(i) L is a maximal connected Q-subgroup of G;
(ii) there are only finitely many G(A)-orbits in U(A).

Then

(1) for any u0 ∈ U(Q),

#{x ∈ u0G(Q) : HL(x) < T} ∼ ν(BT ∩ u0GWL
)

where ν is the invariant measure on u0GWL
which is compatible with in-

variant probability measures on G(Q)\GWL
and L(Q)\(GWL

∩ L(A)).
(2) there exist a ∈ Q>0 and b ∈ N (explicitly given in terms of div(s) and the

canonical class of X) such that

#{x ∈ U(Q) : HL(x) < T} � T a log T b−1.

Generalizing the work of De Concini and Procesi [18] on the construction of
the wonderful compactification of symmetric varieties, Luna introduced in [42] the
notion of a wonderful variety: a smooth connected projective G-variety X is called
wonderful of rank l if (1) X contains l irreducible G-invariant divisors with strict
normal crossings, (2) G has exactly 2l-orbits in X. In particular, a wonderful
variety is of Fano type. For a G-homogeneous variety U, a wonderful variety X is
called the wonderful compactification of U if it is a G-equivariant compactification
of U. Using the work of Brion on the computation of Pic(X) and Λeff(X) etc., we
can verify that a = aL and b = bL as predicted by Manin and the height function HL

associated to a very ample line bundle L of X arises as described in the beginning
of (5.1) provided L has finite index in its normalizer. Therefore we deduce the
following special case of Manin’s conjecture.
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Theorem 5.6. Under the same assumption as in Theorem 5.5, let X be a
wonderful variety. Then for any ample line bundle L of X over Q,

#{x ∈ U(Q) : HL(x) < T} � T aL log T bL−1

where aL and bL are as in Manin’s conjecture. Moreover if G is simply connected,
there exists c > 0 such that

#{x ∈ U(Q) : HL(x) < T} ∼ c · T aL log T bL−1.

The above theorem applies to the wonderful compactification of a connected
adjoint semisimple algebraic group G, since G can be identified with Δ(G)\G×G
where Δ(G) is the diagonal embedding of G into G×G. This case was previously
obtained in [58] with rate of convergence and an alternative approach was given in
[33] (see [61] for the comparison of two methods).

5.2. Rational points on affine varieties. The main difference of the count-
ing problem between an affine variety V and a Zariski open subset U of a projective
variety X lies in the way of defining a height function. Recall that a height function
on U is obtained by pulling back the height function on the projective space into
which X is embedded. For an affine variety V in an affine n-space, one could also
try to embed it into a projective space and use the height function there. However it
is natural to ask if the following definition of a height works: for x = (xp) ∈ V(A),

H(x) :=
∏
p∈R

‖xp‖p,

where ‖ · ‖∞ is the Euclidean norm on R
n, and ‖ · ‖p is the p-adic maximum norm

on Q
n
p for each finite p.
For a general affine variety V (for instance, for the affine n-space), this may

not be well-defined. We discuss the case of homogeneous affine varieties in the
following.

Let G be a connected semisimple algebraic Q-group with a Q-rational repre-
sentation G → GLn. Fix a non-zero vector v0 ∈ Q

n such that the orbit V = v0G is
an affine Q-subvariety. We assume that the stabilizer L in G of v0 is a semisimple
maximal connected Q-subgroup of G.

Lemma 5.7. For almost all p,

δp := min
x∈V(Q)

Hp(x) := ‖x‖p ≥ 1.

Proof. It is well known that there exists a G-invariant non-zero homogeneous
polynomial f with integral coefficients, that is, V ⊂ {f = r} for some r ∈ Q \ {0}.
Now for any p coprime to r as well as to the coefficients of f , we claim that δp ≥ 1.
Suppose not; for some x ∈ V(Q), p divides each coordinate of x. Write x = pkx′

where k ≥ 1 and the denominator of any coordinate of x′ is divisible by p. Now
if d is the degree of f , f(x) = pkdf(x′) = r and |f(x′)|p ≤ 1. Hence |r|p ≤ p−kd,
yielding contradiction. �

We write an element of V(Q) as
(

x1

x0
, · · · , xn

x0

)
where x0, · · · , xn ∈ Z, x0 > 0

and g.c.d(x0, · · · , xn) = 1.

Lemma 5.8. For x ∈ V(Q),

H(x) �
√

x2
0 + · · ·+ x2

n,
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in the sense that the ratio is between two bounded constants uniformly for all x ∈
V(Q).

Proof. By the product formula,

H(x) =
∏
p

|x0|p ·H(x)

≤
∏
p

|x0|p

√√√√ n∑
i=1

x2
i

x2
0

+ 1 ·
∏

p∈Rf

max
1≤i≤n

{ |xi|p
|x0|p

, 1}

≤
√ ∑

0≤i≤n

x2
i ·

∏
p∈Rf

max
0≤i≤n

|xi|p =

√ ∑
0≤i≤n

x2
i .

By Lemma 5.7 and its proof,

‖x‖p = max
i

{ |xi|p
|x0|p

, δp}

for some 0 < δp ≤ 1 which is 1 for almost all p.
Using δ∞ > 0, we can show that there exists 0 < C < 1 such that

n∑
i=1

y2i ≥ C2(

n∑
i=1

y2i + 1)

for any (y1, · · · , yn) ∈ V(R). Hence

H(x) ≥ C
∏
p

|x0|p

√√√√ n∑
i=1

x2
i

x2
0

+ 1 ·
∏

p∈Rf

max
1≤i≤n

{ |xi|p
|x0|p

, δp}

≥ (C
∏
p

δp) ·
√ ∑

0≤i≤n

x2
i ·

∏
p∈Rf

max
0≤i≤n

|xi|p

= (C
∏
p

δp) ·
√ ∑

0≤i≤n

x2
i .

This proves the claim. �

Theorem 5.9. Suppose that there are only finitely many G(A)-orbits in V(A).
Then for some a ∈ Q>0 and b ∈ Z≥1,

#{x ∈ V(Q) : H(x) < T}

� #{
(
x1

x0
, · · · , xn

x0

)
∈ V(Q) :

√
x2
0 + · · ·+ x2

n < T}

� T a(log T )b−1.

Proof. To deduce this from Theorem 5.5, consider the embedding of GLn into
GLn+1 by A �→ diag(A, 1), and of V into the projective space Pn by (x1, · · · , xn) �→
[x1 : · · · : xn : 1]. This identifies V with the orbit U := [(v0 : 1)]G and s = xn+1 is
an invariant section of the line bundle L obtained by pulling back OPn(1), satisfying
U = {s �= 0}. Note for x ∈ V(Q),

HL

(
x1

x0
: · · · : xn

x0
: 1

)
= HL(x1 : · · · : xn : x0) =

√
x2
0 + · · ·+ x2

n.
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Therefore this theorem is a special case of Corollary 5.5. �

When G is simply connected, we can replace � with ∼ in Theorem 5.4, and
hence obtain the following example. Since V = {x ∈ SL2n : xt = −x} is a
homogeneous variety Sp2n \ SL2n for the action v.g = gtvg, we have:

Example 5.10. Let n ≥ 2. For some a ∈ Q
+, b ∈ Z≥0 and c > 0, as T → ∞,

#{x ∈ SL2n(Q) : xt = −x, max
1≤i,j≤2n

{|xij |, |x0|} < T} ∼ c · T a(log T )b−1.

where x =
(

xij

x0

)
, xij ∈ Z, x0 ∈ N and g. c. d{xij , x0 : 1 ≤ i, j ≤ 2n} = 1.

S-integral points: We keep the same assumption on V from 5.2. Let S be a
finite set of primes containing ∞, and consider the following S-height function on
VS :=

∏
p∈S V(Qp): for x = (xp)p∈S ∈ VS ,

(5.11) HS(x) :=
∏
p∈S

‖xp‖p,

where ‖ · ‖∞ is the Euclidean norm on R
n, and ‖ · ‖p is the p-adic maximum norm

on Q
n
p .
Set

BS(T ) := {x ∈ VS : HS(x) < T}.
The following is obtained in [3, Prop. 8.11] for any Q-algebraic group G and a
closed orbit V = v0G.

Theorem 5.12. For any v0 ∈ VS , the family BS(T ) ∩ v0GS is well-rounded
and

vol(BS(T ) ∩ v0GS) � T a(log T )b

for some a ∈ Q>0 and b ∈ Z≥0.

When S = {∞}, we can replace � with ∼.
The notation ZS is the subring of Q consisting of elements whose denominators

are prime to all p /∈ S. Hence if S = {∞}, then ZS = Z.
If Γ ⊂ G(Q) is an S-congruence subgroup which preserves V(ZS), there are

only finitely many Γ-orbits in V(ZS), say, v1Γ, · · · , vlΓ. Set Li = StabG(vi) and
Li,S =

∏
p∈S Li(Qp).

Corollary 5.13. Suppose that S is strongly isotropic for each Li. Then

#{x ∈ V(ZS) : HS(x) < T} � T a(log T )b.

Proof. Since π(G̃S) is a finite index normal subgroup of GS for the simply

connected cover π : G̃ → G, its proof immediately reduces to the case when both
G and L are simply connected groups.

Then Proposition 3.5 and Corollary 4.11 imply that
(5.14)

#{x ∈ V(ZS) : HS(x) < T} ∼T

l∑
i=1

vol((Γ ∩ Li,S)\Li,S)

vol(Γ\G̃S)
vol(BS(T ) ∩ viGS).

Hence the claim follows from Theorem 5.12. �
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The asymptotic (5.14) in the case S = {∞} (and hence the integral points
case) was proved by Eskin-Mozes-Shah [27] using the unipotent flows. Their result
is more general since they also deal with maximal reductive (non-semisimple) Q-
groups. We believe Corollary 5.13 should hold only assuming that the stabilizer
of v0 is a reductive maximal Q-subgroup, extending the argument [27] to the S-
arithmetic setting. When V is symmetric and S = {∞}, (5.14) was proved even
earlier by Duke-Rudnick-Sarnak [21] and by Eskin-McMullen [26] (see section 8 for
more discussion.)

5.3. Equidistribution. Suppose that G and L are simply connected. Then
the connected components of V(R) are precisely G(R)-orbits and G(Af ) acts tran-
sitively on V(Af ). Fix a compact subset Ω ⊂ v0G(R) with smooth boundary.

Corollary 5.15. As m → ∞, subject to bm �= ∅,
#{x ∈ V(Q) : x ∈ Ω, denominator of x is m} ∼ vol(Ω)× vol(bm)

where for m = pk1
1 · · · pkr

r

bm = {(xp) ∈ V(Af ) : ‖xpi
‖pi

= pki
i ∀1 ≤ i ≤ r, xp ∈ V(Zp) for all p �= pi}.

Proof. The above follows from the observation that the family Ω × bm is
W -well-rounded for any compact open subgroup W of G(Af ) which preserves∏

p∈Rf
V(Zp) �

The above corollary implies that the rational points in V with denominator m
are equidistributed on V(R) as m → ∞.

6. Mixing and Hecke points

In this section, we will discuss an ergodic theoretic proof of the mixing of
adelic groups as a special case of Theorem 4.1, and show that the adelic mixing
is equivalent to the equidistribution of Hecke points together with the mixing of a
finite product of corresponding local groups.

6.1. Mixing. We begin by recalling the notion of mixing in the homogeneous
case. Let G be a locally compact second countable group and Γ a lattice in G. Let
dx denote the probability invariant measure on Γ\G. The group G acts on L2(Γ\G)
by gψ(x) = ψ(xg) for g, x ∈ G,ψ ∈ L2(Γ\G).

Definition 6.1. The right translation action of G on the space Γ\G is called
mixing if for any ψ, φ ∈ L2(Γ\G),

〈giψ, φ〉 =
∫
Γ\G

ψ(xgi)φ(x) dx →
∫

ψdx ·
∫

φ dx

for any gi ∈ G going to infinity.

We need the following well known lemma: we denote by Δ(G) the diagonal
embedding of G into G×G.

Lemma 6.2. The following are equivalent:

• the right translation action of G on Γ\G is mixing;
• for any sequence g → ∞ in G, the translate Δ(Γ)\Δ(G)(e, g) becomes
equidistributed in (Γ× Γ)\G×G.
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Proof. Observe that for ψ, φ ∈ Cc(Γ\G),

〈gψ, φ〉 =
∫
x∈Γ\G

ψ(xg)φ(x)dx =

∫
(x,x)∈Δ(Γ)\Δ(G)

(ψ ⊗ φ)(xg, x)dx.

Since the set of finite linear combinations of ψ ⊗ φ, ψ, φ ∈ Cc(Γ\G) is dense in
Cc((Γ× Γ)\(G×G)), the claim follows. �

6.2. Hecke orbits. Denote by Comm(Γ) < G the commensurator group of
Γ, that is, a ∈ Comm(Γ) if and only if aΓa−1 ∩ Γ has a finite index both in Γ and
aΓa−1.

Definition 6.3 (Hecke orbits). If a ∈ Comm(Γ),

TΓ(a) := Γ\ΓaΓ
is called the Hecke orbit associated to a.

Using the bijection Γ\ΓaΓ = Γ ∩ a−1Γa\Γ given by [a]γ �→ [γ], we have

degΓ(a) := #TΓ(a) = [Γ : Γ ∩ a−1Γa].

Example 6.4. For Γ = SL2(Z) and a = diag(p, p−1), Γ\ΓaΓ is in bijection with
SL2(Zp)a

−1 SL2(Zp)/ SL2(Zp) = SL2(Zp)a SL2(Zp)/ SL2(Zp), that is, the SL2(Zp)-
orbit of a−1 in the Bruhat-Tits tree. Hence TΓ(a) corresponds to the p(p + 1)
vertices in the p+ 1-regular tree of distance 2 from the vertex x0 := Zp ⊕ Zp. For

a = (
√
p,
√
p−1), TΓ(a) gives p+ 1 vertices of distance 1 from x0.

The following observation was first made in a paper by Burger and Sarnak [9].

Lemma 6.5. For a sequence ai ∈ Comm(Γ), the following are equivalent:

• the Hecke orbit TΓ(ai) is equidistributed in Γ\G as i → ∞, that is, for
any ψ ∈ Cc(Γ\G),

1

degΓ(ai)

∑
x∈TΓ(ai)

ψ(x) →
∫
Γ\G

ψ dx.

• the orbit [(e, a−1
i )]Δ(G) becomes equidistributed in (Γ × Γ)\(G × G) as

i → ∞.

Proof. We use the homeomorphism between the space of Γ-invariant proba-
bility measures on Γ\G and the space of Δ(G)-invariant probability measures on
(Γ× Γ)\(G×G) given by μ �→ μ̃ where

μ̃(f) =

∫
Γ\G

∫
Γ\G

f(y, xy)dμ(x)dy

(cf. [4, Prop. 8.1]). If μa is the probability measure which is the average of the
dirac measures of the Hecke point TΓ(a), then μ̃a is the Δ(G)-invariant measure
supported on the orbit (Γ× Γ)\(e, a−1

i )Δ(G). Hence the claim follows. �

Moreover,

degΓ(a) = vol(Γ ∩ a−1Γa\G) = vol((Γ× Γ)\(1, a)Δ(G))

where the volumes are induced by the Haar measure on G which gives volume 1 for
Γ\G.
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6.3. Adelic mixing. Let G be a connected semisimple Q-group. We will de-
duce the mixing of G(A) on G(Q)\G(A) from Theorem 4.1 for G simply connected
and Q-simple.

Fix a finite set S of primes, which contains ∞ if G(R) is non-compact.
Fixing an imbedding of G into GLn, we set

HS(x) :=
∏
p∈S

max |x(p)ij|p

where x = (x(p))p∈S ∈ GS .

Theorem 6.6. Let G be connected simply connected and almost Q-simple. The
following equivalent statements hold for any G-isotropic subset S:

(1) The right translation action of G(A) on G(Q)\G(A) is mixing.
(2) For any gi → ∞ in G(A), the translate

[(e, e)]Δ(G(A))(e, gi)

becomes equidistributed in X̃ × X̃.
(3) For any S-congruence subgroup Γ of G(Q), ai ∈ G(Q) and xi ∈ GS such

that degΓ(ai) ·HS(xi) → ∞, the closed orbit

[(e, ai)]Δ(GS)(e, xi)

becomes equidistributed on (Γ× Γ)\(GS ×GS).
(4) For any S-congruence subgroup Γ of G(Q), and ai ∈ G(Q) with degΓ(ai) →

∞,
• the Hecke orbit TΓ(ai) becomes equidistributed in Γ\GS;
• the right translation action of GS on Γ\GS is mixing.

Proof. The condition G being Q-simple implies that the diagonal embedding
of G into G×G is a maximal connected Q-group. Hence (2) follows from Theorem
4.1.

The equivalence between (2) and (3) comes from the basic lemma 4.9. (1) and
(2) are equivalent by Lemma 6.2. (3) and (4) are equivalent by Lemmas 6.2 and
6.5. �

Remark 6.7. Since (2) follows from Theorem 4.1 which is proved using the
unipotent flows on S-arithmetic setting, we have obtained by the equivalence of (1)
and (2) an ergodic theoretic proof of the adelic mixing.

For S as above, the mixing of GS on Γ\GS is a well-known consequence of the
Howe-Moore theorem [39] on the decay of matrix coefficients for G(Qp)’s, p ∈ S.

Hence the above theorem says that the adelic mixing is a consequence of the
Howe-Moore theorem for GS together with the equidistribution of Hecke points
for all S-congruence subgroups for some fixed isotropic subset S (and hence for all
isotropic S).

The equidistribution of Hecke points was obtained with a rate in [14] except for
one case of someQ-anisotropic form of a special unitary group. This last obstruction
was removed by Clozel soon afterwards [13]. For S = {∞}, a different proof for the
equidistribution was given in [28] (without rates), using a theorem of Mozes-Shah
[46] on unipotent flows.

The adelic mixing theorem can also be deduced from the property of the auto-
morphic spectrum L2(G(Q)\G(A)) based on the work of [14], [48], [13] and this
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approach is explained in the paper [33] and gives a rate of convergence for the
mixing.

7. Bounds toward the Ramanujan conjecture on the automorphic
spectrum

In this section, we discuss a quantitative adelic mixing statement and how they
can be understood in view of the Ramanujan conjecture concerning the automor-
phic spectrum. We refer to [55] and [12] for the background on the Ramanujan
conjecture.

We assume thatG is a connected and absolutely simple Q-group (e.g., G = SLn

or PGLn).
Note that the right translation action of G(A) on G(Q)\G(A) defines a unitary

representation ρ of G(A) on the Hilbert space L2(G(Q)\G(A)), and hence a uni-
tary representation of G(Qp) for each p ∈ R. Roughly speaking, the automorphic

dual Âut(G)p of G(Qp) is the closure in the unitary dual of G(Qp) of the subset
consisting of all irreducible constituents of the unitary representation ρ|G(Qp).

A most sophisticated form of the Ramanujan conjecture is an attempt to iden-
tify Âut(G)p in the unitary dual Ĝ(Qp). In the case of G = PGL2 over Q, the
Ramanujan conjecture says that for each p, any infinite dimensional irreducible
representation in Âut(G)p is strongly L2+ε(PGL2(Qp)) for any ε > 0.

Definition 7.1. .
• A unitary representation ρ of G(Qp) is strongly Lp+ε if there exists a
dense subset of vectors v, w such that the matrix coefficient function
G(Qp) → C defined by

g �→ 〈ρ(g)v, w〉
is Lp+ε(G(Qp))-integrable for all ε > 0.

• A unitary representation ρ is tempered if ρ is strongly L2+ε.

By the classification of the unitary dual of PGL2(Qp) we know that there exists
an irreducible unitary representation ρp of PGL2(Qp) which is not Lmp-integrable
for arbitrary large mp. By forming a (restricted) tensor product ⊗′

p∈Rρp, one can

construct an irreducible unitary representation of PGL2(A). A point made by the
Ramanujan conjecture is that such a unitary representation cannot arise as a non-
trivial irreducible constituent of L2(PGL2(Q)\PGL2(A)) if any of mp is strictly
larger than 2.

The following theorem says that in the case of Q-rank at least 2, there is an
obstruction of forming such a unitary representation of G(A) already in the level
of unitary dual of G(Qp).

Theorem 7.2. ([48], [47]) Suppose that rankQ(G) ≥ 2 (e.g., PGLn, n ≥ 3).
Then there exists a positive number m (explicit and independent of p) such that any
infinite dimensional irreducible unitary representation of G(Qp) is strongly Lm for
all p ∈ R.

To each root α of a maximal Qp-split torus of G, we associate the algebraic
subgroup Hα (isomorphic either to PGL2(Qp) or to SL2(Qp)) generated by the
one-dimensional root subgroups N±α. The key step of the proof is then to show
that for any irreducible unitary representation ρ of G(Qp), the restriction to Hα
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is tempered. In showing this, the main tool is Mackey’s theory on the unitary
representations of the semi-direct product PGL2(Qp) � Up (or SL2(Qp) × Up) for
some non-trivial unipotent algebraic group Up. In the case when Qp-rank is at
least 2, one can always find such Up so that Hα sits inside Hα � Up ⊂ G(Qp).
Once we have a bound for those Hα’s, we make use of the properties of tempered
representations to extend the bound to the whole group G(Qp) [48].

The following is obtained in [33]: Choose a height function on G(A), for in-
stance,

H(g) :=
∏
p∈R

max |(gp)ij |p for g = (gp)p ∈ G(A)

using some Q-embedding of G → SLn.
We write

L2(G(Q)\G(A)) = L2
00(G(Q)\G(A))⊕

⊕̂
χ∈Λ

Cχ

where Λ denotes the set of all automorphic characters. Hence the Hilbert space
L2
00(G(Q)\G(A)) denotes the orthogonal complement to the subspace spanned by

automorphic characters. If G is simply connected, Λ has only the trivial character.

Theorem 7.3 (Adelic mixing). [33] Fix a maximal compact subgroup K of
G(A). There exists k > 0 (explicit) and c ≥ 1 such that for any K-invariant
ψ1, ψ2 ∈ L2

00(G(Q)\G(A)), we have

|〈gψ1, ψ2〉| ≤ c ·H(g)−k‖ψ1‖ · ‖ψ2‖ for all g ∈ G(A).

We stated the above theorem only for K-invariant functions for simplicity.
However the same holds for smooth functions as well, provided the L2-norms of ψi

are replaced by suitable Sobolev norms of ψi (see [33, Thm. 3.25] for details.) In
fact, in most applications, we need the smooth version of Theorem 7.3.

Example 7.4. Let n ≥ 3. Let ψ1, ψ2 be K := SOn × SLn(Zf )-invariant func-
tions in L2(SLn(Q)\ SLn(A)) with

∫
ψi = 0 and ‖ψi‖ = 1.

For any ε > 0, there is C = Cε > 0 such that

|〈gψ1, ψ2〉| ≤ C ·
∏
p

[n/2]∏
i=1

(
ap,i

ap,n+1−i

)−1/2+ε

≤ C ·H(g)−1/2+ε

where g = (gp) and gp = diag(ap,1, · · · , ap,n) with ap,1 ≥ · · · ≥ ap,n > 0 and
a∞,i ∈ R

+ and ap,i ∈ pZ for finite p.

The Hilbert space L2
00(G(Q)\G(A)) can be decomposed into the direct integral

of irreducible unitary G(A)-representations ρ and each ρ is of the form ⊗′
p∈Rρp

where ρp is an irreducible infinite dimensional unitary representation of G(Qp).
Hence 〈gψ1, ψ2〉 is the direct integral of

∏
p〈ρp(gp)ψ1p, ψ2p〉’s. Now we are reduced

to understanding the matrix coefficients 〈ρp(gp)ψ1p, ψ2p〉 for an infinite dimensional
irreducible unitary representation ρp of G(Qp).

Although we know the decay phenomenon for the matrix coefficients of unitary
representations over each local field Qp by the work of Howe-Moore [39], we need
to have some uniformity of the decay over all p’s, namely a weak form of the
Ramanujan conjecture for G. In the case of the Q rank is at least 2 and hence the
Qp-rank of G is at least 2 for each p, this is achieved in [48]. In the case when
the Q-rank of G is one, the Qp-rank may be one or higher. When its Qp-rank is
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higher, one uses again [48] and when the Qp-rank is one, one now has to use more
than the fact that ρp is an infinite dimensional unitary representation of G(Qp).
Using the fact that ρp is indeed an automorphic representation, one uses the lifting
of automorphic bound of SL2(Qp) to G(Qp) due to Burger-Sarnak [9] and Clozel-
Ullmo [15]. Finally when the Q-rank and the Qp-rank of G are 0 and 1 respectively,
Clozel analyzed what kind of automorphic representations occur in this situation
and obtained a necessary bound for the decay [13], based on Jacquet-Langlands
correspondence, and base changes of Rogawski and Clozel.

Remark 7.5. The bounds toward the Ramanujan conjecture we discuss in this
section are very crude in many cases, not at all close to the optimal bounds (but
they are optimal in the example 7.4 due to the continuous spectrum.) We point
out that in recent applications to sieve, obtaining the Ramanujan bounds as close
to optimal ones are very critical (see [8]).

We remark that using the volume computation for the adelic height balls made
by Shalika, Takloo-Bighash and Tschinkel [58] one can deduce the following from
7.3:

Corollary 7.6. The quasi-regular representation ρ of G(A) on
L2
00(G(Q)\G(A)) is strongly Lq for some explicit q > 0.

We remark that the Ramanujan conjecture for PGL2 implies that the represen-
tation ρ := L2

00(PGL2(Q)\PGL2(A)) is strongly L4+ε: the conjecture implies that
(cf. [33, proof of Thm 3.10]) for any K := PO2 ×

∏
p PGL2(Zp)-finite unit vectors

v and w,

|〈ρ(g)v, w〉| ≤ dv,w ·
∏
p∈R

Ξp(gp) for g = (gp) ∈ PGL2(A)

where Ξp denotes the Harish-Chandra function of PGL2(Qp) and dv,w depends only
on the dimensions of K-span of v and w.

From

Ξp

(
pk 0
0 1

)
= p−k/2

(
k(p− 1) + (p+ 1)

p+ 1

)
,

we can deduce that for any ε > 0, there is Cε > 0 such that for g = (gp) ∈ G(A),

H−1/2(g) ≤ Ξ(g) ≤ Cε H(g)
−1/2+ε

where Ξ :=
∏

p Ξp, H =
∏

p Hp and Hp(gp) is the maximum p-adic norm of gp.
Note that for any ε > 0, there is cε > 0 such that for any σ > 0,

∫
PGL2(R)

‖g‖−σ/2
∞ dg∞ ≤ cε

∫ ∞

0

e−t(σ/2)et(1+ε)dt.

Hence
∫
PGL2(R)

‖g‖−s/2
∞ dg∞ absolutely converges for �(s) > 2.
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Observe that∫
PGL2(Qp)

Hp(gp)
−s/2dgp =

∑
k≥0

p−ks/2 vol(PGL2(Zp)

(
pk 0
0 1

)
PGL2(Zp))

= 1 +
∑
k≥1

p−ks/2pk(1 + p−1)

= (1− p−(s/2−1))
−1

(1 + p−s/2)

= ζp

(s
2
− 1

)
(1 + p−s/2).

Therefore∫
PGL2(A)

H(g)−s/2dg =

∫
PGL2(R)

‖g‖−s/2
∞ dg∞ ×

∏
p

(1 + p−s/2) · ζ( s
2
− 1).

Since the Riemann zeta function ζ(s) has a pole at s = 1 and
∏

p(1 + p−s/2)

absolutely converges for �(s) > 2, the height zeta function

Z(s) :=

∫
PGL2(A)

H(g)−s/2dg

has a meromorphic continuation to �(s) > 2 with an isolated pole at s = 4. In
particular, for any ε > 0, Z(4+ε) < ∞ and hence

∫
PGL2(A)

Ξ(g)4+ε dg < ∞, proving

the claim.

Remark: By the equivalence of Lemma 6.2, we can deduce from the quantitative
mixing theorem the equidistribution of the closed Δ(G)-orbitsXa := [(e, a−1)]Δ(G)
with respect to the Haar measure with the rate given by vol(Xa)

−k for some k > 0.
Analogous statement is true even in the positive characteristic case since the results
in [48] are valid.

A much more general result in this direction (characteristic zero case) was
recently obtained in [22].

8. Counting via mixing and the wavefront property

Let G be a locally compact and second countable group, Γ a lattice in G and
L a closed subgroup of G such that L ∩ Γ is a lattice in L.

Can the mixing of G on Γ\G be used to count points in the Γ-orbit [e]Γ on
L\G? There are two alternative methods developed by Duke-Rudnick-Sarnak [21]
and by Eskin-McMullen [26] which show that the answer is yes. Although both
papers are based eventually on the spectral gap property (or the mixing property)
of the group actions, the ways to use the spectral gap property are different.

In this section, we will present the methods in [26] which make use of a certain
geometric property of L\G, called the wavefront property.

Remark 8.1. We remark that the idea of using the mixing property in counting
problems goes back to Margulis’ 1970 thesis [44].

We give a slight variant of the wavefront property.

Definition 8.2. Let G be a locally compact group and L a closed subgroup
of G.
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• For a (non-compact) Borel subset E of G, the triple (G,L : E) is said to
have the wavefront property if for every neighborhood U of e in G, there
exists a neighborhood V of e in G such that

LV g ⊂ LgU for all g ∈ E.

• We say (G,L) has the wavefront property if (G,L : E) has the wavefront
property for some Borel subset E ⊂ G satisfying G = LE.

It is easy to observe that if (G,L : E) has the wavefront property, so does
(G,L : EK) for any compact subgroup K of G.

This property means roughly that the g-translate of a small neighborhood of
the base point z0 := [L] in L\G remains near z0g uniformly over all g ∈ E.

We give two examples for G = SL2(R) below. For at := diag(et/2, e−t/2). let

A+ = {at : t ≥ 0} and A− = {at : t ≤ 0},

and A = A+ ∪A−. Let

N = {
(
1 x
0 1

)
: x ∈ R} and N− = {

(
1 0
x 1

)
: x ∈ R}.

Set K = SO2 = {x ∈ SL2(R) : xx
t = e}.

Example 8.3. The triple (SL2(R), N : A−K) has the wavefront property: Let
U be an ε-neighborhood of e in SL2(R). Since NAN− is a Zariski dense open subset
of G, we may assume that U = (N ∩ U)(A ∩ U)(N− ∩ U). For any at, a ∈ A, and
n− ∈ N−, observe that

(an−)at = ata(a
−1
t n−at).

Since the conjugation by a−1
t is a contracting automorphism of N− for any

t < 0, we have a−1
t (N− ∩ U)at ⊂ N− ∩ U . Therefore for at ∈ A−,

NUat = N(A ∩ U)(N− ∩ U)at ⊂ Nat(A ∩ U)(N− ∩ U) ⊂ NatU.

Hence the claim is proved.

Example 8.4. The pair (SL2(R),K) has the wavefront property: It suffices
to prove that (SL2(R),K : A+) has the wavefront property, since G = KA+K by
the Cartan decomposition. Let U be an ε-neighborhood of e in SL2(R). Using the
Iwasawa decomposition G = KAN , we may assume that U = (K ∩U)(A∩U)(N ∩
U). For any at ∈ A+, since the conjugation by at is a contraction on N ,

KUat = K(A ∩ U)(N ∩ U)at ⊂ Kat(A ∩ U)a−1
t (N ∩ U)at ⊂ KatU.

Hence the claim is proved.

Proposition 8.5. Let L < G be locally compact groups as above and E ⊂ G.
Suppose the following:

(1) The right translation action of G on Γ\G is mixing;
(2) The wavefront property holds for (G,L : E).

Then, for any sequence gi ∈ E tending to ∞ in L\G, the translate Γ\ΓLgi becomes
equidistributed in Γ\G.
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Proof. Let Y = (Γ ∩ L)\L and X = Γ\G. Denote by μL and μG the Haar
measures on L and G which give one on Y and X respectively. For ψ ∈ Cc(Γ\G),
we would like to show that

(8.6) Ig :=

∫
Y

ψ(yg) dμL(y) →
∫
X

ψ dμG as g ∈ E goes to infinity in L\G.

Suppose first that Y is compact. Then we can choose a Borel subset W in G
transversal to L, so that the multiplication m : Y ×W → YW is a bijection onto
its image YW ⊂ X. By the wavefront property, for any small neighborhood U of
e in G, there exists W so that YWg remains inside Y gU for all g ∈ E. Hence by
the uniform continuity of ψ, and by taking W small enough, we can assure that Ig
is close to

1

vol(W )

∫
YWg

ψ dμG =
1

vol(W )
〈gψ, χYW 〉

where χYW is the characteristic function of YW . It now follows from the mixing
that

1

vol(W )
〈gψ, χYW 〉 ∼

∫
X

ψ dμG

as g → ∞, and hence (8.6) holds. When Y is non-compact, such a W does not exist
in general. In this case, we work with a big compact piece Yε of Y with co-volume
less than ε. The above argument then gives that Ig is close to μL(Yε)

∫
X
ψdμG for

all large g ∈ L\E. Since μL(Y \Yε) ≤ ε and ‖ψ‖∞ is bounded, we can deduce (8.6).
We refer to [26] for more details. In the case when Y is non-compact, the above
modification is explained in [3]. �

Corollary 8.7. The sequence SL2(Z)\ SL2(Z)atN becomes equidistributed in
the space SL2(Z)\ SL2(R) as t → −∞.

Proof. Since at normalizes N ,

SL2(Z)\ SL2(Z)atN = SL2(Z)\ SL2(Z)Nat.

Hence by the mixing of SL2(R) on SL2(Z)\ SL2(R) and Example 8.3, we can deduce
the claim. �

This corollary can be interpreted as the equidistribution of long closed horocy-
cles, since N -orbits are precisely horocycles in the identification of SL2(Z)\ SL2(R)
with the unit tangent bundle of the modular surface SL2(Z)\H. This result was
first obtained by Sarnak [54] with rates of convergence. The approach explained
here has been well known and can be made effective using the quantitative mixing.

Putting Propositions 8.5 and 3.5 together, we state:

Corollary 8.8. Let L < G be locally compact groups as above and E ⊂ G a
Borel set. Let {Bn ⊂ L\G} be a sequence of compact subsets whose volume tending
to infinity. Suppose the following:

(1) The right translation action of G on Γ\G is mixing.
(2) The wavefront property holds for (G,L : E).
(3) vol (Bn) ∼n vol(Bn ∩ L\LE) and {Bn} is well-rounded.

Then for x0 = [L], as n → ∞,

#x0Γ ∩Bn ∼ vol(Bn).

Using the well known fact that the Riemannian balls are well-rounded, we
deduce the following from Example 8.4 and the above corollary:
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Example 8.9. Let Γ be a lattice in SL2(R). Set x0 = i ∈ H = {x+ iy : y > 0}
and let d denote the hyperbolic distance. Let Bt denote the ball of radius t centered
at x0. We then have

{x ∈ x0Γ : d(x, x0) < t} ∼ vol(Bt).

8.1. Affine symmetric variety. We now discuss more general examples of
G and L for which Corollary 8.8 can be applied. These are affine symmetric pairs,
which are generalizations of Riemannian symmetric pairs.

LetG be a connected semisimple Q-group. A Q-subgroup L is called symmetric
if there is an involution σ of G defined over Q such that L = {g ∈ G : σ(g) = g}.

Theorem 8.10. Let L be a symmetric subgroup of G. For any finite set of
primes S, the pair (GS ,LS) satisfies the wavefront property.

Proof. The proof easily reduces to the case when S is a singleton. When
S = {∞}, this was proved by Eskin-McMullen [26]. Their proof was based on the
Cartan decomposition for real symmetric spaces. The claim is obtained in [3] for
S = {p} based on the Cartan decomposition for p-adic symmetric spaces ([5] and
[19]). �

Let V be an affine symmetric variety defined over Q, i.e., V = v0G where
V ⊂ SLn is a Q-embedding and v0 ∈ Q

n and the stabilizer L of v0 is a symmetric
subgroup of G. Let S be a finite set of primes which contains ∞ if G(R) is non-
compact, and consider the height function HS on VS =

∏
p V(Qp) as in 5.11. Set

BS(T ) := {x ∈ US : HS(x) < T}.

Theorem 8.11. Assume that G is Q-simple. As T → ∞,

#{x ∈ V(ZS) : HS(x) < T} ∼ vol(BS(T )) � T a(log T )b

for some a ∈ Q>0 and b ∈ Z≥0.

Proof. Let Γ be an S-congruence subgroup preserving V(ZS). It suffices to
obtain the asymptotic for #v0Γ∩BS(T ) assuming that G is simply connected (see
the proof of Corollary 5.13). So we have the mixing of the right translation action
of GS on Γ\GS . By Theorem 5.12, for each v0 ∈ VS , the family v0GS ∩BS(T ) is
well-rounded. Hence the claim follows from Theorems 8.8 and 8.10. �

We note that in this theorem there is no restriction on S and the stabilizer may
not be semisimple, unlike Corollary 5.13. As mentioned in section 5, Theorem 8.11
in the case S = {∞} was proved in [21] and [26] without an explicit computation
of the asymptotic growth of vol(B∞(T )) in general. The asymptotic vol(B∞(T )) ∼
cT a(log T )b was obtained independently in [45] and [36] for group varieties, and
[37] for general symmetric varieties.

The main advantage of using the mixing property in counting problems is its
effectiveness. In fact, the above theorem is shown effectively in [3], by obtaining
the effective versions of (2) and (3) in Theorem 8.8. We note that this was done in
[45] in the case of group varieties (see also [34]).

Let Γ ⊂ G(Q) be an S-congruence subgroup. Set XS := Γ\GS and YS :=
Γ ∩ LS\LS . Also set Sf := S \ {∞}.

Definition 8.12. We say that the translate YSg becomes effectively equidis-
tributed in XS as g → ∞ in LS\GS if there exist m ∈ N and r > 0 such that,
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for any compact open subgroup W of GSf
and any compact subset C of XS , there

exists c = c(W,C) > 0 satisfying that for any ψ ∈ C∞
c (XS)

W with support in C,
one has for all g ∈ GS

|
∫
YS

ψ(yg) dμYS
(y)−

∫
XS

ψ dμXS
| ≤ c · Sm(ψ) HS(v0g)

−r

where Sm(ψ) depends only on the L2-Sobolev norm of ψ of order m at ∞.

Definition 8.13. A sequence of Borel subsets Bn in VS is said to be effectively
well-rounded if

(1) it is invariant under a compact open subgroup W of GSf
,

(2) there exists κ > 0 such that, uniformly for all n ≥ 1 and all 0 < ε < 1,

vol(B+
n,ε −B−

n,ε) = O(εκ vol(Bn))

where B+
n,ε = BnUεW and B−

n,ε = ∩u∈UεWBnu, and Uε denotes the ball
of center e and radius ε in G(R).

(3) for any k > 0, there exists δ > 0 such that, uniformly for all large n > 1
and all 0 < ε < 1, one has∫

B+
n,ε

H−k
S (z) dz = O(vol(Bn)

1−δ).

It is not hard to adapt the proof of Proposition 3.5 to prove the following:

Proposition 8.14. Suppose that

(1) the translate YSg becomes effectively equidistributed in XS as g → ∞ in
LS\GS;

(2) a sequence {Bn ⊂ VS} of Borel subsets is effectively well-rounded and
vol(Bn) → ∞.

Then there exists a constant δ > 0 such that

#v0Γ ∩Bn = vol(Bn)(1 +O(vol(Bn)
−δ)).

Theorem 8.15. [3] Let S be a finite set of primes including ∞. In the same
setup as in Theorem 8.11, there exists δ > 0 such that

#{x ∈ V(ZS) : HS(x) < T} ∼T vol(BS(T ))(1 + vol(BS(T ))
−δ).

Besides the effective equidistribution of the translates Γ\ΓLSg for symmetric
pairs (G,L), we need the effective well-roundedness of the height balls, which was
obtained in the complete generality of a homogeneous variety in [3, Prop. 14.2].
This subtle property of the height balls was properly addressed first in [45] for
group varieties.

9. A problem of Linnik: Representations of integers by an invariant
polynomial II

Let f be an integral homogeneous polynomial of degree d in n-variables, and
consider the level sets

Vm := {x ∈ C
n : f(x) = m} for m ∈ N.

Then Vm(Z) := Vm ∩ Z
n is precisely the set of integral vectors representing m by

f . Linnik asked a question on whether the radial projection of Vm(Z) on V1(R)
becomes equidistributed as m → ∞ [40]. In the case when Vm is a homogeneous
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space of a semisimple algebraic group, this question has been studied intensively in
recent years (see for instance, [56], [20], [14], [32] [28], [29], [49], [24], [23], [22],
etc.,)

In this section, we discuss a generalization of the main results of Eskin-Oh in
[29], which explains the title of this section. To formulate our results, denote by
pr∞ : Vm(R) → V1(R) the radial projection given by pr∞(x) = m−1/dx. For a
subset Ω of V1(R), set

(9.1) Nm(f,Ω) := #pr∞(Vm(Z)) ∩ Ω.

Let G be a connected semisimple algebraic Q-group with a given Q-embedding
G ⊂ GLn and a non-zero vector v0 ∈ Q

n such that

v0G = V1.

We assume that L := StabG(v0) is a semisimple maximal connected Q-group.
Connected components of V1(R) are precisely the orbits of the identity com-

ponent G(R)◦. On each connected component O, fix a G(R)◦-invariant measure
with respect to which the volumes of subsets of O are computed below.

Theorem 9.2. Fix a connected component O of V1(R). As m → ∞ along
primes, the projection pr∞(Vm(Z)) becomes equidistributed on O, provided
Nm(f,O) �= 0.

The equidistribution in the above means that for any compact subsets Ω1,Ω2 ⊂
O of boundary measure zero and of non-empty interior, we have

Nm(f,Ω1)

Nm(f,Ω2)
∼ vol(Ω1)

vol(Ω2)
.

In the case when L has no compact factors over the reals, this theorem was
obtained in [29] for any m → ∞ provided pr∞(Vm(Z)) has no constant infinite
subsequence, which is clearly a necessary condition.

Remark 9.3. Since we allow m → ∞ only along the primes, the above theorem
is weaker than what is desired. We think that our argument can be modified to
obtain the equidistribution as long as the sequence m is co-prime to a fixed prime
number, by proving a suitable generalization of [17, Thm. 3] in the S-arithmetic
setting.

Example 9.4. Fix n ≥ 3. Let

Vm := {x ∈ Mn : x = xt, det(x) = m}.
Then the projection of Vm(Z) to V1(R) becomes equidistributed as m → ∞ along
primes.

In this example, V1 is a finite union of homogeneous spaces SO(p, q)\ SLn

where 0 ≤ p, q ≤ n ranges over non-negative integers such that p ≤ q and p+ q =
n. Since SO(p, q)’s are maximal connected subgroups of SLn, and the sequence
{pr∞(Vm(Z)) ∩ O} is non-empty for each connected component O of V1(R), the
claim follows from Theorem 9.2.

We now discuss the proof of Theorem 9.2. The proof makes use the p-adic
unipotent flows. Using the idea of dynamics in the homogeneous space of p-adic
groups by extending the homogeneous space of G(R) to that of G(R)×G(Qp) was
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already implicit in the work of Linnik [41], as pointed out in [23]. This idea was
also used in [24] and [23].

Since G(R)◦ is equal to π(G̃(R)) where π : G̃ → G is the simply connected
cover, we may assume without loss of generality that G is simply connected.

Choose p which is strongly isotropic for L. We denote by Z
∗
p the group of p-adic

units. Then Z
∗
p is the disjoint union ∪k

i=1ui(Z
∗
p)

d where d is the degree of f and

{x ∈ Z
∗
p : xd = 1} = {u1, · · · , uk}. For m ∈ N with (m, p) = 1, choose αm ∈ Z

∗
p

such that ui/m = αd
m for some 1 ≤ i ≤ k. We then define a projection

pr : ∪(m,p)=1Vm(Q) → V1(R)× (∪iVui
(Qp))

by

pr(x) = (pr∞(x), prp(x)) = (m−1/dx, αmx).

Set Ii := {m ∈ N : p � m,m ∈ ui(Z
∗
p)

d} so that m ∈ Ii means pr(Vm(Q)) ⊂
V1(R)×Vui

(Qp).
Note that for Ω ⊂ V1(R) and for m ∈ Ii,

# pr∞(Vm(Z)) ∩ Ω = #pr(Vm(Z[p−1]) ∩ (Ω×Vui
(Zp)).

Therefore Theorem 9.2 follows from the equidistribution of pr(Vm(Z[p−1]) on
each G(R)×G(Qp)-orbit in ∪i(V1(R)×Vui

(Qp)).
Set S = {∞, p}, and let Γ ⊂ G(Z[p−1]) be an S-congruence subgroup preserv-

ing V(Z[p−1]). Let μG and μL be the invariant probability measures on Γ\GS and
Γ ∩ LS\LS respectively, and for each GS orbit OS , let μOS

denote the invariant
measure on OS compatible with μG and μL.

Fix 1 ≤ i ≤ k and for a GS-orbit OS = O∞ × Op in V1(R)×Vui
(Qp) which

contains pr(ξ0) for some ξ0 ∈ V(Q), we define for each ξ ∈ Vm(Q) with pr(ξ) ∈ OS ,

ω(ξ) :=
μL(g

−1
ξ Γgξ ∩ LS\LS)

μG(Γ\GS)

where gξ ∈ GS such that pr(ξ0)gξ = pr(ξ).

Proposition 9.5. For any sequence pr(ξm) ∈ pr(Vm(Z[p−1])) ∩ OS and as
m → ∞ along (m, p) = 1, the sequence pr(ξm)Γ is equidistributed on OS unless it
contains a constant infinite subsequence.

In fact, for any ψ ∈ Cc(OS),

(9.6)
∑

x∈pr(ξm)Γ

ψ(x) ∼ ω(ξm) ·
∫

ψ dμOS
.

Proof. For simplicity, let gm = gξm . By the duality [29] it suffices to prove
that the closed orbit Γ\ΓgmLS becomes equidistributed in Γ\GS . Set Lm to be
the stabilizer of ξm in G. Then

Lm(R)× Lm(Qp) = gm(L(R)× L(Qp))g
−1
m .

In particular, Lm(Qp) is conjugate to L(Qp) by an element of G(Qp). Therefore p
is strongly isotropic for all Lm. It follows from Theorem 4.10 that if the equidistri-
bution (9.6) we desire does not hold, then by passing to a subsequence, there exist
m0 and {δm ∈ Γ : m ≥ m0} such that

Lm = δ−1
m Lm0

δm.
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Since L has finite index in its normalizer, this means, by passing to a subsequence,
the existence of γ′

m ∈ Γ such that

g−1
l γ′

mgm ∈ L(R)× L(Qp) for all large m, l

and hence pr(ξm)Γ = pr(ξl)(Γ) for all large m and l in Ii. This is contradiction. �
For each connected component O∞ of V1(R), and m ∈ Ii, we define

ωm(O∞) :=
∑

ξm∈Ωm

ω(ξm) · μOp
(Vui

(Zp) ∩ Op)

where Ωm is the set of representatives of Γ-orbits in Vm(Z[p−1]),

Op = prp(ξm)G(Qp)

and the measure μOp
is determined so that its product with μO∞ is compatible

with μG and μL.
Theorem 9.2 follows from:

Theorem 9.7. For any connected component O∞ of V1(R), and for any com-
pact subset Ω ⊂ O∞ of boundary measure zero, we have

Nm(f,Ω) ∼ ωm(O∞) · μO∞(Ω)

if m → ∞ along primes, and Nm(f,O∞) �= 0.

Proof. First note that pr(Vm(Q)) ∩ pr(Vl(Q)) = ∅ for any primes m and l.
Therefore Proposition 9.5 implies that for any compact subset Ω ⊂ O∞ of

smooth boundary, as m → ∞ in Ii along primes,

#pr(ξm)Γ ∩ (Ω×Vui
(Zp)) ∼ ω(ξm)μOS

(Ω× (Vui
(Zp) ∩ Op))

= ω(ξm) · μO∞(Ω) · μOp
(Vui

(Zp) ∩Op).

Since for m ∈ Ii

#pr(Vm(Z)) ∩ Ω =
∑

ξm∈Ωm

#(pr(ξm)Γ ∩ (Ω×Vui
(Zp)))

the claim follows.
�
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Equidistribution on the modular surface and L-functions

Gergely Harcos

Abstract. These are notes for two lectures given at the 2007 summer school
“Homogeneous Flows, Moduli Spaces and Arithmetic” in Pisa, Italy. The
first lecture introduces Heegner points and closed geodesics on the modular
surface SL2(Z)\H and highlights some of their arithmetic significance. The
second lecture discusses how subconvex bounds for certain automorphic L-

functions yield quantitative equidistribution results for Heegner points and
closed geodesics.

1. Lecture One

Let us start the discussion with the equivalence of integral binary quadratic
forms. The concept was introduced by Lagrange [15] and studied by Gauss [9] in
a systematic fashion.

An integral binary quadratic form is a homogeneous polynomial

〈a, b, c〉 := ax2 + bxy + cy2 ∈ Z[x, y]

with associated discriminant

d := b2 − 4ac ∈ Z.

The possible discriminants are the integers congruent to 0 or 1 mod 4. We shall
assume that the form 〈a, b, c〉 is not a product of linear factors in Z[x, y], then d
is not a square, hence ac �= 0. If d < 0 then ac > 0 and we shall assume that we
are in the positive definite case a, c > 0. Furthermore, we shall assume that d is a
fundamental discriminant which means that it cannot be written as d′e2 for some
smaller discriminant d′. Then 〈a, b, c〉 is a primitive form which means that a, b, c
are relatively prime. The possible fundamental discriminants are the square-free
numbers congruent to 1 mod 4 and 4 times the square-free numbers congruent to
2 or 3 mod 4.

Example 1. The first few negative fundamental discriminants are: −3, −4,
−7, −8, −11, −15, −19, −20, −23, −24. The first few positive fundamental dis-
criminants are: 5, 8, 12, 13, 17, 21, 24, 28, 29, 33.

The author was supported by European Community grant MEIF-CT-2006-040371 under the
Sixth Framework Programme.

c© 2010 Gergely Harcos
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Lagrange [15] discovered that every form 〈a, b, c〉 with a given discriminant d
can be reduced by some integral unimodular substitution

(x, y) �→ (αx+ βy, γx+ δy),

(
α β
γ δ

)
∈ SL2(Z),

to some form with the same discriminant that lies in a finite set depending only
on d. Forms that are connected by such a substitution are called equivalent. It is
easiest to understand this reduction by looking at the simple substitutions

(1) (x, y)
T�→ (x− y, y) and (x, y)

S�→ (−y, x).

The induced actions on forms are given by

〈a, b, c〉 T�→ 〈a, b− 2a, c+ a− b〉 and 〈a, b, c〉 S�→ 〈c,−b, a〉.

Now a given form 〈a, b, c〉 can always be taken to some 〈a, b′, c′〉 with |b′| � |a| by
applying T or T−1 a few times. If |a| � |c′| then we stop our reduction. Otherwise
we apply S to get some 〈a′′, b′′, c′′〉 with |a′′| < |a| and we start over with this form.
In this algorithm we cannot apply S infinitely many times because |a| decreases at
each such step. Hence in a finite number of steps we arrive at an equivalent form
〈a, b, c〉 whose coefficients satisfy

(2) |b| � |a| � |c|, b2 − 4ac = d.

These constraints are satisfied by finitely many triples (a, b, c). Indeed, we have

(3) |d| = |b2 − 4ac| � 4|ac| − b2 � 3b2,

so there are only � |d|1/2 choices for b and for each such choice there are only �ε d
ε

choices for a and c since the product ac is determined by b. We have shown that
the number of equivalence classes of integral binary quadratic forms of fundamental
discriminant d, denoted h(d), satisfies the inequality

(4) h(d) �ε |d|1/2+ε.

In the case d < 0 it is straightforward to compile a maximal list of inequiv-
alent forms satisfying (2). There is an algorithm for d > 0 as well but it is less
straightforward. In fact the subsequent findings of this lecture can be turned into
an algorithm for all d. Note that for d > 0 (3) implies 4ac = b2 − d < 0, hence by
an extra application of S we can always arrange for a reduced form 〈a, b, c〉 with
a > 0.

Example 2. The equivalence classes for d = −23 are represented by the forms
〈1, 1, 6〉, 〈2,±1, 3〉. Hence h(−23) = 3. The equivalence classes for d = 21 are
represented by the forms 〈1, 1,−5〉, 〈−1, 1, 5〉. Hence h(21) = 2.

To obtain a geometric picture of equivalence classes of forms we shall think of
Q(

√
d) as embedded in C such that

√
d/i > 0 for d < 0 and

√
d > 0 for d > 0. For

q1, q2 ∈ Q we shall consider the conjugation

q1 + q2
√
d := q1 − q2

√
d.

Each form 〈a, b, c〉 decomposes as

ax2 + bxy + cy2 = a(x− zy)(x− z̄y),
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where

(5) z :=
−b+

√
d

2a
, z̄ :=

−b−
√
d

2a
.

Using (1) we can see that the action of SL2(Z) on z and z̄ is the usual one given
by fractional linear transformations:

z
T�→ z + 1 and z

S�→ −1/z.

Therefore in fact we are looking at the standard action of SL2(Z) on certain con-

jugate pairs of points of Q(
√
d) embedded in C. For d < 0 we consider the points

z ∈ H and obtain h(d) points on SL2(Z)\H. These are the Heegner points of dis-
criminant d < 0. For d > 0 we consider the geodesics Gz̄,z ⊂ H connecting the real
points {z̄, z} and obtain h(d) geodesics on SL2(Z)\H.

It is a remarkable fact that for d > 0 any geodesic Gz̄,z as above becomes closed
when projected to SL2(Z)\H, and its length is an important arithmetic quantity

associated with the number field Q(
√
d). To see this take any matrix M ∈ GL+

2 (R)
which takes 0 to z̄ and ∞ to z, for example1

(6) M :=

(
z z̄
1 1

)
,

then M takes the positive real axis (resp. geodesic) connecting {0,∞} to the
real segment (resp. geodesic) connecting {z̄, z}. In particular, using that M is a
conformal automorphism of the Riemann sphere, we see that Gz̄,z is the semicircle
above the real segment [z̄, z], parametrized as

Gz̄,z = {g(λ)i : λ > 0}, where g(λ) := M

(
λ 0
0 λ−1

)
.

Moreover, the unique isometry of H fixing the geodesic Gz̄,z and taking g(1)i to
g(λ)i is given by the matrix

(7) M

(
λ 0
0 λ−1

)
M−1 ∈ SL2(R).

Therefore we want to see that for some λ > 1 the matrix

(8) M

(
λ 0
0 λ−1

)
M−1 =

1

z − z̄

(
zλ− z̄λ−1 zz̄(λ−1 − λ)
λ− λ−1 zλ−1 − z̄λ

)

is in SL2(Z), and then the projection of Gz̄,z to SL2(Z)\H has length∫ λ2

1

dy

y
= 2 ln(λ)

for the smallest such λ > 1. A necessary condition for λ is that the sum and
difference of diagonal elements of the matrix (8) are integers and so are the anti-
diagonal elements as well. Using that

z − z̄ =

√
d

a
, z + z̄ =

−b

a
, zz̄ =

c

a
this is equivalent to:

λ+ λ−1 ∈ Z, {a, b, c}λ− λ−1

√
d

⊂ Z.

1we assume here that a > 0 which is legitimate as we have seen
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As gcd(a, b, c) = 1 we can simplify this to

λ+ λ−1 ∈ Z, and
λ− λ−1

√
d

∈ Z.

In other words, there are integers m,n such that

(9) λ =
m+ n

√
d

2
and λ−1 =

m− n
√
d

2
.

As λ > 1 the integers m,n are positive and they satisfy the diophantine equation

(10) m2 − dn2 = 4.

The equations (9)–(10) are not only necessary but also sufficient for (8) to lie in
SL2(Z). Namely, (8)–(10) imply that

(11) M

(
λ 0
0 λ−1

)
M−1 =

(
m−bn

2 −nc
na m+bn

2

)
∈ SL2(Z)

since
m± bn ≡ m2 − dn2 ≡ 0 (mod 2).

The λ’s given by (9)–(10) are exactly the totally positive2 units in the ring of

integers Od of Q(
√
d). These units form a group isomorphic to Z by Dirichlet’s

theorem, therefore there is a smallest λ = λd > 1 among them (which generates
the group). In other words, the sought λ = λd > 1 exists and comes from the
smallest positive solution of (10). In classical language, the matrices (11) are the
automorphs of the form 〈a, b, c〉.

To summarize, the SL2(Z)-orbits of forms 〈a, b, c〉 with given fundamental dis-
criminant d give rise to h(d) Heegner points on SL2(Z)\H for d < 0 and h(d) closed

geodesics of length 2 ln(λd) for d > 0 where λd = (m + n
√
d)/2 is the smallest

totally positive unit of Od greater than 1. This geometric picture is even more
interesting in the light of the following refinement of (4) which is a consequence of
Dirichlet’s class number formula and Siegel’s theorem (see [5, Chapters 6 and 21]):

|d|1/2−ε �ε h(d) �ε |d|1/2+ε, d < 0,

d1/2−ε �ε h(d) ln(λd) �ε d
1/2+ε, d > 0.

(12)

This shows that the set of Heegner points of discriminant d < 0 has cardinality
about |d|1/2, while the set of closed geodesics of discriminant d > 0 has total length
about d1/2.

2. Lecture Two

In the light of (12) the natural question arises if the set Λd of Heegner points
(resp. closed geodesics) of fundamental discriminant d becomes equidistributed in
SL2(Z)\H as d → −∞ (resp. d → +∞). That is, given a smooth and compactly
supported weight function g : SL2(Z)\H → C do we have

1

h(d)

∑
z∈Λd

g(z) →
∫
SL2(Z)\H

g(z) dμ(z), d → −∞,

1

h(d) 2 ln(λd)

∑
G∈Λd

∫
G

g(z) ds(z) →
∫
SL2(Z)\H

g(z) dμ(z), d → +∞,

(13)

2i.e. positive under both embeddings Q(
√
d) ↪→ R
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where dμ(z) abbreviates the SL2(R)-invariant probability measure on SL2(Z)\H
and ds(z) abbreviates the hyperbolic arc length? Duke [6] proved that the answer
is yes in the sharper form that the difference of the two sides is �g |d|−δ for
some fixed δ > 0. Earlier Linnik [16] established the above limits with error term

�g (log |d|)−A for all A > 0 under the condition that
(

d
p

)
= 1 for a fixed odd

prime p.
We shall discuss Duke’s quantitative result and a refinement of it from the

modern perspective of subconvex bounds for automorphic L-functions. Our first
step is to decompose spectrally the weight function considered in (13) as

g(z) = 〈g, 1〉+
∞∑
j=1

〈g, uj〉uj(z) +
1

4π

∫ ∞

−∞
〈g, E(·, 12 + it)〉E(z, 12 + it) dt,

where

〈f1, f2〉 :=
∫
SL2(Z)\H

f1(z)f2(z) dμ(z),

the {uj} are Hecke–Maass cusp forms on SL2(Z)\H with 〈uj , uj〉 = 1, and the
Eisenstein series E(z, 12 + it) are obtained by meromorphic continuation from

E(z, s) :=
1

2

∑
m,n∈Z

gcd(m,n)=1

zs
|mz + n|2s , �s > 1.

The above decomposition converges in L2(SL2(Z)\H) and also pointwise absolutely
and uniformly on compact sets, see [14, Theorem 7.3]. If

Δ := −y2
(

∂2

∂x2
+

∂2

∂y2

)

denotes the hyperbolic Laplacian and we use the notation and fact

Δuj(z) =
(
1
4 + t2j

)
uj(z), ΔE(z, 1

2 + it) =
(
1
4 + t2

)
E(z, 12 + it),

then for any smooth and compactly supported g(z) and for any B > 0 we have

(14) 〈g, uj〉 �g,B (1 + |tj |)−B, 〈g, E(·, 12 + it)〉 �g,B (1 + |t|)−B.

Therefore in order to establish Duke’s theorem with an error term �g |d|−δ′ it
suffices to show that if g is a Hecke–Maass cusp form with 〈g, g〉 = 1 or a standard
Eisenstein series E(·, 12+it) then for some fixed δ > 0 and A > 0 the sums considered
in (13) satisfy

(15)
∑
Λd

· · · � (1 + |t|)A |d| 12−δ,

where t = tg is the spectral parameter of g, i.e.

Δg(z) =
(
1
4 + t2

)
g(z).

At this point we remark that any such g has a Fourier decomposition of the form

g(x+ iy) = c1y
1
2+it + c2y

1
2−it +

√
y
∑
n�=0

ρg(n)Kit(2π|n|y)e2πinx,



382 GERGELY HARCOS

where c1,2 are some constants3 and Kit is a Bessel function. The Fourier coefficients
ρg(n) are proportional to the Hecke eigenvalues of g, and by a result of Hoffstein–
Lockhart [10] we have the uniform bound (see also [14, (3.25)])

(16) |ρg(1)| �ε (1 + |t|)εeπ
2 |t|.

We note that for t bounded away from zero we have a similar lower bound, with
exponent −ε in place of ε, as proved by Iwaniec [13] (see also [14, Theorem 8.3]).

Now we state a formula which can be attributed to several people4 and relates
the sums in (15) to central values of automorphic L-functions:

(17)

∣∣∣∣∣
∑
Λd

. . .

∣∣∣∣∣
2

= cd |d|
1
2 |ρg(1)|2 Λ

(
1
2 , g

)
Λ
(
1
2 , g ⊗ (d· )

)
,

where the factor cd is positive and takes only finitely many different values. In
this formula Λ(s,Π) denotes the completed L-function; the finite part L(s,Π) of
the L-function is defined in terms of Hecke eigenvalues; the infinite part of the L-
function is a product of exponential and gamma factors whose contribution in (17)
is � (1 + |t|)e−π|t| by Stirling’s approximation. Using also (16) we conclude that
(15) follows by a subconvex bound of the form

L
(
1
2 , g ⊗ (d· )

)
� (1 + |t|)A |d| 12−δ,

where δ > 0 and A > 0 are some fixed constants (different from those in (15)).
In the case when g is a cusp form such a bound was proved by Duke–Friedlander–
Iwaniec [7] for any δ < 1

22 , by Bykovskĭı [3] for any δ < 1
8 , and by Conrey–

Iwaniec [4] for any δ < 1
6 . In the case when g is an Eisenstein series E(·, 12 + it) the

above becomes ∣∣L (
1
2 + it, (d· )

)∣∣2 � (1 + |t|)A |d| 12−δ,

and this was established by Burgess [2] for any δ < 1
8 , and by Conrey–Iwaniec [4]

for any δ < 1
6 .

We shall now formulate a refinement of (13) using the natural action of the

narrow ideal class group Hd of Q(
√
d) on Λd. This action comes from the natural

bijection Hd ↔ Λd which we describe in the Appendix. Note in particular that
|Hd| = h(d) by this bijection. Given some z0 ∈ Λd when d < 0 and some G0 ∈ Λd

when d > 0, and given some subgroup H � Hd one can ask if

1

|H|
∑
σ∈H

g(zσ0 ) →
∫
SL2(Z)\H

g(z) dμ(z), d → −∞,

1

|H| 2 ln(λd)

∑
σ∈H

∫
Gσ

0

g(z) ds(z) →
∫
SL2(Z)\H

g(z) dμ(z), d → +∞.

(18)

Using characters of the abelian group Hd we can decompose the sums over H into
twisted sums over Hd:∑

σ∈H

. . . =
∑
σ∈Hd

1

(Hd : H)

∑
ψ∈ ̂Hd
ψ|H≡1

ψ(σ) . . . =
|H|
|Hd|

∑
ψ∈ ̂Hd
ψ|H≡1

∑
σ∈Hd

ψ(σ) . . .

3c1 = c2 = 0 if g is a cusp form, c1 = |c2| = 1 if g is an Eisenstein series E(·, 1
2
+ it)

4Dirichlet, Hecke, Siegel, Maass, Shimura, Waldspurger, Kohnen–Zagier, Duke, Katok–
Sarnak, Guo, Zhang, Popa; see the references for (20) of which (17) is a special case
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Note that the number of characters of Hd restricting to the identity character on
H is (Hd : H). Therefore if we have, uniformly for all characters ψ : Hd → C

× and
for all L2-normalized Hecke–Maass cusp forms or standard Eisenstein series in the
role of g, ∑

σ∈Hd

ψ(σ)g(zσ0 ) � (1 + |t|)A |d| 12−δ, d < 0,

∑
σ∈Hd

ψ(σ)

∫
Gσ

0

g(z) ds(z) � (1 + |t|)A |d| 12−δ, d > 0,
(19)

where δ > 0 and A > 0 are fixed constants, then by the same discussion as above,
the limits (18) follow with a strong error term �g |d|−δ′ as long as

(Hd : H) � |d|η

for any fixed constant 0 < η < δ.
The twisted sums in (19) can be related to central automorphic L-values sim-

ilarly as in (17). The formula is based on the deep work of Waldspurger [21] and
was carefully derived by Zhang [22] when d < 0 and by Popa [19] when d > 0:

(20)

∣∣∣∣∣
∑
σ∈Hd

ψ(σ) . . .

∣∣∣∣∣
2

= cd |d|
1
2 |ρg(1)|2 Λ

(
1
2 , g ⊗ fψ

)
.

Here fψ is the so-called Jacquet–Langlands lift of ψ, discovered by Hecke [12] and
Maass [17] in this special case: it is a modular form onH of level |d| and nebentypus(
d
·
)
with the same completed L-function as ψ. In particular, when g is an Eisenstein

series E(·, 12 + it) the identity (20) follows from [20, pp. 70 and 88] and [14, (3.25)].
If the character ψ : Hd → C

× is real-valued then it is one of the genus characters
discovered by Gauss [9]. In this case, as observed by Kronecker [20, p. 62],

Λ(s, ψ) = Λ(s, ( d1

· ))Λ(s, (
d2

· )),

where d = d1d2 is a factorization of d into fundamental discriminants d1 and d2,
whence (20) simplifies to∣∣∣∣∣

∑
σ∈Hd

ψ(σ) . . .

∣∣∣∣∣
2

= cd |d|
1
2 |ρg(1)|2 Λ

(
1
2 , g ⊗ (d1

· )
)
Λ
(
1
2 , g ⊗ (d2

· )
)
.

In fact (17) is the special case of this formula when ψ is the trivial character (d1 = 1,
d2 = d). The necessary estimate (19) follows by the subconvex bounds discussed
before:

L
(
1
2 , g ⊗ (di

· )
)
� (1 + |t|)A |di|

1
2−δ, i = 1, 2.

If the character ψ : Hd → C
× is not real-valued then fψ is a cusp form of level

|d| and nebentypus
(
d
·
)
, and we need a subconvex bound of the form

L
(
1
2 , g ⊗ fψ

)
� (1 + |t|)A |d| 12−δ.

In the case when g is a cusp form such a bound was proved by Harcos–Michel [11]
with δ = 1

3000 . In the case when g is an Eisenstein series E(·, 12 + it) the above
becomes ∣∣L (

1
2 + it, ψ

)∣∣2 � (1 + |t|)A |d| 12−δ,

and this was established by Duke–Friedlander–Iwaniec [8] with δ = 1
12000 and by

Blomer–Harcos–Michel [1] with δ = 1
1000 .
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Finally we remark that the above ideas have been greatly extended by several
researchers. The interested reader should consult the excellent survey of Michel–
Venkatesh [18].

3. Appendix

In this Appendix we consider an arbitrary fundamental discriminant d and re-
gard

√
d as a complex number which lies on the positive real axis or positive imagi-

nary axis depending on the sign of d. We show that the equivalence classes of forms
of fundamental discriminant d can be mapped bijectively to narrow ideal classes of
the quadratic number field Q(

√
d) in a natural fashion. As the latter classes form

an abelian group under multiplication this will exhibit a natural multiplication law
on the equivalence classes of forms. This law, discovered by Gauss [9], is called
composition in the classical theory.

Recall that a fractional ideal of Q(
√
d) is a finitely generated Od-module con-

tained in Q(
√
d) and two nonzero fractional ideals are equivalent (in the narrow

sense) if their quotient is a principal fractional ideal generated by a totally positive

element of Q(
√
d). Here “totally positive element” can clearly be changed to “ele-

ment of positive norm” where the norm of μ ∈ Q(
√
d) is given by N(μ) = μμ̄. Recall

also that we can represent equivalence classes of forms of fundamental discriminant
d by some

Qi(x, y) = aix
2 + bixy + ciy

2 = ai(x− ziy)(x− z̄iy), i = 1, . . . , h(d),

with

ai > 0, zi :=
−bi +

√
d

2ai
, z̄i :=

−bi −
√
d

2ai
.

It will suffice to show that each fractional ideal I of Q(
√
d) is equivalent to some

fractional ideal

Ii := Z+ Zzi, i = 1, . . . , h(d),

and that the fractional ideals Ii are pairwise inequivalent.
Any fractional ideal I can be written as

I = Zω1 + Zω2 with
ω̄1ω2 − ω1ω̄2√

d
> 0.

We associate to I (and ω1, ω2) the binary quadratic form

QI(x, y) :=
(xω1 − yω2)(xω̄1 − yω̄2)

N(I)
,

where N(I) > 0 is the absolute norm of I, i.e. the multiplicative function that
agrees with (Od : I) for integral ideals I. We claim first that QI(x, y) has integral
coefficients and discriminant d. To see the claim we can assume that I is an integral
ideal since QI(x, y) does not change if we replace I by nI (and ωi by nωi) for some
positive integer n. Then ω1, ω2 and their conjugates are in Od and the claim
amounts to:

• N(I) | ω1ω̄1, ω1ω̄2 + ω̄1ω2, ω2ω̄2;
• (ω1ω̄2 − ω̄1ω2)

2 = N(I)2d.
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The first statement follows from the fact that ω1, ω2, ω1 + ω2 are elements of I,
hence their norms are divisible by N(I). The second statement follows by writing
Od as Z+ Zω and then noting that∣∣∣∣ω1 ω̄1

ω2 ω̄2

∣∣∣∣
2

= (Od : I)2
∣∣∣∣1 1
ω ω̄

∣∣∣∣
2

= N(I)2d.

The claim implies that there is a unique i and a unique

(
α β
γ δ

)
∈ SL2(Z) such

that

QI(αx+ βy, γx+ δy) = Qi(x, y).

We can write this as

N(αω1 − γω2)

N(I)
(x− zy)(x− z̄y) = ai(x− ziy)(x− z̄iy),

where

(21) z :=
−βω1 + δω2

αω1 − γω2
.

This implies immediately that

(22) N(αω1 − γω2) = aiN(I) > 0.

Then a straightforward calculation yields

z − z̄√
d

=
αδ − βγ

N(αω1 − γω2)

ω̄1ω2 − ω1ω̄2√
d

> 0

which by
zi − z̄i√

d
=

1

ai
> 0

forces that z = zi. But then (21)–(22) imply that

I = Zω1 + Zω2 = Z(αω1 − γω2) + Z(−βω1 + δω2)

is equivalent to

Z+ Zz = Z+ Zzi = Ii.

Now assume that Ii and Ij are equivalent, i.e. there is some μ ∈ Q(
√
d) such

that

μ(Z+ Zzi) = Z+ Zzj , N(μ) > 0.

Then we certainly have some

(
α β
γ δ

)
∈ GL2(Z) such that

μ = α+ βzj , μzi = γ + δzj .

In particular,

zi =
γ + δzj
α+ βzj

with N(α+ βzj) > 0.

By a straightforward calculation as before,

zi − z̄i√
d

=
αδ − βγ

N(α+ βzj)

zj − z̄j√
d

,

which shows that

αδ − βγ = 1 and N(α+ βzj) =
zj − z̄j
zi − z̄i

=
ai
aj

.
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Now we obtain

ai(x− ziy)(x− z̄iy) = aj
(
(α+ βzj)x− (γ + δzj)y

)(
(α+ βz̄j)x− (γ + δz̄j)y

)
,

i.e.

Qi(x, y) = Qj(αx− γy,−βx+ δy),

(
α −γ

−β δ

)
∈ SL2(Z).

This clearly implies that i = j, since otherwise the formsQi andQj are inequivalent.
Incidentally, we see that the equivalence class of the associated form QI(x, y)

only depends on the narrow class of I (in particular, it is independent of the choice
of ordered basis of I) and two fractional ideals I and J are in the same narrow class
if and only if QI(x, y) and QJ (x, y) are equivalent.
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Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, POB 127,

Budapest H-1364, Hungary

E-mail address: gharcos@renyi.hu





Clay Mathematics Proceedings
Volume 10, 2010

Eigenfunctions of the laplacian on negatively curved
manifolds : a semiclassical approach

Nalini Anantharaman

Contents

An introduction to semiclassical analysis. 389
1. Mechanics. 389
2. Weyl quantization. 397
3. Born’s probabilitic interpretation of the Schrödinger equation. 399
4. The semiclassical limit. 399
5. Semiclassical measures, microlocal lifts. 405
Entropy and localization of eigenfunctions. 408
6. Motivations. 408
7. Main result. 412
8. Definition of entropy, and main idea of the proof. 414
The entropic uncertainty principle. 417
9. The abstract result... 417
10. ... applied to eigenfunctions of the laplacian... 419
11. ...and the conclusion. 423
WKB methods. 425
12. Lagrangian submanifolds of T ∗X and generating functions. 425
13. Lagrangian distributions. 428
14. WKB description of the operator U t = exp(it��

2 ). 429
15. Proof of the main estimate. 430
References 435

An introduction to semiclassical analysis.

1. Mechanics.
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the effect of a force F = −gradV , with a total energy E, follows a trajectory γ
which minimizes the action

(1.1) S(γ) =

∫ √
2(E − V (γ))‖dγ‖

among all curves with the same endpoints, and under the constraint that ‖γ̇(t)‖2

2 +
V (γ(t)) = E for all t. More precisely, we should look for critical points of S, among
all paths with given endpoints, and constant total energy E. In these notes, we
work on a riemannian manifold (X, g), and ‖.‖x is the norm defined on TxX by
the riemannian metric : ‖v‖2x = gx(v, v). In other words, the Maupertuis principle
says that the trajectories of energy E are geodesics for a new, degenerate metric,
2(E − V (x))gx.

The dual formulation, due to Lagrange [L1788], is to find the extrema of the
functional

(1.2) A(γ) =

∫ T

0

(
‖γ̇(t)‖2γ(t)

2
− V (γ(t))

)
dt

among all curves going from x to y in a given time T . Let us introduce the la-

grangian L(x, v) =
‖v‖2

x

2 − V (x); the movement is described by the Euler-Lagrange
equation

(1.3)
d

dt

(
∂L

∂v
(γ, γ̇)

)
=

∂L

∂x
(γ, γ̇),

or more explicitly Dγ̇ γ̇ = −gradV (γ). This second order equation defines a local
flow (φt

EL) on the tangent bundle TX, called the Euler-Lagrange flow.

Hamiltonian point of view. The hamiltonian is the Fenchel–Legendre trans-
form of L with respect to the variable v :

H(x, ξ) = ξ.v − L(x, v)

with ξ = ∂L
∂v ; we are in a nice situation where the Legendre transformation

Leg : (x, v) �→
(
x,

∂L

∂v

)

defines a diffeomorphism between the tangent bundle TX and the cotangent bundle

T ∗X. Its inverse is Leg−1 : (x, ξ) �→
(
x, ∂H

∂ξ

)
. In fact, in our case, Leg is nothing

else than the natural identification between TX and T ∗X, provided by the riemann-
ian metric. We can define a scalar product gx on T ∗

xX by gx(ξ, ξ) = gx(v, v) = ‖v‖2x,
with ξ = ∂L

∂v . The vector ξ is called the momentum, and H(x, ξ) = gx(ξ,ξ)
2 +V (x) is

the total energy of the system. We shall also denote gx(ξ, ξ) = ‖ξ‖2x, but the reader
should not confuse the norms ‖.‖x on T ∗

xX and TxX.
The Euler-Lagrange equation (1.3) is equivalent to Hamilton’s system of equa-

tions,

(1.4)

⎧⎪⎨
⎪⎩
ẋ = ∂H

∂ξ

ξ̇ = −∂H
∂x ,

which define a local flow (φt
H) on T ∗X, called the hamiltonian flow. This flow is

conjugate to (φt
EL) via the diffeomorphism Leg. It preserves the energy H, in the
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sense that H(x(t), ξ(t)) is constant for any trajectory of the flow (x(t), ξ(t)). The
hamiltonian flow also preserves the Liouville measure dx dξ.

If a is a function on T ∗X (an “observable quantity” in the language of Heisen-
berg), and if we denote at = a ◦ φt

H , we have

da

dt
= {H, a},

where {. , .} denotes the Poisson bracket, {H, a} =
∑

∂ξjH ∂xj
a− ∂ξja ∂xj

H.
A more intrinsic way of writing the Hamilton equations (1.4) would be to note

that the vector field on the right hand side is the symplectic gradient of H, with
respect to the canonical symplectic form on T ∗X. Let us define the Liouville 1-form
on the cotangent bundle, defined by

α(x,ξ)(P ) = ξ.dπ(P ) for all P ∈ T(x,ξ)(T
∗X),

where π : T ∗X −→ X is the usual projection, and dπ its tangent map. The
cotangent bundle T ∗X can be endowed with the symplectic form

(1.5) ω = −dα.

In local coordinates, α = p.dq and ω = dq ∧ dp, if p and q denote respectively the
“momentum” and “position” functions, p(x, ξ) = ξ, q(x, ξ) = x. The reader can
check that the right hand side of (1.4) is the expression in local coordinates of the
symplectic gradient XH of H, defined by dH = ω(XH , .). The Poisson bracket is
given by {f, g} = −ω(Xf , Xg) = dg(Xf ), for any two functions f, g on T ∗X.

One can show that the flow φH preserves the symplectic form ω. In the language
of symplectic geometry, a (local) diffeomorphism of T ∗X which preserves ω is called
a canonical transformation.

Hamilton–Jacobi equation, generating functions. This third point of
view, called the Hamilton–Jacobi approach, meets many technical difficulties, but it
is the key tool to understand the semiclassical analysis of the Schrödinger equation.

Around 1830, Hamilton introduced a new formalism, in which the action is
seen as a function of the endpoints x and y [H1830, H1834]. Let γ : [0, T ] −→ X
be a solution of the Euler–Lagrange equation, joining x to y in time T > 0. To
simplify the discussion, we consider here the nice, but usually unrealistic situation,
where such a trajectory is unique. We can then consider the lagrangian action

A(x, y;T ) =
∫ T

0
L(γ, γ̇)dt as a function of x, y, T , and check that

(1.6)
∂A

∂x
= −γ̇(0);

∂A

∂y
= γ̇(T ),

and
∂A

∂T
= −E

where E is the energy E = ‖γ̇‖2

2 + V (γ), constant along the trajectory γ. If we
freeze the variable y (thus fixing an initial or rather “final” condition) and see A as
a function of x ∈ X and T > 0, we have

(1.7)
∂A

∂T
+H(x, ∂xA) = 0.

Hamilton then argues that being able to integrate the hamiltonian vector field
(1.4) is equivalent to finding the generating function A, solution of the Hamilton–
Jacobi equation (1.7) for any initial condition (or a large enough family of initial
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conditions). By this procedure, the ordinary differential equations (1.3) or (1.4)
have been replaced by a single PDE. Quoting Hamilton, “even if it should be
thought that no practical facility is gained, yet an intellectual pleasure may result
from the reduction of [...] all researches respecting the forces and motions of body,
to the study of one characteristic function”.

Let us also consider the Legendre transform of A(x, y;T ) with respect to the
variable T ,

(1.8) S(x, y;E) = ET +A(x, y;T )

where T and E are related by
∂A

∂T
= −E,

which implies that
∂S

∂E
= T.

The function S is nothing else but the Maupertuis action (1.1) of the trajectory γ
joining x to y with energy E:

S(x, y;E) =

∫ √
2(E − V (γ))‖γ̇‖dt =

∫ T

0

‖γ̇‖2dt.

We still have

(1.9)
∂S

∂x
= −γ̇(0);

∂S

∂y
= γ̇(T ).

If we freeze the final state y, the function S solves the stationary Hamilton–Jacobi
equation,

(1.10) H(x, ∂xS) = E.

The solutions of the time–dependent Hamilton–Jacobi equation (1.7) and of the
stationary equation (1.10) are related by the Legendre transform (1.8).

The Hamilton–Jacobi equation (1.7) has a simple geometrical intepretation.
Consider a subset of the cotangent bundle T ∗X, of the form L0 = {(x, dxA0), x ∈
Ω0}, with Ω0 an open subset of X. This is a particular case of a lagrangian sub-
manifold in T ∗X (see Definition 12.1). Let L0 evolve under the hamiltonian flow,
and consider Lt = φt

HL0: because φt
H preserves the symplectic form ω, Lt is still

a lagrangian manifold. Let us assume that, for t ∈ [0, T ], Lt still projects diffeo-
morphically to an open subset of Ωt ⊂ X. This means exactly that Lt is of the
form Lt = {(x, dxAt), x ∈ Ωt} for some smooth function At. It can be shown that
the relation Lt = φt

HL0 is equivalent to At solving the Hamilton–Jacobi equation
(1.7), with the condition that Ωt is the image of L0 under the “exponential” map
associated with L0:

exptL0
: L0 −→ X,(1.11)

ξ �→ π
(
φt
Hξ

)
(1.12)

(the notation π denotes the projection T ∗X −→ X).
This approach suffers from the notorious problem of caustics (Figure 1). Usually,

the exponential map will only be a diffeomorphism if the energy H is bounded on
L0, and if t is small enough. For large times two kinds of problems arise,

– exp is not injective (two trajectories starting in L0 land at the same point in
X)
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xxx

LtL0

ξ ξ ξ

Figure 1. Appearance of caustics for large times.

– the tangent map d exp is not injective (focal points, conjugate points).
Geometrically, this means that after some time Lt will cease to project diffeo-

morphically to X. From a PDE point of view, this means that the equation (1.7)
does not, in general, have globally defined smooth solutions.

Although the problem of caustics makes the Hamilton–Jacobi equation rather
difficult to work with, it is, nevertheless, the key tool to understand Schrödinger’s
equation and its semiclassical analysis. Semiclassical methods often break down
with the appearance of caustics, or a little after.

We now review Schrödinger’s view of mechanics, but also the work of Born,
Heisenberg and Jordan, which lead to the idea of quantization.

1.2. Quantum/wave mechanics. At the beginning of the twentieth century,
it became clear that classical mechanics was not applicable to certain problems,
like the study of energy radiation in atoms. People started looking for new physical
laws, but it was not until 1925 that theories judged as satisfactory were elaborated.
These theories involve Planck’s constant h = 2π� = 6.626068× 10−34m2.kg/s (the
“action quantum”), and one is supposed to recover classical mechanics when letting
h tend to 0 in the equations.

Quantenmechanik. In 1925, Heisenberg, Born and Jordan gave some new
laws of mechanics, supposed to replace the old Hamilton equations (1.4). Consider
a hamiltonian system with d degrees of freedom, meaning that the manifold X has
dimension d. In fact let us take X = R

d as in the paper [BHJ25-II]. In classical
mechanics the time evolution is given by equation (1.4), defining a symplectic flow
on the phase space T ∗X. According to the quantum mechanics of [BHJ25-II], the
time evolution of the system is ruled by the five following principles :

(0) The “phase space” is a Hilbert space H.

(1) The “observable quantities” are described by linear operators ( = infinite
matrices). Heisenberg, Born and Jordan used a boldface letter a to denote the
quantum observable corresponding to the classical observable a; if a is a real–valued
function on T ∗X then the corresponding operator a is hermitian.

(2) Main rules : We consider, in particular, an algebra of operators gen-
erated by the momentum and position observables, p = (p1,p2, ...,pd) and q =
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(q1, ...,qd). These operators must obey the following commutation rules :

[
pk,ql

]
=

�

i
δkl I,(1.13) [

pk,pl

]
= 0,(1.14) [

qk,ql

]
= 0.(1.15)

Consider now a classical observable f defined by a power series

f(p, q) =
∑

αsrp
sqr.

Then the quantum observable f should be defined by

f(p,q) =
∑

αsr
1

s+ 1

s∑
l=0

ps−lqrpl.

This prehistoric “quantization rule” can be applied, in particular, to define the
hamiltonian operator H.

(3) A canonical transformation is a transformation that sends the observables
(p,q) to new observables (P,Q) satisfying the same commutation relations. We
ask that a canonical transformation preserve hermitian operators, and sends an
observable of the form f(p,q) to f(P,Q). Such a transformation is of the form
P = SpS−1, Q = SqS−1, where S is a unitary operator.

(4) The equations of motion are

(1.16)

⎧⎪⎨
⎪⎩
ṗ = −∂H

∂q

q̇ = ∂H
∂p ,

where we define

∂f

∂x1
= lim

ε−→0

1

ε

(
f(x1 + εI,x2, ...,xs)− f(x1,x2, ...,xs)

)

for f(x1,x2, ...,xs) a power series in the s observables x1,x2, ...,xs (I is the identity
operator).

It can be shown from formula (1.13) that we have the identity

[f ,g] =
�

i

(
∂f

∂p

∂g

∂q
− ∂f

∂q

∂g

∂p

)

holding for f ,g power series in the operators p and q.
In particular, the equations (1.16) can be reexpressed as

ḟ =
i

�
[H, f ]

for any observable f .
(5) To integrate the equation of motion, we must find a unitary operator S

such that

(1.17) SHS−1 = W
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is diagonal. In other words, we look for a canonical transformation which allows to
express the solutions of (1.16) as a superposition of periodic motions1.

In a basis where H is diagonal, we find, for any observable f , that the matrix
elements evolve according to

(1.18) fnm(t) = fnm(0)e2iπνnmt

where the radiation sprectrum νnm (“physical spectrum”) is related to the eigen-
values (En) of H (“mathematical spectrum”) by

νnm =
En − Em

h
.

Wellenmechanik. In 1926, Erwin Schrödinger, independently of the work of
Heisenberg, Born and Jordan, proposed a new equation, supposed to describe the
state of our system submitted to a force field −gradV , when the value of the energy
E is given : the “stationary” Schrödinger equation is a second order elliptic PDE,

(1.19) −�
2

2
	ψ + V ψ = Eψ,

where E is the energy. As we shall see, this equation is closely related to the
stationary Hamilton–Jacobi equation (1.10). The corresponding evolution equation
reads

(1.20) i�
∂φ

∂t
=

(
−�

2

2
	+ V

)
φ.

These two forms of the equation are related by a time/energy Fourier transform
φ(t) =

∫
e−iEt/�ψEdE, which recalls the relation (1.8).

According to Schrödinger’s theory, the energy spectrum can be computed by
finding the values of E for which equation (1.19) admits solutions which are “single–
valued, finite, and continuous throughout configuration space”.

Schrödinger, motivated by the works of De Broglie, gives an interpretation of
ψ as a “wave function”. “The true mechanical process is realised or represented
in a fitting way by the wave processes in q–space, and not by the motion of image

1The analogy with the theory of classical hamiltonian systems can be pushed further. In
fact, equation (1.16) is a linear hamiltonian flow, in an infinite dimensional space. Such systems
are completely integrable, due to the fact that a unitary transformation diagonalizing H always
exists. To be more explicit, let (H, 〈., .〉) be a complex Hilbert space, seen as a real vector space
endowed with the symplectic form ω(φ,ψ) = �m〈φ, ψ〉. If we use an orthonormal basis (en) to
define coordinates, φ =

∑
n(xn + iξn)en, then (xn, ξn) are Darboux coordinates, meaning that

ω =
∑

n dxn ∧ dξn.
Let H be a self–adjoint operator; it can be used to define a quadratic hamiltonian H(ψ) =

1
2
〈ψ,Hψ〉. If we consider quadratic observables, f(ψ) = 1

2
〈ψ, fψ〉, then the Poisson bracket defined

by ω correspond to the usual commutator bracket,

{f, g}(ψ) = 1

2
〈ψ, i[f ,g]ψ〉.

The Hamilton equations defined by H read dψ
dt

= −iHψ. Finally, linear transformations preserving
ω are of the form ψ �→ Sψ where S is unitary.

Thus, finding a unitary S such that S−1HS is diagonal amounts to finding a linear canonical
transformation ψ �→ Sψ which transforms the hamiltonian H into H(Sψ) = 1

2

∑
(2πνn)2(x2

n+ξ2n).
This means that we can integrate the equation of motion by decomposing it into a superposition
of infinitely many independent harmonic oscillators.
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points in this space. The study of the motion of image points, which is the object
of classical mechanics, is only an approximate treatment, and has, as such, just
as much justification as geometrical or “ray” optics has, compared with the true
optical process”. This approximation is only justified when the dimensions of the
system are very large compared to the wave length : “we inevitably became involved
in irremovable contradictions if we tried, as was very natural, to maintain also the
idea of paths of systems in these processes; just as we find the tracing of the course
of a light ray to be meaningless, in the neighbourhood of a diffraction phenomenon”.

It is particularly interesting for us to note that Schrödinger derived the form of
his equation by a heuristic argument, based on the desired asymptotic behaviour
of the solutions when � −→ 0 :

Assume that our mechanical phenomenon is described by a wave function ψ,

and assume that this wave has the particular form : ψ(x, 0) = exp
(
iA(x,0)

�
+ C

)
at t = 0. Assume also that for t > 0 the wave ψ looks like

(1.21) ψ(x, t) ∼ exp

(
i
A(x, t)

�
+ C

)
+ small error.

To find the form of the equation satisfied by ψ, Schrödinger postulates that the
phase A must approximately satisfy the Hamilton-Jacobi equation (1.7), when the
wave length is very small (semiclassical approximation). In other words, we must
(almost) see the wave move according to the classical motion. Thus, the point
is to find an equation, looking like a wave equation, and such that (1.21) is an
approximate solution if ∂A

∂t +H(x, dxA) = 0 (equation (1.7)) and � −→ 0.
To find such an equation, Schrödinger actually works with the stationary for-

mulation : this means that A(x, t) is of the form A(x, t) = −Et + S(x) where S
solves H(x, dxS) = E (equation (1.10)). If S satisfies (1.10), then the local speed
of propagation of ψ is

u(x) =
−∂A

∂t

|∇A| =
E√

2(E − V (x))

and the wave length is λ(x) = h√
2(E−V (x))

. This encourages Schrödinger to propose

the equation

∂2ψ

∂t2
= u2	ψ.

From the expression of u, and since the formula (1.21) is supposed to give an

approximate solution when λ −→ 0, we find −�
2

2 	ψ + V ψ = Eψ.
Let us now consider the propagation of an arbitrary wave ψ, and let us try to

put Schrödinger’s discussion into mathematical words. At time t = 0, any initial
state ψ can be written as

(1.22) ψ(x) ∼
∫

a(x, θ) exp

(
i

�
A(x; θ)

)
dθ,

where θ varies in an open set of Rd, exp
(
i
�
A(x; θ)

)
is a generating family parametrized

by θ, and a is a distribution. In R
d, we can for instance take the plane waves

exp
(
i
�
A(x; θ)

)
= exp

(
i
�
〈x, θ〉

)
, and the decomposition (1.22) is the Fourier decom-

position. By linearity of the Schrödinger equation, and by the approximate form
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of the solutions (1.21), after time t the wave looks like

(1.23) ψ(t, x) ∼
∫

a(x, θ) exp

(
i

�
A(t, x; θ)

)
dθ,

where A(t, x; θ) is the solution of (1.7) with initial condition A(x; θ). If the oscil-
lations are very rapid (λ small) we expect all these waves to interfer destructively,
except at those points x where the phase has a stationary point,

∂θA(t, x, θ0) = 0

(for some θ0). At such a point, we see essentially the wave exp
(
i
�
A(t, x; θ0)

)
, with

the frequency vector ξ = ∂xA(t, x, θ0). Thus, the wave front at time t can be
represented by the subset of the cotangent space

(1.24) L(t) = {(x, ξ), there exists θ0, ∂θA(t, x, θ0) = 0, ξ = ∂xA(t, x, θ0)} .
Assuming each A(., ., θ) satisfies the Hamilton–Jacobi equation, one can check that
L(t) is precisely the image of L(0) under the hamiltonian flow (1.4) at time t (see
Exercise 12.9). In other words, the wave front is propagated according to the
classical hamiltonian flow.

“The point of phase agreement for certain infinitesimal manifolds of wave sys-
tems, containing n parameters, moves according to the same laws as the image
point of the mechanical system” [Schr26-II].

Recall that this is an approximation, valid when the wave length λ is very
small; for mathematicians, this is the same as letting � tend to 0, and this is called
the semiclassical limit. Schrödinger’s heuristic discussion already contain the seeds
of semiclassical analysis. Classical mechanics is obtained as a limiting case of wave
mechanics by a phenomenon of constructive or destructive interferences.

Schrödinger writes :“I consider it a very difficult task to give an exact proof that
the superposition of these wave systems really produces a noticeable disturbance
in only a relatively small region surrounding the point of phase agreement, and
that everywhere else they practically destroy one another through interference”
[Schr26-II]. As we shall see in Section 4.2, this problem can in fact be handled
by the stationary phase method, if we impose strong smoothness conditions on the
distribution a.

2. Weyl quantization.

In [Schr26-III], Schrödinger realizes, in the case ofX = R
d, that his “wave me-

chanics” is equivalent to the “quantum mechanics” introduced by Born, Heisenberg
and Jordan. The equivalence comes from the existence of an explicit quantization
procedure , that is, a way to associate, to every function on the classical phase
space T ∗X = R

d × R
d, an operator on the Hilbert space H = L2(Rd), so that the

commutation rules (1.13) hold. Schrödinger’s remark is that we can take the oper-
ators qk = (multiplication by qk) to the coordinate function qk, and the operator
pk = �

i
∂

∂qk
to the function pk.

One must then decide of a convention to define the operator a(q,p) associated
to an arbitrary function a(q, p) of (q, p). For instance, the function pkqk could be
represented by the operator pkqk or by qkpk. Schrödinger leaves the issue open
for general a, but recommends to quantize a hamiltonian of the form

H(q, p) =
‖p‖2
2

+ V (q),
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where ‖.‖ is a riemannian metric, by the operator H = −�
2

2 	+ V , where 	 is the
laplacian associated to the metric. In this representation, Heisenberg’s equation

(1.17), requiring to diagonalize the operator H, can be written −�
2

2 	ψ+V ψ = Eψ,
which is exactly Schrödinger’s equation (1.19). Thus, the two theories will give
the same values of the energy spectrum. Schrödinger suggests, however, that two
theories can be mathematically equivalent without being physically equivalent.

Weyl quantization. Hermann Weyl [Weyl27] gave a quantization rule which
defines a(q,p) for any a(q, p). He first proposed to quantize the observable Up0,q0(q, p) =

e
i
�
(p0.q−q0.p) (with q0, p0 ∈ R

d) by the operator Up0,q0(q,p) = e
i
�
(p0.q−q0.p) (where

(q,p) are defined by Schrödinger’s prescriptions). Then, the Fourier transform
allows to quantize any observable : if a is decomposed into

a(q, p) =

∫
e

i
�
(p0.q−q0.p)ǎ�(q0, p0)

dq0dp0
(2π�)d

,

then the Weyl quantization is

a(q,p) =

∫
e

i
�
(p0.q−q0.p)ǎ�(q0, p0)

dq0 dp0
(2π�)d

=: OpW
�
(a).

We used the “symplectic” Fourier transform,

ǎ�(q, p) =

∫
e

−i
�

(p0.q−q0.p)a(q, p)
dqdp

(2π�)d
.

One can also check that the following expression holds [Foll],

OpW
�
(a)f(x) =

1

(2π�)d

∫
a

(
x+ y

2
, ξ

)
e

i
�
ξ.(x−y)f(y)dy dξ.

The Schrödinger representation. For p = 0, we have U0,qu(x) = u(x− q),
so that U0,q corresponds to the translation of vector q in the position variable.
Similarly, Up,0 translates the Fourier transform F�u (defined in Section 4.1) by the
vector p, and Up,0 is interpreted as the translation of vector p in the momentum
variable. To interpolate between these two cases, one usually says that Up,q is the
operator corresponding to “translation of vector (q, p) in the phase space Rd×R

d”.
The caveat is that U0,q and Up,0 do not commute, in fact the operators Up,q obey
the following composition rule,

(2.1) Up,q.Up′,q′ = Up+p′,q+q′e
i
�

1
2 (pq

′−q′p).

Consider the Heisenberg group Hd with d degrees of freedom, defined as R
2d+1

endowed with the composition rule

(p, q, t).(p′, q′, t′) =

(
p+ p′, q + q′, t+ t′ +

1

2
(pq′ − qp′)

)
, (p, p′, q, q′ ∈ R

d, t, t′ ∈ R).

Its Lie algebra is generated by P1, . . . , Pd, Q1, . . . , Qd, T with the relations

[Pj , Pk] = [Qj , Qk] = [Pj , T ] = [Qj , T ] = 0; [Pj , Qk] = δjkT.

The identity (2.1) can be reinterpreted by saying that

ρh(p, q, t) = e
it
� Up,q
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defines a unitary representation from Hd into L2(Rd), called the Schrödinger rep-
resentation of parameter h. The associated infinitesimal representation is Pk �→
∂

∂qk
= i

�
pk, Qk �→ i

�
qk, T �→ i

�
I.

Theorem 2.1. (Stone–von Neumann 1930 [St30, vN31], see [Foll]) Every
irreducible unitary representation of Hd is equivalent to exactly one of the following
representations :

(a) ρh (h ∈ R \ {0}) acting on L2(Rd);
(b) σab(p, q, t) = e2πi(ap+bq), (a, b ∈ R

d) acting on C.

3. Born’s probabilitic interpretation of the Schrödinger equation.

Born discovered that the square modulus |ψ|2 of the wave functions (satisfying
the Schrödinger equation) could be used to predict the probability of where the
“particle” would be found. More precisely, if ψ is normalized so that

∫
|ψ(t, x)|2dx =

1, then |ψ(t, x)|2 gives the probability density of finding, in an experiment, the
particle at x (at time t). This was the beginning of a tense philosophical (or
physical) debate on the correct interpretation of the wave/particle duality.

“Let me say at the outset, that in this discourse, I am opposing not a few
special statements of quantum physics held today (1950s), I am opposing as it were
the whole of it, I am opposing its basic views that have been shaped 25 years ago,
when Max Born put forward his probability interpretation, which was accepted by
almost everybody. (E. Schrödinger, The Interpretation of Quantum Physics. Ox
Bow Press, Woodbridge, CN, 1995).

“I don’t like it, and I’m sorry I ever had anything to do with it” (Erwin
Schrödinger talking about quantum physics).

4. The semiclassical limit.

Let us now turn to much more recent mathematical preoccupations. The main
subject of these notes is to try to describe the localization of the probability den-
sity |ψ(x)|2dx, for a Schrödinger eigenfunction, in the semiclassical limit � −→ 0.
The quantum/classical correspondence tells us, intuitively, that the eigenfunctions,
which are stationary solutions of the Schrödinger equation, should look like invari-
ant probability measures of the classical hamiltonian flow. In this section we give a
quick survey (without proofs) of the mathematical tools used to study this question.

It is not really satisfactory, and usually practically impossible, to study the
density |ψ(x)|2dx itself. This is because, when taking the modulus of ψ, we lose
some precious information on the frequency vector of ψ (related to its phase, or
complex argument). We need to study simultaneously the Fourier transform of ψ.
Of course, rigourously speaking, one cannot study at the same time the local prop-
erties of a function and of its Fourier transform around some point (x, ξ) ∈ T ∗X.
This is expressed by Heisenberg’s uncertainty principle, saying that one cannot lo-
calize a function around the point x without perturbing a lot the momentum (and
vice-versa). Microlocal analysis2 is a collection of mathematical techniques allowing
to study the joint localization of a function and its Fourier transform; because of
the uncertainty principle, this can only be meaningful asymptotically, in the limit
� −→ 0.

2More precisely, we will present here its �-dependent version, also called semiclassical analysis,
or “microlocal analysis with a small parameter”.
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4.1. Fourier transform. The Fourier transform

F�(u)(ξ) = û�(ξ) = (2π�)−d/2

∫
Rd

e−
i
�
ξ.xu(x)dx

allows to analyze a signal u in terms of its frequencies, at the scale �. For u ∈ C∞
o ,

we have the decomposition

u(x) = (2π�)−d/2

∫
Rd

e
i
�
ξ.xû�(ξ)dξ .

4.2. The stationary phase method. This is a result describing the asymp-
totic behaviour, as � → 0, of an integral of the form :

I(�) =

∫
RD

e
i
�
S(x)a(x) dx

where a ∈ C∞
o (RD) and S ∈ C∞(RD,R) .

The interferences between the different terms e
i
�
S(x) are destructive, except at

the stationary points of the phase S. The precise statement is :

• If S has no critical/stationary point in the support of a, then I(�) =
O(�∞) (this notation means that, for all N > 0, we have I(�) = ON (�N )).

• If S has a unique critical point x0, supposed to be non–degenerate, in the
support of a, then there is an asymptotic development in powers of �, up
to any order,

(4.1) I(�) ∼ (2π�)D/2 eiσπ/4

|detS′′(x0)|
1
2

eiS(x0)/�

⎛
⎝ ∞∑

j=0

�
jaj

⎞
⎠

where S′′(x0) is the hessian matrix of S at x0, σ = n+ − n− is the index of
S′′(x0) (the difference between the number of positive and negative eigenvalues),
and a0 = a(x0). More generally, aj can be expressed in terms of the derivatives of
a up to order 2j, at the point x0.

For technical developments, one usually needs to work with functions a which
are not necessarily compactly supported, but have a well behaved behaviour at
infinity, and can be allowed to depend on �. The choice of a class of “symbols” is
a technical issue, which depends on the aims, but also on the tastes of the authors.
For the sake of completeness we give an example of a convenient class of symbols.
However, it is not required to understand all the technical issues to read the next
chapters.

Symbol spaces. Let D, d > 0 be two integers, and let U be an open subset
of RD. Let us define symbols of order m (independent of �) :

Σm(U × R
d) :=

{
a ∈ C∞(U × R

d;C)/

for every compact K ⊂ U, for every α, β there exists C such that

|Dα
z D

β
ξ a(z, ξ))| ≤ C(1 + |ξ|)m−|β| for all (z, ξ) ∈ K × R

d
}
.

For instance, this class contains functions which are homogeneous in a neighbour-
hood of infinity. We denote Σ−∞ = ∩m∈ZΣ

m — this class contains the smooth
compactly supported functions C∞

o (U × R
d).
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We also define semiclassical symbols of order m and degree l — thus called
because they depend on a parameter � :

(4.2) Σm,l = {a�(z, ξ) = �
l

∞∑
j=0

�
jaj(z, ξ), aj ∈ Σm−j}

This means that a�(x, ξ) has an asymptotic development in powers of �; in the
sense that

a− �
l
N−1∑
j=0

�
jaj ∈ �

l+NΣm−N

for all N , uniformly in �. In this context, we denote Σ−∞,+∞ = ∩m≥0Σ
−m,m.

In these definitions, U × R
d can be replaced by a fiber bundle of rank d on a

D–dimensional manifold.

Fresnel integrals, generalized stationary phase method. We can now
describe the asymptotic behaviour, as � → 0, of the integral :

IS
�
(a) =

∫
U×Rd

e
i
�
S(z,ξ)a(z, ξ) dzdξ

where S is smooth, homogeneous of degree n > 0 near infinity with respect to
ξ, and without critical points outside a compact subset of U × R

d. The integral
IS
�
(a) is defined for a ∈ Σm,l

o , by continuous extension of the case a ∈ C∞
o . Here,

the index ∗o in Σm,l
o means that a is compactly supported with respect to z, with

support independent of �. Such non absolutely convergent oscillatory integrals

are sometimes called Fresnel integrals, a well-known example is
∫
Rd e

i
2�‖ξ‖2

dξ =

(2π�)d/2eidπ/4.
The previous asymptotic behaviour still holds in this setting.

4.3. Pseudodifferential operators. As we have seen, a quantization pro-
cedure is a way to associate an operator to a classical observable a(p, q). Recall
Schrödinger’s prescriptions, qk = (multiplication by qk), and pk = �

i
∂

∂qk
, compati-

ble with Heisenberg’s commutation relations (1.13). To extend this definition to an
arbitrary function of (p, q), we meet an obvious problem : to quantize the function
pkq

2
k, for instance, we could propose any of the operators pkq

2
k, q

2
kpk, or qkpkqk.

There are many quantization procedures. We already met the Weyl quantization,
which combines several remarkable features, like the fact that it associates a sym-
metric operator to a real symbol. Later on, we shall also define the anti-Wick
positive quantization, which associates a nonnegative operator to a nonnegative
symbol.

The theory of pseudodifferential operators with small parameter allows to de-
scribe the passage from the quantum theory to the classical theory when � −→ 0.
This is also called �-dependent microlocal analysis, microlocal analysis with small
parameter, or semiclassical analysis. Pseudodifferential operators were first de-
veloped by Hörmander [Ho, Ho79] for the study of the regularizing properties of
partial differential equations (without any small parameter). Pseudodifferential op-
erators with small parameter, manipulated by Maslov [Masl65] in the framework of
semiclassical analysis, developed by Voros in mathematical physics [Vor, Vor78],
were perfectioned by Sjöstrand, Robert, Helffer, [DimSjo, Rob]... I advise to read
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[Helffer1] for a history of the first years of this theory in the seventies and an
exhaustive bibliography; see also [Helffer2] for a survey of applications.

Symbol spaces depend on authors, and can be extremely sophisticated. Hörmander’s
definition has no � and involves symbols which are homogeneous near infinity, allow-
ing to describe the regularizing properties of operators. The semiclassical symbol
classes of [DimSjo] are rather aimed at describing the behaviour of operators when
� −→ 0, say in L2 norm. The symbols we use here combine both approaches (after
an idea of Y. Colin de Verdière) : taking � = 1 we would find (one of) Hörmander’s
symbol spaces.

Pseudodifferential operators. Let Ω be an open subset of R
d, and let

a = a�(x, y; ξ) ∈ Σm,l
o (Ω×Ω×R

d). Here the index o means that for every compact
K ⊂ Ω, there exists a compactK ′ such that a(x, y, ξ) = 0 for x ∈ K, y �∈ K ′, ξ ∈ R

d.
Let u be a smooth function. We define :

OP�(a)u(x) = (2π�)−d

∫
e

i
�
ξ.(x−y)a(x, y, ξ)u(y) dydξ,

the integral being well defined as a Fresnel integral. We denote ΨDOm,l(Ω) these
operators, called (proper) pseudodifferential operators of degree l and order m, on

Ω. The intersection ΨDO−∞,∞ of all the ΨDOm,l(Ω) are the negligible operators :
they are the operators with a smooth kernel K�, and such that all derivatives of
K� are O(�∞) uniformly on compact sets.3

The class of pseudodifferential operators includes differential operators (corre-
sponding to a symbol which is polynomial in ξ), but has the advantage of being
stable under inversion, or more general smooth functional calculus.

Note that several symbols a(x, y, ξ) can give the same operator OP�(a). As a
simple example, we note that a(x, y, ξ) = V (x) and a(x, y, ξ) = V (y) both give the
operator of multiplication by V . It is often convenient to choose special represen-
tatives :

Weyl quantization. Left and right quantizations.
Here Ω = R

d.
We already met the Weyl quantization4, OpW

�
(a) = OP�

(
a(x+y

2 , ξ)
)
. If a ∈

Σm,l
o (Rd × R

d) is compactly supported with respect to the first variable, then

OpW
�
(a) ∈ ΨDOm,l.
The inverse of Weyl quantization is explicit, given by the Wigner transform :

if K(x, y) is the kernel of the operator A, we let :

WA(x, ξ) = (2π�)−d/2

∫
e

ivξ
� K

(
x+

v

2
, x− v

2

)
dv .

Then A = OpW
�
(WA). In particular, the Weyl symbol of an operator is unique.

Two other common quantizations are, the left quantization, defined by OpL
�
(a) =

OP� (a(x, ξ)) where a ∈ Σm,l
o (Rd × R

d) and the right quantization, OpR
�
(a) =

OP� (a(y, ξ)). The left and right symbols are both uniquely determined by the
operator (there are explicit inversion formulas, too).

3Usually, in this theory, all the assertions about operators hold modulo negligible operators.
Likewise, the assertions about functions hold modulo negligible functions. These are the smooth
functions u�(x) such that all derivatives are O(�∞) uniformly on compact sets of X.

4I try to stick to the notation OP for symbols a ∈ Σ(Ω × Ω × R
d), and Op for symbols

a ∈ Σ(Ω× R
d).
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Example 4.1. To quantize the observable a(p, q) = pq2, the left quantization
chooses q2p, the right quantization chooses pq2, and the Weyl quantization forms
the combination 1

4 (pq
2 + 2qpq+ q2p) = 1

2 (pq
2 + q2p).

Exercise 4.2. On R
d×R

d, consider a lagrangian L(x, v) defined by a riemann-
ian metric,

L(x, v) =
1

2
gx(v, v) =

1

2

d∑
i,j=1

gij(x)vivj .

Check that the corresponding hamiltonian is

H(x, ξ) =
1

2
gx(ξ, ξ) =

1

2

d∑
i,j=1

gij(x)ξiξj ,

where (gij(x)) is the inverse of the matrix (gij(x)).
Write the explicit expression of the laplacian 	 associated to the metric g.
Choose a quantization procedure Op

�
= OpW

�
,OpL

�
or OpR

�
.

Show that

Op
�
(H) = −1

2
�
2 	+�

d∑
j=1

bj(x)
�

i

∂

∂xj
+ �

2c(x)

for certain functions bj , c, the expression of which depends on the choice of Op
�
.

Show that there are functions b̃j , c̃ such that

(4.3) −1

2
�
2	 = Op

�

⎛
⎝H(x, ξ) + �

∑
j

b̃j(x)ξj + �
2c̃(x)

⎞
⎠ .

Compare with (4.2) to find the order and the degree of −�
2	 (of course, differential

operators are pseudodifferential operators !).
The expression of bj , c, d depends on the choice of Op

�
. The first term H(x, ξ)

does not, it is called the principal symbol of − 1
2�

2	.

Principal symbol. Let a� ∈ Σm,0
o (Ω × Ω × R

d). Applying the operator
A� = OP�(a�) ∈ ΨDOm,0 to a function of the form u(x)eiS(x)/�, where u and S
are smooth5, the method of stationary phase gives the following asymptotics :

A�

(
u(x)eiS(x)/�

)
= a0 (x, x, S

′(x)) u(x)eiS(x)/� +O(�).

This shows that the function a0(x, x, ξ) on R
d × R

d = T ∗
R

d does not depend on
the choice of the symbol a�(x, y, ξ), but only on the operator A�. It is called the
principal symbol of A�, denoted σ0(A�). If σ0(A�) = 0, then A� actually belongs
to ΨDOm−1,1 (and conversely).

Remark 4.3. For a ∈ Σm,0
o , we note that OpW

�
(a), OpL

�
(a), OpR

�
(a) all have

the same principal symbol a0(x, ξ). In other words,

OpW
�
(a)−Op

R/L
�

(a) ∈ ΨDOm−1,+1.

5Such a function is called a WKB state, see Section 14



404 NALINI ANANTHARAMAN

Product. If A� ∈ ΨDOm1,0 and B� ∈ ΨDOm2,0, then the product A�B�

belongs to ΨDOm1+m2,0
o , and the principal symbols are multiplied : σ0(A�B�) =

σ0(A�)σ
0(B�). This is proved by the stationary phase method.

An equivalent statement : if a ∈ Σm1,0
o (Rd×R

d) and b ∈ Σm2,0
o (Rd×R

d), then
Op

�
(a)Op

�
(b) ∈ ΨDOm1+m2,0(Rd), and

(4.4) Op
�
(ab)−Op

�
(a)Op

�
(b) ∈ ΨDOm1+m2−1,1(Rd).

Thanks to Remark 4.3, this statement does not depend on the choice of OpW , OpL

or OpR.

Brackets. If A� ∈ ΨDOm1,0 and B� ∈ ΨDOm2,0, then the bracket [A�, B�]
belongs to ΨDOm1+m2−1,1, and

σ0
(
�
−1[A�, B�]

)
=

1

i

{
σ0(A�), σ

0(B�)
}
;

where {., .} is the Poisson bracket.
Equivalently : if a ∈ Σm1,0

o (Rd × R
d) and b ∈ Σm2,0

o (Rd × R
d), we have

(4.5) [Op
�
(a),Op

�
(b)]−Op

�

(
�

i
{a, b}

)
∈ ΨDOm1+m2−2,2

and again this statement does not depend on the choice of OpW , OpL or OpR.

Remark 4.4. There is also an integrated version of this result, called the
Egorov Theorem. We will use it in the following form : assume the pseudodifferen-
tial operator A� is self–adjoint. Define the Schrödinger flow (U t

�
) = (exp− it

�
A�).

Let a ∈ C∞
c (T ∗

R
d). Then, for any given t in R,

(4.6) U−t
�

Op
�
(a)U t

�
−Op

�
(a ◦ φt

σ0(A�)
) ∈ ΨDO−∞,1 .

Here φt
σ0(A�)

is the hamiltonian flow defined by the hamiltonian σ0(A�). The

estimate is usually not uniform in t, so that one cannot invert the limits � −→ 0
and t −→ ∞. This is a notorious source of problems when one tries to use the
semiclassical approximation to understand the large time behaviour of solutions of
the Schrödinger equation.

Pseudodifferential operators on a compact manifold. Let X be a com-
pact C∞ manifold of dimension d. Let (Ωi, ϕi) be a finite atlas of X (X = ∪Ωi,
ϕi : Ωi −→ R

d). We use the ϕi to define local coordinates Φi : T
∗Ωi −→ R

d × R
d

on T ∗X as follows :
Φi(x, p) = (ϕi(x), (dϕi(x))

−1p).

These are symplectic (Darboux) coordinates on T ∗X, i.e. the canonical symplectic
form reads ω =

∑
dxj ∧ dpj in these coordinates. Introduce a finite partition of

unity χi ∈ C∞
o (Ωi) such that

∑
χ2
j = 1. For a ∈ Σm,l

o (T ∗X), we let :

(4.7) Op
�
(a)u =

∑
i

χi

[
OP�

(
a ◦ Φ−1

i

)
(χiu ◦ ϕ−1

i )
]
◦ ϕi .

The map a �→ Op
�
(a) thus defined depends on the partition of unity and on the

local coordinates; but its range does not, modulo negligible operators. The algebra
ΨDOm,l(X) of pseudodifferential operators on X (modulo negligible operators) is
thus well defined.

All the properties stated above can be extended to this case.



EIGENFUNCTIONS OF THE LAPLACIAN ON NEGATIVELY CURVED MANIFOLDS 405

Continuity. Trace class and Hilbert-Schmidt operators. The domain of
an operator in ΨDOm,0(Ω) depends a lot on m, that is, on the growth of the symbol
when ξ −→ ∞. When m decreases, the regularizing properties of the operator are
improved. Without proof, let us mention that an operator in ΨDO0,0(Ω) is bounded
from L2(Ω) to L2

loc(Ω), uniformly with respect to �. On a compact manifold X, an

operator in ΨDOm,0 is

• Hilbert-Schmidt if m < −d/2
• trace class if m < −d

In this latter case, the trace of Op(a) is given by the convergent integral,

(4.8) TrOp(a) = (2π�)−d

∫
T∗X

a(x, ξ)dxdξ .

5. Semiclassical measures, microlocal lifts.

A quantization procedure Op is said to be nonnegative if Op(a) is a nonnegative
operator as soon as a is a nonnegative function. The usual quantization procedures
do not have this property.

Positive quantization on R
d.

Definition 5.1. (Coherent states) The coherent state (of size �) centered at
(x0, ξ0) is defined as the normalized gaussian state

ex0,ξ0(x) =
1

(π�)d/4
e

i
�
ξ0.xexp

(
−‖x− x0‖2

2�

)

For (x, ξ) ∈ R
d × R

d, we shall denote Π(x,ξ) the orthogonal projector onto
Ce(x,ξ).

Theorem 5.2. Let a ∈ C∞
o (T ∗

R
d). The operator defined by

Op+(a) = (2π�)−d

∫
a(x, ξ) Πx,ξ dxdξ

belongs to the class ΨDO−∞,0, it is self–adjoint if a is real valued, and non-negative
if a is non-negative. Its principal symbol is a(x, ξ).

We have Op+(1) = I, which allows to extend the definition of Op+ to the case
when a is constant in a neighbourhood of infinity in T ∗X.

This quantization is called the anti–Wick quantization.
To define a positive quantization procedure on a compact manifoldX, we choose

an atlas of X and a non-negative subordinate partition of unity,
∑

χ2
j = 1. For

a ∈ C∞
o (T ∗X), we let Op+X(a) =

∑
j χj Op+

Rd(a)χj — where Op+
Rd(a) is defined

using local coordinates in the support of χj (see (4.7)). We can extend this definition
to the case when a is constant in a neighbourhood of infinity in T ∗X, by letting
Op+X(1) = I .

Semiclassical measures. Let X be a compact riemannian manifold; we
denote Vol the riemannian volume on X. To a family (u�) of normalized ele-
ments of L2(X,Vol), we can associate a family of distributions μ� by the formula
μ�(a) =

〈
u�,Op+

�
(a)u�

〉
L2(X,Vol)

. They are in fact probability measures on T ∗X.

To be able to take weak limits when � −→ 0, we see them as probability measures
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on the compactification T ∗X of T ∗X obtained by adding a sphere bundle at infinity.
We will call the measures μ� theHusimi measures associated to the family (u�). The
termWigner transform will be exclusively used in the case X = R

d, for the distribu-
tions a �→

〈
u�,OpW

�
(a)u�

〉
defined thanks to the Weyl quantization. These distri-

butions are also called microlocal lifts of the probability measures |u�(x)|2dVol(x).
This means that their projection down to X is |u�(x)|2dVol(x) +O(�).

Due to the uncertainty principle, these objects are not really meaningful for
fixed � > 0. In fact, their definition depends on a certain number of arbitrary
choices, coming into play in the definition of Op : local coordinates, partition of
unity, choice of the quantization procedure... However, the semiclassical limits
of these distributions do not depend on all these arbitrary conventions : if a ∈
Σ0,0

o (T ∗X), two definitions of Op(a) only differ by O(�) in L2 operator norm.
We shall call any limit point of the sequence (μ�) in the weak topology a

semiclassical measure associated to the family (u�).

Example 5.3. (Coherent states)

u�(x) = ex0,ξ0(x) =
1

(π�)d/4
e

i
�
ξ0.xexp

(
−‖x− x0‖2

2�

)

Then there is a unique semiclassical measure, the Dirac mass at (x0, ξ0).

Example 5.4. (Lagrangian states/WKB states) Let u�(x) = b(x)e
i
�
S(x) where

b and S are of class C∞. In Section 14, we will call such functions lagrangian states
associated to the lagrangian manifold L = {(x, dS(x))}.

There is a unique semiclassical measure associated to (u�), it is carried by the
lagrangian L and projects to X as the measure |b(x)|2 dVol(x).

Exercise 5.5. You have noted that we sometimes omit to indicate the depen-
dence on � in the definition of Op (which should be denoted Op

�
). The choice

of scaling is, nevertheless, very important, and the properties observed vary a lot
according to the scaling.

In the previous example, show that the measures defined by

μ�,α(a) = 〈u�,Op+
�α(a)u�〉

concentrate to the 0-section in T ∗X if α > 1, but concentrate to the sphere bundle
at infinity T ∗X \ T ∗X if α < 1.

When the u� are the eigenfunctions of a hamiltonian operator as in (1.19), one
can apply the following theorem :

Theorem 5.6. Let P be a self–adjoint pseudodifferential operator, denote p0
its principal symbol. Let (u�) be a family of tamed6 smooth functions, such that
Pu� = O(�∞) and ‖u�‖L2 = 1. Let μ� be the Husimi measures associated to (u�).
Then, every weak limit μ0 of the measures μ� on T ∗X

(1) is a probability measure on T ∗X.
(2) projects on X to a weak limit of the measures |u�(x)|2dVol(x).
(3) is invariant under the hamiltonian flow of p0.
(4) its restriction to T ∗X is carried by the energy level {p0 = 0}.
(5) If p0 is elliptic at infinity, then μ0 is carried by T ∗X.

6meaning that, for all N ∈ N, for any compact K, there exists k ∈ N such that the CN norm
of u� on K is O(�−k)
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The first two items have already been explained.

Exercise 5.7. Prove the third item by using the relation σ0
(
�
−1[P,Op(a)]

)
=

−i{p0, a} to show that
∫
{p0, a}dμ0 = 0 for any a ∈ C∞

o (T ∗X).
Prove the fourth item by using the relation σ0 (Op(a)P ) = a p0 to show that∫

a p0 dμ0 = 0 for any a ∈ C∞
o (T ∗X).

We do not give here the precise definition of “elliptic at infinity”. It implies
that P is invertible in a neighbourhood of infinity in the class of pseudodifferential
operators. More precisely, there exists a smooth a, taking the constant value 1 in
a neighbourhood of infinity in T ∗X, and a pseudodifferential operator Op(b) such
that

Op(a) = Op(b)P +R

where R ∈ ΨDO−∞,∞ is a negligible operator. From this fact, the last item
follows easily. The ellipticity criterion is satisfied by the Schrödinger operator(
−�

2�
2 + V − E

)
on a compact manifold X.

Eigenfunctions of the laplacian. Let (X, g) be a compact riemannian man-
ifold, and 	 the laplacian on X associated to the metric. If (−�

2 	 −1)u� = 0,
and if we denote μ� the corresponding Husimi measures, then every limit point
of the family (μ�)�−→0 is a probability measure μ0 carried by the unit cotangent
bundle S∗X, invariant under the geodesic flow (apply Theorem 5.6 and remember
Exercise 4.2). It is a widely open problem to find all the possible limits μ0 among
the invariant measures on S∗X.

In the case of the round sphere or a flat torus, it is easy to construct families
of eigenfunctions (u�) for which μ� converges to the uniform measure on any given
invariant lagrangian torus. On the flat torus T

d = R
d/Zd for instance, the family

(e
i
�
ξ0.x), where ξ0 is a unit vector (and of course ξ0

�
∈ 2πZd), has a unique semi-

classical measure, the uniform measure on the lagrangian torus {(x, ξ0), x ∈ T
d}.

More generally, for a completely integrable system, one can use WKB methods
[Brill26, Kr26, Wtz26, Kell58, Masl65] to build quasimodes, in other words
solutions of ‖(−�

2	−1)u�‖ = O(�∞), the Husimi measures of which concentrate to
any given invariant torus7. Historically, the case of completely integrable systems,
or perturbations thereof, was the most important, since it is related to the study
of small atoms and ions. The “opposite” case of chaotic systems has been studied
only more recently [Berr77, Vor77, Bo91], but the question of the localization
of stationary motions in ergodic systems was already asked explicitly by Einstein
[Ein17].

In these notes, we shall focus on the case where the geodesic flow has a very
chaotic behaviour. When the geodesic flow is ergodic, the semiclassical measures
are essentially described by the Snirelman theorem [Sn74, Ze87, CdV85] (see
Section 6). Let X be a compact riemannian manifold; call 0 < λ1 ≤ λ2 ≤ · · · the
eigenvalues of the laplacian, and let (ψj) be an orthonormal basis of eigenfunctions :
−	 ψj = λjψj . Denote μj the corresponding Husimi measures (the semiclassical

parameter is � = λ
−1/2
j ). We shall call (LE)E the disintegration of the Liouville

measure dx dξ with respect to the value E of the hamiltonian ‖ξ‖2

2 . We normalize

7Note that ‖(−�
2 
−1)u�‖ ≤ ε‖u�‖ implies that 1 is an ε–neighbourhood of the spectrum

of −�
2
, but does not imply that u� is close to an eigenfunction of the laplacian.
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LE to be a probability measure on the energy layer {‖ξ‖2

2 = E}. If the geodesic
flow on S∗X is ergodic with respect to L 1

2
, then there is a “density 1” subsequence

of the family (μj) converging to L 1
2
:

Theorem 5.8 (Snirelman theorem). [Sn74, Ze87, CdV85] Assume that the
action of S∗X is ergodic, with respect to the Liouville measure L 1

2
. Then, there

exists a subset S ⊂ N of density 1, such that

μj −→
j−→+∞,j∈S

L 1
2
.

In specific examples, what we would like to know is whether the whole sequence
μj converges to the Liouville measure, or if there can be exceptional subsequences
converging to other invariant measures. In the case of nonpositively curved surfaces
with flat cylinders, it is believed that certain sequences of eigenfunctions concen-
trate asymptotically on these cylinders. But in (strictly) negative curvature, it
was conjectured by Rudnick and Sarnak [RudSa94] that the Liouville measure is
the unique limit point of the μjs. It would imply, in particular, that the sequence
of probability measures |ψj(x)|2dVol(x) on X converges weakly to the riemannian
volume measure Vol.

Entropy and localization of eigenfunctions.

6. Motivations.

The field of quantum chaos tries to understand how the chaotic behaviour of
a classical hamiltonian system is translated in quantum mechanics. For instance,
let X be a compact riemannian C∞ manifold, with negative sectional curvature.
The geodesic flow has the Anosov property, which is considered as the ideal chaotic
behaviour in the theory of dynamical systems. The corresponding quantum dy-
namics is the unitary flow generated by the Laplace-Beltrami operator on L2(X).
One expects that the chaotic features of the geodesic flow can be seen in the spec-
tral properties of the laplacian. The Random Matrix conjecture [Bo91] asserts
that the large eigenvalues should, after proper renormalization, statistically resem-
ble those of a large random matrix, at least for a generic Anosov metric. The
Quantum Unique Ergodicity conjecture [RudSa94] (see also [Berr77, Vor77])
deals with the corresponding eigenfunctions ψ: it claims that the probability den-
sity |ψ(x)|2dx should approach (in a weak sense) the riemannian volume, when the
eigenvalue tends to infinity. In fact, a corresponding (stronger) property should
hold for the microlocal lift of this measure to the cotangent bundle T ∗X, which de-
scribes the distribution of the wave function ψ on the classical phase space (position
and momentum).

To describe the problem, we will adopt a semiclassical point of view, that is,
consider the eigenstates of eigenvalue 1 of the semiclassical laplacian −�

2	, in
the semiclassical limit � → 0. We denote by (ψk)k∈N an orthonormal basis of
L2(X) made of eigenfunctions of the laplacian, and by (− 1

�
2
k
)k∈N the corresponding

eigenvalues:

(6.1) −�
2
k 	ψk = ψk, with �k+1 ≤ �k .

We are interested in the high-energy eigenfunctions of −	, in other words the
semiclassical limit �k → 0.



EIGENFUNCTIONS OF THE LAPLACIAN ON NEGATIVELY CURVED MANIFOLDS 409

To an eigenfunction ψk corresponds a distribution on T ∗X defined by

μk(a) = 〈ψk,Op
�k
(a)ψk〉L2(X), a ∈ C∞

o (T ∗X) .

Here Op
�k

is a quantization procedure, set at the scale �k, which associates a

bounded operator on L2(X) to any smooth phase space function a with nice
behaviour at infinity. If a is a function on the manifold X, we have μk(a) =∫
X
a(x)|ψk(x)|2dx+O(�): the distribution μk is a microlocal lift of the probability

measure |ψk(x)|2dx into a phase space distribution. It contains the information
about the frequency vector of ψk (in other words, the momentum), in addition
to the position distribution |ψk(x)|2dx. The definition of μk is not canonical, it
depends on a certain number of choices, like the choice of local coordinates, or of
the quantization procedure (Weyl, anti-Wick, “right” or “left” quantization...); this
somehow reflects the fact that, for � > 0, it does not really make sense to study
simultaneously the position and frequency of a wave. Mathematically speaking, one
cannot study simultaneously the local properties of a function and of its Fourier
transform around some point (x, ξ) ∈ T ∗X. But the asymptotic behaviour of μk

when �k −→ 0 does not depend on the arbitrary conventions involved in its defini-
tion. We saw that it is possible to construct Op+

�k
so that the μk are probability

measures, in which case we call them Husimi measures associated to the eigenfunc-
tions ψk. We call semiclassical measures the limit points of the sequence (μk)k∈N,
in the distribution topology.

The quantum hamiltonian −�
2�
2 generates the Schrödinger flow

(U t
�
) = (exp(it�

	
2
))

acting unitarily on L2(X). A solution of (6.1) is an invariant state of the flow
(U t

�
), corresponding to the energy 1

2 of the hamiltonian. In the semiclassical limit
� −→ 0, “quantum mechanics converges to classical mechanics”. We will denote |·|x
the norm on T ∗

xM given by the metric. The geodesic flow (gt)t∈R is the hamiltonian

flow on T ∗X generated by the hamiltonian H(x, ξ) =
|ξ|2x
2 . In the previous chapter

we saw the following :

Proposition 6.1. Any semiclassical measure is a probability measure carried
on the energy layer H−1( 12 ), that is, the unit cotangent bundle S∗X. This measure
is invariant under the geodesic flow.

If the geodesic flow has the Anosov property — for instance if X has negative
sectional curvature — then there exist many invariant probability measures on
S∗X, in addition to the Liouville measure. The geodesic flow has countably many
periodic orbits, each of them carrying an invariant probability measure. There
are still many others, like the equilibrium states obtained by variational principles
[KH].

For manifolds with an ergodic geodesic flow (with respect to the Liouville mea-
sure), it has been known for some time that almost all eigenfunctions become uni-
formly distributed over S∗X, in the semiclassical limit. This property is dubbed as
Quantum Ergodicity :

Theorem 6.2. [Sn74, Ze87, CdV85] Let X be a compact riemannian man-
ifold, and assume that the action of the geodesic flow on S∗X is ergodic with re-
spect to the Liouville measure L 1

2
. Let (ψk)k∈N be an orthonormal basis of L2(X)
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consisting of eigenfunctions of the laplacian (6.1), and let (μk) be the associated
distributions on T ∗X.

Then, there exists a subset S ⊂ N of density 1, such that

μk −→
k−→∞,k∈S

L 1
2
.

Proof: Let us give the main lines of the argument, and see where the ergodicity
comes into play. For all a ∈ C∞

o (T ∗X), one first shows, without using any assump-
tion on the dynamics, that

(6.2)
∑

j, λj≤E

∫
a dμj ∼

E−→+∞

bd
(2π)d

V ol(X)

∫
S∗X

a dL 1
2
× Ed/2.

The constant bd is the volume of the euclidean d-dimensional ball. The idea is to
express in two different ways the trace of Op√E(a) : the trace can be expressed
either as a spectral sum

∑
k〈ψk,Op(a)ψk〉 or as the integral of the kernel on the

diagonal (4.8). There are some technical details that we skip here.
From (6.2) one can deduce the Weyl asymptotics :

N(E) = �{j, λj ≤ E} ∼ bd
(2π)d

V ol(X)Ed/2

Thus, we have a Cesaro convergence :

(6.3)
1

N(E)

∑
j, λj≤E

∫
a dμj −→

E−→+∞

∫
S∗X

a dL 1
2
.

Using the ergodicity assumption, one can do better :

(6.4)
1

N(E)

∑
j, λj≤E

∣∣∣∣
∫

a dμj −
∫
S∗X

a dL 1
2

∣∣∣∣
2

−→
E−→+∞

0.

Here is how. We know from Theorem 5.6 (3) that

|
∫

a dμj −
∫

a ◦ gt dμj | −→ 0

as j −→ +∞, for any fixed t. Thus, we can write, for any given T ,

lim sup
E−→∞

1

N(E)

∑
j, λj≤E

∣∣∣∣
∫

a dμj −
∫
S∗X

a dL 1
2

∣∣∣∣
2

= lim sup
1

N(E)

∑
j, λj≤E

∣∣∣∣
∫

MT a dμj −
∫
S∗X

a dL 1
2

∣∣∣∣
2

≤ lim sup
1

N(E)

∑
j, λj≤E

μj

(
(MTa−

∫
S∗X

a dL 1
2
)2
)

= L 1
2

(
(MTa−

∫
S∗X

adL 1
2
)2
)
.

We denoted MT a = T−1
∫ T

0
a ◦ gtdt the time average of a on the interval [0, T ].

We used the Cauchy-Schwartz inequality, which requires to know that the μj can
be assumed to be probability measures (see §5; this was the missing argument in
Snirelman’s original paper). In the last line, we used the Cesaro convergence (6.3)
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of the sequence (μj). Letting at the end T tend to +∞, the ergodicity assumption
means that

L 1
2

(
(MTa−

∫
S∗X

a dL 1
2
)2
)

−→
T→∞

0;

which proves (6.4).
Finally, the Snirelman theorem results from the classical lemma :

Lemma 6.3. Let (un) be a sequence of nonnegative numbers. If

1

n

n∑
k=0

uk −→ 0

then there exists S ⊂ N of density 1 such that un −→
n∈S

0.

For each a ∈ C∞
o (T ∗X), the lemma yields the Snirelman theorem for some

density one set S ⊂ N, possibly depending on a. Using the fact that C∞
o (T ∗X) has

a countable dense subset, one can find some S ⊂ N that works for all a ∈ C∞
o (T ∗X).

�

Remark 6.4. The result was subsequently extended to more general hamilto-
nians [HelMR87], to ergodic billiards [GL93, ZeZw96], and to certain discrete
time symplectic dynamical systems.

The question of knowing, in particular cases, if there can exist “exceptional”
subsequences with a different behaviour is widely open. On a negatively curved
manifold, the geodesic flow satisfies the ergodicity assumption, and in fact much
stronger properties : mixing, K–property,... In this case, the Quantum Unique
Ergodicity conjecture [RudSa94] expresses the belief that there exists a unique
semiclassical measure, namely the Liouville measure on S∗X : the whole sequence
(μk) converges to L 1

2
. In other words, in the semiclassical régime all eigenfunctions

should become uniformly distributed over S∗X.
So far the most precise results on this question were obtained for manifolds X

with constant negative curvature and arithmetic properties: see Rudnick–Sarnak
[RudSa94], Wolpert [Wol01]. In that very particular situation, there exists a
countable commutative family of self–adjoint operators commuting with the lapla-
cian : the Hecke operators. One may thus decide to restrict the attention to bases of
common eigenfunctions, often called “arithmetic” eigenstates, or Hecke eigenstates.
A few years ago, Lindenstrauss [Li06] proved that the arithmetic eigenstates be-
come asymptotically equidistributed (Arithmetic Quantum Unique Ergodicity). If
there is some degeneracy in the spectrum of the laplacian, it could be possible that
the Quantum Unique Ergodicity conjectured by Rudnick and Sarnak holds for one
orthonormal basis but not for another. In the arithmetic case, it is believed that
the spectrum of the laplacian has bounded multiplicity, in which case it would be
a harmless assumption to consider only Hecke eigenstates.

Nevertheless, one may be less optimistic about the general conjecture. Faure–
Nonnenmacher–De Bièvre exhibited in [FNDB03] a simple example of a symplectic
Anosov dynamical system, namely the action of the linear hyperbolic automorphism(

2 1
1 1

)
on the 2-torus, the Weyl–quantization of which does not satisfy the

Quantum Unique Ergodicity conjecture. In this model, it is known [KurRud00]
that there is one orthonormal family of eigenfunctions satisfying Quantum Unique
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Ergodicity, but, due to high degeneracies in the spectrum, one can also construct
eigenfunctions with a different behaviour. Precisely, [FNDB03] construct a family
of eigenstates for which the semiclassical measure consists in two ergodic compo-
nents: half of it is the Liouville measure, while the other half is a Dirac peak on
a single unstable periodic orbit. It was also shown that this half-localization on a
periodic orbit is maximal for this model [FN04] : a semiclassical measure cannot
have more than half the mass carried by a finite union of closed orbits. Another
type of semiclassical measure was recently obtained by Kelmer for a quantized au-
tomorphism on a higher-dimensional torus [Kelm05]: it consists in the Lebesgue
measure on some invariant co-isotropic subspace of the torus. For these torus au-
tomorphisms, the existence of exceptional eigenstates seems to be due to some
nongeneric algebraic properties of the classical and quantized systems. It has been
believed for a while that any perturbation of the system which lifts the degenera-
cies in the spectrum will also destroy the counterexamples to Quantum Unique
Ergodicity. However, Kelmer has recently disproved this belief : he showed that a
non-linear perturbation of his previous construction [Kelm05], if it is done so as to
preserve the invariant co-isotropic subspaces, will still contradict Quantum Unique
Ergodicity [Kelm06], in the same way as before the perturbation. Moreover, the
spectrum of the perturbed quantum model is simple [Kelm08].

7. Main result.

We wish to consider the Kolmogorov–Sinai entropy of semiclassical measures.
We work on a compact manifold X of arbitrary dimension, and assume that the
geodesic flow has the Anosov property. In fact, our method is very general, and
can without any doubt be adapted to more general Anosov hamiltonian systems.

The Kolmogorov–Sinai entropy, also called metric entropy, of a (gt)-invariant
probability measure μ is a nonnegative number hKS(μ) that describes, in some
sense, the complexity of a μ-typical orbit of the flow. The precise definition will
be given later, but for the moment let us just give a few facts. A measure carried
on a closed geodesic has zero entropy. In constant curvature, the entropy is known
to be maximal for the Liouville measure. More generally, an upper bound on the
entropy is given by the Ruelle inequality: since the geodesic flow has the Anosov
property, the energy layer S∗X is foliated into unstable manifolds of the flow, and
for any invariant probability measure μ one has

(7.1) hKS(μ) ≤
∣∣∣∣
∫
S∗X

log Ju(ρ)dμ(ρ)

∣∣∣∣ .
In this inequality, Ju(ρ) is the unstable Jacobian of the flow at the point ρ ∈ S∗X,
defined as the Jacobian of the map g−1 restricted to the unstable manifold at the
point g1ρ. The average of log Ju over any invariant measure is negative. In fact, if
μ is an invariant probability measure,∫

S∗X

log Ju(ρ)dμ(ρ) = −
∫
S∗X

∑
λ+
j (ρ)dμ(ρ)

where λ+
j (ρ) are the positive Lyapunov exponents of ρ. If X has dimension d and

has constant sectional curvature −1, (7.1) just reads hKS(μ) ≤ d − 1. Equality
holds in (7.1) if and only if μ is the Liouville measure on S∗X [LY85].
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Let μ be a (gt)–invariant probability measure on S∗X. According to the
Birkhoff ergodic theorem, for μ–almost every ρ ∈ S∗X, the weak limit

μρ = lim
|t|−→∞

1

t

∫ t

0

δgsρds

exists, and is an ergodic probability measure. We can then write

μ =

∫
S∗X

μρdμ(ρ),

which is called the ergodic decomposition of μ. One can prove that the ergodic
probability measures are the extremal points of the compact convex set of (gt)–
invariant probability measures.

To understand the connection of our results with the previous discussion, it
is important to know that the entropy if an affine functional on the convex set of
(gt)–invariant probability measures :

hKS(μ) =

∫
S∗X

hKS(μ
ρ)dμ(ρ).

In what follows, we consider a certain subsequence of eigenstates (ψkj
)j∈N of

the laplacian, such that the corresponding sequence (μkj
) converges to a certain

semiclassical measure μ (see the discussion preceding Proposition 6.1). The subse-
quence (ψkj

) will simply be denoted by (ψ�)�→0, using the slightly abusive notation
ψ� = ψ�kj

for the eigenstate ψkj
. Each state ψ� satisfies

(7.2) (−�
2 	−1)ψ� = 0 .

It is proved in [A05] that the entropy of any semiclassical measure associated with
eigenfunctions of the laplacian is strictly positive. In [AN07] more explicit lower
bounds were obtained. We shall prove here the following lower bound :

Theorem 7.1. Let μ be a semiclassical measure associated to the eigenfunctions
of the laplacian on X. Then its metric entropy satisfies

(7.3) hKS(μ) ≥
∣∣∣∣
∫
S∗X

log Ju(ρ)dμ(ρ)

∣∣∣∣− (d− 1)

2
λmax ,

where d = dimM and λmax = limt→±∞
1
t log supρ∈S∗X |dgtρ| is the maximal expan-

sion rate of the geodesic flow on S∗X.
In particular, if X has constant sectional curvature −1, this means that

(7.4) hKS(μ) ≥
d− 1

2
.

The bound (7.4) in the above theorem is much sharper than the bound proved
in [A05] in the case of constant curvature. On the other hand, if the curvature
varies a lot (still being negative everywhere), the right hand side of (7.3) may be
negative, in which case the above bound is trivial and the result of [A05] is better.
We believe this to be but a technical shortcoming of our method, and would actually
expect the following bound to hold:

(7.5) hKS(μ) ≥
1

2

∣∣∣∣
∫
S∗X

log Ju(ρ)dμ(ρ)

∣∣∣∣ .
Our result is compatible with the kind of counter-examples obtained by Faure–

Nonnenmacher–De Bièvre [FNDB03]. It allows certain ergodic components to



414 NALINI ANANTHARAMAN

be carried by closed geodesics, but says that others must have positive entropy.
Compare with the much stronger result obtained in the arithmetic case by Bourgain
and Lindenstrauss :

Theorem 7.2. [BLi03] Let X be a congruence arithmetic surface, and (ψj)
an orthonormal basis of eigenfunctions for the laplacian and the Hecke operators.

Let μ be a corresponding semiclassical measure, with ergodic decomposition μ =∫
S∗X μρdμ(ρ). Then for almost all ergodic components we have hKS(μ

ρ) ≥ 1
9 .

Quantum Unique Ergodicity would mean that hKS(μ) =
∣∣∫

S∗X log Ju(ρ) dμ(ρ)
∣∣

[LY85]. We believe however that (7.5) is the optimal result that can be obtained
without using more precise information, like for instance upper bounds on the
multiplicities of eigenvalues. Indeed, in the above mentioned examples of Anosov
systems where the Quantum Unique Ergodicity conjecture is wrong, the bound (7.5)
is actually sharp [FNDB03, Kelm05, AN06]. In those examples, the spectrum
has very high degeneracies, which allows for much freedom to select the eigenstates,
and could be responsible for the failure of Quantum Unique Ergodicity. Such high
degeneracies are not expected to happen in the case of the laplacian on a negatively
curved manifold. For the moment, however, there is no clear understanding of
the precise relation between spectral degeneracies and failure of Quantum Unique
Ergodicity. As explained above, at the time of revision of these notes, Kelmer
had found a model (a non-linear symplectic diffeomorphism of T2d, d ≥ 2 and its
quantization), for which the spectrum is simple but Quantum Unique Ergodicity
does not hold [Kelm08].

8. Definition of entropy, and main idea of the proof.

Let μ be a probability measure on T ∗X. Let (P1, . . . , PK) be a finite measurable
partition of the unit tangent bundle : T ∗X = P1 � ... � PK . The Shannon entropy
of μ with respect to the partition P is

(8.1) hP (μ) = −
K∑

k=1

μ(Pk) log μ(Pk).

Assume now that μ is (gt)–invariant. For any integer n, denote P∨n the partition
formed by the sets Pα0

∩ g−1Pα1
... ∩ g−n+1Pαn−1

. Denote

(8.2) hn(μ, P ) = hP∨n(μ)

= −
∑

(αj)∈{1,...,K}n

μ(Pα0
∩g−1Pα1

...∩g−n+1Pαn−1
) logμ(Pα0

∩g−1Pα1
...∩g−n+1Pαn−1

).

If μ is (gt)–invariant, it follows from the concavity of x �→ −x log x that

(8.3) hn+m(μ, P ) ≤ hn(μ, P ) + hm(μ, P ),

in other words the sequence (hn(μ, P ))n∈N is subadditive. The entropy of μ with
respect to the action of geodesic flow and to the partition P is defined by

(8.4) hKS(μ, P ) = lim
n−→+∞

hn(μ, P )

n
= inf

n∈N

hn(μ, P )

n
.

The existence of the limit, and the fact that it coincides with the infimum, follow
from a standard subadditivity argument. Note that μ(Pα0

∩g−1Pα1
...∩g−n+1Pαn−1

)
measures the μ–probability to visit successively Pα0

, Pα1
,..., Pαn−1

at times 1, 2,...,
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n− 1 of the geodesic flow. The entropy measures the average exponential decay of
these probabilities when n gets large. In particular, if there is a uniform exponential
decay, that is, if there exists C, β ≥ 0 such that μ(Pα0

∩ g−1Pα1
... ∩ g−nPαn

) ≤
Ce−βn, for all n and all α0, . . . , αn, then it is easy to see that hKS(μ, P ) ≥ β .

The entropy of μ with respect to the action of the geodesic flow is defined as

(8.5) hKS(μ) = sup
P

hKS(μ, P ),

the supremum running over all finite measurable partitions P . Assume μ is carried
on the energy layer S∗X. Due to the Anosov property of the geodesic flow on S∗X,
it is known that the supremum (8.5) is reached as soon as the maximum diameter
of the sets Pk ∩ S∗X is small enough.

We will restrict our attention to partitions P which are actually partitions of
the base X (lifted to T ∗X) : X = �K

k=1Pk. This choice is not crucial, but it
simplifies certain aspects of the analysis.

The fact that the limit in (8.4) coincides with the infimum has a crucial con-
sequence, the upper semicontinuity property of hKS(., P ) : if (μk) is a sequence of
(gt)–invariant probability measures converging weakly to μ, then

(8.6) hKS(μ, P ) ≥ lim sup
k

hKS(μk, P )

(provided μ does not charge the boundary of P ).

Since our semiclassical measure μ is defined as a limit of Husimi measures
associated to ψ�, a naive idea would be to estimate from below the entropy of ψ�

and then take the limit.
A first issue is to decide how to define the ψ�–probability to visit successively

Pα0
, Pα1

,..., Pαn−1
at times 1, 2,..., n− 1.

From the definition of the Husimi measures, a first idea could be to consider

(8.7)
〈
ψ�,Op

�

(
(1lPα0

) (1lPα1
◦ g1) . . . (1lPαn−1

◦ gn−1)
)
ψ�

〉
.

To avoid dealing with characteristic functions (which are not quantized to pseu-
dodifferential operators), we can smooth them by convolution and try replacing
1lPk

by a smooth 1lsmPk
. Even so, studying the large–n behaviour of (8.7) is very

problematic. In fact, the derivatives of (1lsmPα0
) (1lsmPα1

◦ g1) . . . (1lsmPαn−1
◦ gn−1) grow

like en, so that when n reaches the size | log �| this function no longer belongs to
any reasonable symbol space (the operator is not a pseudodifferential operator).

We also note that an overlap of the form (8.7) is a hybrid expression: this is
a quantum matrix element, but the operator is defined in terms of the classical
flow ! From the point of view of quantum mechanics, it is more natural to con-
sider, instead, the operator obtained as the product of Heisenberg-evolved quantized
functions, namely

(8.8) P̂αn−1
(n− 1)P̂αn−2

(n− 2) . . . P̂α1
(1)P̂α0

.

Here we used the shorthand notation P̂k
def
= Op(1lsmPk

), k ∈ [1,K], and P̂k(t) =

U−t
�

P̂kU
t
�
. Instead of (8.7), a second idea is to consider

(8.9)
〈
ψ�, P̂αn−1

(n− 1) . . . P̂α1
(1)P̂α0

ψ�

〉
.
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as the ψ�–probability to visit successively Pα0
, Pα1

,..., Pαn−1
at times 1, 2,...,

n − 1. However, the scalar product is a complex number, and can not be directly
manipulated as a probability.

Our third and final try is to consider

(8.10) ‖P̂αn−1
(n− 1) . . . P̂α1

(1)P̂α0
ψ�‖2.

In fact, if we do the smoothing of 1lPk
so that∑

k

(1lsmPk
)2 ≡ 1

then the norms (8.10) can actually be manipulated like probability measures :

(8.11)
∑

α0,...,αn−1

‖P̂αn−1
(n− 1)P̂αn−2

(n− 2) . . . P̂α1
(1)P̂α0

ψ�‖2 = 1,

and∑
αn−1

‖P̂αn−1
(n− 1)P̂αn−2

(n− 2) . . . P̂α1
(1)P̂α0

ψ�‖2

= ‖P̂αn−2
(n− 2) . . . P̂α1

(1)P̂α0
ψ�‖2.

Finally, using the Egorov theorem (4.6), we see that, for fixed n,

‖P̂αn−1
(n− 1) . . . P̂α1

(1)P̂α0
ψ�‖2 −→

�−→0
μ
(
(1lsmPα0

)2 (1lsmPα1
◦ g1)2 . . . (1lsmPαn−1

◦ gn−1)2
)

if the Husimi measures of ψ� converge to μ. Apart from the smoothing, this is the
quantity we are interested in when computing entropy of μ (8.2).

It is proved in [A05] that

‖P̂αn−1
(n− 1) . . . P̂α1

(1)P̂α0
ψ�‖2 ≤ C

�d
e−(d−1)n,

say, in dimension d and constant curvature −1, and assuming the diameter of the
Pk is small enough8. From this, it would be tempting to deduce that the entropy
of the ψ�–Husimi measures is bounded below by d− 1, then use the semicontinuity
property (8.6) to deduce that hKS(μ) ≥ d − 1 (thus proving quantum unique
ergodicity).

Of course, we can not apply (8.6), since we are not in the situation of a sequence
(μk) of g

t–invariant probability measures converging to μ. To use (8.6) we need to
know if a similar property holds in our quantum framework, using expressions such
as (8.10) to evaluate entropies. This is, in fact, NOT the case : a factor of 2 is lost
somewhere in the proof, and we will end up proving

hKS(μ) ≥
d− 1

2
.

As we shall see, this is due to the fact that the operators P̂α(t) appearing in (8.10)

do not commute : for non commuting operators, the interpretation of ‖P̂αn−1
(n−

1) . . . P̂α1
(1)P̂α0

ψ�‖2 as “the probability to visit successively Pα0
, Pα1

,..., Pαn−1
at

times 1, 2,..., n− 1” is not allowed. It is only acceptable for a time n small enough
so that the operators almost commute (up to some small error). This restriction of
the time range is responsible for the loss of a factor 2.

8To prove this estimate, we assume, without any loss of generality, that the injectivity radius
of X is larger than 1.
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The entropic uncertainty principle.

In this chapter, we give the steps of the proof of our main result, inequality
(7.3). To simplify the presentation we restrict ourselves to the case of constant
curvature ≡ −1.

We start with a functional inequality called the “entropic uncertainty princi-
ple”.

9. The abstract result...

We consider a complex Hilbert space (H, 〈., .〉), and denote ‖ψ‖ =
√
〈ψ, ψ〉 the

associated norm. The same notation ‖.‖ will also be used for the operator norm on
L(H).

We define the following family of lp norms onHN : for Ψ = (Ψ1, . . . ,ΨN ) ∈ HN ,
we let

(9.1) ‖Ψ‖p def
=

(
N∑

k=1

‖Ψk‖p
)1/p

, 1 ≤ p < ∞ , and ‖Ψ‖∞ def
= max

k
‖Ψk‖ .

For p = 2, this norm coincides with the Hilbert norm deriving from the scalar
product

〈Ψ,Φ〉HN =

N∑
k=1

〈Ψk,Φk〉H.

We can define similarly a family of lp norms on HM � Φ = (Φ1, . . . ,ΦM ):

(9.2) ‖Φ‖p
def
=

⎛
⎝ M∑

j=1

‖Φj‖p
⎞
⎠

1/p

, 1 ≤ p < ∞ , and ‖Φ‖∞
def
= max

j
‖Φj‖ .

For Ψ ∈ HN with ‖Ψ‖2 = 1, we define its entropy,

h(Ψ) = −
N∑

k=1

‖Ψk‖2 log ‖Ψk‖2 ;

(and we define similarly the entropy of a normalized vector Φ ∈ HM ). The entropy
is related to the lp norms by the fact that − 1

4h(Ψ) is the derivative of ‖Ψ‖p at
p = 2.

Consider the action of a bounded operator T : HN → HM , which we present
as a M ×N matrix (Tj k) of bounded operators on H. We denote ‖T‖p,q the norm

of T from lp(HN ) to lq(HM ), for 1 ≤ p, q ≤ ∞.

Theorem 9.1 (Riesz interpolation theorem). [DunSchw, Section VI.10] The
function log ‖T‖1/a,1/b is a convex function of (a, b) in the square 0 ≤ a, b ≤ 1.

From this theorem, Maassen and Uffink derived a new form of uncertainty
relations [MaaUff88].

Theorem 9.2. Assume that ‖T‖2,2 = 1, which implies in particular that

‖Tjk‖ ≤ 1 for all j, k. Introduce the real number c(T ) = maxj,k‖Tjk‖ , where the
norm is the operator norm in L(H).

For all Ψ ∈ H such that ‖Ψ‖2 = 1 and ‖TΨ‖2 = 1, we have

h(TΨ) + h(Ψ) ≥ −2 log c(T ) .
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Remark 9.3. The theorem proved in [MaaUff88] deals with H = C. The
operator T is then simply represented by an M × N complex matrix, and c(T )
is the supremum of its entries. According to the theorem, if a matrix has small
entries, then either h(TΨ) or h(Ψ) must be large. Here h(Ψ) = −

∑
|Ψk|2 log|Ψk|2

measures the entropy of the probability vector (|Ψk|2), given by the coordinates of
Ψ in the canonical basis of CN .

Proof: In the case a = 1, b = 0, we have for any Ψ,

‖TΨ‖∞ = sup
j

‖(TΨ)j‖ ≤ sup
j,k

‖Tj,k‖
∑
k′

‖Ψk′‖ = sup
j,k

‖Tj,k‖ ‖Ψ‖1 ,

which can be written as ‖T‖1,∞ ≤ supj,k ‖Tj,k‖ def
= c(T ).

Let us assume that T is contracting on l2 : ‖T‖2,2 ≤ 1. We take t ∈ [0, 1]

and at =
1+t
2 , bt =

1−t
2 to interpolate between (1/2, 1/2) and (1, 0); Theorem 9.1

implies that

‖T‖1/at,1/bt
≤ c(T )t .

Corollary 9.4. Let the operator T : HN −→ HM satisfy ‖T‖2,2 ≤ 1 and call

c(T )
def
= supj,k ‖Tj,k‖. Then, for all t ∈ [0, 1], for all Ψ ∈ HN ,

‖TΨ‖ 2
1−t

≤ c(T )t ‖Ψ‖ 2
1+t

.

We define for any r > 0 or −1 < r < 0 the “moments”

Mr(Ψ)
def
=

⎛
⎝∑

j

‖Ψj‖2+2r

⎞
⎠

1/r

.

Corollary 9.4 leads to the following family of “uncertainty relations”:

(9.3) ∀t ∈ (0, 1), ∀Ψ ∈ C
N , M t

1−t
(TΨ)M −t

1+t
(Ψ) ≤ c(T )2 .

In the case ‖Ψ‖2 = 1, we notice that the moments converge to the same value when
r → 0 from above or below:

lim
r→0

Mr(Ψ) = e−h(Ψ) , where h(Ψ) = −
∑
j

‖Ψj‖2 log ‖Ψj‖2 .

If, furthermore, ‖TΨ‖2 = 1, then the limit t → 0 of the inequalities (9.3) yield the
Entropic Uncertainty Principle stated in Theorem 9.2. �

We shall use Theorem 9.2 in the following particular case :

Example 9.5. Suppose we have two partitions of unity (πk)
N
k=1 and (τj)

M
j=1,

that is, two families of operators on H such that

(9.4)
N∑

k=1

πkπ
∗
k = Id,

M∑
j=1

τjτ
∗
j = Id.

Let U be a unitary operator on H. We can take Tj k = τ∗j Uπk.

Lemma 9.6. Let Tjk = τ∗j Uπk, for some bounded operator U : H → H. Then
we have the identity

‖T‖2,2 = ‖U‖L(H) .
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Proof. The operator T may be described as follows. Consider the following
row and column vectors of operators on H:

L
def
= (π1, . . . , πN ) , as well as C =

⎛
⎝ τ∗1

. . .
τ∗M

⎞
⎠ .

We can write T = CUL. We insert this formula in the identity

‖T‖22,2 = ‖T ∗T‖L(HN ) =
∥∥L†U∗C†CUL

∥∥
L(HN )

Using (9.4) for the τj , we notice that C†C = IdH, so that the norm above reads

∥∥L†U∗UL
∥∥
L(HN )

.

Then, we use the identities
∥∥(UL)†(UL)

∥∥
L(HN )

=
∥∥(UL)(UL)†

∥∥
L(H)

=
∥∥(UL)L†U∗∥∥

L(H)
= ‖UU∗‖L(H) ,

where we used (9.4) for the πk. �

Therefore, if U is contracting (resp. ‖U‖L(H) = 1) one has ‖T‖2,2 ≤ 1 (resp.

‖T‖2,2 = 1).
We also specify the vector Ψ by taking Ψk = π∗

kψ for some normalized ψ ∈ H.
From (9.4), we check that ‖Ψ‖2 = ‖ψ‖, and also that (TΨ)j = τ∗j Uψ. Thus, if
‖Uψ‖ = 1, the relation (9.4) also implies ‖TΨ‖2 = ‖Uψ‖ = 1. With this choice for
T and Ψ, Theorem 9.2 reads as follows:

Theorem 9.7. Let U be an isometry on H, and let π, τ be two quantum parti-
tions of unity as in (9.4).

Define cτ,π(U)
def
= supj,k‖τ∗j U πk‖L(H).

Then, for any normalized ψ ∈ H, we have

hτ (Uψ) + hπ(ψ) ≥ −2 log cτ,π(U)

where hπ(ψ) = −
∑N

k=1 ‖π∗
kψ‖2 log ‖π∗

kψ‖2 and hτ (ψ) = −
∑M

j=1 ‖τ∗j ψ‖2 log ‖τ∗j ψ‖2.

Note that the definition hπ(ψ) = −
∑N

k=1 ‖π∗
kψ‖2 log ‖π∗

kψ‖2 is somewhat anal-
ogous to (8.1), π playing the role of the partition P and ψ the role of the measure
μ. The quantity hπ(ψ) may be called the “Shannon entropy” of the state ψ with
respect to the partition π.

10. ... applied to eigenfunctions of the laplacian...

In this section we define the data to input into Theorem 9.7, in order to obtain
information on the eigenstates ψ� (7.2) and the semiclassical measures μ consid-

ered in the previous chapters. Only the Hilbert space is fixed, H def
= L2(X). All

other data depend on the semiclassical parameter �: the quantum partitions π, τ ,
the unitary operator U . Besides, we will need yet another technical variant of
Theorem 9.7.
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10.1. Smooth partition of unity. To evaluate the Kolmogorov–Sinai en-
tropy of a semiclassical measure, we must start by decomposing T ∗X into a finite
partition. We actually specify the form of the partition we want to use. We work
with a measurable partition (Pk)k=1,...,K of the base X : X = �Pk, that we lift to
a partition of the phase space T ∗X.

For semiclassical methods we actually need to work with smooth functions,
and so we introduce a smooth partition of unity (1lsmPk

), obtained by smoothing
the characteristic functions (1lPk

) with a convolution kernel. We require that the

smoothing be done so that
∑K

k=1(1l
sm
Pk

)2 ≡ 1.

We finally denote P̂k = Op(1lsmPk
) : it is simply the operator of multiplication

by 1lsmPk
. We have

(10.1)
K∑

k=1

P̂ 2
k = I ,

which means that these operators form a quantum partition of unity as in (9.4),
which we will call P(0).

10.2. Refinement of the partition under the Schrödinger flow. We
denote by U t = exp(it�	 /2) the quantum propagator. With no loss of generality,
we will assume that the injectivity radius of X is much greater than 1, and work
with the propagator at time one, U = U1. This propagator quantizes the geodesic
flow at time one, g1. The �-dependence of U will be implicit in our notations.

As one does to compute the Kolmogorov–Sinai entropy of an invariant measure,
we define a new quantum partition of unity by evolving and refining the initial
partition P(0) under the quantum evolution. For each time n ∈ N and any sequence
of symbols α = (α0 · · ·αn−1), αi ∈ [1,K] (we say that the sequence α is of length
|α| = n), we define the operators

P̂α = P̂αn−1
(n− 1)P̂αn−2

(n− 2) . . . P̂α0
.(10.2)

We keep using the notation A(t) = U−tAU t for the quantum evolution of an

operator A. From (10.1) and the unitarity of U , the family of operators
{
P̂α

}
|α|=n

obviously satisfies the relation
∑

|α|=n P̂α P̂ ∗
α = IdL2 , and therefore forms a quan-

tum partition which we call P(n). We also have
∑

|α|=n P̂
∗
α P̂α = IdL2 , and we

denote T (n) the partition of unity given by the family of operators
{
P̂ ∗
α

}
|α|=n

.

10.3. In the entropic uncertainty principle, Theorem 9.7, we shall input the
following data :

• the quantum partition π = P(n) is given by the family of operators
{P̂α, |α| = n}. The quantum partition τ = T (n) is given by the family of

operators {P̂ ∗
α, |α| = n}. The integer n will always be of order K| log �|,

where K will be determined later.
• the isometry will be U = Un.

To apply Theorem 9.7 we will need an upper bound on

cT (n),P(n)(U) = max
|α|=|α′|=n

‖P̂α′ Un P̂α‖.
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We remark that P̂α′ Un P̂α can be developed as

U−n+1P̂α′
n−1

U · · ·UP̂α′
1
UP̂α′

0
UP̂αn−1

· · ·UP̂α1
UP̂α0

or equivalently

UnP̂α′
n−1

(2n− 1) · · · P̂α′
1
(n+ 1)P̂α′

0
(n)P̂αn−1

(n− 1) · · · P̂α1
(1)P̂α0

.

10.4. The main estimate. Let us assume (without loss of generality) that
the injectivity radius of X is greater than 1; and that the diameter of each Pk is
small enough so that, for every j, k, for every x, y ∈ Pj , Pk, there is at most one
unit speed geodesic joining x and y in time 1.

The estimate essentially proven in [A05] is :

Theorem 10.1. Let χ be an energy cut-off, that is, a smooth compactly sup-
ported function vanishing outside H−1([1/2− ε, 1/2 + ε]).

Given K > 0 and a partition P(0), there exists �K,P(0),χ such that, for any
� ≤ �K,P(0),χ, for any positive integer n ≤ K| log �|, and any pair of sequences α,
α′ of length n,

(10.3) ‖P̂α′ Un P̂α Op(χ)‖ ≤ C �
− d

2 e−(d−1)n(1 +O(ε))n .

The constant C only depends on the riemannian manifold.

Remark 10.2. The best bound we can hope for on the norm of the operators
P̂α′ Un P̂α is certainly the trivial one : cT (n),P(n)(U) ≤ 1. We can only improve
this bound if we insert the energy cut-off Op

�
(χ), which has the effect of restricting

our operators to functions oscillating at a certain (high) frequency. In fact, if we
take χ of the form f((2H − 1)), where f is a smooth function on R, supported in
[1−2ε, 1+2ε], we can take Op(χ) to be the corresponding function of the laplacian,
obtained by functional calculus, f((−�

2	−1)). Thus, Op(χ) is a smoothed version
of the projection to the spectral window [ 1−2ε

�2 , 1+2ε
�2 ] of the laplacian.

Since we have no good estimate on ‖P̂α′ Un P̂α‖, but only on ‖P̂α′ Un P̂α Op(χ)‖,
we will need to modify accordingly the statement of the entropic uncertainty prin-
ciple : see later Theorem 10.5

Remark 10.3. If we were in variable curvature, instead of the exponent d− 1
we would have a variable exponent depending on the local Lyapunov exponents.

The proof of Theorem 10.1 will be given in Section 15. The idea is rather
simple, although the technicalities may seem difficult. We first show that any
state in the image of Op(χ) may be decomposed as a superposition of essentially

�
− d

2 normalized lagrangian states, supported on lagrangian manifolds transverse
to the stable foliation. The lagrangian states we work with are truncated δ–
functions, supported on spheres S∗

zX. The action of the operator Un−1P̂α′ Un P̂α =

P̂α′
n−1

U · · ·UP̂α′
0
UP̂αn−1

· · ·UP̂α0
on such lagrangian states is translated, by the

theory of Fourier integral operators (WKB methods), into a classical picture : an
application of U corresponds, classically, to applying g1, so that it stretches the
lagrangian in the unstable direction. Each multiplication by P̂α corresponds to
cutting out a small piece of lagrangian. This iteration of stretching and cutting is
responsible for the exponential decay.

In [AN07] the estimate of Theorem 10.1 is modified by optimizing the shape
of the cutoff χ. We want to take into account the fact that we are dealing with
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eigenfunctions of the laplacian, and not merely spectral packets in the window
[ 1−2ε

�2 , 1+2ε
�2 ]. But we also want Op(χ) to stay in a reasonable class of pseudodiffer-

ential operators. We consider a smooth function χ ∈ C∞(R; [0, 1]), with χ(t) = 1
for |t| ≤ 1 and χ(t) = 0 for |t| ≥ 2. Then, for some fixed δ ∈ (0, 1), we rescale that
function to obtain an �-dependent cutoff near S∗X:

(10.4) ∀� ∈ (0, 1), ∀n ∈ N, ∀ρ ∈ T ∗X, χδ(ρ; �)
def
= χ

(
�
−1+δ(H(ρ)− 1/2)

)
.

The cutoff χδ is localized in a tubular neighbourhood of S∗X of width 2�1−δ

Theorem 10.4. [AN07] Given K > 0 a partition P(0) and δ > 0 small enough,
there exists �K,P(0),δ such that, for any � ≤ �K,P(0),δ, for any positive integer n ≤
K| log �|, and any pair of sequences α, α′ of length n,

(10.5) ‖P̂α′ Un P̂α Op(χδ)‖ ≤ C �
− d−1

2 −δ e−(d−1)n(1 +O(�δ))n .

The constant C only depends on the riemannian manifold (M, g).

Theorem 10.4 essentially improves the prefactor �−
d
2 of Theorem 10.1. Its proof

is similar, the main difficulty being to define Op(χδ) — the function χδ does not
fall into one of the usual “nice” classes of symbols, since its derivatives explode
quite fast when � −→ 0. To define Op(χδ) would be much beyond the scope of
these notes (see [SZ99, AN07]). We shall admit Theorem 10.4, and only prove
the simpler version of Theorem 10.1.

10.5. Technical variant of the entropic uncertainty principle. As ex-
plained in Remark 10.2, we cannot apply Theorem 9.7 directly, because we need
to insert our energy cut-off Op(χ). On the other hand, this frequency cut–off does
not really bother us, since it hardly modifies our eigenfunctions.

We generalize the statement of Theorem 9.7 by introducing an auxiliary oper-
ator O.

Theorem 10.5. [AN07] Let O be a bounded operator on H. Let U be an
isometry on H.

Define cτ,πO (U) def
= supj,k‖τ∗j U πk O‖L(H).

Then, for any θ ≥ 0, for any normalized ψ ∈ H satisfying

∀k = 1, . . . ,N , ‖(Id−O)π∗
kψ‖ ≤ θ ,

the entropies hτ

(
Uψ

)
, hπ

(
ψ
)
satisfy

hτ

(
Uψ

)
+ hπ

(
ψ
)
≥ −2 log

(
cπ,τO (U) +N θ

)
.

10.6. Applying the entropic uncertainty principle. We now precise all
the data we will use in the entropic uncertainty principle, Theorem 10.5:

• the quantum partition π = P(n), τ = T (n) have already been defined
in 10.3. The integer n will be of order K| log �|, where the choice of K
will be determined later. In the semiclassical limit, these partitions have
cardinality N = Kn � �

−K0 for some fixed K0 > 0.
• the isometry will be U = Un.
• the operator O is O = Op(χδ). Since we are, at the end, interested in
eigenfunctions of the laplacian, we need to know that this operator hardly
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modifies them. In fact, for any L > 0, there exists �L such that, for any
� ≤ �L, any solution of (−�

2 	−I)ψ� = 0 satisfies

(10.6) ∀α, |α| = n ≤ K| log �|, ‖
(
Op(χδ)− Id

)
P̂ ∗
αψ�‖ ≤ �

L‖ψ�‖ .

This means that, for an eigenfunction ψ�, all the states P̂ ∗
αψ� are very

sharply microlocalized near the energy layer S∗X.
• θ = �

L, and L will be chosen very large.
All these quantities are defined for n = K| log �|, K will be determined

later, but fixed.

The entropies associated with a state ψ ∈ H are given by

hP(n)(ψ) = −
∑

|α|=n

‖P̂ ∗
αψ‖2 log

(
‖P̂ ∗

αψ‖2
)

and

hT (n)(ψ) = −
∑

|α|=n

‖P̂αψ‖2 log
(
‖P̂αψ‖2

)
.

We may apply Theorem 10.5 to any sequence of states satisfying (10.6).

Corollary 10.6. Define

(10.7) cOpχδ
(Un)

def
= max

|α|=|α′|=n
‖P̂α′ Un P̂α Op(χδ)‖ .

Then for any normalized state φ satisfying (10.6),

hT (n)(Un φ) + hP(n)(φ) ≥ −2 log
(
cOpχδ

(Un) + hL−K0
)
.

We now apply Corollary 10.6 to the particular case of the eigenstates ψ�. The
estimate (10.5) can be rewritten as

cOpχδ
(Un) ≤ C �

− d−1
2 −δe−(d−1)n(1 +O(�δ))n .

We choose L large enough such that �
L−K0 is negligible in comparison with

�
− d−1

2 −δe−(d−1)n.

Proposition 10.7. Let (ψ�)�→0 be any sequence of eigenstates (7.2). Then,
in the semiclassical limit, we have

(10.8) hT (n)(ψ�) + hP(n)(ψ�) ≥ 2(d− 1)n+ (d− 1 + 2δ) log �+O(1) .

This holds for n ≤ K| log �| (K arbitrary) and � ≤ �K,P(0),δ.

11. ...and the conclusion.

Before taking the limit � → 0, we prove that a similar lower bound holds if we
replace n � | log �| by some fixed no, and P(n) by the corresponding partition P(no).
Proposition 11.1 below is the semiclassical analogue of the classical subadditivity
(8.3) of entropy for invariant measures.

We introduce the Ehrenfest time nE(�) = (1−δ′)| log �|
λmax

(δ′ fixed, arbitrarily

small). In constant curvature −1, the maximal expansion rate of the geodesic flow
on S∗X is λmax = 1. The Ehrenfest time is the main limitation to use semiclassical
methods to understand the large time behaviour of the Schrödinger flow : roughly

speaking, we have U−t Op
�
(a)U t ∼ Op(a ◦ gt) for |t| ≤ nE(�)

2 , but for larger t we
can no longer refer to the classical dynamics to understand U−t Op

�
(a)U t.
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Proposition 11.1 (Subadditivity). Let δ′ > 0. There is a function R(no, �)
such that, for all integer no,

lim
�−→0

|R(no, �)| = 0

and such that, for all no, n ∈ N with no + n ≤ nE(�), for any (ψ�) normalized
eigenstates satisfying (7.2), the following inequality holds:

hP(no+n)(ψ�) ≤ hP(no)(ψ�) + hP(n)(ψ�) +R(no, �) .

We do not prove this proposition in these notes, but just make a few more
comments. The non–commutative dynamical system formed by (U t) acting on
pseudodifferential operators is (approximately) commutative on time intervals of
length nE(�) :

‖[Op
�
(a)(t),Op

�
(b)(−t)]‖L2(X) = O(�cδ

′
),

for any time |t| ≤ nE(�)
2 , or equivalently (using the unitarity of U t)

‖[Op
�
(a)(t),Op

�
(b)]‖L2(X) = O(�cδ

′
),

for any time |t| ≤ nE(�). On such a time interval, we almost have a commutative
dynamical system, up to small errors tending to 0 with �. This roughly explains
why the quantum entropy hP(no+n)(ψ�) has the same subadditivity property as the
classical entropy (8.3), up to small errors, as long as no + n remains bounded by
the Ehrenfest time.

Thanks to this subadditivity, we may finish the proof of Theorem 7.1. Although
Proposition 10.7 holds for n ≤ K| log �| and K arbitrary, we are now limited by

Proposition 11.1 to K = 1−δ′

λmax
. For n = nE(�), Proposition 10.7 can be written

(11.1) hP(n)(ψ�) + hT (n)(ψ�) ≥ 2(d− 1)n− (d− 1 + 2δ)λmax

(1− δ′)
n+O(1) .

Let no ∈ N be fixed and n = nE(�). Using the Euclidean division n = qno + r
(with r ≤ no), Proposition 11.1 implies that for � small enough,

hP(n)(ψ�)

n
≤ hP(no)(ψ�)

no
+

hP(r)(ψ�)

n
+

R(no, �)

no
.

A similar inequality holds with P replaced by T .
Using (10.8) and the fact that hP(r)(ψ�) stays uniformly bounded (by a quantity

depending on no) when � → 0, we find

(11.2)
1

2

[
hP(no)(ψ�)

no
+

hT (no)(ψ�)

no

]
≥ (d− 1)− (d− 1 + 2δ)λmax

2(1− δ′)
n

+O(1)− R(no, �)

no
+Ono

(1/n) .

We are now dealing with the partition P(no), n0 being fixed.

11.1. End of the proof. Let us take a subsequence of (ψ�k
) such that the

Husimi measures μk = μψ�k
converge to a semiclassical measure μ on S∗X, invari-

ant under the geodesic flow (see Prop. 6.1). We may take the limit �k → 0 (so
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that n → ∞) in the expression above. The norms appearing in the definition of
hP(no)(ψ�k

) and hT (no)(ψ�k
)can be written as

‖P̂α ψ�k
‖ = ‖P̂αno

(no) · · · P̂α1
(1)P̂α0

ψ�k
‖(11.3)

‖P̂ ∗
α ψ�k

‖ = ‖P̂α0
P̂α1

(1) · · · P̂αno
(no)ψ�k

‖ .(11.4)

For any sequence α of length no, the laws of pseudodifferential calculus imply the
convergence of ‖P̂ ∗

α ψ�k
‖2 and ‖P̂α ψ�k

‖2 to the same quantity μ({α}), where {α}
is the function (1lsmPα0

)2 (1lsmPα1
)2◦g1 . . . (1lsmPαno−1

)2 ◦gno−1 on T ∗X. Thus hP(no)(ψ�k
)

and hT (no)(ψ�k
) both semiclassically converge to the classical entropy

hno
(μ) = hno

(μ, (1lsmPk

2)) = −
∑

|α|=no

μ({α}) logμ({α}) .

We have thus obtained the lower bound

(11.5)
hno

(μ)

no
≥ (d− 1)− (d− 1 + 2δ)λmax

2(1− δ′)
.

δ and δ′ could be taken arbitrarily small, and at this stage they can be let vanish.
Remember also that λmax = 1 for constant sectional curvature −1.

The Kolmogorov–Sinai entropy of μ (with respect to the partition X = �Pk) is

by definition the limit of the first term
hno (μ)

no
when no goes to infinity (8.2) (8.4),

with the notable difference that the smooth functions (1lsmPk
)2 should be replaced by

the characteristic functions (1lPk
). We note, however, that the lower bound (11.5)

does not depend on the derivatives of (1lsmPk
)2: as a result, the same bound carries

over to the characteristic functions (1lPk
).

We can finally let no tend to +∞, to obtain (7.4).
�

The proof is finished, save for Theorem 10.1.

WKB methods.

To prove our main estimate (Theorem 10.1), we need to describe the action of

the operator U t = exp(it��
2 ) on “rapidly oscillating” functions, in the limit � −→ 0.

The idea, already used by Schrödinger, is to describe the action of exp(it��
2 ) on

functions of the form e
i
�
S(x), called WKB functions or lagrangian functions; and

to use the fact that all the functions we consider can be represented as integral
combinations of lagrangian functions.

12. Lagrangian submanifolds of T ∗X and generating functions.

We have seen that T ∗X is endowed with a “canonical” symplectic form ω,
defined as follows. Let Ω ⊂ X be an open subset of X, endowed with a coordinate
chart φ : X −→ R

d. Then T ∗Ω ⊂ T ∗X can be endowed with the coordinate chart

Φ : T ∗Ω −→ R
d × (Rd)∗(12.1)

(x, p) �→ (φ(x), (dφ∗
x)

−1p).(12.2)

On T ∗Ω, ω is defined as the pullback by Φ of the symplectic form
∑d

i=1 dqi ∧ dpi of
R

d × (Rd)∗. We leave it to the reader to check that this definition does not depend
on the choice of local coordinates. Thus, by choosing an atlas of X, one can define
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ω on T ∗X, and the definition does not depend on the atlas. In fact, ω can also be
defined in an intrinsic way, as was done in Section 1 by formula (1.5).

Definition 12.1. In the 2d-dimensional symplectic manifold (T ∗X,ω), a la-
grangian submanifold is a d-dimensional submanifold on which the restriction of ω
vanishes.

Equivalently, a submanifold L ⊂ T ∗X is lagrangian if and only if, for all ρ ∈ L,
TρL is its own ω-orthogonal in Tρ(T

∗X).

Example 12.2. On T ∗
R

d = R
d × (Rd)∗ endowed with the symplectic form∑d

i=1 dqi ∧ dpi, affine subspaces of the form R
d × {ξ0} or {x0} × R

d are examples
of lagrangian submanifolds. More generally, for any manifold X, the zero section
{(x, 0), x ∈ X} ⊂ T ∗X is a lagrangian submanifold of T ∗X. For any x ∈ X, the
fiber T ∗

xX is also lagrangian.

Generating functions.

Exercise 12.3. In R
d×(Rd)∗ endowed with the symplectic form

∑d
i=1 dqi∧dpi,

consider an linear subspace of the form GraphA = {(x,Ax)} where A is a linear
operator from R

d to itself. Show that GraphA is lagrangian if and only if A is
symmetric for the canonical euclidean structure on R

d : 〈Ax, y〉 = 〈x,Ay〉.
The following gives us many examples of lagrangian submanifolds.

Exercise 12.4. Let X be a smooth manifold and consider T ∗X endowed with
its usual symplectic structure. Let Ω ⊂ X be an open subset of X, and let a be a
smooth 1–form on Ω. Consider the graph Graph a = {(x, ax)} ⊂ T ∗Ω. Show that
Graph a is lagrangian if and only if the 1–form a is closed : da = 0.

In particular, if Ω is simply connected, this implies the existence of a smooth
function S : Ω −→ R such that a = dS. The function S is called a generating
function of the lagrangian manifold Graph a.

We denote π : T ∗X −→ X the canonical projection.

Definition 12.5. Let L ⊂ T ∗X be a lagrangian submanifold. The caustic
of L is the set of points ρ ∈ L such that the restriction of π to L is not a local
diffeomorphism at ρ.

In Example 12.2, the zero section in T ∗X has empty caustic, whereas the case
L = T ∗

xX gives an example of a lagrangian submanifold for which the caustic is all
of L.

If ρ does not belong to the caustic, Exercise 12.4 shows there is a neighbourhood
of ρ in which L is the graph of the differential dS, for some function S defined locally
up to an additive constant. We say S is a generating function of L near ρ.

What happens on the caustic ?
Let S(x, θ) be a real–valued function on ΩX ×ΩRN where ΩX is an open subset

of X and ΩRN an open subset of RN . Let CS =
{
(x, θ), ∂S∂θ = 0

}
. On CS we assume

that all the differentials d(x,θ)
∂S
∂θi

(i = 1, . . . , N) are linearly independent : then CS

is a smooth d–dimensional submanifold of ΩX × ΩRN (recall d = dimX). Define
jS : CS −→ T ∗X by jS(x, θ) = (x, ∂xS(x, θ)).

Proposition 12.6. The map jS is an immersion. Its image,

LS = {(x, ξ) ∈ T ∗X, there exists θ with ∂θS(x, θ) = 0 and ξ = ∂xS(x, θ)}
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is a lagrangian submanifold of T ∗X.

One calls S(., θ) a generating family (or generating function) of LS . Compare
with (1.24).

Theorem 12.7. Every lagrangian submanifold L of T ∗X admits, locally, a
generating family. More precisely : for ρ0 ∈ L, let N = dimKer dπρ0

. Then there
is a neighbourhood Ω of ρ0 in T ∗X, there are open subsets ΩX ⊂ X and ΩRN ⊂ R

N ,
and a function S : ΩX ×ΩRN −→ R satisfying all the required conditions, such that

L ∩ Ω = LS .

Proof: Using (12.1) we see it is enough to consider the case X = R
d. Let ρ0 =

(x0, ξ0) ∈ T ∗
R

d = R
d × (Rd)∗ and let L = Tρ0

L. It is a lagrangian linear subspace
of Rd × (Rd)∗. Let π : Rd × (Rd)∗ −→ R

d be the projection on the first coordinate.
By assumption, F = π(L) is a linear subspace of Rd of dimension d − N . Let G
be a supplementary subspace of F in R

d : Rd = F ⊕G. We have a corresponding
decomposition of the dual space, R∗

d = G◦ ⊕ F ◦, where F ◦ is the space of linear
forms vanishing on F , and similarly for G◦. We leave it to the reader to check that
the projection P : L −→ F × F ◦ is an isomorphism.

Since L is tangent to L at ρ0, there is a neighbourhood Ω of ρ0 such that
P : L −→ F × F ◦ is a diffeomorphism. In other words, there is a smooth map
ϕ : (F × F ◦)∩Ω −→ G×G◦ such that L∩Ω is the graph of ϕ. Writing ϕ = (f, g)
we have

L ∩ Ω = {(xF , f(xF , ξF◦), g(xF , ξF◦), ξF◦), xF ∈ F, ξF◦ ∈ F ◦} .

For L to be lagrangian we must have df ∧ dξF◦ + dxF ∧ dg = 0, in other words
d(fdξF◦ −gdxF ) = 0. This means there exists, in a neighbourhood of ρ0, a function
S(xF , ξF◦) such that dS = fdξF◦ − gdxF (equivalently, f = ∂ξF◦S, g = −∂xF

S).
Consider the function

S(xF , xG, ξF◦) = ξF◦ .xG − S(xF , ξF◦)

defined on an open subset of F ×G× F ◦ = R
d × F ◦. It is now straightforward to

check that this is a generating function of L ∩ Ω, and dimF ◦ = N as announced.
�

Example 12.8. Here is a fundamental example : in T ∗
R

d = R
d × (Rd)∗ en-

dowed with the canonical symplectic form
∑d

i=1 dqi∧dpi, a generating function for

T ∗
xR

d = {x} × (Rd)∗ is S(y, θ) =
∑d

i=1 θi(yi − xi) = 〈θ, y − x〉 (here N = d and θ
varies in R

d).

Exercise 12.9. A crucial thing : (i) Show that a (connected) lagrangian sub-
manifold L is invariant under the hamiltonian flow of H if and only if it is contained
in some fixed energy layer {H = E}.

(ii) As a particular case, deduce that if H(x, dxS(x, θ)) = E for any (x, θ), then
the lagrangian manifold LS generated by S is invariant under the hamiltonian flow
(φt

H).
(iii) Assume now that S is a smooth function of (t, x, θ), and assume that

∂S

∂t
+H(x, dxS) = 0
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for all (t, x, θ). Denote St(x, θ) = S(t, x, θ). Show that the lagrangian manifold LSt

is the image of LS0
under φt

H . Hint : reduce the problem to the previous one by

considering the hamiltonian H(x, t, ξ, E) = H(x, ξ) + E on T ∗(X × R).

13. Lagrangian distributions.

Let L be a lagrangian submanifold of T ∗X. For our applications we shall only
be interested in the case where L is relatively compact and where it has a global
generating function S : L = LS , S being defined on ΩX × ΩRN . In this case we
define the (semiclassical) notion of a lagrangian function associated to L as follows :

Definition 13.1. We denote Om(X,LS) the space of functions of the form

u�(x) =
eiα(�)

(2π�)N/2

∫
Ω

RN

ei
S(x,θ)

� a�(x, θ)dθ

where
– α(�) is a real number that may depend on �,
– the function a defined on ΩX ×ΩRN is smooth and has an asymptotic devel-

opment when � −→ 0,

a ∼
∞∑
j=0

�
j+maj+m,

the asymptotic development holds in all Ck–norms on compact subsets,
– we assume that a is compactly supported with respect to the variable θ.

As usual, the class Om(X,LS) should actually be defined modulo negligible
functions, which, we recall, are smooth functions u� for which all the Ck–norms
on compact sets are O(�∞). Then, one can prove [GS94] that the definition of
Om(X,LS) does not depend on the choice of the generating function S :

Theorem 13.2. If LS = LS′ then Om(X,LS) = Om(X,LS′).

Example 13.3. On X = R
d, the Dirac mass at x

δx(y) =
1

(2π�)d

∫
Rd

e
〈ξ,y−x〉

� dξ

can be seen as a lagrangian distribution associated with the lagrangian submanifold
T ∗
xR

d ( S(y, ξ) = 〈ξ, y − x〉), save for the fact that the symbol a(y, ξ) ≡ 1 is
not compactly supported. Let χ(y, ξ) be a smooth, positive, compactly supported
function, call Ω a bounded open set containing the support of χ. Then the function

δχx (y) =
1

(2π�)d

∫
e

〈ξ,y−x〉
� χ(y, ξ)dξ

falls into the class O−d/2(Rd, T ∗
xR

d ∩ Ω). Assume χ takes the constant value 1 in
a neighbourhood of a certain compact subset E ⊂ T ∗

R
d. Then δχx is often called a

“delta–function truncated away from E” : it is a Dirac mass whose frequencies near
E have not been touched, while the frequencies out of Ω have been suppressed.
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14. WKB description of the operator U t = exp(it��
2 ).

Remark 14.1. The initials WKB stand for Wentzel, Kramers and Brillouin,
who independently proposed this method to find approximate solutions of a 1-d sta-
tionary Schrödinger equation — in other words, to find approximate eigenfunctions
[Wtz26, Kr26, Brill26]. The method was later generalized by Keller and Maslov
to find approximate eigenfunctions (quasimodes) of higher dimensional, completely
integrable systems [Kell58, Masl65].

Here we present the WKB method applied to the evolutive Schrödinger equa-
tion. It was first used by Van Vleck [VV28].

Recall that we are interested in the hamiltonian flow generated by H(x, ξ) =
‖ξ‖2

x

2 , namely the geodesic flow, denoted gt in Section 6. We wish to study the

Schrödinger flow U t = eit�
�
2 and to relate it to the geodesic flow as � −→ 0.

Consider an initial state u(0) of the form u(0, x) = a�(0, x) e
i
�
S(0,x), where

S(0, •), a�(0, •) are smooth functions defined on a subset of Ω ⊂ X, a� has a fixed
compact support in Ω and has an asymptotic development a� ∼

∑
k �

k ak, valid
in all Cn–norms. This represents a WKB (or lagrangian) state, supported on the
lagrangian manifold L(0) = {(x, dxS(0, x)), x ∈ Ω}.

The WKB method consists in looking for an approximate expression9 for the

state ũ(t)
def
= U tu(0), in the form

(14.1) u(t, x) = e
iS(t,x)

� a�(t, x) = e
iS(t,x)

�

N−1∑
k=0

�
kak(t, x)

where N is a fixed, arbitrarily large integer. We want u(t) to solve ∂u
∂t = i��xu

2

up to a remainder of order �
N . Computing explicitly both sides of the equation,

and identifying the successive powers of �, we see that the functions S and ak must
satisfy the following partial differential equations:

(14.2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂S
∂t +H(x, dxS) = 0 (Hamilton-Jacobi equation)

∂a0

∂t = −〈dxa0, dxS(t, x)〉 − a0
�xS(t,x)

2 (0-th transport equation) ,

∂ak

∂t = i�ak−1

2 − 〈dak, dS〉 − ak
�S
2 (k-th transport equation) .

Assume that, on a certain time interval — say s ∈ [0, 1] — the above equations have
a well defined smooth solution S(s, x), meaning that the transported lagrangian
manifold L(s) = φs

HL(0) is of the form L(s) = {(x, dxS(s, x))}, where S(s) is a
smooth function defined on the open set πL(s). Under these conditions, we denote
as follows the induced flow on X:

(14.3) Gt
s : x ∈ πL(s) �→ πgt−s

(
x, dxS(s, x)

)
∈ πL(t) ,

In the first chapter we introduced the exponential map associated to Ls : we have
Gt

s = expt−s
Ls

◦π−1. Note that Gs
s = I and that the following composition rule

holds : Gt2
t1 ◦G

t1
t0 = Gt2

t0 .

9often called an Ansatz
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We then introduce the following unitary operator T t
s , which transports func-

tions on πL(s) into functions on πL(t):

(14.4) T t
s (a)(x) = a ◦Gs

t (x) J
s
t (x)

1/2 .

Here Js
t (x) is the Jacobian of the map Gs

t at the point x, measured with respect
to the riemannian volume on X. It is given by

(14.5) J t
s(x) = exp

{∫ t

s

	S
(
τ,Gτ

s (x)
)
dτ
}
.

We leave it as an exercise to check this formula, and to deduce that the 0-th
transport equation in (14.2) is explicitly solved by

(14.6) a0(t) = T t
0 a0 , t ∈ [0, 1] .

The higher-order terms k ≥ 1 are given by

(14.7) ak(t) = T t
0ak +

∫ t

0

T t
s

(
i	 ak−1

2
(s)

)
ds .

The function u(t, x) defined by (14.1) satisfies the approximate equation

∂u

∂t
= i�

	u

2
− i�N e

i
�
S(t,x)	aN−1

2
(t, x) .

By Duhamel’s principle, the difference between u(t) and the exact solution ũ(t) is

u(t)− ũ(t) = −i�N
∫ t

0

U t−s

(
e

i
�
S(s,x)	aN−1

2
(s, x)

)
ds,

and from the unitarity of U t, this is bounded, for t ∈ [0, 1], by

(14.8) ‖u(t)− ũ(t)‖L2 ≤ �
N

2

∫ t

0

‖	aN−1(s)‖L2 ds ≤ C t �N
(N−1∑

k=0

‖ak(0)‖C2(N−k)

)
.

The constant C is controlled by the volumes of the sets πL(s) (0 ≤ s ≤ t ≤ 1), and
by a certain number of derivatives of the flow Gs

t (0 ≤ s ≤ t ≤ 1).

Remark 14.2. Elaborating on these methods, one proves the following : if u
is a lagrangian state in Om(X,L), then U tu is a lagrangian state in Om(X, gtL).
We have proved it in the particular case when gtL is a graph over X for all t. The
operator U t is called a Fourier Integral Operator associated with the transformation
gt.

This is the property Schrödinger had looked for when introducing his equation.
We have, in addition, found the explicit formula for all the ak(t). For k = 0,
equation (14.6) is called the Van Vleck formula.

15. Proof of the main estimate.

15.1. Decomposition of Op(χ)u into truncated delta–functions. We
can now prove Theorem 10.1, which estimates the norm of the operator

P̂αn
(n)P̂αn−1

(n− 1)...P̂α0
Op(χ) = U−nP̂αn

UP̂αn−1
...UP̂α0

Op(χ)

(where we denote U t = exp(ith�
2 ) and U = U1). Since U t is unitary, the norm of

this operator is also the same as the norm of P̂αn
UP̂αn−1

...UP̂α0
Op(χ).
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The pseudo-differential operator Op(χ) is defined in §4.3 :

Op(χ) =
∑
l

ϕl OP(χ) ϕl

where (ϕl) is an auxiliary partition of unity on X (i.e.
∑

l ϕl(x)
2 ≡ 1) such that

the support of each ϕl is endowed with local coordinates in R
d. In local coordinates

in the support of ϕl, OP(χ) is then defined by the usual formula,

(15.1) OP(χ)u(x) = (2π�)−d

∫
u(z)ei

〈ξ,x−z〉
� χ(z, ξ)dzdξ.

The function χ will be chosen of the form χ(z, ξ) = χ1(|ξ|z) where χ1 is a smooth
function on R+ supported in [1 − ε/2, 1 + ε/2] with χ1 ≡ 1 in a neighbourhood of
1. For x ∈ Ωα0

, we can write

(15.2) Op(χ)u(x) =
∑
l

∫
u(z)δlz(x)dz,

where we denote δlz the truncated δ-function

(15.3) δlz(x) = ϕl(x)ϕl(z)

∫
e

i〈ξ,x−z〉
� χ(z, ξ)

dξ

(2π�)d
.

Each δlz is a lagrangian state associated with the lagrangian manifold T ∗
z X ∩

H−1
(
( 12 − ε, 1

2 + ε)
)
. Equation (15.2) means that every state in the image of Op(χ)

can be decomposed as an integral combination of the lagrangian states δlz. We shall

first estimate the norm of P̂αn
UP̂αn−1

...UP̂α0
δlz for any z, and then use (15.2) to

write, for an arbitrary function u,

‖P̂αn
UP̂αn−1

...UP̂α0
Op(χ)u‖ ≤

∑
l

sup
z

‖P̂αn
UP̂αn−1

...UP̂α0
δlz‖

∫
X

|u(y)|dy

≤
∑
l

sup
z

‖P̂αn
UP̂αn−1

...UP̂α0
δlz‖

√
VolX‖u‖L2(X)

The estimates will be done by induction on n: we will propose an Ansatz –
that is, an approximate expression – for P̂αn

UP̂αn−1
...UP̂α0

δlz, valid for “large” n.

In what follows we omit the l superscript and just write δz.

15.2. The Ansatz for n = 1. At n = 0 we know that P̂α0
δz(x) is a lagrangian

state associated with the lagrangian manifold L0 = T ∗
z X ∩H−1

(
( 12 − ε, 1

2 + ε)
)
, a

union of spheres H−1( 12 + η) ∩ T ∗
z X.

From Remark 14.2, we know that U tP̂α0
δz is a lagrangian state associated to

L0(t) = gt
(
T ∗
z X ∩H−1((

1

2
− ε,

1

2
+ ε))

)
.

If we assume that the injectivity radius of X is greater than 1 + 100ε, then this
is a graph over X for 0 < t < 1 + ε. This is just saying that the exponential
map exptz is a diffeormorphism from T ∗

z X ∩H−1
(
( 12 − ε, 1

2 + ε)
)
onto its image, for

0 < t < 1 + ε.
This means we have an Ansatz

(15.4) U tP̂α0
δz ∼ (2π�)−d/2e

iS0(t,x|z)
h

( ∞∑
k=0

�
kb0k(t, x|z)

)
,
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where the function S0(t, x|z) is a generating function of the lagrangian manifold
L0(t).

We denote

v0(t;x|z) = e
iS0(t,x|z)

� b0
�
(t, x|z),(15.5)

b0
�
(t, x|z) def

=
(∑N−1

k=0 �
kb0k(t, x|z)

)
(15.6)

For t = 1, the function v0(1;x|z) gives us an approximation to UP̂α0
δz, the differ-

ence being bounded in L2–norm by O(�N− d
2 ).

15.3. Iteration of the WKB Ansätze. In this section we will obtain an
approximate Ansatz for P̂αn

. . . UP̂α1
UP̂α0

δz. Above we have already performed

the first step, obtaining an approximation v0(1, . |z) of UP̂α0
δz. Until Lemma 15.1

we will fix the base point z, and omit it in our notations when no confusion may
arise; at the end we will obtain an estimate which is uniform in z.

Applying the multiplication operator P̂α1
to the state v0(1, x) := v0(1, x|z), we

obtain another WKB state which we denote as follows:

v1(0, x) = b1
�
(0, x) e

i
�
S1(0,x) , with

{
S1(0, x) := S0(1, x|z) ,
b1
�
(0, x) := P̂α1

(x) b0
�
(1, x|z) .

This state is associated with the lagrangian manifold

L1(0) = L0(1) ∩ T ∗Ωα1
.

If this intersection is empty, then v1(0) = 0, which means that P̂α1
v0(1) = O(�N )

in L2 norm. In the opposite case, we can evolve v1(0) following the procedure
described in §14. For t ∈ [0, 1], and up to an error OL2(�N ), the evolved state
U tv1(0) is given by the WKB Ansatz

v1(t, x) = b1
�
(t, x) e

i
�
S1(t,x) , b1

�
(t) =

N−1∑
k=0

b1k(t) .

The state v1(t) is associated with the lagrangian L1(t) = gt L1(0), and the function
b1
�
(t) is supported inside πL1(t).
15.3.1. Evolved lagrangians. We can iterate this procedure, obtaining a se-

quence of approximations
(15.7)

vj(t) = U t P̂αj
vj−1(1)+O(�N) , where vj(t, x) = vj(t, x|z) = bj

�
(t, x|z) e i

�
Sj(t,x|z) .

(Again, the initial position z is fixed for the moment, and we do not always indicate
in the notations the z-dependence). To show that this procedure is consistent, we
must check that the lagrangian manifold Lj(t) supporting vj(t) does not develop
caustics through the evolution (t ∈ [0, 1]), and that the projection π : Lj(t) → X
remains injective. These were the two conditions required to apply the method
of §14. We now show that these properties hold, due to our assumption that the
curvature is negative (in fact, it is enough to assume that the geodesic flow has the
Anosov property).

The manifolds Lj(t) are obtained by the following procedure. Knowing Lj−1(1),
which is generated by the phase function Sj−1(1), we take for Lj(0) the intersection

Lj(0) = Lj−1(1) ∩ T ∗Ωαj
.
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If this set is empty, then we stop the construction. Otherwise, this lagrangian
is evolved into Lj(t) = gtLj(0) for t ∈ [0, 1]. Notice that the lagrangian Lj(t)
corresponds to evolution at time j+t of a piece of L0(0): it is made up of the image
under the geodesic flow of a compact piece of the fiber T ∗

z X. If the geodesic flow
is Anosov, the geodesic flow has no conjugate points — by a result of Klingenberg
[Kl74]. This means precisely that gtL0(0) will not develop caustics.

On a negatively curved manifold, there cannot be two homotopic geodesics
joining two points x and z. As a consequence, there cannot be two geodesics
joining x and z in time j + t and which fall in the same Ωαk

for all integer times k
(this holds if the injectivity radius is larger than 1 and if the diameter of the Ωαk

is small enough). This means that, for any j ≥ 1, 0 ≤ t ≤ 1, the manifold Lj(t)
projects injectively to πLj .

Finally, we recall that L0(0) was obtained by propagating a piece of T ∗
z X ∩

H−1( 12 − ε, 1
2 + ε). Since the geodesic flow on each energy layer H−1(1/2 + η) is

Anosov, the sphere bundle H−1(1/2+η)∩T ∗
zX is uniformly transverse to the stable

foliation in H−1(1/2+η) — also a result of [Kl74]. As a consequence, the action of
the geodesic flow carries a piece of sphere H−1(1/2 + η)∩ T ∗

z X exponentially close
to a piece of unstable leaf of H−1(1/2 + η) when t → +∞. This transversality of
spheres with the stable foliation is crucial in our choice of the “basis” δz.

15.3.2. Exponential decay. We now analyze the behaviour of the symbols bj
�
(t, x)

appearing in (15.7), when j → ∞. These symbols are constructed iteratively: start-

ing from the function bj−1
�

(1) =
∑N−1

k=0 bj−1
k (1) supported inside πLj−1(0), we define

(15.8) bj
�
(0, x) = P̂αj

(x) bj−1
�

(1, x) , x ∈ πLj(0) .

The WKB procedure of §14 shows that for any t ∈ [0, 1],

(15.9) U t vj(0) = vj(t) +Rj
N (t) ,

where the transported symbol bj−1
�

(t) =
∑N−1

k=0 �
k bj−1

k (t) is supported inside πLj(t).
The remainder satisfies

(15.10) ‖Rj
N (t)‖ ≤ C t �N

(N−1∑
k=0

‖bjk(0)‖C2(N−k)

)
.

To control this remainder when j → ∞, we need to bound from above the deriva-
tives of bj

�
. Lemma 15.1 below shows that all terms bjk(t) and their derivatives decay

exponentially when j → ∞, due to the Jacobian appearing in (14.4).
To understand the reasons of the decay, we first look at the principal symbol

bj0(1, x). It satisfies the following recurrence:

(15.11) bj0(1, x) = T j+1
j (P̂αj

× bj−1
0 (1))(x) = (P̂αj

× bj−1
0 (1)) ◦Gj

j+1(x)
√
Jj
j+1(x) ;

using similar notations as above, the transport map Gs,t is defined, for j ≤ s, t ≤
j + 1, by Gs,t := expt−s

Lj(s−j) ◦π−1, and maps πLj(s− j) to πLj(t− j). We denote

J t
s the jacobian of Gt

s. We recall that Gn
n−1G

n−1
n−2 . . . G

2
1 = Gn

1 , where both sides are
defined.

Iterating this expression, and using the fact that 0 ≤ P̂αj
≤ 1, we get at time

n and for any x ∈ πLn(0):

(15.12) |bn0 (0, x)| ≤ |b00(1, G1
n(x))| ×

(
Jn−1
n (x)Jn−2

n−1 (G
n−1
n x) . . . J1

2 (G
2
3(x))

)1/2

.
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By the chain rule, this product of jacobians is simply J1
n(x)

1/2 = Jn
1 (G

1
n(x))

−1/2.
Recall that L0(0) intersected with each energy layer S1+ηX := {ξ ∈ T ∗X, ‖ξ‖ =

1 + η} is just a piece of the sphere S1+η
z X. Thus, if d(x, z) = 1 + η, the jacobian

Jn
1 (G

1
n(x)) measures the expansion rate of the sphere gn(S1+η

z X) : in dimension
d and curvature ≡ −1, it grows asymptotically like e(d−1)(1+η)n when n → ∞. If
x ∈ πL1(0) (and if this last set is non-empty) we have d(x, z) ≥ 1 − ε (because
L0(0) is contained in H−1( 12 − ε, 1

2 + ε)). We obtain the following estimate on the
principal symbol bn0 (0):

(15.13) ∀n ≥ 1 ‖bn0 (0)‖∞ ≤ ‖b00(1)‖∞ [exp(−n(d− 1)(1− ε)]1/2

The following lemma, which we shall not prove here, shows that the upper
bound extends to the full symbol bn

�
(0, x) and its derivatives.

Lemma 15.1. Take any index 0 ≤ k ≤ N and m ≤ 2(N −k). Then there exists
a constant C(k,m) such that

(15.14) ∀n ≥ 1, ∀x ∈ πLn(0),

|dmbnk (0, x|z)| ≤ C(k,m)nm+3k [exp(−n(d− 1)(1− ε))]1/2 .

This bound is uniform with respect to the initial point z. For (k,m) �= (0, 0), the
constant C(k,m) depends on the partition P(0), while C(0, 0) does not.

Taking into account the fact that the remainders Rj
N (1) are dominated by the

derivatives of the bjk (see (15.10)), the above statement translates into

∀j ≥ 1, ‖Rj
N (1)‖L2 ≤ C(N) j3N [exp(−n(d− 1)(1− ε))]1/2 �N .

A crucial fact for us is that the above bound also holds for the propagated remainder
P̂αn

U · · ·UP̂αj+1
Rj

N (1), due to the fact that the operators P̂αj
U have norms less

than 1. As a result, the total error at time n is bounded from above by the sum of
the errors ‖Rj

N (1)‖. We obtain the following estimate for any n > 0:
(15.15)

‖P̂αn
UP̂αn−1

· · · P̂α1
v0(1|z)−vn(0|z)‖ ≤ C(N) �N

n∑
j=0

j3N [exp(−n(d−1)(1−ε))]1/2.

The last term is bounded by C(N)�N . This bound is uniform with respect to the
initial point z.

15.4. Conclusion. From (15.15), we see that we can use our Ansatz vn(0|z)
to estimate the norm of P̂αn

UP̂αn−1
· · · P̂α1

v0(1|z), up to an error O(�N ). From
(15.14) and the definition (15.7) of vn(0|z), we have

(15.16) ‖vn(0|z)‖L2(X) ≤ [exp(−n(d− 1)(1− ε))]1/2
N−1∑
k=0

C(k, 0)�kn3k.

As required in Theorem 10.1, let us now take an arbitrary large K, and n =
K| log �|. In the inequalities (15.13) and (15.16), the right hand term is bounded

below by a fixed power of � (more precisely, �−
1
2K(d−1)). Thus, we will choose N ,

the order of our WKB expansion, large enough so that the remainder (15.15) is

negligible compared to �
− 1

2K(d−1).
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Now, remember the relation (15.4) between v0(1|z) and UP̂α0
δz : note in par-

ticular the normalization factor (2π�)−d/2. The combination of (15.15) and (15.16)
gives us

(15.17) ‖P̂αn
UP̂αn−1

· · · P̂α1
U P̂α0

δz‖L2(X) ≤
2

(2π�)d/2
[exp(−n(d− 1)(1− ε))]1/2

for n = K| log �| and � ≤ �K.
Combined with (15.2) and the subsequent discussion, we find

‖P̂αn
UP̂αn−1

...UP̂α0
Op(χ)u‖ ≤ 2l

√
VolX

(2π�)d/2
‖u‖L2(X)[exp(−n(d− 1)(1− ε))]1/2

which is the announced result.
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[BDB03] F. Bonechi, S. De Bièvre, Controlling strong scarring for quantized ergodic toral
automorphisms, Duke Math. J. 117 no. 3, 571–587 (2003).

[BHJ25-I] M. Born, W. Heisenberg, P. Jordan, Zur Quantenmechanik, Zeitschrift f. Physik 34,
858–888 (1925).

[BHJ25-II] M. Born, W. Heisenberg, P. Jordan, Zur Quantenmechanik II, Zeitschrift f. Physik
35, 557–615 (1925).

[BLi03] J. Bourgain, E. Lindenstrauss, Entropy of quantum limits. Comm. Math. Phys. 233
no. 1, 153–171 (2003).
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