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Abstract

The Johnson graph J(v, k) has, as vertices, all k-subsets of a v-set V, with
two k-subsets adjacent if and only if they share k − 1 common elements of V.
Subsets of vertices of J(v, k) can be interpreted as the blocks of an incidence
structure, or as the codewords of a code, and automorphisms of J(v, k) leaving
the subset invariant are then automorphisms of the corresponding incidence
structure or code. This approach leads to interesting new designs and codes.
For example, numerous actions of the Mathieu sporadic simple groups give
rise to examples of Delandtsheer designs (which are both flag-transitive and
anti-flag transitive), and codes with large minimum distance (and hence strong
error-correcting properties). The paper surveys recent progress, explores links
between designs and codes in Johnson graphs which have a high degree of
symmetry, and discusses several open questions.
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1 Introduction

The Johnson graphs are ubiquitous in mathematics, perhaps because of their
many useful properties. They are distance transitive, and indeed geodesic-transitive,
they underpin the Johnson association schemes – and ‘everyone’s favourite graph’,
the Petersen Graph, occurs as the complement of one of them1. Also, the class of
Johnson graphs played a key role in Babai’s recent breakthrough [2] to a quasipoly-
nomial bound on the complexity of graph isomorphism testing2.

Our focus in this paper is studying Johnson graphs as ‘carrier spaces’ of error-
correcting codes and combinatorial designs, and in particular using group theory to
find surprisingly rich families of examples of codes and designs with ‘high symmetry’.

The Johnson graph J(V, k) (or J(v, k)) is based on a set V of v elements, called
points. Its vertices are the k-subsets of V, and distinct k-subsets are adjacent pre-
cisely when their intersection has size k−1. For distinct k-subsets γ, γ′, their distance
d(γ, γ′) (length of shortest path from γ to γ′) in J(V, k) is therefore k−|γ∩γ′|. The
complementing map τ which maps each k-subset of V to its complement induces a
graph isomorphism τ : J(V, k) → J(V, v − k). For this reason we may, and some-
times we do, replace J(V, k) by J(V, v− k) in our analysis and thereby assume that
k 6 v/2. The symmetric group Sym(V) acts as automorphisms on J(v, k), and if
k 6= v/2 then Sym(V) is the full automorphism group, while if k = v/2 then the

1The Petersen graph is the complement of the Johnson graph J(5, 2); a whole book has been
written about it [17].

2Babai, whose work relies on both group-theoretic and combinatorial techniques, found that “in a
well-defined sense, the Johnson graphs are the only obstructions to effective canonical partitioning”.
See also Helfgott’s lecture [15].
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automorphism group is Sym(V) × 〈τ〉, (see, for example, [28] for k 6= v/2 and [12]
for k = v/2). We will work with symmetry provided by Sym(V).

The link between J(V, k) and combinatorial designs is fairly clear: points of the
design are elements of V, and if each block of the design is incident with exactly
k points, then the blocks are vertices of J(V, k). Similarly, a code in J(V, k) is a
subset of vertices. We next make some further brief comments on each of these links
in turn.

1.1 Codes in Johnson graphs

In 1973, Philippe Delsarte [7] introduced the notion of a code in a distance-
regular graph: a vertex subset C is considered to be a code, its elements are the
codewords, and distance between codewords is the natural distance in the graph. In
particular the minimum distance δ(C) of C is the minimum length of a path between
distinct codewords, and the automorphism group Aut(C) is the setwise stabiliser of
C in the automorphism group of the graph.

Delsarte defined a special type of code, now called a completely-regular code,
‘which enjoys combinatorial (and often algebraic) symmetry akin to that observed
for perfect codes’ (see [24, page 1], and also Section 2), and he posed explicitly the
question of existence of completely-regular codes in Johnson graphs. Such codes
in Johnson graphs were studied by Meyerowitz [25, 26] and Martin [22, 23], but
disappointingly, not many were found with good error-correcting properties (large
distance between distinct codewords). In joint work with Liebler [21], the strin-
gent regularity conditions imposed for complete regularity, were replaced by a ‘lo-
cal transitivity’ property: a neighbour-transitive code in J(V, k) was defined as a
vertex-subset C such that Aut(C) (which we will take here as the setwise stabiliser
of C in Sym(V), even if k = v/2) is transitive both on C and on the set C1 of ‘code-
neighbours’ (the non-codewords which are adjacent in J(V, k) to some codeword).
If δ(C) > 3, for a neighbour-transitive code C, it turns out (see [21, Theorem 1.2])
that Aut(C) has an even stronger property, namely, Aut(C) is transitive on the set
of triples

(u, u′, γ) where γ ∈ C, u ∈ γ, and u′ ∈ V \ γ. (1.1)

A code C with this property is called strongly-incidence-transitive, and we will say
that C has the SIT-property and is an SIT-code. We will describe surprisingly rich
classes of SIT-codes in Johnson graphs arising from both combinatorial and geomet-
ric constructions, and we will mention some open problems.

We observe that a code consisting of a single codeword γ trivially has the SIT-
property, since its automorphism group is Sym(γ) × Sym(V \ γ). To avoid such
trivial cases, we will always therefore assume that SIT-codes C have size at least 2.
We call such codes nontrivial. ‘Nontriviality’ still allows the following examples:

� k = v/2 and C consists of a single k-subset γ together with its complement.
Here the automorphism group is Sym(γ) oSym(2), it has the SIT-property and
is transitive on V.

� C =
(V
k

)
is the complete code containing all k-subsets of V. Here the auto-

morphism group Sym(V) has the SIT-property and of course is transitive on
V.
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Let C be a nontrivial SIT-code in J(v, k). If k = v/2 and C consists of a single
k-subset and its complement, then as we noted above its automorphism group is
transitive on V. In all other cases there exist distinct codewords γ, γ′ ∈ C with
γ′ 6= V \ γ. Then for G = Aut(C), the stabiliser Gγ has two orbits in V, namely γ
and V \ γ, and similarly Gγ′ is transitive on γ′ and V \ γ′. Also, at least one of γ′,
V \γ′ meets both γ and V \γ, and hence 〈Gγ , Gγ′〉 is transitive on V. It follows from
this discussion that every nontrivial SIT-code has automorphism group transitive
on V. We record this fact, and also a property on the minimum distance proved in
[21].

Lemma 1.1 [21, Lemma 2.1] Let C be an SIT- code in J(V, k). If |C| > 2, then
Aut(C) is transitive on V. If C is not the complete code

(V
k

)
, then the minimum

distance δ(C) > 2.

1.2 Designs in Johnson graphs: Delandtsheer designs

As mentioned above a vertex-subset C of J(V, k) can be interpreted as the block-
set of a design. We will usually assume some additional regularity properties on C.
For 1 6 t < k < v, a t− (v, k, λ) design D = (V, C) consists of a point-set V of size v,
and a subset C of k-subsets of V (called blocks) with the property that each t-subset
of V is contained in exactly λ blocks. A point-block pair (u, γ) is called a flag, or
an antiflag according as u ∈ γ or u 6∈ γ, respectively. If t = 2 and λ = 1, then D is
called a linear space. The automorphism group Aut(D) is the setwise stabiliser of
C in Sym(V) – hence the same group occurs whether we regard C as a code or the
block set of a design.

In 1984, Delandtsheer [5] classified all antiflag-transitive linear spaces D = (V, C),
proving that the linear spaces with this property are the projective and affine spaces,
the Hermitian unitals, and two exceptional examples. In her paper she noticed that
all, apart from the two exceptional examples, possessed a stronger property, namely
the block set C has the SIT-property when viewed as a code in J(V, k). Requiring
C to have the SIT-property implies both flag-transitivity and antiflag-transitivity
of D, and it is even more restrictive, as illustrated by the two exceptions in [5].
Here is a simpler example: the unique 1-(4, 2, 2) design, which is the edge set of a
4-cycle in the complete graph K4 = J(4, 2), is flag-transitive and antiflag-transitive,
but does not have the SIT property. It is only very recently that we noticed that
the SIT-property for codes coincides with this property observed by Delandtsheer
for antiflag-transitive linear spaces. We want to consider designs, not necessarily
linear spaces, with the SIT-property. Trivially, if C contains only one block then,
as we remarked above, C has the SIT-property. We avoid this case and consider
only designs with more than one block. We therefore (appropriately) refer to any
design D = (V, C) in J(V, k) as a Delandtsheer design if C has the SIT-property and
|C| > 2.

Thus each new Delandtsheer design corresponds to a new SIT code, and con-
versely.
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1.3 Imprimitive examples and a dichotomy

For each nontrivial strongly incidence-transitive (SIT) code in J(V, k), the auto-
morphism group is transitive on V and apart from the complete code, the minimum
distance is at least 2, see Lemma 1.1. In Section 2 we show how to produce an
infinite family of SIT-codes via a blow-up procedure: Construction 2.1 provides a
general method for building SIT-codes and Delandtsheer designs C from smaller
codes/designs C0 possessing the SIT-property. As long as the input code C0 has
size at least two, the output ‘blow-up’ code C admits as automorphism group a full
wreath product in its transitive imprimitive action. Moreover C is the block set of
a Delandtsheer 1-design, but never of a 2-design, see Lemmas 2.2 and 2.3.

Importantly, Proposition 2.4 shows that the imprimitive SIT-codes are precisely
those arising from Construction 2.1, and by Theorem 2.5, each imprimitive SIT-code
can be obtained by applying Construction 2.1 to a primitive SIT-code.

Despite this structural link between the imprimitive and primitive strongly incid-
ence-transitive codes, the behaviour of these two sub-families of examples is vastly
different, especially from the viewpoint of designs. To begin with, the primitive
examples have very restricted automorphism groups.

Theorem 1.2 [21, Theorem 1.2] Let C be a strongly incidence-transitive code in
J(V, k) such that |C| > 2, and suppose that Aut(C) is primitive on V. Then Aut(C)
is 2-transitive on V.

A subgroup G 6 Sym(V) is called 2-transitive if it is transitive on the ordered
pairs of distinct points from V. We note that Theorem 1.2 is valid even if the
condition 2 6 k 6 v − 2 in [21, Theorem 1.2] is removed, since k = 1 or k = v − 1
implies that C =

(V
k

)
is a complete code with 2-transitive automorphism group

Aut(C) = Sym(V).
If a design (V, C) in J(V, k) has automorphism group 2-transitive on V then there

is a constant λ such that each point-pair is contained in exactly λ blocks, that is,
(V, C) is a 2 − (v, k, λ) design. Thus Theorem 1.2 leads to a striking dichotomy
between the imprimitive and primitive Delandtsheer designs:

Theorem 1.3 Let D = (V, C) be a Delandtsheer design in J(V, k) with automor-
phism group G. If G is primitive on V then D is a 2− (v, k, λ) design, for some λ.
On the other hand if G is not primitive on V, then D is a 1 − (v, k, λ) design, for
some λ, but is never a 2-design.

1.4 Primitive examples: towards a classification

Thus understanding the primitive SIT-codes and Delandtsheer designs, is of
central importance. Numerous actions of the sporadic Mathieu groups [27] have
been shown to give rise to examples of Delandtsheer designs which, when viewed as
SIT-codes in Johnson graphs, have large minimum distances and hence strong error-
correcting properties. Other natural geometrical examples of Delandtsheer designs
come from subspaces and classical unitals [21] (not all of them linear spaces), binary
quadratic forms [18], and more exotic geometrical examples linked to cones, cylin-
ders and maximal arcs have been constructed by Durante [11]. Yet more examples
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Group Degree

Mathieu Mn n ∈ {11, 12, 22, 23, 24}, or
M11 12

alternating A7 15
projective PSL(2, 11) 11
sporadic HS 176, or

Co3 276

Table 1: ‘Sporadic’ 2-transitive permutation groups

projective PSL(n, q) 6 G 6 PΓL(n, q) on PG(n− 1, q)
rank 1 the Suzuki, Ree and Unitary groups
affine G 6 AΓL(V) acting on V = Fnq
symplectic Sp(2n, 2) on Qε(2), ε = ±

Table 2: Infinite families of 2-transitive permutation groups

arise from symmetric 2-designs [18]. We discuss some of these examples and give
references for locating other known examples.

The fact that all finite 2-transitive permutation groups are known explicitly, as
a consequence of the finite simple group classification (see for example [10, Chapter
7.7]), suggests that an obvious strategy for finding all SIT-codes and Delandtsheer
designs is to analyse all these groups, or families of groups, one by one. Significant
progress has been made, which we will outline. We also point out some major open
cases.

We may subdivide the finite 2-transitive permutation groups according to wheth-
er or not they lie in an infinite family of 2-transitive groups. Those which do not
lie in an infinite family we call sporadic; these are listed in Table 1. Note that the
Mathieu group M11 occurs in both line 1 and line 2 of Table 1, corresponding to
its two 2-transitive actions of degrees 11 and 12 (with point stabilisers M10 and
PSL(2, 11)), respectively. The infinite families of finite 2-transitive groups G, not
containing the alternating group, are listed in Table 2.

When determining examples,

we will from now on assume that 3 6 k 6 v/2.

We may do this because, if k = 1, 2, v − 2 or v − 1, then the 2-transitive group
G is transitive on k-subsets of V, and hence the only G-SIT-code in J(v, k) is the
complete code consisting of all k-subsets of V. Also if v/2 < k 6 v − 3 and C is
an SIT-code in J(v, k), then {V \ γ | γ ∈ C} is an SIT-code in J(v, v − k) with the
same automorphism group as C, and we have 3 6 v − k < v/2. In these cases for
each G-SIT-code C in J(v, k), the pair (V, C) is a Delandtsheer 2− (v, k, λ) design,
for some λ. To determine the value of λ we first note that the number of blocks is
b = |C| = |G : Gγ | for γ ∈ C. Then, counting the number of triples (u, u′, γ) with γ
a block and u, u′ distinct points of γ, gives

λ =
bk(k − 1)

v(v − 1)
. (1.2)
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Analysis of the sporadic cases was completed in [27], yielding 27 strongly-incid-
ence-transitive (code, group) pairs in J(v, k) with 3 6 k 6 v/2, which we list in
Table 3 in Section 3. Table 3 also gives details of the corresponding Delandtsheer
designs, many but not all of which are well-known. They include the Steiner systems
from the Mathieu groups and the 11-point biplane.

This leaves the infinite families of 2-transitive groups G to be considered. We
discuss the ‘projective’ and ‘rank 1’ lines of Table 2 in Section 4. These cases are
completely resolved using work in [11, 21]. The examples are well known, and com-
prise the classical unital, designs of projective subspaces of given dimension, designs
of Baer sublines of a projective line, and one exceptional example, see Table 4.

The ‘affine’ line of Table 2 deserves special mention because the classification
here is still open. As in the projective linear case, we obtain examples by taking
the set of affine subspaces of given dimension. Also, in [11, Section 3.2], Durante
constructed additional infinite families of examples geometrically in affine spaces
over fields of order q ∈ {4, 16}: from cylinders in AG(n, 4) with base the hyperoval
in PG(2, 4) or its complement, and from unions of two or four parallel hyperplanes,
for q = 4 or q = 16, respectively. Moreover, Durante [11, Theorem 27] showed
that when q ∈ {4, 16} these are the only examples with 3 6 k 6 v/2. By the
results in [21, Section 6] and [11] it was believed that the classification of the affine
SIT-codes was complete. However Mark Ioppolo discovered an error in the proof
of [21, Proposition 6.6] in the case q = 2. He showed [18, Lemma A.1] that the
analysis in [11, 21] completed the classification for affine spaces over all fields of
size at least 3, and produced [18, Example 7.11, Theorem 7.13], two additional
infinite families of affine SIT-codes and Delandtsheer designs with q = 2. They
are related to the symplectic symmetric 2-designs arising in Kantor’s classification
of 2-transitive symmetric designs [20]. Ioppolo [18, Theorem 7.9] also showed how
to use the blowup Construction 2.1 to produce larger examples admitting an affine
group (not 2-transitive). The known affine examples are summarised in Table 5 in
Section 5, and in particular we discuss there what is required to resolve the following
problem.

Problem 1 Complete the classification of SIT-codes and Delandtsheer designs ad-
mitting a 2-transitive affine group over a field of order 2.

The last infinite family of 2-transitive groups, in the ‘symplectic’ line of Table 2,
corresponds to the Jordan–Steiner actions of the symplectic groups G = Sp(2n, 2) on
nondegenerate quadratic forms. Investigating this was the major topic of Ioppolo’s
thesis [18], and we discuss his findings in Section 6. He identifies two distinct infinite
families of examples arising from subspace actions of the symplectic groups [18,
Chapter 4], and shows that, for any further examples of G-SIT codes, the stabiliser
of a codeword Gγ is an almost simple group acting absolutely irreducibly on the
underlying space F2n

2 , see [18, Theorem 8.2] or [3, Theorem 1.4]. In the case where
Gγ is almost simple, there is at least one further example: one in J(136, 10) with
automorphism group S10 constructed in [18, Section 5.4]. On the other hand Gγ
is not a sporadic group or an exceptional group of Lie type, [18, Theorem 8.5]. It
would be very nice to see a full classification.
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Problem 2 Complete the classification of SIT-codes and Delandtsheer designs ad-
mitting a 2-transitive symplectic group in one of its Jordan–Steiner actions.

In the final Section 7 we discuss several related families of codes and designs.
These include pairwise transitive designs and binary linear codes.

Remark I began the study of SIT-codes in 2005 in collaboration with R. A. (Bob)
Liebler. Sadly, Bob died in July 2009 while hiking in California, some years before
our joint paper [21] was completed. When proof-reading the paper [21], I failed to
identify several misprints introduced during the typesetting process: namely, around
5% of expressions of the form

(V
k

)
had been changed to Vk . This affects the following

statements in [21]: Lemma 3.2 parts (a) and (c), Proposition 6.1 (ii), and Example
8.1. There are also a few instances of these misprints in the proofs in [21].

2 Completely regular codes and a blow-up Construction

A code C in J(V, k) determines a distance partition {C0, . . . , Cr−1} of the vertex
set of J(V, k), where C0 = C is the code itself, C1 is the set of code-neighbours, and in
general Ci is the set of k-subsets which are at distance i from at least one codeword in
C, and at distance at least i from every codeword. For the last non-empty set Cr−1,
the parameter r is called the covering radius of C. The code is completely-regular
if, for any i, j ∈ {0, . . . , r − 1} and γ ∈ Ci, the number of vertices of Cj which are
adjacent to γ in J(V, k) is independent of the choice of γ in Ci, and depends only
on i and j. Further, C is called completely-transitive if Aut(C) (which fixes each Ci
setwise) is transitive on each Ci.

For our blow-up construction we begin with a code C0 in J(U , k0) and essentially
replace each element of U with a set of constant size a > 1 to obtain a code in
J(V, ak0) with base set V of size a|U|. These blow-up codes are a generalisation
of the groupwise complete designs introduced by Martin in [22] which correspond
to the special case where C0 is the complete code

(U
k0

)
. Martin [22, Theorem 2.1]

determined all groupwise complete designs that are completely-regular codes, and as
noted in [21, Remark 4.5], most of the codes we introduce below are not completely
regular. We note that complete codes provide somewhat trivial examples of strongly
incidence-transitive codes and Delandtsheer designs.

Construction 2.1 Let U = {U1|U2| . . . |Uv0} be a partition of the v-set V with v0
parts of size a, where v = av0, a > 1, v0 > 2, and let k = ak0 where 1 6 k0 6 v0 − 1.
For a code C0 in J(U , k0) with |C0| > 2, the blow-up code C(a, C0) in J(V, k) is the
set of all k-subsets of V of the form ∪U∈γ0U , for some γ0 ∈ C0.

This construction, in the special case where C0 is the complete code
(U
k0

)
, was

introduced by Bill Martin [22] in 1994. He called such codes C(a, C0) groupwise
complete designs, and in particular he determined the groupwise complete designs
which are completely-regular codes in J(V, k). The general Construction 2.1 above
is [21, Example 4.4] except that we allow v0 to take any value at least 2. In [21,
Example 4.4], v0 > 4 is assumed, but we note that [21, Lemma 4.6] is valid for all
v0 > 2. In particular Construction 2.1 allows the possibility k0 = 1, in which case
the smaller Johnson graph J(U , 1) is the complete graph with vertex set U . In all
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cases the construction preserves the property of strong incidence-transitivity. It is
inherently an ‘imprimitive construction’ in the sense that the natural automorphism
group preserving the code leaves the nontrivial partition U invariant. Recall that
we define Aut(C0) as the stabiliser of C0 in Sym(U).

Lemma 2.2 [21, Lemma 4.6] Let C = C(a, C0) as in Construction 2.1, and let
A = Aut(C0).

(a) Then δ(C) = a δ(C0) and Aut(C) contains Sym(a) oA in its imprimitive action
on V;

(b) if a > 3, or if a = 2 6 δ(C0), then C is (Sym(a)oA)-strongly incidence-transitive
if and only if C0 is A-strongly incidence-transitive;

(c) in particular if C0 is strongly incidence-transitive, then C is also strongly incid-
ence-transitive.

Thus Construction 2.1 produces many strongly incidence-transitive codes, and
hence also many Delandtsheer designs. It turns out that essentially all are 1-designs
and none are 2-designs, even if the input (U , C0) is a 2-design.

Lemma 2.3 Let C = C(a, C0) be a code in J(V, k) as in Construction 2.1, for some
strongly incidence-transitive code C0 in J(U , k0), where |C0| > 2, v = |V| = a|U| =
av0, and k = ak0. Then (U , C0) is a Delandtsheer 1− (v0, k0, r) design, for some r,
and (V, C) is a Delandtsheer 1− (v, k, r) design but is not a 2-design.

Proof The fact that C is strongly incidence-transitive follows from Lemma 2.2(c).
We note that |C| = |C0| > 2, from Construction 2.1, and hence, by definition, both
(U , C0) and (V, C) are Delandtsheer designs. Also, by Lemma 1.1, A = Aut(C0) is
transitive on U and Sym(a) oA is transitive on V, and hence both are 1-designs, say,
(U , C0) is a 1 − (v0, k0, r) design. Then it is easily seen from the construction that
(V, C) is a 1 − (v, k, r) design with the same parameter r. It remains to show that
(V, C) is not a 2-design.

Consider distinct points u, u′ in the same class Ui of U . Then as Ui lies in
exactly r blocks of C0, the pair {u, u′} lies in exactly r blocks of C. Suppose that
(V, C) is a 2 − (v, k, λ) design. Let u, u′ lie in distinct classes U,U ′ of U . Then
by the definition of C, the set of blocks of C containing {u, u′} is in one-to-one
correspondence with the set of blocks of C0 containing {U,U ′}. Since this set has size
λ > 0, independent of the choices of u, u′ it follows that (U , C0) is also a 2−(v0, k0, λ)
design (with the same λ). In particular k0 > 1, since otherwise there would be no
blocks of C0 containing {U,U ′}. Moreover λ must be equal to the parameter r
(the number of blocks of C containing a point pair within a single class). Counting
triples (U,U ′, γ0), with distinct U,U ′ ∈ U and γ0 ∈ C0 such that U,U ′ ∈ γ0, we have
v0(v0−1)λ = |C0| k0(k0−1) = v0r(k0−1), and since λ = r, this implies that v0 = k0.
This means, however, that |C0| = 1, which is a contradiction. �

It turns out that the family of examples from Construction 2.1 essentially ex-
hausts all possibilities for G-SIT-codes, and Delandtsheer designs, in J(V, k) for
which the automorphism group G is not primitive on the base set V. This assertion



Codes and designs 9

is proved in [19] and draws together a number of results from [21] concerning the
larger class of neighbour-transitive codes. It is instructive to repeat the argument
here.

Proposition 2.4 [19, Theorem 2] Suppose that C ⊆
(V
k

)
is a code in J(V, k), where

2 6 k 6 v − 2 and |C| > 2, and suppose that G 6 Aut(C) is not primitive on V.
Then the following are equivalent:

(a) C is a G-SIT code;

(b) G is transitive on V and, for some divisor a of gcd(v, k) with a > 2, G leaves
invariant a partition U of V with |U| = v/a parts of size a, and C = C(a, C0)
as in Construction 2.1, for some G0-SIT-code C0 in J(U , k0), where k = ak0
and G0 is the group induced by G on U .

Proof Let C, G be as in the statement. Then |C| > 2. Also, since G is not primitive
on V, it follows in particular that G 6= Sym(V) or Alt(V). Suppose first that C is
G-strongly incidence-transitive. If C were the complete code

(V
k

)
, then G would

be transitive on the k-subsets of V. By [10, Theorem 9.4B], such a group G is
either (i) 2-transitive on V, or (ii) k = 2, v ≡ 3 (mod 4), a prime power, and a point
stabiliser in G has orbits in V of lengths 1, (v−1)/2, (v−1)/2. Now each 2-transitive
permutation group is primitive, and also each group in case (ii) is primitive on V.
This contradicts our assumption that G is imprimitive on V. Therefore C is not the
complete code and so G is transitive on V and δ(C) > 2, by Lemma 1.1. Hence
by assumption, G is imprimitive on V, and so by [21, Proposition 4.7], C is as in
Example 4.1 or Example 4.4 of [21] relative to some G-invariant nontrivial partition
U of V with |U| = v/a parts of size a. If C comes from [21, Example 4.4], then
since this set of examples arises from our Construction 2.1 we have C = C(a, C0) for
some code C0 in J(U , k/a). Now G leaves U invariant and the group G0 induced
by G on U must preserve C0, so G 6 Sym(a) o G0 and G0 6 Aut(C0). Moreover,
since C = C(a, C0) is a G-SIT-code, the small code C0 must also be a G0-SIT-code.
Thus part (b) holds. Suppose now that C comes from [21, Example 4.1]. Then since
δ(C) > 2, it follows from [21, Lemma 4.3] that C is as in ‘Line 1 of Table 3 for [21,
Example 4.1] with k = a’. This means that U has parts of size a = k and C is equal
to the set of parts of U . Thus C is a blow-up code C(a, C0) as in Construction 2.1,
where k0 = 1 and the small code C0 consists of all the singletons from U . Since C is a
G-SIT-code, the stabiliser Gγ of any part γ of U is transitive on V \γ and hence the
group G0 induced by G on U is 2-transitive, and C0 is a G0-SIT-code. Thus again
part (b) holds.

Conversely, assume that part (b) holds. Then C is strongly incidence transitive
by Lemma 2.2. �

We deduce that an imprimitive strongly incidence-transitive code can be obtained
directly by applying Construction 2.1 to a primitive SIT-code.

Theorem 2.5 Suppose that C ⊆
(V
k

)
is a G-SIT-code in J(V, k), where |V| = v,

2 6 k 6 v − 2, |C| > 2, and G 6 Aut(C), such that G is imprimitive on V.
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(a) Then v = av0 and k = ak0 for some a > 2, there exists a strongly incidence-
transitive code C0 in J(U , k0), where |U| = v0, 1 6 k0 6 v0 − 1, such that
C = C(a, C0) and Aut(C0) is primitive on U .

(b) Moreover, Aut(C0) is 2-transitive on U , Aut(C) = Sym(a) oAut(C0), and either

(i) k0 = 1, C0 =
(U
1

)
is the complete code, C = U , and (V, C) is a Delandtsheer

1− (v, k, 1)-design; or

(ii) k0 > 2, (U , C0) is a Delandtsheer 2− (v0, k0, λ0) design, for some λ0, and
(V, C) is a Delandtsheer 1− (v, k, r) design where r = (v0−1)λ0/(k0−1).

Proof (a) By Proposition 2.4, C = C(a, C0) for some strongly incidence-transitive
code C0 in J(U , k0) where v = av0, k = ak0. Suppose that Aut(C0) is imprimitive
on U . Then a further application of Proposition 2.4 shows that C0 = C(a′, C′0) for
some strongly incidence-transitive code C′0 in J(U ′, k′0) where v0 = a′|U ′|, k0 = a′k′0.
It follows from Construction 2.1 that C = C(aa′, C′0). Thus we see recursively that,
if a is maximal such that C = C(a, C0) for some strongly incidence-transitive code C0
in J(U , k0) with v = av0 and k = ak0, then Aut(C0) is primitive on U .

(b) Suppose that C = C(a, C0) with C0 as in part (a). Since C0 is strongly
incidence-transitive and |C0| = |C| > 2 with A = Aut(C0) primitive on V, the group
A is 2-transitive on V by Theorem 1.2. If k0 > 2 this implies that (U , C0) is a
Delandtsheer 2− (v0, k0, λ0) design, for some λ0. This means that each Ui ∈ U lies
in r = |C0|k0/v0 = (v0− 1)λ0/(k0− 1) blocks in C0, and hence each point of V lies in
r blocks of C. On the other hand if k0 = 1 then C0 =

(U
1

)
is the complete code with

v0 = |U| blocks, and C = U with each point lying in a unique block.
Finally we show that Aut(C) is equal to X := Sym(a) o A where A = Aut(C0).

Now Aut(C) contains X by Lemma 2.2. Note that X contains a transposition so
its only primitive overgroup is Sym(V), which does not leave C invariant. Therefore
Aut(C) is imprimitive. If U ′ is a nontrivial Aut(C)-invariant partition of V, then
considering the action of X we see that each part of U (on which X induces the
full group Sym(a)) must be contained in a part of U ′, that is, U is a refinement
of U ′. Then the set of parts of U contained in a fixed part of U ′ forms a block of
imprimitivity for the induced action of X on U , and since X induces the primitive
group A on U , it follows that this block of imprimitivity has size 1 and U ′ = U . Thus
Aut(C) leaves U invariant. This implies that Aut(C) induces a subgroup of Sym(U)
leaving C0 invariant. It follows that Aut(C) = X. �

3 Sporadic SIT-codes and Delandtsheer 2-designs

Although the codes arising from Construction 2.1 can have arbitrarily large min-
imum distance (since δ(C(a, C0) = aδ(C0) > a) by Lemma 2.2, the codes are not very
large since |C(a, C0)| = |C0| remains fixed as a grows. Thus the interesting strongly
incidence-transitive codes in J(V, k) have automorphism groups primitive on V, as
we discussed in Subsection 1.4. In this section we examine the SIT-codes and De-
landtsheer 2-designs admitting a sporadic 2-transitive group. It turns out that each
of the sporadic 2-transitive groups, as listed in Table 1, acts on at least one SIT-code
and Delandtsheer design. The approach to this classification in [27] was computa-
tional, using the computer system GAP [13]. Note that, if C is a G-SIT-code and
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γ ∈ C, then Gγ has two orbits in V, namely γ and its complement. For each of the
sporadic 2-transitive groups G in Table 1,

� we started with a list L of representatives from the conjugacy classes of max-
imal subgroups of G (apart from the stabilisers of points of V). For each
subgroup H ∈ L,

� we computed the orbits of H on V, and discarded any subgroups with more
than two orbits on V;

� if H had two orbits γ and V \ γ, with say 2 6 |γ| 6 v/2, then we checked
whether or not H is transitive on γ× (V \γ), and if not then H was discarded;

� if H was transitive on γ× (V \γ), then we enumerated the corresponding code
C := {γg | g ∈ G} in J(v, |γ|), determined the minimal distance δ(C), and
checked if H was the full stabiliser of C in G (since later in this process the
subgroup H might not be maximal in G); in this case we would have found an
interesting SIT-code listed in Table 3;

� finally, if H was transitive on V, then we appended to L a representative of
each of the conjugacy classes of maximal subgroups of H, and continued with
these steps on the next listed subgroup in L.

Since the groups in Table 1 were explicitly available in GAP as permutation
groups of reasonable degree v, the initial list L could either be constructed by ex-
plicit computation, or by inspecting the Atlas of Finite Group Representations [31].
The procedure terminates because the groups are finite, and the fact that it yields
all examples is justified by [27, Lemma 1]. To aid with an understanding of the
beautiful geometric and group-theoretic structures underpinning the examples in
Table 3, mathematical arguments were given in [27, Section 2] in most cases (with
occasionally reference to computations to finish off the case).

Some of the Delandtsheer designs corresponding to these SIT-codes in Table 3 are
very familiar, such as the Steiner systems in lines 4, 8, 12, 15, 24, and 26 associated
with the Mathieu groups. Others might not be so easily identifiable: the design
in line 21 for the Conway group Co3 is the 2 − (276, 100, 1458) design found by
Haemers et al [14] in 1993. This and other 2-designs for Co3 were constructed and
the parameters found using the DESIGN package for GAP [29].

4 Classical SIT-codes and Delandtsheer designs

In this section we describe the SIT-codes and Delandtsheer designs admitting
either a ‘projective’ or a ‘rank 1’ group from Table 2. There are three infinite families
of examples and one exceptional case. We list them in Table 4 and describe how they
were classified. In the table,

(
m
r

)
q

denotes the number of r-dimensional subspaces
of Fmq .
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Line G v k δ(C) |C| Delandtsheer design Gγ
1 L2(11) 11 5 3 11 2-(11, 5, 2) biplane A5

2 A7 15 7 4 15 planes of PG(3, 2) L2(7)
3 M11 12 6 3 22 totals A6

4 M22 22 6 4 77 3-(22, 6, 1) design 24 : A6

5 7 4 176 heptads A7

6 8 4 330 octads 23 : L3(2)
7 10 4 616 decads M10

∼= A6 · 23
8 M22.2 22 6 4 77 3-(22, 6, 1) design 24 : S6
9 7 3 352 heptads A7

10 8 4 330 octads 2× 23 : L3(2)
11 10 4 616 decads A6 · (22)
12 M23 23 7 4 253 4-(23, 7, 1) design 24 : A7

13 8 4 506 octads A8

14 11 4 1288 endecads M11

15 M24 24 8 4 759 5-(24, 8, 1) design 24 : A8

16 12 4 2576 duum M12

17 HS 176 50 36 176 2-(176, 50, 14) U3(5) : 2
18 56 32 1100 2-(176, 56, 110) L3(4).2

19 Co3 276 6 3 708400 2-(276, 6, 280) 31+4
+ : 4S6

20 36 24 170775 2-(276, 36, 2835) 2.Sp6(2)
21 100 50 11178 2-(276, 100, 1458) HS
22 126 36 655776 2-(276, 126, 136080) U3(5) : S3
23 A7 15 3 2 35 lines of PG(3, 2) (A3 ×A4).2
24 M11 11 5 2 66 4-(11, 5, 1) design S5
25 M11 12 6 2 110 halves of quadrisect. 32 : Q8

26 M12 12 6 2 132 5-(12, 6, 1) design A6.2
27 M24 24 12 2 35420 5-(24, 12, 660) 26 : 3.(S3 × S3)

Table 3: Sporadic 2-transitive SIT-codes C with group G and 3 6 k 6 v/2.

Line G v k δ(C) λ Blocks of D(C)
1 PΓU(3, q) q3 + 1 q + 1 q 1 Classical unital
2 PΓU(3, 3) 28 12 6 11 ‘Bases’

3 PΓL(2, q) q + 1 q0 + 1 q0 − 1 q0−1
2 Baer sublines, q = q20

4 PΓL(n, q) qn−1
q−1

qs−1
q−1 qs−1

(
n−2
s−2

)
q

Subspaces, 2 6 s < n

Table 4: Classical 2-transitive SIT-codes C and Delandtsheer 2 − (v, k, λ) designs
D(C) with group G and 3 6 k 6 v/2
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Constructions for the SIT-codes C in Table 4 giving G, v, k and δ(C) are given
in [21, Examples 7.1, 7.3, 8.1, and Theorem 1.3(b)]. It follows from Theorem 1.2
that in each case D(C) = (V, C) is a Delandtsheer 2− (v, k, λ) design, and the value
of λ is determined using (1.2). More details on the classical unital may be found in
[4, 30]. The fact that there are no other examples from groups in the rank 1 and
projective lines of Table 2 needs some comment.

This classification is given for the 2-transitive Suzuki, Ree and unitary groups
in [21, Theorem 1.3], showing that only the unitary groups yield any examples, and
that these examples are the ones in Lines 1 and 2 of Table 4. The case of 2-transitive
subgroups of PΓL(2, q) acting on the projective line PG(1, q) was dealt with in [21,
Proposition 7.2], which showed that examples arise only if q = q20 and the blocks are
the Baer sublines as in Line 3 of Table 4.

This leaves the case where PSL(n, q) 6 G 6 PΓL(n, q) with n > 3, acting on
the point set V of the projective space PG(n− 1, q). Here the restrictions required
for a subset γ ⊆ V to be a codeword of a G-SIT-code, or equivalently, a block of a
Delandtsheer design admitting G, may be interpreted as a condition on the lines of
the projective geometry PG(n − 1, q). For a pair of points u ∈ γ and u′ ∈ V \ γ,
there is a unique line ` of PG(n− 1, q) containing u and u′, so transitivity of G on
the triples in (1.1) implies that G is transitive on the projective lines which meet
both γ and its complement. Hence such ‘shared lines’ meet γ in a constant number
of points, say x, where 0 < x < |`| = q + 1. Thus each projective line ` meets γ in
0, or x or q + 1 points. A subset γ of V with these properties is called a subset of
class [0, x, q + 1]1. If x = 1 then each line containing two distinct points of γ must
be contained in γ, and so γ is a projective subspace of PG(n− 1, q) – and the set of
subspaces of a given dimension is an example, as in Line 4 of Table 4. Similarly if
x = q then each line containing two distinct points of V \ γ lies in V \ γ, and so γ is
a subspace complement: however in this case k = |γ| > v/2 so we do not list these
examples separately.

In the case where 1 < x < q we restrict analysis to the case where 2 6 x 6
(q + 1)/2, since J(v, k) ∼= J(v, v − k) and if γ is a subset of class [0, x, q + 1]1,
then V \ γ is a subset of class [0, q + 1 − x, q + 1]1. Here, by [21, Proposition 7.4],
x ∈ {2,√q + 1}. Using this information it was shown by Durante [11, Theorem
15] that there are no further examples of SIT-codes admitting projective groups.
In fact Durante [11, Theorem 14] described all subsets γ of PG(n − 1, q) of class
[0, x, q+ 1]1, showing that either (i) γ or its complement is a subspace, or (ii) n = 3,
q is even, and γ is a proper x-maximal arc or the complement of a proper (q+1−x)-
maximal arc. Applying a result of Delandtsheer and Doyen [6, Theorem], among
the examples in case (ii), the only ones for which Gγ is transitive on ‘shared lines’
are the hyperoval in PG(2, 4), for which (k, x) = (6, 2), and the dual of a regular
hyperoval, for which (k, x) = (q(q − 1)/2, q/2). Since x ∈ {2,√q}, this leaves only
q = 4 with γ a hyperoval in PG(2, 4). However, it was noted in [21, Remark 7.5]
that, although the stabiliser in PGL(3, 4) of a hyperoval γ is transitive on ‘shared
lines’, the more restrictive SIT-property fails and this is not an additional example.

5 Affine SIT-codes and Delandtsheer designs
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Line q n k δ(C) λ Blocks of D(C)
1 any n > 2 qs qs−1(q − 1)

(
n−1
s−1

)
q

Subspaces, 1 6 s < n

2 16 1 4 3 1 Baer sublines
3 16 n > 2 4.16n−1 ? ? Four parallel hyperplanes
4 4 n > 2 2.4n−1 ? ? Two parallel hyperplanes
5 4 n = 2 6 3 6 Hyperovals in AG(2, 4)
6 4 n > 3 ? ? ? Cylinders in AG(n, 4)

with base as in Line 5
7 2 n > 4 2n−1+ ? ? Blocks of symplectic

n even ε2n/2−1 design Sε, where ε = ±
8 2 n > 4 2n−1+ ? ? Union of all symplectic

n even ε2n/2−1 designs on V of type ε

Table 5: Affine 2-transitive SIT-codes C and Delandtsheer 2−(qn, k, λ) designs D(C)
with 2-transitive group G 6 AΓL(n, q), q > 4, and k 6 qn/2.

As we discussed in Subsection 1.4, there are many interesting examples of affine
SIT-codes and Delandtsheer designs. Let G 6 AΓL(n, q) be 2-transitive on the
point-set V of AG(n, q), and suppose that C it a G-SIT-code in J(qn, k) with 3 6
k 6 qn/2. Combining [21, Propositions 6.1 and 6.6] and [18, Lemma A.1], either C
is the set of all affine subspaces of fixed dimension, as in Line 1 of Table 5, or the
field size q ∈ {2, 4, 16}. If n = 1 then the only non-subspace example is the set of
Baer sublines of AG(1, 16), by [21, Proposition 6.1], as in Line 2 of Table 5. Suppose
then that n > 2, and that γ is not a subspace, so q ∈ {2, 4, 16}.

For γ ∈ C and points u ∈ γ and u′ ∈ V \ γ, there is a unique affine line ` of
AG(n, q) containing u and u′, and transitivity of G on the triples in (1.1) implies
that G is transitive on the affine lines which meet both γ and its complement. Hence
such ‘shared lines’ meet γ in a constant number x of points, where 0 < x < |`| = q,
and therefore each line meets γ in 0, or x or q points, that is to say, γ is a subset
of class [0, x, q]1 in AG(n, q). For q > 4, Durante [11] determined all subsets of
class [0, x, q]1: in Theorem 22 of [11] if n > 3, q > 4, Theorem 24 if n > 3, q = 4,
and Proposition 18 if n = 2. He then examined all these examples and determined
which of them have the SIT-property in [11, Theorem 27]. The examples give all
possibilities for q = 4, 16, and are as in Lines 3–6 of Table 5. Unfortunately he does
not give the parameters δ(C) and λ for D(C), but we have these for Line 5 deduced
from [21, Example 6.7] (with the help of John Bamberg).

Problem 3 Determine the minimum distance δ(C) and the parameter λ for the
affine SIT-codes and Delandtsheer designs in Lines 3, 4, 6, 7, 8 of Table 5.

There remains the exceptional case of q = 2, studied by Ioppolo in [18, 19]. The
2-transitive affine group G 6 AGL(n, 2) contains the translation group T ∼= Cn2 as
its unique minimal normal subgroup, and Ioppolo showed that the structure of a G-
SIT-code C in J(2n, k) depends on the intersections M(γ) = Gγ ∩T , for γ ∈ C. Note
that M(γ) 6= T since γ 6= V. Since G is transitive on C, these subgroups M(γ) form a
conjugacy classM of G, and the code C is partitioned into pairwise disjoint subcodes
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C(M) = {γ ∈ C|M(γ) = M}, called components, for M ∈ M. Each component
C(M) is itself an NG(M)-SIT-code, by [18, L:emma 7.2]. If 2a = |M | > 1, then
the group NG(M) acts imprimitively on V preserving the partition U into M -orbits,
and hence, by Proposition 2.4, C(M) = C(2a, C0) as in Construction 2.1, with C0 a
G0-SIT-code in J(2n−a, k0), where k = 2ak0 and G0 is the group induced by NG(M)
on the set U of M -orbits in V. Since M 6= T , the group G0 is an affine group on
U , and by the definition of C(M), each codeword γ0 ∈ C0 intersects the translation
group for C0 trivially: such a code C0 is said to be translation-free. Since G permutes
the components C(M) transitively, it follows that each affine SIT-code C in J(2n, k)
corresponds, up to isomorphism, to a unique affine translation-free SIT-code C0 in
J(2n−a, k/2a), for some a > 0.

The affine translation-free SIT-codes are therefore central to understanding the
affine SIT-codes over F2, and they have been completely classified by Ioppolo [18,
Chapter 7] (see also [19]). The examples are as in Lines 7–8 of Table 5. For the
examples in Line 7, which are constructed in [18, Example 7.11], the Delandtsheer
design D(C) is the symplectic symmetric design Sε(V), where n is even and ε ∈
{±}. The automorphism group of Sε(V), and of the corresponding SIT-code, is
the symplectic affine group ASp(n, 2) = Cn2 o Sp(n, 2) (or C4

2 o S6 if n = 4). It is
shown in [18, Theorem 7.13] that every affine translation-free SIT-code in J(2n, k)
has n even and k = 2n−1 + ε2n/2−1, for some ε ∈ {+,−}, and is a disjoint union
of several copies of Sε(V) permuted transitively by some overgroup of ASp(n, 2) in
AGL(n, 2). Since Sp(n, 2) is a maximal subgroup of GL(n, 2) (or S6 maximal in
GL(4, 2) ∼= A8 if n = 4), by [1], it follows that the only other examples are the
union of all images of a code in Line 7 of Table 5 under elements of AGL(n, 2), or
equivalently, under elements of GL(n, 2) (since the translation subgroup leaves the
codes Sε(V) invariant). These are the examples in Line 8 of Table 5. Note that, for
each ε, there is one copy of Sε(V) for each nondegenerate alternating form on V.

It is not clear whether it is possible to use a translation-free code C0 to build a
component code C(M) = C(2a, C0), with M 6= 1, in such a way that Aut(C(M)) ∩
AGL(n, 2) acts strongly incidence transitively, noting that Aut(C(M)) = Sym(2a) o
Aut(C0). The task remaining to solve Problem 1 is essentially to resolve this issue.
The reason is that each example C(M) = C(2a, C0) of an H-SIT code in J(2a+n, k),
with a > 0, C0 as in Table 5 line 7 or 8, and Ca+n2 � H 6 AGL(a + n, 2), can be
used to construct an affine G-SIT-code C for any 2-transitive group G satisfying
H < G 6 AGL(a + n, 2) by taking C = ∪g∈GC(M)g. And each such code would
arise in this way.

6 Symplectic SIT-codes and Delandtsheer designs

The last infinite family of 2-transitive permutation groups to consider are the
symplectic groups G = Sp(2n, 2), with n > 2, (line ‘symplectic’ of Table 2). The
group G is the isometry group of a nondegenerate alternating form B on V = F2n

2 ,
and G acts on the associated set Q of all nondegenerate quadratic forms φ : V → F2

which polarise to B, that is to say:

B(x, y) = φ(x+ y)− φ(x)− φ(y), for all x, y ∈ V .
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For g ∈ G and φ ∈ Q, we write φg for the function φg(x) = φ(xg−1), for x ∈ V ,
and note that φg ∈ Q. We let sing(φ) = {x ∈ V | φ(x) = 0}, the set of φ-singular
vectors. The group G has exactly two orbits in Q, which we denote Q+ and Q−: a
form φ ∈ Q+ if the maximum dimension of a subspace of V contained in sing(φ) is n,
while for φ ∈ Q− this dimension is n−1. We say that φ has type + or −, respectively.
For ε ∈ {+,−}, this G-action on Qε is 2-transitive, and |Qε| = 2n−1(2n+ε.1). These
actions are known as the Jordan-Steiner actions of G. We sometimes write ε instead
of ε.1.

For a given ε ∈ {+,−}, Ioppolo constructed two families of G-SIT codes in
J(Qε, k), for certain k, as follows. The first family is based on nondegenerate sub-
spaces of V of fixed dimension.

Construction 6.1 [3, Construction 1.2] Let ε′ ∈ {+,−}, d ∈ Z with 1 6 d < n,
and k = 2n(2d + ε′)(2n−d + εε′). Define the code

Γ(n, d, ε, ε′) = {γ(U) | U < V,U nondegenerate,dim(U) = 2d}

in J(Qε, k), where

γ(U) = {φ ∈ Qε | ϕ|U has type ε′ and ϕ|U⊥ has type εε′}.

The second family uses totally isotropic subspaces of fixed dimension.

Construction 6.2 [3, Construction 1.3] Let c, d ∈ Z with c = 0 or 1 and 1 6 d 6 n
such that (d, ε) 6= (n,−), and let k = 2n−1(2n−d + ε). Define the code

Γ(n, d, ε, c) = {γ(U) | U < V,U totally isotropic, dim(U) = d}

in J(Qε, k), where

γ(U) = {φ ∈ Qε | dim(sing(φ) ∩ U) = d− c}.

Ioppolo showed that these are the only examples which are ‘geometrically based’
in the following sense. The SIT-property requires a codeword stabiliser Gγ to have
two orbits in Qε, namely γ and its complement, and analysis of the various cases
considers the possible maximal subgroups M of G containing Gγ . The family of
maximal subgroups of G = Sp(2n, 2) have been classified into various families by
Aschbacher [1]. One of these families consists of the subspace stabilisers appearing in
Constructions 6.1 and 6.2. The union of several of the families of maximal subgroups,
including these subspace stabilisers, is called the family of geometric subgroups, and
Aschbacher proved that each maximal subgroup M of G that is not geometric, in this
sense, is an almost simple group, that is, T �M 6 Aut(T ) where T is a nonabelian
simple group, called the socle of M , and T is absolutely irreducible on F2n

2 . The
major result of Ioppolo’s thesis ([18, Theorem 4.3], or see [3, Theorem 1.4]) is that
the only SIT-codes for which a codeword stabiliser Gγ is contained in a maximal
geometric subgroup are those from Constructions 6.1 and 6.2. It is not known (to
us) whether the corresponding Delandtsheer designs are previously known 2-designs.

Questions 6.3 Are the Delandtsheer designs corresponding to the SIT-codes in
Constructions 6.1 and 6.2 previously known 2-designs?
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Ioppolo’s work shows that for any other examples the codeword stabiliser itself
must be almost simple. There is at least one additional example with 3 6 k 6
v/2 where Gγ is a maximal almost simple group, namely an Sp(8, 2)-SIT-code in
J(136, 10) based on V = Q+, with Gγ = Sym(10). Here the underlying space F8

2 is
the deleted permutation module for the natural action of Sym(10). This example
is the only one where F2n

2 is the deleted permutation module for Sym(2n + 2), [18,
Theorem 8.3], and it is the only one for dimensions 2n 6 12, [18, Section 6.2].
Moreover, there are no examples if T is a sporadic simple group or an exceptional
group of Lie type [18, Theorem 6.25 and Appendix C.2], and if T is a classical simple
group then existence of a corresponding SIT-code places very strong restrictions on
T [18, Chapter 6]. Nevertheless, there is much work to be done yet to deal completely
with Problem 2.

7 Related codes and designs

In this final section we discuss several families of designs and codes with links to
Delandtsheer designs and SIT-codes.

7.1 Transitivity properties on flags and antiflags of designs

Flag-transitive 2-designs have been studied extensively, particularly following
the seminal result of D. G. Higman and J. E. McLaughlin [16] that a flag-transitive
2 − (v, k, 1) design (linear space) is point-primitive. It is however Delandtsheer’s
work [5] on antiflag-transitive linear spaces which is most relevant to the theme of
this exposition, especially her observation that most examples in her classification
possessed the stronger SIT-property: hence our definition of a Delandtsheer design
(V, C) with block size k as one in which the block set C is an SIT-code in J(V, k).
Proposition 2.4 together with Theorem 1.2 essentially reduce the problem of clas-
sifying the Delandtsheer designs to the case of (point) 2-transitive Delandtsheer
2-designs. And the discussion in Sections 3, 4, 5 and 6 outlines the current status
of this classification problem.

It would be interesting to know if progress could be made in understanding
the intermediate family where the stringent symmetry conditions for Delandtsheer
designs are relaxed somewhat, but not as far as simply antiflag-transitivity.

Problem 4 Investigate designs that are both flag-transitive and antiflag-transitive.

Motivated by a problem in graph theory, investigations have begun [8, 9] of
the family of pairwise transitive designs which are in particular both flag-transitive
and antiflag-transitive. This family of designs is defined by its symmetry: a design
D = (V,B) is said to be pairwise transitive if its automorphism group is transitive
on the following six (possibly empty) sets of ordered pairs from V ∪ B: collinear
point-pairs (that is, distinct points contained in some block of B), non-collinear
point-pairs, incident point-block pairs, non-incident point-block pairs, intersecting
block-pairs, and non-intersecting block-pairs. To compare pairwise transitive designs
with Delandtsheer designs we make the following observations.

(a) The families of pairwise transitive designs and Delandtsheer designs have sig-
nificant overlap, for example, both contain the designs of points and hyper-
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planes of projective and affine geometries (see Tables 4 and 5, and [9, Tables
1 and 2]), as well as the symplectic symmetric designs Sε(V) described in Sec-
tion 5 and [9, Table 1], and other 2-transitive symmetric designs (Lines 1 and
17 of Table 3 and [9, Table 1]).

(b) Neither family is contained in the other. For example most Delandtsheer de-
signs arising from small dimensional subspaces of projective and affine geome-
tries are not pairwise transitive, since there is more than one kind of nontrivial
block-intersection and hence the group is not transitive on pairs of intersecting
blocks. On the other hand the exceptional design consisting of the 21 points of
PG(2, 4) and one of the three PSL(3, 4)-orbits of 56 hyperovals as blocks, forms
a pairwise transitive design [9, Theorem 4.6] which, as discussed in Section 4,
is not a Delandtsheer design (see [21, Remark 7.5]).

(c) The two exceptional antiflag-transitive linear spaces in Delandtsheer’s classifi-
cation [5], which are not Delandtsheer designs, are both 2-transitive nondesar-
guesian affine planes, namely the nearfield plane of order 9 and Hering’s plane
of order 27. Neither of these is pairwise transitive, by [9, Theorem 1.1]. Thus
there are examples of antiflag-transitive 2-designs which are neither Delandt-
sheer designs not pairwise transitive designs.

(d) By Lemma 2.3 each code C(a, C0), arising from Construction 2.1 with C0 an
SIT-code in J(U , k0), is a Delandtsheer 1-design, but not a 2-design. However
the group G = Sym(a) o Aut(C0) is not transitive on pairs of collinear points
unless k0 = 1 in which case C is the set of parts of the partition U . Thus
these designs are not G-pairwise transitive if k0 > 1, but are indeed pairwise
transitive if k0 = 1, see [8, Example 2.1].

(e) Let V = Fnq and 0 6= u ∈ V, and consider the subset C of J(V, q) consisting of
all hyperplanes of AG(n, q) which do not contain a line in the direction 〈u〉.
Then for G = [qn].U < AGL(n, 1), where U is the stabiliser in GL(n, q) of 〈u〉,
the design (V, C) is a G-pairwise transitive 1 − (qn, qn−1, qn−1) design, by [8,
Lemma 3.4], but it is not a Delandtsheer design (the SIT-property is easily
seen to fail for γ an (n− 1)-subspace complementing 〈u〉).

The pairwise transitive 2-designs have been classified by Devillers and the author
in [9, Theorem 1.1]. Since all pairs of distinct points are collinear, the automorphism
group G is 2-transitive on points, and since G is transitive on intersecting block-
pairs and on non-intersecting block-pairs, there are at most two possible values for
the intersection size of a block-pair. Thus a pairwise transitive 2-design is either
symmetric (if all block-pairs intersect nontrivially) or quasisymmetric if there exist
non-intersecting block-pairs, [9, Lemma 2.4]. The 2-transitive symmetric designs
were classified by Kantor [20], while the quasisymmetric pairwise transitive 2-designs
were classified in [9].

The examples given in (d) and (e) show that Delandtsheer 1-designs and pair-
wise transitive 1-designs exist, and that neither family contains the other; while the
examples in (c) illustrate that these two families do not cover all the designs ad-
dressed in Problem 4. Nevertheless, a better understanding of both families would
be helpful.



Codes and designs 19

Problem 5 [8, Problem 1.11] Classify pairwise transitive 1-designs.

In particular, a classification of the sub-family of pairwise transitive 1-designs
for which the block set can be partitioned into parallel classes would have significant
graph theoretic application. Such a design would be an affine design (see [8, Section
2.2]). A bipartite graph Γ with ordered bipartition (B|B′) corresponds to a design
D with point set B, block set B′ and incidence given by adjacency; also Γ is said to
be locally (G, s)-distance transitive with automorphism group G if, for each vertex
x, the stabiliser Gx is transitive on the set of vertices at distance i from x, for
i = 1, . . . , s. If the design D is affine, then the graph Γ is locally (G, 4)-distance
transitive if and only if D is G-pairwise transitive, [8, Proposition 2.7(ii)].

7.2 SIT-codes and codes in binary Hamming graphs

Some of the examples of sporadic SIT-codes and Delandtsheer designs in Table 3
have surprisingly large minimum distance, and this prompted us to think in [27]
about links between codes in Johnson graphs and codes in binary Hamming graphs
- the traditional block codes. The binary Hamming graph H(v, 2) has as vertices the
ordered v-tuples with entries from {0, 1}, and edges those pairs of v-tuples which
agree in all but one entry. If we write V = {1, 2, . . . , v}, then each vertex γ of the
Johnson graph J(v, k) can be identified with the binary v-tuple h(γ) with i-entry
1 if and only if i ∈ γ, (see [27, Section 1.3]). This allows J(v, k) to be identified
with the set of all weight k vertices of H(v, 2), and each code C in J(v, k) to be
identified with a constant weight code H(C) in H(v, 2). Two vertices at distance
d in J(v, k) correspond to two vertices in H(v, 2) at distance 2d so the minimum
distance of H(C) is equal to 2δ(C). Moreover Aut(C), in its action on entries, acts as
automorphisms of the code H(C) in H(v, 2), so for an SIT code C in J(v, k), Aut(C)
is transitive on the codewords of H(C). The neighbours of H(C) in H(v, 2) have
weights k ± 1, yielding two Aut(C)-orbits on code neighbours for an SIT code C.

Lemma 7.1 Let C be an SIT-code in J(v, k). Then Aut(C) has two orbits on the
code-neighbours of H(C), namely those of weight k − 1 and those of weight k + 1.

Proof Extend the map h to act on each subset ν ⊆ V, so that h(ν) is the v-tuple
with i-entry 1 if and only if i ∈ ν. Since C is an SIT-code, Aut(C) is transitive on
the set of triples (u, u′, γ) such that γ ∈ C, u ∈ γ and u′ ∈ V \ γ. In particular
Aut(C) is transitive on pairs (u, γ) with γ ∈ C, u ∈ γ (the flags of the corresponding
Delandtsheer design D(C)). Since each code-neighbour of weight k−1 is of the form
h(γ \ {u}) for some flag (u, γ) of D(C), it follows that Aut(C) is transitive on the set
of all code-neighbours of weight k− 1. An analogous proof, using anti-flags of D(C),
shows that Aut(C) is transitive on the set of all code-neighbours of weight k + 1.
�

In fact, the conclusion of Lemma 7.1 holds if the assumption on C is weakened to
simply requiring Aut(C) to be transitive on flags and on antiflags, as in Problem 4.
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